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Life is like riding a bicycle. To keep your balance, you must
keep moving.

– Albert Einstein
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Nomenclature

Conventions

In addition to the following list of symbols, all symbols and abbreviations are explained
in detail in the course of the text when they are used for the first time. The used
tensor calculus notation is used following de Boer [35] and Holzapfel [65].

Scalar, vector, and tensor notation

quantity example description

scalar ρ, t, H small and capital characters with or without indices
vector b small characters upright, bold type with or without

indices
tensor FS capital characters upright, bold type with or without

indices

General sub-/superscripts, operators

symbol example description

(·) place holder for arbitrary quantities
ααα φααα index for macroscopic main phase/constituent
β φβ index for miscible component/solute
αβ φαβ dual index for affiliation of component β to main phase

ααα - solute φβ is solved in φααα

γ φγ index for miscible gas component
Gγ φGγ dual index for gas component φγ solved in gas mixture

φG



Nomenclature

symbol example description

(·)ααα Cααα kinematic quantity of constituent φααα

(·)β Dβ kinematic quantity of component φβ

(·)ααα Tααα non-kinematic quantity of constituent φααα

(·)β Tβ non-kinematic quantity of component φβ

(·)0 G0 initial value at t=0
(·)ααα

0ααα KS
0S initial value at t=0 with respect to reference configura-

tion of φααα

(·)m cαβ
m quantity in molar units

(·)h uh
S spatially discretized quantity for finite element imple-

mentation
(·)I XI

S discrete nodal value in finite element implementation
(·)i, (·)i+1 Newton iterations
(·)n, (·)n+1 Newmark iterations
d(·) differential operator
∂(·) partial derivative operator
δ(·) test function of primary unkowns
˙(·) ρ̇ total time derivative

(·)′
ααα (nS)′

S material time derivative with respect to motion of φααα

(·)′
β (cαβ

m )′
β material time derivative with respect to motion φβ

Gradααα(·) partial derivative of (·) with respect to reference position
Xααα

grad(·) partial derivative of (·) with respect to actual position x
(̂·) ρ̂ααα, ĉGγ

m production term

Symbols

Greek symbols

symbol unit description

α∇θ [W/(mK)] heat conduction coefficient of body φ
αS [1/K] thermal expansion coefficient of solid phase

x



Symbols

symbol unit description

ααα index for macroscopic main phase (S/L/G)
β general index for miscible solute
αβ general dual index for solute φβ solved in φααα

γ index for gaseous component (M,O,C,N)
Gγ dual index for gaseous component solved in φG

γ [1/K] coefficient of expansion
ε, εααα, εβ [J/kg] mass-specific internal energy of φ/φααα/φβ

ε̂ααα, ε̂β [J/(m3s)] volume-specific direct energy production for φααα/φβ

η, ηααα, ηβ [J/(kgK)] mass-specific entropy of φ/φααα/φβ

ηαβ [J/(m3K)] volume-specific entropy of φαβ

ηαααR [Ns/m2] true dynamic viscosity of mixture φααα

ζ̂ααα, ζ̂β [J/(m3Ks)] volume-specific direct entropy production of φααα/φβ

η̂, η̂ααα, η̂β [J/(m3Ks)] volume-specific entropy production of φ/φααα/φβ

θ, θααα, θβ [K] temperature of φ/φααα/φβ

κ [1/Pa] coefficient of compressibility
λ [N/m2] Lagrange multiplier
λS, µS [N/m2] 1st and 2nd Lamé constant
µ, µi [J/mol] overall molar chemical potential and of substance i
µβ [J/kg] mass-specific chemical potential of φβ

µβ
m [J/mol] molar-specific chemical potential of φβ

µαβ [J/m3] vol-specific chemical potential of φαβ

ξ, ξ, ξααα, ξααα,
ξβ,ξβ

supply of arbitrary field quantity of φ/φααα/φβ in vol-
ume

ρ [kg/m3] density of overall aggregate
ρβ, ραβ [kg/m3] partial/ true mass concentration of component φβ

ρααα, ραααR [kg/m3] partial/true density of constituent φααα

ρ̂SB [·/s] growth rate of bacteria
ρ̂GM

GM,ρ̂GM
GO ,ρ̂GM

θ [-] rate limiting functions of max. methane oxidation
rate

ρ̂ααα, ρ̂β, ρ̂αααR [kg/(m3s)] partial mass production term of φααα/φβ and true mass
supply

τ [-] tortuosity factor

xi



Nomenclature

symbol unit description

Υ,Υααα,Υβ [·/m3] scalar-valued, volume-specific arbitrary field quantity
of φ,φααα,φβ

Υ,Υααα,Υβ [·/m3] vector-/tensor-valued, volume-specific arbitrary field
quantity of φ,φααα,φβ

Υ̂,Υ̂ααα,Υ̂β [·/m3] scalar-valued, volume-specific production of arbitrary
field quantity of φ,φααα,φβ

Υ̂,Υ̂ααα,Υ̂β [·/m3] vector-/tensor-valued, volume-specific production of
arbitrary field quantity of φ/φααα/φβ

φ,φααα,φβ overall mixture body/constituent/component
φαβ component φβ solved in mixture φααα

ϕ,ϕααα,ϕβ scalar-valued, density efflux of φ/φααα/φβ of field quan-
tity

Φ,Φααα,Φβ vector-/tensor-valued, density efflux of φ/φααα/φβ of
field quantity

ϕϕϕη,ϕϕϕααα
η ,ϕϕϕβ

η [J/(m2Ks)] entropy efflux of φ/φααα/φβ

χ, χααα, χβ motion function of φ/φααα/φβ

ψααα, ψβ [J/kg] mass-specific Helmholtz free energy for φααα/φβ

ψαβ [J/m3] volume-specific Helmholtz free energy for φαβ

ΨS [J/m3] volume-specific strain energy Helmholtz function
of φS

Ψααα [J/m3] volume-specific Helmholtz free energy of φααα

ωαβ [-] mass fraction of component φβ solved in φααα

Ω, ∂Ω spatial domain and its surface
Ωe, ∂Ωe finite element domain and its surface

Latin symbols

symbol unit description

Ai general chemical component, e.g. H2, O2

Aααα [-] Almansi strain tensor of constituent φααα

b [m/s2] body force vector of φ

xii



Symbols

symbol unit description

B0ααα, ∂B0ααα geometric domain in referential configuration and its
surface

Bααα [-] left Cauchy-Green deformation tensor of φααα

c̄SB [-] amount of methanotrophic bacteria
cp, cV [J/(kg K)] specific heat capacity for isobaric/isochoric condition
cααα

V, cβ
V [J/(kg K)] isochoric specific heat capacity of φααα/φβ

cm [mol/m3] molar concentration of overall aggregate
cαβ

m [mol/m3] true molar concentration of component φαβ

ĉαβ
m [mol/(m3s)] true molar production of component φαβ

cααα
m, cαααR

m [mol/m3] partial/true molar concentration of constituent φααα

dααα, mdααα [m/s] mass/molar diffusion velocity of mixture φααα to φ
dβααα, mdβααα [m/s] mass/molar diffusion velocity of φαβ to solution φααα

Cααα [-] right Cauchy-Green deformation tensor of φααα

Dβι, mDβι [m2/s] mass/molar binary diffusion coefficient Fick’s law
Dαβ, mDαβ [m2/s] mass/molar mixture diffusion coefficient Blanc’s law
Dβν , mDβν [m2/s] multi-component mass/molar diffusion coefficient
D damping matrix
Dααα, Dβ [1/s] symmetric part of spatial velocity gradient of φααα/φβ

êααα, êβ [J/(m3s)] vol.-specific total energy supply of φααα/φβ

Eααα [-] Green-Lagrange strain tensor of constituent φααα

F [J] free Helmholtz energy
Fααα [-] material deformation gradient of constituent φααα

g vector collecting weak formulations
G [J] free enthalpy/Gibbs energy
h, hααα, hβ [J/kg] mass-specific enthalpy of φ/φααα/φβ

h [kg/(ms)] angular momentum of φ
ĥααα, ĥβ [N/m2] vol.-specific total angular momentum production for

φααα/φβ

H [J] total enthalpy
I [-] identity tensor
jβ
tot, jαβ

tot [kg/(m2s)] partial/true total mass flux of component φαβ

jβ
diff , jαβ

diff [kg/(m2s)] partial/true diffusive mass flux of component φαβ

jβ
adv, jαβ

adv [kg/(m2s)] partial/true advective mass flux of component φαβ

xiii



Nomenclature

symbol unit description

mjβ
tot, mjαβ

tot [mol/(m2s)] partial/true total molar flux of component φαβ

mjβ
diff , mjαβ

diff [mol/(m2s)] partial/true diffusive molar flux of component φαβ

mjβ
adv, mjαβ

adv [mol/(m2s)] partial/true advective molar flux of component φαβ

Jααα [-] Jacobi determinant of constituent φααα

kS [N/m2] bulk modulus of solid
kβββ

0 [m4/Ns] proportionality coefficient of filter velocity of φL/φG

kβββ
D [m4/Ns] Darcy coefficient for φL/φG

kβββ [m/s] permeability coefficient of φL/φG

KS [m2] intrinsic permeability of φS

k [N] external forces acting in the volume of φ
K [J] kinetic energy
KGM, KGO [-] half saturation constants methane and oxygen
K, K∗ tangential/effective stiffness matrix

Kααα,
R

Kααα [-] material/spatial Karni-Reiner strain tensor of φααα

l [kg/(m2s)] linear momentum of φ
Lααα, Lβ [1/s] spatial velocity gradient of φααα/φβ

m [kg] mass
m̂ααα, m̂β [N/m2] volume-specific direct angular momentum production

for φααα/φβ

M, Mααα, Mβ [kg] total mass/partial mass/ mass of component φβ

Mm [kg/mol] molar mass constant of overall aggregate
Mααα

m [kg/mol] mixture molar mass of constituent φααα

Mβ
m [kg/mol] molar mass of component φβ

ni number of particles of substance i
nααα [-] volume fraction of solid/liquid/gas phase
nF [-] volume fraction of fluid phase nL + nG

n [-] outward orientated surface normal vector
nβ, nαβ [kg/(m2s)] partial/true total mass flux of component φβ

nαααR [kg/(m2s)] true total mass flux of constituent φααα

mnβ, mnαβ [mol/(m2s)] partial/true total molar flux of component φβ

mnαααR [mol/(m2s)] true total molar flux of constituent φααα

p, pi [N/m2] general pressure/partial pressure of substance i
pαβ, pαααR [N/m2] partial pressure of φαβ/ true mixture pressure of φααα

xiv



Symbols

symbol unit description

p̂ααα, p̂β [N/m3] volume-specific direct momentum supply of φααα/φβ

p̂ααα
E, p̂β

E [N/m3] volume-specific extra direct momentum supply of
φααα/φβ

P, Pααα [N/m2] 1st Piola-Kirchhoff stress tensor of φ/φααα

q, qααα, qβ [J/(m2s)] heat influx vector of φ/φααα/φβ

Q [J] total heat
r, rααα, rβ [J/(kg s)] mass-specific external energy source (radiation) of

φ/φααα/φβ

R, Rβ [J/(kg K)] specific gas constant of mixture/component φβ

Rm [J/(molK)] molar/universal gas constant
Rααα [-] proper orthogonal rotation tensor of constituent φααα

sL, sG [-] saturation of liquid/gas phase
ŝααα, ŝβ [N/m3] volume-specific total momentum supply of φααα/φβ

(interaction forces)
S, Sααα [N/m2] 2nd Piola-Kirchhoff stress tensor of φ/φααα

t [s] time
t, tααα [N/m2] traction vector of body φ/ of constituent φααα

T [K] absolute temperature
T, Tααα, Tβ [N/m2] Cauchy stress tensor of φ/φααα/φβ

TS
E [N/m2] extra Cauchy stress tensor of solid matrix

u, u̇, ü vector of field unknowns/their velocity/acceleration
uS [m] solid displacement vector
U [J] total internal energy
Uααα [-] material right stretch tensor of constituent φααα

vi stoichiometric coefficient
Vmax [mol/(kgs)] maximum oxidation rate per unit soil
V [m3] volume
Vm [m3/mol] molar volume
V, Vααα [m3] total volume of φ/partial volume of constituent φααα

Vααα [-] spatial left stretch tensor of constituent φααα

wαααS, mwαααS [m/s] mass/molar seepage velocity
wβS [m/s] difference velocity
W [J] mechanical work

xv



Acronyms

symbol unit description

Wααα [1/s] skew-symmetric part of spatial velocity gradient of
constituent φααα

xi, xαβ
m [-] mole fraction of substance i/ of component φαβ

Xααα, x [m] position vector for reference/actual configuration
ẋ, mẋ [m/s] mean mass/molar barycentric velocity vector of body

φ

x′
ααα, mx′

ααα [m/s] mean mass/molar velocity vector of constituent φααα

x′
β [m/s] independent velocity vector of component φβ

x′′
ααα, x′′

β [m/s2] acceleration vector of φααα/φβ

Acronyms

ADM advection-diffusion model
AR5 Fifth Assessment Report

DFG German Research Foundation
DGM dusty-gas model

EPS extrapolymeric substance
eTPM extended Theory of Porous Me-
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Kurzfassung

Die vorliegende Arbeit wurde im Rahmen des von der Deutschen Forschungsgemein-
schaft (DFG) geförderten interdisziplinären Forschungsprojekts zur Modellierung
und Simulation der Funktionsweise der bakteriellen Methanoxidation in Abdeck-
schichten auf Siedlungsabfalldeponien erstellt. Durch die bakterielle Zersetzung des
organischen Anteils des deponierten Siedlungsabfalls werden über mehrere Dekaden
hinweg die klimaschädlichen Gase Methan (CH4) und Kohlendioxid (CO2) produziert,
und eine Behandlung dieser Emissionen ist auch nach Deponieschließung behördlich
vorgeschrieben.

Methan gehört zu den stärksten Treibern des Treibhauseffekts und wirkt auf einen
20-Jahres Zeitraum gesehen ca. 85-mal stärker als Kohlendioxid. Die passiv stattfin-
dende Umwandlung von Methan zu Kohlendioxid durch die natürlich vorkommende
bakterielle Methanoxidation in belüfteten Böden ist eine sowohl ökologische als auch
wirtschaftliche Möglichkeit, um die verbleibenden Emissionen in der Nachsorgephase
der Deponie zu behandeln. Durch Messungen müssen die verbleibenden Emissionen
qualitativ und quantitativ nachgewiesen werden. Eine numerische Simulation kann
diesen Nachweis unterstützen.

Um die Funktionsfähigkeit einer Methanoxidationsschicht erfassen und letztendlich
nachweisen zu können, wurden im Rahmen des Projektes einerseits experimentelle
Untersuchungen im Labor zur Messung der Gasflüsse unter verschiedenen Einfluss-
parametern als auch zur chemischen Analyse durchgeführt. Zum Anderen wurde
von der Autorin dieser Arbeit ein mathematisches Modell basierend auf der konti-
nuumsmechanischen Theorie poröser Medien (TPM) für numerische Simulation der
Methanoxidation in Böden erstellt. Dieses wurde anhand der kleinskaligen Experi-
mente aus dem Labor mit variierenden Anfangs- und Randbedingungen verifiziert und
validiert. Das daraus resultierende numerische Berechnungskonzept soll es ermögli-
chen, Gasflüsse durch bestehende Abdeckschichten unter den gegebenen Bedingungen
zu bilanzieren und weiterhin Abdeckschichten auf Deponien so zu planen, dass die
Funktionsfähigkeit der Methanoxidation auch unter ungünstigen äußeren Umweltein-
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flüssen wie sehr trockenen oder nassen Jahreszeiten und lebensfeindlichen Böden für
die methanoxidierenden Bakterien gewährleistet werden kann.

Abgeleitet aus dem angestrebten Projektziel sowie der Aktualität klimarelevanter
Themen wurde ein allgemeines theoretisches Konzept für die numerische Simulation
von mehrphasigen und mehrkomponentigen natürlichen Systemen im Kontext der
Umweltwissenschaften aufgestellt. Die jeweils unterschiedlichen makroskopischen
Phasen natürlicher Systeme - fest, flüssig und gasförmig - setzen sich in der Regel
aus mehreren Mischungskomponenten zusammen, die durch biologische und/oder
chemische Prozesse miteinander reagieren, und durch physikalische Transportprozesse
räumlich und zeitlich umverteilt werden können. Dazu wurde die klassische Theorie
poröser Medien um Mischungsbeschreibungen der makroskopischen Phasen erwei-
tert (eTPM). Der Schwerpunkt in der vorliegenden Arbeit liegt dabei auf reaktiven
kompressiblen Gasgemischen, welche als ideale Gase modelliert werden und eine Fest-
körpermatrix durchströmen. Die Festkörpermatrix stellt im Fall der Methanoxidation
einen Bodenkörper dar, so dass gegenseitige Wechselwirkungen nicht nur zwischen den
Gaskomponenten, sondern auch zwischen Boden und Gasgemisch auftreten können.
Weitere Anwendungen des theoretischen Modells wären z.B. numerische Simulationen
der auftauenden Permafrostböden oder der biologischen Abluftreinigung in Biofilter-
anlagen. Darüber hinaus ermöglicht das Mehrkomponentenkonzept die Beschreibung
von Produktion oder Reduktion einzelner Kozentrationen durch chemische Reaktionen,
angetrieben durch biologische Aktivitä. Auch die Stofftransportmechanismen der
Diffusion und Advektion lassen sich anhand der erweiterten Theorie poröser Medien
(eTPM) thermodynamisch konsistent modellieren. Mit Modifikationen kann die-
ses Berechnungskonzept auch auf inkompressible Festkörper-Flüssigkeit-Mischungen
angewandt werden.

Als theoretische Grundlage des Modells dient die fundierte Theorie poröser Medien,
eine kontinuumsmechanische Beschreibung für Mehrphasensysteme. Diese Beschrei-
bung hat sich als sehr gut geeignet erwiesen, um ein Modell für multiphysikalische
Probleme aus der Bodenmechanik und den Umweltwissenschaften zu erstellen. Die
ganzheitliche Modellbeschreibung in dieser Arbeit vereint zudem weitere Teilbereiche
der theoretischen Herleitungen. Zu diesen Teilbereichen gehören die Grundlagen
der Thermodynamik, die in Verbindung mit der Kontinuumsmechanik sowie den
Gleichungen für den Stoffaustausch in Fluidgemischen zu einer thermodynamisch
konsistenten Materialbeschreibung gesetzt werden. Die Materialtheorie und die ihr
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zugrundeliegenden Axiome für die Materialmodellierung bieten eine solide Grundlage
für die Aufstellung von konstitutiven Gleichungen, ohne dabei physikalische und ther-
modynamische Gesetze zu verletzen, und somit zu einer mathematischen Beschreibung
des phänomenologischen thermo-biochemo-mechanischen Verhaltens eines Festkörpers
und der gekoppelten dissipativen Mechanismen führt.

Die konsistenten Modell- und Materialgleichungen bilden das Gleichungssystem,
welches zur numerische Berechnung in die Finite-Elemente-Methode umgesetzt wird.
Dazu wird das System nichtlinearer, gekoppelter partieller Differentialgleichungen mit
der variationellen Galerkin-Methode in seine schwache Form transformiert, und das
resultierende Gleichungssystem mit der Newton-Raphson-Methode kombiniert mit
dem impliziten Zeitintegrationsschema des Newmark-β-Verfahrens gelöst.

Durch die Kombination verschiedener mathematischer und theoretischer Teilbereiche
wird ein umfassendes, stabiles rechnerisches Konzept für die Untersuchung und
Simulation umweltmechanischer Probleme aufgestellt und verifiziert, und durch die
Anwendung auf die bakterielle Methanoxidation in Böden validiert.
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Abstract

The present work was initiated and realized within the framework of the interdisci-
plinary research project on the modeling and simulation of the bacterial methane
oxidation in landfill cover layers, which was funded by the German Research Founda-
tion (DFG). Landfill sites produce methane (CH4) and carbon dioxide (CO2) in nearly
equal shares by the bacterial degradation of the organic fraction of the deposited
municipal solid waste over several decades. Therefore, an aftercare treatment of the
gas emissions still occurring after landfill closure is required by authorities.

Methane is one of the strongest drivers of the greenhouse effect and is approximately
85 times more potent than carbon dioxide over a 20-year period. Passive conversion
of methane to carbon dioxide by naturally occurring bacterial methane oxidation
in aerated soils is both an environmental and economic option to address residual
emissions in the post-closure phase of landfilling. Measurements must be used to
provide qualitative and quantitative evidence of the remaining emissions by authorities.
Numerical simulation can support this verification.

In order to monitor and prove the functionality of a methane oxidation layer in the
framework of the project, experimental investigations were carried out on the one
hand in the laboratory to measure the gas fluxes under various influencing parameters
as well as for chemical analysis. On the other hand, a mathematical model based
on the continuum mechanical Theory of Porous Media (TPM) was developed by the
author of this thesis for numerical simulation of methane oxidation in soils. This was
verified and validated using the small-scale experiments from the laboratory with
varying initial and boundary conditions. The resulting numerical calculation concept
makes it possible to balance gas fluxes through existing cover layers under the given
conditions and furthermore to design cover layers on landfills in such a way that the
functionality of methane oxidation can be guaranteed even under unfavorable external
environmental conditions such as very dry or wet seasons and hostile soils for the
methane-oxidizing bacteria.

Derived from the intended project goal as well as the topicality of climate-relevant



Abstract

issues, a general theoretical concept for the numerical simulation of multi-phase
and multi-component natural systems in the context of environmental sciences was
established. The respective different macroscopic phases of natural systems - solid,
liquid and gaseous - are usually composed of several mixture components, which
can react with each other due to biological and/or chemical processes, and can be
redistributed spatially and temporally by physical transport processes. For this
purpose, the classical Theory of Porous Media was extended to include mixture
descriptions of the macroscopic phases (eTPM). The focus in the present work is on
reactive compressible gas mixtures, which are modeled as ideal gases and pass through
a solid matrix. In the case of methane oxidation, the solid matrix represents a soil
body, so that mutual interactions can occur not only between the gas components,
but also between soil and gas mixture. Further applications of the theoretical model
would be, for example, numerical simulations of thawing permafrost soils or biological
exhaust air treatment in biofilter plants. In addition, the multi-component concept
allows the description of production or reduction of individual concentrations by
chemical reactions driven by biological activity. The mass transport mechanisms of
diffusion and advection can also be modeled in a thermodynamically consistent manner
using the extended Theory of Porous Media. With modifications, this computational
concept can also be applied to incompressible solid-liquid mixtures.

The overarching theoretical basis used for the model is the well-founded Theory of
Porous Media, a continuum-mechanical theory for multiphasic systems. This descrip-
tion has proven to be well suited for the establishment of a model for multi-physical
problems from soil mechanics and environmental sciences. However, the holistic model
description in this thesis combines further subsets of theoretical derivations. These
subsections include the fundamentals of thermodynamics, which is set in connec-
tion with continuum mechanics as well as the equations for mass transfer in fluid
mixtures in order to obtain a thermodynamically consistent material description.
The material theory and its underlying axioms for material modeling provide a solid
basis for setting up constitutive equations without violating physical and thermo-
dynamical laws, ending up in a mathematical description of the phenomenological
thermo-biochemo-mechanical behavior of a solid body and the coupled dissipative
mechanisms.

Together, the consistent model and material equations form the basis for implemen-
tation into the applied numerical calculation with the finite element method. For
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this purpose, the derived set of non-linear coupled partial differential equations is
transformed into their weak forms using the variational Galerkin method, and the
resulting equation system is solved using the Newton-Raphson method with an
implicit time integration scheme of the Newmark-β procedure.

The combination of different mathematical and theoretical disciplines leads to a
comprehensive, stable computational concept for investigations and simulations of
environmental mechanical problems, which is verified and validated by the application
to bacterial methane oxidation in soils.
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1. Introduction

Physical systems to which the laws of thermodynamics apply, and which can be
interpreted as deformable bodies, can be modeled and simulated with the help of the
continuum mechanical theory, which contains solid mechanics, fluid mechanics, as
well as the theory of gases. As a fundamental assumption, the microscopic material
structure is overlooked and the subject of investigation is supposed to be a continuum.
During the transfer of the material body to the mathematical space, the body is
homogenized by replacing the matter distributed on atoms by an idealized continuum,
in which at each point of the continuum body physical properties such as velocity,
density and temperature are given.

The Theory of Porous Media (TPM) provides a derivation to formulate a contin-
uum mechanical model of a porous medium consisting of immiscible macroscopic
constituents. The theory traces back to the school of Bowen [18, 19] and de Boer
and Ehlers [36], de Boer [33, 34], and Ehlers [45]. It is basically understood as
the Theory of Mixtures, which assumes a complete mixing of all substances in a
control space, see e.g. Truesdell and Toupin [105], Truesdell [103] and Bowen [21,
22], but additionally combined with the concept of volume fractions, which provides
micro-structural information of the medium under investigation. With the help of the
volume fractions, that are a measure of the local portion of the individual constituents
of the overall medium, further independent fields can be incorporated as local averages
of the corresponding quantities of the underlying micro-structure.

Moreover, the TPM approach, in combination with the material theory, offers a
thermodynamic consistent investigation of the mechanical behavior of a porous
medium, which in general is composed of the following constituents, also called phases:
a solid skeleton, which encloses pores filled with a fluid, whereas the fluid can either
be liquid or gaseous (saturated), or both (partially saturated). Furthermore, the
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fluid phase itself can be a chemical mixture consisting of different components. The
liquid phase for example might be a solution, which is made of substances dissolved
in a solvent, e.g. salt in water or nutrients transported in blood. Gas mixtures like
atmospheric air consist of various single gases and can constitute the gas phase. In
case of a macroscopic fluid phase, which itself is composed of miscible components,
the extended Theory of Porous Media (eTPM), cf. Ricken et al. [90],[88, 91] and
Ricken, Thom et al. [89] is utilized, which offers a more precise description of the
mutual interaction between the miscible solutes as well as the interplay of the solutes
and their solvents, all set in relation to the deformable solid body.

Phenomena and processes related to fluid mixtures, regardless of whether they are
liquid or gaseous, are mass transport processes like diffusion and advection, chemical
changes through production or reduction during chemical reactions leading to a
pressure and/or density increase or decrease, which in turn can again initiate a mass
transport process. Chemical reactions are always induced by the input of any kind
of energy, e.g. light, kinetic, electrical or thermal energy, but also can be driven by
biological activity.

Thus, in order not to violate physical or thermodynamical laws for the constitutive
material equations, the fundamentals of thermodynamics need to be considered, which
are e.g. given in Callen [24]. An approach used also as basis for the thermochemistry
of reacting mixtures of elastic materials is given by Bowen [20]. The computational
investigation of thermodynamic issues requires the definition of representative systems,
that are appropriate to solve the physical problem at hand. More specificly, system
boundaries need to be defined, which separate the system from its surrounding or an
adjacent system. The boundaries can be given by the surface of a solid body or for
open systems, like fluids, by an imagined fixed frame. Open boundaries allow material
and energy exchange and thus, define an artificial control space to look at, whereas a
closed system is impermeable to material flow, but still open for energy flux. However,
a closed boundary is movable and furthermore allows shrinking or expansion of the
system, whereas the control boundary of an open system is stationary. An isolated
system is closed for both, material and energy exchange. Special cases can also be
defined, e.g. thermally or mechanically isolated systems. In the case of a multi-phase
description as given in the Theory of Porous Media, the solid component serves as
the fixed but deformable frame for the flowing fluid. Moreover, the overall aggregate
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under investigation is interpreted as closed system, whereas the included phases are
applied as open system allowing mass exchange.

Therefrom, thermodynamic processes can be understood as a mutual influence of
systems and environment. The influence is ensued by the mechanical, thermal or
material-bound transfer of energy, which causes a change of state of the system, e.g.
in pressure and temperature. Mechanical energy transfer e.g. is characterized by a
force acting on the system boundary, so that energy in form of mechanical work passes
over the system boundary. Thermal energy is transferred, when the investigated
system and environment have different temperatures, so that energy in form of heat
is transferred across the boundary. Energy transfer bound to material flow can cross
via various types of energy the system boundary, e.g. kinetic energy due to its flow
velocity.

Physically accurate material models that can represent not only the purely mechanical
but also thermal and energetic material behavior or chemical reactions and mass
transport provide a comprehensive approach for the simulation of environmental
mechanical problems. These can be of various nature, but nowadays climate-related
topics and different aspects of climate models have high priority, to which computer-
aided simulations can make their contribution. Motivated by a still relevant topic, an
application of the model equations to a simulation of bacterial methane oxidation in
landfill cover layers was executed. Even after closure, landfill sites emit methane over
several decades, so that it is of social and economic interest to estimate the behavior of
the bacterial methane oxidation in aged landfill covers due to an adequate long-term
treatment of these gas emissions, see Schulte et al. [93]. The oxidation taking place in
the cap layer offers a naturally occuring passive treatment, since methane oxidizing
bacteria are ubiquitous in soils. However, the oxidation capacity is subject to several
influences such as the design of the topsoil cover like thickness, its soil parameters
like intrinsic permeability, moisture or pH value, and also the methane load by the
degradation of organic waste. Not only these intrinsic parameters have an influence,
but also varying atmospheric conditions like wind and changing barometric pressure
induce advective gas flow within the disposal sites. A comprehensive overview of
the microbial methane oxidation processes and technologies for the mitigation of
landfill gas emissions can e.g. be found in Scheutz et al. [92]. Moreover, a detailed
introduction including the state of the art regarding methane oxidation models from
the experimental and modeling perspective is given in Chapter 7.
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The model equations derived in the course of this work are solved using a finite
element analysis (FEA). The finite element (FE) method offers a numerical procedure
for the calculation of an approximative solution of a set of partial differential equation
(PDE)s, and is mainly used in the field of solid mechanics. There is a great wealth
of available literature dealing with the basics of finite element method (FEM), see
e.g. Zienkiewitz and Taylor [112] and Zienkiewitz and R. L. Taylor [111] and Bathe
[10] to name a few relevant works. However, customized research FE codes offer the
possibility to extend the set of PDEs describing e.g. a thermo-elastic solid material by
further balance equations yielding a monolithic coupled simulation of fluid structure
interaction (FSI). For this work, the academic research code finite element analysis
program (FEAP) developed by Taylor [98] at the University of California, Berkeley,
has been used.

To provide the equations required for model implementation, the fundamentals of
thermodynamics are first discussed in Chapter 2. This includes an introduction to
the thermodynamic state and variables of a material system, the thermodynamic
energy potentials and their differentials denoted by fundamental equations. Moreover,
a closer look is taken on the description of the chemical potential and the ideal
gas law. This chapter is followed by the presentation of the extended Theory of
Porous Media in Chapter 3. The eTPM section includes the general descriptions
for the immiscible main phases and the concept of volume fractions as well as the
miscible components and their definitions in mass and molar units. The kinematics
for a multi-phase and multi-component medium is presented by a comprehensive
continuum mechanical description including general derivations for mass and molar
fluxes. Moreover, the material independent balance equations based on the master
balance principle introduced e.g. by Holzapfel [65] are given for the overall continuum,
the main phases and the mixture components. Chapter 4 gives an overview of
fluid mass transport in porous media. Chapter 5 subsequently provides the specific
model equations for a solid - gas mixture continuum based on the previous chapters.
To close the model concept, this chapter also provides the constitutive material
theory, including the axioms to be considered for material modeling. This leads to
a thermodynamically consistent approach for the specific problem at hand. The
governing model equations need to be prepared for the implementation to the FE
research code. Thus, Chapter 6 presents the transformation of the equations to
their weak formulations by a standard Galerkin procedure, and furthermore the
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discretization for the FE implementation. Moreover, the implicit solution procedure
for the non-linear PDEs via a combined Newton-Raphson and Newmark-method
is presented.

Chapter 7 shows the application of the derived model concept to methane oxidation
in landfill cover layers, including the motivation to the topic and the state of the art
regarding methane oxidation models. The application also serves as verification and
validation of the derived model equations. For this purpose, experimental data, which
were provided in the course of the interdisciplinary project on the monitoring and
modeling of methane oxidation in landfill cover layers, funded by the German Research
Foundation (DFG), were additionally used. The detailed introduction to the aims
and procedures of the project is given in Section 7.3. Moreover, the documentation of
the model validation based on the lab-scale experiments performed by the project
partners follows in Sections 7.3.1 and 7.3.2.

More aspects of mass transport regarding advective processes were not able to be
validated by experiments from laboratory. For that, the general functionality of
the model and the verification of the mass transport processes of diffusion and
advection were investigated by different simulations in form of academic examples
and documented in Section 7.4. Closing the thesis, a summary and outlook on further
work is discussed in Chapter 8. Supplementary mathematical calculation rules as
well as derivations of various differential equations are given in appendices A and B.
Appendix C provides supplementary information on the discretization of the system
of equations as well as the linearization for the Newton-Raphson method, and
Appendix D provides further evaluations of the simulation examples of Chapter 7.
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2. Principles of thermodynamics

In the following the principles of thermodynamics are introduced for the overall body
as single phase material, where a 0-dimensional notation is used as is common in
classical thermodynamics. However, all principles are transferable to the multi-phase
description presented in Chapter 5, considering the preliminary assumptions for the
system boundaries given in Chapter 1. Additionally, the coupling of thermodynamics
to classical continuum mechanics is described in Section 2.3.1.

2.1. Thermodynamic state and its variables

The thermodynamic state of a system is characterized by its measurable, macroscopic
state variables, which are independent on the one hand of the shape of the system and
on the other hand independent of the path to reach this state. That is, they resume
their initial values when the initial state is recovered after going through a process
of change. The thermodynamic state is most easily described in a closed system for
the condition of equilibrium, which is reached, when all mechanical, thermal and/or
chemical processes come to a standstill and the corresponding differences in pressure,
temperature and density have spatially and temporally balanced each other.
For an open system the equivalent is described by the steady state, where the state
variables may differ spatially but are temporarily steady. Moreover, the steady state
is reached, when a temporarily constant influx of material and energy equals the
outflow rate of these.

In that context, different state variables can be classified: Intensive, extensive as well
as thermodynamic potentials, which belong to the extensive state variables, since
they are functions of other extensive variables.



2. Principles of thermodynamics

Intensive quantities are independent of the amount of substance and do not
change their value, when the system is e.g. halved. Examples are temperature T
and pressure p, but also specific quantities1 like density ρ or molar concentration
c. Extensive quantities however are proportional to the amount of substance,
so that they increase or decrease with the same factor when the system is scaled.
Examples are the volume V , the molar amount n, the total internal energy U and
entropy S. Extensive variables can be changed to intensive ones by referring them
to unit of mass, volume or molar amount. Following that, all specific quantities are
intensive variables. Thermodynamic potentials are scalar quantities which fully
represent the thermodynamic state of a system. Thus, the internal energy U is one,
and definitions for other potentials can be derived on the basis of U , what is briefly
shown in the next sections.

Finally, a distinction between thermal (pressure, temperature, density and volume)
and caloric (internal energy, enthalpy, entropy) state variables can be made, which is
characterized by the fact that the thermal variables can be measured and the caloric
variables have to be calculated from the thermal ones.

