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Abstract: Since trees are a vital part of urban green infrastructure, automatic mapping of individual
urban trees is becoming increasingly important for city management and planning. Although deep-
learning-based object detection networks are the state-of-the-art in computer vision, their adaptation
to individual tree detection in urban areas has scarcely been studied. Some existing works have
employed 2D object detection networks for this purpose. However, these have used three-dimensional
information only in the form of projected feature maps. In contrast, we exploited the full 3D potential
of airborne laser scanning (ALS) point clouds by using a 3D neural network for individual tree
detection. Specifically, a sparse convolutional network was used for 3D feature extraction, feeding
both semantic segmentation and circular object detection outputs, which were combined for further
increased accuracy. We demonstrate the capability of our approach on an urban topographic ALS
point cloud with 10,864 hand-labeled ground truth trees. Our method achieved an average precision
of 83% regarding the common 0.5 intersection over union criterion. 85% of the stems were found
correctly with a precision of 88%, while tree area was covered by the individual tree detections
with an F1 accuracy of 92%. Thereby, we outperformed traditional delineation baselines and recent
detection networks.

Keywords: deep learning; sparse convolutional network; object detection; airborne laser scanning;
vegetation

1. Introduction

Urban trees are an essential part of cities’ green infrastructure and draw particular
attention in city development and environment preservation. High and medium vegetation,
e.g., trees and shrubs, have positive effects on urban quality of living. Ecosystem services
provided by urban forests include, but are not limited to, a reduction of air pollution [1],
an improvement of locale climate through shading and evapotranspiration [2–5], energy
savings [6], and the enrichment of biodiversity [7].

Municipal administrations often use dedicated systems to manage their green spaces.
Because trees are of particular concern, they are managed in special tree cadasters, contain-
ing information such as position, height, crown and trunk diameter, health, and species
of the individual trees. These inventories represent vital information for traffic safety,
monitoring, and strategic planning of urban green infrastructure, as well as a wide range
of research fields [8–11].

However, two major issues interfere with the completeness of these databases. First
of all, the data for tree cadasters are traditionally acquired by field-based surveys, which
are time-consuming and costly undertakings. Consequently, many of the descriptive and
structural attributes might be missing, and the feasibility of continuous monitoring is
limited. Furthermore, private areas such as gardens often lie outside immediate on-site
access and thus are not surveyed. Existing municipal tree inventories are therefore usually
limited to trees on public grounds or along streets [8,11] even though vegetation on private
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ground is a considerable part of cities’ green infrastructure [12,13]. Thus, an automatic and
complete mapping through individual tree detection (ITD) in remote sensing data is of
particular scientific and practical interest [14,15].

Large-scale mapping of areal tree coverage is traditionally performed by satellite,
airborne imagery, or airborne laser scanning (ALS) in increasingly higher resolutions [16].
In contrast, the detection of individual urban trees is especially challenging due to their
diverse spatial arrangements (as singulars, groups, or dense stands), occlusions, as well
as varying shapes and sizes. As pointed out by [17], while simple methods such as
local maxima filters and basic segmentation of a height model perform generally well,
more sophisticated techniques are often overly fine-tuned by hand and specialized to
certain data conditions and assumptions in regards to tree structure. In contrast, data-
driven deep learning techniques recently became popular for vegetation mapping [18].
Once a basic neural network methodology is found, adaption to new data distributions is
straightforward by labeling and re-training on new reference data. As ALS provides not
only high spatial resolution height information, but also fully 3D point clouds that capture
sub-canopy tree structure, 3D algorithms can result in higher accuracy for ITD. However,
thus far, only two-dimensional deep learning networks have been applied to individual
tree detection.

In this work, we investigated the use of a deep 3D single-shot detector for individual
urban tree identification in ALS point clouds, in contrast to previous works that only used
two-dimensional detection networks. It is an extension of our previous proof-of-concept
study in [19]. Compared to this previous version, small, but significant improvements to
the pipeline enhanced the accuracy by a large margin. We tested our methodology on a
new, large-scale dataset and bore the relation to a greater number of baselines. An extensive
ablation study analyzed the impact of the individual adjustments on overall performance.

This paper is organized as follows: First, we review related works in Section 2. Then,
we describe the architecture of the neural network and its training process in Section 3.1 and
the data material used in this work in Section 3.2. After outlining the baselines (Section 3.3)
and therewith comparing our results (Section 4), Section 4.4 further analyzes the impact of
different components of our methodology in an ablation study before the final discussion
in Section 5.

2. Related Work
2.1. Individual Tree Detection in (Urban) Forests

Tree detection and delineation from airborne laser scanning is a widely studied task
in forestry [20–23]. Numerous methods have been developed to identify individual trees.
Most common approaches leverage a light-detection-and-ranging (LiDAR)-based canopy
height model (CHM), which is a normalized digital surface model (nDSM) over exclusively
tree-covered areas. In such homogeneous scenes, single tree detection can be achieved
by searching for local maxima in the CHM. For delineation, a variety of unsupervised
segmentation methods have been used in the literature. Starting from local maxima as
seed points, region growing was used to iteratively add adjacent pixels to the initial tree
segments [24–26]. A particular popular segmentation method is the watershed transform
of the inverted CHM [27–29]. In [30], tree points were clustered through slope climbing.

The capability of LiDAR to penetrate vegetation can provide a more complete view of
individual trees in the 3D point cloud compared to the CHM surface, including stems and
understory trees. Therefore, 3D clustering methods have been proposed [31–33], including
three-dimensional mean-shift segmentation [34–36]. Alternatively, template matching was
used to fit three-dimensional geometric models to the vertical height information in the
CHM or directly into the point cloud [30,37–40]. Other works solved tree delineation by
translating it into graph optimization problems [17,41].

In urban areas, non-tree regions have to be masked out before applying such tree
detection methods. This can be achieved with vegetation indices from multispectral
imagery such as the normalized difference vegetation index (NDVI) or geometrical features
from the point cloud [42–48]. ALS provides additional features beneficial for vegetation
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recognition. Laser beams emitted by an ALS sensor can partly penetrate higher vegetation
such as trees and bushes and so record multiple returning echos, resulting in characteristic
representations of vegetation in the resulting point clouds [49–51]. Generally speaking,
such unsupervised segmentation and classification methods usually require careful pre-
and post-processing to avoid under- and over-segmentation.

2.2. MLS and Other Data Sources

Other kinds of data have been studied for urban tree detection as alternatives to
airborne LiDAR. Mobile mapping systems typically capture high-density point clouds
coupled with high-resolution imagery. For example, Weinmann et al. [52] separated
high-density point clouds from mobile laser scanning (MLS) in tree or non-tree points
based on eigenvalue features and a random forest classifier, followed by a 2D mean shift
segmentation to separate individual trees. Other works used region growing [53–56],
clustering [54,57,58], or graph-based segmentation [59,60]. In [61], starting with an already
filtered point cloud, lower tree points were outlined into individual trunks by graph-based
segmentation. Then, the rest of the tree points were clustering to each closest trunk using a
weighted distance combining spatial spacing and local point densities.

Such methods often comprise complex pipelines with parameters tuned for each
specific dataset and rely on the high point density inherent to MLS, including pronounced
tree stems as seed points. Therefore, their transferability to topographic ALS data is limited.
Furthermore, as a surveying method, MLS can only cover trees seen from street level, and
its data impose distinct prerequisites compared to airborne data such as ALS.

In this work, we focused on ALS point clouds, which offer higher coverage, but
generally much lower point densities than those from mobile laser scanning. Moreover,
a streamlined end-to-end deep learning pipeline is straightforward to fine-tune for new
datasets just by labeling a new training set once a general set of hyperparameters is found.

2.3. Deep Learning for Individual Tree Detection

In recent years, deep learning has become the state-of-the-art in computer-vision-
related tasks and was also applied to individual tree detection. Xie et al. [62] first identified
tree proposals in a normalized height model by optimizing a tree-shape approximator in
an urban scenario and then filtered out non-tree objects by a sliding window convolutional
neural network (CNN). Similarly, Li et al. [63] applied a sliding window CNN to QuickBird
satellite imagery for palm detection. In [64], palm detection was viewed as a binary
semantic segmentation problem, where all pixels within a 2 m radius around a tree center
were considered as tree points. Individual trees were then identified during inference by
local maximum search in the probability map predicted by a U-Net.

Several well-established deep learning algorithms and their variants exist for general
2D object detection [65–68]. Applied to individual tree crown detection, Weinstein et al. [69]
used a RetinaNet on multispectral imagery (red, green, and blue (RGB)) of an open-canopy
site with semi-supervised learning and extended this in [70] to cross-site transfer learning
in regards to a range of forest types. Culman et al. [71] used the same approach for palm
detection. On the other hand, the authors of [72] trained a Faster-RCNN on 2D density
projections of very high resolution ALS for pine forest inventorying. Plesoianu et al. [73]
used a single-shot detection network to find individual trees in orchards, wooded areas,
and a city site and experimented with varying combinations of spectral and height-derived
input features. On the side of mobile mapping, Branson et al. [74] combined Faster-RCNN
detections from both street-level and aerial RGB imagery, while Lumnitz et al. [75] applied
Mask-RCNN to street-level images only. In contrast to these works, our network takes as
the input an ALS point cloud, using the 3D information directly and obviating the need to
find the optimal birds-eye-view rendering or multi-view combination and re-projection.

