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Abstract: We propose two enhancements of quasi-Newton methods used to accelerate coupling
iterations for partitioned fluid-structure interaction. Quasi-Newton methods have been established as
flexible, yet robust, efficient and accurate coupling methods of multi-physics simulations in general.
The coupling library preCICE provides several variants, the so-called IQN-ILS method being the most
commonly used. It uses input and output differences of the coupled solvers collected in previous
iterations and time steps to approximate Newton iterations. To make quasi-Newton methods both
applicable for parallel coupling (where these differences contain data from different physical fields)
and to provide a robust approach for re-using information, a combination of information filtering
and scaling for the different physical fields is typically required. This leads to good convergence, but
increases the cost per iteration. We propose two new approaches—pre-scaling weight monitoring
and a new, so-called QR3 filter, to substantially improve runtime while not affecting convergence
quality. We evaluate these for a variety of fluid-structure interaction examples. Results show that we
achieve drastic speedups for the pure quasi-Newton update steps. In the future, we intend to apply
the methods also to volume-coupled scenarios, where these gains can be decisive for the feasibility of
the coupling approach.

Keywords: fluid-structure interaction; quasi-Newton; multiphysics coupling

1. Introduction

Multiphysics simulations have shown immense usefulness in the engineering de-
sign sector, and are increasingly being applied to more complex problems, ranging from
biomedical devices [1] and wind loads on structures [2], to hydraulic fracture simulation
[3]. The rise in challenging applications of multiphysics simulations has led to an increased
focus on developing flexible, efficient, and scalable multiphysics coupling software. A practical
and user friendly approach is to develop partitioned-coupling software, which couples existing
standalone physics simulation solvers together to solve new types of simulation problems.
Here, the physics solvers themselves are treated as black boxes. This is in contrast to mono-
lithic methods, where all of the equations from each physics domain are solved together in a
single system. Partitioned coupling requires an additional piece of software taking care
of the actual numerical and technical coupling of the separate solvers. Amongst various
such coupling software packages available is preCICE [4]. The key features of preCICE
are the minimally invasive library approach, sophisticated numerical methods, parallel
scalability, and a strong focus on usability, maintainability, and extensibility. In this paper,
we present enhancements and robust parameter choices for numerical equation coupling
with preCICE, substantially improving performance, robustness and usability.

Various other general-purpose coupling software exist that are able to per-
form partitioned coupling for multiphysics (including fluid-structure interaction) and
multi-scale problems. Software coupling packages similar to preCICE are DTK [5] and
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OpenPALM [6], which both offer a slightly different approach to simulation coupling than
preCICE. DTK’s application programming interface (API) offers lower-level features com-
pared to preCICE, allowing more flexibility regarding the coupling logic, but at a greater
development effort for the user, whereas OpenPALM offers a higher-level approach, with
built-in coupling logic and a graphical user interface. A comparison of preCICE with the
mentioned libraries, as well as many others coupling software solutions, is provided in [7].

In addition to numerical coupling of separate solvers, a coupling software has to
provide communication between solvers, data mapping between non-matching meshes at
the interface between solvers, and interpolation in time (if higher order time stepping shall
be achieved). We focus on the numerical coupling in this paper, with a specific focus on
parallel quasi-Newton schemes. Quasi-Newton schemes for partitioned multi-physics cou-
pling were introduced in 2009 [8] and have been improved since [9–13]. Similar methods
have been developed in a different community in the context of acceleration of fixed-point
solvers under the name Anderson mixing or Anderson acceleration [14–17]. Quasi-Newton
acceleration schemes have been shown to provide fast and stable coupling between various
physics solvers for a variety of problems [3,9,18]. However, to provide fast and stable
coupling, additional numerical techniques are implemented in preCICE [10]. These addi-
tional interface operations have often been considered to have a negligible computational
cost compared to the solvers, as the interface degrees of freedom are assumed to be much
fewer than those of the coupled solvers themselves. However, this might not be true if
the interface becomes large or in the case of volume coupling, where the entire domain is
essentially the coupling interface.

The aim of this work is to implement minor enhancements to the existing implemen-
tation of quasi-Newton methods in preCICE, which, however, give major improvements
in terms of efficiency, robustness, and usability. The enhancements allow easier access to
good input parameter choices for standard users, while also offering maximal flexibility
for expert users without having to consider the computational cost of the coupling library.
We approach this goal by achieving a detailed understanding on how the implementation
of quasi-Newton schemes affects computational performance.

The remainder of the paper is structured as follows. In Section 2, we provide an
overview of multisecant quasi-Newton methods for fixed-point problems, as well as general
existing methods used to improve the quasi-Newton performance in preCICE. In Section 3,
we show how these additional general methods can be further enhanced to reduce the
number of coupling iterations, on the one hand, and the runtime of the actual acceleration,
on the other hand. In Section 4, we present different test cases to analyse the improvements.
In Section 5, we present results for these test cases, followed by a discussion of the results
in Section 6.

2. Methods—Introduction to Quasi-Newton Coupling

In this section, we present variants of iterative quasi-Newton coupling as implemented for
multiphysics simulation coupling. We start with the different versions of fixed-point equations
that are solved in iterative partitioned coupling approaches in Section 2.1. In Section 2.2, we
present the basic ideas of the quasi-Newton approaches used, followed by enhancements
of these methods improving convergence and robustness in Section 2.3. The contributions
of this paper, enhancements and rules that further improve the efficiency, robustness and
usability of quasi-Newton coupling for multiphysics simulations, are presented in Section 3.

2.1. Partitioned Coupling

For time-dependent problems, partitioned coupling, i.e., coupling of separate sim-
ulation codes, can be divided into two types: explicitly (loosely) coupled or implic-
itly (strongly) coupled. In explicit coupling, each solver performs its time step only
once and proceeds with the next time step after exchanging data with the other solvers.
In implicit coupling, all solvers iterate their time steps exchanging data after each iteration
until a fixed-point problem describing the coupling conditions is solved. Solving this fixed
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point problem requires the introduction of sophisticated methods, such as quasi-Newton
methods, to achieve acceleration of the convergence of the respective fixed-point iterations.

To explain the derivation of the fixed-point formulation, we consider two coupled
solvers for simplicity, represented by mapping functions S1 and S2 operating on data
defined at the coupling interface Γ. A common example is a fluid-structure interaction
(FSI) model, where S1 is the fluid solver that maps interface displacements or velocities
x1 to forces x2 exerted at the structure, whereas S2 is the structure solver that maps forces
x2 to interface displacements or velocities x1. The following description of the coupling,
however, generalises to any multi-physics problem. The mapping S1 requires the output of
S2 and vice-versa such that

S1 : x1 7→ x2 and S2 : x2 7→ x1.

