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Deutschsprachige Zusammenfassung

Motivation

Unterirdische Flussvorgänge durch gebrochenes poröses Material haben eine große Be-
deutung für die Optimierung der Energiegewinnung von natürlichen Ressourcen. Ener-
gieressourcen sind in Form von verschiedenen Liquiden oder Wärme in unterirdischen
Reservoiren gespeichert. Ihre Gewinnung ist stark von Diskontinuitäten der Transport-
charakteristiken von porösen Medien abhängig, die unter anderem in Verbindung zu dis-
kreten Rissen oder Rissnetzwerken zu bringen sind. Während des Förderprozesses können
komplexe Flussprozesse auftreten, da die vorhandenen Risse nicht nur die Permeabilität
des porösen Materials erhöhen, sondern auch die Steifigkeit der umgebenden Felsmasse
reduzieren. Um die Effizienz der ausgewählten Fördermethode zu steigern ist es daher not-
wendig ein fundiertes Wissen über die Wechselwirkung von Strömungsprozessen und me-
chanischer Deformation aufzubauen. Die gewonnenen Erkenntnisse über die während der
Förderung von Gas- und Ölvorkommen auftretenden hydromechanischen Effekte haben
ebenfalls eine Relevanz im Bereich der Kohlenwasserstoffindustrie [e.g., 49] und können
zur Optimierung von Speichermethoden beitragen.
Eine effizientere Gewinnung von Öl, Gas oder Wärme kann durch die Förderung in Ge-
bieten mit einer durch Risse erhöhten Permeabilität erreicht werden. Risse in porösen
Medien können bereits existieren oder durch Hydrofracking künstlich erzeugt werden,
um die Konduktivität des Reservoirs zu erhöhen [e.g., 85]. Sobald das Equilibrium durch
Porendruckvariationen gestört wird erlaubt eine erhöhte Konduktivität des Reservoirs
höhere Flussraten. Dieses Phänomen wird genutzt um höhere Förderraten während der
Gewinnung von Fluiden, beziehungsweise Gasen zu erzeugen, um das Management von
Wasserreservoirs zu optimieren [e.g., 74, 128] oder die Gewinnung von geothermischer
Energie zu steigern, bei der die potenzielle Austauschfläche von Felsmasse und Fluid
durch die Präsenz von Rissen ebenfalls erhöht wird [e.g., 192]. Im Gegensatz zu den ge-
nannten Fördermethoden sollte sich das geologische Umfeld für Abfalllagerung und die
Speicherung von Kohlenstoff durch eine geringe Permeabilität auszeichnen, um den Mas-
sentransport während einer Langzeitlagerung zu minimieren.
Unabhängig von der gewählten Methode ist die hydromechanische Charakterisierung des
in Betracht gezogenen geologischen Gebiets für eine große Anzahl von technsichen Anwen-
dungen von Relevanz. So ist die Untersuchung der Reservoircharakteristik vor und nach
der Stimulation von benachbarten Gebieten von Bedeutung, um mögliche Änderungen der
Reservoireigenschaften zu dokumentieren. Um das Risiko von ungewollten Zwischenfällen
zu reduzieren und die Effizienz der gewählten Methode durch die Bestimmung von Pa-
rametern, wie dem zu induzierenden Gesamtvolumen oder dem maximalen Fluiddruck,
zu steigern, ist es notwendig das umliegende Reservoir bestmöglich zu charakterisieren.
Betrachtet man exemplarisch die Anwendung des Hydrofrackings, so ist eine erfolgreiche
Durchführung stark von dem gewählten Pumpprotokoll abhängig, das basierend auf den
Informationen über die Permeabilität und Steifigkeit der umliegenden Felsmasse zusam-
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VIII Deutschsprachige Zusammenfassung

men mit dem Wissen über bereits existierende Risse ausgelegt wird. Die im Anschluss
von Bohrlochanwendungen durchgeführten Charakterisierungsstudien geben Aufschluss
über gewollte und ungewollte Änderungen der Reservoirigenschaften, wie einer erhöhten
Permeabilität nach Anwendung von Hydrofracking Stimulationen.
Flussraten in unterirdischen Gebieten werden aufgrund von Informationen über die Per-
meabilität und Speicherkapazität des gebrochenen porösen Grundmaterials abgeschätzt.
Die Charakterisierung basiert auf der Auswertung von Datensätzen, die durch zerstörungs-
freie Methoden, beruhend auf der Ausbreitung von mechanischen Wellen [111, 112, 116,
149, 189] oder durch Pumpvorgängen, die transiente Druck- und Flussänderungen induzie-
ren [11, 36, 60, 126], erzeugt werden. Das Repertoire and Pumpvorgängen umfasst Impul-
stests [35, 99, 101, 191], harmonische [153, 154], beziehungsweise nicht harmonische [157]
und Stufentests [59]. Kürzlich konnte während eines Pumpvorgang neben den klassichen
Fluss- und Druckdatensätzen ebenfalls ein konsistenter Datensatz für die transiente un-
iaxiale Änderung der Rissöffnung erzeugt werden [52], der eine genauere Auswertung der
hydromechanischen Eigenschaften des Reservoirs ermöglicht. Unabhängig von der Kom-
plexität der gewählten Methode sind die meisten Datensätze räumlich jedoch auf diskrete
Positionen des Bohrlochs reduziert und erfordern eine inverse numerische Analyse, um
den möglichen Bereich von hydromechanischen Parametern des Reservoirs einzugrenzen.

Stand der Forschung und Zielsetzung

Für die Bestimmung von charakteristischen Eigenschaften, basierend auf der Auswertung
von Messdaten, stehen eine Anzahl von verschiedenen Methoden zur Verfügung. Die Aus-
wahl einer geeigneten Methode kann mit Hinblick auf das durchgeführte Experiment, die
aufgezeichneten Datensätze und die gesuchten Parameter getroffen werden. Kenntnisse
über die treibenden Mechanismen von Flussprozessen in deformierbaren Rissen haben in
einer großen Bandbreite von potenziellen Anwendungen, die das harmonische Anregen von
Einzelrissen oder Rissnetzwerken zum Bestimmen von Heterogenitäten des Untergrunds
[3, 36, 63, 157] oder Studien zur Rissöffnungsevolution während Stufentests umfassen [164],
Relevanz und müssen bei der Methodenentwicklung berücksichtigt werden. Im Folgenden
wird mit einer auf der vorhandenen Literatur beruhenden Diskussion der bestehenden
Analysemethoden von Messdaten, des konsistenten Modellierens von hydromechanisch
gekoppelten Flussprozessen in gebrochenen porösen Medien und den verschiedenen Me-
thoden zum Lösen der sich ergebenden partiellen Differenzialgleichungen die Grundlage
für ein besseres Verständnis der Problematik gelegt.

Analyse von transienten Messdaten

Die Methoden zur Analyse von Messdaten können grob als analytische und numerische
Verfahren kategorisiert werden. Analytische Methoden basieren zumeist auf isotropen
Druckdiffusionsmodellen und beschreiben den Fluss in einem starren Einzelriss um des-
sen charakteristischen Größen zu bestimmen [25, 125]. Numerische Analysemethoden, die
den Fluss durch gerissene poröse Medien mit komplexen Geometrien basierend auf Druck-
diffusionsmodellen untersuchen, wurden ebenfalls umfangreich in der Literatur diskutiert
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[e.g., 19, 62]. Der Nachteil von rein diffusionsbasierten Methoden is jedoch, dass die ge-
troffenen Annahmen keine hydromechanische Interaktion zulassen und somit bestimmte
Phänomene, die während hydraulischer Tests an Rissen auftreten, nicht abgebildet wer-
den können [173]. Bestimmte Beschränkungen können durch eine lokale Anreicherung der
Modelle aufgehoben werden, um Risseigenschaften mit einer höheren Genauigkeit abzu-
bilden [e.g., 137, 139]. Die zumeist genutzte konstitutive Beziehung zwischen Fluiddruck
und Permeabilität des Risses ermöglicht eine gute numerische Annäherung der Messdaten,
sobald transiente Änderungen der Rissöffnung während des Testvorgangs zu erwarten sind
[163, 164]. Darüberhinaus wurden experimentelle Untersuchungen bezüglich der Verbin-
dung zwischen der Permeabilität eines Risses und dessen effektiven Spannungzustandes
in der Literatur diskutiert und eine Beziehung zwischen dem druckinduzierten Fluss und
der geometrischen Änderung des Risses aufgestellt [115, 122, 215, 219]. Diese Beziehung
ist in den Bereichen der Seismik [33, 78–80] und während der Korrelation von hydrau-
lischen und mechanischen Rissöffnungen von Interesse [209]. Die diskutierte konstitutive
Beziehung zwischen Fluiddruck und Rissöffnung führt jedoch eine lokale Charakteristik
ein, die im Kontrast zu experimentellen Beobachtungen steht. Ein bekanntes Szenario,
bei dem diese Beziehung nicht ausreichend ist um die experimentellen Beobachtungen
zu reproduzieren ist das durch nicht lokale Rissvolumenänderungen induzierte Phänomen
von inversen Wasserstandsschwankungen [69, 185, 206, 208]; ein Phänomen, das eben-
falls aus Untersuchungen an intakten porösen Medien als Noordbergum Effekt bekannt
ist [107, 162]. Die stark unterschiedlichen Ausbreitungsgeschwindigkeiten von Fluidfluss
und Rissdeformation resultieren in volumetrischen Änderungen des Risses in Bereichen,
die zu diesem Zeitpunkt noch nicht vom induzierten Fluidvolumen erreicht werden konn-
ten und treten als gemessene Druckabfälle in entfernten Bohrlöchern in Erscheinung. Im
Gegensatz zu den bisher diskutierten analytischen und numerischen Methoden im Zeit-
bereich kann die Effizienz für den Fall von harmonischen Anregungen durch eine Analyse
im Frequenzbereich deutlich gesteigert werden. Harmonische Tests an einem Reservoir
ermöglichen neben den technischen Vorteilen, wie der Signalbereinigung der Messdaten
[154, 157], ebenfalls eine Transformation in den Frequenzbereich, die eine quasistatische
Analyse für gegebene Erregungsfrequenzen ermöglicht [39, 153, 157]. Die in der Literatur
diskutierten Modelle im Frequenzbereich berücksichtigen jedoch nicht die starke Inter-
aktion von Fluidfluss und Rissdeformation, die in Form von volumetrischen und lokalen
geometrischen Änderungen des Risses auftritt.

Modellierung von Fluidfluss in deformierbaren Rissen

Hydromechanische Effekte haben einen großen Einfluss auf den Fluidfluss in deformier-
baren Rissen. Relevante Risse im Bereich von geologischen Untersuchungen sind durch
ein großes Verhältnis von Risslänge l und Rissöffnung δ charakterisiert l/δ > 104 [26].
Ein erster Lösungsansatz um den Fluidfluss in deformierbaren Rissen zu charakterisieren
sind direkte numerische Simulationen (DNS), bei denen der Fluidfluss durch die (Navier-)
Stokes Gleichung beschrieben wird und mit der poroelstischen Domäne interagiert [21].
Die Qualität von DNS zeigt eine starke Abhängigkeit von der Diskretisierung des Riss-
gebiets [21], die aufgrund von begrenzten Rechenkapazitäten zu einer Beschränkung mit
Hinblick auf die zu untersuchende Gebietsgröße führt. Im Kontext von Rissen mit ho-
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hen Seitenverhältnissen kann die Effizienz der numerischen Methode deutlich gesteigert
werden, sobald die geometrische Annahme von Fluss zwischen zwei parallelen Platten
getroffen wird. Druckgetriebener Fluidfluss zwischen zwei parallelen Platten wurde aus-
giebig unter dem Synonym des Poiseuille Flusses diskutiert [e.g., 193], für den unter der
Annahme von laminaren Strömungen für viskose Fluide das Geschwindigkeitsfeld ana-
lytisch bestimmt werden kann. Die Annahme von Poiseuille Fluss im Bereich von Ris-
sen wurde durch experimentelle Untersuchungen bestätigt [121, 216] und für den Fall
von veränderbaren Rissöffnungen als untere Grenze der Fluss-Druck Beziehung identi-
fiziert [146]. Untersuchungen von Fluidfluss in deformierbaren Rissen kann durch eine
Erweiterung der getroffenen Annahmen im Rahmen der Kontinuumsmechanik, die Bi-
lanzgleichungen konsultiert [e.g., 88, 91, 123, 194] um einen konsistenten Zusammenhang
zwischen Volumenänderungen des Risses und dessen Einfluss auf den Flussprozess herzu-
stellen, durchgeführt werden. Unter der Berücksichtigung eines biphasigen poroelastischen
Models [e.g., 20, 54, 158, 190] kann die Interaktion mit der Riss Domäne in Bezug auf volu-
metrische Änderungen und Fluidaustausch diskutiert werden. Betrachtet man Fluidfluss
durch einen deformierbaren Riss kann durch konsistentes Auswerten der Bilanzgleichungen
ein in seiner Dimension reduziertes, sogenanntes hybrid-dimensionales Model hergeleitet
werden [177, 206–208]. In der Literatur werden vergleichbare Modelle unter dem Aspekt
der Schmierströmung eingeführt [16]. Eine Erweiterung des Spannungskonzepts muss in
Betracht gezogen werden, sobald mechanische Interaktion durch Rissflächenkontakt das
eingeführte hydromechanische Model ergänzt. Eine Anzahl von verschiedenen Ansätzen
wurde hierfür in der Literatur diskutiert und umfasst gänzlich empirische Ansätze [e.g.,
76], Modelle, die eine nicht veränderliche, konstante Risssteifigkeit annehmen [e.g., 34],
diskrete Kontakmodelle [e.g., 18] und Modelle, die Kontaktmechanismen entkoppelt von
der volumetrischen Änderung des Risses betrachten [e.g., 56, 109, 144]. Alternativ dazu
kann die Rissöffnung als ein Indikator für das spezifische Equilibrium des Risses betrachtet
werden [40, 145, 147]. Die mechanische Interaktion von Rissoberflächen ist durch eine ho-
he Anzahl von Hertzschen Kontaktzonen charakterisiert. Die durch Oberflächenkontakt
induzierten Normalspannungen skalieren mit der akkumulierten Kontaktfläche in einer
stark nicht-linearen Beziehung [40, 77, 197]. Das Auftreten von Hysteresen während der
zyklischen Belastung eines Einzelrisses auf der Laborskala ist auf die relative Neuaus-
richtung beider Rissoberflächen zurückzuführen. Der Hystereseneffekt nimmt mit zuneh-
mender Zyklusanzahl ab und konvergiert gegen einen reversiblen Zustand [14]. Risse die
bei Felduntersuchungen unter in in-situ Bedingungen getestet werden haben bereits eine
natürliche Neuausrichtung durchlaufen und zeigen keine Hysteresiseffekte solange die Per-
turbationen des Equilibriumzustandes unterhalb der Grenze zu seismischen Aktivitäten
liegen [14, 147]. Der reversible Charakter der Normalspannungsantwort motiviert die An-
nahme einer nicht-linear elastischen konstitutiven Beziehung. Modelle, die basierend auf
experimentellen Daten Normalspannungsbeziehungen ausnutzen, können in der Literatur
gefunden werden [e.g., 12, 70, 75, 181]. Das bereits eingeführte hydromechanische Model
ist jedoch sensitiv mit Bezug auf Parameteränderungen [175] und eine Kalibrierung unter
in-situ Bedingungen ist eine nicht triviale Aufgabe. Simple Modifikationen eines beste-
henden Kontakmodels vereinfachen Untersuchungen unter in-situ Bedingungen durch die
Berücksichtigung des initialen Spannungszustandes [173]. Der Einfluss von mechanischer
Interaktion zwischen den Rissoberflächen auf den Fluidfluss während harmonischer An-
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regung eines Einzelrisses wurde ausgiebig in einer numerischen Studie untersucht. Die
Studie konnte einen konsistenten Zusammenhang zwischen nicht konstanten Phasenver-
schiebungen zwischen Fluiddruck und -fluss, beziehungsweise zusätzlichen Amplituden im
Frequenzraum herstellen und mit hydromechanischen Effekten korellieren [174]. Risssche-
rungen und damit verbundene Scherspannungsevolutionen [e.g., 201] wurden im Rahmen
dieser Arbeit nicht betrachtet, da, wie bereits erwähnt, Pumpvorgänge zum Testen von
gerissenen Reservoiren deutlich unterhalb der Grenze zu seismischen Aktivitäten durch-
geführt werden.

Numerische Kopplungsverfahren

Bei der Betrachtung von Fluidfluss durch deformierbare Risse, eingebettet in ein poröses
Medium, kann das resultierende globale System in die Rissdomäne und die hydromecha-
nische Antwort der poroelastischen Matrix unterteilt werden. Eine konsistente Interak-
tion zwischen beiden Bereichen wird durch an der Rissoberfläche definierte Übergangs-
bedingungen sichergestellt [e.g., 177]. Im Zuge dieser Arbeit wird das Feld an potentiel-
len numerischen Lösungsstrategien auf netzbasierte Methoden, wie das Finite-Volumen-
Verfahren (FV) [e.g., 57, 204] oder die Finite-Elemente-Methode (FE) [e.g., 17, 94, 223],
beschränkt. Die starke numerische Interaktion zwischen volumetrischer Änderungen des
Rissvolumens und der Druckverteilung des Fluids benötigt eine implizite Kopplung beider
Bereiche [1, 218], die durch partitionierte oder monolithische Lösungsverfahren eingeführt
werden kann. Arbeiten aus dem Forschungsbereich der ungeschädigten porösen Medien
diskutieren im Rahmen von volumetrisch gekoppelten Systemen Modifikationen der nu-
merischen Formulierung, um Stabilität eines partitionierten Ansatzes zu gewährleisten
[104–106]. Das sogennante Fixed-Stress basierte Aufspalten des Systems ist ebenfalls für
gerissene poröse Medien erweitert worden [72, 73] und ermöglicht stabile numerische Un-
tersuchungen von Fluidfluss durch deformierbare Risse in Form einer vorkondizuinierten
Richardson-Iteration [38]. Eine Alternative zur Kopplung der poroelatsichen Antwort mit
der Riss Domäne sind Quasi-Newton-Verfahren [45, 83, 171]. Eine Stabilitätsanalyse für
die Quasi-Newton Kopplung im Bereich von gerissenen porösen Medien wurde anhand
von Einzelrissen und Rissnetzwerken in drei Dimensionen durchgeführt [176]. Der Vorteil
von partitionierten Lösungsverfahren sind Berechnungen auf nicht konformen Diskretisie-
rungen und im Kontext des parallelen Rechnens, das Verwenden von iterativen linearen
Lösern. Das Konvergenzverhalten von partitionierten Lösern ist jedoch weniger effizient
als das von monolithischen Strategien [177]. Monolithische Verfahren lösen in einem glo-
bal aufgestellten Gleichungssystems die gesuchten primären Variablen beider Bereiche
simultan. Das globale Gleichungssystem kann unter Berücksichtigung verschiedener nu-
merischer Methoden und deren Kombinationen aufgestellt werden. In der Literatur sind
FV-FV [e.g., 202], FE-FV [e.g., 183] and FE-FE [e.g., 177, 179–181] Kopplungsansätze
dokumentiert. Monolithische Lösungsstrategien sind numerisch robust, benötigen jedoch
aufgrund der schlechten Konditionierung des Gleichungssystems vorrangig direkte Löser,
die im Rahmen des parallelen Rechnens gewisse Skalierungsgrenzen mit sich bringen.



XII Deutschsprachige Zusammenfassung

Gliederung der Arbeit

Der Motivation, der Zielsetzung und dem Stand der Forschung, eingeführt in Kapitel
1, folgt eine theoretische Diskussion der erforderlichen Bilanzgleichungen in Kapitel 2,
um die in dieser Arbeit verwendeten Formulierung für den Fluss in deformierbaren Ris-
sen zu motivieren. Das Kapitel beschäftigt sich mit der hydromechanischen Interaktion
von Flussprozessen in deformierbaren Rissen, die sich unterhalb der kritischen Grenze zu
seismischen Aktivitäten befinden. In diesem Zusammenhang wird ein konsistentes hydro-
mechanisches Flussmodell hergeleitet, eine poroelastische Formulierung eingeführt, um
die Antwort des umliegenden Materials abzubilden und Übergangsbedingungen von bei-
den Gebieten diskutiert, um das globale Gleichungssystem zu schließen. Zusätzlich zu den
beschreibenden Gleichungen wird ein konstitutives Modell eingeführt, mit dem Messdaten
aus dem Feld unter in-situ Bedingungen analysiert werden können.
Aufgrund der Trennung der Berechnungsgebiete in einen durch das hydromechanische
Flussmodell abgebildeten Bereich und einen Bereich, in dem die poroelastische Formulie-
rung gilt, beschäftigt sichKapitel 3mit verschiedenen numerischen Kopplungsstrategien.
Dabei wird der Fokus der Diskussion auf die numerische Effizienz und Genauigkeit der
möglichen Lösungsansätze gelegt. Neben der Diskussion von partitionierten konstanten
Spannungs- und Quasi-Newton Lösungsstrategien wird durch das Mitteln der Bilanzglei-
chungen eine monolithische Formulierung eingeführt.
Kapitel 4 besteht aus veröffentlichten und eingereichten Publikationen. Die Bereiche
der Veröffentlichungen umfasst numerische Studien über das Kopplungsverhalten der ein-
geführten numerischen Gebiete, Untersuchungen von hydromechanischen Phänomenen,
die während harmonischer Anregung von Einzelrissen auftreten und Charakterisierung
von Rissen basierend auf in-situ Messdaten aus dem Feld.
Die Dissertation findet dann mit einer Zusammenfassung und Aussicht der Arbeit in
Kapitel 5 einen Abschluss. Im abschließenden Kapitel werden Möglichkeiten zur Erwei-
terung des eingeführten Models im Zusammenhang mit zukünftigen Anwendungsgebieten
im Bereich der gerissenen porösen Medien diskutiert.



Nomenclature (Introductory Part)

Conventions

Index and suffix conventions

�± positive and negative fracture surface

�+/�+ positive fracture surface

�−/�− negative fracture surface

�α constituent identifier - superscript

�l longitudinal direction

�sol numerical solution

�t tangential direction

Symbols

Greek letters

Symbol Unit Description

α [ - ] Biot-Willis or effective stress coefficient

βf [1/Pa] fluid compressibility

γfR
0 [kg] specific fluid weight

γc [Pa] fixed-stress convergence estimate

ΓFr [ - ] fracture domain

ΓPe [ - ] poro-elastic surface

δ [m] fracture aperture

δ0 [m] initial fracture aperture

δmin [m] minimal mechanical aperture

δc [m] fracture closure

δcmax [m] maximum fracture closure

εr [m] absolute roughness

ηfR [m] effective fluid shear viscosity

κfR [Pa] effective fluid bulk viscosity

λ [Pa] first Lamé parameter

ρfR [kg/m3] effective fluid density

σCon
N [Pa] contact normal stress

σM [Pa] total mean stress of mixture

XIII
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φ [ - ] porosity

ε [ - ] small strain tensor

σ [N/m2] Cauchy stress tensor

σT [Pa] total stress tensor

τ [N/m2] deviatoric stress

ξ [ - ] averaging weighting parameter

X [ - ] unique motion function

Ψ [ - ] dimensionless friction factor

Latin letters

Symbol Unit Description

a [m2] actual area

A [m2] referential area

Aext [m2] external Surface

BPe [ - ] poro-elastic domain

EFr [Pa] fracture stiffness parameter

EFr
eq [Pa] equilibrium fracture stiffness parameter

G [Pa] shear modulus

J [ - ] Jacobian

K [Pa] solid skeleton bulk modulus

Ks [Pa] solid material bulk modulus

K f [Pa] fluid bulk modulus

1/M [1/Pa] inverse storage capacity

ks
Fr [m2] effective fracture permeability

lc [m] characteristic length

mf [kg] fluid mass

p [Pa] fluid pressure

peq0 [Pa] initial equilibrium fluid pressure

P [ - ] material point

P̂ l [Pa] averaged longitudinal pressure

P̂ t [Pa] averaged tangential pressure

Q [m3/s] volumetric flow rate

qlk [m/s] fluid leak-off

Re [ - ] Reynolds number

sα [N/m2] partial mean stress

s0 [ - ] hydraulic-mechanical aperture parameter

t [s] time



Nomenclature (Introductory Part) XV

V [m3] referential volume

V βf
[m3] fluid compressibility volume

V δ [m3] fracture aperture volume

V Inj [m3] injected fluid volume

V Leak [m3] leak-off fluid volume

V Fr [m3] referential fracture volume

w [ - ] test function

af [m/s2] fluid acceleration

as [m/s2] solid acceleration

b [m/s2] body force vector

C [Pa] elasticity tensor

df [m/s] symmetric part of spatial fluid velocity gradient

ei [ - ] (Cartesian) basis of orthonormal vectors

êi [ - ] local (Cartesian) basis of orthonormal vectors

f ext [N] external force vector

F [ - ] referential deformation gradient

I [ - ] identity tensor

lf [m/s] spatial gradient of the fluid velocity

LFr [m] line segment on fracture boundary

nFr [ - ] normal of fracture surface

nl [ - ] longitudinal normal of fracture surface

p̂α [N/m3] volume-specific direct momentum production

x [m] absolute actual position vector to a material Point

X [m] absolute reference position vector to a material Point

t [N/m2] surface traction

vf [m/s] fluid velocity

vs [m/s] solid velocity

wf [m/s] relative fluid mean velocity

Calligraphic letters

Symbol Description

O origin of a coordinate system

Acronyms

Acronym Description

2d two-dimensional

3d three-dimensional
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DOF degree of freedom

FE(M) Finite Element (Method)

FV(M) Finite Volume (Method)

DNS direct numerical simulations



Chapter 1:
Introduction and overview

1.1 Motivation

Underground flow processes in fractured porous media possess a great significance regard-
ing the optimization of energy production based on natural resources. Energy is stored in
form of liquids, respectively heat in the underground and its excavation is highly impacted
by discontinuities of the porous medium’s transport characteristics such as induced by dis-
crete fractures or fracture networks. Throughout the exploitation flow processes might
become fairly complex, since fractures do not simply increase the permeability and induce
preferential flow paths within the reservoir, they also reduce the stiffness of the surround-
ing rock mass. Hence, optimization of the conducted exploitation procedure requires best
understanding of the flow processes in combination with their impact on the mechanical
deformation state of the system and vice versa. Better knowledge of the hydro-mechanical
effects throughout production of gas and oil from wells are also of great value for the hy-
drocarbon industry [e.g., 49] to increase the design and efficiency of the applied storage
methods.
Improvement of oil, gas or heat production rates might be achieved by exploiting ar-
eas of increased permeability introduced by discrete fractures. Fractures embedded in a
porous medium might be pre-existing, but can also be artificially induced by hydraulic
fracturing operations resulting in a higher conductivity of the reservoir [e.g., 85]. An
increased conductivity allows for higher flow rates once the equilibrium state of the reser-
voir is disturbed by variations of the pore pressure. This phenomenon is exploited to
achieve higher production rates throughout fluid and gas exploitation, to optimize the
management of water reservoirs [e.g., 74, 128] or to improve the heat excavation where
the existence of fractures additionally expand the interaction area of rock mass and fluid
throughout geothermal energy production [e.g., 192]. In contrast to regions relevant for
exploitation procedures, geological settings appropriate for waste disposal [e.g., 42] and
carbon sequestration [e.g., 22, 90] should possess low permeabilities suitable for long-term
storage of matter by minimization of transport.
Nevertheless, independent of the field of application, the determination of hydro-mechanical
properties of the targeted domain is mandatory for all reservoir-engineering methods.
Hence, before and after stimulation of neighbouring reservoirs by pressure variations
within boreholes resulting in perturbations of the equilibrium state, the reservoirs charac-
teristic properties are required to be determined for documentation of potential changes
of its characteristics. Information of the surrounding reservoir before the pumping opera-
tions form the basis to appropriately design quantities such as total injected fluid volume
and targeted pressure maxima to optimize the procedure’s efficiency and to reduce the
risk of unwanted incidents. Considering hydraulic fracturing as an example, information
about the to be fractured reservoir in terms of permeability and toughness of the rock
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2 1 Introduction and overview

mass along with the knowledge about preexisting fractures are mandatory to achieve a
successful and safe execution of the pumping protocols. Investigations of the reservoirs
properties after the borehole operations reveal wanted and/or unwanted changes of the
documented characteristics, such as an increase in permeability after conducting hydraulic
fracturing procedures.
Flow rates in underground settings are estimated based on information about the perme-
ability and storage capacity of the investigated fractured domain. The characterization
process analyzes data sets that might be obtained from a number of different testing pro-
cedures ranging from non-destructive procedures focusing on the evolution of mechanical
waves [111, 112, 116, 149, 189] to pumping operations on boreholes where transient pres-
sure and flow data is interpreted [11, 36, 60, 126]. Pumping operations might be executed
and interpreted in terms of transients resulting from pulse tests [35, 99, 101, 191], har-
monic [153, 154] and non-harmonic testing [157] or step rate tests [59]. Recently the set of
flow and pressure transients has consistently been extended to uni-axial tracking of frac-
ture opening throughout testing procedures [52] to limit the parameter space defining the
potential hydro-mechanical reservoir characteristics. Nevertheless, mostly the received
data is locally limited to the transients recorded at discrete boreholes and can only be in-
terpreted in combination with inverse analysis by best numerical fits of the measurement
data to constrain the space of characteristic properties of hydraulically tested reservoirs.

1.2 State of the art, scope and aims

Throughout the analysis of measurement data a number of different strategies might be
conducted to determine characteristic properties of the investigated domain. Require-
ments to the applied method vary dependent on the conducted experiments, the set of
transient data and the properties of interest. Knowledge about the driving mechanisms of
flow processes in deformable fractures throughout a broad field of potential applications,
ranging from periodic excitation of single or multiple fractures to identify heterogeneities
of the subsurface [3, 36, 63, 157] to studies on the permeability evolution throughout step
rate tests [164], is required to develop a suitable and efficient method for analysis. The
needed understanding is gained by discussion of the analysis strategies of measurement
data, the consistent modeling of hydro-mechanical flow in fractured porous media and the
different solution strategies for hydro-mechanically coupled partial differential equations
based on the existent literature.

Analysis of transient measurement data

Analysis of measurement data might be separated into analytical and numerical solu-
tion strategies. Analytical methods are traditionally based on isotropic pressure diffusion
assumptions to govern flow processes in a single, rigid fracture to estimate its character-
istic properties [25, 125]. Numerical treatment of diffusion based models to predict flow
through complex fractured porous media have extensively been studied in the literature
[e.g., 19, 62]. Still, due to their limitations on the hydro-mechanical interaction with the
surrounding medium diffusion based models fail to reproduce a number of phenomena
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recorded during hydraulic testing of fractures [173]. Some limitations might be overcome
by locally enhanced numerical models for a better approximation of the fracture proper-
ties [e.g., 137, 139]. The consideration of constitutive relations between pore pressure and
fracture opening serves well to generate best numerical fits when fracture permeabilities
might change throughout perturbations of the fracture’s equilibrium state [163, 164]. Ex-
perimentally permeability variations related to the effective stress state of a fracture have
been studied in the literature to correlate the resulting pressure induced flow rates to tran-
sient changes of the fracture geometry [115, 122, 215, 219]. This phenomenon is of interest
in the field of fault reactivation, respectively seismicity [33, 78–80] and investigations on
the relationship between mechanical and hydraulic fracture opening [209]. Nevertheless,
the constitutive relation between fluid pressure and fracture opening introduces a local
characteristic to the investigated system which does not translate to experimental findings
in the field of fracture flow. One prominent example where such models tend to fail are
reverse water-level fluctuations introduced by non-local changes of the fracture volume
[69, 185, 206, 208]; a phenomenon which was also observed during pumping operations
on unfractured reservoirs and is known as the Noordbergum effect [107, 162]. Pressure
drops in distant monitoring wells are triggered by the pronounced difference in character-
istic travelling times of the fluid pressure diffusion and almost instantaneous deformation
response of the surrounding medium resulting in an opening of fractures in regions which
have not been reached by the injected fluid volume. In contrast to the proposed meth-
ods which focus on the analysis in the time domain the efficiency of procedures designed
for data obtained from harmonic fluid pressure excitation experiments might drastically
be increased by calculations in the frequency domain. Besides advantages such as signal
separation from ongoing pumping operations or measurement imperfections [154, 157] the
cost of numerical simulations is drastically reduced to a single quasi-static solution step
to investigate the fracture response for a given excitation frequency [39, 153, 157]. Never-
theless, models known from the literature designed for analysis in the frequency domain
lack to consistently consider strict coupling of the fracture flow and deformation state
of the rock matrix by means of volumetric changes and local variations of the fracture
permeability.

Modeling of flow in deformable fractures

Hydro-mechanical effects have a strong impact on flow processes in deformable fractures.
In the geological settings of fractured rock material, the fracture’s geometry is character-
ized by a high ratio between fracture length l and aperture δ defining a high aspect-ratio
regime l/δ > 104 [26]. A first approach uses direct numerical simulations (DNS) where
flow processes in fractures are governed by the Navier-Stokes equation and coupled to
the response of the poro-elastic matrix [21]. Nevertheless, direct numerical simulations
are computationally expensive resulting in limitations on the investigated domain size,
respectively the complexity of the fracture network and might introduce large numeri-
cal errors once the discretization is not chosen accordingly [151]; a non-trivial task in the
presence of the investigated fracture dimensions. An increase in efficiency can be achieved
in the regime of high aspect-ratio fractures by approximation of their geometry assum-
ing two parallel plates. Pressure driven processes for flow between parallel plates have
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been extensively studied under the name of Poiseuille’s law [e.g., 193] where the velocity
profile for viscous fluids under laminar flow conditions can analytically be derived. Stud-
ies proofed that the introduced assumption closely reproduces flow data obtained from
experiments [121, 216] and serves as a lower bound in the presence of fracture opening
and closing [146]. Investigations on flow in deformable fractures might be achieved by
extension of the introduced assumptions based on the framework of continuum mechanics
which postulates a set of balance equations [e.g., 88, 91, 123, 194] to consistently con-
sider changes of the fracture volume and their impact on the flow solution. Considering
a biphasic poro-elastic medium [e.g., 20, 54, 158, 190] the hydro-mechanical interaction
with the embedded fracture by means of deformation and fluid exchange can be discussed.
Consistent evaluation of the balance equations leads to a dimensionally reduced model
for flow in deformable fractures and is referred to as the hybrid-dimensional formulation
in the context of this work [177, 206–208]. In the literature comparable formulations
have been introduced under the name of the lubrication theory [16]. Besides the purely
hydro-mechanical interaction of fluid and fracture the acting stresses might be extended
by contact induced phenomena once fracture surfaces mechanically interact. Different ap-
proaches can be found in the literature to describe the fracture stiffness induced normal
stresses including purely empirical models [e.g., 76], models assuming a non-evolving,
constant fracture stiffness [e.g., 34], discrete contact models [e.g., 18] or fracture models
that are volumetrically decoupled from the flow processes [e.g., 56, 109, 144]. An alter-
native approach is the consideration of fracture stiffness as an indicator for the fracture’s
equilibrium state [40, 145, 147]. Mechanical interaction of fracture surfaces is character-
ized by a high number of Hertzian contact zones. Normal stress response due to surface
interaction characteristically scales with the amount of contact zones, respectively total
contact surface in a highly non-linear manner [40, 77, 197]. Hysteresis effects regarding
the normal stress response during loading and unloading of fractures might be investi-
gated in a laboratory setting since fracture surfaces might relocate, but reaches a state
of mated surfaces and reversible responses after a certain number of loading cycles [14].
Under in-situ conditions natural relocation of fractures induces a state of mated surfaces
with no hysteresis effects during fracture opening and closing triggered by perturbations
of the equilibrium state below the limit of seismic actions [14, 147]. The reversible char-
acteristic motivates a non-linear elastic constitutive relation between the contact induced
normal stresses and the fracture opening, respectively closing. A number of partly physics
based models capturing the asymptotic closing behaviour can be found in the literature
[e.g., 12, 70, 75, 181]. Nevertheless, the proposed hydro-mechanical model is sensitive
to parameter changes [175] and configuration of consistent sets of model parameters is
a non-trivial task under in-situ conditions. To overcome this burden a newly developed
contact model considers the fracture’s equilibrium configuration by simple modification
of the initial stress state governed by an existent contact model [173]. The influence of
fracture stiffness on the hydro-mechanical response of a single fracture throughout har-
monic excitation has been investigated throughout numerical experiments. The study
consistently correlates the existence of non-constant phase shifts between fluid pressure
and flow, respectively additional amplitudes in the frequency domain to hydro-mechanical
phenomena and not as previously assumed to measurement imperfections [174]. The treat-
ment of fracture shearing, respectively shear stress evolution [e.g., 201] is not discussed in
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the context of this work since hydraulic characterization of fractured reservoirs are below
the limit of seismic actions and have a minor contribution throughout the characterization
process of fracture properties based on hydraulic testing.

Numerical coupling procedures

In the context of flow through deformable fractures embedded in a poro-elastic medium
the resulting global system might be splitted in the fracture flow domain and the response
of the poro-elastic matrix. The system is then closed by a set of transition boundary con-
ditions to guarantee consistency of the balance equations throughout interaction of both
regions [e.g., 177]. Discussion of the numerical treatment of flow through deformable
fractures is limited to the field of mesh-based methods such as the Finite Volume (FV)
[e.g., 57, 204] or Finite Element Method (FE) [e.g., 17, 94, 223]. Strong interaction be-
tween volumetric changes and pressure state requires implicit coupling of both domains
[1, 218] which might be achieved by staggered/partitioned or monolithic schemes. From
studies in the field of unfractured porous media it is known that volumetrically coupled
systems require special treatment to guarantee numerical stability, respectively efficiency
once staggered approaches are applied [104–106]. Extension of the fixed-stress splitting to
the field of fractured poro-elastic media [72, 73] introduces a stable numerical scheme for
flow processes in deformable fractures in terms of a physics based preconditioned Richard-
son iteration [38]. Besides fixed-stress or drained splitting techniques coupling of fracture
domain and poro-elastic matrix might be realized by advanced quasi-Newton methods
[45, 83, 171]. Efficiency and stability of quasi-Newton methods for applications in the
context of deformable high-aspect ratio fractures have been studied for single fractures
and complex fracture networks in three dimensions [176]. Advantages of staggered algo-
rithms are, amongst others, calculations on non-conforming meshes [177] and the reuse
of pre-existing solvers for the different underlying physical problems which discrete global
systems can then be solved by efficient iterative methods leading to an optimization
of memory utilization and computational performance. Nevertheless, a higher number
of iterations is required to reach global equilibrium when compared to the convergence
behaviour of monolithic schemes [177]. In contrast to staggered approaches monolithic
strategies require assembly of a global system of equations to solve both domains simul-
taneously. Different strategies to assembly a monolithic system are documented in the
literature including FV-FV [e.g., 202], FE-FV [e.g., 183] and FE-FE coupling approaches
[e.g., 177, 179–181]. Monolithic schemes are numerically robust, but since the global sys-
tem is not well-conditioned require the use of direct solvers which are not particularly
preferred when it comes to high performance computing.

1.3 Outline of the thesis

Motivation, aim and state of the art presented in Chapter 1 is followed by a theoretical
introduction of the necessary balance equations in Chapter 2 to motivate the fracture
flow formulation used throughout this work. The chapter is concerned with the hydro-
mechanical interaction present throughout flow processes in deformable fractures below
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the limit of seismic actions. In this context a consistent hybrid-dimensional flow model
is derived, a poro-elastic formulation introduced to capture the response of the surround-
ing bulk matrix and transition boundary conditions discussed to close the global system
of equations. Additionally, constitutive relations governing the normal stress evolution
initiated by contact of two fracture surfaces are motivated and extended for the case of
measurement data analysis under in-situ conditions.
Since the computational domain is separated in a region governed by the hybrid-dimensional
flow model and a region described by poro-elastic formulations a number of numerical
coupling procedures are examined in Chapter 3. Focus of the discussion is on possible
solution strategies of the global system in terms of computational efficiency and accuracy.
In this context staggered approaches, namely fixed-stress and quasi-Newton techniques
are discussed and a monolithic formulation is introduced by averaging of the balance
equations.
Chapter 4 consists of published and submitted research articles. The field of publication
includes numerical studies on the coupling behaviour of fracture flow and poro-elastic do-
main, the analysis of hydro-mechanical phenomena found throughout harmonic excitation
of single fractures and the characterization of tested fractures under in-situ conditions.
The thesis is then closed by a summary and an outlook of the presented work in Chapter
5. Extensions of the model will be discussed along with the potential for future investi-
gations in the field of fractured porous media.



Chapter 2:
Continuum-mechanical modelling of flow in
fractured porous media

Flow through fractured porous media induces strongly coupled hydro-mechanical phe-
nomena by interacting volume changes of the fracture and variations of the fluid pres-
sure state. Investigations conducted on fractured reservoirs proof the evidence of hydro-
mechanical responses of the system induced by perturbations of the equilibrium state
[e.g., 8, 139, 173, 221]. Hence, a physical sound description of the coupled process re-
quires a consistent consideration of both constituents, namely the solid and the fluid
phase [73, 131, 132, 177, 202, 206]. In this chapter the theory of continuum mechanics
is conducted to derive a hybrid-dimensional model for flow in deformable fractures by
evaluation of the balance equations, to introduce a poro-elastic formulation governing the
response of the surrounding matrix and to discuss transition boundary conditions to close
the global system.
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ê2

ê3
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Figure 2.1: Representation of a single fracture ΓFr embedded in a poro-elastic body BPe with
the surface ΓPe. Changes of the fracture are considered with respect to the local coordinate
system êi where the direction of ê3 and the direction of the fracture surface normal nFr are
aligning. Changes of the fracture volume V Fr induced by changes of the aperture δ defined in
the reference configuration X at time t0 and spatial configuration x at time t on material point
level P are coupled to the deformation response of the poro-elastic body in terms of the unique
motion function X (t) [176]
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8 2 Continuum-mechanical modelling of flow in fractured porous media

2.1 Flow in deformable fractures - Hybrid-dimensional

formulation

Flow processes in deformable fractures are affected by the initial fracture geometry, tran-
sient changes of the fracture volume and local permeability variations. Modelling of
fractured reservoirs requires an efficient description of the hydro-mechanical processes to
resolve the domain of experiments performed on different scales ranging from laboratory
to field investigations. Assumptions made about the fracture geometry, respectively ve-
locity profile within the fracture domain allow the derivation of the hybrid-dimensional
model and the reduction of the fracture flow domain by one dimension. The model is
derived by a consistent evaluation of the conservation of mass and balance of momentum
under fully saturated conditions. Since a local coordinate system is introduced for the
fracture domain kinematic quantities related to the fracture domain are highlighted by �̂
to avoid confusion with quantities defined in the poro-elastic domain.

2.1.1 Conservation of mass

Conservation of mass describes the classical principal of mechanics which considers mass as
a fixed quantity regarding a given system [194]. In the framework of continuum mechanics
mass is conserved for a fluid filled fracture once the material time derivative

D

D t

∫
V

dmf =
D

D t

∫
V

ρfRdv (2.1)

is fulfilled for an arbitrarily chosen volume V which is introduced as an subset of the
fracture volume V Fr. In eq. (2.1) mf is the fluid mass and ρfR the effective fluid density.
The fracture volume V Fr(t) is a non-constant property changing in time dependent on
the deformation state of the surrounding poro-elastic material. The rate of change of
the integral over a subset of the total fracture volume V Fr is defined in local Cartesian
coordinates where dv = dx̂1 dx̂2 dx̂3 and dx̂3 points in direction of the fracture normal
nFr in case of a three-dimensional (3d) fracture domain. Taking the pre-known fracture
geometry into account and considering negligible changes of the fracture normal (spatial
and reference configuration of fracture normal are approximately equivalent nFr ≈ NFr)
integration in direction of x̂3 returns the fracture aperture δ(x̂1, x̂2) and the conservation
of mass in the spatial description can be rewritten as

D

D t

∫
V

ρfR dv =
D

D t

∫
A

δ ρfR da (2.2)

considering a = dx̂1 dx̂2 and A to be a subset of the referential lower dimensional fracture
plane ΓFr. To evaluate the material time derivative the formulation must be transformed
to the referential configuration to express the integrands, respectively the integral’s do-
main as a function of X̂. Since the integration domain is reduced to two dimensions local
changes in area are expressed by the Jacobian of the deformation mapping

Ĵ = det F̂ =
dA

dA0

(2.3)
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where F̂ = dx̂/dX̂ is the deformation gradient. Transformation of eq. (2.1) to the refer-
ential configuration by using the Jacobian introduced by eq. (2.3) results in

D

D t

∫
A0

δ̆(X̂, t) ρ̆fR(X̂, t) Ĵ da0 (2.4)

where δ̆(X̂, t) and ρ̆fR(X̂, t) are functions of the reference position vector X̂, the differ-
ential is defined as da0 = dX̂1 dX̂2 and the integral domain A0 is a subset of the lower
dimensional referential fracture plane ΓFr

0 . In the referential configuration the domain of
integration A0 is a fixed quantity in time. Hence, the differentiation D/Dt = �̇ is brought
inside the integral and applied to the integrands∫

A0

(

·
δ̆ ρ̆fR Ĵ) da0 =

∫
A0

[
˙̆
δ ρ̆fR Ĵ + δ̆ ˙̆ρfR Ĵ + δ̆ ρ̆fR

˙̂
J ] da0 =

∫
A0

[(

·
δ̆ ρ̆fR) + δ̆ ρ̆fR div v̆f] Ĵ da0

(2.5)
where v̆f is the referential velocity of the fluid flow within the fracture plane. Throughout
the derivation of eq. (2.5) the following relation for the rate of the Jacobian has been used

˙̂
J =

˙
det F̂ = Ĵ F̂−T :

˙̂
F = Ĵ I: l̂f = Ĵ div (v̂f) (2.6)

considering l̂f = grad (v̂f) to be the spatial gradient of the fluid velocity. In eq. (2.5)

separation of Ĵ da0 allows a change of variables to rewrite the equation with respect to
the spatial configuration

D

D t

∫
V

ρfRdv =

∫
A

[(
·

δ ρfR) + δ ρfR div v̂f] da. (2.7)

The given relationship in eq. (2.7) is a slightly modified version of the classical Reynolds
transport theorem for the specific case of high aspect-ratio fractures which correlates the
rate of change of an integral property with the integrands production and net transport
over the domain’s boundary [194]. When compared to the fluid velocity v̂f, the solid
velocity vs is found to be negligible (vs � v̂f) simplifying the formulation by replacing
the fluid velocity v̂f with the relative fluid velocity ŵf. The conservation of mass in its
spatial description reads

D

D t

∫
V

dmf =

∫
A

[(
·

δ ρfR) + δ ρfR div ŵf] da (2.8)

and must be pointwise satisfied for any subset of A to be consistent

(
·

δ ρfR) + δ ρfR div ŵf = 0. (2.9)

Evaluation of the material time derivative results in an equivalent form of eq. (2.9)

∂

∂t
(δ ρfR) + div (δ ρfR ŵf) = 0 (2.10)

which guarantees conservation of fluid mass for an arbitrary change in fracture volume
and fluid density.
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2.1.2 Balance of linear momentum

The global balance of linear momentum is defined by the product of velocity and mass of a
certain volume element. In the following the local form of the balance of linear momentum
is derived and evaluated for flow in high aspect-ratio fractures. The derivation is limited
to selected steps since, in contrast to the evaluation of the balance of mass, its derivation
is a standard procedure in classical continuum mechanics [e.g., 194].