2.4. Three-Dimensional Deep Learning

The last four years saw a rapid growth in the number of papers concerning deep
learning for point cloud classification. Prevalent examples are PointNet++ [76], sparse
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convolutional networks [77–79], PointCNN [80], and KPConv [81], just to name a few.
Such neural networks proved to be accurate and fast tools for semantic segmentation of
large ALS point clouds [82–86]. Yet, since deep learning tends to require large amounts
of training data, generating semantic point labels to train such a deep neural network is
a tedious task. Alternatively, it may be easier to label relatively few ground truth tree
objects in individual bounding boxes. Moreover, object-centered detection networks yield
individual entities including important attributes such as positions and sizes.

Deep learning architectures for 3D object detection are mostly found in the field of
autonomous driving [87,88] and indoor scene understanding [89]. Broadly speaking, such
approaches can be divided into three groups: (a) 2D networks working on projections of
point clouds [90–92]; (b) networks with 2D backbones and a learned projection from a
small 3D sub-network at the beginning of the pipeline [93]; (c) pure 3D networks. In the
latter case, some works used dense 3D convolution [94,95], which is generally expensive
to compute. Several other papers utilized PointNet-style backbones [96–99] or sparse
convolutional backbones [78,100–103], which is a more efficient approach than the use of
PointNet [78,101]. In contrast to cars, bicycles, and pedestrians, individual trees may be
more challenging to detect in point clouds due to the overlap of bounding boxes, strongly
varying sizes, and ambiguous distinction among individuals and towards other vegetation
such as bushes.

In this work, detection and semantic segmentation heads were placed on top of a 3D
sparse convolutional backbone [104] in the U-Net shape [105], since this type of architecture
previously achieved good results in regards to ALS point cloud classification and allows
for direct 2D ablation studies.

2.5. Ground Truth Data

In contrast to semantic point cloud segmentation, reference data for individual tree
detection are much more scarce, let alone benchmark datasets. Therefore, it is common for
research papers to use proprietary datasets. Reference labels are often obtained manually
through visual interpretation of remote sensing data, while in situ field surveys are less
frequent [18]. An alternative is existing municipal tree inventories, some of which are
open data [106]. However, these typically only contain trees along streets and/or on
public grounds [8,11]. This is less of a problem if the detection focuses on street-level data
acquisition [74]. Other works complemented existing inventories by further surveys [45].

Pre-training is a standard technique in deep learning to compensate for small domain-
specific training data. In general object detection, networks are often trained on classifi-
cation tasks with large datasets before learning the actual detection objective [66,67]. The
lack of large appropriate training data for tree detection was addressed in [69,71] by first
pre-training on a large number of noisy predictions from an unsupervised detection method
and then fine-tuning on a much smaller set of manually labeled, higher quality ground
truth trees.

In terms of benchmarks, there had been timely limited comparisons of different
methods on shared datasets in the past [20,22,23]. However, only recently, efforts were
made for a curated, open, and long-term benchmark for individual tree detection in
forests [107].

In this work, we generated the three-dimensional ground truth by manually labeling
tree cylinders directly inside the ALS point cloud, with a municipal tree inventory as
a starting point, assisted by automatically derived weak labels for pre-training. This
ensured complete coverage, evaded temporal mismatch, and was more efficient compared
to field surveys.

3. Materials and Methods
3.1. Methodology

For identifying individual trees in ALS point clouds of urban environments, we
propose the use of 3D convolutional networks. In this section, the architecture, training
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regime, and inference process of the neural network, as well as the refinement of object
detections by predictions from semantic point cloud segmentation are presented.

3.1.1. Architecture

The architecture employed in this work takes a 3D point cloud as the input and
outputs semantic point labels, as well as object-based detections. For clarity, we divided
the architecture into three main sub-networks: a sparse 3D backbone for feature extraction,
a semantic segmentation head for pointwise predictions, and a detection head to output
individual tree objects (Figure 1).

Figure 1. Overall pipeline including the network architecture scheme. Note that we used two
independently trained instances of the backbone; see Section 3.1.2 for details.

As the backbone, we used a U-Net-style [105] 3D submanifold sparse convolutional
network (SCN) [104] for three-dimensional feature extraction. Submanifold sparse convo-
lution is a technique conceptually similar to standard convolution, but utilizes a general
matrix multiply formulation of discrete convolution to leave out certain parts of the input
feature maps. This is particularly useful to build convolutional neural networks for sparse
3D point cloud data. SCN architectures proved to be successful for ALS point cloud clas-
sification [82,86]. Furthermore, in contrast to more specialized point cloud architectures
such as PointNet++ or KPConv, this kind of network allows us to conduct ablations with a
direct 2D CNN counterpart (see Sections 4.3 and 4.4.6).

The backbone was eighteen convolutional layers deep in four resolution levels, with
ReLU non-linearities and batch-normalization [108]. As the input, the SCN took voxelized
point cloud tiles, which comply with a discrete, but sparser form of the point cloud. Per-
voxel features (number of returns, return number, intensity, RGB, and height above the
ground) were averaged from all respective inlying points. We chose a sample tile size of
64× 64× 128 m and a voxel size of 0.5 m per side. Hence, the network’s input shape was
128× 128× 256 voxels. The larger size in (relative) height ensured that tiles covered the
entire vertical data spread at their respective location, therefore obviating vertical tiling.
The output of the backbone sub-network was 32 learned features per voxel, which were
then piped further to a semantic segmentation head or a detection head.

For the pointwise tree classification, the 32 feature maps were transformed to binary
pseudo-probability outputs for each voxel and then mapped back to the point cloud. The
semantic segmentation head consisted of two 1× 1× 1 convolutional layers with dropout
(p = 0.5) in between and softmax at the end. Weighted cross-entropy loss and stochastic
gradient descent were used to train the segmentation network. Since this paper focused on
individual object detection, the reader is referred to [82] for further details on the semantic
segmentation of ALS point clouds with SCNs.

In the detection head, inspired by [78,95], three sparse convolutional layers flattened
the three-dimensional activations down to two dimensions between the purely 3D back-
bone and the region proposal network. We achieved this by setting both the stride and
filter size in the z direction to eight for the first two layers. For the third layer, the vertical
direction was convolved with a stride and size of four, so that only one channel was left in
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z. Removing the height dimension and thereby vertical redundancy narrowed the search
space and sped up the computations later on. The final flattening layer was also strided by
2 for x and y, which further quartered the number of possible detections to reduce the com-
putational complexity later on. Thereby, the flattened shape was 64× 64× 1× (3 + 1) · K,
where the last dimension represents the convolutional filter channels and K is the number of
default anchor shapes in the region proposal network. We used ReLU activation functions
and batch normalization after each convolutional layer and a dropout layer at the end
(p = 0.5).

To finally output individual trees, we adapted a single shot detection style
sub-network [65]. All layers in this region proposal network were standard—i.e., dense—
2D layers. Since the point cloud’s horizontal projection was mostly dense in our case, there
was no computational benefit to be gained from using sparse convolution at this stage of
the pipeline. Two separate branches of 1× 1 convolutional layers processed the flattened
activations in parallel: an objectness layer and a regression layer. The objectness layer
predicted a detection score xi for each of the K anchor shapes at each of the 64× 64 anchor
points. The regression layer likewise output 3 offsets ∆̂x, ∆̂y, ∆̂r, for each anchor.

In contrast to standard bounding boxes, we used a circular object definition to better
fit the typical tree shape. We followed the usual differential encoding principle [109],
however adapted to circles instead of rectangular bounding boxes. The network’s actual
regression output were offsets ∆̂ to the so-called anchors or default boxes/circles. Compared
to regressing parameters directly, this allowed aiding the network by pre-defining default
anchor sizes. Furthermore, the exact position of a detection was refined by regressing
offsets to the spatial location of the object in the output activation map.

K = 6 default anchor shapes were used, defined by radius ra = {2, 3, 5, 8, 10, 12}m.
Anchor position xa and ya were the location in the output activation map. The actual
coordinate and size of a detection in the local sample reference system was then:

x = xa + ∆̂x · ra (1a)

y = ya + ∆̂y · ra (1b)

r = exp(∆̂r) · ra (1c)

Inversely, when deriving the offset of a ground truth cylinder g to a default anchor for
the regression loss during training, we computed:

∆x = (xg − xa)/ra (2a)

∆y = (yg − ya)/ra (2b)

∆r = log(rg/ra) (2c)

3.1.2. Training

Training data were augmented by first rotating in 30 ◦ increments and tiling sam-
ples with an overlap of 33%. Additionally, samples were randomly scaled in the range
[0.9, 1.1], translated up to 10 px, and randomly flipped in the x and y direction. On top
of that, the ground truth was further scaled by a factor between 0.98 and 1.02 and trans-
lated up to 2 px relative to the sample data. Coordinates per tile were reduced, so that
min(x) = min(y) = min(z) = 0. Stochastic gradient descent was employed to train the
detection network with an initial learning rate of 0.1, which decreased by a factor of 0.7
every 3 non-improving epochs. The weight decay was set to 10−5 and momentum to 0.9.
Training was stopped after 8 epochs of the stagnating of the validation’s mean average
precision (mAP).

