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1 Motivation
Strontium titanate SrTiO3 is interwoven with the history of superconductivity. Lightly doped
SrTiO3 was discovered to be superconducting in 1964 [1]. Early experiments revealed features
of doped SrTiO3 that are today associated with other unconventional superconductors:
multiband superconductivity [2], the superconducting dome [3] and a perovskite structure
[4]. Undoped SrTiO3 shows a dielectric constant that rises to the order of ϵ0 ∼ 20000 when
approaching low temperatures [5]. Below 4 K the temperature dependence of ϵ0(T ) shows an
anomaly [6, 7]. Undoped SrTiO3 is referred to as quantum paraelectric, a material where
quantum fluctuations at low temperatures prevent the phase transition in SrTiO3 from
a paraelectric to a ferroelectric. It is widely assumed that the quantum fluctuations and
superconductivity in SrTiO3 are linked [8, 9]. But so far the discussion on the origin of
superconductivity is not settled although many proposals were made. The appealing aspect
in this so far insufficiently understood material may be illustrated by quoting the discoverer
of superconductivity in SrTiO3 Schooley who said "If SrTiO3 had magnetic properties, a
complete study of this material would require a thorough knowledge of all of solid state
physics" [10].

In the years after the discovery of superconductivity in SrTiO3 the interest in this material
decreased. It was believed that the main characteristics of SrTiO3 were brought to daylight.
Furthermore research in SrTiO3 was seen as playground for basic research with no expectable
practical benefit. This changed with the discovery of the 2-dimensional electron gas (2DEG)
in the interface of undoped SrTiO3 and LaAlO3 that can also become superconducting [11,
12]. The superfluid density of the 2DEG in the LaAlO3/SrTiO3 interface was shown to be
tunable when applying an external electric field [13]. The possibility to drive a state of matter
from superconducting to almost insulating by applying a voltage motivates the development
of new superconducting circuit elements [14]. Parallel to the research of the 2DEG in the
LaAlO3/SrTiO3 interface the interest in one of the compounds SrTiO3 was renewed.

The question whether Nb-doped SrTiO3 is a single- or multi-gap superconductor is not
conclusively clarified. The claim that Nb:SrTiO3 is a multi-gap superconductor goes back to
tunneling measurements by Binnig et al. who found two distinct peaks that correspond to two
energy gaps, but when comparable measurements were performed by Swartz et al. single-gap
s-wave BCS-behavior was observed [2, 15]. On the other hand the group of Kamran Behnia
measured a kink in the thermal conductivity in the superconducting state in dependence of
the magnetic flux density which was interpreted as two energy gaps and therefore supports
Binnig’s measurements [16]. Measurements of the optical conductivity and surface impedance
carried out by Thiemann et al. reproduce the kink in the magnetic field but in the zero-field the
optical data shows behavior as expected from a dirty s-wave single-gap BCS superconductor
[17]. Thiemann argued that Nb:SrTiO3 is a multiband superconductor whereas the small
mean free path results in an averaging of the two energy gaps to a single energy gap according
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1 Motivation

to Anderson’s theorem [18]. On the other hand the group of Kamran Behnia showed that
Nb:SrTiO3 is tuned from clean to dirty with greater doping [19]. So also the question whether
Nb:SrTiO3 is best described in the clean or dirty limit of superconductivity is not settled yet.

It becomes apparent that the experimental observations concerning Nb:SrTiO3 up to now
are not fully consistent. But there is also a lack in experimental data. The goal of this thesis
is to contribute to the research in Nb:SrTiO3. Therefore the samples from the previous work
of Thiemann are reexamined with focus on the optical conductivity in a finite magnetic field.
A thorough experimental investigation on the complex conductivity in a magnetic field so far
is missing and may provide valuable insight into the superconducting state of Nb:SrTiO3.
Every effort in the experimental characterization of SrTiO3 may be of value when it allows
to come a step closer to understanding the origin of superconductivity in doped SrTiO3.
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2 Theoretical principles

2.1 Maxwell’s equations

Maxwell’s equations form the foundation for the description of the electromagnetic field [20].
In the presence of matter Maxwell’s equations are given by [21]

∇ · D⃗(r⃗, t) = ρ(r⃗, t)
∇ · B⃗(r⃗, t) = 0

∇ × E⃗(r⃗, t) = −∂tB⃗(r⃗, t)
∇ × H⃗(r⃗, t) = J⃗(r⃗, t) + ∂tD⃗(r⃗, t)

(2.1)

where D⃗ = ϵE⃗ is the electric displacement field and E⃗ is the electric field, B⃗ = µH⃗ is the
magnetic flux density and H⃗ the magnetic field, ϵ = ϵrϵ0 is the dielectric constant with the
specific material dependent relative permittivity ϵr and the dielectric constant of vacuum
ϵ0 = 8.854 · 10−12 F

m . The magnetic permeability µ = µ0µr is set to the value of the magnetic
permeability in vacuum µ = µ0 = 1.2566 · 10−6 Vs

Am with µr = 1. ρ is the charge density, J⃗ is
the current density.

With Ohm’s law J⃗ = σE⃗ where σ is the conductivity and a harmonic time dependence
∂tD⃗ = −iωD⃗ with the frequency ω the fourth of Maxwell’s equations (2.1) can be rewritten
[21–23]

∇ × H⃗ = −iω
(
ϵ+ iσ

ω

)
E⃗ = −iωϵ̂E⃗ (2.2)

and a complex dielectric constant can be introduced

ϵ̂ = ϵ1 + iϵ2 = ϵ+ i
σ

ω
(2.3)

with real part Re(ϵ̂) = ϵ1 and imaginary part Im(ϵ̂) = ϵ2. The complex dielectric constant

ϵ̂ = ϵ0 + i
ω
σ̂ (2.4)

can be related to a complex conductivity σ̂ = σ1 + iσ2 [21]. ϵ̂(ω) and σ̂(ω) are response
functions and therefore suffice the Kramers-Kronig relation [24].
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2.2 Superconductivity

2.2.1 Introduction to superconductivity
In 1911 a new state of matter was discovered when Kammerlingh Onnes measured the
vanishing DC-resistivity of mercury at the temperature of liquid helium [25]. The defining
properties of the superconducting state that a theory of superconductivity must explain were
listed by Bardeen, Cooper and Schrieffer in [26] and are

• the second-order phase transition at the critical temperature TC ,

• the dependence of the electronic specific heat Cv ∝ exp(−T0/T ) on temperature T ,
here T0 is an arbitrary constant [27],

• the exclusion of the magnetic field from the interior of the superconductor also known
as Meissner-Ochsenfeld effect [28],

• the vanishing DC-resistance ρDC(T < TC) = 0

• and the isotope effect of element superconductors T I
C

√
M I = const. where I marks

different isotopes [29].

The above mentioned properties of so-called conventional superconductors that are typically
associated with metallic element superconductors with TC < 20 K are well explained within
the BCS theory that will be discussed in the next subsection. The BCS theory requires an
attractive electron-electron interaction. Conventional superconductors are characterized by
such an attractive electron-electron interaction by the exchange of virtual phonons below
T < TC .

In 1986 the first ceramic superconductor was discovered [30]. Since then new ceramic
superconductors with a TC greater than the boiling point of liquid nitrogen were discovered.
For the ceramic superconductor as well as other superconductors the origin of the attractive
electron-electron interaction is not known yet. Superconductors with an unknown origin of
the attractive electron-electron interaction are referred to as unconventional superconductors.
It is noted that the term ’unconventional superconductor’ is used vaguely and may also refer
to materials that are BCS superconductors but display distinct features such as two-band
superconductivity and a superconducting dome [31, 32].

The research area of superconductivity may seem overwhelming due to massive amount
of theoretical and experimental work. It is not the goal of this section to give a traceable
description of the theory that is used throughout this thesis. The BCS theory will be discussed
insofar as the theoretical arguments that lead to the important results are made plausible. In
the other subsections on superconductivity the necessary concepts for this thesis are simply
introduced. It is appropriate to mention some reference books. Most of this section is taken
from Tinkham [33]. Another classic textbook for superconductivity was written by deGennes
[34], Schmidt gives a nice introduction to superconductivity too [35]. Some theoretical books
can also be found in the references [36–38]. The ultimate reference may be [10].
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2.2 Superconductivity

2.2.2 BCS theory

Cooper pair

The first microscopic description of the superconducting state that explained the before
mentioned properties of conventional superconductors were given by Bardeen, Cooper and
Schrieffer [26]. Cooper showed that in the presence of an attractive interaction V between
two electrons at the Fermi surface EF the energy E of both electrons is given by [39]

E = 2EF − 2ℏωC

exp
(

2
Nn(0)V0

)
− 1

≈ 2EF − 2ℏωC exp
(

− 2
Nn(0)V0

)
(2.5)

with the density of states (DOS) at the Fermi surface for one spin orientation Nn(0) in the
normal conducting regime, the weak-coupling approximation Nn(0)V0 < 0.3 is used with
V0 > 0. Cooper assumed that the electrons would interact in the momentum space (k-space)
for energies ε between EF and EF + ℏωC with ℏωC ≪ EF . The potential is assumed to be

V (ε) =
−V0 for EF < ε < EF + ℏωC

0 else
. (2.6)

In the BCS theory the cutoff frequency ωC is set to the Debye frequency ωC = ωD since
the electron interaction is phonon mediated. In fact the framework of the BCS theory
also applies to other ωC with ℏωC ≪ EF when V (ε) can be expressed as in (2.6) [33].
ℏ = h/(2π) = 1.055 · 10−34 Js is Planck’s constant [40].

BCS Ground state

The so-called pairing Hamilton is given by

H =
∑
k⃗,σ

εk⃗c
∗
k⃗,σ
ck⃗,σ +

∑
k⃗,⃗l

Vk⃗,⃗lc
∗
k⃗,↑c

∗
−k⃗,↓c−l⃗,↓cl⃗,↑ (2.7)

where the sum goes over all Cooper pairs with energy εk⃗ wave vector k⃗, l⃗ and spin orientation
σ = {↑, ↓}. Vk⃗,⃗l is the interaction potential. In the mean-field approach of the BCS theory
the ground state is assumed to be

|ψBCS⟩ =
∏
k⃗

(
uk⃗ + vk⃗c

∗
k⃗,↑c

∗
−k⃗,↓

)
|ϕ0⟩ (2.8)

with the vacuum state |ϕ0⟩ and probability amplitudes uk⃗, vk⃗. The normalization of the
ground state requires |uk⃗|2 + |vk⃗|2 = 1. The BCS energy gap is defined as

∆k⃗ = −
∑

l⃗

Vk⃗,⃗luk⃗vl⃗. (2.9)
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2 Theoretical principles

A variational approach to the Hamiltonian in equation (2.7) can be employed. The variation
of the mean energy δ < E > is set to

δ < E >= δ ⟨ψBCS| H − µNop |ψBCS⟩ = 0 (2.10)

with the chemical potential µ and the particle-number operator Nop = ∑
k⃗,S c

∗
k⃗,S
ck⃗,S. It follows

u2
k⃗

= 1
2

(
1 − ξk⃗

Ek⃗

)
, v2

k⃗
= 1

2

(
1 + ξk⃗

Ek⃗

)
(2.11)

with ξk⃗ = εk⃗ − EF and Ek⃗ =
√

∆2
k⃗

+ ξ2
k⃗
.

The before made assumption in equation (2.6) for the interaction potential Vk⃗,⃗l results in
a k⃗-independent ∆k⃗ = ∆. In this case equation (2.9) together with equation (2.11) can be
solved and returns

∆(T = 0) = ∆0 = ℏωC

sinh [1/(Nn(0)V0)]
≈ 2ℏωC exp [−1/(Nn(0)V0)] (2.12)

whereas in the last transformation the weak coupling approximation Nn(0)V0 < 0.3 is used
again. In general ∆(T ) is a temperature-dependent quantity. The energy gap is related to
the critical temperature by

∆(T = 0) = 1.764 · kBTC (2.13)
with the Boltzmann constant kB = 1.38 · 10−23 J/K. The energy gap can be used to define
the BCS coherence length

ξ∆ = ℏvF

π∆0
(2.14)

with the Fermi velocity vF [33].

Density of states

- 4 - 3 - 2 - 1 0 1 2 3 40

1

2
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 N sc(E
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n(0
) [1
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E n e r g y  E / ∆  [ 1 ]

 N s ( E ) / N n ( 0 )

Fig. 2.1: Density of states in the superconducting state according to equation (2.15).
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2.2 Superconductivity

The density of states (DOS) in the superconducting regime Nsc(E) is given by

Nsc(E)
Nn(0) = Re

(
|E|√

E2 − ∆2

)
. (2.15)

Note here that throughout this thesis the DOS is measured respective to the Fermi energy
EF , this means that Nα(E) is the DOS at energy EF + E and α = sc, n characterizes the
superconducting and normal state. In figure 2.1 the density of states in the superconducting
state can be seen. Characteristic for the superconducting state is Nsc(−∆ < E < ∆) = 0
and Nsc(E = ±∆) → ∞.

The occupation of the density of states depends on the temperature T and is given by the
Fermi distribution

fF (E) = 1
1 + eβE

(2.16)

with the inverse temperature β = 1/kBT and the Boltzmann constant kB = 8.617 · 10−5 eV
K

[33, 40].

2.2.3 Bogoliubov deGennes equations

The BCS theory motivated generalizations of the theory of superconductivity. Gor’kov showed
that the Ginzburg Landau theory is a limiting case of the BCS theory for T close to TC

[41]. Eliashberg found equations that allow to compute the superconducting state for a more
complex interaction potential [42]. The Bogoliubov deGennes equations (BdG equations)
generalize the BCS theory for a spatially varying pairing potential

∆̂(r⃗) =
∑

n

v̂∗
n(r⃗)V (EF + En)ûn(r⃗) (1 − 2fF (En)) (2.17)

to

Ĥ0ûi(r⃗) + ∆̂(r⃗)v̂i(r⃗) = Eiûi(r⃗)
−Ĥ0v̂i(r⃗) + ∆̂∗(r⃗)ûi(r⃗) = Eiv̂i(r⃗)

(2.18)

with
Ĥ0 = 1

2m
( ˆ⃗p− eA⃗

)2
+ U(r⃗) − EF . (2.19)

Here m is the effective electron mass, e = 1.602 · 10−19 C the elementary charge [40], U(r⃗)
the interaction potential and the momentum operator is given by ˆ⃗p = −iℏ∇⃗. The definition
of the interaction potential (2.17) and the resemblance to equation (2.9) suggest that the
introduced superconducting amplitudes ûi(r⃗), v̂i(r⃗) can be seen as generalizations of equation
(2.11) to the case of spatial inhomogeneity. The potential can be expressed in analogy to the
BCS theory as equation (2.6). The index i denotes the eigenvalues Ei and eigenvectors ûi(r⃗),
v̂i(r⃗) [33].
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2.2.4 Electrodynamics of superconductivity

London and Pippard equations

One of the early proposed phenomenological models on the electrodynamics of superconductors
are the London equations [43]

∂tJ⃗sc = nsce
2

me

E⃗, ∇ × J⃗sc = −nsce
2

me

B⃗ (2.20)

that explain the Meissner-Ochsenfeld effect and the vanishing DC resistance on a macroscopic
scale. London assumed that the total density of electrons n = nsc + nn is composed of
the density of normal conducting electrons nn and superconducting electrons nsc with the
according current density J⃗sc of the superconducting electrons. The London penetration
depth is defined as

λL =
√

me

µ0nsce2 . (2.21)

In the framework of the London equations an external magnetic field B⃗ decays exponentially
in the superconductor on the length scale of λL. The London equations can be also expressed
as

J⃗sc = − 1
µ0λ2

L

A⃗ (2.22)

with vector potential A⃗.
Based on a generalization by Chambers for non-local normal conducting metals Pippard

proposed as non-local generalization of equation (2.22)

J⃗sc(r⃗) = − 3
4πµ0ξ∆λ2

L

∫
R3

R⃗
[
R⃗ · A⃗(r⃗′)

]
R4 e−R/ξ∗dr⃗′ (2.23)

for superconductors with R⃗ = r⃗ − r⃗′, R = |R⃗|, ξ∗−1 = ξ−1
∆ + l−1 and mean free path l [44].

Pippard introduced ξ∆ as experimentally observable length scale, the identification with
the BCS coherence length was made within the BCS theory. The BCS theory reproduced
equation (2.23) except the exponential that is replaced by the similar behaving BCS kernel
function J(R, T ) [33].

Mattis Bardeen Formalism

The optical conductivity of a superconductor can be obtained by considering the absorption

αsc =
∫
R

|M |2F (∆, E, E + ℏω)Nsc(E)Nsc(E + ℏω) · [fF (E) − fF (E + ℏω)] dE (2.24)
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Fig. 2.2: The optical conductivity (2.26) in dependence of frequency ω = 2πf for different
normalized temperatures T/TC . The real part can be seen in (a), the imaginary
part can be seen in (b).

that is proportional to the real part of the optical conductivity αsc ∝ σ1 [33]. The absorption
depends on the frequency ω = 2πf of the interacting electromagnetic field. Here |M |2 is the
transition matrix element and

F (∆, E, E + ℏω) = 1
2

(
1 + ∆2

E(E + ℏω)

)
(2.25)

is the case II coherence factor of superconductivity. Due to the phase-coherent superposition
of superconducting one-electron states interference terms arise that can be taken into account
with the coherence factor F (∆, E, E + ℏω). As result the electron creation and annihilation
operator c∗

k⃗,σ
, ck⃗,σ of the normal conducting state are not identical with the quasiparticle

creation and annihilation operator of the superconducting state which give rise to interference
terms.

The optical conductivity

fMB
1 (∆, ω) = σ1(ω)

σDC
= 2

ℏω

∫ ∞

∆

(fF (E) − fF (E + ℏω)) (E2 + ∆2 + ℏωE)
√
E2 − ∆2

√
(E + ℏω)2 − ∆2

+ Θ(ℏω − 2∆)
ℏω

∫ −∆

∆−ℏω

(1 − 2fF (E + ℏω)) (E2 + ∆2 + ℏωE)
√
E2 − ∆2

√
(E + ℏω)2 − ∆2

fMB
2 (∆, ω) = σ2(ω)

σDC
= 1

ℏω

∫ ∆

min(∆−ℏω,−∆)

(1 − 2fF (E + ℏω)) (E2 + ∆2 + ℏωE)
√
E2 − ∆2

√
(E + ℏω)2 − ∆2

(2.26)
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2 Theoretical principles

was given by Mattis and Bardeen in the limit l → ∞ [45]. The expressions are normalized to
the DC conductivity in the normal state σDC. Zimmermann obtained an expression for σ̂ for
arbitrary l [46]. Θ(x) is the Heaviside step function [33].

