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Abstract

Finding vulnerabilities is a crucial activity, and automated techniques for this purpose are in high

demand. For example, the Node Package Manager (npm) o↵ers a massive amount of software

packages, which get installed and used by millions of developers each day. Because of the dense

network of dependencies between npm packages, vulnerabilities in individual packages may easily

a↵ect a wide range of software.

Taint analysis is a powerful tool to detect such vulnerabilities. However, it is challenging to

clearly define a problematic flow. A possible way to identify problematic flows is to incorporate

natural language information like code convention and informal knowledge into the analysis. For

example, a user might not find it surprising that a parameter named cmd of a function named

execCommand is open to command injection. Thus this flow is likely unproblematic as the user will

not pass untrusted data to cmd. In contrast, a user might not expect a parameter named value

of a function named staticSetConfig to be vulnerable to command injection. Thus this flow

is likely problematic as the user might pass untrusted data to value, since the natural language

information from the parameter and function name suggests a di↵erent security context.

To e↵ectively exploit the implicit information in code, we introduce a bimodal taint analysis

tool, Flu↵y. The first modality is code: Flu↵y uses a mining analysis implemented in CodeQL

to find examples of flows from parameters to vulnerable sinks. The second modality is natural

language: Flu↵y uses a machine learning model that, based on a corpus of such examples, learns

how to distinguish unexpected flows from expected flows using natural language information. We

instantiate four neural models, o↵ering di↵erent trade-o↵s between manual e↵orts required and

accuracy of predictions. In our evaluation, Flu↵y is able to achieve a F1-score of 0.85 or more

on four common vulnerability types. In addition, Flu↵y is able to flag eleven previously unknown

vulnerabilities in real-life projects, of which six are confirmed.
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1 Introduction

Finding vulnerabilities is a crucial activity, and automated techniques for this purpose are in

high demand. The Node Package Manager (npm) o↵ers a massive amount of software packages,

which get installed and used by millions of developers each day. Because of the dense network of

dependencies between npm packages, vulnerabilities in individual packages may easily a↵ect a wide

range of software [41].

One automated technique is taint analysis. Taint analysis tracks data flowing from a source

to a sink. This is useful for finding vulnerabilities as users can specify a policy such that a flow

violating the policy is reported. For instance, one use case is to track if some user input flows into

a template engine like Mustache1, which might be vulnerable to code injection attacks, if the user

input is not properly sanitized.

However, precisely defining sources and sinks is not always easy. As an example, consider a data

flow between a client and the libraries it uses, i.e., calling a function in the library and passing some

data via a parameter. We could treat the source as any parameters in the library, i.e., assuming

all parameters in the library receive unsanitised data. Nonetheless, this is not reasonable and gives

us an unmanageably large number of results. Instead, we should make a reasonable worst-case

assumption about the source. Instead of assuming all parameters in the library receive unsanitised

data, we should only consider sources where non-malicious clients might pass in untrusted data.

One way to define this source is to ask whether a typical JavaScript programmer would expect data

passed into p to flow into a sink of kind s. If the answer is yes, then it is reasonable to assume that

no untrusted data will be passed into p (if it is then that is the client’s fault), but if the answer is

no then we should flag any flows from p to sinks of kind s.

As a concrete example, consider a command injection vulnerability in the “ps” package.2 An

API function exported by this package expects an argument called pid, which gets embedded

unsafely into a shell command. If a client passes an untrusted input to this argument, this would

expose the client to a command injection vulnerability. A typical JavaScript programmer would

likely not expect pid to flow into a command injection sink, since pid does not sound like a

security-relevant parameter. Thus, this flow should be flagged.

In contrast, let us consider an argument called expression from a function named evalExpression

that is vulnerable to code injection.3 This potential vulnerability is likely not as interesting to a

developer since they would already expect the possibility of code injection based on the parameter

1https://mustache.github.io/
2https://github.com/advisories/GHSA-cfhg-9x44-78h2
3https://github.com/baidu/amis/blob/1.9.0/src/utils/tpl.ts#L54

1

https://mustache.github.io/
https://github.com/advisories/GHSA-cfhg-9x44-78h2
https://github.com/baidu/amis/blob/1.9.0/src/utils/tpl.ts%23L54
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name and the function name, because expression implies that it is a JavaScript expression, and

evalExpression implies that the code will be evaluated. As such, it is reasonable to assume that

no untrusted data will be passed into expression. Thus, this flow should not be flagged.

Other than the aforementioned param-sink flows, there exist other types of taint flows facing

similar problems. For example, a clear-text logging flow checks whether a variable that contains

sensitive information flows into logging statements. While the sink is obvious in this case, i.e.,

calling the logging libraries, it is hard to precisely define the source, as we need to determine

whether it contains some sensitive information, like passwords or authentication keys. A possible

way to tackle this is to reason about the identifier name of the variable being logged. For example,

logging a parameter named user_password should be flagged, while logging a parameter named

HTTP_status_code should not be flagged.

As seen from the above examples, automatically determining whether a data flow is unexpected

is non-trivial, because the fact that we consider it a vulnerability depends on the rather implicit

meaning of pid, expression, user_password, and HTTP_status_code and the expectations a

developer has based on them.

To e↵ectively exploit the implicit information in code, we introduce a bimodal taint analysis

tool, Flu↵y (“FLagging Unexpected Flows For better securitY”). The first modality is code: Flu↵y

uses a mining analysis implemented in CodeQL to find examples of flows from parameters to

vulnerable sinks. The second modality is natural language: Flu↵y uses a classifier that, based on

a corpus of such examples, learns how to distinguish unexpected flows from expected flows using

natural language information.

The mining analysis runs CodeQL queries to extract flows from parameters to sensitive sinks

in npm packages and flows from variables to logging statements on GitHub and LSTM.com. Cod-

eQL queries, written by GitHub researchers and community contributors, can be executed against

databases where source code is treated as data. A flow extracted by our customized CodeQL

queries consists of the parameter name, the sink type, and other metadata, such as package name,

function name, and parameter documentation. Using this method, we obtain a corpus of around 3

million param-sink flows and around 4 million logging flows.

Using the corpus collected from CodeQL queries, we train a machine learning model to help

distinguish unexpected flows from typical flows. We develop four models, o↵ering di↵erent trade-

o↵s between the manual e↵orts required and the accuracy of predictions. The first model, Sink

Prediction, is a classifier that predicts which sink the flow belongs to, trained by the dataset

extracted by CodeQL, i.e., it can be trained without any manual labels. The second model, Novelty

Detection, is a One-class Support Vector Machines (OC-SVM) [37] which learns a decision function

to separate the expected and unexpected names. It requires some manual e↵orts as the users

have to produce a few (less than ten) seed names to train the OC-SVM. The third model, Binary

Classification, is a classifier that directly predicts whether a flow is unexpected, trained with a

manually labeled ground truth dataset. This requires the largest manual e↵ort as users have to

label hundreds of flows. The fourth model, Codex, is based on the large language model (LLM)

from OpenAI with the same name, trained on hundreds of millions of lines of code [9]. Our Codex

model uses a few-shot learning technique. Our model first generates a prompt using ten examples



1. Introduction 3

extracted from the manually labeled ground truth dataset. Then our model queries the OpenAI

Codex model with the prompt to predict whether a flow is unexpected.

We evaluate Flu↵y on a ground truth dataset. Each entry in the ground truth dataset is man-

ually labelled as either expected or unexpected by the authors. The quality of the ground truth

dataset has been cross-checked by domain experts from GitHub. On our ground truth dataset,

Flu↵y achieves a precision of 81%-97%, a recall of 80%-100%, and an F1-score of 76%-97%. More-

over, Flu↵y flags eleven vulnerabilities in real life projects, of which six have been confirmed by the

developers. Additionally, we apply Flu↵y on a dataset with 131 previously known vulnerabilities,

of which Flu↵y is able to flag 117.

