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Abstract

The dependability of modern devices is enhanced by integrating an extensive number of

extra-functional instruments. These are needed to facilitate cost-efficient bring-up, debug,

test, diagnosis, and adaptivity in the field and might include, e.g., sensors, aging moni-

tors, Logic, and Memory Built-In Self-Test (BIST) registers. Reconfigurable Scan Networks

(RSNs) provide a flexible way to access such instruments as well the device’s registers

throughout the lifetime, starting from post-silicon validation (PSV) through manufactur-

ing test and finally during in-field operation. At the same time, the dependability proper-

ties of the system can be affected through an improper RSN integration.

This doctoral project overcomes these problems and establishes a methodology to inte-

grate dependable RSNs for a given system considering the most relevant dependability

aspects, such as robustness, testability, and security compliance of RSNs.
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Zusammenfassung

Die Zuverlässigkeit moderner integrierter Systeme wird durch die Integration einer Viel-

zahl von extra-funktionalen Instrumenten erhöht. Diese werden benötigt, um ein System

kosteneffizient zu starten, debuggen, testen, diagnostizieren und im Feld einzupassen.

Sie können beispielsweise Sensoren, Alterungsmonitore, Logik- und Speicher-integrierte

Selbsttest (BIST) Register umfassen. Rekonfigurierbare Scan-Netzwerke (RSNs) bieten ei-

ne flexible Möglichkeit, auf solche Instrumente sowie auf interne Register des Systems

während der gesamten Lebensdauer zuzugreifen, angefangen bei der Post-Silicon Validie-

rung (PSV) über den Herstellungstest bis hin zur Feldoperation. Gleichzeitig können aber

die Zuverlässigkeitseigenschaften des Systems durch eine unsachgemäße RSN-Integration

beeinträchtigt werden.

Die vorliegende Doktorarbeit behandelt diese Probleme und etabliert eine Methodik zur

Integration zuverlässiger RSNs für ein gegebenes System unter Berücksichtigung solcher

Zuverlässigkeitsaspekte, wie Zugänglichkeit über RSNs, Testbarkeit von RSNs und Sicher-

heitskonformität von RSNs mit dem zugrunde liegenden System.
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Chapter 1

Introduction

1.1 System Dependability Management

Continuous efforts of the semiconductor industry to follow the Moore’s law [Moo65,

Moo75] still allow to increase complexity and higher integration in modern digital circuits.

At the same time, to allow high-performance and low-power operation, these circuits are

at the boundary of their operational limits [KEGT17]. Moreover, due to continuous tech-

nology scaling, the semiconductor manufacturing processes are increasingly more prone

to defects and process variations [PBH+11].

The complexity of modern systems makes it inevitable to consider such dependability

aspects of system design and operation, as ensuring their reliability, availability, functional

safety, and cyber-security. In Section 1.1.1, a short summary about the major dependability

aspects is provided, followed by the classification of the dependability-enhancing means in

Section 1.1.2. To manage the system dependability throughout the whole lifetime of the

system, various validation, test, and diagnosis methods are applied. Various functional

and non-functional dependability instruments are integrated into the system to support

these methods, as described in Section 1.1.3.

1.1.1 Dependability Requirements of the Modern Devices

System dependability, as defined in [ALR04], is the ability to avoid system failures that are

more frequent and more severe than acceptable. It serves as an integrating concept that

unites such requirements to the system operation, as reliability, availability, maintainabil-

1



1 Introduction

ity, functional safety, confidentiality, integrity, and cyber-security. For more information

about system dependability requirements, the reader is referred to [ALR04]. The remain-

der of this section provides more details about the specific dependability properties.

Reliability

Reliability is defined as the probability that a system would provide correct service longer

than a given period of time t, or, in other words, as a readiness for correct service. Relia-

bility R(t) is defined with the following formula:

R(t) = Prob{T > t} = 1− F (t) (1.1)

where F (t) defines the probability that a system is down at t.

Availability

Availability is defined as the system readiness to provide correct service at a given point of

a time. Availability of a system can be calculated with the following formula:

Availability :=
Uptime

Uptime+Downtime
(1.2)

where Uptime defines the time period, when the system provides correct service, while

Downtime is the time period when the system is out of operation. The latter time period

includes planned and unplanned maintenance. Therefore, the term availability is usually

used in those systems, where system recovery and/or repair is foreseen.

Maintainability

Maintainability is defined as the system ability to undergo maintainance, modifications,

and repairs to ensure correct service. In order to increase maintenability of a system, a

system must be designed in a way that faults may be detected, quickly isolated and - if

possible, repaired.
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Functional Safety

According to the international safety standard ISO 26262 "Road vehicles – Functional

safety" [dN11], functional safety is defined as the “absence of unreasonable risk due to

hazards caused by malfunctioning behavior of electrical/electronic systems”. In a func-

tionally safe system, risks of dangerous failures caused by systematic and random faults,

must be minimized. There exist certain risk classes, which are specific for the application

field. For example, in automotive industry, Automotive Safety Integrity Levels (ASILs) are

widely used. Based on the risk class, formal requirements to system design and operation

are formalized and applied to ensure a sufficient level of safety.

Confidentiality

Confidentiality is defined as the ability of a system to operate in the absence of unautho-

rized disclosure of information. In a confidential system, sensitive information is only

available for authorized entities and is kept away from other persons. This property can

be ensured by using such security mechanisms, as user authorization and authentication,

and also categorization of information into different levels of sensitivity, and encryption

of sensitive data.

Integrity

Integrity is defined as the system ability to operate in the absence of improper system

alterations by an unauthorized entity or due to non-human-caused events. In other words,

the information transmitted through a system is available to the receiver in an intended

format, and is not corrupted.

Security

Security [ALR04] of a system is defined as the concurrent existence of the following prop-

erties in the system:

(a) availability for authorized users only,

(b) confidentiality,
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(c) integrity against unauthorized system alternations.

In modern systems, it is almost impossible to ensure functional safety without managing

its security [VGY+16]. At the same time, to ensure dependable operation of systems, ex-

tensive test measures are applied, which in general increase the observability and the con-

trollability of system’s internals. This extra observability and controllability might serve as

a possible side-channel for an attacker [RDN+14] and might be misused to compromise

functional safety. An attack on car’s breakage system is a remarkable example of an inter-

play between functional safety, security and test of a dependable system. For more details

on system security refer to [TW11].

1.1.2 Dependability-Enhancing Means

To ensure the dependable operation of a system, an extensive number of different ap-

proaches to enhance system design and operation have been presented. The remainder of

this section summarizes the most important classes of dependability-enhancing means.

Fault-Tolerance

Fault-tolerance (FT) methods [KK07] are those methods, which avoid service failures in the

presence of faults by applying various types of redundancies. These redundancy types in-

clude structural, information, and time redundancies. In the case of structural redundancy,

extra resources are incorporated to detect and possibly correct the effects of failed com-

ponents. However, adding more resources to the system may reduce the system reliability

[Lal00]. Some examples of structural redundancies include Triple Modular Redundancies

(TMR) [LV62], hypercubes [Mil63], cube-connected cycles [PV79] and FT-trees [DH90].

Information redundancy exploits additional bits of information to detect and correct er-

rors. Some important example are Error Correcting Codes (ECC) [Mac99, MM00] and

Algorithm-Based Fault-Tolerance (ABFT) [KA84, BHW14]. Finally, time redundancy is

based on re-execution, and is efficient, in particular, to detect and tolerate transient faults.
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Fault-Avoidance

Fault-avoidance methods are applied to prevent the occurrence or introduction of faults

into a system [MCXBA99]. Faults can be avoided by making all the components of the

system more robust, e.g. through resizing [QM06, JRBS06]. There are various techniques

available to reduce the probability of defects by hardening some components and cells

locally. They are developed in the field of design-for-manufacturability [Dom12] and

can reach as far as applying TMR locally to single cells [VBG+08]. They decrease the

probability of defects and do not affect the test and diagnostic procedures but increase

power consumption and area overhead. Hardening a minor number of carefully selected

components, while leaving the remaining part of the device unprotected, still reduces the

probability of a system failure and has acceptable costs [ZWPB08, PH11]. In the literature,

hardening is usually applied for soft error mitigation [MZS+07, EKD+03, ORM07].

Fault-Removal

Fault-removal approaches reduce the number and severity of faults in a system. These

approaches aim to detect the presence of faults by means of testing, locate them through

diagnosis and consequently remove them [MCXBA99]. More details about major fault

detection stages are provided in the next section.

Fault-Forecasting

Fault-forecasting methods estimate the present number, the future incidence, and the pos-

sible consequences of faults for system operation. Performing fault-removal and fault-

forecasting allows deciding whether current specifications of system functionality and its

dependability properties are adequate and if the system can fulfill them now and in the

future.

1.1.3 Dependability Management throughout the Lifetime

To ensure the reliable operation of modern devices and keep the yield high, devices are

tested throughout their whole lifetime. Large amounts of data are collected from the

devices by using embedded instruments. The data collected in the earlier stages of the
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lifecycle can be reused later to optimize the latter stages. Moreover, the data obtained

during the latter stages can enhance the design and manufacturing process of the next-

generation devices.

In this section, we provide an overview of the integration and usage of embedded instru-

ments throughout different stages of silicon lifecycle management (SLM). These stages

include the design, post-silicon validation, manufacturing test and diagnosis and in-field

stages. The fifth field-return stage extends the SLM concept even more by considering

the data obtained after the system’s end of life. It helps address the returns, in partic-

ular the No-Failure-Founds. For more information about testing and diagnosis, refer to

[ABF90, WWW06]. The remainder of this section provides some details about the neces-

sary steps to integrate and operate embedded instruments.

Design Stage

Modern semiconductor devices integrate a vast amount of instruments. Dependability

instruments include, e.g., sensors, monitors [SKKN20, LSW20], built-in self-test (BIST)

registers [RTKM04, HWZ+07, KMM+20], Adaptive Voltage and Frequency Scaling (AVFS)

blocks, and Adaptive Body Bias (ABB) control units [TKD+07], temperature control and

error rate adoption units.

Post-Silicon Validation

In earlier technologies, a large portion of hardware mismatches could be detected during

the pre-silicon phase of the design lifetime. Due to the physical limits and also the system

complexity of modern devices, it is no anymore possible to rely only on pre-silicon design

verification to detect all design mismatches. Post-silicon validation is a test insertion that is

applied on a minor number of manufactured device prototypes. It validates the compliance

of the actual implemented device behavior over the initial specification. The prototypes

are thoroughly examined, and possible faults after production are detected [MSN10].

Error localization during post-silicon validation is supported by an extensive number of on-

chip sensors and trace buffers. Based on the results of this phase, the design is enhanced

in the next generations by patching, circuit editing, or re-spinning the device. This whole

process is repeated until no further problems are found.
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Manufacturing Test and Diagnosis

After design errors are detected and resolved during pre-silicon verification and post-

silicon validation, volume production of the device starts. Due to the complexity of modern

devices and technology node scaling, manufacturing defects are inevitable during volume

production. To precisely detect the defects and thereby ensure high reliability of devices,

while preserving high yield, offline manufacturing test and diagnosis methods are ap-

plied. Numerous instruments, such as Built-In Self-Test blocks, are used to support the

test. Additionally, analyzing test and diagnostic results helps to find weak spots in the

manufacturing process and consequently improve it.

In-Field Operation

After devices are manufactured and tested, they are shipped to the customer, and online

reliability management is used to observe and possibly control the device degradation

[IK19]. The degradation arises due to extreme environmental conditions and also due

to aging mechanisms, which include but are not limited to Negative Bias Temperature

Instability (NBTI) [APZM07] or Hot Carrier Injection (HCI) [MSVK06]. System in-field

operation can be supported by embedded instruments, which include e.g. monitors and

sensors [LSW20]. In the case of performance degradation, fault handling mechanisms are

used to guide the system reconfiguration or to adjust the operating conditions. Thereby,

the useful lifetime of a system can be prolonged.

Field Return Diagnosis

At the end of the lifetime, diagnostic data from the system can be further analyzed to

identify possible root causes of failures, in particular those which are marked as no-failure-

found (NFF). This data is collected by using an extensive number of instruments through-

out the whole life of the system and can be used to optimize the manufacturing process

and even the design of next-generation systems.
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1.2 Reconfigurable Scan Networks (RSNs) for Dependability

Enhancement

Reconfigurable Scan Networks (RSNs) provide flexible and scalable access to an exten-

sive number of extra-functional embedded instruments. They are standardized by IEEE

Std. 1149.1 [IEE13] and IEEE Std. 1687 [IEE14] and are also commonly referred to as

iJTAG (internal Joint Test Access Group) networks or IEEE 1687 networks. RSNs are used

throughout the system lifetime and thereby support the dependability management, as

described in Section 1.2.1. At the same time, improper RSN integration can affect the sys-

tem dependability, as discussed in Section 1.2.2. A high-level overview of the developed

automated framework for integration of dependable RSNs is given in Section 1.3.

1.2.1 Dependability Management Support via RSNs

Reconfigurable Scan Networks access the non-functional instruments through scan paths,

which all start at a scan-in port and end at a scan-out port. In Fig. 1.1, the instruments

shown in orange, such as sensors and BIST registers, are accessed via an RSN. Instruments

are accessed for observation and control via an activated scan path (ASP), which allows

to dynamically include those instruments, which must be accessed now. The values in the

control registers {cs1 . . . cs5}, shown in yellow, determine the currently configured scan

path. Vertical arrows show possible points to select different paths. As shown with a

dashed line in Fig. 1.1, an initial active scan path traverses the control register cs4, as well

as the segments s3, s4 which access the BIST register and the aging monitor.

s1 s2cs2cs1

s3cs3

cs4 cs5

Scan-In Scan-Out

s5

Sensor Sensor

BIST Monitor

s4

Trace Buffer

Figure 1.1: RSN accessing the instruments
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Initially, RSNs have been presented to support the offline stages of the lifecycle, which

include post-silicon validation and manufacturing test. During post-silicon validation, RSNs

collect as much data as possible from a limited number of prototypes, and this data is

further used to detect and locate faults. During the manufacturing test, RSNs are used to

provide test patterns and to fetch test data from the instruments. Analyzing the responses

of RSNs allows detecting manufacturing defects.

The benefits of using RSNs to support Silicon Lifecycle Management are not limited to

offline operation. Instead, nowadays RSNs are also increasingly used in-field. Some of the

important online applications of RSNs are listed below:

• The in-field operation of the instruments can be controlled by RSNs. E.g. runtime-

adaptive instruments, such as adaptive voltage and frequency scaling, error rate

adoption, or temperature control, can be accessed by RSNs, or RSNs can be used to

control online BISTs [RTB+19].

• Reliability threats, such as faults or abnormal changes in the system behavior [IK19,

ZNL16] can be fetched by RSNs and detected.

• The data about failures in certain modules [TJSD18] can be collected by RSNs.

• In the case of performance degradation or failure of specific modules, RSN-based

fault-handling mechanisms can be used to guide the reconfiguration of a system

or to adjust the operating conditions by controlling runtime-adaptive instruments

through RSNs and thereby prolong the useful lifetime of a system [SDJ16].

• Security attacks can be detected with a help of RSNs [EKC18, RBT18].

1.2.2 Dependability Issues due to Improper RSN Integration

The dependability of the underlying system can be affected through an improper RSN

integration. The remainder of this section provides an overview of the issues with regard

to the most relevant dependability aspects, such as robustness, testability and security

compliance of RSNs.
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Robustness

Since RSNs occupy a significant fraction of the chip area, the probability of a fault therein

is not negligible. Even a single fault in the RSN could corrupt scan paths, an erroneous

data may be fetched by the RSN, make the instruments inaccessible through the RSN, and

eventually result in a system failure. During the post-silicon validation (PSV) stage, an

innovative process or a new design may result in an increased defect rate. Therefore, a

single fault in an RSN may prevent accessing a significant part of instruments. As a result,

a large portion of the validation data cannot be extracted from the device. Later, during

the runtime stage, the system operation may be guided by runtime-adaptive instruments.

Inaccessibility of such critical instruments due to a single fault in the RSN may cause a

system failure or even permanent damage.

Testability

Specific fault effects in RSNs are observable only for certain RSN configurations, and se-

quential test pattern generation for such faults is unfeasible for large networks. The known

RSN test solutions, presented in [CMR+15, KBSW16, CZP+18, HHD21], e.g., may not de-

tect all the faults due to inaccessibility of certain RSN components, and do not provide

complete testability enhancing solution. An undetectable fault in an RSN may cause silent

data corruption if data is captured from or updated to the wrong instrument.

Moreover, conventional methods [UKW17, KBSW16, CDRS20, CSSS18, HHD20] test RSNs

once, after the manufacturing, or perform online concurrent test of RSNs [WLA+21]. To

avoid fault accumulation concurrent test has to be complemented by a periodic test, since

rarely used components may be still subject to aging [LSW20]. The need for the periodic

test is especially strong in safety-critical applications like automotive [KMM+21, EZ17].

Security Compliance

To ensure system-level security, a system designer thoroughly develops the connections

inside a system in a way that prevents unauthorized access and information leakage. A

design-for-test (DfT) integrator might not be fully aware of all the designer’s security in-

tentions and might integrate the RSN in a way, which is not compliant with the initial se-
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curity properties. The additional connectivities in the system, introduced due to improper

RSN integration, might be exploited by an attacker as a side-channel to leak or manipulate

sensitive data or alternate the system behavior [EKC21, KDD16, RBT18, KBW17]. It must

be ensured that the original security analysis and protection policy are not invalidated by

the DfT-infrastructure.

Combination of the Dependability Aspects

The above-mentioned dependability aspects might be contradicting in general. In par-

ticular, the increased testability of a system may open a side-channel for an attacker

[RDN+14]. The dependability aspects must be considered altogether and all the con-

tradictions between them must be mitigated at the design stage.

1.3 Overview of the Work

The document at hand establishes a methodology to integrate dependable RSNs for a given

system. The developed methodology considers the most relevant dependability aspects,

such as robustness, testability, and security compliance of RSNs. It overcomes specific

challenges, which arise at different stages of the Silicon Lifecycle, and is scalable with

the increasing size and complexity of RSNs. The remainder of this section provides an

overview of the contributions and explains, how the document is organized.

1.3.1 Major Contributions

Fig. 1.2 presents the major aspects of dependability-aware RSN integration:

• Dependability aspects: To support an efficient system dependability management,

RSNs themselves must remain dependable. A dependable RSN is characterized by

such dependability aspects, as a possibility to provide robust access to the instru-

ments for observation and control, testability of an RSN itself, as well security com-

pliance with the intentions of the system designer. The presented scheme integrates

dependable RSNs and mitigates the contradiction between enhancing the above-
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Figure 1.2: Objectives and Contributions

mentioned dependability aspects of an RSN. Thereby, it allows for the integration of

a dependable RSN, which is suitable for the system requirements.

• Methods: Compared to conventional scan chains, analyzing the dependability as-

pects of RSNs and, in particular, enhancing those is even more challenging due to the

high sequential depth of RSNs, the distributed control structure, as well as the com-

plex sequential and combinational dependencies [BKW15b]. The first major contri-

bution of this thesis is an exact and scalable analysis methodology for the depend-

ability aspects above. This analysis serves as a basis for an efficient dependability-

enhancing resynthesis method, which is the second major contribution.

• Silicon Lifecycle Management (SLM) phases: The presented methodology considers

the integration of RSNs, which provide efficient instrument access throughout the

whole silicon lifecycle. It covers the whole timespan starting from the post-silicon

validation phase of the prototypes, through the manufacturing test and diagnosis

during volume production, and finally supports the online dependability manage-

ment and in-field monitoring.

• Criteria: The structure of RSNs is optimized to comply with the requirements of the

design-for-test engineer, and is compatible for online and offline operation. To keep
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the test costs low, it is extremely important to reduce the RSN hardware overhead.

Throughout the silicon lifecycle, especially during the manufacturing test and the

online operation optimizing the test access time becomes inevitable.

1.3.2 Document Organization

The first part has provided a motivation, why the developed methodology to integrate

dependable RSNs is essential to support the system’s dependability. The remainder of this

chapter presents an overview of how the document at hand is organized.

The second part includes the theoretical background, which is required for understanding

the developed methodology. The necessary background on Reconfigurable Scan Networks

is presented, including the information about the used fault models in RSNs. Next, the

details are presented about the graph-based modeling of RSNs.

The state-of-the-art solutions for enhancing specific dependability properties of RSNs are

provided in the third part. The major applications of RSNs are summarized in Chap-

ter 3.1. In Chapter 3.2, the state-of-the-art solutions to provide reliable access via RSNs

are presented. Chapter 3.3 discusses the existing test and diagnosis methods for RSNs.

Chapter 3.4 discusses the existing ways to analyze and enhance RSNs for the security.

Finally, Chapter 3.5 summarizes the limitations of the existing methods and highlights

the necessity of integrating dependable RSNs despite the presented research challenges.

The fourth part presents the developed methodology for integrating dependable RSNs.

The major contributions are discussed in Chapters 4 – 7:

Chapter 4 ("Robust RSNs") provides the first solution to significantly enhance the robust-

ness of RSNs by the means of cost-efficient hardening. The presented solution has

been first published in [LWW22c]. The goal of the developed scheme is to ensure

reliable access to the instruments for control and observation via RSNs throughout

the lifecycle. During the post-silicon validation, the number of device prototypes is

limited and the error rate is rather high. Using the developed method, the validation

data can be extracted, since the major parts of the instruments remain accessible.

During the runtime application, robust RSNs support reliable access to runtime-

adaptive instruments.

13



1 Introduction

In this chapter, a precise criticality analysis method is presented to assess the influ-

ence of faults in scan primitives on the accessibility of the instruments. Based on

the analysis results, an efficient resynthesis method substitutes a minimized num-

ber of RSN primitives with high-yield cells to ensure the desired accessibility of the

instruments via RSNs in the presence of defects.

Chapter 5 ("Testable RSNs") presents the first complete design-for-test (DfT) approach

for RSNs, which allows generating test sequences with complete fault coverage for

the usual fault models and has been published in [LWW21, LWW22a]. First, fault

locations are identified, which cannot be tested by using the existing test methods

due to the low observability and controllability of specific RSN parts.

The developed DfT methods ensure fault detection for three major parts of a Re-

configurable Scan Network: scan interfaces, scan segments, and control lines. The

complete DfT scheme precisely identifies untestable faults in a given RSN and effi-

ciently resynthesizes the RSN in a way that all the faults are testable by using the

existing methods. An efficient test integration scheme is developed, which dramati-

cally decreases the overall test access time compared to testing the individual parts

of an RSN independently. Each test sequence contains a workload sequence, which

is used to test faults affecting scan interfaces and control lines, and a short self-

generated pre-sequence to concurrently test the shift logic of the segments on the

activated path. The presented scheme is flexible with respect to the fault model, has

a low hardware overhead, and does not require changing the RSN topology rules.

Testing the shift logic of the scan segments concurrently to the functional access,

as shown in the first part of the chapter, is not enough to guarantee reliable access

through RSNs. To avoid fault accumulation, the concurrent test has to be comple-

mented by a periodic test, since rarely used components may be still subject to aging

[LSW20]. The second part of the chapter discusses the first online periodic test

method for RSNs, which has been first presented in [LWW22b].

The developed algorithm generates a short sequence of test patterns, which tests all

scan primitives of an RSN. The overall test application time is minimized to comply

with the timing requirements of the well-known safety standards. The generated
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sequences can be uploaded on-chip and applied periodically online to avoid fault

accumulation in RSNs. Alternatively, the generated test sequence set can be reused

throughout the system lifetime, e.g., for structural test and post-silicon validation of

RSNs.

Chapter 6 ("Security Compliant RSNs") presents a complete approach for security pre-

serving integration of RSNs. The developed approach ensures the compliance of the

resulting RSN with the requirements of the original system.

The first section presents the first security compliance analysis approach from

[LAR+19, LWW22d]. The developed approach overcomes the high sequential depth

of RSNs and accurately analyzes the RSN functional dependencies considering re-

targeting. The information about the functional connectivities through RSNs and

the connectivities between the instruments in the initial system are combined. The

so-called hybrid connectivities between the instruments are identified for the case,

when a given RSN is integrated into the system. These hybrid connectivities are

compared to the initial connectivities between the instruments, and unwanted extra-

connectivities due to improper RSN integration are identified as security violations.

In the second part of the chapter, a purely structural resynthesis scheme from

[LAWW20, LWW22d] is presented. Based on the results of a security compliance

analysis, the developed resynthesis approach resolves all the identified violations

by applying a minimized number of structural changes to the RSN structure. An

efficient divide-and-conquer heuristic is presented, which avoids exponential com-

plexity in the average case. The automated resynthesis is flexible and allows to

specify additional optimization criteria based on the DfT integrator’s needs.

The third part of the chapter presents a flexible protection scheme for multiple user

groups with different access permissions, as published in [LWW21]. It combines the

benefits of the structural method presented in the second part of the chapter and

the filter-based protection from [AKS+18]. The number of structural changes is dra-

matically reduced compared to the purely structural solution above, since only those

violations are resolved structurally which cannot be handled by using sequence fil-

ters without sacrificing the accessibility of the instruments. The remaining violations
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are resolved functionally by using filters. The resulting RSNs are compliant with the

security specification and do not extend the allowed connectivities between the in-

struments of the initial system.

Chapter 7 ("Dependable RSNs) presents a complete approach for integration of depend-

able RSNs. It discusses possible contradictions between specific dependability prop-

erties of RSNs and presents a flow to efficiently combine these properties in one

dependable RSN.

Finally, Chapter 8 provides a conclusion and serves as an overview of future research

directions.

The appendices present the data for an evaluation of the developed methods on a broad

range of widely-accepted benchmarks. Here, Appendix A presents the experimental setup,

which is common for all the experiments, while Appendix B provides the details about

the individual experiments for the contributions above.

1.4 Summary

To support the design and integration of modern systems, it is inevitable to consider such

dependability aspects as reliability, availability, functional safety, and cyber-security. An

increasing number of dependability instruments are integrated to manage the system’s

dependability throughout its lifecycle.

Reconfigurable Scan Networks provide flexible and efficient access to the instruments.

However, their integration may result in dependability challenges. Faults in RSNs may

affect the accessibility of the instruments through the RSNs. If these faults remain unde-

tected, they may cause Silent Data Corruption. Additional unwanted connectivities may

be introduced into the system due to improper RSN integration. They may be misused

by attackers to leak some sensitive data or to manipulate the underlying system. All the

dependability challenges above might lead to a system failure, permanent damage, or

a functional safety threat if safety-critical components of the system are affected. Such

properties of RSNs as high sequential depth and complex control dependencies make the

analysis and enhancement of RSNs extremely challenging.
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1.4 Summary

In this document, an automated framework is presented to precisely analyze and effi-

ciently enhance such dependability properties of RSNs, as accessibility, robustness, and

security compliance. The developed framework is scalable for large and complex RSN

designs. The resulting RSNs are applicable throughout the whole system’s lifetime. The

remainder of the document discusses the individual contributions in the context of the

existing state-of-the-art solutions. The last chapter discusses a complete solution to inte-

grate dependable RSNs into the original system, such that the developed methods are not

contradicting each other.
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2 Reconfigurable Scan Networks

Chapter 2

Reconfigurable Scan Networks

With the first efforts starting at the beginning of the century [REP+05], RSNs have been

finally standardized in IEEE Std. 1149.1 [IEE13] and IEEE Std. 1687 [IEE14]. RSNs are

integrated during the design stage of dependability management and access the embedded

instruments throughout the whole system lifetime. Section 2.1 provides a short descrip-

tion of an RSN structure, followed by the specifics of accessing the embedded instruments

through RSNs in Section 2.2. In Section 2.3, possible fault locations and their effects on

the RSN functionality are introduced. Section 2.4 discusses the modeling of RSNs, as well

as modeling of interfaces between RSNs and the functional system.

2.1 RSN Structure

A small part of a considered system is shown in Fig. 2.1. As already mentioned in Sec-

tion 1.2.1, the considered system comprises the non-functional instruments’ registers I (in

the upper part of Fig. 2.1) and the RSN, which accesses the instruments’ registers through

the scan segments S (in the lower part). This RSN is used as a running example for the

remainder of the document.

RSNs are constructed out of basic building blocks, which are commonly referred to as the

scan primitives. The set of scan primitives P includes all the scan segments S and all the

control primitives M . Scan segments are the scan primitives, which access the instruments

through a parallel interface and which are used to shift the data through the RSN.

20



2.1 RSN Structure

0

1
s2

cs1

0

1

s3

cs2

Scan-In Scan-Out
SIB

m1 m2

System
i2 i3

RSN

s1

i1

0

1
s2

cs1

s3

cs2

Scan-In Scan-Out
SIB

m1 m2

System
i2 i3

RSN

s1

0

1

i1 i4

s4

Figure 2.1: Running RSN example

Each scan segment contains a shift register and an optional shadow register, as shown in

Fig. 2.2. The following types of scan segments can be distinguished:

• Data scan segments ds ∈ DS are scan segments, where the shadow registers serve as

an intermediate storage for the information, which is sent to the instruments.

• Control scan segments cs ∈ CS are scan segments, where the information stored in

the shadow registers is used to drive the internal control signals.

Scan Segment

Shift register

ROSTI3) Enable concurrent test

Shadow register

Instrument
Internal control 

signals

Scan 

in

Scan 

out

Global control 

signals (CSU)

Internal select 

signal

Figure 2.2: Scan segment internals

Control primitives are the scan primitives, which define the configured active scan path

depending on the values of the control signals. If a control signal sig comes from outside

of the RSN, it is referred to as an external control signal. If a signal comes from a shadow

register of a control scan segment, it is called an internal control signal. The following

control primitives are commonly used to build RSNs:
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• Scan multiplexers select between appropriate parts of an RSN depending on the value

of an address control signal and include them into an activated path.

• Segment Insertion Bits (SIBs) include or exclude specific parts of an RSN from an

activated path depending on the control signal assignments.

Other types of control primitives might include multi-input scan multiplexers, and also

different types of SIBs. To stay general, we assume that any control scan primitive is

constructed as a combination of one or multiple scan multiplexer and an optional scan

segment.

Example Each SIB (as shown in Fig. 2.3.a) can be represented as a combination of a scan

segment and a scan multiplexer, as shown in Fig. 2.3.b. The underlying segment is only

selected, if the SIB is asserted. If the SIB is deasserted, the segment is bypassed.
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Figure 2.3: SIB transformation

There exist some types of RSN structures, which restrict possible connectivities within

RSNs to specific regular structures. A widely-used example of such special-type RSNs is

the so-called SIB trees. In SIB trees, only SIBs are used as configuration scan primitives.

SIB trees are constructed recursively, such that each SIB provides access to one or multiple

other SIBs or scan segments.