2.2. Thermodynamic potentials

By adding or removing energy in form of mechanical work W and/or heat Q, a
thermodynamic system is able to change its state. A multi-component system
additionally can change the energy state due to its alternating composition provoked
by chemical reactions. The internal energy U defines that amount of energy the
system contains for a given condition, which changes to gain from one state to another.
The differential change is given by the first law of thermodynamics for a closed
system with

dU = δQ+ δW +
∑

i

µidni . (2.1)

Therein, the chemical potential µi of component i in the system is introduced in
connection with the number of particles ni of substance i. The known relations (valid

1A physical quantity which is normalized to an extensive quantity like mass or volume.
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for slow, reversible processes) for heat and mechanical work given with

δQ = TdS and δW = −p dV . (2.2)

are invoked, so that the standard differential form of the internal energy (also denoted
as fundamental equation) is obtained with

dU = TdS − pdV +
∑

i

µidni . (2.3)

Besides the total internal energy of the system, further quantities defining energy are
introduced. The enthalpy H may be used for an open system to balance the energy
amount additionally carried by a mass flux, which yields an extra amount of work
over the system boundary by ’pushing’ the mass in front of it. It is defined as the
sum of internal energy and the product of pressure and volume with

H = U + pV. (2.4)

The state variable entropy S is furthermore introduced to derive other thermodynamic
potentials. The entropy is an energetic variable, that gives information about the
convertibility and reversibility of a thermodynamic process. Revealing the derivation
of Clausius [27] in the context of classical thermodynamics, it is given as the ratio of
the reversible transferred heat and absolute temperature

dS = δQ/T . (2.5)

Nevertheless, the term entropy always comes along with the second law of ther-
modynamics which illustrates, that in a closed system the entropy never decreases.
More specific, a closed system will enter, among all attainable states, that state as
equilibrium which has the highest entropy at the given internal energy, which is known
as maximum principle of entropy. Hence,

dS ≥ 0. (2.6)

This fits the colloquially known definition as measure of disorder, which means, that
particles in a system strive for the highest value of disorder, that is the state of highest
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possible mixing.

Considering the outlined energetic behavior, the definition for the free energy F ,
also known as Helmholtz free energy, is introduced to account for the fact, that
a system will always adjust to the state of minimum internal energy and maximum
disorder. Thus, the free energy is defined with

F = U − TS . (2.7)

Together with the previously presented energy formulations, the free enthalpy G,
also known as Gibbs energy, is introduced with

G = H − TS (2.8)

or by using (2.4)
G = U + pV − TS . (2.9)

By means of the Gibb’s energy, which is a quantity describing the chemical composition
of the system (more on this later), statements can be made about the behavior of the
system, such as the direction of spontaneous processes or as a criterion for equilibrium.
That is, a spontaneous process, which is about to achieve equilibrium, is connected
with an increasing total entropy of the system and its surrounding (see aforementioned
keyword measure of disorder). Hence, a closed system at constant temperature and
constant pressure strives to that state as equilibrium, at which the free enthalpy has
the lowest possible value. If a system is not in equilibrium, it will enter spontaneously
states of lower Gibb’s energy until equilibrium is reached.

Summarizing, the thermodynamic potentials can be applied to the following physical
meanings:

▶ Internal energy U gives the capacity to do work (mechanical and non-mechanical
like chemical) and to release heat

▶ Enthalpy H denotes the capacity for chemical work plus the capacity to release
heat

▶ Helmholtz free energy F describes the capacity to do mechanical work plus
non-mechanical work

10
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▶ Gibbs free energy G is the capacity to do non-mechanical work

From these meanings (which actually apply in specific conditions, e.g. constant
pressure, temperature, etc.), one can say that ∆U is the energy added to the system,
∆F is the total work applied, ∆G is the non-mechanical work, and ∆H is the sum of
non-mechanical work applied to the system and the heat given to it.

2.3. Fundamental equations

The differential forms of the energy potentials, e.g. (2.1) for the internal energy,
constitute the fundamental equations in thermodynamics. By means of the funda-
mental relations all thermodynamic information about the system can be derived if
the partial derivatives of the potential are taken with respect to its natural variables.
Natural variables are those quantities, which are held constant in order to minimize
the corresponding energy2.

The natural variables of the internal energy are entropy, volume and amount of
substance U = U(S, V, {ni}), and the total differential is obtained by partial differen-
tiation with respect to these with

dU = ∂U

∂S
dS + ∂U

∂V
dV +

∑
i

∂U

∂ni

dni . (2.10)

Comparing the partial differential formulation (2.10) to (2.3), the relations for tem-
perature, pressure and chemical potential are revealed with

T =
(
∂U

∂S

)
V,{ni}

, p = −
(
∂U

∂V

)
S,{ni}

, µi =
(
∂U

∂ni

)
S,V,nj ̸=i

. (2.11)

These partial derivatives specify the intensive parameters of the thermodynamic state.
Moreover, by exchanging the variables using the Legendre transformation3, one
obtains the fundamental relations of the other potential energies given in Section 2.2.
Conjugate thermodynamic variables in fluid mechanics are temperature T and entropy

2Priniciple of minimum energy, cf. Callen [24]
3A Legendre transform is a linear change in variables in which one or more products of conjugate

variables are subtracted from the internal energy to define a new thermodynamic potential,
cf. Alberty [7].
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S for the thermal part, pressure p and volume V describing mechanical changes, and
chemical potential µ and particle number n regarding the state of substance. Which
one is used depends e.g. on the experimental point of view, since S and V are often
inconvenient variables rather than T and p. Considering the energetically conjugate
variables, the fundamental relations read after Legendre transformation

dU = TdS − pdV +
∑

i

µidni

dF = −SdT − pdV +
∑

i

µidni

dH = TdS + V dp+
∑

i

µidni

dG = −SdT + V dp+
∑

i

µidni .

(2.12)

Therein, the Helmholtz energy F is the partial Legendre transform of U replacing
the entropy by the temperature, the enthalpy H is the transform which replaces the
volume by the pressure as independent variable, and for the derivation of the Gibb’s
free energy, simultaneously the entropy is replaced by the temperature and the volume
by the pressure.

With the differential fundamental relations (2.12), the following correlations for
temperature, pressure, volume, entropy and chemical potential are found:

T =
(
∂U

∂S

)
V,{ni}

=
(
∂H

∂S

)
p,{ni}

−p =
(
∂U

∂V

)
S,{ni}

=
(
∂F

∂V

)
T,{ni}

V =
(
∂H

∂p

)
S,{ni}

=
(
∂G

∂p

)
T,{ni}

−S =
(
∂G

∂T

)
p,{ni}

=
(
∂F

∂T

)
V,{ni}

µj =
(
∂(•)
∂ni

)
(X,Y,{ni ̸=j})

.

(2.13)

In (2.13)5, (•) is representative for one of the thermodynamic potentials {U, F,H,G},
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2.3. Fundamental equations

where the corresponding natural variables, general speaking of (X, Y ) besides {nj ̸=i},
of the chosen potential are held constant. It becomes clear, that the chemical potential
of substance j, µj , can be derived of any of the energy potentials with constant related
natural variables.

2.3.1. Reference to continuum mechanics

Referring to the thermodynamically consistent material modeling within the framework
of the Theory of Porous Media presented in Chapter 5, a closer look is given to the
Legendre transformation of internal energy to Helmholtz free energy in the context
of fluid and solid mechanics.4 Whilst the thermal pair of conjugate variables remains

Table 2.1.: Energetically conjugated variables.

thermal mechanical

fluid mechanics T ↔ S
1
ρ0
p ↔ V

solid mechanics θ ↔ η
1
ρ0

S ↔ E

equal for fluid and solid mechanics with temperature T/θ, respectively and entropy
S/η, the latter mass-specific, a distinction is made for the mechanical conjugate
variables, where the equivalent to pressure-volume of fluid mechanics is the stress-
strain relation in solid mechanics, see Table 2.1. Therein, S denotes the second
Piola-Kirchhoff stress tensor, see Section 3.4 for a more detailed description, and
ρ0 denotes the reference density.

In solid mechanics the mass-specific internal energy ε is given as a function of strain
E and specific entropy η with ε = ε(E, η), so that the change rate of the internal
energy reads

ε̇ = ∂ε

∂E
· Ė + ∂ε

∂η
η̇ = 1

ρ0
S · dE + θ dη , (2.14)

with the relations
∂ε

∂E
= 1
ρ0

S and ∂ε

∂η
= θ . (2.15)

4The derivations of this section base on Ehlers [44].
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2. Principles of thermodynamics

see also (2.13)1. For a variable change from η to θ, the right hand side is rewritten
and combined to

ε̇ = 1
ρ0

S · Ė + θη̇︸︷︷︸
(θη)· − θ̇η

→ (ε− θη)︸ ︷︷ ︸
ψ

· = 1
ρ0

S · Ė − ηθ̇ ,

(2.16)

where the mass-specific Helmholtz free energy ψ is introduced according to (2.7).
Thus, the rate of change of ψ = ψ(E, θ) reads

ψ̇ = ∂ψ

∂E
· Ė + ∂ψ

∂θ
θ̇ = 1

ρ0
S · Ė − ηθ̇ (2.17)

Concluding from (2.14) and (2.17), stresses can either be derived from the internal or
the Helmholtz free energy with

S = ρ0
∂ε

∂E
= ρ0

∂ψ

∂E
(2.18)

and the thermal variables are derived via

θ = ∂ε

∂η
and η = −∂ψ

∂θ
(2.19)

Likewise, the derivative of the absolute potential of the internal energy U used e.g. in
gas theory is computed by

U̇ = ∂U

∂V
V̇ + ∂U

∂S
Ṡ , (2.20)

where
∂U

∂V
= −p and ∂U

∂S
= T (2.21)

is invoked, cf. (2.13). Comparing (2.14) to (2.20) reveals, that a volume change of a
gas or generally a density change of a fluid corresponds to the strain of a solid and
induces stresses.

A comprehensive description of the Legendre transforms in the context of continuum
mechanics is e.g. given in Haupt [60].
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2.4. Euler equation and alternative energy formulations

2.4. Euler equation and alternative energy formulations

For a direct formulation of the internal energy, (2.3) needs to be integrated. The
internal energy U and its natural variables entropy, volume, amount of substance, are
extensive quantities and thus, change proportional with system scaling by factor α
like

U(αS , αV , α{ni}) = αU(S, V, {ni}) . (2.22)

Thus, Euler’s homogeneous function theorem, see e.g. Callen [24], can be applied so
that finally

U = TS − pV +
∑

i

µi ni (2.23)

is obtained. Eq. (2.23) is known as the Euler equation of the internal energy.
Moreover, (2.23) can also be derived by integration for constant values of the intensive
quantities.

Considering the Euler equation (2.23) and implementing it into (2.9) yields the direct
formulation for the Gibbs energy, which is defined as that part of (2.23) describing
the composition of the system with

G =
∑

i

µi ni . (2.24)

Finally, bringing together and substituting the direct formulation of the internal
energy into the other potentials yield alternative expressions for the Helmholtz free
energy as well as the enthalpy with

F = −pV +
∑

i

µi ni and H = TS +
∑

i

µi ni . (2.25)

2.5. Gibbs energy, chemical potential and reactions

Revealing the fundamental relation for G, (2.12)4, the chemical potential µi describes
that part of G, that alters the amount of G when the number of particles of substance
i changes by dni (for constant temperature and pressure). With that, the chemical
potential µ is defined as the molar-specific Gibb’s energy for a one-component system,
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2. Principles of thermodynamics

and the partial molar-specific Gibbs’s energy µi for a multi-component system,
respectively, with

G

n
= µ =

∑
i

µi xi , (2.26)

wherein the mole fraction xi = ni/n is introduced. Differences in the amount of
chemical potentials of one substance i in e.g. different states of aggregation or in
separated reference volumes are always compensated. Hence, the chemical potential
characterizes the possibilities of a substance to react with other components, for phase
transition and also for redistribution in space (diffusion).

Furthermore, reaction equations of chemical reactions follow generally

∑
i

viAi ⇌ 0 , (2.27)

where vi denote the stoichiometric coefficients, which represent the mole numbers of
the chemical components Ai of the considered reaction equation5. Thus, the change
of the Gibb’s potential (2.12)4 induced by a change of the mole numbers dni has to
be proportional to the stoichiometric coefficients. For that, the proportionality factor
dn̄i is introduced with

dn1

v1
= dn2

v2
= ... := dn̄i → dni = vi dn̄i . (2.28)

By implementing (2.28) into (2.12)4, the equilibrium condition for a chemical reaction
at constant temperature and pressure is obtained as

dG = dn̄i

∑
i

vi µi = 0 , (2.29)

and moreover ∑
i

vi µi = 0 . (2.30)

For the case that more energy is released than needed for activation during a chemical
reaction, the process is called exothermic6. The products of an exothermic reaction
end up with a lower enthalpy than the initial substances. Considering the enthalpy

5Using the example of oxyhydrogen gas reaction to water with 2H2 + O2 ⇌ 2H2O, the vi are in
proportion (-2 : -1 : 2), and the chemical components Ai are H2, O2, H2O

6The lower the activation energy, the faster proceeds the exothermic reaction
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2.6. Ideal gas

as the potential for heat flux at constant pressure, see last paragraph of Section 2.2,
the change in enthalpy during chemical reactions is equal to the heat flux from the
surroundings to the system. With (2.24), (2.25)2 and (2.13)4, the enthalpy can be
expressed as

H = G− T

(
∂G

∂T

)
p,ni

. (2.31)

A virtual chemical reaction dn̄i at constant pressure leads to changes of both H and
G with

dH =
(

dH
dn̄i

)
dn̄i =

(
dG
dn̄i

)
dn̄i − T

∂

∂T

(
dG
dn̄i

)
p,ni

dn̄i (2.32)

The change of the Gibb’s potential is given invoking (2.29)

dG
dn̄i

=
∑

i

vi µi , (2.33)

which vanishes for equilibrium, whereas the temperature derivative given in the second
part of (2.32) remains. Thus, in the vicinity of equilibrium the change in enthalpy
becomes

dH
dn̄i

= −T ∂

∂T

(∑
i

viµi

)
p,ni

, (2.34)

which is denoted as heat of reaction, which is positive for endothermic reactions and
negative for exothermic reactions. The derivations made in this section are based on
Callen [24].

2.6. Ideal gas

The physical model of the ideal gas is based on the idea that the cohesion forces
as well as the volume of the gas molecules are negligible. This is said to be fulfilled
for low pressure and high temperature conditions so that the gas density tends to
zero. Figuratively speaking, a diluted real gas contains less molecules in a reference
volume, leading to a greater distance between them. Additionally, a rising temperature
increases the molecular motion so that the influence of the forces between the molecules
decreases. Thus, the behavior of a real gas approaches that one of an ideal gas, which
is an adequate approximation for many gases under standard conditions.
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2. Principles of thermodynamics

2.6.1. Thermal equation of state

The state variables describing the thermodynamic system, namely pressure, tempera-
ture, volume and amount of substance, are related for a closed system through the
implicit form

f(p, V, T, n) = 0 , (2.35)

where each variable itself can be explicitly specified as a function of the remaining
ones:

p = p(T, V, n) , T = T (p, V, n) , V = V (T, p, n) . (2.36)

Considering the volume V , the total differential reads

dV =
(
∂V

∂T

)
p,n

dT +
(
∂V

∂p

)
T,n

dp+
(
∂V

∂n

)
T,p

dn , (2.37)

where the following coefficients for the partial differentials are introduced with

γ = 1
V

(
∂V

∂T

)
p,n

, κ = − 1
V

(
∂V

∂p

)
T,n

, Vm =
(
∂V

∂n

)
T,p

. (2.38)

Therein, γ denotes the coefficient of expansion, κ the compressibility factor, and Vm

the molar volume. By implementing these factors into (2.37), the thermal equation of
state is obtained as

dV = (γ V ) dT − (κV ) dp+ Vm dn . (2.39)

For the case of an ideal gas, the coefficients for expansion and compressibility become

γ = 1
T

and κ = 1
p
, (2.40)

so that (2.39) simplifies to

dV =
(
V

T

)
dT −

(
V

p

)
dp+

(
V

n

)
dn . (2.41)

By building a definite integral of (2.41) the well-known ideal gas law can be
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2.6. Ideal gas

formulated with

p V = mRT ⇔ p V = nRm T (2.42)

where both formulations (mass and molar) are equivalent. Therein, R denotes the
specific gas constant, which is derived by dividing the universal (or molar) gas constant
Rm (8, 314 J/(mol K)) through the molar mass Mm of the individual gas:

R = Rm

Mm

. (2.43)

The mole amount n of the gas is defined by dividing its mass m by the molar mass
constant Mmol with

n = m

Mm

(2.44)

Eq. (2.42) is given for a one-component gas, but can be equally applied to gas mixtures.
For that, Dalton’s law of partial pressure is considered, which gives the relation of
the partial pressure pi of component i in the system to the total mixture pressure p
with

p =
∑

i

ni
RT

V
=
∑

i

pi , (2.45)

in connection to the ideal gas law. Moreover, rewriting (2.45) by relating the partial
pressure to the total pressure and furthermore implementing (2.42) gives the correlation
to the mole fraction xi via

pi

p
= ni∑

i ni

= xi . (2.46)

2.6.2. Caloric equation of state

In analogy to (2.36), also the thermodynamic potentials can be calculated as a function
of the state variables. The functional relationship for the internal energy and enthalpy
read

U = U(V, T, n) and H = H(p, T, n) , (2.47)

from which the total differentials are derived with

dU =
(
∂U

∂T

)
V,n

dT +
(
∂U

∂V

)
T,n

dV +
(
∂U

∂n

)
T,V

dn , (2.48)
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2. Principles of thermodynamics

and
dH =

(
∂H

∂T

)
p,n

dT +
(
∂H

∂p

)
T,n

dV +
(
∂H

∂n

)
T,p

dn . (2.49)

Assuming a constant molar amount with dn = 0 and moreover ideal gas conditions
(the internal energy is independent of pressure and volume), the differentials dU
and dH only depend on the temperature, so that the caloric equations of state read
in their mass-specific forms7 for internal specific energy ε = U/m and the specific
enthalpy h = H/m

dε = cv dT and dh = cp dT . (2.50)

Therein, the specific heat capacities cv and cp are introduced for the partial differentials
with

cv =
(
∂ε

∂T

)
v

and cp =
(
∂h

∂T

)
p

, (2.51)

which represent proportionality factors to temperature change for isochoric and
isobaric conditions, respectively.

2.6.3. Mixture of ideal gases and chemical potential

The chemical potential can also be expressed with the approach for the ideal gas
(2.42). For that, a constant temperature in a pure ideal gas is assumed initially, so
that the differential of the Gibb’s free energy (2.12)4 becomes

dG = V dp . (2.52)

For a change of pressure from p0 to p, the variation of the free enthalpy then reads

∆G = G−G0 =
∫ G

G0
dG =

∫ p

p0
V dp . (2.53)

Inserting (2.42) and integrating yields the Gibb’s free energy of a gas with respect to
the state of reference (p0, G0):

G−G0 = nRm T ln( p
p0

) , (2.54)

7The mass-specific formulation is used to gain an intensive and thus a scale-independent equation.
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2.6. Ideal gas

cf. Huyghe and Bovendeerd [67]. With the relation for the chemical potential µ = G/n,
see (2.26), the formulation for the chemical potential of the gas is obtained with

µ = µ0 + Rm T ln( p
p0

) . (2.55)

For a mixture of ideal gases it can be shown, e.g. [67], that the chemical potential of
gas i in the mixture can be set up with the mole fraction via

µi = µi
0 + Rm T lnxi , (2.56)

where use has been made of the reference partial pressure pi = xi p0, cf. also (2.46).
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3. Extended Theory of Porous Media

3.1. Concept of volume fractions for immiscible
constituents

In general, a porous body φ can consist of κκκ immiscible constituents φααα with

φ =
⋃
ααα

φααα , (3.1)

whereas, for example, the pores within a solid skeleton (S) are filled with a fluid (F),
which may be a single liquid (L) or a single gas (G) or both:

φ = φS ∪ φF

= φS ∪ φL ∪ φG .
(3.2)

The concept of volume fractions as a fundamental basis for the TPM proceeds from
the assumption of a statistical distribution of the constituents over a control domain,
so that the exact location of the individual constituents has not to be taken into
consideration. The solid mass occupying the control space, as well as the mass of the
liquid and/or gas are homogeneously ’smeared’ over the space of the representative
volume element (RVE)1, with the result, that all κκκ substitutes φααα occupy the total
volume of space dv simultaneously, cf. Fig. 3.1. The fluid contained in the pores can
leave or enter the control space, which is set up by the solid matrix, which is, thus,
considered as closed system.

All real geometrical and physical properties of the phases, such as stress, deformation
or density are given after homogenization as averaged macroscopic quantities. To

1The control space must be large enough to allow statistical modeling.



3. Extended Theory of Porous Media

Figure 3.1.: Homogenization of the macroscopic constituents φααα

consider the local composition of the porous medium, the measure of volume fractions
nααα = nααα (x, t) is introduced, where x denotes the position vector of the material
particle Xααα in the actual configuration at time t. The volume fraction is defined as
the local ratio of the partial volume element dvααα of constituent φααα with respect to
the bulk volume element dv of the overall body with

nααα = dvααα

dv . (3.3)

Summing up the κκκ volume fractions leads to the constraint in form of the saturation
condition ∑

ααα

nααα = 1 , (3.4)

which claims, that the whole medium is ’filled’ by the constituents with no vacant
space. For a triphasic model additionally the saturation is defined, which relates the
volume of the liquid and gas phase to their combined pore space:

sL = nL

nF and sG = nG

nF with nF = 1 − nS = nL + nG . (3.5)

Moreover, the constraint
sL + sG = 1 (3.6)

is valid for the saturation, too. The partial volume Vααα of constituent φααα in the control
space BS is given with (3.3) as

Vααα =
∫

BS
nαααdv , (3.7)
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3.1. Concept of volume fractions for immiscible constituents

so that the total volume V can be derived by summing up the partial volumes with

V =
∫

BS
dv =

∑
ααα

Vααα =
∫

BS

∑
ααα

dvααα =
∫

BS

∑
ααα

nαααdv . (3.8)

The true (or realistic) density ραααR = ραααR(x, t) of a material φααα is defined as

ραααR = dmααα

dvααα , (3.9)

referring the partial mass element dmααα to its partial volume element dvααα. Relating
the partial mass instead to the bulk volume element dv defines the partial density ρααα

of constituent φααα with
ρααα = dmααα

dv . (3.10)

The partial and true densities, (3.10) and (3.9), are connected through the concept of
volume fraction (3.3) as follows:

ρααα = nαααραααR . (3.11)

By means of (3.11) it becomes clear, that the partial density ρααα of an inherently
incompressible material (ραααR = const.) can change due to varying local volume
fractions. This turns out to be a benefit of the TPM, such that local volume
deformations within a model domain can be considered.

In analogy to (3.7) and (3.8), relations for the partial mass Mααα and for the total mass
M in the actual placement (x, t) of control space BS can be formulated with

Mααα =
∫

BS
ρααα dv =

∫
BS
ραααR dvααα (3.12)

and
M =

∫
BS

ρ dv =
∑
ααα

Mααα =
∫

BS

∑
ααα

ραααdv =
∫

BS

∑
ααα

nαααραααR dv . (3.13)

Finally, summing up the partial densities yields the bulk density of the overall mixture
body:

ρ =
∑
ααα

ρααα . (3.14)
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3.2. Miscible components

As previously described, each macroscopic, immiscible fluid phase φααα can be composed
of several miscible components φβ, which together form the liquid or gaseous solution.
In the framework of the eTPM, the macroscopic phases are described by extending
(3.1) and (3.2), respectivley, to

φ =
⋃
ααα

φααα with φααα =
⋃
β

φαβ . (3.15)

As each component φβ in general can occur in each of the macroscopic phases φααα,
the prefixed ’α’ in φαβ indicates, to which main phase (=̂ solution) φααα it belongs. For
the description of the components portions within the solution either mass or molar
concentration definitions can be used, depending on the problem to investigate.

3.2.1. Molar concentrations

When dealing with chemical reactions or gaseous mixtures, usually the measure of
molar concentrations cαβ

m are preferred, viz,

cαβ
m = dnβ

m

dvααα . (3.16)

The true molar concentration cαβ
m is defined as the number of moles dnβ

m of component
φβ related to its solvent volume dvααα. In connection with the eTPM, a partial molar
concentration cβ

m can be defined analogous to the partial density (3.11) by referring
the number of moles to the bulk volume with

cβ
m = dnβ

m

dv = dvααα

dv
dnβ

m

dvααα = nααα cαβ
m . (3.17)

The mole fraction xαβ
m is a dimensionless quantity and introduced to describe the

composition of the mixture phase, comparable to the macroscopic volume fraction.
Using (3.16), it is defined as

xαβ
m = dnβ

m∑
β dnβ

m

= cαβ
m∑

β cαβ
m

= cαβ
m

cαααR
m

, (3.18)
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3.2. Miscible components

where the number of moles of constituent φβ is related to the total amount of moles of
all components in the solution φααα. Out of this, the true molar concentration cαααR

m of the
macroscopic solution phase φααα can be derived by summing up all molar concentrations
of the components via

cαααR
m =

∑
β

cαβ
m , (3.19)

resulting in the constraint ∑
β

xαβ
m = 1 . (3.20)

Finally, by analogy with (3.14), the partial molar concentration for the solution φααα is
given with

cααα
m = nααα cαααR

m , (3.21)

so that the total molar concentration of the mixture body cm is given with

cm =
∑
ααα

cααα
m . (3.22)

3.2.2. Mass concentrations

Often mass units are more useful to solve diffusion equations in context with the
balance equation of momentum. In analogy to (3.16), the true mass concentration
ραβ of component φβ in mixture φααα is defined as

ραβ = dmβ

dvααα , (3.23)

wherein the mass dmβ of component φβ is referred to its solvent volume dvααα. Using
again (3.3), the partial mass concentration ρβ reads

ρβ = dmβ

dv = dvααα

dv
dmβ

dvααα = nαααραβ . (3.24)

The mass fraction ωαβ can be defined using (3.23) with

ωαβ = dmβ∑
β dmβ = ραβ∑

β ρ
αβ = ραβ

ραααR , (3.25)
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3. Extended Theory of Porous Media

where the relations
ραααR =

∑
β

ραβ and
∑

β

ωαβ = 1 . (3.26)

are valid.

3.2.3. Correlation between molar and mass concentration

The mass and molar concentration, respectively, can be converted into each other
with the help of the molar mass Mβ

m, a constant defined with

Mβ
m = dmβ

dnβ
m

. (3.27)

Using this quantity, the relation between mass and molar concentration reads

ραβ = Mβ
m cαβ

m . (3.28)

Furthermore, the molar mass of the macroscopic mixture, Mααα
m, can be calculated by

means of the molar fractions with

Mααα
m =

∑
β

xαβ
m Mβ

m (3.29)

and hence the macroscopic mass density ραααR via

ραααR = Mααα
m cαααR

m . (3.30)

3.3. Kinematics

3.3.1. Motion of main phases

In the framework of the Theory of Porous Media, the multiphasic body is treated as a
smeared model of superimposed continua with mutual interactions with the following
underlying assumptions:
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Table 3.1.: Overview of true and partial densities.

density mass units molar units

true pore ραβ = dmβ

dvααα = Mβ
mcαβ

m cαβ
m = dnβ

m

dvααα = ραβ

Mβ
m

partial pore ρβ = dmβ

dv = nααα ραβ cβ
m = dnβ

m

dv = nααα cαβ
m

true mixture ραααR = ∑
β ρ

αβ = Mααα
mcααα

m cαααR
m = ∑

β cαβ
m = ραααR

Mααα
m

fraction ωαβ = ραβ

ραααR xαβ
m = cαβ

m

cαααR
m

▶ At any time t each spatial point x of the actual configuration is simultaneously
occupied by the material points Xααα of the κκκ constituents φααα.

▶ The material points proceed from different reference positions Xααα at time t = t0

and thus, each constituent is assigned its own independent motion function
χα(Xααα, t).

Considering these assumption, the placement vector in the actual configuration is
given with

x = χα(Xααα, t) , (3.31)

where the material points are identified by their initial position, cf. Fig. 3.2. This
definition, referring to the reference position of the material points, represents the
Lagrangean description of motion, which is understood as a chronological succession
of placements χααα. The velocity and acceleration field of the material points Xααα are
then given as the partial derivatives of (3.31) with respect to time t:

x′
ααα = ∂χα(Xααα, t)

∂t , x′′
ααα = ∂2χα(Xααα, t)

∂2t . (3.32)

The assumption, that each material point has an individual reference position, requires
the motion χα to be unique and uniquely invertible. A mathematically necessary
and sufficient condition for the existence of the inverse motion function χ−1

α is given,
if the Jacobian

Jααα = det ∂χα(Xααα, t)
∂Xααα

̸= 0 (3.33)
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reference configuration
(t = t0)

actual configuration
(t = t1)

actual configuration+

(t = t1 + ∆t)

XS

XL
XG

B0S

BS
XS

XL
XG

B+
S

XS

XL XG
x = χχχS(XS, t)

= χχχL(XL, t)
= χχχG(XG, t)

Figure 3.2.: Kinematics of the macroscopic constituents φααα

differs from zero. Eq. (3.33) enables the Eulerian description of motion, in which a
material point is observed at time t at the spatial position x:

Xααα = χ−1
α (x, t) . (3.34)

To obtain the Euler formulation of the velocity and acceleration field, the inverse
motion function (3.34) is used to replace the reference position vector in (3.32), which
yields

x′
ααα = x′

ααα[χ−1
α (x, t), t] = x′

ααα(x, t) , x′′
ααα = x′′

ααα[χ−1
α (x, t), t] = x′′

ααα(x, t) . (3.35)

3.3.2. Material time derivative

Eq. (3.35) depends on time both explicitly and implicitly through the position vector x
of the current configuration. Therefor, the material time derivative for arbitrary field
functions (Γ (x, t) =̂ scalar-valued, Γ (x, t) =̂ vector/tensor-valued) is defined, which
is composed of the local contribution, which describes explicitly the temporal change
of a field variable at a fixed spatial point, and of the convective part, which results
implicitly from the motion. The material time derivative corresponds mathematically
to the total time derivative and can be defined in the multi-phase and multi-component
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3.3. Kinematics

description with reference to the different motions of constituent φααα or component φβ

or with respect to the barycentric velocity ẋ of the overall continuum body φ:

Γ̇ = d
dt Γ(x, t) = ∂ Γ

∂ t + grad Γ · ẋ Γ̇ = d
dt Γ(x, t) = ∂ Γ

∂ t + (grad Γ) ẋ ,

(3.36)

(Γ)′
ααα = dααα

dt Γ(x, t) = ∂ Γ
∂ t + grad Γ · x′

ααα (Γ)′
ααα = dααα

t Γ(x, t) = ∂ Γ
∂ t + (grad Γ) x′

ααα ,

(3.37)

(Γ)′
β = dβ

dt Γ(x, t) = ∂ Γ
∂ t + grad Γ · x′

β (Γ)′
β = dβ

dt Γ(x, t) = ∂ Γ
∂ t + (grad Γ) x′

β .

(3.38)

Moreover, the spatial differential operator ’grad (·)’ denotes the partial derivative of
quantity (·) with respect to the spatial position x.

3.3.3. Deformation, transport and strain measures

Deformation gradient

For the description of local deformations at a spatial point x, the material deformation
gradient Fααα is introduced with

Fααα = ∂χα(Xααα, t)
∂Xααα

= ∂x
∂Xααα

= Gradαααx , (3.39)

where the operator ’Gradααα (·)’ defines the partial derivative of a quantity (·) with
respect to the reference position Xααα. Using (3.34), the inverse of the deformation
gradient Fααα can be defined as well as

F−1
ααα = ∂χ−1

α (x, t)
∂x

= ∂Xααα

∂x
= grad Xααα . (3.40)

For an undeformed configuration at t=t0 the deformation gradient is equal to the
identity I, i.e.

Fααα(t = t0) = ∂Xααα

∂Xααα

= GradαααXααα = I → det Fααα(t0) = det I = 1 (3.41)
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3. Extended Theory of Porous Media

and hence, its determinant equal to 1. Comparing (3.39) to (3.33) yields

Jααα = det Fααα > 0 , (3.42)

which is restricted to be greater than zero during deformation processes.

Transport theorems

The deformation gradient can be utilized for the mapping of differential line elements
dx of φααα between the reference and actual configuration via

dx = Fααα dXααα and dXααα = F−1
ααα dx. (3.43)

Based on (3.43), a differential area element da can be mapped between the configura-
tions via

da = dx1 × dx2 = Fααα dXααα
1 × Fααα dXααα

2

= (detFααα) FT−1
ααα dA0ααα = Jααα FT−1

ααα dA0ααα = cofFαααdA0ααα ,
(3.44)

where FT−1
ααα denotes the inverse of the transposed deformation gradient FT−1

ααα and
dA0ααα the differential area element in the reference configuration. Finally, the transport
of a differential volume element dv to the reference dV0ααα can be derived with

dv = dx3(dx1 × dx2) = Fααα dX3
ααα (Fααα dX1

ααα × Fααα dX2
ααα)

= detFααα [dX3
ααα (dX1

ααα × Fααα dX2
ααα)] = Jααα dV0ααα .

(3.45)

Thus, a change in volume of the deforming body starting at reference configuration
dV0ααα is indicated by the Jacobian Jααα = det Fααα.
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3.3. Kinematics

Deformation tensors

Deformation measures are derived by calculating the square of the differential line
elements for the reference and actual configuration with

dx · dx = dXααα · (FT
ααα Fααα) dXααα = dXααα · (Cααα) dXααα → Cααα = FT

ααα Fααα ,

dXααα · dXααα = dx · (tbaT−1 F−1
ααα ) dx = dx · (B−1

ααα ) dx → Bααα = Fααα FT
ααα .

(3.46)
These equations yield the definitions for the right and left Cauchy-Green deforma-
tion tensors Cααα and Bααα, which are a measure for stretch or compression of the line
elements. For a deformation free situation they are equal to the identity tensor I.

The underlying definition for ’right’ and ’left’, respectively, is given by the polar
decomposition2 of the deformation gradient

Fααα = Rααα Uααα = Vααα Rααα , (3.47)

where Rααα defines the proper orthogonal rotation tensor (R−1
ααα = RT

ααα ), Uααα the material
right stretch tensor and Vααα the spatial left stretch tensor. Therewith, the deformation
gradient can be seen as a series of two transformations: on the one hand a stretch Uααα

3

followed by a rigid rotation Rααα, and on the other hand a rigid rotation Rααα followed
by a stretch Vααα. The right and left stretch tensors are derived via

Uααα =
√

FT
ααα Fααα, Vααα =

√
Fααα FT

ααα , (3.48)

which yields the relation to the right and left Cauchy-Green deformation tensors
with

Cααα = U2
ααα, Bααα = V2

ααα . (3.49)

Hence, the right Cauchy-Green deformation tensor Cααα is applying to the reference
configuration, whereas the left Cauchy-Green tensor Bααα refers to the actual
placement. Both deformation tensors are a measure independent of rotation, since
pure rotations should not induce any strains in a deformable body. By multiplying Fααα

2Any second-order tensor can be decomposed into a product of pure rotation and a symmetric
tensor.

3A pure stretch only for the special case that the dilatation or contraction is towards the main axis
with dXααα||uααα with uααα=̂ orthonormal eigenvector of Uααα
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3. Extended Theory of Porous Media

with its transpose, cf. (3.46), the rotation can be excluded with RαααRT
ααα = RT

ααα Rααα = I.

Strain tensors

Strain measures define a dimensionless relative change in length and also angle of
the line elements. They are commonly obtained by the squared difference of the line
elements between the configurations, viz

dx · dx − dXααα · dXααα = dXααα · (Cααα − I) dXααα = dXααα · 2 Eααα dXααα ,

= dx · (I − B−1
ααα ) dx = dx · 2 Aααα dx .

(3.50)

Therein, (3.39) is utilized and the Green-Lagrange strain tensor Eααα as well as
Almansi strain tensor Aααα is introduced with

Eααα = 1
2(Cααα − I) , Aααα = 1

2(I − B−1
ααα ) . (3.51)

In case of an undeformed configurations, these strain measures are equal to zero.

Further strain measurements can be defined by applying a forward rotation on Eααα and
a backward rotation of Aααα, respectively, yielding the Karni-Reiner strain tensors
in referential and current configuration as

R
Kααα = 1

2(I − C−1
ααα ) , Kααα = 1

2(Bααα − I) , (3.52)

where
Kααα = Fααα

R
Kααα FT

ααα (3.53)

is valid.

