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ãx(z, t), ãTX,y(z) t equivalent baseband description of the x- and y-polarization modes

at location z
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(
f
)

equivalent baseband description of the optical TX signal vector
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electronic dispersion compensation (EDC)
θ (t) relative phase factor of the upper and lower branch of the Mach-

Zehnder modulator (MZM)
τPMD polarization mode dispersion (PMD) coefficient
ϑs rotation angle of the principle states of polarization (PSP) of a sin-

gle waveplates in the coarse step standard single mode fiber (SSMF)
model

∆τRMS root-mean-square (RMS) value of the differential group delay (DGD)
τg,x(z), τg,y(z) group delay of the x- and y-polarization modes
∆Ts time domain sample interval
t continuous time
Ubias bias voltage of the Mach-Zehnder modulator (MZM)
u(t) non-return-to-zero (NRZ) drive signal
Uπ π voltage of the Mach-Zehnder modulator (MZM)
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uε scaling factor which incorporates the finite extinction ratio of the
Mach-Zehnder modulator (MZM)

v sample index for frequency domain sampling
xki general electronic dispersion compensation (EDC) input sample
x′ki

general output of the linear least squares (LLS) finite impulse re-
sponse (FIR) channel approximation of the optically amplified in-
tensity modulation with direct detection (OA-IM/DD) link

xki general fractionally spaced feed-forward equalizer (FSFFE) input
sample vector

x(t)◦−•X
(

f
)

electrical RX signal
x̆ki general fractionally spaced feed-forwad and decision feedback equal-

izer (FSFFE-DFE) input sample vector
y′k decision feedback equalizer (DFE) output signal
yk feed-forward equalizer (FFE) output signal
ỹki general fractionally spaced feed-forward equalizer (FSFFE) output

signal
zk feed-forward and decision feedback equalizer (FFE-DFE) output

signal
z location variable of the standard single mode fiber (SSMF)
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Abstract

Abstract

This thesis addresses electronic equalization of intersymbol interference caused by chro-
matic and polarization mode dispersion in intensity-modulated optical communication links
with direct detection. The simple and cost-efficient system setup is, even at high bit rates
of 40 Gbit/s and beyond, of interest for short-haul optical links in metropolitan, aggrega-
tion or local area networks. Therefore, this thesis investigates preferably simple and low-
complexity equalizer structures, which are able to compensate well for the nonlinear char-
acteristics and influences of the intensity-modulated optical communication link with direct
detection. Starting with system modeling and the introduction to different equalization meth-
ods, we identify low-complexity feed-forward and decision-feedback equalizers in the first
part of this thesis. We further put their chromatic and polarization mode dispersion compen-
sation performance to the broader context by comparison to maximum likelihood sequence
estimation. Finally, we come to the investigation of adaptation algorithms for equalizer
coefficient adjustment, which accounts for the time-variant nature of polarization mode dis-
persion, while still targeting preferably simple and efficient realization.

Kurzfassung

Die vorliegende Arbeit befasst sich mit der elektronischen Entzerrung von Intersymbolin-
terferenzen, wie sie in einfachen intensitätsmodulierten optischen Übertragungssystemen
mit direkter Detektion durch chromatische oder Polarisationsmodendispersion hervorgeru-
fen werden. Aufgrund des einfachen und kostengünstigen Aufbaus sind solche Systeme auch
bei hohen Bitraten von 40 Gbit/s und darüber hinaus vor allem für optische Kurzstrecken-
verbindungen in Metro-, Zugangs- oder lokalen Netzen von Interesse. Deshalb werden in
dieser Arbeit möglichst einfache und aufwandsreduzierte Entzerrerstrukturen untersucht, die
die nichtlinearen Eigenschaften und Einflüsse des intensitätsmodulierten optischen Übertra-
gungskanals mit direkter Detektion trotzdem möglichst gut kompensieren. Ausgehend von
der Modellbildung und Vorstellung verschiedener Entzerrungsverfahren wird in einem ersten
Teil deshalb die aufwandsreduzierte Auslegung von vorwärts- und entscheidungsrückgekop-
pelten Entzerrerstrukturen bestimmt. Ihre Leistungsfähigkeit bzgl. der Kompensation von
chromatischer und Polarisationsmodendispersion wird in einem weiteren Schritt durch Ver-
gleich mit der Maximum-Likelihood Sequenzschätzung in einen größeren Kontext gesetzt.
Abschließend widmet sich diese Arbeit der Untersuchung von Adaptionsalgorithmen, um
dem zeitvarianten Verhalten der Polarisationsmodendispersion durch Nachführen der Ent-
zerrerkoeffizienten begegnen zu können. Hierbei liegt ebenfalls ein wichtiger Aspekt auf der
möglichst einfachen und aufwandsreduzierten Realisierung.
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Chapter 1

Introduction

Since the first Nobel Prize winning feasibility announcement of low-loss optical waveguid-
ing with dielectric media by Kao and Hockham in 1966 [1], optical data transmission has
evolved to become the backbone technology of modern telecommunication networks. In
the early days, researchers had mainly to cope with the reduction of signal attenuation by
improving materials and manufacturing processes. Another important issue was the devel-
opment of preferably cheap transmitter (TX) and receiver (RX) device technologies. Since
the data rates were quite low for pure voice traffic at that time, bandwidth seemed to be no
limiting factor. The advent of wavelength division multiplex (WDM) systems in the 1990s
has even emphasized the statement that optical fiber communications would offer almost un-
limited capacity. However, the multimedia-based Internet of today with the recent roll-out of
triple play and enhanced multimedia services over fixed and mobile networks has revealed
that the transmission capacity and transmission techniques of present optical networks will
no longer satisfy future requirements. This has put some pressure on equipment manufactur-
ers and researchers all over the world to push optical transmission technology to its limits.
For example, the already deployed fiber infrastructure could offer more potential if dynamic
optical routing and switching were applied. This is one possible approach by which network
operators seek to increase their network efficiency. Hence, Ethernet technologies, which are
well established for dynamic bandwidth allocation and medium sharing in wireline commu-
nication systems [2], are adopted to the optical domain by so-called Carrier-Grade Ethernet.
This comes along with increasing data rates and higher spectral efficiency [3, 4, 5, 6] to
satisfy the bandwidth demand by end users, e. g. for applications like high-definition (HD)
video streaming over the Internet. This will make optical networks also penetrate into the
aggregation network domain where cheap installation cost and economy of scale are major
drivers. All those impacts will challenge the underlying optical and electrical transmission
technologies.

In optically amplified intensity modulation with direct detection (OA-IM/DD) links using
standard single mode fibers (SSMFs) (possibly enhanced by optical chromatic dispersion
(CD) compensation using fixed length dispersion-compensating fibers (DCFs)), polarization
dependent impairments could be neglected for bit rates up to 10 Gbit/s. However, despite
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Chapter 1. Introduction

the nomenclature single mode, two degenerate orthogonal polarization modes may propa-
gate along a SSMF. Minimal manufacturing deviations from the circular fiber geometry
and external mechanical stress [7] may change the effective refractive index profile along
the fiber cross section and, consequently, result in different group velocities. Mechanical
stress may arise from temperature changes, fiber bending and accidental shock impacts from
the environment, which makes the resulting polarization mode dispersion (PMD) a random
time-variant phenomenon. Consequently, the optical channel impairments of CD and time-
variant PMD together with prospective optical routing and switching lead us to consider an
optical end-to-end connection as a dynamic system now. Therefore, system design requires
to take this dynamic behavior into account, and the transmission equipment must be able
to follow the changes of the optical link characteristics and to compensate for the resulting
impairments of signal quality.

There has already been spent some effort in investigating appropriate and adaptive TX and
RX PMD mitigation techniques. While optoelectronic devices offer good compensation
performance because they can act directly on the electromagnetic field [8, 9, 10, 11, 12],
they are bulky, require high mechanical precision and are difficult to adapt to changing link
conditions. This leads to high manufacturing, installation and operational costs. These are
the reasons why investigation of electronic dispersion compensation (EDC) has gained in-
terest although it is a suboptimal solution in OA-IM/DD links because it can only act on
the electrical RX signal, i. e. not directly in the optical domain from where the main sig-
nal impairments originate. Furthermore, direct detection removes all phase information
when the optical signal is converted to an electrical one. Nevertheless, EDC devices are
promising Plug’n Play (PnP) alternatives which might also be used to enhance fixed optical
compensation techniques. The main advantage of EDC arises from the possibility to make
use of mature complementary metal-oxide semiconductor (CMOS) very-large-scale integra-
tion (VLSI) fabrication technologies. This offers some cost, space and scale advantages
compared to optical technologies and allows to integrate the compensation device and its
adaptation unit digitally on the same die. This simplifies network installation and operations
to great extents.

The proposed EDC methods range from electronic predistortion (EP) [13] at the TX side
to linear feed-forward equalizers (FFEs) with decision feedback equalizers (DFEs) [14] and
maximum likelihood sequence estimation (MLSE) devices [15, 16, 17, 18] at the RX side.
Since EP requires an additional feedback channel for channel state information (CSI), FFE-
DFE and MLSE are the most promising approaches for dynamic EDC with no additional
overhead. Among these two, MLSE offers better compensation potential at the expense of
high computational complexity, which scales exponentially with channel memory. Purely
digital EDC solutions are rare in OA-IM/DD systems [19, 20, 21] because data rates of
40−100 Gbit/s require almost clock rates in the same region if serial data stream processing
is intended. Therefore, analog tapped delay lines in Silicon-Germanium (SiGe) technology
have been the technology of choice for first FFE-DFE realizations [22, 23, 24, 25, 26]. How-
ever, this approach makes joint integration with the adaptation unit difficult and inherently
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suffers from inaccurate adaptation [27]. Pioneering work on digital realization of MLSE has
already been reported for a data rate of 43 Gbit/s [28], too. While its higher computational
complexity and operational cost in terms of power dissipation are well justified for long-haul
optical links, this thesis investigates FFE-DFEs as a comparably low-complexity and low-
cost alternative for the short-haul range. It tries to bridge the gap towards higher data rates by
introducing algorithmic simplifications for the adaptation unit. As a more general prospect,
digital design in CMOS technology could further allow to integrate more functionality like
forward error correction (FEC) decoding [29] on the same die.

This thesis is organized as follows. Ch. 2 gives a general overview on the components of
a OA-IM/DD link and points out the main device and signal characteristics of this trans-
mission format. Ch. 3 deals with the detailed modeling of the considered optical fiber link
using commonly known description and simulation techniques. Special emphasis is placed
on induced SSMF impairments like CD, PMD and self-phase modulation (SPM) and their
impacts on the electrical RX signal, which is further processed by the EDC unit. Then,
Ch. 4 first reviews major methods for EDC ranging from MLSE to less computationally
complex FFE-DFEs with different coefficient adjustment criteria like minimal bit error ra-
tio (MIN-BER), zero-forcing (ZF) and minimum mean squared error (MMSE). A first goal
of the presented simulation results is to identify the most suitable number of coefficients of
the FFE-DFEs based on the MMSE criterion. A further subsection deals with the suitability
of the MMSE criterion in noise-limited OA-IM/DD fiber links. The potential of fractionally
spaced sample processing for all considered EDC methods is discussed in another subsec-
tion. Ch. 4 concludes with a comprehensive performance analysis comparing all considered
EDC methods.

Ch. 5 introduces adaptive FFE-DFE equalization using the least mean square (LMS) algo-
rithm as an iterative solution to the MMSE criterion. Having implementation in mind, it
also investigates the impact of algorithmic simplifications on the adaptation performance
and presents a dedicated solution.

As a general notation formalism,

• lower case letters are used for time domain signals and impulse responses, e. g. q(t),

• upper case letters are used for frequency spectra, transfer functions and constants in
time and frequency domain, e. g. Q( f ) or Q0,

and

• multidimensional signals and frequency spectra as well as vectors and matrices are
highlighted by bold face letters, e. g. q(t), Q( f ), v or M,

if not stated otherwise. All signal variables in equations are considered to be normalized
with respect to their physical unit.
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Chapter 2

Intensity-Modulated Optical Links with
Direct Detection

This chapter gives an overview on OA-IM/DD fiber transmission with respect to its analog
real-world physical signals. Having system modeling in Ch. 3 in mind, the description re-
quires at some stages a switch from time to frequency domain and vice versa. That is why in
some schematics and block diagrams the labeling of various entities may alternate between
impulse responses and transfer functions in order to emphasize the corresponding modeling
approach. However, consistency is always guaranteed owing to the linearity of the Fourier
transform.

A typical link setup, as depicted in Fig. 2.1, consists of three major building blocks:

• An optical TX, which modulates the optical continuous wave (CW) signal with the
information signal to be transmitted,

• an optical fiber, along which the optical signal propagates,

• and the optical RX front end, which performs the conversion from the optical back to
the electrical domain.

The binary information bk ∈ {0,1} at the TX side, which might originate from any multime-
dia or data source, is fed into the optical fiber link at a rate of Rb ∼ 1/Tb ∈R+. The discrete-
time index k = 0, . . . ,K− 1 in bk aligns with the time interval kTb. The parameter K ∈ N1

specifies the length of the bit sequence. Since all modern digital communication systems are
equipped by some FEC capabilities to combat noise distortions [30, 31, 32, 33, 34, 35], we
assume that the bits bk in Fig. 2.1 have already been preprocessed by applying an appropriate
channel code. The actual value of Rb is not a net but a gross value therefore.

The following non-return-to-zero (NRZ) impulse shaper transforms the binary information
into an electrical signal with the impulse g(t) ∈ R in Fig. 2.1. The considered values of
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Figure 2.1: Principal structure of an OA-IM/DD fiber link

Rb > 10 Gbit/s favors external modulation of the optical CW signal by a Mach-Zehnder
modulator (MZM). The modulating electrical signal u(t) ∈ R driving the MZM is

u(t) =
K−1∑
k=0

bk g(t− kTb) ∈ R. (2.1)

The second input to the MZM is the unmodulated optical CW signal, which originates from
a semiconductor laser diode (LD). For now let us consider the LD output signal to be a
linearly polarized transverse electromagnetic (TEM) wave, which results from the solution
of Maxwell’s Equations for a homogeneously cylindrical and dielectric transmission medium
as an idealized model of an optical fiber. The electric and magnetic field components of
the optical CW signal are orthogonal, and their numerical values interdepend linearly by
the characteristic wave impedance. Therefore, either the scalar electric or magnetic field
component determines solely the optical CW signal with respect to the plane of polarization.
During our initial considerations, we describe the optical CW signal, which leaves the LD,
by

e(t) = E0 cos
(
2π f0t +ϕ0

)
, E0, f0 ∈ R, ϕ0 ∈ [0,2π) , (2.2)

with the scalar amplitude E0. The angular frequency is ω0 = 2π f0. The frequency f0 is
connected to the optical wavelength in vacuum by λ0 = c0/ f0, and the zero phase angle ϕ0

represents an arbitrary but fixed phase offset. The impact of frequency chirp is neglected.
Further, the propagation along the short pigtail connection from the LD to the MZM does
not affect the shape of the optical CW signal. This justifies that we take e(t) of Eq. (2.2)
directly as input to the MZM and neglect the exact description as a TEM wave with location
dependency along the direction of propagation. Note that we must extend the simple scalar
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notation of Eq. (2.2) for the electrical field component to include PMD effects later on (cf.
Ch. 3).

The MZM exploits the electro-optic Pockels effect of e. g. Lithium niobate (LiNbO3) [36]
to modulate the optical CW signal e(t) with the electrical drive signal u(t). Since the MZM
transfer characteristic, which is denoted by mMZM{·}, is of nonlinear shape, intermodulation
products with spectral broadening occur in the optical output spectrum of the MZM. If the
SSMF of Fig. 2.1 was part of a WDM system, direct feed of the SSMF by the MZM output
signal would interfere and disturb neighboring wavelength channels. For this reason, an
optical band-pass filter (BPF) is placed between the MZM and the SSMF in order to reduce
this intermodulation interference. WDM channel spacing grids for 10 Gbit/s metropolitan
area networks are commonly either 100 GHz or 50 GHz according to several International
Telecommunication Union (ITU) Recommendations [37, 38, 39, 40, 41]. Assuming that
the useful component of the optical TX frequency spectrum, generally denoted by Bopt , is
determined by the Nyquist frequency fN [42] of the electrical impulse g(t), i.e.

Bopt ≈ 2 fN ≈ 2 ·5 GHz = 10 GHz

for Rb = 10 Gbit/s, we have almost a factor of five between utilized bandwidth for a channel
spacing grid of 50 GHz. Throughout this thesis, we assume the same relation for Rb =

40 Gbit/s with
Bopt ≈ 2 fN ≈ 2 ·20 GHz = 40 GHz

and a channel spacing grid of 200 GHz. This can be viewed as using either the even or odd
channels suggested by the 100 GHz ITU channel spacing grid. As a consequence of this
assumption, the 3 dB bandwidth of the optical BPF is set to B3 dB,opt ≈ 200 GHz, i.e. that
frequencies marking the 3 dB bandwidths of adjacent WDM channels coincide. The quite
large gap with B3 dB,opt ≈ 5 Bopt owes to the fact that steep frequency slopes are hard to
realize for optical BPFs. Consequently, the useful component of the optical TX frequency
spectrum is hardly touched by the optical BPF transfer function Hopt

(
f
)

(cf. Ch. 3.2), and
we can fairly approximate the signal entering the SSMF with

aTX(t) =
(

e(t) mMZM
{

u(t)
})
∗F−1

{
Hopt

(
f
)}︸ ︷︷ ︸

=hopt(t)∈R

, mMZM
{

u(t)
}
∈ R, (2.3)

=
(

E0 mMZM
{

u(t)
}︸ ︷︷ ︸

=ae(t)

cos
(
2π f0t +ϕ0

) )
∗hopt(t)

=
(

ae(t) cos
(
2π f0t +ϕ0

))
∗hopt(t)

B3 dB,opt↑
≈ ae(t) cos

(
2π f0t +ϕ0

)
. (2.4)

The approximation made in Eq. (2.4) will also simplify notation during the following deriva-
tions. The braces of mMZM{·} in Eq. (2.3) indicate that the argument is a time function, and
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F−1{·} denotes the inverse Fourier transform operator. The term ae(t) in Eq. (2.4) serves
as a shorthand notation for the real-valued envelope of aTX(t).

When propagating along the SSMF of length L f , the optical TX signal is exposed to several
degrading effects. These are attenuation, CD or PMD as linear ones, or SPM and stimulated
Brillouin scattering (SBS) as nonlinear ones. WDM systems are further affected by nonlin-
earities like cross-phase modulation (XPM) and four-wave mixing (FWM). Since we restrict
ourselves to the linear transmission regime so far and due to the more convenient description
of dispersion effects in frequency domain, the optical TX signal at location z ∈ [0,L f ] of the
SSMF is given by

a(z, t)◦−•A
(
z, f
)
= ATX

(
f
)

Hf
(
z, f
)
, Hf

(
z, f
)
•−◦hf(z, t) ∈ R, (2.5)

with the Fourier correspondence aTX(t)◦−•ATX
(

f
)

and the location dependent SSMF trans-
fer function Hf

(
z, f
)
, which represents the above mentioned linear impairments.

The input to the optical receiver front end results from Eq. (2.5) evaluated at z = L f , i.e.

aRX(t)◦−•ARX
(

f
)

:= A
(

L f , f
)
= ATX

(
f
)

Hf

(
L f , f

)
︸ ︷︷ ︸

:=Hf( f)

(2.6)

= ATX
(

f
)

Hf
(

f
)
. (2.7)

We omit the location variable z in Hf
(
z, f
)

and use the shorthand notation Hf
(

f
)

if we want to
address the SSMF transfer function from transmitter to receiver in the following. It depends
on the dominating effect whether the optical fiber link is called either dispersion- or noise-
limited. Dispersion-limited links are mainly degraded by CD and PMD where noise-limited
links suffer more from attenuation and the noise generated by the amplifier device required
to restore appropriate signal levels.

The advent of purely optical Erbium-doped fiber amplifiers (EDFAs) has made optical-
electrical conversion and optical-electrical reconversion (OEO) obsolete for signal reampli-
fication. An EDFA uses a pump LD to excite the electrons of the doped ions into higher en-
ergy states. The incoming optical signal itself triggers those electrons to fall back into lower
energy states while emitting the energy difference as coherent radiation. This results in co-
herent light amplification. Unfavorably, a so-called amplified spontaneous emission (ASE)
process leads to optical noise generation in the doped fiber segment of the EDFA. Never-
theless, installation and operation of EDFAs has become much more comfortable because of
their optical transparency supporting joint reamplification of several wavelength channels. If
the optical fiber link covers a range of several hundreds or thousands of kilometers, a couple
of EDFAs must be distributed along this distance as is done e. g. in long-haul undersea net-
works. However, the considered system in this thesis comprises only one amplifier right at
the end of the optical fiber link (cf. Ch. 3.2.3).
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The optical BPF at the receiver front end is placed for channel demultiplexing in WDM
systems and for suppression of out of band noise from the EDFA to improve the signal-to-
noise ratio (SNR) at the RX. Its transfer function has the same shape and 3 dB bandwidth
B3 dB,opt as the one at the TX. Neglecting noise at the moment and assuming that the fiber
attenuation has been completely compensated by the EDFA, we may write for the reamplified
and filtered optical RX signal

aAF(t) = G aRX(t)∗hopt(t)
B3 dB,opt↑
≈ G aRX(t) , G ∈ R+. (2.8)

The factor G is the constant gain of the EDFA. Once again, the impact of optical RX filtering
on the useful component of the optical RX signal is negligible in Eq. (2.8) for the same
reasons as already explained at the TX side.

OA-IM/DD systems belong to the class of envelope detectors compared to the coherent
homo- or heterodyne principles in other wireline or wireless systems [42]. In the past, the
reason for the absence of homo- or heterodyne receivers in optical communication systems
was that it has been very difficult to control coherence of the local LD at the receiver due
to frequency chirp and time-varying PMD. However, recent advances in high-speed signal
processing capabilities allow to mitigate the frequency deviations by chirp at the expense of
higher processing overhead [43]. We keep to the well developed and simple to realize direct
detection technique in this thesis. The photodiode (PD) acts as a compact envelope detector
with a square law detection (SLD) operation on the optical RX signal and inherent low-pass
filtering. These joint properties of the PD are distributed among two different entities in the
schematic of Fig. 2.1. This detached description is closer to our modeling approach, in which
the electrical low-pass filter (LPF) Hel

(
f
)

may also include the frequency spectrum shaping
and amplification of a transimpedance amplifier placed right after the PD. Since we assume
that the noise from optical amplifiers dominates, additional electronic noise sources in the
transimpedance amplifier stage will not be considered in this thesis.

The physics of a PD shows a dependence of the photo current i(t) being proportional to the
optical power pAF(t). This optical power itself depends linearly on the square of the incident
electrical field aAF(t). We can write

i(t) = IP0 pAF(t) , IP0 ∈ R+, (2.9)

pAF(t)∼aAF(t)
2

= IE0 aAF(t)
2 , IE0 ∈ R+. (2.10)

The power responsivity of the photodiode is denoted by IP0. The linear relation pAF(t) ∼
aAF(t)

2 represents the already mentioned SLD rule of the the photo current i(t) and the
received electrical field aAF(t). The factor IE0 can be viewed as the field responsivity. Note
that, besides the modulator transfer characteristic mMZM{·}, it is mainly the SLD operation
of the PD, which makes an OA-IM/DD system a nonlinear one. The phase information of
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Chapter 2. Intensity-Modulated Optical Links with Direct Detection

the optical signal gets lost, and, when we introduce noise from the EDFA in Ch. 3.2.3, its
statistical properties change by direct detection.

The demodulation in direct detection is completed by final low-pass filtering with hel(t)◦−•
Hel
(

f
)
. We can write for the result of this operation

x(t) = i(t)∗hel(t) , hel(t) ∈ R, (2.11)

= IE0 aAF(t)
2 ∗hel(t) . (2.12)

At this point, a transform of Eq. (2.12) to frequency domain is advisable. The squaring is
consequently replaced by a frequency domain convolution and results in

X
(

f
)
= I
(

f
)

Hel
(

f
)

(2.13)

= IE0

(
AAF

(
f
)
∗AAF

(
f
))

Hel
(

f
)
. (2.14)

App. A illustrates the inherent steps involved in Eq. (2.14). It gives further insight how
I
(

f
)

is generated by self-mixing aAF(t)aAF(t) •−◦AAF
(

f
)
∗AAF

(
f
)

as a result of direct
detection. The resulting frequency spectrum I

(
f
)

contains spectral components at f = 0 Hz
and at f = ±2 f0. The (naturally imposed) cutoff frequency f3 dB,el of the electrical LPF is
appropriate to retain the baseband component X

(
f
)

of I
(

f
)

and to suppress the components
near ±2 f0.

Finally, the electrical RX signal is sampled and processed by the EDC unit to determine the
estimate b̂k on the TX bit bk.
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Chapter 3

Physical Layer Simulation Model

After having reviewed the major building blocks of an OA-IM/DD link in Ch. 2, this chapter
features the basic concepts of physical modeling for simulation. We generally derive an
appropriate signal representation for computer simulations and discuss the impacts of the
most important parameters on simulation accuracy. This is followed by a detailed look at
the preferably simple physical models of the system entities. In addition, inclusion of PMD
effects requires to extend the scalar optical signal description of Ch. 2 to a two-dimensional
one.

3.1 General Approach

3.1.1 Discrete-Time Signal Representation

Considering most linear wireline or wireless digital communication systems, a single-tap
equivalent time domain description is adequate to bundle up all signal properties sufficiently
in the final discrete-time symbol-spaced output of the model [42]. Symbol-spaced in the con-
text of this thesis means a sampling frequency of fs = 1/Tb, i.e. one discrete-time sample per
bit interval. Direct application of this quite efficient approach to OA-IM/DD systems would
implicate difficulties in capturing intermodulation effects and the nonlinearity of direct detec-
tion accurately [44] (cf. App. A). Some exist [18, 35, 45], but they require much preparatory
work or rely on less restrictive assumptions. Therefore, we have to take the continuous-time
signal description of Ch. 2 and transfer it into the corresponding discrete-time floating-point
representation for the purpose of accurate computer simulations. Systems theory demands
compliance with the sampling theorem for this transformation, and the sampling frequency
fs ∈ R+ must fulfill fs ≥ 2 fmax to avoid frequency aliasing with fmax < ∞ being the high-
est nonzero frequency component in the frequency spectrum of the continuous-time signal.
However, real-world physical signals are time-limited and consequently feature a nonzero
infinite frequency range. Nevertheless, the shape of real-world physical signals is smooth
in time domain. Often, the frequency components carrying most of the signal power are
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concentrated within a distinct frequency range and decay towards zero for
∣∣ f ∣∣→ ∞. These

properties resolve the conflicting requirement between the sampling theorem and the natural
impact of time limitation effectively. By choosing the sampling frequency fs sufficiently
high, just a small amount of frequency aliasing occurs, which affects accuracy to minor
extent.

Let q(t) be such a time-limited signal with

q(t) =

{
6= 0 : t ∈ [0 s,KTb]

0 : elsewhere
(3.1)

as a placeholder for any of the physical signals of the OA-IM/DD link in Fig. 2.1 of Ch. 2,
i.e.

q(t) ∈
{

u(t) ,e(t) ,aTX(t) ,a(z, t) ,aRX(t) ,aAF(t) , i(t) ,x(t)
}
. (3.2)

Causality of q(t) is just for convenience and to emphasize the modeling of real-world physi-
cal signals here, but it is not a necessary requirement for computer simulations. Since q(t) is
time-limited, the frequency spectrum Q( f ) •−◦ q(t) is of infinite frequency as a property of
the Fourier transform.

If we define a time domain sample interval ∆Ts through the number of samples L∈N1 within
the bit interval Tb by

∆Ts =
1
fs

:=
Tb

L
⇐⇒ L =

Tb

∆Ts
, (3.3)

the ideally sampled version of q(t) with special segmentation according to the bit interval Tb

is given by

q∆Ts(t) = q(t)︸︷︷︸
=0∀k 6=0,...,K−1

∞∑
k=−∞

L−1∑
l=0

δ
(
t− (kL+ l)∆Ts

)
(3.4)

=
K−1∑
k=0

L−1∑
l=0

q
(
(kL+ l)∆Ts

)︸ ︷︷ ︸
=:qkL+l

δ
(
t− (kL+ l)∆Ts

)
. (3.5)

The parameter L is also known as oversampling factor. Setting l = 0, . . . ,L−1 as the over-
sampling index within one bit interval, we introduce the time series representation

qKL :=
(
qkL+l

)
k=0,...,K−1; l=0,...,L−1 (3.6)

for the samples of q(t). This series representation serves as the time domain input into the
computer simulation model used in this thesis.

Since q(t)◦−•Q( f ) is not band-limited as per our definition above, the corresponding peri-

12



3.1. General Approach

odic spectrum1

Q∆Ts

(
f
)
=

1
∆Ts

∞∑
µ=−∞

Q
(

f −µ fs
)
, µ ∈ Z, (3.7)

=

K−1∑
k=0

L−1∑
l=0

qkL+l e−j2π f (kL+l)∆Ts. (3.8)

contains frequency aliasing. However, we can reduce the effect of aliasing by shifting the
partial spectra Q( f − µ fs) further apart and reduce the overlapping areas by increasing the
sampling frequency fs. This is done according to Eq. (3.3) by increasing the oversampling
factor L.

