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Abstract

When developing and deploying systems for electronic voting (e-voting systems), it is fundamental
to guarantee what is referred to as verifiability. Informally, the security property verifiability
implies that an e-voting system enables voters and external observers to check whether the votes
have actually been counted and thus have not been dropped, whether the votes have been counted
correctly and thus have not been altered as well as whether the published election result is correct.
Those checks should be possible even in the case that voting devices and servers have programming
errors or are malicious.

The work at hand deals with the introduction of one of the two remote e-voting systems that were
used in the Russian parliamentary elections of 2021, referred to as the Russian federal remote
e-voting system. More precisely, we present a description of the protocol the remote e-voting
system is based on and investigate the cryptographic primitives that are used in the protocol.
With verifiability being a fundamental security property, we analyze the security of the Russian
federal remote e-voting protocol w.r.t. verifiability. This is done under assumptions about the used
cryptographic primitives and assumptions about the honesty of the protocol participants. The used
notion of verifiability is formally captured by the KTV framework.

Kurzfassung

Bei Entwicklung und Einsatz von Systemen für die elektronische Stimmabgabe (E-Voting Systeme)
ist es von grundlegender Bedeutung die Überprüfbarkeit, auch Verifizierbarkeit genannt, des
Wahlergebnises zu gewährleisten. Vereinfacht bedeutet die Sicherheitseigenschaft Verifizierbarkeit,
dass ein System zur elektronischen Stimmabgabe es den Wählern und externen Beobachtern
ermöglicht, zu überprüfen, ob die Stimmen tatsächlich gezählt wurden und somit nicht entfernt
wurden, ob die Stimmen korrekt gezählt wurden und somit nicht verfälscht wurden, sowie ob das
veröffentlichte Wahlergebnis korrekt ist. Diese Überprüfungen sollten auch dann möglich sein,
wenn die Wahlgeräte und Server Programmierfehler aufweisen oder böswillig manipuliert sind.

Die vorliegende Arbeit befasst sich mit der Einführung eines der beiden E-Voting Systeme, die
bei den russischen Parlamentswahlen 2021 verwendet wurden, das russische E-Voting System für
föderale Wahlen. Konkret wird das Protokoll beschrieben, auf dem dieses E-Voting System basiert
und es werden die kryptographischen Primitive untersucht, die in diesem Protokoll verwendet
werden. Da die Verifizierbarkeit eine grundlegende Sicherheitseigenschaft ist, analysieren wir
das russische E-Voting System für föderale Wahlen hinsichtlich dieser Eigenschaft. Dies erfolgt
basierend auf Annahmen über die verwendeten kryptographischen Primitive und Annahmen über die
Ehrlichkeit der Protokollteilnehmer. Hierzu wird die im KTV Framework beschriebene Definition
der Verifizierbarkeit verwendet.

3





Contents

1 Introduction 15

2 Related Work 17

3 Fundamentals 19
3.1 Mathematical Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Cryptographic Hash Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Public-Key Encryption Schemes . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Homomorphic Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Digital Signature Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6 Blind Digital Signature Schemes . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.7 Commitment Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.8 Secret Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.9 Zero-Knowledge Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.10 Blockchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 E-Voting 31

5 KTV Framework 33
5.1 Computational Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Verifiability Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3 Approaches for Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4 Exemplified Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Russian Federal Remote E-Voting Scheme 39
6.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 Usage of Blockchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.3 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.4 Main Cryptographic Protocols and Algorithms . . . . . . . . . . . . . . . . . . 50

7 Security Analysis 67
7.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.2 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.3 Judging Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.4 Verifiability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8 Conclusion and Outlook 77

Bibliography 79

5





List of Figures

3.1 Homomorphic Vote Tallying . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.1 Blockchain in Setup Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Relationship between Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.3 Blockchain in Authorisation Phase . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.4 Voting Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.5 Blockchain in Voting Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.6 Vote Tallying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.7 Blockchain in Tallying Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7





List of Tables

6.1 Main Cryptographic Protocols and Algorithms Overview . . . . . . . . . . . . . 50

9





List of Algorithms

6.1 GOST R 34.11-2012 Hash Function . . . . . . . . . . . . . . . . . . . . . . . . 52
6.2 Elliptic Curve (EC) ElGamal Key-Generation Algorithm Gen . . . . . . . . . . 53
6.3 EC-ElGamal Encryption Algorithm Enc . . . . . . . . . . . . . . . . . . . . . . 53
6.4 EC-ElGamal Decryption Algorithm Dec . . . . . . . . . . . . . . . . . . . . . . 54
6.5 GOST R 34.10-2012 Signing Algorithm Sign . . . . . . . . . . . . . . . . . . . 56
6.6 GOST R 34.10-2012 Verification Algorithm Vrfy . . . . . . . . . . . . . . . . . 57
6.7 RSA Key-Generation Algorithm Gen . . . . . . . . . . . . . . . . . . . . . . . 58
6.8 RSA Signing Algorithm ⟨S,U⟩ . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.9 RSA Verification Algorithm Vrfy . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.10 HMAC_GOSTR3411_2012_256 Commitment Algorithm Com . . . . . . . . . . 59
6.11 Exponential ElGamal Key-Generation Algorithm Gen . . . . . . . . . . . . . . 61
6.12 Exponential ElGamal Encryption Algorithm Enc . . . . . . . . . . . . . . . . . 61
6.13 Exponential ElGamal Decryption Algorithm Dec . . . . . . . . . . . . . . . . . 61
6.14 Chaum-Pedersen Proof Generation . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.15 Chaum-Pedersen Proof Verification . . . . . . . . . . . . . . . . . . . . . . . . 62
6.16 Disjunctive Chaum-Pedersen Proof Generation . . . . . . . . . . . . . . . . . . 63
6.17 Disjunctive Chaum-Pedersen Proof Generation . . . . . . . . . . . . . . . . . . 64
6.18 Disjunctive Chaum-Pedersen Proof Verification . . . . . . . . . . . . . . . . . . 64

11





Acronyms

CPA chosen-plaintext attack. 22

EC Elliptic Curve. 11

NIZKP non-interactive zero-knowledge proof. 29

ZKP zero-knowledge proof. 29

ZKRP zero-knowledge range proof. 29

13





1 Introduction

Motivation

Due to the progressing digitalization of our everyday life, a lot of processes of the physical world
have been transformed into the digital world, with shopping or banking transactions being one of
the most prominent ones. A process which is not as widespread in the digital world as shopping
or banking is voting. However, systems for electronic voting (e-voting systems) are increasingly
employed for national, state-wide and municipal elections. Beyond political elections, e-voting
systems are used for elections within companies, organizations, and associations [14].

A basic distinction can be made between two types of e-voting systems according to [35]. For the
first type, the voter has to visit a polling station where a vote can be cast under the use of a voting
machine. The second type does not require going to a polling station, but enables the voter to use
her own voting device in order to cast her vote remotely over the Internet. This type of e-voting is
called remote e-voting and is the type of e-voting considered in this work.

E-voting systems are complex software and hardware systems, implying that programming errors
occur and are hardly avoidable and identifiable. Furthermore, deliberate manipulation of such
systems is often hard or virtually impossible to detect [35]. This means that there exists a risk that
neither the votes have been counted correctly nor that the votes have actually been counted. In case
one of the two described scenarios occurs, the published election result does not correspond to the
ideal election result, i. e., the one that is reflecting how the voters have actually voted. In order to
address this concern, e-voting systems are desired to provide verifiability. Informally, the security
property verifiability implies that an e-voting system enables voters and possibly external auditors
to check whether the votes have actually been counted and thus have not been dropped, whether the
votes have been counted correctly and thus have not been altered as well as whether the published
election result is correct, even in the case that voting devices and servers have programming errors
or are malicious [14]. One of the most prominent verifiable remote e-voting systems is Helios [1].

As one of the first countries, Estonia has introduced remote e-voting in 2005. Other countries as
for example Norway [27] have also tried to implement remote e-voting for political elections. An
overview of the state of e-voting worldwide (from 2016) can be obtained from [51], a review of the
development of e-voting from [26] respectively. A newcomer in remote e-voting is Russia, allowing
to cast votes via the Internet during the Moscow local elections of 2019 [50]. As the used system
exhibited serious cryptographic issues, two new remote e-voting systems have been deployed in
the parliamentary elections of 2021. One of them was developed to conduct e-voting in Moscow,
whereas the other one was developed for e-voting in six federal districts of Russia.

This work considers the latter one, referred to as the Russian federal remote e-voting system and
provides a security analysis of this system w.r.t. verifiability as defined in the KTV framework.
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1 Introduction

Contribution

In this work, we introduce the Russian federal remote e-voting scheme including a description of the
protocol and protocol participants as well as an investigation of the cryptographic primitives used
in the Russian e-voting system. Before the investigation, we provide formal definitions of the used
cryptographic primitives and consider most of them in terms of their security requirements. Besides,
we describe the KTV framework that allows to formally capture the notion of verifiability.

Finally, we perform the security analysis of the Russian federal remote e-voting protocol w.r.t.
verifiability as defined in the KTV framework under assumptions about the used cryptographic
primitives as well as assumptions about the honesty of the protocol participants.

Structure

This work starts with introducing the fundamentals in Chapter 3, necessary for the consideration of
the Russian federal remote e-voting scheme as well as for the investigation of the used cryptographic
primitives. In Chapter 4, we present a high level view on the process of e-voting. Next, we consider
the KTV framework in Chapter 5 laying the foundation for the security analysis of the Russian
e-voting scheme w.r.t. verifiability. This is followed by Chapter 6 which is concerned with the
Russian e-voting scheme and investigating the cryptographic primitives that have been used in the
e-voting scheme. Chapter 7 deals with performing the security analysis w.r.t verifiability. Finally,
Chapter 8 provides a summary as well as an outlook on future work regarding the Russian federal
remote e-voting system.
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2 Related Work

The Russian federal remote e-voting scheme to be analyzed was deployed for the first time in the
Russian parliamentary elections of 2021. The official full version of this scheme has never been
published by the election organisers. Since all the available information has been in Russian, the
scheme was not accessible for the international community. In [50], Vakarjuk et al. have been the
first to put information from different public sources together and made this information available
in English. This enabled the international community to access the scheme and thus allowing for
further studies. Until now, no further work about the description of the Russian federal remote
e-voting scheme has been published. Additionally, Vakarjuk et al. provided an initial high-level
analysis. Other than that, there has not been any sort of analysis yet. Consequently, this work is the
first to formally analyze this scheme w.r.t verifiability as defined by Küsters et al. in [14].
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3 Fundamentals

In this chapter, we first present some mathematical basics that will be necessary throughout this
work. This is followed by an introduction of the fundamentals of the cryptographic primitives used
in the Russian federal remote e-voting scheme. Most of the primitives are formally defined as well
as considered in terms of their security requirements whereas others are viewed on a high level.
This lays the basis for understanding the used primitives and allows us to take a closer look at them
in Section 6.4.

3.1 Mathematical Fundamentals

This section is concerned with introducing the mathematical fundamentals, more precisely with
some characteristics of functions as well as elliptic curves, that will be necessary throughout this
work. The introduced characteristics of functions will be elementary for defining the security of
most of the cryptographic primitives used in the Russian federal remote e-voting scheme, but also
essential for formally capturing the notion of verifiability in Section 5.2. On the other hand, elliptic
curves will play an important role in the utilized public-key encryption scheme.

Characteristics of Functions

In [14], Küsters et al. provide the subsequent definitions characterizing functions.

Negligible A function 𝑓 : N→ [0, 1] is negligible if the following condition holds:

∀𝑐 > 0 ∃𝑙0 ∀𝑙 > 𝑙0 : 𝑓 (𝑙) ≤ 1
𝑙𝑐

Overwhelming A function 𝑓 : N→ [0, 1] is overwhelming if 1 − 𝑓 is negligible.

𝛿-bounded A function 𝑓 : N→ [0, 1] is 𝛿-bounded if the following condition holds:

∀𝑐 > 0 ∃𝑙0 ∀𝑙 > 𝑙0 : 𝑓 (𝑙) ≤ 𝛿 + 1
𝑙𝑐
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3 Fundamentals

Elliptic Curves

Essentially, an elliptic curve can be defined over arbitrary fields. According to [43] the elliptic
curves used in cryptography are however mostly defined over finite fields. In [37], elliptic curves
are defined as follows. Let 𝑝 > 3 be prime. An elliptic curve over 𝐹𝑝

1 is the set of points (𝑥, 𝑦)
with 𝑥, 𝑦 ∈ 𝐹𝑝 which satisfy the congruence

𝑦2 ≡ 𝑥3 + 𝑎𝑥 + 𝑏 mod 𝑝

together with a single element 𝑂 called the point at infinity. The constants 𝑎, 𝑏 ∈ 𝐹𝑝 have to fulfill
4𝑎3 + 27𝑏2 ≠ 0 (mod 𝑝). The elliptic curve over the finite field 𝐹𝑝 could be written as 𝐸𝑝 (𝑎, 𝑏).
The points on 𝐸𝑝 (𝑎, 𝑏) form an (additive) abelian group where 𝑂 serves as the identity element.
Further information on elliptic curves can be found in [32] or [33].

3.2 Cryptographic Hash Functions

Cryptographic hash functions can be used in order to achieve integrity. That is to make sure that a
message was received exactly as it was sent by the sender. Furthermore, they are utilized as crucial
building block for message authentication codes as well as for digital signatures among other things.
Informally, a hash function maps inputs of arbitrary length to outputs of fixed length. Subsequently,
we formally define a hash function and look at different security properties characterizing hash
functions [30, 47].

Definition

Formally, a function 𝐻 : 𝐷 → 𝑅, where 𝐷 = {0, 1}∗ is the domain and 𝑅 = {0, 1}𝑙 is the range (for
𝑙 ≥ 1), is called a hash function.

Security Properties

The main requirement to hash functions is the avoidance of collisions. A collision occurs if 𝐻
maps two different inputs to the same output. We are exclusively interested in hash functions with
|𝐷 | > |𝑅 |. Thus, collisions definitely exist. However, it should be as hard as possible to find
them.

There are different types of hash functions meeting different requirements in terms of security.

• Collision resistance: Collision resistant hash functions guarantee that it is computationally
infeasible to find a pair 𝑥, 𝑥′ such that 𝑥 ≠ 𝑥′ and 𝐻 (𝑥) = 𝐻 (𝑥′).

• Second-preimage resistance2: Second-preimage resistant hash functions guarantee that given
𝑥, it is computationally infeasible to find 𝑥′ such that 𝑥 ≠ 𝑥′ and 𝐻 (𝑥) = 𝐻 (𝑥′).

1𝐹𝑝 = {0, . . . , 𝑝 − 1}
2Second-preimage resistance is also referred to as target-collision resistance.
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3.3 Public-Key Encryption Schemes

• Preimage resistance: Preimage resistant hash functions guarantee that given a hash 𝑣, it is
computationally infeasible to find 𝑥 such that 𝐻 (𝑥) = 𝑣.

Those security properties of hash functions 𝐻 as defined above yield the following implications:

∀𝐻 : 𝐻 collision resistant =⇒ 𝐻 second preimage resistant =⇒ 𝐻 preimage resistant

3.3 Public-Key Encryption Schemes

We imagine a scenario in which party 𝐴 wants to send some message 𝑚 in encrypted form to party
𝐵 who wants to decrypt this message in order to know what 𝐴 wants to send. Encryption as well as
decryption of messages is enabled by encryption schemes. A distinction is made between public-key
encryption and private-key encryption. For private-key encryption, there is only a single key which
is used for both, encryption and decryption. In contrast, public-key encryption is based on two keys,
where one is used for encryption and the other one is used for decryption. Thereby, public-key
encryption allows for private communication between parties without the necessity to agree on
any secret information in advance as stated in [30]. In the following, based on [30], we formalize
public-key encryption and introduce the circumstances for a public-key encryption scheme to be
considered secure.

Definition

A public-key encryption scheme is defined as a triple of probabilistic polynomial-time algorithms
(Gen, Enc, Dec) such that:

1. The key-generation algorithm Gen takes the security parameter31𝑛 as input and outputs a
pair of keys (𝑝𝑘, 𝑠𝑘). The first key 𝑝𝑘 is referred to as the public key and the second one 𝑠𝑘
to as the private key. We assume that |𝑝𝑘2 | , |𝑠𝑘2 | ≥ 𝑛, and that 𝑛 can be determined from
𝑝𝑘2 or 𝑠𝑘2.

2. The encryption algorithm Enc takes a public key 𝑝𝑘 and a message 𝑚 from some message
spaceM4as input. It outputs a ciphertext 𝑐, written as 𝑐 ← Enc𝑝𝑘 (𝑚). (In order to achieve
meaningful security, Enc needs to be probabilistic.)

3. The deterministic decryption algorithm Dec takes a private key 𝑠𝑘 and a ciphertext 𝑐 as
input, and outputs a message 𝑚 or a special symbol ⊥ denoting failure. This is written as
𝑚 B Dec𝑠𝑘 (𝑐).

3The security parameter is a means to specify the complexity for an adversary to break the cryptographic scheme. In
case of public-key encryption schemes, 𝑛 denotes the minimum length of 𝑝𝑘2 and 𝑠𝑘2. Thus, there are at least 2𝑛
possible private keys that the adversary has to try in a brute force approach in order to get the actual 𝑠𝑘 and by this
break the public-key encryption scheme.

4M may depend on 𝑝𝑘 .
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3 Fundamentals

In addition, the definition includes the requirement that, except with negligible probability over
(𝑝𝑘, 𝑠𝑘) output by Gen(1𝑛), it holds that

Dec𝑠𝑘 (Enc𝑝𝑘 (𝑚)) = 𝑚

for any (legal) message 𝑚.

Security Definition

Let Π = (Gen, Enc, Dec) be a public-key encryption scheme and A an adversary, consider the
eavesdropping indistinguishability experiment PubKeav

A,Π (𝑛):

1. Gen(1𝑛) is run to obtain keys (𝑝𝑘, 𝑠𝑘).

2. A is given the public key 𝑝𝑘5, and outputs a pair of messages 𝑚0, 𝑚1 ∈ M with |𝑚0 | = |𝑚1 |.

3. A uniform bit 𝑏 ∈ {0, 1} is chosen, and then a ciphertext 𝑐 ← Enc𝑝𝑘 (𝑚𝑏) is computed and
given to A. The ciphertext 𝑐 is called challenge ciphertext.

4. A outputs a bit 𝑏′. The output of the experiment is 1 if 𝑏′ = 𝑏, and 0 otherwise. In case
𝑏′ = 𝑏, A succeeds.

A public-key encryption scheme Π = (Gen, Enc, Dec) has indistinguishable encryptions under a
chosen-plaintext attack (CPA) (or is CPA-secure) if for all probabilistic polynomial-time adversaries
A there exists a negligible function negl such that

𝑃𝑟
[
PubKeav

A,Π (𝑛) = 1
]
≤ 1

2
+ negl(𝑛).

3.4 Homomorphic Encryption

Homomorphic encryption is a property of an encryption scheme. Intuitively, homomorphic
encryption schemes allow making (particular) computations performed on the encrypted ciphertexts,
yielding a single ciphertext that contains the encrypted result. Subsequently, we formalize the
homomorphic property based on [30] and present a use case of homomorphic encryption which is
vote tallying as described below.

Definition

A public-key encryption scheme (Gen, Enc, Dec) is homomorphic if for all 𝑛 and all pairs of keys
(𝑝𝑘, 𝑠𝑘) output by Gen(1𝑛), it is possible to define groups (M, 𝛾), (C, 𝜏) (depending on 𝑝𝑘 only)
such that6:

• The message space isM, and all ciphertexts output by Enc𝑝𝑘 are elements of C.