Effective London penetration depth

Fig. 2.3: Schematic depiction of the various limits in a superconductor with according λeff.
The depiction is motivated from a similar one in [21].

London showed that an external magnetic flux density B is exponentially screened from
the interior of a bulk superconductor at length scale λL. In fact the real penetration depth
that will be referred to as effective London penetration depth λeff(λL, ξ∆, l) depends on ξ∆
and l in various ways in different limiting cases as will be shown next.

In the London limit ξ∆ < λL the effective London penetration depth

λeff = λL (2.27)

equals the usual London penetration depth.
In the dirty limit l < ξ∆ the effective London penetration depth is given by

λeff = λL

√
1 + ξ∆

J(0, T )l (2.28)

with the BCS kernel function J(0, 0) = 1, J(0, TC) = 1.33. The London limit and the dirty
limit are also referred to as local limit

The anomalous limit λL < l, ξ∆, also referred to as clean limit and non-local limit, is given
by

λeff = (ξ∆λ
2
L) 1

3 (2.29)
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2.2 Superconductivity

The limit of a superconductor may change with temperature since λL depends heavily on
temperature close to TC . In figure 2.3 the various limiting cases are schematically depicted.
The distinction into the London-, dirty and anomalous limit is taken from [47] [33].

Surface impedance and optical conductivity

The relation between the surface impedance ẐS and the optical conductivity σ̂ also depends
on the investigated limit [47]. In analogy to [47] the relation between ẐS and σ̂ is defined in
a normalized manner. The physical foundation of the surface impedance ẐS is forwarded to
the next section.

The local limit covers the London limit and the dirty limit that were mentioned before.
With RL

n =
√
ωµ0/(2σDC), the surface impedance ẐS in the local limit is given by

ẐS

RL
n

=
√

2
(
i
σ̂

σDC

)−1/2

. (2.30)

The non-local limit covers the anomalous limit. For these the surface impedance with
RP

n = (µ2
0ω

2l/(4σDC))1/3 is given by

ẐS

RP
n

= 2
(

− σ̂

σDC

)−1/3

. (2.31)

Equation (2.30) and (2.31) are defined for the superconducting ẐS and superconducting σ̂
within the limits that were defined previously. In fact equation (2.30) and (2.31) can also be
used for normal conducting metals whereas the relevant length scale becomes the skin depth
δS. In this case l < δS denotes the local limit and l > δS the non-local limit [21].

2.2.5 Ginzburg Landau theory

Introduction to Ginzburg Landau theory

The Ginzburg Landau theory (GL theory) is a phenomenological approach to the macroscopic
properties of superconductors. The GL equations follow from an expansion of the free energy.
A complex space-dependent order parameter ψGL(r⃗) is introduced that can be related to the
local density of superconducting electrons nsc(r⃗) = |ψGL(r⃗)|2. Gor’kov showed that the order
parameter is proportional to the energy gap, both being complex quantities, for T close to
TC [41]. This subsection on GL theory will focus on the distinction into type I and type II
superconductors, the Ginzburg Landau coherence length and the Shubnikov phase [33].

11



2 Theoretical principles

Type I and Type II superconductors

The GL theory introduces a new length scale, the so-called Ginzburg Landau coherence length
ξGL(T ). A small disturbance of ψGL(r⃗) decays on a length scale of ξGL. For a superconductor
in the local regime it can be related

ξGL(T )
ξ∆

= π

2
√

3
BC(T = 0)
BC(T )

λL(T = 0)
λeff(T ) (2.32)

with the critical magnetic flux density BC(T ) that marks the transition between the su-
perconducting and the normal conducting phase. For T → 0 it is obtained in the London
limit

ξGL = 0.907 · ξ∆ (2.33)
and in the dirty limit

ξGL = 0.907 ·
√
ξ∆l. (2.34)

Furthermore the Ginzburg Landau coefficient (GL coefficient) can be defined

κ = λeff

ξGL
. (2.35)

A superconductor with κ < 1/
√

2 is referred to as type I superconductor and displays the
before mentioned properties of superconductivity. A superconductor with κ > 1/

√
2 is

referred to as type II superconductor and displays two critical magnetic flux densities BC1,
BC2. For B < BC1 type II superconductors expel the external B. For BC1 < B < BC2 the
external B penetrates the superconductor within a laminar lattice of vortices. The type II
superconductor becomes normal conducting for B > BC2 [33].

Shubnikov phase

For BC1 < B < BC2 a type II superconductor is partially penetrated by the external magnetic
flux density within a triangular lattice of vortices. The superconducting state is then referred
to as Shubnikov phase or mixed state. The superconductor displays spatial inhomogeneity
due to the vortices. The Shubnikov phase was predicted by Abrikosov [48]. In figure 2.4 the
schematic dependence of the magnetization on the external magnetic flux density can be
seen. It is noted that also for type II superconductors a BC can be defined where the area
below the blue dashed and the black curve are the same.

A vortex contains a flux quantum Φ0 = h/(2e). The superconducting order parameter
within the vortex rises radially approximately as

ψGL(r) ∝ tanh r

ξGL
. (2.36)
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2.3 Microwave principles

Fig. 2.4: Schematic dependence of the magnetization on the external magnetic flux density
for a type I and type II superconductor with the same BC . The inset shows the
vortex lattice with spacing a∆ and radius ξGL.

with distance r from the vortex core. The confined magnetic flux density inside of the vortex
varies radially as

Bvortex(r) = Φ0

2πλ2
eff
K0

(
r

λeff

)
(2.37)

with the 0’th order Bessel function K0(x). The distance between two vortices is given by

a∆(B) =
(4

3

) 1
4
(

Φ0

B

) 1
2

. (2.38)

The upper critical magnetic field is given by

BC2(T = 0) = Φ0

2πξ2
GL(T = 0) . (2.39)

Since ψGL(r) rises on length scale ξGL the radius of a vortex is usually set to ξGL to apply
methods of Effective Medium theory more easily although a single vortex does not possess a
sharp edge [33].

2.3 Microwave principles

2.3.1 Propagation in a waveguide
This subsection will provide the foundation to relate the surface impedance ẐS with the
microwave properties of superconducting resonators, specifically the resonance frequency
f0 and the frequency width fb. The most general case of a waveguide of arbitrary shape
as depicted in figure 2.5 is considered. The waveguide displays translational invariance in
z direction. Together with an exponential time dependence the vector potential can be

13



2 Theoretical principles

Fig. 2.5: Schematic depiction of a waveguide of arbitrary shape with translational invariance
in z direction. The cross sections of the conductors are labeled as S1 and S2 with
potential amplitudes ±V0/2 on the contour of S1 and S2. The surface current J⃗S

and electric field E⃗ can be seen in the depiction.

expressed as A⃗ = e⃗zψ(x, y) exp(−γP z − iωt). γP is the propagation constant and ψ(x, y) is a
scalar field. The following derivation of γP is taken from [49], for a more complete discussion
the reader is referred to this textbook.

With the Lorenz gauge ∇ · A⃗ = iωϵµϕ the potential ϕ can be expressed in terms of A⃗. The
potential on the surface of the conductor is a voltage wave ϕ = ±1

2V0 exp(−γP z − iωt) with
opposite sign on the conductor contours ∂S1 and ∂S2. Here ∂S1 and ∂S2 denote the contour
respectively of the cross sections S1 and S2. The electromagnetic field is related to the vector
potential A⃗ by

B⃗ = ∇ × A⃗,

E⃗ = iωA⃗+ i
∇
(
∇ · A⃗

)
ωϵµ

.
(2.40)

A⃗ fulfills the wave equation (
∇2 + k2

)
A⃗ = 0 (2.41)

with the wave number k = ω
√
ϵµ = ω

√
ϵr/c and c = 2.998 · 108 m/s is the speed of light

[40]. On the contour of ∂S1 and ∂S2 the surface current JS can be related to the E-field by
defining the surface impedance ẐS such that ẐSJS = e⃗zE⃗.

Equation (2.41) can be rewritten to

∇2
xyψ + k2

cψ = 0 (2.42)

with the Nabla operator in the xy-plane ∇xy = ∂2
x + ∂2

y and k2
c = k2 + γ2

P . ψ fulfills the
boundary condition (

− iωϵẐS

k2
c

∂ψ

∂n
− ψ

)
|∂S1,∂S2 = 0 (2.43)
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2.3 Microwave principles

on the surface of the conductor whereas the normal vector n⃗ is directed into the conductor.
Assuming ẐS = 0 results in γP = −ik which is purely imaginary and no damping or change
in frequency may be expected, this is consistent with an ideal transmission line.

Equation (2.42) may be rewritten to

k2
c = −

∫
ψ∇2

xyψ dxdy∫
ψ2 dxdy . (2.44)

where the integral goes over the whole xy-plane. The expression

− k2
c

∫
ψ2 dxdy =

∫
ψ∇2

xyψ dxdy −
∮

C=∂S1,∂S2

(
− iωϵẐS

k2
c

∂ψ

∂n
− ψ

)
∂ψ

∂n
dl (2.45)

is equivalent to (2.44) since the contour integral over ∂S1 and ∂S2 vanishes due to the
boundary condition (2.43). Here dl denotes the infinitesimal path variable that is used to
integrate over C = ∂S1, ∂S2. In contrast to equation (2.44) the variation of kc in equation
(2.45) vanishes in first order and therefore provides a solution for the propagation in a lossy
waveguide that is correct up to the second order when inserting ψ0 of an ideal transmission
line.

The solution to equation (2.42) for ẐS = 0, this means the solution for the ideal transmission
line, is referred to as ψ0. As normalization it is set

∫
ψ2

0dS = µϵ. The surface current that
goes into opposite direction on S1 and S2 is given by µ|J⃗S| = |∂ψ0/∂n|. Equation (2.45) can
be rewritten to

k2
c = −

√
µ

ϵ

V0

2

(∮
S1

|J⃗S|dl +
∮

S2
|J⃗S|dl

)
− ikẐS

k2
c

√
µ

ϵ

∮
S1+S2

|J⃗S|2dl. (2.46)

The first two integrals return respectively the total current I0 on each conductor. The last
integral is expected to be proportional to I2

0 but will depend on the geometry of the setup. A
geometry factor Γ is introduced such that

2π√
µϵV0I0

Γ =
∮

∂S1+∂S2
|J⃗S|2dl. (2.47)

Equation (2.46) may be rewritten to

k4
c + k2

c

√
µ

ϵ
V0I0 + ikẐS2πµV0I0

Γ = 0. (2.48)

Solving the quadratic formula and assuming kẐSϵ ≪ V0I0Γ returns

γP = ik +
π

√
ϵµ

Γ ẐS = i
(
k +

π
√
ϵµ

Γ XS

)
+
π

√
ϵµ

Γ RS = iβP − αP (2.49)

where β is the propagation coefficient and α the attenuation coefficient. Thus a small but
finite surface impedance ẐS results in a change of propagation and introduces attenuation.
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2 Theoretical principles

2.3.2 Transmission coefficient

Fig. 2.6: Circuit diagram of the microwave setup. The two gaps are modeled as Π-network.
The center conductor is between both Π networks with circuit impedance ZC ,
resonator length l and propagation coefficient γ. Yi are the coupling admittances.

In this subsection the transmission coefficient S21 for a generic resonator setup is computed.
A resonator can be constructed from an arbitrary waveguide as depicted in 2.5 by introducing
two gaps on one conductor. The two gaps have the distance l. In analogy to [50] a gap
is modeled as Π network with admittances Ya and Yb. The part between the two gaps is
modeled as waveguide with propagation coefficient γP , length l and circuit impedance ZC. In
figure 2.6 the complete circuit diagram of the resonator setup can be seen. The resonator
setup is discussed in the next chapter 3.2.

With the ABCD matrix approach the transmission coefficient [51]

Ŝ21(ω) = 2
A+B/ZC + CZC +D

(2.50)

can be given with
[
A B
C D

]
=
 1 + Ya

Yb

1
Yb

2Ya + Y 2
a

Yb
1 + Ya

Yb

 [ cos(ilγP ) iZc sin(ilγP )
i

Zc
sin(ilγP ) cos(ilγP )

]  1 + Ya

Yb

1
Yb

2Ya + Y 2
a

Yb
1 + Ya

Yb

 . (2.51)

Yi = iωCi with i = a, b are the coupling admittances with coupling capacitances Ci. A
normalized coupling coefficient ri = ωCiZC can be defined.

Frequencies close to resonance βP = √
ϵµ(nω∗

0 + δω) with small losses αP l ≪ 1 are assumed.
n = 1, 2, 3, ... is the integer mode number and ω∗

0 is defined such that ω∗
0l

√
ϵµ = π as expected

for a half-wavelength resonator. Ŝ21(ω) depends on the frequency ω, the quantity δω with
δω ≪ ω∗

0 is introduced as new variable for the transmission coefficient Ŝ21(δω). It is noted
with emphasis that the propagation coefficient βP is not the wave vector, in fact with equation
(2.49) it is obtained

ω + π

ΓXS = nω∗
0 + δω. (2.52)

The made assumptions allow to set cos(iγP l) ≈ 1 and sin(iγP l) = −πδω/ω∗
0 − ilαP as first

order Taylor expansion. Further it is assumed ra ≪ rb so that it can be set ra = 0. As result

Ŝ21(δω) = 2 (ZCYb)2

2 (ZCYb)2
(
1 + lαP − iπδω

ω∗
0

)
+ 2ZCYb

(
1 + lαP − iπδω

ω∗
0

)
+ lαP − iπδω

ω∗
0

(2.53)
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2.3 Microwave principles

is obtained. In the weak coupling regime rb = ωCbZC ≪ 1 it is obtained

Ŝ21(δω) = − 2r2
b

lαP − i
(

πδω
ω∗

0
− 2rb

) . (2.54)

The coupling introduces a small shift

δωC = 2rbω
∗
0

π
= ω

2CbZC

l
√
ϵµ

(2.55)

of the resonance frequency. Since Cb(ω) only depends weakly on ω, δωC ∝ ω [50], the higher
modes are equidistantly spaced for ẐS = 0. Equation (2.54) motivates a complex Lorentzian

L(f) = A
fb

2 + i (f − f0)
(2.56)

with ω = 2πf , resonance frequency f0, frequency width fb and amplitude A.

2.3.3 Microwave properties due to finite ẐS

In the previous section the identification fbπ
√
ϵµ = αP was made towards the Lorentzian

and the phase of π absorbed into A. In general the attenuation constants

α = αP + αD + αR (2.57)

are additive, αP = π
√
ϵµRS/Γ accounts for the surface impedance of the conductor, αD for

losses in the dielectric and αR for radiation losses [51]. The frequency width due to the
additive attenuation constants is then given by fbπ

√
ϵµ = α. It is noted that the relation

fbπ
√
ϵµ = α only holds true in the weak coupling regime rb = ωCbZC ≪ 1.

The resonance frequency ω0 = 2πf0 for a lossy conductor in the weak coupling regime can
be obtained by comparing the coefficients in equation (2.54) and (2.56) while accounting for
(2.52), it is then obtained

ω0 = nω∗
0 + 2ω∗

0
π
ωCbZC − π

ΓXS. (2.58)

It is assumed that the main losses occur due to the surface impedance in the weak coupling
regime rb ≪ 1 so that α = αP and ∆ω0 = 2π∆f0 = nω∗

0 − ω0 = πXS/Γ. It follows

ẐS = RS + iXS = 2Γ
(
fb

2 + i∆f0

)
. (2.59)
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3 Experimental techniques

3.1 He3/He4 Dilution Refrigerator
Microwave measurements with superconducting samples such as Nb:SrTiO3 require low
temperatures. In a liquid He4 bath cryostat temperatures of around 1 to 2 K can be reached.
To reach these temperatures the boiling temperature of He4 is lowered by pumping He4 from
the bath cryostat. To reach even lower temperatures in the mK regime a He3/He4 dilution
refrigerator is used.

In figure 3.1 a schematic view on a dilution refrigerator can be seen. The He3/He4 mixture
is in a separated circulation system. Two cold traps respectively in liquid nitrogen and in
liquid He4 ensure that the valuable mixture is preserved and purified. When the He3/He4
mixture is condensed and below T < 0.86 K a phase separation of the He3/He4 mixture into
a He3 rich phase and a He3 poor phase occurs. Both phases are in equilibrium and separated.
Pumping He3 from the He3 poor phase will result in a He3 flow from the He3 rich phase into
the He3 poor phase to maintain the equilibrium between both phases. The necessary energy
to maintain the equilibrium is extracted from the environment as heat. This is the main
cooling mechanism to reach mK-temperatures [52].

The 1K pot is used to cool and condense the He3/He4 mixture before it enters the mixing
chamber. A constant He4 flow in the 1 K pot ensures a temperature of around 1.7 K in the
1 K pot. The constant He4 flow in the 1 K pot is controlled by the 1 K Needle Valve (1 K NV).
In the mixing chamber the He3/He4 mixture has the lowest temperature. The previously
described cooling mechanism due to the phase separation takes place in the mixing chamber.
The inset that contains the circulation system and the sample is in vacuum down to 10−5 hPa.
The base temperature is only limited by external heat inputs such as the coaxial cables. In
this setup the mixing chamber reaches a base temperature of 25 mK.

The sample in this experiment is mounted in a brass box with 1.85 mm connectors. The
brass box contains the stripline setup that is introduced in the next section. The sample is
connected via coaxial cables with the VNA. The wiring in the dilution refrigerator is thermally
coupled to reduce heat input. In the He4 bath a superconducting magnet is located that can
provide an external magnetic flux density Bext at the position of the sample. Experiments
that employ the described setup can be found in [17, 53–55].
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3 Experimental techniques

Fig. 3.1: Schematic view on the dilution refrigerator. The He3/He4 mixture is in a separated
circulation system to preserve the valuable mixture. In the mixing chamber temper-
atures down to 25 mK are reached. The He3/He4 mixture is precooled in the 1K
pot with liquid He4. The He3/He4 rotary pump, the roots pump and the He4 rotary
pump maintain low pressure in the mixing chamber and the 1K pot respectively to
ensure the low base temperature. The mixing chamber cools the cold finger with the
sample. The sample is connected via coaxial cables with a Vector Network Analyzer
(VNA) for microwave measurements.
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3.2 Stripline setup

3.2 Stripline setup
3.2.1 Stripline geometry

Fig. 3.2: (a) shows a schematic exploded view on a stripline microwave conductor. The
potential difference between upper and lower groundplane and the center conductor
is V0. The center conductor is of thickness t and width w with gap distance d. Both
sapphire plates have height h. (b) shows the same as (a) except that the upper
groundplane is replaced with an interesting sample like Nb:SrTiO3.