Before calculating the detection loss at each training iteration, one must first determine
which of the 64 · 64 · K detections are to be considered true positives or false positives,
more commonly known in the object detection literature as positives and negatives. For
each ground truth tree, all detections with an intersection over union (IoU) higher than
0.6 were identified as matches and thereby positives. To assist training in early stages, for
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each ground truth, the detection with the highest IoU overlap was also counted as a match.
From all other detections, those that did not have any IoU to the ground truth higher than
0.4 were selected as negative candidates. As most of the hyperparameters in this work,
these values were empirically determined by an extensive hyperparameter search, but were
similar to comparable works [66,78].

We used a combined object detection loss similar to works as [65,66]. The overall loss
(per tile sample) is the sum of mean objectness loss Lobj and mean regression loss Lreg:

L =
1

Npos + Nneg
· Lobj +

1
Npos

· Lreg (3)

with Npos being the number of positive detections and Nneg the number of negative detec-
tions. For the objectness loss, we opted for the binary cross-entropy. Let xi be the output of
the objectness layer for a detection i (at position xa, ya, and for anchor k), then the loss is
defined as:

Lobj =− p
Npos

∑
i∈Pos

yi · log(σ(xi))−
Nneg

∑
i∈Neg

(1− yi) · log(1− σ(xi)) (4)

where σ is the sigmoid function to scale the objectness value to a score between 0 and 1.
The ground truth objectness was yi = 1 for positive and yi = 0 for negative candidates.
We balanced the influence of positive and negative detections on the loss by specifying
p = Nneg/Npos, which was set to 0 for Npos = 0. For regression, smooth L1 loss [109] was
used on all positive detections and averaged over the regression objectives. For ∆̂i being
the predicted regression offset vector for detection i and ∆i being the offset of the matching
ground truth to the detections default anchor k(i), the regression losses were:

Lreg =
1
[j]

Npos

∑
i∈Pos

∑
j∈{x,y,r}

β j · L1smooth(∆̂i,j, ∆i,j) (5)

L1smooth =

{
0.5 · (∆̂− ∆)2 if |∆̂− ∆| < 1
|∆̂− ∆| − 0.5 otherwise

(6)

Instead of balancing objectness and overall regression loss, we weighted each regres-
sion parameter separately. We set βr = 16 and the rest to 1. Insights about this choice of
parameter are given in Section 4.4.2.

Following [69], the object detection network was first pre-trained on a larger set of
weak labels generated by the nDSM-based baseline A (see Section 3.2.2). This network
state was then used as initialization for fine-tuning on the core training set with higher-
quality labels.

For the simplicity of the pipeline and to circumvent the need to balance the two tasks,
the networks for semantic segmentation and object detection were trained separately, i.e.,
they shared the same backbone architecture, but did not share their weights. Thereby, either
part could be replaced without affecting the other one.

3.1.3. Inference

At inference, we predicted detections for each 64× 64 m tile of the test set individually,
again with 33% overlap. Non-maximum suppression (NMS) was applied with a maximum
allowed IoU overlap of 0.3 and a minimum objectness score of 0.1. Then, all detections
were transformed into the original global coordinate system and merged together. A final
NMS removed overlapping trees at former tile borders. Further post-processing (which
was also performed for all baselines) included the deletion of lower-scoring tree detections
that were fully inside another detection, even if their IoU was below the aforementioned
threshold. Height and z were drawn directly from the maximum nDSM or mean digital
terrain model (DTM) value in a half-radius area.
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3.1.4. Region Growing

Because our methodology can output semantic pointwise labels, as well as abstract
object detections, we combined these two predictions for a better fit of the object approxi-
mations to the ground truth. In the post-processing step, the global predicted tree point
cloud was intersected with the object detection result by assigning all inlying tree points to
each cylinder. Where multiple trees overlapped, points were associated with the closest
tree. Then, starting from the tree edges as seed points, a 2D region growing, similar to [26],
expanded the tree objects iteratively along the previously unassigned tree points. Empiri-
cally, growth was restricted to points that: (a) were beneath the respective tree height; (b)
were higher than 0.4-times the tree height and at least 2 m high; (c) were at a maximum
20 cm higher than the parent seed; (d) were not further away from tree center more than
1.5-times the initially predicted radius, as well as (e) not further away than half the tree
height. Finally, tree detections with radii smaller than 0.5 m were deleted, which occurred
if too few tree points were inside a tree cylinder.

3.2. Data

Since deep learning is mainly a data-driven methodology, extra emphasis should be
given to the (ground truth) materials. In this section, first, the study area and raw data
materials used in the present work are described. Subsequently, the process of ground truth
generation is elaborated.

3.2.1. Study Area

In this work, a section of the city center of Stuttgart, Germany, was chosen as the study
area for individual tree detection. In addition to an ALS point cloud, other available data
included an aerial RGB orthophoto and a municipal tree cadaster. The selected area was
surveyed by ALS in 2016, expanded over 2× 2 km, and was divided into three subsets for
training, validation, and testing (Figure 2a). These were outlined so that each subset depicts
all parts of the diverse inner-city scene, from large commercial buildings to residential
areas with gardens on the outer hillsides. Multiple parks were present among all three
subsets. Relevant point attributes were intensity, number of returns, and return number,
with up to 7 returns. The average first return point density in the study area was 16.6 pts/m2.
The semantic classes provided by the dataset were ground, building, low points, bridges,
and vegetation including other non-ground points. The true orthophoto with a 20 cm ground
sampling distance (GSD) was used to colorize the point cloud for additional spectral
features. It was taken in the early leaf-on period in 2017.

A municipal tree cadaster is a database in which only trees on public land are recorded,
mainly in parks or along streets. The purpose of such inventories is mainly to ensure
compliance with safety regulations [110] and general maintenance [8,11]. The present
inventory had 207,248 entries for the entire city area, with the most recent entry dating
back to 2014. Dedicated forest areas were excluded. Of these trees, 6150 were located
in the core study area. However, besides horizontal coordinates, neither height, canopy
width, nor similar size descriptors were noted, which are essential parameters in object-
based tree recognition methods such as neural detection networks. Since this tree cadaster
was spatially incomplete and lacked the necessary information to train and evaluate our
network, it was manually enhanced, as will be described in the following section.

3.2.2. Ground Truth Generation

The basis for our labeling campaign was a modified version of the tool by [111], by
which 3D cylinders can be tightly fit into the point cloud around all points comprising each
tree. Since the dataset was too large to work efficiently in the labeling tool, we divided
the whole dataset into 100 individual jobs, each 200× 200 m wide and extending 10 m into
their neighbors, thereby creating 20 m overlap regions.

Each job was initialized with the entries from the tree cadaster. Since it only contained
the horizontal positions, z was taken from a derived DTM and the height from the nDSM.
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Their initial radius was set to 5 m. After editing the raw initial object labels and deleting
obsolete ones, further trees were added to the ground truth by the operators to complete
the scene. Due to the point cloud resolution, large shrubs were very difficult to differentiate
from trees and therefore also included in the ground truth (see Section 4.4.4 for the size
distribution of the ground truth).

In a second step, the results were controlled by another operator. Ambiguous cases,
such as tree clusters, were checked with the help of additional data sources, in particular
Google Street View and the 3D Mesh from Google Maps, taking into account the difference
in the time of capture. Tree clusters were separated if visible bottom trunks were clearly
apart or if they had distinctive crowns, either by shape or color. Finally, additional in situ
controls were performed for the test set.

The root-mean-squared error (RSME) of 2710 merged duplicates from within the
overlaps of adjacent job tiles can be used as an indication of the labeling quality, 37 cm
for x and y, 44 cm in the z direction, 59 cm for the radius, and 60 cm in height. The mean
IoU between matching duplicates was 0.78. In total, we obtained 10,864 final ground
truth cylinders, the vast majority of which were deciduous trees. Of these, 3981 fell into
the training set; furthermore, 1733 and 5150 trees were in the validation and testing sets,
respectively.

In order to also train semantic segmentation networks for binary tree classification,
we augmented the pointwise ground truth by relabeling all points of the miscellaneous
non-ground class that were inside any of the tree cylinders. To account for protruding
branches, radii were enlarged by 10% + 0.5 m, and the height was given an additional
margin of 1 m. Points lower than 2.5 m were disregarded to avoid cars, fences, etc. In the
last step, the new point labels were furthermore manually corrected. The result is shown in
Figure 2.

(a) (b)

Figure 2. Ground truth of the dataset. (a) Overview with the three subsets visually delineated:
training split in the center, the slim validation split and the u-shaped test set. (b) Detailed view with
ground truth cylinders on the right side. Grey: ground; white: building; green: tree; blue: other.

Weak labels for pre-training were generated from an 12 km2 space around the core
study area via Baseline A (see Section 3.3). There were 10 of the 1× 1 km tiles (30,101 trees)
used for training and 2 tiles (7028 trees) for validation.

3.3. Baselines

Since there was, unfortunately, no benchmark for urban single tree detection, we
implemented four baselines to compare our method. Hence, we chose two traditional
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approaches based on nDSM segmentation (plus two variants) and two more contemporary
2D object detection networks.

3.3.1. nDSM Segmentation

Individual tree delineation with unsupervised segmentation of the canopy height
model is a standard technique in forestry. In urban areas, this becomes a two-step process,
since the CHM first has to be derived from the nDSM by masking out non-tree areas.
This binary classification is a major accuracy bottleneck of this general approach. The 2D
projections and height models that were input to the baselines were computed with a raster
resolution of 50 cm.