Local form of balance of linear momentum

Starting with the global balance of linear momentum the continuum mechanical descrip-
tion is obtained by the material time derivative of a given domain V Fr

D

D t

∫
V Fr

ρfR ˙̂x dv = f ext (2.11)

where the external forces f ext are composed of body forces b acting in a volumetric sense
and surface traction t̃ acting on the body’s external surface Aext

f ext =

∫
V Fr

ρfR b̂ dv +

∫
Aext

t̃ da. (2.12)

By replacing the external forces term in eq. (2.11) by the decomposition of such introduced
by eq. (2.12) and applying the Reynolds transport theorem in a subsequent step the global
balance of momentum is defined by∫

V Fr

ρfR ¨̂x dv =

∫
V Fr

ρfR b̂ dv +

∫
Aext

t̃ da. (2.13)

Since the traction forces t̃ are exclusively defined on the external surface of the global
volume the expression given by eq. (2.13) is limited and not generally applicable to any
subset of V Fr. The limitation can be overcome by Cauchy’s stress principle which relates
traction forces on internal, artificial surfaces t(x̂,n) = −t(x̂,−n), defined for a certain
combination of position x̂ and surface normal n, to the externally acting traction forces
and proofs their equivalence t = t̃ on the external surface Aext. Considering the stress
state of a given position x̂ to be the set of infinite surface tractions defined by the various
surface normals, Cauchy conducted a small tetrahedron to relate the surface tractions to
the stress state

t(n) = σ · n (2.14)

by means of the Cauchy stress tensor σ [e.g., 194]. The relation given in eq. (2.14) is
known as Cauchy’s stress theorem and allows in combination with the findings regarding
internal surface traction the derivation of the local form of the balance of linear momentum
in the spatial configuration ∫

V

[div (σ̂f) + ρfRb̂− ρfRâf]dv (2.15)
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where V is a subset of V Fr and af = ¨̂x the fluid acceleration. For consistency the
expression given by eq. (2.15) must be locally satisfied by

div (σ̂f) + ρfRb̂− ρfRâf = 0 (2.16)

considering acceleration and body forces. Evaluation of the material time derivative on
the acceleration term af gives the continuity momentum equation

div (σ̂f) + ρfRb̂− ρfR
[
∂v̂f

∂t
+ grad (v̂f) · v̂f

]
= 0 (2.17)

which is used in the following to derive the characteristic velocity profile for flow in high
aspect-ratio fractures.

Evaluation of the balance of linear momentum for fracture flow

Flow processes through high aspect-ratio fractures might be best understood when derived
from the general assumption of the Navier-Stokes equation. Considering the local form of
the balance of momentum given by eq. (2.17), a constitutive relation governing the stress
response of a compressible Newtonian fluid [e.g., 194] needs to be introduced assuming
constant material parameters

σ̂f = −p̂(ρfR) I +

[
κfR − 2

3
ηfR

]
tr(d̂f) I+ 2ηfR d̂f (2.18)

where the fracture fluid pressure p̂(ρfR) is still a function of the fluid density, d̂f = 1/2(̂lf+

l̂
T

f ) is the symmetric part of the spatial fluid velocity gradient, κfR the effective fluid bulk
viscosity and ηfR the effective fluid shear viscosity. Inserting the constitutive relation
of eq. (2.18) into the local balance of momentum given by eq. (2.17) the Navier-Stokes
equation is obtained

− grad p̂︸ ︷︷ ︸
i)

+

[
κfR +

1

3
ηfR

]
grad div v̂f + ηfR div grad v̂f︸ ︷︷ ︸

ii)

+ ρfRb̂︸︷︷︸
iii)

= ρfR
[
∂v̂f

∂t
+ grad (v̂f) · v̂f

]
︸ ︷︷ ︸

iv)

(2.19)

where the identity div (grad (v̂f)
T ) = grad (div (v̂f)) was used when inserting the given

relation for the symmetric part of the velocity gradient d̂f. The terms of the Navier-
Stokes equation introduced by eq. (2.19) might be characterized by pressure gradient
forces i), viscous forces ii), body forces iii) and forces related to the fluid acceleration iv).
Focusing on flow processes in high aspect-ratio fractures eq. (2.19) can be simplified
by the following assumptions. Considering relevant fracture geometries, characteristic
aperture dimensions are in the micrometer range and prevent fluid particles to flow at
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high velocities for a broad range of pressure gradients resulting in laminar flow under
stationary conditions motivating neglection of the instationary and non-linear convection
parts forming term iv). Section 2.1.2 discusses the laminar flow assumption in detail
by evaluation of the Reynolds number Re for a set of aperture and pressure gradient
combinations. Additionally, the orientation and length of the investigated fractures induce
body force differences which are negligible when compared to the pressure variations
related to mechanical or hydraulic perturbations of the equilibrium state allowing to
simplify eq. (2.19) by disregarding term iii). Complexity of the fracture flow model can
be reduced once the velocity profile is known a priori. Closed form solutions for flow
processes between two parallel plates might be derived under the assumption of parallel
flow lines resulting in div (v̂f) = 0 and neglection of the first part of term ii). The
simplified Stokes like equation reads

− grad (p̂) + ηfR div grad v̂f = 0 (2.20)

where velocities within the fracture plane are considered and the velocity component
normal to the fracture surface is neglected. Analytical evaluation of eq. (2.19) by assuming
no-slip boundary conditions along both parallel plates and separation of variables results
in the characteristic parabolic velocity profile known as the Poiseuille’s law [e.g., 193]. By
integration of the velocity profile in direction of the fracture normal and normalization
with respect to the flow cross section area, a relation between the pressure gradient and
relative mean velocity

ŵf = −δ2(x, t)

12 ηfR
grad p̂ = −ks

Fr(x, t)

ηfR
grad p̂ (2.21)

is obtained, where ks
Fr is introduced as the time and space dependent effective fracture

permeability. The characteristic proportionality factor 1/12 might be adapted in case of
tortuous fractures or comparable imperfections of the fracture surface [159].

Discussion on the validity of laminar fracture flow

The characteristic of fracture flow has extensively been studied in the literature. Ap-
proximation of the fracture geometry by two parallel plates is a fundamental assumption
proven to reproduce experimental findings in a fulfilling manner [e.g., 215, 216]. The pres-
ence of fracture roughness and tortuosity impact the flow characteristics by variations of
flow length and velocity [e.g., 210] justifying the discussion of an effective hydraulic frac-
ture opening. Identification of such has been discussed in a number of works introducing
relations between mechanical and effective hydraulic fracture apertures to compensate
for geometrical imperfections differing from the parallel plate assumption [e.g., 67, 224].
Nevertheless, independent of the effective aperture choice the considered flow processes
are defined in the laminar regime. To avoid incorrect calculations throughout inverse
analysis of experiments performed in the turbulent flow regime, a parameter space must
be defined in which the proposed model is valid. In case of two smooth parallel plates the
different regimes of laminar flow, transition zone and turbulent flow have been identified
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[44]. Evaluation of the Reynolds number

Re =
ρfR vf lc
ηfR

(2.22)

where vf is the fluid velocity in the fracture plane and lc = δ the characteristic length,
serves to identify the different flow regions. Laminar flow conditions throughout flow
between two parallel plates are evident in the range Re ≤ 1440 followed by a transition
zone between 1440 < Re < 2400 before turbulent flow is fully developed Re ≥ 2400.
Geometrical imperfections of rough fracture surfaces induce Eddies which promote the
transition to turbulent flow at lower Reynold numbers. The roughness might be identified
by the dimensionless ratio between the absolute roughness εr and fracture aperture δ [96].
Expanding the parameter space by the empirical dimensionless friction factor

Ψ =
96

Re

(
1 + 8.8

(εr
δ

)1.5
)

(2.23)

which was experimentally determined by hydraulic tests on rough fracture surfaces [121],
allows the consideration of fracture roughness and its influence on the different flow
regimes.
In works concerned with flow through rough fractures, the characteristic length lc neces-
sary to evaluate eq. (2.22) is not uniquely defined and assumptions of 2δ, δ or δ/2 can
be found in the literature [e.g., 43, 136, 147, 225]. In this work δ is considered to be
the characteristic length. The Reynolds number Re is then determined by evaluating the
fluid velocity vf by means of eq. (2.21) where the pressure gradient is varied in terms of a
discrete value Δp̂. Discretization of the pressure gradient in space considers two scenar-
ios, namely the field scale where the representative discrete length of a natural fracture is
chosen to be Δl = 1m and the laboratory scale where the conducted sample size requires
a discrete length of Δl = 1cm. Based on the laminar fluid velocity vf the obtained results
characterize the laminar zone correctly, but introduce errors to the size of the transition
and turbulent regime. Since this work is exclusively concerned with laminar flow, the
graph in figure 2.2 identifies combinations of Δp̂ and δ valid to conduct the proposed
model for inverse analysis of measurement data under laminar conditions and summa-
rizes the transition and turbulent zones to the non-laminar regime.
The parameter study strengthens the laminar flow assumption for investigations on the
field scale. The range of relevant parameters are motivated by step rate tests, where
pressure differences between steps are in the dimension of Δp̂ = 1MPa and fracture aper-
tures are expected to be smaller than 150μm [e.g., 173]. Considering investigations on the
laboratory scale experiments need to be distinguished based on the applied boundary con-
ditions. Experiments with no-flow boundary conditions at the fracture tip, achieved by a
shrinking tube isolating the fractured sample from the fluid inducing a confining pressure
in a triaxial cell set-up, do not, even under large absolute changes of the applied pressure,
allow for large pressure gradients Δp̂ within the fracture when weakly compressible fluids
are used. This can be explained by the low characteristic diffusion time Δtc = l2c/Dδ in
the dimension of 10−6 s assuming water to be the injected fluid and fracture apertures
in the μm range, where the diffusion parameter is Dδ = δ2/(12.0 ηfRβf) and βf the fluid
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Figure 2.2: Transition from laminar to non-laminar flow regimes based on the effective fracture
aperture δ and discrete pressure gradient Δp̂. The friction dependent zone (FDZ) is evaluated
between the lower ε/δ = 0 (Ψ = 0.01) and upper roughness limit ε/δ = 0.4 (Ψ = 1) and defines
the transition from laminar to non-laminar flow. Left: Flow regimes considering a characteristic
length of lc = 1m representative for natural fractures tested throughout field investigations.
Parameter sets which are of interest in experimental studies are highlighted. Right: Flow
regimes considering a characteristic length of lc = 1cm representative for laboratory studies.
Parameter sets which are of interest in experimental studies are highlighted and distinguished
between confining pressure (CP) and atmospheric pressure (AP) experiments.

compressibilty. Almost instantaneous pressure diffusion has been investigated throughout
numerical harmonic testing of a single fracture [e.g., 174]. Pressure gradient changes at
such time scales cannot be achieved by experimental devices used to control the pore
pressure, resulting in low pressure gradients, respectively fluid velocities and laminar con-
ditions. In contrast, throughout experiments using drained fracture boundary conditions,
for instance when a pressure gradient is induced by a rise of fluid pressure at the inlet of
a fracture and atmospheric pressure boundary conditions are applied at the outlet, fluid
can freely travel through the tested fracture and critical, non-laminar flow inducing veloc-
ities can easily be reached. For experiments considering atmospheric/drained boundary
conditions the experimental set-up must individually be examined to guarantee laminar
flow throughout the testing procedure.

2.1.3 Governing equation

The hybrid-dimensional formulation governing flow processes in deformable fractures is
derived by combining the local form of the conservation of mass with the relation obtained
from the evaluation of the balance of momentum. Inserting the relative fluid velocity
defined by eq. (2.21) into the local conservation of mass introduced by eq. (2.10) results
in

∂

∂t
(δ ρfR)− div

(
ρfR

δ3(x̂, t)

12 ηfR
grad p̂

)
= 0 (2.24)

where two independent variables by means of the fluid pressure p̂ and the fluid density ρfR

remain unknown. The given system is closed by a linear constitutive relation introducing



2.1 Flow in deformable fractures - Hybrid-dimensional formulation 15

proportionality between fluid density ρfR and fluid pressure p̂

p̂ = K f

[
ρfR

ρfR0
− 1

]
(2.25)

under a barotropic assumption considering K f to be the fluid’s bulk modulus and ρfR0 the
initial fluid density at t = 0. Inserting eq. (2.25) into eq. (2.24) and evaluation of the
mathematical operations results in the hybrid-dimensional formulation

∂p̂

∂t︸︷︷︸
i)

− δ2

12 ηfR
grad p̂ · grad p̂︸ ︷︷ ︸

ii)

− δ

12 ηfR βf
grad δ · grad p̂︸ ︷︷ ︸
iii)

− δ2

12 ηfRβf
div grad p̂︸ ︷︷ ︸
iv)

+
1

δ βf

∂δ

∂t︸ ︷︷ ︸
v)

=
q̂lk
δβf︸︷︷︸
vi)

(2.26)

where q̂lk was introduced to account for leak-off governing the fluid exchange with the
surrounding rock matrix. The hybrid-dimensional eq. (2.26) is composed of a transient
i), a quadratic ii), a convection iii), a diffusion iv), a coupling v) and a leak-off vi) term
defined with respect to the normal seepage velocity of the surrounding porous medium
q̂lk = wN

f . Nevertheless, dimensionless analysis of the governing equation motivates ne-
glection of quadratic term ii) and convection term iii) throughout investigations in the
high aspect-ratio regime since their contribution to the overall solution is minor [206].
The simplified formulation

∂p̂

∂t
− δ2

12 ηfRβf
div grad p̂+

1

δ βf

∂δ

∂t
=

q̂lk
δβf

(2.27)

is used throughout this work to govern flow processes in deformable fractures under the
given assumptions. Since numerical investigations are exclusively concerned with pressure
changes relative to the initial equilibrium fluid pressure Δp̂ = p̂ − p̂eq0 the notation is
simplified and p̂ is equivalent to pressure changes Δp̂ in the following.

2.1.4 Weak form of governing equation

Numerical solutions of eq. (2.27) are calculated by means of a classical Bubnov Galerkin
finite element scheme. The strong form of equations is not suitable for finite element for-
mulations and a weak form using the principal of virtual work needs to be derived [e.g.,
17]. For this purpose a trial function p̂t is introduced for the fluid pressure p̂ which is
required to be smooth enough for for the applied mathematical operations and to repro-
duce the considered boundary conditions. The test function wp̂ is introduced also required
to be smooth enough for the necessary mathematical operations and to vanish in regions
where Dirichlet boundary conditions are defined. The weak form is then obtained by mul-
tiplying the test function wp̂ to eq. (2.27) and integrating such over the fracture volume.
Despite the lower dimensional characteristic of eq. (2.27) the domain of integration in∫

V Fr

wp̂
∂p̂t
∂t

dv −
∫
V Fr

wp̂
δ2

12 ηfRβf
div grad p̂t dv +

∫
V Fr

wp̂
1

δ βf

∂δ

∂t
dv =

∫
ΓFr

wp̂
q̂lk
δβf

dv

(2.28)
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is still higher dimensional since the element volume requires to be consistent to the di-
mension of the surrounding domain. To further reduce the smoothness demand on the
trial function p̂t in the second term of eq. (2.28) Green’s first identity∫

ΓFr

wp̂ grad p̂t · nlda =

∫
V Fr

wp̂div grad p̂t dv +

∫
V Fr

gradwp̂ · grad p̂t dv, (2.29)

obtained from the evaluation of the divergence theorem on the vector field grad p̂t, is
conducted. Green’s first identity applied on the weak form of the hybrid-dimensional ele-
ment formulation differs from the standard formulation in terms of the resulting boundary
terms. Assuming continuous pressure fields across the fracture, the pressure gradient in di-
rection of the fracture normal nFr vanishes and no contribution to the boundary condition
terms is related to tangential flow. This reduces the boundary term to inflow boundary
conditions regarding the longitudinal flow direction defined by the outward pointing nor-
mal nl. In an experimental setting the boundary domain defined by nl is considered to
be the intersection of borehole and fracture. The assumption of discontinuous pressure
jumps across fracture surfaces is discussed in section 3.1.1. Considering the relation given
by eq. (2.29) the weak form now reads

∫
V Fr

wp̂
∂p̂t
∂t

dv +

∫
V Fr

δ2

12 ηfRβf
gradwp̂ · grad p̂t dv +

∫
V Fr

wp̂
1

δ βf

∂δ

∂t
dv

=

∫
ΓFr

wp̂
δ2

12 ηfRβf
grad p̂t · nl da+

∫
ΓFr

wp̂
q̂lk
δβf

dv

(2.30)

where the order of derivatives applied on p̂t is reduced. Conducting the introduced Neu-
mann boundary condition term in its weak form the relative mean velocity introduced
by eq. (2.21) can be identified. Analytical integration of the integrals in direction of the
fracture normal results in the fracture aperture δ and reduces their integration domain
by one, where the integral domain of the boundary condition term simplifies to a line
segment

∫
ΓFr

[
δ wp̂

∂p̂t
∂t

+
δ3

12 ηfRβf
gradwp̂ · grad p̂t + wp̂

1

βf

∂δ

∂t

]
da+

∫
LFr

δ

βf
wp̂ ŵf · nl dl =

∫
ΓFr

wp̂
q̂lk
βf

da.

(2.31)

Based on the outward pointing normal nl the boundary conditions consider outflow to be
positive. On a side note, when expressing the boundary term regarding the volumetric
flow rate normalized to the applied boundary segment Q̂/LFr = δ ŵf · nl the explicit
dependence on the fracture aperture δ moves to the introduced relation and vanishes
when discrete values are applied. For instance, considering a cylindrical borehole with a
radius of rb which possesses an orthogonal intersection with a single fracture, the segment
of the applied boundary condition would read LFr = 2πrb and integration of Q̂/LFr

would lead to a constant volumteric flow rate along the discretized intersection boundary
segments. The formulation given by eq. (2.31) is used when implementation based on
classical finite element formulations of the weak form are used to determine numerical
solutions. Specific integration of zero-thickness interface elements are discussed in section
3.1.1.
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2.2 Hydro-mechanical formulation for a biphasic poro-

elastic medium

Information about the deformation state and fluid exchange with the surrounding bulk
matrix are required for the governing equation of flow processes in deformable fractures.
In this work the desired information are obtained by a biphasic poro-linear-elastic formu-
lation. Derivation of the governing equations is based on the balance of momentum of
the mixture, balance of momentum of the fluid and the linearized conservation of mass.
The derivation is limited to the introduction of the local forms since their derivation is
a standard procedure in the field concerned with continuum mechanics of mixtures [e.g.,
20, 54, 158, 211].

2.2.1 Balance of momentum of the mixture

In the presence of mixtures the balance of momentum introduced by eq. (2.16) for a single
phase medium needs to be extended by a term p̂α for each constituent α governing the
interaction forces between such. Under consideration of negligible inertia forces the local
form of the balance of momentum for each constituent reads

divσα = ραb+ p̂α. (2.32)

Considering the mixtures theory based on the fundamental assumptions introduced by
Truesdell [54, 199], the mixture’s balance equations are expressed with respect to the sum
of the balance equations of the contributing constituents. Hence, the local form of the
balance of momentum of the mixture reads

k∑
α=1

[divσα + ραb+ p̂α] = 0. (2.33)

The convention introduced by eq. (2.33) requires constraints on the interaction forces
which equate to zero under the assumption of negligible mass production

k∑
α=1

p̂α = 0. (2.34)

Here the balance of momentum of a mixture has been introduced by eq. (2.33) along with
a constraint on the interaction forces motivated by negligible mass production between
constituents considering eq. (2.34). Applying a tensorial split on the partial stresses they
can be rewritten by means of a volumetric and deviatoric contribution

σα =
1

3
tr(σα) I+ dev(σα) = sα I+ τα. (2.35)

where sα is the partial mean stress and τα the deviatoric stress contribution. Considering
a biphasic poro-elastic medium the partial stresses are defined with respect to a solid σs
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and a fluid σf constituent [190]. Referring to eq. (2.33) the total stress of the mixture is
then composed of the sum

σT = σM I+ τ = (ss + sf) I+ τ s. (2.36)

where the fluid constituent at rest exclusively contributes to the total mean stresses σM in
terms of the fluid mean stress under equilibrium conditions which is directly proportional
to the pore pressure sf ∝ p. The explicit form of the partial mean stresses cannot be
identified by the equations related to the balance of momentum of the mixture alone, but
is introduced in the following section. For a detailed derivation of the balance equations
regarding the mixture theory the interested reader is referred to [54].

2.2.2 Constitutive relations

The set of governing equations is closed by introducing constitutive relations for the
thermodynamic state variables of the fluid, solid and mixture. Similar to the fracture
domain the fluid constituent of the biphasic mixture is considered to be linear barotropic
in which case the pore pressure is directly related to the effective fluid density p(ρfR)
following the relation introduced by eq. (2.25).
Constitutive relations for a biphasic poro-elastic mixture might be derived based on a
general strain energy function introduced by Biot [20] and evaluation of the second law
of thermodynamics in terms of the Clausius-Planck inequality in combination with the
Coleman-Noll procedure. In this work the partial differentiation of the strain energy
function given by Biot [20] is not explicitly executed, but the results are introduced
and discussed. For a detailed derivation and discussion of the constitutive relations of
porous media the interested reader is referred to [54, 190]. Under consideration of small
deformations the isotropic linear-elastic response of the solid constituent is captured by
Hooke’s law using the set of the solid material bulk modulus Ks and shear modulus G as
the elastic constants

σE,s = 3Ks vol(εE,s) + 2G dev(εE,s) (2.37)

which might consistently be derived by implying isothermal conditions for reversible pro-
cesses to relate the internal energy to the effective elastic Cauchy stress tensor in terms
of the strain energy density function

We =
1

2
σE,s : εE,s =

1

2
εE,sT : C : εE,s (2.38)

which is valid under the assumption of small deformations, where C is the elasticity tensor
[194]. The concept of effective stress is briefly introduced as an result of the extension
of the Clausius-Duhem inequality by the product of the sum of transient volume fraction
changes, enforced to result in zero to fulfill the saturation condition, and a Lagrange
parameter which can be identified as the pore pressure. Volumetric deformations of the
solid skeleton are induced by the weighted interaction of pore pressure p and total mean
stress of the mixture σM which defines the effective mean stress of the solid constituent

σE,s
M = σM + αp (2.39)
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where 0 ≤ α ≤ 1 is the Biot-Willis or effective stress coefficient relating the volumetric
stresses of the solid constituent with the fluid pore pressure by the ratio of the solid
skeleton’s bulk characteristics obtained under drained conditions and the bulk modulus
of the solid material α = 1−K/Ks. Eq. (2.39) explicitly provides the term discussed in
eq. (2.36) consisting of the partial mean stresses of the solid ss and fluid sf constituent and
closes the total stress definition of the mixture. Considering the acting stresses related
to the fluid constituent dimensionless analysis motivates the neglection of effective fluid
stresses [55] under creeping flow conditions resulting in the following definition of the total
fluid stresses

σf = φpI (2.40)

where φ is the porosity of the porous medium. The remaining unknown expressions re-
quired to define the set of governing equations of the biphasic mixture are the momentum
interaction terms p̂f = −p̂s, where the constraint defined by eq. (2.34) was used. The
missing constitutive relation is introduced based on the results of the formal derivation
discussed in [54] under consideration of non-equilibrium conditions due to pressure gradi-
ent induced fluid flow through the poro-elastic medium. The interaction forces p̂f might
be split in an equilibrium and non-equilibrium part first

p̂f = p̂f
eq + p̂f

neq, (2.41)

where p̂f
eq considers the contribution of static porosity variations and the non-equilibrium

contribution p̂f
neq the influence of viscous drag forces induced by the relative fluid veloc-

ity wf. Consulting the formal work of [54] the equilibrium and non-equilibrium terms
governing the momentum interaction read

p̂f
eq = p gradφ,

p̂f
neq = −φ2

0γ
fR
0

kf
wf,

(2.42)

where γfR
0 is the specific weight of the fluid and kf the Darcy permeability of the porous

medium. Nevertheless, the equilibrium term introduced in eq. (2.42) is non-linear and
can be neglected in the context of linear poro-elasticity simplifying the definition of the
interaction forces to

p̂f = p̂f
neq = −φ2

0γ
fR
0

kf
wf (2.43)

which provides the missing constitutive relation necessary to close the set of governing
equations.

2.2.3 Governing equations

Considering the momentum balance equations for the biphasic poro-elastic medium and
fluid constituent defined by eq. (2.33) the set of governing equations is closed by the
constitutive relations introduced in section 2.2.2. Special treatment is required once the
fluid stresses given by eq. (2.40) are inserted in the balance of momentum of the fluid
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by exploiting certain relations between potential primary variables [190] to obtain a for-
mulation governing the fluid behaviour by means of the primary variables fluid pressure
p and solid deformation us. The balance of mass of the biphasic poro-elastic mixture is
consistently derived by considering the total stresses closed by the effective stress principle
introduced by eq. (2.39) and the constitutive relations defined in eq. (2.37) in terms of
Hooke’s law. The coupled set of equations governing the hydro-mechanical response of a
biphasic poro-elastic medium under quasi static conditions neglecting static body forces
reads

divσT = 0

1

M

∂p

∂t
− kf

γfR
0

div grad p = −α div
∂us

∂t

(2.44)

where the inverse storage capacity or (local) storativity is introduced by 1/M = φ/K f +
(α−φ0)/K

s [211]. Eq. (2.44) is used throughout this work to capture processes where the
permeability of the poro-elastic medium allows fluid exchange between the fracture and
porous domain within the investigated time frame. Similar to the fluid pressure of the
fracture domain the notation is simplified by also using p to express relative changes of the
fluid pressure to the initial equilibrium pressure state. Boundary conditions defined on the
surface are distinguished in regions Γα

N where Neumann boundary conditions are applied
in terms of surface traction t̄ defined with respect to the total stresses and flow boundary
conditions w̄f, respectively regions of Dirichlet boundary conditions Γα

D constraining the
primary variables pore pressure p̄ and solid deformation ūs

us = ūs on Γs
D and p = p̄ on Γf

D,

σT · n = t̄ on Γs
N and wf · n = w̄f on Γf

N .
(2.45)

In the presence of porous media characterized by a low permeability the distinct difference
in characteristic diffusion times between flow processes in the fracture and porous domain
lead to negligible fluid volume exchange between both domains under consideration of
moderate time scales. In these cases eq. (2.44) simplifies to a single phase solid description
governed by the momentum balance of the mixture where the total stresses reduce to the
solid stress tensor governed by Hooke’s law. Consideration of poro-elastic effects by means
of effective material parameters are motivated by studies on systems characterized by a low
viscosity of the investigated fluid, undrained conditions and low frequency perturbations
(� 100Hz) of the equilibrium state and are defined by means of Gassmann’s low-frequency
result [66]

Keff =
φ0

(
1
Ks − 1

Kf

)
+ 1

Ks − 1
K

φ0

K

(
1
Ks − 1

Kf

)
+ 1

Ks

(
1
Ks − 1

K

) ,
μeff = μ

(2.46)

whereKeff is the effective bulk and μeff the effective shear modulus. The numerical treat-
ment is discussed based on the more general case of a biphasic poro-elastic formulation
given by eq. (2.44).
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2.2.4 Weak form of governing equation

The set of governing equations introduced by eq. (2.44) is numerically evaluated by a
Bubnov Galerkin finite element formulation similar to the numerical treatment of the flow
processes in deformable fractures discussed earlier. The approximation function spaces
introduced with regards to the primary variables, namely pore pressure p and solid defor-
mation us, do not require to be similar, but might vary in their order of approximation.
Considering a mixed element formulation for poro-elastic problems in terms of so called
Taylor-Hood elements a linear approximation for the pore fluid pressure and quadratic
approximation for the solid deformation are introduced to guarantee numerical stability
[28]. Note that in this work Taylor-Hood elements have only been used throughout stag-
gered solution schemes since implementation of the monolithic approach did not allow for
a technically sound implementation in the presence of the fracture flow domain and the
used computational framework. Nevertheless, the choice of linear approximation func-
tions for fluid pressure and solid deformations did not induce any numerical instabilities
throughout the conducted studies. In the following the weak form is introduced in its gen-
eral form by the test functions for the solid deformation wus and pore fluid pressure wp,
respectively the trial functions for the solid deformation us,t and the pore fluid pressure
pt. Multiplying the trial functions to the governing equations, inserting the test functions
and integrating over the numerical domain results in∫

V Pe

div
(
σE,s

t − α ptI
)
· wus dv = 0,∫

V Pe

[
1

M

∂pt
∂t

wp − kf

γfR
0

div (grad pt)wp + α div
∂us,t

∂t
wp

]
dv = 0

(2.47)

where the approximated effective stress tensor σE,s
t considers the constitutive dependence

on the trial functions us,t. Similar to the derivation of the weak form of the hybrid-
dimensional formulation (see eq. (2.29)) the demand on the smoothness of the trial func-
tions is reduced by applying Green’s first identity. The implemented weak form of the
governing equations for a biphasic poro-elastic medium then reads∫

V Pe

(
σE,s

t − α ptI
)
: gradwus dv =

∫
Γs
N

t̄ · wusda,∫
V Pe

[
1

M

∂pt
∂t

wp − kf

γfR
0

gradwp · grad pt + α div
∂us,t

∂t
wp

]
dv =

∫
Γf
N

w̄f wpda

(2.48)

defining the Neumann boundary conditions of each constituent on the surfaces Γα
N . The

weak form introduced by eq. (2.48) is considered throughout this work whenever fluid
mass exchange between fracture and fluid domain is of importance.

2.3 Fracture surface boundary conditions

The governing equations for flow in deformable fractures introduced by eq. (2.27) and
the response of a poro-elastic medium defined by eq. (2.44) consider hydro-mechanical



22 2 Continuum-mechanical modelling of flow in fractured porous media

ŵf
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Figure 2.3: Bundary conditions defined along the fracture surface ΓFr identified by the space
dependent fracture normal vectors nFr± (x̂). Exchange of fluid volume between both domains
requires equilibrium of fracture outflow q̂lk and the normal seepage velocity wN

f defined in

the poro-elastic domain. At the fracture tips x̂Tip no-flow conditions are required to be met.
Mechanical equilibrium is enforced regarding the fracture surface traction tFr and the acting
fluid pressure p̂ [176]

effects individually within each domain. Hence, consistent evaluation of the coupled
system requires the definition of equilibrium conditions along the fracture surface. Figure
2.3 introduces a visualization of the acting forces, respectively fluxes of both domains.
Mechanical equilibrium conditions along the fracture surface are met once the sum of
acting fracture fluid pressure p̂ ·nFr

± and poro-elastic surface traction tFr = σT ·nFr
± equates

to zero. Flow equilibrium along the fracture surface is reached once the fracture outflow
defined by means of the fracture leak-off term q̂lk is balanced with the normal seepage
velocity wN

f of the biphasic poro-elastic domain and results in zero at the fracture tip.
Numerical evaluation of the normal seepage velocity considering a compressible poro-
elastic medium requires the use of Green’s first identity [198] which is determined by
element-wise evaluation using FE discretization

wN
f =

∫
V el

[
1

M

∂pt
∂t

wp − kf

γfR
0

grad pt · gradwp + α div
∂us,t

∂t
wp

]
dv. (2.49)

Eq. (2.49) is of relevance when staggered schemes are applied to define the leak-off Neu-
mann boundary conditions of the fracture domain. Here it is of importance to mention
that eq. (2.49) is evaluated in a post-processing procedure based on the solution obtained
for the primary variables fluid pressure p̂sol and solid deformation usol

s of a certain iter-
ation step. The monolithic scheme used in this work does not require special treatment
of the outflow conditions since they are intrinsically met by the formulation. Despite the
definition of the coupling conditions along the fracture surface the physical characteris-
tic of the coupling is volumetric considering the contribution of the fracture pressure p̂
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which explicitly depends on the volumetric coupling term v). The boundary conditions
required to be met along the fracture surface to guarantee consistent evaluation of the
global equilibrium are summarized below

q̂lk = wN
f on ΓFr and q̂lk = 0 at x̂Tip,

tFr = −p̂nFr
± on ΓFr.

(2.50)

2.4 Consideration of fracture normal stiffness

The proposed model introduced to govern flow through deformable fractures embedded
in a biphasic poro-elastic medium forms the basis to consider the interdependence of fluid
pressure and porous deformation. Nevertheless, interaction of both fracture surfaces is not
limited to mechanically induced fluid pressure variations within the fracture domain, but
might be extended by mechanical interaction in terms of fracture surface contact. In this
work the contact mechanism is limited to induce normal fracture stresses only, neglecting
the existence of shear stresses and irreversible processes related to fracture shearing. This
assumption is valid in the context of a model derived to investigate pumping operations
which induce perturbations well below the limit of seismic actions [14, 147]. To relate
normal stresses induced by mechanical contact to the deformation state of fractures this
work consults the effective fracture aperture δ to define a partly physics based constitutive
relation. Thinking of rough fracture surfaces the leading mechanism of normal stress evo-
lution is the large number of Hertzian contact zones requiring highly non-linear relations
due to a constantly varying total contact surface [40, 77, 197]. Considering field settings
it is known that natural fractures are in a state of so called mated fracture surfaces,
characterized by a reversible response of the normal stresses to moderate perturbations
of the equilibrium state [14, 147]. In a laboratory setting the state of mated fracture
surfaces is achieved by applying cycling loading until hysteresis effects vanish [14]. These
findings motivate the derivation of a non-linear elastic model to govern the asymptotic
fracture closing characteristic under in-situ conditions. Normal fracture stiffness evolution
has been topic of several research contributions [e.g., 12, 75]. In this work the basis of
the derived model is motivated by the formulation introduced by [70, 181] defining the
contact related normal stresses

σCon
N = EFr 1

δcmax − δc
δc (2.51)

by means of the fracture closure δc with the initial value δc0 = 0, the maximum fracture
closure δcmax and the fracture stiffness EFr. The formulation introduced by eq. (2.51) has
been considered in a slightly modified form throughout studies on the laboratory scale
[174] where the fracture stiffness EFr and maximum fracture closure were fitted to repro-
duce the contact behaviour obtained from experimental investigations [145]. Nevertheless,
considering field studies determination of the microstructure of the fracture surface is not
a trivial task and is mostly unknown throughout the inverse analysis of pumping oper-
ations. Hence, numerical investigations of field data based on the proposed constitutive
relation given by eq. (2.51) requires to explicitly model the fracture depth along with act-
ing gravity forces to reproduce the in-situ conditions regarding an initial effective fracture
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Figure 2.4: Left: Relative normal stress changes ΔσN as a function of the effective fracture
aperture δ evaluated at p̂eq0 . Normal stress changes are expressed relative to the acting normal
equilibrium stress state ΔσN = 0 which is equivalent to the sum σSum

N of induced contact forces
σCon
N and the constant equilibrium normal stress state σFr

N, eq and is recovered by the constitutive

in-situ normal stress law σFr
N . Effective aperture fluctuations δ = δ0 +Δδ are induced by per-

turbations of the equilibrium state by means of fluid pressure changes Δp̂ or vice versa. Right:
Consideration of the fracture’s microstructure in terms of a contact factor s0, respectively s1
controlling the difference between initial hydraulic and mechanical opening [175]

aperture δ0 which is a delicate task in the context of hydro-mechanical simulations. Iden-
tifying the initial effective aperture δ0 as a parameter characterizing the hydro-mechanical
in-situ state of a fracture in terms of transmissivity and acting normal stresses allows a
shift of the equilibrium state like proposed in the context of this work [175]. Evaluation of
the fracture equilibrium state determines pore pressure, surface traction, normal contact
stresses and normal stresses induced by gravitational effects to be the driving forces. Since
pore pressure and surface traction are accounted for in the proposed hybrid-dimensional
model the constitutive relation is derived by the sum of acting normal contact stresses
in terms of eq. (2.51) and a constant acting normal stress related to the orientation and
position of the fracture like shown in figure 2.4. The constitutive relation to study fracture
stiffness under in-situ conditions is obtained by considering normal stress changes with
respect to the unperturbed in-situ stress state σFr

N,eq

ΔσFr
N = σFr

N − σFr
N,eq = −EFr

eq

Δδ

( δ0
s0
+Δδ)− δmin

(2.52)

where Δδ is the relative change of the fracture aperture, δmin the minimal mechanical
fracture aperture, s0 ≥ 1 is a dimensionless parameter introducing a ratio between the
initial hydraulic and mechanical fracture aperture and EFr

eq the in-situ normal stiffness pa-
rameter. The interested reader is referred to [175] for a detailed derivation and discussion
of the proposed in-situ normal stiffness model.
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2.5 Volumetric split of fracture deformation and fluid

compressibility

The proposed model for flow in deformable fractures accounts for compressibility effects of
the fluid and changes of the fracture volume. This does not imply that both effects equally
contribute, but that their contribution highly depends on the acting normal stresses, the
geometrical stiffness of the fracture and the characteristics of the present fluid. Better
understanding of the leading mechanisms is obtained once both phenomena are separated
to study the influence of fracture deformation, respectively fluid compressibility on the
flow process in deformable fractures. Introducing the difference of injected fluid volume
and volume related to leak-off flow, the change of total volume within the fracture domain
is defined by

ΔV Fr = ΔV Inj −ΔV Leak (2.53)

where the difference of injected fluid volume ΔV Inj and leak-off volume ΔV Leak are ex-
pressed with respect to a certain time step size Δt. The total change of volume introduced
by eq. (2.53) must be compensated by a combination of fracture ΔV δ and fluid volume
ΔV βf

changes within the fracture domain

ΔV Fr = ΔV δ +ΔV βf

. (2.54)

Considering a FE discretization the introduced volumetric changes of injection, leak-off,
fracture and fluid can be calculated in a post-processing step. The leak-off volume ΔV Leak

is obtained by integration over the fracture surface by means of the normal seepage velocity
wN

f determined by eq. (2.49). In case of Neumann boundary conditions, prescribing the
flow, calculation of the injected fluid volume is straight forward by considering the time
step size Δt. In contrast, once Dirichlet boundary conditions are introduced by prescribing
the fluid pressure p̂ the corresponding injection flow is required to be determined similarly
to the procedure conducted when deriving the leak-off flow (see eq. (2.49)) into the poro-
elastic domain. Introdcuing the isothermal compressibility condition for a barotropic
fluid, volume changes of fracture and fluid within the fracture domain are calculated by
means of

ΔV δ =

∫
ΓFr

Δδsol da and ΔV βf

=

∫
ΓFr

(δ0 +Δδsol)βfΔp̂sol da (2.55)

where the integrals might be solved by introducing the same finite element approximations
used to determine the solution of the fracture deformation Δδsol and fluid pressure Δp̂sol.
Solutions can be crosschecked by inserting the calculated terms into eq. (2.54). The
split of volumetric responses in terms of fracture deformation and fluid volume defined
by eq. (2.54) has been used in this work to identify the driving mechanisms throughout
hydro-mechanical testing of fractures on the field and laboratory scale [173–175].





Chapter 3:
Numerical coupling schemes

Implementation of the governing equations introduced in terms of the biphasic poro-
elastic (2.44) and hybrid-dimensional flow model (2.27) might be distinguished regarding
the chosen coupling scheme. Coupling procedures are distinguished in terms of the strat-
egy used to reach global equilibrium. In this work staggered, respectively partitioned
schemes and a monolithic approach are considered. Staggered or partitioned schemes
treat both domains individually by conducting separate solvers for each problem and per-
form communication via boundary conditions and by introducing certain constraints to
guarantee numerical stability throughout the global equilibrium iterations. In this work
the wording of staggered and partitioned coupling are used interchangeably. In contrast
monolithic strategies build a single global assembly matrix which is then solved to obtain
solutions for both domains simultaneously. The implemented strategies are discussed in
the following.

3.1 Monolithic coupling scheme

Monolithic coupling implies the assembly of a global matrix consisting of the discretized
contributions of both domains including their coupling. In this work monolithic coupling
is realized in terms of zero-thickness elements [177, 179–181]. The weak form obtained for
the interface elements are briefly introduced in the following. For a detailed derivativation
the interested reader is referred to [177].

3.1.1 Zero-thickness element

Monolithic coupling of fracture and poro-elastic domain requires a discussion of the bal-
ance equations introduced to govern hydro-mechancial flow processes within the fracture
domain. Considering the fracture aperture to be a design parameter constructed by the
normal deformation of both fracture surfaces

δ(x, t) = u+
s · nFr

+ + u−
s · nFr

− (3.1)

where u±
s are the deformations and nFr

± the normal vectors defined on facing fracture sur-
faces. Identifying the primary variables of both domains in terms of solid deformation of
the poro-elastic medium us and fluid pressure p/p̂ computational efficiency is increased by
sharing such between the fracture and poro-elastic domain. This is achieved by averaging
the balance equations regarding mass and momentum [124]. Throughout the averaging
procedure tangential and longitudinal fracture flow is distinguished, meaning that pressure
discontinuities along the fracture surfaces are accounted for in the formulation [177]. Vari-
ables and mathematical operations related to longitudinal flow is highlighted by �l and

27
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tangential flow by �t. Throughout the averaging procedure the stability limit considering
a weighting parameter of ξ = 1/2 has been used which might induce numerical instabil-
ities, but has a high solution quality for most cases. For a detailed derivation including
the averaging of the balance equations the interested reader is referred to [124, 177].
Nevertheless, by adapting the tangential permeability parameter to introduce continuous
flow across the fracture surfaces throughout the investigated boundary value problems
no stability issues arose. The averaged pressure in longitudinal, respectively the discrete
gradient of the tangential pressure difference result in

P̂ l =
p̂+ + p̂−

2
and P̂ t =

p̂− − p̂+

δ
(3.2)

where p̂± defines the pressure on the positive and negative fracture surface at aligning
positions. Considering FE approximations in terms of zero-thickness elements the averag-
ing introduced by eq. (3.2) allows to perform integration on lower dimensional auxiliary
elements without introducing additional DOF. The averaging is then performed on values
of aligning element nodes and the weak form might be introduced with regards to the
auxiliary, lower-dimensional test functions wa,P̂ and the auxiliary, lower-dimensional trial

functions of the longitudinal pressure P̂ l
a,t. The weak form then reads∫

ΓFr
±

[
δ wa,P̂

∂P̂ l
a,t

∂t
+

δ3

12 ηfRβf
gradwa,P̂ · grad P̂ l

a,t + wa,P̂

1

βf

∂δ

∂t
± wa,P̂

ksFr,t
δ ηfRβf

P̂ t
a,t

]
da

+

∫
LFr

δ

βf
wa,P̂ ŵf · nl dl = 0.

(3.3)

where tangential flow within the fracture domain is evaluated regarding the discrete
derivative 1/δ and introduction of an intrinsic tangential permeability ks

Fr,t. The proposed
monolithic solution scheme considers leak-off into the surrounding poro-elastic matrix
implicitly, since the primary variables pore-pressure and deformation are shared between
both domains. Nevertheless, assembly of both computational regions in a single matrix
requires dimensional compatibility of eqs. (3.3) and (2.48) which is achieved by appro-
priately adjusting their prefactors. The distinct difference in discretized contributions
of the fracture and poro-elastic domain to the global assembly matrix does not allow to
increase the computational performance by using standard linear iterative solvers in par-
allel and would require a physics based pre-conditioning to guarantee numerical stability
like discussed in the literature for flow in non-deformable fractures embedded in a porous
medium [e.g., 169]. In this work, to avoid specific pre-conditioning, a sequential assembly
method is conducted and the resulting set of equations is solved in parallel by the direct
sparse matrix solver PARDISO [170] embedded in a modified DUNE-pdelab framework
[15]. In this work the introduced weak form given by eq. (3.2) is consulted for monolithic
investigations of flow processes in deformable fractures.

3.2 Staggered coupling schemes

In contrast to the proposed monolithic coupling scheme partitioned coupling strategies
solve the introduced governing equations of both domains using individual solvers. Equi-
librium conditions are then enforced by coupling boundary conditions in an iterative
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process, required to reach convergence for a given time step by fulfilling a defined solu-
tion accuracy, before the simulation proceeds in time. Considering the case of individual
solver implementations for the hybrid-dimensional fracture flow and homogeneous bi-
phasic poro-elastic medium formulation, solutions for the discretized set of equations are
determined by linear iterative solvers in parallel to increase the overall computational
efficiency. Besides the use of iterative solvers computational performance might be ad-
ditionally increased by non-conformal meshing [177]. Nevertheless, coupling of fracture
flow and poro-elastic domain results in a numerically stiff [1] system and naive coupling
approaches such as introducing the unchanged individual solutions as the other problem’s
boundary conditions throughout the equilibrium iterations do not guarantee convergence
and might diverge for most relevant combinations of material parameters. Two different
staggered coupling procedures have been considered throughout this work to gain numeri-
cal stability, namely a fixed-stress [72, 73, 177] and a quasi-Newton implementation [176].
For the considered partitioned approaches both, the hybrid-dimensional flow and poro-
elastic solver, have been implemented using the FEniCS computing platform [5]. The
numerical, respectively technical realization of the quasi-Newton based scheme is built
around the coupling library preCICE [32]. In the following both staggered implementa-
tions are briefly introduced. For a detailed discussion the interested reader is referred to
[176, 177].