2.2 RSN Operation

At each particular time point, a Scan Configuration c is defined by the state of the scan

primitives. An Active Scan Path (ASP) asp is an acyclic path through selected scan prim-

itives from a primary scan-in to a primary scan-out. The scan primitives are explicitly

selected by setting the internal select signal to logic one. In Fig. 2.1, an initial path starts

at the primary scan-in port (SI), goes towards the SIB, traverses the segments cs1, s1,

cs2, s3, returns back to the SIB and ends at the primary scan-out (SO).
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2.2 RSN Operation

In a valid scan configuration, only one active scan path can be activated at a time, and

only those scan primitives, which are included into the ASP, can be used to access the

corresponding instruments.

In the initial standard [IEE14], an RSN was supposed to be accessed via a JTAG Test Ac-

cess Port (TAP), while the recent standard proposal IEEE P1687.1 [CVTR20] allows to use

of functional ports to access and control RSNs. In [BKW15b] a temporal abstraction rep-

resents each access to an RSN as an atomic Capture-Shift-Update (CSU) operation. A CSU

operation allows performing a transition from one scan configuration to another. During

the capture-phase, the data from the instruments are read into the selected shift registers.

During the shift-phase, the data is shifted towards the scan-out and the new data is being

shifted in. During the update-phase, the data is latched in the shadow registers. This data

can be written to the instruments’ registers or used to trigger the control signals. The ac-

cess phases mentioned above are controlled by the CaptureEn, ShiftEn, and UpdateEn

signals. These signals are shown as global control signals (CSU) in Fig. 2.2.

Multiple CSU-operations may be needed to transport the data to a certain target or to

include necessary scan segments into an ASP. A Transition Relation defines the pairs of

scan configurations (c1, c2), such that a transition from c1 to c2 requires only one CSU-

operation. Computing the control patterns to perform these CSU-operations is called re-

targeting. For more details on CSU-modeling, see [BKW15b].

Each scan segment (Fig. 2.2) consists of one or multiple scan cells. A gate-level structure

of a single scan cell is shown in Fig. 2.4. It consists of a scan flip-flop and an optional

shadow flip-flop, which are connected as follows:

• A shift path starts at the scan-input (SI) and ends at the scan-output (SO) of a cell,

and contains two multiplexers (M1 and M2) and an internal data path of the scan

flip-flop. During the shift phase of a CSU operation, the multiplexer M1 propagates

the data from the scan-input through the multiplexer M2 and the scan flip-flop to-

wards the scan-output.

• An update path starts at the scan flip-flop’s output and leads to the data output Q,

which may be connected to an instrument or may drive RSN-internal control signals.

The path comprises the multiplexer M3 and the internal data path of the shadow
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Figure 2.4: Scan cell accesses an instrument

flip-flop. During the update phase, the multiplexer M3 propagates the data from the

shadow flip-flop to the output Q.

• A capture path starts at the data input D, traverses the multiplexer M2 and the data

path of the scan flip-flop. During the capture phase, the multiplexer M2 propagates

the data from the instrument into the scan flip-flop.

2.3 Faults in RSNs

A fault in an RSN may affect the interfaces to the instruments, the control signals or the

scan segments. The remainder of this subsection discusses possible fault locations and

their effects on the RSN functionality.

2.3.1 Faults at Interfaces to Instruments

The communication with the attached instruments and generation of internal control sig-

nals can be affected by faults in the shadow flip-flops, as well as at the multiplexer M2

and M3 in Fig. 2.5, as shown with red color and explained below:

• Multiplexer M3 and data path of a shadow flip-flop: A timing violation affecting the

shadow flip-flop or a fault at the multiplexer M3 may corrupt writing the data to the

instrument during the update phase.
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Figure 2.5: A scan cell with injected faults

• Multiplexer M2: If the multiplexer M2 is faulty, it may prevent from reading correct

data from the instrument during the capture phase.

• Reset line of a shadow flip-flop: If the reset line of a shadow register is affected by a

stuck-at-0 fault, it may not be possible to reset its value to an initial known state.

The logic around a shadow register can only be set and observed via the instrument. In

case of an analog instrument, such as a digital to analog converter (DAC), the observability

of the data is low, since the information is masked while being propagated through the

instrument. This makes the faults at the multiplexers M2 and M3, as well as the faults

affecting the shadow flip-flops, in general not testable.

Example: In Fig. 2.1, a fault might affect an interface between the scan segment s1 and the

instrument i1, as shown with a grey box. If the capture-circuitry of the scan interface of the

scan segment s1 is faulty, incorrect data can be latched into the instrument i1.

2.3.2 Faults in Control Primitives

Faults in the control primitives such as the scan multiplexers and the SIBs may arise due

to defects in control lines or internal defects in the control primitives. These faults are

usually modeled as high-level "stuck-at" faults, as defined in [CZP+18]:
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• Scan Multiplexers: If a scan multiplexer always selects a specific input with an iden-

tifier id, regardless of the assignment to the address control line, we say that this

scan multiplexer is affected by a "stuck-at-id" fault.

• SIBs: If a SIB always provides access to the underlying segment, regardless of the

applied access pattern, we say that this SIB is "stuck-at-asserted". If access to the

underlying segment is never provided, the SIB is "stuck-at-deasserted".

Example: Assume a scan multiplexer m1 from Fig. 2.1 is affected by a stuck-at-1 fault. Due

to this fault, the scan segment s1 becomes inaccessible, which leads to the inaccessibility of the

instrument i1 via the RSN.

2.3.3 Faults in Scan Segments

Examples of faults, which affect the primitives located on the shift path of a scan seg-

ment, include setup- and hold-time violations in the corresponding scan flip-flops. These

violations might prevent correct data from being latched into the flip-flops while shifting.

Example: If the scan flip-flop of the scan segment s2 from Fig. 2.1 has a setup-time violation,

the data is not properly latched in this flip-flop. The propagation through the activated path

which traverses the scan segment s2 is affected.

2.4 Graph-Based Modeling of RSNs

Graphs are frequently used to represent the connectivities between logic gates, dominance

relations, and other structural and functional properties of digital circuits. Thereby, in this

document, a graph-based model of RSNs is used as a basis for the developed analysis and

resynthesis approaches.

The remainder of the section is organized as follows. The first subsection provides some

basic definitions of graphs and, in particular, trees. The second subsection discusses graph-

based modeling of RSNs and their connectivities to the instruments of the original system.
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2.4.1 Basic Definitions

Definition 2.1 (Graph). A graph G is a pair (V,E), where V is a set of vertices and E is a

set of edges (paired vertices).

Definition 2.2 (Directed graph). A directed graph G := (V,E) is a graph, where an edge

set E, which contains ordered pairs of vertices, is defined as follows:

E ⊆ {(vi, vj)|(vi, vj) ∈ V 2; i 6= j} (2.1)

A cycle is a graph, where vertices V can be ordered (v1, . . . vn) such that the edges are

{vi, vi+1}; i ∈ (1, n− 1) plus the edge {vn, v1}. A graph is referred to as an acyclic graph,

if it does not contain any cycle. Otherwise, a graph is referred to as a cyclic graph.

Vertices and edges of a graph can be annotated with some additional information, e.g.

with an integer number or a Boolean formula [Boo12]. If a certain vertex does not have

any incoming edges it is referred to as a source of the graph, while a vertex with zero

outgoing edges is called a sink of the graph.

Definition 2.3 (Tree). A tree is an undirected graph, in which any two vertices are con-

nected by exactly one path.

Tree decompositions of graphs are frequently used to solve specific computational prob-

lems in a scalable and efficient way, e.g. by exploiting divide-and-conquer paradigm or

dynamic programming. Depending on the needs of a specific algorithm, there exist the

following standard notations to traverse trees, as shown for the example in Fig. 2.6:

A B

+

Gain

Cost

minGain

maxCost

Figure 2.6: Graph traversal notations

• Prefix notation or Polish notation is a mathematical notation, where the root node

(the operator) is traversed before all its children (the operands). In Fig. 2.6, the

nodes would be processed following the order: +AB.
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• Infix notation or in-order is a notation, where first the left child is processed, then

the root vertex, and finally the right child. In Fig. 2.6, the in-order is A+B.

• Postfix notation or reverse Polish notation is a notation, where the root node is pro-

cessed after all its children. In Fig. 2.6, the order would be AB+.

Using the notations above for the whole tree, efficient implementations of depth-first-

search, breadth-first-search and other routines are developed. For more information about

graphs, refer to [Big74].

2.4.2 RSN Graph

The whole considered system is modeled as a directed graph GS := (V S , ES) with vertices

V S and edges ES . A system graph for the example RSN from Fig. 2.1 is shown in Fig. 2.7.
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Figure 2.7: Example graph of an RSN from Fig. 2.1

It is constructed of two subgraphs, namely the instruments graph GI := (V I , EI), the RSN

graph GRSN := (V RSN , ERSN ), and the edge set ECON , which represents the connections

between the subgraphs. The system graph is defined as follows:

V S := V I ∪ V RSN (2.2)

ES := EI ∪ ERSN ∪ ECON (2.3)

The instrument graph is constructed as follows. The vertex set V I contains all the regis-

ters of extra-functional instruments, which are accessed through the RSN. The edges EI
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represent the direct connectivities between the vertices of the graph or the connectivities

through the functional registers or the combinational blocks.

An RSN is modeled as a directed graphGRSN := (V RSN , ERSN ), where V RSN is the vertex

set and ERSN is the edge set. Each vertex corresponds to a scan primitive, a primary scan

input or output, or represents a fan-out stem, as shown in Fig. 2.7 for the example from

Fig. 2.1. We assume a single scan input SI ∈ V RSN , and a single scan output SO ∈ V RSN .

Each edge models a direct connectivity between the vertices.

The set ds(vj , G) of direct successors for a vertex vj contains the nodes reachable by a single

edge {v|(vj , v) ∈ E}. The direct predecessors ds(vj , G) are defined similarly.

The vertex mj is structurally reachable from the vertex mi, if at least one path exists from

mi to mj . The set ss(vj , G) of structural successors for a vertex vj contains the structurally

reachable nodes. The structural predecessors ss(vj , G) are defined similarly.

Definition 2.4 (Structural Path). A Structural Path struct_path(vj , vk, G) between the

vertices vj and vk is a sequence of vertices vj . . . vi, vi+1 . . . vk, where vi+1 ∈ ds(vi, G).

Definition 2.5 (Functional Path). A Functional Path path(vj , vk, G) between the vertices

vj and vk is a structural path, where a valid assignment to the logic signals exists, which

selects all the vertices on the path simultaneously.

A Hybrid Functional Path is a functional path, which might traverse any combination of

subgraphs in the system graph GS . In Fig. 2.7, a hybrid path from the scan segment s4 to

the instrument i7 can be represented as follows:

path(cs1, i3, G
S) := path(cs1, s2, G

RSN )&path(s2, i2, G
S) & path(i2, i3, G

I) (2.4)

The set of functional successors fs(vj , G) of a vertex vj contains the structural successors

v, such that there exist a functional path from vj to v, or the data from the vertex vj

can be transmitted to the vertex v by activating multiple functional paths. The functional

predecessors fp(vj , G) are defined in a similar way.

An active scan path (ASP) aspj := {v0, . . . , vi, vi+1, vk} is a functional path in the RSN

graph GRSN . For an ASP aspj , the vertex set V (aspj) ⊂ V includes the vertices which
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belong to this path. The initial state c0 ∈ C corresponds to the initial active scan path

asp0, and includes the vertices V (asp0) ⊂ V .

An access to an instrument of an RSN might require the sequential activation of multiple

scan paths. A sequence of paths Seqk := {aspk0, aspk1, . . . aspki } starts from the initial state

asp0, which is obtained by applying a global reset.

The following relations are determined:

• Reconvergence vertex [MR90]: The vertex mj is a reconvergence vertex of the vertex

mi, if there are two paths path1, path2 with the corresponding vertex sets V (path1)

and V (path2) such that V (path1) ∩ V (path2) = {mi,mj}, mi is the source of both

path1 and path2, and mj is their sink.

• A closing reconvergence of a vertex mi is such a reconvergence vertex mj , which does

not reach any other reconvergence vertex of the vertex mi.

• The reconvergency region of a vertex mi includes all the vertices, which are reachable

from this vertex and also reach its closing reconvergence.

• For two vertices mi and mj , we say that the vertex mj dominates the vertex mi, if all

the paths through the vertex mi to SO also traverse the vertex mj .

• A child of a vertexmj is a vertexmi, which belongs to a reconvergency region, where

the vertex mj is a closing reconvergence. The vertex mj is referred to as a parent of

the vertex mi.

• A neighbor of a vertex mi is a vertex mj , which belongs to a reconvergency region,

which does not intersect with the reconvergency region of mi, such that either both

vertices mi and mj either have a common parent vertex mk or they do not have any

parent vertex.

2.5 Summary

Reconfigurable Scan Networks support the system’s dependability throughout its whole

lifetime. The knowledge about the structural and functional properties of RSNs is essen-

tial to developing an automated integration framework. Therefore, the first two parts of
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this chapter provide basic information about RSN structure and operation. It is impossi-

ble to analyze and enhance such dependability aspects of RSNs, as their robustness and

testability without investigating possible fault locations in RSNs and defining feasible fault

models. To address this problem, the third part is devoted to faults in RSNs. Finally, an ef-

ficient and scalable model is required to represent the structural and functional properties

of RSNs in the developed automated framework. The last part of this chapter introduces

the graph-based model of RSNs. The presented model also considers the communication

between the RSN and the instruments of the underlying system.
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Chapter 3

State of the Art

3.1 RSNs and their Applications

Since the early adoption of Reconfigurable Scan Networks by the standards IEEE Std.

1149.1 [IEE13] and IEEE Std. 1687, RSNs have gained an increasing interest, which has

resulted in an extensive number of academic and industrial publications. First efforts to

formalize modeling and verification of RSNs, and to perform test pattern generation are

presented in [BKW15b]. In [ZLJ+14], an approach for RSN design automation, based on

the construction of SIB trees, is provided.

Over the recent years, the application area of RSNs has expanded a lot. To eliminate

the necessity of using an Automated Test Equipment (ATE) to operate RSNs, in [IK16],

an on-chip retargeter is introduced. It is used to operate hierarchically-structured RSNs.

Recent standard proposal P1687.1 [Por16, CVTR20, vSVTR+21] extends possible access

interfaces over regular JTAG Test Access Port and defines access to RSNs through alter-

nate interfaces, such as SPI or I2C. [GWD18] provides a broadcast-based approach for

RSNs, which exploits newly presented Parallel Segment Insertion Bits (PSIB) to minimize

the overall access time. An approach to access general RSNs via functional interfaces

has been presented in [LMZ21]. With the adoption of self-aware systems [KW18], the

application area of RSNs is extended over the offline phase of the system lifecycle. Nowa-

days, RSNs are also used to enhance the dependability of devices during the in-the-field

stage. Some important applications of RSNs include fault handling and health monitoring

[ZNL16, SDJ16, TJSD18, IK19, ZC20]. However, to efficiently support the dependabil-
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ity management of systems, RSNs themselves have to remain dependable [KW16]. The

remainder of the chapter presents the state-of-the-art solutions to analyze and enhance

specific dependability aspects of RSNs.

3.2 Robust Access via RSNs

Robust access to a major part of an RSN can be obtained, if faults in RSNs are tolerated

by exploiting redundancies or avoided by reducing the probability of a defect occurrence.

The rest of this section summarizes the existing solutions.

3.2.1 Fault Removal

To provide a reliable access to the instruments in a defect-free case, mismatches with the

specification must be mitigated at design phase or detected during RSN post-silicon val-

idation. In [DJST19], a post-silicon validation technique is presented, which identifies

possible mismatches between the specification and the actual silicon implementation of

RSNs. Further on, in [DJP+19], this method has been improved to consider equivalence

between the structural description of an RSN and its Register Transfer Level implementa-

tion by means of simulation. In the same publication, a method to automatically generate

an RTL description of an RSN based on the Instrument Connectivity Language (ICL) de-

scription is presented, which allows to correct the mismatches in the RTL description.

During the operation time, RSNs can be affected by defects. In [DSGJ19], NBTI-induced

aging of RSNs is analyzed and a technique to mitigate aging effects in RSNs based on

workload rebalancing is presented.

3.2.2 Fault Tolerance

Transient faults in RSNs can be efficiently tolerated by exploiting time redundancy, such

that a failing access pattern is repeated again. However, this is only possible if transient

faults are detected by an online test during the operation.

RSN designs, which are constructed based on parallel SIBs [GWD18], are intrinsically

robust and degrade gracefully, since losing access to one branch does not result in los-

ing access to the other parts of RSNs. However, losing the accessibility even to a single
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runtime-critical instrument, such as an AVFS block may already result in a system failure.

For conventional parallel SIB-architectures, it is not possible to consider the criticality of

such instruments. Moreover, such RSN designs are not suitable for a wide range of sys-

tems, which do not require accessing a large portion of instruments in parallel.

For arbitrary RSNs, redundancies can be exploited to provide robust access in the pres-

ence of defects. Using conventional approaches to tolerate permanent faults for the entire

RSN, such as Triple Modular Redundancy (TMR) [LV62], requires high hardware costs. In

[BKW20], the costs are reduced, and single faults in RSNs are tolerated by augmenting

the initial RSN with additional connectivities. If a fault is activated in an RSN, it can be

detected and the exact fault location can be extracted by the means of diagnosis. Faulty

parts of an RSN can be isolated, such that the rest of an RSN still would remain accessi-

ble [LXM21]. However, this approach requires diagnostic support [LXM21], complicates

routing for test and diagnosis [BKW15b, CSSS18, DJST19, CDRS20], requires a new re-

targeting in the presence of a fault and does not consider the criticality of the components.

3.3 Test and Diagnosis of RSNs

Faults in conventional scan chains can be detected by using flush test sequences shifted

through a scan chain, which tests the integrity of the scan cells and their interconnec-

tion. Typically used flush patterns [LB90] include all ones, all zeros as well as the "0011"

("1100") sequence repeated to cover the whole length of the scan chain under test. The

test sequence, which has been shifted into the tested scan chain, is compared with the

sequence at the scan-out of the chain. If the output sequence is different from the ex-

pected one, the scan chain is faulty. For conventional scan chains, flush patterns detect

certain stuck-at-faults, transition-delay faults, or broken scan chains. However, already

conventional scan chain testing is challenging [MM97] [YCD+08] [CMR+19] if the faulty

effects in scan chains and control signals require more sophisticated fault models than the

stuck-at-fault assumption.

Compared to conventional scan chains, testing of RSNs is even more challenging due to

the high sequential depth of RSNs, distributed control structure, as well as the complex

sequential and combinational dependencies [BKW15b]. Specific fault effects in RSNs are
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observable only for certain RSN configurations, and sequential test pattern generation

(TPG) for such faults is unfeasible for the existing TPG tools. To test an RSN, a set of test

sequences is generated, such that each scan primitive of interest is tested at least once.

Each test sequence in the set contains the values which are shifted into an RSN. Two types

of sequences exist:

• Test access sequences are used to load the control scan segments of the RSN with the

required control values to bring the RSN into the desired scan configuration.

• Test workload sequences are used to test the scan primitives located on configured

scan path.

The existing RSN test methods are summarized below with respect to the fault locations.

3.3.1 Test of Scan Interfaces

In [KBSW16], the primitives located at the capture- and update- paths of scan segments

are tested such that read and write operations with opposite values are performed for

each segment on the active scan path. However, it is not possible to test the primitives

located at the interfaces independently from the values, which are stored at the connected

instruments. In realistic designs, the value of the instrument, may not be controllable or

observable. In this case, it is impossible to test the scan interfaces. Moreover, the existing

test methods do not consider testing reset lines of shadow registers.

3.3.2 Test of Control Primitives

Numerous works in the past have presented methods to detect certain faults in control

primitives and control lines. In [KBSW16], the conditions for activating faults, which may

alter or break an activated scan path, are formally analyzed with a help of a determin-

istic test pattern generator. The generator is able to test the faults in the combinational

elements on the scan path, which are located between two adjacent scan segments, but

might not be scalable due to the high sequential depth of an RSN. In [CMR+15], a first

method is presented to test those shadow registers, which guide the operation of control

primitives, such as SIBs and scan multiplexers. In [CZP+18], the reconfiguration modules
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themselves, such as scan multiplexers, are targeted. A method is presented for smaller

RSN designs to minimize the test application time while detecting faults in the control

primitives. In [CSSS18], the scalability of the test method above has been significantly

improved by presenting a scalable evolutionary heuristic. In [CDRS20], the test method

above has been used as a basis for an efficient diagnostic procedure for permanent faults in

the reconfiguration logic. An approach from [HHD20] performs access time optimization

for RSNs located in multiple power domains, and [HHD21] enhances the method above in

terms of scalability. In [ZLYC20], a method is presented to decrease test application time

by the means of design optimization of RSNs, which are based on parallel SIBs.

The above mentioned test, validation and diagnosis methods rely on the fact that a fault or

a mismatch is detected based on the altered scan path length [BKW15b, UKW17, KBSW16,

CZP+18, CSSS18, DJST19, DJP+19, CDRS20]. However, if such fault does not alter the

length of the activated scan path, it remains undetected. Although, the untestable mis-

matches can be enumerated using simulation-based techniques as in [DJST19], a system-

atic solution to detect them does not exist in the state-of-the-art, and will be presented in

Chapter 5.

3.3.3 Test of Scan Segments

In [CMR+15], the scan shift logic of a scan segment is tested by configuring an active

scan path such that this segment is selected and by applying flush sequences. The faults

are detected by shifting a flush sequence into an activated path and observing the output

sequence at the scan-output. If the expected sequence is shifted out, the scan path is

fault-free, otherwise it is faulty. For "stuck-at-faults", flush sequences such as “01100” or

“10011” are used for the integrity test of scan cells. Such a sequence generates all possible

transitions, including "00", "01", "10", and "11". The flush sequences are modifiable for

more complex fault models, such as delay faults.

Conventional methods [UKW17, KBSW16, CDRS20, CSSS18, HHD20] test RSNs once,

after the manufacturing, or perform online concurrent test of RSNs [WLA+21]. To avoid

fault accumulation, concurrent test has to be complemented by periodic test, since compo-

nents not used for some time may be still subject to aging [LSW20]. The need for periodic

test is especially strong in safety critical applications like automotive [KMM+21, EZ17].
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3.4 Security Compliance of RSNs

Security properties of RSN, such as data confidentiality and integrity against unautho-

rized system alternations, have been investigated by numerous research publications, as

discussed below in Section 3.4.1. Possible security threats, which may be introduced by

improper RSN integration into the underlying systems, can be resolved, as presented in

Section 3.4.2. At the same time, the existing solutions do not present a solution to inte-

grate an RSN in a security-preserving way, such that an RSN generally does not introduce

any unwanted extra-connectivity into the underlying system.

3.4.1 Security Analysis and Specification

Attacks using DfT infrastructure, such as conventional JTAG scan chains are well-

investigated in the literature [RDN+14]. A few real examples include but are not lim-

ited to the attacks on XBOX 360 [XBO], and on iPhones [Gre]. The RSN integration

can introduce additional connectivities into the design, which might be exploited by an

attacker as a side-channel to leak or manipulate sensitive data or alternate the system

behavior [EKC21, KDD16, RBT18, KBW17]. The secure integration of RSNs is even more

challenging compared to conventional scan chains [YWK06, LTPP07] due to the com-

plex control dependencies [BKW15b]. Fully denying access to RSNs during the func-

tional mode is not an option, since often the dependability instruments must be available

online [TJSD18, IK19].

Security threats may exist due to unwanted access through the Test Access Port (TAP), but

also due to the connectivities through RSNs, which allow to propagate the data between

trusted and untrusted parts of an system or the pins of the chip [KBW17].

Security properties of RSNs can be validated via simulation to check the data integrity by

adding hash functions to shift sequences as in [KD18], and to provide an evidence about

unauthorized access attempts. Machine learning-based techniques can be used to detect

attacks on RSNs [RBT18].

Security properties of RSNs, such as data confidentiality, can be verified by Craig interpo-

lation [KBS+16]. A method from [RPB20] serves as a guidance for a DfT integrator and

identifies the security weaknesses of RSNs. It is possible to check, if a certain prohibited
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connectivity is sensitizable in the RSN [RKA+18] or through a path [RTB+19], travers-

ing both the system and the RSN. However, a possibly exponential number of paths must

be analyzed sequentially to generally verify the compliance of the RSN with the security

properties of the underlying system. This makes the existing analysis methods unscalable

for large RSNs and realistic security specifications [KSRG+17]. A high sequential depth of

RSNs and complex control dependencies make the existing ways to compute the functional

reachability [HP13, NTKW98, NSV+17] unfeasible.

3.4.2 Security-Oriented Integration of Scan Chains

Multiple solutions exist to mitigate unwanted connectivities through a test access in-

frastructure, such as conventional scan chains or RSNs. In conventional scan chains, a

separate "secure" mode can be established to perform the confidentiality-critical compu-

tations [YWK06]. The shifted data can be encrypted as in [DFDR19] or obfuscated as in

[LTPP07]. An unauthorized transition from the functional mode to the test mode can be

prevented as in [DDFR13] to mitigate the test mode attacks. For a comprehensive review

on scan chain security refer to [LLY+19].

Encryption and obfuscation can secure the RSN access throughout the life-cycle [LA15,

TFR+19]. Fine-grained schemes, such as Locking Segment Insertion Bits (LSIBs)

[ZDCP14], Parallel LSIBs [GCDE17], and Secure SIBs (SSIBs) [BKW15a], extremely com-

plicate an unauthorized access to specific RSN parts. [PRML20] presents a fine-grained

dynamic technique to protect RSNs. In [EKC21], shadow registers and information-flow

tracking logic is added to prevent data sniffing and alteration. In [KBW17, DT19], ad-

ditional hardware is used to build extra paths to prevent sniffing and spoofing through

RSNs.

However, all the schemes mentioned above do not guarantee to prevent possible infor-

mation leakage due to the RSN integration. Additional connectivity, which exceeds the

allowed connectivity of the design, should not be introduced by RSNs. Such connectiv-

ities must be cut either functionally by using sequence filters, or structurally by resyn-

thesizing some parts of the RSN. Filters [BKW14, AKS+18] enable flexible protection for

multiple users with varying security requirements. However, in some cases, filters have

unwanted side effects and block the access of uncritical segments as well. Resynthesis
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resolves all the violations structurally, and allows to preserve the accessibility to other

instruments, but implies hardware overhead due to the structural changes. Moreover, it

is not possible to consider multiple users with different access rights. The existing ap-

proaches [RKA+18, RTB+19] resolve the violating connectivities locally, by considering

every single violation independently. This incurs many structural changes, especially if

the number of violations is high as in [LAR+19] .

3.5 Summary

Analyzing the dependability properties of RSNs and, in particular, enhancement of these

is far more challenging compared to the conventional scan chains due to the following

properties of RSNs:

• Reconfigurable Scan Networks are inherently sequential with a high sequential depth:

A single operation applied to an RSN might require thousands of shift cycles. At the

same time, to access a particular target register, multiple reconfigurations between

operations might be needed. Each reconfiguration requires analyzing not only com-

binational control logic but also sequential dependencies of the scan cells.

• The existing algorithms for RSNs face scalability issues and often do not consider arbi-

trary RSNs: Using conventional cycle-accurate algorithms and flat graph representa-

tions of RSN is not scalable with the realistic size and complexity of RSNs. To over-

come the scalability issues, many of the existing publications concentrate on some

specific types of RSN or have certain assumptions about the RSN structure [ZLJ+14,

BKW15b, UKW17, KBSW16, CZP+18, CSSS18, DJST19, CDRS20], or consider the

dependability properties locally, for certain pairs of vertices [RKA+18, RTB+19]. To

prove some properties of RSNs in general, even using transaction-level models, such

as [BKW15b] is not versatile enough. Therefore, to analyze and enhance the de-

pendability of RSNs more sophisticated algorithms and efficient models of RSNs are

needed.

• Dependability properties of RSNs are contradicting: Some dependability properties,

such as testability of an RSN and its security compliance with the underlying de-
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vice are contradicting [RDN+14]. High observability and controllability of scan

primitives are required to ensure fault detection in RSNs. At the same time, extra-

connectivities introduced via RSNs can be used as a side channel to leak some sensi-

tive data. Therefore, to synthesize dependable RSNs, dependability properties have

to be considered together and their interdependencies must be investigated as well.

Extensive academic and industrial research has been conducted in the field of dependable

RSNs. At the same time, a comprehensive integration approach for RSNs does not exist,

and the major challenges above remain unresolved for specific dependability properties.

The facts above motivate the importance of an integration methodology for dependable

RSNs, which is presented further in this document.
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Chapter 4

Robust RSNs

This chapter presents the first solution in literature to synthesize robust RSNs. Robust

RSNs do not only enable an efficient post-silicon validation with reliable access to the

significant part of the instruments but also provide runtime access to the most critical

instruments.

The method below has been first published in [LWW22c]. First, an exact analysis is pre-

sented, which assesses the criticality of a fault in any RSN primitive for the system op-

eration. Based on the criticality analysis, a minimized number of RSN primitives is se-

lected and hardened to reduce the damage caused by defects. An evolutionary algorithm

[ZLT01, DPAM02, Pim17, Tei12] investigates a trade-off between reducing the hardware

costs of hardening and minimizing the remaining damage of defects and generates close-to

Pareto-optimal solutions.

The remainder of this chapter is organized as follows. First, the goals of a robustness-

enhancing RSN resynthesis are summarized in Section 4.1 and the most important criteria

for integration of robust RSNs are defined. Then, in Section 4.2, the problem of criticality

analysis of RSN primitives is formulated and a scalable method for so-called series-parallel

RSNs is presented. A selective hardening scheme for series-parallel RSNs is developed

based on the analysis results and is presented in Section 4.3. Section 4.4 shows how an

arbitrary RSN can be modeled as a series-parallel one. Thereby, all the developed methods

for series-parallel RSNs are applicable for arbitrary RSNs. Finally, Section 4.5 provides an

overview of the evaluation results, which show the efficiency and the scalability of the

developed robustness enhancement method.
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4.1 Goals of Robustness-Enhancing Resynthesis

The resynthesis scheme presented below has the following goals:

• Precise Criticality Analysis: The criticality of scan primitives should be carefully as-

sessed, and the most critical primitives in the RSN for the correct system operation

should be identified, as shown in Section 4.2.

• Cost-effective Selective Hardening: The scheme should dramatically decrease the dam-

age for the system operation due to the defects in RSNs, while minimizing the hard-

ware costs, as shown in Section 4.3. The trade-off between the hardware overhead

and the remaining damage must be investigated.

