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Summary

The objective of the work at hand is to develop an efficient methodology for simulating
the flame synthesis of particulates with fractal morphology using a sparse-Lagrangian
particle method. Flame synthesis involves precursor chemistry in the gas phase and ae-
rosol processes such as particulate formation, surface growth and agglomeration. Flame
synthesis for the production of particulates is widely used in the manufacturing indus-
try. For example, particulates with fractal morphology are used in the chemical industry
to produce dyes and pigments, in medical technology to produce pharmaceuticals, and
in the semiconductor industry to produce wafers. The continuously increasing deman-
ds with respect to fractal shape and to size (e.g. narrow size distributions of spherical
particulates) as well as on the chemical purity pose significant requirements for the ma-
nufacturing process. To meet these requirements, it is necessary to understand the for-
mation process. A fast and cost-effective way to gain insight into the thermophysical
processes involved in particulate formation is the use of numerical simulation techni-
ques, which help to make valid predictions for optimising the manufacturing process.
Currently, available simulation methods for the simulation of real problems of industrial
dimensions - usually found in reactive turbulent flows - require an enormous compu-
tational effort. In the present work, a sparse-Lagrangian stochastic particle method is
presented as a very efficient approach for the numerical simulation of aerosol dynamics.
Compared to conventional stochastic particle based approaches, this method achieves
qualitatively equivalent results with significantly less computational effort.

It is of utmost importance to validate the newly created simulation framework and
to prove the method to be capable of covering a wide range of possible applications. To
do so, the work starts with presenting the basic methodological and numerical princip-
les. This is followed by the presentation of the numerical treatment of reactive turbulent
flows and the modelling of aerosol processes. The presentation includes the description
of a very efficient sparse-Lagrangian stochastic particle method, the so-called generalised
form of the Multiple Mapping Conditioning (MMC) model. Additionally, the models for
describing the inception, size growth and agglomeration of particulates with fractal mor-
phology are explained in detail. In this work, the particle size distribution is described
using a sectional method, which is far more efficient than a direct Monte Carlo method
and more accurate than the common approach using a moment-based method. It is fur-
ther shown how the numerical simulation of aerosol dynamic processes can be coupled
with the generalised form of the MMC method.

In a first step, results are presented with respect to the simulation of the entire tur-
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Summary VI

bulent Sandia DME flame series, showing that the MMC method can correctly predict
trends with a single universal set of numerical parameters for a flame without particu-
lates. This is worth emphasising, as many good results in the field of turbulent reactive
flame simulation can often only be achieved if the numerical parameters are adapted to
the flame configuration under investigation. Simulation results obtained with a newly
developed stochastic particle mixing time scale model show that excellent prediction ac-
curacies of the implemented numerical methods can be achieved for both conditional and
unconditional averages.

Second, a discussion of the results includes a quantification of the errors that would
arise if the sub-grid contributions of aerosol processes were not taken into account, show-
ing that they are by no means negligible. This quantification was performed on the basis
of a numerical study of a jet flow in which nucleation and condensation of small liquid
droplets occur due to the mixing of a hot jet with a cold co-flow. Here it is shown that
interactions between turbulence and nucleation can modify averaged nucleation rates by
more than 250%.

This work culminates in the discussion of simulation results of a flame configuration,
which was developed especially for this investigation, where a turbulent cold jet doped
with silane issues into a hot oxygen-containing co-flow stream. The numerical data are
compared with experimentally obtained optical measurements. In order to extend the
range of operating conditions, various boundary conditions such as the precursor do-
ping, the temperature of the co-flow stream and the Reynolds number of the jet were
varied both in the experiment and for the simulation, respectively. Thus, it is shown that
the application of a stochastic PDF model simulating the finite rate chemistry and aerosol
processes to a real laboratory-sized flame configuration using a sectional particulate size
distribution can reproduce the trends satisfactorily. A concluding discussion highlights
remaining uncertainties and points to a number of possible pathways of development for
future scientific investigations.



Zusammenfassung

Das Ziel der vorliegenden Arbeit ist die Entwicklung einer effizienten Methodik zur Si-
mulation der Flammensynthese von Partikeln mit fraktaler Morphologie unter Verwen-
dung einer dünn besetzten Lagrange-Partikelmethode. Die Flammensynthese umfasst
die Vorläuferchemie in der Gasphase und Aerosolprozesse wie Partikelbildung, Ober-
flächenwachstum und Agglomeration. Die Flammensynthese zur Herstellung von Parti-
keln ist in der Industrie weit verbreitet. So werden beispielsweise Partikel mit fraktaler
Morphologie in der chemischen Industrie zur Herstellung von Farbstoffen und Pigmen-
ten, in der Medizintechnik zur Herstellung von Pharmazeutika und in der Halbleiter-
industrie zur Herstellung von Wafern verwendet. Die ständig steigenden Anforderun-
gen in Hinblick auf die fraktale Form, Größe und chemische Reinheit stellen enorme
Anforderungen an den Herstellungsprozess. Um diese Anforderungen zu erfüllen, ist
es notwendig, den Entstehungsprozess zu verstehen. Eine schnelle und erschwingliche
Möglichkeit, Einblick in die thermophysikalischen Vorgänge bei der Partikelbildung zu
erhalten, ist der Einsatz numerischer Simulationsverfahren, die helfen, valide Vorhersa-
gen zur Optimierung des Herstellungsprozesses zu treffen. Mit den derzeit zur Verfü-
gung stehenden Simulationsverfahren zur Simulation von turbulenten Partikelbildungs-
prozessen sind für reale Probleme industrieller Dimensionen, die häufig in reaktiven tur-
bulenten Strömungen auftreten, nur mit enormem Rechenaufwand zu realisieren. In der
vorliegenden Arbeit wird ein dünn-besetztes, stochastisches Lagrange-Partikelverfahren
als eine effiziente Methode für die numerische Simulation der Aerosoldynamik vorge-
stellt. Im Vergleich zu konventionellen Ansätzen werden mit dieser Methode qualitativ
gleichwertige Ergebnisse bei deutlich geringerem Rechenaufwand erzielt.

Es ist von eminenter Bedeutung, das neu entwickelte Simulationsverfahren zu vali-
dieren und zu beweisen, dass die Methode in der Lage ist, ein breites Spektrum möglicher
Anwendungsbereiche abzudecken. Zunächst werden dazu die grundlegenden methodi-
schen und numerischen Prinzipien vorgestellt. Weiterhin werden die Modelle zur Model-
lierung von Aerosolprozessen und zur numerischen Behandlung von reaktiven turbulen-
ten Strömungen vorgestellt. Die Darstellung umfasst die Beschreibung einer sehr effizi-
enten dünn besetzten stochastischen Partikelmethode, der sogenannten verallgemeiner-
ten Form des Multiple Mapping Conditioning (MMC) Modells. Zusätzlich werden die
Modelle zur Beschreibung der Entstehung, des Größenwachstums und der Agglomerati-
on von Partikeln mit fraktaler Morphologie detailliert erläutert. In dieser Arbeit wird die
Partikelgrößenverteilung mit einer sektionalen Methode beschrieben, die weitaus effizi-
enter als eine direkte Monte-Carlo-Methode und genauer als der übliche Ansatz mittels
einer momentbasierten Methode ist. Es wird weiterhin gezeigt, wie diese Modelle mit
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Zusammenfassung VIII

der verallgemeinerten Form der MMC-Methode gekoppelt werden können.
In einem ersten Schritt werden Ergebnisse in Bezug auf die erste Simulation der ge-

samten turbulenten Sandia-DME-Flammenserie vorgestellt, die zeigen, dass die MMC-
Methode Trends mit einem einzigen allgemeingültigen Satz an numerischen Parametern
korrekt für eine Flamme ohne Partikel vorhersagen kann. Dies ist hervorzuheben, da
viele gute Ergebnisse im Bereich der Simulation turbulenter reaktiver Flammen bislang
nur dann erzielt werden konnten, wenn die numerischen Parameter an die untersuch-
te Flammenkonfiguration angepasst werden. Simulationsergebnisse, die mit einem neu
entwickelten stochastischen Partikelmischungszeitskalenmodell erzielt werden, zeigen,
dass die implementierten numerischen Methoden sowohl für bedingte als auch für un-
bedingte Mittelwerte eine ausgezeichnete Vorhersagegenauigkeit erreichen können.

Anschließend beinhaltet eine Diskussion der Ergebnisse eine Quantifizierung der
Fehler, die sich ergeben würden, wenn für die Aerosolprozesse die Beiträge unterhalb der
Filterweite nicht berücksichtigt würden, wodurch gezeigt werden kann, dass diese kei-
neswegs vernachlässigbar sind. Diese Quantifizierung konnte anhand einer numerischen
Studie einer Strahlströmung durchgeführt werden, in der es durch die Vermischung ei-
nes heißen Strahls mit einer kalten Hüllströmung zur Nukleation und Kondensation von
kleinen Flüssigkeitstropfen kommt. Hier wird gezeigt, dass Wechselwirkungen zwischen
Turbulenz und Nukleation die gemittelten Nukleationsraten um mehr als 250% variieren
lassen können.

In einem dritten Schritt werden Simulationsergebnisse einer speziell für diese Un-
tersuchung entwickelten Flammenkonfiguration diskutiert. Hier strömt ein turbulenter
kalter mit Silan versehener Freistrahl in einen heißen sauerstoffhaltigen Hüllstrom. Die
numerischen Daten werden mit experimentell gewonnenen optischen Meßwerten vergli-
chen. Verschiedene Randbedingungen, wie die Vorläuferkonzentration, die Temperatur
des Hüllstroms und die Reynoldszahl des Freistrahls, wurden sowohl im Experiment,
als auch für die Simulationen variiert, um den Bereich der Einflussfaktoren zu erweitern.
Die numerischen Ergebnisse liefern eine gute Übereinstimmung mit den gemessenen Si-
gnalen, und es wird gezeigt, dass die Anwendung eines stochastischen PDF-Modells,
das die Chemie und die Aerosolprozesse mit einer sektionalen Methode an einer realen
Flammenkonfiguration in Laborgröße simuliert, die Trends zufriedenstellend reprodu-
zieren kann. Eine abschließende Diskussion zeigt verbleibende Unsicherheiten auf und
weist auf eine Reihe möglicher Pfade der Entwicklung für zukünftige wissenschaftliche
Untersuchungen hin.
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f passive scalar e.g. mixture fraction [−]
gi gravitational acceleration in spatial direction i [m/s2]

h enthalpy [kJ/kg]
G volumetric growth rate [m3/s]
G LES filter function [1/m]

h0
f enthalpy of formation at standard conditions [kJ/kg]

hs sensible enthalpy [kJ/kg]
Jα
j diffusive flux of species α in spatial direction j [1/m2 s]

Jh
j diffusive flux of enthalpy in spatial direction j [1/m2 s]

Jsgs
j subgrid-scale scalar flux [kg/m2 s]

k f i rate coefficients of forward reaction [1/s]
kri rate coefficients of reverse reaction [1/s]
k turbulent kinetic energy [m2/s2]

kB Boltzmann constant [kJ/kg]
k f fractal prefactor [−]
ℓ0 integral length scale or turbulence macroscale [m]
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ℓλ Taylor microscale [m]

ℓK Kolmogorov microscale [m]

L characteristic width of the flow or macroscale [m]

m mass [kg]
M molar mass [kg/kmol]
n mole number [mol]
n volume based particulate size distribution function [−]
nd diameter based particulate size distribution function [1/m3]

Nsp total number of species [−]
Np number of primary particulates [−]
Ni particulate number density of particulates of size vi [1/m3]

Ṅ inception/nucleation rate [1/m3 s]
p pressure [Pa]
P̃ probability [−]
p pressure kg/m s2

q̇ heat release [kJ/s]
qϕ production/destruction of scalar [−]
Qr reaction rate [kmol/s]
Qα conditionally filtered mass fraction of species α [−]
Qh conditional enthalpy [J]
Ru universal gas constant [kJ/kmol K]

Rg radius of gyration [m]

Sij strain rate tensor [1/s]
t time [s]
tK Kolmogorov time scale [s]
T temperature [K]

u0 integral velocity scale [m/s]
uK Kolmogorov velocity scale [m/s]
ui velocity in spatial direction i [m/s]
v volume [m3]

ν′α,r stoichiometric coefficient of reactants for species α [−]
ν′′α,r stoichiometric coefficient of reactants for species α [−]
xα mole fraction of species α [−]
Yα mass fraction of species α [−]
Ze element mass fraction of an element e [−]
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Greek letters

∆ filter width [m]

δij Kronecker delta [−]
β temperature exponent of the Arrhenius law [−]
βij collision kernel [1/m3 s]
η mixture fraction sample space [−]
κ thermal conductivity of mixture [W/m K]

κ wave number [1/m]

λ heat diffusion coefficient [m2/s]
λ mean free path of molecules [m]

µ dynamic viscosity [Pa s]
µt eddy viscosity [Pa s]
ν kinematic viscosity [m2/s]
νt turbulent kinematic viscosity [m2/s]
χ scalar dissipation rate [1/s]
ξ mixture fraction [−]
ξ̃ filtered mixture fraction [−]
ρ density [kg/m3]

τE Eulerian mixing time scale [s]
τL Lagrangian mixing time scale [s]
τij viscous stress tensor [N/m2]

τ
sgs
ij subgrid-scale Reynolds stress [N/m2]

υF moles of fuel [−]
υO moles of oxidizer [−]
υP moles of products [−]
υ′αi stoichiometric coefficients of reactants side [−]
υ′′αi stoichiometric coefficients of products side [−]
ϕ, Φ scalar quantity [−]
ϕ scalar vector [−]
ψη fine-grained PDF [−]
ω̇α reaction rate of species α [kg/m3 s]
ω̇ϕ reaction rate of species or enthalpy source term [kg/m3 s], [kJ/m3 s]
Ω kernel function [−]
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Subscripts, Superscripts and Operators

(·)t turbulent property
(·)Fu fuel property
(·)Ox oxidiser property
(·)Pr product property
(·)0 reference property
(·)ref reference property
(·)p, (·)p property on the stochastic particle
(·)i, (·)j, (·)k property in spatial direction i, j, k
(·)α property related to species α

(·)tot property related to the total quantity
(·)′ unconditional fluctuation
(·)′′ density weighted fluctuation
(·)′′′ conditional fluctuation
(·)sgs, (·)sgs sub-grid scale quantity
(·)E, (·)E property related to the Eulerian scheme
(·)L, (·)L property related to the Lagrangian scheme
(·) time average
(̃·) Favre (density-weighed) filtered average
⟨ϕ|ψ⟩ quantity ϕ conditioned on quantity ψ

⟨·⟩ expectation or average

Dimensionless quantities

Le Lewis number
Re Reynolds number
Sc Schmidt number
Pr Prandtl number
Kn Knudsen number
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Chapter 1

Introduction

The formation of suspended particulates1 from the gas phase is widespread both
in nature and in industry. Examples of such processes are the nucleation of
droplets leading to the formation of, for example, raindrops or medical agents,
and the flame synthesis of solid particulates for industrial commodities such as
pigments, reinforcing materials, pharmaceuticals or surface coatings used in the
semiconductor industry [5]. Technical progress is expanding the range of applica-
tions for particulates enormously: They are used for the production of pharma-
ceuticals, detergents, composite materials and substances in the semiconductor
industry. In this context, the requirements on product quality, such as chemical
purity, optical properties and particulate morphology are becoming increasingly
important.

In addition to these intended production possibilities, there is also an unde-
sired formation of particulates, such as soot formation, which occurs during the
combustion process of fossil and synthetic fuels for power generation and in the
mobility sector. Several million tons of particulates are produced per year by the
energy sector [6]. In this context the World Health Organization (WHO) reports
over three million premature deaths due to particulates suspended into the atmo-
sphere [7]. Carbon dioxide is of course the main driver of global climate change,
but in addition, soot also contributes massively to the temperature rise [6]. Ad-
ditionally, soot is a very toxic substance for humans and animals as it causes
respiratory diseases. For these reasons, it is necessary to reduce the emission of
soot from combustion processes as much as possible.

For desired particulate formation and especially for the development of new
applications, it is important to achieve the transition from laboratory conditions
to industrial scale without affecting product quality. In the case of undesirable

1In order to avoid ambiguities, this study strictly distinguishes between particulates, which
represent the physical nanoparticles in the gas phase and stochastic particles, which are computa-
tional elements for solving the governing differential equations in the Lagrangian sense. In this
context, the term particulates is used uniformly for solid particulates and liquid droplets.

1
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particulate formation, it is equally important to understand the processes and
conditions under which they are formed so that it is possible to modify the pro-
cess to prevent or reduce their formation. These principles require a compre-
hensive understanding of the thermophysical processes involved in the produc-
tion and formation of organic or inorganic particulates. Besides the experimental
investigation of these processes, numerical simulation is an efficient and cost-
effective way to gain insight into the formation process. Accordingly, through
comparison with experimental data, the numerical simulation of aerosol pro-
cesses represents an excellent possibility to understand the inherent processes of
particulate synthesis and thus to gain control over the formation process achiev-
ing intended particulate properties or preventing undesired particulate forma-
tion. However, to cover all important physical processes, models are needed for
the chemical and physical processes to represent particulate formation, particu-
late interactions and interaction with the surrounding gas phase as well as their
transport in a laminar or turbulent environment.

Depending on the specific application, the particulates can be characterised
by different intrinsic properties, such as particulate size, particulate morphology,
chemical composition or particulate velocity. Through interaction with the sur-
rounding phase or collision with other particulates, these intrinsic properties can
change, leading to an evolution of the properties as well as a variation in phys-
ical space. The level of detail determines how many intrinsic properties should
be considered. If only a few particulates are considered, these intrinsic proper-
ties can be accounted for on each individual particulate. Since the positions and
component composition of each primary particulate is known, the particulates’
morphology such as fractal structure or particulate size can be derived from this
information.

However, if a very large number of particulates is considered, it is reason-
able to take a continuum-theoretical point of view and consider the particulate
average number density as a descriptive variable and thus describe the change
in intrinsic properties at a specific location and time. This leads to a description
of the aerosol by a particulate property distribution in space and time. Which
particulate properties are to be determined depends on the problem to be inves-
tigated. In general, the more particulate properties that are taken into account,
the more complex the equation to be solved for the particulate property balance
becomes. In the present work, the particulate size is the particulate property un-
der investigation. The spatial and temporal evolution of the particulate property
distribution is described by the population balance equation (PBE) [8].

In devising methods to solve the PBE, it can be distinguished between direct
Monte Carlo methods [9, 10], moment methods [11] and sectional methods [12].
Direct Monte Carlo methods use a large number of stochastic particles to recon-
struct the statistics of aerosol interactions, including direct modelling of collisions
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and agglomeration, making this approach computationally intensive and thus in-
accessible for simulating non-academic problems [9, 13, 14]. Moment methods, of
which there are many varieties, mathematically reduce the particulate size distri-
bution to its moments. Typically only the first two or three moments are required
leading to a method with low computational cost. A compromise in terms of
computational requirements is the sectional method, in which the particulate size
distribution is approximated by a finite number of grid points. Implementation
may be conceptually quite simple as the governing equations for gaseous species
and particulates are solved in the same way and the description of the transition
between the phases is straightforward. The significant advantage of this method
is that it does not require any assumptions about the shape of the PSD, as needed
for the Moment Methods, and their implementation is very intuitive. The reader
is referred to references [15, 16, 17, 18] for comprehensive reviews of the different
flavours of PBE methods in reactive flows.

Very often the carrier phase which surrounds the particulates behaves tur-
bulently. Turbulence can be understood as the irregular motion of a fluid with
turbulence occurring over a wide range of spatial and temporal size scales. In
many engineering problems, numerical simulation offers promising approaches
for the modelling of turbulent flows. The accurate simulation of turbulent pro-
cesses is a crucial challenge in computational fluid dynamics. In order to meet
this challenge, a number of turbulence treatment methods have been developed
over the last decades.

Although Direct Numerical Simulation (DNS) represents the most accurate
form of flow calculation, due to its ability to represent the entire turbulent fre-
quency spectrum, it is only applicable for purely academic investigations in the
near future due to the exorbitant calculation requirements, see [19]. The Reynolds-
averaged Navier-Stokes equations (RANS) are a dichotomy to DNS, since they
treat any turbulence purely statistically. Since a statistical approach is too impre-
cise, the associated uncertainties are not clear even for relatively simple problems
[20]. Large-Eddy Simulation (LES) represents a compromise; the large energy-
carrying eddies are resolved, while the eddies that cannot be resolved are still
subject to a purely statistical treatment. This scale separation is particularly prob-
lematic in the treatment of turbulent, reactive flows, since molecular mixing and
chemical reaction take place at the molecular level and thus below the grid reso-
lution. To solve this problem, averaging or filtering algorithms are applied to the
flow governing equations, whereby the interactions of turbulence with molecular
processes now occur as unclosed terms. In the past, a substantial effort has been
made to develop closure models for the treatment of turbulent, reactive flows. In
this context, the closure of the terms for the formation of the reactive variables
poses a major challenge since they are of a strongly non-linear nature [21, 22].

The most prominent closure models that aim at closing the highly non-linear
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turbulence-chemistry interactions are the flamelet model [23], the Conditional
Moment Closure (CMC) [24] and the transported Probability Density Function
(PDF) models [25]. The basic idea behind the flamelet approach is that a turbulent
flame can be seen as a collection of thin stretched laminar flame elements embed-
ded into a turbulent flow. The Conditional Moment Closure model is based on
a parametrisation with the help of a conditioning variable and solves transport
equations of the conditioned reactive scalars. Flamelet approaches and CMC are
very efficient and their application is suitable for cases where the composition
can be parameterised by the conditioning variable. This restriction does not ap-
ply to transported PDF models, since these are formally derived in a more gen-
eral way. Here, no filtering or averaging is necessary, so that the highly nonlinear
turbulence-chemistry interactions appear in closed form.

In most cases, the transported PDF model is implemented through a stochastic
Monte Carlo method [26] involving a set of Lagrangian particles2. The closure
problem is then shifted towards the modelling of the molecular mixing which
can be emulated by a Lagrangian micro-mixing model. A variety of stochastic
mixing models with their specific advantages and disadvantages are available in
the literature [27, 28, 29]. For these conventional mixing models tens or hundreds
of stochastic particles are required for an adequate modelling of the molecular
mixing.

The Multiple Mapping Conditioning (MMC) combustion model shares the
ideas of PDF and CMC models, as it aims to combine the formal general for-
mulation and the efficient parametrisation procedure. MMC constitutes rather
a whole framework than a (mixing) model. There are different flavours of the
MMC framework available, of which the stochastic MMC model is the most ad-
vanced. In the context of LES the MMC model is denoted as MMC-LES. Yet,
the mixing model used through MMC-LES emulates the molecular mixing of
particles which are close to each other in physical space and a reference space,
on which the composition can be parameterised. Through the additional local-
isation process, MMC allows a substantial reduction of the required stochastic
particle number and the model development stranded into the formulation of
a sparse-Lagrangian MMC-LES in which only a few stochastic particles per Eu-
lerian grid cell are required. Since the computational requirements scale linearly
with the number of stochastic particles, the MMC model is a highly efficient alter-
native compared to conventional mixing model calculations [28]. Subramaniam
& Pope [27] defined requirements for micro-mixing models and as one of the few,
the MMC framework allows the fulfilment of all requirements, thus, constituting

2Once again, the reader is reminded that this thesis strictly distinguishes between the stochas-
tic particles, which are computational elements for solving the governing differential equations
in the Lagrangian sense, and particulates, which represent the physical nanoparticles in the gas
phase.
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an efficient and reliable numerical scheme for the modelling of turbulent com-
bustion. It is yet to be seen whether these advantages can also be used for the
reliable and efficient solution of more complex problems, e.g. those involving
aerosol dynamics.

1.1 Motivation

In the context of Large-Eddy Simulations (LES) the most common methods for the
solution of the PSD are the monodisperse model introduced by Kruis et al. [30]
and the different flavours of the method of moments [31]. When the monodis-
perse model [32, 33] or the moment method [34, 35] for the solution of the PSD is
combined with a flamelet model for the gaseous reactive species, predictions of
particulate formation are good, albeit uncertainties with respect to the parame-
terisation of the flamelets for both kinetically fast gaseous species and kinetically
slow aerosol species remain.

So far, only a few flame synthesis studies have combined LES [36, 37] with the
sectional method. These have all neglected turbulence interactions with aerosol
nucleation and growth despite clear evidence from Direct Numerical Simula-
tion (DNS) studies [38] that such contributions are typically not small. A good
approximation of the particulate size distribution requires an adequate resolu-
tion by a reasonable number of sections. The numerical treatment of a reasonable
number of sections requires an enormous computational effort, which is not in-
significant with LES. Especially in the context of turbulent combustion processes,
the additional processing of the aerosol phase with a sectional method is not eas-
ily feasible. However, due to its efficiency compared to conventional modelling
approaches, the MMC method would allow a sectional method to be considered
within the framework of an LES, since the individual sections are mathematically
equivalent to the transported reactive scalars of the classical PDF approach. Yet it
would first have to be shown that the MMC method can also be used to describe
aerosol processes.

Independent of the PBE solution method, some specific closure problems arise
during the modelling process of particulate matter in turbulent environments
since the particulate formation process is often much slower than the chemi-
cal processes involved. Thus, additionally to the separation of the time scales
for the turbulence, a separation of the time scales for the particulate synthesis
process has to be considered. Universal and convincing modelling strategies
for accurate predictions are not yet well established. Temporally and/or spa-
tially averaged conservation equations can be derived, but the key challenge for
turbulent flows is the closure of the averaged nucleation, growth and agglom-
eration terms due to their highly non-linear dependence on instantaneous and
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local thermodynamic properties. It is reasonable to assume that simplified ap-
proaches that neglect the interactions between turbulence, chemistry and aerosol
(e.g. the model of the perfectly stirred reactor) may be sufficient for some flow
conditions [39, 40]. However, most applications of practical interest feature dis-
tinctly inhomogeneous conditions, such as turbulent jets, and modelling of the
large and small (i.e. subgrid) scale inhomogeneities is of paramount importance
for accurate predictions.

Since a decisive reduction of unwanted soot formation in the turbulent com-
bustion process would contribute greatly to reducing the negative impact on the
ecosystem and the human body, considerable efforts have been made in recent
years to fully understand and numerically reproduce soot formation. However,
problems continue to be encountered in this process because the initial soot for-
mation is chemically very complex and established methods for the solution of
the PBE in turbulent, reacting environments are comparatively inaccurate due to
their rigorous assumptions or presuppositions. Many investigations for example
have failed to correctly predict the soot formation and the numerical results can
deviate by up to an order of magnitude from measurements [41, 42, 43]. Many
experimental and numerical investigations are often limited to only one or two
flame configurations, and there is a high probability that the numerical models
used are adjusted to these few flame configurations and therefore no statement
can be made about the general validity of the methods. For this reason, it is nec-
essary to investigate flame series with many different boundary conditions and
to validate the developed numerical method on these entire flame series with a
single universal parameter set.

Such a flame series was experimentally studied at Imperial College
London [44]. One focus of the study was the experimental investigation of flame
synthesis of silica particulates from silane in a turbulent jet configuration under
varying boundary conditions. Although much experimental and numerical re-
search has focused on the formation of soot, this study investigated the formation
of silicon particulates because it was assumed that the precursor chemistry is eas-
ier and with less uncertainty to model than that of soot. Nevertheless, the knowl-
edge derived from the silane study acquires a general character and the numerical
models can be equally applied to problems with a different fuel. A validation of
the numerical methods shall provide insights into the general requirements for
the modelling of particulate-laden turbulent flows. It has been shown that the
final product properties, such as particulates’ size, shape and chemical purity, are
significantly influenced by precursor reactions leading to particulate formation
[45] and interparticulate interactions [46]. Especially in turbulent flows, which
are necessary to enable a high product throughput, the prediction of these inter-
actions is a challenge.

The existing experimental databases provide some understanding of the
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physics of particulate dynamics and their resulting characteristics [15, 47, 48],
but do not usually provide all necessary correlations between hydrodynamic and
thermodynamic quantities needed for model development. This is particularly
true for small scale turbulence effects on precursor chemistry, particulate nucle-
ation, growth and agglomeration. As a consequence, although there has been
some success in modelling the evolution of aerosol particulate size distributions
(PSD) in laminar flames [49, 47, 50, 15], turbulent flame synthesis modelling ef-
forts have been less successful [41] and require far too much computational de-
mands [51, 52] to be applied for industrial purposes. For this reason, it is nec-
essary to develop a robust numerical approach that can efficiently and reliably
model aerosol processes in turbulent, reactive flows so that it can be integrated
into everyday industrial applications.

1.2 Aim of the dissertation

Taking into account the efficiency considerations and the shortcomings and draw-
backs of the currently established numerical models for particulate flame synthe-
sis, this work intends to address the existing problems in the modelling of re-
active turbulent flames, the efficient treatment of the chemical reaction and the
correct prediction of the particulate matter in the turbulent carrier medium. In
this sense, this work aims to combine established standard models into a com-
prehensive framework and to validate them on the basis of a complete series of
flames, thus investigating their generality.

The following topics are the subject of this study:

• Investigation of a sparse-Lagrangian MMC-LES approach to model the com-
bustion of a synthetic fuel for a complete flame series with increasing jet
Reynolds number. A comprehensive model and stochastic numerical solu-
tion scheme for predicting combustion in a turbulent flow of varying den-
sity is presented. In a first step, the investigation of a pure gas phase flow
was essential to revise the MMC modelling of the turbulence-chemistry in-
teractions, as the modelling approach was not fully validated at the begin-
ning of the thesis. New findings in modelling the time scales for mixing at
the molecular level are included and results are compared with previously
proposed mixing time scale models.

• Implementation of a sectional method for modelling the particulate size dis-
tribution in a turbulent non-reactive flow as a second step towards a com-
prehensive particulate modelling strategy. Based on the already existing
concept for the modelling of turbulent combustion, the MMC-LES approach
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is supplemented by a sectional method for the description of the particulate
size distribution. With this novel combined PBE-MMC-LES approach, the
properties of the aerosol can now be predicted for any spatial location and
at any time without restriction on the instantaneous thermodynamic state
of the gas phase. Standard models are used for the prediction of nucleation
and size growth. Applying this combined approach to a non-reactive tur-
bulent flow and comparing the results against conventional stochastic PDF
methods, it becomes clear that the MMC framework can also be used to
model aerosol dynamics. Furthermore, it needs to be investigated whether
the sub-filter contributions should not be neglected and are crucial for cor-
rect numerical predictions.

• Validation of the PBE-MMC-LES approach by comparison to a turbulent
reacting flow for the prediction of a particulate size distribution of partic-
ulates with fractal morphology. Here, established standard models for the
modelling of particulate inception, volumetric size growth and agglomera-
tion are applied. In order to show that the applied numerical methods and
calibrated parameters are not adjusted to a single flame configuration but
rather possess a certain general validity, the PBE-MMC-LES approach is val-
idated against a complete turbulent and reacting flame series with varying
boundary conditions and precursor dopings.

1.3 Thesis outline

This thesis can be structurally divided into six chapters. The second chapter
presents the governing equations for the description of reactive, turbulent flows.
The basics with regard to reaction kinetics and combustion modes are also pre-
sented. Furthermore, an introduction to the theory of turbulence is made and
the basics for the description of aerosols and their inherent processes are given.
The third chapter focuses on the numerical modelling of turbulent, reactive flows
involving flame particulate synthesis. The basics of turbulence modelling are
followed by the presentation of closure models of the turbulence-chemistry inter-
actions with emphasis on the generalised sparse-Lagrangian Multiple Mapping
Conditioning (MMC) model. This is followed by modelling strategies of aerosols
including the presentation of models for particulate inception, surface growth
and agglomeration. The fourth chapter presents the code in which the com-
bined PBE-MMC-LES model framework has been incorporated and discusses
specific numerical challenges which arise with the application of a sparse particle
method. The fifth chapter presents results of different investigations of turbu-
lent flow configurations which have been made to validate the combined PBE-
MMC-LES. In a first step the MMC-LES approach is validated against the entire
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turbulent Sandia DME flames series which has been extended by two additional
configurations compared to previous publications. In a second step the sectional
approach has been combined with the MMC-LES method and has been applied
to predict particulate number densities in a non-reacting turbulent jet flow. This
is followed by the presentation of numerical results from simulations of a novel
particulate laden flame configuration for different boundary conditions. The last
chapter summarises the knowledge obtained and provides an outlook on possi-
ble future scientific investigations.
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Chapter 2

Theoretical background

In this chapter, the mathematical fundamentals are presented, which allow to
describe the temporal and spatial evolution of fluid elements in turbulent flows.
Starting from the basic governing transport equations, combustion processes are
discussed together with turbulence phenomena. This chapter also includes the
characterisation of particulates which are transported in turbulent and reacting
flows.

2.1 Conservation equations

To adequately describe a reactive gas flow, conservation equations for mass, mo-
mentum, enthalpy and reactive species are needed. A thorough derivation of
these conservation equations can be found in several relevant textbooks on the
subject, e.g. in the books by Pope [26] as well as Poinsot & Veynante [53] and this
section summarises the derivations presented there.

The conservation of mass is determined by the continuity equation given by

∂ρ

∂t
+

∂ρuj

∂xj
= 0 . (2.1)

The momentum conservation is described by

∂ρui

∂t
+

∂ρuiuj

∂xj
= − ∂p

∂xi
+

∂τij

∂xj
+ ρgi . (2.2)

In the present work only ideal gases are considered, which are classical Newto-
nian fluids. For this reason the viscous shear tensor τij can be expressed by

τij = µ

(
∂uj

∂xi
+

∂ui

∂xj

)
− 2

3
µ

∂uk
∂xk

δij . (2.3)

11
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The conservation equation for a reactive species mass fraction Yα is given by

∂ρYα

∂t
+

∂ρYαuj

∂xj
= −

∂Jα
j

∂xj
+ ω̇α(Y , T) , (2.4)

where Y = {Y1, . . . , YNsp} represents the whole species composition of the reac-
tive mixture into consideration. The diffusion flux Jα

j is modelled by applying
Fick’s first law of diffusion [54] in its simplest form

Jα
j = −ρDα

∂Yα

∂xj
. (2.5)

With the definition of the Schmidt number

Scϕ =
µ

ρDϕ
(2.6)

which is a measure for the ratio of momentum diffusion to scalar diffusion the
species conservation equation becomes

∂ρYα

∂t
+

∂ρYαuj

∂xj
=

∂

∂xj

(
µ

Scα

∂Yα

∂xj

)
+ ω̇α(Y , T) . (2.7)

In multicomponent reacting flows the conservation equation of energy is usually
based on enthalpy and takes the form

∂ρh
∂t

+
∂ρhuj

∂xj
=

∂p
∂t

+ τij
∂ui

∂xj
−

∂Jh
j

∂xj
+ q̇ , (2.8)

where q̇ is the source term, which accounts for (external) heat sources such as
radiation or spark ignition. The term Jh

j denotes the diffusive flux of enthalpy
and contains a contribution from heat diffusion in the form of Fourier’s law and
from diffusion of species with different enthalpies and takes the form

Jh
j = −λ

∂T
∂xj

+ ρD
Nsp

∑
α=1

hα
∂Yα

∂xj
= − µ

Pr
∂h
∂xj

+ µ

(
1

Sch
− 1

Pr

) Nsp

∑
α=1

hα
∂Yα

∂xj
, (2.9)

where λ is the heat diffusion coefficient and Pr is the Prandtl number, which is
defined as the ratio of momentum diffusivity and thermal diffusivity

Pr =
ν

Dth
=

µcp

λ
. (2.10)
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Another important dimensionless quantity is the Lewis number,

Leϕ =
Dth
Dϕ

=
Scϕ

Pr
=

λ

ρcpDϕ
, (2.11)

which is defined as the ratio of thermal diffusivity to mass diffusivity and used
to characterise flows with simultaneously occurring mass and heat transfer. For
many applications the species specific Lewis numbers are distributed around
unity and thus for the mixture a unity Lewis number assumption, Leϕ = Le = 1,
leads to the omission of the last term in Eq. (2.9). With this simplification and
neglecting pressure variations in time the energy conservation equation based on
the species enthalpy takes the form

∂ρh
∂t

+
∂ρhuj

∂xj
=

∂

∂xj

(
µ

Sch

∂h
∂xj

)
+ q̇ . (2.12)

Equations (2.7) and (2.12) have a structurally comparable form and can therefore
be combined for a reactive scalar vector ϕ = {Y1, . . . , YNsp , h}

∂ρϕ

∂t
+

∂ρujϕ

∂xj
=

∂

∂xj

(
µ

Scϕ

∂ϕ

∂xj

)
+ ω̇ϕ(ϕ, T) , (2.13)

with ω̇h = q̇ being the enthalpy source term.

2.2 Combustion

2.2.1 Reaction kinetics

In the previous section, the Navier-Stokes equations for the description of reactive
multi-component flows were presented. A term that has not been further elab-
orated so far is the source term for the reactive scalar vector Y = {Y1, . . . , YNsp},
which describes the conversion of the species.

The chemical conversion of a precursor species to product species in a mul-
tispecies environment can be represented by a system of many elementary reac-
tions. A general form of an elementary forward reaction is

Nsp

∑
α=1

ν′α,r Aα
k f

r⇀
Nsp

∑
α=1

ν′′α,r Aα , (2.14)

where ν′α,r and ν′′α,r are the stoichiometric coefficients of the reactants and products
with respect to the reaction r in consideration and Aα stands for the species α.
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A similar expression can be written for the reverse reaction

Nsp

∑
α=1

ν′α,r Aα ↽
kr

r

Nsp

∑
α=1

ν′′α,r Aα . (2.15)

For a system of elementary reactions considering forward and reverse reactions
the rth reaction becomes

Nsp

∑
α=1

ν′α,r Aα

k f
r

⇌
kr

r

Nsp

∑
α=1

ν′′α,r Aα . (2.16)

Thus, the reaction rate Qr for the rth can be written as

Qr = k f
r

Nsp

∏
α=1

cν′α,r
α − kr

r

Nsp

∏
α=1

cν′′α,r
α (2.17)

with the forward and reverse reaction rates coefficients k f
r and kr

r. To model the
strong temperature dependence of the reaction rate coefficients, Svante Arrhe-
nius [55] proposed an equation which was later subject to some modifications
and finally resulted in

kr = ArTβr exp
(

Ea,r

RuT

)
, (2.18)

where Ar is the so-called pre-exponential factor of the reaction rate coefficient r,
βr is a parameter accounting for the temperature dependence of the pre-exponential
factor, Ea,r is the activation energy and Ru is the universal gas constant. Finally,
the reaction source term in Eq. (2.7) of species α in a system of Nr reactions can be
developed

ω̇α(Y , T) = Mα

Nr

∑
r=1

(ν′a,r − ν′′a,r)Qr . (2.19)

2.2.2 Combustion modes

In order to examine and understand the combustion processes in more detail, it
is common practice to typify the combustion mode based on the mixing of fuel
and oxidiser prior to combustion. In the case of non-premixed combustion, the
fuel and oxidiser are present in two separate streams and fuel conversion takes
place during the mixing process. In premixed combustion, on the other hand, a
combustible mixture of fuel and oxidiser is already present during the chemical
conversion process [53].
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In the case of non-premixed combustion the chemical reaction can only take
place in a limited flammability limit around stoichiometry. Since the chemical
time scales are usually below the time scales for mixing, this combustion mode is
largely dependent on the mixing process itself [23]. Given that the mixing process
is determined by external boundary conditions, this combustion mode is easy to
control and therefore preferable for safety-critical applications [54]. Here, the
mixture fraction is a key variable to quantify the progress of mixing in a flame.
For a simple application with only one fuel (F) and one oxidiser (Ox) stream, the
mixture fraction can be defined by

Z =
Ze −Ze,Ox

Ze,F −Ze,Ox
, (2.20)

with Ze is the elemental mass fraction of element e. Assuming equal Schmidt
numbers for all species in the system and in conjunction with Eq. (2.13) a conser-
vation transport equation for the mixture fraction can be developed

∂ρZ
∂t

+
∂ρujZ

∂xj
=

∂

∂xj

(
µ

ScZ

∂Z
∂xj

)
. (2.21)

This conservation equation does not contain any source term, since the mixture
fraction is dependent on elements, which are conserved during the combustion
process.

Among these two main combustion modes, partially premixed combustion
operates between these two limiting conditions and allows a wider range of ap-
plications. In fact, due to practical limitations, premixed combustion often results
in a non-homogeneous mixture of fuel and oxidiser. In addition to these techni-
cal shortcomings, compositional inhomogeneity may be desirable, as novel com-
bustion technologies take advantage of this inhomogeneity to achieve reduced
emissions [56].

2.3 Turbulence

The occurrence of turbulence plays an essential role in many natural and indus-
trial processes. In this section, the basic fluid-physical processes with regard to
turbulence formation and the general turbulence properties are presented. Brad-
shaw’s definition of turbulence [57] names its essential characteristics:

"Turbulence is a three dimensional time dependent motion in which
vortex stretching causes velocity fluctuations to spread to all wave-
lengths between a minimum determined by viscous forces and a max-
imum determined by the boundary conditions. It is the usual state of
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fluid motion except at low Reynolds numbers."
Peter Bradshaw [57]

Turbulence is therefore inherently three-dimensional and unsteady. Within
turbulent structures, vortices exist that occur across a broad range of almost all
time and velocity scales and are superimposed on the main flow. The large scales
are determined by the geometry, while the smallest scales result from viscous
forces in the fluid.

The importance of the correct treatment of turbulence becomes clear when
considering that the presence of turbulence is the rule rather than the exception
and is found in practically all technical applications. Due to the fluctuating mo-
tion of the fluid elements and the resulting increased momentum exchange of a
turbulent flow, it is characterised by a significantly increased dissipation, which
can exceed the molecular one by several orders of magnitude. This pseudo-
viscosity - also known as turbulent viscosity - is responsible for the increased
viscous dissipation and energy loss of turbulent flows. Furthermore, coherent
turbulent structures cause vibrations, noise and more importantly an enhanced
mixing.

Turbulence consists of a conglomerate of many intertwined vortices of differ-
ent sizes and lifetimes. There is no exact definition of what a vortex is; it can
however be understood as a turbulence cluster of the size l, which in turn can
contain smaller vortices. The large, energy-containing vortices with the charac-
teristic length l0 and the characteristic velocity u0 = u(l0), are mostly dependent
on the dimension of the geometry or dominant coherent structures. They obtain
their kinetic energy from the existing velocity gradients of the main flow. Based
on this, a continuous vortex decay to smaller and smaller scales takes place until
the smallest vortices dissipate into heat by viscous effects.

To quantify the degree of turbulence, the Reynolds number is usually used

ReLref =
UrefLref

ν
=

ρUrefLref

µ
, (2.22)

where Uref is a reference velocity, e.g. a bulk velocity, and Lref is characteristic
reference length scale, e.g. a boundary layer thickness δ or a nozzle diameter D.

2.4 Aerosols

An aerosol consists of a suspension of solid particulates or liquid droplets. The
suspended solid particulates or liquid droplets are generally referred to as par-
ticulate matter or just particulates, regardless of their morphological structure or
aggregate state.
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2.4.1 Properties of particulates

Particulate size, shape, number density and chemical composition of the partic-
ulates are the aerosol properties of most interest. For certain applications, par-
ticulate charge and optical properties are also important. Particulate matter can
be grouped into three categories according to particulate size: coarse particulates
(PM10) with a diameter of 10µm or less, fine particulates (PM2.5) with a diameter
of 2.5 µm and ultrafine particulates with a diameter of less than 100 nm.

It is conventional to assume the sphericity of liquid droplets. These droplets
can change their size due to surface growth and coalescence, i.e. colliding and
merging with other droplets or molecules. Due to the liquid state of the sus-
pended droplets and the surface tension involved, the sphericity is maintained.
Thus, for spherical droplets, the particulate diameter is an unequivocal size spec-
ification. However, in many applications solid agglomerates are formed which
consist of many different individual particulates, the so-called primary particu-
lates. If the temperature around the particulate remains below the melting tem-
perature, no coalescence is observed and the primary particulates within an ag-
glomerate remain distinct. Thus, often these particulates are not spherical, there-
fore excluding the size determination via the diameter alone. Therefore, the par-
ticulate volume and sometimes also the aggregated particulate surface area is a
useful size parameter. In Fig. 2.1 silica and soot particulates of fractal-like mor-
phology are shown and there it can be seen that the agglomerates consist of many
small individual primary particulates and the neck formation or coalescence con-
tributes little or negligibly to the shape of the agglomerates.

(a) silica agglomerates (b) soot agglomerate

Figure 2.1: Transmission electron microscope (TEM) image of (a) silica particu-
lates and (b) a soot agglomerate. The large empty areas correspond to holes in
the carbon film of the TEM grid, used for mechanical support during imaging.
Courtesy to Carlos E. Garcia Gonzalez for providing the TEM pictures.
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Since in reality all particulates are differently shaped, a modelling description
of the particulates’ geometry can be performed using a statistical approach. Con-
sidering that an agglomerate consists of Np primary particulates with diameter
dp,0 and volume vp,0, the shape can be described by the power law of agglomer-
ates [12]

Np =
vp

vp,0
= k f

(
Rg

dp,0/2

)D f

, (2.23)

with vp being the total volume of the particulate, Rg being the radius of gyra-
tion and k f and D f are the fractal prefactor and fractal dimension, respectively.
Variations in primary particulate size exist, but this is usually neglected during
model development. It is important to note that the power law of agglomer-
ates is a statistical description of the particulate shape which is only valid by
considering many particulates (usually more than 1000) with the same value for
Np. Nevertheless, in favour of simpler model developments, the power law for
agglomerates is mostly applied for arbitrary particulate sizes, i.e. also already
starting from the primary particulate. The fractal dimension is a measure of the
compacity of the agglomerate and a function of the inner-agglomerate arrange-
ment of the primary particulates, such that for D f = 3 the agglomerate would
be a sphere and for D f = 1 one would consider chain-like structures. The fractal
prefactor k f is dependent on the physical definition of the radius of gyration Rg,
the process and Knudsen number under which the agglomerate has been formed
[12]. Usually, the fractal prefactor has a value between 0.5 and 2.5. The radius of
gyration is commonly defined by

Rg =

√√√√∑
Np
i=1 mpr2

i

∑
Np
i=1 mp

, (2.24)

where mp is the mass of the primary particulate and ri is the distance from the ith

primary particulate to the centre of mass of the whole agglomerate.
The diameter of particulates ranges from molecule clusters with a diameter of

around 1 nm to dust particulates or nucleated droplets of diameter 100 µm, which
corresponds to a variation of 105 in particulate size and 1015 in particulate mass.
This variation over a wide size or mass range causes difficulties for modelling,
since small particulates still behave like large molecular clusters and have only
limited feedback effects on the flow, and large particulates must be treated as
inertial particulates, i.e. due to their momentum they follow a trajectory that is
related to the flow physical conditions [12].

The behaviour of particulate with respect to momentum, mass and heat ex-
change with the carrier fluid usually depends on the relation of the size of the
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particulate and a characteristic length scale. This relation is expressed by the
Knudsen number

Kn =
2λ

dc
, (2.25)

where dc = dp,0N
1/D f
p is the collision diameter of the agglomerate and λ is the

mean free path of the gas molecules, which can be calculated by kinetic theory
of gases and is a function of pressure, temperature and the mean size of the gas
molecules.

For high Knudsen numbers (λ/dc ≫ 1 ) the number of collisions of gas
molecules with a particulate is low due to the small particulate diameter. Most
of the gas molecules in the vicinity of the particulate remain unaffected by the
presence of the particulate and collisions are rather rare incidents. The mass,
momentum and energy exchange between particulates and the surrounding gas
can be described using molecular collision theory, which is why this area is also
known as the free molecular regime.

For small Knudsen numbers (λ/dc ≪ 1 ), the particulate size is much larger
than the mean free path of the molecules, which increases the number of colli-
sions drastically. Considering these size relations, the gas behaves as a contin-
uum with the particulate as spatial boundary. For this reason the region is also
called continuum regime. The transition region between these size ranges is also
called transition regime.

Since particulates scatter light, this feature allows the determination of partic-
ulate number densities or concentration by applying optical measuring methods,
which do not invasively interfere with the flow. A theory describing this scat-
tering process is the Mie theory, which gives solutions of the Maxwell equations
under the assumption of spherical particulates [58]. The amount of scattered light
is dependent on the number density, the size and the morphology of the particu-
lates. The scattering laws for different particulate sizes are summarised in [59].

2.4.2 Aerosol dynamics

Aerosol dynamics generally include particulate formation, surface growth and
shrinkage, coagulation, fragmentation and sintering. The most important ones
are depicted in Fig. 2.2 for solid particulate matter. Depending on whether a liq-
uid or solid aerosol is considered, the terminology of the respective sub-processes
differs, which unfortunately is not consistently complied with in the literature.
Therefore, the terminology adopted in this work shall be outlined here. First,
so-called primary particulates are formed from the gas phase. Particulate for-
mation for a liquid particulate matter is called nucleation and that of solids is
called particulate inception. Surface growth and shrinkage in the context of liq-
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uid particles is usually referred to as condensation and evaporation, while for
solid particulates the terms sublimation and deposition are used. Coagulation
generally refers to the process of particulate collisions. When particulates collide,
they can form larger particulates, and a distinction in terminology is made based
on the aggregate state of the particulates. Coalescence refers to the merging of
liquid droplets into larger liquid droplets which are assumed to maintain their
sphericity. The surface area of the formed particulates is now smaller than the
sum of the individual particulates, thus a reduction of the surface area results.
Since solid particulates usually exhibit a certain morphological structure, they
are referred to as agglomerates. Consequently, the unification of agglomerates is
called agglomeration and the surface area remains unaltered. In many studies,
a classification is made between agglomerates and aggregates to account for the
phenomenon that aggregates are very densely packed agglomerates. However,
this distinction is not made in the present thesis. Fragmentation of agglomerates
refers to the separation of larger solid particulates into two or more smaller frag-
ments. Depending on whether the temperature of the surrounding gas phase is
in the range of the melting temperature, sintering of the agglomerates can oc-
cur, which leads to a change of their morphology, as well as, in a limiting case,
to the formation of spherical liquid droplets. It is important to note that all the
described phenomena can happen simultaneously.

inception surface growth coagulation sintering

Figure 2.2: Schematic representation of aerosol dynamics processes.

2.4.3 Particulate conservation equation

Often there is no interest in the individual particulates but rather in the particu-
late size distribution at a certain location at a certain time, suggesting a descrip-
tion of the particulates via the particulate size distribution function n, which has
the units

n ≡ l−3L−3 , (2.26)

where l refers to the length scale of the particulate matter and L refers to a length
scale of the surrounding gas phase. This relation is valid when considering the
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particulate volume as an intensive particulate property. Alternatively, if the par-
ticulate diameter d is used to determine the particulate size distribution function
nd, the above equation would become

nd ≡ l−1L−3 . (2.27)

The particulate size distribution function n allows to determine the number of
particulates per unit gas volume for the particulate volume range vp to vp + dv
by

dNi = n(vi) dv , (2.28)

with Ni being the particulate number density of particulates of size vi. Figure 2.3
illustrates the derivation of the particulate number density Ni from the particu-
late size distribution function n(vi). The spatial and temporal evolution of the

v

N(v, t)

vi vi + dv

N(v, t0)

N(v, t0 + dt)

Figure 2.3: Time evolution of a particulate size distribution (sketch following
Rigopoulos [17])

particulate number density can be described by the discrete or continuous Popu-
lation Balance Equation (PBE).