3.2.1 Fixed-Stress coupling

Considering intact porous media different strategies to reach global equilibrium based
on an implicit coupling scheme have been proposed in the literature. Decoupling of the
mechanical and flow processes might be achieved by either fixed-stress/strain strategies,
where the flow problem is solved before the solution is evaluated on the mechanical prob-
lem or the drained/undrained schemes where the sequence of solutions is reversed [104–
106]. In the presence of fractured porous media the fixed-stress strategy has consistently
been extended to account for the characteristics of both domains [72, 73] and is intro-
duced as the first of two staggered coupling strategies proposed in this work to guarantee
numerical stability throughout equilibrium iterations. Physics based pre-conditioning of
the governing equations results from a fixed-stress assumption, meaning that the stress
rate throughout calculations in the flow domain is enforced to be constant. Evaluation of
the stress restriction results in the following strong form of the governing equations in its
local form

∂p̂k+1

∂t
− γc

γc + βf

∂p̂k

∂t
− δ2 βf

12 ηfR(γc + βf)
div grad p̂k+1 +

1

δ(γc + βf)

∂δ

∂t
=

q̂lk
δ(γc + βf)

(3.4)

where γc = Mβfα2/(λ+Mβfλφ) is an estimate to achieve convergence, λ the first Lamé
parameter, p̂k+1 the solution of the current iteration step and p̂k the solution of the pre-
vious iteration step. The transients of p̂k+1 and p̂k are evaluated regarding the converged
solution of the previous time step. Once the solution converges p̂k+1 ≈ p̂k the addition-
ally introduced transient stabilization term including p̂k vanishes, which can be seen once
eq. (3.4) is multiplied by γc + δβf. The equilibrium iteration using the strong form given
by eq. (3.4) might mathematically be classified as a preconditioned Richardson iteration
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[38] resulting from the physics based assumption of fixed-stress rates throughout the flow
calculations. Clarification concerning the numerical coupling of both domains requires a
brief discussion of the applied boundary conditions. Considering the hybdrid-dimensional
flow domain, Neumann conditions are applied in terms of the transient coupling of the
fracture volume ∂δ/∂t and the fluid exchange between both domains governed by leak-off
q̂lk. Both can be constructed using the poro-elastic solution by applying eq. (3.1), respec-
tively eq. (2.49). The fluid pressure solution p̂ of the hybrid-dimensional flow model is
considered throughout the poro-elastic calculations by means of a Dirichlet boundary con-
dition prescribing the fluid pressure and a Neumann boundary condition representing the
pressure induced surface traction; both applied along the fracture surfaces. For a detailed
study of the implemented fixed-stress scheme derived to investigate hydro-mechanical phe-
nomena throughout equilibrium perturbations of the deformable fractured porous media,
the interested reader is referred to [177]. For the sake of completeness the implemented
weak form of eq. (3.4) is derived similar to the procedure discussed in section 2.1.4 and
reads∫

ΓFr

[
δ wp̂

∂p̂k+1
t

∂t
− δ γc

γc + βf
wp̂

∂p̂kt
∂t

+
δ3

12 ηfR(γc + βf)
gradwp̂ · grad p̂t + wp̂

1

γc + βf

∂δ

∂t

]
da

+

∫
LFr

δ

γc + βf
wp̂ ŵf · nl dl =

∫
ΓFr

wp̂
q̂lk

γc + βf
da.

(3.5)

3.2.2 Quasi-Newton coupling

Implementation of a quasi-Newton scheme to implicitly couple fracture and poro-elastic
domain is a general approach to introducing a partitioned solution strategy. The quasi-
Newton scheme approximates the required coupling entries of the Jacobian based on the
communicated residua of the individual problems to increase the numerical stability of
the global problem. In the scope of this work Quasi-Newton schemes have not explicitly
been implemented, but the coupling library preCICE has been consulted [32]. Besides
less advanced coupling strategies such as the dynamic Aitken scheme [114], preCICE
offers a number of quasi-Newton implementations being the frequently used interface
quasi-Newton scheme IQN–ILS which calculates its Jacobian based on a least square
model [45, 46] or the more sophisticated multi-vector update based quasi-Newton variant
IQN–IMVJ [171]. Quasi-Newton coupling is frequently used in the field of multiphysics
problems such as fluid solid interaction (FSI). Nevertheless, in the known literature no
contributions could be found which is concerned with flow processes in deformable frac-
tures introducing a strict split of fracture and poro-elastic domain. Besides numerical
coupling schemes, preCICE offers an interface for parallelized communications of defined
properties between the implemented solvers. In this work, considering a biphasic poro-
elastic in its weak form given by eq. (2.48) and the implementation of eq. (2.31) in a
hybrid-dimensional flow solver, communicated properties are the fluid pressure solution
p̂ of the fracture domain, the fracture aperture δ constructed from the deformations ob-
tained by solving the poro-elastic problem and the normal relative velocity wN

f obtained
by evaluation of eq. (2.49). Determining the Jacobian based on the fracture aperture δ
rather than the individual deformation states of both fracture surfaces is motivated by
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the outcome of a convergence study that indicates increased performance and numerical
stability of the aperture constructed Jacobian over the one based on the individual de-
formations of the fracture surfaces [176]. The improved convergence behaviour might be
related to the implicit consideration of additional coupling terms throughout the Jacobian
calculations, numerically connecting both fracture surfaces under consideration of relative
fracture aperture changes like proposed in eq. (3.1). The applied coupling boundary con-
ditions introduced for the fixed-stress strategy remain unchanged for the quasi-Newton
scheme. The quasi-Newton based implementation is capable of considering complex frac-
ture networks in three dimensions, flow processes through the poro-elastic medium and
fracture domain, respectively their hydro-mechanical interaction and allows for parallel
computing [176].
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Abstract In the field of porous and fractured media, subsurface flow provides insight
into the characteristics of fluid storage and properties connected to underground mat-
ter and heat transport. Subsurface flow is precisely described by many diffusion based
models in the literature. However, diffusion-based models lack to reproduce important
hydro-mechanical coupling phenomena like inverse water-level fluctuations (Noordber-
gum effect). In theory, contemporary modeling approaches, such as Direct Numerical
Simulations (DNS) of surface-coupled fluid-solid (fracture) interactions or coarse-grained
continuum approaches like Biot’s theory, are capable of capturing such phenomena. Nev-
ertheless, during modeling processes of fractures with high aspect ratios, DNS methods
with the explicit discretization of the fluid domain fail, and coarse-grained continuum
approaches require a non-linear formulation for the fracture deformation since large de-
formation can be reached easily within fractures. Hence a hybrid-dimensional approach
uses a parabolic velocity profile to avoid an explicit discretization of the fluid domain
within the fracture. For fracture flow, the primary variable is the pressure field only,
and the fracture domain is reduced by one dimension. The interaction between the frac-
ture and the surrounding matrix domain, respectively, is realized by modified balance
equations. The coupled system is numerically stiff when fluids are described with a low
compressibility modulus. Two algorithms are proposed within this work, namely the weak
coupling scheme, which uses an implicit staggered-iterative algorithm to find the residual
state and the strong coupling scheme which directly couples both domains by implement-
ing interface elements. In the course of this work, a consistent implementation scheme for
the coupling of hybrid-dimensional elements with a surrounding bulk matrix is proposed
and validated and tested throughout different numerical experiments.

1 Introduction

Underground fluid flow in fractured and porous media exhibits a variety of hydro-mechanical
phenomena, which have been intriguing the research community for several decades
[54, 135]. The long-established research interest in subsurface flow, such as studies of
reservoir storage capacities, is regarding both theoretical/numerical and experimental
investigations. Various hydro-mechanical coupling phenomena, like inverse pumping or
Noordbergum effect [107, 161], are observed in fracture networks, and apparently, affect
the reservoir behavior during fluid pressure or deformation fluctuations. For fractures
with a high aspect-ratio (length l vs. aperture δ, i.e. l/δ > 104) filled by viscous fluids
with low compressibility these effects become evident.
A considerable number of theoretical and numerical studies of subsurface flow in frac-
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tured media can be found in the literature. The first solution strategy to mention is
the so-called diffusion-based approach. This approach uses the poroelastic framework
with slight modifications to the diffusion formulation within the fracture and assumes
that the mechanical response of the surrounding rock (bulk) material is decoupled from
the governing equation of fluid flow. For specific combinations of material parameters
or a constant mean stress [158], this decoupling assumption is valid and has successfully
been applied in several investigations, to study pressure diffusion effects along fractures
[138, 140]. Nevertheless, phenomena due to a strong hydro-mechanical coupling, such as
the earlier mentioned Noordbergum effect, cannot be captured by even extended diffusion
formulations.
Further strategies to describe hydro-mechanical phenomena are based on partly-analytical
solutions. In a first approach, Sneddon [187] introduced a plane strain crack solution to
find deformation states for various fluid pressure conditions. Based on Sneddon’s formu-
lation further models evolved such as the PK-model by Perkins and Kern [142], the PKN
model by Nordgren [134] which takes fluid loss effects into account or the penny-shaped
KGD model independently developed by Geertsma and de Klerk [68] and Khristianovic
and Zheltov [222]. All models provide further insights on phenomena related to hydro-
mechanical coupling. However, the pressure state described in all models is not associated
with the deformation response of the surrounding bulk matrix, and furthermore, only rela-
tively simple geometries can be analyzed. Partly-analytical formulations serve for a better
understanding of the physics but are not suitable for fully coupled formulations and/or
complex fracture geometries.
Most promising with regards to hydro-mechanical investigations of complex fracture net-
works are fully coupled numerical strategies. In Direct Numerical Simulation (DNS), the
fracture domain is explicitly discretized, e.g., with finite elements, and the inherent fluid
is modeled by the Navier-Stokes equations, coupled to the deformation of the surround-
ing rock. Thus hydro-mechanical phenomena can be reproduced using different coupling
algorithms, such as staggered or fully coupled schemes. However, in the case of creeping
flow conditions, i.e., Poiseuille-type flows a specific discretization over the fracture height
is required to reproduce the parabolic velocity field. Having in mind fractures with high
aspect ratios, the total number of elements increases drastically, and DNS are finally ap-
plicable to fracture ratios of l/δ < 104 only due to technical limitations.
For fractures with higher aspect ratios than l/δ > 104 and low Reynolds numbers, viscous
shear stresses in the bulk fluid can be neglected and creeping flow conditions can be as-
sumed. Coarse-grained continuum approaches like Biot’s quasi-static poroelastic theory
[20], take these assumptions into account and couple fluid pressure to solid deformation in
a smeared continuum-based formulation at the local material point. The set of governing
equations are based on volume-averaged quantities [41] and treats materials homogeneous
if inhomogeneities occur at the length scale of the averaged pore size. The classical poroe-
lastic formulation relates the specific storage capacity as an inherent material property
to each material point which is not valid anymore for structural properties with finite
extensions like fractures. By exchanging the solid with the fracture surface deformation,
this limitation can be circumvented. Still, an explicit discretization of the fracture domain
is required. Since poroelastic formulations are designed explicitly for hydro-mechanical
problems, the number of elements needed decreases compared to DNS strategies. Never-
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theless, the explicit discretization of the fracture domain constraints the method to aspect
ratios of l/w < 105.
Concerning numerical efficiency, subsurface flow for conduits with aspect ratios of l/δ >
105 demands a different numerical treatment, other than an explicit discretization of the
fracture domain. The efficiency of the procedure can significantly be increased by us-
ing hybrid-dimensional formulations [72, 73, 104, 105, 206, 208]. Hybrid-dimensional ap-
proaches allow for a lower-dimensional discretization of fracture flow which reduces the dis-
cretization space of the fracture domain’s dimension by assuming a priori parabolic veloc-
ity profiles of Poiseuille-type. Besides a storage analysis of fracture networks, comparable
strategies have been used in the field of hydro-mechanical coupling [86, 180, 181, 183, 195].
Hybrid-dimensional approaches have been used in the past often for purely hydraulic
problems related to fracture flow. Authors focused on non-conformal techniques [200],
the formulation of discontinuous pressure at fracture interfaces [27, 124] and the improve-
ment of performance and stability [168].
Another important limiting factor for numerical treatments of hydro-mechanical cou-
pling is the stiffness of the overall coupled system. Contributions of Adachi [1] and Yew
[218] study the hydro-mechanical coupling by investigating high aspect-ratio fractures
using a staggered coupling scheme. Nevertheless, it has been stated that the introduced
scheme should preferably be used for fluids with low or moderate compressibility pa-
rameters otherwise the scheme requires high numbers of iterations or non-practical small
time steps. In unfractured porous media different staggered schemes have been intro-
duced to solve such stiff systems in a stable fashion. Kim et al. [104, 105] proposed
the drained/undrained (modifications throughout mechanical calculations) and the fixed-
strain/fixed-stress (modifications throughout flow calculations) in their work. The fixed-
stress scheme achieves numerical stability by varying the strain rate throughout the flow
problem to fix the stress state, whereas stability is reached using the drained scheme by
enforcing a constant fluid mass per element in each iteration step [38]. The fixed-stress
scheme has been extended by Girault et al. [72, 73] for coupling flow in deformable frac-
tures embedded in a biphasic porous medium.
Deformation dependent permeability changes within fractures influence the pressure pre-
diction, particularly when high aspect ratios are investigated. In the literature mentioned
above, a constant aperture is assumed for the calculations of the fracture permeability
[72, 73]. Fixed fracture permeabilities might lead to incorrect predictions of the pressure
state. This work will take permeability changes due to local deformations of the fracture
into account and show the importance based on a three-dimensional boundary value prob-
lem. Furthermore, staggered algorithms are used in the literature to solve the coupled
set of governing equations; hence iterations are needed even for linear problem formu-
lations. Mathematically it has been shown, that a fully coupled, monolithically solved
scheme is unconditionally stable [72], but has not been investigated concerning efficiency
yet. Since no iterations are needed the performance of a monolithic scheme is potentially
higher than a staggered scheme. Nevertheless, by using non-conformal discretizations for
porous and fracture domain, the performance of a staggered algorithm can be increased.
This work will investigate the performance improvement by reducing the total number of
degrees of freedom (DoF) taking the loss of accuracy of the solution into account. Based
on the number of iterations needed in combination with the reduced number of DoF the
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Figure 1: Subsurface domain B including poroelastic subdomain BPe, the fracture subdomain
BFr and boundaries.

efficiency of the staggered will be compared to a fully coupled monolithic scheme.

2 Model Formulation

This section introduces the continuum based mathematical continuum-based model for
underground flow in fractured porous media. The bounded subsurface domain will be
denoted as B and includes the poroelastic subdomain BPe with its outer boundary surface
ΓPe and the embedded deformable fracture subdomain BFr. The domain of the fracture
is defined through its exterior outer normal vectors n±, cf. Fig. 1.

2.1 Partial Differential Equations in the poroelastic subdomain BPe

The subdomain BPe is described as a linear biphasic poroelastic medium, see [20] or e.g.
[211] . The leading set of Partial Differential Equations (PDEs) of poroelasticity consists
of the balance of momentum of the mixture and the balance of momentum of the fluid
combined with the linearized form of the balance of mass. The system of equations is
closed by constitutive assumptions for the extra stresses of the solid phase denoted as σs

E,
the momentum interaction between the viscous pore fluid and the solid matrix p̂s, and
an equation of state for the compressible pore fluid.

2.1.1 Balance of momentum of the mixture

The local form of the balance of linear momentum for a biphasic mixture with the solid
constituent ϕs and the pore fluid ϕf reads

− div(σ) = ρb (4.1)

in its (quasi-static) local form if inertia forces are neglected. The total stresses are denoted
as σ and the body forces as ρb. The density of the mixture reads ρ = ρs + ρf. The
partial densities are introduced as ρs = dms/dv and ρf = dmf/dv, respectively. Here,
the mass elements of the constituents are denoted as dms and dmf. The volume element
of the mixture is denoted as dv. Effective densities are given by ρsR = dms/dvs and
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ρfR = dmf/dvf. Partial and effective densities are related through the porosity φ = dvf/dv,
i.e. ρs = (1 − φ) ρsR and ρf = φ ρfR. In poroelasticity, the total stresses split into
the effective stress and the pore pressure. Following Biot [20], we assume compressible
constituents (i.e. a compressible skeleton with dry bulk modulus K, compressible grains
which are composing the skeleton with bulk modulus Ks, and a compressible pore fluid
with bulk modulus K f). Thus, the effective stress principle composes the total stresses
additively into the effective stresses and the pore pressure p

σ = σs
E − α p I. (4.2)

The Biot parameter is related to the bulk moduli by α = 1 − K/Ks. Thus, in case of
Ks � K, the effective stress principle reduces to Terzaghi’s effective stress principle with
α = 1. The effective stresses of the solid constituents are given by

σs
E = 3K vol(εs) + 2G dev(εs) + (1− α) p I. (4.3)

Here, we split the solid strain tensor εs = 1/2 (gradus+gradT us) into its volumetric and
deviatoric part. Further, the dry shear modulus of the skeleton is given by G.

2.1.2 Balance of mass and balance of momentum of the fluid

Two constitutive assumptions are inherent in the second PDE of poroelasticity. A linear
equation of state for the barotropic pore fluid is introduced

p = K f

[
ρfR

ρfR0
− 1

]
. (4.4)

The effective density in the initial configuration at time t = t0 is introduced as ρfR(t0) =:
ρfR0 .
The viscous momentum interactions between the solid and fluid constituent p̂f = −p̂s, or
drag forces, are modeled as

p̂f = p gradφ− φ2
0 γ

fR
0

kf
wf. (4.5)

The first (equilibrium) term on the right hand side of Eq. 4.5 is a nonlinear equilibrium
term which is vanishing in linear poroelasticity. The second non-equilibrium term de-
scribes the viscous momentum exchange and contains the initial porosity φ(t0) =: φ0,
the effective weight of the fluid γfR

0 at t = t0 and the Darcy permeability kf sometimes
also denoted as hydraulic conductivity. Thus, the non-equilibrium momentum exchange
is proportional to the seepage velocity wf = u̇f − u̇s. The solid and fluid displacements
are given by us and uf. The hydraulic conductivity kf [m/s] can be related to the intrinsic
permeability ks [m2] by kf = ρfR g ks/ηfR. Here, ηfR [Pa s] is the effective dynamic viscosity
of the pore fluid and g is the gravitational constant. The constitutive equations (4.4) and
(4.5) can be inserted into the balance of mass of the fluid and the balance of momentum of
the fluid. The derivation of the resulting equations is straightforward but needs a proper
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linearization. We would therefore refer to the literature (e.g. the review [158]) and present
the resulting pressure diffusion equation with the coupling term on the right hand side

ṗ

M
− kf

γfR
0

div grad p = −α div u̇s (4.6)

Here, we have introduced the (local) storativity or inverse storage capacity 1/M =
φ0/K

f + (α− φ0)/K
s, cf. [211]. Furthermore, it should be noted that in linear poroelas-

ticity, the “dot” derivative is identical to the partial time derivative.

2.1.3 Resulting set of PDEs

The resulting set of PDEs for the porelastic domain is then summarized ∀x ∈ BPe as
equations (4.1) and (4.6)

−div(σs
E − α p I) = ρb,

ṗ− kf M

γfR
0

div grad p = −αM div u̇s,

(4.7)

with Dirichlet boundary conditions for the solid displacement ūs and the pore pressure
p̄. Neumann boundary conditions are described for the fluxes of the total stresses t̄ and
the pore fluid w̄f

us = ūs on Γs
D and p = p̄ on Γf

D, (4.8)

σ · n = t̄ on Γs
N and wf · n = w̄f on Γf

N . (4.9)

The set of PDEs is formulated in a weak format as the basis for subsequent finite element
investigations. Primary variables are then solid displacements and pore pressure. Note
that we multiply the pressure diffusion equation with the storativity M . This guaran-
tees consistency in dimensions with the governing equations of the fracture flow model
(introduced in the following section) and holds for a monolithic assembly covering both
domains.

2.2 Equations in BFr - Hybrid-Dimensional Fracture Flow Model

The hybrid-dimensional approach recently introduced by Vinci et al. [206] has specifi-
cally been designed to investigate high aspect ratio fractures. In order to avoid an explicit
discretization of the fracture domain BFr, equilibrium conditions with respect to a de-
formable fracture are imposed on the fluid phase to derive the governing equations of
fluid flow. The model for a biphasic porous medium introduced in section 2.1 provides
the local aperture from which the local fracture permeability is calculated; hence fluid
flow and solid deformation are coupled by means of the fracture aperture δ. Later in this
work numerical coupling schemes for solving the governing equations are introduced.
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2.2.1 Balance of Momentum of the Fluid - Fracture Flow

The hybrid-dimensional approach is based on the hydraulic description for flow of com-
pressible and viscous fluids (Re � 1) with compressibility βf = 1/K f, where K f denotes
the fluid’s bulk modulus and ηfR is the fluid’s effective dynamic viscosity. Fluid flow is
investigated for high aspect, hydraulic transmissive fracture domains possessing low con-
tact areas; hence the pressure-driven Poiseuille-type flow between two plates is a valid
assumption. Due to its geometrical nature the flow process is predominant within the
plane defined by the normal vector n+ of the fracture surface. For a planar fracture ge-
ometry with basis vector ê1 and ê2 and normal ê3 = n+ (fig. 1), the parabolic velocity
profile results in a relative fluid velocity

ŵf = −δ2(x, t)

12 ηfR
grad p̂ = −ks

Fr(x, t)

ηfR
grad p̂, (4.10)

where the pressure of the fluid within the fracture is p̂ in order to avoid confusion with
the pore pressure p that has been introduced in course of the poroelastic formulation.
Dependent on fracture surface roughness or in case of mechanically-closed fractures the
proportionality factor 1/12 might be adapted [159]. Since the relative velocity ŵf is space-
resolved for coordinate x, the local and time-dependent effective fracture permeability
ks
Fr(x, t) for high aspect ratio fractures is introduced. Finally, a hydraulic formulation for

a pressure driven flow that allows for varying local permeabilities has been introduced.

2.2.2 Balance of Mass of the Fluid - Fracture Flow

The derivation of the balance of mass requires consideration of the fluid compressibility
along with a varying aperture δ(x, t) of a single fracture. Evaluation of the mass balance
yield relations between fluid velocity, fluid density changes, injected fluid volume and
fracture volume. Fulfilment of condition

(ρfR δ)̇ + div
(
ŵf ρ

fR δ
)
= 0 (4.11)

guarantees conservation of mass in a fluid-filled fracture. For investigations where leak-off
is of interest the system needs to be modified by simply extending the right hand side of
eq. (4.11) by a source term that will be explained in section 2.2.3.

2.2.3 Governing Equations

The governing equation are derived by evaluating the balance of mass eq.( 4.11) and the
balance of momentum eq. (4.10) with respect to the fluid within the deformable fracture.
Assuming proportionality between the fluid pressure and the effective fluid density given
by eq. (4.4) finally leads to the governing scalar PDE
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(i) ṗ Transient

(ii) − δ2

12 ηfR
ˆgrad p̂ · ˆgrad p̂ Quadratic

(iii) − δ
12 ηfR βf

ˆgrad δ · ˆgrad p̂ Convection

(iv) − 1
12 ηfRβf d̂iv

(
δ2 ˆgrad p̂

)
Diffusion

(v) + 1
δ βf δ̇ Coupling

(vi) =
wN

f

δ βf Leak-Off

(4.12)

where divergence d̂iv and gradient ˆgrad are evaluated with respect to the lower dimen-
sional fracture domain BFr. The non-linear storage eq. (4.12) consists of a transient term
i), a quadratic term ii), a convection term iii), a diffusion term iv) and a hydro-mechanical
coupling term which takes into account the transient evolution of the fracture’s aperture
v). In the present case we are focusing on high aspect ratio fractures. Thus, based on
the results of a dimensional analysis of eq. (4.12) [205], the quadratic and the convection
term can be neglected due to their minor contribution to the solution.
An initial pressure of p̂(x̂, t0) = 0 relative to the confining pressure and an undrained
(non-flux) condition at the fracture tip q(x̂tip, t) = 0 (where x̂tip denotes the fracture tip
position) define the Dirichlet and Neumann boundary conditions. In case of applications
related to borehole investigations, the related pressure or flux can additionally be pre-
scribed at the borehole intersection.
For a surrounding poroelastic matrix material, an exchange of mass occurs between the
fracture and the surrounding matrix which is taken into account by a non-zero right-hand-
side in eq. (4.11). The sink or source term is considered by

qlk =
wN

f

δ βf
, (4.13)

where wN
f is the leak-off induced seepage velocity determined by Darcy’s law of the poroe-

lastic matrix. In the course of this work, the leak-off treatment differs for the coupling
strategies and is individually derived for each scheme in section 3.

3 Numerical Schemes for Hybrid-Dimensional Formulations

Consistent implementation of the governing equations describing fluid flow, deformation
and the possible exchange of fluid from the fracture to a poroelastic matrix material, re-
quire an implicitly coupled system of both domains, the fracture, and the matrix material.
Suitable algorithms to solve the discrete system for pressure p̂ and fracture width δ will
be discussed in this section.
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3.1 Weak Form of the Governing Equations

In the course of this work, a classical Bubnov Galerkin finite element formulation for
poroelasticity will be applied to the surrounding matrix material with domain BPe. Anal-
ysis of the coupled response inside the fracture, i.e., the fluid pressure p̂ - fracture aperture
δ interplay is analyzed. The numerical formulation for the biphasic porous matrix is based
on the weak form of the set of governing equations (4.7) and reads∫

BPe

(œs
E − α p I) : gradwu dv =

∫
Γs
N

t̄ · wuda,∫
BPe

[
ṗ

M
wp +

kf

γfR
grad p · gradwp + α div u̇swp

]
dv =

∫
Γf
N

w̄f wp da.
(4.14)

Note that the test functions of the balance of momentum of the mixture wu and the
balance of mass of the fluid wp are introduced. To investigate pressure fluctuations related
to aperture changes, the poroelastic eqs. (4.14) of the surrounding matrix (domain BPe)
medium are coupled to the modified hybrid-dimensional formulation (domain BFr) in its
weak form ∫

BFr

[
ṗ wp̂ +

δ2

12 ηfRβf
grad p̂ · gradwp̂ +

1

δ βf

∂δ

∂t
wp̂

]
dv = 0. (4.15)

Note that advection and quadratic terms are neglected based on the dimensional analysis
evaluated in [205]. The test functions for the hybrid-dimensional problem are given by
wp̂.
In section 2.2, the fracture width δ has already been introduced as the hydro-mechanical
coupling parameter. By assuming predominant deformation normal to the fracture surface
the local fracture aperture

δ = u+ · n+ − u− · n− (4.16)

can be rewritten with respect to the fracture normal surface displacements u+ and u−

which are primary variables of the solid formulation (eq. (4.14a)).

3.2 Characteristic of the Coupled System

To obtain a deeper understanding of the coupled system, Adachi et al. [1] studied
the characteristic of hydro-mechanical coupled systems by assuming a 1D penny-shaped
Kristianovich-Geertsma-de Klerk (KGD) fracture width description coupled to the Reynold’s
equation modified for the fluid flow in deformable fractures. Based on linear elastic solid
mechanics coupled to a diffusive process, Adachi’s simplified system is equivalent to a
highly permeable poroelastic drained medium, since the deformation of the surrounding
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Figure 2: Comparison of a weak coupling scheme using non-conformal meshes (a) and a strong
coupling scheme with implemented interface elements (here interface elements, and auxiliary
nodes are explicitly shown for presentation purposes only; in final discretization fracture surfaces
align with d = 0) (b).

matrix is not damped by the pore pressure evolution; hence it represents the stiffest case
of the coupled system due to possibly large fracture deformations. By analyzing the eigen-
values of the coupled matrices [141] it has been shown that the stability is guaranteed if
the Courant-Friedrichs-Lewy (CFL) condition

Δt <
Δx3

E ′ D
(4.17)

is fulfilled. Eq. (4.17) does not only clarify that explicit time-stepping using the explicit
Euler method is not suitable due to inadequate small time steps, but also the extreme stiff-
ness of the coupled system that requires an implicit coupling procedure. In the following
an implicit time discretization in form of a backward Euler method will be used through-
out this work. In eq. (4.17) Δx denotes the element length, E ′ the elastic plane-strain
modulus and D the conductivity.

3.3 Weak Coupling - Staggered Coupling Scheme

Non-conformal meshes and computations on two different domains (BPe and BFr) are the
motivation for the first proposed strategy, namely a staggered coupling scheme. Besides
the reduction of DoFs by the lower-dimensional elements for pressure diffusion in the frac-
ture, computational time can potentially be reduced by using an individual discretization
for both domains. In the numerical study section an investigation of the error evolution
for different numerical resolution combinations of the fracture (pressure diffusion) and
poroelastic matrix domains will provide further insights of increasing computational ef-
ficiency based on non-conformal meshes (reduction of DoF). Schematically the idea of
non-conformal meshing using hybrid-dimensional elements is shown in fig. 2 (a).
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3.3.1 Coupling Algorithm

In the field of non-fractured porous media different sequential implicit strategies for solving
biphasic mixtures have been proposed. Depending on the sequence both problems are
solved Kim et al. [104, 105] differentiate between drained/undrained (mechanical followed
by flow problem) and fixed-stress/fixed -strain splits (flow followed by the mechanical
problem). The drained and undrained split differ concerning the consideration of the
applied pressure within the mechanical problem. The drained split treats the pressure
constant throughout the mechanical calculations, unlike the undrained split where the
pressure can vary with the volumetric deformation enforcing a constant fluid mass in
each element. In contrast, the fixed-strain and fixed-stress split differ concerning the
consideration of the applied strain used in the flow calculations. For the fixed-strain split,
the applied strain rate stays constant in contradistinction to the fixed-stress split where
the strain rate can vary depending on the calculated fluid pressure enforcing a constant
stress rate throughout the flow calculations. Girault et al. [72] modified the fixed-stress
method to achieve convergence and stability for fractured porous media applications.
In the course of this work, the staggered scheme implicitly couples the fracture with
the porous domain allowing non-conformal numerical discretizations of the porous and
lower dimensional fracture domain. Nevertheless, the porous domain does not explicitly
discretize the fracture volume, and volumetric changes of the fracture throughout porous
matrix calculations are not accessible. Hence the fixed-stress and fixed-strain algorithms
suit the described discretization strategy best since no volumetric change information are
required. An algorithm comparable to the fixed-strain scheme and the modified fracture
formulation of the fixed-stress scheme is implemented and tested with regards to stability
and convergence. In case of the fixed-stress algorithm the simplified governing equations
(quadratic and convection terms are neglected; high aspect ratio assumption) eq. (4.12)
is extended to achieve constant stress rates throughout the flow problem

˙̂pnew − γc

γc + δ βf
˙̂pold − δ3 βf

12 ηfR(γc + δ βf)
d̂iv ˆgradp̂− 1

γc + δ βf
δ̇ = qlk. (4.18)

Note that a term has been consistently added to the governing equation to fix the stress
rate without limiting the functions, where γc = Mβfα2/(λ + Mβfλφ) is an estimate to
achieve convergence, p̂new = p̂tk+1 is the solution of the current and p̂old = p̂tk the solution
of the former iteration (the interested reader is referred to [72]). Since the time derivative
is evaluated with respect to the fixed pressure p̂t−1 of the former time step the introduced
term vanishes once the problem converges (p̂tk+1 ≈ p̂tk). The fixed-stress formulation can
be classified as a preconditioned Richardson iteration [38].

δtk+1 = ᾱδtk+1/2 + (1− ᾱ) δtk 0 < ᾱ < 1 (4.19)

updates the fracture width to δti+1, where δni is the fracture width of the prior iteration
step, δnk+1/2 an intermediate value and ᾱ the Picard update constant. In case of the fixed-
stress strategy the update constant is equal to one ᾱ = 1. Convergence of the procedure
is checked by the error measure

ε =

∑ntotal

n=1

∣∣δtk+1,n − δtk,n
∣∣∑ntotal

n=1

∣∣δtk+1,n

∣∣ , (4.20)
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which is calculated by iterating over all nodes n, where ntotal denotes the total number of
nodes.
The algorithm 1 schematically shows the implemented coupling scheme and is valid for

Algorithm 1: Staggered Coupling Procedure

while t <= tend do
while k < kmax do

# Update pressure state dependent on fracture width changes
p̂tk+1 = eq. (4.15) using δtk
# Update deformation for new pressure state
ut
k+1 = eq. (4.14) using ptk+1

# Intermediate fracture width for
δtk+1/2 = eq. (4.16) using ut

k+1

# Use Picard update to calculate new fracture width
δtk+1 = eq. (4.19) using δtk+1/2 and δtk
# Calculate Error
ε = eq. (4.20)
if ε < εmax then

# Update solutions for time-step
p̂t+1 = p̂tk+1

δt+1 = δtk+1

# Break iteration loop
break

else
# Set pressure values to values of prior time-step
p̂tk+1 = p̂t−1

# Continue
continue

end

end

end

both strategies. The numerical scheme contains two major loops; one time-stepping loop
due to the transient (diffusive) nature of the problem and a second one for the residuum
iterations of every time-step. For a better understanding the main steps of the algorithm
are summarized below.

Residuum Iterations

1. The iteration procedure starts with an update of the pressure to p̂tk+1 based on the
fracture width of the prior iteration step δtk−1. During the first iteration the initially
calculated value δt0 is used. Further, to guarantee consistency, the discrete form of

fracture change velocity δ̇ =
δtk−1−δt−1

Δt
is related to the fixed fracture width δt−1 of

the previous time-step.
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2. With pressure p̂tk+1 all necessary boundary conditions are provided to determine
deformation ut

k+1.

3. In the following step the intermediate fracture width δtk+1/2 is obtained from defor-

mation ut
k+1.

4. The new fracture width δtk+1 (using the Picard update) can be considered as the
result of each iteration step.

5. Error ε is calculated using fracture width δtk+1. If the error is less than a predefined
maximum error convergence is reached and the pressure p̂t and fracture width δt of
the active time-step t are updated by the values p̂tc and δtc, where index c denotes
the convergence iteration step. If the error criterion is not fulfilled the pressure p̂tk+1

is set back to the fixed pressure p̂t−1 of the previous time-step to avoid transient
artifacts and guarantee consistency, before the process is repeated within the next
iteration.

In case of a low fluid compressibilities βf < 10−6 GPa−1 it is expected that the fixed-strain
scheme requires small values for the Picard update constant (approx. ᾱ < 5.0e−3) to reach
convergence. Small values for ᾱ result in an inadequate high number of iteration steps and
reasonable values for ᾱ in inadequate small time steps [184], respectively. Nevertheless,
for moderate up to high compressibilities βf > 10−6 GPa−1, the scheme converges in a
low number of iterations. In contrast the fixed-stress approach is supposed to convergece
even for a low compressibility in an adequate number of iterations. For both schemes it is
intuitive to implement non-conformal mesh coupling in order to gain an advantage with
respect to computation times.

3.3.2 Leak-Off - Weak Coupling

Leak-off in the weak coupling scheme is related to the normal seepage velocity determined
by the poroelastic problem and is captured by an extension of the fracture flow formulation
by source term qlk. In order to determine qlk in eq. (4.12) the seepage velocity wN

f normal
to the fracture surface ΓFr must be calculated based on Darcy’s law

wN
f (x) = −ks

Fr

ηfR
gradp · n± (4.21)

where n± denotes the top and bottom normal vector. Once source term qlk is calculated
it is applied in the form of a Neumann boundary condition to the fracture flow problem.
The pore pressure p on the fracture surfaces is obtained by the pressure state p̂ of the
fracture flow problem, and no discontinuities of the pressure state between both fracture
surfaces are taken into account. Nevertheless, the leak-off into the porous medium can
differ on both surfaces due to possibly varying permeabilities of the surrounding matrix
and also allows fluid flow across the fracture. Throughout the equilibrium iterations of the
staggered algorithm, the leak-off term is updated for every iteration step. The interaction
procedure throughout the calculations is schematically shown in fig. 3 (a).
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Figure 3: Leak-off interaction of the poroelastic and fracture flow domain (a) by using a
consistent interpolation scheme (b).

3.3.3 Consistent Interpolation

Information of all primary variables u, p and p̂ are required for element integration on
integration point level of both problems. Since the lower dimensional elements are ge-
ometrically aligning with the fracture surfaces of the poroelastic problem the global co-
ordinates of the integration points xIP can be transformed to the isoparametric element
representation of both domains. In fig. 3 (b) the transformation is arbitrarily shown for
an integration point xIP

0 and linear element formulations in both domains. Note, that the
element order can independently be chosen for the fracture flow and poroelastic domain
discretization.

3.4 Strong Coupling - Interface Elements

Especially for fluids with a low compressibility βf < 10−6 GPa−1, the system of equations
becomes extremely stiff. Besides the already proposed weakly coupled fixed-stress strategy
an implicitly coupled formulation will be proposed to model such stiff systems. In the
present approach, the strong coupling is realized by zero-thickness interface elements
based on the work of Segura and Carol [180, 181] which will be applied to the proposed
hybrid dimensional formulation.

3.4.1 Strong Coupling - Interface Element Formulation

This section will introduce zero-thickness interface elements to build up a global assem-
bly matrix concerning only two primary variables, namely pressure p and deformation u,
for both domains. The resulting global system is then monolithically solved. For linear
cases, no iterations are needed, and convergence is always guaranteed [72]; for non-linear
cases, the Newton-Raphson scheme is implemented. In general interface elements possess
no thickness, meaning that facing nodes are aligning. In the case of fracture flow the
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volume of the fracture is not captured geometrically, but through integration by using
the fracture aperture to determine the fracture volume. Different interface elements have
been proposed in the literature such as single node - interface elements [217] that capture
longitudinal fracture flow only, doubled node - interface elements [181] with two aligning
nodes where the element-integration takes place on mid-plane auxiliary nodes allowing
transversal and longitudinal flow and triple node - interface elements [81] where a third
aligning node is introduced in order to separate the transversal from the longitudinal flow.
This work exclusively focuses on the double node - interface element since no additional
DoF are introduced and flow in both directions is captured.
In contrast to the weak coupling scheme where only longitudinal flow was described in
the lower dimensional elements and transversal flow captured by leak-off only, the pro-
posed interface elements directly model longitudinal and transversal flow concerning the
pressure state on the fracture surfaces of the porous matrix and allows a discontinuous
pressure jump regarding both fracture surfaces. Modeling of fracture pressure p̂ in direct
relation to pressure p obtained on the fracture surface of the porous matrix requires an
averaging across the fracture as proposed in [124]. Martin et al. treat the fracture as
an interface separating two connected domains and is employed to derive the proposed
interface elements. By averaging the conservation equation, a formulation governing the
flow into, across and along the fracture is obtained. Both equations are then closed by
boundary conditions for the pressure along the fracture surfaces.

3.4.2 Averaging of Balance of Mass of the Fluid - Fracture Flow

An extension of the mentioned work of Martin et al. to capture deformable fractures is
derived in the following. Balance of mass, given by eq. (4.11), is rewritten by inserting
the pressure density relationship for a barotropic fluid of eq. (4.4)

δ

K f
˙̂p+ δ̇ + d̂iv ( ŵf δ) = 0. (4.22)

In order to capture a pressure jump along the fracture surfaces the seepage velocity ŵf is
decomposed into a longitudinal ŵl

f and a transversal ŵt
f component

ŵf = ŵl
f + ŵt

f . (4.23)

Note that the transversal component is defined concerning the seepage velocity normal
to the fracture interface ŵt

f = ŵf · n with n = n+ = −n−. Since two flow directions are

taken into account divergence d̂ivl and gradient ˆgradl in longitudinal and divergence d̂ivt
and gradient ˆgradt in transversal direction are introduced. By inserting these in eq. (4.22)
the decomposed balance of mass of the fluid within the fracture

δ

K f
˙̂p+ δ̇ + d̂ivl ( ŵf δ) + ˆδdivt ( ŵf) = 0 (4.24)

is derived. In order to formulate the fracture flow with respect to a line segment an
averaging in transversal direction is necessary. Note that only pressure p̂ and seepage
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velocity ŵf vary in tangential direction. The averaging results in

δ

K f

˙̂
P + δ̇ + d̂ivl

(
Ŵfδ

)
= −ŵf · n|ΓFr

+
+ŵf · n|ΓFr

−
(4.25)

where P̂ =
∫ δ/2

−δ/2
p̂ dn defines the integral value of the fracture fluid pressure and Ŵf =∫ δ/2

−δ/2
ŵt

f dn the integral value of the longitudinal seepage velocity. Continuity between

the fluxes of the porous medium and the fracture domain on the fracture surfaces ΓFr
± is

introduced by
w±

f · n = ŵf · n. (4.26)

Inserting the continuity condition formulated in eq. (4.26) in the averaged mass balance
of eq. (4.25)

δ

K f

˙̂
P + δ̇ + d̂ivl

(
Ŵfδ

)
= w+

f · n+ +w−
f · n− (4.27)

combines the surrounding matrix and the fracture domain, where the source term on the
right hand side governs the leak-off into the surrounding matrix and across the fracture.

3.4.3 Averaging of Balance of Momentum of the Fluid - Fracture Flow

In longitudinal direction eq. (4.10) defines the relative fluid velocity. By integration over
the aperture δ the averaged expression for the seepage velocity reads

Ŵf = −ks
Fr,l(x, t)

ηfR
ˆgradl P̂ . (4.28)

The averaged mass balance given by eq. (4.27) combined with the averaged seepage veloc-
ity defined by eq. (4.28) provides a formulation for the flow within the fracture including
leak-off. Pressure differences on both fracture surfaces are modelled by introducing an-
other governing equation for the transversal flow. In transversal direction a Darcy type
flow is introduced by

ŵt
f = −ks

Fr,t

ηfR
ˆgradt p̂ (4.29)

where ks
Fr,t defines the permeability in transversal direction. Integration over the aperture

results in ∫ δ/2

−δ/2

ŵt
f · ndn = −ks

Fr,t

ηfR

(
−p̂|ΓFr

+
+p̂|ΓFr

−

)
. (4.30)

Integration of the left hand side
∫ δ/2

−δ/2
ŵt

f · ndn is not carried out explicitly, but approxi-

mated by the trapezoidal rule∫ δ/2

−δ/2

ŵt
f · n dn ≈ δ

2

(
ŵf · n|ΓFr

+
+ŵf · n|ΓFr

−

)
=

δ

2

(−w+
f · n+ +w−

f · n−) . (4.31)

where continuity of fluid flow on the fracture surfaces is assumed. Finally, the approxi-
mation given in eq. (4.31) is inserted in eq. (4.30) to define the relation of pressure and
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flow in transversal direction

1

2

(−w+
f · n+ +w−

f · n−) = −ks
Fr,t

ηfR
− p+ + p−

δ
. (4.32)

Note that eq. (4.32) made use of the continuity of the pressure on the fracture surface
p± = p̂|Γ± . The formulation depends on parameters that can be expressed by the primary
variables of the porous domain.

3.4.4 Interface Element Formulation

To close the system of equations and to derive the interface element formulation, a bound-
ary condition for the averaged fracture domain pressure P̂ is introduced. In contrast to
the weak coupling scheme where no discretization of the surrounding matrix governs the
fracture domain, the constitutive modelling of solid behaviour, such as closing and opening
of rough fracture surfaces [180] can be realized within the framework of interface elements
if needed. Extension of the existing set of governing equations by a formulations of the
fracture surface interaction allows i.e. modelling of hydraulically open and mechanically
closed fractures and motivates a discontinuous pressure assumption for the transversal
fracture flow which is also valid for investigations on open fractures by choosing a suit-
able value for ks

Fr,t. Throughout the averaging process of the fracture pressure P̂ different
domain decompositions are possible [124] leading to a general set of balance equations at
both fracture surfaces

−ξw+
f · n+ +

2 ks
Fr,t

δ ηfR
p+ = −(1− ξ)w−

f · n− +
2 ks

Fr,t

δ ηfR
P̂

−ξw−
f · n− +

2 ks
Fr,t

δ ηfR
p− = −(1− ξ)w+

f · n+ +
2 ks

Fr,t

δ ηfR
P̂

(4.33)

where weighting parameter ξ is a positive real number within the range ξ ∈ ]1/2, 1]. In
this work ξ is chosen to be the stability limit ξ = 1/2 [179] which despite a high solution
quality for most cases might lead to numerical instabilities for some numerical set ups
where ξ needs to be adjusted [124]. No such numerical instabilities occurred throughout
the performed numerical studies. Hence the averaged fracture domain pressure P̂ and the
pressure difference along δ read

P̂ =
p+ + p−

2

w−
f · n− −w+

f · n+ = 2 ks
Fr,t

p− − p+

δ

(4.34)

where the transversal discontinuous pressure assumption is introduced by P̂ t = (p− −
p+)/δ. By summation/subtraction of eq. (4.34) and eq. (4.25) a formulation governing
longitudinal and transversal flow depending only on the primary variables of the porous
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Figure 4: Integration of linear auxiliary element, including the contribution of interface element
nodes to averaged pressure P̂ai, pressure difference P̂ t

ai and aperture δai on auxiliary element
nodes.

matrix is found for the upper and lower fracture surface

1

2

[
1

K f

˙̂
P + δ̇ + d̂ivl

(
Ŵfδ

)]
− ks

Fr,tP̂
t = w+

f · n+ onΓFr
+ ,

1

2

[
1

K f

˙̂
P + δ̇ + d̂ivl

(
Ŵfδ

)]
+ ks

Fr,tP̂
t = w−

f · n− onΓFr
− .

(4.35)

The weak form of the governing set of equations given by 4.35 are simplified and eval-
uated for the case of high aspect ratio fractures similar to the derivation of the hybrid
dimensional formulation used for the weak coupling scheme∫
ΓFr
+

[
1

2

(
ṗ wa +

δ2

12 ηfRβf
ˆgradl P̂ · ˆgradl wa +

1

δ βf

∂δ

∂t
wa

)
− 1

δ βf
ksFr,t P̂

twa

]
dv =

1

δ βf
w+

f · n+,

∫
ΓFr
−

[
1

2

(
ṗ wa +

δ2

12 ηfRβf
ˆgradl P̂ · ˆgradl wa +

1

δ βf

∂δ

∂t
wa

)
+

1

δ βf
ksFr,t P̂

twa

]
dv =

1

δ βf
w−

f · n−.

(4.36)

where wa denotes the lower dimensional test functions used for the auxiliary element.

3.4.5 Leak-Off - Strong Coupling

Leak-off in the strong coupling scheme is described by the right-hand side of eqs. (4.36).
Nevertheless, the boundary term is naturally covered by the pore pressure evolution within
the surrounding poroelastic matrix since the fluid pressure p̂ within the fracture is calcu-
lated based on the pore pressure p of the fracture boundary. Leak-off from the fracture
into the porous matrix can vary concerning to the upper and lower fracture surface ΓFr

± .