5The adversary can use 𝑝𝑘 to obtain ciphertexts for arbitrary plaintexts.
6Note that 𝛾 and 𝜏 are mappings 𝛾 : M ×M →M, (𝑥, 𝑦) ↦→ 𝛾(𝑥, 𝑦) and 𝜏 : C × C → C, (𝑥, 𝑦) ↦→ 𝜏(𝑥, 𝑦) such that

associativity holds, a neutral element exists and every 𝑥 ∈ M, C has an inverse element.
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3.5 Digital Signature Schemes

• For any 𝑚1, 𝑚2 ∈ M and any 𝑐1, 𝑐2 ∈ C with 𝑐1 ← Enc𝑝𝑘 (𝑚1) and 𝑐2 ← Enc𝑝𝑘 (𝑚2), it
holds that

Dec𝑠𝑘 (𝜏(𝑐1, 𝑐2)) = 𝛾(𝑚1, 𝑚2).

Moreover, the distribution on ciphertexts obtained by encrypting 𝑚1, encrypting 𝑚2, and then
computing 𝜏(𝑐1, 𝑐2) is identical to the distribution on ciphertexts obtained by encrypting
𝛾(𝑚1, 𝑚2).

The last part of the definition ensures that if ciphertexts 𝑐1 output by Enc𝑝𝑘 (𝑚1) and 𝑐2 output by
Enc𝑝𝑘 (𝑚2) are generated and the result 𝑐3 B 𝜏(𝑐1, 𝑐2) is computed, then the resulting ciphertext
𝑐3 does not contain more information about 𝑚1 or 𝑚2 than 𝑚3 B 𝛾(𝑚1, 𝑚2).

Homomorphic Vote Tallying

For homomorphic vote tallying, we need a public-key encryption scheme offering (usually) an
additive or multiplicative homomorphic operation [38]. Additive homomorphic vote tallying is
visualized in Figure 3.1. There is a set of voters 𝑣1, . . . , 𝑣𝑛 where every voter 𝑣𝑖 casts a ballot 𝐶𝑣𝑖 ,
which is an encryption of the plaintext vote 𝑀𝑖 . After having received all ballots, the polling station
aggregates them by their summation, yielding a single ciphertext 𝑇 . The decryption of 𝑇 give us
the sum of all votes 𝑀1 + · · · + 𝑀𝑛.

Figure 3.1: Homomorphic Vote Tallying [38]

3.5 Digital Signature Schemes

A digital signature scheme is a cryptographic primitive that allows a signer with public key 𝑝𝑘
and private key 𝑠𝑘 to sign a message 𝑚 using 𝑠𝑘 such that every party with access to 𝑝𝑘 is able to
verify that 𝑚 originated from the signer and has not been altered en route. Note that the party also
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3 Fundamentals

needs to know that the public key 𝑝𝑘 was actually established by the signer. Thus, digital signatures
provide integrity in the public-key setting. In the following as outlined in [30], we formalize digital
signatures and introduce the circumstances for a digital signature scheme to be considered secure.

Definition

A digital signature scheme is defined as a triple of probabilistic polynomial-time algorithms (Gen,
Sign, Vrfy) such that:

1. The key-generation algorithm Gen takes the security parameter 1𝑛 as input and outputs a pair
of keys (𝑝𝑘, 𝑠𝑘). The first key 𝑝𝑘 is referred to as public key and the second one 𝑠𝑘 to as
private key. We assume that |𝑝𝑘2 | , |𝑠𝑘2 | ≥ 𝑛, and that 𝑛 can be determined from 𝑝𝑘2 or 𝑠𝑘2.

2. The signing algorithm Sign takes a private key 𝑠𝑘 and a message 𝑚 from some message space
M7as input. It outputs a signature 𝜎, written as 𝜎 ← Sign𝑠𝑘 (𝑚).

3. The deterministic verification algorithm Vrfy takes a public key 𝑝𝑘 , a message 𝑚, and a
signature 𝜎 as input. It outputs a bit 𝑏, with 𝑏 = 1 meaning valid and 𝑏 = 0 meaning invalid.
This is written as 𝑏 B Vrfy𝑝𝑘 (𝑚, 𝜎).

In addition, the definition includes the requirement that, except with negligible probability over
(𝑝𝑘, 𝑠𝑘) output by Gen(1𝑛), it holds that

Vrfy𝑝𝑘 (𝑚,Sign𝑠𝑘 (𝑚)) = 1

for every (legal) message 𝑚. A signature 𝜎 is called valid on a message 𝑚 if Vrfy𝑝𝑘 (𝑚, 𝜎) = 1.

Security Definition

Given a digital signature scheme Π = (Gen, Sign, Vrfy) and an adversary A, consider the signature
experiment Sig-forgeA,Π (𝑛):

1. Gen(1𝑛) is run to obtain keys (𝑝𝑘, 𝑠𝑘).

2. A is given the public key 𝑝𝑘 as well as access to an oracle Sign𝑠𝑘 (·). The adversary then
outputs (𝑚, 𝜎). Let Q denote the set of all queries that A has asked its oracle.

3. The output of the experiment is 1 if and only if (1) Vrfy𝑝𝑘 (𝑚, 𝜎) = 1 and (2) 𝑚 ∉ Q. In this
case, we say that A succeeds.

A digital signature scheme Π = (Gen, Sign, Vrfy) is existentially unforgeable under an adaptive
chosen-message attack (or is EUF-CMA-secure), if for all probabilistic polynomial-time adversaries
A, there exists a negligible function negl such that

𝑃𝑟 [Sig-forgeA,Π (𝑛) = 1] ≤ negl(𝑛).

7M may depend on 𝑝𝑘 .

24



3.6 Blind Digital Signature Schemes

3.6 Blind Digital Signature Schemes

Blind digital signatures, proposed by Chaum in [9] are as the name suggests quite similar to digital
signatures in the sense that blind digital signatures allow signing of messages as well as verifying
the corresponding signatures. However, there is a small but significant difference. In case of blind
digital signatures, the receiver of the signature chooses the message 𝑚 to be signed. In order to
obtain a signature for the selected message 𝑚, she blinds 𝑚 resulting in another message 𝑚′ such
that the information of the original message 𝑚 does not leak to the signer. The signer with public
key 𝑝𝑘 then signs 𝑚′ and provides the receiver with the appropriate signature 𝜎′. Afterwards, the
receiver unblinds the signature 𝜎′ such that the resulting signature 𝜎 (called blind signature) is
valid for 𝑚 with respect to 𝑝𝑘 . Thus, the receiver neither reveals any information about the message
𝑚 nor about the corresponding signature 𝜎. Consequently, blind digital signatures allow to ensure
the anonymity of protocol participants [48]. In the following, as presented by Fischlin and Schröder
in [25], we formalize blind digital signatures and introduce the circumstances for a blind digital
signature scheme to be considered secure.

Notation

In order to formally define blind digital signatures according to Fischlin and Schröder, we need
to introduce the subsequent notation for interactive executions between algorithms X and Y first.
Let X and Y be two algorithms with private input 𝑥 and 𝑦 correspondingly. Let 𝑎 and 𝑏 be the
private output of X and Y correspondingly. Then, the joint execution of the algorithms X and Y is
denoted by (𝑎, 𝑏) ← ⟨X(𝑥),Y(𝑦)⟩. Moreover, we need additional notation for defining security.
Y ⟨X(𝑥 ) , ·⟩∞ (𝑦) denotes thatY can invoke an infinite number of executions of the interactive protocol
with X where the order can be arbitrarily interleaved. X ⟨·,Y(𝑦0 ) ⟩1,⟨·,Y(𝑦1 ) ⟩1 (𝑥) denotes that X can
invoke arbitrarily ordered executions with Y(𝑦0) and Y(𝑦1). However, the interaction with each
algorithm is limited to 1, i. e., one interaction with Y(𝑦0) as well as one interaction with Y(𝑦1).

Definition

A blind digital signature scheme consists of three probabilistic polynomial-time algorithms (Gen,
⟨S,U⟩, Vrfy) such that:

1. The key-generation algorithm Gen takes the security parameter 1𝑛 as input and outputs a pair
of keys (𝑝𝑘, 𝑠𝑘). The first key 𝑝𝑘 is referred to as the public key and the second one 𝑠𝑘 to as
the private key. We assume that |𝑝𝑘2 | , |𝑠𝑘2 | ≥ 𝑛, and that 𝑛 can be determined from 𝑝𝑘2 or
𝑠𝑘2.

2. The signing algorithm ⟨S,U⟩ is the joint execution of the algorithm S(𝑠𝑘) and the algorithm
U(𝑝𝑘, 𝑚) for a message 𝑚 ∈ {0, 1}𝑛. It outputs 𝜎 of the user (and some possibly empty
output _ for the signer). This is written as (_, 𝜎) ← ⟨S(𝑠𝑘),U(𝑝𝑘, 𝑚)⟩.

3. The deterministic verification algorithm Vrfy takes a public key 𝑝𝑘 , a message 𝑚, and a
(blind) signature 𝜎 as input. It outputs a bit 𝑏, with 𝑏 = 1 meaning valid and 𝑏 = 0 meaning
invalid. We write this as 𝑏 B Vrfy𝑝𝑘 (𝑚, 𝜎).
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In addition, the definition includes the requirement that, except with negligible probability over
(𝑝𝑘, 𝑠𝑘) output by Gen(1𝑛), it holds that

Vrfy𝑝𝑘 (𝑚, 𝜎) = 1

for every message 𝑚 ∈ {0, 1}𝑛 and every 𝜎 output byU in the joint execution of the algorithms
S(𝑠𝑘) andU(𝑝𝑘, 𝑚). A (blind) signature 𝜎 is called valid on a message 𝑚 if Vrfy𝑝𝑘 (𝑚, 𝜎) = 1.

Security Definition

The security of blind digital signature schemes is defined by two properties called unforgeability
and blindness. An adversary U∗, trying to break the unforgeability of the scheme, attempts to
produce 𝑘 + 1 valid message-signature pairs after a maximum of 𝑘 completed interactions with
the honest signer. The number of interactions is not fixed up front, but is adaptively determined
by the adversary U∗ during the attack. In order to identify completed interactions, the honest
signer is assumed to return a special symbol ok after the final protocol message has been sent. This
should indicate a completed interaction from the point of view of the honest signer. In terms of the
blindness property, we consider two interactions with an honest userU. Now blindness describes
that it should be infeasible for a malicious signer S∗ to determine which of two messages 𝑚0 and
𝑚1 has been signed first. In case that one of the two interactions has returned ⊥, the signer is not
provided with information about the other signature either.

Given a blind digital signature scheme Π = (Gen, ⟨S,U⟩, Vrfy), consider the following two
experiments formally defining the unforgeability as well as the blindness property.

The unforgeability experiment UnforgeU∗,Π (𝑛):

1. Gen(1𝑛) is run to obtain keys (𝑝𝑘, 𝑠𝑘).

2. ((𝑚1, 𝜎1), . . . , (𝑚𝑘+1, 𝜎𝑘+1)) ← U∗⟨S(𝑠𝑘 ) , ·⟩
∞ (𝑝𝑘)

3. Return 1 iff

• 𝑚𝑖 ≠ 𝑚 𝑗 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 + 1, and

• Vrfy𝑝𝑘 (𝑚𝑖 , 𝜎𝑖) = 1 for all 𝑖 = 1, . . . , 𝑘 + 1, and

• S has returned ok in at most 𝑘 interactions.

In the following blindness experiment, S∗ is working in modes find, issue and guess.

The blindness experiment BlindS∗,Π (𝑛):

1. (𝑝𝑘, 𝑚0, 𝑚1, stfind) ← S∗(find, 1𝑛)

2. 𝑏 ← {0, 1}

3. stissue ← S∗⟨·,U(𝑝𝑘,𝑚𝑏 ) ⟩1,⟨·,U(𝑝𝑘,𝑚1−𝑏 ) ⟩1 (issue, stfind) and let 𝜎𝑏, 𝜎1−𝑏 denote the (possibly
undefined) local outputs ofU(𝑝𝑘, 𝑚𝑏) andU(𝑝𝑘, 𝑚1−𝑏) respectively

4. Set (𝜎0, 𝜎1) = (⊥,⊥) if 𝜎0 =⊥ or 𝜎1 =⊥

5. 𝑏∗ ← S∗(guess, 𝜎0, 𝜎1, stissue)
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6. Return 1 iff 𝑏 = 𝑏∗

A blind digital signature scheme Π = (Gen, ⟨S,U⟩, Vrfy) is secure if for all probabilistic
polynomial-time adversariesU∗ and malicious signers S∗, there exists a negligible function negl
such that

𝑃𝑟
[
UnforgeU∗,Π (𝑛) = 1

]
≤ negl(𝑛)

and

𝑃𝑟
[
BlindS∗,Π (𝑛) = 1

]
≤ 1

2
+ negl(𝑛).

3.7 Commitment Schemes

As illustrated in [30], a commitment scheme can be considered as a digital envelope. Sealing a
message in an envelope and handing it over to another party guarantees privacy as long as the
envelope has not been opened. In addition, there is a binding between the sealer later referred to
as committer and the message in the envelope. Thus, commitment schemes allow to commit to a
message 𝑚 by sending a commitment com, preserving the following properties:

• Hiding: Commitment com does not reveal anything about 𝑚

• Binding: It is impracticable for the committer to output a commitment com that will allow
her to later open it as two different messages 𝑚, 𝑚′.

This property makes sure that com truly commits the committer to some well-defined value
such that she can not pretend having committed to another value.

Definition

In [8], a non-interactive commitment scheme is defined as a pair of probabilistic polynomial-time
algorithms (Gen, Com) such that:

1. The key-generation algorithm Gen takes the security parameter 1𝑛 as input and outputs a
commitment key 𝑐𝑘 . This key specifies a message spaceM, a randomness space R and a
commitment space C.

2. The commitment algorithm Com takes 𝑐𝑘 , a message 𝑚 ∈ M as well as a random value
𝑟 ∈ R as input and outputs a commitment com ∈ C.

A sender commits to a message 𝑚 ∈ M by choosing 𝑟 ∈ R uniformly at random, computing the
commitment com B Com𝑐𝑘 (𝑚; 𝑟), and sending it to a receiver. In order to later decommit com and
reveal 𝑚, the sender sends 𝑚, 𝑟 to the receiver who verifies the commitment by checking whether
Com𝑐𝑘 (𝑚; 𝑟) ?

= com.
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Security Definition

Given a commitment scheme Π = (Gen, Com) and an adversary A, consider the following two
experiments formally defining the hiding as well as the binding property adapted from [30].

The commitment hiding experiment HidingA,Com(𝑛):

1. Gen(1𝑛) is run to obtain the commitment key 𝑐𝑘 .

2. A is given 𝑐𝑘 as input, and outputs a pair of messages 𝑚0, 𝑚1 ∈ M with |𝑚0 | = |𝑚1 |.

3. A uniform bit 𝑏 ∈ {0, 1} is chosen, and then a commitment com ← Com𝑐𝑘 (𝑚𝑏; 𝑟) is
computed and given to A.

4. A outputs a bit 𝑏′. The output of the experiment is 1 if and only if 𝑏′ = 𝑏. If 𝑏′ = 𝑏 we say
that A succeeds.

The commitment binding experiment BindingA,Com(𝑛):

1. Gen(1𝑛) is run to obtain the commitment key 𝑐𝑘 .

2. A is given 𝑐𝑘 as input and outputs (com, 𝑚0, 𝑟0, 𝑚1, 𝑟1) where 𝑚0, 𝑚1 ∈ M and 𝑟0, 𝑟1 ∈ R.

3. The output of the experiment is 1 if and only if 𝑚0 ≠ 𝑚1 and Com𝑐𝑘 (𝑚0; 𝑟0) = com =

Com𝑐𝑘 (𝑚1; 𝑟1).

A commitment scheme Π = (Gen, Com) is secure if for all probabilistic polynomial-time adversaries
A there exists a negligible function negl such that

𝑃𝑟
[
HidingA,Com(𝑛) = 1

]
≤ 1

2
+ negl(𝑛)

and
𝑃𝑟

[
BindingA,Com(𝑛) = 1

]
≤ negl(𝑛).

3.8 Secret Sharing

This section introduces secret sharing as outlined by Shamir in [45]. Encryption allows to protect
data, but protection of the encryption key requires a different approach. The key management
scheme that is most secure stores the encryption key in a single and well-guarded location as for
example a computer or a human brain. However, this scheme is extremely unreliable since the
encryption key can be made inaccessible by only a single misfortune such as a computer breakdown.
In order to prevent that, another solution is to copy the encryption key and store it at different
locations. Since this increases the risk of security breaches like computer penetration or betrayal,
we still need a different solution. Efficient threshold schemes, introduced subsequently, can help to
solve the problem of managing cryptographic keys.

Therefore, Shamir generalizes the cryptographic key management problem to a problem of managing
a secret. The secret is some data 𝐷 and manipulations of 𝐷 are allowed. The goal is to split up data
𝐷 into 𝑛 pieces 𝐷1, . . . , 𝐷𝑛 such that:

(1) knowledge of any 𝑘 or more 𝐷𝑖 pieces allows to easily compute 𝐷;
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(2) knowledge of any 𝑘 − 1 or fewer 𝐷𝑖 pieces reveals absolutely no information about 𝐷 i. e., all
possible values of 𝐷 are equally likely.

A scheme meeting those requirements is called a (𝑘, 𝑛) threshold scheme. A (𝑘, 𝑛) threshold
scheme with 𝑛 = 2𝑘 − 1 gives us a very robust key management scheme. The original key can
be reconstructed even in the case that ⌊ 𝑛2 ⌋ = 𝑘 − 1 of the initial 𝑛 pieces are destroyed. At the
same time, the adversaries are not able to reconstruct the key even when they manage to expose
⌊ 𝑛2 ⌋ = 𝑘 − 1 of the remaining 𝑘 pieces. Choosing the parameters 𝑘 and 𝑛 properly enables any
sufficiently large majority to reconstruct the original key and any sufficiently large minority to
prevent the key from being reconstructed.

3.9 Zero-Knowledge Proofs

In the context of e-voting, ballots usually consist of encryptions of 0 and 1 representing whether
the voter has voted for a certain candidate or not. It is important to make sure that no voter gets
away with for example encrypting a 2, i. e., voting more than once for a single candidate. However,
we want the votes to remain private. This can be accomplished by using a zero-knowledge proof
(ZKP), proposed by Goldwasser et al. [29]. In the following, we introduce ZKPs on a high level as
well as a special form called zero-knowledge range proof (ZKRP).

Zero-Knowledge Proofs

According to [8], a ZKP is an interaction between two parties, a prover 𝑃 and a verifier 𝑉 . In this
interaction, 𝑃 wants to convince 𝑉 that some statement about secret data is true. Therefore, 𝑃 does
not reveal any other information than the statement itself. ZKPs are required to satisfy the following
three conditions:

• Completeness: In case of true statements, a prover can convince the verifier.

• Soundness: In case of false statements, a prover can not convince the verifier.

• Zero-Knowledge: The verifier will learn nothing from the interaction except that the statement
is true.

ZKPs can be either interactive or non-interactive. In case of interactive ZKPs, the prover and
verifier exchange many messages, whereas for the non-interactive zero-knowledge proof (NIZKP),
the prover only sends a single message containing the proof to the verifier. A formal introduction
can be obtained from [28] or [8] respectively.