For the considered time-dependent problems, x1 and x2 are the respective interface
values at the new time step. Strong or implicit coupling between S1 and S2 is formulated as
a fixed point problem. Two mathematically equivalent variants of this fixed-point problem
can be formulated in matrix-like notation as

x1 = S2 ◦ S1(x1) (Gauss-Seidel type coupling) and (1)(
x1
x2

)
=

(
0 S2
S1 0

)(
x1
x2

)
(Jacobi type coupling). (2)

These correspond to two different types of fixed-point iterations as depicted in Figure 1.
In this work, we focus on the second, so-called Jacobi type system as it results in higher
parallelism and, thus, more efficient usage of computational resources on large compute
clusters and supercomputers [11], and allows for an arbitrary number of solvers to be
coupled [19].

xk
1 xk

2 x̃k
1 xk+1

1

k 7→ k + 1

S1 S2 Acc xk
1

xk
2 x̃k

1

x̃k
2 xk+1

2

xk+1
1

k 7→ k + 1

k 7→ k + 1

S1

S2

Acc

Figure 1. General coupling options, Gauss-Seidel (left) and Jacobi (right), for partitioned coupling of
two solvers S1 and S2.

The unmodified fixed-point iterations xk+1 = H(xk), where

x =

(
x1
x2

)
and H =

(
0 S2
S1 0

)
(3)

in matrix-like notation, may be slow to converge or not converge at all [9]. We therefore
apply an acceleration scheme, Acc(), such that

xk+1 = Acc(x̃k) with x̃k = H(xk).

In the following, we explain how the acceleration operator Acc is realised based on
quasi-Newton approaches.

2.2. Introduction to Quasi-Newton Coupling Methods

The partitioned coupling schemes described above require solving a non-linear problem

R(x) := H(x)− x = 0. (4)

To solve this for problem sizes typically encountered in multi-physics simulations,
full Newton methods are undesirable due to large computational costs and memory re-
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quirements and, in addition, infeasible for black-box coupling as the derivatives of the
fixed-point operator H are inaccessible. Quasi-Newton methods are able to approximate a
Newton step and in general accelerate the convergence compared to the pure fixed-point
iteration [8,9,12]. At each iteration, we compute the next iteration via

xk+1 = x̃k − J−1rk, (5)

where rk = R(xk) = x̃k − xk and J−1 is an approximation of the inverse Jacobian of the
mapping R̃ : x̃ 7→ x̃ − H−1(x̃), i.e., the function that maps the result of the fixed point
iteration to the residual (R̃(H(x)) = R(x)). Equation (5) represents a sequence of a fixed-
point iteration and a modified approximated Newton step. As multiple iterations are
performed in each time step for implicitly coupled systems, we introduce a convergence
criteria to define when we proceed to the next time step. Implicitly coupled solvers are
considered to have converged if

‖xk
1 − x̃k

1‖2

‖xk
1‖2

< εconv. (6)

For solver S1, and similarly for solver S2. Critical to the performance of the quasi-
Newton method is the manner in which we approach the approximation of the inverse
Jacobian J−1. We use the input/output differences collected from previous iterations
collected in matrices

Wη
k =

[
∆x̃k, ∆x̃k−1, ..., ∆x̃k−η

]
with ∆x̃k = x̃k − x̃k−1,

Vη
k =

[
∆rk, ∆rk−1, ..., ∆rk−η

]
with ∆rk = rk − rk−1,

(7)

where Wη
k ∈ RN×η , Vη

k ∈ RN×η , N is the number of degrees of freedom (DoF) at the
coupling interface, and η is the maximum number of previous iterations that are retained.
For transient coupled problems, this can also include iterations from previous time steps.
We, however, drop iterations older than ζ time steps. The approximation of the inverse
Jacobian is required to fulfil the multi-secant equation

J−1Vk = Wk, (8)

a strongly under-determined system as η � N. We, thus, have to add a norm minimisation

min ‖J−1 − J−1
prev‖F. (9)

where J−1
prev is a previous approximation. Depending on the choice of J−1

prev, we get two
types of quasi-Newton methods:

IQN-ILS. The Interface Quasi-Newton Inverse Least-Squares (IQN-ILS) method is a popu-
lar and frequently used multiphysics coupling acceleration scheme. It was first introduced
in [8]. For IQN-ILS, we choose J−1

prev = 0, i.e., to determine J−1, we solve

J−1Vk = Wk with J−1 = argmin‖J−1‖F, (10)

yielding

J−1 = Wk

(
VT

k Vk

)−1
VT

k . (11)

The benefit of this classic least-squares approach is the option for a matrix-free imple-
mentation of the quasi-Newton step (5):

xk+1 = x̃k + Wkα with α = argmin‖Vkα + rk‖2. (12)
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To solve this least-squares problem, we compute a QR-decomposition of Vk = QR and
solve the small η × η system Rα = −QTrk.

The IQN-ILS method builds the approximation of J−1 exclusively from the retained
input/output vectors stored in Wk and Vk. Therefore, the amount and quality of the
information stored in Vk and Wk is decisive for the convergence rate and robustness of the
IQN-ILS method, and many problems typically require storing many previous iterations ,
η, over many previous time steps, ζ.

IQN-IMVJ. The Interface Quasi-Newton Inverse Multi-Vector Jacobian method [12,13,20]
implicitly retains information from previous time steps using J−1

prev as the previous time
step’s inverse Jacobian approximation and, thus, allows us to implicitly use information on
J−1 already collected in previous time steps. In the IQN-IMVJ method, we also perform a
QR-decomposition of Vη

k = QR to determine the pseudo-inverse V†
k =

(
VT

k Vk
)−1VT

k and
get J−1 from

J−1 = J−1
prev +

(
Wk − J−1

prevVk

)(
VT

k Vk

)−1
VT

k . (13)

The disadvantage of this method is that we need an explicit representation of J−1
prev

which requires O(N2) both in memory and computational complexity. By smart approx-
imations, this cost can, however, be reduced to O(N) [12,21]. In this paper, we focus on
improvements to the IQN-ILS method, as the most commonly used quasi-Newton variant.

