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Abstract: Statistical power analyses are used in the design of experiments to determine the required
number of specimens, and thus the expenditure, of a test. Commonly, when analyzing and planning
life tests of technical products, only the confidence level is taken into account for assessing uncertainty.
However, due to the sampling error, the confidence interval estimation varies from test to test;
therefore, the number of specimens needed to yield a successful reliability demonstration cannot be
derived by this. In this paper, a procedure is presented that facilitates the integration of statistical
power analysis into reliability demonstration test planning. The Probability of Test Success is
introduced as a metric in order to place the statistical power in the context of life test planning of
technical products. It contains the information concerning the probability that a life test is capable of
demonstrating a required lifetime, reliability, and confidence. In turn, it enables the assessment and
comparison of various life test types, such as success run, non-censored, and censored life tests. The
main results are four calculation methods for the Probability of Test Success for various test scenarios:
a general method which is capable of dealing with all possible scenarios, a calculation method
mimicking the actual test procedure, and two analytic approaches for failure-free and failure-based
tests which make use of the central limit theorem and asymptotic properties of several statistics, and
therefore simplify the effort involved in planning life tests. The calculation methods are compared and
their respective advantages and disadvantages worked out; furthermore, the scenarios in which each
method is to be preferred are illustrated. The applicability of the developed procedure for planning
reliability demonstration tests using the Probability of Test Success is additionally illustrated by a
case study.

Keywords: testing; reliability demonstration; probability of test success; statistical power analysis

1. Introduction

Expenditures play an essential role in planning reliability demonstration tests. Re-
sources are finite, and must be used in the most efficient way. Reliability demonstration
tests should therefore use expenditures in such a way that they have the greatest effect, that
is, the maximum promise of successful reliability demonstration.

1.1. Motivation

Determining the required sample size for the identification of relevant effects is an
essential component of the frequentist design of experiments (DOE) methodology frame-
work [1]. Statistical power analyses are employed to determine the sample size in order
to identify the technologically relevant effects with a defined probability by using the
estimated variance of the data [2]. In general, the type II error is used alongside the type I
error, and should be kept as small as possible. The type II error is the complement to the
statistical power; therefore, it represents the risk of not detecting existing effects below
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a certain threshold value while performing a test. For technical products, which have
to endure a certain service life before they fail, such concepts lack implementation and
application. From a life test perspective on such products, a type II error is made in a test
if the test result does not demonstrate the required reliability when the product actually
does meet the requirement in reality. By making use of the power, the planning of expendi-
tures becomes possible; additionally, test configurations can be identified which cannot be
realized from a practical point of view due to a too-high sample size requirement.

1.2. Assessment of Recent Work

Several scientific domains other than reliability engineering have used power analysis
for years. Here, the focus often is on the evaluation of statistically significant effects in
relation to the sample size and the determination of rules for termination in the event of
a low probability of success in a study (see, e.g., [3–6]). In quality engineering, statistical
power analysis is used in order to efficiently deal with lot acceptance tests and production
parameter assessment [7]. In the reliability domain and within the scope of life testing of
technical products, a holistic approach for power analyses has not been established for
successful demonstration of reliability targets considering all possible test types. The uncer-
tainty of the tested sample is assessed primarily by means of the confidence level, which
solely addresses the type I statistical error [8]. Several tested samples of the same size
result in different confidence intervals due to sampling variability [9]. Therefore, it is not
sufficient to calculate the sample size required to demonstrate the reliability target solely
by means of the confidence level; e.g., see [8]. A simple transfer of these power analyses
to the life testing framework is challenging, as state-of-the-art analytic power analyses
are only permissible for normally distributed residuals [1]. This does not apply to life
data, which are usually Weibull or log-normally distributed [9]. Further challenges in life
testing are the various test types and configurations, such as time- or failure-censored tests
with or without load acceleration. For accelerated life tests, a life-stress model must be
determined to demonstrate reliability for field load. It is possible to carry out life tests
at different system levels, as well, such as at the component or subsystem level, which
brings additional challenges. These aspects must be considered for the application of power
analyses when planning reliability tests. The metric for the assessment of the accuracy
must contain information as to whether a life test is capable of demonstrating a required
reliability Rr with required lifetime tr and confidence level Cr. Due to the randomness of
the process and the sole frequentist nature of reliability targets, it is necessary to deal with
probabilities, and statistical power (as a statistical variable) must therefore be transferred
to the domain of reliability test planning in order to be interpreted as the probability of
a successful reliability test. The challenges are the generalization of the target variable
in order for different test strategies to be dealt with and compared to each other, and
performing the calculation in an efficient way.

In practical applications, success run tests (SR tests, called zero-failure tests or failure-
free tests) are often used for reliability demonstration because the required sample size
and reliability can easily be obtained using the binomial distribution [10]. Due to the
equation only representing a significance test, only the confidence level C is considered.
Over the past decades, there has been great effort to reduce the required sample size for
the SR test by using Bayes’ rule [11], as its testing effort is quite high, especially for high
reliability requirements, and even higher if failures occur during testing. Although the
concept of a reliability demonstration has to be based on a frequentist view, due to the
confidence level which is requirend and to be demonstrated Bayes’ rule continues to be
used for aggregation of additional information. However, the demonstration is carried
out solely using the frequentist confidence level instead of a credibility interval or other
related concepts. Methods described by Beyer and Lauster [12,13], Guida and Pulcini [14],
Kleyner et al. [15,16], Krolo [17–19], Savchuk and Martz [20], and Grundler et al. [21]
use reliability information from similar products such as predecessors. The resulting
posterior density can be used to carry out the reliability demonstration. For planning
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purposes, however, assuming a successful test (no failures occur), the posterior density can
be used to calculate the required sample size for the test. These procedures differ partly
in the determination of the prior distribution and in the proportion of prior knowledge
used. Bayer and Lauster [12] do not use a distribution of reliability in their method,
instead using a nominal reliability value with a fixed confidence level of 63.2% of the
predecessor product. Grundler et al. [13] remove this restriction, permitting variable
confidence levels as well as accelerated tests. When employing the Kleyner and Krolo
methods [15,16], failure distributions can be used as prior knowledge. Kleyner et al. [15]
use a beta and a uniform distribution, which are weighted according to the similarity of the
products. The method introduced by Krolo [17–19] allows prior knowledge from different
populations and sources, such as test results and field data, to be used. Additionally,
Grundler’s approach [13] permits the use of prior knowledge from fatigue and lifetime
calculations. The main challenge of these methods is the primarily subjective assessment of
the similarity of two products, which makes the reliability demonstration vulnerable in the
event of doubt [22]. Although Hitziger [23] describes approaches for determining similarity,
uncertainty remains in the application of these methods, because even very small changes
in the production process can lead to profound changes in failure behavior. However, it
is difficult to objectively attest a certain similarity of the products in this case. None of
the methods for reducing the required sample size of SR tests takes the type II error into
account for test planning; in fact, only the type I error is considered by the confidence
level. Consequently, no statement on the result of the test is possible, which means that no
estimate can be made about either the success of the test nor about a successful reliability
demonstration. However, some approaches do exist which address the issue of the two
types of risks during zero-failure testing. Lu et al. [24] use the Bayesian approach presented
in [25] in order to assign a success probability to the failure-free reliability demonstration
test. However, they make use of an indifference region, which uses an interval of reliability
values instead of a single reliability target. This results in a decoupling of the planning and
assessment aspects of the test from the reliability target. The reliability target should be
very much integrated as an integral part of reliability demonstration test planning. The
very similar approach in [26] uses the assurance of [25] in order to calculate a probability
for the outcome of the SR test. The main drawback, other than the use of two reliability
values instead of one reliability target, is the sole focus on the SR test. No other test
types can be analysed using these approaches and no comments about lifetime ratios or
acceleration factors are made. A transfer to the context of failure-based tests is not trivial,
as these approaches rely on the binary classification on which the SR test is based. Wilson
and Farrow [27] propose a Monte Carlo simulation (MCS) for assurance calculation of
failure-based tests. However, the computational burden is very high, and the indifference
region is used. The problem with these Bayesian approaches of [24–27] is that they result
in a credibility interval instead of a confidence interval, which is required for a reliability
demonstration with a required confidence level. In addition, the indifference region does
not comply with the demonstrated reliability target.