3.4.6 Interface Element Integration

Integration of auxiliary elements requires the averaged pressure P̂ , pressure difference P̂ t

and aperture δ on auxiliary node level. The values are calculated from the pressure p
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and deformation state u of aligning nodes of the interface element which is exemplarily
shown for a linear element formulation in fig. 4. Note that the upper surface (node 3 and
4) is governed by the first equation and the lower surface (node 1 and 2) by the second
equation of eq. (4.36). The governing equations and boundary conditions are summarized
in the following.

Governing Equations

Surrounding matrix - BPe

Solid equilibrium: − div(œ̃s
E − αp I) = ρb in BPe

Fluid equilibrium: ṗ− Mkf

γfR
div grad p+Mα div u̇s = M w̄f in BPe

with: σs
E = 3K vol(εs) + 2G dev(εs) + (1− α) p I in BPe

”s =
1

2

(
gradu+ gradTu

)
Fluid filled fracture - BFr (high aspect ratio simplification)

Fracture flow: ṗ− δ2

12 ηfR
d̂iv ˆgradp̂+

1

δ βf
δ̇ = qlk in BFr

Initial, boundary and coupling conditions

Fracture surface force equilibrium: t± = −p̂ · n± on ΓFr
±

Fracture tip no flux condition: q̂ = 0 at Γf
tip

Fracture surface flux equilibrium: qlk =
wN
f

δ βf
on ΓFr

±

Seepeage velocity porous matrix: wN
f (x) = − ks

ηfR
gradp · n± on ΓFr

±

Notation
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Poro-elastic domain Bpe

ϕ - constituent ρϕ [kg/m3] - partial density
ϕs - solid constituent ρϕR [kg/m3] - effective density
ϕf - fluid constituent kf [m/s] - Darcy permeability
nϕ [-] - volume fraction ks [m2] - intrinsic permeability
α [-] - Biot-Willis parameter M [Pa] - Biot’s coupling parameter
φ [-] - porosity σs

E [Pa] - Cauchy extra stress
σ [Pa] - mixture stress tensor Ks [Pa] - grain bulk modulus
p [Pa] - pore pressure Kf [Pa] - fluid bulk modulus
γfR [kg] - effective fluid weight wf [m/s] - relative fluid flow
K [Pa] - dry frame bulk modulus G [Pa] - shear modulus
us [m] - deformation

Fracture Domain Bf

δ [m] - fracture aperture ηfR [Pa·s] - effective fluid viscosity
βf [1/Pa] - fluid compressibility p̂ [Pa] - fracture fluid pressure

4 Numerical Studies

Quantity Value Unit Quantity Value Unit

Poroelastic domain BPe

dry frame bulk modulus K 8.0 · 109 [Pa] grain bulk modulus Ks 3.0 · 1010 [Pa]
shear modulus μ 1.54 · 1010 [Pa] porosity φ 1.0 · 10−2 [-]
intrinsic permeability ks varies [m2] fluid compressibility βf varies [1/Pa]
Fracture domain BFr

effective fluid viscosity ηfR 1.0 · 10−3 [Pa·s] initial fracture aperture δ0 varies [m]
fluid compressibility βf varies [1/Pa]

Table 4.4: Collection of required modelling parameters in the poroelastic domain BPe and
fracture domain Bf .

The derived hybrid model for fractured porous media is applied to several numerical
studies in order to validate the implemented schemes and to investigate hydro-mechanical
phenomena. The weak and strong coupling approaches are validated based on solutions
obtained by Biot’s poroelastic formulation using an explicit discretization (equidimen-
sional model) of the fracture geometry. Since the weak coupling scheme allows for non-
conformal meshes of the fracture and the surrounding porous domain, the error evolution
for different discretization combinations is studied once the method is verified. Local
permeability changes due to fracture aperture fluctuations influence the pressure state;
hence a third study simplifies the problem assuming a rigid fracture to investigate the
pressure deviations due to a globally applied constant fracture change. For small fracture
deformations (constant permeability) the hydro-mechanically triggered inverse pressure
response is investigated for fractures embedded in different permeable porous matrices
in two dimensions. Finally, the influence of local permeability changes is investigated by
simulations of a three-dimensional fracture network. The decisive material parameters
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Quantity Value Unit Quantity Value Unit

Poroelastic domain BPe

intrinsic permeability ks 1.1 · 10−19 [m2] min fluid comp. βf
min 4.5 · 10−10 [1/Pa]

max fluid comp. βf
max 4.5 · 10−4 [1/Pa] sample length lPe 1.0 · 103 [m]

sample height hPe 5.0 · 102 [m]
Fracture domain BFr

min fluid comp. βf
min 4.5 · 10−10 [1/Pa] max fluid comp. βf

max 4.5 · 10−4 [1/Pa]
fracture aperture δ0 5.0 · 10−3 [m] fracture length lFr 1.0 · 102 [m]
pumping pressure p0 2.0 · 104 [Pa]
Numerical Parameter
time step size Δt 1.0 · 10−2 [s] fracture discret. in BFr ΔxFr

Fr 1.0 · 10−1 [m]
fracture discret. in BPe ΔxFr

Pe 1.0 · 10−1 [m] evaluation time t0 1.0 · 101 [s]
evaluation position x0 1.0 · 101 [m] error tolerance εmax 1.0 · 10−6 [-]
number of DoF 1.4 · 105 [-]

Table 4.5: Collection of parameters used for validation of the weak and strong coupling schemes.

Figure 6: Plot of the relative error εrel for the strong and weak coupling schemes (a) and
recommended compressibility range of application for both methods based on the necessary
number of iterations Niter of the fixed-strain and fixed-stress scheme for Low Compressibilities,
Moderate Compressibilities and High Compressibilities of the fluid (b).

x0 = 10.0 m using conformal meshes with element sizes of ΔxFr
Fr = ΔxFr

Pe = 0.01m along
the fracture for both domains. The varying fluid compressibility βf is investigated within
the limits of 4.5 · 10−5 Pa−1 to 4.5 · 10−10 Pa−1 (compressibility of water at 25◦C). The
relative error

εrel =
p̂(x1, t1)− p̂cb(x1, t1)

p̂cb(x1, t1)
, (4.37)

shown in fig. 6 (a) is continuously below 0.0035 for both schemes within the investigated
limits. Note that in eq. (4.37) p̂cb is the pressure of the converged poroelastic solution and p̂
the pressure solution obtained by either weak or strong coupling. The errors calculated for
the fixed-strain and fixed-stress split are identical since the same convergence criterion is
used. Such small errors do confirm not only the correct implementation of the introduced
schemes but also their suitability for such strong hydro-mechanically coupled problems.
The implementation of the proposed weak and strong coupling procedures reproduce the
results obtained by Biot’s poroelastic formulation like expected earlier in this work and
can equivalently be applied for fracture flow analysis in the field of hydromechanics.
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4.1.2 Efficiency Comparison

Since the weak coupling scheme relies on a staggered coupling of both domains, the
number of iterations to reach a converged state is varying with the system’s stiffness.
Regarding the hybrid-dimensional formulation, the stiffness of the system varies with the
fluid compressibility βf. Hence ranges need to be defined in which the non-conformal
mesh strategy has computational advantages over the strong formulation using interface
elements and vice versa. The regions are defined based on the number of iterations (fig. 6
(b)) necessary for the weak-coupling scheme to converge. The number of iterations varies
throughout the simulation since the convergence behavior is influenced by the pressure
gradient between two time steps. In the current boundary value problem, an initial
constant pressure p̂0 is applied. The first time step will require the most iterations to
reach equilibrium due to the highest pressure gradient; hence it is adducted throughout
the evaluation process as a numerical effort indicator. The number of iterations required
for the fixed-strain algorithm to reach convergence correspond to the compressibility of
the fluid. For fluid compressibilities between βf = 4.5 · 10−4 Pa−1 and βf = 4.5 · 10−5 Pa−1
the number of iterations is below 7. The low number of iterations in combination with the
potentially reduced number of global DoFs guarantees high performance of the fixed-strain
scheme for low fluid compressibilities. Within the range of moderate compressibilities
βf = 4.5 · 10−5 Pa−1 and βf = 4.5 · 10−6 Pa−1 the number of iterations increases to 38.
For any fluid compressibility lower than βf = 4.5 · 10−6 Pa−1 the fixed-strain scheme
is not suitable due to an unreasonably high number of iterations (1018 iterations for
βf = 4.5 · 10−10 Pa−1). In contrast, the convergence of the fixed-stress scheme is reached
within a low number of iterations throughout the whole range of fluid compressibilities
with a maximum of 18 iterations in case of βf

min.
For stiff systems, the strong coupling scheme and fixed-stress algorithm are recommended
to solve the coupled system of governing equations. Still, to compete with a directly solved
strong coupling formulation concerning computational efficiency the fixed-stress algorithm
must take advantage of the non-conformal mesh option to compensate the efficiency loss
due to additional iterations.

4.2 Non-Conformal Mesh Study - Sensitivity Analysis of Varying Discretiza-
tion for Fluid and Porous Domain

In section 4 the potential computational performance increase of the weak coupling scheme
based on the reduction of the global number of DoF by non-conformal meshing of the fluid
BFr and porous domain BPe was mentioned. Nevertheless, the quality of the obtained
solution for the primary variables should not decrease. This numerical study investigates
the solution quality dependence on different discretization combinations. The aim is to
define combinations that allow a reduction of the system’s number of DoF while main-
taining a high solution quality. Within the study two parameters vary to identify the
error evolution, namely the fracture discretization for the hybrid, one-dimensional model
ΔxFr

Fr and the mesh density for the higher dimensional porous matrix ΔxFr
Pe along the

fracture. For investigations of the error evolution of different discretization combinations,
the already introduced boundary value problem shown in fig. 5 (a) is adducted with a
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Quantity Value Unit Quantity Value Unit

Poroelastic domain BPe

intrinsic permeability ks 1.1 · 10−19 [m2] fluid comp. βf 4.5 · 10−6 [1/Pa]
sample length ls 1.0 · 103 [m] sample height ls 5.0 · 102 [m]
Fracture domain BFr

fluid comp. βf
min 4.5 · 10−6 [1/Pa] fracture aperture δ0 5 · 10−3 [m]

fracture length lFr 1.0 · 102 [m] pumping pressure p0 2.0 · 104 [Pa]
Numerical Parameter
time step size Δt 1.0 · 10−2 [s] fracture discret. in BFr ΔxFr

Fr,min 5.5 · 10−2 [m]
fracture discret. in BPe ΔxFr

Fr,max 1.0 · 101 [m] fracture discret. in BFr ΔxFr
Pe,min 5.5 · 10−2 [m]

fracture discret. in BPe ΔxFr
Pe,max 1.0 · 101 [m] error tolerance εmax 1.0 · 10−6 [-]

Table 4.6: Collection of parameters used throughout numerical studies on non-conformal meshes.
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Figure 7: Error matrix for discretization combinations with legend and visualized mesh densi-
ties for an interval of 10 m. The error is evaluated for for three positions x0, x1 and x2 at three
time-steps t0, t1 and t2.

moderate fluid compressibility of βf = 4.5 · 10−6 Pa−1. The material parameters used for
the non-conformal mesh study are given in table 4.6. The mesh-dependent error is calcu-
lated on the basis of the aforementioned numerically converged poroelastic solution shown
in eq. (4.37). The mesh density varies between Nmin

E = 10 and Nmax
E = 1800 elements

along the fracture. Calculated errors and discretization of the used meshes are displayed
in fig. 7. Note that the solutions obtained with the fixed-strain and fixed-stress approach
are identical since the same convergence criterion is applied ε ≤ εmax = 1.0 · 10−6 and
results of this study are valid for both schemes. Combinations involving coarse meshes
(NE ≤ 100) produce large errors if both domains are coarse εS

4F 4

rel = 1.08. An improve-
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ment of the error throughout the solution domain is investigated for a fine discretization
of the fluid domain S3F 1 more evidently than for a fine discretization of the porous do-
main S1F 3. In case of first approximations of the exact solution combination S3F 2 and
S3F 1 provide an opportunity to give a reasonable prediction with a low number of DoF.
For a fine discretization of the domains (NE ≥ 1000) all possible combinations provide
solutions with a high quality εerr < 0.006.
The weak coupling scheme has an advantage over the strong coupling whenever a first
prediction of a boundary value problem is of interest. It is possible to reduce the num-
ber of DoFs in the surrounding matrix domain BPe by a factor of 10 compared to the
discretization of the fracture domain BFr along the fracture surface which directly leads
to a reduction of computational effort. Nevertheless, for precise solutions, the discretiza-
tion of both domains must be adapted to the boundary value problem. Adaption of just
one domain does not lead to satisfactory results. The weak and strong coupling schemes
provide solutions of the same quality once similar discretizations of the domain are used
throughout simulations. Similar discretizations lead to a comparable number of DoF,
and effectively the non-conformal meshing strategy provides no advantage to the weak
coupling. Hence the strong coupling scheme is chosen for the following numerical studies
based on the efficiency of the method.

4.3 Influence of Aperture Change on Fracture Permeability

In case of hydro-mechanical investigations, the evolution of fracture aperture in time and
space is directly related to the deformation state of the surrounding poroelastic matrix
material and the effective permeability of the fracture domain. Since the aperture change
δc varies with time throughout the simulation, the effective permeability of the fracture
ks
Fr(u(x, t)) varies accordingly, see equation (4.10). Besides the negligible convective and
quadratic terms of the hybrid-dimensional formulation in the present case [208], it is of
interest in which ranges it is valid to reduce the non-linear diffusion term iv) (changing
fracture permeability δ(u(x, t)) and pressure p̂) to a purely linear expression by assuming
a constant permeability. Reducing the model premising a rigid fracture (∂δ/∂t = 0

Quantity Value Unit Quantity Value Unit

Fracture domain BFr

fluid comp. βf
min 4.5 · 10−10 [1/Pa] fracture aperture δ0 5.0 · 10−3 [m]

fracture length lFr 1.0 · 102 [m] pressure boundary posit. x̂0 0.0 [m]
pumping pressure p0 2.0 · 104 [Pa] min. aperture change δmin 5.0 · 10−10 [m]
max. aperture change δmax 5.0 · 10−3 [m]
Numerical Parameter
time step size Δt 1.0 · 10−5 [s] fracture discret. in BFr ΔxFr

Fr 1.0 · 10−2 [m]
evaluation time t0 1.0 · 10−2 [s] evaluation position x̂1 1.0 · 102 [m]
number of DoF 1.0 · 104 [-]

Table 4.7: Collection of parameters used throughout numerical aperture change studies for a
rigid fracture.

and δ(u(x, t)) = δ0) simplifies the system of governing equations to a one-dimensional
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Figure 8: Investigation of fracture change influence on diffusion process in a radial fracture;
(a) double logarithmic plot of pressure derivation Derp with respect to fracture aperture change
ratio rδc , (b) model parameters and sketch of simulation domain with boundary conditions and
investigation position p1.

decoupled problem and the hybrid-dimensional formulation is governed by terms i) and
the linear formulation of term iv). The boundary value problem is displayed in fig. 8. A
single fracture with a length of lf = 100m is stimulated by a pumping pressure p̂ = 20 kPa
at position x̂0 = 0.0m. The fracture aperture change δc is applied globally as δ = δ0 + δc
and deviation

Devp =
p̂(a, t1, δ0 + δc)− p̂(a, t1, δ0)

p̂(a, t1, δ0)
, (4.38)

is determined concerning the solution obtained with δ = δ0. The applied numerical and
material parameters are given in table 4.7. Fracture aperture changes in the limits of δmin

c

and δmax
c are conducted to investigate their influence on the resulting pressure deviation.

Eq. (4.38) is evaluated after 1000 timesteps at t0 = 0.01 s and position x̂1 concerning
the fracture change ratio rδc = δc/δ. The results are plotted with a double logarithmic
scale shown in fig. 8 (a). As highlighted in the graph, the pressure deviation increases
linearly (slope mδc = 1) with the fracture change ratio. Nevertheless, for ratios rδc ≤ 0.01
the deviation is smaller than 2% when compared to the reference solution received with
aperture δ = δ0.
To strengthen the reduced prediction model a second boundary value problem is conducted
using the set up introduced for validation in section 4 with identical parameters given in
table 4.5 and a fluid compressibility of βf = 4.5 · 10−10 Pa−1. In contrast to the simplified
rigid fracture assumption, the complexity is increased by assuming a deformable fracture
and requires the hybrid dimensional formulation defined by terms i), iv) and v), coupled
to the poroelastic domain. The reference case is modeled with the linear formulation
of term iv) assuming a constant permeabilty ks

Fr(δ0) throughout the simulation. This
solution is then compared after 1000 time steps at t2 = 10.0 s to the results calculated
with the non-linear form of term iv) by assuming a aperture dependent permeability
ks
Fr(u(x, t)). At time t2 the maximum local aperture change within the fracture is δmax

c =
1.81 · 10−5m which is equivalent to a ratio of 0.004. Based on the introduced prediction
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model a deviation of approximately Devp ≈ 0.0092 is expected. Like stated above, the
conservative assumptions result in an overestimation of the aperture change influence
which is confirmed by the deviation Devp = 0.0039 obtained with the hydro-mechanical
model. Still, the conservative prediction model gives deviations in the same order of
magnitude and is a sufficient estimator to determine whether fracture aperture changes
are relevant for calculations regarding the change of fracture permeability. For small
deformations (rδc < 0.01), it is reasonable to assume constant permeabilities throughout
the following two-dimensional hydro-mechanical simulations. In case of large fracture
deformations (rδc > 0.01) permeability changes need to be considered to reproduce the
pressure state correctly.

4.4 Pressure Induced Hydro-Mechanical Response - Fracture Stimulation

Hydro-mechanical coupling of fluid-filled fractures in deformable poroelastic media in-
cludes pressure induced phenomena like the Noordbergum effect [107]. Throughout frac-
ture stimulations, the mechanical response in the form of non-local deformations is faster
than the pressure diffusion within the fracture. The volumetric change of the fracture
influences the pressure state, e.g., in a borehole during well testing where inverse pressure
responses can be measured. Calculating accurately the inverse pressure response poses
high demands on numerical simulation techniques and will therefore be investigated in
further detail to demonstrate the efficiency and accuracy of the proposed algorithms. The

Quantity Value Unit Quantity Value Unit

Poroelastic domain BPe

intrinsic permeability ks
1 1.1 · 10−19 [m2] intrinsic permeability ks

2 1.1 · 10−5 [m2]
fluid comp. βf 4.5 · 10−10 [1/Pa] sample length lpe 1.5 · 103 [m]
sample height hpe 1.0 · 103 [m]
Fracture domain BFr

fluid comp. βf
min 4.5 · 10−10 [1/Pa] fracture aperture δ0 5.0 · 10−4 [m]

fracture A length lFr
A,l 7.0 · 102 [m] fracture B length lFr

B,l 2.0 · 102 [m]
fracture B height lFr

B,h 1.0 · 102 [m] fracture discret. ΔxFr 1.0 · 10−2 [m]
Numerical Parameter
time step size Δt 1.0 · 10−2 [s] number of DoF 2.3 · 105 [-]

Table 4.8: Collection of parameters used throughout hydro-mechanical response studies.

validated strongly coupled hydro-dimensional formulation is applied to a fracture stim-
ulation problem with the boundary conditions shown in fig. 9. Corresponding material
parameters are given in table 4.8. Two different phenomena are investigated. Besides the
fluid pressure evolution within the main fracture A (inverse pressure response), shown in
fig. 9 (b), the pressure response within T-shape fracture B induced by the deformation
of the surrounding medium, displayed in fig. 10, are analyzed. Note that the pressure p̂
in the graphs correspond to a pressure difference concerning an initial geostatic pressure.
The fluid within the surrounding porous rock matrix BPe and fracture BFr possesses
a compressibility of βf = 4.5 · 10−10 Pa−1. A high aspect fracture with an aperture of
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Figure 9: Discretization and boundary conditions used for the hydro-mechanical response
studies.

δ0 = 5.0 · 10−4m is modeled. Examination of leak-off and its influence on the pressure
response within the fluid-filled fracture is studied by assuming two different extreme cases
of permeabilities ks

1 = 1.1 · 10−19 m2 and ks
2 = 1.1 · 10−5 m2 for the surrounding poroelastic

matrix.

Focusing on the pressure distribution along fracture A the inverse pressure is evident at
time step t0. For both permeabilities of the surrounding poroelastic matrix, the pressure
decreases when compared to the initial geostatic pressure due to non-local deformation
of the fracture. For permeability ks

2 the inverse response is less strong since the leak-off
into the surrounding high-permeable medium leads to a smearing effect on the pres-
sure distribution within the fluid filled fracture and is noticeable for an advanced time
step t1 where both pressure distributions differ evidently. The pressure state within a
fracture surrounded by a medium with a low permeability ks

1 is ahead of the fluid pres-
sure within a fracture surrounded by more permeable (permeability ks

2) porous matrix.
Leak-off harms the diffusion process within the fracture which results in a lower pres-
sure state. Pressure changes in the T-shape fracture B are not directly induced by the
pressure Dirichlet boundary conditions, but mainly through the deformation triggered by
the pressure change within fracture A. Most interesting is that the Noordbergum effect
causes a local closing of main fracture A at t0 that translates in an opening of the hori-
zontal part of T-Shape fracture B. The volume change of the horizontal fracture induces
a negative pressure response. Due to the geometrical nature of a T-shape fracture, once
the horizontal part opens up, the vertical fracture part closes, and a pressure rise along
its direction is notable. At time t1 the advanced fluid pressure along main fracture A
leads to an opening orthogonal to its direction that causes a closing of the horizontal
part of T-shape fracture B. Due to the negative volume change a pressure rise results.
The vertical part is influenced by the pressure rise and opens up slightly. The positive
volume change harms the pressure diffusion process along the vertical direction. Hence
the pressure level is lower than its counterpart in horizontal direction. Again for different
permeabilities the pressure levels differ for t1. The leak-off into the surrounding medium
reduces the pressure within fracture B.
Reproduction of the pressure-induced hydro-mechanical phenomena within a fluid-filled
fracture through passive (deformation) and active (pumping) stimulation using the hybrid-
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Figure 10: Semi-logarithmic pressure distribution along fracture A for time steps t0 = 5.0 ·
101 s and t1 = 5.0 · 104 s are displayed along with pressure distributions in horizontal (green)
and vertical (red) direction within T-shape fracture B for two differing permeabilities of the
surrounding matrix. The pressure solutions in fracture A obtained at time t0 are plotted with
plane lines and solutions obtained at t1 with dashed lines.

dimensional formulation has been numerically investigated by the introduced boundary
value problem. The formulation is capable to model pumping experiments and to re-
produce the key phenomena concerning hydro-mechanical coupling induced by pressure
fluctuations for radial symmetric three-dimensional geometries.

4.5 Deformation Dependent Permeability - Three-Dimensional Fracture Stim-
ulation

Large relative aperture changes in high aspect ratio fractures occur even for small absolute
deformations. It is recommended to take aperture dependent permeabilities into account
throughout pressure diffusion simulations once rδc > 0.01 (see 4). The aperture change is
directly related to the pressure state and the geometrical stiffness of the fracture. Espe-
cially in three dimensions, the stiffness of fractures influences their opening and closing
during pressure stimulations resulting in preferential flow paths due to inhomogeneous
permeabilities. This numerical study investigates the deviation of pressure solutions of a
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Quantity Value Unit Quantity Value Unit

Poroelastic domain BPe

intrinsic permeability ks
Pe 1.1 · 10−19 [m2] fluid comp. βf 4.5 · 10−10 [1/Pa]

poroel. domain length in le1 4.0 · 102 [m] poroel. domain length in le2 2.0 · 102 [m]
poroel. domain length in le3 4.0 · 102 [m] cross-section area AΓcon

1
4.2 · 10−4 [m2]

connection cross-section AΓcon
2

2.5 · 10−5 [m2]
Fracture domain BFr

fluid comp. βf
min 4.5 · 10−10 [1/Pa] fracture aperture δ0 5.0 · 10−4 [m]

fracture domain length lFr
ê1

2.0 · 102 [m] fracture domain length lFr
ê1

1.6 · 102 [m]
fracture center height cFr

e1
2.0 · 102 [m] fracture center distance cFr

e3
2.0 · 102 [m]

Numerical Parameter
time step size Δt 5.0 · 103 [s] error tolerance εNL

max 1.0 · 10−6 [-]
DoF 4.3 · 105 [-]

Table 4.9: Collection of parameters used throughout deformation dependent permeability stud-
ies. Note that the cross-sections AΓcon

1
and AΓcon

2
were determined based on the initial frac-

ture aperture δ0. εNR defines the error between iterations of the Newton-Raphson scheme and
εNR < εNR

max convergence criterion throughout the non-linear simulation.

Figure 11: Sketch of fracture (white) and porous domain (blue) is displayed in (a). Discretiza-
tion of the three-dimensional geometry is shown in (b).

constant compared to an aperture dependent permeability for three connected fractures in
three dimensions. Parameters of the simulation are given in table 4.9, and the geometry
along with the discretization of the boundary value problem is shown in fig. 11. The
fractures are placed in the same plane, where fracture 1 is connected to fracture 2 and 3
via cross-sections ΓCon

1 and ΓCon
2 .

The displacement DoF on the poroelastic domain’s boundaries are fixed in the direction
normal to its surface and pressure p̂0 is induced in the center of fracture 1 on a length
of 1.5m. It is supposed that the apparent difference between cross-section areas AΓCon

1



65

and AΓCon
2

initiates a dominant flow from fracture 1 into fracture 3 rather than into frac-

ture 2. Additionally, since cross-section ΓCon
2 weakens the surrounding geometric stiffness

stronger than ΓCon
1 higher aperture changes and hence higher permeabilities in the direc-

tion of fracture 3 are expected.
The pressure states at times t0 = 7.5 ·105 s, t1 = 4.0 ·106 s and t2 = 8.25 ·106 s for pressure
values p̂ obtained by a constant and an aperture dependent permeability along with the
permeability distribution are given in fig. 12. For t1 the pressure evolution takes mainly
place within fracture 1. For both pressure distributions the inverse pressure response can
be examined; for the deformation dependent permeability stronger than for the constant
permeability solution. Even at an early stage, an apparent difference between both so-
lutions can be found due to much higher permeabilities close to the pressure stimulation
point. The constant permeability measures ks

c = 8.3 · 10−12m2 calculated based on δ0
and is by the factor of approx. 10 lower than the deformation dependent permeability
ks
Fr,up = 8.2 ·10−11m2 around the point of pressure initiation. Nevertheless, at t0 no state-
ment about the influence of the permeability distribution on the flow direction towards one
of the connected fractures can be made since the pressure solution evolved radially within
fracture 1. For time t2 the pressure solutions differ vastly. The deformation dependent
permeability already shows a clear trend towards a higher permeability in the direction
of fracture 3. This might influence the flow path decisively. Nevertheless, since the
pressure evolution for the constant permeability calculations is still limited to the region
of fracture 1, no statement about the influence of the aperture dependent permeability
on the effective flow is possible. The maximum permeability value is approx. 40 times
higher than the constant permeability. For time t3 the pressure diffusion advanced far
into fracture 3 and barely into fracture 2 for the non-linear case. The solutions obtained
with a constant permeability shows a slightly faster pressure distribution into fracture 3,
but the difference is not evident. The difference of the pressure state of fracture 2 and
fracture 3 is much higher for the calculations using a deformation-dependent permeability
than for calculations with constant permeability and shows its influence on the pressure
evolution. The absolute pressure difference between both solutions is explicit since the
maximum permeability value is 60 times higher for the aperture dependent compared to
the constant permeability value. A maximum number of 6 iterations were needed for the
Newton-Raphson scheme to converge for the non-linear case in the first two time-steps.
Throughout the rest of the simulation, convergence was reached within 3 to 5 iterations.
This study has shown the influence of aperture dependent permeabilities for the case of
substantial aperture changes. Strongly differing solutions in the diffusion time and for
the diffusion direction motivate the non-linear formulation of the permeability throughout
simulations containing large aperture changes.

5 Technical Details

Implementation work of the strong coupling scheme includes the extension of the Dune-
PDELab package to lower dimensional element integrations within the DUNE framework
[15]. Slight modifications to the assembly procedure of the global system and introduction
of new local operators on element level guarantee the maintenance of the high computa-
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Figure 12: Plots of the pressure p̂ obtained with a constant and a deformation dependent
permeability along with a distribution of the displacement dependent permeability are shown
for three different times. Pressure p̂ is the pressure difference concerning an initial geostatic
pressure. Note that the grey isosurface in the pressure plot represents the pressure difference
p̂ = 0Pa and in the permeability plots the initial permeability obtained with δ0 .

tional efficiency of the C++ (template metaprogramming) based package. Non-conformal
mesh calculations have been implemented into the FEniCS environment [6]. Both weak
coupling schemes, namely the fixed-strain and fixed-stress strategy have been embedded
in a flexible Python-based framework that allows interaction of discretizations of different
dimensions.
Fracture discretization is challenging especially when interface elements are introduced.
Hence the GMSH API [71] has been consulted to generate an environment that allows
mesh creation of fracture networks including the generation of interface elements.

6 Conclusions

This work focused on the numerical formulation and validation of methods suitable to
solve hydro-mechanical phenomena of compressible fluids using the proposed hybrid-
dimensional formulation. An implicit weak coupling scheme, naturally able to perform
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non-conformal mesh calculations and a strong coupling scheme in the form of interface el-
ements were introduced. Validation of both methods based on Biot’s formulation showed
the ability to reproduce hydro-mechanical phenomena of interest like the Noordbergum
effect. Further advantages and disadvantages of both methods were studied. The fixed-
strain scheme has been proven to be effective for high fluid compressibilities only. An error
evolution for different fine discretization of fluid and porous domain has been investigated,
and references for the preferred coupling scheme based on the relative error were given.
The strong coupling and fixed-stress scheme were able to solve stiff systems with low fluid
compressibility. Implementation of the strong coupling scheme is intuitive since an exis-
tent FEM framework requires small modifications for the integration of interface elements
only. Since a displacement-pressure-formulation of the surrounding poroelastic material
has been conducted, the same global assembly matrix is used for the hybrid-dimensional
interface elements. The weak coupling and especially implementation of non-conformal
mesh coupling requires more implementation work.
Pressure induced boundary value problems have been performed for different material pa-
rameters of the surrounding porous matrix in two and three dimensions. Both stimulation
types showed the ability of the strong coupling scheme to solve research questions in the
field of fractured porous media even for complex fracture geometries such as well test-
ing and non-linear three-dimensional simulations. For large changes of the aperture, the
importance of a deformation-dependent permeability throughout simulations have been
shown. Both proposed methods in combination with the hybrid-dimensional formulation
are capable of modeling high aspect ratio fractures and reproduce hydro-mechanical ef-
fects including leak-off where modeling approaches, that neglect the influence of fracture
deformation would fail.
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Investigations into the opening of fractures during hy-
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Abstract We applied a hybrid-dimensional flow model to pressure transients recorded
during pumping experiments conducted at the Reiche Zeche underground research labora-
tory to study the opening behavior of fractures due to fluid injection. Two distinct types
of pressure responses to flow-rate steps were identified that represent radial-symmetric
and plane-axisymmetric flow regimes from a conventional pressure-diffusion perspective.
We numerically modelled both using a radial-symmetric flow formulation for a fracture
that comprises a non-linear constitutive relation for the contact mechanics governing re-
versible fracture surface interaction. The two types of pressure response can be modelled
equally well. A sensitivity study revealed a positive correlation between fracture length
and normal fracture stiffness that yield a match between field observations and numer-
ical results. Decomposition of the acting normal stresses into stresses associated with
the deformation state of the global fracture geometry and with the local contacts indi-
cates that geometrically induced stresses contribute the more the lower the total effective
normal stress and the shorter the fracture. Separating the contributions of the local con-
tact mechanics and the overall fracture geometry to fracture normal stiffness indicates
that the geometrical stiffness constitutes a lower bound for total stiffness; its relevance
increases with decreasing fracture length. Our study demonstrates that non-linear hydro-
mechanical coupling can lead to vastly different hydraulic responses and thus provides an
alternative to conventional pressure-diffusion analysis that requires changes in flow regime
to cover the full range of observations.

1 Introduction

Estimation of a reservoir’s effective hydraulic properties requires a consistent analysis of
experimentally determined pressure and flow transients [60, 133]. For individual fractures,
simple analytical models for pressure-diffusion have been applied when their intersection
with boreholes classified them as axial or radial [25, 92, 125, 126]. Analytical models
based on solutions of the diffusion equation for constant flow-rate tests document distinct
differences in pressure response for one-dimensional and radial flow associated with axial
and radial fractures, respectively. Rocks with a dense array of randomly oriented fractures
may justify their treatment as porous media, leading to radial flow, too. Mathematically,
the full range of responses can be addressed by regarding the dimension of the flow to
be a parameter [13]. However, hydro-mechanical phenomena, such as reverse water-level
fluctuations in distant monitoring wells [107, 162] or insensitivity of pressure responses to
increases in flow-rates, so called jacking [152], cannot be reproduced by pressure diffusion
models and result in inaccurate approximations of the effective fracture characteristics [33,
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131, 206]. Despite the growing number of treatments of hydro-mechanical coupling [38,
72, 73, 131, 177], the understanding of the influence of basic geometrical and mechanical
properties of fractures on their hydraulic response to flow-rate or pressure perturbations
remains limited; a critical obstacle to, e.g., the development of geothermal energy provision
from petrothermal reservoirs.

Non-local fracture deformations triggered by perturbations of the fluid pressure along a
fracture induce changes in permeability and volume of fractures with a direct impact on
flow and storage characteristics and therefore on how the perturbations evolve with time
and spread in space [19, 151, 206, 207]. Accounting for hydro-mechanical interaction
throughout numerical fitting of pressure and flow-rate transients is a non-trivial task and
requires consistent evaluation of the balance equations in an efficient manner. Evalua-
tion of fracture opening or closing in response to a perturbation of the equilibrium state
requires considering the acting normal stresses owing to their control on the mechanical
interaction between the fracture surfaces in contact. For example, large numbers of single
Hertzian contacts have been invoked to characterize the mechanical interaction of two
mated fracture surfaces [40, 77, 197]. Responses of these contacts to changes in shear and
normal stress result in changes of the effective fracture aperture [12, 75]. Fracture opening
does not depend on local contact mechanics alone but also on the geometrical stiffness of
the fracture [131]. Despite the importance of fracture stiffness for the interpretation of
pumping operations, little work has been devoted to decompose these two contributions.

Here, we analyze pressure transients from pumping tests conducted at the Reiche Zeche
underground research laboratory, where the injection borehole penetrates a fractured rock.
From a classical pressure-diffusion perspective, the hydraulic responses of the tested in-
tervals mimic that of either radial-symmetric (positive-tangent group) or axial-symmetric
(pressure-plateau group) fractures. Yet, logging and impression-packer results do not
support this simple association of fracture geometry and hydraulic response. We employ
a hydro-mechanical model considering radial-symmetric conditions, as applying for a ra-
dial fracture following a monolithic numerical implementation [177] to study the origin
of the distinct pressure transients. Specifically, we studied the sensitivity of the hydro-
mechanical model to the variation of characteristic fracture properties to identify best fits
to the field data and the interdependence between the characteristic fracture properties.

2 Test site and experimental approach

2.1 The Reiche Zeche underground research laboratory

As part of the research program of STIMTEC, a cooperative project investigating the
creation and growth of fractures in crystalline rocks to develop and optimise hydraulic
STIMulation TEChniques [50, 156], we performed hydraulic tests in the research mine
Reiche Zeche (Rich Mine), Freiberg (Germany). The average depth below surface is about
130 m at the test site. The foliation of the fine- to medium-grained biotite gneiss dips 5
to 15◦ in south-east-direction. The gneiss is penetrated by fairly randomly oriented joints
with an average separation of several decimeters. Fracture counting on retrieved cores
yield 4.4±2.5 1/m, but intact sections with a length of 1 to 2 m occur. In the test volume
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of about 40 m × 50 m × 20 m, two to three steeply dipping, east-west trending damage
zones were identified with a variable width between decimeters and a few meters.

The injection borehole BH10 with a length of 63 m and a radius of 0.038 m has a strike
of N31◦E and a dip of 15◦ from the horizontal and thus the borehole axis intersects the
foliation at an angle of 20 to 30◦. Ultrasonic transmission of the test volume as well as
laboratory experiments on cores revealed a pronounced anisotropy in elastic parameters.
Ultrasonic velocities are up to 20 % faster in the direction of the foliation than perpen-
dicular to it. Dynamic and static Young’s moduli in the two directions differ by 10 to 15
%, with the low modulus observed for loading perpendicular to the foliation [2].

2.2 Experimental procedure

Experiments were performed with a double-packer probe of Solexperts GmbH, Bochum,
Germany, consisting of two inflatable packers isolating an injection interval of about 0.7
m length. The probe is equipped with uphole and downhole pressure gauges, and an
uphole flowmeter, all sampled with 0.2 s. Flowrates measured uphole, i.e., outside of the
borehole at the pump, were corrected for the storage capacity of the injection system to
derive the true flow into the rock. The storage capacity was determined in a calibration
experiment, for which the probe was inserted in a hollow steel cylinder.

The uniformly applied pumping protocol comprised a sequence consisting of a) injection
(with rates of 2–10 l/min) until breakdown pressure was reached, the fracking, and sub-
sequent shut-in phase, b) three repeat injections, the refracs, with moderate rates of 3
l/min at maximum, each again followed by a shut-in phase, and c) step-rate tests in-
volving several phases of injection with constant flow rates, successively increased from
below 1 l/min to about 5 l/min. The pressure response in these step-rate tests constrains
the jacking pressure, the fluid pressure at which the fracture(s) intersecting the borehole
wall open. Opening is indicated by a significant increase in injectivity, the ratio between
flow-rate and pressure. Impression-packer tests were performed after the entire pumping
sequence to document fracture traces on the borehole wall.

2.3 Intervals and selected data sets

The data used here represent part of the results of the step-rate tests performed in six
intervals at depths of 24.6 m, 40.6 m, 49.7 m, 51.6 m, 55.7 m, and 56.5 m. Logging
before and after fluid injection with an acoustic televiewer and the impression-packer tests
revealed pre-existing and induced fractures with a range of orientations (Table 4.10). We
consider the circumferential fracture traces to represent radial fractures even though they
do not intersect the borehole axis at a right angle as strictly required. In addition, the
traces classified as “axial” do not match this end-member geometry in a strict sense but
their tilt to the borehole axis is typical of en-echelon hydro-fractures occurring in boreholes
that do not follow a principal stress axis [226]. Actually, the short traces of interval 51.6
m are not well constrained at all. Furthermore, it is impossible to associate the observed
pressure transients with a specific fracture trace when intervals exhibit multiple traces.
This situation is not unusual but representative of what an interpreter typically faces
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when tests are performed in crystalline rocks.

Table 4.10: Interval characteristics.

depth label† tp1/3
‡ tsi1/2

ᵀ orientation of fracture traces

(m) (s) (s)

24.6 M t
a �433 �226 1 parabola-shaped, induced

40.6 M t
b 10 >170 1 pre-existing circumferential; 2 axial, induced

49.7 Mp
b 24 8 1 pre-existing, circumferential; 2 parabola-shaped, pre-existing; 1 pair axial, induced

51.6 Mp
a 7 3 several short axial

55.7 M t
c 6 28 1 pre-existing circumferential; 1 pair axial, induced

56.5 Mp
c 3 33 1 pre-existing circumferential; 1 axial, induced

† classification of data set (Figure 1)
‡ time it took for a pressure pulse to decay by 1/3 before the stimulation phase
ᵀ time it took for pressure to decay by 1/2 during the shut-in phase after the step-rate
test

We selected three to five of the first low flow-rate steps for the six intervals (Table 4.10,
Figure 1). The selection aimed to restrict to pressure and flow-rate couples, for which
the proposed elastic model most likely applies. For some intervals, seismic activity was
observed and therefore its absence during flow-rate steps could be used as criterion for
“elastic” response. The pressure transients induced by the step-wise increase of flow rate
differ for the six intervals. We distinguish two groups of pressure evolution during a step.
Pressure responses with flat tangents are evident in data sets Mp

a to Mp
c , a subset of our

data that we will address as “pressure-plateau group”. In contrast, the data sets M t
a to

M t
c exhibit continuously increasing pressure, the “positive-tangents group”. For either

group, however, the sensitivity of pressure level to flow rate diminishes with increasing
flow rate, the observation interpreted as jacking.

3 Numerical method

When the aim is characterization rather than modification, hydraulic testing of fractures
is performed below critical pressures for fracture extension, e.g., indicated by a decrease
in injection pressure during constant-rate pumping. Breakdown is often related to tensile
hydro-fracturing or when occurring over extended time periods or in a succession of small
drops probably related to shearing events, either possibly accompanied by characteristic
seismic activity. For tests performed at moderate injection pressures, fracture length
can thus be treated constant and effects of changes in shear stress and therefore shear
stiffness can be neglected. Fractures induced by hydraulic fracturing are expected to be
oriented normal to the direction of the least principal (compressive) stress [93] so that they
intrinsically fulfill the assumption of negligible shear stress. In the context of hydraulic
characterization of fractures, their contact mechanics may thus be reduced to an account
of their normal stiffness [145]. Hence, we apply a hydro-mechanical model considering the
constitutive relation of normal contact following a monolithic numerical implementation
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Figure 1: The step-rate test data selected from the six intervals is divided in the pressure-
plateau group labeled with Mp and the positive-tangent group labeled with M t. The dark blue
lines represent the recorded pressure data, the dark green lines the step-wise increasing flow-rate,
and the dotted grey lines represent tangents to the pressure transient at the end of a flow-rate
step.

[177] for the numerical determination of characteristic fracture parameters, initial width
or aperture δhyd0 and normal stiffness parameter EFr. The third characteristic parameter,
the fracture length lFr, is an element of the modelled fracture-domain discretization. The
model’s central aspects are recapitulated in the following, before details of the performed
parameter search are presented.

3.1 Governing equations

Flow processes of weakly-compressible, viscous fluids in high-aspect ratio fractures mo-
tivate the assumption of creeping flow conditions between two locally parallel plates,
for which the balance of momentum reduces to a Poiseuille-type formulation [206, 216],
i.e., the relative fluid velocity wf is proportional to the pressure gradient grad p. In our
continuum description, the associated cubic law

wf = −
(
δhyd(u)

)2
12 ηfR

grad p =: −ks
Fr

ηfR
grad p (4.39)

is locally evaluated in the fracture domain ΓFr, i.e., on the level of a material point
P(x, t), where x denotes its position vector, u(x, t) = x − X the fracture deformation
relative to the reference position vector X, t time, and ηfR the dynamic fluid viscosity.
The locally evaluated, deformation-dependent permeability is identified as ks

Fr(x, t) =
(δhyd)2/12 considering δhyd(u(x, t)) to be the local effective hydraulic fracture aperture.
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The hybrid-dimensional formulation is obtained by inserting the balance of momentum
into the balance of mass, derived for a deformable fracture. The outcome of a dimensional
analysis of the resulting partial differential equations suggests that quadratic and convec-
tive terms are negligible [206–208]; the accordingly reduced hydro-mechanical governing
equation reads

∂p

∂t︸︷︷︸
i)

− (δhyd)2

12 ηfRβf
div (grad p)︸ ︷︷ ︸
ii)

+
1

δhyd βf

∂δhyd

∂t︸ ︷︷ ︸
iii)

=
qlk

δhyd βf︸ ︷︷ ︸
iv)

, (4.40)

comprising a transient i), a diffusion ii), a coupling iii), and a leak-off term iv), where
βf denotes the fluid compressibility, and qlk leak-off, i.e., the flow-rate from the fracture
into the surrounding rock mass. The deformation dependent effective fracture aperture
δhyd(u(x, t)) contributes to the characteristic diffusion process by term ii) and to volume
changes of the fluid domain by term iii), which strongly couples the solution of the fracture-
flow domain to the deformation state of the surrounding matrix.

The rock matrix surrounding the fracture might be treated by purely elastic or by biphasic
poro-elastic, e.g., Biot’s theory [20], formulations depending on the application in mind.
For the typically substantial difference in the characteristic times of pressure diffusion in
the fracture and in a surrounding crystalline rock, a biphasic description results in oscil-
lations of the pore-pressure solution, when time discretization and material properties are
chosen in the relevant range to model the conducted field experiments. Hence, this work
refrains from treating the matrix by Biot’s coupled poro-elastic theory but approximates
the material behavior with Gassmann’s low-frequency result [66, 127].

The intact gneiss exhibits a permeability < 10−20 m2 [2]. Thus, leak-off from a fracture,
into which fluid is injected from a borehole, into the “surrounding” is controlled by its
intersection with other fractures. The hydraulic testing in BH10 revealed that the pre-
existing fractures in the gneiss exhibit vastly variable hydraulic properties, as for example
evidenced by the results of the pressure-pulse tests (Table 4.10). We thus face a range
of possible scenarios for the induced or pre-existing fractures intersecting the borehole.
They may intersect only poorly permeable pre-existing fractures or linking up with a
highly permeable pre-existing fracture. We consider either scenario to be suitable for an
approximate description that neglects leak-off. For the second scenario, our modeling will
simply gain the equivalent properties of a single fracture, since a variation of properties
along a fracture is not tackled and thus a distinction of “individual” fracture segments
composing a conduit is not possible. Neglecting leak-off likely overestimates “effective”
length because all of the injected fluid volume has to be stored in the fracture. Applying
a single fracture model with fixed geometry to the encountered spectrum of fractures
(Table 4.10) intends to test the versatility of the model and to determine equivalent
fracture properties in a consistent way.