The first baseline was based on the watershed segmentation of the CHM. The binary
tree mask was derived from the ALS point cloud by thresholding at a minimum of three
returns. Only areas higher than 2 m above the ground were considered. After that, morpho-
logical operations were used to filter out outliers and to close obvious gaps in tree borders.
Variant A-BM used the building class from the point cloud’s pre-classification to mask out
all buildings to simulate the availability of a building cadaster. In a third variant (Baseline
A-TM), we derived the tree mask via semantic point cloud segmentation with SCN in order
to replace the hand-crafted rule set with a learned classification. For this, the predicted class
of the highest point per pixel was projected into the horizontal plane. For individual tree
delineation, the nDSM was firstly smoothed by Gaussian filtering and then further refined
by morphological filters to remove small objects and avoid over-segmentation. Finally, a
watershed transform [112] segmented the inverted CHM to the final tree delineations.

The second baseline was based on the tree segmentation algorithm by [26] and in-
cluded additional multi-spectral data sources. Instead of pixelwise classification, we used
object-based image analysis (OBIA) combined with an elaborate rule set separated tree from
non-tree areas. The basic inputs were pansharpened Pléiades satellite imagery (RGB + near
infrared (NIR), taken on a clear sky day in Mai 2017) together with nDSM and the number of
returns from ALS. From this, 12 spectral indices (NDVI, renormalized difference vegetation
index (RDVI), normalized difference soil index (NDSI), etc.) and two geometrical nDSM fea-
tures (slope [113] and standard deviation) were computed. In the first step of the baseline,
buildings were excluded through the ALS pre-classification. Secondly, all pixels higher than
1 m above the ground were split into segments by a multiresolution segmentation. A deci-
sion tree then split tree from non-tree segments by utilizing all the previously mentioned
features. Small bushes were removed by only keeping segments that were at least partially
above 2.5 m. Geometrical cleaning was needed to remove small, undesired objects such as
street lamps, traffic signals, vehicles, and powerlines. At the same time, special rules were
set to avoid pines’ exclusion. The single tree delineation followed the process described
in [26], using the implementation by [114] (https://github.com/r-lidar/lidR, accessed on
27 February 2022): First, treetops were searched by local maxima filters with a variable
window size depending on the nDSM (in the general assumption that the horizontal size of
a tree correlates with its height). The nDSM was then smoothed by a Gaussian filter and
masked by the tree filter from the OBIA classification to obtain the CHM. The treetops were
finally used as seeds for a region growing on the CHM to obtain individual tree segments.

The irregularly shaped tree segments from Baselines A and B were further converted
to fit the ground truth’s approximation defined by the crown radius. For each segment,
we first computed the centroid of all segment pixel coordinates as the horizontal tree
position. Then, all border pixels i were selected, and a circle was fit by estimating the tree
crown radius:

r̂ = r̄ + η · (max(ri)− r̄) (7)

with η ∈ [0,1] as a parameter to balance between the average and maximum radius to
segment the center. We performed a grid search over η for all baselines. For Baselines A
and A-BM, it was found that η = 0.4 yielded the best results, but for A-TM, the optimum
was at η = 0.7. For Baseline B, we set η = 0.2.

https://github.com/r-lidar/lidR
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3.3.2. Two-Dimensional Object Detection Networks

More state-of-the-art baselines are 2D deep object detection networks. Here, we used
YOLOv2 [67] and Faster-RCNN [66] as examples for “off-the-shelf” detection networks.
We chose ResNet-50 [115] pre-trained on ImageNet [116] as the backbone in both cases.
The first convolutional layer was changed to accept the input with 128× 128 pix and six
input channels: RGB, nDSM, intensity, and number of returns. For YOLOv2, we placed the
detection head on top of the seventh residual block (after twenty-two convolutional layers).
A later place in the backbone network would increase the depth, but decrease the output
resolution of the anchor locations. For example, we found that choosing the 10th or 40th
layer as the feature extraction layer lowered the accuracy by about 10 points of the mAP.
For Faster-RCNN, we kept the default feature pyramid scheme [117] from the TorchVision
implementation. As for our main SCN network, input samples were 64× 64 m with 33%
overlap and 50 cm resolution. Further similarities were in the data augmentation, training,
and inference strategy, as well as pre-training on the weak label set from the extended
study area.

4. Results

In this section, we compare the accuracy of our method (SCN-OD) on the test set
to the baselines from the previous section through a set of evaluation metrics both on
the object level, as well as the pixel level. To compensate for statistical variations, all
results from the neural networks were averaged over ten instances, independently trained
with different random seeds. The outputs of the object detection networks came with
predicted objectness scores. In application, one can balance between precision and recall by
choosing a score threshold that defines which detections are to be considered. Therefore, in
addition to reporting threshold-independent average precision, when comparing to the
non-deep-learning baselines, we generally chose score thresholds so that the precision
equaled the recall in individual tree detection. Such a prediction was then also refined by
post-processing through region growing (SCN-OD-RG). Exemplary results are shown in
Figure 3.

Figure 3. Exemplary detections from SCN-OD-RG in the test set. Yellow: predictions; white: ground truth.
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4.1. Individual Tree Detection

First, individual tree detection was evaluated in terms of pairwise 2D circular IoU
overlap to the ground truth trees, accepting detections as true positives in regard to five
different IoU thresholds. We computed continuous average precision (AP) from the in-
terpolated precision–recall curve P(R) according to the Pascal VOC 2012 devkit, where
further detections of the same ground truth were counted as false positives.

The results are shown in Tables 1 and 2. Overall, our SCN-OD outperformed all
baselines in all metrics. For IoU > 0.3, A-TM had 0.5 higher precision, but much lower
recall than SCN-OD, although the precision of SCN-OD can still be improved by adjusting
the prediction threshold (Figure 4). Within the CHM baselines, A-TM performed the best,
except for the stricter IoU thresholds, where Baseline B showed higher recall. YOLOv2
had similar precision as the best nDSM baseline, but higher recall, while Faster-RCNN was
closer to SCN-OD. SCN-OD achieved an average precision of 82.9% and P/R = 80.6 on the
widely used IoU > 0.5 acceptance threshold.

After combining the raw object detection results from SCN-OD with the pointwise
semantic predictions from SCN-SemSeg through region growing, SCN-OD-RG showed even
higher precision, but a the cost of slightly lower recall. The reason was the removal of
detections without pointwise tree predictions inside. Only for the high shape prerequisite
IoU > 0.7, the recall increased also.

Table 1. Results for individual tree detection, measured by the average precision (AP) for different
intersection of union thresholds in %.

mAP AP@.3 AP@.4 AP@.5 AP@.6 AP@.7

YOLOv2 66.0 87.7 82.5 72.9 55.2 31.3
Faster-RCNN 72.3 86.6 84.7 79.3 66.6 43.7

SCN-OD 76.0 91.0 88.8 82.9 70.0 47.5

Table 2. Results for individual tree detection, measured by the precision and recall for different IoU
thresholds in %.

P/R@.3 P/R@.4 P/R@.5 P/R@.6 P/R@.7

A 79.6/66.0 73.6/61.0 63.0/52.2 50.5/41.9 34.6/28.7
A-BM 83.7/65.3 77.2/60.2 65.9/51.5 52.6/41.1 35.9/28.0
A-TM 85.8/65.0 79.8/60.4 69.5/52.6 57.4/43.5 42.2/31.9

B 54.8/70.1 50.0/63.9 42.3/54.1 32.2/41.2 21.5/27.5
YOLOv2 82.0 79.1 73.3 61.1 42.7

Faster-RCNN 84.3 83.0 79.2 70.1 53.4
SCN-OD 85.3 84.2 80.6 72.5 56.2

SCN-OD-RG 87.2/85.1 85.9/83.8 82.3/80.3 74.1/72.3 58.2/56.8
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Figure 4. Precision-recall curves of the average SCN-OD network regarding individual tree detection
for different intersection of union thresholds.

4.2. Stem Precision and Recall

In addition to measuring the similarity by pairwise surface parity, it is common to
count the recall as the relative number of detection centers inside ground truth trees and
the precision as the relative number of ground truth tree centers covered by a detection.
In each case, we counted a tree position (both GT and prediction) only once as the true
positive. Besides the full tree radius [20,69], we also considered 3 m as the maximum
distance between the ground truth and detected trees [20,63,64]. Table 3 shows a similar
pattern as for IoU matching at a threshold of 0.3. Again, the overall best performance was
achieved by SCN-OD with further improvement in precision by SCN-OD-RG. Only A-TM
managed higher precision in exchange for severely lower recall.

Table 3. Stem precision and recall in %.