The literature contains several approaches that address the optimization of end-of-life
testing (EoL test, called failure-based tests) strategies in a frequentist manner. However,
the type II error is neglected within most approaches. Several approaches that do consider
the type II error use it in a different context, e.g., as an economic aspect in the sense of
customer risk, or limit their analysis to a specific test type, such as sudden death tests
(SD tests). In the work of Guo et al. [28], the accuracy of an uncensored EoL test is
discussed. As an assessment criterion, the confidence interval width is used as a ratio
of upper and lower confidence bounds at a certain lifetime quantile. MCS are used to
determine the required sample size, which results in the desired confidence interval width
for a Weibull distribution stemming from prior knowledge. Arizono et al. [29] present a
method to determine an SD test configuration that allows a mean time to failure (MTTF)
to be estimated most economically through MCS. In a certain parameter space of the
Weibull shape parameter, sample size, and inspection lot size, a decision is made as to
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whether the inspection lot is accepted or rejected. The Weibull evaluation is limited to
the MTTF, whereby smaller failure probabilities might be more interesting in practical
application. Huang and Wu [30] focus their work on time-censored EoL test plans, which
are approximated using exponential distributions, and in which test specimens are observed
in intervals. The entire approach is limited to exponential distribution and time-censored
tests, which results in limited applicability. Vlcek et al. [31] compare the SD test with
non-censored, time-censored, and failure-censored EoL tests with regard to time-saving
potential. Various test configurations are generated using MCS. The average duration
of failure-censored tests is discussed by Hsieh [32]. The expected test time values are
calculated and compared using a binomial distribution. This means that the time benefits of
failure-censored tests, which depend on the Weibull shape parameter, the sample size, and
the censoring proportion, can be worked out. Tsai et al. [33] evaluate failure-censored tests
under limited test infrastructure. The investigated influencing variables are the sample
size, censoring proportion, number of sequential tests, and the acceptance probability of an
inspection lot on the basis of a failure distribution specified as already known.

1.3. Research Gaps

Based on the preceding discussion, it can be concluded that more work remains to
be carried out for the optimization of individual EoL and SR test strategies. In existing
approaches, the focus is often on one target variable for a single test type. A metric and a
procedure for planning reliability demonstration tests with consideration of all available
test types and boundary conditions in the required frequentist manner does not yet exist.
The research gaps can be thus summarizes as follows:

• A metric for objectively assessing reliability tests based solely on their ability to
demonstrate the frequentist reliability target must be established;

• A holistic approach to assessing all possible reliability tests needs to be developed;
• A procedure for efficient reliability demonstration test planning considering all possi-

ble reliability tests needs to be worked out;
• The calculation effort involved in reliability test planning needs to be reduced.

These gaps are addressed and sequentially worked out in the rest of this manuscript.

1.4. Outline

The manuscript is organized as follows. First, the Probability of Test Success is intro-
duced as the statistical power of a reliability demonstration test. The necessary hypotheses
are formulated, mathematically defined, and illustrated. In Section 3, calculation methods
for the Probability of Test Success are established. Here, four methods are introduced.
The general method is capable of calculating the Probability of Test Success in all possible
scenarios. It can easily be adapted thanks to the Bootstrap approach used here. The analytic
method for SR tests enables a very fast and easily implementable calculation for failure-free
tests, whereas the analytic and approximate calculation method for failure-based tests al-
lows for an equally quick calculation of the Probability of Test Success of failure-based tests
using the asymptotic properties of several statistics. Additionally, a calculation method
which does not rely on the concept of the statistical power, and instead simulates the testing
scheme, is explained. The advantages of these methods are worked out and compared
to each other in Section 4. In order to illustrate the use and effect of the concept and the
procedure for test planning of reliability demonstration tests, Section 5 uses a case study to
demonstrate the holistic view one is able to obtain by employing the Probability of Test
Success. This is additionally illustrated by the example of the monetary aspects of the
case study, which concerns a high-voltage battery. Section 6 discusses the major work,
contributions, challenges, and results of the presented approach and concludes the findings
with recommendations for future works.
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2. Probability of Test Success

Product development, with all its calculations and the design of the product itself,
should ensure both the actual fulfillment of the required functions and the reliability
requirements under the corresponding field conditions [10,34]. Without evidence, the re-
quirement cannot be regarded as fulfilled, whereas a hypothesis about the non-fulfillment
can be established. This hypothesis must be either rejected or accepted by conducting a
reliability test. Therefore, a reliability demonstration test can be regarded as a hypoth-
esis test. The reliability requirement is formulated as a required lifetime with a certain
reliability and confidence level. The estimated lifetime quantile of the test, tRr , at the
required reliability, Rr, has to be greater than or equal to the required life quantile, tr. As a
statistical test is only able to provide evidence towards the rejection of a hypothesis that
states the absence of a certain phenomenon of interest [35–37], the null hypothesis, H0,
represents the non-fulfillment of the reliability requirement and is to be rejected. Because
the power of the test corresponds to the detection of the fulfillment of the requirement,
the alternative hypothesis, H1, represents the reliability requirement in terms of the lifetime.
Therefore, the hypotheses to be used in a reliability demonstration test are defined as the
following [38–41]:

H0 : tRr < tr (1)

H1 : tRr ≥ tr (2)

As a fulfillment of the reliability requirement cannot be assumed without evidence of
a proper demonstration by means of a successful test, the very common terms of producer
risk and consumer risk in quality engineering [42–44] are not applicable here in the classical
sense of type I and type II error [37,40]; these terms are only meaningful if a manufacturing
issue is at hand. For example, testing of the production parameters of a production line
always endeavors to avoid deviations and effects from the specified parameter space.
However, the observed effect of interest in a reliability demonstration test is the lifetime,
and therefore, the desired effect.