2.3. IQN-ILS Enhancement Techniques

When implementing the IQN-ILS method into a software library, various numerical
methods need to be utilised to further improve numerical stability and reduce runtime and
memory requirements. The two methods we highlight here are filtering of columns in Vk [10]
and pre-scaling of the interface values [22]. These techniques are discussed below, and the
advantages and disadvantages are highlighted.

2.3.1. Filtering

For IQN-ILS, there is no guarantee that all columns in Vk are linearly independent.
Thus, to aid convergence for all acceleration schemes, filtering columns of the matrices
Vk and Wk is performed to remove any linearly dependent columns [10]. We discuss two
filtering variants: QR1 and QR2 filters (referred to as old QR and new QR filter, respectively,
in Haeltemann et al. [10]). Both methods begin by performing a QR-decomposition
Vk = QR, where Vk is decomposed into an orthogonal matrix QN×η and an upper triangular
matrix Rη×η .

In every iteration, a new column is added to the left of both Vk and Wk (see
Equation (7)). Therefore the leftmost columns represent newest information and the right-
most columns older information. The QR-decomposition is performed column-wise from
right to left, and is realised by a QR update procedure as shown in Figure 2. Taking an
already computed decomposition QR from the previous iteration, a new column on the left
v = (Vk):,1 (the subscript indicates the row and column number in a Python-like notation.
:, 1 refers to the leftmost column of Vk—this is the most recent column added to Vk) is
orthogonalised against Q via a modified Gram–Schmidt procedure. The orthogonalised v is
then added as additional (rightmost) column in Q (column q in Figure 2). A new (leftmost)
column is also added to R (column r in Figure 2) along with a bottom row of zeros. A
series of Givens rotations eliminate any non-zero sub-diagonal entries in R. A detailed
explanation of the procedure can be found in [23]. Note that this seems to be unnecessarily
complicated compared to adding columns from the right of Vk, which would only require
orthogonalisation of the new column q with a standard Gram–Schmidt algorithm, and
adding a new column r on the right of R. However, having the oldest information in
the rightmost columns of Vk and Wk offers the advantage that deleting old information,
possibly multiple columns at a time, is cheap. Deleting columns from Vk and Wk typically
occurs at least every time step.
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Deleting the rightmost (oldest) column of Vk only requires removing the rightmost
column from Q and the rightmost column as well as the last row from R. This does not in-
troduce non-zero sub-diagonal elements in R and, thus, does not require additional Givens
rotations. Removing an arbitrary column from Vk requires (1) removing the corresponding
column from R, (2) removing any sub-diagonal elements from R using Givens rotations,
(3) applying the corresponding Givens-rotations to Q from the right, (4) removing the last
column from Q as well as the bottom (zero) row from R.

If a complete QR decomposition is required, Q and R are discarded completely, and new
Q and R matrices are rebuilt using each column from Vk, adding one column at a time.

v V = qQ

G

0

r
R

= Q̄

R̄

Figure 2. QR-decomposition updating procedure. For every new column added to Vk on the left,
the QR decomposition can be updated by adding the orthogonalised version of this column as new
(rightmost) column q in Q, adding an additional row of zeros to R and subsequently adding a new
(leftmost) column r to R representing the respective orthogonalisation factors. To compute the final
decomposition, we have to apply Given rotations (represented by the matrix G in the figure) to
eliminate sub-diagonal entries in R. Q̄ and R̄ represent the final decomposition result.

QR1. In the QR1 filter, the impact of a column on the condition of R is estimated by
comparing the diagonal elements of R to the complete norm of R as a metric for the norm
of orthogonalised columns of Vk before normalisation. This means, we delete a column i if

Rii < ε f · ‖R‖F, (14)

where ε f is the filtering limit, a user specified parameter. This filter has a potential drawback
as the QR-decomposition is built from the oldest column of information to the newest and,
thus, has a tendency to delete new columns instead of (potentially outdated) old ones.
However, [22] found that this was not problematic with a well selected filter limit. The
main advantage of the QR1 filter is that it does not enforce a complete re-computation of
the QR-decomposition in each coupling iteration, but allows updating the decomposition
by inserting the newest column v into QR only. Any filtered column can be removed with
a single column deletion step.

QR2. The QR2 filter (Algorithm 1) was introduced in [10] as a means to quantify the amount
of new information a column in Vk adds to the QR-decomposition, and to filter the columns
during the construction of Q and R itself. Importantly, the QR2 method re-constructs the
QR-decomposition beginning with the newest column of information and, thus, has to
rebuild the QR decomposition in each iteration, and tends to remove the oldest columns
from Vk. This is favoured as older columns might no longer be relevant to the current
dynamics of the physical system.
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Algorithm 1 : QR2 Filter [10]

R11 = ‖(Vk):,1‖2 . This is the newest column
for i = 1, ..., η do . Starts from newest column

v = (Vk):,i
for j = 1, ..., i− 1 do

Rji = QT
:,j · v

v = v− Rji ·Q:,j
end for
if ‖v‖2 < ε f ‖(Vk):,i‖2 then

delete column i
end if
Rii = ‖v‖2 and Q:,i = v/Rii

end for

2.3.2. Pre-Scaling

When using the Jacobi-type fixed point equation as introduced in Equation (2),
largely different orders of magnitude of the two parts of the vector x, forces and dis-
placements/velocities, and their residuals R(x) may cause numerical issues as only the
field with the larger magnitude is seen in the approximation of J−1. For example, in case
of a stiff solid structure, the surface pressure may be in the order of 105, whereas the
structural deformation may be in the order of 10−3. Additionally, the solution of the
stiff structure might not change much between time steps, and therefore have a small
residual value R(x), while the residual of the fluid solver may still be several order of
magnitude larger. Therefore, additional scaling of the sub-vectors of x and the respective
residual components is required. We apply a pre-scaling to Vk = ΛkVk and rk = Λkrk,
where Λk = diag(λk,1 . . . λk,1 λk,2 . . . λk,2)

T ∈ RN×N . The two pre-scaling weights λk,1
and λk,2 are selected to normalise the values of each sub-vector in rk. Using the so-called
residual-sum pre-scaling introduced in [24],

λk,1 =

(
k

∑
j=1

‖S2(xj
2)− xj

1‖2

‖R(xj)‖2

)
and λk,2 =

(
k

∑
j=1

‖S1(xj
1)− xj

2‖2

‖R(xj)‖2

)
. (15)

Uekermann [22] showed that this provided a suitable scaling for multiphysics sim-
ulations. In this pre-scaling, we use the norms of the fixed point equation residuals in
each sub-field divided by the norm of the complete residual as scaling factors. This is then
summed over all iterations, k, within one time step. The summation over all previous
iterations in one time-step prevents a zig-zag convergence behaviour found in [22].