• Access Patterns Compatibility: The resulting RSNs should follow the topology of the

initial RSNs. Thereby, they should not only be compatible with the existing access,

test and diagnosis procedures [BKW15b, UKW17, CSSS18, DJST19, CDRS20], but

also be able to use the same access patterns as the initial unhardened RSN.

Example: In Fig. 4.1, an example RSN from Fig. 2.1 is presented. Assume that the accessi-

bility of the instrument i3 is critical for system operation. Imagine that the multiplexer m1 is

a regular scan multiplexer, and m2 and SIB are hardened.
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Figure 4.1: Hardened RSN Example

From the top-level-view, the RSN remains the same. In this case, the scan multiplexer m1

might propagate the data from its wrong input, while the multiplexerm2 and the SIB remain
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functionally correct. Faults due to a defect in m2 are avoided and the data from the critical

instrument i3 remains accessible.

4.1.1 Optimization Criteria

By developing an automated framework for robust RSNs, it is first required to define the

most important optimization criteria. The main aim of using Reconfigurable Scan Net-

works is to provide a flexible and efficient access to the embedded instrument reliably

throughout the whole lifetime. Therefore, most of the instruments should remain accessi-

ble, even in the presence of defects. At the same time, the hardware overhead due to RSN

integration must be minimized. Since the optimization criteria above are contradicting,

multi-objective optimization methods can be used.

Multi-Objective Optimization

A boolean optimization problem can be formulated as follows [BV]:

argmin
x∈X

[f(x)]

gi(x) ≤ 0, i = 1, . . .m

hj(x) = 0, j = 1, . . . p

(4.1)

where x is an n-variable vector of binary variables; f(x) is the objective function to min-

imize in range X; gi(x) ≤ 0 are inequality constraints and hj(x) = 0 are equality con-

straints.

In an optimization problem instance, multiple objective functions might have to be consid-

ered simultaneously. In this case, the problem instance is referred to as a multi-objective

optimization (MOO) problem instance. A naive way to address multiple criteria in one

problem instance is to merge several initial objective functions into a single objective

function with a help of weight coefficients:

f(x) :=
N∑

i=1

ci ∗ fi(x) (4.2)
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where fi(x) is one of the inital objective functions; ci is a weight coefficient showing the

importance of the corresponding objective function for the resulting solution; fx is the

resulting objective function to optimize.

However, applying such a strategy would not help exploring the whole solution space, es-

pecially if the initial optimization criteria are contradicting [Pim17]. Instead, a diversified

set of solutions can be generated, and the relations below are considered:

• If some optimization criteria in a solution sola has a better value compared to some

other solution solb, while all the other criteria of sola are better or equal to the ones

of the solution solb, then the solution sola dominates the solution solb.

• A set of so-called pareto-optimal solutions contains only dominant solutions.

The Pareto-optimal solutions to the problem form a Pareto front, as shown in Fig. 4.2,

where the solutions shown in green dominate the solutions in yellow.

A B

+

Gain

Cost

minGain

maxCost

Figure 4.2: Pareto front

Evolutionary algorithms, and in particular genetic algorithms [KCK21], can be used to

generate pareto-optimal or close-to-pareto-optimal solutions. Few examples of genetic

algorithms include but are not limited to Non-dominated Sorting Genetic Algorithm

(NSGA)-II [DPAM02] and Strength Pareto Evolutionary Algorithm (SPEA)-II [ZLT01].

Robustness of an Access

An RSN should provide a reliable access to the instruments even in the presence of de-

fects. Loosing the accessibility to certain instruments may have a huge impact on the

system operation and even lead to a system failure. Therefore, the damage caused by
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the inaccessibility of a certain instruments due to defects in an RSN can be reflected by

an explicit criticality specification. Each instrument i is associated with a pair of non-

negative damage weights. The first weight damage_obs(i) defines the damage of losing the

observability, while the second weight damage_set(i) represents the damage of losing the

settability of the instrument i. The damage of a primitive p is calculated as a weighted

sum of the instruments, which become inaccessible due to the fault in this primitive:

damage(p) =
∑

i∈I
damage_obs(i) ∗ yi,p +

∑

i∈I
damage_set(i) ∗ zi,p (4.3)

where yi,p equals to 1 if the instrument i would become unobservable, when the primitive

p is defect; zi,p := 1 if the instrument i is not settable due to a defect in the primitive p.

The exact values of the damage weights are specified depending on the needs of a system

designer, e.g.:

• Sensors: A relatively low positive value of damage_obs(i) can be assigned to the

damage caused by unobservability of one of many interchangeably used sensors. If

multiple sensors become inaccessible, the damage is more severe and is calculated

as a sum of the corresponding sensors’ weights. Usually, the settability of sensors

is not required, and the corresponding value of damage_set(i) can be set to zero or

close-to-zero.

• Runtime-adaptive instruments: The settability of a runtime-critical instrument, e.g.

AVFS control, is important for a correct operation of a device, and the corresponding

damage weight damage_set(i) is set to a relatively high value. The damage due to

the unobservability of such an instrument damage_obs(i) is relatively low.

The robustness of an RSN can be assessed as an overall damage to the system operation,

given a defect in one of the scan primitives, as shown in Formula 4.4:

∑

p∈P
damage(p) (4.4)

If a maximized number of instruments remains observable and settable through the RSN

even in the presence of defects, the total damage to the system operation is minimized. The
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total damage to the system operation can be minimized by means of selective hardening.

If a scan primitive is implemented by using a high yield cell, the probability of a fault

therein is dramatically decreased. Thereby, more instruments remain accessible through

an RSN and the total damage to the system operation is minimized.

Hardware Overhead

Design-for-Test structures occupy a significant area in modern circuits, and increase the

overall power consumption to a large extent. Additional costs may arise after enhancing

the dependability by means of resynthesis and are refered to as relative hardware over-

head. While enhancing the dependability, it is necessary to minimize the relative hardware

overhead as much as possible without sacrificing the RSN functionality.

To compute the relative hardware overhead, first the hardware overhead of the initial RSN

is computed. Formula 4.5 shows the overall hardware overhead of an RSN:

∑

p∈P
cost(p) (4.5)

where cost(p) denotes the hardware overhead of a scan primitive p. For each scan primi-

tive, its cost depends on the complexity (e.g., a 2-input mux vs. a 4-input mux), type of a

cell (e.g., a regular cell vs. a high-yield cell [Dom12]), or length (1 scan cell vs. 100 scan

cells in a scan segment).

To reflect the changes due to the resynthesis, the relative hardware overhead is calculated

with respect to the overhead of the initial RSN.

∑

p∈P
cost(p)new − cost(p)old (4.6)

where cost(p)new denotes the hardware overhead of a scan primitive p in the newly con-

structed RSN, while cost(p)old is the overhead of the same primitive in the initial RSN.

The resynthesis procedure is efficient with respect to the overhead, if the overall relative

hardware overhead of the resulting RSN is minimized. The following cases are considered:
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• Additional scan primitives: If extra scan primitives are injected into an RSN to build

new scan paths, the hardware overhead is increased. The overhead of a newly

injected scan primitive pj in the initial RSN cost(pj)
old is equal to zero.

• Removed scan primitives: If some scan primitives are removed from an RSN, the

overall hardware overhead decreases. The overhead of a removed primitive in the

resulting RSN cost(pj)
new equals to zero.

• Replaced scan primitives: Relative hardware overhead increases, e.g., if the length of

a scan segment is increased, or if a scan primitive is built by using high-yield cells

instead of using regular cells. If some primitive p in an RSN is implemented by using

a different type of cells, the RSN structure would remain the same, but the hardware

overhead will change (cost(p)new − cost(p)old).

The remainder of this chapter presents a robustness enhancement method, which identi-

fies the most important primitives in RSNs and replaces them with high-yield cells. Using

high-yield cells significantly decreases the probability of a fault in a scan primitive and,

as a result, increases the accessibility of the instruments through the resulting RSN in the

presence of defects [PK00, MZS+07, Dom12]. However, the relative hardware overhead

increases if more primitives are hardened. Therefore, a tradeoff between the hardware

overhead and the remaining damage to the system is investigated.

4.2 Criticality Analysis

The goal of this section is to assess the impact of defects in an RSN on the accessibility of

the instruments and also on the system operation. The damage of a defect in a primitive

p is calculated as a weighted sum of the instruments, which become inaccessible due the

fault in this primitive. The damage value can be calculated as shown in Eq. 4.3.

The damage of losing the observability damage_obs(i) and the settability damage_set(i)

are provided in the explicit criticality specification, as shown in Section 4.1.1. Identifying

the values of yi,p and zi,p for all the primitives and all the instruments is computationally-

intensive due to the high sequential depth and the complex control dependencies of RSNs.

For so-called series-parallel RSNs this computation is significantly simpler.
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The remainder of this section formally defines series-parallel RSNs in Section 4.2.1. Sec-

tion 4.2.2 discusses fault effects in scan primitives on the graph connectivity. Finally,

Section 4.2.3 describes the criticality analysis method for series-parallel RSNs, which con-

siders both explicit system criticality specifications and specific fault effects.

4.2.1 Series-Parallel RSNs

Definition 4.1 (Series-parallel graph). Let G := (V,E) be a directed acyclic graph with

the vertex set V , the edge set E ⊂ V 2, a single source sc ∈ V and a single sink si ∈ V . G

is called series-parallel (SP), if one of the following statements is true:

• V = {sc, si}

• G is a parallel composition of two series-parallel graphs G1 := (V1, E1), G2 :=

(V2, E2):

V := V1 ∪ V2

E := E1 ∪ E2

(4.7)

sc := sc1 = sc2

si := si1 = si2

V1 ∩ V2 = {sc, si}

(4.8)

scj and sij are sources and sinks of Gj; j = 1, 2.

• G is a series composition of two series-parallel graphs:

V := V1 ∪ V2

E := E1 ∪ E2

(4.9)
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sc := sc1

si := si2

si1 = sc2

(4.10)

Any directed graph, which does not fulfill the conditions above is referred to as a non-

series-parallel graph. Fig. 4.3.a shows an example of a series-parallel graph, and Fig. 4.3.b

shows an example without the series-parallel property.

f1 f2branch 1 branch 2

branch 3

f2 f1

...

branch 1 branch 2

branch 3branch 1

m1 m2

m1 m2

f1 f2branch 1 branch 2

branch 3

f2 f1

...

branch 1 branch 2

branch 3branch 1

m1 m2

m1 m2

a) Series-parallel graph b) Non-series-parallel graph

Figure 4.3: Series-parallel property examples

The hierarchical relations are stored in a binary decomposition tree, as shown in Fig. 4.4

for the running example. The parental multiplexers are located higher in the hierarchy

than the children. The tree is built bottom up, starting with the leaves. Each leaf corre-

sponds to a vertex in an RSN graph which represents a scan primitive. If two vertices are

connected in parallel in the RSN graph, their connection is represented by a "P" vertex of

a binary decomposition tree (shown in green in Fig. 4.4). If the vertices are connected

in series, their connection is modeled by an "S" vertex (shown in blue in Fig. 4.4). The

"S" and "P" vertices are also referred to as intermediate vertices of the binary tree. The

damage weights of the instruments are annotated at the corresponding segments in the

binary decomposition tree.

Example: In Fig. 4.4, the vertices s1 and s2 are connected in parallel by the P/m1 vertex.

This vertex is connected in series with the vertex cs1.
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Figure 4.4: Binary decomposition tree for the graph in Fig. 2.7

4.2.2 Fault Effects in Terms of Graph Connectivity

A single fault in an RSN may affect the intended connectivity properties of the instruments

and may make the RSN disconnected. This subsection discusses the influence of specific

faults on the accessibility of the RSN primitives and the instruments in terms of graph

connectivity. In the following, "a vertex vj corresponding to a scan primitive pj", will be

referred to as "a primitive pj" without loss of generality.

Scan Interface

At the high level, a fault f in a capture-circuitry prevents from reading the data from

the instrument. Such a fault is modeled by removing from the binary decomposition tree

the edge, which points from the scan segment to the instrument. A fault in an update-

circuitry may corrupt writing to the instrument, and is modeled by removing the edge

from the instrument to the scan segment.
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Scan Multiplexer

If a scan multiplexer is affected by a "stuck-at-0" or a "stuck-at-1" fault f , the opposite

branch of this multiplexer becomes inaccessible through the multiplexer. For all the primi-

tives located in this branch, a path may be corrupted. To model this fault, the connectivity

from a vertex, which corresponds to a faulty multiplexer, to the inaccessible branch is

removed from the binary decomposition tree.

Scan Segment

A fault f affecting a scan segment may break the integrity of all the scan paths, which tra-

verse this scan segment. The existence of a faulty scan segment is modeled by annotating

the vertex, which corresponds to the affected scan segment, with the corresponding fault

effect. An example here could be a flip-flop transparency fault, which decreases the length

of the corresponding scan segment. In this case, the corresponding vertex is annotated

with the decreased length instead of the original length.

If the scan segment becomes inaccessible due to a fault f , the fault effect can be isolated

inside the branch of the RSN, which is controlled by the closest parental scan multiplexer

of the given scan segment. The parental scan multiplexer is identified by traversing the

binary decomposition tree of the RSN in a reversed Polish order starting from the affected

scan segment. In the isolated branch, the controllability of those segments is affected,

which are located closer to the scan-output than the affected segment. In a binary de-

composition tree, it is equivalent to removing the connectivity to the affected vertex. This

modified tree is further referred as a settability tree under a fault f . The same idea is ap-

plied to build a observability tree under a fault f . The segments, which are located closer

to the scan-in, become unobservable and are disconnected in the observability tree.

Example: Assume the SIB from the running example is affected by a "stuck-at-1" fault. This

fault is modeled by removing the edge from the decomposition tree, as shown in Fig. 4.5. The

instruments i1, i2 and i3 become inaccessible through the RSN for observation and control.
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4.2.3 Criticality Analysis for Series-Parallel RSNs

The value damage(p) of a primitive p (Eq. 4.3) is computed recursively, starting from

the lowest left node of a binary decomposition tree and follows the order of a reverse

Polish notation. Thereby, it is ensured that the relative criticality computation for those

primitives which are located at the lower levels of the tree starts before the computation

of their parents. For series-parallel RSNs, the values of yi,p and zi,p can be efficiently

assessed:

• For a defect in a primitive p, the modified tree from Section 4.2.2 is considered. The

value of yi,p is set to 1, if the instrument i is disconnected from the primitive p in the

observability tree. Otherwise, it is set to 0. The same logic is applied to compute the

value of zi,p with a help of a settability tree.

• If a primitive p is hardened, a fault f is avoided and the initial decomposition tree is

used for assessing the values of yi,p and zi,p.

As a result of the criticality analysis, a prioritized list of the primitives is generated. In this

list, each primitive is associated with a possible damage. This list together with a binary

decomposition tree is used for criticality assessment of hardened RSNs during the selective

hardening phase, which is described in the next section.

Example: In Fig. 4.1, the criticality of the scan multiplexer m1 is determined as a sum

{di1+di2}, since a fault affecting this mux might make the underlying instruments inaccessible

for observation and control. As shown in Fig 4.6, after the criticality of the the multiplexer

m1 is assessed, the whole subtree consisting of the segments s1 and s2 is merged to a single

node and the computation continues following the order of the reverse Polish notation.
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Figure 4.6: Tree from Fig. 4.4 with merged nodes

4.3 Selective Hardening for Robustness Enhancement

As soon as the most critical primitives of the RSN are identified with the help of the precise

criticality analysis, and the influence of defects on the accessibility of the instruments is

investigated, a selective hardening scheme is applied. This section presents the selective

hardening scheme for series-parallel RSNs, and in the next section it is explained how the

developed scheme can be applied for arbitrary RSN structures.

The remainder of this section is organized as follows. First, in Section 4.3.1, the selec-

tive hardening problem is formulated as a multi-objective problem instance. Next, Sec-

tion 4.3.2 discusses how evolutionary algorithms are applied to solve this problem.

4.3.1 Hardening as a Multi-Objective Problem

In a selective hardening problem instance, we are looking for a set of primitives to be

hardened which minimizes both the cost for hardening and the possible remaining dam-

age due to the primitives not hardened. The accessibility of the instruments through the

resulting hardened RSN in the presence of defects must be comparable to the accessibility

through the original defect-free RSN. The solution should satisfy the following optimiza-

tion criteria:
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• A maximized number of instruments remains observable and settable through the

RSN even in the presence of defects. As a consequence, the total damage to the

system operation (Eq. 4.11) is minimized:

∑

p∈P
damage(p) (4.11)

• The total cost of hardening (Eq. 4.12) is minimized:

∑

p∈P
∆cost(p) ∗ xp (4.12)

where the weight ∆cost(p) := cost(p)new − cost(p)old is the additional hardware

overhead of a primitive p due to hardening. The variable xp := 1, if the primitive p

is hardened and xp := 0 otherwise.

4.3.2 Evolutionary Approach for Primitives Selection

Minimizing the damage due to defects in general increases the costs of hardening. There-

fore, a trade-off between these criteria is investigated by computing close to Pareto-

optimal solutions. The parameter space is explored by applying the evolutionary algorithm

SPEA-2 [ZLT01] of the Opt4J framework from [LGRT11]. First, the major steps of an evo-

lutionary algorithm are described. Finally, the details are provided, how an evolutionary

algorithm is applied to solve the selective hardening problem.

Evolutionary Algorithm Steps

An evolutionary algorithm is applied iteratively, and each iteration is referred to as a

generation. As more generations pass, the generated solutions may move closer to the

Pareto-front. In general, an evolutionary optimization algorithm includes the following

steps:

1. Read the initial problem: The initial problem is encoded as a model, suitable for

genetic programming.
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2. Generate the initial population: A diversified set of genes is generated. Each time

when a new population is generated, the number of generations is incremented.

3. Calculate the fitness function: The candidates are assessed by using the fitness func-

tions. A fitness function is an optimization criteria, e.g., provided in Eq. 4.11 and

Eq. 4.12. The candidates, which dominate other candidates, are kept for mating,

while the dominated candidates are dropped from the list.

4. Check the termination criteria: If the allowed number of generations is exceeded, the

computation terminates with a set of close-to pareto-dominant solutions.

5. Generate the next population: A limited number of individuals is selected from the

current population for mating.

6. Perform mating: Crossover and mutation are applied to the selected individuals with

a determined probability:

• Individual bit mutation: A random bit is flipped.

• One-point crossover: Two offsprings of length r are generated from two parental

individuals. For the first offspring, n bits are taken from the first parental gene

and another r−n bits are taken from the second gene. For the second offspring,

vice-versa.

The computation continues from the step 3 until the fitness function stops improving

better than for a threshold ε after the application of the next n generations.

Primitives Selection

The goal of the selective hardening scheme is to find a set of close-to pareto-optimal

solutions with respect to the criteria formulated in Section 4.3.1. Each problem solution

is an assignment of the values of {x1, . . . xp . . . , x|P |}, such that xp equals to 1 if a given

scan primitive p is hardened and to 0 otherwise.

A binary decomposition tree of a series-parallel RSN graph is used for the computation.

In a evolutionary algorithm formulation, each problem solution corresponds to a gene,

which is implemented as a list of binary values {x1 := a1, . . . xp := ap . . . , x|P | := a|P |}.
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• First, a set of diversified initial solutions to the hardening problem is generated,

where a random subset of instances is hardened.

• The obtained solutions are assessed with respect to optimization criteria in Sec-

tion 4.3.1. Although, we can directly control only the values of xp, the interdepen-

dence between the values of variables xp and yi,p allows to implicitly control the

values of yi,p. If a certain primitive is hardened, it implies that a defect in this prim-

itive cannot occur and the observability of its children is not affected. The same

applies to the settability of the instruments.

For series-parallel RSN graphs, the values of the cost functions can be assessed very

fast by traversing the corresponding parts of the binary decomposition tree.

• The crossover and mutation operations are applied to the dominant solutions.

• The steps 2 and 3 are repeated until the required number of generations is passed

or the obtained solutions stop improving for a certain number of generations.

As a result, a diversified set of close-to Pareto-optimal solutions is generated, such that

a tradeoff between the cost of hardening and the remaining damage due to the defects

is investigated. The primitives, which are selected by the algorithm, are substituted by

high-yield cells. In the resulting RSNs, the top-level RSN structure is not affected by

the presented method. The resulting hardened RSNs are not only compatible with all

the existing access, test and diagnosis procedures [BKW15b, UKW17, CSSS18, DJST19,

CDRS20], but can also use the same access patterns as the initial RSNs.

4.4 Application for Arbitrary RSN Structures

The method presented above is only applicable, if an RSN can be represented by a series-

parallel graph. The method presented below in Section 4.4.1 allows to identify whether

the initial graph is series-parallel. Although most RSNs graphs are series-parallel, for some

RSNs, additional steps might be required to obtain a functionally equivalent series-parallel

graph, as shown in Section 4.4.2. After an equivalent series-parallel representation of a

non-series-parallel RSN graph is constructed, this generated representation is used for

performing the criticality analysis and the selective hardening scheme presented above.
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4.4.1 Validation of the Series-Parallel Property

To check whether a specific RSN graph is series-parallel, first few simple checks are applied

and then a reduction algorithm based on [VTL79] is used:

• Initial Checks

First the reachability of all scan primitives is computed. If the initial RSN graph has

multiple sinks or sources, auxiliary vertices are added into the RSN graph and serve

as a pseudo-primary sink and source correspondingly.

The acyclicity of the initial graph is validated, since a graph, which contains cycles,

is not series-parallel by definition. If the initial RSN graph contains cycles, an acyclic

representation is constructed by removing a few edges in a similar way as it is well-

known in partial scan design [KW90].

• Main Flow

The main flow of the check follows the well-known reduction algorithm from

[VTL79]. If two vertices v1 and v2 of the RSN graph are connected in series or

in parallel, they are merged into a single vertex. The vertices are merged until it is

not possible to merge any pair of vertices.

For a series-parallel graph, after the algorithm above is applied, the whole RSN

graph is represented with a graph, which consists of a single vertex. If such a rep-

resentation is not possible, the graph is non-series-parallel and has to be further

processed as described below. The Church-Rosser property of the applied reduc-

tion system [CR36] allows to apply reductions in an arbitrary order to validate the

series-parallel property.

4.4.2 Transformation into a Series-Parallel Graph

To build a series-parallel equivalent representation of a non-series-parallel graph, a min-

imized number of additional virtual vertices is added to the initial RSN graph [KG14].

Since the virtual changes are reverted in the resynthesis phase, additional hardware over-

head is not needed to obtain a series-parallel representation of the RSN graph.
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The fan-out stems are identified, which prevent the RSN graph from being series-parallel.

Any fan-out stem fviol, which is located in the stem region of another fan-out stem finit,

and which has either the same closing reconvergence gate or its closing reconvergence is

reachable from the closing reconvergence of the stem finit, is referred to as a violation

spot. To resolve the violation, the vertices, which are located between the fan-out stem

finit and the violation spot fviol, are duplicated and are placed after the violation stem

in the graph representation. The violation spots are resolved sequentially, until a series-

parallel representation of the RSN graph is obtained. The violation spots and their relative

order of processing are selected in a topological order of the RSN graph. This order starts

at the scan-in port. The fan-out stems, which are located closer to a primary scan-in vertex,

are processed first, followed by the fan-out stems in their stem region, each time either

going deeper in the hierarchy, or moving forward to a succeeding fan-out stem.

Example: In Fig. 4.7, a connection from the vertex f3 to the vertices m2 and m3 makes the

RSN graph non-series-parallel. If it would be simplified as much as possible, a single vertex

representation will not be achieved.
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Figure 4.7: Non series-parallel graph

The decomposition tree for the resulting structure is shown in Fig. 4.8. In Fig. 4.9, an NSP

region is transformed into a series-parallel form by duplicating the vertex s3 and the fan-out

stem f3.

The resulting binary decomposition tree, as shown in Fig. 4.10, only contains parallel and se-

ries compositions, as well as the leaf nodes, which correspond to the individual scan segments.

It can be processed to enhance the robustness, as discussed above.
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4.5 Evaluation

This section presents the evaluation results for the developed robustness enhancement

scheme for RSNs. The evaluation is based on the detailed data reported in Appendix B.1.

The information about the benchmark sets is given in Appendix A.

To ensure scalable processing, the developed analysis and enhancement scheme is applied

to series-parallel representations of RSNs. In Section 4.5.1, the series-parallel property of

the RSN benchmarks is validated and, if needed, a few virtual vertices are added into an

RSN graph to obtain its series-parallel representation. Section 4.5.2 presents the evalua-

tion results for the presented analysis and resynthesis methods. The detailed experimental

results for the developed methods are provided in Appendix B.1.

4.5.1 Series-Parallel Property

The series-parallel property has been checked for all the benchmarks from the commonly

recognized ITC’2016 [TJD+16] and DATE’2019 [RTB+19] benchmark sets and a series-

parallel representation has been constructed, if needed. The experiments show the fol-

lowing results:

• ITC’2016: As expected, most of the RSN benchmarks can be modeled as series-

parallel graphs, and a transformation into a series-parallel form is not required.

Only the "TreeFlat" benchmark graph is not series-parallel. It is transformed into a

series-parallel form, and virtual vertices are added to perform the transformation.

• DATE’2019: A hierarchical structure of benchmarks from the DATE’2019 benchmark

set is shown in Fig. 4.11. A top-level chip TAP controller is used to access N cores,

such that each of the cores accesses the memory via M controllers. Each core is

accessed via a separate Segment Insertion Bit (SIB core in Fig. 4.11). The corre-

sponding RSN graphs are close-to series-parallel. Each sub-RSN, which corresponds

to a single core, is modeled as a series-parallel graph. A top-level representation is

transformed from an arbitrary non series-parallel graph into a series-parallel graph

by adding just two virtual vertices for each benchmark.
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The resulting series-parallel representations of RSNs support the scalable criticality analy-

sis and resynthesis. For series-parallel RSN graphs, binary decomposition trees have been

generated, as shown in Section 4.2.1.

4.5.2 Robustness Enhancement

Initial assessment

For all the benchmarks, a criticality specification has been provided. In the specification,

the damage weights of the instruments are given. In the experiments, positive damage

weights of loosing observability have been assigned to 70% of the instruments. Addi-

tionally, positive damage weights of loosing controlability correspond to another 70% of

randomly selected instruments. Finally, 10% random instruments have been selected as

important for observation, another 10% - as important for control.

For all the becnhmarks, all the instruments are accessible via an RSN, if the RSN is defect-

free. The initial worst-case assessment of the damage to the system operation is performed

as shown in Eq. 4.4, if none of the primitives is hardened. Each time, a defect in one scan

primitive is considered. This value is used to assess the effectiveness of the developed

resynthesis scheme with respect to the remaining damage. Additionally, the maximum

hardware cost is calculated for the case, if all the scan primitives are substituted by high-

yield cells. This value is further used as a reference to assess the hardware overhead due to

hardening. In this section, the damage to the system operation is normalized with respect

to the initial worst-case assessment above. Similarly, all the numbers for the hardware
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cost are normalized with respect to maximum hardware cost. The exact absolute values

for all the benchmarks are provided in Appendix B.1.

Criticality Analysis and Robustness Enhancement

The criticality analysis from Section 4.2 has been conducted given an explicit specification.

The criticality of RSN primitives has been assessed with respect to the damage to the sys-

tem operation. The primitives to harden are selected by using the evolutionary algorithm

called SPEA-2 [ZLT01] implemented in the Opt4J framework from [LGRT11]. Genetic

algorithms produce a series of incrementally improving solutions for a given problem. For

each generation, a tradeoff between the cost of hardening and the remaining damage to

the system is explored. The genetic algorithm stops when each further N generations im-

prove the generated solutions less than by a given threshold. The exact parameters of the

evolutionary algorithm are given in Appendix B.1.

To demonstrate the effectiveness of the developed methods with respect to the hard-

ware cost and the remaining damage to the system operation, two dominant solutions

are shown below for each benchmark:

• Fig. 4.12 presents the best damage-reducing solution, which requires at most 10%

hardened primitives. For all the benchmarks, by hardening a minor number of primi-

tives, it is possible to significantly increase the probability that the instruments would

remain accessible through the resulting RSN even in the presence of defects. The

horizontal dashed line in Fig. 4.12 shows the initial assessment of the parameters.

• In Fig. 4.13, the most cost-efficient solution is provided for reducing the damage

down to 10% of the initially assessed value. For all the benchmarks, the damage to

the system is reduced by an order of magnitude by hardening a negligible fraction

of primitives.

In both cases above, all the important instruments remain accessible via the resulting

RSNs. The developed analysis and resynthesis methods are scalable with the increasing

size and complexity of RSNs. In the worst case, 1.5 hours have been required to perform

the initial analysis and to select the primitives to harden. For most benchmarks, the

overall processing time was in the range of several minutes or even seconds.
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Figure 4.12: Robustness enhancement results, cost ≤ 10%
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Figure 4.13: Robustness enhancement results, damage ≤ 10%

Case-study

Fig. 4.14 shows the obtained hardening results for one specific benchmark in more details.

Here, a pareto plot is provided for the p93792 benchmark where the instances from five

selected generations are presented. Initially (1st generation), a randomized subset of scan

primitives is selected for hardening. As more generations pass, the solutions improve, and

only dominant solutions are selected at each further generation. At 1501st generation, the

solutions saturate: each further 100 generations improve the solution by at most 1%.
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Figure 4.14: Tradeoff between the hardware cost and the damage, case-study

4.6 Summary

A single fault in an RSN may dramatically reduce the accessibility of the instruments.

Hardening the most critical instruments and the corresponding scan segments against

permanent faults is not enough to ensure robust access to the instruments since a single

fault in the control logic of an RSN may corrupt scan paths and make certain instruments

inaccessible. This will affect two major tasks:

• During post-silicon validation, an innovative process or a new design may show an

increased defect rate. A single fault in an RSN may prevent accessing a major part

of instruments, such that a large portion of the validation data cannot be extracted

from a limited number of prototypes.

• During online operation, the device operation may be guided by runtime-adaptive in-

struments, examples are Adaptive Voltage and Frequency Scaling (AVFS) [TKD+07],

temperature control or error rate adoption. The inaccessibility of runtime-critical in-

struments via a defect RSN may eventually result in a system failure or even cause

permanent system damage.

In this chapter, a method to generate robust RSNs is presented. The resulting RSNs ensure

reliable access to the most relevant instruments throughout the device lifetime. A mini-

mized number of scan primitives uses hardened cells of high yield. The scan primitives to

harden are selected based on the precise criticality analysis. To ensure the scalable pro-
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cessing of RSNs, series-parallel RSN model is introduced and its applicability for arbitrary

RSNs is discussed. All the critical instruments and most of the remaining instruments are

accessible through the resulting RSNs even in the presence of defects. A trade-off between

the hardening cost and the remaining damage of defects for the observability and the

settability of the instruments is investigated by using an evolutionary algorithm. As a re-

sult, a set of close to pareto-optimal solutions is computed. The resulting RSN follows the

topology of the initial RSNs, the access latency of the resynthesized RSN does not change.