3.3.4. Deformation and strain rate

Material time derivatives of the introduced deformation and strain measures are
considered to specify the deformation and strain rates. The material velocity gradient
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3.3. Kinematics

as the rate of the deformation gradient in Lagrange description is given with

(Fααα)′
ααα = dααα

dt

(
∂x
∂Xααα

)
= ∂x′

ααα(Xααα, t)
∂Xααα

= Gradαααx′
ααα . (3.54)

It is correlated to the spatial velocity gradient Lααα of the current configuration with

(Fααα)′
ααα = ∂x′

ααα

∂x
∂x
∂Xααα

= LαααFααα , (3.55)

where Lααα is introduced as

Lααα = ∂x′
ααα(x, t)
∂x

= grad x′
ααα = (Fααα)′

ααα F−1
ααα . (3.56)

Furthermore, the relation

Lααα · I = tr Lααα = (grad x′
ααα) · I = div x′

ααα (3.57)

is valid, where ’tr’ denotes the trace of a tensor, and ’div’ the divergence operator.
Additionally, the velocity gradient can be additively decomposed into a symmetric
Dααα = DT

ααα and skew-symmetric part Wααα = −WT
ααα with

Lααα = Dααα + Wααα with Dααα = 1
2(Lααα + LT

ααα) and Wααα = 1
2(Lααα − LT

ααα) . (3.58)

The material time derivative of the right Cauchy-Green deformation tensor is then
given as

(Cααα)′
ααα = (FT

ααα Fααα)′
ααα = 2 FT

ααα DαααFααα . (3.59)

3.3.5. Displacement, relative velocities and types of fluxes

The barycentric velocity4, denoting the mean velocity ẋ of the overall mixture body
φ and the mean molar velocity mx′

ααα are defined with

ẋ = 1
ρ

∑
ααα

ρααα x′
ααα and mẋ = 1

cm

∑
ααα

cααα
m mx′

ααα . (3.60)

4local velocity referring to center of gravity
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3. Extended Theory of Porous Media

Each component φβ solved in main phase φααα obtains an independent velocity x′
β,

so that the solution velocities x′
ααα and mx′

ααα are given as averaged velocities of the
dissolved components with

x′
ααα = 1

ρααα

∑
β

ρβ x′
β = 1

ραααR

∑
β

ραβ x′
β =

∑
β

ωαβx′
β ,

mx′
ααα = 1

cααα
m

∑
β

cβ
m x′

β = 1
cαααR

m

∑
β

cαβ
m x′

β =
∑

β

xαβ
m x′

β ,
(3.61)

where use has been made of (3.25) and (3.18). The averaged solution velocities are
subsequently used to define advective and diffusive fluxes in mass or molar units.

Moreover, the solid skeleton φS serves as reference configuration for the fluid flow in
the multiphasic eTPM description, whereas the solid skeleton itself can be subject to
deformations. For that, the Lagrange formulation of the solid displacement uS is
defined as the primary kinematic variable of the solid displacement field with

uS = x − XS . (3.62)

The fluid flow of the solution with respect to the deforming solid, denoted as seepage
velocity, is defined in mass and molar units with5:

wαααS = x′
ααα − x′

S and mwαααS = mx′
ααα − x′

S , (3.63)

Similarly, the difference velocity of the dissolved components φβ with respect to the
deforming solid is defined as

wβS = x′
β − x′

S . (3.64)

The diffusion velocity, namely the components’ velocity with respect to the moving
solution, can again be defined in mass or molar units with (3.63) and (3.64) with

dβααα = wβS − wαααS = x′
β − x′

ααα and mdβααα = wβS − mwαααS = x′
β − mx′

ααα . (3.65)

Regarding the overall mixture, the diffusion velocities of constituent φααα related to
the barycentric and molar averaged velocity of the mixture body φ, respectively, are

5Note, that wαααS = 0 for ααα = S, so that automatically only the pore fluid flow is captured by (3.63)
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3.3. Kinematics

defined with
dααα = x′

ααα − ẋ and mdααα = mx′
ααα − ẋm . (3.66)

Table 3.2.: Overview true and partial mass and molar fluxes.

flux mass units molar units

true total jαβ
tot = ραβ wβS mjαβ

tot = cαβ
m wβS

partial total jβ
tot = nααα ραβwβS mjβ

tot = nααα cαβ
m wβS

true diffusive jαβ
diff = ραβ dβααα mjαβ

diff = cαβ
m mdβααα

partial diffusive jβ
diff = nααα ραβdβααα mjβ

diff = nααα cαβ
m mdβααα

In order to derive a formulation for the split into advective and diffusive flow, con-
sidering also the multi-phase description with respect to the solid coordinates, one
starts with the definition for the partial total mass flux nβ = nααα nαβ of component
φβ, where the true mass flux nαβ is introduced by

nβ = nααα nαβ = ρβ x′
β = nααα ραβ x′

β ,

= nααα ωαβραααR x′
β .

(3.67)

Summing up the true total mass fluxes nαβ yields the real total mass flux of solution
φααα with

nαααR =
∑

β

nαβ =
∑

β

ραβ x′
β = ραααR x′

ααα . (3.68)

Therein, the relation to the deforming solid is not yet considered. Likewise, the partial
total molar flux mnβ = nααα

mnαβ is defined with

mnβ = nααα
mnαβ = cβ

m x′
β = nααα cαβ

m x′
β

= nααα xαβcαααR
m x′

β

(3.69)

and summation yields the real total molar flux of the solution mnαααR

mnαααR =
∑

β

mnαβ =
∑

β

cαβ
m x′

β = cαααR
m mx′

ααα . (3.70)
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3. Extended Theory of Porous Media

Proceeding from that, the total flux is composed of an advective part, where the
particle is carried with the solution velocity, and the diffusive flux, which physically
describes the motion of the particles by their own motion. The difference between total
and advective flux yields the diffusive part and, depending on the chosen reference
velocity, the mass and molar diffusive fluxes are defined with

jαβ
diff = nαβ − ραβ x′

ααα and mjαβ
diff = mnαβ − cαβ

m mx′
ααα

= nαβ − ωαβnαααR = mnαβ − xαβ
mnαααR

= ραβ (x′
β − x′

ααα) = cαβ
m (x′

β − mx′
ααα)

= ραβ dβααα = cαβ
m mdβααα

(3.71)

Therein, the expressions containing the diffusion velocities (3.71)7,8 are obtained by
considering the previous definitions for the difference velocities (3.65). Mixture terms,
e.g. the difference between the total molar and advective mass flux, can also be
defined, but will be neglected in this work.

Since the solid’s movement (3.62) serves as a fixed frame, all fluxes can be given in
terms of the seepage and difference velocities, respectively. With respect to the solid
coordinates (3.64) the true total fluxes in mass and molar units of component φβ

read
jαβ
tot = ραβ wβS and mjαβ

tot = cαβ
m wβS . (3.72)

Analogously, the diffusive fluxes are defined in dependence to the advective flux given
with the seepage velocity (3.63). Hence, (3.71)7,8 can also be written as

jαβ
diff = ραβ (wβS − wαααS) and mjαβ

diff = cαβ
m (wβS − mwαααS) , (3.73)

where the connection to the solid deformation becomes clear. In addition, partial
quantities can be defined for the multi-phase description, which are summarized in
Tab. 3.2.

Building the sum of (3.73) yields zero and thus verifies, that the diffusive fluxes
balance each other:

∑
β

jαβ
diff =

∑
β

ραβdβααα = 0 and
∑

β

mjαβ
diff =

∑
β

cαβ
m mdβααα = 0 . (3.74)
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3.4. Concept of stress

Therein, some reformulations need to be done by using (3.18) and (3.20), (3.25) and
(3.26)2 as well as (3.68) and (3.70). Finally, for the overall mixture φ the relations

∑
ααα

ρααα dααα = 0 and
∑
ααα

cααα
m mdααα = 0 , (3.75)

have to be considered by using (3.60), (3.14) and (3.22).

3.4. Concept of stress

The link between deformation and material is given by the stress tensors. For that,
the traction vector t = t(x, t,n) is introduced, depending on the current configuration
x, time t and the outward orientated surface normal vector n on ∂BS, which is defined
as the force measured per unit surface area da of the free cut body, see Fig. 3.3.

n0

T

∂Ω0

Ω0

X

dS

reference configuration
(t = t0)

n t

∂Ω

Ω

x

ds

current configuration
(t = t1)χχχ

e1

e2

e3

Figure 3.3.: Stresses

The number of all possible intersections through a material point of the body defines
the stress state at the material point. For a complete description of the stress
state, three perpendicular sectional surfaces are sufficient and are described with
the Cauchy stress tensor T(x, t) in the current configuration. The Cauchy stress
theorem connects the traction vector with the cutting direction by

t(x, t,n) = T n and tααα(x, t,n) = Tααα n , (3.76)
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3. Extended Theory of Porous Media

which can be referred to each phase, yielding the partial traction vector and partial
stress tensor (3.76)2. The Lagrange counterpart for a surface element in the reference
configuration dA0S to the Euler setting on da is introduced with

tααα
0 (Xααα, t,n0) = Pααα (Xααα, t) n0 (3.77)

where Pααα denotes the partial first Piola-Kirchhoff (1. PK) stress tensor. From
that, and utilizing the surface mapping from current to reference configuration (3.44)
the transformation rule for the 1. PK stress tensor can be derived with

Pααα = JS Tααα FT-1
S . (3.78)

Thus, the 1. PK stress tensor describes stresses resulting from forces applied on the
current placement but related to the geometric reference configuration. Performing
another pull-back operation leads to the definition for the second Piola-Kirchhoff
(2. PK) stress tensor with

Sααα = F−1
ααα Pααα . (3.79)

This tensor applies the forces projected on the reference to the geometric reference
configuration and thus is a fully referential placement tensor.

3.5. Master balance principle

Balance equations describe the universally valid principles and natural laws, respec-
tively, independent of the individual characteristics of the continuum and thus, they
are valid for all materials and their related constitutive laws. For the thermody-
namic continuum, the balance equations are all of the same kind of mathematical
structure, and the generalized relation is known as the master balance principle,
cf. Holzapfel [65].

Together with the constitutive equations, balance equations of continuum mechanics
form the set of required field equations to solve the initial boundary value problem
(IBVP)6. In the framework of the eTPM, the set is given, besides for the overall body

6A solution to an initial boundary value problem is the solution to a set of differential equations,
which satisfies both the boundary conditions (additional constraints for the set of differential
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3.5. Master balance principle

φ, for each constituent φααα as well as for the dissolved components φβ.

Following the metaphysical principles7 by Truesdell [103], the balance relations for
the overall aggregate φ must show identical mechanical behavior as the summation of
the balance equations of constituents φααα. The same applies for balance equations of
φααα itself, which have to yield same results as the summation of the balance equations
of the dissolved components φβ. This yields the correlation between the scalar-
or vector-valued field quantity8 (Υ, Υ) of the overall mixture body and its partial
(Υααα, Υααα) and component-wise (Υβ, Υβ) composition with

Υ =
∑
ααα

Υααα =
∑
ααα

∑
β

Υβ and Υ =
∑
ααα

Υααα =
∑
ααα

∑
β

Υβ . (3.80)

3.5.1. Global master formulation

Based on the classical continuum mechanical formulation for a single-phase material,
cf. e.g. Altenbach [8], the global master balance equation for the density distribution
of a field quantity over the whole body is given with

d
dt

∫
B

Υ dv =
∫

∂B
(ϕ · n) da +

∫
B
ξ dv +

∫
B
�
�7

0 (for closed systems)
Υ̂ dv ,

d
dt

∫
B

Υ dv =
∫

∂B
(Φ n) da +

∫
B

ξ dv +
∫

B
�
�7

0 (for closed systems)
Υ̂ dv .

(3.81)

Therein, the temporal change of state of the scalar-, vector- or tensor-valued field
quantity (Υ /Υ) per unit current volume dv is balanced with the density of effluxes
of this quantity over the surface (ϕ · n /Φ n), and the supply for the volume density
(ξ / ξ), caused by an external source. Furthermore, n denotes the outward orientated
surface normal.

The terms Υ̂ and Υ̂ represent production terms of the field quantity due to couplings
with its environment. For a single-phase material or the overall mixture body φ

equations) of the field variable and its initial specified values.
7The balance equations for φ, φααα and φβ are given analogously to balance relations of classical

continuum mechanics for single-phase materials while considering the interaction mechanisms
between the constituents and components by introduction of production terms.

8A mechanical, thermodynamic, chemical, electrical etc. quantity, depending on the problem to
solve.
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considered in a closed system, this production is equal to zero. Only exception is
the entropy, which is always greater or equal to zero, which will be discussed later in
Sect. 3.7.

Recalling (3.80), the balance equations can also be set up in general for each field
quantity of each constituent φααα of the mixture

dααα

dt

∫
B

Υααα dv =
∫

∂B
(ϕααα · n) da +

∫
B
ξααα dv +

∫
B

Υ̂ααα dv ,

dααα

dt

∫
B

Υααα dv =
∫

∂B
(Φααα n) da +

∫
B

ξααα dv +
∫

B
Υ̂ααα dv ,

(3.82)

and for each component φβ

dβ

dt

∫
B

Υβ dv =
∫

∂B
(ϕβ · n) da +

∫
B
ξβ dv +

∫
B

Υ̂β dv ,

dβ

dt

∫
B

Υβ dv =
∫

∂B
(Φβ n) da +

∫
B

ξβ dv +
∫

B
Υ̂β dv .

(3.83)

3.5.2. Local master formulation

Assuming sufficiently smooth fields of Υ/Υ as well as Υααα/Υααα and Υβ/Υβ, the local
balance equations can be established for the overall mixture with

Υ̇ + Υ div ẋ = div ϕ + ξ + Υ̂ , Υ̇ + Υ div ẋ = div Φ + ξ + Υ̂ , (3.84)

and for the constituents φααα and components φβ with

(Υααα)′
ααα + Υααα div x′

ααα = div ϕααα + ξααα + Υ̂ααα , (Υααα)′
ααα + Υααα div x′

ααα = div Φααα + ξααα + Υ̂ααα ,

(Υβ)′
β + Υβ div x′

β = div ϕβ + ξβ + Υ̂β , (Υβ)′
β + Υβ div x′

β = div Φβ + ξβ + Υ̂β .

(3.85)
To gain the local master formulations, the total time derivatives of the left-hand
side of the global integral formulations given in Sect. 3.5.1 have been evaluated and
moreover, the Gauss divergence theorem [65] has been applied to the right-hand side
surface terms. A more detailed derivation is given in Appendix A.2.
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3.5. Master balance principle

3.5.3. Constraints in multi-phase and multi-component framework

Considering the different levels of balance equations for φ, φααα and φβ, and the
corresponding correlations of the field quantity to be balanced (3.80), it becomes clear
that the right-hand side parts of the balance equations are also subject to constraints,
which have to be fulfilled to comply with the behavior of a single-phase material. The
constraints are derived by analyzing the summation of the balance equations of φβ to
gain the balance for φααα, and as well as summing over φααα to gain the balance equation
for φ. The derivations are given in Appendix A.4.

For the effluxes through the surface the constraints are given in general form with

ϕ =
∑
ααα

(ϕααα − Υααα dααα) =
∑
ααα

∑
β

(ϕβ − Υβdβααα) ,

Φ =
∑
ααα

(Φααα − Υααα ⊗ dααα) =
∑
ααα

∑
β

(Φβ − Υβ ⊗ dβααα) ,
(3.86)

and for the volume density productions and interaction supply terms the constraints
are given via

ξ =
∑
ααα

ξααα =
∑
ααα

∑
β

ξβ , ξ =
∑
ααα

ξααα =
∑
ααα

∑
β

ξβ (3.87)

Υ̂ =
∑
ααα

Υ̂ααα =
∑
ααα

∑
β

Υ̂β , Υ̂ =
∑
ααα

Υ̂ααα =
∑
ααα

∑
β

Υ̂β . (3.88)
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3.6. Mechanical balance equations

For purely mechanical problem definitions, the fields of density ρ and motion χ

are evaluated as a function of time t for all material points of the body within
the continuum mechanical description. For that, the material-independent balance
equations are derived for the density ρ, the linear momentum l, and the angular
momentum h. In the following, the balance of mass, balance of linear momentum
and balance of angular momentum are established for the overall mixture body φ,
each main phase φααα and each component φβ.

3.6.1. Balance equation of mass

The axiom for a single-phase material in a closed system states, that the mass
M =

∫
BS
ρ dv of body φ is constant and thus the temporal change equal to zero. At

the same time, the partial mass Mααα =
∫

BS
ρααα dv of constituent φααα as well as mass

Mβ =
∫

BS
ρβ dv of component φβ is variable due to exchange and/or reaction with

the remaining constituents and components, respectively. Proceeding from that, the
global mass balances are postulated with

d
dt

∫
B
ρ dv = 0 , dααα

dt

∫
B
ρααα dv =

∫
B
ρ̂ααα dv , dβ

dt

∫
B
ρβ dv =

∫
B
ρ̂β dv , (3.89)

wherein ρ̂ααα and ρ̂β denote the mass production terms per volume element dv. Mass
production occurs in case of e.g. growth of biological tissue, phase transformation
(liquid to ice), or chemical reactions.

Considering the introduced global master balances, the components of the mass
balances (3.89) are identified with

Υ → ρ ϕ → 0 ξ → 0 Υ̂ → 0

Υααα → ρααα ϕααα → 0 ξααα → 0 Υ̂ααα → ρ̂ααα

Υβ → ρβ ϕβ → 0 ξβ → 0 Υ̂β → ρ̂β ,

(3.90)
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3.6. Mechanical balance equations

so that the local balance equations read according to (3.84) and (3.85)

ρ̇+ ρ div ẋ = 0 , (ρααα)′
ααα + ρααα div x′

ααα = ρ̂ααα , (ρβ)′
β + ρβ div x′

β = ρ̂β . (3.91)

Implementing (3.90) into the general constraint formulations (3.80), (3.86) and (3.88)
provides the specific constraints for density, effluxes and mass fluxes with

ρ =
∑
ααα

ρααα =
∑
ααα

∑
β

ρβ , ϕ = −
∑
ααα

ραααdααα = −
∑
ααα

∑
β

ρβdβααα = 0 ,

ρ̂ =
∑
ααα

ρ̂ααα =
∑
ααα

∑
β

ρ̂β = 0 .
(3.92)

This coincides with the preliminary assumptions regarding the composition of the
densities (3.14) and (3.26) as well as the stated requirements for the diffusive mass
fluxes, cf. (3.74) and (3.75). Moreover, since the overall body is idealized as closed
system for mass exchange, whereas the boundaries of the constituents and their
composition are considered to be open fo mass exchange, eq. (3.92)3 applies.

Different representations of the mass balance

Inserting the definition of the partial density (3.11), the local mass balance (3.91)2

reads
(nαααραααR)′

ααα + (nαααραααR) div x′
ααα = ρ̂ααα . (3.93)

A change in mass indicated by ρ̂ααα can be caused either by change in volume with
ρ̂ααα = n̂ααα ραααR or by a change of the true density with ρ̂ααα = nααα ρ̂αααR. In case of a constant
true density ραααR = const. → (ραααR)′

ααα = 0, (3.93) reduces to

(nααα)′
ααα + nααα div x′

ααα = n̂ααα , (3.94)

and moreover, when mass exchange is excluded (ρ̂ααα = 0 or n̂ααα = 0, respectively) to
the volume balance

(nααα)′
ααα + nααα div x′

ααα = 0 . (3.95)

The local mass balances (3.91) can also be reformulated in an Eulerian description,
here showing exemplarily the mass balance for the solution, by applying the material
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3. Extended Theory of Porous Media

time derivative (3.37)1 and the divergence calculation rule (A.1), so that

∂ρααα

∂t + div(ρααα x′
ααα) = ρ̂ααα (3.96)

is obtained. For stationary conditions, i.e. ∂ρααα/∂t = 0, and excluding mass exchanges,
the continuity equation known from fluid mechanics can be specified with

div (ρααα x′
ααα) = 0 . (3.97)

Likewise, these mass balance equations can be formulated also for the components
φβ.

3.6.2. Balance equation of linear momentum

Referring to the second axiom of Newton’s laws of motion, which states, that the
temporal change of the linear momentum l = ρẋ equals the sum of all external
forces k acting in the volume and the surface, the global balances of momentum
can be formulated. The external forces are composed of the local volume force ρb
and the surface force t = T n, cf. (3.76). As a consequence from the multi-phase
and -component description, an additional momentum production term has to be
considered for φααα and φβ. Thus, the linear momentum balances are postulated with

d
dt

∫
B
ρ ẋ dv =

∫
∂B

T n da +
∫

B
ρb dv

dααα

dt

∫
B
ρααα x′

ααα dv =
∫

∂B
Tααα n da +

∫
B
ρααα b dv +

∫
B

ŝααα dv

dβ

dt

∫
B
ρβ x′

β dv =
∫

∂B
Tβ n da +

∫
B
ρβ b dv +

∫
B

ŝβ dv .

(3.98)

Therein, the terms ŝααα and ŝβ define the total momentum supply terms between the
phases and components, also denoted as interaction forces. Considering the global
master balance equations (3.81)2, (3.82)2 and (3.83)2 together with the specific ones
(3.98), the associated quantities of the linear momentum balance for overall mixture
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3.6. Mechanical balance equations

φ, main phase φααα and component φβ are identified with

Υ → ρ ẋ ϕ → T ξξξ → ρb Υ̂ → 0

Υααα → ρααα x′
ααα ϕααα → Tααα ξξξααα → ρααα b Υ̂ααα → ŝααα

Υβ → ρβx′
β ϕβ → Tβ ξξξβ → ρβ b Υ̂β → ŝβ

(3.99)

Furthermore, the local balances of momentum read, proceeding from (3.84)2 and
(3.85)2,4, and moreover by implementing the local mass balances (3.91)

ρ ẍ = div T+ρb , ρααα x′′
ααα = div Tααα+ρααα b+p̂ααα , ρβ x′′

β = div Tβ+ρβ b+p̂β , (3.100)

see also App. A.5. In (3.100), the direct local momentum supply p̂ααα and p̂β, respec-
tively, are introduced with

p̂ααα = ŝααα − ρ̂ααα x′
ααα and p̂β = ŝβ − ρ̂β x′

β . (3.101)

Equation (3.101) shows, that the total momentum production ŝααα and ŝβ result from
a direct part p̂ααα and p̂β, and a possible additional supply term produced by a density
production ρ̂ααα and ρ̂β, respectively.

Considering the general constraints (3.80)2 and (3.88)2, the requirements for the
balance equations of linear momentum read

ẋ = 1
ρ

∑
ααα

ρααα x′
ααα = 1

ρ

∑
ααα

∑
β

ρβ x′
β ,

T =
∑
ααα

(Tααα − ρααα dααα ⊗ dααα) =
∑
ααα

∑
β

(Tβ − ρβdβααα ⊗ dβααα) ,

ρb =
∑
ααα

ρααα b =
∑
ααα

∑
β

ρβ b ,

(3.102)

Equation (3.102)1 is in accordance with the postulated relations for the mass average
velocities, cf. (3.60)1 and (3.61)1. To obtain (3.102)2, the relations (3.65) and (3.66)
have to be considered. Finally, the interaction forces need to fulfill

ŝ =
∑
ααα

ŝααα =
∑
ααα

∑
β

ŝβ = 0 . (3.103)
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3.6.3. Balance equation of angular momentum

The balance equation of angular momentum again bases on Newton’s second law of
motion. It postulates, that the temporal change of the overall angular momentum
h = x × ρẋ with regard to an arbitrary but spatial fixed reference point is balanced
with the total angular momentum caused by all external forces k acting on the body
B and surface ∂B with regard to the same spatial fixed point. Proceeding from this,
the global angular momentum balances for φ, φααα and φβ are postulated with

d
dt

∫
B

x × ρ ẋ dv =
∫

∂B
x × T n da +

∫
B

x × ρb dv

dααα

dt

∫
B

x × ρααα x′
ααα dv =

∫
∂B

x × Tααα n da +
∫

B
x × ρααα b dv +

∫
B

ĥααα dv

dβ

dt
∫

B x × ρβ x′
β dv =

∫
∂B

x × Tβ n da +
∫

B
x × ρβ b dv +

∫
B

ĥβ dv .

(3.104)

Therein, the total production terms ĥααα and ĥβ for the moment of momentum are
introduced for the multi-phase and -component description. Comparing again (3.104)
to the master global balances (3.81)2, (3.82)2, and (3.83)2, the specific field quantities
are obtained with

Υ → x × ρ ẋ ϕ → x × T ξξξ → x × ρb Υ̂ → 0

Υααα → x × ρααα x′
ααα ϕααα → x × Tααα ξξξααα → x × ρααα b Υ̂ααα → ĥααα

Υβ → x × ρβx′
β ϕβ → x × Tβ ξξξβ → x × ρβ b Υ̂β → ĥβ .

(3.105)

With that, and by using the local mass balances (3.91) as well as the local linear
momentum balances (3.100), the local balances for angular momentum can be derived
in accordance to (3.84)2 and (3.85)2,4 as

0 = I × T , 0 = I × Tααα + m̂ααα , 0 = I × Tβ + m̂β , (3.106)

where the direct angular momentum production is given with

m̂ααα = ĥααα − x × ŝααα and m̂β = ĥβ − x × ŝβ . (3.107)
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3.7. Thermodynamical balance equations

In analogy to (3.101), the total angular momentum production ĥααα and ĥβ is composed
of a direct part m̂ααα and m̂β, and an additional term due to linear momentum
production ŝααα and ŝβ, respectively. The derivation is given in App. A.6. From (3.106)
can be concluded, that the Cauchy stress tensor is symmetric, viz

T = TT , (3.108)

whereas the partial stress tensors Tααα and Tβ are only symmetric in case of m̂ααα = 0
and m̂β = 0, respectively, which is the case for non-polar materials, cf. Ehlers [45] or
Hassanizadeh and Gray [59].

Considering again (3.80)2, (3.86)2 and (3.88)2, the constraints for the balance of
angular momentum read for the angular momentum

x × ρ ẋ = x ×
∑
ααα

ρααα x′
ααα = x ×

∑
ααα

∑
β

ρβ x′
β ,

x × T = x ×
∑
ααα

(Tααα − ρααα dααα ⊗ dααα) = x ×
∑
ααα

∑
β

(Tβ − dβααα ⊗ dβααα) ,

x × ρb = x ×
∑
ααα

ρααα b = x ×
∑
ααα

∑
β

ρβ b ,

(3.109)

The angular momentum production is constrained with

ĥ =
∑
ααα

ĥααα =
∑
ααα

∑
β

ĥβ = 0 . (3.110)

3.7. Thermodynamical balance equations

Several problem definitions in continuum mechanics contain also non-mechanical,
like thermal, electromagnetic or chemical, influences. Their description is possible
by defining corresponding field variables, and the effects of all physical fields can be
coupled and balanced. All of these processes are accompanied by the thermal effects
of temporal and spatial temperature change and heat flux. Hence, for non-isothermal
investigations, as given in this contribution, the balance equation of energy is required
as a governing equation. The balance equation can be derived axiomatically from the
first law of thermodynamics, which postulates, that the total energy U in a closed
systems stays constant, cf. also (2.1).
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3. Extended Theory of Porous Media

Nevertheless, the laws of thermodynamics have to be considered likewise also for
isothermal problem investigations to ensure a thermodynamical consistent material
description. This is done by evaluating the second law of thermodynamics, cf. (2.6),
the entropy inequality, which is not a balance equation in the proper sense. It reflects
the fact, that thermal energy is only convertible into mechanical energy up to a certain
degree of efficiency, and thus reveals, if a process is reversible or dissipative. It also
implies, e.g., that heat is not transferable spontaneously from a system with lower
temperature to a system with higher temperature.

3.7.1. Balance equation of energy

The first law of thermodynamics balances the rate of energy change in the system.
The total energy of a body is composed of the kinetic energy K and internal energy
U , cf. Sect. 2.2,

K =
∫

BS

1
2 ρ ẋ · ẋ dv , U =

∫
BS
ρ ε dv , (3.111)

where ε denotes the specific internal energy, cf. (2.50). The temporal change of the
total energy is balanced with the sum of external mechanical work9 W and heat Q
with

W =
∫

∂BS
TTẋ · n da +

∫
BS

ρb · ẋ dv , Q =
∫

∂BS
−q · n da +

∫
BS
ρ r dv (3.112)

The non-mechanical power in the form of heat is contains the heat flux vector q,
which is positive when entering the body, and an external specific energy source r.
Again, all definitions can be transferred to its partial and component-wise quantities.
The global balance equations are then postulated for φ, φααα and φβ with

9Use has been made of the Cauchy theorem via W =
∫

∂BS
ẋ · t da = ẋ · T n da = TTẋ · n da + ...
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d
dt

∫
B
ρ (ε+ 1

2 ẋ · ẋ) dv =
∫

∂B
(TT ẋ − q) · n da +

∫
B
ρ (b · ẋ + r) dv

dααα

dt

∫
B
ρααα (εααα + 1

2x′
ααα · x′

ααα) dv =
∫

∂B
((Tααα)T x′

ααα − qααα) · n da +
∫

B
ρααα (b · x′

ααα + rααα) dv

+
∫

B
êααα dv

dβ

dt

∫
B
ρβ (εβ + 1

2x′
β · x′

β) dv =
∫

∂B
((Tβ)T x′

β − qβ) · n da +
∫

B
ρβ (b · x′

β + rβ) dv

+
∫

B
êβ dv

(3.113)

The local energy supply between the phases and components due to a multi-phase
and -component framework is considered via êααα and êβ, respectively. Comparing the
global energy balances (3.113) to (3.81)1, (3.82)1 and (3.83)1 yields the specific field
quantities of the energy balance with

Υ → ρ (ε+ 1
2 ẋ · ẋ) ϕ → TT ẋ − q ξ → ρ (b · ẋ + r) Υ̂ → 0

Υααα → ρααα (εααα + 1
2x′

ααα · x′
ααα) ϕααα → (Tααα)T x′

ααα − qααα ξααα → ρααα (b · x′
ααα + rααα) Υ̂ααα → êααα

Υβ → ρβ (εβ + 1
2x′

β · x′
β) ϕβ → (Tβ)T x′

β − qβ ξβ → ρβ (b · x′
β + rβ) Υ̂β → êβ

(3.114)
With (3.114) and by using (3.91) and (3.100), the local balances of energy can be
derived in accordance to the general formulations (3.84)1 and (3.85)1,3 with

ρ ε̇ = T · L − div q + ρ r

ρααα (εααα)′
ααα = Tααα · Lααα − div qααα + ρααα rααα + ε̂ααα

ρβ (εβ)′
β = Tβ · Lβ − div qβ + ρβ rβ + ε̂β ,

(3.115)
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where the direct energy production terms ε̂ααα and ε̂β are introduced, cf. App. A.7. The
total energy production terms êααα and êβ, respectively, are the sum of mechanical and
non-mechanical energy production with

êααα = ε̂ααα + p̂ααα · x′
ααα + ρ̂ααα(εααα + 1

2 x′
ααα · x′

ααα)

êβ = ε̂β + p̂β · x′
β + ρ̂β(εβ + 1

2 x′
β · x′

β) .
(3.116)

Equation (3.116) shows, that the total energy production results from a direct energy
production part ε̂ααα and ε̂β, a part from direct momentum production p̂ααα and p̂β, and
a part due to exchange of specific internal and kinetic energy caused by a density
production connected with ρ̂ααα and ρ̂β, respectively.

To comply with the constraints based on Truesdell’s metaphysical principles given
in (3.80), (3.88) and (3.92)3, the following relations have to considered

ρ ε =
∑
ααα

ρααα(εααα + 1
2 dααα · dααα) =

∑
ααα

∑
β

ρβ(εβ + 1
2 dβααα · dβααα)

ρ r =
∑
ααα

ρααα(rααα + b · dααα) =
∑
ααα

∑
β

ρβ(rβ + b · dβααα) .

(3.117)

and
q =

∑
ααα

qααα − [(Tααα)T − ρααα (εααα + 1
2 dααα · dααα) I ] dααα

=
∑
ααα

∑
β

qβ − [(Tβ)T − ρβ (εβ + 1
2 dβααα · dβααα) I] dβααα

(3.118)

To derive the rearranged constraints specified in (3.117) and (3.118), use has been
made of the definitions for the diffusion velocities (3.65) and (3.66), as well as the
relations of the diffusive fluxes (3.74) and (3.75)10.

Therein, the parts connected with the diffusion velocities dααα and dβααα describe the
entries of the kinetic diffusion energy to the internal energy, the heat flux or source,
compare also the constraint for the stress tensor (3.102)2. Physically interpreted,

10A detailed derivation is not provided here
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these diffusive initiated parts come into play for turbulent flow situations, so that
they are neglected in the application in the further course of this work.

Finally, the constraint for the energy supply is given with

ê =
∑
ααα

êααα =
∑
ααα

∑
β

êβ = 0. (3.119)

3.7.2. Entropy inequality

As described in the introductory part of Sect. 3.7, the entropy balance is not utilized
as governing equation during model setup, but for the thermodynamical consistent
material modeling. In general, material laws have to be constrained, so that they
don’t violate basic physical principles, e.g., that heat cannot spontaneously flow from
cold to hot, or heat can’t be turned entirely into mechanical work. This is described
with the second law of thermodynamics, which has to be fulfilled for any admissible
thermo-mechanical process.

The entropy balance relation equals the temporal change of the specific entropy η in
the mixture body φ with external influences. The global balances for φ, φααα and φβ

are postulated with

d
dt

∫
B
ρ η dv = −

∫
∂B
ϕϕϕη · n da +

∫
B
ξη dv +

∫
B
η̂ dv

dααα

dt

∫
B
ραααηααα dv = −

∫
∂B

( 1
θααα

qααα · n) da +
∫

B

1
θααα
ρααα rααα dv +

∫
B
η̂ααα dv

dβ

dt

∫
B
ρβηβ dv = −

∫
∂B

( 1
θβ

qβ · n) da +
∫

B

1
θβ
ρβ rβ dv +

∫
B
η̂β dv ,

(3.120)

wherein the negative sign of the efflux term denotes entropy supply, when the flux
vector is directed into the body. In contrast to the former introduced balance equations
for the mixture, eq. (3.120)1 contains the entropy production term η̂ for the overall
mixture, which is restricted to be ≥ 0 by the second law of thermodynamics. The 2nd
law expresses the experience that mechanical work can be completely transformed
into heat, but the transformation of heat into mechanical energy is only partially
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successful. Hence, the dissipation of mechanical work into heat is accompanied by an
entropy production, which must not be negative11.