The significance level at which the null hypothesis is to be rejected is determined
by the permitted type I error, α, which is the probability for the null hypothesis to be
rejected even though the null hypothesis actually holds true. The confidence level, C,
of a reliability test corresponds to the complement of the permitted significance level, α,
as it describes the probability that the reliability test rightly accepts the null hypothesis
when the reliability requirement (tr, Rr, Cr) is actually not met by the product according
to the test data. Therefore, the required confidence level, Cr, is able to assess and ensure
that the obtained reliability statement is indeed true. As a great variety of test plans are
available to obtain a reliability statement, the problem of choosing the correct and most
promising reliability test strategy arises. In order to assess the different test strategies,
an additional assessment criterion is needed. In contrast to the approach of hypothesis tests,
reliability tests do not generally consider the type II error, which describes the probability
β that the null hypothesis H0 is wrongly accepted. The type II error depends on the
sample size, the effect size (the actual value of the lifetime quantile) and failure distribution,
the sampling variance, and the desired significance level. The complement of the type II
error, β, is termed the statistical power of the test, and describes the probability that the test
correctly rejects the null hypothesis for a certain effect size [35]. In the context of reliability
test planning, this power describes the probability of a test demonstrating the reliability
requirement. As the hypothesis of reliability demonstration tests stay the same, as defined
in (1) and (2), the statistical power of a reliability demonstration test is called the Probability
of Test Success, Pts. Therefore, merely considering a confidence level (1− α) in reliability
test planning is not sufficient, as the analysis of the applicability of the test (1− β) to the
individual scenario is neglected [38–40,45–47]. Because the power of a test, and therefore
the Probability of Test Success, has to be calculated for a specific effect size [35], and because
the probability of detecting an effect changes with a change in the effect size, a measure of
the effect size has to be established for reliability tests. For this purpose, the safety distance,
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s, of the product is used, as introduced by Dazer et al. [46]. The safety distance describes the
distance of the required lifetime, tr, to the actual lifetime of the product, tp, in accordance
with prior knowledge about the failure distribution, and is defined as follows:

s ≡ 1− tr

tp
(3)

where tp is the lifetime with the required reliability in accordance with the prior knowledge
and tr is the required lifetime at the required reliability. The safety distance, s, is equal to
zero if the prior knowledge states that the required lifetime is equal to the actual service
life of the product. Using this metric, the effect size, ∆, can be formulated as follows:

∆ ≡ tp − tr = s · tp (4)

In order to calculate the confidence level, C, as well as the Pts, the distributions of the
test statistic under validity of the null and the alternative hypothesis must be obtained.
Using the safety distance from (3) as well as the effect size from (4), the test statistic, τ, of
reliability demonstration tests is defined as

τ ≡ tRr − tr. (5)

This is because it measures the distance from the lifetime quantile of the test to the
expectation of it under validity of the null hypothesis (τ = 0 for tRr = tr) and the prior
knowledge about the failure distribution.

The null distribution fH0(τ) and alternative distribution fH1(τ) of the test statistic
are defined by the prior knowledge of the failure distribution and the sampling scheme
of the test. Regarding this approach, it can be concluded that prior knowledge of the
failure distribution is indispensable for statistically profound planning of reliability tests,
as the actual effect size of the product is determined by this information. The distribution
of the test statistic under validity of the alternative hypothesis (alternative distribution
fH1(τ)) can be obtained by shifting the confidence distribution [48] of the calculated test
statistic under H1 by the required lifetime, tr. The confidence distribution is dependent
on the sample size and the test to be analyzed as well as on the failure distribution,
and can be calculated by means of an MCS and a maximum likelihood estimation (MLE),
for example. The distribution of the test statistic under validity of the null hypothesis (null
distribution fH0(τ)) can be obtained through the same procedure, although in contrast
with the alternative distribution it must be calculated via the failure distribution, which is
valid under H0; therefore, s = 0 (effect size of zero, ∆ = 0). Where a Weibull distribution
is concerned, the shape parameter should be kept the same in order to maintain the
characteristic of the failure mode at hand (see [10]), whereas the scale parameter should be
adjusted accordingly. Taking the null distribution fH0(τ), the significant effect size, ∆crit,
can be calculated in accordance with the required confidence, Cr. Then, the alternative
distribution fH1(τ) provides the Probability of Test Success Pts, that is, the statistical power
of the test type to be analyzed. The required equations are as follows:

C = 1− α =
∫ ∆crit

−∞
fH0(τ)dτ (6)

Pts ≡ 1− β =
∫ +∞

∆crit

fH1(τ)dτ (7)

The distributions can be pdfs or probability mass functions (pmfs) if an MCS is used
to obtain them. Therefore, the Probability of Test Success Pts is defined via (1)–(7).

The dependencies between the hypotheses, the confidence level, and the Pts are shown
in Table 1, and the two distributions of (4) and (5) are shown in Figure 1 alongside the
relevant parameters.
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Table 1. Interpretationof Confidence Level, Probability of Test Success, and Hypotheses in the context
of Reliability Demonstration Testing.

Null
hypothesis H0 : tRr < tr

The reliability requirement is
not met

Alternative
hypothesis H1 : tRr ≥ tr

The reliability requirement is
met

Confidence
level C = 1− α

Probability of correctly
accepting H0

Probability of the reliability
statement of the test
to be correct

Probability of
Test Success Pts = 1− β

Probability of correctly
accepting H1

Probability of the test to
be successful in
demonstrating the reliability
requirement

0 ∆crit ∆

fH0

fH1

Accept H0 Reject H0

C = 1− α

Pts = 1− β

τ = tRr − tr

f

Figure 1. Null distribution fH0 , alternative distribution fH1 , confidence level C, and Probability of
Test Success Pts as functions of the test statistic, τ = tRr − tr.

3. Calculation of the Probability of Test Success

In order to calculate the Pts for the specific reliability test configuration at hand,
the distributions of the test statistic, τ, under H0 and H1 need to be calculated, as do the
two integrals of (6) and (7). Four different methods are presented here:

A. A general calculation method
B. An analytic and exact calculation method for SR tests
C. An analytic and approximate calculation method for failure-based tests
D. A calculation method using test simulation.

The general calculation method uses a bootstrap approach and enables the calculation
of Pts for all possible test scenarios in the desired accuracy. The analytic and exact calculation
for SR tests makes use of the binomial approach of the SR test. The approximate method
for failure-based tests allows the Pts for EoL tests to be analytically calculated using the
asymptotic properties of the sample quantile and the MLE. The calculation method, which
simulates the reliability test, abstains from the hypothesis testing framework and solely
relies on the law of large numbers.

3.1. General Calculation Procedure

Due to the possibly very complex sampling schemes and the great variety among
reliability tests and their configurations, any general calculation procedure must be very
flexible. In order to guarantee such flexibility, a bootstrap [49] approach is used here, as it
does not require analytical effort or equation solving prior to the actual calculation taking
place. The bootstrap approach is used to estimate the sampling distributions of (6) and
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(7) from Figure 1. Because fH0 and fH1 are obtained in empirical form from the bootstrap
iterations and used in a parameter-free way, the variance and the entire shape and all of the
statistical moments [10,50] of the distributions are captured. Therefore, no assumption as
to the distribution type has to be made.