Thereby, the resulting RSN is not only compatible with the existing access, test and diag-

nosis procedures [BKW15b, UKW17, CSSS18, DJST19, CDRS20], but is also accessible by

the same access patterns as the initial RSN.
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Chapter 5

Testable RSNs

Reconfigurable Scan Networks can occupy a significant part of the chip area, the probabil-

ity of a fault within an RSN cannot be neglected, even if the most critical parts of RSNs are

hardened as discussed in the previous chapter. At the same time, due to high sequential

depth and complex control dependencies, major parts of RSNs have limited observability

and controlability. As a result, the existing test and diagnosis schemes are not sufficient to

detect all the faults in RSNs, as discussed in Section 3.5.

This chapter presents efficient methods to significantly enhance the testability of RSNs by

means of resynthesis and to test RSNs throughout their whole lifetime. The remainder of

the chapter is organized as follows:

• Section 5.1 presents a complete design-for-test (DfT) scheme for RSNs, which has

been first published in [LWW22a]. Design-for-Test methods ensure fault detection

for three major parts of an RSN: scan interfaces, scan segments and control prim-

itives. An efficient test integration scheme is developed, which dramatically de-

creases the overall test access time compared to the case, when the individual parts

of an RSN are tested independently.

• In Section 5.2, an online periodic test of RSNs from [LWW22b] is presented. The

developed method complements the existing test and DfT methods for RSNs and

allows to avoid fault accumulation in those primitives, which are rarely accessed. A

small set of test access sequences is generated for a given RSN and can be applied

periodically within safety margins. The generated test sequence set can be reused

during the whole lifecycle of RSNs, including also the offline phase.
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5.1 A Complete Design-for-Test Scheme

A complete Design-for-Test scheme is presented below, which combines and extends the

testability enhancing schemes from [UKW17, WLA+21, LWW21]. It is inherently flexible

with respect to the considered fault models, and requires negligible hardware overhead.

The contributions of this chapter are as follows:

• The testability of the shadow registers and the scan interfaces to the instruments is

enhanced and the faults in the capture- and update-circuity of the scan segments

become detectable.

• The testability of control primitives is enhanced. Existing methods test the control

primitives by observing the length of an activated path [BKW15b, UKW17, KBSW16,

CZP+18, CDRS18, DJST19, CDRS20], and fail if an erroneously activated path has

the same length as the correct one. An exact testability analysis method is presented

to identify all single control faults, which do not have impact on the length of the

activated path. If such a fault is identified, automated resynthesis changes the length

of a minor number of scan paths to ensure fault detection.

• The test of the scan shift logic is enabled by integrating a compact Built-In Self-Test

(BIST) structure, which is responsible for generation of a short pre-sequence to test

the shift logic of the currently activated scan path.

• Test integration is supported to reduce the resulting test time. The generated test

sequences are capable to cover multiple fault locations at a time. Each sequence

contains a workload sequence, which is used to test faults affecting scan interfaces

and control primitives, and a short self-generated pre-sequence to test the shift logic

of the segments on the activated path.

The remainder of this chapter is organized as follows. In Section 5.1.1, the detectability of

faults is formally defined as an optimization criteria for a testable RSN. In Section 5.1.2,

the necessity of a complete design-for-test scheme to complement the existing test meth-

ods is motivated. In Section 5.1.3, a DfT scheme is presented for shadow registers and

interfaces to instruments. Section 5.1.4 presents a testability enhancement technique for
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control primitives. In Section 5.1.5, the details about the scan segment test are provided.

Section 5.1.6 provides details about the overall test integration procedure.

5.1.1 Optimization Criteria

The main aim of using Reconfigurable Scan Networks is to provide a flexible and efficient

access to the embedded instruments reliably throughout the whole lifetime. However,

even if the test method is thorougly developed, certain faults may remain undetectable

due to the low observability and controllability of certain fault locations. Therefore, fault

detectability is an important optimization criteria for the integration of dependable RSNs.

At the same time, to ensure fast and efficient access to the instruments, and also to perform

tests within a given timing margin, it is important to keep the access latency low. The

remainder of this section provides more details for the optimization criteria above.

Detectability of Faults

To detect a fault in an RSN it is necessary to propagate its fault effect to the scan-out port

of the RSN, and distinguish the faulty output from an expected fault-free output. It can

be done e.g. by observing the altered path length or altered signature [BKW15b, UKW17,

CSSS18, DJST19, CDRS20]. In Formula 5.1, the detectability of faults is calculated:

∑
f∈F testable(f)

|F | (5.1)

where F is the total set of faults; testable(f) equals to one if a fault f is testable by the

existing test methods for RSNs; it equals to zero otherwise.

To increase the detectability of faults in a given RSN, first, undetectable faults must be

systematically identified. Their testability can be increased by using a resynthesis method,

as shown in further in this chapter.

Access Latency

Accessing an instrument via an RSN requires at least one CSU-operation to configure an

Active Scan Path, which would include a scan segment accessing the given instrument.

Formula 5.2 calculates the maximum access latency over all the scan segments:
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max
s∈S

[AT (s)] (5.2)

where AT (s) denotes the access latency of the segment s in terms of clock cycles.

In a dependable RSN, all the instruments must be accessible for the eligible users, and

the access latency can be minimized to provide efficient access. The maximum access

latency over the segments can be minimized by resynthesizing an RSN. For example, long

scan chains can be split into muliple shorter chains. To compare the access latency of a

resynthesized RSN with the latency of the intial RSN, a change of the access latency over

all the segments is computed, as shown in Formula 5.3:

sum_latency_difference :=
∑

s∈S
[ATnew(s)−AT (s)], (5.3)

where ATnew(s) is the access latency of the segment s in the resynthesized RSN.

Alternatively, the latency of the segment smax with the highest latency in the original RSN,

can be compared with the latency of the same segment in the resynthesized RSN, as shown

below:

smax := argmax
s∈S

[AT (s)]

latency_difference := ATnew(smax)−AT (smax)

(5.4)

Example: The maximum access latency among the registers of an online periodic BIST

can be minimized in order to ensure an efficient periodic access through an RSN. Using this

criteria results in a parallelized RSN, with a higher number of configurable ASPs.

5.1.2 DfT as Essential Companion for RSN Test

Specifics of some RSN structures may affect the detectability of faults. In Fig. 5.1, some

examples of the testability issues are presented, which would arise for the RSN example

from Fig. 2.1, if the existing test methods would be applied.

1. Undetected fault affecting a shadow register of s3 and a faulty reset line: If the shadow

register of the scan segment s3 is faulty, an erroneous data might be captured into

the corresponding instrument i3. The existing methods rely on the assumption, that
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Figure 5.1: Testability issues in the RSN example from Fig. 2.1

the value in the instrument i3 is directly observable, which is not always true. They

do not guarantee to detect faults affecting the reset values of the shadow registers.

A DfT enhancement is presented in Section 5.1.3 to test the scan cell internal multiplex-

ers (M2 and M3 in Fig. 2.5) and the shadow registers at the scan interface independent

of the values in the instruments. The reset line is tested as well.

2. Silent data corruption due to a fault at the multiplexer m1: If the multiplexer m1 is

affected by a "stuck-at-1" fault, a path through the grey-colored primitives would

be activated in Fig. 5.1 instead of the intended path in Fig. 2.1. Since both paths

have the same length, the fault at m1 would remain undetected, and silent data

corruption may arise.

A design-for-test technique is presented in Section 5.1.4 to ensure that any single control

fault results in an altered scan path length, such that the coverage of the methods

presented above for faults in the control primitives is guaranteed.

3. Corrupted scan path integrity due to the faulty segment s2: If the scan segment s2 is

faulty, the integrity of the configured scan path (in grey) is corrupted. Using the

existing methods, it is not possible to detect this fault concurrently to the functional

operation.

A DfT enhancement is presented in Section 5.1.5 to ensure that any single fault in the

scan shift logic is detectable concurrently to testing other parts of an RSN.
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To overcome the above mentioned limitations of the existing schemes, the remainder of

this section presents a complete design-for-test (DfT) solution for RSNs, which enhances

the testability of the RSN primitives to allow complete fault coverage.

The presented scheme has the following goals:

• Testability: Faults affecting all parts of an RSN must be detectable, which includes

instrument interfaces, scan segments and control primitives.

• Flexibility: The presented scheme must be adjustable towards a used-defined fault

model.

• Cost-efficiency: The presented scheme must have a low hardware-overhead.

• Compliance: The DfT logic must not affect precomputed retargeting sequences.

• Scalability and generality: The presented scheme must be applicable to large arbi-

trary RSN designs.

• Compactness: Test sequence are supported to cover multiple test locations.

• Compatibility with the existing test methods The presented DfT scheme must be

compatible with the test, diagnosis and post-silicon validation methods discussed

above and is supposed to be used complementary to these schemes.

5.1.3 Test of the RSN Interfaces

In this section, the testability enhancement of scan interfaces between the scan segments

and the instruments is discussed, which has been first published in [UKW17]. First, the

problem is formulated with respect to the fault locations, which cannot be tested with the

existing methods. Next, a DfT enhancement is presented to significantly increase fault

coverage with respect to the faults at the scan interfaces.

Problem Formulation

The goal of the presented DfT enhancement is the test of the scan interfaces of all data

scan segments. At the same time, data stored in the instruments shall not be corrupted.
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As a result, the scan cell internal multiplexers (M2 and M3 in Fig. 2.5) and the shadow

registers must become testable.

DfT Enhancement

The testability of the scan interfaces is improved by significantly increasing the observabil-

ity of the shadow registers and decoupling the test of the multiplexers M2 and M3 from

the data in the underlying instruments. With this scheme, the corresponding fault effects

become observable at the scan output of a scan cell and can be propagated to the global

scan-out port by using conventional test methods.

The test of scan interfaces to the instruments is enabled by augmenting the initial scan cell

structure (Fig. 2.5) with an additional feedback loop between the shadow flip-flop and the

scan flip-flop, as shown with a green color in Fig. 5.2.
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Figure 5.2: Scan cell with a DfT Enhancement (in green). The additional scan multiplexer
allows to propagate the data from the shadow flip-flop to the scan flip-flop.

The DfT structure provides direct visibility of the shadow flip-flop without requiring knowl-

edge about or control over the connected instrument. The feedback loop propagates the

value stored in the shadow flip-flop into a scan flip-flop. This data is then shifted through

an activated scan path, such that the value of the shadow flip-flop is observable at the

scan output. The feedback loop is activated by setting the control signal FeedbackEn to a

logic one. The scheme is compliant with IEEE Std. 1687-2014 [IEE14]. The feedback loop
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can be described by means of the Instrument Connectivity Language, and therefore can

be readily handled by EDA tools supporting this standard. The additional feedback enable

signal can be controlled externally by the access interface or internally by using previously

unused assignments to the internal control signals.

In the remainder of this section, it is discussed how the DfT scheme is applied to enhance

testing of the scan interfaces and the reset functionality. Since the newly integrated DfT

feedback loop must be tested as well, a discussion about the testability of the correspond-

ing faults concludes the section.

1. Testability Enhancement for the Scan Interfaces

In an enhanced scan cell (Fig. 5.2), an update register can be tested by writing com-

plementary values into the update flip-flops and reading them through a feedback

loop. Faults effects residing in the update flip-flop are propagated to the scan output

of the RSN with the help of the feedback path (shown in green in Fig. 5.2) and the

initial paths through a scan cell by applying the following steps:

(a) First, the newly introduced feedback line is used to propagate the fault effect

from the update flip-flop towards the shift flip-flop.

(b) Next, the data is shifted through the shift path towards the scan output. During

those two steps, the functional operation of an RSN is paused.

(c) Finally, the data at the scan output of the scan segment is further propagated

through an RSN by applying regular CSU operations.

2. Testability Enhancement for the Reset Line

The reset lines of shadow flip-flops are testable with the help of the DfT enhance-

ment. To perform a test, an RSN is set into a known state which differs from its reset

state. A non-reset state is read from the shadow flip-flops into the scan flip-flops

through the 0-branch of the feedback multiplexer, as shown in Fig. 5.2. This value

is propagated towards the global scan-out by using conventional retargeting meth-

ods. Then, a global reset is applied to activate faults affecting the reset functionality.

Next, the fault effects are read from the shadow registers through the feedback loop

and shifted-out of the RSN. The shifted-out sequences for a reset and non-reset states
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are compared to detect a fault. Finally, a global reset signal is applied once again to

bring the RSN into its initial state.

3. Testability of the Feedback Loop Primitives

The faults affecting the additional feedback loop primitives are tested in multiple

phases, while testing the D output of the instrument and hence the feedback multi-

plexer 0-input cannot be covered without controlling the instrument from outside.

This paper considers faults within the RSN including the interfaces. Faults within

the instruments lay out of the scope and do not contribute to the resulting coverage.

In the first phase, the D-value is captured and observed by setting FeedbackEn = 0.

Then, with FeedbackEn = 1, D is shifted into the loop and observed outside. If the

feedback multiplexer output stayed still at D, the corresponding stuck-at-D faults at

the multiplexer output, its 1-input or a stuck-at-0 fault at FeedbackEn are detected.

Next, D is shifted into the loop to detect stuck-at-D at the multiplexer output and

1-input. Finally, D is shifted again into the loop, and with FeedbackEn = 0 it will

load D again, otherwise there is a stuck-at-1 fault at FeedbackEn.

5.1.4 Test of Control Primitives

This section presents a method to formally validate whether all the faults affecting the

control primitives can be tested by observing an erroneously activated scan path with a

changed length. The method below has been first published in [LWW21]. If at least

one fault exists, which is not testable this way, the RSN is transformed into a testable

functionally equivalent one with negligible hardware overhead. In the resulting RSN,

it is guaranteed that all the single faults at the control primitives are testable and the

existing methods to test RSNs can be efficiently applied to this RSN. First, we present

a formal definition of the testability concept, then we present a scalable method for so-

called series-parallel RSNs defined below, and show how an arbitrary RSN can modeled

as a series-parallel one.

Testability Concept

In this subsection, we present the testability concept for control primitives of RSNs.
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Definition 5.1 (Single fault reachable paths). An active scan path aspl is called to be

"single fault reachable" from another path aspk, if and only if there is a single fault f which

activates the path aspl instead of aspk erroneously for some control input.

To check whether a given path is single fault reachable from another path, their activation

conditions are compared, as shown in the example below.

Example: In Fig. 5.3, a multiplexer m1 has two inputs. The paths through the upper branch

of the scan multiplexer are single fault reachable from the paths through the lower branch,

by a single fault affecting the address control signal of m1.

f1 f2branch 1 branch 2

branch 3

f2 f1

...

branch 1 branch 2

branch 3branch 1

m1 m2

m1 m2

0

1

0

1

0

1

0

1

0

1

0

1

m1

m1
Figure 5.3: Testability concept example

If the paths arriving at different multiplexer inputs have different lengths, any fault of the

multiplexer control can be detected.

Definition 5.2 (A fault detectable by an altered path length (DT-PL)). A single fault f in

the RSN control logic logic is categorized as "detectable by an altered path length (DT-PL)",

if under the same scan configuration, the length of the paths through a fault-free RSN is

different compared to the length of any faulty path, which is single fault reachable from

the initial path.

For a "detectable by an altered path length" fault, it is always possible to find a test se-

quence, which would detect the fault. In this case, for any path, which is erroneously

activated in an RSN due to a single fault, the path length is different compared to the

fault-free case.

The detection of a fault might be still possible, if there exist at least two paths through a

fault location which have different lengths for a faulty and a fault-free case. However, the

79



5 Testable RSNs

existence of equal path lengths leads to the case, where it is not sufficient to test the fault

by activating any path. Instead, fault detection depends on the choice of an activated path

and thereby is not guaranteed. In this case, a fault is categorized as a possibly "undetectable

by a path length (UDT-PL)", since the existence of a test sequence is not guaranteed.

Example: In Fig. 5.3, it is only necessary to compare the sets of lengths through the upper

and the lower branches of m1 to identify, whether the faults affecting m1 are "detectable by a

path length". If there exist at least one path length, which appears in both sets, it may not be

possible to detect the fault affecting m1 by an altered path length. In this example, the paths

through the upper branch consist of 1 and 2 scan cells respectively. There also exist two other

paths through the lower input of the multiplexer with the lengths 1 and 3. So, two paths

shown in red have the same length, and the fault affecting m1 is not "detectable by an altered

path length".

If an RSN contains any fault, which is not proven to be detectable by a path length, it is

referred to as an untestable RSN. The goal of this section is not only to determine whether

an RSN is testable, but also to pinpoint the exact single faults location in the control logic,

which may not be detectable by differences in a path length, and to resolve such untestable

spots via resynthesis.

Testability Analysis of Series-Parallel RSNs

A divide-and-conquer approach is formulated below, such that a series-parallel graph of

an RSN is processed in a bottom-up manner. The analysis starts with elementary graph

structures, such as parallel and series connections between the vertices.

For the vertices connected in parallel, the testability concept from Section 5.1.4 is applied,

while the testability of the vertices connected in series does not depend from one another

and thereby can be considered independently. As soon as the smaller subgraphs are pro-

cessed, the analysis abstracts each such subgraph into a single edge and proceeds with the

analysis of bigger subgraphs until the whole RSN graph is processed. The remainder of

this subsection presents the details about the testability analysis implementation.

Let the set asps(Gj) be the set of paths through a subgraph Gj , where each path aspl

has the length pathLenl and is activated if the path activation conditions cond(aspl) are

satisfied. The set Lj contains all the path lengths through the subgraph.
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For two subgraphs G1 and G2, the following cases are considered:
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• Series composition:

For two serially-connected subgraphs, the set of path lengths through the resulting graph

G includes all the possible combinations of the sums of the paths through the individual

subgraphs.

L := {pathLen1+pathLen2|

pathLen1 ∈ L1, pathLen2 ∈ L2}
(5.5)

At the same time, the conditions for activating the paths should not be contradicting:

cond(asp) := cond(asp1) ∧ cond(asp2) (5.6)

A fault f in G1, which is detectable by an altered path length, leads to a changed length

of at least one path asp1 through ‘:

pathLenf1 := pathLen1 + λ (5.7)

where pathLenf1 is the length of a faulty path, λ is the relative change to the path length

compared to the fault-free case, which arises due to a fault f .

Given the single fault assumption, the subgraph G2 is fault-free, and any path through

G, which includes an erroneously activated partial path through G1, also differs from a

fault-free path by the value of λ:

pathLenf := [pathLen1 + λ] + pathLen2 (5.8)

As a result, the fault f is detectable in G by an altered path length.

• Parallel composition:

For two subgraphs connected in parallel, the set of path lengths includes the lengths of

the paths, which traverse one of the subgraphs:

L := L1 ∪ L2 (5.9)
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The sets of path lengths should not be intersecting:

L1 ∩ L2 = ∅ (5.10)

If the intersection is not empty, it indicates a problematic spot, meaning that the fault is

undetectable by an altered path length. For all paths asp1 and asp2 through G, such that

asp2 is single fault reachable from asp1 or vice versa, the information about the differences

between the corresponding path lengths are saved.

The paths through an RSN are analyzed recursively with a help of a binary decomposition

tree, and each time either a series or a parallel composition of subgraphs is considered.

The initial computation starts with the left-most leave of the tree, and the vertices of the

tree are traversed in the order of the reverse polish notation.

After the analysis is completed for the subgraph, it is abstracted to a single vertex of the

binary decomposition tree, such that all possible path lengths through the subgraph are

used for the annotation of this vertex. The computation continues with the next low-level

subgraph, until all low-level graphs are processed, and then proceeds to a higher level,

such that in the end the whole RSN is analyzed.

If all the target faults are detectable by a altered path length, then the RSN is already

testable and the testability enhancing resynthesis is not needed for this RSN. Otherwise,

the information about the control primitives with undetectable faults as well as the possi-

ble differences of the partial path lengths are used for resynthesis.

Example: Given the decomposition tree from Fig. 4.4, the computation starts at the control

segment cs1. The tree is traversed following the reverse polish notation until the first parallel

composition vertex is found. First, the subgraph consisting of the vertices P/m1, s1 and

s2 is analyzed, and possible path lengths are used for vertex annotation. The computation

continues with analyzing the subgraph consisting of the vertices P/m2, s3 and s4. As soon as

all low-level subgraphs are analyzed, the higher-level subnetwork through the vertex P/mSIB

is analyzed.
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Testability-Enhancing Resynthesis

For the resynthesis of series-parallel RSNs, the following cases are considered for the sub-

graphs G1 and G2:

• Series composition: A fault in G1 only affects the path lengths through this subgraph,

and does not change the path length through the second subgraph G2, and vice

versa. Therefore, it is not required to consider the subgraphs simultaneously.

• Parallel composition: The lengths of the paths through the 0-input of the multiplexer

mi must be distinct from the lengths of the paths through the 1-input. Let Diff =

{l0 − l1|l0, l1 path length through 0, 1 input } and m = min{|c||c /∈ Diff}. If m = 0,

the paths through the different multiplexer inputs are detectable by an altered path

length. If m /∈ Diff , we can insert m flip-flops in front of the 1-inputs of the

multiplexers which leads to distinct path lengths. If −m /∈ Diff , we can put m scan

flip-flops in front of the 0-input, but not at the 1-input.
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Figure 5.4: Resynthesis example: The testability issue from Fig. 5.3 is resolved by inserting
two scan cells

Example: Consider the example from Fig. 5.3 again. To ensure that a fault at m1 is detected

by an altered path length, two scan cells are added at the lower scan-input of the multiplexer

mi, as shown in Fig. 5.4.

The resynthesis algorithm is applied recursively by traversing a binary decomposition tree

in the same order as during the testability analysis. After the testability in a subgraph

is enhanced, this subgraph is abstracted to a single vertex, which is annotated with the

possible lengths of the path considering the newly added cells. After all the lower level
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subgraphs are processed, the computation goes one level higher in the binary decomposi-

tion tree, until the whole RSN is processed. In the resulting RSN, all the single faults in

the control logic are detectable by a changed path length.

5.1.5 Test of Scan Segments

The method presented above ensures that the faults affecting the control primitives and

the scan multiplexers are testable. In this section, the test of scan segments is consid-

ered, which has been first published in [WLA+21]. In contrast to the existing schemes in

Section 3.3, the test of scan segments is applied concurrently to an instrument access. A

compact built-in self-test structure is added into the RSN and is used to generate a short

test pre-sequence. This pre-sequence is augmented with a workload sequence, shifted

to the tested RSN, and is used to check the shift logic of the scan segments in the cur-

rently configured scan path, as shown in Section 5.1.5. An example implementation of a

concurrent BIST structure for RSNs is shown in Section 5.1.5.

Test Pattern Generation

Each complete test sequence (Fig. 5.5.a) includes a workload sequence W and a flush test

sequence T . Flush test sequences are used to test the shift logic of the scan segments

on the currently activated scan path. In general, a flush test sequence is symmetric with

respect to inversion. This means that if a sequence T =< tn−1, ...t0 > is a flush test for the

activated scan path, then its inversion T =< tn−1, ...t0 > is one as well.

Scan Segment

Shift register

ROSTI3) Enable concurrent test

Shadow register

Instrument
Internal control 

signals

Scan 

in

Scan 

out

Global control 

signals (CSU)

Internal select 

signal

(a)

(b)

Workload sequence Pre-sequence T or T

Shared 

bits

Figure 5.5: Test sequence construction a) workload sequence is augmented with a flush
sequence b) bit sharing mechanism
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For testing stuck-at faults in a scan path, the applicable sequences include a sequence

"00110" and its inversion "11001". For different fault models, other flush test sequences

can be used. The flush test sequences can be either provided by an automated test equip-

ment (ATE) together with the workload sequences, or generated on-site, as discussed

below in Section 5.1.5.

Fig. 5.5.b represents the bit sharing mechanism, which is used for merging the workload

sequence with the flush pre-sequence. There, the last bit w0 of the workload sequence

W =< wm−1, ...w0 > is used to decide, which of the tail flush test sequences (T or T )

overlaps with the head of W by at least one bit, and there is no need to repeat these over-

lapping bits in T or T . For stuck-at-faults, the worst-case reduction in the test application

time comprises 20% of a five-bit flush test sequence, if a constant overlap of the last bit is

considered.

Test Pattern Application

ROSTI (RSN Online/Offline Self-Test Infrastructure) is a self-test structure for RSNs to

generate test sequences and to attach them to the workload sequences. Its structure is

shown in Fig. 5.6, and includes a test sequence generator (TSG), an acceptor and a con-

troller. ROSTI is placed between the RSN and the TAP controller. Together with a TAP

controller and an access port, ROSTI represents an access interface, which enables RSN

self-test and is compliant with the P1687.1 standard proposal [CVTR20], which allows to

use other access mechanism rather then just a JTAG TAP controller to access an RSN.

Data is propagated from a TAP controller through ROSTI to the RSN, and back towards

the TAP controller. ROSTI operates as follows:

• After the capture signal and with the shift signal, a flush test sequence is generated

in the test sequence generator, and it is inserted in front of the workload sequence.

• The flush sequence and the workload sequence are shifted towards the scan input of

the RSN and are further propagated through the activated path.

• If the path is not corrupted, the bits of the pre-sequence are shifted-out unchanged,

and the workload sequence is at the target instrument. If the path is faulty, the V iol

violation signal indicates a defect in the RSN.
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Figure 5.6: RSN Online/Offline Self-Test Infrastructure (ROSTI) structure

The idea behind ROSTI is valid for a wide range of fault models. To extend ROSTI for

a fault-model of interest, the flush test sequence needs to be modified, as well as the

exact implementation of the test sequence generation and acceptor blocks. ROSTI can

be implemented as a simple hardware block as presented below. In the following, the

hardware implementation is explained in a block-by-block manner including three parts:

1. Test Sequence Generator (TSG)

The TSG is used to generate flush test sequences ("01100" or "10011" for stuck-at-

faults) based on the first bit of a workload sequence, and to merge them together

without adding any hold cycle. The TSG operates as follows:

(a) Reuse the first bit: The first bit of the workload sequence is reused as the first

bit of the generated flush test sequence.

(b) Generate and apply the flush test sequence: The rest of the flush sequence are

generated in a four-bit shift register.

(c) Apply the workload sequence: As soon as the flush test sequence is generated

and shifted into the RSN, the workload sequence starts to being shifted into the

RSN for the whole length of the workload sequence.
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2. Acceptor

The acceptor is used to compare the shifted-out results with the expected ones, and

to issue an internal violation signal if these values do not match. As soon as the

workload sequence is shifted into the acceptor, its first bit is recorded into a flip-flop

of the acceptor to distinguish which flush test sequence ("01100" or "10011") is used

in a given test sequence. The acceptor is constructed as a finite state machine, which

consists of few flip-flops and few logic gates. It is independent of the length of the

ASP and its hardware costs depend only on the length of the test sequence since the

acceptor is controlled by the available global shift and update signals.

3. Controller

The major task of the controller is to generate the violation signal (V iol) with a

correct timing. When a violation occurs, i.e. if an RSN test fails and the acceptor

issues the internal violation signal, ROSTI raises the violation signal to the system.

This signal is triggered by the rising transition of the clock signal after the removal

of the shift signal and it holds for one cycle. The controller also is used to propagate

the first bit of the workload test sequence from the test sequence generator towards

the acceptor to allow correct test response comparison.

5.1.6 Test Integration

This section discusses integration of the presented DfT scheme into the RSN-under-test.

First, a short summary of the necessary changes to the RSN structure are presented fol-

lowed by some details about test sequence construction for the enhanced RSN.

Changes to the RSN structure

In Fig. 5.7, the example from Fig. 5.1 is enhanced with the required DfT changes, such

that all the testability issues are resolved. The test integration can be summarized with

the following steps:

1. Control Primitives Testability Enhancement: The RSN structure analyzed and it

is checked whether any single fault in the control logic is undetectable by a changed
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Figure 5.7: Testability-enhancement for the RSN from Fig. 2.1

path length. In this case, a minimized number of changes is applied to the RSN

structure, so that the existing test methods can be applied to detect any single fault

in the control logic by an altered path length. It implies, that if the path length is

correct, then the correct path is activated through the RSN and a silent data corrup-

tion due to a fault in the control logic is excluded. Thereby it is ensured that the

registers of the correct instruments are accessed. In our example, fault detection is

ensured by adding a single scan cell c1 before the multiplexer m1.

2. Scan Interface Observability Enhancement: The design-for-test scheme is inte-

grated to increase the observability of the shadow registers. As a result, the faults

in the capture- and update-circuity of the scan segments become detectable, and the

correct operation of the interfaces to the instruments (including the interface of s3

in Fig. 5.1) can be tested. The reset functionality of the shadow flip-flops is now also

testable.

3. Scan Segment Test Enhancement: The described compact BIST hardware is in-

tegrated into the RSN, which allows to test the shift logic of the scan segments

concurrently. A fault affecting a scan segment is detected with the help of a flush

test pre-sequence, as soon as a path through this segment is activated.
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Test Sequence Construction

As soon as the testability flaws in the initial RSNs are identified and resolved, a sequence

of efficient test patterns can be generated and applied to the RSNs. To test specific scan

segments, it is required to include them into an activated scan path. A test sequence set

can be generated automatically to cover the whole RSN structure with a minimized test

application time, as in [BKW15b, CSSS18, HHD21].

Each complete test sequence includes an instrument test sequence W , which is used for

testing the interface to instruments, and a flush test sequence T , which is responsible for

testing the shift logic of the scan segments on the currently activated scan path. After the

test is applied, in a fault-free case, the flush test sequence will be shifted-out unchanged,

and the bits of the workload sequence would contain the test results for the scan interfaces.

The length of the shifted-out sequence is used as an indicator for the single faults in control

logic. The same applies also for the single flip-flop transparency faults in the shift registers,

since they reduce the length of the activated path by one shift cycle.

5.2 Extension for Online Periodic Test of RSNs

The DfT method presented below significantly improves the testability of RSNs, and

faults can be detected offline and online. Offline test of RSNs is thoroughly investigated

[UKW17, KBSW16, CDRS20, CSSS18, HHD20], and online concurrent test method for

RSNs has been presented in [WLA+21]. However, to avoid fault accumulation in rarely

used components of RSNs, e.g. due to aging [LSW20], an online periodic test method is

essential.

This section discusses the first online periodic test method for RSNs, which has been pre-

sented in [LWW22b] and complements the previously described DfT scheme. The devel-

oped algorithm generates a short sequence of test patterns, which tests all parts of an RSN.