The starting point of PBE modelling was set in 1917 by the Polish scientist
Marian von Smoluchowski, who derived a discrete balance equation for the par-
ticulate number density Ni for particulates of size vi, to calculate coagulation
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problems [60]. Thus the Smoluchowski equation

dNi

dt
=

1
2

i−1

∑
j=1

β j,i−jNjNi−j −
∞

∑
j=1

βijNiNj , (2.29)

describes the time evolution of particulates of discrete sizes. The factor 1/2 in
the source term prevents double counting of coagulation events for particulates
smaller than size vi. In Eq. (2.29) the coagulation kernel βij describes the coag-
ulation frequency of a particulate of size vi with another particulate of size vj.
The coagulation kernel is strongly size-dependent and a number of models ex-
ists in the literature, of which some are presented in Chapter 3. The original
version of the Smoluchowski equation, which only considered coagulation, has
been transformed into its current integral-differential formulation [61], including
particulate convection and diffusional transport, as well as particulate formation,
surface processes and coagulation [62, 63] and takes the form

∂N(v, xi, t)
∂t

+
∂ujN(v, xi, t)

∂xj
=

∂

∂xj

(
Dp

∂N(v, xi, t)
∂xj

)

+ Ṅδ(v− v0)−
∂G(v)N

∂v

+
1
2

∫ v

0
β(v− v′, v′)N(v− v′, t)N(v′, t) dv′

−
∫ ∞

0
β(v, v′)N(v, t)N(v′, t) dv′ , (2.30)

where the last four terms on the right hand side account for particulate formation,
surface processes and birth and death of particulates due to coagulation. Addi-
tional source terms for particulate fragmentation and sintering are available in
the relevant literature [17] and may be added to the PBE, but this is out of scope
for this thesis. In Eq. (2.30), Dp is the particulate diffusivity, which is given by [12]

Dp =
kBT

3πµdc
. (2.31)

It is important to note that the particulate number density is based on the particu-
lates volume as an internal coordinate. Equally, another internal coordinate could
be used, e.g. the particulates diameter, the surface area or the charge number. It
is advantageous to use the particulate volume as the internal coordinate, as this is
the conserved property and the balance equation can be treated largely indepen-
dently of the morphological structure of the particulates. Under homogeneous
conditions an analytical solution of the PBE equation can be found for simple co-
agulation problems [64, 65, 66, 67]. For inhomogeneous conditions, the solution
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of an analytical approach is not possible and the solution of the PBE requires other
approaches, such as the Method of Moments or the Sectional Method, which will
be discussed in Chapter 3.
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Chapter 3

Modelling

This chapter describes the modelling aspects of the particulate flame synthesis
and the simulation of combustion processes in turbulent flows. First, the trans-
port equations discussed so far are derived for turbulent flows and the associated
challenges, especially for reactive flows, are explained. Then, methods to cope
with these challenges are presented, with special emphasis on Multiple Mapping
Conditioning (MMC) in the context of Large Eddy Simulation (LES). In a second
part, methods for modelling particulate synthesis are presented and its integra-
tion into the MMC framework is explained.

3.1 Modelling of turbulent flows

There are many different approaches to simulate turbulent flows. The approaches
differ in the degree of detail rendered and the required computational effort as
an antagonistic dependency. The direct numerical simulation (DNS) avoids any
kind of turbulence modelling and thus reproduces the complete turbulent energy
spectrum [26]. The Reynolds-averaged Navier-Stokes (RANS) equations are the
basis of all statistical turbulence models. Contrary to the efforts of direct numer-
ical simulation to represent the entire turbulent spectrum, all the turbulence is
modelled here [26]. Large eddy simulations (LES) are conceptually located be-
tween these two turbulence modelling approaches. In the following section, the
model characteristics of the LES will be presented, together with closure models
for the sub-grid viscosity.

3.1.1 Large Eddy Simulation

In deriving the LES model, exploitation is made of the fact that small scales have
an increasingly isotropic character in the subsequent sequence of the energy cas-
cade. Thus, a differentiation can be made between large-scale and small-scale

25
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fluctuations, whereby the former can be represented in resolved form and the lat-
ter can be left to modelling. The actual motivation for the derivation of LES is
that the model-based description of small-scale turbulence is easier than with the
RANS approach due to its isotropic character. The differentiation between large
structures and small-scale turbulence is mainly done by filtering. The filtering of
a function ϕ(r, t) can be understood as local averaging over a spatial range ∆ [53].
This is achieved by the filter operation

ϕ =
∫

G
Ω(r− r′, ∆(r)) ϕ(r′, t) dr′ (3.1)

over space G with the filter kernel function Ω(r− r′, ∆(r)). The choice of the filter
kernel function determines whether a separation is performed in physical scale
space or in wave number space. Usually the box filter

Ω(r− r′, ∆(r)) =

{
1
|∆| if |r− r′| ≤ |∆|2

0 otherwise
(3.2)

is used, which performs a scale separation in the physical space [26]. A multi-
ple application results in an increasingly progressive damping of high-frequency
flow content. In contrast, the Fourier filter performs a filtering in the wave num-
ber space, whereby the energy spectrum is cut off at a certain filter frequency. The
Fourier filter has the advantage that multiple applications do not alter the energy
spectrum. The filtering can be performed implicitly or explicitly. An implicit fil-
ter results from the consideration that a spatial discretisation already represents
a spatial filter with the filter width ∆ = |∆| ≡ 3

√
∆x∆y∆z and scales smaller than

the cell width cannot be modelled. It can be implemented without much effort
and makes optimal use of the available grid resolution. Since explicit filtering
represents the application of filter functions, it has the advantage of being fully
under control. However, the application of explicit filtering methods implies a
loss of efficiency.

Applying the filtering operation to a flow governing function ϕ will result in
following decomposition

ϕ = ϕ + ϕ′ . (3.3)

Here ϕ represent the large structures which can be directly modelled by the basic
governing equations. The turbulent structures in the high-frequency part of the
energy cascade, ϕ′, are approximated by a so called sub-grid model. Due to the
large density variations in flows involving combustion processes, it is convenient
to perform a density-weighted filtering, which is also called Favre-filtering and
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defined by

ϕ̃ =
ρϕ

ρ
. (3.4)

By applying the Favre filtering procedure to the conservation equations intro-
duced in Sec. 2.1 one obtains the Favre-filtered conservation equations

∂ρ

∂t
+

∂ρũj

∂xj
= 0 (3.5)

and

∂ρũi

∂t
+

∂ρũiũj

∂xj
= − ∂p

∂xi
+

∂

∂xj

(
2µS̃ij −

2
3

µS̃kkδij

)
+

∂τ
sgs
ij

∂xj
+ ρgi (3.6)

with Sij being the filtered strain rate defined by

S̃ij =
1
2

(
∂ũi

∂xj
+

∂ũj

∂xi

)
(3.7)

and τij being the sub-grid scale stresses given by

τ
sgs
ij = ρ

(
ũiuj − ũiũj

)
, (3.8)

which is an additional term due to the filtering process that needs to be modelled
for closure. The requirements on the model are low, provided that the scales to
be modelled are in the universal equilibrium range [68].

Most of the common sub-grid scale models are based on the Boussinesq hy-
pothesis [69]. The Boussinesq hypothesis states that the sub-grid stresses can be
represented and formally described in analogy to the dynamic viscosity, although
they are physically completely different in nature. In one case the exchange pro-
cesses are caused by molecular fluctuations, in the other case the exchange pro-
cesses are caused by turbulent fluctuations within a continuous medium. Thus,
the apparent stresses can be described by

τ
sgs
ij −

1
3

τ
sgs
kk δij = −2µsgs

(
S̃ij −

1
3

S̃kkδij

)
. (3.9)

With µsgs a sub-grid scale viscosity is introduced. This reflects the phenomenon
that the effects of turbulence are apparent in an increased viscosity and diffusion.
Due to the similar formulation, the effectively occurring stresses can be calculated
as the sum of laminar and turbulent stresses. The effective viscosity is now de-
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fined as the sum of laminar viscosity and an additional eddy viscosity µt. Using
the Boussinesq hypothesis the momentum conservation equation becomes

∂ρũi

∂t
+

∂ρũiũj

∂xj
= − ∂p

∂xi
+

∂

∂xj
(µ + µsgs)

(
S̃ij −

1
3

S̃kkδij

)
+ ρgi . (3.10)

The Favre-filtered conservation equation of the scalars becomes [53]

∂ρϕ̃α

∂t
+

∂ρϕ̃αũj

∂xj
=

∂

∂xj

(
µ

Scα

∂ϕ̃α

∂xj

)
−

∂Jsgs
α,j

∂xj
+ ω̇α(ϕ, T) . (3.11)

Here the sub-grid scale scalar fluxes need to be closed by the gradient assumption
model

Jsgs
α,j = − µsgs

Scsgs

∂ϕ̃α

∂xj
, (3.12)

with Scsgs being the turbulent Schmidt number usually set to unity and often also
denoted as σsgs. The gradient assumption model reflects that turbulence enhances
the mixing process which results in an increased diffusion and thus leads to

∂ρϕ̃α

∂t
+

∂ρϕ̃αũj

∂xj
=

∂

∂xj

((
µ

σα
+

µsgs

σsgs

)
∂ϕ̃α

∂xj

)
+ ω̇α(ϕ, T) . (3.13)

Consequently, the correct calculation of the Favre-filtered conservation equations
depends also on the correct modelling of the sub-grid scale viscosity µsgs which
is also known as the eddy viscosity. A simple dimensional analysis suggests that
the eddy viscosity may be expressed by

µsgs = ρ(Cm∆)2Dm(u) , (3.14)

with Cm being a model parameter, ∆ the filter width, which is commonly a cell
size related quantity, and Dm being a differential operator dependent on the ve-
locity field. A variety of eddy viscosity models are available in the literature and
two of them will be presented here.

3.1.1.1 Smagorinsky-Model

The Smagorinsky model [70] is probably the simplest sub-grid scale model. It is
based on the Boussinesq hypothesis [69] and calculates an eddy viscosity based
on a geometric dimension and the local strain tensor as follows

µsgs = ρ(CS∆)2S̃ , (3.15)
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with S̃ as invariant of the shear rate tensor given by Dm = S̃ =
√

2S̃ijS̃ij. The
value of Cm = CS depends on the test case under investigation; a value of CS =

0.1825 was determined for the vortex decay of isotropic turbulence [26], a stan-
dard test case for the validation of a correct reproduction of the energy cascade.
The Smagorinsky model has glaring shortcomings. For one thing, the parame-
ter CS cannot basically represent a field constant, considering that in the far field
S generally has different values than in a boundary layer. Due to the globally
positive parameter CS, an eddy viscosity is also determined in a laminar flow,
which means that a transition process from a laminar to a turbulent flow can-
not be reproduced. Similarly, the model based on the positive parameter has a
purely dissipative effect; as a result, the dissipation energy is derived exclusively
from the dissolved structures. Nevertheless, energy can also be transported in
the direction of smaller wave numbers, e.g. by joining several small vortices.
This backscattering process cannot be reproduced with the Smagorinsky model.
Another disadvantage of the model is that the differential operator does not van-
ish in regions close to the wall. Therefore, the inclusion of damping functions in
these regions requires further input of parameters. Such parameter specifications
should be avoided, as they require a new validation effort.

3.1.1.2 σ-Model

Nicoud [71] proposed the σ-model to remedy the model deficiencies discussed
above. The model is based on singular values of the resolved velocity gradient
and thus the differential operator reads

Dm = Dσ =
σ3(σ1 − σ2)(σ2 − σ3)

σ2
1

, (3.16)

with σ1, σ2 and σ3 being the singular values of ũi/∂xj and being subject to the
condition σ1 ≥ σ2 ≥ σ3 ≥ 0. Although there is a physical motivation for negative
values of Cm = Cσ to reproduce backscattering of turbulent kinetic energy, for
stability reasons a positive value of Cσ = 1.5 was found by simulating the decay
of isotropic turbulence1. The σ-model operates without damping functions for
near-wall regions and delivers excellent results for pipe and jet flows [72].

3.1.2 Detached Eddy Simulation

The Detached Eddy Simulation (DES) is a representative of the hybrid RANS-LES
models and was developed by Spalart et al. [19]. The DES attempts to combine
the respective strengths of the RANS and LES approaches. The RANS equations

1Special thanks are owed to Mr. Marian Fuchs (Upstream CFD GmbH) for providing the code
of the σ-model and for the many fruitful discussions about turbulence modelling.
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are ideally suited for the statistical description of wall bounded flows, since they
have been calibrated for this specific flow regime. Furthermore, they pose low
demands on the grid resolution and reflect the flow behaviour in areas of small
fluctuations of the flow describing variables, for example in the far field, in a good
way. However, in case of detaching flows, the range of validity is violated and
the RANS models usually provide unsatisfactory results. An LES, on the other
hand, achieves very good results for detached flows and is capable of covering
a wide range of the energy spectrum. With respect to the enormous demands
on grid resolution on the wall, the LES is severely limited in terms of industrial
applicability at high Reynolds numbers. The aim of the DES is to use the RANS
model in regions that can be well reproduced by the turbulence model and to
apply the LES approach in regions of strongly detached vortices.

In order to ensure the physically correct representation of the boundary layer,
various blending and correction functions have been incorporated into the defi-
nition of the DES length scale. The new method improves the representation of
the logarithmic region of the boundary layer and is called Improved-Delayed-
Detached-Eddy Simulation (IDDES), although it can also be considered as wall
modelled LES. A detailed description and evaluation of the individual DES mod-
ifications can be found in the work of Mockett [73].

3.2 Modelling of turbulent combustion

All transport and thermodynamic equations for the description of turbulent re-
active flows were presented in the previous sections. In Eq. (2.7) the highly non-
linear filtered reaction source term appears, which accounts for the conversion of
the reactive scalars. However, the filtered reaction source term is not equivalent
to the reaction source term using filtered scalars

ω̇α(Y , T) ̸= ω̇α(Y , T) . (3.17)

Finding a closure model for the filtered reaction source term is one of the major
challenges for the combustion community and considerable scientific efforts have
been made in recent decades to find an efficient and reliable method to solve this
problem. Some of the established closure models for modelling non-premixed
combustion processes should be presented briefly in the following sections.

3.2.1 Flamelet Model

Following the remarks on flame structures [74, 75], Peters introduced a method-
ology based on the flamelet concept [76]. The basic idea behind the flamelet ap-
proach is that a turbulent flame can be seen as a collection of thin stretched lami-
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nar flame elements embedded into a turbulent flow. This is possible because the
local structure of the turbulent flame front can be considered to be similar to a
laminar flamelet at size scales down to the Kolmogorov scales. Thus, the flamelet
concept aims to describe the global flame structure on the basis of a non-reacting
transported scalar, where the flamelets are attached to an iso-surface of this non-
reacting quantity which is transported by the turbulent flow. This perspective
is substantiated by the introduction of the mixture fraction concept for turbu-
lent non-premixed flames, as it allows the decoupling of turbulent transport and
flame structure. A key parameter of the flamelet approch is the scalar dissipation
rate which is a measure for the reactant fluxes to the reaction zone which in turn
is related to the velocity gradients of the flow.

The major outcome of the introduction of the flamelet model is that the chem-
ical structure of the flame is now modelled independently from the flow dynam-
ics, because now the turbulence interaction is reduced to the evolution of the
flame front. The flamelet structure itself can be modelled by simplified analytical
solutions (e.g. Burke-Schumann solution for infinite-fast chemistry assumption)
or by generating a flamelet library applying finite rate chemistry. The later can
be determined by considering a counterflow diffusion flame and often a one-
dimensional approximation is solved. Its solution is therefore only altered by
strain rates and curvature effects are neglected, although they may have a con-
siderable impact [77, 78].

Using the transport equation for the mixture fraction introduced in Sec. 2.2.2
and under steady state assumptions in the vicinity of the flame front, where the
approximation Z(x, t) ≈ Zst holds, the flamelet equations are given by

−ρχ
∂2Yα

∂Z2 = ω̇α , (3.18)

where χ is the scalar dissipation rate and modelled by χ = D∇Z∇Z [23], where
equal diffusivities for all species are assumed. If a similar equation is solved
for enthalpy this set of differential equations allows the full description of mass
fractions and temperature as a function of mixture fraction Z.

Thus, the major advantage of the steady flamelet approach is the decoupling
of the chemistry computations from the flow simulations. Thus the finite-rate
chemistry can be precomputed for a variable number of scalar dissipation rates
and stored into a so-called flamelet table. The solution of this flametlet table
can be retrieved during the actual flame calculation which makes this approach
very efficient. For a full description of the reactive flow, an additional transport
equation for the mixture fraction variance needs to be solved; for which, however,
standard solution approaches are available [23].

This approach reveals its shortcomings in case of high strain rates where the
chemical time scales drop to the order of the turbulent time scales because then
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the flame front is not restricted to the vicinity of the iso-surface of the flame [79].
The same problem occurs in case that the chemical reaction mechanism involves
also slow reactions compared to the remaining kinetics. Furthermore, additional
modelling effort has to be considered in case of extensive heat losses in the flow
[80]. These shortcomings can be overcome by including a reaction progress vari-
able [81, 82] or an enthalpy defect [83, 23], but these approaches partly redeem
efficiency as a significant advantage over other modelling approaches due to the
increased dimensionality of the system. In the case of combustion with partial
premixing, the standard flamelet approach requires an extension so that a unified
model for diffusion flames and partially-premixed flames is adopted [82].

3.2.2 Conditional Moment Closure

The Conditional Moment Closure (CMC) method is a combustion model which
was independently developed by Klimenko [84] and Bilger [85] for non-premixed
combustion. The basic idea behind CMC is that reactive scalars are strongly corre-
lated to the mixture fraction and hence reactive scalar fluctuations are correlated
to fluctuations in mixture fraction space. Based on this strong correlation, the con-
ditional fluctuations are small and this relationship can be used to provide a first
order closure for the chemical reaction term. Normally, the conditional moments
are referred to as Qα and are defined by

Qα = ⟨Yα|Z = z⟩ , (3.19)

where Z is a multidimensional scalar space and z is its sample space. Whether a
quantity is a conditioned or a conditioning variable depends on the problem; in
any case the sets are disjoint. The vector notation in Eq. (3.19) emphasises that
conditioning is not constrained necessarily to a single conditioning variable and
may allow additional conditioning to other quantities that also feature correla-
tions with the reactive scalars. Following the same procedure as for the Reynolds
and Favre averaging the instantaneous quantities can be decomposed into their
conditioned mean and conditioned fluctuation

Yα = Qα + Y′′′α . (3.20)

Applying this decomposition to the transport equation of reactive scalars and
performing a conditional averaging over the whole equation together with a high
Reynolds number assumption yields the transport equation for conditional reac-
tive scalars
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⟨ρ|z⟩∂Qα

∂t
+ ⟨ρui|z⟩

∂Qα

∂xi
− ⟨ω̇α|z⟩+ ⟨ω̇j|z⟩

∂Qα

∂Zj
=〈

ρDα
∂Yj

∂xi

∂Yj

∂xi

∣∣∣∣ z
〉

∂2Qα

∂ZjZj
+

〈
ρDα

∂Yj

∂xi

∂Yl
∂xj

∣∣∣∣∣ z
〉

∂2Qα

∂ZjZl
.

(3.21)

All terms except the first need a closure model and a guideline for the choice of
the closure model can be found in the literature [24, 79]. In selecting the condi-
tioning variables, strict attention must be paid to ensure that the conditioned fluc-
tuations are small. The mixture fraction is the most commonly used conditioning
variable in non-premixed combustion. In non-premixed flames where significant
local extinction events are present a single conditioning variable is not sufficient
and a double conditioning is necessary where scalar dissipation rate or sensible
enthalpy are possible extensions of the conditioning vector [86, 87]. Although the
derivation of the CMC method is based in the mixture fraction concept the appli-
cation to partially premixed flames was suggested by Bilger [85] and the sensitive
enthalpy was proposed as the conditioning variable therein.

It seems obvious to increase the number of conditioning variables in order to
obtain better simulation results; however, this increases the number of unclosed
terms of the transport equation of the conditional scalars, which significantly in-
creases the modelling and computational effort. The latter is due to the fact that
the transport equation for the conditional quantities include additional dimen-
sions. However, since the conditioned quantities are subject to much smaller
fluctuations in physical space than the unconditioned quantities, the calculation
can be performed on a much coarser grid [79].

In recent years the interest has grown to calculate liquid fuel combustion
with the CMC method and Mortensen & Bilger [88] presented a fully consistent
derivation for spray combustion, which gives good results in the work of Ukai et
al. [89, 90, 91]. Kronenburg & Bilger [92] showed the capabilities of the CMC
method to model soot formation and the opportunities to account for differential
diffusion effects in non-premixed flames [93, 94].

3.2.3 Transported Probability Density Function models

The transported Probability Density Function (PDF) is a methodology to calculate
the transport of a set of reactive scalars by solving the transport equation of the
one-point, one-time joint PDF of the reactive scalar vector. Thereby, the method
aims to model the unresolved sub-grid scale fluctuations of the transported quan-
tities [25]. In the context of LES, where usually Favre-filtering is applied, this
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method is denoted as transported filtered density function (FDF) and accounts
for the solution of the PDF of the sub-grid scalars [95, 68]. In comparison to other
combustion models, this approach has the significant advantage that the reaction
source term appears in a closed form and no modelling is required. However, the
terms for sub-grid scalar mixing and transport are present in unclosed form and
have to be modelled. Given the filter kernel G the mass weighted FDF function
for the sub-grid scales becomes

F sgs =
∫

ρG(r− r′, ∆(r)) δ(ψ −ϕ(r′, t)) dr (3.22)

with ψ being the sample space for ϕ and

δ(ψ −ϕ(r′, t)) ≡
ns+1

∏
α=1

δ(ψα − ϕα(r′, t)) (3.23)

being a multidimensional delta function [96]. Following the derivations given in
Colucci et al. [97] the transport equation for the temporal and spatial evolution of
the filtered mass density function becomes

∂F sgs

∂t
+

∂ũiF sgs

∂xi
+

∂ω̇α(ψ)F sgs

∂ψα
=

∂

∂xi

(
ρ(D +Dt)

∂F sgs/ρ

∂xi

)
− ∂2

∂ψαψβ

(〈
ρD ∂ϕα

∂xi

∂ϕβ

∂xi

∣∣∣∣ψ〉F sgs/ρ

)
(3.24)

applying standard closure models for the conditional velocity and resolved con-
ditional diffusive fluxes. The last term represents the conditional subfilter scalar
dissipation and is unclosed, because the gradients at the sub-grid scale level are
unknown. In case of detailed chemistry Eq. (3.24) is a highly dimensional dif-
ferential equation and its solution in the context of LES is infeasible due to the
exorbitant computational costs [79].

Here, it is common practice to apply a stochastic approach by introducing a
Monte Carlo scheme, for which the computational costs scales linearly with the
number of dimensions instead of exponentially. The Monte Carlo method intro-
duces Lagrangian particles which emulate the evolution of the reactive scalars
due to advection, mixing and reaction in a flow field. Stochastic particles are
usually characterised by their position xp

i and composition

ϕ
p
α = (Y1, . . . , Yns , h) . (3.25)

The fractional step time evolution of the transported scalars are then given by the
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equivalent stochastic differential equations [96] for particle transport

dxp
i =

[
ũi +

1
ρ

∂

∂xi
(ρ(D + Dt))

]p
dt +

√
2(D + Dt)pdωi, (3.26)

and the change of the composition field in time is governed by [96]

dϕ
p
α =

(
Sp

α + Mp
α

)
dt, (3.27)

where ω is a Wiener process. To account for the slip of inertial particles an addi-
tional fractional step equation needs to be solved for the particle velocity up

j , but
is omitted here. The term Sα accounts for chemical reactions or heat loss due to ra-
diation, and by using the Arrhenius approach or a radiation model (e.g. optically
thin radiation model proposed by Grosshandler [98]), this term is now in closed
form. The term Mα is a mixing operator which emulates the sub-filter scalar dis-
sipation and needs modelling. A vast variety of mixing models are available in
the literature and the most common will be discussed in the next section.

3.2.3.1 Mixing models

To close the stochastic FDF model a Lagrangian mixing model is required and a
large number of mixing models is available in the literature [99, 100, 101, 102, 103,
104, 105, 106, 107, 27, 108]. Generally the choice of an accurate and efficient mix-
ing model is crucial for the quality of the turbulent combustion simulation since
it is one of the major source of uncertainty [28]. Subramanian & Pope [27] defined
characteristic properties and requirements which mixing models should provide.
Among these the most important properties are (i) that the locally mean scalar
composition should remain constant trough the mixing process, (ii) that the de-
cay rate of scalar variance is correctly provided and (iii) that boundedness of the
mixed scalars is fulfilled. Further demands are given by the requirement of (iv)
linearity of the mixing process, (v) independence on the mixing scalars themself
and (vi) locality of the mixing process in composition space, so that a Gaussian
distribution is obtained for statistically homogeneous systems. One additional
criterion is that (vii) the mixing model should provide dependencies on length
scales of the scalar fields, as it was shown by Warhaft & Lumley [109], that the
variance decay rate is dependent on the initial length scales of the scalar field. In
the following, the most common mixing models are presented, as they form the
fundamental basis for further developments and flavours of other mixing mod-
els.

The Interaction by Exchange with the Mean (IEM) [110] which is often also
referred to as Linear Mean-Square Estimation (LMSE) [100, 101] is one of the sim-
plest models and the distribution of the particle composition is characterised as
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essentially independent of the composition of other particles. Due to its simple
form and straightforward numerical implementation it is widely used in FDF
combustion modelling simulations. The basic idea behind this mixing model is
that the particle scalar composition ϕ

p
α relaxes deterministically towards the local

mean ⟨ϕp
α |xp⟩ as

Sα =
dϕ

p
α

dt
= −1

2
Cϕ

τ

(
ϕ

p
α −

〈
ϕ

p
α

∣∣∣xp
〉)

, (3.28)

where Cϕ is a model parameter, which is a measure for the ratio of the mechanical
time scale τ to the time scale of turbulence τϕ

Cϕ =
τ

τϕ
. (3.29)

The mixing model fulfils the requirements of the conservation of the scalar mean
and provides the correct decay of the scalar variance. It further guarantees the
boundedness and linear independence of the transported scalars. In the absence
of mean scalar gradient, e.g. in homogenous turbulence, the mixing model pre-
serves the initial shape of the scalar PDF and thus prevents the formation of a
Gaussian scalar distribution, which is one of the major drawbacks for its applica-
tion. Another drawback is that the operator ⟨ϕp

α |xp⟩ reverts to the composition of
a finite number of stochastic particles and thus violates the principle of localness
if the number of stochastic particles is not sufficiently high.

The Coalescence-Dispersion (CD) mixing model proposed by Curl [99] forms
the basis of later variants of this model developed by Janicka [102] and Dopazo [101].
The mixing model aims at randomly selecting pairs of particles and then allow
partially linear mixing towards theirs respective mean. The mixing process for
particles p and q can formally be described by

ϕ
p
α(t + ∆t) = ϕ

p
α(t) + γ

(
ϕ

p,q
α (t)− ϕ

p
α(t)

)
, (3.30)

ϕ
q
α(t + ∆t) = ϕ

q
α(t) + γ

(
ϕ

p,q
α (t)− ϕ

q
α(t)

)
, (3.31)

where ϕ
p,q
α (t) is the weighted mean of the two involved particles and γ = 1−

exp(−CCD∆t/τ) controls the mixing extend with a mechanical timescale, τ, and
the model parameter CCD, which is usually set to CCD = 2 for variable weights
of the mixing particles. The CD model again fulfils the first three requirements of
mixing models together with linearity and boundedness. However, the mixing
model is neither capable of forming a Gaussian distribution nor is localness in
composition space satisfied. The latter is due to the randomised particle pair
selection mechanism, which is formally independent of the particle position. This
problem can be counteracted by increasing the stochastic particle number and
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reducing the filter width, although this cannot remedy the principle violation.
Another representative of a mixing model is the Mapping Closure (MC) [111,

112] model based on Gaussian reference fields. The ingredients of this mix-
ing model are the application of statistically isotropic, homogeneous and time-
independent Gaussian fields, where means, variances and two-point correlations
functions are known, a surrogate field, where the statistics are the same as of
the Gaussian fields and therefore also known; and a mapping algorithm between
these two fields. Here, the conservation of scalar mean, the correct decay of scalar
variance as well as the linearity and boundedness are satisfied. In addition, lo-
calness in composition space is fulfilled through the mapping algorithm, result-
ing in a Gaussian distributions of the scalars in statistically homogeneous flows.
Drawbacks of the MC model is that the mapping procedure in multi-scalar envi-
ronments violates against the principles of independence.

The Multiple Mapping Conditioning (MMC) model represents an advanced
synthesis of Mapping Closure and CD models but is on the contrary conform
with the requirements of linearity and independence. However, since the MMC
model is not only another representative of a mixing model, but rather forms a
completely new framework, it will be presented in the following section.

3.2.4 Multiple Mapping Conditioning for modelling turbulent
reacting flows

This section is dedicated to the introduction of the Multiple Mapping Condition-
ing (MMC) model, which can be understood as a whole modelling framework
for modelling combustion processes rather than just a model. First, the character-
istics and principles of MMC are presented, followed by a description of the full
generalised MMC model with its recent improvements.

The Multiple Mapping Conditioning (MMC) model was originally introduced
by Klimenko & Pope [113] and unifies methods and features of Mapping Clo-
sures [114, 111, 115], CMC [84, 85] and transported probability density functions
[25]. The derivation of its generalized form resulted in a comprehensive frame-
work, which could exploit the advantages of the PDF and CMC methods and
at the same time remove the restrictions of mapping closures to homogeneous
flows [116]. The original Multiple Mapping Conditioning model and its theoreti-
cal structure has been extended considerably over time and the following section
summarises the key publications [113, 117, 118, 119, 120, 96, 121] related to the
model derivation as well as works with review character [122, 123, 124, 125].

The development of MMC is based on the same physical considerations as
the flamelet approach [76] and CMC [84, 85], assuming that the attainable scalar
space can be related in some way to the evolution of a low-dimensional mani-
fold. MMC applies the concepts of Mapping Closures where a low-dimensional
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reference space is associated to the transported scalars by a mapping function.
The Probability Density Function distribution of that reference space is either as-
sumed to be known or is simulated by some means such as a Markow diffusion
process. MMC uses the mapping functions for modelling the degree of fluctua-
tions of the scalars. The turbulent scalar fluctuations are conceptionally divided
into major and minor scalar fluctuations and the Mapping Closure establishes the
association between the reference space and the major fluctuations. The dimen-
sion of the reference space is generally only limited to the number of transported
scalars, but is usually very small. In non-premixed combustion processes, for ex-
ample, a reference space comprising only the mixture fraction is considered to be
sufficient. The reference space represents a low-dimensional manifold which is
allowed to fluctuate in any possible way, while the fluctuations of the scalars are
partially or completely confined relative to this reference space, dependent of the
form of MMC - conditional or probabilistic - which is applied. The conditional
form occurs in either a deterministic or stochastic model implementation and as-
sumes that the small scalars can only fluctuate jointly with the large scales, so
that the conditional fluctuations are negligibly small. In contrast, the probabilis-
tic form occurs only as a stochastic variant, where the minor scalars can fluctuate
relative to the major scalars, but these fluctuations are still assumed to be small.
For the probabilistic form a generalized model can be derived, which allows to
remove some restrictions regarding the formalities of the derivation and thus to
extend the application scope considerably.

Considered that the major species in the MMC model are reasonably selected,
the joint Favre-filtered PDF F̃Y of all species of the ns-dimensional composition
space can be replaced by a marginal PDF F̃M(yM; x, t) of the major species in
the reduced nM-dimensional manifold space, where nM < ns is the number
of major species Y M. The remaining composition space of dimension nα =

ns − nM is associated with the minor species composition Y α. Additionally to
the above introduction of the marginal PDF the conditional mean of the minor
species Qα(yM; x, t) = ⟨Yα|Y M = yM⟩ can be defined such that

F̃Y = F̃M · δ(Qα − yα) . (3.32)

This expression defines the confinement of minor species to a manifold described
by major species, so that in the deterministic form of MMC there are no fluctu-
ations of minor species over their conditional means [113]. Now the transport
equation of the marginal PDF of the major species becomes

∂ρF̃M

∂t
+

∂ρUY MF̃M

∂xi
+

∂ρWkF̃M

∂yk
+

∂2ρNklF̃M

∂yk∂yl
= 0 (3.33)

and the transport equation for the conditional expectation of the minor species is
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given by

∂Qa
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+UY M · ∂Qa

∂xi
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∂Qa

∂yk
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∂2Qa

∂yk∂yl
= Wa , (3.34)

where

Nkl =

〈
ρD ∂Yk

∂xi

∂Yl
∂xj

∣∣∣∣Y M = yM
〉/

ρYM (3.35)

is the conditional scalar dissipation andUY M = ⟨U |Y M = yM⟩ is the conditional
velocity and both terms require modelling. Concerning the application of the
Mapping Closure within the MMC framework an nr-dimensional reference space
is introduced as a set of random variables ξ = {ξ1, . . . , ξnr}, which are associated
to the major species by a mapping function. The distribution of this reference
space field is given by the joint PDF F̃ξ(ξ;x, t) and it is assumed here that the
reference variables are transported in a similar way to all other physical scalars
and thus their statistical properties are emulated, but the reference variables only
form a mathematical construct and do therefore not directly model the physical
variables. Between them, however, a statistical equivalence results in this form of
application.

Depending on the implementation, MMC can take a deterministic or stochas-
tic form. In this study, the generalised form of stochastic MMC is applied and
further details are provided below only for this model branch. The reader may
be referred to [113, 126, 127, 128] for model development and applications of de-
terministic MMC.

3.2.4.1 Generalised MMC

Geralised MMC is a further development of the MMC method proposed by
Klimenko [129], which removes some formal restrictions of the original MMC
method. Although generalized MMC would be technically possible in a deter-
ministic variant, it generally exists only as a stochastic model. The main aspect of
the generalized MMC is the subdivision of the reference space into conditioning
variables ξc of dimension nc and non-conditioning variables. The former serve to
emulate certain characteristics of the turbulent flow and allow mixing localization
in the space of the major species manifold. The latter do not participate in the lo-
calisation process, but are used to assist in emulating the turbulent quantities. As
a consequence of this subdivision, Klimenko [129] proposes to use conditioning
reference variables such as mixture fraction and dissipation-like variables, which
may be taken from the governing flow field. Sundaram et al. [130] showed that
the functional form of the mixing operator is the same as for traditional trans-
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ported PDF models and that a conditioning of the mixing operator on reference
variables is compliant with an original PDF modelling. Consequently in MMC
the conditional scalars are not directly dependent on the mixture operator, but
are rather governed by the properties of the conditioned reference variables. This
in fact is the generalisation of the mixing process as it shifts the problem towards
a decent selection of adequate conditioning variables while unaltering the mixing
operation.

A suitable reference variable in non-premixed combustion processes is the
mixture fraction. But a requirement in MMC is that the conditional variables
should be independent of the variables to which they are to be mapped. Thus,
in MMC simulations of non-premixed combustion simulations involve actually
two different but conceptional similar mixture fractions. One mixture fraction, Z
is transported with the scalar vector and its evolution can be described by the set
of stochastic differential equations given above. The other is a mixture fraction-
like conditioning variable, ξ = f which is governed by an Eulerian simulation
which emulates the real mixture faction of the stochastic Lagrangian particles
and is used for the localisation process.

3.2.4.2 Sparse-Lagrangian FDF methods

So far MMC has been introduced as a modelling framework which features a
mixing model fulfilling all requirements of a high quality mixing model such
as the conservation of means as much as boundedness, linearity, independence,
equal treatment of all scalars and a correct dissipation of variances [27]. In fact,
the MMC mixing model can significantly improve numerical results, although
Klimenko [131] showed that by exorbitantly increasing the number of notional
Lagrangian particles, the role of the underlying mixing model becomes more and
more irrelevant and at a DNS-like resolution, where the spatial distance between
the particles is infinitely small, all mixing models become effectively the same.
However, such an increase in particle number does not correspond to the concept
of efficiency considerations where quality results are expected at minimum costs.

Sparse-Lagrangian methods include a reduction of the stochastic particle num-
ber for the simulation of the composition space below the number of Eulerian
grid cells for the calculation of the turbulent flow field, which leads to substan-
tial savings of computational costs. The idea of sparse methods is completely
independent from MMC, but it requires a high-quality mixing model, which is
offered by MMC. In order to distinguish the particle density in common PDF
methods from the new sparse-Lagrangian distribution of particles, it will be re-
ferred to in the following as intensive-Lagrangian particle distribution [132]. The
introduction of a sparse-Lagrangian particle method also changes the interpreta-
tion of stochastic PDF methods. While intensive-Langrangian particle methods
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represent a so-called strong approximation, which may even reach the DNS limit
when a massive number of particles is used [131], the interpretation of sparse-
Lagrangian methods changes in the sense that they can only represent stochastic
distributions of lower moments and are therefore only to be understood as weak
approximations. Strong approximations are naturally weak approximations at
the same time, but the opposite case is generally not given.

In intensive methods the Eulerian variables and the variables of the trans-
ported scalar vector in FDF are both associated with the Eulerian grid size ∆g.
The characteristic filtering lengths of the sparse-Lagrangian methods ∆L and the
Eulerian scheme ∆E can be applied for a weak approximation of the scalar-vector
distribution. The Lagrangian filter width cannot be smaller than the Eulerian
filter width, because the grid resolution does not allow a suitable scale resolu-
tion of the underlying velocity field to evolve the scale vector adequately. Ac-
tually, within a weak approximation of the scalar composition distribution the
Lagrangian filter width ∆L can be larger than the Eulerian filter width ∆E, which
allows the mixing of particles that are close to each other but not necessarily in
the same Eulerian cell. In Lagrangian PDF methods, there are two further length
scales, namely the interparticle distance ∆p and the mixing distance ∆m, where
the latter is the mean distance between mixing particles, which does not neces-
sarily coincide with the interparticle distance. Besides the fact that the mixing
process produces a numerical diffusion effect that usually has to be minimized,
Klimenko [133, 134, 135] stated that this diffusion effect can be interpreted as a
filter function for the model and that this mixing induced diffusion does not vary
with stochastic particle numbers if the characteristic mixing distance ∆m and the
characteristic mixing time τm are kept constant. An appropriate choice of a char-
acteristic mixing distance and a characteristic mixing time is of paramount im-
portance for modelling the correct level of diffusion and suitable models will be
introduced in the next section.

3.2.4.3 Sparse-Lagrangian MMC

The new interpretation of the diffusive effect of the mixing model operator in
sparse methods allows a reduction of the stochastic particle number within the
turbulent reactive simulation. The application of a sparse method necessarily
requires a high quality mixing model of which the MMC model is an example
as it fulfils all key features of a mixing model. Moreover, the generalised MMC
framework is a suitable candidate, as it allows for a simple and straightforward
implementation of the mixing model requirements.

However, special care must be taken in deriving the mixing operator in a
sparse environment. In this section, the key features of the MMC mixing model,
such as the constraints on conditioning to the reference variables and the mod-
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elling of appropriate mixing time scales in a sparse context, are presented. In Gen-
eralised MMC [96] the temporal and spatial evolution of the stochastic particles
and the transported scalar vector, ϕ

p
α = (Y1, . . . , Yns , h), is described by Eqs. (3.26)

and (3.27). Additionally, in MMC the mixing process is subject to the supplemen-
tary requirement that the conditioning involves only the generalized reference
variables ξc, so that

⟨SI |ξp
c = ξc,xp = x⟩ = 0 . (3.36)

This condition can be satisfied by selecting particles for mixing that are close to
each other in a space comprising the reference space and the spatial space. This
can be archived by minimising the squared distance between two particles p and
q defined as

d̂2
p,q =

3

∑
i=1

(
dp,q

xi

rm/
√

3

)2

+
nc

∑
j=1

dp,q
ξ j

ξm,j

2

, (3.37)

where rm is a characteristic distance in physical space and ξm,j is a characteristic
distance in reference space. The factor

√
3 in the denominator is based on the

assumption that the mixing distance is an isotropic quantity. In the context of
non-premixed combustion, the choice of the mixture fraction f as the only con-
ditioning variable is considered sufficient in most cases. In that case the squared
mixing distance becomes

d̂2
p,q =

3

∑
i=1

(
dp,q

xi

rm/
√

3

)2

+

dp,q
f̃

fm

2

. (3.38)

Generally, the parameter fm is a local quantity which changes with the local flow
conditions. Since a locally variable mixing parameter fm is very unfavourable
with regard to the computational efficiency, it is considered as a global parameter
and determined on the basis of characteristic flow conditions. Where in previ-
ous publications the parameters were selected manually [135, 132, 136], Cleary
& Klimenko [96] presented a relation based on a consistent scale analysis of an
iso-scalar sliver such that

rm = Cm

 d f̃
dn

∆3
L

∆
2−D f
E

1
fm

1/D f

, (3.39)

with Cm being a model parameter usually set to 0.5, d f̃ / dn being the gradient of
the filtered LES mixture fraction across the iso-scalar sliver at a characteristic lo-
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cation of the flow, D f being the fractal dimension of the turbulent iso-scalar sliver
usually set to 2.36 [96] and fm being the mean distance in mixture fraction space
between particles to be mixed. The latter was the central subject of several inves-
tigations [96, 137, 138, 139] and good results were achieved when this parameter
was set to fm = 0.03.

The Lagrangian mixing time scale determines the degree of sub-filter condi-
tional scalar dissipation. In intensive stochastic FDF simulations where there are
possibly ten or more stochastic particles in each LES cell, mixing is constrained
to the particle ensemble within each cell. Thus, the particle filter time and length
scales are determined from the local filter scales of the Eulerian scheme. The Eu-
lerian mixing time scale has the form

τE = f̃ ′2E /χE , (3.40)

where f̃ ′E is the sub-grid reference mixture fraction variance and χE is the scalar
dissipation, respectively. For these quantities, standard models are commonly
used in combustion LES investigations, which leads to

f̃ ′2E = C f ∆2
E∇ f̃ · ∇ f̃ , (3.41)

where the scaling parameter is usually set to C f = 0.1 [140], and

χE = 2(D + Dt)∇ f̃ · ∇ f̃ . (3.42)

Substitution of Eqs. (3.41) and (3.42) into Eq. (3.40) results in

τE =
C f ∆2

E
2(D +Dt)

. (3.43)

Corresponding expressions for the Lagrangian time scale have been discussed in
Vo et al. [138]. The C&K model was developed by Cleary & Klimenko [96] and
was derived on the basis of simple geometrical reasoning that led to the time scale
expression

τL,C&K =
βC f d2

f̃

2(D +Dt)∇ f̃ · ∇ f̃
, (3.44)

with β being a parameter between 1 and 3. Usually a value of β = 3 is set, to
avoid excessive numerical diffusion [96]. As∇ f̃ ,D andDt may vary significantly
within a sparse-Lagrangian approach, it has been shown that the maximum mix-
ing time of τ

p
L,C&K and τ

q
L,C&K avoids numerical diffusion [96].

As it was shown in Vo et al. [138], the C&K mixing time scale model under-
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predicts conditional variances and a new mixing time scale model was proposed
therein. The new model attempts to account for the anisotropy of the turbulent
structures at the Lagrangian filter size and has the form

τL,a−ISO =
C f d2

x

2(D +Dt,L)
, (3.45)

where Dt,L is a turbulent sub-grid scale diffusivity which scales to the respective
Lagrangian length scales Dt,L = dx/∆EDt. It should be noted that the a-ISO (ab-
breviated use for anisotropic) model has a similar form to the Eulerian mixing
time given by Eq.(3.43). To avoid over predictions of Lagrangian subfilter vari-
ances the inverse mean of τ

p
L,a−ISO and τ

q
L,a−ISO is taken as the final mixing time.

Strict care is needed in the selection of the particle number and the parameters
for the mixing model, since challenging flow conditions, such as local extinction
or re-ignition, can only be adequately reproduced in a sparse context if the models
are used in an appropriately consistent manner. For example, local extinction
effects can be significantly overestimated if a few particles in a sparse simulation
would obtain a less combustible composition and as a consequence this would
lead to global extinction.

3.2.4.4 Density coupling

Since in transported PDF models the reactive scalars are computed on the stochas-
tic Lagrangian particles and not on the Eulerian grid a density feedback is re-
quired for the computation of the underlying velocity and reference variable
fields. In this way, PDF methods usually suffer from stability problems due to
their stochastic nature. Since sparse-Lagrangian PDF methods deliver only a
weak approximation of the reactive scalar field and very few particles are avail-
able for the reconstruction of the Euler fields, the stability problem is exacerbated.
At this point the characteristics of the generalised MMC method can be taken ad-
vantage of again by using the reference variables to calculate conditional means
of the reactive scalars for a subsequent density calculation.

The equivalent enthalpy method [141] was developed to obtain the scalar
fields from the Lagrangian scheme by solving additional transport equations. The
correct scalar composition is solved for on the Lagrangian particles and an equiv-
alent composition on the Eulerian grid can be reconstructed using the reference
variables. Once the equivalent composition ϕE

α on the Eulerian scheme is known,
the Eulerian density can be calculated by applying the gas equation of state. The
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transport equation of the equivalent composition is given by

∂ρϕ̃E
α

∂t
+

∂ρũjϕ̃
E
α

∂xj
− ∂

∂xj

((
µ

σα
+

µsgs

σsgs

)
∂ϕ̃E

α

∂xj

)
= WE

α , (3.46)

where the source term accounts for the relaxation of the equivalent composition
field to the Lagrangian composition through

WE
α = ρ

⟨ϕ̃E
α |ϕ̃c⟩ − ϕ̃E

α

τrel
(3.47)

and ⟨ϕ̃E
α |ϕ̃c⟩ being the Favre-filtered equivalent composition conditioned on the

set of reference variables. The relaxation time occurring in the denominator de-
pends on the problem under investigation and is usually defined as
τrel = 10− 50 ∆t. The problem is now shifted towards the determination of the
conditioned equivalent composition field ⟨ϕ̃E

α |ϕ̃c⟩ and two possible solutions will
be discussed in Chapter 4.2.1.

3.3 Modelling of aerosol dynamics

This section aims at describing the modelling of aerosol dynamic processes, such
as particulate formation, particulate dispersion, inter-particulate interactions and
the interaction of particulates with the surrounding gas phase. This research area
has received much attention not only in atmospheric environmental research due
to global warming, but also in chemical engineering due to stricter legislation
regarding pollutant emissions. Besides the particulate dispersion, aerosol dy-
namics include particulate formation (also referred to as nucleation for liquid
particulate matter), surface growth (condensation) and shrinkage (evaporation),
coagulation and breakage, and sintering.

Appropriate methodologies for the theoretical description of dynamic aerosol
processes are the Direct Monte-Carlo method, where all particulates under con-
sideration are resolved, and the population balance modelling (PBM), which in-
tends to solve the population balance equation (PBE) in terms of the particulate
number concentration. Typical examples of approaches to solve the population
balance equation are the Method of Moments and the Sectional Method, whose
advantages and disadvantages have been reviewed in [142, 63].

In this section, it will be explained why a solution through a Monte-Carlo
method is not feasible for problems at laboratory scales. Furthermore, gener-
ally applied solution methods for the PBE together with common models for the
description of particulate nucleation, surface growth and agglomeration are pre-
sented. This is followed by a description of the integration of aerosol modelling
into the MMC framework.
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3.3.1 Direct Monte-Carlo methods

The direct Monte Carlo method aims to describe the entire polydispersed aerosol
phase so that the evolution of each (primary) particulate is resolved in space
and time by a stochastic process such as Brownian movement. A common as-
sumption in direct Monte Carlo methods is that a primary particulate adheres
rigidly to the solid target agglomerate at the first point of contact. Since the posi-
tions of the individual primary particulates within an agglomerate are thus also
known, this approach allows a precise insight into the instantaneous morpholog-
ical structure of all particulates as well as into the particulate history. With this
knowledge, important parameters such as the fractal dimension, the collision di-
ameter or even the chemical composition of each individual agglomerate can be
determined. This enables a very simple description of surface reactions or partic-
ulate dispersion, which in the case of larger particulates is mainly determined by
inertial effects.

Mitchell & Frenklach [143, 144] developed a direct Monte Carlo method which
accounts for agglomeration and surface growth and showed that the the fractal
dimension is significantly altered when these phenomena occur. A direct Monte
Carlo method involving aggregation and sintering is performed by [145], where
the primary particulates rigidly stick at first contact to the target agglomerate and
the sintering is rendered by a change in the surface-to-volume ratio. Gutsch [146]
investigated the collision frequencies of agglomerates, since this information is
very helpful in aerosol simulations based on statistical approaches in which the
particulate number density is a key quantity of consideration.

Solving the dynamic equation of motion for each particulate for a laboratory-
sized problem implies that an enormous number of differential equations must
be solved simultaneously to adequately describe the particulate size distribu-
tion. This is not practical even with modern computing capacities. Therefore, the
direct Monte Carlo method is mostly limited to generic or academic problems,
which are investigated in order to deepen the understanding of the underlying
particulate-related phenomena. This information can then be used in statistical
approaches whose range of applications is much broader.

3.3.2 Population balance equation modelling

Various methods have been developed for solving the population balance equa-
tion, the most established being the method of moments and the sectional method,
which has been reviewed in the publications of Rigopoulos [16, 17, 18] on which
the relevant sections are based.
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3.3.2.1 Moment methods

The Method of Moments is one of the earliest and the most widespread ap-
proaches to solve the PBE and its mathematical development was largely driven
by Hulbert & Katz [8]. Due to its relatively simple mathematical methodology
and its excellent performance in terms of the computational resources required,
the method of moments is one of the most commonly used techniques in con-
nection with CFD applications aiming at solving the PBE. The key feature of the
Method of Moments is the transformation of the PBE into a set of ODEs for the
dynamic evolution of the moments. The knowledge of all moments is equivalent
to the knowledge of the entire particulate size distribution. However, for most
applications it is sufficient to consider only a few moments to solve the problem
under consideration. The numerical efficiency of the Method of Moments origi-
nates from replacing the infinite number of differential equations to be solved by
a small number of equations for the corresponding moments. Such an approach
implies an inherent loss of information, since it is not the distribution itself that
is represented, rather only some of its integral properties, which are nevertheless
often sufficient to describe the problem with adequate accuracy. Usually the first
four moments are of interest in synthesis investigations. The zeroth moment cor-
responds to the particulate number density, the first moment is proportional to
the particulate size, the second moment is proportional to the particulate surface
area and the third moment is proportional to the total particulate volume per unit
gas volume.

