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Kurzfassung

In dieser Arbeit wird die Entwicklung eines molekularen Kraftfeldes dargstellt, das einen
Anwendungsschwerpunkt auf der Berechnung von Phasengleichgewichten zulässt. Auf-
bauend auf dem ”Transferable Anisotropic Mie (TAMie)“ Kraftfeld von Hemmen et al.
[1, 6, 7] wird der Parametersatz des Kraftfeldes auf kleine zyklische Moleküle sowie po-
lare Stoffgruppen wie Ester und Ketone ausgeweitet. Es handelt sich um ein klassisches,
atomistisches Kraftfeld, bei dem jedoch Wasserstoffatome häufig effektiv mit benach-
barten größeren Atomen zusammen berücksichtigt werden. Die Kraftfeldparameter sind
dabei übertragbar, d.h. sie können innerhalb einer Stoffgruppe für alle Substanzen ver-
wendet werden. Obwohl die erzielten Ergebnisse der Phasengleichgewichte sehr gut sind,
stößt das übertragbare Modell mit einfachen Punktladungen dabei an Grenzen. Dies
zeigt sich in Abweichungen des Sättigungsdampfdruckes aus den Simulationen gegenüber
experimentellen Daten. Eine möglichst genaue Beschreibung des Dampfdruckes ist allerd-
ings erstrebenswert, um Mischungseigenschaften mit guter Übereinstimmung zu experi-
mentellen Daten vorhersagen zu können. Um den übertragbaren Charakter des Kraft-
feldes nicht zu zerstören und gleichzeitig die Genauigkeit des Dampfdruckes für einzelne
Stoffe zu erhöhen wird das individualisierte TAMie Kraftfeld eingeführt. Dabei werden
mit Hilfe eines Korrekturparameters ψ alle energetischen Wechselwirkungen eines Rein-
stoffes skaliert, um für experimentell gut vermessene Stoffe die Genauigkeit zu erhöhen. Es
wird gezeigt, dass dieses Konzept zu deutlich verbesserten Korrelationen und Vorhersagen
von Mischungseigenschaften führt. Anhand verschiedener binärer Mischungen wird auch
die Übertragbarkeit von Kreuzwechselwirkungsparametern, die die van-der-Waalsschen
Wechselwirkungen zwischen zwei Reinstoffen korrigieren, gezeigt. Es werden weitere Un-
tersuchungen und Experimente zur Validierung empfohlen.
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Abstract

In this thesis the development of a molecular force field is presented, which allows an
application focus on the calculation of phase equilibria. Based on the ”Transferable
Anisotropic Mie (TAMie)” force field by Hemmen et al. [1, 6, 7] the parameter set of
the force field is extended to small cyclic molecules and polar groups of substances such
as esters and ketones. It is a classical atomistic force field, but hydrogen atoms are often
effectively considered together with neighbouring larger atoms. The force field parameters
are transferable, i.e. they can be used for all substances within a group of substances.
Although the phase equilibrium results obtained are very good, the transferable model
with simple point charges reaches some limitations. This is shown in deviations of the
saturation vapor pressure from the simulations compared to experimental data. How-
ever, it is desirable to describe the vapor pressure as accurately as possible in order to be
able to predict mixture properties with good agreement to experimental data. In order
not to destroy the transferable character of the force field and at the same time ensure
the accuracy of the vapor pressure for individual substances, the individualized TAMie
force field is introduced. With the help of a correction parameter ψ all energetic interac-
tions of a pure substance are scaled in order to increase the accuracy for experimentally
well measured substances. It is shown that this concept leads to significantly improved
correlations and predictions of mixture properties. Using various binary mixtures, the
transferability of cross-interaction parameters that correct van der Waals interactions be-
tween two pure substances is also demonstrated. Further investigations and experiments
are recommended for validation.
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1. Introduction

Molecular simulations are going to play an important role in future examinations of sub-
stance properties and many other research fields. Molecular simulation refers to all com-
puter simulations from a quantum mechanical time- and lengthscale (a few femtoseconds
for the electron structure of one or a few atoms), over the microscopic time and length-
scale (several tens to thousands of molecules for the time of nano to microseconds) up
to a mesoscopic time- and lengthscale, e.g. systems containing proteins (sizes up to mi-
crometers over several seconds). Depending on the system size and the field of research,
different approaches and models have been developed over the last decades.

The future applications of molecular simulations might include the design of effective
and gentle drugs or may help to gain a better understanding of how metabolic processes
in animals and humans work. Beside biological and medical research fields and applica-
tions, molecular simulations are also an established tool to solve engineering problems,
e.g. determine substance properties of pure substances and mixtures, like phase equilib-
ria, surface tensions or adsorption isotherms, but also dynamic properties like diffusion
coefficients. These substance properties can afterwards be used to design and optimize
industrial processes.

The determination of substance properties with molecular simulations is often done on
the microscopic scale using classical force fields. For the rest of this thesis I will use the
term “molecular simulations” for such simulations. There are numerous approaches and
methods within the framework of molecular simulations with which substance properties
can be determined. Excellent overviews are e.g. given in [8–18]. Chapter 2 introduces
the most relevant theories and simulation techniques for this thesis.

The methods mentioned include different kinds of molecular simulations as well as the
underlying molecular model, i.e. force fields. Force fields are the backbone of every
molecular simulation, as they describe all interactions in and between molecules. A force
field consists of ansatz functions, representing various types of bonds and interactions
together with a set of corresponding parameters defining these interactions.

The level of detail of a force field depends on the anticipated applications. All-atomistic
models treat every atom in a molecule as an interaction site, and give detailed insight
into the microscopic structure of fluids. AMBER [19–23] (Assisted Model Building with
Energy Refinement) and CHARMM (Chemistry at Harvard Macromolecular Mechanics)
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1. Introduction

are two types of force fields which are often used in biological applications like protein
folding or DNA-protein interactions. Different versions of AMBER and CHARMM exist
and depending on the purpose of the investigation, the most suitable version has to be
chosen. For CHARMM the use of a particular version depends e.g. on whether pro-
teins [24–27], nucleic acids [28–31], lipids[32–34] or carbohydrates[35–38] are of special
interest.

Often, force fields for biological investigations are optimized to ambient conditions or
laboratory conditions, meaning pressures about 1 bar and temperatures about 25 ◦C. The
fact that force field parameters were adjusted to properties at these limited conditions
makes them inappropriate to determine phase equilibria over a wide range of pressures
and temperatures.

Other force fields like the Optimized Potentials for Liquid Simulations all atomistic
(OPLS-AA) force field [39] or the Transferable Potentials for Phase Equilibria with
Explicit Hydrogens force field [40–43] (TraPPE-EH) perform much better for a wide
range of pressures and temperatures. A slightly more coarse version treats hydrogen
atoms around a central atom – for example the hydrogen atom of a methyl group (CH2)
– combined with the central atom as one interaction site. This approach is referred to
as United-Atom (UA) approach. Besides the all-atom OPLS and TraPPE force fields,
both models also have united-atom parameterizations (OPLS-UA [44–49] and TraPPE-
UA [50–54]).

Another approach was taken by Mueller and Jackson who recently developed a method
to directly extract force field parameters from a physically based equation of state leading
to good results for thermodynamic properties [55–57]. However, it is limited to the un-
derlying molecular model of the equation of state and is thus more coarse than atomistic
force fields, leading to significant deviations in dynamic properties.

As it can plainly be seen, several different force fields have been developed and estab-
lished over the past decades and each of them has advantages for a certain purpose. For
example the OPLS force field, as its name implies, was developed especially to simulate
liquid systems. The TraPPE force field on the other hand was developed to give accurate
descriptions of phase equilibria, especially vapor liquid equilibria, in a transferable way.
Transferable means, that the same chemical groups in different molecules are described
with the same parameters. The goal of a transferable force field is to predict the in-
teractions in and between molecules which were not part of the optimization procedure.
This gives – with the appropriate simulation technique – access to properties that are not
available as experimental data in literature or difficult to measure because the conditions
are demanding for experimental work or the substances themselves are dangerous. In the
future, molecular simulations might replace some experimental setups or at least will be
used to support them by giving profound estimations.
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1. Introduction

The work presented in this thesis follows the works of Hemmen [1, 6, 7] and coworkers
during her studies at the University of Stuttgart. Many methods used in this work
are described in detail in her thesis[7]. Hence, I keep the methods section brief and
focus on the key methods and new developments of the Transferable Anisotropic Mie
(TAMie) [1, 6, 7, 58] force field and on introducing the concept of an individualized force
field based on TAMie [4].

The next chapters cover the essential theoretical parts and simulation methods used to
develop this force field, the application to aldehydes, ketones and small cyclic alkanes [3],
the development of an individualized force field [4] and to mixtures including parameters
for esters [5]. At the end of the main thesis a conclusion and outlook for further research is
given. In the appendix some results are presented, that have not been published before.
Appendix A gives a short comparison of CPU usage when applying a simple Message
Passing Interface (MPI) scheme to multicanonical sampling. In Appendix B a TAMie
force field for benzene, which works without electrostatic interactions but nonetheless gives
excellent results for dynamic properties is given. The appendix also includes the detailed
description of the relation between the molecular model used for molecular simulations in
this thesis (TAMie) and the equation of state (PC-SAFT [59–62]) used to approximate
and optimize the force field parameters. Finally, a short estimation of how the choice
of the bin width for collecting histograms during simulation affects the results for low
temperatures of the simulations, which was found out at the very end of the research
described in this thesis.
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2. Theory and Methods

In this chapter the basic principles of molecular simulations are briefly explained. This
includes the description of different kinds of ensembles which are connected directly to
macroscopic thermodynamic systems. Afterwards, an overview of the grand canonical
Monte Carlo simulation to determine phase equilibria is given. I rationalize why Monte
Carlo simulations in grand canonical ensemble are – combined with special techniques like
transition matrix sampling and histogram reweighting – a good choice to determine static
properties of phase equilibria for pure substances as well as for mixtures. Furthermore, I
review the most important techniques to minimize statistical uncertainties in the chosen
ensemble. The second part of this chapter will be an overview of the perturbed chain
statistical associating f luid theory (PC-SAFT) and its connection to the united atom
model of the TAMie force field. In this work PC-SAFT is used to get an initial guess
for suitable control variables, at which the molecular simulations are performed and fur-
thermore it is used for accelerating the optimization of force field parameters of TAMie.
Finally, I explain the necessary basics on how to calculate dynamic properties with help
of molecular dynamics simulations.

2.1. Introduction to molecular simulations
This section covers the fundamentals of molecular simulations and their applications to
determine macroscopic thermodynamic properties. The concept of an ensemble will be
explained, as well as the difference between Molecular Dynamics and Monte Carlo simula-
tions. For a far broader and more detailed overview of the history and basics of molecular
simulations I refer to [14–18, 63, 64].

2.1.1. Monte Carlo vs. Molecular Dynamics
The underlying principle behind all molecular simulations is that macroscopic properties
can be determined by studying the microscopic behavior of a system. Every macrostate is
defined by its macroscopic control variables (for example energy E, temperature T , pres-
sure p, volume V , amount of substances Ni), depending on the thermodynamic system.
Because microstates can be forced to obey the control variables, the macroscopic prop-
erties can be calculated by averaging over all microstates belonging to the chosen state
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2. Theory and Methods

variables of the macroscopic system. Depending on which state variables are defined for
the thermodynamic system, a different ensemble-type is used for molecular simulations.
An ensemble is simply the collection of infinitely many microstates appearing according to
the correct probability and all of them obey the defined control variables. For an N,V,E-
ensemble or “microcanonical ensemble”, the energy of every molecule in the microscopic
system can fluctuate, as long as the sum of the energy of all molecules E in the system
is constant (next to constant volume V and number of molecules N). The macroscopic
properties can then be determined by averaging over all microstates.

Two fundamentally different approaches are available to generate the different mi-
crostates. In Molecular Dynamics (MD) one generates an initial microstate which ful-
fills the constraints of the macroscopic thermodynamic system and then subsequently one
solves Newtons law of motion for every interaction site in the system. Therefore, an in-
tegration over all forces acting on every interaction site is necessary and the integration
time step ∆t has to be sufficiently small to avoid numerical instabilities. This approach
requires knowledge of all positions rN and all momenta pN for all interaction sites. To
generate a new microstate the forces acting on every interaction site and the total energy
of the system have to be evaluated for every time step. The average in this case is a time
average.

The second approach to generate new microstates is referred to as Monte Carlo sim-
ulations. As the name implies, chance plays an important role in this approach. New
microstates are generated by randomly choosing a molecule (or part of it) and also ran-
domly applying an action to it. This action can be the change of the position of the
molecule, a new internal configuration of the molecule (if the molecule is made of several
interaction sites), or even remove the molecule from the simulation box or add a new one.
To guarantee that any trial move leads to a microstate that is representative for the given
control variables, i.e. a microstate appears according to the correct probability for this mi-
crostate, an evaluation step is required after each trial move. The evaluation step depends
on the chosen ensemble. Some advantages of this approach are: “unphysical” moves can
be performed, which sometimes allows for a more efficient sampling of the phase space;
there is no need to evaluated the forces of the system, since moves happen randomly
and it is easy to simulate at constant temperature T . The last point is one advantage
of MC for the determination of phase equilibria, because one of the three requirements
for thermodynamic equilibrium is the thermal equilibrium. However, constant T is only
an assumptium in the framework of MC and a sufficient number of displacement steps -
which is not known a priori - is neccessary and has to be verified in the end. In MD
simulations on the other hand, this condition requires the application of a thermostat.
The second and more important advantage of MC over MD for the determination of phase
equilibria is the possibility to determine the chemical potential µ - which is the third re-
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2. Theory and Methods

quirement for thermal equilibria - more easily, although there are also hybrid approaches
[65]. The disadvantage of Monte Carlo simulations is that one does not (approximately)
follow the dynamics of a system; no dynamic properties, such as diffusion coefficients or
viscosity can be determined.

2.1.2. Different ensembles and their applications
Table 2.1 [66] shows classical ensemble types, their control variables, fluctuating properties
and the corresponding thermodynamic system. These different ensembles are used for
different kinds of thermodynamic problems.

The microcanonical ensemble with constant number of molecules Ni of all species, vol-
ume V and energy E was seldom used for the study of thermophysical properties, since
both, the pressure p and the temperature T can fluctuate whereas experimental setups
usually keep one of these state variables constant. However, temperatures, chemical
potentials µ and diffusion coefficients D could be obtained with simulations using the
microcanonical ensemble. In 1998 Lustig came up with the MD NVE approach[67] and in
his approach he introduced a sampling procedure in configurational phase space in the mi-
crocanocical (NVE) ensemble to simulate any thermodynamic property. His comparisons
showed equivalent accuracy of his method compared to the best available equations of
state for Lennard-Jones systems. His approach was refined by Meier and Kabelec in 2006,
who solved some problems reported by Lustig, i.e. the correct calculation of isentropic
and isothermal compressibilities, the speed of sound and higher pressure derivatives up
to second order[68].

In the canonical ensemble the number of molecules Ni of each species i, the volume
V and the temperature T are kept constant. The corresponding thermodynamic system
would be a closed one with fixed V and T and with the possibility to exchange energy with
the surrounding environment. It is used to calculate properties like pressure or dynamic
properties, if the density is known.

The isothermal-isobaric ensemble (or N,p,T-ensemble) was originally thought of to be
particularly appropriate for simulating mixtures, since experimental data, e.g. excess
enthalpies, are often meassured at constant pressure, and the assumptions behind many
theories of mixing often also require constant pressure [17]. For chemical reactions, this
ensemble is useful in the same way, as these reactions are usually carried out under
constant pressure [16]. However, in a N, p, T -ensemble observes two phases only for rather
large systems, which makes it difficult to study phase transitions or phase equilibria [17].

The grand canonical ensemble is special in this list, since it is the only ensemble (of the
ones mentioned above) where the number of molecules is not fixed. If we knew the right
chemical potentials µi(T, V ) leading to coexisting phases, say a liquid and vapor phase,
the ensemble would allow to simulate the vapor and liquid phase of a substance in one
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2. Theory and Methods

Table 2.1.: [Raabe: Molecular Simulation Studies on Thermophysical Properties; Springer
2017] Comparison of the classical ensemble types: the control variables by which they are
characterized and the properties that fluctuate.

ensemble control variables important
fluctuating
quantities

corresponding
thermodynamic
system

microcanonical
(NVE)

number of molecules N
volume V
internal energy E

pressure
energy of each
molecule εi

isolated

canonical
(NVT)

number of molecules N
volume V
temperature T

pressure
energy E

closed
isochoric
thermostated

grand canoni-
cal (µVT)

chemical potential µ
volume V
temperature T

pressure
no. of molecules N
energy E

open with
connection to
substance-
reservoir
thermostated

isothermal-
isobaric
(NPT)

number of molecules N
pressure P
temperature T

volume V
energy E

closed
isobaric
isothermal

simulation and therefore, in principle, is a good choice for the determination of vapor
liquid equilibria (VLE). The details and techniques to achieve good results for VLEs will
be discussed in section 2.2.

There is one more important ensemble to mention, especially for the determination of
phase equilibria, in particular VLE. The Gibbs ensemble proposed by Panagiotopoulos [69]
was developed to directly simulate vapor-liquid equilibria. The total volume is split in two
sub-volumes without physical contact to each other, however, molecules can be removed
from one sub-volume and inserted in the other and the size of each sub-volume can change
but only in such a way that the total volume stays constant. This arrangement leads to
equilibrium properties where one sub-volume represents the vapor phase and the other
sub-volume the liquid phase. The pressure and the densities can be determined trough
ensemble averages. To get a complete phase diagram many independent simulations at
different conditions have to be done and evaluated.

Despite the classical usages of the ensembles above, a lot of different approaches and
methods have been developed over the last decades and years to describe and predict
phase equilibria with molecular simulations and post-processing. For a comprehensive
overview I recommend [8–12, 69–71].
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2. Theory and Methods

2.2. Grand Canonical Monte Carlo simulations to
determine phase equilibria

In classical thermodynamics, three conditions need to be met for a thermodynamic system
to be in equilibrium state. The three conditions are equality of the temperature T I = T II ,
mechanical equilibrium pI = pII and chemical equilibrium µIi = µIIi for every substance i
in a mixture. If more than two phases are in equilibrium, the equality conditions have to
be fulfilled for all phases. I will focus on the Grand Canonical ensemble and its advantages
for the purpose of this work.

A big advantage of simulations in the Grand Canonical ensemble is that the temperature
T and chemical potentials µi are control variables and are thus user-defined. If suitable
values for these quantities are chosen, it is possible to determine two phases (in our case
liquid and vapor phase) in a single simulation. Because the box volume V of the simulation
is the third fixed control parameter, the number of molecules has to fluctuate during a
simulation. Because the exact chemical potentials µi(T, V ) that lead to coexisting phases
for a given force field and for defined temperature T and volume V are a priori unknown,
estimates for chemical potentials for conducting the simulations are used. Estimates
are sufficient because histogram reweighting techniques can be applied for relating the
simulated histograms to histograms at other chemical potentials. The chemical potentials
that ensure coexisting phases can then be determined as a post-processing step[1, 6, 72–
75]. Histogram reweighting requires sampling histograms, i.e. probability distribution
functions of type p(N,E) for defined µ̄, V, T . Details to these technique are described in
section 2.2.2.

Figure 2.1 schematically shows a projection of this probability distribution Π(N) =
∑
E p(N,E), for constant µ, V, T somewhere between the triple point and the critical point

of a pure substance. The scheme shows two peaks with a high probability of finding N
particles. The peak at low number of molecules represents the vapor phase and the peak
at higher N corresponds to the liquid phase. The “area” under each peak corresponds
to the pressure of this phase. If the chemical potentials are not exactly equal to the
equilibrium values µ̄coex., then the areas are not the same and the system is not in its
equilibrium state.

The space between the two peaks belongs to a region that would for a macroscopic
system be meta-stable or unstable and has a very low probability. Low probabilities
are challenging for Grand Canonical Monte Carlo (GCMC) simulations, as the transfer
between the vapor and the liquid phase has to happen but is very unlikely. This is a
challenge, because for statistical reasons the number of samples in the entire range of
molecule number N should be approximately equal. If the region between the two phases
is too unlikely, the transition will never happen without introducing a bias.
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Figure 2.1.: Schematical depiction of the unbiased probability distribution Π(N ;µ, T ).

Luckily, this issue can be solved by applying one of several sampling techniques. A first
simple measure for improving the sampling is to divide the N -space into several windows
of size ∆kN , where each window k can be simulated independently of each other. However,
splitting the N -space into several windows is often not sufficient to overcome the regions
of low probability between the two phases. Therefore, techniques like Transition Matrix
Monte Carlo and Multiple Histograms are necessary. These techniques ensure that the
complete phase space is sampled evenly and they allow us to split a simulation into several
well-sampled parts. Those parts can furthermore be conducted for different conditions
µk, Tk and can run in parallel [1, 6]. Details are given in the following section 2.2.1

2.2.1. Transition matrix Monte Carlo and multiple histograms
To determine the phase equilibria between two phases the probability distribution is of
key interest. As the name implies, this distribution shows the probability of finding the
system with a certain density (or a certain number of particles). Since the probability
of finding a system between two phases (macroscopically speaking, in the meta-stable
region) is extremely small, one has to apply special methods to overcome the gap between
these phases. All of the following techniques target at flat histograms where all states
should be sampled uniformly by introducing bias functions.

In a histogram different states are collected by defining bins of a certain size and by
counting how often the system visits every bin. For Monte Carlo simulations of pure sub-
stances histograms are two-dimensional matrices H(N,E), where the number of molecules
N takes discrete integer values and the energy is split into different bins of size ∆E. If
a binary mixture is considered, the histogram is three-dimensional H(N1, N2, E). To
achieve flat histograms a biasing function has to be introduced and the flat histogram
can be achieved by step-wise updating the biasing function until a convergence criterion
is reached. To calculate the biasing function either all visited states can be counted or -
which increases the accuracy enormously - the transition probability of each step is taken
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2. Theory and Methods

into account. The latter is called the transition matrix method. The main idea of the
transition matrix technique is described by Fitzgerald et al. [76, 77]. In their publications
they describe a simple bookkeeping step which enables them to obtain statistical estima-
tors of canonical probabilities (referred to as macrostate probabilities in the publication
by Fitzgerald et al.). The use of Boltzmann transition probabilities in combination with
a simulation with non-Boltzmann sampling methods increases the obtained information
significantly. They demonstrated their method with the calculation of the interfacial ten-
sion and magnet susceptibility of the 2D Ising system. Errington and Coworkers [78, 79]
transferred this approach to Monte Carlo simulations in grand canonical and isothermal-
isobaric ensembles to directly calculate coexistence properties in a temperature range from
the triple point to the critical point. Following this approach the probability π(N,E) with
N of being in a microstate molecules and the total energy E in grand canonical ensemble
is

π(N,E) = 1
Ξ

V N

Λ3NN ! exp [−βE + βµN ] . (2.1)

The probabilities of microstates with N + 1 or N − 1 particles correspondingly is

π(N + 1, E) = 1
Ξ

V N+1

Λ3(N+1)(N + 1)! exp [−βE) + βµ(N + 1)] (2.2)

π(N − 1, E) = 1
Ξ

V N−1

Λ3(N−1)(N − 1)! exp [−βE + βµ(N − 1)] (2.3)

and the standard acceptance criterion says

pacc
s→t = min

[
1, π(t)
π(s)

]
(2.4)

where s is the current microstate and t indicates a microstate that is to be reached by a
random move. Inserting the probabilities from above with s=̂N and t=̂N + 1 leads to the
acceptance criteria for insertion and deletion

pacc
N→N+1 = min

[
1, V

Λ3(N + 1) exp (−β∆E + βµ)
]

(2.5)

= min
[
1, V

(N + 1) exp (−β∆E + βµex)
]

(2.6)

pacc
N→N−1 = min

[
1, N
V

exp (−β∆E − βµex)
]
, (2.7)

with βµex = βµ− ln Λ3

Figure 2.1 shows the unbiased probability distribution for a system at given chemical
potential µ and temperature T . Since the probability of beeing in a state between the
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Figure 2.2.: Schematical depiction of the probability distribution Π(N ;µ, T ) and the di-
vision into several windows k with window size ∆kN .

vapor and liquid peak is extremely small, normal acceptance rules would keep the simu-
lation either in the vapor state, or in the liquid state. For the best statistical results it
would be ideal, if all states had the same probability and therefore the distribution was
a horizontal line. To achieve this bias function is introduced which is exponential of the
reciprocal function of the estimated probability distribution during a GCMC simulation.
Using this a bias function ω(N), the resulting biased acceptance probabilities are

aN→N+1 = min
[
1, V

N + 1 exp (−β∆E + βµex + ∆ω)
]

(2.8)

aN→N−1 = min
[
1, N
V

exp (−β∆E − βµex + ∆ω)
]

(2.9)

where ∆ω = ωt − ωs (and analogously for ∆E and t=̂N + 1 and s=̂N . The transition
matrix approach delivers both, a way to estimate the bias function w(N) such that the
probability of visiting states with N molecules is flat, and it allows for recovering an
estimate of the non-biased probability distribution. In transition matrix a bookkeeping
step is introduced to collect all unbiased acceptance probabilities in a collection matrix C.
This collection matrix is – for a pure substance – a tridiagonal matrix. For each particle
number N – besides 0 and Nmax – the matrix C contains an entry for the accumulated
probability of moving to a state with N − 1, N + 1 particles or staying in a state with
N particles. The iteration instruction to update the collection matrix C for an insertion
move is

CN→N+1
.= CN→N+1 + aN→N+1 (2.10)

CN→N
.= CN→N + (1− aN→N+1) , (2.11)

where aN→N+1 is the unbiased acceptance probability.
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For displacement, regrowth and rotation moves the instruction is

CN→N
.= CN→N + 1 . (2.12)

With the entries of the collection matrix C the unbiased transition probability between
macrostates can be estimated

P (N → N + δ) = C(N → N + δ)
C(N → N − 1) + C(N → N) + C(N → N + 1) (2.13)

with δ = {−1, 0, 1} and the unbiased probability of being in a state can be determined by

Π(N + 1) = Π(N) · P (N → N + 1)
P (N + 1→ N) (2.14)

Setting Π(N = Nmin
k ) = 1 leads to an unnormalized probability distribution, which at

this point is sufficient. To obtain an almost flat histogram the bias function ω(N)

ω(N) = − ln (Π(N)) (2.15)

is introduced.
While the simulation is carried out with the biased acceptance criteria, the entries for

the collection matrix C are updated with the unbiased values. To finally determine the

Π
bi

as
(N

;µ
,T

)

N

Figure 2.3.: Schematical depiction of the biased probability distribution Πbias(N ;µ, T ).

phase coexistence points not only the probability distribution as a function of N is needed,
but also a distribution as function of N and the energy E. This is done with a histogram
H(N,E) where the energy landscape is divided into bins and it is counted how often the
system energy lies within each bin. Since a bias was added to the acceptance criteria, the
resulting histogram is of type Hbias(N,E).