A stripline feedline consists of a center conductor that is sandwiched between two ground-
planes. The potential difference between the groundplane and the center conductor is V0.
The ground plane and the center conductor are separated by a sapphire bulk with height
h = 127µm. The height of the sapphire h, the thickness t = 1µm and the width w = 50µm
of the center conductor determine the circuit impedance ZC . Introducing two gaps of length
d = 50µm into the center conductor turns the stripline feedline into a stripline resonator.
The coupling capacitance C depends on d. An appropriate circuit diagram for the setup as
described can be seen in figure 2.6. In figure 3.2 in (a) a schematic depiction of the stripline
resonator can be seen. The length of the center conductor between both gaps is l. The
stripline resonators investigated in this thesis are made out of lead except one resonator in
chapter 4 that is made out of tin.

The Nb:SrTiO3 samples can replace the upper ground plane by partially removing the lead
and placing the Nb:SrTiO3 sample on top with GE varnish. This is schematically depicted in
figure 3.2 in (b). The Nb:SrTiO3 sample covers the whole meander structure of the center
conductor. In this case Nb:SrTiO3 acts as perturbation on the microwave resonators. With
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the help of the cavity perturbation technique it is possible to extract the optical properties
of SrTiO3 from the microwave data.

Experiments that employ the described setup can be found in [17, 53, 55–58].

3.2.2 Microwave properties of the Stripline setup

With the help of conformal mapping techniques the circuit impedance

ZC = 1
4

√
µ

ϵ

K(ke)
K(k′

e)
(3.1)

can be given with the inverse elliptic function K(ke) with argument

ke = 1
cosh πw′

4h

, k′
e =

√
1 − k2

e (3.2)

and effective width w′ and height h = 127µm [22]. ZC also depends on the relative permittivity
ϵr since it is ϵ = ϵ0ϵr. The effective width w′ is related to the real width w = 50µm and
thickness t = 1µm by [59]

w′ = w + t

π
ln exp(1)√[

1
3h/t+1

]2
+
[

1/(4π)
w/t+1.1

]m , m = 6
3 + t/h

. (3.3)

As dielectric sapphire is used. Despite of small anisotropies of sapphire it is set ϵr = 10 [22].
The parameters are chosen such that ZC ≈ 50 Ω and reflections between the coaxial cables
and the stripline setup are minimized. The geometry factors are given by [49]

π
√
ϵµ

Γgp

= π2w

64ZCh2 [K(k′
e)k′

e]
2 ≈ 12.3 1

Ωm (3.4)

for both groundplanes together and

π
√
ϵµ

Γcc

= π

16Zchk′
eK(k′

e)2

∫ K(k′
e)

0
dx
[
sn2(x, k′

e) + (K(k′
e)∆v)2cn2(x, k′

e)dn2(x, k′
e)
]− 1

2

≈ 246 1
Ωm

(3.5)

for the center conductor with

(
1 + k4

e

) 1
4 K(k′

e)∆v = π

4he
−π/2

√
4wt
π
. (3.6)
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3.3 Fitting technique

The functions sn, cn and dn are the Jacobi elliptic functions. Going back to equation (2.47)
the total Γ can be obtained by summing the partial Γi of the respective contour integrals

1
Γ =

∑
i

1
Γi

. (3.7)

It is Γgp = 2.69 Ω/GHz and Γcc = 0.135 Ω/GHz.
The coupling admittances Yi=a,b = iωCi=a,b = iri=a,b/ZC of the stripline setup are given by

[50, 60, 61]

ra = ωCaZc = −
2h
λ

(
J1(πd/λ)

2h/λ

)2

1 − 3
4

(
πd
2λ

)2
+
(

πd
2λ

)2
ln 4h

πd
+ 1

6

(
πd
4h

)2
− 2

(
πd
4h

)2
S1(2h

λ
)

(3.8)

and

rb = ωCbZc = −1
2ra + 1

2
4h/λ

(J0(πd/λ))2
1 −

(
πd

2λ

)2
 ln 4h

πd
+ S0

(
2h
λ

)
+ 1

2

(
πd

2λ

)2

− 1
6

(
πd

4h

)2

+ 2
(
πd

4h

)2

S1

(
2h
λ

)
(3.9)

with
S0(x) =

∞∑
n=1

(
1√

n2 − x2
− 1
n

)
(3.10)

and
S1(x) =

∞∑
n=1

(√
n2 − x2 − n+ x2

2n

)
(3.11)

and the gap width d = 50µm. λ is the wavelength in the dielectric. Ji(x) is the Bessel
function of i’th order. For computational evaluation the sum only goes to n = 5. The
admittances Yi can be seen in the circuit diagram in figure 2.6.

3.3 Fitting technique
With the help of the ABCD matrix approach it was shown that the transmission coefficient
Ŝ21 may be fitted with a Lorentzian as in equation (2.56). The Vector Network Analyzer
(VNA) used in the setup measures the transmission coefficient Ŝ21. As fit equation for the
resonance it is used

Ŝ21(f) = eifτ

[
v1

f − v2
+ v3 + v4 · (f − Re(v2))

]
. (3.12)

Here the coefficients vi and τ are complex fitting parameters. The coefficients v1 = −iA and
v2 = f0 + ifb/2 characterize the resonance. The coefficients v3 and v4 model the background
of the transmission spectrum in the vicinity of the resonance as linear Taylor expansion.
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Fig. 3.3: The data shows the imaginary part Im(Ŝ21), the real part Re(Ŝ21) and the absolute
value |Ŝ21| of the transmission coefficient Ŝ21 near a resonance of a lead stripline
resonator at T = 2 K. The fit to Ŝ21 is the complex Lorentzian fit in equation (3.12).
The inset show a linear fit to the phase ϕ(f).

The cables add a global phase on the real and imaginary part of Ŝ21 that the coefficient τ
accounts for.

The coefficient τ is determined by a linear fit on ϕ = arctan
[
Im(Ŝ21)/Re(Ŝ21)

]
off-resonance.

This can be seen in the inset in figure 3.3. In equation (3.12) the fitted value of τ is inserted
and vi are determined by fitting the real and imaginary part of Ŝ21 at resonance simultaneously.
The resulting fit can be seen in figure 3.3.

3.4 Cavity perturbation technique
The resonance frequency f0 and frequency bandwidth fb allow to obtain the surface impedance
ẐS = RS + iXS in the superconducting state for different temperatures T and magnetic flux
densities B. In this section the procedure for obtaining ẐS and the necessary assumptions
are presented. Although the presented procedure makes no distinction between setup (a) and
(b) in figure 3.2, it turns out that only for the Nb:SrTiO3 samples in setup (b) the procedure
is feasible. The procedure is applied respectively for one resonance.

The conductivity σ̂ of an ideal s-wave superconductor is for frequencies 0 GHz < f ≤ 2∆/h
purely imaginary at T = B = 0. Under these circumstances in the local as well as in the
non-local case it results in RS = 0. The frequency bandwidth fb accounts for losses due
to the superconducting state of interest as well as residual losses. It is assumed that the
residual losses show no T - and B-dependence. This assumption is reasonable since the losses
are expected to occur due to the dielectric. In the present case the dielectric is sapphire
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Fig. 3.4: Corrected resonance frequency f corr.
0 and frequency bandwidth f corr.

b according to
equation (3.16) and (3.13) for Nb:SrTiO3 0.1 wt.% in zero field B = 0 for frequency
f = 3.59 GHz.

which is a well established material in the operation of superconducting resonators and shows
no unusual T or B dependencies in this regime [62]. A corrected frequency bandwidth is
introduced

f corr.
b (T,B) = fb(T,B) − fb(T = 0, B = 0). (3.13)

In practice it is not possible to measure fb(T = 0, B = 0) since T = 0 is not achievable.
Instead it suffices to correct fb with the measured fb(T = Tlow, B = 0) at the lowest
achievable temperature Tlow. Correcting with fb measured at Tlow suffices since σ1 rises
roughly exponentially with temperature T because the non-finite σ1 is caused by quasi-
particle excitations of the superconducting state.

The further procedure requires that f0 and fb are also measured in the normal state T > TC

at B = 0. It is assumed that in the normal state σ̂ = σDC is purely real, for low operating
frequencies as in the microwave regime this is usually a good approximation. σ̂ = σDC can be
inserted into equation (2.30) and (2.31), as result it can be related in the normal conducting
state

RS = αXS (3.14)
with α = 1 in the local and α = 1/

√
3 in the non-local limit. With equation (2.59) and for

B = 0 it is possible to shift the resonance frequency f0 to make a relation with f corr.
b . A f shift

is introduced such that
1
2f

corr.
b (T > TC , B = 0) = α

[
−f0(T > TC , B = 0) + f shift

]
. (3.15)
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The resonance frequency is then corrected

f corr.
0 (T,B) = f0(T,B) − f shift. (3.16)

When a lead resonator with a Nb:SrTiO3 sample as perturbation is measured, f corr.
b and

f corr.
0 still contain a B-dependence due to the lead. Lead shows in the temperature regime

where Nb:SrTiO3 is superconducting no temperature dependence, so it is assumed that the
B-dependence of lead during the normal conducting state of Nb:SrTiO3 is the same as in
the superconducting state of Nb:SrTiO3. A B-dependent quantity ζi(B) with i = 1, 2 is
introduced such that

f corr.
b (T > TC , B)

ζ1(B) = f corr
b (T > TC , B = 0),

f corr.
0 (T > TC , B)

ζ2(B) = f corr
0 (T > TC , B = 0).

(3.17)

The data is then corrected with ζi(B) for a last time

fR
b (T,B) = f corr.

b (T,B)
ζ1(B) , fX

0 (T,B) = f corr.
0 (T,B)
ζ2(B) . (3.18)

The data can be finally related to a B- and T -dependent surface impedance of the sample
of interest

ẐS(T,B) = RS(T,B) + iXS(T,B) = 2Γ
(
fR

b (T,B)
2 + ifX

0 (T,B)
)
. (3.19)

With equation (2.30) and (2.31) the optical conductivity σ̂ can then be obtained. The
geometry coefficient Γ can be calculated numerically as it was done in subsection 3.2.2, but Γ
can also be removed by a fitting normalization of the optical conductivity.

It is appropriate to mention a further assumption relevant for the case where Nb:SrTiO3
acts as perturbation to the lead resonator. Using different metals with different surface
impedance is expected to change the field configuration in the resonator. So a material as
perturbation with a surface impedance that is similar to that of the resonator should be used.
In that case it can be assumed that the field configuration changes only to a negligible extent.
The total loss is then a superposition of the respective losses of the different materials. More
details and experiments can be found in [21, 47, 55, 63–65].
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4 Properties of Superconducting Stripline
Resonators

4.1 Spectrum of the Stripline Resonator
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Fig. 4.1: Transmission coefficient |S21(f)| of a stripline resonator with all conductors made
out of lead at T = 2 K. The transmission coefficient at the same temperature can
be seen when the stripline resonator is replaced by an adaptor, this is labeled as
short-circuited. The red arrows mark the equidistant resonances of the stripline
resonator. The inset shows the view on the box and the upper lead ground plane.

In figure 4.1 the frequency dependence of the absolute value of the transmission coefficient
|S21(f)| can be seen for a stripline resonator with all conductors made out of lead at T = 2 K.
The transmission is close to zero for most frequencies except for the sharp peaks that are
marked with a red arrow. The continuous development of |S21| in dependence of f is referred
to as frequency background. The frequency background is different for every resonator and
even changes slightly after heating up and cooling down. Due to the gaps in the stripline
setup as it can be seen figure 3.2 it is expected that the transmission coefficient should be zero
off-resonance. The non-finite frequency background is caused by small impedance mismatches
and cavity resonances across the volume of the brass box that contains the stripline resonator.
The red arrows mark the equidistant resonances, these are of Lorentzian shape and can be
fitted with equation (3.12).
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4 Properties of Superconducting Stripline Resonators

In figure 4.1 the transmission coefficient can be seen when the stripline resonator is replaced
by an adaptor, this means when the setup is short-circuited. In that case the |S21| decreases
with frequency due to absorption of the wiring, but |S21| for the short-circuited case is higher
than for the resonator case for all frequencies.

4.2 Coupling coefficient
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Fig. 4.2: Scaled coupling coefficient r2
b/f

2 according to equation (3.9) with Avery weak and
Amoderate according to equation (4.5) and (4.6). Although Avery weak and Amoderate

vary a lot for different resonances, the trend from the very weak coupling to the
moderate coupling regime can be seen. The resonances are the same as in figure 4.1.

In subsection 2.3.2 it is set ra = 0 since it is ra ≪ rb according to equation (3.8) and (3.9)
in the microwave regime. here it is further set ra = 0 and the analysis will concentrate on
the lead resonator whose resonances can be seen in figure 4.1. The quantity that is used
to account for effects due to coupling is the coupling coefficient rb. It is appropriate to
calculate rb according to equation (3.9) and to check it with the experimentally observed
data. The most straightforward way is to take equation (2.53) at resonance, this means that
0 = dŜ21(δω)/dδω|δω=δωC

must be fulfilled. It is obtained

|Ŝ21(δω = δωC)| = 2r2
b√

4r4
b (1 + lα)2 + 4r2

b (1 + lα) + (lα)2 − 4r2
b

4r2
b
+1

. (4.1)

with the frequency shift of the resonance frequency due to the coupling

δωC = 1
l
√
ϵµ0

2rb

4r4
b + 1 . (4.2)
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4.2 Coupling coefficient

It can be seen that the frequency shift in equation (4.2) simplifies in the weak coupling limit
to (2.55).

A scaled coupling coefficient rb/f is calculated according to equation (3.9). The obtained
theoretical scaled coupling coefficient rb/f varies from 0.00323 GHz−1 to 0.00328 GHz−1 for
frequencies from 1 GHz to 20 GHz thus suggesting that the effects of coupling may be well
approximated by using a frequency-independent coupling capacitance Cb(f) = const.. It is
noted that in equation (3.9) the effective dielectric constant ϵr enters via the wavelength λ,
thus for high ϵr materials the effects of coupling may not be appropriately taken care of by
introducing a frequency-independent coupling capacitance. It is seen that up to 20 GHz it is
r2

b ≪ 1 thus the resonator is expected to be in the weak coupling regime over the considered
frequency range. Therefore two coupling limits are considered, the very weak limit r2

b < lα
and the moderate limit lα < r2

b < 1.
The relations ω∗

0l
√
ϵµ0 = π and fbπ

√
ϵµ0 = α are used, it is noted that lα = fbπ

2/ω∗
0. ω∗

0
is a quantity that is not experimentally accessible since the length l can’t be determined with
appropriate accuracy. With respect to equation (2.58) it can be argued that ω0 ≈ nω∗

0 since
rb is sufficiently small and XS of superconducting lead is known to disturb the resonance
frequency only to a negligible extent [57]. So it is set ω∗

0 ≈ 2πf0/n with integer mode number
n = 1, 2, 3, ... and as result it is obtained

|Ŝ21(δω = δωC)|very weak coupling
at resonance = 4r2

bf0

πfbn
(4.3)

in the very weak coupling limit r2
b < lα and

|Ŝ21(δω = δωC)|moderate coupling
at resonance =

(
1 + πfbn

2f0
+ 1

2r2
b

)−1

(4.4)

in the moderate coupling limit lα < r2
b < 1.

The quantities

Avery weak = |S21(δω = δωC)|πfbn

4f 3
0

very weak limit= r2
b

f 2
0

(4.5)

and

Amoderate =
(
2f 2

0

)−1
·
(

1
|S21(δω = δωC)| − πfbn

2f0
− 1

)−1 moderate limit= r2
b

f 2
0

(4.6)

are defined. Avery weak and Amoderate are experimentally accessible quantities and are expected
to equal r2

b/f
2
0 in the respective weak and strong limit.

In figure 4.2 Avery weak and Amoderate can be seen. The analysis features the resonances
that can be seen in figure 4.1. The amplitudes |S21(δω = δωC)| at resonance are scaled with
respect to the short-circuited transmission line. The resonances do not show a continuous
behavior for changing frequencies, in fact the resonances vary heavily even on the logarithmic
scale. This is attributed to the finite frequency background that adds up an the actual
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4 Properties of Superconducting Stripline Resonators

amplitude. Based on the comparison of the data with the dashed line a departure from
the very weak coupling limit to the moderate coupling limit for greater frequencies can be
observed as trend. This results from the linear f dependence of rb.

4.3 Geometry factor
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Fig. 4.3: Geometry factor Γgp = 2.69 Ω/GHz as calculated in equation (3.4) with the normal
phase surface resistance divided by the corrected bandwidth RL

n/(2f corr.
b ).

The geometry factor Γ describes how the frequency bandwidth and the surface resistance
are related. Although Γ may be discarded when normalizing the optical conductivity and
surface impedance data, it is appealing to compare the theoretically expected values with the
experimental results. There are two approaches to compute Γ. One approach features the
calculation of the contour integrals of the stripline setup, this is the path that was chosen in
subsection 3.2.2. Another approach is to calculate Γ with the help of a variational principle
from the circuit impedance ZC [57, 66]. Both approaches return the same Γcc for w ≥ 4h and
Γgp regardless of the choice of w and h. It is assumed that the variational principle treats
the edge of the center conductor in a simplified way thus resulting in a different Γ compared
to the one that is obtained from a direct evaluation of the contour integrals. Therefore the
values for Γ that are obtained in 3.2.2 are used.

Experimental values for Γ can be obtained by considering fb of the normal conducting
phase in Nb:SrTiO3. In this section it is focused on the geometry factor of the upper ground
plane 2Γgp. It can be related

2Γgpf
corr.
b = RL

n =
√
πf0µ0

σDC
. (4.7)

The bandwidth is corrected according to section 3.4 to obtain f corr.
b . The surface resistance

of the normal conducting phase in the dirty limit RL
n is used. The discussion whether the
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4.4 Effective London penetration depth

dirty limit is appropriate for Nb:SrTiO3 is forwarded to the next chapter. The DC resistance
ρDC = 1/σDC of 0.2 wt.% Nb:SrTiO3 is given by ρDC(0.2 wt.% Nb:SrTiO3) = 0.57µΩm [17].