Zero-Knowledge Range Proofs

As stated in [41], ZKRPs allow the prover to convince the verifier that some secret value lies within
a certain interval range without revealing any information about the secret value other than that it is
in the interval. Since zero-knowledge range proofs are a special form of ZKPs, the requirement for
completeness, soundness and zero-knowledge applies here as well.
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3.10 Blockchain

This section illustrates the ideas of the blockchain technology [39] as well as of smart contracts [53],
both applied in the Russian federal remote e-voting system.

Blockchain

A blockchain consists of data sets which are built out of a chain of data packages. Those data
packages are referred to as blocks, each block consisting of several transactions. When extending
the blockchain by adding an additional block, the new block is validated by nodes of the network
applying cryptographic means. Thus, the blockchain depicts a complete ledger of the transaction
history. Besides the transactions, every block includes a timestamp, the hash value of the previous
block as well as a nonce which is a random number used in order to verify the hash. Thereby,
the integrity of the whole blockchain, starting with the first so-called genesis block, is guaranteed.
Since hash values are unique and a change of a certain block in the chain would result in a change
of the corresponding hash value, forgery of the content of a block can be prohibited. In order to add
a block to the chain, the majority of nodes in the blockchain network have to agree on the validity
of both, the transactions in a block as well as the block itself. Therefore, they use a consensus
mechanism. After extending the blockchain with a new block, it is not possible to change the added
information.

Smart Contracts

Smart contracts can be considered as a computerized transaction protocol enforcing the contractual
terms of an agreement. Those contractual terms integrated in smart contracts are automatically
executed in case that certain, predefined conditions are met and do not require the intervention
of a trusted third party. Thus, they ensure proper contract enforcement. Since smart contracts
are implemented on top of blockchains, blockchains are enabling them. In order to realize the
automatic execution, contractual terms are transformed into executable computer programs that
also allow to preserve their logical relations. The execution of every contract clause is logged in
form of an immutable transaction which is also stored in the blockchain.
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This chapter based on [14] aims to present a high level view on the e-voting process and serves as
preliminaries for the consideration of the Russian federal remote e-voting scheme in Section 6.3.
Additionally, it introduces notation that will be used in Chapter 5.

In an e-voting system, each of the 𝑛 eligible voter can use some voting device (VD) such as a
computer in order to participant in the election. Therefore, she computes a ballot and casts it. The
ballot contains the voter’s choice in an encrypted form. Usually the cast ballots are put on a bulletin
board. Tellers or voting authorities can collect the ballots from the bulletin board and tally them.
In case of modern e-voting protocols, some of them perform the vote tallying by combining all
ballots into one and then decrypting the resulting ballot. In this scenario, ballots are combined
using homomorphic encryption (see Section 3.4).

At the beginning of an election, the voting authorities produce the election parameters. Commonly,
those parameters contain keys and a set of valid choices 𝐶. Generally, 𝐶 can be an arbitrary set. In
case that voters can choose only one candidate, 𝐶 would just be the set of candidates, whereas in
case that voters can choose multiple candidates, 𝐶 would contain tuples of candidates. Note that
abstention is considered to be one of the valid choices in 𝐶. In what follows, 𝑉𝑖 denotes the 𝑖-th
voter and VD𝑖 denotes her corresponding voting device for 1 ≤ 𝑖 ≤ 𝑛. In order to cast a ballot, a
voter V𝑖 selects her choice 𝑐𝑖 ∈ 𝐶. Afterwards, she runs the voting procedure Vote(𝑐𝑖). This may
include to provide VD𝑖 with her choice 𝑐𝑖. The output of Vote(𝑐𝑖) is a ballot 𝑏𝑖 containing 𝑐𝑖 in
encrypted form. Frequently, voters have to perform some verification procedure denoted by Verify
during or at the end of an election. Running this procedure attempts to prevent/detect malicious
behavior by the VDs or even the voting authorities. As an example, Verify could include checking
that the voter’s ballot actually appears on the bulletin board in order to make sure that the ballot is
contained in the election result and has not been dropped. Besides this, the verification procedure
may also involve executing some cryptographic tasks. Running Verify often requires a trusted device.
Otherwise, malicious behavior could cause wrong results of running the verification procedure. The
tellers, denoted by T 𝑗 are responsible for collecting the ballots, tallying them and putting out the
election result. It is part of the result space 𝑅 which is fixed for a certain election. A result function
𝜌 : 𝐶𝑛 → 𝑅 is used to compute the result of the election. On input 𝑐 = (𝑐1, . . . , 𝑐𝑛) representing the
voters’ choices, 𝜌 outputs the result. In order to ensure that the election result will not be adjusted to
someone’s advantage, the result function should be specified by the election authorities before the
start of an election. Note that dishonest tellers potentially attempt to manipulate the election result.
That is what should be exposed by the verifiability property (see Chapter 5). Auditors/judges, who
are considered to be an honest party 𝐽 could verify specific information at the end or during the
election to detect malicious behavior. As an example, these verifications could include checking
certain zero-knowledge proofs (see Section 3.9). Usually, they are based on publicly available
information exclusively. This means that they can not only be performed by auditors/judges, but
can mostly be executed by any party as well. For most election protocols, the bulletin board 𝐵,
mentioned above, allows to append information only. In case 𝐵 is honest, it stores all the received
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inputs from any participant in a list, and outputs the list on request. This list usually contains
public information such as public keys, the election result, voters’ ballots, or zero-knowledge proofs
generated by voting authorities.
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Informally, according to [14] the security property verifiability implies that an e-voting protocol
enables voters and possibly external auditors to check whether the votes have actually been counted
and thus have not been dropped as well as whether the published election result is correct, even
in the case that voting devices and servers have programming errors or are outright malicious. In
order to perform an accurate security analysis of e-voting protocols w.r.t. verifiability, a formal and
precise definition capturing the notion of verifiability is required. Therefore, Küsters et al. designed
a verifiability framework, the KTV framework [36]. In this chapter, as specified in [14], we present
the KTV framework which is based on the computational model as introduced in Section 5.1.
Additionally, the framework provides a generic definition of verifiability which can be instantiated
in different ways. That is why this definition, illustrated in Section 5.2 basically can be applied to
any kind of protocol. It allows to deal with different trust assumptions and to cover various kinds of
verifiability. Section 5.3 describes approaches for specifying a goal which plays a central role in the
definition of verifiability. These approaches are utilized in Section 5.4 for instantiating the generic
definition of verifiability.

5.1 Computational Model

This section deals with the computational model the KTV framework is based on and is fundamental
for the definition of verifiability in Section 5.2. The first part of the section presents the notion of a
process which is the core of the computational model. Based on a process, a protocol is defined
afterwards. In the end, the meaning of a property is introduced.

Process

A process is defined as a set of probabilistic polynomial-time interactive Turing machines (ITMs),
from now on referred to as programs. They are connected with each other through named channels.
Two programs with a channel named the same but having contrary directions (input/output) are
connected via this channel. Furthermore, a process might have channels not being connected
internally. Those channels are called external channels. At any time of a process run, there exists
only one active program. This program is able to send a message to another program through a
channel. The program that has received the message then becomes active. After performing some
computation, it may send a message to another program, and so forth. Every process, i. e., every set
of programs contains a so-called master program. This is a special program being the first one to be
activated. In case that the currently active program did not produce output and consequently did not
activate another program, the master program is activated. Whenever the master program is active
however does not produce any output, a run stops.
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A process 𝜋 is denoted as 𝜋 = 𝑝1∥ · · · ∥𝑝𝑙, with 𝑝1, . . . , 𝑝𝑙 being programs. Let 𝜋1 and 𝜋2 be two
connectible processes, i. e., two processes with external channels having the same name as well
as opposite directions (input/output), then but only then 𝜋1∥𝜋2 is a process as well. In case those
processes have internal channels with the same name, the channels are renamed since they are
internal and thus not connectible externally.

A process 𝜋 for which every of its programs is given the security parameter 1𝑙 is written as 𝜋 (𝑙) .
In all processes, the length of a run is polynomially bounded by 𝑙. Every run can be uniquely
determined by the random coins utilized by the programs in 𝜋. Each program has access to a random
coin, given to the program as additional input, that allows to model randomized computation.

Protocol

A protocol 𝑃 is defined as a set of agents Σ, also referred to as parties or protocol participants,
as well as a program 𝜋𝑎 for each agent 𝑎 ∈ Σ which is supposed to be run by the agent 𝑎. The
program 𝜋𝑎 is called the honest program of agent 𝑎. All agents are connected pairwise through
channels. Additionally, each agent has a channel to the adversary. In general, one of the protocols’
participants is a scheduler 𝑆 acting as the master program of the protocol process. The scheduler
is responsible for triggering the protocol participants as well as the adversary in the proper order.
In the case of e-voting, 𝑆 would trigger the agents corresponding to the election phases. As for
example, in an election with phases register, vote, tally and verify, 𝑆 would first trigger the agents
involved in the register phase, then the agents involved in the vote phase, and so on.

Let 𝜋𝑎1 , . . . , 𝜋𝑎𝑛 be the honest programs of the protocol participants of 𝑃. Then 𝜋𝑃 denotes the
process 𝜋𝑎1 ∥ · · · ∥𝜋𝑎𝑛 . Note, that an adversary 𝐴 is always part of a run of the process 𝜋𝑃 . 𝐴 can run
an arbitrary probabilistic polynomial-time program and is connected through channels to all agents
in 𝜋𝑃 . Thus, a run 𝑟 of protocol 𝑃 with adversary program 𝜋𝐴 is a run of the process 𝜋𝑃 ∥𝜋𝐴. The
description of a run 𝑟 always contains 𝜋𝑃 ∥𝜋𝐴, such that we can identify to which process, including
the adversary, 𝑟 belongs to. Typically, the adversary 𝐴 is able to corrupt the honest programs of the
protocol participants of 𝑃 by sending the message corrupt. After having received such a message
and thus being corrupted, the protocol participant reveals all or some of its internal state to 𝐴 and is
controlled by 𝐴 as of now. However, there are usually some protocol participants as for example the
scheduler or a judge, that are not corruptible, meaning that they just ignore corrupt messages. In
case of modeling static corruption, protocol participants might accept corrupt messages exclusively
during initialization. In total, this enables great flexibility in terms of modeling various kinds of
corruption such as different forms of static as well as dynamic corruption. An agent 𝑎 is referred to
as honest in a protocol run 𝑟 if 𝑎 has not accepted a corrupt message during the entire run and thus
has not been corrupted. An agent 𝑎 is referred to as honest if for all adversarial programs 𝜋𝐴, 𝑎 is
honest in all runs of 𝜋𝑃 ∥𝜋𝐴. This means that the agent always ignores all corrupt messages.

Property

A property 𝛾 of 𝑃 is defined as a subset of the set containing all runs of 𝑃. The complement of 𝛾 is
denoted by ¬𝛾.
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5.2 Verifiability Definition

This section is concerned with the general definition of verifiability provided by the KTV framework.
In order to define verifiability, we need to introduce the judge as well as the meaning of a goal, both
essential for the definition. Additionally, we formalize the notion of verifiability.

Judge

As already mentioned, the verifiability definition requires a judge 𝐽. Its role is to accept or reject a
protocol run. Therefore, the judge either writes accept or reject on a (dedicated) channel decision𝐽 .
In order to decide whether to accept or reject a protocol run, 𝐽 runs a so-called judging procedure.
This procedure executes several checks, as for example the verification of all ZKPs. A protocol run
is accepted by the judge if and only if all performed checks have been successful. Otherwise, 𝐽
rejects the protocol run. In general, the performed checks depend on the specification of the protocol.
Thus, the judging procedure should be part of that specification. Furthermore, for a protocol 𝑃,
𝐽 should be included in its set of protocol participants and specified accurately. For running the
judging procedure, the input of the procedure is public information exclusively. Public information
usually includes all information (as well as complaints) from the bulletin board. Since solely public
information is used, the judging procedure can be executed by any party. Thus, external observers
and voters themselves can perform the judging procedure as well.

Goal

Besides the judge, the notion of a goal of a protocol is essential for the verifiability definition. A
goal is formally defined as a property 𝛾 of the system, i. e., a set of runs. On a high level view, a
goal contains those runs that are correct with respect to some protocol specification. In the case of
e-voting, this would be all runs for which the published election result coincides with the voters’
actual choices. The idea of the verifiability definition is that the judge 𝐽 should only accept a
protocol run 𝑟 if the specified goal 𝛾 is satisfied (𝑟 ∈ 𝛾). More specifically, the definition demands
the probability (over the set containing all protocol runs) that the judge accepts the run although
the goal 𝛾 is not met to be 𝛿-bounded. Clearly, we would desire 𝛿 = 0. However, for most of the
e-voting protocols, 𝛿 = 0 can not be achieved. One reason why this would be too strong is because
usually not all voters check if their ballot(s) actually emerges on the bulletin board. This enables an
adversary 𝐴 to either manipulate or drop ballots without being detected.

Pr[𝜋 (𝑙) ↦→ (𝐽 : accept)] denotes the probability that 𝜋 (𝑙) produces a run which is accepted by the
judge 𝐽. On the other hand side, Pr[𝜋 (𝑙) ↦→ ¬𝛾, (𝐽 : accept)] denotes the probability that 𝜋 (𝑙)
produces a run which is not in 𝛾 but still accepted by the judge 𝐽.

Formal Definition of Verifiability

The following definition of verifiability originates from Küsters et al. [14].
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Let 𝑃 be a protocol with the set of agents Σ. Let 𝛿 ∈ [0, 1] be the tolerance, 𝐽 ∈ Σ be the judge and
𝛾 be a goal. Then, we say that the protocol 𝑃 is (𝛾, 𝛿)-verifiable by the judge 𝐽 if for all adversaries
𝜋𝐴 and 𝜋 = (𝜋𝑃 ∥𝜋𝐴), the probability

Pr[𝜋 (𝑙) ↦→ ¬𝛾, (𝐽 : accept)]

is 𝛿-bounded as a function of 𝑙.

Strictly speaking, every protocol 𝑃 with a judge always rejecting a run basically satisfies the
verifiability definition. This is why it is necessary to demand a soundness or fairness condition. For
example, we could require at least that a judge accepts a run in case the protocols’ adversary is
benign, i. e., the adversary would not corrupt parties. Formally, Pr[𝜋 (𝑙) ↦→ (𝐽 : accept)] is required
to be overwhelming for a benign adversary 𝜋𝐴. Since this property is not explicitly mentioned in
most verifiability definitions in the literature, it is ignored here as well.

Whereas most definitions of verifiability are tailored to particular classes of e-voting protocols, the
verifiability definition presented above is applicable to arbitrary classes of such protocols. Due to
the general notion of a protocol (used in the verifiability definition) and the notion of a goal 𝛾, the
definition of verifiability from the KTV framework allows for great flexibility.

5.3 Approaches for Goals

In [14], Küsters et al. identified two approaches which are reasonable for defining a goal. This section
describes those approaches that they characterize as qualitative and quantitative, respectively.

Qualitative Approach

The qualitative approach defines a goal as a set of such runs where votes of those honest voters who
performed their checks successfully are definitely contained in the final election result. Providing
such guarantees has the advantage that probabilities of voters performing their checks or not do not
have to be taken into account, which simplifies the analysis of systems. This is due to the fact that
votes of honest voters not performing their checks (successfully) can theoretically all be dropped,
and the run would however still meet the goal. Thus, in order to produce a run that does not satisfy
the goal, votes of honest voters successfully performing their checks (i. e., probability for performing
checks successfully is 1) must not be contained in the final result. That is why analyzing systems
w.r.t this approach for defining a goal is independent of these probabilities. However, considering
such probabilities is important in order to measure the overall security of a system since regarding a
system to be verifiable if dropping all votes of honest voters who did not (successfully) perform their
checks, is critical. Given that there are checks as for example Benaloh checks [4] (performing some
probabilistic checking) that might not detect manipulation with some probability, a zero tolerance
level 𝛿 is generally not reasonable for this approach.
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Quantitative Approach

The quantitative approach defines a goal as a set of such runs where the number of votes of honest
voters being changed without anybody noticing is not bigger than some value 𝑘 . In order to allow
for stronger guarantees, it is advisable to distinguish between votes that have been manipulated and
are thus reflected differently in the final result and votes that have been dropped and are thus not
reflected in the final result at all. Compared to the qualitative approach, this approach does not
provide guarantees for votes of honest voters performing their checks to be counted. Thus, in order
to analyze systems w.r.t. this approach for defining a goal requires to consider the probabilities of
voters performing their checks or not.

In the qualitative as well as the quantitative approach, the votes of dishonest voters are restricted to
be counted at most once (i. e., no ballot stuffing). In the following, these two approaches will be
formalized.

5.4 Exemplified Instantiation

In this section, we consider two instantiations of the KTV framework proposed by Küsters et al. One
of them pursues the qualitative and the other one the quantitative approach. In order to instantiate
the framework, we only have to define a goal 𝛾 that a protocol is expected to guarantee. For a given
goal 𝛾, we should always aim to achieve a 𝛿 which is as small as possible. This means that the
value of 𝛿 is not fixed in advance, but rather the result of an analysis of a concrete e-voting system.
In the following, we define the qualitative goal 𝛾𝑞𝑙 (𝜑) as well as the quantitative goal 𝛾𝑞𝑛 (𝑘, 𝜑).
The parameter 𝜑 allows to describe the trust assumptions under which the protocol is expected to
provide certain guarantees. The trust assumptions specify which protocol participants are assumed
to be honest and which of them can be corrupted and at what point in time during a protocol run.
Note that given a run, we can easily identify whether and when a protocol participant is corrupted
or not. Hereafter, for a given run 𝑟 of an e-voting protocol, 𝑛 denotes the number of eligible, 𝑛ℎ
the number of honest and 𝑛𝑑 the number of dishonest voters in 𝑟 . The actual choices of the honest
voters in 𝑟 are denoted by 𝑐1, . . . , 𝑐𝑛ℎ . Recall that abstention is a possible choice as well.

Qualitative Goal

Informally, the qualitative goal 𝛾𝑞𝑙 (𝜑) demands that, in case the trust assumptions 𝜑 are met in a
protocol run, then

(i) the final result contains the choices of all honest voters who performed their checks successfully,

(ii) votes of those honest voters who did not perform their check may be dropped, but not altered,
and

(iii) there exists at most one ballot cast for each dishonest voter, i. e., ballot stuffing is not permitted.

In case 𝜑 does not hold true in a protocol run, the protocol is not expected to guarantee anything in
this run. Formally, 𝛾𝑞𝑙 (𝜑) is fulfilled in a protocol run 𝑟 (i. e., 𝑟 ∈ 𝛾𝑞𝑙 (𝜑)) if either (a) the trust
assumptions 𝜑 are not met in 𝑟, or if (b) 𝜑 is met in 𝑟 and there exist valid choices 𝑐1, . . . , 𝑐𝑛
fulfilling the following conditions:
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(i) An election result is published in 𝑟 which is equal to 𝜌(𝑐1, . . . , 𝑐𝑛).

(ii) The multiset {𝑐1, . . . , 𝑐𝑛} includes all actual choices of honest voters who performed their
check successfully, plus a subset of actual choices of honest voters who did not perform their
check (successfully), and plus at most 𝑛𝑑 additional choices.

Note, there are checks, such as the mentioned Benaloh checks, which do not completely guarantee
that votes have actually been counted. If voters perform such checks, then applying this goal,
a tolerance 𝛿 > 0 will be obtained, since manipulation might remain undetected with some
probability. In addition, the requirement that votes of honest voters who did not perform their check
(successfully) can be at most dropped, however not altered, might only be achievable under certain
trust assumptions.