In the general case where the growth and agglomeration is an arbitrary func-
tion of particulate size, a suitable particulate size distribution must be assumed
since the growth and agglomeration terms include the unknown distribution
n(v, x, t). This is one of the major drawbacks of the Method of Moments. Size-
independent surface growth is only present under very contrived conditions and
the assumption of linear-dependent surface growth unnecessarily limits the ap-
plication range of the method. The same applies to the agglomeration modelling
which similarly involves the unknown particulate size distribution. This disad-
vantage can be overcome by assuming a constant collision kernel [147], but this
is not an acceptable assumption for most cases.

The characteristics of the moment method are that not the particulate size dis-
tribution itself but specific moments are preserved and for a general treatment of
surface growth and agglomeration the system is not closed and can only be in-
ferred via an assumed particulate size distribution. A large variety of approaches
has been developed to close the moment equations, which includes (i) presuming
the particulate size distribution [148, 147] (ii) Taylor series expansion of the par-
ticulate number density [8] (iii) deriving the fractional moments by interpolation
[149] and (iv) approximating the moment integrals with numerical quadrature
[150].
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3.3.2.2 Sectional methods

Sectional methods, which are often also referred to as discretisation methods, are
based on a discrete representation of the continuous particulate size distribution,
which can be divided into a finite number of intervals along the particulates inter-
nal size space. The individual discretisation intervals may be of different widths,
so that a very large scale range in the particulate size space can be covered with
relatively few sections, possibly covering several orders of magnitude. There are
several challenges associated with developing a reliable discretisation method for
the PBE, as it is an integro-differential and non-linear function. The advantage of
a wide scale coverage also brings some difficulties that need to be addressed. On
the one hand, particulate formation appears as a local source term at the lower
end of the size scale space, while coagulation is a source term operating over the
entire scale space [18]. The coagulation source term contains integral operators,
which consequently leads to a non-local discretisation that requires many oper-
ations on the entire size spectrum. Furthermore, in selecting the discretisation
method of the coagulation terms, it is important to ensure that it is conserva-
tive with respect to the moments on a non-uniform grid. Due to its first-order
hyperbolic nature, some numerical challenges must also be overcome with re-
spect to the size growth term, as it can produce sharp fronts in the solution of the
particulate size distribution. A vast plethora of discretisation methods has been
developed to solve aerosol related problems within the chemical engineering and
combustion research community.

Gelbard et al. [151] proposed a numerical solution of the PBE where the par-
ticulate size distribution is approximated by a piecewise constant function. The
representation of the particulate size distribution via a stepwise constant function
allows the integration term to be converted into a product of particulate concen-
trations and pre-integrated coagulation kernels. The method was originally de-
veloped to model pure coagulation, but was later extended to growth processes
by Gelbard & Seinfield [151]. Due to the relatively straightforward procedure
and conservative characteristics, this model has been successfully used to predict
soot size distributions in laminar premixed flames [152] and laminar diffusion
flames [153, 154, 155].

An even simpler approach is to consider the particulate size distribution as
a finite set of delta functions at fixed nodes. This method is often referred to as
nodal form of the sectional approach. The major advantage of this method is the
high efficiency, as integrations of the coagulation kernel function now effectively
reduce to a simple summation of the components at the respective nodes. This
peculiarity can be illustrated more clearly by examining the coagulation source
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term for the size scale range (vi − δvi/2 , vi + δvi/2), which becomes

∫ vi+δvi/2

vi−δvi/2
β(v− v′, v′)N(v− v′, t)N(v′, t) dv′ ≈∑

j
χijkβijNiNj , (3.48)

with vk + vj = vi and the function χijk being a size dependent splitting operation
correction factor required for this specific approximation scheme. This correction
factor is necessary because in general the sum of the volumes vk + vj does not
coincide exactly with one of the other volumes, unless a uniform grid is selected.
Accordingly, the imaginary formed particulate needs to be weight-distributed to
the two adjacent volumes which is illustrated in Fig. 3.1. The size dependent

vvi vj vi + vjvk vk+1

βijNiNj∆t

Ni
Nj

χijk
χijk+1

Figure 3.1: Illustration of the distribution of coagulated particulates to the two
adjacent sections. (Sketch following Prakash et al. [156])

splitting operator correction factor χijk takes the form

χijk =


vk+1−(vi+vj)

vk+1−vk
: if vk ≤ vi + vj ≤ vk+1 ,

(vi+vj)−vk−1
vk−vk+1

: if vk−1 ≤ vi + vj ≤ vk ,

0 : otherwise.

(3.49)

for a two-point method, for example described by Prakash et al. [156], but may be
of different appearance for other approaches.

Thus, the purpose of the correction factor is it to preserve the moments of the
particulate size distribution and an comprehensive formulation will be given fur-
ther below. The model has difficulties in the correct reproduction of surface pro-
cesses in which there is an increase or decrease in particulate size. For example,
provided pure surface growth is considered, a uni-modal particulate distribution
should be conserved under homogeneous conditions. However, the distribution
of the particulates to the two adjacent nodes results in a purely numerically-
induced broadening of the PSD. This effect can be counteracted by increasing the
grid points used, but this negates the high efficiency as a major advantage of the
method. Thus, when choosing the number of grid points, efficiency considera-
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tions must be weighed against losses of accuracy. The nodal form of the sectional
approach was first proposed by [157] and applied to aerosol problems including
particulate formation, surface growth and coagulation by [158, 159, 160].

A more sophisticated discretisation method was proposed by Kumar & Ramkr-
ishna [161, 162] in which a finite set of algebraic equations is solved in order to
conserve any two moments on an arbitrary grid. Park & Rogak [163] advanced
the model so that even three moments can be obtained and applied their method
to a problem on aerosol modelling of coagulation and volumetric surface growth.
The model was then successfully validated on laminar premixed [164] and diffu-
sion flames [165, 166, 167, 168] to predict soot particulate distributions.

Another method to approximate the particulate size distribution is based on
the finite element method, where higher order trial functions are adopted to rep-
resent the distribution within each element. Gelberd & Seinfield [169] applied
cubic splines as trial functions, but also linear trial functions [170] or methods
based on the Galerkin framework [171, 172] are possible. A methodology based
on the finite volume method for the approximation of the piecewise constant par-
ticulate size distribution on an arbitrary grid was proposed by Liu & Rigopoulos
[173].

As mentioned above, modelling the surface growth term features some diffi-
culties, since the first-order derivative in particulate size space introduces the hy-
perbolic characteristic of the population balance equation. To overcome these dif-
ficulties related to numerical diffusion in particulate size space, several concepts
have been developed in the literature, including the use of (i) high-resolution
fixed grids [174, 175], (ii) the moving grid methods [176, 177] and (iii) the adaptive
grid methods [178], where that latter has been successfully applied to a turbulent
sooting diffusion flame [179, 180].

If not only spherical particulates are to be considered, but also the change in
the morphological structure is to be simulated, further challenges arise for the
discretisation method. The simplest and most efficient way of considering the
morphological structure is to discretise the particulate size space by applying the
power law for agglomerates, cf. Eq. (2.23). There are some non-trivial modifica-
tions to the structure of the collision kernel, which will be discussed in more detail
below. Furthermore, the prediction of the particulate surface needs particular at-
tention. For example, surface growth must be considered as integral growth, so
that surface reactions or deposits lead to an overall increase in particulate volume
and the other parameters describing the morphology, such as the fractal prefactor
and the fractal dimension, remain unchanged. This approach can only be justified
if the change in particulate size space due to surface growth is much smaller than
other processes, such as coagulation. If measurement data about the morpholog-
ical structure of the particulates as a function of size are available [181], better
estimates of the particulate surface can be obtained via correction functions [51].

A more sophisticated approach is to employ two one-dimensional discretisa-
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tions for the particulates, one for the particulate volume and one for the partic-
ulate surface area as proposed by Jeong & Choi [182]. There, a comparison with
the a two-dimensional discretisation of the PBE showed good results for the pre-
diction of silica and titania particulate size distributions. While this approach
is much more efficient than a two-dimensional discretisation the computational
effort is still relatively high.

A more recent methodology to approximate the particulate size distribution
was proposed by Yang & Mueller [52], where a so called Multi-Moment Sectional
Method (MMSM) is used to combine the advantages of both, the moment meth-
ods and sectional methods, respectively. Here, statistical moments are solved
within a finite number of section and a polynomial profile is adopted to recon-
struct the particulate size distribution within them. In two extreme cases the
MMSM can be reduced to a conventional moment method if only one section is
used and can be converted to a conventional sectional method when the num-
ber of solved moments per section is one. The MMSM was applied to a lami-
nar sooting diffusion flame for modelling spherical soot particulates [52] and it
was shown that the MMSM can increase the accuracy in contrast to conventional
sectional methods by equal computational costs and that the quality of results
increase by increasing the number of sections although some difficulties arise by
interpretating the PSD due to their discontinuous shape.

3.3.3 Aerosol dynamic modelling

Now that the numerical techniques for modelling the evolution of the PBE have
been presented, there only remains the modelling of the individual aerosol-related
processes, such as particulate formation, surface growth and coagulation. The re-
maining processes, such as fragmentation and sintering, are outside the scope of
this thesis and will not be discussed here. Since flame synthesis of solid partic-
ulates with fractal morphology is the main feature of this work, the modelling
aspects are therefore limited to solid particulates and the aerosol processes of liq-
uid particulates are presented in the relevant passages.

3.3.3.1 Particulate Formation

Particulate formation, which in the context of solid particulates is often referred
to as particulate inception, usually occurs at the lower end of the particulate size
spectrum and can either be described by a global one-step chemical reaction, e.g.

TiCl4 + O2
k−→ TiO2 + 2Cl2 with k = 8.26× 104 exp

(−88.8 kJ
RuT

)
[183]

(3.50)
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for the inception of titania particulates, or the particulate inception is determined
by a detailed finite-rate chemistry reaction mechanism, where the production rate
of incipient particulates is usually given by an irreversible reaction involving the
precursor species at the end of the reaction chain [34, 45, 184, 179, 42].

The newly formed particulates are primary particulates and therefore added
to one of the first sections of the discretised particulate size distribution. The
volumetric size of the this section is determined by the size of the solid species
molecule, which is assumed to be spherical:

v0 =
Ms

ρsNA
. (3.51)

It is important to note, that particulate inception only increases the total number
of particulates.

This particulate inception shall be illustrated by the flame synthesis of silica
particulates, where the formation is purely determined by the underlying chem-
ical reactions. Here, the finite rate chemical reaction mechanism proposed by
Suh et al. [45, 184] with 67 chemical species and 264 reactions, presented in Ap-
pendix A, was used for the prediction of silica particulates2. The core of the reac-
tion mechanism is based on preceding studies [185, 186, 187] and Suh et al. [184]
identified SiO, SiO2, SiH2O and HSiOOH as the four silicon-containing species
that contribute most to the clustering process for the formation of particulates.
Subsequently, there is a first set of reversible self-clustering reactions of SiO and
SiO2 given by

(SiO)n + (SiO)m ←→ (SiO)n+m , (3.52)

(SiO2)n + (SiO2)m ←→ (SiO2)n+m (3.53)

with 1 ≤ n ≤ 9, 1 ≤ m ≤ 9 and n + m ≤ 10. This is followed by a second set
of irreversible reactions which include the contribution of the species SiH2O and
HSiOOH

(SiO)n + (SiH2O)m −→ (SiO)n+m + mH2 , (3.54)

(SiO2)n + (HSiOOH)m −→ (SiO2)n+m + mH2 . (3.55)

Suh et al. [184] assumed that the formation reactions of species with more than
ten silicon atoms are irreversible and counted them as particulates. Thus, their
inception rate is given by the sum of their production rates and solid particulates
were no longer considered as gas molecules. Suh et al. [184] further discussed
that the truncation point of ten silicon atoms is arbitrary and pointed out that for

2I would like to thank Dr. Michael R. Zachariah (University of Maryland, USA) for providing
the original chemical reaction mechanism for silica oxidation.
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the pressure range considered, the monomers of SiO and SiO2 are already above
the critical nuclei size, but a significant amount of chemical information would
be lost as the chemical mechanism is more accurate than the aerosol dynamics.
As uncertainties in the enthalpies of formation increase for species containing
more than ten silicon atoms, the truncation point of ten represents a compromise
between chemical uncertainties and aerosol dynamic shortcomings [184].

The applied particulate inception method is compared against perfectly stirred
reactor simulations published by Suh et al. [45] using the same reaction mecha-
nism which is used in this study. In Fig. 3.2 the particulate nucleation rate and
the particulate number density are shown, respectively. One can see that the on-
set of particulate nucleation is reasonably predicted, although the maximum is
somewhat overestimated. Larger differences appear for the region of decaying

0.001 0.01 0.1 1 10

time in s

10
10

10
12

10
14

10
16

10
18

10
20

10
22

n
u

cl
ea

ti
o

n
 r

at
e 

in
 m

-3
s-1

Suh et al. 2001
67 species, low p.

0.001 0.01 0.1 1 10

time in s

10
12

10
15

10
18

10
21

p
ar

ti
cu

la
te

 n
u
m

b
er

 i
n
 #

/m
-3

Suh et al. 2001
67 species, low p.

Figure 3.2: (left) Particulate inception rate and (right) particulate number density
for perfectly stirred reactor simulations at T = 773 K, p = 107 Pa and a O2 to SiH4
ratio of 15.

inception, where the largest fraction of the precursor species has already been
converted. This can mainly be attributed to the unknown thermodynamic data
of the species, which were not published in Suh’s study, as sensitivity studies
confirm. Here, only the chemical reaction mechanism is available without the
JANAF polynomial parameters and a custom set of JANAF polynomials taken
from the NIST database has been used, see Appendix A. The general time de-
pendence of the particulate number density is consistent with the nucleation rate
observations. Here, the particulate number density calculated by Suh et al. [45]
increases faster, which is due to the steeper increase in the nucleation rate, and
a corresponding particulate number density is achieved with the chemical reac-
tion mechanism used here. Overall, in the complex Si-O-H system, a reasonable
agreement of the inception rate is observed, which is considered to be sufficiently
captured to calculate reactive particulate synthesis processes in diffusion flame
simulations.
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3.3.3.2 Surface growth

Surface growth occurs when a molecule from the gas phase collides with a par-
ticulate and sticks to it, thus increasing its mass. The volume of the particulate
formed is the sum of the volume of the depositing molecule and that of the par-
ticulate. For high Knudsen numbers, the rate of the process is based on the free
molecular collision kernel and, following Shekar et al. [46], the size dependent
growth rate of the particulate takes the form

G f m
v,i = 2.2αC

Mdep

ρdep

√
πkBT

2m
(d + dc,i)

2 , (3.56)

where C, Mdep, ρdep, m and d are the gas phase concentration, molecular weight,
density, monomer mass and collision diameter of the depositing species, respec-
tively. Furthermore, dc is the collision diameter of the particulate and α is the
collision efficiency, which is a parameter set in the range from zero to one. The
collision diameter of the depositing species, d, is assumed to be the diameter of a
spherical molecule (fractal dimension D f = 3). Following the power law of ag-
glomerates, the collision diameter of the particulate in section i, dc,i, is calculated
as

dc,i = dp,0N
1/D f
i , (3.57)

with Ni being the number of primary particulates within the agglomerate, calcu-
lated by Ni = vi/v0.

For molecules depositing on large particulates whose Knudsen numbers are
smaller than 1, Eq. (3.56) does not apply, since particulate growth is diffusion-
limited, i.e. determined by the rate at which the surface-growth-relevant species
diffuse towards the particulate’s surface, which can be modelled by

Gdl
v,i = DdepYdep

ap,i

dp,i/2
, (3.58)

where Ddep is the diffusion of the surface-growth-relevant species calculated by
the Chapman-Enskog theory, Ydep is the mass fraction of the depositing
species in the close vicinity of the particulate and ap,i is the surface area of the
particulate. In order to use both approaches in the respective valid regime, a
harmonic mean formulation is used

Gv,i =
G f m

v,i Gdl
v,i

G f m
v,i + Gdl

v,i

. (3.59)
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In Fig. 3.3, the surface growth rate versus particulate diameter is shown and
different slopes for the free-molecular and diffusion-limited growth formulations
can be observed. For both very small and very large particulates, the volumet-
ric growth rates differ by more than three orders of magnitude, showing that the
application of a singular growth formulation is insufficient. The harmonic mean
formulation provides a good prediction for the whole particulate size range, al-
beit with a slight underestimation of size growth in the transition area, which is
typical for harmonic means [188].

Particulate growth conserves the number of particulates and only results in
increased surface and volume fractions. Due to the surface growth, the particu-
lates are shifted in sections towards the upper end of the discretisation. For fixed
grid resolutions, the grown particulates usually have to be distributed between
the two adjacent sections, which can be modelled by a two-point or three-point
[163, 160] formulation.

3.3.3.3 Coagulation

Coagulation, also often referred to as agglomeration, is a process where two par-
ticulates collide and form a larger particulate. The particulate number density
thus decreases due to coagulation. The coagulated particulate has the same vol-
ume and primary particulate number as the sum of the two colliding particulates,
therefore conservation of mass applies. Although the fractal dimension of the
particulates may indeed change under the coagulation process, it is a common as-
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Figure 3.3: Volumetric surface growth rate for particulates of size dp using differ-
ent growth rate formulations at T = 800 K in a SiO2-N2 mixture for a depositing
species mass fraction of YSiO2 = 2 · 10−5.
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sumption that it remains constant [12]. The rate at which the particulates collide
is described by the coagulation kernel and a plethora of different formulations
are available in the literature [189, 190, 191, 65, 192], which has been reviewed in
[193]. The agglomeration is a highly non-linear process as it is strongly depen-
dent on particulate size, particulates fractal dimension and particulate number
density. As with surface growth, there is a different formulation for the coagu-
lation kernel for the free-molecular and continuum regime. Depending on the
Knudsen number, the following formulas for spherical particulates are available
[12]

βij =


( 3

4π

) 1
6
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) 1
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(3.60)

with k being the Boltzmann constant. Since Eq. (3.60) is valid for spherical partic-
ulates only, some modifications have been proposed to model the coagulation of
fractals [30, 12]. The coagulation kernel of particulates with fractal dimension D f
then reads

βij =



( 3
4π

)λ a
2− 1

D f
0

(
6kT
ρs

) 1
2
(

1
vi
+ 1

vj

) 1
2

(
v

1
D f
i + v

1
D f
j

)2

: Kn > 1 ,

2kT
µ

 1

v
1

D f
i

+ 1

v
1

D f
j

(v
1

D f
i + v

1
D f
j

)
: Kn ≤ 1 ,

(3.61)

with λ = 2
D f
− 1

2 and valid for fractal dimensions larger than D f = 2.0 [194].
Equation (3.61) is a general formulation as it reduces again to Eq. (3.60) for D f =

3. For modelling coagulation for the entire size space, Fuchs [192] proposed a su-
perior formulation than a simple harmonic mean blending which takes the form

βij = 2π(Di + Dj)(dc,i + dc,j)

 dc,i + dc,j

dc,i + dc,j + 2
√

g2
i + g2

j

+
8(Di + Dj)

(dc,i + dc,j

√
c2

i + c2
j )

−1

,

(3.62)

with the transition parameter

gk =
(dc,k + Lk)

3 − (d2
c,k + L2

k)
3
2

3Lkdc,k
− dc,k , (3.63)
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where Lk is the mean free path given by

Lk =
8Dk
πck

(3.64)

and ck being the particulate velocity

ck =

√
8kBT
πms

. (3.65)

In the above equations Dk is the particulate diffusivity, whose calculation is given
by the theory of Einstein-Smoluchowski [195]

Dk =
kBT

3πµdc,k
CS (3.66)

with the Cunningham correction factor [196]

CS =
5 + 4Knk + 6Kn2

k + 18Kn3
k

5−Knk + (8 + π)Kn2
k

(3.67)

which accounts for the inaccuracy of the Einstein-Smoluchowski theory for par-
ticulate scales in the order of the mean free path of the gas phase molecules.

Figure 3.4 illustrates the dependences of the collision rates of the different col-
lision kernels on the particulate diameter and highlights the excellent blending
of the collision kernel proposed by Fuchs et al. [192] between the free-molecular
and the continuum regimes.

The validation of the current implementation of the coagulation process can
be done by comparing results with numerical data published by Wu & Fried-
lander [194]. There Direct Monte Carlo simulations of particulates with different
fractal dimensions have been conducted for the prediction of the self-preserving
size distribution which was discretised with 40 sections and coagulation ker-
nels for the free-molecular and continuum regimes have been applied. Figure 3.5
presents normalised particulate number densities for calculations of coagulation
of particulates with two different fractal dimensions.

The sectional method can reproduce the decay of the particulate number with
almost perfect agreement. Assuming a self-preserving size distribution, the slope
of the decay can be calculated analytically to -2 and -6/5 for D f = 2 and D f = 3
[194], respectively, and these slopes were precisely reproduced.

Figure 3.6 shows the time evolution of the mass mean diameter for pure co-
agulation of particulates with different fractal dimensions ranging from D f = 2
to D f = 3. Although some odd artefacts of the shape of the mass mean diame-
ter evolution are presets for very small times the data enables the validation of
coagulation differently shaped particulates.
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Figure 3.4: Dependence of the collision kernel on particulate size dp = dc,i and
fixed size dc,j for the different kernel formulations at T = 800 K and a gas phase
of pure nitrogen.
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Figure 3.6: Time evolution of mass mean diameter for particulates with different
fractal dimensions for conditions of d0 = 10 nm, N0 = 1 · 108 m−3, T = 1500 K
and ρs = 2000 kg/m3 [194].

Comparing numerical results with data obtained using the sectional method,
it can be seen that although the results do not perfectly match the original data,
the correct trend may indeed be correctly reproduced. Mass mean diameter may
slightly be over-predicted but more consistent data have been obtained with the
sectional method at the beginning of the coagulation process for times lower than
t = 0.2 s.

A validation setup involving both inception and coagulation has been pre-
sented in Suh et al. [45] for data obtained with a moment method for spherically
shaped particulates assuming a log-normal size distribution. Here, Fig. 3.7 com-
pares the evolution of particulate number densities for numerical data obtained
by Suh et al. [45] with a sectional method. The results presented in Fig. 3.7 are in
line with observations for the inception rate, which have been discussed above.
The particulate number density increases somewhat later, as inception is also
predicted at a later stage. Since the peak of the inception rate for the sectional
method is slightly higher compared to Suh et al. [45], the maximum of the partic-
ulate number density becomes also higher.

Once a certain threshold of particulate number density is reached, gradually
increasing coagulation leads to a decrease of the particulate number density. The
bulge in the numerical reference data stems from the persistent inception process,
which cannot be reproduced with the applied reaction mechanism and thus does
not occur within the method presented here. More interesting is the slope at
which the particulate number density is decreasing: For times larger than one
second, the graphs show the same slope, indicating that coagulation is correctly
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Figure 3.7: Time evolution of particulate number density for perfectly stirred re-
actor simulations at T = 773 K, p = 107 Pa and a O2 to SiH4 ratio of 15.

predicted, as inception is no longer the predominant factor.
The comparison with different numerical reference results allows the imple-

mented coagulation process to be considered reliable even under the influence of
varying fractal dimensions and to be used for further analyses.

3.3.4 Incorporation into the sparse-Lagrangian MMC framework

This section aims to show how the population balance transport equation for tur-
bulent flows can be coupled to a flow solver. The aerosol dynamic processes sig-
nificantly depend on the precursor chemistry and thus also on the quality of their
prediction. For this reason, it is important to use a comprehensive framework
that can capture turbulence-chemistry interactions as well as turbulence-aerosol
interactions in an accurate way. Modelling turbulence-aerosol interactions is chal-
lenging since, as with chemistry-turbulence interactions, highly non-linear terms
describing the inception, growth and coagulation processes occur, which are un-
closed under averaging approaches for RANS and filtering operations for LES.
As outlined in the study of Rigopoulos [16] the correlations which arise by the
coupling to a turbulent flow solver can be categorised into three types as follows:

(i) correlation between reactive scalars, e.g. inception term,

(ii) correlation between reactive scalars and number density, e.g. growth term,

(iii) correlation between number densities, e.g. coagulation term.

The correlation of type (i) is of the same character as the chemical reaction source
terms for the species transport equations. Correlations of type (ii) and (iii) are
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unique to turbulent flows involving aerosol dynamics and closure models are
required for the correct treatment of growth and coagulation processes.

Attempts to describe the aerosol processes in turbulent flows were based on
the eddy dissipation model [197, 198] and on the flamelet method [199, 200, 201,
202]. There, it was pointed out that the prediction accuracy of these approaches
is limited, despite the good comparison with experimental data, and that higher
quality techniques are required for a correct simulation of aerosol processes.

This has led to the development of transported PDF models including the
mixture fraction, enthalpy and soot volume fraction [203]. In the context of a dis-
cretised PBE method the transported PDF model was applied to the prediction
of particulate matter within a turbulent jet flow without chemical reactions [204].
While RANS approaches [201, 205, 206] had been in the focus in the past decades
due to the limited computing capacities, the currently available computing re-
sources also permit simulations based on LES [207, 43, 42, 179, 51, 208, 180, 41].
Kronenburg et al. [92] coupled the soot model of Leung et al. [209] to a CMC ap-
proach and showed that considering differential diffusion effects leads to a sig-
nificant improvement with respect to the soot predictions. Some LES studies omit
the correlations between turbulent scales and aerosol processes [36, 210], despite
there is being clear evidence [38] that these correlations are of key importance for
aerosol predictions.

Transported PDF models in combination with a stochastic Lagrangian par-
ticle method allow aerosol processes to be made accessible for turbulent simu-
lations in a very straightforward manner, since the source terms, just like the
reaction source term for the chemical species, are then available in closed form
and can be calculated directly without further assumptions. Even for a tradi-
tional Lagrangian PDF method, the computational requirements are enormous
if the discretised particulate size distribution is to be represented with a suf-
ficiently high resolution in size space. As discussed in Sec. 3.2.4.3, the sparse-
Lagrangian stochastic particle method is an excellent way to reduce the compu-
tational burden to an acceptable level without compromising accuracy. The cou-
pling is achieved by adding the sections of the discretised size distribution to the
transported scalar vector

ϕ
p
α = (Y1, . . . , Yns , h, Z, N1, . . . , Nnk) , (3.68)

such that it now comprises the transported reactive species, the enthalpy and the
discretised size sections for the approximation of the PSD. The temporal change
of the scalar vector then becomes

dϕ
p
α =

[
Sp

α + Mp
α + Aα

]
dt, (3.69)

where Aα represent the aerosol dynamics, like particulate formation, volumetric
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surface growth, coagulation and others if required. Aerosol dynamics such as
particulate formation and surface growth are dependent on species composition
and temperature, and this information is readily available on the stochastic parti-
cles, whose displacement can still be described by Eq. (3.26). This equation shows
that a unified diffusivity (D+Dt) is assumed for all elements of the scalar vector
including the size sections. In the context of describing the diffusion of particu-
lates, this is a major shortcoming, as particulate diffusion may differ by orders of
magnitude compared to the gas phase diffusivity [12]. Consequently, the diffu-
sivity of the particulates is overestimated, which can lead to a smoothing of local
particulate accumulations, which in turn underestimates coagulation effects. If
diffusion effects are negligible compared to convection, this assumption should
not have a major impact and this aspect is discussed further below.



Chapter 4

Incorporation of polydispersed
particulates simulation into a
variable density flow solver

For the calculation of aerosol dynamics, e.g. nucleation processes or particulate
flame synthesis, in turbulent reactive flames, the MMC model and the govern-
ing equations for the aerosol dynamic processes have been incorporated into the
OpenFOAM solver collection. The purpose of this chapter is to describe the char-
acteristics of the entire framework. Therefore, the OpenFOAM framework is first
presented as a starting point for the further implementations followed by a de-
scription of the MMC-based solvers. Secondly, the numerical methods for density
coupling and for generating suitable boundary conditions for turbulent jet inves-
tigations are presented.

4.1 OpenFOAM

OpenFOAM (Open Field Operation And Manipulation) is an open-source frame-
work mainly used for the computation of CFD related problems and its initial
version has been developed at Imperial College London [211, 212]. The govern-
ing equations are usually solved via the finite volume approach on unstructured
grids, but in general OpenFOAM provides a powerful code basis for the numer-
ical solution of partial differential equations. As the entry barrier for an efficient
usage of OpenFOAM is very low, OpenFOAM enjoys a broad user community
in both research and industry, which have intensively extended the applied solu-
tion methods and libraries over the past years. Especially in the turbulent flow
and combustion modelling community, this has prompted many profound de-
velopments of methods, tools and solvers [213, 214, 215, 216, 217]. OpenFOAM

63
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provides second-order numerical schemes for the finite volume-based terms for
convection, diffusion and time derivatives and allows the deployment of complex
boundary conditions.

4.2 Incorporation of the MMC method into the Open-
FOAM framework

The favourable extension properties of OpenFOAM led to the incorporation of
the generalised MMC method into a comprehensive RANS and LES solver frame-
work of turbulent, reactive flows which was validated against numerous experi-
mental investigations and DNS studies as presented in Galindo-López et al. [124].
The standard solver for the calculation of LES flows with variable density was
extended to meet the requirements of the MMC method. Therefore the standard
particle and cloud classes provided by the native OpenFOAM version form
the starting point to add the desired functionalities. The particle class contains
the basic variables and functionalities to perform a regular Lagrangian simula-
tion that, through a particle tracking algorithm, allows stochastic particles to be
deleted, pushed back or passed on when they encounter boundary or parallel
processor patches.

The standard cloud is a container class that provides tools to delete and add
the stochastic particles. Additionally, the numerical and physical features of the
stochastic MMC model are added by nesting four template class layers, where
each layer is derived from the previous layer inheriting its properties.

The four layers are denoted as Advection, Thermo, Mixing and Reacting and
the line of inheritance is as follows:

Reacting←−Mixing←−Thermo←−Advection←−particle .

The Advection layer implements Eq. (3.26) and thus provides the transport of the
stochastic particles in physical space. The remaining layers implement Eq.(3.69)
and describe the evolution of the transported scalar space, where Thermo accounts
for the allocation of the species and enthalpy, Mixing realises the mixing algo-
rithm and Reacting processes the execution of the chemistry. For each class layer,
so-called sub-models are available, which are abstract classes to include runtime
selectable processes, so that for example the mixing operator can be optionally
realised by a standard Curl or MMC-Curl model.

The MMC framework in the OpenFOAM library environment was tested
against experimental data of the Sydney burner with inhomogeneous inlets [218]
showing very good LES results for conditional and unconditional quantities [219].
The implementation of a RANS-based MMC method was validated by Varna et
al. [220] against experimental measurements of the turbulent Sandia D flame con-
figuration [221]. An assessment of mixing time scale models for the MMC method
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was performed by Vo et al. [138] for a turbulent shear layer configuration, with
validation data obtained using DNS. More recently, the MMC method has been
extended to predict premixed combustion using a double-conditioned approach
[222, 223] and its excellent performance has been validated against experimen-
tal data for the Darmstadt stratified flame configuration. The performance of the
MMC method for the prediction of spray combustion has been tested by Son-
theimer et al. [224] and that for coal particulates by Zhao et al. [225].

The numerical sub-models employed for the density coupling and the mixing
process as well as the provision of well-defined boundary conditions for turbu-
lent jet flames warrant further attention and are therefore discussed below.

4.2.1 Density Coupling

Since the heat release due to the chemical reaction process resides on the side
of the Lagrangian scheme, whereas the Favre-filtered governing equations are
computed on the Euler fields, a density feedback from the stochastic particles to
the Eulerian grid cells is required. Especially in a sparsely distributed particle
method, a stable and reliable density feedback is not easy to achieve and two
methods for the calculation of the conditional equivalent species ⟨ϕ̃E

α |ϕ̃c⟩ occour-
ing in the source term of Eq. (3.47) will be described in the following.

4.2.1.1 FlameletCurves

The FlameletCurves approach implements the method presented in Cleary &
Klimenko [96] which is based on the ideas of the equivalent enthalpy method
proposed by Muradoglu et al. [141] and Raman et al. [226, 227]. There, the species
mass fractions and sensible enthalpy as a function of a coupling variable, e.g. the
mixture fraction, are obtained by a pre-computed set of flamelet curves calculated
by solving Eq.(3.18). During the reactive simulation, a least squares analysis is
performed to find the flamelet solution that best resembles the selected stochastic
particle ensemble, see Fig. 4.1. Once the flamelet curve is selected, the values of
the conditional equivalent species, ⟨ϕ̃E

α |ϕ̃c⟩, on the LES mesh cell is approximated
from the consistent flamelet solution using the Eulerian value of the coupling
variable as the input parameter.

4.2.1.2 KernelEstimation

The KernelEstimation model is based on the methods developed for the field of
smoothed particle hydrodynamics [228] and have been implemented by Galindo-
López et al. [124]. The model estimates the values of the conditional equivalent
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Figure 4.1: Temperature profiles of flamelet equation solutions for different scalar
dissipation rates together with instantaneous Lagrangian particle temperatures.
Courtesy to Jonas Kirchmann.

species ⟨ϕ̃E
α |ϕ̃c⟩ by the computation of a radial basis function

⟨ϕ̃E
α |ϕ̃c⟩ =

∫ ∞

−∞
ϕE

α (r
′)Ω(r− r′, ∆) dr′ , (4.1)

with r = {ϕE
c , x}. To obtain an exact value of ϕE

α , the kernel would have to
be a delta function, implying that the resolution length scale ∆ is zero. Since
the stochastic particle number is finite the composition is only known at discrete
locations and thus the integral is approximated by a sum over the entire particle
ensemble

⟨ϕ̃E
α |ϕ̃c⟩ = ∑

p
mp ϕ

p
α

ρp Ω(r− rp, ∆) . (4.2)

In this study, only mixture fraction based coupling approaches are used (ϕ̃c = f̃ ),
where r and rp are set to r = {x, f̃ } and rp = {xp, Zp}, respectively.

4.2.2 Mixing operation

The mixing process is executed by calling a submodel at the layer level of the
Mixing class and is the only inter-particle operation that redistributes the trans-
ported scalar vector among the stochastic particles. To date, two mixing submod-
els are available in mmcFoam: the standard Curl mixing model for dense stochastic
particle simulations and the MMC variant of the Curl mixing model, which can
be applied to both dense and sparse Lagrangian approaches, respectively.

The MMC Curl mixing model implements the approach outlined in Sec. 3.2.4.3
such that the stochastic particles are selected in pairs such that the effective
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squared distance is minimised, see Eq. (3.37). The particle pair selection is realised
by sorting the particles in a space comprised of Γ = {x, ξc}, where the sorting al-
gorithm is realised by a k-dimensional binary tree, whose concept is described in
Bentley [229]. For three-dimensional simulations with mixture fraction as condi-
tioning variable the sorting space becomes Γ = {x, f̃ }. In a k-d tree, at each leaf,
the given space is recursively split into two parts along a hyperplane perpendic-
ular to that space, resulting in two so-called half-spaces, one containing values
larger and the other smaller than the splitting value. Following Friedmann [230],
the splitting dimension is selected according to in which the data points have the
largest spread and can be calculated by

ds =

〈
s|max

(
max(Γs)−min(Γs)

Γm,s

)〉
(4.3)

with Γm,s being a normalisation vector comprised of Γm,s = {rm, ξm,s}. This pro-
cedure is depicted in Fig. 4.2, where data points are sorted in a two-dimensional
space.

1

2

2

3

Figure 4.2: Representation of the k-d tree here with k = 2. The circles represent the
data points in a two-dimensional space and the thin lines represent the respective
splitting plane of the subset.

4.2.3 Boundary conditions

Well-defined boundary conditions are of utmost importance in order to calcu-
late reliable simulations with high predictive validity. In general, constant time
Dirichlet or Neumann boundary conditions are sufficient to reflect the physical
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characteristics of the boundary conditions. In simulations of turbulent jet diffu-
sion flames, one challenge is to specify excellent time-varying boundary condi-
tions for the jet nozzle velocity field to ensure that the decay of the jet and the
acting shear forces can be reproduced correctly. For this purpose, turbulent in-
flow boundary conditions are generated in a non-reactive simulation of a pipe
flow prior to the reactive simulation. The turbulent velocity field of the pipe flow
is stored and later retrieved for the reactive simulation as boundary data of the
jet velocity field. Here, the specification of nozzle diameter and bulk velocity suf-
ficiently defines the flow pattern of the pipe flow due to the Reynolds similarity.
Periodic boundary conditions are applied for a pipe flow of finite length. Due to
the occurrence of coherent structures whose scale dimension increases with lower
Reynolds number, it is important to properly select the length of the pipe flow do-
main, as otherwise a correlation bias could arise. Wu & Moin [231] conducted an
excellent DNS study on correlations of flow structures in turbulent pipe flows.
For pipe flows with Reynolds numbers higher than ReD = 10 000, six longitu-
dinal diameters are usually sufficient to avoid unwanted correlation bias. The
grid resolution of the pipe domain should be chosen based on the best practice
recommendations given in [26, 232]. Since fully resolved LES of pipe flows are
prohibitively expensive due to the excessive computational requirements, some
of which would even exceed the requirements of reactive simulation, an ID-DES
(cf. 3.1.2) can be performed as a much more efficient approach. The instanta-
neous velocity field and the formed flow structures highlighted by the q-criterion
are depicted in Fig. 4.3 showing that even small flow structures can be resolved.

Figure 4.3: Half of the flow domain at Reynolds number of ReD = 28 300 showing
(a) instantaneous velocity field (b) q-criterion shaded by instantaneous velocity

Figure 4.4 compares numerical results against experimental measurements
[233, 234] of axial velocity and its RMS directly at the jet exit plane of the tur-
bulent Sandia DME D jet flame. From the plot it is easily seen that both the mean
velocity and the mean velocity fluctuations can be modelled excellently so that
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well-defined boundary conditions can be provided for the reactive simulation.
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Figure 4.4: Mean and RMS of axial velocity of the Sandia DME D flame con-
figuration operating at a Reynolds number of ReD = 29 300 with a diameter of
D = 7.45 mm (◦) Experimental data [235] measured 1 mm downstream of the
nozzle exit plane and (—) simulation data obtained with an ID-DES of a pipe
flow.

4.3 Incorporation of the aerosol dynamics into the
MMC framework

To account for flame synthesis of solid particulates in turbulent flames the con-
cepts of aerosol dynamics presented in Sec. 3.3.3 have to be incorporated into the
existing mmcFoam code environment. Therefore, the four class layer implementa-
tion has been extended by a fifth layer, called Aerosol

Reacting←− Mixing←− Aerosol←− Thermo←− Advection←− particle ,

where sub-models of this layer implement different particulate aerosol dynamic
approaches, e.g. the nucleation and surface growth of liquid droplets or the flame
synthesis of solid fractals. The newly implemented solver is called mmcPbeFoam

and a flow diagram shown in Fig. 4.5 depicts the sequence of the individual com-
putational steps of the solver. At first the Eulerian and Langrangian schemes
are initialised. Then, the turbulent Favre-filtered transport equations of mass,
velocity, reference mixture fraction, equivalent species mass fraction and sensi-
ble enthalpy are solved. Discretisation schemes are second order central differ-
ence scheme (CDS) for the momentum and a total variation diminishing (TVD)
scheme is applied to all other differential transport equations. A second order
backward scheme is used for time integration. The PISO algorithm [236] ensures
a consistent coupling of velocity and pressure. Gas phase diffusivity is calcu-
lated based of the Sutherland law [237] and the turbulent diffusivity is deter-
mined by the LES turbulence model. The variables and properties required by
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the Lagrangian scheme are interpolated to the stochastic particle position. The
evolution of the Lagrangian scheme is performed according to the fractional step
procedure, where the stochastic particle position is updated first, followed by
calculation of the aerosol dynamics, the mixing and reaction. The just updated
transported scalar vector is used to find conditional equivalent species and sen-
sible enthalpy required for the density feedback.
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Figure 4.5: Flow chart of the mmcPbeFoam solver.
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Chapter 5

Application of the Multiple Mapping
Conditioning model to particulate
laden flows

With the numerical methods and techniques presented in Chapters 3 and 4, all
necessary tools for simulating particulate flame synthesis within turbulent, reac-
tive flows are now available. Section 3.2.4.3 presented a scheme for a stochastic
particle mixing procedure in the context of MMC-LES, aimed at modelling the
turbulence-scalar interactions in an appropriate way. Similarly, standard meth-
ods for predicting particulate size distributions were outlined in Sec. 3.3.3. These
standard methods have been combined into a comprehensive PBE-MMC-LES
framework, cf. Sec. 4.2, the generality of which is now to be validated on the
basis of various flow problems. The combined PBE-MMC-LES model can be con-
sidered as validated if it is able to provide the

□ correct modelling of turbulence-scalar interactions at challenging conditions,
□ modelling of two-phase flows with high accuracy that is comparable to

common PDF methods,

□ correct correlations between reactive scalars, turbulence and particulate syn-
thesis models (e.g. inception, growth and coagulation), and

□ correct prediction of trends for a broad range of boundary conditions.

In the context of this study, four consecutive journal papers [1, 2, 3, 4] were
published to asses the listed requirements and thus to prove the generality of the
comprehensive PBE-MMC-LES model. These publications are presented below,
highlighting the main features and results.

Paper 1:

The first issue has been addressed in the publication Neuber et al. [1]. This pa-
per presents results for a complete turbulent, reactive flame series ranging from
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moderate to relatively high Reynolds numbers obtained within the MMC-LES
framework. This configuration does not include particulates; however, it poses a
challenging test case for a combustion model, as local extinction events become
more prominent with increasing Reynolds number. As a consequence, the condi-
tional variances of the (reactive) scalars increase significantly or, in other words,
the correlation between the scalar fluctuations and the filtered mixture fraction as
a conditioning variable declines.

The main aspect of this paper is the demonstration of the MMC-LES method’s
ability to predict the correct degree of conditional scalar fluctuations with a single
set of model parameters for a complete flame series. This was necessary due to
two circumstances: First, the MMC-LES model had not been fully validated at the
time of the publication; second, the newly developed a-ISO model for predicting
the mixing time, cf. Eq. (3.45), had only been validated against a generic flow
configuration (cf. Vo et al. [138]) and its application to a real flame configuration
was still pending.

In previous MMC-LES investigations of a turbulent jet configuration [136,
137], which also exhibited pronounced local extinction events due to an increase
in Reynolds number, satisfactory results could only be obtained by adjusting the
parameters of the mixing model. This was a major shortcoming of the MMC-
LES model, as it is of predominant importance to show that a model provides
excellent simulation results with a single set of model parameters under var-
ious boundary conditions. Moreover, in the preliminary studies by Neuber et
al. [238, 239, 240], the previously used mixing time scale model C&K, cf. (3.44),
proved to be unable to yield satisfactory conditional variances of the tempera-
ture for the Sandia DME flame configurations with higher Reynolds numbers.

These aspects have been addressed in Neuber et al. [1], where an efficient
modelling framework was presented and it was shown that results in terms of
conditional and unconditional means could be significantly enhanced by appli-
cation of the a-ISO model for a sophisticated calculation of the mixing time scale.
This is exemplified by scatterplots of the temperature conditioned on particle
mixture fraction for the flame configuration with the highest Reynolds number,
see Fig. 5.1. The experimental data shows significant deviations from a simple
flamelet-like structure and an almost bimodal distribution is observed. It is ob-
vious that the C&K model is unable to accurately account for the effect of turbu-
lence on chemistry. On the contrary, the a-ISO model performs far better and the
numerical calculation even captures the bimodal distribution of the experiment
appropriately.

A more quantitative assessment of the performance of the a-ISO model is pro-
vided by Fig. 5.2, where the conditionally averaged standard deviations of CO
mole fraction for the different flames are shown.
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Figure 5.1: Stochastic particle temperature conditioned on mixture fraction ξ at
location z/D = 7.5 for the Sandia DME G’ configuration. A total number of
10 000 samples is shown in each plot. Figure taken from Neuber et al. [1].

It is clearly illustrated that MMC-LES with a-ISO captures the progression of
local extinction and its effect on the flame structure very well and is therefore
suitable as a new standard approach.
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Figure 5.2: Profiles of experimental (symbols) and numerical (solid lines) stan-
dard deviation of stochastic particle CO mole fraction conditioned on mixture
fraction ξ at z/D = 7.5 for the different Reynolds number flames. Figure taken
from Neuber et al. [1].

These excellent results could only be obtained through the application of a
sophisticated density coupling model, since the flamelet curves approach, see
Sec. 4.2.1.1, has proven to be a source of significant numerical bias. The par-
tial extinction leads to locally strongly varying particle compositions and the
FlameletCurves approach induces numerical density fluctuations in the entire
flow field when the least squares evaluation selects a new flamelet curve. For this
reason, this density coupling is not suitable for flame configurations with local
extinction events. Here, the application of the KernelEstimation density cou-
pling model, see Sec. 4.2.1.2, provides much better results, although numerically
induced density fluctuations are not entirely eliminated.
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A further important feature to be mentioned is that for Neuber et al. [1] the
turbulent inlet flow data were generated with an a priori ID-DES of a pipe flow,
cf. Sec. 4.2.3. This approach for generating turbulent flow data was validated
using experimental measurements near the nozzle outlet. Due to the excellent
numerical results, the approach now provides a reliable model for subsequent
investigations in cases where no velocity measurements are available or possible.

Based on the presented results, it was demonstrated that the implemented
MMC-LES model provides a

□✓ correct modelling of turbulence-scalar interactions at challenging conditions

and can now be considered as a validated starting point for developments in two-
phase flow simulations.

Paper 2:

The publication Neuber et al. [2] constitutes the first study to present a combined
PBE-PDF approach, including nucleation and growth, within the MMC-LES
framework for a laboratory-scale flow configuration. The full PBE-MMC-LES
model is validated by comparison with experimental data from nucleation stud-
ies in a turbulent, hot nitrogen jet loaded with dibutyl phthalate (DBP), which
condenses during mixing with a cold air stream.

Previously, only a few synthesis studies have combined LES with the sectional
method [36, 37]. As outlined in Neuber et al. [2], all of them neglected the inter-
actions of turbulence with aerosol nucleation and growth, although studies using
direct numerical simulation (DNS) [38] demonstrated clearly that such contribu-
tions are typically not small and must not be neglected.

The synthesis of aerosols in turbulent flames involves coupled, three-way in-
teractions between turbulence, chemistry and aerosol dynamics. In fundamen-
tal studies, it is reasonable to eliminate one of these aspects in order to analyse
the other interactions in isolation. Since the present work focuses on model clo-
sures for turbulence-aerosol interactions, the investigation of a non-reacting sys-
tem with a condensing species represents an ideal test case. New thermodynamic
data have been presented for DBP in Neuber et al. [2] and served as an additional
source for subsequent studies [241, 242].

Acceptable agreement is found between the MMC-LES predictions and exper-
imental data as well as other numerical investigations, as shown in Fig. 5.3. The
average DBP droplet sizes are well predicted, and predictions of the total droplet
number and the dependencies of droplet statistics on precursor concentrations
are satisfactory.

A remarkable outcome is that the comparison of the sparse particle method
with results from conventional (dense) Monte Carlo LES simulations demon-
strates the capabilities of the MMC-LES framework to predict aerosol nucleation



CHAPTER 5. APPLICATION OF THE MULTIPLE MAPPING
CONDITIONING MODEL TO PARTICULATE LADEN FLOWS 77

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

xDBP · 10−4

104

105

106

107

108

109

1010

1011

1012

1013

1014

1015

d
ro

p
le

t
nu

m
b
er

m
0

[#
/m

3 ] Exp. [25]
Garmory [23]
PDF-LES
MMC-LES

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

xDBP · 10−4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

co
u
nt

m
ea

n
d
ia

m
et

er
[µ

m
] Exp. [25]

PDF-LES
MMC-LES

Figure 5.3: Droplet number density (left) and count mean droplet diameter
(CMD) (right) as function of the DBP mole fraction in the hot jet issuing into
the domain at z/D = 20. Figures taken from Neuber et al. [2].

and growth at relatively low computational costs while providing comparable
prediction quality, cf. Fig. 5.3. Thus, on the basis of the results presented in
Neuber et al. [2] it can be concluded that sparse MMC-LES simulations produce
results that are nearly identical with the much more expensive dense PDF-LES
simulations and that sub-grid interactions related to the particulate matter mod-
elling must not be neglected. Neuber et al. [2] assess the effects and importance
of turbulence interactions with the gas-phase composition and aerosol evolution.
The effects of sub-grid interactions are analysed by comparison of the averaged
nucleation and growth rates predicted by MMC-LES with the averaged quanti-
ties from the filtered LES fields and the Reynolds-averaged quantities produced
from RANS-type closures. Moreover, errors introduced when omitting any LES
sub-grid modelling are quantified.

In general, reasonable agreement of predicted droplet concentrations with
measurements has been achieved and the quality of the results compares favour-
ably with other simulations presented in the archival literature. The study demon-
strates that the effect of turbulence on nucleation must not be neglected but may
be small for fine LES resolutions and/or low turbulence levels. Thus, the study
presented in Neuber et al. [2] is a first successful step towards a comprehensive
PBE-MMC-LES framework which is capable of

□✓ modelling two-phase flows with high accuracy that is comparable to com-
mon PDF methods,

which makes it a very promising tool for simulating aerosol dynamics in turbu-
lent reacting environments.
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Paper 3:

The publication Neuber et al. [3] constitutes the first LES-coupled sparse PDF
study modelling particulate formation, surface growth and coagulation in a
laboratory-scale turbulent reactive flow configuration involving finite rate chem-
istry. Additionally, it is one of the very few joint computational and experimen-
tal studies that address the issue of particulate synthesis under the influence of
turbulence. The full PBE-MMC-LES model is validated by comparison with ex-
perimental data obtained on a flow configuration developed specifically for this
project. Laser induced fluorescence (LIF) and elastic light scattering (ELS) signals
have been measured to get insight into the particulate formation process, where
the calculation of the signals are described in Neuber et al. [3]. Thus, model val-
idation follows the paradigm shift approach [243, 244, 245], which is based on
the calculation of "predicted signals" that are directly compared against the ex-
perimentally obtained signals. This avoids considerable uncertainties that would
arise when the measured values are converted into physically meaningful quan-
tities, such as e.g. particulate number densities.

The turbulent flow configuration considers a cold, silane-doped nitrogen jet
issuing into a hot, vitiated co-flow. Oxidation of silane leads to particulate forma-
tion, followed by surface growth and agglomeration, and the individual aerosol
dynamic processes are simulated by the models presented in Sec. 3.3.3. The par-
ticulate inception rate is determined by the chemical reaction mechanism pro-
posed by Suh et al. [45], which is listed in Appendix A. The key feature of Neu-
ber et al. [3] is that particulates with fractal morphology are now considered here,
rather than spherical droplets as assumed in the previous study, and the corre-
sponding models used for describing the aerosol dynamics had to be modified
accordingly.

The publication Neuber et al. [3] aims at a thorough validation of the com-
bined PBE-MMC-LES model against reference test cases with and without silane
doping, and therefore without particulate formation. The corresponding contour
plots of the ELS signals are shown in Fig. 5.4. The calculation and normalisation
procedure of the ELS signal is given in Neuber et al. [3]. In the absence of partic-
ulate matter the ELS signal is a function of species composition and temperature
only. This allows an assessment of the correct prediction of the flow field, which
is only obtained if the boundary conditions are well defined, the turbulent flow
content is accurately captured and the MMC mixing model is accurately cali-
brated.