By updating the pre-scaling weights of Λk in each iteration, a complete QR-
decomposition of Vk is required in every iteration instead of just a cheap update as all
columns of Vk change. A complete QR-decomposition is required as each row in Vk is not
scaled by the same value. This does not further affect the QR2 filter, but now a complete
QR-decomposition in each iteration is also required for the QR1 filter.

2.4. Current Good Practice for IQN-ILS

Even though quasi-Newton methods for multiphysics coupling problems is advanced,
tuning both convergence speed and runtime requires a careful understanding of the method
in combination with the enhancements described above. Therefore, we describe some
important aspects of IQN-ILS in combination with pre-scaling and filtering and the choice
of other methodological parameters.

The pseudo-code of the IQN-ILS method with additional pre-scaling (Section 2.3.2)
and filtering (Section 2.3.1) steps is shown in Algorithm 2. As the IQN-ILS method builds
the approximation of J−1 exclusively from Vk and Wk, the problem dependent parameters
η and ζ can have a large impact on the robustness and convergence as mentioned above.
Whereas the general idea is to improve the approximation of J−1 by using more informa-
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tion than generated in a single time step, a large number of columns also has obvious
negative impact: In addition to increasing the risk of rank deficiency of Vk (which can
be resolved by filtering), retaining a large number of columns in Wk and Vk also leads to
(i) larger memory consumption for matrix storage and (ii) larger computational effort in
performing the QR-decomposition of Vk. A choice of between η = 100 and η = 200 previous
iterations over the previous ζ = 10 to ζ = 20 time steps is a good choice if combined with a
well-tuned filter. The filter QR2 is preferred as it tends to delete older columns and only if
they add little information to the QR-decomposition. The filter limit should be chosen such
that some, but not too many columns are deleted. A good filter limit is typically between
ε f = 0.1 and ε f = 0.001.

Algorithm 2 : IQN-ILS

initial value x0

x̃0 = H
(

x0) and r0 = x̃0 − x0

xk+1 = x0 + ω(x̃0 − x0)
for k = 1, 2, ... do

x̃k = H
(

xk
)

and rk = x̃k − xk

if converged then
break

end if
Vk =

[
∆rk, ..., ∆r1

]
, ∆rk = rk − rk−1

Wk =
[
∆x̃k, ..., ∆x̃1

]
, ∆x̃k = x̃k − x̃k−1

Determine pre-scaling weights Λk
Compute ΛkVk = QR
Filter columns in QR
solve Rα = −QTΛkrk

xk+1 = x̃k + Wkα
end for

3. Computational Improvements for the Quasi-Newton Method

The complex manner in which input parameters interact with each other makes it dif-
ficult to find the optimal input settings for a given problem, while still maintaining fast
simulation runtimes. In the following section, we discuss two methods developed to improve
the computational runtime while maintaining the robustness of the quasi-Newton methods.

3.1. Pre-Scaling Weight Monitoring

As the pre-scaling weights λk,1 and λk,2 change in each iteration, a complete QR-
decomposition is performed in each iteration, adding a significant computational expense
to the quasi-Newton update. We introduce a new pre-scaling weight monitoring method to
freeze the pre-scaling weights after the first time step. In each iteration in the first time step,
we recompute and apply the pre-scaling weights as usual. Starting from the second time
step„ we only compute the theoretical new pre-scaling weight values Λ∗k from the newest
residual values using Equation (15). We update the actual pre-scaling weights Λk 7→ Λ∗k if
these theoretical weights change by more than one order of magnitude (i.e., if λ∗k,i > 10 · λk,i
or λ∗k,i < 0.1 · λk,i for each solver i). This allows us to implement further methods to reduce
the computational runtime for iterations where we keep pre-scaling weights constant:

1. We alter the QR-decomposition strategy for the QR1 filter, such that it only recom-
putes the QR-decomposition if pre-scaling weights change. Previously, the full re-
computation was done in every iteration if pre-scaling was enabled.

2. We develop a new faster QR filter, QR3, that can mimic the behaviour of the QR2 filter.
The previous QR2 inherently required to recompute the QR-decomposition in each
iteration independent on whether pre-scaling was enabled. We describe the new filter
below in Section 3.2).
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3.2. Fast Alternative QR Filter

The current QR2 filtering technique relies on performing a complete QR-decomposition
in every iteration. We typically assume that the number of DoF on the coupling interface, N, is
much smaller than the number of DoF within the solvers. Therefore, the computational time
for the QR-decomposition should be negligible. However, this may not always be the case as

1. the number η of columns in Vk can grow very large and the cost of inserting a column
into QR has a computational complexity of O(η3),

2. in volume coupling, the number of coupling DoF is equal to the number of all DoF in
the domain, and is not negligible.

It is unnecessary for the QR2 filter step to perform a complete QR-decomposition if
actually no column is deleted. In this case, a single column insertion step could have been
performed. In this work, we introduce a new QR3 filter. A requirement for this filter is that
the pre-scaling weights remain constant, and therefore the pre-scaling weight monitoring
(Section 3.1) is required to use the QR3 filter. If the weights are updated during a coupling
iteration, then a normal QR2 filter step is performed as the QR-decomposition is then
rebuilt (ΛkVk = QR) in the process. Otherwise, the new filter computes these three steps:

1. the newest column of Vk is inserted into an existing QR decomposition (see
Section 2.3.1),

2. a check is performed to tag any column that should be removed according to the same
criteria as QR2,

3. only if any one column is tagged to be removed, then a normal QR2 filter step is
performed instead, that is, a complete QR-decomposition is performed and columns
are removed in this step.

In step 2, the check begins from the oldest column, R:,η (the subscript refers to the
row and column number. :, η refers to the right most column of R), and moves towards
the previous newest column, R:,2. We do not check if the first column R:,1 should be
removed as we want to keep the latest information. A column i is tagged for deletion if
Rii < ε f ‖Vk,(:,i)‖2 . This criteria aims to mimic the behaviour of the QR2 filter by tending to
find older columns to delete similar to the regular QR2 filter, but without reconstructing
QR. If at least one column is tagged for deletion, then the QR2 filter is applied to rebuild
QR starting from newest information, ensuring that a good quality of QR is maintained.
Further runtime improvements could be found if this criterion is made stricter, for instance
if at least two or three columns must be tagged for deletion before a QR2 filter step is
performed. For simplicity, we restrict our tests, however, to only a single column. The QR3
pseudo-code is shown in Algorithm 3.