Quantitative Goal

Informally, the quantitative goal 𝛾𝑞𝑛 (𝑘, 𝜑) demands that, in case the trust assumptions 𝜑 are met
in a protocol run, then the distance between the published and the ideal1 result is bounded by 𝑘 .
Therefore, a particular distance function 𝑑 on the election results is introduced. For the purpose of
defining 𝑑, we first consider a function 𝑓count : 𝐶𝑙 → N𝐶 . It takes as input a vector (𝑐1, . . . , 𝑐𝑙) ∈ 𝐶𝑙

which represents a multiset of the voters’ choices and outputs the number of occurrences of every
choice 𝑐𝑖 ∈ 𝐶 in (𝑐1, . . . , 𝑐𝑙). For instance, 𝑓count(𝐴, 𝐵, 𝐵) assigns 1 to choice 𝐴, 2 to choice 𝐵,
and 0 to all the remaining choices. Now, we use 𝑓count in order to define 𝑑. The distance function 𝑑
takes as input two vectors of choices 𝑐, 𝑐′ and is defined as

𝑑 (𝑐, 𝑐′) =
∑︁
𝑐𝑖∈𝐶
| 𝑓count(𝑐) [𝑐𝑖] − 𝑓count(𝑐′) [𝑐𝑖] | .

As an example, let 𝑐 = (𝐴, 𝐵, 𝐵) be the published votes and 𝑐′ = (𝐵, 𝐵, 𝐵, 𝐶) be the ideal votes.
Then, one vote has been dropped and another one has been altered. Thus, for the distance 𝑑 between
the published and the ideal result, we would get 𝑑 ((𝐴, 𝐵, 𝐵), (𝐵, 𝐵, 𝐵, 𝐶)) = 3. This is because
altering a vote increases the distance by 2 and dropping a vote increases the distance by 1 since
we wanted to distinguish between votes that have been altered and votes that have been dropped
as mentioned in the previous section. Formally, 𝛾𝑞𝑛 (𝑘, 𝜑) is fulfilled in a protocol run 𝑟 if either
(a) the trust assumptions 𝜑 are not met in 𝑟, or if (b) 𝜑 is met in 𝑟 and there exist valid choices
𝑐′1, . . . , 𝑐

′
𝑛𝑑

(choices of dishonest voters) and 𝑐1, . . . , 𝑐𝑛 satisfying the following conditions:

(i) An election result is published which is equal to 𝜌(𝑐1, . . . , 𝑐𝑛), and

(ii) 𝑑 ((𝑐1, . . . , 𝑐𝑛ℎ , 𝑐
′
1, . . . , 𝑐

′
𝑛𝑑
), (𝑐1, . . . , 𝑐𝑛)) ≤ 𝑘 .

In case the adversary drops a single honest vote, 𝑑 is increased by one, whereas if the adversary
alters a single choice of an honest vote (by another one), 𝑑 is increased by two. This allows to model
the actual effect of a manipulation on the final result. Since it is unlikely that all voters will check
their receipts, some manipulation will remain undetected. Thus, 𝛿 = 0 is usually not achievable
for the quantitative goal 𝛾𝑞𝑛 (𝑘, 𝜑). Given the parameter 𝑘 , performing a security analysis on a
concrete protocol will determine the minimal 𝛿.

1The ideal result describes the result we get if the actual choices of honest voters as well as one choice for each dishonest
voter are counted.
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In this chapter, we first present the participants involved in the Russian federal remote e-voting
scheme. Afterwards, we discuss the usage of the Blockchain. This is followed by a description
of the e-voting protocol including its phases. At the end, we investigate the main cryptographic
protocols and algorithms used in the e-voting scheme. The information in the first three sections is
taken from [50].

6.1 Participants

In the Russian federal e-voting protocol, there are several participants interacting with each other.
This section introduces the main protocol participants and describes their roles in the process of
e-voting.

Voter

The Voter is any citizen of the Russian Federation meeting two requirements. At first, they need
to be eligible to vote. Additionally, they have to be included in the lists of e-voters referred to
as VoterList. In order to be included in the VoterList, each citizen has to submit an application
in electronic form through gosuslugi.ru. This is a web portal where information about state and
municipal services in the Russian Federation can be accessed. The Voters can only register as an
e-voting participant in case they have verified their gosuslugi.ru account. The lists at the local
polling stations exclude the Voters included in the VoterList. Voters own their personal SNILS
which is an insurance account number individual to each citizen.

In order to participate in e-voting, the Voter uses a Voting Device, a device providing a browser
and Internet access. There are two ways to vote, either through a browser at gosuslugi.ru or
alternatively through their mobile application which is available for Android and iOS. During the
authorisation phase, the Voting Device generates a key pair for the GOST signature scheme in order
to sign the Voters’ ballot.

Organiser

The Organiser is coordinating the e-voting process and in addition responsible for the generation
of the Organiser’s key pair as well as for the construction of the final encryption key. The final
encryption key allows to encrypt all votes (see Figure 6.2).

39

gosuslugi.ru
gosuslugi.ru
gosuslugi.ru
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Internal and External Observer

The Internal Observer’s role is to monitor the e-voting process. This is done from a certain room.
Additionally, the Internal Observer has access to individual nodes of the Blockchain and performs
the audit which includes several verifications.

The External Observer is any user with access to https://stat.vybory.gov.ru. This website allows
the Voter to check if the cast ballot was added to the Blockchain. However, it became inaccessible
one month after the elections.

Internal and External Observers are referred to as the Election Observer.

Key Holders

Key holders are selected by the Organiser. They are responsible for holding shares of the Organiser’s
secret key.

Registrar

The Registrar is composed of the Voting Portal and VoterList components. It is responsible for the
identification and authentication of the Voters. This is done through the unified identification and
authentication system of the Russian Federation called ESIA. ESIA provides authorised access for
citizens to the information contained in state information systems. The Registrar also issues blind
signatures to the Voters’ public keys.

Vote Collector

The Vote Collector is a separate component. It allows casting as well as maintaining the secrecy of
votes and issues ballots to the Voters. After the Voter has cast a ballot, the Vote Collector collects
encrypted votes. In order to publish the encrypted votes, it interacts with the Blockchain.

Tallier

The Tallier comprises the distributed storage, represented by the Blockchain as well as Decryptor
components. The Blockchain is responsible for storing all the voting transactions and published
keys. The Decryptor contains a hardware security module (HSM). It allows to generate the Tallier’s
key pair and to tally the votes.
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6.2 Usage of Blockchain

This section is concerned with the usage of the Blockchain in the e-voting protocol. As described
in Chapter 4, an e-voting system makes use of a bulletin board to store public information such
as for example cast ballots. In the Russian e-voting protocol, this functionality is provided by the
Blockchain. The used Blockchain platform was developed by Waves Enterprise [23]. It uses the
Crash Fault Tolerance (CFT) consensus algorithm [21] that is based on Proof of Authority (PoA)
consensus [22]. The Blockchain platform supports the development and usage of smart contracts.
The smart contracts used in the e-voting process perform the following functions:

• storing the rules of the voting process and the list of participants,

• registering information, obtained during the setup phase, and

• verification and storage of the cast votes and voting results.

There are four data processing centers that run the Blockchain nodes. These centers are managed by
Rostelecom (digital services provider in Russia) and the Registrar.

6.3 Protocol

This section presents the protocol the Russian federal remote e-voting scheme is based on. It is
divided into four phases, the setup phase, the authorisation phase, the voting phase as well as the
tallying phase. After each of the four phases, we present the current state of the Blockchain. For
simplicity, there is one block for each phase. Note that this does not correspond to how the content
is actually stored in the Blockchain. However, this is not of importance here as we only aim to
visualize what information is contained in the Blockchain and thereby show what information is
publicly available. Additionally, there is an audit. Finally, we provide a short discussion on the
generation of the ElGamal encryption key that is used for the encryption of the votes and on the
way key sharing is realized.

6.3.1 Setup Phase

The setup phase is mostly an interaction between the Organiser, the Registrar and the Tallier where
keys are generated, public keys are exchanged and public keys as well as information about the
voting process are uploaded to the Blockchain. A more detailed description is provided in the
following.

• The Organiser and Registrar generate key pairs for the GOST signature scheme and send
their public key to the Tallier. All messages that are sent by the Organiser as well as the
Registrar are signed with their secret key. The corresponding signatures are verified by the
Tallier using the Organiser’s and Registrar’s public key respectively.

• The Registrar generates an RSA blind signature key pair (𝑠𝑘𝑏, 𝑝𝑘𝑏) as well as a commitment
key 𝐾𝑐𝑜𝑚. The public key 𝑝𝑘𝑏 is sent to the Organiser.

41



6 Russian Federal Remote E-Voting Scheme

• The Organiser generates an ElGamal key pair (𝑆𝑜𝑟𝑔, 𝑄𝑜𝑟𝑔). The generation of the key pair
is done in presence of the Election Observers and the media. After generating the key pair,
𝑆𝑜𝑟𝑔 is split into shares using Shamir Secret Sharing. The reason why the secret key 𝑆𝑜𝑟𝑔 is
split into shares will become clear later. The resulting key shares are stored externally at the
storage media of the secret key holders. After the key shares have been transferred, 𝑆𝑜𝑟𝑔 is
deleted from the generating device.

• The Decryptor generates an ElGamal key pair (𝑆𝑡 , 𝑄𝑡 ). The public key 𝑄𝑡 is sent to the
Organiser.

• The Organiser uploads the following information to the Blockchain:

– Identifier of elections (𝑣𝑜𝑡𝑖𝑛𝑔𝐼𝐷)

– Starting time of receiving ballots (𝑡start)

– Hash of the ballot text (ℎ(ballot text))

– Number of options in each ballot (𝑛)

– Maximum number of options that each Voter can select (𝑑)

– 𝑝𝑘𝑏

This information is used to generate the Blockchain smart contracts. Additionally, the
Organiser sends the VoterList to the Registrar.

• The Registrar computes commitments

𝑐𝑜𝑚 = 𝐻𝑀𝐴𝐶 (𝐾𝑐𝑜𝑚, 𝑆𝑁𝐼𝐿𝑆 | |𝑣𝑜𝑡𝑖𝑛𝑔𝐼𝐷)

on the Voters’ SNILS codes from the VoterList. They are uploaded into the Blockchain and
the Blockchain smart contracts are updated by adding the commitments.

• The Organiser constructs the final encryption key

𝑄 𝑓 = 𝐻 (𝑄𝑡 | |𝑄𝑜𝑟𝑔) · 𝑄𝑜𝑟𝑔 + 𝐻 (𝑄𝑜𝑟𝑔 | |𝑄𝑡 ) · 𝑄𝑡

and uploads 𝑄𝑜𝑟𝑔, 𝑄𝑡 and 𝑄 𝑓 to the Blockchain. The Registrar receives 𝑄 𝑓 from the
Blockchain. Since the construction of the final encryption key 𝑄 𝑓 required the public keys
of the Organiser (𝑄𝑜𝑟𝑔) and the Tallier (𝑄𝑡 ), both secret keys are necessary to decrypt the
votes. Neither the Organiser nor the Tallier are able to learn intermediate results because of
the Organiser’s secret key 𝑆𝑜𝑟𝑔 being split until the tallying phase.

After the setup phase is completed, the following information is contained in the Blockchain:
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Block 1

Hash Block

𝑣𝑜𝑡𝑖𝑛𝑔𝐼𝐷

𝑡start

ℎ(ballot text)
𝑛

𝑑

𝑝𝑘𝑏
. . . , 𝑐𝑜𝑚𝑖 , . . .

𝑄𝑜𝑟𝑔

𝑄𝑡

𝑄 𝑓

Hash Block 1

Figure 6.1: Blockchain in Setup Phase

Figure 6.2: Relationship between Keys [50]
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6.3.2 Authorisation Phase

The authorisation phase is mostly an interaction between the Voter and the Registrar where the
Voter is authorised to the e-voting portal, the eligibility of the Voter is checked and the Registrar
issues a signature on the Voter’s public key. A more detailed description is provided below.

• In order to cast a ballot, the Voter has to authenticate to the e-voting portal. This is
done through the ESIA system. The Registrar receives the signed id_token as well as the
information about the Voter from ESIA. The Registrar uses the Voter’s SNILS code to check
for her eligibility. After eligibility has been verified, the Registrar sends an SMS or an email
containing an authorisation code to the Voter. The Voter inputs the code into the e-voting
portal.

• The Voting Device generates a key pair (𝑠𝑘𝑣 , 𝑝𝑘𝑣) for the GOST signature scheme. It
interacts with the Registrar and sends the Voter’s masked public key. The Registrar sends
back an RSA blind signature 𝑠 on the masked public key.

• The Registrar adds id_token, 𝑐𝑜𝑚, 𝑠 issued for the Voter to its VoterList and publishes
(𝑐𝑜𝑚, 𝑠) into the Blockchain. Furthermore, the Registrar sends 𝑣𝑜𝑡𝑖𝑛𝑔𝐼𝐷 and 𝑄 𝑓 to the
Voting Device.

• The Voting Device removes the mask from the signature 𝑠 resulting in 𝜎𝑏 which is a valid
RSA signature on the Voter’s public key.

The state of the Blockchain during the authorisation phase is depicted in the following:

Block 1

Hash Block

𝑣𝑜𝑡𝑖𝑛𝑔𝐼𝐷

𝑡start

ℎ(ballot text)
𝑛

𝑑

𝑝𝑘𝑏
. . . , 𝑐𝑜𝑚𝑖 , . . .

𝑄𝑜𝑟𝑔

𝑄𝑡

𝑄 𝑓

Hash Block 1

Block 2

Hash Block 1

...

...

...

...

...
(𝑐𝑜𝑚𝑖 , 𝑠𝑖)

...

...

...

...

Hash Block 2

Figure 6.3: Blockchain in Authorisation Phase
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6.3.3 Voting Phase

The voting phase is mostly an interaction between the Voter, the Blockchain, the Vote Collector and
the Voting Device where the Voter casts one’s ballot, the Voting Device generates proofs for the
correctness of the cast ballot and the Voting Device generates the voting transaction which is sent to
the Vote Collector and finally uploaded to the Blockchain. A more detailed description is provided
in the following.

• After being authorised to the e-voting portal, the Voter is redirected to the anonymous zone
of the portal, the Vote Collector. This is where the Voter is presented with a ballot in digital
form and where the Voter makes her choice by selecting the preferred option.

• Each ballot 𝑏 is represented as a bitstring of length 𝑛 since there are 𝑛 options to choose
from. Every option 𝑏𝑖 on the ballot is initialized with zero (𝑏𝑖 = 0). The value of the options
chosen by the Voter changes to one (𝑏𝑖 = 1). ElGamal encryption is used to encrypt each
option separately

𝑐𝑖 = 𝐸𝑛𝑐(𝑏𝑖 , 𝑄 𝑓 ), for 𝑖 ∈ {0, . . . , 𝑛 − 1}.

• The Voting Device generates a range proof for each ciphertext 𝑐𝑖, demonstrating that
𝑏𝑖 ∈ {0, 1}. Additionally, the Voting Device generates a range proof providing evidence that∑𝑛−1

𝑖=0 𝑏𝑖 ≤ 𝑑 since the Voter can choose a maximum of 𝑑 options (see Figure 6.4).

• After generating the range proofs, the Voting Device prepares the transaction. The transaction
consists of all created ciphertexts and their corresponding proofs, 𝑝𝑘𝑣 and 𝜎𝑏 (see Figure 6.4).
This transaction is signed by the Voting Device using 𝑠𝑘𝑣 in order to receive the signature 𝜎𝑣 .
Finally, it sends the signed transaction to the Vote Collector.

• After the Vote Collector has received the signed transaction, it verifies the cast ballot for well-
formedness, the signature 𝜎𝑏 and uniqueness of the transaction containing 𝑝𝑘𝑣 . Furthermore,
the Vote Collector adds the Voter’s public key 𝑝𝑘𝑣 to its internal database and uploads the
transaction to the Blockchain.

• The Blockchain smart contract verifies ballot well-formedness as well as the signatures 𝜎𝑏

and 𝜎𝑣 , and publishes the transaction1.

After the Voter has cast a vote, she can visit the https://stat.vybory.gov.ru portal and use her
public key 𝑝𝑘𝑣 in order to check whether her transaction has been added to the Blockchain.

Figure 6.4 depicts the process of generating the voting transaction.

1Here, we assume that in case one of the two signatures 𝜎𝑏 and 𝜎𝑣 is invalid, the voting transaction is marked as invalid.
Note that this is our assumption and thus not part of the original protocol description from [50].
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Figure 6.4: Voting Transaction [50]

The state of the Blockchain during the voting phase is shown below:
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Figure 6.5: Blockchain in Voting Phase

6.3.4 Tallying Phase

The tallying phase is mostly an interaction between the Tallier and the Organiser where the proofs of
each voting transaction are verified, the verified encrypted votes are aggregated and then decrypted
and the voting result is uploaded to the Blockchain. A more detailed description is provided
below.

• Since the votes should be tallied now, the Organiser asks the Registrar for stopping the
authentication of new Voters. Additionally, the Blockchain is requested to stop accepting new
voting transactions.

• The Organiser uses the secret key shares in order to reconstruct 𝑆𝑜𝑟𝑔.

• The Decryptor receives all the voting transactions from the Blockchain. For each transaction,
the corresponding range proofs are verified2. In addition, the Decryptor aggregates verified
encrypted votes separately3. This is done for each option from the ballot as

𝑠𝑢𝑚𝑖 =

𝑉∑︁
𝑣=1
(𝑐𝑣)𝑖 = (𝑅𝑖 , 𝐶𝑖),

where 𝑖 ∈ {0, . . . , 𝑛 − 1} and 𝑉 is the total number of cast votes (see Figure 6.6). Thus, 𝑠𝑢𝑚𝑖

states the encryption of the amount of votes that option/candidate 𝑖 received.

2Here, we assume that only the range proofs of such transactions that are not marked as invalid are verified. Note that
this is our assumption and thus not part of the original protocol description from [50].

3According to the assumption in the previous footnote, this means that we assume that the Decryptor only aggregates
verified encrypted votes that are contained in a transaction that is not marked as invalid.
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• The decryption of the aggregated ciphertexts 𝑠𝑢𝑚𝑖 consists of two steps. At first, the Decryptor
computes partial decryptions as (𝑅𝑖)𝑡 = 𝑆𝑡 · 𝑅𝑖 . Afterwards, it generates proofs of correctness
of partial decryptions. Besides, the Decryptor uploads all partial decryptions (𝑅𝑖)𝑡 together
with the corresponding proofs of decryption correctness into the Blockchain.

• The Organiser uploads 𝑆𝑜𝑟𝑔 into the Blockchain. Thereupon, the Decryptor receives 𝑆𝑜𝑟𝑔
and verifies its correspondence to the public key 𝑄𝑜𝑟𝑔.

• After the correspondence has been verified, the Decryptor performs the final decryption of
aggregated votes using 𝑆𝑜𝑟𝑔 as

𝑀𝑖 = 𝐶𝑖 − 𝐻 (𝑄𝑡 | |𝑄𝑜𝑟𝑔) · 𝑆𝑜𝑟𝑔 · 𝑅𝑖 − 𝐻 (𝑄𝑜𝑟𝑔 | |𝑄𝑡 ) · (𝑅𝑖)𝑡 ,

where 𝑀𝑖 states the amount of votes that candidate 𝑖 received. The transaction (𝑅𝑖 , 𝐶𝑖), 𝑀𝑖

(𝑖 ∈ {0, . . . , 𝑛 − 1}) is published by the Decryptor.