In order to use the primitive period of Q∆Ts( f ) within the range f ∈ [− fs/2, fs/2] in Eq. (3.7)
as an approximation to Q( f ), we introduce a rectangular frequency domain simulation win-
dow of the form

Rfsim
(

f
)

:=

{
1
fs

:
∣∣ f ∣∣≤ fs/2

0 :
∣∣ f ∣∣> fs/2

•−◦ rfsim(t) = sinc
(
π fst

)
. (3.9)

Frequency domain windowing leads to the signal

q′(t) = q∆Ts(t)∗ rfsim(t)◦−•Q′
(

f
)
= Q∆Ts

(
f
)

Rfsim
(

f
)

(3.10)

which represents the actual continuous-time signal modeled by discrete-time simulations in
this thesis, i.e.

q′(t)≈ q(t) and Q′
(

f
)
≈ Q

(
f
)
. (3.11)

The accuracy of this approximation can be adjusted through the choice of an appropriately
large oversampling factor L.

Figs. 3.1(a) and 3.1(b) illustrate the impact of the oversampling factor on simulation accuracy
for a single bit sequence, i.e. K = 1. Both show the same time-limited signal q(t) in the range
t ∈ [0 s,Tb], the sampled versions q∆Ts(t) and the approximations q′(t) for L = 4 and L = 32,
respectively. Compared to q(t), the approximations q′(t) are of infinite duration since the
impulse response rfsim(t) of the rectangular simulation window is a sinc-function with zeros
at t = m∆Ts, m ∈ Z\{0}. The locations of the zeros of rfsim(t) imply that

q(m∆Ts)≡ q∆Ts(t)≡ q′(m∆Ts) , m∆Ts ∈ [0 s,KTb] . (3.12)

This means that despite the differences in continuous-time shape between the sampling in-
stants, q(t) and q′(t) have their time series representation qKL in common.

1δ (t− (kL+ l)∆Ts)◦−• e−j2π f (kL+l)∆Ts has been applied to get Eq. (3.8).

13
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t/Tb
0.5

0

0.5

1

1 1.50-0.5

q(t)
q∆Ts (t)

q′(t)

(a) Modeling accuracy with L = 4
(for K = 1): ∆Ts = Tb/4→ fs = 4/Tb

t/Tb
0

0.5

1 q(t)
q∆Ts (t)

q′(t)

0.5 10-0.5 1.5

(b) Modeling accuracy with L = 32
(for K = 1): ∆Ts = Tb/32→ fs = 32/Tb

Figure 3.1: Influence of the oversampling factor L on simulation accu-
racy

3.1.2 Discrete-Frequency Signal Representation

At the very beginning of Ch. 2, there has already been mentioned that some entities of the
OA-IM/DD link are rather modeled in frequency than in time domain. If we use the time
domain description of the previous subsection as our basis, the time domain input signal
to a frequency domain model of an entity has to be transformed before, and the resulting
frequency spectrum has to be retransformed after being processed.

The frequency range of the approximation q′(t) ◦−•Q′( f ) is limited by the rectangular fre-
quency domain simulation window, i.e. the applicable frequencies for simulation modeling
are given by f ∈ [− fs/2, fs/2]. However, Q′( f ) itself is still continuous-frequency although
we can only process discrete-frequency spectra within our computer model. Therefore,
it is necessary to transform the continuous-frequency spectrum Q′( f ) into an appropriate
discrete-frequency one. In analogy to the time domain, this can be considered as a frequency
domain sampling process, which has principally to conform to the sampling theorem.

If we define a frequency domain sample interval ∆Fs ∈ R+, the ideally sampled frequency
spectrum of Q′( f ) is then given by

Q′∆Fs

(
f
)
= Q′

(
f
) ∞∑

v=−∞

δ
(

f − v∆Fs
)

(3.13)

=
∞∑

v=−∞

Q′(v∆Fs) δ
(

f − v∆Fs
)

(3.14)

=
∞∑

v=−∞

Q∆Ts(v∆Fs) Rfsim(v∆Fs)︸ ︷︷ ︸
=0 : |v|>b fs

2∆Fs c

δ
(

f − v∆Fs
)

14



3.1. General Approach

=

b fs
2∆Fs c∑

v=d− fs
2∆Fs e

Q∆Ts(v∆Fs)︸ ︷︷ ︸
=:Qv

δ
(

f − v∆Fs
)

(3.15)

with the definition of the discrete-frequency series

QV := (Qv)v=d− fs
2∆Fs e,...,b

fs
2∆Fs c

(3.16)

representing the discrete-frequency version of Q′( f ). This is the general form, frequency
spectra and transfer functions are represented in our computer simulation model.

We know from time domain sampling that the spectra of sampled signals are periodic. The
same analogy holds for sampled frequency spectra if transformed back to time domain with

q′∆Fs
(t) =

1
∆Fs

∞∑
µ=−∞

q′
(

t−µ
1

∆Fs

)
, µ ∈ Z. (3.17)

If the time domain signal is not time-limited like the approximation q′(t), time-domain alias-
ing occurs. The aliasing can be adjusted by setting ∆Fs appropriately. The qualitative impres-
sions of Figs. 3.1(a) and 3.1(b) for time domain sampling may also serve as an indication for
the accuracy of frequency domain sampling if we associate the time domain with their corre-
sponding frequency domain counterparts. Especially, we can state that time domain aliasing
effects may be reduced reasonably by decreasing the frequency domain sample interval ∆Fs.

We can repeat the procedure of the previous section and define a time-domain simulation
window of the form

rtsim(t) :=

{
∆Fs : |t| ≤ 2/∆Fs

0 : |t|> 2/∆Fs
◦−•Rtsim

(
f
)
= sinc

(
π

f
∆Fs

)
. (3.18)

Application of this window to q′
∆Fs

(t) leads to

q′′(t) = q′∆Ts
(t)rtsim(t)◦−•Q′′

(
f
)
= Q′∆Ts

(
f
)
∗Rtsim

(
f
)
, (3.19)

which represents the actual continuous-time signal after being processed in frequency do-
main modeled by discrete-frequency simulations in this thesis, i.e.

q′′(t)≈ q′(t)≈ q(t) and Q′′
(

f
)
≈ Q′

(
f
)
≈ q
(

f
)
. (3.20)

Again, the choice of an appropriately small frequency domain sample interval ∆Fs guarantees
accuracy to the approximations made here.
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Chapter 3. Physical Layer Simulation Model

3.1.3 Efficient Transformation between Discrete-Time and
Discrete-Frequency Signal Representation

If we consider the definition of the frequency series QV in Eq. (3.14) and use Eqs. (3.8)
and (3.10) to express its elements by the time series representation qKL, we arrive at

Qv = Q′(v∆Fs) = Q∆Ts(v∆Fs)Rfsim(v∆Fs)

=
K−1∑
k=0

L−1∑
l=0

qkL+l e−j2πv∆Fs(kL+l)∆Ts Rfsim(v∆Fs)︸ ︷︷ ︸
=1 : |v|≤b fs

2∆Fs c

=

K−1∑
k=0

L−1∑
l=0

qkL+l e−j2πv∆Fs(kL+l)∆Ts. (3.21)

Now, if we set

∆Fs :=
1

KTb
=

1
KL∆Ts

=
fs

KL
, (3.22)

we arrive at

Qv =
K−1∑
k=0

L−1∑
l=0

qkL+l e−j 2π

KL v(kL+l), v =
(
−KL

2
, . . . ,

KL
2
−1
)
. (3.23)

The range of the frequency domain sample index is v = −KL/2, . . . ,KL/2− 1 if the total
number of series elements KL is even. This is always the case in the simulation models
in this thesis. Otherwise, it would be v = −KL div 2, . . . ,KL div 22. Through the special
setup of ∆Fs in Eq. (3.22), the frequency series, whose notation turns into QKL according to
Eq. (3.16), has the same number of elements as the time series qKL now. Substitution and
elimination of the double sum with l′ := kL+ l in Eq. (3.23) makes this obvious and leads to

Qv =
KL−1∑
l′=0

ql′ e
−j 2π

KL vl′, v =−KL
2
, . . . ,

KL
2
−1. (3.24)

This equation resembles much the definition of the discrete Fourier transform (DFT) which
can be efficiently computed by the fast Fourier transform (FFT) algorithm. Assuming the
number of series elements KL to be even, the time domain series qKL can be recomputed by
applying the inverse fast Fourier transform (IFFT) algorithm to get

qkL+l =
1

KL

KL
2 −1∑

v=−KL
2

Qv ej 2π

KL v(kL+l)

2 div is integer division.
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=
1

KL

−1∑
v=−KL

2

Qv ej 2π

KL v(kL+l)+

KL
2 −1∑
v=0

Qv ej 2π

KL v(kL+l)

v′:=v+KL
=

1
KL

KL−1∑
v′=KL

2

Qv′−KL︸ ︷︷ ︸
= Qv′

(periodic extension of QKL)

ej 2π

KL v′(kL+l) e−j 2π

KL KL(kL+l)︸ ︷︷ ︸
=1

+

KL
2 −1∑
v=0

Qv ej 2π

KL v(kL+l)

v′:=v
=

1
KL

KL−1∑
v=0

Qv ej 2π

KL v(kL+l), k = 0, . . . ,K−1; l = 0, . . . ,L−1. (3.25)

The final step to arrive at this result makes use of a periodic extension of the frequency series
QKL by setting

Qv′ := Qv′−KL, v′ = KL/2, . . . ,KL−1, (3.26)

and the circular symmetry of the complex exponential function to get the conventional IFFT
indexing scheme with v = 0, . . . ,KL−1.

In conclusion, we have summarized the general modeling approach in Fig. 3.2. It shows
the interaction of input and output signals among the entities of Fig. 2.1 on page 6 when
simulating the behavior of the OA-IM/DD link, whether in time or frequency domain. The
depicted entity with its impulse response h(t) and transfer function H( f ) and their discrete-
time counterparts hkL+l and Hv may be viewed as

sampling in time and frequency domain→ time and frequency domain windowing
→ periodic extension in time and frequency domain

time domain h(t)

frequency domain H
(

f
)

continuous

qout,kL+l

Hv

HvQin,vQin,v

discrete

time domain hkL+l

frequency domain Hv

FFT IFFT

qout (t)qin(t)

k=0,...,K−1, l=0,...,L−1

K−1∑
m=0

L−1∑
n=0

hmL+n qin,(kL+l−(mL+n)+KL) mod (KL)

Qin
(

f
)

Qout
(

f
)

v=0,...,KL−1

qin,kL+l

Figure 3.2: General modeling approach from continuous to discrete and
periodic time and frequency domain representation
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a placeholder for any entity in Fig. 2.1, which models a physical operation on its labeled
input to calculate the corresponding output signal, i.e.

H
(

f
)
∈
{

F
{

g(t)
}
,Hopt

(
f
)
,Hf
(
z, f
)
,Hel

(
f
)}

. (3.27)

Fig. 3.2 adds the labels “in” and “out” to q(t) for distinction. Eqs. (3.4) – (3.25) are the
guidelines to generate the time and frequency domain series elements, qin,kL+l and hkL+l as
well as Qin,v and Hv, from their continuous time or frequency descriptions. While frequency
domain simulation relies mainly on Eqs. (3.24) and (3.25) with

• FFT execution on the input time series elements qin,kL+l ,

• sample by sample multiplication of Qin,v with Hv,

• and final IFFT execution on the resulting frequency series elements HvQin,v to get
qout,kL+l ,

the corresponding time domain operation is a special kind of convolution which is known as
circular convolution [46] and calculated by

qout,kL+l = FFT−1{HvQin,v
}

=
K−1∑
m=0

L−1∑
n=0

hmL+n qin,(kL+l−(mL+n)+KL) mod (KL)

k = 0, . . . ,K−1; l = 0, . . . ,L−1. (3.28)

The index term (kL+ l− (mL+ n)+KL) mod (KL)3 cares for the correct series elements
of qin,kL+l within the convolution sum of Eq. (3.28). It becomes obvious from Eq. (3.28)
that circular convolution of the input series qin,KL with any impulse response series hKL with
memory (i.e hkL+l 6= 0 for kL+ l > 0) has the consequence that the tail signal components
of the input series qin,KL with kL+ l = . . . ,KL−2,KL−1 contribute to the first ones of the
output sequence qout,KL with kL+ l = 0,1, . . ..

Although we will not explicitly refer to the discrete nature of simulation signals and the
existence of the rectangular simulation windows in time and frequency domain anymore, the
procedures and operations illustrated in Fig. 3.2 have always to be kept in mind when we
focus more on the physical description of the various entities in Ch. 3.2.

3 mod is the modulo operation (remainder after integer division).
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3.1.4 Equivalent Baseband Description

The approach of the equivalent baseband channel is often used to simplify things for the
analysis and simulation of bandpass digital communication systems [42, 47]. Especially,
when it comes to represent continuous-time signals by their discrete-time versions, the equiv-
alent baseband model is favorable. It is obvious that direct simulation of a bandpass system
with carrier frequency f0 and signal bandwidth Bopt would have to cover the frequency range
f ∈ [0, f0 +Bopt/2]. In contrast, the equivalent baseband system with a cutoff frequency at
fc =Bopt/2 only requires to consider the range f ∈ [0,Bopt/2]. The difference becomes more
severe if f0� Bopt . This is especially true for optical communication systems, in which the
frequency of the optical CW signal is in the THz-range, and the signal bandwidth Bopt is in
the GHz-range. Less restrictive requirements on the choice of the sampling frequency fs lead
directly to a smaller oversampling factor L, which is necessary to keep the influence of alias-
ing reasonably low as shown before (cf. Eq. (3.3)). The number of series elements KL for
signal representation decreases the same way, and the data memory as well as the process-
ing time of computer simulations is reduced. Clear notations and equations are additional
advantages of the equivalent baseband description.

As the name equivalent baseband model implies, we have to replace parts of the transmission
system carrying real-valued bandpass signals by their complex equivalent baseband descrip-
tion. Recalling the findings of Ch. 2 with Eqs. (2.12) – (2.14) and inserting Eqs. (2.4), (2.7)
and (2.8), the analog input to the EDC unit can be rewritten in time domain by4

x(t) =
IE0G2

2

((
ae(t) cos

(
2π f0t +ϕ0

))
∗hf(t)

)2

∗hel(t)

=
IE0G2

2

∣∣∣∣ae(t)∗
(

hf(t) e−j2π f0t
)∣∣∣∣2 ∗hel(t) . (3.29)

A closer view on the squared magnitude expression in Eq. (3.29) reveals that it consists of the
envelope of the optical TX signal ae(t) convolved with hf(t) e−j2π f0t ◦−•Hf

(
f + f0

)
. While

ae(t) is a baseband signal by nature, the complex exponential term e−j2π f0t in time domain
causes a shift by − f0 in frequency domain. Consequently, the upper spectral component
of the original SSMF bandpass channel hf(t) ◦−•Hf

(
f
)

is shifted in the baseband region,
while the lower is relocated at −2 f0. This shift is illustrated in Fig. 3.3, in which the SSMF
transfer functions Hf( ·) shall only represent CD for the moment. Since the SSMF is then an
all-pass filter with nonlinear phase (cf. Ch. 3.2.2), we only present the corresponding phase
plot. The asymmetry of Hf

(
f + f0

)
in frequency domain also justifies why hf(t) e−j2π f0t is

a complex-valued time domain signal. Since the frequency components at −2 f0 are filtered
out by the electrical LPF hel(t) with f3 dB,el ≈ Bopt/2� f0 (indicated as dashed inner rect-
angular window in Fig. 3.3), they do not have to be simulated at all. Thus, we can narrow

4The detailed derivation of the resulting expression in Eq. (3.29) is given in App. B.
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arg
(

Hf
(

f + f0
))

f
−2 f0 − f0 0 f0 2 f0

− fs/2 fs/2

left shift left shift

arg
(

Hf
(

f
))

Rfsim
(

f
)

Bopt ≈ 2 f3 dB,el

Figure 3.3: Equivalent baseband description of the SSMF for the exam-
ple of CD: Hf

(
f
)

is represented by its phase

down the rectangular frequency domain simulation window Rfsim
(

f
)

defined in Ch. 3.1.1 by
decreasing fs to the baseband region. Now, the appropriate choice of the sampling frequency
fs = L/Tb not only serves to set the simulation accuracy, but it is also used to suppress the
spectral components of the shifted optical bandpass channel near −2 f0 and to preserve suf-
ficient space for the equivalent baseband spectrum with expected spectral broadening after
direct detection. The preferable relations among the frequency parameters are

f3 dB,el�
fs

2
=

L
2Tb

≪ 2 f0−
Bopt

2
≈ 2 f0−

1
2Tb

(3.30)

assuming that the useful component of the optical TX spectrum is almost the reciprocal of
the bit interval, i.e. Bopt ≈ 1/Tb. Fig. 3.3 indicates these conditions qualitatively. Eq. (3.30)
reveals that the oversampling factor L is our main control parameter for the discrete signal
representation and the equivalent baseband model in computer simulations. After having set
the oversampling factor L to fulfill Eq. (3.30), we may include the rectangular frequency do-
main simulation window into the consideration of the optical fiber link in Eq. (3.29) without
changing the EDC input signal notably and get

x(t)≈ IE0G2

2

∣∣∣∣ ae(t)∗
(

hf(t) e−j2π f0t
)
∗ rfsim(t)︸ ︷︷ ︸

=: h̃f(t)

∣∣∣∣2 ∗hel(t)

=
IE0G2

2

∣∣∣ae(t)∗ h̃f(t)
∣∣∣2 ∗hel(t) . (3.31)

The stand-alone equivalent baseband description of the optical fiber channel is given by

h̃f(t) :=
(

hf(t) e−j2π f0t
)
∗ rfsim(t)◦−• H̃f

(
f
)
= Hf

(
f + f0

)
Rfsim

(
f
)
. (3.32)

Application of the equivalent baseband model for simulating the optical fiber channel im-
plies that all associated signals and entities which are related to or act on the optical signal
have to be transformed into their equivalent baseband description. The transformation rule
of Eq. (3.32) has to be applied to any impulse responses, spectra or transfer functions repre-
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senting an optical signal or entity in Fig. 2.1 on page 6. The tilde, as for h̃f(t)◦−• H̃f
(

f
)
, is

used as a mark to make the distinction to the real-world bandpass signals in the following.

3.2 Device Modeling

We introduce the physical models of the entities depicted in Fig. 2.1 on page 6. We just
present the mathematical formula while discretization of signals and implementation of the
corresponding simulation algorithms have to be worked out according to the the previous
section and instructions given in literature [47]. The depicted waveforms are mostly gener-
ated by linear interpolation of the output from the implemented simulator tool box. Note that
the notation of signals, impulse responses and transfer functions in the optical domain differ
to those of Fig. 2.1 by its vector or matrix character to account for PMD effects. This two-
dimensional description is commonly referred to as Jones calculus [36], which describes two
orthogonal polarization modes propagating along the fiber. Any state of linear polarization
can be directly described by a linear combination of both. If we further allow a phase shift
between the two states, circular or, more general, elliptical polarization can be described,
too. Nevertheless, the previous derivations with scalar treatment of the whole system still
hold and may easily be transferred to the two-dimensional case as will be shown.

3.2.1 Optical Transmitter

Fig. 3.4 summarizes the components of the optical intensity modulation TX with enhanced
two-dimensional labeling to account for PMD effects in equivalent baseband notation.

bit
source

g(t)
impulse

NRZ
u(t)bk

f0

LD

ẽ(t)

MZM

mMZM{·}

opt. BPF

H̃opt
(

f
)

ãTX(t)

Figure 3.4: Optical transmitter

3.2.1.1 Bit Source

The bit source is modeled as a pseudo-random binary sequence (PRBS)

bK = (bk)k=0,...,K−1 , K ∈ N1, (3.33)
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whose bits bk ∈ {0,1} are basically taken from the output of a linear feedback shift register
(LFSR) [42]. In general, a polynomial description in the finite Galois field (GF) GF(21) with
mod 2-arithmetic is used to indicate the tap positions of this LFSR. A nonzero initial state of
the LFSR generates an output sequence

bLFSR,K′ :=
(

bLFSR,k′
)

k′=0,...,2P−1
(3.34)

which repeats itself after a period of 2P− 1 if the employed polynomial with degree P is
primitive. The output sequence bLFSR,K′ is then a maximal length sequence and contains all
different bit patterns of length P except the one with P zeros [42]. Since the response of
nonlinear systems is not independent of the specific input signal, covering all possible bit
patterns is favorable to investigate the intersymbol interference (ISI) effects of neighboring
symbols in OA-IM/DD links. It guarantees that all possible signal transitions within the
temporal spread of ISI are excited and ensures statistical confidence of simulation results.
An appropriate PRBS consequently features a polynomial degree P which takes all expected
ISI of preceding and trailing symbols into account. We include the missing all-zero pattern
of length P in such a PRBS by inserting an additional zero to the longest run of zeros in the
output sequence bLFSR,K′ of the LFSR. PRBSs with these characteristics are called DeBruijn
binary sequence (DBBS) and have

K = 2P (3.35)

elements with equal occurrence of zeros and ones with

P[bk = 0] = P[bk = 1] = 0.5. (3.36)

Fig. 3.5 and Table 3.1 give an example on the generation of such a PRBS for the primitive
polynomial 0x9 = 10012 in hexadecimal and the corresponding binary notation. It has a
degree of P = 4.

taps from primitive polynomial

bLFSR,k′
MSB LSB

1000

1 0 0 1

Figure 3.5: LFSR example in Galois structure for the primitive polyno-
mial 0x9 = 10012 with degree P = 4

bLFSR,15 (1,1,1,1,0,1,0,1,1,0,0,1,0,0,0)
b16 (1,1,1,1,0,1,0,1,1,0,0,1,0,0,0,0)

Table 3.1: PRBS example as output of an LFSR for a primitive polyno-
mial of degree P = 4 and length K = 16

The net bit rate of the investigated optical fiber links is 40 Gbit/s with additional FEC over-
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head of almost 6.8 % [48]. Thus, the effective bit rate is set to Rb = 42.7 Gbit/s for the
computer simulations. We have employed a PRBS with polynomial degree P = 11 and
length K = 2048, which is far enough for the impairing ISI characteristics of the considered
SSMF lengths at 42.7 Gbit/s.

3.2.1.2 NRZ Impulse Shaping

The impulse shaping device for the generation of the NRZ drive signal of the MZM is mod-
eled as a time domain raised cosine impulse of the form

g(t) =



G0 : t ∈
(

Tb
2 −

Tg
2

(
1−ρ

)
, Tb

2 +
Tg
2

(
1−ρ

))
G0 cos2

π

4

∣∣∣∣t− Tb
2

∣∣∣∣− Tg
2 (1−ρ)

ρ
Tg
2

 : t ∈
(

Tb
2 −

Tg
2

(
1+ρ

)
, Tb

2 −
Tg
2

(
1−ρ

)]
∨

t ∈
[

Tb
2 +

Tg
2

(
1−ρ

)
, Tb

2 +
Tg
2

(
1+ρ

))
0 : elsewhere.

(3.37)
We set the amplitude G0 = 1 for convenience, and a realistic impulse shape is given for a
roll-off factor of ρ = 0.35. The parameter Tg is the effective impulse width defined by the
relation

∞∫
−∞

g(t)dt =

∞∫
−∞

rTgdt (3.38)

with

rTg :=

 1 : t ∈
[
−Tg

2 ,
Tg
2

]
0 : elsewhere

. (3.39)

Figs. 3.6(a) and 3.6(b) illustrate the properties of g(t). The eye diagram of the electrical
drive signal u(t) of the MZM (cf. Eq. (2.1)) has been recorded with an oversampling factor
of L = 32. It is drawn using different colors for the signal transitions with respect to the bits
bk = 0 and bk = 1 in Fig. 3.6(b). The time origin coincides with the center point of the eye,
which is maximally open in horizontal and vertical direction. Thus, the electrical part of the
TX supports ISI-free signaling.

3.2.1.3 CW Laser

At first, the optical CW signal is modeled as a linearly polarized electrical field. In the plane
of polarization, the exact equivalent baseband description, which is derived from Eq. (2.2)
on page 6, is

ẽ(t) =
E0

2
ejϕ0 . (3.40)
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Figure 3.6: Electrical impulse shaping

Since we neglect nonlinear optical impairments like SPM and SBS and define the optical
signal-to-noise ratio (OSNR) at the EDFA (cf. Ch. 3.2.3.1), the relative system performance
in terms of bit error ratio (BER) vs. OSNR is not affected if we omit the factor of 1/2 in
Eq. (3.40). Therefore, we set per definition

ẽ(t) := E0 =
√

PLD (3.41)

using the mean optical LD power of the equivalent baseband system as an adjustable param-
eter in the simulation environment. The arbitrary but fixed zero phase angle ϕ0 has also been
omitted since direct detection (DD) removes all phase information of the optical signal (cf.
Eq. (3.29)). A reasonable value for the mean optical LD power is 1 mW for LDs used in
optical communication systems.

In order to include polarization dependent behavior, we further assume the propagation of a
TEM wave in the optical domain of the OA-IM/DD system. This description makes use of a
three-dimensional Cartesian coordinate system, whose xy-plane is orthogonal to the direction
of propagation z. Thus, x- and y-polarization modes are indicated by the subscripts x and y.
The mean optical LD power PLD = E2

0 is distributed among these two polarization modes by
the power split ratio γ ∈ [0,1). The two-dimensional equivalent baseband description of the
optical CW signal is therefore

ẽ(t) =

(
ẽx(t)
ẽy(t)

)
=

( √
γ√

1− γ

)
E0, (3.42)

which describes a linearly polarized electrical field since the two field components ẽx(t) and
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ẽy(t) are in phase. We fix γ = 0.5 in this thesis,i.e.

ẽx(t) = ẽy(t) =
E0√

2
, (3.43)

because this causes the worst case scenario for PMD induced distortions.

3.2.1.4 MZ Modulator

A MZM is a planar lightwave circuit (PLC) featuring a cascade of a 3 dB power splitter,
two modulator branches and a power combiner with respect to the optical CW signal. The
material of the waveguide structure is LiNbO3, whose refractive index can be adjusted by
applying an electrical field. This property can be used to induce a phase difference between
the split optical CW signals propagating along the two modulator branches. The induced
phase difference leads to constructive or destructive interference when the two signals are
combined again. Neglecting the common propagation delay term from the input to the output
port, the general MZM characteristic in equivalent baseband notation is

m̃MZM
{

ϕub(t) ,ϕlb(t)
}
=

e−jϕub(t)+ e−jϕlb(t)

2

= e−j ϕd(t)
2 θ(t) cos

(
ϕd(t)

2

)
(3.44)

with

ϕd(t) = ϕub(t)−ϕlb(t) and θ (t) =
ϕub(t)+ϕlb(t)
ϕub(t)−ϕlb(t)

. (3.45)

The variable ϕd(t) represents the phase difference between the phase change ϕub(t) of the
upper and ϕlb(t) of the lower modulator branch, and θ (t) represents a relative phase factor.
Eq. (3.44) reveals that the first exponential term causes pure phase modulation while the
second one stands for pure intensity modulation. Since we only investigate systems with the
latter modulation format, we have to ensure that the phase modulation term disappears. The
push-pull operation mode with ϕlb(t) = −ϕub(t), which results in θ (t) = 0, is appropriate
for this purpose. Its effective characteristic is

m̃MZM
{

ϕd(t)
}
= cos

(
ϕd(t)

2

)
. (3.46)

Using a MZM with balanced single drive electrode configuration as in Fig. 3.7(a), push-pull
operation can easily be realized. A single drive voltage connected to the inner electrodes
generates electrical fields of opposite directions in the two modulator branches. Thus, the
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phase difference ϕd(t) is given by

ϕd(t) = π
Ubias

Uπ

−π

uε

(
u(t)− G0

2

)
G0Uπ

, Ubias,Uπ ∈ R, uε ∈ [0,1) , (3.47)

with separate feed of the bias Ubias and the MZM drive signal u(t). The normalization voltage
Uπ is a characteristic parameter, which causes a phase change of π in one modulator branch.
The MZM drive signal u(t) is not directly connected to the electrodes, but first transformed
from a unipolar to a bipolar signal by subtracting G0/2 and then multiplied with the scaling
factor uε/G0 to account for the finite extinction ratio and an appropriate excitation range of
the resulting signal. The numerator of this scaling factor is related to the absolute numerical
value of the power extinction ratio ε , whose definition will be explained during the discussion
of Fig. 3.7(b), by

uε = 1− 4
π

arctan
1√
ε
. (3.48)

Insertion of Eq. (3.47) in (3.46) results in

m̃MZM
{

u(t)
}
= cos

π

2
Ubias

Uπ

− π

2

uε

(
u(t)− G0

2

)
G0Uπ

 . (3.49)

The power transfer characteristic, which is of major interest for OA-IM/DD links, is

m̃2
MZM

{
u(t)

}
= cos2

π

2
Ubias

Uπ

− π

2

uε

(
u(t)− G0

2

)
G0Uπ



=
1
2

1+ cos

π
Ubias

Uπ

−π

uε

(
u(t)− G0

2

)
G0Uπ


 . (3.50)

We have depicted the power transfer characteristic in Fig. 3.7(b) together with a single im-
pulse corresponding to the occurring temporal change of the phase difference ϕd(t) accord-
ing to Eq. (3.47) with the NRZ impulse shape of Eq. (3.37). Apparently, the mean optical
power at the output of the MZM is just half of the mean optical power at the input if we
set Ubias = Uπ/2 and if the bit sequence bK contains an equal number of zeros and ones.
Unavoidable fabrication deficiencies and the limited bandwidth of the electrode electronics
in real devices leads to a finite power extinction ratio, which prevents the power transfer
characteristic from full excitation. Consequently, the mean optical power level for ϕd(t) = 0
does not fall below m̃2

minPLD for a logical zero, and the mean optical power level for ϕd(t) = 1
does not exceed m̃2

maxPLD for a logical one. The power extinction ratio of the MZM is defined
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Figure 3.7: External optical modulation by a MZM

as the relation of the maximal and minimal optical power level with

ε =
m̃2

max

m̃2
min

(3.51)

and is often given in dB with
εdB = 10lgε. (3.52)

The content of Fig. 3.7(b) features εdB = 13 dB, which is mentioned in several data sheets of
available MZM devices.