In Figs. 5.4(a) and 5.4(b) experimental and numerical results are presented
for the reference case without silane. The decay of the jet stream appears to be
slightly overestimated. This could be due to an over-prediction of the turbulent
velocity fluctuations within the (pre-calculated) pipe flow simulation used for the
jet inlet condition. In the experiments, the jet inlet tube is surrounded by a hot,
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Figure 5.4: Contour plots of the normalised elastic light scattering signal for cases
with and without silane loading in the central turbulent jet. Figures taken from
Neuber et al. [3].

vitiated co-flow, and the heat flow towards the central jet stream increases the
temperature of the jet. This leads to an increase in molecular viscosity, which
dampens the internal velocity fluctuations. In the simulations of the pipe flow,
no heat flow was accounted for, such that the velocity fluctuations at the inlet
boundary are slightly overestimated.

Figures 5.4(c) and 5.4(d) allow for a comparison of the ELS signal for the ref-
erence case with a silane doping of 3100 ppm. The comparison shows that the
numerical signal agrees relatively well with the experimentally measured one;
for example, the peak value is predicted at approximately the same downstream
position. However, there seem to be larger deviations in terms of the lateral dis-
persion of the particulates, as well as for the early shear layer. Here, the numerical
model predicts more or larger particulates, whereas these were measured rather
on centerline positions.

Attempts to improve the predictive quality of the PBE-MMC-LES model in-
clude varying the underlying chemical reaction mechanism, the assumed fractal
morphology of the particulates and the boundary conditions. Concerning the
last, a heat transfer from the hot, vitiated co-flow to the cold jet stream was sim-
ulated and the velocity field was later superimposed on the reactive simulation,
see Sec. 4.2.3. Similarly, velocity and temperature variations were forced onto
the co-flow flow stream. None of these efforts lead to any improvements for the
comparison against the experiment, but to insights regarding the dependencies
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on particulate formation.
The numerical results show that the combined PBE-MMC-LES method is able

to correctly predict both the turbulent flow field and the particulate dynamics for
cases with two different silane dopings, implying the ability of calculating

□✓ correct correlations between reactive scalars, turbulence and particulate syn-
thesis models (e.g. inception, growth and coagulation).

In the present stage the PBE-MMC-LES model – together with the well-defined
computational setup – may now serve as a starting point for more complex vari-
ations with respect to boundary conditions and model-related parameters.

Paper 4:

Starting from the validated reference cases, in Neuber et al. [4] the combined
PBE-MMC-LES model was applied to a set of test cases with varying boundary
conditions. This is the final step in the process of model validation, because it is
the best proof that the developed model has not only been adjusted to a specific
test case but rather has a reasonable degree of generality. By conducting this fi-
nal step, a single set of parameters was defined on the basis of the simulations
carried out prior to the main investigation and fixed for the subsequent simula-
tions. Thus, parameters were adjusted with respect to the discretisation of the
particulate size distribution, the morphological structure of the particulates, and
the underlying chemical reaction kinetics, as shown in Neuber et al. [4].

The model was challenged in its predictive capability across a wide range
of silane concentrations of the turbulent jet, co-flow temperatures and Reynolds
numbers of the jet stream, and results are presented in Fig. 5.5. Results for the
variation of silane doping, cf. 5.5(a), reveal that for the reference case with
3100 ppm the predicted ELS signal increases with the same rate as the signal from
the measurements, indicating that particulate number and size are well predicted.
It can be concluded that particulate inception, volumetric surface growth and ag-
glomeration are likely to be modelled well, too. The simulations predict the cor-
rect trends, i.e. for lower silane loadings, lower ELS signals are calculated. How-
ever, the numerical data show a much lower sensitivity of the signal strength to
changes in silane doping, which is moderate compared to the experimental data.

The discussion in Neuber et al. [4] identifies the omission of differential diffu-
sion, limitations of the precursor chemistry and the rigorous assumptions about
the fractal morphology of the particulates as the most likely influencing factors,
as all of these processes entail a non-linearity that is clearly present in the experi-
mental trends. In Fig. 5.5(b) it is observable that, again, although the general trend
can be correctly reproduced, the sensitivity of the model to the different co-flow
temperatures is underestimated compared to the experiment. The sensitivities
towards the jet Reynolds number is shown in Fig. 5.5(c). Here, the experiment
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shows a strong non-linearity that is not reflected by the computational model,
which can most likely be attributed to a missing model to account for differential
diffusion, cf. Sec. 3.3.4.

The publication Neuber et al. [4] shows that the combined PBE-MMC-LES
model is able to provide

□✓ correct predictions of trends for a broad range of boundary conditions,

although sensitivities are considerably underestimated.

Summary

The four publications [1, 2, 3, 4] represent a thorough validation of the combined
PBE-MMC-LES framework through a step-by-step analysis of several aspects and
model features. They prove that the framework provides the correct modelling of
turbulence-scalar interactions at challenging conditions, modelling of two-phase
flows with high accuracy that is comparable to common PDF methods, correla-
tions between reactive scalars, turbulence and particulate synthesis models (e.g.
inception, growth and coagulation), and prediction of trends for a broad range
of boundary conditions. This demonstrates that the presented PBE-MMC-LES
framework represents a comprehensive computational model for simulating the
aerosol dynamics of particulates with fractal morphology and meets the require-
ments mentioned above. Model shortcomings were identified and may form the
starting point for possible further developments, as discussed in Chap. 6.
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Figure 5.5: Mean elastic light scattering signal along the centerline for cases with
(a) a co-flow temperature of T = 1500 K and different silane loadings in the cen-
tral jet stream, (b) a silane loading of 3100 ppm and different co-flow temperatures
and (c) a silane loading of 2500 ppm and different jet Reynolds numbers. Experi-
ment (symbols) and PBE-MMC-LES (lines). Figures taken from Neuber et al. [4].
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a b s t r a c t 

A series of turbulent, piloted dimethyl ether (DME)/air jet flames (Sandia DME flames D–G’), with 

Reynolds numbers ranging from 29,300 to 73,250, has been simulated using a sparse-Lagrangian mul- 

tiple mapping conditioning (MMC) approach coupled to a large eddy simulation (LES) flow field solver. 

Mixing between the Monte-Carlo particles is modelled by a generalised form of MMC combined with a 

sparse distribution of particles leading to significant computational savings compared to what is required 

for conventional mixing models. This is achieved by pairwise mixing of particles that are selected depen- 

dent on their distance in an extended space comprised of a reference variable, given by the LES mixture 

fraction, and spatial location. The MMC-LES method successfully predicts the flame structure and compo- 

sition field for the full flame series. Numerical results are compared against conditional statistics and spa- 

tially resolved experimental data acquired with Raman/Rayleigh scattering and laser-induced fluorescence 

measurements. They show good agreement even for flame DME-G’ where large turbulence-chemistry in- 

teractions lead to significant local extinction and large deviations from a flamelet structure. The influence 

of the mixing time on the predicted flame structure is investigated, and the systematic validation of the 

time scale models with the aid of measurements of the entire flame series has corroborated the find- 

ings of earlier DNS and single flame studies: a modified time scale model is needed to provide accurate 

predictions of conditional fluctuations and thus of possible deviations from a flamelet-like combustion 

regime. 

© 2019 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 

1. Introduction 

In the past decade, Large Eddy Simulation (LES) has become a 

very efficient computational tool to predict combustion processes 

ranging from lab scale experiments to applications of engineering 

interest. Many models have been developed to close the reaction 

source terms that appear in unclosed form in the filtered reac- 

tive species conservation equations. Amongst these methods are 

the flamelet-progress variable approach [1] , Conditional Moment 

Closure (CMC) [2] and the transported probability-density function 

(PDF) methods [3] . In more recent years, the Multiple Mapping 

Conditioning (MMC) model has been developed [4] as a compu- 

tationally efficient variant of the transported PDF method and has 

been validated against many flame configurations [5] . 

∗ Corresponding author. 

E-mail address: kronenburg@itv.uni-stuttgart.de (A. Kronenburg). 

For validation purposes, the International Workshop on Mea- 

surement and Computation of Turbulent Nonpremixed Flames 

(TNF) [6] defined the well-known Sandia jet flames series (San- 

dia flames A–F) as benchmark cases. This original flame series con- 

sisted of a pilot-supported, diluted methane jet of varying Reynolds 

numbers issuing into a coflow of air. The Sandia flames D–F have 

been quite popular for turbulent combustion modellers as they ex- 

hibit turbulence–chemistry interactions increasing from relatively 

low levels in flame D through to strong interactions and near blow- 

off conditions in flame F. The same burner configuration has been 

used to combust dimethyl ether (DME) [7–9] . DME has sparked 

some interest as it exhibits attractive properties as an alternative 

fuel. It can be burned in diesel engines with only modest design 

changes [10] and being an oxygenated fuel with no direct carbon- 

carbon bonds, it tends to emit less NO x , CO and soot. However, 

there are challenges. One of these challenges is associated with 

the increase in complexity of the DME combustion chemistry rel- 

ative to that for methane, particularly in reactions involving fuel 

https://doi.org/10.1016/j.combustflame.2019.06.026 

0010-2180/© 2019 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 
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decomposition of rich mixtures. Coriton et al. [7] published hy- 

droxyl (OH) and formaldehyde (CH 2 O) laser-induced fluorescence 

(LIF) and velocity data for Sandia DME flame D. For Sandia DME 

flames D and F, 1D Raman/Rayleigh multispecies data were ob- 

tained by Fuest et al. [9,11] . Numerical investigations performing 

conditional moment closure (CMC) [7] and flamelet [1] simula- 

tions of DME flame D provided good agreement with experiments. 

The Sandia DME-D and F flames were modelled using a PDF ap- 

proach with specific focus on the effects of differential diffusion 

[12] . However, as DME oxidation is fast the intensity of turbulence–

chemistry interactions is lower than in the Sandia methane flames 

for the same Reynolds number and fewer extinction events are 

observed. Higher Reynolds numbers are needed for DME flames 

when compared to methane flames to observe significant effects of 

turbulence on the flame structure. The present work presents se- 

lected data of additional flame configurations with much larger jet 

Reynolds numbers posing additional challenges, and – for the first 

time – the full series of Sandia DME flames D–G’ is modelled and 

extinction levels are analysed in more detail. An extended set of 

comparisons between simulations and experiments can be found 

in the supplementary information available with the online ver- 

sion of this paper, and the data has been made available online on 

tnfworkshop.org. 

Simulations are performed with a sparse-Lagrangian MMC 

model coupled with a large eddy simulation (LES) flow solver [5] . 

MMC, originally derived by Klimenko and Pope [4] , is a probabil- 

ity density function (PDF) method [3] and in the context of LES it 

models the sub-filter PDF of the composition, known as the filtered 

density function (FDF). A Monte Carlo Lagrangian particle scheme 

is used to solve the FDF, and MMC plays the role of a mixing model 

to close the conditional sub-filter scalar dissipation. The high qual- 

ity of MMC mixing, specifically its localness, independence and lin- 

earity, allow for a low-cost, sparse-Lagrangian method involving 

far fewer stochastic particles for the FDF simulation than LES grid 

cells [13] . Here, we use the MMC version of Curl’s [14,15] mixing 

model where particles mix in pairs which are selected dependent 

on their proximity to each other in an extended space comprised 

of physical location and a reference mixture fraction, the latter be- 

ing the filtered mixture fraction obtained from the Eulerian LES. In 

non-premixed flames, localness in mixture fraction space implies a 

strong degree of localness in composition space. 

The Lagrangian mixing time scale is a crucial property as it 

controls the amount of conditional scalar dissipation in the trans- 

ported PDF methods. The original version of the Lagrangian mix- 

ing time scale model, which we call the C&K model [16] , was used 

to validate the MMC-LES method against the original Sandia D, E 

and F methane flames [17] . More recently, Vo et al. [18] and Huo 

et al. [19] demonstrated that conditional variances are significantly 

underpredicted by the C&K model and hence that local extinction 

events are hardly captured. Based on a direct numerical simula- 

tion (DNS) analysis, Vo et al. [20] proposed a new anisotropic for- 

mulation of the Lagrangian mixing time scale, which was found to 

produce significantly more accurate conditional variance than the 

C&K model and to be much less sensitive to the model localness 

parameter, f m 

. This new approach has also been used to success- 

fully simulate a syngas shear layer configuration [21] and the Syd- 

ney swirling flame [19] . It is noted that in both publications only 

a single flame condition was investigated, but thorough validation 

and calibration needs more than this. To this end, a flame series 

provides an ideal test suite for model calibration, and successful 

prediction of the entire series strongly confirms the model’s pre- 

dictive capability especially if one set of parameters can be used 

for all flames. In the present work, this is attempted for the full 

Sandia DME flame series. 

The MMC-LES model is presented in Section 2 . The experi- 

mental and numerical setups are described in Sections 3 and 4 , 

respectively. Predictions are compared against experimental data in 

Sectin 5 and conclusions are drawn in Section 6 . 

2. Methodology 

2.1. Multiple mapping conditioning implementation 

A hybrid Euler/Lagrange approach is used. It consists of an Eu- 

lerian LES for the computation of the continuity, velocity, pressure 

and mixture fraction fields, where the filtered mixture fraction 

˜ f 

is used as a reference variable for conditioning the mixing of the 

stochastic particles. Following Pope [3] , we employ a Lagrangian 

Monte–Carlo formulation for the solution of the FDF of the trans- 

ported reactive scalar vector φα = (h, Y 1 , . . . , Y i , . . . , Y n s , Z) , where 

h is the total enthalpy, Y i are the species mass fractions and Z is 

the mixture fraction, which is consistent with the species com- 

position on the particles. The reactive scalar vector is transported 

on notional particles and a set of stochastic differential equations 

is solved by a fractional step approach to describe the particle 

dispersion due to the spatial displacement 

d x p 
i 

= A 

p 
i 
d t + b p 

i j 
d ω j (1) 

and the scalar time evolution 

d φp 
α = (W 

p 
α + S p α)d t. (2) 

The drift and diffusion in Eq. (1) are given by [22] 

A i = ˜ u i + 

1 

ρ

∂ 

∂x i 
( ρ( D + D t ) ) (3) 

and 

b i j = δi j 

√ 

2 ( D + D t ) , (4) 

where ˜ u i is the filtered instantaneous velocity, ρ is the density, D
and D t are the molecular and turbulent diffusivities, respectively, 

and d ω j is the increment of the stochastic Wiener process. The 

time evolution in Eq. (2) is given by the reaction source term W α

and the mixing operator S α , which emulates the sub-filter scalar 

dissipation. To model the mixing process, we adopt a modified 

version of the Curl’s mixing model where two particles ( p and q ) 

are mixed linearly towards their weighted mean φ
p,q 

α (t) with the 

mixing extent γ , 

φp 
α(t + 	t) = φp 

α(t) + γ
(
φ

p,q 

α (t) − φp 
α(t) 

)
, (5) 

φq 
α(t + 	t) = φq 

α(t) + γ
(
φ

p,q 

α (t) − φq 
α(t) 

)
. (6) 

The mixing extent is given by γ = 1 − exp (−	t/τL ) and the La- 

grangian mixing time scale, τ L , is calculated based on local turbu- 

lence length scales. More details about the employed mixing time 

scale model will be given in Section 2.2 . The pairs are selected 

by minimising the mean square distance in an extended space 

comprised of particle location and the reference mixture fraction 

(interpolated from the LES mixture fraction field) [16] 

ˆ d 2 p,q = 

3 ∑ 

i =1 

(
d p,q 

x i 

r m 

/ 
√ 

3 

)2 

+ 

( 

d p,q ˜ f 

f m 

) 2 

. (7) 

Here, d 
p,q 
x i 

and d 
p,q ˜ f 

are the actual distances between particle pairs 

in physical and reference mixture fraction spaces and the model 

input parameters r m 

and f m 

are characteristic distances. These two 

parameters specify the target distance between mixing particles in 

physical and reference space. A smaller value of one of these quan- 

tities increases localness in this respective space, a larger value re- 

laxes the requirement of localness. The independent reference mix- 

ture fraction 

˜ f differs stochastically from the Lagrangian solution Z 
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but they have a topological similarity [23] . The constant 
√ 

3 is a 

geometric factor relating the diagonal of a cubic spatial domain to 

its side length. Based on a fractal perspective of turbulent scalar 

contours, r m 

is related to f m 

by [16] 

r m 

= C m 

( 

d ̃  f 

dn 

	3 
L 

	
2 −D f 
E 

1 

f m 

) 1 /D f 

, (8) 

where C m 

= 0 . 5 is a model constant, d ̃  f /dn is the reference mixture 

fraction gradient normal to the flame, 	E is the LES filter width, 

	L is the nominal interparticle distance based on the stochastic 

particle number density and D f = 2 . 36 is the fractal dimension of 

an iso-sliver of mixture fraction [16] . This leaves f m 

as the only 

input parameter requiring explicit specification. A default value of 

f m 

= 0 . 03 has been established in the literature [17,19,24,25] and 

was also applied in our study. As in all past MMC-LES simulations, 

both f m 

and r m 

are global parameters, where the latter has a value 

of r m 

= 0 . 0033 m as given by Eq. (8) . The relevant quantities such 

as filtered mixture fraction gradient are calculated one diameter 

downstream of the jet exit plane in the shear layer region between 

jet and the pilot where scalar gradients are large. 

Two-way coupling ensures consistency between the Eulerian 

LES and Lagrangian particle schemes. The LES filtered velocity, 

turbulent diffusivity and mixture fraction are interpolated at 

particle locations and used in the integration of the stochastic 

differential equations and mixing model. The particle scheme 

in-turn provides density feedback to the LES field. Here, the 

coupling is realised by the solution of additional LES filtered 

equivalent species and enthalpy transport equation with source 

terms dynamically matched to the kernel estimation of the exact 

stochastic particle composition. A detailed explanation can be 

found in Galindo-Lopez et al. [5] . 

2.2. Lagrangian mixing time scale model 

The Lagrangian mixing time scale determines the degree of sub- 

filter conditional scalar dissipation. In intensive stochastic FDF sim- 

ulations where there are possibly 10 or more stochastic particles in 

each LES cell, mixing is constrained to the particle ensemble within 

each cell. Thus, the particle filter time and length scales are de- 

termined from the local filter scales of the Eulerian scheme. The 

Eulerian mixing time scale has the form 

τE = 

˜ f ′ 2 
E 

/ ̃  χE , (9) 

where ˜ f ′ 
E 

is the sub-grid reference mixture fraction variance and 

˜ χE is the scalar dissipation, respectively. For these quantities, stan- 

dard models are commonly used in combustion LES investigations 

that lead to ˜ f ′ 2 
E 

= C f 	
2 
E ∇ ̃

 f · ∇ ̃

 f (10) 

for the sub-grid variance. Here, the scaling parameter C f is usually 

set to C f = 0 . 1 [26] , and 

˜ χE = 2(D + D t ) ∇ ̃

 f · ∇ ̃

 f . (11) 

Substitution of Eqs. (10) and (11) into Eq. (9) results in 

τE = 

C f 	
2 
E 

2(D + D t ) 
. (12) 

Corresponding expressions for the Lagrangian time scale have been 

discussed in Vo et al. [20] and two models are briefly described 

here. 

2.2.1. Model 1: Cleary and Klimenko model (C&K) 

The C&K model was developed in [16] and has been used in 

most of the MMC-LES related publications to date. It was derived 

on the basis of simple geometrical reasoning that led to the time 

scale expression 

τL, C&K = 

βC f d 
2 ˜ f 

2(D + D t ) ∇ ̃

 f · ∇ ̃

 f 
. (13) 

2.2.2. Model 2: anisotropic model (a-ISO) 

As it was shown in Vo et al. [20] , the C&K mixing time scale 

model underpredicts conditional variances and a new mixing time 

scale model was proposed therein. The new model attempts to 

account for the anisotropy of the turbulent structures at the La- 

grangian filter size and has the form 

τL, a −ISO = 

C f d 
2 
x 

2(D + D t,L ) 
, (14) 

where D t,L is a turbulent sub-grid scale diffusivity which scales to 

the respective Lagrangian length scales D t,L = d x / 	E D t . It should 

be noted that the a-ISO model has a similar form to the Eulerian 

mixing time given by Eq. (12) . 

3. Experimental configuration 

The Sandia DME series consists of a piloted, partially premixed 

turbulent DME/air jet flame with a jet diameter of D = 7 . 45 mm . 

The jet exit bulk velocities are U b = 45 . 9 m / s , 68.85 m/s, 91.8 m/s 

114.75 m/s for the corresponding flame series Reynolds numbers 

(29,300–73,250), respectively, while the hot pilot gas inlet veloc- 

ities are 6.4 m/s, 9.3 m/s, 12.2 m/s and 15.1 m/s. The pilot velocity 

of flame DME-G’ is reduced to 80% of that for flame G, resulting in 

a pilot bulk velocity of 12.08 m/s. 

An extensive set of experimental data is available for model 

validation. The measurements include stereo particle image ve- 

locimetry (SPIV) of the three-dimensional velocity field, simulta- 

neous laser-induced fluoresence (LIF) imaging of OH and CH 2 O and 

1D Raman/Rayleigh measurements of seven major species (CO 2 , O 2 , 

CO, N 2 , DME, H 2 O, H 2 ). 

OH-LIF was excited by the frequency-doubled output of a 

Nd:YAG-pumped dye laser tuned to the Q 1 (6) line ( λ = 283.01 nm, 

1.2 mJ/pulse) of the A 

2 �+ ← X 2 �+ (v ′ = 1 , v ′′ = 0) band of OH. 

CH 2 O-LIF was excited by the third harmonic of an injection seeded 

Nd:YAG laser (42 mJ/pulse) tuned to λ = 354.83 nm to excite over- 

lapping transitions in the 4 0 
1 

band of the ˜ A 

1 A 2 ← 

˜ X 1 A 1 system. The 

projected pixel size is 53 μm for OH and 19 μm for CH 2 O-LIF imag- 

ing. Statistics of the LIF measurements were compiled from 700 to 

10 0 0 single-shot images, and the resulting mean and RMS profiles 

were filtered using the DCT-PLS method of Garcia [27] . 

Mole fractions of CO 2 , O 2 , CO, N 2 , H 2 O, H 2 , and accumulated 

hydrocarbons including DME, CH 4 , C 2 H 4 , C 2 H 6 , CH 3 and tem- 

perature were measured using simultaneous 1D Raman/Rayleigh 

scattering and CO laser induced fluorescence (CO-LIF) at the 

Combustion Research Facility of the Sandia National Laboratories. 

Previously published data of the turbulent DME flame series 

and the additional data reported in this work were taken during 

the same measurement campaign. The most relevant informa- 

tion about the experimental setup is outlined below. For further 

details the reader is referred to [9] . The Raman/Rayleigh setup 

consisted of four sequentially-fired frequency-doubled Nd:YAG 

lasers operating at 532 nm. In addition, a Nd:YAG-pumped tunable 

dye laser was used for the simultaneous CO-LIF measurement. 

The redundant measurement by LIF and Raman scattering of CO 

provided two important benefits in the DME flames. While CO-LIF 

is more accurate in regions of the flame with large fluorescence 

interferences from C 2 and polycyclic aromatic hydrocarbons, CO- 

Raman provided a more reliable calibration stability. Therefore, 

the interference-free region of the CO-Raman was used to correct 

for drift in the CO-LIF calibration factor. For the Raman/Rayleigh 
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measurements a combined energy of 1 J/pulse at 532 nm was 

focused to a projected beam waist of 200 μm. The Raman, Rayleigh 

and CO-LIF light along a 6 mm line segment is separated and 

acquired on three cameras in a custom spectrometer as described 

in [28] . The data was processed using the hybrid matrix inver- 

sion method [29] using laminar flame calculations of different 

strain rates to derive Raman response and crosstalk curves and 

temperature-dependent Rayleigh scattering cross section models 

to account for DME decomposition into smaller hydrocarbons as 

outlined in [8] . The processed species and temperature data is 

matched to the Raman pixel resolution of 102.6 μm/pixel. 

Earlier studies on the DME flame series comprised flames D–

F only with Reynolds numbers ranging from Re D = 29 , 300 to 58, 

600. As DME requires higher strain rates for local extinction than 

methane and DME flame F showed little deviations from a fully 

burning flame, the flame series was extended to flames G ( Re D = 

73 , 250 ) and DME-G’. Flame DME-G’ has the same Reynolds num- 

ber as flame G but the pilot velocity was reduced to 80% of the 

original value to promote increased levels of extinction. Major 

species composition, temperature and mixture fraction are avail- 

able for the full flame series (D–DME-G’), but the stereo particle 

image velocimetry (SPIV) and simultaneous laser-induced fluores- 

ence imaging (LIF) of OH and CH 2 O are available for flames D to 

G only. This is due to the fact that flame DME-G’ was introduced 

at a later stage to include a flame at the brink of global extinction. 

Flame DME-G’ is indeed quite sensitive to any change of condition 

and poses a significant challenge to combustion models. 

4. Numerical configuration 

4.1. Solver setup and boundary conditions 

The MMC-LES model has been implemented into a code called 

mmcFoam which is compatible with OpenFOAM open source C ++ 

libraries. The sparse-Lagrangian MMC classes are coupled with 

OpenFOAM’s existing compressible LES solver. The LES solves equa- 

tions for spatially filtered quantities where the turbulent sub-grid 

viscosity is modelled by the σ -model [30] and a model constant of 

C σ = 1 . 5 is used. 

The cylindrical computational domain extends 45 D in the axial 

direction and 15 D in the radial direction. There are 145 cells 

distributed along the domain diameter, where the jet diameter is 

resolved by 53 cells which results in a characteristic cell size of 

140 μm within the jet at the jet exit plane. The circumferential 

and the axial directions of the domain are resolved by 60 and 

480 cells, respectively, resulting in approximately 2 million LES 

grid cells overall. Gradual mesh stretching yields the largest char- 

acteristic cell sizes of around 1.15 mm at the outflow boundary. 

Over 80 % of the kinetic energy is resolved everywhere with the 

exception of regions in the immediate vicinity of the burner lip 

that are, as usual, under-resolved. Separate pipe flow simulations 

were conducted inside the fuel nozzle to provide realistic inflow 

turbulent velocity boundary conditions for the flame calculations 

along with zero-gradient velocity outflows. The hot pilot velocities 

have been set to match the experimental bulk exit velocities. 

Pressure boundaries are zero-gradient at the inlets and fixed total 

pressure at the outlets. To minimise numerical diffusion a second- 

order central difference scheme is used for the filtered momentum 

equation, while all other transport equations are discretised by the 

total variation diminishing (TVD) scheme reverting to first order 

in regions of large gradients. On the particle side, nominally one 

particle for every 4.5 LES cells is used corresponding to 450,0 0 0 

particles overall. This sparse distribution of particles is at least two 

orders of magnitude lower than commonly employed in intensive 

FDF simulations with conventional mixing models with at least 10 

particles per LES grid cell. However, compared to earlier MMC-LES 

investigation with as few as one particle for every 10 or even 30 

grid cells this number is increased, and this is done to achieve 

a stable density coupling between the Eulerian and Lagrangian 

schemes for the high Reynolds number cases where local extinc- 

tion events are predominant and density variations in space and 

time are large. To enable a comparison among all Reynolds num- 

ber configurations the particle resolution is kept constant for all 

the simulations presented below. It was demonstrated previously 

that by keeping the model parameter f m 

constant while particle 

number is varied the model remains unchanged and predictions 

are insensitive to the particle number [16,19] . We use the detailed 

DME reaction mechanism of Zhao et al. [31] containing 55 species 

and 290 reactions. The computational cost for the particle solution 

is about 3.65 times that of the LES solution. After each simulation 

reached a statistically stationary state, statistics were collected 

for a minimum of 15 flow-through times to achieve statistical 

convergence. The total computational time for each simulation is 

about 2900 CPU hours on a Intel Xeon processor (E5-2680 v3) 

architecture. 

4.2. Computation of LIF signals 

In Section 5 we compare measured with computed LIF signals 

of OH and CH 2 O. As in our earlier paper [7] , the experimental LIF 

signals are not converted into species concentrations due to the 

absence of simultaneous temperature and major species measure- 

ments. Instead, comparison is made against a modelled LIF signal 

that is computed in a post-processing step from sampled stochas- 

tic particles information, e.g. temperature and composition fields. 

A minimum of 50 0,0 0 0 particles were sampled per cross-section 

over a certain sampling time exploiting the statistically station- 

ary nature of the flames. The instantaneous temperature and mole 

fractions were used to compute the Boltzmann fraction population 

of the OH-LIF transition and the total collisional quenching rate us- 

ing quenching cross sections from Tamura et al. [32] . The simula- 

tion of the formaldehyde LIF signal is less certain due to the lack 

of available quenching cross sections over a wide range of tem- 

peratures. More details on the experimental procedure and on the 

computation of the simulated LIF signals can be found in [1] and 

[7] . 

4.3. Comparison of simulations with Raman/Rayleigh experiment data 

The mixture fraction is an essential property to quantify the 

mixing process in non-premixed combustion. To enable the com- 

parison between the model predictions and the experimental data, 

we calculate a modified version of the numerical mixture fraction 

defined by Bilger [8,9,33] , 

ξ = 

2(Z C − Z C , 2 ) /M C + (Z H − Z H , 2 ) / 2 M H 

2(Z C , 1 − Z C , 2 ) /M C + (Z H , 1 − Z H , 2 ) / 2 M H 

, (15) 

where Z C and Z H are the elemental mass fractions of carbon and 

hydrogen and based on the measured subset of species. In Eq. (15) , 

M C and M H are the elemental molar masses and the subscripts 1 

and 2 refer to the jet and coflow conditions, respectively. Experi- 

mental and numerical data are consistently reported based on the 

adapted mixture fraction as outlined in Fuest et al. [8] . 

5. Results 

In this section, selected results of the entire flame series are 

presented and these are complemented by the complete set of data 

that is provided in the Supplementary Material online. First, we 

analyse computed spatial profiles against experimental data. Then, 

conditionally averaged quantities such as temperature and species 
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Fig. 1. Mean and standard deviation profiles of mixture fraction ξ at different heights above the burner. 

concentrations will be discussed. This is the first publication pre- 

senting both experimental and numerical data from flames DME-G 

and DME-G’, where local extinction events significantly affect the 

flame. Flame DME-G’ is quite sensitive to the pilot velocity and by 

setting the simulation’s pilot velocity to 80% of that of flame G, the 

flame experienced global blow-off. A rather stable solution was ob- 

tained in the modelling by increasing the pilot velocity to 85% in- 

stead. Even then, the model occasionally produces global extinction 

due to rare turbulent events. This high sensitivity of the flame at 

near-blowoff conditions is consistent with the observed behaviour 

in the laboratory. To circumvent the problem numerical sampling 

for DME-G’ is conducted until a rare global extinction event occurs. 

In the present case, sampling times for DME-G’ are 5 domain flow 

through times based on the jet bulk velocity. 

5.1. Spatial mean profiles 

We first compare computed radial profiles of mixture fraction 

and temperature against experimental data at four axial positions. 

In Fig. 1 mean and standard deviation of mixture fraction are 

shown for the flames DME-D and DME-G’ and the performance 

of the two mixing time scale models C&K and a-ISO are com- 

pared. For flame DME-D very good agreement with the measured 

mean values is achieved using both models. However, the results 

are slightly different for the standard deviation. The C&K model 

notably underpredicts the peak RMS values in the shear layer 

at upstream positions with somewhat better predictions further 

downstream, while the a-ISO model predictions are generally good 

everywhere in the domain. Further downstream, where mixture 

fraction gradients and mixing rates are lower, results from both 

mixing time scale models are in very good agreement with the 

experimental data. For flame DME-G’ the mean mixture fraction 

predicted by the a-ISO model is in good agreement with the 

measurements but an underprediction of mixing at the centreline 

yields relatively high values for the RMS at z/D = 10 and 20. Here, 

the C&K model seems to capture the centreline behaviour more 

accurately. Similar results are obtained for flames DME-F and 

DME-G (cf. supplementary information). 

Mean temperatures and standard deviations are shown in Fig. 2 . 

For flame DME-D the predicted mean values do not differ sig- 

nificantly from the measured data with the C&K model giving 

slightly higher peak temperature values throughout the flame. The 

radial dependence of the standard deviation and its magnitude are 

matched very well by computations using the a-ISO model while 

the C&K time scale closure seems to overpredict mixing leading 

to a notable underprediction at z/D = 5 and 10. Again, compara- 

ble results have been obtained for flames DME-F and DME-G and 

are shown in the supplementary information. The trends are some- 

what different for flame DME-G’. The a-ISO model captures local 

extinction events better, and the peak temperature reduction by 

580 K between flames DME-D and DME-G’ is predicted accurately 

at z/D = 5 . However, for the a-ISO model re-ignition is delayed; 

the a-ISO predictions are too low at z/D = 10 . Re-ignition occurs 

further downstream leading to a good match with experimental 

data for z / D > 20. In contrast, the C&K model underpredicts the 

level of local extinction with averaged peak temperatures always 

above 1680 K. This effect is most noticeable at z/D = 5 , where the 

predicted peak mean value exceeds that of the measurements by 

326 K. Due to the lack of local extinction it is not surprising that 

fully burning solutions are predicted at z/D = 10 providing an ap- 

parently better match with experimental mean values than the a- 

ISO model. For the C&K model radial profiles of temperature stan- 

dard deviation are generally well predicted, but are more narrow 

at z/D = 10 and 20. 

A comparison of computations with LIF measurements of the 

radical species OH and CH 2 O confirms the observed sensitivities 

towards increases in strain rates when moving from flame D to G’. 

For flame DME-G’, no LIF measurements are available, but numer- 

ical results are provided for completeness. The experimental val- 

ues are normalised by the maximum mean value at z/D = 5 of the 

DME-D flame. Similarly, computational results are normalised by 

their corresponding maximum values leading to a signal strength 

of 1 at this position. 

Figure 3 depicts the OH-LIF signals at all axial positions where 

measurements exist. The overall agreement is good for both mod- 

els. It seems that the a-ISO model captures the variation of the 
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Fig. 2. Mean and standard deviation profiles of temperature at different heights above the burner. 

Fig. 3. Mean profiles of OH-LIF signal at different heights above the burner. 

peak normalised OH signal with Reynolds number slightly better 

than the C&K model but differences are only significant for flame 

DME-G’ where a-ISO is expected to capture the extinction events 

(and therefore also the intermediate species concentrations) better 

as was observed in Fig. 2 . For downstream positions of flame DME- 

G, the a-ISO model is generally in much better agreement with 

the experimental data than the C&K model. Similar observations 

can be made for the RMS of the OH-LIF signal (cf. supplementary 

material); predictions by the models do not differ significantly 

and are comparable in quality to the RMS predictions of temper- 

ature. They capture the radial dependence very well, but indicate 

some overprediction of up to 30% at downstream positions. Despite 

all these similarities between the computations it should not be 

forgotten that the comparison of computations with experiments 

requires normalised LIF signals. The normalisation factors of the 

C&K and a-ISO calculations differ by 30%. Thus, the maximum OH 
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Fig. 4. Mean profiles of CH 2 O-LIF signal at different heights above the burner. 

concentration at z/D = 5 predicted by the C&K model is higher by 

the same percentage than that predicted by the a-ISO model, but 

the measured LIF signals do not allow conclusions to be reached 

about the accurate absolute values of OH. 

Slightly different trends are observed in the mean radial pro- 

files of the CH 2 O-LIF signal shown in Fig. 4 . Results for a-ISO are 

overall better than for C&K, although the increase of formaldehyde 

with increasing Reynolds number is slightly overpredicted by the 

a-ISO model while the C&K model shows hardly any sensitivity 

to variations in Reynolds number. While we observe an over- 

prediction of the normalised formaldehyde concentration with 

the a-ISO model for more downstream positions, the C&K model 

constantly underpredicts the signal. The predicted profiles of the 

RMS of the CH 2 O-LIF signal (supplementary information) capture 

the measured radial dependencies very well but a-ISO tends to 

overpredict the normalised fluctuations by up to 30% for z / D > 20. 

The better match of the C&K model may be misleading as (again) 

normalisation leads to comparable LIF-signals, but absolute CH 2 O 

concentrations differ notably with the C&K model giving a nor- 

malisation factor 50% higher than that of the a-ISO model. Using 

the same normalisation factor leads to differences in the predicted 

means but very similar results for the RMS. 

5.2. Conditional statistics 

Differences in predictions due to time scale closure are appar- 

ent but difficult to quantify on the basis of unconditional means 

and RMS alone. In particular the normalisation needed for the 

comparison with OH- and CH 2 O-LIF signals may lead to erroneous 

conclusions. We therefore compare now conditional quantities that 

are typically used, firstly, to separate the influence of the flow field 

modelling from modelling of the turbulence-chemistry interactions 

and, secondly, to better analyse the flame structure and possible 

deviations from a flamelet-like behaviour due to turbulence. 

Figure 5 shows scatter plots of temperature versus mixture 

fraction, ξ , for flames DME-D to DME-G’ at z/D = 7 . 5 where ex- 

tinction levels are expected to be highest, and therefore devia- 

tions from a simple flamelet structure should be most notable if 

they exist. For flame DME-D (top row), it is apparent that the 

flame has a flamelet-like structure due to the relatively low level 

of turbulence-chemistry interactions and hardly any fluctuations 

around the conditional mean exist. This is correctly reproduced 

by both mixing time scale models, although departures from a 

flamelet solution are slightly higher for the a-ISO model. An in- 

crease in Reynolds number from flame DME-D to DME-F leads to a 

small increase in local extinction events as indicated by the data 

points that lie below the main temperature profile. This is cap- 

tured well by the a-ISO model, but the C&K model fails to pre- 

dict any local extinction at all. For flames DME-G and DME-G’, the 

experimental data reveal moderate to significant local extinction 

and an almost bimodal distribution is observed for flame DME- 

G’. The a-ISO mixing time scale model approximates the correct 

level of extinction for both flames and even predicts the bimodal 

distribution for flame DME-G’. A fully burning branch and an ex- 

tinguished branch can easily be identified. In contrast, the C&K 

mixing time scale model predicts conditional means similar to the 

DME-D flame for all Reynolds number cases and, as in earlier pub- 

lications [19,21] , scatter around the mean is always strongly un- 

derpredicted. It is thus apparent that the mixing time scales pre- 

dicted by the C&K model do not correctly (or not at all) account for 

the effect of turbulence on the chemistry, and the reasons for the 

Reynolds number dependence of the unconditional means by C&K 

are therefore most due to differences in large scale fluctuations of 

the underlying mixing field as the Reynolds number is varied. 

The reason for the differences in conditional fluctuations for 

the C&K and a-ISO models warrants some further discussion and 

the time scales are quantitatively investigated. Figure 6 shows τ L 

from both Eqs. (13) and (14) conditioned on mixture fraction. We 
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Fig. 5. Stochastic particle temperature conditioned on mixture fraction ξ at location z/D = 7 . 5 . A total number of 10,0 0 0 samples are shown in each plot. 

Fig. 6. Scatter plots of the Lagrangian mixing time of (a) the C&K and (b) the a-ISO models conditioned on mixture fraction at z/D = 7 . 5 . 10,0 0 0 samples are shown for each 

model. 

observe that the two models predict very different values over the 

entire mixture fracture space with the C&K model giving, on aver- 

age, a time scale about 4.5 times lower than the values obtained 

with the a-ISO model. This result is similar to results from DNS 

of a turbulent shear layer as reported in Vo et al. [20] . In regions 

close to stoichiometric ( ξ = 0 . 35 ) where mixing is expected to in- 

fluence the flame structure most, differences can be up to two or- 

ders of magnitude leading to significantly higher mixing rates for 

the C&K model. Hence, the C&K model mixes very quickly towards 

the burning solution preventing any local extinction. The much 

longer mixing times of the a-ISO model reduce mixing and allow 

for local extinction events to occur and therefore better approxi- 

mate the effects of turbulence on chemistry in this flame. 

A more quantitative comparison is given in Fig. 7 , where con- 

ditionally averaged means and standard deviations of temperature 

are shown. For the a-ISO model, conditional mean profiles are in 

very good agreement with experimental data and a shortcoming of 

the model can be identified only for flame DME-G’ at z/D = 10 and 
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Fig. 7. Profiles of temperature conditioned on mixture fraction ξ at different downstream locations. Experiment (symbols), a-ISO (black), C & K (red). The conditional standard 

deviation is multiplied by a factor of 3. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this article). 

Fig. 8. Profiles of standard deviation of (a) temperature and (b) CO mole fraction conditioned on mixture fraction ξ at z/D = 7 . 5 for the different Reynolds number flames. 

Only results obtained with the a-ISO model are shown here: experiment (symbols) and MMC-LES (solid line). 

20, where the model predicts a delayed re-ignition of the flame 

and a notable underprediction of temperature. The plots once 

more reveal that predictions by the C&K model do not reflect any 

change in turbulence levels at axial locations where moderate to 

significant extinction occurs ( z/D = 5 and z/D = 7 . 5 ) but tend to 

provide relatively constant levels of conditionally averaged temper- 

atures at all downstream locations for all Reynolds numbers. 

The differences in predicted conditional temperature standard 

deviation by the two models are significant. While the C&K model 

does not yield any conditional fluctuations and wrongly predicts 
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Fig. 9. Profiles of CO mole fraction conditioned on mixture fraction ξ at different downstream locations. Experiment (symbols), a-ISO (black), C & K (red). (For interpretation 

of the references to colour in this figure caption, the reader is referred to the web version of this article). 

Fig. 10. Profiles of H 2 mole fraction conditioned on mixture fraction ξ at different downstream locations. Experiment (symbols), a-ISO (black), C & K (red). (For interpretation 

of the references to colour in this figure caption, the reader is referred to the web version of this article). 
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a flamelet-like structure throughout the entire computational do- 

main and for all flames in the series, a-ISO gives very good agree- 

ment between predictions and measurements except in flame G’ at 

z/D = 10 and 20 where the re-ignition is delayed and conditional 

variance is overpredicted. The elevated level of experimental con- 

ditional fluctuations of temperature near ξ = 0 and ξ = 1 is due 

mainly to uncertainty in mixture fraction, which, in regions of high 

gradients in the conditional mean temperature, causes a broaden- 

ing of the temperature distribution within a given conditioning in- 

terval. The low levels of fluctuations at the bounds predicted by 

MMC-LES are thus reasonable. 

For better illustration, the important observations are sum- 

marised in Fig. 8 . Here, the conditionally averaged standard 

deviation of temperature for the different flames are plotted in 

one figure showing results from the a-ISO model only. Figure 8 il- 

lustrates clearly that MMC with a-ISO captures the progression of 

local extinction and its effect on flame structure very well. These 

observations are further corroborated by analysing the conditional 

profiles of the intermediate species CO and H 2 in Figs. 9 and 

10 , respectively. The mean profiles obtained by both models are 

very similar for flame DME-D and differ only for the two highest 

Reynolds number cases. The peak conditional mean profiles tend 

to be overpredicted by the C&K model and are better matched by 

the a-ISO model and this is particularly evident at z/D = 5 and 

7.5. Corresponding to the observations made above with respect 

to conditional temperature, re-ignition of the locally extinguished 

fluid elements tends to be delayed for the a-ISO model leading to 

deviations particularly at z/D = 10 and here, the relatively constant 

conditional CO and H 2 profiles predicted by C&K provide an appar- 

ently better match. Similar to the results shown above, the most 

obvious differences between the two models are in the predicted 

conditional standard deviations which are grossly underestimated 

by the C&K model but are captured well by the a-ISO model with 

the exception of the overprediction of conditional RMS at z/D = 10 

due to the delayed reignition (see also Fig. 8 (b)). 

6. Conclusions 

Sparse-Lagrangian MMC-LES with a single set of turbulent 

model constants has been applied to the Sandia DME flame series 

which consists of four partially premixed DME/air flames with 

Reynolds numbers ranging from 29,300 for flame D to 73,250 

for flames G and G’. Experimental data for flames G and G’ are 

presented here for the first time and this paper is also the first 

attempt to simulate them with any model. As the Reynolds num- 

ber increases so do local extinctions and turbulence-chemistry 

interactions. Flame D has negligible local extinctions and Flame 

G’, which has the same Reynolds number as flame G but with 

20% lower pilot flame power, exhibits very strong local extinc- 

tion approaching global blow-off. MMC-LES is a filtered density 

function model. Here, a sparse stochastic particle distribution 

(nominally 1 particle for every 4.5 LES cells) is used to predict the 

reactive turbulent composition field and this represents a signif- 

icant reduction in particle number and associated computational 

cost relative to conventional intensive FDF methods which have 

many more particles than LES cells. This computational saving is 

very attractive for flames with complex chemical kinetics and its 

application for DME represents a step along the path to applying 

the model to practical fuels that may be used in real engines. 

The ability to accurately predict the full DME flame series us- 

ing one model and one set of model constants constitutes a very 

thorough validation. The key turbulence submodels that have been 

used here are the σ -model for the subgrid turbulent viscosity and 

the MMC mixing model for dissipation of subgrid conditional vari- 

ance of the reactive composition. For the turbulent viscosity model 

the model constant C σ = 1 . 5 is set for all cases. In the MMC mixing 

model localness is enforced in a reference space given by the LES 

filtered mixture fraction field and a localness constant of f m 

= 0 . 03 

is used in all simulations. Two mixing time scale models have 

been tested; the original MMC time scale model (called C&K) and 

a recently proposed model which applies a consistent anisotropic 

treatment of the subgrid scalar fields (called a-ISO). The a-ISO 

model has been applied to individual DNS and experimental flames 

in the past, and this is the first time it has been tested against a 

full flame series. 

Statistical results from the simulations are compared to exper- 

imental data in both unconditional and conditional form. Overall 

the unconditional statistics are very well predicted and both the 

C&K and a-ISO models are of comparable accuracy. Bigger differ- 

ences are revealed however in the conditional statistics. In agree- 

ment with the earlier work, it is revealed that a-ISO does a good 

job of capturing the correct level of conditional fluctuations and 

their dependence on Reynolds number. On the other hand the C&K 

model grossly underpredicts the conditional variances and fails 

to predict the trend of increasing conditional variances with in- 

creasing Reynolds number. This difference between the two mod- 

els was analysed and found to be due to the much smaller mix- 

ing time scale values that are obtained by the C&K model which 

lead to a very rapid dissipation of fluctuations towards the burn- 

ing (flamelet) structure. The a-ISO model produces very good re- 

sults for flames D to F at all locations and for all quantities. For 

flames G and G’ the a-ISO model very accurately predicts the ex- 

tent of local extinction in the upstream regions of the flame but 

also yields a delayed reignition and, as a result, the peak condi- 

tional temperatures are underpredicted and conditional variances 

are overpredicted at z/D = 10 and 20. Further downstream the pre- 

dictions are, once again, in excellent agreement with the data. 
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� Sparse-Lagrangian particle method for particle nucleation and growth.
� Sparse particle and standard (dense) particle methods yield near to identical results.
� New particle method captures the correct trends when varying the precursor concentration.
� The interactions between turbulence and nucleation can modify the averaged nucleation rates by up to 250%.
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a b s t r a c t

An Eulerian large-eddy simulation (LES) is coupled with a sparse-Lagrangian particle method to solve the
population balance equation for aersol nucleation and growth in turbulent flows. We use the LES for the
solution of the filtered velocity and mixing fields while the particle method provides one-point statistics
of the gaseous species and the condensed phase such that the non-linear aerosol nucleation and growth
terms appear naturally in closed form. A sparse particle implementation requires additional localisation
in a reference space, and this localisation is realised here by employing the generalised multiple mapping
conditioning (MMC) mixing model. The complete model, called MMC-LES, is validated by comparison
with experimental data from nucleation studies in a turbulent, hot, nitrogen jet laden with dibutyl-
phthalate (DBP) that condenses during mixing with a coflow of cold air. Acceptable agreement is found
between the MMC-LES predictions and the experimental data. The average DBP droplet sizes are well pre-
dicted, and predictions of the total droplet number and the dependencies of droplet statistics on precur-
sor concentrations are satisfactory. A comparison of the sparse particle method with results from
conventional (dense) Monte Carlo-LES simulations demonstrates the capabilities of MMC-LES to predict
aerosol nucleation and growth at relatively low computational cost. An additional quantitative analysis of
the interactions between the turbulence and the non-linear nucleation source and growth terms shows
that sub-grid effects must not be neglected and interactions between turbulence and nucleation can
modify averaged nucleation rates by more than 250%.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The formation of aerosols or particulate matter from the gas
phase is widespread in both nature and industry. Examples include
condensation leading to the formation of raindrops, the formation
of soot and flame synthesis of industrial commodities such as car-
bon black, titania, silica and specialised metals and metal oxides.
Existing experimental databases provide some understanding of
the physics of aerosol dynamics and their resulting characteristics
(Hu et al., 2003; Echavarria et al., 2011; Gupta et al., 2011), but do

not usually provide all necessary correlations between hydrody-
namic and thermodynamic quantities needed for model develop-
ment. This is particularly true for small scale turbulence effects
on precursor chemistry, droplet nucleation and growth. As a conse-
quence, although there has been some success in modelling the
evolution of aerosol particle size distributions (PSD) in laminar
flame reactors (Echavarria et al., 2011; Tsantilis et al., 2002;
Dang and Swihart, 2009), turbulent flame synthesis modelling
efforts have been less successful.

The spatio-temporal evolution of the PSD is governed by the
population balance equation (PBE). In devising methods to solve
the PBE, we distinguish between sectional methods (Friedlander,
2000), moment methods (Pratsinis, 1988) and direct Monte Carlo
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methods (Kruis et al., 2000, 2012). Moment methods, of which
there are many varieties, mathematically reduce the PSD to its
moments. Typically only the first two or three moments are
required leading to a method with low computational cost. In sec-
tional methods the PSD is discretized into sections representing
discrete particulate sizes. Implementation may be conceptually
quite simple as the governing equations for gaseous species and
particulates are solved in the same way and the transition between
the phases is uncomplicated. Direct Monte Carlo methods use a
large number of stochastic particles to reconstruct the statistics
of the aerosol interactions including direct modelling of collisions
and agglomeration. The reader is referred to Rigopoulos (2010)
for a comprehensive review of the different flavours of PBE meth-
ods in reactive flows.

Independent of the PBE solution method, some specific closure
problems arise in turbulent environments and convincing (and
universal) modelling strategies for accurate predictions are not
yet well established. Temporally and/or spatially averaged con-
servation equations can be derived, but the key challenge for tur-
bulent flows is the closure of the averaged nucleation and growth
terms due to their highly non-linear dependence on instanta-
neous and local thermodynamic properties such as supersatura-
tion and surface tension. It is acknowledged that simplified
approaches which neglect turbulence-chemistry-aerosol interac-
tions (e.g. the perfectly stirred reactor model) may suffice for some
flow conditions (Bhatt and Lindstedt, 2009; Xiong and Pratsinis,
1991). However, most applications of practical interest feature
distinctly inhomogeneous conditions, such as turbulent jets,
and modelling of the large and small (i.e. subgrid) scale
inhomogeneities is of paramount importance for accurate
predictions.

