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Abstract

The hydrological cycle is a complex system, composed of multiple variables, which in most
cases are not measured. This is one of the reasons why it is a challenge to have models that
adequately represent the expected discharges. The Predictions in Ungauged Basins (PUB)
initiative reinforces the need on having models that capture the different catchment interac-
tions and represent various catchment processes. These models are more robust and thus can
be more reliable to transfer to ungauged catchments. In recent years, the field of hydrologi-
cal research has focused on understanding and explaining the different processes present in
catchments. Nevertheless, few applications that include precipitation, the main responsible
of runoff change, are found. Further understanding of the temporal and spatial dependence
of the meteorological event triggering the floods is needed.

In this study, an analysis of the meteorological event triggering the floods was carried out.
The concept of entropy was used to characterize the temporal distribution of precipitation. It
was found that the precipitation temporal entropy is a better indicator of hydrograph shape
than the duration or the intensity. Further, the geographical interdependence of the amount
of precipitation and the temporal precipitation entropy causing the floods was described by
looking at the association of stations triples. This suggested that, up until a given precipita-
tion quantile, flood events are more likely caused by precipitation events of total coverage.
However, for larger quantile values, it is observed that as the quantile increases the prob-
ability of observing joint occurrence in space decreases. The temporal distribution of pre-
cipitation events causing the floods showed to be more associated in space than the amount
of precipitation triggering the floods. Nonetheless, this temporal distribution is not constant
over all flood events, what can be attributed to different flood mechanisms. The antecedent
precipitation index (API) was used to explain the soil moisture content. The empirical dis-
tribution of antecedent precipitation index (API) at the time of a flood was compared with
empirical distributions of unconditioned API data series. For this purpose, the Wilcoxon
statistic and the Kolmogorov-Smirnov distance were used to compare the empirical distri-
butions. The results showed that the soil moisture that favor the occurrence floods is not an
annual extreme, but rather a value close to the monthly maximum API . Further, it was ob-
served that the longer memory of the catchment gives more information about the occurrence
of the flood.

Additionally, in order to estimate the catchment reaction at the time of a flood, a region-
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Abstract

alization of the flood wave hydrographs was carried out. For this purpose, three methods
of defining the similarity of the floods were considered. All three methods are based in the
random forest algorithm. The novelty of this procedure was the use of a supervised random
forest to describe the similarity of the flood events. The similarity matrix was obtained by
calculating the joint occurrence of floods in the random forest space. To evaluate the per-
formance, the estimations of the hydrograph peak and the time to peak were used. In all
three methods, the same tendencies were observed, an overestimation of the peak and an
underestimation of the time to peak. Moreover, an approach using an unsupervised random
forest was compared to the supervised one. The unsupervised random forest yielded larger
estimation errors.

For the estimation of the flood volume a rainfall-runoff model was modified to represent
the study region. The model chosen in this study was the Erosion/Productivity Impact Cal-
culator (EPIC). The model was calibrated to be more representative of the study region. For
this purpose, the estimation errors in the space of the model parameters were studied. This
allowed to find the model parameters that can better represent the study area. The values
obtained were considered reasonable. For example, it is observed that the longer memory
of the catchment is more representative of the study catchments, which are the same results
as when analyzing the meteorological phenomenon causing the floods. Further, the values
obtained for the regional constant, parameter modifying the initial abstraction of the catch-
ment, were found to be smaller than the original ones obtained for United States catchments,
which agrees with other studies in European catchments. Having the volume, only the du-
ration is missing to denormalize the design hydrograph obtained from the random forest.
For this purpose, an estimation of the duration was proposed by a simple linear regression
model for which the precipitation duration and the concentration time of the catchments are
considered.

Finally, a leave-one-out cross-validation of the flood estimation models showed that rea-
sonable results of the estimation of floods in ungauged catchments, can be obtained with
the models in this study. In particular, the estimation of the dimensionless flood wave hy-
drograph resulted in the lowest errors. Further studies should concentrate on understanding
the uncertainties of the different precipitation mechanisms triggering the floods, and how the
spatial association of precipitation can be described to be used as the input for the models.
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Kurzfassung

Der Wasserkreislauf ist ein komplexes System, das aus zahlreichen Variablen besteht, die in
den meisten Fällen nicht gemessen werden. Dies ist einer der Gründe, warum es eine Her-
ausforderung ist, über Modelle zu verfügen, die die erwarteten Abflüsse angemessen dar-
stellen. Die Initiative “Predictions in Ungauged Basins” (PUB) unterstreicht die Bedeutung
von Modellen, die die verschiedenen Wechselwirkungen zwischen Einzugsgebieten erfassen
und verschiedene Einzugsgebietsprozesse darstellen. Diese Modelle sind robust und können
daher zuverlässig auf ungemessene Einzugsgebiete übertragen werden. In den letzten Jah-
ren hat sich die hydrologische Forschung darauf konzentriert, die verschiedenen Prozesse in
den jeweiligen Einzugsgebieten zu verstehen und zu erklären. Dennoch gibt es nur wenige
Anwendungen, die den Niederschlag, den Hauptverantwortlichen der Abflussveränderung,
einbeziehen. Ein besseres Verständnis der zeitlichen und räumlichen Abhängigkeit von dem
meteorologischen Ereigniss, das die Überschwemmungen auslöst, ist erforderlich.

In dieser Studie wurde eine Analyse der meteorologischen Ereignisse, die die Überschwem-
mungen auslösen, durchgeführt. Das Konzept der Entropie wurde verwendet, um die zeitli-
che Verteilung des Niederschlags zu charakterisieren. Es wurde festgestellt, dass die zeit-
liche Entropie des Niederschlags ein besserer Indikator für die Form der Ganglinie ist als
deren Dauer oder Intensität. Darüber hinaus wurde die geografische Abhängigkeit der Nie-
derschlagsmenge und der zeitlichen Niederschlagsentropie, die die Überschwemmungen
verursacht, anhand der Assoziation von Dreifachstationen beschrieben. Dies deutet darauf
hin, dass bis zu einem bestimmten Niederschlagsquantil Überschwemmungsereignisse eher
durch Niederschlagsereignisse mit vollständiger Überdeckung verursacht werden.Bei grö-
ßeren Quantilwerten ist jedoch zu bemerken, dass die Wahrscheinlichkeit, ein gemeinsames
Auftreten im Raum zu beobachten, mit steigendem Quantil abnimmt. Es zeigte sich, dass die
zeitliche Verteilung der Niederschlagsereignisse, die zu den Überschwemmungen führten,
räumlich stärker zusammenhängt als die Niederschlagsmenge, die die Überschwemmungen
verursachte. Allerdings ist diese zeitliche Verteilung nicht über alle Hochwasserereignis-
se hinweg konstant, was auf unterschiedliche Hochwassermechanismen zurückzuführen ist.
Zur Erklärung des Bodenfeuchtegehalts wurde der Vorregenindex (API) herangezogen. Die
empirische Verteilung des API zum Zeitpunkt eines Hochwassers wurde mit empirischen
Verteilungen von unkonditionierten API-Datenreihen verglichen. Zu diesem Zweck wurden
die Wilcoxon-Statistik und der Kolmogorov-Smirnov-Abstand zum Vergleich der empiri-
schen Verteilungen verwendet. Die Ergebnisse zeigten, dass die Bodenfeuchte, die die Über-
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schwemmungen begünstigt kein jährlicher Extremwert ist, sondern ein Wert in der Nähe des
monatlichen API-Maximums. Desweiteren wurde festgestellt, dass das längere Erinnerungs-
vermogen des Einzugsgebiets mehr Informationen über das Auftreten des Hochwassers gibt.

Um die Reaktion des Einzugsgebiets zum Zeitpunkt eines Hochwassers abschätzen zu
können, wurde außerdem eine Regionalisierung der Hochwasserwellenganglinien vorge-
nommen. Zu diesem Zweck wurden drei Methoden zur Definition der Ähnlichkeit der Hoch-
wasser in Betracht gezogen. Alle drei Methoden beruhen auf dem Random Forest Algorith-
mus. Das Neue an diesem Verfahren war die Verwendung eines supervised Random Forest
zur Beschreibung der Ähnlichkeit der Hochwasserereignisse. Die Ähnlichkeitsmatrix wurde
durch Berechnung des gemeinsamen Auftretens von Überschwemmungen im Random Fo-
rest Raum ermittelt. Zur Bewertung der Leistung wurden die Schätzungen des Spitzenwer-
tes der Ganglinie und der Zeit bis zum Spitzenwert herangezogen. Bei allen drei Methoden
wurden die gleichen Tendenzen beobachtet, nämlich eine Überschätzung der Spitze und eine
Unterschätzung der Zeit bis zur Spitze. Darüber hinaus wurde ein Ansatz, der einen unsuper-
vised Random Forest verwendet, mit dem supervised Ansatz verglichen. Der unsupervised
Random Forest führte zu größeren Schätzfehlern.

Für die Abschätzung des Hochwasservolumens wurde ein Niederschlags-Abfluss-Modell
modifiziert, um die Untersuchungsregion abzubilden. Das in dieser Studie gewählte Modell
war der Erosion/Productivity Impact Calculator (EPIC). Das Modell wurde kalibriert, um
für die Untersuchungsregion repräsentativer zu sein. Zu diesem Zweck wurden die Schät-
zungsfehler im Raum der Modellparameter untersucht. Auf diese Weise konnten die Mo-
dellparameter ermittelt werden, die das Untersuchungsgebiet besser repräsentieren können.
Die ermittelten Werte wurden als angemessen angesehen. So ist beispielsweise festzustellen,
dass das längere Erinnerungsvermogen des Einzugsgebiets für die untersuchten Einzugsge-
biete repräsentativer ist, was den gleichen Ergebnissen entspricht wie bei der Analyse der
meteorologischen Phänomene, die die Überschwemmungen verursachen. Die Werte für die
regionale Konstante, die die anfängliche Entnahme des Einzugsgebiets modifiziert, sind klei-
ner als die ursprünglichen Werte für die Einzugsgebiete in den Vereinigten Staaten, was mit
anderen Studien in europäischen Einzugsgebieten übereinstimmt. Nachdem das Volumen be-
kannt ist, fehlt nur noch die Dauer, um die aus dem Random Forest erhaltene Bemessungs-
ganglinie zu denormalisieren. Zu diesem Zweck wurde eine Schätzung der Dauer durch ein
einfaches lineares Regressionsmodell vorgeschlagen, bei dem die Niederschlagsdauer und
die Konzentrationszeit der Einzugsgebiete berücksichtigt werden.

Schließlich zeigte eine Kreuzvalidierung, dass mit den vorgeschlagenen Modellen ver-
nünftige Ergebnisse für die Schätzung von Hochwasser in unbeobachten Einzugsgebieten
erzielt werden können. Insbesondere die Schätzung der dimensionslosen Hochwasserwel-
lenganglinie führte zu den geringsten Fehlern. Weitere Studien sollten sich darauf konzen-
trieren, die Unsicherheiten der verschiedenen Niederschlagsmechanismen zu verstehen, die
die Hochwässer auslösen, und darauf wie der räumliche Zusammenhang der Niederschläge
beschrieben werden kann, um als Input für die Modelle zu dienen.
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Chapter 1

Introduction

Around 2 billion Euros is the estimated financial damage of the floods, which took place in
August 2005 at the northern part of Switzerland, according to Hilker et al. (2009). These
flood events are identified as the most expensive over the past 100 years. The estimation of
floods is an important economical and development planning tool, to prevent life losses and
damages of infrastructure. Floods are complex processes derived from catchment responses
to various meteorological inputs. Commonly summarized under one distribution function,
representing the cumulative effect of all triggering events (Merz and Blöschl, 2009), al-
though they are caused by different climatic conditions and have a different probability of
occurrence. Hydrologists are challenged to estimate extreme discharges from catchments
with data of relatively poor temporal and spatial resolution. Typically, the estimation of a
small rapidly reacting catchment, whose flood peak takes place on a sub daily time scale,
is made by means of daily records. Additionally, the characteristics of these catchments are
often represented with coarse areal data, given that no other information is available (BWG,
2003).

Flood estimation methods can be roughly divided into those which purely relay on dis-
charge measurements and those which use precipitation to estimate a runoff. For the case of
the discharge measurements methods, their records must be long enough, so that they can
represent the larger extremes. These long records are scarce, especially if a high temporal
resolution is needed and the focus is on small catchments. Furthermore, if the objective is
to account for the variability of different flood mechanisms, a classification of the extreme
discharges into processes is required. This results in either having to accept lesser extremes
for the estimations or using reduced records per considered flood mechanism, thus affecting
the capability of estimating the floods with extreme value theory.

To overcome the lack of long series of discharge measurements, one can use the meteo-
rological forcing to estimate flood volumes and describe the expected catchment reactions.
Using precipitation has the advantage that the measurements are normally longer and that
they have a denser spatial coverage. Where no discharge observations are present, a rainfall-
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runoff model can be considered to estimate floods with different probabilities of occurrences.
Over the past years hydrologists have spent time understanding the physical processes that
generate different types of floods (Merz and Blöschl, 2003; Blume et al., 2007; Blöschl et al.,
2013; Bárdossy and Filiz, 2005; Tarasova et al., 2019; Sikorska et al., 2015; Brunner et al.,
2018d). Considering the occurrence of floods due to different factors and seasonal variability
for flood classifications and estimation, either by means of a frequency analysis or a rainfall-
runoff model, has increased and awakened the interest of the water community. However,
there is still research potential to transfer the understanding of flooding mechanisms into the
models and thus obtain better estimates. Especially considering that in each country the in-
formation available to develop the models is different, but also that the climate on the earth’s
surface has great spatial and temporal variability.

1.1 Motivation and Objectives

The focus of this study is to estimate floods in small catchments, making use of measure-
ments with high temporal resolutions. The Northwestern Switzerland is chosen as the study
area, region recurrently flooded over the past years. The emphasis will be specifically on
small watersheds, exploring the added value of measurements with higher temporal and spa-
tial resolution. Floods are known to be more diverse in small catchments than in lager catch-
ments. Discharges in small catchments rapidly vary as a response to precipitation event,
whereas larger catchments have slower reactions as the result of the aggregation of the re-
actions from smaller catchments that make them up (MacDonald and Fraser, 2014). Given
the scarcity of discharge measurements, with long records of high temporal resolution, a
rainfall runoff approach is preferred to profit from the length of precipitation records and its
spatial coverage. In practice, engineering offices in Switzerland estimate floods in ungauged
basins typically using the software Hochwasser Abschätzung in Kleinen Einzugsgebieten

der Schweiz (HAKESCH). It includes methods that estimate floods based on a selected crit-
ical precipitation event and some catchment characteristics (BWG, 2003). However, these
methods merely estimate the peak discharge and do not consider other characteristics of the
flood event as its volume, duration or hydrograph shape, which are crucial characteristics to
estimate the storage capacity of the hydraulic structures (Gaál et al., 2015).

The main objective of this study is to regionalize the catchment reactions, considering
the variability of the meteorological forcing causing the floods, which should be able to dif-
ferentiate between various flood mechanisms. This has been an increasing area of research
over the past years. Nevertheless, only approaches based on frequency analysis of discharge
measurements were found in the study area, but none that considers rainfall-runoff methods.
The idea is to regionalize not only the peak discharge or volume, but also the possible hy-
drograph shape. As the regionalization model a Random Forest (RF) algorithm is chosen,
to evaluate the similarity of the catchment reactions at the occurrence of a flood and select
the hydrographs donors for the estimation at the ungauged catchment. An analysis of the
static catchment descriptors and the meteorological forcing responsible for different flood
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mechanisms is carried out, to identify possible model predictors to use in the RF.

The estimation of flood volumes is done by means of an event based rainfall-runoff model.
This model includes possible changes in the input (precipitation and soil water content), due
to seasonal changes in the meteorological conditions. By combining both the rainfall-runoff
model and the RF regionalization model, the estimation of floods in ungauged catchments is
possible.

1.2 Outline

The work presented here is organized in the following way. Chapter 2 presents a theoretical
background on flood estimations with a specific focus to the state of art in Switzerland. The
study area and catchment descriptors are introduced in Chapter 3, with an overview of the
discharge, meteorological and areal data available. In Chapter 4 the selection of the critical
events, i.e. floods, and the method used for the separation of the hydrograph waves are
explained. The focus on Chapter 5 is on the meteorological events causing the floods. An
analysis of the temporal and spatial variability of precipitation is included, the antecedent
precipitation index as an indicator of soil moisture triggering a flood is explored and the
use of temperature measurements for the inclusion of snow melt is studied. In Chapter
6 a regionalization framework using a random forest algorithm to define the similarities
of floods and its potential for flood estimation in ungauged catchments is investigated. A
supervised approach is compared to an unsupervised one. In Chapter 7 an existing rainfall-
runoff model is modified, to account for the catchment’s characteristics of the study area and
the seasonality of the meteorological forcing. This rainfall-runoff model is used in Chapter 8
with critical meteorological events and, together with the random forest model, a validation
of the models for the estimation of floods in ungauged catchments is carried out. Finally,
Chapter 9 gathers the main findings of this study and summarizes possible applications and
potential research areas.
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Chapter 2

Theoretical Background

In literature different methods for estimating floods in gauged and ungauged catchments can
be found. These approaches can be roughly divided into two groups: those purely based on
discharge measurements and those that use precipitation data together with a rainfall-runoff
model for estimating the floods. No matter what type of model is used, for the estimation
of floods in ungauged catchments, regionalization methods are required to transfer estimates
from gauged catchments. This chapter gives a brief review of the estimation of floods in
small catchments and points out some of its challenges, accounted to the more dynamic
reaction of small catchments and the fact that various flood mechanisms might take place.

2.1 Estimation of Extreme Discharges

The estimation of runoff is not an easy task, given the great heterogeneity found in the
catchments, such as different soil types, slopes, land use, vegetation, etc. In addition, the
direct drivers of runoff change, such as precipitation and temperature, show great spatial
and temporal variability (Sivapalan, 2003). Regardless of the type of model used, runoff
estimates are associated with large uncertainties, which make the task of the estimation a
difficult one (He et al., 2011). Hydrologists are faced with developing models with the
available data, in order to describe the probability of occurrence of a given extreme discharge.
For this purpose, two types of models are used, those which use only discharge observations
and those that make use of the rainfall-runoff relationship to estimate the possible response
of the catchment. Regardless of the model chosen for the estimation of the extremes, when
the interest is to estimate ungauged catchments, a transfer of information from observed to
ungauged catchments must take place. This poses an additional challenge, commonly solved
with the so called regionalization models. This section gives an overview of the approaches
typically used for estimating extreme discharge and the subsequent section will look at the
regionalization models.
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2.1.1 Frequency Analysis of Discharge Series

Flood frequency analysis methods use merely discharge measurements to describe the rela-
tionship between the flood peak and a given probability of occurrence Chow et al. (1988).
Different probability distributions can be used. Typically, the Generalized Extreme Value
(GEV) distribution or the Generalized Pareto Distribution (GPD) are considered. The choice
of one or the other depends on which type of discharges are selected as extremes (Fischer,
2018). The parameters of the distribution are estimated using the discharge observations of
the studied catchment.

The use of extreme value theory comes with the assumption that the data are indepen-
dent and identically distributed (Rao and Hamed, 2000). This leads to the representation of
different processes and different scales as a single independent identical distributed random
variable (Klemeš, 2000). Additionally, extreme value theory presumes a stationary process.
This means that there are no variations within the observation period (Coles, 2001), further
no variations in the estimation period are expected. Yet, it is known that climate is not station-
ary, nor are land use and other parameters that influence runoff generation (Klemeš, 2000;
Sivapalan et al., 2005). It is also assumed that the length of the observations is sufficient to
estimate events larger as the observed ones. However, when the objective is to extrapolate
to estimate a discharge with a return period greater as the observed period, one is faced with
the problem of determining the extrapolated larger tail of the distribution by the behavior of
the observations defining the lower tail of the distribution (Klemeš, 2000). Additionally, this
analysis normally concentrates on the estimation of the peak discharge, leaving behind other
important parameters of the hydrograph, which are crucial to estimate the storage capacity
of the hydraulic structures (Gaál et al., 2015).

To overcome some of these limitations, separate frequency analysis approaches are de-
veloped to account for different event types and seasonality, furthermore multivariate ap-
proaches to estimate the peak and volume can be found. For example, Fischer et al. (2016)
considered a seasonal mixed model, to account for the variability of flood mechanisms over
the year, by separating the time series in seasons. Another approach, applied to catchments
in Switzerland, is the identification of similar reactivity regions, which are used to estimate
different catchment reactions, through an index method (Brunner et al., 2018b).

These methods often fall back on the need to include smaller events to have satisfactory
amounts of data. In doing so, the smaller extremes are the events that determine the behavior
of the larger events. As already identified by some authors, the record length is a strong
source of uncertainty, when constructing synthetic design hydrographs though a frequency
analysis of floods (Brunner et al., 2018c). Even if one subdivides the events to separate
different flood mechanisms, and thus obtain subsamples that are more homogeneous (Fischer
et al., 2016), the question about the validity of the extrapolation beyond the observation
domain remains, as does the problem of whether a stationary process is present.

The estimation of floods by means of a rainfall-runoff model has benefits over the fre-
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quency analysis but it also faces some drawbacks. One of the main advantages is the use
of precipitation records, which in most countries have a greater spatial coverage and larger
observation periods. In the following section the advantages and disadvantages are going to
be discussed.

2.1.2 Rainfall-Runoff Models

As previously mentioned, the use of a rainfall-runoff model is an alternative to the frequency
analysis of discharge methods. For this purpose, the understanding of the hydrological pro-
cesses is used to describe the catchment reaction, assuming the model structure beforehand
(Blöschl et al., 2013). When searching for rainfall-runoff models a large amount can be
found. There are simple models, and more complex ones depending on the quantity of data
used to characterize the catchment, the parameters of the meteorological forcing and the
model structure.

There are different classifications of the rainfall-runoff models. According to the model
approach, they can be grouped in event-based models or continuous simulations models
(BWG, 2003). Event-based models use single meteorological events to describe the runoff.
For this purpose, normally the precipitation and the soil moisture condition previous to the
occurrences of a flood are used (Kjeldsen, 2007). These models are widely used, given the
ease of obtaining estimates of the probabilities of occurrence of precipitation (Grimaldi et al.,
2012; Blöschl et al., 2013). On the other hand, continuous simulation models estimate the
catchment reactions within dry and wet periods (Patil, 2008). These models are not concen-
trated on isolated precipitation events as the previous ones, rather long series of observed
or synthetic records are used to model the catchment reaction. The extreme discharges can
then be extracted from the resulting discharge series, to determine the occurrences of floods
(Grimaldi et al., 2012). These models are more complex and normally require a calibration
with observed discharges.

Additionally, rainfall-runoff models can be classified according to their model structure.
In this document, the classification from Wagener et al. (2004) is adopted, who uses three
classes the metric, parametric and mechanistic models. The metric models, also recognized
as empirical or black box models, are analytical models based purely on observations of
the input and output of a catchment (Beven, 2012). They consider only the information
obtained from the data and do not consider any physical knowledge of the hydrological
cycle (Wagener et al., 2004). The parametric models, also known as conceptual models, use
the concept of storage and removal from water contained in buckets to represent the main
hydrological process (Wagener et al., 2004). The mechanistic models, or physically based
models, are based on the physics of the underlying hydrological process (Beven, 2012).
However, these models do not represent the totality of the physical processes, given the
complexity of the hydrological cycle (He et al., 2011).

Rainfall-runoff models have different applications, one of those is to extrapolate to un-
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observed extremes. In this case, the use of an empirical model purely based on data, can
question the robustness of the model. If there is no confidence that the models properly rep-
resent the hydrological processes on the observed period, the uncertainty that it can represent
future scenarios is large. Nevertheless, through a validation of the transferred physical rela-
tionships, one could establish if the model behaves in a reasonable manner (Patil, 2008). It
can also suggest areas where there is a lack of theoretical understanding (Beven, 2012). For
the case of using a conceptual model, the difficulty comes with the need of the calibration of
the model parameters, which is done with observations that are not available for the case of
ungauged catchment (He et al., 2011). Furthermore, it has not been demonstrated yet that the
use of complex physically based models achieves a much better performances than simpler
models (Beven, 2012).

A large variety of rainfall-runoff models are used in literature. There is no single model
that outperforms the rest. Due to the complexity of the hydrological process and the uncer-
tainties present in the observations themselves, some models are better for the estimation of
water balance, others for the estimation of low flows and others for the estimations of floods.
Regarding the size of the catchment and its characteristics different performances can also
be observed. Here, merely some considerations relevant in the context of this study are in-
cluded. For other examples and applications, the reader can refer to Wagener et al. (2004);
Beven (2012).

In Switzerland, the PREecipitation-Runoff-EVApotranspiration HRU Model (PREVAH)
model has been developed as a continuous parametric model, to simulate runoff in mountain
environments (Viviroli et al., 2009b). The term HRU stands for hydrological response units,
which are clusters of similar hydrological response (Viviroli et al., 2009c). As recognized
by Viviroli et al. (2009b), one of the main limitations is the estimation in small catchments
(<10 km2). Additionally, there are software tools as HAKESCH, which integrate the use of
different rainfall-runoff models for the estimation of floods in small ungauged catchments.
There has been no update of this methods, to include observations of new catchments, at
least none known by the author. Apart from HAKESCH, no event-based rainfall-runoff
model approach was found for the estimation of floods in small catchments.

When it comes to the estimation of floods by means of a rainfall-runoff model, Blöschl
et al. (2013) give a good summary of the main advantages and disadvantages of the dif-
ferent approaches. The authors recognize on the one side the benefit of using precipitation
records, which are normally longer and denser than discharge measurements. Additionally,
the authors highlight that these models can represent different catchment processes due to
their nature. This has the advantage that the extrapolation to estimate the extremer dis-
charges to unobserved periods is more reliable. However, when it comes to the estimation of
the rainfall-runoff model parameters in ungauged catchments, there are many uncertainties
involved, especially when using complex models. In this study, the Erosion/Productivity Im-
pact Calculator (EPIC) is considered, looking for a simple event-based approach to estimate
the runoff process. Therefore, a basic description of this model is given in the following
section.
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One disadvantage of using a rainfall-runoff model is that the frequency distribution of the
floods is not directly obtained. An estimate of the severity of the floods is key to develop the
flood management plan, design flood protection structures and identify risk zones (Winter
et al., 2019). This problem can be solved using derived distribution methods, which allow to
relate the frequency of the floods by combining a precipitation model with a runoff genera-
tion model (Gottschalk and Weingartner, 1998). The derived distributions methods involve
three main steps (Sivapalan et al., 2005): (1) A statistical model of the meteorological event
triggering the floods. This model determines the rainfall responsible of the floods, which
can either be obtained by means of a design rainfall event, described by an intensity dura-
tion curve, or through a stochastic rainfall model, where an ensemble of precipitation events
is generated (Blöschl et al., 2013). It can also include an estimation of the catchment soil
moisture and other important model inputs. (2) A rainfall-runoff model to translate the me-
teorological event in runoff volume by means of the characteristics of the catchment. (3)
Finally, a method to connect (1) and (2) is included.

2.1.3 EPIC Model

The Erosion/Productivity Impact Calculator (EPIC) is a modification of the Soil Conserva-
tion Service (SCS) model to account for changes in soil water content and differentiate the
catchment slope when calculating the runoff (Shaperly and Williams, 1990). It is based on
the following water balance equations (Singh and Mishra, 2003)

P = Ia + F +Q , (2.1)

Q

P � Ia
=

F

S
, (2.2)

Ia = �S , (2.3)

where P is the precipitation sum, Ia the initial abstraction, F cumulative infiltration exclud-
ing Ia, Q is the runoff volume, � a regional constant dependent on geology and climate
factors and S the potential maximum infiltration. A combination of these 3 equations leads
to the popular SCS model

Q =

8
<

:

(P�Ia)2

P�Ia+S P > Ia

0.0 P  Ia
, (2.4)

where, given the case that the precipitation is smaller as the initial abstraction, no runoff is
generated.
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The potential retention S is expressed as a function of the dimensionless curve number
CN . According to the soil type, land use and vegetation cover, CN assumes values from 0
to 100 depending on soil moisture, soil type and land use (Singh and Mishra, 2003). There
are different tables in literature, where the values of CN can be found according to the char-
acteristics of the soil. The value of CN found in the tables, typically represents the average
soil moisture condition CN2. However, depending on soil moisture conditions previous to
the occurrence of the flood event, CN2 should be corrected to have CN1 or CN3, represen-
tative of drier or wetter soil conditions respectively. Further, CN1 and CN3 can be estimated
from the tables of the SCS model or with the following equations:

CN1 = CN2 �
20(100� CN2)

100� CN2 + e2.533�0.0636(100�CN2)
, (2.5)

CN3 = CN2 e0.00673(100�CN2) . (2.6)

A modification of the EPIC model is the inclusion of the catchment slope for a correction
of the abstraction parameter, by adjusting CN2, the average soil moisture condition, as

CN2s =
1

3
(CN3 � CN2)(1� 2e�13.86s) + CN2 , (2.7)

where CN2s is the slope adjusted CN value of the SCS model, s is the mean catchment slope
and CN2 and CN3 are the CN table numbers of the SCS model.

The potential maximum retention S of the catchment is a function of the soil and land use
properties and the actual soil moisture. It is defined in the EPIC model as

S = S1

✓
1� FFC

FFC + e(w1�w2FFC)

◆
, (2.8)

with

FFC =
SW �WP

FC �WP
, (2.9)

where FFC is the fraction of field capacity, SW the soil water content, WP the wilting
point, FC the field capacity and S1 is the retention parameter corresponding to CN1. The
coefficients w1 and w2 are shape parameters obtained by solving Eq. 2.8. For this purpose, it
is assumed that S = S2 when FFC = 0.5 and S = S3 when FFC = 1 and having that S1,
S2 and S3 are the retention parameters corresponding to CN1, CN2 and CN3 respectively.
When solving as explained, the following relations are obtained
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w1 = ln

 
1

1� S3
S2

� 1

!
+ w2 , (2.10)

w2 = 2

 
ln

 
0.5

1� S2
S1

� 0.5

!
� ln

 
1

1� S3
S1

� 1

!!
. (2.11)

To compute S1, S2 and S3 the following relationship with the dimensionless curve number
of the SCS can be used,

Sx =
25400

CNx
� 254 , (2.12)

where x corresponds to the curve number considered. Additionally, if information about
the distribution of water content over the root zone is available the EPIC model includes a
modification to account for the variation of soil moisture within the soil depth (Shaperly and
Williams, 1990). Nevertheless, in this study it is considered to be uniform.

Regardless of the model used for the estimation in an ungauged catchment it is necessary
to have a function that can transfer the knowledge from observed to ungauged catchments.
On the following section, an overview of regionalization approaches is going to be given.

2.2 Regionalization to the Ungauged Catchment

As pointed out by Beven (2012) the regionalization problem in hydrology is known to be
the challenge modelers constantly face: to estimate runoff in ungauged catchments. In lit-
erature, there is a plethora of regionalization methods addressed to resolve this problem. In
this section, an overview of some of these methods is given, mentioning those considered
important in the context of this study. For this purpose, the general classification by He
et al. (2011) is adopted. The authors divide the regression methods into regression-based
and distance-based.

2.2.1 Regression-Based Regionalization Methods

The regression-based approach is built on the use of regional transfer functions to transfer
model parameters from observed to ungauged catchments. Its fundamental base lies on the
assumption that catchments in homogeneous regions react similar and, therefore, the rela-
tionships between model parameters and hydrological characteristics are consistent (Patil,
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2008). The linear regression is the transfer function most commonly used in hydrological
applications (He et al., 2011). Although, it is known that the relationships between model
parameters and hydrological characteristics are not linear, they are approximated by a lin-
ear model (Blöschl et al., 2013). In some cases, the variables are transformed to reduce the
correlation between them and/or to satisfy linear models, typically a logarithmic transfor-
mation or dimensionality reduction methods are used. Generally, a multilinear regression
model is fitted to the data, by means of statistical fitting techniques, which identify indepen-
dent variables that have a significant contribution to explain the dependent variables (Beven,
2012).

Viviroli et al. (2009a) used a linear model as one of the regionalization approaches, to es-
timate discharge hydrographs in Swiss mesoscale catchments, using the continuous rainfall-
runoff model PREVAH. The linear model is not the only one that has been used for the
estimation of runoff in ungauged catchments. Other regressions structures have been applied
to find a functional approximation between model parameters and hydrological characteris-
tics. In Switzerland, Brunner et al. (2018a) used tree-based techniques to regionalize design
flood estimates and unit hydrographs. However, this approach is based on flood frequency
analysis and not in a rainfall-runoff model, which is the objective of this study. Additionally,
nonlinear methods have been applied to other study areas. For example, artificial neural net-
works have been applied in the UK, Germany and other countries (Shu and Ouarda, 2007;
Patil, 2008; Blöschl et al., 2013; Wagener et al., 2004).

The regression technique is strictly statistical, it finds correlations between the hydrolog-
ical characteristics and the catchment response. However, it is not easy to deduce whether
they are physically correct, e.g. catchments with steeper slopes resulting in faster runoff
generation (Blöschl et al., 2013; Beven, 2012). There are approaches in which the model
parameters are modified and with the obtained results it is possible to analyze whether the
model behaves as expected, such as that applied in Patil (2008).

Although regression methods assume there is a regional similarity of the catchments in-
cluded in the regression, this similarity is not measured, nor used for the regionalization
itself. On the contrary, distance-based methods do include the similarity in the regionaliza-
tion, as is explained in the following section.

2.2.2 Distance-Based Regionalization Methods

Distance-based regionalization methods are based on the idea of similarity. The idea behind
it, is to find donor catchments that allow the transfer of estimates to ungauged catchments.
Thus, catchments most similar to the interest location are chosen for the estimation of the
ungauged location (Merz and Blöschl, 2005). The difficulty is that the similarity of the
catchments can be defined in multiple ways (Beven, 2012).

The must simple way of defining similarity is through geographical distance. The logic
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behind this metric is that catchments that are close to each other will have comparable runoff
regimes since climate and catchment conditions will only change gradually in space (Merz
and Blöschl, 2004). Geo-statistical models are more advanced approaches to describe the
spatial dependance of a variable by means of a variogram, which is not purely based on the
geographical distance (Lebrenz and Bárdossy, 2017). In Swiss catchments Kriging has been
applied in regionalization approaches (Viviroli et al., 2009a; Brunner et al., 2018a).

Yet, catchments that are close to each other in geographical space, have been observed to
have different hydrological reactions and catchments further apart can exhibit similar catch-
ment response to a given meteorological input (Beven, 2012; Merz and Blöschl, 2005). Al-
ternative approaches for measuring the similarity of the catchments have been explored in
hydrology to conform the group of donors. They are based on the hydrological closeness of
the catchments rather than on the geographical closeness. For example, in the Flood Esti-
mation Handbook (FEH) a pooling group is used. The catchments belonging to this pooling
group, to be used as donors are identified with a distance measured based on an optimal
combination of catchment descriptors, which are for example the catchment area, the an-
nual average rainfall, etc. These optimal descriptors are identify using a linear regression
approach (Kjeldsen et al., 2008).

In general, these approaches start with the definition of a distance measure to evaluate
the similarity of the catchments (Merz and Blöschl, 2005). There are many applications,
and they mainly differ in the manner the similarity is defined. For the case of Switzerland,
for example Brunner et al. (2018a) used three regionalization methods based on the hydro-
logical similarity of the catchments: (1) six defined catchment characteristics known to be
hydrologically meaningful, (2) a random set of characteristics that minimizes the Hosking
and Wallis homogeneity statistic and (3) catchment characteristics obtained through canoni-
cal correlation analysis. Other approaches for delineating the catchments donors’ space are
those applied by Shu and Burn (2004) to UK catchments, who used genetic algorithms or
fuzzy rules based systems.

However, as it was the case of the regression-based approaches, it is important to deter-
mine if the catchments groups agree with the hydrological reasoning or if they are the result
of the model used (Blöschl et al., 2013). There are less applications found that consider the
dynamic trigger of the floods. As highlighted by Merz and Blöschl (2005), the dynamic input
is responsible for the different flood processes and its inclusion should lead to more reliable
regionalization approaches.
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Chapter 3

Study Area and Static Catchment
Descriptors

The focus of this research is to understand flood mechanisms in Northwestern Switzerland,
with the aim of deriving a model to estimate floods. The model should capture the com-
plexity of the system and it should be transferable to ungauged catchments. This chapter
provides an overview of the study area and the data available for describing the catchments.
Specifically, parameters considered as the static input of the system are addressed, those,
which do not change on the short term and are, therefore, not event specific. The parameters
that change according to the flood event, which represent the dynamic input of the model,
will be included in the other chapters.

3.1 Study Area and Database

The study area of this research is the Northwestern Switzerland. Catchments with areas rang-
ing between 0.5 km2 and 200 km2 are considered, to have enough data for regionalization
purposes. Figure 3.1 gives an overview of the study area and the researched catchments. The
catchments are delineated using the 2 meters resolution Digital Elevation Model (DEM) of
the Federal office of topography (Swisstopo). Since some of the catchments overlay each
other, for matters of visualization in the bottom panel of Fig. 3.1 the catchments are repre-
sented as a circle positioned at its centroid. The size of this circles indicates the catchment
size. This type of visualization will be chosen in this study to represent spatial results.

For this study, data from different owners were collected. Specific focus is put on obtaining
discharge and precipitation data with the highest available temporal resolution. This type of
measurements can be collected by various state agencies and municipalities of Switzerland
or by private operators. The length of discharge records with a high temporal resolution (10
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(a)

(b)

Figure 3.1: Study area and measured catchments with areas smaller than 200 km2. For vi-
sualizations reasons the catchments will be represented throughout this study as
in (b) where circles are plotted on the catchment centroid and its size is repre-
sentative of the catchment area.
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minutes or 15 minutes) found in the study area variate from a couple of years to 44 years. As
stated by Tarasova et al. (2019), the value of an application that includes different causation
of catchment reactions decreases if the length of the records is short. Therefore, in this study
only catchments with at least 7 years of records are included (these are the ones included
in Fig. 3.1). A number of 7 years is chosen as a tradeoff to achieve an acceptable spatial
coverage with representative records length. For the selected study catchments, the mean
records length is 23 years with a standard deviation of 12 years.

The precipitation stations in the study area also showed a high variability in record lengths.
Figure 3.2 shows the precipitation stations available in the study area with measurements
every 10 minutes. The different markers are used for indicating the number of years with
records. The blue, red and yellow markers represent stations with at least 1, 5 and 10 years of
measurements respectively. As demonstrated Fig. 3.2 the number of stations measuring with
a sub-hourly temporal resolution has increased over the past years. The stations for this study
are selected as a tradeoff between (1) reducing the distance of the precipitation station to the
catchment centroid, (2) maximizing the length of 10 minutes precipitation measurements and
(3) having long precipitation records to represent a given number of floods per catchment.

Figure 3.2: Precipitation stations on study area with measurements every 10 minutes. The
different colors give the records length. Blue markers for > 1 year, red marker
for > 5 years and yellow marker for > 10 years.

A screening of the stations was done according to the observed quality of the data. The
quality of the data is assessed by looking first at the number of None available Number
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(NaN), thus, dropping stations with a high content of NaNs. Special care must be taken when
looking for outliers, in order to ensure the value is an outlier and not an observed extreme, as
the focus of the research is on extreme events. Outliers are considered non-physical values,
for example temperature exceeding 50°or below -40°, which are not plausible in the study
area. An overview, of the type of measurements for discharge, precipitation and temperature
used in this study, is given in Tab. A.1, with the corresponding resolutions and data providers.

3.2 Static System Input: Long-Term Catchment Descrip-
tors

In this section the long-term catchment descriptors considered in this study are introduced.
These are the catchment parameters that do not change in short time scales or if they do, the
change is so small that it can be neglected. They are also recognized in other studies as the
catchment controls. Long-term catchment descriptors are indicators of the spatial variability
of the events and can be helpful to determine existing runoff trends (Merz and Blöschl, 2009).
In this study, the catchment descriptors are divided in two groups: catchment characteristics
and climatic factors.

3.2.1 Catchment Characteristics

Catchment characteristics are those indicators of the properties of a catchment, as the geom-
etry, formation, geology, land use, aquifer formation, etc. A summary of the characteristics
of each catchment is given in Tab. A.2, with information about the measured river and data
owner. A brief explanation of the catchment characteristics is included in the following.

Geometry

The area of a catchment is one of the most important parameters when determining the
water balance, given that it gives the extents to quantify the runoff volume. Among with the
area, the perimeter of a catchment and some shape indices are typically used for describing
expected hydrological signatures (Bárdossy and Schmidt, 2002).