3.2.1.5 Optical Band-Pass Filter

The equivalent baseband description of the optical TX signal according to Fig. 3.4 is

ãTX(t) =
(

ẽ(t) m̃MZM
{

u(t)
})︸ ︷︷ ︸

= ãe(t)

∗h̃opt(t) , (3.53)

in which we have assumed polarization transparency of the MZM and the optical BPF. The
complex envelope is given by the term in parentheses, and we use Eq. (3.42) and the MZM
characteristic of Eq. (3.49) to express it with

ãe(t) =

( √
γ√

1− γ

)
√

PLD m̃MZM
{

u(t)
}

(3.54)
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=

( √
γ√

1− γ

)
√

PLD cos

π

2
Ubias

Uπ

− π

2

uε

(
u(t)− G0

2

)
G0Uπ

 . (3.55)

We model the shape of the optical BPF transfer function as a Gaussian filter, whose main pa-
rameters are the optical bandwidth B3 dB,opt and the Gaussian order NG. The transfer function
in equivalent baseband notation is

h̃opt(t)◦−• H̃opt
(

f
)
= exp

−ln
(√

2
)
·

 f
B3 dB,opt

2

2NG
 , NG ∈ N1. (3.56)

We generally set B3 dB,opt = 5Rb,Hz with Rb,Hz being the numerical value of the bit rate in the
frequency unit Hz. The factor of five provides an optical bandwidth of B3 dB,opt = 213.5 GHz
for Rb = 42.7 Gbit/s which almost conforms to the 100 GHz ITU channel spacing grid by
omitting either even or odd channel numbers to arrive at a 200 GHz grid. The relative setting
of bandwidth parameters to the bit rate allows for easier comparison and scaling of simulation
results. The exponential order is NG = 2. The resulting shape is depicted in Fig. 3.8(a)
together with the rectangular baseband simulation window for an oversampling factor of
L = 32 (dashed line) to illustrate the bandwidth proportions. Figs. 3.8(b) – 3.8(d) verify
that the parameter choice for optical TX filtering with respect to a 200 GHz channel spacing
grid hardly affects the useful component of the optical TX frequency spectrum indicated by
Bopt . The power spectra of Fig. 3.8(b) reveal a typical characteristic of OA-IM/DD systems
showing that the optical CW signal is transmitted alongside the information bearing signal.
The nonlinear MZM characteristic causes intermodulation, which becomes visible in the
periodic repetition of frequency spikes from the optical CW signal at multiples of Rb,Hz.
The transmission of the optical CW signal does not provide any information content from an
information theoretic point of view and is principally a waste of TX power. Therefore, the use
of carrier suppressed return-to-zero (CSRZ) transmission is an alternative solution at the cost
of higher TX complexity [49]. Figs. 3.8(c) and 3.8(d) oppose the eye diagrams of the optical
TX signal ãTX(t) and the corresponding complex envelope ãe(t) after direct detection as if an
ideal photodiode was connected to the optical BPF and the MZM, respectively. The vertical
relative eye opening has already decreased at the output of the optical TX compared to the
MZM drive signal u(t) in the electrical domain (cf. Fig. 3.6(b). The finite extinction ratio
is responsible for this effect and reduces the noise and ISI tolerance of the system a priori.
Fig. 3.8(c) and 3.8(d) show that the relative eye openings are almost equal with and without
optical TX filtering. Nevertheless, the signal in Fig. 3.8(c) shows slight overshoot and a
displacement of the position of the maximal horizontal eye opening. The small deviations
justify the approximation made in Eq. (2.4) on page 7 where we have omitted the optical TX
filter for ease of notation in the initial system description.
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(

f
)∣∣∣2∣∣∣ÃTX
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Figure 3.8: Optical TX filtering

3.2.2 Optical Fiber Channel

The optical fiber channel is determined by the characteristics of the SSMF. The main im-
pacts on the propagating optical signal are CD and PMD in the linear and SPM and SBS in
the nonlinear transmission regime for a single wavelength channel. WDM systems are more-
over affected by XPM between adjacent wavelength channels. These nonlinear effects scale
with optical power and transmission distance and therefore play a minor role for short-haul
OA-IM/DD links. That is why we consider direct detection to be the dominating source of
nonlinearity in the end-to-end consideration of an OA-IM/DD link, and the influence of the
optical fiber channel for CD and PMD with possible polarization scattering can be described
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linearly by a transfer matrix in frequency domain with the general approach

H̃f
(
z, f
)
=

e−
(

αx( f)+jβx( f)
)

z 0

0 e−
(

αy( f)+jβy( f)
)

z


︸ ︷︷ ︸

=: D̃(z, f)

[
s̃1
(
z, f
)

s̃2
(
z, f
)

−s̃∗2
(
z, f
)

s̃∗1
(
z, f
)]︸ ︷︷ ︸

=: S̃(z, f)

. (3.57)

If we intend to address the SSMF as a whole, we have to evaluate this transfer matrix at
z = L f and use the notation

H̃f
(

f
)

:= H̃f

(
L f , f

)
. (3.58)

The dispersion matrix D̃
(
z, f
)

models CD and attenuation. Since we assume that the at-
tenuation constants are almost independent of frequency within the utilized optical signal
spectrum and neglect polarization dependent loss (PDL), we set

αx
(

f
)
= αy

(
f
)
=: α, (3.59)

and SSMFs typically show αdB = 0.2 dB/km with

αdB = 20 lg(e) ·α ≈ 8.686α. (3.60)

Using this simplified assumptions, the dispersion matrix is

D̃
(
z, f
)
= e−αz

e−jβx( f)z 0

0 e−jβy( f)z

 . (3.61)

The polarization scattering matrix S̃(z, f ) with basic elements s̃1(z, f ) and s̃2(z, f ) models
the mutual exchange of signal energy between the two polarization modes. S̃(z, f ) is unitary
obeying

S̃
(
z, f
)

S̃
(
z, f
)H

= I (3.62)

and ∣∣∣s̃1
(
z, f
)∣∣∣2 + ∣∣∣s̃2

(
z, f
)∣∣∣2 = 1. (3.63)

The unitary of S̃(z, f ) accounts for the passive characteristic of polarization scattering, i.e.
the polarization modes may exchange energy, but no energy is dissipated or generated.

Since this thesis investigates EDC concepts with respect to different impairments, several
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models have been developed which focus on the specific simulation task based on

H̃f
(
z, f
) (3.61)

= e−αz

e−jβx( f)z 0

0 e−jβy( f)z


︸ ︷︷ ︸

= D̃(z, f)

[
s̃1
(
z, f
)

s̃2
(
z, f
)

−s̃∗2
(
z, f
)

s̃∗1
(
z, f
)]︸ ︷︷ ︸

= S̃(z, f)

. (3.64)

A separate section for each of those models presents their physical description in the follow-
ing.

3.2.2.1 CD Model

In this simulation model, which only considers CD, we may skip the polarization dependence
by setting

β
(

f
)

:= βx
(

f
)
= βy

(
f
)

and S̃
(
z, f
)
= I. (3.65)

The transfer matrix approach of the Eq. (3.64) simplifies to

H̃f
(
z, f
)
= e−αz e−jβ( f)z

[
1 0
0 1

]
. (3.66)

The main constituent of SSMF is silica (SiO2), whose refractive index is wavelength, or
equivalently, frequency dependent. CD, which is also referred to as group velocity disper-
sion (GVD), is a material dispersion therefore. The corresponding wave number β ( f ) is a
nonlinear function in frequency often approximated by its third order Taylor series expan-
sion. It is given in equivalent baseband domain by5

β
(

f
)
≈ β0 +

β1

1!
f +

β2

2!
f 2 +

β3

3!
f 3 (3.67)

with expansion coefficients

βi =
∂ iβ
(

f0
)

∂ f i , i = 0, . . . ,3, (3.68)

evaluated at the center frequency of the utilized optical spectrum. This is the LD frequency
f0 here. It is obvious that the group delay of a TEM wave, given by

τg
(
z, f
)
=

1
2π

∂β
(

f
)

∂ f
z (3.69)

(3.67)
=

1
2π

(
β1 +β2 f +

β3

2
f 2

)
z (3.70)

5In bandpass domain, f has to be replaced by ( f − f0).
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becomes also frequency dependent for β2 6= 0 and β3 6= 0. While the constant term β0,
representing the absolute phase difference between the optical TX signal and the signal at
location z, vanishes after differentiation, the linear term with β1 in Eq. (3.67) leads to a
common delay for all frequency components and does not alter the signal shape therefore.
Hence, we can restrict the Taylor series expansion to

β
(

f
)

:=
β2

2!
f 2 +

β3

3!
f 3 (3.71)

to simulate the effect of CD.

This definition for β ( f ) is used in place of the more general β ( f ) in Eq. (3.67) for the
simulation model

H̃f
(

f
)
= e−αL f e

−j
(

β2
2! f 2+

β3
3! f 3

)
L f

[
1 0
0 1

]
. (3.72)

The remaining higher order terms related to β2 and β3 make the frequency components
contained in the optical TX frequency spectrum travel at different speeds along the fiber. A
single transmitted impulse appears broader in time at the RX. In the case of consecutive
impulses, this broadening causes an overlap with the neighboring ones leading to ISI [36].

Commercially available fibers are characterized by the dispersion coefficient Dλ and disper-
sion slope Sλ . They are connected to the expansion coefficients β2 and β3 by6

Dλ =−2πc0

λ 2
0

β2

(2π)2 and Sλ =
4πc0

λ 4
0

(
λ0

β2

(2π)2 +πc0
β3

(2π)3

)
. (3.73)

Common values for SSMFs are Dλ = 17 ps/(nm ·km) and Sλ = 0.08 ps/(nm2 ·km). Fig. 3.3
on page 20 already contains the qualitative phase characteristic arising from these values.

According to Eq. (3.69), the amount of CD induced ISI mainly depends on the group delay
profile, which is characterized by Dλ and Sλ , and the distance z to the TX. In order to
make the exposure of OA-IM/DD to CD comparable for different fiber types (e.g. SSMFs,
disperison-shifted fibers (DSFs) or DCFs [36]) and also for concatenations among them with
possibly differing section lengths, textbooks and publications often refer to the (residual)7

CD value
rD := Dλ L f . (3.74)

6Note that, in textbooks using angular frequency notation, the denominators (2π)2 and (2π)3 in Eq. (3.73)
are missing since the expansion coefficients are related by (cf. Eq. (3.68)):

∂ iβ (ω)

∂ω i =
∂ iβ
(

f
)

∂ f i
∂ i f
∂ω i︸︷︷︸
= 1

(2π)i

=
1

(2π)i

∂ iβ
(

f
)

∂ f i , i = (0, . . . ,3) .

7The attribute residual in the context of CD originates from the usage of DCFs because not all CD is
actually compensated. Since we do not distinguish between partially compensated and uncompensated OA-
IM/DD links, we only refer to the term CD value for rD.
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It has the unit ps/nm. If we concatenate two (different types of) fibers, the total CD value
will be the sum of the individual CD values of each section. Using rD to characterize CD has
the advantage of abstracting from the actual OA-IM/DD link parameters to any others with
possibly different fiber sections yet with the same CD characteristic.

There exists another interesting relation for rD if we approximate the impact of CD by its
second-order Taylor series expansion coefficient β2 only. We assume two OA-IM/DD links
with different bit rates Rb,1 6= Rb,2 and fiber lengths L f ,1 6= L f ,2, and that the optical signal
bandwidths are approximately given by Bopt,1 ≈ Rb,Hz,1 and Bopt,2 ≈ Rb,Hz,2. If we evaluate
the second order phase terms in Eq. (3.72) at f = Rb,Hz,1 and f = Rb,Hz,1, respectively, we
see that they are related to

∼ β2R2
b,Hz,1L f ,1 and ∼ β2R2

b,Hz,2L f ,2. (3.75)

Since Dλ ∼ β2, it follows that rD ∼ β2L f , and we realize that the phase terms are also related
to

∼ rD,1R2
b,Hz,1 and ∼ rD,2R2

b,Hz,2. (3.76)

Obviously, two OA-IM/DD links observe the same amount of CD-related second-order phase
distortion within Bopt if the phase terms are equal. Thus, if we want to transfer the link
behavior with respect to CD from one to the other, we may set

rD,1R2
b,Hz,1 = rD,2R2

b,Hz,2 ⇐⇒
rD,1

rD,2
=

(
Rb,Hz,2

Rb,Hz,1

)2

. (3.77)

Thus, the simulation results presented in this thesis and recorded for Rb = 42.7 Gbit/s at dif-
ferent fiber lengths might be transferred to any other OA-IM/DD link configuration featuring
other bit rates and/or fiber lengths.

3.2.2.2 PMD Models

So far, we have assumed the SSMF to be a homogeneously cylindrical structure, for which
the wave number β ( f ) is equal for both polarization modes, and for which no polarization
scattering occurs. However, manufacturing processes cannot yield a perfect cylindrical sym-
metry, and installation of fibers around edges may cause material stress and torsion which
may also vary over time and temperature. These inhomogeneities lead to birefringence,
i.e. βx( f ) 6= βy( f ), and the two polarization modes propagate at different speeds along the
SSMF, which is referred to as PMD.

In general, PMD is a statistical process depending on time, frequency and location [50]. This
favors to consider this phenomenon as a statistical ensemble and to describe the statistical
nature of PMD as a concatenation of small fiber segments with constant but altering birefrin-
gence. Fig. 3.9 shows this modeling approach with parameters describing the birefringence
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of the segments. For numerical simulations, these parameters are changed randomly. Po-
larization scattering at the intersection of two fiber segments accounts for polarization mode
coupling. This is indicated by the change of the coordinate system, and polarization scatter-
ing as a whole can be considered as a kind of scrambling.
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y
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ϑs
(
zN−1
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Figure 3.9: Statistical PMD modeling

Based on this, different approaches for modeling of PMD exist:

• In the first-order PMD model, two preeminent modes of polarization describe the bire-
fringence of the optical fiber in a mean temporal and frequency independent sense.

• The combined CD and first-order PMD model simply adds the effect of CD to the
first-order PMD model.

• The higher order PMD model introduces time dependent randomness which takes the
measured statistical nature of birefringence in optical fibers into account.

3.2.2.2.1 First-Order PMD Model
This simple model has its foundation on the concept of the principal states of polarization
(PSP), whose definition is: the PSP represent those two orthogonal polarization states at
the input of the fiber for which the corresponding output polarization states do not depend
on frequency to the first-order [51, 52]. This implies that optical signals, whose states of
polarization coincide with the PSP, keep their polarization at the output to the first-order in
frequency. In other words, they do not couple linearly in f into each other8. Furthermore, the
behavior of the SSMF with respect to the PSP can be described by two independent signal
paths, which observe a mutual delay since birefringence causes βx( f ) 6= βy( f ). The SSMF
model for PMD reduces to a single, long waveplate as depicted in Fig. 3.10. It illustrates
the PSP defining a Cartesian system with axes x and y. Given this definition of PSP and its
implications, the simple first-order model discussed here assumes that the optical TX signal
is launched into the fiber with respect to the PSP as indicated by the subscript labels · x and
· y for the signal description.

8Note that the concept of PSP does not say anything about higher order dependence on frequency.
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x y
displacement by PMD

z

L f

Figure 3.10: Illustration of the waveplate model

Concerning the mathematical model for first-order PMD, we may neglect polarization scat-
tering as implied by the concept of PSP and the launch of the optical TX signal along the
PSP, i.e. we set S̃(z, f ) = I. In addition, the first-order PMD model shall allow for an iso-
lated considerations of principal PMD impairments. Therefore, we use the same Taylor
series expansion approach as in Eq. (3.67) for βx( f ) and βy( f ) but with polarization specific
expansion coefficients and truncation after the first-order terms. This implies

βx
(

f
)

:= βx,1 f and βy
(

f
)

:= βy,1 f . (3.78)

Again, we have neglected the constant phase terms of βx,0 and βy,0, since they do not affect
direct detection in OA-IM/DD systems. The effective transfer matrix with respect to the
coordinate system of the PSP is then

H̃f
(
z, f
)
= e−αz

[
e−jβx,1 f z 0

0 e−jβy,1 f z

]
. (3.79)

The elements e−jβx,1 f z can be considered as one-tap linear-phase filter, and the corresponding
group delays according to Eq. (3.69) depend only on the location with

τg,x(z) =
1

2π
βx,1z and τg,y(z) =

1
2π

βy,1z. (3.80)

This means the two optical signals carried by the two polarization modes do preserve shape,
but they observe mutual delay at the RX, which causes ISI due to direct detection. Their
difference after the optical TX signal has propagated along the SSMF is

∆τg :=
∣∣∣∣τg,x

(
L f

)
− τg,y

(
L f

)∣∣∣∣
=

1
2π

∣∣∣βx,1−βy,1

∣∣∣L f (3.81)

and is known as differential group delay (DGD). This value, in analogy to rD for CD, shall
serve as our main parameter to characterize the first-order PMD behavior in the sense as
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mean value for the statistical phenomenon of PMD.

If we apply the DGD definition to Eq. (3.79), we may express the first-order PMD transfer
matrix by

H̃f
(

f
)
= e−αL f e−j

βx,1+βy,1
2 f L f

e−j
βx,1−βy,1

2 f L f 0

0 ej
βx,1−βy,1

2 f L f


= e−αL f e−j

βx,1+βy,1
2 f L f

e−j2π
∆τg

2 f 0

0 ej2π
∆τg

2 f

 . (3.82)

Since we do not require causality in a computer simulation, we can omit the common phase
term and finally set

H̃f
(

f
)

:= e−αL f

e−j2π
∆τg

2 f 0

0 ej2π
∆τg

2 f

 (3.83)

for the first-order PMD transfer matrix of the SSMF.

Interpretation and Implications on EDC
Fig. 3.11 shows an equivalent, signal processing related block diagram for the first-order
PMD model according to Eq. (3.83) in time domain. It shows a polarization beam split-

virtual direct detection

∆τg
2

−∆τg
2

e−αL f

e−αL f

ãTX,x(t)

ãTX(t)

+

∣∣∣∣ãTX,y

(
t + ∆τg

2

)∣∣∣∣2
)∼

(∣∣∣∣ãTX,x

(
t− ∆τg

2

)∣∣∣∣2

ãTX,y(t)

PBS
| · |2

| · |2

PD

PD

Figure 3.11: Equivalent block diagram for the first-order PMD model

ter (PBS), which is directly oriented towards the two PSP. Attenuation and optical delay
elements follow in each signal path. The interconnecting fiber segments are assumed to be
ideal. Virtual application of photodetection at location L f by summing the power of the
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orthogonal polarization modes shows∣∣∣∣ã(L f , t
)∣∣∣∣2 = ∣∣∣∣ãx

(
L f , t

)∣∣∣∣2 + ∣∣∣∣ãy

(
L f , t

)∣∣∣∣2
=

∣∣∣∣F−1
{

H̃f
(

f
)

ÃTX
(

f
)}∣∣∣∣2

=

∣∣∣∣∣∣∣∣F
−1

e−αL f

e−j2π
∆τg

2 f 0

0 ej2π
∆τg

2 f

(ÃTX,x
(

f
)

ÃTX,y
(

f
))

∣∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣∣F
−1

e−αL f

ÃTX,x
(

f
)

e−j2π
∆τg

2 f

ÃTX,y
(

f
)

ej2π
∆τg

2 f



∣∣∣∣∣∣∣∣
2

= e−2αL f

∣∣∣∣∣ãTX,x

(
t−

∆τg

2

)∣∣∣∣∣
2

+

∣∣∣∣∣ãTX,y

(
t +

∆τg

2

)∣∣∣∣∣
2
 . (3.84)

The result reveals that we can treat both signal paths independently by two separate PDs,
and that fist-order PMD remains a linear ISI with respect to the squared magnitude of the
polarization modes after direct detection [35], i.e. the time shifts by ∓ ∆τg/2 and direct
detection are interchangeable.

Since we have assumed equal power splitting between the two PSP in Eq. (3.43)

ãTX,x(t) = ãTX,y(t)

and Eq. (3.84) becomes

∣∣∣∣ã(L f , t
)∣∣∣∣2 = e−2αL f

∣∣∣∣∣ãTX,x

(
t−

∆τg

2

)∣∣∣∣∣
2

+

∣∣∣∣∣ãTX,x

(
t +

∆τg

2

)∣∣∣∣∣
2
 . (3.85)

If we interchange time shift and direct detection, Eq. (3.85) becomes∣∣∣∣ã(L f , t
)∣∣∣∣2 = e−2αL f

(
δ

(
t−

∆τg

2

)
+δ

(
t +

∆τg

2

))
∗
∣∣ãTX,x(t)

∣∣2 . (3.86)

Partially transforming this expression in frequency domain gives us further insight with∣∣∣∣ã(L f , t
)∣∣∣∣2 = F−1

{
e−2αL f

(
e−j2π

∆τg
2 f + ej2π

∆τg
2 f
)

︸ ︷︷ ︸
=2 cos

(
2π

∆τg
2 f
)

}
∗
∣∣ãTX,x(t)

∣∣2

37



Chapter 3. Physical Layer Simulation Model

= F−1

{
2 e−2αL f cos

(
2π

∆τg

2
f
)

︸ ︷︷ ︸
=: H̃f,eff.( f)

}
∗
∣∣ãTX,x(t)

∣∣2 (3.87)

and with H̃f,eff.( f ) being the effective first-order PMD transfer matrix after direct detection
at the RX.

Obviously, H̃f,eff.( f ) has zeros at

cos
(

2π
∆τg

2
f
)
= 0 ⇐⇒ f = (2n+1)

1
2∆τg

, n ∈ N. (3.88)

Compared to the power spectrum of the optical TX signal depicted in Fig. 3.8(b) on page 29
with bandwidth Bopt ≈ 1/Tb, the zeros of H̃f,eff.( f ) take effect if

1
2∆τg

≤ 1
2Tb

⇐⇒ ∆τg ≥ Tb. (3.89)

Since a zero in the channel transfer function may impact the performance of a linear filter
based EDC method, we will come back to the implications of Eq. (3.89) later. For a detailed
derivation and illustration of H̃f,eff.( f ), we refer to [53]9.

3.2.2.2.2 Combined CD and First-Order PMD Model
This model is just but a concatenation of the CD and first-order PMD model. It refers to
the CD Taylor series expansion for β ( f ) according to Eq. (3.71) and extends this to two
dimensions for the first-order term. The first order terms are set according to Eq. (3.78).
With the notation of differential group delay, the transfer matrix is given by

H̃f
(

f
)

:= e−αL f e
−j
(

β2
2! f 2+

β3
3! f 3

)
L f

e−j2π
∆τg

2 f 0

0 ej2π
∆τg

2 f

 . (3.90)

3.2.2.2.3 Time-Variant Higher Order PMD Model
The derivations in the preceding sections have already set the foundations for the time-variant
PMD simulation model with higher order effects, which features a mix of the CD and the
first-order PMD model with additional polarization scattering.

Concerning the statistics of DGD variations over time and frequency, it is known from mea-
surements [51, 52, 50, 56, 57] that it follows a Maxwell-Boltzmann probability density func-

9This characteristic of first-order PMD induced ISI resembles a multipath propagation and fading scenario
known from mobile communications [54, 55].
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tion (PDF) with

p
(
∆τg
)
=


0 : ∆τg < 0√

6
π

3∆τ2
g

∆τ3
RMS

e
− 3∆τ2

g
2∆τ2

RMS : ∆τg ≥ 0
. (3.91)

Its statistical mean E
[
∆τg
]

is known by the term PMD value of the fiber [36], and its root-
mean-square (RMS) value is defined by

∆τRMS =

√
E
[
∆τ2

g

]
. (3.92)

Both are interrelated by the approximation

E
[
∆τg
]
≈ 0.921 ·∆τRMS (3.93)

as a general property of the Maxwell-Boltzmann PDF.

Commercially available fibers usually contain a PMD coefficient in their data sheet. This
relates the PMD behavior to length with

τPMD =

√
∆τ2

RMS
km

. (3.94)

Typical values range from 2 ps/
√

km for elderly to 0.1 ps/
√

km for modern fibers. Com-
parably to the second- and third-order Taylor series expansion coefficients β2 and β3 being
related to the dispersion coefficient Dλ and the dispersion slope Sλ , the first-order expansion
coefficients and the PMD coefficient have their relation with∣∣∣βx,1−βy,1

∣∣∣= 2π
τPMD√

z
. (3.95)

Eq. (3.95) actually states that the difference of the first-order expansion coefficients depends
on the location z now.

Joining the previous Taylor series expansions for the wave numbers of Eq. (3.71) for CD and
Eq. (3.78) for first-order PMD together, we get

βx
(

f
)

:=
βx,1

1!
f +

β2

2!
f 2 +

β3

3!
f 3 (3.96)

and βy
(
z, f
)

:=
βx,1−2π

τPMD√
z

1!
f +

β2

2!
f 2 +

β3

3!
f 3. (3.97)

In Eq.(3.97) βy,1 has been expressed by βx,1 and τPMD using Eq. (3.95) while assuming
βx,1 ≥ βy,1 without loss of generality. The first-order terms of Eqs. (3.96) and (3.97) account
for PMD and the equal second- and third-order ones for CD distortion, which are common
to both.
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Despite of introducing the statistical parameter τPMD into our model, Maxwell-Boltzmann
statistics of ∆τg is not present until we generate different fiber realizations with random
segmentation of the SSMF into N ∈ N2 waveplates as in Fig. 3.12. The concatenation of
several waveplates with randomly chosen parameters is referred to as coarse step model
[58, 59].
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Figure 3.12: Illustration of the coarse step model

Each fiber section in the coarse step model is characterized by its length ∆zn = zn− zn−1, the
rotation angle ϑs(zn) and the phase angle ϕs(zn). Both angles determine the PSP of a single
waveplate section. The phase angle ϕs(zn) is responsible for the temporal phase difference
between the x- and y-polarization states and illustrated by the different polarization ellipsis in
Fig. 3.12. The rotation angle ϑs(zn) determines the rotation of the PSP within the xy-plane.

The section lengths ∆zn = zn− zn−1, the rotation and phase angles, ϑs(zn) and ϕs(zn), which
determine the PSP of a single waveplate, are generated randomly with the underlying PDFs

p(∆zn) =
1√

2πσs
e
− (∆zn−µs)

2

2σ2
s , σs ≤

µs

2
, (3.98)

p
(
ϑs(zn)

)
=

{
1

2π
: ϑs(zn) ∈ [0,2π)

0 : elsewhere
, (3.99)

and p
(
ϕs(zn)

)
=

{
1
π

: ϕs(zn) ∈ [0,π)
0 : elsewhere

, n = (0, . . . ,N−1) . (3.100)

Empirical investigations have shown that the Maxwell-Boltzmann distribution of Eq. (3.91)
is well approximated using about N = 12 waveplates [60]. The mean value µs and standard
deviation σs of the Gaussian random number generator for generating the random sectioning
have to be adjusted appropriately. Negative values for ∆zn are discarded during the sectioning
process. The PSP of adjacent waveplates can be biased by introducing correlation between
the angles ϑs(zn) and ϑs(zn−1) as well as ϕs(zn) and ϕs(zn−1) [61]. Full correlation leads to
a single waveplate with no change of PSP as for the first-order PMD model.
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The transfer matrix of one waveplate element is given by

H̃ f ,n
(
∆zn, f ,zn

)
= Dn

(
∆zn, f

)
S̃n(zn)

= e−α∆zn e
−j
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3! f 3
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 S̃n(zn) ,

(3.101)

and the explicit non-causal form for simulation, which neglects the common first-order phase
term of Eq. (3.101), is

H̃ f ,n
(
∆zn, f ,zn

)
= e−α∆zn e

−j
(

β2
2! f 2+

β3
3!

)
f 3∆zn

e−j2π
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2 f
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0 ej2π

τPMD
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[
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(
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)
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(
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)
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−sin
(
ϑs(zn)

)
ejϕs(zn) cos

(
ϑs(zn)

) ]
. (3.102)

Since L f =
∑N−1

n=0 ∆zn, the corresponding transfer matrix for one fiber realization is calcu-
lated by

H̃f
(

f
)
=

N−1∏
n=0

H̃ f ,n
(
∆zn, f ,zn

)
=

N−1∏
n=0

Dn
(
∆zn, f

)
S̃n(zn) , (3.103)

in which the polarization scattering matrices S̃n(zn) is responsible for polarization mode
coupling at location zn−1.

Analyzing the effective PSP of the coarse step model as highlighted in [51] allows to cal-
culate ∆τg for each fiber realization. An example resulting from this procedure for 100000
fiber realizations is depicted in Fig. 3.13 for τPMD = 2 ps/

√
km and for L f = 5 km. The his-

togram hp
(
∆τg
)
, where all ∆τg for different fiber realizations have been collected, coincides

well with the corresponding theoretical Maxwell-Boltzmann PDF of Eq. (3.91). It is worth
to note that a DGD of about 10 % of the bit interval already requires doubled optical input
power to keep the same BER level [36] although the interval 0≤ ∆τg ≤ 0.1Tb contains only
a small portion of the cumulative distribution function. This fact reveals the necessity and
possible benefits of PMD compensation, which is normally laid out for ∆τg(z)≤ 3E

[
∆τg
]

of
the specific link [53] since p(∆τg)> 0 still holds for ∆τg→ ∞.
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Figure 3.13: Normalized DGD histogram of the time-variant higher or-
der PMD model
(τPMD = 2 ps/

√
km at z = 5 km, ∆τg collected for 100000

fiber realizations)

3.2.3 Optical RX Front End

Fig. 3.14 shows the optical RX front end with appropriate labeling in equivalent baseband
notation. Since we employ the same optical BPF as for the optical TX, we do not repeat its
characteristics and refer to Ch. 3.2.1.5.