In summary, this thesis contributes the following:

• A bi-modal taint analysis technique: the first approach to utilize identifier names through

machine learning and logic-based taint analysis to find unusual flows.

• Four di↵erent models are presented with di↵erent trade-o↵s between the manual e↵orts re-

quired and accuracy.





2 Background

2.1 JavaScript/NPM Security

JavaScript is one of the most popular programming languages. NPM is the package manager for

JavaScript developers to download third-party libraries. Although convenient, using NPM also

imposes security risks [41], as code is freely shared and used without any checks. For example,

individual packages could impact large parts of the entire ecosystem. Thus, it is crucial to have an

automated testing suite to make sure code is indeed secure. Our work aims to find if the shared

library code provides a sensible parameter name and function name, such that the client would

understand the purpose and expect the potential vulnerability of using it. Specifically, our work is

based on taint analysis [38].

2.2 CodeQL Mining Analysis

CodeQL 1 queries, written by GitHub researchers and community contributors, can be executed

against databases where source code is treated as relational data. CodeQL provides a suite of

analyses, available as libraries, to make finding common vulnerabilities easier.

2.2.1 Param-sink Flows

In Flu↵y, we use CodeQL queries to extract potentially problematic parameter-sink flows from

APIs of publicly available npm packages (i.e., our CodeQL queries are function-level analysis).

Specifically, we are looking for data flows that flow into any of the four sinks: code injection2,

command injection3, reflected XSS4, and path traversal5.

Code injection occurs when user input is evaluated as code without proper sanitization, leading

to arbitrary code execution. In CodeQL, a flow is vulnerable to code injection if the parameter is

treated as JavaScript code for evaluation, or passed to a framework that evaluate it as an expression.

As an example, the parameter name of the function createDynamicClass6 is open to code injection,

as name is embedded directly into JavaScript code.

1https://codeql.github.com/
2https://github.com/github/codeql/blob/main/javascript/ql/src/Security/CWE-094/CodeInjection.ql
3https://github.com/github/codeql/blob/main/javascript/ql/src/Security/CWE-078/CommandInjection.

ql
4https://github.com/github/codeql/blob/main/javascript/ql/src/Security/CWE-079/ReflectedXss.ql
5https://github.com/github/codeql/blob/main/javascript/ql/src/Security/CWE-022/TaintedPath.ql
6https://github.com/deepkit/deepkit-framework/blob/v1.0.1-alpha.65/packages/core/src/core.ts#

L685

5

https://codeql.github.com/
https://github.com/github/codeql/blob/main/javascript/ql/src/Security/CWE-094/CodeInjection.ql
https://github.com/github/codeql/blob/main/javascript/ql/src/Security/CWE-078/CommandInjection.ql
https://github.com/github/codeql/blob/main/javascript/ql/src/Security/CWE-078/CommandInjection.ql
https://github.com/github/codeql/blob/main/javascript/ql/src/Security/CWE-079/ReflectedXss.ql
https://github.com/github/codeql/blob/main/javascript/ql/src/Security/CWE-022/TaintedPath.ql
https://github.com/deepkit/deepkit-framework/blob/v1.0.1-alpha.65/packages/core/src/core.ts%23L685
https://github.com/deepkit/deepkit-framework/blob/v1.0.1-alpha.65/packages/core/src/core.ts%23L685
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Command injection occurs when user input is passed to a command for execution without

proper sanitization, leading to arbitrary command execution. In CodeQL, a flow is vulnerable to

command injection if the parameter is directly passed to a library routine that executes a command,

such as require('child_process').exec. The parameter pid of the “ps” package mentioned in

the introduction is an example of such vulnerabilities.

Reflected XSS occurs when a vulnerable web application returns malicious code provided by

the attacker that execute in the client’s browser. Reflected cross-site scripting (XSS) specifically

refers to the type of XSS attack where the malicious code comes from the current HTTP request.

In CodeQL, a flow is vulnerable to reflected XSS when user input are directly written to an HTTP

response without proper sanitization. For instance, the parameter title of the function plot7 is

open to reflected XSS attack, as title is unsafely embedded in an HTTP response.

Path traversal occurs when data used for file path construction is uncontrolled, allowing the

attacker to access unexpected resource. The CodeQL query checks whether the input to file system

API calls (such as fs.readFileSync) are properly sanitized. As an example, the parameter key

of the functions get and set8 is vulnerable to path traversal. As key is unconstrained, it could

traverse out of the cache directory and gains access to unexpected resources.

Beside the four mentioned sinks, we also extract flows where the parameter does not flow into

any sink. In this case, we say that the flow has a None-sink.

2.2.2 Logging Flows

In addition, we also use a CodeQL query to extract logging flows9. This query extracts all variables

that flow into a logging statement. This query then uses regular expressions to additionally flag

likely sensitive flows, whose parameter names match the regular expressions.

2.3 Machine Learning

To reason about the identifier names, we have to employ machine learning techniques. Machine

learning algorithms build a model based on training data to make prediction on previously unseen

data. It has shown promising result in various fields, including natural language processing [7, 13]

(NLP). Our problem belongs to the NLP field.

2.3.1 Supervised vs Unsupervised Learning

Machine learning algorithms can be classified into supervised learning and unsupervised learning.

In supervised learning, labels are required for each data point, and the model learns to map the

input features to a label. In unsupervised learning, labels are not required, and the model automat-

ically learns the pattern in the dataset. Our approach includes both: Sink Prediction and Binary

Classification are supervised learning, while Novelty Detection is unsupervised learning.

7https://github.com/epispot/EpiJS/pull/191
8https://github.com/faastjs/faast.js/pull/930
9https://github.com/github/codeql/blob/main/javascript/ql/src/Security/CWE-312/CleartextLogging.

ql

https://github.com/epispot/EpiJS/pull/191
https://github.com/faastjs/faast.js/pull/930
https://github.com/github/codeql/blob/main/javascript/ql/src/Security/CWE-312/CleartextLogging.ql
https://github.com/github/codeql/blob/main/javascript/ql/src/Security/CWE-312/CleartextLogging.ql


2. Background 7

2.3.2 Neural Network

Neural networks are a subset of machine learning methods, which are inspired by biological neurons.

A neural network is separated into di↵erent layers, each of which has many neurons. Each neuron

computes a signal and passes it to the next layer. The signal is computed by a non-linear function,

based on the input, a weight vector, and a bias term. The neural network learns by updating the

weight vector and bias via the backpropagation algorithm. In our approach, we use a feedforward

network [36] and Long Short-Term Memory (LSTM) network [18]. The main di↵erence between

feedforward network and LSTM is that in feedforward network, information only flows in one

direction, whereas LSTM uses internal states to “memorize” previously processed information in

the same sequence, making it suitable to process sequential data. In the Sink Prediction and Binary

Classification model, we use a LSTM network to process the parameter documentation, then we

use a feedforward network to learn the label based on all the input features.

2.3.3 One-class Support Vector Machine

For the Novelty Detection model, we use a One-class Support Vector Machine (OC-SVM) [37].

OC-SVM is based on Support Vector Machine (SVM), and is built for novelty detection (i.e., one-

class classification). It is an unsupervised algorithm where unlabeled data are used as training data

to learns a decision function, which is used to classify new unseen data as similar or dissimilar to

the training data. The key idea of OC-SVM is that, unlike traditional SVM classifier which finds

and maximizes the margin between the support vectors of di↵erent classes, OC-SVM separates the

training data from the origin in the feature space with hyperplane. For more details, please consult

the original paper [37].

2.3.4 Few-shot Learning

Few-shot learning models are models that perform well by just learning from a few examples.

In particular, few-shot refers to having more than one example. Examples of few-shot learning

models include large language models (LLMs). For example, the GPT-3 paper is titled “Language

Models are Few-Shot Learners” [7], and it is shown that the scaling up in LLMs greatly improves

task-agnostic few-shot performance. As another example, GitHub Copilot 10 is based on a LLM

trained on code called Codex [9]. Developers can query Copilot via a prompt to generate code

or code documentation. One way to utilize few-shot learning in LLMs is prompt engineering.