In Fig. 3.3 a scatter plot of the areas versus the form factor is given. The form factor
is calculated as F = A/L2, where F is the form factor, A the catchment area and L the
catchment length. A value of F close to 0 represents an elongated narrow catchment, that
can have a different hydrological regime as a more irregular catchment (Horton, 1932). It
can be observed in Fig. 3.3 that there is no constant shape for a given catchment area. This
variability can have an influence on the respond of a catchment to a given precipitation.
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Other shape indices used in this study can be found in Tab. A.2.

Figure 3.3: Catchment area versus form factor.

Topographic Characteristics

Topography is an indirect indicator of changes in the runoff generation processes. For in-
stance, steeper slopes have an accelerated effect, resulting in rapid runoff building (Wein-
gartner et al., 2003; Blöschl et al., 2013). Different altitudes can have effects on snow and
rainfall, given that rainfall and snow cover tend to increase with the elevation (Merz and
Blöschl, 2009). The mean and standard deviation of the slopes and elevations are chosen
for describing the topography of the catchments. To calculate them, the same DEM from
Swisstopo mentioned before is used.

The values of the topographic characteristics can be found in Tab. A.2. As an example, in
Fig. 3.4 the standard deviations of the elevations of the catchments are plotted in space. It
can be observed that the catchments located on the west of the Jura Mountains (left in Fig.
3.4) have a larger difference in elevations than those catchments on the east part of the Jura
(right in Fig. 3.4).
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Figure 3.4: Standard deviation of the elevations of the studied catchments.

Land Use

The type of land use can affect the amount of water that can be infiltrated and retained in a
catchment. However, it is not the only factor controlling runoff. There might be different
soils under different vegetation covers, which can result in different runoff. The land use
by its own might not be enough to explain the spatial variations of runoff in a catchment
(Weingartner et al., 2003). Anyway, it is an important indicator, which together with other
characteristics of the catchment can help explain differences of catchment reactions. For
the calculation of the land use of each catchment the classes from the CORINE Land Cover
raster obtained from the Swiss Federal Institute for Forest, Snow and Landscape Research
(WSL) are used.

In Fig. 3.5 the proportion of the catchments having settlement, agriculture or forest areas
are given. It can be observed that the majority of the catchments have almost no settlement
areas and they are mainly rural catchments with large areas of agriculture and forest. The
agricultural and forest areas are more or less equally divided in all catchments. However,
there are some catchments for which the agricultural areas are larger than the forest areas. It
is possible that these catchments react differently to extreme discharge.
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Figure 3.5: Land use proportions of the studied catchments.

Soils

The soil characteristics play a fundamental role in the partitioning of precipitation into sur-
face and subsurface flow: not all precipitation falling in a catchment can reach the outlet
(Blöschl et al., 2013). The soil, together with the vegetation cover, control the amount of
water that can be infiltrated into the ground. Thus, they are indicators of the potential soil
moisture of a catchment.

There are different soil classifications in the study area. Some more complex than others
if complexity is measured by the number of soil groups. In this study, a simple soil classifi-
cation is preferred to not over-parametrize the model. Many classes may lead to catchments
having a lot of zeros for a given soil group. The digital soil suitability map of Switzerland
from the Federal Office for Agriculture (FOAG) is used to classify the soils of the catch-
ments. Figure 3.6 shows the proportions of the distribution of soils in each catchment. It
can be observed that the catchments do not only have different soil distributions between
each other, but there is also a high spatial variability of the soils in the catchment itself. This
can be observed in the uneven distribution of soils and number of soil classes between the
catchments. For instance, catchments 1 to 6 and 41 to 45 have an uniform spatial distribu-
tion of soils, with one predominant soil class. However, catchments 1 to 6, although show
also a uniform distribution with one predominant soil, they have more permeable soils than
catchments 41 to 45.
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Figure 3.6: Soil distribution of the studied catchments.

Catchment Orientation

Catchment orientation helps to identify the possible influence of given fronts or big meteo-
rological events. Exposition to orographic enhancement of precipitation can be responsible
to some extent of the variability in mechanisms, it is an indicator of possible floods more
prone to a given wind or storm direction patterns (Martínez-Goytre et al., 1994). It can help
recognize different mechanisms and flood magnitudes. In this study it is calculated as the
angle of the vector formed from the catchment outlet (gauge station) to the furthest point of
the catchment. This is the point that maximizes the distance between catchment outlet and
the exterior coordinates that delineate the catchment. An example is given in Fig. 3.7. It can
be observed that the vector for calculating the orientation (in purple) has an angle of around
45°. This angle represents a cardinal direction of a South-West orientation (in orange). As
it is shown in the top panel of Fig. 3.1, most of the catchments have an orientation between
180°and 360°, which corresponds to the North-East and the North-West quadrants.

North (90°)

East (0°)

South (270°)

West (180°)
ϴ

Resulting 
cardinal direction:
south-west

Figure 3.7: Catchment orientation: the angle ✓ of the purple vector formed from the catch-
ment outlet to the furthest point on the perimeter gives the orientation. The
actual cardinal direction that ✓ represents is the opposite vector (orange).
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Drainage Density

Drainage density, as defined by Horton (1945), characterizes the stream system of a catch-
ment. It is defined as the sum of the river lengths divided by the catchment area. Drainage
density is an indicator of the magnitude of a flood and the velocity in which it can take
place, assuming that runoff travels faster on streams as on land (Pallard et al., 2009). A
larger drainage density represents a better drained catchment, which has a faster reaction and
hence it has larger runoff coefficients (Gottschalk and Weingartner, 1998). Additionally, it
represents how the topography, soil and vegetation have interactively change over the years
(Blöschl et al., 2013). It is a complex parameter that can help explain flooding.

The drainage density of the study catchments is calculated using the rivers information
from Federal Office for the Environment (FOEN) (Einzugsgebietsgliederung Schweiz EZGG-
CH) and the catchments areas delineated for this study. Figure 3.8 gives the drainage density
of the catchments in this study. It can be observed that the drainage density is not dependent
on the catchment area, as there is no constant value according to the size of the catchment.
Rather some regional trends are observed of similar drainage densities for catchments that
are close to each other. This is expected, because similar soil formations, wind patterns
and other characteristics might be found in the same regions and thus resulting in similar
drainage densities.

Figure 3.8: Drainage density of the studied catchments.
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Concentration Time

The concentration time of the catchment is the time a water drop takes to move from the
farthest point of the catchment until the outlet. It is an indicator of the time required until the
whole catchment contributes to the runoff (Chow et al., 1988). In this study it is considered
using the method from Kirpich as:

Tc = 0.06625 ·
 

L

I0.5f

!0.77

, (3.1)

where Tc is the concentration time, L the river length and If the average slope.

In Fig. 3.9 the Kirpich Tc is plotted against the catchment areas. Although a strong
correlation between the catchment and Tc can be observed, there is also some variability
within a constant catchment area, given that Tc is not a direct function of the catchment size
but of the slope and length. Larger catchments are expected to have longer L and, therefore,
longer Tc. Nevertheless, differences in the catchment characteristics give a variability to L.

Figure 3.9: Catchment area versus concentration time.

Aquifer Formation

In Switzerland the hydro-geological conditions can be divided in three main aquifer groups.
These are the unconsolidated aquifer, fissured aquifer and karst aquifer. According to the
type of aquifer water moves at different velocities. In the unconsolidated aquifer water flows
slowly and evenly. In fissured aquifer water flows more inhomogeneous and faster, some 100
meters per day. Finally, water flows faster in karst aquifer, some 100 meters per hour (Sin-
reich et al., 2012). Karst aquifers because of the strong iteration with surface water are the
most influential in flooding processes. Karst aquifers are complex and highly heterogeneous.
A catchment reaction to the same precipitation event can be completely different according
to the fissured system of the aquifer. This has a direct influence on the hydrograph, where the
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occurrence of the peak is faster, if caves and conduits are more interconnected. On the other
hand, if the aquifer has narrower conduits water will flow slower (Bonacci et al., 2009).

The aquifers of the study catchments are identified using the hydro-geological overview
map of Switzerland from the FOEN. In Fig. 3.10 the ratios of the study catchments having a
given aquifer are given. Those catchments with predominate karst aquifer are located in the
Jura Mountains. Whereas the catchments that have mostly fissured aquifers are on the south
and east of the study area.

Figure 3.10: Aquifer proportions of the studied catchments.

3.2.2 Climatic Factors

Climatic factors or signatures are those parameters that identify the mean hydrological schema
of the catchment. Given that the study period is short, these signatures are assumed to be
constant for each catchment. In this study, the similarity of climate is characterized using
precipitation observations. Herein, the the probability of a given amount of precipitation
are used and the inter-annual variability of precipitation is described using a trigonometric
function.

Daily precipitation quantiles are indicators of the likeliness of precipitation volumes. The
knowledge of the expected precipitation volumes gives differences between drier and wetter
catchments. For this purpose, the probabilities of having 5, 10, 15 and 20 mm of precipita-
tions are considered. Chapter 5 will elaborate more on this subject.

The seasonal variability of precipitation is characterized by fitting a trigonometric function
to mean daily precipitation data. This function f(t) is defined as

f(t) = a0 + a1 · cos t+ a2 · sin t = a0 + A cos (t+ �) , (3.2)

where a0, a1 and a2 are the coefficients of the function, t is the time interval of the obser-
vations, A is the amplitude of the wave and � is the phase. The function is fitted to only
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one period. For this purpose, the calendar days are transformed to values between 0 and
2⇡, where 0 is January 1st, ⇡ is around July 1st and 2⇡ corresponds to December 31st. The
function has it minimum at a value of t = � and it maximum at the value of t = � + ⇡. At
this t values the function achieves a0 ± A.

As indicators of seasonality the values of the amplitude and the phase are used. The
amplitude A represents how large the precipitation peak is and the phase � gives the shift
of the trigonometric function in the horizontal position. It is used as an indicator of the
occurrence of precipitation peak and its magnitude. In Fig. 3.11 two examples are given
where different precipitation regimes can be identified. The blue scatter points represent
the observed daily precipitation means and the red line is the obtained f(t). As it can be
observed the plot on the left panel has a smaller � than the one on the right. This means
that the larger precipitations are expected to occur earlier in the year, sometime around Juli,
whereas this peak is shifted more towards autumn for the case of the observations of the right
panel. Regarding A, a larger value is obtained for the left panel than for the right one. This
indicates that larger precipitation volumes are expected on the left panel as for the right panel.
It can be concluded that the station on the right panel has a smaller inter-annual variability,
for which similar precipitation volumes are expected around the whole year.

(a) � = 0.09, A = 1.38 (b) � = 0.78, A = 0.43

Figure 3.11: Difference of the inter-annual variability of precipitations for two stations. The
blue scatter points are the observe mean daily precipitations. The red line is
the fitted trigonometric function.

In this chapter the study area and the static catchment characteristics are described. Giving
an insight to the complexity of the hydrological responses of the catchment. Nevertheless,
no information is given about the differences of flood mechanisms, nor from the main drivers
of different catchment reactions, i.e. the meteorological forcing causing the floods. In the
following two chapters, first the catchments’ respond by itself will be analyzed and second
the variability of the meteorological input triggering the floods will be studied.
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Chapter 4

Characterization of Extreme Discharges

The aim of this study is to characterize extreme discharges not only by their peak but by
including their volume and hydrograph shape. In this chapter an explanation on the sampling
of extreme discharges and how the flood waves are separated from the time series is given.
Finally, the fit of a probability density function (PDF) to the flood waves is studied in order
to describe the reaction of the catchment at the occurrence of a flood.

4.1 Sampling of Extreme Discharges

The first step when analyzing extreme discharges is to define which observations to select as
a flood. A flood, as described by Field et al. (2012), is considered as the event of the water
level exceeding the embankment of a water body or covering areas that normally are not
under water. This is a rather wide definition that can change from one study site to the next
and requires detailed catchment information not always available. As pointed out by Lang
et al. (1999), a stochastic approach for determining extreme discharges is to consider the
Annual Maximum Flood (AMF), the highest observed discharge per year. If more than one
flood takes place within the same year, by using the AMF approach the information about the
less extreme ones is going to be lost. To overcome this problem an approach with increasing
popularity over the past years can be considered, the Peaks Over a Threshold (POT), also
known as partial duration series. With this approach, a discharge threshold is selected to
separate the events that will be considered as extremes. A common method is to select an
average number of floods per year, which will give the value of the discharge that is set as
the threshold to obtain the POT.

Throughout this study, different POT thresholds are used, which allows to compare differ-
ent extremes. These are identified by the number of selected POT on average per recorded
year with the abbreviation xPOT, where x is the number of POT selected on average per year.
For example, a 4POT sample refers to the sampling of four POT on average per year. When
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sampling extremes with a POT approach, consecutive events can be selected. To solely retain
the independent floods, an inter-flood duration criteria is applied. A duration of ten days as
inter-flood time is considered. One could argue that it is a high duration, especially for the
catchment sizes within the study area. Nevertheless, it is observed that when selecting shorter
inter-flood durations and sampling 4POT, the smaller extreme events already begin on the
recession limb of higher peak events. In order to avoid this and to maintain consistency and
simplicity a constant inter-flood duration of ten days is set for all catchments.

Figure 4.1 gives the frequency of occurrence of floods over the calendar months for all the
catchments in the study area. In Fig. 4.1a the AMFs are sampled and in Fig. 4.1b the 1POT.
These plots suggest that if one defines the floods as AMFs, important summer floods are
missed. For example, the number of floods in June will be underestimated (⇡ 125 for AMF
instead of ⇡ 160 for POT). The occurrence of floods in winter and summer when sampling
the floods as the AMFs seems to be of comparable importance, due to the large number
of floods occurring in January. If one looks at the 1POT samples this picture is different:
by allowing the occurrence of multiple events per year, a more dominant summer flooding
season is present. It is also observed that the importance of floods taking place in fall can be
underestimated when looking at the AMFs. On the other hand, when using a POT approach,
the sample size of the fall events increases, resulting in a more balanced data base, which is a
benefit when the seasonality of the flood events is important for identifying flood mechanism
as highlighted by Brunner et al. (2017) and Fischer (2018).

(a) AMF (b) 1POT

Figure 4.1: Frequency of occurrence of floods over the calendar months, given for the AMF
sample (a) and the 1POT sample (b).

As part of the Predictions in Ungauged Basins (PUB) initiative, Blöschl et al. (2013)
pointed out that there is a need to understand the patterns and processes behind the runoff
generation to be able to extend knowledge beyond individual catchments. A hydrograph
flood wave is the resulting signature of a given meteorological event modified by the specific
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characteristics of the catchment. Focusing only on the peak of the flood wave hampers
the identification of the mechanism causing the floods. If full discharge series are available,
further information about the flood can be obtained using a hydrograph separation technique,
explained on the next section.

4.2 Hydrograph Separation

By means of a hydrograph separation it is possible to capture the start and end of the flood,
separate the baseflow and calculate the flood volume. In this study the limits of the flood
waves are identified using a method like the one applied in Bárdossy and Filiz (2005). The
authors used the lag differences of discharge time series to identify increases in runoff due
to weather conditions. The discharge lag differences are defined as:

�Q(t) = Q(t)�Q(t��t) , (4.1)

where �Q(t) is the corresponding lag series, Q(t) is the discharge time series, t the time
interval and �t the time window. Figure 4.2 shows an example of a hydrograph of a 62
km2 catchment. The left vertical axis corresponds to Q(t) and the right axis corresponds to
�Q(t). A �Q(t) > 0 represents the increase of the discharge before the occurrence of the
peak and it is the indicator of the start of the flood. On the other hand, �Q(t) < 0 occurs
after the peak on the recession of the hydrograph and it helps to identify the end of the flood.
As mentioned in Chap. 3, discharge measurements with 10 and 15 minute resolutions are
used. For a better performance on the identification of the flood limits, the hydrograph curves
are smoothed, aggregating the observed discharges within some time intervals. The number
of intervals chosen for the aggregation of the records depends on the size of the catchment,
catchments with longer concentration times are aggregate using more time intervals.

In Figure 4.2 one can see that the start and end of the flood correspond to those points
where the �Q(t) series approach zero. The displacement of �Q(t) with respect to Q(t) is
given by the data aggregation and the fact that one interval less is considered when calcu-
lating �Q(t). This method allows for identifying floods with different durations, in contrast
to the approach of considering the flood wave within a fixed period (a given time before
and after the peak). For different flood mechanisms and catchment sizes one would expect
variations in shape and flood duration. Once the start and end of the flood hydrograph are
specified, the baseflow is assumed to be linear and it gives the separating boundary between
direct runoff and base flow (see green dashed line Fig. 4.2).

As mentioned by Fischer et al. (2016) there is no objective method to evaluate an autom-
atized discharge separation. The hydrographs are assessed visually, to define the �Q(t) that
better separates the hydrographs and the optimal number of time intervals for the aggrega-
tion.
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4. Characterization of Extreme Discharges

Figure 4.2: An example of the hydrograph separation approach. The left vertical axis corre-
sponds to the scale of the Q(t) and the right vertical axis to the scale of �Q(t).
The hydrograph (green) corresponds to a 62 km2 catchment. The start and end
of the flood wave are identified using the lag series of the discharge data (or-
ange). A linear behavior of the baseflow is assumed for separating the direct
runoff, here plotted as the green dashed line.

4.3 Hydrograph Shape

Depending on the meteorological input causing the floods and the characteristics of the catch-
ment, a variation on the shape of the hydrograph can be expected. For instance, if convective
precipitation is the trigger of the flood, a hydrograph with a sharp shape, a large peak and a
small volume is likely to occur. In contrast, if snowmelt is the generator, a longer hydrograph
is expected with higher volumes. Figure 4.3 gives as an example the hydrographs for the ten
biggest observed POT for two catchments of different sizes. The hydrographs are plotted in
different colors according to the season when the flood occurred. As it can be observed on
the left panel, the shape variation of the yellow hydrographs, suggests events happening in
summer with different genesis. The events with shorter durations and smaller volumes can
be a result of convective precipitation, whereas the event with a longer duration and larger
volume can be the result of a weather front or precipitation caused due to orographic effects.
The winter and spring events have longer durations and can be allocated to snow melt or rain
over snow. A similar behavior is observed on the right panel although event shapes have less
variability than for the smaller catchment.

The peak to volume ratio (PV R) is a useful indicator of the shape of the flood wave and
can be used for differentiating flood mechanisms. It is defined as

PV R =
Qp

V
, (4.2)
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(a) Catchment No. 32 (12 km2) (b) Catchment No. 29 (136 km2)

Figure 4.3: Flood hydrographs of the five biggest POT for two selected catchments, the
different color identify the season of the flood occurrence.

where Qp is the peak discharge and V the volume of the separated flood wave. A large
PV R stands for a hydrograph with most of the volume concentrated within the time intervals
close to the flood peak, indicating a sharp hydrograph with rapidly increasing and decreasing
limbs. On the contrary a small PV R represents hydrographs where the volume is distributed
along the duration of the flood with smoother limbs. The largest summer peak in Fig. 4.3a
has a PV R of 0.48 whereas the largest winter peak has a PV R of 0.12.

Figure 4.4 gives the average PV R over the different seasons for all the catchments in-
cluded in this study. On the left panel a box plot with the distribution of the average sea-
sonal PV R is given. The largest median PV R occurs in summer, which is expected given
a more frequent occurrence of convective precipitation triggering flash floods. The catch-
ments marked as outliers, i.e. the small circles in Fig. 4.4a, are just an effect of using a box
plot for the representation and should not be interpreted as implausible values. Nonetheless,
it is observed that catchments having larger PV Rs in summer and fall tend to have either
large ratios of impermeable soils, large agricultural coverage or steep slopes. In winter the
PV R are on average smaller, what is explained by the dominating occurrence of other flood
mechanisms, i.e. snowmelt or rain over snow.

On the right panel of Figure 4.4 the relationship between the mean PV R and catchment
area is plotted, with a color code to identify the seasons. It shows the expected tendency
of larger PV Rs for the summer events with a decreasing trend of PV R as the catchment
area increases. There is a high variability of the PV R especially for small catchments in
summer. This means that there are different hydrograph shapes taking place when a flood
event occurs. The information in PV R can be used for recognizing similarities within catch-
ments at the event scale and represent the various flood mechanisms. Nonetheless, the use
of the catchment area to characterize the shape is not sufficient, other factors influencing the
hydrograph shape must be included. For example, the characteristics of the meteorological
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4. Characterization of Extreme Discharges

event triggering the floods can be considered as it is the main driver of floods. This will be
analyzed in Chap. 5, in which the relationship to the hydrograph shape is analyzed.

(a) PV R seasonal distribution (b) PV R vs. catchment area

Figure 4.4: Average seasonal PV R for the study catchments of the 4POT samples. In (a) a
box plot of seasonal average PV R is given and in (b) the relationship of PV R
and catchment area is plotted.

4.3.1 Design Flood Hydrograph

Even though the PV R is shown to have a strong relationship with the hydrograph shape, it is
only an indicator of the possible shape. The design of hydraulic structures for flood protec-
tion measures requires a reasonable representation of the whole flood wave, a Design Flood
Hydrograph (DFH). Yue et al. (2002) classify the existing methods for deriving a DFH into
four categories: traditional unit hydrograph, synthetic unit hydrograph, typical hydrograph
and statistical methods. In this study the last approach is used, applying a probability density
function (PDF) to represent the observed flood wave. In particular, the use of a Beta distri-
bution is proposed by Yue et al. (2002). To fit the Beta distribution to the observations, the
hydrograph must be normalized, given that the domain of the Beta distribution is [0,1] and
the area underneath the curve must be equal to one. This is achieved by dividing the base of
the hydrograph with the duration D and multiplying the discharge series Q(t) by the ratio
D/V resulting in the observed dimensionless hydrograph f(t).

For fitting a PDF and obtaining f(t), the dimensionless DFH, one possibility is to use the
method of moments with the statistical properties (mean and variance) of the hydrograph
(Yue et al., 2002). One can also use the hydrograph characteristics to estimate f(t), as
pointed out by Nadarajah (2007). The idea behind using a DFH is not to achieve perfect
agreement with the observed hydrograph, but to resemble its shape and maintain the peak Qp

and the occurrence of the peak at tp. Nadarajah (2007) proposes to estimate the parameters
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by solving Mode = tp and f(Mode) = Qp. For which Mode is the value of t that maximizes
the PDF f(t). The denormalized hydrograph is obtained via

Q(t) = f(t)
V

D
. (4.3)

In this research eight PDFs are studied: Beta, Fréchet, Gamma, Inverse Gamma, Lognor-
mal, Weibull, Two Sided Power (TSP) and Generalized Standard Two Sided Power (GSTSP).
The first six mentioned distributions are bell curves and the last two distributions, TSP and
TSP, have sharp peaks. These two are included because they could be representative of hy-
drographs in small catchments (Serinaldi and Grimaldi, 2011). Table 4.1 gives an overview
of the expressions for the PDFs.

Table 4.1: Probability density functions used to describe the shape of the flood waves.

Distribution
name

Probability distribution functions

Beta Q(t; a, b) = 1
B(a,b)t

a�1(1� t)b�1

Weibull Q(t;,�) = 
�

�
t
�

��1 e�t�

Gamma Q(t; ⌧, ✓) = t⌧�1

✓⌧�(⌧)e
� ⌧

✓

Inverse Gamma Q(t;↵, �) = �↵t�↵�1

�(↵) e�
�
t

Lognormal Q(t;µ, �) = 1
t�

p
2⇡

e�
(ln(t)�µ)2

2�2

Fréchet Q(t;↵, c) = c↵↵

tc+1 e�(↵t )
c

TSP Q(t;n,m, b) =

(
n
b

�
t
m

�(n�1)
& if 0  t  m

n
b

�
b�x
b�m

�(n�1)
& if m  t  b

GSTSP Q(t; ✓, n1, n3) =

8
<

:

⇣
n1n3

✓n3+(1�✓)n1

⌘ �
t
✓

�(n1�1)
& if 0  t < ✓

⇣
n1n3

✓n3+(1�✓)n1

⌘ �
1�t
1�✓

�(n3�1)
& if ✓  t < 1

For the Beta function the value of B(a, b) normalizes the distribution and is given as
follows

B(a, b) =
�(a)�(b)

�(a+ b)
,

where �(n) is the gamma function, which also appears in the Gamma distribution and is
given as

�(n) = (n� 1)!,

with n being a positive integer. Additionally, the fit parameters n1 and n3 of the GSTSP are
obtained via the following system of equations
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n1 =
tpf(tp)

F (tp)

n3 =
f(tp)(1� tp)n1

n1 � tpf(tp)
,

where F (t; ✓, n1, n3) is the density of the GSTSP distribution, which is given as

F (t; ✓, n1, n3) =

8
>>>><

>>>>:

0 if t  0
✓n3

✓n3+(1�✓)n1

�
t
✓

�n1 if 0  t < 0

1�
⇣
1� ✓n3

✓n3+(1�✓)n1

⌘ �
1�t
1�✓

�n3�1 if ✓  t < 1

1 if t � 1

All eight distributions are fitted to the separated hydrographs of the 4POT sample. Figure
4.5 gives an example of an observed hydrograph and the corresponding fitted PDF. For this
specific example the PDF fits are very similar, the biggest difference is observed on the
recession limb, with a “fat tail” representation for the TSP and GSTSP distributions.

Figure 4.5: Example of fitted design flood hydrographs for one flood wave. The observed
hydrograph is given in black, and the different PDFs are color coded.

The quality of the PDFs fits is evaluated using the Nash-Sutcliffe efficiency coefficient
(NSE) as

NSE = 1�
PN

i=1 (ŷi � yi)
2

PN
i=1 (yi � ȳ)2

(4.4)

where ŷi is the estimated value, yi is the observed value and ȳ is the mean of the obser-
vations. Here, N are the number of time intervals of each hydrograph. Additionally, for
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comparing the fits in terms of the shape of the hydrograph the Mean Squared Error (MSE)
of the observed and the fitted entropy are calculated as

MSE =
1

N

NX

i=1

(ŷi � yi)
2 (4.5)

in this case ŷi and yi are also the estimated and the observed values respectively, but of the
entropy of the estimated and observed hydrographs. Here, N represents the number of flood
hydrographs in each catchment. The entropy is considered for the time intervals before the
peak, after the peak and for the whole hydrograph.

Figure 4.6 gives a summary of the goodness of fit for the eight distributions. For this
purpose, for each catchment a NSE is calculated per fitted hydrograph. The hydrographs
used correspond to those in the 4POT sample. On the left panel of Fig. 4.6 the average of
the NSE obtained for each catchment are used to generate the box plot. It can be observed
that, the sharp peak distributions have larger NSE, i.e. they fit better, the median NSE for the
TSP and GSTSP is around 0.78. In terms of the median, the worst fit is obtained with the
Weibull and the Fréchet distributions with a NSE of 0.64. However, the Fréchet distribution
has catchments that in average presented a larger average NSE, indicating better fit than the
Weibull for catchments. The Beta distribution has the catchment with the lowest performance
(NSE of 0.15). The Lognormal has the best fit of the bell shaped distributions with a median
NSE of 0.61, this agrees with the observations of Brunner et al. (2017). Looking at the
fit quality in terms of the difference between the entropies of the observed and the fitted
distributions is more significant than looking at the goodness of fit over all data points of
the hydrograph as evaluated with the NSE. The right panel of Fig. 4.6 gives a box plot with
the MSE between the entropies of the observed and the fitted distributions. Here, also the
average MSE for each catchment with the fits of the 4POT sample is considered. The TSP
and GSTSP have the smaller median MSE, being so the distributions that can represent the
entropy of the observed hydrograph the best. The six bell shaped distributions have worse
performance, whereas the Weibull and the Beta have the largest median MSE and the Inverse
Gamma and the Fréchet have the smallest one.

In Tab. 4.2 the Root Mean Squared Error (RMSE) between observed and fitted entropies
for the time intervals before and after the occurrence of the flood peak is given. For each
catchment the average RMSE for each season (winter and summer) are calculated for the fits
of the hydrographs from the 4POT sample. The median, the maximum and the minimum of
the average catchment RMSE are given in Tab. 4.2. Only four distributions are included, the
two sharp distributions and the two bell shaped distributions, since the trend in the behavior
over the bell shaped distributions is similar. It is observed that for all PDFs the entropy of
the hydrograph after the peak is better represented than the entropy before the peak (smaller
RMSE). This can be attributed to smaller variations present on the recession limb of the
hydrograph between two time intervals. The same applies for the entropies of the winter
months, which are closer to the observed entropies than in the case of the summer months.
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Figure 4.6: Goodness of fit for the eight PDFs to represent the design floods hydrograph.
Left panel: average NSE per catchment over all 4POT samples. Right panel:
average MSE per catchment over all 4POT samples.

For both the winter and summer events, the TSP distribution represents the entropies of the
increasing and decreasing limbs better. It is observed that although the lognormal distribution
has larger errors the performance can be comparable to those of the sharp distributions,
especially when looking at the entropies after the peak.

Table 4.2: Median, minimum and maximum RMSE between the observed and fitted en-
tropies for the intervals before and after the peak. The bold values indicate the
lowest values, i.e. the best performance. The seasons 1 and 2 differentiate the
winter and summer seasons, corresponding to the months April to September and
October to March respectively.

RMSE of entropy
before the peak

RMSE of entropy
after the peak

PDF Season Median Min Max Median Min Max

Beta 1 0.07 0.03 0.25 0.08 0.05 0.12
2 0.17 0.08 0.48 0.10 0.07 0.18

Lognormal 1 0.08 0.05 0.21 0.04 0.02 0.07
2 0.15 0.07 0.37 0.05 0.03 0.12

GSTSP 1 0.04 0.02 0.16 0.04 0.01 0.07
2 0.11 0.06 0.34 0.04 0.02 0.13

TSP 1 0.04 0.02 0.16 0.02 0.01 0.05
2 0.10 0.06 0.32 0.03 0.02 0.14

Additionally, it is noticed that the six bell shaped distributions tend to underestimate the
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entropy after the peak and overestimate the entropy before the peak. This indicates that the
errors for the case of the whole hydrograph (see right panel of Fig. 4.6) are low as a result of
the compensation between the over and underestimation of the two separate entropies. The
actual hydrograph representation is worse as what evaluated with the entropy of the whole
hydrograph. This effect is also observed in Fig. 4.2, where the recession limbs of the bell
shaped PDFs underestimate the duration and volume of the observed flood.

In Fig. 4.7 the average NSE of the fits from a TSP distribution for the 4POT samples
is plotted in space. The size of the scatter points is representative of the catchment sizes,
the blue-green color map gives the scale of the NSE. There is no observed pattern of the
distribution of the errors in space or catchment sizes, the same is noted for the case of the
entropies MSE over all PDFs. This is an advantage for the regionalization of the flood
hydrographs, since no bias will be introduced to certain catchment groups due to the chosen
PDF distribution for constructing the DFH.

Figure 4.7: Spatial distribution of the average NSE per catchment when fitting the TSP dis-
tribution to the 4POT. The blue-green color map gives the scale of the NSE.

According to the flood estimation purposes one could choose a different PDF to fit to the
flood hydrograph. When looking at both the NSE and the entropies MSE, the TSP is the
one with the best overall performance. However, the TSP is a sharp distribution and might
seem unrealistic for modeling the winter floods with longer durations. From the bell shaped
distributions, it is observed that although with larger errors, the Lognormal has comparable
performance as the obtained with TSP. In further stages of this study, both the TSP and the
Lognormal will be considered.
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Chapter 5

Meteorological Forcing Causing the
Floods

The purpose of this chapter is to analyze the meteorological forcing event causing extreme
discharges. Precipitation data with high temporal resolution is used to explore the relation-
ship of flood drivers and catchment reactions. Temperature data is also included for evaluat-
ing the impact of snow processes. Finally, the soil moisture at the occurrence of the floods is
evaluated using precipitation data aggregated within days.

For assessing the precipitation triggering the floods and the temperature change before the
occurrence of the flood, the data of the geographical nearest neighbor is used. An overview
on these available data is given in Chap. 3. The time periods of the precipitation and dis-
charge measurements do not always match and are sometimes short. A tradeoff between
maximizing the length of the measurements and the spatial coverage on the study area is
needed to select the stations to be included. Depending on the objective of the analysis,
different time periods will be selected. For example, when looking at the meteorological
event triggering the floods, a minimum of 7 years is selected: discharge, precipitation and
temperature neighbors are included if they had at least 7 years of consecutive measurements.
Since consecutive consecutive beginning and end of the records is of importance in the case
of precipitation analysis, the following time periods are selected: 1984-2017, 2001-2017 and
2010-2017. Different periods are considered to identify if the observed patterns are a matter
of the data scarcity in space and time or patterns of the actual weather. In Chap. 3 Fig.
3.2 the available data for precipitation measurements with 10 minutes resolution are plotted.
It shows that long records, are available only at few stations, resulting in a scarce spatial
resolution. However, the spatial coverage increases as the observation period is shortened.
Records of a couple of years are not enough for analyzing extremes, thus a compromise
between spatial coverage and length must be taken.
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5.1 Characterization of Precipitation Causing the Floods

To characterize the precipitation event triggering the floods the following parameters are
used: (1) the total precipitation, (2) the duration, (3) the intensity, (4) the temporal entropy
and (5) the precipitation association. Their definition is described in the following sections.

Total precipitation. This quantity corresponds to the total amount of rainfall triggering the
flood, if not mentioned otherwise. Sometimes it corresponds to the total amount of liquid
water triggering a flood, meaning that melted snow is included as part of the precipitation
event, the method used for including snowmelt water equivalent is explained later in this
chapter. The beginning and end of a precipitation event is determined by the duration of the
flood wave plus the amount of precipitation falling before the rising of the flood curve. The
start of the precipitation event is determined by the point at which at least two consecutive
hours of no precipitation are recorded.

From the total of 4816 4POT samples, 59 floods had precipitation records of 0 mm and
1568 had data sets containing NaN. Those events are tagged as unreliable and are not in-
cluded in the analysis. Events with 0 mm precipitation at the occurrence of a flood are not
physically possible. These records are found to be mainly flood events exceeding in 75%
of the cases the median peak to volume ratio (PV R) of the catchment. As mentioned in
Chap. 4 large PV R values represent steeper hydrographs with fast increasing and decreas-
ing limbs, which is a typical catchment respond to convective precipitation cells, with high
intensities and short durations, that could have been missed at the neighboring station. The
high number of NaN values corresponds to precipitation stations with no records, in some
cases precipitation measurements with high temporal resolutions (10 min.) had shorter data
series than the discharge station. As already mentioned, a compromise between data series
length and proximity to catchment had to be taken.

Duration. It is considered as the number of wet intervals within a fixed period of time,
defined as

Dj,N =
NX

i=1

ki, with ki =

8
<

:
1.0 Pi > 0

0.0 Pi = 0
, (5.1)

where N is the number of intervals calculated with a data aggregation j and ki equals 0 or 1
depending on the precipitation Pi measured within the i-th interval. For example, Dh,24h is
a duration calculated with an hourly aggregation in a 24 hour period. In this study durations
are always given in hours, if not calculated with hourly aggregations, they are converted to
hours.
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In Fig. 5.1 the observed durations, within the flood-day (D10min,24h), versus the PV R of
the floods are plotted. A flood-day is considered as the interval between 12 hours before
and 12 hours after the peak. In Fig. 5.1a and Fig. 5.1b all flood events of two example
catchments are included. In Fig. 5.1c the mean PV R and D10min,24h over each season are
given for each catchment. Additionally, in Tab. A.3 a summary with the mean characteristics
of the meteorological event triggering the floods for each catchment is included.

(a) Small catchment (b) Big catchment

(c) Mean per season for each catchment

Figure 5.1: Scatter plots of the duration of the precipitation event (D10min,24h) versus the
PV R of flood events. The colors represent the different seasons and the markers
are used for identification between 1POT (circles) and 4POT (crosses) samples.
(a) and (b) give examples of all floods for two different catchment areas. (c)
shows the seasonal mean for all catchments.

As expected, events with lower PV R, shallow increasing and decreasing hydrographs,
tend to have longer durations and are more common in winter. Most of floods occurring in
summer have smaller durations than the winter events. Convective precipitation is known
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for having short durations and high intensities and trigger flash floods. On the other hand,
longer durations in winter can be associated to other flood mechanisms as snowmelt or rain
over snow. A difference in durations depending on the catchment size (see Tab. A.3) is
also observed. As it is well known, bigger catchments have longer concentration times,
and thus, longer precipitation durations are triggering their floods. Figure 5.1c suggests that
extremer events (1POT) have longer durations in spring than 4POT events, highlighting the
importance of the sample selection according to the purpose of the flood estimation. If more
events are included the duration of the extremer ones can be underestimated. The duration
of the precipitation event gives the number of wet hours but does not reveal the temporal
distribution of precipitation. The use of temporal precipitation entropy for identifying the
influence of the temporal variation of precipitation on the hydrograph shape is going to be
analyzed later in this chapter.

Intensity. Precipitation intensity is the amount of precipitation falling per unit time. In
this study, intensity refers to the mean rainfall rate, as described by Dunkerley (2008). It is
defined as

I =
P

D
, (5.2)

where I is the intensity or rainfall rate, is the accumulated precipitation depth in the consid-
ered duration D. Here, intensity depends on the definition of duration. It can be ambiguous,
since two precipitation events can have similar intensities but a different temporal distribu-
tion. For example, if the precipitation intensity is calculated over one hour, two events that
have the same amount of precipitation accumulated in the hour. However, in one event all
precipitation came within 10 minutes and in the other it came equally distributed over the
hour.

Fig. 5.2 shows the mean intensity triggering both 1POT and 4POT for all catchments. The
mean of the intensities is calculated per season. The intensities considered for these plots
are computed using the precipitation accumulated within D10min,24h. Even though, there is
a tendency that summer events have bigger intensities, the same value can trigger different
hydrograph shapes, represented by the PV R. The flood-day intensity (Fig. 5.2) does not
help to separate the flood mechanisms. The same is observed for the case of the maximum
ten minutes intensity. As Fig. 5.2 suggests there is a wide range of PV Rs having the same
intensities, especially for events in spring, fall and winter. In the next section a method to
resolve this problem is introduced.
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Figure 5.2: Scatter plot of intensity versus the PV R of the flood events. The intensity is
calculated using a D10min,24h. The different seasons are represented by the col-
ors and the markers are used to identify floods belonging to 1POT (circles) and
4POT (crosses) samples.

5.2 Entropy for Evaluating Precipitation Temporal Distri-
bution

Entropy is used to characterize the temporal variability of precipitation. Entropy H is a
measure of information, uncertainty and chaos. Its discrete form as defined by Shannon
(1948) is given by

H(P ) = �
NX

i=1

pi log pi, (5.3)

where H(P ) is the entropy of the discrete set of probabilities of the random variable P , N
the number of outcomes and pi the probability of occurrence of each possible event. The
base of the logarithm defines the unit of the entropy. Here, the base of the logarithm is
two, which defines the units of entropy to be bits. The entropy function is bounded on the
minimum and maximum values it can assume and is always positive. If there is only one
possible outcome, the entropy is at its lower limit H(P ) = 0, implying absolute certainty.
In contrast, H(P ) suggests maximum uncertainty when all outcomes are equally likely to
occur, which corresponds to the case of a uniform distribution. Additional properties of
the entropy are: (1) the value of H(P ) is not altered by the order of the outcomes, (2)
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it is continuous, meaning that small changes of pi have a small effect on H(P ), (3) it is
monotonous suggesting that with an increase of N the uncertainty also increases and (4) by
the presence of impossible events H(P ) does not change (Singh, 2013).

For calculating the temporal variability of precipitation, the concept of apportionment en-
tropy introduced by Mishra et al. (2009) is used. In this study it is applied for measuring
temporal variability over one precipitation event and not the variability of monthly precipi-
tation over a year, which is defined as

Ht = �
NX

i=1

ri log ri , (5.4)

where Ht is the temporal entropy of precipitation, N the number of intervals subdividing the
domain of Ht and ri the weighted precipitation of the given time step, expressed as

ri =
PiPN
i=1 Pi

, (5.5)

where Pi is the aggregated precipitation for each interval. In order to get an intuitive picture,
one could think of temporal entropy as an N number of empty rain buckets. If each bucket
has a lid that only opens during an interval i, Ht measures the distribution of water in these
buckets. In case of a small Ht (low uncertainty event, see Fig. 5.3a) the precipitation event
is highly intense, which is a typical characteristic of convective precipitation, in which the
total precipitation measured lies between a couple of intervals (only a few buckets contained
water). On the contrary, a large Ht (high uncertainty event, Fig. 5.3b) represents a longer
and more uniform precipitation event, typical of a frontal event, orographic precipitation or
rain over snow, in which the amount of precipitation measured over the event is more equally
distributed in all intervals (all buckets are almost evenly filled with water).