In the context of large eddy simulations (LES) of the turbulent
flow field, the most common methods for the solution of the PSD
are the different flavours of the method of moments (Marchisio
and Fox, 2013). When the moment method for the PSD is combined
with flamelet models for the gaseous reactive species, predictions
of soot formation are good (Mueller and Pitsch, 2013;
Chittipotula et al., 2011), albeit uncertainties with respect to the
parameterisation of the flamelets for both kinetically fast gaseous
species and kinetically slow aerosol species remain. So far, only a
few flame synthesis studies have combined LES (Loeffler et al.,
2011; Garrick and Wang, 2011) with the sectional method. These
have all neglected turbulence interactions with aerosol nucleation
and growth despite clear evidence from direct numerical simula-
tion (DNS) studies (Das and Garrick, 2010) that such contributions
are typically not small. The synthesis of aerosols in turbulent
flames involves coupled, three-way interactions between turbu-
lence, chemistry and aerosol dynamics. It is convenient in funda-
mental studies to eliminate one of these aspects allowing for the
other interactions to be analysed in isolation. As the present paper
focuses on model closures for turbulence-aerosol interactions non-
reacting systems with a condensating species present themselves
as ideal test cases. Droplet nucleation and growth of dibutyl-
phthalate (DBP) in a turbulent mixing layer constitutes such a case,
and the recent DNS by Zhou et al. (2014) confirms the value of
investigating turbulence-aerosol interactions in isolation. Two
key observations were made: (1) instantaneous droplet number
density strongly correlates with the instantaneous gaseous DBP
mass fraction; and (2) number density does not show a unique
dependence on the mixture fraction due to aerosol transport in
mixture fraction space. From the first observation we conclude that
turbulent correlations between nucleation and gaseous species
concentrations cannot be neglected when modelling the nucle-
ation rate. From the second observation we conclude that particu-
late evolution cannot be solely based on the state of the mean
mixing field.

From the above discussion, it is apparent that additional funda-
mental research into the model closures for averaged or filtered
nucleation and growth terms is needed. To address this issue, the
modelling community is putting considerable effort into modelling
the Lesniewski and Friedlander (1998) and Lesniewski (1997)
experimental cases of DBP at varying concentrations issuing from
turbulent round jets, which are also studied in this paper. Most rel-
evant for the current work are the studies by Veroli and Rigopoulos
(2011), Garmory and Mastorakos (2008) and more recent studies
that primarily focused on the modelling of the nucleation rates
(Zhou and Chan, 2011, 2014; Pesmazoglou et al., 2014). Veroli
and Rigopoulos (2011) employed the Monte Carlo PDF form of
the PBE method combined with a RANS solution of the turbulent
flow field. They highlighted the importance of the averaging effects
on supersaturation and thus liquid droplet inception. The shapes of
the droplet size distributions (DSD’s) were predicted reasonably
well but nucleation rates were noticeably under-predicted.
Garmory and Mastorakos (2008) used a stochastic fields PDF-PBE
approach to solve the first three moments of the DSD. They inves-
tigated the effect of different surface tension models on nucleation
rates and achievedmuch improved agreement of the predicted zer-
oth moment with measurements reported in Lesniewski (1997).
Zhou and Chan (2011, 2014) and Pesmazoglou et al. (2014) inves-
tigated the accurate implementation and closure of nucleation in
an LES context. Although nucleation rates were predicted with sat-
isfactory accuracy, the approaches neglected surface growth and
the back-coupling of condensation rates on gaseous DBP concen-
trations, which can become important for cases with higher DBP
concentrations.

The present work on DPB nucleation and growth complements
the modelling reviewed above with extension to a highly compu-
tationally efficient formulation of the PDF-PBE approach in an LES
framework. A hybrid scheme is used, involving an Eulerian solver
for the LES of the turbulent velocity field and a Monte Carlo
stochastic particle method for the joint PDF of the mass fractions
of gaseous species and the size-dependent number density of the
liquid DBP droplets. While Monte Carlo PDF methods tradition-
ally require stochastic particle resolutions of Oð10Þ to Oð100Þ
per RANS or LES grid cell (the so called dense, or intensive, par-
ticle method), here the simulation is performed by a sparse par-
ticle method requiring far fewer stochastic particles than LES grid
cells. This sparse particle method, called MMC-LES, is well estab-
lished for turbulent combustion modelling (Cleary et al., 2009)
and was recently applied to the synthesis of silica nano-
particulates in a direct numerical simulated mixing layer (Vo
et al., 2017a). The objective here is to apply MMC-LES for the first
time to droplet nucleation and growth in a turbulent lab-scale
flow. Additionally, analysis is performed to identify the influence
of turbulence on aerosol inception and growth and to quantify
potential errors associated with inaccurate modelling of the
interactions of turbulence with the instantaneous thermo-
physical state. We also test the sensitivity of the predicted dro-
plet characteristics toward different formulations of the growth
rate.

This paper is structured as follows: the governing equations
for droplet dynamics, nucleation and growth are presented in
Section 2. Section 3 introduces the MMC-LES concept for the
solution of these governing equations plus the equations for
the conservation of the gas phase species, mass and momen-
tum. The experimental configuration and the numerical setup
are introduced in Sections 4 and 5, respectively. Section 6 pre-
sents results on droplet statistics for a reference case and
cases with varying DBP loadings. The interactions of turbu-
lence and nucleation and growth at the LES subgrid scales
are analysed in Section 7, before conclusions are drawn in
Section 8.
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2. Droplet dynamics, nucleation and growth

The droplet size distribution is governed by the instantaneous
population balance equation (Hulburt and Katz, 1964;
Rigopoulos, 2010)

@N
@t

þr u
! �N
� �

þ @

@dp
Gðdp;Y

!
Þ � N

� �
¼ Dpr2N þ _WNðY

!
;NÞ; ð1Þ

where N is the droplet number density. Eq. (1) is applicable to lam-
inar and turbulent flows, but if turbulence occurs either all scales
must be resolved or a modelling of the unresolved contributions

is required. The number density, N, is function of dp; x
!

and t that
denote the droplet diameter, droplet position and time, respec-
tively. In the real flow dp can take any positive value but here we
use a sectional approach so that the number density is solved for

a static number of discrete droplet sizes or sections. The vectors Y
!

and u
!
are the gaseous species mass fractions and velocity, respec-

tively. The droplets are small and assumed to move with the same

speed as the gas. Both Y
!
and u

!
are turbulent quantities; the former

is solved stochastically along with N, while the latter is solved using
an Eulerian LES. The details appear in Section 3.3. The rate of droplet
growth due to surface condensation is denoted as G. The source
term, WN , accounts for droplet births and deaths. In general this
may be due to nucleation, aggregation/coagulation and break up,
but in the present work, the estimated characteristic droplet colli-
sion time is of the order of scoll ¼ Oð100 sÞ (Veroli and Rigopoulos,
2011). Thus, droplet collisions and subsequent agglomeration are
rare events, and only nucleation leading to droplet births is consid-
ered, WN ¼ Bnucl. Using classical nucleation theory the nucleation
rate B and the growth rate G are given by (Sutugin and Fuchs,
1968; Girshick and Chiu, 1990)
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Gdp ðTÞ ¼ aðKnÞ4Dvmpsat

kBTdp
ðS� 1Þ; ð3Þ

with Nv being the vapour concentration in [molecules/m3]. Super-
saturation, S, is the ratio of the condensing species partial pressure,
pYcon

, and its saturation pressure, psat, kB is the Boltzmann constant,
vm ¼ m=ql the molecular volume, r the surface tension and smon is
the surface area of the monomer. The quantaties m and ql are the
weight of the monomer and density of the liquid phase, respec-
tively. The growth rate has been extended by the correction coeffi-
cient aðKnÞ ¼ ð1þ KnÞ=ð1þ 1:71Knþ 1:333Kn2Þ as suggested in
Jacobson (1999). Here, the Knudsen number is defined as
Kn ¼ 2k=dp with k being the mean free path of the gas molecules.
Eq. (3) can then be applied to the full range of Knudsen numbers
(from the free molecular to the continuum regime) that are
observed during the droplet growth process.

3. Methodology

A hybrid Euler/Lagrange approach is used to solve the governing
equations for mass, momentum, species and droplet size distribu-
tion. More specifically, conservation of mass and momentum is
computed using an Eulerian LES approach with standard closures.
An additional LES-filtered conservation equation is solved for a
conserved scalar called mixture fraction. This conserved scalar is
used as a reference field for the PDF mixing model and this is fur-
ther explained in Section 3.3. The joint probability density function
of the gas phase composition field, temperature and of the droplet
size distribution is computed by a Lagrangian particle approach as

detailed in the next two sections. Note that the joint PDF should
rather be termed ‘‘joint filtered density function” in the LES context
but here, we use the abbreviation PDF throughout to facilitate
reading of the paper.

3.1. Stochastic Monte Carlo method

In turbulent flows, the solution of the LES-filtered form of Eq.
(1) is not straightforward (Rigopoulos, 2010). The key challenges
are the closures of the filtered nucleation and growth rates due
to their strong non-linear dependencies on the local, instantaneous
thermodynamic state (cf. Eqs. (2) and (3)). In general,

BNð gS;r; T Þ– BNðeS; er; eT Þ where tilde denotes filtered values. An
accurate closure for the filtered value of a general function f is
obtained by

ef ðx!; tÞ ¼ Z f ðYi;Ni; T; x
!
; tÞPðYi;Ni; T; x

!
; tÞdYi dNidT ð4Þ

if the joint-PDF, P, of species, temperature and the discretized DSD
is known. The solution of the Eulerian transport equation for the
joint-PDF is, however, computationally prohibitive due to the PDF’s
high dimensionality. Instead, an equivalent system of stochastic dif-
ferential equations can be solved for an ensemble of stochastic
Monte Carlo particles which represent a discrete form of the PDF
(Gardiner, 1985; Pope, 1985). Thus, a Lagrangian Monte Carlo for-
mulation of the PDF is used in our simulations for the transported
scalars. The notional Monte Carlo particles carry information on
the gas phase species mass fractions and temperature and the size
dependent number density of DBP droplets. The particles are trans-
ported according to stochastic differential equations with fractional
steps for spatial transport, scalar source term Wa and mixing
operator Sa. In general, Wa is the source term of gas phase species,
temperature and nucleation. The focus of this work are the
turbulence-aerosol dynamics and therefore only the latter is consid-
ered. The particle evolution is governed by

dxpi ¼ Ap
i dt þ bp

ijdxj; ð5Þ

d/p
a ¼ Wp

a þ Spa
� �

dt; ð6Þ

where dxj is the increment of a Wiener process with zero mean and

variance
ffiffiffiffiffiffi
Dt

p
, with the time step width Dt. The shorthand notation

ð�Þp ¼ ð�Þðx! p; tÞ indicates that properties are determined at the loca-

tion x
! p of particle p. Models for the convection term, Ai, and diffu-

sion term, bij, are given by (Cleary and Klimenko, 2011)

Ai ¼ eui þ 1
q
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p
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where eui is the filtered velocity, q is the filtered density and D and
Dt are the molecular and turbulent diffusivities, respectively. Eq. (6)
describes the rate of change of the transported scalar /a, where
/a ¼ ðT; Y1; . . . ; Yi; Z; N1; . . . ; NnÞ includes temperature, T, the spe-
cies mass fractions, Yi, the particle mixture fraction, Z, and all n sec-
tions necessary to represent the discrete DSD. In contrast to
Eulerian solution approaches for the PBE, where the sub-grid contri-
butions are unknown, the information carried by the Monte Carlo
particles represents an instantaneous, local solution, and hence,
all one point correlations such as the source terms do not require
closure. Sa is a mixing term which emulates the effects of molecular
diffusion on the dissipation of the conditional sub-filter variance of
/. It is applied to all quantities in / regardless of the phase. The
mixing term is unclosed and its modelling is discussed next.
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3.2. Generalised multiple mapping conditioning mixing model

The conventional mixing models most commonly used in the
literature are interaction by exchange with the mean (IEM)
(Villermaux and Devillion, 1972), Curl’s model (Curl, 1963), modi-
fied Curl’s model (Janicka et al., 1979) and the Euclidean minimum
spanning tree (EMST) model (Subramaniam and Pope, 1998). Char-
acteristics of these are reviewed by Celis and da Silva (2015).
Subramaniam and Pope (1998) nominated the key properties
required of mixing models and one of the most important is that
the mixing operation should be local in composition space; here
/-space. Of the models listed above only EMST is a local mixing
model but, in enforcing localness by direct comparison of / values
solved on the notional particles, it violates linearity and indepen-
dence which are two other important mixing model properties
(Subramaniam and Pope, 1998). This has been shown to lead to
so-called stranding and non-physical suppression of conditional
fluctuations. MMC (Klimenko and Pope, 2003) is also a local mixing
model but, since the localness is enforced indirectly with the use of
independent reference variables, linearity and independence are
not violated and the quality of the predictions has the potential
to be much higher. In the present work we use a generalised form
of MMC which has emerged mostly in the context of combustion
LES (Cleary and Klimenko, 2009). In the present context the key
distinguishing feature of generalised MMC is that LES based quan-
tities may used as the reference variables. Through the develop-
ment of generalised MMC the concept of sparse particle methods
has evolved. Since localness of mixing in composition space has
been found to be much more important to modelling accuracy than
is localness of mixing in physical space (Klimenko, 2009a,b;
Vo et al., 2017b) it is possible to increase the spatial distance
between mixing particles without loss of accuracy provided that
localness in the composition space is maintained. This increase in
the spatial mixing distance allows for a much reduced number of
particles used in the simulations and an up to three order of mag-
nitude reduction in computational cost. Whereas the conventional
mixing models require Oð10Þ - Oð100Þ particles per LES cell,
MMC-LES simulations have been performed with as few as 1 par-
ticle per 27 LES cells (Cleary and Klimenko, 2011). It is noted that
generalised MMC can be used in either sparse or dense methods,
but in either case the mixing is not confined to within a single
LES cell and instead particles mix with a partner particle at a
controllable distance in the reference space as described next.

MMC does not stipulate the exact form of the mixing operation,
rather it imposes localness onto one of the existing conventional
mixing models. The present work uses the MMC version of the
modified Curl’s model to close the stochastic differential equations
at the mixing operator level. Particle pairs (p and q) are selected
and then mix linearly towards their mean,

/p
aðt þ DtÞ ¼ /p

aðtÞ þ c /p;q
a ðtÞ � /p

aðtÞ
� �

; ð9Þ
/q
aðt þ DtÞ ¼ /q

aðtÞ þ c /p;q
a ðtÞ � /q

aðtÞ
� �
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Here, /p;q
a ðtÞ is the weighted mean of the two particles and

c ¼ 1� expð�Dt=sÞ controls the extent of mixing with a timescale,
s, which is related to local turbulence quantities. Details on the
modelling of s can be found in Cleary and Klimenko (2011) and
Vo et al. (2017b). The particle pairs are selected such that the aver-
age square distance
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is minimised. Here dp;q
xi

¼ jxpi � xqi j is the inter-particle distance in

physical space while dp;qef ¼ jef p � ef qj denotes the particle distance

in reference space, ef . Here the reference space is given by the LES
filtered mixture fraction as discussed in Section 3.3. Its value at
the particle position is obtained by interpolation. The parameter
f m is a model parameter, and rm is related to f m by (Cleary and
Klimenko, 2011)

rm ¼ Cm
d~f
dn

D3
L

D
2�Df
E

1
f m

 !1=Df

; ð12Þ

with DL and DE being the nominal interparticle distance and the LES
filter width and Df ¼ 2:36 denotes the fractal dimension of the sca-
lar surface where mixing occurs. The parameter Cm is set to
Cm ¼ 0:5. Small values of f m enforce localness in reference space
while larger values of f m favours the selection of particles that are
closer in physical space. The results are relatively independent of
f m and as in previous MMC-LES we use f m ¼ 0:03 (Vo et al.,
2017a,b; Ge et al., 2013; Galindo et al., 2017).

3.3. The reference scalar: mixture fraction

The model enforces localness in /-space indirectly through the
particle mixing pair selection according to Eq. (11). With the model
input parameters rm and f m this selection produces a controlled
degree of mixing localness in an extended space given by the ref-

erence variable, ~f , and particle physical location, x
!
. In this way

the reference variable is said to condition the mixing operation
and it is sometimes referred to as a conditioning variable. The ref-
erence variable needs to be selected with care so that localness in
that space also implies localness in /-space. For mixing controlled
flows the mixture fraction is a good marker of compositional local-
ness and to date MMC-LES has been applied to a number of turbu-
lent non-premixed flames by using a reference variable that is
given by the LES filtered mixture fraction field (Cleary and
Klimenko, 2011, 2009; Vo et al., 2017b). In combustion applica-
tions the mixture fraction is usually defined as the fraction of the
mass (at a location) originating from the fuel stream, having values
of zero and unity in the pure air and pure fuel streams, respec-
tively. As such it quantifies the mixing of fuel and oxidizer. Obser-
vations confirm that turbulent fluctuations of the reactive scalars
correlate with fluctuations of the mixture fraction in non-
premixed flames due to the chemical reaction being located the
mixture is close to stoichiometric. For the Friedlander jet that will
be investigated here, we also use mixture fraction as a reference
field,

~f � ðeT � Tco-flowÞ=ðT jet � Tco-flowÞ ð13Þ
where T jet and Tco-flow refer to the jet and co-flow temperature. Eq.
(13) holds since heat release due to condensation is very small (less
than 0.5% at locations of maximum condensation) and normalised

temperature is equivalent to mixture fraction, ~f , due to an equiva-
lent conservation equation and the same types of boundary condi-
tions. Nucleation and growth as given in Eqs. (2) and (3) are strong
functions of temperature and a good correlation between these
source terms and the reference scalar can be expected. We also
define mixture fraction on the particles,

Z � ðT � Tco-flowÞ=ðT jet � Tco-flowÞ � Ycon=Y
0
con ð14Þ

and denote this mixture fraction Z to distinguish it from the

LES-filtered value ~f . The functional dependence is not unique due to
a reduction of the mass fraction of the condensing species Ycon (and
therefore changes in the level of supersaturation independent of T),
but depletionof the condensing species is small for all the cases inves-
tigated here (not shown). The last approximation in Eq. (14) holds,
and a sufficiently high correlation between the thermophysical state
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of the gas phase, the droplets and mixture fraction (or normalised
temperature) is ensured throughout the jet. The strong dependence
of supersaturation, nucleation and growth is not a necessity for the
validity of MMC but can be further exploited for our analysis in
Section 7.

3.4. Coupling between the Eulerian and Lagrangian fields

The hybdrid Euler/Lagrange method requires coupling between
the Eulerian LES field and the Lagrangian stochastic particles.
Forward coupling is achieved by interpolation of the LES quantities
to the particle location. This includes the filtered velocities, diffu-
sion coefficients and densities as required for particle transport
(cf. Eqs. (5), (7) and (8)), and filtered mixture fraction for localisa-
tion of the particle mixing model (cf. Eq. (11)) and for computation
of the local mixing time scale (cf. Cleary and Klimenko, 2011). An
adapted equivalent enthalpy method is usually used for backward
coupling of the thermodynamic density from the Lagrangian to
the Eulerian field (Cleary and Klimenko, 2011; Vo et al., 2017b).
However, backward coupling can be omitted here due to the very
lowDBP loadings of the jet. In addition, the vastmajority of droplets
will be of the order or smaller than 1 lm (cf. Fig. 6) and thus
momentum coupling between the gaseous and droplet fields can
be neglected.

4. Experimental configuration

Lesniewski and Friedlander (1998) used a hot (T jet ¼ 413 K)
nitrogen jet laden with dibutyl-phthalate (DBP) for the investiga-
tion of homogeneous nucleation and condensation in turbulent
environments. The turbulent mixing of the heated jet with the
co-flow of air at ambient temperature leads to rapid cooling of
the central jet region, which triggers supersaturation and conse-
quently droplet nucleation and growth. It is thus apparent that
mixture fraction, Z, introduced in Section 3, is one key quantity
characterising the nucleation and growth processes. The coflow
conditions were kept constant during the experimental campaign
(uco ¼ 0:18 m=s;Tco ¼ 299 K), while the effect of various different
jet conditions was investigated. The seeding (mole fraction) of
DBP was varied and different jet Reynolds numbers were exam-
ined. The experimental campaign comprised measurements of
the total number density of the droplets (m0) and the mean
droplet diameter for various locations along the jet centreline.
The droplet size distribution is measured at z=D ¼ 20 only. As
a reference case, we use the experimental configuration where
Djet ¼ 2:35 mm;ujet ¼ 51:55 m=s (ReD ¼ 4700), T jet ¼ 413 K and

the DBP mole fraction was set to xjet;DBP ¼ 3:6 � 10�4. This configura-
tion is labelled trial 824 in Lesniewski (1997). To examine the effect
of DBP loading we use the conditions given by trial 819, which is
identical in its setup to trial 824, with the exception of a variation
of the gaseous DBP mole fractions at the jet inlet within the bounds
of xjet;DBP 2 ½2:5 � 10�4;5:1 � 10�4�.

5. Numerical configuration

5.1. Description of the numerical implementation

The MMC-LES model has been implemented into a code called
mmcFoam which is compatible with OpenFOAM opensource C++
libraries. The sparse-Lagrangian MMC classes are coupled with
OpenFOAM’s existing low Mach, compressible LES solver and the
existing OpenFOAM particle classes have been adapted for the
solution of Eqs. (5) and (6). The code has been validated for the
computation of turbulent reacting flows (Vo et al., 2017b;

Galindo et al., 2017; Salehi et al., 2017), including aerosol nucle-
ation (Vo et al., 2017a).

At first, the Eulerian scheme is presented while the Monte Car-
los scheme is discussed afterwards. The discretisation scheme for
the transport equations is second order in time and space, and
the standard Smagorinsky model, with a model constant of
CS ¼ 0:17, has been used for the closure of the sub-grid stresses.
Ambient pressure is specified as an outlet condition for the pres-
sure and a zero-gradient condition is used as the standard bound-
ary condition for all other quantities at the outlet. Dirichlet
boundary conditions are set for velocity, temperature, species mass
fractions and mixture fraction at the jet and coflow inlet. The sim-
ulation domain measures 70 jet diameters in length and 31 diam-
eters in radial direction. Results appeared to be quite insensitive to
resolutions above 1.5 million LES cells, which is consistent with
typical grid sizes for the LES computation of turbulent reacting sin-
gle – (Kronenburg and Stein, 2016) and multi-phase (Ukai et al.,
2015) jets. The mesh is locally refined towards the nozzle, where
the jet diameter is resolved with 39 cells resulting in a grid size
of around 90 lm. For the nozzle region, this is a much higher res-
olution than in one of the reference LES (Pesmazoglou et al., 2014),
where ten points were used to resolve the nozzle diameter. In ref-
erence Garmory and Mastorakos (2008) the computational domain
was extended upstream by 8D to enable the establishment of a
fully developed boundary layer and Veroli and Rigopoulos (2011)
made use of a predefined fixed turbulence intensity and a viscosity
ratio of 5% and 10, respectively. In the present study the inflow
conditions are generated by a separate pipe flow simulation using
a hybrid RANS-LES turbulence model.

The Monte Carlos method is first order in time and space and a
total number of 480,000 Monte Carlo particles has been used in the
sparse simulations, which results in an average of 3 Monte Carlo
particles per 10 LES cells. On every Monte Carlo particle, we solve
Eq. (6) for mixture fraction, temperature, the mass fractions of DBP,
N2, O2 and all n sections of the droplet size distribution. Mixture
fraction is thus computed twice, by the LES on the Eulerian grid

(named ~f ) and on the particles (named Z) as illustrated in Fig. 1,
but coupling between the Eulerian and Lagrangian solutions as
described in Section 3.4 ensures correlation between the two
fields.

5.2. Properties of dibutyl-phthalate

Modelling particle nucleation and growth requires accurate
models for DBP properties. The dependencies of surface tension,
liquid density and saturation pressure on temperature are depicted
in Fig. 2. In earlier publications (Veroli and Rigopoulos, 2011;
Garmory and Mastorakos, 2008; Zhou and Chan, 2011, 2014;
Pesmazoglou et al., 2014) the models of Bedanov et al. (1990),
Okuyama et al. (1987), Riddick and Bunger (1971) and
Potin-Gautier et al. (1982) were used to model the properties of
DBP. Some uncertainty regarding the appropriate expressions
exist, prompting Garmory and Mastorakos (2008) to arbitrarily
modify the expression for surface tension to achieve a better agree-
ment between their simulations and the corresponding experi-
ments by Lesniewski and Friedlander (1998). We apply the
Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT)
(Gross and Sadowski, 2001), as a physically-based equation of state
to correlate and predict the properties of DBP. The pure component
parameters of PC-SAFT were adjusted to vapour pressure data from
22 and to liquid density data from 15 experimental data sources
(Data Bank Software & Separation Technology Dortmund). The sur-
face tension can be predicted using the PC-SAFT model without
adjustable parameters using a Density Functional Theory formal-
ism proposed by Gross (2009). The such obtained prediction is in
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very good agreement to experimental data of surface tension, as
Fig. 2 confirms.

All relevant properties of DBP and the corresponding mathe-
matical expressions are summarised in Table 1.

5.3. Numerical implementation of particle growth

The droplet size distribution is characterised here by the dro-
plet’s diameter, dp. The DSD is discretized by n sections with
d0 � 2:32 nm and dk ¼ ckd0. The parameter c is chosen to cover
the entire size distribution of droplets up to diameters of
dmax � 10 lm. Droplet growth occurs due to condensation of DBP
on the droplet surface and is modelled by the third LHS-term in
Eq. (1). The implementation of this term warrants some further
attention: it is treated here as a source/sink term of the respective
section. We use the nodal form of the sectional method and the
distribution of particles to their respective nodes is adapted from
Prakash et al. (2003). This approach conserves mass but leads to
an artificial broadening of the size distribution. The effect can be
best quantified by the growth of an originally monodisperse distri-
bution as shown in Fig. 3. Here, the conditions of the gas phase cor-
respond to conditions for a mixture fraction value of Z ¼ 0:6 of the
reference case. The conditions are kept constant and represent con-
ditions where the growth is largest in the DBP jet. The results from
two distinct times are shown with t ¼ 200 ls yielding roughly the
same geometric mean droplet diameter as measured at z=D ¼ 20.
The vertical lines represent the analytical solution. It is apparent
that the discretization error leads to a broadening of the DSD, with
three to five sections representing the majority of droplets while
sections further away contribute less than 10% to the total number

Table 1
Thermodynamic properties of DBP.

Quantity Formula Ref.

Surface tension r ¼ 33:93� 0:0894 T=K� 293:15ð Þ½ � ðmN=mÞ Bedanov et al. (1990)
r ¼ 35:3� 0:0863 T=K� 273ð Þ½ � ðmN=mÞ Okuyama et al. (1987)

r ¼ 36:399� 0:087134 T=K� 273ð Þ½ Þ ðmN=mÞ this paper

Liquid density ql ¼ 1049:2� 0:67ðT � 293:15 KÞ ðkg=m3Þ Bedanov et al. (1990)

ql ¼ 1063:0� 0:826ðT � 273 KÞ ðkg=m3Þ Okuyama et al. (1987)

ql ¼ 1047:0� 0:81758ðT � 293:15 KÞ ðkg=m3 this paper

Saturation pressure log10 psat=mmHgð Þ ¼ 7:065� 1666
T=K � 547700

ðT=KÞ2
Riddick and Bunger (1971)

log10 psat=Pað Þ ¼ � 4501
T=K þ 12:88 Potin-Gautier et al. (1982)

log10 psat=Pað Þ ¼ �27:567þ 0:118T=K� 0:000112ðT=KÞ2 this paper

Crit. droplet diameter dp;cr ¼ 4rvm=kBT lnðSÞ Girshick and Chiu (1990)
Diffusion coefficient D ¼ 0:25ðT1:75=pÞ ðcm2=sÞ Ensley et al. (1969)

Fig. 2. Dependence of surface tension, liquid density and saturation pressure on temperature.

Fig. 1. Instantaneous mixture fraction profiles from the filtered LES solution, ~f (left)
and on the Monte Carlo particles, Z (right).

G. Neuber et al. / Chemical Engineering Science 167 (2017) 204–218 209



of droplets. This is rather independent of the total number of sec-
tions used for the discretization. For all discretizations shown here,
the geometric mean deviates less than 14% from the analytical
solution. The artificial broadening can be quantified by the loga-
rithm of the geometric standard deviation, lnr. It is zero for the
analytical solution and approximates lnr � 0:19 and lnr � 0:16
for 90 and 120 nodes, respectively.

The total number of sections influences the results of the DBP
jet simulations. Fig. 4 shows predicted droplet size distributions
from MMC-LES of the DBP jet at z=D ¼ 20 (left) and droplet num-
bers along the centerline (right). Here, the number of sections does
have a small influence on the shape of the DSD only. The predicted
geometric means deviate by less than 17% and their standard devi-
ations range from lnr ¼ 0:84 to lnr ¼ 0:92. We make two obser-
vations: (1) The absolute values of these standard deviations are
around 6 times larger than standard deviations due to discretiza-
tion error; (2) the difference of 10% between lnr ¼ 0:84 and
lnr ¼ 0:92 is rather small when compared to the uncertainties
associated with the general modelling of the nucleation and
growth terms. In addition, the different discretizations do not have
a large effect on the condensed mass and thus on the nucleation
rate. This is evidenced by the very low dependency of m0 on DSD
discretization (see Fig. 4 (right)). The reduction of sections to 90
seems therefore justified, it reduces the computational cost for

the stochastic particles by 25%, and is used for the remainder of
the paper. We may conclude that a reduction of the total number
of sections does not unduly influence the droplet size distribution.
However, a discretization error exists and may contribute up to
18% to the broadening of the DSD. Since a clear separation of the
discretization error is difficult to achieve, we base the latter esti-
mate on lnr � 0:86 for the DBP jet and lnr � 0:16 for monodis-
perse growth under constant gas phase conditions.

One last issue refers to the coupling of the condensing gas phase
species, YDBP with the liquid phase. The nucleated and condensed
droplet mass is deducted from the gas phase and the related
energy transfer is also considered on the particles. The effects for
lower DBP concentrations are not significant with less than 5%
DBP depletion along the centreline for the cases with
xjet;DBP 6 3:6 � 10�4 and only very small effects on the DSD can be
observed (not shown). Also for higher DBP loadings, depletion
effects are negligible at z=D ¼ 20, i.e. at the position where com-
parison with experimental data is made. Note that condensation
effects on temperature are always less than 0.5% even for the high-
est DBP loading, and the approximations introduced in Eq. (13)
seem justified – certainly for positions z=D < 20 – and can be used
for further analysis as presented in Section 7.

5.4. Standard PDF implementation

For validation of the sparse method and to check its capability
to approximate droplet nucleation and growth in turbulent flow,
an additional computation using a dense particle method with
30 million Monte Carlo particles has been realised. In this simula-
tion the conventional modified Curl’s mixing model (Janicka et al.,
1979) is used without MMC localisation in mixture fraction space.
The ratio of the number of particles between the dense and the
sparse method is about 60 while the ratio of the computational
time is about 50 due to additional overheads in the MMC mixing
model due to localisation and particle pair selection. The overall
computational time can be reduced by a factor of 9, but gains in
computational efficiency are expected to be even larger in case of
reacting flows due to the increased computational demand on
the Lagrangian solution of the composition field and the nearly
constant requirements for the Eulerian LES solution of the flow
and mixing fields.

Statistics reported in the following sections have been collected
from the Monte Carlo particle simulations over 16 characteristic
flow through times (based on the jet bulk velocity and the domain
length) after the initial transient period. The computational cost is
around 720 and 6600 CPU-hours for the sparse and dense simula-
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Fig. 3. Comparison of droplet size distributions by condensation in a homogeneous
environment at different times.

Fig. 4. Comparison of droplet size distribution at z=D ¼ 20 (left) and number of droplets (zeroth moment) along the centreline (right) for simulations with different DSD
discretisations.
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tions, respectively, using two AMD Opteron processors 6172 (16
cores each).

6. Validation with experiments

6.1. Comparison with the base case

The first comparison with measurements by Lesniewski and
Friedlander (1998) is conducted for the reference case with the
jet’s DBP loading of xDBP ¼ 3:6 � 10�4. It includes both sparse PDF
simulations with an MMC mixing model closure and dense PDF
simulations with a modified Curl’s mixing model closure, where
the sparse simulations are denoted as MMC-LES and the dense
PDF data is referred to as PDF-LES in the following. The predictions
of the normalised mean axial velocity along the centreline are sat-
isfactory as shown in Fig. 5. It is seen that the present simulations
with either MMC or PDF produce nearly identical results for the
mean velocity. The present predictions also have a similar agree-
ment to the experimental data as do past published results
reported in Veroli and Rigopoulos (2011) and Garmory and
Mastorakos (2008). Pesmazoglou et al. (2014) noted that the flow
configuration should not be approximated by a fully turbulent jet
due to the relatively small Reynolds numbers in the experiment.
They used the inflow generator by Klein et al. (1998) specifying
10% turbulence intensity. We avoid the rather arbitrary specifica-
tion of inflow turbulence and use a pipe flow simulation as intro-

duced in Section 4. This procedure gives a good match with the
experiment. It provides an overall similar agreement with data
when compared to reference Pesmazoglou et al. (2014) and
explains the much better predictions in comparison to the results
of Garmory and Mastorakos (2008) and Veroli and Rigopoulos
(2011).

The evolution of the droplet number density is somewhat more
difficult to predict, primarily due to the uncertainties in modelling
the droplet nucleation and growth terms. Fig. 6 shows a reasonable
agreement of predicted droplet number density with experiments
along the centreline. The differences between the sparse MMC-LES
and the dense PDF-LES approach are small. For comparison, we
also plot the results from references (Veroli and Rigopoulos,
2011; Garmory and Mastorakos, 2008). Differences to the work
by Garmory and Mastorakos (2008) are minor, the large differences
to Veroli and Rigopoulos (2011) may primarily stem from Girshick
and Chiu’s (1990) correction of the nucleation rate that was omit-
ted in Veroli and Rigopoulos (2011). Di Veroli and Rigopoulos
advocated the presence of continued droplet nucleation in the
sampling tube. Postprocessing of their results using plug flow com-
putations with a residence time similar to the residence time in the
sampling tube yields much better approximations of the experi-
mental values. Garmory and Mastorakos (2008) modified the tem-
perature dependence of the surface tension to shift the maximum
droplet number upstream and to match the centreline evolution of
m0 better for regions with z=D > 20. MMC-LES with modified
expressions for surface tension leads to very similar improvements
of the results (not shown), however, our analysis using the PC-SAFT
model as presented in Section 2 does not justify any of the modifi-
cations suggested in Garmory and Mastorakos (2008), and only
results using the expression by Okuyama et al. (1987) denoted as
r1 are included in Fig. 6 (left). The agreement of the computed
DSD with measurements (cf. Fig. 6 (right)) is acceptable. The
growth rate is underpredicted resulting in an abundance of small
droplets and too few droplets with much larger sizes. It needs to
be noted, though, that the measurements are also associated with
some uncertainty. The increase in droplet numbers for droplets lar-
ger than 1 lm cannot be explained and the reported number den-
sitym0 does not match the integrated (measured) DSD at z=D ¼ 20.
They differ by a factor of 12 and uncertainties in the reported data
– especially for the smaller droplets – may be significant. Further-
more it should be pointed out that no other published numerical
dataset shows a bi-modal shape of the DSD at centreline positions.
For our model development it is most noteworthy that the results
from the sparse particle method do not markedly deviate from
results obtained by the dense PDF-LES method.

Fig. 5. Comparison of the mean axial velocity along the centreline.

Fig. 6. Comparison of the evolution of the droplet number density along the centreline between simulations and experiments (left) and of the droplet size distribution at
z=D ¼ 20 and r=D ¼ 0 (right).
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Now we analyse the impact of the droplet growth model. As
already discussed in Section 2 we use the Fuchs-Sutugin model,
which continuously blends between the free molecular (large Kn,
small dp) and continuum (small Kn, large dp) regimes of aerosol
dynamics. This is illustrated in Fig. 7 (left) for supersaturation val-
ues prevalent at mixture fraction Z ¼ 0:45, where growth rates are
large. Consistent with standard aerosol dynamics literature
(Friedlander, 2000) growth rates are independent of droplet diam-
eter dp in the free molecular regime, but linearly decrease with dp

in the continuum regime. Fig. 7 (right) shows the effect of different
variants of the droplet growth model on the DSD in the present
simulations. It can be observed that the results obtained from the
assumption of continuum across the full DSD reproduce the exper-
imental trend, at least for small droplets. Furthermore, when scal-
ing the experimental DSD by a factor of 12 (justified as it renders a
consistency between the experimentally observed DSD and zeroth
moment in Fig. 6) then there is a good agreement between the
MMC-LES results with the continuum growth model and the data.
Literature suggests (Chen and Pfender, 1983) that the centre of the
transition between the free molecular and continuum regimes
could occur for a Knudsen number of Kn ¼ 10. This is in contrast
to considering the transition to be centred around Kn ¼ 1 as pre-
sumed in the Fuchs-Sutugin model (Sutugin and Fuchs, 1968).
Assuming Kn ¼ 10 would shift the regime transition to droplets
of order dp ¼ 10�2 lm and thus justify the use of the continuum
model (which gives better results, Fig. 6 (right)) for the majority
of the droplet sizes in the present simulations. However, for the
purpose of making direct comparisons between the present work
and the model results reported in the literature, the Fuchs-
Sutugin growth model is used for the remainder of this paper.

6.2. Comparison to DBP mole fraction variation

As discussed in Section 2, high sensitivities of the nucleation
rate on the exact expression of psat ;ql and r have been observed
(Veroli and Rigopoulos, 2011; Garmory and Mastorakos, 2008),
and an exact match of the experimental data shall not be the pri-
mary objective under these conditions. Instead, it has become com-
mon practice to analyse measurement series and to validate
models by their capability to predict the respective trends
(Barlow; Kempf et al., 2008).

It seems apparent that a good match with experimental data
can be reached when selecting appropriate fits for key thermo-
physical data. This, of course, does not constitute a satisfactory
model validation, and a better practice is to focus on predicted
trends for a range of operating conditions rather than matching
the absolute values of one specific experiment. The droplet number
density and the count mean droplet diameter at z=D ¼ 20 are
shown in Fig. 8 for different DBP loadings. Note that the PDF-LES
data in Fig. 8 is only available for the single reference DBP loading
of xDBP ¼ 3:6 � 10�4, whereas a range of xDBP values was studied with
(the much cheaper) MMC-LES. The latter simulations capture the
measured trends but the dependence of the droplet number on
DBP doping is overpredicted, albeit of similar quality to the predic-
tions reported in Garmory and Mastorakos (2008). This also holds
for the (count) mean droplet diameter, Fig. 8 (right). The averaged
droplet sizes are too low. It is apparent that growth rates predicted
by Eq. (3) are distinctly too low, but trends are correct and all
results are consistent with the DSDs shown in Figs. 6 and 7.

Fig. 9 shows the variation of the DSD with increased DBP con-
centration at z=D ¼ 20. Simulations with larger DBP concentrations
tend to better approximate the shape of the measured DSD while

Fig. 7. Comparison of different growth models as a function of droplet diameter for conditions given at a mixture fraction of Z ¼ 0:45 (left) and the respective droplet size
distribution at z=D ¼ 20 and r=D ¼ 0 of the jet simulation with a seeding of xjet;DBP ¼ 3:6 � 10�4 (right).

Fig. 8. Droplet number density (left) and count mean droplet diameter (CMD) (right) as function of the DBP mole fraction in the hot jet issuing into the domain at z=D ¼ 20.
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Fig. 8 indicates that m0 for the cases with intermediate DBP load-
ings are predicted best by MMC-LES. The computed droplet size
distributions widen and predict larger maximum droplet sizes
with increasing xDBP . This trend is not so clear in the experiments
where an increase in DBP concentration seems to increase the
number of droplets rather evenly and independent of the droplet
size. Garmory and Mastorakos (2008) scaled the measured DSDs
by 18.5, 100.4 and 15 for the three DBP loadings, respectively, to
reach consistency between measured DSDs and m0. This would
improve the current simulations’ quantitative agreement with
the experiment, however, additional measurements would cer-
tainly be desirable for further, reliable model validation.

In summary, from the above results we may conclude that (a)
sparse MMC-LES simulations produce results that are nearly iden-
tical to the much more expensive dense PDF-LES simulations, (b)
the present set of simulations produces the correct trends with
increasing DBP loading and is in good qualitative agreement with
the experimental data, (c) the quantitative agreement of the pre-
sent simulations with the experimental data is good and similar
to results reported in the literature, and (d) additional measure-
ments and improved thermo-physical, nucleation and growth
models are needed in order to better judge the predictive capabil-
ities of the present and similar modelling efforts. MMC-LES is now
used to assess the effects (and importance) of turbulence interac-
tions with the gas-phase composition and aerosol evolution.

7. Turbulence interactions with nucleation and growth

The major purpose of PDF modelling is the accurate closure of
all one point statistics, namely the modelling of all sub-grid inter-
actions between turbulence and the gaseous scalar field that deter-
mine the average nucleation and growth rates of the droplets. The
same applies in MMC-LES, albeit at a much reduced computational
cost compared to conventional PDF models. The effects of sub-grid
interactions can best be analysed by comparison of the averaged
nucleation and growth rates predicted by MMC-LES (model M1)

with the averaged quantities from the filtered LES fields (model
M2) and the Reynolds averaged quantities produced from
RANS-type closures (model M3). Thus, M2 evaluates the droplet
evolution based on the filtered thermo-physical state and then
averages over time, whereas M3 is based on the evaluation on
the time-averaged (filtered) state, respectively. The latter two do
not incorporate any subgrid effects thus neglect turbulence-
droplet interactions at the unresolved scales. Therefore, differences
between models M1 and M2 can be attributed to LES sub-grid
effects and quantify errors introduced when omitting any LES
sub-grid modelling. Differences between M1 and M3 can be attrib-
uted to scalar fluctuations relative to the temporal mean (the RANS
average for statistically stationary flows) and quantify errors that
the omission of any turbulence closure for B and GNi

would induce.
Note that no separate RANS computations are conducted here
because a RANS-type solution for the temperature and gas phase
composition can be obtained from temporal averages of the LES
data. The three models are listed in Table 2. The tilde operator
denotes LES-filtered values, whereas the overbar indicates time
averages accumulated during the steady state of the large eddy
simulation.

7.1. Saturation

Fig. 10 illustrates the effect of the three averaging procedures
on supersaturation for the reference case with xDBP ¼ 3:6 � 10�4.
The difference between M1 and M2 is relatively small while the
RANS averaged data (M3, Fig. 10 (right)) wrongly predicts very
high supersaturation values in the entire shear layer including
the regions upstream near the jet exit. A more quantitative com-
parison is provided by Fig. 11 where the mean (super-) saturation
predicted by the three models is plotted along the centreline and as

Fig. 9. Droplet size distributions for different jet DBP concentrations at z=D ¼ 20.
Experimental data are taken from Lesniewski (1997).

Table 2
Models for the analysis of the sub-grid effects on nucleation and growth.

Nucleation Growth Interpretation

M1 B SðT; YDBPÞ;rðTÞ; Tð Þ GNi
DðTÞSðT;YDBPÞ;psatðTÞ; Tð Þ MMC model, exact closure

M2 B SðeT ; eYDBPÞ;rðeT Þ; eT� �
GNi

DðeT ÞSðeT ; eYDBPÞ; psatðeT Þ; eT� � 1st order LES-type closure

M3 B SðTÞ;rðT;YDBPÞ; T
� �

GNi
DðTÞSðT; YDBPÞ;psatðTÞ; T
� �

1st order RANS-type closure

Fig. 10. Contour plots of the time-averaged supersaturation computed by the
MMC-LES approach (M1), by the 1st order LES approximation (M2) and by the 1st
order RANS approximation (M3) for xDBP ¼ 3:6 � 10�4.
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a function of radius for different downstream positions. It is appar-
ent that the maximum of the averaged supersaturation is reached
in the centre of the jet at about z=D � 55 and that the evolution of
supersaturation along the centreline is largely unaffected by sub-
grid turbulence (cf. Fig. 11(a)). The radial profiles demonstrate that
LES sub-grid effects do account for a decrease in maximum mean
supersaturation by approximately 10%, however, RANS predictions
without sub-grid model would overpredict supersaturation by up
to 40% at z=D ¼ 10.

7.2. Nucleation

More pronounced effects of subgrid interactions can be
observed for the nucleation rate, B. A qualitative comparison of
the three averaged nucleation rates is given in Fig. 12 and a quan-
titative comparison for the centreline and selected downstream
positions is presented in Fig. 13. The contour plot indicates clear
qualitative differences between M1 and M3, while LES without
subgrid model captures the mean nucleation rate qualitatively
right, and only quantitative differences persist with respect to
the maximum values in the shear layer and on the centreline.
M3 shifts droplet nucleation on the centreline downstream, how-
ever, it overpredicts maximum mean nucleation rates by up to a
factor of 4 and clearly underpredicts the width of the zone with
significant droplet nucleation rates. The overprediction by M2,
i.e. neglecting LES sub-grid scale effects, reaches 25% throughout
most of the domain. This percentage seems rather low and the
small differences between M1 and M2 warrant some further anal-
ysis. As indicated above, supersaturation, nucleation and growth
are functions of temperature and DBP mass fraction. Overall,
depletion of gaseous DBP is small for positions upstream of
z=D ¼ 20 (cf. Section 3), the approximation indicated in Eq. (13)
holds and both, temperature and DBP mass fractions can be repre-
sented by the mixture fraction Z. Supersaturation, nucleation and
growth are then unique functions of mixture fraction as shown
in Fig. 14 for the expression derived from the PC-SAFT model. It
is apparent that all three quantities, S;B, and G, are non-linear
functions of the mixing process. The nucleation rate B is important
across a very narrow band in mixture fraction space only and
peaks at Z � 0:13. In contrast, growth by condensation is high
across a relatively wide range of mixture fraction with its peak
at Z � 0:6. Hence, nucleation and condensation rates act in
different regions of the turbulent mixing field. Fig. 14 also indi-

Fig. 11. Comparison of the saturation S computed by the different models along the centreline (top, left) and as function of radial position at z=D ¼ 10;20;30.

Fig. 12. Contour plots of the time-averaged nucleation rates computed by the
MMC-LES approach (M1), by the 1st order LES approximation (M2) and by the 1st
order RANS approximation (M3) for xDBP ¼ 3:6 � 10�4.
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Fig. 13. Comparison of the nucleation rate B computed by the different models (a) along the centreline and as function of radial position at (b) z=D ¼ 10, (c) z=D ¼ 20 and (d)
z=D ¼ 30.

Fig. 14. Dependence of saturation, nucleation rate and condensation rate on mixture fraction.

Fig. 15. Conditional root mean square of mixture fraction Z for z=D ¼ 10 (left) and z=D ¼ 20 (right) from LES (grey) and RANS (black).
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cates that the maximum nucleation rate amounts to Bmax ¼
1:95 � 1012#=ðm3sÞ as can also be observed for M3 in Figs. 12
and 13. There, nucleation peaks at locations where the RANS-
averaged mixture fraction equals Z ¼ 0:13. The mean of the nucle-
ation rate is computed by

Bðx!Þ ¼
Z

BðZ; x!ÞPðZ; x!ÞdZ ð15Þ

with M3 neglecting turbulence-nucleation rate interactions and

assuming a d-PDF for Z at every position x
!
. Turbulence, however,

reduces the averaged nucleation rate due to finite probabilities for
values of Z – 0:13. Fig. 14 should not be seen in isolation but in
the context of other properties of the flow such as the conditional
RMS of the mixture fraction shown in Fig. 15. The black symbols

represent ZRMS;RANS ¼
ffiffiffiffiffiffi
Z02

q
, i.e. the time averaged RMS of mixture

fraction, while the red symbols represent the instantaneous LES

sub-grid RMS, ZRMS;LES ¼
ffiffiffiffiffiffiffifZ02

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CfD

2
EreZ � reZq

, where a standard

LES sub-grid variance model was employed (Cleary and Klimenko,
2011). Thus, the lines represent the RMS of each model condition-

ally averaged on Z and eZ , respectively. At Z ¼ 0:13 (where BðZÞ
peaks, cf. Fig. 14(b)) and z=D ¼ 10, the time-averaged RMS amounts
to ZRMS;RANS � 0:075, indicating a relatively wide distribution of mix-
ture fraction and thus, a relatively large error can be expected when
approximating the PDF by a d-PDF as for M3. The error will be very
pronounced at Z ¼ 0:13 due to the strong non-linearity of B around
this mixture fraction value, cf. Fig. 14b.

A Taylor series expansion around BðZÞ shows that second order
effects are of the same order of magnitude as the leading term if
sub-grid fluctuations are around ZRMS;LES � Oð0:1Þ. Typical LES
sub-grid fluctuations can reach these values in the shear layer,
however, the relatively fine mesh used here leads to conditionally
averaged mixture fraction RMS values below ZRMS;LES � Oð0:02Þ in
most regions of the flow. The RMS is below ZRMS;LES � Oð0:015Þ at
z=D ¼ 10 for values of eZ � 0:13, i.e. where nucleation rates are
highest and the effects of turbulence on the nucleation should be
most pronounced. Thus, LES sub-grid effects are small for the cur-
rent setup and the sub-grid variance represents only 5% of the cor-
responding RANS value. This in line with the work by Pesmazoglou
et al. (2014) where hardly any LES sub-grid effects were observed.
This seemed counterintuitive at the time since combustion
research suggests that turbulence interactions with non-linear
sub-grid terms, such as chemical reaction, require modelling. Sim-

Fig. 16. Contour plots of the time-averaged growth rates for the 10th size section
computed by the MMC-LES approach (M1), by the 1st order LES approximation
(M2) and by the 1st order RANS approximation (M3) for xDBP ¼ 3:6 � 10�4.

Fig. 17. Comparison of the condensation rate G computed by the different models along the centreline (top, left) and as function of radial position at z=D ¼ 10;20;30.
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ilarly, nucleation will certainly be affected by turbulence and
require sub-grid closure, however, very fine LES cells, low turbu-
lence levels and thus small (instantaneous) sub-grid variances will
render the errors small if sub-grid effects are omitted. It shall be
emphasised that the present Reynolds number is relatively low
(ReD ¼ 4700), so the flow is only moderately turbulent. Therefore,
the differences in nucleation between the exact closure (M1) and
the 1st order LES-type closure (M2) are not as pronounced as in
comparison to the 1st order RANS-type closure (M3) and can be
quantified to be around 35%. This will certainly change for higher
turbulence levels in typical turbulent jets with – say – Reynolds
numbers of around 30,000 and more. There, conditionally averaged
RMSs can easily exceed ZRMS;RANS � Oð0:2Þ and ZRMS;LES � Oð0:05Þ
(Kronenburg and Stein, 2016), and LES sub-grid scale effects must
not be neglected.