This restriction is postulated in a multiphasic and multi-component framework only
for the overall mixture body, since it is too restrictive to be claimed for φααα and φβ

as historically experienced. For more detailed explanations see e.g. Ehlers [45].
Proceeding from that, the entropy fluxes of φααα and φβ are introduced a priori with

ϕϕϕααα
η = qααα/θααα and ϕϕϕβ

η = qβ/θβ , (3.121)

and the entropy supply with

ξααα
η = ραααrααα/θααα and ξβ

η = ρβrβ/θβ . (3.122)

The entropy efflux of the overall mixture as well as the supply ϕϕϕη and ξη are then
derived from the summation over φααα and φβ, respectively. With that, the following
quantities can be identified for the entropy balances:

Υ → ρ η ϕ → −ϕϕϕη ξ → ξη Υ̂ → η̂ ≥ 0

Υααα → ρααα ηααα ϕααα → −qααα

θααα
ξααα → ρααα rααα

θααα
Υ̂ααα → η̂ααα

Υβ → ρβ ηβ ϕβ → −qβ

θβ
ξβ → ρβ rβ

θβ
Υ̂β → η̂β

(3.123)

With (3.123) and (3.91)1 the local entropy balances for φααα and φβ are formulated
as

ρααα (ηααα)′
ααα + div (qααα

θααα
) − ρααα rααα

θααα
= ζ̂ααα , ρβ (ηβ)′

β + div (qβ

θβ
) − ρβ rβ

θβ
= ζ̂β , (3.124)

cf. also App. A.8. Therein, the direct entropy production terms ζ̂ααα and ζ̂β are intro-
duced, which build, together with the entropy increase caused by density production,
the total entropy production:

η̂ααα = ζ̂ααα + ρ̂ααα ηααα and η̂β = ζ̂β + ρ̂β ηβ . (3.125)

11From dissipation inequality:
∫

B
η̂ dv = d

dt

∫
B

ρ η dv −
∫

B
ξη dv +

∫
∂B

ϕϕϕη · da ≥ 0
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The local entropy balance for φ is derived by summation of the local balances of the
constituents φααα (3.124)1 and by considering the constraint η̂ = ∑

ααα η̂
ααα ≥ 0, so that

∑
ααα

[ ρααα (ηααα)′
ααα + ρ̂ααα ηααα + div (qααα

θααα
) − ρααα rααα

θααα
] ≥ 0 (3.126)

is obtained. The constraints for the multiphasic and multi-component entropy principle
can finally be specified in accordance to (3.80)1 and (3.88)1 with

η = 1
ρ

∑
ααα

ρααα ηααα = 1
ρ

∑
ααα

∑
β

ρβ ηβ

ϕϕϕη =
∑
ααα

(qααα

θααα
+ ρααα ηααα dααα) =

∑
ααα

∑
β

(qβ

θβ
+ ρβ ηβ dβααα)

ξη =
∑
ααα

ρααα rααα

θααα
=

∑
ααα

∑
β

ρβ rβ

θβ

(3.127)

and
η̂ =

∑
ααα

η̂ααα =
∑
ααα

∑
β

η̂β ≥ 0 . (3.128)
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3. Extended Theory of Porous Media

Clausius-Duhem inequality

For another representation of (3.126), the partial specific Helmholtz free energy ψ
and its derivative are chosen as energy potential with

ψααα = εααα − θααα ηααα and (ψααα)′
ααα = (εααα)′

ααα − (θααα)′
ααα η

ααα − θααα (ηααα)′
ααα , (3.129)

cf. (2.7). As the entropy ηααα is the primary natural variable of the internal energy εααα,
whereas for the free energy ψααα it is the temperature θααα, this formulation provides a
more useful quantity to observe and measure. Implementing (3.129) into the local
balance equation of energy (3.115)2, rearranging the new formulated energy balance
with respect to ρααα rααα and finally inserting12 it into (3.126) yields

∑
ααα

1
θααα

{Tααα · Lααα − ρααα[(ψααα)′
ααα + (θααα)′

ααα η
ααα] − p̂ααα · x′

ααα

− ρ̂ααα(ψααα + 1
2x′

ααα · x′
ααα) − 1

θααα
grad θααα · qααα + êααα} ≥ 0 , (3.130)

which represents the well-known Clausius-Duhem inequality. This form of the entropy
inequality is sufficient and convenient in order to obtain restrictions for the constitutive
modeling.

12with calculation rule div ( 1
θααα

qααα) = 1
θααα

div qααα − 1
(θααα)2 grad θααα · qααα
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4. Mass transport in multi-component
porous media

Section 3.3.5 introduced the different types of fluxes contributing to mass transport
that can arise in multi-component systems. On the one hand, mass can be transported
and carried along by the bulk motion of the solvent φααα. On the other hand, differences
in concentration can be balanced out by the molecular motion of the components
φβ. Commonly, these phenomena are denoted with advection and diffusion, and
well-established material equations exist for the implementation into computational
models.

Furthermore, the interaction of the advective and diffusive components may become
important, depending on the issue under investigation. If one considers for example a
light and a heavy gas (depending on its molar mass) separated at first in a tube, the
diffusion of the light gas is faster due to higher molecule velocity. When the barrier
between the light and heavy gas section is removed, the net flow of the molecules
is towards the heavy gas section. This leads to a pressure increase in the heavy gas
section, so that the arising pressure gradient causes in turn advection from the heavy
to light gas section. It is clear from the example, that diffusion is always followed by
advection, except for equimolar diffusion.

Another mechanism of mass transport in porous media is dispersion, which describes
the mechanical mixing of mass due to different relative movements of the fluid through
the pore network. Dispersion arises on the one hand through different fluid velocities
across the pores, on the other hand through the different characteristic lengths due to
the tortuosity of the pore network resulting in long or short pathways, see Fig. 4.1,
or also by friction.
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Pore size Path length Friction in pore

slow

fast

long
path

short
path

fast
slow
slow fast

slow
slow

Figure 4.1.: Microscopic dispersion at pore scale.

A distinction, if a transport process is driven by diffusion or advection/dispersion
can be made with the help of the dimensionless Peclét number, which relates the
advective to diffusive flow. A general calculation is given with

Pe′ = Lv

D
, (4.1)

where L denotes the characteristic flow length, v the average flow velocity and D

the binary diffusion coefficient. Small Peclét numbers indicate, that a process is
diffusion dominated whereas higher Peclét numbers show increasing dispersion
driven mixing.

For modeling of the advection-diffusion interaction, one simple and intuitive ansatz is
to use an additive approach for advection and diffusion. The classical constitutive
descriptions of these fluxes go back to Darcy’s equation, cf. Darcy [32], for flow
through porous media and Fick’s law of diffusion, see e.g. Atkins and de Paula [9].

In view of the constitutive material modeling presented in Sect. 5.4, which relate to
multi-component gas transport in porous media, the equations describing diffusion
and advection in porous media are presented in advance in the following paragraphs.

4.1. Diffusion

The generalized Fick’s law for a multi-component mixture is given with

mjαβ
diff = −cααα

m

ν−1∑
β=1

mDβν gradxαβ
m , jαβ

diff = −ραααR
ν−1∑
β=1

Dβν gradωαβ , (4.2)

see e.g. De Groot [37]. The coefficients mDβν and Dβν define the multi-component
diffusion coefficients for the (ν − 1) independent fluxes, resulting from the complex
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4.1. Diffusion

interactions between all components of the mixture, and should not to be mistaken with
the Fick binary diffusion coefficients known from literature, e.g. [74]. Additionally,
they depend on the the chosen reference frame, which is set up by choosing the mass
or molar averaged velocity, cf. (3.61).

The generalized form (4.2) indicates, that in case of a multi-component mixture the
diffusion of component φβ is not only driven by its own concentration gradient as in
classical binary Fick diffusion, but also by the concentration gradients of the remaining
mixture components. This idea was first formulated by Maxwell and Stefan, which
used another formalism based on the kinetic theory of gases and hydromechanics1.
However, both theories are equivalent, cf. Juncu et al. [68]. Detailed derivations of
both can e.g. be found in Taylor and Krishna [97]. Furthermore, it should be noted
that Fick’s approach to diffusion is most popular in experiments, since chemical
potentials in a multi-component mixture can only be obtained indirectly, while
concentrations can directly be measured. Additionally, Fick’s approach combines
more naturally with the concentration balance in multi-component fluid flow, cf. Sect.
5.4.3.

A closer look has to be taken on the calculation of the diffusion coefficients, on the
one hand due to the multi-component composition, and on the other hand due to
porous media interaction. The multi-component diffusion coefficients given in (4.2)
can just be derived by experimental measures, and all in all, a non-symmetric matrix
of (ν− 1)2 independent diffusion coefficients, highly dependent on the reference frame,
arises, cf. Taylor and Krishna [97]. A more suitable approach from a modeler’s point
of view to account for the multi-component nature of a liquid mixture is given with
the sometimes called Blanc’s law as

mDαβ = 1 − xαβ
m

ν∑
β=1
ι̸=β

xαβ
m

mDβι

and Dαβ = 1 − ωαβ

ν∑
β=1
ι̸=β

ωαβ

Dβι

(4.3)

see e.g. Reid, Prausnitz, and Poling [87]. This relation bases on the Maxwell-
Stefan equations, cf. Bird, Stewart, and Lightfoot [12], which illustrates the equality
of the common diffusion formulations by Maxwell-Stefan and Fick. In (4.3),

1The thermodynamical driving force, the chemical potential µβ , see also Sect. 2.5, of φβ is in
equilibrium with the friction forces between molecules, see e.g. Bothe [17].
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4. Mass transport in multi-component porous media

mDβι and Dβι denotes the binary diffusion coefficient of the binary mixture β and ι.
These values can be derived either by experimental measurements or otherwise by
empirical derived formulas, which mainly base on temperature, pressure, and molar
weights. Relations are given e.g. in Marrero and Mason [74], Stein, Hettiratchi, and
Achari [95], Ng, Feng, and Liu [83] or Novaresioa et al. [84].

Furthermore, (4.3) is only valid for diffusion in free air. For a porous medium, a
factor accounting for the limited pore space for gas diffusion and tortuosity of the soil
channels (see Fig. 4.1) is introduced with

τ = [(1 − sL) nF]10/3

(nF)2 , (4.4)

cf. Millington and Quirk [76]. Therein, the influence by liquid and solid obstacles are
captured by the saturation sL and porosity nF, cf. (3.5). Moreover, when the mean-free
path of molecules is of the same order as the pore diameter of the porous media,
the so-called Knudsen diffusion becomes important, which captures wall-molecule
interaction. A correlation for that factor can also be found in e.g. [84]. However, in
this work Knudsen diffusion will be disregarded as it is of negligible influence. With
(4.3) and (4.4) the diffusive flux of a gas mixture2 can finally be obtained with

mj Gγ
diff = −τ mDGγ grad cGγ

m and j Gγ
diff = −τDGγ grad ρGγ , (4.5)

wherein additionally use has been made of relation (3.25).

4.2. Advection

A common description for advective flow in porous media is to use an approach
founding on Darcy’s equation, who found a linear proportionality of a volumetric
flow passing through a cross-sectional area of a porous medium. Darcy’s law is
applicable to low velocity, yielding laminar flow3, which is usually the case in porous
media, see Webb [107]. For this work, only laminar flow will be considered, so that

2The gas main phase is denoted with φG with ν mixture components φγ so that φG = ∪
γ

φGγ .
3The indicator for laminar or turbulent flow is given by the Reynold number Re. For values below

a critical value Recrit, where destabilizing inertia forces are stabilized by friction forces, laminar
flow prevails, while values above Recrit yield turbulent flow.
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4.3. Concentration profiles for transport mechanisms

the Brinkman extension for boundary shear [23] and the Forchheimer extension
for turbulent flow [52] can be neglected. The Darcy-like weighted seepage velocity
for porous media is denoted as filter velocity and stated for each of the macroscopic
fluid main phases φF, distinguished with φβββ with βββ ∈ {L,G}, as

nβββwβS = −kβββ
0 (grad pβββR − ρβββR b) (4.6)

with respect to the deforming solid φS. The filer velocity contains the coefficient kβββ
0 ,

which can either be derived by the quotient of the intrinsic permeability KS of the
solid matrix and the dynamic viscosity ηβββR of the fluid passing through, or by the
permeability coefficient kβββ and the specific weight γβββR = ρβββ b:

kβββ
0 = KS

ηβββR = kβββ

γβββR . (4.7)

Which formulation is used depends on the available values. Furthermore, the Darcy
coefficient kβββ

D is introduced and adjusted to account for the deformable nature of the
porous medium with a pre-factor according to Ehlers and Eipper [47] with

kβββ
D = ( nF

nF
0S

)m kβββ
0 , (4.8)

where kβββ
D denotes the permeability coefficient in the actual configuration for a fully

saturated condition. The deformation dependence can be controlled via the exponent
m ≥ 0, which for m = 0 yields the permeability factor of the reference configuration.
For a triphasic constitutive formulation the Darcy factor (4.8) will further be
enhanced by the relative permeability factor κβββ

r depending on the respective saturation
of the mobile fluid phases.

4.3. Concentration profiles for transport mechanisms

In the following typical concentration profiles are shown that can be taken to identify
the prevailing mass transport mechanism, advective or diffusive, or if both phenomena
seem to be involved. The plots are taken from an academic example to show the trends
of the respective curves. Thus, Fig. 4.2 shows principle diagrams of concentrations,
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4. Mass transport in multi-component porous media

whose values are plotted on the ordinate, over a certain path, plotted on the abscissa.
The curves can be followed for an amount of time steps starting with the black curves
and proceeding to the dark blue curves. The applied concentration at the left path
boundary redistributes from the left to the right edge, which serves as an outflow.
The redistribution is either purely diffusion-driven with no induced filter velocity, or
purely advection-driven by applying a pressure induced filter velocity and at the same
time zero diffusion coefficients. In the case of Fig. 4.2c both mechanisms apply by
induced flow as well as diffusion.

While the diffusion curves, cf. Fig. 4.2a, are slightly convexly curved in the direction
of the outflow, the advection curves, cf. 4.2b show more of a concave curvature. When
both mechanisms are involved, Fig. 4.2c, the curve opens convexly to both sides.
From a physical point of view, mass transport always includes diffusion, whereas
purely advective processes are not occuring. However, the advective processes can
dominate the whole transport.

(a) only diffusion (b) only advection

(c) both diffusion and advection

Figure 4.2.: Comparison of mass transport driven by (a) solely diffusion, (b) solely
advection, and (c) both transport mechanisms.
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5. Biphasic solid - gas mixture model

Building on the previously derived theoretical description for a multi-component
porous medium, the specific model for a biphasic mixture consisting of a solid and a
multi-component gas phase is presented. The liquid phase is considered as trapped
liquid in the solid phase φS, providing optimum moisture conditions with regard to the
later application example. Of course, soil mechanical problems can be modeled and
calculated more realistically invoking a triphasic model, but however, this would lead
to a higher computational effort. This is avoided with regard to the later application
of methane oxidation in landfill cover layers, where the focus is on gas production,
transport and reaction, and the highly complex problem is investigated initially
without influences of the liquid content.

Subsequently, this chapter is concerned with the application of the general model
equations to the two-phase problem and the derivation of thermodynamically consistent
material equations for a biphasic compressible model.

5.1. Modeling approach

The biphasic model is composed of the macroscopic immiscible solid phase φS and
the gas mixture phase φG, which is given the framework of the eTPM with

φ = ∪
ααα
φααα = φS ∪ φG and φG = ∪

γ
φγ , (5.1)

cf. (3.1) and (3.15). Therein, the general mixture components φβ are now denoted
with φγ with γ = {1,..., ν} to show unambiguously that they are the components
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that make up the gas phase. According to (3.3) and (3.4) the macroscopic saturation
condition reads ∑

ααα

nααα = nS + nG = 1 , (5.2)

and its material time derivative

(nS)′
S + (nG)′

S = 0 , (5.3)

which clarifies, that changes in volume fractions have to balance each other so that
(5.2) is fulfilled. Furthermore, the partial densities for solid and gas are given with

ρS = nS ρSR and ρG = nG ρGR . (5.4)

The overall gas phase is composed of different components, i.e. gases, assumed to
be ideal gases each, which together form a compressible gas mixture. The required
density definitions formulated in mass and molar units, cf. Sect. 3.2, are collected for
the gas mixture in Tab. 5.1.

Moreover, both densities, molar and mass, are connected by the molar mass constant
MG

m = ∑
γ Mγ

m, calculated by the sum of each molar mass of φγ, with

ρGγ = Mγ
m cGγ

m and ρGR = MG
m cG

m . (5.5)

Summation of the molar and mass fraction, respectively, yields

∑
γ

xGγ
m = 1 and

∑
γ

ωGγ = 1 . (5.6)

Furthermore, the following relation for the partial density ρG of the gas mixture

Table 5.1.: Density definitions for gas mixture.

density true partial total fraction

molar cGγ
m = dnγ

m

dvG cγ
m = nG cGγ

m cG
m = ∑

γ cGγ
m xGγ

m = cGγ
m

cG
m

mass ρGγ = dmγ

dvG ργ = nG ρGγ ρGR = ∑
γ ρ

Gγ ωGγ = ρGγ

ρGR
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5.2. Preliminary assumptions

resulting from the multiphasic and multi-component description can be obtained:

ρG = nGρGR = nG∑
γ

ρGγ = nG∑
γ

ργ

nG =
∑

γ

ργ . (5.7)

The basic definitions for displacement, diffusion and difference velocities, cf. Sect. 3.3.5,
for the applied problem are collected in Tab. 5.2 with the mass and molar averaged
mixture velocities

x′
G = 1

ρGR

∑
γ

ρGγ x′
γ and mx′

G = 1
cG

m

∑
γ

cGγ
m x′

γ . (5.8)

Therein, the constraints concerning the diffusion velocity have to be obtained with

Table 5.2.: Kinematic definitions for solid - gas mixture.

mass averaged molar averaged

diffusion velocity dγG = x′
γ − x′

G mdγG = x′
γ − mx′

G

seepage velocity wGS = x′
G − x′

S mwGS = mx′
G − x′

S

relative velocity wγS = dγG + wGS or wγS = mdγG + mwGS

∑
γ

ρGγdγG = 0 and
∑

γ

cG
m mdγG = 0 . (5.9)

5.2. Preliminary assumptions

Any problem under investigation should be approximated as physically accurate as
possible by a computational model, but by taking also into account the time and effort
required for the calculation, so that reasonable assumptions are made in advance.
These are, for a mentioned soil mechanical problem with focus on the gas mixture
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5. Biphasic solid - gas mixture model

and interaction to the solid matrix, given with:

incompressible solid phase: (ρSR)′
S = 0

compressible gas mixture: (ρGR)′
G ̸= 0

→ ρGR (x, t, ρGγ)

equal temperature: θ = θααα = θGγ

→ êααα = êGγ = 0

non-isothermal calculation: (θ)′
ααα ̸= 0

no external heat supply: r = rααα = rGγ = 0

no mass exchange of main phases: ρ̂S = ρ̂G = 0

quasi-static investigation: ẍ = x′′
ααα = x′′

γ = 0

(5.10)

Considering the incompressible solid phase the derivatives of the true and partial
density read as

ρSR = ρSR
0S = const. → (ρSR)′

S = 0 → (ρS)′
S = (nS)′

S ρ
SR
0S , (5.11)

whereas for the compressible gas phase the material time derivative for the partial
density reads

(ρG)′
G = (nGρGR)′

G = (nG)′
G ρGR + nG(ρGR)′

G . (5.12)

Temperature changes are permitted for the non-isothermal calculation, but only
considering the same temperature for the whole mixture. The body is neither heated
nor cooled by external heat sources or sinks. Furthermore, mass exchange is excluded
between the main phases φααα, but existent for the components of the gas mixture due
to bio-chemical reactions following the constraint

∑
γ

ρ̂γ = 0. (5.13)

The momentum induced by density production ρ̂αααx′
ααα and ρ̂γx′

γ will be neglected,
since its amount is small in comparison to the direct momentum production p̂ααα with
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5.3. Field equations

ρ̂ααα x′
ααα ≪ p̂ααα and ρ̂γx′

γ ≪ p̂γ. From that, (3.101) can be reformulated to

p̂ααα = ŝααα and p̂γ = ŝγ (5.14)

constrained for the overall mixture by

p̂ =
∑
ααα

p̂ααα = p̂S +
∑

γ

p̂γ = o . (5.15)

Finally, laminar flow conditions are assumed, cf. Chapter 4.2, free of accelerations.

5.3. Field equations

The required field equations to set up the model can be derived by adapting the
introduced general balance equations, cf. Sec. 3.5.

5.3.1. Volume and concentration balances

The local volume balance equation for the solid main phase φS, considering the
assumptions of incompressibility (5.11) and exclusion of mass exchange, reads

(nS)′
S + nS div x′

S = 0 ⇒ nS = nS
0S J−1

S , (5.16)

see also App. B.1. The local mass balance equation for the gas main phase φG reads,
cf. (3.91)2,

(nG)′
G + nG

ρGR (ρGR)′
G + nG div x′

G = 0 , (5.17)

where (5.12) has been considered. Proceeding from (3.91)3, the concentration balance
for the gas mixture components reads

(ργ)′
γ + ργ div x′

γ = ρ̂γ . (5.18)
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5. Biphasic solid - gas mixture model

Implementing the partial mass definition for ργ, see Tab. (5.1), as well as (5.5), and
furthermore truncating the molar mass constant leads to

(nG cGγ
m )′

γ + nG cGγ
m div x′

γ = nG ĉGγ
m , (5.19)

with the molar exchange rate
ĉGγ

m = 1
Mγ

m
ρ̂Gγ . (5.20)

Reformulating the material time derivative of (5.19) with respect to the solid motion1,
and afterwards applying the divergence calculation rule (A.1) yields

(nG cGγ
m )′

S + div (nG cGγ
m wγS) + nG cGγ

m div x′
S = nG ĉGγ

m . (5.21)

Moreover, resolving the term (nG cGγ
m )′

S

▶ by considering (5.3) with (nG)′
S = −(nS)′

S,

▶ implementing the solid volume balance (5.16)1 with (nS)′
S = −nS div x′

S,

▶ and considering the saturation condition itself with nS = 1 − nG

the final formulation of the molar concentration balance can be obtained with

nG(cGγ
m )′

S + div (nG cGγ
m wγS) + cGγ

m div x′
S = nG ĉGγ

m . (5.22)

Likewise, the concentration balance in mass units can be obtained with

nG (ρGγ)′
S + div (nG ρGγ wγS) + ρGγ div x′

S = nG ρ̂Gγ . (5.23)

To comply with the general constraints (3.80), the summation of (5.18) with respect
to the average velocity x′

G has to yield the overall mass balance of the main gas phase
(5.17). A more detailed derivation is given in Appendix B.2.

1(·)′
γ = (·)′

S + grad (·) · wγS, in analogy to (A.12)
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5.3. Field equations

5.3.2. Momentum balances

The local momentum balances for a quasi-static formulation for the immiscible solid
and gas phase can be set up according to (3.100) with

div TS + ρS b = −p̂S and div TG + ρG b = −p̂G (5.24)

as well as
div Tγ + ργ b = −p̂γ with TG =

∑
γ

Tγ (5.25)

for the gas components. Summing up all single momentum balances yields the local
momentum balance for the overall body with

div T + ρb = 0 , (5.26)

where the relation (3.103) has been considered.

5.3.3. Energy balance

The problem to investigate requires the energy balance, but only for the mixture,
since equal phase and component temperatures are presumed. Proceeding from the
general local form according to (3.115) with

ρααα(εααα)′
ααα − Tααα · Dααα − ρααα rααα + div qααα = ε̂ααα (5.27)

with the direct energy production term

ε̂ααα = êααα − p̂ααα · x′
ααα − ρ̂ααα (εααα + 1

2 x′
ααα · x′

ααα) , (5.28)

(5.27) can be reformulated to

ρααα {(ψααα)′
ααα + (θ)′

ααα η
ααα + θααα(ηααα)′

ααα } − Tααα · Dααα − ρααα rααα + div qααα

= êααα − p̂ααα · x′
ααα − ρ̂ααα (εααα + 1

2 x′
ααα · x′

ααα) (5.29)

69



5. Biphasic solid - gas mixture model

where the definition of the Helmholtz free energy (3.129) is implemented. Con-
sidering (5.7), (5.15), and (5.25), the mixture energy balance reads for the present
solid-gas mixture model

ρS {(ψS)′
S + (θ)′

S η
S + θ (ηS)′

S } − TS · DS +
∑

γ

ργ {(ψγ)′
γ + (θ)′

γ η
γ + θ(ηγ)′

γ }

−
∑

γ

Tγ · Dγ + div q +
∑

γ

p̂γ · wγS +
∑

γ

ρ̂γ (ψγ + θ ηγ) = 0 , (5.30)

where use has been made of (3.117) and (5.15) as well as the postulation for the heat
flux vector

qS +
∑

γ

qγ = q . (5.31)

Furthermore, for the mass-specific free energy ψγ as well as the mass-specific entropy
ηγ the following constraints are valid:

ψG =
∑

γ

ψγ ηG =
∑

γ

ηγ . (5.32)

Due to the assumption of creeping flow conditions the square of the velocities x′
ααα · x′

ααα

is disregarded from (5.29) to (5.30). Thus, the contribution of the kinetic energy, see
(3.116), caused by chemical conversion to the mixture energy balance is negligible.

5.4. Constitutive theory

To close the model under consideration, this section provides the derivation for
a thermodynamic consistent approach of constitutive equations, which adequately
describe the material behavior. For that, the Clausius-Duhem inequality (3.130) is
invoked and evaluated. Following e.g. Ehlers [45], the set of constitutive variables
(#CQ) is chosen with

CQ = { TS, Tγ, p̂γ, ρ̂γ, ψS, ψγ, ηS, ηγ,q } := R . (5.33)

These variables represent the set of undetermined response functions R, which cannot
be computed from the given set of balance equations and the given motion and
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5.4. Constitutive theory

temperature fields x = χχχααα(Xααα, t) and θ = θ(x, t). The detailed derivation to gain R
is given in App. B.4.

Moreover, each response function is given as a functional of the basic thermo-
mechanical process variables density, motion and temperature, or generally speaking
as a functional of the set of process variables P with

R = R(P) . (5.34)

The development of constitutive equations in dependence of process variables for the
individual material requires the consideration of some basic principles of material
modeling in order not to violate physical and thermodynamical laws, and to avoid an
arbitrary construction of these. The axioms trace back e.g. to Truesdell and Toupin
[105], Truesdell and Noll [104] and Truesdell [103]. The main keypoints are:

▶ Principle of determinism: The current state at a material point depends on
the complete thermo-mechanical history of the entire material body and thus,
the set of response functions R is clearly defined by the history of the body.

▶ Principle of equipresence: The set of response functions R depends basically
on the same set of process variables P with R = R(P).

▶ Principle of local action: The set of response functions R of a material point
is determined by the history of only a small neighborhood of that particle.

▶ Principle of objectivity and material frame-indifference: The constitutive
equations must be observer-invariant to ensure an identical material response
including that the energy of a deformed body should remain unchanged for a
rigid-body motion.

▶ Principle of dissipation: The material equations have to be formulated such
that they do not violate the 2nd law of thermodynamics.

Based on the mentioned basic thermo-mechanical set, the set of process variables for
a multi-phase problem reads

P = {θ, gradθ, nααα, gradnααα, ραααR, gradραααR,

Fααα, Gradααα Fααα, x′
ααα,Gradααα x′

ααα, Xααα} .
(5.35)
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With this general set, a porous body can be described regarding its thermal state with
θ and gradθ 2, its inhomogenities Xααα, and its deformation state, see also Bowen [22,
20] and Ehlers [42]. In contrast to a single-phase material, whose state of deformation
can totally be described via the deformation gradient F, a multi-phase material needs
more variables. Due to possible mass productions, the partial densities cannot be
determined by the mass balance with ρ0 = Jρ (cf. (5.16)). Hence, the partial densities
ρααα are independent variables determined by nααα and ραααR, where either the partial
or true density, and the volume fraction have to be considered in (5.35). Moreover,
considering the saturation condition, only one volume fraction is needed as process
variable. To capture viscous effects, the velocities x′

ααα and their gradients Gradααα x′
ααα

can be included.

The set of (5.35) can be reduced to adapt more to the biphasic material considered
in this work as well as for simplifying reasons regarding the evaluation of the entropy
inequality as follows:

▶ Inhomogenitities, captured by Xααα, are not considered, neither for the solid nor
the gas phase.

▶ The solid phase itself is considered to behave purely elastically, so x′
S and its

gradient are eliminated from the set, whereas the whole body acts viscous, so
that x′

G is replaced by the seepage velocity wGS or relative wγS, respectively.
The gradient of the gas velocity is considered via the symmetric part of the
material velocity gradient of the gas components Dγ, which compose the main
gas velocity.

▶ The deformation gradient of the gas phase FG can be replaced by its determinant
and finally by ρGR, see Acartürk [6]. Proceeding from a multiplicative split
of FG into a volumetric (detFG) and isochoric (F̃G) part, see e.g. [65], the
deformation of the gas phase is only a function of its volumetric change with
FG = (det FG)1/3 I, where F̃G = I is stated for the isochoric part of a fluid.
Furthermore, the deformation variables of a fluid are not influenced by mass
production, so that detFG can be replaced by ρGR by considering the overall
mass balance .

2Gradients are generally considered to account for second grade materials, where the state of a
constituent may depend on the state of the others
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▶ The overall gas density ρGR is composed of the densities of its components ργ,
cf. (5.7).

▶ The volume fraction nG can be replaced utilizing the saturation condition and
(5.16)2 with nG = 1 − nS

0S (det FS)−1

▶ The solid material is assumed to be incompressible and not part of mass exchange,
hence, ρSR and its gradient can be neglected from (5.35) and the solid deformation
gradient is the only describing variable.

Finally, the set of specific process variables for the solid - gas mixture material is
defined with

P = { θ, gradθ, FS, GradSFS, ρ
γ, gradργ, wγS, Dγ} . (5.36)

5.4.1. Adaption of the entropy inequality

Proceeding from the general Clausius-Duhem inequality (3.130), used for thermo-
mechanical constitutive modeling, the entropy inequality for the material under
consideration reads

TS · DS − ρS {(ψS)′
S + (θ)′

S η
S } −

∑
γ

Tγ · Dγ −
∑

γ

ργ { (ψγ)′
γ + (θ)′

γ η
γ }

−
∑

γ

ρ̂γ ψγ −
∑

γ

p̂γ · wγS − 1
θ

q · grad θ ≥ 0 . (5.37)

Therein, the assumption of equal temperatures for mixture, phases and components,
see (5.10), is applied, so that the energetically conjugate variables θ ↔ η, cf. Tab.
2.1 are equal to θ ↔ ηγ. Due to the symmetry of the stress tensor Tααα the velocity
gradient Lααα was replaced by its symmetric part Dααα. Furthermore, the composition
of the gas density was considered via (5.7), the momentum production restriction
(3.101) and (3.103) were utilized, the definition for the relative velocity cf. Tab. (5.2)
and relation (5.31).

The mixture energy balance (5.30) and the given entropy inequality (5.37) contain
the specific Helmholtz free energy ψγ, which can be related to the main gas phase
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volume using the definitions for true and partial densities given in Tab. (5.1):

ργψγ = nG(ρGγψγ) = nGψGγ with ψGγ = ρGγψγ , (5.38)

so that the components φγ are related to their solvent φG. The material time
derivative of the specific Helmholtz energy is obtained with

ργ(ψγ)′
γ = ργ (ψ

Gγ

ρGγ
)′

γ = ργ

ρGγ
(ψGγ)′

γ − ργ

(ρGγ)2ψ
Gγ(ρGγ)′

γ , (5.39)

which will be needed subsequently. For the thermodynamical consistent description
of a multi-phase material the saturation condition has to be included as constraining
condition. This restricts the mutual impact of the motion and deformation of the
main phases. Hence, the material time derivative of (5.2) following the motion of the
solid phase, together with the Lagrange multiplier λ will be added to (5.37) with

λ {(nS)′
S + (nG)′

S} = 0 . (5.40)

In a next step the included material time derivatives of the volume fractions are
replaced by their associated mass and volume balances, respectively, and moreover,
the multi-component description of φG is taken into account by using the molar
concentration balance (5.19). To obtain an adequate expression for the change of the
gas fractions, one starts by summing up the molar concentration balances with

∑
γ

{(nG cGγ
m )′

γ + nG cGγ
m div x′

γ} = nG∑
γ

ĉGγ
m . (5.41)

Rearranging (5.41) according to App. B.3 yields the overall molar balance solved for
(nG)′

S with

(nG)′
S = −nG

cG
m

∑
γ

(cGγ
m )′

γ −nG∑
γ

xGγ
m Dγ ·I−grad nG∑

γ

xGγ
m ·wγS+ nG

cG
m

∑
γ

ĉGγ
m , (5.42)

where use has been made of (3.57). By formulating the overall gas balance in molar
units, one derives the dependency on the molar fraction xGγ

m , which is necessary in the
further course of evaluation regarding partial pressures. The material time derivative
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of the solid part is replaced by the volume balance (5.16) via

(nS)′
S = −nSdiv x′

S = −nS DS · I , (5.43)

where again use has been made of (3.57). With (5.42) and (5.43), the Lagrange
constraint (5.40) for evaluating the entropy inequality reads

λ { nS DS · I + nG

cG
m

∑
γ

(cGγ
m )′

γ + nG∑
γ

xGγ
m Dγ · I

+ grad nG∑
γ

xGγ
m · wγS − nG

cG
m

∑
γ

ĉGγ
m } = 0 . (5.44)

To comply with the mass formulation of (5.37), the molar parts of (5.44) are refor-
mulated back to mass concentrations by extending both expressions with

1 = (ργ)2 Mγ
m

(ργ)2 Mγ
m
,

cf. Graf [56]. They read afterwards:

∑
γ

nG

cG
m

(cGγ
m )′

γ =
∑

γ

ργ xGγ
m

(ρGγ)2 (ρGγ)′
γ

∑
γ

nG

cG
m

ĉGγ
m =

∑
γ

ρ̂γ x
Gγ
m

ρGγ
.

(5.45)

Finally, (5.44) including (5.45) is added3 to the basic entropy inequality (5.37), which
yields after implementing as well (5.39) and rearranging

( TS + nSλI ) · DS − ρS { (ψS)′
S + (θ)′

S η
S } +

∑
γ

{ Tγ + nGxGγ
m λ I } · Dγ

−
∑

γ

ργ { 1
ρGγ

(ψGγ)′
γ + (θ)′

γ η
γ } +

∑
γ

{ ργ

(ρGγ)2 (xGγ
m λ+ ψGγ ) } (ρGγ)′

γ

−
∑

γ

{ p̂γ − grad nGxGγ
m λ } · wγS −

∑
γ

ρ̂γ {ψγ + xGγ
m λ

ρGγ
} − 1

θ
q · grad θ ≥ 0 .

(5.46)

3Adding the material time derivative of the saturation condition is possible, since it is equal to zero.
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5.4.2. Evaluation of the entropy inequality

The entropy inequality (5.46) is evaluated following the procedure according to
Coleman and Noll [28], see also Bowen [22, 19, 18]. This procedure presumes that the
balance equations for the physical process are satisfied at all times, and only specified
mechanical or other physical equations can be considered as a constraining condition
(e.g. the rate of the saturation condition for multi-phase problems as given in this
work). The more general, but hence more demanding procedure according to Liu
[71] and Müller [81] prescribes to add all field equations multiplied by Lagrange
multipliers to the inequality as constraints. Due to the amount of multipliers, a
greater generality of the results arises, since more degrees of freedom are available in
the evaluation. On the other hand, the introduced multipliers have to be determined.
This is done on the basis of physically motivated assumptions and can be very time-
consuming. Based on the experience gained, Coleman & Noll procedure is chosen
for this investigation.

The set of process variables P (5.36) was specified so, that it satisfies the needs to
describe the material at hand adequately. With the choice of P the material change
of the Helmholtz free energy can be formulated. For that, a few more findings
are taken into account. Following the argumentation of Bowen [18], the gradients
of the describing variables in (5.36) only influence the dissipative terms, see also
e.g. the derivation by Ghadiani [55]. Furthermore, the experience has shown, that
the Helmholtz free energy of the constituents and components, respectively, only
depend on the variables brought into the process by the consitituent/component itself,
so that

ψS = ψS (FS, θ) and ψγ = ψγ (ργ, θ,wγS,Dγ) . (5.47)

Moreover, ψγ is chosen to be independent of wγS and Dγ in advance, which can
be followed e.g. in the derivation made by Ghadiani [55]. Moreover, keeping in
mind the principle of material frame-indifference, FS will be replaced by the right
Cauchy-Green deformation tensor CS, so that rigid body motions are excluded
and ψS only depends on the stretch component US via CS = U2

S = FT
S FS, cf. (3.49).

Finally, the chosen dependencies are stated with

ψS = ψS (CS, θ) and ψγ = ψγ (ργ, θ) . (5.48)
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Hence, the weighted material time derivatives of (5.46) can be calculated via

ρS (ψS)′
S = 2 ρS FS

∂ψS

∂CS
FT

S · DS + ρS ∂ψ
S

∂θ
(θ)′

S

ργ

ρGγ
(ψGγ)′

γ = ργ

ρGγ

∂ψGγ

∂ρGγ
(ρGγ)′

γ + ργ

ρGγ

∂ψGγ

∂θ
(θ)′

γ .