In figure 4.3 the theoretical value of Γgp = 2.69 Ω/GHz together with the quantity
RL

n/(2f corr.
b ) that is expected to equal Γgp can be seen. The quantity RL

n/(2f corr.
b ) is in

the same order of magnitude as Γgp but substantially lower. The deviation is most likely a
result from the uncertainties of the dimensions of the stripline setup. It is noteworthy that
the respective points of RL

n/(2f corr.
b ) deviate among each other less than with the theoretically

expected Γgp. This suggests that the real Γgp does not vary for different resonances as it is
the case for the scaled coupling coefficient r2

b/f
2 in the previous section.

4.4 Effective London penetration depth
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Fig. 4.4: In (a) a fit of equation (4.10) to the resonance frequency f0(T ) of a pure lead
stripline resonator can be seen with the corresponding fitting values. In (b) the
same fit can be seen but a different temperature scaling coefficient a was assumed.

λlit.
L ξlit.

∆ llit. λlit.
eff Λlit.

Pb 38 nm [47] 83 nm [47] 200 nm [47] 49 nm 99 nm
Sn 34 nm [67] 230 nm [67] 17-56µm [68–70] 64 nm 518-771 nm

Tab. 4.1: Literature values of λlit.
L , ξlit.

∆ and llit. with the respective sources at T = 0. For both
clean type I superconductors λlit.

eff is given by equation (2.29) and Λlit. by equation
(4.13).
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4 Properties of Superconducting Stripline Resonators

mode 1 2 3 4 5 6 7
Λexp. of Pb [nm] 158 157 155 162 162 135 143
T exp.

C of Pb [K] 7.38 7.36 7.37 7.43 7.49 7.27 7.34
Λexp. of Sn [nm] 511 424 (1119) (1587) (920)
T exp.

C of Sn [K] 3.83 3.87 (4.88) (5.19) (4.73)

Tab. 4.2: Obtained experimental data by fitting equation (4.10) to f0(T ) of a pure lead and
tin stripline resonator. Values for Λexp. are at T = 0. An exemplary fit can be seen
in figure 4.4 in (a) for mode 3.

Hafner et al. showed that the frequency shift in a superconducting resonator can be
related to the temperature dependence of the effective London penetration depth λeff(T ) [57].
Nevertheless fitting absolute values of the effective London penetration depth could not be
obtained. In this section this issue is investigated in greater detail. This issue is of interest
since the superconducting state in [57] was investigated without making assumptions about
the normal state conductivity as required in the cavity perturbation technique.

For low frequencies hf/(2∆) < 1 it is σ2 > σ1 in a superconductor [21]. Then it is
appropriate to set

σ̂ ≈ iσ2 = i
1

2πµ0λ2
efff

. (4.8)

The expression of σ̂ is the same for London- and Pippard superconductors [21, 47]. With
equation (2.59) and ω∗

0 = 2πf ∗
0 the frequency shift of the resonator can be evaluated and is

given in the London case with equation (2.30) by

f0 = nf ∗
0

(
1 + µ0πλeff

Γ

)−1

≈ nf ∗
0√

1 + 2µ0πλeff
Γ

(4.9)

and in the Pippard case with equation (2.31) by

f0 = nf ∗
0

(
1 + µ0π(2lλ2

eff)1/3

Γ

)−1

≈ nf ∗
0√

1 + 2µ0π(2lλ2
eff)1/3

Γ

. (4.10)

Equation (4.9) was derived by Hafner and is equivalent to equation (15) in [57] except the
additional factor 2. Hafner’s derivation is based on the analysis of the skin effect in the
normal state by Wheeler where the skin depth was replaced by δS → λeff [71]. In fact the
phase orientation of the complex superconducting σ̂, that is imaginary compared to the
normal conductivity σDC that is real in the microwave regime, suggests δS → 2λeff [21]. It is
also noted that it is more appropriate to use equation (4.10) to analyze the frequency shift of
lead and tin since both materials are non-local superconductors [47, 68–70].
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4.4 Effective London penetration depth

The temperature dependence of λeff is a delicate topic since λL(T ) contributes to λeff in
different limits and a superconductor may even switch from the non-local to the local limit
when λL(T ) > ξ∆. In the non-local limit it can be related

λeff(T )
λeff(T = 0) =

[
∆(T )

∆(T = 0) tanh β∆(T )
2

]
≈ 1√

1 − (T/TC)4
(4.11)

whereas the approximation holds better at lower temperatures than close to TC [33]. It is
appropriate to consider at which temperature the non-local behavior switches to a local
behavior. Close to TC it is (λL(0)/λL(T ))2 ≈ 1 − (T/TC)2 [33]. The transition temperature
between the local and non-local regime Tn-nl is then given by

Tn-nl = TC

√√√√1 −
(
λL(T = 0)

ξ∆

)2

, (4.12)

with the values from table 4.1 it is obtained T transition(Pb) = 0.89TC and T transition(Sn) =
0.99TC . The fit in equation (4.10) will only extend up to these temperatures.

The literature values are listed in table 4.1. For the comparison of literature and experi-
mental data the length scale

Λ =
(
2lλ2

eff

) 1
3 (4.13)

with a temperature dependence

Λ(T ) = Λ(T = 0) ·
[
1 −

(
T

TC

)4]− 1
3

(4.14)

is introduced. In subsection 3.2.2 the geometry coefficient Γ−1 = Γ−1
cc + Γ−1

gp is computed, it is
given by Γ = 0.129 Ω/GHz. The geometry coefficient is necessary to compute Λ.

In table 4.2 the obtained Λexp. and T exp.
C from using equation (4.10) as fit to f0(T ) for the

pure lead and tin resonator can be seen. The values in brackets follow from a questionable
fit and are only mentioned for completeness. The expected critical temperature is for lead
TC = 7.2 K and for tin TC = 3.7 K [72], the literature values are close to the experimental
values although the expected TC is lower than the obtained TC . The obtained Λexp. in the
case of lead do not differ substantially for different modes as it is expected since the frequency
does not enter in the denominator of equation (4.10). Λexp. of lead is about ∼1.5 times
greater than the expected value, this is attributed to a simplified temperature dependence
as taken in equation (4.14) and the geometry factor Γ that is a difficult to obtain with a
theoretical scheme. It is noteworthy that for a smaller theoretical obtained Γ the data of the
previous section as it can be seen in figure 4.3 and the value of Λexp. and Λlit. would show
more accordance whereas caution is appropriate since in figure 4.3 it was investigated on Γgp

but the geometry factor in this section is dominated by Γ ≈ Γcc. The data on tin is somewhat
ambiguous, but it can be seen that there is also some accordance between Λlit. and Λexp..

It is important to discuss the role of the temperature scaling on the results of the fit. In
figure 4.4 in (a) a fit of equation (4.10) with the temperature scaling as in (4.14) can be seen.
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4 Properties of Superconducting Stripline Resonators

The temperature scaling exponent a is introduced that is in equation (4.14) a = 1/3. If one
would assume the two fluid model e.q. λL ≈ (1 − (T/TC)4)1/2 [33] with the respective limits
as discussed in subsection 2.2.4 then an a = 1/2 in the local limit and an a = 2/9 in the
non-local limit would be obtained. In figure 4.4 in (b) the resulting fitting values can be seen.
It becomes apparent that the fits seem to match nicely but the values differ in a relatively
broad way. Thus there is a considerable risk in obtaining wrong values for TC and Λ.
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5 Nb:SrTiO3 in magnetic field

5.1 Introduction to SrTiO3

5.1.1 Properties of SrTiO3

Fig. 5.1: Schematic depiction of the crystal structure of SrTiO3, illustrative for the perovskite
structure.

SrTiO3 is a semiconductor with a perovskite structure that has an energy gap of 3.22 eV [73],
a schematic depiction of the crystal structure can be seen in figure 5.1. At room temperature
SrTiO3 is a transparent insulator with a relatively high dielectric constant of ϵr ∼ 300. Upon
cooling down, ϵr rises according to the Curie-Weiss law

ϵr ∝ (T − TCurie)−1 (5.1)

with the Curie temperature TCurie. This behavior is observed down to roughly T = 65 K [74].
SrTiO3 does not undergo a transition to a ferroelectric state whereas other compounds with
the perovskite structure turn to a ferroelectric state. A ferroelectric is a material that has
below TCurie a finite nonvanishing dipole moment even in absence of an external electric field
[40].

Instead ϵr of SrTiO3 levels of at ϵr ∼ 20000 due to the stabilization by quantum fluctuations
in the paraelectric phase [5]. SrTiO3 is thus referred to as quantum paraelectric. A paraelectric
is in analogy to a paramagnet a material with ϵr > 1 but without spontaneous polarization.

When introducing charge carriers in SrTiO3 by substituting titanium with niobium or
reducing oxygen, SrTiO3 becomes conducting and superconducting below TC for sufficient
doping. As already mentioned in the motivation, superconducting SrTiO3 exhibits multiband
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5 Nb:SrTiO3 in magnetic field

superconductivity [2] and a superconducting dome of TC in dependence of the charge carrier
density n [3, 75]. Superconducting Nb:SrTiO3 is a type II superconductor [19]. Reduced
SrTiO3 was shown to exhibit superconductivity down to a very low charge carrier density
of n = 5.5 · 1017 cm−3 [76]. As result the ratio of the Debye frequency to Fermi Energy is
in the range of ℏωD/EF ∼ 1 for different doping n [77]. Since the BCS theory requires the
smallness of ℏωD/EF ≪ 1, many early attempts to derive the dome of TC(n) from first hand
principles were not appropriate [77].

Today SrTiO3 is known as challenging material for fundamental research. The high ϵr, the
absence of a transition to a ferroelectric state, the superconducting dome, the small EF and
the relation of these aspects to each other alongside with the three relevant electronic bands
and the anisotropic Fermi surface of this compound pose a challenge to the modern research.
In this subsection only an introduction into the essential aspects is given, a review on the
experimental [8] and theoretical [9] side explore the topic in more detail.

5.1.2 Discussion of recent findings
Undoped SrTiO3

Rowley et al. published a paper on the dielectric constant of critical quantum paraelectrics
such as undoped SrTiO3, O18 substituted SrTiO3 and KTaO3 [6]. Their approach uses the
ϕ4-theory. It is often appropriate to assume an interaction up to fourth order of an order
parameter ϕ. The interaction is expressed as Ginzburg-Landau free energy functional

S[ϕ] =
∫

ddx
(1

2 (∇ϕ)2 + r

2ϕ
2 + gϕ4

)
(5.2)

with parameters r and g and inserted into the field integral

Z =
∫

Dϕ e−S[ϕ] (5.3)

to define the partition function Z. Perturbation schemes may be readily employed when an
interaction can be brought into the form (5.2) as it is the case for the Ising model [38]. In
the case of a critical quantum paraelectric the relation

ϵ0E = aP + bP 3 − c∇2P (5.4)

between E and the electric polarization P is introduced. The parameters are the inverse
static susceptibility a, the mode-mode coupling parameter b and the mode stiffness parameter
c. It can be readily seen that an expression of the type in equation (5.4) follows when setting
the variation of equation (5.2) to δS[ϕ] = 0.

The parameter a, b and c are determined experimentally. When plotting ϵrE/P vs P 2 a
and b can be determined from the intercept with the ϵrE/P -axis and slope. The parameter
c is obtained from inelastic neutron and Raman scattering. The driving force behind the
quantum fluctuations of the polarization is assumed to be of Langevin type, this way the
variance of P can be related to the dielectric constant via the fluctuation-dissipation theorem.
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5.1 Introduction to SrTiO3

Fig. 5.2: In (a) and (b) the experimentally obtained inverse dielectric constant 1/ϵr of undoped
SrTiO3 and the theoretical model as described in the main text for 1/ϵr can be
seen, data taken from [6]. In (c) and (e) the resonance frequency ν ∝ ϵ−1/2

r and in
(d) and (f) the quality factor Q = fb/f0 of a superconducting microwave resonator
operating on an undoped SrTiO3 substrate can be seen, data taken from [7]. In (g)
the superfluid density nsc of Nb:SrTiO3 for different dopings with the Hall charge
carrier concentration nH can be seen, the departure of nsc from nH suggests a
transition from the clean to the dirty limit, data taken from [19]. In (h) the thermal
conductivity κ of Nb:SrTiO3 is shown in dependence of B for different T with two
visible kinks that relate to two bands, the inset makes a comparison with other
superconductors. (i) shows the extracted magnetic field B∗ from the first kind and
BC2 extracted from the thermal conductivity and resistivity measurements. (h) and
(i) is taken from [16].

37



5 Nb:SrTiO3 in magnetic field

As result the dielectric constant can be obtained and the temperature dependence enters the
dielectric constant via the fluctuation-dissipation theorem.

In figure 5.2 in (a) and (b) the experimentally obtained inverse dielectric constant 1/ϵr

and the theoretical model as just described in a simplified manner for 1/ϵr can be seen. The
non-classical T 2 behavior follows from the quantum criticality model.

Engl et al. fabricated a superconducting microwave resonator on an undoped SrTiO3
substrate [7, 78]. To overcome the impedance mismatch due to the high ϵr of SrTiO3
the distant-flip-geometry is used [79]. In figure 5.2 in (c) and (e) the resonance frequency
ν ∝ ϵ−1/2

r and in (d) and (f) the quality factor Q = fb/f0 can be seen for the resonator modes
n = 3, 5. Towards the mK regime a steep rise of Q can be observed for the SrTiO3 microwave
resonator. The dielectric constant is a non-monotonous function of temperature ϵr(T ). The
inverse dielectric function in (c) and (e) shows a minimum at 2 to 4 K and in (c) a small but
significant maximum at around 0.2 K. The behavior of ϵr in the microwave regime in the mK
regime challenges the understanding of the dielectric properties.

Doped SrTiO3

Many recent findings were published by the group of Kamran Behnia. Lin et al. measured in
reduced SrTiO3 at a doping of n = 5.5 · 1017 cm−3 superconductivity at a barely anisotropic
Fermi surface with EF = 1.1 meV [76]. By Shubnikov-deHaas measurements two critical
dopings nC1 = 1.2 · 1018 cm−3 and nC2 = 1.6 · 1020 cm−3 were found, at nC1 superconducting
SrTiO3 turns from a single-band to a two-band superconductor [80]. The DC resistivity ρDC
of normal conducting SrTiO3 was shown to have a T 2 behavior

ρDC = ρ0 + AT 2 (5.5)

with resisitivity coefficient ρ0, the prefactor A changes in four orders of magnitude for different
doping n [81]. Van der Marel et al. published a theoretical investigation on the T 2 resistivity
term and computed the Fermi energy in dependence of doping EF (n) [82].
TC of superconducting Nb:SrTiO3 with n = 2.1 · 1020 cm−3 was shown not to change

significantly when point defects are introduced by electron irradiation, alongside the thermal
conductivity data that suggests the absence of nodal particles it was deduced that SrTiO3 is a
multigap s-wave superconductor [16, 83]. The thermal conductivity data can be seen in figure
5.2 in (h) and (i), in (h) the thermal conductivity κ of Nb:SrTiO3 is shown in dependence of
B for different T with two visible kinks that relate to two bands whereas the inset makes a
comparison with other superconductors. (i) shows the extracted magnetic field B∗ from the
first kink and BC2 extracted from the thermal conductivity and resistivity measurements. It
is seen that the thermal conductivity and resistivity data suggest a slightly different TC in
optimally doped Nb:SrTiO3.

Nb:SrTiO3 was shown to undergo a transition from a clean to a dirty superconductor for
greater doping [19]. This can be seen in figure 5.2 in (g), the departure of the superfluid
density nsc from the measured Hall charge carrier concentration nH = nHall suggests a
transition from the clean to the dirty regime. Thiemann et al. measured the complex σ̂ of
Nb:SrTiO3 and observed single-gap multi-band superconductivity in the dirty limit, they
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5.1 Introduction to SrTiO3

Fig. 5.3: In (a) the mask for the parallel (||) setup and in (b) the mask for the perpendicular
(⊥) setup can be seen. In (c) the center conductor for the ⊥-setup is visible. The
arrow marks the direction of the applied B.

Nb doping
[wt. %]

TC

[K]
ρDC

[µΩm]
nHall

[1020 cm−3]
µ

[cm2/Vs]
measured in
|| orientation

measured in
⊥ orientation

0.1 0.168 0.58 0.33 3300 Beydeda
0.2 0.254 0.57 0.59 1800 Thiemann Beydeda

0.35 0.346 0.52 1.1 1100 Thiemann
Zinßer

0.5 0.278 0.42 2.0 800 Thiemann
0.7 0.213 0.56 2.2 500 Beydeda

Tab. 5.1: Available samples with doping concentrations, TC , DC resistivity ρDC, charge carrier
concentration determined from Hall measurements nHall and mobility µ. The
samples have either size 5 × 5 × 1 mm3 or 5 × 5 × 0.5 mm3. The last two columns
list in which orientation the samples were measured, the respective data can be
found in [88, 89] and this thesis. Values are taken from [17].

tracked the energy gap ∆(T ) and showed that Nb:SrTiO3 fulfills Homes’ law, in addition
they observed the same kinks in the B dependence as Lin et al. [16, 17, 84].

Measurements of the resistivity of normal conducting Nb:SrTiO3 suggests a temperature
dependent effective mass [85]. Large magnetoresistance in lightly doped reduced SrTiO3
was found, the resistivity increases 40 times at B = 54 T [86]. Stucky et al. observed a
strong isotope effect with opposite sign compared to the usual isotope effect of conventional
superconductivity [87]. The conventional isotope effect TC ∝ M−α with exponent α = 1/2
was shown to differ for many conventional element superconductors and the solution to the
slightly different α often confirmed the BCS theory, but in the case of SrTiO3 the strong
enhancement of TC hints to a new kind of attractive interaction [29, 33].
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5 Nb:SrTiO3 in magnetic field

5.1.3 Nb:SrTiO3 samples
The Nb:SrTiO3 samples in this thesis are listed in table 5.1, a Nb:SrTiO3 sample is considered
as measured when the B and T dependence of the optical conductivity σ̂ is obtained. The
stripline configuration can be seen in figure 3.2 in (b), the optical conductivity is obtained
with the cavity perturbation technique. In figure 5.3 two different mask designs for the center
conductor that were used in this thesis can be seen. Depending on the mask most of the
center conductor will be orientated parallel (||) or perpendicular (⊥) to the external magnetic
flux density B, those cases will be referred to as ||- and ⊥-setup.