Algorithm 3 : QR3 Filter

Add newest column v = (Vk):,1 to QR
filter← false
for i = η, ..., 2 do . Starts from oldest column and works forwards

if Rii < ε f ‖(Vk):,i‖2 then
filter← true
break

end if
end for
if filter then

Compute QR2 Filter Step
end if

4. Numerical Setup

To test the effectiveness of our suggested enhancements, we introduce three fluid-
structure interaction test scenarios in this section, followed by descriptions of the used
software and hardware.
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4.1. Test Cases

We selected three test scenarios that feature fluid and solid density values known
to be challenging in terms of stability due to the added mass effect [25,26]: a 3D elastic
tube scenario and a breaking dam scenario in 2D and 3D. Whereas the elastic tube scenario
represents an outer elastic structure, the breaking dam scenarios feature elastic structures
immersed in the fluid and involve free surface flow, such that we cover the main types of
fluid-structure interaction scenarios. In addition, the breaking dam scenarios are dynami-
cally changing, which challenges the reuse of past information of quasi-Newton methods.
To ensure reproducibility of our results, the complete test setups are available under an
open-source license at https://github.com/KyleDavisSA/IQN-test-cases accessed on 15
February 2022.

Elastic-Tube-3D. The Elastic-Tube-3D problem, proposed for instance in [27] and used
in many other studies [8,13,20], is a simplified heamodynamic FSI test case. The test
case geometry consists of a cylindrical tube with elastic walls and an inner fluid domain.
A time-dependent pressure boundary condition is applied at the inlet and at the outlet of
the fluid domain. At the inlet, a pressure of 1.3332 kPa is applied for 3 ms followed by 0 Pa
for another 7 ms. At the outlet, the pressure is kept constant at 0 Pa. The simulation is run
for 10−2 s, with a time step size of dt = 10−4 s, for a total of 100 time steps. The fluid flow
causes the solid domain to expand, and a pressure pulse travels through the tube. The
domain geometry and material properties are shown in Figure 3.

L

W
1

W
2

Γinlet ΓoutletFluid

Solid

Solid

Domain

L 0.05 m
W1 0.01 m
W2 0.012 m

Fluid

ρ 1000 kg/m3

ν 3 × 10−6 m2 × s−1

Solid

E 3 × 105 Pa
ρ 1200/120 kg/m3

Figure 3. Domain geometry—not to scale—(left) and dimension and material parameters (right) of
the Elastic-Tube-3D test case.

We compare two different densities for the structural solver to examine the added
mass effect: (i) ρ = 1200 kg/m3 and (ii) ρ = 120 kg/m3, referred to as Elastic-Tube-3D-Heavy
and Elastic-Tube-3D-Light, respectively. The structural solver has 11,735 elements in the
domain and 1816 vertices on the coupling interface. The fluid domain contains 32,691 cells,
with 1860 vertices on the coupling interface.

Breaking-Dam-2D. The Breaking-Dam-2D test case is a free surface problem, where a large
body of water comes into contact with a flexible barrier [28,29]. This test case may pose
problems for the quasi-Newton method: Firstly, the past information retained in the matri-
ces Vk and Wk may not be entirely relevant once the water impacts the coupling interface
and, thus, the character of the interaction between fluid and solid changes. Secondly, also
the pre-scaling weight values may change dramatically at the moment of the impact. The
domain and the material properties are shown in Figure 4.

https://github.com/KyleDavisSA/IQN-test-cases
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L1 L2 L3

L4

H
1

H
2

H
3

Air

Water

Solid

Domain

L1 0.146 m H1 0.292 m
L2 0.14 m H2 0.073 m
L3 0.286 m H3 0.08 m
L4 0.548 m

Fluid - Water Fluid - Air

ρ 1000 kg/m3 ρ 1 kg/m3

v 1 × 10−6 m2 × s−1 v 1 × 10−5 m2 × s−1

Solid

E 3 × 105 Pa
ρ 2500 kg/m3

Figure 4. Domain geometry—not to scale—(left) and dimension and material parameters (right) of
the Breaking-Dam-2D test case.

A no slip boundary condition is applied at the bottom, the left, and the right boundary,
and a zero pressure outlet at the top. The test case was run for 1 s with a time step size
of dt = 0.005 s, for a total of 200 time steps. The fluid domain contains 1382 cells in the
domain, with 44 vertices on the interface, and the structural domain uses 325 quadratic
finite elements in the domain, and 282 vertices on the coupling interface.

Breaking-Dam-3D. The Breaking-Dam-3D test case is a more complex test case inspired
by the Breaking-Dam-2D example. A new, larger domain was created with larger bodies of
water placed on either side of the wall, and a heavier solid wall was placed between the
water columns. The water bodies are offset in the third dimension such that they hit the
wall at opposite ends and at different times, resulting in a non-symmetrical movement of
the dam wall (Figure 5 (left)). The solid domain is fixed only at the bottom and the sides are
free to move in-plane. The test case was run for 0.75 s with a time step of dt = 0.005 s, for a
total of 150 time steps. The domain geometry is shown in Figure 6, with the dimension and
material properties given in Figure 5 (right). The fluid domain contains 25,712 cells in the
domain, with 714 vertices on the interface. The solid domain is simulated using 319 linear
elements with 387 vertices on the coupling interface.

Domain

L1 2 m H2 2 m
L2 0.95 m H3 1 m
L3 1.95 m H4 0 m
L4 1 m H5 4 m
L5 6 m H6 1 m
H1 2 m H7 4 m

Fluid - Water Fluid - Air

ρ 1000 kg/m3 ρ 1 kg/m3

v 1 × 10−6 m2 × s−1 v 1×10−5 m2 × s−1

Solid

E 1 × 107 Pa
ρ 7850 kg/m3

Figure 5. Breaking-Dam-3D waters striking the flexible wall at 0.75 s (left) and dimensions and
material parameters (right).
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Air
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Figure 6. Domain geometry—not to scale—of the Breaking-Dam-3D test cases: front view (left), and
top view (right).

4.2. Quasi-Newton Configuration

A few numerical parameters are the same for each test case. The following values are
used unless stated otherwise:

• number of time steps reused: ζ = 10 or ζ = 20;
• maximal number of previous iterations: η = 100 or η = 200;
• convergence threshold for IQN-ILS: εconv = 10−3;
• maximum number of iterations allowed per time step before proceeding to the next

time step, even if εconv is not reached: 30 or 50 (Breaking-Dam-3D);
• limit for QR2 or QR3 filter: ε f = 0.001, ε f = 0.01, or ε f = 0.1;
• type of pre-scaling: residual-sum pre-scaling as defined in Equation (15);
• initial under-relaxation value: ω = 0.1.