(5.49)

Inserting these formulations into (5.46) finally yields the determining entropy inequality
with

DS · { TS + nSλI − 2 ρSFS
∂ψS

∂CS
FT

S } +
∑

γ

Dγ · { Tγ + nGxGγ
m λ I }

− (θ)′
S {ρS ( ηS + ∂ψS

∂θ
) } −

∑
γ

(θ)′
γ {ργ ( ηγ + 1

ρGγ

∂ψGγ

∂θ
) }

+
∑

γ

(ρGγ)′
γ { ργ

(ρGγ)2 (xGγ
m λ+ ψGγ − ρGγ ∂ψ

Gγ

∂ρGγ
) }

−
∑

γ

wγS · { p̂γ − grad nGxGγ
m λ } −

∑
γ

ρ̂γ {ψγ + xGγ
m λ

ρGγ
} − 1

θ
q · grad θ ≥ 0

(5.50)

This formulation of the inequality has to be fulfilled for any admissible thermody-
namical process, cf. Coleman and Noll [28], in other words has to be valid for every
applied boundary value problem. The argumentation for the evaluation of the en-
tropy principle is based on the fact that in (5.50) both the process variables and
their temporal or spatial derivatives occur. In the context of the thermodynamic
process under consideration, the values of the process variables are fixed, but not the
values of their temporal and spatial derivatives. The thermodynamic state within
the process is completely determined by its process variables, but the process itself
can be controlled externally in such a way that for certain values of the process
variables their derivatives assume arbitrary values. It follows from this argumenta-
tion, that the terms connected with the derivatives of the process variables, in this
case P ′ = {DS, Dγ, (θ)′

S, (θ)′
γ, (ρGγ)′

γ }, must become zero and thus, are the energy
preserving parts.
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Equilibrium part

Proceeding from this argumentation, the following relations are obtained from (5.50):

TS + nSλ I = 2 ρSFS
∂ψS

∂CS
FT

S (5.51)

Tγ + nG xGγ
m λ I = 0 (5.52)

xGγ
m λ = ρGγ ∂ψ

Gγ

∂ρGγ
− ψGγ (5.53)

ηS = −∂ψS

∂θ
(5.54)

ηγ = − 1
ρGγ

∂ψGγ

∂θ
, (5.55)

where it becomes clear, that the stresses and entropy are thermodynamic potentials,
since they can be deduced from the derivative of the free energy to the defomations
and temperature, respectively. The remaining dissipation inequality is given with

D = −
∑

γ

wγS · { p̂γ − grad nGxGγ
m λ } −

∑
γ

ρ̂γ {ψγ + xGγ
m λ

ρGγ
} − 1

θ
q · grad θ ≥ 0 ,

(5.56)
which will be evaluated afterwards. Looking at the thermodynamic potentials, some
more assertions can be concluded. Analogously to the Helmholtz free energy of the
components φγ (5.38), a mass- and volume-specific formulation can be found for the
entropy (5.55) with

ηGγ = ρGγηγ , (5.57)

where ηγ denotes the mass-specific and ηGγ the volume-specific definition leading to

ηGγ = −∂ψGγ

∂θ
. (5.58)

Following the principle of effective stresses founded on Terzaghi [100], which states
that the total stresses of the solid matrix TS are divided into a mechanical (effective)4

part TS
E, and a part arising from the pore fluid pressure pFR acting on the solid

4Stresses, which are exclusively sustained by the solid grain matrix.
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matrix, Eq. (5.51) can be analyzed with

TS + nSλ I︸ ︷︷ ︸
= TS

E

= 2ρSFS
∂ψS

∂CS
FT

S , (5.59)

leading to the expression for the effective stresses with

TS
E = 2ρSFS

∂ψS

∂CS
FT

S . (5.60)

Furthermore, from (5.59) the Lagrange multiplier λ, connected with the rate of
the saturation condition, can be identified as the overall pore pressure pFR, which
makes sense considering the physical behavior. The pore pressure pFR of a partially
saturated medium is additively composed of the different pore fluid pressures from
the liquid- and gas-filled pore space with

pFR = (1 − sL) pGR + sL pLR , (5.61)

cf. Ehlers [43], which is in accordance to Dalton’s law [31]. However, since the
liquid phase φL is assumed to be included into the solid phase φS for the purpose of
this work, for the biphasic investigation

λ = pFR = pGR (5.62)

is valid. Analyzing furthermore restriction (5.52), the gas pressure pGR is given
compliant with Dalton’s law of partial pressures for ideal gases, cf. (2.45), that
states, that the pore pressure is composed of the sum of partial pressures of mixture
components. With the knowledge, that the ratio of partial pressures pGγ equals the
ratio of the number of molecules, expressed by the molar fraction xGγ

m , Dalton’s law
for the gas mixture pressures can be found with

pGγ = xGγ
m pGR and

∑
γ

pGγ = pGR . (5.63)

With that, restriction (5.52) can be reformulated to

Tγ = −nG xGγ
m pGR I , (5.64)
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and furthermore, cf. (5.25),

TG =
∑

γ

Tγ = −
∑

γ

nG pGγ I = −
∑

γ

pγ I = −nG pGR I , (5.65)

which satisfies the constraints for multi-phase and -component material description
(3.80). Further explanations regarding the modeling approach of the gas phase will
be given in Sect. 5.4.5.

Dissipative part

Taking into account the findings for the partial pressures (5.53), (5.62) and (5.63)1,
the dissipative part of the entropy inequality, cf. (5.56), is now reformulated to

D := −
∑

γ

wγS · (p̂γ − grad nGpGγ)︸ ︷︷ ︸
Dmom

−
∑

γ

ρ̂γ (ψγ + pGγ

ρGγ
)︸ ︷︷ ︸

Dchem

−
∑

γ

1
θ

q · grad θ︸ ︷︷ ︸
Dheat

≥ 0 .

(5.66)

Therein, three parts can be identified by their connection with the process variables
wγS, ρ̂γ and grad θ.5

The first term related to the seepage velocity wγS describes the dissipative part Dmom

resulting from momentum supply and thus reflects friction and damping between the
phases. The second term connected with the rate of mass exchange ρ̂γ reveals the
dissipative part Dchem due to chemical conversion and lastly, the term connected with
gradient of temperature governs the dissipation due to temperature change and heat
conduction Dheat. It is a sufficient demand that each part itself has to be equal or
greater than zero, so that

Dmom

!
≥ 0 , Dchem

!
≥ 0 , Dheat

!
≥ 0 (5.67)

is stated. The following relations ensure that (5.67) is satisfied:

p̂γ
E = −δwγS wγS , q = −α∇θ grad θ , ρ̂γ = −δµγ µγ . (5.68)

5The variables ρ̂γ and grad θ are not considered as process variables in the direct formulation of
(5.48), but still are process variables considering (5.35), wherein the density ργ is as function of
ρ̂γ .
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Therein, use has been made of the following definitions for the extra interaction forces
p̂γ

E and the chemical potential µγ, see also (2.25) and (2.26)6, with

p̂γ
E = p̂γ − grad nGpGγ , µγ = ψγ + pGγ

ρGγ
. (5.69)

Moreover, the material parameters are restricted to

δwγS ≥ 0 , α∇θ ≥ 0 , δµγ ≥ 0 . (5.70)

Taking a closer look on relation (5.68)1 for the extra momentum supply p̂γ
E, a more

detailed demand can be formulated. For that, the individual momentum balance for
component φγ (5.25) will be utilized. The ansatz (5.68)1 as well as stress relation
(5.65) are implemented to the momentum balance resulting in

div(−nGpGγI ) − ργ b + pGγgrad nG − δwγSwγS = o . (5.71)

Moreover, evaluating the stress divergence term with calculation rule (A.2) and
considering div I = 0 leads to

−nGgrad pGγ − ργ b − δwγS wγS = o , (5.72)

so that a general constitutive approach for the difference velocity is given with

δwγSwγS = −nGgrad pGγ − ργ b . (5.73)

Equation (5.73) can be used to find Darcy’s or Fick’s law, respectively, as well as
an combined advective-diffusive approach. Considering the problem at hand where
the gas mixture constitutes the fluid, the gravity acceleration term ργ b in (5.73) can
be neglected and finally

δwγSwγS = −nGgrad pGγ (5.74)

is valid.

Finally, also the chemical dissipative part can be viewed more closely. For a three-
component reactive mixture with φγ with γ = {1, ..., 4}, considering that the fourth

6More on the chemical potential in Sect. 5.4.5.
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component is inert7, the chemical dissipative part Dchem reads

Dchem := −ρ̂1µ1 − ρ̂2µ2 − ρ̂3µ3 ≥ 0 . (5.75)

Considering the constraint for mass exchange between the gas components (5.13),
(5.75) can be rewritten as

ρ̂2 (µ1 − µ2) + ρ̂3 (µ1 − µ3) ≥ 0 (5.76)

In order to fulfill Dchem, the following approach is finally postulated with

ρ̂2 = −δµ2(µ1 − µ2) and ρ̂3 = −δµ3(µ1 − µ3) . (5.77)

5.4.3. Identification of material parameters

Mass flux (Dmom)
The material parameter δwγS of (5.74) is identified in the context of the approach
for velocity and mass transport. For that, restriction (5.73) is invoked and modified
by multiplying the expression with the gas volume fraction nG. Thus, a general
formulation for the modified filter velocity referring to Darcy’s law8, cf. (4.6), is
initially obtained with

nG wγS = −(nG)2

δwγS

{grad pGγ} . (5.78)

Additionally, the definition for the diffusive mass fluxes (3.73) is invoked which yields
a reformulation for the total mass flux by a split into a diffusive and an advective
part with

ργ wγS = jγ
diff + ργ wGS . (5.79)

Recalling the definition for the partial mass density ργ , see Tab. (5.1), and introducing
as well the partial diffusive flux with

jγ
diff = nG j Gγ

diff , (5.80)

7e.g. nitrogen as given in the application following later
8Darcy’s law originally contains the gravitational term ρ b.
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(5.79) is reformulated and equated with (5.78) to

nG wγS = 1
ρGγ

nGj Gγ
diff + nG wGS

!= −(nG)2

δwγS

{grad pGγ} . (5.81)

Thus, an additive relation needs to be chosen for the prefactor to consider the split of
the total flow into diffusion and advection:

(nG)2

δwγS

!= {dγ
0 + kγ

0} . (5.82)

Therein, dγ
0 and kγ

0 are introduced as general diffusion and advective variables, and
(5.78) is replaced after inserting (5.82) by

nG wγS = −dγ
0 grad pGγ − kγ

0 grad pGγ . (5.83)

With the following chosen approaches

dγ
0 = ( nG

ρGγ
)DGγ

Rγθ
and kγ

0 = 1
xGγ

m

KS

ηGR = 1
xGγ

m

kβββ
0 . (5.84)

the total filter velocity for component φγ can be split into the diffusive part according to
Fick’s law, cf. (4.5), as well as the advective part according to Darcy’s law, cf. (4.6).
Therein, DGγ is the diffusion coefficient of component φγ in mixture φG according
to (4.3), and Rγ denotes the specific gas constant for component φγ. Implementing
(5.84) into (5.83) leads to

nG wγS = − nG

ρGγ
DGγ grad ρGγ − KS

ηGR grad pGR . (5.85)

where Dalton’s law of partial pressure, cf. (2.42) and (2.46), applied to the problem
at hand with

pGγ = ρGγRγθ and pGγ = xGγ
m pGR , (5.86)

is considered. To derive a mass flux formulation, (5.85) needs to be multiplied with
the density ρGγ, so that the total mass flux formulation reads

jγ
tot = nG j Gγ

tot = nG j Gγ
diff + ρGγ nG wGS

= nGρGγwγS = − nGDGγ grad ρGγ − ρGγ KS

ηGR grad pGR .
(5.87)
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Moreover, by summing up (5.87), the total mass flux of the overall gas phase φG is
obtained with ∑

γ

nGρGγwγS = nG∑
γ

ρGγ (x′
γ − x′

S)

= ρGR nG∑
γ

ωGγ(x′
γ − x′

S)

= ρGR nGwGS ,

(5.88)

where the definition for the mass average velocity (5.8)1 has been invoked. Taking a
closer look on (5.88)3 illustrates, that the prevailing transport process for the main
phase is driven by Darcy flow, whereas the diffusive fluxes balance each other.

Likewise, formulations in molar units can be derived by choosing mdγ
0 with

mdγ
0 = nG

mDGγ

cGγ
m Rm θ

, (5.89)

so that the equivalent molar flux for component φγ reads

mjγ
tot = nG

mj Gγ
tot = nG

mj Gγ
diff + cGγ

m nG
mwGS

= nGcGγ
m wγS = − nG

mDGγ grad cGγ
m − cGγ

m

KS

ηGR grad pGR .
(5.90)

and the overall molar flux of the mixture φG is obtained with
∑

γ

cGγ
m nG wγS = nG∑

γ

cGγ
m (x′

γ − x′
S)

= cG
m nG∑

γ

xGγ
m (x′

γ − x′
S)

= cG
m nG

mwGS .

(5.91)

Which formulation is used depends on the choice whether the concentration balance
is invoked in mass or molar units.

Heat conduction (Dheat)
The restriction for the heat flux vector q gained from the dissipation mechanism
(5.66) and (5.68), respectively, can directly be identified as Fourier’s law [53], which
describes the heat conduction negative proportional to the temperature gradient
with

q = −α∇θ grad θ (5.92)
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Thus, the material parameter α∇θ is determined as the heat conduction coefficient for
the mixture.

Conversion (Dchem)
As introduced in Sect. 2.5, the chemical potential characterizes, amongst others, the
potential to react with other substances. Revealing relation (2.30) concerning chemical
equilibrium for reactions, the material parameters δµ2 and δµ3 can be identified as the
stoichiometric coefficients of the reactants. With that, (5.77) is transferred to

ρ̂2 = −v2(µ1 − µ2) and ρ̂3 = −v3(µ1 − µ3) . (5.93)

5.4.4. Approach for Helmholtz free energy of solid matrix

The solid matrix is modeled assuming finite hyperelasticity. The elasticity for a
homogeneous material is expressed with PS = PS (FS), cf. e.g. Bonet and R. D. [16],
indicating that the stress measure is only a function of the current deformation state.
More specific, a conservative hyperelastic material formulation is chosen, so that the
work done by the stresses during the deformation process is independent of its path.

The hyperelastic potential ΨS, also denoted as strain energy is postulated with the
mass-specific Helmholtz free energy ψS multiplied by the solid partial density in
the reference configuration with

ΨS(FS) = ρS
0S ψ

S(FS) . (5.94)

Recalling the principles for material modeling, see Sect. 5.4, the strain energy density
must remain invariant for a rigid body rotation of the current configuration and
observer independent, so that

ΨS(FS) = ΨS(BS) = ΨS(CS) (5.95)

is valid, cf. (5.48). An extensive description of finite hyperelasticity can e.g. be
found in Holzapfel [65]. The strain energy function of isotropic materials can also
be represented as a function of the invariants of the right and left Cauchy-Green
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5. Biphasic solid - gas mixture model

deformation tensor, respectively, since both tensors have the same principle invariants
given as

I = BS · I = CS · I

II = 1
2 (I2 − BS BS · I) = 1

2 (I2 − CS CS · I)

III = det BS = det CS

(5.96)

For this work, the general approach of a Neo-Hookean energy function in terms
of the invariants is chosen, based on Simo and Pister [94], which covers the elastic
response for finite deformations of the solid matrix. The function is enhanced by a
thermal part, cf. Bluhm [13] and references therein, and reads

ΨS = 1
2 λ

S (ln JS)2 − µS ln JS + 1
2 µ

S (I − 3)

− 3αS kS (lnJS) (θ − θ0) − ρS
0S cS

V (θ ln ( θ
θ0

) − θ + θ0) .
(5.97)

Therein, λS and µS denote the macroscopic Lamé constants of the solid, kS = λS+ 2
3 µ

S

the bulk modulus, αS the thermal expansion coefficient, and cS
V the specific heat

capacity of the solid matrix, cf. (2.50).

5.4.5. Approach for Helmholtz free energy for gas components

The gas phase φG as well as its components φγ will be modeled as an ideal mixture
of perfect gases, which fits the assumption according to Bowen [22]. Thus, Dalton’s
law (2.45) and the approach for the chemical potential are considered, cf. also Sect.
2.6.3.

For that, the potential of the main gas phase ΨG is introduced by summing up the
Helmholtz free energies of its components (5.38) with

ΨG = ρGR ψG =
∑

γ

ρGγψγ =
∑

γ

ψGγ (5.98)

Recalling restriction (5.53) as well as (5.62) and (5.63), the partial pressure pGγ is
given with

pGγ = ρGγ ∂ψ
Gγ

∂ρGγ
− ψGγ , (5.99)
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5.4. Constitutive theory

which coincides with the derivations according to Bowen [22]. Therein, the components’
mass-specific chemical potential µγ is identified as the partial derivative of its volume-
specific Helmholtz free energy with respect to its true density:

µγ = ∂ψGγ

∂ρGγ
. (5.100)

With (5.100) and (5.38), the relation for the partial pressure reads

pGγ = ρGγµγ − ψGγ = µGγ − ψGγ , (5.101)

see also (5.69). Considering the postulated dependencies (5.48) with ψγ = ψγ (ργ, θ),
and taking into account the approach of the chemical potential for ideal gases, see
Sect. 2.6.3, the mass-specific Helmholtz free energy for the mixture components is
finally postulated with

ψγ = µγ
0 + Rγ θ {ln (ρ

Gγ

ρGγ
0

) − 1} − cγ
V{θ ln( θ

θ0
) − θ + θ0} . (5.102)

A more detailed derivation of the free energy for the gas components is given in App.
B.5.

5.4.6. Evaluation of thermodynamic potentials

The introduced Helmholtz free energies provide the basis to evaluate the thermo-
dynamic potentials gained from the evaluation of the entropy inequality given in
Sect. 5.4.2.

The solid strain energy (5.97) combined with (5.94) is implemented into (5.60), and
thus the non-linear thermo-elastic solid extra stresses read

TS
E = 1

JS
{2µS KS + λS (ln JS) I − 3αS kS (θ − θ0) I} . (5.103)

Therein, KS denotes the Karni-Reiner strain tensor referred to the actual placement
of φS, cf. (3.52)2. Moreover, use has been made of the relation JS = ρS

0S/ρ
S, see also

App. B.1.
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5. Biphasic solid - gas mixture model

The stresses of the overall gas phase are obtained by evaluating the gas pressure
(5.65) together with (5.63). The partial pressure can be obtained by implementing
the approach (5.102) in combination with (5.38) into (5.53), which leads to

pGγ = ρGγ Rγ θ . (5.104)

where Rγ denotes the specific gas constant for gas component φγ. Implementing
(3.28) yields the equivalent molar formulation with

pGγ = cGγ
m Rm θ . (5.105)

By summing up the partial pressures according to (5.63)2, the ideal gas law is obtained
with ∑

γ

ρGγ Rγ θ =
∑

γ

ρGγ R
Mγ

m

θ =
∑

γ

ρGγ

Mγ
m

Rθ = Rθ
∑

γ

cGγ
m︸ ︷︷ ︸

cGR
m

, (5.106)

where R denotes the universal gas constant.

Finally, the specific entropy functions of the solid phase and the gas components are
evaluated by invoking (5.54) and (5.55) as well as (5.97) and (5.102), leading to

ηS = 1
ρS

0S
3αS kS (lnJS) + cS

V {ln( θ
θ0

) + 1} − 1 (5.107)

and
ηγ = −Rγ { ln(ρ

Gγ

ρGγ
0

) − 1 } + cγ
V {ln ( θ

θ0
) + 1} − 1 . (5.108)

5.4.7. Evaluation of mixture balance of energy

With the knowledge of the constitutive derivations, the mixture energy balance (5.30)
can be rearranged in a simplified form. At first, the stress-strain rates are reformulated
with (5.51), (5.60) and (5.52) to

−TS · DS −
∑

γ

Tγ · Dγ = −TS
E · DS + λ nS DS · I + λ

∑
γ

xGγ
m nG Dγ · I , (5.109)
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the mass balances (5.43) and (5.42) are implemented with

nS DS · I = −(nS)′
S

∑
γ

xGγ
m nG Dγ · I = −(nG)′

S − nG

cG
m

∑
γ

(cGγ
m )′

γ − grad nG∑
γ

xGγ
m · wγS + nG

cG
m

∑
γ

ĉGγ
m ,

(5.110)

so that (5.109) finally can be obtained with

− TS · DS −
∑

γ

Tγ · Dγ =

− TS
E · DS + λ (−nG

cG
m

∑
γ

(cGγ
m )′

γ − grad nG∑
γ

xGγ
m · wγS + nG

cG
m

∑
γ

ĉGγ
m ) , (5.111)

where additionally (5.40) has been considered.

Recalling the partial pressure formulation with (5.62) and (5.63)1, as well as the
definition for the direct momentum production (5.69)1, the mixture balance of energy
(5.30) reads after inserting (5.111)

ρS{(ψS)′
S + (θ)′

S η
S + θ (ηS)′

S} +
∑

γ

ργ{(ψγ)′
γ + (θ)′

γ η
γ + θ (ηγ)′

γ} − TS
E · DS−

pGR nG

cG
m

∑
γ

(cGγ
m )′

γ + pGR nG

cG
m

∑
γ

ĉGγ
m + div q +

∑
γ

p̂γ
E · wγS +

∑
γ

ρ̂γ (ψγ + θηγ) = 0

(5.112)

Moreover, the terms related to the gas pressure pGR can be replaced by (5.45), hence,
(5.112) reads

ρS{(ψS)′
S + (θ)′

S η
S + θ (ηS)′

S} +
∑

γ

ργ{(ψγ)′
Gγ + (θ)′

Gγ η
γ + θ(ηγ)′

Gγ} − TS
E · DS−

∑
γ

pGγ ργ

(ρGγ)2 (ρGγ)′
γ + div q +

∑
γ

p̂γ
E · wγS +

∑
γ

ρ̂γ (ψγ + θηγ + pGγ

ρGγ
) = 0 .

(5.113)

Taking a closer look on the material time derivative of the solid Helmholtz energy
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5. Biphasic solid - gas mixture model

with (5.49)1 and (5.60), the derivative can be written as follows:

ρS (ψS)′
S = TS

E · DS + ρS ∂ψ
S

∂θ
(θ)′

S . (5.114)

Considering furthermore the entropy restriction (5.54), the following relation can be
found

ρS{(ψS)′
S + (θ)′

S η
S} = TS

E · DS , (5.115)

which cancels with the power of the extra solid stresses in (5.112). Likewise, the
terms regarding the gas components can be simplified. According to (5.53) the partial
pressure related to the components’ density change can be replaced by

∑
γ

pGγ ργ

(ρGγ)2 (ρGγ)′
γ =

∑
γ

( ρ
γ

ρGγ

∂ψGγ

∂ρGγ
− ργ

(ρGγ)2ψ
Gγ)(ρGγ)′

γ . (5.116)

With the material time derivative of the gas components’ Helmholtz energy (5.49)2

as well as the entropy relation (5.55), the equality

∑
γ

ργ{(ψγ)′
γ + (θ)′

γ η
γ} =

∑
γ

pGγ ργ

(ρGγ)2 (ρGγ)′
γ (5.117)

in (5.112) can be found, which can also be shortened.

Taking a closer look to the mass production term, the specific Gibbs energy, defined
as chemical potential µγ, cf. (2.26) or (5.100), can be identified with

µγ = ψγ + pGγ

ρGγ
. (5.118)

Additionally, the specific enthalpy is defined with hγ = µγ + θ ηγ, cf. (2.8), so that
the mass production term reads

∑
γ

ρ̂γ(µγ + θηγ) =
∑

γ

ρ̂γ(hγ) , (5.119)

which illustrates the correlation to the heat of reaction (2.34) via (5.77) and (5.93).
Finally, the energy balance of the mixture can be obtained in the general form

θ {ρS(ηS)′
S +

∑
γ

ργ(ηγ)′
γ} + div q = −

∑
γ

p̂γ
E · wγS −

∑
γ

ρ̂γhγ , (5.120)

90



5.4. Constitutive theory

The material time derivatives of the specific entropies (ηS)′
S and (ηγ)′

γ can then be
evaluated by implementing the postulations for the Helmholtz energies. For that,
the material time derivatives with respect to the dependencies (5.48) are invoked
with

(ηS)′
S = − ∂2ψS

∂θ ∂θ
(θ)′

S − ∂2ψS

∂θ ∂CS
(CS)′

S

(ηγ)′
γ = − ∂2ψγ

∂θ ∂θ
(θ)′

γ − ∂2ψγ

∂θ ∂ρGγ
(ρGγ)′

γ .

(5.121)

Considering the energy function for the solid given in (5.97) related to (5.94), the
second partial derivatives of (ηS)′

S are obtained with

∂2ψS

∂θ ∂θ
= cS

V
θ

and ∂2ψS

∂θ ∂CS
= 3

2 ρS
0S
αS kS(CS)−1 , (5.122)

and (ηγ)′
γ is set up invoking (5.102) with

∂2ψγ

∂θ ∂θ
= cγ

V
θ

and ∂2 ψγ

∂θ ∂ρGγ
= − Rγ

ρGγ
. (5.123)

By implementing the partial derivatives (5.122) and (5.123) into the general form
(5.120), the constitutive mixture energy balance is obtained with

ρS cS
V (θ)′

S + J−1
S

3
2 θ α

S kS(CS)−1(CS)′
S +

∑
γ

ργ cγ
V (θ)′

γ−

nG ∑
γ

pGγ

ρGγ
(ρGγ)′

γ + div q +
∑

γ

p̂γ
E · wγS +

∑
γ

ρ̂γ hγ = 0 , (5.124)

where additionally the definition for the partial pressure (5.104) has been implemented
with

ργ

ρGγ
θRγ = nG pGγ

ρGγ
. (5.125)
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5.5. Summary and closure problem

In the following the summarized constitutive model setup is presented, and the closure
problem for the coupled differential equations is compiled.

Governing model equations
The set of primary unknowns R is chosen with

R = R(x, t) = {uS, pGR, {cGι
m }, θ} , (5.126)

including the displacement uS, the overall pressure pGR, the amount of (ν − 1) molar
concentrations {cGι

m } with cGι
m = (cG1

m , cG2
m , ..., cG(ν−1)

m ), and the temperature θ of the
mixture. For the solution of these the following local forms of the balance equations
are invoked:

▶ mixture balance equation of momentum for uS

▶ mixture balance equation of mass for pGR

▶ single concentration balances for {cGι
m }

▶ mixture balance equation of energy for θ

The mixture balance equation of momentum is derived by summing up the momentum
balance of the solid φS and gas φG, cf. (5.24), and moreover by considering the
constraint for the interaction forces (5.15) with

divT + ρb = 0 . (5.127)

The required mixture balance equation of energy (5.120) is given with

θ{ρS(ηS)′
S +

∑
γ

ργ(ηγ)′
γ} + div q = −

∑
γ

p̂γ
E · wγS −

∑
γ

ρ̂γhγ . (5.128)

The overall pressure is calculated using the mixture balance of mass, which again
is derived by summing up the macroscopic mass balance equations for the solid
(5.16) and gas phase (5.17). After rearranging and implementing the known relations,
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5.5. Summary and closure problem

cf. Sect. B.6, the mixture mass balance reads

div ( nGwGS + x′
S) + nG

ρGR (ρGR)′
G = 0 . (5.129)

The molar concentration balance for component φγ is given according to (5.22) with

nG (cGγ
m )′

S + div (nG cGγ
m wγS) + cGγ

m div x′
S = nG ĉGγ

m . (5.130)

Explicit relations
The equations for the secondary variables are explicitly implemented into the governing
equations. They are composed of volume fraction relations as well as flow and diffusion
formulations. The volume fraction solid and its material time derivative can be
calculated by

nS = nS
0S detF−1

S and (nS)′
S = −nS div x′

S . (5.131)

see (5.16). The volume fraction of the gas and its material time derivative are solved
utilizing the saturation condition (5.2) and derivative and (5.40) with

nG = 1 − nS and (nG)′
S = −(nS)′

S (5.132)

The advective flow is directly computed with

nG wGS = KS

ηGR {grad pGR} , (5.133)

and the total molar flux with (5.90)

nG cGγ
m wγS = −nG

mDGγ grad cGγ
m − cGγ

m nG wGS . (5.134)

The heat flux is explicitly given by relation (5.92)

q = −α∇θ grad θ . (5.135)

Moreover, since the overall pressure pGR can be computed via the partial pressures,
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cf. (5.63)2 and (5.105), the ν-th component of {cGγ
m } is calculated with

cGν
m = pGR

Rmθ
−

ν−1∑
γ=1

cGγ
m . (5.136)

Remark. The term connected with the extra momentum supply p̂γ
E ·wγS of the mixture

energy balance (5.128) will be neglected, since the extra momentum supply vector is
a function of seepage velocity itself, cf. (5.68)1, and the square of the velocity is
negligibly small for the problems to investigate and thus disregarded.

Constitutive modeling
Finally, the following assumptions and constitutive relations are used, starting with
the true and partial densities:

ρSR = const. = ρSR
0S ⇒ (ρSR)′

S = 0 ρS = nS ρSR

ρGR =
∑

γ

ρGγ =
∑

γ

cGγ
m Mγ

m ρG = nG ρGR .
(5.137)

The solid stress and gas pressure as well as the specific entropies are calculated from
the approaches of the Helmholtz energies, cf. (5.97) combined with (5.94) and
(5.102) with (5.38), with

TS = −nS pGR I + TS
E

TG = −nG pGR I

TS
E = 2ρSFS

∂ψS

∂CS
FT

S = 1
JS

{2µS KS + λS (ln JS) I − 3αS kS (θ − θ0) I},

T = TS + TG = −pGR I + TS
E ,

(5.138)
where for the mixture stress T use has been made of the saturation condition (5.2).
The partial pressure pGγ is derived with

pGγ = ρGγ ∂ψ
Gγ

∂ρGγ
− ψGγ = ρGγ Rγ θ

= cGγ
m Rm θ

(5.139)
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and the specific entropies with

ηS = −∂ψS

∂θ
= 1
ρS

0S
3αS kS (lnJS) + cS

V {ln( θ
θ0

) + 1} − 1

ηγ = −∂ ψγ

∂ θ
= −Rγ { ln(ρ

Gγ

ρGγ
0

) − 1 } + cγ
V {ln ( θ

θ0
) + 1} − 1 .

(5.140)
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6. Numerical treatment

The coupled equation system of PDEs is solved with the FEM1, provided by the FEAP
by Taylor [98], which offers a platform to implement customized PDEs. Variational
formulations of the governing PDEs for the set of unknowns R of the model (5.126)
are needed for implementation. For that, the standard Galerkin2 procedure is
invoked to gain weak formulations of the local PDEs, which are introduced for the
problem at hand in Sect. 5.5.

The required weak formulations are obtained by a scalar multiplication of the governing
PDE with a test function and subsequent integration over the considered domain
Ω. For a solution, the derived functional is minimized to obtain equilibrium3 or
rather is varied until a steady solution is found. Moreover, the solution of the
PDE is approximated by a suitable trial (ansatz) function replacing the unknown,
which has to satisfies the boundary condition on ∂Ω (Sect. 6.1.5). For the Bubnov-
Galerkin procedure, commonly used within the FE framework, test and trial function
are selected equal. The procedure is also known as method of the weighted
residuals, where the test function can also be seen as a function, that weights the
residuum (PDE with ansatz function) in an integral manner. The requirement, that
the functional should vanish, is then fulfilled weakly for the integral and no longer
strong in each local material point. A detailed derivation of this topic e.g. is given in
Parisch [85].

Moreover, problems in solid mechanics are generally solved in the Lagrangean
description, cf. 3.3.1, whereas fluid mechanics are described in the Euler configuration.

1A detailed derivation of the FEM e.g. is given in Bathe [10] and Zienkiewitz and Taylor [112].
2The Galerkin procedure represents a general solution method of differential equations of arbitrary

type and thus is not restricted to problems requiring a potential (conservative systems).
3For conservative systems the functional equals the potential energy Π, for which the equilibrium

state is described by the minimum of the potential energy. The equilibrium is determined by the
demand for the first variation to be equal to zero with δΠ = 0.



6. Numerical treatment

Since multi-phase materials are characterized by a fluid flowing through a solid matrix,
a mixed Lagrange-Euler formulation is utilized. For that, the solid is covered
by the Lagrangean domain BS moving through time and space starting from a
reference configuration to which everything is related. The fluid instead is covered
by the Euler description, for which the Lagrange solid matrix serves as control
space.

In the following the derivation of the required weak formulations of the governing PDEs
is presented followed by an introduction to the element-wise spatial and temporal
discretization and solution procedure.