ãRX(t)
opt. amp.

G

opt. BPF

H̃opt
(

f
)

ãAF(t)
PD

| · |2

i(t)
el. LPF

Hel
(

f
)

x(t)

Figure 3.14: Optical receiver front end

3.2.3.1 EDFA and OSNR Definition

Fig. 3.15(a) shows the simple model of the EDFA. First, we reamplify the optical RX signal
ãRX(t), and then, we add an ASE noise process ñ(t).
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ãRX(t)

G ñ(t)∼N
(

0,σ2
ñ

)

(a) ASE noise addition

f
fs/2− fs/2 0

4N0 Rfsim
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f
)Rññ

(
f
)

12.5 GHz

(b) OSNR definition

Figure 3.15: Optical amplifier with ASE noise

The equivalent baseband output of the SSMF is given by

ãRX(t)◦−• ÃRX
(

f
)
= Ã

(
L f , f

)
= H̃f

(
L f , f

)
ÃTX

(
f
)
= H̃f

(
f
)

ÃTX
(

f
)
. (3.104)

The transfer matrix H̃f
(

f
)

from TX to RX shall represent those introduced in the last sec-
tion and model various dispersion effects. Amplification by the factor G shall equalize the
attenuation related to e−αL f . This is common to all SSMF models introduced in Ch. 3.2.2.

Recalling Eq. (3.31), which has derived the equivalent baseband description in general, we
use it now to normalize the output of our simulation model after direct detection with

Ge−αL f := 1 ⇐⇒ G = eαL f . (3.105)

The factor 1/2, which would actually occur here on the very left side as direct input from
Eq. (3.31), misses since it has already been eliminated through the special choice for the
mean optical LD power in Eq. (3.41). Thus, the mean optical power at the point of noise
addition is

Popt = E
[∣∣G ãRX(t)

∣∣2]
= G2 E

[∣∣ãRX(t)
∣∣2]

= e2αL f E
[∣∣ãRX(t)

∣∣2] . (3.106)

Since ãRX(t) is a two-dimensional signal with complex components in equivalent baseband
description, we model the ASE noise source as four-dimensional real-valued additive white
Gaussian noise (AWGN) process, whose components are mutually independent and identi-
cally distributed (i.i.d.) with spectral power density N0 per dimension. As derived in Ch. 3.1,
the signal bandwidth of our simulation model is restricted to the rectangular frequency do-
main baseband simulation window Rfsim

(
f
)
. Thus, the effective contributing noise power

is
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Pñ = 4N0 fs = 4σ
2
ñ (3.107)

with variance σ2
ñ for all four dimensions. Fig. 3.15(b) depicts the noise power density, how-

ever with the total noise power being mapped to a single, equivalent one-dimensinal noise
source. The equivalence is given since the contributing noise sources are i.i.d..

Disregarding the actual signal bandwidth, the definition of OSNR distinguishes itself to
convenient SNR definitions10by just using the portion of the noise power within the ref-
erence bandwidth 12.5 GHz as indicated in Fig. 3.15(b). Using Eq. (3.107) and Eq. (3.3)
(cf. page 12), we can express the OSNR in decibel with

γOSNR = 10 lg
(

Popt

4N0 ·12.5 GHz

)
= 10 lg

 Popt

4σ2
ñ

12.5 GHz
fs


= 10 lg

(
Popt

4σ2
ñ

12.5 GHz ·Tb
L

)
. (3.108)

After having set the numeric value for γOSNR, this formula is solved for σ2
ñ to set up the

Gaussian random number generators to model a N (0,σ2
ñ )-distributed signal.

Given two different bit rates Rb,1 = 1/Tb,1 and Rb,2 = 1/Tb,2 and the same oversampling
factor L used for simulation, the relation

∆γOSNR = γOSNR,2− γOSNR,1 = 10 lg

(
Tb,1

Tb,2

)
= 10 lg

(
Rb,2

Rb,1

)
(3.109)

allows to map the BER vs. OSNR results of one to the other by the OSNR offset ∆γOSNR.

Using Eqs. (3.53) and (3.104), we can finally summarize the reamplified and filtered optical
RX signal together with ASE noise in equivalent baseband notation by

10The OSNR is related to the convenient SNR definition, in which signal and noise bandwidths are equal, by

γSNR = 10 lg
(

Popt

Pñ

)
= 10 lg

(
Popt

4N0 fs

)
= 10 lg

(
Popt

4N0 ·12.5 GHz
· 12.5 GHz

fs

)
= 10 lg

(
Popt

4N0 ·12.5 GHz

)
︸ ︷︷ ︸

γOSNR

+10 lg
(

12.5 GHz
fs

)

= γOSNR +10 lg
(

12.5 GHz
fs

)
.
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ãAF(t) =
(
G ãRX(t)+ ñ(t)

)
∗ h̃opt(t) (3.110)

=

(
F−1

{
G H̃f

(
f
)

ÃTX
(

f
)}

+ ñ(t)
)
∗ h̃opt(t) (3.111)

=

(
F−1

{
G H̃f

(
f
)

Ãe
(

f
)

Hopt
(

f
)}

+ ñ(t)
)
∗ h̃opt(t) (3.112)

3.2.3.2 Photodetection and Electrical Low-Pass Filter

The PD converts the reamplified and filtered optical RX signal into the photocurrent by
simple SLD with

i(t) = IE0
∣∣ãAF(t)

∣∣2 = IE0

∣∣∣(G ãRX(t)+ ñ(t)
)
∗ h̃opt(t)

∣∣∣2 . (3.113)

Direct detection is completed by final lowpass filtering with the electrical Bessel LPF

Hel
(

f
)
=

BNB(0)

BNB

(
jκ f

f3 dB,el

) . (3.114)

The Bessel polynomials BNB(p) with argument p = jκ f/ f3 dB,el are recursively defined by

BNB(p) = (2n−1)BNB−1(p)+ p2BNB−2(p) ,

B1(p) = 1+ p and B0(p) = 1. (3.115)

We use a filter order of NB = 3 and a 3 dB cutoff frequency of f3 dB,el = 0.5Rb,Hz. The
argument scaling factor κ ∈ R is necessary to adjust the transfer function at f3 dB,el to
|Hel( f3 dB,el)|= 1/

√
2 as depicted in Fig. 3.16(a). The constant group delay within the pass-

band range is a special feature of a Bessel LPF as indicated by the almost linear phase for∣∣ f ∣∣ ≤ f3 dB,el in Fig. 3.16(b). Thus, no additional phase dispersion is introduced into the
signal.

After electrical filtering the electrical RX signal of the OA-IM/DD link is given by

x(t) = i(t)∗hel(t) , (3.116)

which can be explicitly expressed with Eqs. (3.110) – (3.113) by

x(t) = IE0

∣∣∣(G ãRX(t)+ ñ(t)
)
∗ h̃opt(t)

∣∣∣2 ∗hel(t) (3.117)

= IE0

∣∣∣∣∣
(

F−1
{

G H̃f
(

f
)

ÃTX
(

f
)}

+ ñ(t)
)
∗ h̃opt(t)

∣∣∣∣∣
2

∗hel(t) (3.118)
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Figure 3.16: Electrical RX filtering

= IE0

∣∣∣∣∣
(

F−1
{

G H̃f
(

f
)

Ãe
(

f
)

H̃opt
(

f
)}

+ ñ(t)
)
∗ h̃opt(t)

∣∣∣∣∣
2

∗hel(t) . (3.119)

3.2.4 Sampling

Sampling of the electrical RX signal in order to feed the discrete-time operated EDC unit in
the conventional Tb-spaced sample interval with ∆T1 = Tb is straightforward with

x∆T1(t) =
K−1∑
k1=0

x(t) δ (t− k1∆T1− τ1)

=

K−1∑
k1=0

x(k1∆T1 + τ1)︸ ︷︷ ︸
=:xk1

δ (t− k1∆T1− τ1) , τ1 ∈ [0,∆T1) , (3.120)

and the samples constitute the discrete-time series

xK =
(
xk1

)
k1=(0,...,K−1) . (3.121)

The additional parameter τ1 in Eq. (3.120) denotes the temporal sampling phase within the
sample interval ∆T1 and can be used to adjust the optimal sampling instant. While real-world
signals are tied to causality in physically implemented systems, computer simulations allow
for removal of the accumulated group delay along the signal processing chain. Therefore,
we directly refer the sample index k1 to the time slot t ∈

[
kTb,(k+1)Tb

)
and relate it to the
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corresponding bit bk at the TX, i.e.
k1 ≡ k. (3.122)

We will see in Ch. 4 that all EDC methods can improve their compensation performance by
so-called fractionally spaced processing. Fractionally spaced processing comprises sampling
and internal processing at a higher rate than the symbol or bit rate while the decision to get the
estimate b̂k at the output of the EDC unit samples down to bit rate speed. The sampling device
depicted in Fig. 3.17 is modeled with the adjustable parameters of fractionally spaced sample
interval ∆Ti and fractionally spaced sampling phase τi with subscript · i, whose meaning for
fractionally spaced sample processing will become clear in the following.

∆Ti,τi

xkix(t)

Figure 3.17: Adjustable sampling device

If we use these parameters to describe fractionally spaced sampling of the electrical RX
signal, we end up with

x∆Ti(t) =
iK−1∑
ki=0

x(t) δ (t− ki∆Ti− τi)

=
iK−1∑
ki=0

x(ki∆Ti + τi)︸ ︷︷ ︸
=:xki

δ (t− ki∆Ti− τi) ,

i ∈ N1, ki = (0, . . . , iK−1) , ∆Ti =
Tb

i
, τi ∈ [0,∆Ti) . (3.123)

The corresponding fractionally spaced discrete-time series is

xiK =
(
xki

)
ki=(0,...,iK−1) . (3.124)

As can be seen from the mathematical description in Eq. (3.123), the small subscript · i ac-
counts for the number of samples taken within the bit interval Tb, i.e. the fractionally spaced
sample interval is ∆Ti = Tb/i, i ∈ N1

11. With the mathematical formulation of Eq. (3.123),
convenient Tb-spaced sampling turns out to be a special case of fractionally spaced sampling
for i = 1.

11In theory or if the electrical RX signal should be processed by analog tapped delay line filters, we could also
allow i ∈ Q, i ≥ 1, e.g. i = 4/3. However, this would be somehow difficult to realize in clocked discrete-time
signal processing hardware as it requires further interpolation and clock domain crossing steps.

47



Chapter 3. Physical Layer Simulation Model

Similar to the approach of removing accumulated group delay within the simulation envi-
ronment for convenient Tb-spaced sampling in Eq. (3.122), we assign the fractional sample
index ki to the corresponding TX bit bk in the time slot t ∈

[
kTb,(k+1)Tb

)
by

k = ki div i. (3.125)

Concerning the fractionally spaced sampling phase ∆Ti, its adjustable granularity is restricted
for simulations since the originally analog signals are already approximated by their discrete-
time series with an oversampling factor of L. Hence, the possible numeric values for the
fractionally spaced sample interval ∆Ti must align with the discrete-time signal resolution
with

i
(3.123)
=

Tb

∆Ti
=

L∆Ts

∆Ti

!
∈ N1 ⇐⇒ L

i
=

∆Ti

∆Ts

!
∈ N1 ⇐⇒ L mod i = 0, (3.126)

and, within one fractionally spaced sample interval, the sampling phase may take on the
values

τi
(3.123)
∈ [0,∆Ti) ⇐⇒ τi =

(
0, . . . ,(i−1)∆Ti

)
. (3.127)

Fig. 3.18 shows exemplarily two different sample intervals with Tb-spaced (∆T1-spaced) and
∆T2-fractionally spaced sample intervals and L = 32, that have been generated by the simu-
lation toolbox. Each has a sampling phase located in the middle of the corresponding sample
interval with

τi =
∆Ti

2
=

Tb

2i
=

L
2i

∆Ts. (3.128)

This shall be the usual adjustment in this thesis if not stated otherwise.

3.3 Signal Impairments in OA-IM/DD Links

3.3.1 Linear and Nonlinear ISI

Eyes diagrams are useful to study the deterministic ISI caused by a dispersive communica-
tion channel. If we neglect random noise, we can clearly identify the effect of the optical fiber
channel on the electrical RX signal as illustrated by Figs. 3.19(b) – 3.19(d) for various types
of impairments. Compared to the eye openings of the TX signal of Fig. 3.19(a), we observe
a degradation for CD at L f = 5 km and first-order PMD with ∆τg = 12.5 ps in Figs. 3.19(b)
and 3.19(c), respectively. This means that the susceptibility for noise and sampling phase
adjustment has pretty much increased. Furthermore, both eyes tend to become asymmetric
with respect to the time origin due to optical and electrical RX filtering, and sampling phase
optimization becomes necessary to identify the point of the maximal vertical eye opening.

CD causes nonlinear ISI if we consider an OA-IM/DD link end to end, i.e. from electrical
TX to electrical RX signal. This end-to-end nonlinearity is caused by direct detection and
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Figure 3.18: Illustration of two possible sample intervals with ∆T1- and
∆T2-spaced sample interval based on a bit sequence length
of K = 2048 and oversampling by L = 32

is intrinsic to OA-IM/DD links therefore. Further simulations of the modeled OA-IM/DD
link at Rb = 42.7 Gbit/s have proven that overshoot and jitter in the eye crossings steadily
increase up to L f ≈ 7−8 km. At this point, the eye becomes completely closed.

First-order PMD does not show any overshoot or jitter effects in the eye crossings. The
reason is that first-order PMD remains a linear distortion with respect to direct detection as
already addressed in Ch. 3.2.2.2.1 where we have introduced the first-order PMD model. If
we transfer the findings of Eqs. (3.84) to electrical RX signal of Eq. (3.118), we can write

x(t) = IE0

∣∣∣∣∣∣∣∣∣
F−1


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2 f 0

0 ej2π
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2 f
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f
)
∗ h̃opt(t)

∣∣∣∣∣∣∣∣∣
2

∗hel(t)
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≈ IE0

∣∣∣∣∣∣∣∣F
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(
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Figure 3.19: Eye diagrams for various impairments at Rb = 42.7 Gbit/s

Eq. (3.129) states that the general reason for PMD induced ISI is that increasing ∆τg shifts
the two signal components along the two PSP more and more apart. If ∆τg = Tb, the leading
optical signal part carrying the information for bit bk exactly overlaps with the trailing part
of the previously transmitted bit bk−1. The same holds in the other direction for the trailing
optical signal part carrying the information for bit bk and the leading part of the next bit bk+1,
and so forth. Hence, we observe an electrical RX signal which is composed by addition of
two different signal parts originating from different bits at the TX. It is obvious that the
uncertainty about the actually transmitted bit becomes maximal in this case. For example,
if we assume that the current bit is bk = 1 and the following one is bk+1 = 0, then the
sample value for bk+1 within the time interval [(k + 1)Tb,(k + 2)Tb) is approximately the
mean signal value of both, which is often nearby the optimal decision threshold. Although
bk+1 = 0 was transmitted, a small additive noise distortion might toggle the slicer to indicate
bk+1 = 1. In other words, the corresponding eye diagram is closed if ∆τg = Tb, which is
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mathematically justified by Eq. (3.89), which indicates a zero in the effective first-order
PMD transfer function at f = 1/(2Tb).

In a real optical fiber link, we have to consider the effect of CD and first-order PMD together
because they occur simultaneously. The combined distortions lead to the eye of Fig. 3.19(d),
which shows that vertical and horizontal eye openings have further decreased.

3.3.2 Signal-Dependent Noise

Optimal symbol-by-symbol (sbs) maximum likelihood (ML) detection [42] requires to eval-
uate the sampled electrical RX signal xk0 at the output of our simulation model with respect
to the decision threshold Xth by the rule

b̂k =

{
1 : xk1 ≥ Xth

0 : xk1 < Xth
. (3.130)

In theory, we have to determine the optimal decision threshold minimizing the probability of
bit errors by extreme value analysis of

Pe = P
[
xk1 ≥ Xth ∧ bk = 0

]
+P
[
xk1 < Xth ∧ bk = 1

]
= P[bk = 0]

∞∫
Xth

p
(
xk1 |bk = 0

)
︸ ︷︷ ︸

1−C
(

Xth|bk=0
)

+P[bk = 0]

Xth∫
−∞

p
(
xk1 |bk = 1

)
︸ ︷︷ ︸

C
(

Xth|bk=1
)
−0

= P[bk = 0]
(

1−C
(
Xth |bk = 0

))
+P[bk = 1]C

(
Xth |bk = 1

)
. (3.131)

C
(
xk1 |bk = 0

)
and C

(
xk1 |bk = 1

)
denote the conditional cumulative distribution functions

(CDFs) corresponding to the PDFs p
(
xk1 |bk = 0

)
and p

(
xk1 |bk = 1

)
. Performing this ex-

treme value analysis with respect to Xth and using the fundamental theorem of calculus yields

∂Pe

∂Xth
=−P[bk = 0] p

(
Xth |bk = 0

)
+P[bk = 1] p

(
Xth |bk = 1

) !
= 0

⇐⇒ P[bk = 0] p
(
Xth |bk = 0

)
= P[bk = 1] p

(
Xth |bk = 1

)
P[bk=0]=P[bk=1]

⇐⇒ p
(
Xth |bk = 0

)
= p

(
Xth |bk = 1

)
. (3.132)

Consequently, the optimal decision threshold is given by the intersection point of the two
conditional PDFs assuming equal a priori probabilities as already claimed in Eq. (3.36) with
P[bk = 0] = P[bk = 1] = 0.5. Presuming an ideal transmission channel with symmetric ad-
ditive noise statistics, as for example in a simple AWGN channel, we may easily set the
decision threshold for binary modulation to the mean value of the two electrical RX signal
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levels corresponding to bk = 0 and bk = 1, respectively. Unfortunately, the optical channel
impairments of CD and PMD together with direct detection and the optical and electrical RX
filters do not allow such a simple setup. If we reformulate Eq. (3.117)

x(t) = IE0

∣∣∣(G ãRX(t)+ ñ(t)
)
∗ h̃opt(t)

∣∣∣2 ∗hel(t)

= IE0

∣∣∣G ãRX(t)∗ h̃opt(t)
∣∣∣2 ∗hel(t)

+2 IE0 Re
{(

G ãRX(t)∗ h̃opt(t)
)(

ñ(t)∗ h̃opt(t)
)∗}
∗hel(t)

+ IE0

∣∣∣ñ(t)∗ h̃opt(t)
∣∣∣2 ∗hel(t) , (3.133)

we can identify three parts:

• The first term contains the optical RX signal affected by CD and PMD.

• The second is a beat term, which mixes signal and noise. It represents a signal-
dependent, additive Gaussian noise process.

• The third is a pure noise term with almost χ2-characteristic [42].

Since signal and noise pass the optical filter before and the electrical filter after direct de-
tection, the resulting noise process becomes colored to some extent. This makes theoretical
analysis complicated or even impossible. Some Gaussian [62, 63, 64, 65, 66] and non-
central χ2-approximations [34] have been reported, and some semi-analytical calculations
using moment-generating functions (MGFs) [5, 18, 67, 35] exist, too. However, the ap-
proximations made are either based on quite simplified assumptions, or they do not provide
significant savings in simulation time. If we also apply further signal processing to the sam-
pled electrical RX signal for EDC, noise characteristics might change with each of those
steps. Therefore, we rely on histogram recording as an ergodic estimation of PDFs in this
thesis.

The conditional histograms hp
(
xk1 |bk = 0

)
and hp

(
xk1 |bk = 1

)
in Fig. 3.20 result from sim-

ulation with the same parameter set as those of Fig. 3.19(d) on page 50. The ASE noise level
has been set to γOSNR = 21 dB. The histograms serve as a measured estimate for the condi-
tional PDFs p

(
xk1 |bk = 0

)
and p

(
xk1 |bk = 1

)
. For orientation, the corresponding electrical

RX signal levels for the back-to-back (b2b) case with L f = 0 km have been drawn, i.e. the TX
is directly connected to the RX, and no distortion by CD and PMD is present. The mean value
of these two signal levels is also included as a reference line to indicate the optimal decision
threshold for AWGN. However, signal-dependent noise becomes evident in the difference
of shape of the two conditional histograms showing that the variance of hp

(
xk1 |bk = 1

)
is

larger than the variance of hp
(
xk1 |bk = 0

)
. The point of intersection deviates from the mean

of the two TX signal levels therefore. Since we target a BER of 1e-03 before FEC [48],
optimization of the decision threshold Xth with respect to CD, PMD and OSNR can improve
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the link margin of OA-IM/DD systems to a non-negligible amount [68, 69, 70]. So if not
stated otherwise, any result presented in this thesis implicitly includes the optimization of the
decision threshold. We perform this optimization on the basis of Eq. (3.132) by conditional
histogram evaluation using the rule

Xth = arg min
Xth

BER(Xth)

= arg min
Xth

 Nh−1∑
n=dXth

∆x e

hp
(
n ∆x |bk = 0

)
+

bXth
∆x c∑

n=0

hp
(
n ∆x |bk = 1

) (3.134)

with ∆x denoting the width of one histogram bin and Nh being the number of histogram bins.
Of course, the accuracy of Xth with this approach depends on the adjustment of ∆x and Nh

with respect to the range of values of the samples xk1 , which has been determined empirically
for each OA-IM/DD link parameter set.
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Figure 3.20: Conditional histograms of xk1

(combined CD (L f = 5 km) and first-order PMD (∆τg =
12.36 ps), γOSNR = 21 dB)

Figs. 3.21(a) and 3.21(b) give reasons for decision threshold optimization. We have plotted
the BER vs. OSNR with and without decision threshold optimization for a given OA-IM/DD
link parameter set. The constant decision threshold corresponds to the middle of the noiseless
eye. This would be the optimal decision threshold setup for a system with AWGN. The BER
curves with and without optimization coincide with each other in the region where the fixed
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decision threshold almost equals the optimal ones. Obviously, this happens for a system with
simple threshold RX in the high OSNR region and for a system with EDC by a linear FFE,
which is an anticipation of Ch. 4, in the low OSNR region. We also observe an opposing
trend for the curves of optimal decision thresholds plotted aside. The different behavior can
be explained by the reshaping of the conditional histograms due to the processing of the
electrical RX signal samples xk1 by the linear FFE. Fig. 3.21(b) further reveals that decision
threshold optimization for a system with EDC by a FFE yields an OSNR gain of almost 1 dB
in the interesting BER region from 1e-03 to 1e-04.
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12.36 ps), γOSNR = 21 dB)
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Chapter 4

Electronic Dispersion Compensation -
Methods and Performance
in OA-IM/DD Links

After having described the impacts of CD, PMD, ASE noise and filtering on the final electri-
cal RX signal of OA-IM/DD links, we turn to the discussion of EDC methods and evaluate
their dispersion compensation performance if the link characteristics are known in advance.
Although the optimal method for EDC would be maximum a posteriori (MAP) equaliza-
tion featuring concatenated coding and iterative turbo decoding [71, 72, 34, 35], we consider
MLSE as the more practical benchmarking technique as already indicated in the introductory
chapter. Both, turbo equalization and MLSE, are superior to FFE-DFE methods, but their
computational complexity scales exponentially with channel memory. Coping with the very
high bit rates of optical fiber communication links by digital signal processing techniques
is more or less complicated due to the required processing speeds. This favors simple FFE-
DFE having lower implementation cost and power consumption. However, at least for the
short-haul range, FFE-DFE has to bear up competition with the more advanced methods to
justify its implementation.

4.1 Maximum Likelihood Sequence Estimation

4.1.1 MLSE Viterbi Equalizer

In contrast to sbs ML detection, which reduces to simple threshold comparison as indicated
in Ch. 3.3.2, MLSE bases its decision on a sequence of electrical RX signal samples. That is
why it is optimal in the sense that it minimizes the occurrence of sequence errors. Sequence
error minimization is almost accompanied by a lower BER because MLSE outweighs uncer-
tain or even wrong single bit decisions.
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If we denote the joint sequence estimation length by Ltb and summarize the electrical RX
signal samples in the sequence

xLtb =
(
xk1

)
k1=0,...,Ltb−1 , (4.1)

we can express the general MLSE decision rule for Tb-spaced sampling by

b̂Ltb = arg max
bLtb

p
(

xLtb

∣∣bLtb

)
,

Ltb ∈ N1,bLtb =
(
bk ∈{0,1}

)
k=0,...,Ltb−1 , (4.2)

in which the maximization takes all 2Ltb possible TX sequences bLtb of length Ltb into ac-
count. For convenience, we set Ltb = K, which is the bit sequence length already defined in
Eq. (3.35) on page 22. With Ltb = 1, sbs ML turns out to be the trivial case of MLSE. Since
we have to evaluate Eq. (4.2) 2Ltb times for each binary composition of the TX bit sequence
bLtb , the number of required operations scales exponentially with Ltb. Fortunately, working
on optimal decoding for convolutional codes over noisy digital communication links at the
end of the 1960s [73], Viterbi recognized the similarity to the traveling salesman problem,
for which efficient solutions already existed. The Viterbi algorithm (VA) [74, 75] reduces
the computational complexity of Eq. (4.2) with every processed sample xk1 by consecutive
exclusion of those sequences which are less likely. Since any communication channel with
memory can be interpreted as an encoding device, the VA has been tailored for equaliza-
tion purposes later on [74], and this requires to approximate Eq. (4.2) with the following
decomposition

b̂Ltb = arg max
bLtb

p
(

xLtb

∣∣bLtb

)
≈ arg max

bLtb

Ltb−1∏
k1=0

p
(

xk1

∣∣b0, . . . ,bLtb−1

)
(4.3)

= arg max
bLtb

Ltb−1∏
k1=0

p
(

xk1

∣∣bLtb−1, . . . ,b0

)

≈ arg max
bLtb

Ltb−1∏
k≡k1=0

p

(
xk1

∣∣∣∣bk+Mc
2
, . . . ,bk−Mc

2

)
, Mc = 2n, n ∈ N. (4.4)

The change of the order in the bit sequence bLtb in the intermediate step from Eq. (4.3)
to Eq. (4.4) has been done for convenience. The channel memory Mc describes the finite
number of influencing TX bits on a single electrical RX signal sample xk1 . We assume that
the electrical RX sample xk1 is independent of the TX bits outside the time window k =

−Mc/2, . . . ,Mc/2. The assumptions leading to Eq. (4.3) and finally to Eq. (4.4) are exactly
fulfilled if the signal statistics of the electrical RX signal samples is that of an i.i.d. random
variable. This is given for the output of an AWGN channel with Mc = 0 as in [73]. But if
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Mc > 0, i.e. the channel is dispersive and introduces ISI, the electrical RX signal samples
are not statistically independent anymore because consecutive samples jointly depend on the
same TX bits. Even in the theoretical case of a memory-less channel affected by colored
noise, the decomposition of the multivariate PDF in Eq. (4.2) into a product of single ones
in Eq. (4.3) is not justified anymore. That is why channel equalization using the VA is a
suboptimal MLSE implementation. Note that for Mc > 0, the evaluation of the conditional
PDF of the first and last few samples, x0, . . . ,xMc/2−1 and xLtb−Mc/2, . . . ,xLtb−1, depends on
the TX bits b−Mc/2, . . . ,b−1 and bLtb, . . . ,bLtb+Mc/2−1 of the previous and following sequence.
This might seem somehow inconsistent to the initial MLSE decision rule of Eq. (4.2) but
becomes immediately clear if we have a state based view on the system. The overlap with
adjacent TX bit sequences can be interpreted as a sliding window approach.

If we look at Eq. (4.4) from a system perspective, a single electrical RX signal sample xk1

is conditioned or, in other words, originates from the independent signal waveforms which
have been excited by the TX bits bk+Mc/2, . . . ,bk−Mc/2. Those signal waveforms have been
dispersed by CD, PMD and by optical as well as electrical filtering when propagating along
the fiber. The following electrical RX signal sample xk1+1 depends on the TX bit pattern
bk+Mc/2+1, . . . ,bk−Mc/2+1, in which bk−Mc/2 from the previous pattern has been dropped and
bk+Mc/2+1 appears as a new input. We can describe this scenario by a delay chain with
Mc memory elements. This interpretation leads to the state based system view depicted in
Fig. 4.1. It can be considered as a black box, which represents an equivalent system model
of the OA-IM/DD link and which directly maps the binary input into the electrical RX signal
samples according to the characteristics of the optical fiber link. In general

xk1 = f
(

bk+Mc/2, . . . ,bk−Mc/2

)
(4.5)

can represent any arbitrary mapping and must not necessarily conform to an analytical math-
ematical expression, e.g. it might also consist of a look-up table (LUT).

Tb Tb

f
(

bk−Mc/2, . . . ,bk+Mc/2

) xk1

bk+Mc/2 bk+Mc/2−1 bk−Mc/2+1 bk−Mc/2

Figure 4.1: State based system model

It is obvious that, depending on the value for bk+Mc/2 ∈ {0,1}, the channel state at time
instant k may end up in two possible following states at time instant k+ 1. If we exercise
this for each binary composition of the state pattern (bk+Mc/2−1, . . . ,bk−Mc/2), we can draw a
state transition diagram as depicted in Fig. 4.2(a) for Mc = 2. From the point of view of the
TX, the state transitions occur equally probable since we assume equal a priori probabilities.
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However, at the RX side, we can only observe the electrical RX signal samples xk1 and must
evaluate them with respect to their likelihood to extract the most probable TX sequence.
The conditional PDFs p(xk1|bk+Mc/2, . . . ,bk−Mc/2) are these measures to estimate the state
transitions at the RX. They are highlighted for Mc = 2 in Fig. 4.2(a).

If we add a temporal dimension to the state transition diagram of Fig. 4.2(a), we end up in
the so-called trellis diagram of Fig. 4.2(b). Relating Eq. (4.4) to the trellis description is the
key step towards the VA, which is an iterative algorithm acting on the trellis structure.