The generated sequence is uploaded on-chip and is applied periodically to avoid fault ac-

cumulation in RSNs. The overall test application time is minimized to comply with the

timing requirements. The generated test sequences can be reused throughout the whole

RSN lifetime, e.g., for offline structural test.

90



5.2 Extension for Online Periodic Test of RSNs

The remainder of this section is organized as follows. First, Section 5.2.1 provides a top-

down overview of the presented test generation method. In Section 5.2.3, it is shown

how to generate a minimized set of active scan paths, which cover all the components

of an RSN. In Section 5.2.2, a scheduling approach is provided, which determines the

order of the path activations. Thanks to scalable processing method, it is not required to

exhaustively consider all possible transitions between the selected paths.

5.2.1 Test Generation Method Overview

Due to stringent real-time operation and performance requirements, periodic test must be

performed within a limited time frame. For the major time, the system must operate in a

functional mode, as shown in Fig. 5.8. If the time budget is not sufficient for executing the

complete test, the test is usually divided into multiple sessions, each within the budget,

and applied successively [KMM+21, EZ17].

Figure 5.8: Periodic test

The test method presented below generates a short set of test access sequences, which are

stored on-chip and are applied to the RSN periodically. Through a set of sequences, the

RSN is configured in a way that all scan primitives, which include the scan segments and

the inputs of scan multiplexers, are covered within a minimized test time. Thereby, the

control signals are also implicitly covered. The test workload sequences can be generated

by the existing methods [UKW17, KBSW16, CDRS20, CSSS18, HHD20]. The remainder

of this section formulates the test sequence generation problem in terms of graphs and

presents a top-down overview of the solution.

Problem Formulation

The solution to the scheduling problem is a minimized set of test access sequences Test :=

{Seq0, . . . Seqk . . . SeqN} for k = 1, . . . N , such that all the vertices of the RSN graph are
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covered at least once and the overall test application time is minimized. The following

constraints must hold:

• Each vertex is covered at least once:

⋃

Seqj∈Test

⋃

aspji∈Seqj

V (aspji ) = V (5.11)

• The cost of the test sequence set is minimized:

∑

Seqj∈Test

∑

aspji∈Seqj

cost(aspji , Seqj)→ min (5.12)

where cost(aspji , Seqj) is the cost of adding a path aspji at the end of a sequence

Seqj .

For a sequence Seqj and a path aspji , the cost is calculated as follows:

cost(aspji , Seqj) := switch(aspji , Seqj) + 2 + |aspji | (5.13)

where switch(aspji , Seqj) represents the number of cycles which are necessary to

configure the path aspj from the last path in the sequence Seqj; 2 cycles are required

to perform capture and update phases, and |aspji | cycles are required to perform shift

operation when the path aspji is configured.

Top-Down Overview

For the problem above, it is possible to obtain an optimal solution, if the computing run-

time and the storage capacities are not limited. However, in this case, all possible transi-

tions between the scan configurations must be compared exhaustively, which is not feasi-

ble even for medium-sized RSNs. To efficiently generate the test sequence set, an efficient

heuristic is presented:

• If all possible transitions between the scan configurations would be considered which

are reachable by applying an unlimited number of CSU-operations, an optimum

solution would be obtained. However, it is infeasible to explore the resulting solution
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space even for medium-sized RSNs. To reduce the solution space, at each step, we

only consider such pairs of scan configurations (c1, c2) that the second configuration

c2 is reachable from the first configuration c1 by applying a given limited number of

CSU-operations.

• In an RSN, the number of configurations may grow exponentially in terms of the

number of configuration bits. Therefore, exploiting all possible transitions be-

tween the scan configurations is infeasible, even if the number of considered CSU-

operations is restricted. In Section 5.2.3, it is shown how to select those active scan

paths, whose activation would bring the highest additional gain among all other

candidates with respect to the coverage, without exhaustively checking all the can-

didates.

5.2.2 Scheduling of Test Accesses

Vertex Covering Problem Formulation

A test access scheduling method identifies a set of active scan paths, which cover all the

reachable scan primitives in the RSN, and also their activation order. To comply with

safety requirements, the test sequence set is minimized with respect to the overall test

application time. Let the set ASP include all active scan paths aspji , which are included

into the test sequence set at a given time.

The algorithm is applied to the RSN graph, where each vertex is annotated with two

values:

• cost(vj , asp
j
i ) shows the additional cost of including the vertex vj into a path aspji

and is defined as the length of the corresponding scan primitive. The costs of all the

included vertices in the path aspji are summed up to calculate the length of the path

aspji .

• gain(vj , ASP ) represents the gain of covering the vertex vj . The gain equals to 1, if

the vertex has not been previously included into any active scan path in ASP . After

a vertex is included at least into one active scan path, its gain is reset to 0.
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The transitions between the activated configurations are represented by using the tran-

sition relation. Since storing the complete transition relation is impractical even for

medium-sized RSNs, only rather small parts of the transition relation are generated dy-

namically and stored in the local memory. The transition relation for the running example

is shown in Fig. 5.9. Each bit in a configuration corresponds to a scan multiplexer. The

bit is set to 0, if the 0-branch of the multiplexer is selected and to 1 otherwise. Each path

can be reset to the initial path asp0 within 1 CSU-operation, and the reset transitions are

omitted in the figure.
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Figure 5.9: Possible configurations for Fig. 2.1

Each vertex of the transition relation graph corresponds to a single path. The edges of

the graph show the reachability between the corresponding vertices within one CSU-

operation.

At each iteration it of the algorithm, an intermediate test sequence set Tit is updated and

some new paths are added. At each point, it is possible to assess the cost and the gain of

adding a path aspji into the sequence set Tit:

• The cost of adding a path aspji at the end of a sequence Seqj is referred to as

cost(aspji , Seqj) and is defined as in Eq. 5.13.

• The gain of adding aspji into the sequence set Tit is referred to as gain(aspji , Tit). It

is defined as a number of vertices in the RSN graph, which have not been covered

by the set Tit, but are covered by the path aspji .

Test Sequence Generation

Algorithm 5.1 presents the general scheduling flow:

• (Line 1-5): The computation starts with initializing the initial test sequence set T0

with the first sequence Seq0 and adding the ASP asp0 into the sequence Seq0.
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Algorithm 1: generateTestSequenceSet
Input: RSN graph G := (V,E), where the initial path asp0 is activated
Output: Test as a set of sequences Test := {Seq0, . . . Seqk}, where Seqj := {aspj0, aspj1, . . . aspji}; Boolean flag

CoveredStatus which shows, whether all the requested vertices are covered
1 /* Initialize the initial state asp0; the first path sequence Seq0; and the test set T */

2 asp0 ← reset;
3 Seq0 ← (asp0)
4 T0 ← {Seq0}
5 /* Initialize the covered vertices with the vertices of asp0 */

6 Vcov ← V (asp0)
7 /* asp0 is included into each path Seqj so it is not needed to cover it explicitly */

8 V (asp0).resetGain()
9 /* Initialize the distance value */

10 maxDistance← m
11 /* Initialize the iterator */

12 it← 0
13 /* Proceed until all the vertices are covered */

14 while (Vcov 6= V ) do
15 k ← k + 1
16 /* For each sequence in the test set */

17 for Seqj ∈ Tit do
18 /* Find the candidate paths with a minimum distance from Seqj and relevant positive gain

*/

19 candidates← getPathsMaxGainMinCost(Seqj)
20 /* Select the path to add: if multiple branch-and-bound */

21 addedPath(Seqj)← selectPath(candidates)

22 end
23 /* Collect the potentially added paths */

24 AddedPaths←
Test⋃
Seqj

addedPathj

25 /* If it is not possible to find at least one path within the specified distance from any of

the sequences then stop the operation */

26 if AddedPaths == ∅ then
27 break
28 end
29 /* Select such a sequence S in Tit and a path asp, which have the shortest distance between

them */

30 (S, asp)← getTheSequenceToAppend(Tit, AddedPaths)
31 /* Add the path at the end of the selected sequence */

32 S′ ← S + asp
33 /* Update the coverage */

34 Vcov ← Vcov ∪ V (asp)
35 /* Reset the gain of the included vertices */

36 V (asp).resetGain()
37 /* Update the test set with the selected sequence and ensure that the reset sequence is

still in the test set */

38 Tit+1 ← Tit \ {S} ∪ {S′} ∪ {Seq0}
39 it← it + 1

40 end
41 /* After all the sequences are generated, return the final test set and the coverage status */

42 Test← Tit

43 return (Test, Vcov)
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– (Line 6): The maximum number of CSU-operations for test sequence genera-

tion is initialized. Depending on the selected value, the trade-off between the

runtime and the test application time is established.

• (Line 8-24): The test sequence generation runs until either all the vertices of the

RSN graph are visited at least once or it is not possible to cover any more vertices

(Line 16).

• (Line 10-13): For each sequence in Tit, possible paths are determined, which are

reachable within a specified number of CSU-operations, and which allow to cover

more vertices in the RSN graph (gain(aspji , Tit) > 0). If multiple such paths exist,

the added path is selected by using a branch-and-bound approach.

• (Line 14-17): If none of the sequences in the test set can be extended by a path, the

test generation converges.

• (Line 18-21): The sequence Seqj to augment with an additional path aspji is

selected, such that the cost of adding the path into the sequence is minimized

(cost(aspji , Seqj)→ min).

• (Line 22): The test sequence set is updated. The selected sequence is augmented

with the selected path. It is explicitly ensured that a basic sequence, which only

includes the reset ASP, is still in the set.

• (Line 26): The algorithm provides the test sequence set Test and the covered vertices

as an output.

Example: In Fig. 5.9, one CSU-operation is considered at a time (m = 1). The compu-

tation starts at the reset configuration {mSIB,m1,m2} = {0, 0, 0}. The configurations

{1, 0, 0}, {0, 1, 0}, {0, 0, 1} and {0, 1, 1} are reachable. The configuration {0, 1, 1} has the

highest gain and is added into the sequence. Next, it is possible to add a configuration

{1, 1, 1} into the existing sequence, or to initialize a new sequence, which starts with a reset

configuration and includes also one the reachable configurations. The configuration {1, 1, 1}
has the highest gain and is selected for adding into the existing sequence. All the vertices of

the RSN graph are covered with three configurations, which belong to the same sequence.
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5.2.3 Selection of Relevant Active Scan Paths

From a given path, an exponential number of other paths is reachable within one CSU op-

eration, as illustrated in Fig. 5.10. Therefore, comparing all the paths, which are reachable

within the threshold is not feasible to identify the relevant paths.

Figure 5.10: RSN chain: Each scan multiplexer is controlled independently

This section provides a method to quickly identify those paths, which might have the

highest gain among all other candidates. First, an path selection method is presented for

series-parallel RSNs. Then we show, how the presented method is applied even for those

RSNs, which are do not have a series-parallel property.

5.2.4 SP-RSN Path Selection

Given an initial path aspji , it is not required to consider all the paths, which are reachable

from this path within a given number of CSU-operations. Instead, a relevant subset of

paths is generated for aspji by mutating the corresponding scan configuration within a

given number of CSU-operations.

As discussed in Section 4, a series-parallel RSN graph can be represented by its binary

decomposition tree. A binary decomposition tree for the example from Fig. 2.1 is shown

in Fig. 5.11. The initially activated scan path is highlighted in yellow. Identifying a valid

path in a tree has a logarithmic complexity. The tree traversal starts from the top vertex

and continues in a depth-first-search manner. First, only the top-level vertex is selected

for a path. At each step, the algorithm tries to select more vertices. The following rules

are applied. When the algorithm traverses a "P" vertex, only one arbitrary child vertex is

selected. If an "S" vertex is met, both children are selected. The computation continues

until it is not possible to include more vertices.
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Figure 5.11: Active Scan Path in a Binary Decomposition Tree from Fig. 4.4

For a given scan configuration, it is possible to identify those other scan configurations

which are reachable from a given configuration within 1 CSU operation and which have

a high gain. In a binary decomposition tree, a path is activated, and a corresponding scan

configuration is computed. We traverse the vertices of the tree in reverse Polish order.

The multiplexers at the lowest levels of the binary decomposition tree are selected. The

developed algorithm flips the states of selected scan multiplexers compared to the initial

scan configuration. If more CSU operations are considered, the flipping is also allowed for

the second lower-level multiplexer vertices.

Example: In Fig. 5.11, the initial path is shown with yellow. The next path is obtained by

flipping the states of the vertices m1 and m2. The next path traverses the lower branches of

m1 and m2 through the vertices s2 and s4.

5.2.5 Non-SP-RSN Path Selection

Consider the non-series-parallel RSN graph in Fig. 4.7 and its series-parallel representation

in Fig. 4.9. The newly added vertex s2c in Fig. 4.9) is referred to as a twin of the initial

vertex s2. For the means of testing, the twins are mutually equivalent. If one of the twins

is tested by a given sequence then another one is tested as well. Applying the procedure
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above for series-parallel representation of non-series-parallel RSNs results in a pessimistic

estimation of the coverage. The resulting test pattern sequence, which is generated for a

series-parallel representation, covers all the primitives in the original RSN but may require

a longer test application time. A longer test application time may be needed if the initial

vertex is tested more than one time in the resulting test sequence set due to the RSN

structure.

5.3 Evaluation

This section discusses the experimental results for the developed test and testability-

enhancing methods. The detailed experimental data for this chapter is provided in Ap-

pendix B.2. The remainder of this section is organized as follows:

• Section 5.3.1 discusses the experimental results for the developed DfT scheme.

• Section 5.3.2 provides the results for the presented online periodic test scheme.

5.3.1 Design-for-Test Scheme

The complete design-for-test method is implemented and evaluated on a wide range of

benchmarks. It uses Instrument Connectivity Language (ICL) descriptions of RSNs as an

input for test generation and generates HDL descriptions for gate-level synthesis.

Scan Interfaces

A gate-level description of a scan segment is enhanced. A feedback line is injected to

improve the testability of a scan interface and a reset line. Enhanced scan segments are

used further as scan primitives for all RSN benchmarks during test sequence generation

and synthesis.

Control Primitives

The developed DfT method ensures that the RSN is testable with respect to single faults in

the control logic. If all faults in the control logic are detectable by an altered path length,

the testability of the RSN is algorithmically proven. The ability to prove this property for
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any arbitrary RSN structure eliminates the danger of silent data corruption with respect

to single faults in the control logic and is thereby one of the major contributions of this

chapter. To ensure fault detection, the lengths of a minor number of scan chains may be

slightly increased.

Original Benchmarks

The scalability and the effectiveness of the developed method has been proven using

the benchmarks from the ITC’2016 [TJD+16], DATE’2019 [RTB+19] and ITC’2002-based

[BKW15b] sets. As shown in Table 5.1, for the benchmark designs TreeBalanced, Mingle,

BasicSCB, the presented testability analysis approach identified single faults in the switch

logic, which are undetectable by an altered path length. A minor number of scan cells,

which ranges between 4 cells for Mingle and 8 cells for BasicSCB, has been added into

the initial RSN structure to ensure fault detection by the existing methods. A negligi-

ble runtime (below 3 seconds) has been required to perform both the analysis and the

resynthesis.

Faults Undetected Faults Scan Cells Added Scan Cells Runtime [s]
BasicSCB 40 8 176 4 1.0
Mingle 52 16 270 8 1.2

TreeBalanced 200 12 5581 6 2.1

Table 5.1: Added cells for enhancing the testability of the original benchmarks

As expected, for a major part of all widely-approved benchmarks, each fault in the RSN

switch logic is detectable by an altered path length. Using the presented approach, it has

been algorithmically proven that the remaining benchmarks are testable with respect to

single faults.

Artificial Benchmarks

Since for most initial benchmarks, the testability property has been proven, the applica-

bility of the structural resynthesis up to this point has been only validated on a limited

number of benchmarks. For the third-party RSN designs the testability property is not

guaranteed, and the scalability and efficiency of the resynthesis must be validated as

well. To create a representative benchmark set, which contains a high number of large

RSN designs, additional bypass registers with a controllable length are implemented. The
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testability of the modified benchmarks has been analyzed and the benchmarks have been

resynthesized to ensure the unique path lengths within a single fault assumption in the

switch logic. Fig. 5.12 shows the ratio between the number of cell, which have been added

into an artificial RSN benchmark to enhance its testability, and the total number of scan

cells in this RSN.
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Figure 5.12: Added cells for enhancing the testability of the artificial benchmarks

The computed ratio shows that the hardware overhead of the DfT enhancement is low

for all the considered benchmarks. As the size and the complexity of RSNs increase, it

becomes negligible. The runtime of the approach is acceptable and requires less than 25

minutes for the largest benchmarks, and just few seconds for the most of the benchmarks.

Thereby, the presented method is scalable for large and complex RSN designs.

Scan Segments

To test scan segments, an RTL description of ROSTI has been developed. ROSTI requires

four flip-flops for the test sequence generator, and another four bits for the acceptor. For

the ROSTI controller, eight flip-flops are used. The architecture of ROSTI is independent

of the RSN and the number of the required flip-flops is also fixed for any RSN under test.

The delay overhead of ROSTI is negligible and is less than 0.07 ns. To test ROSTI itself,
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a commercial tool has been used to perform test pattern generation with full-sequential

ATPG setting. It achieves a fault coverage of 96.84% with 16 patterns and 278 test cycles.

The developed DfT enhancements for scan interfaces and scan segments are independent

from the RSN. The gate-level fault coverage for stuck-at-faults is determined with a com-

mercial sequential stuck-at fault simulator.

Test Integration

In this section, the complete developed DfT approach is evaluated. To evaluate the

testability-enhancing resynthesis for control primitives on a wider benchmark set, while

being able to assess the DfT enhancements for scan interfaces and a shift logic, the RSN

designs have been constructed based on the ITC’02 SoC benchmark set [MIC02].

In Fig. 5.13, the fault coverage for RSN benchmarks without feedback lines in the scan

segments is compared to the fault coverage obtained when the complete DfT scheme is

integrated. Fault coverage is 94.72% on average. To mitigate the coverage gap above, it

is necessary to test the interfaces to instruments and logic. If scan segments are enhanced

by integrating a feedback line and the workload patterns are used to test scan interface,

the complete fault coverage is obtained for all the benchmarks.
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Figure 5.13: Fault coverage comparison

In the resulting RSNs, faults in scan interfaces, control primitives and scan segments are

detectable, and the test integration scheme is applied to reduce the test cost. The test se-

quences of the scan interfaces are now integrated into the workload, and a flush sequence
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tests the shift logic. The length of an activated path is used as an indicator for faults in the

control logic. Fig. 5.14 shows the test cost reduction for the case when the developed test

integration scheme is considered and the bit-sharing mechanism is activated compared to

the case when the test sequences for scan interfaces and scan segments are applied indi-

vidually one after another. For all the benchmarks, the test integration scheme provides a

significant test cost reduction.
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Figure 5.14: Test cost reduction by test integration

The scalability and effectiveness of the developed DfT enhancements has been shown for a

wide range of benchmarks. The absolute numbers for the test cost are given in Section B.2.

5.3.2 Online Periodic Test

Test access sequence sets for performing online periodic test of RSNs have been generated

according to the developed method. The coverage of scan primitives is defined as a frac-

tion of scan primitives, which are accessed by a given test sequence set, from the whole set

of scan primitives. The solution space has been explored and a tradeoff between the test

cost and the coverage of scan primitives has been investigated. A set of close to pareto-

optimal solutions has been generated by means of genetic algorithms. For a required

coverage, the best generated solution with respect to test cost has been selected.
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Full Coverage

First, the results for the test sequence sets with full coverage of scan primitives are pre-

sented for all the benchmarks. Fig. 5.15 shows the overall test cost in terms of the number

of activated scan paths. For all the benchmarks, it has been possible to cover all the scan

primitives with a rather low number of paths.
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Figure 5.15: Test cost, number of activated paths (ASPs)

Fig. 5.16 shows the corresponding number of independent test sequences. For larger

benchmarks (such as TreeUnbalanced, p22810, p93791), which require activating more

scan paths to achieve full coverage, these test sequences can be applied individually during

independent online periodic test sessions to meet safety margins.

Exploring the Tradeoff

Using a genetic algorithm, it is possible to explore the tradeoff between the required cov-

erage and the resulting test cost. To evaluate this idea, the test sets with a requirement

of 90% coverage are generated additionally to the ones with a full coverage. Fig. 5.17

shows the ratio between the test cost for the 90% coverage requirement and the original

test cost. For all the benchmarks, by relaxing the coverage conditions by just 10%, the test

cost can be significantly reduced.
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Figure 5.16: Test cost, number of sequences
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Figure 5.17: Test cost reduction for 90% coverage compared to full coverage, cycles

The experimental results show that the developed method is efficient for a wide range of

RSN designs and is scalable with an increasing size of RSNs. Scalable graph-based mod-

eling and efficient mapping to a genetic programming problem instance allow to generate

a test sequence set with a required coverage, while minimizing the test cost. The detailed

experimental results, including the absolute numbers, are given in Appendix B.2.
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5.4 Summary

Reconfigurable Scan Networks are widely used for accessing instruments during debug,

test and validation, as well as for performing system-level-test and online system health

monitoring. Even if the most critical parts of RSNs are hardened, the probability of a fault

within an RSN cannot be neglected. The correct operation of RSNs is essential, and RSNs

have to be thoroughly tested. The existing test methods have limitations with respect to

fault detection due to low observability and controlability of certain RSN primitives and

cannot be readily applied to perform online periodic test. Moreover, due to inherently

sequential structure and complex control dependencies of RSNs, testability analysis and

enhancement of RSNs is an extremelly challenging problem.

This chapter presents a method to systematically enhance the testability of RSNs with the

help of the complete design-for test scheme. The developed scheme significantly enhances

the RSN testability, such that faults affecting the interfaces to the instruments, the control

primitives and the scan segments can be tested. Each test sequence may cover multiple

faults, which allows to significantly optimize the size of the test sequence set. The pre-

sented scheme is flexible with respect to the fault model, has a low hardware overhead

and does not require changing the RSN topology rules. Therefore, it is compliant with the

existing test and diagnosis methods for RSNs and is supposed to be used complementary to

these schemes. The scheme is also flexible with respect to an access mechanism, and can

be controlled by the workload test patterns from an ATE, from the cloud or even stored

on-chip internally. The presented scheme generates test sequences with complete fault

coverage and reduced test cost. If an RSN is equipped with the developed DfT scheme and

the existing test methods are applied, defect RSNs can be efficiently ruled out during the

manufacturing test.

Due to aging, testing an RSN once is not enough to ensure reliable access via RSNs

throughout the lifetime. Even if scan segments are tested concurrently to the functional

operation to check the shifting logic of the currently activated scan segments, rarely ac-

cessed components might still accumulate faults. To avoid this, an online concurrent test

is complemented with an online periodic test. The developed online test method examines

all scan primitives within a safety interval with a minimized number of test patterns. The
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generated test sequences are used throughout the whole RSN lifetime, both as an online

periodic test and as an efficient offline manufacturing test with a reduced test application

time on ATE.
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Chapter 6

Security Compliant RSNs

Modern systems integrate an increasing number of IP-components, which may come from

different vendors. Some of these components may contain confidential information, which

should not be disclosed to an unauthorized user. Some other components might come

from an untrustworthy supplier, which might want to sniff this information. To prevent

unauthorized access and information leakage, the connections between the components in

the original system are carefully designed. These connectivities together with an explicit

security specification are referred to as the security properties of a system.

Accessing RSNs may introduce additional connectivities into the original system, if the

RSN is integrated improperly. These connectivities can be misused as side-channels to

leak or manipulate sensitive data. However, it cannot not be a responsibility of a design-

for-test engineer to repeat a complete security analysis of the original system. Instead, an

automated solution must be able to identify all unwanted extra-connectivities due to im-

proper RSN integration and efficiently resolve them. The existing solutions do not provide

a systematic approach to validate the compliance of a given RSN with the security proper-

ties of the underlying system and are not able to identify all the violating connectivities.

The violating connectivities due to improper RSN integration must be precluded either

functionally, by restricting the set of test sequences using filters [BKW14, AKS+18], or

structurally, by resynthesizing some parts of the RSN [RKA+18, RTB+19]. The existing

methods either have unwanted side-effects and also block the authorized access to in-

struments [BKW14, AKS+18], or resolve the violating connectivities locally, consider one

violation at a time, and thereby incur many structural changes [BKW14, AKS+18].
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The remainder of this chapter is organized as follows:

• In Section 6.1, a security compliance analysis is presented, which identifies all se-

curity compliance violations due to improper RSN integration. The developed ap-

proach has first been published in [LAR+19] and then enhanced in [LWW22d].

• In Section 6.2, a security-preserving resynthesis is presented to prevent information

leakage due to improper RSN integration. The developed approaches, which have

been first published in [LAWW20, LWW22d, LAW21], overcome the limitations of

the existing methods and integrate security compliant RSNs for a single user and

also for multiple users with different access rights.

6.1 Security Compliance Analysis of RSNs

This section presents a security compliance analysis of RSN. The remainder of this section

is organized as follows:

• The security properties of the initial system are extracted from the design description

and from the explicit security specification as shown in Section 6.1.1.

• A precise reachability analysis of the RSN is performed, as detailed in Section 6.1.2.

• The reachability properties of the resulting system, which consists of the original

system and the integrated RSN, are computed as shown in Section 6.1.3.

• Finally, the security compliance of the RSN with the given system is verified as shown

in Section 6.1.4. All the security compliance violations introduced into the system

due to the RSN integration are identified.

6.1.1 Security Specifications

Integrity against unauthorized accesses is an essential property of a dependable RSN.

The connectivities through the RSN must be compliant with the security properties of the

system, as discussed in this section.

The security properties can be defined as implicit and external security specifications by a

system designer:
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• Implicit specifications follow from the design. If a physical connection or a path along

which two instruments or components could communicate does not exist, such a

connection must not be introduced by the RSN infrastructure. An implicit security

specification of the system is defined by the reachability properties of the vertices of

the initial instruments graph GI := (V I , EI). Each edge e := (i1, i2) ∈ EI of the

graph reflects a connectivity from the instrument i1 to the instrument i2 through the

initial functional system. The structural reachability of the instruments graph can be

computed by using Floyd-Warshall’s algorithm [War62]. To identify the functional

connectivities inside the system, false path analysis [HP13, NTKW98, NSV+17] or

SAT-based methods [SRS+16] can be applied.

• Explicit specifications can be formulated by the designer either to allow specific con-

nections through the RSN, which are not present in the original design, or to exclude

connections even if they were physically present in the design. The latter may be

required for instance, if a physical connection cannot be activated functionally. The

allowed successors and predecessors of the instruments are determined by augment-

ing the implicit security specification with the explicit specification [KSRG+17]. It

considers the trustworthiness of the IP-cores and the information confidentiality and

is provided as a list of instrument pairs. For each instrument pair in the list, it is

stated, whether the connectivity between the instruments is explicitly allowed or

explicitly restricted. If a certain connectivity between the instruments is explicitly

restricted, the information about this connectivity is saved and is further used by

the automated resynthesis. By contrast, if a connectivity between the instruments

through the RSN is explicitly allowed although no functional path is sensitizable be-

tween these instruments in the initial design, an additional edge is introduced into

the instruments graph.

Improper RSN integration might introduce additional unwanted connectivities between

the instruments of the original system. These connectivities are referred to as security

compliance violations and are defined as follows.

Definition 6.1 (Security Compliance Violation). A Security Compliance Violation

viol(pj , pk) is defined as a connectivity between the primitives pj and pk, which extends
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the allowed connectivity of the original system. The primitive pj is called the source, and

the primitive pk is the destination of the violation.

For each pair of primitives (pj , pk), there exists at most one violation from vj to vk. It

considers violating connectivities between these primitives through one or multiple paths.

The absence of unwanted connectivities due to improper RSN integration is formulated in

Formula 6.8:

∑

pj∈P

∑

pk∈P
viol(pj , pk) = 0 (6.1)

6.1.2 Reachability Analysis of RSNs

An accurate functional reachability analysis using conventional methods is time-

consuming due to complex control dependencies and possible interaction with the sys-

tem logic. Also, the number of sensitizable scan configurations can be exponential in the

number of control elements, such as scan multiplexers or SIBs.

The presented approach effectively overcomes the challenges above and computes the

functional reachability of RSNs by performing the following steps:

1. Structural dependencies are determined.

2. The possible assignments of control signals are analyzed to identify a subset of de-

pendencies which belong to a valid scan configuration.

3. The dependencies between valid scan configurations due to retargeting are deter-

mined and functional reachability of the RSN is computed.

4. The connectivities between the instruments through the RSN are determined.

Structural Reachability Analysis

Although functional cycles or cyclic active scan paths are considered as a bad practice by

IEEE Std. 1687 [IEE14], structural cycles may occur. The existence of structural cycles in

the RSN graph is checked by a Depth-First-Search algorithm. If the graph does not contain

any cyclic dependencies, the original RSN graph is used as its acyclic representation.
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Otherwise, an acyclic representation is constructed by removing a small number of edges

from the RSN graph, in a similar way as it is well-known in partial scan design [KW90].

The information about all the cycles in the graph is preserved. All the vertexes of the

acyclic representation are ordered topologically. The pairwise structural connectivities

between the scan primitives are identified by a Breadth-First-Search routine. If the RSN

graph contains cycles, the reachability is adjusted. For each edge, which has been removed

from the original RSN graph to obtain an acyclic representation, the reachability of its

source and destination vertexes is computed.

Control Signals Analysis

Direct data transfer in RSNs is only possible between the scan primitives, which are cur-

rently included into a path. The control signals are used to drive the explicit "select"-ports

of the scan primitives and to determine the activated input of a scan multiplexer. The

control dependencies are analyzed in an RSN graph to determine the connectivities which

are functionally activated within a single scan configuration.

Definition 6.2 (Essential Select Condition). The Essential Select Condition (ESC)

ESC(vj , sig1, ...sign) for a given vertex vj is a Boolean formula in Conjunctive Normal

Form (CNF), which defines the required group of assignments to the control signal values

(sig1, ...sign), such that the vertex vj is included into an activated path.

The Essential Select Conditions (ESCs) are iteratively computed starting from the sink ver-

tex. The computation traverses the RSN graph backward to the root vertex in a Breadth-

First-Search-manner. For each vertex, only those control signals are added into its ESC,

which are required to place this vertex into an active scan path.