6.1. Weak formulations

6.1.1. Mixture balance of momentum

As test function for the mechanical part of the coupled equation system the variation
of the actual configuration δuS = δ (x = XS + uS), cf. (3.62), is chosen and multiplied
with the local form of the mixture balance equation of momentum (5.127). Moreover,
integration over the domain BS leads to the weak form in the actual configuration
with

Gu :=
∫

BS
(divT + ρb) · δuS dv = 0 . (6.1)

The divergence of T can be rewritten via the identity (A.3)
∫

BS
(divT) · δuS dv =

∫
BS

div(T δuS) dv −
∫

BS
T · grad δuS dv , (6.2)

so that the Gauss integral theorem can be applied to the first term on the right hand
side of (6.2) and the integral over the surface ∂BS∫

BS
div(T δuS) dv =

∫
∂BS

T n · δuS da =
∫

∂BS
t · δuS da , (6.3)

is obtained. This surface integral introduces the surface forces t = T n as stress
boundary condition, cf. (3.76). Bringing together (6.3) and (6.2) with (6.1) yields the
weak formulation of the mixture balance of momentum in the actual configuration
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with ∫
BS

T · grad δuS dv −
∫

BS
ρb · δuS dv =

∫
∂BS

t · δuS da . (6.4)

To comply with the Lagrangean description, a pull-back to the reference config-
uration is performed. Therefor, the volume element dv, the gradient grad and the
surface element da are referred to the reference configuration by invoking the transport
theorems given in Section 3.3.3. Using (3.43) and (3.45) yields for the left hand side
of (6.4)
∫

BS
T · grad δuS dv −

∫
BS
ρb · δuS dv

=
∫

B0S
T · (Grad δuS) F−1

S JS dV0S −
∫

B0S
ρb · δuS JSdV0S

=
∫

B0S
JST FT−1

S · Grad δuS dV0S −
∫

B0S
ρb · δuS JSdV0S

=
∫

B0S
P · Grad δuS dV0S −

∫
B0S

ρb · δuS JSdV0S ,

(6.5)
where additionally the definition the first Piola-Kirchhoff (1. PK) stress tensor
(3.78) is implemented. The right hand side surface integral of (6.4) is referred to the
reference configuration utilizing (3.44), which leads to

∫
∂BS

t · δuS da =
∫

∂BS
(TTδuS) · da =

∫
∂B0S

(TT δuS) · JSFT−1 dA0S

=
∫

∂B0S
JS (F−1TT) δuS · dA0S

=
∫

∂B0S
δuS · JS (F−1 TT)T︸ ︷︷ ︸

TFT−1

dA0S

=
∫

∂B0S
δuS · JS T FT−1︸ ︷︷ ︸

P
dA0S

=
∫

∂B0S
δuS · p0 dA0S

(6.6)
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with invoking the Cauchy theorem (3.76)

p0 = Pn0 . (6.7)

Therein, n0 denotes the outward normal vector in the reference configuration, see
Fig. 3.3. Finally, the mixture momentum balance in the reference configuration is
obtained with (6.5) and (6.6) as

∫
B0S

P · Grad δuS dV0S −
∫

B0S
JS (ρb) · δuS dV0S =

∫
∂B0S

p0 · δuS dA0S . (6.8)

6.1.2. Mixture balance of mass

Applying the Galerkin procedure with the test function δpGR for the pressure to
the mixture balance equation of mass (5.129) yields

Gp :=
∫

BS
{div(nG wGS + x′

S) + nG

ρGR (ρGR)′
G} δpGR dv = 0 . (6.9)

Therein, the divergence of the filter velocity can on the one hand be reduced to a first
order differential equation by applying the identity (A.1), and on the other hand, a
surface integral can be obtained by utilizing the Gauss theorem:∫

BS
div(nGwGS) δpGR dv =

∫
BS

div (nGwGS δpGR) dv −
∫

BS
nGwGS · grad δpGR dv

=
∫

∂BS
nGwGS · n δpGRda −

∫
BS

nGwGS · grad δpGR dv .
(6.10)

The divergence of x′
S is equal to grad x′

S ·I, see (3.57). With that, the weak formulation
of the mixture mass balance (6.9) in the current placement reads

−
∫

BS
nGwGS · grad δpGR dv +

∫
BS

{grad x′
S · I + nG

ρGR (ρGR)′
G} δpGR dv =

−
∫

∂BS
nGwGS · n δpGR da . (6.11)

Likewise, the mixture balance of mass is pulled back to the reference configuration by
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utilizing the volume, first order gradient and surface transport, so that

−
∫

B0S
nGwGS,0 · Grad δpGR dV0S +

∫
BS

JS {Grad x′
S · FT−1

S

+ nG

ρGR (ρGR)′
G} δpGR dV0S = −

∫
∂B0S

nGwGS,0 · n0 δpGRdA0S

(6.12)

is obtained, where the reference filter velocity nGwGS,0 is introduced with

nGwGS,0 = JS nGF−1
S wGS . (6.13)

Moreover, the pressure gradient of the spatial filter velocity given in (5.133) needs a
pull-back so that finally the expression containing the inverse of the right Cauchy-
Green tensor (3.46)1 is obtained with

nGwGS,0 = JS
KS

ηGR {Grad pGR F−1
S }FT−1

S = JS
KS

ηGR {Grad pGR} C−1
S . (6.14)

6.1.3. Concentration balance

The concentration balances are solved with the corresponding virtual molar concentra-
tion δcGγ

m . With that, the weak formulation is derived from (5.130) after multiplying
with the test function and integration over the domain BS as

Gc :=
∫

BS
{nG(cGγ

m )′
S + div (nG cGγ

m wγS) + cGγ
m div x′

S − nG ĉGγ
m } δcGγ

m dv = 0 (6.15)

Analogously to (6.10), the included divergence terms of the total molar flux mj Gγ
tot =

cGγ
m wγS, see (5.90), is reformulated to
∫

BS
div (nG

mj Gγ
tot ) δcGγ

m dv =
∫

BS
div(nG

mj Gγ
tot δcGγ

m ) dv −
∫

BS
nG

mj Gγ
tot · grad δcGγ

m dv

=
∫

∂BS
nG

mj Gγ
tot · n δcGγ

m da −
∫

BS
nG

mj Gγ
tot · grad δcGγ

m dv ,
(6.16)
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so that the concentration balance in the current configuration is obtained with

−
∫

BS
nG

mj Gγ
tot · grad δcGγ

m dv +
∫

BS
{nG(cGγ

m )′
S + cGγ

m grad x′
S · I − nG ĉGγ

m } δcGγ
m dv

= −
∫

∂BS
nG

mj Gγ
tot · n δcGγ

m da .
(6.17)

Applying again the transport theorems for volume, first order gradient and surface
yields the concentration balance in Lagrangean description with

−
∫

B0S
nG

mj Gγ
tot,0 · Grad δcGγ

m dV0S +
∫

B0S
JS {cGγ

m Grad x′
S · FT−1

S } δcGγ
m dV0S

+
∫

B0S
JS {nG(cGγ

m )′
S − nG ĉGγ

m } δcGγ
m dV0S = −

∫
∂B0S

nG
mj Gγ

tot,0 · n0 δcGγ
m dA0S . (6.18)

with the reference total molar flux

mj Gγ
tot,0 = JS F−1

S mj Gγ
tot . (6.19)

Moreover, the explicit relation of in the reference configuration reads with (6.14)

nG
mj Gγ

tot,0 = −JS (nG
mDGγ grad cGγ

m + cGγ
m nG wGS) FT−1

S

= −JS (nG
mDGγ Grad cGγ

m + cGγ
m

KS

ηGR Grad pGR) C−1
S

(6.20)

6.1.4. Mixture balance of energy

Finally, the weak formulation of the balance of energy of the mixture is derived
by multiplying the local form (5.128) with the test function δθ and integrating the
weighted residual over the solid domain as

Gθ :=
∫

BS
{θρS(ηS)′

S +θ
∑

γ

ργ(ηγ)′
γ +div q+

∑
γ

p̂γ
E ·wγS +

∑
γ

ρ̂γhγ} δθ dv = 0 , (6.21)

wherein the energy transport via p̂γ
E ·wγS is neglected, cf. 5.5. Moreover, the divergence

of the heat flux is reduced to a first order differential equation again via the identity
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and Gauss theorem∫
BS

div q δθdv =
∫

BS
div (q δθ) dv −

∫
BS

q · grad δθ dv

=
∫

∂BS
q · n δθ da −

∫
BS

q · grad δθ dv ,
(6.22)

which provides the boundary condition on the surface. With that, the weak formulation
in the actual placement reads

∫
BS

{θρS(ηS)′
S + θ

∑
γ

ργ(ηγ)′
γ +

∑
γ

ρ̂γhγ} δθ dv

−
∫

BS
q · grad δθ dv = −

∫
∂BS

q · n δθ da . (6.23)

Invoking the transport theorems, the weak formulation in the reference is obtained
with

∫
B0S

JS{θρS(ηS)′
S + θ

∑
γ

ργ(ηγ)′
γ +

∑
γ

ρ̂γhγ} δθ dV0S

−
∫

B0S
q,0 · Grad δθ dV0S = −

∫
∂B0S

q,0 · N δθ dA0S . (6.24)

Therein, q,0 denotes the overall reference heat flux vector with

q,0 = JS q FT−1
S , (6.25)

which is explicitly given with (5.135) as

q,0 = −JS (α∇θ Grad θF−1
S ) FT−1

S = −JS (α∇θ Grad θ ) C−1
S . (6.26)

6.1.5. Boundary conditions

For each unknown quantity of R to solve, either Dirichlet (geometrical) or Neu-
mann (forces) boundary conditions need to be applied on ∂BS, see Fig. 6.1. In the
sequence of above-mentioned balance equations they read

▶ displacement uS or mechanical force t

▶ pore pressure pGR or gas flux nGwGS
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▶ molar concentration via cGγ
m or total molar flux mj Gγ

tot

▶ temperature θ or heat flux q

∂BS BS

n

nGwGS n

q

n

mj Gγ
tot

t = Tn

uS

pGR
θ cGγ

m

Figure 6.1.: Scheme of boundary conditions

6.2. Finite element formulation

For the FE analysis the physical continuum body under consideration is divided into
and approximated through a finite number of elements. The geometric domain B0S

in the reference configuration is then given by Bh
0S, which is composed of the union of

nel elements Ωe :
B0S ≈ Bh

0S =
nel⋃
e=1

Ωe , (6.27)

The surface ∂Bh
0S is comprised by the edges and planes, respectivley, of those elements

situated on the edge, so that the real surface is approximated by

∂B0S ≈ ∂Bh
0S =

nel⋃
e=1

∂Ωe . (6.28)

In the following, a short introduction to the spatial and temporal discretization of the
unknown field variables and the element geometry are given on element level Ωe.
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6.2. Finite element formulation

6.2.1. Isoparametric concept and spatial discretization

The governing equations are discretized in the framework of the standard isoparametric
procedure. That concept comprises, that the geometry is approximated with the same
number of nodes I = 1, ..., nnode per element as the field unknowns and moreover, that
same ansatz functions NI are used to interpolate geometry and solid displacement of
the element Ωe between the discrete grid points. For interpolating the geometry the
approximation

XS ≈ Xh
S =

∑
I

NI(ξξξ) XI
S , (6.29)

applies, where XI
S denotes the discrete values of the nodal coordinates of the element

configuration Ωe. The shape functions are defined in the parameter space Ωp with
the natural coordinates ξξξ = (ξ, η, ζ)T, cf. Fig. 6.2.

X2

X1

X3

ξ

η

Ωe

x2

x1

x3

ξ

η

ξ

η1

1

−1

−1

Ωp
J

FS

Figure 6.2.: Isoparametric bilinear 4-node Lagrange element

In the context of the isoparametric description, the solid displacement uS, the test
function δuS as well as the incremental value ∆uS (cf. Sect. 6.2.2) are approximated
equally with

uS ≈ uh
S =

∑
I

N I(ξξξ) dI
uS

δuS ≈ δuh
S =

∑
I

N I(ξξξ) δdI
uS

∆uS ≈ ∆uh
S =

∑
I

N I(ξξξ) ∆dI
uS
,

(6.30)
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where dI
uS

, δdI
uS

and ∆dI
uS

are the vectors collecting the corresponding nodal values.
Moreover, the gradient of the solid displacement as well as of the test function and
increment are determined by using the gradient of the shape functions NI,XS .

Grad uS ≈ Grad uh
S =

∑
I

N I
,XS

(ξξξ) ⊗ dI
uS

Grad δuS ≈ Grad δuh
S =

∑
I

N I
,XS

(ξξξ) ⊗ δdI
uS

Grad ∆uS ≈ Grad ∆uh
S =

∑
I

N I
,XS

(ξξξ) ⊗ ∆dI
uS
.

(6.31)

The remaining scalar field unknowns (pGR, cGγ
m , θ), the corresponding test functions

and increments, and their spatial derivatives are likewise approximated with

Θ ≈ Θh =
∑

I

N I(ξξξ) dI
Θ

δΘ ≈ δΘh =
∑

I

N I(ξξξ) δdI
Θ

∆Θ ≈ ∆Θh =
∑

I

N I(ξξξ) ∆dI
Θ ,

(6.32)

and

Grad Θ ≈ Grad Θh =
∑

I

N I
,XS

(ξξξ) dI
Θ

Grad δΘ ≈ Grad δΘh =
∑

I

N I
,XS

(ξξξ) δdI
Θ

Grad ∆Θ ≈ Grad ∆Θh =
∑

I

N I
,XS

(ξξξ) ∆dI
Θ .

(6.33)

where Θ is representative for the respective scalar degree of freedom.

The derivatives of the shape functions with respect to the physical coordinates and
vice versa are given by invoking the chain rule with

N I
,ξξξ = J(ξξξ)N I

,XS
and N I

,XS
= J−1(ξξξ)N I

, ξξξ (6.34)

where use is made of the Jacobi matrix J(ξξξ) = ∂XS/∂ξξξ and its inverse, see also Fig.
6.2.

Mixed finite elements: For the coupled equation system at hand, a monolithic
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6.2. Finite element formulation

solution strategy is to be pursued, meaning that the resulting linear algebraic equation
system4 is solved simultaneously. For stability reasons, the displacement uS is
interpolated with quadratic shape functions, whereas the remaining degrees of freedom
are interpolated linear. The stability is mathematically based on the so-called LBB
condition (Ladyzhenskaya–Babuska–Brezzi), see e.g. [40], which states, that the
discretization spaces of displacement uh

S and pressure ph cannot be chosen arbitrarily
and a linkage between them is necessary to solve the saddle-point problem. The
condition, also known as inf-sup condition, is generally satisfied if the approximation of
the displacement is higher by one order than that of the pressure. That is implemented
by choosing so-called Taylor-Hood elements (Q2Q1) for spatial discretization. For the
problem at hand extended Taylor-Hood elements are chosen, where the additional
degrees of freedom besides the displacement and pressure are also interpolated linear,
cf. Fig. 6.3. Furthermore, the choice of mixed finite elements is motivated by the

displacement uS
h

scalar degrees of freedom Θh

Figure 6.3.: 3D Taylor-Hood element

requirement to obtain an equivalent approximation of pressure and displacement during
solving the mixture momentum balance. The mixture momentum balance contains
the overall stress tensor T (6.4), which is composed of the pressure and temperature
variable itself, and additionally the displacement in form of the Karni-Reiner strain
tensor KS, cf. (5.138), which implies the derivative of the displacements. Thus, the
displacement should be approximated with one order higher-valued shape functions
than those of pressure and temperature to end up with equivalent approximations.

The discretized weak formulations of the governing equations can be found in App.
C.1.

4after applying the Newton linearization scheme, cf. (6.2.2)
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6.2.2. Newton-Raphson method

The coupled, non-linear problem is solved with a sequence of linear approximations
utilizing Newton‘s method.

For that, the weak formulations have to be linearized defining the vectors of field
unknowns and their time derivatives with

u = [uS , pGR , {cGι
mol} , θ]T and u̇ = [u̇S , ṗGR , {ċGι

mol} , θ̇]T , (6.35)

the vector g(u , u̇) collecting the weak formulations from (6.8), (6.12), (6.18), and
(6.24), as well as the vector v collecting the dependencies (6.35)

g(u , u̇) =


Gu(u, u̇)
Gp(u, u̇)

{Gcι(u, u̇)}
Gθ(u, u̇)

 , v = [u , u̇]T (6.36)

With these definitions the Newton iteration is given with

g(vi+1) ≈ g(vi) +Dg(vi)[v] = o , (6.37)

where Dg(vi)[v] denotes the directional derivative of g(v) in the direction of v, in
the following denoted with ∆g(v). Thus, for each Newton iteration the linearized
set of equations

∆g(vi) = −g(vi) (6.38)

has to be solved for v. Moreover, linearizing g(v) with respect to the vectors of
unknowns as well as their time derivatives leads to the form

∆g(vi) = ∂g
∂ui

∆ui + ∂g
∂u̇i

∆u̇i = K∆ui + D∆u̇i , (6.39)

where K denotes the tangential stiffness matrix (dependent on the actual deformation)
and D the damping matrix (constant), respectively. The time-dependent unknowns u̇
are solved using the implicit time integration via the Newmark-β-method5. The

5For the quasi-static problem at hand an implicit Euler time-integration scheme would be sufficient,
but to ensure in general the possibility for a dynamic calculation, the Newmark procedure is
implemented.
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procedure yields a condensation of the damping term D∆u̇i to a so-called effective
stiffness matrix K∗.

The original form of the Newmark method assumes a constant acceleration between
two time steps, see Fig. 6.4, where the overall time integral [0, T ] to be integrated is
divided into NT time steps ∆t with

[0, T ] =
NT⋃
n=1

tn+1 − tn , ∆t = tn+1 − tn . (6.40)

Starting from a constant or linear approach for the course of the acceleration vector

ü

t

tn

ün

t

ü(t)

tn+1

ün+1

∆t

exact solution

Figure 6.4.: Newmark approach for constant acceleration

ü within one time step ∆t, the Newmark-equations for velocity u̇ and the unknown
variable u itself at tn+1 yield after integration

un+1 = un + u̇n ∆t+ [(1
2 − β)ün + βün+1] ∆t2

u̇n+1 = u̇n + [(1 − γ) ün + γ ün+1] ∆t ,
(6.41)

where (β = 1/4 , γ = 1/2) traces back to a constant acceleration and (β = 1/6 , γ =
1/2) to a linear approach. The approaches (6.41) are reformulated yielding two
equations for ün+1 and u̇n+1 (acceleration/velocity at time tn+1), which are afterwards
only functions of the known variables at time tn and the unknown Newton variable
un+1:

u̇n+1(un+1) = γ

β∆t(un+1 − un) − (γ
β

− 1) u̇n − ( γ2β − 1) ∆t ün

ün+1(un+1) = 1
β∆t2 (un+1 − un) − ( 1

β∆t − 1) u̇n − ( 1
2β − 1) ün .

(6.42)
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These are implemented to the discretized equation of motion, see e.g. [109], so that a
nonlinear algebraic equation for the unknowns ui

n+1 follows with

g(ui
n+1) = Mün+1(ui

n+1) + Du̇n+1(ui
n+1) + K(ui

n+1)un+1 − fn+1 = o (6.43)

Therein, M denotes the mass matrix and f the vector of the external forces. Utilizing
(6.43), temporary auxiliary variables for the velocity ¯̇u and unknown ū are gained
with

¯̇un+1 = u̇n + (1 − β) ün ∆t

ūn+1 = un + u̇n ∆t+ (β − γ) ün ∆t2
(6.44)

so that acceleration and velocity at time tn+1 are calculated via

ün+1 = 1
β∆t2 [un+1 − ūn+1]

u̇n+1 = ¯̇un+1 + γ ün+1 ∆t .
(6.45)

The incremental values ∆ün+1 and ∆u̇n+1 required for the Newton procedure are
derived by linearizing (6.41) with respect to un+1 with

∆ün+1 = 1
β∆t2 ∆un+1

∆u̇n+1 = γ

β∆t ∆un+1 .

(6.46)

For the problem at hand, accelerations are neglected, so that the resulting Newton-
Raphson procedure for the solution of the vector of unknown field variables u at
time tn+1 reads

[ γ

β∆t D + K(ui
n+1)] ∆ui+1

n+1 = −g(ui
n+1)

[K∗(ui
n+1)] ∆ui+1

n+1 = −g(ui
n+1) ,

(6.47)

where the constant damping term is added up to the tangential stiffness matrix
yielding the effective tangential stiffness K∗. The unknown field variables are updated
via

ui+1
n+1 = ui

n+1 + ∆ui+1
n+1 . (6.48)
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The structure of the effective tangential stiffness matrix, where in this work the single
entries are derived by a numerical tangent procedure, is shown in App. C.2.
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7. Methane oxidation in landfill cover
layers

7.1. Motivation

Global warming nowadays is more than ever an important concern to our everyday
life, and politics and economy need to rethink their decisions based on scientific
findings. The Intergovernmental Panel on Climate Change (IPCC) periodically releases
assessment reports, which scientifically evaluate the physical aspects of the climate
system and its change. The focus is on the vulnerability of socio-economic and natural
systems to the climate change, as well as on options to mitigate the progress of global
warming through preventing greenhouse gas emissions, see http://www.ipcc.ch.

Climate indicators, like temperature, greenhouse gas concentrations, sea ice, etc. show
the long-term evolution of these key variables that can be used to assess the global and
regional trends of a changing climate. The Fifth Assessment Report (AR5) documents
the unequivocal warming of the climate system, and illustrates the increasing surface
temperatures during the last century, see also Fig. 7.1. The climate change and
increasing surface temperature on earth is increasingly influenced by humans through
an unreasonable use of natural resources. For example the use of fossil fuels for
society, economy, industry and agriculture increases the natural greenhouse gases,
mainly carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) and fluorinated
gases (F-gases). The atmospheric concentrations of these have increased to levels
unprecedented in at least the last 800.000 years, cf. [99]. Figure 7.2 gives an overview
about the atmospheric greenhouse gas emissions of the last decades, which reached the
highest values in human history since the 2000s. CO2 still remains the major global

http://www.ipcc.ch


7. Methane oxidation in landfill cover layers

Figure 7.1.: Global average near-surface temperature for centred running 60-month
periods (left-hand axis) and increase above the 1850–1900 level (right-
hand axis) according to different datasets, see [86].

greenhouse gases (GHG) with concentrations reaching 400 parts per million (ppm)
followed by methane CH4 with about 1800 parts per billion (ppb),1 see Fig. 7.2.

Figure 7.2.: Atmospheric concentrations of the greenhouse gases carbon dioxide
(green), methane (orange) and nitrous oxide (red) determined from ice
core data (dots) and from direct atmospheric measurements (lines),
source: Fig. SPM.1 [99]

In this context the global warming potential (GWP) is introduced as an index,
measuring the radiative forcing of a certain greenhouse gas relative to that of carbon
dioxide for a chosen time horizon, see Annex I of [41]. It enables the quantification
of the contribution of different substances to global warming. Figure 7.3 shows an
excerpt from a table listing the global warming potentials of the major greenhouse

1Here: billion =̂109
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gases. Even though methane contributes less to the GHG emissions, its reduction
is of great interest, since its impact on global warming is up to 30 times higher
on a 100-year-horizon compared to carbon dioxide, and even 85 times higher in a
20-year-horizon.

Figure 7.3.: Excerpt from Table 8.A.1 [96] showing GWP of major greenhouse gases

A man-made contributor to methane emissions is the sector of waste management,
wherein landfills are the most preferred method for municipal solid waste (MSW)
disposal [82]. During the operational and aftercare phase of MSW landfills, methane
and carbon dioxide are produced nearly in equal shares through the biochemical
degradation of organic waste. Worldwide, landfills rank on the 6th place in the list of
CH4 producers, in Europe they are the 2nd largest source of anthropogenic caused
methane. Technologies for the recovery and treatment of landfill gas are applied to
capture and destroy the emitting methane, usually by extracting energy from the gas
with e.g. waste incineration plants, biogas biofilters or lean gas flares.

Active gas extraction systems are installed to capture emissions, but several old
landfills in Germany and Europe are not equipped with these systems leading to
uncontrolled emissions of methane to the atmosphere. Even with a gas extraction
system, the gas recovery may be inconsistent and was found to be highly variable -
usually not more than 50 % of the formed landfill gas could be captured [93]. A surface
covering can increase this amount. Additionally, lean gas emissions in the aftercare
phase, which are no longer applicable for the utilization as energy source, have to be
treated passively in-situ. Figure 7.4 schematically shows the amount of gas produced
over the years in a landfill, caused by the biological driven degradation and conversion
of organic waste. The first decades of operation and an active aftercare phase of a
landfill are characterized by the degradation of organic waste, which produces high
methane emissions; these are technically captured, flared or used for biogas power
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Figure 7.4.: Qualitative course of gas production in a landfills‘ lifetime according to
[66]

plants. At the point where the active treatment of the gas is no longer economically
efficient due to lean gas emissions, the biological oxidation of methane in a landfill
cover layer can be taken as a passive treatment of the harmful emissions.

Figure 7.5.: Principle of methane oxidation horizon

The natural and thus cost-effective treatment of bacterial methane oxidation follows
the reaction equation

CH4 + 2 O2 = CO2 + 2 H2O + 883 kJ/mol . (7.1)

Bacterial microorganisms can oxidize methane utilizing atmospheric oxygen, see Fig.
7.6. They are ubiquitous in natural soils, so that a passive aftercare of the lean gas
emissions is automatically given with the installation of a landfill cover soil. Oxidation
rates at landfills can vary over several orders of magnitude, and range from zero to
100% of the methane flux entering the cover soil. The oxidation capacity underlies
several environmental and physical influences such as temperature, moisture content
and physical and chemical properties of the soil. Further, long-term exposure of soils
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Figure 7.6.: Schematic landfill cover

to high levels of methane can encourage the growth of methanotrophic populations
with high capacities for methane oxidation. Figure 7.5 schematically shows the
spatial area inside the cover layer, where the highest oxidation rates are achieved,
called the methane horizon. It is characterized by a sufficient amount of oxygen and
methane concentrations so that in relation these rates are produced, indicated also by
a temperature increase.

This horizon generally occurs at the shallow depth up to 0.4 m, while the maximum
oxidation locates at the depth between 0.15 and 0.2m, see [92]. A reliable predictive
capability, which considers all influencing environmental, physical and biochemical
factors on methane oxidation rates in landfill cover soils, is desirable and required.

7.2. State of the art

To understand the processes involved in biological methane oxidation, execution of
laboratory batch and column experiments were the most common approach used by
researchers in the late 1990’s and at the beginning of the new millennium. Whalen,
Reeburgh, and Sandbeck [108] reported results from a study of CH4 oxidation by
microbial community in topsoil and investigated the influence of environmental
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conditions such as temperature and substrate dependence on the oxidation rate. They
pointed out, that methane oxidation in soils was a poorly understood term in the
global CH4 budget, which is getting more important under prospective warmer and
dryer climate conditions, cf. [108]. In this context, they showed the importance of the
moisture content of the soil to methane oxidation. Deviating moisture contents from
an optimum one (∼ 11%) led to significantly decreasing CH4 oxidation rates, until the
state of visibly saturated soils, with water contents of ∼ 40 − 75%, where only minor
variances in oxidation rates occured. They attributed these observations of decreasing
oxidation rates with increasing moisture content to the change of molecular diffusion
from gaseous to aqueous, which is 104 times slower and thus, the transport of CH4 to
its oxidizers proceeds slower. Otherwise, the soil has to be prevented from desiccation,
which was indicated by the decreasing oxidation rates with a moisture content below
∼ 11%.

These observations were also made by Boeckx, van Cleemput, and Villaralvo [14] and
Czepiel et al. [29], who investigated the methane emissions from a covered landfill
site under seasonally varying CH4 fluxes. Kightley, Nedwell, and Cooper [69] and De
Visscher et al. [39] examined the oxidation potential of different soils taking a closer look
on methane oxidation kinetics in CH4-rich and CH4-low environments and the effects
of nutrient amendments to the soil [69]. De Visscher et al. [39] additionally included
the limiting aspect of O2-availability in order get ideas for the optimization of cover
soils. Methane oxidation rates and kinetics were also examined by Bogner, Spokas,
and Burton [15], who performed a whole-landfill oxidation experiment including
temporal variations. They suggest, that two major groups of methanotrophs coexist
in landfill cover soils; one group favouring low CH4/high O2 settings, the other one
higher CH4/lower O2 concentrations. Both group’s activities can be approximated by
Michaelis-Menten kinetics. Czepiel et al. [30] determined a linear correlation between
measured CH4 emissions from a landfill and atmospheric pressure showing decreasing
emissions with increasing pressure. On the other hand that observed relationship
should not be directly applicable to other landfills due to the high variability of landfill
characteristics. Hilger, Liehr, and Barlaz [64] and Hilger, Cranford, and Barlaz [63]
(and references therein) found, that in long-term laboratory simulations, the CH4

oxidation rate has consistently exhibited a peak followed by a decrease to a lower
steady-state value. They attribute this effect to an accumulation of extrapolymeric
substance (EPS) produced by the bacteria and coating the soil, which reduces the O2
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availability to microbial activity sites due to a limiting gas diffusion.

Computational models for the simulation of gas transport in saturated and/or unsat-
urated soils and especially also methane oxidation models have been developed and
extended during the last decades, and thus, a variety of models exist. Focusing on the
modeling of multi-component gas mixtures and the transport of gas components, one
can divide the models into one group using an additive approach for advection and
diffusion, modeled with Darcy’s and Fick’s law, respectively, the advection-diffusion
model (ADM), and one group using Stefan-Maxwell equations and the dusty-gas
model (DGM).

The ADM and the implemented Fick’s first law of diffusion is originally applicable
to binary gases in clear fluids. The gradients of two gases are directly related to each
other, so only a single gradient needs to be specified, cf. [107]. By introducing a factor
depending on the porosity and gas saturation, e g. see Millington and Quirk [76],
Fick’s law is also applicable to porous media. The basic equations for the ADM are
introduced in Chapter 4.

The DGM-approach, developed by Evans, Watson, and Mason [48, 49], extends
the Stefan-Maxwell equations, valid for multi-component gases, by including the
porous medium as a “dusty gas” component with large molecules fixed in space, treated
as a component of the gas mixture [107]. Furthermore, the DGM-approach includes
Knudsen diffusion, a process that occurs when the pores are so narrow that molecule-
wall collisions are the main transport mechanism, cf. [38], and thus, important for low
permeability areas. The DGM is able to reproduce the coupling effects of advection
and diffusion, but its computational cost is higher. Comparisons of both models have
shown, that the DGM is more accurate, but for higher permeabilities, the additive
approach of the ADM is sufficient, cf. [107] and references therein. Veldsink et al.
[106] reported, that the additive approach is satisfactorily accurate to estimate mass
transport with chemical reactions in porous media and the results deviate only slightly
from the DGM, which required substantially more computational time. Thorstenson
and Pollock [102] observed, that Fick’s law applied to stationary coordinates is totally
inadequate for “stagnant” gases (non-reactive, no sources or sinks) like nitrogen in
subsoil environments, but for any gases, it is an accurate estimate of the diffusive flux
component relative to the mean molar velocity and an approximate estimate of the
total diffusive flux of a gas component [102].
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However, using the generalized Fick’s law for a multi-component mixture, cf. (4.2),
provides equivalent results to the DGM, see also Sect. 4.1. Moreover, the multi-
component diffusion coefficient can be estimated based on the Maxwell-Stefan equa-
tions, see Lu and Feng [72] and authors therein.

In the abundance of existing models dealing with multi-component gas transport in
saturated or unsaturated soils and the vadose zone, the special focus is in what follows
on biological methane oxidation models in landfill covers.

Within the group of previously categorized ADM approach, Stein, Hettiratchi, and
Achari [95] developed a simple 1D reactive-transport model for the gaseous phase
with a four component gas mixture (CH4, O2, CO2 and N2), wherein the composition
of the gas phase is determined by a combination of the physical transport of the gases
and the microbial consumption and production of these [95]. The biological CH4

oxidation rate modeled by dual-substrate kinetics depends on the soil bulk density and
moisture content. To account for the multi-component gas mixture, concentration-
dependent diffusion coefficients have been taken for Fick’s diffusion. De Visscher and
van-Cleemput [38] set up a comparable model, but taking Stefan-Maxwell equations
for the molar flux and incorporating a dynamic methanotropic activity profile by
introducing specific growth rates for the biomass. They also introduced a temperature
correction factor for the kinetic parameters. Looking at the steady state, both models
give nearly same predictions, but the dynamic methanotrophic activity may become
important when e.g. desiccation effects should be considered. Molins and Mayer
[77] point out the importance of the two-way coupling between gas transport and
biogeochemical reactions that affects the composition of the gas phase. A decrease
in gas volume caused by aerobic CH4 oxidation contributes to a decrease in gas
phase pressure and hence causes viscous gas transport into the reaction zone, cf. [77].
To consider all of these effects, they incorporate the DGM equations to a reactive
transport model based on the model described in Mayer, Frind, and Blowes [75], which
also includes the mass conservation equation for the aqueous phase. The underlying
model of Mayer, Frind, and Blowes [75] assumes in a first step that the transport of
pore gas can be adequately described by Fickian diffusion for reactive gases as also
pointed out by Thorstenson and Pollock [102] and mentioned before. Comparison of
the DGM by Molins and Mayer [77] with the results of De Visscher and van-Cleemput
[38] showed only slight differences in concentration profiles. The study of Molins et al.
[78] investigates the capacity of landfill cover soils to attenuate methane and also
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trace compounds within the landfill gas with the aid of aforementioned model by
Molins and Mayer [77] extended with terms to consider EPS and water production.
A sensitivity analysis of landfill gas composition, moisture content, porosity and
permeability is documented. They state, that in general the production of EPS seems
to have a more important effect than water production since the EPS accumulation is
concentrated in the reaction zone, cf. [78]. Hettiarachchi, Hettiaratchi, and Mehrotra
[61] and Hettiarachchi et al. [62] developed a coupled numerical model using the
ADM formulation for the gas transport including a balance equation for water and
heat as well as dual-substrate kinetics for the biological reactions with two correction
factors for temperature and moisture content dependencies. The model serves as a
tool to design field-scale methane biofiltration (MBF) systems. They also agree with
other authors who point out the importance of considering EPS formation within
a model, but their results indicate that on field-scale it is of no particular concern.
Ng, Feng, and Liu [83] also present a coupled water-gas-heat transport ADM for
methane oxidation implemented in commercial FE software and performed parametric
studies focussing on the influences of oxidation-generated water and heat on methane
oxidation. Adopting this model, Feng et al. [51] present 2D numerical studies of
methane oxidation efficiency of sloping landfill covers. Abichou et al. [5, 4] performed
numerical studies based on a model given in [2, 110] to scale methane oxidation model
parameters from laboratory to field conditions and the impact of vegetation in landfill
covers. The model also considers the coupling of water and heat with gas transport
and oxidation using the additive split of Fick’s diffusion and Darcy flow.

The stable carbon isotope method has also been employed to determine the oxidation
in landfill cover soils, cf. [3, 1, 25, 26, 70]. The isotopic methods rely on the preference
of methanotrophic bacteria for the stable carbon isotope of smaller mass, so that
they oxidize 12CH4 at a slightly more rapid rate than 13CH4, cf. [92]. This leads to
an increase of the 13CH4/12CH4 ratio of the remaining CH4, which can be used to
estimate methane oxidation, cf. [73]. Based on the model developed by De Visscher
and van-Cleemput [38], Mahieu et al. [73] implemented different diffusion coefficients
for the isotopes to account for the fractionation by diffusion and a fractionation
factor to calculate the different isotope reaction rates from the overall reaction rate.
However, the technique of stable isotope probing, see also [93], is quite expensive and
the calculated methane oxidation efficiencies are sensitive to infinitesimal changes in
the magnitudes of the fractionation due to diffusive gas transport [50].
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Scheutz et al. [92] give an comprehensive overview of the state of the art regarding
process understanding, case studies and modeling of microbial CH4 oxidation. However,
existing models are currently not able to holistically describe the multi-component bio-
chemo-thermo-hydro coupled conversion processes including finite solid deformation
in a continuum mechanical and thermodynamically consistent framework.

7.3. Model validation on laboratory scale

Methane oxidation in cover layers has been recognized and investigated for a long
time and documented in the wealth of literature, but further investigations towards a
predictive numerical model simulating the performance of a cover layer is required. The
numerical model should cover the coupled thermo-biochemical mechanical processes in
order to give predictions on methane emissions under critical environmental conditions
such as desiccation, cold or rainy periods, or changing gas fluxes due to changes in
atmospheric pressure, etc.

To that aim, the research project funded by the German Research Foundation (DFG)
’Description of limit and failure states for biological methane oxidation in landfills:
experimental investigation, chemical analysis, mechanical modeling and computational
simulation’ was interdisciplinary conducted together by three groups - Department
of Urban Water and Waste Management under supervision of Prof. Widmann,
Department of Instrumental Analytical Chemistry under supervision of Prof. Schmidt,
both at the University of Duisburg-Essen (UDE), and the Institute of Mechanics,
Structural Analysis and Dynamics under supervision of Prof. Ricken, University of
Stuttgart, where the last one constitutes the affiliation of the author of this thesis.

The joint research project aimed to experimentally investigate and record the func-
tioning and performance of the methane oxidation layer in landfills and to model
it within the framework of a coupled multi-field simulation based on the Theory of
Porous Media. The model should also be applicable for limit states, e.g. unfavorable
temperature conditions or low methane loads, and be able to predict possible failure
states, i.e. incomplete biological oxidation of the methane emitted from the landfill.

The basic understanding of the methane oxidation layer in landfills also opens the
possibility of transferability to other boundary layers where methane oxidation occurs,
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such as permafrost soils or the root zone of flooded plants.

For this purpose, in a first step the determining influencing variables were examined
experimentally and mathematically transferred to the numerical model. The investi-
gations are based on the hypothesis that the number and activity of methanotrophic
bacteria are determined by the following major process variables: Temperature, mois-
ture content, substrate (methane and oxygen) concentration, and bacterial number
and type.

Accordingly, broad experimental studies were conducted at the Waste Management
Department with the aim of determining the gas concentration rates under various
initial and boundary conditions during the methane oxidation process. The experi-
mental results, see Gehrke [54], served as calibration, verification and validation for
the computational simulations based on mechanical model, developed for this purpose
by the author of this thesis. The comparisons of experimental and computational
simulation results are presented in Section 7.3.1 and 7.3.2. Additionally, the Depart-
ment of Instrumental Analytical Chemistry performed investigations regarding the
stable isotope analysis and CO2/CH4-ratios. For details see Schulte et al. [93]. The
experimental setups were jointly developed by the project partners and served as base
of the chemical analysis as well as the verification of the mechanical model.

The verification results of the numerical model through batch reactor tests are
published in Ricken, Sindern2 et al. [90], which is resumed in Section 7.3.1. Proceeding
from this, Ricken, Thom et al. [89] documents the subsequent soil reactor experiments,
which yield further validation techniques for a more comprehensive model verification.
The application is described in Section 7.3.2.

All applied numerical simulations are developed and performed by this thesis’ author
in order to reproduce the experimental results and are documented in the following
sections. For these, some further model assumptions additional to those described in
Section 5.2, are taken in advance: the gas mixture contains the four gas components

φG ∪
γ
φγ with γ ∈ {M,O,C,N} , (7.2)

describing methane with M:=CH4, oxygen with O:=O2, carbon dioxide with C:=CO2

and nitrogen N:=N2. The soil moisture is considered sufficient that optimal conditions
2Published under the author’s birth name.
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for the bacteria are prevailing, represented by the assumption of the trapped liquid
φL in the solid matrix φS. Furthermore, according to Feng et al. [50], gas dissolution
is ignored, since at steady state the amount of the gas in gaseous phase and dissolved
gas in water are at equilibrium state, that is, no more gas dissolution can occur.
Likewise, as applied for this thesis, the convective gas flow is often described by the
momentum conservation law in the form of Darcy’s law, as the flow in landfills
is usually slow, and its Reynolds number is typically smaller than one, see Lu
and Feng [72]. Regarding dispersion, cf. Section 4, they state “that dispersion may
play a significant role in heterogeneous media characterized by widely spread vaues
of permeability. If this is the case, a dependence of the effective diffusivity on the
flow velocity must be accounted for. However, only few studies have considered the
dispersion process in landfill gas transport. The molecular diffusion of gas components
caused by Brownian motion results in an equalization of the concentration gradients
of the species.” Following that, including a dispersion coefficient is not considered for
this work.