Note, that only the Organiser’s secret key 𝑆𝑜𝑟𝑔 but not the Tallier’s secret key 𝑆𝑡 is published. This
means that there is no possibility to decrypt transactions containing individual votes by only using
information that is publicly available. In order to decrypt transactions, the secret key 𝑆𝑡 is required
as well which is not publicly available. Thus, the Voter is not able to verify whether the published
vote in the Blockchain actually corresponds to her original choice.

Figure 6.6: Vote Tallying [50]

At the end of the tallying phase, the following information is contained in the Blockchain:
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Figure 6.7: Blockchain in Tallying Phase

6.3.5 Audit

In the audit, the Internal Observer can perform the following verifications:

• verify that for every Voter who has been issued a blind signature according to the Registrar’s
VoterList, there exists a valid id_token from ESIA and a transaction in the Blockchain with a
commitment on the Voter’s SNILS code,

• verify commitments on the Voters’ SNILS codes,

• verify that the amount of cast votes does not exceed the amount of Voters to whom the
Registrar issued blind signatures,

• verify the correctness of the blind signatures and the Voters’ signatures from the voting
transaction,

• verify that there is only one transaction for each Voter’s public key.

6.3.6 Discussion

This subsection aims to discuss the process of the generation as well as the usage of the final
encryption/decryption key pair. The idea that the secret key is not held by a single participant, but
rather shares of the ElGamal secret key are created and decryption is performed in a distributed
manner, is not new. The usual approach for this idea is described next. At first, a set of trustees who
generate their ElGamal key pairs independent of each other is selected. Afterwards, the public keys
of each trustee are combined homomorphically in order to create a single ElGamal public key. This
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public key is the key used for the encryption of the votes. In this case, the secret key that belongs to
the previously created public key allowing to decrypt the votes is not reconstructed from the shares.
To decrypt the votes, each trustee individually computes a partial decryption using her secret key.
The full decryption of the election results can be obtained by combining all partial decryptions.
More information on realizing a distributed version of the ElGamal encryption scheme can be found
in [13].

However, the approach that has been used in the Russian federal e-voting protocol (see Figure
6.2) is different to the one described above since the Organiser’s secret key share is generated
and split afterwards, instead of an independent generation of key shares from the beginning. The
better practice is to use the more established standard approach for the generation of the ElGamal
encryption key as well as for key sharing.

6.4 Main Cryptographic Protocols and Algorithms

In this section, we investigate the main cryptographic protocols and algorithms that have been used
in the Russian federal remote e-voting scheme. The table below provides an overview of the main
cryptographic protocols and algorithms used, with the left column representing the cryptographic
primitives and the right column representing the used cryptographic protocols and algorithms.

Cryptographic Primitives Cryptographic Protocols and Algorithms
Cryptographic Hash Function GOST 34.11-2012
Public-Key Encryption Scheme EC ElGamal Encryption Scheme
Digital Signature Scheme GOST 34.10-2012
Blind Digital Signature Scheme RSA Blind Digital Signature Scheme
Commitment Scheme HMAC_GOSTR3411_2012_256
Secret Sharing Shamir Secret Sharing
Zero-Knowledge Proofs (Disjunctive) Chaum-Pedersen Proof

Table 6.1: Main Cryptographic Protocols and Algorithms Overview

6.4.1 Cryptographic Hash Function

In this subsection, we illustrate the Russian federal standard hash function GOST R 34.11-2012,
the cryptographic hash function (see Section 3.2) used in the Russian federal remote e-voting
scheme. The cryptographic hash function GOST R 34.11-2012 is used as part of the construction
of the final encryption key 𝑄 𝑓 , the final decryption of aggregated votes and the computation of the
commitments as we will see later. The information of this subsection is based on the RFC (6986)
document [19]. At first, we introduce necessary notation and then specify the calculation procedure
of the hash function.
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Notation

The standard for the hash function uses the subsequent notation:

• 𝑉∗ is the set of all bit strings of finite length including the empty string

• 𝑉𝑛 is the set of all bit strings of length 𝑛 (non-negative integer)

• 𝐴𝑛 is the concatenation of 𝑛 instances of the bit string 𝐴

• 𝑍2𝑛 is the ring of residues modulo 2𝑛

• [+] is the addition operation in the ring 𝑍2𝑛

• Vec𝑛 : 𝑍2𝑛 → 𝑉𝑛 is a bĳective mapping that maps an element from 𝑍2𝑛 to its binary
representation

• Int𝑛 : 𝑉𝑛 → 𝑍2𝑛 is the inverse mapping to Vec𝑛

• MSB𝑛 : 𝑉∗ → 𝑉𝑛 is a mapping that maps an element from 𝑉∗ to an element from 𝑉𝑛 which
reflects the 𝑛 most significant bits of the input element

• 𝐻 : 𝑉∗ → 𝑉𝑛 is a mapping called hash function that maps an element from 𝑉∗ to an element
from 𝑉𝑛, the output is referred to as hash

• 𝑔𝑁 : 𝑉512 ×𝑉512 → 𝑉512 is a mapping that maps two bit strings of length 512 to a single bit
string of length 512 (see [19] for how this mapping works internally)

Hash-Function Calculation Procedure

GOST R 34.11-2012 defines hash functions 𝐻 for hash lengths of 𝑛 = 512 and 𝑛 = 256 bits. The
procedure for calculating the hash 𝐻 (𝑀) requires a message 𝑀 ∈ 𝑉∗ as well as the initializing
value 𝐼𝑉 ∈ 𝑉512 as initial data.
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Algorithm 6.1 GOST R 34.11-2012 Hash Function
Input: Message 𝑀 , initializing value 𝐼𝑉
Output: Hash 𝐻 (𝑀)

1: ℎ B 𝐼𝑉2

2: 𝑁 B 0512

3: Y B 0512

4: if |𝑀 | < 512 then
5: go to line 14
6: else
7: 𝑚 B Subvector belonging to 𝑉512 of the message 𝑀 such that 𝑀 = 𝑀 ′∥𝑚
8: ℎ B 𝑔𝑁 (ℎ, 𝑚)
9: 𝑁 B Vec512(Int512(𝑁) [+] 512)

10: Y B Vec512(Int512(Y) [+] Int512(𝑚))
11: 𝑀 B 𝑀 ′

12: go to line 4
13: end if
14: 𝑚 B 0511−|𝑀 | ∥1∥𝑀
15: ℎ B 𝑔𝑁 (ℎ, 𝑚)
16: 𝑁 B Vec512(Int512(𝑁) [+] |𝑀 |)
17: Y B Vec512(Int512(Y) [+] Int512(𝑚))
18: ℎ B 𝑔0(ℎ, 𝑁)

19: ℎ B

{
𝑔0(ℎ, Y) for the function with 512-bit hash
MSB256(𝑔0(ℎ, Y)) for the function with 256-bit hash

20: 𝐻 (𝑀) B ℎ

21: Return 𝐻 (𝑀)

6.4.2 Public-Key Encryption Scheme

This subsection provides a description of the EC-ElGamal encryption scheme which is utilized for
the encryption and decryption of the votes. Its basis is the original ElGamal encryption scheme.
The original ElGamal encryption scheme, based on the public key distribution scheme by Diffie and
Hellman [17], was introduced by ElGamal in [20]. The Diffie-Hellman key distribution scheme will
not be discussed further, information about this scheme can be extracted from [17] and [20]. In
order to describe the EC-ElGamal encryption scheme, we specify the key-generation algorithm
Gen, the encryption algorithm Enc as well as the decryption algorithm Dec (see Section 3.3).
Contrary to the original ElGamal encryption scheme which is not additive homomorphic [49], the
EC-ElGamal encryption scheme provides the additive homomorphic property (see Section 3.4) as
we will prove at the end of this subsection.

Before specifying the corresponding algorithms, we have to introduce the preliminaries as outlined
in [49] first. In the following, let 𝐸𝑝 (𝑎, 𝑏) be an elliptic curve over the field 𝐹𝑝 and 𝑛 =

��𝐸𝑝 (𝑎, 𝑏)
��

be its order. Further, let 𝐺 ∈ 𝐸𝑝 (𝑎, 𝑏) denote a generator point of 𝐸𝑝 (𝑎, 𝑏). The elliptic curve

2For 𝐻 with |𝐻 (𝑀) | = 512, 𝐼𝑉 = 0512. For 𝐻 with |𝐻 (𝑀) | = 256, 𝐼𝑉 = (00000001)64.
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𝐸𝑝 (𝑎, 𝑏), 𝑛 and𝐺 are publicly known. The addition over an elliptic curve only works with points on
that curve. Thus, for EC-ElGamal, we can not just encrypt the messages, but rather have to map the
messages to points on 𝐸𝑝 (𝑎, 𝑏) and then perform the actual encryption. This mapping of messages,
as part of the encryption algorithm is done by the deterministic function map : 𝐹𝑝 → 𝐸𝑝 (𝑎, 𝑏)
such that the additive homomorphic property

map(𝑚1 + . . . + 𝑚𝑛) = map(𝑚1)︸    ︷︷    ︸
𝑀1

+ . . . + map(𝑚𝑛)︸     ︷︷     ︸
𝑀𝑛

holds true for messages 𝑚1, . . . , 𝑚𝑛 ∈ 𝐹𝑝. The inverse mapping function which is denoted by imap
maps points on 𝐸𝑝 (𝑎, 𝑏) to messages on 𝐹𝑝. One possibility to map the messages to points on the
elliptic curve looks as follows:

map : 𝑚 → 𝑚𝐺 with 𝑚 ∈ 𝐹𝑝

This function exhibits the requested additive homomorphic property since

map(𝑚1 + . . . + 𝑚𝑛) = (𝑚1 + . . . + 𝑚𝑛)𝐺
= 𝑚1𝐺 + . . . + 𝑚𝑛𝐺

= map(𝑚1) + . . . + map(𝑚𝑛)

holds true for messages 𝑚1, . . . , 𝑚𝑛 ∈ 𝐹𝑝. Additional possibilities for the mapping function map
can be taken from [32] and [33].

Key-Generation Algorithm Gen

Algorithm 6.2 EC ElGamal Key-Generation Algorithm Gen [49]
Input: Security parameter 1𝑛
Output: Public key 𝑌 , private key 𝑥

1: Choose random 𝑥 ∈ 𝐹𝑝

2: 𝑌 B 𝑥𝐺

3: Return (𝑌, 𝑥)

Encryption Algorithm Enc

Algorithm 6.3 EC-ElGamal Encryption Algorithm Enc [49]
Input: Public key 𝑌 , plaintext 𝑚
Output: Ciphertext (𝑅, 𝑆)

1: Choose random 𝑘 ∈ [1, 𝑛 − 1]
2: 𝑀 B map(𝑚)
3: 𝑅 B 𝑘𝐺

4: 𝑆 B 𝑀 + 𝑘𝑌
5: Return (𝑅, 𝑆)
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Decryption Algorithm Dec

Algorithm 6.4 EC-ElGamal Decryption Algorithm Dec [49]
Input: Private key 𝑥, ciphertext (𝑅, 𝑆)
Output: Plaintext 𝑚

1: 𝑀 B 𝑆 − 𝑥𝑅
2: 𝑚 B imap(𝑀)
3: Return 𝑚

Additive Homomorphic Property

Adapted from [37], we now prove that the EC-ElGamal encryption scheme provides the additive
homomorphic property that allows the aggregation of encrypted votes. Therefore, we show that the
following equality holds true.

Dec(𝐶1 + . . . + 𝐶𝑛) = 𝑚1 + . . . + 𝑚𝑛 (6.1)

At first, we prove that

𝐶1 + . . . + 𝐶𝑛 = (𝑘 ′𝐺,map(𝑚1 + . . . + 𝑚𝑛) + 𝑘 ′𝑌 ), (6.2)

i. e., that the addition of ciphertexts is equal to the encryption of the addition of plaintexts and then
use this to show equality 6.1. In the following, 𝑘 ′ = 𝑘1 + . . . + 𝑘𝑛.

𝐶1 + . . . + 𝐶𝑛 = (𝑅1, 𝑆1) + . . . + (𝑅𝑛, 𝑆𝑛)
= (𝑘1𝐺, 𝑀1 + 𝑘1𝑌 ) + . . . + (𝑘𝑛𝐺, 𝑀𝑛 + 𝑘𝑛𝑌 )
= (𝑘1𝐺 + . . . + 𝑘𝑛𝐺, 𝑀1 + 𝑘1𝑌 + . . . + 𝑀𝑛 + 𝑘𝑛𝑌 )
= (𝑘1𝐺 + . . . + 𝑘𝑛𝐺, 𝑀1 + . . . + 𝑀𝑛 + 𝑘1𝑌 + . . . + 𝑘𝑛𝑌 )
= ((𝑘1 + . . . + 𝑘𝑛)𝐺, 𝑀1 + . . . + 𝑀𝑛 + (𝑘1 + . . . + 𝑘𝑛)𝑌 )
= (𝑘 ′𝐺, 𝑀1 + . . . + 𝑀𝑛 + 𝑘 ′𝑌 )
= (𝑘 ′𝐺,map(𝑚1) + . . . + map(𝑚𝑛) + 𝑘 ′𝑌 )
= (𝑘 ′𝐺,map(𝑚1 + . . . + 𝑚𝑛) + 𝑘 ′𝑌 )

Using equality 6.2, we can conclude equality 6.1.

Dec(𝐶1 + . . . + 𝐶𝑛) = Dec((𝑘 ′𝐺,map(𝑚1 + . . . + 𝑚𝑛) + 𝑘 ′𝑌 ))
= map(𝑚1 + . . . + 𝑚𝑛) + 𝑘 ′𝑌 − 𝑥𝑘 ′𝐺
= imap(map(𝑚1 + . . . + 𝑚𝑛) + 𝑘 ′𝑌 − 𝑥𝑘 ′𝐺)
= imap(map(𝑚1 + . . . + 𝑚𝑛))
= 𝑚1 + . . . + 𝑚𝑛

Remarks

At this point, we want to add some remarks on the last two steps of the tallying phase. In the
penultimate step, the Decryptor verifies that the secret key 𝑆𝑜𝑟𝑔 corresponds to the public key 𝑄𝑜𝑟𝑔.
According to the key generation, this verification can be done by multiplying 𝑆𝑜𝑟𝑔 with the generator
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point 𝐺 of the used elliptic curve and then checking whether the result is equal to 𝑄𝑜𝑟𝑔. In the last
step, the Decryptor performs the final decryption of aggregated votes as

𝑀𝑖 = 𝐶𝑖 − 𝐻 (𝑄𝑡 | |𝑄𝑜𝑟𝑔) · 𝑆𝑜𝑟𝑔 · 𝑅𝑖 − 𝐻 (𝑄𝑜𝑟𝑔 | |𝑄𝑡 ) · (𝑅𝑖)𝑡

In the following, we show why this equality holds. Note that here, we ignore the mapping of
messages to points on the elliptic curve.

𝐶𝑖 − 𝐻 (𝑄𝑡 | |𝑄𝑜𝑟𝑔) · 𝑆𝑜𝑟𝑔 · 𝑅𝑖 − 𝐻 (𝑄𝑜𝑟𝑔 | |𝑄𝑡 ) · (𝑅𝑖)𝑡
= 𝑀𝑖 + 𝑘𝑖𝑄 𝑓 − 𝐻 (𝑄𝑡 | |𝑄𝑜𝑟𝑔) · 𝑆𝑜𝑟𝑔 · 𝑅𝑖 − 𝐻 (𝑄𝑜𝑟𝑔 | |𝑄𝑡 ) · (𝑅𝑖)𝑡
= 𝑀𝑖 + 𝑘𝑖𝑄 𝑓 − 𝐻 (𝑄𝑡 | |𝑄𝑜𝑟𝑔) · 𝑆𝑜𝑟𝑔 · 𝑘𝑖 · 𝐺 − 𝐻 (𝑄𝑜𝑟𝑔 | |𝑄𝑡 ) · 𝑆𝑡 · 𝑅𝑖
= 𝑀𝑖 + 𝑘𝑖𝑄 𝑓 − 𝐻 (𝑄𝑡 | |𝑄𝑜𝑟𝑔) · 𝑆𝑜𝑟𝑔 · 𝑘𝑖 · 𝐺 − 𝐻 (𝑄𝑜𝑟𝑔 | |𝑄𝑡 ) · 𝑆𝑡 · 𝑘𝑖 · 𝐺
= 𝑀𝑖 + 𝑘𝑖𝑄 𝑓 − 𝑘𝑖 (𝐻 (𝑄𝑡 | |𝑄𝑜𝑟𝑔) · 𝑆𝑜𝑟𝑔 · 𝐺 − 𝐻 (𝑄𝑜𝑟𝑔 | |𝑄𝑡 ) · 𝑆𝑡 · 𝐺)
= 𝑀𝑖 + 𝑘𝑖𝑄 𝑓 − 𝑘𝑖 (𝐻 (𝑄𝑡 | |𝑄𝑜𝑟𝑔) · 𝑄𝑜𝑟𝑔 − 𝐻 (𝑄𝑜𝑟𝑔 | |𝑄𝑡 ) · 𝑄𝑡 )
= 𝑀𝑖 + 𝑘𝑖𝑄 𝑓 − 𝑘𝑖𝑄 𝑓

= 𝑀𝑖

6.4.3 Digital Signature Scheme

This subsection illustrates the Russian federal standard for digital signatures GOST R 34.10-2012
which is the digital signature scheme that is used in the Russian federal remote e-voting scheme.
The following information is based on the RFC (7091) document [18]. The digital signature scheme
is mostly used for the signing of votes but also to sign the messages sent by the Organiser and
Registrar. In order to specify the standard for digital signatures, we essentially need to define the
key-generation algorithm Gen, the signing algorithm Sign and the verification algorithm Vrfy (see
Section 3.5). The algorithms Sign and Vrfy require digital signature scheme parameters as listed
below3:

• Prime number 𝑝 which is an elliptic curve modulus

• Elliptic curve 𝐸𝑝 (𝑎, 𝑏)

• Prime number 𝑞 which is the order of a cyclic subgroup of the group consisting of the elliptic
curve 𝐸𝑝 (𝑎, 𝑏) points (𝑞 needs to satisfy two conditions that can be found in [18])

• Point 𝑃 ≠ 𝑂 (identity element of 𝐸𝑝 (𝑎, 𝑏)) of an elliptic curve 𝐸𝑝 (𝑎, 𝑏) which satisfies
𝑞 · 𝑃 = 𝑂

• Hash function ℎ which is defined in GOST R 34.11-2012 [19]

Those parameters have to satisfy certain requirements that are specified in [18]. However, the
standard for digital signatures does not determine the process for generating them. For example,
[42] defines possible sets of those parameters.

3Parameters not directly relevant for the two algorithms are not mentioned here. They can be found in [18].
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Key-Generation Algorithm Gen

Note that GOST R 34.10-2012 does not define an algorithm Gen for generating a pair of keys.
However, according to [18], ways to realize the key-generation algorithm Gen are defined by
involved subjects, who determine corresponding parameters based on their agreement.