3.2 Constitutive relations

Traditionally, normal contact models are expressed in terms of fracture deformation rel-
ative to the position corresponding to the first, stress-free contact of the two fracture
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Figure 2: Initial and maximum deformation state of two fracture surfaces in contact for s0 > 1
and δmech

min = 0. The preferential direction of the flow q is assumed to be normal to the sketched
cross section of the fracture. Effective hydraulic and mechanical aperture represent the averaged
local quantities on the continuum scale.

surfaces, describing fracture closing by positive deformation values [12, 70]. For the re-
sponse of the fracture to changes in normal stress, we use a modified non-linear elastic
constitutive relation based on the model proposed by Gens et al. (1990) and Segura &
Carol (2008)

σFRN = EFr U e

Umax − U e
, (4.41)

that characterizes the normal elastic deformation U e of an interface with two parameters,
the initial stiffness at vanishing normal stress, EFr, and the maximum displacement for
infinite stress Umax. To be consistent with the governing flow eq. (4.12), we formulate
(4.41) in terms of relative aperture changes

U e = −(δhyd − δhyd0 ) = −(δmech − δmech0 ) = −Δδ,

Umax = −Δδmax = −(δmechmin − δmech0 ),
(4.42)

where the fracture deformation U e is defined as changes of the effective hydraulic and
mechanical aperture δhyd and δmech relative to their initial values δhyd0 and δmech0 , respec-
tively. The maximal deformation Umax is defined with respect to the difference between
the minimal mechanical fracture aperture δmechmin , approached for infinite normal stress, and
the initial mechanical aperture δmech0 > δmechmin (Figure 2). Neither absolute values of nor
changes in mechanical and hydraulic apertures of fractures do have to coincide; particu-
larly true once contact is established and the effective values of these aperture measures
strongly depend on contact details and percolation characteristics in the fracture plane
[146]. To account for differences in deformation-induced changes of the mechanical and
hydraulic fracture properties, we introduce the dimensionless parameter s0. The param-
eter defines a relative deviation δmech0 = δhyd0 /s0 of the initial mechanical aperture δmech0

from the initial hydraulic aperture δhyd0 . For s0 = 1 the initial hydraulic aperture coincides
with the initial mechanical aperture, δmech0 = δhyd0 and the minimal mechanical aperture
becomes equivalent to the minimal hydraulic aperture δmechmin = δhydmin. Requiring s0 > 1
ensures δhydmin > δmechmin . The resulting hydraulic and mechanical fracture apertures are then
expressed as

δhyd = δhyd0 +Δδ,

δmech = δhyd0 /s0 +Δδ.
(4.43)
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Inserting (4.43) into (4.42) and then into (4.41) gives

σFrN = −EFr Δδ

(
δ
hyd
0

s0
+Δδ)− δmechmin

. (4.44)

In principle, coupled hydro-mechanical simulations of deformable fractures require to
numerically determine the equilibrium state of a fracture before the perturbation of its
mechanical state, here associated with the pumping operations. Instead, we reformulate
(4.44) using the aperture δmecheq = δhydeq /s0 that reflects the unperturbed in-situ normal
stresses σFrN,eq, where δ

hyd
eq is the hydraulic equilibrium aperture:

ΔσFrN = σFrN − σFrN,eq

= −EFr

⎡
⎢⎢⎣ Δδ(

δ
hyd
0

s0
+Δδ

)
− δmechmin

−

(
δmecheq − δ

hyd
0

s0

)
δ
hyd
0

s0
+

(
δmecheq − δ

hyd
0

s0

)
− δmechmin

⎤
⎥⎥⎦ , (4.45)

i.e., we shift the reference state of the fracture to the in-situ stress level, the mechanical
equilibrium state. Simple manipulations yield the relation in its implemented form by
introducing the normal stiffness parameter of the equilibrium state EFr

eq in a second step

ΔσFrN = −
⎡
⎣EFr

δ
hyd
0

s0
− δmechmin

δmecheq − δmechmin

⎤
⎦ Δδeq
(δmecheq +Δδeq)− δmechmin

= −EFr
eq

Δδeq(
δ
hyd
eq
s0

+Δδeq

)
− δmechmin

, (4.46)

where Δδeq = δmech − δmecheq defines the change in aperture from its equilibrium value.

The reduction of the numerical model to a single fracture embedded in the effectively
impermeable surrounding gneiss results in negligible fluid exchange between fracture and
solid domain similar to undrained conditions. Furthermore, the contribution of shear
forces is negligible due to the low viscosity of the pore fluid, water, and the low frequency
of the perturbations induced by the step-rate tests (� 100Hz). Therefore, we treat
the surrounding matrix by a single phase formulation and neglect the leak-off term iv)
in eq. (4.12). The deformation state of the linear-elastic rock matrix, embedding the
fracture, is then characterized by effective bulk modulus Keff and shear modulus μeff

Keff =
φ0

(
1
Ks − 1

Ks

)
+ 1

Ks − 1
K

φ0

K

(
1
Ks − 1

Ks

)
+ 1

Ks

(
1
Ks − 1

K

)
μeff = μ

(4.47)

representing Gassmann’s low frequency result [66, 127]. In eq. (4.47), φ0 denotes the
initial porosity of the porous matrix, Ks the (average) modulus of the compressible grains
composing the matrix, K and μ the bulk and the shear modulus of the dry skeleton, and
Ks the bulk modulus of the fluid.
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3.3 Model parameters

The flow model requires input values for the elastic parameters of the matrix, K and μ,
the fluid bulk modulus K f, the equilibrium fracture opening δhydeq , the minimal mechanical
fracture opening δmechmin , the equilibrium-normal stiffness parameter EFr

eq , the dimensionless
contact parameter s0, and flow-boundary conditions for the intersection of the fracture
plane with the borehole, as prescribed by the individual experimental protocols followed
for the tests in the six intervals. The chosen parameters are listed in Table 4.11; while
Freiberg gneiss is anisotropic, see Adero (2020), for simplicity, we rely on representative
isotropic material parameters. We employ a constant value of 4 for the parameter s0,
determined from exploratory calculations. The chosen value leads to changes in hydraulic
aperture that are larger than the ones in mechanical aperture, addressing decreasing per-
colation in the fracture plane with increasing contact area. Fractures are assumed to
be mechanically closed once δmech approaches δmechmin = 0. The remaining model parame-
ters, the hydraulic equilibrium fracture aperture δhydeq and the equilibrium fracture normal
stiffness EFr

eq , along with the geometrical fracture property, its numerically discretized
length lFr, determine the effective hydraulic conductivity and the storage capacity of the
fractures. The initial normal stress is determined by equilibrium aperture and initial
stiffness via the constitutive relation. We seek optimized values for these three parame-
ters by analysing the misfit between numerical pressure transients and observed pressure
transients.

Table 4.11: Parameters of the matrix and the fracture domain used for the numerical fitting of
characteristic fracture properties.

Quantity Value Unit Quantity Value Unit

Rock parameters

dry skeleton bulk modulus K 2.75 · 101 (GPa) grain bulk modulus Ks 6.0 · 101 (GPa)

shear modulus μ 1.7 · 101 (GPa) initial porosity φ0 1.0 · 10−2 (-)

fluid compressibility βf 4.17 · 10−1 (1/GPa) effective bulk modulus Keff 4.25 · 101 (GPa)

effective shear modulus μeff 1.7 · 101 (GPa)

Fracture parameters

contact characteristic s0 4.0 (-) fluid compressibility βf 4.17 · 10−1 (1/GPa)

minimal mechanical opening δmechmin 0.0 (μm)

The assumption of a radial-symmetric fracture geometry and a linear-elastic response of
the poro-elastic matrix reduces the total number of degrees of freedom (DoF). This re-
duction of DoF results in a high efficiency of the method; simulations of transients require
just several minutes on a standard desktop PC with the used numerical discretization
corresponding to around 20 000 DoF for the whole set of modelled fractures.
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3.4 Quantification of misfit

Identifying “the” best numerical fit requires examination of the evolution of the misfit
between experimentally observed transients pexp and the numerically modeled transients
pnum. We quantify misfit by a normalized L2-error norm

eL2 =

∥∥pnum − pexp
∥∥
2∥∥pexp∥∥2 , (4.48)

i.e., misfit is reduced to a single scalar value for each considered parameter combina-
tion. Iso-surfaces of misfit in the three-dimensional space of the model parameters
{δhydeq , EFr

eq , lFr} were gained from interpolation between the discrete values of actually
performed calculations.

3.5 Strategy of parameter search

The sensitivity of the model to its parameters was studied in a total of 1144 and 735
simulations for the pressure-plateau and the positive-tangent group, respectively. Nu-
merical fits with a normalized error of approximately eL2 ≤ 0.055 correspond to absolute
deviations between observed and modelled pressure continuously below 0.2 MPa and are
considered matches of the experimental observations in the light of the subsumed effects
of flow-rate fluctuations due to irregularities of the pump, intrinsic accuracy of pressure
sensors, and the correction of flow rate for storage capacity of the injection system. The
investigated ranges of the individual parameters (Table 4.12) were defined based on an
exploratory analysis starting from educated guesses. This exploratory search indicated
the existence of a misfit minimum below the defined error of eL2 ≤ 0.055 whose location
we then investigated further. For the subsequent analysis of the remaining sets of mea-
surement data, knowledge about the existence of a local minimum motivated the direct
search for parameter combinations resulting in an error of eL2 ≤ 0.055, corresponding to
fits within uncertainty.

Table 4.12: Parameter ranges (min, max) and increment (inc) for the studies of the model
sensitivity for the pressure-plateau and pressure-tangent group.

EFr
eq (MPa) δhydeq (μm) lFr (m)

Group min max inc min max inc min max inc

pressure-plateau group 4.0 6.4 0.2 30.0 39.0 1.0 20.0 90.0 10.0

positive-tangent group 2.4 3.6 0.2 33.0 47.0 1.0 2.4 16.0 2.5

4 Results

The parameter study aimed at the identification of parameter combinations yielding a
match between field data and numerical simulations to understand the characteristics of
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fractures responsible for the two distinct groups of pressure transients. In a first step, we
focused on one data set of each group, the transient pressure response Mp

a obtained from
hydraulic tests at 51.6 m borehole depth, representing the pressure-plateau group, and
M t

a corresponding to tests conducted at a borehole depth of 24.6 m, representative for
the pressure-tangent group, before we used the gained knowledge about the existence of a
local error minimum to reduce the computational costs of the numerical fitting procedure
for the remaining data sets by focusing on parameter combinations resulting in low error
values.

4.1 Parameter study

4.1.1 Pressure-plateau group

The error surfaces of the pressure-plateau group possess an ellipsoid-like shape (Figure
3); the surface enclosing numerical solutions with eL2 = 0.0275, representing matches of
the observed transients within the estimated uncertainty, indicates the existence of an
error minimum. The error evolution with fracture length (AI to HI in Figure 3) is con-
sistent with the iso-surface plot since the error reaches a minimum at an intermediate
fracture length of lFr = 50.0 m. The error evolution is asymmetric around this minimum,
it increases less steep for fractures with an increasing than for fractures with a decreas-
ing length. The corresponding unique error minimum in the parameter space occurs for
the parameter combination DI , which consists of an hydraulic equilibrium fracture aper-
ture δhydeq = 36.0 μm, an equilibrium fracture normal stiffness parameter of EFr

eq = 5.6
MPa, and a fracture length of lFr = 50.0 m. The model shows higher sensitivity to the
equilibrium-fracture normal stiffness parameter and the hydraulic equilibrium aperture
than to fracture length. Individual variations of the fracture stiffness and hydraulic equi-
librium aperture relative to the values obtained for the identified minimum (exemplified
by Da

I to D
d
I in Figure 3) result in pronounced under- and overestimation of the measured

transients, respectively.

4.1.2 Positive-tangents group

For the positive-tangent group, the misfit surface identifying relevant parameter com-
binations with absolute differences to the measured data consistently below 0.2 MPa,
defined by eL2 ≤ 0.055, consists of two connected ellipsoidal shapes with different axis-
orientations. A single potential minimum is indicated by the closed iso-surface with
eL2 ≤ 0.03. The error evolution with fracture length (AII to GII in Figure 4) confirms the
existence of a minimum for the parameter set BII , consisting of an equilibrium-fracture
normal stiffness parameter EFr

eq = 2.8 MPa, an equilibrium aperture of δhydeq = 42.0 μm,
and a fracture length of lFr = 4.75 m. Large misfits result when fracture length decreases
below 4.75 m; however, misfit is less sensitive to variations in fracture length above this
value. Variation of the equilibrium-fracture normal stiffness parameter EFr

eq and the hy-
draulic equilibrium aperture δhydeq relative to the parameter set BII (i.e., parameter sets
Ba

II to B
d
II in Figure 4) reveals a higher sensitivity of the model to changes of the stiffness

parameter than the hydraulic equilibrium aperture.
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Figure 3: Top: Visualization of iso-surfaces of misfit between observed and calculated pressure
transients for the parameter study conducted on the experimental data set Mp

a representative
for the pressure-plateau group. Error surfaces are marked with the associated eL2-errors and
parameter combinations relevant for detailed analysis of the error evolution are highlighted by
labels AI to HI . Bottom: Comparison of observed and numerical pressure transients for the
parameter combinations AI to HI . (left) The flow-rate boundary conditions are well matched
by the numerical approach. (right) The errors of the numerical fits for parameter sets AI to HI

exhibit a minimum. The legend at the bottom applies to all plots.

4.2 Characteristic fracture properties

For each of the further pressure-plateau and pressure-tangent data, parameter sets were
found that result in fits with error values close to those obtained for the local minima in
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Figure 4: Top: A visualization of error surface plots corresponding to the parameter study
conducted on the experimental data set M t

a representative for the positive group is presented.
Error surfaces are marked with the associated eL2-errors and parameter combinations relevant
for detailed analysis of the error evolution are highlighted by labels AII to GII . Bottom:
Numerical fits of the measured pressure transients corresponding to the highlighted parameter
combinations AII to GII along with the corresponding fit of flow-rate boundary conditions are
introduced. Errors of the numerical fits for parameter sets AII to GII are presented by means
of a line plot. A legend introduces the corresponding quantities to the used line types at the
bottom of the figure.

the two examples above (Figure 5, Table 4.13). The error for data set Np
c is exceptionally

high compared to that of other sets when we do not neglect the first pumping step (Table
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4.13) that involves a delayed pressure increase (Figure 1). This interval looses water when
isolated and has to be refilled after an extended shut-in period.

The elongated enclosing hull of the determined parameter combinations for the pressure-
plateau group visualizes the recognized bias of fracture stiffness and equilibrium fracture
aperture with fracture length. For the positive-tangent group, we observed bias of the
fracture stiffness with fracture length, but no correlation between equilibrium aperture
and fracture length (Figure 5, Table 4.13). Optimal parameters of the two groups occupy
distinctly different volumes of the misfit space. Parameters determined for the pressure-
plateau group corresponds to long and stiff fractures whereas the parameters determined
for the pressure-tangent group coincide with short and compliant fractures.

Table 4.13: Material parameters gained from numerical fitting of the measured pressure tran-
sients.

Depth Fracture label Equ. fracture normal stiffness par. EFr Equilibrium aperture δhydeq fracture length lFr error eL2

pressure-plateau group

51.6 m Np
a 5.6 MPa 36.0 μm 50.0 m 0.024

55.7 m Np
b 3.5 MPa 26.5 μm 10.0 m 0.048

56.5 m Np
c 3.8 MPa 28.0 μm 15.0 m 0.184/0.0241

positive-tangent group

24.6 m N t
a 2.8 MPa 42.0 μm 4.75 m 0.026

40.6 m N t
b 2.13 MPa 55.0 μm 3.7 m 0.063

49.7 m N t
c 2.95 MPa 46.0 μm 5.4 m 0.046

1: including/excluding the first injection step biased by the necessity to refill the injection interval

5 Discussion

The numerical fitting of pressure transients identified a unique minimum corresponding to
an optimal parameter combination in the range of investigated material parameters. The
sensitivity analysis proofed increasing errors for changes of parameters relative to the set
DI , which indicates that no further minima exist within realistic limits of the parameters.
The model exhibits a high sensitivity to the equilibrium fracture normal stiffness and the
equilibrium fracture aperture, whereas simulated pressures are relatively insensitive to
changes in fracture length.

5.1 Characteristics of pressure groups

The proposed hydro-mechanical model results in vastly different pressure transients de-
pending on parameter choice and thus either group of observed transients, those with
nearly constant pressures and those with continuously increasing pressure at constant
flow rate, could be modelled equally well. For both pressure-transient groups, values of
equilibrium aperture and equilibrium-normal stiffness parameter determined by the nu-
merical fitting fall well within the range of previously discussed values [108, 178, 219].
The different pressure transients of the two groups require distinctly different length and
stiffness to match the measurement data. The fracture lengths of meter-scale derived for
the positive-tangent group are consistent with the spatial scale of the test volume and
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Figure 5: Top: Comparison of numerical flow and pressure transients, corresponding to the set
of parameter fits determined throughout the numerical fitting, to the experimentally recorded
pressure and flow transients. Bottom: Visualization of the determined parameter sets in a three
dimensional parameter space. The space spanned by parameter combinations associated to the
pressure-plateau group is introduced by a blue hull and the space resulting from parameter sets
of the positive-tangent group is limited by a grey hull.

the dimensions of seismicity clouds observed during the corresponding stimulations. The
decameter-scale fracture lengths modelled for the pressure-plateau group appear long at
first glance. Yet, considering the shape of the misfit iso-surface of this group that docu-
ments an insensitivity of the model to changes in fracture length beyond a critical lower
bound, fracture lengths barely exceeding 10 m cannot be excluded per-se. Furthermore,
the model involves only a single fracture, neglecting leak-off into intersecting fracture
systems and thus its application to data determines properties of an equivalent fracture
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potentially subsuming pre-existing fractures with a comparable or higher conductivity
than that of the fracture intersecting the borehole. The interpretation that the distinct
difference in effective fracture length derived for the two pressure-transient groups is an
expression of the extent to which the fracture intersecting the borehole connected to pre-
existing fractures and thus became an element of a larger conduit network qualitatively
agrees with the pressure decay rates during shut-in after the step-rate tests (Table 1)

5.2 Distribution of pressure along the fracture

Knowing the distribution of fluid pressure along the fracture is a crucial pre-requisite for
substantial stimulation modeling. Since our hydro-mechanical model includes the entire
fracture, we can use the determined parameter sets to investigate the pressure distribution
in the fracture at any point during the step-rate tests. We focus on the pressure states
at the end of each applied flow-rate step for data sets Np

a and N t
b , representative for their

corresponding group, to examine whether the characteristics of the transients observed in
the borehole bear information on the pressure distribution along the fracture.

For Np
a , the representative of the pressure-plateau group, pressure gradients along the

fracture are higher than for N t
b of the positive-tangent group, for which the pressure pro-

file is almost flat, i.e., the pressure in the fracture is equilibrated during every stage of
the pumping (Figure 6). Thus, the shape of the transients of the injection pressure is
opposite to the spatial variation of pressure in the fracture, constant injection pressures
are associated with significant pressure gradients while injection pressures increasing with
time are associated with momentarily constant pressures in the fractures. The significant
difference in pressure distribution reflects the critical interrelation between local defor-
mation and its consequences for local flow and storage. For the long fractures of the
pressure-plateau group, the local deformation and thus permeability decrease with dis-
tance from the injection point, but storage of fluid is promoted close to the borehole where
the fracture is already less stiff than at its end due to the increased fluid pressure. While
constant along the relatively short fractures, the pressure increases during each flow-rate
step and from step to step for the positive tangent group. The close to constant pressures
document that pressure is not controlled by transport restrictions in the fractures but by
their storage capacity, which is limited owing to the direct effect of fracture length on
fracture volume and also on geometrical fracture stiffness, as detailed in the next section.

5.3 Specific normal stiffness

The contact mechanics of the six investigated fractures is uniquely determined by the
parameters constrained by the modeling. Evaluating the constitutive relation (4.46) with
the found equilibrium-fracture normal stiffness parameter EFr

eq and the hydraulic equi-
librium fracture width δhydeq yields their opening and closure behavior when subjected to
normal stresses deviating from the equilibrium stress (Figure 7). The corresponding spe-
cific contact stiffnesses reflect the strong non-linearity of the constitutive relation; close
to the equilibrium stress specific stiffness varies between 102 and 103 MPa/mm and thus
falls well within the range of representative previous in-situ observations and laboratory
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Figure 6: Evolution of pressure distribution along the fractures at the end of each flow-rate
step, represented by increasing line thickness with increasing step number Sti, for numerical
data set Np

a of the pressure-plateau group (left) and data set N t
b of the positive-tangent group

(right).

studies [145, 178, 219]. When extended towards increasing fracture contact, i.e., when
effective normal stresses exceed the equilibrium in-situ stresses, the stiffness of all tested
fractures converge to a narrow range of 2 · 103 MPa/mm to 4 · 103 MPa/mm.
The equilibrium-fracture normal stiffness parameter EFr

eq provides a constraint on the
equilibrium stress that the fractures experience in-situ. Since the obtained equilibrium-
fracture normal stiffness parameters of the pressure-plateau group are higher than the
ones of the positive-tangent group, the predicted equilibrium normal stresses for fractures
of the plateau group, ranging between 3.5 MPa and 5.6 MPa, are larger than the ones for
fractures of the positive-tangent group, ranging from 2.1 MPa to 2.8 MPa. Magnitude
and range of these predictions are consistent with the stress state inferred for the test
volume at Reiche Zeche, where the overburden corresponds to a vertical stress of about
3.5 MPa [2].

The contribution of the elastic medium, in which the fractures are embedded, to the
stiffness of the entire system is conventionally addressed as geometrical stiffness [131, 206].
We evaluated the balance between contact stiffness and geometrical stiffness by numerical
evaluation of constant fluid pressures in the range of the experimental pressure levels with
an increment of 0.5 MPa for the two “equivalent” fractures found by the modeling for
intervals 51.6 m (Mp

a ) and 40.6 m (M t
b), representing the two pressure-transient groups

and constituting the upper and lower bounds of the parameter space of optimal fits in
terms of fracture length and normal stiffness parameter, respectively.

The prescribed levels of fluid pressure lead to local deformations according to the consti-
tutive relation (4.46) and associated local normal contact stresses σFrN , which we integrate
over the fractures’ lengths. Mechanical equilibrium across the fracture requires changes
in fluid pressure and total normal stress to hold Δp = ΔσTotN . Thus, the mismatch be-
tween the applied fluid pressure and the numerically integrated normal contact stresses
corresponds to the normal stress exerted on the fracture by the deformation of the sur-
rounding material, here addressed as geometrical normal stress σGN . The decomposition
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Figure 7: Top: Normal contact stress σFr
N as a function of relative aperture changes Δδ gained

from evaluating eq. (4.46) with the best fit parameters for the investigated pressure transients
(Table 4.13). Bottom: Semi-logarithmic representation of the specific contact stiffness KFr

N as
a function of the acting normal contact stresses. Positive values indicate compressive stresses
(relative to the equilibrium stress). The legend applies to top and bottom, specifically dark blue
lines represent data sets of the pressure-plateau group and grey lines that of the positive-tangent
group.

of the changes in total acting normal stress

ΔσTotN = ΔσFrN +ΔσGN (4.49)

gives changes in the geometrical stress as

ΔσGN = Δp−ΔσFrN . (4.50)

The stress balance differs for the two investigated fractures and varies with fluid pressure
for an individual fracture (Figure 8). For the long (50 m) fracture of the pressure-plateau
group, force balance across the fracture is dominated by contact stresses, while the con-
tribution of geometrical normal stress is significant for the short (3.7 m) fracture of the
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Figure 8: Top: Decomposition of the total acting normal stresses into geometrical σG
N and

normal contact stress σFr
N contributions as a function of the acting constant fluid pressure for nu-

merical parameter sets obtained from numerical fits Np
a , representative for the pressure plateau,

and N t
b , representative for the positive-tangent group. Bottom: Contribution of geometrical

and normal contact stresses for each incremental pressure increase.

positive-tangent group, the more the higher the fluid pressure. The changing relative
contributions result from the non-linearity of the normal-contact stress formulation intro-
duced by eq. (4.46).

We transfer the findings for the normal-stress decomposition (Figure 8) to a correspond-
ing decomposition of specific normal stiffness. The fracture contact normal stiffness is
obtained by analytical evaluation of KFr = ∂σFrN /∂δFr considering the fitted parameters.
In a subsequent step, we separated the geometrical stiffness of the two investigated frac-
tures by conducting a numerical analysis of their opening behaviour under the assumption
of negligible contact normal stresses, which results in p = σGN . The discretized geometrical
stiffness is then evaluated by calculating an averaged aperture and the discretized normal
stress change, i.e., KG = ΔσGN/ΔδG. The combined stiffness is numerically determined by
KCom = ΔσTotN /ΔδCom. Since the relation between σTotN = p, σGN , and σFrN is known from
the stress decomposition (Figure 8), the resulting stiffness components can be combined
to express the stiffness of the combined model for a uniform fluid pressure.

The sum of transformed geometrical and contact normal stiffness agrees with the combined
stiffness (Figure 9) lending support to the assumptions made regarding the transformation
of different stress states to the acting effective normal stress. Geometrical stiffness is found
to be negligible for data set Na

p of the pressure-plateau group, for which the combined
specific stiffness is well approximated by the contact stiffness, i.e., fluid pressure and
acting contact stresses balance (Figure 7). In contrast, the combined specific stiffness for
data set N t

b , the representative of the positive-tangent group, is a superposition of both
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Figure 9: Combined (KCom
N ) specific fracture stiffness, i.e., the sum of decomposed geometrical

KG
N and normal contact stiffness KFr

N , as a function of fluid pressure calculated from results of
the proposed hydro-mechanical modelling of data sets Np

a and N t
b .

stiffness components converging towards the geometrical stiffness with increasing fluid
pressure. In fact, the geometrical stiffness forms the lower bound for combined stiffness.
The contribution of the geometrical stiffness to the total fracture stiffness is highest for
fluid pressures above the identified asymptotic stress values of the contact model, i.e., at
the onset of separation of the fracture halves.

6 Conclusions

We numerically modeled the opening characteristics of fractures during in-situ hydraulic
tests using a hydro-mechanical flow model implemented for radial fractures with non-linear
contact mechanics and without leak-off. Systematic variations of experimentally observed
pressure transients lead us to distinguish two groups, with continuously (positive-tangent)
and step-wise rising (pressure-plateau) pressure response to stepwise increases in flow rate.
Our parameter study unveiled the role of fracture length, equilibrium-normal stiffness pa-
rameter, and equilibrium fracture aperture for borehole-pressure transients. The proposed
hydro-mechanical coupling can explain the strikingly different pressure transients within
experimental uncertainty and thus provides a perspective to the response of fractures to
pumping operations alternative to the traditional pressure-diffusion analyses, which re-
late the distinct pressure groups to differences in flow regime associated with differences
in the orientation of the fracture relative to the borehole. This alternative explanation
bears significant consequences for the modeling of energy provision from pertrothermal
reservoirs, in which the fractures constitute the prime conduits for the transport agent of
the heat.

The identified minima in mismatch between observed and calculated pressure transients
correspond to different fracture properties for the two groups. We noticed a bias be-
tween fracture length and fracture normal stiffness resulting in a specific mismatch for
the positive-tangent group. Pressure plateaus are characteristic of relatively long and stiff
fractures, while relatively short and compliant fractures lead to continuously increasing
injection pressures. equilibrium fracture apertures do not differ significantly between the
two groups, a plausible result considering that the tested fractures are embedded in the
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same host rock. The pressure distribution along the fractures differs significantly for the
two groups of pressure transients; pronounced non-linear pressure distributions develop
in the long fractures of the pressure-plateau group during injection, while the pressure in
the short fractures of the positive-tangent group remains close to the injection pressure
along their entire length. Our observations on pressure distribution motivate to investi-
gate the validity of the common practices of normal stress estimation from shut-in and
jacking pressures. The stress balance across fractures and its relation to fluid distribution
in them is central for modeling failure and seismicity. A full analysis of the potential for
shear failure will require to expand our model by shear stresses and assocaited stiffness.

Throughout the performed step-rate tests, fluid injection results predominantly in opening
of fractures. Evaluation of the constitutive relation with the determined fracture param-
eters allowed us to investigate the contributions of local contacts and overall fracture
geometry to stress balance and thus bulk stiffness. With decreasing effective stress, the
role of the contacts diminishes and total stiffness approaches the lower bound constituted
by the geometrical stiffness.

The proposed hydro-mechanical model exhibits diminished sensitivity to fracture length
when a flow-rate step results in a constant injection pressure. Thus, extending the pump-
ing duration will not only help to discriminate between the alternatives of flow regime
vs. hydro-mechanical effects, but may also reduce uncertainty of model parameters in
case pressure ultimately deviates from an early plateau, an observation that could not
be explained by the diffusion approaches. Future numerical work should explore different
scenarios for the relation between mechanical and hydraulic apertures and its evolution
with changes in effective normal stresses.
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Abstract

In this work, we propose a hydro-mechanical simulation model to study the strong inter-
action of fluid flow and fracture deformation under in-situ stress conditions. The general
model is reduced under physics-based assumptions to provide an efficient numerical ap-
proach for inverse analysis of experimental studies and is applied to experimental field
data obtained from hydraulic tests conducted at the Grimsel Test Site (GTS), Switzer-
land. The present set of hydro-mechanical measurement data provides not only valuable
information about the transient pressure and flow evolution but also the transient change
of fracture deformation. We aim to introduce a strongly-coupled hydro-mechanical model
to numerically characterize the fractured reservoir based on experimental data below the
limit of hydraulically induced irreversible changes of the reservoir’s properties. Insights
into the leading mechanisms of flow processes throughout hydraulic testing under in-situ
conditions are then gained by best numerical fits of the measurement data. Based on the
experimental and numerical findings, this study emphasizes the importance of a consistent
consideration of local and non-local fracture deformation throughout inverse analysis of
hydraulic testing data to a) better understand hydro-mechanical flow processes in frac-
tured reservoirs and b), to increase the estimation quality of hydraulic properties of tested
fractures.

1 Introduction

Traditionally, effective hydraulic characterization of fractured reservoirs are primarily de-
termined by a consistent analysis of pressure and flow transients [60, 133], which are
induced by perturbations of the fracture’s in-situ state throughout pumping operations
by means of constant flow rates or harmonic variations of such [89, 157]. In contrast
to conventional procedures [48], hydro-mechanical measurements consistently extend the
set of pressure and flow data by information about the fracture deformation in terms of
aperture changes [53].

Transient information about fracture aperture changes might not only increase the quality
of effective hydraulic parameters but also provides valuable information about the stora-
tivity of a tested fracture to further study the interaction of hydraulics and mechanics
throughout hydraulic testing of fractures under in-situ conditions. Therefore Fibre-Bragg
Grating (FBG) sensors were grouted in a borehole near the injection location, which
was placed in intact rock or intersected by pre-existing, natural fractures [52]. The re-
lationship between pressure and uniaxial strain records measuring fracture opening and
closing relative to the borehole direction allows investigations on the hydro-mechanical
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interaction of tested fractures and fracture networks. The uniaxial strain data indicates
non-negligible, reversible changes of the fracture volume throughout injection steps below
the jacking pressure. Reversible fracture deformation cannot consistently be accounted
for by pressure diffusion based models, but requires a hydro-mechanical formulation for
flow in deformable fractures to ensure a reliable characterization of the tested region.

Commonly, sets of pressure and flow transients obtained from hydraulic field tests are ana-
lyzed by isotropic pressure diffusion models [25, 125]. Nevertheless, such relatively simple
models reach their limits once phenomena related to transient hydraulic changes induced
by mechanical responses of the fracture to an in- or decrease of fluid pressure occur in the
measurement data [164, 165, 206, 208]. The hydro-mechanical interaction influences the
transient pressure, respectively flow evolution, and might introduce inaccuracies through-
out the calculations of effective reservoir parameters when not taken into consideration
[207]. Mechanical and hydraulic effects act on different time-scales. Instantaneous non-
local deformations induced by pressure perturbations potentially lead to a local volume
increase in regions of the fracture that have not been reached by pressure diffusion result-
ing in a pressure drop and reverse water-level fluctuations in distant monitoring wells. In
unfractured poro-elastic media, this prominent phenomenon is known as the Noordber-
gum effect [107, 162]. The findings indicate the dependency of the fracture deformation
on the acting stress state that is known to be also composed of normal stresses induced by
fracture surface contact [12, 75]. Studies on the relation of fluid flow under varying acting
normal stress conditions show a direct relationship between the specific fracture stiffness,
respectively total fracture contact surface and flow rates on laboratory scale [145] and
have successfully been upscaled to larger scales [143, 148]. Besides the discussed non-
local effects, these investigations indicate local mechanical responses of the system that
might result in effective hydraulic property changes such as transient variations of the
fracture’s permeability [115, 122, 209, 215]. Thus, it is essential to study the importance
of fracture deformation and its influence on the transient flow process throughout fracture
testing. Nevertheless, inverse analysis of consistent hydro-mechanical data sets obtained
from hydraulic field tests using implicitly coupled hydro-mechanical simulation models to
determine effective fracture properties cannot be found in the literature.
Consistent hydro-mechanical numerical modeling of flow processes in deformable, high-
aspect-ratio (length� aperture) fractures require tight coupling of the deformation state
of the surrounding rock matrix with the resulting fluid flow field in the fracture. In the
context of flow processes in fractured porous media, flow within the fracture domain is
characterized by low Reynold numbers and creeping flow conditions, which motivates the
assumption of a Poiseuille-type description [121, 216]. Taking fracture deformation into
consideration by consistently extending the governing equations, an implicitly coupled
hybrid-dimensional flow model [208] can be derived, which is closely related to the lu-
brication equation [16]. Consideration of the low compressibility of water which serves
as the injection medium throughout the conducted hydraulic fracture testing results in
a numerically stiff system of partial differential equations [1, 184, 218]. Numerical sta-
bility for the stiff system can be achieved by physics-based preconditioning of implicitly
coupled staggered algorithms [38, 72, 73] which originate from strategies applied in the
field of unfractured poro-elastic media [104, 105]. For highly fractured domains stag-
gered algorithms might face numerical difficulties once rigid body movements occur. In
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such cases numerical stability is guaranteed by a robust monolithic coupling using zero-
thickness interface element formulations [177, 180, 181]. Besides the framework used in
this study [177] a number of different mesh-based frameworks are documented in the
literature that also provide solution strategies for flow processes in deformable fractures
[10, 86, 129, 183, 188, 196]. Contrary to the mentioned approaches, the present numerical
model discussed in this work is extended by a lately introduced constitutive relation for
normal contact-induced stresses under in-situ conditions [175] obtained by slight modi-
fications of an existing fracture contact formulation [70, 181] to better approximate the
initial stress state of in-situ fractures.
In contrast to the rising awareness of strong hydro-mechanical interaction throughout
hydraulic stimulation of fractured and/or unfractured reservoirs, its role throughout hy-
draulic testing below jacking pressures remains subordinate. To emphasize the importance
of fracture deformation throughout hydraulic testing of fractures under in-situ conditions,
we numerically studied the occurrence of hydro-mechanical interaction based on experi-
mental data. Measurement data obtained from experiments carried out at the Grimsel
Test Site (GTS), Switzerland, provide unique hydro-mechanically consistent sets of pres-
sure, flow, and fracture opening data, which are analyzed by a fully coupled, non-linear
numerical model to gain a better understanding of the testing process. In particular, we
applied the model to study measurement data consisting of pressure steps below the limit
of irreversible transient changes of the fracture properties, relevant for the characterization
of hydraulically induced and/or preexisting fractures. Analysis of the numerical data set
includes a split of the total flow into flow attributed to fluid compressibility and flow trig-
gered by fracture deformation. Concluding, the importance of hydro-mechanical coupling
and limitations of purely diffusion-based and locally extended models throughout inverse
analysis of experimental hydro-mechanical data sets is discussed based on numerical and
experimental findings.

2 Experimental Description

We conduct a time series of flow, pressure and two Fibre-Bragg Grating (FBG) sensors
obtained from a pressure-controlled step test to determine characteristic properties of a
fractured region. The investigated region includes a hydraulic fracture which was induced
throughout the first of two proppant-free hydraulic fracturing cycles. Thereafter a bleed-
off phase took place to depressurize the rock volume of interest and sampling the back
flow in the open intervals. Then, the characterization of the newly created fracture was
done by a pressure-controlled step test. The experiment was performed in two inclined
boreholes in a decameter scale, moderately fractured, well-characterized crystalline rock
mass at the Grimsel Test Site (GTS), Switzerland. The experiments are part of the in-
situ Stimulation and Circulation (ISC) project executed between 2015 and 2018 [9]. The
presented experiments are known as HF2, and the data set is presented in Dutler et al.
2019.

Within the tested region two natural fractures intersected the FBG sensor at δexp33.0 =
33.0 m (177/61◦), and a quartz vein crosses the one at δexp31.8 = 31.8 m (163/57◦). The
injection interval has a steeply incomplete axial trace measuring 049/89◦ and 022/69◦
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Figure 1: a) The time series of the step test is presented for the flow rate, the pressure, and two
FBG strain records in the surrounding of the injection interval, and each valid step is colored
with red or green. The cross plot are presented to estimate jacking pressure using flow rate qexp,
strain records δexp31.8 and δexp33.0 versus pressure. The circles indicate the mean of the corresponding
colored sections. c) The setup of the experiment HF2 in-plane and map view shows the open
injection interval (red cylinder), the fractures (grey discs) with the FBG sensors, the seismic
cloud depending on time/volume of injection fluid and the flow paths (adapted by Dutler et al.
2020)

.

(given in azimuth/dip). The axial trace of the newly created hydraulic fracture at the
injection interval represents the primary fracture and is oriented differently than the two
natural fractures at the FBG sensors. They agree better with the seismic plane fit for the
refracturing cycle RF2 with a cloud-oriented steeply inclined towards South (175/46◦),
which agrees well with the fluid flow along the natural, pre-existing fractures [53]. The
two natural fractures intersecting the FBG sensors deviate from the seismic by an angle
of 15.2◦ and 14.7◦ respectively. Figure 1c) displays the boreholes with the strain and
injection intervals, the located microseismic events, and the most relevant flow paths for
the step test.

Throughout our study, we focus on pressure steps between 2 to 3 MPa (color-coded with
greenish colors) to determine characteristic properties of the tested region. The defined
pressure range is below the jacking pressure which was estimated to be 3.7 MPa [52], with
a range between 3.3 and 4.2 MPa, depending on the chosen method [48, 87, 164]. The
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behaviour of the greenish point in the flow versus pressure plot is slightly non-linear and
the greenish points used in the strain record versus pressure plot indicates a pronounced
non-linear behavior of fracture deformation (Figure 1 b). During fracture opening, the
area of contact of two fracture surfaces decrease until a critical fracture aperture is reached,
and the flow rate sharply increases. To visualize the distinct response for high pressure
levels, data regarding the open primary fracture is color-coded by reddish colors and
ambiguous steps by greyish colors, where fracture opening is taking place at 3.5 MPa [53].
The pronounced difference in hydraulic and mechanical response motivates the split into
investigated, reversible pressure steps (greenish colors) and pressure regions which might
induce irreversible changes to the fracture properties (reddish; greyish). Pressure levels
beyond the reversible region induce highly non-linear and irreversible hydro-mechanical
effects and, therefore, exceed the scope of this work (Fig. 1). In this context, we refer
to Dutler et al. 2020 where shear reactivation induced irreversible effects for injection
pressures beyond the jacking pressure are discussed.

The moderately non-linear region chosen for the numerical characterization helps to un-
derstand the importance of hydro-mechanical interaction below the limit of fracture sep-
aration throughout the determination of reliable effective properties of a hydraulically
tested region. For the investigated pressure range no evidence for hydraulically induced
permanent changes of the fracture properties, such as shearing or fracture propagation,
can be found in the data.

3 Numerical Method

Consistent hydro-mechanical measurement data allows for a higher accuracy throughout
the inverse numerical analysis of the tested fractures but also increases the requirements
for the applied model drastically since tight coupling of mechanical fracture fluctuations
and fracture flow is necessary to provide best numerical fits. Simulations throughout this
work are based on a general hybrid-dimensional flow model [177, 206] to capture non-
linear hydro-mechanical phenomena in a deformable fracture domain BFr embedded in a
poro-elastic medium BPe. The model approach will be extended to reproduce the full set
of measurement data under field conditions aiming to provide an efficient framework for
the characterization of hydro-mechanically tested fractures.

3.1 Flow Processes in a Deformable Fracture BFr

Fluid volume induced fluctuations around the in-situ equilibrium state of a fracture BFr
result in mechanical deformation and fluid flow. The caused interaction of the fluid
pressure state and the volumetric deformation changes of the fracture need to be consis-
tently taken into account throughout the derivation of the governing equations in order
to guarantee a globally mass preserving formulation. For each change in fluid volume
an equilibrium state for the biphasic poro-elastic medium BPe and the fracture domain
BFr must be determined with respect to the fluid pressure and the local fracture aperture
δ(x, t), which is constructed from the normal fracture surface deformation uFr(x, t). The
equilibrium conditions are derived in the following by means of the balance of mass and
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linear momentum for a deformable fracture.

3.1.1 Balance of Momentum

Based on experimental investigations of creeping-flow processes within fractures filled by
a compressible fluid [216], pressure-driven Poiseuille-type flow assumptions are valid for
hydraulically-transmissible fractures. The characteristic parabolic velocity profile for flow
between two parallel plates assuming no-slip boundary conditions at the fracture surfaces
is obtained by separation of variables and the relative mean fluid velocity

ŵf = −δ2(x, t)

12 ηfR
ˆgrad p̂ = −ks

Fr(x, t)

ηfR
ˆgrad p̂, (4.51)

by integration of the velocity profile over the fracture aperture normalized to the flow area.
In eq. (4.51) ks

Fr(x, t) is the time and space dependent effective fracture permeability and
ηfR the effective dynamic viscosity of the fluid. The proportionality factor 1/12 might be
adapted to capture deviations of the fracture geometry such as varying asperities [159].
Confusion with quantities defined in the biphasic porous domain BPe is prevented by
marking variables and mathematical operations defined within the fracture domain BFr
by �̂. Thus, ˆgrad p̂ is the pressure gradient within the fracture and ŵf is the fracture’s
seepage velocity.

3.1.2 Balance of Mass

Perturbations of the balance of mass causes transient changes in fluid pressure and fracture
volume, but might also lead to fluid leak-off into the surrounding porous rock. Enforcing
global mass conservation implies that changes of the total fluid volume in the fracture
domain BFr are compensated by a combination of fluid density ρfR changes of the com-
pressible fluid, where the fluid compressibility βf = 1/K f is introduced by means of the
fluid’s bulk modulus K f and volumetric changes in terms of the local fracture aperture
δ(x, t). By relating fluid compressibility, volumetric changes and leak-off, the balance of
mass finally reads

∂(ρfR δ)

∂t
+ d̂iv

(
ŵf ρ

fR δ
)
= wN

f (4.52)

in its local form, where the component of the seepage velocity normal to the fracture
surface into the porous domain BPe is denoted by wN

f . In eq. (4.52) we consider hydrauli-
cally open, proppant-free fractures in mechanical contact; i.e., the fracture surfaces are
mechanically interacting, but still allow the fluid to travel through the fracture domain.

3.1.3 Governing Equations

The governing equation for fluid flow in deformable fractures is obtained by inserting the
relative mean velocity ŵf provided by eq. (4.10) into the local form of the balance of mass
given by eq. (4.11). Nevertheless, since fluid pressure p̂ and fluid density ρfR remain as
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unknowns, a linear equation of state introduces a proportionality between both

p̂ = K f

[
ρfR

ρfR0
− 1

]
(4.53)

by assuming a barotropic fluid with initial density ρfR0 at t = 0. Evaluation of the balance
of mass and momentum combined with the density-pressure proportionality provided by
eq. (4.53) finally leads to the governing equation for fluid flow and transport in the
deformable fracture

δ
∂p̂

∂t︸︷︷︸
i)

− δ3

12 ηfR
ˆgrad p̂ · ˆgrad p̂︸ ︷︷ ︸
ii)

− δ2

12 ηfR βf
ˆgrad δ · ˆgrad p̂︸ ︷︷ ︸
iii)

− δ3

12 ηfRβf
d̂iv

(
ˆgrad p̂

)
︸ ︷︷ ︸

iv)

+
1

βf

∂δ

∂t︸ ︷︷ ︸
v)

=
q̂lk
βf︸︷︷︸
vi)

,

(4.54)

The scalar fluid pressure p̂(x, t) defines the primary variable and reduces the dimension
of the flow within the fracture by one. Within the hybrid dimensional formulation the
fracture aperture δ(x, t) depends on the deformation state of the surrounding poro-elastic
bulk material and is a function of space and time. In eq. (4.54) the sum of the transient
term i), quadratic term ii), convection term iii), diffusion term iv), volumetric coupling
term v) and leak-off term vi) forms the general non-linear partial differential equation
(PDE) for mass preserving fluid flow in a deformable fracture. Dimensionless analysis
showed that the non-linear diffusion term ii) scales inversely with the fracture’s aspect
ratio (lFr/δ) and, considering its dependence on the aperture gradient, convection term
iii) is of importance in limited regions close to the fracture tip once fracture surfaces
are separated [206]. For the present study of high aspect ratio fractures below the limit
of fracture surface separation terms ii) and iii) have a minor contribution to the overall
solution and are neglected throughout the following numerical investigations. The leak-off
term q̂lk is directly related to the normal seepage velocity w

N
f = q̂lk.

3.2 Hydro-Mechanical Processes in a Biphasic Poro-Elastic Me- dium BPe

The equations governing the flow processes in the fracture domain BFr require information
about the deformation state of the surrounding matrix BPe to capture changes in volume
and permeability based on the fracture aperture δ(uFr(x, t)). The deformation state of the
surrounding bulk material is obtained through a linear biphasic poro-elastic formulation
[20, 158, 190, 211] that will be introduced in the following. For a detailed derivation of
the governing equations, the interested reader is referred to Schmidt & Steeb 2019.

3.2.1 Governing Equations

Let us assume, that the rock matrix can be described with a poro-elastic approach [20].
The phase index s denotes the solid phase, while f describes the fluid constituent. Quasi-
static conditions are assumed. The compressibility of the mixture is taken into consid-
eration by the dry solid skeleton K, the compressible grains bulk modulus Ks of the
solid constituent and the bulk modulus K f of the pore fluid constituent. The fluid-solid
interaction is introduced by means of the additive split of the effective stress principle
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σ = σs
E − α p I, where σ are the total stresses, σs

E = 3K vol(εs) + 2μ dev(εs) are the
effective stresses, α = 1 − K/Ks the Biot parameter and I is the second order unity
tensor [190, 211]. To close the coupled formulation for a biphasic poro-elastic medium the
viscous momentum interaction of the fluid is assessed, stresses and strains are related by
a linear-elastic constitutive law to evaluate the balance of momentum of the mixture and
the already introduced barotropic assumption of eq. (4.53) is made, resulting in

−div(σs
E − α p I) = ρb,

ṗ

M
− ks

ηfR
div grad p = −α div u̇s,

(4.55)

with the effective dynamic viscosity of the fluid ηfR, the intrinsic permeability ks, the
pore-fluid pressure p, the solid displacement us, the body forces b, the elastic strains εs,
the skeleton’s (dry) shear modulus μ and the inverse storage capacity or (local) storativity
1/M = φ0/K

f + (α− φ0)/K
s [211]. The fracture domain BFr and the porous domain BPe

are defined by sets of leading equations (4.54) and (4.55). For a consistent, volume pre-
serving formulation for embedded deformable fractures in a porous domain, the boundary
conditions along the fracture surface will be discussed in detail.