7.3. Condensation

For completeness, Fig. 16 compares the averaged growth rates
for the different models. Here, the growth rates of the 10th section
are shown, but very similar trends can be observed for all droplet
sizes. Differences in structure and magnitude are noticeable in
the upstream shear layer but become insignificant for z=D > 20.
Taking the MMC-LES result M1 as a base case, Model M3 overpre-
dicts growth rates by up to 25% while overpredictions by model
M2 are very moderate and do not exceed 10%. The radial profiles
in Fig. 17 show that sub-grid contributions are not significant for
predicting the condensation rate and models M1–M3 give nearly
identical results. This can be attributed to the linear dependency
on mixture fraction for a wide range of mixture fractions, see
Fig. 14, and a moderate change of absolute values in the region
Z � 0:6, where the condensation rates are largest.

8. Conclusions

In this paper we have employed an MMC-LES method for the
modelling of droplet nucleation and growth in a turbulent jet laden
with dibutyl-phthalate. The transport equations for discrete sec-
tions of the droplet size distribution are solved on the notional
Monte Carlo particles such that all interactions between turbu-
lence and nucleation/growth appear in closed form and it is not
necessary to model the mean or filtered rates of these non-linear
terms. In general, reasonable agreement of predicted droplet con-
centrations with measurements have been achieved and the qual-
ity of the results compares favourably with other simulations
presented in the archival literature. The study demonstrates that

1. an MMC-LES method using a sectional method for the represen-
tation of the droplet size distribution is computationally feasi-
ble and can reduce the overall computational cost compared
with a dense PDF method by a factor of 9,

2. differences between sparse and dense PDF methods are negligi-
ble and MMC therefore offers a computationally economic vari-
ant of standard PDF methods, and

3. the effect of turbulence on nucleation must not be neglected
but may be small for fine LES resolutions and/or low turbulence
levels. If the mixture fraction RMS spans a sufficiently large
region in mixture fraction space where nucleation (and/or
growth) exhibit non-linear dependencies on mixture fraction,
sub-grid effects cannot be neglected.

Parameter studies demonstrate the robustness of the imple-
mented method, and the dependence of the droplet number den-
sity on changes in DBP concentration are captured satisfactorily.
Less satisfactory is the predicted shape of the droplet size distribu-

tion, but some reservations towards the consistency of the exper-
imental data persist and future validation studies shall aim at a
more complete experimental characterisation of the nucleation
and growth processes at various locations in the shear layer.
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Abstract 

This paper presents results from a joint experimental and numerical study of silica particulate synthe- 
sis for a turbulent reacting jet configuration where a cold jet doped with silane issues into a hot vitiated 

coflow. The experimental investigation involves simultaneous measurements of elastic light scattering and 

planar laser-induced fluorescence signals and these are used for validation of a novel computational ap- 
proach, called PBE-MMC-LES, for the solution of the joint scalar probability density function of the gas 
phase species and the discretised particulate size distribution. Model validation follows the “paradigm shift”
approach which is based on the computation of “predicted signals” which are compared directly with the 
experimentally-acquired signals. The results demonstrate that PBE-MMC-LES can model particulate in- 
ception, surface growth and agglomeration at reasonable computational cost. The agreement between the 
measured and computed signals is good in the light of the modelling complexities associated with particle 
flame synthesis, but predictions are rather sensitive to the uncertainties in precursor chemistry leading to 

nucleation and growth. 
© 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 

Keywords: Silica particulates; Particulate flame synthesis; Turbulent combustion modelling; Multiple mapping 
conditioning; PBE-MMC-LES 
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1. Introduction 

Silica particulates have widespread applications 
(see e.g. [1] ), and it has been shown that the gas 
phase reactions leading to particulate formation 

[2] as well as interparticulate interactions [3] are 

https://doi.org/10.1016/j.proci.2018.06.074 
1540-7489 © 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 
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crucial for the final product properties. The predic- 
tion of these interactions is challenging - in particu- 
lar in turbulent flows that are needed for high prod- 
uct throughput - and the current work presents a 
novel modelling strategy for the prediction of par- 
ticulate size distributions in turbulent particulate 
synthesis processes. 

The spatio-temporal aerosol evolution can be 
described by the population-balance equation 

(PBE). Typical implementations include the di- 
rect Monte-Carlo methods [4] , moment meth- 
ods [5] and discretised sectional methods [6] with 

a comprehensive summary given in [7] . Loef- 
fler et al. [8] and Wang and Garrick [9] inves- 
tigated the formation and growth of titanium 

dioxide nanoparticulates in the context of large 
eddy simulation (LES). They all neglected aerosol–
turbulence interactions, although recently Neuber 
et al. [10] showed that the introduced error can be 
large and sub-grid scale contributions should not 
be neglected. Agglomeration in turbulent jet flows 
was examined in planar [11] and round turbulent 
jets [12] using the sectional model. More recently, 
Sewerin and Rigopoulos [13] presented an explicit 
adaptive grid approach for the numerical solution 

of the population balance equation and applied 

this method to soot formation and growth in a tur- 
bulent diffusion flame. 

Most of the common approaches couple an Eu- 
lerian solution of the PBE with an Eulerian solver 
for the flow field and the gas phase composition. 
Here, we pursue a different approach: we apply 
a hybrid Euler/Lagrange method where the Eule- 
rian scheme solves the turbulent LES-filtered flow 

field only, and a stochastic Monte-Carlo method 

is used for the prediction of the spatial and tem- 
poral evolution of the joint scalar filtered density 
function (FDF) of the reactive scalars and the par- 
ticulate size distribution of the silica particulates. 
To avoid any ambiguity we strictly distinguish be- 
tween “stochastic particles” which are computa- 
tional elements for solving the FDF equation in 

a Lagrangian sense, and “particulates” which are 
the physical nanoparticulates that are formed in the 
flame synthesis process. While traditional stochas- 
tic FDF methods require particle numbers of 20–
50 per LES cell, we employ a so-called sparse- 
Lagrangian approach where far fewer stochastic 
particles are required (as low as 1 stochastic parti- 
cle per 27 Eulerian cells [14] ). The key ingredient in 

sparse modelling of the FDF is the use of a novel 
mixing model called multiple mapping condition- 
ing (MMC) [15] to emulate the effects of molecular 
diffusion. It has been applied and validated for a 
range of turbulent reacting flows [14,16] . More re- 
cent publications demonstrate the method’s appli- 
cability to particulate nucleation and growth pro- 
cesses [10,16] where interactions with turbulence 
are of importance. The objective of this work is 
to demonstrate the capability of a combined PBE- 
MMC-LES method to model particulate inception, 

surface growth and agglomeration of non-spherical 
agglomerates in a turbulent, reactive jet. The model 
is validated by comparison with measured signals 
of OH and silica particulates obtained by planar 
laser-induced fluorescence (PLIF) and elastic light 
scattering (ELS). 

This paper is structured as follows: The mod- 
elling of the particulate matter and the PBE-MMC- 
LES model are described in Section 2 . The ex- 
perimental and numerical setups are presented in 

Sections 3 and 4 . Predictions are compared with ex- 
perimental ELS and OH-PLIF signals in Section 5 . 
Conclusions follow in Section 6 . 

2. Methodology 

2.1. Particulate flame synthesis modelling 

The evolution of the particulate size distribu- 
tion (PSD) is modelled by the solution of the pop- 
ulation balance equation. We use the nodal form 

of the sectional approach [17] which discretises the 
particulate volume space into a finite number of 
sections. The PBE then reads 

∂n k 
∂t 

+ 

∂ 

∂x j 

(
u j n k − D k 

∂n k 
∂x j 

)

= −∂ (G(v, Y ) n k ) 
∂v 

+ ˙ s k , (1) 

where n k is the number density of particulates in 

section k, G ( v , Y ) is the volumetric growth term 

that can be modelled as a function of particulate 
volume, v , and the gas phase composition charac- 
terised by the gaseous species mass fractions Y , u i 
and D k denote the velocity in direction i and the dif- 
fusion coefficient of section k , respectively, and the 
source term ˙ s k accounts for inception and agglom- 
eration. The inception rate is given by the produc- 
tion rate of the precursor species and is described 

by the underlying chemical reaction mechanism for 
the gaseous species. Upon inception these primary 
particulates are added to the first section of the dis- 
cretised particulate size distribution. 

For small particulates the surface growth is de- 
scribed as a collision process where the growth rate 
is based on the free-molecular collision kernel and 

the collision diameter of the depositing species is 
assumed to be the diameter of the molecule [3] . 
In our sectional approach we assume that the ag- 
glomerates are fractal-like and their morphology 
follows the power law of agglomerates [6] . The col- 
lision diameter of the agglomerate is then given 

by d c,k = d p, 0 N 

1 /D f 
k , with N k being the number of 

primary particulates in the agglomerate, d p , 0 being 
the primary particulate diameter and with D f be- 
ing the fractal dimension which is set to D f = 1 . 8 
as suggested in e.g. Ref. [3] . The volumetric sur- 
face growth of larger particulates is determined by 
the diffusion rate of the depositing species towards 
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the agglomerates’ surface and therefore a diffusion- 
limited growth method [18] is used. The harmonic 
mean of the two formulations serves as a blending 
function for the growth of intermediate-sized par- 
ticulates. 

The agglomeration process is treated as outlined 

in Loeffler et al. [8] . Due to the discretised form 

of the PSD the agglomeration needs a size-splitting 
operator to ensure mass conservation by distribut- 
ing formed particulates into two adjacent sections. 
This method introduces a slight broadening of the 
PSD but this effect is small compared to growth 

and agglomeration [10] . As agglomerate sizes cover 
a wide Knudsen number range, we use a modified 

Fuchs interpolation - proposed by Kruis et al. [19] - 
between the free molecular and continuum regimes 
to model the collision frequencies. 

2.2. Implementation using multiple mapping 
conditioning 

The hybrid Eulerian/Lagrangian scheme con- 
sists of an Eulerian LES solver for the conservation 

equations for mass, momentum, and mixture frac- 
tion. We do not, however, solve Eq. (1) directly in an 

Eulerian framework, but aim at the solution of the 
joint filtered density function of the composition 

field φ = (Y 1 , . . . , Y s , h, Z, n 1 , . . . , n e ) . The scalar 
vector φ includes the gas phase composition Y , the 
enthalpy, h , mixture fraction, Z (which is different 
to but should be correlated with the Eulerian LES- 
filtered mixture fraction field labelled 

˜ f ), and the 
discretised particulate number density n . 

The major advantage of an FDF method is that 
the chemical source terms in the gas phase and the 
rates of particulate nucleation and growth appear 
in closed form. Unknown sub-grid effects due to 

turbulence do not require any closure. As the direct 
solution of the joint FDF transport equation is in- 
tractable for a system of high dimensionality, it is 
standard procedure to solve an equivalent system 

for an ensemble of stochastic (notional) particles 
instead [20] . The evolution of the stochastic par- 
ticles is described by stochastic differential equa- 
tions with fractional steps for spatial transport, gas 
phase reaction, mixing and aerosol dynamics. The 
particle transport and the change of the composi- 
tion field in time are governed by Cleary and Kli- 
menko [14] 

d x 

p 
j = 

[˜ u j + 

1 
ρ

∂ 

∂x j 
( ρD eff ) 

]p 

d t + 

√ 

2 D 

p 
eff d ω , (2) 

d φ p 
α = 

(
W 

p 
α + S 

p 
α

)
d t , (3) 

where ω is a Wiener process and standard notation 

is used for diffusion, density, velocity, space and 

time, and unity Lewis number assumptions have 
been employed. In Eq. (3) , S α is the mixing oper- 
ator and W α accounts for source terms including 

Fig. 1. Modified version of the Cabra burner. 

chemical reactions, particulate inception, surface 
growth and agglomeration. The chemical reaction 

rates and particulate nucleation are given by a suit- 
able reaction mechanism and models for surface 
growth and agglomeration have been introduced 

in Section 2.1 . The mixing term, however, appears 
in unclosed form. It requires modelling, and here 
we use multiple mapping condition (MMC) in its 
generalised form [15] for closure. MMC requires 
the additional solution of a reference field. This 
reference field is the (Eulerian) LES solution of 
mixture fraction, ˜ f , and the mixing of the stochas- 
tic particles is then conditioned on 

˜ f , which is 
interpolated to the particle position. The correla- 
tion between mixture fraction and reactive scalars 
(as expected in diffusion-limited flames) enforces 
localisation in composition space and allows for 
a significant reduction of the number of notional 
particles needed for the accurate prediction of the 
joint FDF. More details on the implementation 

can be found in [14,21] . 

3. Experimental configuration 

The modelled configuration is a modified ver- 
sion of the Cabra burner [22] . The setup is depicted 

in Fig. 1 and consists of a turbulent nitrogen jet 
doped with different concentrations (0, 300, 1000 
and 3100 ppm) of silane as a precursor for the sil- 
ica particulates. The jet is centred in a hot viti- 
ated coflow with an outer diameter of 210 mm. The 
Reynolds number is Re D 

= 10 000 based on a jet di- 
ameter of D = 4 . 57 mm and the cold jet bulk veloc- 
ity of U j = 33 . 2 m / s . The coflow consists of a hot 
lean premixed hydrogen-air mixture with an equiv- 
alence ratio of φ = 0 . 4 at a temperature of T c = 

1447 K . The coflow velocity is U c = 1 m / s based 

on cold conditions. The nozzle exit plane extends 
70 mm above the perforated plate of the coflow that 
leads to heating of the central jet by the co-flow. 
Radial temperature profiles were measured with a 
radiation-corrected bare-wire R-type thermocou- 
ple and used to adjust the temperature inflow con- 
ditions for the LES. 

Measurements include two laser diagnostic 
techniques; planar laser-induced fluorescence 
(PLIF) and elastic light scattering (ELS). The 
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investigation is supplemented with extractive par- 
ticulate sampling. OH-PLIF is used to validate 
the chemical kinetic model whereas ELS is used 

to validate both the particulate formation model 
and the temperature field. Hence, our model vali- 
dation follows the “paradigm shift” approach used 

for a variety of analyses in turbulent combustion 

[23,24] including particulate nucleation and growth 

[25] . This strategy avoids incurring assumptions 
needed to convert experimental signals into a 
physical quantity such as particulate number 
density. 

In the ELS experiment, a Q-switched frequency- 
doubled Nd:YAG laser with four independent 
heads is used in conjuction with sheet-forming op- 
tics to illuminate a 23 mm × 400 μm region across 
the burner centreline. The ELS signal is collected 

using a CCD camera with an f/2 105 mm lens per- 
pendicular to the laser beam. Using three of the 
four available heads, the shot energy is approxi- 
mately 3 × 450 mJ with a repetition rate of 10 Hz. 
Data from different heights is obtained by verti- 
cal translation of the burner. Post-processing steps 
include background subtraction, shot energy cor- 
rection, beam profile correction, spatial calibration 

and image de-warping. The ELS signal is a combi- 
nation of contributions from molecular and partic- 
ulate scattering. The ELS signal S originating from 

gas molecules is calculated according to 

S 

molec ∝ 

∑ Y s 
i=1 χi σi 

T 

(4) 

where T is the temperature, χ i is the species mole 
fraction and σ i is the ELS cross section of species 
i at 532 nm. Normalised ELS cross sections have 
been determined by Fuest et al. [26] . Since both 

chemical composition and temperature are fully de- 
fined in the simulation, the ELS signal is predicted 

within the model. Additionally, the ELS signal 
originating from agglomerates is calculated accord- 
ing to the Rayleigh–Debye–Gans theory of light 
scattering by fractal agglomerates (RDG-FA) [27] . 
The contribution of each agglomerate is given by 

S 

agg ∝ 

N s ∑ 

k 

C 

agg 
sca N k , (5) 

where the C 

agg 
sca is the scattering cross section of the 

fractal agglomerate. The latter is a function of the 
agglomerate size [27] and needs to be weighted with 

the computed PSD to be comparable to the mea- 
sured signal. 

The fourth head of the Nd:YAG laser is used 

to pump a frequency-doubled Rhodamine 6G 

dye laser, tuned to a wavelength of 283.6 nm to 

excite the Q 1 (8) transition (υ = 1 ← 0) of the 
A 

2 
 ← X 

2 � electronic system of the OH radical. 
This transition has been chosen such that the LIF 

signal is weakly sensitive to temperature. A CCD 

camera with intensifier (multi-alkali, P43) and f/2.8 

UV lens is placed at 90 ° to collect the fluorescence 
signals from the (υ = 0 ← 0) and (υ = 1 ← 1) 
branches of OH around 309–315 nm. Laser energy 
and sheet thickness have been adjusted to ensure 
operation within the linear LIF regime [28] . The 
volume probed is 23 mm × 700 μm and the shot en- 
ergy 1.15 mJ. Background subtraction, shot energy 
correction, beam profile correction and beam ex- 
tinction along the direction of travel of the beam 

are applied to the experimental signal. The pre- 
dicted OH-LIF signal is calculated as detailed in 

Coriton et al. [29] . 
The ELS and OH-LIF signals are calculated on 

each stochastic particle where the instantaneous 
and local species composition and particulate size 
distribution are known. The signals from the par- 
ticulates are then collected to obtain mean and vari- 
ances that are compared with the experimental data 
in Section 5 . 

4. Numerical configuration 

The MMC-LES model has been implemented 

into a code called mmcFoam [30] which is com- 
patible with the OpenFOAM open source C++ li- 
braries. The computational domain extends 25 D in 

the axial direction and 11 D in the radial direction. 
The jet diameter is resolved by 63 cells. The circum- 
ferential and the axial directions of the domain are 
resolved by 84 and 576 cells, respectively, resulting 
in more than 4 million LES grid cells overall with 

95% of the total turbulent kinetic energy being re- 
solved everywhere except at the nozzle lip. 

The turbulent sub-grid viscosity is modelled 

by the σ -Model [31] and a model constant of 
C σ = 1 . 5 is applied. Pipe flow simulations were 
conducted inside the nozzle to provide realistic 
turbulent inflow velocity boundary conditions and 

zero-gradient outflow conditions were used at all 
other boundaries. Second-order central difference 
and TVD schemes are used for discretization of 
momentum and species transport, respectively. 
For the Lagrangian scheme, one particle for every 
17.5 LES cells is used corresponding to 230,000 
stochastic particles overall. As in earlier publi- 
cations [10,14] we use standard MMC modelling 
parameters ( f m 

= 0 . 03 ) and the time scale model 
introduced in [21] . 

Silica nanoparticulates can be obtained from 

thermal decomposition methods or from nucle- 
ation of hydrogenated silicon particulates during 
silane pyrolysis [2,32] , and the latter variant is 
used here. We use the mechanism provided by 
Suh et al. [2] including 63 species and 264 reactions 
at their reported rates for atmospheric pressure. 
For the solid silica particulates, the primary par- 
ticulate diameter is given as d p, 0 = 0 . 98 nm with 

a density of � p = 2196 kg / m 

3 . We use 50 sections 
to discretise the volume-based PSD of the silica 
particulates with v k = 2 k v 0 . Thus the stochastic 
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Fig. 2. Contour plots of the normalised elastic light scat- 
tering signal for the reference case without silane loading. 

particles carry the information of 63 species, the 
enthalpy, the mixture fraction and the 50 size 
sections of the PSD. The simulations have been 

run for 6300 CPUh, where the stochastic particle 
costs are about 3 times the costs of the LES. 

5. Results 

First, the general computational setup needs 
to be validated before the capabilities of PBE- 
MMC-LES to model particulate synthesis can be 
assessed. A first comparison between experiments 
and simulations is therefore conducted for a refer- 
ence case without any silane doping and therefore 
without particulate formation. The corresponding 
contour plots of the predicted and measured ELS 

signals are shown in Fig. 2 . In the absence of 
particulate matter the ELS signal is a function of 
species composition and temperature only. Thus, 
for the silane-free case predicted and measured 

signals are normalised with their respective value 
in the coflow. We considered all major species’ 
cross sections (N 2 , O 2 , H 2 , H 2 O, OH, O, H) with 

the remaining species contributing less than 0.1% 

to the total signal. The ELS cross section for 
nitrogen is set to unity, leaving the temperature as 
the only free variable in the unmixed jet stream (cf. 
Eq. (4) ) with an inverse proportionality between 

signal and temperature. The decay of the jet seems 
somewhat over-predicted. This may be due to an 

over-prediction of turbulent velocity fluctuations 
in the (precomputed) pipe flow simulation that 
are used as inlet conditions. In the experiments, 
the jet inlet pipe is surrounded by a hot coflow 

and the heat flux towards the central jet will 

Fig. 3. Radial profiles of the OH-LIF signal at different 
downstream positions. The signals are normalised with 
the respective value in the coflow at z/D = 5 . 

increase the jet’s temperature. This will increase 
the molecular viscosity and dampen the initial 
velocity fluctuations. No heat flux is considered 

in the pipe flow simulations, and the fluctuations 
of the velocity at the inlet boundary are therefore 
slightly over-predicted. We now turn our attention 

to the prediction of the normalised OH-LIF signal 
as it is an indication for the position of the shear 
layer, and it allows for conclusions about gas phase 
chemistry, i.e. whether the kinetics of the silane 
decomposition process are modelled accurately. 
Radial profiles of the mean and standard devia- 
tion are shown in Fig. 3 where experimental and 

predicted signals are normalised with their respec- 
tive values in the coflow at z/D = 5 . Results are 
shown for two cases with 0 ppm of silane loading 
(the reference case) and with 3100 ppm of silane. 
Predictions for the reference case are excellent. It 
is also apparent in the 3100 ppm case that OH 

radical concentrations are increased due to the 
decomposition of silane. The positions of the 
silane decomposition and OH production are well 
captured, however, the peak in the computed mean 

OH-LIF signal is more than two times stronger 
than the measured value. Some uncertainties in the 
kinetics of silane oxidation certainly persist and 

this is now reflected in the quantitative predictions 
by MMC. Following the trends of the means, 
standard deviations are also overpredicted in the 
shear layer by a similar margin. It is noted that ex- 
perimental standard deviations do not drop to zero 

in the coflow. This is believed to be mostly due to 

shot noise and, to a lesser extent, readout noise and 
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Fig. 4. Contour plots of the normalised elastic light scat- 
tering signal for case with 3100 ppm silane loading. 

temperature fluctuations in the coflow. Overall, we 
achieve satisfactory agreement between measured 

and predicted reaction zone position and silane 
decomposition considering the uncertainty in the 
detailed chemical mechanisms for silane oxidation. 

Figure 4 compares the measured and predicted 

ELS signals for the case with 3100 ppm silane 
doping. For the cases with silane doping the pre- 
dicted ELS signal is the sum of the signal of the 
gas and the particulate phases. The gaseous signal 
is normalised as for the reference case. The signal 
associated with scatter from the particulate matter 
is normalised to match the maximum signals in the 
domain. The agreement is good and the position 

of the peak value is well matched. As the radical 
concentration is overpredicted, particulate precur- 
sors and hence, particulates are formed somewhat 
too quickly as the clear increase in the predicted 

ELS signal within the shear layer demonstrates. In 

contrast, experimental data does not show signif- 
icant formation and growth of particulates so far 
upstream and larger particulates that lead to sig- 
nificant scattering are formed predominantly along 
the centreline. The ELS signal starts to decrease 
at around z/D = 20 for both, the experiment and 

simulation. It is noted, however, that the predicted 

ELS signal is broader than the measured signal 
and tends to decrease more slowly. This may be at- 
tributed to an overprediction of the agglomeration 

process. The larger agglomerates lead to stronger 
signals and a slower signal decay with downstream 

distance. As several quantities affect the ELS 

signal (in particular particulate number, size and 

agglomerate morphology), it is difficult to iden- 
tify the error source that leads to the differences 
between measurement and computation. We have 

therefore conducted a number of parameter stud- 
ies that help to assess the relative influence of our 
modelling uncertainties. We tested two additional 
reaction mechanisms: one proposed by Lewis and 

Chang [33] and one by Miller et al. [34] . Lewis and 

Chang [33] failed to produce a sufficiently large 
number of particulates, as key species of the irre- 
versible particulate clustering mechanism are not 
present in the base mechanism. The mechanism 

proposed by Miller et al. [34] yielded a comparable 
spatial distribution of the ELS signal, but exces- 
sive particulate formation in the early shear layer 
increased the ELS signal therein and led to much 

larger qualitative differences to the LES signal 
than the reaction mechanism of Suh et al. [2] . 

The effect of particulate morphology on the 
ELS signal can be assessed by variation of the frac- 
tal dimension, D f . Here, we have used D f = 1 . 8 as 
commonly reported in the literature for silica ag- 
glomerates, and this predicts the correct position 

of the peak ELS signal. We have also conducted 

simulations with different - but still constant - frac- 
tal dimensions ( D f = 2 . 0 and 2.2) which reduced 

the impact of agglomeration and shifted the ELS 

signal peak downstream by around 10 to 15 jet di- 
ameters, respectively. We have also tested the effect 
of coalescence up to primary particulate diameters 
of d p, 0 = 10 nm . This also shifted the peak of the 
ELS signal by slightly more than 15 jet diameters. 
These modifications are rather “ad hoc” but useful 
to assess the model’s sensitivity to these parameters. 
More complex models that can characterize partic- 
ulates by e.g. particulate size and a distribution of 
fractal dimensions, are not easy to implement and 

beyond the scope of the present paper but will be 
investigated in future work. 

Figure 5 allows for a more quantitative analysis. 
The overall trend is captured well, but the overpre- 
diction of particulate formation in the shear layer 
is confirmed by the predicted ELS peak at z/D = 5 
and r/D = 0 . 6 . It is also apparent that particulate 
dynamics seem to be more intermittent than the 
model predicts and the measured standard devia- 
tions are much higher along the centreline for axial 
positions between 10 < z / D < 20. 

The experimental ELS signals from the cases 
with 300 ppm and 1000 ppm silane loading do 

not provide any additional information for model 
validation as particulate formation seems to be low 

and signals do not differ from the reference case 
with 0 ppm silane. This is firstly due to reduced 

particulate formation and secondly, due to the lack 

of agglomeration. Figure 6 shows transmission 

electron microscope (TEM) images of particulates 
extracted from the exhaust. These images do cer- 
tainly not represent the particulates’ PSD, however, 
they clearly demonstrate the reduced particulate 
nucleation and lack of agglomeration in the case 
with 300 ppm. The computed PSDs indicate that 
the computations capture the growth and ag- 
glomeration processes and provide results that are 
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Fig. 5. Radial profiles of the ELS signal at different 
downstream positions. 

Fig. 6. (a), (b) transmission electron microscope (TEM) 
image of particulates extracted in the exhaust using a filter 
for different silane loadings; (c) predicted PSDs of partic- 
ulates at z/D = 20 and scattering cross section of fractal 
agglomerates. 

in the range of the measured agglomerate sizes. 
Figure 6 (c) also shows the scattering cross section, 
C 

agg 
sca (cf. Eq. (5 )), as function of the agglomerate 

size. It is apparent why the very small particulates 
for the low silane loading do not yield a significant 
signal despite a particulate number density that 
is not small. The low scattering cross section for 
small particulates leads to a maximum signal that is 
about more than three orders of magnitude lower 
than the maximum signal observed for 3100 ppm, 
and it is also low when compared to the ELS signal 
originating from the cold jet center. We note that 
the size distribution is rather broad. We see that 
large agglomerates ( > 1 μm) are 8 orders of mag- 
nitude less likely than the incipient particulates for 
the 300 ppm case, however, large particulates have 
a notable probability for higher silane loadings. 
The TEM analysis does not allow for the extraction 

of a PSD, but Fig. 6 (b) demonstrates that very 
large aggregates co-exist with very small clusters 
consisting of only few primary particulates. 

It is apparent that uncertainties with respect to 

the modelling of silane chemistry and - potentially 
- the assumption of a constant fractal dimension 

persist, and a combination of these may lead to 

discrepancies between measurements and compu- 
tations. Despite these uncertainties, however, a first 
important step has been taken towards a validated 

prediction of particulate synthesis in turbulent 
flows. Most recent LES studies of nanoparticulate 
formation do not provide a quantitative validation 

by direct comparison with signals acquired by con- 
comitant measurements (see e.g. [8,35] ), and LES 

studies of the similarly difficult to model soot for- 
mation are known to feature much larger discrep- 
ancies between predictions and measurements [36] . 

6. Conclusions 

We have presented a joint experimental and nu- 
merical investigation of silica particulate synthesis 
in a turbulent environment. Measurements include 
simultaneous planar OH-LIF and ELS measure- 
ments that have been used to characterise particu- 
late formation in the turbulent jet and to validate 
a novel PBE-MMC-LES implementation for the 
prediction of such process. The stochastic solution 

of the joint scalar FDF provides a sub-grid model 
for the unresolved interactions between turbulence, 
chemistry and particulate dynamics such as nucle- 
ation and growth, and the specific MMC mixing 
model allows for a significant reduction of notional 
particles when compared to standard FDF ap- 
proaches. Measurements and computations agree 
fairly well, but uncertainties persist and can - to 

a large extent - be associated with uncertainties in 

the precursor chemistry leading to nucleation of 
the first particulates. Despite these discrepancies, 
this study is a major step towards the development 
of validated computational tools for the prediction 
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of nanoparticulate flame synthesis as it is one of 
the very few joint computational and experimental 
studies that address the issue of nanoparticle syn- 
thesis under the influence of turbulence. The pre- 
dictive capability of PBE-MMC-LES is good when 

compared to results from existing studies of simi- 
lar complexity such as soot formation in turbulent 
flames. 
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Abstract
This paper presents a comparison of experimental and numerical results for a series of tur-
bulent reacting jets where silica nanoparticles are formed and grow due to surface growth 
and agglomeration. We use large-eddy simulation coupled with a multiple mapping con-
ditioning approach for the solution of the transport equation for the joint probability den-
sity function of scalar composition and particulate size distribution. The model considers 
inception based on finite-rate chemistry, volumetric surface growth and agglomeration. The 
sub-models adopted for these particulate processes are the standard ones used by the com-
munity. Validation follows the “paradigm shift” approach where elastic light scattering sig-
nals (that depend on particulate number and size), OH- and SiO-LIF signals are computed 
from the simulation results and compared with “raw signals” from laser diagnostics. The 
sensitivity towards variable boundary conditions such as co-flow temperature, Reynolds 
number and precursor doping of the jet is investigated. Agreement between simulation and 
experiments is very good for a reference case which is used to calibrate the signals. While 
keeping the model parameters constant, the sensitivity of the particulate size distribution 
on co-flow temperature is predicted satisfactorily upstream although quantitative differ-
ences with the data exist downstream for the lowest coflow temperature case that is consid-
ered. When the precursor concentration is varied, the model predicts the correct direction 
of the change in signal but notable qualitative and quantitative differences with the data are 
observed. In particular, the measured signals show a highly non-linear variation while the 
predictions exhibit a square dependence on precursor doping at best. So, while the results 
for the reference case appear to be very good, shortcomings in the standard submodels are 
revealed through variation of the boundary conditions. This demonstrates the importance 
of testing complex nanoparticle synthesis models on a flame series to ensure that the physi-
cal trends are correctly accounted for.

Keywords Multiple mapping conditioning · Nanoparticle flame synthesis · Elastic light 
scattering · LES
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1 Introduction

A large variety of nano-sized particulates are produced by combustion processes, some 
as unwanted by-products in the energy sector such as soot, others as commodities such 
as catalysts or stabilising agents  (Iler 1979). In all cases, the final product characteris-
tics are significantly influenced by precursor reactions, interparticulate interactions and 
the gas-phase conditions (composition, temperature, fluid dynamics) under which they 
are formed. The numerical simulation of all these processes and the accurate prediction 
of the particulate size distribution (PSD) are vital if we are to understand and control 
flame synthesis. The evolution of the PSD is usually described by the population bal-
ance equation (PBE) that can be solved by Direct Monte Carlo methods   (Kruis et al. 
2000), moment methods  (Pratsinis 1988) or discretised sectional methods  (Friedlander 
2000; Marchisio and Fox 2013). When the PBE is coupled with the Navier-Stokes equa-
tion, modelling is required for the multiscale, non-linear interactions of the particlulate 
dynamics and the turbulent flow. In the context of large eddy simulations (LES), Loef-
fler et al. (2011) and Wang and Garrick (2006) investigated the formation and growth 
of titanium dioxide nanoparticulates, but neglected particulate-turbulence interactions. 
Neuber et  al. (2017) used the sectional method and showed that the error associated 
with omission of sub-grid turbulence interactions can be large for the highly non-linear 
nucleation and surface growth processes. Similar conclusions were drawn by Pesmazo-
glou et al. (2017) and Sewerin and Rigopoulos (2018) who modelled particulate aggre-
gation and soot formation and growth, respectively.

In Neuber et  al. (2017, 2019a) we presented the implementation of a stochastic 
Monte-Carlo method for the spatial and temporal evolution of the joint filtered density 
function (FDF) of the gaseous composition and number density of the particulates. The 
number density is discretised into sections representing particulates of different sizes. 
To avoid ambiguities, we strictly distinguish in this paper between “stochastic parti-
cles”, which are computational elements for solving the FDF equation in the Lagrangian 
sense, and “particulates”, which are the physical nanoparticulates produced during the 
flame synthesis process. Conventional stochastic FDF methods require stochastic par-
ticle numbers up to 20–50 per LES cell (You et al. 2017), and even though optimised 
methods—such as in-situ adaptive tabulation (Pope 1997)—exist for the calculation of 
reaction kinetics, the simulation of flame synthesis processes remains computationally 
expensive. When using a sectional method, the computing time for the particulate syn-
thesis may even exceed the computing time for the chemical kinetics of the gas phase. 
For such problems it is therefore beneficial to use a so-called sparse-Lagrangian FDF 
approach, which requires far fewer stochastic particles than traditional intensive meth-
ods   (Cleary and Klimenko 2011). The key enabler of the sparse FDF approach is the 
use of a novel mixing model called multiple mapping conditioning (MMC)  (Klimenko 
and Pope 2003) which helps to correctly emulate molecular and turbulent diffusion 
despite the relatively large physical distances between the particles to be mixed. The 
MMC model has been validated widely for different turbulent flames, e.g. see  (Cleary 
and Klimenko 2011; Vo et al. 2017a; Galindo-Lopez et al. 2018; Neuber et al. 2019b). 
Recent publications have shown that the method can also be applied to particulate 
nucleation and growth processes   (Neuber et al. 2017; Vo et al. 2017a) where interac-
tions with turbulence are important. We demonstrated the capability of the combined 
PBE-MMC-LES method to model particulate inception, surface growth and agglom-
eration of non-spherical agglomerates in a turbulent, reactive jet flow   (Neuber et  al. 
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2019a). That study included, however, only one specific setup. MMC could capture 
some features of the flame synthesis process but notable differences between computa-
tions and experiments were observed.

Complete model evaluation demands the computation of a series of cases with varying 
boundary conditions to establish the sensitivity of the model and its input parameters. The 
comparison with a series will also ensure the model’s capacity to capture trends and thus 
to have incorporated all the important physics of the particulate synthesis process. Here, 
we apply the model to the flame synthesis of silica nanoparticulates from a silane doped 
nitrogen jet issuing into a vitiated hot co-flow and investigate the sensitivity towards varia-
tions in precursor loading and gas phase temperatures and assess the model’s performance 
against experimental OH-LIF, SiO-LIF and elastic light scattering (ELS) signals.

2  Methodology

PBE-MMC-LES is a hybrid Euler/Lagrange approach where the mass and momentum 
transport equations are solved by an Eulerian LES solver, here employing standard closures 
for the sub-grid terms. The gas-phase composition and particulate size distribution are 
solved using a Lagrangian Monte Carlo approach whose details are provided now. For the 
solution of the particulate size distribution we use the nodal form of the sectional approach  
(Prakash et al. 2003) which discretises the particulate volume space into a finite number 
of sections. If the particulate matter is transported by a fluid of gas-phase composition Y , 
temperature T and velocity field uj(xi, t) , the nodal form of the population balance equation 
takes the form

where nk is the number density of particulates in section k, Dk is the diffusion coefficient of 
section k, and G(v,Y, T) is the volumetric growth term that can be modelled as a function 
of particulate volume, v, and Y . Changes of the PSD due to inception and agglomeration 
are included via the source term ṡk . The rate at which primary particulates are formed is 
determined by the production rate of the precursor species, which in turn is given by the 
gas phase chemistry described by the underlying reaction mechanism. Incipient particu-
lates that are newly formed by chemical reaction are added to the first section of the discre-
tised particulate size distribution.

The volumetric surface growth is determined by two processes, each dominating in dif-
ferent size ranges. For small particulates the surface growth is determined by a collision 
process whereas for large agglomerates the surface growth is driven by diffusion processes. 
For the former, the growth rate is based on the free-molecular collision kernel. The colli-
sion diameter of the species which is depositing on the agglomerates surface is assumed 
to be the diameter of the molecule   (Shekar et  al. 2012). In our sectional approach we 
consider fractal-like structures with their morphology given by a power law  (Friedlander 
2000). The collision diameter of the agglomerate is given by dc,k = dp,0N

1∕Df

k
 , with Nk being 

the number of primary particulates in the agglomerate, dp,0 being the diameter of the pri-
mary particulate and Df  being the fractal dimension which is set to Df = 1.8 as suggested 
in Refs.   Shekar et  al. (2012); Schaefer and Hurd (1990). Hence, the volumetric growth 
rate is given by the collision rate of the depositing species with the agglomerate. For the 
larger particulates we apply a diffusion-limited growth method  (Witten and Sander 1981) 

(1)
𝜕nk

𝜕t
+

𝜕

𝜕xj

(
ujnk − Dk

𝜕nk

𝜕xj

)
= −

𝜕(G(v,Y,T)nk)

𝜕v
+ ṡk(Y, T) ,
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because there the volumetric surface growth is mainly determined by the diffusion rate of 
the depositing species towards the agglomerates’ surface. We use the harmonic mean of the 
two formulations which serves as a blending function between the two regimes.

For agglomeration the Fuchs interpolation expression between the free molecular and 
continuum regimes was proposed by Seinfeld (1986). For arbitrarily shaped agglomer-
ates (Kruis et al. 1993) proposed to replace the spherical particulate diameter in the Fuchs 
interpolation expression by the collision diameter of the agglomerate and this was also 
done here. The implemented discretised representation of the PSD requires a size-splitting 
operator for the agglomeration term which ensures particulate number and mass conser-
vation by distributing the formed particulates into two adjacent sections   (Loeffler et  al. 
2011). This procedure introduces a slight broadening of the PSD but this effect is small 
compared to the broadening due to growth and agglomeration. Due to the relatively low 
temperatures in regions where particulates are formed we assume that the agglomerates are 
not subject to any sintering processes. This assumption is justified as agglomerate samples 
in the exhaust do not show significant signs of neck formation between the primary par-
ticulates (see also Fig. 2 and discussion in Sect. 3).

We apply a Lagrangian scheme to approximate the evolution of Eq. (1) as part of the 
joint FDF, F� , of the composition field � = (Y1,… , Ys, h, Z, n1,… , ne)which includes the 
gas phase composition vector Y , the total enthalpy, h, the mixture fraction, Z, and the dis-
cretised particulate number density field n . The FDF method has the major advantage that 
the chemical source terms as well as the rates for nucleation, volumetric surface growth 
and agglomeration appear in closed form in its governing equations. Thus, no closures are 
required for these terms to incorporate unknown sub-grid effects due to turbulence. As we 
use a Monte-Carlo technique a fractional step approach is applied to describe the spatial 
dispersion, gas phase reaction, mixing and aerosol dynamics  (Pope 1985). The time evolu-
tion is then given by the equivalent stochastic differential equations (Cleary and Klimenko 
2011) for particle transport

and the change of the composition field in time is governed by Cleary and Klimenko (2011)

where � is a Wiener process and standard notation is used for diffusion, density, veloc-
ity, space and time. The molecular diffusion coefficient, D, is set equal for all species and 
particulate sizes except in our discussion conducted in Appendix 3 and Dt denotes the tur-
bulent diffusivity. S� accounts for source terms including chemical reactions, particulate 
inception, surface growth and agglomeration and M� is a mixing operator which emulates 
the sub-filter scalar dissipation. A suitable reaction mechanism provides chemical reaction 
rates and thus determines the particulate inception (cf. Sect. 4). Models for volumetric sur-
face growth and agglomeration have been discussed above.

The mixing operator appears in unclosed form and requires modelling. A mixing model 
like the interaction by exchange with the mean (IEM)  (Villermaux and Devillion 1972), 
Curl’s mixing model  (Curl 1963), the modified Curl mixing model  (Janicka et al. 1979) 
or the Euclidean minimum spanning tree (EMST) model  (Subramaniam and Pope 1998) 
can be used to close the equation on mixing operator level. Subramaniam and Pope (1998) 
specified requirements for mixing models, such as linearity, independence and localness 
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in composition space. A mixing model which provides such requirements is the multiple 
mapping conditioning (MMC) model   (Klimenko and Pope 2003) as it enforces localisa-
tion in composition space indirectly by localisation in an independent reference space. 
MMC requires the additional solution of such a reference field. This reference field is the 
(Eulerian) LES solution of mixture fraction, f̃  , and the mixing of the stochastic particles 
is then conditioned on f̃  . The localisation in reference space allows to increase the spatial 
distance of the stochastic particles as long as localness in composition space is maintained. 
This has led to the development of the so-called sparse-Lagrangian MMC method, where 
there are fewer stochastic particles than LES grid cells. In contrast to conventional mixing 
models sparse particle methods use up to three orders of magnitude fewer particles result-
ing in significant computational savings. Here, we use Curl’s mixing model where parti-
cles are pairwise mixed in combination with the MMC conditioning. The particle pairs are 
selected such that they are local in reference mixture fraction space and the mixing extent 
is controlled by a mixing time scale, �L . For a detailed discussion on the modelling of the 
mixing time scale the reader is referred to Vo et al. (2017a, b) and Neuber et al. (2019b).

3  Experimental Configuration

The general experimental configuration is based on the Cabra burner (Cabra et al. (2002)) 
where a central turbulent jet (here nitrogen) issues into a hot vitiated co-flow of premixed 
hydrogen-air combustion products. The central jet has a diameter of D = 4.57mm and the 
outer diameter of the vitiated co-flow is 210mm . The cold jet bulk velocity is Uj = 33.2m/s 
resulting in a jet Reynolds number of ReD = 10,000 . The co-flow velocity is Uc = 1m/s 
based on cold conditions (i.e. no combustion of co-flow mixture). The nozzle exit plane 
extends 70mm above the perforated plate of the co-flow. The experimental campaign con-
sists of measured signals from parameter variations where the central jet is doped with dif-
ferent concentrations of silane (0, 300, 1000, 2500, 2700, 2900 and 3100 ppm). Also, the 
co-flow temperatures (1300, 1500 and 1800K ) and the jet Reynolds numbers (5000, 10,000 
and 15,000) were varied. The case with no silane doping (0 ppm) is used as baseline for the 
OH-LIF signal and served for the validation of the flow and mixing field predictions (Neu-
ber et al. 2019a). Preliminary measurements demonstrated that dopings below 2000 ppm 
do not lead to any detectable light scattering signal from the particulate matter while for a 
range between 2500 and 3100 ppm a large variation of the signal is observed (cf. Fig. 1). 
There is a clear temperature dependence of the signal over the temperature range between 
1300 to 1800 K and the dependence is less pronounced for lower loadings such that here, 
the analysis with respect to silane loading considers cases with silane doping larger or 
equal 2500 ppm only. The temperature sensitivity studies focus on the case with 3100 ppm 
and the Reynolds number dependence is based on 2500 ppm doping due to restrictions of 
the mass flow rate controller in the high Reynolds number case.

Silica particulate synthesis is investigated experimentally by two laser diagnostic tech-
niques, planar laser-induced fluorescence (PLIF) and elastic light scattering (ELS). The 
investigation is supplemented with extractive particulate sampling. OH-PLIF and SiO-
LIF are used to validate the chemical kinetic model whereas ELS is used to validate both 
the particulate formation model and the temperature field. Model validation follows the 
“paradigm shift” approach described by Connelly et al. (2009), which involves computing 
‘synthetic signals’ that are compared with experimentally-acquired signals as a strategy to 
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avoid incurring assumptions needed by the experimentalist for conversion of the signal to 
physically meaningful quantities.

For ELS, a four-head Q-switched frequency-doubled Nd:YAG laser is used in conjuc-
tion with sheet-forming optics to illuminate a 23mm × 400 μm region across the burner 
centerline. The ELS signal is collected using a CCD camera with a 105 mm f/16 lens per-
pendicular to the laser beam. Using three of the four available heads, the shot energy is 
approximately 3 × 450mJ . Measurements of different regions of the jet are performed by 
vertical translation of the burner. Data post-processing includes background subtraction, 
shot energy correction, beam profile correction, spatial calibration and image de-warping. 
Besides corrections that stem from the particulars of the experimental setup such as back-
ground subtraction and laser profile and energy corrections, no physical interpretation of 
the signal is attempted, as the measurement process is already simulated within the numer-
ical model.

The fourth head of the Nd:YAG laser is used to pump a frequency-doubled Rhodamine 
6G dye laser, tuned to a wavelength of 283.6 nm to excite the Q1(8) transition (� = 1 ← 0) 
of the A2Σ ← X2Π electronic system of the OH radical. This transition has been chosen so 
that the LIF signal is only weakly sensitive to temperature. A CCD camera with intensifier 
(multi-alkali, P43) and f/2.8 UV lens is placed at 90◦ to collect the fluorescence signals 
from the (� = 0 ← 0) and (� = 1 ← 1) branches of OH around 309–315nm . Laser energy 
and sheet thickness have been adjusted to ensure operation within the linear LIF regime 
(Seitzman and Hanson 1993). The area probed is 23 mm x 700 μm and the shot energy 
1.15 mJ. Again, background subtraction, shot energy correction, beam profile correction 
and beam extinction along the direction of travel of the beam are applied to the experimen-
tal signal.

For the SiO-LIF experiments, the fourth head from the Nd:YAG laser was converted to 
third harmonic emission (355 nm) and the dye laser converted to run on a Coumarin dye 
mixture. 100 mJ of 355 nm radiation was used to pump the dye laser, generating around 
15 mJ pulse energy, tuneable around 460–470 nm. The beam was then frequency doubled 
in a BBO crystal, producing up to 1.5  mJ of narrowband radiation which could be var-
ied in the range 230–235 nm. The laser was tuned to the Q11 (J = 32) A1Π ← X1Σ+(0, 0) 

Fig. 1  Influence of co-flow 
temperature on the ELS signal in 
the Re = 10,000 case
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absorption line in SiO (235.087  nm) and the fluorescence signal was detected and cor-
rected in the same way as the OH experiments (extinction corrections were not made, since 
SiO was not found in the co-flow).

Additionally, particulate samples were obtained in two ways, using a thermophoretic 
sampling device (TPS) similar to that described in Dobbins and Megaridis (1987) and 
using a Dekati PM10 impactor. The TPS samples were collected at specific locations in the 
jet, whilst the impactor samples were collected far downstream ( ∼ 2 m), in the extraction 
hood positioned over the burner. The TPS device uses a double-action pneumatic cylin-
der to rapidly push a 3 mm perforated carbon TEM grid into the jet and remove it after 
a pre-set residence time of 50 ms. The grid is held vertically during sampling in order to 
minimize disruption to the flow. Both types of samples are analysed using a Jeol 2100+ 
transmission electron microscope (TEM) at an acceleration potential of 200 kV without 
additional preparation and images are exported to Image-J for analysis.

Figure 2 shows typical TEM images of particulates extracted from within the flame and 
from the exhaust. TPS samples at z = 70mm had a dwell time in the jet of 250 and 50 ms 
in the 1000 ppm and 3100 ppm cases, respectively. The downstream samples, collected at 
z = 2m , resulted from drawing the sampled gas through the finest impactor filter for 5 min 
at 3100 ppm and 20 min at 1000 ppm. Only few and small particulates can be seen on the 
samples for a silane loading of 1000 ppm indicating the presence of nucleation and surface 
growth but only moderate rates of agglomeration at this silane doping concentration. The 

(a) 1000 ppm at z = 70 mm (b) 3100 ppm at z = 70mm

(c) 1000 ppm at z = 2 m (d) 3100 ppm at z = 2 m

Fig. 2  Transmission electron microscope (TEM) image of silica particulates: a, b extracted from within the 
flame by thermophoretic sampling; c, d captured by suction two metres above the burner using a filter. The 
large empty areas correspond to holes in the carbon film of the TEM grid, used for mechanical support dur-
ing imaging
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picture for the case with 3100 ppm is not that clear. Much larger silica structures can be 
observed for samples taken within the flame, but clear agglomerate structures are absent. 
This “coating” of the sample probe may be due to condensation of the silica on the surface 
of the sample probe forming a surface film. When sampling within the exhaust two meters 
above the burner, large particulates of fractal shape have deposited on the sample probe 
indicating that the agglomeration process is the predominant growth mechanism and that 
sintering effects are irrelevant at conditions investigated here, see Fig. 2d. These images 
do certainly not represent the agglomerates’ PSD, however, they clearly demonstrate the 
moderate particulate nucleation in the case with 1000 ppm and significant agglomeration 
yielding very large cluster for loadings with 3100 ppm.

4  Numerical Configuration

The hybrid Euler/Lagrange approach has been implemented into a code package called 
mmcFoam   (Galindo-Lopez et al. 2018) which is based on OpenFOAM-5.0. The compu-
tational domain extends 25D in the axial direction and 11D in the radial direction. A priori 
investigations of three different grids with 0.5, 1.5 and 4 million cells revealed that results 
for the latter two cases are similar. The 1.5 million cell grid is used for all results presented 
in this paper. The mesh is refined near the nozzle, which is resolved by 45 cells along the 
jet diameter giving smallest cell sizes of 50 μm in the center and the shear layer of the jet. 
The turbulent sub-grid viscosity is modelled by the �-model   (Nicoud et al. 2011) and a 
model constant of C� = 1.5 is applied. Pipe flow simulations were conducted inside the 
nozzle to provide realistic turbulent inflow velocity boundary conditions and zero-gradient 
outflow conditions are used at all other boundaries. Second-order central difference and 
TVD schemes are used for discretization of momentum and species transport, respectively. 
For the Lagrangian scheme, 230 000 stochastic particles have been used to compute the 
subgrid distribution of composition and particulate number density, which corresponds 
to one particle for every 6.5 LES cells. All MMC modelling parameters are standard as 
defined in earlier publications (Neuber et al. 2017; Cleary and Klimenko 2011; Vo et al. 
2017b; Neuber et al. 2019b).