Signing Algorithm Sign

Algorithm 6.5 GOST R 34.10-2012 Signing Algorithm Sign [18]
Input: Private key 𝑑4, message 𝑀
Output: Signature 𝜎

1: 𝐻 B ℎ(𝑀)
2: 𝛼 B Integer whose binary representation is 𝐻
3: 𝑒 B 𝛼 mod 𝑞
4: if 𝑒 = 0 then
5: 𝑒 B 1
6: end if
7: 𝑘 B Random (pseudorandom) integer such that 0 < 𝑘 < 𝑞
8: 𝐶 B 𝑘 · 𝑃
9: 𝑟 B 𝑥𝐶 mod 𝑞 // 𝑥𝐶 is the 𝑥-coordinate of the point 𝐶

10: if 𝑟 = 0 then
11: go to line 7
12: end if
13: 𝑠 B (𝑟 · 𝑑 + 𝑘 · 𝑒) mod 𝑞
14: if 𝑠 = 0 then
15: go to line 7
16: end if
17: 𝑅 B Binary vector corresponding to 𝑟
18: 𝑆 B Binary vector corresponding to 𝑠
19: 𝜎 B (𝑅∥𝑆) // Concatenation of 𝑅 and 𝑆
20: Return 𝜎

4The private key 𝑑 is an integer which satisfies 0 < 𝑑 < 𝑞.
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Verification Algorithm Vrfy

Algorithm 6.6 GOST R 34.10-2012 Verification Algorithm Vrfy [18]
Input: Public key 𝑄5, message 𝑀 , signature 𝜎
Output: 1 if signature is valid, 0 if signature is invalid

1: 𝑟, 𝑠 B Calculate integers from 𝜎

2: if 0 < 𝑟 < 𝑞 ∧ 0 < 𝑠 < 𝑞 then
3: continue
4: else
5: Return 0
6: end if
7: 𝐻 B ℎ(𝑀)
8: 𝛼 B Integer whose binary representation is 𝐻
9: 𝑒 B 𝛼 mod 𝑞

10: if 𝑒 = 0 then
11: 𝑒 B 1
12: end if
13: 𝑣 B 𝑒−1 mod 𝑞
14: 𝑧1 B 𝑠 · 𝑣 mod 𝑞
15: 𝑧2 B −𝑟 · 𝑣 mod 𝑞
16: 𝐶 B 𝑧1 · 𝑃 + 𝑧2 · 𝑄
17: 𝑅 B 𝑥𝐶 mod 𝑞 // 𝑥𝐶 is the 𝑥-coordinate of the point 𝐶
18: if 𝑅 = 𝑟 then
19: Return 1
20: else
21: Return 0
22: end if

6.4.4 Blind Digital Signature Scheme

This subsection provides a description of the RSA blind signature scheme. More precisely, we
specify the key-generation algorithm Gen, the signing algorithm ⟨S,U⟩ as well as the deterministic
verification algorithm Vrfy (see Section 3.6) of the RSA blind signature scheme. In the Russian
federal remote e-voting scheme, this blind digital signature scheme is used to preserve the anonymity
of the voters by the Registrar (taking the role of the singer S) issuing blind signatures to the
voters’ (taking the role of the userU) public keys (of the GOST R 34.10-2012 signature scheme).
This means that the Registrar does not get to know any information about the voters’ public keys
which keeps the voters anonymous. In the following, 𝐻 : {0, 1}∗ → Z∗

𝑁
denotes a public hash

function [2].

5The public key 𝑄 is an elliptic curve point which satisfies 𝑑 · 𝑃 = 𝑄.
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Key-Generation Algorithm Gen

Algorithm 6.7 RSA Key-Generation Algorithm Gen [2, 3, 7, 30]
Input: Security parameter 1𝑛
Output: Public key (𝑁, 𝑒), private key (𝑁, 𝑑)

1: Choose two random primes 𝑝, 𝑞 where 𝑝 ≠ 𝑞, |𝑝2 | = |𝑞2 | = 𝑛
2: Compute 𝑁 = 𝑝 · 𝑞
3: Choose 𝑒 ∈ Z∗

Φ(𝑁 ) // Φ(𝑁) = (𝑝 − 1) · (𝑞 − 1)
4: Compute 𝑑 = 𝑒−1 mod Φ(𝑁)
5: Return (𝑁, 𝑒), (𝑁, 𝑑)

Signing Algorithm ⟨S,U⟩

Algorithm 6.8 RSA Signing Algorithm ⟨S,U⟩ [2]
Input: S: Private key (𝑁, 𝑑)
Input: U: Public key (𝑁, 𝑒), message 𝑚
Output: U: Blind signature 𝜎

1: U: Choose random 𝑏 ∈ Z∗
𝑁

2: U: 𝑚′ = 𝑏𝑒 · 𝐻 (𝑚) mod 𝑁
3: U sends 𝑚′ to S
4: S: 𝜎′ = 𝑚′𝑑 mod 𝑁
5: S sends 𝜎′ toU
6: U: 𝜎 = 𝑏−1 · 𝜎′ mod 𝑁
7: ReturnU: 𝜎

Verification Algorithm Vrfy

Algorithm 6.9 RSA Verification Algorithm Vrfy [2]
Input: Public key (𝑁, 𝑒), message 𝑚, blind signature 𝜎
Output: 1 if blind signature is valid, 0 if blind signature is invalid

1: if 𝜎𝑒 = 𝐻 (𝑚) mod 𝑁 then
2: Return 1
3: else
4: Return 0
5: end if

6.4.5 Commitment Scheme

This subsection illustrates the HMAC_GOSTR3411_2012_256 commitment scheme which is
utilized for computing commitments on the Voters’ SNILS codes by the Registrar. In order to
specify the commitment scheme, we essentially need to define the key-generation algorithm Gen
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and the commitment algorithm Com (see Section 3.7). The computation of commitments is based
on the HMAC transformation which uses the GOST R 34.11-2012 hash function with 256-bit output
(see Subsection 6.4.1), denoted by 𝐻 [46].

The following information on the key-generation algorithm as well as the commitment algorithm is
based on [34], where L = 32 and B = 64 [46].

Key-Generation Algorithm Gen

Note that [34] does not define an algorithm Gen for generating a commitment key 𝑐𝑘 . The only
information given on 𝑐𝑘 is that it has a minimum (recommended) length of 𝐿 bytes and a maximum
length of 𝐵 bytes. In case applications use commitment keys longer than 𝐵 bytes, 𝑐𝑘 is hashed first.
Then, the actual key is the resultant 𝐿 byte string.

Commitment Algorithm Com

The commitment algorithm Com uses two fixed strings denoted by ipad and opad:

ipad = byte 0x36 repeated 𝐵 times
opad = byte 0x5C repeated 𝐵 times

The commitment com is computed as com = 𝐻(𝑐𝑘 XOR opad, 𝐻(𝑐𝑘 XOR ipad, 𝑚)) where XOR
is the bitwise exclusive-OR. More precisely, the following algorithm is executed to compute com.

Algorithm 6.10 HMAC_GOSTR3411_2012_256 Commitment Algorithm Com [34]
Input: Commitment key 𝑐𝑘 , message 𝑚
Output: Commitment com

1: 𝑐𝑘extended B append zeros to the end of 𝑐𝑘 to create a 𝐵 byte string6

2: tmp1 B 𝑐𝑘extended XOR ipad
3: tmp2 B append 𝑚 to tmp1
4: tmp3 B 𝐻 (tmp2)
5: tmp4 B 𝑐𝑘extended XOR opad
6: tmp5 B append tmp3 to tmp4
7: com B 𝐻 (tmp5)
8: Return com

6.4.6 Key Sharing

The Russian federal remote e-voting scheme makes use of key sharing to split the Organiser’s
secret key 𝑆𝑜𝑟𝑔 into shares. In order to realize key sharing, the following (𝑘, 𝑛) threshold scheme
(see Section 3.8) by Shamir as described in [45] is used. Since the scheme generally specifies
how to divide secret data 𝐷, 𝐷 also comprises secret keys such as 𝑆𝑜𝑟𝑔. The presented (𝑘, 𝑛)

6For example, if 𝑐𝑘 is of length 20 bytes and 𝐵 = 64, then 𝑐𝑘 will be appended with 44 zero bytes 0x00.
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threshold scheme relies on polynomial interpolation. Given 𝑘 points (𝑥1, 𝑦1), . . . , (𝑥𝑘 , 𝑦𝑘) in the
two-dimensional space with distinct 𝑥𝑖’s, then there exists only a single polynomial 𝑞(𝑥) of degree
𝑘 − 1 satisfying 𝑞(𝑥𝑖) = 𝑦𝑖 for all 1 ≤ 𝑖 ≤ 𝑘 . Without loss of generality, the data 𝐷 is assumed to be
(or be convertible into) a number. In order to split up the data 𝐷 into 𝑛 pieces 𝐷𝑖 , a random 𝑘 − 1
degree polynomial 𝑞(𝑥) = 𝑎0 + 𝑎1𝑥 + . . . + 𝑎𝑘−1𝑥

𝑘−1 with 𝑎0 = 𝐷 is picked. Afterwards, 𝑞(𝑥) is
evaluated at 𝑛 points:

𝐷1 = 𝑞(1), . . . , 𝐷𝑛 = 𝑞(𝑛)

Now, we have divided our secret data 𝐷 into 𝑛 pieces. Next, we describe how to reconstruct 𝐷
given any subset of 𝑘 𝐷𝑖 pieces together with their corresponding indices. For reconstructing 𝐷, we
essentially need to find the coefficients of 𝑞(𝑥). This can be done by interpolation. As all 𝑘 points
(𝑖, 𝐷𝑖) are on 𝑞(𝑥) by construction and given those 𝑘 points, the polynomial of degree 𝑘 − 1 (such
that every point is on the polynomial) is unique, we actually receive 𝑞(𝑥) and thus its coefficients
through interpolation. Afterwards, we can just evaluate 𝑞(0) since 𝑞(0) = 𝑎0 = 𝐷 by construction.
Note that on the other hand, the knowledge of any 𝑘 − 1 𝐷𝑖 pieces is not sufficient for calculating
the secret data 𝐷. In order to make this claim more precise, Shamir illustrates sharing of 𝐷 with
modular arithmetic instead of real arithmetic. Therefore, the set of integers modulo a prime number
𝑝 is used. This set forms a field in which interpolation is possible. Given an integer valued data 𝐷,
a prime 𝑝 > 𝐷, 𝑛 is picked. At first, the coefficients 𝑎1, . . . , 𝑎𝑘−1 in the polynom 𝑞(𝑥) are randomly
chosen from a uniform distribution over the integers in [0, 𝑝). Next, the pieces 𝐷1, . . . , 𝐷𝑛 are
computed modulo 𝑝. Now, we assume that an adversary gets access to 𝑘 − 1 𝐷𝑖 pieces. There are a
total of 𝑝 possible values for 𝐷, since 𝐷 ∈ [0, 𝑝). For every possible value 𝐷′, the adversary is
able to construct only a single polynomial 𝑞′(𝑥) of degree 𝑘 − 1 satisfying 𝑞′(0) = 𝐷′ as well as
𝑞′(𝑖) = 𝐷′

𝑖
for all 1 ≤ 𝑖 ≤ 𝑘 − 1. As all 𝑝 possible polynomials are equally likely by construction,

the adversary can not deduce anything about the actual value of our secret data 𝐷.

6.4.7 Non-Interactive Zero-Knowledge Proofs

This subsection provides a description of the NIZKPs utilized in the Russian federal remote
e-voting scheme. The utilized NIZKPs are the Chaum-Pedersen proof as well as the disjunctive
Chaum-Pedersen proof, each consisting of a proof generation executed by the prover 𝑃 and a proof
verification executed by the verifier 𝑉 . They are both exemplified on the basis of the exponential
ElGamal encryption scheme that is described first.

Exponential ElGamal Encryption Scheme

In the following, we illustrate the exponential ElGamal encryption scheme based on Z∗𝑝 (with 𝑝
prime) and a generator 𝑔 ∈ Z∗𝑝. Therefore, we specify the key-generation algorithm Gen, the
encryption algorithm Enc and the decryption algorithm Dec of the encryption scheme.
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Algorithm 6.11 Exponential ElGamal Key-Generation Algorithm Gen [52, 54]
Input: Security parameter 1𝑛
Output: Public key 𝑦, private key 𝑥

1: Choose random 𝑥 ∈ Z∗𝑝
2: 𝑦 B 𝑔𝑥

3: Return (𝑦, 𝑥)

Algorithm 6.12 Exponential ElGamal Encryption Algorithm Enc [52, 54]
Input: Public key 𝑦, plaintext 𝑚
Output: Ciphertext (𝑟, 𝑠)

1: Choose random 𝑘 ∈ Z∗𝑝
2: 𝑟 B 𝑔𝑘

3: 𝑠 B 𝑔𝑚 · 𝑦𝑘
4: Return (𝑟, 𝑠)

Algorithm 6.13 Exponential ElGamal Decryption Algorithm Dec [52, 54]
Input: Private key 𝑥, ciphertext (𝑟, 𝑠)
Output: Plaintext 𝑚

1: 𝑔𝑚 B 𝑠
𝑟 𝑥

2: 𝑚 B log𝑔 (𝑔𝑚)
3: Return 𝑚

Chaum-Pedersen Proof

The Chaum-Pedersen proof, introduced by Chaum and Pedersen in [10] is a proof of equality of
discrete logarithms. This means that the Chaum-Pedersen proof enables a prover 𝑃 to prove to a
verifier 𝑉 that

log𝑔 (𝑥) = logℎ (𝑦)

where the 𝑃 knows 𝑎 such that 𝑔𝑎 = 𝑥 and ℎ𝑎 = 𝑦 [15, 44]. In the Russian federal remote e-voting
scheme, the Chaum-Pedersen proof is used by the Decryptor in order to prove the correctness
of (partial) decryptions of some ciphertexts using the private key. To prove the correctness of
decryption of an exponential ElGamal ciphertext (𝑟, 𝑠) using the private key 𝑥, 𝑃 proves the
following equality of discrete logarithms [40].

log𝑔 (𝑦) = log𝑟 (𝑠/𝑔𝑚)

The left discrete logarithm directly follows from the generation of the public key since 𝑔𝑥 = 𝑦. The
right discrete logarithm is shown below.

𝑟 𝑥 =
𝑠

𝑔𝑚
⇐⇒

(
𝑔𝑘

) 𝑥
=
𝑔𝑚 · 𝑦𝑘
𝑔𝑚

⇐⇒ (𝑔𝑥)𝑘 = 𝑦𝑘

⇐⇒ 𝑦𝑘 = 𝑦𝑘
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In the following, we present the Chaum-Pedersen proof generation as well as the Chaum-Pedersen
proof verification7. Since the proof of correctness of decryption is sent together with the decryption,
we added the decryption (plaintext 𝑚) to the input of the two algorithms. Note that the prover
additionally has access to the secret key 𝑥 [12].

Algorithm 6.14 Chaum-Pedersen Proof Generation [5, 6, 31]
Input: Ciphertext (𝑟, 𝑠), plaintext 𝑚
Output: Proof (𝑎, 𝑏, 𝑓 )

1: Choose random 𝑗 ∈ Z∗𝑝
2: 𝑎 B 𝑔 𝑗

3: 𝑏 B 𝑟 𝑗

4: 𝑐 B ℎ(𝑎, 𝑏, 𝑟, 𝑠/𝑔𝑚)
5: 𝑓 B 𝑗 + 𝑐 · 𝑥
6: Return (𝑎, 𝑏, 𝑓 )

Algorithm 6.15 Chaum-Pedersen Proof Verification [5, 6, 31]
Input: Proof (𝑎, 𝑏, 𝑓 ), ciphertext (𝑟, 𝑠), plaintext 𝑚

1: 𝑐′ B ℎ(𝑎, 𝑏, 𝑟, 𝑠/𝑔𝑚)
2: 𝑔 𝑓 !

= 𝑎 · 𝑦𝑐′

3: 𝑟 𝑓
!
= 𝑏 · (𝑠/𝑔𝑚)𝑐′

Now, we show why the two equalities in the proof verification should hold in case of correct
decryption.

𝑔 𝑓 = 𝑔 𝑗+𝑐·𝑥 = 𝑔 𝑗 · 𝑔𝑐𝑥 = 𝑎 · (𝑔𝑥)𝑐 = 𝑎 ·
(
𝑔log𝑔 (𝑦)

)𝑐
= 𝑎 · 𝑦𝑐 = 𝑎 · 𝑦𝑐′

𝑟 𝑓 = 𝑟 𝑗+𝑐·𝑥 = 𝑟 𝑗 · 𝑟𝑐𝑥 = 𝑏 · (𝑟 𝑥)𝑐 = 𝑏 ·
(
𝑟 log𝑟 (𝑠/𝑔𝑚 )

)𝑐
= 𝑏 · (𝑠/𝑔𝑚)𝑐 = 𝑏 · (𝑠/𝑔𝑚)𝑐′

Disjunctive Chaum-Pedersen Proof

Disjunctive proofs generally allow a prover 𝑃 to prove to a verifier 𝑉 that one of two statements
holds, where it is kept secret which one is correct [5]. In terms of the Chaum-Pedersen proof,
the disjunctive version allows proving that one of two equalities of discrete logarithms holds.
Concerning encryption of a message 𝑚, the disjunctive Chaum-Pedersen proof can be used to prove
that one of two messages has been encrypted, i. e., 𝑚 ∈ {𝑚0, 𝑚1}. For the encryption with the
exponential ElGamal encryption scheme, the disjunctive version of the proof looks as follows

log𝑔 (𝑟) = log𝑦 (𝑠/𝑔𝑚0) ∨ log𝑔 (𝑟) = log𝑦 (𝑠/𝑔𝑚1)

7The proof generation and the proof verification use a hash function ℎ. Whereas the presented Chaum-Pedersen proof
is non-interactive, the original Chaum-Pedersen proof is interactive. The proof can be made non-interactive by
using what is called the Fiat-Shamir transformation [5, 24] which comes along with the hash function ℎ. Note that
depending on the used form of the Fiat-Shamir transformation, the content of ℎ differs. This should just be seen as a
hint. It is not of importance here as we do not focus on the content of the hash function. The same applies to the
disjunctive Chaum-Pedersen proof.
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where the prover either knows a witness for the left or the right equality of discrete logarithms, but
not for both equalities simultaneously [15].

In the Russian federal remote e-voting scheme, the disjunctive Chaum-Pedersen proof is used by
the Voter in order to prove that either 𝑚 = 0 or 𝑚 = 1 has been encrypted, i. e., 𝑚 ∈ {0, 1}. For this
purpose, the Voter proves that one of the following two equalities of discrete logarithms holds.

log𝑔 (𝑟) = log𝑦

(
𝑠/𝑔1

)
∨ log𝑔 (𝑟) = log𝑦

(
𝑠/𝑔0

)
The left equality holds in case of encrypting 𝑚 = 1 whereas the right equality holds in case of
encrypting 𝑚 = 0. The witness that one of the two equalities holds is the random value 𝑘 used for
the encryption of a message 𝑚 with the exponential ElGamal encryption scheme. The left side
of each equality directly follows from how the first part of the ciphertext (𝑟, 𝑠) is computed since
𝑔𝑘 = 𝑟. The right side of each equality is shown below.