It is of worth to note that a dirty normal conductor is characterized by δS/l > 1 in contrast
to a dirty superconductor ξ∆/l > 1 whereas δS is the skin depth. Using [21]

δS =
√

2ρDC

ωµ0
(5.6)

δS > 1µm for the samples in table 5.1 for frequencies below ω < 2π · 20 GHz is obtained.
This is considerably larger than the free mean path l [88]. A dirty conductor can be described
with the Drude model [21]

σ̂ = σDC
1

1 − iω/Γscat.
(5.7)

with the scattering rate Γscat.. The mobility is defined as µ = e/ (Γscat.m) with effective mass
m [40]. An upper bound for the effective mass m = 4.2me [80] and mobility is taken to
obtain a lower limit for Γscat. = 2π · 20 GHz. As result the operating frequency should be
lower than f < 20 GHz to reasonably apply Cavity perturbation technique.

5.2 Optical conductivity σ̂ in ||-orientation

5.2.1 Sample with 0.1 wt. % Nb doping
The optical conductivity σ̂ in ||-orientation was obtained in dependence of the magnetic
flux density B = |B⃗| at multiple T . After sweeping B at one finite T , it was set B = 0
and the sample was heated above T > TC(Nb:SrTiO3) and cooled down again before the
next B-sweep was executed for one next T . The zero-field cooling was performed to prevent
hysteresis effects of Nb:SrTiO3. The magnetic flux density was never swept above the critical
field of lead BC ≈ 80 mT to prevent hysteresis effects due to lead [90].

In figure 5.4 and 5.5 the optical conductivity of the 0.1 wt. % Nb-doped SrTiO3 sample
can be seen for frequencies f = 3.59 GHz, f = 10.59 GHz in || orientation. In both figures a
kink in the B-dependence of σ1, σ2 can be seen as abrupt change of the slope. The same
kink shows up in the thermal conductivity data in figure 5.2 in (h), the respective magnetic
flux density is labeled B∗. A better view on the kink can be seen in figure 5.6 in (b) and
(c). In the analysis of Thiemann and Zinßer the kink is attributed to the partial filling of
three bands whereas two of the bands have the same effective mass [17, 88, 89]. In that sense
B∗ is the upper critical field of the charge carriers with effective mass m = 1.5me and BC2
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Fig. 5.4: Optical conductivity of the 0.1 wt. % Nb-doped SrTiO3 sample at f = 3.59 GHz in
|| orientation. The arrow marks the kink at B∗ for lowest temperature.

corresponds to m = 4.2me, the values for the effective masses are obtained from quantum
oscillation measurements [17, 80].

The values for B∗ and BC2 are obtained by linear fits at σi(B), i = 1, 2 before and after
the kink e.q. for B < B∗ and B > B∗. Exemplary fits can be seen in figure 5.6 in (b) and (c).
From the intercept of both fits B∗ is obtained. BC2 is obtained from the intercept of the fit
for B > B∗ with σ1/σDC = 1 and σ2/σDC = 0. The temperature dependent B∗(T ), BC2(T )
can be fitted with

BC(T )
BC(T = 0) = 1 −

(
T

TC

)2
(5.8)

to obtain B∗(T = 0) = 9.0 mT, BC2(T = 0) = 15.1 mT [33]. Equation (5.8) as fit can be
seen in figure 5.6 in (a).

The field configuration in the stripline setup induces a current J⃗ind. in the Nb:SrTiO3
sample, it is J⃗ind||B⃗ since most of the center conductor is oriented parallel to B⃗. Thus no
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Fig. 5.5: Optical conductivity of the 0.1 wt. % Nb-doped SrTiO3 sample at f = 10.59 GHz in
|| orientation.

Lorentz force acts as driving force on the trapped flux quanta of the vortices [33]. In the
Bardeen-Stephen model vortices are assumed to be normal conducting cylinders with finite
radius ξGL [91]. Turning back to Nb:SrTiO3, the two critical fields are related to two GL
coherence lengths ξl

GL, ξm
GL according to equation (2.39). In this framework the kink in slope

occurs naturally when it is a∆(B∗) = 2ξm
GL since one band turns normal conducting. The

distance between two vortices a∆ is given by (2.38). In figure 5.6 in (a) a schematic depiction
of the described situation can be seen. In table 5.2 the values for ξl,m

GL can be seen.
The perhaps most puzzling feature is the coherence peak like maximum of σ1(B) > σDC

as it can be seen in figure 5.4. It is appropriate to make a distinction between the usual
coherence peak, that is now referred to as T -coherence peak and the B-coherence peak.
The T -coherence peak was predicted by the BCS theory and can be reproduced with the
Mattis-Bardeen equation (2.26). The T -coherence peak results from the density of states
that diverges at E = ±∆ as it can be seen in figure 2.1, for low frequencies hf/(2∆0) < 1
and close to TC excitations in the divergence cause σ1 > σDC. The T -coherence peak can
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Fig. 5.6: In (a) the critical magnetic flux densities B∗ and BC2 with a fit according to equation
(5.8) can be seen. In (b) and (c) linear fits to the optical conductivity from figure
5.4 (f = 3.59 GHz) for temperature 0.025 K, 0.07 K and 0.1 K can be seen, B∗ and
BC2 are determined from the fits. The inset in (a) shows a microscopic view on
the situation, B∗ and BC2 are related to two distinct coherence lengths for the two
bands ξm

GL, ξl
GL.

be seen in the temperature dependence of σ1(T ) for the B = 0 curve in the upper right
plot of figure 5.4, experimental data that tracks the T -coherence peak in frequency and
temperature can be found in [92]. In contrast the B-coherence peak can be observed at
lowest achievable temperature, the initial rise of σ1(B) in dependence of B is greater than it
would be expected when assuming normal conducting vortices. Quantities that are used to
describe the superconducting state such as ∆, nsc, ξGL, λL change only to small extent in
dependence of T and B for T ≪ TC , B ≪ BC1, BC2, in this context the B-coherence peak is
rather unusual. The density of vortices scales with B since the distance between two vortices
is given by equation (2.38) and scales with a∆ ∝ B−1/2, so it is naturally to assume that
the B-coherence peak is a result from enhanced conductivity in the vortex core. It is noted
that BC1 of Nb:SrTiO3 is in the order of the magnetic flux density of the planet earth [19].
Furthermore it is noted that the B-coherence peak vanishes with increasing frequency as it
can be seen in figure 5.5, this behavior is similar to the T -coherence peak. A similar behavior
of σ1 is to the best knowledge of the author only described in thin films of BSCCO whereas
the data is interpreted with a model for d-wave superconductivity, thus the comparability of
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Fig. 5.7: Optical conductivity of the 0.7 wt. % Nb-doped SrTiO3 sample at f = 1.92 GHz in
|| orientation. The arrow marks the kink at B∗ for lowest temperature.

thin BSCCO films to Nb:SrTiO3 is not evident [93]. A discussion on conductivity enhancing
effects in the Shubnikov phase is forwarded to the next chapter.

For f = 10.59 GHz, σ2(B) in dependence of B shows a linear decrease with a kink in
the slope, the linear B-dependence can be readily interpreted with the linear B-scaling of
the normal conducting volume that the vortices occupy in the superconducting bulk. For
f = 10.59 GHz σ1(B) also shows a linear B-dependence. It is interesting to note that the
optical conductivity can be relatively easy interpreted in context of the Bardeen-Stephen
model for greater frequencies whereas for lower frequencies conductivity enhancing effects in
the vortex core may play a role.

5.2.2 Sample with 0.7 wt. % Nb doping
The analysis for the SrTiO3 sample with 0.7 wt. % Nb doping is executed in the same way
as for the sample with 0.1 wt. % Nb doping. In figure 5.7 and 5.8 the optical conductivity
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Fig. 5.8: Optical conductivity of the 0.7 wt. % Nb-doped SrTiO3 sample at f = 12.75 GHz in
|| orientation.

can be seen for frequencies f = 1.92 GHz, f = 12.75 GHz. The doping of the sample is not
homogeneous, as result the change in slope at B∗ is not fully developed as in the previously
investigated sample [88]. As critical magnetic flux densities it is obtained B∗ = 15.6 mT
and BC2 = 24.3 mT. Figure 5.7 shows the B-coherence peak as sharp initial rise of σ1 in
dependence of B as well as σ1(B) > σDC even at lowest temperature. For greater frequencies
the B-coherence peak vanishes as it can be seen in figure 5.8.

5.3 Optical conductivity σ̂ in ⊥-orientation
5.3.1 Hysteresis
When a superconducting resonator is swept from B = 0 to B > BC2 and then back to
B = 0, hysteresis can occur. In case when hysteresis occurs, the resonator properties fb(B, T ),
f0(B, T ) change after sweeping to B > BC2, typically a lowered quality factor Q = f0/fb
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Fig. 5.9: Resonator properties of a lead resonator with 0.2 wt. % Nb-doped SrTiO3 sample
that has BC2 = 31.3 as perturbation. All measurements were executed without
zero-field cooling. In (a) the frequency bandwidth fb can be seen in dependence
of B whereas the measurement was repeated, the arrows mark B∗ = 18.6 mT and
BC2 = 31.3 mT [88]. In (b), (c), (d), (e) the resonator properties fb and f0 can be
seen for multiple cycles whereas a cycle consists of sweeping B = 0 to B = 0.04 T
and back to B = 0 again.
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5.3 Optical conductivity σ̂ in ⊥-orientation

at the same B and T is observed. Hysteresis effects are a well-known feature in type I
superconductors such as lead [90] as well as in type II superconductors such as niobium [94].
Since zero-field cooling is a time-consuming procedure, it is appropriate to check on hysteresis
effects in Nb:SrTiO3. In this subsection it is investigated on the 0.2 wt. % Nb-doped SrTiO3
sample within the ⊥-setup.

In figure 5.9 in (a) the frequency bandwidth fb can be seen in dependence of B, the first
B-sweep was executed after employing zero-field cooling of the sample to T = 0.025 K. After
sweeping the magnetic flux density from the first B-sweep to B = 0, the second B-sweep
was executed. The frequency bandwidth of the first and second sweep show close to perfect
overlap whereas the small deviations are probably a result from slight uncertainties in the
fitting procedure. In (b), (c), (d) and (e) the frequency bandwidth fb and resonance frequency
f0 can be seen for two modes. A single measurement cycle consists of sweeping B = 0 to
B = 0.04 T and back to B = 0 T whereas 12 cycles were performed. The resonance properties
fb and f0 do not change significantly with accumulating cycles. It is noted that the first cycle
shifts the resonance frequency slightly to a greater value whereas multiple cycles do not show
a further shift, this is attributed to small hysteresis effects either due to lead or Nb:SrTiO3.

In the context of the measurements it is concluded that Nb:SrTiO3 shows no observable
hysteresis effects.

5.3.2 Sample with 0.2 wt. % Nb doping
In contrast to the measurement in the ||-setup, no zero-field cooling is performed since the
previous investigation established that no significant hysteresis effect could be observed.
In contrast to the ||-setup the field configuration in the ⊥-setup causes J⃗ind ⊥ B⃗ which
results in a Lorentz force on the trapped flux quanta in the vortices. It is first checked if the
lattice defects introduced by the niobium doping may pin the vortices. The crystal lattice
parameter is al = 0.39 nm [8] and every unit cell provides 0.0035 charge carriers [17], this
way an average distance between two dopant sites that may possibly act as pinning centers
of 0.39/0.0035 nm = 111.4 nm can be obtained. This is in the same order of magnitude as
the GL coherence length ξGL as it can be seen in table 5.2. It is therefore concluded that
pinning forces do not contribute to the vortex dynamics in Nb:SrTiO3.

In figure 5.10 and 5.11 the optical conductivity can be seen for frequencies f = 4.06 GHz
and f = 8.07 GHz. For f = 4.06 GHz the B-coherence peak is visible with an initial slope
of σ1(B) that is much faster than expected from normal conducting vortices resulting in
σ1(B, T ) > σDC even at lowest measured temperature. The decrease of σ2(B) shows a
non-linear dependence on B, this is different from what is expected from the density of
vortices that scales with B. In figure 5.12 the optical conductivity σ1(T,B) for f = 4.06 GHz
can be seen as 3D color plot. In figure 5.12 it is seen most convincingly how the B-coherence
peak and T -coherence peak evolve into each other in dependence of T and B while displaying
each on their own different characteristic features. For f = 8.07 GHz σ1(B) in dependence
of B asymptotically reaches a value of σ1 ≈ 0.9σDC at B = 0.015 T, it is not clear if this
is a deviation from a linear B-dependence due to a weakly developed B-coherence peak or
an exponential depletion of the first band. For both frequencies and real and imaginary
part of the optical conductivity a kink in the B-dependence can be seen, as in the previous
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Fig. 5.10: Optical conductivity of the 0.2 wt. % Nb-doped SrTiO3 sample at f = 4.06 GHz in
⊥ orientation.
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Fig. 5.11: Optical conductivity of the 0.2 wt. % Nb-doped SrTiO3 sample at f = 8.07 GHz in
⊥ orientation.

optical conductivity data this is a result from the partial band filling where one band turns
completely normal conducting at the kink, this means at B = B∗.

The optical conductivity in the ⊥-setup shows a phenomenological behavior that is very
similar to that in the ||-setup. Since the optical conductivity in the ||-setup could be readily
interpreted in many points in the context of the Bardeen-Stephen model without including
vortex dynamics, it is assumed that vortex dynamics do not enter the σ̂ of the ⊥-setup. It is
appropriate to consider the field configuration of a resonance in the stripline setup. The field
configuration depends on the meander structure of the center conductor. The magnetic field
has nodes at the gaps and further nodes and maxima along the center conductor depending
on the mode number n. It can be argued that the currents in neighboring loops and along
one long arm of the center conductor cancel each other or enhance when the Lorentz force
acts on the flux quanta of the vortices. It must be noted that taking account of the specific
meander structure of the ⊥-setup for every resonance mode is a non-trivial task. It may be
speculated that the Lorentz force on the vortices cancel due to the meander structure where
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5.4 Dome of critical fields

every arm of the center conductor contains a current in the opposite direction that may even
switch in sign along one arm. But in any case this is not a satisfying explanation and as
conclusion it is stated that the optical conductivity data does not show effects of vortex
dynamics although induced currents and vortices in Nb:SrTiO3 are orientated perpendicular.

The optical conductivity data for more frequencies can be seen in the Appendix.

5.4 Dome of critical fields

Nb doping [wt. %] 0.1 0.2 0.35 0.5 0.7
nHall [1020 cm−3] 0.33 0.59 1.1 2.0 2.2
λeff(T = 0) [µm] 2.4 1.7 1.4 1.4 1.8
Γscat./(2π) [GHz] 47 87 169 248 365
B∗ [mT] 9.0 18.6 32.5 18.9 15.6
ξm

GL [nm] 191 133 100 132 145
BC2 [mT] 15.1 31.3 53.8 32.0 24.3
ξl

GL [nm] 148 103 78 101 116
clean: EF [meV] from B∗ 2.82 3.11 3.31 3.67 2.61
clean: EF [meV] from BC2 4.70 5.18 5.59 6.07 4.69
lower limit:
dirty: EF [meV] from B∗ 1.09 1.47 2.23 4.52 6.17
corresponding l [nm] 339 213 135 131 104
dirty: EF [meV] from BC2 1.08 1.46 2.25 4.46 6.63
corresponding l [nm] 339 213 136 130 108
upper limit:
dirty: EF [meV] from B∗ 1.82 2.46 3.73 7.56 10.33
corresponding l [nm] 262 165 104 101 81
dirty: EF [meV] from BC2 1.81 2.45 3.77 7.47 11.09
corresponding l [nm] 262 164 105 101 83

Tab. 5.2: Scattering rates Γscat. obtained from resistivity measurements and London penetra-
tion depth λeff(T = 0), taken from [88]. Critical B∗, BC2 taken from [88] except
for the highest and lowest doped sample. Fermi energy calculated according to
equation (5.10) and (5.14). GL coherence length calculated according to equation
(2.39).

At this stage of the analysis it is appropriate to discuss the band structure of doped SrTiO3.
The analysis so far established that two bands with two coherence lengths ξm

GL, ξl
GL are

respectively depleted at B∗ and BC2. The charge carrier concentration of the samples that
are investigated in this thesis range from nHall = 0.33 · 1020 cm−3 to nHall = 2.2 · 1020 cm−3.
In figure 5.13 in (a) the effective mass m of the three relevant electronic bands as determined
by Lin et al. can be seen, the charge carrier concentration of the samples in this thesis is
larger than the nc2 by Lin et al. [80]. The band that is referred to as upper band in figure
5.13 in (a) and (b) contributes only weakly to the superconducting state.
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5 Nb:SrTiO3 in magnetic field

Fig. 5.13: In (a) the effective mass of the respective band in SrTiO3 determined by Shubnikov-
deHaas measurements can be seen, in (b) the charge carrier density contributed by
the respective bands can be seen, both in dependence of the total charge carrier
density nH = nHall. (a) and (b) are taken from [80]. In (c) and (d) the theoretically
obtained band structure of doped SrTiO3 can be seen, in (e) the theoretically
expected dependence of the Fermi energy on the charge carrier density. (c), (d)
and (e) are taken from [82].

It can be seen that the effective mass for the lower band in figure 5.13 in (a) shifts from
approximately m = 1.5me to approximately m = 4.2me for greater charge carrier density.
The values for m are chosen such that the analysis here can be conducted in the same manner
as it was done by Thiemann [88]. Lin et al. interpreted the nHall-dependent effective mass in
the context of the theoretical investigation by van der Marel et al. that can be seen in figure
5.13 in (c), (d) and (e) [82]. The investigation by van der Marel et al. revealed in analogy
to the investigation by Lin et al. three contributing bands that are respectively filled for
two critical doping concentration xc1 and xc2. The lowest band in figure 5.13 in (c) and (d)
shows a departure from the parabolic behavior that was interpreted by Lin et al. as cause
for the change in the measured effective mass in dependence of charge carrier density. The
Shubnikov-deHaas measurements conducted by Lin et al. suggests that the observed bands in
this thesis are the lower and middle band. The lower band has the effective mass m = 4.2me

and the middle band has the effective mass m = 1.5me. The following analysis will establish
that the middle band is depleted at B∗ and the lower band is depleted at BC2 hence the
index m for the middle band in the coherence length ξm

GL and l for the lower band in ξl
GL.
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C2 , B

∗1/2. In (b) the ratio (BC2/B
∗)2 can be seen, the straight line is the ratio

of effective masses 4.2me/1.5me = 2.8 of both bands of Nb:SrTiO3 [80]. In (c) the
Fermi energy can be seen in the dirty and clean limit according to equation (5.10)
and (5.14). In (d) the Fermi energy from (c) in the dirty limit can be seen along
the prediction by van der Marel [82], the red curve is shifted so that it matches
the two data points at highest doping for l(4.2me).