Prompt engineering is about using examples in the prompt to guide a LLM to output a correct

prediction. For instance, guiding a LLM to perform question and answering can be done via

providing examples in the prompt 11. Through prompt engineering, our Codex method queries the

OpenAI Codex language model to predict if a flow is unexpected.

10https://copilot.github.com/
11https://beta.openai.com/playground/p/default-qa

https://copilot.github.com/
https://beta.openai.com/playground/p/default-qa




3 Approach

3.1 Problem Statement

Running the CodeQL mining analysis of Flu↵y (explained in Section 2.2) yields us a set of poten-

tially problematic flows F , which is precisely specified but overapproximate, computed purely based

on code structure. Our goal is to find U , a set of imprecisely specified flows that are unexpected to

the client, such that we can determine the subset F \U . Whether a flow is unexpected depends on

the context and the interpretation of the client, thus it is fuzzy by nature. Therefore, the approach

to find unexpected flows should be able to generalize in di↵erent contexts and understand the inter-

pretation of the client. In this thesis, we focus on two kinds of flows, each with a di↵erent context:

param-sink flows and logging flows. Figure 3.1 shows a high-level overview of our approach.

3.1.1 Unexpected Param-sink Flows

For param-sink flows, the mining analysis gives us an analysis of library code in isolation in the

form of parameter-sink flows. However, assuming all parameters in the library receive unsanitised

data is not reasonable and gives us an unmanageably large number of results. So we need to make

reasonable worst-case assumption about untrusted data being passed in by non-malicious clients.

A reasonable worst-case assumption is to ask whether a JavaScript programmer would expect

data passed into p to flow into a sink of kind s. To understand what is “expected”, we can ask the

following question: When the programmer looks at the parameter name and context of a flow, do

they expect it to flow into its sink? If the answer is yes, then this flow is expected, and vice versa.

For example, while it is expected that the parameter cmd of the function execCommand is executed

as a command1, it is unexpected that the parameter value of the function staticSetConfig flows

into the command injection sink2. We consider this a reasonable worst-case assumption, because if

a flow is expected, then we can assume that the clients would not pass untrusted data to it, since

the potential vulnerability is expected.

In essence, applying a reasonable worst-case assumption help us filter false positives (i.e., the

expected flows) in the flows extracted by our mining analysis. Thus, given these parameter-sink

flows extracted by CodeQL, we would like to detect those that are unexpected to a JavaScript

programmer.

1https://github.com/AxelDeneu/hey/blob/master/lib/index.js#L13
2https://github.com/AKASHAorg/ipfs-connector/blob/master/src/IpfsConnector.ts#L164

9

https://github.com/AxelDeneu/hey/blob/master/lib/index.js%23L13
https://github.com/AKASHAorg/ipfs-connector/blob/master/src/IpfsConnector.ts%23L164
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3.1.2 Unexpected Logging Flows

For logging flows, the mining analysis gives us all variables that flow into a logging sink. In this

case, we consider “unexpected” flow to be a flow where the source contains some sensitive data and

is exposed due to flowing into a clear-text logging sink. To determine whether this variable contains

sensitive data, one possible way is to look at the identifier names, assuming the library developer

names the variable correctly. However, this could be challenging as there are subtle di↵erences

between similar names. For example, while USER_ADMIN_PASSWORD3 and forgotPasswordUrl4

both contain the word “password”, only USER_ADMIN_PASSWORD likely exposes sensitive data.

Figure 3.1: Overview of our approach.

FRXU ML meWhRdV

Train

Machine learning
model

Training data
(labelled flows)

Pre-trained model of
code

Traditional taint
anal\sis

Source-to-sink  
flows

DevelopersUne[pected flows

DiscardE[pected flows

3.2 Main Challenges

How can we detect unexpected flows? As a first step, we can consider a näıve method: using

regular expressions. We can ask JavaScript security experts to come up with a list of expected or

unexpected names, then simply search the identifiers in the code base using regex. As a concrete

example, the CodeQL query UnsafeShellCommandConstruction
5 first detects tainted flow from

parameter to shell command execution, then uses regular expressions to exclude parameters whose

name suggests they are meant to be a command. Nonetheless, this approach is far from perfect and

3https://lgtm.com/projects/g/JuZiSang/blog/snapshot/ed71c667c2a1084e06ff1741cf173c76a3394ccf/
files/server/src/main.ts?sort=name&dir=ASC&mode=heatmap#xbce1407e3058eee6:1

4https://lgtm.com/projects/g/ibm-cloud-security/appid-serversdk-nodejs/snapshot/
f5229c2ee55d7e0b61177777c076505b03241036/files/lib/strategies/webapp-strategy.js#x17b1c3315fa08247:
1

5https://github.com/github/codeql/blob/main/javascript/ql/src/Security/CWE-078/
UnsafeShellCommandConstruction.ql.

https://lgtm.com/projects/g/JuZiSang/blog/snapshot/ed71c667c2a1084e06ff1741cf173c76a3394ccf/files/server/src/main.ts?sort=name&dir=ASC&mode=heatmap%23xbce1407e3058eee6:1
https://lgtm.com/projects/g/JuZiSang/blog/snapshot/ed71c667c2a1084e06ff1741cf173c76a3394ccf/files/server/src/main.ts?sort=name&dir=ASC&mode=heatmap%23xbce1407e3058eee6:1
https://lgtm.com/projects/g/ibm-cloud-security/appid-serversdk-nodejs/snapshot/f5229c2ee55d7e0b61177777c076505b03241036/files/lib/strategies/webapp-strategy.js%23x17b1c3315fa08247:1
https://lgtm.com/projects/g/ibm-cloud-security/appid-serversdk-nodejs/snapshot/f5229c2ee55d7e0b61177777c076505b03241036/files/lib/strategies/webapp-strategy.js%23x17b1c3315fa08247:1
https://lgtm.com/projects/g/ibm-cloud-security/appid-serversdk-nodejs/snapshot/f5229c2ee55d7e0b61177777c076505b03241036/files/lib/strategies/webapp-strategy.js%23x17b1c3315fa08247:1
https://github.com/github/codeql/blob/main/javascript/ql/src/Security/CWE-078/UnsafeShellCommandConstruction.ql
https://github.com/github/codeql/blob/main/javascript/ql/src/Security/CWE-078/UnsafeShellCommandConstruction.ql


3. Approach 11

cannot possibly capture every unexpected names. A more general approach is to train a machine

learning model that, given a dataset of flows, learns what names are unexpected. However, doing

so comes with certain challenges.

Firstly, the model has to predict “unexpected”, which is only interpretable by human. As men-

tioned in the last section, whether a flow is unexpected depends on what a programmer thinks

about the parameter names and context. So it is not possible to use handwritten rules to automat-

ically classify which flows are unexpected. Thus, manual labelling is required. However, labelling

would require human experts which are familiar with both JavaScript and common security vulner-

abilities. Therefore, we should propose an approach that requires minimal human e↵orts. Another

challenge to this is to find a consensus on what is considered unexpected, as there are no concrete

rules that can determine such a thing.

Secondly, we need an e↵ective representation of identifier names. Our model relies on the

ability to reason about the relationships of identifier names, i.e., distinguishing between similar

and dissimilar names. There are several challenges related to it. Firstly, the relationship should be

expressed in the realm of software engineering. As an example, Levenshtein distance can be used

to measure the edit distance between two names. However, such näıve method does not adequately

capture the meaning of names, for instance, while ”folder” and ”directory” shares the similar

meaning in the realm of software engineering, it has a high Levenshtein distance of eight. Secondly,

the embeddings should preserve the order of the names, such that we could distinguish between

”array of maps” from ”map of arrays”. Thirdly, identifier names could have any combination of

words, meaning it is susceptible to out-of-vocabulary (OOV) problem, where the embeddings cannot

store all possible names.