𝑦𝑘 =
𝑠

𝑔1 ⇐⇒ (𝑔
𝑥)𝑘 =

𝑔1 · 𝑦𝑘
𝑔1

⇐⇒ 𝑦𝑘 = 𝑦𝑘

𝑦𝑘 =
𝑠

𝑔0 ⇐⇒ (𝑔
𝑥)𝑘 =

𝑔0 · 𝑦𝑘
𝑔0

⇐⇒ 𝑦𝑘 = 𝑦𝑘

In the following, we present the disjunctive Chaum-Pedersen proof generation and the disjunctive
Chaum-Pedersen proof verification. There is one proof generation for the encryption of 𝑚 = 1 (see
Algorithm 6.16) and one proof generation for the encryption of 𝑚 = 0 (see Algorithm 6.17). Each
proof generation consists of two parts. More precisely, the proof generation consists of the 𝑚 = 1 or
the 𝑚 = 0 part as well as of a simulation of the contrary part [31]. If we proof that 𝑚 = 1 has been
encrypted, then the 𝑚 = 0 part of the proof needs to be simulated. Note that both proofs, i. e., the
proof for 𝑚 = 0 and the proof 𝑚 = 1 are validated using the same algorithm.

Algorithm 6.16 Disjunctive Chaum-Pedersen Proof Generation [5, 31]
Input: Ciphertext (𝑟, 𝑠)
Output: Proof (𝑎0, 𝑏0, 𝑎1, 𝑏1, 𝑐0, 𝑐1, 𝑓0, 𝑓1)

1: Choose random 𝑗 , 𝑐0, 𝑓0 ∈ Z∗𝑝
2: 𝑎0 B 𝑔 𝑓0/𝑟𝑐0

3: 𝑏0 B 𝑦 𝑓0/𝑠𝑐0

4: 𝑎1 B 𝑔 𝑗

5: 𝑏1 B 𝑦 𝑗

6: 𝑐 B ℎ(𝑟, 𝑠, 𝑎0, 𝑏0, 𝑎1, 𝑏1)
7: 𝑐1 B 𝑐 − 𝑐0
8: 𝑓1 B 𝑗 + 𝑐1 · 𝑘
9: Return (𝑎0, 𝑏0, 𝑎1, 𝑏1, 𝑐0, 𝑐1, 𝑓0, 𝑓1)
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Algorithm 6.17 Disjunctive Chaum-Pedersen Proof Generation [5, 31]
Input: Ciphertext (𝑟, 𝑠)
Output: Proof (𝑎0, 𝑏0, 𝑎1, 𝑏1, 𝑐0, 𝑐1, 𝑓0, 𝑓1)

1: Choose random 𝑗 , 𝑐1, 𝑓1 ∈ Z∗𝑝
2: 𝑎1 B 𝑔 𝑓1/𝑟𝑐1

3: 𝑏1 B 𝑦 𝑓1/(𝑠/𝑔)𝑐1

4: 𝑎0 B 𝑔 𝑗

5: 𝑏0 B 𝑦 𝑗

6: 𝑐 B ℎ(𝑟, 𝑠, 𝑎0, 𝑏0, 𝑎1, 𝑏1)
7: 𝑐0 B 𝑐 − 𝑐1
8: 𝑓0 B 𝑗 + 𝑐0 · 𝑘
9: Return (𝑎0, 𝑏0, 𝑎1, 𝑏1, 𝑐0, 𝑐1, 𝑓0, 𝑓1)

Algorithm 6.18 Disjunctive Chaum-Pedersen Proof Verification [5, 31]
Input: Proof (𝑎0, 𝑏0, 𝑎1, 𝑏1, 𝑐0, 𝑐1, 𝑓0, 𝑓1), ciphertext (𝑟, 𝑠)

1: 𝑐′ B ℎ(𝑟, 𝑠, 𝑎0, 𝑏0, 𝑎1, 𝑏1)
2: 𝑐0 + 𝑐1

!
= 𝑐′

3: 𝑔 𝑓0 !
= 𝑎0 · 𝑟𝑐0

4: 𝑔 𝑓1 !
= 𝑎1 · 𝑟𝑐1

5: 𝑦 𝑓0
!
= 𝑏0 · 𝑠𝑐0

6: 𝑦 𝑓1
!
= 𝑏1 · (𝑠/𝑔)𝑐1

Now, we show why the five equalities in the proof verification should hold in case either 𝑚 = 0 or
𝑚 = 1 has been encrypted, i. e., 𝑚 ∈ {0, 1}. At first, we consider the proof verification in case of
encrypting 𝑚 = 1, where we have that log𝑔 (𝑟) = 𝑘 = log𝑦 (𝑠/𝑔).

𝑐0 + 𝑐1 = 𝑐0 + (𝑐 − 𝑐0) = 𝑐 = 𝑐′

𝑔 𝑓0 = 𝑎0 · 𝑟𝑐0

𝑔 𝑓1 = 𝑔 𝑗+𝑐1 ·𝑘 = 𝑔 𝑗 · 𝑔𝑐1 ·𝑘 = 𝑎1 ·
(
𝑔𝑘

)𝑐1
= 𝑎1 ·

(
𝑔log𝑔 (𝑟 )

)𝑐1
= 𝑎1 · 𝑟𝑐1

𝑦 𝑓0 = 𝑏0 · 𝑠𝑐0

𝑦 𝑓1 = 𝑦 𝑗+𝑐1 ·𝑘 = 𝑦 𝑗 · 𝑦𝑐1 ·𝑘 = 𝑏1 ·
(
𝑦𝑘
)𝑐1

= 𝑏1 ·
(
𝑦log𝑦 (𝑠/𝑔)

)𝑐1
= 𝑏1 · (𝑠/𝑔)𝑐1

Next, we consider the proof verification in case of encrypting 𝑚 = 0, where we have that
log𝑔 (𝑟) = 𝑘 = log𝑦 (𝑠).

𝑐0 + 𝑐1 = (𝑐 − 𝑐1) + 𝑐1 = 𝑐 = 𝑐′

𝑔 𝑓0 = 𝑔 𝑗+𝑐0 ·𝑘 = 𝑔 𝑗 · 𝑔𝑐0 ·𝑘 = 𝑎0 ·
(
𝑔𝑘

)𝑐0
= 𝑎0 ·

(
𝑔log𝑔 (𝑟 )

)𝑐0
= 𝑎0 · 𝑟𝑐0

𝑔 𝑓1 = 𝑎1 · 𝑟𝑐1

𝑦 𝑓0 = 𝑦 𝑗+𝑐0 ·𝑘 = 𝑦 𝑗 · 𝑦𝑐0 ·𝑘 = 𝑏0 ·
(
𝑦𝑘
)𝑐1

= 𝑏0 ·
(
𝑦log𝑦 (𝑠)

)𝑐1
= 𝑏0 · 𝑠𝑐1

𝑦 𝑓1 = 𝑏1 · (𝑠/𝑔)𝑐1
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The Russian federal remote e-voting scheme makes use of another ZKRP associated with the
encrypted vote. More precisely, it uses a proof to affirm that the sum of all encrypted values for each
option on the ballot does not exceed the bound 𝑑 where 𝑑 denotes the maximum number of options
that each Voter can choose. As described above, the disjunctive Chaum-Pedersen proof can not
only be used to prove that either 𝑚 = 0 or 𝑚 = 1 has been encrypted, but can also be used to prove
that one of two arbitrary messages has been encrypted. Suppose that we want to prove that either
𝑚 = 1 or 𝑚 = 2 has been encrypted, then the disjunctive version of the proof looks as follows.

log𝑔 (𝑟) = log𝑦

(
𝑠/𝑔1

)
∨ log𝑔 (𝑟) = log𝑦

(
𝑠/𝑔2

)
The proof generation for 𝑚 = 2 would look the same as the proof generation for 𝑚 = 0. However,
line 3 in the proof generation for 𝑚 = 1 would change to 𝑏0 B 𝑦 𝑓0/(𝑠/𝑔2)𝑐0 . For the proof
verification, line 5 would change to 𝑦 𝑓0 !

= 𝑏0 · (𝑠/𝑔2)𝑐0 . In order to prove that the aggregated value
that we get when summing up all encrypted values for each option on the ballot lies in the range
[0, 𝑑], disjunctive Chaum-Pedersen proofs are combined. An intuition on how this could be realized
can be found in [16].
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7 Security Analysis

This chapter deals with the security analysis of the Russian federal remote e-voting scheme specified
in [50] w.r.t. verifiability as defined in Section 5.2. In order to perform a security analysis w.r.t
this definition of verifiability, we need to do the preliminary work described next. At first, we have
to define the assumptions underlying our analysis. This includes assumptions about the channels
used for communication, assumptions about the security of the used cryptographic primitives as
well as trust assumptions indicating which of the protocol participants are honest and which can
be corrupted by an adversary. In general, it is preferable to make as less assumptions and assume
as less protocol participants to be honest as possible. The reason is that this allows for stronger
guarantees concerning verifiability. The definition of the assumptions has a big impact on the result
of the security analysis since even small changes in the assumptions could lead to different results.
In the next step, we have to define the goal 𝛾, i. e., specify the conditions that need to be satisfied
such that a protocol run is considered correct in some protocol-specific sense. As the verifiability
definition is centered around the notion of a goal [14], the result of the analysis depends strongly on
the selected goal. Since the definition of verifiability requires the probability that a run 𝑟 which
does not meet the goal 𝛾 (i. e., 𝑟 ∉ 𝛾) is still accepted by the judge 𝐽 to be 𝛿-bounded, we have to
define the judging procedure, determining whether a run is accepted by 𝐽 or not. Based on the
assumptions, the goal as well as the judging procedure, we finally perform the security analysis.

7.1 Assumptions

The performed security analysis will be based on the following assumptions including assumptions
about the channels used for communication, assumptions about the guarantees of the cryptographic
primitives as well as trust assumptions about the protocol participants. In the following, a valid
voting transaction is defined as a voting transaction 𝑗 where all included range proofs are correct and
both signatures 𝜎𝑏 𝑗

and 𝜎𝑣 𝑗 are valid. This definition will be used throughout the whole chapter.

(A1) The following authenticated channels1are assumed to exist.

All protocol participants have unilaterally authenticated channels to the Blockchain 𝐵. This
makes sure that when accessing 𝐵, all protocol participants have the same view on the
Blockchain 𝐵 [35].

There are authenticated channels between every Voting Device and the Vote Collector.

1In [11], Coretti et al. define a channel as a resource involving a sender, a receiver and an attacker that enables the
sender to transmit messages to the receiver. They specify an authenticated channel as a channel that allows the
adversary to read, forward or delete messages. In this work, an authenticated channel refers to the authenticated
channel from Coretti et al. but does not allow the adversary to delete messages, i. e., the adversary is limited to reading
and forwarding the messages. Note that we abstract away from how the authenticated channels are established.
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(A2) The public-key encryption scheme is correct, i. e., Dec𝑠𝑘 (Enc𝑝𝑘 (𝑚)) = 𝑚.

Since for verifiability, we are not interested in whether the adversary can find out how a Voter
has voted, however require that the adversary is not able to alter or drop voting transactions,
CPA-security is not necessary. Thus, it is sufficient to assume that the public-key encryption
scheme is correct.

(A3) The digital signature scheme is (EUF-CMA)-secure.

In case we would not assume the digital signature scheme to be (EUF-CMA)-secure, this
would allow the adversary to alter the Voter’s voting transaction. More precisely, the adversary
could change the encrypted options (𝑐 𝑗)𝑖 together with the corresponding ZKRPs of the
Voter’s voting transaction and still produce a valid signature (w.r.t. the Voter’s public key
𝑝𝑘𝑣 𝑗 ) for the manipulated voting transaction. The described manipulation would remain
unnoticed since the voting transaction would be valid and the Voter’s public key 𝑝𝑘𝑣 𝑗 has not
been changed. Thus, we assume the digital signature scheme to be (EUF-CMA)-secure.

(A4) The blind digital signature scheme satisfies unforgeability.

Without the assumption that the blind digital signature scheme is unforgeable, this would
give the adversary the possibility to alter the Voter’s voting transaction. More precisely,
the adversary could forge a valid signature 𝜎𝑏forged (w.r.t. the Registrar’s public key 𝑝𝑘𝑏) on
its own public key 𝑝𝑘adv. When corrupting the Vote Collector, the adversary can alter the
Voter’s voting transaction by changing the encrypted votes (𝑐 𝑗)𝑖, adapting the range proofs
accordingly, changing the Voter’s public key 𝑝𝑘𝑣 𝑗 to 𝑝𝑘adv and changing 𝜎𝑏 𝑗

to 𝜎𝑏forged . The
adversary would then sign the altered voting transaction with its secret key and upload it to
the Blockchain. As both signatures 𝜎𝑏forged and 𝜎𝑣adv would be valid, this voting transaction
would not be marked as invalid and thus be reflected in the published election result. This
manipulation could only be noticed if the Voter would check if her voting transaction has
been added to the Blockchain.

The blindness property does not need to be ensured. This is because we are not interested in
whether it is feasible for a malicious signer (i. e., the Registrar) to determine which of two
public keys 𝑝𝑘𝑣1 and 𝑝𝑘𝑣2 has been signed first. In case the malicious signer would be able
to do so, the anonymity of the Voter would not be guaranteed anymore which is however not
of relevance for verifiability.

(A5) All NIZKPs have to fulfill completeness and soundness.

The zero-knowledge property does not need to be fulfilled. As for verifiability, we are not
interested in preventing the adversary from knowing the content of the Voter’s ballot, it does
not matter whether the adversary gains any information about the statement to be proven
(except that the statement is true) when verifying the NIZKPs.

In case completeness would not be satisfied, an honest Voter would not be able to convince
the verifier that for each option she only encrypted 0 or 1 and that she did not choose more
than 𝑑 options. Additionally, an honest Decryptor could not convince the verifier that the
partial decryptions are correct. As none of this is considered malicious behavior and it has to
be ensured that it is possible to convince the verifier in case of correct behavior, we assume
completeness to be satisfied.
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In case soundness would not be satisfied, a dishonest Voter could convince the verifier that
for each option she only encrypted 0 or 1 and that she did not choose more than 𝑑 options,
although she did for example encrypt 2 or has chosen more than 𝑑 options. This would allow
a dishonest Voter to deviate from the protocol specification without being detected. As this is
considered malicious behavior and it has to be ensured that it is not possible to convince the
verifier in case of such behavior, we assume soundness to be satisfied.

(A6) The Scheduler 𝑆, the Judge 𝐽, the Blockchain 𝐵, the Registrar 𝑅 and 𝑛ℎ Voters 𝑉𝑖 are honest,
i. e.,

𝜑 = ℎ𝑜𝑛(𝑆) ∧ ℎ𝑜𝑛(𝐽) ∧ ℎ𝑜𝑛(𝐵) ∧ ℎ𝑜𝑛(𝑅)
𝑛ℎ∧
𝑖=1

ℎ𝑜𝑛(𝑉𝑖)

Honesty of Scheduler 𝑆:

For the security analysis, we consider the Organiser 𝑂 to be part of the Scheduler 𝑆. As
described in Section 5.1, the Scheduler 𝑆 acts as the master program of the protocol
process and is responsible for triggering the protocol participants in the proper order.
This also includes triggering the Judge. In case of corrupting 𝑆, the adversary could for
example prevent the Scheduler from triggering 𝐽. Since the Organiser is coordinating
the e-voting process and is generating and publishing the election parameters, it is
reasonable to assume 𝑂 to be honest. Thus, the Scheduler 𝑆 (including the Organiser
𝑂) is assumed to be honest.

Note that the Scheduler 𝑆 does not exist in real systems and is rather a modeling
tool [35].

Honesty of Judge 𝐽:

Obviously, the Judge 𝐽 necessarily has to be honest since 𝐽 is the one accepting or
rejecting a protocol run.

Honesty of Blockchain 𝐵:

The Blockchain 𝐵 stores public information that is used by 𝐽 for performing the judging
procedure, among other things. Since we want this information to be stored correctly
and want every protocol participant to have the same view on the Blockchain and thus
on the stored information, the Blockchain 𝐵 is assumed to be honest.

Honesty of Registrar 𝑅:

The reason why the Registrar is assumed to be honest is similar to the reason why the
blind digital signature scheme is assumed to be unforgeable. In case of corrupting 𝑅, the
adversary would not have to forge a signature 𝜎𝑏forged on its public key 𝑝𝑘adv, but could
request the Registrar to issue a signature 𝑠 on its masked public key and then remove
the mask from 𝑠 in order to get a valid signature 𝜎𝑏adv on its public key. Afterwards,
the adversary would proceed in the same way as described in the justification for the
assumption of the unforgeability.
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Additionally, if we would allow the adversary to corrupt the Registrar, the VoterList
could be manipulated such that also Voters that are not eligible to vote are included and
signatures 𝑠 could also be issued to Voters that are not eligible to vote. As we do not
permit voting transactions of Voters that are not eligible to vote to be reflected in the
published election result, 𝑅 is assumed to be honest.

Honesty of Voters 𝑉𝑖:

It would not make sense at all to allow the adversary to corrupt all Voters. This is why
there are 𝑛ℎ honest Voters 𝑉𝑖 .

Note that here, we do not distinguish between honesty and dishonesty of Voter and
Voting Device, i. e., honesty/dishonesty of a Voter is equal to the honesty/dishonesty
of the corresponding Voting Device. In case of allowing honest Voters but dishonest
Voting Devices, there are means as for example Voter Verification Devices that enable
to check that the Voting Device behaved correctly [35].

7.2 Goal

In order to specify the goal 𝛾, one of the central questions is whether we want to provide guarantees
for those honest Voters who performed their checks successfully or not. Since there are checks
where cheating might not be detected (with some probability) as already mentioned in Section
5.3, we consider this guarantee to be too severe. This means that we do not treat votes of honest
Voters successfully performing their checks different to votes of honest Voters who did not perform
their checks (successfully). Thus, we want to limit the deviation from the ideal result to the actual
result. As for the deviation, we consider a different treatment of dropping and altering votes to be
meaningful, we ended up with the following definition of a goal that corresponds to the quantitative
goal from Section 5.4.

Let 𝑟 be a run of an e-voting protocol with 𝑛 eligible Voters. Let 𝑛ℎ denote the number of honest
Voters in 𝑟 and 𝑛𝑑 = 𝑛 − 𝑛ℎ denote the number of dishonest Voters in 𝑟. The actual choices of the
honest Voters in this run are denoted by 𝑐1, . . . , 𝑐𝑛ℎ . Then, the goal 𝛾(𝑘, 𝜑) is fulfilled in a protocol
run 𝑟 (i. e., 𝑟 ∈ 𝛾(𝑘, 𝜑)) if either (a) the trust assumptions 𝜑 are not met in 𝑟 , or if (b) 𝜑 is met in 𝑟
and there exist valid choices 𝑐′1, . . . , 𝑐

′
𝑛𝑑

(choices of dishonest Voters) and 𝑐1, . . . , 𝑐𝑛 such that the
following conditions are satisfied:

(i) An election result is published in 𝑟 which is equal to 𝜌(𝑐1, . . . , 𝑐𝑛).

(ii) 𝑑 ((𝑐1, . . . , 𝑐𝑛ℎ , 𝑐
′
1, . . . , 𝑐

′
𝑛𝑑
), (𝑐1, . . . , 𝑐𝑛)) ≤ 𝑘 .

Since for the definition of verifiability, we are interested in scenarios where the goal is not met in a
protocol run, we describe those scenarios subsequently.

The goal 𝛾(𝑘, 𝜑) is not satisfied in a run 𝑟 (i. e., 𝑟 ∉ 𝛾(𝑘, 𝜑)) if the trust assumptions 𝜑 are met in
𝑟 and there exist valid choices 𝑐′1, . . . , 𝑐

′
𝑛𝑑

and 𝑐1, . . . , 𝑐𝑛 such that at least one of the following
conditions holds true:

(i) No election result is published in 𝑟 .