3.3 Leading Interaction Boundary Conditions of Poro-Elastic BPe and Fracture
Domain BFr

Along the fracture surface ΓFr, an implicit coupling of the fracture domain BFr and the
biphasic poro-elastic domain BPe requires fulfillment of the strongly interdependent me-
chanical and flow equilibrium conditions at any time. Fig. 2 presents the mandatory
mechanical and flow boundary conditions at the interface of the fracture. Mechanical
equilibrium is enforced by a state of balanced fluid pressure p̂nFr± and surface traction
tFr = −σ · nFr± , where both are acting normal to the fracture surface. Flow equilibrium
is met once no-flow boundary conditions at the fracture tip x̂Tip are fulfilled and the
exchange flow between the poro-elastic and fracture domain is equivalent. The exchange
flow terms are defined by means of the normal seepage velocity wN

f = wN
f · nFr± within

the biphasic porous matrix and leak-off flow q̂lk in the fracture domain. Based on the
governing equations of the poro-elastic formulation given by the set of eqs. (4.7) the nor-
mal seepage velocity wN

f is determined by consistent evaluation of the governing equation
considering volumetric changes of the poro-elastic domain and compressibility effects of
the conducted fluid. Assuming finite element discretizations the boundary term might be
identified by applying Green’s first identity [198]. Nevertheless, the characteristic of the
domain coupling is still volumetric since the fracture fluid pressure p̂, which evolution still
depends on governing eq. (4.54) and volumetric coupling term v), is explicitly involved in
the flow and mechanical Neumann boundary conditions. Finally, the coupling conditions
along the intersection defined by fracture surface ΓFr are summarized below

q̂lk = wN
f /(δβ

f) on ΓFr and q̂lk = ŵf = 0 at x̂Tip,

tFr = −p̂nFr± on ΓFr.
(4.56)
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Figure 2: [

]Visualization of required mechanical and flow boundary conditions defined on the
intersection surface ΓFr and the space dependent fracture normal vectors nFr± (x̂). Flow
between both domains is described by means of the outflow q̂lk and normal seepage
velocity wN

f = wN
f · nFr± and no-flow requirements are introduced at the fracture tips

x̂Tip. The acting fluid pressure p̂ and the fracture surface traction tFr define the
mechanical boundary conditions.

3.4 Model for Field Scale Fracture Characterization Including an in-Situ Hydro-
Mechanical Fracture Stiffness Formulation

Throughout the numerical, data-based characterization of fractures, the efficiency of the
applied numerical model is of great importance. Physics-based reduction of the model
introduced in section 4 is carried out to increase its performance while still governing
the key physical phenomena. Additionally, a recently introduced fracture stiffness model
[175] based on perturbations of the in-situ equilibrium state is discussed and motivated
by investigations of acting forces on the micro- and macroscale.

3.4.1 Model Reduction Based on Characteristics of the Fracture Geometry
and Porous Bulk Material

Numerical analysis of transient flow processes in hydraulically tested fractures is consulted
to gain information about fracture characteristics such as the aperture dependent storage
capacity S. In contrast, geometrical information about the fracture orientation and the
relative intersection of the borehole with the fracture plane can be determined without
the need for numerical calculations and might contribute to increase the quality of the
deterministic model reduction. In this study, fracture orientation and positioning of the
borehole motivate the assumption of a vertically oriented, circular fracture like proposed
many times in the literature for different studies on fracture properties, e.g. [82, 157].
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Figure 3: Right: Visualization of the three dimensional poro-elastic BPe and the two dimen-
sional fracture BFr domain and its reduction to a two dimensional radial-symmetric poro-elastic
BPe
rad and one dimensional fracture domain BFr

rad concerning rotation angle ψ and basis vectors er
and ez. The fracture possesses symmetry regarding the borehole which orientation might vary.
Left Top: Approximation of fracture stiffness by non-linear elastic springs with an aperture
dependent stiffness E(δ(x, t)) on the macroscale. Left Bottom: Representation of acting grav-
itational forces Fg, fluid pressure p̂, surface tFr, contact induced normal tCon

N and shear tCon
S

traction, contact ΓCon and fracture mean surface ΓFr and deflection angle θ on the microscopic
level for a specific contact point (marked in red) of the reduced fracture domain BFr

rad.

Fig. 3 illustrates the computational domain for the surrounding biphasic porous matrix
BPe and the lower dimensional circular fracture domain BFr in three, respectively two
dimensions. Assuming that material properties and boundary conditions are independent
of the rotation angle ψ, radial symmetry of the boundary value problem can be assumed
which reduces the computational domains by one spatial dimension. The reduced model is
defined by means of the two-dimensional area BPerad for the poro-elastic formulation and the
one-dimensional line segment BFrrad for the hybrid-dimensional flow model in combination
with the cylindrical coordinate system spanned by the basis vectors er and ez originated
at the rotation center. Besides simplifications made with respect to the fracture’s geom-
etry, the time scale of the conducted step tests allows for decoupling of flow processes
within the porous matrix and fracture domain in case of intact crystalline rocks with low
permeabilities such as e.g. granite, since leak-off has a minor contribution to the total
flow volume. Furthermore, the consideration of outflow into low permeable surrounding
bulk material would lead to numerical instabilities due to the pronounced difference in
characteristic pressure-diffusion times of the poro-elastic and fracture domain. Based on
these investigations, the surrounding bulk matrix is simply treated as a linear-elastic ma-
terial in the following numerical studies where Gassmann’s effective low-frequency result
[66, 127] is used to capture the effective poro-elastic response according to the modified
linear-elastic material constants.
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Figure 4: The effective fracture aperture δ a) is identified as a key parameter that explicitly
connects mechanical phenomena such as fracture surface contact b) with geometrical aspects
such as asperities c) and flow processes d) in the proposed model.

3.4.2 In-Situ Hydro-Mechanical Normal Fracture Stiffness Model

Fracture stiffness has been treated as a constant parameter, e.g., Cappa et al. 2006, is
captured by empirically motivated formulations, e.g., Gothäll & Stille 2010, or expressed
by a function of normal stresses acting on a volumetrically decoupled fracture surface
[56, 109, 144] in the literature. In contrast to these concepts, we follow the approach
of Pyrak-Nolte, Morris and Cook [40, 145, 147], and consider the fracture stiffness to
be a parameter that identifies the equilibrium state of a fracture. The equilibrium state
varies with hydro-mechanical perturbations of the in-situ conditions and results in a time
and space-dependent non-linear fracture stiffness. The main processes involved in the
characterization are introduced in Fig. 4 emphasizing the strong interaction between me-
chanical and hydraulic flow processes. In this context, aperture δ a) is identified as an
effective property that interconnects the driving hydro-mechanical processes and geomet-
rical properties of a fracture, namely the contact mechanism b), the asperities c) and the
flow processes d). Its connecting characteristic implies that information about the ini-
tial effective fracture aperture δ0(x) provides insights about the hydro-mechanical in-situ
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state of a fracture. It might be calculated based on low-amplitude flow/pressure controlled
(harmonic) field testing protocols to minimize the effect of mechanical fluctuations. Con-
cluding, fracture stiffness and aperture equally depend on the hydro-mechanical state of
a fracture, e.g. [89, 153, 157, 176]. Nevertheless, the fracture aperture is an effective ge-
ometric property that explicitly contributes to both, the mechanical and flow processes,
which motivates the constitutive formulation of the fracture stiffness as a function of the
fracture aperture δ(x, t). This assumption is studied by a balance of acting forces on the
microscopic fracture scale.

Equilibrium Conditions of Acting Forces on the Microscopic Level The con-
stitutive normal stiffness model is motivated by an analysis of the acting forces on the
microscale which are visualized in Fig. 3. Investigations of its characteristics are studied
by means of the equilibrium condition in direction normal to the fracture’s mean surface
ΓFr ∑

FN
i =

∫
ΓFr

p̂ da−
∫
ΓFr

tFr(F ext, F g) · nFr± da+

∫
ΓCon

tConN · nFr± da = 0 (4.57)

where tConN is the contact induced surface traction, tFr(F ext, F g) the surface traction in-
duced by external and gravitational forces, ΓCon the varying contact surface and θ the
deflection angle. For simplification the fluid pressure p̂ and the surface traction tFr are
assumed to act normal to the fracture mean plane ΓFr in eq. (4.57). Previous studies on
the fracture stiffness decomposition into geometrical and contact induced stiffness during
hydraulic testing identified the geometrical stiffness to be negligible under the limit of
fracture separation [175]. Hydraulic characterization of tested fractures fulfills this crite-
rion considering that applied fluid pressures are below the determined jacking pressure.
To reduce complexity, we therefore neglected stresses which contribute to the geometri-
cal stiffness, such as characteristic fracture tip stress fields, in eq. (4.57). The driving
forces of the normal equilibrium are then identified as the fluid pressure p̂, the normal
surface traction induced by external forces tFr(F ext), the normal surface traction induced
by gravitational forces tFr(F g), the normal contact surface traction tConN and the grav-
itational forces Fg as well as the fracture orientation defined by the deflection angle θ.
The investigated excerpt of the measurement data does not indicate any pressure, flow
or deformation responses characteristic for major shear events. The absence of significant
fracture shearing indicates the minor contribution of shear induced fracture dilation to
the total normal fracture deformation and motivates the neglect of the contact-induced
shear surface traction tConS .

Macroscopic Constitutive Normal Stiffness Model Throughout studies on the
field scale, fracture length might vary between tenth to hundreds of meters, and informa-
tion about the explicit microscopic structure of the fracture surface with variations on the
micrometer scale is not available. Upscaling of the flow processes in deformable fractures
to the continuum level result in governing eq. (4.54), but requires a sufficient approxi-
mation of the effective fracture aperture change. Analysis of the acting normal forces on
the microscale then found the normal traction tFr, the normal contact traction tConN and
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the fluid pressure p̂nFr to be the driving mechanisms throughout the identification of the
fracture’s equilibrium state. From governing eqs. (4.54) and (4.7) the fluid pressure p̂ and
fracture surface traction tFr(F ext) induced by external forces can be determined, but the
consideration of gravity-induced surface traction and contact on the continuum level need
to be discussed. Contact between two fracture surfaces with a given roughness results
in the deformation of a high number of contact zones of single asperities as (non-linear)
Hertzian contact [40, 77, 197]. Contact behavior of mated/matching fracture samples and
the resulting normal fracture stiffness variation might empirically be expressed as a func-
tion of the effective fracture aperture δ(x, t) to correlate the acting normal stresses and
total contact surface [12, 75]. In-situ fractures are in a state of mated surfaces responding
with reversible deformation to perturbations of the equilibrium state below the limit of
fracture surface separation and motivate the consideration of a non-linear elastic consti-
tutive law [14, 147]. In this work, normal contact stress evolution within the fracture
domain BFr is captured by

σConN = EFr 1

δcmax − δc
δc (4.58)

where EFr is a parameter defining the fracture stiffness, δc the fracture closure which is
initially zero and δcmax the maximum fracture closure [70, 181]. Contrary to most fracture
stiffness studies under compression, hydro-mechanical testing on the field scale results
primarily in opening of the hydraulically tested fracture. Determination of the fracture’s
in-situ state would require numerical approximations under consideration of the normal
stress introduced by eq. (4.58) and gravitational body force effects. In strongly coupled
hydro-mechanical simulations this procedure has a number of drawbacks such as, among
others, the complex determination of the initial fracture aperture δ0 obtained from fluid
pressure - flow measurement data and explicit geometrical consideration of the fracture
depth as a property closely related to the fracture’s normal stiffness [97]. To overcome
these difficulties the interpretation of the initial equilibrium fracture opening δeq as an
parameter characterizing the fracture’s in-situ state is conducted. Like proposed in [175]
a shift of the acting normal stresses to the in-situ stress state is introduced by means of

ΔσFrN = σFrN − σFrN,eq

= −EFr

[
Δδ

( δ0
s0
+Δδ)− δmin

− (
δeq
s0
− δ0

s0
)

( δ0
s0
+ (

δeq
s0
− δ0

s0
)− δmin

]
, (4.59)

where σFrN,eq represents the acting in-situ stresses dependent on the initial equilibrium
fracture aperture δeq, δ0 is the initial fracture aperture under stress-free contact initiation
and s0 ≥ 1 is a dimensionless parameter controlling the difference between the initial
hydraulic and mechanical fracture aperture [175]. In eq. (4.59) consistency with the
governing eq. (4.54) has been achieved by inserting the relations

δc = −(δ − δ0) = −Δδ,

δcmax = −Δδmax = −(δmin − δ0)
(4.60)

to reformulate the constitutive normal-stress model given by eq. (4.58) with respect to
the change in fracture aperture Δδ, where δmin denotes the minimal mechanical fracture
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Figure 5: Left: Plot of relative normal stress changes ΔσN in dependence of the effective
fracture aperture δ(x, t) on the material point level for the case p̂0 = 0. Normal stresses are
captured by the normal contact stress σCon

N , the normal equilibrium stresses σFr
N,eq, the sum

of contact and equilibrium stresses σSum
N and the constitutive normal stress law ΔσFr

N curves.
Perturbations of the equilibrium state σequ

N caused by pressure fluctuations Δp̂ result in changes
of the effective aperture δ = δeq +Δδ. Right: Modification of the contact characteristic by
means of factor s leading to a softer contact for s < s0 and a more discrete (stiffer) contact for
s > s0 when compared to the initial normal stress curve with s = s0.

aperture. Mathematical manipulation of eq. (4.60) results in a formulation describing
normal stress changes relative to the in-situ state

ΔσFrN = −EFr
eq

Δδ

(
δeq
s0
+Δδ)− δmin

(4.61)

and is closely related to eq. (4.58), where EFr
eq is the normal stiffness parameter of the

equilibrium state. Fig. 5 shows the alignment of normal stresses σFrN calculated based
on the proposed model defined by eq. (4.61) and the curve constructed by the sum of
the on the normal equilibrium stresses σFrN,eq and the by eq. (4.58) introduced contact re-
lated σConN normal stresses. Perturbations of the equilibrium state by pressure fluctuations
around the in-situ pressure state result in a redistribution of the stress state and aper-
ture changes. For instance, an increase of fluid pressure by Δp̂ reduces the total contact
surface, which translates to a decrease in normal contact stresses σConN and an opening of
the effective fracture aperture by Δδ. In case of fracture surface separation the proposed
model reproduces the acting normal stress σFrN,eq. Dependent on the correlation of fracture
surfaces the evolution of fracture stiffness might differ [145]. Alteration of normal contact
stresses around a fixed equilibrium state are captured by an increase (s > so) or decrease
(s < s0) of the characteristic stiffness response to deformation. Nevertheless, to reduce
the influence of additional fitting parameters on the pressure - flow relations in this work,
the dimensionless parameter is considered to be s0 = 1, introducing an equivalence of ini-
tial hydraulic and mechanical fracture aperture. For the sake of completeness, it should
be noted that despite being negligible under the limit of hydraulic induced fracture sepa-
ration, embedding of the fracture geometry in the poro-elastic domain results in implicit
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consideration of the geometrical stiffness.
In this section a consistent formulation for flow in deformable fractures has been intro-
duced by the governing equations eqs. (4.54) and (4.7). Further, it is reduced to a
computationally efficient radial-symmetric, linear-elastic formulation. The physics-based
constitutive eq. (4.61) captures the fracture stiffness and is strongly coupled to the defor-
mation state by means of the effective aperture δ(x, t) within the fracture domain BFr.

3.4.3 Applicability of the Proposed Model

The proposed model is specifically tailored to the numerical analysis of hydro-mechanical
measurement data containing no evidence of irreversible fracture property changes. De-
spite introducing a high numerical efficiency, the model reduction is accompanied by a loss
of general validity considering its insufficient complexity for investigations in the range
of irreversible, hydro-mechanically induced changes of the tested region, such as a poten-
tial gain of permanent fracture volume; e.g., relevant for hydraulic stimulation strategies,
being hydraulic shearing and/or fracturing. The applied radial symmetric formulation
is prone to inaccurate predictions of heterogeneous flow phenomena and the neglect of
shear induced fracture dilations leads to a slight overestimation of the dominant normal
stiffness contribution to fracture opening. Previous studies investigated an insensitivity
throughout the determination of an upper limit to the fracture length once flux/pressure
transients converge towards a constant value [175]. This insensitivity is not specific to
the proposed model, but arises from a lack of transient information caused by constant
flux/pressure plateaus in the measurement data.

Despite the discussed limitations, the proposed model captures key mechanisms expected
throughout hydraulic testing when considering the occurrence/absence of specific hydro-
mechanical indicators in the present measurement data. Nevertheless, attention needs
to be drawn to the necessity of a careful inspection of the experimental data sets to
guarantee the absence of irreversible effects and to ensure the applicability of the present
model. Once applicable, the combination of numerical analysis and hydro-mechanical
measurement data provides valuable insights into the importance of hydro-mechanical
interaction during hydraulic testing of fractures.

3.5 Model Parameters and Processing of Hydro-Mechanical Simulation Data

The material parameters of the surrounding bulk material are defined in Table 4.14 to
describe the mechanical behaviour of a granitic rock where the effective parameters of the
linear-elastic material formulation are calculated based on the introduced Gassmann’s
effective low-frequency result [66, 127]

Keff =
φ0

(
1
Ks − 1

Kf

)
+ 1

Ks − 1
K

φ0

K

(
1
Ks − 1

Kf

)
+ 1

Ks

(
1
Ks − 1

K

)
μeff = μ

(4.62)

The resulting numerical effective properties (Table 4.14) are closely related to the charac-
teristic properties of Grimsel granite found in the literature [172, 182, 213]. The injected
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Table 4.14: Parameters of the surrounding bulk matrix to model granite rock material

Quantity Value Unit Quantity Value Unit

Rock parameters
dry frame bulk modulus K 20.0 (GPa) grain bulk modulus Ks 50.0 (GPa)
shear modulus μ 17.0 (GPa) initial porosity φ0 0.01 (-)
intrinsic permeability ks 5.0 · 10−19 (m2) fluid compressibility βf 0.417 (1/GPa)
effective bulk modulus Keff 42.5 (GPa) effective shear modulus μeff 17.0 (GPa)

water is treated as a slightly compressible fluid with bulk modulus K f = 1/βf. Fracture
aperture changes Δδ are evaluated at a distance of 7m to the injection borehole simi-
lar to the experimental set up and simulations are performed under pressure boundary
conditions p̂0(t) applied at the fracture-borehole intersection, matching the measurement
protocol. Volumetric fracture changes and compressibility of the fluid prevent the calcu-
lation of the injected fluid flow based on the pressure p̂ - flow q̂ relationship defined by eq.
(4.10) for results obtained from hydro-mechanical simulations. Governing equation (4.54)
enforces global preservation of volume within the fracture domain BFr and compensates
injected fluid by a combination of fluid compression and volumetric fracture deformations.
The total change in fluid volume ΔVf within the fracture domain BFr with respect to an
equilibrium in-situ stage is equivalent to

ΔVf = ΔV
f
+ΔV (4.63)

once outflow into the surrounding matrix is negligible, where ΔV
f
is the volume regard-

ing to the compression of the fluid and ΔV is related to the volumetric deformation of
the fracture. Volume changes related to the fluid compressibility ΔVβf

= −V0βfΔp̂ are
calculated based on isothermal compressibility assumptions using the updated element
volume to determine volumetric fracture changes ΔV = ΔδAEl based on the discretized,
lower-dimensional fracture surface area of a single element AEl =

∫
AEl

det(JEl) da0 where

det(JEl) is the determinant of the Jacobian which arises when integration is performed
with respect to the reference element area a0. Evaluation of the fluid flux considering a
discrete time step is captured by Q̂ = (ΔV 1

f − ΔV 0
f )/Δt where ΔV 0

f and ΔV 1
f are the

total injected volumes for two consecutive time steps and Δt the time step size. The
representation of total injected volume by means of volume fractions helps to increase the
understanding of driving hydro-mechanical mechanisms within fluid-filled, deformable
fractures by an individual visualization of their contribution to the solution. The per-
formed studies assume intact rock material and no connection between the tested and
other pre-existing fractures which might lead to inaccuracies regarding the tested fracture
system’s capacity S, but servers best to determine leading mechanisms throughout hy-
draulic testing of single fractures. Parameters that are modified for each simulation will
be introduced accordingly.
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4 Results

Numerical fits of the consistent set of pressure p̂, flow q̂ and deformation Δδ data pro-
vide insights into the initial equilibrium δeq and evolving effective fracture aperture δ =
δeq + Δδ. Based on the numerically determined aperture evolution, characteristic pa-
rameters such as the fracture’s storage capacity S might be resolved by additional post-
processing steps. Nevertheless, this work focuses on best numerical fits of the measure-
ment data for the evaluation of the proposed model and investigations of hydro-mechanical
fracture phenomena on the field scale rather than the determination of fracture parame-
ters. Despite the intersection of two fractures with the borehole located within the region
framed by the installed packers, the simulation is conducted on a single fracture first,
and results are compared with a classical diffusion-based approach, before the outcome
of simulations considering two parallel, interacting fractures will be discussed.

4.1 Comparison of the Fully-Coupled with a Diffusion-Based Model

Table 4.15: Parameters of the hydro-mechanical a) and diffusion-based model b).

Quantity Value Unit Quantity Value Unit

Hydro-Mechanical Model a)
initial equ. aperture δeq 62.5 (μm) effective fluid viscosity ηfR 0.001 (Pa·s)
fluid compressibility βf 0.417 (1/GPa) fracture stiffness EFr

eq 2.1 (MPa)
contact characteristic s0 1 (-)
Diffusion Based Model b)
initial equ. aperture δeq 80.0 (μm) effective fluid viscosity ηfR 0.001 (Pa·s)
fluid compressibility βf 0.417 (1/GPa)
Geometrical Parameters
domain length l 500.0 (m) domain height h 100.0 (m)
hyd.-mech. fracture length a) lFrHM 80.0 (m) dif. fracture length b) lFrD 320.0 (m)

Investigations of a single fracture are conducted to compare results obtained from a con-
ventional, diffusion-based model b) to the results of the proposed hydro-mechanically
model a) and to study their capability of gaining knowledge about flow processes based
on hydro-mechanical measurement data. Assuming the existence of a single fracture al-
lows the investigation of both models without any side effects triggered by the mechanical
interaction of tested fractures. The governing equation of the diffusion-based approach b)
is obtained by reducing eq. (4.54) to terms i) and iv) under the assumption of a rigid (un-
deformable) fracture saturated with a compressible viscous fluid. Parameters completing
the set of model properties are introduced in Table 4.15. Approximately 15 000 degrees of
freedom (DoF) were used for the hydro-mechanical model and 3 500 DoF for the pressure
diffusion based model to achieve feasible computational times considering the necessity of
multiple simulations throughout the parameter fitting procedure. The difference in DoF
between both models arises from the neglection of deformation in the pressure diffusion
model.

A comparison of the experimental data to the numerical results obtained by simulations
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Figure 6: Comparison of numerical fits of the experimentally measured transients calculated
by the proposed hydro-mechanical a) and a diffusion-based model b). Top to bottom: Injec-
tion fluid pressure p̂, injection flux Q, total injected fluid volume ΔVf decomposed into volume
compensated by the compressibility of the fluid ΔV

f
and volume compensated by fracture defor-

mation ΔV for the hydro-mechanical model a) and diffusion based model b) and relative fracture
deformation changes Δδ.

based on the fully coupled model a) and pressure diffusion model b) are displayed in Fig.
6. Dirichlet pressure boundary conditions are applied in both simulations reproducing the
experimentally controlled pressure steps by numerically increasing the applied pressure
in three steps considering the maximum value of each recorded pressure level. Flux
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results obtained by evaluating eq. (4.63) show slight deviations in the first and third
step, but an overall close match to the measurement data for the fully coupled model a)
and high deviations throughout the second and third injection step for results obtained
with the diffusion model b). Fracture deformations obtained from the hybrid-dimensional
implementation a) are aligning with the field measurements for the first two pressure
steps and overestimate the volumetric change slightly for the third step. Based on the
assumptions made, the diffusion-based model b) is not capable of taking any volumetric
fracture changes into consideration and underestimates the transient volumetric fracture
change drastically. This trend is also evident in the transient change of total injected fluid
volume where the estimation based on the coupled formulation a) is in the range of the
measured injection volume, whereas the diffusion-based model b) underestimates the total
injection volume thoroughly. In order to numerically approximate the first pressure step,
the diffusion-based model b) requires a numerical fracture length of lFrD = 320m which
largely differs from the fracture length approximated by the hydro-mechanical model a)
of lFrHM = 80m.

4.2 Modelling of Two Parallel Fractures

Table 4.16: Parameters of the hydro-mechanical model used throughout calculations made for
two parallel fractures.

Quantity Value Unit Quantity Value Unit

Hydro-Mechanical Model
initial equ. aperture δ31.8eq 46.5 (μm) initial equ. aperture δ33.0eq 54.5 (μm)
fluid compressibility βf 0.417 (1/GPa) effective fluid viscosity ηfR 0.001 (Pa·s)
fracture stiffness EFr

31.8 5.75 (MPa) fracture stiffness EFr
33.0 4.5 (MPa)

contact characteristic s31.80 1 (-) contact characteristic s33.00 1 (-)
Geometrical Parameters
domain length l 500.0 (m) domain height h 100.0 (m)
fracture length lFr31.8 80.0 (m) fracture length lFr33.0 80.0 (m)

The simulation of flow processes in two parallel fractures is carried out by applying the
proposed hydro-mechanical simulation model with parameters given in Table 4.16. The
field measurements indicate that the previously introduced hydraulic fracture is connected
to two natural fractures with similar orientation, intersecting the FBG sensor at 33.0 m
borehole depth and a quartz vein which deformation was tracked by a FBG sensor at 31.8
m borehole depth. Throughout the hydraulic fracture procedure the region between the
quartz vein and the host rock has been opened and can therefore be treated as a fracture
in the numerical model. Since a single, superimposed set of strain transients is available
for the two natural fractures, we incorporate both fractures into a single effective fracture
in the numerical model. The quartz vein and both natural fractures are oriented normal to
the acting principal normal stress motivating a parallel fracture assumption. The fracture
length of each numerical fracture is equivalent to the fracture length of the single fracture
considered in the previous study. This has mainly three reasons; a) the initial apertures of
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both fractures are individually smaller than the one chosen for the single fracture study,
b) the fractures are considered to be stiffer and additionally compete against each other
in terms of dominant opening behaviour and c) the presence of flux convergence towards
constant values in the investigated measurement data induces the discussed numerical in-
sensitivity during fracture length analysis. To compensate for effects related to a) and b),
the initial fracture volumes are chosen to be slightly higher. Due to the numerical insensi-
tivity c), an increase in model complexity by individual variation of the fractures’ length
would lead to nondeterministic numerical results; i.e., different fracture length combina-
tions result in similar numerical transients. This has been investigated during exploratory
numerical simulations where we accounted for relative fracture length variations. Hence,
we model the numerically investigated fractures by assuming equivalent fracture lengths.
The numerical discretization of the boundary value problem results in a total of 36 000
DoF. Fracture deformations are evaluated for both fractures, namely Δδnum31.8 and Δδnum33.0 ,
and compared to the experimentally obtained deformation data Δδexp31.8 and Δδexp33.0, whereas
the combined numerical flux of both fractures is plotted in comparison to the total flux
injected in the region framed by the installed packers during field measurements. A com-
parison of the experimental and numerical data is shown in Fig. 7. Throughout the
numerical simulation of the investigated fractures, the applied pressure boundary condi-
tions capture the measurement protocol by constant pressure increases considering the
upper limit of each experimentally applied step. The resulting flux slightly overestimates
the first flow-rate step, matches the second and slightly underestimates the experimental
flow-rate for the third pressure level. A comparison of the transient fracture deforma-
tions shows close alignment with the measurement data for both fractures. Similar to
the results shown in section 4 injected fluid volume is almost entirely compensated by
volume changes of the fracture, whereas the contribution of the fluid’s compressibility
is negligible, resulting in a total injected fluid volume that approximates the field data
well. In addition to the already introduced quantities flux, pressure, and deformation, the
fracture stiffness is evaluated numerically to capture its transient evolution like displayed
in Figs. 8 and 9. Best fits of the total flux and deformation data are obtained for fracture
stiffness parameters of EFr

31.8 = 5.75MPa and EFr
33.0 = 4.5MPa respectively. For the limit-

ing case of separated fracture surfaces, the model converges towards the normal stresses
σFrN,31.8 = 5.75MPa and σFrN,33.0 = 4.5MPa. The transient evolution of the local specific
fracture stiffness shows a decrease with increasing injected fluid volume, and with increas-
ing fluid pressure for both fractures. Close to the injection zone, mechanical interaction
prevents a faster opening of fracture ΓFr31.8 resulting in a decreased evolution velocity of
its fracture stiffness.

5 Discussion

The results obtained from the comparisons conducted in section 4 proof the capability
of the proposed hydro-mechanical model to reproduce consistent sets of pressure, fluxes,
and deformation data. The strong coupling of local, respectively, global volume changes
of the fracture to the fracture flow reproduces the non-linear pressure-flow relationship
throughout increasing pressure steps below the limit of fracture surface separation. The
tendency to slightly overestimate the first and underestimate the change in fluxes cor-
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Figure 7: Numerical fits of the experimentally measured transients calculated by the proposed
hydro-mechanical model for two parallel fractures. Top to bottom: Injection fluid pressure
p̂, injection flux Q, total injected fluid volume ΔVf decomposed into volume compensated by
the compressibility of the fluid ΔV

f
and volume compensated by fracture deformation ΔV and

relative fracture deformation changes Δδ.

responding to the highest pressure level might be caused by the absence of a profound
constitutive relationship between hydraulic and mechanical effective fracture aperture
that has been discussed in the literature [147, 155]. Still, the proposed model relies on
the permeability/volumetric evolution based on the cubic law which serves as an upper
bound for the pressure-flow relation [146]. This conservative approach avoids potential
overestimation of volumetric changes corresponding to the fitting of additional modeling
parameters. Once priorities shift towards higher accuracies of numerical fits to determine
characteristic fracture properties, it is straight forward to extend the proposed model
by a preferred constitutive relationship for the hydraulic aperture in future works. The
derived contact-related normal stress evolution for in-situ conditions given by eq. (4.46)
provides high accuracy throughout the reproduction of the measured fracture deforma-
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Figure 8: The specific fracture stiffness ∂σFr
N,31.8/∂Δδnum31.8 of fracture ΓFr

31.8 is plotted over the

local fracture coordinate xFr and the investigated time range t. The color-map indicates lower
values of the specific fracture stiffness by yellow and high values by black. Isolines introduce
absolute values of the specific stiffness and visualize the evolution in time.

Figure 9: The specific fracture stiffness ∂σFr
N,33.0/∂Δδnum33.0 of fracture ΓFr

33.0 is plotted over the

local fracture coordinate xFr and the investigated time range t. The color-map indicates lower
values of the specific fracture stiffness by yellow and high values by black. Isolines introduce
absolute values of the specific stiffness and visualize the evolution in time.

tion. For stiffness parameters obtained by best numerical fits of the experimental fracture
deformation data, the proposed constitutive model converges towards normal stresses
for increasing fracture opening which are consistent with findings from effective instan-
taneous shut-in pressure (ISIP) investigations [53]. The orientation of the investigated
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fractures at depth 33.0 m can be assumed to be orthogonal to the orientation of the min-
imum principal stress. Hence, the normal stresses obtained from the proposed contact
model for the limiting case of surface separation should be equal to the measured effec-
tive minimum stresses determined from the field data since geometrical stiffness of the
investigated fracture has a minor contribution to the total fracture stiffness and can be
neglected [175]. Agreement of the proposed effective minimum principal stress calculated
by Dutler et al.2020 of σ3 = 4.5 MPa with the resulting normal stress obtained by the
proposed model of σFrN,33.0 = 4.5MPa proofs the consistency of both studies. Due to the
slightly different orientation of the natural fracture at depth 31.8 m, normal stresses are
expected to be in the range defined by the effective principal stresses σ2 and σ3 where
lower indices indicate higher stress magnitudes. In case of fracture surface separation the
normal stress acting on the natural fracture surfaces is predicted to be σFrN,31.8 = 5.75MPa
and consistent with the findings of the stress state studies where the effective principal
stresses are determined to be σ2 = 6.7 MPa and σ3 = 4.5 MPa. The consistency with
the analysis of the characteristic stress state strengthen the assumptions made to iden-
tify the driving forces resulting in eq. (4.57) and especially the quality of the chosen
constitutive model [175] for acting normal stresses under in-situ conditions. Besides the
validation of the derived hydro-mechanical model, the main outcome of this study is the
great influence of volume changes of a fracture on the flow transients and amplitudes
due to perturbations of the equilibrium state by hydraulic pressure and vice versa. The
split between volumetric compensation of injected fluid volume by fracture deformation
and compressibility of the injected fluid introduced by eq. (4.63) allows a distinguished
assessment of the driving mechanisms. The good alignment of measured and numerically
determined fracture deformations guarantees that not only the fracture stiffness parame-
ter is in a realistic range, but also the transient evolution of the total fracture volume is
physically described. The numerically determined fracture lengths are overestimating the
expected values from field investigations. Numerical overestimation of the fracture length
has mainly two reasons; a) the discussed insensitivity of the numerical analysis to frac-
ture length changes during the analysing of transients containing constant flow/pressure
regimes and b) the incorporation of potentially intersecting, highly conductive fractures in
a single fracture volume. Nevertheless, the results shown in section 4 clearly identify that
injected fluid volume is compensated by fracture deformations, whereas the contribution of
the fluid’s compressibility is negligible. This statement strongly contradicts most inverse
calculations based on pressure diffusion models and might be questioned, but is consistent
with the experimental deformation transients. To better understand why diffusion-based
approaches provide promising results, even though the physical assumptions made are
not consistent with the experimental findings of this study, the hybrid-dimensional flow
eq. (4.54) is conducted. Regarding the compressibility-related transient term i) and the
deformation-related volumetric coupling term v) it could be observed that both possess
the same mathematical characteristics since they are first derivatives in time and might
potentially provide identical transient responses when parameters are chosen accordingly.
This becomes obvious by assuming rather small constant pressure perturbations of the
equilibrium state, guaranteeing minor alterations of characteristic flow parameters such
as permeability. For these cases, diffusion-based models reproduce the transient charac-
teristic of the flux response well by fitting a constant fracture aperture. Nevertheless, in
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order to shift the results in their magnitude, the fracture volume needs to be modified
by means of its length, respectively total initial fluid volume. This modification results
in an overestimation of the initial fracture volume since neglection of deformation must
be compensated by compression of an artificially enlarged initial fluid volume. Consult-
ing the comparison of the hydro-mechanical model a) with the diffusion-based model b)
shown in section 4 and focusing on the first pressure step the introduced scenario is re-
produced by the numerical findings. Throughout the first pressure increase, the almost
aligning flux solutions of both models provide fits of the same quality. Nevertheless,
the predicted fracture length of the diffusion-based model is four times as large as the
fracture length obtained from simulations with the hydro-mechanical approach. In or-
der to reduce the introduced error in the context of diffusion-based models, the use of
outflow boundary conditions might artificially compensate for the incorrect neglect of
fracture deformation. In a second step, large perturbations of the equilibrium state caus-
ing non-negligible changes of the hydro-mechanical properties are investigated. Under
such conditions, purely diffusion-based models fail since the formulation does not con-
sistently account for the interaction of mechanical changes of the fracture geometry and
flow processes in the fracture domain. Conducting the results shown in section 4 and
focusing on the second and third pressure step, the results of the diffusion-based model
b) clearly demonstrate the failure of the model for transient changes of the characteris-
tic fracture properties. Nevertheless, extended diffusion-based models [139] capture local
volumetric changes by means of local fracture storativity without explicitly modeling the
deformation of the surrounding bulk matrix. This approach introduces another constitu-
tive relation between pressure and fracture aperture on the material point; i.e., a local
level to fit experimental data with non-negligible mechanical perturbations. Still, local
relations between fracture deformation and pressure are not consistent in the context of
fractures since fluid pressures act in an integral nature on the fracture surfaces resulting in
non-local volume changes. Results from literature [206] indicate that the non-local defor-
mation effect is not captured by models based on local pressure-deformation assumptions
and introduces errors regarding the spatial resolution and temporal evolution of volu-
metric changes. A prominent example where such models fail to reproduce experimental
findings is the phenomenon of reverse water-level fluctuations throughout the testing of
fractures. In contrast, the hydro-mechanical model is able to reproduce this phenomenon
since it is capable to consider fracture opening in regions that have not been reached by
pressure diffusion. Non-local deformations can implicitly be found in the results shown in
section 4 when investigating the evolution of iso-lines introduced for the specific stiffness
related to normal contact KFr = ∂σFrN /∂δ since the evolution does not correlate with the
local pressure state, but the non-local fracture opening in Figs. 8 and 9. Comprehensive
studies on the relationship between acting normal stresses and non-local deformations of
tested fractures using the applied hydro-mechanical model exceed the scope of this work
and might be content of following studies.

6 Conclusion

The presented work discusses the importance of hydro-mechanical coupling under in-
situ conditions conducting the introduced hydro-mechanical model and a consistent set
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of pressure, flux and deformation data obtained from field experiments at the Grimsel
Test Site. The introduced constitutive relationship based on fracture surface contact
and normal stresses related to fracture orientation and position captures in-situ normal
stress conditions well and strengthens the assumptions made for the identified driving
forces during flow processes in deformable fractures below the limit of fracture separation.
Nevertheless, the main outcome of this study is the identification of fracture deformation
as the dominant mechanism throughout injection of a weakly compressible fluid into
fractures for small to moderate fluid pressure amplitudes. Based on the experimental and
numerical results, the limitations of diffusion based models could be discussed and the
importance of mechanical responses could be shown by a split of contributing deformation
and compressibility related volumetric changes. The study emphasizes the importance of
hydro-mechanical coupling in the context of characteristic fracture flow phenomena in
the reversible regime and its necessity to extend the understanding of the investigated
mechanisms to more complex fracture systems.
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Simulation of flow in deformable fractures using a quasi-

Newton based partitioned coupling approach
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Abstract We introduce a partitioned coupling approach for iterative coupling of flow
processes in deformable fractures embedded in a poro-elastic medium that is enhanced by
interface quasi-Newton (IQN) methods. In this scope, a unique computational decompo-
sition into a fracture flow and a poro-elastic domain is developed, where communication
and numerical coupling of the individual solvers are realized by consulting the open-source
library preCICE. The underlying physical problem is introduced by a brief derivation of
the governing equations and interface conditions of fracture flow and poro-elastic domain
followed by a detailed discussion of the partitioned coupling scheme. We evaluate the pro-
posed implementation and undertake a convergence study to compare a classical interface
quasi-Newton inverse least-squares (IQN-ILS) with the more advanced interface quasi-
Newton inverse multi-vector Jacobian (IQN-IMVJ) method. These coupling approaches
are verified for an academic test case before the generality of the proposed strategy is
demonstrated by simulations of two complex fracture networks. In contrast to the devel-
opment of specific solvers, we promote the simplicity and computational efficiency of the
proposed partitioned coupling approach using preCICE and FEniCS for parallel compu-
tations of hydro-mechanical processes in complex, three-dimensional fracture networks.

1 Introduction

Modeling of transient flow processes in deformable high-aspect ratio fractures (length �
aperture) embedded in a poro-elastic medium is a non-trivial task. Complex discretiza-
tion of the fracture(-network) geometry and stiff numerical coupling of the surrounding
poro-elastic and fracture-flow domain require specific implementations to guarantee sta-
bility and efficiency of the designed solver. In this work, we propose a highly efficient,
straightforward implementation of the governing partial differential equations (PDEs) of
each domain using the open-source package FEniCS [7] and realizing the numerical cou-
pling process, its acceleration via quasi-Newton methods and inter-solver communication
by the open-source library preCICE [31].

Phenomena such as the occurrence of reverse water-level fluctuations in distant moni-
toring wells during hydraulic testing of fractured reservoirs indicate the importance of
hydro-mechanical interaction throughout fracture-flow processes [69, 185]. Perturbations
of the reservoir’s equilibrium state result in immediate non-local fracture deformations
and time delayed pressure diffusion with distinct characteristic time scales, which highly
affect the measured pressure transients. Once the fracture deformation influences the
pressure evolution, traditional [60, 133] and extended [139] diffusion-based models fail
and the necessity of consistent hydro-mechanical simulations arises [206]. Creeping flow
conditions in high-aspect ratio fractures motivate to simplify the balance equations based
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on pressure-driven, Poiseuille-type flow formulations [121, 216] to capture flow processes
in deformable fractures. The resulting fracture-flow equation leads to a reduction of space
dimension of the computational domain by one. Equivalently, the numerical implemen-
tation is introduced as a hybrid-dimensional model [206, 208], which can be simplified
to the lubrication equation [16] by dimensional analysis considering the specific case of
high-aspect ratio geometries [206].

The numerical approaches to solve the strongly coupled hydro-mechanical fracture-flow
problem addressed in literature can be divided in two groups: (i) monolithic and (ii)
partitioned schemes. Monolithic approaches introduce the fracture-flow domain by zero-
thickness interface elements [98, 180, 181, 183] and mostly require direct solution strategies
to guarantee high numerical stability since distinct characteristic properties of both do-
mains lead to poor conditioning of the global system [177]. In general, tailored meshing
and integration strategies are required to discretize the fracture domain by interface el-
ements. The complexity dramatically increases in the presence of intersecting fractures
or regions containing fracture tips. In contrast, partitioned schemes allow the individual
treatment of the subdomain and, in particular, the use of non-conformal meshes [177].
However, iterative coupling of both domains is required to ensure global equilibrium
for each conducted time step, which potentially makes this approach computationally
more expensive. Therefore, stabilization and acceleration methods are used to keep the
number of coupling iterations needed low. In the literature, numerical convergence and
stability of the equilibrium iterations have been achieved by adapting physics-based pre-
conditioning of unfractured [104, 105] to the specific case of fractured poro-elastic media
[18, 38, 72, 73, 103]. Nevertheless, parallel communication within the proposed staggered
algorithms is nontrivial, but required to solve large systems in reasonable time. Therefore,
we propose an easily accessible, efficient and fully parallelized deformable fracture-flow
implementation introducing a unique computational split of the fracture-flow and poro-
elastic domain. It uses advanced quasi-Newton schemes for stabilization and acceleration
of the coupling.

More specifically, we employ two separate solvers for (i) flow and mechanical deforma-
tion of the porous structure and (ii) flow in the fracture itself. This allows for the use
of available, highly efficient and parallel solvers for each of these two subdomains. We
avoid assembling the ill-conditioned monolithic system of equations. The coupling library
preCICE [31] is used to establish and steer the iterative coupling between the two solvers.
preCICE provides a generic coupling solution interface, that is not tailored to a specific
use case. Its library approach makes it simple to use with a large variety of solvers. It
comes with adapter codes for popular simulation software and a high-level interface for
many popular programming languages. Additionally, it has been optimized for high com-
putational efficiency by implementing several acceleration methods, including a number of
interface quasi-Newton methods [171], parallel data communication [118, 120], and sophis-
ticated data mapping techniques including radial basis function mapping [118, 119] for the
use with non-matching grids. This sets preCICE apart from commercial or closed sourced
alternatives such as MpCCI1 [100], where one cannot access or change the implementa-

1www.mpcci.de
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tion. Other open-source alternatives such as ADVENTURE2 [102], the Data Transfer Kit3

[186] or OpenPALM4 [30], e.g., are either lacking the high-level programming interface
or combined implementation of highly-parallel data communication, coupling steering,
sophisticated data mapping, and coupling acceleration. Combining the efficient iterative
solvers in the subdomains with preCICE to realize the iterative coupling of both domains
yields a fast and efficient overall solution technique. It eliminates the need to develop a
specialized solver or preconditioner, respectively, for the corresponding monolithic system.
Thus, our simulations of hydro-mechanical processes at high resolution and accuracy can
be performed by simple high-level solvers written in Python based on the finite-element
library FEniCS. We use the Python interface of preCICE since the recently developed
FEniCS-preCICE adapter [160] had not been available and was lacking some functionality
needed for the applications presented during the preparation of our work.

After briefly deriving the governing equations, see Sec. 2, and introducing the coupling
scheme, see Sec. 3, we verify and investigate the proposed coupling approach for an aca-
demic test case (single fracture embedded in a three-dimensional poro-elastic domain) at
high resolution. The results obtained by the staggered scheme are compared to a mono-
lithic approach to proof consistency of both strategies in Sec. 4.1. Afterwards, we conduct
a case study investigating the convergence behavior of different interface quasi-Newton
schemes and their dependency on coupling specific parameters, see Sec. 4.1.1. We demon-
strate the ability of this approach for large problems for three different meshes ranging
from tens of thousands to several million degrees of freedom (DoF), see Sec. 4.1.2. Subse-
quently, the relevance of the proposed method for more complex applications is shown by
two more challenging test cases. The first case focuses on flow processes in complex frac-
ture networks on a short (minutes) time-scale, see Sec. 4.2, while, in the second case, flow
through fractured porous media on a large time-scale (days up to years) is investigated,
see Sec. 4.3. In summary, this work introduces a stable implementation for fully coupled,
parallelized three-dimensional simulations of flow processes in deformable fractures, using
an unique split of the computational fracture-flow and poro-elastic domain.

2 Governing Equations

We introduce the governing equations for both parts of our fracture system, the fracture(s)
ΓFr and the surrounding poro-elastic BPe domain, resulting in a coupled formulation cap-
turing solid deformation and fluid flow in fractured porous media. For the fracture domain,
we base our derivation on the observation that (i) deformation induced volume changes
of high-aspect ratio fractures have a strong impact on the flow solution and require an
implicit coupling to the surrounding solid domain; (ii) explicit three-dimensional model-
ing of flow processes in such fracture systems is challenging and leads to poor results in
case of insufficient mesh quality.

We overcome these challenges by lower dimensional modeling of the fracture flow domain
where the fracture aperture is implicitly treated as a function on a two-dimensional man-

2https://adventure.sys.t.u-tokyo.ac.jp/
3https://ornl-cees.github.io/DataTransferKit/
4https://www.cerfacs.fr/globc/PALM WEB/
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ifold. The value of this function is given by an initial opening value and the poro-elastic
deformation of the surrounding porous medium.