Thirdly, for each sink, we have di↵erent data distribution. In reality, not all queries have the

same level of precision. For some sinks, the majority of the flows might be unexpected. However,

for some other sinks, unexpected flows might instead be the anomalies. Using anomaly detection

with unsupervised clustering to detect unexpected flows seems sensible, but it will not work if the

majority of flows in the sink are unexpected. Therefore, to properly generalize, we need a model

that can handle both cases.

3.3 Learning-based Unusual Flows Detection

For each flow extracted by our mining analysis, we obtain the associated metadata, such as package

name, function name, and parameter documentation (i.e., JSDoc @param tag 6). We extract these

associated metadata because they give programmers the context of the library, i.e., a programmer

should be able to understand what this API does and how the parameter is used by reading these

metadata. We do not include a lot of the details, as we want to keep the metadata short and

precise. Since in real life, developers likely will not read through a lot of documentation or code

before calling the function, and documentation in longer form could be noisy (e.g., README file).

Note that we do not include the JavaScript code of the API, as the implementation (except for the

fact it flows to a sink) is irrelevant in regard to flow being expected or not. The parameter name

6https://jsdoc.app/tags-param.html
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and metadata should su�ciently convey the intention of the API, otherwise, this flow should also

be flagged.

Formally, we define a flow as a tuple:

Definition 1 (Flow). A flow is a tuple (p, pkg, f, d, s), where p is the parameter name, pkg is the

package name, f is the function name, d is the parameter documentation, and s is the sink p flows

into.

We develop four models aided by machine learning to detect unexpected flows from our dataset.

The four models di↵er by the amount of manual e↵orts required.

All the models utilize the VarCLR [10] encoder to encode the variable names and function

names in our flows. VarCLR helps address the challenge of obtaining an e↵ective representation of

identifier names. VarCLR is an encoder trained with contrastive learning, using a renaming dataset

mined from GitHub commits. In essence, VarCLR (i) provides an embedding that can reason about

the relationship of names in the realm of software engineering, (ii) processes the names as a list of

tokens instead of a single string, and (iii) uses Byte-Pair Encoding (BPE) to handle OOV problem.

3.3.1 Method 1: Sink Prediction

The first model can be trained automatically without manual labelling. We train a model which

takes p, f , and d of a flow as input and predict the sink it flows to. The model classifies a flow as

unexpected if the probability of it flowing into its sink s is very low. In this model, we want the

model to learn from the dataset to determine the actual sink the flow should flow to. In particular,

we are interested in learning from the large set of None-flows we have in the dataset, as these are

names that should not flow into any sink.

The model is a multi-class feed-forward network (see Figure 3.2 for illustration). We use VarCLR

embeddings for p and f (i.e., p and f are encoded by the VarCLR encoder). For d, we use another

randomly initialized embedding and a Bi-LSTM layer to process it. We then concatenate the

embeddings of p, f , and d together to pass through a hidden layer. Finally, the hidden layer output

will be fed into a softmax output layer to output the probabilities of the flow flowing into each

sink. For param-sink flows, we use weighted loss function to tackle the imbalanced dataset problem,

since most of the flows has a None-sink. For logging flows, we predict the flow to either flow into a

logging sink or a None-sink, where flowing into logging sink means that it is likely insensitive data

(and thus unproblematic) and flowing into None-sink means that it is likely sensitive data (and

thus problematic).

Note that this approach is fully automatic in the sense that training this model involves no

manually labeled data: p, f , d, and s are automatically extracted via CodeQL queries.

3.3.2 Method 2: Novelty Detection

The second model is semi-automatic: users provide parameter and function names as examples (seed

names) to guide our model. Our model compares a flow with these seed names via a similarity

function. Based on the similarity score, the model will classify them as unexpected.
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Figure 3.2: Neural network architecture for method 1: sink prediction.
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In this approach, we formulate our task as a novelty detection problem [19]. While other

approaches use no labels (unsupervised learning) or data labelled as normal or abnormal (supervised

learning), novelty detection model only normality, i.e., it only requires pre-classified normal data.

Novelty detection defines a boundary of normality, where if a data point lies outside the boundary,

it is considered a novelty. In comparison, the approach that learns from both normal and abnormal

data would only work if abnormal data can generalize well. But for novelty detection, as long as

the abnormal data is far from the normality boundary, it can be detected.

We treat the seed names as normal instances. Thus, our dataset extracted by CodeQL queries

are novelties to be classified. Note that the anomalies do not have to be a minority in the dataset

for this approach to work.

We fit a One-class Support Vector Machine (OC-SVM) with the user-provided seed names as

the training data. This help us construct a soft boundary which we can use to detect names that
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are unexpected. OC-SVM is suitable for novelty detection because it is sensitive to outliers and

can be trained with only normal (seed) examples. Given these normal examples, OC-SVM learns a

decision boundary for the seed names. We compute the signed distance to this decision boundary

of OC-SVM as thresholds for the classification.

For each sink, we train the OC-SVM using the VarCLR embeddings of p and f of the provided

expected names of this sink. In other words, flows with a None-sink are discarded. An illustration

of this method can be seen in Figure 3.3. For param-sink flows, we use “expected” names as our

seed names, i.e., a flow is considered unexpected if the parameter name is dissimilar to the seed

names provided. For logging flows, we use “unexpected” names as our seed names, i.e., a flow is

considered sensitive if the parameter name is similar to the seed names provided.

This model is semi-automatic as the developers need to manually provide a few (less than ten)

expected names as examples.

Figure 3.3: Machine learning model for method 2: novelty detection.
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3.3.3 Method 3: Binary Prediction

The third model requires the most manual e↵orts: we train our model using the ground truth

dataset that we have manually labeled. We directly predict whether a flow is unexpected using our

manual labels as the training targets under supervised learning. In this method, we use a straight

forward approach to explore whether it can achieve a better performance than the Sink Prediction

model, by directly using hundreds of labelled examples as training data.

The model is the same as the model in 3.3.1, but with a di↵erent output layer. Instead of

predicting which sink a flow belongs to, the model is predicting directly whether a flow is indeed

unexpected or not. However, unlike the model in 3.3.1, we train one model per each sink using

the labelled ground truth of the corresponding sink. In other words, flows with a None-sink are

discarded.

This model demands more manual labeling than the model in 3.3.2, which could be challenging

in real-life, as it expects significantly more e↵orts from domain experts.
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Figure 3.4: Neural network architecture for method 3: binary prediction. Notice that sink is no
longer an input to the model, and the output is directly the label.
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3.3.4 Method 4: Codex

The fourth model is few-shot learning using Codex [9]. Codex is a GPT language model fine-tuned

on source code mined from GitHub. It is the model that powers GitHub Copilot 7. The goal of

Codex is to synthesis programs, and it is shown to perform better than the original GPT model in

this task.

Using Codex allows us to leverage source code-based large language model as Codex is trained on

hundreds of millions of lines of code, as such, we expect Codex to have an e↵ective representation of

identifier names and documentation in the latent space. Although our downstream task is di↵erent

from the original task (classification rather than token generation), Codex can understand what to

do if a few examples are given in the prompt. The fact that the base GPT model has been trained

with classification tasks before also help Codex understand the classification task.

We query the OpenAI Codex model by sending a prompt to it. For each flow, we construct one

prompt with ten examples (randomly selected from our manually labeled ground truth) for Codex

to learn from. Then Codex will output a sequence of tokens according to the prompt. The output

generated by Codex is the label prediction. A high-level overview can be seen in Figure 3.5.

7https://copilot.github.com/
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Figure 3.5: High-level overview of method 4: Codex.
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In our experiment, we give Codex two types of prompts, one for param-sink flows and one for

logging flows. Both prompt are in code-form, a structure that is familiar to the Codex model.

Given a param-sink flow, we construct a function the with empty implementation using p, f ,

and d. Then we add a comment below that explains whether p is expected to flow into s, i.e., it

directly predicts whether this flow is unexpected or not. See Figure 3.6 for a concrete example.