Given an arbitrary but fixed state (bk+Mc/2, . . . ,bk−Mc/2+1) at time instant k + 1, the most
likely path to it through the trellis starting at k= 0 in state (bMc/2−1, . . . ,b−Mc/2) is recursively
calculated by

p
(

xk1, . . . ,x0

∣∣∣bk+Mc/2, . . . ,bk−Mc/2+1, . . . ,b0

)
︸ ︷︷ ︸

=:P
k+1,

(
bk+Mc/2,...,bk−Mc/2+1

)
=

max

{
p
(

xk1−1, . . . ,x0

∣∣∣bk+Mc/2−1, . . . ,bk−Mc/2 = 0, . . . ,b0

)
︸ ︷︷ ︸

=:P
k,
(

bk+Mc/2−1,...,bk−Mc/2=0
)

· p
(

xk1

∣∣∣bk+Mc/2, . . . ,bk−Mc/2 = 0
)

︸ ︷︷ ︸
=:B

k1,
(

bk+Mc/2,...,bk−Mc/2=0
)

,

p
(

xk1−1, . . . ,x0

∣∣∣bk+Mc/2−1, . . . ,bk−Mc/2 = 1, . . . ,b0

)
︸ ︷︷ ︸

=:P
k,
(

bk+Mc/2−1,...,bk−Mc/2=1
)

· p
(

xk1

∣∣∣bk+Mc/2, . . . ,bk−Mc/2 = 1
)

︸ ︷︷ ︸
=:B

k1,
(

bk+Mc/2,...,bk−Mc/2=1
)

}
. (4.6)

from the two preceding states given by the Mc-tuples (bk+Mc/2−1, . . . ,bk−1, . . . ,bk−Mc/2 = 0)
and (bk+Mc/2−1, . . . ,bk−1, . . . ,bk−Mc/2 = 1), which differ only in the last bit bk−Mc/2.

Using a shorthand notation for the involved terms in Eq. (4.6), we end up with

P
k+1,

(
bk+Mc/2,...,bk−Mc/2+1

) = max

{
P

k,
(

bk+Mc/2−1,...,bk−Mc/2=0
) ·B

k1,
(

bk+Mc/2,...,bk−Mc/2=0
),

P
k,
(

bk+Mc/2−1,...,bk−Mc/2=1
) ·B

k1,
(

bk+Mc/2,...,bk−Mc/2=1
)} .

(4.7)
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(a) State transition diagram

0 | p(xk1
|011)

0 | p(xk1 |010)

1 | p(xk1 |110)

1 | p(xk1 |111)

0 | p(xk1 |000)

0 | p
(x k 1
|001)

k

11

01

10

00

bkbk−1

00

bk+1bk

1 | p(xk1
|101)

10

01

11

k+1

1 | p(xk1 |100)

(b) Trellis diagram for one transition

Figure 4.2: State transition and trellis diagram for Mc = 2
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Having the trellis representation in mind, the terms Pk,(...) are generally referred to as path
metric and the terms Bk1,(...) as branch metrics. Performing the iterative step of Eq. (4.7) for
all 2Mc possible states at each time instant k = 0, . . . ,Ltb− 1 and finally selecting the most
probable state and its path through the trellis at k = Ltb is equivalent to the maximization
over all possible TX bit sequences bLtb in the initial MLSE decision rule of Eq. (4.2). Fur-
thermore, from Eq. (4.7) it turns out that any time a single step maximization operation is
executed, one transition in the trellis, i.e. one possible TX sequence bLtb , is discarded. The
computational complexity of the VA scales with 2Mc+1Ltb, which leads to considerable sav-
ings of computational operations if ld(Ltb) < Ltb−Mc− 1. Finally, a so-called trace back
operation is required, in which each trace back step adds one bit estimate b̂k to the sequence
b̂Ltb in reverse direction, i.e. it starts with b̂Ltb−1 and ends up with b̂0. The joint estima-
tion length Ltb is often called trace back length in this context, which explains the chosen
subscript for this parameter.

Note that concerning implementation, we may transform Eq.(4.7) into logarithmic domain
because the multiplications turn into additions. The logarithmic path metrics are given by

P
lg,k+1,

(
bk+Mc/2,...,bk−Mc/2+1

) =
max

{
P

lg,k,
(

bk+Mc/2−1,...,bk−Mc/2=0
)+B

lg,k1,
(

bk+Mc/2,...,bk−Mc/2=0
),

P
lg,k,

(
bk+Mc/2−1,...,bk−Mc/2=1

)+B
lg,k1,

(
bk+Mc/2,...,bk−Mc/2=1

)} ,

(4.8)

and the additional subscript · lg implicitly indicates to use the logarithm base 10 for the
corresponding terms in Eq. (4.7).

In summary, the VA consists of a path metric update unit according to Eq. (4.8), a branch
metric and a trace back unit. Since we use VA based MLSE for EDC as a referencing
benchmark only in this thesis, the work of [28, 76, 77, 78, 79] is given as a reference for a
profound discussion about efficient implementation.

4.1.2 Branch Metric Acquisition

The branch metrics Blg,k1,(bk+Mc/2,...,bk−Mc/2=1) to execute the VA are given by conditional
PDFs, which represent the underlying characteristic of the communication channel. For
the same reasons as already stated for the optimization of decision thresholds in Ch. 3.3.2,
we approximate the branch metrics for the considered OA-IM/DD link by conditional his-
togram measurements obtained from simulations. Thus, conditional histograms replace the
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conditional PDFs in Eq. (4.8) with

P
lg,k+1,

(
bk+Mc/2,...,bk−Mc/2+1

) =
max

P
lg,k,

(
bk+Mc/2−1,...,bk−Mc/2=0

)+ lg

(
h
(

xk1

∣∣∣bk+Mc/2, . . . ,bk, . . . ,bk−Mc/2 = 0
))

,

P
lg,k,

(
bk+Mc/2−1,...,bk−Mc/2=1

)+ lg

(
h
(

xk1

∣∣∣bk+Mc/2, . . . ,bk, . . . ,bk−Mc/2 = 1
)) ,

(4.9)

which forms the basis of the implemented VA used in this thesis.

Using the state based system model of Fig. 4.1, it is straightforward in a computer simulation
environment to collect the electrical RX signal samples xk1 and fill histograms with respect
to the TX bit pattern bk+Mc/2, . . . ,bk−Mc/2 as illustrated by Fig. 4.3. VA implementations
either have to be supplied by the branch metrics in advance, or they make use of a so-called
decision-directed mode, in which the samples xk1 are stored until an estimate for the bit
sequence b̂Ltb is available. As soon as this happens, the corresponding branch metrics are
updated assuming no bit errors.

Tb Tb

bk+Mc/2 bk−Mc/2

equivalent channel: f
(

bk−Mc/2, . . . ,bk+Mc/2

)

...
h
(

xk1 |1, . . . ,1, . . . ,1
)

Bx

xk1 ADC

Branch metrics:

h
(

xk1 |0, . . . ,0, . . . ,0
)

bk+Mc/2−1 bk−Mc/2+1

Figure 4.3: Conditional histogram measurement

The non-infinitesimal width of the histogram bins implicitly quantizes the electrical RX
signal samples, i.e. this VA implementation is digital per se. The resolution and dynamic
range of the analog-to-digital converter (ADC) determines the accuracy of the conditional
histograms. Although maximum likelihood sequence estimation based Viterbi equalizers
(MLSE-VEs) are already able to improve the link margin for an ADC resolution of Bx =

3 bits [20, 80, 28], we do not want to waste its full potential and set Bx = 5 bits, which
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corresponds to 25 = 32 quantization levels.

The result of a branch metric measurement for Bx = 5 bit is depicted in Fig. 4.4 for Mc = 2
and CD as well as first-order PMD. While the integral over the full range of a PDF evaluates
to 1, the histograms of Fig. 4.4 do not show this normalization. Instead, we have just loga-
rithmized their absolute count. However, this is intended since normalization has no effect
on the performance of the VA because the relative differences in the path metrics remain, i.e.
their are just scaled. The main disadvantage of branch metric measurement is the absence of
histogram values in the tail regions. This is difficult to overcome because simulation events
are rare here. If necessary, some extrapolation techniques can be useful.
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Figure 4.4: Branch metrics for Mc = 2 with Bx = 5 bit
(combined CD (L f = 5 km) and first-order PMD (∆τg,max =
12.36 ps), γOSNR = 21 dB)

4.1.3 Fractionally Spaced MLSE Viterbi Equalizer

As already indicated in Ch. 3.2.4, sampling with a narrower than Tb-spaced sample interval
can be beneficial for EDC performance. Besides the obviously higher internal processing
speed, the VA and its computations have to be changed slightly. We just highlight the basic
ideas and summarize the final equations here because they are in principle a straightforward
extension of the Tb-spaced case discussed previously.

The state based system view must be extended to deliver i∆Ti-spaced samples xki per bit
interval, of which each is dependent on the input bit bk+Mc/2 and the current channel state
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(bk+Mc/2−1, . . . ,bk−Mc/2). We account for this by including upsampling of the input to the
equivalent discrete-time system model as illustrated in Fig. 4.5 for ∆T2 = Tb/2.

Tb Tb

2222

bk+Mc/2 bk+Mc/2−1 bk−Mc/2+1 bk−Mc/2

f
(

bk−Mc/2, . . . ,bk+Mc/2

) xk2

Figure 4.5: State based system model for a sample interval of ∆T2 =
Tb/2

The advantage of fractionally spaced processing within the VA arises from the fact that we
are able to reproduce and distinguish the state transitions much better out of the observation
of multiple electrical RX signal samples. The assumptions made for the VA in Eq. (4.6)
apply also for fractionally spaced processing with

b̂Ltb = arg max
bLtb

p
(

xiLtb

∣∣bLtb

)
≈ arg max

bLtb

Ltb−1∏
k=0,
ki=ik

p
(

xki, . . . ,xki+i−1
∣∣bLtb−1, . . . ,b0

)

≈ arg max
bLtb

Ltb−1∏
k=0,
ki=ik

p
(

xki, . . . ,xki+i−1

∣∣∣bk+Mc/2, . . . ,bk−Mc/2

)
,

xiLtb =
(
xki

)
ki=0,...,iLtb−1 . (4.10)

The sequence xiLtb contains the electrical RX signal samples which are related to the bit
sequence bLtb . Concerning the state transition and trellis diagram, we have to alter the state
transition probabilities to multivariate conditional PDFs, which include all electrical RX
signal samples for one transition from time instant k to k+1. This is shown again for ∆T2 =

Tb/2 and Mc = 2 in Figs. 4.6(a) and 4.6(b).

If we think about implementation, the number of multivariate conditional PDFs for branch
metric calculation scales exponential in the number of samples taken per bit interval. If we
followed the approximation of conditional PDFs by histograms, we would have to record
them with respect to multidimensional bins. A simplification to circumvent this complexity
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Figure 4.6: State transition and trellis diagram for ∆T2 = Tb/2 and Mc =
2

64



4.1. Maximum Likelihood Sequence Estimation

is therefore

b̂Ltb ≈ arg max
bLtb∈BLtb

Ltb−1∏
k=0,
ki=ik

i−1∏
j=0

p
(

xki+ j

∣∣∣bk+Mc/2, . . . ,bk−Mc/2

)
, (4.11)

which relies on univariate PDFs. However, equality of Eq. (4.11) to Eq. (4.10) is only given
if the electrical RX signal samples xki, . . . ,xki+i−1 within one bit interval are statistically in-
dependent. Thus, we intentionally reduce mathematical accuracy in favor of implementation.
The deviation of the rule in Eq. (4.11) compared to plain MLSE increases as the electrical
RX signal samples get more and more correlated. This obviously happens if we reduce the
temporal sample spacing.

The final iterative and trellis based equation with histogram based path metrics updates for
fractionally spaced sample processing is then given by

P
lg,k+1,

(
bk+Mc/2,...,bk,...,bk−Mc/2+1

) =

max

P
lg,k,

(
bk+Mc/2−1,...,bk−1,...,bk−Mc/2=0

)

+
i−1∑
j=0,

ki=ik

lg

(
h
(

xki+ j

∣∣∣bk+Mc/2, . . . ,bk, . . . ,bk−Mc/2 = 0
))

,

P
lg,k,

(
bk+Mc/2−1,...,bk−1,...,bk−Mc/2=1

)

+

i−1∑
j=0,

ki=ik

lg

(
h
(

xki+ j

∣∣∣bkMc/2, . . . ,bk, . . . ,bk−Mc/2 = 1
)) . (4.12)

Figs. 4.7(a) and 4.7(b) illustrate the branch metric histograms for the same parameters as-
sumed in Figs. 4.5, 4.6(a) and 4.6(b). The temporal sampling phase within the sample inter-
val ∆T2 was set to τ2 = 0 resulting in a sampled electrical RX signal x(t) in the transitional
region and in the middle of the eye diagram if we refer to Fig. 3.19(d) on page 50. The con-
ditional histograms in Figs. 4.7(a) and 4.7(b) have different shapes therefore. In principle,
we can observe only three distinct histograms for the even samples in Fig. 4.7(a) because the
eye transitions in Fig. 3.19(d) are concentrated around three distinct regions. The odd sam-
ples taken in the middle of the eye coincide with those of the already presented Tb-spaced
example in Ch. 4.1.2.
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Figure 4.7: Fractionally spaced branch metrics for ∆T2 = Tb/2 and Mc =
2 with Bx = 5 bit
(combined CD (L f = 5 km) and first-order PMD (∆τg,max =
12.36 ps), γOSNR = 21 dB)
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In contrast to the illustrated branch metric histograms in Figs. 4.7(a) and 4.7(b), the presented
simulation results in Ch. 4.3 use τi = ∆Ti/2. Since the eye diagram of Fig. 3.19(d) is almost
symmetric with respect to its center, this setup for τi produces almost identical histograms
for even and odd samples. This is a further possibility to reduce implementation cost.

4.2 Feedforward and Decision Feedback Equalizers

EDC using linear FFEs in combination with DFEs belongs to the class of sbs ML detection
methods. Therefore, it cannot outperform MLSE-VE by nature. It tries to compensate the
deterministic ISI of the transmission channel by reopening the eye diagram for the sampling
instant at the RX to increase the robustness against noise. From a frequency domain perspec-
tive, FFE-DFEs can be viewed as an inverse channel modeling approach to target an ideally
flat effective transfer function within the passband range of the communication channel. Par-
allelism can also be drawn from the fields of signal classification, feature extraction or source
separation on noisy input data. Usually, textbooks [42, 81, 82] present the theory of FFE-
DFEs with respect to linear ISI channels, for which we can fairly agree that removing a linear
impairment by means of linear equalizer filters seems well justified. However, OA-IM/DD
links also generate nonlinear ISI as we have discussed before. FFE-DFEs are suboptimal
therefore. With respect to the interpretation as an inverse channel filter, they can only com-
pensate for the linear components of ISI, which we can describe by the Fourier transform
for continuous-time or the Z-transform for discrete-time representations of the communica-
tion channel. As a consequence, some investigations towards nonlinear FFE-DFEs using
Volterra series [83, 84, 85, 86, 87, 88] have been executed with the aim to include the nonlin-
ear ISI components, too. Within these advanced structures, the input signals may also appear
self- and cross-mixed. Thus, Volterra based FFE-DFEs require more multiplications. This
contrasts to high-speed digital implementation, for which the least possible multiplication
overhead is favorable. Since our final target of investigation is digital FFE-DFE implemen-
tation, we remain with the conventional and well-known linear equalizer structure in this
thesis.

4.2.1 FFE-DFE Structure

Fig. 4.8 shows the conventional structure of a FFE-DFE with a linear feed-forward and de-
cision feedback filter. The FFE is a linear transversal filter with M ∈ N1 coefficients cm,
m = (0, . . . ,M−1). The M−1 delay elements, which also represent the order of the polyno-
mial FFE transfer function in the Z-transform domain, hold the electrical RX signal samples
xki+τd−m, which have been generated by a Tb-spaced sample interval here.
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Figure 4.8: FFE-DFE structure

It is convenient to use

c :=


c0
...

cM−1

 , c ∈ RM, (4.13)

as notation for the FFE coefficient vector, and the same can be done with the input samples
xk1+τd−m to form the input sample vector

xk1 :=



xk1+τd
...

xk1
...

xk1+τd−(M−1)


, τd = 0, . . . ,M−1, xk1 ∈ RM. (4.14)

The artificially introduced advancement τd of the elements in xk1 will be explained further
below. Thus, we can compactly formulate the FFE filter operation with an inner product

yk =
M−1∑
m=0

cmxk1+τd−m

= cTxk1 . (4.15)

Although the mix of the time indices k and k1 for yk and xk1 seems a bit confusing in
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Eq. (4.15), we will require it when we explain fractionally spaced feed-forward equal-
izer (FSFFE) operation later on. For the moment, we refer to Eq. (3.122) on page 47, where
we have already indicated the identity k ≡ k1.

The output y′k1
of the DFE filter with N ∈ N1 coefficients dn, n = (1, . . . ,N), is comprised of

a linear filter operation on the previous bit estimates b̂k−n. Although the filter operation itself
is linear, the whole structure must be considered as nonlinear due to the highly discontinuous
slicer characteristic providing the input to the DFE.

In order to stay compliant with the FFE description, we also introduce a vector notation with

d :=


d1
...

dN

 , d ∈ RN , (4.16)

for the DFE coefficients and

b̂k−1 :=


b̂k−1

...
b̂k−N

 , b̂k−1 ∈{0,1}N , (4.17)

for the input vector of bit estimate to the DFE. Thus, the compact notation for the output of
the DFE filter is

y′k =
N∑

n=1

dnb̂k−n

= dTb̂k−1. (4.18)

The FFE-DFE output zk, which is also referred to as decision statistic, is calculated by

zk = yk + y′k
= cTxk1 +dTb̂k−1. (4.19)

Especially for the following derivations, it is sometimes useful to further compact Eq. (4.19)
with

zk = c̆Tx̆k1, (4.20)

for which we introduce the overall coefficient vector

c̆ :=

(
c
d

)
(4.21)
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and the overall FFE-DFE input vector

x̆k1 :=

(
xk1

b̂k−1

)
. (4.22)

The FFE-DFE output zk is subject to sbs ML as illustrated in Fig. 4.8 by the slicer with the
decision threshold Zth. We always optimize Zth ∈ R for each OA-IM/DD link parameter set
as already indicated in Ch. 3.3.2. The final bit estimate b̂k corresponds to the TX bit bk and
is forwarded for further processing and put into the delay chain of the DFE part for the next
FFE-DFE operation cycle.

Concerning coefficient adjustment for optimal EDC performance, FFE-DFE offers M +N
degrees of freedom. Another degree related to the FFE part is the parameter decision delay
τd . Having a closer look at the cross-correlation of the transmitted bits bk and the electrical
RX signal sample xk1+ j for different time lags j ∈ Z as depicted in Fig. 4.9 reveals that CD
and PMD induced ISI in OA-IM/DD links spreads symmetrically. Owing to the fact that we

1

. . .

0.5

0

0-1-2 1 2

. . .

j

E
[
bkxk1+ j

]
E
[
bkxk1

]

Figure 4.9: Cross-correlation between the TX bits and the electrical RX
samples for different time lags
(combined CD (L f = 5 km) and first-order PMD (∆τg =
12.5 ps), γOSNR = 21 dB)

have intentionally reverted the common group delay within the simulation environment as
mentioned in Ch. 3.2.4, the cross-correlation between the TX bit bk and the electrical RX
signal samples xk1+ j is largest for j = 0 and declines almost in the same way for positive and
negative time lags1. This gives reason for the assessment∣∣∣E[bkxk1

]∣∣∣≥ ∣∣∣E[bkxk1−1
]∣∣∣≈ ∣∣∣E[bkxk1+1

]∣∣∣≥ ∣∣∣E[bkxk1−2
]∣∣∣≈ ∣∣∣E[bkxk1+2

]∣∣∣≥ . . . .

If we want to recover a distorted signal affected by ISI, it is intuitive to include those samples
for the recovery process which have the highest affinity to it in a statistical sense. This is

1In the discussion of MLSE in Ch. 4.1, we have accounted for this by introducing the channel memory
parameter Mc, which extends the channel memory symmetrically in both temporal directions.
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given in a linear manner by the most correlated samples xk1+ j to bk with j around zero.
While M determines how many samples the FFE takes into account, we use the decision
delay τd = 0, . . . ,M− 1 to identify the coefficient cτd within the FFE, by which the input
sample xk1 , which is most correlated to bk, is multiplied when the decision statistic yk to get
the estimate b̂k is generated. Thus, we may use

xk1 =


xk1
...

xk1−(M−1)

 , . . . , xk1 =


xk1+(M−1)

...
xk1


as input to the FFE when we determine b̂k. There exist some studies [89, 90, 91] on the opti-
mal choice of τd but all with the prerequisite of a linear finite impulse response (FIR) channel
affected by AWGN. Since we have to deal with an end-to-end nonlinear channel given by the
OA-IM/DD link and signal-dependent noise, we rather optimize τd to exploit any degree of
freedom. The degrees of freedom for FFE-DFE adjustment increases to M+N+1 therefore.
The optimization of the decision delay reflects itself in the repeated calculation of FFE-DFE
coefficients for each value of τd with respect to the parameter set describing the OA-IM/DD
link and the applied coefficient adjustment criteria, which we will present in the following.

4.2.2 FFE-DFE Coefficient Adjustment Criteria

4.2.2.1 Minimal BER Criterion

Assessment of digital communication systems and the involved TX formats and RX process-
ing methods often requires the measurement or even analytical calculation of the BER as a
fundamental quantity comprising all detrimental effects of the system. Deducing the link
quality only from noiseless eye diagrams or waveform observations is sometimes not sat-
isfactory since rough assumptions are involved which allow a relative judgment but do not
reflect the absolute performance. This is even true for simulation models in which the mod-
eling itself includes some abstractions and deviations from the real system behavior. Thus,
adjustment of the FFE-DFE coefficients with respect to MIN-BER represents the optimum
in order to study its absolute EDC performance.

If we collect all parameters and possible effects of the considered OA-IM/DD link, we may
formulate the task of FFE-DFE coefficient adjustment for MIN-BER as follows

c̆BER = arg min
c̆

BER
(

L f ,∆τg,γOSNR,M,N, c̆,τd,Zth

)
. (4.23)

The determination of the BER for sbs ML detection generally requires to evaluate the con-
ditional histograms of the decision variable as shown in Ch. 3.3.2. We have already indi-
cated there that it is quite difficult to capture the conditional histograms for an OA-IM/DD
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link without FFE or DFE. Unfortunately, it is also not possible to express the relation in
Eq. (4.23) in any analytical term. Thus, we cannot rely on extreme value calculation known
from calculus or apply numerically stable and well understood gradient descent optimization
strategies as for example in [55] for multidimensional mappings under AWGN conditions.
Some authors have already turned to the question of MIN-BER FFE-DFE coefficient ad-
justment and have proposed some approximate analytical solutions for linear channels with
AWGN [92, 93, 94, 95] and even OA-IM/DD links [96]. While an analytical solution seems
plausible for the first few references due to linearity and additive noise, the latter one makes
use of a much simplified OA-IM/DD system model with linear modulation of the optical CW
carrier signal and without optical and electrical filtering. In order to cover MIN-BER coeffi-
cient adjustment anyway, a numerical method called downhill simplex method was found in
literature [97]. This method relies on repeatedly executed simulations and evaluations of

BER
(

L f ,∆τg,γOSNR,M,N, c̆,τd,Zth

)
for M+N+1 initial setups of c̆. These coefficient setups form a so-called simplex, which is a
geometric body in the (M+N)-dimensional solution space with the M+N+1 realizations of
c̆ acting as its vertices. Assuming that the optimal coefficient vector is somewhere contained
within the volume of the simplex, we always change the worst vertex given by the coefficient
vector c̆ with the largest BER to finally contract the vertex towards the MIN-BER solution
c̆BER. In [98] this trial-and-error approach has been initially applied to an OA-IM/DD link.
The details about the way we have to change the set of coefficient vectors towards the optimal
solution and the further steps of this algorithm are described in App. C.

4.2.2.2 Zero-Forcing Criterion

The ZF criterion to adjust the FFE-DFE coefficients bases on the channel inversion problem.
In general, ZF equalization is more or less a theoretical construct, which requires a priori
knowledge of the impulse response of the ISI causing communication channel. Nevertheless,
we use it as a first step to bridge the gap from the purely theoretical MIN-BER adjustment
towards a more practically relevant criterion which targets to improve the eye pattern at the
RX. Similar to the state based system view for the derivation of the VA in Ch. 4.1, we
use a discrete-time equivalent channel model with memory Mc to describe the input-output
relation of the considered OA-IM/DD system. The concatenation with the properly designed
ZF FFE-DFE should eliminate the ISI of the channel and lead to an ideal overall impulse
response of δ (t) in the continuous-time or to the unit impulse δk in the discrete-time domain
given by

δk :=

{
1 : k = 0
0 : k 6= 0

. (4.24)
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4.2.2.2.1 LLS FIR Channel Approximation
Since we focus on linear channel inversion filters in this section, we consequently require a
linear FIR approximation of the OA-IM/DD link as depicted in Fig. 4.10. However, we have

Tb Tb

. . .

bk+Mc/2

hMc/2

DFE

b̂kFFE

bk−Mc/2bk+(Mc/2−1) bk−(Mc/2−1)

xk1

hMc/2−1h−(Mc/2−1)h−Mc/2

Figure 4.10: LLS FIR channel approximation of the OA-IM/DD link

already discussed in detail in Chs. 2 and 3 that OA-IM/DD links are end-to-end nonlinear
with respect to the electrical domains from the TX to RX. Therefore, a linear FIR approxi-
mation is not able to reproduce the exact system behavior, and nonlinear components of ISI
are ignored by this procedure. However, since FFE-DFE is only able to mitigate linear ISI,
the linear channel approximation becomes justified again.

Assuming a channel memory Mc = 2n, n ∈ N, as defined for the VA, we measure an equiv-
alent discrete-time linear least squares (LLS) FIR approximation of the OA-IM/DD link to
obtain the channel coefficient vector

h :=



h−Mc/2
...

h0
...

hMc/2


Mc = 2n, n ∈ N. (4.25)

The coefficient h0 shall be the main coefficient, which has generally the largest magnitude,
and which shall be multiplied with the input bit bk of the bit vector

bk :=



bk−Mc/2
...

bk
...

bk+Mc/2


(4.26)
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if the electrical RX signal sample xk1 is approximated by a discrete-time convolution

xk1 ≈
Mc/2∑

j=−Mc/2

h j bk− j

= hTbk. (4.27)

Consequently, the inherent delay of the linear channel approximation filter is fixed to Mc/2
as Fig. 4.10 illustrates. The channel coefficients h j, j = −Mc/2, . . . ,Mc/2, are determined
by a LLS fitting procedure explained in App. D. Note that the non-causal modeling and
indexing of the linear FIR channel approximation filter is only possible within a computer
simulation environment but consistent with the conventions in previous chapters. The LLS
fitting procedure is based on noisy input data which are output from the simulation model of
the OA-IM/DD link. The linear approximation may differ for different values of the OSNR
therefore.

4.2.2.2.2 Concatenated LLS FIR Channel Approximation and FFE Response
After having the channel coefficients available, we may write for the output of the concate-
nation of the LLS FIR channel approximation and the FFE with Eqs. (4.15) and (4.27)

yk =
M−1∑
m=0

cm xk1+τd−m︸ ︷︷ ︸
≈h j∗bk+τd

≈
M−1∑
m=0

cm

 Mc/2∑
j=−Mc/2

h j bk+τd−m− j︸ ︷︷ ︸
i :=m+ j


=

Mc/2∑
j=−Mc/2

j+M−1∑
i= j

h j ci− j bk+τd−i

=

Mc/2+M−1∑
i=−Mc/2

min(−Mc/2, i)∑
j=max(−Mc/2, i−(M−1))

h j ci− j

︸ ︷︷ ︸
=:h′i(c)

bk+τd−i

=

Mc/2+M−1∑
i=−Mc/2

h′i(c)bk+τd−i (4.28)

We intentionally neglect the DFE for the moment and turn our attention to it later again.

The non-causal concatenated system response has Mc+M coefficients, which we summarize
by

h′(c) =


h′−Mc/2(c)

...
h′Mc/2+M−1(c)

 . (4.29)
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The notation as a function of the FFE coefficient vector c for h′(c) and its elements h′i(c)
shall emphasize this dependence.

We can rewrite Eq. (4.28) and separate the terms to get

yk = h′τd
(c)bk +

Mc/2+M−1∑
i=−Mc/2

i 6=τd

h′i(c)bk+τd−i

︸ ︷︷ ︸
ISI

. (4.30)

The main coefficient of the concatenated system response has the index i = τd , which is
a further convenience of our non-causal view on the system. The first term in Eq. (4.30)
contains the information we try to recover while the second one becomes ISI if it is not zero.