Dist < Tree Radius Dist < 3 m

AP P/R AP P/R

A - 83.2/68.8 - 76.6/63.5
A-BM - 87.3/68.0 - 80.3/62.7
A-TM - 89.5/67.9 - 83.4/63.2

B - 56.4/73.2 - 51.4/65.7
YOLOv2 89.5 82.8 86.3 80.8

Faster-RCNN 87.3 84.7 85.5 83.5
SCN-OD 92.0 85.7 89.8 84.5

SCN-OD-RG - 87.7/85.4 - 86.4/84.3

4.3. Tree Canopy Cover

Next, we analyzed how well the different methods captured tree canopy cover. For
this, we converted the segmentation results of the nDSM baselines to a pixelwise tree/non-
tree classification. Furthermore, we trained the SCN for semantic point cloud segmentation
on binary tree classification and projected the prediction of the highest point into the
horizontal plane. Likewise, a 2D U-Net was trained with the same architecture as its 3D
SCN counterpart, except with standard dense two-dimensional convolution with the same
input channels as for the 2D object detection networks. We also employed a pointwise
random forest (RF) classifier taking into account a multi-scale feature set as described
in [118]. For the object detection networks, predicted tree cylinders were intersected with
the point cloud, whereby all points lying in cylinders were labeled as tree points. The
classification of the highest point per cell was projected into the pixelwise prediction. These
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binary classifications were compared with a semantic 2D ground truth that was equally
derived from the pointwise ground truth. The results are shown in Table 4.

Table 4. Tree canopy cover accuracy in %.

Tree Non-Tree

Prec. Recall F1 Prec. Recall F1 OA

A 86.2 84.2 85.2 97.5 97.8 97.7 95.9
A-BM 87.9 82.5 85.0 97.2 98.2 97.7 96.0
A-TM 96.4 80.8 87.9 97.0 99.5 98.3 96.9

B 80.7 88.7 84.5 98.2 96.6 97.4 95.5

2D U-Net 90.1 98.7 94.2 99.8 98.3 99.0 98.3
3D RF 95.2 95.5 95.2 99.3 99.3 99.3 98.8

SCN-SemSeg 95.8 98.7 97.2 99.8 99.3 99.5 99.2

YOLOv2 94.0 89.3 91.6 98.3 99.1 98.7 97.7
Faster-RCNN 94.9 89.5 92.1 98.3 99.2 98.8 97.9

SCN-OD 95.7 87.9 91.6 98.1 99.4 98.7 97.8
SCN-OD-RG 96.3 88.2 92.1 98.1 99.5 98.8 97.9

Unsurprisingly, the overall best results were achieved by the semantic segmenta-
tion methods, whereby the 3D network was better still than the 2D version and closely
followed by random forest. With F1 scores over 97%, we reached the limits of ground
truth quality [86]. Similar results can be expected from other point cloud classification
networks [84,86,119].

The nDSM-based baselines showed comparatively low tree precision and recall, except
for A-TM , with the highest tree precision (which used the SCN prediction as a basis for the
tree mask, refined by morphological filtering), however to the cost of the lowest tree recall.
Inversely, Baseline B had the lowest tree precision, but a tree recall comparable to the object
detection networks.

The object detection networks reached similar performance in tree precision (even
higher than 2D U-Net). However, this quantitative assessment is misleading, because the
quality of the error was less for the detection networks since they tended to include building
points protruding into the predicted tree cylinders, while the segmentation networks tended
to include shrubs in the tree class. Furthermore, their tree recall suffered from the tree
cylinder approximation, which was sometimes too small to include all tree points.

Differences in the non-tree class were smaller compared to the tree class due to the
seven-times higher class frequency in the test scene. Still, the classification networks
performed best, followed by the detection networks and then the traditional baselines.

4.4. Ablations and Things That Did Not Work

In this section, we removed parts of our method in order to gain insights into their
individual effects on the accuracy. Furthermore, we describe techniques we tried to further
improve the performance, but turned out to have no or even negative effects, so that future
research can focus on other ideas. A summary of all ablations is given in Table 5 (from left
to right).

4.4.1. Pre-Training

Using an initial network state pre-trained on the larger set of weak labels from the same
domain as the main data and then fine-tuning on higher quality training data generally
improved accuracy, as shown in Table 5. In the basic setting, the accuracy improved by
+7.9 points of the mAP, but only a small amount from 75.6% to 76.0% mAP for the final
result. Good quality training data for fine-tuning are still important however, since the
network purely trained on weak labels achieved an mAP of only 50.9% on the test set. For
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YOLOv2, pre-training followed by fine-tuning lifted the mAP from 49.9% to 65.9% and for
Faster-RCNN from 70.4% to 72.3%.

4.4.2. Weighted Shape Regression and Loss Function

As described in Section 3.1.2, our regression loss had a weighting term β j to increase
the importance of the individual components of the regression loss rather than weighting
regression as a whole relative to the objectness loss, which would be the standard approach
for this type of problem. However, we found that we needed to weight the shape regression
higher than the location, which makes sense given the relatively high resolution of anchor
locations and thereby the different value ranges between the regression targets. From
this observation, we empirically set the hyperparameter βr = 16, although higher values
performed similarly. Starting from the basic setting, this improved the mAP from 55.8% to
67.1%. We also experimented with extending the objectness loss to a focal loss [68] with
γ = 1; however, this tended to decrease accuracy. Furthermore, we experienced no gain
from using the IoU to the respective ground truth as the objectness target. A grid search
over other hyperparameters such as the learning rate was performed early on to achieve
good training convergence (see also [19]).

Table 5. Ablation table. Values are 2D circular mAP in %.

Circular shape regression X X X X X X X X X X
RGB input features X X X X X X X X X X

3D backbone X X X X X X X X X
Weighted shape regression X X X X X X X X X

Improved data augmentation X X X X X X X X
No height regression X X X X X X

Pre-trained X X X X X

mAP 55.8 63.7 67.1 72.8 75.5 75.6 74.5 76.0 75.3 70.6 70.8

4.4.3. Data Augmentation

Furthermore, we found data augmentation to be an important, but relatively sensitive
hyperparameter. For semantic segmentation, it had been sufficient to rotate and overlap
samples to compensate for small training data. For tree detection however, it was helpful
to apply further augmentation as described in Section 3.1.2. In the absence of pre-training,
this additional augmentation resulted in a +5.7 mAP from 67.1% to 72.8%. When the
augmentation magnitude was doubled for example, the mAP gain was only +0.5 points.

4.4.4. Shape Regression

The regression loss in Equation (5) includes only x, y, and radius, but not z or height,
although three-dimensional ground truth data were available. Initially, we aimed at
predicting vertical tree shape as well by adding the following terms to form a cuboid
regression loss (compare to Section 3.1.2):

z = za + ∆̂z · ha (8a)

h = exp(∆̂h) · ha (8b)

∆z = (zg − za)/ha (8c)

∆h = log(hg/ha) (8d)

with za set to zero. Accordingly, additional dimensions were added to the anchors: z = 0
and height = {5, 8, 14, 22, 25, 30}. However, the 3D mAP was worse compared to deriving
z and height directly from the DTM and nDSM (48.9% vs. 68.5%). Furthermore, as can be
seen in Figure 5, instead of learning to predict the correct radius to height distribution, the
network learned a linear radius–height relationship, even though it should have been able
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to learn the height from 3D convolution or a fortiori from the height above the ground
input feature.

We tried two approaches to overcome this issue. Firstly, as it is common practice
to weight predictions reciprocally to their ground truth class frequency, detections in the
regression loss were weighted inversely to their ground truth’s shape frequency expressed
by a multivariate radius–height histogram. Although this gained slightly better radius
coverage when using a very small anchor set, in the final configuration, the accuracy
declined about −1.5% throughout. Secondly, although anchors are helpful to cover the full
range of radii in the predictions, more than the finally used anchors did not improve the
results significantly either, but led to slower training and inference. In the extreme case, we
added enough anchors to cover the whole spectrum of three-dimensional tree shapes in
2 m increments. Thereby, the 3D mAP increased to 53.9%, but so did the computing time
by a factor o six, and the 2D mAP dropped by −4.3 points. In conclusion, we removed the
height and z from the loss in order to focus on the radius, which effectively improved the
2D mAP by +2.6 or +0.5 if pre-trained.
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Figure 5. Three-dimensional tree size distribution in the test set. (a) Ground truth. (b) Height and z
predicted by the network. (c) Verticality derived from the nDSM and DTM.

Typically, object detection networks work with rectangular bounding boxes. However,
trees shapes are more closely approximated by circles/cylinders than rectangles/cuboids;
thus, we chose to use radius as the regressed shape parameter and evaluate the circular
mAP and P(R). In order to analyze its effect on accuracy, we trained an ablation on the
rectangular ground truth and shape regression. After converting the output back to the
radius, the (circular) mAP was −1.1 points lower (74.5%) than training on the circular
ground truth. If the mAP was evaluated on rectangles, the accuracy was generally about
0.5–1 percentage points higher.

4.4.5. RGB Input Features

The point clouds were colorized with a multispectral RGB orthophoto in pre-processing.
Experience had shown that the addition of optional multi-spectral point attributes was
helpful, but not necessary for point cloud classification with 3D deep learning (for example,
in [82]). Here, the gain from RGB on the best-performing configuration was +0.7 mAP.