Given a logging flow, we construct a stub function calling console.log on its parameter p.

Then we add a comment below that explains p is being logged in clear-text by the stub function

and states whether it exposes sensitive data, i.e., it directly predicts whether it exposes sensitive

data or not. See Figure 3.7 for a concrete example.
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Figure 3.6: An example of param-sink flow prompt. For brevity, only the first two examples are
shown. Notice that the last line is unfinished, as this is where Codex makes the prediction.

1 /**
2 * @param path - The path to check for existence *
3 */
4 function exists(path){
5 }
6 // In the above function "exists", the parameter "path" flows into

TaintedPath sink (uncontrolled data used in path expression), which is
expected.

7 /**
8 * @param arr -
9 */

10 function asyncForEach(arr){
11 }
12 // In the above function "asyncForEach", the parameter "arr" flows into

TaintedPath sink (uncontrolled data used in path expression), which is
expected.

13

14 ......
15

16 /**
17 * @param arch -
18 */
19 function cacheDir(arch){
20 }
21 // In the above function "cacheDir", the parameter "arch" flows into

TaintedPath sink (uncontrolled data used in path expression), which is

Figure 3.7: An example of logging flow prompt. For brevity, only the first two examples are shown.
Notice that the last line is unfinished, as this is where Codex makes the prediction.

1 function f(passwordChanged) {
2 console.log(passwordChanged);
3 }
4 // In the above function f, the parameter "passwordChanged" is being logged

, which likely exposes insensitive data.
5

6 function f(DEFAULT_ADMIN_PASSWORD) {
7 console.log(DEFAULT_ADMIN_PASSWORD);
8 }
9 // In the above function f, the parameter "DEFAULT_ADMIN_PASSWORD" is being

logged , which likely exposes sensitive data.
10

11 ......
12

13 function f(torHashedPassword) {
14 console.log(torHashedPassword);
15 }
16 // In the above function f, the parameter "torHashedPassword" is being

logged , which likely exposes





4 Evaluation

We evaluate all four models mentioned in our approach, focusing on the following research questions:

• RQ1: How e↵ective is Flu↵y at flagging vulnerabilities?

• RQ2: How e↵ective is Flu↵y in a real-life scenario?

• RQ3: What is the trade-o↵ between human e↵orts and model performance?

• RQ4: How reliable are the ground truth labels?

• RQ5: How scalable are the neural models of Flu↵y?

4.1 Experimental Setup

4.1.1 Model Hyperparameters

The input dimension of each method except Codex is 768, which is the output dimension of VarCLR

encoder.

In the Sink Prediction and Binary Classification methods, the hidden layer dimensions are 500

and 250 respectively. Adam optimizer is used with a learning rate of 0.001. For the Sink Prediction

method, the training batch size is 256, and we stop the training early when validation loss does

not decrease in two epochs. We reserve 10% of the training data and use it as the validation set.

For the Binary Classification method, the training batch size is 32, and the model early stops when

validation loss does not decrease in 50 epochs.

We use Radial Basis Function (RBF) as kernel for the OC-SVM in the Novelty Detection

method. The hyperparameters gamma and nu are 0.05 and 0.01 respectively.

For the Codex language model, we set the temperature, frequency penalty, and presence penalty

to zero.

4.1.2 Dataset Preparation

We have two types of flows for evaluating Flu↵y: param-sink flows and logging flows.

4.1.2.1 Param-Sink flows

Param-sink flows are flows where the parameter is from a public API on npm and flows into a

vulnerable sink (discussed in Section 2.2). We filter flows where the parameter name has less than

19
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Table 4.1: Ground truth labels.

Random Set Balanced Set

Sinks Unexpected (Total) Unexpected (Total)

Code injection 16 (27) 113 (340)
Command injection 15 (29) 144 (168)
Reflected XSS 19 (28) 29 (46)
Path traversal 8 (188) 105 (504)

Unexpected (Total)

Logging 245 (340)

two characters, as we consider having only one character very vague and does not show enough

information to developers. After filtering, there are 3,228,034 flows with a None-sink, 1,123 code

injection flows, 15,135 path traversal flows, 1,498 command injection flows, and 70 reflected XSS

flows in our dataset.

For evaluation, the authors have manually labeled two sets of ground truth. The first set is

the random set, which consists of flows randomly selected from the param-sink flows extracted by

our CodeQL queries. The second set is the balanced set, which is a union of (i) the random set,

(ii) randomly selected flows that are classified as unexpected by the frequency-based and an early

version of the Sink Prediction classifier, and (iii) flows previously found to be unexpected. The

reason we use two datasets is, while the random set is unbiased, randomly and directly selecting

from our flow dataset would not give us many unexpected flows if the majority of the flows in the

sink are false positives. Therefore, we also need the balanced set for evaluation as it contains more

unexpected flows. We can see the labeled ground truth for each sink and the number of unexpected

flows in the ground truth in Table 4.1. As shown in the table, our manual labeling reveals that

simply flagging all flows as unexpected would result in many false positives, demonstrating the

importance of our approach.

4.1.2.2 Logging Flows

When a parameter is being logged (for example, console.log(x)), we say that it flows into a

logging sink and thus is a logging flow (discussed in Section 2.2). We record names of all variables

that flow into the logging sink. Unlike param-sink flows, we only have one sink (the logging sink),

we do not care if the source is from a public API on npm packages, and we do not record other

metadata in this case. In total, we have 4,535,851 logging flows.

We compare our approach against a CodeQL query that uses regular expressions to flag likely

problematic flows. This query first extracts the logging flows, then uses a “password-related” reg-

ular expression1 to obtain parameter names that are likely password-related, such as authkey and

password. Finally, the query uses a “likely insensitive” regular expression2 to filter out names that

1https://github.com/github/codeql/blob/499f20f6e8a3a91e394c30e05a340fe10b9ecec7/javascript/ql/
lib/semmle/javascript/security/internal/SensitiveDataHeuristics.qll#L69

2https://github.com/github/codeql/blob/499f20f6e8a3a91e394c30e05a340fe10b9ecec7/javascript/ql/
lib/semmle/javascript/security/internal/SensitiveDataHeuristics.qll#L104

https://github.com/github/codeql/blob/499f20f6e8a3a91e394c30e05a340fe10b9ecec7/javascript/ql/lib/semmle/javascript/security/internal/SensitiveDataHeuristics.qll%23L69
https://github.com/github/codeql/blob/499f20f6e8a3a91e394c30e05a340fe10b9ecec7/javascript/ql/lib/semmle/javascript/security/internal/SensitiveDataHeuristics.qll%23L69
https://github.com/github/codeql/blob/499f20f6e8a3a91e394c30e05a340fe10b9ecec7/javascript/ql/lib/semmle/javascript/security/internal/SensitiveDataHeuristics.qll%23L104
https://github.com/github/codeql/blob/499f20f6e8a3a91e394c30e05a340fe10b9ecec7/javascript/ql/lib/semmle/javascript/security/internal/SensitiveDataHeuristics.qll%23L104
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Table 4.2: Summary of the di↵erence between each method.

Methods Training data Number of
models

Need a
threshold?

How to compute
F1-score?

Flu↵y
Sink Prediction

All param-sink flows One Yes Find the best F1-score
via plotting

Precision-Recall curve
Flu↵y
Novelty Detection

Seed names One for each
sink

Yes Find the best F1-score
via plotting

Precision-Recall curve
Flu↵y
Binary Classification

balanced set One for each
sink

No Average the F1-score
from K-Fold

cross-validation
Flu↵y
Codex

balanced set One (from
OpenAI)

No Compute F1-score
directly from output

Frequency-based All param-sink flows One Yes Find the best F1-score
via plotting

Precision-Recall curve

match the password-related regular expression but are likely insensitive, such as encryptedPassword.

This query flagged 6,044 flows from all logging flows as problematic.