If a scan primitive, corresponding to the vertex, is directly connected to a multiplexer, the

ESC demands a specific input of the multiplexer vertex to be selected in order to propagate

the data from the given vertex to the scan-out vertex. This part of the ESC is defined by

the Relative Select Condition (RSC). The RSC(vj , vk, sig1, ...sign) for a given vertex vj and

a scan multiplexer vertex vk, is a Boolean formula in CNF. If vk is a direct successor of vj ,

it defines a group of assignments to the control signals (sig1, ...sign), which are required

to control the vertex vk, in a way that the vertex vj is included into the path.
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The ESC of each vertex vj depends on the ESCs and the RSCs of all of its n direct successors

(vl1, ...vln) and is computed using the following formula:

ESC(vj , sig1, ...sign) :=
n∨

k=1

[ESC(vlk, sig1, ...sign)

∧RSC(vj , vlk, sig1, ...sign)]

(6.2)

According to this equation, a given vertex vj is selected into an active scan path if and only

if one of its direct successors is selected (ESC(vlk, sig1, ...sign)). If the selected successor

models a scan multiplexer, then its scan-in branch, which includes the vertex vj must be

selected by the control signals (RSC(vj , vlk, sig1, ...sign)).

Valid Scan Dependencies Analysis

Valid scan dependencies analysis is formulated as an instance of a so-called Boolean satis-

fiability problem, as defined below.

Definition 6.3 (Boolean satisfiability). A problem of Boolean satisfiability (SAT) is formu-

lated as follows: Given a Boolean formula f(x1, . . . xn); xi ∈ B it is to determine whether

there exist at least one assignment to variables (x1, . . . xn), which evaluates the Boolean

formula to the value of logic one.

If such an assignment exists, a formula is referred to as a satisfiable Boolean formula.

Otherwise, the formula is unsatisfiable. For solving a SAT-problem, a Boolean formula

is often represented in a Conjunctive Normal Form (CNF). The first complete solution

to solve the Boolean satisfiability problem has been proposed by the Davis-Putnam (DP)

algorithm [DLL62]. Thanks to an extensive research and development of SAT-based algo-

rithms [BFH+21], performance of the existing heuristic SAT-algorithms is rather high, and

mapping a problem instance to a instance of Boolean satisfiability (SAT) problem provides

quite an efficient way to solve many decision problems in the field of digital design and

optimization. At the same time, one should not forget that the SAT-problem was the first

problem, which has been proven to be NP-complete.
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Therefore, additional efforts are required to formulate a SAT instance for a given problem

in a way that the investigated solution space of the algorithm is reasonably small. For the

problem of valid scan dependencies analysis, the SAT instance is formulated as follows.

The data transfer within one CSU-operation from a source vertex vj to a destination vertex

vk is possible, only if at least one valid assignment to control signal values exists. In this

assignment both vertices are selected in a valid active scan path, and the vertex vk is

reachable from the vertex vj . If the vertices vj and vk fulfill the condition above, vj is

called an ASP predecessor of vk, and vk is called an ASP successor of the primitive vj .

To verify the condition above, the Essential Select Conditions for the structurally connected

vertices vj and vk are combined by conjunction. The existence of an assignment to the con-

trol signals (sig1, ...sign), which satisfies the boolean satisfiability (SAT) instance below, is

verified:

∃(sig1, ...sign) : [ESC(vj , sig1, ...sign)

∧ ESC(vk, sig1, ...sign)

∧ (vj ∈ sp(vk, GRSN )]

(6.3)

• If the SAT instance is satisfiable, then an active scan path including both vertices

can be configured. The satisfying assignments provide the essential values of logic

signals to select both vertices simultaneously. The sets of ASP predecessors for vk and

ASP successors for vj are correspondingly updated, since the data can be transmitted

between vj and vk within one CSU-operation.

• If the SAT instance is unsatisfiable, then the ESCs of the vertices are contradicting

and an active scan path traversing both vertices does not exist.

Functional Reachability Analysis

Retargeting in RSNs is used to propagate data between the vertices using multiple sequen-

tially activated paths. The connectivities within individual activated paths, which have

been computed as shown above, are generalized to determine the functional successors

and predecessors of each vertex of an RSN graph. The number of reconfigurations used
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to propagate the data between two vertices and thereby the computation efforts in the

worst case are limited to the sequential depth of the analyzed RSN, which is defined as

the length of the longest possible active scan path inside the RSN.

6.1.3 Hybrid Connectivities Computation

To compute the connectivity properties after the RSN integration, the hybrid paths travers-

ing both the instruments graph and the RSN graph are identified. Therefore, the transitive

closure over the system graph is computed by combining the previously determined con-

nectivities. For simplicity, the vertices of the instruments graph are referred to as the

instrument vertices. The vertices in the RSN graph are referred to as the RSN vertices.

The presented algorithm to compute the dependencies between the instrument vertices

and the RSN vertices has rather low complexity, and contains two basic steps detailed

below:

• Bridge-dependencies: The connectivities between the RSN and the instruments

subgraphs are augmented with the connectivities within the subgraphs to build the

hybrid partial paths between the instruments and the scan segments. These connec-

tivities are referred to as bridges. Following the transitivity property, all the vertices

in the RSN graph, which are reachable from the RSN vertex reading the data from

the instrument vertex, are also reachable from the instrument vertex itself. In this

way, all the vertices in the RSN graph are identified, which are functionally reach-

able from each given instrument vertex through the RSN graph. Following the same

logic, any instrument vertex reading the data from a particular RSN vertex is reach-

able from all the vertices in the RSN graph, which reach this vertex.

Example: In Fig. 6.1, the scan segment s1 is reachable from the instrument i1. This

means that all the scan segments, which are functionally reachable from s1, are also

reachable from i1 through the RSN.

• Instrument connectivities through the RSN: The partial paths from the first step

are combined to find the connectivities between the instrument vertices through

the RSN graph. Connectivity between the source and the destination instrument

vertices exists through the RSN graph, if at least one intermediate RSN vertex exists,
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Figure 6.1: Security compliance violations in the RSN example

which is reachable from the source instrument vertex, and such that the destination

instrument vertex is reachable from this RSN vertex.

Example: In Fig. 6.1, the scan segment s3 is reachable from the instrument i1, and i3

is reachable from s3. This implies that i3 is reachable from i3 through the RSN.

The identified connectivities between the instrument vertices through the RSN graph are

augmented with the allowed functional connectivities within the instrument graph. It

allows obtaining information about hybrid paths which can traverse both parts of the

system graph an unlimited number of times. As a result, for all the instrument vertices,

the sets of functional successors fs(vj , GS) and predecessors fp(vj , GS) after the RSN

integration are identified.

6.1.4 Identification of Violating Connectivities

The compliance of the RSN with the initial security properties of the system is verified.

The intended sets of allowed successors of the instrument vertices in the instruments

graph are compared with the actual sets of successors in the combined system graph. The

hybrid connectivities after the RSN integration must not exceed the allowed connectivities

in the initial system:

• If the requirement is fulfilled for all the instrument vertices, the initial RSN is com-

pliant with the initial security properties and the integration of the RSN is complete.
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• If for any instrument vertex this requirement does not hold, the initial RSN is struc-

turally modified to ensure its security compliant integration into the system. At this

step, the list of security violation warnings is constructed and provided to the auto-

mated resynthesis.

Example: In Fig. 6.1, as a result of the security compliance verification, the violating con-

nectivities from the vertex s1 to s3; from s2 to s4 and from s3 to s4 are identified.

6.2 Synthesis of Security Compliant RSNs

This section presents two approaches to resolve the security compliance violations, which

might be introduced into the original system due to improper RSN integration. The re-

mainder of the section is organized as follows:

• In Section 6.2.1, a purely structural method is presented to cut all the violating con-

nectivities without sacrifying the allowed accessibility of the instruments via RSNs.

• In Section 6.2.2, this method is further enhanced to allow security compliant access

for multiple user groups. The developed method preserves all the benefits of the

purely structural solution and also dramatically reduces the hardware costs com-

pared to the initial solution.

6.2.1 Structural Security-Compliance Aware Resynthesis

In this section, security compliance violations due an improper RSN integration are re-

solved by applying the structural resynthesis, which has first been published in [LAWW20]

and enhanced in [LWW22d]. The general flow of the security compliance analysis and

resynthesis (SCAR) approach is shown in Fig. 6.2 and consists of the following steps:

• Analyze the security compliance: The security compliance of a given RSN with

the security properties of the initial system is analyzed as shown in Chapter 6.1.

The connectivities in the RSN, which extend the allowed connectivity between the

instruments of the initial system, are identified as security compliance violations.
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Figure 6.2: General flow of SCAR

• Resolve the violations: The identified violations in the RSN are resolved by using an

efficient heuristic. A minimized set of structural changes is identified and applied to

the RSN structure in order to eliminate all the violations and to prevent information

leakage.

• Ensure the accessibility: If certain scan segments are not any more accessible after

the previous step, some additional connectivities are added, and a modified RSN is

constructed.

• Validate the security compliance (shown with a red arrow on the left): The security

compliance analysis is performed once again for the modified RSN. If any violations

are present in the RSN, the procedure above is repeated until all the violations are

resolved. SCAR is guaranteed to converge with a security compliant RSN, since

in the worst case a parallel RSN structure is obtained, where each instrument is

accessed via a separate branch of a scan multiplexer. In practice, much less changes

are required.

Eliminating the Violating Connectivities

The problem of eliminating the violating connectivities in RSNs is solved by using Integer

Linear Programming (ILP). This subsection first formally defines ILP. Next, the problem

formulation is presented and the steps to obtain a solution to the problem are provided.
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Integer Linear Programming

In linear optimization, all the requirements, including the objective function and the con-

straints, are represented by linear relationships. If all the unknown variables x are addi-

tionally required to be integers, a considered problem instance is referred to an Integer

Linear Programming (ILP) instance [Sch86]. In general, an ILP problem instance can be

formulated as follows:

argmin
x∈X

[
n∑

j=1

cjxj ]

n∑

j=1

ai,jxj ≤ bi

j = 1, 2, . . . n, i = 1, 2, . . .m

xj ≥ 0, xj ∈ Z

(6.4)

where xi is an Integer variable of an n-variable vector x in range X; cj is a weight coeffi-

cient, ai,j is a weight coefficient and the formula above is an inequality constraint.

Additionally, equality constraints can be added. For many problems in the field of digital

design and resynthesis, variables are required to be 0 or 1 rather than arbitrary integers.

In this case, a problem instance is referred to as a 0-1 or Binary Linear Programming.

Modern ILP solvers, such as Gurobi [Gur19], support efficient solving of ILP problem in-

stances. They exploit, e.g. branch-and-bound or cutting plane methods. However, finding

an exact solution for an ILP problem instance in the worst-case requires exponential run-

time (NP-hard). If some domain-specific properties of the solution space are known, they

can be formulated as additional constraints in order to reduce the investigated solution

space but still keep the solution accurate. Additionally, a number of heuristic approaches,

such as divide-and-conquer and dynamic programming, can be applied to significantly

speed-up the solving process and still obtain an acceptable solution.

Minimum Cut Problem in a Multi-Commodity Flow

Resolving security violations can be mapped to a cutting problem in a directed graph. A

single commodity (vs − vt) in a directed graph G := (V,E) is a vertex pair, where vs is

a source and vt is a destination. A subset of vertices Vcut is called a (vs − vt) cut, if its
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removal from the vertex set V would remove the connectivity from the source vs to the

destination vt in the resulting graph.

If k commodities (vsk − vtk) coexist in a graph G, a cut in a multicommodity flow graph

can be defined as a vertex subset Vcut, such that for all the commodities (vsk − vtk) the

connectivity would be precluded [FF58, HHS07].

Problem Formulation

The problem of automated RSN resynthesis is formulated as a minimum cut problem in a

multicommodity flow and is solved by means of Integer Linear Programming. Since this

problem is NP-complete [HHS07], an efficient and precise divide-and-conquer heuristic is

applied.

The presented algorithm includes the following steps:

• The list of security violation warnings is processed, and each violation violx(vj , vk)

is mapped to a single commodity. Mapping to a single commodity is possible, since

each violation represents the existence of connectivity between the corresponding

vertices, possibly through multiple paths.

• An initial vertex cut V RSN
cut ⊂ V RSN , which would remove the connectivities for

all the violations is computed. For each intermediate vertex vm of the RSN graph,

which belongs to at least one violating functional path between the source vj and

the destination vk, we decide whether (Fig. 6.3):

1. vm belongs to the cut itself, or

2. all the paths between vj and vm have to be cut, or

3. all the paths between vm and vk have to be cut.

In Fig. 6.3, a single intermediate vertex vm is removed to cut all the paths between

vj to vk.

• The solution is adjusted recursively to identify a possibly small vertex cut. The

experimental results show that the presented heuristic resolves a large number of

violations by applying just a few structural changes and is scalable for large RSNs.
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Figure 6.3: Node cutting options

• From the connectivity perspective, the removal of a vertex is equivalent to the re-

moval of all its outgoing edges. To preserve all the vertices, which correspond to the

scan segments, all the outgoing edges of the vertices in the cut are removed from

the graph instead of removing the vertices themselves.

• The accessibility of the scan segments, and thereby of the corresponding instru-

ments, can be affected after removing the violating connectivities in the RSN graph.

The accessibility of such a scan segment is ensured by the method described below.

Base Step

Each violation viol(vj , vk) is modeled as an edge between the source vertex vj and the

destination vertex vk. The intermediate vertices between the source and the destination

are not considered at this step. Such RSN representation is referred as the Level-0 graph, as

shown in Fig. 6.4.a for the RSN from Fig. 6.1, where the set V S contains all the violations’

sources, and the set V T contains all the destinations. These sets are not forced to be

disjoint, and a source of one violation can serve as a destination of another violation. To

resolve the violations, the paths between the sources and the destinations are cut, and the

following steps determine where.

Recursive Step At each further step with an index n, an optimized intermediate set

OINTn is constructed. It contains a small number of vertices, such that for violating

path, there exist at least one vertex vl whose removal would cut this path.

We further say that vl covers this path. The intermediate vertex set OINTn is placed in

the graph between the sources V S and the destinations V T of the considered violations.

This more accurate RSN representation is referred as the Level-n graph GRSN
n , as shown in

Fig. 6.4.b for the RSN from Fig. 2.1, and is used to adjust the accuracy of the solution.
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To compute the set OINTn, first the optimized sets of the intermediate vertices OINTn,x

are built for each specific violation violx(vj , vk). Each set includes a small number of

vertices, whose removal would cut all the functional paths, which cause this violation. An

empty set of covered vertices COVn,x is initialized to keep track on the covered paths.

For each Level-n graph, an unoptimized intermediate set INTn includes all the vertices be-

longing to the violating paths. Since the size of the optimized set only affects the runtime

performance of the resynthesis, an efficient heuristic is proposed to reduce its size:

• Firstly, a global weight weightG(vl, G
RSN
n ) is defined for each vertex vl ∈ INTn in

the Level-n graph. It shows, how often is the given vertex vl reachable from any of

the violation sources V S, and thereby considers all the violations simultaneously.

• Secondly, for each vertex vl ∈ INTn a local weight weightL(vl, violx(vj , vk)) is cal-

culated with respect to the violation violx(vj , vk). All such vertices vm are identified,

which belong to at least one sensitizable functional path between the source vj and

the destination vk. Out of these vertices, such vertices are selected that a connectiv-

ity between vl and vm exists. Their quantity is normalized with respect to the total

number of vertices, which belong to any path between vj and vk. The resulting local

weight defines how many functional paths between vj and vk are covered with the

given vertex.

• Thirdly, a "memory"-function mem(vl, G
RSN
n ) defines how often a certain vertex has

been already included into the optimized set of intermediate vertices for the previ-

ously processed violations.

• Lastly, a cost function, which depends both on the global and the local weight as

well on the value of the memory function, is computed:

cost(vl, G
RSN
n ) := Φ[weightG(vl, G

RSN
n ),

weightL(vl, violx(vj , vk)),

mem(vl, G
RSN
n )]

(6.5)

A vertex with the highest value of a cost function is selected and is added into an optimized

set OINTn,x of a considered violation and into the set of covered vertices COVn,x.
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All the functional successors and predecessors of this vertex are also added into the set

of covered vertices COVn,x. The value of the "memory"-function is incremented for the

selected vertex, while the global and local weights do not need to be recomputed. De-

pending on the new value of the cost function, the next vertex is selected and the sets of

intermediate and covered vertices are updated. The procedure is repeated, until all the

intermediate vertices for a violation are covered.

The same procedure is performed for all the violations, in a way that the decision for each

further violation considers the previous decisions for the already processed violations.

The resulting optimized set of intermediate vertices OINTn is built as a union of the

computed sets for single violations:

OINTn :=

#violations⋃

x=1

OINTn,x (6.6)

For each vertex vl from the set OINTn, which belongs to at least one violating path be-

tween the vertices vj and vk, it is decided whether the paths from vj to vl, or the paths

from vl to vk are cut, or the vertex itself is removed.

The minimized set of connectivities, whose removal would resolve all the violations for

the current graph representation GRSN
n , is selected by solving a minimum cut problem in a

multicommodity flow on a smaller graph by means of Integer Linear Programming (ILP).

Final Steps and Termination

Assume that at the recursive step n, the functional paths (path1, ..pathm) are cut. Then, at

the next step, it is decided, where exactly these paths must be cut. The solution accuracy

is improved incrementally at each recursive step and the lengths of the violating paths are

gradually decreasing. The number of recursive steps depends on the graph size, and on

the maximum distance between the source and the destination of a violation.

At the recursive step n + 1, the first vertices of the paths, which have been cut in the

previous step, are considered as the violations sources, whereas the last vertices in the

paths - as the destinations of the violations. A minimized number of the intermediate

vertices are added between the sources and the destinations. As a result, the graph GRSN
n+1

is constructed, and the minimum cut flow problem is solved again. The computation

converges when the exact vertices of the high-granular graph GRSN are in the cut Vcut.
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As mentioned before, instead of removing the vertices, all the outgoing edges of the ver-

tices of the cut Vcut are removed from the RSN graph. The secure RSN graph is built,

where some edges are removed to resolve all the violations.

Example: Fig. 6.4 describes the required steps for the RSN in Fig 2.1 to cut all the violating

connectivities.
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Figure 6.4: Graph construction

a) Level-0 graph: The vertices s1, s2, and s3 serve as sources of violations, while s3, s4 serve

as destinations. Auxiliary vertices SI and SO serve as a global source and destination. s3

serves as a source of one violation and as a destination of another violations.

b) Level-1 graph construction: The vertex cs2 has the highest value of a cost function and

covers all the violating paths from s1 to s3. After cs2 is added into the optimized set, the value

of sel(cs2) function is incremented. The same vertex cs2 is automatically selected to cover the

paths from s2 to s3. The remaining violation from the vertex s3 to the vertex s4 is resolved by

removing the edge inbetween.

c) Level-2 graph is constructed: The paths removed in the previous step (b) are considered as

violations. To cover the violation between the vertices cs2 and s3, the vertex f2 is selected. The

edge between the vertices cs2 and f2 is removed to resolve the remaining violations (s1 to s3

and s2 to s4). The computation converges since the solution cannot be further adjusted.
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As shown in Fig. 6.5 for the RSN from Fig. 2.1, the edges from s3 to s4, and from m1 to cs2

are removed from the graph to resolve the violations.
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Figure 6.5: Secure RSN graph

Reintroducing the Accesibility

To eliminate the violating connectivities, some edges are removed from the RSN graph.

Therefore, some scan segments as well as the corresponding instruments may become

inaccessible.

The accessibility of the scan segments is re-installed in an automated way and a minimized

number of novel connectivities is added sequentially into the RSN graph. The number of

added edges is at most 2 ∗m, where m is the number of previously removed edges. The

connectivities, which are added into the RSN graph, must fulfill the following conditions:

• Each newly introduced connectivity is compliant with the security properties of the

design-under-test.

• After augmenting the RSN graph with additional edges, the accessibility of all the

scan segments, is guaranteed through at least one sensitizable active scan path.

The existence of a sensitizable path path(SI, v) from a primary scan-input to a given

vertex v is further referred to as backward accessibility, whereas the existence of a path

path(v, SO) from a vertex v to a primary scan-output is called forward accessibility. If the

vertex is forward and backward accessible, and if the activation conditions of the subpaths

path(SI, v) and path(v, SO) are not contradicting, then a path from a scan-in through a

given vertex to a scan-out exists, and the vertex is accessible.
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To ensure the accessibility, first, the forward accessibility of the vertices is ensured, as

summarized in Algorithm 6.1. To verify the existence of a path from a given vertex to

the primary SO, the vertices are traversed in a reversed Breadth-First-Search (BFS)-order,

which starts from the primary scan-in port (Lines 1-2).

Algorithm 6.1: Ensuring the forward accessibility

1 V ertexOrder := Reverse(Order(V RSN , BFS, SI));
2 for vj ∈ V ertexOrder do
3 if fs(vj , G

RSN ) = ∅ then
4 Find allowed functional successors;
5 Select successor based on optimizationcriteria;
6 Update the reachability properties;
7 end
8 end

• Line 4: The candidate vertices vk are identified, which can serve as possible succes-

sors of the vertex vj . Adding a connectivity from the given vertex vj to vk must be

compliant with the security properties of the design, and a functional path from vk

to the primary scan-out should exist. Here, not only a direct edge between vj and vk

must be considered, but also the connectivities induced by any combinations of the

functional predecessors of vj and the successors of vk in the combined system graph.

The candidate successors must be also compliant with the explicit security specifi-

cation. If the connectivity between the vertices vj and vk introduces an explicitly

prohibited connectivity into the design, the vertex vk is not selected. The candidates

set is guaranteed to be non-empty since it always includes the scan-out port.

• Line 5: The actual successor vk is selected out of the candidates. The choice depends

on the optimization criteria, such as the access latency or the hardware overhead,

which is specified by a DfT integrator.

• Line 6: An edge is added between vj and the selected successor vk. The reachability

of vj and vk, as well as the reachability of all the functional predecessors of vj and

the functional successors of vk is adjusted to reflect the novel connectivity.

The process (Lines 4 - 6) is repeated to ensure the forward accessibility of all the affected

vertices, and thereby the accessibility of the corresponding instruments.
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The same idea is applied to guarantee the backward accessibility. The accessiblity of

the segments with respect to the valid assignments to the control lines is verified as in

[BKW15b].

Example: An example for an accessible RSN graph is shown in Fig. 6.6 for the RSN from

Fig.2.1.The edges from s3 to m2, from f2 to m2, from f0 and m1 to mSIB are added to ensure

the accessibility while preserving the security compliance.
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Figure 6.6: Accessible RSN graph

Compliance Validation

After applying the previously described heuristic, the existing violating connectivities are

removed but some novel connectivities are added into the RSN to ensure accessibility.

These additional connectivities may cause novel violations in the system. Iterative valida-

tion is used to guarantee that all the violations are resolved, as shown in Fig. 6.2 with a

big red arrow on the left. After applying the resynthesis, the security properties of the re-

sulting RSN are validated once again by using the security compliance analysis, described

in Section 6.1:

• If the connectivities in the resulting RSN do not extend the allowed connectivity

between the instruments of the original system, then the security-preserving RSN

structure is already obtained, and this RSN is used to access the test instruments.

• If some violations are still present in the RSN, the heuristic is repeated again until a

secure RSN implementation is synthesized.
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The presented scheme guarantees to converge to a security-preserving RSN. In the worst

case, each instrument is accessed via a scan segment, which is located on the individual

branch of a scan multiplexer. In the experiments we show that the algorithm terminates

much faster, and in most cases, a security compliant RSN is synthesized after the first

iteration of SCAR.

6.2.2 Hybrid Protection Method for Multiple Users

Access or observation through specific functional or non-functional channels can be re-

stricted. The security preserving integration scheme presented above ensures that the

integrated RSN does not extend the allowed connectivity of the original system for the

case, when the security specification is static and all users have unified access rights.

However, to support Silicon Lifecycle Management, the access rights can be specified for

various user groups, starting from the normal users, upto the manufacturer and the test

engineers. E.g., some confidential data must only be accessible to the customer. Access to

some diagnostic instruments must only be eligible for the test engineers.

The access specification for multiple users can be specified as follows. For a user uj a

subset of primitives G(uj) ⊂ P can be specified, such that uj must not access ∀pk ∈ G(uj).

The subset A(uj) ⊂ P defines all primitives, which must remain accessible for uj .

Security violations for multiple user groups are formulated as follows.

Definition 6.4 (User-specific security compliance violation). A user-specific security compli-

ance violation violu(pj , pk) is a connectivity from the source pj to the destination pk, which

extends the functional connectivity of the system or violates the explicit specification for

at least one user.

Definition 6.5 (Authorization violation). An authorization violation violu(p) is an unful-

filled requirement to restrict an access to a p ∈ G(u) for u.

If multiple users with different user rights are specified in an RSN, the integration scheme

must consider it. The security compliance violations must be resolved for all the users.

∑

u∈Users

∑

pj∈P

∑

pk∈P
violu(pj , pk) = 0 (6.7)
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where violu(pj) is an unwanted extra-connectivity for user u.

It must be guaranteed that only eligible users access the instruments:

∑

u∈Users

∑

p∈P
violu(p) = 0 (6.8)

where violu(p) equals to 1 if a user u is not eligible to access a scan primitive p.

Although the resynthesis method presented above efficiently resolves security compliance

violations for a single user, it cannot be used to apply user-specific restrictions for access-

ing the instruments. As the existing methods cannot be readily applied to solve this prob-

lem, as detailed below, an enhanced protection method, which has been first published in

[LAW21] is presented in the current section.

Limitations of the Existing Protection Methods for Multiple User Groups

This section discusses why the existing schemes, including the one presented in the first

part of the chapter, cannot be used to ensure protection for multiple users with diversified

access rights. It also explains how the hybrid protection scheme presented below combines

the benefits of the existing methods and provides a remedy over their limitations.

Filter-based protection

The sequence filter, as presented in [AKS+18], is a flexible way to resolve the violations

online. It is constructed based on the RSN structural description and its specification, and

is put between the TAP controller and the RSN, as shown in Fig. 6.7.
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Figure 6.7: Details of the filter-based protection
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The Violations are obtained as a list from the security compliance analysis, considering

the explicit and implicit specifications, and stored as conditions into a logic block "Viola-

tions". A Configuration Array stores the RSN configuration. A Finite State Machine (FSM)

captures the configuration bits from the input stream at the SI port and allows to keep the

configuration array for the current specification updated. It allows to consider complex

access requirements for multiple user groups. The filter-based protection does not require

any modifications of the RSN structure, even if the security specification changes, e.g. if

the trustworthiness of a third-party IP or the information confidentiality have changed.

Filters of access patterns can allow just a static set of precomputed accesses, as in

[BKW14], or provide access protection for complex access scenarios, as in [AKS+18].

Benefits of the filter-based approach are:

• Minimal hardware overhead nearly independent of the RSN complexity.

• Compliant with extensions of the RSN standards like the P1687.1 proposal

[CVTR20] which defines access to RSNs through alternate interfaces.

• It is flexible and can be adopted for changing security requirements.

• Together with a standard authorization scheme, it can handle different access rights

for different user groups.

A severe drawback of the filter approach is the fact that there may exist security violations

which cannot be resolved without unwanted side-effects. Fig. 6.8 shows an example,

where any filter approach would sacrifice the accessibility of other instruments as well.

Example: Consider the RSN example from Fig. 2.1. Its graph is given in Fig. 2.7. The violat-

ing connectivities from the vertex s1 to s3; from s2 to s4 and from s3 to s4 are identified by

the security compliance analysis algorithm, as shown in Chapter 6.1. An access specification

is formulated as follows:

• An access to a safety-critical instrument i3 is required for all user groups.

• An access to i4 is allowed for test engineers, but is restricted for regular users.

The existing methods fail to integrate an RSN in a security-preserving way, such that the

access specification above is satisfied. First, the filter-based protection is considered.
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If access to the safety-critical instrument i3 is required for all user groups, but the instrument

i4 should not be accessible for regular users, using the filter, as shown in Fig. 6.8 is not

an option: it makes s3, s4 and thereby i3, i4 inaccessible through the RSN. All the paths

traversing s3 also traverse s4, and restricting an access to one of them implies a restriction

for the second one.
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Figure 6.8: Limitations of filter-based schemes for the RSN from Fig. 2.1. Limiting the
accessability to the instrument i4 restricts the access to the instrument i3.

Resynthesis of the RSN Structure

Structural resynthesis, as presented in Section 6.2.1, can resolve all security violations,

but it comes with certain drawbacks as well:

• In some cases, relatively high hardware costs are incurred even when applying so-

phisticated synthesis procedures as in [LAWW20].

• If security requirements are changing, a complete resynthesis is necessary.

• User group specific access rights cannot be given.

Example: Consider the same example, as discussed for the filter-based protection, but

now for the structural resynthesis method. Resynthesis, as shown in Fig. 6.9, resolves this

violation, preserving the accessibility, but does not consider various access permissions. If

an access to i4 is restricted for regular users, but not for test engineers, the RSN must be

resynthesized again, implying even more HW costs.
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Figure 6.9: Limitations of resynthesis for the RSN from Fig. 2.1. Blocking the accessibility
of the instrument i4 only for certain user groups is not possible.

Hybrid Protection Scheme as a Remedy

While structural resynthesis can resolve all conflicts, it lacks flexibility. On the other hand,

filters may sacrifice the required accessibility. The approach presented below avoids the

drawbacks, its main contributions are:

• Efficient analysis: A filter applicability analysis is presented to identify a minimized

subset of violations, which cannot be handled using filters, while preserving the

accessibility of the instruments through the RSN.

• Minimized hardware overhead: The structural changes are applied to resolve only

this small subset and to ensure that any further violation is resolvable using a filter.

• Flexible access: Most of the violations are resolved online by using a flexible filter,

to ensure access to RSNs for various user groups with different access permissions.

• Preserved accessibility: All the required instruments remain accessible through the

RSN for all user groups.

Example: Let the same example and the same access specification be handled by the hybrid

protection scheme, which is presented in the current section. A Hybrid Scheme, as shown in

Fig. 6.10, considers various access permissions and the required accessibility is preserved. The

RSN structure is slightly modified compared to the original RSN from Fig. 2.1, in order to

make s3 and s4 accessible individually and thereby to ensure the instruments’ accessibility.

The remaining violations are resolved by the filter.
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Figure 6.10: Hybrid Protection scheme as a remedy. For the RSN from Fig. 2.1 the access
specification is fulfilled for multiple user groups.

Filter Compliance of an RSN

The majority of violations can be resolved by using a sequence filter but some scan seg-

ments may become inaccessible through the RSN despite a requirement in the specifi-

cation, as already shown in Fig. 6.8. This section presents the first Filter Applicability

Analysis, which identifies a maximized set of violations to be resolved by using a sequence

filter without affecting the accessibility of other segments. For each vertex vj , an Essential

Select Condition ESC(vj , sig1, ..sign) defines the assignment to the control signal values

(sig1, ..sign), required to put this vertex into an activated path, and is represented in a

conjunctive normal form (CNF). The essential condition is computed iteratively, starting

from the scan-out SO, and considers the control signals required to select the appropriate

branches of multiplexers and to trigger the select-signals.