Figure 5.3 shows two flood events for the same catchment for which the intensity is calcu-
lated with a D10min,24h. It can be observed that both events, although having diverse temporal
structure result in comparable intensities (2.8 and 2.6 mm/h). If the intensities of the same
events are calculated using a Dh,24h, values of 1.3 mm/h for Fig. 5.3a and 2 mm/h for Fig.
5.3b are obtained, which are still very similar between each other. Even if one looks at
the maximum intensity within 10 minutes intervals, both events have around 4 mm/10min
(maximum of the blue line). Yet, both events have different values of Ht, which indicates a
better potential of its use as an indicator of the temporal variation of precipitation and of its
influence on the hydrograph shape.

Special care must be taken, when comparing records with diverse resolutions or events
with a different number of aggregated precipitation intervals. Entropy measures randomness
relative to the coordinate system considering an equal weight for each interval, if the coordi-
nate system changes, the value of entropy is altered (Shannon, 1948). Here, the coordinate
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(a) Low entropy event

(b) High entropy event

Figure 5.3: Example of temporal precipitation entropy. The precipitation observations are
given in blue and its corresponding triggered hydrograph reaction in green. The
plot shows two different catchment reactions due to different temporal distri-
bution of precipitation. The parameters of the meteorological events for the
flood-day are displayed in each subplot.

system corresponds to time and can be either in days, hours or minutes. To be able to com-
pare values of entropy coming from different coordinate system definitions, the concept of
relative entropy or dimensionless entropy must be used. Relative entropy HR is defined as
the ratio of entropy to maximum entropy. It is given as (Singh, 2013)

HR =
H(P )

Hmax(P )
=

H(P )

logN
, (5.6)
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where H(P ) is the entropy of the considered coordinate system, Hmax the upper bound of
the entropy, which depends on the sample size N , i.e. the number of aggregated precipitation
intervals. The proof of Hmax = logN can be found in example 2.10 of Singh (2013). In
this study HR is used when the coordinate system changes and for those cases it will be
mentioned. Otherwise Ht will be used within a fixed period using observations with 10
minutes resolutions.

5.2.1 Statistics of Precipitation Sums and Temporal Entropy

An overview of the precipitation sums and the temporal precipitation entropies Ht are given
in this section, with the intention of having a general picture of the precipitation regime in
the study area. The empirical distribution function (EDF) for the precipitation sums and the
temporal entropy for the study period of 1984 to 2017 are shown in Fig. 5.4. Observations
with a resolution of 10 minutes are considered, only including those stations that measured
the whole study period. For both precipitation and Ht a moving window is used, for which
every 10 minutes the data of the preceding 24 hours is either aggregated or used for calcu-
lating Ht. Given that Ht is calculated within 24 hours using observations every 10 minutes,
the minimum and maximum values that Ht can take are 0 to 7.17.

(a) Daily precipitation (b) Temporal precipitation entropy

Figure 5.4: The empirical distribution function (EDF) of daily precipitation (left) and tem-
poral entropies calculated over a day with observations every 10 minutes (right).

As an orientation on the meaning of the different quantiles, a summary of the observed
quantiles is included in Table 5.1 for the different study periods. Typical values for the
probabilities of observing a given precipitation sum or having a determines Ht are given. In
this table the mean over all stations that had measurements in a period is included. Also,
the minimum and maximum observed values are given. In the study area, the probability of
having a dry or a wet day has a range from around 0.5 to 0.6. It can also be observed that
around a value of Ht equal to 6, some of the stations have the maximum observed quantile
and this does not correspond with the maximum possible Ht of log2(144) = 7.17. This is
expected due to the random nature of precipitation, which makes it unlikely that within a day
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all 144 intervals of 10 minutes observations will have the exact same amount of precipitation
per interval. Further, it can be observed that the probabilities of having 0 mm of precipitation
are lower than those of having Ht = 0. This occurs due to those 24 hours periods with only
one interval measuring precipitation. From Eq. 5.4 it can be observed that when ri equals to
1 Ht is zero.

Table 5.1: Selected summary statistics of precipitation sums and Ht for different study peri-
ods, all ending in 2017. px are the probabilities of observing x mm in a day and
Hx are the probabilities of not exceeding a Ht of x.

Precipitation Entropy
Start
year

p0 p5 p10 p20 mean
(mm)

H0 H3 H4 H5 H6 mean
Ht

1984
min 0.48 0.76 0.85 0.94 2.27 0.52 0.66 0.76 0.88 0.97 1.42
max 0.55 0.85 0.93 0.98 4.10 0.59 0.75 0.86 0.95 0.99 1.82

mean 0.52 0.81 0.90 0.97 3.04 0.56 0.71 0.81 0.92 0.98 1.59

2001
min 0.48 0.75 0.84 0.94 2.27 0.51 0.66 0.76 0.87 0.97 1.31
max 0.58 0.86 0.93 0.98 4.10 0.62 0.76 0.86 0.95 0.99 1.82

mean 0.53 0.82 0.90 0.97 2.87 0.57 0.72 0.82 0.92 0.98 1.53

2010
min 0.45 0.75 0.84 0.94 2.09 0.51 0.65 0.75 0.87 0.97 1.24
max 0.58 0.86 0.93 0.98 4.10 0.74 0.82 0.88 0.95 1.00 1.82

mean 0.53 0.83 0.91 0.97 2.81 0.57 0.73 0.82 0.92 0.99 1.52

5.2.2 Temporal Entropy of Precipitation Triggering the Floods

The precipitation temporal entropy Ht of the flood-day (considered as previously mentioned
plus/minus 12 hours from the peak) is calculated using stations with a resolution of 10 min-
utes. Figure 5.5 displays the temporal entropy of the precipitation event causing the flood
against the PV R of the flood wave, for all flood events of two example catchments (Fig.
5.5a and Fig. 5.5b) and for the seasonal mean of each catchment (Fig. 5.5c). On the graphs
the seasons are identified with different colors and the sampled POT with different markers.
All catchments show decreasing trend of the PVR with increasing Ht, meaning that the flood
waves with faster rise and decay are triggered by precipitation events with smaller Ht. These
types of events are more frequent during summer, which can be associated with the occur-
rence of convective precipitation. Figure 5.5 suggests that the mean temporal entropy of the
different seasons can be underestimated depending on how many POT are sampled, since it
is observed that the 4POT sample has smaller Ht values than the 1POT sample.

Comparing Ht (Fig. 5.5) with the duration (Fig. 5.1) and the intensity (Fig. 5.2) it seems
that the information capture with Ht might be more useful for separating flood mechanisms
and hydrograph shapes. The spread of scatter plots is smaller for Ht (Fig. 5.5c) as for
D10min,24h (Fig. 5.1c). If one looks for example at a value of PV R of 0.2, it suggests that
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every precipitation duration can cause the same hydrograph shape. In fact, a better separation
might be achieved with Ht as observed in Fig. 5.1c. This will be further investigated in Chap.
6.

(a) Small catchment (b) Big catchment

(c) mean per season for each catchment

Figure 5.5: Temporal entropy of precipitation versus the PV R of flood events. The colors
represent the different seasons and the markers are used for identification be-
tween 1POT (circles) and 4POT (crosses) samples.

The maximum value that Ht can take is constrained by the duration of the precipitation
event, which is defined as � log2

1
k , where k is the number of wet intervals adding informa-

tion to the entropy calculation, i.e. the duration of the event. Figure 5.6 shows the entropy
and duration of the meteorological event triggering the 1POT floods. The entropy and the du-
ration are included for the case of considering only precipitation measurements (left panel)
and when snow melt is included as water equivalent. The calculation of the snow water
equivalent is given further in this chapter. As expected, the longer precipitation durations re-
sult in higher entropies, converging towards the limit of � log2

1
k . Figure 5.6 suggests that by
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not considering snow accumulation and snowmelt into the meteorological event triggering
the floods (Fig. 5.6a), the duration and entropy of the winter events will be underestimated.
The winter events with significantly smaller Ht as the maximum entropy limit (red line in
Fig. 5.6) are accounted to meteorological events with durations much longer than a day, sug-
gesting that 24 hours around the peak are not long enough to characterize them. Different
time periods can be used for calculating the temporal entropy of precipitation triggering the
floods, but in this case the relative entropy (HR) must be used. It is observed in Fig. 5.6b
that summer events tend to have lower HT and winter events are closer to the Ht maximum
limit.

(a) without snow (b) with snow

Figure 5.6: Temporal entropy of precipitation Ht versus duration (D10min,24h) of the me-
teorological event triggering the floods. Solely extremer events are considered
(1POT), the mean of the winter and the summer events are plotted in top of all
events with circles. The red line represents the limit of the maximum entropy
defined as � log2

1
k .

5.3 Spatial Analysis of Precipitation

Entropy can also be used as a measure of association of precipitation in space. As suggested
by Bárdossy and Pegram (2009) the spatial dependence of stations can be determined using
entropy of the binary probabilities of three stations being jointly over or under a threshold
with

Hs = �
1,1,1X

i,j,k=0

p(i, j, k) log2 p(i, j, k) , (5.7)

where Hs is the level of association of precipitation triplets located at the vertices of equilat-
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eral triangles. Here, with the subscript s to avoid confusion with other entropies introduced
before. The value p(i, j, k) corresponds to the binary probabilities, defined by stations triples
being below or above a given precipitation quantile threshold, when i, j, k = 0 or i, j, k = 1
respectively. This gives a total of the eight possible patterns (combinations of i, j, k). The
partition threshold considered determines the maximum value that Hs can take. A station can
only exceed a threshold with a probability of one minus the quantile. With this in mind, it
is possible to compute the limits of Hs. The minimum Hs is achieved when the tree stations
are complete dependent. On the contrary, the maximum is reached when they are complete
independent. The independent limits for various thresholds are given in Tab. 5.2. Therefore,
it is to be expected that the further Hs is from this independent value, the more associated
the triples are.

Table 5.2: Hs limits of complete interdependence and independence and the maximum prob-
ability of jointly exceeding the threshold for complete independent stations.

Complete
interdependence Complete independence

Threshold Entropy Entropy p(1, 1, 1)

0.5 1.00 3.00 0.125000
0.6 0.97 2.91 0.064000
0.7 0.88 2.64 0.027000
0.8 0.72 2.17 0.008000
0.9 0.47 1.41 0.001000

0.95 0.29 0.86 0.000125
0.975 0.17 0.51 0.000016
0.99 0.08 0.24 0.000001

As pointed out by Bárdossy and Pegram (2009) it is important that the triangles are nearly
equilateral, to avoid ambiguities of stations being too close to each other and triples describ-
ing the spatial dependence of only two stations. They are nearly equilateral since precipita-
tion stations are randomly positioned in space and it is, therefore, not possible to get exact
equilateral triangles. The limit for accepting the triples depends on the difference of triangles
sides, which is chosen to be less than 10% of the perimeter.

To evaluate the spatial dependence Hs of stations, the three dimensional two state proba-
bilities of precipitation aggregated daily and Ht of the triples in the study area are calculated.
By evaluating precipitation sums, one can determine if stations are being jointly wet or dry.
Moreover, when considering Ht it is possible to establish the spatial association of the tem-
poral entropy of precipitation, meaning that stations are jointly having an irregular event
(small Ht) or uniform event (large Ht). These probabilities are obtained by counting how
often each of the eight possible patterns appear. First the empirical distribution function
(EDF)s of daily precipitation and Ht are obtained for all accepted stations (Fig. 5.4 and Tab.
5.1). The occurrences of triples exceeding or not exceeding the studied partition quantiles
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are determined, using the EDFs to calculate the trivariate two state probabilities p(i, j, k) and
finally obtain Hs.

The studied thresholds for daily precipitation sums are chosen to be 0.6, 0.9, 0.975 and
0.99. The quantile of 0.6 is selected as the partition of stations being either wet or dry (Fig.
5.4a). The higher thresholds are included for later use to compare precipitation triggering
the floods. The chosen quantiles for Ht are 0.7, 0.8, 0.9 and 0,99. A value of Ht of 0.7
is found to be more representative than 0.6, since some stations have values for the lower
quantile (Ht = 0) larger than 0.6. Additionally, it is observed in Fig. 5.5 that most of the
precipitation events triggering the floods have Ht values between 4 and 6, which correspond
to mean quantiles of around 0.8 to 0.99 (Fig. 5.4 and Tab. 5.1).

To compare the Hs obtained for different thresholds, Hs is divided by the independent
maximum, given in Tab. 5.2. In this manner, triples are more independent the closer they get
to one and more independent if they tend to zero. Figure 5.7 shows the results of Hs divided
by the independent limit versus the natural logarithm of the triangle area. It refers to all
precipitation triples over the periods between 2001 to 2017 and 2010 to 2017. It is observed
that the level of association of precipitation sums drops as the distance between stations
increases, i.e. larger triangles (Fig. 5.7a and Fig. 5.7c). This agrees with the observation
of Bárdossy and Pegram (2009) and Bárdossy and Pegram (2012). The same occurs for Ht

(Fig. 5.7b and Fig. 5.7d), where the larger triangles have smaller association of the temporal
distribution of precipitation in space.

In the case of daily precipitation aggregation (Fig. 5.7c and Fig. 5.7a) it is observed that
for increasing partition quantiles the triples become more independent. For the case of daily
entropy, the trend is similar, but the changes in dependence within the quantiles is smaller.
The blue crosses located way below the main group in Fig. 5.7d can be explained by one
station having a probability of Ht = 0 higher than 0.7. Figure 5.7 suggest that Ht has a
higher association in space over all thresholds than the daily precipitation sums.

The two periods (2001 to 2017 and 2010 to 2017) are included for a comparison of trends
as the number of triangles increases. For example, in Fig. 5.7c looking at the smaller tri-
angles, there is first an increase of daily precipitation association followed by a decrease.
There is a larger spread on the association bounds per threshold for the period 2010-2017,
since there is less data to calculate the binary probabilities resulting in larger variations of the
resulting Hs. It can also be accounted to the number of triangles considered in each period.
Less triangles result in less spread of the association at each threshold.

Fig. 5.7c and Fig. 5.7d show that around a value of 20 of the natural logarithm of the
triangle area there is a change in the spatial dependence structure of precipitation and Ht.
This is defined by the change in the slope at which the association is dropping. In the fol-
lowing section the spatial dependence of precipitation at the occurrence of a flood is going to
be analyzed. Analyzing spatial dependence of precipitation records is important since these
are used as input to rainfall runoff models and predictions in ungauged catchments. Later
in this chapter, these spatial distributions of precipitation are going to be compared to the
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subsamples of the spatial dependence of precipitation triggering the floods.

(a) Daily precipitation from 2001 to 2017 (b) Ht from 2001 to 2017

(c) Daily precipitation from 2010 to 2017 (d) Ht from 2010 to 2017

Figure 5.7: The entropy of the two state probabilities of precipitation triples is plotted versus
the natural logarithm of the triangle area. The different colors represent the
selected evaluation thresholds for determining if stations are mutually dry or
wet, i.e. precipitation sum (a) and (c), or have an irregular or uniform temporal
distribution, i.e. Ht (b) and (d).

5.3.1 Association of Precipitation Sum and Temporal Precipitation En-
tropy Triggering the Floods

The concept of association previously mentioned is also used to analyze the sub samples
of precipitation events causing a flood. For this purpose, the probabilities of precipitation
sums and temporal precipitation entropy of station triples jointly exceeding a threshold are
conditioned on the occurrence of a POT. This are recoginized as p(i, j, k|POT ).

In this case the precipitation triples considered do not only need to satisfy the condi-
tion of nearly equilateral triangles, but they also should be representative of the catchment.
Triangles are going to be accepted only if they have a given positioning with respect to a
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catchment. This is intended to ensure that the results represent the actual spatial depen-
dence and are not driven by the catchment being closer to only one of the precipitation
stations. Due to the random location of stations, a unique positioning of precipitation triples
with respect to the catchments cannot be achieved. To keep consistency over all catch-
ments, the triangles fulfilling the following cases are considered. C1: the whole catchment
is contained in the precipitation triangle (see Fig. 5.8a). C2: the catchment centroid is
contained in the precipitation triangle (see Fig. 5.8b). C3: the catchment centroid is con-
tained in an enclosed triangle, whose vertices are at the medians of the precipitation tri-
angle (see Fig. 5.8c). C4: a percentage difference of the distances between the triangle
vertices and the closest catchment point is achieved, meaning that the following is fulfilled�
|l1 � l2| / l1+l2

2 , |l1 � l3| / l1+l3
2 , |l2 � l3| / l2+l3

2

 
 x, where l1, l2 and l3 are the distances

and x is the allowed percentage difference (see Fig. 5.8d). C5: like case C4 but using dis-
tances from the vertices to the centroid of the catchment (see Fig. 5.8e). C6: a percentage
of the catchment is contained in the enclosed triangle formed by the precipitation triangle
medians, A2 � x(A1+A2+A3), where x is the selected allowed percentage (see Fig. 5.8f).

(a) C1 (b) C2 (c) C3

l1

l2

l3

(d) C4

l1

l2

l3

(e) C5

A2
A3

A1

(f) C6

Figure 5.8: Positioning of precipitation triples and catchments for the various cases of ac-
cepting the precipitation triple. The dark blue triangle is formed by precipitation
triples. The red dot represents the catchment centroid. The light blue dotted tri-
angle corresponds to a enclosed triangle, whose vertices are at the medians of
the precipitation triangle.

The eight binary probabilities of the precipitation stations jointly exceeding a threshold
are used to evaluate the spatial dependence of precipitation at the occurrence of a flood.
These probabilities are calculated for the sub sample of precipitation events when a POT
occurred p(i, j, k|POT ). The p(i, j, k|POT ) probabilities are divided into three groups to
represent flood events triggered by a precipitation event with local, total or partial coverage.
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By this reasoning, if precipitation sums are considered, p(0, 0, 0|POT ) corresponds to the
binary probabilities of no station exceeding the threshold and it represents a precipitation
event with local coverage. Similarly, p(1, 1, 1|POT ) gives the case of all stations jointly
exceeding the threshold and it indicates a precipitation event with total coverage. Finally, the
remaining 6 possible probabilities describe the case of one or two stations jointly exceeding
the threshold, which means a precipitation event of partial coverage triggered the flood.
Likewise, if Ht is been analyzed, the probability groups p(0, 0, 0|POT ), p(1, 1, 1|POT ) and
1�p(0, 0, 0|POT )�p(1, 1, 1|POT ) represent the cases of having locally, totally or partially
the same temporal precipitation distribution, when the flood occurred. One must be aware
that these probabilities depend on the partition threshold selected. If for instance, for one
catchment a 0.9 threshold is chosen and the obtained p(1, 1, 1|POT ) are 0.1, 0.7 and 0.2, the
catchment has a 10% , 70% and 20% likelihood of having a flood triggered by a precipitation
event with local, total and partial coverage according to this threshold. This in no way means
that if p(1, 1, 1|POT ) is really small, there is no precipitation measured.

Table 5.3 gives a summary of the three probability groups of precipitation sum triggering
1POT floods, according to a precipitation quantile threshold of 0.9. Two measurement pe-
riods are included, 1984-2017 and 2001-2017. The values given correspond to the average
of the probabilities calculated over three groups of catchment sizes, i.e. A  20 km2, 20
> A  40 km2 and A > 40 km2. For each observed catchment, triples are included if they
follow the cases in Fig. 5.8, for some cases there is no triangle to satisfy the positioning of
the catchment with respect to the precipitation triples, those are, therefore, left blank. Com-
paring the exact number of the probabilities over the periods, cases and catchments sizes is
not viable, since the number of triangles, catchments and data items differ and as a result the
probabilities will change. Nevertheless, it is useful determine if the tendencies are similar
when more records are included or more triangles are considered.

One can observe in Table 5.3 that the trends of the probabilities over all periods and cases
are similar for a given threshold. For example, for the case of having a 0.9 threshold the
probability of the event being of local coverage is higher than the probabilities of total or
partial coverage. As the catchment size increases the probability of a 1POT flood being
triggered by a precipitation with local coverage is higher than the probabilities of being of
total or partial coverage, according to the 0.9 threshold. Although this effect is observed
along various thresholds, it is only valid when looking at the mean over all catchments in a
size group. This behavior is explained by the randomness of the locations of the stations, by
the difference in triangle sizes and by the number of selected triangles, rather than being a
trend over the catchment sizes. Since the catchment size groups selected for averaging the
results are assigned with no objective reason, they are chosen with the intention of analyzing
variations in the tendency and not with the intention of taking conclusions over the assigned
group.
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Table 5.3: Probabilities of a flood triggered by an event with local, total or partial coverage
according to a 0.9 quantile threshold, for the periods 1984-2017 and 2001-2017.
For C1-C6 the mean of the probabilities for groups of catchment sizes are calcu-
lated using the triples (see Fig. 5.8). The number of catchments (No. cat.) gives
the number of catchments that have at least one triangle fulfilling the case. The
symbol 4̄ represents the mean number of triangles selected per catchment for the
given case.

1984-2017 2001-2017

p(i, j, k|POT ) p(i, j, k|POT )

Cat.
Area Case

No.
cat. 4̄ local total partial

No.
cat. 4̄ local total partial

 20
km2

C1 4 3.3 0.64 0.08 0.27 9 11.4 0.63 0.07 0.29
C2 6 4.2 0.61 0.11 0.28 9 16.7 0.64 0.07 0.29
C3 - 6 3.5 0.70 0.03 0.27
C4 - 3 2.7 0.61 0.02 0.37
C5 - 3 2.0 0.61 0.02 0.37
C6 - 5 3.4 0.68 0.02 0.30

20 >

x 
40
km2

C1 5 2.8 0.61 0.10 0.28 9 9.1 0.69 0.09 0.21
C2 7 4.3 0.62 0.08 0.29 10 15.4 0.69 0.08 0.23
C3 - 6 5.7 0.72 0.06 0.23
C4 - 2 11.0 0.68 0.10 0.22
C5 - 2 10.5 0.68 0.10 0.22
C6 - 6 4.7 0.72 0.06 0.23

> 40
km2

C1 2 2.5 0.69 0.06 0.25 8 7.6 0.74 0.04 0.22
C2 5 3.2 0.67 0.04 0.28 10 16.3 0.73 0.04 0.23
C3 1 2.0 0.84 0.03 0.13 6 5.0 0.77 0.03 0.20
C4 1 2.0 0.84 0.03 0.13 3 4.0 0.80 0.04 0.16
C5 1 2.0 0.84 0.03 0.13 2 5.5 0.79 0.06 0.15
C6 - 4 2.8 0.81 0.04 0.15

The different positioning of the catchments with respect to the triangles in Fig. 5.8 show
small variations on the trends, reflecting the actual spatial dependence of the observations
rather than an effect due to the selection of the stations. For the following analysis merely
case C2 is going to be considered, in which the centroid of the catchment is inside the triangle
(Fig. 5.8b), since the behavior for all cases is similar. Case C2 maximizes the number of
selected triangles per catchment and has the most equal number of mean selected triangles
and catchments within the different catchment size groups, with an average of 16.1 selected
triangles for describing a catchment and 9.6 catchments for each of the three size groups.
When looking at the cases in Fig. 5.8, it seems that case C2 has more chances of reflecting
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the spatial dependence of only one or a pair of stations, since it is the less conservative
case when it comes to the selection of the precipitation triple regarding the position of the
catchment. If this were so, one would expect that the probabilities of the event being of local
coverage will be higher for case C2 than for the other cases, but this effect is not observed.
Therefore, case C2 will be further on used because it maximizes the available information.

With longer precipitation and discharge measurements the trends of the probabilities ver-
sus the size of the triangle are observed to be more pronounced (period 1984 to 2017). This
is expected since considering more data reduces the uncertainties. For this period, only 18
catchments with areas between 10.5 and 196.0 km2 are found in the study area. These catch-
ments have on average four nearly equilateral triangles with consecutive 10 minutes precip-
itation measurements that satisfy case C2. The areas of the triangles vary between 1047.7
and 2051.6 km2 and it is observed that these areas are large compared to the catchment ar-
eas. For the period between 2001 and 2017, 29 catchments (6.1 and 196.0 km2) are measured
and on average 16.1 triangles fulfilled case C2, with areas between 277.9 and 2650.7 km2.
The number of catchments and triangles following case C2 increases when looking at the
period from 2010 to 2017. However, the period of 2001 to 2017 is selected for the following
analysis, because having more years of measurements results in a more confident analysis.

Figure 5.9 shows box plots for each of the three probability groups of precipitation trigger-
ing 1POT and 4POT according to 0.6, 0.9, 0.975 and 0.99 precipitation thresholds. The data
points used for constructing the box plot are the average coverage probabilities according to
a given threshold for all events of a catchment, using all triangles fulfilling case C2. This
means that each single box is constructed out of 29 data points (the number of catchments).
As general trend it is observed that as the threshold increases the likelihood of a local cover-
age event increases, the likelihood of a total coverage event decreases and there is a parabolic
trend for the case of partial coverage, i.e. a rising likelihood until it reaches a maximum and
then it drops. Figure 5.9b indicates that as more POT are sampled on average per year, the
probability of having an event with total coverage decreases according to the majority of the
precipitation quantile thresholds. On the other hand, the probability that the triggering event
is local increases with an increasing number of POT (see Fig. 5.9a). This implies that as
fewer POT are considered, the extremer the sampled flood events are, and thus the likelihood
of this event being triggered by triples jointly exceeding a given quantile raises.

Within the study area a given spatial dependence is needed for triggering a flood. On
average with a 70% likelihood, triples will have spatially equal precipitation exceeding a 0.9
threshold when a 1POT takes place. This means that stations measured at least ⇠10 mm of
precipitation within the flood-day (see Fig. 5.4). It can be observed in Fig. 5.9c that even at
a 0.975 quantile, which is around having 20 mm of precipitation (see Fig. 5.4 and Tab. 5.1),
there is a mean probability of 50% that at least one station (partial coverage) will exceed
the threshold. This is the case for both 1POT samples and 4POT samples. These effects are
also observed in the other studied periods, with the difference that with a decreasing number
of years the spread of the probability of a flood driver increases, whereby it can be either a
local event, or an event with total or partial coverage. This is expected since the uncertainties
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(a) Local (b) Total (c) Partial

Figure 5.9: Probabilities of a precipitation event triggering the floods being of (a) local,
(b) total or (c) partial coverage according to various thresholds. One blue and
one violet box plot belong to each threshold, corresponding to 1POT and 4POT
respectively. 29 catchments with triangles selected using case C2 are considered,
for the period from 2001 to 2017. The full black dots correspond to the mean.

increase with less information, making the previous statements about the spatial behavior of
p(i, j, k|POT ) less reliable.

The plots in Fig. 5.10 and Fig. 5.11 can be viewed as a detailed representation of a box plot
from Fig. 5.9 for the 0.9 and 0.975 thresholds. In these cases, a variation of the probabilities
due to the distance between the triples can be noticed. Additionally, the catchments are
separated into three groups according to their sizes. i.e. A  20 km2, 20 > A  40 km2 and
A > 40 km2. The probabilities are identified using different markers (⇥, + and �). Every
triangle size must contain at least one time all of the three markers, which represents the
joint probabilities of a triangle for a given catchment. Having more than three markers per
triangle size means that the same triangle is considered for more than one catchment. For
example, in Fig. 5.10a the six points at the smallest triangle size represent two catchments
that are being separately described by the same triple, but the probabilities of floods being
triggered by precipitation with local, total or partial coverage are different.

Both Fig. 5.10 and Fig. 5.11 show a slightly decreasing trend on the triples interde-
pendence as the triangle area increases, no matter the threshold and the catchment group
considered. It is more significant when looking at the 4POT samples. This effect is observed
in the decay of total coverage, i.e. blue ⇥, and the rise of partial coverage, i.e. red +, as the
triangles are bigger. Stations are more independent since the probability of jointly exceeding
a threshold decreases and the probability of partially exceeding a threshold increases. There
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(a)  20 km2, 1POT (b) 20 > x  40 km2, 1POT (c) > 40 km2, 1POT

(d)  20 km2, 4POT (e) 20 > x  40 km2, 4POT (f) > 40 km2, 4POT

Figure 5.10: Binary probabilities of precipitation triggering the floods for a 0.9 threshold.
First row (a, b and c): 1POT sample. Second row (d, e and f): 4POT sample.
At each panel the catchment sizes vary from left to right.

(a)  20 km2, 1POT (b) 20 > x  40 km2, 1POT (c) > 40 km2, 1POT

(d)  20 km2, 4POT (e) 20 > x  40 km2, 4POT (f) > 40 km2, 4POT

Figure 5.11: Binary probabilities of precipitation triggering the floods for a 0.975 threshold.
First row (a, b and c): 1POT sample. Second row (d, e and f): 4POT sample.
At each panel the catchment sizes vary from left to right.
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is no observed difference of the spatial dependence of precipitation between the catchment
sizes according to threshold 0.9. For the case of a higher quantile 0.975, a light tendency
of smaller catchments (see Fig. 5.11) having higher probabilities of floods being triggered
by a local precipitation event is observed, whereas bigger catchments are more likely to be
triggered by a total precipitation event. When looking at the top panel of Fig. 5.11 there is a
smaller separation between total and partial (blue ⇥ and red+) events as the catchment sizes
increase. This behavior is expected, since smaller catchments are more sensitive to convec-
tive precipitation events, which are less spatially distributed, and floods in bigger catchments
take place more frequently when precipitation is present across the whole catchment.

As observed in Fig. 5.10 and Fig. 5.11 there is a high variability over the values of each
probability group. These variations can be explained due to: the records length, the fact that
there is no constant number of triangles per catchment, the randomness in the position of the
stations, the more uniform distribution of triangle sizes and the occurrence of different flood
mechanisms.

The binary probabilities of temporal precipitation entropy Ht are studied to get a further
insight on the spatial dependence of precipitation at the occurrence of a flood. In Fig. 5.12
the probabilities of a precipitation event triggering the floods, which has locally, totally or
partially the same temporal distribution, are given. There is an observed trend of a decrease
on the spatial dependence, i.e. event with total coverage, as the threshold increases. Sam-
ples with less POT have on average higher probabilities of triples jointly exceeding the Ht

threshold. Figure 5.12c shows likelihoods of partial coverage from 0 to 40 % through the
thresholds while in Fig. 5.9c it varies from 0 to 70%. This is also reflected in Fig. 5.7 where
the entire observations of precipitation are used, without sampling according to the occur-
rence of POT. In this case, the entropy of the binary triples is further away from the value of
1.0 over all thresholds, i.e. complete independence.

In Fig. 5.12 the probabilities of jointly not exceeding or partially exceeding a quantile
of around 0.7 are lower than 2%. As it is shown previously on this chapter in Fig. 5.4
and Tab. 5.1 a quantile value of 0.7 of the temporal entropy of precipitation corresponds
to a Ht ⇡ 3, which indicates there is a minimum temporal entropy required for triggering
a flood. The value of Ht = 3 is consistent with the previous minimum mean Ht observed
over all catchments (see Fig. 5.5). In Fig. 5.12 it is observed that around a threshold of
0.9 the variability of the probability groups is at its maximum, with a median likelihood of
18, 70 and 22% of events Ht being locally, totally or partially equal distributed in space if
looking at the 1POT samples. This larger variability agrees with the uncertainty of the flood
mechanisms being triggered by a given Ht and the apparent mean Ht boundary between
summer and winter events observed in Fig. 5.5, which occur around a value of Ht = 5
which is close to the 0.9 quantile (see Tab. 5.1).

In a box plot, those values marked as individual points correspond to outliers. Neverthe-
less, in this case a box plot is only considered to facilitate the visualization of the results,
and, therefore, the empty dots in Fig. 5.12 should not be considered outliers. They repre-
sent catchments, which are more responsive to a given meteorological event. For example,
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(a) Local (b) Total (c) Partial

Figure 5.12: Probabilities of a precipitation event triggering the floods having in space (a)
locally, (b) totally or (c) partially the same temporal distribution over the flood
day according to the threshold. One blue and one violet box plot belong to
each threshold, corresponding to 1POT and 4POT respectively. 29 catchments
with selected triangles using case C2 are considered, for the period from 2001
to 2017. The full black dots correspond to the mean.

looking at the partition quantile of 0.9, there are some catchments located around the 40%
likelihood of having a local Ht. These catchments are more prone to react to isolated events,
like thunderstorms. I one looks at the Ht from the neighboring station of these five catch-
ments marked as outliers, it is observed that the summer events present a Ht = 3.8 in average,
this in contrast to a Ht = 5.1 of the summer events of all catchments.

For the case of the binary probabilities of Ht also scatter plots of the probabilities versus
the triangle area are shown (Fig. 5.13 and Fig. 5.14). Analogous to the plot shown before for
the case of precipitation sums, they are a detailed representation of the box plots in Fig. 5.12
for Ht thresholds of 0.9 and 0.975 respectively. Similar to the precipitation sum (see Fig.
5.10 and Fig. 5.11), the spatial dependence of Ht slightly drops as the triangle area increases
especially for the case of considering 4POT. There is no significant trend observed within
the chosen catchment groups, apart from small catchments having in some cases higher
probabilities of local Ht, when one compares Fig. 5.14a with Fig. 5.14c. This uniformity
over the catchment sizes, exposes the variability of flood mechanisms and the hydrological
cycle, and it shows that the catchment area is not enough to identify changing patterns of the
meteorological input triggering the floods. There are other factors as soil moisture, slope,
land use, soil, etc. that influence the catchment respond.
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(a)  20 km2, 1POT (b) 20 > x  40 km2, 1POT (c) > 40 km2, 1POT

(d)  20 km2, 4POT (e) 20 > x  40 km2, 4POT (f) > 40 km2, 4POTs

Figure 5.13: Binary probabilities of temporal precipitation entropy triggering the floods for
a 0.9 threshold. First row (a, b and c): 1POT sample. Second row (d, e and f):
4POT sample. At each panel the catchment sizes vary from left to right.

(a)  20 km2, 1POT (b) 20 > x  40 km2, 1POT (c) > 40 km2, 1POT

(d)  20 km2, 4POT (e) 20 > x  40 km2, 4POT (f) > 40 km2, 4POT

Figure 5.14: Binary probabilities of temporal precipitation entropy triggering the floods for
a 0.975 threshold. First row (a, b and c): 1POT sample. Second row (d, e and
f): 4POT sample. At each panel the catchment sizes varies from left to right.

58



5.3 Spatial Analysis of Precipitation

One can conclude that in the study area 1POT flood samples are likely (with a median of
70%) triggered by precipitation sums with total spatial coverage exceeding the 0.9 quantile
(see Fig. 5.9). As the quantile increases, the probability of observing joint occurrence in
space decreases. If more POT are considered, the probability of observing a total event,
according to the larger quantiles, i.e. values greater than 0.9, decreases and flood events are
more likely to be triggered either by a local precipitation event or by a partial precipitation
event. The selection of the POT sample is important to assess the spatial dependence of the
extremes, since triples have a larger spatial dependence at the occurrence of extremer flood
events. As for the temporal distribution of precipitation within the flood day a homogeneous
spatial Ht is required, but it does not imply that this temporal distribution must be uniform,
on the contrary it changes due to the different flood mechanisms, which is shown in Fig. 5.3,
Fig. 5.6, Fig. 5.13 and Fig. 5.14. Both, the spatial dependence of the entire precipitation
records and the observations of precipitation conditioned by the occurrence of a flood have
previously been studied. In the following chapter, a comparison between this two is included,
evaluating the potential of describing precipitation triggering the floods out of precipitation
observations.

5.3.2 Divergence between Precipitation Observations and Precipitation
Triggering the Floods

Rainfall-runoff methods for estimating floods, typically use extreme precipitation observa-
tions to calculate an expected runoff at ungauged catchments. Some studies have shown
that the spatial distribution of precipitation affects the model performance and hydrograph
shapes (Sivapalan et al., 2005; Bárdossy and Das, 2008; Zehe et al., 2005). In this sec-
tion, the uncertainty introduced to the modeling of floods due to the representation of the
spatial dependence of precipitation sums and the temporal precipitation entropy Ht are ana-
lyzed. This is done by comparing the distribution of binary triples of precipitation stations
p(i, j, k) and the conditional distribution of precipitation triples at the occurrence of a flood
p(i, j, k|POT ). The concept of divergence from information theory is used.

Kullback and Leibler (1951) defined a measure of divergence for comparing two distribu-
tions as

Dkl =
NX

i=1

P (xi) log
P (xi)

Q(xi)
, (5.8)

where Dkl is the Kullback-Leibler divergence and P and Q are two distribution functions.
In information theory, it is defined as the expected code length for a language written in
two different encodings. If P (x) is the original language, Dkl measures the information cost
of using another language Q(x) to transmit a message. This cost can be interpreted as the
divergence Dkl and tells how much longer the code will be or how much it will differ from
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the original. It measures the uncertainty around the random variable X when a probability
distribution function Q(x) is used instead of the true one P (x). It is not a distance but a
divergence, since it is not symmetrical and it thus depends on which distribution is considered
as the true one (Weijs et al., 2010).

The divergence Dkl requires absolute continuity of P (x) with respect to Q(x), meaning
that for each P (x) > 0 there must be a Q(x) 6= 0. Otherwise, Dkl is going to be undefined
when Q(x) = 0 (Lin, 1991). Here, the objective is to assess how much uncertainty is intro-
duced, when using the precipitation distribution with no information about the occurrences
of floods p(i, j, k) as the transmitting language Q(x), given that the original language or the
true distribution P (x) is considered to be p(i, j, k|POT ). Under this assumption, it is true
that for each P (x) > 0 the case Q(x) 6= 0 is given. However, for every catchment and
threshold, it is not necessarily that P (x) 6= 0 for all Q(x) > 0. This means that all binary
probabilities p(i, j, k) that exist in a given precipitation triple do not need to exist in the sub-
set of probabilities conditioned on the occurrence of the floods p(i, j, k|POT ). Further, Dkl

is always positive such that Dkl [0,1] can take values between 0, +1. The divergence has
a minimum Dkl = 0 if P = Q for every x. For these values of x that have low probabil-
ities (very improbable to occur) according to Q, but exist with high probabilities in P , Dkl

increases rapidly. It can even go to +1, if Q(x) = 0 (Singh, 2013).

The studied probabilities p(i, j, k), not conditioned on the occurrence of the floods, are
bounded by the selected threshold. As the threshold increases, the probabilities of the stations
to have precipitations above the threshold decrease, regardless of whether the stations are
totally dependent or independent. This implies that as the threshold increases a larger penalty
is considered, if the stations are not jointly above the threshold. This means that Dkl is going
to be larger for (i, j, k) = (1, 1, 1), given that for larger thresholds p(1, 1, 1) is less probable
to occur.

Lin (1991) proposed a divergence based on the Kullback-Leibler divergence, which re-
solves some of the difficulties mentioned above. The Lin divergence K between two distri-
butions P and Q is defined as

K =
NX

i=1

P (xi) log
P (xi)

1
2P (xi) +

1
2Q(xi)

, (5.9)

K is a divergence measure that does not require P and Q to be absolutely continuous. It is
defined for all x, no matter if P (x) = 0 or Q(x) = 0, thus K [0, 1]. If P = Q for every x
then K = 0.

Here, the K is calculated using the precipitation distributions from the whole observation
period p(i, j, k) as Q(x), the transmitting language. This distribution is compared with the
case of having p(i, j, k|POT ) as P (x), the original or true language. For this purpose,
the probabilities p(i, j, k) and p(i, j, k|POT ) calculated in the previous sections are used.
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Here, also the precipitation triples are selected according to condition C2 of Fig. 5.8. In
Fig. 5.15 the results of the obtained K are shown. Both, the case of precipitation sums
and precipitation temporal entropy are considered (see left and right panels of Fig. 5.15).
The various thresholds used for calculating the association of the triples are given in the
horizontal axis. Additionally, the blue box plots correspond to the 1POT case and the violet
ones to the 4POT case. Both, the precipitation sums and the temporal precipitation entropy,
show a decrease in K as the threshold increases. This indicates that choosing the right spatial
distribution of precipitation can have an effect on modeling the floods, as a constant K is not
observed across the thresholds. As expected, the divergences decrease as more POT are
considered. When the number of POT is larger more observations are sampled from the
p(i, j, k) distribution to build p(i, j, k|POT ) and, therefore, the penalty of encoding P with
Q is smaller.