3.1.1. General Calculation for Failure-Based Tests

For failure-based tests, such as EoL tests or censored EoL tests, the first step of the
bootstrap is to draw n pseudo-random failure times from the failure distribution F(t)
available from the prior knowledge. The sample size n and the sampling behavior of
these failure times must be the same as the reliability test for which Pts is to be calculated.
If censoring of the failure times is prevalent in the test, it must be reflected here in the
same way. The failure distribution F̂(t) of this bootstrap sample is then estimated by, e.g.,
a maximum likelihood estimation (MLE) [51,52], and the lifetime at the required reliability
t̂Rr is calculated. Because the failure distribution of the prior knowledge determines the
effect size ∆ and is linked to the alternative hypothesis, H1 (if s > 0), subtracting the
required lifetime tr from this value yields a value of the test statistic under validity of H1
as follows:

τ̂H1 = t̂Rr − tr = F̂−1(1− Rr)− tr (8)

The test statistic under validity of the null hypothesis H0 is obtained in the same way;
however, the failure distribution has to follow H0, which means that the safety distance
must be negative or equal to zero (s ≤ 0). If the failure distribution under H0 is known
and satisfies s ≤ 0, it should be used. However, in most practical applications, only prior
knowledge about the products’ performance is known, which corresponds to H1. In order
obtain the failure distribution such that s = 0, which translates to tp = tr, the failure times of
F(t) can be multiplied by (1− s). This multiplicative transformation ensures a preservation
of the shape of the failure distribution, F(t), which corresponds to the failure mechanism
itself. This is in accordance with the shape parameter of a Weibull distribution being tied to
the failure mechanism [10]. For the hypothesis test to work, the failure mechanism has to
stay the same. Using the already-drawn bootstrap samples of t̂Rr from F(t), the following
equation yields the test statistic under validity of the null hypothesis, H0:

τ̂H0 = (1− s) t̂Rr − tr = tr ·
(

F̂−1(1− Rr)

F−1(1− Rr)
− 1
)

(9)

where the value of s with tp calculated as tp = F−1(1− Rr) of the prior knowledge is
used. Multiple iterations of sampling from the failure distribution of the prior knowledge,
estimating t̂Rr , and transforming the values to obtain the distributions of τ̂H1 and τ̂H0 enable
to use the law of large numbers [53] for calculating the integrals of (6) and (7). The value of
∆crit of (6) is calculated by

Cr
!
=

Number of τ̂H0 ≤ ∆crit

Total number of iterations
. (10)

Using the calculated value of ∆crit, the Pts of failure-based tests can be calculated using

Pts =
Number of τ̂H1 ≥ ∆crit

Total number of iterations
. (11)

Because the location of the distributions of the obtained test statistics, τ̂H0 and τ̂H1 ,
are tied to the hypothesis (s ≤ 0 and s > 0) and are eventually subject to bias errors due
to the estimator of the quantiles (e.g., MLE bias), the two distributions are shifted such
that median(τ̂H0) = 0 and median(τ̂H1) = tp − tr. In this way, the bootstrap procedure
only estimates the variance and shape of the sampling distributions. In order to calculate
the Pts of a censored EoL test, the samples drawn during the bootstrap must be censored
accordingly. If, e.g., an MLE is used for the estimation of the failure distribution of the
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bootstrap sample, the censoring can be accounted for. The general procedure for calculating
the Pts of an EoL test is shown in Figure 2. In this procedure, the number of iterations
should be kept as high as possible, as the results become more accurate with higher iteration
numbers. However, more iterations equal higher computational effort, which is why 10,000
iterations should be sufficient for most applications. Ideally, for each use case a convergence
analysis can be made in which the number of iterations in which a sufficient calculation
accuracy is achieved can be examined, cf. Section 4.1.

Prior knowledge:
failure distribution F(t)

Sampling of n pseudo-random
failure times ti using F(t)
and censor accordingly

if necessary

Estimate failure
distribution F̂(t) of ti

Calculate test statistic τ̂ under
validity of H0 and H1 using F̂(t):
τ̂H0 = (1− s) F̂−1(1− Rr)− tr
τ̂H1 = F̂−1(1− Rr)− tr

Enough estimates
of τ̂H0 and τ̂H1 ?

Calculate ∆crit using τ̂H0 and Cr

Calculate Pts using τ̂H1 and ∆crit

No

It
er

at
e

Yes

Figure 2. General procedure for calculating the Probability of Test Success, Pts, of an EoL test.

3.1.2. General Calculation for the Success Run Test

For calculating the Pts for SR tests the procedure is much simpler, as only failures
have to be counted in order to attest a success. Using the same bootstrap samples drawn
from F(t), the Pts of an SR test with a maximum of k failures allowed during testing is
calculated by

Pts =
Number of bootstrap samples with κ ≤ k

Total number of iterations
(12)

with κ being the number of failures occurring in one sample.

3.2. Exact Calculation for the Success Run Test

While the aforementioned procedure for calculating Pts can be used for all test types,
the SR test enables an exact calculation in a closed form and no bootstrap procedure is
required. As an SR test does not yield an estimation of the lifetime, rather, a confidence
distribution of the reliability at the required lifetime tr in the form of a binomial distribution,
the hypothesis in (1) and (2) can be reformulated as follows:

H0 : R(tr) < Rr(tr) (13)
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H1 : R(tr) ≥ Rr(tr) (14)

Here, the demonstrated reliability, R(tr), at the required lifetime, tr, is the deciding value
for a successful demonstration (H1) or a failed one (H0). With a sample size n of the SR test,
the achieved confidence level C of the required reliability Rr can be calculated using the
following binomial distribution [10]:

C = 1−
k

∑
i=0

(
n
i

)
· (Rr)

n−i · (1− Rr)
i (15)

That is, if during the test time equal to the required lifetime tr a maximum of k speci-
mens fail. The binomial approach assumes that the parameter of the binomial distribution’s
success rate is equal to the complement of the required reliability, Rr, which corresponds
to the null hypothesis of (13) (marginal case of s = 0). Analogous to (15) as well as to
the integrals of (6) and (7), the Pts of an SR test can be calculated analytically using the
binomial distribution:

Pts =
k

∑
i=0

(
n
i

)
·
(

Rp
)n−i ·

(
1− Rp

)i (16)

Instead of the required reliability, the reliability at the required lifetime stemming from
prior knowledge Rp(tr) = 1− F(tr) is used as the complement of the success rate of the
binomial distribution. If Rp(tr) > Rr(tr), this corresponds to the alternative hypothesis
of (14). Due to the relationship between the binomial distribution and the beta distribution
(see e.g., [54]), Equations (15) and (16) can be written in terms of the beta distributions as
follows:

C =
∫ 1

Rr

Rn−k−1 · (1− R)k

β(n− k, k + 1)
dR (17)

Pts =
∫ Rp

0

Rn−k−1 · (1− R)k

β(n− k, k + 1)
dR (18)

where β(A, B) is the Euler beta function [55] and the resulting beta distributions both
have the parameters A = n− k and B = k + 1, as the resulting confidence distribution
of the SR test is determined only by the number of surviving n − k and the number of
failing specimens k. Because it is the same distribution, it is immediately apparent that Pts
is the complement of the confidence as the product’s reliability approaches the required
level (Pts → 1− C as Rp → Rr or s → 0). When planning the SR test, (15) is used to
calculate the required sample size to meet the reliability requirement; hence, the sample
size and the resulting distribution of reliability (beta distribution in (17) and (18)) are
fixed by design. Because of this, the SR test can only achieve acceptable values for Pts
(e.g., Pts >> 50%) if the product is over-sized to a great extent in terms of its reliability
performance. The relevant distributions (see (17) and (18)) and parameters are shown in
Figure 3.