Additionally to the transition matrix method, the phase space of N can be divided into
several windows k = 1 . . . nW of size ∆kN , as already shown in Figure 2.2. Figure 2.4
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again shows the divided phase space, however, this time several probability distributions
at different conditions are added. The black dotted line is for a low temperature where
a liquid and a vapor phase exits. The blue solid line is at a higher temperature and the
red dash-dotted line is at the highest temperature, near the critical point. Obviously, the
peaks at different conditions appear at different particle numbers and the gap between the
two phases gets smaller towards the critical region. Since the quality of the result depends
on the accurate sampling of these probability functions, it is useful to sample the different
windows at different conditions. All shown probability functions (here black, blue and
red) can afterwards be calculated with the histogram reweighting method, although the
different windows have been simulated with different conditions. To get an estimation

 

{ { {

Π
(N

;µ
,T

)
k

=
1

k
=
n
W

∆kN N

Figure 2.4.: Schematical depiction of the probability distribution Π(N ;µ, T ) and the di-
vision into several windows k with window size ∆kN at different conditions µ, T , where
the black dotted curve is at the lowest temperature and the red dash-dotted line at the
highest temperature near the critical point.

of plausible conditions at which the GCMC simulations for domains of different particle
numbers in the system should be carried out, the PC-SAFT equation of state is used.
Figure 2.5 schematically shows these different conditions along a phase envelope. During
the simulation, histograms of kind Hbias

i (N,E) will be collected for all different conditions
i. In detail, this works in the order of the following steps. The width of the energy bins
∆E is given as an input parameter to the simulation. It is also a parameter which at the
end of this work was seen to have an influence on the results for some substances at lower
temperatures (see Appendix D). Therefore, the values of ∆E will be reported in every
result. A discussion of this behavior is given in Appendix D.

As a post-processing step, after the production cycle is finished, the unbias probability
distribution is calculated from (2.11) and using [1]

H(N,E) = Hbias(N,E)
∑
E
Hbias(N,E) · Π(N) (2.16)
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j
=

14
Figure 2.5.: Different simulation conditions along the phase envelope for simulations in
grand canonical ensemble [1].

Afterwards, the neighboring windows Hi(N,E) and Hi+1(N,E) are combined at the over-
lapping particle number Nmin

i+1 = Nmax
i . This step is trivial for neighboring windows with

the same conditions µ, T and a bit more sophisticated for different conditions where his-
togram reweighting has to be applied. Section 2.2.2 describes this step for neighboring
windows at different conditions. The sampling of different windows at different conditions
which can be combined afterwards is referred to as multiple histograms.

2.2.2. Histogram reweighting for pure substances
With Histogram reweighting it is possible to obtain information from an energy probability
function Hi(N,E) = H(N,E; βi, µi) at the condition βi, µi for a different condition β, µ,
with H(N,E) = H(N,E; β, µ). The original method was developed by Ferrenberg and
Swendsen [72, 73] for a 2D Ising model. Panagiotopoulos [13] gave an excellent review
of this technique as used in GCMC simulations. A short overview of this technique and
its simplifications is given for the cases studied in this work. The probability distribution
H(N,E) at given β, µ follows the relationship

H(N,E; β, µ, V ) = Ω(N, V,E) · exp(−βE + βµN)
Ξ(µ, V, β) (2.17)

where Ω(N, V,E) is the microcanonical partition function and Ξ(µ, V, β) the grand parti-
tion function. The left hand side of equation (2.17) is an output of simulations in grand
canonical ensemble. The microcanonical partition function Ω(N, V,E) contains the in-
tegration over all configurations and is independent of β and µ. Had we conducted a
simulation at a different value of βi and µi, where (N,E) is an accessible and visited state,
we have the same value of Ω(N, V,E). Formulating equation (2.17) for a probability
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distribution at different conditions βi, µi, setting Ω(N, V,E) equal (and thus setting the
entropies equal) and rearranging the resulting equation leads to

H(N,E; β, µ) = Hi(N,E; βi, µi) · Ci · exp [−(β − βi)E +N(βµ− βiµi)] (2.18)

with the constant Ci being the fraction of the grand partition functions

Ci = Ξ(µi, V, βi)
Ξ(µ, V, β) (2.19)

which is not known a priori. In the original articles on histogram reweighting, these con-
stants Ci are determined iteratively and using weight-functions to account for statistical
uncertainties, the different overlapping areas[72–74]. The transition matrix scheme used
in this work, however, ensures sufficient sampling of two neighboring simulations, one at
β, µ and one at βi, µi for the same (overlap) molecule number Nov. We require the prob-
abilities are identical for averaged β̄ and average chemical potential βµ and the overlap
occurs at one particle number Nov. The Histograms can be determined by

Hi+1
.= Hi+1

∑
E
Hi exp

[
−(β̄ − βi)E +Nov(βµ− βiµi)

]

∑
E
Hi+1 exp

[
−(β̄ − βi+1)E +Nov(βµ− βi+1µi+1)

] (2.20)

with Hi = Hi(Nov, E; βi, µi) and Hi+1 = Hi+1(Nov, E; βi+1, µi+1). Applying this procedure
for all conditions i leads to a non-normalized energy distribution function H(N,E; β, µ).

The probability distribution P (N ; β, µ) is then calculated by summing up over all energy
bins of the energy distribution function and by normalizing it according to

P (N ; β, µ) =
∑
E H(N,E; βj, µj) exp(−(β − βj)E +N(βµ− βµ− βjµj))∑

N

∑
E H(N,E; βj, µj) exp(−(β − βj)E +N(βµ− βµ− βjµj))

. (2.21)

with j being a generic index. If, for example the 14th simulation (see fig. 2.5) covers
molecule numbers from N = 130 to 140, then index j = 14 for all molecule numbers
130 ≤ N < 140 in equation (2.20).

The determination of the phase equilibrium also works with histogram reweighting. As
mentioned before, the requirements are equality of temperature, chemical potential and
pressure. The first two conditions are trivially fulfilled through the choice of the GCMC
ensemble where histogram reweighting leads to equations for the probability distribution
function as a function of temperature and chemical potential. The equality of pressure
is given, if the “area under each peak” (fig. 2.1), or more precisely the sum over all
probabilities for all energies and molecule numbers are equal IV = IL. The two sums
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write as

IV =
Nsep∑

N=0
P (N ; β, µcoex(β)) (2.22)

IL =
Nmax∑

N=Nsep
P (N ; β, µcoex(β)) (2.23)

and N sep is the number of particles where P (N ; β, µcoex(β)) has its minimum between
the two phases. The histogram reweighting is done for different temperatures T along
the phase envelope. For each T = 1/(kβ) the chemical potential µcoex(β) is determined
by a Newton algorithm to find the zero of the function f = ln(Iv/Il). Of course, if
ln(Iv/Il) = 0 it follows Iv = I l. As soon as the iteration sufficiently converged (usually in
three to five steps) and the phase coexisting point for the given temperature T is therewith
determined, the thermodynamic values can be calculated from the probability distribution
at this equilibrium point P coex(N, T ) = P (N, T ;µcoex(T )). The ensemble averages then
are

〈A〉v =
Nsep∑

N=0
2P coex(N, T )A(N) (2.24)

〈A〉l =
Nmax∑

Nsep
2P coex(N, T )A(N) . (2.25)

The vapor pressure of the coexistence point is calculated with ln Ξ = βpV in the ideal gas
limit at low densities [6, 13] where the system is assumed to follow the ideal gas equation
of state pV = NkBT

psat(T ) = −kBT
V

ln (2P coex(N = 0;T )) . (2.26)

All equations and the iteration of µ towards µcoex(T, V ) are performed at various temper-
atures in order to determine a full vapor-liquid phase diagram of pure substances.

2.2.3. Histogram Reweighting for binary mixtures
For binary mixtures, the dimension of the collected histogram expands to three dimen-
sions. As computer power and storage increased rapidly over the last twenty years - and
are still increasing - this, in contrast to the review given by Panagiotopoulos[13], is no
longer a problem. Several different studies in the past used simulations in the grand
canoncical ensemble combined with histogram reweighting methods. Studies from the
late 1990s where the critical points of a pure Lennard-Jones fluid and a Lennard-Jones
mixture were investigated[80], as well as a study for mixtures of polar and non-polar
components[81], stored a list of N1, N2 and E-values in every 250th step and extracted
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the probabilty distribution afterwards, which reduced the amount of necessary storage
significantly. Later, this procedure was applied to more sophisticated force fields with a
special focus on the behavior of CO2−H2O-mixtures[82] for different kinds of force fields
for CO2 and water and the different combinations of these force fields in mixtures. In all
of these studies they needed to do the first simulation near the critical point of one com-
ponent, to then reweight the results to lower temperatures where additional simulations
were conducted. In this thesis, simulations near the critical point were not necessary as
a starting point, because a physically based equation of state was used to get a sufficient
initial guess of the input properties of the simulations and all desired simulations could
run in parallel and be combined in the end. This procedure is described in chapter 2.3.

Combining histograms of various windows to a single Molecule Number Probability
Distribution

For binary mixtures the entire N1-N2-grid is divided into various windows of size ∆N1 ×
∆N2. A probability distribution can be determined for each of these windows. To get an
overall probability distribution it is necessary to combine the probability distributions of
all windows at the overlapping windows-boundaries. The probability Π(N̄ = 0̄; µ̄, v, T )
is initially set to unity and the normalization is done after combining all probability
distributions. All probability distributions will then be combined according to

Π(N ;µ, V, T ) = ΠW (N ;µ, V, T ) · exp(Γ) , (2.27)

where Π(N ;µ, V, T ) is the probability distribution containing all already combined win-
dows, the superindex W corresponds to the currently considered window and exp(Γ) is
the scaling factor, that is needed to combine the current window with all other windows.
Three different cases have to be taken into account. If the window contains a pure com-
ponent 2 (N2 = 0) it has an overlap only on the left hand side to another window, as
illustrated in Fig. 2.6. Analogously, if the window contains a pure component 1 (N1 = 0)
then it has an overlap only at the “bottom”, meaning towards lower N2-values. For all
other cases the window has an overlap at two boundaries (see figure 2.6). There are dif-
ferent options to calculate the scaling factor. The most intuitive way would be to start
along the axis N1 and N2 and to calculate Γ according to the average offset along the
corresponding overlap:
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N1

N2

0
0

Window to be scaled
Scaled windows with overlap
Scaled windows
Windows not treated yet

Figure 2.6.: Possible overlapping cases to determine the scaling factor Γ.

Γ1 =
∑NW,max

2
Nb=NW,min

2
ln Π

(
NW,min

1 , Nb;µ, V, T
)
− ln ΠW (Nmin

1 , Nb;µ, V, T )

NW,max
2 −NW,min

2
(2.28)

Γ2 =
∑NW,max

1
Na=NW,min

1
ln Π

(
Na, N

W,min
2 ;µ, V, T

)
− ln ΠW (Na, N

min
2 ;µ, V, T )

NW,max
1 −NW,min

1
. (2.29)

However, for the case where the windows are at the left bound (Nmin
1 = 0) or at the

bottom bound (Nmin
2 = 0), the phase diagrams will get more accurate if the connecting

factor Γr between two windows is calculated as

Γp = ln Π
(
NW,min

1 , NW,min
2 ;µ, V, T

)
− ln ΠW

(
Nmin

1 , NW,min
2 ;µ, V, T

)
. (2.30)

This means, only the overlap at the lower left corner of the currently considered window
is used to calculate the scaling factor. Along both axis this is equivalent to patching the
windows in such a way that the resulting overall probability distribution is smooth for the
pure substances. This is not necessarily the case if the mean value along the overlapping
side is considered. Finally, this leads to a more accurate description of the vapor pressure
for both pure substances and in consequence, the borders of the resulting phase diagram
at constant temperature are more accurate. Figures in the chapter “Results” show the
influence of the different treatments of patching the histograms. For all windows that do
not contain a pure substance the scaling factor is calculated along both overlapping lines.
Since an arithmetic mean of Γ1 and Γ2 would take the lower left corner of the windows
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into account twice, the scaling factor is calculated as Γ = A · ΓA +B · ΓB, with

A = NW,max
2 −NW,min

2

NW,max
2 −NW,min

2 +NW,max
1 −NW,min

1 − 1
(2.31)

B = NW,max
1 −NW,min

1 − 1
NW,max

2 −NW,min
2 +NW,max

1 −NW,min
1 − 1

(2.32)

and

ΓA =
∑NW,max

2
Nb=NW,min

2
ln Π

(
NW,min

1 , Nb;µ, V, T
)
− ln ΠW (Nmin

1 , Nb;µ, V, T )

NW,max
2 −NW,min

2
(2.33)

ΓB =
∑NW,max

1
Na=NW,min

1 +1 ln Π
(
Na, N

W,min
2 ;µ, V, T

)
− ln ΠW (Na, N

min
2 ;µ, V, T )

NW,max
1 −NW,min

1
. (2.34)

The difference of ΓA and ΓB to Γ1 and Γ2 is subtle. It manifests only in the lower bound
of the sum in ΓB compared to Γ2, while ΓA equals Γ1.

2.2.4. Configurational bias Monte Carlo (CBMC)
Considering the set of Monte Carlo moves in a grand canonical ensemble: The different
moves which can be performed are translation, rotation, insertion, deletion and rebuilding
a molecule. Especially for higher densities, the probability of accepting an insertion or
deletion move (or a rebuilding move) decreases rapidly, because for many trial configura-
tions one is faced with high energies and thus low probabilities of accepting trial moves.
An efficient way to improve the acceptance probability is called configurational bias (CB)
and was proposed by Siepmann and Frenkel [83] and extended to branched molecules by
Martin and Siepmann[51] as well as T.J.H. Vlugt and Krishna[84] and is mainly based
on works of Rosenbluth and Rosenbluth [85]. With configurational bias, a molecule is
successively grown (or regrown), interaction site by interaction site, with different trial
positions for every interaction site. During this growth procedure the probabilities are
determined and summed up and finally a configuration is selected as a trial configuration
according to its Rosenbluth weight

Wn =
M∏

f=1
wf (2.35)
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Table 2.2.: Number of CB steps for different dimensionless densities ρ∗ = ρ/ρmax

ρ∗ CB steps per interaction site
< 1/2.7 1
≥ 1/2.7 ∧ < 1/1.9 2
≥ 1/1.9 ∧ < 1/1.6 3
≥ 1/1.6 ∧ < 1/1.3 4
≥ 1/1.3 ∧ < 1/1.16 6
≥ 1/1.16 8

where wf is – analogously to a partition function – the sum over all k different probabilities
of trial positions for the actual CB step (index f), as

wf =
k∑

e=1
exp

[
−βuinter

e

]
(2.36)

where uinter
e covers all intermolecular interactions and the probability for selecting all sites

at their trial position e is

pe = exp[−βuinter
e ]

wf
. (2.37)

The acceptance probability pacc
o→ n for finally accepting the trial move (where all interaction

sites f = m, . . .M have been placed) then writes

pacc
o→ n = min

(
1, Wn

Wo

)
(2.38)

with Wn and Wo being the Rosenbluth weights of the trial (new) and old configuration
of a molecule, respectively. This procedure can be applied to the regrowth of a molecule
as well as for insertion and deletion moves. In this work the same number of CB steps is
applied for all sites to be (re)located and this number is dependent on the density of the
considered system. For lower densities near the ideal gas state the acceptance probability
for a move is often good enough to omit additional configurational bias. For high densities,
e.g. the liquid state at temperatures near the triple point, the number of CB steps is set
to 8. Table 2.2 lists the number of CB steps depending on the dimensionless density as
used in our simulations.

2.2.5. A fragment library for branched and cyclic molecules
For sites with a “linear” connection scheme, like in n-alkanes or primary alcohols the
intramolecular trial configurations entering the CBMC algorithm can successively be de-
termined. For branched or cyclic structures that is different. If one imagines the branching
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point of a molecule – that means one interaction site is bonded to at least 3 neighboring
interaction sites – the challenge is to get the correct angle distribution. CBMC for a
“linear” connection scheme is executed interaction site by interaction site, which in this
case would lead to a biased angle distribution [51, 86].

An elegant method to generate correct angle distributions is to sample each branch on
its own (consisting of 3 or more neighboring interaction sites around a central “interaction
site”, i.e. a branch does not contain a torsional angle potential. Afterwards, the branch
will be connected to the existing molecule and only the torsional energy determines if the
move will be accepted or not. This approach is based on works of Shah and Maginn [87]
and Errington and Panagiotopoulos [88], who took the idea of the branch-point sampling
(BPS) by Macedonia and Maginn [89] and extended it to be more effecient. BPS is
based on the idea that there are hard and soft degrees of freedom which can be sampled
independently of each other. The basically same idea, namely that the energy of hard
degrees of freedom – like bending angles of a branched molecule – is sensitive to small
changes in interaction site positions, while the energy of soft degrees of freedom is weaker
dependent on interaction site positions was proposed in the same year by Martin and
Siepmann [51]. In their work Shah and Maginn generate the repository of configurations
a priori to the actual Monte Carlo simulation according to the given temperature of the
following simulation.

In this work a slightly different method is chosen and the repository (or library) is
generated during runtime, which means for the first, say 100,000, insertions or regrowth
steps a mini Monte Carlo simulation is done to generate a configuration of a branch or
molecule. This configuration is then stored in the library which is a simple array of
relative positions. After the first 100,000 steps the array is completely filled and all fol-
lowing regrowth or insertion steps are based on the configurations stored in the library.
For branched molecules, in a first step, a branch is taken randomly from the library and
added to the existing part of the molecule by putting two interaction sites along a bond-
ing axis so that they overlap with two interaction sites of the already grown part (see
Figure 2.7). In the second step different trial positions are generated by rotating the new
branch around the bonding axis. This second step can be handled with configurational
biasing methods, as discussed in section 2.2.4. For cyclic molecules the challenge is to
“lead” the configurational biasing steps in such a way, that the ring closes with the in-
sertion of the last interaction site and with the correct bond lengths. The Self-Adapting
Fixed-Endpoint (SAFE) CBMC method by Wick et al. [90] solves exactly this problem.
Nonetheless, this sophisticated sampling scheme is not easy to implement and for small
cyclic molecules the use of a fragment library leads to the same results with less effort. For
cyclopentane or cycloheptane e.g. a branch consists simply of the whole molecule and the
different intramolecular configurations can be generated with crank-shaft moves[91, 92].
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Figure 2.7.: Schematical illustration of a growing step with the fragment library. On the
left-hand side of the figure a branch from the library is placed over the existing bond axis of
the already grown part of a molecule. On the right-hand side different trial configurations
are generated by rotating the branch around the axis.

Figure 2.8 shows the generation of configurations for cyclohexane with crank-shaft moves.

Figure 2.8.: Schematical depiction of crank-shaft moves for a cyclic molecule with six
interaction sites.

Randomly three adjacent interaction sites are chosen and the middle interaction site is
rotated with a random angle around the axis through its neighboring interaction sites.
The new configuration is accepted according to standard Metropolis acceptance criterion
and the resulting distribution is a Boltzmann distribution. The standard configurational
biasing methods can be applied for the first three interaction sites of a cyclic structure
where the position of the third interaction site has to fulfill the constraint (the angle be-
tween the first three interaction sites) given by the randomly chosen library fragment. For
small molecules like cyclopentane or cyclohexane this procedure leads to good acceptance
probabilities and hence to sufficient sampling.
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2.3. The PC-SAFT equation of state and its application
to force field optimization

The following sections describe the Perturbed Chain Statisistical Associating Fluid
Theory (PC-SAFT) and its use for generating different state conditions along the phase
envelope as an input for GCMC simulations (section 2.3.2) and its use for accelerating
the optimization of TAMie force field parameters.

2.3.1. The perturbed chain statistical associating fluid theory
(PC-SAFT) equation of state

The Perturbed Chain Statistical Associating Fluid Theory developed by Gross and Sad-
owski [59–61] is based on Wertheim’s perturbation theory [93–96] and constructed in terms
of the Helmholtz free energy. Like other SAFT equations it is based on works of Chapman
et al. [97, 98]. Over the years several modifications like VR-SAFT [99], SAFT-γ [57, 100],
LJ-SAFT [101] and PC-SAFT [59–61] were developed.

Starting from hard chains as a reference fluid a perturbation theory of second order as
proposed by Barker and Henderson [102, 103] was applied to get the dispersive part for
chain molecules. All contributions, like dispersive interactions or associating terms, are
additive with respect to the compressibility factor Z or the (dimensionless) Helmholtz
free energy â = A/NkT .

â = A

NkT
= Ahc

NkT
+ Adisp

NkT
+ Aassoc

NkT
+ Apolar

NkT
. . . (2.39)

The PC-SAFT model has the following contributions: the hard chain contribution plus
the dispersive interactions [59], attractive contributions due to hydrogen bonding [61] and
electrostatic interactions [62, 104, 105].

One of the main difference of PC-SAFT to other versions of SAFT is the choice of
hard chains as reference fluid. The hard-chain reference was developed by Chapman et
al. [97, 98] based on Wertheim’s [93–96] thermodynamic perturbation theory of first or-
der. The underlying molecular model for the chain fluid is that of hard spheres which
are tangentially bound. The PC-SAFT equation of state has different variants of pa-
rameterization. One variant is the parameterization for pure components, where each
substance gets its unique set of parameters. The other variants are group contribution
methods, where a chemical group, e.g. a CH3 group in alkanes, has its set of parameters
and all molecules of the alkanes series share the same group parameters but differ in the
number of groups. The last differentiation is based on how the chain is build. In the
homo-segmented group contribution method the final molecule has m segments and each
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segment has the same parameters σ and ε, whereas in the hetero-segmented group contri-
bution method the single segments can differ in size and interaction parameters. For this
work, the homo-segmented group contribution method and PC-SAFT for pure substances
was used.

2.3.2. Generating conditions for GCMC simulations with PC-SAFT
Like all thermodynamic equations of state, the PC-SAFT equation of state (eos) links
the state variables (T, p, V,N & residual properties) of a thermodynamic system and can
be used to determine phase equilibria. The PC-SAFT eos is formulated in terms of the
Helmholtz free energy and it is easy to calculate phase coexistence points for different
specified temperatures with the according residual chemical potentials µres

k

µres
k (T, v) = kBT

(
∂(ρâres)
ρk

)

T,v,ρj 6=k

. (2.40)

The PC-SAFT eos in this work is used to support molecular simulations by defining
suitable (T, µ)-conditions approximately tracing the phase envelope of a substance, as
shown in Fig. 2.5. If we consider acetone, for example, the phase envelope calculated
by PC-SAFT approximates the experimental behavior of acetone rather well. If a force
field used for acetone is also roughly reproducing the phase behavior the (T, µ)-conditions
of PC-SAFT will roughly approximate the relevant (T, µ)-conditions for the force field.
Because histogram reweighting is used, (rough) estimated (T, µ)-conditions are sufficient.
The eos requires pure component parameters or group-contribution parameters of the
considered molecule as input.

2.3.3. Optimization of Mie parameters with PC-SAFT
Classical optimization of force field parameters for molecular simulations need two runs
with different sets of parameters to receive gradients from which the next set of parameters
follow. The procedure of calculating gradients from different simulations is intuitive but
slow, because each molecular simulation needs quite a lot of time and even for the first
guess two simulations are necessary. Another possibility to optimize force field parameters
is the method to reweight the parameters from one simulation to a nearby parameter space.
The Multistate Bennett Acceptance Ratio (MBAR) [106] developed by Shirts and Chodera
is such a method which allows the reweighting to different conditions (compareable to the
histogram reweighting method) or to different parameters. The method to reweight the
parameters with MBAR is constrained to a small variations in parameter space near the
original simulation.
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van Westen et al. showed in 2011 that Mie parameters of molecular force field can be
approximated with modified PC-SAFT parameters. In 2015 this method was improved
by Hemmen et al.. This enables to do the optimization of TAMie parameters within the
framework of PC-SAFT which again leads to a significant speed-up [6, 107]. The procedure
for optimizing TAMie force field parameters is as follows: First a GCMC simulation is
conducted using an initial set of parameters (e.g. from existing force fields or guesses),
denoted as p. A GCMC simulation can be used to generate (p, T, ρ)-equilibrium-data,
i.e. saturation pressure psat at given temperature. The computed properties of interest
are denoted by Ωsim. Second the objective function

f(p) = 1
N exp

Nexp∑

n=1

(
Ωsim
n (p)− Ωexp

n

Ωexp
n

)2

(2.41)

is calculated. With the parameters φσ and φε from equations (C.3) and (C.10) of Ap-
pendix C the PC-SAFT model is adjusted to reproduce the simulation data. Using these
parameters the PC-SAFT equation is now explicitely expressed in terms of the force field
parameters p (Appendix C) and an auxiliary objective function is formulated as

faux = 1
N exp

Nexp∑

n=1

(
ΩPC-SAFT
n (p)− Ωexp

n

Ωexp
n

)2

(2.42)

and is minimized by varying p. Because this auxiliary function contains only values cal-
culated with the PC-SAFT equation of state, the computational cost of this optimization
is very cheap, i.e. taking only a few milliseconds of time. The result of this optimization
p serves as new best guess for the optimal parameters of this force field optimization. Be-
cause PC-SAFT only approximates the results of molecular simulations, this procedure is
iterative. However, the final converged result is independent from the analytic eos and the
procedure converges to the true optimum of the problem [6]. The procedure is repeated
until the gradient of f is lower than a specified tolerance.

2.3.4. Determining cross interaction parameters with PC-SAFT
In this section a summary of the determination of group-wise cross interaction parameters
κij of a molecular force field is given, using the substance-wise cross interaction parameter
kαβ of the PC-SAFT equation of state. The original derivation was done by Schacht
et al. [108] and adapted by Waibel et al. [58]. The cross-wise interactions between two
van der Waals united-atom Mie interaction sites can be approximated with the Berthelot-
Lorentz combining rules [109, 110] for σij and εij and using an arithmetic mean [111] for
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nij, as

σij = (σi + σj) /2 (2.43)
εij = √εiεj (2.44)
nij = (ni + nj) /2 . (2.45)

The combining rules for σij and εij are based on London’s dispersive theory with identi-
fiable assumptions. The combining rule for the cross-mixed energy parameter εij can be
allowed to deviate from the Berthelot combining rule, introducing parameter κij as

εij = √εii · εjj · (1− κij) (2.46)

We allow non-zero values for κij only for two sites i and j of different type (i + j) and
site i and site j located on different molecule types. The connection between the cross
interaction parameter kαβ of PC-SAFT and κij can be derived by examining a first order
perturbation theory on the van der Waals part of the electrostatics of both models and
setting them approximately equal

∑

α

∑

β

xαxβm̂αm̂βσ̂
3
αβ ε̂αβ ≈

∑

α

∑

β

xαxβ
Kα∑

i

Kβ∑

j

NiNjσ
3
ijεij , (2.47)

which is equivalent to saying the dimensionless correlation integrals of the PC-SAFT
mixture and those of the force field mixture are approximately equal [108]. The indices α
and β indicate the two substances of a binary mixture and the index i runs over all types
of united-atom groups Kα of substance α. Ni marks the number a given UA-group is
contained in substance α. Ignoring the pure component entries (αα and ββ) of equation
(2.47) and focusing on the mixture interactions leads to

m̂αm̂βσ̂
3
αβ ε̂αβ

1
ϕαβ

=
Kα∑

i

Kβ∑

j

NiNjσ
3
ijεij . (2.48)

The amout-of-substance-fractions xαxβ have been canceled out and the parameter ϕαβ
was introduced to enforce the equivalence of the left and right hand side of the equation.
Inserting equation (2.46) and analogously for the PC-SAFT equation of state εαβ =
√
εαεβ · (1− kαβ) finally gives the connection between kαβ and κij

kαβ = 1−
∑Kα
i

∑Kβ
j NiNjσ

3
ij
√
εij εij(1− κij)

m̂αm̂βσ̂3
αβ

√
ε̂αα ε̂ββ

ϕαβ . (2.49)
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The procedure for optimizing force-field cross-energy parameters κij is as follows: First,
a GCMC simulation is conducted using κij = 0. A GCMC simulation can be used to
generate (p, xV , xL)-data, i.e. pressure and mole fractions of coexisting vapor and liquid
at given temperature. Using the PC-SAFT model with kαβ from eq. (2.49), parameter
ϕαβ is then adjusted such that squared deviations (e.g. in pressure) between results from
PC-SAFT and data from molecular simulations are minimal. The PC-SAFT model now
approximates results of the force field and parameter ϕαβ is considered constant. As a
next step the force-field parameter κij can be adjusted (using PC-SAFT, still with eq.
(2.49) ) by minimizing deviations of PC-SAFT to experimental VLE data. Formally
the procedure is iterative. In my experience and in agreement with Waibel et al. [58],
however, a second iteration is not necessary.
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3. TAMie for aldehydes, ketones and
small cyclic alkanes

The content of this chapter is a literal quote of the publication

D. Weidler and J. Gross. Transferable anisotropic united-atom force field based on
the mie potential for phase equilibria: aldehydes, ketones and small cyclic alkanes.
Ind. Eng. Chem. Res., 55(46):12123–12132, 2016

J. Gross had the role of a daily supervisor and was involved in editing the manuscript.
Additions or deletions compared to the published work are marked with angular brackets.