2.1 Flow in a deformable fracture ΓFr

In the following, we derive a hybrid-dimensional model [206, 208] governing the flow
processes in deformable high-aspect ratio fractures by evaluation of the balance of mass
and momentum within the fracture domain ΓFr. Equilibrium conditions of the fluid and
the biphasic porous medium are enforced in terms of fracture aperture δ and fluid pressure
p.

Figure 1: Three dimensional representation of an embedded fracture characterized by its surface
ΓFr in a deformable poro-elastic body BPe with its boundary ΓPe. A local coordinate system êi
at the fracture level is introduced, where ê3 is pointing in the direction of the fracture surface
normal nFr. The volume V Fr and aperture δ changes of the fracture between the reference
configuration X at time t0 and the current configuration x at time t of a material point P are
implicitly coupled to the poro-elastic deformations expressed by the unique motion function
X (t).

2.1.1 Balance of Momentum

In our fracture model, the balance of momentum equation can be simplified drastically
compared to the full Navier-Stokes equations for viscous and compressible fluids. Studies
on flow processes in hydraulically transmissive fractures with low contact areas motivate
the simplification to a pressure-driven Poiseuille-type flow between two parallel plates
[206, 216] under creeping flow conditions. Assuming a quasi-static, deformation dependent
fracture aperture

δ = u+nFr
+ + u−nFr

− , (4.64)

the geometrical characteristics of high-aspect-ratio fractures lead to predominant flow
within the fracture plane. In eq. (4.64), we construct the effective fracture aperture δ based
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on the jump u± in normal deformation over the fracture surface, where we introduced
the fracture normal vector nFr

± (see Fig. 2). Integration of the velocity profile of the
respective Poiseuille-type (assuming no-slip boundary conditions at the fracture surfaces)
yields the relative fluid velocity

ŵf = −δ2(x, t)

12 ηfR
ˆgrad p̂ = −ks

Fr(x, t)

ηfR
ˆgrad p̂, (4.65)

where ηfR denotes the fluid’s effective dynamic viscosity and ks
Fr(x, t) := δ2(x, t)/12 the

space and time resolved effective fracture permeability 5. Variables and mathematical
operations defined by means of the fracture domain ΓFr are denoted with �̂ to avoid
confusion with quantities and higher dimensional operations defined in the poro-elastic
domain BPe.

2.1.2 Balance of Mass

Mass conservation has to take into account volumetric changes and fluid compressibility
βf. For a given fluid compressibility βf = 1/K f with respect to the fluid’s bulk modulus
K f, the local mass balance reads

∂(ρfR δ)

∂t
+ d̂iv

(
ŵf ρ

fR δ
)
= wN

f , (4.66)

where wN
f is the leak-off triggered seepage velocity of the porous domain normal to the

fracture domain.

2.1.3 Governing Equations

The governing equation for the flow in deformable fractures is obtained by combining eq.
(4.65) with the balance of mass in eq. (4.66). To close the set of governing equations, we
introduce a linear equation of state for the fluid pressure p ∝ ρfR

p = K f

[
ρfR

ρfR0
− 1

]

where ρfR0 is the effective density at t = 0. This results in the governing equation

δ
∂p̂

∂t︸︷︷︸
I)

− δ3

12 ηfR
ˆgrad p̂ · ˆgrad p̂︸ ︷︷ ︸
II)

− δ2

12 ηfR βf
ˆgrad δ · ˆgrad p̂︸ ︷︷ ︸
III)

− 1

12 ηfRβf
d̂iv

(
δ3 ˆgrad p̂

)
︸ ︷︷ ︸

IV)

+
1

βf

∂δ

∂t︸ ︷︷ ︸
V)

= wN
f /β

f

︸ ︷︷ ︸
VI)

.

(4.67)

5Geometrical characteristics such as the fracture surface roughness can be governed by adaption of
the proportionality factor 1/12 [159].
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Note that eq. (4.67) establishes a lower-dimensional non-linear partial differential equa-
tion for the pressure p̂ in the fracture, i.e., for a scalar unknown function. It consists of
a transient term I), a quadratic term II), a convection term III), a diffusion term IV), a
volumetric coupling term V) and a leak-off term VI). The leak-off term q̂lk = wN

f /β
f is

related to the leak-off triggered seepage velocity wN
f .

The authors of [206] have shown via a dimensional analysis, that the terms II) and III) can
be neglected in the regime of high aspect-ratio fractures due to their minor contribution
to the overall solution. Thus, the final form of the fracture flow equation reads

δ
∂p̂

∂t
− 1

12 ηfRβf
d̂iv

(
δ3 ˆgrad p̂

)
+
1

βf

∂δ

∂t
= wN

f /β
f in ΓFr.

(4.68)

The reduced form introduced by this governing equation still consists of the pressure
diffusion term II) and the volumetric coupling term V) which require an implicit, non-
trivial coupling to the deformation state of the biphasic material. In case of fracture
intersections, the lower dimensional formulation induces moderate inaccuracies of the flow
field in limited regions close to the intersection [150]. In case of high aspect ratio fractures
with apertures in the micrometer range, the deviating flow field in the intersection area
on the overall solution is expected to be negligible and is, therefore, not considered in this
work. Still, we compare the two resulting apertures at fracture intersections and choose
the larger value considering that the fluid follows the path of highest permeability.

2.2 Partial Differential Equations in the Poro-Elastic Domain BPe

Our fracture equation derived above calculates the pressure evolution for a given deforma-
tion and seepage velocity of the porous matrix. In this section, we present the respective
biphasic poro-elastic formulation [20, 158, 211] for the porous medium. As the main em-
phasis of this work is on the hybrid-dimensional fracture flow formulation and its coupling
to the porous medium, we introduce and explain the governing equations without any ex-
plicit derivation of the balance equations. A more detailed derivation of the poro-elastic
formulation can be found in [177].

2.2.1 Governing Equations

The governing equations of the poro-elastic mixture consisting of a solid and a pore-fluid
constituent that are studied under quasi-static conditions. The unknown functions are
the pore-fluid pressure p and the solid displacement us given by the following equations:

−div(σs
E − α p I) = ρb,

1

M

∂p

∂t
− kf

γfR
0

div grad p = −α div ∂us

∂t
,

⎫⎪⎪⎬
⎪⎪⎭ in BPe

with

σs
E = 3K vol(εs) + 2G dev(εs) + (1− α) p I.

(4.69)
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Figure 2: Representation of flow and mechanical coupling conditions along the fracture surface
ΓFr. Fracture normal vectors nFr± are introduced and can vary along the fracture surface depen-
dent on the evaluation position x̂. Flow coupling conditions are characterized by the outflow
q̂lk = wN

f /βf and normal seepage velocity wN
f in combination with a no-flow requirement at the

fracture tips x̂Tip. Mechanical coupling conditions are described with respect to the fracture
surface traction tFr and the acting fluid pressure p̂ [176].

The parameters are the Biot parameter α = 1−K/Ks, where K is the dry bulk modulus
of the solid skeleton, Ks the bulk modulus of the compressible grains forming the skeleton
and b are the body forces. The (local) storativity or inverse storage capacity is defined by
1/M = φ0/K

f+(α−φ0)/K
s with the bulk modulus K f of the pore fluid and the porosity

in the initial configuration φ0 = φ(t0) of the mixture relating the partial and effective
densities of the constituents. kf is the Darcy permeability or hydraulic conductivity, γfR

0

the effective weight at t = t0, εs the elastic strain (split into a volumetric vol(εs) and a
deviatoric dev(εs) part) and G the dry shear modulus of the skeleton [190, 211].

Compressibility of the porous material is modeled following the assumption of linear
poroelasticity [20]. Fluid-flow processes and solid deformations within the fracture and
porous domain are now governed by eq. (4.68) and eq. (4.69).

2.3 Coupling Conditions

For a consistent coupling of the fracture and the poro-elastic domain, the system needs
to be closed by coupling conditions along the fracture surface. The respective equilib-
rium conditions along the fracture surface ΓFr as displayed in Fig. 2 extend eq. (4.68)
and eq. (4.69) to a well-defined system of equations for the whole simulation domain
comprising fractures and surrounding porous matrix. The equilibrium state of the fluid
flow is reached, once equivalent exchange between the fracture zone and the poro-elastic
matrix becomes apparent and no-flow boundary conditions at the fracture tips x̂Tip are
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met. Flow exchange between both domains is governed by leak-off flow q̂lk within the
fracture domain and the normal seepage velocity wN

f within the poro-elastic matrix.

The equilibrium conditions of the mechanical state are met once surface traction tFr =
−σ · nFr± , defined by the total stresses σ, and the fluid pressure p̂ acting normal to the
fracture surface are balanced. Despite this definition of the coupled system’s equilibrium
state via surface terms, the physical nature of the coupling is volumetric. This is due to
the fluid pressure p̂ being relevant for both, the fluid and mechanical boundary conditions.
It is defined by the evolution equation eq. (4.68) consisting of the volumetric coupling
term V). In conclusion, the necessary boundary conditions along the coupling interface
are

q̂lk = wN
f /β

f on ΓFr and ŵs = ŵf = 0 at x̂Tip, (4.70a)

tFr = −p̂nFr± on ΓFr and p̂ = p on ΓFr. (4.70b)

2.4 Weak formulation of governing equations

We employ a Bubnov-Galerkin finite element scheme to introduce a spatial discretization
to governing equations (4.67) and (4.69). Therefore, the weak form for each domain is
introduced based on the principal of virtual work [e.g., 17].

2.4.1 Deformable fracture ΓFr

The weak form governing flow processes within the fracture domain ΓFr is introduced
considering a trial function p̂t and a test function wp̂ for the fluid pressure p̂, both required
to be smooth enough for the applied mathematical operations. Further, the trial function
p̂t must be suitable to reproduce the applied boundary conditions and the test function
wp̂ needs to vanish in regions where Dirichlet boundary conditions are defined. Reduction
of the smoothness demand on the trial function p̂t in the second term of eq. (4.67) is
achieved by Green’s first identity resulting in the implemented weak form

∫
ΓFr

⎡
⎢⎣δ wp̂

∂p̂t
∂t

+
δ3

12 ηfRβf
ˆgradwp̂ · ˆgrad p̂t + wp̂

1

βf

∂δ

∂t

⎤
⎥⎦da

+

∫
LFr
Ne

δ

βf
wp̂ ŵf · nl

Ne dl =

∫
ΓFr

wp̂ q̂lk da.

(4.71)

In the presence of a lower-dimensional formulation evaluation of Green’s first identity in-
troduces a Neumann boundary term along a line segment LFr

Ne in eq. (4.71) which requires
a brief discussion. Contrary to the leak-off term, which considers the fluid exchange with
the surrounding poro-elastic domain regarding the normal seepage velocity, the introduced
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Neumann boundary condition defined on LFr
Ne considers the fluid exchange in longitudinal

flow direction, i.e., relevant once the fracture domain is intersected by a borehole. The
line segment LFr

Ne then results from the intersection of the fracture domain with the in-
tersecting geometry, where nl

Ne introduces the outward pointing normal corresponding to
the intersection area. On a side note, in many applications the explicit dependency of the
boundary term on the fracture aperture δ vanishes, since it is implicitly considered by the
Neumann boundary condition, i.e., when volumetric flow rate protocols are applied.

2.4.2 Poro-Elastic Domain BPe

The weak form of the governing equations describing the hydro-mechanical response
within the poro-elastic domain BPe is introduced considering the test wus and trial func-
tions us,t for the solid deformation us and the test wp and trial pt functions for the pore
fluid pressure p. Their requirements regarding mathematical smoothness and fulfillment
of boundary conditions are similar to those required from the test and trial functions
introduced for the fracture domain. Evaluation of Green’s first identity leads to the
implemented weak form

∫
V Pe

(
σE,s

t − α ptI

)
: gradwus dv =

∫
Γs
Ne

t̄ · wusda,

∫
V Pe

⎡
⎢⎢⎢⎣wp

1

M

∂pt
∂t
− kf

γfR
0

gradwp · grad pt + wp α div
∂us,t

∂t

⎤
⎥⎥⎥⎦dv =

∫
Γf
Ne

wp w̄
N
f da.

(4.72)

In eq. (4.72) the seepage velocity w̄N
f represents normal flow conditions on the total Neu-

mann boundary region of the poro-elastic domain Γf
Ne. The total Neumann boundary

region includes the fracture surface specific region where the normal seepage velocity wN
f

is evaluated to describe the fluid exchange between fracture and poro-elastic domain.
Further, we employ a mixed element formulation for the poro-elastic domain, namely
Taylor-Hood elements, by introducing linear, first order elements for the pore fluid pres-
sure and quadratic, second order elements for the solid deformation to guarantee numerical
stability [28].

2.4.3 Fluid exchange boundary condition

Considering the fluid exchange of the biphasic poro-elastic domain with the fracture do-
main, the normal seepage velocity is constructed based on the residual state of the poro-
elastic domain obtained for a prescribed fluid pressure along the fracture surface matching
the fluid pressure state of the fracture domain. Under the consideration of Green’s the-
orem, the reconstruction is given by inserting the obtained solution fields into the right
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hand side of

∫
ΓFr

wpw
N
f da =

∫
V Pe

⎡
⎢⎢⎢⎣wp

1

M

∂pt
∂t
− kf

γfR
0

gradwp · grad pt + wp α div
∂us,t

∂t

⎤
⎥⎥⎥⎦dv (4.73)

When considering a finite element discretization we refer to [e.g., 214, sec. 1.2.] for the
node wise evaluation of eq. (4.73). The obtained normal seepage velocity can then be
applied within the fracture domain in terms of the right hand side of eq. (4.71) where we
account for the leak-off term by q̂lk = wN

f /β
f like introduced in eq. (4.70a).

2.4.4 Treatment of the Poro-Elastic Response on Different Time Scales

Investigations of systems involving (crystalline) rock characterized by a low permeabil-
ity, perturbations in the low frequency range (� 100 Hz), under undrained conditions,
and with a low viscous pore fluid motivate the application of Gassmann’s effective low-
frequency result [66, 127]. Considering pore pressure effects by effective parameters in a
single-phase, solid formulation introduces two major numerical advantages since a) the
number of degrees of freedom considered in the rock domain is reduced and b) numerical
instabilities due to distinct diffusion times of the rock and the fracture domain can be
avoided. Still, investigation periods must be considerably small compared to the charac-
teristic diffusion time of the rock matrix to ensure the negligible contribution of leak-off
effects. The effective parameters based on Gassmann’s effective low-frequency result are
determined by

Keff =
φ0

(
1
Ks − 1

Kf

)
+ 1

Ks − 1
K

φ0

K

(
1
Ks − 1

Kf

)
+ 1

Ks

(
1
Ks − 1

K

) ,
Geff = G.

(4.74)

Here,Keff is the effective bulk andGeff the effective shear modulus. The poro-elastic effects
are governed by the effective Gassman modulus Keff . In this work, we assume isotropic
linear elasticity of the surrounding bulk material (with effective elastic parameters Keff

and Geff) to avoid numerical instabilities in the pore pressure solution once the introduced
coupling conditions eq. (4.70) are fulfilled.

3 Partitioned coupling

The coupling of the poro-elastic medium and the fracture flow is realized using parti-
tioned coupling methods instead of a monolithic solver, i.e., we solve the equations for
the fracture domain ΓFr eq. (4.68) and poro-elastic domain BPeAlex eq. (4.69) separately.
The coupling conditions eq. (4.70a) and eq. (4.70b) are then enforced via suitable bound-
ary conditions for the subdomains, see Fig. 2, and iterative exchange of the respective
boundary values within a time step.

We use a fracture solver F that maps a seepage velocity wN
f and an aperture δ to a

pressure p by executing a discrete time step for eq. (4.68). The corresponding porous
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medium solver S maps the pressure p at the fractures back to a seepage velocity wN
f and

an aperture δ by executing a time step for eq. (4.69) while deriving wN
f and δ via eq.

(4.73) and the difference between displacements u± at both sides of the fracture. This can
be considered equivalent to the typical approach in classical fluid-structure interactions
(FSI) with elastic solid structures as Dirichlet-Neumann domain decomposition approach
[47, 58, 130]. Note that there are two major differences compared to classical FSI: (i)
the fluid domain is modeled with a lower-dimensional simplified equation and, thus, the
transferred aperture and seepage velocities are not boundary conditions in the strict sense;
(ii) the fluid exchange between porous matrix and fractures and the compressibility of the
porous structure and the fluid might be a factor that makes our problem less prone to
instabilities than FSI, in particular with incompressible fluids. A potential third point are
the relatively large fracture aperture changes that appear in the first time step for most
applied boundary conditions. This makes the coupled problem hard to solve in the very
beginning which is also the case for the studied test cases in this work.

By iteratively solving one of the fixed-point equations

S ◦ F (δ,wN
s ) = (δ,wN

s ) or (4.75a)(
F (δ,wN

s )
S(p)

)
=

(
p

(δ,wN
s )

)
, (4.75b)

we, thus, ensure fulfilment of all equations and coupling conditions at the new time step.
In this formulation, input and output of F and S refer to the end point of the respective
time step.

One of the main advantages of the approach presented here is that it allows for “black
box” coupling, i.e., we can reuse existing solvers that have been tailored for the problems
in the subdomains. If we can provide an efficient iterative scheme to solve eq. (4.75),
we do not have to develop a dedicated solver for the overall highly ill-conditioned system
of equations that arises from the monolithic approach, either. Note that, despite of the
equilibrium state definition for the coupled system via the fracture surface, the nature
of the coupling from the point of view of the fracture domain ΓFr is volumetric. This is
due to the involvement of the fluid pressure p̂ in both, the fluid and mechanical boundary
conditions, which is defined by evolution equation eq. (4.67) incorporating the volumetric
coupling term V).

3.1 Iterative Coupling

We present different options to solve eq. (4.75) within each time step. These options
have been presented before in [31, 45, 46, 171] and evaluated for classical FSI problems.
In this work, we analyze their potential for the lower-dimensional fracture flow problem.
The cheapest version in terms of cost per time step, but in general known to generate
unstable time stepping is the explicit coupling were each solver is executed only once per
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(a) Serial-implicit coupling with acceleration. (b) Parallel-implicit coupling with acceleration.

Figure 3: Sketch of the used coupling schemes. For the sake of readability, we display the case
without the normal seepage velocity wN

s .

time step, i.e.,

(δ(n+1),wN,(n+1)
s ) = S ◦ F (δ(n),wN,(n)

s )︸ ︷︷ ︸
=: p(n+1)

or (4.76a)

(
p(n+1)

(δ(n+1),w
N,(n+1)
s )

)
=

(
F (δ(n),w

N,(n)
s )

S(p(n))

)
, (4.76b)

where the superscript (n) denotes the discrete solution at time tn. Note that the first
option in eq. (4.76b) implies a sequential one-after-the-other execution of the two solvers
F and S, where S already uses the “new” pressure p(n+1) as an input, whereas, in the
second option, both solvers can be executed simultaneously. Explicit coupling cannot
capture the strong physical interaction between the fracture and porous matrix and is not
considered further.

Implicit coupling can be achieved via fixed point iterations

(δ(n+1),i+1,wN,(n+1),i+1
s ) = S ◦ F (δ(n+1),i,wN,(n+1),i

s )︸ ︷︷ ︸
=: p(n+1),i+1

or
(4.77a)

(
p(n+1),i+1

(δ(n+1),i+1,w
N,(n+1),i+1
s )

)
=

(
F (δ(n+1),i,w

N,(n+1),i
s )

S(p(n+1),i)

)
. (4.77b)

The first equation refers to a serial-implicit, cf. 3a, and the second equation to a parallel-
implicit coupling, cf. 3b. In the figures, an additional element, the so-called acceleration
scheme, is shown. This numerical component generates an improved next iterate based on
the output of the respective fixed-point iteration either by under-relaxation or interface
quasi-Newton (IQN) methods. To simplify the notation in the following, we use the
general formulation

H (a) = a (4.78)

with a vector of unknowns a ∈ R
m at the fractures and the fixed-point operator H :

R
m 
→ R

m for both variants of fixed-point equations in eq. 4.75.

We write the general accelerated version of the fixed-point iterations in eq. (4.77b) as

ai+1 = A(H (ai)) ,
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with the acceleration operator A. A straight-forward option to realize the acceleration is
to use underrelaxation,

ai+1 = ωH (ai) + (1− ω)ai , ω ∈]0; 1] , (4.79)

e.g., based on a dynamic Aitken scheme [113]. A more advanced approach is to reuse past
iterates to establish quasi-Newton iterations [45, 46, 84]6:

ai+1 = ãi +Δãi with Δãi = J−1
R̃
(Δãi)R̃(Δãi),

with ãi := H (ãi), the modified residual R̃(ã) := ã − H−1(ã), and J−1
R̃
(ãi) as an approxi-

mation of the inverse of the Jacobian of R̃.

To compute J−1
R̃
(ãi), we collect input-output information from past iterates of H in tall

and skinny matrices Vi,Wi ∈ R
m×i, m� i,

Vi =
[
R̃(ã1)− R̃(ã0), R̃(ã2)− R̃(ã1), . . . , R̃(ãi)− R̃(ai−1)

]
,

Wi =
[
ã1 − ã0, ã2 − ã1, . . . , ãi − ãi−1

]
.

The matrices Vi and Wi define the multi-secant equations for the inverse Jacobian

J−1
R̃
(ãi) Vi = Wi . (4.80)

To get the classical interface quasi-Newton inverse least-squares (IQN-ILS) method [45,
46], we close eq. (4.80) by

‖J−1
R̃
(ãi)‖F→ min .

For time-dependent problem, we have to solve the coupling problem for every time step
n. We can extent the notation of Vi and Wi to V n

i and W n
i to emphasize the collection

of differences in the current time step. In this case, the convergence of the quasi-Newton
method can be improved by additionally consider information of previous time steps, i.e. to
use V n−1

i , V n−2
i . . . andW n−1

i ,W n−2
i . . . . This is referred to as reuse of time steps method.

However, we cannot store information from an infinite amount of time due to memory
restrictions and since information can be outdated. Thus, we define a reuse parameter m
that defines for how long information is retained, i.e., we keep V n−1

i , V n−2
i , . . . , V n−m

i and
W n−1

i ,W n−2
i , . . . ,W n−m

i . If there are many coupling iterations per time step and, thus,
the matrices V n

i andW n
i are very large, this can lead to excessive memory requirements as

well. To avoid storing the information of too many time steps, we also define the iteration
reuse parameterM that limits how many data pairs over previous coupling iterations and
time steps may be kept in total.

An alternative to IQN-ILS is based on the multi-vector (MV) approach [24]. The multi-
secant equation eq. (4.80) is closed by

‖J−1
R̃
(ãi)− J−1

R̃
(ãprev)‖F→ min

6To avoid linear dependencies between information from previous iterations, modified Newton itera-
tions starting from the result of the pure fixed-point iteration are used (for details, see [203]).
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where J−1
R̃
(ãprev is the approximation of the inverse Jacobian from the previous time step.

The method is also referred to as interface quasi-Newton inverse multi-vector Jacobian
(IQN-IMVJ) method [171]. In contrast to the IQN-ILS method, we do not need to
store information from previous time steps explicitly, since the information is kept by the
explicit incorporation of J−1

R̃
(ãprev) in the minimization condition. However, this also leads

to increased memory and runtime requirements for an increasing number of time steps,
as the amount of information stored in J−1

R̃
(ãi) and, thus, its size increases. Therefore,

we use a IMVJ flavor with periodic restart to reduce runtime complexity and storage
requirements.

After number η time steps, the method computes a singular value decomposition (SVD)
of the approximated Jacobian and drops all information connected to singular values
smaller than a user-specified threshold εSVD. We refer to this restart method as RS-SVD
(restarted via singular value decomposition). For a detailed derivation and analysis of
this restarted method, we refer to [171]. Main advantages over the ILS method are the
low number of parameters and that it showed less dependency on the choice of coupling
parameters.

Both quasi-Newton methods may suffer from a lack of stability, if the columns in Vi

become (nearly) linearly dependent. Therefore, additional stabilization of the numerical
method is achieved by filtering to remove such nearly linearly dependent columns. In this
work, we use a QR filter, also called QR2 filter, which constructs the QR decomposition
QR = Vi and drops columns that do not add sufficiently much new information to the
problem based on a user-defined filter limit εF. A detailed description of this filtering
technique and a comparison with other filter techniques can found in literature such as
[83, 171].

All grids used in this work are generated such that the location of the degrees of freedom
in both domains matches on the coupling interface, i.e., the grids are matching. In gen-
eral, preCICE also allows for non-matching meshes by mapping data between the meshes.
A variety of different mapping methods such as low order nearest-neighbor projection or
higher-order approaches using radial basis functions are available for the mapping. How-
ever, the introduction of data mapping increases the parameter space for the evaluation
of the numerical stability and efficiency of the investigated coupling approach. There-
fore, we limit this work to matching grids and leave the study of different data mapping
methods and their influence on the coupling for future work. Implementation details of
the partitioned coupling methods, including the efficient parallelization, data-mapping
techniques etc., are out of the scope of this work. Instead, we refer to the reference paper
of preCICE [31] and the references therein.

4 Numerical results

Computational efficiency and flexibility of the proposed partitioned coupling algorithm
allow numerical investigations of non-trivial flow processes in deformable, arbitrarily frac-
tured porous media in three dimensions for realistic initial aperture openings in the mi-
crometer range. The capacity of the proposed method is shown throughout a number
of numerical studies. First, the implementation of the partitioned scheme is verified by
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Table 4.17: Parameters defining the validation boundary value problem.

Quantity Value Unit Quantity Value Unit

Numerical parameters
solid depth dBPe

s
10.0 [m] solid width wBPe

s
10.0 [m]

solid height hBPe
s

10.0 [m] fracture radius rΓFr
s

1.25 [m]
well diameter dw 0.28 [m] solid vertices part. 8.3 · 104 [-]
fracture vertices part. 3.8 · 103 [-] solid vertices mono. 4.4 · 104 [-]
fracture vertices mono. 1.0 · 103 [-] time step size Δt 0.1 [sec]
Rock parameters
dry frame bulk modulus K 8.0 [GPa] grain bulk modulus Ks 33.0 [GPa]
shear modulus G 15.0 [GPa] initial porosity φ0 0.01 [-]
intrinsic permeability ks 1.1 · 10−19 [m2] fluid compressibility βf 0.45 [1/GPa]
effective bulk modulus Keff 29.1 [GPa] effective shear modulus Geff 15.4 [GPa]
Fracture parameters
initial aperture δ0 50.0 [μm] effective fluid viscosity ηfR 0.001 [Pa·s]
fluid compressibility βf 0.45 [1/GPa] injection pressure p̂si 200.0 [kPa]
Coupling Parameters
coupling serial-implicit quasi-Newton ILS
filter QR2 initial relaxation ω 0.001 [-]
rel. convergence 10−6 [-]

a comparison to a reference solution (computed by a monolithic approach) for a simple
boundary value problem consisting of a single embedded fracture. Afterwards, the effi-
ciency and robustness of the method is explored carrying out a study on the convergence
behavior of the interface quasi-Newton schemes and their dependence on coupling param-
eters such as reuse m, restart η, and filter limit εF. The mesh dependency of the solution
is investigated via parallel computations on meshes ranging from tens of thousand to
several million degrees of freedom. The work is closed by demonstrating the potential of
the approach to answer relevant questions in a broad range of fields including the inverse
analysis of pumping operations and investigations related to nuclear waste disposal; two
fields that clearly require computations with distinct boundary conditions and time scales.

The implementation of the proposed strategy uses the open-source libraries preCICE and
FEniCS to couple flow processes in the fracture domain ΓFrs governed by eq. (4.68) with
responses of the poro-elastic domain BPes defined by eqs. (4.69), resulting in a non-linear
system. In both domains, the governing equations are solved by standard continuous
Galerkin methods [e.g., 17] and the grids at the coupling interface match.

4.1 Verification of the partitioned implementation

Closed form solutions for non-linear flow processes in deformable fractures are not known
to exist. Thus, the partitioned approach is verified by comparison to a monolithic scheme.

Focusing on the hydro-mechanical interaction within the fracture domain, the surrounding
bulk material is assumed to be linear-elastic where poro-elastic effects are transferred to
the material parameters using Gassmann’s effective low-frequency result, see eq. (2.46).
The numerical stiffness of the coupled system of governing equations mainly scales with
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Figure 4: Left: Sketch of a single fracture embedded in a solid matrix used for comparisons
of the monolithic and the partitioned scheme. Top Right: Pressure results obtained from
both methods plotted over the fracture radius for time steps ti with i = 1, 5, 10, 15, 20, 25.
Bottom Right: Relative error plots based on the deviation between solutions obtained from
the monolithic and the partitioned scheme.

(i) the compressibility of the fluid βf and (ii) the initial fracture aperture δ0. For the
limiting case of βf −→ 0 and δ0 −→ 0, the fracture flow formulation (4.68) reduces to the
volumetric coupling term V and the leak-off term VI leading to a non-unique solution
in case of partitioned coupling approaches due to the reduction to Neumann boundary
condition terms. Nevertheless, such a combination of compressibility and initial fracture
aperture is non-physical and has no relevance for experimental investigations. As we
use implicit coupling based on sophisticated quasi-Newton iterations, we did not observe
numerical instabilities, but an increase in equilibrium iterations for decreasing values
of initial fracture aperture δ0 and fluid compressibility βf, where the number of coupling
iterations increased stronger with decreasing initial fracture aperture than with decreasing
fluid compressibility. For the evaluation of the proposed coupling strategy, we therefore
consider a numerically challenging set of parameters in terms of a low compressible fluid
with properties comparable to those of water under 20◦C and an initial fracture aperture
in the micrometer range. The chosen parameters have a high relevance for hydraulic
testing operations under in-situ conditions [e.g., 175, 176].

The parameters used in the investigated boundary value problem are presented in Tab. 4.17
and the geometrical set up is given in 4. Throughout all numerical studies, Dirichlet de-
formation boundary conditions are applied to the poro-elastic domain BPe by setting
deformations on the outer surfaces in normal direction equal to zero. Within the fracture
domain ΓFrs , pressure Dirichlet conditions p̂si are applied at the intersection of fracture
and well. In 4, we compare the monolithic and partitioned solutions. We exploit the
radial-symmetric characteristic of the boundary value problem and plot the pressure over
the fracture radius at six different times. We observe very good agreement of the pressure
for the monolithic and partitioned approach for all time steps. Additionally, we give the
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Table 4.18: Coupling parameters used in the study of quasi-Newton methods.

Quantity Value Unit Quantity Value Unit

Coupling Parameters
coupling {serial-implicit, parallel-implicit} quasi-Newton {ILS, IMVJ}
filter QR2 initial relaxation ω 0.1 [-]
filter limit εF {10−4, 10−3, 10−2, 10−1} relative convergence 10−3 [-]
ILS parameters
Reuse parameter m {0, 8, 16,∞} [-]
IMVJ parameters
SVD threshold εSVD {10−4, 10−3, 10−2, 10−1} [-] Restart parameter η 8 [-]

deviations between both strategies evaluated by a relative error

error =

∑Nc

i=1|p̂mi − p̂pi |∑Nc

i=1|p̂mi |
· 100 (4.81)

The pressure solution of both approaches has been interpolated to Nc = 50 control points
equally distributed over the fracture radius. The monolithic approach is based on quad
meshes, while the partitioned approach is based on tetrahedral (porous matrix) and tri-
angular (fracture) meshes. 3 808 degrees of freedom (DoF) were used in the fracture and
83 109 DoF in the solid domain for the partitioned approach and 44 418 DoF for the
monolithic approach, where the fracture flow domain consists of 952 DoF. Due to this,
the elements and vertices of the monolithic and the partitioned coupling strategy do not
match and a comparison of the obtained solutions can not be expected to result in perfect
agreement. Nevertheless, the results given by 4 show reasonably small errors below 2.5%
and decrease over time.

From a physical perspective, the obtained results are sound and the expected response in
form of reverse water level fluctuations can be observed at an early stage, where negative
pressure values are induced by non-local volumetric deformations of the fracture. Sum-
marizing, the verification indicates the convergence of both coupling approaches towards
the same solution.

4.1.1 Investigation of interface quasi-Newton schemes

To verify the suitability of the partitioned coupling approach, we run a parameter study
with the same settings as in Tab. 4.17 for the physical setup and coupling parameters
as given in Tab. 4.18. All simulations are run in serial-implicit mode, i.e., we iterate
in every time step until we fulfill the first fixed-point equation in eqs. 4.75. The initial
relaxation is ω = 0.1 and we use the QR2 filter. In order to keep the simulation feasible,
we use a somewhat coarse mesh with 3 292 degrees of freedom in the fracture domain and
68 853 degrees of freedom in the porous-medium domain. If the reuse parameter is set to
m = ∞, we allow the ILS method to keep information from all time steps. In this case,
information from the current or previous time step is only dropped due to the QR2 filter.

In eq. (4.75), we have formulated the coupling in terms of the aperture δ. We refer to
this as “pre-accumulated” case here as it uses δ = u+nFr

+ + u−nFr
− in the coupling. An
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(a) Using u± (b) Using δ

Figure 5: Average number of coupling iterations per time step. The serial-implicit coupling and
the IQN-ILS quasi-Newton method are used. The initial relaxation parameter is ω = 0.1, the
filter limit and the reuse parameter are varied.

(a) Using u± (b) Using δ

Figure 6: Average number of coupling iterations per time step. The serial-implicit coupling and
the IQN-IMVJ quasi-Newton method are used. The initial relaxation parameter is ω = 0.1, the
filter limit and the reuse parameter are varied.

alternative way, that we have studied is the explicit use of the displacements u± instead.
We refer to this as “post-accumulated” approach. In the latter case, summation of the
displacements to obtain the aperture is done in the fluid solver and the amount of data
has to be exchanged between the solvers is increased. The latter case was straightforward
to couple in preCICE as it could rely on already implemented features. We do not
expect, that the different approaches affect the obtained solution, but rather influence
the coupling iteration convergence. Minimal deviations can be expected as the definition
of the coupling residual differs slightly as it depends on δ in the pre-accumulated case and
on u± otherwise.

In Figs. 5 and 6, the average number of coupling iterations per time step using the serial-
implicit approach is given for the IQN-ILS and the IQN-IMVJ quasi-Newton method,
while the filter limit and the quasi-Newton method-specific parameters are varied. The
coupling works for all parameter settings investigated.
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(a) IQN-ILS (b) IQN-IMVJ

Figure 7: Average number of coupling iterations per time step. The parallel-implicit coupling
and both quasi-Newton methods are used. The initial relaxation parameter is ω = 0.1 and the
filter limit and quasi-Newton specific parameters are varied.

The IQN-ILS method, see Fig. 5, requires the largest number of coupling iterations, when
no information from previous time steps is kept, i.e., the reuse parameter is 0, and the
filter limit is too large, i.e., 10−1. Consequently, the largest time-averaged number of
coupling iterations is observed, when the reuse parameter is m = 0 and the filter limit is
εF = 10−1. All other cases need an average of approximately 4.5 coupling iterations per
time step, which is reasonably small.

For the IQN-IMVJ method, see Fig. 6, we observe only weak dependence on the SVD
truncation threshold εSVD, but stronger dependence on the filter limit. In contrast to the
IQN-ILS method, the average number of iterations increases for larger (εF = 10−1) and
smaller filter limits (εF = 10−4). Bad choices of coupling parameters lead to approximately
6 coupling iterations per time step, while, in the ideal cases, only 4 iterations per time
step are needed. This is even less than for the best cases of the ILS method.

The effect of the coupling parameters is very similar to what is reported in [171], where
a study of different quasi-Newton methods was carried out for fluid-structure interaction
test cases. The authors also observed, that the IQN-ILS method with m = 0 performs
worst and it depends stronger on the actual choice of parameters than the IQN-IMVJ
method.

Using the pre- or post-accumulation approach has barely any effect in the current setting.
In the observed time frame, the time-averaged number of coupling iterations are nearly
identical. However, using the aperture δ in the coupling instead of the displacements
u± reduces the amount of data, that needs to be exchanged. Additionally, we observed
strongly improved coupling stability for the fracture networks using the pre-accumulated
coupling approach and, thus, it has been used in all following test cases.

In Fig. 7, we show the average number of coupling iterations per time step when a parallel-
implicit coupling method is used. The coupling behavior is really similar to the serial-
implicit approach, see Figs. 5 and 6. The IQN-IMVJ method needs less iterations than the
IQN-ILS method and shows less dependency on the coupling parameters. For the IQN-
ILS, one needs most coupling iterations, again, for very small filter limits and especially
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Figure 8: Mesh convergence study for different mesh sizes. We plot the pressure over the fracture
radius at time t = 2.5 similar to Fig. 4.

when m = 0. Surprisingly, the parallel-implicit even beats the serial-implicit coupling
in terms of coupling iterations needed. This was not expected as the parallel-implicit
approach is weaker and thus normally needs more iterations to recover the strong coupling
behavior of the underlying physical problem. It is not clear what causes this and should
be investigated further.

4.1.2 Mesh convergence study

For the numerical investigation of mesh convergence, we use three meshes for the fluid
and the poro-elastic subdomain with different resolution: (i) (68 853, 3 292) degrees of
freedom (coarse, the same mesh as in the parameter study), (ii) (447 816, 24 188) degrees
of freedom (medium), and (iii) (6 586 770, 323 976) degrees of freedom (fine) in the porous
matrix and fluid domain.

In 8, we present the pressure over the fracture radius at the final time t = 2.5 for the
different meshes. In all cases, a reasonable pressure curve is obtained. On the coarsest
mesh, the pressure is highest. On the medium mesh, the pressure is clearly lower than
on the coarse mesh. Thus, the predicted pressure tends to get lower for higher mesh
resolution. This is confirmed by the solution on the finest mesh where the pressure
is again lower than on the medium mesh. At the same time, the pressure difference
between the fine and the medium mesh is smaller than between the medium and the
coarse mesh although the difference in grid points increased severely. This indicates that
the simulations converges toward a grid-converged solution.

The simulation setup was tested on shared-memory and distributed-memory systems with
up to 256 cores. No adjustments had to be made to the code as the parallelization is
handled internally via FEniCS and preCICE. However, parallel efficiency is not the focus
of this work, but the simplicity of the current approach to realize solvers and couplings
that can be executed on parallel computers. Therefore, we do not report scaling results
and instead leave it for future work.
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Table 4.19: Parameters defining the injection-production boundary value problem.

Quantity Value Unit Quantity Value Unit

Numerical parameters
solid depth dBPe

Nw
50.0 [m] solid width wBPe

Nw
50.0 [m]

solid height hBPe
Nw

50.0 [m] small fracture radius rsm
ΓFr
Nw

2.0 [m]

large fracture radius rla
ΓFr
Nw

4.5 [m] solid DoFBPe
Nw

9.5 · 105 [-]

fracture DoFΓFr
Nw

5.0 · 104 [-] time step size Δt 5.0 [sec]

Rock parameters
dry frame bulk modulus K 8.0 [GPa] grain bulk modulus Ks 33.0 [GPa]
shear modulus G 15.0 [GPa] initial porosity φ0 0.01 [-]
intrinsic permeability ks 1.1 · 10−19 [m2] fluid compressibility βf 0.45 [1/GPa]
effective bulk modulus Keff 29.1 [GPa] effective shear modulus Geff 15.4 [GPa]
Fracture parameters
initial aperture δ0 75.0 [μm] effective fluid viscosity ηfR 0.001 [Pa·s]
fluid compressibility βf 0.45 [1/GPa] injection pressure p̂Nwi 200.0 [kPa]
production pressure p̂Nwp −200.0 [kPa]
Coupling Parameters
coupling serial-implicit quasi-Newton ILS
filter QR2 initial relaxation ω 0.001 [-]
rel. convergence 10−5 [-]

Figure 9: Left: Sketch of the connected fracture network ΓFrNw embedded in a solid matrix BPeNw.
Right: Change of fracture aperture after t = 900 secs including numbering of the embedded
fractures.

4.2 Injection and production in an arbitrarily fractured reservoir

Transient flow and pressure data obtained by experimental field operations on fractured
reservoirs provide information of their storage capacity, when evaluated by best numerical
fits. Computational effort might be reduced for specific investigations on circular frac-
tures by using two dimensional radial-symmetric models, but most field settings require
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Figure 10: Left: Pressure state at time t = 900 secs highlighting positions of pressure injection
p̂NWi and production p̂NWp . Right: Post-processed fluid flow field obtained by inserting pressure
and aperture solutions into the balance of momentum eq. (4.65) at time t = 900 secs.

consideration of several interacting fractures and three-dimensional modeling.

Due to the low permeability of the surrounding bulk matrix, experimental pumping oper-
ations are often performed on fractured granite reservoirs. Such a problem setting might
lead to instabilities throughout the numerical analysis, since characteristic pressure diffu-
sion times of fracture network and granite bulk material greatly differ. Based on the short
experimental execution time, outflow into the surrounding bulk material can be neglected
and effective material parameters can be introduced based on Gassmann’s solution de-
fined by eq. (2.46). This reduces the matrix response to linear-elastic behavior. Hence,
the hydro-mechanically coupled system consists of the hybrid-dimensional flow eq. (4.68)
and the linear-elastic response of eq. (4.69), similar to the problem solved in section 4.

Here, we demonstrate the capability of the proposed method to solve flow problems in
fracture networks embedded in a low permeable porous bulk material. Therefore, we
test our approach on an arbitrarily generated fracture network containing 17 fractures by
inducing injection and production Dirichlet pressure boundary conditions in the fracture
domain ΓFrPN, see 9. The regions of injection and production are highlighted. The param-
eters describing the boundary value problem and the coupling parameters are given in
Tab. 4.19.

The applied coupling strategy shows a convergence behavior, which is characteristic for
quasi-Newton schemes. Convergence in the first, critical time step is reached within 27
iterations, before the required number of iterations reduces to 14 in the second time step
and reaches its minimum of 4–5 iterations for later time steps. The characterization of
the tested network is carried out by investigations on the preferential flow path through
the network connecting the injection with the production well. The chosen time step size
resolves the fracture aperture evolution and allows to study transient hydro-mechanical
effects such as the inverse pressure response at an early stage of the simulation. Never-
theless, the results are evaluated at time t = 900 sec to focus on a solution close to the
quasi-static equilibrium.

In 9, the aperture changes of the fracture network indicate strong hydro-mechanical inter-
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Table 4.20: Parameters defining the fractured porous media boundary value problem.

Quantity Value Unit Quantity Value Unit

Numerical parameters
solid depth dBPe

PN
30.0 [m] solid size wBPe

PN
30.0 [m]

solid height hBPe
PN

20.0 [m] smallest fracture are Asm
ΓFr
PN

240.5 [m2]

largest fracture area Ala
ΓFr
PN

4.9 [m2] solid DoFBPe
PN

6.0 · 105 [-]

fracture DoFΓFr
PN

3.2 · 104 [-] time step width Δt 200.0 [sec]

Rock parameters
dry frame bulk modulus K 8.0 [GPa] grain bulk modulus Ks 33.0 [GPa]
shear modulus G 15.0 [GPa] initial porosity φ0 0.01 [-]
intrinsic permeability ks 1.0 · 10−17 [m2] fluid compressibility βf 0.45 [1/GPa]
effective bulk modulus Keff 29.1 [GPa] effective shear modulus Geff 15.4 [GPa]
applied pressure pPN0 200.0 [kPa] applied pressure pPN1 0.0 [kPa]
Fracture parameters
initial aperture δ0 75.0 [μm] effective fluid viscosity ηfR 0.001 [Pa·s]
fluid compressibility βf 0.45 [1/GPa]
Coupling Parameters
coupling serial-implicit quasi-Newton ILS
filter QR2 initial relaxation ω 0.001 [-]
rel. convergence 10−5 [-]

action showing, that fractures with dominant opening behavior are closing fractures with
similar orientations by reallocation of the surrounding bulk material. This phenomenon
is evident when looking at the aperture change distribution of fractures 9 and 10 and to
some extend for fractures 1 and 2, or 15 and 17, respectively.

The pressure distribution in 10 shows a smooth pressure field, where pressure drops be-
tween fractures are highest, when large fractures are connected by small fractures which
is due to their lower cross-section area and higher geometrical stiffness. The phenomenon
is demonstrated best by the pressure drop between large fractures 3 and 8 interconnected
by the small fractures 5 and 7.

The calculated flow solution shown in 10 visualizes the preferential flow path of the system
through fractures 2, 4, 6, 9, 15 and 17 and confirms that the dominant opening of fracture
9 leads to the reduction of the flow through fracture 10. Regions of high flow rates are
small connecting fractures and regions close to the injection or production area, which
is consistent with the investigated pressure and aperture distributions. The study is
representative for hydro-mechanical investigations on tested networks embedded in low
permeable rock at a short time scale. It emphasizes the numerical capacity of the proposed
approach and its relevance for detailed investigations of research questions in the field of
experimental pumping operations.

4.3 Flow through fractured porous media

Approximations of preferential flow patterns through fractured poro-elastic media are of
high interest in the field of nuclear waste disposal to reduce the risk of potential pollution
by leak-off of contaminated matter. In contrast to the previous test case, an entirely
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Figure 11: Left: Sketch of an arbitrarily chosen fracture network ΓFr
PN embedded within a

poro-elastic matrix highlighting the fluid pressure boundary conditions p0 and p1 applied to the
poro-elastic domain BPePN. Right: Change of fracture aperture after t = 1.65 days including
numbering of the embedded fractures.

Figure 12: Left: Post-processed fluid-flow field in the poro-elastic domain BPePN after t = 1.65
days obtained by inserting the pressure solution into the governing equation eq. (4.69) and
neglecting of time dependent terms by assuming quasi static conditions. Right: Post-processed
fluid-flow field within the fracture domain ΓFr

PN after t = 1.65 days obtained by inserting the
pressure and aperture solutions into the balance of momentum eq. (4.65).

different time scale is required, since investigation periods might last up to a million years.
Discrete fracture networks influence the effective transport characteristics of a reservoir
and even slight hydro-mechanically induced changes of the fractures’ permeability have
an immediate impact on its final characteristic diffusion time.