Pts = 1− β

C = 1− α

Rr Rp 1
R

f

Figure 3. Beta distribution of an SR test and respective integrals of the confidence level, C, and the
Probability of Test Success, Pts.
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In order to make use of an accelerated SR test and a test time other than the required
lifetime, Equations (17) and (18) can be extended by an acceleration factor r and a lifetime
ratio LR = ttest

tr
(see [10]), as follows:

g(R) = R∑n−k
i=1 (ri LR,i)

b
·

k

∏
j=1

(
1− R(rj LR,j)

b
)

(19)

C =
∫ 1

Rr

g(R)∫ 1
0 g(R)dR

dR (20)

Pts =
∫ Rp

0

g(R)∫ 1
0 g(R)dR

dR (21)

The above makes use of an assumed Weibull distribution in which the shape parameter
b is used to calculate the reliability at tr for the specimen with a different test time ttest.
The used integrands in (20) and (21) are no longer beta or binomial distributions, which is
due to the missing exponent of the product on the right hand side of (19). However, they
can be evaluated using numerical methods.

3.3. Approximate Calculation for Failure-Based Tests

The general method for calculating Pts using the bootstrap approach can become time-
and resource-consuming if several different tests need to be analyzed and high accuracy is
to be assured by a high iteration number. In order to enable a fast way of calculating Pts
for failure-based tests (EoL test) in a way that is effortless to implement, an approximate
calculation can be sufficient.

To obtain the distributions of τH0 and τH1 without an MCS or bootstrap, the central
limit theorem (CLT) [56,57] can be used. Several statistical phenomena are normally dis-
tributed if the sample size is very large (n → ∞). If the sample size is finite, the normal
distribution can nonetheless be used as a rough approximation. Using the CLT, the distri-
bution of the sample quantile of a known distribution F(t) is normally distributed with
mean µ and standard deviation σ, as follows [57,58]:

µ = F−1(q) (22)

σ =

√
q · (1− q)

n · f (F−1(q))2 (23)

where q is the proportion of the quantile, F−1(q) is the inverse of F(t), f (t) is the pdf of
F(t), and n the sample size. To abbreviate (22) and (23), a normally distributed variable t
can be written as t ∼ N (µ, σ). Using the test statistic from (5) and the asymptotic behavior
from (22) and (23), the approximated distributions τH0 and τH1 are the following normal
distributions:

τH0 ∼ N
(

0,

√
Rr · (1− Rr)

n · f0(tr)2

)
(24)

τH1 ∼ N
(

tp − tr,

√
Rr · (1− Rr)

n · f
(
tp
)2

)
(25)

with f0(t) as the shifted pdf of the failure distribution of prior knowledge f (t), such that it
is valid under H0 and tp = F−1(1− Rr). Where a Weibull distribution is concerned as the
failure distribution of prior knowledge F(t) with scale parameter T and shape parameter b,
the scale parameter of f0(t) can be calculated as

T0 = (1− s) T =
tr

tp
T (26)
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while the shape parameter stays the same (b0 = b). Using the CLT, (24) and (25), the Proba-
bility of Test Success Pts of an EoL test, if the lifetime quantile is determined by the empiric
sample quantile, can be calculated approximately by

Pts ≈ 1−Φ

(
Φ−1

(
Cr; 0,

√
Rr · (1− Rr)

n · f0(tr)2

)
; tp − tr,

√
Rr · (1− Rr)

n · f (tp)2

)
(27)

with Φ(x; µ, σ) being the cumulative distribution function (cdf) of the normal distribution
at the value x with the parameters µ and σ. The inverse of the cdf of the normal distribution
is Φ−1(q; µ, σ).

The approximation of Pts uses the quantile of the sample instead of the quantile one
would obtain using a distribution estimation. If a Weibull distribution and an MLE fit are
concerned, a different approximation can be derived using the CLT and the likelihood,
as well as the variance–covariance matrix together with a Taylor series expansion. Therefore,
the Pts of the most common censored or uncensored EoL tests for Weibull distributions
using an MLE estimation can be approximately calculated without the need for an MCS or
bootstrap approach. The log-likelihood Λ of the two-parameter Weibull distribution is [8]

Λ(T, b) = (n−m)(ln(b)− b ln(T)) +
n−m

∑
i=1

(
(b− 1) ln(ti)−

(
ti
T

)b
)
−

m

∑
j=1

( tj

T

)b
(28)

with n−m uncensored failure times ti and m right-censored failure times tj. The likelihood
can be extended for left-censored or truncated as well as interval-censored failure times.
The variance–covariance matrix V using (28) is the inverse of the Fisher information matrix,
I [8]. Because I is symmetric and positive definite, its inverse and the matrix V can be
calculated using

V =

[
Var(T) Cov(T, b)

Cov(b, T) Var(b)

]
= I−1 =


− ∂2Λ

∂T2 − ∂2Λ
∂T∂b

− ∂2Λ
∂b∂T

− ∂2Λ
∂b2


−1

=
1

det(I)


− ∂2Λ

∂b2
∂2Λ
∂T∂b

∂2Λ
∂b∂T

− ∂2Λ
∂T2



=
1

∂2Λ
∂T2

∂2Λ
∂b2 −

(
∂2Λ
∂T∂b

)2


− ∂2Λ

∂b2
∂2Λ
∂T∂b

∂2Λ
∂b∂T

− ∂2Λ
∂T2

 (29)

with

∂2Λ
∂T2 =

b
T2

(
n−m− (b + 1)

n

∑
i=1

(
ti
T

)b
)

(30)

∂2Λ
∂b2 =

m− n
b2 −

n−m

∑
i=1

(
ln
(

ti
T

))2
·
(

ti
T

)b
+

m

∑
j=1

(
ln
( tj

T

))2
·
( tj

T

)b
(31)

∂2Λ
∂T∂b

=
∂2Λ
∂b∂T

=
m− n

T
+

1
T

n

∑
i=1

(
1 + b ln

(
ti
T

))
·
(

ti
T

)b
(32)

and Var(·) and Cov(·, ·) being the variance and covariance, respectively. The determinant
of a matrix is det(·). The summation in (30) and (32) is over both the uncensored failure
times ti and the censored failure times tj. Only a single summation index i is used.
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Using a linear Taylor series expansion [8,59], the variance of the MLE of the quantile
function for the Weibull distribution tq = T (−ln(1− q))1/b can be approximated by

Var(tq) =

(
∂tq

∂T

)2

Var(T) +
(

∂tq

∂b

)2

Var(b) + 2
∂tq

∂T
∂tq

∂b
Cov(T, b)

= (−ln(1− q))2/b Var(T) +
T2

b4 ln(−ln(1− q))2(−ln(1− q))2/b Var(b)

− 2T
b2 ln(−ln(1− q))(−ln(1− q))2/b Cov(T, b). (33)

According to the asymptotic behavior of the MLE and the CLT under certain regularity
conditions [8], the variable tq approximately follows a normal distribution; hence,

tq ∼ N
(

T(−ln(1− q))1/b,
√

Var(tq)
)

. (34)

As no bootstrap and no MCS take place, the failure times in (30)–(32) can be calculated
using the Weibull failure distribution F(t) of the prior knowledge. Using order statistics [54],
the median of each failure time as a function of the sample size is

ti = F−1
(

F−1
beta(0.5; i, n− i + 1)