Security Compliance Violation

A security compliance violation violu(vj , vk) is called resolvable by a filter, if for each of the

vertices vj , vk there exists at least one configurable path, which includes this vertex. The

applicability of a filter to resolve such a violation can be checked by the following flow:

1. Compute the essential conditions ESC(vj , sig1, ..sign), ESC(vk, sig1, ..sign) and en-

sure that each of the vertices vj , vk is accessible through at least one active path.

2. Verify if data from vj can be transmitted to vk using a single scan configuration. A

SAT instance is formed to find at least one assignment for the control signal values

sig1, ...sign, which put both vertices into a path simultaneously:
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∃sig1, .., sign : ESC(vj , sig1, ..sign)&ESC(vk, sig1, ..sign)

:= True
(6.9)

3. Verify if two paths can be configured, such that the first one is used to access vj only,

but should not traverse vk.

∃sig1, .., sign : ESC(vj , sig1, ..sign)&ESC(vk, sig1, ..sign)

:= True
(6.10)

The second activated path is used to access vk only.

4. If both paths can be configured, the violation is resolvable by a filter, otherwise it

must be resolved structurally.

If it is not possible to assign control values such that Eq.6.9 is satisfied but vj and vk are

functionally connected, the data transfer between these vertices requires retargeting by

using more than one scan configuration. Hence, there are two paths, such that the first

one traverses only vj but not vk, and the second path traverses vk. This means that the

violation is resolvable by a filter and a step 3 can be skipped. The same idea is used to

verify, if the groups of the vertices Gj(ui), Gk(ui) are accessible individually.

Authorization Violation

An authorization violation violu(vk) is called resolvable by a filter, if after applying a filter,

for all the users ul and for all the required vertices vjm ∈ A(ul), there exist at least one

activated path, which does not traverse the restricted vertex vk ∈ G(ul), but traverses

the required vertices vjm ∈ A(ul). The applicability of a filter for a violation violu(vk) is

verified using the same logic with vk as a source and all svjm as destinations.

For each vertex ∀vjm ∈ A(ul), which must remain accessible, an assignment for the control

signals sig1m, ...signm is searched, which includes vjm into a path but does not include any

of the restricted vertices vk ∈ G(ui). If all such assignments are found, the authorization

specification can be fulfilled by a filter without causing any authorization violation.
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Example:

∃sig1m, ..signm :f(vjn, sig1m, ..signm)&

[∩|G(ui)|
k=1 (ESC(vk, sig1m, ..signm))] := True

(6.11)

Access restriction to cs1 for ul (in Fig. 2.1), makes all the scan segments inaccessible through

the RSN. If access to s1 is required for ul, the violation is unresolvable by using a filter.

Filter Compliance of an RSN

Definition 6.6 (Filter-compliant RSN). An RSN is called filter-compliant, if all of the secu-

rity compliance violations as well as all of the authorization violations are resolvable using

a sequence filter without blocking the access to other segments.

The Filter Applicability Analysis is applied to all the violations sequentially in order to

verify, whether a given RSN is filter-compliant. If the RSN is filter-compliant, the informa-

tion about the violations can be further used to guide the filter generation. In the other

case, the violating connectivities, which are unresolvable using a filter, can be resolved

structurally by using resynthesis.

6.2.3 General Protection Flow

The hybrid protection scheme (Fig. 6.11) consists of two steps:

1. Prepare the RSN: an initial RSN is transformed into a filter-compliant RSN (FC-RSN

in Fig. 6.11) using a minimized number of changes.

2. Generate the Filter: a sequence filter is generated for the filter-compliant RSN ac-

cording to [AKS+18] to resolve the remaining violations.

A secure RSN implementation, which preserves the specified accessibility of the segments,

consists of a filter-compliant RSN and the generated sequence filter. This implementa-

tion combines the flexibility and online usability of the filter with the generality of the

resynthesis, and allows to resolve any security compliance violation. The remainder of the

section provides details on the individual steps.
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Figure 6.11: General flow of the hybrid protection scheme

Prepare the RSN

Following steps are required to resynthesize the RSN:

1. Security Compliance Analysis (SCA in Fig. 6.11): The reachability properties of

the initial system and the RSN are computed and the security compliance of the RSN

with the system is verified. If the RSN is not compliant, the list of authorization and

security compliance violations is generated.

2. Filter Applicability Analysis (FAA in Fig. 6.11): The list of the violations is ana-

lyzed using the Filter Applicability Analysis presented in Section 6.2.2, and the vio-

lations are divided into two subsets. The first subset includes the violations, which

can only be resolved by applying the structural changes, the second subset - the

violations resolvable by using a sequence filter.

3. Resynthesis: The resynthesis approach, as presented in Section 6.2.1, is adjusted

to obtain a filter-compliant RSN with a minimized number of changes and is only

applied to the subset of violations, which are unresolvable by a filter.

136



6.2 Synthesis of Security Compliant RSNs

• A minimized number of edges is removed from GRSN to cut the violating con-

nectivities, which cannot be resolved using filters.

• The accessibility of the affected vertices is reintroduced sequentially.

• For each vertex vj , which does not have successors, a prioritized list of new

possible successors PS(vj) is formed. PS(vj) contains all such vertices vk that

a newly introduced connectivity between vj and vk would be resolvable by a

filter, even if the specification changes.

• The highest priority is given to such resolvable connectivities, which do not

cause a security compliance violation in the current security specification.

• If multiple vertices in PS(vj) have the highest priority, additional optimization

criteria can be specified by a test engineer, e.g. a minimized access latency of

safety-critical instruments or hardware overhead. For any vertex vj , PS(vj) is

not empty, since it includes the auxiliary Scan-Out vertex.

• The same idea is applied to reintroduce the accessibility of the vertices with no

predecessors.

Validate the Filter Applicability

The RSN generated in step 1 is analyzed again to check, whether all the violations are

already resolved and to generate the updated list of violations otherwise. The updated list

is analyzed for the filter applicability and the subsets of violations are recomputed, since

the structural changes can affect the filter applicability. The RSN is modified, until all the

violations from the list are resolvable by the filter. This incurs minor number of structural

changes, and offers flexibility for the future, if the specification will change.

The presented scheme is guaranteed to converge to a filter-compliant RSN and the re-

maining violations are resolved using a filter. In the worst case, a parallel RSN structure,

where all the instruments are accessed using the scan segments, located in the different

branches of a scan multiplexer, is obtained.
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Generate and Apply the Sequence Filter

The list of violations, which have not been structurally resolved, and the modified filter-

compliant RSN are used for the filter [AKS+18] generation. The filter handles the re-

maining violations and prohibits any violating access. The sequence filter together with a

corresponding filter-compliant RSN, fulfill the security specification without affecting the

accessibility of the required segments for multiple user groups with specific access rights.

Secure user authentication can be accomplished, e.g. as in [PRML20]. The P1687.1

proposal [CVTR20] defines access to RSNs through alternate interfaces. The actual input

signals are transformed using an FSM to keep compliance with the IEEE Std. 1687. In line

with P1687.1, a TAP, augmented with a filter, represents a novel secure access interface.

6.3 Evaluation

This section evaluates the results of the developed approaches to ensure security-

preserving RSN integration. The main goal of this section is to illustrate the efficiency of

the developed concepts with the experimental data. Therefore, the diagrams in this sec-

tion are presented for a limited but representative subset of benchmarks and mostly use

relative normalized numbers. The detailed experimental data for all benchmarks, includ-

ing the absolute numbers is provided in Appendix B.3. Section 6.3.1 presents the results

for the developed security preserving integration scheme for a single user. In Section 6.3.2

the results for a hybrid protection scheme are provided.

6.3.1 Structural Resynthesis for Single User Protection

Each evaluated system models the connectivities between the instruments through the

system, the connectivities inside an RSN, and the ones crossing the boundary between

the RSN segments and the accessed instruments. The whole graph-based SCAR scheme is

performed in a divide-and-conquer manner. The security compliance analysis is first run

on the smaller sized blocks. Next, the reachability properties of these smaller blocks are

merged to analyze the blocks with a larger size, until the whole RSN is processed. The

identified violations are sorted: for each violation the smallest possible logical block is

identified, such that both the source and the destination of the violation, as well as all the
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paths between them, are located inside this block. This information is used further by the

automated resynthesis: if a certain violation is located inside an isolated block there is

no need to resynthesize the whole graph. The violations are resolved hierarchically, start-

ing from the smallest blocks. The violations between the blocks are handled at a higher

granularity, such that, if possible, only the interconnects between the affected blocks are

resynthesized to cut the violating paths.

Runtime Evaluation

The scalable divide-and-conquer processing made it possible to analyze large and complex

RSN designs within an acceptable time. Fig. 6.12 shows the ratio between the runtime of

the presented graph-based scheme and the previously published matrix-based approach

[LAR+19] for the RSNs from the ITC’2016 benchmark set. As the benchmark size in-

creases, the runtime ratio increases up to 3.5 times. As expected, the memory consump-

tion for processing the graphs is lower compared to the sparse matrix processing.
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Figure 6.12: Runtime decrease compared to the matrix-based computation

For the DATE’19 benchmark set, the runtime improvement ratio for the presented ap-

proach compared to the matrix-based approach from [LAR+19] is much higher. Even

for the smallest benchmark (MBIST_1_5_5) from this set, the runtime is improved by a

factor of larger than 5400x. The runtime and memory consumption of the matrix-based

139



6 Security Compliant RSNs

compliance analysis approach from [LAR+19] increases dramatically, as the size of RSN

matrices rises for larger RSN designs. Moreover, the size and complexity of the ILP equa-

tions required for the resynthesis in the approach from [LAWW20] is significantly larger

in comparison to the ILP equations required in the presented method. Therefore, for all

other benchmarks from the DATE’19 benchmark set, the computation is performed with

the presented improved approach only.

Reachability Evaluation

Explicit security specifications are modeled by a list of instruments pairs, where data prop-

agation is prohibited between the instruments. The instrument pairs are built randomly,

and the fraction of prohibited instrument pairs compared to the total number of instru-

ment pairs varies from 0% to 100% with a step of 10%. For each given fraction of pro-

hibited connectivities, the SCAR is performed to identify the violating hybrid paths. The

number of security compliance violations is normalized against the total number of viola-

tions in a given RSN, and observed as the "fraction of violating connectivities". Fig. 6.13

shows the dependency between the fraction of prohibited connectivities between the sys-

tem instruments and the average fraction of violations in the RSN.
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Figure 6.13: The reachability properties of the system and the RSN
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The minimal and maximal fractions between the benchmarks are also shown in the dia-

gram with a dashed line each. As the fraction of the prohibited connectivities between

the instruments reaches 80 percent, the fraction of such connectivities in the RSN, which

violate the compliance with the initial system, saturates for all the benchmarks.

Security Compliance Analysis and Resynthesis

The flow from Fig. 6.2 is performed to securely integrate an RSN into a given system. To

assess the influence of the control signal assignments on the functional reachability, some

correlation between the control signals has been added, such that 20% of the neighboring

mux pairs are controlled by the same external control signals. Complementary to the

implicit security specification of the connectivities between the instruments, an explicit

security specification is defined by the designer: for 20% randomly selected instrument

pairs, any data transfer is prohibited between the instruments through the RSN.

Fig. 6.14 shows the results of the security compliance analysis for the specification above.

In particular, the relative numbers of structural and functional connectivities are given for

all the benchmarks.
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Figure 6.14: The connectivities through RSNs
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Given the functional connectivities through an RSN considering retargeting, the connec-

tivities between the instruments in the original system and the interconnections between

the scan segments and the instruments, the violating connectivities due to improper RSN

integration are calculated. All the numbers are normalized with respect to the total num-

ber of structural connectivities in a given benchmark. For absolute numbers, refer to

Apppendix B.3.

All the identified violating connectivities have been resolved for all the benchmarks. In

Fig. 6.15, the first bar for each benchmark shows a relative number of structural changes,

which are required to resolve one security compliance violation.
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Figure 6.15: Relative number of changes per violation for the developed schemes

For all the benchmarks, the relative number of changes is significantly less than 1, which

means that one structural change in average is able to resolve multiple violations.

6.3.2 Hybrid Protection Scheme for Multiple Users

Compared to the experimental setup from Section 6.3.1, two additional user groups have

been considered besides the complete access for the manufacturer: one for the system

integrators, and one for maintenance and user. The experiments deal with the general

case of conflicting rights.
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For all the benchmarks, all the violations have been resolved by applying a hybrid protec-

tion scheme. The security specification has been fulfilled. The developed filter applicabil-

ity analysis has been performed to identify those violations which cannot be resolved by

using a filter-based method without sacrificing the accessibility of some instruments via

RSNs. The filter applicability fraction is measured for all the initial benchmarks as shown

in Fig. 6.16.

The filter applicability fraction is a fraction of the number of violations, which are resolv-

able by a filter, #violfilter compared to the total number of violations #viol:

filter applicability fraction =
#violfilter

#viol
(6.12)
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Figure 6.16: Filter applicability fraction of the initial RSNs

The filter applicability fraction shows that only for one benchmark (MBIST 5 20 20), ap-

plying a pure filter-based approach to resolve the violations would not make any required

instrument inaccessible via the RSN. Therefore, to make the RSN filter-compliant, a few

structural changes are still required by the hybrid protection scheme. The relative num-

ber of structural changes is given in the second bar of Fig. 6.15 for each benchmark. For

all the benchmarks, compared to the pure structural solution, less hardware overhead is
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required. Since the majority of violations are resolved by a filter in a hybrid scheme, the

number of required structural changes to the RSN is dramatically decreased. Moreover,

the hybrid approach can specify different access rights for various user groups, which is

not possible by using the structural resynthesis alone.

The scalable processing algorithm made it possible to keep the runtime is less than one

hour even for the largest benchmarks. For most benchmarks, just a few minutes are

required to perform the hybrid protection scheme.

6.4 Summary

To mitigate sensitive data leakage, a system designer may thoroughly develop the con-

nectivities between the components in a security-aware manner. Test infrastructure may

introduce additional unwanted connectivities into the initial system. These connectivities

might be misused by an attacker to leak sensitive data. Even though test infrastructure

poses a security threat, it cannot be disconnected from the system after the manufactur-

ing, since the access to on-chip infrastructure should remain for the whole system lifecycle,

e.g., for monitoring and maintenance.

The high sequential depth and the complex control dependencies of RSNs make their

security-compliant integration extremely difficult. This chapter presents the first complete

approach to integrating RSNs in a security-preserving manner, which is scalable with in-

creasing RSN size and complexity. The developed scheme first analyzes the connectivities

in the original system and after the RSN integration. The functional connectivities inside

the RSN are computed considering the extra-dependencies, which arise due to retarget-

ing. The developed scheme then detects all the unwanted extra-connectivities, which are

introduced into the original system due to improper RSN integration.

Finally, the detected violating connectivities are efficiently resolved using the developed

resynthesis scheme. First, a structural resynthesis scheme is developed, which physically

resolves the violations between the instruments of the original system. Since all the vio-

lations are resolved simultaneously, the number of changes to the original RSN compared

to the state-of-the-art methods is significantly reduced. Divide-and-conquer-based pro-

cessing makes the developed method scalable for large and complex RSN designs. The
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structural resynthesis enables the integration of security-compliant RSNs for the case if all

the user groups have the same access rights and the security specification does not change

throughout the system’s lifetime.

The method above also offers a solid background for an automated hybrid protection

scheme for RSNs. This scheme combines the benefits of the structural resynthesis ap-

proaches with the flexibility of the functional filter-based methods, and overcomes their

limitations. A minimized number of structural changes is applied to RSNs to preserve the

accessibility of the instruments. The remaining violations are flexibly resolved by using

a Finite State Machine-based filter. The resulting protection scheme considers complex

security-preserving access scenarios for multiple user groups with specific permissions.

The scheme does not require additional changes to the RSN structure, even if the security

specification changes while preserving the accessibility of all required instruments through

the RSN.
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Chapter 7

Integration of Dependable RSNs

So far, a precise analysis of specific dependability properties of RSNs has been presented,

followed by efficient methods to enhance these properties for a given RSN. At the same

time, it is almost impossible and meaningless to isolate specific dependability properties

from one another. To address this problem, the current chapter presents a complete flow

to integrate RSNs in a dependable way, which considers such dependability properties as

robustness, testability and security compliance of RSNs altogether.

7.1 Complete Solution for Resynthesis of Dependable RSNs

In Table 7.1, specific dependability properties, which have been discussed so far, are

mapped to the required changes to RSNs.

Table 7.1: Influence of dependability enhancing resynthesis schemes on RSNs

Property Changes to an RSN Ref.

Security Compliance Structural changes to the RSN topology [LAR+19, LAWW20]

Testability Length of single segments [LWW21, LWW22a]
Feedback loops for single segments [UKW17, LWW22a]

Robustness High-yield cells for certain scan primitives [LWW22c]

ROSTI concurrent test Access interface, no structural changes [WLA+21, LWW22a]

Online periodic test New patterns, no structural changes [LWW22b]

Access rights & remaining violations Access interface, no structural changes [LAW21]
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The changes to the RSN topology are shown in yellow, while the changes to the segments’

length are shown in green. The changes to the properties of scan primitives which do not

affect the required access patterns are shown in blue. Finally, those enhancements which

do not require any structural changes are shown in orange.

Example: The running example is repeated in Fig. 7.1 to support better readability of the

document. The security properties of the initial system are provided as connectivities between

the instruments. The violating connectivities from the vertex s1 to s3; from s2 to s4 and from

s3 to s4 are identified by the developed security compliance analysis (see Chapter 6.1). An

access specification is formulated as follows (see Chapter 6):

• An access to a safety-critical instrument i3 is required for all user groups.

• An access to i4 is allowed for test engineers, but is restricted for regular users.

In this chapter, the example is modified step-by-step to obtain a dependable RSN.
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Figure 7.1: Initial RSN

The remainder of this chapter discusses the influence of the presented resynthesis schemes

on the RSN structure. The required changes for each dependability property are analyzed

and a complete solution is provided for the resynthesis of dependable RSNs. The devel-

oped solution avoids any contradictions between the considered dependability properties.

The following steps with regard to the required changes are performed to obtain a de-

pendable RSN.
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7.1.1 Structural Changes to the RSN Topology

A precise security compliance analysis identifies the violating connectivities in the RSN.

All the identified violations are classified with respect to the filter applicability. Those vio-

lations, which cannot be resolved by using a sequence filter, are handled by using a struc-

tural resynthesis scheme. After applying the resynthesis method, the existing violating

connectivities are removed from the RSN. Some novel connectivities may be introduced

into the RSN to ensure the accessibility of all the instruments via the RSN. A security com-

pliance analysis and a filter applicability analysis are applied again to validate if all the

remaining violations can be resolved by a filter. The structural resynthesis is applied until

all the remaining violations are proved to be resolvable by using a filter without loosing

access to the instruments. Here, such optimization criteria as access latency and hardware

overhead of the RSN are considered to enhance the resynthesis procedure even more.

Result: Security-enhancing resynthesis may require changing the functional connectivities

inside the RSN.

Example: A Filter Applicability Analysis shows that only the violating connectivity between

the segments s3 and s4 cannot be resolved by using a sequence filter. In Fig. 7.2, the structural

resynthesis moves the scan segment s4 to a separate branch of the scan multiplexer m2 to

resolve a security compliance violation between the scan segments s3 and s4 (see Chapter 6).
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Figure 7.2: Structural changes to the RSN topology
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7.1.2 Changes to the Segments Lengths

Testability analysis is applied to identify those spots in the RSN, which cannot be tested by

an altered path length. The testability is enhanced with a minimized hardware overhead

such that any fault in the control logic results in the altered active scan path length.

Result: Since only some buffer scan cells are added into the initial RSN, the presented ap-

proach does not affect the functional connectivity and thereby also the security compliance

[LAR+19] of the RSN with the underlying system.

Example: In Fig. 7.3, the lengths of the segments s1 and s3 are slightly increased to ensure

the testability of control lines (see Chapter 5)
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Figure 7.3: Changes to the segments lengths

7.1.3 Changes to the Properties of Scan Primitives

Testability of scan interfaces is enhanced by adding extra feedback loops into a scan seg-

ment. To ensure robust access to the instruments, a small number of scan primitives is

selected based on a precise RSN criticality analysis and is hardened by using high yield

cells. Here, a tradeoff between the remaining damage to the system in presence of the

RSN defects and the cost of hardening is considered.

Result: Each robust scan primitive with a testable scan interface can be represented as a black

box, which has the same interfaces and the same timing, compared to the initial primitive. A

top-level RSN structure is not affected by the changes of specific scan primitives. If the initial
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7 Integration of Dependable RSNs

RSN is security compliant [LAWW20] and testable with respect to faults in the control logic

[LWW21], the performed changes do not destroy these properties.

Example: In Fig. 7.4, the control scan primitives in yellow are hardened to preserve a reliable

access to a safety-critical instrument i3 (see Chapter 4). The interfaces to the instruments are

enhanced by injecting feedback lines (see Chapter 5).
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Figure 7.4: Changes to the properties of scan primitives

7.1.4 Dependable Access Interface

A security filter is integrated as a separate hardware block to resolve the remaining vio-

lations, which are identified by the security compliance analysis. Thanks to an accurate

filter applicability analysis, it is ensured that the filter-based protection does not affect the

authorized accessibility of the instruments. Using a security filter allows decreasing the

hardware overhead of a security preserving RSN resynthesis significantly compared to a

purely structural solution.

The introduced self-test scheme ROSTI tests the scan segments on the currently activated

scan path prior to any access pattern. Applying the ROSTI-scheme reduces the test access

time and does not require any changes to the RSN itself.

The solutions above can be combined into a dependable access interface for RSNs, which

uses a conventional CSU-protocol and is placed directly at the primary scan-input of the

underlying RSN. Such an interface is compliant with extensions of the RSN standards like

the P1687.1 proposal [CVTR20] which defines access to RSNs through alternate inter-

faces.
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7.1 Complete Solution for Resynthesis of Dependable RSNs

An online periodic test avoids fault accumulation in rarely used scan primitives. The

generated access patterns cover all the primitives with a minimized test cost. They can be

stored on-chip and provided to the RSN via the dependable access interface above. The

developed test method can be used throughout the RSN lifetime. The workload patterns

can be efficiently generated by the existing test sequence generation methods [UKW17,

KBSW16, CDRS20, CSSS18, HHD20].

Result: The presented schemes do not affect the connectivities inside the RSN, the lengths of

the paths or the properties of single scan primitives.

Example: In Fig. 7.5, the RSN is augmented with a dependable access mechanism, which

includes both the secure filter and the ROSTI-self-test (see Chapter 6 and Chapter 5). Online

periodic test patterns are uploaded into the chip.
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Figure 7.5: Dependable RSN

7.1.5 Compatibility of the Applied Changes

Assume that the changes to the RSN design and operation are applied in the order de-

scribed in this chapter. In this case, each further change does not destroy the properties,

which have been enhanced at the previous steps. Thereby, a complete methodology for in-

tegration of dependable RSNs is presented. It does not sacrify any dependability properties

in order to enhance some other dependability aspects. By integrating a dependable RSN,

many important optimization criteria, such as access latency, hardware overhead, robust-
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ness of an access, have been considered on different steps of the dependability-enhancing

resynthesis scheme.

7.2 Summary

A complete integration methodology for dependable RSNs is presented. It combines pre-

cise analysis methods for individual dependability properties with efficient dependability-

enhancing resynthesis of RSNs. Important dependability aspects are considered, such as

robustness, testability, and security compliance of RSNs. The resulting RSNs support de-

pendability management throughout the system lifecycle. In the presented solution, a

common contradiction between the testability of the design with its security compliance

is resolved for the case of Reconfigurable Scan Networks. Different levels of changes to

the RSN structure are efficiently exploited to fully mitigate any conflicts between the de-

pendability properties of RSNs. The presented scheme is extendable to other properties of

RSNs, which are important for a DfT integrator.
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Chapter 8

Conclusions

8.1 General Conclusions

The design of dependable systems requires considering such dependability properties as

security, reliability, and functional safety. Throughout the whole system’s lifetime, the

dependable operation of the system is supported by a high number of test and access

insertions. These insertions perform post-silicon validation, manufacturing test and diag-

nosis, and in-field dependability management. The data for these insertions is collected

by a vast amount of functional and non-functional instruments, which range from sen-

sors and monitors, and BIST registers to runtime-adaptive instruments, such as Adaptive

Voltage and Frequency Scaling and Adaptive Body Bias blocks.

Reconfigurable Scan Networks provide efficient and flexible access to the instruments.

They support the dependability management throughout the system lifetime. RSNs are

used to collect the evaluation results from the instruments and control their operation

offline and in the field. Moreover, RSNs may guide the operation of fault-handling mech-

anisms in the case of performance degradation of specific modules, perform online health

monitoring, and even be used to detect security attacks.

At the same time, if an RSN is integrated improperly, system dependability might be com-

promised. Even a single fault in an RSN might make certain parts of the RSN inaccessible,

and, as a result, affect the accessibility of the instruments via the faulty RSN. If such a

fault remains undetected by the existing test methods, data from a wrong instrument can

be erroneously captured and silent data corruption may happen. Alternatively, control
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patterns for a runtime adaptive instrument might reach the wrong instrument and lead

to an erroneous configuration of the system. Moreover, an unwanted extra-connectivity,

which is introduced into the system due to improper RSN integration, might serve as a

side-channel for an attacker to gain unauthorized access to system internals, which might

include disabling such safety-critical components of the system as automotive breaks or

leak sensitive data. Any of the dependability threats mentioned above might lead to a

system failure or even result in permanent damage to the system.

In this document, an automated approach is presented to synthesize RSNs, such that

the dependability threats due to improper RSN integration are mitigated. The integra-

tion scheme is based on a precise dependability analysis and an efficient dependability-

enhancing resynthesis of RSNs. The resulting RSNs can be applied to support the system

dependability management throughout the whole system lifecycle.

• Robust access to the dependability instruments via RSNs even in the presence of de-

fects in RSNs is ensured by applying an efficient selective hardening scheme. The

developed scheme is based on the precise criticality analysis of the RSN components.

• Even if the most critical primitives are hardened, the probability of a fault in an

RSN cannot be neglected. The existing test methods do not guarantee complete

coverage. To overcome this challenge, a complete design-for-test scheme presented

in this document ensures fault detection in RSNs. Here, testability analysis is ap-

plied to accurately identify such faults which remain undetectable by the existing

test methods. The testability of such faults is improved. Thereby, faults which might

corrupt the correct activation of scan paths through the RSNs, communication with

the instruments, as well as the integrity of the activated scan paths, are detectable.

Additionally, a method for an online periodic test of RSNs is developed. It allows for

mitigating fault accumulation in rarely used components and is applied complemen-

tary to the developed DfT scheme and the existing test generation methods.

• Finally, unwanted extra connectivities, which arise due to an improper RSN integra-

tion, are identified by the presented security compliance analysis scheme and miti-

gated by a cost-efficient resynthesis scheme. Different access rights for user groups,

which might be necessary throughout the system lifecycle, are ensured by applying a

156



8.2 Ongoing and Future Work

hybrid protection scheme, which combines pure structural resynthesis with dynamic

security properties.

Dependability properties mentioned above are enhanced. The interdependencies between

specific dependability properties are carefully analyzed. As a result, the testability, security

compliance, and robustness of the resulting RSNs are not contradicting.

Experimental results have shown that the developed approach is highly scalable with the

increasing size and complexity of RSNs. Efficient modeling of RSNs makes it possible to

overcome the challenges which arise due to the high sequential depth of RSNs and their

complex control dependencies. Divide-and-conquer-based methods split complex deci-

sion and optimization problems of RSN analysis and resynthesis into simplier problem

instances. The analysis and resynthesis problems are solved within an acceptable run-

time even for the largest RSNs. The resulting RSNs are efficient in terms of latency and

hardware overhead. By applying multi-objective optimization algorithms close-to Pareto-

optimal solutions are obtained considering multiple contradicting optimization criteria.

8.2 Ongoing and Future Work

An automated approach to integrating dependable RSNs provides a solid background

for further investigation and enhancement of different dependability properties of RSNs

throughout the lifetime:

• The methods to provide robust access to the instruments can be extended to provide

fault-tolerant access via RSNs for the case of multiple faults. By exploiting hardware

redundancies, it can be ensured that the maximized number of instruments remain

accessible via faulty RSNs by applying one or multiple access patterns.

• The methods to ensure the security compliance of a given RSN with the underlying

system can be applied in the domain of functional safety. Unsafe operations, which

could result e.g. in an unexpected change from a functional mode to a test mode, or

in the deactivation of safety-critical components as breaks, will be identified and an

RSN will be resynthesized efficiently to mitigate such safety threats.
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• Due to the enhanced testability of RSNs for the faults in the control logic and the

scan interfaces, enhanced RSN test and diagnosis methods can be developed. The

presented online test method can be used as a basis for an online diagnosis method.

To assess the quality of the provided test and diagnostic solutions and to validate the

timing properties of the resulting RSNs throughout the lifetime, an efficient simulation

platform is required. The platform should consider a realistic variation-aware model of

a scan cell to identify possible timing violations, such as setup- and hold-time violations,

and can be further used to support the dependability-enhancing RSN resynthesis in a way

that a sweet spot between the frequency of an RSN and its influence on the integrity of

the data in the underlying system is considered.
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Chapter A

Experimental Setup

This section briefly discusses the experimental setup for all the experiments. All the exper-

iments have been conducted on an Intel(R) Xeon(R) W-2125 CPU at 4.00GHz with 132

GB of main memory. The investigated benchmarks are presented in Section A.1. The in-

formation about the electronic design automation and other tools, which have been used

to enable dependability-aware RSN integration, is presented in Section A.2.

A.1 Benchmarks

A.1.1 RSN Benchmarks

The RSN benchmarks have been taken from the commonly recognized ITC’2016

[TJD+16], DATE’2019 [RTB+19] and ITC’2002-based [BKW15b] benchmark sets. For the

considered benchmarks the number of scan multiplexers (Column 2), SIBs (Column 3),

scan segments (Column 4), scan cells (Column 5) and the highest hierarchy level (Column

6) are given in Table A.1.