A simulation run is denoted as diverged only if one of the physics solvers crashed, not
if the convergence threshold was not reached in one or several time steps.

4.3. Software

We only use open-source software to test the quasi-Newton enhancements. We use
the following versions:

• Fluid solver: https://www.openfoam.com/news/main-news/openfoam-v20-12, ac-
cessed on (OpenFOAM v2012) [30]; 15 February 2022

• Fluid solver adapter: https://github.com/precice/openfoam-adapter/releases/tag/
v1.0.0, accessed on OpenFOAM-preCICE Adapter v1.0.0; 15 February 2022

• Solid solver: http://www.calculix.de/, accessed on CalculiX v2.17 [31]; 15 Febru-
ary 2022

• Solid solver adapter: https://github.com/precice/calculix-adapter/tree/5d42fb616
0ede35926a59786ef8ae25dd71d7cdb, accessed on CalculiX-preCICE Adapter, commit
5d42fb6, 15 February 2022.

All quasi-Newton methods described in Sections 2 and 3 have been implemented in
the coupling library preCICE [4,7]. We use two different versions of preCICE:

• https://github.com/precice/precice/releases/tag/v2.3.0 accessed on 15 February
2022, as baseline without the enhancements presented in Section 3

• https://github.com/precice/precice/tree/3fb3d8d465e45e1eadba766a8ce5f1f96c1
38b20 accessed on 15 February 2022, for the enhancements presented in Section 3.

4.4. Hardware

All simulations are run on a single core of a Lenovo T480, with an Intel Core i5–8250U
CPU, 1.60 GHz × 4, and 16 GB main memory.

https://www.openfoam.com/news/main-news/openfoam-v20-12
https://github.com/precice/openfoam-adapter/releases/tag/v1.0.0
https://github.com/precice/openfoam-adapter/releases/tag/v1.0.0
http://www.calculix.de/
https://github.com/precice/calculix-adapter/tree/5d42fb6160ede35926a59786ef8ae25dd71d7cdb
https://github.com/precice/calculix-adapter/tree/5d42fb6160ede35926a59786ef8ae25dd71d7cdb
https://github.com/precice/precice/releases/tag/v2.3.0
https://github.com/precice/precice/tree/3fb3d8d465e45e1eadba766a8ce5f1f96c138b20
https://github.com/precice/precice/tree/3fb3d8d465e45e1eadba766a8ce5f1f96c138b20
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5. Results and Discussion

In this section, we present the results and discussion for the pre-scaling weight moni-
toring and the new QR3 filtering procedure.

5.1. Pre-Scaling Weight Monitoring

We introduced pre-scaling weight monitoring in order to reduce the number of weight
updates throughout the simulation and, as a consequence, to be able to reduce the com-
putational cost of QR-decompositions and filtering. Therefore, we examine the impact of
different variants of pre-scaling weight updating on both, the number of quasi-Newton
iterations and on the computational cost for QR-decompositions and filtering.

Table 1 shows the impact of different versions of pre-scaling on the number of quasi-
Newton iterations. First, we provide a baseline set of results where we update the pre-
scaling weights in each iteration. Second, we freeze the pre-scaling weights after the first
time step. Finally, we use the pre-scaling weight monitoring.

Table 1. Comparison of the average number of quasi-Newton iterations per time step for IQN-
ILS with QR2 filter (ε f = 0.01) for (i) pre-scaling update in every quasi-Newton iteration (column
“baseline”), (ii) pre-scaling with freezing of weights after the first time step (column “freeze”), (iii) the
new pre-scaling weight monitoring approach (column “monitoring”). For each test case, the first
row uses a maximum of η = 100 iterations from previous ζ = 10 time steps, and the second row
η = 200 and ζ = 20. Braces indicate how many time steps did not converge within 30 iterations
before moving to the next time step.

Test Case ζ η Baseline Freeze Monitoring

Elastic-Tube-3D Heavy 10 100 4.51 4.45 4.48
Elastic-Tube-3D Heavy 20 200 3.84 3.96 3.94

Elastic-Tube-3D Light 10 100 7.23 7.30 7.16
Elastic-Tube-3D Light 20 200 5.84 6.00 5.83

Breaking-Dam-2D 10 100 7.08 (2) 8.59 (8) 7.9 (3)
Breaking-Dam-2D 20 200 8.06 (6) 9.16 (10) 8.14 (2)

Breaking-Dam-3D 10 100 4.34 4.77 4.33
Breaking-Dam-3D 20 200 4.3 5.19 4.15

From the comparison of quasi-Newton iteration counts in Table 1, we observe that,
in general, our new pre-scaling weight monitoring approach does not lead to an increase
of the number of iterations compared to the more expensive baseline approach, where
weights are updated in every iteration. All test cases apart from the Breaking-Dam-2D
case offer comparable results in terms of iteration counts. For the Breaking-Dam-2D case,
a slight increase can be observed for our weight monitoring approach. However, overall,
the results show that the weight monitoring is effective in the sense that it detects when
updates are necessary.

On the other hand, comparing our new approach to simulation runs where we freeze
the pre-scaling weights after the first time step shows that freezing the weights substantially
increases the number of iterations. It yields comparable results only for both Elastic-Tube-
3D cases. There is a significant increase in the number of iterations for both Breaking-Dam
cases, which shows that simply freezing the weights is sub-optimal if scenarios undergo
sudden changes (fluid hitting the obstacle in the Breaking-Dam case). We conclude, that
the weight monitoring is not only sufficient, but also necessary to ensure fast quasi-Newton
convergence in general.

To further analyse the impact of the pre-scaling weight monitoring on the overall
computational cost, we present more detailed results for the fluid and the solid domain
in Table 2, in particular including the number of weight updates, the most important
factor for computational cost as each update requires a complete re-computation of the
QR-decomposition of Vk. Here, we use the pre-scaling weight monitoring with the new
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QR3 filter. The combined impact of this new filter and the pre-scaling weight monitoring is
presented in Section 5.2.