)
(35)

with Fbeta(q; A, B) being the quantile function (inverse) of the beta distribution for quantile
q and parameters A and B. The approximation of the median of the beta distribution
of Benard [60], commonly used in rank regression [10], can be used here for a simpler
implementation; hence, for a Weibull distribution with parameters T and b from prior
knowledge,

ti ≈ T ·
(
−ln

(
1− i− 0.3

n + 0.4

))1/b
∀i ∈ [1, n]. (36)

Censored failure times can be generated using (35) or (36) and the corresponding
censoring scheme. The established distribution of the sample quantile using the Weibull
distribution of prior knowledge in (34) corresponds to the alternative hypothesis H1 of (2).
Therefore, the approximated distribution of the quantile tRr,H1 under the validity of the
alternative hypothesis is

tRr,H1 ∼ N
(

T(−ln(Rr))
1/b, σH1

)
(37)

with

σH1 =

(
(−ln(Rr))

2/bVar(T) +
T2

b4 ln(−ln(Rr))
2(−ln(Rr))

2/bVar(b)

− 2T2

b2 ln(−ln(Rr))(−ln(Rr))
2/bCov(T, b)

)1/2

(38)

using (29)–(32) with the parameters of the Weibull distribution from the prior knowledge as
well as the failure times of (35) or (36) and q = 1−Rr in (33). The distribution of the quantile
tRr,H0 under the validity of the null hypothesis has to use the shifted failure distribution
with scale parameter T0 of (26) and the calculated failure times using this shifted failure
distribution and (35) or (36); accordingly,

tRr,H0 ∼ N
(
tr, σH0

)
(39)
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with

σH0 =

(
(−ln(Rr))

2/bVar(T0) +
T2

0
b4 ln(−ln(Rr))

2(−ln(Rr))
2/bVar(b)

−
2T2

0
b2 ln(−ln(Rr))(−ln(Rr))

2/bCov(T0, b)
)1/2

(40)

where Var(T0, b) and Cov(T0, b) do not correspond to a different variable. Instead, (29) is
used at the corresponding value of T0 for T. Using these equations (from (37) to (40)), the Pts
of a right-censored or uncensored EoL test in which the lifetime quantile is determined by
distribution estimation via MLE can be calculated approximately by

Pts ≈ 1−Φ
(

Φ−1
(

Cr; tr, σH0

)
; T(−ln(Rr))

1/b, σH1

)
. (41)

The approximations of (27) and (41) are approximate in several ways: first, (27) and (41)
approximate the desired lifetime quantile distribution via a normal distribution, which does
not hold for small sample sizes; second, the failure times used in (41) are approximated
using order statistics in addition to the Benard approximation to the median of the beta
distribution. However, the approximate calculations can be implemented effortlessly, as
even most spreadsheet programs of the popular operating systems of personal computers
have implementations of the normal distribution. The approximations are of benefit in cases
where several test scenarios are required or dependencies over a large range of values need
to be found. If the feasible space of test scenarios is narrowed down using the approximate
calculation, the more accurate general method can be used to identify the optimal test.

3.4. Calculation by Test Simulation

To ensure proper reflection of the large possible number of correlations and effects
in a test that is actually carried out and evaluated following test planning, it is possible
to use those methods for test evaluation and calculation of confidence bounds which are
used in the actual test. For this purpose, the hypothesis-testing concepts can be left aside
in favor of the MCS approach of Dazer et al. [45,46,61], which relies solely on the law of
large numbers. The procedure is as follows: draw pseudo-random failure times to generate
samples according to the sample behavior of the test and prior knowledge; estimate the
failure distribution and confidence level using this sample along with the methods which
are actually used later on; and check whether the requirement is met. By iterating multiple
times, Pts can be calculated via [46]

Pts =
Number of successful simulated tests

Total number of simulated tests
. (42)

The idea is to use the methods of test evaluation which are used on the actual test later
on. No constructs or alterations for a hypothesis-testing approach are needed. The very
popular Fisher and likelihood ratio confidence bounds [8,10] can be used here. However,
there may be drawbacks in terms of accuracy due to a high number of MCS iterations and
possible estimation bias amplification.

4. Comparison of the Calculation Methods for the Probability of Test Success

The presented methods for calculating Pts perform differently, and they can each be
beneficial in different scenarios. In order to compare them and work out the differences,
several values of Pts are calculated. However, a comprehensive and holistic view can only
be obtained through an extensive parameter study, which is not the focus here. The methods
are compared using the SR test, as well as the uncensored and censored EoL test.
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4.1. Comparison Using Success Run Tests

For calculating the Pts of an SR test, the general method, the exact method, and the
test simulation method can be used. Due to the lack of an MLE and confidence level
estimation, the general calculation method coincides with the method of test simulation.
As no MLE takes place during the SR test, no influence of an estimation method is expected
and the general method converges to the exact method. This can be seen in Figure 4 for a
requirement of Rr = Cr = 90%.

102 103 104 105 106
0.8

0.82

0.84

0.86

0.88

Number of Iterations

P t
s

General method
Exact method

Figure 4. Pts of the SR test for Rr = Cr = 90%, tr = 0.2 (s = 0.577) and Weibull distributed failure
times with b = 3, T = 1. Calculated using the general method with different MCS iteration numbers
and the exact method.

The MCS of the general method converges to the exact method; 100,000 iterations en-
sures reasonable accuracy in this scenario with the prior knowledge as Weibull-distributed
failures, with b = 3 and T = 1 and no allowed failures for the lifetime requirement of
tr = 0.2 (s = 0.577). When scenarios using different prior knowledge and different require-
ments are analyzed, and when failures are allowed, similar behavior is shown, leading to
the conclusion that the exact method is to be preferred for calculating the Pts of an SR test.
In addition, the exact method is much more effortless to use, as no MCS iteration has to
take place.

4.2. Comparison Using Failure-Based Tests

For EoL tests, the following methods are used to calculate Pts:

• General method (General);
• Approximate method (Approximate);
• Test simulation method (Test sim.).

In Figure 5, Pts is calculated using the approximate method as well as the general
method for a parameter-free sample quantile estimation (sample q.) and a quantile estima-
tion via distribution estimation using MLE.

It can be seen that the general method and the approximate method (see (27)) show
very good agreement if parameter-free quantile estimation is used. On the other hand,
the approximation based on the MLE (see (41)) shows very good agreement with the general
method if the MLE is used for quantile estimation. Therefore, the approximation solely
based on the sample quantiles (27) is to be used if empirical sample quantile estimation
is used in the test. If the very common MLE is used for distribution parameter and
quantile estimation, the approximate approach in (41) should be used instead of (27).
The offset between the Pts of the sample quantile estimation and the MLE is due to the
nature of the estimation method. The MLE uses the information of all failure times, whereas
the sample quantile estimation primarily uses information about the number of failures.
In Figures 6–10, the Pts of the general method, the approximate method, and the test
simulation method is shown for the variables n, s, Rr, Cr, and b, respectively. Because MLE
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is used, Equation (41) is used for the approximate method. For each calculation, 100,000
iterations were performed for the bootstrap of the general method and the MCS of the test
simulation method.

101 102 103
0

0.2

0.4

0.6

0.8

1

Sample size n

P t
s

Approximate (MLE)
Approximate (sample q.)
General (MLE)
General (sample q.)