(a) Precipitation sums (b) Temporal precipitation entropy

Figure 5.15: Divergence between the association of precipitation triples conditioned on
the occurrence of flood events p(i, j, k|POT ) and precipitation triples for the
whole observation period p(i, j, k). In (a) the association for the case of precip-
itation sums are given and in (b) those for the temporal precipitation entropy.
One blue and one violet box plot belong to each threshold, corresponding to
1POT and 4POT respectively. 29 catchments with triangles selected using case
C2 are considered, for the period from 2001 to 2017. The full black dots cor-
respond to the mean.

There is an added uncertainty when the distribution of precipitation records is used to
describe the spatial dependence of precipitation causing a given POT. Further research to
understand the sources of this uncertainty is required. It might be explained by the effects
of precipitation and soil moisture seasonality, as for the case in the UK (Ledingham et al.,
2019) or Austria (Sivapalan et al., 2005). Moreover, the binary probabilities p(i, j, k) are
obtained within a duration of one day. An analysis to understand the spatial behavior under
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longer and shorter durations could be useful for understanding the spatial association of
precipitation triggering different flood mechanisms, ex. convective precipitation triggering
flash floods. Further, no snow water equivalents are considered until this stage. This might
be a relevant factor influencing the observed association of the winter events. Additionally,
a seasonal analysis is not carried out for the divergence within this study. Further research
can consider the season of the year in which the events occurred, to get further insight on the
spatial distribution of precipitation triggering the floods.

5.4 Temperature and Snow

At the presence of winter floods, temperature is an important parameter to determine snow
accumulation and snowmelt. If snow is not considered, the meteorological event is underes-
timated, as already suggested in Fig. 5.6. From the 3189 4POT, 1604 took place in winter,
i.e. October, November, December, January, February and March. The temperature change
between the flood day and the mean temperature over two days before the flood showed that
around 70% of these events had on average 2 °C positive temperature differences, indicating
that there is a temperature increase at the occurrence of the floods. Additionally, the temper-
ature standard score at the occurrence of a flood is calculated, to determine how unusual the
temperature at the flood-day is. The standard score Zflood is calculated as follows

Zflood =
Tflood � E (T )

� (T )
, (5.10)

where Tflood is the temperature at the day the event occurred, E (T ) is the expected tempera-
ture and � (T ) is the variance of the temperature. Both, E (T ) and � (T ) are calculated using
the temperature records of 30 days before the flood event. From the winter 72% of the floods
have a positive Zflood, i.e. these floods presented an increase in temperature. In 38% percent
of the cases, Zflood is greater or equal to one, with an average of 1.8 standard deviations
away from the mean over the previous 30 days. These larger increases of temperature are
observed more frequently in December, January, February and March, months that will most
likely present snow melt floods in the study area.

Figure 5.16 shows the runoff coefficient of winter floods for all catchments when no snow
is considered. This means that the runoff coefficient is computed as the runoff divided by
the sum of the precipitation triggering the flood event, without considering any snow water
equivalent. In total, 53 winter floods have runoff coefficients greater than one, which means
that the volume of water measured at the discharge station is bigger than the precipitation
observed. There is a possibility, that the neighboring precipitation station does not capture
the volume measured at the discharge station, due to the spatial heterogeneity of rainfall
and cloud formation. Nevertheless, this is less expected in winter, when events are spread
in space, in contrast to summer where convective precipitation events occur frequently and
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could have been missed by a given station. The high runoff coefficients in winter are ex-
plained by missing the discharge volume coming from snowmelt and will be included using
the degree-day method.

Figure 5.16: Runoff coefficient of winter floods without considering snow. All 4POT that
occurred in winter, i.e. October, November, December, January, February and
March, are used for generating the plot.

The degree-day method is a simple method for including snowmelt into the meteorological
event. It is used in this study and included in a snow routine composed of two steps: snow
accumulation SPd and snowmelt SMd. Precipitation accumulates as snow with a ratio ⌘ in
mm per °C per day, when the mean daily temperature Td is below the specified temperature
threshold Tt, giving

SPd = ⌘(Tt � Td) . (5.11)

On the contrary when Td exceeds the chosen threshold Tt snow will melt, if there is available
snow accumulated. This results in

SMd = ⌘(Td � Tt) . (5.12)

No optimization of the snow routine is done since it is out of the scope of the study. The
value ⌘, at which snow accumulates and melts, is considered to be 2.5 mm/°C and the Tt is
fixed at 0 °C. Refreezing is not taken into account, since the focus here is on independent
flood hydrographs and not on the whole discharge time series. Within the duration of the
flood, the accumulated liquid water equivalent SMd is assumed to add to the precipitation
event with no restriction of snowpack retention or refreezing in contrast to Bergström et al.
(1992) and Staudinger et al. (2014).

When including snow into the calculation of the precipitation volume, 20 from the 53 flood
waves with runoff coefficients greater than one, resulted in runoff coefficients smaller than
one. The average runoff coefficient decreases from 0.32 to 0.27 when snow is considered.
This means that the amount of precipitation triggering the floods is underestimated by not
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considering snow. Fig. 5.17 shows the total precipitation sums when considering snow ver-
sus the sums without snow for the winter flood events. If snow is included, 15% of the winter
floods presented changes in the amount of precipitation. The maximum change in volume is
29.4 mm. As it is shown, the total volume is underestimated if snow is not considered. Nine
events resulted in a reduction of the volume when snow is included. One reason for this can
be the chosen Tt used for accumulating snow. For these events, precipitation is accumulated
as snow, since the temperature is below Tt. Nevertheless, it could be that precipitation did
not fall as snow even though the temperature is below the threshold.

Figure 5.17: The total water equivalent, taking snow into account, is plotted against the
observed precipitation for the winter events.

5.5 Antecedent Precipitation Index

Tarasova et al. (2019) highlighted the importance of the inclusion of antecedent moisture
condition to identify causation of floods. One of the goals of this research is to estimate
flood events considering different flood mechanisms. The antecedent precipitation index
API is an indicator of the catchment soil moisture and is commonly used when no soil
moisture records are available, as it is in the case of the studied catchments. It is defined as

API =
NX

i=1

Pd(t0�i) · ↵i , (5.13)

where Pd is the precipitation aggregated daily for the t0�i day over N total of days. The
number N of antecedent days varies normally between 5 to 30 days. With the value of ↵ it
is assumed that the recession of soil moisture after a precipitation event is exponential. The
larger the chosen parameter ↵, the smaller the assumed precipitation losses due to infiltration
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and evapotranspiration. A value of ↵ = 0.9 is commonly used in literature. Nevertheless,
this value can variate according to the region and characteristics of the catchments. As shown
before the inclusion of snow matters and, therefore, for the calculation of the API , the snow
routine explained Chap. 5.4 is also considered. Thus, the API is calculated with the liquid
water equivalent.

In Figure 5.18 the mean seasonal API versus the PV R is plotted for both the 1POT and
4POT samples. The API is calculated for the period of 30 days previous to the flood event
with ↵ = 0.9. As revealed by Scherrer et al. (2007) there is a high variability in the processes
influencing runoff formation in Switzerland, which is also observed here with API values
between 2 and 101 mm for the 1POT samples. The authors found out that depending on
the dominant runoff process the effect of soil moisture on the runoff generation varies. This
results in some catchments not being sensitive to antecedent rainfall conditions, due to high
infiltration capacities and deep percolation, and other catchments with a strong relationship
between the soil moisture and the runoff coefficient.

Figure 5.18: API versus the PV R of flood events. The colors represent the different sea-
sons and the markers are used for identification between 1POT (circles) and
4POT (crosses) samples.

Although the relationship between API and the PV R is weak resulting in high variability
in both the PV R and the API , some tendencies can be observed in Fig. 5.18 and Tab. 5.4.
In Tab. 5.4 the mean seasonal API over all catchments for the 1POT and 4POT samples are
given. The values indicate that summer events have on average larger APIs as winter events.
This is consistent with the occurrence of higher temperatures in summer resulting in larger
precipitation losses and, as consequence, larger precipitation amounts are required to achieve
wet soil conditions, which favor larger runoff generation. Figure 5.18 suggest a decreasing
trend of the PV R as the API increases for the summer flood (plotted in yellow). This is also
consistent with larger precipitation losses, due to larger evaporation rates in summer. The
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weak dependency between the PV R and the API , suggest that the same API value can have
a different meaning in winter as in summer, given the difference in the evapotranspiration
potential.

Table 5.4: Mean seasonal API [mm] triggering the floods. The mean API of each season
is calculated for the 1POT and the 4POT samples.

winter spring summer fall

1POT 27.8 34.6 39.7 33.6
4POT 23.7 31.3 35.8 29.6

Further, it is important to identify, if the information contained in the API series is useful
to differentiate between a random meteorological event and a meteorological event trigger-
ing a flood. The idea is to distinguish whether or not, the empirical distribution function
(EDF) of the API triggering a POT can be sampled from the EDF of an API sample that
is independent of the flood event. For this evaluation two non parametric statistical tests are
chosen, the Wilcoxon rank-sum test and the Kolmogorov-Smirnov test.

The Wilcoxon rank-sum test is equivalent to the Mann-Whitney U test (Kottegoda and
Rosso, 2008). The Wilcoxon rank-sum test uses the ranks of the observations to quantify if
two samples, assumed to have the same distribution, have the same location against a shift
of the distributions. The Wilcoxon rank-sum statistic Wn is defined as

Wn =
nX

i=1

iZi , (5.14)

where i is the rank of the observation assigned joined to all observations in both samples.
This means that if X = X1, X2 . . . Xn1 and Y = Y1, Y2 . . . Yn2 are the two samples studied,
the ranks are assigned to all observations in X and Y . The observations are ordered and the
ranks are allocated until n = n1 + n2 is reached. Here, Zi is the indicator function, which
has a value of 1 if the ith observation belongs to sample X and 0 if it belongs to Y (Gibbons
and Chakraborti, 2003; Kvam and Vidakovic, 2007). The Wi statistic is proportional to the
size of the samples tested. For this reason, to compare between different EDFs it is decided
to use the standardized form of Wn, defined as:

ZW =
Wn � E(Wn)

V AR(Wn)
, (5.15)

where ZW is the standardized rank-sum statistic and E(Wn) and V AR(Wn) are the mean
and the variance of Wn, given as
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E(Wn) =
n1(n1 + n2 + 1)

2
,

V AR(Wn) =

r
n1n2 ⇤ (n1 + n2 + 1)

12
.

(5.16)

The Kolmogorov-Smirnov test measures the largest distance between two EDFs. The
Kolmogorov-Smirnov maximum absolute distance Dm,n is defined as

Dm,n = sup
x

|Fm (x)�Gn (x)| , (5.17)

where Fm (x) and Gn (x) are two EDFs of two samples with sizes n and m respectively
(Kottegoda and Rosso, 2008). Here the supremum may be considered as the maximum
deviation between two EDFs.

For both tests the EDF of the API triggering 1POT flood events are compared to the EDF
of various API samples, which are not conditioned on the occurrence of the flood events.
The daily series of API used for the tests are calculated using various recession coefficients
↵. This gives additional information about the memory of the catchment and it indicates
whether the long or the short memory is more relevant for triggering a flood in the study
area. In all cases the liquid water equivalent is considered to include the effect of snow. In
this study, the following API samples are considered:

1. Daily: daily API series, calculated with a moving window of 30 days and a step of
one day.

2. MMean: daily API series aggregated by the monthly mean.

3. MMax: the monthly maximum of the daily API series.

4. 4AMax: the four largest daily APIs per year.

5. AMax: the largest daily API per year.

The Wilcoxon test analyzes if one distribution is shifted from the other. Moreover, as-
suming that the two distributions are equal, it tests if the median of a random variable is
stochastically larger than the median of another random variable. If ZW equals to 0, there is
no expected shift in the distributions. In this study, a negative ZW indicates that the EDF of
the API triggering 1POT floods is shifted to the left of the EDF of API not conditioned on
the occurrence of the floods. On the contrary, a positive ZW indicates a shift to the right.
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Figure 5.19 gives the median ZW obtained from the ZW of each catchment. This statistic
is calculated between the EDF of the API triggering 1POT floods and the EDFs of API
samples not conditioned on the floods. The EDFs not conditioned on the floods are given
with different markers and colors. The used value of ↵ is given in the horizontal axis. The
two panels differentiate between summer and winter events. In general, it can be observed
that the MMax is the sample that shows larger variations of the median ZW as ↵ changes and
MMax is the sample that gets closer to ZW equal to zero (achieved when ↵ = 1). There are
no major differences between the results obtained for summer and winter, yet the median ZW

is smaller for winter than for summer. For the summer events, if ↵ = 0.2, comparable results
are obtained for the MMean sample as those obtained for the MMax with larger ↵s. This
gives a first insight, that for estimating purposes the longer memory of the catchment is more
informative of the flood event. Otherwise, the API of a flood event will resemble a typical
value expected to occur at any time during the month, without being able to differentiate
between extraordinary events, such as flooding.

(a) summer events (b) winter events

Figure 5.19: Wilcoxon test statistic ZW comparing the EDF of API triggering 1POT floods
and the EDF of API samples not conditioned by the occurrence of floods. The
figures give the median of the ZW obtained for each catchment.

Some summary statistics of ZW are given in Tab. 5.5. The results are given for ↵ = 1,
since it resulted in the smallest expected shift. The trends from Figure 5.19 are maintained
in most of the catchments. This is recognized on the inter-quartile range, which is smaller
for MMax sample. In Fig. 5.19 it is observed that the median ZW gets really close to
zero, when the MMAx sample is considered and ↵ equals to 1, in particular for the winter
events. This indicates that the median of the EDF of the API triggering 1POT floods and
the EDF of API samples not conditioned by occurrence of floods are similar. However, for
some catchments, the API triggering the floods might be better represented if another EDF
is chosen (see Tab. 5.5). The Wilcoxon rank-sum statistic is not sensitive to the shape of
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the distributions, meaning that differences at the tails of the distributions are not represented.
The Kolmogorov-Smirnov test is sensitive to both, the location and the shape; it is, therefore,
also studied here.

Table 5.5: Summary statistics for the obtained values of ZW comparing the EDF of API
triggering 1POT floods and the EDF of API samples not conditioned by the
occurrence of floods. For this table ↵ = 1.

summer events winter events

Daily MMean MMax 4AMax AMax Daily MMean MMax 4AMax AMax

mean 1.9 1.9 -0.4 -3.3 -2.9 1.6 1.5 -0.2 -2.5 -2.4
std 0.9 0.9 1.0 1.1 1.0 0.9 1.0 0.9 1.1 1.0

min -0.6 -0.7 -2.1 -5.4 -4.7 -1.2 -1.4 -2.3 -4.6 -4.2
25% 1.3 1.3 -1.2 -4.0 -3.5 1.0 0.9 -0.8 -3.3 -3.1
50% 2.1 2.0 -0.4 -3.3 -2.9 1.8 1.7 -0.1 -2.5 -2.4
75% 2.5 2.6 0.3 -2.6 -2.4 2.3 2.2 0.6 -1.6 -1.6
max 3.3 3.4 1.4 -0.4 -0.7 3.0 3.0 1.5 -0.7 -0.7

The median Kolmogorov-Smirnov distance (Dm,n) over all catchments is given in Fig.
5.20. These distances are calculated between the EDF of the API triggering 1POT floods
and the EDF of API samples not conditioned on the occurrence of floods. As in the figure
before, the EDFs not conditioned on the floods are given with different markers and colors
and ↵ changes on the horizontal axis. The two panels differentiate between summer and
winter events. As a general trend for both seasons, it is observed that the median Dm,n

shows little variation as ↵ changes for the Daily sample and the MMean sample. This might
be explained by the aggregation effect of the median, given that the median Dm,n over all
catchments is plotted. However, independent catchments can be affected by changes in ↵.
Yet, changing ↵ has no effect on the majority of the study area, at least none that can be
represented with the median Dm,n. On the contrary, if samples MMax, 4AMax and AMax are
considered, there is a decreasing trend observed, the median Dm,n decreases significantly as
↵ increases. The global minimum of the median Dm,n is achieved with ↵ = 1, when the
sample MMax is considered. The minimum achieved Dm,n for samples 4AMax and AMax
is larger than those obtained for the Daily, the MMean and the MMax samples. This means
that to trigger a flood in the study area an extreme soil moisture condition is not required; the
API does not have to be an annual extreme. It also does not correspond to the soil moisture
of any randomly selected day, but rather resembles the monthly maximum of the API . This
is due to the fact that, for large ↵s, the median Dm,n is smaller for the MMax sample as
for the Daily, which indicates that the EDF of the API triggering the floods is closer to the
EDF of the MMax than to the EDFs of the Daily or the MMean. As for the case of ZW , this
indicates that the long memory of the catchment contains more information to identify the
API triggering a flood from the API of a random day.

Comparing the results for both seasons small differences are observed. In summer Dm,n

is smaller than in winter, if the Daily sample and the MMean sample are considered. This
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(a) summer events (b) winter events

Figure 5.20: Kolmogorov-Smirnov distance between the EDF of API triggering 1POT
floods and the EDF of API samples not conditioned by the occurrence of
floods. The figures give the median of the Dm,n obtained for each catchment.

suggests that the API triggering the summer floods could be closer to that of a random
day than those triggering the winter events. The summer floods are more influenced by
the characteristics of the precipitation event than by the soil moisture. Even if events are
separated in seasons, there is the possibility that various flood mechanisms occurred in a
catchment and the separation in two seasons is not enough to identify all flood processes.
For example, in summer a flood can be triggered by a convective precipitation as the main
driver and having the soil moisture as a secondary factor. Whereas, it can also be triggered
by a precipitation front, normally less intense but of longer duration, which can have both
precipitation and soil moisture as factors of comparable importance. Nonetheless, the median
Dm,n of both seasons are still smaller for the MMax as for any other sample, if a larger ↵ is
considered.

In Tab. 5.6 summary statistics of the computed Dm,n are given for ↵ = 1. It can be
observed that not only the median Dm,n is smaller if MMax is considered, but also it is the
one with the smallest inter quantile range. This suggests, as in Tab. 5.5, that the EDF of the
API causing the floods is closer for most of the catchments to the EDF of the MMax sample.
As already pointed out, the fact that other samples achieve comparable Dm,n indicate that
some catchments can have an extremer and others a more ordinary API at the occurrence
of a flood. The results for all catchments and samples are not included here. Nonetheless, it
is observed that for the summer floods, the EDF of those catchments less represented by the
MMax sample is moving to the left towards the EDFs of the Daily sample and the MMean
sample. On the contrary, in the case of the winter events, it is moving towards the EDF of
the 4AMax sample.
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Table 5.6: Summary statistics for the obtained values of Dm,n comparing the EDF of API
triggering 1POT floods and the EDF of API samples not conditioned by the
occurrence of floods. For this table ↵ = 1.

summer events winter events

Daily MMean MMax 4AMax AMax Daily MMean MMax 4AMax AMax

mean 0.39 0.40 0.29 0.61 0.65 0.42 0.44 0.32 0.58 0.62
std 0.13 0.13 0.11 0.15 0.15 0.14 0.14 0.12 0.13 0.14

min 0.17 0.19 0.13 0.28 0.31 0.23 0.25 0.17 0.30 0.30
25% 0.29 0.31 0.20 0.52 0.55 0.31 0.35 0.23 0.49 0.55
50% 0.37 0.38 0.26 0.60 0.63 0.41 0.43 0.30 0.59 0.62
75% 0.49 0.49 0.36 0.72 0.74 0.53 0.52 0.40 0.66 0.67
max 0.67 0.71 0.56 1.00 1.00 0.76 0.78 0.72 0.85 0.95

Figure 5.19 shows that the EDF of the API at the occurrence of the floods is closer to the
MMean sample than to the Daily sample. However, in Fig. 5.20 the results are the other way
around, which means that even though the medians of the distributions are closer together
(measured with ZW ), there are some parts of the distributions that are further apart (measured
with Dm,n).

The EDF of the various API samples not conditioned on the occurrence of the floods are,
however, not truthful to the concept of the antecedent moisture responsible for the occurrence
of the floods, given that they can contain the extreme precipitation event triggering the flood
wave. By sampling the API by their annual maximum or the monthly maximum it is implied
that the flood causing precipitation is included. Further, the extreme precipitation event is not
considered in the API sample conditioned by the occurrence of the flood. The concept of
one day lag will be studied on the following, to get API values that are more representative
of the antecedent moisture, and do not include the precipitation triggering the floods. The
EDFs of the API series considering -1 day lag from the day the extreme API occurred
are extracted. This is done to simulate the soil moisture preceding an extreme precipitation
event, which can trigger a flood.

In Fig. 5.21 the ZW and Dm,n are presented in the top and bottom panel respectively.
In this case, the API values used are those corresponding to a day preceding one of the
API samples considered before (Daily, MMean, MMax, 4AMax and AMax). Note that for
Daily no changes are expected from the results presented before. The resulting EDF of a day
preceding each value of the Daily sample results in the same Daily sample. Analogous to the
previous plots, the two horizontal panels differentiate between summer and winter events;
and the various markers and colors give the API sample considered.
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(a) summer events (b) winter events

(c) summer events (d) winter events

Figure 5.21: Wilcoxon test statistic and Kolmogorov-Smirnov distance between the EDF of
API triggering 1POT floods and the EDF of API samples not conditioned by
the occurrence of floods considering a lag of -1. The figures give the median
of the ZW (top) or the Dm,n (bottom) obtained for each catchment.

If one looks at both the median ZW and Dm,n at small values of ↵, it is observed that the
API preceding a MMax, a 4AMax or an AMax achieve comparable values. Looking into
detail, it is observed that for ↵ = 0.2 half of the catchments have ZW and Dm,n indicating
that the EDF of the API conditioned on the occurrence of a flood are closer to that of the
API preceding a MMax and the remaining catchments are distributed between the API
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preceding either a 4AMax or an AMax. Further, it is observed that catchments closer to
the API preceding a MMax tend to have smaller temporal precipitation entropies, which
corresponds to intense convective precipitation events, where precipitation intensity might
exceed the infiltration capacity of the soil. Additionally, it is observed that these catchments
tend to have larger slopes, which can be an indicator of a faster catchment response with a
runoff generating process less dependent on the soil moisture content.

Figure 5.21 shows that as ↵ increases, it is less common that a flood can be triggered by
an API preceding a 4AMax or an AMax, i.e. ZW is moving away from zero and Dm,n is
increasing. If one would select a small ↵ the API preceding either MMax, 4AMax or AMax
could be representative of the API causing the floods. However, by selecting larger ↵s,
the API preceding a MMax can describe almost the entire studied region. Thus, the longer
memory of the catchments contains more information to differentiate the floods. There is
little variation of the API preceding a MMax as the value of ↵ changes. Further studies
should try to explain this. Nevertheless, it might be an effect of changes in the number of
catchments getting closer to MMax as the value of ↵ increases.

The results presented here, suggest that a flood event is more frequently taking place
when the accumulated precipitation of 30 days is close to the monthly maximum. One
would rather expect that 4AMax or AMax should be responsible for the runoff generation
of floods. Nevertheless, it is important to point out that these extremes are samples of the
accumulation of precipitation aggregated daily. For the size of the catchments considered
sub-daily aggregations of precipitations might be more representative. Further studies should
include the sampling of the extremes with smaller precipitation aggregations and use their
occurrence of extremes to extract the API samples taking place on a day (or a time lag)
preceding those extremes. More specifically, the results should be studied by considering
precipitation directly to sample the critical days where a flood might have occurred, and not
its accumulation as it is in the case of the API .

Further, the importance of the water content of the soils for the generation of runoff can
be different in the studied catchments. Froidevaux et al. (2015) found out that from different
regions of Switzerland the API had an influence on the occurrence of floods only for some
catchments located on the Jura Mountains (area of most of the catchments of this study). As
already mentioned, the field experiments of Scherrer et al. (2007) led them to the conclusion
that the antecedent soil moisture is not of equal importance for all runoff processes. For
example, catchments that normally have a rapid respond, showed that the soil moisture has
little or no effect on the formation of runoff, i.e. the runoff builds up fast no matter if the soil
is dry or wet. This study indicates that in the study area, the longer memory of the catchment
is of importance to the flood process. Yet, this is not observed in all catchments, it is only
true when looking at the whole study area. Overall, the results suggest that the EDF of the
API triggering the floods is closer to the EDF of MMax, if larger values of ↵ are used for
calculating the API .
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Chapter 6

Regionalization of Catchment Reactions

To regionalize the reactions of the catchments, when a flood occurs, a model that can cap-
ture the complex hydrological interactions is needed. A random forest algorithm is chosen,
to evaluate the similarity of flood mechanisms. The flood distances in the random forest
space are used to transfer hydrograph shapes from gauged to ungauged catchments. This
chapter contains an overview of the random forest algorithm and it explores how this algo-
rithm is used to represent the dynamics of flood mechanisms and the regionalization of the
hydrograph shape for a known meteorological event.

6.1 Random Forest Theory

A Random Forest (RF) algorithm consists of many single decision trees, where each deci-
sion tree is trained on a subsample of the entire data. A single decision tree is trained using
the Classification and Regression Tree (CART) algorithm from Breiman et al. (1984). The
CART algorithm can be used for either regression or classification problems, meaning that
it can estimate either continuous or categorical data. For building a single decision tree,
the observations are repeatedly split into two subsets at each node, using a decision based
on one predictor. The predictor of a given node is determined by the one that minimizes
the variability on the target quantity. This variability is typically evaluated using either the
Mean Squared Error (MSE), when growing regression trees, or the Gini index or entropy
for classification trees. In Fig. 6.1 an example of a decision tree is given, which is built to
estimate the PV R of the floods as its target. The estimation involves a chain of if-then de-
cisions, which depend on the predictors, in this example chosen to be precipitation temporal
entropy (HR), the API , the catchment area (C. Area) and the drainage density (D.D) (see
Chap. 3, Chap. 4 and Chap. 5). Given a decision, i.e HR  0.4 in the first node in Fig.
6.1, a subset of the observations is passed to the left node and the remaining observations are
passed to the right, forming two child nodes. At these two new nodes the observations are

74



6.1 Random Forest Theory

split again with a new decision, as it was done in the first node. This procedure is repeated
up to the terminal node. Within this iterative process at each node the remaining data sets
become smaller and smaller, until either purity is achieved or a certain condition is fulfilled,
i.e. no variability over the target variable, tree reaches a given depth or the terminal node
has a determined number of observations. In such a way, one obtains an estimation of the
target in the form of a decision tree, a tree-based estimator. The advantage of this algorithm
is that it is fast and works well with the training data. However, the estimator is too specific
to the training data with a poor performance on test data, meaning that it cannot generalize
to unseen samples. To overcome this problem, Breiman (2001) introduced Random Forest
(RF), a bootstrap aggregation algorithm (bagging) of tree-based estimators.
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Figure 6.1: A decision tree trained to estimate PV R with 6 observations randomly selected
from the floods database. The predictors are: the precipitation temporal entropy
HR, the API , the catchment area (C.Area) and the drainage density (D.D.).
Each node contains the predictor that makes the best binary split of the data
according to the target (except for the terminal nodes), the MSE, the number of
observations and the average target value. Note: the tree is used as an example
and should not be considered to draw conclusions about the floods.

A RF is an ensemble of N decision trees. The main difference to a single decision tree
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algorithm comes from the bagging for sampling the observations to train each tree and the
parameter m. The parameter m controls the number of randomly selected variables (pre-
dictors) at each split. These are the only predictors considered when evaluating the split.
Bagging is proven to have a better performance, since it reduces the high variance of a single
tree and keeps the low bias character of deep trees (Gregorutti et al., 2017). Since the trees
are independent from each other, it allows for parallel computing, keeping the computational
times short. Each tree Ti in a RF is trained with a bootstrap sample of the observations xi,
resulting in a series of split rules ✓i that minimizes the variance of the random target vector
yi on the child nodes. The vector ✓i contains the information of the predictor that optimizes
the binary split at each node and its size equals the number of splits in a tree. Thus, a random
forest estimator f̂(x) can be formally written as

f̂(x) =
1

N

NX

i=1

Ti(x; ✓i) , (6.1)

where x is a given input vector, N the number of trees, Ti(x; ✓i) the i � th decision tree
with the random vector ✓i = (✓i,1, . . . , ✓i,K). Originally Breiman (2001) proposed RF trees
to be fully grown. A fully grown tree means that the observations in the terminal node either
belong to only one class (i.e. in case of classification RF) or the variance of the observed
target variable in the terminal node is zero (i.e. in case of a regression RF). However, there
are some approaches, in which the trees are pruned, although the purity condition is not
satisfied, resulting in an extra parameter n, which defines the allowed number of observations
in a terminal node. There are some recommended values for m and n according to the type
of RF. For a classification RF n = 1 and m =

p
p, where p is the total number of predictors.

For a regression RF n = 5 and m = p/3 (Hastie et al., 2017). Depending on the structure of
the data and the amount of noise it contains, these values do not necessarily achieve the best
performance over all data sets. Therefore, n and m must be considered as tuning parameters
and should be studied with each data set.

In Fig. 6.2 an illustration of the RF algorithm is given. For this example, 15 observations
are randomly selected from the floods database and the same four predictors are considered,
as in the case of the single tree in Fig. 6.1. These are used to train a RF with 10 trees N = 10
for estimating the PV R. The RF is chosen to have fully grown trees n = 1 and 2 random
predictors per split m = 2. As it is observed on the first node of each tree, to grow each
tree from the 15 observations just 7 samples are randomly chosen with replacement. One
can be observed that the resulting trees are different form each other, given that at each tree
a new bootstrap sample is used and at each split not all predictors are considered (m  4 the
total number of predictors). Those terminal nodes that are close to each other have a similar
PV R. i.e. the target variable. At the stage of the model estimation appears the aggregation
part of the bagging term, where the estimations of each tree are aggregated to give the final
estimation.

The Out of Bag (OOB) observations can be used to estimate the performance of the RF
algorithm. The OOB samples are the observations that are not randomly selected for growing
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a tree, those not included in the bootstrap sample. The use of the OOB observations allows
to include more data to train the RF. Nevertheless, in this study the prediction error of f̂(x)
will be estimated using test observations, since it has been observed that the OOB prediction
error leads to an overestimation of the actual test error. This overestimation has already been
studied by other authors and is, therefore, not further analyzed here (see Janitza and Hornung
(2018)).
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Figure 6.2: Illustration of the random forest algorithm. To grow each tree the training ob-
servations are sampled with replacement. Each tree is grown by adding an extra
randomness at each node, limiting the number of predictors evaluated. An es-
timation is made by aggregating the single estimations of each tree. Note: the
trees on the RF are used to represent how the algorithm works and should not be
considered to draw conclusions about the floods.

The OOB observations are also used for estimating the predictors’ importance in the RF
space. The importance is used to identify main players of the predictors’ space, causing the
different reactions of the catchments. For calculating the predictors’ importance in the RF,
the prediction error R̂(f̂ , ✓OOB

i ) of the OOB observations is calculated. For this purpose,
the OOB observations are passed through those trees, whose bootstrapped sample did not
contain them. Additionally, for each predictor an error R̂(f̂ , ✓

OOBj

i ) is calculated. In this
case, the vector with the observations corresponding to the j � th predictor are permuted
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before passed down the trees to make the estimation. The predictors’ importance is obtained
by comparing both prediction errors as:

Î(Xj) =
1

N

NX

n=1

R̂(f̂ , ✓OOBj
n )� R̂(f̂ , ✓OOB

n ) . (6.2)

One disadvantage of random forest is that it cannot extrapolate, the estimations are con-
tained in the space of the observations. Nonetheless, RF is used in this study to regionalize
catchment reactions, i.e. hydrograph shape, by evaluating the similarities of floods in the RF
space. It is not used to estimate a peak or a volume corresponding to a return period. It is,
therefore, assumed that even if flood events occur with larger peaks and/or volumes as the
observed ones, the dimensionless reaction of the catchment will be similar to an observed
one considering that all flood mechanisms are included in the RF.

6.1.1 Random Forest Measure of Similarity

One feature of the RF algorithm is the possibility to generate a similarity matrix. It measures
the similarity of the observations by counting the occurrence of observations in the same
terminal node. The similarity matrix is defined as:

S =

0

BBBBBBB@

s11 s12 · · · s1j · · · s1k
s21 s22 · · · s2j · · · s2k
...

... . . . ... . . . ...
si1 si2 · · · sij · · · sik
...

... . . . ... . . . ...
sk1 sk2 · · · skj · · · skk

1

CCCCCCCA

,

sij =
1

N

NX

n=1

xijn, with xijn = {1, 0} ,

(6.3)

where S is the similarity matrix, N is the number of trees in the RF, sij are the elements
of the matrix, which give the similarity of two observations in the RF space. The similarity
matrix is of size k⇥k, where k is the number of observations used for training the RF. xijn is
equal to one at those trees where observation i ends in the same terminal node as observation
j, otherwise it is equal to zero. These occurrences are added through all N trees and they are
normalized by the number of trees in the forest, resulting in the similarity values in matrix S

from zero to one, where zero means no similarity and one total similarity (equality). It can
be observed that the elements of the main diagonal of S, i.e. where i = j, must be equal to
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one since it represents the similarity between an observation and itself. Furthermore, S is a
square matrix and it is symmetric since si,j = sj,i.

The similarity matrix can be used to test hypothesis about the structure of the data and
to understand which observations are close in the RF space. It can be given as input to
a Multidimensional Scaling (MDS) algorithm. MDS is a method that represents distances
in a lower dimensional space with the aim of visualizing and exploring high dimensional
problems (Borg and Groenen, 2005). In MDS, a dissimilarity matrix is used rather than a
similarity matrix, which can be obtained by subtracting S to the scalar 1, given that it is a
representation of distance where zero indicates close observations. The transformation of the
high-dimensional space obtained with the MDS, gives a representation of the distances in an
Euclidean space and it allows for visualizing the data using the coordinates obtained. Those
points that are close in a representation of the MDS space represent the similarity evaluated
through the similarity matrix of the RF. It is useful for understanding the RF space.

6.1.2 Random Forest for Clustering

Another possibility for identifying similar observations are clustering algorithms. When
dealing with unlabeled data, RF offers an application to cluster the observations. Using an
unsupervised RF algorithm, a similarity matrix is obtained to distinguish between observed
and synthetic data (Shi and Horvath, 2012). To generate the synthetic data, individuals are
drawn from the empirical distribution of each of the observed variables, getting independent
random vectors, which for each variable follow the same distribution as the observed one,
but the dependence structure of the variables is removed (Alhusain and Hafez, 2017). The
RF algorithm is run as a classification problem with two classes, labeling the observed data
as class one and the synthetics data as class two. The similarity matrix reveals how close
observations are when compared to synthetic data. This similarity matrix can be given as
input to an algorithm for clustering the observations. Either an algorithm that is based on
the distances between points, as is the case of an agglomerative hierarchical clustering or k-
medoids, or an algorithm based on coordinates, for which the representation of the similarity
matrix obtained with MDS can be used.

This concept of using the similarity matrix for clustering the data can also be used in a su-
pervised manner, as mentioned by Xiao and Segal (2009) as a “guided” clustering to identify
patterns and relationships between variables given a certain signature or response. In this
case, the RF is trained to predict a given response, it can be either classification or regres-
sion. The obtained similarity matrix is used for clustering, as in the case of the unsupervised
RF. The logic behind this approach is that the RF structure captures the nonlinear represen-
tation of the observations with respect to a given training variable. In this study, it is used to
identify similar catchment reactions at the occurrence of a flood.

Another approach for using RF for clustering is by means of a clustering ensemble. It
allows combining different clusters of the same dataset, resulting in a more robust measure
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than any individual clustering. It is composed of the “base clusterings” which by means of
a consensus function (function for aggregating the results of each clustering) give the final
clusters of the observations. There are different proposed approaches for determining the
consensus function to merge the clusters from different ensemble members into one (Alhu-
sain and Hafez, 2017). In this study, a pair-wise approach will be used, which represents the
information of the base clusterings by looking at the co-occurrences of observations belong-
ing to the same cluster. The co-association matrix CO is calculated with this information
as:

CO =

0

BBBBBBB@

co11 co12 · · · co1j · · · co1k
co21 co22 · · · co2j · · · co2k

...
... . . . ... . . . ...

coi1 coi2 · · · coij · · · coik
...

... . . . ... . . . ...
cok1 cok2 · · · cokj · · · cokk

1

CCCCCCCA

,

coij =
1

Z

ZX

z=1

xijz, with xijz = {1, 0} ,

(6.4)

where coij denotes the proportion of observation i and j belonging to the same cluster over
the Z number of base clusterings, given a k number of observations. When observations i
and j have the same cluster label then coijz equals to one on the contrary it is zero. The
cluster labels for the z � th member of the ensemble are obtained by using a clustering
algorithm whose input is a similarity matrix S from a supervised RF according to Eq. 6.3.

In summary it can be said that the potential of using a supervised RF for selecting the flood
donors and estimate a Design Flood Hydrograph (DFH) by differentiating between flood
mechanisms can be assess using the RF similarity matrix, MDS and a clustering algorithm.
Few applications were found in literature that use supervised RF for clustering and evaluating
similarity in the observations (see Segal and Xiao (2011); Xiao and Segal (2009)). These are
applications of the biostatistics, none was found in hydrological applications. Although the
RF model has been used for estimations in hydrological problems, the approach of a “guided”
similarity measure is applied here for the first time. In the next section a summary of the use
of the previous concepts in this study is given and afterward the results are presented.

6.2 The Proposed Method

RF is chosen in this study because it can capture complex interaction structures present in the
data, shows a good performance with high dimensional problems, handles categorical and
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ordered variables and can be used also for multivariate problems (Hastie et al., 2017; Gre-
gorutti et al., 2017; Shi and Horvath, 2012). The RF algorithm is used for the regionalization
of the dimensionless Design Flood Hydrograph (DFH), given a known meteorological event.
As mentioned in Chap. 2 there are regionalization strategies that are based on the similarity
of the catchments. Here, these similarities are quantified by the RF using the similarity ma-
trix as the “measurement tape” of the flood distances over the complexity of the hydrological
players and responses. It is used to quantify the relationship between catchment character-
istics and the nature of the meteorological event triggering a flood hydrograph (i.e. a flash
flood caused by a convective precipitation in an impermeable catchment or a snow melt event
in the same catchment).

The similarity matrix infers the underlying structure from the floods database and is used
as the space that defines the hydrograph donors to the ungauged catchment. For this purpose,
a supervised RF is trained to capture the structure when pointing at a specific target variable,
which describes the response of the catchment when a flood event occurs. Three methods
for obtaining the similarity matrix are used in this study, which are briefly introduced here
and explained in more detail later in this chapter. The first is the direct similarity obtained
from the random forest, the second is an average similarity over a RF ensemble and the third
is the co-association matrix of a clustering RF ensemble, which measures the co-occurrence
of observations belonging to the same cluster. Due to the random nature of RF the resulting
similarity matrix is different at each run (Alhusain and Hafez, 2017), which motivates the
usage of an average similarity of a RF ensemble and the co-association matrix of a clustering
ensemble, to test if they deliver more robust results. The chosen approach of using the floods’
space as donors avoids having fixed number of catchment donors allowing for catchments to
be donors only for a given flood mechanism. As observed by Fischer (2018) and Fischer and
Schumann (2019) catchments can have different dominating mechanisms depending on the
season and on the catchment characteristics. The regionalization is done at the flood level,
allowing for catchments to be donors if they react similarly.

The studied target variables and predictors used for training the RF are going to be ex-
plained in the following sections. A tuning of the RF global parameters is done to optimize
the performance with the floods database. It is done by varying the number of trees, the
observations in terminal node and the random variables at each split and comparing the per-
formance of the estimations. The use of different target variables is studied, looking at the
estimation performance of the peak discharge and the time of the occurrence of the peak.
Further, the physical relationships interpreted by the RF are analyzed using the RF similarity
space through MDS and clustering. This allows to recognize whether the relationships cap-
tured by the model agree with the understanding of the hydrological cycle and the catchment
physical processes. For example, whether sharp hydrograph curves, i.e. high PV R, are
mainly caused by convective precipitation. It is important to determine if the model can cap-
ture the underlying processes, because it makes the estimations more reliable. A comparison
of an unsupervised RF with a supervised RF for evaluating the similarity of the floods mech-
anisms is included. These two methods are evaluated according to their ability to recognize
similar catchment reactions by looking at their estimation performance.
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6.3 Selected Training Variables

In this section the floods database set used for training the RF model is described, looking
at the definition of the predictors and the target variable. Throughout this study, different
predictor groups are used and different target variables are included to describe the response
of the catchment.