The Transferable Anisotropic Mie potential (TAMie) is extended to ketones, aldehyhdes,
and small cyclic alkanes. Parameters defining the Mie pair potential, representing van der
Waals interactions, as well as partial point charges were treated as adjustable. These ad-
justable parameters were identified by minimizing deviation of calculated vapor pressure
data and liquid density data to experimental data. The optimization procedure was sup-
ported by an analytic equation of state, according to Hemmen and Gross [J. Phys. Chem.
B, 2015, 119, 11695−11707]. The optimal point charges for aldehydes and ketones were
found by varying them along a predefined grid of values. Results for phase equilibria of
puresubstances show good agreement with experimental data. The absolute average de-
viations for aldehydes and ketones in the reduced temperature range TR = T/T crit

exp = 0.55
to 0.96 are lower than 3.4%. For cyclohexane and cyclopentane the deviations are 0.6%.

3.1. Introduction
Transferable force fields allow predicting the physical properties of substances and mix-
tures that are weakly characterized by experiments. The optimized potential for liquid
simulations (OPLS) is an important transferable force field with emphasis on thermody-
namic properties, where force field parameters were adjusted to experimental enthalpies
of vaporization and to liquid density data near ambient conditions [44–47]. There are
two parameterizations of the OPLS force field. The all-atom (OPLS-AA) model and the

43



3. TAMie for aldehydes, ketones and small cyclic alkanes

united-atom (OPLS-UA) approach, where a single interaction site is assigned for atoms
and the adjoining hydrogen atoms. The intermolecular energy is described with Lennard-
Jones pair potentials and point charges, the intramolecular model assumes fixed bond
lengths between neighboring interaction sites, so that bond stretching is not taken into
account.

A prominent force field for correlating and predicting vapor liquid equilibria is the trans-
ferable potential for phase equilibria (TraPPE) which is parameterized for many chemical
groups[40, 50–53, 90, 112, 113]. It also assumes Lennard-Jones pair-potentials with united
atoms, point charges, and uses fixed bond lengths. TraPPE was developed with emphasis
placed on liquid densities ρ and bubble point temperatures. The model gives excellent
results for T -ρ projections with good results also for the critical temperature, but it has
weaknesses in describing vapor pressures[1, 114].

The NERD force field, impartially named after its developing authors Nath et al. adopts
a united-atom model but includes bond stretching[115]. Data for second virial coefficiants
was considered in the objective function for optimizing the NERD force field. As a
consequence this force field leads to a better description of vapor pressures, compared
with the TraPPE model. In 2004 it was extended to primary alcohols by Khare et al.[116].

All of these force fields describe the van der Waals interaction of a molecule with LJ-
potentials, usually located at the positions of atomic nuclei (with hydrogen taken into
account only effectively with the neighboring groups). It was recognized, however, that
these force fields are not able to simultaneously describe the vapor pressure and liquid
densities over a wide range of temperatures. One approach to overcome this shortcoming
to some extent while preserving the Lennard-Jones potential for the van der Waals inter-
action was proposed by Toxvaerd in 1990. For a CH3-group, for example, he introduced an
offset between the interaction site representing the united-atom group and the locus of the
carbon atom. The offset is meant to account for the hydrogen atoms[117]. This concept is
known as the anisotropic united-atom (AUA) model. The offset applied to a CH2-group,
say in a propane molecule, leads to a branched geometry, with the location of the CH2 in-
teraction site defined only once the position of all three carbon atoms is defined. For Monte
Carlo (MC) simulations, where representative molecular configurations have to be regu-
larly generated, one needs more sophisticated sampling schemes like the configurational
biasing scheme by Smit et al. [118]. A comprehensive parameterization of the anisotropic
united-atom model (AUA4) was started by Ungerer et al.[119], with several subsequent
studies extending the parameterization to various functional groups[120–131]. Our study
is concerned with ketones and aldehydes, for which Ferrando et al. proposed AUA force
field parameters[126]. The transferability of the force field to mixtures is demonstrated
without the necessity to use a binary interaction correction towards Lorentz-Berthelot
combining rules.
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In 2003 Kranias et al. developed an AUA force field for ketones and aldehydes where
they derived atomic charge values with ab initio calculations [132]. The approach is
appealing because the concept of transferable parameter is thereby only applied to van
der Waals potentials, whereas the electrostatic potential is allowed to be individual for
all species. A certain drawback lays in the fact that partial charges are thereby assigned
from quantum mechanical calculations in vacuum. It is on the one hand rather ambiguous
to reduce the single-particle electron density of a molecule to a small collection of point
charges. On the other hand, point charges are usually defined as effective non-polarizable
point charges that to some extent account for induced polarity.

It is possible to obtain a good description of both, vapor pressure and liquid den-
sity when pair potentials other than the Lennard-Jones model are considered. Errington
and Panagiotopoulos applied a Buckingham exponential−6 potential and obtained very
good results for non-polar substances[114]. Similar to the AUA potential the CH3-group
is shifted outward to effectively account for the hydrogen atoms. Potoff and Bernard-
Brunel applied the Mie n − 6 potential to describe van der Waals interactions[111]. In
treating the repulsive exponents n as an adjustable parameter characterizing a functional
group, they found a much improved description of vapor pressure and liquid density when
compared to the Lennard-Jones potential (corresponding to a Mie potential with repul-
sive exponent n = 12). Recently this potential was extended to alkenes [133]. Müller
and Jackson determine the pure component parameters (Mie potential) of tangent-sphere
chain fluids using the analytic SAFT-γ equation of state and use these parameters di-
rectly for molecular simulations [55, 56]. This approach has successfully been used for
several substance groups, such as greenhouse gases and refrigerants [57], or benzene and
n-decylbenzene [134].

Hemmen and Gross also used a Mie n−6 pair-potential for united-atom groups describ-
ing the van der Waals contribution to the overall interaction. Like in the AUA force-fields,
an offset was allowed for the optimization of the force field parameters, limited, however,
to terminal chemical groups, in order to avoid the need for the specific configurational bias
scheme mentioned above. For alkanes, for example, six pure force field parameters were
simultaneously adjusted to four n-alkanes. Hemmen et al. extended the work towards
ethers with a detailed analysis of how point charges are defined[6]. The resulting force
field is referred to as Transferable Anisotropic Mie model (TAMie).

In this study we extend the TAMie force field to cyclic alkanes, to ketones, and to
aldehydes. The objective function for the optimization problem minimizes deviations in
calculated vapor pressure and liquid densities to experimental values.
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Table 3.1.: Pair potential parameters of UA-groups: energy parameter ε, size parameter
σ, repulsive exponent n, and point charge q for the TAMie force field

TAMie
pseudoatom i Mi/(g/mol) εi/kB /K σi/Å ni charge qi / e ref.
CH3 (sp3) 15.035 136.318 3.6034 14 [1]
CH2 (sp3) 14.027 52.9133 4.0400 14 [1]
O aldehydes 15.999 100.85 3.0276 12 -0.422 this work
CHx neighbor aldeh. -0.038 this work
CH (sp2) aldehydes 13.019 68.934 3.4941 12 0.46 this work
O ketones 15.999 65.55 3.093 12 -0.49 this work
C (sp2) ketones 12.011 32.775 3.919 12 0.49 this work
O acetone 15.999 69.184 3.112 12 -0.49 this work
C (sp2) acetone 12.011 34.592 3.942 12 0.49 this work
CH2 (sp3) 5-ring 14.027 74.527 3.8462 16 this work
CH2 (sp3) 6-ring 14.027 69.568 3.8967 16 this work

3.2. Force field development

3.2.1. Intermolecular energy
The potential between two interaction sites i and j located on different molecules is
described by a Mie potential plus coulombic interactions

uinter
ij = cij · εij

[(
σij
rij

)nij
−
(
σij
rij

)mij]
+ qiqj

4πε0rij
(3.1)

where rij denotes the distance between the interaction sites, σij and εij are the size
parameter and energy parameter characterizing the Mie interaction, and qi and ε0 are
the point charge and the vacuum permittivity, respectively. An interaction site i can
represent a united-atom group, such as a methyl-group CH3, or a point charge within a
united-atom group. The same potential is applied to any pair of interaction sites within
a molecule separated by more than three bonds. The constant cij is chosen to enforce the
minimum of the Mie potential at a value of −εij. Depending on the choice of repulsive
(nij) or dispersive (mij) exponent the constant is defined as

cij = nij
nij −mij

·
(
nij
mij

) mij
nij−mij

(3.2)

Throughout this work the dispersive exponent was set to mij = 6 whereas the repulsive
exponent nij was considered a degree of freedom.

We take an advance on the results of our study and list the proposed force field param-
eters in Table 3.1. Point charges are given as factors of electron charge e. In the TAMie

46



3. TAMie for aldehydes, ketones and small cyclic alkanes

force field we tabulate parameters describing the interaction of like (i− i) pairs, which we
denote with a single index (for example as σi). The Mie interactions are evaluated in the
simulation up to a fixed cutoff radius of rc = 14 Å and standard tail-corrections were ap-
plied. Parameters for unlike interaction sites are determined using the Lorentz-Berthelot
combining rules [109, 110] for σij and εij and using an arithmetic mean[111] for nij, as

σij = (σi + σj) /2 (3.3)
εij = √εiεj (3.4)
nij = (ni + nj) /2 (3.5)

The combining rules for σij and εij are based on London’s dispersive theory with trans-
parent assumptions. The combing rule for the repulsive exponent nij is more ambiguous.
Stiegler and Sadus evaluated how various choices of defining cross-potentials affect the
physical properties of the resulting mixture [135]. With the objective of correlating and
predicting real mixtures, one could draw justification for a certain combing rule from
quantum mechanical calculations. For transferable force fields, the choice of one over
the other combing rule is pragmatically justified by favorable predictions of experimental
mixture data.

3.2.2. Intramolecular energy
The proposed force field parameterization uses fixed bond lengths between interaction
sites. The intramolecular energy has three contributions: the bending energy, the torsional
energy and the site-site energy, eq. (5.1), for pairs separated by more than three bonds. We
adopt intramolecular parameterizations from the TraPPE force field [50, 53, 113] which
is partly based on parameterizations of the OPLS force field [44], the AMBER force field
[19] and force constants proposed by van der Ploeg and Berendsen[136]. More specifically,
the angle potentials stem from the AMBER force field [19]. The torsion potentials are
based on OPLS[44, 49]. Exceptions are cyclic alkanes where an original intramolecular
parameterization was proposed for TraPPE[50, 113].

The angle bending potential is represented as a simple harmonic potential

ubend = k0

2 (θ − θeq)2 (3.6)

where θeq is the temperature-independent equilibrium angle and k0 is the force constant.
For cyclic molecules the torsional potential is defined as

ucyctorsion = c0 + c1 cos(φ) + c2 cos(2φ) + c3 cos(3φ) (3.7)
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Table 3.2.: Bond lengths used in the proposed TAMie force field taken from literature.

type r0 /Å ref
CH3 –CHx x ∈ {1, 2} 1.54 + 0.2 [1, 6]
CHx –CHy x,y ∈ {1, 2} 1.54 [50]
CH3 –CH[––Oald] 1.52 + 0.2
CH2 –CH[––Oald] 1.52 [53]
CH3 –C[––Oket] 1.52 + 0.2
CH2 –C[––Oket] 1.52 [53]
CH2 –CH2 (cyclic) 1.54

Table 3.3.: Bending angles and constants for the proposed TAMie force field taken from
literature.

bending site θ /◦ k0/kB /K/rad2 ref
CHx−CH2−CHy 114.0 62 500 [50, 136]
CHx−Cket−CHy 117.2 62 500 [53]
Cket−CH2−CHx 114.0 62 500 [53]
CHx−Cket−−Oket 121.4 62 500 [53]
CHx−CH−−Oald 121.4 62 500 [53]
CH2−CH2−CH2 (cyc5) 105.5 62 500 [113]
CH2−CH2−CH2 (cyc6) 114.0 62 500 [50]

while for all other substances considered in this study, it is defined as

utorsion = c0 + c1 [1 + cos(φ)] + c2 [1− cos(2φ)] + c3 [1 + cos(3φ)] (3.8)

Bond lengths, parameters of angle bending potentials, and parameters of torsional
potentials are summarized in Table 3.2 to 3.4, respectively.

Table 3.4.: Torsional potential constants taken from literature.

torsion sites c0/kB /K c1/kB /K c2/kB /K c3/kB /K ref
CHx−CH2−CH2−CHy 0.0 355.03 -68.19 791.32 [44, 50]
CHx−CH2−C−−Oket 2035.58 -736.90 57.84 -293.23 [53]
CHx−C−CH2−CHy -17.26 752.60 14.89 282.10 [54]
C−CH2−CH2−CHx 0.0 355.03 -68.19 791.32 [44, 50]
CHx−CH2−CH2−CH[−−Oald] 11.81 467.80 -274.10 846.80 [53]
C−CH2−CH−−Oald 1182.0 -225.60 302.80 -339.30 [54]
CH2−CH2−CH2−CH2 (cyc5) 31394 45914 16518 1496 [113]
CH2−CH2−CH2−CH2 (cyc6) 5073 6840 3509 63 [113]
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3.2.3. Optimization of force field parameters
The effective two-body van-der Waals and the effective (non-polarizable) point charge pa-
rameters were treated as adjustable parameters. Parameter optimization was performed
using the method described by van Westen et al.[107] and modified by Hemmen and
Gross[1], where an analytical equation of state (Perturbed-Chain Statistical Associating
Fluid Theory, PC-SAFT equation of state[59, 60]) is used to approximate the objective
function locally. The optimization procedure is iterative, because first, the equation of
state gives approximate results and more importantly, second, the molecular model under-
lying the PC-SAFT equation of state is more coarse compared to the TAMie force field.
The convergence, however, is very swift. Usually only three to five iterations are needed
for a sufficiently converged result. Hemmen and Gross modified the optimization proce-
dure slightly and showed, that approximations of the equation of state (in the optimum)
do not act on the optimum of the force-field optimization problem. The algorithm thus
converges to the true minimum of the problem of force-field optimization; the analytical
model does not alter the converged result.

Point charges and repulsive exponents, however, were not optimized simultaneously
with parameters of the Mie potential (εi and σi). Rather, we vary point charges along a
predefined grid of values and define the optimal point charges a posteriori. The optimum
of the Mie energy parameter εi and the size parameter σi was reached in an automated
process, where molecular simulations and intermediate PC-SAFT optimization steps are
successively executed.

The objective function to be minimized is defined as a sum of squared relative deviations
of simulated (Ωsim

n (p)) to experimental observables, Ωexp
n (p), as

f(p) = 1
N exp

Nexp∑

n=1

(
Ωsim
n (p)− Ωexp

n

Ωexp
n

)2

(3.9)

where p is the set of adjustable force-field parameters, Nexp is the number of quasi ex-
perimental data points. In our objective function, the observables Ω include liquid den-
sity ρliq data and vapor pressure psat points. Quasi-experimental data was taken from
multi-parameter correlations of the DIPPR data base [137], the Korean Thermophysical
Properties Database (KDB)[138] and the Dortmund Database (DDBST)[139].

3.2.4. Simulation details
All simulations were performed in grand canonical ensemble, using a histogram reweight-
ing technique in a post-processing step. A detailed description of the simulation technique
is given in previous work[1, 6] and we proceed with a short overview of these methods.

In grand canonical ensemble the number of molecules N fluctuates. We used the tran-
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sition matrix method [78, 140] for determining a bias potential on the fly, ensuring an
approximately equal sampling of molecule number N . Additionally we split the N -space,
i.e. the coordinate of varying molecule number, into different windows of size ∆N . All
windows can be combined to a total histogram by applying the multiple ensemble tech-
nique described by Lyubartsev et al. [141]. The decomposition into many simulations
covering a certain domain of N to N + ∆N has the advantage, that all windows can run
in parallel. A message passing interface (MPI) implementation automated the process of
generating starting values, splitting the particle space in different windows, performing
histogram reweighting, and calculating new optimized parameters. The number of win-
dows and thus the width ∆N of each window was chosen so that the total number of
threads could be sent to a compute cluster. The width of a window was approximately
∆N = 10 molecules. Virnau and Müller showed that the statistical uncertainties does
not depend on the number of windows into which the N -domain is divided [142].

The volume of the simulation box varied between 40000 Å for propanal and 81000 Å for
octanal. Simulations were carried out with at least 5 million equilibration steps and 25
million production MC-steps for each window of size ∆N . The probabilities of choosing
different moves were set to 60 % for translation/rotation, 30 % for insertion/deletion
and 10 % for regrowing a molecule for all substances. Configurational bias (CB) ensures
sufficiently high probabilities of inserting or deleting molecules at higher densities. The
number of CB trial-steps was set to 1 for low numbers of molecules and increasing towards
8 for the highest densities.

For branched molecular structures, such as ketones and for cyclic alkanes it is necessary
to obtain intramolecular trial configurations iteratively. We apply a MC scheme with
importance sampling on isolated molecules to develop representative trial configurations.
Trial structures are needed for growing a new molecule, for regrowing an existing molecule,
or for determining the Rosenbluth weight when trial-deleting a molecule. The generation
of these configurations occurs during runtime up to a maximum number N trial-structures.

For cyclic molecules we apply the MC scheme to iteratively determine the configuration
of the entire molecule, whereas for branched molecules, the branching node with neighbor-
ing interaction sites is iteratively obtained. All trial configurations of these structures (full
cyclic molecule or branching node with neighboring sites) are stored in a library until a
maximum number of N trial-structures structures is reached. Subsequently, the configuration
of a random structure is drawn from the library whenever a trial configuration is needed.
This procedure leads to a significantly improved computational efficiency compared with
an incessant generation of new structures. Similar approaches were proposed in refs.
[87, 89, 114]. The library of molecular configurations is a simple array in random-access
memory.

For the cyclic molecules the molecular structures are generated through crank-shaft MC
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moves [91, 92] that change the bending and torsional angles. We use 2000 trial moves and
accept the crank-shaft move with an importance-sampling acceptance probability. The
first N trial-structures = 5 · 105 so-determined molecular structures are stored in the library.

Cyclic molecules are here composed of three CB groups: The first interaction site,
the second site, and all other sites of the molecule. The first interaction site is inserted
following the normal configurational biasing scheme (using 8 random trial positions for
the highest densities). The second interaction site, is similarly placed randomly at a
bond-length around the first site. Subsequently, a cyclic structure is newly built or drawn
from the library. The so-defined bond-angle between first, second, and third interaction
site allows for trial positions of the third interaction site located on an arc. All other
interaction sites are then defined.

For coulombic potentials we apply the standard Ewald summation. The damping pa-
rameter α of the Ewald summation was set to α = 7.59 with the maximum number of
k-vectors kmax = 9 in each direction.

Phase equilibria were calculated in a post-processing step with the histogram reweight-
ing technique as proposed by Ferrenberg and Swendsen [72, 73] and later adopted for
Lennard-Jones fluids by Wilding[74] and for polymers by Panagiotopoulos et al.[75]. De-
tails of the implementation of histogram reweighting is given in the study of Hemmen
et al.[6]. Mixed-field finite-size scaling techniques [74, 75] and critical scaling laws were
applied to determine the critical point.

3.3. Results

3.3.1. Small cyclic alkanes
We assign individual parameters for the 5-ring and the 6-ring of cyclopentane and cy-
clohexane and optimized σCH and εCH as well as the repulsive exponent nCH2 of each of
the cyclic CH-groups. No point charges are used. Parameters defining the intramolecular
potential are given in Table 3.2 to 3.4. We analyzed the molecular ’boat’ and ’chair’
conformations using the criterion proposed by Keasler et al.[143]. For cyclohexane in the
vapor phase at T = 450 K we found the probabilities fchair = 0.994 and fboat = 0.005,
and for a liquid phase at T = 510 K fchair = 0.989 and fboat = 0.009, respectively. With
a small probability the molecular structures could not be classified as either of the two
conformations. Several earlier studies have optimized force field parameters to experi-
mental data [114, 120, 144, 145]. The results of their parameter optimization is different
to our work, because different degrees of freedom are considered. We treat the repulsive
exponent of the Mie potential as a degree of freedom (constrained, however, to even in-
teger values), whereas other studies constrain the exponent to a value of nCH2 = 12. The
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degree of freedom is comparable to the degree of freedom selected in the study of Erring-
ton and Panagiotopoulos for the Buckingham potential[114]. The study of Muñoz-Muñoz
et al.[144] on cyclic alkanes is conceptually interesting, because their objective function
included both, static properties and transport properties.

For both, cyclopentane and cyclohexane, the optimal repulsive exponent is nCH2 = 16
(Table 3.1). Because the optimization of van der Waals parameters is done individually,
we obtain very good agreement to experimental data included in the objective function.
Figure 3.1 shows the saturation pressures of small cyclic alkanes calculated with the
TAMie force field. 〈The figure shows the logarithm of the pressure versus the inverse
temperature which gives a almos linear representation of the data. To make it easier for
the reader the axis are labeled with the absolute values of the vapour pressure psat and the
temperature T and the scale of the axis was adjusted accordingly. All following figures
of that type are presented this way throughout this thesis.〉 For comparison the vapor
pressures calculated with the TraPPE force fields are included. Figure 3.3 allows a refined
assessment of the deviations between calculated and experimental data. The average
errors (AAD) in vapor pressure (for the temperature range from TR = T/T crit.

exp = 0.55
to 0.96) are 0.4% and 0.4% for cyclohexane and cyclopentane, respectively. Average
deviations in liquid densities for both substances are 0.6% and 0.5%, respectively. Critical
point properties are not part of our objective function, which is why we didn’t analyze the
critical point in detail. The critical points are 0.6% and 1.3%, respectively, higher than the
experimental values. Tabulated simulation results (including enthalpies of vaporization)
are reported in the supporting information.

3.3.2. Ketones
The physical properties of the smallest member of a chemical family are usually not cap-
tured well in transferable force fields. Like in our previous works on the TAMie force field
we excluded the smallest member of the homologous series (here acetone). If we include
acetone in our objective function we find a markedly higher overall error in describing the
chemical family. This observation either reveals limits to the concept of transferable pa-
rameters, or limits of the simplistic molecular model, assuming constant (non-polarizable)
point charges and omitting hydrogen atoms. We consider acetone individually and op-
timize Mie potential parameters of the acetone-oxygen and of the acetone-carbon for
varying partial charges. We use constant effective point charges located, for ketones, at
the interaction sites of the Mie groups. The OPLS force field assigns point charges for
the ketone-oxygen and on the ketone-carbon and small positive partial charges on the
neighboring methyl- groups. Kamath et al. performed a quantum mechanical investiga-
tion on the point charges of acetone by considering a cluster of acetone with a chloro-
form molecule[146]. They identify mildly negative point charges for the methyl-groups
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Figure 3.1.: Vapor pressure of cyclopentane and cyclohexane. Com-
parison of results from the TAMie force field (spheres) with quasi-
experimental data[137] (lines). Results of the TraPPE force field [143]
(open squares) are also included.
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Figure 3.2.: Vapor-liquid coexisting densities for cyclic alkanes. Comparison of results
from the TAMie force field (filled spheres) with quasi-experimental data[137] (lines). Re-
sults of the TraPPE force field [143] (open squares) are also included.
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Figure 3.3.: Relative errors of the TAMie force field from quasi-experimental data for cy-
clopentane (blue empty symbols) and cyclohexane (red solid symbols) for varying reduced
temperature TR = T/T crit.

exp . Deviations in the vapor pressure (circles) and in liquid density
(squares) are included.

of acetone (in contrast to the OPLS parameterization). The TraPPE force considers the
methyl-groups as electro-neutral. Similarly, we decided to assign point charges only to
oxygen and the carbon atom of the ketone-group, with qO(ketone) = −qC(ketone), and treat
the neighboring groups as neutral.

The Mie potential parameters of the oxygen and the carbon atom within the ketone-
group are highly correlated. We therefore defined the ratios of εO(ketone)/εC(ketone) and
σO(ketone)/σC(ketone) as fixed and equal to the ratios of the OPLS force field. We thus
have three degrees of freedom, i.e. εO(ketone), σO(ketone), and qO(ketone), for optimizing the
force field parameters of acetone to experimental data. An initial investigation showed no
advantage in using repulsive Mie-exponents for the ketone-carbon and -oxygen group other
than n = 12. The result of the parameter optimization is shown in Fig. 3.4 for varying
partial charges, qO(acetone). Each point in this diagram minimizes the objective function
with respect to the other two parameters, εO(acetone) and σO(acetone). It is interesting to
note, that the optimum is found for point charges that almost exactly reproduce the
vacuum value dipole moment of acetone[137]. That is unexpected, because the static
polarizability of molecules leads to higher effective dipole moments for dense states. It is
further interesting to note, that in the optimum, the absolute average deviation (AAD)
in liquid density is rather high, with 1.93%, the error in vapor pressure is very low,
with 0.78% and the critical point is overestimated with 1.4%. Fig. 3.4 shows the two
contributions to the overall error, i.e. the contribution from vapor pressure and from
liquid densities. Although not part of the objective function we also include errors of
critical temperature. Increasing partial (point) charges lowers the errors in liquid density
(and critical temperature), whereas errors in vapor pressure start to steeply increase at
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Figure 3.4.: Acetone: Absolute average deviations (%) of simulated vapor pressure and
liquid density data to experimental data for varying partial charge qO of the oxygen (solid
spheres). The temperature range corresponds to 0.53 ≤ T/T crit.

exp ≤ 0.97. For each symbol
(solid sphere), the two parameters εO(acetone) and σO(acetone) (with nO = 12) were optimized.
The open symbols show the error contributions: vapor pressure (squares), liquid density
(diamonds), and critical point (triangles, not part of our objective function).

some point. The optimum thus represents a compromise of errors in liquid density and
in vapor pressure.