In figure 5.14 in (a) the dome of critical fields B∗ and BC2 can be seen along TC in
dependence of the charge carrier density nHall. The data suggests TC ∝ B

1/2
C2 , B

∗1/2. It is
noted that the unusually strong isotope effect of SrTiO3 with an enhancement of TC by ∼ 1.5
and BC2 by ∼ 2 is consistent with the dependence of TC , B1/2

C2 , B∗1/2 on the nHall that is
observed here [87]. The critical temperature TC can be related to the critical fields B1/2

C2 ,
B∗1/2. First TC is expressed as ∆ with equation (2.13). The next step will make a distinction
into the clean and dirty limit.

In the clean case it is related via equation (2.14), (2.33), (2.39)

∆(T = 0) = 0.907 · ℏvF

π

√
2πBα

Φ0
(5.9)
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5 Nb:SrTiO3 in magnetic field

whereas Bα = B∗, BC2 is a placeholder variable. The band-specific Fermi velocity is expressed
as Fermi Energy vF =

√
2EF/m with effective mass m. With the definition of the flux

quantum Φ0 = h/(2e)

∆(T = 0) = 2 · 0.907
π

√
eℏ ·

√
EFBα

m
=
√
EFBα

m
· 2.37 · 10−27

√
kgAm (5.10)

is obtained.
In the dirty limit it can be related via equation (2.14), (2.34), (2.39)

∆(T = 0) = ℏvF · 0.9072l
2Bα

Φ0
. (5.11)

Unlike as in the clean limit the band-specific free mean path l enters. It is again vF =
√

2EF/m
with effective mass m. It is obtained

∆(T = 0) = 2
√

2e · 0.9072

π
· lBα

√
EF

m
= lBα

√
EF

m
· 1.185 · 10−19 As.. (5.12)

The band-specific free mean path l can be related to the scattering rate l = 2πvF/Γscat. that
is given in table 5.1 but those Γscat. are averaged over the bands. Therefore appropriate upper
and lower limits for l are estimated. It is assumed that the correct l is within the limits

l = 2π
Γscat.

√
2EF

m
(5.13)

for m = 1.5me and m = 4.2me. The effective mass m enters the free mean path via the
band-specific Fermi velocity, but m in equation (5.13) is not set according to the band that
is considered, but as limits. When equation (5.13) is inserted into (5.12) the upper and lower
limit of l results in an upper and lower limit for EF . It is noted with emphasis that m in
equation (5.12) and (5.13) are not the same quantities! Inserting equation (5.13) into (5.12)
returns

∆(T = 0) = 2
√

2e · 0.9072

π
· 2π

Γscat.

√
2EF

mβ
·Bα

√
EF

mα
. (5.14)

An upper (mβ = 4.2me) and lower limit (mβ = 1.5me) for EF is obtained with equation
(5.14)

Assuming the same EF for both bands together with the observation of only one gap
∆(T = 0) [17] it is seen from both equations (5.10) and (5.14) that a greater Bα is associated
with a greater effective mass. It is therefore concluded that the lower band with effective mass
m = 4.2me is depleted at BC2 and that the middle band with effective mass m = 1.5me is
depleted at B∗. The obtained Fermi energies in the respective clean and dirty limit according
to equation (5.10) and (5.14) can be seen in table 5.2.

When assuming that the Fermi Energy EF and that the free mean path l is the same for both
bands, with equation (5.12) it can be related in the dirty limit B2

C2/B
∗2 = 4.2me/1.5me = 2.8.

In the clean limit it suffices to assume that the Fermi energy is the same for both bands to
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5.5 Partial Band filling

relate with equation (5.10) BC2/B
∗ = 4.2me/1.5me = 2.8. In figure 5.14 in (b) it can be seen

that the measured ratios of the critical fields squared equals relatively good ∼ 2.8 except the
highest doped sample that is known to be not homogeneously doped. This finding suggests
the dirty limit. The significance of this statement should not be overestimated since EF and
l were assumed for both bands to be same, but it is an indication that points towards the
dirty limit.

In figure 5.14 in (c) the Fermi energy from table 5.2 can be seen. Here l(4.2me) and l(1.5me)
mark the upper and lower limit for the Fermi energy due to the uncertainty of the band-
specific free mean path. The values for the dirty limit for the upper and lower limit of l almost
overlap, this is no surprise since it was previously established that B2

C2/B
∗2 ∼ 4.2me/1.5me.

The Fermi energy in the clean limit shows a dome-behavior whereas the maximal Fermi
energy is reached for nHall = 2 · 1020 cm−3. The Fermi energy in the dirty limit shows a sharp
rise towards greater doping.

Van der Marel et al. computed the Fermi energy in dependence of the doping EF (n) with
a theoretical model, E(n) can be seen in figure 5.13 in (e) [82]. In figure 5.14 in (d) the
Fermi energy in the dirty limit can be seen along with the prediction by van der Marel. It is
apparent that the obtained values of EF in this thesis are much smaller than the theoretically
calculated EF . Shifting the prediction by van der Marel by 60 meV shows accordance in
absolute values and slope with the Fermi energy at high doping, it is not clear whether this
is a coincidence or if a systematic error entered. It is noted that the Fermi energy EF enters
equation (5.10) and (5.10) via the Fermi velocity vF , it may be speculated that a relation
between the coherence length ξ∆ and the Fermi energy EF may not be straightforwardly
established as previously assumed.

5.5 Partial Band filling
So far it is established that for sufficiently high frequency the optical conductivity can be
assumed as linear composite of a relatively robust superconducting state and the normal
conducting vortices with weight according to the occupied volume in the bulk. Further it is
established that a vortex has two GL coherence lengths that correspond to two critical upper
fields B∗, BC2 due to two superconducting bands, the middle band with ξm

GL and m = 1.5me

is depleted at B∗ and the lower band with ξl
GL and m = 4.2me is depleted at BC2 [88]. The

close to linear decrease of σ2(B) in dependence of B and the identification of the two critical
upper fields B∗, BC2 with two bands suggests further that the interaction of the bands with
each other can be neglected. In this section the linear B-dependence of σ2(B) is used to
obtain a partial filling factor of the bands. It is focused on σ2 at sufficient high frequencies to
exclude the effects of the B-coherence peak.

It is now turned to the determination of the partial band filling. The optical conductivity
respectively for the lower and middle band is expressed as linear mean of the optical
conductivity of the superconducting state and the normal conducting vortices with volume
filling factor f l,m

n

σ̂l,m

σl,m
DC

= σl,m
1 + iσl,m

2

σl,m
DC

= f l,m
n + (1 − f l,m

n )f̂MB. (5.15)
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Fig. 5.15: In (a) the partial filling factor, namely the ratio of the DC contribution of the lower
band to the total DC conductivity σl

DC can be seen. The inset in (a) shows how the
error bars are obtained exemplary for the highest doped sample n = 2.2 · 1020 cm−3,
the red line marks the total error and the blue line the standard deviation. In (b)
the data from figure 5.11 can be seen with linear fits to T = 0.026 K, from the
intercept of both fits with the σ2/σDC-axis σl

DC/σDC is obtained.

σ̂l,m accounts for the band-specific optical conductivity and σl,m
DC accounts for the DC con-

ductivity that is contributed by the lower (index l) and middle (index m) band. The
conductivities are assumed to return the total values as superposition σ̂ = σ̂l + σ̂m and
σDC = σl

DC + σm
DC. The volume filling factor is normalized such that 0 ≤ f l,m

n ≤ 1. It is
further assumed that the superconducting volume follows the Mattis-Bardeen prediction
(2.26) with f̂MB = fMB

1 + ifMB
2 . The Mattis-Bardeen prediction for both bands depends on

∆, since Nb:SrTiO3 is a single gap superconductor [88] the Mattis-Bardeen prediction for
both bands is the same.

It is appropriate to consider how both bands contribute to σ2. With equation (5.15) it can
be obtained

σ2

σDC
= σl

2 + σm
2

σDC
= σl

DC
σDC

σl
2

σl
DC

+ σm
DC
σDC

σm
2

σm
DC

=
(

1 − σl
DCf

l
n + σm

DCf
m
n

σDC

)
fMB

2

=
(

1 − σl
DC
σDC

B

B∗ Θ(B∗ −B) − σm
DC
σDC

B

BC2
Θ(BC2 −B)

)
fMB

2 .

(5.16)

In the last line a linear B-dependence of f l,m
n is assumed and Θ(x) is the Heaviside step

function. The linear B-dependence is justified since the distance between two vortices scales
as a∆ ∝ B−1/2 as it can be seen from equation 2.38. The experimental observation that σ2
decreases linearly with B justifies to neglect the B-dependence of fMB

2 .
It is readily seen that the intercepts of two linear fits to σ2 in dependence of B for B < B∗

and B > B∗ with the σ2/σDC-axis can be used to obtain the partial filling factor, here
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5.5 Partial Band filling

expressed as the ratio of the DC contribution of the lower band to the total DC conductivity
σl

DC/σDC. The linear fits used to determine the intercepts can be seen in figure 5.15 in (b),
the ratio of the intercept of the upper fit with the σ2(B)/σDC-axis to the intercept of the lower
fit with the σ2(B)/σDC-axis equals σl

DC/σDC. The partial filling factor σl
DC/σDC is obtained

for every temperature T and then averaged. The partial filling factor shows strong deviations
that are attributed to deviations of the linear B-dependence of σ2. These deviations are
used to obtain the error bars for the measured partial filling factor, a standard deviation is
computed as well as an absolute error that accounts for the maximal deviation. In figure 5.15
in (a) in the inset the obtained values for σl

DC/σDC for different temperatures can be seen for
the highest doped sample, the inset also shows the standard deviation and the absolute error.
The data that was used to obtain the partial filling factor can be found seen in figure 8.3,
5.5, 5.11, 8.7, 8.10.

It is important to discuss the role of the DC conductivities σl,m
DC that were attributed to

the lower and middle band. Although labeled DC conductivities in analogy to the Mattis-
Bardeen formalism as used in this thesis, σl,m

DC are technically normalization factors for the
superconducting optical conductivities to compute the linear mean that was measured. In
that sense σl,m

DC attributes for charge carrier concentration, scattering time and effective mass
at once for one considered band. It may be tempting to argue that for greater σl

DC/σDC the
lower band may contribute more charge carriers, but from physics perspective this statement
is not straightforward to make. In addition and in regard to the B-coherence peak it is noted
that the assumption that the two bands do not interact is a rather heuristic assumption to
apply the just conducted analysis.

The obtained values for the partial filling as it can be seen in figure 5.15 in (a) do not
allow a straightforward interpretation. Despite the objections that were just mentioned, it
may be guessed that with greater doping the partial filling of the lower band should decrease,
although the bare values seem to confirm this trend the large error bars do not allow to make
a quantified statement. It is noted that for the second lowest doped sample the values are
not located within the error bars of the standard deviation. With the absolute error in mind
it could also be the case that the partial filling factor remains constant.
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6 Conductivity enhancing effects in the
Shubnikov phase

6.1 Preceding considerations
The last chapter established the B-coherence peak in the Shubnikov phase of the Type II
superconductor Nb:SrTiO3. The characteristic properties of the B-coherence peak are a sharp
initial rise of σ1 in dependence of B with a slope that is greater than it would be expected
from the composite conductivity of normal conducting vortices in the superconducting bulk,
absolute values of σ1 that rise to multiple times of σDC, persistence of the peak down to lowest
temperatures, and the weakening and disappearance for greater frequencies. In contrast
the T -coherence peak in zero-field describes the increase of σ1 > σDC close to TC for small
frequencies hf ≪ 2∆ as result of the density of states that diverges at E = ±∆, a feature
whose experimental evaluation is considered as one of the early confirmations of the BCS
theory. The superconducting state is usually well protected against small changes of B and T
when it is B ≪ BC1, BC2 and T ≪ TC . In the case of Nb:SrTiO3 that has a very small BC1,
it is one possible explanation to assume that the B-coherence peak is a result of enhanced
conductivity in the vortex core.

In this chapter possible explanations for the B-coherence peak are reviewed. The first
investigation is a theoretical investigation on the effects of a B-dependent energy gap ∆(B)
in the superconducting volume on the optical conductivity σ1. The second investigation will
focus on states in the vortex core, the so-called Caroli-deGennes-Matricon mode (CdGM
mode) [95]. It will be shown that the states in the vortex core provide a reasonable explanation
for the B-coherence peak. The Two-Band nature of SrTiO3 is neglected in this chapter.

6.2 B⃗ dependence of the energy gap ∆ in the mixed state

6.2.1 Effective B⃗ in the superconducting area
In this subsection it is investigated on the magnetic flux density B that penetrates a type
II superconductor in the Shubnikov phase. For clarity a distinction is made between the
externally applied Bext that was so far in the experimental context referred to as B, and
the actual magnetic flux density Bint(r) in the superconductor that may be also position
dependent although it will turn out that Bint is reasonably isotropic with the assumptions
that are made in the text. The optical conductivity will be assumed as linear mean of the
superconducting volume and the normal conducting vortices with weight according to the
occupied volume of the vortices that are assumed to be cylinders with radius ξGL. The optical
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6 Conductivity enhancing effects in the Shubnikov phase

Fig. 6.1: A complementary depiction to the calculation of Bint can be seen. Bint is calculated
in the center vortex by adding Bvortex from equation (6.1) of all vortices except that
of the center vortex. For simplicity it is assumed that all vortices are on circles with
radius that are integer multiples of a∆.
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Fig. 6.2: The close to isotropic internal magnetic flux density Bint in dependence of the
external magnetic flux density Bext according to equation (6.2), Bext enters via
equation (2.38) through the vortex spacing a∆. For λL > 500 nm an almost linear
relation Bint(Bext) = 0.81Bext can be observed. The result is only valid for high κ
samples with a∆ > ξGL.
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6.2 B⃗ dependence of the energy gap ∆ in the mixed state

conductivity of the superconducting volume will be assumed to follow the Mattis Bardeen
prediction with a Bint-dependent energy gap ∆(Bint). This way the real part of the composite
optical conductivity σ1 of a superconductor in the Shubnikov phase is obtained and can be
checked with the experimentally observed data from the previous chapter, specifically if a
feature like the B-coherence peak or characteristics of B-coherence peak are reproduced.

For an external magnetic flux density Bc1 < Bext < Bc2 a type II superconductor enters
the Shubnikov phase. A vortex is assumed to be a normal conducting cylinder with radius
ξGL [33, 91]. In GL theory a single isolated vortex displays a radially varying magnetic flux
density

Bvortex(r) = Φ0

2πλ2
eff
K0

(
r

λeff

)
≈ Φ0

2πλ2
eff

√
π

2
λeff

r
· e− r

λeff (6.1)

according to equation (2.37), the approximation holds for r ≫ λL and r is the distance from
the vortex core. In the limit κ ≫ 1 the superposition of the magnetic flux densities of the
respective vortices is valid [33]. The limit κ ≫ 1 applies to the investigated Nb:SrTiO3
samples in this thesis [88]. The value of the internal magnetic flux density Bint in the
Shubnikov phase in the presence of an external magnetic flux density Bext can be obtained
by summing over the magnetic flux densities Bvortex(r) of all vortices. The sum is evaluated
at the center of a vortex and the magnetic flux density of that vortex in the center is set to
Bvortex(r = 0) = 0 for simplicity. It is obtained

Bint = 6 ·
∞∑

n=1
Bvortex(na∆) · n

= 6 ·

 n0∑
n=1

Bvortex(na∆) · n+ Φ0

2πλ2
eff

√
π

2

∞∑
n=n0+1

√
nλeff

a∆
e

− na∆
λeff


= 6 · Φ0

2πλ2
eff


n0∑

n=1

n ·K0

(
n
a∆

λeff

)
−
√
nπλeff

2a∆
e

−n
a∆
λeff

+
√
πλeff

2a∆
Li− 1

2

(
e

− a∆
λeff

)
(6.2)

with the polylogarithmic function Li− 1
2
(x) and n0 ≫ λeff

a∆
[96]. For simplicity the vortices

were assumed to be on circles with radius na∆ whereas the real triangular lattice is denser in
space as it can be seen in figure 6.1. Thus the obtained Bint from (6.2) is expected to provide
a lower bound for the exact internal magnetic flux density. The dependence on Bext enters
via the vortex spacing a∆ ∝ B

−1/2
ext according to equation (2.38).

In figure 6.2 the dependence of Bint(Bext) on Bext for different λeff can be seen. Although
equation (6.2) does not depend explicitly on ξGL it is required λeff ≫ ξGL as well as a∆ > ξGL.
It is only reasonable to compute Bint for Bext > BC1. So depending on the present BC1 and
ξGL of the considered sample only a finite range of Bext may be considered. It can be seen
that for λeff in the order of µm the relation between Bint and Bext is almost linear. For smaller
λeff, Bint shows an exponential slope. Since Nb:SrTiO3 has a big λeff ∼ µm with a very small
BC1 it is set

Bint = 0.81Bext (6.3)
for further analysis. Figure 6.2 suggests that 0.81 is a reasonable proportionality constant.
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6 Conductivity enhancing effects in the Shubnikov phase

Technically it was only calculated the Bint(r) for r = 0 at the center of a vortex while
neglecting the magnetic flux density of that center vortex. It is commented on the question how
strong the obtained Bint varies on space. Therefore the magnetic flux density Bvortex(r = ξGL)
is calculated at the radius of a single vortex. The actual Bint(r) in the superconducting
bulk will vary with maximal deviation Bvortex(r = ξGL). With equation (6.1), minimal
λeff = 1.4µm and minimal ratio ξl

GL/λeff = 0.05 from table 5.2 it is obtained

Bvortex(r = ξGL) = Φ0

2πλ2
eff
K0

(
ξGL

λeff

)
= 0.50 mT (6.4)

as maximal deviation. With regard to the following calculation of the Bint-dependent optical
conductivity and the critical magnetic flux densities of the Nb:SrTiO3 samples in this thesis
that go up to multiple values of 10 mT it is a convenient and sufficient choice to go with
Bint = 0.81Bext.

6.2.2 Optical conductivity due to B⃗ dependent ∆(B)
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Fig. 6.3: Real part of the optical conductivity in equation (6.5) for frequency hf/(2∆) = 0.01
when assuming a DC conductivity for the vortices and the Mattis Bardeen prediction
for the superconducting bulk along with the volume filling factor fn from equation
(6.6).