The more detailed analysis of these tests in Table 2 leads to further insights: (i) The
large difference between the fluid and solid pre-scaling weights is immediately apparent.
This large difference necessitates using pre-scaling in the first place. Completely removing
the pre-scaling results in either a large increase in coupling iterations, or divergence of the
solvers, for all test cases. For brevity, we do not explicitly list these results. (ii) In addition,
we observe a large difference between the minimum and the maximum value of the
weights for each of the fields over the entire simulation—fluid and solid. This indicates
that updating the pre-scaling weights is necessary to ensure suitable scaling.

Table 2. Performance details of pre-scaling weight monitoring with QR3 filter (ε f = 0.01). For each
test case, the first row uses a maximum of η = 100 iterations from previous ζ = 10 time steps, and
the second row η = 200 and ζ = 20. We show the total number of quasi-Newton iterations for
the entire simulation with the average number of quasi-Newton iterations per time step in braces
(column “Its”), the numbers of updates of the pre-scaling weights during both the first time step
(column “Upd 1”) and all other time steps (column “Upd 2-”), as well as the range of weights λ f /s
for both solvers.

Test Case ζ η Its Upd 1 Upd 2- λs λ f

Elastic-Tube-3D-Heavy 10 100 448 (4.48) 14 1 17.38–3155.7 0.071–1.0
Elastic-Tube-3D-Heavy 20 200 394 (3.94) 14 1 17.38–3155.7 0.071–1.0

Elastic-Tube-3D-Light 10 100 716 (7.16) 22 6 4.68–2365.8 0.045–1.0
Elastic-Tube-3D-Light 20 200 583 (5.83) 22 7 2.13–2401.5 0.045–1.0

Breaking-Dam-2D 10 100 1525 (7.63) 4 54 0.98–1018.5 0.09–1.0
Breaking-Dam-2D 20 200 1651 (8.23) 4 75 0.98–621.3 0.09–1.0

Breaking-Dam-3D 10 100 649 (4.33) 10 11 9.67 × 104–3.23 × 107 0.1–1.0
Breaking-Dam-3D 20 200 623 (4.15) 10 6 2.19 × 105–3.23 × 107 0.1–1.0

During the first time step, the pre-scaling weight monitoring updates the weights in
each iteration. Therefore, a large number of weight updates is observed for the first time
step in Table 2 (column “Upd 1”) compared to the rest of the simulation (column “Upd 2-”).
For all test cases, the number of updates after the first time step is low compared to the total
number of iterations, with the Elastic-Tube-3D-Light cases requiring only six and seven
updates after the first time step, respectively. The Breaking-Dam-2D scenario requires 54
and 75 updates after the first time step. However, this is a low number compared to the
total of 1525 and 1651 iterations for the entire simulation.

Comparing the amount of retained iterations η over a certain window of time steps ζ, we
observe that the number of pre-scaling weight updates as well as the range of weight values
do not appear to be very sensitive to these parameters. This was expected since converged
solutions at the end of each time step should be rather independent of these parameters.

The range of pre-scaling weight values is also interesting. The Breaking-Dam-3D case
features very large scaling values for the solid solver. This indicates that the solid solver
residuals are far smaller than the fluid solver’s residuals. For this test case, the structure
is a heavy wall and “slow” to move. This could account for a high stability in the solid
solver itself, but necessitates the use of pre-scaling. A change in the pre-scaling magnitudes
is observed for the Elastic-Tube-3D scenarios, with slightly larger solid solver pre-scaling
weight values for the Elastic-Tube-3D-Heavy scenario with a higher structure density, once
again indicating smaller residual values compared to the fluid solver.

Summarising, our results show that the pre-scaling weights do not change consid-
erably between successive iterations majority of the time, and that the factor of 10 used
to determine when the pre-scaling weights is updated is a suitable choice. However, the
weights can change significantly over time, and adjusting the weights is necessary.
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5.2. QR3 Filter

We introduced the QR3 filter in order to reduce the number of complete QR-
decompositions performed when filtering columns from QR in the quasi-Newton update.
The new QR3 filter mimics the previous QR2 filter method in the way it detects which columns
are to be deleted in Vk and Wk. However, it does not require a complete QR-decomposition
in each quasi-Newton iteration, but only cheap QR-updates as long as (i) pre-scaling weights
are unchanged and (ii) no column is tagged to be deleted. In the experiments in this section,
we analyse the impact of the new filter in combination with pre-scaling weight monitoring
on both the number of required quasi-Newton iterations and on the computational runtime.
We compare the number of quasi-Newton iterations in Table 3 and the number of deleted
columns in Table 4 for the QR2 filter while computing new pre-scaling weights in each
iteration, and the new QR3 filter with pre-scaling weight monitoring.

Table 3. Comparison of the average number of quasi-Newton iterations per time step for (i) pre-
scaling update in every quasi-Newton iteration with the QR2 filter (column “QR2”), and (ii) the new
pre-scaling weight monitoring approach with the new QR3 filter (column “QR3”). Three different
filter limits ε f = 0.001, ε f = 0.01, and ε f = 0.1 are compared. Values in brackets indicate how many
time steps did not converge within 30 iterations before moving to the next time step.

QR2 QR3
Test Case ζ η ε f = 0.001 0.01 0.1 ε f = 0.001 0.01 0.1

Elastic-Tube-3D-Heavy 10 100 4.26 4.51 5.12 4.59 4.48 5.24
Elastic-Tube-3D-Heavy 20 200 4.09 3.84 4.91 4.05 3.94 3.92

Elastic-Tube-3D-Light 10 100 7.27 7.23 8.83 7.18 7.16 8.69
Elastic-Tube-3D-Light 20 200 5.78 5.84 7.88 5.83 5.83 7.67

Breaking-Dam-2D 10 100 div 7.08 (2) 5.87 (3) 12.5 (25) 7.63 (3) 5.76 (2)
Breaking-Dam-2D 20 200 12.12 (19) 8.10 (6) 6.11 (2) div 8.26 (2) 5.74 (2)

Breaking-Dam-3D 10 100 4.45 4.34 4.21 4.8 4.33 4.31
Breaking-Dam-3D 20 200 4.51 4.30 4.15 4.51 4.15 4.33

Table 4. Average number of columns deleted per time step for (i) pre-scaling update in every quasi-
Newton iteration with the QR2 filter (column “QR2”), and (ii) the new pre-scaling weight monitoring
approach with the new QR3 filter (column “QR3”). Three different filter limits ε f = 0.001, ε f = 0.01,
and ε f = 0.1 are compared.