6.3.1 Random Forest Response Variables

The response variables, also known as target or training variables, are the values that f̂(x)
in Eq. 6.1 can take, which is the variable or class that is going to be estimated with the RF.
The goal of this study is to have a model that can estimate the peak, the volume and shape
of the hydrograph, considering the different catchment reactions to meteorological critical
events. Specifically, in this chapter a method for translating the hydrograph shape to an
ungauged catchment given a meteorological event and some hydrological characteristics is
studied. With this in mind, various response variables, that describe the catchment response,
are considered to train the RF model. These variables are summarized in Tab. 6.1 and can
be divided in three groups:

1. Target variables associated to the fit of the probability density function (PDF) to the
hydrograph flood wave.

2. Target variables that explain the shape of the original hydrograph.

3. Target variables that define the magnitude of the flood.

For those cases in Tab. 6.1 where the response variable is multivariate, the RF is trained
to estimate the co-dependence of the variables by looking jointly at both target variables at
each split and tree of the RF. In this chapter only the Lognormal and the TSP distributions
are considered. In the analysis of Chap. 4 it was shown that the PDFs, which represented the
hydrograph shape more accurate are the Lognormal from the bell shaped distributions and the
TSP from the sharp distributions. In Tab. 6.1, ↵ and � are chosen as reference when referring
to the parameters of the PDF. The entropy of the hydrograph curve, is referred in an analog
manner as it was used for the case of temporal precipitation entropy, described by Eq. 5.6.
Here it represents the relative entropy of the flood waves. Using the relative entropy allows
to eliminate the effect of different hydrograph durations, i.e. number of time intervals, from
the entropy result. The skewness and kurtosis of the hydrograph are calculated assuming the
hydrograph observations as a PDF.

Training the RF as multivariate to predict the relative peak and volume of the flood is
different than training it to the PV R. Even though the PV R is defined by the peak and
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volume, for the first case the co-dependence of the magnitudes peak and volume is targeted,
whereas for the PV R ratio the shape of the hydrograph is addressed.

Table 6.1: Response variables used for training the RF.

Group Target Notation Description

Shape of
fitted
hydrograph

Entropy of
PDF

HPDF Temporal entropy of the PDF fitted to
the hydrograph.

Parameters
of PDF

↵ , � RF trained as multivariate to estimate
the co-dependence of the parameters
obtained with thePDF fit to the hydro-
graph flood wave.

Entropy and
parameters
of PDF

HPDF , ↵, � Multivariate RF trained to estimate the
co-dependence of the entropy and the
PDF parameters.

Shape of
original
hydrograph

Entropy of
measured
hydrograph

Hhy Relative temporal entropy of the orig-
inal discharge measurements using Eq.
5.6 and Eq. 5.5.

Peak to
volume ratio

PV R A measure of the duration of a flood as
defined with Eq. 4.2.

Entropy and
PV R

Hhy, PV R Multivariate RF trained to estimate
the co-dependence of the entropy and
PV R.

Hydrograph
statistics

Sk, Ku Skewness and kurtosis of the flood
wave, which represent the symmetry
and shape of the curve.

Hydrograph
statistics and
PV R

PV R, Sk, Ku Multivariate RF trained to estimate the
co-dependence of hydrograph statistics
and peak to volume ratio.

Hydrograph
magnitudes

Relative peak Qp/A Flood peak divided by catchment area.
Relative
volume

V/A Flood volume divided by catchment
area.

Relative
peak and
volume

Qp/A, V/A Multivariate RF trained to estimate the
co-dependence of the relative flood
peak and volume.

6.3.2 Random Forest Predictors

The RF predictors, also known as covariates, are used for estimating the response. A total
of 34 predictors were considered to estimate the catchment reaction at the occurrence of a
flood. They are described in Chap. 3, Chap. 4, Chap. 5 and in the appendix (see Tab. A.2
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and Tab. A.3). These predictors are roughly classify into the following groups:

1. Precipitation: duration, intensity, precipitation total and precipitation temporal en-
tropy.

2. Temperature: standard score.

3. Soil moisture: as estimated using the antecedent precipitation index (API).

4. Time: indicating the time of the year when the flood occurred.

5. Climate: The amplitude and phase of the sin-cos fit to daily precipitation data and
some precipitation quantiles.

6. Catchment characteristics: long term catchment descriptors as area, shape, orientation,
drainage density, land use, soil, etc.

From these variables some are flood specific, meaning that they can vary at the occurrence
of each flood, as for example the precipitation and API . Other variables are catchment
specific, and thus they remain constant for each catchment as for example the catchment
area, land use, climate, etc. If not mention otherwise, as standard all predictors are included
when training a RF.

Having the predictors and target variables defined it is possible to train a RF to obtain a
measure of similarity between floods. Nonetheless, a study of the changes in performance of
the RF when changing the global parameters of the RF is first carried.

6.4 Tuning Random Forest Global Parameters

The performance of the RF depends on the chosen tuning parameters. If the number of
predictors is large but only few of them are relevant to the target variable and the rest are
noise, sa small number of random variables m at each split will most likely give a poor
performance, since the probability of randomly selecting one of the relevant variables is
lower (Hastie et al., 2017). A sensitivity analysis of the RF parameters is carried out, to
avoid that a target variable results in a better performance because the default parameters
of the RF favor the prediction in one target more than another. Three parameters are tuned
independently, the number of trees N , the randomness applied at each split m and the number
of floods in a terminal node n. For each case, the tuning parameter is varied while the other
two are kept constant, for determining the performance of the RF. It is assumed that if the
performance of the RF to predict the target variable increases also does the ability of the RF to
discover the structure of the data. Thus, enabling differentiation between flood mechanisms,
giving a more reliable similarity matrix.
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The performance of the RF is evaluated using the coefficient of determination R2 defined
as

R2 = 1�
Pt

i=1(yi � ŷi)2Pt
i=1(yi � y)2

, (6.5)

where yi is the observed response, ŷi the RF estimation, y the mean over the observations
in the test sample and t is the size of the test sample. The R2 is a measure of goodness-
of-fit which basically compares the difference in performance between an estimation from
the random forest versus the estimation using the observations mean. The closer R2 is to
one the better the performance. The separation between train and test samples is done with
the k-fold method, where k equals to 10, which means that per target variable and tuning
parameter 10 RF are trained. For tuning purposes, all 11 target variables (see Tab. 6.1) are
used to independently train the RF with the 37 predictors (see Tab. A.2 and Tab. A.3). In
Fig. 6.3, Fig. 6.4 and Fig. 6.5 the change in performance due to the change in the tuning
parameters is plotted. In all cases, the observations used belong to the 1POT samples. The
11 target variables can be identified by the marker and are colored according to the response
group in Tab. 6.1. Note that for the tuning of the global parameters, only the TSP function is
considered, and, therefore, HPDF is the entropy of the fitted TSP. When referred to ↵ and �
it is meant the fitted parameters of the TSP.

Number of trees. In Fig. 6.3 the performance of the RF with an increasing number of trees
per forest is plotted. The forest size ranged between N = 5 and N = 300 trees. Given that
10 folds were considered for the cross-validation, this resulted in training 2950 RF for each
target variable. For tuning the number of trees, the variables considered at each split and the
number of floods in the terminal node are kept constant as m = 12 and n = 2, respectively.
It is observed, that independent of the target chosen to train the RF, as the number of trees
increases the performance increases up to a point where it converges asymptotically and the
benefit on increasing the size of the RF is low. This is reasonable, since by increasing the
number of trees the ability of the model to generalize to unseen data increases, when a new
tree is trained a new perspective of the space is included. Even though Probst and Boulesteix
(2018) argue that the number of trees should not be considered as a tuning parameter since an
increase on the number of trees can not result in the overfitting of the model. It is studied here
to be confident that the RF performance converges with the selected number of trees for all
target variables. A large RF will guarantee stability, but influences the computational time.
The number of trees must be kept samll, to reduce the computational time of the similarity
matrix, since for its calculation each observation goes down each tree. The number of trees
is chosen to be 100 for all RF in this study, to ensure that the change in performance is due
to the difference in the chosen target variables and predictors and not due to a small number
of trees that give unstable results.
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Figure 6.3: Mean RF performance over 10 folds for all target variables, trained with the
observations of the 1POT sample. The number of trees N varies, while m = 12
and n = 2 are set constant.

Number of random predictors. In Fig. 6.4 the change in performance due to the variation
of the number of random predictors at each split of a tree is plotted. The number of trees
per forest is kept at 300 and the trees are grown until the terminal node reaches purity or had
only 2 floods. It is observed that overall, a low value of m results in a lower performance. A
lower performance indicates that not all predictors are equally important for the estimation,
and thus with a smaller m the chances of selecting one of the relevant predictors decreases.
There is no universal value of m, which achieves the largest performances over all target
variables. For example, for Hhy the largest performance is achieved with m = 18, but for
HPDF with m = 12. Nevertheless, it is observed that for values of m larger than 12 the
increase of performance is smaller than for m < 12. From a total of 37 predictors, 12
correspond to the recommend value of m, previously mentioned as p/3. The value of m will
be chosen to be 12 for training the RF and estimating the similarity of floods, for m > 12
the gain in performance can be neglected. As m increases, the correlation between trees
is expected to increase, since the probability of selecting one of the relevant predictors is
larger. This reduces the advantage of using a large number of trees, since the trees are more
correlated by having a large m, which is not desired since it can hamper the recognition of
less frequent mechanisms or overlapping flood processes.

Number of floods in a terminal node. The depth of a tree can be modified either by
defining a given number of splits or a given number of observations to end up together in
a terminal node. In this study, the second approach is used, which is achieved by setting n
and keeping the number of splits larger than the number of observations. This ensures that
a tree is pruned only by satisfying the purity condition or by reaching a given number of
observations. In the bottom panel of Fig. 6.5 the performance of estimating a target variable
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Figure 6.4: Mean RF performance over 10 folds for all target variables, trained with the
observations of the 1POT sample. The number of randomly selected predictors
at each split m varies, while N = 100 and n = 2 are set constant.

for different sizes of the terminal node is plotted. The RF are trained to have 300 trees and
allowing 12 random predictors at each split. It can be observed that the effect of changing
the number of floods at the terminal node is different depending on the target variable used
for training the RF. For most target variables, the performance of the RF is continuously
decreasing as the number of observations in the terminal node increases, e.g. PV R, V/A
and ↵, �. In other cases, the performance of the RF increases until n reaches a maximum,
but then it decreases, e.g. Hhy, HPDF and Qp/A. Only two of the target variables have the
maximum performance at the recommended value for regression RF of n = 5 , the Hhy and
Hpdf . There is no single value for the terminal node size that maximizes the performance of
the RF over all target variables. Given that the observed decrease in performance is larger
than the gain in performance when increasing n, it is decided that the RF will be trained
until they reach purity or a maximum of two floods in the terminal node. By increasing the
number of observations ending together in the terminal node, the model is smoothed meaning
that it is less sensitive to rare events, since the average of the samples is considered as the
prediction.

If the number of observations increases, by considering more POT on average per year,
no matter which target variable is analyzed the overall model performance increases (see
Fig. A.1). With more observations the performance is expected to increase since more in-
formation is used for training the RF. The target variables that have the highest performance
according to the R2 are V/A and Hhy, implying that these variables can be directly esti-
mated with more confidence. This does not necessarily mean that those are also going to be
the best variables for identifying flood donors with similar mechanisms. The entropy of the
PDF fit can be more accurately represented by the RF than the entropy of the hydrograph.
One explanation for that is that the actual data of the hydrograph can strongly vary within the
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Figure 6.5: Mean RF performance over 10 folds for all target variables, trained with the
observations of the 1POT sample. The number of floods in the terminal node n
varies, while m = 12 and N = 100 are set constant.

measured intervals, while the PDF smooths out the hydrograph resulting in less variability.

In conclusion the RF parameters will be kept constant for the following analysis. Although
there are some target variables that will not have the optimal performance, the overall effect
is small and can, therefore, be neglected for simplifying the analysis. Each RF will be trained
to have 100 trees, with a random selection m of 12 predictors per split and each tree will be
allowed to grow until it reaches purity or there are only 2 observations, i.e. floods, at the
terminal node.

6.5 Estimation of Peaks and Hydrographs

As mentioned before, the peak and the hydrograph shape will be estimated by means of
a similarity matrix. The focus of this study lies on the estimation of floods recognizing
different catchment responses to various meteorological inputs. The RF algorithm is used
to evaluate the similarity between the floods and select the flood donors for the estimation.
For this purpose, a “guided” approach for recognizing similar floods is applied, for which
a supervised RF is used. As mentioned in Chap. 6.2, three methods for determining the
similarity between catchment responses are used:

1. Random forest similarity matrix S: The similarity of the floods is determined accord-
ing to Eq. 6.3.

2. Random forest ensemble average similarity matrix S̄: The similarity of the floods
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as the average of the S similarity matrices obtained with Eq. 6.3 for each RF in an
ensemble.

3. Clustering ensemble co-association matrix CO: The similarity of floods is determined
as the co-association matrix of a clustering ensemble; the members are obtained by
clustering the similarity matrix S of supervised RFs. The clusters co-occurrences
gives the co-association matrix CO according to Eq. 6.4 .

Independent of the similarity matrix used, the procedure for estimating the flood hydro-
graphs is as follows:

1. Determine the similarity matrix of the floods, either as S, S̄ or CO.

2. Set a similarity threshold to get the flood donors.

3. Estimate the dimensionless hydrograph shape as the PDF function, whose parameters
correspond to the weighted mean or median of the flood donors.

4. Denormalize the estimated dimensionless hydrograph using Eq. 4.3 with V and D.

5. Determine the maximum discharge of the hydrograph Qp and the time to peak tp.

For the three methods of generating the similarity matrix, the RFs are trained to have
k = 100 trees, m = 12 predictors at each split and n = 2 observations at the terminal
node. The RFs are trained using one of the 11 variables as target (see Tab. 6.1) and all 34
predictors (see Tab. A.2 and Tab. A.3). For evaluating the quality of the estimations various
similarity thresholds are considered, to be able to analyze the change in performance as more
donors are included. For the estimation of the hydrograph, both, the TSP and the Lognormal
distributions are used. The parameters of the resulting hydrograph are either the weighted
mean or median of the PDF parameters of the corresponding flood donors. The values of
the similarity are used as the weights of the donors for calculating the estimated parameters.
Using the value of the similarity itself as the weight is chosen. Nevertheless, other methods
for weighting were studied, but there was no significant effect observed.

One example of the estimated flood hydrographs and the corresponding flood donors is
given in Fig. 6.6. On the left panel the estimations using the TSP distribution are given and
on the right panel the case of using the Lognormal distribution. These are obtained using the
similarity matrix S of one RF, which is trained using the fit parameters of each distribution
and its entropy (↵, �, HPDF ) as target variable. The PDF fitted to the observations is given
in red, the PDFs from the flood donors are given in gray and the estimations using the mean
or the median of the parameters are given in blue and orange respectively. For this specific
example taking the mean of the PDF’s parameters gives a better estimation of Qp and tp for
the case of the TSP function. For the case of the Lognormal distribution, tp can be estimated
better by using the median of the donors, this, however, overestimates Qp.
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(a) TSP (b) Lognormal

Figure 6.6: Flood hydrograph estimated with the similarity matrix S of a RF trained with
HPDF ,↵, � as target. The donors are selected with a threshold of 0.1. On the left
panel the TSP distribution is used and, on the right, the Lognormal. In red the
PDF fitted to the observed hydrograph and in blue and orange the corresponding
estimated hydrographs using the mean and the median of the donors are given.
Flood donors are plotted on the background with light gray lines.

The example shown in Fig. 6.6 corresponds to one hydrograph out of 1064 1POT observa-
tions, for using one target variable and one similarity measure. In this study, different target
variables to train the RF are chosen, various types of similarity matrix (S, S̄ or CO) are
studied and the number of donors selected for the estimations are varied, by means of setting
a similarity threshold. Here, the quality of these choices is going to be evaluated using Qp

and tp as performance indicators. As in the example, Qp and tp are determined either from
the mean or the median of the donors. For comparison, these estimations are then averaged
for each catchment as

"R =
1

N

NX

i=1

ŷi � yi
yi

, (6.6)

where N is the number of observations in the catchment, ŷ is the estimated value of Qp or
tp and y the corresponding observation. For this purpose, observations are separated in train
and test samples using a 10-folds strategy, resulting in 10% of the observations being left out
for validation. Since no absolute value of the error is considered, it is possible to identify if
there is a bias to over- or underestimate, when "R> 0 or "R< 0, respectively.

First, as an example, the results of using S as a similarity matrix are going to be described,
where observations are donors if they have a similarity � 0.1 to a test event. In Fig. 6.7 the
average of "R over all 45 catchments (see Fig. 3.1) is plotted, for the estimation of the 1POT
floods. The error bars correspond to the standard deviation. The horizontal axis gives the
target variable used for training the RF. On the top panel the estimation error for Qp is given
and on the bottom panel the error for tp. Both using the mean and the median of the TSP
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parameters from the selected donors are included in blue and orange respectively. Only the
RF where a given observation is not used for training the model is considered for assessing
the similarity of a test observation.

(a) Qp

(b) tp

Figure 6.7: Summary of the average relative error for the estimation of Qp (a) and tp (b)
obtained for each catchment. The horizontal axis, gives the target parameter
used for training the RF. The flood donors are selected for a similarity value of
0.1 using S as the similarity measure of the floods and a TSP distribution for the
estimation of the hydrograph.

Figure 6.7 shows that by using the mean of the parameters, independent on the target used
for training the RF, Qp and tp are overestimated, i.e. their relative error "R is positive. If
the median is used Qp is underestimated but tp is very close to zero and its error bars are
significantly smaller, compared to when using the mean. The overall best estimation for
Qp and tp is achieved for the target variables (↵, �, HPDF ) of a TSP distribution, where the
standard deviation and relative error is smallest for both parameters. Using V/A as the target
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variable results in the largest standard deviation of Qp. The largest standard deviation for the
estimation of the median tp occurs when (Hhy, PV R) are used as target variables of the RF.
Interestingly, such a large standard deviation is not observed for the mean of tp. The median
tp and Qp will be used in the subsequent analysis, due to the smaller standard deviation of the
relative error for Qp and tp for almost all target variables. As already pointed out the standard
deviation of "R on tp for Hhy, PV R as target variable is significantly larger than for the other
target variables. A possible explanation is the randomness when sampling the train and test
data (with k-folds) and the random nature of RF. Each time a RF is constructed, even if it
is trained with the same observations and target variable, the similarity obtained is different.
With the idea of obtaining more robust results, which are less sensitive to the randomness of
one RF, using the similarity matrices S, S̄ and CO for the estimation is explored in the next
subsections.

6.5.1 Similarity Matrix S

In Fig. 6.8 a representation of the average catchment "R for the estimations of Qp (top panel)
and tp (bottom panel) is given for various similarity thresholds, which are identified in the
horizontal axis. The data shown in Fig. 6.7 corresponds to a similarity of 0.1 in Fig. 6.8. The
colored bars are given for visualization purposes and they represent the mean of the average
catchment "R. The three colors blue, orange and green, correspond to the three target groups
mentioned in Tab. 6.1. The gray lines give the standard deviation of "R for the 45 catchments.

On the top panel of Fig. 6.8 a decrease of the "R for all target variables is observed, as the
similarity threshold decreases. A decrease of the similarity value implies that more floods
are accepted as donors. For a similarity value from 0.05 on, no significant change is observed
and "R no longer improves. However, by including more flood donors the estimations start
to worsen, which can be seen by the slightly larger error bars. Looking at the bottom panel,
the estimations of tp, the same trend can be observed. For a similarity smaller than 0.1
the error transitions into an overestimation and "R starts increasing as the similarity keeps
decreasing. For the similarity thresholds, where the mean of "R is closer to zero, for both the
estimation of Qp and tp, there is an observed variability of the standard deviation of these
errors (especially for tp), when choosing a different target for the RF. The standard deviation
of "R is smallest for the similarities obtained when training the RF using as target either ↵ , �
or HPDF ,↵ , � (see Tab. A.4). Although there is no single combination of similarity value
and target variable that minimizes "R on both Qp and tp, a similarity threshold between
0.1 and 0.05 could be chosen depending on the flood estimation purposes, i.e. whether
it is more important catching the peak or its temporal occurrence. This will result in an
estimated hydrograph with an expected error of ±10% for Qp and ±15% for tp. If the mean
of the TSP parameters is used instead of the median, an overall bias to overestimate both,
Qp and tp, is observed, independent of the similarity threshold used (see Tab. A.4). If a
Lognormal distribution is considered, using the mean of the fitted parameters yielded no
better performance (see Tab. A.4 and Tab. A.5). The results obtained by estimating Qp
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with the median of the TSP parameters had similar performances to those of using the mean
of the Lognormal parameters. The best performance for estimating Qp can be found for
a similarity threshold between 0.1-0.2 for the Lognormal distribution and for a similarity
threshold of 0.05-0.1 for the TSP distribution. The estimation of tp, using the Lognormal
distribution, results in overall larger "R as compared to the TSP distribution.

(a) Qp

(b) tp

Figure 6.8: Distribution of the average relative error for the estimation of Qp (a) and tp (b)
obtained for each catchment. The similarity threshold considered are identified
on the the horizontal axis. The flood donors are selected using S as the similarity
measure of the floods according to a given threshold. The median of the TSP
parameters from the donors are used for the estimations.
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In Fig. 6.8, when looking at the similarity thresholds of 0.4 and 0.3, a larger decrease on
"R is observed if using Qp/A as target in comparison to the other target variables. This is
attributed to more flood donors being selected for those similarity thresholds. It is important
to point out that the similarity matrix S captures the non linear representation of the ob-
servations with respect to the chosen training variable. Thus, the resulting similarity values
depend on the target variable, given that the RF is built with a different guidance. This leads
to having different numbers of donors selected for the same similarity threshold, depending
on the target variable considered. In Fig. 6.9 the number of donors selected for different
thresholds are given.

Here, the three colors blue, orange and green, also represent the three target groups men-
tioned in Tab. 6.1. As expected, the number of flood donors increases with decreasing
similarity, since the donors are allowed to be more distant from the flood to be estimated.
The number of average donors selected per catchment is almost constant for each similar-
ity threshold, independent on the target variable used for training the RF. However, it is
observed that using Qp/A or Qp/A, V/A as targets, results in less donors for the smaller
similarity thresholds and more donors for the larger similarities. This can explain the dif-
ferences in performance between Qp/A or Qp/A, V/A with respect to the other targets (see
Fig. 6.8).

Figure 6.9: Number of flood donors selected according to different similarity thresholds
using S as the similarity matrix.

6.5.2 Similarity Matrix S̄

In Fig. 6.10 the values of "R for the estimation of Qp and tp are given, when considering the
similarity of the floods as S̄ in the same format as in Fig. 6.8.
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(a) Qp

(b) tp

Figure 6.10: Distribution of the average relative error for the estimation of Qp (a) and tp (b)
obtained for each catchment. The similarity threshold considered are identified
on the the horizontal axis. The flood donors are selected using S̄ as the simi-
larity measure of the floods according to a given threshold. The median of the
TSP parameters from the donors are used for the estimations.

For Qp, a decrease of "R with decreasing similarity can be observed, as well as an under-
estimation as a general trend over all target variables. At a similarity of 0.025 the mean of "R
is closest to zero. Nonetheless, the overall standard deviation of "R is slightly larger than for
a similarity of 0.05. In particular, for a similarity of 0.025, the standard deviation is ±0.074,
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compared to ±0.065 when a similarity of 0.05 is chosen (see Tab. A.6). REgarding the esti-
mations of Qp, a reduction in the mean and the standard deviation of "R is obtained with S̄

compared to those when using S. Independent of the target variable chosen for training the
RF, the overall trend of the estimations of tp (bottom panel Fig. 6.10) is similar when using
S as a similarity matrix (bottom panel Fig. 6.8). For the larger similarity values, there is an
underestimation on tp. At a similarity of 0.1 there seems to be an optimum on the perfor-
mance (i.e. minimum "R). However, by including more donors "R increases again, leading
to an overestimation of tp. It is also observed that the very large standard deviation in Fig.
6.8, when using Hhy, PV R as the target variable and for a similarity of 0.1 of S, is no longer
present when using S̄. There is also an improvement for the estimation of tpv, if considering
S̄ instead of S "R decreases by ⇡ 0.025 (see Tab. A.4 and Tab. A.6). For the case of the
Lognormal distribution with the similarity matrix S̄, the mean of the parameters instead of
the median also resulted in an overall smaller "R. Using a more robust similarity showed a
more significant reduction of the standard deviation of "R (see Tab. A.5 and Tab. A.7). Even
though the observed differences in "R when considering S̄ instead of S are small, choosing
S̄ as the similarity deals with the random nature of the RF algorithm. This is observed on
the smaller variability of the standard deviations of "R. Thus, there is a better performance
of the hydrograph estimation if a more robust similarity measured is considered.

6.5.3 Similarity Matrix CO

In analogous representation as in Fig. 6.8 and Fig. 6.10, the estimation errors for Qp and
tp are given in Fig. 6.11, considering the similarity between the observations with the CO

matrix.

At first, it is important to point out that the similarity thresholds chosen here are different
compared to the case of S and S̄. This is due to the fact that for calculating the CO matrix,
the similarity between the cluster labels of 9 “base clusterings” are compared. This results
in the set of possible similarities of

�
0
Z ,

1
Z , . . . ,

Z
Z

 
, where Z is the number of “base clus-

terings”. Thus, there are less similarity thresholds considered and, therefore, less variation
between the number of selected donors. A value of 10 clusters per ”base clustering” is cho-
sen, based on the findings from (Brunner et al., 2018d) of three reactivity regions, each with
three possible catchment reactions.

If the similarities are considered as the CO matrix the median of the TSP also showed to
have a better performance over taking the mean, for both the estimation of Qp and tp. It is ob-
served that both, Qp and tp, undergo a transition from underestimation to overestimation with
decreasing similarity. Nonetheless, this occurs at different similarity thresholds, between 0.6
and 0.5 for Qp and between 0.8 (or larger) and 0.7 for tp. For the case of estimating Qp,
it is observed that for some targets a larger similarity value reduces the bias, given that "R
is closer to zero. The standard deviations are smaller when less donors are considered (see
also Tab. A.8). For the estimation of tp a tendency on the overestimation is observed for all
targets and similarities as well as a significantly larger standard deviation (see Tab. A.9).
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(a) Qp

(b) tp

Figure 6.11: Distribution of the average relative error for the estimation of Qp (a) and tp (b)
obtained for each catchment. The similarity threshold considered are identified
on the the horizontal axis. The flood donors are selected using CO as the
similarity measure of the floods according to a given threshold. The median of
the TSP parameters from the donors are used for the estimations.
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6.5.4 Concluding Remarks on Similarity

Given that a similarity value has a different meaning, depending on the matrix used. For
the three similarity matrices considered, the thresholds of similarity of 0.8, 0.05 and 0.05
are chosen for CO, S and S̄ respectively. This assures a similar number of selected donors
within the three similarity matrices (see Fig. 6.9, Fig. A.2, Fig. A.3). In all three cases,
for most of the targets, the same tendencies are observed: an overestimation of Qp and
an underestimation of tp, independent on the PDF distribution. For almost all targets, this
bias is observed to be smallest for S̄ and largest for S, no matter if the median of the TSP
parameters or the mean of the Lognormal parameters is considered. However, the standard
deviations of "R, for both the estimation of Qp and tp, showed to be largest for CO than for
S and smallest when using S̄.

The extra model complexity when using CO seems to worsen the estimations. Nonethe-
less, it can be that the representation of the observations space is simplified by the use of
10 clusters, which can result in a worse estimation of the distances between the floods. An
ensemble of a larger size (more “base clusterings”) and/or a larger number of clusters might
lead to better results. Nevertheless, this was not further pursued.

Given that various target variables showed small variation on the performances of the
estimations of Qp and tp, one could think that an unsupervised RF could satisfy the same
purpose. To evaluate if there is an advantage of using the guided RF approach, the perfor-
mance of a similarity matrix obtained when instead an unsupervised RF is considered, are
going to be studied next.

6.6 Supervised versus Unsupervised Random Forest

The similarity matrix of an unsupervised RF reveals how close observations are when com-
pared to synthetic data. This means that an unsupervised RF is not trained to estimate a given
target but to differentiate between two classes, the true and the synthetic. An unsupervised
RF is considered in this study, to evaluate whether its similarity space represents the distance
of the floods through the complexity of the flood reactions as done by the supervised RF.
This determines if there is an advantage of using a supervised RF. In this case, the similarity
matrix S̄ is used for both the supervised and unsupervised RF, given that S̄ is the one that
resulted in the better performances for the estimation of Qp and tp in the previous chapter.

The first difference between the supervised and unsupervised RF is the number of flood
donors selected according to the similarity thresholds. In Fig. 6.12 the number of donors
when choosing different similarity thresholds are given. It can be observed that the num-
ber of donors increases as the similarity threshold decreases as it was for the case of the
supervised RF. However, this increase is larger than the observed with the supervised RF
(Fig. A.2). For the unsupervised RF the floods seem to be closer to each other than for the
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supervised RF, where a larger separation is observed, i.e. less donors for the same similarity
threshold. One explanation for this is that with the unsupervised RF, the similarities between
the observations are more driven by the catchment characteristics than by the meteorological
event causing the floods. This results in flood donors being selected only if they belong to a
similar catchment without distinguishing between different flood mechanisms. To visualize
this, the importance of the predictors in the case of the supervised and the unsupervised RF
are given in the top and bottom panel of Fig. 6.13. The importance of each predictor is
calculated with Eq. 6.2.

Figure 6.12: Number of flood donors selected according to different similarity thresholds
using S̄ as the similarity matrix, obtained from an unsupervised RF.

On the bottom panel of Fig. 6.13 it can be observed that predictors belonging to the
constant catchment descriptors (groups marked in green, yellow, purple and gray) are the
most important predictors when considering an unsupervised RF. These predictors contain
information that is repeated for the flood events belonging to a given catchment. It shows that
the relationships found with the unsupervised RF are driven by the similarities between the
catchments rather by the meteorological forcing causing each event. On the contrary, when
considering a supervised RF the most important predictors belong to the characteristics of
the precipitation event causing the floods (HR, API , etc.). The meteorological event is
the main driver of floods and it is, therefore, responsible of different flood processes. For
example, an intense precipitation event as a result of convective precipitation will typically
trigger a flash flood with a sharp hydrograph. It is, therefore, expected that a RF, which
gives more importance to the meteorological forcing, results in a similarity matrix that is
a better representation of the flood mechanisms space. Nonetheless, it is also important to
determine whether an unsupervised RF possesses an advantage for obtaining more accurate
estimations.
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(a) supervised RF

(b) unsupervised RF

Figure 6.13: Predictors importance for a supervised and unsupervised RF

Figure 6.14 shows the performance for the estimation of Qp and tp when using the sim-
ilarity matrix S̄ of an ensemble of unsupervised RF models to select the flood donors. In
this case, the median of the parameters of a TSP distribution is used for the estimation of
the flood hydrographs. On the top panel of Fig. 6.14 it is observed that for the case of Qp

the mean "R gets closer to zero as the similarity threshold decreases and thus the bias be-
comes smaller. However, this is not observed for the standard deviation of "R, which has a
minimum at a similarity value 0.5 and not at the lowest similarity value considered. At this
similarity threshold the performance over all catchments is the best, with a small underesti-
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mation of Qp. If the results are compared with those of the supervised RF in Fig. 6.10, there
is no similarity threshold that achieves the same performance as the one obtained with a su-
pervised RF. Nevertheless, the difference in the minimum standard deviation of "R between
the supervised and the unsupervised RF is only around 0.02.

(a) Qp

(b) tp

Figure 6.14: Distribution of the average relative error for the estimation of Qp (a) and tp (b)
obtained for each catchment. The similarity threshold considered are identified
on the the horizontal axis. The flood donors are selected using S̄ from an
ensemble of RF as the similarity measure of the floods according to a given
threshold. The median of the TSP parameters from the donors are used for the
estimations.
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On the bottom panel of Fig. 6.14 the summary of the estimation performance of tp is given.
It can be observed that at a similarity threshold of 0.6 the best performance is obtained, with
both the smallest bias and the smallest "R. For larger similarity values, there is a tendency
to underestimate tp and for smaller values this changes to the overestimation. Comparing
these results to the ones obtained with the supervised RF (see Fig. 6.10), it is also observed
that when considering an unsupervised RF the estimations of tp is worse. The difference
in the minimum standard deviations of "R obtained for the case of the supervised and the
unsupervised RF is 0.09, which is larger as the value obtained for the case of Qp.

It is shown that a supervised approach gives better estimations than an unsupervised one,
which leads to conclude that by adding the guidance with a given target variable, the in-
terrelationships causing different flood responses can be captured better. Additionally, it
is important to understand whether the physical interpretations obtained with the RF agree
with the known hydrological responses, to assure a consistent and reasonable regionalization
model. Therefore, in the next chapter an analysis of the RF space is going to be carried out,
to identify what do the flood events that are close to each other according to the RF have in
common.

6.7 Floods Similarity According to Random Forest

The evaluation of the similarity representation is challenging since the true similarity of the
observations space is not known. One can evaluate the similarity space with a plot of the first
dimensions obtained with MDS, by looking at the common characteristics of observations
that are close to each other. However, with many observations this is not feasible. For
simplicity, one can cluster the similarities obtained by the RF to identify patterns in the
data and to understand the representation of what are considered to be similar observations.
This helps to understand if the known physical interactions are rightfully represented by the
model. It helps peeking inside the black box of the algorithm to reveal how the algorithm
interprets the interrelationships.

For clustering purposes 1 � S̄ is used, because clustering algorithms are based on the
representation of data in an Euclidean space, meaning that small “distances” represent close
observations and larger “distances” more distant observations. This results in a matrix with
values between 0 and 1, where 0 indicates the most similar floods and 1 the most dissimilar
floods. This matrix is used as input to a clustering algorithm. Three clusters are chosen
here, to facilitate the interpretation of the results. Note that this should not imply that the
optimal classification number of the floods mechanisms is three. At this stage, the clusters
are considered just for representation and understanding purposes. Finding the true number
of clusters in the data is not the main goal, since only the similarity of the floods is needed
for the regionalization. Merely the similarity matrix obtained from a supervised RF trained
having as target parameter HPDF , ↵, � is going to be considered here.
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The distribution of the PV R for each of the obtained clusters is given on the left panel of
Fig. 6.15. The distributions are given as a box plot, where the green line indicates the median
and the orange triangle the mean. This plot helps to identify which catchment reaction occurs
more frequent at each of the three clusters. The clusters are sorted from the one with the
smallest mean PV R (A) to the one with the largest mean PV R (C). On the right panel of
Fig. 6.15 an example of the hydrographs from one catchment are plotted. These are colored
according to the cluster they belong to. It can be observed that cluster C, yellow hydrograph,
has a sharp curve with a fast occurring Qp and that cluster A and B have slower reactions.
In this sense, cluster A, B, C correspond to hydrographs with slow, intermediate and quick
reactions respectively. A classification of the flood mechanisms could be achieved by means
of a supervised RF. However, further research is required to identify the optimal number of
clusters. This is not further pursued, since it is considered out of the scope of this study.

Figure 6.15: Similarity of hydrographs according to a supervised RF trained with the 1POT
to estimate the parameters of the fitted PDF (HPDF , ↵, �). Left panel: shows
the distribution of the PV R for the three catchments obtained using the simi-
larity matrix of the RF. Right panel: Example of the hydrographs belonging to
one catchment, the hydrographs are colored according to the cluster.

In Fig. 6.16 the distribution of some characteristics of the meteorological events triggering
the floods are given, as a box plot representation. It can be observed in Fig. 6.16a that the
precipitation temporal entropy (HR), is the variable that shows a larger separation between
the clusters. This agrees with the observation on the top panel of Fig. 6.13, where it is shown
that the temporal distribution of precipitation, measured by HR, is the most important pre-
dictor for the supervised RF, it is the predictor that gives more information for estimating
different reactions. The predictor HR is the one that allows a better binary split of the ob-
servations through the nodes of the trees in the RF. In Fig. 6.16 it can be observed that the
physical understanding of the processes is represented properly. The quickly reactive events
(cluster C) have mainly precipitation events that are concentrated within a few time intervals,
with small HR, high intensities and lower durations (see also Fig. 6.16b and Fig. 6.16c). The
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6. Regionalization of Catchment Reactions

slow and intermediate catchments reactions (cluster A and B) are rather triggered by longer
precipitation events with lower intensities and larger HR. These events can be the result to
orographic effects or frontal systems.

(a) Precipitation entropy (b) Precipitation duration (c) Precipitation max. intensity

(d) Precipitation sum (e) API (f) Temperature standard score

Figure 6.16: Similarity of the characteristics of the meteorological event triggering a 1POT
according to a supervised RF trained to estimate the parameters of the fitted
PDF (HPDF , ↵, �). On the subplots the distribution of various meteorological
characteristics is given, each box constructed from the events belonging to one
cluster.

Regarding the total amount of precipitation triggering the 1POT events (see Fig. 6.16d), it
can be observed that both cluster A and B have larger volumes of precipitation. This larger
precipitation volumes distributed in longer periods of time explain the fact that clusters A and
B have smaller PV R. Concerning the API triggering the 1POT events (see Fig. 6.16e), it
is observed that there is almost no difference within the three clusters. However, if the API
of each cluster is further separated by the season the flood event occurred, some patterns of
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the API triggering a flood through the seasons can be identified (see Fig. A.4). The equal
ranges of API observed within the clusters can be explained by the fact that for a given
catchment, the same API value indicates different soil moisture depending on the time of
the year the event occurred. For instance, the same value of API in winter and in summer
is expected to indicate a drier soil for the case of the summer event since larger evaporation
takes place. One can conclude that the relationship between the API and the floods is more
complex as the one explained only by the three clusters considered here.

In Fig. 6.17 the seasonal frequency of occurrence of the flood events are given. Each of the
panels represents a cluster. Additionally, the bars are colored for differentiating the season
in which each event occurred. It can be observed that for the case of the quick hydrographs
(cluster C), most of the floods took place in summer. This agrees with the fact that flash-
floods is a typical mechanism taking place in summer. Moreover, the temperature’s standard
score at the occurrence of a flood (Zflood) has a stronger tendency of being larger than zero
than for the case of the other two clusters (see Fig. 6.16f). This is an indicator of having
more temperature increases, which results in convective precipitation. Slow and intermediate
events (clusters A and B) are observed to be more evenly distributed within the year. This
type of reactions are known to be caused by meteorological fronts or orographic effects that
take place over the whole year.

Figure 6.17: Seasonal frequency of occurrence of various hydrograph reactions clustered
according to similarities obtained a supervised RF. Each subplot is constructed
with the events belonging to each cluster.

In Fig. 6.18 the distribution of the land use of the events belonging to the three clusters
is given. The low variations are explained by the possibility of the same catchment being
able to have a slow, intermediate or quick reaction. Given that various meteorological events
can take place over a catchment. Nevertheless, the differences show that there is a slight
tendency for catchments with larger percentages of agriculture and settlement and smaller
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percentages of forest to generate more quick reactions (cluster C).

(a) Agriculture (b) Forest (c) Settlement

Figure 6.18: Similarity of the land use of 1POT events belonging to three clustered reac-
tions, according to a supervised RF trained to estimate the parameters of the
fitted PDF (HPDF , ↵, �).

Last, in Fig. 6.19 catchment area, concentration time and the percentage of karst aquifer
are included. It can be observed that a quick reaction (cluster C) is a more typical reac-
tion of smaller catchments, with lower concentration times. Larger catchments, as expected
have a rather slow reaction (cluster A), given that the runoff is the result of the added re-
actions of the sub-basins. The precipitation temporal entropy HR showed to be smaller in
the slow hydrograph reactions (cluster C) than for the intermediate reaction (cluster B) and
the corresponding PV R where larger for cluster B than for cluster A. This means that the
precipitation events that are more uniformly distributed in space tend to produce more sharp
hydrographs. This is not an expected catchment reaction to the characteristics of the precip-
itation event. Nevertheless, it might be explained by the ratio of karstic rocks. There is a
larger tendency of catchments with larger ratios of a karst aquifer, to generate a intermediate
reaction (cluster B). Water can travel faster through the karstic rock and be reconnected to
the surface flow (Bonacci et al., 2006). Brunner et al. (2018a) also found out that to include
information about the karst aquifer is important for the estimation of the hydrograph shape.