The previous subsection showed that high κ materials in the Shubnikov phase exhibit in the
superconducting volume a relatively isotropic internal magnetic flux density Bint = aextBext
that is directly proportional to the external magnetic flux density Bext. A proportionality
constant of aext = 0.81 was obtained that will be used in the further analysis. Typical
experiments with effects of a B-dependent ∆ feature very thin samples so that the magnetic
flux density can be assumed to be uniform in the superconductor [97, 98], it is reasonable to
obtain the theoretical expression for the conductivity in analogy to these experiments but
with replaced magnetic flux density B → Bint for the energy gap ∆(T,Bint).
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6.2 B⃗ dependence of the energy gap ∆ in the mixed state

The total conductivity can be obtained with effective medium theory [99]. For analyzing
experimental data effective medium theory typically consists of using Bruggeman’s theory
which features in the most simple case the computation of the mean conductivity

σ̂mean = fn(T,Bext)σ̂n + (1 − fn(T,Bext))σ̂sc (6.5)

of the superconducting conductivity σ̂sc and normal conducting conductivity σ̂n of the vortex
whereas the volume filling factor

fn(T,Bext) =
1 −

(
TC(Bext)

TC

)4

1 −
(

T
TC

)4 =
1 −

(
1 − Bext

BC2

)2

1 −
(

T
TC

)4 (6.6)

is the ratio of the normal conducting volume to the total volume in the superconductor [98].

To compute σ̂mean the conductivity of the vortex is set to the DC conductivity σ̂n = σDC.
The superconducting bulk is set to the Mattis Bardeen prediction σ̂sc/σDC = fMB

1 + ifMB
2

according to equation (2.26). The energy gap ∆(T,Bint) that enters the Mattis Bardeen
prediction, this means the energy gap ∆(T,Bint) in the superconducting volume of the
Shubnikov phase for high κ materials, is given by [33, 97, 98]

∆(T,Bint) = ∆(T = 0, Bint = 0) ·

√√√√cos
(
π

2

(
T

TC

)2)
·

√√√√1 −
(

Bint

BC2(T )

)2

(6.7)

with
BC2(T )

BC2(T = 0) = 1 −
(
T

TC

)2
. (6.8)

In figure 6.3 the real part of the optical conductivity in equation (6.5) can be seen for
frequency hf/(2∆(T = 0, Bint = 0)) = 0.01. For low temperatures the real part of the optical
conductivity rises with decreasing slope for greater Bext towards σ1 → σDC. For T = 0.5TC

the initial optical conductivity starts at σ1(Bext = 0) > 0.75σDC and shows indeed a coherence
peak although it is weakly developed. For T = 0.8TC at low Bext the T -coherence peak can
be seen, for greater Bext the optical conductivity decreases to σ1 → σDC due to the linear
increase of the normal conducting volume.

The coherence peak of σ1 observed theoretically in figure 6.3 shows qualitatively different
features than the experimentally observed B-coherence peak. There is no sharp initial rise of
σ1(Bext) in dependence of Bext and only for temperatures close to TC a very weak and broad
maximum is observed. The theoretical computed σ1 for T = 0.8TC in figure 6.3 resembles
the behavior of σ1(B) in dependence of B for T close to TC in figure 5.4 and 5.7, in that
sense the model explains the decrease of σ1 at temperatures where σ1 is mainly characterized
by the T -coherence peak. It is concluded that the B-coherence peak is not appropriately
taken care of by assuming a B-dependence of ∆ for the superconducting bulk in a composite
model with normal conducting vortices.
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6 Conductivity enhancing effects in the Shubnikov phase

6.3 Caroli-deGennes-Matricon mode

6.3.1 Introduction to the CdGM mode

Fig. 6.4: Differential conductance dI/dV in dependence of V measured with a tunneling
scanning microscope. The material is superconducting NbSe2 at T = 1.85 K and
B = 0.02 T, from top to down the data is observed at the vortex core and at distance
7.5 nm and 20 nm from the vortex core. Data taken from [100].

Caroli et al. found that low lying states with excitation energy E0 ∼ ∆2/EF are localized
in the vortex core, these low lying states are referred to as Caroli-deGennes-Matricon modes
[95]. Caroli et al. argued that for excitation energies above E0 the density of states in the
vortex core is comparable to that of a normal conducting cylinder of radius ξGL, thus the
investigation by Caroli et al. is a microscopic justification for the Bardeen-Stephen model [33,
91, 95]. Scanning-tunneling-microscope (STM) measurements carried out by Hess et al. on
NbSe2 revealed a strong zero-bias peak of the differential conductance dI/dV located at the
Fermi energy in the vortex core whereas for greater distances from the vortex core the BCS
prediction was reproduced [100, 101]. The observation by Hess et al. can be seen in figure
6.4. The finding of Hess et al. strongly suggests that the local DOS peaks Nloc(0) > Nn(0) at
the Fermi energy EF . Nn(0) is the density of states in the normal conducting phase at the
Fermi energy EF . Other measurements that also show the mentioned peak can be found in
[102, 103].

Theoretical investigations showed that the zero-bias peak of the differential conductance
as measured by Hess et al. is a result of the low-lying CdGM mode. The local DOS was
obtained by solving numerically the Bogoliubov-deGennes equations [104–106]. Most notable
is the investigation by Gygi et al. who solved the Bogoliubov deGennes equations in a self-
consistent manner [104]. In this section the investigation by Gygi will be repeated with some
simplifications whereas it will be shown that the simplifications do not change significantly
the result. After obtaining with theoretical methods the local DOS along with the peak at
the vortex the optical conductivity will be computed.
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6.3 Caroli-deGennes-Matricon mode

6.3.2 Local DOS in a vortex due to the CdGM mode
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Fig. 6.5: In (a) the superconducting amplitude |u(r)|2 in arbitrary units (arb. u.) for the
lowest eigenvalue E0 can be seen in dependence of the distance r from the vortex
for chosen quantum angular number µ. In the inset of (a) the lowest energy E0 of
the bound state in dependence of µ can be seen. In (b) the local density of states
Nloc for different positions r can be seen.

The BdG equations with parameters specified for NbSe2 are solved in this chapter, most of
this subsection is taken from [104]. The clean limit is assumed so that it can be set U(r⃗) = 0
in equation (2.19). Experimental data suggests that the peak of the local DOS survives as
long as the material is not in the strong dirty limit [107]. It is further set A⃗ = 0, the similar
theoretical results of Shore et al. and Gygi et al. motivate this simplification [104, 105]. Since
the vortex state has translational invariance along it’s axis (here z-axis), the superconducting
amplitudes are expressed as

ui(r⃗) = un,µ(r⃗)ei(µ−1/2)θ

vi(r⃗) = vn,µ(r⃗)ei(µ+1/2)θ (6.9)

with the angular coordinate θ, the radial quantum number n and angular quantum number
µ, the kz dependence is neglected. The gauge of the energy gap is set to ∆(r⃗) = |∆(r⃗)|e−iθ.

The superconducting amplitudes are now expanded on a disc R = 5000 a.u., where a.u. is
the atomic unit, in terms of functions

ϕj,m(r) =
√

2
RJm+1(αj,m)Jm

(
αj,m

r

R

)
, (6.10)
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6 Conductivity enhancing effects in the Shubnikov phase

j goes from 1 to ∞ in integer steps and it is m = µ± 1/2 and m is also integer. αj,m is the
jth zero of the Bessel function of the first kind Jm(x). The ϕj,m(r) fulfill the orthogonality
relation ∫ R

0
ϕj,m(r)ϕj′,m(r)rdr = 0 (6.11)

for j ̸= j′ [96]. The superconducting amplitudes are expressed as

un,µ(r) =
∑

j

cn,µ,jϕj,µ−1/2(r)

vn,µ(r) =
∑

j

dn,µ,jϕj,µ+1/2(r)
(6.12)

with complex coefficients cn,µ,j and dn,µ,j. With the vector ΨT
n,µ = ({cn,µ,j}Nmax

j=1 , {dn,µ,j}Nmax
j=1 )

with Nmax = 250 the BdG equation can be expressed as 2Nmax × 2Nmax matrix eigenvalue
problem [

T− ∆̃
∆̃T T+

]
Ψn,µ = En,µΨn,µ (6.13)

with
T±

j,j′ = ∓
[
ℏ2

2m
α2

j,µ±1/2

R2 − EF

]
δj,j′ (6.14)

and
∆̃j,j′ =

∫ R

0
ϕj,µ−1/2(r)|∆(r)|ϕj′,µ+1/2(r)rdr. (6.15)

As ∆(r) an absolute value of ∆(r → ∞) = 1.2 meV is used with an r dependence according
to equation (2.36) with ξGL = 200 a.u., the Fermi energy is set to EF = 38.5 meV and the
effective mass to m = 2me. It is noted that the ∓ sign in equation (6.14) is missing in [104]
in equation (9), this is an error in the original publication. Solving equation (6.13) returns
2Nmax eigenvectors Ψn,µ for a specific µ with 1 ≤ n ≤ 2Nmax and n is integer. Equation
(6.13) is solved for 1/2 ≤ µ ≤ 550 + 1/2 whereas µ is half of an odd integer, this means for
550 values of µ. The BdG equations are not solved in a self-consistent manner as in [104].
A self-consistent solution is obtained by using the solution of equation (6.13) to calculate
∆(r), by reinserting ∆(r) into equation (6.13) and solving again multiple times until ∆(r)
converged.

In figure 6.5 in (a) the computed superconducting amplitude |ui|2 for the lowest eigenvalue
En,µ for different µ can be seen, the behavior of u in figure 6 in [104] is reproduced. The
low-lying CdGM-modes are localized in the vortex core and the maximum of |u| moves to
greater distances for greater quantum angular momentum number µ. In the inset of figure (a)
the dependence of E0 can be seen on µ, E0 initially increases linearly and levels off towards
the value of the energy gap 1.2 meV. The inset in figure (a) reproduces figure 3 in [104]. The
local density of states Nloc. is expressed as

Nloc(r, E) = −
∑

i=n,µ

[
u2

i (r)f ′
F (E − En,µ, Tconv) + v2

i (r)f ′
F (E + En,µ, Tconv)

]
(6.16)
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6.3 Caroli-deGennes-Matricon mode

with the derivative of the Fermi distribution from equation (2.16). Nloc is convoluted with
the Fermi distribution to reduce errors that could enter due to the discretization of the energy
states En,µ. Tconv = 0.3 K was found to be a fitting value. In figure 6.5 in (b) Nloc can be seen.
The peak of Nloc(r, E) at r = 0, E = 0 splits and moves to greater energies |E| for greater
distance from the vortex. The structure beyond the energy gap |E| > 1.2 meV results from
the finite disc size R = 5000 a.u. of the numerical computation. For the evaluation of the
optical conductivity due to Nloc the structure for |E| > 1.2 meV plays no role for sufficient
low temperature T and low frequency hf ≪ 2∆. For further investigations Nloc is averaged
for |E| > 1.2 meV and fitted with a constant value whereas 0.07358 is obtained, this way Nloc
can be normalized by dividing with 0.07358.

6.3.3 Optical conductivity due to the CdGM mode
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Fig. 6.6: Optical conductivity as obtained from equation (6.23) up to B/BC2 = 0.4 together
with the volume filling factor in equation (6.6).

The optical conductivity can be obtained from equation (2.24), in fact the Mattis Bardeen
equations follow from entering the BCS prediction into equation (2.24). Since the supercon-
ducting amplitudes are now complex the coherence factor F must be determined from first
hand principles. The interaction hamiltonian is given by

HI =
∑

k⃗σ,⃗k′σ′

Bk⃗′σ′ ,⃗kσc
∗
k⃗′σ′ck⃗σ (6.17)

with the matrix elements of the perturbing operator Bk⃗′σ′ ,⃗kσ. The annihilation and creation
operator are expressed as linear superposition of the Bogoliubov operators

ck⃗↑ = u∗
k⃗
γk⃗0 + vk⃗γ

∗
k⃗1

c∗
−k⃗↓ = −v∗

k⃗
γk⃗0 + uk⃗γ

∗
k⃗1.

(6.18)
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6 Conductivity enhancing effects in the Shubnikov phase

With the behavior of the matrix transition elements that is typical for case II coherence
factor Bk⃗′↑,⃗k↑ = −B−k⃗′↓,−k⃗↓ it can be obtained

c∗
k⃗′↑ck⃗↑ − c∗

−k⃗↓c−k⃗′↓ =
(
uk⃗′u

∗
k⃗

+ v∗
k⃗
vk⃗′

)
γ∗

k⃗′0γk⃗0 −
(
v∗

k⃗′vk⃗ + uk⃗u
∗
k⃗′

)
γ∗

k⃗1γk⃗′1, (6.19)

the terms that are associated with the creation and annihilation of quasi-particles are neglected
since scattering is the main mechanism that contributes to the optical conductivity. It is
straightforward to see that assuming real superconducting amplitudes allows to put together
both terms in equation (6.19), this way the coherence factor F = (uu′ + vv′) can be defined
whereas further analysis within the BCS framework results in equation (2.25). So far the
analysis followed the derivation of F by Tinkham [33].

It is now assumed that the superconducting state is probed at sufficiently small frequencies
such that it can be set k⃗ ∼ k⃗′. This means that hf should be at the order of magnitude of
∆2

0/EF , this assumption may hold specifically for Nb:SrTiO3 due to the very small Fermi
energy. This way and with a fitting normalization it is obtained as coherence factor

F = |uk⃗|2 + |vk⃗|2 = 1. (6.20)

For simplicity it is assumed kT ≪ hf , in fact if this assumption would not be fulfilled
it would mean that equation (2.24) must be integrated, a more cumbersome task that is
expected to return qualitatively the same results. Since the B-coherence peak appears for
low frequencies and is most pronounced towards low temperatures, these approximations are
reasonable. This way it can be obtained from equation (2.24)

σ1(r, f)/σDC = Nloc

(
r,−hf

2

)
Nloc

(
r,
hf

2

)
(6.21)

for the frequency- and position-dependent optical conductivity σ1(r, f).

Averaging the position-dependent conductivity σ1(r, f) allows to obtain the experimentally
observable real part of the optical conductivity σ̄1. It suffices to integrate σ1(r, f) over the
surface of a circle with radius a∆/2, this way it is obtained

σ̄1 = 8
a2

∆

∫ a∆/2

0
dr rσloc

1 (r). (6.22)

It is seen that a linear B-dependence enters via a∆. Equation (6.22) holds for big enough
vortex spacing a∆ > 2γξGL. For simplification the integral in equation (6.22) can be cut off
at γξGL since for great distance r from the vortex core σ1(r, f) decreases to 0. Here γ is
introduced as cut-off variable, great values for γ allow to consider features of σ1(r, f) that
may be further located from the vortex center, smaller values for γ neglect those features
to extend the optical conductivity to greater values of B/BC2. It is found that γ = 1 is a
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6.3 Caroli-deGennes-Matricon mode

reasonable choice. With equation (2.38) and (2.39) and setting the integral to zero for values
ρ′ > γξGL it is obtained

σ̄1 = B

BC2
·

√
3

2π
1
ξ2

GL

∫ γξGL

0
dρ′ρ′σloc.

1 (ρ′) (6.23)

as long as a∆ > 2γξGL. From a∆ > 2γξGL it follows that only values up to B/BC2 =
π/(γ2√3) = 0.45 should be considered.

In figure 6.6 the optical conductivity from equation (6.23) due to the CdGM modes can
be seen along with the volume filling factor fn(T = 0, B) from equation (6.6). The volume
filling factor fn accounts reasonably well for σ̄1 at low temperatures as it was established in
figure 6.3. For small B the slope of σ̄1 is greater than the slope of fn, this a characteristic
feature of the B-coherence peak. Also the peak persists at low temperatures T . But the
order of magnitude of the B-coherence peak of Nb:SrTiO3 is stronger. In the case of an
unconventional superconductor like Nb:SrTiO3 additional effects could play a role in the
strong enhancement in the conductivity of σ̄1. It is noted that for B/BC2 ∼ 0.4, fn(T = 0, B)
starts to deviate slightly from the linear slope. For B > 0.4BC2 the vortices are expected
to interact, assuming overlapping vortices results in an effectively lowered gap ∆ and the
CdGM modes with the highest energy turn into Bloch waves thus resulting in σ̄1 → σDC
for B → BC2. It is concluded that low-lying states in the vortex core can produce a feature
similar to the B-coherence peak. A more detailed investigation should address how σ̄1 evolves
towards BC2 and make a quantified statement on the maximum value of σ̄1.

6.3.4 Maximum of the B-coherence peak
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Fig. 6.7: Magnetic flux density Bmax(T ) where σ1(T,Bmax) is maximal for the samples in-
vestigated in this thesis. The respective optical conductivity can be seen in figure
5.4, 5.10 and 5.7. The data is fitted with equation (6.26). The TC according to
Thiemann is taken from [17].
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6 Conductivity enhancing effects in the Shubnikov phase

The preceding subsection established low-lying condensed states in the vortex core as
possible explanation for the B-coherence peak. The maximum of σ1(B = Bmax) at magnetic
flux density Bmax is reached for a critical spacing of the vortices so that a closer spacing
would result in overlapping vortices and a more remote spacing in less vortices with enhanced
conductivity. As result it follows as condition for the maximum of the B-coherence peak

ηmaxξGL = a∆(B = Bmax). (6.24)

The critical spacing constant ηmax is introduced, since the B-coherence peak shows a frequency
dependence the critical spacing constant may depend on frequency ηmax(f). Here it is focused
on the temperature dependence of ξGL and a∆. With equation (2.32) and (2.38) and the
experimentally verified relation BC(T ) = BC(T = 0)(1 − (T/TC)2) and the penetration depth
in the clean limit λeff(T ) = λeff(T = 0)(1 − (T/TC)4)−1/2 it is obtained

Bmax(T )
BC2(T = 0) = 4π√

3η2
max

1 −
(

T
TC

)2

1 +
(

T
TC

)2 . (6.25)

In the dirty limit λeff(T ) = λeff(T = 0)(1 − (T/TC)4)−3/4 can be used as approximate
temperature dependence [33], it is then obtained

Bmax(T )
BC2(T = 0) = 4π√

3η2
max

(
1 −

(
T

TC

)2
) 1

2

(
1 +

(
T

TC

)2
) 3

2
. (6.26)

Here Bmax(T ) is the magnetic flux density where σ1(B) is maximal. Considering the experi-
mental evidence of Thiemann [17] that the present SrTiO3 samples are in the dirty limit,
equation (6.26) is used to fit the experimentally obtained Bmax(T ). In fact equation (6.25)
and (6.26) show a relatively similar temperature dependence. Accordance of the fit with
experimental data can be understood as indication that conductivity enhancing effects in the
vortex core are the mechanism behind the B-coherence peak.