QR2 QR3
Test Case ζ η ε f = 0.001 0.01 0.1 ε f = 0.001 0.01 0.1

Elastic-Tube-3D-Heavy 10 100 0.01 0.1 2.01 0.01 0.03 1.61
Elastic-Tube-3D-Heavy 20 200 0.01 0.04 2.19 0.01 0.03 0.31

Elastic-Tube-3D-Light 10 100 0.01 0.04 2.67 0.01 0.01 2.88
Elastic-Tube-3D-Light 20 200 0.01 0.03 2.8 0.01 0.03 2.65

Breaking-Dam-2D 10 100 div 3.45 3.95 4.42 3.82 3.8
Breaking-Dam-2D 20 200 8.25 5.81 4.64 div 5.81 4.19

Breaking-Dam-3D 10 100 1.99 2.06 2.19 2.14 1.88 2.17
Breaking-Dam-3D 20 200 2.03 2.27 2.45 2.26 2.03 2.38

The number of quasi-Newton iterations as presented in Table 3 does not increase
when using the new QR3 filter instead of the QR2 filter. It even decreases for 13 of the
24 simulations performed. The Breaking-Dam-2D case diverges for ε f = 0.001 for both
filters. This is in-line with previous observations, that for scenarios that are prone to linear
dependencies in Vk, the filter limit cannot be chosen too small [10,22]. Changing from the
QR2 to the QR3 filter is, thus, not the source of this issue.
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Table 4 shows that also the number of deleted columns is comparable for both filters. The
Elastic-Tube-3D-Heavy test case has only one and three columns deleted for ε f = 0.001 and
ε f = 0.01, respectively. The Breaking-Dam test cases have more columns deleted, approxi-
mately half of all iterations. Both filters are able to address this with similar efficiency.

For ε f = 0.001, the filtering criterion tends to remove fewer columns. This seems to be
somewhat contradicted by the Breaking-Dam-3D case with the QR3 filter, where the number
of deleted columns is larger for ε f = 0.001. However, the total number of iterations for
ε f = 0.001 is also larger than for ε f = 0.01. Therefore, more QR filter checks are performed
and more columns are deleted over the entire simulation runtime. The same happens for
the Breaking-Dam-2D case, where the number of removed columns for ε f = 0.01 is larger
than for ε f = 0.1.

The runtime of the QR filter (filtering of columns including QR decomposition time)
as a percentage of the total simulation runtime is shown in Table 5. The total simulation
runtime includes the total runtime of the solvers and preCICE including initialisation.

Table 5. QR decomposition and filtering time as a percentage of the total simulation runtime for
(i) pre-scaling update in every quasi-Newton iteration with the QR2 filter (QR2), and (ii) the new
pre-scaling weight monitoring approach with the new QR3 filter (QR3). Three filter limits ε f = 0.001,
ε f = 0.01 and ε f = 0.1 were tested. The test cases used a maximum of η = 100 iterations from
previous ζ = 10 time steps, and η = 200 and ζ = 20.

QR2 QR3
Test Case ζ η ε f = 0.001 0.01 0.1 ε f = 0.001 0.01 0.1

Elastic-Tube-3D-Heavy 10 100 1.99% 2.48% 1.51% 0.06% 0.06% 0.62%
Elastic-Tube-3D-Heavy 20 200 6.67% 4.9% 3.18% 0.08% 0.09% 0.36%

Elastic-Tube-3D-Light 10 100 7.41% 7.23% 6.60% 0.15% 0.15% 2.42%
Elastic-Tube-3D-Light 20 200 12.99% 13.12% 13.20% 0.38% 0.43% 5.04%

Breaking-Dam-2D 10 100 div 4.69% 1.27% 3.21% 2.52% 0.85%
Breaking-Dam-2D 20 200 27.98% 9.72% 2.33% div 5.75% 1.65%

Breaking-Dam-3D 10 100 0.61% 0.59% 0.54% 0.08% 0.03% 0.04%
Breaking-Dam-3D 20 200 1.75% 1.57% 1.44% 0.23% 0.09% 0.07%

Comparing the relative runtimes shown in Table 5, we see that, for every test case,
the runtime of the new QR3 filter is significantly smaller than the runtime of the QR2
filter. More noticeable improvements occur for ζ = 20 and η = 200 than for ζ = 10 and
η = 100, which is expected since the larger number of columns in Vk increases the cost
of each complete QR-decomposition. The filtering accounts for a large percentage of the
simulation runtime for the Breaking-Dam-2D case, as the solver meshes are rather small.
Especially for ζ = 20 and η = 200 and the QR2 filter with limit ε f = 0.001, the QR-
decompositions are relatively expensive. The Elastic-Tube-3D-Light scenario spends up
to 13.20% of the simulation runtime filtering the QR2 filter with ε f = 0.1. The largest
improvement in runtime performance is approximately 12.5% of the simulation runtime
for the Elastic-Tube-3D-Light with ζ = 20 and η = 200.

Also in terms of runtime and runtime gains, we observe large differences between
Breaking-Dam-2D and Breaking-Dam-3D scenarios, which can, however, be easily ex-
plained as the 2D problem has a much smaller domain in terms of size and number of
elements in the domain. Each fluid solver call is relatively “cheap” computationally, and
therefore the relative cost of the QR decomposition increases.

Note that these runtime comparisons represent the overall gain of both improvements,
pre-scaling weight monitoring and the QR3 filter as the QR2 filter is not able to exploit the
advantage of pre-scaling weight monitoring, that is, it always re-computes the complete
QR-decomposition of Vk independent of whether weight updates are required or not.
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6. Conclusions

We provide an overview of current quasi-Newton acceleration methods commonly
used for partitioned fluid-structure interaction. We also discuss numerical techniques that
improve the computational efficiency and enhance convergence of quasi-Newton accelera-
tion. From this, two new methods are introduced to further improve the computational
efficiency of the acceleration: pre-scaling weight monitoring and a faster QR filtering pro-
cedure. The combination of both methods allows us to significantly reduce the necessary
number of computationally expensive QR-decompositions. Instead, we can simply update
existing QR decompositions in most acceleration steps—a rather cheap operation. We study
the effectiveness of these new methods with three common fluid-structure interaction test
cases, each offering a unique coupling difficulty. The new methods reduce the runtime of
the QR filter significantly, while not decreasing the convergence speed. A small, but already
significant speed up for complete fluid-structure interaction simulations is observable. This is
true despite the fact that there are drastically fewer degrees of freedom at the coupling interface
compared to the solver domains for such surface-coupled problems. For volume-coupled
problems, we expect an even higher impact of the newly introduced methods.
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