On the previous plots some of the similarities of the floods were highlighted. The complex-
ity of the floods space and how the hydrograph curve might change according to differences
in the meteorological input or the characteristics of the catchments were shown. There is a
large quantity of variables influencing the flood processes. However, it was shown that HR

is a key parameter for differentiating flood mechanisms. To get a fixed number of clusters,
which can explain the relationships that led to a given catchment reaction is difficult. The
number of possibilities is large. The use of the similarity of the floods and not a fixed number
of clusters, gives flexibility to the selection of the floods donors and enables to find donors,
when the flood is a result of mixed processes.
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(a) Catchment area (b) Concentration time (c) Proportion of karst

Figure 6.19: Similarity of the catchment areas, concentration times and karstic aquifer of
1POT events belonging to three clustered reactions, according to a supervised
RF trained to estimate the parameters of the fitted PDF (HPDF , ↵, �).
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Chapter 7

Estimation of Flood Volume and Flood
Duration

In the previous chapters, an analysis of the mechanisms causing the floods was conducted
to understand the dynamics of flood generation. A random forest regionalization framework
was applied for transferring hydrograph shapes to ungauged or partially gauged catchments.
This chapter focuses on modifying a rainfall-runoff model to estimate discharge volumes
in the studied region. Thus, meteorological events identified as critical can be used as the
input to the rainfall-runoff model to estimate plausible discharge volumes in ungauged catch-
ments. Further, the whole hydrograph wave can be derived applying the Random Forest (RF)
regionalization from Chap. 6.

7.1 Assumptions and Considerations of the Chosen Rainfall-
Runoff Model

Estimating flood volumes using precipitation measurements has the advantage that longer
records are available and that they have a greater spatial coverage and are measured with a
high temporal resolution. A rainfall-runoff model can be used, which takes the meteorologi-
cal event as input and generates a corresponding runoff volume considering the characteris-
tics of the catchment. In a first step, the SCS rainfall-runoff model was used for estimating
the discharge volumes. Nevertheless, it was recognized on an early stage that the observa-
tions were not represented satisfactorily. The results showed a structure, which suggested
that the SCS must be modified to capture the soil moisture of the catchments. In this docu-
ment, the results of the SCS model are not included since they were not further investigated.
Instead, a modification of the SCS is used, the methodology suggested by Shaperly and
Williams (1990), which is implemented in the EPIC calculator (Chap. 2). The EPIC is a
modification of the SCS model to account for the soil moisture and the topography of the
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catchments.

Since no measured data about the soil moisture are available, the soil moisture is estimated
with the antecedent precipitation index (API). At first, its value was assumed to be equal to
the API of the 5 days previous to the flood event. However, this value led to having many
meteorological events estimated to cause zero runoff. Additionally, the estimation errors of
the events generating a runoff were large. This was observed regardless of the chosen value
of the recession (↵) considered for the calculation of the API (Eq. 5.13), or the chosen
value for the regional constant (�). These results agree with the observations in Chap. 5,
which showed that the longer memory of the studied catchments is more representative of a
flood day as compared to the API of any other random day. Therefore, it is decided to use
the API of the previous 30 days as an estimation of the soil moisture. When referring to
API in this study, it indicates that 30 days are considered for its calculation if nothing else
is specified.

As shown in Chap. 5 the precipitation amounts of the winter floods will be underestimated
if no information of snow melt is included. Therefore, the snow routine in Chap. 5 is consid-
ered, to take into account the snow water equivalent for the calculation of the precipitation
and the API causing a flood event. Further, an API-soil moisture transformation is applied
and an equivalent dimensionless curve number CN is used in the rainfall-runoff model, as
described in the following section.

7.1.1 Soil Moisture Transformation

The soil moisture (SW ) of the catchments previous to the occurrence of a flood, is estimated
by means of the API . However, the API is an indicator of the amount of water in the soil,
though there are other processes affecting the water content of the soil, as for example the
evapotranspiration, the interception, the soil properties, the slope, etc. For this reason, the
value of API is not considered directly as the soil moisture (SW ). Instead, the API is trans-
formed using the field capacity and wilting point of each catchment. A linear relationship
between the SW and the API is assumed. To account for seasonality, the transformation is
done for summer and winter events separately. The API has a different meaning according
to the seasons. In summer evapotranspiration is larger than in winter; therefore, the same
API is an indicator of a smaller SW in summer than in winter. The transformation is done
as follows

SW = WP + API · FC �WP

APIFC � APIWP
(7.1)

where SW is the soil water content, WP and FC are the wilting point and the field capacity
of the catchment respectively. APIFC is the value of API corresponding to SW equal
to the field capacity FC. Likewise, APIWP is the value of API corresponding to SW
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equal to the wilting point WP . APIWP is assumed to be zero, given that, even with no
antecedent precipitation a minimum soil moisture is expected to be found in the soil, which
corresponds to the wilting point. The optimal values of APIFC for each catchment depend
on the parameters selected for the rainfall-runoff model. Specifically for this case, the values
considered for the API recession ↵ (Eq. 5.13) and the regional constant � (Eq. 2.3). As
mentioned before, to account for the effects of seasonality, summer and winter events are
studied separately; therefore, two optimal values of APIFC would be obtained for each
catchment, one for summer and one for winter. These results are included in later sections
of this chapter.

7.1.2 Equivalent CN

The EPIC model takes the dimensionless curve number CN from the SCS model to estimate
the initial average soil moisture condition. This value is modified according to the slope of
the catchment as explained in Chap. 2. Typically, the estimation of the runoff in a catchment
is done by aggregating the runoff generated by each of the land uses of a catchment, i.e. each
land use has a corresponding CN value that generates a certain amount of runoff. This prac-
tice should be preferred over the one that considers a unique runoff, which is calculated using
a single area weighted CN , given that the relationship between precipitation and discharge is
not linear, nor should the CN be assumed as linear. An area weighted CN is calculated as a
function of the land use areas. This can lead to an underestimation of the effect of precipita-
tion in some areas of the catchment. For instance, precipitation falling over an impermeable
surface will always generate a runoff, whereas precipitation falling over forest has a larger
retention.

However, if the rainfall-runoff model is applied for each land use separately, more param-
eters must be estimated for the ungauged catchments. A value of APIFC would be needed
per season and per land use. It is therefore decided to estimate the runoff volume using an
equivalent curve number CNeq. The CNeq is an equivalency to account for a better repre-
sentation of the runoff generation of the independent land uses, than the one obtained by
considering an area weighted CN . The CNeq is defined as

CNeq =
1

Atotal
(As · s · CNs + Aa · a · CNa + Af · f · CNf ) (7.2)

where CNs, CNa and CNf are the curve numbers for settlement (s), agriculture (a) and
forest(f ). The equivalency coefficients a, s and f are the weights given to each CN (CNs,
CNa and CNf ). The land use areas are As, Aa and Af , corresponding to settlement, agri-
culture and forest. Finally, Atotal is the entire catchment area.

The coefficients a, s and f are found by means of an optimization over the flood events of
all catchments. For this purpose, the optimal values for a, s and f are searched to minimize
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the Mean Squared Error (MSE) in the following equality

Q(CNs, P,�) +Q(CNa, P,�) +Q(CNf , P,�) = Q(CNeq, P,�) (7.3)

Q is the runoff volume. It is calculated using Eq. 2.4 of the EPIC model. It is a function
of the precipitation triggering the flood event P and CN corresponding to a given land use.
Thus, Eq. 7.3 compares the runoff obtained as an aggregation of the runoff of each land use
to the runoff of having only one CN , the CNeq. The results obtained for the coefficients a,
s and f are included in the following section.

7.2 Calibrating the Rainfall-Runoff Model

According to the considerations mentioned above, there are some parameters of the model
that must be calibrated to represent the study area. On the one hand, optimal values for the
API recession ↵ and the regional constant � of the model are studied. On the other hand, a
resulting APIFC for each catchment is obtained, for each combination in the space of ↵ and
�. Additionally, the coefficients a, s and f for considering a CNeq are calculated.

7.2.1 The Space of ↵ and �

In the EPIC model, the initial abstraction Ia of the catchment is proportional to the storage S
(Eq. 2.3), where � is the proportionality factor. In practice a value � equal to 0.2 is typically
used. A value of � smaller than 0.2 implies that the initial abstraction of the catchment is
smaller than 20% of potential storage capacity of the catchment. However, this value comes
from the application of the SCS model, which was developed for catchments in the United
States. Maniak (2016) suggests that for European catchments � should be smaller, a value
of around 0.05. For the case of Austrian catchments, Merz and Blöschl (2009) concluded
that a similar value was more representative for the studied catchments. The parameter ↵
is the recession considered for the calculation of the API (Eq. 5.13). As the value of ↵
decreases less importance is given to the long memory of the catchment. This means that
only the precipitation that falls a few days before the flood event control the soil moisture at
the occurrence of the flood. On the contrary the larger the ↵ is the more importance is given
to the long memory of the catchment.

As mentioned before, the optimal value of APIFC for each catchment depends on the
considered ↵ and �. Thus, the error in the estimation of runoff volume is affected by the
values of these parameters. If ↵ and � change, so do the values of APIFC and the estimation
error. At each point in the ↵ and � space an optimization is done for each catchment, to
obtain the optimal value of APIFC for each catchment. This means that for each catchment

111



7. Estimation of Flood Volume and Flood Duration

a value of APIFC is found, which minimizes the MSE of the observed and the estimated
flood volumes. The MSE is calculated as in Eq. 4.5. This is iteratively repeated for each
combination of ↵ and � considered. The parameters � and ↵ are looped to find the combi-
nation that can better represent the study area, where � is looped from 0.05 to 0.2 in steps of
0.01 and ↵ is looped from 0.2 to 1.0 in steps of 0.01 as well.

In this chapter, the floods are considered as the sample of the 1POT events. To calculate the
MSE between the observed and estimated flood volumes, the effective precipitation (Pe) is
considered. Pe is the amount of precipitation that directly contributes to the runoff and is not
intercepted, evaporated or infiltrated and it is used to omit the effects of different catchment
sizes in the volume calculation. To calculate the flood volume, one must multiply Pe with
the catchment area. Additionally, for getting an estimation of the bias the Mean Error (ME)
is calculated as

ME =
1

N

NX

i=1

(ŷi � yi) (7.4)

where ŷi is the estimated value Pe, yi is the observed Pe and N is the number of observed
flood events in each catchment. In this case, ME has units of mm given that it computes the
error of Pe. If ME is larger than zero it means, there is a tendency to overestimate. On the
other hand, when ME is smaller than zero, the tendency is to underestimate. The estimations
of Pe are obtained using the optimal APIFC for each catchment and set of � and ↵.

In Fig. 7.1 the mean over the values of the MSE and the ME obtained for the catchments
is plotted in the space of ↵ and �. These are plotted on the left and right panel respectively.
The plots give the results when considering only the summer events for the optimization.
The values of the mean MSE and ME are given by the color bars on top of each plot. For the
case of the MSE (left panel), a dark blue value represents the minimum MSE as an average
over all catchments. It can be observed that the smaller MSE are achieved for �s between
0.07 and 0.15 in combination with ↵s between 0.85 and 0.95. As already pointed out in
Chap. 5, it can be observed that the long memory of the catchment is more representative
for estimating a flood event, i.e. smaller estimation errors are obtained when a larger ↵ is
considered. This is observed as a general tendency, regardless of the chosen �.

For the case of ME (right panel of Fig. 7.1) the lighter colors, colors close to white, are
the values for which less bias in the estimations can be expected. Thus, selecting a � of
around 0.04 results in the smaller bias. This means that there might be some overestimation
and underestimation, but it is compensated on average. If one considers � = 0.2, as the one
suggested in the SCS model, there is a bias to underestimate the discharge volume, regardless
of the value of ↵ chosen. In conclusion, the summer events could be estimated with a value
of � of around 0.07 to reduce the bias and the estimation error and a value of ↵ between 0.85
and 0.95 to reduce the estimation error.
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Figure 7.1: MSE and ME in the ↵-� space for the estimation of the summer flood volumes.
The color maps display the resulting mean MSE (left) and mean ME (right)
obtained over all study catchments.

Figure 7.2 gives the results of the optimization for the winter events, in the same format as
for the summer events. The first observation that can be made is that MSE does not change
smoothly in the space of � versus ↵, as is the case in the summer events. Rather, a striped
structure in the results is present for the case of the winter events. This structure can be
attributed to few catchments resulting in much larger MSE values than those obtained for
most of the catchments. One example is catchment 1. This is the smallest catchment of the
studied ones. It is located on the west corner of the Jura mountains (see Fig. 3.1). It is
the catchment with the highest elevations and the largest variability in elevations within the
catchment (see mean and standard deviation of the elevation in Tab. A.2). The MSE for this
catchment is large regardless of the combination of ↵ and �. There is no value of APIFC

found to reduce this error. Catchment 1 exhibits runoff coefficients larger than one, even
after including the snow routine (see Chap. 5.4 and Tab. A.3). Meaning that the observed
discharge is larger than the precipitation event, which is physically not plausible. The tem-
perature station assigned to characterize this catchment is located in the uppermost part of
the catchment. Therefore, the temperature records might be lower than the representative
temperature for the catchment as a whole. In some cases, there may be greater accumula-
tion of precipitation as snow or less snow melting, depending on the temperature recorded.
If one looks at the characteristics of the winter floods, it is observed that not all events are
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affected by having low temperatures. When the snow routine is applied some events have
large precipitation equivalents, others have small precipitation equivalents. Nevertheless, the
problem encountered is not the lack of precipitation, there is precipitation recorded when the
flood occurred. The error is rather attributed to the fact that for some events the temperature
recorded is lower than the accumulation threshold (see Chap. 5.4). Therefore, the falling
precipitation is accumulating as snow and it does not contribute to the runoff. Flood events
in winter are expected to take place at the borderline between positive and negative °C tem-
peratures, which is around the freezing threshold. In this range, as highlighted by Bárdossy
and Pegram (2011), the hydrological balance can be affected by small biases, impacting the
whole catchment regime.

(a) MSE (b) ME

Figure 7.2: MSE and ME in the ↵-� space for the estimation of the winter flood volumes.
The color maps display the resulting mean MSE (left) and mean ME (right)
obtained over all study catchments.

Moreover, only daily mean precipitation measurements are used for the estimation of the
snow accumulation and snow melt. It might be worth analyzing if by assuming a temperature
change over the day, the results for catchment 1 will improve. Another option could be a
correction of the observed temperature considering the altitude. In addition, it is possible
that not all flood events are generated by the same mechanism; some may be the result of
snow melt and others the result of rain on snow. Therefore, in some events the observed
amounts of rainfall and temperature may be sufficient to generate runoff and in others they
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may not.

If one removes station 1 and calculates the mean MSE, without this catchment, the striped
structure from Figure 7.2 reduces and a smoother plot is observed. On the left panel of
Fig. 7.3, the mean MSE for the estimations without taking catchment 1 into consideration is
given. By looking at the color bar of Fig. 7.2a and Fig. 7.3a it can be recognized that the
mean MSE is reduced, which is expected since catchment 1 is the catchment that presented
the largest MSE. Nonetheless, the overall tendency remains that large mean MSE are on the
top right corner (for large �s and small ↵s) and small mean MSE are on the bottom left
corner (for small �s and large ↵s).

(a) without station 1 (b) without station 1 and 10

Figure 7.3: MSE in the ↵-� space for the estimation of the winter flood volumes. The color
maps display the resulting mean MSE obtained over the study catchments, with-
out including station 1 (left) or station 1 and 10 (right).

The behavior of the estimation errors in the ↵ and � space can become even smoother
when catchment 10 is also removed from the analysis. However, it can be observed that for
those ↵ and � where the MSE achieves its minimum (large ↵s and small �s) the benefit is
small, i.e. there is a small reduction in the mean MSE. For the case of catchment 10, there
might also be a bias in the temperature measurements selected to represent the catchments. It
is observed that the temperature station is located on the valley behind the catchment. If one
looks at Fig. 3.1 the catchment is facing to the north-west, but the temperature station for
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this catchment is located on the valley facing to the south-east. This is important given that
the direction of the mountains is affecting the sunshine and thus the recorded temperature.
Especially in the case of the winter floods, given that temperature is an important triggering
factor of floods. A slight change in temperature can impact the snow accumulation and
snow melt. In this study the selection of the nearest neighbors was automatized with a code
that searched the closest station from the available ones. To account for the position of the
mountains, the nearest neighbor approach can be extended, constraining the selection of the
neighboring station with the topography.

Overall, the estimations obtained for the winter floods have a smaller mean MSE than the
ones obtained for the summer floods. This can be quickly identified by looking at the colored
bars, which for the summer events ranged from around 50 to 96 and for the winter events
from 30 to 60 (see left panel of Fig. 7.1 and right panel of Fig. 7.3). A possible reason
may be the occurrence of connective rainfall in the summer. The maximum precipitation
might be missed by the station, what randomly changes the amount of precipitation recorded.
Regarding the bias of the estimation, it can be said that for the summer floods, there is the
possibility to choose ↵ and � to achieve a value close to zero mean ME (see right panel
of Fig. 7.1). Whereas, in the case of the winter events there will always exist a tendency
to underestimate, for the values of ↵ and � studied here (see right panel of Fig. 7.2). The
results of the mean ME when leaving out catchments 1 and 10 are not included, given that
they resemble those obtained for all the catchments and only little variations are observed.

7.2.2 Coefficients for the Calculation of the CNeq

As explained before, CNeq is used to represent the aggregated behavior of different land uses
instead of an area weighted CN . For this purpose, the optimal equivalency coefficients a,
s and f must be found. In this case, � is chosen as 0.07 and ↵ as 0.9, given that minimum
mean MSE of the estimations lies around these values.

In Fig. 7.1 the resulting coefficients for calculating the CNeq are given. The optimization
considers the flood events of the 1POT sample. Three optimization scenarios are considered,
one for all 1POT, one only for the summer events and one for the winter events. It can
be observed that the equivalency coefficient is mostly greater than one. This implies that a
compensation is needed for the nonlinear behavior of CN . This means that a larger runoff
volume results from considering the runoff of each land use separately than for the case of
using an area weighted CN .

Additionally, in Fig. 7.4 the runoff volumes obtained by using the CNeq or the area
weighted CN are plotted versus the aggregated runoff of each land use area. As a gen-
eral trend, it can be observed that including the equivalency coefficients for the calculation
of the runoff volumes, generates results closer to those obtained by aggregating the runoffs
of each land use when calculated separately. This can be observed by the fact that the CNeq

lies closer to the 1:1 line. This happens regardless of considering summer or winter events
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Table 7.1: The optimal equivalency coefficients for calculating CNeq for the three scenarios
considered: all 1POT events, only the summer events and only the winter events.
Results for considering � = 0.07 and ↵ = 0.9

s a f

All 1POT 1.00 1.01 1.05
summer 1POT 0.99 1.01 1.05
winter 1POT 1.04 0.99 1.07

(left and right panel of Fig. 7.4 respectively). However, the correction is larger in winter
than in summer, as observed in the larger values of the equivalency coefficients (a, s and f )
for summer than for winter (see Tab. 7.1). A possible explanation of this correction is the
presence of frozen ground in winter. Infiltration and soil moisture can be affected when the
temperatures of the ground drop below 0°C (Dingman, 1975).

(a) summer events (b) winter events

Figure 7.4: Comparison of the runoff volumes for different CN values. In blue and orange
respectively, both the the CNeq and the average CN are plotted versus the ag-
gregated runoff obtained for each land use area. The diagonal line is the 1:1 line,
given as orientation.

To verify the variability of the equivalency coefficients (a, s and f ) for the study region,
these coefficients are also estimated by iteratively leaving one catchment out. In Tab. 7.2
a summary of the obtained values is given. All three optimizations’ scenarios (all events,
summer or winter events) are included. The maximum, the minimum, the mean and the
standard deviation of the equivalency coefficients obtained are given. It can be observed that
there is small to no variation on the optimal values found for a, s and f , when one catchment
is left out of the analysis. The variations are observed when all events are considered jointly;
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however, when separated in winter and summer these variations can be neglected. This
indicates that if new study catchments are to be considered, the same coefficients can be
used to calculate CNeq.

To sum up, it can be inferred from Tab. 7.2 that to calculate the runoff of the summer events
the CN value of forest and agriculture should be increased by 5% and 1% respectively. This
takes in to account the effects of taking only one CN value to estimate the runoff volumes.
Additionally, CN value of settlement should be reduced by 1%. For the case of the winter
events, the CN values of settlement and forest should be increased by 4 and 7% to account
for the underestimation of considering only one CN and the CN of agriculture should be
decreased by 1%. Looking at Fig. 3.5 it is observed that most of the catchments have similar
areas of agriculture and forest, and small areas of settlement. This means that as a general
regional trend, the obtained values of the equivalency coefficients (a, s and f ) imply an
increase of CN and thus of the estimated runoff, even if some of the coefficients reduce the
value of CN .

Table 7.2: Summary of the optimal equivalency coefficients obtained by iteratively leaving
one catchment out. For these calculations a ↵ = 0.9 and a � = 0.07 are used.

All 1POT summer 1POT winter 1POT

s a f s a f s a f

max 1.01 1.01 1.06 0.99 1.01 1.05 1.04 0.99 1.07
min 0.98 1.00 1.05 0.99 1.01 1.05 1.04 0.99 1.07
mean 1.00 1.01 1.05 0.99 1.01 1.05 1.04 0.99 1.07
std 6.1×10−3 1.4×10−3 1.6×10−3 8.5×10−8 1.3×10−8 1.1×10−8 9.0×10−8 2.4×10−8 3.4×10−8

The optimization of the CNeq was also evaluated with different ↵ and �. Nevertheless, the
variations of the equivalency coefficients a, s and f are small. These results are therefore not
included in this document. An overall trend is observed of having larger a, s and f , when
larger �s are considered. This can be attributed to larger compensations of the model needed
if the initial abstraction Ia is larger.

7.3 Analysis of Flood Duration

In this section an analysis of the flood duration is carried out. In hydrology, the flood duration
has been explained for practical applications as a function of the catchment’s concentration
time and the duration of the precipitation event. As mentioned in Chap. 3, the concentration
time Tc is an indicator of the time that is needed for the entire catchment to contribute to the
runoff. In the concentration time there are some catchment characteristics involved, such as
the length of the catchment and the slope, which are parameters controlling how fast water
can move through the catchment. Additionally, the precipitation is the principal trigger of
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runoff, and thus is the most important factor, responsible for the changes of the hydrograph.

In Fig. 7.5 scatter plots of the characteristics of the precipitation event triggering the floods
versus the flood duration are given. In the left panel, the duration of the precipitation event
plus the Tc versus the flood duration are plotted. For the plot, the events of each catchment
are divided in winter and summer, and the mean for each season and catchment are used. In
the right panel, analogous to the left panel, the temporal entropy of the precipitation versus
the flood duration are plotted.

As expected, the duration of the flood event relates to the duration of the precipitation
event, as the precipitation duration increases, so does the duration of flooding (see left panel
of Fig. 7.5). Additionally, it can be observed (see right panel of Fig. 7.5) that the summer
events have lower precipitation entropies as the winter events. This is explained by a more
frequent occurrence of convective precipitation in summer. Moreover, if precipitation is
peaky (small entropy, see Chap. 5) it is not a flood with a long lasting duration. This is
represented by the dots in the lower left corner of Fig. 7.5 (right panel).

Figure 7.5: Scatter plots of the duration of the precipitation event plus the Tc and the pre-
cipitation temporal entropy versus the duration of the flood event. The seasonal
means are given.

Given the relationship observed between the precipitation duration and the flood duration,
it is decided in this study to use a simple linear model to estimate the flood duration. In
the next chapter, where a validation of the flood estimation models is carried out, the linear
model for the estimation of the flood duration is going to be studied.
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Chapter 8

Validation of the Flood Estimation

In this chapter, a validation of the models previously proposed to estimate the floods in small
sized catchments in Northwestern Switzerland is carried out. For this purpose, a leave-one-
out cross-validation is chosen. For which, iteratively one catchment is treated as ungauged,
using its observations to test the models, whereas the remaining catchments are considered
for training the models. The relative error and the absolute relative error are chosen to quan-
tify the performance of the estimations. In this chapter only the 1POT sample is considered
for the validation, since these are the most extreme events. In the following sections the
results of the validation are presented for the estimation of the flood volume, the duration
and the hydrograph.

8.1 Flood Volume

As explained in Chap. 7 the runoff volume is estimated using the EPIC model. For simplicity
in this validation, only one � and one ↵ are considered, as the initial abstraction and the
recession of the API respectively. However, selecting unique values for each season might
result in better estimations. Further, the value of APIFC needs to be estimated for the
validation catchment, as it is one parameter of the model, which is used to transform the API
to soil moisture (see Chap. 7). In this chapter, the APIFC of the “ungauged” catchment is
estimated as the value of APIFC from the nearest neighbor catchment.

Table 8.1 presents some statistics of the relative error for the estimation of the flood vol-
ume. The median of the relative errors shows that there is a bias to underestimate the winter
events and to overestimate the summer events, which jointly results in an underestimation
bias. The median is preferred to avoid drawing conclusions influenced by few large errors.
If one looks at the flood events in detail, it is observed that the largest errors take place when
the observed precipitation sum is smaller. These events are more common in summer when
intense convective precipitation occurs. The spatial distribution of convective precipitation
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events has a large uncertainty in space, given that the spatial association is lower. As a result,
it is more probable to underestimate the rainfall of such events, if the precipitation of the
nearest neighbor station is considered as the event precipitation.

Table 8.1: Statistics of the relative error for the estimation of the flood volume. The rows of
25%, 50% and 75% give the values of the corresponding quantiles.

all winter summer

mean 0.18 -0.13 0.33
std 1.28 0.70 1.45

25% -0.57 -0.67 -0.48
50% -0.10 -0.31 0.00
75% 0.46 0.20 0.62

Additionally, in Fig. 8.1 the median absolute relative errors of each catchment are plotted
in space. The color bar is given to represent the error and the size of the markers indicates
the catchment sizes.

Figure 8.1: Median absolute relative error per catchment for the estimation of the flood vol-
ume. The color bar gives the values of the error and the size of the marker
indicates the catchment size.

It can be observed in Fig. 8.1 that catchments 43 and 44 (catchments located on the south
east of the study area, see Fig. 3.1) have the largest estimation errors. If one would exclude
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those two catchments, there would not be a regional bias, nor a bias to have better estimates
according to different catchments sizes. Looking at catchments 43 and 44 in detail, it is
observed that the large estimation errors are driven by summer events. As suggested before,
the occurrence of convective precipitation can result in the underestimation of precipitation
sums. Further studies are needed in which other precipitation estimations are considered.
Having better precipitation estimates, with less uncertainties, results in a better performance
of the estimation of the flood volume.

8.2 Flood Duration

As it was shown in Chap. 7.3, it is reasonable to assume a linear relationship between the
flood duration and the sum of the precipitation duration and the concentration time of the
catchments. For the estimation of the duration a linear regression model is trained, leaving
each time the validation catchment outside for finding the parameters of the linear fit.

Table 8.2 contains a summary of the leave-one-out cross-validation, i.e. statistics of the
relative error for the estimation of the flood duration. One can see that, both in summer
and in winter, a bias to overestimate the flood duration is present. The large mean estima-
tion errors are a result of some errors being much larger than the rest, i.e. larger means but
smaller medians. A visual assessment of the hydrograph separation for the flood events with
the larger estimation errors is carried out to identify possible error sources. It is observed
that the precipitation duration of these events is overestimated due to the method used for
the selection of the duration of the precipitation event. In this study, the start of the event is
determined as the point previous to the flood rise, which is preceded by at least two consec-
utive hours of no precipitation. This leads in some particular cases to the overestimation of
the precipitation duration, that is contributing to the analyzed peak.

Table 8.2: Statistics of the relative error for the estimation of the flood duration. The rows
of 25%, 50% and 75% give the values of the corresponding quantiles.

all winter summer

mean 1.52 1.72 1.42
std 8.53 6.97 9.22

25% -0.50 -0.46 -0.53
50% 0.11 0.15 0.11
75% 0.88 1.16 0.85

In Fig. 8.2 the median absolute relative errors are plotted in space for the estimations of
the flood duration. The color bar is given to represent the error and the size of the markers
indicates the catchment sizes. No regional bias can be recognized, as for the case of the
volume. However, the estimation of the flood duration in smaller catchments results in larger
errors than those obtained for bigger catchments, smaller markers are darker.
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Figure 8.2: Median absolute relative error per catchment for the estimation of the flood du-
ration. The color bar gives the values of the error and the size of the marker
indicates the catchment size.

The linear regression model estimates the expected flood duration; however, the real dura-
tion can be different, not all observations lie on the estimated line. More robust estimates can
be achieved by simulating the linear regression, accounting for the variability of the observa-
tions, and thus resulting in a stronger linear regression. The linear regression is simulated to
get an ensemble of possible flood durations. For this purpose, a number N of errors are sam-
pled random taking into account the quality of the linear regression trained, i.e. residuals.
The ensemble of errors when added to the estimated expected duration give the ensemble of
possible durations. The aggregation of this durations by the mean or the median results in
the new estimation of the duration. From now on, this last explained method will be called
“strong linear regression”, while the former one will be called “weak linear regression”.

Figure 8.3 gives the results of the strong linear regression obtained for different ensemble
sizes. In blue the median absolute relative errors of the flood duration estimation are given
for the results of the strong linear regression. As a reference the value obtained for the weak
linear regression is given by the orange dashed line. As it can be observed, the estimation
errors are lower for the case of the strong linear regression than the one of the weak linear
regression. At the beginning, for small ensemble sizes, a fast decay of the estimation error
is observed as the ensemble size increases until it reaches a point where no further gain in
performance is achieved no matter the size of the ensemble chosen.
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Figure 8.3: Median absolute relative error for the estimation of the flood durations with the
strong linear model for different ensemble sizes (blue). The dashed orange line
gives the median absolute error obtained for the weak linear regression

In Fig. 8.4 the distributions of the absolute relative error are presented as box plots for
the different catchments. The catchments are ordered by their area on the horizontal axis.
On the top and bottom panels, the results for the weak and the strong linear regressions are
plotted respectively. An overall improvement of the estimations is observed, especially for
those catchments that had lower variability of the estimation errors, i.e. shorter box plots.
However, for both linear regression methods large errors are observed. Nonetheless, in most
of the distributions a skewed behavior is observed, showing that if larger errors are to be
expected these do not occur with the same frequency as the smaller ones.

(a) Weak linear regression

(b) Strong linear regression

Figure 8.4: Absolute relative error distribution for the estimation of the flood duration. On
the horizontal axis the size of the catchments is give.
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As it can be observed from Fig. 8.3 and Fig. 8.4 better estimates are achieved when the
strong linear regression is considered. Nevertheless, there are still some large estimation
errors for the study catchments, specially expected for catchments ranging between 20 km2

and 40 km2. As already suggested, the largest estimation errors are explained by errors
of the precipitation event duration. However, if one removes those events, there are some
events that present large estimation errors. This indicates that the errors are not only a result
of precipitation duration, but also a result of the estimation model. The flood duration is
more complex as simply described by the precipitation duration and the concentration time
of the catchment. There are other processes affecting the duration of the floods. As shown
in Chap. 7 the duration of the flood can also be influenced by the temporal distribution of
the precipitation event, precipitation events with small entropies are triggering short duration
floods. A multiple linear regression model that also includes the precipitation entropy was
also studied. Nevertheless, it is not included here because no significant improvement on the
performance was achieved.

Moreover, there are uncertainties in the flood duration and precipitation duration, which
are explained in this paragraph. The duration of the flood event depends on the flood wave
separation method. It is worth considering other separation techniques to quantify the un-
certainty due to the separation method chosen. Regarding the precipitation duration, the
determination of the inter event time could be further studied, a sensibility analysis on the
influence of the selected threshold can give an insight on the expected changes. Additionally,
the observations themselves have uncertainties. As for the case of the precipitation volume,
these uncertainties can also vary according to the type of precipitation causing the floods.

8.3 Flood Hydrograph

In Chap. 6 a regionalization model for the estimation of the catchment reaction was pro-
posed. For the estimation of the Design Flood Hydrograph (DFH) the similarities of a Ran-
dom Forest (RF) model are used to select the flood donors. In this chapter, the similarity
matrix S̄ of a RF ensemble is used for the estimations. The threshold of similarity for select-
ing the donors is set to 0.06. The TSP distribution is used to represent the hydrograph shape.
The RF are trained as supervised having HPDF ,↵ , � as target variables. The performance
is evaluated using the errors of the peak (Qp) and the time to peak (tp) from the estimated
DFH. It is important to mention that the DFH is a dimensionless hydrograph. The real final
estimations of Qp and tp depend on the previous estimated volume and duration, which are
used to denormalize the DFH.

In Table 8.3 the statistics of the relative error for the estimation of the dimensionless Qp

and tp are given. The estimations errors of tp are larger than the ones obtained for Qp. It
can be observed that there is a slight bias to overestimate both Qp and tp, which is larger
for the case of the summer events. The mean and the medians are similar to those obtained
in Chap. 6 (see Fig. 6.10 and Tab. A.6). However, there is a larger spread of errors in the
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case of this validation, which means that there are more events that result in larger errors.
These differences can be explained by the randomness of the RF algorithm and the chosen
cross-validation strategy. In Chap. 6 the problem of the partially gauged catchment (k-folds
cross-validation) was assessed, rather than the case of the totally ungauged catchment, as is
the case here (leave-one-out cross-validation). The k-folds cross-validation method allows
for the training data set to contain events from a catchment that is also present in the train
set. Nevertheless, the same floods event is never present in the train and test data sets.

Table 8.3: Statistics of the relative error for the estimation of the dimensionless hydrograph.
The rows of 25%, 50% and 75% give the values of the corresponding quantiles.

Dimensionless Qp Dimensionless tp
all winter summer all winter summer

mean 0.05 0.03 0.06 0.25 0.14 0.30
std 0.25 0.23 0.25 0.74 0.56 0.80

25% -0.10 -0.12 -0.10 -0.20 -0.22 -0.19
50% 0.05 0.03 0.05 0.05 0.00 0.08
75% 0.19 0.16 0.20 0.45 0.30 0.52

In Fig. 8.5 the median absolute relative errors are plotted in space for the estimations of
Qp and tp (on the top and bottom panels respectively). The color bar is given to represent the
error and the size of the markers indicates the catchment sizes. For comparison reasons, the
same color bar limits are used for both maps.

As already mentioned, a better performance is achieved for the estimation of Qp than of tp,
noted by the darker colors of tp. It can be observed that the regional pattern of the obtained
errors for the estimation of Qp and tp do not match. This means that an improvement of the
estimation of Qp does not guarantee an improve of the estimation of tp. Additionally, there
is no regional bias or bias regarding the size of the catchments, for neither of the two cases,
Qp and tp.

Further, the performances of the estimations of Qp and tp are better than the one obtained
for the models of the flood volume and flood duration. Possibly, as it was observed in Chap.
6, because the hydrograph shape can be better explained by means of the temporal precipi-
tation entropy, which is more homogeneous in space (see Chap. 5). If observations are more
associated in space, the uncertainty of using the value of the precipitation station of the near-
est neighbor is reduced. On the other hand, the precipitation sum is more heterogeneous in
space, thus the observed precipitation on the neighbor station has larger uncertainties. This
results in larger errors for the estimation of the volume.
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(a) Qp

(b) tp

Figure 8.5: Median absolute relative error per catchment for the estimation of the dimen-
sionless Qp and tp. The color bar gives the values of the error and the size of the
marker indicates the catchment size.
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8.4 Denormalized Hydrograph

As suggested before, with the estimated duration and flood volume, it is possible to de-
normalize the dimensionless DFH (see Eq. 4.3). The denormalized hydrograph gives the
expected cumulative error if floods were to be estimated using the three models explained
before: the EPIC model for the estimation of the flood volume, the strong linear regression
for the estimation of the duration and the similarity of the RF ensemble for the estimation of
the hydrograph shape. Table 8.4 presents statistics of the relative error for the estimation of
the denormalized DFH, specifically the estimation of the denormalized Qp and tp.

Table 8.4: Statistics of the relative error for the estimation of the dimensionless hydrograph.
The rows of 25%, 50% and 75% give the values of the corresponding quantiles.

Denormalized Qp Denormalized tp

all winter summer all winter summer

mean 0.23 -0.21 0.44 0.85 0.54 0.99
std 6.59 0.66 7.94 1.79 1.07 2.03

25% -0.69 -0.71 -0.64 -0.10 -0.15 -0.07
50% -0.26 -0.41 -0.19 0.29 0.17 0.35
75% 0.28 0.11 0.42 1.16 1.06 1.27

It can be observed in Tab. 8.4 that after the DFH is denormalized, a bias to underestimate
Qp and overestimate tp is present. The underestimation of the flood volume and overestima-
tion of the flood duration, observed in the previous validations, results in an underestimation
of the denormalized Qp, given that Qp is directly proportional to the volume and inversely
proportional to the duration (see Eq. 4.3). The Spearman’s rank correlation coefficient are
calculated, to have an idea of which of the errors has a larger influence on the estimation
of Qp. The Spearman’s coefficient is chosen to minimize the effect of single large errors.
The Spearman’s rank correlation coefficient between the relative error of the denormalized
Qp and the relative error of the volume, the duration and the dimensionless Qp are 0.77,
-0.11 and 0.16 respectively. This indicates that the errors in the volume estimation are more
correlated to the errors of the estimation of the denormalized Qp. The denormalized tp is
the multiplication of the estimated flood duration and the dimensionless tp. The Spearman’s
rank correlation coefficient between the relative error of the denormalized tp and the rela-
tive error of the duration and the dimensionless tp are 0.30 and 0.52 respectively. The small
correlations could be explained by the fact that for some events one of the variables is over-
estimated and the other one is underestimated, which results in a compensation of the errors
of the denormalized tp.

Additionally, in Fig. 8.6 the median absolute relative errors are plotted in space for the
estimations of the denormalized Qp and tp (on the top and bottom panels respectively). The
color bar is given to represent the error and the size of the markers indicates the catchment
sizes. For comparison reasons, the same color bar limits are used for both maps.
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8.4 Denormalized Hydrograph

(a) Qp

(b) tp

Figure 8.6: Median absolute relative error per catchment for the estimation of the denormal-
ized Qp and tp. The color bar gives the values of the error and the size of the
marker indicates the catchment size.
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8. Validation of the Flood Estimation

It can be observed on the top panel that there is no regional bias present on the estimation
of the denormalized Qp and there is no pattern recognized for different catchment sizes.
Nonetheless, on the bottom panel the four catchments located on the east of the study area
(catchments 42, 43, 44 and 45, see Fig. 3.1) have darker red colors, which indicates larger
estimation errors of tp for that region. This regional pattern is, however, not observed as
strong in the errors of the duration and the dimensionless tp separately (see Fig. 8.2 and
bottom panel of Fig. 8.5), the joint result of the two models results in a distinct regional
pattern. Also, as it was the case of the duration, the tp gives better estimates on bigger
catchments.

To sum up there are no clear spatial patterns observed for the estimation errors, apart from
some exceptions, but those are regions not larger than a couple of catchments. However,
for the case of the duration and the denormalized tp, it is observed that bigger catchments
achieve better estimates. Also, it can be pointed out that some of the variables have lower
errors depending on the season the flood event occurred. For example, the denormalized Qp

have smaller bias in summer than in winter. Yet, for the denormalized tp it is the other way
around, the summer events have larger bias than the winter events.

Overall, it is observed that the smaller errors are achieved for the estimation of the di-
mensionless DFH. The obtained errors can be considered acceptable if one considers that
hydrological data are subject to uncertainties (Blöschl et al., 2013; Sauer and Meyer). Par-
ticularly, in the case of extreme discharges, where the rating curves are extrapolated beyond
their calibrated discharge stages (Coxon et al., 2015). As a general conclusion the methods
can estimate relatively well how the flood will be develop (dimensionless DFH) but improve-
ment is needed for the estimation of the magnitude of the flood.

130



Chapter 9

Conclusion and Outlook

The objective of this study, to develop an estimation framework taking advantage of pre-
cipitation series with a high temporal resolution, is achieved. Including more precipitation
observations and more catchments can improve the estimation further. The results obtained
are plausible and produce satisfactory estimation errors, given the complexity of the floods
space.