(ii) An election result is published in 𝑟 but is not equal to 𝜌(𝑐1, . . . , 𝑐𝑛).
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(iii) 𝑑 ((𝑐1, . . . , 𝑐𝑛ℎ , 𝑐
′
1, . . . , 𝑐

′
𝑛𝑑
), (𝑐1, . . . , 𝑐𝑛)) > 𝑘 .

7.3 Judging Procedure

In this section, we describe the judging procedure that is used for the security analysis of the Russian
federal remote e-voting system. In the following, 𝑎 denotes the number of options in each ballot
(denoted by 𝑛 in Section 6.3) and 𝑛 denotes the number of eligible Voters.

For the security analysis, as already specified above, we assume that the Judge 𝐽 is honest. The
honest program of 𝐽, denoted by 𝜋𝐽 solely uses information that is publicly available. This means
that each protocol participant is able to run the judging procedure. The Scheduler 𝑆 triggers the
program 𝜋𝐽 . Upon being triggered, 𝜋𝐽 reads data from the Blockchain and verifies its correctness.
In the following situations, 𝐽 outputs reject on a distinct tape:

(J1) If at least one of the proofs of correctness of partial decryptions is not correct.

In case at least one of the proofs of correctness of partial decryptions is not correct, the
Decryptor did not compute correct partial decryptions (𝑅𝑖)𝑡 for each option 𝑖 ∈ {0, . . . , 𝑎−1}.
This would lead to an election result being published that does not correspond to the expected
election result 𝜌(𝑐1, . . . , 𝑐𝑛) since incorrect partial decryptions (𝑅𝑖)𝑡 lead to incorrect final
decryptions 𝑀𝑖 . Thus, the Judge should reject this protocol run.

(J2) If there is more than one valid voting transaction for a Voter’s public key 𝑝𝑘 𝑗 .

In case there is more than one valid voting transaction for a Voter’s public key 𝑝𝑘 𝑗 , the
published election result would reflect more than one valid ballot cast by the Voter with public
key 𝑝𝑘 𝑗 . This would lead to an election result being published that does not correspond to
the expected election result 𝜌(𝑐1, . . . , 𝑐𝑛) as ballot stuffing is not permitted, and therefore the
published election result is expected to reflect only one valid cast ballot per Voter. Thus, the
Judge should reject this protocol run.

(J3) If the number of valid voting transactions exceeds the number of issued signatures 𝑠.

If the number of valid voting transactions exceeds the number of issued signatures 𝑠, it was
either managed to forge a valid signature 𝜎𝑏 (whose generation usually requires 𝑠) or a valid
signature 𝜎𝑏 was reused. Since the Registrar 𝑅 is assumed to be honest, signatures 𝑠 are only
issued to eligible Voters and only once per eligible Voter. As the published election result
is expected to reflect only valid cast ballots of eligible Voters as well as only one valid cast
ballot per eligible Voter, this would lead to an election result being published that does not
correspond to the expected election result 𝜌(𝑐1, . . . , 𝑐𝑛). Thus, such a protocol run should
be rejected.

(J4) If the result of the aggregation of encrypted votes is not equal to the correct and expected
result for at least one option, i. e., if there exists an option 𝑖 ∈ {0, . . . , 𝑎 − 1} such that

(𝑅𝑖 , 𝐶𝑖) ≠
𝑉∑︁
𝑗=1
(𝑐 𝑗)𝑖

where 𝑉 is the total number of valid voting transactions.
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In order to check whether the result of the aggregation of encrypted votes is equal to the
correct and expect result for each option, the Judge proceeds as described in the following. At
first, the two signatures 𝜎𝑏 𝑗

and 𝜎𝑣 𝑗 are verified for each voting transaction 𝑗 contained in the
Blockchain. In the next step, the range proofs, i. e., the NIZKPs for showing that 𝑏𝑖 ∈ {0, 1}
and

∑𝑎−1
𝑖=0 𝑏𝑖 ≤ 𝑑 only for those voting transactions where both signatures are valid, are

verified. Now, the valid voting transactions are used in order to perform the aggregation of
encrypted votes as the sum described above.

In case the result of the aggregation of encrypted votes is not equal to the correct and expected
result for at least one option, the Decryptor did not compute correct aggregations (𝑅𝑖 , 𝐶𝑖) for
each option 𝑖 ∈ {0, . . . , 𝑎 − 1}. There are several cases leading to incorrect aggregations. At
first, votes (𝑐 𝑗)𝑖 of invalid voting transactions could have been included. Another case is that
votes of valid voting transactions could have been excluded. Finally, arbitrary votes could
have been added. All these three cases would lead to an election result being published that
does not correspond to the expected election result 𝜌(𝑐1, . . . , 𝑐𝑛) which is why the 𝐽 should
reject this protocol run.

(J5) If the result of the final decryption of aggregated votes is not equal to the correct and expected
result for at least one option, i. e., if there exists an option 𝑖 ∈ {0, . . . , 𝑎 − 1} such that

𝑀𝑖 ≠ 𝐶𝑖 − 𝐻 (𝑄𝑡 | |𝑄𝑜𝑟𝑔) · 𝑆𝑜𝑟𝑔 · 𝑅𝑖 − 𝐻 (𝑄𝑜𝑟𝑔 | |𝑄𝑡 ) · (𝑅𝑖)𝑡 .

In case the result of the final decryption of aggregated votes is not equal to the correct and
expected result for at least one option, the Decryptor did not compute correct final decryptions
𝑀𝑖 for each option 𝑖 ∈ {0, . . . , 𝑎 − 1}. This would lead to an election result being published
that does not correspond to the expected election result 𝜌(𝑐1, . . . , 𝑐𝑛). Thus, such a protocol
run should be rejected.

(J6) If there are valid voting transactions, but no election result is published.

Obviously, if there are valid voting transactions, an election result is expected to be published.
If this is not the case, the Judge should reject this protocol run.

If none of these situations occur, then 𝐽 outputs accept on a distinct tape.

7.4 Verifiability Analysis

In this section, we perform the security analysis of the Russian federal remote e-voting protocol w.r.t.
verifiability. Therefore, we consider attacks that the adversary could perform in order to manipulate
a protocol run 𝑟 such that the goal 𝛾(𝑘, 𝜑) is not satisfied. For each of those attacks, we investigate
whether the manipulated protocol run 𝑟 ∉ 𝛾(𝑘, 𝜑) is accepted or rejected by the Judge 𝐽.

In the Russian federal remote e-voting system, 𝑑 denotes the maximum number of options that each
Voter can select. In this analysis, we only consider single choice (i. e., 𝑑 = 1). Multiple choice (i. e.,
𝑑 > 1) is not considered here since it is more complex to capture the result of the analysis as the
probability Pr[𝜋 (𝑙) ↦→ ¬𝛾(𝑘, 𝜑), (𝐽 : accept)] depending on 𝑘 . This is due to the fact that in case
of multiple choice, the probability depends on the exact Voters’ voting transactions in a certain
protocol run. However, the presented attacks to manipulate a protocol run are similar.
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In order to manipulate a protocol run 𝑟 such that the goal 𝛾(𝑘, 𝜑) is not satisfied, the adversary can
perform the following attacks:

(i) The adversary could attempt that no election result is published in 𝑟 at all, although there
exist valid voting transactions.

In order to achieve this, the adversary could corrupt the Decryptor and thereby hinder the
Decryptor to publish the final decryptions of aggregated votes 𝑀𝑖 . This would mean that no
election result is published even though there are valid voting transactions. Due to (J6), the
Judge would reject this protocol run.

(ii) The adversary could attempt to achieve an election result being published which is unequal to
the expected election result 𝜌(𝑐1, . . . , 𝑐𝑛).

The adversary could achieve this by corrupting the Decryptor and performing at least one of
the following actions:

• Forge the result of the aggregation of encrypted votes by computing incorrect aggrega-
tions (𝑅𝑖 , 𝐶𝑖) for at least one option. More precisely, the adversary could either include
votes (𝑐 𝑗)𝑖 of invalid voting transactions, exclude votes of valid voting transactions or
add arbitrary votes to the aggregation of encrypted votes. Due to (J4), such a protocol
run would be rejected by the Judge.

• Compute incorrect partial decryptions (𝑅𝑖)𝑡 for at least one option. Due to (J1), such a
protocol run would be rejected by the Judge.

• Forge the result of the final decryption of aggregated votes by computing incorrect
final decryptions 𝑀𝑖 for at least one option. Due to (J5), such a protocol run would be
rejected by the Judge.

Additionally, the adversary could perform ballot stuffing. Therefore, the adversary could
either corrupt dishonest Voters and send the voting transaction more than once to the Vote
Collector or corrupt the Vote Collector and upload voting transactions more than once to the
Blockchain. After this attack, the Blockchain contains more than one voting transaction per
Voter’s public key. Due to (J2), such a protocol run would be rejected by the Judge.

To circumvent this, the adversary could create its own voting transaction by including its valid
choices and forging a valid signature 𝜎𝑏adv (w.r.t. the Registrar’s public key 𝑝𝑘𝑏) on its public
key 𝑝𝑘adv. This voting transaction would be valid and thus reflected in the published election
result meaning that the published election result is unequal to the expected one 𝜌(𝑐1, . . . , 𝑐𝑛)
that only reflects one voting transaction per eligible Voter. As we assumed the blind digital
signature scheme to satisfy unforgeability (Assumption (A4)), forging a valid signature 𝜎𝑏adv

is not possible. If it would be possible to forge 𝜎𝑏adv , the Judge would reject the protocol run
due to (J3).

(iii) The adversary could attempt to either alter or drop voting transactions of honest Voters such
that 𝑑 ((𝑐1, . . . , 𝑐𝑛ℎ , 𝑐

′
1, . . . , 𝑐

′
𝑛𝑑
), (𝑐1, . . . , 𝑐𝑛)) > 𝑘 . Clearly, this is dependent on the chosen

parameter 𝑘 . Hereinafter, we investigate whether one of these attacks could be performed
by the adversary without the Judge rejecting the protocol run or not, more precisely the
probability thereof.
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For the investigation, we distinguish between the following two cases. In the first case,
Voters do not have the possibility to publish a complaint that their voting transaction has
not been published into the Blockchain, although they have cast a ballot and sent the voting
transaction to the Vote Collector. In the second case, Voters have the possibility to publish
such complaints. For instance, this case could be realized by the Vote Collector sending
the Voter a signature on her voting transaction as it has been implemented in [35]. If such
complaints can be published into the Blockchain, the judging procedure needs to be adapted,
such that the complaints are taken into account as well. Note that we abstract away from the
exact way the complaints are realized as well as from how the judging procedure has to be
adapted. We only consider the fact that there are possibilities to implement the second case
and that the complaints allow the Judge to detect manipulations in which voting transactions
of honest Voters have been dropped. Detailed information on the realization can be obtained
from [35].

We start by considering the first case. In this case, Voters can not publish complaints if their
voting transaction has not been published, even though they have cast a ballot and sent the
voting transaction to the Vote Collector. The adversary could corrupt the Vote Collector
and drop an arbitrary amount of voting transactions containing the actual choices of honest
Voters by not uploading the voting transactions to the Blockchain. This leads to a deviation
of the actual election result from the ideal election result since the dropped choices are not
part of the actual election result. As the Judge does not have any possibility to detect that
voting transactions containing the actual choices of honest Voters have been dropped and
it is not possible for Voters to complain, this malicious behavior remains undetected and
the corresponding protocol run is accepted. Independent of the chosen parameter 𝑘 , there
is an attack where the adversary drops 𝑘 + 1 voting transactions of honest Voters such that
𝑑 ((𝑐1, . . . , 𝑐𝑛ℎ , 𝑐

′
1, . . . , 𝑐

′
𝑛𝑑
), (𝑐1, . . . , 𝑐𝑛)) > 𝑘 as the amount of voting transactions to drop

without being detected is arbitrary. This means that Pr[𝜋 (𝑙) ↦→ ¬𝛾(𝑘, 𝜑), (𝐽 : accept)] would
be bounded by 1. Thus, in the first case, the Russian federal remote e-voting protocol does
not provide verifiability at all.

Next, we investigate the second case, i. e., Voters have the possibility to publish complaints
if their voting transaction has not been published, even though they have cast a ballot and
sent the voting transaction to the Vote Collector. In the following, let 𝑘 = 0. This means that
the security analysis w.r.t verifiability is based on the goal 𝛾(0, 𝜑). Thus, for a protocol run
to be accepted, among other things, the distance between the ideal and the actual election
result has to be 0, i. e., the actual election result has to be equal to the ideal one and thus,
neither dropping nor altering votes is permitted. To manipulate the protocol run such that the
goal 𝛾(0, 𝜑) is not satisfied, the adversary has to achieve that the distance between ideal and
actual election result is bigger than 0, i. e., 𝑑 ((𝑐1, . . . , 𝑐𝑛ℎ , 𝑐

′
1, . . . , 𝑐

′
𝑛𝑑
), (𝑐1, . . . , 𝑐𝑛)) > 0.

However, the Judge should not be able to detect the manipulation. In general, the adversary
has two options, either to alter or drop voting transactions of honest Voters.

In order to achieve the desired effect of altered voting transactions, i. e., that the choices made
by honest Voters are replaced by different choices, the altered voting transaction has to remain
valid. Otherwise, the altered choices would not be contained in the actual election result
since the voting transactions are not valid. In case that they are not valid, altering of voting
transactions has the same effect as dropping them. In order to alter a voting transaction of an
honest Voter, the adversary could corrupt the Vote Collector and change the actual choices
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(𝑐 𝑗)𝑖 to different valid ones. However, the adversary is not able to generate a signature
𝜎𝑣adv for the altered voting transaction that is valid w.r.t. the Voter’s public key 𝑝𝑘𝑣 𝑗 (that is
also contained in the voting transaction) since the digital signature scheme is assumed to be
(EUF-CMA)-secure (assumption (A3)). This means that the altered voting transaction would
not be valid and thus not reflected in the actual election result which makes the consequence
of the attack equal to dropping voting transactions.

Another possibility to alter a voting transaction, without the necessity to generate a valid
signature 𝜎𝑣adv is to additionally replace the Voter’s public key 𝑝𝑘𝑣 𝑗 by the adversary’s public
key 𝑝𝑘adv. However, for the altered voting transaction to be valid, a valid signature 𝜎𝑏adv

(w.r.t. the Registrar’s public key 𝑝𝑘𝑏) on 𝑝𝑘adv is required. As the Registrar is assumed to
be honest, the adversary would have to forge a valid signature 𝜎𝑏adv such that the altered
voting transaction would be valid and thus reflected in the actual election result. Due to
assumption (A4), forging a valid signature 𝜎𝑏adv is not possible. Thus, the altered voting
transaction would not be valid. This means that the effect of this attack is equal to dropping
voting transactions as well.

In case of dropping a voting transaction of an honest Voter, the adversary could corrupt
the Vote Collector to do so. This only remains undetected if the Voter did not perform her
checks. Otherwise, if the Voter has performed her checks and notices that her vote was
not published into the Blockchain, she can publish a complaint which would enable the
Judge to detect the manipulation. Let 𝑝check denote the probability that a Voter performs
her checks. As the Judge has no possibility to detect this manipulation without a complaint,
Pr[𝜋 (𝑙) ↦→ ¬𝛾(0, 𝜑), (𝐽 : accept)] would be bounded by 1 − 𝑝check.

Thus, in the second case, the Russian federal remote e-voting protocol does provide verifiability
with some probability. To be more precise, the investigated protocol is (𝛾(0, 𝜑), 𝛿0(𝑝check))-
verifiable where 𝛿0(𝑝check) = 1 − 𝑝check.

Finally, we generalize the result of the analysis and keep 𝑘 flexible instead of fixing it. In
order to manipulate the protocol run such that the goal 𝛾(𝑘, 𝜑) is not met, the adversary
has to achieve that 𝑑 ((𝑐1, . . . , 𝑐𝑛ℎ , 𝑐

′
1, . . . , 𝑐

′
𝑛𝑑
), (𝑐1, . . . , 𝑐𝑛)) > 𝑘 . Therefore, the adversary

could corrupt the Vote Collector and drop voting transactions of 𝑘 + 1 honest Voters. This
manipulation would only remain undetected if none of the 𝑘 + 1 honest Voters did perform
their checks. This implies that the probability Pr[𝜋 (𝑙) ↦→ ¬𝛾(𝑘, 𝜑), (𝐽 : accept)] would
be bounded by (1 − 𝑝check)𝑘+1. Thus, the Russian federal remote e-voting protocol does
provide verifiability with some probability. To be more precise, the investigated protocol is
(𝛾(𝑘, 𝜑), 𝛿𝑘 (𝑝check))-verifiable where 𝛿𝑘 (𝑝check) = (1 − 𝑝check)𝑘+1.

75





8 Conclusion and Outlook

In this chapter, we conclude by summarizing the work as well as the results gained from the security
analysis. In addition, in the outlook, we discuss future work concerning the Russian federal remote
e-voting system.

Conclusion

In this work, we have presented one of the two remote e-voting systems that were used in the Russian
parliamentary elections of 2021, called the Russian federal remote e-voting system. Therefore, we
introduced a description of the protocol that the remote e-voting system is based on and investigated
the cryptographic primitives that are used in the protocol.

Finally, we have performed a security analysis of the Russian federal remote e-voting protocol
w.r.t. verifiability as defined in the KTV framework. For this purpose, we determined assumptions
about the used cryptographic primitives as well as assumptions about the honesty of the protocol
participants. Since the KTV framework is centered around the notion of a goal 𝛾 as well as a Judge
𝐽, we defined a suitable goal specifying the conditions that need to be satisfied such that a protocol
run is valid and defined a judging procedure that states the situations in which a certain protocol run
should be rejected by the Judge in case the goal is not met.

For the analysis, we distinguished between the following two cases. In the first case, Voters do not
have the possibility to publish complaints that their voting transaction has not been published into
the Blockchain, although they have cast a ballot and sent the voting transaction to the Vote Collector.
In the second case, Voters have the possibility to publish such complaints.

As a result of the security analysis w.r.t. verifiability, we found out that in the first case, the Russian
federal remote e-voting protocol does not provide verifiability at all. In contrast, in the second case,
for 𝑘 = 0, the protocol is (𝛾(0, 𝜑), 𝛿0(𝑝check))-verifiable where 𝛿0(𝑝check) = 1 − 𝑝check and 𝑝check
denotes the probability that a Voter performs her checks. For a general 𝑘 , the analysis has shown
that the investigated protocol is (𝛾(𝑘, 𝜑), 𝛿𝑘 (𝑝check))-verifiable where 𝛿𝑘 (𝑝check) = (1 − 𝑝check)𝑘+1.
This means that in the second case, the verifiability of the Russian federal remote e-voting protocol
is dependent on the probability that Voters perform their checks.

Outlook

Since this work has provided a security analysis w.r.t. verifiability, future work could analyze the
Russian federal remote e-voting system focusing on other security properties of e-voting protocols
such as accountability or vote secrecy. Basically, accountability characterizes e-voting systems that
ensure the possibility to detect if the published election result does not match the election result
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reflecting how voters actually voted (as required for verifiability) and additionally guarantee that
misbehaving protocol participants can even be identified as well as blamed for their misbehavior [35].
Additionally, future work could be concerned with code audits.

As stated in the introduction, two remote e-voting systems have been deployed in the parliamentary
elections of 2021. The system used to conduct e-voting in Moscow is based on a completely
different protocol [50]. Thus, it would require a separate security analysis to analyze this system
w.r.t. verifiability.
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