In figure 6.7 Bmax(T ) can be seen for the samples that are investigated in this thesis.
The data does no suggest a consistent behavior for the measured samples. The fit returns
values for TC that are in reasonable agreement with previous measurements by Thiemann
except for the 0.2 wt.% sample. The fit to Bmax(T ) does not cover the behavior of the
data. This may be attributed to difficulties in obtaining the correct values of Bmax(T ), but
it is also assumed that the correct temperature dependence of ξGL(T ) is deviating from the
derived temperature dependence in this subsection. For T ≤ TC it is typically approximated
ξ−2

GL(T ) ∝ 1 − T/TC [33], the linear temperature dependence of Bmax(T ) for T ≤ TC can be
observed for all considered samples. In that sense the observed Bmax(T ) can be seen with
caution as indication that vortices in Nb:SrTiO3 display enhanced conductivity.
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6.4 Clean and dirty limit

6.4 Clean and dirty limit
It is appropriate to discuss whether the investigated Nb:SrTiO3 samples in this thesis are in
the dirty or clean limit. The expression for the conductivity

J⃗sc(r⃗) = − 3
4πµ0ξ∆λ2

L

∫
R3

R⃗
[
R⃗ · A⃗(r⃗′)

]
R4 J(R, T )e−R/ldr⃗′ (6.27)

is considered with R = |R⃗| and R⃗ = r⃗ − r⃗′ [33]. The similarity to equation (2.23) is noted,
the exponential e−R/ξ∆ is replaced by the similar behaving kernel function J(R, T ) in the
framework of the BCS theory and in a phenomenological approach the effect of the free
mean path is accounted for by an additional exponential e−R/l. The integral (6.27) can be
transformed into a local relation J⃗sc(r⃗) ∝ A⃗(r⃗′) depending on the length scale λL, ξ∆ and l,
from the relation of those length scales to each other follows the distinction into the local and
non-local limit and the dirty and clean limit. The local relation is obtained when A⃗(r⃗) varies
slowly compared to J(R, T ) exp (−R/l). The respective limits are considered in subsection
2.2.4.

The length scales of the samples measured in this thesis ξ∆ and l are in a similar order of
magnitude, the obtained values can be seen in table 5.2, ξGL and ξ∆ do not differ significant
due to equation (2.34). As result Nb:SrTiO3 may display properties of clean and dirty
superconductors. Renner et al. observed that the zero-bias conductivity peak that was
measured by Hess et al. decreases when the superconductor is driven from the clean to
the dirty limit, the peak vanishes completely in the strong dirty limit [107]. Thiemann
calculated the averaged DOS of a two-gap superconductor and showed that already for
moderate scattering 2π2ξ∆/l = ℏΓ/∆ ≥ 1 the gaps merged, consistent with their experimental
observations [17].

Collignon et al. observed a departure of the superfluid density nsc from the charge carrier
density n for a doping that is comparable to the samples that are investigated in this thesis
[19]. This is interpreted as a transition from the clean to the dirty limit. Although the values
in table 5.2 contain uncertainties, it can be seen that for the lowest doped sample l > ξGL
and for the highest doped sample l < ξGL thus suggesting a transition from the clean to the
dirty limit whereas for all doping concentrations the bare values of l, ξGL are in a comparable
order of magnitude. Nb:SrTiO3 may be a material that exhibits properties of both the dirty
and clean limit to a varying extent.
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7 Summary

In this thesis the optical conductivity of Nb-doped SrTiO3 was obtained. The five samples
investigated in this thesis have charge carrier concentrations nHall = 0.33 · 1020 cm−3, nHall =
0.59 · 1020 cm−3, nHall = 1.1 · 1020 cm−3, nHall = 2.0 · 1020 cm−3, nHall = 2.2 · 1020 cm−3.
Superconducting Stripline resonators were used to probe the optical properties of Nb:SrTiO3.
Stripline resonator made of superconductors such as lead and tin display a change in resonance
frequency f due to the temperature dependent properties of the superconducting material,
it was shown that this temperature dependence can be related to the effective London
penetration depth λeff and fitting absolute values for the effective London penetration of lead
and tin were found. When a ground plane of the lead stripline resonator is replaced by a
Nb:SrTiO3 sample, the optical conductivity of Nb:SrTiO3 can be obtained with the cavity
perturbation technique.

The optical conductivity of Nb:SrTiO3 reveals features that are typically associated with a
dirty single-gap superconductor. At low frequencies the coherence peak predicted by the BCS
theory, here referred to as T -coherence peak, is observed. Real and imaginary part of the
optical conductivity display in dependence of the magnetic flux density B an abrupt change
of slope, this means a kink at B∗. At the critical magnetic flux densities B∗ and BC2 the
two superconducting bands with two coherence lengths ξGL in Nb:SrTiO3 are respectively
depleted. Starting at B = 0 the real part of the optical conductivity σ1 displays a strong
increase of σ1 in dependence of B even at lowest achieved temperature T and it is observed
σ1 > σDC. The behavior of σ1 in dependence of B is reminiscent of the T -coherence peak since
both features are only observed for low frequencies hf ≪ 2∆, but are qualitatively different
since for the T -coherence peak σ1 peaks towards T ≤ TC whereas for the B-dependence of σ1
a sharp initial slope is observed that is greater than it would expected from assuming normal
conducting vortices. Thus the just described characteristics of the B-dependence of σ1 are
referred to as B-coherence peak.

The dome of critical fields B∗, BC2 suggests T 2
C ∝ B∗ and T 2

C ∝ BC2. With the BCS
and Ginzburg Landau theory it can be obtained ∆0 ∝ (EFB

α/m)1/2 in the clean limit and
∆0 ∝ lBα (EF/m)1/2 in the dirty limit, here it is Bα = B∗, BC2. A relation between the ratio
of the critical magnetic flux densities and the ratio of the effective masses of the lower band
ml and the middle band mm, B2

C2/B
∗2 = ml/mm can be obtained in the dirty limit when

the Fermi energy EF and the free mean path l are assumed to be the same for both bands,
the relation is supported by experimental data. The Fermi energy can be obtained, in the
clean limit the Fermi energy displays a dome and in the dirty limit a monotonous increase in
dependence of doping.

A characteristic feature of the B-coherence peak, the strong initial increase of σ1 in
dependence of B down to lowest temperature T , could be reproduced with a theoretical
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7 Summary

argument. The Caroli-deGennes-Matricon modes are low-lying states localized in the vortex
core that cause a sharp peak in the local density of states Nloc.(r, E) in the vortex core at the
Fermi energy EF . The local density of states Nloc.(r, E) due to those low-lying states results in
a slope σ1/dB|B=0 that is greater than it would be expected from assuming normal-conducting
vortices with the Ginzburg Landau coherence length ξGL as radius.

The discussion whether Nb:SrTiO3 is best described in the dirty or clean limit is not settled.
Arguing on the basis of the length scales l and ξGL a transition from the clean to the dirty
limit is observed with greater doping for the samples investigated in this thesis. The values
of l and ξGL are in a similar order of magnitude, as result the Nb:SrTiO3 samples in this
thesis are not tuned from the strong clean to the strong dirty limit. Nb:SrTiO3 may be a
material that displays properties that are characteristic for superconductors in the clean and
dirty limit.
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8 Outlook
Research on superconducting doped SrTiO3 seems to gain momentum in the last years. A
few open questions that are of relevance, at least to the author, are listed here.

The peak of the local density of states in the vortex state due to the Caroli-deGennes-
Matricon modes is typically associated with a shrinking of the vortex core, namely the
Kramer-Pesch effect [108]. It is assumed that the Kramer-Pesch effect may be observable as
unusual slope of the conductivity Re(σ̂) in dependence of temperature T for finite magnetic
flux density B. Observing the Kramer-Pesch effect may validate the hypothesis that low-lying
states in the vortex core cause the B-coherence peak. In addition a detailed temperature
dependent measurement of σ̂ may allow to track the energy gap ∆ for different magnetic
flux densities B more readily. In fact the experimental observation of ∆(B) in the case of
Nb:SrTiO3 would be highly desirable.

STM measurements of the vortex state of Nb:SrTiO3 may provide the most fruitful
contribution to the mystery behind the B-coherence peak. It is apparent that the rich
vortex structure of a superconductor is averaged to obtain the macroscopic observable optical
conductivity σ̂. The B-coherence peak with the unusual characteristics is teasing towards
a greater surprise that may be revealed with the help of STM measurements. In addition
it is not clear whether Nb:SrTiO3 is the only material that displays the B-coherence peak.
Comparable studies on reference materials may provide insight into a so far insufficient
investigated topic in the field of superconductivity.

Also the discrepancy between the obtained absolute values of the Fermi energy in this
thesis and from theoretical studies should be investigated. Whereas the ratio of the upper
magnetic flux densities where the two bands of SrTiO3 are respectively depleted may be
straightforwardly related to an experimentally confirmed ratio of effective masses in the dirty
limit, it is not clear why the obtained absolute values of the Fermi energy are smaller than the
theoretical prediction [82]. A theoretical investigation should also clarify how Cooper-pairs
of two bands that couple in k-space can exhibit in real space two different coherence lengths.
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Appendix

Optical conductivity of Nb:SrTiO3

All measured optical conductivities σ̂ that are not shown in the main text are shown here.
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Fig. 8.1: Optical conductivity of the 0.1 wt. % Nb-doped SrTiO3 sample at f = 1.82 GHz in
|| orientation.
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Fig. 8.2: Optical conductivity of the 0.1 wt. % Nb-doped SrTiO3 sample at f = 5.35 GHz in
|| orientation.
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Fig. 8.3: Optical conductivity of the 0.1 wt. % Nb-doped SrTiO3 sample at f = 7.14 GHz in
|| orientation.
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Fig. 8.4: Optical conductivity of the 0.1 wt. % Nb-doped SrTiO3 sample at f = 8.71 GHz in
|| orientation.
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Fig. 8.5: Optical conductivity of the 0.2 wt. % Nb-doped SrTiO3 sample at f = 2.05 GHz in
⊥ orientation.
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Fig. 8.6: Optical conductivity of the 0.2 wt. % Nb-doped SrTiO3 sample at f = 6.11 GHz in
⊥ orientation.
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Fig. 8.7: Optical conductivity of the 0.2 wt. % Nb-doped SrTiO3 sample at f = 10.05 GHz in
⊥ orientation.
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Fig. 8.8: Optical conductivity of the 0.2 wt. % Nb-doped SrTiO3 sample at f = 14.18 GHz in
⊥ orientation.
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Fig. 8.9: Optical conductivity of the 0.7 wt. % Nb-doped SrTiO3 sample at f = 3.79 GHz in
|| orientation.
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Fig. 8.10: Optical conductivity of the 0.7 wt. % Nb-doped SrTiO3 sample at f = 5.63 GHz in
|| orientation.

0 . 0 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 40 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

0 . 0 0 0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0 0 . 2 5 0 . 3 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

0 . 0 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 40 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

0 . 0 0 0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0 0 . 2 5 0 . 3 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

 

 

op
tica

l co
nd

uc
tivi

ty 
σ 1/σ

DC
 [1

]

m a g n e t i c  f l u x  d e n s i t y  B  [ T ]

 

 

op
tica

l co
nd

uc
tivi

ty 
σ 1/σ

DC
 [1

]

t e m p e r a t u r e  T  [ K ]

 

 

op
tica

l co
nd

uc
tivi

ty 
σ 2/σ

DC
 [1

]

m a g n e t i c  f l u x  d e n s i t y  B  [ T ]

 

 

op
tica

l co
nd

uc
tivi

ty 
σ 2/σ

DC
 [1

]

t e m p e r a t u r e  T  [ K ]

T = 0 . 0 2 5 K

T = 0 . 1 0 0 K

T = 0 . 1 7 5 K

T = 0 . 2 5 0 K

T = 0 . 3 0 0 K

| |  s e t u p ,  0 . 7  w t . % ,  n H a l l = 0 . 5 9 * 1 0 2 0 c m - 3 ,  f = 1 1 . 1 0  G H z

B = 0 . 0 0 0 T

B = 0 . 0 2 0 T

B = 0 . 0 4 0 T

B = 0 . 0 5 5 T

Fig. 8.11: Optical conductivity of the 0.7 wt. % Nb-doped SrTiO3 sample at f = 11.10 GHz
in || orientation.
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Fig. 8.12: Optical conductivity of the 0.7 wt. % Nb-doped SrTiO3 sample at f = 14.64 GHz
in || orientation.
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Fig. 8.13: Optical conductivity of the 0.7 wt. % Nb-doped SrTiO3 sample at f = 16.59 GHz
in || orientation.
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Fig. 8.14: Optical conductivity of the 0.7 wt. % Nb-doped SrTiO3 sample at f = 18.17 GHz
in || orientation.
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Deutsche Zusammenfassung

Diese Arbeit behandelt Supraleitung in Strontiumtitanat SrTiO3, konkret sind Proben
niobdotierten Strontiumtitanats gemessen worden. Dotiertes SrTiO3 is bekannt für seine
ungewöhnlich kleine Fermifläche. Supraleitendes SrTiO3 zeigt ein kuppelförmiges Verhalten
der kritischen Temperatur TC in Abhängigkeit der Dotierung n. Es ist nicht abschließend
geklärt, wie ein Material mit so geringer Fermienergie supraleitend werden kann, sowohl ist
der Kopplungsmechanismus der Cooper-Paare nicht vollständig geklärt als auch nicht klar
wie der Grundzustand eines solchen Systems mathematisch beschrieben werden muss. Diese
Arbeit konzentriert sich auf die Messung der frequenzabhängigen, temperaturabhängigen und
magnetfeldabhängigen optischen Leitfähigkeit σ̂(B, T, f) in Nb:SrTiO3.

Die fünf untersuchten Proben in dieser Arbeit haben eine Ladungsträgerkonzentration von
nHall = 0.33 · 1020 cm−3, nHall = 0.59 · 1020 cm−3, nHall = 1.1 · 1020 cm−3, nHall = 2.0 · 1020 cm−3,
nHall = 2.2 · 1020 cm−3. Es wurden supraleitende Streifenleiterresonatoren verwendet um die
optischen Eigenschaften von Nb:SrTiO3 zu messen. Aus Supraleitern wie Blei oder Zinn
hergestellte Streifenleiterresonatoren zeigen eine Änderung der Resonanzfrequenz f aufgrund
der temperaturabhängigen Eigenschaften der supraleitenden Materials. Es wurde gezeigt dass
die Temperaturabhängigkeit theoretisch unter Berücksichtigung der effektiven London’schen
Eindringtiefe λeff beschrieben werden kann und es wurden plausible Werte für λeff für Blei
und Zinn gefunden. Wenn die Grundplatte eines Streifenleiterresonators aus Blei durch eine
Nb:SrTiO3 Probe ersetzt wird, dann kann die optische Leitfähigkeit von Nb:SrTiO3 mithilfe
der Cavity Perturbation Technique bestimmt werden.

Die optische Leitfähigkeit von Nb:SrTiO3 zeigt Merkmale, welche typischerweise mit einem
Supraleiter mit einer einzigen Energielücke im sogenannten "dirty" limit assoziiert werden.
Bei niedrigen Frequenzen wird das von der BCS Theorie vorhergesagte Kohärenzmaximum
beobachtet, hier im Weiteren das T -Kohärenzmaximum genannt. Real- und Imaginärteil der
optischen Leitfähigkeit zeigen in Abhängigkeit des Magnetfeldes B eine abrupte Änderung der
Änderungsrate, einen Knick an der Stelle B∗. An den kritischen Magnetfeldern B∗ und BC2
werden die zwei supraleitenden Bänder mit den zwei Kohärenzlängen ξGL in Nb:SrTiO3 jeweils
geleert. Der Realteil der optischen Leitfähigkeit zeigt außerdem das B-Kohärenzmaximum:
Beginnend bei B = 0 ist das B-Kohärenzmaximum charakterisiert durch eine starke Zunahme
von Re(σ̂) in Abhängigkeit von B sogar bei niedrigster erreichter Temperatur T , es ist Re(σ̂) >
σDC beobachtet worden wobei σDC die DC Leitfähigkeit ist und das B-Kohärenzmaximum
ist nur für niedrige Frequenzen hf ≪ 2∆ beobachtet worden.

Die kuppelförmige Abhängigkeit der kritischen Magnetfelder B∗, BC2 von nHall lässt
T 2

C ∝ Bα vermuten wobei Bα = B∗, BC2 eine Platzhaltervariable ist. Mit der BCS und
Ginzburg Landau Theorie kann ∆0 ∝ (EFB

α/m)1/2 im sogenannten "clean" limit und
∆0 ∝ lBα (EF/m)1/2 im dirty limit erlangt werden. Wenn für die Fermienergie EF und die
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freie Weglänge l für beide Bänder derselbe Wert angenommen wird, kann eine Relation
zwischen dem Verhältnis der magnetischen Felder und dem Verhältnis der effektiven Massen
B2

C2/B
∗2 = mu/ml im dirty limit hergeleitet werden, diese Relation konnte experimentell

bestätigt werden. Die Fermienergie is bestimmt worden, im clean limit zeigt die Fermienergie
eine kuppelförmige Abhängigkeit und im dirty limit ein monoton steigendes Verhalten in
Abhängigkeit der Dotierung.

Ein charakteristisches Merkmal des B-Kohärenzmaximums, die starke anfängliche Zunahme
von Re(σ̂) in Abhängigkeit von B bei niedrigster Temperatur T , konnte mit einem theoretis-
chen Argument reproduziert werden. Die Caroli-deGennes-Matricon Moden sind tiefliegende
Zustände welche im Vortex lokalisiert sind bei der Fermienergy EF . Die lokale Zustands-
dichte Nloc(r, E) als Folge dieser tiefliegenden Zustände resultiert in einer Änderungsrate
dRe(σ̂)/dB|B=0 welche größer ist als es erwartet wäre von normal leitenden Vortexen mit der
Ginzburg Landau Konhärenzlänge ξGL als Radius.

Die Diskussion um die Frage ob Nb:SrTiO3 am besten im dirty oder clean limit beschrieben
werden kann ist nicht abschließend geklärt. Auf Grundlage der Längenskalen l und ξGL kann
ein Übergang vom clean zum dirty limit mit größerer Dotierung für die Proben in dieser
Arbeit beobachtet werden. Die Werte für l und ξGL sind in einer ähnlichen Größenordnung,
somit kann nicht behauptet werden dass die Nb:SrTiO3 Proben in dieser Arbeit vom starken
clean zum starken dirty limit übergehen. Nb:SrTiO3 kann somit Beispiel für ein Material
sein, welches als Funktion der Dotierung Eigenschaften sowohl des clean limit als auch des
dirty limit zeigt.
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