The major mechanisms for gas transport through a landfill cover soil are diffusion and
advection, see Morris et al. [80] and authors therein. Diffusive transport is caused by
a concentration gradient through the soil, whereas advective transport results from
pressure gradients induced by wind, changing barometric pressure, or internal pressure
build-up from landfill gas generation. Both advection- and diffusion-controlled fluxes
need to be accounted for when modeling gas transport through soil covers. These
principle transport mechanisms are further investigated in Section 7.4, to show the
functionality of the model setup, where all other influencing factors like reaction or
mechanical deformation are excluded.

As described above, the fundamental processes and material parameter were in-
vestigated by experiments and verified with related simulations based on reduced
laboratory setups with focus on specific issues. Starting with an experimental setup
of closed batch reactor systems, see Section 7.3.1, the laboratory measured data were
used to examine the substrate kinetics for methane and oxygen and their related
half-saturation constants for the bacterial methane conversion. Different experiments
were conducted in dependency of the type of prevailing methanotrophic bacteria
preferring either low (type I) or higher (type II) CH4 concentrations with > 4%, cf.
Hanson and Hanson [58], as well as a number of samplings with different temperatures
adjusted in order to determine the optimum temperature for bacterial conversion.
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The results of the batch reactor experiments were recalculated by the author with the
developed coupled FE model, with the result that the elementary reaction kinetics
and their parameters could be verified and calibrated.

The subsequent experimental setup was designed in order to gain a continuous
laboratory system in form of a soil reactor, such that thermal imaging can be applied,
cf. Section 7.3.2. With the thermal imaging technique the heat of reaction produced
during the process of methane oxidation, see (7.1), can be made visible and thus, the
model can additionally be validated in terms of energy production. Moreover, soil
samples were taken at different sampling ports over the height of the soil reactor,
and measured and documented by the groups of UDE. The measurements provided
information about the vertical gas concentration profiles and their isotopic distribution.
The gas profiles in combination with the thermal image data were utilized by the
author of this thesis to validate the developed model with focus on the vertical
concentration distribution in combination with the heat generation during methane
oxidation in a two-dimensional (2D) numerical FE simulation, where the main flow
direction is basically one-dimensional. Additionally, the numerical study regarding
the modeling of mixture diffusion coefficients according to Section 4.1 is performed
by reference to this experimental setup.

Based on the validation of the simulation model, numerical calculations were subse-
quently carried out by the author determining the gaseous mass transport, especially
the advective and diffusive fluxes, with the aim to verify, that the model is capable to
represent these processes correctly, presented in Section 7.4. For that, the process of
oxidation was disabled during the simulations, so that only the pure mass transport
could be highlighted. A validation through laboratory experiments hence was not
provided.

Unless otherwise noted, all calculations, simulations and related plots presented in
the following sections are accomplished by the author of this thesis.

7.3.1. Batch reactor tests

The work of Ricken et al. [90] documents the basic isothermal multi-component,
biphasic model approach validated by batch reactor tests. This investigation focuses
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on the methane oxidation process coupled to the methanotrophic bacteria growth
dependent on different initial conditions. For that, the set of unknowns contains
R(x, t) = {uS, pGR, µGγ, c̄SB}, compare (5.126), where the concentration balances are
varied with the corresponding chemical potential µGγ instead of the molar concentration
cGγ

m . The investigation is conducted for different, but constant temperatures, so that
the balance of energy (6.24) and temperature θ as degree of freedom is not invoked.
Moreover, the amount of methanotrophic cells c̄SB is introduced and solved together
with an evolution equation for the bacteria given with

∫
BS

{(c̄SB)′
S − ρ̂SB} δc̄SB dv = 0 , (7.3)

wherein ρ̂SB denotes the growth rate of the bacteria. A detailed description of the
bacteria growth rate is given in Ricken et al. [90].

For the investigation of the reaction kinetics, a discontinuous experimental system in
form of batch reactors was installed, see Fig. 7.7. Batch tests offer a well-established
small-scale laboratory tool with a limited probe volume. Such a setup allows the
precise adjustment of initial boundary conditions. The batch reactors contained initial

Figure 7.7.: Schematic diagram of the internal structure (a) and picture of a batch
reactor (b), see Gehrke [54].

methane concentrations of 20% on the one hand and 8% on the other hand, and
were conducted for constant temperatures from 5◦C to 40◦C in steps of 5 degrees. A
constant liquid content of the contained soil probe was measured daily over a period
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of about 14 days, see [90], which verifies the assumption of the liquid phase to be
included in the solid phase and not to be considered as degree of freedom for the
related computational simulations. Additionally, the concentrations of CH4, CO2

and O2 were measured daily for the duration of the experiment, which provided
information on the maximum methane degradation rate ρ̂GM

max for each temperature,
as well as the optimum temperature for the methanotrophic bacteria θopt, see (7.6).

The methane oxidation rate ρ̂GM, dependent on limiting factors substrate, temperature
and cell number, is established in the model with

ρ̂GM = −ρ̂GM
max ρ̂

GM
GM ρ̂GM

GO ρ̂GM
θ c̄SB , (7.4)

as e.g. proposed by Haarstrick et al. [57]. The conversion rate ρ̂GM is calculated by
the maximum rate per cell ρ̂GM

max, multiplied by the rate limiting functions ρ̂GM
GM, ρ̂GM

GO

and ρ̂GM
θ and the actual cell number. The first two functions reflect the dual-substrate

Michaelis-Menten kinetics for biochemical processes, which is the general-purpose
model for methane oxidation, see e.g. Scheutz et al. [92]. Moreover, ρ̂GM

θ describes
the temperature dependency of bacterial oxidation. All rate limiting functions vary
dimensionless between 0 and 1, see Figure 7.8. Figure 7.8a plots the relation for the
substrate dependencies of methane and oxygen. These are based on the standard
kinetics referring to Monod [79] with

ρ̂GM
GM = (cGM

m )2

KGM + (cGM
m )2 and ρ̂GM

GO = (cGO
m )2

KGO + (cGO
m )2 ,

(7.5)

where for the batch test simulations a quadratic approach for the molar concentrations
suited better in the simulation than the linear Monod relation3. The parameters KGM

and KGO denote the half saturation constants for methane and oxygen. Additionally,
Fig. 7.8b shows the temperature dependency based on the proposed exponential
function

ρ̂GM
θ = exp [−κθ2(θ − θopt)2] , (7.6)

with the material parameter κθ2. The stoichiometry for the methane oxidation
equation (7.1) is implemented into the model with rates for the oxygen and carbon

3A plot of the comparison of measured methane oxidation rate to the calculated rates through the
simulation is documented in [90].
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dioxide mass exchange ρ̂GO and ρ̂GC, which are functions of the methane conversion
rate in accordance to (5.93) with

ρ̂GO = + 2 ρ̂GM and ρ̂GC = − 1 ρ̂GM . (7.7)

(a) ρ̂GM
GM/ρ̂GM

GO for KGM/KGO = 10 (b) ρ̂GM
θ for κθ2=0.004

Figure 7.8.: Rate limiting functions applied in the model depending on substrate
and temperature, cf. Ricken, Sindern et al. [90].

For verification of the chosen model equations regarding the reaction kinetics and
included material parameters (7.4)-(7.7), simulations were performed corresponding to
the given initial concentrations and temperature adjusted for the batch experiments.
The comparative results of the calculated concentrations by the FE simulations to
the measured concentrations of the batch experiments for a duration of ten days
are given in Figure 7.9. A detailed description of the material parameters used for
these simulations can be looked up in [90]. The picked examples started with high
initial methane concentrations (∼20 vol.-%), so that mainly methanotrophs type II
accounted for the methane degradation. The well matching curves of the measured
batch concentrations and the calculated ones allow the conclusion that the chosen
equations are reasonable and can represent the reaction processes during bacterial
methane oxidation well.

128



7.3. Model validation on laboratory scale

Figure 7.9.: Concentration profiles calculated by FE simulation (dotted lines) and
measured concentrations during batch experiments (continuous lines),
taken from Ricken, Sindern et al. [90]

.

7.3.2. Soil reactor system and thermal imaging technique

The theoretical model is further validated by an experimental setup developed for
this purpose in cooperation with the project partners, published in Schulte et al. [93]
and Ricken, Thom et al. [89]. The setup enables the visualization of the spatial
distribution of the methane horizon via thermal imaging in addition to measurements
of the gas concentrations. As methanotrophic bacteria emit energy in form of heat
as a by-product of their metabolism, cf. (7.1), this effect can be related to bacterial
activity and utilized to locate the position of the oxidation horizon in a reaction
vessel.

The technical installation was designed to enable a reactor system for a soil sample,
illustrated in Fig. 7.10. Two plexiglass plates fixed to two stainless steel frames
were arranged in front of each other with a gap of 12 cm in between to serve as the
framework for the soil reactor system.

The structure inside the slab consists of a gas distribution layer, followed by filled soil
with a height of about 110cm (0.26m3 top soil, water content 9.7% w/w, organic dry
substance 2.2%). The residual volume above the soil section (head space ∼ 25cm) acts
as atmosphere and is flushed by air from a mass flow controller (MFC). At the bottom
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Figure 7.10.: Experimental setup, see [89]. Left: (1) carbon dioxide supply, (2)
methane supply (3) MFC for CH4 (4) MFC for CO2 (5) compressor (6)
MFC for air (7+8) humidifier (9) gas distribution layer (10) soil section
(11) atmospheric gas phase (12) heat exchanger (13) MFM for air (14)
off-gas. Right: Front of the blackened plexiglass plate with marked
area for thermal imaging, broken lines indicate sampling profiles.

of the reactor system two further mass flow controllers were installed to feed the soil
system via ten evenly distributed ports with humidified methane and carbon dioxide,
to avoid desiccation of the soil body. Fig. 7.10 (right) indicates the five individual
sampling profiles (dashed lines) for the documentation of the gas distributions.
Additionally, a thermographic camera was installed in front of the reaction system. In
order to achieve a high resolution of the thermal images and to eliminate reflections,
the front plexiglass plate was blackened. Except for the front side of the system
facing the thermal imager, the reactor was insulated. The camera was calibrated
for ’heated surfaces’ in an air-conditioned room in which the laboratory experiment
was conducted, cf. [93]. Steady state temperatures throughout the soil body for the
initial state were assumed to be reached when the temperature of the inflowing and
outflowing gases approached steady values [93].

For the numerical calculation of the corresponding initial boundary value problem
(IBVP) only one sampling profile with a width of 10 cm is modeled exemplarily,
see Fig. 7.11, although the experiment showed slightly varying concentration and
temperature profiles across the different sampling ports, which is due to natural
heterogeneities of the soil. The set of unknowns for the simulation is given with

R(x, t) = {uS, pGR, cGM
m , cGO

m , cGC
m , θ}, (7.8)

cf. (5.126). In this simulation, additionally the temperature degree of freedom is
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included, whereas the actual cell number c̄SB is skipped and replaced by the maximum
oxidation rate per unit soil with

ρ̂GM
max = Vmax ρ

SR , (7.9)

providing a suitable approach for continuous experiments leading to a steady state
with constant fluxes. Vmax can be chosen from literature, cf. Berger [11], depending
on the given soil.

Figure 7.11.: IBVP of the soil reactor sim-
ulation

Figure 7.11 illustrated the modeled IBVP, where the initial values at t = 0 were
chosen referring to atmospheric conditions with percentage values for O2 = 20.0%,
N2 = 79.3%, CO2 = 0.5% and CH4 = 0.2%. Additionally a standard atmosphere of
pGR

0 = 1013 hPa was applied. The experiment revealed a room temperature of 22.3◦C,
and the gas flows during the experiment were adjusted with 10mL/min each for CH4

and CO2, which led to entering concentrations of 15.0% for CH4 and 20.0% for CO2

to the soil serving as Dirichlet boundary conditions for the numerical model. The
head space of the reactor system is also considered as Dirichlet boundary, i.e. the
upper horizontal boundary of the model is fixed with the initial atmospheric values
but held permeable, so that gas fluxes adjust over the surface. The vertical boundaries
at each side are impermeable for all degrees of freedom, as well as the lower horizontal
boundary, which is impermeable for O2 and heat exchange.

The initial values and further material parameter of the model can be observed in
Tab. 7.1, where (...)0 indicates the initial values at time t = 0.
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Table 7.1.: Initial values and material parameters

Parameter Symbol Value Unit
volume fraction solid/gas nS

0 /nG
0 0.88/0.12 [-]

density solid ρSR 1200 [kg/m3]
temperature θ0 22.3 [◦C]
pressure pGR

0 1013.25 [hPa]
diffusion coefficient CH4/CO2 DGM/DGC 6.0E-6/1.0E-4 [m2/s]
diffusion coefficient O2/N2 DGO/DGN 1.9E-5/1.3E-5 [m2/s]
intrinsic permeability KS 10E-14 [m2]
dynamic viscosity gas mixture ηGR 13E-6 [Ns/m2]
heat dilatation coefficient αS 20E-6 [1/K]
heat conductivity coefficient α∇θ 1.6 [W/(mK)]
specific heat capacity solid cS

V 800 [J/(kgK)]
specific heat capacity CH4/CO2 cM

V /cC
V 2160/v [J/(kgK)]

specific heat capacity O2/N2 cO
V/cN

V 1000/930 [J/(kgK)]
max oxidation rate Vmax 7.5E-7 [mol/(kgs)]
half saturation constant CH4/O2 KGM/KGO 0.005/0.001 [-]

The reactor system was monitored over several days by the project partners at UDE.
At experiment start (denoted with t = 0) a tolerably homogeneous temperature
distribution throughout the soil of about 23◦C could be documented, see Fig. 7.12a.
The soil temperature adjusted finally to the surrounding room temperature of ∼22.3◦C,
which was chosen as initial value for the numerical model, cf. Fig. 7.12b. Moreover, a
clearly observable oxidation horizon could be observed after approximately four days
of experiment (t = 4 days), with a slight temperature increase of 0.3◦C.

The initial higher temperature throughout the soil at experiment start is presumable
due to the fact, that at the beginning the bacterial activity is evenly distributed over
the whole soil section, as the bacteria discover optimal substrate conditions where
oxygen is available everywhere. This changes, once the initially available oxygen is
consumed. A steady state is then achieved by the incoming flow of oxygen from the
atmosphere and the methane flow from the bottom gas supply. The corresponding
simulation to validate the model by the thermal image data is described hereafter,
see also Figure 7.20.

132



7.3. Model validation on laboratory scale

(a) t = 0 (b) t = 4 days

Figure 7.12.: Contour plot of thermal images of soil section indicated by temperature
θ [◦C] at experiment start and after 4 days, see [89]. Data provided by
T. Gehrke, edited by A. Thom.

With the chosen IBVP described in Figure 7.11, the simulations were performed
and verified by the author utilizing the measured concentrations profiles during the
experiments and additionally with the help of the thermal image data, where the
experimental part again was obtained by the UDE partners. Adopting the conditions
that have emerged in the course of thermal image validation, the simulation was
executed to cover in total a period of four days. For a validation of the calculated
concentration profiles in the steady state, a simulation covering one hour with time
increments of ∆t = 10s was executed. In order to validate the energy production and
temperature development, the simulations were restarted after reaching the steady
state and covered an additional period of four days by invoking time increments of
∆t = 60s.

Concentration profiles

Investigating the concentration profiles, Figure 7.13 and 7.14 show the spatial distribu-
tion of oxygen and methane, which has been set during the FE simulation at different
time increments, indicated by their molar fractions. In the right, the FE simulation
plots of the calculated concentrations for simulation time steps at 10s, 1min, 5min,
10min, 30min, and 1h are presented. For these selected time steps, the corresponding
graphs of the concentration values are plotted over the height of the geometric soil
model - diagrams in the left part. Initially, oxygen is evenly distributed over the
height of the model domain with a concentration of about 12%. As soon as the applied
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Figure 7.13.: Molar fraction of oxygen xGO
m [-] over height of soil reactor for different

time steps of the simulation

Figure 7.14.: Molar fraction of methane xGM
m [-] over height of soil reactor for different

time steps of the simulation

methane develops upwards from the bottom boundary, and both gases required for the
reaction are sufficiently present, the available oxygen is consumed. For the reaction of
methane and oxygen the steady state is approximately established after 30min, which
can also be followed in Fig. 7.15. Therein, the methane oxidation rate is plotted over
the height of the model at the chosen time increments of the simulation. Initially,
there are much higher oxidation rates than in the steady state from 30min on due
to the higher molar concentrations of O2 and CH4. Lower substrate concentrations
reduce the oxidation rate by the rate limiting functions (7.4).

The equivalent plots of the mole fractions of the remaining gases of the mixture
nitrogen and carbon dioxide can be found in App. D.1. Since these gases are inert,
the steady states are reached immediately after approximately 5 minutes.
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Figure 7.15.: Methane oxidation rate ρ̂GM [mol/m3s] over height of soil reactor for
different time steps of the simulation

For model validation the gas concentration distributions over the height of the soil
reactor are invoked for the steady state at 30min, and the calculated values through
the simulation (continuous lines) are plotted against the measured concentration
values of the experiment (symbols), see Fig. 7.16. One can observe nearly exact
matching curves of oxygen and methane, where also the area of the methane horizon
at about 0.4 m height was exactly hit. Only the simulated distribution of carbon
dioxide deviates from this point on, where the simulation overestimates the CO2

production. The curve indicates, that also CO2 is consumed and/or can be attributed
to the changing soil permeability, which can conclude from biomass production, as
methanotrophic bacteria use carbon also for catabolism, which is not implemented
in the model equations. Moreover, CO2 is preferentially partitioned to soil moisture
because it is more soluble than CH4, see Scheutz et al. [92]. The numerical simulations

Figure 7.16.: Concentration distribution
with binary diffusion coeffi-
cients for CH4 (M bin), O2
(O bin), CO2 (C bin) over
the height of the soil reac-
tor calculated by simulation
(lines) in comparison to mea-
sured experimental values
(symbols) at steady state.
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ran with fixed binary diffusion coefficients, see Table 7.1, which are based on the
values of the diffusion coefficients of the respective gas in air, without considering the
changing composition of the gas mixture during methane oxidation. The comparison
to the implementation of calculated diffusion coefficients for mixtures according to
(4.3) is given in Section 7.3.2.

Figure 7.17 displays the pressure change of the gas mixture during the simulation. The
simulation starts with an initial pressure of pGR

0 = 1013 hPa of the gas mixture. In
the further course of the simulation a depression and thus density reduction develops
in the region of the oxidation horizon at 0.4m ± 0.2m, due to the given molar reaction
equation, cf. (7.1).

Figure 7.17.: Calculated pressure pGR dis-
tribution by simulation over
height of soil model for dif-
ferent time steps of simula-
tion

The reaction equation states, that three gaseous molecules are reacting to one leading
to a pressure and thus density decrease. Since the upper boundary is fixed with the
atmospheric gas pressure of 1013 hPa as Dirichlet boundary condition, a gaseous
flux over the surface develops to keep the given pressure, which in turn leads to
an overpressure and increasing density in the upper model area at 0.8 m ± 0.2 m.
The upper boundary holds as well fixed values for the atmospheric concentrations
of O2, CO2 and CH4 adapted to the experimental conditions, so that the pressure
compensation takes place with the flux of N2, see also Fig. 7.19b.

Having a closer look on the magnitudes of the molar fluxes of the four gas components
during the simulation, Figures 7.18 and 7.19, reveals that the methane oxidation in
this experimental setup is mainly diffusion-driven. In these figures, the total molar
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7.3. Model validation on laboratory scale

fluxes (grey lines) are compared to the diffusive ones (blue, red, green and pink lines
for O2, CH4, CO2, and N2) for selected time steps (at 5, 10 and 60 minutes) of the
simulation and plotted again over the height of the soil model domain.

(a) O2 (b) CH4

Figure 7.18.: Magnitudes of total molar fluxes mjGγ
tot in comparison to diffusive part

mjGγ
diff for γ ∈ {O2, CH4} at different time steps of simulation

(a) CO2 (b) N2

Figure 7.19.: Magnitudes of total molar fluxes mjGγ
tot in comparison to diffusive part

mjGγ
diff for γ ∈ {CO2, N2} at different time steps of simulation

It becomes clear, that for all gas components the magnitudes of the diffusive parts
are nearly the same as the magnitudes of the total fluxes despite their different
courses. This is even more evident for the fluxes of oxygen and methane, where the
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7. Methane oxidation in landfill cover layers

corresponding curves are almost on top of each other, cf. Fig. 7.18. For the inert
gases carbon dioxide and nitrogen a more pronounced difference can be made out,
where the diffusive fraction is at around 97% of the total amount for CO2 and around
90% for CH4 on average, see Figure 7.19. Here, the advective amount is higher as
a consequence of the density and thus pressure change during methane oxidation,
compare Figure 7.17, so that the pressure difference is compensated by suction of the
inert gases to the area of reaction (mainly in the range of ∼0.3 - 0.8m soil height).

Additional pressure build-ups occuring in-situ in landfills leading to advective gas
flow like surface winds, changing barometric pressure, landfill gas generation, are not
relevant for these laboratory soil reactor conditions. The general interaction of diffusive
and advective gas flows for different conditions are investigated in Section 7.4.

Thermal imaging

A further validation technique offers the method of thermal imaging, which was
applied by the participants of the project to visualize the heat of reaction of methane
oxidation. With this procedure, temperature profiles could be determined over
the width and height of the soil reactor, which were compared to the calculated
temperature distribution through the simulation. Figure 7.20 shows the spatial
temperature development for selected time steps of the simulation, that covered
in total a period of 96 hours, in comparison to measured temperature data at the
fourth day of experiment. The representative simulation time steps to demonstrate
the temperature development were chosen with 1h, 12h, 48h, 72h, and 96h. The
laboratory temperature data in graph 7.20 (left) were taken from the thermal image
resolutions provided by the project partners of UDE, in which a temperature is
assigned to each pixel of the images. Figure 7.20 (right) shows the FE plots of the
temperature distribution of the corresponding simulation for the selected time steps.
From these FE calculations the vertical temperature profiles over the height of the
soil model domain were derived (dashed-dotted lines of Fig. 7.20 (left)) and compared
to the experimentally derived temperature profile. The error bars are indicating
minimum and maximum temperature values over the width of the laboratory soil
reactor.

As documented in Fig. 7.12b, a clear methane horizon was observed after four days
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Figure 7.20.: Comparison of temperature distribution at different time steps of
simulation (dashed-dotted lines) and averages of measured temperature
over height of soil reactor (symbols) after 4 days (96h); error bars
indicating min/max values

Figure 7.21.: Simulated temperature distribution (left) after 4 days (96h) in compar-
ison to thermal image of reactor system (right).

of experiment, which led to a simulation time covering a period of 96 hours. Figure
7.21 shows the matching values of the simulation4 (left) and the experiment (right)
at t = 4 days, where the simulated temperature distribution lies totally within the
scope of the averaged measured values. The temperature peak at a height of 0.4 m
illustrates the region of the oxidation horizon, which is also in accordance with the
location of the calculated maximum methane oxidation rate at steady state in the
simulation, compare Fig. 7.15.

4The temperature range was rescaled for this comparison from 22.3-22.6 to 22.0-23.0 ◦C to fit the
range of the thermal image.
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Investigation of diffusion coefficients

The previous numerical calculation used fixed binary diffusion coefficients according
to Table 7.1. These were chosen referring to values of the respective gas diffusing in
air without considering the changing gas mixture. But, as derived in Sect. 4.1, for a
multi-component mixture the calculation of mixture diffusion coefficient (4.3) is more
suitable. Preliminary studies on the calculation of the diffusion coefficients applied to
the topic of methane oxidation are published in Thom et al. [101]. The soil reactor
experiment as well as the corresponding simulation presented in the previous section
are invoked as references.

Figure 7.22.: Comparison of experimen-
tal data (symbols), reference
simulation from Fig. 7.16
with binary diffusion coef-
ficients (continuous lines),
and simulation with mixture
diffusion coefficient accord-
ing to (4.3) (dotted lines).

For that, still binary diffusion coefficients need to be implemented, which were taken
from Molins and Mayer [77]. With these, the mixture coefficient according to (4.3) is
calculated throughout the simulation.

Figure 7.22 shows the comparison of the three concentration distributions for the
experimental values plotted with symbols, the reference simulation of Section 7.3.2
plotted by continuous curves and the calculation with (4.3) plotted with dotted
curves. The simulation with a calculation of the mixture coefficients fits well and
slightly better to the experimental data, especially for the flow of methane and
oxygen. The course of the CO2 concentration, on the other hand, worsens, and the
production is overestimated even more. The possible explanations for that issue as
given in Section 7.3.2 remain, and a triphasic simulation might promise improvement.
However, for future simulations, the implementation of the mixture diffusion coefficient
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should be followed. This calculation only needs the given initial values for the binary
diffusion coefficients Dβι, which can be taken from literature, and the following
calculations of the mixture coefficient, depending on the actual concentrations via xαβ

m

and ωαβ, respectively, provides automatically the right values. With this procedure, a
fit of a constant diffusion coefficient as done in Section 7.3.2 is obsolete.

The application of the tortuosity coefficient τ , see (4.4) was not expedient for this
calculation. Implementing the formula according to Millington and Quirk [76] produced
very small diffusion coefficients with approximated values for the saturation and fluid
content, which was not suitable. Simply the basic generalized Fick’s law (4.2) in
combination with the mixture diffusion coefficient (4.3) and the implementation in
the multi-phase description with mjγ

diff = nG
mj Gγ

diff , cf. Table 3.2, was sufficient to
reproduce the concentration developments.

7.4. Numerical investigation of gaseous mass transport

In order to investigate basic properties and capabilities of the model regarding the
diffusive and advective mass fluxes and their interaction, additional comparative
simulations were performed by the author on the following IBVP, see Figure 7.23.
The spatial area for examination is defined as a 0.10m wide strip with a thickness of
0.02m. Therein, the spatial positions of three nodes are marked for later identification,
node 1 in red (n1), node 2 in green (n2) and node 3 in blue (n3). The vertical
boundaries at x=0.0m and x=0.10m are basically permeable for gas flow, which can
be adjusted with either Dirichlet or Neumann boundary conditions for the overall
pressure and each considered concentration, cf. also Figure 6.1.

For the following examples the left vertical boundary at x=0.0m can be chosen as
Dirichlet boundary for the overall pressure pGR, indicated by black arrows, as
well as for the concentrations cGγ

m indicated by the blue arrows, here oxygen. The
right vertical boundary at x=0.10m can be chosen as Neumann boundary and thus
offers outflow conditions for pGR and cGγ

m . The horizontal boundaries at y=0.0m
and y=0.02m are impermeable for gas flow, but tangential gas flow is enabled at the
interface, yielding slip wall conditions. Moreover, for the simulations solid deformation
is prevented by applying a rigid solid matrix and moreover, the temperature is held
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constant yielding isothermal conditions. As in the former sections, the gas mixture
contains the four gas components φG ∪

γ
φγ with γ ∈ {M,O,C,N}, describing methane

with M:=CH4, oxygen with O:=O2, carbon dioxide with C:=CO2 and nitrogen N:=N2.
For all upcoming presented simulations, the bacterial reaction of methane and oxygen
is disabled so that the focus is on the purely diffusive and advective mass transport
and its interaction.

Figure 7.23.: IBVP for principle advective-diffusive investigations. Points n1, n2, n3
characterize nodes 1,2, and 3

For a good assessment of the simulation results, characteristic atmospheric values for
air as well as soil are chosen and parameters are given as follows: the soil porosity has
an intrinsic permeability KS = 10−12 m2 and an initial volume fraction of nS= 0.8.
The dynamic viscosity of air is ηGR = 1.8 ∗ 10−5(Ns/m2), yielding the coefficient of
kG

0 = 5.5 ∗ 10−7(m4/Ns), cf. (4.7). The initial pressure is set to pGR
0 = 1013hPa, and

the molar fractions to xGM
m = 0.0016, xGO

m = 0.02, and xGC
m = 0.04. The remaining

molar fraction for the main component of air, nitrogen, xGN
m is calculated by the

model according to (3.20). The boundary conditions are chosen in such a way that
a constant atmospheric concentration of oxygen with xGO

m = 0.20 as Dirichlet
boundary condition is applied on the left vertical boundary at x=0.0m, whereas the
right vertical boundary at x=0.1m is permeable for fluxes in x-direction, representing
an oxygen depleted soil, so that an oxygen inflow is created. The remaining variables
of the model are chosen equally to Table 7.1, whereas the temperature is set to
θ0 = 20◦C.

7.4.1. Diffusion and low advection

In the first comparison of IBVP‘s, a purely diffusive problem is simulated (in the
following left columns of Figures 7.24 - 7.28) and compared to a problem with a low
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7.4. Numerical investigation of gaseous mass transport

pressure gradient of ∆pGR=1hPa (right columns of following figures), inducing a
slow filter velocity and thus slight advection. For that, a concentration of oxygen is
applied for a time of 10s to the left vertical boundary, and thereafter stopped, see
Fig. 7.24. The graphs show the increasing molar fraction for node 1 (n1) until a
simulation time of 10s. The right vertical boundary at x=0.1m is closed for oxygen
flux but fixed with the initial atmospheric pressure of 1013hPa, so that an overall
gas flux adjusts to hold this value. Figure 7.24a shows the approaching values for

(a) diffusion (b) low advection

Figure 7.24.: Molar fraction of oxygen xGO
m for node 1 (n1), node 2 (n2) and node 3

(n3) over simulation time

node 1, node 2 and node 3 over time, indicating the temporal concentration balancing
process of diffusion, whereas Fig. 7.24b shows decreasing values for node 1 and further
increasing values for node 3, what is attributed to the slow advection process which
slightly transports and accumulates the concentration build up from the left to the
right vertical boundary. The diffusive and slow advection processes can be followed

(a) diffusion (b) low advection

Figure 7.25.: Comparison of molar fraction xGO
m over model width for different simu-

lation time steps

by Fig. 7.25, where the spatial distributions of the molar fraction of oxygen over the
width of the geometric model for different simulation time steps are plotted. Looking
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at Fig. 7.25a one can see, that at t=120s the graph is nearly horizontal from left to
right boundary, indicating the almost constant concentration distribution at steady
state. In contrast to that, the graph for the same simulation time step shows the
concentration accumulation at the right boundary.

Figure 7.26 plots the corresponding results of the finite element simulation. Moreover,
comparing the spatial concentration profiles to the trend curves of Fig. 4.2 indicates,
that the example with a low induced filter velocity, (Fig. 7.25b) still seems to be
driven by diffusion and thus can be categorized as a process with a small Peclét
number.

(a) diffusion (b) low advection

Figure 7.26.: FE contour plots of molar fraction of oxygen xGO
m at increasing simula-

tion time steps from top down

A further look is taken on the corresponding molar fluxes, exemplarily shown at three
simulation time steps at t=15s, t=45s and t=120s. Fig. 7.27 illustrates the total
partial molar fluxes of oxygen for the announced time steps of the FE simulation.
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(a) diffusion (b) low advection

Figure 7.27.: FE contour plots for the total partial molar flux jO
m at simulation time

steps t=15s (up), t=45s (middle), t=120s (bottom)

(a) diffusion t=15s (b) low advection t=15s

(c) diffusion t=45s (d) low advection t=45s

(e) diffusion t=120s (f) low advection t=120s

Figure 7.28.: Total, diffusive and advective proportions of partial molar fluxes of
oxygen jO

m [mmol/m3] at different simulation time steps over width of
model domain

145



7. Methane oxidation in landfill cover layers

A difference can be made out comparing e.g. time step t=45s, where the absolute
values are higher by approximately 10% for the calculation with additional advection
induced mass transport. Moreover, the spatial spread of the molar fluxes over geometry
width is more pronounced for the low advection process.

At the same time, Fig. 7.28 subdivides these absolute total values (black curves)
into their advective (blue curves) and diffusive parts (red curves). The left column
collects the graphs for the solely diffusive concentration balancing, which prove, that
no advective process is induced (blue curves at zero). On the other hand, the total
flow during the additional advective process is composed of both parts. At simulation
start the diffusive parts nearly have equal values, Fig. 7.28a and 7.28b, whereas for
the low advection calculation the total flow adds up to a higher value due to the
additional advective part. Furthermore, the all fluxes go down to zero during the
purely diffusive process as the steady state is reached over the time, see Fig. 7.28e,
while the simulation with slow advective mass transport reveals, that also a diffusive
amount is induced to hold the boundary conditions, see Fig. 7.28d and 7.28f.

7.4.2. Strong advection

The same initial boundary value problem as described in the former section is
investigated with a strong advective mass transport induced by a pressure gradient
of ∆pGR=10hPa, shown in the diagrams and plots in the left columns of Fig. 7.29 -
7.33. That simulation is compared to a similar IBVP, where the only difference is an
open boundary for oxygen flux at x=0.1m. The corresponding diagrams and plots
are documented in the right columns of Fig. 7.29 - 7.33.

(a) disabled oxygen outflux (b) enabled oxygen outflux

Figure 7.29.: Molar fraction of oxygen xGO
m for node 1 (n1), node 2 (n2) and node 3

(n3) over time of simulation
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These calculations identify a clearly dominating advective transport. Fig. 7.30 illus-
trates the FE simulation plots for the molar fraction of oxygen at different simulation
time steps, where clearly a transported concentration peak can be followed. The

(a) disabled oxygen outflux (b) enabled oxygen outflux

Figure 7.30.: FE simulation contour plots of molar fraction of oxygen xGO
m at increas-

ing simulation time steps from top down.

difference between the two IBVP’s is obviously the accumulating oxygen concentration
in the vicinity of the right end of the geometric domain due to a disabled oxygen
outflux (Fig. 7.30a), whereas the right column FE plots (Fig. 7.30b) show, that the
oxygen is pressed out of the model domain over time by the applied overpressure.

(a) disabled oxygen outlux (b) enabled oxygen outflux

Figure 7.31.: Comparison of molar fraction xGO
m over width of model domain for

different simulation time steps
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(a) disabled oxygen outflux t=15s (b) enabled oxygen outflux t=15s

(c) disabled oxygen outflux t=20s (d) enabled oxygen outflux t=20s

(e) disabled oxygen outflux t=30s (f) enabled oxygen outflux t=30s

Figure 7.32.: Total, diffusive and advective proportions of partial molar fluxes of
oxygen jO

m [mmol/m3] at different simulation time steps over width of
model domain

For this purpose, compare the curves for the spatial distribution of the oxygen
concentration for different simulation time steps.

Looking more into detail on the total partial fluxes and their advective and diffusive
proportions shows identical values and pathways until about 30s of simulation time, cf.
Fig. 7.32, which is roughly the time when the transported concentration approaches
the right model boundary. Until that instant of time, one can clearly follow, that the
concentration transport in this example is predominantly driven by advection (blue
curves), but with a slight compensating transport by diffusion (red curves).
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When approaching the right vertical model boundary, the boundary conditions for
the oxygen has to be fulfilled, which obviously leads to differing fluxes, cf. Fig. 7.33.
For a better comparability of the results, the same scale of the y-axis was chosen in
the diagrams, which results in the curves being cut off at the right edge of the left
columns diagrams. Due to the oxygen accumulation at that position induced by the
disabled outflux, the values of the advective and diffusive fluxes increase very strongly.
The diagrams of the right column (Fig. 7.33) show the development for an enabled
outflux for oxygen, which causes the oxygen concentration to ’leave’ the model and
the fluxes to disappear over time.