A.1.2 Connectivities between the Instruments

The ISCAS’89 benchmarks [BBK89] represent the connectivities between the embedded

instruments in the underlying system, which are accessed via RSNs. These are not all the

connectivities in the system. These benchmarks have been used instead of pseudo-random

connectivities between the instruments to avoid possible bias in the results.
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Table A.1: Characteristics of benchmarks

(1)Design (2) #muxes (3) #sibs (4) #segs (5) #cells (6) #lvl
ITC’16 Benchmarks
BasicSCB 10 - 21 176 4
Mingle 13 10 22 270 3
TreeFlat 24 12 24 101 2
TreeUnbalanced 28 28 63 41,887 11
TreeBalanced 46 43 90 5,581 7
TreeFlat_Ex 60 57 123 5,194 5
q12710 25 25 47 26,183 2
a586710 47 - 79 41,682 3
p34392 142 - 245 23,261 3
t512505 160 - 288 77,006 2
p22810 283 283 537 30,111 3
p93791 653 - 1,241 98,637 3
DATE’19 Benchmarks
MBIST_1_5_5 15 8 113 548 4
MBIST_1_5_20 15 8 338 1,523 4
MBIST_1_20_20 45 23 4,179 6,068 4
MBIST_2_5_5 28 16 224 1,091 4
MBIST_2_5_20 28 16 674 3,041 4
MBIST_2_20_20 88 46 2,624 12,131 4
MBIST_5_5_5 67 40 557 2,720 4
MBIST_5_20_20 217 115 6,557 30,320 4
MBIST_5_100_20 1,017 515 32,557 151,520 4
MBIST_5_100_100 1,017 515 151,135 671,520 4
MBIST_20_20_20 862 460 26,222 121,265 4
MBIST_55_20_5 2,367 1,265 22,607 118 970 4
MBIST_100_20_5 8,102 2,300 41,102 216,305 4
MBIST_100_100_5 20,102 10,300 172,700 1,080,305 4
ITC’02 Benchmarks
u226 59 - 99 1,457 2
d281 67 - 117 3,880 2
d695 178 - 335 8,407 2
h953 63 - 109 5,649 2
g1023 94 - 159 5,400 2
f2126 45 - 81 15,834 2
q12710 30 - 51 26,188 2
p34392 142 - 245 23,261 3

A.2 Electronic Design Automation (EDA) and other Tools

The experimental results have been obtained with the help of the following tools and

frameworks:
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• EDA1687 tool: The in-house EDA tool has been first introduced in [BKW15b] to

model an RSN as a directed graph and to represent the data and the control de-

pendencies between the scan primitives. It is written in C++ programming lan-

guage. In this document, the tool has been significantly extended to implement the

dependability-enhancing algorithms for RSNs, which are presented above in Part II.

• ANTLR: The parser ANTLR [Par13] has been used to build a graph model of an RSN

from an Instrument Connectivity Language (ICL) description.

• MiniSAT The SAT-solver MiniSAT [ES04] has been used to support solving Boolean

Satisfiability problem as a part of dependability analysis.

• Gurobi: The Integer Linear Programming (ILP) framework Gurobi [Gur19] has

been used to support solving optimization problems as a part of the presented

dependability-enhancing resynthesis algorithms.

• Opt4J: The framework Opt4J [LGRT11] has been developed by the group of Prof. Te-

ich from Friedrich-Alexander-Universität Erlangen-Nürnberg. The SPEA-2 [ZLT01]

evolutionary algorithm implemented in this framework has been used to support the

multi-objective optimization algorithms for enhancing the dependability properties

of RSNs.
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Chapter B

Dependability Enhancement Results

This chapter summarizes the experimental results for the methods and algorithms pre-

sented above. The remainder of this chapter is split into three main sections as follows:

Section B.1 (Robust RSNs) provides the experimental results for the initial criticality

analysis of scan primitives, followed by the robustness enhancing resynthesis method

for RSNs.

Section B.2 (Testable RSNs) summarizes the experimental results for the complete

design-for-test scheme for RSNs, which includes the methods for scan segments,

scan interfaces and control lines, as well as the details about the test integration.

The same chapter presents the experimental results for the developed online peri-

odic test method for RSNs.

Section B.3 (Security Compliant RSNs) presents the results for security preserving RSN

integration. It includes the security compliance analysis, as well as two security-

enhancing resynthesis methods: for a single user and for multiple users.

B.1 Robust RSNs

The criticality analysis has been conducted considering an explicit specification, and the

criticality of RSN primitives has been assessed. In the specification, 70% of all the instru-

ments have randomly assigned non-zero damage weights of losing their observability, and

another 70% - of losing their settability. The overlap part defines two non-zero weights.
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Additionally, 10% random instruments have been set as important for observation, an-

other 10% - for control.

The primitives to harden are selected by using the evolutionary algorithm called SPEA-2

[ZLT01] implemented in the Opt4J framework from [LGRT11]. The parameters below

have been used for the optimization:

• Considered constraints: hardware costs and damage for the system operation;

• Size of the population: 300 for the benchmarks with more than 100 muxes, 100 for

other benchmarks;

• Independent bit mutation probability: 0.01;

• Standard one-point crossover probability: 0.95.

The experimental results for all the considered benchmarks are provided in Table B.1. In

the defect-free case, all the instruments are accessible. The information about the values

of a cost function with respect to hardware cost and the resulting damage to the system is

presented for three cases. First, the initial assessment is provided for the maximum cost of

hardening, if all the primitives are hardened (Column 4). Also, the maximum damage in

presence of single defects is provided, when none of the primitives is hardened (Column

5). The number of generations of an evolutionary algorithm is provided in Column 6.

The results of applying an evolutionary algorithm are provided in Table B.2. Next, the

damage and the hardware cost are provided for two pareto solutions:

• The best damage-reducing solution, which requires at most 10% hardened primi-

tives, in Columns 2 and 3.

• The most cost-efficient solution for reducing the damage down to 10% of the initially

assessed value (Column 5 in Table B.1) in Columns 4 and 5.

All the important instruments remain accessible via the resulting RSNs. The runtime is

provided in Column 6 and is acceptable for all the benchmarks.
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Table B.1: Robust RSN Synthesis, Initial Assessment

Benchmark characteristics Initial assessment
(1) Design (2) # Seg. (3) # Mux. (4) Cost (5) Damage (6) # Gens.
BasicSCB 21 10 62 498 350
Mingle 22 13 56 373 300
TreeFlat 24 24 350 502 300
TreeUnbalanced 63 28 142 1,656 300
TreeBalanced 90 46 211 4,206 1,000
TreeFlat_Ex 123 60 289 597 2,000
q12710 47 25 127 576 300
a586710 79 47 155 1,010 2,000
p34392 245 142 482 7,932 700
t512505 288 160 713 7,146 1,000
p22810 537 283 1,298 22,911 1,000
p93791 1,241 653 2,946 293,771 3,500
MBIST_1_5_5 113 15 137 74,004 300
MBIST_1_5_20 1,523 15 362 632,421 400
MBIST_1_20_20 6,068 45 1,412 8,252,305 500
MBIST_2_5_5 1,091 28 137 83,509 500
MBIST_2_5_20 3,041 28 362 560,484 700
MBIST_2_20_20 12,131 88 1,412 8,174,778 700
MBIST_5_5_5 2,720 67 411 148,811 500
MBIST_5_20_20 30,320 217 385 6,175,005 900
MBIST_5_100_20 151,520 1,017 7,012 203,302,366 200
MBIST_5_100_100 671,520 1,017 93,447 2,138,755,955 1,500
MBIST_20_20_20 121,265 862 1,412 6,175,005 900
MBIST_55_20_5 216,305 8,102 512 814,369 500
MBIST_100_20_5 118,970 2,367 512 639,278 1,800
MBIST_100_100_5 1,080,305 20,102 2,512 20,977,832 1,200

B.2 Testable RSNs

In this section, the experimental data for the developed testability enhancing methods is

given. First, more experimental results are provided for the testability-enhancing resyn-

thesis of RSNs, which ensures the detection of all single faults in the control logic. Next,

the experimental data for test integration of the complete DfT scheme for RSNs is pre-

sented. Finally, the data for the developed online periodic test of RSN is provided.

B.2.1 Control Lines

As discussed in Section 5.3.1, for the most benchmarks from the popular benchmark sets,

the testability property has been proven. Therefore, the applicability of the structural
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Table B.2: Robust RSN Synthesis, SPEA-II, Varying Optimization Criteria

Min. cost, Damage ≤ 10% Min. damage, Cost ≤ 10% Runtime
(1) Design (2) Cost (3) Damage (4) Cost (5) Damage (6) [m:s]
BasicSCB 5 50 6 30 00:01
Mingle 4 33 5 20 00:01
TreeFlat 7 42 8 26 00:07
TreeUnbalanced 10 155 14 31 00:02
TreeBalanced 18 362 21 216 00:03
TreeFlat_Ex 29 57 28 60 00:04
q12710 8 27 12 19 00:03
a586710 5 90 15 24 00:15
p34392 8 683 48 68 00:34
t512505 21 699 71 121 00:16
p22810 33 2,215 28 3,712 01:01
p93791 38 28,681 286 561 06:10
MBIST_1_5_5 32 7,176 13 20,799 00:26
MBIST_1_5_20 35 62,264 36 60,344 02:21
MBIST_1_20_20 129 801,889 137 752,261 10:01
MBIST_2_5_5 19 8,141 13 12,081 03:45
MBIST_2_5_20 34 54,314 36 50,060 04:17
MBIST_2_20_20 129 788,085 138 722,191 08:18
MBIST_5_5_5 8 14,213 41 163 01:10
MBIST_5_20_20 127 614,605 36 1,343,502 15:02
MBIST_5_100_20 1,983 20,555,328 701 48,147,171 35:17
MBIST_5_100_100 17,066 213,650,290 8,625 405,742,391 92:01
MBIST_20_20_20 131 605,065 141 537,474 23:40
MBIST_55_20_5 112 78,595 51 208,782 05:43
MBIST_100_20_5 87 63,268 51 144,057 07:15
MBIST_100_100_5 273 2,096,139 248 2,396,324 59:32

resynthesis on these benchmark sets can only be validated on a limited number of the ini-

tial benchmarks. To create a representative benchmark set, which contains a high number

of large RSN designs, additional bypass registers with a controllable length are imple-

mented. The testability of the modified benchmarks has been analyzed and the bench-

marks have been resynthesized to ensure the unique path lengths within a single fault

assumption in the switch logic.

The results are presented in Table B.3. Column 2 shows a number of additional scan cells,

which have been added into the RSN. In average, one additional scan cell has been re-

quired for each modified scan segment. Compared with the total number of scan segments

in RSNs (Column 4, Table A.1), and especially with the number of scan cells (Column 5,

Table A.1), the presented method requires a negligible hardware overhead, and the in-
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crease of the instruments access latency through the resynthesized RSN is negligible as

well. The number of virtual changes, which have been performed to transform an arbi-

trary graph into a series-parallel form, is given in Column 3 for all the benchmarks.

The number of faults in the control scan primitives is given in Column 4 for all the bench-

marks, and includes all single stuck-at faults, affecting control primitives. In Column 5,

the number of undetected faults, whose detection relies on ASP length, UDT−PL is given

for the initial RSNs. For the resynthesized RSNs, after the presented method is applied,

each single fault in the control logic is detectable by an altered path length, as validated by

the repeated testability analysis. The runtime of the approach is acceptable and requires

less than 25 minutes for the largest benchmarks, and just few seconds for the most of the

benchmarks (Column 6).

B.2.2 Test Integration

In this section, the complete developed DfT approach is evaluated. The experimental

results for the developed scheme are shown in Table B.4:

• Integration of the Design-for-Test scheme:

– Scan interfaces: Scan registers are enhanced by injecting a feedback line.

– Control lines: The testability with respect to single faults in the control logic is

proven for all the benchmarks. The total number of faults in control lines is

given in Column 2. The runtime is provided in Column 3 and is negligible for

all the benchmarks.

– Scan segments: ROSTI is integrated to generate self-test for scan segments.

• Simulation of test sequences:

– Scan interfaces: A test sequence is generated to test scan interfaces in the en-

hanced RSN. The test cost is provided in Column 4.

– Scan segments: To test scan segments, an access sequence is constructed of a

workload sequence for testing the interfaces and a flush test sequence. The

workload sequence is provided by an external tester. It ensures that the scan

primitives of an RSN are covered by activating a minimized number of activated
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Table B.3: Testability-oriented resynthesis to detect all UDT-PL

(1) Design (2) #cells (3) #virtual (4) #fault (5) UDT-PL (6) time[s]

BasicSCB 8 0 40 16 1.0
Mingle 4 0 52 8 1.2

TreeFlat 2 2,047 48 4 25.5
TreeUnbalanced 9 0 112 18 2.1
TreeBalanced 9 0 200 22 2.4
TreeFlat_Ex 28 0 256 56 3.5

q12710 23 0 108 46 1.0
a586710 22 0 128 44 1.3
p34392 73 0 388 146 2.2
t512505 107 0 636 214 8.6
p22810 224 0 1,080 460 3.2
p93791 550 0 2,384 1,100 10.1

MBIST_1_5_5 4 2 30 10 1.1
MBIST_1_5_20 4 2 30 8 1.6
MBIST_1_20_20 15 2 90 30 3.3
MBIST_2_5_5 7 2 56 14 2.2
MBIST_2_5_20 9 2 56 18 0.8
MBIST_2_20_20 32 2 176 64 9.1
MBIST_5_5_5 20 2 134 40 1.1
MBIST_5_20_20 75 2 434 150 26.1
MBIST_5_100_20 365 2 2,034 730 120.7
MBIST_5_100_100 375 2 2,034 750 1453.0
MBIST_20_20_20 300 2 1,724 600 21.4
MBIST_55_20_5 866 2 4,734 1,732 356.2
MBIST_100_20_5 1,586 2 8,604 3,172 168.1
MBIST_100_100_5 7,600 2 40,204 15,200 280.3

scan paths as in [BKW15b]. The flush test sequences to test the shift logic are

generated by ROSTI. The test cost is given in Column 5.

The test cost using the developed test integration is compared with the application

of the test sequences for scan interfaces and scan segments one after another. The

test cost is given in Column 6 and is calculated as the sum of the individual test costs

in Column 4 and Column 5.

• Test cost reduction: The test sequences of the scan interfaces are now integrated into

the workload, and a flush sequence tests the shift logic. The length of an activated
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path is used as an indicator for faults in the control logic. Column 7 provides the test

cost for the case when the developed test integration scheme is considered and the

bit-sharing mechanism is activated. This value provides a significant improvement

compared to testing different fault locations individually (Column 6).

Table B.4: Design-for-Test Scheme Results: Test Cost

Control lines Runtime Test Cost [#cycles]

(1)Design (2) #faults (3) [s] (4) Inter. (5) Segs. (6) Sum (7) Our

u226 118 0.2 15,536 22,647 38,183 17,996
d281 134 0.2 32,863 34,113 66,976 35,959
d695 356 0.3 84,026 116,234 200,260 93,566
h953 126 0.2 44,296 38,247 82,543 47,104
g1023 188 0.3 46,443 50,418 96,861 50,463
f2126 90 0.1 114,563 75,269 189,832 116,723
q12710 60 1.0 184,971 109,904 294,875 192,231
p34392 288 2.2 181,591 156,403 337,994 188.851

Area overhead compared to the underlying RSN is given in Column 1 of Table B.5 and

is negligible. The fault coverage for RSN benchmarks without feedback lines in the scan

segments is given in Column 2 of Table B.5. Fault sampling is used to p93791, t512505,

and a586710 with a confidence interval of 99%. Fault coverage is 94.72% on average.

To mitigate the coverage gap above, it is necessary to test the interfaces to instruments

and logic. If scan segments are enhanced by integrating a feedback line and the workload

patterns are used to test scan interface, a complete fault coverage is obtained for all the

benchmarks.

In the resulting RSNs, faults in scan interfaces, control lines and scan segments are de-

tectable. The scalability and effectiveness of the developed DfT scheme has been shown

for a wide range of benchmarks.

B.2.3 Online Periodic Test

This section provides the experimental results for the developed online periodic test

method. The test access sequence sets for performing the online periodic test of RSNs

have been generated according to the method from Section 5.2. The coverage of scan
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Table B.5: Design-for-Test Scheme Results: Overhead and Coverage

Overhead[%] Coverage [%]

(1)Design (2) w.r.t. RSN (3) w/o feedback

u226 0.69 93.65
d281 0.27 95.51
d695 0.19 92.17
h953 0.18 96.32
g1023 0.20 95.66
f2126 0.06 95.11
q12710 0.03 95.43
p34392 0.06 94.70

primitives is defined as a fraction of scan primitives, which are accessed by a given test

sequence set, from the whole set of scan primitives. The solution space has been explored

and a tradeoff between the test cost and the coverage of scan primitives has been investi-

gated. A set of close to pareto-optimal solutions has been generated by means of genetic

algorithms. For a required coverage, the best generated solution with respect to test cost

has been selected. The genetic programming solver Opt4J [LGRT11] is used with the

NSGA-II method [DPAM02] to perform the optimization. The genotype describes a test

sequence set as a sequence of Boolean values, where each sequence comes after another,

and each sequence contains one or multiple activated paths. Each bit shows the state of a

control scan primitive on the path. The initial genotypes are created following Algorithm

1. Each next path is chosen so that the gain is maximized as shown in Section 5.2.3. The

choice is randomized within the most prominent candidates to efficiently explore relevant

parts of the search space.

The crossover operation between two-parent genotypes creates two child genotypes from

two parental genotypes. The first child inherits the first part of test sequences from the first

parent and the second part from the second parent, for the second child the inheritance is

reversed. The mutation operation randomly removes one sequence from the test sequence

set or adds a new sequence into the set.

The parameters below have been used for the optimization:

• Considered constraints: test cost and coverage;
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• Standard one-point crossover probability: 0.95;

• Independent bit mutation probability: 0.05;

The exact setup for individual benchmarks is given in Table B.6. The number of genera-

tions to find a solution is given in Column 2 and is determined as a minimum number of

generations when the solutions stop improving for 5 consequent operations. The size of

the initial population is given in Column 3.

Table B.6: Periodic Test of RSNs: Genetic Algorithm

NSGA-II

(1)Design (2) # generations (3) # population

BasicSCB 10 100
Mingle 30 300
TreeFlat 10 100
TreeUnbalanced 30 300
TreeBalanced 30 300
TreeFlat_Ex 30 300
q12710 10 300
a586710 30 300
p34392 30 500
t512505 50 1000
p22810 100 1000
p93791 100 1000

The details about the generated solutions are given in Table B.7. The time to generate the

solution is provided in Column 2, which is rather low for all the benchmarks. Column 3

shows the number of required test sequences and Column 4 represents the total number

of configurations.

For all the benchmarks, the generated test sequence set covers all the scan primitives. The

information about the test cost of the generated test sequence sets is given in Table B.8.

The test cost for the full coverage of scan primitives is given in Column 2. Given a minimal

required coverage of scan primitives, e.g. 90%, the genetic algorithm generates a test

sequence set with a significantly decreased test cost, as provided in Column 3.
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Table B.7: Periodic Test of RSNs: Sequence Optimization Results

(1)Design (2) runtime [m:s] (3) # sequences (4) # configurations

BasicSCB 00:32 1 7
Mingle 02:11 1 11
TreeFlat 00:02 2 4
TreeUnbalanced 02:16 7 39
TreeBalanced 05:02 2 9
TreeFlat_Ex 04:11 2 9
q12710 01:12 1 4
a586710 04:30 1 7
p34392 10:11 3 2
t512505 05:16 2 6
p22810 10:10 9 41
p93791 15:13 4 28

B.3 Security Compliant RSNs

This section presents the experimental results, which show the efficiency and the scalabil-

ity of the presented scheme to integrate security compliant RSNs. First, the experimental

results for the structural resynthesis method. Next, the results of the hybrid protection

scheme for multiple users are presented.

B.3.1 Structural Resynthesis for Single User Protection

The flow from Fig. 6.2 is performed to securely integrate an RSN into a given system. To

assess the influence of the control signal assignments on the functional reachability, some

correlation between the control signals has been added, such that 20% of the neighboring

mux pairs are controlled by the same external control signals. Complementary to the

implicit security specification of the connectivities between the instruments, an explicit

security specification is defined by the designer: for 20% randomly selected instrument

pairs, any data transfer is prohibited between the instruments through the RSN.

The remainder of this subsection presents the results for the security compliance analysis

and resynthesis schemes. The experimental results for the developed security compliance

analysis are shown in Table B.9:
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Table B.8: Periodic Test of RSNs: Coverage

(1)Design (2) Coverage 100% (3) Coverage 90%

BasicSCB 265 102
Mingle 385 199
TreeFlat 3,890 2,506
TreeUnbalanced 66,416 28,464
TreeBalanced 57,610 31,747
TreeFlat_Ex 24,226 11,078
q12710 39,394 30,118
a586710 55,957 34,376
p34392 40,923 20,410
t512505 143,112 102,557
p22810 379,373 210,214
p93791 1,225,512 469,840

• Firstly, the structural connectivities (Column 2, #struct.), as well as the valid con-

nectivities for individual ASPs (Column 3, #ASP ), and the functional connectivities

(Column 4, #func.) inside the RSN have been computed.

• Secondly, all the security compliance violations (Column 5, #viol.) have been iden-

tified.

Table B.10 presents the experimental results for the developed structural resynthesis

method. All the violations have been resolved with a few iterations of the flow from

Fig. 6.2 (Column 2, #iter), by removing just a few edges (Column 3, #removed). The

accessibility has been reintroduced by adding at most 2×#removed edges into the graph.

The minimized access latency ("reduce latency") and the minimized hardware overhead

("reduce overhead") have been used as the optimization criteria. The actual values of

the average access latency and the hardware overhead have been measured for both opti-

mization criteria. The values of these metrics for the resulting RSNs are normalized with

respect to the values obtained for the initial RSNs and are shown in Columns 4, 5, 6, 7.

• When applying the "reduce latency" criteria, the resulting access latency of the seg-

ments was reduced as expected, and the hardware overhead increased with respect

to the original RSN. This means that in the resulting RSNs, a larger number of shorter
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Table B.9: Security Compliance Analysis

(1) Design (2) #struct. (3) #ASP (4) #func. (5) #viol.

BasicSCB 181 175 178 45
Mingle 230 155 205 83

TreeFlat 300 263 300 103
TreeUnbalanced 2,016 1,820 1,987 340
TreeBalanced 4,272 2,688 2,899 822
TreeFlat_Ex 7,869 6,987 7,116 1450

q12710 1,275 1,020 1,219 614
a586710 1,430 1,034 1,599 345
p34392 15,937 12,122 14,435 2,187
t512505 41,328 30,623 37,677 1,346
p22810 137,550 97,731 125,637 2,104
p93791 721,269 523,454 652,825 18,610

MBIST_1_5_5 30,193 29,600 29,605 967
MBIST_1_5_20 231,043 222,124 229,475 365
MBIST_1_20_20 929,218 916,123 923,015 356
MBIST_2_5_5 60,327 57,122 59,153 1,056
MBIST_2_5_20 462,027 422,173 458,903 5,591
MBIST_2_20_20 1,858,377 1,804,592 1,845,983 3,437
MBIST_5_5_5 150,783 142,861 147,866 23,177
MBIST_5_20_20 4,645,908 4,124,739 4,614,941 63,284
MBIST_5_100_20 23,947,908 22,112,834 23,793,341 56,452
MBIST_5_100_100 452,167,908 423,175,253 451,493,341 54,765
MBIST_20_20_20 18,584,778 15,267,365 18460946 23,683
MBIST_55_20_5 6,929,683 6,605,819 6,803,666 17,349
MBIST_100_20_5 12,619.618 11,859.933 12.390,506 87,275
MBIST_100_100_5 77,299,618 75,738,342 76,158,506 154,235

scan paths is synthesized, which allowed the approach to mitigate information leak-

age through RSNs.

• For the "reduce overhead" criteria, the latency was slightly increased, while the hard-

ware overhead either increased only negligibly or even slightly decreased.

That means that in the resulting RSNs it was possible to prevent all security viola-

tions while preserving almost the same hardware overhead.

Runtime is negligible for all the considered benchmarks, and the whole flow requires

less than 3.5 minutes for the largest benchmark, while the average runtime is about one
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minute. On average 33 percent of the runtime has been spent for the analysis, while the

remaining time has been spent for performing the automated resynthesis.

B.3.2 Hybrid Protection Scheme for Multiple Users

Compared to the experimental setup from Section B.3.1, two additional user groups have

been considered besides the complete access for the manufacturer: one for the system

integrators, and one for maintenance and user. The experiments deal with the general case

of conflicting rights. The implicit security specification is given as a list of connectivities

between the instruments. The previously developed security compliance analysis method

is used to identify the violating connectivities due to improper RSN integration.

Table B.11 provides the experimental results for the hybrid protection scheme. For all the

benchmarks, the number of violations is given in Column 2. After a few of iterations of

the "Prepare the RSN" step (Column 3), a filter-compliant RSN is obtained. Just a minor

number of structural changes was required for all the considered benchmarks to transform

the RSN into a filter-compliant RSN. The remaining violations are resolved using a filter.

In the resulting RSNs, all the violations have been resolved, the security specifications are

fulfilled, and the accessibility of the required instruments through the RSNs is preserved.

The area overhead (Column 4) of the generated filter is acceptable for all the RSNs. In or-

der to preserve an acceptable complexity of a secure filter for the hierarchically organized

DATE benchmarks, the filter is also constructed hierarchically out of multiple FSMs. Each

FSM corresponds to a sub-RSN, which is used to access a part of the instruments, such as

the memory BIST registers. As the size and the complexity of the benchmark increases,

the relative area overhead decreases and becomes negligible for the largest RSNs. The

runtime (Columns 5 and 6) is acceptable even for the largest benchmarks.

Comparison to the State of the Art

Filters: In contrast to the pure filter-based approach, as in [AKS+18] all the violations

have been resolved without sacrificing the instruments’ accessibility. The filter applicability

fraction (Column 3 in Table B.12) shows that only for one benchmark, applying a pure

filter-based approach to resolve the violations would not make any required instrument

inaccessible via the RSN.
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Resynthesis: Compared to the number of structural changes required to solve all the

identified security compliance violation by using the pure structural solution [LAWW20]

(Column 2 in Table B.13), less hardware overhead is required (Column 3). Since the

majority of violations is resolved by a filter in a hybrid scheme, the number of required

structural changes to the RSN is dramatically decreased. Moreover, the hybrid approach

is able to specify different access rights for various user groups, which is not possible by

using resynthesis alone.
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Table B.10: Security Compliant RSN Integration

Resolve Reduce Latency Reduce Overhead

(1) Design (2)#iter (3) #removed (4) latency (5) HW (6) latency (7) HW

BasicSCB 1 8 0.91 1.09 1.01 0.93
Mingle 1 9 0.90 1.02 0.97 0.93

TreeFlat 1 9 0.90 1.05 0.98 0.93
TreeUnbalanced 1 9 0.99 0.96 0.99 1.01
TreeBalanced 1 18 0.98 1.02 0.97 0.94
TreeFlat_Ex 1 20 0.76 0.97 1.15 0.85

q12710 1 22 0.72 1.21 1.13 0.80
a586710 2 37 0.63 1.67 1.12 0.97
p34392 3 21 0.75 1.49 1.12 0.96
t512505 2 36 0.66 1.61 1.16 0.93
p22810 1 127 0.78 1.60 1.10 1.01
p93791 3 463 0.59 1.72 1.18 0.85

MBIST_1_5_5 1 101 0.18 4.00 1.34 1.00
MBIST_1_5_20 1 52 0.28 3.24 1.56 1.01
MBIST_1_20_20 1 48 0.24 3.33 1.12 0.97
MBIST_2_5_5 1 104 0.29 2.12 1.12 0.98
MBIST_2_5_20 2 187 0.31 2.21 1.15 1.10
MBIST_2_20_20 2 358 0.49 1.99 1.15 1.02
MBIST_5_5_5 1 4,826 0.22 3.55 1.56 1.01
MBIST_5_20_20 1 6,712 0.19 4.05 1.23 0.97
MBIST_5_100_20 1 2,561 0.45 2.13 1.12 0.99
MBIST_5_100_100 1 972 0.65 1.16 1.18 1.09
MBIST_20_20_20 1 1,835 0.49 1.67 1.42 0.99
MBIST_55_20_5 2 1,240 0.69 1.46 1.14 0.98
MBIST_100_20_5 2 5,784 0.34 2.60 1.37 0.96
MBIST_100_100_5 3 6,246 0.35 2.56 1.14 0.98
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Table B.11: A Hybrid Protection Scheme: Overhead

Initial Design Overhead

(1) Benchmark (2) #viol. (3)#it. (4) %M HWfilter (5) tstruct[m:s] (6) tfilter[m:s]

q12710 501 3 0.98 00:05 00:51
a586710 1.820 2 0.78 02:10 01:46
p34392 502 3 4.17 00:30 01:48
t512505 924 2 1.65 02:54 00:59
p22810 28,941 2 7.21 06:40 10:25
p93791 18,610 2 5.50 08:34 13:51
MBIST_2_20_20 8,519 1 10.05 00:58 01:36
MBIST_5_20_20 1,020 0 6.42 01:20 02:16
MBIST_5_100_20 2,559 1 23.79 14:33 10:23
MBIST_5_100_100 9,828 1 3.44 18:46 19:54
MBIST_20_20_20 3,779 1 3.41 14:01 09:27
MBIST_55_20_5 59,055 1 8.90 10:25 11:36
MBIST_100_20_5 22,084 1 10.54 05:48 07:23
MBIST_100_100_5 160,687 1 8.63 12:54 25:10

Table B.12: A Hybrid Protection Scheme Comparison: Filter Applicability Fraction

Initial Design Comparison

(1) Benchmark (2) # Violations (3) %, filters only

q12710 501 84.0
a586710 1.820 67.3
p34392 502 79.2
t512505 924 94.6
p22810 28,941 93.1
p93791 18,610 94.2
MBIST_2_20_20 8,519 83.4
MBIST_5_20_20 1,020 100
MBIST_5_100_20 2,559 90.0
MBIST_5_100_100 9,828 99.2
MBIST_20_20_20 3,779 89.8
MBIST_55_20_5 59,055 85.1
MBIST_100_20_5 22,084 98.3
MBIST_100_100_5 160,687 99.8
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Table B.13: A Hybrid Protection Scheme Comparison: Number of Structural Changes

Initial Design Comparison

(1) Benchmark (2) #changes hybrid (3) # changes struct [LAWW20]

q12710 38 63
a586710 47 186
p34392 48 71
t512505 36 174
p22810 499 1,922
p93791 463 1,891
MBIST_2_20_20 1,408 2,247
MBIST_5_20_20 0 125
MBIST_5_100_20 241 415
MBIST_5_100_100 78 1,020
MBIST_20_20_20 293 335
MBIST_55_20_5 6,857 7,658
MBIST_100_20_5 354 1,563
MBIST_100_100_5 195 10,376
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