A finite rate chemistry model for the precursor chemistry is applied to model silane 
combustion (Suh et  al. 2001; Suh et  al. 2002). We use the mechanism provided by Suh 
et al. (2001) including 63 species and 264 reactions at their reported rates for atmospheric 
pressure. The mechanism includes clustering of silicon oxides in the gas phase that leads 
to nucleation of the first incipient particulates once the molecules are large enough. Suh 
et al. (2001) selected ( SiOn)11 to represent the first solid particulate but acknowledged this 
choice to be arbitrary as it depended on a trade-off between increased detail for gas-phase 
precursors and increasing uncertainties in the reaction kinetics for larger gas-phase mol-
ecules. Assuming spherical symmetry of incipient particulates with a solid matter den-
sity of �p = 2196 kg∕m3 gives a diameter of dp,0 = 0.98 nm for all primary particulates. 
A constant primary particulate size appears restrictive and Fig.  2d indeed demonstrates 
that particulates of various sizes are present. However, a sectional method including a 
primary particulate size distribution (i.e. an effectively two-dimensional representation 
of the particulate characteristics parameterized by the radius of gyration, Rg , and dp,0 ) is 
not yet feasible within a PBE-MMC-LES approach and is not attempted here. Therefore, 
the stochastic particles carry the information of 63 species, enthalpy, mixture fraction and 
a suitable number of sections of the PSD. This “suitable” number warrants some more 



Flow, Turbulence and Combustion 

1 3

discussion: The number should be as small as possible to avoid unnecessary computational 
overhead but Neuber et al. (2017) showed that an unsuitably coarse discretisation can lead 
to excessive numerical diffusion and to an overprediction of the number of larger particu-
lates. Since only nucleation and condensation were considered therein, the sensitivity study 
should be repeated here to ensure independence of results in the presence of agglomera-
tion. Figure 3 shows the time-averaged PSD on the centerline of the jet with a 3100 ppm 
silane loading and a co-flow temperature of 1500 K at two different downstream positions. 
The number of sections has been varied from 30 to 120. It can be seen that all PSDs look 
similar and have a bimodal character, which indicates that numerical diffusion is small and 
that agglomeration effects are already dominating the distribution’s spread across particu-
late size space at z∕D = 10 . For a higher number of sections the solutions converge. We 
can clearly observe that for 30 and 60 sections numerical diffusion leads to deviations from 
the converged solution for the PSD. The results for 90 and 120 sections are very similar. 
Since calculations with 120 sections increase computational requirements by 25% but dif-
ferences in predictions are small, we use 90 sections for the approximation of the PSD for 
all further results presented in this study.

In the next section, we compare measured with computed signals following the “para-
digm shift” approach which was used for a variety of analyses in turbulent combustion 
(Torniainen et  al. 1998; Floyd and Kempf 2011) including particulate nucleation and 
growth (Connelly et al. 2009). This strategy avoids incurring assumptions needed to con-
vert experimental signals to physical meaningful quantities such as particulate number 
density. The procedures to calculate the ELS and LIF signals are described in Appendi-
ces 1 and 2 , respectively.

5  Results

The PBE-MMC-LES calculations are performed for different silane loadings of the 
jet stream, different jet Reynolds numbers and different co-flow temperatures. Statis-
tics have been collected for a minimum of 15 flow through times after a statistically 
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Fig. 3  Mean particulate size distribution on the centerline at different downstream positions for the case 
with 3100 ppm: z∕D = 10 (left) z∕D = 20 (right)
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stationary state had been reached. The simulations have been run for 4500 CPUh, where 
the stochastic particle costs are about 16 times the costs of the LES.

The general numerical setup of this configuration including the predicted flow and 
mixing fields were validated in Neuber et  al. (2019a). There it was shown that good 
agreement of measured and computed mean and standard deviation of the elastic light 
scattering (ELS) signal can be achieved. For the case with no silane doping, this indi-
cated good predictions of the temperature (and therefore the mixing) field and that the 
most important flow phenomena can accurately be reproduced. The agreement for the 
ELS signal also indicated good predictions for silica nucleation and growth in the case 
with 3100 ppm silane doping of the jet. However, as measured signals require calibra-
tion and calibration has been realized by matching the peak centerline values, a certain 
degree of agreement is expected to be observed. For a more critical analysis, a series 
of test cases needs to be assessed and the model’s capability to predict trends and to 
capture the underlying physics needs to be investigated. We now show further valida-
tion for the case with the highest silane loading of 3100 ppm (Sect. 5.1) and take this 
case as reference. Sections  5.2 (variation of silane loading) and 5.3 (variation of co-
flow temperature and jet Reynolds number) then provide a critical assessment of the 
model’s capability to predict changes in process and boundary conditions. The varia-
tion of model parameters allows the identification of reasons for remaining discrepan-
cies between measurements and computations. We complement our analysis by sensi-
tivity studies towards variation of model parameters. However, these variations are ad 
hoc, they shall serve as indication of sensitivities and identify needs for further model 
improvements, but do not necessarily provide new suitable modelling constants. Results 
are therefore deferred to Appendices 3 and 4 .
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Fig. 4  Contour plots of the normalised elastic light scattering signal for the reference case with a silane 
loading of 3100 ppm and a co-flow temperature of 1500 K
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5.1  Evaluation of the Reference Case

In this section we present results of our reference case with a silane doping of 3100 ppm 
and a co-flow temperature of 1500  K at a Reynolds number of ReD = 10,000 . Figure  4 
compares the ELS signals from the experiments with those from the simulations. The 
signals from the LES are calculated as described in Appendix 1. We have calibrated the 
experimental signal such that it is unity in the co-flow. The predicted signal has two contri-
butions. The signal originating from the gas phase is normalised to match the mean co-flow 
values, and the signal associated with the particulate matter is normalised such that the 
peak values of experiment and simulation agree. Note that this procedure is followed for 
the reference case only. For all other cases reported below the ELS signals are normalised 
by the same constants and no further adjustments have been applied. Overall, the simula-
tions agree well with the measurments when assessing the mean of the ELS signal. Most 
notably the positions of the signals’ peaks are very similar.

There are, however, a few pronounced differences that warrant some discussion: 

1. The spatial extent of high particulate matter concentrations is somewhat too wide. 
This might be caused by the unity Lewis number assumption used here for the particle 
composition space including the size sections. The particulates can have very large 
Schmidt-numbers that are up to several orders of magnitude larger than the gaseous 
species’ Schmidt numbers, and their molecular diffusion will tend to zero. Larger par-
ticulates emitting a higher signal tend to follow the streamlines while equal diffusivity 
assumptions enhance lateral diffusion. Vo et al. (2017a) suggested a modification of the 
Lagrangian mixing time scale for the particulate matter and this effect is discussed in 
Appendix 3. In addition, the random walk model (represented by the last RHS term in 
Eq. 2) induces particle dispersion and thus diffusion independent of the species specific 
molecular diffusion coefficient. This “enhanced” diffusion of heavy particles is more 
pronounced in hot regions where molecular diffusion coefficients are large and of the 
same order of magnitude as the turbulent contribution. In the present setup, the co-flow 
is hot which contributes to the over-prediction of particulate dispersion. The mean drift 
model developed by McDermott and Pope (2007) may extenuate this artificial diffusion 
but its implementation in the context of a sparse particle method is unclear to date and 
beyond the focus of this paper.

2. A comparison of Fig. 4c, d reveals qualitative differences between experiments and 
computations. The experiments show a clear maximum along the centerline while simu-
lations place the highest fluctuations at the edges of the jet right into the shear layers. 
Again, neglecting differential diffusion in the model may be the cause of these differ-
ences. The heavy particulates would cluster in the inner jet and the larger concentra-
tions there would also lead to larger gradients and thus variances within the jet’s center. 
Indeed, modification of the mixing time scale such that there is differential dissipation 
of variances of the number densities of small and large particulates enhances variances 
along the centreline as shown in Appendix 3.

3. The computations predict an early onset of the mean ELS signal and corresponding fluc-
tuations in the shear layers between jet and co-flow (cf. Fig. 4b, d). This is not observed 
in the experiments. The appearance of the simulated ELS signal within the upstream 
shear layer can be explained by the (modelled) dynamics within this jet that dominate 
silica particulate formation and growth. Figure 5 shows the inception rate, volumetric 
surface growth, primary particulate number density and agglomerate number density 
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on a plane at centerline position. The inception rate is very high in the shear layer close 
to the jet exit, where the hot surrounding co-flow mixes with the jet and mixing leads 
to oxidation of silane and particulate inception. Along the centerline the inception rate 
peaks at z∕D = 10 and decreases significantly further downstream, which is in line 
with the observation that the precursor species is completely consumed at z∕D = 20 
(not shown). The volumetric surface growth differs qualitatively from the inception 
rate. It is very large in the shear layer close to the jet exit but rapidly decreases further 
downstream. This is consistent with the observation that strong surface growth occur in 
regions where many intermediates are present which then deposit on the particulates’ 
surfaces. Consistent with the inception rate, the number of primary particulates increases 
first in the turbulent shear layer and reaches its highest value at about z∕D = 15 (cf. 
Fig. 5c). Further downstream, the primary particulate number density decreases again 
due to ceasing primary particulate inception and due to particulate dispersion. Com-
parison of agglomerate number density with the number density of primary particulates 
highlights the influence of agglomeration which is in line with the analysis of the TEM 
pictures in Sect. 3. In regions where the primary particulate number density is highest, 
the number density of the agglomerates decreases very quickly due to particulate colli-
sion events.

The early inception of particulates in the shear layer is likely to be related to the gas 
phase chemistry including silane oxidation and formation of gas phase precursors. The val-
idation of the gas phase kinetics includes a comparison of OH and SiO signals. OH can be 
understood as an indication of the position of the shear layer and it is linked to the kinetics 
of the silane oxidation process that is typically relatively fast and intimately coupled with 
the underlying hydrogen-oxygen kinetics. Radial profiles of OH mean values and standard 
deviation are shown in Fig. 6a, where experimental and predicted signals are normalised 
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with their respective co-flow values at z∕D = 3 . It is seen that the positions of silane 
decomposition and OH production are well detected but peak values of the mean OH-LIF 
signal is over-predicted by 27%. This is a good agreement given the uncertainties that can 
be associated with the kinetics of silane oxidation. In line with the trends observed for 
the mean values the standard deviations are also overestimated. Note that the experimental 
standard deviations in the co-flow do not tend to zero. This is mainly due to shot noise and 
to a lesser extent to readout noise and temperature fluctuations in the hot co-flow. Overall, 
we achieve a satisfactory agreement between the measured and predicted position of the 
reaction zone and between actual and predicted silane decomposition representing the fast 
reactions within this process. OH is not, however, a good indicator for the silica formation 
process. Instead, SiO may serve as a representative species as it is the key intermediate for 
the formation of gaseous SiO2 and one key species for (i) surface growth and (ii) growth of 
the gas phase precursors leading to the first particulates. Figure 6b shows excellent agree-
ment between measured and predicted SiO-LIF signals. The location of the peak values 
and the variation with downstream distance for mean and standard deviations agree very 
well. Deviations at larger radii can be associated with the experimental read noise and shot 
noise that have a more substantial impact for SiO than for OH due to the relatively small 
SiO signal intensity.

With respect to the chemical kinetics and possible turbulence-chemistry interactions we 
may conclude that MMC-LES captures silane oxidation and formation of SiO (and possibly 
of the first silicon dioxide molecules) in the gas phase accurately. High SiO concentrations 
are correctly predicted in the shear layer close to the jet exit. The apparent agreement of 
key species in the gas phase and our prediction of the early onset of particulate nucleation 
(with the latter not being observed in the experiments) suggests some inaccuracies related 
to the modelling of cluster growth (the formation of ( SiO2)m and (SiO)m with m ∈ [2, 10] ) 
in the gas-phase leading to particulate inception. The relevant kinetics were developed for 
standard pressures at T= 773 K (Suh et al. 2002) and extrapolation of the respective rate 
constants to the range of temperatures relevant in the present configuration may introduce 

0
1
2
3
4

Exp., 3100 ppm
Sim., 3100 ppm

0

1

2

33=D/z 3=D/z

0
1
2
3

0

1

2
5=D/z 5=D/z

0
1
2
3

m
ea
n
la
se
r-
in
du

ce
d
flu

or
es
ce
nc
e
si
gn
al

of
O
H

0

1

2

st
an
da
rd

de
vi
at
io
n
of

la
se
r-
in
du

ce
d
flu

or
es
ce
nc
e
si
gn
al

of
O
H

z/D = 10z/D = 10

0
1
2
3

0

1

2
z/D = 15z/D = 15

0
1
2
3

0 1 2 31 2 3 1 2 3
r/D

0

1

2
02=D/z 02=D/z

(a)

0

1

2

3
Exp., 3100 ppm
Sim., 3100 ppm

0

1

2

33=D/z 3=D/z

0

1

2

m
ea
n
la
se
r-
in
du

ce
d
flu

or
es
ce
nc
e
si
gn
al

of
Si
O

0

1

2

st
an
da
rd

de
vi
at
io
n
of

la
se
r-
in
du

ce
d
flu

or
es
ce
nc
e
si
gn
al

of
Si
O

z/D = 5z/D = 5

0

1

2

0

1

2

z/D = 10z/D = 10

0

1

2

0 1 2 3

r/D

0

1

2

51=D/z 51=D/z

(b)

Fig. 6  Mean and standard deviation of a the OH-LIF signal and b the SiO-LIF signal at different down-
stream positions for the reference case with a silane doping of 3100 ppm
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some unavoidable inaccuracy. Direct validation of the cluster growth process is difficult as 
direct measurements of SiO and SiO2 clusters do not exist and are not easy to perform—in 
particular for SiO2 due to its photophysical properties. We can, however, assess the sensi-
tivity of predictions on precursor kinetics and this is discussed in more detail at the end of 
Sect. 5.2.

5.2  Sensitivity Study for Varying Silane Loadings

Figure 7 depicts the means of the ELS signals along the centerline for cases with 2500, 
2700, 2900 and 3100 ppm silane loading. For the reference case with 3100 ppm the pre-
dicted ELS signal increases with the same rate as the signal from the measurements, indi-
cating that particulate number and size are well predicted. Also growth and agglomera-
tion are likely to be suitably modelled. The measured signal reaches its maximum value 
at z∕D = 14 , while the predicted peak value is very close at z∕D = 15 . The simulations 
predict the correct trends, i.e. lower silane doping leads to lower agglomerate numbers and 
therefore lower ELS signals. However, the sensitivities towards changes in silane doping 
are moderate while experiments feature much larger differences in signal strength. Only a 
small signal is detected for 2500 ppm and the increase in signal strength is strongly non-
linear with increasing silane concentrations. The strong dependence is unexpected but con-
sistent with the TEM images shown in Sect. 3: for the low silane loadings only few small 
agglomerates were captured while higher loadings led to significant increases in particulate 
production and agglomeration. In contrast, the relatively low sensitivity observed in the 
simulations is not unexpected and can be explained by the models used for nucleation, 
growth and agglomeration. Nucleation and growth are linearly dependent on silane load-
ing, and this linear trend is observed in the predictions where the predicted peak ELS sig-
nal is (to a good approximation) proportional to the silane loading. Non-linearities that may 
explain the experimental trends appear in the current models in three expressions only: 
(1) the agglomeration reveals a square dependence on particulate number, (2) the com-
puted ELS signal increases non-linearly with primary particulate size, agglomerate size 
and fractal dimension, and (3) chemical kinetics are non-linear. Appendices 1 and 5 give 

Fig. 7  Mean elastic light scatter-
ing signal along the centerline for 
cases with a co-flow temperature 
of T = 1500K and with different 
silane loadings in the central jet 
stream. Experiment (symbols) 
and PBE-MMC-LES (lines)
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details on the computation of the ELS signal, highlight the signals sensitity to parameters 
and demonstrate that neither agglomeration nor ELS signal computation can reasonably 
explain the large discrepancies. The analysis in App. 5 hints at possible changes in Df  that 
might be caused by the different seedings and lead to the different signal strenghts. These 
changes are, however, not clearly identifiable nor quantifiable for seedings between 2500 
and 3100 ppm as the TEM images are snapshots and do not provide adequate statistics of 
the agglomerates’ morphologies.

This leaves—next to differential diffusion effects (cf. Sect. 5.1)—chemical kinetics as 
the primary suspect. Precursor growth in the gas-phase follows the sequence

for m ∈ [1, 9] and n ∈ [1, 2] . The cluster ( SiOn)11 represents the first incipient particulates 
(Suh et al. 2001). An adjustment of the rate constants of these cluster growth mechanisms 
will lead to non-linear changes in particulate properties. In addition, Fig. 4 indicates par-
ticulate nucleation to be predicted too early and a reduction in rate constants seems justifi-
able. Appendix 4 demonstrates that adjusted rate constants could yield a behaviour similar 
to the experimental trends observed in Fig.  7. Simple perfectly stirred reactor computa-
tions show that the ELS signal depends strongly non-linearly on silane doping at early 
times. A sufficient delay in particulate nucleation would then yield similar non-linearities 
at z∕D = 15 where the maxima of the measured ELS signals are observed. Appendix 4 also 
shows additional MMC-LES computations of the Cabra burner with reduced rate param-
eters. The results demonstrate that (i) nucleation and growth is shifted downstream leading 
to absence of a particulate signal in the shear layer and continuous growth along the center-
line, but (ii) shifts the peak ELS signal significantly further downstream and overall agree-
ment does not improve. It seems that particulate dispersion and lateral species diffusion is 
not strong enough to suppress a further increase of the ELS signal on the centerline beyond 
z∕D = 15 . We may conclude that this sensitivity study corroborates a strong influence of 
the kinetics on the predictions but simple scaling will not suffice and key to success will be 
detailed and validated chemical schemes that ensure the correct growth of precursor spe-
cies in the gas-phase.

5.3  Sensitivity Study for Varying Co‑flow Temperature and Reynolds Number

Figure 8a shows the ELS signal’s sensitivity towards co-flow temperature. The ELS sig-
nals for the upstream positions are in excellent agreement with experiments indicating an 
accurate numerical treatment of the varying boundary conditions. The ELS signal further 
downstream is correlated to nucleation and growth of the particulates indicating that the 
silane conversion is slower for the lowest co-flow temperature leading to lower particu-
late number densities. Measured and predicted ELS signals have a similar peak value for 
the two higher co-flow temperature cases and we may conclude that temperatures above 
1500 K are high enough for a fast and complete conversion of the precursor. Again, the 
larger changes observed in the experiments cannot be fully reproduced by the simulations 
when decreasing the co-flow temperature from 1500 to 1300 K, but we note that the model 
correctly captures the highest ELS signal for the middle temperature of 1500 K.

In Fig. 8b the sensitivity of the ELS signal towards the jet Reynolds number is shown. 
Due to restrictions of the mass flow rate controller for the high Reynolds number case, the 
silane doping of the central jet is set to 2500 ppm for all three cases. Results for the high 
and medium Reynolds number cases are consistent with the observations made above: no 

(SiOn)m + SiOn ⇀ (SiOn)m+1
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significant signal could be measured, but MMC-LES predicts presence of some particulate 
matter. Notably different is the low Reynolds number case. The much slower convective 
velocity provides sufficient time for particulate nucleation to set-in. At the same time, (tur-
bulent) dispersion is very low as the flow is quasi-laminar. The reduced dispersion leads 
to rather high particulate concentrations, fast agglomeration and a strongly non-linear 
dependence of the ELS signal on Reynolds number variations. MMC-LES cannot capture 
this re-laminarization of the flow and—similar to above—unity Lewis number assumptions 
lead to enhanced dispersion and an almost linear dependence of the peak ELS signal is 
predicted.

6  Conclusions

Sparse-Lagrangian PBE-MMC-LES calculations including detailed precursor chemistry, 
particulate inception, volumetric surface growth and agglomeration have been conducted 
for a series of silane doped nitrogen jets in a hot co-flow. The reference case with high 
silane loading is very well predicted and trends for variations in silane loading, jet Reyn-
olds number and co-flow temperature can be captured. However, the measured sensitivities 
are rather strong and non-linear while the model (based on the assumptions inherent in the 
submodels) gives an almost linear or at most quadratic dependence on silane concentra-
tion. Further comparison with LIF measurements of key gas-phase species representing the 
fuel conversion process and intermediates for silica formation demonstrates the method’s 
capability to represent gas-phase conversion and its interactions with turbulence. However, 
sensitivity studies indicate that the gas-phase precursor (cluster formation) chemistry can 
cause these strong non-linearities, but simple scaling of precursor (cluster) growth does 
not lead to success. Also, differential diffusion effects are likely to have significant effect 
on the specific locations in the flame where particulates nucleate and grow. The current 
work shall be understood as an attempt to identify the specific submodels’ sensitivities, to 
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provide guidelines for the need of future development in the area of modelling particulate 
flame synthesis and to highlight the need for proper model validation. The validation with 
one set of measurements only may not identify shortcomings of models or sub-models as 
the “right” choice of modelling constants may often allow for a good match between simu-
lations and “the” one target experiment. As has been established within the combustion 
community, a series of measurements with parameter variation is needed to provide an 
unbiased assessment of modelling approaches. The—at certain conditions—modest agree-
ment between measurements and simulations should not lead to dismissal of some of the 
sub-models used here, it rather highlights the complexity of the particulate formation pro-
cess. Nanoparticulate flame synthesis in general and silica particulate formation in par-
ticular is similar to soot inception and growth. The quality of predictions presented here is 
comparable to the quality of predictions of soot in turbulent flames found in the literature. 
Also, the difficulties with respect to modelling soot formation are commonly associated 
with the complex kinetics leading to the incipient soot particulates and with differential 
diffusion. This is consistent with the current paper that identifies the precursor chemistry 
and differential mixing of heavy species and particulates as key modelling issues that can 
explain the strongly non-linear dependence of particulate properties on silane doping, and 
more work is required in these areas if simulations are to be truly predictive for particulate 
synthesis processes.
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Appendix 1: Calculation of the Elastic Light Scattering (ELS) Signal

The overall ELS signal has contributions from molecular and particulate scattering with 
two normalisation factors a and b:

The ELS signal Smolec
ELS

 originating from gas molecules is calculated according to

(4)SELS = aSmolec
ELS

+ bS
agg

ELS
.
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where T is the temperature, xi is the species mole fraction and �i is the ELS (Rayleigh 
scattering) cross section of species i at 532 nm . Normalised ELS cross sections have been 
determined by Fuest et al. (2012). Since composition and temperature are fully defined in 
the simulation the molecular signal can be predicted within the model.

The second contribution of the ELS signal originates from light scattered by agglomer-
ates and is calculated according to the Rayleigh–Debye–Gans theory of light scattering by 
fractal agglomerates (RDG-FA)  (Sorensen 2001). In the case that a sectional method with 
Ns sections is used the contribution of each class of agglomerates is added to give the total 
signal

where the Cagg
sca  is the scattering cross section of the fractal agglomerate and nk is the num-

ber density within the section k. The former is a function of the agglomerate size (Sorensen 
2001) and needs to be weighted with the computed PSD to be comparable to the measured 
signal.

For loose, spherical primary particulates several times smaller than the wavelength, the 
scattering cross section varies with the sixth power of the primary particulate diameter 
(Rayleigh’s approximation). When large fractal aggregates form, the scattering cross sec-
tion also depends on the radius of gyration. Following the conventions of Link et al. (2011) 
we can formulate a dependency of the scattering cross section on fractal dimension and 
size for three different size regimes:

where N is the number of primary particulates within the aggregate, the scattering 
wave vector q =

4�

�
sin(�) and k = 2�∕� are constant throughout the experiment since 

� = 532 nm and � = �∕2 . The value of the constant C is discussed in Sorensen (2001) and 
is set to C = 0.77 . As discussed in Sect. 2 the fractal dimension and the primary particulate 
diameter are set to Df = 1.8 and dp0 = 0.98 nm , respectively.

The normalisation factors in Eq.  (4) are determined based on the results of our refer-
ence case with a silane doping of 3100  ppm and a co-flow temperature of Tc = 1500K 
at ReD = 10,000 . The normalisation factor for the molecular ELS signal is determined to 
a = 6.52374 ⋅ 10−4 such that a value of unity is obtained for the co-flow. The ELS signal 
from agglomerates is normalised with b = 1.01 ⋅ 10−4 to match the same maximum value 
as the experimental reference case.

(5)Smolec
ELS

∝

∑Ys
i=1

xi�i

T

(6)S
agg

ELS
∝

Ns∑
k=1

Cagg
sca

nk ,

(7)Cagg
sca

=

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

N2k4(dp,0∕2)
6 ∶ Rayleigh regime

(qRg < 0.1) ,

(Rg < 6 nm) ,

N2k4(dp,0∕2)
6
�
1 − (q2R2

g
)∕3

�
∶ Guinier regime

(0.1 ≤ qRg ≤ 1) ,

(6 nm ≤ Rg ≤ 62 nm) ,

N2k4(dp,0∕2)
6
�
C(qRg)

−Df

�
∶ Power-Law regime

(qRg > 1) ,

(Rg > 62 nm) ,
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Two implications of Eq. (7) are noted: 

1. C
agg
sca  scales with d6

p,0
 . We may be tempted to assume that the modelling uncertainty with 

respect to the initial primary particulate size and variations in growth rates may have a 
very significant non-linear effect on the ELS signal. Indeed, particulate diameters meas-
ured at 70 mm downstream can easily vary by a factor of 2. It is hypothesized, however, 
that particulate number density scales with d−3

p,0
 and therefore Sagg

ELS
 computed by Eq. (6) 

is much more likely to show a square dependence on the size of the primary particulates. 
Also note that TEM pictures indicate a very similar mean for the primary particulate 
size for the entire seedings range. Mean diameters are around 11 nm for 300 ppm and 
around 14 nm for 3100 ppm, and it may be concluded that primary particulate size is 
not (primarily nor solely) responsible for the strong non-linear effect observed for the 
different silane loadings.

2. Effects of agglomeration on the ELS signal are small and inaccuracies in the modelling 
of collision rates cannot explain the differences between the dependencies of simulations 
and experiments on silane doping. Agglomeration does not change dp,0 , it decreases nk 
and increases N and Rg . R

−Df

g  scales with N−1 . Collision of agglomerates yields changes 
in Sagg

ELS
 proportional to nkN2N−1 which equals unity if two large identical agglomerates 

collide. The agglomeration of two identical small agglomerates increases Sagg
ELS

 by a factor 
of two (Rayleigh regime) or smaller (Guinier regime).

These observations may not hold in case of significant sintering after collision. However, 
this is not observed in the current application where primary particulates can easily be 
identified in the samples collected in the exhaust (cf. Fig. 2d).

Appendix 2: Calculation of the Laser‑Induced Fluorescence (LIF) 
Signals

The predicted LIF signals are calculated from the molecular concentrations, ci , of species 
i as:

where f�,J(T) is the normalised Boltzmann fraction of electrons in the ground level for a 
transition of quantum numbers �, J and Qi(T) is the normalised collisional quenching rate 
at temperature T. The total quenching rate is obtained as

where kB is the Boltzmann constant, xs is the mole fraction, �s is the reduced mass and �s 
is the corresponding quenching rate of each collider species s. Quenching rates for the OH 
radical under various collider species have been determined by Tamura et al. (1998) where 
the empirical two-parameter expression is used. In absence of specific quenching rates for 
SiO, the same rates have been used for the computation of the SiO signal. The Boltzmann 
fraction for SiO computations was obtained from a PGOPHER simulation of this molecule.

(8)SLIF
i

∝ ci
f�,J(T)

Qi(T)

(9)Qi(T) = Ntot

∑
s

xs�s(T)

(
8kBT

��s

) 1

2



 Flow, Turbulence and Combustion

1 3

Appendix 3: The Influence of a Mixing Time Scale Modification 
for the Transported Number Densities of the Discretised Particulate 
Size Distribution

Here, a modification of the Lagrangian mixing time scale is discussed. If unity Lewis num-
ber assumptions are invoked, all transported scalars are mixed with a mixing extent calcu-
lated on the basis of the anisotropic mixing time scale model proposed by Vo et al. (2017b). 
Here we show and discuss results obtained with a modification of the Lagrangian mixing 
time scale for the particulate number densities only, as proposed by Vo et al. (2017a). They 
showed that for transported particulate matter a modification of the Lagrangian mixing 
time scale can achieve a significant improvement of the conditional variance. The standard 
mixing time scale is scaled with the diffusivity of the individual sections in order to reduce 
the sub-grid mixing of the aerosol, �L,k = Dk∕D �L , where �L,k is the mixing time scale of 
section k. This emulates reduced mixing rates for large agglomerates. The reference simu-
lation uses the same Lagrangian mixing time scale for all transported scalars including the 
particulate number densities and has been presented in Sect. 5.1. There, the predicted mean 
of the ELS signal agrees well with measurements but qualitative differences are observed 
for the standard deviations (see Fig. 4). It is noted, however, that the location of the peak 
mean ELS signal moves 5 diameters downstream.

Figure  9 now shows simulated mean and standard deviation of the ELS signal for 
adjusted mixing time scales mimicking differential diffusion of the particulate matter. All 
remaining (gas-phase) quantities are mixed with the standard model. Improvements can be 
observed as (i) particulate nucleation and growth are moved further downstream leading to 

Fig. 9  Contour plots of the nor-
malised elastic light scattering 
signal for the reference case with 
a silane loading of 3100 ppm and 
a co-flow temperature of 1500 K 
using the modified mixing time 
scale model
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a reduced ELS signal in the shear layers upstream and (ii) a much better qualitative agree-
ment for the standard deviation is observed (compare Fig. 9b with Fig. 4c).

A more quantative comparison is provided by Fig. 10 where radial profiles of the ELS 
signal are shown for different downstream positions. Here, the presence of the ELS sig-
nal in the shear layer for the case with equal diffusivities is pronounced and predictions 
with a modified mixing time scale show improved predictions. Also, the peak values of 
the standard deviations are much better predicted with the reduced mixing frequencies 
for the aerosol matter, especially for centerline positions where the peak value are per-
fectly matched. However, overall agreement does not really improve: the predicted stand-
ard deviation profiles are much broader than the measured data and more importantly, the 
centerline dependence of the mean signal is not capture well. We should point out here 
that the modifications suggested by Vo et al. (2017a) do not provide a fully consistent dif-
ferential diffusion model and more sophisticated models as derived e.g. by McDermott and 
Pope (2007) and Dialameh et al. (2014) should be extended to the present application for 
accurate predictions of differential diffusion effect. Here, however, we limit ourselves to 
identify the sensitivities of results on molecular diffusion processes and point out that dif-
ferential diffusion may need to be properly modelled if agreement with measurements is to 
be achieved at all positions in the flow.

Appendix 4: Discussion of the Influence of Reaction Rate Parameters

In Sect. 5.1 we have shown results of the reference case with a silane doping of 3100 ppm 
and a co-flow temperature of T = 1500K . It has been discussed that the computed ELS 
signal becomes large in the shear layer, whereas this characteristic cannot be observed for 
the experimental data. There, the ELS signal increases at centerline position in stream-
wise direction. One reason could be an incorrect precursor chemistry where chemical 
reaction rates are overpredicted and inception is too fast. To investigate the influence of 

Fig. 10  Mean and standard 
deviation of the elastic light 
scattering signal at different 
downstream positions for the 
reference case with a silane dop-
ing of 3100 ppm and a modified 
Lagrangian mixing time for the 
particulate matter
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the precursor chemistry we first investigate the time evolution of particulate inception 
and growth. Figure 11 (left) shows perfectly stirred reactor calculations with different ini-
tial silane concentrations. After a transient, the ELS signals are almost linearly depend-
ent on the silane loading. However, during an initial stage (Fig. 11 (right)) the ELS sig-
nals are strongly non-linearly dependent and the sensitivity resembles the sensitivity 
observed in Fig.  7. The rate coefficient for the clustering reactions given in Suh et  al. 
(2002) are estimates and some adjustments seem justified. A reduction in rates may delay 

Fig. 11  ELS signals for different initial silane loadings: entire silicon conversion process (a) and zoom for 
initial time period of 15 ms (b)

Fig. 12  Contour plots of the nor-
malised elastic light scattering 
signal for different reaction rates 
of the clustering mechanism with 
a silane loading of 3100 ppm and 
a co-flow temperature of 1500 K
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particulate nucleation sufficiently to (i) reduce particulate nucleation in the shear layer and 
(ii) “freeze” particulate formation sufficiently early due to dispersion and mixing prior to 
completion of the entire conversion process from silane to silica particulates. Figure  12 
shows the mean ELS signal of simulations where the pre-exponential factors of all cluster-
ing reactions are divided by 2 and 10, respectively. As expected, the particulate inception 
is shifted further downstream with negligible particulate formation in the upstream shear 
layers which is consistent with experiments. Thus, the precursor chemistry model—and 
uncertainties related with it—can have a strong impact on the particulate evolution pro-
cesses. We note, however, that the peak ELS signals are shifted further downstream (with 
the maximum for the �̇�i∕10 case likely to be located outside the computational domain). 
The overall agreement with measurements is therefore not improved, and we may postulate 
a need for improved precursor kinetics if simulations of silica production processes are to 
be predictive.

Appendix 5: Investigation of the Influence of the Particulates’ Fractal 
Dimension on the ELS Signal

The frequency of agglomerate-agglomerate collision is given by the collision kernel. Ker-
nels require the specification of collisional cross-sections that can be parameterized by the 
agglomerates’ radii of gyration and fractal dimensions. A typical fractal dimension for sil-
ica flame synthesis reported in the literature is Df = 1.8  (Shekar et al. 2012; Schaefer and 
Hurd 1990) and is assumed to be constant in our sectional approach. However, the fractal 
dimension may change during the growth process due to collision of different agglomer-
ates (Inci et  al. 2017) or due to surface growth and neck formation. To asses the influ-
ence of different morphologies Fig. 13 shows the mean ELS signal along the centerline for 
four MMC-LES simulation of the reference case (as defined in Sect. 5.1). The only change 
relates to using different—but still constant—values of the fractal dimension. The signal 
originating from the gas molecules is not affected and signals are nearly equal down to z/
D=5 when the first particulates form on the centerline. Then, the ELS signal increases with 

Fig. 13  Mean elastic light scat-
tering signal along the center-
line for cases with a co-flow 
temperature of T = 1500K and 
with different (constant) fractal 
dimensions for the agglomerates’ 
morphologies
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different rates and the signal originating from the solid phase starts to dominate. It can 
be observed that the maximum signal strength shifts further downstream for larger fractal 
dimensions. This indicates—as expected—a decreased agglomeration rate for more com-
pact agglomerates. It needs to be noted, however, that the respective maximum values do 
not reveal a clear dependence on Df  as the maximum value is observed for Df = 2.0.

This non-monotonic dependence on Df  can be explained with the aid of Fig.  14. To 
generate Fig.  14a, the ELS signals were computed from agglomerates with a uniform 
particulate number, N, and fractal dimension, Df  , keeping the total number of primary 
particulates, n0 = 1 ⋅ 1020 , fixed. The figure highlights changes in the ELS signal due to 
agglomeration and different morphologies. For small and medium sized agglomerates in 
the Rayleigh and Guinier regime, the signal increases almost linearly with N. This is con-
sistent with Eqs. (6) and (7) as nk ∼ N−1 . For large agglomerates in the powerlaw regime, 
the scattering signal remains constant which is in line with our discussion in App. 1. As the 
scattered signal from large agglomerates is much higher, only the large agglomerates affect 
the ELS signal. We can also see that the fractal dimension has a strong and non-linear 
influence on the ELS signal. Here, the scattered light of compact agglomerates is much 
higher than that of agglomerates with low fractal dimensions. Figure 14b shows the tempo-
ral evolution of the ELS signal from a perfectly stirred reactor calculation. The initial com-
position is given by a burning solution for a mixture fraction of Z = 0.35 of the reactive jet 
simulations with 3100 ppm silane loading. The simulation time corresponds to the time a 
fluid element would need to travel along the centerline in our jet configuration described 
in the main body of the paper, and the PSR simulations thus approximate the time history 
of a burning notional particle in the absence of mixing. It can be seen that agglomerates 
with smaller fractal dimensions emit stronger signals at the beginning. After some time, 
however, this dependence is reversed. This behaviour can now easily be understood with 
data from Fig. 14a. Initially, agglomerates with small fractal dimension grow faster due to 
a larger collisional cross section giving faster increases in the ELS signal. After some time, 
however, scatter is dominated by agglomerates in the power law regime, further growth 
does not increase the ELS signal, and the increase in the ELS signal considerably slows 
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(as nucleation is ongoing and smaller agglomerates continue to exist). Since more com-
pact agglomerates with larger fractal dimension tend to yield stronger ELS signals, simula-
tions using larger Df  will provide larger ELS signals and the initial dependence on Df  is 
reversed.

The evolution of the ELS signal observed in Fig. 13 can now be explained: The ELS sig-
nals for larger Df  rise more slowly as agglomeration is delayed. This trend is very quickly 
reversed for Df < 2.2 and the more compact agglomerates tend to give larger ELS signals. 
For the fractal dimension of Df = 2.2 the results do not quite follow the trend. Upstream, 
the computed ELS signal is in line with our expectations but further downstream, the sig-
nal does not surpass the values computed for Df = 2.0 . It can be hypothezised here that this 
is due to broadening effects further downstream. Radial (turbulent and molecular) diffusion 
and particulate and agglomerate dispersion decrease the local particulate number density 
and thus the collision frequency and counteract the expected increase in ELS signal.

The discussions with respect to the computed ELS signal show that an unambiguous 
comparison between measured and computed ELS signals may require a model for the 
solid phase that includes information not only on mean parameters for particulate number 
density, radius of gyration, primary particulate diameter and fractal dimension, but also on 
their distributions and correlations. Such a multi-variate characterisation of the nanoparti-
cles using a sectional approach is currently beyond reach as (i) computational requirements 
will be huge and (ii) models describing the dynamics within this multi-dimensional space 
do not exist. Only two-dimensional models based on a multi-sectional moment method 
were proposed (e.g. Yang and Mueller 2019; Xiong et  al. 1993) and may guide future 
research in the context of MMC-LES-PBE of nanoparticle flame synthesis for improved 
predictions of particulate characteristics.
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Chapter 6

Conclusion & Outlook

6.1 Conclusion

The present work has established a novel combined PBE-MMC-LES approach
as a powerful solution method for the numerical simulation of particulate flame
synthesis in turbulent flows. The efficient modelling includes particulate forma-
tion, surface growth and agglomeration of particulates with fractal morphology,
thus accounting for the three most important phenomena in particulate synthe-
sis processes. Here, the aerosol phase is described by a sectional method ap-
proximating the particulate size distribution, which provides a more detailed in-
sight than, for example, using a moment method. For conventional (dense) PDF
models, the inclusion of the particulate size distribution within the transported
scalar vector was previously associated with an enormously increased compu-
tational effort. This can now be accomplished much more efficiently, since a
sparse-Lagrangian MMC method is used for the calculation of the reactive scalar
fields and the particulate size distribution. In contrast to conventional stochas-
tic methods, which usually require a considerable number of stochastic particles
per LES cell, the MMC method allows for a significant reduction of the number
of stochastic particles that are required in the simulations, making the calcula-
tion of aerosol dynamics affordable as an additional computational burden. The
sparse-Lagrangian particle method is not only much more efficient than other so-
lution methods, but also provides all the desired properties of a mixing model,
such as linearity and locality in composition space, among others, as discussed in
Sec. 3.2.3.1.

As shown in Chap. 5, compared to conventional methods and with respect to
aerosol processes, the PBE-MMC-LES approach can achieve an equivalent result
quality with significantly less computational effort. In terms of aerosol processes,
this work quantifies the errors that arise when sub-grid contributions of scalar
fluctuations are not resolved, and thus shows that these must not be neglected.
A validated flow solver has been extended with an additional source code tem-

155



6.2. OUTLOOK 156

plate layer to allow for an efficient computation of aerosol dynamics in turbu-
lent, reactive environments, see Sec. 4.3. The full PBE-MMC-LES model was val-
idated by comparison with experimental and numerical data, and it was shown
that the numerical scheme can provide excellent results through the application
of a newly developed Lagrangian mixing time scale model. It was shown that
the use of state-of-the-art models for particulate flame synthesis (cf. Sec. 3.3.3)
can generally capture trends under varying boundary conditions. However, this
work highlights that there are still some uncertainties regarding the precursor
chemistry, that the rigorous assumptions concerning the particulate morphology
should be relaxed, and underlines the necessity of an appropriate model for dif-
ferential diffusion.

6.2 Outlook

Based on the discussion of the results in Chap. 5, several pathways for future
development emerge, which will be outlined in the following.

Enhanced simulation of the chemical reaction system

Based on the results presented in Chap. 5, it was shown that the combined PBE-
MMC-LES model can generally reproduce the trends observed in the ELS sig-
nal; however, the strong non-linearities cannot be reproduced by the numeri-
cal model. The related discussion identified, besides differential diffusion and
the assumed particle morphology, the chemical reaction mechanism as a poten-
tial process that could introduce a non-linearity for the particulate inception rate
and thus for the ELS signal. For this reason future work should study a more
detailed and validated chemical reaction mechanism for thermal silane decom-
position, as particulate formation has been shown to be highly dependent on
chemical kinetics. A promising contribution has recently been made by Chate-
lain et al. [246, 247], who have assembled a comprehensive review of suitable de-
composition mechanisms for silane chemistry. For an adequate calculation of
the precursor chemistry it is necessary to include a very detailed reaction mech-
anism that may contain up to thousands of chemical reactions. Since such large
reaction mechanisms represent a large computational effort even with the sparse-
Lagrangian particle method, a tabulated chemistry procedure could be beneficial
for this purpose. However, its application is severely limited by the extreme stor-
age and retrieval requirements of this approach. One alternative option would be
to reduce the chemical dimension [248] dependent on local conditions in conjunc-
tion with a dynamic adaptive chemistry (DAC) approach [249], which provides
more chemical detail in regions of interest and allows computational savings in
regions of less importance. First simulation results [250] for turbulent reactive
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flows using the DAC method in combination with the MMC method are promis-
ing, but require further validation work.

Application of a minimally-dissipative flow solver

As discussed in Chap. 5, the implemented density coupling model presented in
Sec. 4.2.1 leads to a strong stochastic influence due to the sparse particle distribu-
tion, such that strong purely numerically induced density fluctuations can occur
which negatively affect the turbulent flow field. Regarding the applied numerical
schemes of the finite volume method for LES, Hassanaly et al. [217] showed that
the applied standard solvers for variable density flows available in OpenFOAM
are not fully conservative with respect to momentum. Consequently, Hassanaly et
al. [217] developed a minimally-dissipative low-Mach number solver within the
OpenFOAM framework and confirmed its validity on generic test cases such as
the Taylor-Green vortex and a turbulent jet. For this reason, the implementa-
tion of the proposed minimally-dissipative solver for low-Mach numbers in the
current MMC framework would be extremely useful to provide a robust and
fully conservative numerical framework in which the influence of numerically
induced density fluctuations is minimised.

Provided that uncertainties in the numerical modelling of the underlying flow
field and chemistry are excluded or at least minimised by the previously men-
tioned approaches, the numerical methods used to represent the aerosol phase
still offer potential for improvement at various points, which are discussed in the
following:

Using an enhanced discretisation scheme for the particulate size distribution

Since the consideration of a resolved particulate size distribution is not feasible
in conventional PDF approaches due to limited computational resources, a mo-
ment method is commonly used to model the aerosol dynamics. The application
of a sparse-Lagrangian particle method allows the scalars that are required to ap-
proximate the particulate size distribution to be added to the transported scalar
vector, resulting in much higher accuracy with respect to the representation of
aerosol dynamics. In this work, in a first step, a one-dimensional discretisa-
tion in particulate volume space was implemented. When considering the size
growth of particulates of fractal morphology, this type of discretisation assumes
that the fractal dimension does not change during the surface growth process.
Here, growth is understood as integral growth, where the volume changes but
the particulate morphology itself is preserved. As discussed in Chap. 5, this as-
sumption is of course quite severe and could be one of the reasons why the strong
non-linearity of the ELS signals observed in the experiments does not appear in
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the simulations. The assumption of a fixed fractal dimension could be overcome
by a two-dimensional discretisation - one dimension in particulate volume space
and another one in particulate surface space. But this would add another dimen-
sion to the discretisation scheme of the PSD and even with a sparse-Lagrangian
particle method the computational burden would significantly increase. Con-
sequently, Jeong et al. [182] proposed to use two one-dimensional discretisations
instead of a two-dimensional discretisation to describe the particulates morphol-
ogy. There it was shown that the computational saving are substantial, although
comparable numerical accuracy can be achieved, such that it is suggested to fol-
low a similar approach here.

Differential diffusion

As discussed in Sec. 3.3.4 the effect of differential diffusion is an important as-
pect to consider, especially with the occurrence of larger particulates. In Chap. 5
it was shown that the results differ significantly if a simplistic differential diffu-
sion model is applied. Here, an ad hoc approach was pursued, which has no
rigorous derivation and was only intended to unveil that this influence should
not be neglected. For this reason, more attention should be paid to the appropri-
ate modelling of differential diffusion, as the large discrepancies between exper-
imental data and numerical results found in this work as well as in the literature
[41, 42, 43] may be due to the negligence of differential diffusion effects.

There are only few approaches available to incorporate differential diffusion
into a transported stochastic PDF methodology. McDermott & Pope [251] pro-
posed a differential diffusion model based on additional terms within the mixing
operator and applied their method to model the Sandia DME flame series [252]
showing good results. The method requires smooth Eulerian fields to calculate
the additional molecular transport terms. As discussed in Cleary & Klimenko
[96], the reconstruction of Eulerian fields in the sparse MMC is subject to a strong
stochastic error due to the sparse nature of the approach. Consequently, the con-
servative formulation of the mixing process would no longer be preserved if the
proposed mixing model is applied.

Dialameh & Klimenko [253] developed a differential diffusion model explic-
itly for MMC, but only for a single species with a higher diffusivity, and the model
implementation for species or transported scalars with a lower diffusivity is un-
clear to date. This issue should be addressed during further model development
studies.

Yang et al. [254] proposed a comparatively simple differential diffusion model
based on a stochastic mass-based implementation and validation was done on a
forced homogeneous turbulence setup revealing excellent results for the decay
of species variances. A subsequent investigation of a diffusion flame by Zhou et
al. [255] yields remarkable results for unconditional intermediate species. Due
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to its relatively straightforward implementation, the model proposed by Yang et
al. [254] should also be investigated in the context of the MMC framework.

Dialameh & Klimenko [253] noted that an MMC-consistent treatment of dif-
ferential diffusion can be achieved with the shadow-position mixing model. Since
the shadow-position mixing model has recently been implemented into the MMC
framework [124, 125], future research should investigate the possibilities for a
subsequent incorporation of differential diffusion effects.

Application to more complex problems

In order to extend the range of application, the combined PBE-MMC-LES model
presented in this work should be validated against more complex physical prob-
lems. The next logical steps will be to apply the whole PBE-MMC-LES model
to more complex geometries or flow conditions, e.g. supersonic flows with high
pressure regions, and compare it against other efficient LES methodologies [256].
Another challenge would be to address problems that include spray evaporation
in addition to the actual particulate formation, such that the spray droplet size
distribution can be represented using the sectional method presented here.

Many recent scientific studies focus on the prediction of soot formation [18,
173, 51, 206]. Since soot – among others – is a strong driver of climate change [7]
as well as a hazard to human and animal health, a reduction of soot emission is
highly desirable. The models used in the present work with respect to particulate
formation have such a generality that they can be applied easily to other problems
with different precursors. As such, the prediction of soot formation would be
another very interesting application of the presented combined PBE-MMC-LES
model.

Final Remarks

In summary, it can be said that the combined PBE-MMC-LES framework repre-
sents a major step towards an efficient prediction method for particulate-laden
turbulent reactive flows and shows pathways for the development of a robust
comprehensive numerical scheme for the simulation of aerosol dynamics in tur-
bulent flows. It thereby contributes to a variety of industrial applications and
might help to ensure the product quality of industrially fabricated particulates or
to reduce unwanted by-products of combustion such as soot.
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Appendix A

Silane combustion reaction
mechanism

!------------------------------------------------------------------------------

! SIH4 MECHANISM

!

! The complete mechanism is based on following publications:

!

! M. D. Allendorf, C. F. Melius, P. Ho, and M. R. Zachariah. Theoretical

! Study of the Thermochemistry of Molecules in the Si-O-H System.

! J. Phys. Chem., 99:15285�15293, 1995.

!

! M. R. Zachariah and W. Tsang. Theoretical Calculation of

! Thermochemistry, Energetics, and Kinetics of High-Temperature SixHyOz,

! Reactions. J. Phys. Chem, 99:5308�5318, 1995.

!

! V. I. Babushok, W. Tsang, D. R. Burgess, and M. R. Zachariah. Numerical

! study of low- and high-temperature silane combustion. Twenty-Seventh

! Symposium (International) on Combustion, 27(2):2431�2439, 1998.

!

! S.-M. Suh, M. R. Zachariah, and S. L. Girshick. Modeling particle

! formation during low-pressure silane oxidation: Detailed chemical

! kinetics and aerosol dynamics. J. Vac. Sci. Technol. A,

! 19:940�951, 2001.

!

! S.-M. Suh, M. R. Zachariah, and S. L. Girshick. Numerical modeling of

! silicon oxide particle formation and transport in a one-dimensional

! lowpressure chemical vapor deposition reactor.

! J. Aerosol Sci., 33:943�959, 2002.

!