Figure 5. Pts of the EoL test for Rr = Cr = 90%, s = 0.1, and prior knowledge of b = 3. Calculated
for sample quantile estimation (sample q.) and MLE quantile estimation (MLE). Although the sample
size is to be an integer, the curves are interpolated to obtain a better understanding of the trajectory.
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Figure 6. Pts of the uncensored EoL test for Rr = Cr = 90%, s = 0.1 and prior knowledge of b = 3. All
three methods use the MLE. Although the sample size is to be an integer, the curves are interpolated
to obtain a better understanding of the trajectory.

The approximate method shows a very good fit to the values of the general calculation
method. However, the test simulation method using a Fisher confidence bound shows a
significant offset in respect of the other methods. In particular, with sample size n (see
Figure 6), an increase in Pts with smaller sample sizes for n < 20 can be seen. This is due to
the enhanced effect of the MLE bias, which causes the estimates of the Weibull parameters
to be noticeably biased in small samples [45]. However, for very large sample sizes the test
simulation method shows identical values of Pts compared to the general method for
n > 100. This seems to be a large enough sample size to remedy the bias. Additionally,
these matching values verify the approach following the hypothesis testing framework
and its calculation according to the general method and the approximate method. Looking
at the values of Pts with regard to the safety distance s in Figure 7, a similar behavior can
be seen. The general method shows conformity with the test simulation method for large
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safety distances (s > 0.4) and the approximate calculation shows a good fit. For a safety
distance of s = 0, which means the effect size equals zero (∆ = 0), the statistical power of
a test is the complement of the chosen confidence level. This translates to a value of Pts
equaling the complement of the required confidence, namely, Pts = 1− Cr for s = 0. This
can be seen in Figure 1 and (6) and (7), with both distributions fH0 and fH1 being the same.
Both the approximate method and the general method show this behavior and yield values
of Pts = 10% for s = 0, as Cr = 90% in Figure 7. Therefore, they are verified in this regard.
However, the test simulation method shows an offset, which is presumably again due to the
amplified bias of this method. The approximate method shows good conformity with the
general method with regard to the required reliability Rr; see Figure 8. The test simulation
method shows different behavior, with a nearly constant Pts. In Figure 9, the values of
Pts are shown with respect to the required confidence level Cr. Similar to the behavior
seen in Figure 8, the approximate method shows very good agreement with the general
method and the test simulation method shows a small offset. In Figure 10, the approximate
method shows good agreement with the Pts values of the general method with regard to
the Weibull shape parameter b of the prior knowledge. The test simulation method again
shows a significant offset.

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.4

0.6

0.8
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Safety distance s

P t
s

General
Approximate
Test sim. (Fisher)

Figure 7. Pts of the uncensored EoL test for Rr = Cr = 90%, n = 10, and prior knowledge of b = 3.
All three methods use the MLE.
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Figure 8. Pts of the uncensored EoL test for Cr = 90%, n = 10, s = 0.1, and prior knowledge of b = 3.
All three methods use the MLE.
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Figure 9. Pts of the uncensored EoL test for Rr = 90%, n = 10, s = 0.1, and prior knowledge of b = 3.
All three methods use the MLE.
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Figure 10. Pts of the uncensored EoL test for Rr = Cr = 90%, n = 10, and s = 0.2. The Weibull shape
parameter b of the prior knowledge is varied. All three methods use the MLE.

For a censored EoL test, the approximate method remains a very good approximation.
Figure 11 shows Pts with regard to sample size of the different methods for moderate
right-censoring of 30 % of the specimen. Although the test simulation method shows a
very similar curve of Pts, the values are much higher than the ones of the general and
approximate methods. Figure 12 shows the Pts of the methods with regard to the censoring
proportion for a sample size of n = 40.

The test simulation method shows a significant offset in censored EoL tests compared
to the general method. The approximate method shows very good conformity for almost
all censoring proportions here.
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Figure 11. Pts of a censored EoL test for Rr = Cr = 90%, s = 0.2, and prior knowledge of b = 3,
as well as a censoring of 30%.
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Figure 12. Pts of a censored EoL test for Rr = Cr = 90%, s = 0.2, and prior knowledge of b = 3,
as well as a variable censoring proportion of the sample size of n = 40.

4.3. Conclusion of the Comparison

From these comparisons, it can be concluded that the approximate calculation is a
good fit for most applications. If a precise calculation is desired, the general method should
be used, as the accuracy can be set as desired via the number of iterations. The approximate
method can be used for MLE and sample quantile estimation approximation. Both seem
to approximate very well, even for smaller sample sizes. The calculation using the test
simulation is plagued by the same disadvantages as the physical test evaluation methods.
Therefore, it should be investigated if a bias correction is of use in the individual case.
The values of Pts of censored EoL tests are best calculated using the general method.
However, even the approximate calculation shows very good results. The calculation
methods for the SR test shows a very strong advantage when using the exact method
instead of the general method. Consequently, the exact method should always be used
where an SR test is concerned. For SR tests, the general method and the test simulation
method coincide due to the lack of quantile estimation. These findings are summarized in
Table 2.
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Table 2. Summary of the Comparison of Methods of Calculating of the Probability of Test Success, Pts.

Calculation Method Key Findings

General method

• Applicable for all tests
•Most precise
•Most flexible
• Test costs and test time can be calculated
• High calculation effort due to bootstrap
• Though precise, calculation effort is unnecessary for SR tests
• Only an approximation

Approximate method
(only for EoL tests)

• Fastest calculation
• Simple to implement
• Easy to calculate
• Very good approximation for large sample sizes

(can replace general method)
• Good approximation for small sample sizes
• Good approximation for both censored and uncensored tests

Exact method
(only for SR tests)

• Exact, thus no approximation
• Very fast calculation
• Easiest to implement
• Should always be used for SR tests

Test simulation method

• Good for very large sample sizes
• Suffers from bias amplification
• Very good for SR tests (coincides with general method)
• Should only be used in special cases
• Not usable for strongly censored EoL tests

5. Case Study

The Probability of Test Success, Pts, enables objective assessment of different test
types and scenarios. In addition, it allows the reliability engineer to identify feasible
regions of test designs and enables an optimal test for reliability demonstration. In order
to demonstrate these benefits, a reliability demonstration test for a high-voltage battery of
a battery–electric vehicle is planned and explained here. The lifetime of the battery is the
accumulated energy throughput (ETP) for which a reliability requirement of Rr = 95%,
Cr = 90% and tr = 400 MWh is to be demonstrated. Because of the battery technology
and use case being a very recent development, no usable tests of prior product generations
can be used as prior knowledge. However, during research and development a simulation
model was established for the prediction of the ETP using the driving profiles of several
measurements in the field. Therefore, the simulation was able to yield an estimation of
the lifetime of the battery. The exemplary simulation results are taken from [62]. Using
the simulation model and a failure criterion of 80% state of health, the Weibull distributed
failure behavior of the battery can be found. The parameters are T = 596.37 MWh and
b = 9.598 (see Table 3). This failure distribution can be then used as prior knowledge for
the reliability demonstration test planning of the battery.

Table 3. Reliability Requirement and Prior Knowledge Stemming From the Simulation.

Requirement Prior Knowledge

Rr = 95%
Cr = 90%
tr = 400 MWh

T = 596.37 MWh
b = 9.598

→ s = 0.086

As a first step, the feasible region of test design is analyzed using the exact method of
the SR test as well as the approximate method for the EoL test. Because an MLE has to be
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used for test evaluation, the MLE is used for both the approximate method and the general
method. The Pts for the uncensored EoL test with regard to the sample size n is shown in
Figure 13.