An analysis of the meteorological event triggering the floods showed that the precipitation
temporal entropy is a better indicator of hydrograph shape than the duration or the intensity.
Further it was observed, through the analysis of the association of precipitation triples, that
floods are more likely triggered by precipitation events of total coverage exceeding the 0.9
quantile. However, as the quantile increases, the probability of observing joint occurrence in
space decreases. As the number of POT increases, i.e. more floods that are less extreme are
considered, the probability of observing a total event decreases and flood events are more
likely to be triggered either by a local precipitation event or by a partial precipitation event.
Given that triples showed a greater geographical dependency at the occurrence of extremer
flood events, one can conclude that the floods sample selection is critical for assessing the
spatial dependence of the precipitation generating the runoff. These findings reinforce the
need of models that can better represent the rainfall field. The dependence structure of pre-
cipitation is more complex than the one described by a multivariate normal, models using
a multivariate copula showed better representation (Bárdossy and Pegram, 2009). However,
the spatial association of a precipitation event is still one of the challenges in hydrology.
The temporal distribution of precipitation Ht within the flood day showed that homogeneous
spatial Ht takes place. However, this does not mean that the temporal distribution must be
uniform; rather, it varies owing to the many flood processes. Additionally, it was found
that a precipitation model that does not represent the temporal and spatial distribution of the
subsamples of meteorological events triggering the floods will result in an added uncertainty.

Further, it was observed that at the occurrence of the floods, the soil moisture does not need
to be an annual extreme, rather a value close to the monthly maximum API is sufficient to
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9. Conclusion and Outlook

generate a 1POT flood. This was recognized by the fact that the empirical distribution func-
tion (EDF) of the API triggering the floods is closer to the EDF of the monthly maximum
API than to any other of the EDFs tested.

The meteorological input responsible for the different flood mechanisms is normally not
considered in the estimation of Design Flood Hydrograph (DFH). Usually, catchment and
climate characteristics are used, to transfer the flood estimates from gauged to ungauged
catchments. In this study, the similarity of the flood space is determined using a Random
Forest (RF) algorithm, which takes as predictors not only catchment characteristics and cli-
mate descriptors, but also event-based parameters, such as temporal precipitation entropy,
duration and intensity, antecedent moisture, etc., that are responsible for the occurrence of
the floods. From all the predictors those related to the precipitation event triggering the floods
were the ones that showed the greatest significance in the supervised RF. Specifically the en-
tropy of the precipitation event, which describes the temporal variability of the precipitation
event, showed to be important for recognizing different hydrograph responses. Precipitation
is known to be the main driver of the reactions of the catchments, yet it is frequently left out
from regionalization approaches.

A supervised regionalization approach proved to generate better estimates as an unsuper-
vised approach. The added information by means of a supervised RF had advantages, espe-
cially for the estimation of the occurrence of the hydrograph peak (tp), a parameter strongly
associated with the hydrograph shape. The estimation errors of the hydrograph peak (Qp)
were comparable to those obtained with the unsupervised RF, although slightly smaller if a
supervised RF is considered. Comparable estimation errors were observed when different
target variables were selected to train the RF. This is not a surprise, given that all of the tar-
get variables used, describe the hydrograph to a given extent. This represents the equifinality
problem, often encountered in hydrology: different sets of parameters or model structures
can generate the same quality of estimates, given that the models are an approximation of
the reality (Beven, 1993).

As mentioned in Chap. 6 it is possible to assess which predictors are the most important
for the model and take a look at the similarities of the observations being close together in the
RF space. This enables to determine if the found relationships agree with the understanding
of the physical hydrological processes, making the model more robust. For example, it
was found that rapid hydrographs were mainly a result of intense and short precipitation,
probably a flash-flood as a result of convective precipitation. The selected approach of a
similarity matrix has the benefit that it allows the superposition of flood mechanisms, as
opposed to the approach of having a fixed number of clusters, which represents the flood
mechanisms.

The estimations of the RF, for the case of using the relative volume (V/A) as the target
variable, had a R2 of around 0.7 (see Fig. 6.3, Fig. 6.4 and Fig. 6.5). This value represents a
good model performance, indicating that a RF would be sufficient to estimate the flood vol-
ume and no rainfall-runoff model has to be considered. However, the RF cannot extrapolate
outside the space of the observations, meaning that predicting a flood volume with a return
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period longer than the records is not possible.

For the estimation of the flood volume, the EPIC model was studied. The floods volume is
crucial to denormalize the DFH obtained from the RF regionalization and estimate the peak
discharge. Through an analysis of the model parameters, it was possible to identify those that
minimize the error in the flood volume estimation. An important finding for the study area
was that smaller values of the regional constant � can better represent the runoff generation
of the studied catchments. These findings agree with studies of other European catchments
(Maniak, 2016; Merz and Blöschl, 2009). It was recognized that the long memory of the
catchments has more information to estimate the floods, i.e. the antecedent precipitation
index (API) calculated with larger recession ↵ had lower estimation errors. Further, it was
showed that the duration of the precipitation event relates strongly to the flood duration and it
was, therefore, considered that the duration of the flood event can be estimated with a simple
linear model.

A leave-one-out cross-validation was carried out to evaluate the performance of the models
investigated here for the estimation of the floods. On the one hand, it showed that little bias
is present in the results. Estimates showed no regions with outstanding performance, nor was
the case for floods events taking place in winter or in summer. However, it was observed that
for the estimation of the flood duration and the denormalized tp, better results were achieved
for larger catchments than for smaller ones. The best performance was achieved for the
estimation of the dimensionless flood hydrograph. Nonetheless, when the hydrograph is
denormalized, the errors in the resulting Qp and tp become larger. This due to the estimation
errors of the flood volume and the flood duration.

There is room for improvement of the regionalization model and topics that can be further
investigated. For example, to incorporate the uncertainties of the flood mechanisms de-
scribed by the nearest precipitation station. If the station is further away from the catchment,
it is less representative or if the catchment is very large, it might be representative merely
for a given area but not for the whole. This uncertainty could be added to the RF. One way
to include this uncertainty would be to consider a weight to determine the observations that
should be included more often, when randomly selecting the observations to train each tree.

In Chap. 4 only one hydrograph separation technique was introduced. However, there are
other approaches in the field of hydrology, that can be grouped in graphical methods and dig-
ital filters (Blume et al., 2007). To test the model with other hydrograph separation methods
could yield different results, impacting the hydrograph shape, and thus the observed flood
volume. Comparing the results by changing the floods database to match other hydrograph
separation techniques allows to quantify the introduced uncertainties, due to the hydrograph
separation approach used. Another possibility to assess the uncertainty introduced by thy
hydrograph separation technique would be to randomly alter the parameters used in this
study for the separation. This would allow to analyze, if the influence on a more inclusive or
exclusive selection of the start and end of the hydrograph, improves or worsens the estimates.

In this study, the use of the EPIC rainfall-runoff model was proposed for the estimation
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9. Conclusion and Outlook

of the floods volume. However, there is a possibility to use a different model. It was chosen
here for its simplicity. Given that no soil moisture information was available, the API was
used for describing the moisture conditions before the flood. Some adjustments had to be
made to transfer the information obtained with the API to a representative soil moisture. It
was proven that a seasonal modification of the soil moisture was needed. This is reasonable,
knowing that in summer the potential evapotranspiration is larger, which makes a given value
of API to have a different corresponding soil moisture condition in winter than in summer.

Although not investigated here, the model allows for the evaluation of climate scenarios.
Adjusting the meteorological forcing to account for future climate scenarios, as investigated
by Köplin et al. (2014) the inter-annual variability of floods in Switzerland is expected to
change with climate projections. Even some synthetic generated hydrographs could be in-
cluded in the RF to account for expected hydrograph changes. This allows to understand
whether it is to be expected that some types of reactions are more common than others.

The measure of the spatial association of precipitation at the occurrence of a flood, studied
in Chap. 5, was not considered as a predictor for the RF. A new tool was introduced, which
quantifies the uncertainty derived by the use of precipitation observations to represent the
temporal and spatial distribution of the sub sample of meteorological events triggering the
flood. For this purpose, the Kullback-Leibler divergence was used, to compare the probabili-
ties of precipitations triples jointly exceeding a threshold in or in the absence of a flood. The
advantages of including the spatial variation of the meteorological event in the RF should be
studied further as it can enhance the estimations by characterizing the distribution of precip-
itation in space. This allows to differentiate between those events less associated in space, as
for example convective precipitation, and those more associated, as those caused by global
atmospheric mechanisms.
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Gaál, L., Szolgay, J., Kohnová, S., Hlavčová, K., Parajka, J., Viglione, A., Merz, R.,
and Blöschl, G.: Dependence between flood peaks and volumes: A case study on
climate and hydrological controls, Hydrological Sciences Journal, 60, 968–984, doi:
10.1080/02626667.2014.951361, 2015.

Gibbons, J. D. and Chakraborti, S.: Nonparametric statistical inference, vol. 168 of Statistics
: textbooks and monographs, Marcel Dekker, New York, 4th ed., rev. and expanded / jean
dickinson gibbons, subhabrata chakraborti edn., 2003.

137

https://ebookcentral.proquest.com/lib/gbv/detail.action?docID=907179
https://ebookcentral.proquest.com/lib/gbv/detail.action?docID=907179


Bibliography

Gottschalk, L. and Weingartner, R.: Distribution of peak flow derived from a distribution of
rainfall volume and runoff coefficient, and a unit hydrograph, Journal of Hydrology, 208,
148–162, doi:10.1016/S0022-1694(98)00152-8, 1998.

Gregorutti, B., Michel, B., and Saint-Pierre, P.: Correlation and variable importance in ran-
dom forests, Statistics and Computing, 27, 659–678, doi:10.1007/s11222-016-9646-1,
2017.

Grimaldi, S., Petroselli, A., and Serinaldi, F.: A continuous simulation model for design-
hydrograph estimation in small and ungauged watersheds, Hydrological Sciences Journal,
57, 1035–1051, doi:10.1080/02626667.2012.702214, 2012.

Hastie, T., Tibshirani, R., and Friedman, J. H.: The elements of statistical learning: Data
mining, inference, and prediction, Springer Series in Statistics, Springer, New York, NY,
second edition, corrected at 12th printing 2017 edn., 2017.

He, Y., Bárdossy, A., and Zehe, E.: A review of regionalisation for continuous stream-
flow simulation, Hydrology and Earth System Sciences, 15, 3539–3553, doi:10.5194/
hess-15-3539-2011, 2011.

Hilker, N., Badoux, A., and Hegg, C.: The Swiss flood and landslide damage database
1972–2007, Natural Hazards and Earth System Science, 9, 913–925, doi:10.5194/
nhess-9-913-2009, 2009.

Horton, R. E.: Drainage-basin characteristics, Transactions, American Geophysical Union,
13, 350, doi:10.1029/TR013i001p00350, 1932.

Horton, R. E.: Erosional development of streams and their drainage basins; hydrophysical
approach to quantitative morphology, Geological Society of America Bulletin, 56, 275,
doi:10.1130/0016-7606(1945)56[275:edosat]2.0.co;2, 1945.

Janitza, S. and Hornung, R.: On the overestimation of random forest’s out-of-bag error, PloS
one, 13, e0201 904, doi:10.1371/journal.pone.0201904, 2018.

Kjeldsen, T. R.: The revitalised FSR/FEH rainfall-runoff method: Flood Estimation Hand-
book Supplementary Report No.1, Supplementary Report, Centre for Ecology and Hy-
drology, Wallingford, 2007.

Kjeldsen, T. R., Jones, D. A., and Bayliss, A. C.: Improving the FEH statistical procedures
for flood frequency estimation, vol. SC050050 of Science report, Environment Agency,
Bristol, 2008.

Klemeš, V.: Tall tales about tails of hydrological distributions. I, Journal of Hydrologic
Engineering, 5, 227–231, doi:10.1061/(ASCE)1084-0699(2000)5:3(227), 2000.

Köplin, N., Schädler, B., Viviroli, D., and Weingartner, R.: Seasonality and magnitude of
floods in Switzerland under future climate change, Hydrological Processes, 28, 2567–
2578, doi:10.1002/hyp.9757, 2014.

138



Bibliography

Kottegoda, N. T. and Rosso, R.: Applied statistics for civil and environmental engineers,
Blackwell Publishing, Oxford, 2nd ed. edn., 2008.

Kullback, S. and Leibler, R. A.: On Information and Sufficiency, The Annals of Mathemati-
cal Statistics, 22, 79–86, doi:10.1214/aoms/1177729694, 1951.

Kvam, P. H. and Vidakovic, B.: Nonparametric statistics with applications to science and en-
gineering, Wiley series in probability and statistics, Wiley and Chichester : John Wiley
[distributor], Hoboken, N.J., http://www.loc.gov/catdir/enhancements/
fy0739/2007002534-b.html, 2007.

Lang, M., Ouarda, T., and Bobée, B.: Towards operational guidelines for over-threshold
modeling, Journal of Hydrology, 225, 103–117, doi:10.1016/S0022-1694(99)00167-5,
1999.

Lebrenz, H. and Bárdossy, A.: Estimation of the Variogram Using Kendall’s Tau for a Robust
Geostatistical Interpolation, Journal of Hydrologic Engineering, 22, 04017 038, doi:10.
1061/(ASCE)HE.1943-5584.0001568, 2017.

Ledingham, J., Archer, D., Lewis, E., Fowler, H., and Kilsby, C.: Contrasting seasonality
of storm rainfall and flood runoff in the UK and some implications for rainfall-runoff
methods of flood estimation, Hydrology Research, 50, 1309–1323, doi:10.2166/nh.2019.
040, 2019.

Lin, J.: Divergence measures based on the Shannon entropy, IEEE Transactions on Informa-
tion Theory, 37, 145–151, doi:10.1109/18.61115, 1991.

MacDonald, D. E. and Fraser, R. J.: An improved method for estimating the median an-
nual flood for small ungauged catchments in the United Kingdom, Journal of Flood Risk
Management, 7, 251–264, doi:10.1111/jfr3.12047, 2014.

Maniak, U.: Hydrologie und Wasserwirtschaft, Springer Berlin Heidelberg, Berlin, Heidel-
berg, doi:10.1007/978-3-662-49087-7, 2016.

Martínez-Goytre, J., House, P. K., and Baker, V. R.: Spatial variability of small-basin pale-
oflood magnitudes for a southeastern Arizona mountain range, Water Resources Research,
30, 1491–1501, doi:10.1029/94wr00065, 1994.

Merz, R. and Blöschl, G.: A process typology of regional floods, Water Resources Research,
39, doi:10.1029/2002WR001952, 2003.

Merz, R. and Blöschl, G.: Regionalisation of catchment model parameters, Journal of Hy-
drology, 287, 95–123, doi:10.1016/j.jhydrol.2003.09.028, 2004.

Merz, R. and Blöschl, G.: Flood frequency regionalisation—spatial proximity vs. catchment
attributes, Journal of Hydrology, 302, 283–306, doi:10.1016/j.jhydrol.2004.07.018, 2005.

139

http://www.loc.gov/catdir/enhancements/fy0739/2007002534-b.html
http://www.loc.gov/catdir/enhancements/fy0739/2007002534-b.html


Bibliography

Merz, R. and Blöschl, G.: A regional analysis of event runoff coefficients with respect to
climate and catchment characteristics in Austria, Water Resources Research, 45, doi:10.
1029/2008WR007163, 2009.

Mishra, A. K., Özger, M., and Singh, V. P.: An entropy-based investigation into the variabil-
ity of precipitation, Journal of Hydrology, 370, 139–154, doi:10.1016/j.jhydrol.2009.03.
006, 2009.

Nadarajah, S.: Probability models for unit hydrograph derivation, Journal of Hydrology, 344,
185–189, doi:10.1016/j.jhydrol.2007.07.004, 2007.

Pallard, B., Castellarin, A., and Montanari, A.: A look at the links between drainage density
and flood statistics, Hydrology and Earth System Sciences, 13, 1019–1029, doi:10.5194/
hess-13-1019-2009, 2009.

Patil, S. R.: Regionalization of an Event Based Nash Cascade Model for Flood Predictions
in Ungauged Basins, Disertation, Universität Stuttgart, Stuttgart, 2008.

Probst, P. and Boulesteix, A.-L.: To tune or not to tune the number of trees in random forest?,
Journal of Machine Learning Research, 18, 1–18, 2018.

Rao, A. R. and Hamed, K. H.: Flood frequency analysis, New directions in civil engineering,
CRC Press, USA, 2000.

Sauer, V. B. and Meyer, R. W.: Determination of error in individual discharge measuremnts,
Open-File Report 92-144, U.S. GEOLOGICAL SURVEY, Norcross, Georgia.

Scherrer, S., Naef, F., Faeh, A. O., and Cordery, I.: Formation of runoff at the hillslope
scale during intense precipitation, Hydrology and Earth System Sciences, 11, 907–922,
doi:10.5194/hess-11-907-2007, 2007.

Segal, M. and Xiao, Y.: Multivariate random forests, WIREs Data Mining and Knowledge
Discovery, 1, 80–87, doi:10.1002/widm.12, 2011.

Serinaldi, F. and Grimaldi, S.: Synthetic Design Hydrographs Based on Distribution
Functions with Finite Support, Journal of Hydrologic Engineering, 16, 434–446, doi:
10.1061/(ASCE)HE.1943-5584.0000339, 2011.

Shannon, C. E.: A Mathematical Theory of Communication, Bell System Technical Journal,
27, 623–656, doi:10.1002/j.1538-7305.1948.tb00917.x, 1948.

Shaperly, A. N. and Williams, J. R. E.: EPIC — Erosion/productivity impact calculator: 1:
model documentation, U.S. Department of Agriculture Technical Bulletin 1768, Washing-
ton, D.C., 1990.

Shi, T. and Horvath, S.: Unsupervised Learning With Random Forest Predictors, Journal
of Computational and Graphical Statistics, 15, 118–138, doi:10.1198/106186006X94072,
2012.

140



Bibliography

Shu, C. and Burn, D. H.: Homogeneous pooling group delineation for flood frequency anal-
ysis using a fuzzy expert system with genetic enhancement, Journal of Hydrology, 291,
132–149, doi:10.1016/j.jhydrol.2003.12.011, 2004.

Shu, C. and Ouarda, T. B. M. J.: Flood frequency analysis at ungauged sites using artificial
neural networks in canonical correlation analysis physiographic space, Water Resources
Research, 43, 903, doi:10.1029/2006WR005142, 2007.

Sikorska, A. E., Viviroli, D., and Seibert, J.: Flood–type classification in mountainous catch-
ments using crisp and fuzzy decision trees, Water Resources Research, 51, 7959–7976,
doi:10.1002/2015WR017326, 2015.

Singh, V. P.: Entropy theory and its application in environmental and water engineering,
Wiley-Blackwell, New York, 2013.

Singh, V. P. and Mishra, S. K.: Soil Conservation Service Curve Number (SCS-CN) Method-
ology, vol. 42, Springer Netherlands, Dordrecht, doi:10.1007/978-94-017-0147-1, 2003.

Sinreich, M., Kozel, R., Lützenkirchen, V., Matousek, F., Jeannin, P.-Y., Loew, S., and Stauf-
fer, F.: Grundwasserressourcen der Schweiz - Abschätzung von Kennwerten, AQUA &
GAS, 9, 16–28, 2012.

Sivapalan, M.: Prediction in ungauged basins: a grand challenge for theoretical hydrology,
Hydrological Processes, 17, 3163–3170, doi:10.1002/hyp.5155, 2003.

Sivapalan, M., Blöschl, G., Merz, R., and Gutknecht, D.: Linking flood frequency to long-
term water balance: Incorporating effects of seasonality, Water Resources Research, 41,
doi:10.1029/2004WR003439, 2005.

Staudinger, M., Stahl, K., and Seibert, J.: A drought index accounting for snow, Water
Resources Research, 50, 7861–7872, doi:10.1002/2013WR015143, 2014.

Tarasova, L., Merz, R., Kiss, A., Basso, S., Blöschl, G., Merz, B., Viglione, A., Plötner,
S., Guse, B., Schumann, A., Fischer, S., Ahrens, B., Anwar, F., Bárdossy, A., Bühler, P.,
Haberlandt, U., Kreibich, H., Krug, A., Lun, D., Müller-Thomy, H., Pidoto, R., Primo, C.,
Seidel, J., Vorogushyn, S., and Wietzke, L.: Causative classification of river flood events,
WIREs. Water, 6, e1353, doi:10.1002/wat2.1353, 2019.

Viviroli, D., Mittelbach, H., Gurtz, J., and Weingartner, R.: Continuous simulation for
flood estimation in ungauged mesoscale catchments of Switzerland – Part II: Parameter
regionalisation and flood estimation results, Journal of Hydrology, 377, 208–225, doi:
10.1016/j.jhydrol.2009.08.022, 2009a.

Viviroli, D., Zappa, M., Gurtz, J., and Weingartner, R.: An introduction to the hydrological
modelling system PREVAH and its pre- and post-processing-tools, Environmental Mod-
elling & Software, 24, 1209–1222, doi:10.1016/j.envsoft.2009.04.001, 2009b.

141



Bibliography

Viviroli, D., Zappa, M., Schwanbeck, J., Gurtz, J., and Weingartner, R.: Continuous sim-
ulation for flood estimation in ungauged mesoscale catchments of Switzerland – Part I:
Modelling framework and calibration results, Journal of Hydrology, 377, 191–207, doi:
10.1016/j.jhydrol.2009.08.023, 2009c.

Wagener, T., Wheater, H., and Gupta, H. V.: Rainfall-runoff modelling in gauged and un-
gauged catchments, Imperial College Press, London, 2004.

Weijs, S. V., Schoups, G., and van de Giesen, N.: Why hydrological predictions should
be evaluated using information theory, Hydrology and Earth System Sciences, 14, 2545–
2558, doi:10.5194/hess-14-2545-2010, 2010.

Weingartner, R., Barben, M., and Spreafico, M.: Floods in mountain areas—an overview
based on examples from Switzerland, Journal of Hydrology, 282, 10–24, doi:10.1016/
S0022-1694(03)00249-X, 2003.

Winter, B., Schneeberger, K., Dung, N. V., Huttenlau, M., Achleitner, S., Stötter, J., Merz,
B., and Vorogushyn, S.: A continuous modelling approach for design flood estimation on
sub-daily time scale, Hydrological Sciences Journal, 64, 539–554, doi:10.1080/02626667.
2019.1593419, 2019.

Xiao, Y. and Segal, M. R.: Identification of yeast transcriptional regulation networks us-
ing multivariate random forests, PLoS computational biology, 5, e1000 414, doi:10.1371/
journal.pcbi.1000414, 2009.

Yue, S., Ouarda, T. B. M. J., Bobée, B., Legendre, P., and Bruneau, P.: Approach for De-
scribing Statistical Properties of Flood Hydrograph, Journal of Hydrologic Engineering,
7, 147–153, doi:10.1061/(ASCE)1084-0699(2002)7:2(147), 2002.

Zehe, E., Becker, R., Bárdossy, A., and Plate, E.: Uncertainty of simulated catchment runoff
response in the presence of threshold processes: Role of initial soil moisture and precipi-
tation, Journal of Hydrology, 315, 183–202, doi:10.1016/j.jhydrol.2005.03.038, 2005.

142



A. Appendix

Table A.1: Overview of data

Measurement Data Owners Resolution

Discharge

Federal Office for the Environment (FOEN) 10 min
Amt für Umwelt, Kanton Solothurn 10 min, 15 min
Departement Bau, Verkehr und Umwelt, Kanton Aargau 10 min, 15 min
Amt für Umweltschutz und Energie (AUE), Kanton Basel
landschaft

10 min

Bau- und Verkehrsdirektion, Kanton Bern 10 min

Precipitation

Meteoschweiz 10 min
Amt für Umwelt, Kanton Solothurn 10 min
Departement Bau, Verkehr und Umwelt, Kanton Aargau 10 min
Universität Basel 10 min
Basellandschaftliche Gebäudeversicherung 5 min
Meteocentrale 10 min
Meteofrance 6 min

Temperature Meteoschweiz 1 day
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A. Appendix

Table A.3: Seasonal mean of the characteristics of the meteorological event triggering the
1POT events. The columns w and s correspond to winter and summer respec-
tively.

API30 ↵ = 0.9 HR I D10min,flood Dh,flood P sum  Zflood

[mm] [-] [mm] [h] [h] [mm] [-] [-]

Id w s w s w s w s w s w s w s w s
1 27.2 49.5 0.80 0.68 2.1 7.3 13.5 15.3 21.0 18.5 25.9 68.2 2.76 0.45 0.06 0.14
2 36.9 44.8 0.82 0.68 1.8 3.8 23.2 18.1 32.4 24.6 49.7 65.1 0.12 0.14 -0.06 -0.14
3 42.2 37.9 0.82 0.68 1.6 3.4 24.9 21.2 35.5 29.2 55.8 65.7 0.16 0.19 0.90 -0.75
4 34.7 0.76 4.1 16.4 19.7 54.6 0.07 -0.05
5 45.7 30.6 0.87 0.71 1.5 4.3 25.2 18.2 35.0 22.3 51.4 67.1 0.22 0.21 0.81 0.02
6 33.4 0.71 2.0 21.6 29.9 53.9 0.42 0.08
7 31.4 24.1 0.78 0.76 3.6 3.8 26.3 9.2 31.0 11.3 51.5 46.6 0.14 0.15 -1.09 0.56
8 29.1 34.9 0.79 0.71 1.6 3.2 20.2 19.3 29.5 23.6 42.8 55.2 0.21 0.18 1.10 0.12
9 9.5 35.6 0.94 0.77 1.2 2.4 27.3 21.0 36.0 27.6 48.2 56.0 0.20 0.35 -0.14 0.70

10 9.5 36.8 0.95 0.73 1.5 2.2 28.2 20.0 37.0 28.1 54.6 57.6 0.38 0.44 -0.16 0.00
11 17.9 42.6 0.64 0.80 5.8 3.3 10.6 16.3 14.3 19.3 41.4 52.9 0.16 0.19 -0.85 -0.13
12 43.8 38.0 0.82 0.74 2.1 2.1 14.0 20.5 20.6 27.8 39.7 54.0 0.21 0.17 0.93 0.37
13 34.1 37.0 0.77 0.73 1.7 2.5 20.4 19.5 28.3 24.0 44.1 46.2 0.24 0.16 0.39 0.16
14 32.7 39.7 0.80 0.66 2.5 3.3 22.3 20.2 28.3 27.4 44.2 47.8 0.18 0.37 -0.10 0.34
15 22.6 47.0 0.80 0.77 3.1 3.0 17.3 15.5 24.5 20.0 46.8 53.6 0.14 0.20 0.23 -0.10
16 42.3 30.9 0.75 0.78 1.7 2.0 18.1 26.3 24.6 32.2 43.0 60.8 0.30 0.30 0.65 0.01
17 39.0 34.3 0.75 0.71 1.7 2.5 14.2 21.6 18.8 27.6 27.1 56.1 0.46 0.28 0.43 0.13
18 22.7 39.2 0.79 0.72 2.4 2.3 19.2 13.1 26.7 18.7 42.1 39.7 0.19 0.23 0.44 0.57
19 49.9 37.6 0.81 0.73 1.7 2.6 15.4 22.2 22.5 29.3 31.7 65.6 0.15 0.14 0.49 -0.52
20 40.1 32.7 0.80 0.79 1.7 2.6 12.9 19.3 17.4 23.8 27.2 49.2 0.31 0.21 0.64 -0.16
21 28.0 35.0 0.78 0.71 1.8 3.8 17.0 19.6 25.1 25.8 38.1 58.5 0.31 0.20 0.38 -0.01
22 26.0 34.3 0.83 0.53 2.4 3.3 15.5 3.6 19.3 6.4 33.8 19.5 0.11 0.26 0.51 0.91
23 35.8 42.6 0.80 0.66 1.8 2.7 17.2 13.0 29.5 19.1 33.7 53.5 0.12 0.09 0.54 -0.74
24 22.4 34.9 0.84 0.70 2.0 3.9 20.0 16.3 28.6 21.3 46.8 53.7 0.47 0.20 0.60 -0.08
25 26.8 33.5 0.83 0.74 2.1 4.1 15.0 16.4 20.8 20.9 36.5 51.4 0.30 0.23 0.69 0.16
26 32.7 35.3 0.78 0.75 1.8 3.7 17.0 21.9 24.1 28.0 36.9 59.5 0.22 0.16 0.74 -0.05
27 12.5 27.3 0.94 0.77 2.2 3.1 12.9 14.2 18.0 18.1 28.5 36.0 0.11 0.09 0.90 0.56
28 39.7 35.2 0.77 0.58 3.2 2.9 6.8 6.3 8.0 9.7 22.2 22.9 0.14 0.15 0.05 0.54
29 28.4 34.0 0.75 0.67 1.6 2.9 20.4 23.7 31.5 32.5 44.1 67.9 0.33 0.25 0.33 -0.14
30 51.0 34.7 0.82 0.84 2.5 2.1 15.8 26.4 23.2 31.4 37.5 63.6 0.45 0.30 0.56 0.15
31 31.2 44.4 0.79 0.77 2.3 3.5 14.0 21.1 19.1 27.0 36.9 56.7 0.28 0.18 0.76 -0.61
32 33.2 35.0 0.81 0.70 2.1 3.8 14.6 13.0 19.1 17.0 35.0 45.3 0.24 0.20 0.37 0.08
33 27.4 45.5 0.81 0.68 1.9 3.6 15.5 16.7 22.4 22.2 35.3 48.6 0.29 0.25 0.69 -0.25
34 31.8 31.9 0.68 0.78 1.3 2.7 14.5 29.8 25.4 39.6 28.6 70.1 0.67 0.31 1.57 0.02
35 32.7 25.6 0.80 0.88 1.2 3.1 7.3 20.3 10.5 23.8 13.4 55.2 0.66 0.20 1.99 -0.59
36 30.8 0.67 4.5 5.5 8.5 35.7 0.26 0.61
37 43.3 29.7 0.69 0.85 2.2 1.6 11.9 32.8 17.5 43.0 34.1 68.2 0.27 0.17 0.84 0.33
38 37.5 36.0 0.83 0.88 2.5 2.1 14.2 17.8 20.0 21.0 39.9 42.1 0.16 0.14 0.27 -0.17
39 49.5 32.0 0.86 0.62 2.7 5.1 9.4 7.5 13.0 10.2 35.0 48.3 0.18 0.15 0.53 0.34
40 36.9 31.7 0.82 0.71 2.1 3.3 12.7 16.3 16.5 20.3 30.6 43.0 0.16 0.17 0.95 0.12
41 32.8 39.3 0.79 0.77 1.4 2.0 12.6 23.2 19.5 30.7 25.9 53.9 0.38 0.28 0.55 -0.20
42 52.7 44.4 0.80 0.77 2.4 3.1 10.6 17.6 18.0 22.8 35.4 55.2 0.25 0.10 0.32 -0.51
43 49.9 30.4 0.76 0.77 4.2 4.3 4.5 13.3 6.0 17.0 25.1 53.5 0.18 0.06 0.36 -0.29
44 50.7 37.2 0.79 0.75 3.3 3.4 8.8 12.9 11.5 16.3 37.9 46.0 0.10 0.06 0.54 -0.48
45 49.9 34.2 0.76 0.81 4.2 2.7 4.5 11.1 6.0 15.1 25.1 35.3 0.26 0.28 -0.19 -0.42
From left to right the columns are as follow: API30 ↵ = 0.9, relative temporal precipitation entropy, intensity, duration calculated using a
10 min aggregation, duration using an hour aggregation, total precipitation sum, runoff coefficient, standard score of the temperature of
the previous 30 days
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A. Appendix

Figure A.1: Mean RF performance over 10 folds for all target variables, trained with the ob-
servations of the 4POT sample. On each panel only the evaluated RF parameter
is modified while the others are set constant to N = 300, m = 12 and n = 2.
Top: number of trees per forest. Middle: number of random variables selected
at each split. Bottom: minimum number of floods in a terminal node.146



A. Appendix

Table A.4: Mean and standard deviation of catchments’ "R for the estimations of Qp and tp
using a similarity as S and using a TSP distribution

mean ± std of catchments’ "R

Similarity
Target 0.025 0.05 0.1 0.2 0.3 0.4

Es
tim

at
io

ns
us

in
g

th
e

m
ea

n
of

th
e

TS
P

pa
ra

m
et

er
s

Qp

HPDF 0.076 ± 0.089 0.072 ± 0.082 0.070 ± 0.074 0.069 ± 0.098 0.087 ± 0.144 0.093 ± 0.272
↵ , � 0.076 ± 0.066 0.074 ± 0.062 0.074 ± 0.060 0.079 ± 0.099 0.080 ± 0.096 0.104 ± 0.170
HPDF ,↵ , � 0.078 ± 0.066 0.075 ± 0.063 0.075 ± 0.063 0.073 ± 0.087 0.082 ± 0.118 0.076 ± 0.145
Hhy 0.089 ± 0.107 0.084 ± 0.098 0.080 ± 0.087 0.073 ± 0.088 0.079 ± 0.134 0.159 ± 0.309
PV R 0.081 ± 0.113 0.078 ± 0.105 0.077 ± 0.090 0.084 ± 0.111 0.061 ± 0.118 0.085 ± 0.133
Hhy , PV R 0.084 ± 0.104 0.084 ± 0.098 0.080 ± 0.087 0.096 ± 0.106 0.112 ± 0.208 0.109 ± 0.243
Sk , Ku 0.085 ± 0.094 0.083 ± 0.087 0.080 ± 0.077 0.078 ± 0.091 0.071 ± 0.122 0.067 ± 0.144
PV R, Sk , Ku 0.083 ± 0.094 0.081 ± 0.088 0.074 ± 0.077 0.072 ± 0.091 0.073 ± 0.110 0.097 ± 0.195
Qp/A 0.089 ± 0.086 0.087 ± 0.078 0.084 ± 0.076 0.090 ± 0.102 0.083 ± 0.132 0.077 ± 0.126
V/A 0.088 ± 0.136 0.087 ± 0.126 0.083 ± 0.108 0.073 ± 0.136 0.064 ± 0.104 0.102 ± 0.260
Qp/A , V/A 0.082 ± 0.073 0.080 ± 0.065 0.080 ± 0.062 0.076 ± 0.072 0.075 ± 0.122 0.101 ± 0.135

tp

HPDF 0.266 ± 0.297 0.252 ± 0.270 0.230 ± 0.234 0.258 ± 0.413 0.215 ± 0.382 0.173 ± 0.468
↵ , � 0.262 ± 0.292 0.251 ± 0.276 0.232 ± 0.251 0.196 ± 0.190 0.147 ± 0.196 0.104 ± 0.324
HPDF ,↵ , � 0.259 ± 0.290 0.249 ± 0.275 0.228 ± 0.231 0.224 ± 0.311 0.196 ± 0.217 0.172 ± 0.263
Hhy 0.270 ± 0.316 0.261 ± 0.308 0.240 ± 0.283 0.235 ± 0.311 0.212 ± 0.239 0.161 ± 0.433
PV R 0.268 ± 0.312 0.256 ± 0.292 0.226 ± 0.261 0.161 ± 0.193 0.117 ± 0.244 0.162 ± 0.311
Hhy , PV R 0.278 ± 0.314 0.266 ± 0.294 0.243 ± 0.289 0.188 ± 0.201 0.150 ± 0.285 0.176 ± 0.448
Sk , Ku 0.267 ± 0.323 0.257 ± 0.309 0.237 ± 0.269 0.193 ± 0.236 0.161 ± 0.249 0.215 ± 0.365
PV R, Sk , Ku 0.256 ± 0.297 0.243 ± 0.281 0.223 ± 0.236 0.177 ± 0.204 0.154 ± 0.201 0.121 ± 0.337
Qp/A 0.291 ± 0.270 0.284 ± 0.257 0.262 ± 0.241 0.251 ± 0.242 0.227 ± 0.168 0.224 ± 0.257
V/A 0.266 ± 0.292 0.251 ± 0.278 0.222 ± 0.242 0.200 ± 0.248 0.142 ± 0.228 0.130 ± 0.323
Qp/A , V/A 0.299 ± 0.293 0.289 ± 0.273 0.273 ± 0.260 0.247 ± 0.239 0.196 ± 0.190 0.220 ± 0.244

Es
tim

at
io

ns
us

in
g

th
e

m
ed

ia
n

of
th

e
TS

P
pa

ra
m

et
er

s

Qp

HPDF 0.000± 0.082 -0.008± 0.079 -0.051± 0.078 -0.291± 0.139 -0.548± 0.125 -0.627± 0.105
↵ , � 0.004± 0.062 -0.006± 0.059 -0.040± 0.053 -0.242± 0.121 -0.506± 0.126 -0.633± 0.084
HPDF ,↵ , � 0.009± 0.064 0.002± 0.064 -0.040± 0.049 -0.243± 0.130 -0.494± 0.141 -0.630± 0.111
Hhy 0.006± 0.096 -0.003± 0.089 -0.050± 0.083 -0.318± 0.151 -0.515± 0.147 -0.624± 0.094
PV R -0.005± 0.103 -0.012± 0.095 -0.050± 0.073 -0.299± 0.143 -0.518± 0.155 -0.602± 0.163
Hhy , PV R 0.003± 0.095 -0.006± 0.089 -0.038± 0.076 -0.249± 0.132 -0.509± 0.158 -0.621± 0.139
Sk , Ku 0.008± 0.092 -0.002± 0.085 -0.039± 0.075 -0.297± 0.147 -0.557± 0.126 -0.635± 0.101
PV R, Sk , Ku 0.004± 0.085 -0.006± 0.081 -0.055± 0.069 -0.281± 0.126 -0.532± 0.133 -0.629± 0.129
Qp/A -0.005± 0.081 -0.019± 0.072 -0.047± 0.059 -0.182± 0.131 -0.347± 0.171 -0.507± 0.187
V/A -0.011± 0.119 -0.023± 0.110 -0.066± 0.110 -0.340± 0.175 -0.530± 0.147 -0.614± 0.108
Qp/A , V/A -0.012± 0.075 -0.021± 0.063 -0.049± 0.062 -0.169± 0.118 -0.373± 0.174 -0.502± 0.194

tp

HPDF 0.162± 0.267 0.121± 0.242 -0.040± 0.167 -0.096± 0.508 -0.419± 0.842 -0.818± 0.414
↵ , � 0.151± 0.265 0.121± 0.254 -0.009± 0.181 -0.021± 0.414 -0.322± 0.822 -0.766± 0.552
HPDF ,↵ , � 0.146± 0.268 0.119± 0.237 -0.010± 0.145 -0.035± 0.463 -0.413± 0.649 -0.802± 0.425
Hhy 0.159± 0.292 0.132± 0.291 -0.015± 0.196 -0.070± 0.664 -0.362± 0.767 -0.781± 0.433
PV R 0.163± 0.289 0.127± 0.262 0.016± 0.218 -0.173± 0.373 -0.319± 0.944 -0.680± 0.891
Hhy , PV R 0.164± 0.272 0.131± 0.251 0.115± 0.715 0.085± 0.962 -0.287± 0.885 -0.721± 0.591
Sk , Ku 0.167± 0.291 0.127± 0.267 0.009± 0.187 0.024± 1.014 -0.597± 0.583 -0.889± 0.207
PV R, Sk , Ku 0.151± 0.260 0.115± 0.230 -0.015± 0.175 -0.085± 0.511 -0.614± 0.412 -0.883± 0.239
Qp/A 0.148± 0.268 0.091± 0.213 0.023± 0.238 -0.100± 0.323 -0.109± 0.525 -0.441± 0.867
V/A 0.160± 0.260 0.116± 0.243 -0.005± 0.255 0.013± 0.859 -0.432± 0.622 -0.633± 0.753
Qp/A , V/A 0.162± 0.278 0.111± 0.218 0.006± 0.163 -0.076± 0.335 -0.326± 0.479 -0.445± 1.120