We now consider the simultaneous adjustment of the parameters εO(ketone) and σO(ketone)

to butanone, 2-pentanone, and 2-octanone. For ketones, we had a similar observation, as
earlier reported for ethers[6]: partial charges individually optimized for butanone and 2-
pentanone are approximately qO(ketone) = −0.49, i.e. in the vicinity of the value identified
for acetone. When force field parameters are adjusted simultaneously to several ketones
while treating the partial charge as a degree of freedom, however, we find optimized values
for partial charges significantly different (here: higher). We decided to prescribe a value of
the partial charge qO(ketone) = −0.49, because we expect advantages in predicting mixture
properties. The optimization with respect to the parameters εO(ketone) and σO(ketone) leads
to an AAD value of 4.0%. The average deviation is dominated by errors in vapor pressure,
whereby the vapor pressure is calculated at too high values for butanone and at too
low values for 2-pentanone and 2-octanone. Table 3.5 summarizes deviations in vapor
pressure, liquid density and critical points. The supporting information provides tabulated
simulation results. For 2-pentanone and 2-octanone a comparison to results of the TraPPE
force field is also included.

3.3.3. Aldehydes
A TAMie parameterization for aldehydes requires point charges as well as parameters of
the Mie potential for the aldehyde-oxygen and the aldehyde-carbon atom. We do not
attempt to include methanal (formaldehyde) as a member of the aldehyde family with
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Table 3.5.: Absolute average deviations (liquid density, saturation pressure) of the TAMie
force field from quasi-experimental data[137, 138]. Averages are for reduced temperatures
from TR = 0.55 to 0.97 in intervals of ∆T = 10 K.

substance AAD
psat /%

AAD
ρl /%

error Tc
/%

acetone 0.78 1.93 2.31
butanone 9.39 2.59 0.54
2-pentanone 3.41 1.33 1.51
2-octanone 6.14 1.78 1.87
propanal 5.41 1.29 0.87
butanal 3.12 0.79 0.96
pentanal 5.70 1.20 1.58

transferable force field parameters. Due to the different charge distribution for methanal
compared with other aldehydes, we view methanal as an own species. For ethanal, we
observed significant scatter and uncertainty in the experimental data, in particular in
vapor pressure data. We therefore excluded ethanal in this investigation. Similar to
the procedure described in the previous section (for ketones), we started optimizing the
force field parameters of propanal. As part of their work in developing the TraPPE force
field, Stubbs et al. observed that the original OPLS partial charges were not suited to
reproduce phase equilibrium properties [53]. They proceeded with a quantum mechanical
study (MP2, with 6-31G(d,p) basis set) adjusting partial charges. We adopted the charge
ratios between the aldehyde-oxygen (O-group), the aldehyde carbon (CH-group), and
the neighboring carbon-group (CHx-group) from their work. As a degree of freedom, we
linearly scaled the charges proposed by Stubbs et al. As further degrees of freedom, we
consider the parameters of the Mie potential for the aldehyde CH-group and the aldehyde
O-group. We kept the ratio σCH/σO = 1.154 and the ratio εCH/εO = 1.463 fixed during
the parameter optimization in order to eliminate highly correlated degrees of freedom.
The OPLS-UA force field would have been a natural source for the parameter ratios,
because the intramolecular force field of TAMie (like for TraPPE) is to a large extent
based on OPLS. However, a OPLS-UA force field for an aldehyde group does not exist,
to our knowledge. We therefore took these ratios from the TraPPE force field [53]. Opti-
mization of the force field parameters for propanal showed lowest deviations for a charge
of q(CH)aldehyde = 0.46 with average errors of vapor pressure and liquid density of about
1%, as Fig. 3.5 shows. The figure also gives results obtained when Mie parameters are
simultaneously optimized to propanal, butanal, and pentanal for varying partial charge.
Similar to the ketones (and to ethers[6]) an unconstraint simultaneous optimization of
Mie parameters and partial charges to several members of a chemical family (propanal,
butanal, and pentanal) gives partial charge values rather different from values adjusted
individually. We reapply our earlier approach, according to which the partial charges are
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taken from one representative member of a homologous series - propanal in this case. The
Mie parameters, however, are determined from a simultaneous optimization. The open
symbol at q(CH)aldehyde = 0.46 in Fig. 3.5 thus represents the proposed TAMie parameter-
ization.
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Figure 3.5.: Aldehydes: Absolute average deviations (%) of simulated vapor pressure
and liquid density data to quasi-experimental data[138] for varying partial charge qCH of
the aldehyde carbon CH-group. The temperature range covers 0.5 ≤ T/T crit.

exp ≤ 0.97.
For each symbol, the Mie parameters of the aldehyde group were optimized. For the
open symbols, the optimization was conducted simultaneously for propanal, butanal, and
pentanal.

Fig. 3.6 and 3.7 compare results obtained for the TAMie force field to experimental
data for coexisting densities and vapor pressures, respectively. Both diagrams confirm
good agreement to the experimental data of propanal, butanal and pentanal, as members
of the objective function. Fig. 3.7 also reveals significant scatter in experimental data of
vapor pressures for this chemical family.

3.4. Transferability of parameters
To assess the transferability of the proposed force field we consider substances of the
same homologous series that were not part of the objective function during parameter
optimization. For aldehydes we consider hexanal and octanal as components that were not
included in adjusting the force field parameters. The TAMie-results for these substances
are included in Fig. 3.6 and 3.7 and they are found in good agreement to the experimental
data.

We now consider ketones. The objective function only included 2-ketones, so that the
comparison of TAMie predictions for 3-pentanone to experimental data is an important
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Figure 3.6.: Phase diagrams of simulated aldehydes. Lines are quasi-experimental
data[137]. Symbols represent simulation results using the TAMie force field.
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Table 3.6.: Absolute average deviations of TAMie-predictions from quasi-experimental
data[137] for vapor pressure, liquid density, and critical temperature of two ketones not
considered during parameter optimization. Averages are for the temperature range TR =
0.55 to 0.97

Substance AAD
psat /%

AAD
ρl /%

error Tc
/%

3-pentanone 1.62 3.40 0.16
2-hexanone 2.90 1.84 1.6

test. Table 3.6 shows the deviations for ketones that were not considered for the parameter
optimization. For 3-pentanone and 2-hexanone we obtain average deviation in vapor
pressure of about 2.2%. The errors in liquid density of 2.6% are higher than expected,
because liquid density data is usually comparably easy to predict. The predictions of the
critical temperature, however, are good, as Table 3.6 confirms. For 3-pentanone we also
performed molecular simulations using the TraPPE force field[53]. For TraPPE we obtain
AAD values of 1.5% and 29.6% for liquid densities and vapor pressures, respectively. The
comparison to TAMie (Table 3.6) confirms markedly improved results for vapor pressure
data with some sacrifice on liquid densities.

Fig. 3.8 shows the deviations of the predictions from TAMie from quasi-experimental
data for both ketones. The diagram gives deviation of vapor pressure as well as in liquid
densities.
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Figure 3.8.: Relative errors of ketones compared to quasi-experimental correlations[137].
Triangles represent errors of the liquid density and circles the errors of the vapor pressure.
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4. Individualized force fields based on
the transferable anisotropic Mie
potential

The content of this chapter is a literal quote of the publication

D. Weidler and J. Gross. Individualized force fields for alkanes, olefins, ethers and
ketones based on the transferable anisotropic mie potential. Fluid Phase Equilib.,
470:102–108, 2018

J. Gross had the role of a daily supervisor and was involved in editing the manuscript.
Additions or deletions compared to the published work are marked with angular brackets.

Transferable force fields allow the prediction of physical properties for substances with
scarce or absent experimental data. For substances with a comprehensive experimental
database, however, transferable force fields produce results with higher errors than desired,
because the transferable force fields are designed to represent a compromise in correlat-
ing the properties of many substances. For applications in chemical engineering, where
requirements for accurate vapor pressure correlations and predictions exist, the results
from transferable force fields are sometimes insufficient. We individualize the transferable
anisotropic Mie force field (TAMie) for 38 substances of various chemical families, by
introducing a correction parameter that scales all van der Waals energy parameters εi of
the considered substance. We find markedly reduced deviations, mainly in the description
of vapor pressures while the errors in liquid density do not change significantly. For polar
species, the improvement in vapor pressure is typically a factor four in absolute average
deviation to experimental data, when compared to the original TAMie force field. The im-
proved description of pure substances enables more reliable predictions of phase equilibria
in binary mixtures. The concept of individualizing substances that are well-characterized
by experimental data within a transferable force field is appealing, because the ability to
predict mixtures with substances that are not covered by experimental data is preserved.
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4.1. Introduction
Transferable force fields allow predicting physical properties and phase equilibria of pure
substances and mixtures that are poorly described by experimental data. Among the most
established transferable force fields are the Transferable Potentials for Phase Equilibria
(TraPPE) [40, 50–53, 90, 112], the Optimized Potential for Liquid Simulations (OPLS)
[44–49] and the Assisted Model Building with Energy Refinement (AMBER) force field
[19].

The AMBER force field as well as the TraPPE-UA force field are based on so-called
united-atom models, where the van der Waals contribution of hydrogen atoms are lumped
with interaction sites of neighboring atoms. The van der Waals interaction of a methyl-
group (-CH3), for example, is considered as one effective interaction site. Recent devel-
opments improved the description of properties like the vapor pressure by introducing
additional degrees of freedom in the parameterization of transferable force fields. An
additional degree of freedom can be introduced for united-atom approaches, by moving
the interaction site of, say a CH3 group, away from the position of the carbon atom
to better (effectively) account for the presence of hydrogen atoms. This approach was
proposed by Toxvaerd[117, 147] and led to the Anisotropic United Atom force field [123–
131, 148] (AUA) by Ferrando, Boutin, Ungerer and coworkers. Shifting of interaction
sites of non-terminal groups (say a CH2-group) outwards requires more advanced config-
urational bias sampling schemes, as proposed by Smit et al.[118], because the location
of the CH2-interaction site is only defined once both neighboring interaction sites have a
defined location. The method of Smit et al. introduces the small offset of the interaction
sites as a last step in a configurational bias sampling scheme.

Other studies use intermolecular potentials other than the Lennard-Jones potential, e.g.
the Buckingham potential with three adjustable parameters per van der Waals interaction
site[114] or the Mie potential also with three adjustable parameters [111, 133, 149, 150].
These works show that a united atom force field build up on potentials other than Lennard-
Jones can provide good results for vapor pressures and densities for phase coexistance.

The Transferable Anisotropic Mie (TAMie) force field, recently developed in our group
with emphasis on thermodynamic properties and vapor-liquid equilibria[1, 3, 6] adopts
some of these ideas. It is a united-atom model and incorporates anisotropy in a simple
manner by allowing an offset to terminal united-atom sites. With this simple approach
sophisticated sampling schemes like the one proposed by Smit et al.[118] can be avoided.
A Mie potential is used for the van der Waals contribution of inter- and non-covalent
intramolecular interactions.

For the multidimensional optimization of the force field parameters an analytic equation
of state, namely the Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT)
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equation of state[59, 60] was used. Although the molecular model of the PC-SAFT model
is more coarse compared to the TAMie force field, it is possible to approximately map the
objective function of TAMie to an analogous objective function of PC-SAFT. The proce-
dure is iterative but converges rapidly[107] and the final converged force field parameters
are not biased by the PC-SAFT model[1].

Another approach of coupling an equation of state with molecular simulations was pro-
posed by Ghobadi and Elliott who applied a SAFT with molecular parameters taken from
force fields that were originally proposed for molecular simulations [151–153]. Recently,
Müller and Jackson with coworkers derived force field parameters directly from a physi-
cally based equation of state (the SAFT-γ equation of state)[55]. Their procedure is ap-
pealing because it is non-iterative and leads to good results for thermodynamic properties
and phase equilibria. The molecular model is limited, of course, to the molecular model
underlying the analytic equation of state. Their molecular model considers molecules as
tangentially bonded Mie interaction sites without bond-angle potentials. The usefulness
of analytic equations of state for conducting molecular simulations has in another context
been demonstrated by Gospodinov and Escobedo, who showed how probability distribu-
tions can be estimated from equations of state[154, 155]. Sanchez et al. [156] used the
PC-SAFT model for estimating bias potentials that allow sampling across the energetic
barrier between a vapor and a liquid phase in open ensembles.

Substances that are comprehensively characterized by experimental data are less ac-
curately described with a transferable force field compared to a force field individually
adjusted to data of that substance. Deficiencies in describing individual substances are
a result of a compromise that needs to be made in correlating force field parameters to
many substances simultaneously. For the TAMie force field this compromise leads to a
positive deviation in the vapor pressure curve of some substances and a negative devi-
ation from the experimental vapor pressure others, especially for polar substances. For
chemical engineering applications, deviations in vapor pressure are critical for process
safety and equipment design aspects and should be eliminated as much as possible. Fig-
ure 4.1 visualizes the systematic offset in vapor pressure for ethers (di-ethyl-ether and
di-n-propyl-ether) as calculated from the TAMie force field. The diagram shows relative
deviations of calculated vapor pressure and the liquid density from experimental data
for both substances. One observes overpredicted vapor pressure values for di-ethyl-ether
and underpredicted values for di-n-propyl-ether, when using the optimum for the given
degrees of freedom[6].

In this study we propose the concept of individualized transferable force fields. The
concept preserves the strength of a transferable force field in predicting properties of sub-
stances that are weakly characterized by experimental data, while alleviating the problem
of systematic deviations (mainly in vapor pressure) found for some species. We introduce

62



4. Individualized force fields based on the transferable anisotropic Mie potential

-8

-6

-4

-2

0

2

4

6

8

0.6 0.7 0.8 0.9 1

re
l.

de
vi

at
io

n
/%

TR = TC/T

psat diethyl-ether
ρl diethyl-ether
psat di-n-propyl-ether
ρl di-n-propyl-ether

Figure 4.1.: Relative errors of the TAMie force field for ethers: spheres denote relative
deviations concerning the vapor pressure, while the triangles symbolize the relative devi-
ations of the liquid density. Filled symbols belong to dipropyl-ether and empty symbols
to diethyl-ether.

a correction parameter ψA that scales all van der Waals energy parameters of a pure
substance A and shifts the vapor pressure curve closer to experimental data. We present
individualized force field parameters for 38 substances and show that mixture properties
are better described.

4.2. Methodology

4.2.1. The TAMie force field
The TAMie force field is currently parameterized for n-alkanes and n-olefins[1], ethers[6],
small cyclic alkanes, ketones, and aldehydes[3]. The pair potential between two interaction
sites located either on different molecules, or more than three bonds apart in the same
molecule writes as the sum of a Mie potential and an electrostatic potential, as

uij = cn · εij


(
σij
rij

)nij
−
(
σij
rij

)6

+ qiqj

4πε0rij
(4.1)

where rij is the distance between two interaction sites i and j, εij is the van der Waals
energy parameter, σij is the corresponding size parameter, nij denotes the repulsive ex-
ponent, and qi is the partial point charge. The partial charge or the energy parameter
can be zero. Furthermore, ε0 is the vacuum permittivity and the constant cn ensures the
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minimum of the Mie potential at −εij, with

cn =
(

nij
nij − 6

)(
nij
6

) 6
nij−6

(4.2)

The cross-wise parameters of the Mie potential are calculated using the Lorentz-Berthelot
combining rules[109, 110]

σij = 1
2 (σii + σjj) (4.3)

εij = √εiiεjj (4.4)

and an arithmetic mean for the repulsive exponent nij

nij = 1
2 (nii + njj) (4.5)

The force field optimization was carried out by minimizing the objective function

f(p) = 1
N exp

Nexp∑

n=1

(
Ωsim
n (p)− Ωexp

n

Ωexp
n

)2

(4.6)

where Ωsim
n and Ωexp

n are simulated and quasi-experimental observables, respectively, con-
taining liquid density and vapor pressure data, Ω ∈ {ρL, psat} of several substances.
Quasi-experimental data were generated with DIPPR correlations in steps of 10 K in
the temperature range between approximately 0.58 · Tc and 0.95 · Tc. Vector p contains
the adjustable parameters, p = (εii, σii, nii, qi), where index i is in this case a generic
index that can, for example, represent a CH3-group as well as a CH2-group, when alka-
nes are considered. In previous works the Mie parameters (σii and εii) were optimized
simultaneously supported by the PC-SAFT model[1, 3, 6, 107]. Further the parameters
nii were optimized according to the same objective function, although discretized to even
integer values. Similarly, for polar substances, the point charges were discretized along a
predefined grid and the optimization of Mie parameters was done for every charge.

Intramolecular interactions like bond lengths, angle potentials and torsional potentials
were taken from existing force fields, specifically the TraPPE force field [50, 53, 54] and
the OPLS force field [44]. Fixed bond lengths between interaction sites are assumed.

4.2.2. The iTAMie force field
The concept of individualizing a transferable force field is introduced for ensuring good
correlation results for well-known substances. The description of these substances with
transferable force fields is sub-optimal, because the molecular model is adjusted as the
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Table 4.1.: Pair potential parameters of UA-groups: energy parameter ε, size parameter
σ, repulsive exponent n, and point charge q for the TAMie force field

TAMie
pseudoatom i Mi/(g/mol) εi/kB /K σi/Å ni charge qi / e ref.
CH3 (sp3) 15.035 136.318 3.6034 14 [1]
CH2 (sp3) 14.027 52.9133 4.0400 14 [1]
CH (sp3) 13.015 14.5392 4.3656 14 [157]
CH2 (sp2) olefins 14.027 100.681 3.6005 14 [1]
CH (sp2) olefins 13.018 53.9515 3.8234 14 [1]
O aldehydes 15.999 100.85 3.0276 12 -0.422 [3]
CHx neighbor aldeh. -0.038 [3]
CH (sp2) aldehydes 13.019 68.934 3.4941 12 0.46 [3]
O ketones 15.999 65.55 3.093 12 -0.49 [3]
C (sp2) ketones 12.011 32.775 3.919 12 0.49 [3]
O ether 15.999 86.7 2.84 12 -0.30 [6]

Table 4.2.: Bond lengths used in the proposed TAMie force field taken from literature.

type r0 /Å ref
CH3 –CHx x ∈ {1, 2} 1.54 + 0.2 [1, 6]
CHx –CHy x,y ∈ {1, 2} 1.54 [50]
CH3 –CH[––Oald] 1.52 + 0.2 [3]
CH2 –CH[––Oald] 1.52 [53]
CH3 –C[––Oket] 1.52 + 0.2 [3]
CH2 –C[––Oket] 1.52 [53]

Table 4.3.: Bending angles and constants for the proposed TAMie force field taken from
literature.

bending site θ /◦ k0/kB /K/rad2 ref
CHx−CH2−CHy 114.0 62 500 [50, 136]
CHx−Cket−CHy 117.2 62 500 [53]
Cket−CH2−CHx 114.0 62 500 [53]
CHx−Cket−−Oket 121.4 62 500 [53]
CHx−CH−−Oald 121.4 62 500 [53]

Table 4.4.: Torsional potential constants taken from literature.

torsion sites c0/kB /K c1/kB /K c2/kB /K c3/kB /K ref
CHx−CH2−CH2−CHy 0.0 355.03 -68.19 791.32 [44, 50]
CHx−CH2−C−−Oket 2035.58 -736.90 57.84 -293.23 [53]
CHx−C−CH2−CHy -17.26 752.60 14.89 282.10 [54]
C−CH2−CH2−CHx 0.0 355.03 -68.19 791.32 [44, 50]
CHx−CH2−CH2−CH[−−Oald] 11.81 467.80 -274.10 846.80 [53]
C−CH2−CH−−Oald 1182.0 -225.60 302.80 -339.30 [54]
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best compromise in correlating force field parameters to many substances simultaneously.
For the TAMie force field the most pronounced deviations are observed for vapor pressures
(of polar substances), as visualized in Fig. 4.1.

We introduce the individualization parameter ψA that scales all van der Waals energy
parameters εii of a substance A according to

εind
ii = ψA · εii ∀ ii (4.7)

Index ii runs over all 〈(the mathematical symbol ∀ says for for all)〉 interaction sites of
substance A. For determining ψA-values we follow the same optimization procedure as
described for the TAMie force field parameter. The objective function f(p) now only de-
pends on scalar-valued ψA as degree of freedom (instead of a parameter-vector p of higher
dimensionality) because all species A are decoupled and can be considered individually.
The starting value for ψA is unity, leading to results of the original TAMie parameteriza-
tion. We use the PC-SAFT model to approximate and minimize the objective function
f(p) as described by van Westen et al.[107] and Hemmen and Gross[1], leading to a next
iteration value of ψA. As a convergence criterion, we considered the minimization satis-
factory when for two subsequent iteration steps, n − 1 to n the decline of the objective
function is below 0.05% (f (n)(ψA)−f (n−1)(ψA) ≤ 0.05%). Convergence is usually observed
after one to two iterations.

4.2.3. Simulation Details
All simulations were carried out using a monte carlo algorithm in grand canonical ensem-
ble with transition matrix sampling[76, 78, 140], and multiple histogram reweighting[13,
72, 73, 75] in a post processing step. The simulation method is in detail described in two
previous papers[1, 6]. The chosen volumes vary between 50,000 Å3 for smaller molecules
like propane or diethyl-ether to 160,000 Å3 for tetracosane. For all substances the num-
ber of molecules in the simulation volume reached around 300. Only for hexadecane to
tetracosane the maximum numbers were around 200 molecules.

The sampling of insertion, deletion, or regrowth steps was enhanced using the configurational-
biasing (CB) method [83, 158], with one CB-trial steps for each 〈 interaction site 〉 at the
lowest densities up to eight CB-trial steps per interaction site at highest densities. Further
simulation details are summarized in the supporting information.
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Table 4.5.: Comparison of different methods for individualizing the TAMie force field for
two substances (butanone and di-n-pentyl-ether).

scaling method butanone AAD/% di-n-pentyl-ether AAD/% average AAD/%
vdW energy (ψA-value) 1.25 (1.012) 2.1 (0.991) 1.7
vdW size (ψσA-value) 2.5 (1.010) 2.1 (0.9985) 2.3
partial charges (ψqA-value) 1.26 (1.025) 5.0 (0.0) 3.1

4.3. Results

4.3.1. Assessment of the scaling method
This study investigates a simple (one-parameter) concept of individualizing transferable
force fields for substances that are comprehensively characterized by experimental data.

First, we show that scaling the Mie energy parameter according to Eq. (4.7) is a suitable
concept. We compare the approach with two alternative scaling schemes, namely scaling
the Mie size parameter according to σind

ii = ψσA · σii and scaling the electrostatic potential
as qind

i = ψqA · qi. The comparison is made for two representative substances (butanone
and di-n-pentyl-ether). In contrast to our objective function which is defined as the sum
of squared deviations (RMSD), we chose absolute average deviation values (AAD values)
for all comparisons of our results to quasi-experimental data, since AADs are much more
intuitive to interpret and assess. Table 4.5 lists absolute average deviations (AAD) for all
three approaches and shows that scaling the van der Waals energy parameter is indeed
most effective for reducing the deviations in the properties captured in the objective
function. It is interesting to note that the deviations for di-n-pentyl-ether (dpe) can
not be reduced below 5.0 % using the electrostatic scaling, because the value of the
scaling reaches the lower bound of zero (ψqdpe = 0). A graphical representation of the
sensitivities of how the objective function changes with the scaling parameters is given in
the supporting information. With the results of Table 4.5 we conclude that scaling the
Mie energy parameter is the most promising approach if a transferable force field should
be individualized with a single parameter.

We individualized the TAMie force field with correction parameters ψA according to
Eq. (4.7) for various substances of different chemical families: alkanes, olefins, ethers and
ketones. The correction parameters and the corresponding absolute average deviations
(AAD) are summarized in Table F.4. The table also lists deviations for the original TAMie
force field (corresponding to ψA = 1). The considered objective function for optimizing
the parameters ψA includes liquid densities and vapor pressures of the substances for
reduced temperatures TR = T/TC between TR ≈ 0.57− 0.96. Fig. F.4 and F.7 show that
individualizing the force field by adjusting ψA parameters leads to a markedly improved
description of vapor pressures both in AD and in AAD values. The AD and AAD values
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capture deviations between quasi-experimental data (DIPPR[137, 138]) and results from
MC simulations. The improvement of the individualized TAMie to original TAMie is
mild for (linear) apolar species and is particularly pronounced for polar substances. The
liquid densities are only slightly improved (Table F.4). Values of AD (Fig. F.7) are
useful measures for identifying systematic deviations, where the considered properties
(vapor pressure and liquid density) are uniformly over- or underpredicted. For assessing
the ability of a model to approximate experimental data, AAD values, however, are more
meaningful and we restrict consideration to AAD-values henceforth. Tabulated AD values
and graphical representations of AD values are shown in the supporting information.
Graphical representations of Table F.4 are available in the supporting information.
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Figure 4.2.: Individualization of the TAMie force field decreases the absolute average
deviation for calculated vapor pressures from quasi-experimental data[137] significantly.

0.0

1.0

2.0

3.0

4.0

5.0

alkanes alkenes ether ketones

T
A

M
ie

T
A

M
ie

T
A

M
ie

T
A

M
ie|A

D
|p

sa
t

/%

iT
A

M
ie

iT
A

M
ie

iT
A

M
ie

iT
A

M
ie

Figure 4.3.: Individualization of the TAMie force field also decreases the absolute value
of the average deviation for calculated vapor pressures from quasi-experimental data[137]
significantly.
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4.3.2. Alkanes and olefins
The correction parameters ψA for alkanes and olefins differ only slightly from unity. The
most considerable corrections of the Mie energy parameter are about 0.4 % (correspond-
ing to ψA = 1.0 ± 0.004) for branched alkanes and about 0.8 % for 5-methyl-1-hexene.
The TAMie force field already shows good agreement with experimental data for many
alkanes and olefins[1], so that the individualization for these substances does not lead
to a significant improvement. Substances in Table F.4 are marked bold if we consider
the individualization useful. For most alkanes and olefins the original TAMie force field
parameters can be used without the individualization parameter ψA.

4.3.3. Ethers
The smallest member of a homologous series in TAMie is usually parameterized individ-
ually. That is the case for dimethyl-ether[6]. Other ethers are described assuming trans-
ferability of the force field parameters. We individualized diethyl-ether, di-n-propyl-ether
and ethyl-propyl-ether as well as di-n-butyl and di-n-pentyl-ether. Figure 4.4a and 4.4b
show the relative deviations from quasi-experimental data[137] in vapor pressure and liq-
uid density, respectively. The diagrams show results for diethyl-ether and dipropyl-ether
obtained for the TAMie model and for the individualized TAMie force field. The empty
symbols were shown in Fig. 4.1. One observes significant improvement in the correlation of
vapor pressure (Fig. 4.4a), whereas deviations in liquid densities remain almost unaltered
(Fig. 4.4b). In comparison to well-established force fields one might consider the errors of
the original TAMie model for liquid density to be relatively high. These deviations are a
result of the chosen objective function which captures vapor pressures and liquid densities
with equal weights. The final (dis)agreement to the experimental data is entirely defined
by the objective function. The concept of individualizing with a single parameter does
not alleviate these deviations significantly. Of course, if we had used a lower weight for
vapor pressure within the objective function in the outset, the resulting force field would
show a much improved agreement to liquid densities.