4.4.6. Three-Dimensional vs. Two-Dimensional Backbone

Finally, we investigated the influence of fully 3D processing throughout the backbone
of the neural network instead of projecting the ALS point cloud beforehand into 2D inputs.
Just as in Section 4.3, a 2D copy of the detection network, with dense instead of sparse
convolution, was trained on the tree detection task. The input channels were the projected
point attributes (again from the highest point per cell): RGB, nDSM, intensity, and number
of returns. Networks with 2D backbones were outperformed by their 3D counterparts by
5.1 percentage points regarding the mAP and 5.9 points for AP@0.5.
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5. Discussion

Overall, our method achieved good results and outperformed the baselines in almost
all metrics in terms of individual tree detection, stem detection, and tree canopy cover.
Where baselines showed better precision, it was due to building upon predictions from our
network and to the cost of recall. Combining object detection with semantic segmentation
improved precision and slightly enhanced radius estimates. However, one problem of the
region growing was cases of winding, outlying branches, which tended to cause some
trees to grow too large to the detriment of their adjacent neighbors. In general, such region
growing should only be seen as an optional post-processing step to refine the results if
an appropriate rule set can be identified. If the goal is to estimate tree canopy cover, 3D
semantic segmentation alone is the easier and faster alternative. The inference time on the
test set was about 2 min for the object detector and 40 s for the pointwise classification on a
single NVIDIA Titan RTX. In the ablations, we showed the positive effects of finely tuned
loss weighting and data augmentation, as well as the benefits of a 3D backbone and circular
tree approximation compared to the usual rectangular one. Pre-training on a larger set of
weak labels showed higher gains the less refined the methodology. It should be noted that
the ground truth quality was not perfect, despite the efforts taken in the process and the
advantage of labeling in the original 3D point cloud compared to 2D. Labeling was limited
in the resolution of the point cloud and penetration of the LiDAR beams. Individual trunks,
which were the decisive criterion for differentiation if the more prevalent crowns were
not distinctive enough, were not always represented by the data or were very difficult to
identify. Furthermore, trees were not differentiated from larger shrubs, while very small
trees may have been missed. Relying on more precise in situ measurements in this scale
would have been too costly, partially impossible due to a lack of accessibility and error
prone due to the time distance to the LiDAR measurement. Therefore, it is important to
understand that the neural networks trained on this ground truth would not necessarily
learn to correctly find individual trees or tree points, but rather to emulate the training data.

Comparison to other works was difficult due to their different datasets and evaluation
procedures. In the following, we try to set our result in relation to the more recent and
most comparable works. The authors of [59] counted detections as positive if within a 60%
average tree distance to the nearest ground truth. Their 3D graph cut achieved a detection
rate of 77.2% for MLS and 83.6% for ALS. Xie et al. [62] reported precisions of 90–95%
and a recall of 80–85%; however, it is unclear how this was measured. Furthermore, this
was one of the computationally most expensive approaches, requiring about 100 h for
8.75 km2. Among the deep-learning-based methods, the sliding window approach in [63]
detected palms within a 3 m maximum distance with a precision and recall of 94.8–98.7%
and 96.6–98.9%, respectively. Freudenberg et al. [64] achieved in the same metric p = 94.4%
and R = 93.5% with their semantic segmentation approach for individual palm detection.
The RetinaNet in [71] identified palms with p = 78.1% and R = 67.7% for IoU > 0.4. These
results were partly much higher than ours; however, palms have very distinctive patterns
that are more easily distinguishable than the groups of deciduous trees in our dataset.
In a forest dataset with an ultra-high point density, Windrim and Bryson [72] reached a
precision of 100% and a recall between 67% and 93% (IoU > 0.5) with a Faster-RCNN on
point density maps. Weinstein et al. [69] reported a recall of 69% and a precision of 61%
for IoU > 0.5 on a open-canopy site. The recall of field-collected stems was 81%. The
single-shot detector in [73] had a recall of 77% in an orchard, 72% in a wooded area, and
76% in a city dataset (IoU > 0.5). Unfortunately, no precision was given by the authors.
Using street-view imagery, Lumnitz et al. [75] achieved AP@.5 values ranging from 62.0%
to 68.2% with a MaskRCNN. Combined with airborne imagery, Branson at al. [74] achieved
AP = 71% whilst counting true detections as positives if within a 4 m distance to a ground
truth tree.
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6. Conclusions

In this work, we showed the utility of a deep 3D single-shot detection network for
urban tree detection in ALS point clouds. A large-scale case study demonstrated good
accuracy in individual tree detection and tree canopy cover estimation while outperforming
the baselines. Measured at 50% IoU overlap, the average precision regarding individual tree
detection was 82.9% for the 3D network and 77.0% for its 2D version, compared to the 79.3%
of Faster-RCNN. Likewise, traditional CHM segmentation methods were outperformed
by 12.8 pp and 26.1 pp in the precision and recall, respectively. Insights were given about
the influence of essential parts of our proposed methodology using an extensive ablation
study, which we hope will help improve tree detection methods in future works.

In the future, we expect 3D neural networks for object detection in topographic ALS
point clouds to benefit even more from the use of higher point densities compared to 2D
detection networks in general, but especially in individual tree detection due to the better
resolution of tree stems in the data [23]. Furthermore, we anticipate larger, high-quality
training datasets to improve the generalization for urban tree detection including outlying
tree sizes and other edge cases.

Author Contributions: Conceptualization, S.S.; data curation, S.S.; investigation, S.S.; methodology,
S.S.; software, S.S. and A.N.V.; supervision, U.S.; validation, S.S.; writing—original draft, S.S. and
A.N.V.; writing—review and editing, S.S., A.N.V. and U.S. All authors contributed to the text. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors would like to show their gratitude to the State Office for Geoin-
formation and Land Development (Landesamt für Geoinformation und Landentwicklung (LGL)),
Baden-Württemberg, for providing the ALS point clouds covering the city of Stuttgart. Furthermore,
we would like to thank both the Stuttgart City Surveying Office (Stadtmessungsamt) for providing
the orthophoto and Stuttgart’s Office for Parks, Cemeteries and Forest (Garten-, Friedhofs- und
Forstamt) for providing the municipal tree cadaster. AIRBUS Defence and Space Pléiades-1 satellite
images were accessed as an ESA Third Party Mission within the ESA TPM project research id 49634.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nowak, D.J.; Crane, D.E.; Stevens, J.C. Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban

Green. 2006, 4, 115–123. [CrossRef]
2. Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature–vegetation abundance relationship for urban heat island

studies. Remote Sens. Environ. 2004, 89, 467–483. [CrossRef]
3. Chen, X.L.; Zhao, H.M.; Li, P.X.; Yin, Z.Y. Remote sensing image-based analysis of the relationship between urban heat island and

land use/cover changes. Remote Sens. Environ. 2006, 104, 133–146. [CrossRef]
4. Kurn, D.M.; Bretz, S.E.; Huang, B.; Akbari, H. The Potential for Reducing Urban Air Temperatures and Energy Consumption through

Vegetative Cooling; Technical report; Lawrence Berkeley Laboratory: Berkeley, CA, USA, 1994. [CrossRef]
5. Huang, Y.J.; Akbari, H.; Taha, H. The wind-shielding and shading effects of trees on residential heating and cooling requirements.

In Proceedings of the ASHRAE Winter Conference, Atlanta, GA, USA, 11–14 February 1990; pp. 11–14.
6. McPherson, E.G.; Simpson, J.R. Potential energy savings in buildings by an urban tree planting programme in California. Urban

For. Urban Green. 2003, 2, 73–86. [CrossRef]
7. Pesola, L.; Cheng, X.; Sanesi, G.; Colangelo, G.; Elia, M.; Lafortezza, R. Linking above-ground biomass and biodiversity to stand

development in urban forest areas: A case study in Northern Italy. Landsc. Urban Plan. 2017, 157, 90–97. [CrossRef]
8. Nielsen, A.B.; Östberg, J.; Delshammar, T. Review of urban tree inventory methods used to collect data at single-tree level. Arboric.

Urban For. 2014, 40, 96–111. [CrossRef]
9. Bardekjian, A.; Kenney, A.R.M. Trends in Canada’s Urban Forests. In Trees Canada—Arbres Canada and Canadian Urban Forest

Network—Réseau Canadien de la Floret Urbaine, 2016. Available online: https://treecanada.ca/wp-content/uploads/2017/10/
Article-1-EN-CUFN-Trends-in-Canada%E2%80%99s-Urban-Forests.pdf (accessed on 9 February 2021).

10. Hauer, R.J.; Peterson, W.D. Municipal Tree Care and Management in the United States: A 2014 Urban & Community Forestry Census of
Tree Activities; Special Publication 16-1; College of Natural Resources, University of Wisconsin—Stevens Point: Madison, WI,
USA, 2016.

11. Östberg, J.; Wiström, B.; Randrup, T.B. The state and use of municipal tree inventories in Swedish municipalities—Results from a
national survey. Urban Ecosyst. 2018, 21, 467–477. [CrossRef]

http://doi.org/10.1016/j.ufug.2006.01.007
http://dx.doi.org/10.1016/j.rse.2003.11.005
http://dx.doi.org/10.1016/j.rse.2005.11.016
http://dx.doi.org/10.2172/10180633
http://dx.doi.org/10.1078/1618-8667-00025
http://dx.doi.org/10.1016/j.landurbplan.2016.06.004
http://dx.doi.org/10.48044/jauf.2014.011
https://treecanada.ca/wp-content/uploads/2017/10/Article-1-EN-CUFN-Trends-in-Canada%E2%80%99s-Urban-Forests.pdf
https://treecanada.ca/wp-content/uploads/2017/10/Article-1-EN-CUFN-Trends-in-Canada%E2%80%99s-Urban-Forests.pdf
http://dx.doi.org/10.1007/s11252-018-0732-3


Remote Sens. 2022, 14, 1317 19 of 23

12. McPherson, E.G. Structure and sustainability of Sacramento’s urban forest. J. Arboric. 1998, 24, 174–190. [CrossRef]
13. Cameron, R.W.; Blanuša, T.; Taylor, J.E.; Salisbury, A.; Halstead, A.J.; Henricot, B.; Thompson, K. The domestic garden—Its

contribution to urban green infrastructure. Urban For. Urban Green. 2012, 11, 129–137. [CrossRef]
14. Kelly, M. Urban trees and the green infrastructure agenda. In Trees, People and the Built Environment, Proceedings of the Urban Trees

Research Conference, 13–14 April 2011; Johnston, M., Percival, G., Eds.; Forestry Commission: Macon, GA, USA, 2012; pp. 166–180.
15. Li, X.; Chen, W.Y.; Sanesi, G.; Lafortezza, R. Remote Sensing in Urban Forestry: Recent Applications and Future Directions.