147



A. Appendix

Table A.5: Mean and standard deviation of catchments’ "R for the estimations of Qp and tp
using a similarity as S and using a Lognormal distribution

mean ± std of catchments’ "R

Similarity
Target 0.025 0.05 0.1 0.2 0.3 0.4

Es
tim

at
io

ns
us

in
g

th
e

m
ea

n
of

th
e

Lo
gn

or
m

al
pa

ra
m

et
er

s

Qp

HPDF -0.033 ± 0.076 -0.027 ± 0.071 -0.017 ± 0.071 0.018 ± 0.087 0.032 ± 0.111 0.044 ± 0.171
↵ , � -0.028 ± 0.085 -0.022 ± 0.078 -0.012 ± 0.073 0.046 ± 0.115 0.088 ± 0.158 0.146 ± 0.266
HPDF ,↵ , � -0.032 ± 0.085 -0.026 ± 0.077 -0.016 ± 0.066 0.028 ± 0.105 0.064 ± 0.114 0.096 ± 0.180
Hhy -0.034 ± 0.095 -0.027 ± 0.089 -0.016 ± 0.083 0.024 ± 0.109 0.081 ± 0.197 0.048 ± 0.203
PV R -0.038 ± 0.101 -0.032 ± 0.093 -0.022 ± 0.085 0.024 ± 0.097 0.055 ± 0.131 0.047 ± 0.165
Hhy , PV R -0.038 ± 0.088 -0.034 ± 0.081 -0.019 ± 0.074 0.023 ± 0.087 0.060 ± 0.133 0.102 ± 0.208
Sk , Ku -0.038 ± 0.082 -0.033 ± 0.077 -0.017 ± 0.078 0.028 ± 0.087 0.053 ± 0.126 0.086 ± 0.178
PV R, Sk , Ku -0.041 ± 0.081 -0.038 ± 0.075 -0.027 ± 0.070 0.024 ± 0.102 0.045 ± 0.136 0.021 ± 0.165
Qp/A -0.043 ± 0.071 -0.041 ± 0.062 -0.033 ± 0.046 -0.018 ± 0.056 0.019 ± 0.084 0.033 ± 0.128
V/A -0.040 ± 0.114 -0.034 ± 0.104 -0.020 ± 0.095 0.015 ± 0.098 0.052 ± 0.108 0.032 ± 0.092
Qp/A , V/A -0.042 ± 0.069 -0.040 ± 0.057 -0.031 ± 0.044 -0.012 ± 0.042 0.030 ± 0.104 0.026 ± 0.109

tp

HPDF 0.166 ± 0.264 0.160 ± 0.246 0.153 ± 0.213 0.183 ± 0.290 0.169 ± 0.288 0.236 ± 0.332
↵ , � 0.145 ± 0.234 0.130 ± 0.203 0.114 ± 0.177 0.114 ± 0.141 0.152 ± 0.255 0.088 ± 0.349
HPDF ,↵ , � 0.152 ± 0.236 0.142 ± 0.221 0.132 ± 0.209 0.106 ± 0.163 0.145 ± 0.208 0.042 ± 0.292
Hhy 0.180 ± 0.285 0.168 ± 0.268 0.160 ± 0.250 0.163 ± 0.184 0.168 ± 0.257 0.173 ± 0.349
PV R 0.182 ± 0.291 0.174 ± 0.277 0.157 ± 0.261 0.136 ± 0.202 0.100 ± 0.203 0.188 ± 0.337
Hhy , PV R 0.181 ± 0.293 0.175 ± 0.279 0.158 ± 0.241 0.133 ± 0.196 0.135 ± 0.221 0.159 ± 0.531
Sk , Ku 0.179 ± 0.289 0.174 ± 0.281 0.167 ± 0.264 0.143 ± 0.206 0.141 ± 0.218 0.141 ± 0.222
PV R, Sk , Ku 0.180 ± 0.288 0.174 ± 0.274 0.169 ± 0.262 0.134 ± 0.234 0.151 ± 0.245 0.207 ± 0.462
Qp/A 0.191 ± 0.264 0.190 ± 0.254 0.189 ± 0.254 0.206 ± 0.286 0.222 ± 0.353 0.227 ± 0.411
V/A 0.169 ± 0.259 0.164 ± 0.250 0.148 ± 0.235 0.150 ± 0.269 0.113 ± 0.235 0.185 ± 0.357
Qp/A , V/A 0.183 ± 0.252 0.186 ± 0.247 0.182 ± 0.235 0.182 ± 0.287 0.184 ± 0.340 0.233 ± 0.304
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HPDF 0.053 ± 0.088 0.087 ± 0.090 0.269 ± 0.127 -0.038 ± 0.427 -0.605 ± 0.339 -0.818 ± 0.166
↵ , � 0.044 ± 0.093 0.083 ± 0.095 0.235 ± 0.128 -0.190 ± 0.345 -0.727 ± 0.227 -0.869 ± 0.130
HPDF ,↵ , � 0.043 ± 0.092 0.081 ± 0.091 0.252 ± 0.134 -0.089 ± 0.306 -0.660 ± 0.243 -0.827 ± 0.184
Hhy 0.053 ± 0.110 0.096 ± 0.106 0.272 ± 0.130 -0.013 ± 0.382 -0.612 ± 0.297 -0.815 ± 0.188
PV R 0.047 ± 0.110 0.082 ± 0.105 0.227 ± 0.111 -0.015 ± 0.345 -0.634 ± 0.309 -0.801 ± 0.283
Hhy , PV R 0.049 ± 0.097 0.084 ± 0.096 0.248 ± 0.126 0.028 ± 0.315 -0.591 ± 0.314 -0.790 ± 0.226
Sk , Ku 0.044 ± 0.093 0.083 ± 0.084 0.275 ± 0.131 -0.070 ± 0.358 -0.624 ± 0.256 -0.858 ± 0.116
PV R, Sk , Ku 0.042 ± 0.092 0.085 ± 0.093 0.264 ± 0.143 -0.012 ± 0.375 -0.642 ± 0.255 -0.845 ± 0.138
Qp/A 0.056 ± 0.099 0.108 ± 0.094 0.239 ± 0.148 0.256 ± 0.258 -0.237 ± 0.413 -0.567 ± 0.455
V/A 0.041 ± 0.123 0.084 ± 0.125 0.258 ± 0.187 -0.091 ± 0.359 -0.637 ± 0.262 -0.851 ± 0.132
Qp/A , V/A 0.065 ± 0.095 0.114 ± 0.091 0.246 ± 0.130 0.235 ± 0.287 -0.221 ± 0.441 -0.550 ± 0.483

tp

HPDF 0.205 ± 0.290 0.185 ± 0.265 0.135 ± 0.226 1.333 ± 1.474 2.920 ± 2.087 3.842 ± 2.326
↵ , � 0.183 ± 0.241 0.156 ± 0.214 0.154 ± 0.241 1.634 ± 1.255 3.380 ± 1.965 4.138 ± 2.056
HPDF ,↵ , � 0.192 ± 0.259 0.166 ± 0.248 0.157 ± 0.289 1.407 ± 1.203 3.164 ± 1.961 3.597 ± 2.237
Hhy 0.218 ± 0.306 0.194 ± 0.285 0.155 ± 0.287 1.441 ± 1.304 3.188 ± 1.866 3.690 ± 2.179
PV R 0.217 ± 0.308 0.199 ± 0.288 0.158 ± 0.315 1.433 ± 1.239 3.208 ± 2.256 3.917 ± 1.968
Hhy , PV R 0.221 ± 0.311 0.195 ± 0.284 0.127 ± 0.239 1.226 ± 0.915 3.119 ± 2.120 3.621 ± 2.987
Sk , Ku 0.217 ± 0.303 0.200 ± 0.303 0.147 ± 0.274 1.341 ± 1.266 2.955 ± 1.766 3.865 ± 2.426
PV R, Sk , Ku 0.219 ± 0.305 0.194 ± 0.277 0.181 ± 0.298 1.358 ± 1.173 3.177 ± 1.898 3.828 ± 2.223
Qp/A 0.223 ± 0.298 0.190 ± 0.266 0.145 ± 0.232 0.649 ± 0.832 2.172 ± 1.909 3.146 ± 2.551
V/A 0.213 ± 0.274 0.193 ± 0.269 0.178 ± 0.332 1.622 ± 1.468 2.827 ± 1.441 3.679 ± 2.159
Qp/A , V/A 0.203 ± 0.271 0.192 ± 0.268 0.131 ± 0.217 0.685 ± 0.817 2.070 ± 1.884 3.075 ± 2.475
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Table A.6: Mean and standard deviation of catchments’ "R for the estimations of Qp and tp
using a similarity as S̄ and using a TSP distribution

mean ± std of catchments’ "R

Similarity
Target 0.025 0.05 0.1 0.2 0.3 0.4
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Qp

HPDF 0.066 ± 0.074 0.059 ± 0.065 0.060 ± 0.068 0.049 ± 0.080 0.026 ± 0.121 0.038 ± 0.097
↵ , � 0.061 ± 0.051 0.058 ± 0.046 0.059 ± 0.051 0.060 ± 0.095 0.053 ± 0.085 0.064 ± 0.235
HPDF ,↵ , � 0.063 ± 0.050 0.061 ± 0.049 0.064 ± 0.063 0.057 ± 0.081 0.059 ± 0.102 0.050 ± 0.165
Hhy 0.077 ± 0.096 0.071 ± 0.083 0.068 ± 0.074 0.063 ± 0.109 0.082 ± 0.146 0.085 ± 0.242
PV R 0.081 ± 0.102 0.075 ± 0.089 0.071 ± 0.067 0.065 ± 0.092 0.069 ± 0.088 0.094 ± 0.154
Hhy , PV R 0.077 ± 0.094 0.073 ± 0.084 0.068 ± 0.070 0.064 ± 0.089 0.063 ± 0.129 0.076 ± 0.229
Sk , Ku 0.075 ± 0.080 0.071 ± 0.069 0.063 ± 0.063 0.059 ± 0.102 0.054 ± 0.110 0.061 ± 0.118
PV R, Sk , Ku 0.073 ± 0.081 0.069 ± 0.071 0.065 ± 0.068 0.064 ± 0.121 0.055 ± 0.094 0.105 ± 0.181
Qp/A 0.085 ± 0.077 0.082 ± 0.075 0.079 ± 0.076 0.074 ± 0.105 0.060 ± 0.099 0.074 ± 0.125
V/A 0.088 ± 0.126 0.085 ± 0.110 0.079 ± 0.109 0.060 ± 0.093 0.079 ± 0.134 0.098 ± 0.141
Qp/A , V/A 0.080 ± 0.068 0.076 ± 0.067 0.075 ± 0.071 0.062 ± 0.078 0.069 ± 0.106 0.073 ± 0.125

tp

HPDF 0.253 ± 0.293 0.235 ± 0.260 0.218 ± 0.255 0.203 ± 0.229 0.233 ± 0.333 0.090 ± 0.152
↵ , � 0.243 ± 0.274 0.233 ± 0.278 0.211 ± 0.275 0.193 ± 0.227 0.168 ± 0.191 0.129 ± 0.267
HPDF ,↵ , � 0.238 ± 0.260 0.222 ± 0.252 0.211 ± 0.252 0.189 ± 0.194 0.173 ± 0.192 0.132 ± 0.294
Hhy 0.264 ± 0.312 0.242 ± 0.276 0.232 ± 0.297 0.195 ± 0.207 0.160 ± 0.256 0.157 ± 0.338
PV R 0.250 ± 0.278 0.230 ± 0.250 0.215 ± 0.264 0.179 ± 0.199 0.139 ± 0.261 0.129 ± 0.212
Hhy , PV R 0.260 ± 0.290 0.236 ± 0.260 0.222 ± 0.264 0.173 ± 0.204 0.175 ± 0.294 0.157 ± 0.382
Sk , Ku 0.249 ± 0.308 0.233 ± 0.278 0.227 ± 0.305 0.156 ± 0.170 0.154 ± 0.327 0.106 ± 0.230
PV R, Sk , Ku 0.248 ± 0.316 0.233 ± 0.293 0.213 ± 0.289 0.159 ± 0.169 0.141 ± 0.255 0.092 ± 0.176
Qp/A 0.284 ± 0.260 0.275 ± 0.249 0.259 ± 0.242 0.261 ± 0.286 0.230 ± 0.207 0.253 ± 0.344
V/A 0.246 ± 0.263 0.226 ± 0.248 0.192 ± 0.233 0.166 ± 0.181 0.120 ± 0.242 0.119 ± 0.241
Qp/A , V/A 0.285 ± 0.273 0.278 ± 0.254 0.258 ± 0.238 0.251 ± 0.329 0.218 ± 0.190 0.224 ± 0.231
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Qp

HPDF -0.010 ± 0.067 -0.031 ± 0.064 -0.127 ± 0.106 -0.454 ± 0.148 -0.629 ± 0.083 -0.660 ± 0.090
↵ , � -0.012 ± 0.043 -0.031 ± 0.044 -0.103 ± 0.070 -0.392 ± 0.134 -0.605 ± 0.113 -0.675 ± 0.090
HPDF ,↵ , � -0.009 ± 0.045 -0.028 ± 0.040 -0.094 ± 0.069 -0.388 ± 0.119 -0.608 ± 0.112 -0.672 ± 0.080
Hhy -0.004 ± 0.085 -0.022 ± 0.077 -0.109 ± 0.074 -0.454 ± 0.139 -0.605 ± 0.093 -0.654 ± 0.094
PV R -0.007 ± 0.094 -0.027 ± 0.082 -0.095 ± 0.085 -0.411 ± 0.155 -0.564 ± 0.166 -0.668 ± 0.103
Hhy , PV R -0.003 ± 0.087 -0.023 ± 0.075 -0.088 ± 0.068 -0.380 ± 0.119 -0.580 ± 0.139 -0.619 ± 0.146
Sk , Ku -0.004 ± 0.074 -0.025 ± 0.066 -0.112 ± 0.079 -0.431 ± 0.145 -0.585 ± 0.121 -0.657 ± 0.082
PV R, Sk , Ku -0.008 ± 0.073 -0.024 ± 0.062 -0.115 ± 0.095 -0.420 ± 0.144 -0.607 ± 0.126 -0.670 ± 0.094
Qp/A -0.015 ± 0.068 -0.037 ± 0.053 -0.073 ± 0.067 -0.263 ± 0.156 -0.450 ± 0.195 -0.550 ± 0.187
V/A -0.014 ± 0.109 -0.035 ± 0.106 -0.132 ± 0.135 -0.429 ± 0.156 -0.581 ± 0.125 -0.626 ± 0.103
Qp/A , V/A -0.014 ± 0.065 -0.036 ± 0.052 -0.074 ± 0.063 -0.246 ± 0.143 -0.448 ± 0.193 -0.553 ± 0.194

tp

HPDF 0.138 ± 0.247 0.069 ± 0.201 -0.004 ± 0.411 -0.455 ± 0.486 -0.802 ± 0.388 -0.919 ± 0.292
↵ , � 0.124 ± 0.240 0.068 ± 0.215 0.031 ± 0.366 -0.054 ± 0.757 -0.714 ± 0.444 -0.967 ± 0.095
HPDF ,↵ , � 0.119 ± 0.224 0.053 ± 0.180 -0.005 ± 0.242 -0.220 ± 0.536 -0.787 ± 0.357 -0.960 ± 0.109
Hhy 0.155 ± 0.291 0.086 ± 0.261 -0.020 ± 0.378 -0.268 ± 0.635 -0.683 ± 0.628 -0.921 ± 0.269
PV R 0.138 ± 0.249 0.075 ± 0.209 -0.023 ± 0.286 -0.013 ± 1.113 -0.536 ± 0.918 -0.923 ± 0.247
Hhy , PV R 0.143 ± 0.249 0.072 ± 0.214 -0.018 ± 0.292 0.040 ± 0.746 -0.643 ± 0.486 -0.652 ± 0.925
Sk , Ku 0.138 ± 0.268 0.071 ± 0.233 0.038 ± 0.354 -0.207 ± 0.748 -0.704 ± 0.438 -0.882 ± 0.430
PV R, Sk , Ku 0.136 ± 0.278 0.079 ± 0.256 -0.096 ± 0.249 -0.113 ± 1.112 -0.706 ± 0.411 -0.859 ± 0.430
Qp/A 0.122 ± 0.252 0.066 ± 0.249 0.019 ± 0.259 -0.147 ± 0.362 -0.365 ± 0.725 -0.559 ± 0.779
V/A 0.124 ± 0.227 0.048 ± 0.210 -0.056 ± 0.298 -0.153 ± 0.629 -0.587 ± 0.757 -0.716 ± 0.690
Qp/A , V/A 0.130 ± 0.255 0.057 ± 0.166 -0.028 ± 0.148 -0.088 ± 0.343 -0.440 ± 0.584 -0.538 ± 0.820
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Table A.7: Mean and standard deviation of catchments’ "R for the estimations of Qp and tp
using a similarity as S̄ and using a Lognormal distribution

mean ± std of catchments’ "R

Similarity
Target 0.025 0.05 0.1 0.2 0.3 0.4
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Qp

HPDF -0.037 ± 0.066 -0.029 ± 0.060 -0.005 ± 0.093 0.033 ± 0.091 0.026 ± 0.082 0.036 ± 0.102
↵ , � -0.032 ± 0.069 -0.025 ± 0.059 -0.005 ± 0.067 0.036 ± 0.096 0.093 ± 0.158 0.047 ± 0.075
HPDF ,↵ , � -0.033 ± 0.068 -0.027 ± 0.061 -0.008 ± 0.061 0.036 ± 0.084 0.071 ± 0.148 0.057 ± 0.139
Hhy -0.039 ± 0.083 -0.035 ± 0.076 -0.014 ± 0.073 0.038 ± 0.143 0.067 ± 0.121 0.056 ± 0.131
PV R -0.036 ± 0.090 -0.029 ± 0.081 -0.014 ± 0.071 0.041 ± 0.110 0.052 ± 0.126 0.081 ± 0.162
Hhy , PV R -0.039 ± 0.082 -0.033 ± 0.073 -0.017 ± 0.066 0.036 ± 0.088 0.036 ± 0.069 0.050 ± 0.086
Sk , Ku -0.041 ± 0.070 -0.034 ± 0.065 -0.014 ± 0.073 0.018 ± 0.083 0.052 ± 0.113 0.081 ± 0.175
PV R, Sk , Ku -0.042 ± 0.070 -0.035 ± 0.063 -0.017 ± 0.068 0.017 ± 0.096 0.038 ± 0.112 0.082 ± 0.108
Qp/A -0.041 ± 0.061 -0.037 ± 0.050 -0.027 ± 0.046 0.002 ± 0.079 0.019 ± 0.088 0.034 ± 0.036
V/A -0.037 ± 0.106 -0.027 ± 0.094 -0.007 ± 0.090 0.033 ± 0.087 0.080 ± 0.143 0.057 ± 0.095
Qp/A , V/A -0.040 ± 0.064 -0.036 ± 0.052 -0.025 ± 0.047 0.005 ± 0.074 0.028 ± 0.080 0.047 ± 0.081

tp

HPDF 0.157 ± 0.258 0.144 ± 0.225 0.149 ± 0.252 0.142 ± 0.146 0.189 ± 0.311 0.222 ± 0.401
↵ , � 0.093 ± 0.168 0.079 ± 0.152 0.079 ± 0.161 0.080 ± 0.167 0.069 ± 0.204 0.049 ± 0.204
HPDF ,↵ , � 0.097 ± 0.171 0.089 ± 0.171 0.095 ± 0.201 0.083 ± 0.163 0.054 ± 0.159 0.012 ± 0.130
Hhy 0.174 ± 0.278 0.170 ± 0.256 0.159 ± 0.257 0.174 ± 0.207 0.139 ± 0.291 0.161 ± 0.440
PV R 0.164 ± 0.265 0.151 ± 0.249 0.153 ± 0.279 0.127 ± 0.195 0.114 ± 0.311 0.214 ± 0.390
Hhy , PV R 0.168 ± 0.262 0.157 ± 0.242 0.150 ± 0.237 0.135 ± 0.198 0.159 ± 0.303 0.170 ± 0.378
Sk , Ku 0.168 ± 0.289 0.163 ± 0.277 0.162 ± 0.295 0.146 ± 0.212 0.167 ± 0.230 0.101 ± 0.293
PV R, Sk , Ku 0.167 ± 0.284 0.162 ± 0.271 0.161 ± 0.314 0.128 ± 0.173 0.188 ± 0.336 0.112 ± 0.255
Qp/A 0.194 ± 0.270 0.197 ± 0.273 0.188 ± 0.264 0.201 ± 0.303 0.185 ± 0.195 0.217 ± 0.346
V/A 0.159 ± 0.241 0.153 ± 0.235 0.138 ± 0.214 0.142 ± 0.202 0.119 ± 0.229 0.113 ± 0.216
Qp/A , V/A 0.181 ± 0.247 0.183 ± 0.247 0.174 ± 0.247 0.190 ± 0.289 0.200 ± 0.242 0.216 ± 0.355
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HPDF 0.058 ± 0.078 0.142 ± 0.075 0.248 ± 0.231 -0.393 ± 0.394 -0.762 ± 0.240 -0.870 ± 0.122
↵ , � 0.052 ± 0.077 0.134 ± 0.096 0.236 ± 0.208 -0.489 ± 0.311 -0.817 ± 0.131 -0.882 ± 0.102
HPDF ,↵ , � 0.053 ± 0.079 0.130 ± 0.097 0.249 ± 0.201 -0.411 ± 0.298 -0.807 ± 0.129 -0.895 ± 0.104
Hhy 0.059 ± 0.102 0.133 ± 0.098 0.303 ± 0.210 -0.388 ± 0.366 -0.799 ± 0.198 -0.888 ± 0.110
PV R 0.060 ± 0.100 0.128 ± 0.088 0.271 ± 0.179 -0.326 ± 0.384 -0.719 ± 0.292 -0.879 ± 0.132
Hhy , PV R 0.061 ± 0.094 0.134 ± 0.092 0.324 ± 0.183 -0.285 ± 0.364 -0.715 ± 0.273 -0.884 ± 0.104
Sk , Ku 0.053 ± 0.084 0.127 ± 0.085 0.306 ± 0.227 -0.434 ± 0.321 -0.800 ± 0.172 -0.921 ± 0.031
PV R, Sk , Ku 0.054 ± 0.088 0.132 ± 0.085 0.291 ± 0.228 -0.359 ± 0.356 -0.781 ± 0.216 -0.882 ± 0.104
Qp/A 0.082 ± 0.087 0.165 ± 0.099 0.312 ± 0.175 0.095 ± 0.316 -0.441 ± 0.445 -0.701 ± 0.377
V/A 0.057 ± 0.112 0.138 ± 0.108 0.250 ± 0.220 -0.402 ± 0.343 -0.796 ± 0.167 -0.871 ± 0.158
Qp/A , V/A 0.088 ± 0.096 0.180 ± 0.121 0.351 ± 0.227 0.112 ± 0.337 -0.468 ± 0.398 -0.686 ± 0.398

tp

HPDF 0.191 ± 0.278 0.148 ± 0.229 0.455 ± 0.930 2.286 ± 1.648 3.578 ± 2.137 3.695 ± 2.722
↵ , � 0.122 ± 0.180 0.087 ± 0.174 0.358 ± 0.443 2.520 ± 1.695 3.612 ± 2.284 4.453 ± 2.062
HPDF ,↵ , � 0.126 ± 0.192 0.097 ± 0.177 0.368 ± 0.577 2.273 ± 1.530 3.566 ± 2.180 3.902 ± 2.058
Hhy 0.207 ± 0.302 0.175 ± 0.266 0.373 ± 0.778 2.453 ± 1.482 3.697 ± 2.459 4.189 ± 2.688
PV R 0.193 ± 0.277 0.149 ± 0.238 0.273 ± 0.613 2.333 ± 1.692 3.346 ± 2.128 4.549 ± 2.646
Hhy , PV R 0.195 ± 0.279 0.151 ± 0.244 0.193 ± 0.322 2.008 ± 1.514 3.405 ± 1.962 4.235 ± 2.311
Sk , Ku 0.199 ± 0.305 0.167 ± 0.286 0.389 ± 0.868 2.605 ± 1.770 3.340 ± 1.939 4.201 ± 2.664
PV R, Sk , Ku 0.197 ± 0.299 0.166 ± 0.283 0.432 ± 1.001 2.254 ± 1.589 3.662 ± 2.252 4.098 ± 2.619
Qp/A 0.205 ± 0.274 0.189 ± 0.288 0.176 ± 0.327 1.097 ± 1.157 2.503 ± 1.617 3.361 ± 2.378
V/A 0.199 ± 0.255 0.157 ± 0.243 0.403 ± 0.665 2.461 ± 1.708 3.438 ± 2.060 3.694 ± 2.373
Qp/A , V/A 0.201 ± 0.283 0.153 ± 0.217 0.105 ± 0.198 1.036 ± 1.191 2.882 ± 2.292 3.245 ± 2.357
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Table A.8: Mean and standard deviation of catchments’ "R for the estimations of Qp and tp
using a similarity as CO and using a TSP distribution

mean ± std of catchments’ "R

Similarity
Target 0.025 0.05 0.1 0.2 0.3 0.4
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HPDF 0.085 ± 0.121 0.079 ± 0.114 0.081 ± 0.109 0.076 ± 0.103 0.074 ± 0.104 0.065 ± 0.097
↵ , � 0.072 ± 0.108 0.068 ± 0.106 0.068 ± 0.107 0.071 ± 0.115 0.068 ± 0.108 0.068 ± 0.098
HPDF ,↵ , � 0.072 ± 0.101 0.070 ± 0.099 0.065 ± 0.097 0.064 ± 0.099 0.068 ± 0.098 0.067 ± 0.090
Hhy 0.090 ± 0.137 0.088 ± 0.132 0.086 ± 0.128 0.086 ± 0.123 0.091 ± 0.125 0.086 ± 0.129
PV R 0.101 ± 0.148 0.096 ± 0.146 0.096 ± 0.145 0.093 ± 0.138 0.087 ± 0.128 0.110 ± 0.150
Hhy , PV R 0.091 ± 0.130 0.090 ± 0.128 0.086 ± 0.126 0.086 ± 0.121 0.080 ± 0.115 0.078 ± 0.117
Sk , Ku 0.085 ± 0.108 0.083 ± 0.106 0.079 ± 0.099 0.080 ± 0.099 0.075 ± 0.094 0.064 ± 0.088
PV R, Sk , Ku 0.089 ± 0.111 0.088 ± 0.109 0.085 ± 0.106 0.080 ± 0.103 0.073 ± 0.100 0.068 ± 0.107
Qp/A 0.100 ± 0.158 0.095 ± 0.160 0.095 ± 0.159 0.100 ± 0.157 0.098 ± 0.142 0.086 ± 0.128
V/A 0.108 ± 0.183 0.101 ± 0.178 0.094 ± 0.173 0.090 ± 0.164 0.083 ± 0.152 0.081 ± 0.145
Qp/A , V/A 0.097 ± 0.145 0.098 ± 0.146 0.098 ± 0.161 0.101 ± 0.155 0.099 ± 0.144 0.088 ± 0.128

tp

HPDF 0.319 ± 0.410 0.320 ± 0.413 0.307 ± 0.396 0.281 ± 0.331 0.292 ± 0.366 0.299 ± 0.361
↵ , � 0.335 ± 0.405 0.327 ± 0.399 0.296 ± 0.387 0.305 ± 0.452 0.242 ± 0.374 0.221 ± 0.355
HPDF ,↵ , � 0.333 ± 0.412 0.330 ± 0.409 0.331 ± 0.422 0.329 ± 0.438 0.242 ± 0.333 0.218 ± 0.339
Hhy 0.321 ± 0.428 0.322 ± 0.430 0.318 ± 0.417 0.309 ± 0.401 0.273 ± 0.405 0.244 ± 0.360
PV R 0.326 ± 0.424 0.332 ± 0.421 0.317 ± 0.405 0.318 ± 0.404 0.298 ± 0.388 0.264 ± 0.426
Hhy , PV R 0.318 ± 0.417 0.323 ± 0.425 0.332 ± 0.443 0.347 ± 0.479 0.290 ± 0.413 0.272 ± 0.365
Sk , Ku 0.314 ± 0.423 0.309 ± 0.407 0.294 ± 0.388 0.258 ± 0.369 0.265 ± 0.390 0.223 ± 0.331
PV R, Sk , Ku 0.311 ± 0.401 0.303 ± 0.401 0.304 ± 0.402 0.265 ± 0.340 0.256 ± 0.340 0.266 ± 0.400
Qp/A 0.420 ± 0.430 0.416 ± 0.422 0.412 ± 0.415 0.392 ± 0.391 0.392 ± 0.357 0.384 ± 0.360
V/A 0.294 ± 0.323 0.295 ± 0.318 0.294 ± 0.314 0.284 ± 0.295 0.271 ± 0.276 0.221 ± 0.246
Qp/A , V/A 0.405 ± 0.404 0.397 ± 0.389 0.394 ± 0.380 0.387 ± 0.373 0.385 ± 0.349 0.385 ± 0.379
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HPDF 0.003 ± 0.111 -0.002 ± 0.106 -0.006 ± 0.103 -0.018 ± 0.105 -0.037 ± 0.123 -0.092 ± 0.142
↵ , � -0.004 ± 0.099 -0.005 ± 0.098 -0.011 ± 0.101 -0.033 ± 0.098 -0.048 ± 0.097 -0.065 ± 0.123
HPDF ,↵ , � 0.002 ± 0.090 0.001 ± 0.088 -0.009 ± 0.090 -0.020 ± 0.101 -0.050 ± 0.130 -0.087 ± 0.135
Hhy 0.014 ± 0.130 0.011 ± 0.125 0.002 ± 0.120 -0.020 ± 0.119 -0.059 ± 0.145 -0.089 ± 0.175
PV R 0.007 ± 0.134 0.004 ± 0.130 -0.001 ± 0.127 -0.015 ± 0.123 -0.048 ± 0.119 -0.089 ± 0.133
Hhy , PV R 0.006 ± 0.119 0.005 ± 0.115 -0.003 ± 0.116 -0.028 ± 0.121 -0.050 ± 0.114 -0.088 ± 0.142
Sk , Ku 0.009 ± 0.099 0.008 ± 0.099 0.001 ± 0.092 -0.022 ± 0.094 -0.045 ± 0.101 -0.121 ± 0.139
PV R, Sk , Ku 0.002 ± 0.100 0.000 ± 0.100 -0.009 ± 0.100 -0.030 ± 0.100 -0.052 ± 0.103 -0.093 ± 0.139
Qp/A -0.004 ± 0.148 -0.009 ± 0.148 -0.009 ± 0.146 -0.010 ± 0.138 -0.031 ± 0.117 -0.046 ± 0.106
V/A 0.010 ± 0.167 0.004 ± 0.163 -0.003 ± 0.157 -0.027 ± 0.146 -0.053 ± 0.136 -0.116 ± 0.155
Qp/A , V/A -0.004 ± 0.138 0.001 ± 0.137 -0.005 ± 0.139 -0.009 ± 0.132 -0.017 ± 0.119 -0.037 ± 0.122

tp

HPDF 0.198 ± 0.379 0.190 ± 0.376 0.172 ± 0.353 0.139 ± 0.294 0.103 ± 0.347 -0.026 ± 0.375
↵ , � 0.205 ± 0.363 0.189 ± 0.351 0.148 ± 0.347 0.096 ± 0.370 0.066 ± 0.360 0.000 ± 0.318
HPDF ,↵ , � 0.219 ± 0.383 0.206 ± 0.362 0.162 ± 0.371 0.116 ± 0.344 0.038 ± 0.334 -0.028 ± 0.365
Hhy 0.226 ± 0.414 0.223 ± 0.415 0.213 ± 0.393 0.171 ± 0.358 0.051 ± 0.423 -0.042 ± 0.311
PV R 0.217 ± 0.396 0.223 ± 0.392 0.184 ± 0.361 0.168 ± 0.347 0.107 ± 0.354 0.010 ± 0.394
Hhy , PV R 0.223 ± 0.392 0.222 ± 0.398 0.223 ± 0.420 0.191 ± 0.458 0.097 ± 0.409 0.013 ± 0.422
Sk , Ku 0.206 ± 0.388 0.200 ± 0.373 0.168 ± 0.344 0.091 ± 0.303 0.057 ± 0.346 -0.093 ± 0.304
PV R, Sk , Ku 0.205 ± 0.376 0.191 ± 0.369 0.143 ± 0.324 0.098 ± 0.284 0.112 ± 0.441 0.005 ± 0.320
Qp/A 0.270 ± 0.396 0.259 ± 0.390 0.246 ± 0.384 0.214 ± 0.358 0.175 ± 0.292 0.129 ± 0.306
V/A 0.203 ± 0.310 0.204 ± 0.306 0.199 ± 0.289 0.158 ± 0.278 0.126 ± 0.307 -0.094 ± 0.306
Qp/A , V/A 0.254 ± 0.370 0.234 ± 0.357 0.216 ± 0.344 0.190 ± 0.332 0.163 ± 0.302 0.121 ± 0.283
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Table A.9: Mean and standard deviation of catchments’ "R for the estimations of Qp and tp
using a similarity as CO and using a Lognromal distribution

mean ± std of catchments’ "R

Similarity
Target 0.025 0.05 0.1 0.2 0.3 0.4
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HPDF -0.044 ± 0.118 -0.043 ± 0.118 -0.042 ± 0.115 -0.038 ± 0.109 -0.032 ± 0.101 -0.014 ± 0.089
↵ , � -0.038 ± 0.096 -0.034 ± 0.091 -0.029 ± 0.085 -0.022 ± 0.086 -0.018 ± 0.086 -0.002 ± 0.087
HPDF ,↵ , � -0.036 ± 0.103 -0.034 ± 0.099 -0.030 ± 0.093 -0.029 ± 0.083 -0.022 ± 0.084 -0.004 ± 0.075
Hhy -0.036 ± 0.124 -0.036 ± 0.121 -0.034 ± 0.113 -0.026 ± 0.110 -0.018 ± 0.112 -0.009 ± 0.116
PV R -0.036 ± 0.135 -0.036 ± 0.133 -0.036 ± 0.135 -0.032 ± 0.131 -0.028 ± 0.122 -0.014 ± 0.096
Hhy , PV R -0.045 ± 0.109 -0.044 ± 0.105 -0.040 ± 0.102 -0.039 ± 0.085 -0.032 ± 0.083 -0.029 ± 0.076
Sk , Ku -0.044 ± 0.093 -0.041 ± 0.096 -0.036 ± 0.095 -0.033 ± 0.093 -0.027 ± 0.087 -0.012 ± 0.083
PV R, Sk , Ku -0.039 ± 0.092 -0.038 ± 0.089 -0.032 ± 0.090 -0.026 ± 0.089 -0.027 ± 0.086 -0.016 ± 0.085
Qp/A -0.041 ± 0.142 -0.039 ± 0.142 -0.039 ± 0.139 -0.036 ± 0.135 -0.027 ± 0.123 -0.029 ± 0.104
V/A -0.029 ± 0.155 -0.034 ± 0.148 -0.037 ± 0.141 -0.032 ± 0.141 -0.023 ± 0.139 -0.008 ± 0.136
Qp/A , V/A -0.041 ± 0.143 -0.044 ± 0.134 -0.040 ± 0.133 -0.033 ± 0.127 -0.034 ± 0.106 -0.036 ± 0.098

tp

HPDF 0.213 ± 0.345 0.215 ± 0.339 0.223 ± 0.346 0.215 ± 0.334 0.190 ± 0.326 0.159 ± 0.254
↵ , � 0.183 ± 0.331 0.176 ± 0.310 0.157 ± 0.276 0.143 ± 0.228 0.105 ± 0.185 0.085 ± 0.187
HPDF ,↵ , � 0.170 ± 0.296 0.166 ± 0.270 0.149 ± 0.250 0.139 ± 0.243 0.128 ± 0.207 0.124 ± 0.186
Hhy 0.222 ± 0.410 0.229 ± 0.407 0.227 ± 0.400 0.214 ± 0.379 0.204 ± 0.350 0.169 ± 0.243
PV R 0.228 ± 0.398 0.230 ± 0.400 0.233 ± 0.411 0.198 ± 0.402 0.185 ± 0.381 0.188 ± 0.343
Hhy , PV R 0.231 ± 0.391 0.229 ± 0.394 0.232 ± 0.404 0.249 ± 0.425 0.248 ± 0.477 0.214 ± 0.313
Sk , Ku 0.215 ± 0.386 0.215 ± 0.379 0.190 ± 0.349 0.189 ± 0.337 0.168 ± 0.298 0.160 ± 0.339
PV R, Sk , Ku 0.212 ± 0.357 0.212 ± 0.348 0.219 ± 0.342 0.199 ± 0.294 0.191 ± 0.272 0.192 ± 0.291
Qp/A 0.279 ± 0.391 0.282 ± 0.389 0.276 ± 0.372 0.276 ± 0.374 0.276 ± 0.366 0.276 ± 0.360
V/A 0.200 ± 0.306 0.207 ± 0.299 0.211 ± 0.299 0.202 ± 0.285 0.203 ± 0.291 0.187 ± 0.263
Qp/A , V/A 0.273 ± 0.375 0.268 ± 0.352 0.270 ± 0.380 0.259 ± 0.371 0.268 ± 0.361 0.270 ± 0.376
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HPDF 0.037 ± 0.121 0.045 ± 0.125 0.056 ± 0.127 0.058 ± 0.131 0.079 ± 0.147 0.081 ± 0.187
↵ , � 0.035 ± 0.102 0.047 ± 0.099 0.067 ± 0.107 0.077 ± 0.105 0.046 ± 0.165 0.001 ± 0.277
HPDF ,↵ , � 0.035 ± 0.115 0.043 ± 0.112 0.060 ± 0.110 0.074 ± 0.124 0.070 ± 0.188 -0.028 ± 0.284
Hhy 0.038 ± 0.135 0.043 ± 0.133 0.061 ± 0.130 0.077 ± 0.120 0.073 ± 0.165 0.056 ± 0.232
PV R 0.052 ± 0.146 0.061 ± 0.146 0.076 ± 0.153 0.074 ± 0.164 0.096 ± 0.190 0.096 ± 0.194
Hhy , PV R 0.039 ± 0.114 0.053 ± 0.115 0.077 ± 0.129 0.079 ± 0.126 0.052 ± 0.123 0.079 ± 0.228
Sk , Ku 0.039 ± 0.099 0.049 ± 0.103 0.054 ± 0.105 0.069 ± 0.110 0.064 ± 0.112 0.087 ± 0.183
PV R, Sk , Ku 0.039 ± 0.100 0.046 ± 0.101 0.069 ± 0.111 0.076 ± 0.122 0.036 ± 0.143 -0.004 ± 0.169
Qp/A 0.023 ± 0.159 0.041 ± 0.162 0.050 ± 0.160 0.069 ± 0.161 0.101 ± 0.169 0.118 ± 0.171
V/A 0.024 ± 0.164 0.031 ± 0.160 0.039 ± 0.162 0.029 ± 0.170 0.057 ± 0.198 0.068 ± 0.216
Qp/A , V/A 0.032 ± 0.163 0.046 ± 0.159 0.064 ± 0.158 0.102 ± 0.173 0.125 ± 0.189 0.118 ± 0.193

tp

HPDF 0.247 ± 0.365 0.241 ± 0.347 0.248 ± 0.350 0.382 ± 0.770 0.309 ± 0.370 0.572 ± 0.973
↵ , � 0.225 ± 0.356 0.211 ± 0.332 0.193 ± 0.306 0.389 ± 0.828 0.543 ± 0.821 0.915 ± 1.280
HPDF ,↵ , � 0.216 ± 0.322 0.210 ± 0.298 0.193 ± 0.264 0.301 ± 0.482 0.489 ± 0.842 0.751 ± 1.062
Hhy 0.264 ± 0.416 0.266 ± 0.417 0.256 ± 0.411 0.295 ± 0.444 0.467 ± 0.861 0.596 ± 0.943
PV R 0.260 ± 0.415 0.257 ± 0.415 0.256 ± 0.425 0.267 ± 0.401 0.340 ± 0.533 0.463 ± 0.548
Hhy , PV R 0.259 ± 0.394 0.254 ± 0.396 0.251 ± 0.398 0.381 ± 0.898 0.433 ± 0.653 0.678 ± 1.121
Sk , Ku 0.249 ± 0.390 0.329 ± 0.772 0.228 ± 0.361 0.282 ± 0.482 0.385 ± 0.685 0.514 ± 0.501
PV R, Sk , Ku 0.250 ± 0.371 0.246 ± 0.365 0.259 ± 0.357 0.368 ± 0.781 0.584 ± 0.905 0.826 ± 1.157
Qp/A 0.322 ± 0.428 0.314 ± 0.410 0.296 ± 0.378 0.298 ± 0.389 0.314 ± 0.428 0.334 ± 0.452
V/A 0.267 ± 0.322 0.267 ± 0.317 0.274 ± 0.325 0.335 ± 0.404 0.394 ± 0.521 0.557 ± 0.777
Qp/A , V/A 0.315 ± 0.414 0.300 ± 0.393 0.288 ± 0.385 0.271 ± 0.385 0.297 ± 0.425 0.377 ± 0.521

152



A. Appendix

Figure A.2: Number of flood donors selected according to different similarity thresholds
using S̄ as the similarity matrix.

Figure A.3: Number of flood donors selected according to different similarity thresholds
using CO as the similarity matrix.
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Figure A.4: Similarity of the API triggering a 1POT according to a supervised RF trained to
estimate the parameters of the fitted PDF (HPDF , ↵, �). Each box constructed
with the events belonging to one cluster and one season.
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