Since we evaluate yk with respect to a decision threshold for sbs ML detection, we are inter-
ested in improving the eye opening to increase the tolerance against noise. Equivalently, we
can minimize the peak eye distortion defined by

ρe(c) :=
Mc/2+M∑
i=−Mc/2

i6=τd

∣∣∣h′i(c)∣∣∣ . (4.31)

The task of FFE design is to minimize ρe(c) by the proper choice of the FFE coefficients cm,
m = 0, . . . ,M−1. In [99] it has been shown that the peak eye distortion is a convex function
with respect to c. This property leads to a unique optimal solution. Further insight into this
optimization task reveals that minimizing the peak distortion is equivalent to force M− 1
samples of the concatenated system response to zero [100], which has implicated the name
zero-forcing for this type of FFE-DFE adjustment. Consequently, reduction or even removal
of the ISI term in Eq. (4.30) requires a concatenated system response according to the ZF
criterion expressed by

h′i(c)≈ h′ZF,i := δi−τd , i =−Mc/2, . . . ,Mc/2+M−1. (4.32)

Its explicit form is given by

h′(c)≈ h′ZF =



h′ZF,−Mc/2
...

h′ZF,τd−1
h′ZF,τd

h′ZF,τd+1
...

h′ZF,Mc/2+M−1


:=



0
...
0
1
0
...
0


. (4.33)
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In order to explain the application of the ZF criterion, it is appropriate to reformulate the
finite length convolution leading to the concatenated system response of Eq. (4.28) by us-
ing the vector notation introduced in Eq. (4.29). We can define a so-called (Mc +M)×M
convolution matrix for the linear FIR channel approximation. This matrix is constructed
by shifting a transposed and temporally reversed version of the channel coefficient vector
h from the left-hand side row by row in the matrix. We pad the not touched positions with
zeros and cut those elements which exceed the row dimension border of the matrix. A matrix
constructed by this principle is generally known as Toeplitz matrix, and its structure is in our
case

H :=



h−Mc/2 0 . . . . . . . . . 0
h−(Mc/2−1) h−Mc/2 0 . . . . . . 0

... . . .
... . . .

... . . .

hτd−1 . . . . . . h−1 . . . h−(M−1)+τd−1

hτd . . . . . . h0 . . . h−(M−1)+τd

hτd+1 . . . . . . h1 . . . h−(M−1)+τd+1
... . . .

... . . .
... . . .

0 . . . . . . 0 hMc/2 hMc/2−1

0 . . . . . . . . . 0 hMc/2


(Mc+M)×M

. (4.34)

Using the vector notation for the concatenated system response h′, the convolution matrix H
and the FFE coefficient vector c of Eq. (4.13), we may express the result of the discrete-time
convolution in Eq. (4.28) in compact vector notation with

h′(c) = Hc. (4.35)

After insertion of h′(c)≈ h′ZF according to Eq. (4.33), we may use

h′ZF ≈Hc⇐⇒



0
...
0
1
0
...
0


≈



h−Mc/2 0 . . . . . . . . . 0
h−(Mc/2−1) h−Mc/2 0 . . . . . . 0

... . . .
... . . .

... . . .

hτd−1 . . . . . . h−1 . . . h−(M−1)+τd−1

hτd . . . . . . h0 . . . h−(M−1)+τd

hτd+1 . . . . . . h1 . . . h−(M−1)+τd+1
... . . .

... . . .
... . . .

0 . . . . . . 0 hMc/2 hMc/2−1

0 . . . . . . . . . 0 hMc/2


(Mc+M)×M



c0
...

cτd
...

cM−1



(4.36)

to determine the corresponding ZF FFE coefficient vector c. A closer look at the row and
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column dimensions of the convolution matrix H with Mc +M > M reveals that the number
of equations is larger than the number of variables. Such a system of equations is said to be
overdetermined, and we can only approximate the desired concatenated ZF system response.
This fact is also supported by the Z-transform domain consideration of Eq. (4.28) and the ZF
criterion of Eq. (4.32) with

z−τd ≈ H(z)C(z) ⇐⇒ C(z) = c0 + c1 z−1 + . . .+ cM−1 z−(M−1) ≈ z−τd

H(z)
. (4.37)

This relation states that, given the LLS FIR channel approximation with the Z-transform
H(z), the ideal equalizer filter C(z) should be a recursive one approximating the inverse
channel transfer function. We could think of straightforward channel inversion using a re-
cursive filter as an alternative to the FFE. However, this might cause stability problems if the
LLS FIR channel approximation filter is not minimum phase. Application of series expan-
sion theory as in [54] also shows that using a linear FFE with M� ∞ cannot exactly yield
the inverse approximate channel transfer function for Tb-spaced sampling. Consequently,
we have to tolerate a residual amount of ISI, which manifests itself in a nonzero peak eye
distortion.

Coming back to the time domain problem formulation of Eq. (4.36), we have to choose M
out of the Mc+M equations to determine the ZF solution for the FFE coefficients. Therefore,
let

I :=
{
−Mc/2, . . . ,Mc/2+M−1

}
(4.38)

be the index set comprising all row indices of system of equations in Eq. (4.36), then we may
separate those equations with respect to the row indices in two mutually exclusive sets

IFFE = I\ IISI, |IFFE |= M,τd ∈ IFFE , (4.39)

IISI = I\ IFFE , |IISI|= Mc. (4.40)
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We use the equations represented by the indices in IFFE to calculate the ZF solution for the
FFE while the others contained in IISI contribute to the residual ISI. The index τd for the row
in which we set the one in the ZF condition vector h′ZF shall always be contained in IFFE .

Eq. (4.41) illustrates this kind of separation of the rows with

0
0
...
0
1
0
...
0
0


≈



h−Mc/2 0 . . . . . . . . . 0
h−(Mc/2−1) h−Mc/2 0 . . . . . . 0

... . . .
... . . .

... . . .

hτd−1 . . . . . . h−1 . . . h−(M−1)+τd−1

hτd . . . . . . h0 . . . h−(M−1)+τd

hτd+1 . . . . . . h1 . . . h−(M−1)+τd+1
... . . .

... . . .
... . . .

0 . . . . . . 0 hMc/2 hMc/2−1

0 . . . . . . . . . 0 hMc/2


(Mc+M)×M

 ∈IFFE⊕IISI

}
∈IFFE ∈IFFE⊕IISI



c0
...

cτd
...

cM−1


,

(4.41)

for which the composition of IFFE and IISI is arbitrary but exclusive as indicated by the
notation IFFE ⊕ IISI .

With the rows corresponding to IFFE in Eq. (4.36), we generate a reduced M-dimensional
ZF condition vector h′ZF,FFE and a M×M convolution matrix HFFE . We use this subsystem
of equations to determine the FFE coefficients with

h′ZF,FFE = HFFE c⇐⇒ c = H−1
FFE h′ZF,FFE . (4.42)

Since h′ZF,FFE has the simple form of a unit vector with a single element set to one, the ZF
solution for the FFE is apparently the corresponding column of the inverse M×M convolu-
tion matrix H−1

FFE . This inverse exists if HFFE has full rank, or equivalently, if all rows of the
convolution matrix H, from which HFFE is extracted, are linearly independent. The Toeplitz
structure of the convolution matrix guarantees this behavior.

Reinsertion of the determined coefficient vector c into Eq. (4.35) gives us the actual concate-
nated system response h′(c) and allows us determine the corresponding peak eye distortion
ρe(c) using Eq. (4.31). Owing to the formulated ZF condition, we have

h′i(c) = 0 ∀ i ∈ IFFE \{τd} , (4.43)

and the Mc coefficients of the complementary set

h′i(c) 6= 0 ∀ i ∈ IISI (4.44)

contribute to the residual ISI, which we have to tolerate.
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Since the composition of IFFE and the choice of the decision delay τd are crucial for the
amount of residual ISI, we vary them to identify the optimal ZF coefficient vector cZF with
respect to globally minimal peak eye distortion. We may also not forget about the assumed
channel memory Mc, which is also empirically adjusted when different parameter sets of the
OA-IM/DD link have been simulated to generate the results presented later in this thesis.
Hence, for each OA-IM/DD link parameter set and each decision delay τd ranging from
0, . . . ,M−1, we have to check

(Mc+M−1
M−1

)
different combinations of HFFE . Since we always

have τd ∈ IFFE , we can only choose M−1 further rows.

4.2.2.2.3 Inclusion of the DFE
We are now ready to include the DFE in the demonstrated procedure for the FFE at hand.
According to our initial illustration in Fig. 4.8 on page 68 and recalling Eqs. (4.18), (4.19)
and (4.28), we just have to add the contribution of the DFE to the concatenated system
response and get

zk = yk + y′k

=

Mc/2+M−1∑
i=−Mc/2

h′i(c)bk+τd−i +
N∑

n=1

dnb̂k−n (4.45)

as input to the decision slicer.

Similar to Eq. (4.30), we may split up this equation not in two but in three different terms for
now with

zk = h′τd
(c)bk +

Mc/2+M−1∑
i=−Mc/2

i 6=τd

h′i(c)bk+τd−i +
N∑

n=1

dnb̂k−n. (4.46)

Presuming that

0≤ τd ≤min
(

M−1,
Mc

2
+M−1−N

)
, (4.47)

we may further extract and reorder

zk = h′τd
(c)bk +

τd−1∑
i=−Mc/2

h′i(c)bk+τd−i +

τd+N∑
i=τd+1

h′i(c)bk+τd− i︸ ︷︷ ︸
n := i−τd︸ ︷︷ ︸

=
∑N

n=1 h′n+τd
bk−n

+
N∑

n=1

dnb̂k−n︸ ︷︷ ︸
assume b̂k−n=bk−n

+

Mc/2+M−1∑
i=τd+N+1

h′i(c)bk+τd−i
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= h′τd
(c)bk +

τd−1∑
i=−Mc/2

h′i(c)bk+τd−i +

Mc/2+M−1∑
i=τd+N+1

h′i(c)bk+τd−i︸ ︷︷ ︸
ISI to be eliminated by FFE

+
N∑

n=1

(
h′n+τd

(c)+dn

)
bk−n︸ ︷︷ ︸

ISI eliminated by DFE

. (4.48)

The first term contains the desired bit symbol we try to recover, the second and third one
contain the amount of ISI which has to be eliminated by the FFE as before, and the last one
arises from the application of the DFE under the assumption of correct bit decisions with
b̂k−n = bk−n, n = 1, . . . ,N. We can easily eliminate the latter term by setting

dn :=−h′n+τd
(c) , n = 1, . . . ,N. (4.49)

This is the equation to determine the ZF DFE coefficients. Since all coefficients hn+τd(c),
n = 1, . . . ,N, depend on c, the DFE coefficients dn, n = 1, . . . ,N, do either.

Assuming that the DFE coefficients are set up according to Eq. (4.49), and that correct bit
decisions are forwarded to the DFE, the effective concatenated system response becomes

zk = h′τd
(c)bk +

Mc/2+M−1∑
i=−Mc/2

i 6=(τd ,...,τd+N)

h′i(c)bk+τd−i

︸ ︷︷ ︸
by DFE reduced ISI

. (4.50)

As a result of the DFE, the number of sum elements in the residual ISI term is reduced
compared to Eq. (4.30). However, the residual ISI term increases if error propagation by
wrong decisions fed into the DFE delay chain occurs.
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Inclusion of the DFE partially changes the prerequisites to adjust the FFE. Since the con-
catenated channel coefficients h′

τd+1(c), . . . ,h
′
τd+N(c) are forced to zero by the DFE, the

determination procedure for the FFE coefficients does not have to take them into account
and can be used to fulfill the ZF criterion for the remaining equations. Therefore, we may
separate the system of equations arising from the ZF condition in Eq. (4.36),



0
0
...
0
1
0
...
...
0
0



≈



h−Mc/2 0 . . . . . . . . . 0
h−(Mc/2−1) h−Mc/2 0 . . . . . . 0

... . . .
... . . .

... . . .

hτd−1 . . . . . . h−1 . . . h−(M−1)+τd−1

hτd . . . . . . h0 . . . h−(M−1)+τd

hτd+1 . . . . . . h1 . . . h−(M−1)+τd+1
... . . .

... . . .
... . . .

... . . .
... . . .

... . . .

0 . . . . . . 0 hMc/2 hMc/2−1

0 . . . . . . . . . 0 hMc/2


(Mc+M)×M

∈IFFE⊕IISI

}
∈IFFE∈IDFE∈IFFE⊕IISI



c0
...

cτd
...

cM−1


,

(4.51)
into three disjoint sets

IFFE = I\ (IDFE ∪ IISI) , |IFFE |= M,τd ∈ IFFE , (4.52)

IDFE ={τd +1, . . . ,τd +N} , |IDFE |= N, (4.53)

IISI = I\ (IFFE ∪ IDFE) , |IISI|= Mc−M−N. (4.54)

IDFE represents the rows of equations which are eliminated by the DFE. We use the re-
maining rows I \ IDFE to extract IFFE for the determination of the FFE coefficients (cf. the
procedure for the FFE). When we have a solution c for the FFE coefficients available, we
determine the coefficients h′

τd+1(c), . . . ,h
′
τd+N(c) of the concatenated system response using

those equations belonging to the rows represented by IDFE . Then, Eq. (4.49) leads to the
values for the DFE coefficients. IISI defines coefficients of the concatenated system response
again which contribute to the residual ISI. Eq. (4.54) reveals that |IISI| = 0 if M +N = Mc.
In this case, the ISI term in Eq. (4.48) vanishes completely, i.e. ρe(c) = 0 is the resulting
peak eye distortion. We can summarize the ZF coefficient adjustment criterion by

c̆ZF = arg min
c̆

ρe(c,τd,IFFE ,IDFE) . (4.55)

4.2.2.2.4 Numerical Examples
At the end of this section, the procedure of ZF coefficient adjustment shall be shortly illus-
trated for FFE and FFE-DFE applied to an OA-IM/DD link. The optical signal is affected by
CD (L f = 5 km), first-order PMD (∆τg = 12.5 ps) and an ASE noise level of γOSNR = 21 dB.
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The channel estimation initially assumes a channel memory of Mc = 10. The coefficients of
the measured LLS FIR channel approximation are depicted in Fig. 4.11, and the convolution
matrix is given below. Obviously, the initial assumption of Mc = 10 is by far sufficient to
reflect the spread of ISI for the given characteristic of the OA-IM/DD link.

-5 -4 -3 -2 -1 0 1 2 3 4 5
j

-0.5

0.5

1

h j

0

Figure 4.11: LS FIR channel approximation for Mc = 10
(combined CD (L f = 5 km) and first-order PMD (∆τg =
12.5 ps), γOSNR = 21 dB)

H =



0.018903 0 0
0.0186982 0.018903 0
0.0177406 0.0186982 0.018903

0.00813599 0.0177406 0.0186982
0.168011 0.00813599 0.0177406
0.651009 0.168011 0.00813599
0.160494 0.651009 0.168011

0.0114613 0.160494 0.651009
0.0185639 0.0114613 0.160494
0.0191788 0.0185639 0.0114613
0.0190456 0.0191788 0.0185639

0 0.0190456 0.0191788
0 0 0.0190456



(i =−5)
(i =−4)
(i =−3)
(i =−2)
(i =−1)
(i = 0)
(i = 1)
(i = 2)
(i = 3)
(i = 4)
(i = 5)
(i = 6)
(i = 7)

.

• ZF-FFE (M = 3):
After the sweep over the possible values of the decision delay τd ∈ {0,1,2}, τd = 1 has
resulted in the minimal peak eye distortion ρe(c) = 0.264, and we have reached BER =

1.49e-3. The coefficients depicted here have been generated with the equation subset IFFE =

{0,1,2}. Thus, the concatenated system response has the one at i = 1, i.e. h′1 = 1, and the
zeros at i = 0 and i = 2, i.e. h′0 = h′2 = 0, as proven by Fig. 4.12(b).

• ZF-FFE-DFE (M = 3, N = 2):
In this example depicted in in Figs. 4.13(a) – 4.13(c), N = 2 DFE coefficients have been
added to the FFE with M = 3 coefficients. The optimal decision delay has turned out to be
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(b) Concatenated system response

Figure 4.12: ZF-FFE example (M = 3)

τd = 2 with a minimal peak eye distortion of ρe(c) = 0.176 and BER = 4.26e-4. Compared
to the FFE example, we state that the smaller peak eye distortion of the FFE-DFE also
coincides with a smaller BER. The rows of the convolution matrix H used to calculate the
FFE coefficients were IFFE = {0,1,2} and those which are eliminated by the DFE were
IDFE = {3,4}. Again, we can verify that the concatenated system response has a one at
i = 2, i.e. h′2 = 1, and zeros at i ∈ IFFE ∪ IDFE = {0,1,3,4} with h′0 = h′1 = h′3 = h′4 = 0.
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(c) Concatenated system response

Figure 4.13: ZF-FFE-DFE example (M = 3, N = 2)

• Misleading ZF Behavior:
Unfortunately, the statement that a smaller peak eye distortion of the FFE-DFE also coincides
with a smaller BER is not always true in general. If we have a look at the discrete-time
Fourier transform [82] of the FFE defined by

C
(
jω
)
=

M−1∑
m=0

cme−jωm, ω ∈ [−π,π) , (4.56)
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and sketch its magnitude, Fig. 4.14 agrees with the results for M = 3 from above insofar that
the magnitude at high frequencies is less for the FFE-DFE than for the pure FFE. Conse-
quently, possible noise amplification at high frequencies, which has not been considered in
the equalizer design so far, is less with the DFE and shows better BER performance there-
fore. However, it is also worth to take notice of the contradictory case in which a FFE-DFE
shows worse BER than the FFE although it reaches less peak eye distortion as given for the
second example in Fig. 4.14. It is based on a FFE with M = 5 and a FFE-DFE with M = 5
and N = 2. The magnitude amplification of the FFE part of the FFE-DFE at high frequencies
is much higher than for the pure FFE. The worse BER performance of the FFE-DFE can
be explained by the fact that amplified noise in the FFE can lead to wrong decisions, which
are fed to the DFE filter and lead to further error propagation. This reveals the necessity
to balance the coefficient adjustment criterion as a trade-off between deterministic signal
equalization and reduction of stochastic noise influence.

1.5
2

2.5
3

3.5

4.5
4

ω/π

10
0.5

1

|C
(j

ω
)|

FFE of FFE-DFE, M = 3, N = 2
FFE, M = 3

FFE, M = 5
FFE of FFE-DFE, M = 5, N = 2

0.2 0.4 0.6 0.80

Figure 4.14: Discrete-time Fourier trans-
form magnitude spectra of
the ZF-FFE with and with-
out DFE
(combined CD (L f = 5 km)
and first-order PMD (∆τg =
12.5 ps), γOSNR = 21 dB)

FFE-DFE BER ρe(c) τd
M = 3, N = 0 1.49e-3 0.264 1
M = 3, N = 2 4.26e-4 0.176 2
M = 5, N = 0 1.25e-3 0.171 3
M = 5, N = 2 3.95e-3 0.102 3

Table 4.1: ZF-FFE-DFE performance
metrics
(combined CD (L f = 5 km)
and first-order PMD (∆τg =
12.5 ps), γOSNR = 21 dB)

4.2.2.3 MMSE Criterion

The MMSE criterion for FFE-DFE adjustment is related to signal estimation from noisy
input samples and can be analyzed using the Wiener filter theory [101]. In order to overcome
the deficiencies of noise amplification within the ZF criterion, we directly employ the noisy
electrical RX signal samples xk1 to determine the optimal coefficients without any special
channel estimation procedure.
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4.2.2.3.1 Basic Theory
The starting point is the definition of a so-called error signal with

ek(c̆) = bk− zk = bk− c̆Tx̆k1. (4.57)

This error signal measures the difference between the ideally expected signal levels and the
continuously distributed output signal of the FFE-DFE as depicted in the block diagram of
Fig. 4.15(a). It can be interpreted as an observer for the eye diagram quality as depicted in
Fig. 4.15(b) for the noise free case. Of course, bypassing the OA-IM/DD link and having
the TX bits bk right available at the RX is a rather theoretical construct, but we will show in
Ch. 5 how to circumvent this problem.

cM−1

y′k

bk
. . .

zkyk ek

(a) Error signal calculation in an ex-
tended schematic for the FFE-
DFE

t/Tb

0

0.5

1 bk = 1

bk = 0

x(
t)
/
( 2x

(t
))

ek

sampling instant

0 0.5 1

signal transitions for bk = 0
signal transitions for bk = 1

(b) Error signal in the context of an eye diagram example
(cf. Fig. 3.19(d) on page 50)

Figure 4.15: Illustration of the error signal definition

Using the definition of the error signal ek(c̆), we can derive a general, convex optimization
function with respect to the FFE-DFE coefficient vector c̆ resulting in the minimum mean
2n-th order (MMN) error approach

c̆MMN = arg min
c̆

E
[∣∣ek(c̆)

∣∣2n
]
, n ∈ N1. (4.58)

If we choose the exponential scale parameter n = 1, Eq. (4.58) represents the widespread
mean squared error (MSE) optimization criterion used for many optimization problems in
engineering. We can solve Eq. (4.58) for the optimum MMSE FFE-DFE coefficient vector
c̆MMSE [42, 81] in a closed form. If n > 1, iterative algorithms similar to the one we will
present in Ch. 5 have to be applied. Applying an even multiple of the power of two to the
magnitude of the error signal guarantees convexity, which leads to a unique solution. This is
illustrated in Fig. 4.16 for the common MMSE approach with n = 1 and a FFE with M = 2
coefficients. More FFE coefficients straightly lead to a multidimensional convex paraboloid.
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c1

c0

E
[∣∣ek(c0,c1)

∣∣2]

Figure 4.16: Example of the MSE surface reduced to M = 2 FFE coeffi-
cients

The actual procedure to determine the MMSE FFE-DFE coefficient vector c̆ resembles to the
LLS FIR channel estimation procedure as introduced as a prerequisite for the ZF criterion.
It has already been derived in App. D. The main advancement compared to this is that we do
not only perform channel estimation but channel inversion in one step. The noisy electrical
RX signal samples xk1 are used for the input to the yet unknown MMSE FFE-DFE filter
with the signal levels of the TX bits bk being the desired output. This relation is already
incorporated in the error signal definition of Eq. (4.57). Thus, the output of the FFE-DFE
approximates

bk ≈ c̆Tx̆k1 ⇐⇒ arg min
c̆

E
[∣∣ek(c̆)

∣∣2] (4.59)

in the MSE sense.

Concerning the implemented MSE optimization algorithm within our simulations, we as-
sume ergodicity of the TX signal and the OA-IM/DD link. This allows us to turn the MSE
coefficient optimization criterion into a LLS problem formulation with

c̆ = arg min
c̆

E
[∣∣ek(c̆)

∣∣2] ergodicity
= arg min

c̆
lim

KMMSE→∞

1
KMMSE

KMMSE−1∑
k1=0,
k≡k1

∣∣ek(c̆)
∣∣2 . (4.60)

It is evident that we cannot maintain the limit operation within a computer simulation. A
sufficiently high number for KMMSE ≈ 1e6 ensures a good quality estimate for E[|ek(c̆)|2].
Thus, we omit taking the limit in the following derivations.

Using the error signal definition of Eq. (4.57) and the general input-output relation of the
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FFE-DFE filter, we may determine the gradient vector of the MSE with respect to c̆ by

1
KMMSE

∇c̆

KMMSE−1∑
k1=0,
k≡k1

∣∣ek(c̆)
∣∣2 = 1

KMMSE
∇c̆

KMMSE−1∑
k1=0,
k≡k1

|bk− zk|2

=
1

KMMSE
∇c̆

KMMSE−1∑
k1=0,
k≡k1

∣∣∣ bk− c̆Tx̆k1︸ ︷︷ ︸
∈R

∣∣∣2

=
1

KMMSE
∇c̆

KMMSE−1∑
k1=0,
k≡k1

(
bk− c̆Tx̆k1

)2

=
1

KMMSE
∇c̆

KMMSE−1∑
k1=0,
k≡k1

(
b2

k−2bkc̆Tx̆k1 +
(

c̆Tx̆k1

)2

︸ ︷︷ ︸
= c̆Tx̆k1 x̆T

k1
c̆

)

=
1

KMMSE
∇c̆

KMMSE−1∑
k1=0,
k≡k1

b2
k−2∇c̆ c̆T 1

KMMSE

KMMSE−1∑
k1=0,
k≡k1

bkx̆k1

︸ ︷︷ ︸
=:pbx̆

+∇c̆ c̆T 1
KMMSE

KMMSE−1∑
k1=0,
k≡k1

x̆k1 x̆T
k1

︸ ︷︷ ︸
=:Rx̆x̆

c̆

= 0−2pbx̆ +2Rx̆x̆ c̆ (4.61)

and introduce the abbreviations pbx̆ for the cross-correlation vector between the TX bits and
the FFE-DFE input vector and Rx̆x̆ for the autocorrelation matrix of the FFE-DFE input
vector.

We obtain the Wiener-Hopf equation in matrix form [102] by setting this gradient to zero and
get the MMSE FFE-DFE coefficients by solving

1
KMMSE

∇c̆

KMMSE−1∑
k1=0,
k≡k1

∣∣ek1(c̆)
∣∣2 !
= 0 ⇐⇒ c̆ = R−1

x̆x̆ pbx̆. (4.62)

Again, we evaluate Eq. (4.62) with respect to different values for the decision delay param-
eter τd to finally obtain the optimal coefficient vector c̆MMSE with

c̆MMSE = arg min
c̆

E
[∣∣ek(c̆,τd)

∣∣2] . (4.63)

It is worth to note that in contrast to the ZF procedure no separate treatment of the FFE and
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DFE parts is required here.

4.2.2.3.2 Numerical Examples
Fig. 4.17 and Table 4.2 directly allow to compare the behavior of the MMSE coefficient
adjustment with the results of the ZF criterion of Fig. 4.14 and Table 4.1. All magnitude
spectra show less amplification at high frequencies, and the achieved MMSEs coincide with
the BER results. This is especially true for M = 5, for which we have observed the deficiency
of the ZF criterion, and for which the least peak eye distortion for N = 2 was misleading.
Here, we even observe a decaying magnitude transfer characteristic for this case at high
frequencies, which leads to further noise suppression. That is why the MMSE criterion
generally shows better BER performance than the ZF criterion. The simulation results at the
end of this chapter will point this out over a wider range of parameter sets for OA-IM/DD
links.

0
0.5

1
1.5

2
2.5

3
3.5
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Figure 4.17: Discrete-time Fourier trans-
form magnitude spectra of
the MMSE-FFE with and
without DFE
(combined CD (L f = 5 km)
and first-order PMD (∆τg =
12.5 ps), γOSNR = 21 dB)

FFE-DFE BER MMSE τd
M = 3, N = 0 1.05e-3 0.0256 1
M = 3, N = 2 4.24e-4 0.0225 1
M = 5, N = 0 9.44e-4 0.0251 3
M = 5, N = 2 4.03e-4 0.0219 2

Table 4.2: MMSE-FFE-DFE perfor-
mance metrics
(combined CD (L f = 5 km)
and first-order PMD (∆τg =
12.5 ps), γOSNR = 21 dB)

4.2.3 Fractionally Spaced FFE-DFE

Fractionally spaced processing applied to FFE-DFEs affects only the FFE as depicted in
Fig. 4.18. We use the terminology ∆Ti-FSFFE to emphasize the difference to the ordinary
Tb-spaced FFE. Assuming an equal number of coefficients for the FFE and FSFFE, the
FSFFE takes less temporal spread of ISI into account than Tb-spaced processing. Obviously,
this is due to the narrower temporal sample interval. We might conclude that fractionally
spaced processing would require more filter coefficients to compensate for this seemingly
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disadvantage. However, it will turn out that fractionally spaced processing is able to improve
equalization performance for even less coefficients.

Tb

yk

ỹki

y′k

Zth

b̂kzk

∆Ti∆Ti

. . . . . .

xki xki+τd−(M−1)xki+τd−1xki+τd xki+τd−(M−2)

cM−1cM−2cτdc1c0

DFE

Figure 4.18: Fractionally spaced processing of the FFE-DFE (FSFFE-
DFE)

Referring to Ch. 3.2.4, where we have introduced the fractionally spaced time index ki, i ∈
N1, to indicate the fractional spacing of the EDC input samples xki with the sample interval
∆Ti =

Tb
i , we can write for the FSFFE output

ỹki =

M−1∑
m=0

cmxki+τd−m

= cTxki. (4.64)

The parameter τd accounts for the decision delay in the fractionally spaced sample interval
now and

xki :=



xki+τd
...

xki
...

xki+τd−(M−1)


(4.65)

is the corresponding fractionally spaced input sample vector.

Since, in the end, FFE-DFE tries to recover the initial eye opening at the Tb-spaced sampling
points, the FSFFE output ỹki is sampled at a rate of 1/Tb to get the actual FFE output yk in
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the Tb-spaced sample interval. We can express the subsampling of the FSFFE output by

yk := ỹki

∞∑
k=−∞

δki−ik = ỹik

=

M−1∑
m=0

cmxik+τd−m

= cTxik. (4.66)

After this sampling procedure, the temporal subscript ki turns into ik in the result of Eq. (4.66)
according to the relation k = ki div i of Eq. (3.125) on page 48.

The FSFFE-DFE output is finally given by

zk = ỹik + y′k
= cTxik +dTb̂k−1

= c̆Tx̆ik (4.67)

with the definition of the overall FSFFE-DFE input sample vector

x̆ik :=

[
xik

b̂k−1

]
. (4.68)

It has quite the similar form as for the Tb-spaced case in Eq. (4.22).

In principle, we can use Eq. (4.67) to extend the already presented mathematical derivations
of the MIN-BER, ZF and MMSE criteria for Tb-spaced equalization to the more general
fractionally spaced method by applying subsampling to the FSFFE output. However, we
will not repeat them step by step but rather indicate and discuss the benefits of fractionally
spaced processing for the ZF criterion since it gives best insight into ISI removal by FFE-
DFE filters.

The ZF ability of the FFE depends mainly on the relation between the channel memory Mc

and the number of FFE coefficients M resulting in the system of equations



0
...
0
1
0
...
0


=



h−Mc/2 0 . . . . . . 0
h−(Mc/2−1) h−Mc/2 . . . . . . 0

... . . .
... . . .

...
hτd−1 . . . . . . . . . h−(M−1)+τd−1

hτd . . . . . . . . . h−(M−1)+τd

hτd+1 . . . . . . . . . h−(M−1)+τd+1
... . . .

... . . .
...