For ground truth labelling, we have randomly selected and labelled 300 unique names from

those 6,044 flows. To include cases that are not considered by the query, we also label all (40)

unique names match the “password-related” regular expression and the “likely insensitive” regular

expression.

4.1.2.3 Seed Names for OC-SVM

In the Novelty Detection method, a list of seed names have to be provided for each sink. Based on

our background knowledge on each sink and vulnerability, we come up with a few names. For all

sinks except the logging sink, the seed names are the expected names of the sink. For the logging

sink, the seed names are the unexpected names. We list the seed names for each sink here:

• Code injection: eval, execute, compile, render, callback, function, and fn.

• Command injection: execute,command.

• Reflected XSS: send,content.

• Path traversal: file, directory, path, cwd, source, and input.

• Logging: authkey, password, passcode, and passphrase.

4.2 RQ1: E↵ectiveness of Flu↵y

In this section, we explain the evaluation process for each method and discuss the results. We

evaluate our approach by investigating how well it can classify unexpected flows. We use F1-
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score as metric to compare the performance of di↵erent methods. See Table 4.2 for a summary

of di↵erence between di↵erent methods. All methods that require a threshold are evaluated by

plotting the precision-recall curve (PR curve) on the output. The PR curve shows the relationship

between precision and recall for di↵erent thresholds. We then record the best F-1 score obtainable

in the PR curve.

For Flu↵y Sink Prediction, we train the model with all flows that have not been labelled, i.e.,

flows that are not in the balanced set. Since the model outputs probabilities, a threshold is required

to make a prediction.

For Flu↵y Novelty Detection, we train a OC-SVM for each sink (i.e., four sinks for param-

sink flows, and only one sink for logging flows). Each OC-SVM is trained with the seeds of the

corresponding sink. The model outputs a score for each flow, which represents the distance between

the flow and the boundary of the OC-SVM. This model requires a threshold to make a prediction

based on the output scores.

For Flu↵y Binary Classification, we train a model for each sink. Each model uses the balanced

set as the training set (irrelevant flows that belong to a di↵erent sink are filtered). We use K-Fold

cross validation for evaluation, with K set to five. This model directly classifies whether the flow is

expected, a threshold is not needed. We record the averaged F1-score across the five folds for each

model.

For Flu↵y Codex, for each flow to evaluate, we randomly draw ten examples of the same sink

from the balanced set to put in the prompt. As this model directly classifies whether the flow is

expected, we simply compute the F1-score based on the predictions.

For each kind of flows (param-sink flows and logging flows), we have a non-neural baseline for

comparison. For param-sink flows, we use Frequency Counting as our baseline. The Frequency

Counting method is a näıve method that simply computes how frequently a sink appears for a

given parameter name. For each flow with the same parameter name, we count how often it flows

to di↵erent sinks. This is also a threshold-based method, as it simply outputs the statistic of how

often the parameter flows into a certain sink. For logging flows, we use the aforementioned CodeQL

query 4.1.2.2 as our baseline.

4.2.1 Param-sink Flows Evaluation

For param-sink flows, all the methods are evaluated on the random set and the balanced set.

The result of random set is shown in Table 4.3, with PR curve in Figure 4.1 and ROC curve

in Figure 4.2. We can observe that all approaches of Flu↵y outperform the Frequency Counting

baseline for all sinks. Out of all the methods, the Novelty Detection method performs the best in

all sinks, followed by the Binary Classification method. The methods perform especially well on

the command injection and reflected XSS sinks (0.9 to 1.0 F1-Score), while the code injection sink

has around 0.8 F1-score. However, the path traversal sink has a lower and fluctuating F1-score:

0.45 at best. This is likely due to it having very few (8) unexpected flows in the random set.
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Table 4.3: E↵ectiveness of Flu↵y on the random set of param-sink flows.

Random Set

Code injection Command injection Reflected XSS Path traversal

Approach Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

Sink Pred. 0.78 0.88 0.82 1.00 1.00 1.00 0.68 1.00 0.81 0.18 0.75 0.29
Novelty Det. 0.82 0.88 0.85 1.00 1.00 1.00 0.86 1.00 0.93 0.36 0.63 0.45
Binary Class. 0.83 0.82 0.81 1.00 1.00 1.00 0.95 0.90 0.91 0.33 0.30 0.31
Codex 0.65 0.69 0.67 0.63 1.00 0.77 0.94 0.89 0.92 0.08 0.13 0.10

Freq. 0.59 1.00 0.74 0.91 0.67 0.77 0.68 1.00 0.81 0.22 0.25 0.24

Figure 4.1: PR curves on the random set for Sink Prediction, Novelty Detection, and Frequency
Counting (left to right).

Figure 4.2: ROC curves on the random set for Sink Prediction, Novelty Detection, and Frequency
Counting (left to right).
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Table 4.4: E↵ectiveness of Flu↵y on the balanced set of param-sink flows.

Balanced Set

Code injection Command injection Reflected XSS Path traversal

Approach Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

Sink Pred. 0.36 0.98 0.53 0.94 0.99 0.97 0.63 1.00 0.77 0.53 0.64 0.58
Novelty Det. 0.74 0.88 0.80 0.92 0.97 0.95 0.88 1.00 0.94 0.50 0.80 0.62
Binary Class. 0.90 0.88 0.88 0.97 0.97 0.97 0.96 0.94 0.94 0.81 0.73 0.76
Codex 0.76 0.76 0.76 0.90 0.97 0.94 0.90 0.93 0.92 0.62 0.42 0.50

Freq. 0.33 1.00 0.50 0.93 0.92 0.93 0.63 1.00 0.77 0.42 0.63 0.51

The result of balanced set is shown in Table 4.4, with PR curve in Figure 4.3 and ROC curve

in Figure 4.4. In this setup, the Binary Classification method performs the best, surpassing the

Novelty Detection method significantly on the code injection and path traversal flows. This could

be due to the balanced set containing many more diverse names, and the Binary Classification

method have the advantage of learning from the dataset, while the Novelty Detection method

relies on the same seed names. For the path traversal sink, all approaches perform better in the

balanced set than in the random set, which is likely due to having many more (105) unexpected

cases in the balanced set. For command injection flows, we can see there is a performance boost

when using CodeQL queries alone and the frequency-based method. This is likely due to the

majority of command injection flows in the balanced set are unexpected, i.e., treating them all as

unexpected would still give a decent F1-score in this setup. Another interesting finding is that the

Sink Prediction method performs much worse on code injection flows in the balanced set than in

the random set, as the F1-score drops from 0.82 to 0.53. This is due to a decline in precision: while

it is able to capture most of the unexpected flows (108), it also includes many false positives (194).

The rest of the results are similar to random set.

Figure 4.3: PR curves on the balanced set for Sink Prediction, Novelty Detection, and Frequency
Counting (left to right).
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Figure 4.4: ROC curves on the balanced set for Sink Prediction, Novelty Detection, and Frequency
Counting (left to right).
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In summary, Flu↵y approaches prove to be a significant improvement over the non-neural

baseline of using a näıve statistical approach. The two best methods are the Novelty Detection

method and the Binary Classification method, while the Sink Prediction and the frequency-based

method do not work that well. Our interpretation is that how unlikely it is that a source flows to

a sink does not help understand how unexpected a flow is, and it requires some form of manual

labeling (e.g., providing seed names in Novelty Detection or labeling flows in Binary Classification)

to teach the model how to learn what an unexpected flow is. Additionally, the Codex method

does not perform as well as the others. We have two possible explanations for this: (i) Codex

heavily depends on the examples given in the prompt, for example, if most of the examples given

are expected, then Codex will only predict the flow to be expected, or (ii) Codex is not trained on

data related to this prediction task.

Path traversal flows are the hardest flows to classify for all the approaches. Upon manual

inspection, we discover that the expected names for path traversal are particularly diverse. These

expected names include, for example, file operands (such as move and rm), file extensions (such as

png and mp4), and other names that resemble a file (such as log and config). It is hard for the

models to learn all these files-related names, leading to a poorer performance. In comparison, for

other sinks, the expected names are not as diverse. For instance, for command injection, the flow

is only expected if the name something similar to execute,cmd.