The following boundary value problem investigates fractures embedded in a poro-elastic
matrix with a low permeability. Here, we solve the fully coupled system consisting of
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the hybrid-dimensional flow eq. (4.68) and the set of poro-elastic governing eqs. (4.69),
where fluid exchange between fracture and poro-elastic domain is considered by evaluating
eq. (4.73). We induce a pressure gradient on the poro-elastic domain by prescribing the
fluid pressure p0 and p1 at the top and bottom, see 11. The parameters defining the
boundary value problem and the numerical coupling are given in Tab. 4.20, the geometrical
set up is shown in 11. The embedded fractures can be grouped into three single fractures
(fractures 3, 15 and 17), a small fracture network consisting of fractures 1 and 2 and a
large fracture network formed by the remaining fractures (4–14 and 16). The position,
shape and orientation of the fractures is chosen arbitrarily to demonstrate the flexibility
of the method.

The applied coupling parameters result in a stable convergence behaviour. Convergence
is reached within 31 iterations in the first, critical time step, 15 iterations in the following
step and 4–5 iterations for later time steps.

Investigations on the impact of hydraulically highly conductive deformable fractures on
the transport characteristic of the tested reservoir are evaluated by means of the prefer-
ential flow pattern in the poro-elastic and the fracture domain. Results are displayed for
a stage close to the converged quasi-static equilibrium after t = 1.65 days, see Figs. 11
and 12. Similar to the findings of the previous study, hydro-mechanical interactions are
evident in the fracture aperture change distribution displayed, where the fracture pairs
7 and 8, 9 and 14 and 4 and 8 have the strongest interactions, see 11. The interaction
results in opening or closing of the involved fractures, which has an immediate impact on
the local conductivity of the network.

The post-processed flow solutions in the poro-elastic BPePN and in the fracture domain ΓFr
PN

are presented in 12. Depending on the fracture orientation and the fracture connectivity,
embedded fractures have a distinct impact on the flow through the poro-elastic medium.
Related to the orientation orthogonal to the pressure gradient and the lack of connectivity,
the embedded single fractures 3, 15 and 17 have a minor contribution. At the same time,
the fluid is strongly attracted by the small and large fracture network. The fluid mainly
enters the networks through fractures 1, 4, 5 and 7 which are closest to the pressure
boundary p0 and is released back into the poro-elastic matrix through fractures 13 and 16
which are closest to the applied pressure boundary p1. The impact of the fracture network
on the transport characteristic of the studied poro-elastic domain is evident in terms of
the distinct difference of flow rates in both domains. The hydro-mechanical interaction
between the fracture and the poro-elastic domain has shown the potential of the method to
consider flow through deformable fractures embedded in a hydro-mechanically interacting
poro-elastic medium throughout long term investigations with a relevance for fields such
as nuclear waste disposal.

5 Conclusion

We proposed a new partitioned coupling approach for hydro-mechanical flow processes
in deformable fractures embedded in a poro-elastic medium. Implicit coupling of the
decomposed fracture flow and poro-elastic domain under consideration of the introduced
interface conditions was realized by an iterative approach. The latter solves the underlying
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fixed-point problem using interface quasi-Newton methods. It was implemented using the
open-source computing platform FEniCS to solve the individual systems of PDEs and the
open-source coupling library preCICE to realize the implicit coupling.

We showed, that the proposed coupling strategy enables straight-forward usage of paral-
lel computations throughout solution and coupling steps. This allows to study complex
fracture systems in three dimensions with a high computational resolution. Evaluation
of the proposed implementation against solutions obtained from a monolithic approach
showed good agreement in terms of the transient pressure evolution in a single deformable
fracture. Throughout a coupling convergence study, we showed the slightly better perfor-
mance of the advanced IQN-IMVJ quasi-Newton scheme in comparison to the performance
of the classical IQN-ILS quasi-Newton scheme, which is in good agreement with results
on classical fluid-structure interaction problems in [171].

The generality of the proposed strategy and its relevance for research topics such as mod-
eling of injection and production in fractured reservoirs and the flow through a fractured
poro-elastic domain was demonstrated throughout two numerical studies of complex frac-
ture networks in three dimensions. We emphasized the advantage of the fracture and
poro-elastic domain decomposition in terms of the creation of complex networks and
straight forward post-processing of the numerical solutions in each computational re-
gion to identify preferential flow paths through the fracture network and the poro-elastic
medium, respectively.

Future work can focus on the extension of the physical models to include temperature, e.g.,
extension of the partitioned coupling schemes, and the investigation of other discretization
methods in for the subproblems. Considering additional physics in the model opens new
application such as heat related energy production relevant for geothermal applications.
The partitioned coupling schemes, especially in the black-box setting of preCICE, can be
improved by developing more sophisticated start-up strategies to reduce the number of
coupling iterations in the first time steps and by new data mapping and communication
concepts. The mixed-dimensional modeling leads to several challenges on how to commu-
nicate data between the different models, especially at fracture intersections, where the
dominant deformation has to be identified.
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Assessing the role of non-linear contact mechanics for

flow in fractures

Patrick Schmidt, Holger Steeb, Jörg Renner, Geophys Res Lett - Geophysical
Research Letters, Submitted July 2022

• harmonic pumping tests exhibit a unique diagnostic potential for the occurrence of
hydro-mechanical effects, systematic overtones in response spectra

• fractured rocks but also granular porous media exhibit non-linear effects for excita-
tions typically applied in pumping tests

• non-dimensional formulation of the hydrodynamic problem yields a “regime map”
that allows for (a-priori) analysis of the significance of hydro-mechanical coupling

Abstract

Hydro-mechanically induced transient changes in fracture volume elude an analysis of
pressure and flow rate transients by conventional diffusion-based models. We used a
previously developed fully coupled, inherently non-linear numerical simulation model to
demonstrate that harmonic hydraulic excitation of fractures leads to systematic over-
tones in the response spectrum that can thus be used as a diagnostic criterion for hydro-
mechanical interaction. We therefore investigated the response spectra of data obtained
from harmonic testing in four different subsurface scenarios for the occurrence of overtones
and thereby assessed their potential for the hydro-mechanical characterization of tested
reservoirs further. Our non-dimensional analysis identified relative aperture change as the
critical system parameter. Harmonic pumping tests exhibit a strong diagnostic potential
for hydro-mechanical interaction, the crucial prerequisite to account for it in the analysis
of pumping tests to overcome the limitations of purely diffusion-based models.

Plain Language Summary

A reliable hydraulic characterization of the subsurface is important for the recovering of
fluid resources but also for the subsurface storage of heat or waste. In pumping tests, the
hydraulic state of the subsurface is perturbed by injection or production of fluid into or
from boreholes; hydraulic parameters of the subsurface are conventionally inverted from
observed pressure and flow rate relying on diffusion models. When hydraulic conduits
deform due to the changes in fluid pressure, the conventional analyses based on diffusion
equations becomes questionable. Our numerical study demonstrates that pumping with a
harmonic excitation allows the operator to assess the significance of these so-called hydro-
mechanical effects, e.g., widening of fractures due to an increase of pressure along them.
The response to a harmonic excitation will not be truly harmonic but exhibit systematic
overtones. We demonstrate that significant hydro-mechanical coupling is expected for
typical fracture deformation characteristics. An analysis of previously reported results



141

from field tests confirms our numerical findings for fractured rocks but also for a gravel
aquifer, typically considered the prototypical scenario for a diffusion-based analysis. We
provide a dimensionless framework that allows for an assessment of the role of hydro-
mechanical effects using a regime map.

Introduction

The pressure and flow transients in fractures and fractured rocks are affected by hydro-
mechanical coupling, the influence that changes fluid pressure exert on fracture geometry.
The deformation of fractures may significantly affect their effective hydraulic properties
[207]. Non-local deformation, induced by fluid pressure variations, has an instantaneous
impact on the fracture volume, in contrast to the time-delayed change in fluid pressure
caused by diffusion. For example, the direct pressure-induced mechanical response of frac-
tures may result in inverse pressure fluctuations at some distance from the perturbation’s
source [206], a phenomenon similar to the Noordbergum effect known for poro-elastic
media [107, 162]. In addition to these non-local phenomena, local changes in fracture per-
meability may be significant due to changes in fracture aperture, related to fluid injection,
as demonstrated by field [52, 164, 165, 175] and laboratory studies [115, 122, 219]. The
identified changes in the fracture’s transport characteristics induced by fluid injection, at-
tributable to non-linear fracture stiffness-permeability relationships, are relevant for fault
reactivation and seismicity in general [33, 51, 78–80]. Fracture stiffness and permeability
are both closely related to measures of fracture aperture, albeit not necessarily the same,
because hydraulic and mechanical responses to changes in fluid pressure along a fracture
might be governed by different aspects of the fracture geometry [209].

Pumping tests constitute the primary option for determining hydro-mechanical properties
of fractures and fractured rocks on field-scale. Periodic pumping tests, exhibiting technical
and analytical advantages compared to conventional constant-rate testing regarding signal
separation from noise or from prevailing transients due to previous or ongoing pumping
operations in nearby boreholes [154, 157], characterization of flow regimes [39, 89], and
identification of subsurface heterogeneity [3, 36, 63, 89, 157], also promise a substan-
tial sensitivity to hydro-mechanical effects since conduit deformation causes changes in
permeability and storage capacity in every period, i.e., repeatedly, as previously demon-
strated for open radial fractures [208]. We discuss the role of hydro-mechanical coupling
for the occurrence of overtones observed in the response spectrum of transients recorded
during in-situ tests on different scales in the light of the results of numerical simulations
of a harmonic pressure excitation applied to a single mechanically closed but fluid-filled
and permeable radial fracture for two distinctly different fracture domains under a range
of normal stress conditions. Introducing dimensionless properties allows us to compare
the influence of hydro-mechanical coupling on the response spectrum observed for the
numerical model to that of experimentally recorded transients.
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Methods

Our numerical approach employs an implicitly coupled, non-linear, time-domain formu-
lation of a hybrid-dimensional model [177, 208] including fluid pressure-induced changes
of local permeability and fracture volume overcoming the limitations of purely diffusion-
based models (for details see Text S1). The opening and closing of fractures is controlled
by two “stiffnesses”, one related to their overall geometry and the bulk elastic proper-
ties of the medium embedding the “void”, and one representing the contact mechanics
of the touching fracture surfaces. When a fracture is fully open, i.e., the two surfaces
loose contact, e.g., due to fluid pressure on it, solely the geometrical stiffness determines
their deformation; when they are mechanically closed, the contact stiffness tends to domi-
nate their deformation [e.g., 175]. The deformation characteristics of individual asperities
forming the contact may be approximated by that of Hertzian contacts. Such non-linear
behavior particularly predicts “relatively large” aperture changes and associated changes
in effective hydraulic properties of fractures for modest changes in normal stresses, when
the effective normal stresses on the fracture are small.

The chosen constitutive model for the fracture deformation (see Text S3, eq. 4) accounts
for the strong non-linearity between changes in normal stress and fracture aperture char-
acteristic for mechanically closed fractures in rocks [e.g., 12, 145] but might be replaced
by alternative models to match experimental observations for specific rock samples. We
adopt a sign convention, according to which compressive stresses are negative as are re-
ductions in aperture. The (stress dependent) specific fracture stiffness CFr, the change in
normal stress σN required for a change in effective fracture aperture Δδ = δ − δ0 relative
to the initial (mean) aperture δ0 at zero stress, reads

CFr =
∂σN
∂Δδ

=
EFr

δ0 − δmin

(
1− σN

EFr

)2
(4.82)

with the minimum effective fracture aperture δmin reached for σN → −∞ and EFr the
fracture Young’s modulus [70, 180]. The specific effective fracture stiffness CFr increases
non-linearly with an increasing magnitude of compressive normal stresses σN.

In our modelling, we assume the “global” constitutive relation (4.82) to apply locally and
identify the normal stress σN as an effective normal stress σN → σN− p, calculated as the
unweighted difference between normal stress and the (local, time-dependent) fluid pres-
sure. A numerical simulation is performed in three steps; first, the fracture is subjected to
a normal stress; then a uniform fluid pressure peq is applied in the fracture domain leading
to the mechanical equilibrium state assumed to be characterized by an effective stress of
σeqN = σN − peq. Finally, sinusoidal pressure perturbations are imposed at the fracture’s
center. The flow into a “rigid fracture” is simulated using a conventional pressure-diffusion
model to illustrate the effects of fracture deformation by a direct comparison of results
from the two models.
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Dimensionless properties quantifying the hydro-mechanical interaction through-
out harmonic testing

A dimensionless formulation seems mandated for a meaningful comparison of results
from different experiments because of the multitude of parameters describing the hydro-
mechanical system. Several important system parameters, for example fracture perme-
ability, vary spatially and temporally once fluid pressure is harmonically perturbed. Thus,
we represent them by their values for equilibrated fluid pressure at a given normal stress,
as denoted by a superscript “eq”. Specifically, we introduce the characteristic time of
pressure diffusion in a fracture

τd =
(lFr)2ηfRβf

kFr,eq
, (4.83)

which constitutes an approximate measure of the time it takes for the pressure pertur-
bation to reach a characteristic diffusion distance lFr [e.g., 212], here corresponding to
the fracture radius or length, ηfR and βf viscosity and compressibility of the fluid, and
kFr,eq = (δeq)2/12 is the intrinsic permeability of the fracture in the equilibrated yet un-
perturbed state, characterized by a constant aperture δeq. Furthermore, we characterize a
rock domain of height h and a Young’s modulus E by a nominal domain stiffness C = E/h.
The employed four dimensionless parameters are

a) the dimensionless characteristic diffusion time τ = τd/T , a normalization of the
characteristic diffusion time τd (4.83) by the testing period T ,

b) the dimensionless domain stiffness Γ = C/CFr,eq that normalizes the nominal domain
stiffness C by the specific equilibrium fracture stiffness CFr,eq, i.e., (4.82) evaluated
for σeqN ,

c) the dimensionless domain length Λ = r/rb, where we normalize the domain radius
r by the borehole radius rb and

d) the dimensionless aperture-change Ω = pAs, for which we multiply the amplitude
of the applied fluid pressure pA with the relative sensitivity of aperture changes to
perturbations in effective normal stress s = ∂ ln(δ)/∂ σN = ∂ ln(δ)/∂ p = 1/(δCFr).

Hydro-mechanical characteristics of the numerically investigated
fracture domains

We employ experimental observations on single fractures embedded in granite rock sam-
ples [145] to determine the parameters, fracture Young’s modulus EFr and the initial
fracture aperture δ0, of the proposed constitutive relation (eq. 4.82; eq. 4 in SI). Specif-
ically, we fit two sets of data for fracture deformation Δδ and specific fracture stiffness
CFr as a function of normal stress σN, documented in Pyrak-Nolte et al. 1987 and Gale
1987 (Fig. 1), assuming δmin = 0, i.e., the fracture reaches a hydraulically closed state
for infinitely high normal stress. One of the two domains, B1, corresponds to a fracture
with a “stiff” response, whereas the other fracture is compliant for low normal stresses
and converges to the stiff response of the first domain only for high normal stress.
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Figure 1: Numerical fits of the dependence of fracture deformation Δδ a) and fracture-specific
stiffness ∂σN/∂Δδ b) on the acting total normal stresses for samples B1 and B2 [145]. The
total normal stress values 10, 20, ... 100 MPa applied in our numerical study are indicated by
the orange vertical dashed lines in a). The numerical boundary conditions of the axisymmetric
model c) comprise lateral stress σM on the outer sample surface related to radial pressure pr,
axial or normal stress σN, normal stress on the injection borehole wall σp(τ), and the Dirichlet
boundary condition associated with the fluid pressure p(τ) at the intersection between fracture
and injection borehole.

To express their stress dependence, we denote properties evaluated at minimum σ̌eqN =
σminN − peq = 5 MPa and maximum σ̂eqN = σmaxN − peq = 95 MPa effective normal stress by

�̌ and �̂, respectively (see also Fig. 1 and Text S4, Table S1). The equilibrium fracture
apertures are moderately sensitive to applied normal stress for B1 (δ̌B1/δ̂B1 ≈ 2) but
highly sensitive for B2 (δ̌B2/δ̂B2 ≈ 15); the associated stiffnesses stay within half an order
of magnitude for B1 but vary non-linearly over about two orders of magnitude for B2
and reach the high values of B1 only at the highest imposed normal stress values of 100
MPa. The domain stiffness CBi

indicates a stiffer characteristic for the smaller sample B1,
though the same Young’s modulus Esat is used, because it scales with cumulative height
of the rock cylinders hBi

. The normalized radius Λ indicates distinctly different fracture
lengths for the two numerically investigated domains (ΛB2/ΛB1 = 10).

The stress state-dependent, dimensionless domain quantities of B1 evolve more with stress
than those of B2 over the range of investigated effective stresses. The dimensionless
domain stiffness is insensitive to changes in stress for B1 but decreases significantly for B2
with increasing normal stress. For domain B1, the fracture is persistently less compliant
than the rock matrix. For domain B2, the fracture is more compliant than the rock matrix
for the minimum applied normal stress and significantly stiffer at the maximum normal
stress. The relative aperture sensitivity s, determined from initial fracture aperture and
fracture Young’s modulus, evolves distinctly different with increasing normal stress for
the two numerical domains (Fig. 3 c, d); s is low and constant for B1, while, for domain
B2, it is high at low normal stress and decreases to the insensitive response of domain B1
at high normal stress.
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Figure 2: Variation of pressure p (blue, imposed boundary condition) and flow rate q at the
fracture mouth, normalized by their maximum values, during an oscillation period T a) and c)
and corresponding hysteresis plots b) and d) for samples B1 a) and b) and B2 c) and d). The
red dashed lines give the reference solutions for pure radial diffusion qr(τ) in the absence of
fracture deformation. Flow solutions qBi for deformable fractures are shown in shades of green
for normal stress σN ranging between the minimum of 10 MPa and the maximum of 100 MPa
in steps of 10 MPa.

The diffusion time (4.83) varies modestly for B1 (τ̌
d
B1
/τ̂dB1

≈ 4), but significantly for B2
(τ̌dB2

/τ̂dB2
≈ 225) over the range of applied normal stresses (Text S4, Table S1). While the

characteristic diffusion times of the two considered fracture scenarios are of comparable
magnitude at the minimum effective equilibrium normal stress (τ̌dB2

/τ̌dB1
= 6), they differ

by more than two orders of magnitude at the maximum stress state (τ̂dB2
/τ̂dB1

= 360). At
all stress conditions, the characteristic diffusion times are, however, significantly smaller
than the selected period T of the pressure perturbation (τd/T ∼ 10−7). The similarity of
characteristic times at minimum stress and its relation to the excitation period mean that,
if deformation were absent, a) pressure diffusion would take place on a similar time scale
in the two fractures and b) pressure would be almost equilibrated along the fractures and
thus close to the excitation pressure at all times. With the selection of the two samples, we
thus ensure that differences in the hydraulic response of the two fractures to the periodic
excitation are dominated by deformation characteristics and that the potential effect of
fracture deformation on the flow process is maximized.
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Figure 3: Amplitude spectra of flow q for sample B1 a) and B2 b) normalized by their max-
imum value. Amplitudes of the flow solutions (q̌Bi and q̂Bi) for the minimum and maximum
normal stress are represented by different shades of green. Plots of the relative aperture change
sensitivity regarding the acting normal stress c) and specific normal stiffness d) for samples B1
and B2.

Results

Evaluation of the numerical pressure and flow transients in the time domain reveals dis-
tinctly different responses of the two modeled domains to the harmonic pressure exci-
tation. For the “stiff” fracture B1, maxima in pressure and flow exhibit a phase shift
close to T/4 irrespective of normal stress, as expected for a purely diffusion-based model,
corresponding to a circular p − q hysteresis loop (Fig. 2). In contrast, the flow response
is visibly non-harmonic for the compliant domain B2, with increasing deviations from a
phase shift of T/4 with decreasing normal stress. The variably distorted p− q hysteresis
loops visualize the underlying shift of the flow maxima towards the pressure minimum.
The deviations of the flow responses from a harmonic signal observed for the compliant
domain B2 lead to systematic overtones in the spectra at integer multiples of the excita-
tion frequency. The overtones exhibit decreasing amplitudes with increasing frequency at
a given normal stress and with increasing normal stress at a given frequency (Fig. 3).

Discussion

Diagnostic potential of overtones for hydro-mechanical interaction during har-
monic excitation

Our numerical simulations indicate that overtones in the frequency domain of the flow re-
sponse permit inferring the relevance of hydro-mechanical interaction and thus assess the
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validity of a diffusion approach to go beyond the conventional determination of effective
hydraulic parameters [61, 82, 153, 157] and provide constraints on hydro-mechanical prop-
erties. The hydro-mechanical response is controlled by a) the intrinsic “responsiveness” of
the fracture in terms of the dimensionless aperture-change Ω and b) the actual extent of
the excitation characterized by the dimensionless characteristic diffusion time τd (4.83) as
a measure for the hydraulic penetration depth. The relation between changes in effective
aperture and effective normal stress controls the hydro-mechanical responsiveness of the
fracture and thus will be examined in detail.

In the numerical model, we assume the local mechanical equilibrium of a fluid-filled frac-
ture under normal stress to be constrained by the stress balance

σN = σFrN + σSt + p, (4.84)

i.e., the acting normal stresses σN are in equilibrium with the sum of fluid pressure p,
normal contact stresses σFrN , and stress σSt related to the deformation of the surrounding
bulk material, typically characterized by a structural or geometrical fracture stiffness
[131, 175]. In our numerical approach, however, we neglected this geometrical stiffness,
because the applied pressure amplitudes remained well below the acting normal stresses
and therefore the limit of fracture-surface separation. Hence, variations in effective normal
stress σN − p are exclusively compensated by contact normal stresses σFrN and thus the
numerical simulations correspond to an upper bound for the contact-related deformation
of a tested fracture.

The amplitudes of overtones observed for the two domains correlate with their different
dimensionless aperture-change values Ω; overtones in the frequency domain are promi-
nent for high dimensionless aperture-change values. Thus, we identify the amplitude of
overtones as a measure for changes in flow characteristics of a tested fracture due to
hydro-mechanical interaction. The relation between transient changes of the mechanical
fracture-surface contact response and the resulting fracture flow induced by harmonic
excitation is in agreement with the qualitative specific fracture stiffness-flow relation in-
troduced for quasi-static conditions in Pyrak-Nolte & Morris 2000 and Pyrak-Nolte &
Nolte 2016.

Interpretation of overtones in the response spectra of previously reported
experimental data

We investigate the records of four field studies that employed harmonic excitation (Text
S5, Fig. 5), namely in the Reiche Zeche underground-research laboratory (RZ), Freiberg,
Germany [23], at the Terrieu karstic field (TER) near Montpellier, France [61], at the
Altona Flat Rock Site (AFR) in Clinton County, NY, USA [82], and at the Boise Hy-
drogeophysical Research Site in Boise (BHR), ID, USA [153]. The study conducted at
BHR comprised tests in a gravel aquifer, while the three other studies represent tests on
fractured rock masses. The amplitude spectra of the recorded pressure transients can be
classified into three groups: overtones occur (i) at local maxima at multiples of the excita-
tion frequency (RZ, BHR), (ii) at maxima at uneven multiples of the excitation frequency
(AFR), and (iii) unsystematically (TER). We compare the overtone observations with es-
timates of the introduced dimensionless properties to assess the role of hydro-mechanical
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Figure 4: Pressure response spectra recorded during harmonic measurements at a) RZ, b)
TER, c) AFR and d) BHR. The amplitudes are normalized by their maximum value.

interaction for their occurrence (Figure 5). Qualitatively, we expect the fields of strong
and weak hydro-mechanical interaction to correspond to combinations of low and high
specific fracture stiffness with low and high diffusion times. Hydro-mechanical coupling
is expected to increase with increasing fracture deformability and applied pressure ampli-
tudes corresponding to increasing dimensionless aperture changes and decreasing pressure
diffusion times corresponding to increasing hydraulic penetration depths.

The placement of the different field studies in the “regime diagram” and the occurrence
of overtones are consistent and show a significantly higher sensitivity of the magnitude of
hydro-mechanical interaction to the dimensionless aperture change than to the character-
istic pressure diffusion time:

• The dimensionless properties indicate a high dimensionless aperture-change and
a moderate penetration depth for RZ. The similarity between dimensionless pa-
rameters and overtone characteristics for RZ with B2 strongly suggest that hydro-
mechanical coupling is the cause for the non-linear response.

• The AFR experiments are characterized by a low to moderate dimensionless aperture-
change and a high penetration depth in agreement with the amplitude of observed
overtones at uneven multiples of the excitation frequency. The absence of even mul-
tiples of the excitation frequency remains unclear and might be related to additional
effects, such as non-laminar flow, not considered by the present model.

• The combination of low values of dimensionless aperture change and a moderate
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Figure 5: Classification of tests regarding hydro-mechanical interaction, based on the relation
between the dimensionless characteristic diffusion time as a measure for the expected hydraulic
penetration depth and relative aperture change.

penetration depth indicating negligible hydro-mechanical interactions is in agree-
ment with the inconsistent occurrence of local maxima in the amplitude spectra
of the TER response data. Frequencies exceeding the nominally excited one seem
related to the insufficient time resolution of the data.

• The amplitude of observed overtones in the response spectrum of the BHR ex-
ceed overtones of the three field studies involving fractured rocks indicating signif-
icant hydro-mechanical interaction. The pronounced overtones correlate well with
the high dimensionless porosity change estimated based on the Kozeny-Carman
permeability-porosity relation for granular media (SI, section 2), in lieu of a dimen-
sionless aperture change.

Conclusions

We identified overtones in the response spectrum of harmonic testing as an indicator of
hydro-mechanical interaction. Overtones observed in field tests correlate with the sensitiv-
ity of fracture aperture (or generally porosity) changes to perturbations in fluid pressure
that controls the degree of non-linearity of fracture flow. Hence, overtones observed during
harmonic hydraulic testing should not per-se be discarded as measurement imperfections,
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but bear the potential to characterize the fracture’s stress state and mechanical properties,
such as the specific normal stiffness.

An account of hydro-mechanics will improve the inverse analysis of experimental field and
laboratory data by separating hydro-mechanical phenomena from undesired measurement
artefacts. Improved estimates of hydro-mechanical properties of a tested region then bear
a significant potential to optimize the design of energy-storage and/or geothermal systems.
An improved (quantitative) understanding of hydro-mechanical properties of fractures and
fractured rocks on field scale is also essential for a substantiation of analyses in fields such
as seismic [e.g., 29] and volcanic [e.g., 4] tremor, and tidal signals in boreholes [e.g., 220].

Open Research

We used the modular toolbox DUNE, a free software licensed under the GPL (version
2), for solving partial differential equations (PDEs) with grid-based methods to per-
form the numerical simulations: https://www.dune-project.org/. The Git-repository:
https://github.com/PatrickSchm/Assessing-the-role-of-non-linear-contact-

mechanics-for-flow-in-fractures---Code contains our DUNE implementation of the
hybrid dimensional interface elements, the files for compilation, the input and mesh files
as well as the python script that generates the characteristic, dimensionless properties.
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Introduction Text S1 to S3 provide details on the governing equations for fluid flow
in deformable fractures, their numerical implementation, the considered fracture geom-
etry and constitutive assumptions. Text S4 presents the properties of the numerically
investigated fractured domains; their absolute values are compiled in Table S1. Text S5
introduces the aspects of four in-situ experiments that are relevant for our analysis of
the role of hydro-mechanical effects. Tables S2 and S3 give the material properties and
excitation characteristics of the numerical experiments and the four field experiments in
absolute and dimensionless values, respectively.
Text S1. Governing Equations
We incorporate the geometrical assumption of parallel plates for high-aspect ratio frac-
tures and assume creeping flow conditions (Re � 1) in the derivation of the balance
equations. Evaluation of the balance of momentum for weakly compressible, viscous flu-
ids in hydraulic transmissive fracture results in a Poiseuille-type formulation [177, 206].
Then, the relative fluid velocity wf is proportional to the pressure gradient grad p; the
cubic law [e.g., 216] is evaluated at each material point P(x, τ) along the planar fracture

wf = −δ(x, τ)2

12 ηfR
grad p =: −kFr

ηfR
grad p, (4.85)

where kFr(x, τ) = δ(x, τ)2/12 denotes the space- and time-dependent permeability, x the
current position vector along the fracture, τ time, ηfR the dynamic viscosity of the fluid,
and δ(x, τ) the space- and time-dependent local fracture aperture.

Using (4.85) in the evaluation of the balance of mass for the fluid and considering a mean
velocity averaged over the fracture aperture δ results in a hybrid dimensional formulation
[206–208]

δ
∂p

∂τ︸︷︷︸
i)

− δ3

12 ηfR
grad p · grad p︸ ︷︷ ︸

ii)

− δ2

12 ηfR βf
grad δ · grad p︸ ︷︷ ︸
iii)

− δ3

12 ηfRβf
Div (grad p)︸ ︷︷ ︸
iv)

+
1

βf

∂δ

∂τ︸ ︷︷ ︸
v)

=
qlk
βf︸︷︷︸
vi)

,

(4.86)
where βf is the fluid compressibility and qlk accounts for leak-off, despite its facile con-
notation here meant to encompass all fluid exchange between the fracture and the sur-
rounding rock, from here on addressed as matrix. Dimensional analysis of the governing
equation (4.86) motivates to neglect the quadratic term ii) and the convection term iii)
for problems involving high-aspect ratio fractures [206]. Thus, the hybrid dimensional
description comprises a transient i), a diffusion iv), a coupling v), and a leak-off vi) part.
Fracture deformation modifies the fracture aperture δ(x, τ) and thus contributes to the
fracture-flow solution via the diffusion term iv) and the volumetric coupling term v).

In general, evolution of the deformation of the rock embedding the fracture and the pore
pressure in it had to be analyzed relying on a poro-elastic theory, such as Biot’s theory
[20, 177]. In this work, however, we focus on the specific case of highly conductive fractures
in poorly permeable rocks and thus leak-off driven dissipation is neglected allowing for a
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single phase, linear elasticity formulation for the surrounding rock

Div (σs) = 0, with σs = 3Keff vol(εs) + 2μeff dev(εs), (4.87)

where σs and εs are the stress and strain tensor of the solid and vol(εs) and dev(εs)
the volumetric and deviatoric part of the solid’s strain tensor. In equation (4.87), we
introduced the effective shear modulus μeff and the effective bulk modulus Keff of the
poro-elastic medium, here derived from Gassmann’s 1951 low-frequency result.

Text S2. Implementation
The non-linear system of partial differential equations is solved by an extended Dune-
PDELab finite element implementation [15]. Discretization of the hybrid-dimensional flow
model is realized by double-node zero-thickness elements, and the set of equations formed
by monolithic assembly is solved by a direct solver in parallel. Averaging of balance of
mass and momentum in the fracture domain is numerically realized by averaging the fluid
pressure of facing fracture surfaces at aligning nodes of the implemented zero-thickness
interface elements [177, 180, 181]. Numerical integration of the fracture-flow formulation
is then performed on auxiliary lower dimensional elements. The auxiliary elements are
used for integration purposes only, do not introduce additional degrees of freedom and
therefore contribute to an increase in computational efficiency [177, 181]. Fracture aper-
ture δ(x, τ) is handled on integration-point level accounting for the deformation of the
zero-thickness elements. The framework uses a Newton-Raphson-based strategy to reach
quadratic convergence of the equilibrium iterations.

Text S3. Model geometry and constitutive assumptions
We envision a harmonic excitation in fluid pressure at the center of a circular planar
interface, the fracture, between two cylindrical domains. We investigate fractures in their
post setting state [12, 14], i.e., fracture deformation is considered to be reversible for the
investigated effective stress states. We assume a uniform initial fracture aperture and
homogeneous properties of the solid cylinders to allow for a two dimensional, radial sym-
metric formulation of the governing equations (4.86) and (4.87). The modeled fractures
do not have physical ends, thus their geometrical stiffness [131, 175] is not considered
in this study; an assumption valid for fluid pressure amplitudes below the acting normal
stresses, i.e., much smaller then the fluid pressures required for fracture-surface separation
[175]. Yet, we imposed a no-flow boundary at the end of the fractures.

Opposing fracture surfaces are locally in contact for a finite stress normal to the fracture
surface, σN [40, 77], leading to the contact stiffness. Shear deformations are insignificant
when, as is typically the case in hydraulic tests, the fluid pressure remains well below the
jacking pressure, i.e., the pressure causing fracture surface separation, and we therefore
neglect the contribution of shear stress induced fracture dilation [173, 175]. We describe
the contact mechanics on the continuum scale by an empirical, hyperbolic evolution law
[12, 75]

Δδ = (δ0 − δmin)
σN

EFr − σN
, (4.88)

where the changes in effective fracture aperture Δδ relative to the initial aperture δ0 at
zero stress are incorporated in the effective fracture aperture δ = δ0 + Δδ, δmin is the
minimum effective fracture aperture reached for σN → −∞ and EFr the fracture Young’s
modulus [70, 180].
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Text S4. Properties of the numerically investigated fractures
In Table 4.21, we use a notation that reflects the minimum σ̌eqN = σminN − peq = 5 MPa
and maximum σ̂eqN = σmaxN − peq = 95 MPa effective normal stresses, and define properties

evaluated at these range boundaries by �̌ and �̂.
At RZ-URL, harmonic testing was performed with a double-packer probe (Solexperts
GmbH, Bochum, Germany) installed at a distance of 40.6 m from the head of a 63 m long
borehole drilled dipping downwards 15° to NNE from a tunnel about 130 m below the
surface. The interval enclosed between the two packers had a length of 0.7 m; the injection
system had a storage capacity of 1 × 10−12 m3/Pa. Stimulation preceding the harmonic
testing lead to a pair of axial fracture traces at the borehole wall, complementing a pre-
existing circumferential fracture trace, as revealed by televiewer-logging and impression-
packer testing [2]. The data used here represent a sinusoidal variation in flow rate with
a period of 65 s and an amplitude of 1.25 l/min around a constant flow rate of 3.85
l/min for a total of 5 periods. Pressure in the borehole exhibited a periodic response
with an amplitude of 0.3 MPa and a mean value of 4.9 MPa. We approximate fracture
properties based on results of a numerical hydro-mechanical characterization of step-rate
tests performed at six fractured intervals of the same borehole at different depths [175].

Considering the estimated hydro-mechanical properties gained from preceding investi-
gations for different intervals of the same borehole [175], apertures are approximated to
range between 120 to 220 μm under an estimated effective normal stress of 1.1 to 1.6 MPa,
and potential effective fracture lengths are expected to be approximately 10 m [175]. The
fracture geometry is characterized by an estimated dimensionless domain length ΛRZ of
100 and is slightly larger than the fracture domain investigated for domain B2. The di-
mensionless characteristic diffusion time τRZ ranges from 2.0 · 10−4 to 5.1 · 10−4 indicating
slightly slower pressure diffusion than investigated for the numerical domains but still
rapid compared to the excitation period. The dimensionless domain stiffness of 16 to 42
indicates a compliant fracture response, and a relative aperture-change of ΩRZ = 0.27,
comparable to values obtained for domain B2 at 5 to 15 MPa effective normal stress.
Characteristic occurrence of multiples of the excitation frequency are similar to those ob-
served for the numerical domain B2 are present in the spectrum of the measurement data
(main paper Fig. 4 a).

The harmonic pumping tests at the Altona Flat Rock Site (AFR) in Clinton County
were performed near the surface (7.6 m depth) on a single, hydraulically dominant bed-
ding plane fracture wit a length of approximately 10 m, embedded in a low-permeability
sandstone [82]. With a dimensionless domain length of 200 the tested region is moder-
ately larger than the ones numerically investigated. For characterization purposes, four
monitoring boreholes were installed in a distance of 5 m to the excited borehole (ra-
dius 0.05 m) intersecting the fracture, too. Effective hydraulic apertures between 717
to 951 μm were estimated based on the measured fracture transmissivity [82]. Pressure
responses below the excited amplitude measured in the monitoring boreholes indicate
non-equilibrated fluid pressure in the tested volume below the ones typically expected for
radial symmetric flow, contradicting with the approximated characteristic diffusion time
of 2.3·10−6 to 1.6·10−5, which is comparable to the lower limit investigated for the numer-
ical domains. Considering that pumping was performed near the surface we estimate a
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compliant fracture response based on fracture stiffness-depth correlations investigated for
fractured granite reservoirs [64, 164]. The resulting dimensionless aperture-change of 0.01
to 0.1 indicates moderate hydro-mechanical interaction comparable to the lower range of
numerical domain B2. The pressure response to harmonic flow excitation exhibits a dom-
inant frequency, but shows additional amplitudes at uneven multiples of the excitation
frequency (main paper Fig. 4 c).

The harmonic pumping at the Terrieu karstic field tested a highly conductive limestone
aquifer with conduits of an estimated effective hydraulic aperture of 111 μm to 350 μm.
From complementary experimental investigations it is known that apertures can locally
reach 20 to 50 cm [61] suggesting that parts of the conduits are not in mechanical con-
tact. The connected hydraulic pathways span a network extending over a total area of
approximately 2500 m2. Monitoring wells are positioned at distances between 8 to 24
m to the pumping borehole. The dimensionless domain length of 1000 is significantly
larger than for the numerical studies and the dimensionless characteristic diffusion time
of 3.4 · 10−4 to 3.4 · 10−3 indicates slower pressure diffusion processes than for numerical
domains B1 and B2. Despite a characteristic diffusion time that is three to four orders
of magnitude smaller than the applied period, pressure responses are below the excited
amplitude measured in monitoring boreholes, i.e., fluid pressure is not equilibrated in
the tested volume. Considering the absence of mechanical contact in large parts of the
karstic, we assume that changes in fracture volume are purely induced by deformation
of the surrounding bulk material and therefore assume that changes in fracture aperture
are directly related to the domain stiffness. Overtones in the recorded data (main paper
Fig. 4 b) are not consistently occurring at multiples of the excitation frequency but at
arbitrary frequencies.

Harmonic tests at the Boise Hydrogeophysical Research Site (BHR) aimed at the char-
acterization of a gravel aquifer. The gravel reservoir is tested close to the surface under
low normal stress conditions where single contacts between cobbles are expected to react
compliant to changes in effective stress. Conductivity-based estimates of an equivalent
fracture aperture range between 16 and 29 μm. The dimensionless domain length of 1000
translates to a larger tested region than numerically investigated. The high dimensionless
characteristic diffusion times, ranging between 0.6 and 2.1 are in good agreement with the
non-equilibrated pressure responses indicated by amplitude ratios between 0.004 to 0.037
measured in the monitoring boreholes [153]. The pronounced dimensionless characteris-
tic diffusion time translates to a low penetration depth. Here, we consider deformation
induced hydraulic changes of the investigated region in terms of the Kozeny-Carman equa-
tion which correlates porosity changes to changes in permeability for granular media [37].
The initial porosity of the gravel aquifer ranges between 0.17 to 0.24 [153]. Similar to the
dimensionless aperture-change we therefore introduce the dimensionless porosity change
Ω∗ = pA∂ ln(φ)/∂ p to quantify the hydro-mechanical interaction expected throughout a
testing period where φ is the porosity and where we assumed that changes in effective
stress are exclusively related to changes in fluid pressure. We estimated the dimensionless
porosity change based on investigated density changes of gravel samples under low per-
turbations of compression forces [166] resulting in a range of 0.13 to 0.19. The occurrence
of overtones in the spectra of the pressure response (main paper Fig. 4 d) show close
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similarities to that found for the responses of numerical domain B2 (main paper Fig. 3
b). The authors stated that the occurrence of overtones scaled with the applied excitation
period where longer periods resulted in higher pressure amplitudes, but did not provide
any further explanation [153].
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Table 4.23: Numerical and experimental dimensionless properties.

Exp. Λ τ Γ Ω
B1 5 2.7 · 10−8 − 1.0 · 10−7 0.09− 0.34 0.02− 0.04
B2 50 1.6 · 10−7 − 3.6 · 10−5 1.89− 0.01 0.04− 0.63
RZ 100 1.6 · 10−4 − 5.1 · 10−4 16.0− 41.6 0.19− 0.27
TER 1000 3.4 · 10−4 − 3.4 · 10−3 1.0 0.01− 0.04
AFR 200 2.3 · 10−6 − 1.6 · 10−5 13.2− 65.8 0.01− 0.10
BHR 1000 0.6− 2.1 - 0.13− 0.19†
† dimensionless porosity change





Chapter 5:
Summary and outlook

5.1 Summary

Detailed knowledge about the underground characteristics of fractured reservoirs increases
the efficiency of energy production based on natural resources. Inverse analysis of the
measurement data has proven to be of great importance when sophisticated numerical
models have been used for detailed investigations. The demands on the consulted model
are defined by hydro-mechanical phenomena found in experimental transient data sets
indicating the strong dependence of the fracture flow on the deformation state of the
surrounding reservoir and the characteristic high-aspect ratio fracture geometry which in-
troduces some limitations to the numerical discretization. Considering these limiting con-
ditions this work has been concerned with the derivation of a consistent hydro-mechanical
model for flow in deformable fractures below the limit of seismic actions by consulting the
framework of continuum-mechanics.
Capturing hydro-mechanical phenomena throughout perturbations of the fractured reser-
voir’s equilibrium state has been achieved by introducing distinct models for the porous
and fracture domain along with consistent transition boundary conditions defined on the
fracture surface. Responses of the surrounding porous matrix have been considered by
means of a biphasic poro-elastic model accounting for a barotropic fluid and linear-elastic
material response. Characteristics of flow processes in deformable fractures have been
governed by a dimensionally reduced hybrid-dimensional model. To close the continuum-
mechanical description governing the behaviour of hydro-mechanically interacting frac-
tured porous media, hydraulic and mechanical transition boundary conditions have been
defined along the fracture surface.
Numerical coupling of the fracture and poro-elastic domain requires special treatment
to guarantee stability and computational efficiency. In the scope of this work three dif-
ferent coupling strategies have been investigated. Monolithic coupling of both domains
has been achieved by introducing a zero-thickness element formulation by consulting an
averaging procedure of the balance equations. The advantage of the monolithic coupling
scheme has been identified to be the numerical stability of the method quantified by the
convergence rate determined throughout a number of numerical studies. Nevertheless,
parallel computing using iterative linear solvers would require the implementation of spe-
cific preconditioning and has not been considered throughout this work. Alternatively two
partitioned coupling schemes have been investigated. The fixed-stress coupling enforces
constant stress-rates throughout the calculation of the flow processes to guarantee numer-
ical stability. It has been found that its implementation requires a reasonable number of
iterations to meet the convergence criterion. Coupling in a less specific sense has been
studied by using a number of advanced quasi-Newton coupling schemes consulting the
coupling library preCICE. Studies on the convergence behaviour proofed satisfying con-
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vergence behaviour throughout a number of test cases in three dimensions. Besides the
implemented numerical coupling schemes, another advantage when consulting preCICE is
the fully parallelized infrastructure for communication between different domains which
drastically increases the computational efficiency and is of interest for large-scale prob-
lems.
In a subsequent step the proposed model has been used to investigate hydro-mechanical
effects throughout stimulations of fractured porous media. To capture the mechanical
interaction of both fracture surfaces in terms of contact, assumptions for investigations
below the limit of seismic actions have been discussed to introduce a normal fracture
stiffness model under in-situ conditions. Based on a consistent set of hydro-mechanical
measurement data obtained from field experiments under in-situ conditions the impor-
tance of deformation related volume changes of fractures throughout flow processes could
then consistently be proven by a split of contributing compressible fluid volume and
fracture aperture changes. Another study was concerned with the identification of hydro-
mechanical effects throughout harmonic fluid pressure excitations of a single fracture. The
study could consistently correlate additional frequencies in the flow response not to mea-
surement imperfections, like assumed in the known literature, but to transient changes of
the hydro-mechanical fracture characteristics within one stimulation period.

5.2 Outlook

At this stage, the proposed model has been shown to consider hydro-mechanical effects
throughout flow processes under the limit of seimsic actions in a fulfilling manner. Never-
theless, once the field of investigations might be extended it is of importance to introduce
certain modifications to the existing model. Thinking about re-activation of existing
faults, experimental operations are performed at high stimulation pressures that poten-
tially induce seismic actions in the sense of fracture shearing [33, 78–80]. Determination of
seismic actions requires the consideration of shear stresses to evaluate the friction state of
the fracture surfaces. Consistent extension of the normal stiffness constitutive relation to
a model considering frictional behaviour would require, e.g. a Mohr-Coulumb type formu-
lation capable of determining potential areas of fracture shearing. Taking the proposed
zero-thickness element formulation into consideration the assumption of static fracture
networks might be extended to fracture propagation by cohesive element formulations to
potentially investigate phenomena related to hydraulic fracturing [e.g., 117]. Extension
of the existing model by means of consideration of convection and diffusion effects of
temperature exchange between the fracture domain and the porous media would allow
for studies on geothermal energy production [e.g., 167].
Besides extension of the existing model to investigate phenomena in varying fields of frac-
tured porous media, harmonic experiments on the laboratory scale might be performed to
better understand hydro-mechanical characteristics occurring throughout harmonic fluid
pressure excitation of a single horizontal fracture. The knowledge gained by the numerical
investigations could then be used throughout the design and execution of experimental
studies to generate consistent sets of pressure, flow and deformation data. Comparison of
the numerical and experimental findings could be used to determine a relation between
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the fracture stiffness and the occurrence of additional overtones in the flow, respectively
pressure response.
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Theorie Poröser Medien. Abschlußbericht zum DFG-Forschungsvorhaben Eh 107/6-
2. Berichte aus dem Institut für Mechanik (Bauwesen) 1999.

[56] Evans, K.; Kohl, T.; Rybach, L. & Hopkirk, R.: The effects of fracture normal
compliance on the long term circulation behavior of a hot dry rock reservoir: A
parameter study using the New fully-coupled code ’Fracture’. Geothermal Resources
Council, Davis, CA(USA). 16 (1992), 449–456.
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Underground flow processes in fractured porous media possess
a great significance regarding the optimization of energy pro-
duction based on natural resources. Energy is stored in form
of liquids, respectively heat in the underground and its excava-
tion is highly impacted by discontinuities of the porousmedium’s
transport characteristics such as induced by discrete fractures or
fracture networks. Throughout the exploitation flow processes
might become fairly complex, since fractures do not simply in-
crease the permeability and induce preferential flow paths within
the reservoir, they also reduce the stiffness of the surrounding
rock mass.

Therefore, the objective of this thesis is to derive a numerically
efficient hydro-mechanical model for flow in fractured porous
media in which the reduction of the fracture flow domain by
one dimension increases the computational performance. The
derived model is then applied to data obtained from field-scale
pumping operations in fractured reservoirs to contribute to a bet-
ter understanding of hydro-mechanical processes under in-situ
conditions.
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