0 . . . . . . hMc/2 hMc/2−1

0 . . . . . . 0 hMc/2


(Mc+M)×M



c0
...

cτd
...

cM−1


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repeated from Eq. (4.36). As we know, there are Mc+M requirements facing only M degrees
of freedom, which leads to unavoidable residual peak eye distortion. We have also seen
that the inclusion of a DFE improves this balance. However, we neglect the DFE for the
moment because fractionally spaced processing is only relevant for the FSFFE. This is just
for convenience and would not touch validity if we take the DFE into consideration again.
Now, let us consider a fixed temporal spread of ISI represented by the channel memory
Mc for Tb-spaced processing. Consequently, the equivalent channel memory for arbitrary
fractionally spaced processing with Tb/i sample spacing becomes iMc. If we further assume
that M is equal for the FFE and the FSFFE, the corresponding systems of equations for the
FSFFE is

...
X

0
X
...
X

0
X
...
X

1
X
...
X

0
X
...
X

0
X
...



=



h−iMc/2 0 . . . . . . . . . 0
h−(iMc/2−1) h−iMc/2 0 . . . . . . 0

... . . .
... . . .

... . . .
... . . .

... . . .
... . . .

... . . .
... . . .

... . . .
... . . .

... . . .
... . . .

... . . .
... . . .

... . . .
... . . .

... . . .
... . . .

hτd−1 . . . . . . h−1 . . . h−(M−1)+τd−1

hτd . . . . . . h0 . . . h−(M−1)+τd

hτd+1 . . . . . . h1 . . . h−(M−1)+τd+1
... . . .

... . . .
... . . .

... . . .
... . . .

... . . .
... . . .

... . . .
... . . .

... . . .
... . . .

... . . .
... . . .

... . . .
... . . .

... . . .
... . . .

... . . .

0 . . . . . . 0 hiMc/2 hiMc/2−1

0 . . . . . . . . . 0 hiMc/2


(iMc+M)×M



c0
...

cτd
...

cM−1


, (4.69)

for which we have extended the sample interval of the convolution matrix to the fractionally
spaced one. The the number of equations has increased to iMc +M while the number of
variables represented by the Mc FSFFE coefficients remain the same. At the first glance,
this seems counterproductive. However, since the output of the FSFFE is subsampled at
the Tb-spaced interval, only every i-th row of the system of equations is relevant for the
minimization of the peak eye distortion while each i−1 rows in between as indicated by X,
which has the meaning of “don’t care“, may be skipped in advance. In fact, the number of
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requirements has decreased by subsampling to

(Mc +M− τd) div i︸ ︷︷ ︸
≤ Mc+M−τd

i

+τd div i︸ ︷︷ ︸
≤ τd

i

+τd mod i︸ ︷︷ ︸
< i

<
Mc +M

i
+ i. (4.70)

The div and mod operations applied to τd on the left-hand side take into account that the
set of remaining rows after subsampling may vary depending τd . If we analyze the upper
bound on the number of requirement for the FSFFE, we may deduce with

Mc +M
i

+ i≤M ⇐⇒ M ≥ Mc + i2

i−1
(4.71)

that the balance of requirements and degrees of freedom can be adjusted by choosing the
number of FSFFE coefficients M with respect to the fractionally spaced sampling parameter
i and the given channel memory Mc. If equality holds for the relation above, the system of
equations has a unique solution, and the residual ISI becomes zero in this case. Otherwise,
the system of equations is even over-determined. This implies that we could reduce the
number of FSFFE coefficients M with no loss of ISI compensation capability until equality
is given. This confirms the initial statement that a FSFFE does not necessarily have to have
the fractionally spaced equivalent number of coefficients than a Tb-spaced one to achieve
zero peak eye distortion. This is also one explanation for the improved ISI compensation
capabilities of fractionally spaced processing, which is equivalently reviewed in frequency
domain in [103].

4.3 Simulation Results and Discussion

In Chs. 2 and 3 we have identified dispersion given by CD and several types of PMD as
well as ASE noise as the main contributions to signal degradation in OA-IM/DD links. Up
to now we have just considered the individual parameters defining the amount of CD, PMD
and ASE noise without pointing to a general framework on how to evaluate their influence
on OA-IM/DD link reliability in a joint manner. Eye diagrams can give us a good impression
about the effect of different kinds of ISI on the noise free analog electrical RX signal. The
vertical and horizontal eye openings are first indications on the noise and sampling phase
sensitivity of the system. However, they still lack of the inclusion of random noise. If the
noise process was AWGN, we could apply the principle of superposition to the eye diagram
and noise and determine a worst-case estimation for the BER using commonly known for-
mulas which are based on Q-functions and effective SNRs [42, 104]. Q-factor measurements
use these relations as an AWGN approximation for OA-IM/DD links [63, 64, 66]. Actually,
OA-IM/DD links suffer from signal-dependent ASE noise after direct detection. Beside BER
vs. OSNR plots for distinct parameter sets with constant CD and PMD, a common means
for illustrating both, the effect of varying the amount of ISI with different CD and/or PMD
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parameters and the randomness of signal-dependent ASE noise, is favorable. Hence, we take
the BER vs. OSNR plots for each CD and/or PMD characteristic of the OA-IM/DD link and
extract the required OSNR at a certain BER level of interest. In general, a BER of 1e-3
before FEC decoding often serves as this reference level because appropriate FEC codes are
quite powerful to close the gap to a BER of 1e-12 required in reliable video transmission
for example. Thus, the collected results let us illustrate the required OSNR @ BER = 1e-3
for the predominant dispersion effect. In the case of CD, the abscissa is labeled by the cor-
responding CD value rD. If we consider first-order PMD as the only source of ISI, we plot
the required OSNR vs. DGD value ∆τg. This kind of illustration also allows us to derive the
necessary OSNR budget for temporarily varying PMD if we consider a certain DGD as up-
per tolerance limit. As a third case, we consider a combination of CD and first-order PMD.
Both physical quantities, the CD value rD and the DGD value ∆τg, actually originate from
the characteristic CD and PMD dispersion coefficients, Dλ and τPMD, respectively, and the
length L f of the SSMF. Using this length dependence and recalling Eq. (3.74) on page 32 and
Eqs. (3.92) – (3.94) on page 39, we can consequently express the mean DGD as a function
of the CD value with

E
[
∆τg
]
= 0.921 ·τPMD

√
L f

(3.74)
= 0.921 ·τPMD

√
rD

Dλ

. (4.72)

Since PMD is a stochastic process, and the instantaneous DGD may vary with time and
frequency, we impose an additional worst case assumption and require that an OA-IM/DD
link has to be capable of handling at least three times its PMD value as already discussed
in Ch. 3.2.2.2.3. Therefore, the actual value of the DGD within our combined CD and first-
order PMD simulations has been set to

∆τg,max := 3E
[
∆τg
]
= 3 ·0.921 ·τPMD

√
rD

Dλ

. (4.73)

We place this worst case assumption on the DGD value right below the corresponding CD
value of the abscissa labels as exemplified in Figs. 4.19(a) and 4.19(b).

The created plots for the required OSNR @ BER 1e-3 vs. CD, first-order PMD or combined
CD and fist-order PMD give rise to several explanations and comparisons as indicated by the
plotted curves and the attached points in Fig. 4.19(a) and 4.19(b).

If A is the reference point on the straight-lined reference curve in Fig. 4.19(a), we can evalu-
ate and compare it to other simulation results represented by the dashed curves

• along the horizontal direction, which defines the lines of constant required OSNR and
allows us to draw conclusions about dispersion tolerance improvement or degradation.
For example, the green dashed curve with its intersection point B shows more disper-
sion tolerance and is an example of superior link dispersion margin for a given OSNR.
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Figure 4.19: Introduction to required OSNR vs. CD and first-order PMD
plots and 2 dB penalty improvement benchmarking
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The purple one with intersection point B′ represents worse dispersion tolerance com-
pared to the straight-lined reference curve and is an example of minor link dispersion
margin for a given OSNR. The amount of improvement or degradation is often given
in percentages with respect to the reference point A,

• along the vertical direction, which defines the lines of constant dispersion effects and
allows us to draw conclusions about noise tolerance improvement or degradation. The
green dashed curve with its intersection point C shows more noise tolerance and is
an example of superior noise margin for given dispersion effects. The purple one
with intersection point C′ represents worse dispersion tolerance compared to the green
reference curve and is an example of minor noise margin for given dispersion effects,

• along the diagonal direction from upper left to lower right, which gives us a rough
impression on the general dispersion and noise related system behavior ranging from
worse in the upper left to improved in the lower right corner.

The reference point A is normally set to the required OSNR of the b2b setup with a simple,
optimized threshold RX, i.e. L f = 0 km and, consequently, rD = 0 ps/nm and ∆τg = 0 ps. A
commonly applied benchmark to compare different RX architectures and/or EDC methods is
the so-called 2 dB penalty improvement given in percent. Fig. 4.19(b) illustrates this bench-
marking procedure. It expresses the dispersion tolerance improvement at an excess penalty
level of 2 dB with respect to the b2b setup with simple threshold RX. The intersection point
of the 2 dB penalty line with the threshold RX curve marks the 100 % dispersion reference.
We relate the abscissa values of the intersection points of other curves with the 2 dB penalty
line showing 100±x % to this dispersion reference. The tolerance improvement is just given
by this excess percentage ±x %. It is worth to note at this point that also other than 2 dB
for the penalty value are in use, and that the 2 dB penalty benchmarking technique might be
misleading since it does not necessarily allow to interpret the relative behavior if we operate
the OA-IM/DD link far away from it, i.e. at much shorter or longer distances.

Beside this major kind of plots, which reflect the total system behavior, we still come back
to eye diagram considerations if appropriate. Since we principally examine discrete-time
equalization methods, we have only the discrete-time output available. Thus, we have to
replace the ordinary eye diagram by an almost sampled version known as scatter plot. A
scatter plot comprises all possible discrete-time sample values and marks them with respect
to the transmitted reference levels. This is bk = 0 and bk = 1 in our case. The minimal
distance between the two sample groups indicate the noise tolerance like the vertical eye
opening for a continuous-time eye diagram. We have provided an example of a scatter plot
which contains the electrical RX signal samples xk1 in Fig. 4.20 along with the eye diagram
of the analog electrical RX signal x(t) as a reference. A wide grey line indicates the minimal
distance between the two sample groups.
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Figure 4.20: Example of a scatter plot

The following discussion of the simulation results obtained for the previously described
discrete-time FFE-DFE EDC methods not only addresses the general system behavior but
also implementation feasibility at very high data rates in particular. That is why we have
not intentionally sought for the absolute optimum but for the least complex FFE-DFEs still
providing acceptable EDC performance. Consequently, we have organized the results in a
proper manner:

• With special focus on the complexity aspect, the results on the optimal low-complexity
number of FFE-DFE coefficients are presented first. They have been generated for
FFE-DFEs as well as ∆T2-FSFFE-DFEs using the MMSE criterion since it has most
relevance for practical implementation later on.

• A further section deals with the suitability of the MMSE criterion for OA-IM/DD links.

• Then, based on the initial results, a further subsection compares Tb- and ∆T2-spaced
sample processing. We will also have a look on optimal sampling phase adjustment
there.

• Finally, we classify the EDC performance of FFE-DFE and ∆T2-FSFFE-DFE EDC by
comparing them to the simple threshold RX and the MLSE-VE. The latter shall be the
predominant EDC method we benchmark against in this thesis.
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4.3.1 Low-Complexity FFE-DFE Structure Optimization

4.3.1.1 FFE

Figs. 4.21 – 4.23 show simulation results for FFEs with different number of coefficients.
The special case of M = 1 is equivalent to the simple threshold detection system and is
included to give a first impression on the general improvement using a FFE. A separate
consideration of CD and first-order PMD as in Figs. 4.21 and 4.22 reveals that increasing the
number of coefficients above M = 5 does not provide any significant improvement. More
coefficients only take little effect for higher CD or DGD values. This small performance gain
is disproportionate to the additionally required implementation efforts. A further similarity
in the CD and PMD behavior of a FFE is that both curves resemble some kind of hyperbola
within the simulated parameter range. At distinct higher CD and DGD values, a pole-like
behavior of the curves occurs. In case of CD, this pole is approximately at rD = 120 ps/nm,
which is equivalent to around 7−8 km of SSMF. Any FFE with M ≤ 20 incorporating
the special case of simple threshold RX systems with M = 1 is not able to provide adequate
performance beyond this pole with BER≤ 1e-3. The required OSNR goes to infinity proving
that the eye is almost closed. The pole for first-order PMD behavior lies between 20 ps and
25 ps since the gross bit rate of Rb = 42.7 Gbit/s is equivalent to a bit interval of Tb =

23.42 ps. The location of this pole is explained by the discussed nature of first-order PMD in
Chs. 3.2.2.2.1 and 3.3.1. If the DGD approaches ∆τg = Tb, the eye is closed. Moreover, the
effective first-order PMD transfer function represented by Eq. (3.87) on page 38 has a zero at
f = 1/(2Tb). As known from theory, a zero in a transfer function cannot be compensated by
an inverse linear equalization filter since infinite gain would be required at the frequency of
the zero. Beyond the pole near ∆τg = Tb, we observe the same behavior as for CD beyond its
pole. No FFE with M ≤ 20 is capable to provide a BER of 1e-3 with finite OSNR. Since we
intend to operate any FFE on a 42.7 Gbit/s input signal, reasonable implementations should
provide M < 10. An FFE can consequently support only short-haul OA-IM/DD links with
L f ≈ 7−8 km of uncompensated SSMF.

Finally, Fig. 4.23 shows the FFE performance for the combined effect of CD and first-order
PMD according the OA-IM/DD link parameters explained at the beginning of this chapter. In
principle, the resulting shapes of the curves explain themselves from the separate considera-
tions in Figs. 4.21 and 4.22. All curves rise steeper due to increased ISI, i.e. we require larger
OSNR values to reach a BER of 1e-3. Interestingly, the location of the pole differs for the
simple threshold RX system and the ones equipped with a FFE. For the first case, the pole is
located at rD ≈ 100 ps/nm and ∆τg,max ≈ 13.4 ps, which corresponds to L f ≈ 6 km, whereas
for the latter ones, we observe rD ≈ 120 ps/nm and ∆τg,max ≈ 14.7 ps with L f ≈ 7 km. Thus,
EDC by means of a FFE effectively allows to operate an OA-IM/DD link in a region where it
would fail otherwise. Another important finding is that the number of necessary coefficients
can be kept at M = 5 for the combined dispersion effects. An increase to M = 7 does only
provide slight improvement near the pole region.
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Figure 4.21: Optimal number of FFE coefficients for CD (based on
MMSE adjustment)
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4.3.1.2 FFE-DFE

Fig. 4.24 contains the obtained results for an OA-IM/DD link which is affected by CD.
Generally, we observe an almost equal performance of all simulated FFE-DFEs up to a CD
value of about rD = 120 ps/nm. Consequently, the implementation complexity remains quite
manageable with M = 2 or 3 and N = 1 for the short range distance of L f ≈ 7−8 km.
Beyond this range, the behavior is quite different. We recognize an improved performance
for M = 3,5 or 10 if we increase the number of DFE coefficients from N = 1 to 3. Compared
to the FFE case, additional DFE coefficients with N ≥ 3 are able to compensate the pole-
like behavior known from Figs. 4.21 – 4.23. The further step to N = 5 does not provide
significant changes for all plotted FFE parts. If we keep the number of DFE coefficients
constant, a comparison of the curves for M = 3,5 or 10 reveals that an increased number
of FFE coefficients becomes more significant beyond rD = 120 ps/nm. This finding is also
emphasized by the large gap to the simulation results for M = 20 and N = 1 or 3. The
difference between N = 3 and 5 is less distinctive. As a rule of thumb we can summarize
that an increased number of DFE coefficients up to N = 3 only takes effect with a further
increase in the number of FFE coefficients for larger CD values.

The simulation results obtained for first-order PMD in Fig. 4.25 are more uniform than those
obtained for CD. If ∆τg < Tb, i.e. ∆τg < 23.4 ps for Rb = 42.7 Gbit/s, M = 2,3 or 5 FFE
coefficients and N = 1 DFE coefficient are sufficient. For ∆τg > Tb, a DFE with N ≥ 3 is able
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Figure 4.24: Optimal number of FFE-DFE coefficients for CD (based on
MMSE adjustment)
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Figure 4.25: Optimal number of FFE-DFE coefficients for first-order
PMD (based on MMSE adjustment)
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to break up the pole-like behavior of the FFEs. The performance improvement from N = 3
to N = 5 is almost negligible for M = 20. The number of FFE coefficients has more impact
for larger DGD values.

The combined dispersion effects of CD and first-order PMD are depicted in Fig. 4.26. As we
expect, the general performance gets worse due to increased ISI. At least for the simulated
FFE-DFEs depicted in the figure, this is the reason for the recurrence of the pole-like curve
shapes. The location of the poles is different for each filter configuration. Nevertheless, the
one with M = 3 and N = 1 is still competitive for short range distances. The qualitative
behavior for varying the DFE from N = 3 to N = 5 resembles that of first-order PMD in
Fig. 4.25, i.e. it has almost no effect.
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Figure 4.26: Optimal number of FFE-DFE coefficients for combined CD
and first-order PMD (based on MMSE adjustment)

4.3.1.3 ∆T2-FSFFE

Fig. 4.27 shows that M = 10 fractionally spaced coefficients deliver sufficient EDC perfor-
mance against CD for short range distances of around L f ≈ 7−8 km with rD ≤ 120 ps/nm.
This coincides to the equivalent number of M = 5 Tb-spaced coefficients we have found to be
appropriate for Tb-spaced processing. The hyperbolic shape of the curves with a pole is still
present, but the ∆T2-spaced processing of the ∆T2-FSFFE seems to be able to recover from
infinite required OSNR to finite results for BER = 1e-3 again. After the pole the number
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Figure 4.27: Optimal number of ∆T2-FSFFE coefficients for CD (based
on MMSE adjustment)
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Figure 4.28: Optimal number of ∆T2-FSFFE coefficients for first-order
PMD (based on MMSE adjustment)

102



4.3. Simulation Results and Discussion

of coefficients seems to have more influence on the performance since the required OSNR
differs about 1.5−2 dB between the ∆T2-FSFFE with M = 10 and M = 30 or 40. A second
pole, whose location seems to depend on the number of coefficients, arises after this second
region. This is quite different from the Tb-spaced behavior.

Concerning first-order PMD in Fig. 4.28, we can state that the performance of the different
FSFFEs is almost the same for M > 5 and ∆τg < Tb, which has been the location of the pole
for the Tb-spaced processing results. However, fractionally spaced processing overcomes
this pole region for M ≥ 10. The doubled temporal sampling resolution together with the
signal dependence of the ASE noise beat term in the electrical RX signal improve the ability
to distinguish the signal transitions and reduce the ambiguity introduced in the eye diagram
for ∆τg = Tb as already explained earlier in Chs. 3.2.2.2.1 and 3.3.1.

Fig. 4.29 proceeds with the combined effect of CD and first-order PMD. Besides the worse
performance due to increased ISI, these curves are clearly dominated by the CD performance
of Fig. 4.27. The ∆T2-FSFFE with M = 10 is still the best trade-off between performance
and implementation complexity.

16

18

20

22

24

26

28

30

0
0

9.48
50

13.4
100

16.41
150

18.95
200

21.19
250

∆τg,max
[

ps
]rD

[
ps/nm

]

threshold RX
∆T2-FSFFE, M = 5

— ′′— , M = 10
— ′′— , M = 15
— ′′— , M = 20
— ′′— , M = 30
— ′′— , M = 40

re
qu

ir
ed

O
SN

R
@

B
E

R
=

1.
0
·1

0−
3
[d

B
]

Figure 4.29: Optimal number of ∆T2-FSFFE coefficients for combined
CD and first-order PMD (based on MMSE adjustment)
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4.3.1.4 ∆T2-FSFFE-DFE

The CD results for the FSFFE-DFEs in Fig. 4.30 reveal that the hyperbolic shape of the
curves has almost disappeared. At least, the location of the poles known from Tb-spaced
processing has shifted for N = 1 and is not present in the given simulation range for N ≥ 3.
Within the short range SSMF dispersion region up to L f ≈ 7−8 km with rD ≈ 120 ps/nm,
all FSFFE-DFEs perform almost equally. The additional DFE even allows to reduce the
number of FSFFE coefficients from M = 10 for the FSFFE to M = 5 for the FSFFE-DFE.
Thus, the DFE leads to a major reduction of computational complexity in the FSFFE filter.
Increased effects of ISI after this first region leads to more diversification of the results. They
clearly indicate that it is not worth to increase the number of DFE coefficients from N = 3
to 5. We can identify more potential in the increase of the FSFFE coefficients as plotted
for M = 5,10,20 up to 40. Although complexity becomes infeasible for even more FSFFE
coefficients, we can deduce that system performance would benefit from further increase.

Fig. 4.31 also emphasizes the trend of the CD results for first-order PMD. We cannot observe
a pole anymore. Compared to the CD results, the difference between the various FSFFE-
DFEs is not really pronounced. Even for ∆τg > Tb, increasing the number of coefficients in
the FSFFE part from M = 10 to 40 does not show significant effects.

In Fig. 4.32, all FSFFE-DFEs show nearly the same performance for combined CD and first-
order PMD for short-haul OA-IM/DD links. The previously described qualitative behavior
of CD and first-order PMD are both present in the curves of Fig. 4.32. The poles for N = 1 re-
sembles the CD curves. DFEs with N > 1 are not worth to spend implementation effort. The
first-order PMD behavior dominates beyond rD ≈ 150 ps/nm and ∆τg,max ≈ 16.5 ps since
increasing the number of FSFFE coefficients has hardly a positive effect on the performance.

4.3.1.5 Summary and Conclusion

Table 4.3 gives a concise summary of the results for the number of FFE, FFE-DFE, ∆T2-
FSFFE and ∆T2FSFFE-DFE coefficients with respect to the requirements of sufficient EDC
performance in short-haul OA-IM/DD links (Dλ = 17 ps/(nm ·km), τPMD = 2 ps/

√
km,

L f ≈ 7−8 km) and low implementation complexity.

FFE FFE-DFE ∆T2-FSFFE ∆T2-FSFFE-DFE
M 5 3 10 5
N 0 1 0 1

Table 4.3: Optimal numbers of coefficients for low-complexity FFE-
DFEs and FSFFE-DFEs
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Figure 4.30: Optimal number of ∆T2-FSFFE-DFE coefficients for CD
(based on MMSE adjustment)
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Figure 4.32: Optimal number of ∆T2-FSFFE-DFE coefficients for com-
bined CD and first-order PMD (based on MMSE adjust-
ment)

Fortunately, these optimal numbers do not differ much for the different sources of ISI such
as CD, first-order PMD or both combined. Thus, a single EDC unit which comprises one of
the configurations of Table 4.3 is sufficient irrespective of the actually dominating impair-
ments. The combined case of CD and first-order PMD is therefore our preferred scenario
for the following studies in this thesis. We only come back to a separate consideration and
discussion of CD and first-order PMD behavior if it provides further insight.

4.3.2 MMSE Suitability for OA/IM-DD Links

The left-hand plots of Figs. 4.33 – 4.36 compare the performance of various FFE-DFEs with
respect to different coefficient adjustment criteria for combined CD and first-order PMD.
The MIN-BER, the ZF and the MMSE criterion show almost the same performance for the
FFE and ∆T2-FSFFE in Figs. 4.33(a) and 4.35(a), respectively. Especially for the dispersion-
limited region, where the required OSNR is already high, the curves proceed as expected
from theory stating that the ZF approaches the MMSE results if the SNR goes to infinity [46].
The FFE-DFE and ∆T2-FSFFE-DFE curves in Figs. 4.34(a) and 4.36(a) are more distinct
with respect to the applied coefficient adjustment criteria. This clearly indicates that the
DFE equipped EDC is qualitatively more susceptible to the respective coefficient adjustment
criterion.
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Figure 4.33: Optimality of MMSE for FFE illustrated by the example of
combined CD and first-order PMD
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Figure 4.34: Optimality of MMSE for FFE-DFE illustrated by the exam-
ple of combined CD and first-order PMD
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Figure 4.35: Optimality of MMSE for ∆T2-FSFFE illustrated by the ex-
ample of combined CD and first-order PMD
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Figure 4.36: Optimality of MMSE for ∆T2-FSFFE-DFE illustrated by
the example of combined CD and first-order PMD
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In the noise-limited region, i.e. for very low rD and ∆τg, the results are hardly to distinguish
in Figs. 4.33(a) – 4.36(a). Therefore, Figs. 4.33 – 4.36 show this region in a zoomed window.
The zoom area is indicated by a black lined box with subscript (b) on the corresponding left-
hand side plots (a). Figs. 4.33(b) - 4.36(b) reveal a special phenomenon of MMSE applied
to FFE-DFE methods in OA-IM/DD links. Irrespective of the FFE-DFE structure, EDC
performance degrades even below the threshold RX system. This has also been reported by
others in [105, 106, 107].

Table 4.4 quantifies the b2b penalties of the applied coefficient adjustment criteria measured
with the b2b performance of the threshold RX system as reference. The additionally required
OSNR is about 0.2−0.4 dB for the MMSE criterion, which is even outperformed by the ZF
criterion for the FFE and the FFE-DFE setup with 0.03 dB. The MIN-BER criterion has a
negative penalty, i.e. it reduces the required b2b OSNR penalty. This gives clear evidence
that plain application of the MMSE criterion is not well suited for noise-limited OA-IM/DD.
Concerning the dispersion-limited region, we can also observe that there is still some margin
wasted compared to MIN-BER.

MIN-BER ZF MMSE
FFE, M = 5 −0.0782 dB 0.0307 dB 0.2981 dB

FFE-DFE, M = 3, N = 1 −0.0721 dB 0.0307 dB 0.3851 dB
∆T2-FSFFE, M = 10 −0.1658 dB 0.5595 dB 0.2026 dB

∆T2-FSFFE-DFE, M = 3, N = 1 −0.1878 dB 0.5099 dB 0.2944 dB

Table 4.4: b2b penalty listing for different FFE-DFE and ∆T2-FSFFE-
DFE setups with corresponding coefficient adjustment criteria

The illustrations of Figs. 4.37 – 4.39 give further insight into the worse performance of the
MMSE criterion in OA-IM/DD links. Fig. 4.37 contains scatter plots for different FFE-DFE
structures with respect to the applied coefficient adjustment criteria. The equalizer coeffi-
cients have been calculated for a combined CD and first-order PMD scenario. As with the
generation of eye diagrams, we evaluate the calculated coefficients together with noise free
yet dispersion affected electrical RX input samples to determine the vertical margins of dif-
ferent EDC methods. Although the MIN-BER coefficient adjustment criterion performs best
in terms of required OSNR, it shows the least vertical margins of all methods. ZF, which does
not consider noise in the coefficient calculation at all, has a better vertical margin and a re-
quired OSNR performance than MMSE for Tb-spaced processing in the noise-limited region.
This is somewhat contradictory since the intended benefit of applying the MMSE criterion
is to include noise characteristics in the equalizer coefficient calculation. For ∆T2-spaced
processing, MMSE outperforms ZF in terms of required OSNR although the vertical mar-
gins are almost the same. However, the MMSE criterion still has a positive OSNR penalty
compared to the simple threshold RX. Thus, we may conclude that the MMSE criterion over-
estimates the noise within the electrical RX signal samples, which biases the coefficients to
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Figure 4.37: Scatter plots for different coefficient adjustment criteria
(generated with coefficients resulting from combined CD
(L f = 5 km) and first-order PMD (∆τg,max = 12.36 ps),
γOSNR = 21 dB)

suboptimal values. This impression is confirmed by the conditional histogram measurements
depicted in Figs. 4.38 and 4.39 for a FFE operated in the noise- and dispersion-limited re-
gion, respectively. Although the maximal frequencies of the MIN-BER histograms have the
least distance for both, the noise- and dispersion-limited region, the variance of these curves
is smaller than for the ZF and MMSE case. For the noise-limited region, the MMSE his-
tograms show the maximal variance which is a clear indication of higher noise power being
present in the decision statistics zk1 .

We conclude the discussion of suitability of the MMSE criterion with the numerical results
of Fig. 4.40, which shows the 2 dB penalty improvement gap between the MMSE and the
MIN-BER criterion by means of a bar plot in Fig. 4.40(a). The bars indicate the percent-
age how much better a MIN-BER adjusted FFE-DFE or ∆T2-FSFFE-DFE method for EDC
improves the dispersion tolerance at a 2 dB offset level compared to the MMSE criterion as
exemplified in Fig. 4.40(b). The 100 % dispersion reference is derived from the threshold RX
performance and already marked in the previous plots of Figs. 4.33(a) – 4.36(a). Coefficient
adjustment with respect to the MIN-BER criterion is able to further improve the CD toler-
ance from 9.75 % for the ∆T2-FSFFE up to 22.28 % for ∆T2-FSFFE-DFE. For first-order
PMD, the numbers range from 4.04 % for ∆T2-FSFFE to 8.08 % for ∆T2-FSFFE-DFE. If
we express the percentages of the performance gap between the MMSE and MIN-BER cri-
teria in equivalent length margin as given by Eqs. (3.74) on page 32 and (4.73) on page 93,
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we may state that we can extend the range of the OA-IM/DD link to about 0.22−0.5 km at
Rb = 42.7 Gbit/s. For long-haul wide area networks (WANs) this is not worth discussing, but
it could be an advantage for short-haul distances within metropolitan area networks (MANs)
or local area networks (LANs). The performance gap between MIN-BER and MMSE is
larger for FFE-DFE structures than for FFE only. This points out the higher susceptibility of
FFE-DFE structures with regard to the applied coefficient adjustment criterion.

At least in the noise-limited operation range, there are various possibilities how to cope with
this obviously adverse situation of MMSE deficiency:

1. We could signal to the RX to switch off its EDC unit and just act as a simple threshold
RX. This would require an additional signaling channel or even some overhead.