3 101 102 2 · 102
0.2

0.4

0.6

0.8

1

Sample size n

P t
s

3 101 102 2 · 102

106

107
Te

st
co

st
in
e

Figure 13. Pts of the uncensored EoL test (bottom) and total test costs (top) for reliability demonstra-
tion of the battery with regard to sample size n, calculated using the approximate method.

For an adequate value of Pts = 80% of the EoL test, a specimen n ≈ 50 should be
used. The values of Pts in the right-censored EoL test for several sample sizes and censoring
proportions can be seen in Figure 14.
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Figure 14. Contour of the Pts of the right-censored EoL test for reliability demonstration of the battery
with regard to sample size n and censoring proportion, calculated using the approximate method.

A greater censoring proportion requires a larger sample size in order to reach a value
of Pts ≥ 80%. For a moderate censoring proportion of 10%, the required sample size is >50,
and for a censoring proportion of about 50%, the required sample size is >70. In order to
assess the benefit of censoring as well as the costs one test would generate, the median
of the total test costs can be calculated approximately using (36) and the sample size.
For demonstration purposes, we assume the cost of one specimen as EUR 2,000 and the
cost of testing one specimen as 400 EUR/MWh. The median of the total test costs of the
uncensored EoL test calculated using the approximation can be seen in Figure 13. The total
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test costs and the required sample size of the censored EoL test for a value of Pts = 80% are
shown in Figure 15 (type II censoring) and Figure 16 (type I censoring).
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Figure 15. Total test costs and required sample size n for the type II right-censored EoL test to achieve
a Probability of Test Success Pts = 80% for reliability demonstration of the battery with regard to
censoring proportion, calculated using the approximate method.
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Figure 16. Total test costs and required sample size n for the type I right-censored EoL test to achieve
a Probability of Test Success Pts = 80% for reliability demonstration of the battery with regard to
censoring proportion, calculated using the approximate method.

The censoring enables a maximum reduction in costs of about 21% for a fixed sample
size. However, stronger censoring results in lower values of Pts, which in turn result in
a higher required sample size, and thus higher test costs. The SR test without permitted
failures and no lifetime ratio does need n = 45 specimen to survive tr = 400 MWh in order
to demonstrate the requirement of Table 3 (using (15)). However, when using (16), the SR
test only yields a value of Pts = 37.8 %; therefore, it should not be used at all. The values of
Pts in an SR test using a lifetime ratio can be seen in Figure 17.



Appl. Sci. 2022, 12, 6190 23 of 27

100

101

102

103

R
eq
u
ir
ed

sa
m
p
le

si
ze

n

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
0

0.1

0.2

0.3

0.4

Lifetime ratio LR

P
ts

Figure 17. Pts of the SR test using a lifetime ratio for reliability demonstration of the battery and the
corresponding required sample size n.

The required sample size for SR tests using the lifetime ratio is calculated accordingly,
using (19) and (20). It can be seen that the SR test using a lifetime ratio reaches its maximum
value of Pts at 37.8 %. The required sample size increases exponentially for decreasing
values of Lr and quickly drops to 1 for LR > 1 due to the large shape parameter of the
Weibull distribution.

Using the information of the approximate calculations shown in Figures 13–16, the fea-
sible region for a value of Pts = 80 % for the EoL test in this scenario is a sample size between
n ≈ 45 and n ≈ 60. Therefore, the Pts of the uncensored EoL test is calculated using the
general method for sample sizes between 45 and 60. Censoring the EoL test does not yield
benefits here, as the cost of achieving the desired value of Pts = 80 % increases with the
increase in the censoring proportions; see Figures 15 and 16. A budget of EUR 13 million
is available for reliability demonstration; therefore, the test needs to be assessed in terms
of costs. The distribution of the costs can be calculated using the generated failure times
of the bootstrap approach in the general method. Therefore, the Pts of the EoL test can be
shown with regard to the test costs; see Figure 18.
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Figure 18. Pts of the uncensored EoL test with regard to the median of test costs, calculated using the
general method.

It can be seen that a sample size of n = 48 has Pts = 80.35 % and costs EUR 10.98 million
for the uncensored EoL test. Therefore, it is the most efficient test in terms of reliability
demonstration. Alternatively, in order to use the whole budget, an EoL test using n = 56
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samples yields an even greater value of Pts = 84.5 %, while costing EUR 12.81 million. Due
to the high value of the Weibull shape parameter of b = 9.6, the total test costs do not scatter
to a great extent for the uncensored EoL test with a standard deviation of σ = EUR 195,000
(n = 48) and σ = EUR 215,000 (n = 56). Here, the SR test is unsuitable due to a value of
Pts < 50 %, however, it costs significantly less than the EoL tests, with a total test cost of
EUR 7.29 million. Only through objective assessment using the Pts can the risk of a failing
test be acounted for in the decision-making process of reliability test planning. In 62 % of
cases, the EUR 7.29 million of the SR test would not suffice for reliability demonstration, as
failures would occur during testing.

6. Discussion and Conclusions

The estimation of the success rate of a reliability test is established and defined herein
as the Probability of Test Success. This enables consideration of the type II error in reliability
test planning and represents the statistical power held by a reliability test. Therefore, it
is an indispensable metric and tool for the planning of efficient reliability demonstration
tests. In addition to the general calculation method, which uses a bootstrap approach
and allows all reliability tests to be assessed, an approximate method is introduced. It
enables a fast and easy to implement calculation of most reliability demonstration tests,
such as uncensored and censored EoL, tests without the need for a Monte Carlo simulation.
The exact method for calculating the Pts of an SR test is the best method in all SR test
planning scenarios. In addition, a method for calculating Pts by test simulation is shown.
The comparison shows very good performance for both the general and approximate
methods. However, the performance of the test simulation method is subject to the flaws
of the estimation methods being used, and often does not agree with the general and the
approximate methods for small sample sizes. A case study demonstrates the use and
benefits for the planning process as well as the possibilities in terms of monetary decision
making in reliability demonstration test planning. The approximate method enables the
identification of the feasible test design region, while the general method allows precise
calculation and assessment in terms of the cost of the tests to be performed. It has been
shown that an objective assessment of reliability tests using the Pts is required for balanced
decision-making in reliability test planning. In principle, the approach can be applied
to all technical products. For example, in the case of structural mechanical failure of
brake calipers, chassis structures, and electronic components such as inverters as well as
vehicles, aircraft, ships, cable cars, elevators, rail vehicles, combustion engines, and much
more. Additional research could enable the concept for accelerated tests as well as test
planning for systems with multiple failure modes. The approach of using the MLE for
the approximate calculation as well as for the general calculation can be easily adapted to
incorporate additional parameters of a lifetime model for accelerated tests. Furthermore,
the uncertainty of the prior knowledge can be implemented into the concept in order to
account for uncertain prior knowledge, thereby ensuring more accurate estimates of the Pts.
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Abbreviations
The following abbreviations are used in this manuscript:

DOE Design of experiments
SR Success run
SD Sudden death
MCS Monte Carlo simulation
MTTF Mean time to failure
EoL End of life
MLE Maximum likelihood estimation
CLT Central limit theorem
ETP Accumulated energy throughput
pdf Probability density function
cdf Cumulative distribution function
pmf Probability mass function
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