!------------------------------------------------------------------------------

ELEMENTS

AR SI H O N

END
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SPECIES

N2 O2 H2 H2O OH H O HO2 H2O2 AR

SIH4 SIH3 SIH2 SIH SI SI2 SI3 SI2H2 SI2H3 SI2H5 SI2H6 SI2H4

H3SI2H SI3H8 SI3H7 SIHO SIH2O SIH2O-2 SIH3O

HSIOOH HSIOOH-2 SIOOH SIH3OH H2SIOH HSIOH SIH3O2H SIH3O2 SI2H

SIO SIO-2 SIO-3 SIO-4 SIO-5 SIO-6 SIO-7 SIO-8 SIO-9 SIO-10

SIO-11 SIO-12 SIO2 SIO2-2 SIO2-3 SIO2-4 SIO2-5 SIO2-6 SIO2-7

SIO2-8 SIO2-9 SIO2-10 SIO2-11 SIO2-12 SIO2-S

END

REACTIONS

! --- H2/O2 system: combination, decomposition

H + H + M = H2 + M 1.00E18 -1.00 0.0

H2/0/ H2O/0/

H + H + H2 = 2H2 9.20E16 -0.60 0.0

H + H + H2O = H2 + H2O 6.00E19 -1.25 0.0

2O + M = O2 + M 1.20E17 -1.00 0.0

H2/2.40/ H2O/15.40/ AR/0.83/ SIH4/2.00/ SIO/1.75/ SIO2/3.60/ SI2H6/3.00/

H + OH + M = H2O + M 2.20E22 -2.00 0.0

H2/0.73/ H2O/3.65/ AR/0.83/ SIH4/2.00/ SI2H6/3.00/

O + H + M = OH + M 5.00E17 -1.00 0.0

H2/2.00/ H2O/6.00/ AR/0.7/ SIH4/2.00/ SIO/1.50/ SIO2/2.00/ SI2H6/3.00/

! --- H2/O2 system: atom transfers

O + OH = O2 + H 4.00E14 -0.50 0.0

O + H2 = OH + H 5.06E04 2.67 6290.0

2OH = O + H2O 1.50E09 1.14 99.0

H2 + O2 = 2OH 1.70E13 0.00 47780.0

OH + H2 = H2O + H 1.17E09 1.30 3626.0

! --- H2/O2 system: Peroxyl and peroxide

H + O2 + M = HO2 + M 3.61E17 -0.72 0.0

H2O/18.6/ H2/2.9/ N2/1.3/ SIO2/4.2/ SIO/2.1/

H + HO2 = H2 + O2 1.25E13 0.00 0.0

O + HO2 = O2 + OH 1.40E13 0.00 1073.0

OH + HO2 = O2 + H2O 2.90E13 0.00 -500.0

2OH (+M) = H2O2 (+M) 7.40E13 -0.37 0.0

LOW / 2.300E+18 -0.900 -1700.00/

TROE/ 0.7346 94.00 1756.00 5182.00 /

H2/2.00/ H2O/6.00/ AR/0.7/ SIH4/2.00/ SIO/1.50/ SIO2/2.00/ SI2H6/3.00/

H + HO2 = 2OH 1.69E14 0.00 874.0

HO2 + H = H2O + O 3.01E13 0.00 1721.0

2HO2 = O2 + H2O2 1.30E11 0.00 -1630.0

DUPLICATE

2HO2 = O2 + H2O2 4.20E14 0.00 12000.0

DUPLICATE

H2O2 + H = H2O + OH 1.00E13 0.00 3590.0

H2O2 + H = H2 + HO2 4.79E13 0.00 7950.0
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H2O2 + OH = H2O + HO2 1.00E13 0.00 1800.0

H2O2 + O = OH + HO2 9.63E06 2.00 4000.0

! --- SI - H - O reactions

! --- decomposition, recombination, association

SIH2 (+M) = SI + H2 + M 9.90E20 -1.76 38240.0

SIH4 (+M) = SIH2 + H2 (+M) 3.12E09 1.70 54710.0

LOW /5.21E30 -3.54 57550.0/

TROE /-0.4984 888.3 209.4 2760./

SIH4/4./ SI2H6/4./

SI2H6 (+M) = SIH4 + SIH2 (+M) 1.81E10 1.70 50203.0

LOW/5.09E53 -10.37 56034.0/

TROE/4.375E-5 438.5 2726. 438.2/

SIH4/4./ SI2H6/4./

SI2H6 (+ M) = H3SI2H + H2 (+M) 9.09E09 1.80 54197.0

LOW/1.94E44 -7.77 59023.0/

TROE/-0.1224 793.3 2400. 11.39/

SIH4/4./ SI2H6/4./

H3SI2H (+M) = SI2H4 (+M) 2.54E13 -0.20 5381.0

LOW/1.1E33 -5.76 9152./

TROE/-0.4202 214.5 103. 136.3/

SIH4/4./ SI2H6/4./

SI2H4 = SIH2 + SIH2 1.00E16 0.00 59000.0

SI2H4 = SI2H2 + H2 3.00E16 0.00 34990.0

SI3H8 (+M) = SIH2 + SI2H6 (+M) 6.97E12 1.00 52677.0

LOW/1.73E69 -15.07 60491.0/

TROE/-3.47E-5 442. 2412. 128.3/

SIH4/4./ SI2H6/4./

SI3H8 (+M) = H3SI2H + SIH4 (+M) 3.73E12 1.00 50850.0

LOW/4.36E76 -17.26 59303.0/

TROE/0.4157 365.3 3102. 9.72/

SIH4/4./ SI2H6/4./

! --- H atom reactions

SIH4 + H = SIH3 + H2 1.50E13 0.00 2500.0

SIH2 + H = SIH + H2 1.39E13 0.00 2000.0

SIH2 + H = SIH3 3.81E13 0.00 2000.0

SI2H2 + H = SI2H3 8.63E14 0.00 2000.0

SIH2O + H = SIHO + H2 5.40E11 0.58 7230.0

SIH2O + H = H2SIOH 6.50E24 -3.60 8230.0

SIH3OH + H = H2SIOH + H2 1.74E08 1.77 1430.0

SIH3OH + H = SIH3O + H2 2.20E07 1.89 8880.0

SIH3O + H = SIH2O + H2 1.58E18 -1.37 1400.0

SIH3O + H = HSIOH + H2 1.63E18 -1.33 1360.0

SIH3O + H = SIH2 + H2O 9.56E13 -0.34 500.0

SIH3O + H = SIH3OH 1.23E12 0.52 160.0

HSIOOH + H = SIOOH + H2 9.86E07 1.83 1510.0

SIO2 + H = SIOOH 8.50E24 -4.00 5660.0

SIHO + H = SIO + H2 2.00E14 0.00 0.0
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SIOOH + H = SIO2 + H2 1.00E13 0.00 5000.0

H2SIOH + H = SIH2O + H2 3.31E20 -2.04 3540.0

H2SIOH + H = HSIOH + H2 6.16E20 -1.98 3600.0

H2SIOH + H = SIH2 + H2O 2.24E15 -0.65 4190.0

SI2H6 + H = H2 + SI2H5 6.98E13 0.00 2635.0

SIH3 + H = SIH2 + H2 1.50E13 0.00 2500.0

SIH3O2H + H = SIH3O2 + H2 4.80E13 0.00 7950.0

SIH3O2 + H = SIH3O + OH 1.00E13 0.00 0.0

SI2 + H = SIH + SI 5.15E13 0.00 5300.0

SI2H2 + H = SI2H + H2 1.50E14 0.00 0.0

SI2H + H = SI2 + H2 1.50E14 0.00 0.0

SI2H4 + H = SI2H5 1.00E13 0.00 0.0

SI3H8 + H = H2 + SI3H7 1.00E14 0.00 1000.0

! --- O atom reactions

SIH4 + O = SIH3 + OH 2.00E13 0.00 2762.0

SIH3 + O = SIH2O + H 1.30E14 0.00 2000.0

SIH + O = SIO + H 4.00E13 0.00 0.0

SI2H + O = SIO + SI 1.00E13 0.00 2000.0

SIO + O + M = SIO2 + M 2.50E15 0.00 4370.0

SIH2O + O = SIHO + OH 1.80E13 0.00 3080.0

SIHO + O = SIO + OH 1.00E14 0.00 0.0

SIH3OH + O = H2SIOH + OH 1.70E12 0.00 1730.0

SI2H6 + O = OH + SI2H5 1.70E13 0.00 2500.0

SI2H4 + O = SIH3 + SIHO 1.00E13 0.00 1500.0

SIH2 + O = SIO + H2 5.00E13 0.00 0.0

! --- OH radical reactions

SIO + OH = SIO2 + H 1.80E10 0.78 1220.0

SIO + OH = SIOOH 2.10E23 -3.60 1900.0

SIH2O + OH = SIHO + H2O 7.50E12 0.00 170.0

SIH3OH + OH = H2SIOH + H2O 4.00E12 0.00 1500.0

SIH4 + OH = SIH3 + H2O 8.70E12 0.00 95.0

SIH3 + OH = SIH2O + H2 5.00E12 0.00 0.0

SI + OH = SIO + H 2.00E14 0.00 0.0

SIHO + OH = SIO + H2O 1.00E14 0.00 0.0

OH + SIH2 = SIH2O + H 1.00E13 0.00 0.0

OH + SI2H6 = SI2H5 + H2O 5.00E12 0.00 0.0

OH + SI2H5 = SI2H4 + H2O 2.00E13 0.00 0.0

OH + SI2H = SIH2 + SIO 1.00E13 0.00 0.0

! --- HO2 radical reactions

SIH4 + HO2 = SIH3 + H2O2 1.00E13 0.00 14000.0

SIH2O + HO2 = HSIOOH + OH 1.00E11 0.00 7000.0

SIH2O + HO2 = SIHO + H2O2 1.00E12 0.00 12000.0

SIH3OH + HO2 = H2SIOH + H2O2 6.30E12 0.00 14000.0

SIH3O2 + HO2 = SIH3O2H + O2 1.00E12 0.00 0.0

HO2 + SIH3 = SIH3O + OH 1.00E13 0.00 0.0

HO2 + SIH2 = SIH2O + OH 1.00E13 0.00 0.0

SIH3O + HO2 = SIH2O + H2O2 1.00E12 0.00 0.0
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! --- SIH3 radical reactions

SIH4 + SIH3 = SI2H5 + H2 1.77E12 0.00 4400.0

SIH3 + SIH3 = SIH2 + SIH4 1.80E13 0.00 0.0

SIH3 + SIH3 = SI2H6 4.75E13 0.00 0.0

SIH3 + SIH2 = SI2H5 6.58E12 0.00 2000.0

SI2H5 + SIH3 = SI3H8 3.31E13 0.00 0.0

SIH3OH + SIH3 = H2SIOH + SIH4 1.80E11 0.00 7400.0

SIH3 + O2 = HSIOOH + H 0.80E12 0.00 -760.0

SIH3 + O2 = SIO + H2O + H 0.40E12 0.00 -760.0

SIH3 + O2 = SIH2O + OH 0.60E12 0.00 -760.0

SIH3 + O2 = SIOOH + H + H 0.20E12 0.00 -760.0

SIH3 + O2 + M = SIH3O2 + M 1.00E14 0.00 0.0

SIH3 + SI2H4 = SI3H7 1.00E13 0.00 0.0

SIH3 + SI2H6 = SIH4 + SI2H5 1.00E13 0.00 5000.0

SIH3 + SIHO = SIH4 + SIO 1.00E13 0.00 0.0

SIH3 + SIH2O = SIH4 + SIHO 4.00E12 0.00 4000.0

! --- SIH2 radical reactions

SIH2 + H2O = SIH3OH 2.80E31 -6.37 16140.0

SIH2 + O2 = SIHO + OH 1.00E14 0.00 3700.0

SIH2 + H2O = SIH2O + H2 3.84E10 -0.61 9720.0

SIH2 + H2O = HSIOH + H2 2.15E10 0.73 9820.0

SIH2 + SI = SI2H2 7.24E12 0.00 2000.0

SIH2 + SI = SI2H + H 1.50E14 0.00 0.0

SIH2 + SI = SI2 + H2 1.50E14 0.00 0.0

SIH2 + SIH = SI2H3 1.26E13 0.00 2000.0

SIH2 + SIH2 = SI2H2 + H2 6.50E14 0.00 0.0

H3SI2H + H2 = SIH2 + SIH4 9.41E13 0.00 4092.3

H3SI2H + SIH4 = SIH2 + SI2H6 1.73E14 0.40 8898.7

SI2 + SIH2 = SI3 + H2 3.55E11 0.00 2000.0

SI3 + SIH2 = SI2 + SI2H2 1.43E11 0.00 16200.0

SIH2 + SIH3O2 = SIH2O + SIH3O 1.00E13 0.00 0.0

! --- SIH radical reactions

SIH3 (+M) = SIH + H2 (+M) 4.48E14 -0.55 44690.0

LOW /1.98E26 -3.05 44690./

SIH4 + SIH = SI2H3 + H2 1.45E12 0.00 2000.0

SIH4 + SIH = SI2H5 1.43E13 0.00 2000.0

SIH4 + SIH = SIH3 + SIH2 1.38E12 0.00 11200.0

SIH + O2 = SIO + OH 1.02E14 0.00 0.0

SIH + H2O = SIH2O + H 3.00E12 0.00 3000.0

SIH + SIH2O = SIH2 + SIHO 1.00E13 0.00 8000.0

! --- SI atom reactions

SI3 + SI = SI2 + SI2 2.06E12 0.00 24100.0

SI + SIH4 = SI2H2 + H2 1.50E14 0.00 7290.0

SI + SI + M = SI2 + M 2.47E16 0.00 1180.0

SI + SI2 + M = SI3 + M 2.60E16 0.00 1200.0

SI + O2 = SIO + O 2.00E13 0.00 0.0
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SI + H2O = SIHO + H 5.00E12 0.00 7000.0

SI + SI2H6 = SIH2 + H3SI2H 1.30E15 0.00 12600.0

SI + H2 = SIH + H 4.00E14 0.00 35990.0

! --- SIH4 reactions

SIH4 + O2 = SIH3 + HO2 7.60E13 0.00 44000.0

SIH4 + O2 = SIH2O + H2O 7.60E13 0.00 44000.0

SIH4 = SIH3 + H 3.91E15 0.00 89356.0

! --- SIO reactions

SIO + M = SI + O + M 1.00E13 0.00 189000.0

SIO + O2 = SIO2 + O 5.00E12 0.00 30000.0

! --- SIO2 reactions

SIO2 + M = SI + O2 + M 1.00E16 0.00 182000.0

! --- SIHO reactions

SIHO + M = H + SIO + M 5.00E14 0.00 29000.0

SIHO + O2 = SIO + HO2 1.20E14 0.00 3975.0

SIH3O + SIHO = SIH3OH + SIO 1.00E12 0.00 0.0

SIHO + SIH3OH = SIH2O + H2SIOH 5.00E12 0.00 12000.0

! --- HSIOH reactions

HSIOH = SIO + H2 9.40E28 -3.80 38550.0

! --- H2SIOH reactions

H2SIOH + O2 = HSIOOH + OH 1.00E13 0.00 7000.0

H2SIOH = SIHO + H2 9.60E27 -3.40 59820.0

H2SIOH + SIH3 = SIH4 + SIH2O 2.00E12 0.00 0.0

H2SIOH + SIH2 = SIH2O + SIH3 1.00E12 0.00 0.0

H2SIOH + O = SIH2O + OH 1.00E13 0.00 0.0

H2SIOH + OH = SIH2O + H2O 1.00E13 0.00 0.0

H2SIOH + HO2 = SIH2O + H2O2 1.00E13 0.00 0.0

! --- SIH3O reactions

SIH2O + SIH3O = SIHO + SIH3OH 1.20E11 0.00 971.0

SIH4 + SIH3O = SIH3 + SIH3OH 2.00E11 0.00 5300.0

SIH3O + O2 = SIH2O + HO2 1.00E12 0.00 4500.0

SIH3OH + SIH3O = H2SIOH + SIH3OH 1.50E12 0.00 5300.0

SIH3O = H2SIOH 1.50E24 -2.60 15420.0

SIH3O + O = SIH2O + OH 5.00E12 0.00 0.0

SIH3O + OH = SIH2O + H2O 1.00E13 0.00 0.0

SIH3O + SIO = SIO2 + SIH3 1.00E13 0.00 17000.0

! --- SIH3O2 reactions

SIH3O2 = SIH2O + OH 8.60E14 0.00 40000.0

SIH4 + SIH3O2 = SIH3 + SIH3O2H 1.10E13 0.00 18500.0

SIH3O2 + SIH2O = SIH3O2H + SIHO 1.30E11 0.00 6800.0

SIH3OH + SIH3O2 = H2SIOH + SIH3O2H 6.30E12 0.00 14500.0

SIH3O2 + O = SIH3O + O2 1.00E13 0.00 0.0
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SIH3O2 + OH = SIH3OH + O2 1.00E13 0.00 0.0

SIH3O2 + SIH3 = SIH3O + SIH3O 1.00E13 0.00 0.0

! --- SIH3O2H reactions

SIH3O2H = SIH3O + OH 6.50E14 0.00 48700.0

SIH3O2H + H = SIH3O + H2O 1.00E12 0.00 0.0

SIH3O2H + OH = SIH3O2 + H2O 5.00E12 0.00 0.0

SIH3O2H + O = SIH3O + HO2 1.00E13 0.00 2000.0

SIH3O2H + SIH3 = SIH3OH + SIH3O 3.00E12 0.00 2000.0

SIH3O2H + SIH2 = SIH3O + H2SIOH 5.00E12 0.00 4000.0

! --- HSIOOH reactions

HSIOOH = SIOOH + H 5.00E14 0.00 90000.0

HSIOOH = SIO + H2O 2.64E35 -6.70 79158.0

HSIOOH = SIO2 + H2 1.00E10 0.00 54000.0

SIOOH + HO2 = HSIOOH + O2 1.00E13 0.00 0.0

HSIOOH + OH = SIOOH + H2O 3.00E12 0.00 2000.0

HSIOOH + O = SIOOH + OH 3.00E12 0.00 2000.0

HSIOOH + SIH3 = SIOOH + SIH4 3.00E12 0.00 9000.0

HSIOOH + SIH2 = SIOOH + SIH3 3.00E12 0.00 20000.0

! --- SIOOH reactions

SIOOH + O2 = SIO2 + HO2 1.00E13 0.00 14300.0

SIOOH + M = SIO + OH + M 1.00E16 0.00 61000.0

! --- SIH2O reactions

SIH2O = SIO + H2 1.00E12 0.00 60800.0

SIH2O + H2O = HSIOOH + H2 3.60E09 0.43 7690.0

SIH2O + M = SI + H2O + M 1.00E16 0.00 77500.0

SIH2O + M = SIHO + H + M 5.00E16 0.00 76600.0

SIH2O + O2 = SIHO + HO2 4.00E14 0.00 35500.0

! --- SIH3OH reactions

SIH3OH = SIH2O + H2 2.01E27 -4.30 68160.0

SIH3OH = HSIOH + H2 2.20E26 -4.20 66570.0

SIH3OH + O2 = H2SIOH + HO2 4.00E13 0.00 45000.0

! --- SI2 reactions

SI2 + H2 = SIH + SIH 1.54E13 0.00 40000.0

SI2 + H2 = SI2H2 1.54E13 0.00 2000.0

! --- H3SI2H reactions

H3SI2H (+M) = SI + SIH4 (+M) 1.42E13 0.54 57548.0

LOW/2.35E42 -7.42 60957./

TROE/0.5336 629.2 2190. 626.5/ SIH4/4./ SI2H6/4./

! --- SI2H3 reactions

SI2H5 = SI2H3 + H2 3.16E14 0.00 53000.0

! --- Si2H2 reactions
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SI2H2 + H2O = SIH2O + SIH2 1.00E10 0.00 10000.0

SI2H2 + H2O = SIO + SIH4 1.00E09 0.00 10000.0

! --- SIH2O-2 reactions

SIH2O-2 = SIH2O + SIH2O 3.60E25 -6.80 11230.0

! --- HSIOOH-2 reactions

HSIOOH-2 = HSIOOH + HSIOOH 1.70E25 -9.60 12300.0

! --- SI3 reactions

SI3 + H2 = SI + SI2H2 9.79E12 0.00 47200.0

! ------ add reaction from Suh's paper ---------------------

! --- SIO self clustering

SIO-2 = SIO + SIO 1.04E15 0.00 49580.0

SIO-3 = SIO-2 + SIO 3.78E15 0.00 53160.0

SIO-4 = SIO-3 + SIO 1.49E14 0.00 36670.0

SIO-5 = SIO-4 + SIO 2.73E14 0.00 51020.0

SIO-6 = SIO-5 + SIO 2.88E14 0.00 46920.0

SIO-7 = SIO-6 + SIO 2.88E14 0.00 46920.0

SIO-8 = SIO-7 + SIO 2.88E14 0.00 46900.0

SIO-9 = SIO-8 + SIO 2.88E14 0.00 46950.0

SIO-10 = SIO-9 + SIO 2.88E14 0.00 46920.0

! --- irreversible SIO clustering by (SIH2O)m

SIO + SIH2O => SIO-2 + H2 2.00E13 0.00 0.0

SIO + SIH2O-2 => SIO-3 + 2H2 2.00E13 0.00 0.0

SIO-2 + SIH2O => SIO-3 + H2 2.00E13 0.00 0.0

SIO-2 + SIH2O-2 => SIO-4 + 2H2 2.00E13 0.00 0.0

SIO-3 + SIH2O => SIO-4 + H2 3.00E13 0.00 0.0

SIO-3 + SIH2O-2 => SIO-5 + 2H2 3.00E13 0.00 0.0

SIO-4 + SIH2O => SIO-5 + H2 1.00E14 0.00 0.0

SIO-4 + SIH2O-2 => SIO-6 + 2H2 1.00E14 0.00 0.0

SIO-5 + SIH2O => SIO-6 + H2 1.00E14 0.00 0.0

SIO-5 + SIH2O-2 => SIO-7 + 2H2 1.00E14 0.00 0.0

SIO-6 + SIH2O => SIO-7 + H2 1.00E14 0.00 0.0

SIO-6 + SIH2O-2 => SIO-8 + 2H2 1.00E14 0.00 0.0

SIO-7 + SIH2O => SIO-8 + H2 1.00E14 0.00 0.0

SIO-7 + SIH2O-2 => SIO-9 + 2H2 1.00E14 0.00 0.0

SIO-8 + SIH2O => SIO-9 + H2 1.00E14 0.00 0.0

SIO-8 + SIH2O-2 => SIO-10 + 2H2 1.00E14 0.00 0.0

SIO-9 + SIH2O => SIO-10 + H2 1.00E14 0.00 0.0

SIH2O + SIH2O-2 => SIO-3 + 3H2 3.00E13 0.00 0.0

! --- SIO2 self-clustering

SIO2-2 = SIO2 + SIO2 1.91E16 0.00 85670.0

SIO2-3 = SIO2-2 + SIO2 4.97E17 0.00 95810.0
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SIO2-4 = SIO2-3 + SIO2 1.25E17 0.00 94550.0

SIO2-5 = SIO2-4 + SIO2 6.10E17 0.00 94780.0

SIO2-6 = SIO2-5 + SIO2 5.78E17 0.00 94570.0

SIO2-7 = SIO2-6 + SIO2 3.32E17 0.00 92050.0

SIO2-8 = SIO2-7 + SIO2 3.83E17 0.00 93530.0

SIO2-9 = SIO2-8 + SIO2 3.33E17 0.00 93530.0

SIO2-10 = SIO2-9 + SIO2 3.74E17 0.00 93530.0

! --- irreversible SIO2 clustering by (HSIOOH)m

SIO2 + HSIOOH => SIO2-2 + H2 2.00E13 0.00 0.0

SIO2 + HSIOOH-2 => SIO2-3 + 2H2 2.00E13 0.00 0.0

SIO2-2 + HSIOOH => SIO2-3 + H2 2.00E13 0.00 0.0

SIO2-2 + HSIOOH-2 => SIO2-4 + 2H2 2.00E13 0.00 0.0

SIO2-3 + HSIOOH => SIO2-4 + H2 3.00E13 0.00 0.0

SIO2-3 + HSIOOH-2 => SIO2-5 + 2H2 3.00E13 0.00 0.0

SIO2-4 + HSIOOH => SIO2-5 + H2 1.00E14 0.00 0.0

SIO2-4 + HSIOOH-2 => SIO2-6 + 2H2 1.00E14 0.00 0.0

SIO2-5 + HSIOOH => SIO2-6 + H2 1.00E14 0.00 0.0

SIO2-5 + HSIOOH-2 => SIO2-7 + 2H2 1.00E14 0.00 0.0

SIO2-6 + HSIOOH => SIO2-7 + H2 1.00E14 0.00 0.0

SIO2-6 + HSIOOH-2 => SIO2-8 + 2H2 1.00E14 0.00 0.0

SIO2-7 + HSIOOH => SIO2-8 + H2 1.00E14 0.00 0.0

SIO2-7 + HSIOOH-2 => SIO2-9 + 2H2 1.00E14 0.00 0.0

SIO2-8 + HSIOOH => SIO2-9 + H2 1.00E14 0.00 0.0

SIO2-8 + HSIOOH-2 => SIO2-10 + 2H2 1.00E14 0.00 0.0

SIO2-9 + HSIOOH => SIO2-10 + H2 1.00E14 0.00 0.0

HSIOOH + HSIOOH-2 => SIO2-3 + 3H2 3.00E13 0.00 0.0

! --- irreversible particle formation - Suh, Zachariah, Girshick

SIO-10 + SIO => SIO-11 1.60E13 0.00 0.5

SIO-10 + SIH2O => SIO-11 + H2 1.60E13 0.00 0.5

SIO-9 + SIH2O-2 => SIO-11 + 2H2 1.60E13 0.00 0.5

SIO-10 + SIH2O-2 => SIO-12 + 2H2 1.60E13 0.00 0.5

SIO2-10 + SIO2 => SIO2-11 1.60E13 0.00 0.5

SIO2-10 + HSIOOH => SIO2-11 + H2 1.60E13 0.00 0.5

SIO2-9 + HSIOOH-2 => SIO2-11 + 2H2 1.60E13 0.00 0.5

SIO2-10 + HSIOOH-2 => SIO2-12 + 2H2 1.60E13 0.00 0.5

END

THERMO ALL

200.000 1000.000 5000.000

N2 121286N 2 G 298.000 5000.00 1000.00 1

0.02926640E+02 0.14879768E-02-0.05684760E-05 0.10097038E-09-0.06753351E-13 2

-0.09227977E+04 0.05980528E+02 0.03298677E+02 0.14082404E-02-0.03963222E-04 3

0.05641515E-07-0.02444854E-10-0.10208999E+04 0.03950372E+02 4

AR 120186AR 1 G 298.000 5000.00 1000.00 1

0.02500000E+02 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 2

-0.07453750E+04 0.04366000E+02 0.02500000E+02 0.00000000E+00 0.00000000E+00 3



192

0.00000000E+00 0.00000000E+00-0.07453750E+04 0.04366000E+02 4

O L 1/90O 1 00 00 00G 200.000 3500.000 1000.000 1

2.56942078E+00-8.59741137E-05 4.19484589E-08-1.00177799E-11 1.22833691E-15 2

2.92175791E+04 4.78433864E+00 3.16826710E+00-3.27931884E-03 6.64306396E-06 3

-6.12806624E-09 2.11265971E-12 2.91222592E+04 2.05193346E+00 6.72540300E+03 4

O2 TPIS89O 2 00 00 00G 200.000 3500.000 1000.000 1

3.28253784E+00 1.48308754E-03-7.57966669E-07 2.09470555E-10-2.16717794E-14 2

-1.08845772E+03 5.45323129E+00 3.78245636E+00-2.99673416E-03 9.84730201E-06 3

-9.68129509E-09 3.24372837E-12-1.06394356E+03 3.65767573E+00 8.68010400E+03 4

H L 7/88H 1 00 00 00G 200.000 3500.000 1000.00 1

2.50000001E+00-2.30842973E-11 1.61561948E-14-4.73515235E-18 4.98197357E-22 2

2.54736599E+04-4.46682914E-01 2.50000000E+00 7.05332819E-13-1.99591964E-15 3

2.30081632E-18-9.27732332E-22 2.54736599E+04-4.46682853E-01 6.19742800E+03 4

H2 TPIS78H 2 00 00 00G 200.000 3500.000 1000.00 1

3.33727920E+00-4.94024731E-05 4.99456778E-07-1.79566394E-10 2.00255376E-14 2

-9.50158922E+02-3.20502331E+00 2.34433112E+00 7.98052075E-03-1.94781510E-05 3

2.01572094E-08-7.37611761E-12-9.17935173E+02 6.83010238E-01 8.46810200E+03 4

OH RUS 78O 1H 1 00 00G 200.000 3500.000 1000.000 1

3.09288767E+00 5.48429716E-04 1.26505228E-07-8.79461556E-11 1.17412376E-14 2

3.85865700E+03 4.47669610E+00 3.99201543E+00-2.40131752E-03 4.61793841E-06 3

-3.88113333E-09 1.36411470E-12 3.61508056E+03-1.03925458E-01 8.81310600E+03 4

H2O L 8/89H 2O 1 00 00G 200.000 3500.000 1000.000 1

3.03399249E+00 2.17691804E-03-1.64072518E-07-9.70419870E-11 1.68200992E-14 2

-3.00042971E+04 4.96677010E+00 4.19864056E+00-2.03643410E-03 6.52040211E-06 3

-5.48797062E-09 1.77197817E-12-3.02937267E+04-8.49032208E-01 9.90409200E+03 4

HO2 L 5/89H 1O 2 00 00G 200.000 3500.000 1000.000 1

4.01721090E+00 2.23982013E-03-6.33658150E-07 1.14246370E-10-1.07908535E-14 2

1.11856713E+02 3.78510215E+00 4.30179801E+00-4.74912051E-03 2.11582891E-05 3

-2.42763894E-08 9.29225124E-12 2.94808040E+02 3.71666245E+00 1.00021620E+04 4

H2O2 L 7/88H 2O 2 00 00G 200.000 3500.000 1000.000 1

4.16500285E+00 4.90831694E-03-1.90139225E-06 3.71185986E-10-2.87908305E-14 2

-1.78617877E+04 2.91615662E+00 4.27611269E+00-5.42822417E-04 1.67335701E-05 3

-2.15770813E-08 8.62454363E-12-1.77025821E+04 3.43505074E+00 1.11588350E+04 4

SIH 121986SI 1H 1 G 298.000 2000.00 1000.00 1

3.11043000E+00 1.09494606E-03 2.89862872E-08-2.74510414E-10 7.05179865E-14 2

4.51689766E+04 4.19348717E+00 3.83600950E+00-2.70265667E-03 6.84906991E-06 3

-5.42418421E-09 1.47213123E-12 4.50759297E+04 9.35077846E-01 4

SIH3 42489SI 1H 3 G 298.000 3000.00 1000.00 1

0.05015906E+02 0.03732750E-01-0.03609053E-05-0.03729193E-08 0.08468491E-12 2

0.02190233E+06-0.04291368E+02 0.02946733E+02 0.06466763E-01 0.05991653E-05 3

-0.02218413E-07 0.03052669E-11 0.02270173E+06 0.07347948E+02 4

SIH2 42489SI 1H 2 G 298.000 3000.00 1000.00 1

0.04142390E+02 0.02150191E-01-0.02190730E-05-0.02073725E-08 0.04741018E-12 2

0.03110483E+06 0.02930745E+01 0.03475092E+02 0.02139338E-01 0.07672305E-05 3

0.05217668E-08-0.09898824E-11 0.03147397E+06 0.04436585E+02 4

SIH4 121386SI 1H 4 G 298.000 4000.00 1000.00 1

6.89387369E+00 4.03050054E-03-4.18331410E-07-2.29139471E-10 4.38476600E-14 2

1.10703735E+03-1.74911671E+01 2.47516680E+00 9.00372118E-03 2.18539435E-06 3

-2.68142308E-09-6.62108064E-13 2.92548804E+03 7.75101471E+00 4

SI2H3 90589SI 2H 3 G 298.000 2000.00 1000.00 1
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0.07257627E+02 0.05123859E-01-0.07633465E-05-0.06662471E-08 0.02053052E-11 2

0.05062055E+06-0.10314127E+02 0.03335404E+02 0.02155614E+00-0.02933937E-03 3

0.02287784E-06-0.07272827E-10 0.05146157E+06 0.08656853E+02 4

SI 32989SI 1 G 298.000 4000.00 1000.00 1

0.02775845E+02-0.06213257E-02 0.04843696E-05-0.12756146E-09 0.11344818E-13 2

0.05339790E+06 0.04543298E+02 0.03113515E+02-0.02330991E-01 0.03518530E-04 3

-0.02417573E-07 0.06391902E-11 0.05335061E+06 0.03009718E+02 4

SI2H6 90589SI 2H 6 G 298.000 2000.00 1000.00 1

0.08882090E+02 0.11513955E-01-0.12162159E-05-0.01905085E-07 0.05542379E-11 2

0.05967241E+05-0.02265611E+03 0.05301921E+01 0.04184055E+00-0.04685249E-03 3

0.03179525E-06-0.09484526E-10 0.07950597E+05 0.01880453E+03 4

SI2H5 90589SI 2H 5 G 298.000 2000.00 1000.00 1

0.08451010E+02 0.09286371E-01-0.10911831E-05-0.14423673E-08 0.04250824E-11 2

0.02472718E+06-0.01710331E+03 0.15788481E+01 0.03549382E+00-0.04267511E-03 3

0.03059177E-06-0.09360425E-10 0.02630549E+06 0.16720734E+02 4

SI2H4 S 4/89SI 2H 400 000 0G 298.000 5000.000 1000.00 1

0.74178000E+01 0.75823000E-02-0.36212000E-06-0.16579000E-08 0.46739000E-12 2

0.29068000E+05-0.11186000E+02 0.48078000E+01 0.14031000E-01-0.20260000E-05 3

-0.72374000E-08 0.38717000E-11 0.29722000E+05 0.22343000E+01 4

H2SI2H2 S 4/89SI 2H 400 000 0G 298.000 5000.000 1000.00 1

0.74178000E+01 0.75823000E-02-0.36212000E-06-0.16579000E-08 0.46739000E-12 2

0.29068000E+05-0.11186000E+02 0.48078000E+01 0.14031000E-01-0.20260000E-05 3

-0.72374000E-08 0.38717000E-11 0.29722000E+05 0.22343000E+01 4

H3SI2H S 4/89SI 2H 400 000 0G 300.00 5000.000 1000.00 1

0.72487000E+01 0.72414000E-02-0.37157000E-06-0.15919000E-08 0.45055000E-12 2

0.34868000E+05-0.90435000E+01 0.45964000E+01 0.12892000E-01-0.13292000E-05 3

-0.60219000E-08 0.28389000E-11 0.35644000E+05 0.49847000E+01 4

SI2H2 90589SI 2H 2 G 298.000 2000.00 1000.00 1

0.05778180E+02 0.04070596E-01-0.04259125E-05-0.07920228E-08 0.02379752E-11 2

0.03980520E+06-0.05392375E+02 0.16247229E+01 0.14871029E-01-0.08707160E-04 3

-0.01699554E-09 0.10972211E-11 0.04095325E+06 0.16165730E+02 4

SI2 90589SI 2 G 298.000 2000.00 1000.00 1

0.04232196E+02 0.04315355E-02-0.02964833E-05 0.09823294E-09-0.12962688E-13 2

0.06964651E+06 0.03308527E+02 0.02993750E+02 0.06053689E-01-0.10158575E-04 3

0.07909737E-07-0.02346083E-10 0.06987498E+06 0.09151741E+02 4

SI3 32989SI 3 G 298.000 4000.00 1000.00 1

0.07021584E+02 0.06981538E-02-0.04818729E-05 0.01720754E-08-0.01927024E-12 2

0.07429956E+06-0.08179232E+02 0.05312161E+02 0.05920180E-01-0.05075224E-04 3

0.05303866E-08 0.07031630E-11 0.07469501E+06 0.04036452E+01 4

SI3H7 BURG89SI 3H 700 000 0G 298.000 5000.000 1406.000 1

0.16485463E+02 0.94436647E-02-0.31844158E-05 0.48954221E-09-0.28203292E-13 2

0.26045373E+05-0.55740306E+02 0.29371333E+01 0.51678716E-01-0.53929868E-04 3

0.27769071E-07-0.54890393E-11 0.29712547E+05 0.13301270E+02 4

SI3H8 90589SI 3H 8 G 298.000 2000.00 1000.00 1

0.13422770E+02 0.15636323E-01-0.01936565E-04-0.02388329E-07 0.07120030E-11 2

0.09165887E+05-0.04163000E+03 0.06319791E+01 0.06412995E+00-0.07772444E-03 3

0.05486969E-06-0.16460971E-10 0.12092580E+05 0.02133318E+03 4

SIH2O 30796H 2O 1SI 1 0G 298.000 3000.000 1000.00 0 1

0.35850483E+01 0.83880819E-02-0.46823699E-05 0.12327730E-08-0.12511796E-12 2

-0.13326606E+05 0.59446840E+01 0.19649962E+01 0.13285051E-01-0.10601026E-04 3
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0.48593881E-08-0.11099934E-11-0.12891831E+05 0.14235314E+02 4

SIH2O-2 101295SI 2H 4O 2 G 298.000 3000.00 2000.00 1

1.39725850E+01 7.48814210E-03-2.92057510E-06 5.32497860E-10-3.73370670E-14 2

-8.52831380E+04-4.99955690E+01 0.20512376E+01 0.28732242E-01-0.23774851E-05 3

-0.19760165E-07 0.99057767E-11-0.80128711E+05 0.13885288E+02 4

SIHO 30796H 1O 1SI 1 0G 298.000 3000.000 1000.00 0 1

0.38576852E+01 0.43050702E-02-0.24851663E-05 0.67070901E-09-0.69361104E-13 2

0.20943329E+04 0.56646280E+01 0.31372316E+01 0.53986382E-02-0.18072458E-05 3

-0.10840215E-08 0.63433453E-12 0.23399725E+04 0.96178032E+01 4

SIH3O 30796H 3O 1SI 1 0G 298.000 3000.000 1000.00 0 1

0.38433801E+01 0.11981012E-01-0.66889297E-05 0.17607639E-08-0.17864722E-12 2

0.15200701E+03 0.47134713E+01 0.17619234E+00 0.25227447E-01-0.26169663E-04 3

0.15651673E-07-0.41680718E-11 0.10147120E+04 0.22906490E+02 4

SIH3OH 30796H 4O 1SI 1 0G 298.000 3000.000 1000.00 0 1

0.50803939E+01 0.12887857E-01-0.67236548E-05 0.16910696E-08-0.16625038E-12 2

-0.36176543E+05-0.18998603E+01 0.17576503E+00 0.32080858E-01-0.36587595E-04 3

0.23458462E-07-0.63580748E-11-0.35117251E+05 0.22011243E+02 4

H2SIOH 30796H 3O 1SI 1 0G 298.000 3000.000 1000.00 0 1

0.54165400E+01 0.85418628E-02-0.42990293E-05 0.10522622E-08-0.10133921E-12 2

-0.15236623E+05-0.96346896E+00 0.15634466E+01 0.24418261E-01-0.30066620E-04 3

0.20370623E-07-0.56754136E-11-0.14447307E+05 0.17614220E+02 4

HSIOOH 30796H 2O 2SI 1 0G 298.000 3000.000 1000.00 0 1

0.64008759E+01 0.73921012E-02-0.37166540E-05 0.91103419E-09-0.87961357E-13 2

-0.59123231E+05-0.68493506E+01 0.84650357E+00 0.30332170E-01-0.40649068E-04 3

0.28173146E-07-0.78033556E-11-0.58000538E+05 0.19886511E+02 4

HSIOOH-2 zach SI 2H 4O 4 0G 298.000 4000.000 1000.00 1

0.19514769E+02 .64274929E-02-0.20058889E-05 .28175472E-09-0.14160852E-13 2

-0.17650975E+06-0.74545852E+02 .19514769E+02 .64274929E-02-0.20058889E-05 3

0.28175472E-09-0.14160852E-13-0.17650975E+06-0.74545852E+02 4

SIOOH 30796H 1O 2SI 1 0G 298.000 3000.000 1000.00 0 1

0.64981916E+01 0.34222132E-02-0.15371997E-05 0.34510638E-09-0.31179579E-13 2

-0.39984706E+05-0.56480532E+01 0.24684717E+01 0.20083835E-01-0.27999655E-04 3

0.19404030E-07-0.52595504E-11-0.39184036E+05 0.13711989E+02 4

HSIOH 30796 H 2O 1SI 1 0G 298.000 3000.000 1000.00 0 1

0.48597322E+01 0.54931697E-02-0.26612995E-05 0.63436147E-09-0.59994357E-13 2

-0.12775548E+05-0.39218673E+00 0.11583361E+01 0.20649678E-01-0.26759036E-04 3

0.18165894E-07-0.49489026E-11-0.12024928E+05 0.17446894E+02 4

SIH3O2H SI 1H 4O 2 0G 298.000 5000.000 1434.000 1

1.47264815E+01 3.93537438E-03-1.43018295E-06 2.31215230E-10-1.37984022E-14 2

-3.67891192E+04-5.44899015E+01 7.48977124E+00 1.90370336E-02-1.20459856E-05 3

2.83994528E-09-8.04501066E-14-3.41811791E+04-1.51264812E+01 4

SIH3O2 SI 1H 3O 2 0G 298.000 5000.000 1336.000 1

8.53368584E+00 6.64665749E-03-2.36417403E-06 3.76778379E-10-2.22618909E-14 2

-1.58369978E+04-2.21892869E+01 4.73366694E+00 9.88277794E-03 1.32668928E-06 3

-4.32539392E-09 1.26521586E-12-1.39328821E+04 2.55947074E-01 4

SI2H ZAC89SI 2H 1 G 298.000 5000.00 1000.00 1

4.42768812E+00 2.21626856E-03-6.04895263E-07 9.88251703E-11-7.35117957E-15 2

5.79041484E+04-1.19944179E+00 3.05066776E+00 6.05167449E-03-4.95663426E-06 3

2.80415913E-09-8.19333208E-13 5.79001094E+04 5.95436096E+00 4

SIO J 9/67SI 1O 100 000 0G 298.000 5000.000 4000.00 1
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3.70917120E 00 9.06972840E-04-4.23304730E-07 9.03440730E-11-7.28025760E-15 2

-1.34940450E 04 3.18421880E 00 0.32528276E 01 0.41823126E-03 0.37806202E-05 3

-0.51024483E-08 0.19471317E-11-0.13090340E 05 0.66485803E 01 4

SIO-2 msw SI 2O 2 0 0G 298.000 4000.000 2000.00 1

9.76258470E+00-1.59353080E-04 2.31807220E-07-7.57209880E-11 7.77168600E-15 2

-5.33710790E+04-2.30217600E+01 0.92417820E+00 0.32980940E-01-0.51830190E-04 3

0.38738640E-07-0.11215970E-10-0.51126570E+05 0.20120830E+02 4

SIO-3 msw SI 3O 3 0 0G 298.000 4000.000 2000.00 1

1.56134860E+01-2.21169110E-04 3.45236710E-07-1.13962780E-10 1.17410590E-14 2

-9.50701140E+04-4.97466280E+01 .21152430E+01 .50626100E-01-0.80051180E-04 3

0.60249350E-07-0.17563970E-10-0.91662460E+05 .16063000E+02 4

SIO-4 msw SI 4O 4 0 0G 298.000 4000.000 1000.00 1

2.11570120E+01 2.07394160E-04 1.79942680E-07-8.45013870E-11 9.74073920E-15 2

-1.28311320E+05-7.05609390E+01 .54219200E+01 .58099300E-01-0.89181270E-04 3

0.65612680E-07-0.18785080E-10-0.12426260E+06 .59483540E+01 4

SIO-5 zach SI 5O 5 0 0G 298.000 4000.000 1000.00 1

0.26191211E+02 .13338465E-02-0.32827956E-06 .17492749E-10 .21543416E-14 2

-0.16850283E+06-0.88299259E+02 .26191211E+02 .13338465E-02-0.32827956E-06 3

0.17492749E-10 .21543416E-14-0.16850283E+06-0.88299259E+02 4

SIO-6 zach SI 6O 6 0 0G 298.000 4000.000 1000.00 1

0.31851958E+02 .15028756E-02-0.30125048E-06-0.10515966E-10 .61345351E-14 2

-0.20694060E+06-0.10970323E+03 .31851958E+02 .15028756E-02-0.30125048E-06 3

-0.10515966E-10 .61345351E-14-0.20694060E+06-0.10970323E+03 4

SIO-7 zach SI 7O 7 0 0G 298.000 4000.000 1000.00 1

0.37512704E+02 .16719046E-02-0.27422140E-06-0.38524681E-10 .10114729E-13 2

-0.24537973E+06-0.13110721E+03 .37512704E+02 .16719046E-02-0.27422140E-06 3

-0.38524681E-10 .10114729E-13-0.24537973E+06-0.13110721E+03 4

SIO-8 zach SI 8O 8 0 0G 298.000 4000.000 1000.00 1

0.43173451E+02 .18409336E-02-0.24719233E-06-0.66533396E-10 .14094922E-13 2

-0.28380506E+06-0.15251118E+03 .43173451E+02 .18409336E-02-0.24719233E-06 3

-0.66533396E-10 .14094922E-13-0.28380506E+06-0.15251118E+03 4

SIO-9 zach SI 9O 9 0 0G 298.000 4000.000 1000.00 1

0.48834197E+02 .20099626E-02-0.22016325E-06-0.94542112E-10 .18075115E-13 2

-0.32226095E+06-0.17391515E+03 .48834197E+02 .20099626E-02-0.22016325E-06 3

-0.94542112E-10 .18075115E-13-0.32226095E+06-0.17391515E+03 4

SIO-10 zach SI 10O 10 0 0G 298.000 4000.000 1000.00 1

0.54494944E+02 .21789916E-02-0.19313418E-06-0.12255083E-09 .22055309E-13 2

-0.36070173E+06-0.19531913E+03 .48834197E+02 .20099626E-02-0.22016325E-06 3

-0.12255083E-09 .22055309E-13-0.36070173E+06-0.19531913E+03 4

SIO2 J 9/67SI 1O 200 000 0G 298.000 5000.000 4000.00 1

6.20905340E 00 1.36310434E-03-5.94220510E-07 1.19915530E-10-9.22823080E-15 2

-3.55487970E 04-8.42874470E 00 0.32628058E 01 0.85016584E-02-0.57388144E-05 3

0.12896573E-10 0.97544976E-12-0.38035971E 05 0.66549123E 01 4

SIO2-S msw8/99SI 12O 24 0 0S 298.000 3000.000 1000.00 1

0.59601470E+01 .44202120E-02-0.26370670E-05 .74432140E-09-0.79310880E-13 2

-0.11133540E+06-0.30331350E+02-0.18425620E+02 .12796220E+00-0.24167100E-03 3

0.20738990E-06-0.66847150E-10-0.10735050E+06 .81904590E+02 4

SIO2-2 zach SI 2O 4 0 0G 298.000 4000.000 1000.00 1

0.14124110E+02 .15950164E-02-0.54220059E-06 .82032840E-10-0.44677341E-14 2

-0.11532942E+06-0.45435969E+02 .14124110E+02 .15950164E-02-0.54220059E-06 3
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0.82032840E-10-0.44677341E-14-0.11532942E+06-0.45435969E+02 4

SIO2-3 zach SI 3O 6 0 0G 298.000 4000.000 1000.00 1

0.22459020E+02 .19173620E-02-0.53221537E-06 .53174897E-10-0.44334868E-15 2

-0.20054665E+06-0.88541520E+02 .22459020E+02 .19173620E-02-0.53221537E-06 3

0.53174897E-10-0.44334868E-15-0.20054665E+06-0.88541520E+02 4

SIO2-4 zach SI 4O 8 0 0G 298.000 4000.000 1000.00 1

0.30789209E+02 .22504993E-02-0.52885450E-06 .25942087E-10 .34393352E-14 2

-0.28512765E+06-0.12932230E+03 .30789209E+02 .22504993E-02-0.52885450E-06 3

0.25942087E-10 .34393352E-14-0.28512765E+06-0.12932230E+03 4

SIO2-5 zach SI 5O 10 0 0G 298.000 4000.000 1000.00 1

0.39111755E+02 .25928812E-02-0.53027648E-06-0.13783655E-12 .72174148E-14 2

-0.36982254E+06-0.17095038E+03 .39111755E+02 .25928812E-02-0.53027648E-06 3

-0.13783655E-12 .72174148E-14-0.36982254E+06-0.17095038E+03 4

SIO2-6 zach SI 6O 12 0 0G 298.000 4000.000 1000.00 1

0.47385779E+02 .30157212E-02-0.57997804E-06-0.13830300E-10 .98447246E-14 2

-0.45438869E+06-0.21224988E+03 .47385779E+02 .30157212E-02-0.57997804E-06 3

-0.13830300E-10 .98447246E-14-0.45438869E+06-0.21224988E+03 4

SIO2-7 zach SI 7O 14 0 0G 298.000 4000.000 1000.00 1

0.37967736E+02 .33222336E-01-0.18762707E-04 .47009253E-08-0.43291249E-12 2

-0.52959089E+06-0.15320877E+03 .37967736E+02 .33222336E-01-0.18762707E-04 3

0.47009253E-08-0.43291249E-12-0.52959089E+06-0.15320877E+03 4

SIO2-8 zach SI 8O 16 0 0G 298.000 4000.000 1000.00 1

0.37534746E+02 .48331588E-01-0.27772963E-04 .70286348E-08-0.65123762E-12 2

-0.60965897E+06-0.14514804E+03 .37534746E+02 .48331588E-01-0.27772963E-04 3

0.70286348E-08-0.65123762E-12-0.60965897E+06-0.14514804E+03 4

SIO2-9 zach SI 9O 18 0 0G 298.000 4000.000 1000.00 1

0.37101755E+02 .63440840E-01-0.36783218E-04 .93563443E-08-0.86956276E-12 2

-0.68972705E+06-0.13708732E+03 .37101755E+02 .63440840E-01-0.36783218E-04 3

0.93563443E-08-0.86956276E-12-0.68972705E+06-0.13708732E+03 4

SIO2-10 zach SI 10O 20 0 0G 298.000 4000.000 1000.00 1

0.36668764E+02 .78550092E-01-0.45793473E-04 .11684054E-07-0.10878879E-11 2

-0.76979513E+06-0.12902659E+03 .36668764E+02 .78550092E-01-0.45793473E-04 3

0.11684054E-07-0.10878879E-11-0.76979513E+06-0.12902659E+03 4

SIO-11 zach SI 11O 11 0 0G 298.000 4000.000 1000.00 1

0.54494944E+02 .21789916E-02-0.19313418E-06-0.12255083E-09 .22055309E-13 2

-0.36070173E+06-0.19531913E+03 .48834197E+02 .20099626E-02-0.22016325E-06 3

-0.12255083E-09 .22055309E-13-0.36070173E+06-0.19531913E+03 4

SIO-12 zach SI 12O 12 0 0G 298.000 4000.000 1000.00 1

0.54494944E+02 .21789916E-02-0.19313418E-06-0.12255083E-09 .22055309E-13 2

-0.36070173E+06-0.19531913E+03 .48834197E+02 .20099626E-02-0.22016325E-06 3

-0.12255083E-09 .22055309E-13-0.36070173E+06-0.19531913E+03 4

SIO2-11 zach SI 11O 22 0 0G 298.000 4000.000 1000.00 1

0.36668764E+02 .78550092E-01-0.45793473E-04 .11684054E-07-0.10878879E-11 2

-0.76979513E+06-0.12902659E+03 .36668764E+02 .78550092E-01-0.45793473E-04 3

0.11684054E-07-0.10878879E-11-0.76979513E+06-0.12902659E+03 4

SIO2-12 zach SI 12O 24 0 0G 298.000 4000.000 1000.00 1

0.36668764E+02 .78550092E-01-0.45793473E-04 .11684054E-07-0.10878879E-11 2

-0.76979513E+06-0.12902659E+03 .36668764E+02 .78550092E-01-0.45793473E-04 3

0.11684054E-07-0.10878879E-11-0.76979513E+06-0.12902659E+03 4

END



Appendix B

Data storage
Table A1: Case and code used to produce results of Neuber et al. [1]. The cor-
responding repository is ssh://git@git.itv.uni-stuttgart.de:itv-publications/2019-
Neuber-CNF.git

2019_Neuber_CF
Data on storage Cases SHA
.../JOURNAL/2019_Neuber_CNF/ all 6e1c9a63

Table A2: Case and code used to produce results of Neuber et al. [2].
The corresponding repository is ssh://git@git.itv.uni-stuttgart.de:itv-
publications/2017_Neuber_CES.git.

2017_Neuber_CES
Data on storage Cases SHA
.../JOURNAL/2017_Neuber_CES/ all 79c54334

Table A3: Case and code used to produce results of Neuber et al. [3].
The corresponding code repository is ssh://git@git.itv.uni-stuttgart.de:2222/itv-
publications/2019_Neuber_PCI.git.

2019_Neuber_PCI
Data on storage Cases SHA
.../JOURNAL/2019_Neuber_PCI/ all dc128fd4

Table A4: Case and code used to produce results of Neuber et al. [4].
The corresponding code repository is ssh://git@git.itv.uni-stuttgart.de:2222/itv-
publications/2020-Neuber-FTC.git

2020_Neuber_FTC
Data on storage Cases SHA
.../JOURNAL/2020_Neuber_FTC all 460f6222
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