(a) disabled oxygen outflux t=45s (b) enabled oxygen outflux t=45s

(c) disabled oxygen outflux t=60s (d) enabled oxygen outflux t=60s

(e) disabled oxygen outflux t=120s (f) enabled oxygen outflux t=120s

Figure 7.33.: Total, diffusive and advective proportions of partial molar fluxes of
oxygen jO

m [mmol/m3] at different simulation time steps over width of
model domain
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7.4.3. Constant diffusion with slow and strong advection

The subsequent comparison is done by two calculations with again a simulation time
of t=120s with increments of ∆t=0.01s, and (a) a first calculation with an excess
pressure of ∆pGR = 1hPa applied on the left vertical boundary at x=0.0m, and (b) a
second calculation with ∆pGR = 10hPa. Additionally, for this investigation oxygen
is constantly applied as Dirichlet boundary on the left margin, thus inducing a
constant oxygen diffusion through the model domain. The right vertical boundary is
open for oxygen flux.

(a) overpressure 1hPa (b) overpressure 10hPa

Figure 7.34.: Comparison of molar fractions of oxygen xGO
m for node 1 (n1), node 2

(n2) and node 3 (n3) over simulation time

(a) overpressure 1hPa (b) overpressure 10hPa

Figure 7.35.: Comparison of molar fractions of oxygen xGO
m for different simulation

time steps over model width

Figure 7.34 plots the temporal development of the oxygen concentration by following
the molar fraction xGO

m for the three different nodes marked in Fig. 7.23. The higher
overpressure of 10hPa leads to equal values over the time for n1 and n2, see Fig.
7.34b. Node 3, however, near the right vertical boundary is influenced by the open
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boundary which enables a constant outflux, so that the value adjusts at a lower value,.
The lower overpressure of calculation (a) leads to a later attainment of the steady
state; Fig. 7.34a indicates, that at nodes n2 and n3 the final values have not been
reached after 120s and values are still increasing. Continuing that, Fig. 7.35 plots the
spatial distribution of xGO

m for different simulation time steps, where the steady state
is reached for a high overpressure (b) at around 60s. The steady state is not reached
for a lower overpressure after twice the time.

(a) overpressure 1hPa (b) overpressure 10hPa

(c) overpressure 1hPa (d) overpressure 10hPa

(e) overpressure 1hPa (f) overpressure 10hPa

Figure 7.36.: Total, diffusive and advective proportions of partial molar fluxes of
oxygen jO

m [mmol/m3] at different simulation time steps over width of
model

Figure 7.36 differentiates the total molar flux (black curves) of oxygen into its
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advective (blue curves) and diffusive part (red curves) for both investigated cases.
The small pressure gradient in simulation (a) leads to both advective and diffusive
fluxes, whereas the higher pressure gradient leads to a prevailing advective flux. Not
only the qualitative progressions differ, but also their magnitudes. The slow advection
in combination with diffusion leads to smaller amounts of mass transport, where at
the stage of concentration balancing the partitions of the fluxes have nearly same
values, cf. Fig. 7.36e. The high pressure gradient of simulation (b) also enables a
diffusive flux in the beginning, see Fig. 7.36b, whereas it depresses the diffusion in
the steady state, cf. Fig. 7.36f, although a constant concentration influx is applied.
More interim stages of molar fluxes can be followed in App. D.2.

(a) overpressure 1hPa (b) overpressure 10hPa

Figure 7.37.: Comparison of mixture density ρGR at different simulation time steps
over width of model domain

(a) overpressure 1hPa (b) overpressure 10hPa

Figure 7.38.: FE simulation plots of density of gas mixture ρGR at increasing time
steps from top down.

Looking finally at the mixture density, which arises by summing up the partial pore
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densities of the components φγ according to (5.7), one can follow suitable results. At
the spatial points where the realistic composition of air is obtained by the incoming
oxygen, the density adjusts to the value of ρGR ≈ 1.2 [kg/m3], which is the value for
air at standard conditions at θ = 20◦C and pGR = 1013 hPa. The higher pressure
leads to an increasing density as expected, see also the plot from the FE simulation
in Fig. 7.38.
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8. Summary and outlook

For this work, a numerical model for the simulation of multiphasic and multi-
component porous media based on the continuum-mechanical description of the
extended Theory of Porous Media (eTPM) is set up and the required foundations
are provided. The focus lies on a thermodynamically consistent model and material
description for biphasic mixture body containing an incompressible solid phase and
a compressible gas mixture consisting of different mixture components. Thus, the
basic principles of thermodynamics are included in this thesis and set in relation to
continuum mechanics. With the derived general theoretical model base simulations
can be applied to study environmentally relevant problems including reactive mass
transport processes. Subsequently, the calculation and constitutive modeling concept
is applied to bacterial methane oxidation in landfill cover layers, which was part of the
interdisciplinary project ’Description of limit and failure states for biological methane
oxidation in landfills: experimental investigation, chemical analysis, mechanical mod-
eling and computational simulation’ funded by the German Research Foundation
(DFG).

As global warming nowadays is a concern, and methane and carbon dioxide are
the biggest contributors among the climate-relevant gases, a reduction of these is
more important than ever. Although methane is present in smaller amounts in the
atmosphere, its impact on global warming is significantly higher in direct comparison
to carbon dioxide. Through the bacterial methane oxidation in landfill cover layers,
the long-term methane emissions of landfills are converted to the less harmful carbon
dioxide. Once a landfill is closed, the landfill operator is obligated to give proof, that
the still emitting methane fluxes do not exceed certain limit values. A numerical
simulation model can serve as support and evidence through forecasts regarding
methane emissions under varying environmental conditions.



8. Summary and outlook

For that, the numerical model setup was verified and validated by the author of
this thesis through tailored experiments performed by the project partners of the
interdisciplinary DFG project. During the project, the basic processes regarding mass
transfer and the degradation kinetics of methane oxidation in soils were experimentally
investigated depending on different influencing parameters, as well as varying initial
and boundary conditions. The results served as validation of the numerical model and
were also used for calibration. With the holistic concept of experimental analysis and
verified associated numerical simulations, the model can be used to predict remaining
methane fluxes through landfill cover layers in a supportive manner.

The large spatial problem with regard to the dimensions of a landfill with hundreds of
meters stretch of land was examined on small-scale laboratory setups first. In order
to select the basic descriptive processes from the overall complex multi-physical issue,
this approach was initially necessary and sufficient, as they represent the describing
processes well enough and neglect disturbing influences out of focus. Proceeding
from that, the corresponding numerical simulations were performed on reduced
two-dimensional geometric model domains, but could now be transferred to higher
dimensional problems.

For model validation both closed and thus discontinuous systems as well as an open
system leading to a continuous experimental setup were conducted. The closed batch
reactors were utilized to investigate the degradation kinetics implemented in the model
equations for low and high methane concentrations under different constant ambient
temperatures. Furthermore, an innovative experimental assembly using additionally
thermography techniques was installed as continuous setup. Using this experimental
composition, both concentration and temperature profiles could be measured and
visualized over the height of a soil layer and reproduced by the numerical simulations.
The eminent matches of experiments and simulations using this continuous setup
and the good forecast ability regarding temperature and concentration development
provided the reasonable assumption, that the developed model is capable to be applied
to a three-dimensional FE landfill cover model. However, due to laboratory conditions,
the process of methane oxidation was mainly diffusion driven in the continuous setup.
In order to also investigate advective influences on the gas fluxes, which can become
quite relevant in in-situ conditions on landfills, further numerical simulations were
performed to verify the model focussing on the mass transport mechanisms without
reactive influences.
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The derived numerical model is able to give stable predictions about the bacterial
degradation of methane under varying environmental conditions like soil parameters,
gas freights, atmospheric pressure, soil moisture and cold or warm periods. In the
authors opinion, the implementation of the water content as an additional parameter,
as done here in the model, is sufficient to predict the remaining methane emissions
and concentrations after passing through the soil layer. However, to give more precise
predictions regarding e.g. the carbon dioxide production throughout the bacterial
conversion and its uptake in the aqueous phase, it would be advisable to include the
water as an additional macroscopic mobile liquid phase to the model. Nevertheless,
this will lead to a higher computational effort as further degrees of freedom need to be
implemented, increasing the complexity of the model. Moreover, additional physical
phenomena such as capillarity effects between the macroscopic phases would have to
be considered for a triphasic model.

For further application and validation of the model, in-situ inspections of a landfill
would be appropriate. Measurements of soil parameters like permeabilities, volume
fractions and also chemical compositions could be supplied to the model as initial
and boundary values and thus provide information about the remaining methane
emissions under varying climatic conditions.
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A. Derivations - Chapter 3

A.1. Calculation rules

The selected computation rules for the divergence operator are taken from Ehlers
[46]:

div(ϕv) = v · gradϕ+ ϕ div v (A.1)

div(ϕT) = T gradϕ+ ϕ div T (A.2)

div (T v) = (div TT) · v + TT · grad v (A.3)

div(x × T) = x × div T + grad x × T . (A.4)

A.2. Derivation local master formulation

Evaluating the left-hand side total time derivatives of (3.81), (3.82), and (3.83) for
the scalar-valued balances1 according to (3.36), (3.37) and (3.38), yields

d
dt

∫
B

Υ dv =
∫

B
[Υ̇ dv + Υ(dv)·] =

∫
B
(Υ̇ + Υ div ẋ) dv ,

dααα

dt

∫
B

Υααα dv =
∫

B
[Υααα)′

ααα dv + Υααα(dv)·] =
∫

B
(Υααα)′

ααα + Υααα div x′
ααα) dv ,

dβ

dt

∫
B

Υβ dv =
∫

B
[Υβ)′

β dv + Υβ(dv)·] =
∫

B
(Υβ)′

β + Υβ div x′
β) dv ,

(A.5)

1Analogously for vector-valued balance equations
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where use has been made of (3.45) and the relation (det F)· = J div ẋ. Furthermore,
applying the Gauss integral theorem, cf. e.g. Ehlers [46],

∫
∂B

(ϕ · n) da =
∫

B
div ϕ dv (A.6)

to the right-hand side surface integral of (3.81), (3.82), and (3.83), the local balance
equations in general form can be derived for mixture body φ, constituent φααα and
component φβ as

Υ̇ + Υ div ẋ = div ϕ + ξ + Υ̂ ,

(Υααα)′
ααα + Υααα div x′

ααα = div ϕααα + ξααα + Υ̂ααα ,

(Υβ)′
β + Υβ div x′

ααα = div ϕβ + ξβ + Υ̂β .
(A.7)

A.3. Material time derivatives in terms of relative
velocties

For some applications it is necessary to formulate the material time derivatives in terms
of the relative velocities arising from the multi-phase and -component description.
For that, the formulations of the material time derivatives introduced in Sect. 3.3.2
are rearranged with respect to the explicit part with

∂Γ
∂t = Γ̇ − grad Γ · ẋ , ∂Γ

∂t = Γ̇ − (grad Γ) ẋ , (A.8)
∂Γ
∂t = (Γ)′

ααα − grad Γ · x′
ααα

∂Γ
∂t = (Γ)′

ααα − (grad Γ) x′
ααα , (A.9)

∂Γ
∂t = (Γ)′

β − grad Γ · x′
β

∂Γ
∂t = (Γ)′

β − (grad Γ) x′
β . (A.10)

Inserting as a next step (A.8) into (3.37) and utilizing definition (3.66), the material
time derivative for an arbitrary scalar- or vector-valued field quantity with respect to
the motion of the main phase φααα can be formulated as

(Γ)′
ααα = Γ̇ + grad Γ · dααα and (Γ)′

ααα = Γ̇ + grad Γ dααα , (A.11)
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A.4. Summation of local master balance equations

The same procedure can be applied to derive the material time derivative with respect
to the motion of φβ by inserting (A.9) into (3.38) and utilizing the diffusion velocity
(3.65):

(Γ)′
β = (Γ)′

ααα + grad Γ · dβααα and (Γ)′
β = (Γ)′

ααα + (grad Γ) dβααα . (A.12)

Likewise, the material time derivatives with respect to the deforming solid are given
with

(Γ)′
ααα = (Γ)′

S + grad Γ · wαααS and (Γ)′
ααα = (Γ)′

S + (grad Γ) wαααS .

(Γ)′
β = (Γ)′

S + grad Γ · wβS and (Γ)′
β = (Γ)′

S + (grad Γ) wβS ,
(A.13)

A.4. Summation of local master balance equations

The summation of a local master balance equation (either scalar- or vector-/tensor-
valued) for φααα or φβ (3.85) yields the higher level balance equation. This is shown
exemplarily for the scalar-valued partial field quantity Υααα and Υβ.
Starting with Υααα, the reformulation of the material time derivative with reference to
motion φααα in terms of the overall diffusion velocity (A.11) is utilized, and moreover
the expansion x′

ααα = (ẋ + dααα), so that

(Υααα)′
ααα = Υ̇ααα + grad Υααα · dααα and Υααα div x′

ααα = Υαααdiv (ẋ + dααα) . (A.14)

is given. Connecting the equations (A.14) yields for the left-hand side of (3.85)1

(Υααα)′
ααα + Υααα div x′

ααα = Υ̇ααα + Υαααdiv ẋ + grad Υααα · dααα + Υαααdiv dααα , (A.15)

and utilizing the divergence calculation rule

div(Υαααdααα) = dααα · grad Υααα +Υααα div dααα , (A.16)

the local balance equation (3.85)1 is reformulated to

Υ̇ααα + Υαααdiv ẋ = div (ϕααα − Υααα dααα) + ξααα + Υ̂ααα , (A.17)
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where summation over ααα yields

∑
ααα

(Υ̇ααα + Υαααdiv ẋ) =
∑
ααα

[div (ϕααα − Υααα dααα) + ξααα + Υ̂ααα] . (A.18)

The same procedure is invoked for the reformulation of the local master balance of
component φβ. Proceeding from

(Υβ)′
β = (Υβ)′

ααα + grad Υβ · dβααα and Υβ div x′
β = Υβdiv (x′

ααα + dβααα) . (A.19)

where use has been made of (A.12), the local master formulation (3.85)2 yields after
inserting again the divergence calculation rule

(Υβ)′
ααα + Υβdiv x′

ααα = div (ϕβ − Υβ dβααα) + ξβ + Υ̂β , (A.20)

and summation over β yields

∑
β

[(Υβ)′
ααα + Υβdiv x′

ααα] =
∑

β

[div (ϕβ − Υβ dβααα) + ξβ + Υ̂β] . (A.21)

A.5. Derivation of local balance of linear momentum
for φααα

The derivation of the local balance is shown exemplarily for φααα. Implementing the
associated quantities from (3.99)2 to (3.85)2 yields

(ρααα x′
ααα)′

ααα + (ρααα x′
ααα) div x′

ααα = div Tααα + ρααα b + ŝααα . (A.22)

With (3.91)2 the left-hand side can be rewritten as

(ρααα x′
ααα)′

ααα + (ρααα x′
ααα) div x′

ααα = x′
ααα [(ρααα)′

ααα + ρααα div x′
ααα]︸ ︷︷ ︸

ρ̂ααα

+ρααα x′′
ααα , (A.23)

so that the local balance of momentum finally reads

ρααα x′′
ααα = div Tααα + ρααα b + ŝααα − ρ̂ααα x′

ααα . (A.24)
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A.6. Derivation of local balance of angular momentum for φααα

Analogously, the local balance of momentum can be derived for component φβ.

A.6. Derivation of local balance of angular momentum
for φααα

The derivation of the local balance is shown exemplarily for φααα. Implementing (3.105)
into (3.85)2 yields

[x × (ρααα x′
ααα)]′ααα + [x × (ρααα x′

ααα)] div x′
ααα = div (x × Tααα) + x × ρααα b + ĥααα . (A.25)

Evaluating the left-hand side and implementing (3.91)2 results in

[x×(ρααα x′
ααα)]′ααα +[x×(ρααα x′

ααα)] div x′
ααα = x×(x′

ααα [(ρααα)′
ααα + ρααα div x′

ααα]︸ ︷︷ ︸
ρ̂ααα

)+x×ρααα x′′
ααα , (A.26)

where x′
ααα × ραααx′

ααα = 0 is inserted. Furthermore, the calculation rule for the outer
product (A.4) is utilized, where in this case grad x = I. Inserting (A.4) together with
(A.26) into (A.25) yields after rearranging

0 = I × Tααα + x × [div Tααα + ρααα(b − x′′
ααα)]︸ ︷︷ ︸

−p̂ααα

+ĥααα − x × ρ̂αααx′
ααα . (A.27)

Therein, the local balance of linear momentum (3.100)2 is used, so that finally, the
local balance of angular momentum reads considering (3.101)

0 = I × Tααα + ĥααα − x × ŝααα . (A.28)

Analogously, the local balance of angular momentum can be derived for component
φβ.
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A.7. Derivation of local balance of energy for φααα

Implementing (3.114) into (3.85)1 yields

[ρααα(εααα + 1
2 x′

ααα · x′
ααα)]′ααα + [ρααα(ε+ 1

2 x′
ααα · x′

ααα)] div x′
ααα =

div[(Tααα)T x′
ααα − qααα] + ρααα(b · x′

ααα + rααα) + êααα

(A.29)

Evaluating the left-hand side and implementing (3.91)2 results in

[ρααα(εααα + 1
2 x′

ααα · x′
ααα)]′ααα + [ρααα(εααα + 1

2 x′
ααα · x′

ααα)] div x′
ααα =

εααα [(ρααα)′
ααα + ρααα div x′

ααα]︸ ︷︷ ︸
ρ̂ααα

+ρααα(εααα)′
ααα + ρααα x′

ααα · x′′
ααα + 1

2 x′
ααα · x′

ααα [(ρααα)′
ααα + ρααα div x′

ααα]︸ ︷︷ ︸
ρ̂ααα

,
(A.30)

so that

[ρααα(εααα + 1
2 x′

ααα · x′
ααα)]′ααα + [ρααα(εααα + 1

2 x′
ααα · x′

ααα)] div x′
ααα =

εαααρ̂ααα + ρααα(εααα)′
ααα + x′

ααα · [ρααα x′′
ααα + 1

2 ρ̂
ααα x′

ααα] . (A.31)

With calculation rule (A.3), the divergence term in (A.29) can be reformulated with
(3.56) to

div[(Tααα)T x′
ααα − qααα] = x′

ααα · div Tααα + Tααα · Lα − div qααα . (A.32)

Implementing (A.31) and (A.32) into (A.29) and considering (3.100)2 yields after
rearranging

ρ̂ααα εααα + ρααα(εααα)′
ααα + x′

ααα · [ ραααx′′
ααα − div Tααα − ραααb︸ ︷︷ ︸

p̂ααα

+1
2 ρ̂

ααα x′
ααα] =

Tααα · Lααα − div qααα + ραααrααα + êααα (A.33)

and finally

ρααα(εααα)′
ααα = Tααα · Lααα − divqααα + ραααrααα + êααα − p̂ααα · x′

ααα − ρ̂ααα(εααα + 1
2 x′

ααα · x′
ααα) . (A.34)
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A.8. Derivation of local balance of entropy for φααα

Analogously, the local balance of energy can be derived for component φβ.

A.8. Derivation of local balance of entropy for φααα

By implementing (3.123) into (3.85)1 one obtains

(ρααα ηααα)′
ααα + ρααα ηααα div x′

ααα = −div (qααα

θααα
) + ρααα rααα

θααα
+ η̂ααα , (A.35)

which can be reformulated by using the local mass balance (3.91)2 for the left-hand
side to

ρααα (ηααα)′
ααα +ηααα [(ρααα)′

ααα +ρααα div x′
ααα] = ρααα (ηααα)′

ααα + ρ̂ααα ηααα = − div(qααα

θααα
)+ ρααα rααα

θααα
+ η̂ααα . (A.36)

As before, the local entropy balance of the components φβ can be derived analo-
gously.

165





B. Derivations - Chapter 5

B.1. Volume balance solid main phase

Starting from
(JS)′

S = ∂JS

∂ FS

∂FS

∂t = ∂detFS

∂FS︸ ︷︷ ︸
= JSFT−1

S

·(FS)′
S (B.1)

and utilizing the expression for the material velocity gradient (FS)′
S, cf. (3.55),

relation
(JS)′

S = JSFT−1
S FT

S · LS = JS I · LS = JS divx′
S (B.2)

is gained by utilizing (3.57). Implementing this relation into (5.16) yields

(nS)′
S + nS 1

JS
(JS)′

S = 0 ⇔ (nS)′
S

nS = −(JS)′
S

JS
. (B.3)

Integrating (B.3)2 leads to

∫ t

t0

(nS)′
S

nS dt = −
∫ t

t0

(JS)′
S

JS
dt ⇔ ln|nS| − ln|nS

0S| = −ln|JS| + ln|1|︸ ︷︷ ︸
= 0

⇔ nS = 1
JS

nS
0S .

(B.4)
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B.2. Volume balance equation of main gas phase

Starting from
∑

γ

[(ργ)′
γ + ργ div x′

γ] =
∑

γ

ρ̂γ

︸ ︷︷ ︸
= 0

⇔
∑

γ

[(ργ)′
G + grad ργ · dγG + ργ div x′

γ ] = 0

(B.5)

where use has been made of (A.12)1. Furthermore, calculation rule (A.1) is applied
to ’ργ div x′

γ’, so that rearrangement of (B.5) leads to

∑
γ

[(ργ)′
G − grad ργ · x′

G + div (ργ x′
γ)] = 0 . (B.6)

Implementing the averaged velocity (3.61)1 and additionally applying again (A.1),
(B.6) reads

∑
γ

[(ργ)′
G + ργ div x′

G] = 0 ⇒ (ρG)′
G + ρG div x′

G = 0 (B.7)

by additionally using (3.24) and (3.26). The final version of the gas volume balance
equation (5.17) can be derived by inserting (5.12) into (B.7).

B.3. Overall gas balance in terms of molar
concentration

Proceeding from (5.41), summation of the concentration balances and additionally
expansion by [1/cG

m] yields

∑
γ

cGγ
m (nG)′

γ + nG∑
γ

(cGγ
m )′

γ + nG∑
γ

cGγ
m div x′

γ = nG∑
γ

ĉGγ
m

⇒
∑

γ

cGγ
m

cG
m

(nG)′
γ + nG

cG
m

∑
γ

(cGγ
m )′

γ + nG∑
γ

cGγ
m

cG
m

div x′
γ = nG

cG
m

∑
γ

ĉGγ
m .

(B.8)
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B.4. Closure of equation system

Considering the definition for the molar fraction (3.18), (B.8) then reads

∑
γ

xGγ
m (nG)′

γ + nG

cG
m

∑
γ

(cGγ
m )′

γ + nG∑
γ

xGγ
m div x′

Gγ = nG

cG
m

∑
γ

ĉGγ
m . (B.9)

The first material time derivative of (B.9) rewritten with respect to the deforming
solid (A.13) and moreover (3.20) reads

∑
γ

xGγ
m (nG)′

γ =
∑

γ

xGγ
m︸ ︷︷ ︸

= 1

(nG)′
S + grad nG∑

γ

xGγ
m · wγS , (B.10)

and after implementing the overall concentration balance reads

(nG)′
S = −nG

cG
m

∑
γ

(cGγ
m )′

γ − nG∑
γ

xGγ
m div x′

γ − grad nG∑
γ

xGγ
m · wγS + nG

cG
m

∑
γ

ĉGγ
m .

(B.11)

B.4. Closure of equation system

The number of constitutive equations required can be determined by the number of
describing field equations (#FE) and the number of field quantities (#FQ) contained.
The difference between these numbers, cf. (B.12), provides the number of required
constitutive equations (#CE) to solve the equation system, which at the same time
should not violate the physical laws. To derive

#FQ − #FE = #CE (B.12)

the equations established so far will be analyzed and thus the number of constitutive
quantities identified. The describing field equations for the solid - gas mixture are
collected in Tab. B.1. As shown, the number of relevant field equations sums up
to

#FE = 26 + 4γ , (B.13)

169



B. Derivations - Chapter 5

Table B.1.: Describing field equations

field equation scalar amount
volume balance solid (5.16) 1
volume balance gas (5.17) 1
concentration balance (5.22) 1γ
momentum balance solid (5.24)1 3
momentum balance gas (5.24)2 3
momentum balance concentration (5.25)1 3γ
energy balance mixture (5.30) 1
constraint mass exchange (5.13) 1
constraint stresses (5.25)2 6
constraint interaction forces (5.15) 3
constraint free energy (5.32)1 1
constraint entropy (5.32)2 1
partial density solid (5.4)1 1
partial density gas (5.4)2 1
constraint partial pore density (5.7) 1
constraint mass fractions (5.6) 1
saturation condition (5.2) 1
total 26 + 4γ

for γ components of the mixture. The system of field equations given in Tab. B.1
contains the total number of

#FQ = 41 + 16γ , (B.14)

field variables, namely the following:

FQ = {χχχS, χχχG, χχχγ, TS, TG, Tγ, p̂S, p̂G, p̂γ, q, b,

ψS, ψG, ψγ, ηS, ηG, ηγ, θ, ρS, ρG, ργ, ρSR, ρGR, nS, nG, ρ̂γ } . (B.15)

Therein, the tensor-valued stresses are counted with 6 entries considering the symmetry
with Tααα = (Tααα)T. From (B.15), the number of known quantities (#KQ)

#KQ = 4 (B.16)
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B.5. Derivation of Helmholtz energy gas

can be identified, namely the gravitational acceleration b and the constant density of
the solid phase with

KQ = { b, ρSR = ρSR
0S } . (B.17)

Considering (B.15), (B.17) and the total number of field equations (B.13), the following
amount of constitutive relations is required:

41 + 16γ #FQ

− 4 #KQ

− (26 + 4γ) #FE

11 + 12γ #CE

(B.18)

Finally, (11 + 12γ) field quantities remain for which constitutive relations have to be
found. The constitutive quantities (#CQ) are chosen with

CQ = { TS, Tγ, p̂γ, ρ̂γ, ψS, ψγ, ηS, ηγ,q } . (B.19)

B.5. Derivation of Helmholtz energy gas

Considering restriction (5.100) as well as a mass approach based on the equation
for the molar chemical potential for ideal gases, cf. (2.56), the following request is
postulated:

µγ = ∂ψGγ

∂ρGγ

!= µγ
0 + Rγ θ ln(ρ

Gγ

ρGγ
0

). (B.20)

By integration the approach for the volume-specific Helmholtz potential of the gas
components is derived with

ψGγ = ρGγµγ
0 + ρGγ Rγ θ [ln (ρ

Gγ

ρGγ
0

) − 1] + fGγ(θ) (B.21)

and hence, for the mass-specific energy

ψγ = ψGγ

ρGγ
= µγ

0 + Rγ θ [ln (ρ
Gγ

ρGγ
0

) − 1] + fγ(θ) , (B.22)
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where fGγ(θ) and fγ(θ), respectively, denote the temperature dependent integration
constants.

With (B.21) and (3.28), the ansatz for the molar-specific chemical potential µγ
m =

Mγ
m µ

γ can additionally be derived via

µγ = ∂ψGγ

∂ρGγ
= ∂ψGγ

∂(cGγ
m Mγ

m)
= 1

Mγ
m

[∂ψ
Gγ

∂cGγ
m

]

= 1
Mγ

m
[Mγ

m µ
Gγ
0 + Mγ

mRγ θ ln( cGγ
m

cGγ
m,0

)]
(B.23)

which finally leads to

µγ
m = µγ

m,0 + Rm θ ln( cGγ
m

cGγ
m,0

) . (B.24)

Therein, Rm = Mγ
m Rγ denotes the universal gas constant.

Additionally, the free energy is postulated to be a function of the temperature θ,
see also (5.48). Referring to that, the approach for fGγ(θ) and fγ(θ), cf. (B.21) and
(B.22), has to be found.

According to the general fundamental principles of thermodynamics the heat capacity
measured at constant volume is defined with

cγ
V = ∂εγ

∂θ
= ∂(ψγ + θ ηγ)

∂θ
, (B.25)

see (2.50), where the specific internal energy ε can be replaced by the specific
Helmholtz energy (2.7) with

ψα = εγ − θ ηγ. (B.26)

The specific entropy ηγ is defined with (2.13)4 as

ηγ = −∂ψγ

∂θ
, (B.27)

so that (B.27) implemented into (B.25) reads, additionally with (5.55) and (5.57),

cγ
V = −θ ∂

2 ψγ

∂2 θ
= − θ

ρGγ

∂2 ψGγ

∂2 θ
. (B.28)
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Considering (B.21) and the second derivative with respect to the temperature, the
following constraint together with (B.28) is postulated:

∂2 ψGγ

∂2 θ
= ∂2 fGγ

∂2 θ
!= −cγ

V ρ
Gγ

θ
. (B.29)

By double integration the term fGγ(θ) is determined with

fGγ = −ρGγcγ
V [ θ ln ( θ

θ0
) − θ + θ0] = cGγ

V [ θ ln ( θ
θ0

) − θ + θ0] . (B.30)

and likewise the mass-specific term fγ(θ)

fγ = −cγ
V [ θ ln ( θ

θ0
) − θ + θ0] . (B.31)

Finally, combining the integration results with (B.21) and (B.22), the Helmholtz
energies for the gas component φγ read

ψγ = µγ
0 + Rγ θ [ ln (ρ

Gγ

ρGγ
0

) − 1] − cγ
V [ θ ln( θ

θ0
) − θ + θ0]

ψGγ = µGγ
0 + Rγ θ [ ln (ρ

Gγ

ρGγ
0

) − 1] − cGγ
V [ θ ln( θ

θ0
) − θ + θ0] .

(B.32)

B.6. Mixture balance equation of mass for solid and
gas

The sum of the volume balances of the main phases solid and gas, (5.16) and (5.17),
reads

(nS)′
S + (nG)′

G + nS div x′
S + nG div x′

G + nG

(ρGR)′
G

(ρGR)′
G . (B.33)

Implementing the material time derivative of the volume fraction of gas nG with
respect to the solid motion (A.13)3 with

(nG)′
G = (nG)′

S + grad nG wGS , (B.34)
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and furthermore considering the relation of the material time derivative of the
saturation condition (5.40) yields the alternative formulation

nS div x′
S + nG div x′

G + grad nG wGS + nG

(ρGR)′
G

(ρGR)′
G , (B.35)

which is transferred to

nS div x′
S + nG div x′

G + div (nG wGS) − nG div wGS + nG

(ρGR)′
G

(ρGR)′
G , (B.36)

by using the divergence calculation rule (A.1). Moreover, after implementing the
saturation condition nG = 1 − nG into the fourth term, (B.36) can be reduced to the
final form

div ( nGwGS + x′
S) + nG

ρGR (ρGR)′
G = 0 . (B.37)
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C. FEM

C.1. Discretized equation system

For the matrix formulation required for the FEM approximation, the B-matrix BuS

is utilized, which arranges the partial derivatives of the ansatz functions as follows:

BI
uS

=


N I

,X 0 0 N I
,Y 0 N I

,Z 0 0 0
0 N I

,Y 0 0 N I
,X 0 0 N I

,Z 0
0 0 N I

,Z 0 0 0 N I
,X 0 N I

,Y


T

. (C.1)

Moreover, the approximation of the gradients of the scalar values, the B-matrix BΘ

is introduced, which gathers the derivatives of the ansatz functions in the respective
vector

BI
Θ = [N I

,X , N I
,Y , N

I
,Z ]T , (C.2)

where Θ is representative for the scalar values Θ = {{cGι
mol}, pGR, θ}.

With that, the finite element approximation of the weak formulations given in Sec-
tion 6.1 read after implementing the approaches for the virtual test functions for one
element, starting with the mixture balance of momentum:

Gel
u : =

n∑
I

(dδuI
S)T {

∫
Ωe

(BI
uS

)T P(v) dΩ −
∫

Ωe

N Iρ0 b dΩ −
∫

∂Ωe

N Ip̄0 d ∂Ω} (C.3)

where the stress tensor P = dim [3x3] has been rewritten to the vector P(v) = dim [9x1]
and use has been made of ρ0 = JS ρ, cf. also (B.4). The discretized form of the



C. FEM

mixture mass balance reads

Gel
p :=

n∑
I

(dδpGR)I

{
−
∫

Ωe

(BI
p)T nGwGS,0 dΩ +

∫
Ωe

N I JS {Grad x′
S · FT−1

S } dΩ

+
∫

Ωe

N I JS { nG

ρGR (ρGR)′
G} dΩ +

∫
∂Ωe

N I n̄GwGS,0 d ∂Ω
}
(C.4)

with n̄GwGS,0 = nGwGS,0 · n0 denoting the boundary term. The discretized form of
the concentration balance reads

Gel
c :=

n∑
I

(dδcGγ
m )I

{
−
∫

Ωe

nG (BI
c)T

mj Gγ
tot,0 dΩ +

∫
Ωe

N I JS {cGγ
m Grad x′

S · FT−1
S } dΩ

+
∫

Ωe

N I JS {nG(cGγ
m )′

S − nG ĉGγ
m } dΩ +

∫
∂Ωe

N I
mj̄Gγ

tot,0 d ∂Ω
}
(C.5)

with mj̄Gγ
tot,0 = nG

mj Gγ
tot,0 ·n0 denoting the boundary term. Finally the discretized mixture

energy balance is given with

Gel
θ :=

n∑
I

(dδθ)I

{
−
∫

Ωe

(BI
θ)T q,0 dΩ +

∫
Ωe

N I JS {θ (ρS(ηS)′
S +

∑
γ

ργ(ηγ)′
Gγ)} dΩ

+
∫

Ωe

N I
∑

γ

ρ̂γhγ dΩ +
∫

∂Ωe

N I q̄,0 d ∂Ω
}

(C.6)

with q̄,0 = q,0 · n0 denoting the boundary term.

The integral over the element domain Ωe is referred to the isoparametric reference
with the following relation

∫
Ωe

(...) dΩ =
∫

Ω□

(...) detJe d□ , (C.7)

and furthermore, the integration over Ω□ is solved numerically utilizing the Gauss
integration scheme, cf. [109].
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C.2. Linearization for Newton’s method

Each discretized weak formulation has to be linearized for the Newton procedure
according to Section 6.2.2. For that, the incremental parts ∆Gel

u , ∆Gel
p , ∆Gel

c , and
∆Gel

θ can be developed analytically by deriving each term of the weak form towards
the degrees of freedom and their time derivatives with the general procedure given in
(6.39). This yields the tangent term for one node with

∆g∗ =


kuu kup kuc kuθ

kpu kpp kpc kpθ

kcu kcp kcc kcθ

kθu kθp kθc kθθ




∆duS

∆dpGR

∆dcGι
mol

∆dθ

 = K∗∆u (C.8)

where ∆g∗ is denotes the effective tangent stiffness vector, see (6.47). The bold-typed
entries show the multidimensionality of the displacements as well as the set of molar
concentrations to solve. Moreover, the indices of each entry of K∗ indicate the
arrangement of the weak formulations and the respective derivations, wherein the
first index stands for the balance equation, the second for the directional derivative.

In this work the effective tangent matrix is derived through a numerical tangent by
utilizing the forward difference quotient with

km ≈ g(vi + hmem) − g(vi)
hm

, (C.9)

where hm denotes the increment size and em a vector, which is zero for all entries
except entry m, where it is equal to one, cf. [109]. Moreover, the index m denotes the
respective degree of freedom m ∈ {{u}, p, {c}, θ}. With that, the tangent stiffness
matrix is composed of the columns kmm as

K∗ =
[
kmu kmp kmc kmθ

]
. (C.10)
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D. Applications

D.1. Thermal Imaging

Figure D.1.: Molar fraction of carbon dioxide xGC
m [-] over height for different time

steps of the simulation

Figure D.2.: Molar fraction of nitrogen xGN
m [-] over height for different time steps of

the simulation



D. Applications

Fig. D.1 and D.2 depict the distribution of nitrogen and carbon dioxide, respectively,
at different simulation time steps. Since both gases are not directly involved in
methane oxidation, the steady states are reached immediately after approximately 5
minutes.
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D.2. Constant diffusion with slow and strong advection

D.2. Constant diffusion with slow and strong advection

(a) overpressure 1hPa (b) overpressure 10hPa

(c) overpressure 1hPa (d) overpressure 10hPa

(e) overpressure 1hPa (f) overpressure 10hPa

(g) overpressure 1hPa (h) overpressure 10hPa

Figure D.3.: Total, diffusive and advective proportions of partial molar fluxes of
oxygen jO

m [mmol/m3] at different simulation time steps over width of
model
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