Remote Sens. 2019, 11, 1144. [CrossRef]
16. Casalegno, S.; Anderson, K.; Hancock, S.; Gaston, K.J. Improving models of urban greenspace: From vegetation surface cover to

volumetric survey, using waveform laser scanning. Methods Ecol. Evol. 2017, 8, 1443–1452. [CrossRef]
17. Strîmbu, V.F.; Strîmbu, B.M. A graph-based segmentation algorithm for tree crown extraction using airborne LiDAR data. ISPRS

J. Photogramm. Remote Sens. 2015, 104, 30–43. [CrossRef]
18. Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing.

ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [CrossRef]
19. Schmohl, S.; Kölle, M.; Frolow, R.; Soergel, U. Towards Urban Tree Recognition in Airborne Point Clouds with Deep 3D

Single-Shot Detectors. In Pattern Recognition. ICPR International Workshops and Challenges; Del Bimbo, A., Cucchiara, R., Sclaroff,
S., Farinella, G.M., Mei, T., Bertini, M., Escalante, H.J., Vezzani, R., Eds.; Springer International Publishing: Cham, Switzerland,
2021; pp. 521–535.

20. Kaartinen, H.; Hyyppä, J.; Yu, X.; Vastaranta, M.; Hyyppä, H.; Kukko, A.; Holopainen, M.; Heipke, C.; Hirschmugl, M.; Morsdorf,
F.; et al. An International Comparison of Individual Tree Detection and Extraction Using Airborne Laser Scanning. Remote Sens.
2012, 4, 950–974. [CrossRef]

21. Jakubowski, M.K.; Li, W.; Guo, Q.; Kelly, M. Delineating Individual Trees from Lidar Data: A Comparison of Vector- and
Raster-based Segmentation Approaches. Remote Sens. 2013, 5, 4163–4186. [CrossRef]

22. Eysn, L.; Hollaus, M.; Lindberg, E.; Berger, F.; Monnet, J.M.; Dalponte, M.; Kobal, M.; Pellegrini, M.; Lingua, E.; Mongus, D.; et al.
A benchmark of lidar-based single tree detection methods using heterogeneous forest data from the alpine space. Forests 2015,
6, 1721–1747. [CrossRef]

23. Wang, Y.; Hyyppä, J.; Liang, X.; Kaartinen, H.; Yu, X.; Lindberg, E.; Holmgren, J.; Qin, Y.; Mallet, C.; Ferraz, A.; et al. International
Benchmarking of the Individual Tree Detection Methods for Modeling 3-D Canopy Structure for Silviculture and Forest Ecology
Using Airborne Laser Scanning. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5011–5027. [CrossRef]

24. Hyyppä, J.; Kelle, O.; Lehikoinen, M.; Inkinen, M. A segmentation-based method to retrieve stem volume estimates from 3-D tree
height models produced by laser scanners. IEEE Trans. Geosci. Remote Sens. 2001, 39, 969–975. [CrossRef]

25. Hirschmugl, M.; Ofner, M.; Raggam, J.; Schardt, M. Single tree detection in very high resolution remote sensing data. Remote Sens.
Environ. 2007, 110, 533–544. [CrossRef]

26. Dalponte, M.; Coomes, D.A. Tree-centric mapping of forest carbon density from airborne laser scanning and hyperspectral data.
Methods Ecol. Evol. 2016, 7, 1236–1245. [CrossRef]

27. Pyysalo, U.; Hyyppä, H. Reconstructing Tree Crowns from Laser Scanner Data for Feature Extraction. Int. Arch. Photogramm.
Remote Sens. 2002, 34, 218–221.

28. Koch, B.; Heyder, U.; Weinacker, H. Detection of Individual Tree Crowns in Airborne Lidar Data. Photogramm. Eng. Remote Sens.
2006, 72, 357–363. [CrossRef]

29. Zhao, K.; Popescu, S. Hierarchical Watershed Segmentation of Canopy Height Model for Multi-Scale Forest Inventory. ISPRS
Workshop Laser Scanning 2007, 3, 436–441.

30. Persson, A.; Holmgren, J.; Soderman, U. Detecting and Measuring Individual Trees Using an Airborne Laser Scanner. Photogramm.
Eng. Remote Sens. 2002, 68, 925–932.

31. Reitberger, J.; Heurich, M.; Krzystek, P.; Stilla, U. Single tree detection in forest areas with high-density LIDAR data. Int. Arch.
Photogramm. Remote Sens. Spat. Inf. Sci. 2007, 36, 139–144.

32. Li, W.; Guo, Q.; Jakubowski, M.K.; Kelly, M. A New Method for Segmenting Individual Trees from the Lidar Point Cloud.
Photogramm. Eng. Remote Sens. 2012, 78, 75–84. [CrossRef]

33. Lu, X.; Guo, Q.; Li, W.; Flanagan, J. A bottom-up approach to segment individual deciduous trees using leaf-off lidar point cloud
data. ISPRS J. Photogramm. Remote Sens. 2014, 94, 1–12. [CrossRef]

34. Ferraz, A.; Bretar, F.; Jacquemoud, S.; Gonçalves, G.; Pereira, L.; Tomé, M.; Soares, P. 3-D mapping of a multi-layered Mediterranean
forest using ALS data. Remote Sens. Environ. 2012, 121, 210–223. [CrossRef]

35. Dai, W.; Yang, B.; Dong, Z.; Shaker, A. A new method for 3D individual tree extraction using multispectral airborne LiDAR point
clouds. ISPRS J. Photogramm. Remote Sens. 2018, 144, 400–411. [CrossRef]

36. Xiao, W.; Zaforemska, A.; Smigaj, M.; Wang, Y.; Gaulton, R. Mean Shift Segmentation Assessment for Individual Forest Tree
Delineation from Airborne Lidar Data. Remote Sens. 2019, 11, 1263. [CrossRef]

37. Pollock, R.J. Model-based approach to automatically locating tree crowns in high spatial resolution images. In Image and Signal
Processing for Remote Sensing; Desachy, J., Ed.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 1994;
Volume 2315, pp. 526–537. [CrossRef]

38. Tittmann, P.; Shafii, S.; Hartsough, B.R.; Hamann, B. Tree Detection and Delineation from LiDAR point clouds using RANSAC.
In Proceedings of SilviLaser, 11th International Conference on LiDAR Applications for Assessing Forest Ecosystems, Hobart,
Australia, 16–20 October 2011.

http://dx.doi.org/10.48044/jauf.1998.023
http://dx.doi.org/10.1016/j.ufug.2012.01.002
http://dx.doi.org/10.3390/rs11101144
http://dx.doi.org/10.1111/2041-210X.12794
http://dx.doi.org/10.1016/j.isprsjprs.2015.01.018
http://dx.doi.org/10.1016/j.isprsjprs.2020.12.010
http://dx.doi.org/10.3390/rs4040950
http://dx.doi.org/10.3390/rs5094163
http://dx.doi.org/10.3390/f6051721
http://dx.doi.org/10.1109/TGRS.2016.2543225
http://dx.doi.org/10.1109/36.921414
http://dx.doi.org/10.1016/j.rse.2007.02.029
http://dx.doi.org/10.1111/2041-210X.12575
http://dx.doi.org/10.14358/PERS.72.4.357
http://dx.doi.org/10.14358/PERS.78.1.75
http://dx.doi.org/10.1016/j.isprsjprs.2014.03.014
http://dx.doi.org/10.1016/j.rse.2012.01.020
http://dx.doi.org/10.1016/j.isprsjprs.2018.08.010
http://dx.doi.org/10.3390/rs11111263
http://dx.doi.org/10.1117/12.196753


Remote Sens. 2022, 14, 1317 20 of 23

39. Lindberg, E.; Eysn, L.; Hollaus, M.; Holmgren, J.; Pfeifer, N. Delineation of Tree Crowns and Tree Species Classification From
Full-Waveform Airborne Laser Scanning Data Using 3-D Ellipsoidal Clustering. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
2014, 7, 3174–3181. [CrossRef]

40. Hadas, E.; Kölle, M.; Karpina, M.; Borkowski, A. Identification of Peach Tree Trunks from Laser Scanning Data obtained with
small Unmanned Aerial System. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 2, 735–740. [CrossRef]

41. Reitberger, J.; Schnörr, C.; Krzystek, P.; Stilla, U. 3D segmentation of single trees exploiting full waveform LIDAR data. ISPRS J.
Photogramm. Remote Sens. 2009, 64, 561–574. [CrossRef]