In the process of optimizing ethyl-propyl-ether we found that the correlation of the
DIPPR data base for vapor pressure lacks accuracy for higher temperatures. The DIPPR
correlation for vapor pressure is proposed for the temperature range 145.65 K to 500.23 K,
although only values from 246.54 K to 359.96 K were used to fit the parameters of the
DIPPR correlation. We decided to refit the vapor pressure curve considering all avail-
able experimental data points[159–163]. The result is shown in Fig. 4.5. The absolute
average deviation between experimental data and the correlations thereby reduces from
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Figure 4.4.: Deviations in vapor pressure of the iTAMie force field (filled symbols) and
of the TAMie force field (open symbols) from quasi-experimental data, for diethyl-ether
(black symbols) and di-n-pentyl-ether (orange symbols).
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We repeated the optimization of the ψA-parameter for individualizing the TAMie force
field, represented by the filled spheres in Fig. 4.5. The improvement is visible especially
for higher temperatures. The fitting equation and the resulting parameters are given in
the supporting information.
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Figure 4.5.: Relative deviation for the vapor pressure of ethyl-propyl-ether in comparison
to our newly adjusted correlation function. For this empirical correlation function all ex-
perimental data points[159–163] (crosses and filled squares) were used. Crosses represent
the data points used for the original DIPPR correlation (A) and filled squares (N) were
additionally used by us. For comparison, the relative deviation of the DIPPR correlation
to the newly adjusted correlation is also given.
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4.3.4. Ketones
We investigated the behavior of five different ketones. The absolute average deviation
(combined psat and ρliq) reduces from 3.4 % to 1.75 % when applying the correction pa-
rameters ψA to the ketones. Figure 4.6 illustrates the relative deviations in vapor pressure
(spheres) and liquid density (triangles) for butanone and 2-pentanone before and after the
individualization. The figure shows the increased accuracy in vapor pressure, while the
liquid densities have only little variation. In numbers, the errors due to vapor pressure
reduce from 9.27 % to 0.32 % for butanone and from 2.68 % to 1.68 % for 2-pentanone.
Because we chose a single parameter ψA to reduce systematic offsets of calculated vapor
pressure, the slope of the vapor pressure curve is not much affected. In order to keep
the approach simple, we made no attempt to further improve the representation of vapor
pressure or liquid density by introducing more degrees of freedom. The relative deviations
of the liquid density for butanone mildly decrease from 2.56 % to 2.17 %, whereas a slight
increase is seen for 2-pentanone, from 2.25 % to 2.46 %. For example, the vapor pressure
for butanone is overestimated when using the TAMie force field (ψA > 1), while it is
underestimated for longer ketones (ψA < 1).
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Figure 4.6.: Improved description of the vapor pressure for ketones when using the in-
dividualized force field. Filled symbols represent simulation results of the iTAMie force
field while open symbols represent the TAMie force field. Triangles and spheres denote
relative errors of the liquid density and vapor pressure, respectively.

4.3.5. Application to a binary mixture
To clarify the benefit of individualizing the TAMie force field, we apply iTAMie to a
binary mixture. Figure 4.7 shows the phase diagram of butanone and 1-hexene at T =
333.15K. The calculation relies on the simple combining rules, Eq. (5.3) - (5.5), so
that no binary cross-potential parameters were adjusted. Both substances have have
individualized parameters, which leads to different values of the vapor pressure for the
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Table 4.6.: Optimization parameters ψA and AAD of TAMie and iTAMie compared to
DIPPR correlations for different substances. Ethyl-propyl-ether∗ has been adjusted to
quasi-experimental data of a newly fit correlation function. We consider individualiz-
ing useful for substances marked in bold font, whereas for most alkanes and olefins the
improvement lies within the combined uncertainty of experimental data and simulations.

substance AAD TAMie /% AAD iTAMie /% parameter ψA
propane 0.79 0.51 0.9988
butane 1.42 0.56 1.0024
pentane 0.87 0.80 1.0007
hexane 0.62 0.55 1.0004
heptane 1.02 0.96 1.0003
octane 1.28 1.20 1.0010
nonane 1.36 1.29 1.0009
decane 1.64 1.55 1.0016
undecane 2.12 2.04 1.0000
dodecane 2.5 2.5 1.0000
hexadecane 3.51 3.22 1.0022
eicosane 4.57 3.77 1.0027
tetracosane 3.79 3.14 1.0023
2-methylpentane 1.93 1.11 0.9968
3-methylpentane 2.22 0.60 1.0039
2-methylhexane 1.93 1.62 0.9977
2-methylheptane 1.77 1.69 0.9990
1-pentene 1.25 0.85 0.9978
1-hexene 1.86 1.67 0.9986
1-octene 2.08 1.68 0.9976
1-nonene 2.27 1.62 0.9960
1-decene 2.75 2.00 0.9955
1-undecene 2.55 2.49 0.9969
1-dodecene 2.64 2.38 0.9974
1-tridecene 2.89 2.86 0.9985
4-methyl-1-pentene 2.44 2.44 1.0000
5-methyl-1-hexene 4.33 1.92 0.9926
diethyl-ether 3.95 1.16 0.9931
ethyl-propyl-ether 2.22 2.22 1.0000
ethyl-propyl-ether∗ 2.09 1.29 0.9972
di-n-propyl-ether 1.93 0.94 1.0024
di-n-butyl-ether 2.28 1.23 0.9969
di-n-pentyl-ether 5.69 2.11 0.9908
butanone 5.91 1.25 1.0119
2-pentanone 2.46 2.07 0.99671
2-hexanone 2.27 1.57 0.9967
2-heptanone 2.97 2.19 0.9949
2-octanone 3.60 1.67 0.9939
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pure substances in comparison to TAMie. Because the correction parameter for 1-hexene
is close to unity, the right boundary of Fig. 4.7 does not change considerably, whereas for
the left boundary we find a significantly improved representation of the vapor pressure of
pure butanone. For correlating mixtures with high accuracy (and for improved subsequent
predictions), it is usually required to adjust cross-van der Waals parameters, beyond
the simple combining rules applied here. The example of Fig. 4.7 clearly reveals that
meaningful binary interaction parameters for phase equilibria can only be determined
if the pure component vapor pressures are reproduced in sufficiently good agreement to
experimental data.
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Figure 4.7.: Binary mixture of butanone and 1-hexene at a temperature of T = 333
K. Open spheres are results determined with TAMie, filled spheres are results from the
iTAMie force field, and crosses are for experimental data of Hanson and van Winkle[164].

4.4. Conclusion
In this work we showed that the individualization of a transferable force field is a promis-
ing approach. A single scaling parameter is introduced, acting on the van der Waals
energy. The approach significantly reduces errors in vapor pressure for pure substances.
This is especially true for polar substances such as ethers and ketones. For alkanes and
olefins, where the original TAMie model is already in good agreement to experimental
data, the improvement is marginal and the individualized results may lie within the com-
bined uncertainties of simulations and experimental data. The so-obtained results make
predictions and correlations of molecular simulations particularly interesting for applica-
tions in chemical engineering, where the vapor pressure is a critical quantity. The better
agreement for pure component allows adjusting more meaningful binary interaction pa-
rameters for mixtures and should lead to better predictions of mixture phase equilibria.
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5. Phase equilibria of binary mixtures
with alkanes, ketones, and esters
based on the transferable anisotropic
Mie force field

The content of this chapter is a literal quote of the publication

D. Weidler and J. Gross. Phase equilibria of binary mixtures with alkanes, ketones,
and esters based on the transferable anisotropic mie force field. Fluid Phase Equilib.,
490:123–132, 2019

J. Gross had the role of a daily supervisor and was involved in editing the manuscript.
Additions or deletions compared to the published work are marked with angular brackets.

The transferable anisotropic Mie potential (TAMie) is extended to acetates and formates.
The parameters defining the Mie pair potential, which represent the van der Waals in-
teractions as well as point charges were optimized, following an approach of Hemmen
and Gross [J. Phys. Chem. B, 2015, 119, 11695-11707]. Intramolecular bending and
torsion potentials were obtained from quantum chemical calculations. Binary mixtures of
ethyl acetate/hexane and, because mixture data of esters is scarce, butanone/n-hexane,
butanone/n-heptane, 2-pentanone/n-heptane and were examined with the TAMie and the
iTAMie force field. The cross interaction parameters for mixtures of alkanes and ketones
were determined to κCH2O= = 0.0306 and κCH3O= = 0.0542. The mixture of ethyl acetate
and heptane shows an azeotropic point and is predicted very well from simulations in
grand canonical ensemble using the iTAMie force field as comparison with experimen-
tal data shows. Additionally to phase equilibria, we calculated excess properties for the
mixture of hexane and butanone, which also show very promising results compared to
experimental data.
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5.1. Introduction
The accurate extrapolation or prediction of phase equilibria for mixtures is of central
importance for the design and optimization of chemical processes and process equipment.
Molecular simulations with transferable force fields are a powerful tool for predicting
phase equilibria and other thermodynamic properties of pure substances and of mixtures.
Several force fields have been developed with emphasis on thermodynamic properties and
phase equilibria. Among the most established models are the Transferable Potentials for
Phase Equilibria (TraPPE) [40, 50–52, 90, 112, 165], the Optimized Potential for Liquid
Simulations (OPLS) [44–49] and the Assisted Model Building with Energy Refinement
(AMBER) force field [19]. The parameters of OPLS were chosen to represent experimental
properties of liquids. Such properties are e.g. the enthalpy of vaporization and the liquid
density. AMBER stands for a family of force fields. The main purpose is to enable the
modelling of biomolecules, where most investigations focus on conditions around 298 -
313 K and 1 bar, often in aqueous solution. The TraPPE force field was developed to
describe and predict phase equilibria requiring at least a temperature range from the
triple point to the critical point. Emphasis was placed on the representation of coexisting
liquid densities ρL for given temperature T leading to excellent representations of pure
T -ρ projections or of T -x projections, where xi denotes the mole fraction of species i in a
mixture, but the force field shows somewhat higher deviations of vapor pressure.

The aforementioned force fields are based on Lennard-Jones pair potentials for mod-
elling van-der-Waals interactions and fixed point charges for approximating the electro-
static structure of the molecules. Additional degrees of freedom can be introduced to the
parametrization of a force field by using an ansatz function for intermolecular potentials
other than the Lennard-Jones potential, e.g. the Mie potential with three adjustable
parameters per van der Waals interaction site [111, 133, 149, 150] or the Buckingham
potential also with three adjustable parameters [114]. Toxvaerd [117, 147] proposed to
move the interaction site of, say, a CH3 group away from the position of the carbon atom
to effectively account for the presence of hydrogen atoms. The distance of moving united-
atom groups, outwards from the position of the large atom introduces additional degrees
of freedom in the parameterization of a force field. This concept led Ferrando, Boutin,
Ungerer and coworkers to the Anisotropic United Atom (AUA) force field [123–131, 148].

The Transferable Anisotropic Mie (TAMie) force field describes molecules as Mie inter-
action sites (with defined attractive exponent of n = 6) and with fixed point charges. The
development of TAMie is based on a well-defined objective function, where the parame-
terization was conducted simultaneously to several members of a chemical family [1, 3, 6].
The objective function captures squared deviations in calculated vapor pressure and liquid
densities to experimental data. Meaningful predictions were achieved for phase equilib-
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ria of mixtures. Inherent to a force field, where parameters defining interaction sites
are assumed to be transferable from one substance to another substance (and where the
objective function includes several substances of a chemical family), the force field param-
eterization is a compromise leading to more pronounced deviations for each substance, as
compared to force fields individually optimized for a considered substance [166]. To alle-
viate this problem while maintaining the advantage of transferable force field, namely the
ability to predict pure component and mixture behavior of systems weakly characterized
by experimental data, we proposed an individualized version of the TAMie force field [4],
referred to as iTAMie.

In this study we extend the TAMie force field by proposing parameters for esters. The
force field is subsequently applied to binary mixtures containing esters. Because exper-
imental data of mixtures with esters are scarce, we also investigate mixtures containing
ketones. Predicted phase equilibria of mixtures are in rather satisfying agreement to ex-
perimental data using Berthelot-Lorentz combining rules [109, 110]. To further improve
the results we determined transferable cross-energy parameters for mixtures of esters with
alkanes and of ketones with alkanes.

5.2. Force field development
In this section we first describe the development of the intramolecular parameterization of
the TAMie force field. The bond-angle bending and torsional potentials of ester groups are
determined from ab initio calculations of ethyl formate and ethyl acetate. Subsequently,
the development of van der Waals and coulombic parameters is presented.

5.2.1. Ab initio calculations of intramolecular bending and torsional
potentials

In previous work on the TAMie force field [1, 3, 6] bending potentials and torsional poten-
tials as well as most of the bond-to-bond distances between different united atom groups
were taken from existing, well established force fields, mostly from the TraPPE [40, 50–
52, 90, 143, 165, 167] and the OPLS force field [44–48]. For esters a variety of intramolec-
ular potentials is available in literature. Kamath et al. extended the TraPPE force field
to esters [167]. For methyl acetate these authors conducted quantum chemical scans
of the potential energy surface at the HF/6-31g+(d,p) level for the CH3–C–O–CH3 and
O=C–O–CH3 torsional potential. The adjusted potentials smoothly follow these energy
surfaces. The torsional potentials, however, are not independent from each other. When
applying this parameterization all energies are twice as high as expected, because two
torsion potentials contribute to the energy, whereas the parameterization (we suspect)
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projected the total energy on each one torsional potential.
Maerzke et al. recently published torsional potentials for the two dihedrals [168]. They

used electron structure density functional theory with the B3PW91 functional and with
the 6-31++G(d,p) basis set. Because they split the total energy symmetrically to both
dihedrals, their potential function is not applicable to formates using a united-atom force
field. Our goal is to adjust force field parameters for esters, including formates, which is
why we performed MP2 structure optimization using a TZVPP basis set and constraints
for ethyl formate and ethyl acetate. The calculations were conducted using the quantum
chemistry program package TURBOMOLE [169] for the structure optimizations. Figure
5.1 shows the relative energy differences between the optimal structure of ethyl formate
and different predefined dihedral angles of the O=CH–O–CH2 torsion obtained with the
MP2 structure optimization. The resulting energy function, with torsional parameters
listed in Table 5.3, is almost identical to the energy calculated with the TraPPE poten-
tial function, except that our approach is only based on one dihedral in a united-atom
model. We adjusted a torsional potential function to the energies observed from the MP2
calculations of ethyl formate and apply these parameters to all other formates.

Figure 5.2 gives the energy surface of the CH–O–CH2–CH3 dihedral of ethyl formate
and the C–O–CH2–CH3 dihedral of ethyl acetate in comparison to the torsional potential
used by TraPPE [165], which has its origin in OPLS [49]. Because our quantum chemical
calculations showed a different behavior of this dihedral, we adjusted a new potential
function to ethyl formate. Quantum chemical scans for ethyl acetate confirm that the
potential function can also be applied to other esters.

Figure 5.3 shows the energy landscape for different dihedral angles of the O=C–O–CHx

torsion of acetates. The value of 0 ◦ corresponds to the cis configuration. The O=C–O–
CHx dihedral and the CHy–C–O–CHx dihedral share the same axis (C–O) and the central
carbon atom is sp2 hybridized, so that we assume a 180 ◦phase shift between these two
dihedrals and adjust our potential function with equal weights to both dihedrals. For
comparison the potential functions of TraPPE for esters [167] and for acrylates [168] are
also shown. The parameters of all potential functions are listed in Table 5.3.

5.2.2. Optimization of intermolecular force field parameters for
esters

In agreement to earlier work on the TAMie force field [1, 3, 4, 6], the pair potential between
two interaction sites located on different molecules, or positioned more than three bonds
apart within the same molecule, is given as the a Mie potential plus an electrostatic
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Figure 5.1.: Torsional energies for the O=CH–O–CH2 dihedral of ethyl formate calculated
with the MP2 approach (crosses) and the proposed torsional potential (solid line) of
TAMie. For comparison the torsional energies from TraPPE [168] (dashed dotted line)
are included. However, in TraPPE these energies are a result of two combined dihedrals.
Because there is only one dihedral along the CH-O axis in a united atom model of formates,
we adjusted a new potential function.
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Figure 5.2.: Torsional energies for the CHx-O-CH2-CH3 dihedral angle in esters calculated
with the MP2 approach (red crosses) for ethyl formate (index x = 1) and the proposed
torsional potential (black solid line). The MP2 calculation for ethyl acetate (index x = 0)
is also shown (black spheres). For comparison the potential function of the TraPPE force
field [165] is given. This torsional potential has its origin in the OPLS model [49] and was
adjusted to ethyl methyl ether.
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Figure 5.3.: Torsional potentials for ethyl acetate. Comparison of ab initio calculations
on MP2 level (red crosses) to the adjusted potential functions of TAMie (black solid line).
The dotted line is the potential function of Kamath et al. [167] and the dashed dotted
line is the TraPPE potential function [168]. The energies of all potential functions are the
result of two combined dihedrals, namely of O=C–O–CH2 and of CH3–C–O–CH2 with a
phase shift of 180◦ between them according to the sp2 hybridization of the central carbon
atom. The black filled circles show the energy obtained by Kamath et al. [167] through
quantum chemical optimization of methyl acetate.

potential, as

uij = c(nij) · εij


(
σij
rij

)nij
−
(
σij
rij

)6

+ qiqj

4πε0rij
(5.1)

with rij as the distance between two interaction sites i and j, εij is the van der Waals
energy parameter, σij denotes the corresponding size parameter. Further, nij is the re-
pulsive exponent, and qi is the partial point charge. The partial charge or the energy
parameter εij can be zero for a given pair of interaction sites i and j. Further, ε0 is the
vacuum permittivity and the constant c(nij) is defined to ensure the minimum of the Mie
potential at −εij, with

c(nij) =
(

nij
nij − 6

)(
nij
6

) 6
nij−6

(5.2)

For cross-wise parameters of the Mie potential we adopt the Lorentz-Berthelot combining
rules [109, 110]

σij = 1
2 (σii + σjj) (5.3)

εij = √εiiεjj (5.4)
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and an arithmetic mean for the repulsive exponent nij, as

nij = 1
2 (nii + njj) (5.5)

Like in previous work on the TAMie force field [1, 3, 6] we treated the effective two-body
van-der Waals and the effective (non-polarizable) point charges as adjustable parameters.
Parameters of esters are perceived as transferable with both ester-oxygen and with the
connecting ester-carbon atom as van der Waals interaction sites. Because the smallest
members of a homologous series often have non-transferable force field parameterizations,
we consider the subgroup of formates (i.e. all methanoates) through an individual set of
TAMie parameters, whereas all other esters are treated as transferable.

To obtain an optimal set of parameters we used the method described by van Westen
et al. [107] and modified by Hemmen and Gross [1]. This procedure uses the Perturbed-
Chain Statistical Associating Fluid Theory (PC-SAFT) equation of state to approximate
the objective function of the force field optimization. Aplying PC-SAFT is useful because
the multidimensional parameter optimization within the analytic model is conducted in
milliseconds and is thus much faster than performing a full force field optimization based
only on (many subsequent) molecular simulations. The force field parameters so deter-
mined from PC-SAFT are used as a next iteration step with molecular simulations. The
optimization procedure using an analytic equation of state (PC-SAFT) is iterative because
the equation of state only approximates the true objective function when extrapolating
force field parameters. Once convergence is achieved, however, the analytic equation of
state does not act on the objective function, as shown by Hemmen and Gross [1], and the
procedure thus minimizes the actual objective function. The optimization procedure was
used to obtain van der Waals parameters of the esters. Point charges were changed along
a predefined grid of values, with values around the point-charge values from the TraPPE
force field. For each value of the point charge along the predefined grid, we optimized the
size parameters σii and energy parameters εii. In order to reduce the number of degrees
of freedom in this multi-dimensional optimization problem, we introduced fixed ratios for
σii/σjj and εii/εjj. These ratios were taken from the TraPPE force field [167], defined as:
σ−(H)C/σ−O = 1.3643, σ=O/σ−O = 1.0893, ε−(H)C/ε−O = 0.7273 and ε=O/ε−O = 1.4364.
The index -(H)C implies that we took these ratios both for formates and acetates.

The optimization minimizes the objective function

f(p) = 1
N exp

Nexp∑

n=1

(
Ωsim
n (p)− Ωexp

n

Ωexp
n

)2

(5.6)

where Ωsim
n and Ωexp

n are simulated and experimental observables, respectively, and N exp

is the number of experimental data points. We use liquid density and vapor pressure data
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as observables in the objective function, Ω ∈
{
ρL, psat

}
, with equal weight between them.

In the objective function, we consider liquid density and vapor pressure data of several
substances simultaneously. By regarding several species within the optimization problem,
we ensure a balanced compromise in the resulting force field parameters.

Force field parameters of formates and of acetates were optimized independent of one
another. Ethyl acetate, propyl acetate, butyl acetate and pentyl acetate were used for
the optimization of acetates. And ethyl formate, propyl formate and butyl formate were
defined as the training set for the optimizing the formate-parameters of the TAMie force
field.

5.3. Simulation details

5.3.1. Pure substances
Simulations for pure substances were performed in the grand canonical ensemble, using
histogram reweighting in a post-processing step. In the grand canonical ensemble the
temperature T , volume V and chemical potential µ are fixed whereas the number of
molecules N fluctuates. We use the transition matrix method [76, 78, 140] to determine a
bias potential on the fly, ensuring an approximately equal sampling of N . Furthermore, we
divide theN -space into several windows and run a separate simulation of each window. All
simulations run in parallel and only require an overlap between two neighboring windows.
If the first window samples N between 0 and 10, for example, then the second window
samples between N = 10 and 20. The bias potential from transition-matrix sampling
ensures that the overlapping molecule number between two windows (N = 10 in the
example) is well-sampled from both sides, making wider overlaps and weighting schemes,
such as the Ferrenberg-Swendsen approach [73] unnecessary. Any attempt of inserting
a molecule beyond the upper bound of a window is trivially rejected (and analogously
for the lower bound). Using the multiple ensemble technique [141] these windows can be
combined to a total histogram. A detailed description of the simulation techniques can
be found in previous works [1, 6].

The volume of the simulation box varied between 50,000 Å3 for ethyl formate and
80,000 Å3 for pentyl acetate, corresponding to about 300 molecules for the highest den-
sities of each substance. Probabilities for the different moves were set to: particle inser-
tion/deletion 40%, translational and rotational displacement 50% and particle regrowth
10%. The cut-off radius is Rc = 14 Å and analytic tail corrections are applied. For
coulombic interactions we apply standard Ewald summation with the damping param-
eter α = 7.59/L and the maximum number off k-vectors set to kmax = 9 in each di-
rection. Esters are ’branched’ molecules and require careful generation of trial configu-
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rations for growing a new molecule, for regrowing an existing molecule, and for deter-
mining the Rosenbluth weight when trial-deleting a molecule in a configurational biasing
scheme [51, 83, 158]. The branching node with neighboring interaction sites is defined as
a molecular fragment, similar to how Shah and Maginn define molecular fragments [87].
We apply a Monte Carlo scheme with importance sampling on isolated molecules to gen-
erate representative trial configurations [170]. The generation of these fragments occurs
during runtime up to a maximum number of N fragment = 5 · 105 equilibrated, represen-
tative configurations. The coordinates of these branching nodes (fragments) are stored
in a simple array in random-access memory. After N fragment fragments are stored, we do
not continue to generate new configurations, but randomly draw branching nodes from
the existing 5 · 105 fragments, which significantly accelerates the calculation. The struc-
tures of a branching node are generated using the correct probability distribution of angle
potentials and only the torsional potential (and intermolecular potentials) need to be as-
sessed in a CBMC trial configuration. This approach is similar to methods proposed in
refs [87, 89, 114]. The MC code is written and maintained by members of our research
group. A comparison to results from Cassandra [171], an established open source code,
was given in a previous study [3]. Further simulation details, such as the number of equi-
libration and production steps and the number of configurational biasing steps are given
in the supporting information.

5.3.2. Binary mixtures
The simulation of binary mixtures mainly follows the scheme proposed by Shen and
Errington [79] where simulations in grand canonical ensemble with transition matrix
methods are carried out to calculate phase coexistence properties of binary Lennard-Jones
mixtures.

Similar to the case of pure substances, we divide the simulation domain into different
windows of a fixed size ∆N1×∆N2. For every window a Monte Carlo simulation in grand
canonical ensemble is executed with five different moves: particle insertion 20%, particle
deletion 20%, translational displacement 25%, rotation 25% and particle regrowth 10%.
The cut-off distance and parameters of the Ewald summation are the same as detailed
for pure substances. A configurational bias scheme [51, 83, 158] in conjunction with
first storing branching nodes in an array (library) and later randomly drawing from that
library [87, 89, 114] improves the statistics of insertion, deletion and regrowth moves
with increasing step numbers for higher densities. A histogram P (N1, N2), i.e. a relative
probability distribution of molecule numbers, is the result of every simulated window. To
get the overall probability density P (N1, N2) the histogram of all windows are stitched
together according to a scheme described in ref. [6].
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5.3.3. Cross-energy parameters κij for binary mixtures
The cross-wise potential between two van der Waals united-atom sites can be approxi-
mated using Lorentz-Berthelot combining rules, according to Eq. (5.3) and (5.4). In fact,
the Berthelot-Lorentz combing rules have gone into the parameterization of the pure sub-
stances. For mixtures, we allow the cross-energy parameter εij between united-atom group
i of one species and group j of another species to deviate from the Berthelot rule. We
express the cross-energy parameter as the Berthelot value minus a correction, according
to

εij = (εii + εjj)0.5 (1− κij) (5.7)

These cross-energy parameter κij can be determined with help of the PC-SAFT equation
of state. The connection between κij and the binary interaction parameter kαβ of PC-
SAFT is described by Schacht et al. [108] and by Waibel et al. [58], where α and β are
different substances. (We note that in the original articles [58, 108] parameter kαβ was
referred to as kij because in these references i and j indicate different substances). To
achieve meaningful cross-energy parameters, one can consider several mixtures containing
the same chemical families simultaneously in the objective function, and optimizing for
κij. For the optimization, we use PC-SAFT, as described in previous work [58, 108].

5.4. Results
This study proposes a transferable force field for esters, with a parameter-set for for-
mates and another parameter-set for other esters. First, the intramolecular potential is
described. Then, the optimization of force-field parameters of pure esters is detailed.
Subsequently the phase behavior of mixtures of n-alkanes with esters and of alkanes with
ketones is investigated. For an improved representation of substances with well-known
properties, we furthermore individualize the TAMie force field and we adjust binary cross-
energy parameters κij. In addition to phase equilibrium properties of mixtures we calcu-
late excess properties of mixtures in the liquid phase and compare results of the TAMie
force field to experimental data.

5.4.1. Intramolecular potential
Table 5.1 lists the parameters and literature references for the bond lengths. The bond
length between a -CH3-group and a neighboring carbon-group is in the TAMie force field
extended by 0.2Å compared to the carbon-carbon atom distance, to better account for
the hydrogen in the -CH3-group. Tables 5.2 and 5.3 list the parameters and literature
references for bending and torsional angles, respectively. Some values in these tables are
taken from literature, while others were adjusted to ab initio calculations as described in
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Table 5.1.: Bond lengths of the TAMie force field for esters.

Group 1 Group 2 Distance /Å reference
-C(H) ester -O ester 1.344 [167]
=O ester -C ester 1.200 [167]

-CH3 -C ester 1.54 + 0.2 [1]
-CH2 -C ester 1.54 [1]
-CH2 -O ester 1.41 [167]

Table 5.2.: Angle bending parameters of the TAMie force field for esters.