4.2.2 Logging Flows Evaluation

Evaluating logging flows is slightly di↵erent from param-sink flows. First, it does not have a

frequency-based method: all flows belong to the same sink (the logging sink) in this case. Second,

for the Novelty Detection method, we detect unexpected flows using unexpected flows as seeds,

instead of detecting unexpected flows using expected flows as seeds. In other words, we are trying

to flag flows that are the similar to our seed names in this case.

The result is shown in Table 4.5, with PR curve in Figure 4.5 and ROC curve in Figure 4.6.

Overall, the Binary Classification method performs the best, followed by the Novelty Detection

method and Regular Expressions (CodeQL). Regular Expressions (CodeQL) gives the highest re-

call, while the Novelty Detection method and the Binary Classification method provide a better

precision. Looking at this result, one could argue that the regular expressions used in the CodeQL

query already provides a decent performance. However, we should keep in mind that writing such

sophisticated queries requires years of e↵orts and expert knowledge on program analysis and secu-

rity, whereas using our approach is simplistic and requires much less human e↵orts (in the case of

the Novelty Detection method).

Moreover, even seasoned developers would not be able to write a perfect query, and Flu↵y

can help with that: our approach is able to flag false negatives that CodeQL query never would

have flagged. As a concrete example, our approach is able to flag passcode as problematic, while

CodeQL query fails to do so. The parameter name passcode is filtered, due to a bug in the regular

expression, as confirmed by the developer3. This shows that our approach is able to not only filter

false positives from taint analysis, but also flag false negatives.

3https://github.com/github/codeql/issues/11148

https://github.com/github/codeql/issues/11148
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Table 4.5: E↵ectiveness of Flu↵y on the logging flows.

Logging Flows Dataset

Approach Precision Recall F1-Score

Sink Prediction 0.76 0.93 0.84
Novelty Detection 0.81 0.93 0.87
Binary Classification 0.90 0.94 0.92

Codex 0.78 0.96 0.86

Regexps 0.79 0.97 0.87

Figure 4.5: PR curves on the logging flows dataset for Sink Prediction, Novelty Detection, and
Frequency Counting (left to right).

Figure 4.6: ROC curves on the logging flows dataset for Sink Prediction, Novelty Detection, and
Frequency Counting (left to right).
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4.3 RQ2: Flu↵y in a real-life scenario

In this section, we evaluate how our model performs in a real-life scenario. We do that by running

our models on past known vulnerabilities and previously unknown vulnerabilities.

4.3.1 Flu↵y on Past Vulnerabilities

We evaluate our approach on SecBench.js [5], a benchmark suite of server-side JavaScript vulner-

abilities. We evaluate Flu↵y against three classes of vulnerabilities in SecBench.js: code injection,

command injection, and path traversal, of which there are 33, 101, and 1 vulnerabilities respectively.

Note that we only include flows where the source is a parameter of a public API.

In addition, we review all flows to see if they are indeed vulnerable. In total, there are 127

vulnerabilities that we consider unexpected. There are eight flows that we label as expected: one

code injection and seven command-injection vulnerabilities. For example, SecBench.js includes

CVE-2020-7636, where the parameter command of function execADBCommand of the npm package

adb-driver is vulnerable to command injection. However, we do not consider this an unexpected

(and thus vulnerable) flow, as it is clear from the context that this parameter is meant to be

executed as a command.

We use the same evaluation methods as shown in Section 4.2.1, with a slight di↵erence for the

threshold-based methods. For the threshold-based methods, we pick a default threshold to use,

which is the threshold that gives the best F-1 score in the balanced set in Section 4.2.1. We do this

for two reasons. Firstly, we want to see if the threshold we learned can generalize to a di↵erent

dataset. Secondly, finding the best threshold for evaluation via PR curve on such a skewed dataset

(i.e., most flows are unexpected) is not fair to the non-threshold-based models, as simply picking

a large threshold according to the PR curve and flagging all flows as unexpected would return a

high F-1 score. In addition, note that we use the frequency-based method as baseline in this case,

as these flows are not extracted by a CodeQL query.

We use recall to evaluate this dataset (Table 4.6), as the vulnerabilities here have already been

found, and we are interested in whether Flu↵y is able to flag them. In this setup, surprisingly, Sink

Prediction has the best recall in code injection, followed by Novelty Detection. This is because

the default threshold of Sink Prediction is set noticeably high, as shown in Table 4.4 where the

precision is low and recall is high in Sink Prediction for code injection flows. A high default thresh-

old is favorable to the SecBench.js dataset, where all but one code injection flows are unexpected.

Nonetheless, all of our approaches performs better than the näıve frequency-based method, demon-

strating the usefulness of our approach. Note that we omit the single path traversal vulnerability

in our evaluation, as it does not have a statistically significant sample size.

4.3.2 Flu↵y on Previously Unknown Vulnerabilities

In this section, we examine how e↵ective Flu↵y is for flagging vulnerabilities in the present day by

looking at projects hosted on GitHub.

We created eleven pull requests on GitHub to fix the vulnerabilities where the unexpected flows

are detected by Flu↵y. By the time of this writing, five of them have been merged by developers who
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Table 4.6: E↵ectiveness of Flu↵y on the SecBench.js dataset.

SecBench.js Dataset

Code injection Command injection

Approach Precision Recall F1 Precision Recall F1

Sink Pred. 0.97 0.88 0.92 1.00 0.90 0.95
Novelty Det. 0.96 0.75 0.84 0.99 0.98 0.98
Binary Class. 0.97 0.69 0.80 1.00 0.97 0.98
Codex 0.96 0.69 0.80 0.94 0.97 0.95

Freq. 0.94 0.47 0.63 1.00 0.65 0.79

were generally grateful about the changes. Five are still open without feedback from developers.

One pull request is closed by the developer, who provides an alternate fix for the vulnerability.

4.4 RQ3: Manual Labels Required for Flu↵y Binary Classification

From Table 4.3 and Table 4.4, we can observe that Binary Classification is one of the methods with

the best performance. However, training the Binary Classification model requires manual labelling

the dataset. In reality, we must consider the human e↵orts involved as they are scarce resources.

Therefore, we would like to know how many labels are needed to achieve a good performance for

the Binary Classification method.

In this experiment, we evaluate the Binary Classification method with di↵erent training set size

using the balanced set. We use the same test set (amount to 20% of the flows belonging to the same

sink) for all training set, i.e., we split train/test set as 80/20, 70/20, 60/20, etc.

The result of this experiment is displayed in Figure 4.7. It shows that for all sinks, the perfor-

mance of the Binary Classification method improves as the dataset size grows. The only exception

is command injection flows, where the model does not require many training examples to achieve

a high performance.

The important takeaway from this experiment is that, although more manual e↵orts are re-

quired, it is possible to improve the performance of our approach by increasing the training set

size. This provides an alternative when low-e↵ort approaches like the Novelty Detection method

does not achieve a desirable performance for a particular source or sink.

Comparing the Binary Classification method with 10% training data against the Novelty De-

tection method, we can see that the Novelty Detection method performs better, using even less

training data (i.e., the seed names provided in Table 4.1.2.3). Therefore, with the trade-o↵ between

human e↵orts and model performance in mind, we consider the Novelty Detection method the more

cost-e↵ective model.
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Figure 4.7: Training set size versus model performance.

4.5 RQ4: Ground Truth Reliability

The validity of our evaluation relies on the reliability of our ground truth labeling. In this section,

we explain how we verify the reliability of our ground truth via an inter-rater agreement survey.

4.5.1 Ground Truth Inter-rater Agreement Survey

The survey consists of ten code injection flows, five command injection flows, five reflected XSS

flows, and ten path traversal flows. Given the parameter name, function name, package name, sink,

package description, parameter documentation, and function documentation, the participant has to

determine for each flow whether the corresponding sink is expected. We invited four security and

program analysis experts on JavaScript at GitHub to participate. In addition, the authors have

also completed the survey, who are treated as another participant. Thus, we have five participants

in total for the survey.