42. Wolf, B.M.; Heipke, C. Automatic extraction and delineation of single trees from remote sensing data. Mach. Vis. Appl. 2007,
18, 317–330. [CrossRef]

43. Iovan, C.; Boldo, D.; Cord, M. Detection, Characterization, and Modeling Vegetation in Urban Areas From High-Resolution
Aerial Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2008, 1, 206–213. [CrossRef]

44. Yang, L.; Wu, X.; Praun, E.; Ma, X. Tree Detection from Aerial Imagery. In GIS ’09, Proceedings of the 17th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems, Seattle, WA, USA, 4–6 November 2009; ACM: New
York, NY, USA, 2009; pp. 131–137. [CrossRef]

45. Zhang, C.; Zhou, Y.; Qiu, F. Individual Tree Segmentation from LiDAR Point Clouds for Urban Forest Inventory. Remote Sens.
2015, 7, 7892–7913. [CrossRef]

46. Bulatov, D.; Wayand, I.; Schilling, H. Automatic Tree-Crown Detection in Challenging Scenarios. ISPRS Int. Arch. Photogramm.
Remote Sens. Spat. Inf. Sci. 2016, 41, 575–582. [CrossRef]

47. Liew, S.C.; Huang, X.; Lin, E.S.; Shi, C.; Yee, A.T.K.; Tandon, A. Integration of Tree Database Derived from Satellite Imagery and
LiDAR Point Cloud Data. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-4/W10, 105–111. [CrossRef]

48. Man, Q.; Dong, P.; Yang, X.; Wu, Q.; Han, R. Automatic Extraction of Grasses and Individual Trees in Urban Areas Based on
Airborne Hyperspectral and LiDAR Data. Remote Sens. 2020, 12, 2725. [CrossRef]

49. Persson, A. Extraction of Individual Trees Using Laser Radar Data; Technical Report; Swedish Defence Research Agency: Stockholm,
Sweden, 2001.

50. Reitberger, J. 3D Segmentierung von Einzelbäumen und Baumartenklasifikation aus Daten Flugzeuggetragener Full Waveform
Laserscanner. Ph.D. Thesis, Fakultät für Bauingenieur-und Vermessungswesen der Technischen Universität München, Munich,
Germany, 2010.

51. Höfle, B.; Hollaus, M.; Hagenauer, J. Urban vegetation detection using radiometrically calibrated small-footprint full-waveform
airborne LiDAR data. ISPRS J. Photogramm. Remote Sens. 2012, 67, 134–147. [CrossRef]

52. Weinmann, M.; Weinmann, M.; Mallet, C.; Brédif, M. A Classification-Segmentation Framework for the Detection of Individual
Trees in Dense MMS Point Cloud Data Acquired in Urban Areas. Remote Sens. 2017, 9, 277. [CrossRef]

53. Wu, B.; Yu, B.; Yue, W.; Shu, S.; Tan, W.; Hu, C.; Huang, Y.; Wu, J.; Liu, H. A voxel-based method for automated identification and
morphological parameters estimation of individual street trees from mobile laser scanning data. Remote Sens. 2013, 5, 584–611.
[CrossRef]

54. Gorte, B.; Oude Elberink, S.; Sirmacek, B.; Wang, J. IQPC 2015 Track: Tree Separation and Classification in Mobile Mapping
LiDAR Data. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 607–612. [CrossRef]

55. Lindenbergh, R.C.; Berthold, D.; Sirmacek, B.; Herrero-Huerta, M.; Wang, J.; Ebersbach, D. Automated large scale parameter
extraction of road-side trees sampled by a laser mobile mapping system. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
2015, 40, 589–594. [CrossRef]

56. Li, L.; Li, D.; Zhu, H.; Li, Y. A dual growing method for the automatic extraction of individual trees from mobile laser scanning
data. ISPRS J. Photogramm. Remote Sens. 2016, 120, 37–52. [CrossRef]

57. Monnier, F.; Vallet, B.; Soheilian, B. Trees Detection from Laser Point Clouds Acquired in Dense Urban Areas by a Mobile
Mapping System. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, I-3, 245–250. [CrossRef]

58. Xu, S.; Xu, S.; Ye, N.; Zhu, F. Automatic extraction of street trees’ nonphotosynthetic components from MLS data. Int. J. Appl.
Earth Obs. Geoinf. 2018, 69, 64–77. [CrossRef]

59. Wu, J.; Yao, W.; Polewski, P. Mapping Individual Tree Species and Vitality along Urban Road Corridors with LiDAR and Imaging
Sensors: Point Density versus View Perspective. Remote Sens. 2018, 10, 1403. [CrossRef]

60. Xu, Y.; Sun, Z.; Hoegner, L.; Stilla, U.; Yao, W. Instance Segmentation of Trees in Urban Areas from MLS Point Clouds Using
Supervoxel Contexts and Graph-Based Optimization. In Proceedings of the 2018 10th IAPR Workshop on Pattern Recognition in
Remote Sensing (PRRS), Beijing, China, 19–20 August 2018; pp. 1–5. [CrossRef]

61. Hirt, P.R.; Xu, Y.; Hoegner, L.; Stilla, U. Change Detection of Urban Trees in MLS Point Clouds Using Occupancy Grids. PFG–J.
Photogramm. Remote Sens. Geoinf. Sci. 2021, 89, 301–318. [CrossRef]

62. Xie, Y.; Bao, H.; Shekhar, S.; Knight, J. A Timber Framework for Mining Urban Tree Inventories Using Remote Sensing Datasets. In
Proceedings of the 2018 IEEE International Conference on Data Mining (ICDM), Singapore, 17–20 November 2018; pp. 1344–1349.
[CrossRef]

63. Li, W.; Fu, H.; Yu, L.; Cracknell, A. Deep Learning Based Oil Palm Tree Detection and Counting for High-Resolution Remote
Sensing Images. Remote Sens. 2017, 9, 22. [CrossRef]

64. Freudenberg, M.; Nölke, N.; Agostini, A.; Urban, K.; Wörgötter, F.; Kleinn, C. Large Scale Palm Tree Detection in High Resolution
Satellite Images Using U-Net. Remote Sens. 2019, 11, 312. [CrossRef]

http://dx.doi.org/10.1109/JSTARS.2014.2331276
http://dx.doi.org/10.5194/isprs-annals-V-2-2020-735-2020
http://dx.doi.org/10.1016/j.isprsjprs.2009.04.002
http://dx.doi.org/10.1007/s00138-006-0064-9
http://dx.doi.org/10.1109/JSTARS.2008.2007514
http://dx.doi.org/10.1145/1653771.1653792
http://dx.doi.org/10.3390/rs70607892
http://dx.doi.org/10.5194/isprs-archives-XLI-B3-575-2016
http://dx.doi.org/10.5194/isprs-archives-XLII-4-W10-105-2018
http://dx.doi.org/10.3390/rs12172725
http://dx.doi.org/10.1016/j.isprsjprs.2011.12.003
http://dx.doi.org/10.3390/rs9030277
http://dx.doi.org/10.3390/rs5020584
http://dx.doi.org/10.5194/isprsarchives-XL-3-W3-607-2015
http://dx.doi.org/10.5194/isprsarchives-XL-3-W3-589-2015
http://dx.doi.org/10.1016/j.isprsjprs.2016.07.009
http://dx.doi.org/10.5194/isprsannals-I-3-245-2012
http://dx.doi.org/10.1016/j.jag.2018.02.016
http://dx.doi.org/10.3390/rs10091403
http://dx.doi.org/10.1109/PRRS.2018.8486220
http://dx.doi.org/10.1007/s41064-021-00179-4
http://dx.doi.org/10.1109/ICDM.2018.00183
http://dx.doi.org/10.3390/rs9010022
http://dx.doi.org/10.3390/rs11030312


Remote Sens. 2022, 14, 1317 21 of 23

65. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.E.; Fu, C.; Berg, A.C. SSD: Single Shot MultiBox Detector (v5). arXiv 2016,
arXiv:1512.02325v5

66. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef]

67. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525. [CrossRef]

68. Lin, T.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Available online: https://openaccess.thecvf.com/content_ICCV_2017/papers/
Lin_Focal_Loss_for_ICCV_2017_paper.pdf (accessed on 9 February 2022).

69. Weinstein, B.G.; Marconi, S.; Bohlman, S.; Zare, A.; White, E. Individual Tree-Crown Detection in RGB Imagery Using Semi-
Supervised Deep Learning Neural Networks. Remote Sens. 2019, 11, 1309. [CrossRef]

70. Weinstein, B.G.; Marconi, S.; Bohlman, S.A.; Zare, A.; White, E.P. Cross-site learning in deep learning RGB tree crown detection.
Ecol. Inform. 2020, 56, 101061. [CrossRef]

71. Culman, M.; Delalieux, S.; Van Tricht, K. Individual Palm Tree Detection Using Deep Learning on RGB Imagery to Support Tree
Inventory. Remote Sens. 2020, 12, 3476. [CrossRef]

72. Windrim, L.; Bryson, M. Detection, Segmentation, and Model Fitting of Individual Tree Stems from Airborne Laser Scanning of
Forests Using Deep Learning. Remote Sens. 2020, 12, 1469. [CrossRef]
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