Type θ0/ ◦ k0/kb/ K/rad2 reference
O–CH2–CHx (ester) 108.8 88418.0 this work
CHx–CH2–C (ester) 114.0 62500.0 [50, 136, 165]
C–O–CHx (ester) 115.0 62500.0 [167]
O=C–CHx (ester) 115.0 62500.0 [167]
O–C–CHx (ester) 110.0 70600.0

O=C–O (acetates) 125.0 62500.0 [167]
[O=]CH–O–CHx (formates) 116.4 72570.0 this work

O=CH–O (formates) 126.6 136890.0 this work

previous sections. For the torsional potential we apply three types of expansions, namely

Utors

kB
= c0 + c1 cos(φ) + c2 cos(2φ) + c3 cos(3φ) (5.8)

Utors

kB
= c0 + c1 (1 + cos(φ)) + c2 (1− cos(2φ)) + c3 (1 + cos(3φ)) (5.9)

Utors

kB
=

3∑

n=0
cn(cos(ϕ+ π))n (5.10)

which, for the shifting angle π = 0, can be related to Eq. (5.8). The second-last column of
Table 5.3 allocates the torsional parameters to the appropriate torsional model, Eq. (5.8)
to (5.10).

Table 5.3.: Torsional potential parameters of the TAMie force field for esters.

torsion sites c0/kb /K c1/kb /K c2/kb /K c3/kb /K Eq. reference
O=C–O–CHx 2039.19 -808.02 -1155.28 -75.90 (5.8) this work
CHx–C–O–CHy 2039.19 +808.02 -1155.28 +75.90 (5.8) this work
O=CH–O–CHx 2205.23 -907.66 2758.96 -212.79 (5.9) this work
(H)C–O–CH2–CHx 0.0 1293.83 -899.46 583.80 (5.9) this work
O–CH2–CH2–CHx 0.0 176.62 -53.34 769.93 (5.9) [165]
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5.4.2. Pure esters
Pure formates

We first regard the chemical family of formates. The optimized parameters are σ−HC=,
σ=O, σ−O− as well as ε−HC=, ε=O, ε−O− and partial charges. Whereas all σii and εii were
optimized simultaneously, we considered varying partial charges in a range q-HC= = 0.36
to 0.50 in a predefined grid of 8 points and optimized all other parameters for each of
the 8 grid points. Charge q-HC= refers to the carbon atom with a double bond towards
the neighboring ester oxygen atom (=O). The three other charges are then defined as
q=O = −q-HC=, q-O- = −0.625 · q-HC=, and qCHx = 0.625 · q-HC=, for the double and single
bonded ester oxygen and for the neighboring CHx-group, respectively.

The objective function (Eq.(5.6)) includes vapor pressure data and liquid density data of
ethyl formate, propyl formate and butyl formate in a temperature range of T/T ci = 0.56
to T/T ci = 0.95, where T ci is the experimental critical temperature of the considered
species. For each set of point charges the optimization of all van der Waals parameters
was carried out automized, i.e. the iterative procedure was automated where one iteration
step comprises MC-simulations, histogram reweighting for phase equilibrium properties,
and parameter optimization using PC-SAFT. Figure 5.4 presents the result (i.e. the
lowest deviation) for varying point charges. For formates the lowest overall deviation
was found for the point charge of the carbon site (next to the double bonded oxygen) as
q-HC=/e = 0.48. Partial charges are given dimensionless, as factors of the unit electron
charge e.

The objective function is defined as the sum of squared deviations (RMS). For assessing
how the objective function varies with a force field parameter, as done in Fig. 5.4, it is
useful to regard RMS values. However, for presenting results on single properties (such
as vapor pressure or liquid densities) we give deviations as absolute average deviation
(AAD) or as relative deviations from experimental data, because these measures are more
tangible and intuitive to interpret. Relative deviations are used for graphical comparison
of calculated results to experimental data, with relative deviation defined as Ωsim

n −Ωexp
n

Ωexp
n

,
where Ωn as the n-th data point of the property of interest. AAD-values and RMS-values
are defined in the supporting information. Figure 5.5 shows the vapor pressures of three
formates with q = 0.48 in a Clausius-Clapeyron diagram and compares them to quasi-
experimental data [137]. Because errors are not easily assessable in this representation,
Figure 5.6 shows the same results as relative deviations of the vapor pressure for the
three formates. Ethyl formate and propyl formate are found in good agreement with
quasi-experimental data [137], except at low temperatures where the absolute relative
deviations increase. The vapor pressure of butyl formate, however, is underestimated over
the entire temperature range. Figure 5.7 shows that liquid densities are underestimated
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for lower temperatures and overestimated near the critical point. The combined AADs of
vapor pressures and liquid densities are 1.3 % for ethyl formate, 2.0 % for propyl formate
and 2.7 % for butyl formate. AADs for the liquid densities lay between 0.8 % and 1.1 %.
For vapor pressures the AADs are 2.0 % for ethyl formate, 3.3 % for propyl formate
and 4.2 % for butyl formate. Although the description of the vapor pressure of butyl
formate has a significant error compared to DIPPR data, the combined overall deviation
(Eq. (5.6)) is minimal with this set of adjustable parameters.
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Figure 5.4.: Root mean square (RMS) deviations for formates of both, calculated vapor
pressure psat and liquid density ρL from experimental values. Black spheres represent
averaged RMS-values for all three formates, each for optimized van der Waals parameters.
Black solid line is regression curve. The minimum for the combined optimization therefore
is at q-HC= = 0.48e.

Pure acetates and other esters

The force field parameters assigned to all esters other than formates were adjusted to four
substances: ethyl acetate, propyl acetate, butyl acetate, pentyl acetate. Similar to the
optimization of formates we adjusted σ>C=, ε>C=, and the partial charge q¿C=. The ratios
between σ>C=, σ=O, σ−O− and the ratios between ε>C=, ε=O, ε−O− were fixed in order to
reduce the dimensionality of the force field optimization problem to three dimensions.

Figure 5.8 presents the root mean square error of the four pure acetates that are member
of the objective function for different point charges between q¿C= = 0.34 and q¿C= = 0.44.
Each point represents an optimal value with respect to the van der Waals parameters
σ>C= and ε>C= (and the other related van der Waals parameters). For q¿C= = 0.38 the
combined error of vapor pressure and liquid density is minimal and we use this value
henceforth.
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Figure 5.5.: Comparison of calculated vapor pressures from the TAMie force field to quasi-
experimental data [137] for ethyl-formate (blue), n-propyl-formate (orange), n-butyl-
formate (green).
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Figure 5.6.: Relative deviations of calculated vapor pressure from quasi-experimental
data [137] for formates in the reduced temperature range from TR = 0.56− 0.96. Blue,
orange and green spheres denote the relative deviations of ethyl-formate, n-propyl-formate
and n-butyl-formate, respectively.
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Figure 5.7.: Relative deviations of calculated liquid densities for formates from quasi-
experimental data [137]. Blue, orange and green spheres denote the relative deviations of
ethyl-formate, n-propyl-formate and n-butyl-formate, respectively.
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Figure 5.8.: Root mean square (RMS) deviations of both, calculated vapor pressure psat

and liquid density ρL for acetates from experimental values. Black spheres represent
averaged RMS-values for all four acetates, each for optimized van der Waals parameters.
Black solid line is regression curve. The minimum for the combined optimization therefore
is at q¿C= = 0.38e.Blue, orange, green and red lines are the root mean square errors of
ethyl, n-propyl, n-butyl and n-pentyl acetate, respectively.
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Table 5.4.: van der Waals (Mie) parameters and point charges of the TAMie force field
for esters.

type Mi /(g/mol) σ /Å ε /K ni q /e ref
–CH3–[CH2] 15.035 3.6034 136.318 14 [1]

–CH2– 14.027 4.0400 52.9133 14 [1]
–CHx–[O ester] 14 +0.2375 this work

–O ester 15.999 2.727 33.66 12 −0.2375 this work
=O ester 15.999 2.970 48.34 12 −0.380 this work
–C ester 12.011 3.720 24.48 12 +0.380 this work

–CHx–[O formates] 14 +0.300 this work
–O formates 15.999 2.619 68.461 12 −0.300 this work
=O formates 15.999 2.853 98.334 12 −0.480 this work
–CH formates 13.019 3.573 49.789 12 +0.480 this work

Figure 5.9 shows the relative deviation of the vapor pressure of 4 acetates compared to
quasi-experimental data [137]. The simultaneous optimization of all four substances led
to good agreement between calculated vapor pressures and experimental data for propyl
and butyl acetate, whereas the vapor pressure for ethyl acetate is underestimated and for
pentyl acetate it is underestimated for lower and overestimated for higher temperatures.
The absolute average deviations (AADs) of the vapor pressures are 6.89 % for ethyl ac-
etate, 0.91 % for propyl acetate, 1.13 % for butyl acetate and 2.43 % for pentyl acetate.
The AADs for the liquid densities of the four acetates range between 0.38 and 0.71 %. Fig-
ure 5.10 gives a graphical analysis of the relative deviations of liquid densities confirming
a rather good agreement to quasi-experimental data. (In this diagram, we use a refined
scale for the relative deviations compared to Fig. 5.9, although both quantities enter with
the same weight into the objective function). Figure 5.11 provides the T -ρ-projections for
acetates.

5.4.3. Individualized pure esters
To overcome some shortcomings of transferable force fields, we recently introduced a cor-
rection parameter ψA acting on all van der Waals energy parameters εii of one substance
A. That leads to a more accurate description of the vapor pressures for well known sub-
stances while preserving the strength of a transferable force field that it can be applied
to substances not well characterized by experimental data [4]. The individualization pa-
rameter ψA modulates the van der Waals energy parameters according to

εind
ii = ψA · εii ∀ ii (5.11)
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Figure 5.9.: Relative deviations of calculated vapor pressure from quasi-experimental
data [137] for acetates in the reduced temperature range from TR = 0.57 − 0.96. Blue,
orange, green and red spheres denote the relative deviations of ethyl, n-propyl, n-butyl
and n-pentyl acetate, respectively.
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Figure 5.10.: Relative deviations of calculated liquid densities from quasi-experimental
data [137] for acetates. Blue, orange, green and red spheres denote the relative deviations
of ethyl, n-propyl, n-butyl and n-pentyl acetate, respectively.
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Figure 5.11.: Comparison of calculated phase equilibrium data from the TAMie force
field to quasi-experimental data [137] in a T -ρ-projection. The black solid line are quasi-
experimental data and blue, orange, green and red spehres denote the simulation results
of n-pentyl-acetate, n-butyl-acetate, n-propyl-acetate and ethyl-acetate, respectively.

The index ii runs through all united atom groups of substance A and we briefly refer to
this force field parameterization as individualized transferable anisotropic Mie (iTAMie)
force field.

Following this scheme, we determined ψA for ethyl acetate to pentyl acetate and for
ethyl formate to butyl formate. Table 5.5 gives the AAD values without (ψA = 1) and with
individualization of the TAMie force field. Vapor pressure is most sensitive to parameter
ψA and is most significantly improved through the individualization step. For acetates
the improvement of psat is pronounced only for ethyl acetate, where the deviation in vapor
pressure is reduced from 6.9 % to 3.3 % whereas the liquid densities are almost unaffected
(0.4 to 0.6 %). For formates the improvement of psat is pronounced for butyl formate,
where the deviation is reduced from 4.3 % to 1.0 % and it is moderate for propyl formate,
with deviations in vapor pressure decreasing from 3.4 % to 2.0 %. The liquid densities for
ethyl formate are slightly improved (0.7 to 0.3 %) whereas the liquid densities for propyl
formate and butyl formate are unaffected within the statistical uncertainties.

5.4.4. Binary mixtures
We investigated the phase behavior of a mixture of ethyl acetate with heptane. Because
experimental data for phase equilibria of mixtures with esters is scarce, we also study
the phase behavior of three different alkane/ketone mixtures, namely butanone with n-
hexane, butanone with n-heptane, and 2-pentanone with n-heptane.

Figure 5.12 shows a mixture of ethyl acetate and heptane at T = 343.15 K determined

91



5. Phase equilibria of binary mixtures with alkanes, ketones, and esters based on TAMie

Table 5.5.: Comparison of the combined absolute average deviations for the TAMie and
iTAMie force field.

substance AAD TAMie /% AAD iTAMie /% ψA
ethyl acetate 3.6 1.9 0.9923
propyl acetate 0.9 0.8 1.0012
butyl acetate 1.1 0.6 1.0021
pentyl acetate 2.4 2.4 1.0000
ethyl formate 1.4 1.3 0.9967
propyl formate 2.1 1.3 0.9862
butyl formate 2.7 1.9 0.9969

with the iTAMie force field. Using iTAMie (rather than TAMie) is advantageous because
errors in the vapor pressure have a strong influence on the resulting phase diagram on the
pressure-scale of this binary diagram. Even with the individualization the vapor pressure
for ethyl acetate is slightly underestimated for this temperature, as seen on the left hand
side of Figure 5.12. Overall, however, we consider the resulting phase diagram to be in
rather good agreement with the experimental data, especially considering the fact that
no cross-energy parameters κij were adjusted to obtain the azeotropic behavior.
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Figure 5.12.: Phase diagram of ethyl acetate with heptane at T = 343.15 K. Red filled
circles represent results of the iTAMie force field (without corrections to the Berthelot-
Lorentz combining rules) and black crosses show experimental data [172].

Experimental data for mixtures of esters with alkanes is scarce, which is why we also
investigate mixtures of ketones with n-alkanes. The TAMie force field for ketones was
earlier reported [3]. The phase diagram of butanone in mixture with n-hexane is shown
in Fig. 5.13 for three levels of modelling: the topmost diagram shows predictions of the
TAMie force field, with a satisfying agreement to experimental data. The vapor pressure
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of pure butanone is somewhat underestimated. The individualization inherent to the
iTAMie force field leads to an improved description of the vapor pressure of pure butanone,
as the center diagram of Fig. 5.13 shows. The bubble-point pressure and dew point
pressure is slightly underestimated. As a third level of modelling, we adjust binary cross-
energy parameters by rescaling energy-parameters εij as determined from the Berthelot
combining rule with the factor (1 − κij), according to Eq. (5.7). The lowest diagram of
Fig. 5.13 shows the phase diagram of butanone with hexane with the resulting binary cross
interaction parameters κCHX ,O = κCHX ,C(Ketone) = 0.082 where CHX represents both, a
CH3 and a CH2-group. The results from the molecular simulations are thereby in very
good agreement to the the experimental data. For adjusting meaningful cross interaction
parameters κij, it is of importance to represent vapor pressures of pure substances with
sufficient accuracy.

In Figure 5.14 and 5.15 we investigate the transferability of force field parameters to
mixtures of butanone with n-heptane and of 2-pentanone with n-heptane, respectively.
Values of κ initially determined for the mixture of butanone with n-hexane were trans-
ferred to these two mixtures without further adjustment. Transferring binary parameters
to butanone / n-heptane at somewhat lower temperatures is a rather small step and
gives good agreement to experimental data, as Figure 5.14 shows. For the mixture of
2-pentanone with n-heptane one observes somewhat higher deviations of iTAMie to ex-
perimental data (Figure 5.15).

Figure 5.16 shows the excess enthalpy of the mixture butanone and hexane at T =
298.15 K calculated from the iTAMie force field in comparison to experimental data
of Kiyohara et al. [175] and Murakami et al. [176]. This diagram suggests that good
predictions of excess properties can be obtained for force fields parameterized to phase
equilibrium properties. Good agreement for the excess enthalpy specifically implies that
the temperature behavior of the phase equilibrium is robust for extrapolations in tem-
perature, as the Gibbs-Helmholtz equation demands. Monte Carlo simulations in grand
canonical ensemble with transition matrix and histogram reweighting is a suitable method
to obtain excess quantities with rather low statistical uncertainty.

5.5. Conclusion
In this work we developed parameters of the TAMie force field for esters. A distinction is
made between formates and other esters (whereby mainly acetates are considered). This
study provides intramolecular potentials for esters determined from ab initio calculations.
Van der Waals parameters and partial charges for the ester group were obtained by min-
imizing a clearly defined objective function defined for several substances simultaneously.
Phase equilibria calculated with the proposed TAMie force field are in good agreement to
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Figure 5.13.: Vapor liquid equilibrium of butanone with n-hexane at T = 333.15 K.
Black symbols are results from the TAMie force field. Red spheres are results from the
iTAMie force field. The blue filled spheres represent results from the iTAMie force field
with adjusted cross-energy parameters κCHX ,O = 0.082 and κCHX ,C(Ketone) = 0.082 with
X ∈ {2, 3}. Black crosses represent experimental data from Hanson and van Winkle [164].
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Figure 5.14.: Vapor liquid equilibrium of butanone with n-heptane at T = 323.15 K.
Black symbols are results from the TAMie force field. Red spheres are results from the
iTAMie force field using cross-energy parameters obtained from Fig. 13. Black crosses are
experimental data from Aristovich et al. [173]
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Figure 5.15.: Vapor liquid equilibrium of 2-pentanone with n-heptane at T = 363.15 K.
Black symbols are results from the TAMie force field. Red spheres are results from the
iTAMie force field using cross-energy parameters obtained from Fig. 13. Black crosses are
experimental data from Scheller and Rao [174]
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Figure 5.16.: Excess enthalpies hE for the mixture of butanone and hexane at T =
298.15 K. There is good agreement between the experimental data [175, 176] (black
crosses) and results from the iTAMie force field (red circles).

experimental data.
Phase equilibria and excess properties of mixtures were investigated. Good agreement

of results from the TAMie force field to experimental data was observed for the mixture
of ethyl acetate with hexane. For mixtures of ketones with n-alkanes the TAMie force
field was also seen in good agreement to experimental data, especially once transferable
cross interaction parameters were adjusted. The calculated excess enthalpy hE of the
system butanone/hexane closely follows experimental data, implying (through the Gibbs-
Helmholtz relation) robustness in extrapolations to other temperatures.
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6. Conclusion and outlook

This work presents new TAMie force field parameters for pure polar substances like ke-
tones, aldehydes and esters as well as TAMie parameters for small cyclic alkanes. TAMie
is a transferable united-atom force field. Force field parameters for intermolecular in-
teractions (van der Waals parameters σii and εii and point charges) were optimized by
minimizing an objective function containing experimental vapor pressures and liquid den-
sities often using several members of a chemical family. Very good correlation results are
obtained for these quantities (vapor pressure and liquid densities). Intramolecular force
field parameters were either adjusted to quantum mechanical calculations (esters) or were
taken from literature after assessing them through quantum mechanical calculations.

To speed up the minimization of the objective function, the PC-SAFT equation of state
was used as a surrogate model as proposed by Hemmen and Gross[1]. The procedure
starts with conducting Monte Carlo molecular simulations. The PC-SAFT equation is
explicitely expressed in terms of the force field parameters and the objective function is
then minimized using the PC-SAFT model. The computational cost of this minimization
step is low. To obtain the true minimum of the objective function, the sequence of
conducting Monte Carlo simulations and minimizing the objective function using the
PC-SAFT model is iterative. Usually, the optimum of the objective function was found
after 3-5 iterations. PC-SAFT was also used to generate the input conditions for the
molecular simulations, i.e. defining suitable (T, µ)-conditions to approximately trace the
phase envelope of a substance.

The whole procedure of generating input conditions, examining molecular simulations
in Grand Canonical ensembles, post-processing, minimizing the objective function and
generating new input parameters, was automated by an MPI (Message Passing Interface)
implementation (see Appendix A). For the Grand Canonical Monte Carlo simulations,
the phase space was devided into several windows. Each window is considered as a
single molecular simulation which needs a certain amount of CPU time to finish. For
the post processing - i.e. combining and reweighting the histograms and calculating
the sustance properties - all simulations have to be combined. The duration of a single
simulation, however, depends on the number of molecules in the window. For large
molecule numbers (representing the liquid phase) the required simulation time is longer
than for small molecule numbers (representing the vapor phase). The reserved cores were
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utilized about 20 % more efficiently when two windows of different densities were run on
the same core in sequence, compared to the trivial solution of running each window on a
seperate core.

Individual parameters were assigned and optimized for cyclopentane and cyclohexane.
Absolute average relative deviations (AAD) in vapor pressure and liquid density are 0.5
% compared to experimental data. For ketones, as presented in chapter 3, minimizing the
objective function for three ketones (butanone, 2-pentanone and 2-octanone) led to an
AAD of 4.0 % (combined deviation of vapor pressures and liquid densities) and are dom-
inated by the deviations in vapor pressure. Transferring these parameters to 3-pentanone
and 2-hexanone yields a combined deviation (AAD) of 2.4 %, which confirms the trans-
ferability of the determined parameters. Taking all five simulated ketones into account,
the average combined deviation (AAD) in vapor pressure and in liquid density is 3.5 %.
The error in liquid density is high (2.2 %), compared to other force fields, however, the
deviation in vapor pressure – compared e.g. to established transferable force fields like
TraPPE – is significantly lower.

This work also introduces the concept of individualized transferable force fields (iTA-
Mie), as presented in chapter 4. The concept offers the possibility to maintain the predic-
tive character of a transferable force field for substances with scarce experimental data,
while avoiding higher deviations of the force field with respect to experimental data for
well-measured substances. Especially for polar substances such as ethers and ketones, the
introduction of iTAMie reduced average deviations in vapor pressures from 5.4 % to 1.3 %
and from 4.8 % to 1.6 %, respectively. This feature is also useful when predicting the
behavior of mixtures. It was shown, that this approach works for determining phase equi-
libria of mixtures, by applying it on the (azeotropic) mixture of butanone and 1-hexene.
With the individualized force field, the mixture properties are in good agreement with
experimental data.

In chapter 5 transferable force field parameters for esters (split into the subgroups of
formates and other esters) were developed with combined AADs of 2.1 % for formates and
2.0 % for acetates. Mixtures of ketones with alkanes were investigated and it was shown,
that the combination of an individualized transferable force field and transferable cross-
energy parameters καβ is a promising concept. A cross-energy parameter was determined
for the system of n-hexane and butanone and applied to mixtures of butanone with n-
heptane as well as 2-pentanone with n-heptane. The results of all three mixtures show
good agreement with experimental data.

After completing the study, it was found that for substances with multiple interaction
sites per molecule the choice of the energy bin-width has an influence on simulation results
at low temperatures. The impact of the energy bin-width is larger than can be explained
by statistical uncertainty and should be further clarified in subsequent work (Appendix
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D).
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A. CPU time usage

Figure A.1.: Expected CPU time
usage when using MPI to handle
the different windows in multi-
canonical Monte Carlo when each
window runs on a single CPU

The purpose of the MPI implementation is to automize the optimization of force field
parameters. Since Monte Carlo simulations still require a lot of computational resources,
simulations were carried out on a compute cluster. To use this cluster efficiently, all
used CPU cores should have similar workloads. In all GCMC simulations with multiple
histograms in this work the the N-space is devided into different windows of size ∆N ,
where the first window starts from N = 0 (ideal gas) and the last window represents a
dense fluid. Details were given in section 2.2.1. The volume of all simulations is equal. If
each CPU core did the calculation of a single window, each core would have a different
runtime, resulting in an inefficient use of computational resources (Fig. A.1) The simpliest
way to improve that behaviour, is to successively run two windows on every core. The
window with the least number of particles ran on the same CPU as the window with
the highest number of particles. If the windows are indexed from 0 to X, the first CPU
executes 0 and X, the second 1 and X−1, the third 2 and X−2 and so on. The first index
is zero in agreement with the standard in MPI implementations. Figure A.2 shows the
resulting usage, which shows an improvement of about 20% compared to the simpliest
distribution scheme.
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A. CPU time usage

Figure A.2.: CPU time usage
when using MPI to handle the
different windows in multicanoni-
cal Monte Carlo and two windows
run on each CPU.
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B. TAMie for benzene

Simulations to optimize the force field parameters for benzene have been done in grand
canonical ensemble with transition matrix and histogram reweighting, analogously to
all previous described optimizations. Benzene, as the simpliest molecule of aromatic
hydrocarbons, is build up as a ring of six carbon atoms a hydrogen atom bound to each
carbon atom. According to the united atom approach the carbon atom together with
the hydrogen atom are treated as one interaction site. I assume a rigid, planar structure
and the angles between three neighboring united-atom sites are 120 ◦. Figure B.1 shows
the structure of the molecule. Because of this structure, only the parameters σij, εij for

Figure B.1.: Structure of a united-atom
benzene molecule. Schematic depiction of
the planar ring with united-atom interac-
tion sites -CH and the stiff bending angle
θ (in red).

the united-atom group -CH and the repulsive exponent nij = n of the Mie potential (see
equation (B.1)) were optimized, for the Mie potential.

uij = c(nij) · εij


(
σij
rij

)nij
−
(
σij
rij

)6

 (B.1)

Figures B.2 and B.3 show the relative deviations of vapor pressure and liquid density of
the optimized TAMie parameters for different exponents of the Mie potential compared
to DIPPR correlation functions[137]. It is obvious, that for a Mie exponent of n = 16 the
overall deviation is minimal in this case, since both, vapor pressure and liquid densities
show the lowest deviations compared to quasi experimental data. In numbers, the absolute
average deviation of the liquid density is 1.0 % and the AAD of the vapor pressure is 0.3 %.
Table B.1 shows the optimized TAMie parameters.
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Figure B.2.: Relative deviations of the vapor pressure of benzene with different repulsive
exponents n compared to quasi-experimenta data of DIPPR[137].
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Figure B.3.: Relative deviations of the liquid density of benzene with different repulsive
exponents n. The deviations are calculated against DIPPR correlation functions.

Table B.1.: van der Waals (Mie) parameters, bond lenght l and bending angle θ of the
TAMie force field for benzene.

type i l /Å Mi /(g/mol) σii /Å εii /K ni θ /◦
–CHbenz 1.40 13.019 3.7163 66.238 16 120
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B. TAMie for benzene

B.1. Dynamic properties of benzene
The dynamic properties in this chapter were determined by the group of J. Vrabec at
the University of Paderborn in 2018. They developed their own model of benzene [177],
a Lennard-Jones force field with quadrupoles (LJ-Q) and did the simulations with their
codes and the parameters of this work. The comparison between the two models in
Figures B.4-B.6 show very good agreement, both between the two models and between
the models and the experiments or DIADEM correlations of the DIPPR database [137]
fit to experimental data, respectively.

Figure B.4.: Diffusion coefficients of benzene calculated with the TAMie force field and
the LJ-Q force field [177]. All results for molecular simulations (MD) were obtained by
J. Vrabec. Experimental data from DDB[139, 178–181]

The correlation used for quasi-experimental data of the shear viscosity of benzene is

Y = exp
(
A+ B

T
+ C · ln(T ) +DE

)
(B.2)

with A = 7.5117, B = 294.68, C=-2.794 and D = E = 0 and T inserted in Kelvin[137].
The correlation used for quasi-experimental data of the thermal conductivity of benzene

is

Y = A

B(1+(1−T/C)D) (B.3)

with A = 0.0542518, B = 2.74187, C=-7.22561 and D = 8.22561 and T inserted in
Kelvin[137].
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Figure B.5.: Shear viscosity of benzene calculated with the TAMie force field and the LJ-Q
force field [177]. All results for molecular simulations (MD) were obtained by J. Vrabec.
Quasi-experimental data from DIADEM correletaions of the DIPPR database [137]

Figure B.6.: Thermal conductivity of benzene calculated with the TAMie force field and
the LJ-Q force field [177]. All results for molecular simulations (MD) were obtained by
J. Vrabec. Quasi-experimental data from DIADEM correlations of the DIPPR database
[137]
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B. TAMie for benzene

These results show, that it is possible to achieve very accurate dynamic properties by
adjusting force field parameters only to liquid density and vapor pressure data. The
TAMie force field for benzene works without coulombic interaction, i.e. no point-charges,
dipolar or quadrupolar interactions.
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C. Expressing the PC-SAFT model in
terms of force field pure parameters

For the optimization of TAMie force field parameters the PC-SAFT equation of state
is used. Therefore the following relations between force field parameters to PC-SAFT
parameters (m̂, σ̂, ε̂) are introduced and assumptions are made as proposed by van Westen
et al.[107]. What is needed to relate force field parameters to PC-SAFT parameters are
group-contribution segment numbers mα as taken e.g. from Sauer et al.[182].