We evaluate the ground truth labels using inter-rater agreement. Using Krippendor↵’s alpha

as our metric, our ground truth labels have a score of 0.74. It shows that our ground truth labels

are reliable as the experts by and large agree with the labels in our ground truth.
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4.6 RQ5: Flu↵y Neural Model Scalability

To verify that the neural component of Flu↵y can scale, we record the training time and evaluation

time on our server. For Binary Classification, our 5-fold cross validation takes less than 5 minutes

to train and around 1.5 seconds to evaluate each model. The Sink Prediction model takes one and

a half hour to train and around 20 seconds to evaluate. The Novelty Detection model takes less

than 3 seconds to train and less than 3 seconds to evaluate. For Codex, the model is accessed via a

rate-limited REST API, providing one completion in 1.8 seconds, on average. This indicates that,

except for Codex, the neural components of Flu↵y scale well, as training takes at most a couple of

hours, and the model can classify hundreds of flows within seconds. We conduct our experiments on

a server with 48 Intel Xeon CPU cores clocked at 2.2GHz, 250GB of RAM, and one NVIDIA Tesla

V100 GPU. The Binary Classification and Sink Prediction model use the GPU, whereas Novelty

Detection and Codex use the CPU.





5 Discussion

5.1 Threat to Validity

Firstly, in our experiments, we evaluate our approach on five kinds of vulnerabilities only. Although

the result is promising, we lack the empirical evidence that our approach generalizes well to other

types of vulnerabilities.

Secondly, the experiment is done with JavaScript only, so our approach might not generalize to

other programming languages.

Thirdly, since the ground truth labeling is done manually, it is prone to human errors. We have

asked external inspectors to help, although they generally agree with our judgement, only a small

subset of the data is verified.

Fourthly, the seed names used in Novelty Detection are selected manually by the authors, which

might be biased.

5.2 Limitation

We assume that the natural language information in code is correct, but that might not always be

true. For example, in the SecBench.js dataset, there is a code injection vulnerability with code as

parameter name and safe-eval as function name. Despite the names and documentation stating

that the code evaluation is safe, this is not the case. In these scenarios, our approach would assume

that the natural language information is correct and thus classify this flow as expected, missing the

vulnerability.

For the Novelty Detection method, users have to provide seed names for the OC-SVM, which

might be di�cult for some sinks if there is no clear definition of what names are expected. This

is demonstrated in the path traversal sink in our experiment, which has the lowest F1-score out of

all vulnerabilities.

33





6 Related Work

6.1 Neural Software Analysis

Neural software analysis [30] means applying machine learning techniques on source code. It be-

comes popular as machine learning is shown to excel in the field of natural language processing.

Neural software analysis has three main characteristics: (1) fuzziness of available information, (2)

lack of ”well-defined correctness criterion”, and (3) large amount of examples. Neural software

analysis covers a wide range of applications, including automated program repair [15, 25, 11, 4],

probabilistic type inference [31, 2, 26], and code completion [39, 9, 3, 22]. Our problem fits the

three characteristics of neural software analysis. Similar to most other approaches, we make use

of natural language info embedded in the source code. However, beyond extracting the source,

sink, and metadata via taint analysis, our work does not care about the code syntactic structure.

Deep learning-based vulnerability detection is a kind of neural software analysis in the security

field [16, 23]. However, the accuracy is shown to be lacking in real world situation [8].

6.2 Natural Language Information in Program Analysis

There are previous works that also utilize implicit information embedded in code [1, 17]. In par-

ticular, our work is related to name-based program analysis, a type of neural software analysis

that reasons about program via identifier names. Names are fuzzy by nature. As such, rule-based

analysis cannot easily capture the meaning of names. Instead, machine learning is applied. An

early adopter of name-based program analysis is DeepBugs [32], which trains a classifier to deter-

mine whether the code has bugs by looking at names. Nalin [28] finds name-value inconsistency

by looking at whether the parameter names actually match the values it stores via dynamic analy-

sis. Our approach di↵ers from these previous works, as it is the first to combine natural language

information with taint analysis.

6.3 Machine Learning-aided Static Analysis

Our work is related to machine learning-aided static analysis. Note that it is di↵erent from neural

software analysis, as it is not an end-to-end neural analyzer. Merlin [24] automatically infers

information flow specifications via probabilistic inference. Susi [33] and Seldon [12] automatically

learns a taint specification via machine learning. USpec [14] performs unsupervised learning of

API aliasing specifications. Our work is di↵erent as we focus on the natural language information
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along with the code, while the previous works mainly focus on syntactic and semantic aspects of the

code. One could also view our work as filtering warnings from static analysis [20]. As an example, a

transformer-based learning approach can be used to identify false positive bug warnings, improving

the precision of the static analyzer [21].

6.4 Word Embeddings

Word embeddings are used to represent text in machine learning models mathematically, usually

as a vector [34]. Ideally, word embeddings would group similar words close together in the vector

space, such that we can distinguish di↵erent words even as a vector. Common methods to train

such embeddings include FastText [6], ELMo [35], word2vec [27] and GloVe [29]. However, these

methods are meant for natural text. Our work targets variables identifiers used in programming,

which are di↵erent to natural text [40]. To this end, we use VarCLR embeddings [10], which is

specifically trained for identifiers used in programs. Specifically, our work is a downstream task of

VarCLR, specifically we target names that are in JavaScript and predict if they are unexpected in

di↵erent security-contexts.



7 Future Work

One problem in our work is the lack of data labels. We rely on manual labeling, which is prone to

human errors and not scalable. This could be improved by automatic label collection. A possible

way to do this is to record the parameter name and metadata when a vulnerability is recorded in

advisory or vulnerability databases, or we can simply crawl these databases.

An obvious extension to our approach is to extend to other programming languages and other

vulnerabilities. This should be possible as long as the names are in English, which is a natural

language and does not vary in di↵erent programming languages. Our embedding also normalizes

the names in source code, such that it can generalize to di↵erent coding conventions, e.g., using

underscore (min_length) is the same as using camel case (minLength). Our approach should be

able to extend to other vulnerabilities as well, as long as the natural language information is a

relevant part of the vulnerability. For example, natural language information is not relevant to the

JavaScript vulnerability “access to let-bound variable in temporal dead zone”1.

In our approach, we have not made use of some metadata, such as package description and

README file. This is because they might not always contain information that is helpful to

determining whether a flow (precisely, the parameter) is unexpected. In the worst case, they could

be noisy and worsen the model. In the future, we could retrieve these metadata as well, and

somehow filters the irrelevant noisy content. Note that this might be di�cult for the Novelty

Detection approach, as we have to come up with an “expected” documentations for these new

metadata.

1https://codeql.github.com/codeql-query-help/javascript/js-variable-use-in-temporal-dead-zone/
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8 Conclusion

To e↵ectively exploit the implicit information in code, we introduce a bimodal taint analysis tool,

Flu↵y. Flu↵y is a bi-modal taint analysis tool: the first approach to utilize identifier names through

machine learning and logic-based taint analysis to find unusual flows. The first modality is code:

Flu↵y uses a mining analysis implemented in CodeQL to find examples of flows from parameters to

vulnerable sinks. The second modality is natural language: Flu↵y uses a machine learning model

that, based on a corpus of such examples, learns how to distinguish unexpected flows from expected

flows using natural language information. We present four di↵erent models with di↵erent trade-

o↵s between the manual e↵orts required and accuracy. In our evaluation, Flu↵y achieves a high

F1-score on four common vulnerability types. We show empirical evidence that Flu↵y works in

practice: we apply Flu↵y on a dataset with 131 previously known vulnerabilities, of which Flu↵y

is able to flag 117. In addition, Flu↵y flags eleven previously unknown vulnerabilities in real life

projects, of which six have been confirmed by the developers.
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