The segment parameter m̂:

m̂ =
seg.typ.∑

α

Nαmα (C.1)

As a first approximation it is assumed that the ”volume” of a molecule within PC-SAFT
is equal to the ”volume” of the same molecule of the TAMie force field.

π

6 m̂σ̂
3 ≈ π

6

seg.typ.∑

α

Nαmασ
3
αα (C.2)

Because this does not apply exactly, the correction parameter φσ is introduced.

m̂ (φσσ̂)3 =
seg.typ.∑

α

Nαmασ
3
αα (C.3)

The van der Waals parameter εαβ appears in the dispersion term of the Helmholtz energy,
which to first order reads

F disp = 2πρN
seg.typ.∑

α

seg.typ.∑

β

NαNβ

∫
gαβ(r)udispαβ (r)r2dr, . (C.4)

This perturbation approach can be applied to the PC-SAFT equation of state (left) as
well as to the molecular model of the force field (right), leading to the first-order equality.

m̂∑

α̂=1

m̂∑

β̂=1

∫
ĝhc
α̂β̂

(r)ûdisp(r)r2dr =
seg.typ.∑

α

seg.typ.∑

β

NαNβ

∫
gfsαβ(r)udispαβ (r)r2dr (C.5)
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By introducing a mean radial pair distribution function for hard chains

ḡhc = 1
m̂2

m̂∑

α̂=1

m̂∑

β̂=1

∫
ĝhc
α̂β̂

(r) (C.6)

one obtains

m̂2
∫
ḡhcûdisp(r)r2dr =

seg.typ.∑

α

seg.typ.∑

β

NαNβ

∫
gfsαβ(r)udispαβ (r)r2dr (C.7)

The equation above can be made dimensionless by introducing a reduced radial distance
and a reduced radial distance r̃ and a reduced potential function ũdisp, if the force field
considers a Lennard-Jones or Mie potential for the dispersive interactions. For PC-SAFT
(left-hand side) these are defined as r̃ = r/σ̂ and ũdisp(r̃) = ũdisp(r̃)/ε̂ and for TAMie
(right-hand side) r̃ = r/σαβ and ũdisp(r̃) = udispαβ (r̃)/εαβ This results in an equation, where
the Mie and PC-SAFT parameters are outside the integrals

m̂2σ̂3ε̂
∫
ḡhc(r̃)ũdisp(r̃)r̃2dr̃ =

seg.typ.∑

α

seg.typ.∑

β

NαNβσ
3
αβεαβ

∫
gfsαβ(r̃)ũdisp(r̃)r̃2dr̃ (C.8)

At this point a critical assumption is made, namely that the parameter-weighted average
of the two integrals in eq. (C.8) is similar on the left-hand and right-hand side of the
equation. This assumption is supported by [183] and leads to the simple relation:

m̂2σ̂3ε̂ ≈
seg.typ.∑

α

seg.typ.∑

β

NαNβσ
3
αβεαβ (C.9)

To correct for the assumptions which resulted in eq. (C.9) a second correction parameter
φε is introduced:

m̂2(σ̂φσ)3(ε̂φε) =
seg.typ.∑

α

seg.typ.∑

β

NαNβσ
3
αβεαβ (C.10)

Equations (C.1),(C.3) and (C.10) can be written in {m̂, σ̂, and ε̂ }:

σ̂ =




seg.typ.∑
α

Nαmασ3
αα

seg.typ.∑
α

Nαmα




(1/3)

φσ
(C.11)
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and

ε̂ =

(
seg.typ.∑

α

seg.typ.∑
β

NαNβσ
3
αβεαβ

)

m̂2(σ̂φσ)3φε
, , (C.12)

where m̂ and σ̂ can be inserted from eq. (C.1) and (C.11), respectively. With these
expressions the PC-SAFT eos is expressed explicitely in terms of the force field parameters.
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D. Influence of the energy bin width on
results at low temperatures

D.1. Background to the energy bin width
In this Appendix the influence of the energy bin width ∆E as an input parameter for
simulations is analyzed. The bin width ∆E is used for collecting histograms of H(N,E)
by counting conditions found between Ej and Ej + ∆E, where the energy is discretized
with a spacing of Ej + 1 = Ej + ∆E. Parameter ∆E is one of many parameters used in
MC simulations, such as a maximum displacement, number of configurational bias steps,
number of equilibration steps and so forth. These parameters should either determine
statistical uncertainties (CBMC steps, maximum displacement) or eliminate systematic
dependencies on starting conditions (number of equilibration steps). These simulation
parameters should, if they are well-chosen, not significantly alter the results when varied
in a certain range around the selected setting. For the energy bin width, I had tested
variations in ∆E values. I defined ∆E to roughly ensure 200 “observed energy bins”
with E0 < Emin < E1 and E199 < Emax < E200, with Emin and Emax as the minimal and
maximal energy value observed during a simulation.

After completing the study presented in this thesis, however, I realized that for polar
species with intramolecular degrees of freedom there is a higher than previously expected
dependence of simulation results (from post-processing histogram reweighting) on the
choice of parameter ∆E. This appendix illustrates the dependence of calculated phase
equilibrium results on varying values of ∆E. At the time of writing this thesis the un-
derlying reason for the observed sensitivity towards ∆E is not fully understood and the
analysis of the issue in collaboration with my supervisor J. Gross in ongoing. We currently
consider histogram-free methods, like MBAR [106] or a bin-free histogram approach, as
proposed by Berg and Harris [184]. Once conclusive insights into a proper choice for ∆E
and a method to ensure robust results are obtained, we might summarize and publish
these findings in an erratum.

In the following I will show that parameter ∆E affects calculated phase equilibria of
low temperatures to an extend that is outside the statistical uncertainty of the simulation
method. Furtunately the sensitivity is essentially limited to vapor pressure (and thus
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D. Influence of the energy bin width on results at low temperatures

coexisting vapor density) data at low temperatures.
Figures D.1 and D.2 show the relative deviations for the vapor pressure of ethylacetate

compared to quasi-experimental data for different values of the energy width input pa-
rameter. The different colors denote the different input values of the energy width. Below
a reduced temperature of about TR < 0.7 the curves start to deviate.
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Figure D.1.: Relative deviations of calculated vapor pressure from quasi-experimental
data [137] for ethylacetate in the reduced temperature range from TR = 0.56 − 0.96.
Blue, orange and green spheres show the relative deviations of simulation results using an
energy bin width of ∆E = 200 K, 250 K, and 300 K, respectively

In figure D.1 it seems that this input value has only a small impact on the final result.
Upon further increasing the bin width, however, a pronounced dependence of calculated
vapor pressure at low temp. is observed, as shown in fig. D.2. However, a look at
figure D.2 changes the picture. Increasing the energy width more to ∆E = 325K and
∆E = 350K significantly changes the calculated vapor pressure for low temperatures.

D.2. Bin sizes used in this thesis
Table D.1 gives the values of all energy bin widths used in this work, according to the
respective substance.
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Figure D.2.: Relative deviations of calculated vapor pressure from quasi-experimental
data [137] for ethylacetate in the reduced temperature range from TR = 0.56 − 0.96.
Green, red and purple spheres show the relative deviations of simulation results using an
energy bin width of ∆E = 300 K, 325 K, and 300 K, respectively

Table D.1.: Tabulated energy bin widths used for molecular simulations in this work for
each substance.

substance bin width /K substance bin width /K
propane 100 1-undecene 200
butane 100 1-dodecene 200
pentane 100 1-tridecene 200
hexane 100 4-methyl-1-pentene 100
heptane 100 5-methyl-1-hexene 150
octane 100 diethyl-ether 250
nonane 100 ethyl-propyl-ether 250
decane 100 di-n-propyl-ether 250
undecane 200 di-n-butyl-ether 250
dodecane 200 di-n-pentyl-ether 250
hexadecane 200 butanone 250
eicosane 200 2-pentanone 250
tetracosane 200 2-hexanone 250
2-methylpentane 150 2-heptanone 250
3-methylpentane 150 2-octanone 250
2-methylhexane 150 ethyl acetate 250
2-methylheptane 150 propyl acetate 250
1-pentene 200 butyl acetate 250
1-hexene 200 pentyl acetate 250
1-octene 200 ethyl formate 250
1-nonene 200 propyl formate 250
1-decene 200 butyl formate 250
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This supporting information gives detailed simulation results in tabulated and graphical
form.

E.1. Background to reported results

E.1.1. Errors
All given uncertainties were calculated using the 95% confidence intervall. The numbers in
brackets are the uncertainties of the calculated sample mean from n independent samples
err = t∗s/√n, where s is the corrected sample standard deviation

s =
√√√√ 1
n− 1

n∑

i=1
(xi − x̄)2 ,

and t∗ is the critical value from the student’s t-distribution corresponding to the degrees
of freedom ν = n− 1. The value of t∗ is given in the tables below. If there is no number
in brackets, the results are from a single simulation.

E.1.2. Enthalpies of vaporization
The Clausius-Clapeyron equation can readily be evaluated from histogram reweighting
techniques. The gradient dp/dT was determined by calculating the gradient d(ln p)/d(1/T ),
which is linear, and using

d(ln p)
d(1/T ) = −T

2

p
· dp

dT . (E.1)

The so-obtained results of the enthalpy of vaporization ∆lvh are less sensitive to finite
size simulation boxes as compared to values from 〈u〉v − 〈u〉l + psat

(
〈v〉v − 〈v〉l

)
.

The detailed description, starting from the Clausius Clapeyron equation, is as follows:

dp
dT = ∆hLV

∆vLV · T
. (E.2)
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Applying the chain rule to equation (E.1) and replacing the gradients through central
differences

dp
dT = − d(ln p)

d(1/T ) ·
p

T 2 ≈
∆(ln p)
∆
(

1
T

) · p
T 2 (E.3)

and inserting it to the Clausius Clapeyron equation

∆hLV ≈
∆(ln p)
∆
(

1
T

) · p
T
·∆vLV (E.4)

With simulation results in form of the equation finally writes as

Entry no. Temperature Pressure Liquid density Vapor density
i− 1 Ti−1 pi−1 ρL,i−1 ρL,i−1
i Ti pi ρL,i ρL,i
i+ 1 Ti+1 pi+1 ρL,i+1 ρL,i+1

∆hLV ≈
ln pi+1 − ln pi−1

1
Ti+1
− 1

Ti−1

· pi
Ti
·
(

1
ρV,i
− 1
ρL,i

)
. (E.5)

This last equation was used to determine the enthalpies of vaporization in this thesis.

E.1.3. Critical points
Critical values were extrapolated from at least three simulations at different volumes
using finite-size scaling techniques[13, 185]. Data for comparison are mostly taken from
NIST[186] or DIPPR[137]. a We typically consider V = 22000 Å, V = 40000 Å and
V = 60000 Å.

E.2. Results for cyclopentane and cyclohexane

Table E.2.: Critical properties of cyclic alkanes

substance simulation results experimental data[186]
TC /K pC /bar ρC/kg/m3 TC /K pC /bar ρC/kg/m3

cyclopentane 518.5 49.0 273 511.6(3) 45.1(4) 270(3)
cyclohexane 557.5 43.5 274 554(1) 40.7(5) 274(6)

aData reported by DIPPR/NIST sometimes represent averages of several reported values.
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Table E.1.: Tabulated values of liquid densities, vapor pressures and enthalpies of vapor-
ization for cyclic alkanes

cyclopentane
T /K ρl /kg/m3 ρv /kg/m3 psat /bar ∆lvh /kJ/kg

300 742.1(6) 1.314(7) 0.459(2) 404.3(3)
340 701.0(7) 4.56(2) 1.752(9) 376.9(5)
380 657(1) 12.02(5) 4.89(2) 344.3(9)
420 606.1(4) 26.8(2) 11.06(4) 303.8(5)
460 543(3) 55(1) 21.6(1) 248(4)
cyclohexane
T /K ρl /kg/m3 ρv /kg/m3 psat /bar ∆lvh /kJ/kg

320 746(4) 1.032(5) 0.321(1) 377(2)
360 708(2) 3.53(2) 1.206(3) 353(1)
400 667.3(6) 9.28(2) 3.364(6) 325.7(4)
440 621.8(6) 20.6(1) 7.64(2) 292.5(2)
480 568.0(6) 41.6(7) 15.06(8) 250(2)
500 535(6) 59(2) 20.3(2) 221(5)

E.3. Results for ketones

Table E.3.: Tabulated values of liquid densities, vapor pressures and enthalpies of vapor-
ization for ketones

acetone 1 run
T /K ρl /kg/m3 ρv /kg/m3 psat /bar ∆lvh /kJ/kg
285 780 0.414 0.167 558
325 734 1.95 0.877 520
365 689 6.28 3.03 479
405 638 16.07 7.98 428
445 577 36.1 17.4 362
485 492 81.1 33.5 263
495 461 103 38.9 226
butanone 4 independent runs t∗ = 3.182
T /K ρl /kg/m3 ρv /kg/m3 psat /bar ∆lvh /kJ/kg
300 765(3) 0.438(3) 0.1501(9) 476(2)
340 724(4) 1.96(1) 0.743(5) 443(1)
380 681(1) 6.13(2) 2.49(1) 407.0(8)
420 632(2) 15.40(6) 6.44(2) 364(1)
460 575(2) 34.0(1) 13.91(2) 310(1)
500 497(1) 73.3(5) 26.54(6) 231.1(4)
2-pentanone 5 independent runs t∗ = 2.776
T /K ρl /kg/m3 ρv /kg/m3 psat /bar ∆lvh /kJ/kg
320 755(3) 0.408(1) 0.1239(3) 439(2)
360 716.5(5) 1.783(4) 0.595(1) 407.7(2)
400 676.8(5) 5.472(9) 1.970(3) 375.5(3)
440 630.9(6) 13.54(1) 5.043(5) 337.8(4)
480 579(1) 29.61(7) 10.86(1) 291.8(6)
520 511.1(6) 61.3(2) 20.66(4) 229.3(5)
535 476.8(9) 82.1(4) 25.67(5) 195.7(6)
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3-pentanone 1 run
T /K ρl /kg/m3 ρv /kg/m3 psat /bar ∆lvh /kJ/kg
320 749 0.461 0.140 430
360 712 1.95 0.651 403
400 671 5.93 2.11 371
440 625 14.45 5.33 332
480 572 31.3 11.33 286
520 501 65.1 21.4 222
535 464 88.6 26.5 187
2-hexanone 4 independent runs t∗ = 3.182
T /K ρl /kg/m3 ρv /kg/m3 psat /bar ∆lvh /kJ/kg
340 747(2) 0.424(7) 0.119(2) 403(2)
380 709(5) 1.66(2) 0.518(5) 378(3)
420 672(2) 4.96(3) 1.63(1) 351.8(6)
460 629(2) 12.20(5) 4.12(2) 319(1)
500 580(2) 26.5(1) 8.84(2) 278(1)
540 519(1) 54.0(3) 16.83(5) 224.3(8)
560 478(2) 78.1(8) 22.43(8) 187(2)
2-heptanone 4 independent runs t∗ = 3.182
T /K ρl /kg/m3 ρv /kg/m3 psat /bar ∆lvh /kJ/kg
340 755(2) 0.185(1) 0.0455(3) 395(1)
380 721(3) 0.874(5) 0.238(1) 371(2)
420 685(3) 2.90(1) 0.850(3) 346(1)
460 646(1) 7.64(6) 2.34(1) 317(1)
500 602(1) 17.4(1) 5.37(3) 283.2(8)
540 550(2) 36.1(3) 10.75(5) 241(1)
580 480(3) 71(1) 19.4(1) 183(3)
2-octanone 4 independent runs t∗ = 3.182
T /K ρl /kg/m3 ρv /kg/m3 psat /bar ∆lvh /kJ/kg
360 744(5) 0.205(1) 0.0475(2) 376(2)
400 712(4) 0.912(9) 0.232(2) 353(2)
440 677(2) 2.93(2) 0.799(4) 329(1)
480 639(2) 7.55(3) 2.153(5) 301.3(7)
520 596.2(5) 16.94(7) 4.86(1) 269.4(4)
560 546(1) 35.1(1) 9.67(2) 229.3(8)
600 479(3) 69.6(8) 17.42(5) 175(2)

Table E.4.: Critical properties of simulated ketones

substance simulation results experimental data[137, 186]
TC /K pC /bar ρC/kg/m3 TC /K pC /bar ρC/kg/m3

acetone 519.9 55.7 269 508.15 47.6 277.9
butanone 537.9 45.3 266 535(2) 42(2) 252 - 270

2-pentanone 569.6 41.1 260 561.1(2) 37.9(20) 286(8)
3-pentanone 562.4 38.4 270 561.5(2) 37.3(1) 256(30)
2-hexanone 596.4 36.5 257 586.8(6) 33.2(8) 267(3)
2-heptanone 620.7 32.7 255 611.5(4) 34.40(4) 261(3)
2-octanone 644.5 31.3 251 632.7(2) 26.4 258(3)
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Figure E.1.: Phase diagram of simulated ketones. Lines are quasi-experimental data[137].
Symbols represent simulation results using the TAMie force field.
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tion with the TAMie force field. Dashed, dotted and solid lines correspond to DIPPR
correlations[137].
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Figure E.3.: Vapor pressures of ketones compared to results of the TraPPE[53] united
atom force field and quasi-experimental data from DIPPR[137].

E.4. Results for aldehydes

Table E.5.: Tabulated values of liquid densities, vapor pressures and enthalpies of vapor-
ization for aldehydes

propanal 1 run
T /K ρl /kg/m3 ρv /kg/m3 psat /bar ∆lvh /kJ/kg
280 802 0.52 0.205 533
320 756 2.39 1.05 597
360 708 7.56 3.59 456
400 655 19.0 9.29 405
440 590 42.4 20.0 339
480 497 94.7 38.0 239
butanal 1 run
T /K ρl /kg/m3 ρv /kg/m3 psat /bar ∆lvh /kJ/kg
300 786 0.43 0.147 482
340 746 1.99 0.748 450
380 702 6.22 2.54 413
420 652 15.4 6.53 370
460 595 33.6 14.0 317
500 520 70.4 26.5 246
520 464 108 35.3 189
pentanal 4 independent runs t∗ = 3.182
T /K ρl /kg/m3 ρv /kg/m3 psat /bar ∆lvh /kJ/kg
300 792 0.16 0.047 463
340 755(2) 0.868(2) 0.281(3) 433(3)
380 715(1) 3.06(1) 1.081(4) 400(4)
420 673(1) 8.26(4) 3.082(4) 366(4)
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460 625(1) 18.8(1) 7.15(5) 326(3)
500 568(1) 39.1(3) 14.32(5) 277(3)
530 513(3) 67(2) 22.5(1) 227(1)

Table E.6.: Critical properties of simulated aldehydes

substance simulation results experimental data[137, 186]
TC /K pC /bar ρC/kg/m3 TC /K pC /bar ρC/kg/m3

propanal 508.8 56.8 284 504.4(47) 52.6(6) 285(5)
butanal 542.4 47.4 279 537.2(8) 43.2(10) 280(5)
pentanal 576.0 41.3 273 567(2) 39.7(10) 275(5)
hexanal 604.4 36.8 268 592(3) 34.6(5) 265(5)
octanal 653.0 31.6 256 639(1) 29.6(5) 263(4)
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Figure E.4.: Vapor pressures of aldehydes compared to results of the TraPPE[53] united
atom force field and quasi-experimental data from the KDB[138] and DIPPR[137].
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Table E.7.: Consistency check using GEMC with CASSANDRA for 2-pentanone. 10 Mio
equilibration steps + 10 Mio production steps in Gibbs Ensemble. Errors are calculated
using the reblocking method of Flyvbjerg and Petersen[2].

CASSANDRA Our results

T /K ρl /kg/m3 ρv /kg/m3 psat /bar ρl /kg/m3 ρv /kg/m3 psat /bar
400 675(2) 5.4(3) 1.97(9) 676.8(5) 5.472(9) 1.970(3)
480 578(1) 28.8(8) 10.7(1) 579(1) 29.61(7) 10.86(1)

E.5. Confirming simulation results with other simulation
software

The simulation results reported in this work was obtained with a molecular simulation
code developed in our group. In order to demonstrate that the results are meaningful,
we perform calculations with CASSANDRA[87]. We choose 2-pentanone as an example,
because this substance possesses a “branching site” as well as partial charges.
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This supporting information gives simulation details and results in tabulated and graphical
form.

F.1. Alternative scaling schemes
We compare the approach of scaling all εi parameters with two alternative scaling schemes,
namely scaling the Mie size parameter according to σind

ii = ψσA ·σii and scaling the electro-
static potential as qind

i = ψqA · qi. The comparison is made for 2 representative substances
(butanone and di-n-pentyl-ether). Figures F.1a and F.1b confirm that scaling the Mie
energy parameter according to εind

ii = ψA · εii (as finally chosen) is indeed a promising
approach, because it is easy to apply and works well for all considered substances. Figure
F.1a shows that scaling the electrostatic potential with ψq

but ≈ 1.26 leads to a similar im-
provement for butanone as scaling the Mie energy parameter with ψbut ≈ 1.12. However,
the picture is entirely different for di-n-pentyl-ether. Figure F.1b shows that even turning
of the electrostatic interactions completely – corresponding to ψqdnpe = 0.0 does not lead
to a significant improvement of the absolute average deviation. The error can only be
reduced from about 5.8 % to 5.0 %, while when applying εind

ii = ψA · εii the error is about
2.1 % for ψdnpe ≈ 0.99. Scaling the Mie size parameters worked well for di-n-pentyl-ether
with AADs similar or even slightly better than when scaling the Mie energy parameters.
But, this behavior did not hold for butanone, where improvements could be achieved but
stood behind the improvements as when scaling σ. We therefore conclude that scaling the
Mie energy parameter seems to be the easiest and most promising concept if a transferable
force field should be individualized.
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Figure F.1.: Scaling the Mie energy parameters or the electrostatic potential lead to similar
results for butanone with AADs about 1.25%. However, for di-n-pentyl-ether scaling the
Mie energy parameters does not lead to any significant improvement, even when turning
off the electrostatic interactions completely. Filled spheres denote results from simulation
with different point charges and the dashed line denotes the result from iTAMie. The
solid line is a guide for the eye.
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Figure F.2.: Scaling the Mie size parameters σi or the Mie energy parameters εi lead to
similar results for di-n-pentyl-ether with AADs about 2.1% with a slightly less AAD when
scaling σi. For butanone an improvement is visible when scaling σi. But, the minimum
has an AAD about 2.5% while the errors could be reduced to 1.25% when scaling the Mie
energy parameters σi.
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F.2. Simulation Details
Table G.1 gives simulation details for every substance we have individualized. The table
gives information about the number of equilibration moves, production moves, the volume
of the simulation box the width of each window and the maximum number of molecules.
The maximum number of particles Nmax devided by the width of a window ∆N gives
the number of used windows. Two windows have been simulated on one CPU core. For
propane for example, the used number of CPU cores was (432/12)/2 = 18.

Configurational Bias Monte Carlo
As mentioned in the main article, the sampling of insertion, deletion, or regrowth steps was
enhanced using the configurational biasing (CB) method. Since for the lowest densities
the acceptance probability is reasonably high, we perform only one CB step for densities
up to a dimensionless density of ρ∗ ≤ 1/2.7, with ρ∗ = ρ/ρmax, where ρmax again is the highest
density for which we perform simulations. Table G.2 shows the dimensionless densities
and the according CB steps.

F.3. Correlation function parameters for the newly fit
vapor pressure correlation of ethyl-propyl-ether

The vapor pressure correlation function of ethyl-propyl-ether was fit to experimental data
of the DIPPR data base. The equation is as follows

ln(psat)/Pa = A+ B

T/K + C · ln(T/K) +D · (T/K)E (F.1)

with
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Table F.1.: simulation details

substance Nequil /mio. Nprod /mio. Volume /Å3 ∆N Nmax

propane 5 20 50000 12 432
n-butane 5 20 60000 12 408
n-pentane 20 25 60000 6 336
n-hexane 5 20 80000 12 384
n-heptane 5 20 80000 12 336
n-octane 5 20 80000 10 300
n-nonane 5 20 80000 9 270
n-decane 7 30 80000 5 240
n-undecane 8 25 100000 5 280
n-dodecane 7 30 100000 8 256
n-tridecane 8 25 120000 5 289
n-hexadecane 7 25 100000 6 192
n-eicosane 7 25 130000 4 200
n-tetracosane 7 25 160000 4 208
2-methylpentane 7 25 65000 8 320
3-methylpentane 7 25 65000 8 320
2-methylhexane 7 25 80000 6 336
2-methylheptane 7 25 75000 5 280
1-pentene 8 30 60000 9 360
1-hexene 5 25 60000 8 304
1-octene 5 25 80000 5 310
1-nonene 8 25 81000 5 280
1-decene 8 25 90000 5 280
1-undecene 8 25 105000 5 300
1-dodecene 8 25 115000 5 300
1-tridecene 8 25 125000 5 300
4-methyl-1-pentene 7 25 60000 8 304
5-methyl-1-hexene 7 25 70000 6 312
diethyl-ether 5 20 49000 5 310
ethyl-propyl-ether 9 21 60000 8 320
dipropyl-ether 5 20 60000 5 270
dibutyl-ether 8 25 80000 9 288
dipentyl-ether 8 30 103000 5 300
butanone 5 25 47000 10 320
2-pentanone 5 25 56000 10 320
2-hexanone 6 25 65000 10 320
2-heptanone 7 25 71000 10 300
2-octanone 7 25 80000 10 300
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Table F.2.: Number of CB steps for different dimensionless densities

ρ∗ CB steps per bead
< 1/2.7 1
≥ 1/2.7 ∨ < 1/1.9 2
≥ 1/1.9 ∨ < 1/1.6 3
≥ 1/1.6 ∨ < 1/1.3 4
≥ 1/1.3 ∨ < 1/1.16 6
≥ 1/1.16 8

Table F.3.: Parameters for the Clausius-Clapeyron like fit of the vapor pressure for ethyl-
propyl-ether

A 63.1869
B -5655.14
C -5.99446
D 2.35 · 10−17

E 6

F.4. Enthalpies of vaporization
The Clausius-Clapeyron equation can readily be evaluated from histogram reweighting
techniques. The gradient dp/dT was determined by calculating the gradient d(ln p)/d(1/T )
and using

d(ln p)
d(1/T ) = −T

2

p
· dp

dT .

The so-obtained results of the enthalpy of vaporization ∆lvh are less sensitive to finite
size simulation boxes as compared to values from 〈u〉v − 〈u〉l + psat

(
〈v〉v − 〈v〉l

)
.

F.5. Graphical results
Here we show the absolute average deviation (AAD) for every substance in three figures.
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Figure F.3.: AAD combined for all individualized substances
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Figure F.4.: AAD of the vapor pressure for all individualized substances
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Figure F.5.: AAD of the liquid density for all individualized substances
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Figure F.6.: AAD of the liquid density for all individualized substances
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Figure F.7.: AD of the vapor pressure for all individualized substances
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Figure F.8.: AD of the liquid density for all individualized substances
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Table F.4.: Optimization parameters ψA and AAD of TAMie and iTAMie compared to
DIPPR correlations for different substances. Ethyl-propyl-ether∗ has been adjusted to
quasi-experimental data of a newly fit correlation function.

substance AAD
TAMie /%

AAD
iTAMie /%

AD psat

TAMie /%
AD psat

iTAMie /%
AD ρl

TAMie /%
AD ρl

iTAMie /%

propane 0.79 0.51 -0.78 0.45 0.33 -0.07
butane 1.42 0.54 1.83 -0.22 -0.88 -0.61
pentane 0.87 0.80 0.60 -0.11 -0.49 -0.45
hexane 0.62 0.55 0.39 0.05 -0.42 -0.35
heptane 1.02 0.96 0 0 0 0
octane 1.28 1.20 1.42 0.59 0.02 0.10
nonane 1.36 1.29 1.60 0.77 -0.12 -0.08
decane 1.64 1.55 2.23 0.42 0.43 0.53
undecane 2.12 2.04 2.75 0.50 1.09 1.42
dodecane 2.5 2.5 2.62 2.62 1.02 1.02
hexadecane 3.51 3.22 4.61 0.86 1.33 1.59
eicosane 4.57 3.77 6.76 1.17 2.16 1.78
tetracosane 3.79 3.14 4.80 1.00 2.03 2.39
2-methylpentane 1.93 1.11 -2.45 0.53 1.39 1.03
3-methylpentane 2.22 0.60 3.91 0.14 -0.53 -0.13
2-methylhexane 1.93 1.62 -1.50 0.84 1.41 1.15
2-methylheptane 1.77 1.69 -0.10 0.63 1.04 0.95
1-pentene 1.25 0.85 -1.62 0.27 0.77 0.59
1-hexene 1.86 1.67 -1.82 -0.73 0.61 0.49
1-octene 2.08 1.68 -1.70 0.66 0.90 0.67
1-nonene 2.27 1.62 -2.72 1.20 1.50 1.20
1-decene 2.75 2.00 -2.98 1.58 1.88 1.14
1-undecene 2.55 2.49 -0.49 1.38 2.63 1.65
1-dodecene 2.64 2.38 -1.99 0.54 2.26 2.06
1-tridecene 2.89 2.86 -0.58 1.54 2.39 2.25
4-methyl-1-pentene 2.44 2.44 0.10 0.81 1.81 1.74
5-methyl-1-hexene 4.33 1.92 -5.57 0.94 3.10 2.12
diethyl-ether 3.95 1.16 -6.39 -0.05 -0.91 -1.48
ethyl-propyl-ether∗ 2.09 1.29 0 0 0 0
di-n-propyl-ether 1.93 0.94 2.51 0.13 -1.20 -0.94
di-n-butyl-ether 2.28 1.23 -3.15 -0.02 -0.71 -0.95
di-n-pentyl-ether 5.69 2.11 -9.49 0.34 0.85 -0.13
butanone 5.91 1.25 9.27 0.22 -2.54 -1.56
2-pentanone 2.46 2.07 -2.68 0.28 -1.90 -2.26
2-hexanone 2.27 1.57 -2.64 -0.25 -1.64 -1.90
2-heptanone 2.97 2.19 -3.54 0.67 -0.28 -0.72
2-octanone 3.60 1.67 -5.42 0.04 0.41 -0.21130
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Table F.5.: Alkanes: Tabulated values of liquid densities, vapor pressures and enthalpies
of vaporization. The last line for each substance gives the estimated critical properties.

propane 1 run
T /K ρl /kg/m3 ρv /kg/m3 psat /∆bar ∆lvh /kJ/kg
200 614 0.545 0.204 458
240 567 3.44 1.49 417
280 518 12.5 5.84 370
320 456 34.7 16 301
355 375 83 32.4 201
373 225 225 44.4 0
n-butane 1 run
T /K ρl /kg/m3 ρv /kg/m3 psat /∆bar ∆lvh /kJ/kg
240 629 0.71 0.241 417
280 586 3.47 1.33 381
320 541 11.1 4.56 342
360 487 28.4 11.7 289
400 412 68.1 24.7 208
410 385 87.5 29.3 177
429 233 233 39.6 0
n-pentane 1 run
T /K ρl /kg/m3 ρv /kg/m3 psat /∆bar ∆lvh /kJ/kg
280 630 1.05 0.333 379
320 591 4.13 1.44 350
360 549 11.8 4.35 315
400 498 28.2 10.4 269
440 430 62.8 21 202
455 391 88.6 26.5 162
475 236 236 35.7 0
n-hexane 1 run
T /K ρl / kg/m3 ρv / kg/m3 psat /∆ bar ∆lvh / kJ/kg
280 668 0.32 0.0857 383
320 629 1.6 0.48 353
360 590 5.3 1.73 324
400 547 13.8 4.66 290
440 498 31.4 10.4 247
480 428 67.5 20.1 183
495 389 93.5 25.1 146
514 237 237 32.8 0
n-heptane 1 run
T /K ρl / kg/m3 ρv / kg/m3 psat /∆ bar ∆lvh / kJ/kg
280 685 0.1 0.0233 339
320 653 0.632 0.166 350
360 619 2.47 0.712 328
400 582 7.18 2.19 300
440 539 17.3 5.37 267
480 488 37.1 11.2 224
520 415 79.2 20.8 158
548 239 239 30.5 0
n-octane 1 run
T /K ρl / kg/m3 ρv / kg/m3 psat /∆ bar ∆lvh / kJ/kg
320 673 0.248 0.0574 350
360 642 1.15 0.296 329
400 607 3.77 1.04 305
440 569 9.81 2.82 277
480 525 22.4 6.36 243
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520 471 46.8 12.6 198
550 410 82.6 19.7 145
578 239 239 28.4 0
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n-nonane 1 run
T /K ρl / kg/m3 ρv / kg/m3 psat /∆ bar ∆lvh / kJ/kg
280 705 0.00969 0.00176 357
320 689 0.0985 0.0204 348
360 658 0.547 0.126 328
400 626 2.02 0.507 307
440 592 5.74 1.52 284
480 552 13.7 3.71 255
520 505 29.8 7.78 218
560 445 60.1 14.6 169
575 410 79.8 18 141
605 238 238 26.6 0
n-decane 1 run
T /K ρl / kg/m3 ρv / kg/m3 psat /∆ bar ∆lvh / kJ/kg
360 674 0.257 0.0538 329
400 642 1.09 0.25 309
440 610 3.41 0.834 287
480 573 8.73 2.2 262
520 531 19.3 4.91 232
560 483 38.3 9.55 195
595 418 71.3 15.7 145
629 236 236 24.1 0
n-undecane 1 run
T /K ρl / kg/m3 ρv / kg/m3 psat /∆ bar ∆lvh / kJ/kg
360 684 0.121 0.0231 327
400 657 0.59 0.124 310
440 626 2.04 0.461 290
480 590 5.59 1.32 267
520 553 13.1 3.14 241
560 508 26.6 6.44 209
600 452 52.2 11.7 166
620 409 75.4 15.4 135
651 234 234 22.7 0
n-tridecane 1 run
T /K ρl / kg/m3 ρv / kg/m3 psat /∆ bar ∆lvh / kJ/kg
400 675 0.177 0.0318 308
440 647 0.752 0.147 291
480 615 2.39 0.497 271
520 581 6.23 1.34 249
560 544 14.1 3.07 224
600 499 27.9 6.11 194
640 443 54.7 10.9 153
660 398 77.8 14.2 122
690 232 232 20.3 0
n-hexadecane 1 run
T /K ρl / kg/m3 ρv / kg/m3 psat /∆ bar ∆lvh / kJ/kg
440 670 0.171 0.0274 291
480 640 0.69 0.12 274
520 610 2.15 0.393 256
560 577 5.54 1.05 235
600 542 12.5 2.39 213
640 499 24.9 4.78 185
680 446 48.3 8.62 149
700 405 67.8 11.2 121
738 228 228 17.5 0
n-eicosane 1 run
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T /K ρl / kg/m3 ρv / kg/m3 psat /∆ bar ∆lvh / kJ/kg
440 677 0.0243 0.00314 282
480 659 0.134 0.0189 272
520 634 0.538 0.0812 258
560 606 1.69 0.269 242
600 573 4.44 0.728 223
640 539 10.4 1.7 201
680 498 21.3 3.49 176
720 450 38.8 6.36 148
750 395 61.4 9.34 115
789 218 218 14.6 0
n-tetracosane 1 run
T /K ρl / kg/m3 ρv / kg/m3 psat /∆ bar ∆lvh / kJ/kg
480 675 0.0281 0.0033 229
520 649 0.147 0.0187 256
560 619 0.562 0.076 240
600 593 1.72 0.244 226
640 563 4.41 0.648 209
680 528 9.65 1.47 190
720 489 18.8 2.91 168
760 444 36.2 5.22 139
790 387 58.7 7.74 108
827 215 215 12 0
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2-methylpentane 1 run
T /K ρl / kg/m3 ρv / kg/m3 psat /∆ bar ∆lvh / kJ/kg
280 668 0.464 0.125 361
320 632 2.15 0.645 337
360 593 6.86 2.21 309
400 545 17.5 5.77 273
440 491 39.1 12.5 227
480 407 89.2 23.8 151
501 244 244 32.5 0
3-methylpentane 1 run
T /K ρl / kg/m3 ρv / kg/m3 psat /∆ bar ∆lvh / kJ/kg
280 675 0.411 0.11 366
320 638 1.94 0.583 340
360 598 6.22 2.02 312
400 554 15.7 5.27 279
440 501 35 11.4 235
480 426 77.7 21.9 166
485 412 87.4 23.6 155
508 245 245 32.8 0
2-methylhexane 1 run
T /K ρl / kg/m3 ρv / kg/m3 psat /∆ bar ∆lvh / kJ/kg
320 660 0.857 0.223 341
360 623 3.24 0.924 315
400 583 9.15 2.75 287
440 536 21.7 6.58 251
480 480 46.1 13.4 205
510 418 83.6 21.2 151
535 244 244 30.1 0
2-methylheptane 1 run
T /K ρl / kg/m3 ρv / kg/m3 psat /∆ bar ∆lvh / kJ/kg
320 679 0.337 0.0779 340
360 645 1.5 0.385 318
400 608 4.77 1.31 294
440 568 12.2 3.45 265
480 521 27.3 7.61 229
520 460 55.9 14.7 180
540 416 83 19.6 144
567 243 243 28.2 0

Table F.6.: Olefins: Tabulated values of liquid densities, vapor pressures and enthalpies
of vaporization. The last line for each substance gives the estimated critical properties.

1-pentene 1 run
T /K ρl / kg/m3 ρv / kg/m3 psat /∆ bar ∆lvh / kJ/kg
280 653 1.3 0.418 380
320 613 4.94 1.77 349
360 567 13.8 5.19 313
400 512 32.7 12.1 265
440 437 73.5 24.3 192
450 409 92.7 28.4 164
470 246 246 38.3 0
1-hexene 1 run
T /K ρl / kg/m3 ρv / kg/m3 psat /∆ bar ∆lvh / kJ/kg
280 682 0.395 0.109 374
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320 648 1.85 0.573 352
360 608 6.01 2 324
400 563 15.5 5.29 289
440 511 34.5 11.6 245
480 438 74.8 22.3 178
485 425 83.4 24 167
512 248 248 35 0
1-octene 1 run
T /K ρl / kg/m3 ρv / kg/m3 psat /∆ bar ∆lvh / kJ/kg
360 658 1.3 0.339 329
400 621 4.18 1.17 305
440 582 10.8 3.12 277
480 537 24 6.97 242
520 481 48.5 13.5 198
550 418 84.9 20.8 146
577 245 245 29.4 0
1-nonene 1 run
T /K ρl / kg/m3 ρv / kg/m3 psat /∆ bar ∆lvh / kJ/kg
360 675 0.624 0.146 328
400 641 2.26 0.576 307
440 605 6.32 1.7 283
480 564 15.0 4.08 254
520 517 31.8 8.48 217
560 453 62.6 15.6 168
575 418 83.4 19.1 141
602 244 244 27 0
1-decene 1 run
T /K ρl / kg/m3 ρv / kg/m3 psat /∆ bar ∆lvh / kJ/kg
360 686 0.297 0.0629 327
400 655 1.23 0.285 308
440 622 3.77 0.933 286
480 583 9.50 2.42 260
520 541 21.1 5.35 229
560 488 42.2 10.4 190
595 423 77.0 17.0 142
626 242 242 25.1 0
1-undecene 1 run
T /K ρl / kg/m3 ρv / kg/m3 psat /∆ bar ∆lvh / kJ/kg
360 699 0.14 0.027 327
400 668 0.665 0.141 308
440 635 2.25 0.513 288
480 602 6.07 1.45 266
520 562 14.2 3.41 239
560 517 29.5 7.01 206
600 457 56.2 12.8 164
649 239 239 23.7 0
1-dodecene 1 run
T /K ρl / kg/m3 ρv / kg/m3 psat /∆ bar ∆lvh / kJ/kg
400 680 0.358 0.0701 309
440 647 1.34 0.285 290
480 614 3.89 0.872 269
520 578 9.51 2.18 245
560 536 20.2 4.69 217
600 486 39.7 8.87 181
640 410 79 15.4 127
670 237 237 22.2 0
1-tridecene 1 run
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T /K ρl / kg/m3 ρv / kg/m3 psat /∆ bar ∆lvh / kJ/kg
400 685 0.195 0.0353 307
440 657 0.811 0.16 291
480 626 2.55 0.534 272
520 590 6.57 1.43 249
560 554 14.7 3.24 225
600 509 28.8 6.4 195
640 451 56.3 11.4 153
690 234 234 21.1 0
4-methyl-1-pentene 1 run
T /K ρl / kg/m3 ρv / kg/m3 psat /∆ bar ∆lvh / kJ/kg
280 685 0.574 0.157 361
320 647 2.58 0.789 336
360 605 8.06 2.64 306
400 556 20.2 6.75 269
440 496 44.9 14.4 220
475 419 93.7 25.2 150
496 252 252 34.3 0
5-methyl-1-hexene 1 run
T /K ρl / kg/m3 ρv / kg/m3 psat /∆ bar ∆lvh / kJ/kg
280 711 0.171 0.0404 330
320 677 0.991 0.263 339
360 639 3.64 1.06 314
400 598 10.1 3.09 286
440 549 23.7 7.26 249
480 490 50.4 14.7 202
510 424 91.4 23.1 146
533 252 252 31.7 0
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Table F.7.: Ether and Ketones: Tabulated values of liquid densities, vapor pressures and
enthalpies of vaporization. The last line for each substance gives the critical properties.

diethyl-ether 1 run
T /K ρl / kg/m3 ρv / kg/m3 psat /∆ bar ∆lvh / kJ/kg
240 756 0.151 0.0402 369
280 712 1.12 0.34 378
320 668 4.59 1.55 346
360 620 13.3 4.76 309
400 559 32.4 11.5 262
440 479 74.5 23.4 192
472 266 266 38.6 0
ethyl-propyl-ether 1 run
T /K ρl / kg/m3 ρv / kg/m3 psat /∆ bar ∆lvh / kJ/kg
280 731 0.396 0.105 366
320 692 1.93 0.572 343
360 647 6.46 2.04 314
400 600 16.9 5.51 280
440 540 38.5 12.2 234
480 455 86.4 23.7 163
507 263 263 35.2 0
di-n-propyl-ether 1 run
T /K ρl / kg/m3 ρv / kg/m3 psat /∆ bar ∆lvh / kJ/kg
280 743 0.137 0.031 362
320 706 0.843 0.216 339
360 666 3.25 0.912 315
400 623 9.34 2.76 286
440 575 22.6 6.7 251
480 514 48.3 13.8 205
510 449 87.4 22 152
538 260 260 32.3 0
di-n-butyl-ether 1 run
T /K ρl / kg/m3 ρv / kg/m3 psat /∆ bar ∆lvh / kJ/kg
320 733 0.142 0.0288 335
360 695 0.756 0.171 313
400 661 2.72 0.667 293
440 621 7.57 1.95 268
480 577 18 4.65 238
520 524 38.8 9.65 200
560 449 79.1 17.8 145
594 254 254 27.8 0
di-n-pentyl-ether 1 run
T /K ρl / kg/m3 ρv / kg/m3 psat /∆ bar ∆lvh / kJ/kg
320 746 0.0236 0.00396 332
360 718 0.181 0.034 315
400 683 0.838 0.173 295
440 649 2.79 0.618 275
480 611 7.46 1.72 251
520 569 17.3 3.98 223
560 518 36 8.09 189
600 451 72.2 14.7 141
638 248 248 23.9 0
butanone 1 run
T /K ρl / kg/m3 ρv / kg/m3 psat /∆ bar ∆lvh / kJ/kg
280 786 0.15 0.0481 497
320 747 0.875 0.317 465
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360 707 3.25 1.29 433
400 662 9.08 3.79 394
440 611 21.3 8.97 348
480 548 45.5 18.2 286
515 471 90.9 31 207
542 276 276 45 0
2-pentanone 1 run
T /K ρl / kg/m3 ρv / kg/m3 psat /∆ bar ∆lvh / kJ/kg
240 807 0.00372 0.000862 469
280 781 0.057 0.0153 462
320 759 0.424 0.129 441
360 717 1.84 0.615 407
400 674 5.63 2.02 373
440 630 13.9 5.16 336
480 577 30.4 11.1 289
520 509 62.9 21.1 226
565 272 272 39.2 0
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2-hexanone 1 run
T /K ρl / kg/m3 ρv / kg/m3 psat /∆ bar ∆lvh / kJ/kg
320 763 0.189 0.0501 411
360 725 0.903 0.269 389
400 692 3.04 0.974 364
440 651 8.16 2.72 334
480 603 18.7 6.29 297
520 549 39.1 12.6 250
560 472 80.5 22.9 182
593 268 268 35.2 0
2-heptanone 1 run
T /K ρl / kg/m3 ρv / kg/m3 psat /∆ bar ∆lvh / kJ/kg
360 740 0.451 0.117 383
400 701 1.74 0.493 356
440 664 5.05 1.52 329
480 623 12.2 3.76 298
520 575 26.3 7.97 260
560 515 53.1 15.1 211
585 463 83.2 21.5 168
615 266 266 31.6 0
2-octanone 1 run
T /K ρl / kg/m3 ρv / kg/m3 psat /∆ bar ∆lvh / kJ/kg
360 744 0.222 0.0513 374
400 711 0.982 0.249 351
440 675 3.13 0.851 325
480 636 8 2.27 298
520 593 17.9 5.1 265
560 541 37.2 10.1 224
600 470 74.3 18.2 168
610 444 90.2 20.8 146
639 261 261 29.9 0

140



G. Supporting information for chapter 5

This supporting information gives detailed simulation results in tabulated and graphical
form.

G.1. Background to reported results

G.1.1. Enthalpies of vaporization
The Clausius-Clapeyron equation can readily be evaluated from histogram reweighting
techniques. The gradient dp/dT was determined by calculating the gradient d(ln p)/d(1/T )
and using

d(ln p)
d(1/T ) = −T

2

p
· dp

dT .

The so-obtained results of the enthalpy of vaporization ∆lvh are less sensitive to finite
size simulation boxes as compared to values from 〈u〉v − 〈u〉l + psat

(
〈v〉v − 〈v〉l

)
.

G.1.2. Critical points
The critical values given here are size-dependent. No extrapolations with finite-size scaling
techniques were examined, since critical data was not in the focus of our force field opti-
mization. However, the estimated critical points are in good agreement to experimental
data even if they might get slightly worse when extrapolating to infinite volume.

G.2. Simulation Details
Table G.1 gives simulation details for every substance we have individualized. The table
gives information about the number of equilibration moves, production moves, the volume
of the simulation box the width of each window and the maximum number of molecules.
The maximum number of particles Nmax devided by the width of a window ∆N gives the
number of used windows. Two windows have been simulated on one CPU core. For ethyl
acetate for example, the used number of CPU cores was (320/8)/2 = 20.
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Table G.1.: simulation details

substance Nequil /mio. Nprod /mio. Volume /Å3 ∆N Nmax

ethyl formate 7 25 50000 6 384
propyl formate 6 25 60000 6 384
butyl formate 7 20 60000 5 320
ethyl acetate 6 35 51000 8 320
propyl acetate 7 30 60000 8 320
butyl acetate 7 30 63000 8 288
pentyl acetate 8 25 80000 5 320

Table G.2.: Number of CB steps for different dimensionless densities

ρ∗ CB steps per bead
< 1/2.7 1
≥ 1/2.7 ∧ < 1/1.9 2
≥ 1/1.9 ∧ < 1/1.6 3
≥ 1/1.6 ∧ < 1/1.3 4
≥ 1/1.3 ∧ < 1/1.16 6
≥ 1/1.16 8

Configurational Bias Monte Carlo
As mentioned in the main article, the sampling of insertion, deletion, or regrowth steps was
enhanced using the configurational biasing (CB) method. Since for the lowest densities
the acceptance probability is reasonably high, we perform only one CB step for densities
up to a dimensionless density of ρ∗ ≤ 1/2.7, with ρ∗ = ρ/ρmax, where ρmax again is the highest
density for which we perform simulations. Table G.2 shows the dimensionless densities
and the according CB steps.
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G.3. Results for formates

Table G.3.: Tabulated values of liquid densities, vapor pressures and enthalpies of vapor-
ization for formates

ethylformate 1 run
T /K ρl /kg/m3 ρv /kg/m3 psat /bar ∆lvh /kJ/kg
320 891 2.18 0.744 412
360 833 7.26 2.73 376
400 770 18.9 7.37 336
440 695 42.8 16.4 284
480 595 94.2 31.7 208
490 562 119 36.9 183
512 336 336 50.9 0
propylformate 1 run
T /K ρl /kg/m3 ρv /kg/m3 psat /bar ∆lvh /kJ/kg
320 864 1.02 0.307 383
360 818 3.8 1.24 358
400 764 10.7 3.68 326
440 705 25.1 8.75 288
480 631 53.7 17.8 237
515 540 107 30.4 171
540 318 318 43 0
butylformate 1 run
T /K ρl /kg/m3 ρv /kg/m3 psat /bar ∆lvh /kJ/kg
320 858 0.435 0.113 372
360 814 1.85 0.533 348
400 768 5.71 1.76 323
440 719 14.2 4.54 293
480 659 31.1 9.86 255
520 586 63.9 18.9 205
545 522 105 27 158
571 307 307 38.2 0

Figure G.1.: n-butyl-formate, n-propyl-formate, ethyl-formate: Comparison of calculated
phase equilibrium data from the TAMie force field to quasi-experimental data[137] in a
T -ρ-projection.

Table G.4.: Critical properties of simulated formates

substance simulation results experimental data[137, 187, 188]
TC /K pC /bar ρC/kg/m3 TC /K pC /bar ρC/kg/m3

ethyl formate 512 50.9 336 508.4 47.4 323.2
propyl formate 540 43.0 318 538.0 40.6 309.3
butyl formate 571 38.2 307 559.0 35.1 304.0
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G.4. Results for acetates

Table G.5.: Tabulated values of liquid densities, vapor pressures and enthalpies of vapor-
ization for acetates

ethyl acetate 1 run
T /K ρl /kg/m3 ρv /kg/m3 psat /bar ∆lvh /kJ/kg
320 863 1.04 0.313 382
360 813 3.88 1.26 355
400 755 11.2 3.74 321
440 690 27.1 9 278
480 607 61.3 18.6 218
505 528 107 27.7 161
528 312 312 38.7 0
propyl acetate 1 run
T /K ρl /kg/m3 ρv /kg/m3 psat /bar ∆lvh /kJ/kg
320 851 0.518 0.134 369
360 805 2.23 0.632 343
400 755 6.91 2.08 314
440 699 17.6 5.36 279
480 632 39.5 11.6 234
520 536 88 22.3 167
525 519 98.7 24.1 156
550 302 302 34.4 0
butylacetate 1 run
T /K ρl /kg/m3 ρv /kg/m3 psat /bar ∆lvh /kJ/kg
320 845 0.222 0.0505 360
360 808 1.12 0.283 339
400 761 3.88 1.05 312
440 711 10.5 2.96 283
480 656 24.3 6.84 247
520 584 51.9 13.7 200
550 509 93.7 21.6 150
578 295 295 31.9 0
pentylacetate 1 run
T /K ρl /kg/m3 ρv /kg/m3 psat /bar ∆lvh /kJ/kg
320 836 0.09 0.0183 355
360 806 0.542 0.123 336
400 767 2.13 0.525 313
440 722 6.23 1.63 287
480 674 15.2 4.04 258
520 616 33 8.59 221
560 541 68.3 16.2 171
575 499 92.2 20.1 143
603 285 285 29.3 0

Table G.6.: Critical properties of simulated acetates

substance simulation results experimental data[137, 139, 186, 188–190]
TC /K pC /bar ρC/kg/m3 TC /K pC /bar ρC/kg/m3

ethyl acetate 528 38.7 312 523.3 38.5 308
propyl acetate 550 34.4 302 549.4 33.6 296
butyl acetate 578 31.9 295 576 30.9 –
pentyl acetate 603 29.3 285 – – –
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Figure G.2.: ethyl-acetate, n-propyl-acetate, n-butyl-acetate and n-pentyl-acetate: Com-
parison of calculated vapor pressures from the TAMie force field to quasi-experimental
data[137].
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abe, J. Wiórkiewicz-Kuczera, D. Yin, and M. Karplus. All-atom empirical potential
for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B, 102
(18):3586–3616, 1998.

[27] A. D. Mackerell Jr., M. Feig, and C. L. Brooks III. Extending the treatment of
backbone energetics in protein force fields: Limitations of gas-phase quantum me-
chanics in reproducing protein conformational distributions in molecular dynamics
simulations. J. Comp. Chem., 25(11):1400–1415, 2004.

[28] K. Hart, N. Foloppe, C. M. Baker, E. J. Denning, L. Nilsson, and A. D. MacKerell.
Optimization of the charmm additive force field for dna: Improved treatment of the
bi/bii conformational equilibrium. J. Chem. Theo. Comput., 8(1):348–362, 2012.

[29] E. J. Denning, U. D. Priyakumar, L. Nilsson, and A. D. Mackerell Jr. Impact of 2′-
hydroxyl sampling on the conformational properties of rna: Update of the charmm
all-atom additive force field for rna. J. Comp. Chem., 32(9):1929–1943.

[30] N. Foloppe and A. D. MacKerell Jr. All-atom empirical force field for nucleic acids:
I. parameter optimization based on small molecule and condensed phase macro-
molecular target data. J. Comp. Chem., 21(2):86–104, 2000.

[31] A. D. MacKerell Jr. and N. K. Banavali. All-atom empirical force field for nucleic
acids: Ii. application to molecular dynamics simulations of dna and rna in solution.
J. Comp. Chem., 21(2):105–120, 2000.

148



BIBLIOGRAPHY

[32] J. B. Klauda, R. M. Venable, J. A. Freites, J. W. O’Connor, D. J. Tobias,
C. Mondragon-Ramirez, I. Vorobyov, A. D. MacKerell, and R. W. Pastor. Up-
date of the charmm all-atom additive force field for lipids: Validation on six lipid
types. J. Phys. Chem. B, 114(23):7830–7843, 2010.

[33] M. Schlenkrich, J. Brickmann, A. MacKerell Jr., and M. Karplus. An empirical
potential energy function for phospholipids: Criteria for parameter optimization and
applications. In Biological Membranes: A Molecular Perspective from Computation
and Experiment. Birkhäuser, 1996.
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