2. If possible, we could just accept the BER performance loss introduced by EDC with a
FFE-DFE.

3. We could increase the optical TX power for compensation, which also requires some
kind of feedback channel.

4. We could improve the noise immunity of the MMSE coefficient adjustment algorithm
and benefit from a reduced optical TX power as for example with the MIN-BER crite-
rion.

Of course, the latter option is favorable and requires us to have a better understanding of the
mathematical mechanisms involved in MMSE coefficient adjustment, especially, how the
ASE noise is treated there with direct detection.

Assuming that the optical RX is directly connected to the optical TX, the LLS FIR channel
approximation as introduced previously is approximately given by a single tap filter with
Mc = 0. If we use a quite simple system model as depicted in Fig. 4.41,

bit
source

bk
h0

xk1

DFE

FFE

b̂k
nk1 ∼N

(
0,σ2

ñ

)
| · |2

Figure 4.41: Simplified noise-limited direct detection system

its output is given by

xk1 =
∣∣h0bk +nk1

∣∣2 , bk ∈{0,1} ,h0,nk1 ∈ R,

=
(
h0bk +nk1

)2

= h2
0b2

k +2h0bknk1 +n2
k1
.

(4.74)
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nk1 represents an AWGN noise process modeling the ASE noise of the EDFA, and the
squared magnitude operation represents direct detection by the photodiode.

Referring the MMSE coefficient calculation of Eq. (4.62) but with restriction to a FFE, we
need the autocorrelation matrix Rxx and the cross-correlation vector pbx to determine

c = R−1
xx pbx.

The elements of the autocorrelation matrix are generally given by

rxk1+τd−txk1+τd−u = E
[
xk1+τd−txk1+τd−u

]
ergodicity

= E
[
xk1−txk1−u

]
= E

[(
h2

0b2
k−t +2h0bk−tnk1−t +n2

k1−t

)(
h2

0b2
k−u +2h0bk−unk1−u +n2

k1−u

)]
= h4

0E
[
b2

k−tb
2
k−u

]
+2h3

0E
[
b2

k−tbk−u

]
E
[
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]︸ ︷︷ ︸
=0

+h2
0E
[
b2

k−t

]
E
[
n2

k1−u

]
+2h3

0E
[
bk−tb2

k−u

]
E
[
nk1−u

]︸ ︷︷ ︸
=0

+4h2
0E
[
bk−tbk−u

]
E
[
nk1−tnk1−u

]
+2h0E

[
bk−t

]
E
[
nk1−tn2

k1−u

]
︸ ︷︷ ︸

=0

+h2
0E
[
n2

k1−t

]
E
[
b2

k−u

]
+2h0E

[
n2
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]
︸ ︷︷ ︸

=0

E
[
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]
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E
[
nk1−tnk1−u

]︸ ︷︷ ︸
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+h2
0E
[
n2

k1−t

]
E
[
b2

k−u

]
+E
[
n2

k1−tn
2
k1−u

]
ergodicity

=


h4

0E
[
b4

k

]
+6h2

0E
[
b2

k

]
E
[
n2

k1

]
+E
[
n4

k1

]
: t = u

h4
0

(
E
[
b2

k

])2

+2h2
0E
[
b2

k

]
E
[
n2

k1

]
+

(
E
[
n2

k1

])2

: t 6= u

=


h4

0E
[
b4

k

]
+6h2

0E
[
b2

k

]
E
[
n2

k1

]
+E
[
n4

k1

]
: t = u(

h2
0E
[
b2

k

]
+E
[
n2

k1

])2

: t 6= u
,

t,u = 0, . . . ,M−1; k ≡ k1. (4.75)

Note that we have partially applied the statistical independence of signal and noise and that
the noise process itself has zero mean AWGN characteristic.

If we replace the model in Fig. 4.41 by a linear AWGN channel, the autocorrelation matrix
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Rxx has diagonal form when no ISI is present, i.e.

xk1 = h0bk +nk1 ⇐⇒ rxk1+τd−txk1+τd−u = . . .=

 h2
0E
[
b2

k

]
+E
[
n2

k1

]
: t = u

0 : t 6= u
(4.76)

If we compare this to Eq. (4.75), we recognize that rxk1+τd−txk1+τd−u 6= 0 for t 6= u which will
bias the final MMSE solution in an OA-IM/DD link.

The same can be done for the elements of the crosscorrelation vector pbx with
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t = 0, . . . ,M−1; k ≡ k1. (4.77)

Again, we put the reference of a linear AWGN channel against this result by

xk1 = h0bk +nk1 ⇐⇒ pbx,t = . . .=

 h0E
[
b2

k

]
: t = τd

0 : t 6= τd.
(4.78)

The cross-correlation for the linear AWGN channel has only a single nonzero element at
position τd . Therefore, since the autocorrelation matrix Rxx has diagonal form as already
explained, the MMSE coefficient vector has also only one single nonzero element at position
τd given by

cτd =
h0E
[
b2

k

]
h2

0E
[
b2

k

]
+E
[
nk2

1

] . (4.79)

If we compare this to Eq. (4.77), we recognize again that pbx,t 6= 0 for t 6= τd . Together with
the non-diagonal autocorrelation matrix Rxx of Eq. (4.75) the final MMSE solution has also
nonzero coefficients at other than the central position, i.e. cm 6= 0, m = 0, . . . ,M− 1. This
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explains why plain MMSE performs worse in noise-limited OA-IM/DD links and shows a
performance gap to the MIN-BER criterion for the dispersion-limited region.

If we inspect Eqs.(4.75) and (4.77) for the cases t 6= u and t 6= τd , respectively, we may
recognize that their final results have the term h2

0E[b
2
k ]+E[n2

k1
] in common, which is actually

the statistical mean value of the EDC input samples given by

E
[
xk1

]
= E
[(

h0bk +nk1

)2
]

= h2
0E
[
b2

k

]
+2h0E[bk]E

[
nk1

]︸ ︷︷ ︸
=0

+E
[
n2

k1

]
= h2

0E
[
b2

k

]
+E
[
n2

k1

]
. (4.80)

Consequently, the MMSE solution seems to be biased by the statistical mean value of the
EDC input signal. If we think this idea the other way round, we can make Rxx diagonal with
rxk1+τd−txk1+τd−u = 0 for t 6= 0 and ensure that pbx,t = 0 for t 6= τd again if we provide a zero-
mean input signal to the FFE-DFE. Then, this should almost deliver the same performance
as for the linear AWGN channel. Antipodal and zero-mean impulse shaping is not possible
to implement in the TX of OA-IM/DD links. However, if we assume ergodicity and perform
averaging on the EDC input samples xk1 , we can set

xZM,k1 := xk1− xk1

ergodicity⇐⇒ E
[
xk1− xk1

]
= 0 (4.81)

and feed these zero-mean samples to the usual MMSE criterion.

Fig. 4.42 shows the simulation results with the zero-mean adjustment of the EDC input
samples. The negative OSNR penalty for the noise-limited region has been eliminated com-
pletely. Towards the dispersion-limited region, the curves of the zero-mean adjusted MMSE
coincides with the MIN-BER results. This is originally known form linear AWGN channels.
Just for the very high dispersion region, the zero-mean MMSE results deviate at least for
FFE-DFE.
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4.3.3 Benefits and Implications of Fractionally Spaced Processing

4.3.3.1 EDC Performance Enhancement

Figs. 4.43 – 4.45 compare the performance of Tb-spaced to ∆T2-spaced FFE-DFEs. The
equalizer coefficients have been generated each time with the MMSE criterion. Fig. 4.46
contains the extracted 2 dB penalty improvements out of Figs. 4.43 – 4.45.

Concerning CD, the 2 dB penalty improvement of 14.94 % for the FFE is more than doubled
by the ∆T2-FSFFE with 39.10 %. The same doubling holds for the corresponding DFE
variants with 19.06 % for Tb-spaced processing and even 44.52 % for ∆T2-spaced processing.
Since the residual dispersion value rD scales linearly with length, these quantities directly
increase the possible OA-IM/DD link length by the same percentage. The ∆T2-FFE-DFE
demonstrate its dispersion compensation capabilities even for larger CD values beyond the
pole-like region for the Tb-spaced processing methods.

It is also the additional DFE in conjunction with ∆T2-spaced processing which delivers the
best 2 dB penalty performance gain with 21.21 % for first-order PMD in Fig. 4.44. In con-
trast, the percentages of the other methods represent only moderate improvements which
increase almost linearly from 12.87 % for the FFE to 16.05 % for the ∆T2-FSFFE according
to Fig. 4.46. The required OSNR @ BER = 1.0e-3 for the FFE-DFE and the ∆T2-FSFFE are
almost the same for larger ∆τg. However, the ∆T2-spaced processing is capable of overcom-
ing the pole-like region which is also present for first-order PMD.

Fig. 4.45 shows the results for the combined effects of CD and first-order PMD. Compared
to the single effect considerations, the 2 dB penalty improvement percentages are higher with
respect to CD while the PMD penalty gain remains almost the same.

4.3.3.2 Sampling Phase Susceptibility

Another interesting aspect for comparing Tb- and ∆T2-spaced processing is the impact of
sampling phase adjustment. Therefore, we have simulated the FFE-DFE and ∆T2-FSFFE-
DFE with different sampling phases. Recalling the definitions in Eqs. (3.120), (3.123)
and (3.127) on pages 46 – 48, by which we have introduced our notation for electrical
RX signal sampling, we have set the sampling phases τ1 for Tb-spaced processing to τ1 =

0,0.25Tb,0.5Tb and 0.75Tb. The same setup has been applied to τ2 for ∆T2-spaced sampling
with τ2 = 0,0.25∆T2,0.5∆T2 and 0.75∆T2.

The achieved results for Tb-spaced processing are illustrated in Fig. 4.47. The FFE and FFE-
DFE performance heavily depends on the adjusted sampling phase. The FFE shows best
performance if we sample the electrical RX signal right in the middle where we expect the
maximal residual eye opening, i.e. at τ1 = 0.5Tb. Since our computer simulation model is not
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causal, the ISI generated by CD and first-order PMD spreads symmetrically to the neighbor-
ing TX symbols. This explains the almost identical curves for τ1 = 0.25Tb and τ1 = 0.75Tb.
Sampling at the signal transition instants with τ1 = 0 leads to almost undefined signal states
and its curve is out of diagram scope. The behavior of the FFE-DFE is quite different. In-
tuitively, the result for τ1 = 0.5Tb is expected to perform best as for the FFE. However, the
curves for τ1 = 0,0.25Tb and 0.75Tb outperform it in the dispersion-limited region by a con-
siderable amount. Especially for τ1 = 0, much more dispersion tolerance improvement is
possible for rD > 120. Thus, we can conclude that proper Tb-spaced processing requires ap-
propriate sampling phase adjustment depending on the OA-IM/DD link characteristics. This
is the task of a so-called clock and data recovery (CDR) unit with tunable phase adjustment
circuitry, whose realization is quite challenging for very high bit rates.

Fig. 4.48 reveals that sampling phase adjustment is not necessary for ∆T2-spaced processing.
The performance is almost independent of the applied sampling phase. Besides better EDC
performance, fractionally spaced processing also offers the benefit of getting rid of CDR
phase tuning. However, the already high bit rates also impose challenges on fractionally
spaced processing.
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Figure 4.48: Effect of different sampling phase adjustments for FSFFE
and FSFFE-DFE illustrated by the example of combined
CD and first-order PMD (based on MMSE adjustment)

4.3.3.3 Fractional Sample Spacings Below ∆T2

We close the discussion of fractionally spaced processing benefits by answering the remain-
ing question that, if we further decrease the sample spacing, we can even more improve
EDC performance. Fig. 4.49 contains FSFFE and FSFFE-DFE results for ∆T2-, ∆T4- and
∆T8-spaced processing. The temporal spread of the FSFFE has been kept constant within
the groups of FSFFEs and FSFFE-DFEs simulations. That is why the number of coefficients
are doubled from one sample spacing to the next lower. Previously presented results, which
have considered the step from Tb- to ∆T2-spaced processing, have shown that ∆T2-spaced
processing either allows to decrease the number of FSFFE coefficients while maintaining the
same EDC performance, or it improves performance if the number of FSFFE coefficients
increases. According to Fig. 4.49, the step from ∆T2 to ∆T4 shows only some small perfor-
mance gain for the FSFFE. For all other cases, the overall performance hardly increases, i.e.
fractionally spaced processing below ∆T2 does not justify to pursue.
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Figure 4.49: Further decreasing sample spacing illustrated by the exam-
ple of combined CD and first-order PMD (based on MMSE
adjustment)

4.3.4 Comprehensive FFE-DFE Performance Analysis vs. MLSE
Viterbi Equalizer

After the detailed consideration of FFE-DFE-based EDC and its behavior in OA-IM/DD
links, we turn to the more general assessment by comparing the performance of FFE-DFEs
to the theoretically more advanced MLSE-VE with all the implications already addressed
in Ch. 4.1. MLSE-VE shall serve as the benchmarking EDC technique for this thesis since
some practical realizations have already been reported [20, 28, 80]. Thus, the parameters
channel memory and ADC resolution for the MLSE-VE have been chosen accordingly with
Mc = 2 and Bx = 5 as the benchmarking reference. It is worth to note that MAP turbo equal-
ization [33, 34, 35, 72, 108, 109, 110] would show even better performance than MLSE-VE.
However, computational complexity would even more increase compared to MLSE-VE due
to its iterative nature.

Fig. 4.50 compares the results for CD. Within both sample spacing groups, MLSE-VE per-
forms best as expected. The performance gain of MLSE-VE is extraordinary higher for
∆T2-spaced processing compared to any other depicted EDC method. The MLSE-VE re-
sults show an almost linear increase of the required OSNR. This is different to the less ef-
fective FFE-DFEs and ∆T2-FSFFE-DFEs curves and manifests the generally superior EDC
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performance. Another interesting fact is that all fractionally spaced FFE-DFEs outperform
Tb-spaced MLSE-VE for short-haul OA-IM/DD links. The ∆T2-FSFFE-DFE offers almost a
25 % improved dispersion tolerance for CD compared to MLSE-VE, and the Tb-space FFE-
DFE lacks only around 6 % at much lower implementation cost.

The comparison for first-order PMD reveals a different situation in Fig. 4.51. The dispersion
tolerance improvement is quite moderate for any EDC method. MLSE-VE performs best
here irrespective of the applied processing rate. The ∆T2-FSFFE-DFE is the only which can
keep up with the MLSE-VE performance.

Joint CD and first-order PMD results are depicted in Fig. 4.52. In principle, they nearly
provide a superposition of the previous separate CD and first-order PMD results. The ∆T2-
MLSE-VE with around 45 % 2 dB penalty improvement outperforms the other methods by
far having an almost 1.5-fold improvement compared to the next best MLSE-VE and ∆T2-
FSFFE-DFE with around 30 % each. It is just the latter one out of all FFE-DFE and FSFFE-
DFE and the MIN-BER coefficient adjustment, which is able to reach nearly MLSE-VE
performance for short-haul distances. On the other hand, being able to do so by a much more
simpler equalization method with the only burden of having twice the sampling rate makes
this solution especially in the short-haul domain, where unit cost is critical, very attractive.

Fig. 4.53 lists the corresponding 2 dB penalty improvements as a numerical reference to the
individual penalty improvements extracted from Figs 4.50 – 4.52.

4.4 Summary and Conclusion

In this chapter, we have discussed the general suitability of low-complexity FFE-DFE struc-
tures and their feasibility for application in short-haul OA-IM/DD. It can be stated that it is
a real and low complex alternative to more advanced yet more processing intensive detec-
tion schemes. The deficiencies of the MMSE criterion as doubted by [105, 106, 107] can be
alleviated by proper signal conditioning.
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Chapter 5

Adaptive Equalizers

Until now we have considered optical channel impairments of CD and PMD as constant
during the principal comparison of different EDC methods. However, especially PMD
varies over time. The statistical description of the DGD over time and wavelength follows a
Maxwell-Boltzmann distribution as introduced in Ch. 3.2.2.2.3. Measurements have shown
that the optical link characteristics do not alter in the sub-second domain as in highly dynamic
mobile channels but on the basis of hours or days. However, the time scale at which a change
of link characteristics happens can be below 10 ms as reported in [111]. Therefore, we have
to adapt the coefficients of the FFE-DFE EDC unit to account for the dynamic changes of the
OA-IM/DD link characteristic. It would be favorable that the coefficient adaptation process
can keep up with the dynamics of the channel fluctuations and with dynamically switched
optical network topologies in order to prevent an unintentional breakdown of the OA-IM/DD
link. According to the high-speed implementation requirements, the computational overhead
of the adaptation algorithm should be kept at a minimum. This is the reason for the deeper
investigations which will lead us to algorithmic simplifications.

5.1 LMS Algorithm

5.1.1 Basic Theory

In Ch. 4.2.2.3 we have used the commonly known MSE minimization approach to adjust
the equalizer filter coefficients if the OA-IM/DD link characteristics are known in advance.
The MSE is a strictly convex function in the coefficients c̆ leading to a unique minimum.
The geometrical interpretation is that of a multidimensional hyperbola in coefficient space
as depicted in Fig. 5.1. If we know the channel characteristics in advance, we have either
a direct analytical description or, as in this case, an indirect ergodic measurement of the
parabolic MSE surface E[|ek(c̆)|2] available and can start the optimization procedure to ob-
tain the equalizer coefficients as in Ch. 4.2.2.3. The time needed to measure E[|ek(c̆)|2]
accurately is too long for a fast coefficient adaptation method. Furthermore, the involved
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c0

c1

E
[∣∣ek(c0,c1)

∣∣2]

Figure 5.1: Illustration of the LMS adaptation process for M = 2 FFE
coefficients with additional projection of the contour lines
and stochastic gradient vectors onto the coordinate plain

matrix inversion in Eq. (4.62) on page 87 is computationally complex and hard to realize at
high processing speeds. That is why we exploit the strict convexity of the MSE surface in an-
other way. At each point c̆ = (c0, . . . ,cM−1,d1, . . . ,dN)

T of the MSE hyperbola, the direction
to the minimum of E[|ek(c̆)|2] is given by the negative gradient vector.

If we start at time instant k = 0 with an arbitrary but nonzero initial coefficient vector c̆0, we
use the iterative mathematical rule

c̆k+1 := c̆k−
1
2

µ ∇c̆E
[∣∣ek(c̆k)

∣∣2]︸ ︷︷ ︸
∇c̆ · andE[· ] linear operations

⇒associative

= c̆k−
1
2

µE
[

∇c̆
∣∣ ek(c̆k)︸ ︷︷ ︸
=bk−c̆T

k x̆k1 ∈R

∣∣2 ]

= c̆k−
1
2

µE

[
∇c̆

(
bk− c̆T

k x̆k1

)2
]

= c̆k−
1
2

µ E

[
∇c̆

(
bk− c̆T

k x̆k1

)2
]

︸ ︷︷ ︸
=E[−2(bk−c̆T

k x̆k1)︸ ︷︷ ︸
=ek(c̆k)

x̆k1 ]

= c̆k +µE
[
ek(c̆k) x̆k1

]
, µ ∈ R+, (5.1)

to determine the next coefficient values for time instant k+ 1. In order to account for the
temporal dependence of the coefficients, we have introduced an additional temporal subscript
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5.1. LMS Algorithm

into the notation here. The parameter µ ∈ R+ is the step size which scales the gradient
vector and is a means to control the speed of convergence. Eq. (5.1) is known as gradient
or steepest descent algorithm [102]. It is nothing but an iterative solution of the MMSE
coefficient adjustment algorithm of Eq. (4.62) on page 87. In this form, it is not yet suitable
for application in real-time systems since evaluation of the expectation operator E[ · ] requires
to have knowledge about the underlying statistics of the argument term ek(c̆)x̆k1 . Thus, the
problem seems just shifted from measuring E[|ek(c̆)|2] in the initial MMSE approach to an
ergodic measurement of E[ek(c̆) x̆k1] instead.

We circumvent this final problem by using a stochastic gradient approach [112, 113], in
which we just omit the expectation operator in Eq. (5.1). This leads to the LMS adaptation
rule

c̆k+1 := c̆k +µekx̆k1. (5.2)

For ease of notation, we omit the explicit dependence of ek(c̆) on c̆ and write ek instead in
the LMS algorithm.

Many textbooks [114, 102] analyze the convergence of the LMS algorithm of Eq. (5.2) un-
der the assumption of an i.i.d. input signal to the adaptive filter. Then, the LMS algorithm
converges in the mean square sense if the step size µ is chosen to be smaller than the recip-
rocal of the largest eigenvalue of the input autocorrelation matrix Rx̆k1 x̆k1

[102]. However,
we do not have knowledge about the statistics of the input and must rely on empirical simu-
lations to adjust µ . Fig. 5.1 illustrates an example of an adaptation trace on the MSE surface
towards the optimal MMSE coefficient vector for M = 2. The term stochastic gradient be-
comes obvious in the fact that the stochastic gradient vectors do not point perpendicular to
the contour lines towards the steepest. This is the result of having omitted the expectation
operator in Eq. (5.2), which, together with the nonzero step size µ , has the consequence that
the optimum MMSE coefficient vector cannot be reached exactly. Even near the optimum,
we always face some random but small walk, which leads to an excess MSE.

The initial definition of the error signal ek in Eq. (4.57) on page 85 comprises the transmitted
bit bk as a reference. This implies that the information about the transmitted bit sequence
is already available at the RX. This seems to be somewhat curious and contradictory any-
way. However, it can still be trimmed for real-world application if we periodically insert a
known training sequence at the TX and install some synchronization mechanism at the RX
for proper alignment and recognition. For example, the training sequence may be part of a
packet header or other control data which is embedded in the payload. In any case, it adds
to the overhead already given by FEC. Another possibility to avoid the transmission of a
training sequence is to operate the LMS in the so-called decision-directed mode [115] with

c̆k+1 := c̆k +µ

(
b̂k− zk

)
︸ ︷︷ ︸

=: ek

x̆k1. (5.3)

The adaptive LMS FFE-DFE structure featuring the decision-directed mode is illustrated in
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Fig. 5.2. Here, we use the already decided bit estimate b̂k to determine the error signal. Of
course, the LMS algorithm converges in the decision-directed mode only if correct decisions
are prevalent for the majority of b̂k [116]. Considered with respect to the electrical RX signal,
the vertical eye has still to be open at time instant k = 0 with the initial coefficient vector
c̆0 as a prerequisite. Some incorrectly received bits do not disturb the adaptation process
severely. They may influence adaptation speed or amplify random walk. However, if the eye
is closed, too many incorrect bit estimates arrive at the adaptation unit and either equalizer
training or completely blind adaptive algorithms like the constant modulus (CM) algorithm
[117, 118, 119] have to be applied. Since the decision variable zk in Eq. (4.67) on page 90 for

µ

ek

Tb Tb Tb

µek

TbTbTb

Tb Tb

µek

dN,k d1,k

cτd ,k cM−1,kc0,k

Tb
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yk

∆Ti ∆Ti

cM−1cM−2
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xki+τd xki+τd−1 xki xki+τd−(M−2) xki+τd−(M−1)

c0 c1 cτd

y′k
Zth

d1

Tb Tb

b̂k−N b̂k−(N+1) b̂k−1

dN−1dN
. . .

. . . . . .

Figure 5.2: Adaptive LMS FSFFE-DFE structure
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5.1. LMS Algorithm

general ∆Ti-FSFFE-DFEs originates from Tb-spaced subsampling of the ∆Ti-FSFFE output,
the LMS adaptation rule of Eq. (5.3) can only generate a new set of coefficients at the rate of
1/Tb irrespective of the applied fractionally spaced sample processing. In the block diagram
of Fig. 5.2, this has been accounted for by inserting sampling devices for the input samples
xki forwarded into the adaptation loop. The DFE adaptation loop does not need additional
sampling because it already operates at the 1/Tb rate.

Beside the ordinary LMS algorithm of Eq. (5.2), further modifications like the normalized
least mean square (NLMS) algorithm exist. It is based on the general approach of Eq. (4.58)
on page 85 using E[|ek(c̆)|2n], n ∈ N1, as convex optimization cost function. If we turn this
general cost function into an iterative, stochastic gradient adaption rule, we arrive at the least
mean 2n-th order (LMN) algorithm [105, 120, 121] given by

c̆k+1 := c̆k +nµe2n−1
k x̆k1. (5.4)

The corresponding hardware implementation has to generate the required error signal e2n−1
k .

Compared to the single subtraction of Fig. 5.2 to get the error signal ek, the additional mul-
tiplications to calculate its power with respect to the exponent 2n−1 increase the computa-
tional overhead and may limit high speed operation.

For the sake of completeness, recursive least squares (RLS) and Kalman filters (KFs) as
other popular algorithms for adaptive parameter adjustment shall be mentioned here. Since
these require complex matrix operations, they are not feasible at high processing speeds.
Other known and already evaluated techniques are based on dithered random search [27,
122], on feedback signals generated by eye monitoring [123, 124] or on FEC evaluation
with appropriate feedback to the EDC unit [125]. Some of them have already been applied
to high-speed analog FFEs [24, 107, 126, 127, 128] for 40 Gbit/s systems. However, the
convergence rate of random search techniques is quite slow [129] compared to the directed,
gradient based methods like the LMS algorithm.

5.1.2 Convergence Behavior

After having discussed the theoretical basics for the LMS algorithm, we turn to its evaluation
in OA-IM/DD links equipped with an adaptive FFE-DFE EDC unit. Thereby, we are at least
interested in the adaptation speed or convergence rate λLMS and the coefficient accuracy or
adaptation offset ∆rel,LMS. The adaptation rate is primarily influenced by the step size µ and
describes the reaction of the adaptation algorithm to abrupt changes in the OA-IM/DD link
characteristics given by CD, mainly time-variant PMD and OSNR. It also depends on the
number of FFE-DFE coefficients since the higher this number the longer the adaptation time
will be. The reason is that the variance of the error signal ek increases with higher dimen-
sionality of the involved stochastic gradient vectors in the LMS adaptation rule. That is why
we focus without loss of generality and according to our results in Ch. 4.3 on a FFE with
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M = 5 coefficients and the decision delay set to τd = 2 for these investigations. The perfor-
mance measure of accuracy is taken in steady state and expresses itself by the possible offset
to the directly calculated MMSE coefficient vector c̆MMSE according to the procedure pre-
sented in Ch. 4.2.2.3. Both performance measures, λLMS and ∆rel,LMS, will be defined during
the course of discussing the results for the LMS algorithm. The underlying OA-IM/DD link
for the evaluation shall simultaneously be affected by CD and first-order PMD at a length
of L f = 5 km and ASE noise set to γOSNR = 21 dB. This parameter set corresponds to the
region between noise and dispersion-limited region. Due to the randomness of noise, it is
obvious that operation towards the noise-limited region would be less advantageous for the
adaptation process than towards the dispersion-limited one. Thus, our operation point states
a compromise. Furthermore, the initial coefficient vector is the unit vector in the τd-th di-
mension given by

c̆0 := 1τd , (5.5)

i.e. we study the transient behavior right at link setup as worst case scenario for the adaptation
process.

Fig. 5.3(a) shows the average behavior of the squared error magnitude |ek|2 over time for
an adaptation step size of µ = 0.01. Note that the value range for µ corresponds to our
normalized representation of the physical system model used for simulations while real-
world implementation might need some scaling. Beside the discrete time index k, we see
the abscissa also labeled with absolute time in µs to give an impression of the absolute
adaptation speed. Despite the averaging over 1000 adaptation runs, |ek|2 shows still heavy
oscillations. Considering its envelope, we can identify two regions. The first one starts
at k = 0 and shows a high squared error magnitude with steep decay of the envelope. The
second one starting at around k≈ 10000−20000 (=̂t ≈ 0.23−0.47 µs @ Rb = 42.7 Gbit/s)
shows a constant envelope and can be considered as steady state. However, oscillation of the
mean squared error magnitude representing the random walk around the optimum MMSE
coefficient setup c̆MMSE is still present there.

In order to have an objective measure for the adaptation process, which allows us to ex-
tract a tendency from the noisy data by an analytical mathematical description, we apply
some smoothing with a post-processing moving average (MAV) filter [102]. This MAV filter
performs a simple averaging over 1000 samples of |ek|2 with

MAV
(
|ek|2

)
:=

1
1000

k+999∑
k

|ek|2 , k = K−1000, . . . ,0; K ∈ N1000. (5.6)

The parameter K ∈ N1000 represents the sequence length for which |ek|2 has been simulated
up to steady state. In general, we have to set K� 1000 (e.g. K = 151000 =̂ t ≈ 3.54 µs @
Rb = 42.7 Gbit/s in Fig. 5.3(a)) to reach steady state behavior reliably. Letting k run from
K−1000 down to 0 in Eq. (5.6) can be interpreted as processing the squared error magnitudes
|ek|2 in reverse order as illustrated in Fig. 5.5(a). The reason for this implicit reversal is to
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Figure 5.3: Average LMS-FFE adaptation behavior (L f = 5 km, com-
bined CD and first-order PMD (rD = 85 ps/nm, ∆τg,max =
12.36 ps), γOSNR = 21 dB, 1000 adaptation runs averaged)
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have a fair and proper internal state of the MAV filter when it comes to process the usually
higher magnitudes of |ek|2 for the region k ≈ 0. Otherwise, if the MAV filter would use the
common input order starting at k = 0 with zero initial state, the already high values of |ek|2 in
this region would experience an additional emphasis leading to a falsified impression. Thus,
the reversal guarantees that we evaluate the adaptation behavior from steady but not from
uninitialized state. The result of MAV post-processing can be seen in the correspondingly
labeled curve in Fig. 5.3(a) for µ = 0.01.

In a next step, a least squares exponential curve fitting routine which complies with the
mathematical model

arg min
A,B,C∈R+

∣∣∣∣MAV
(
|ek|2

)
−
(

Ae−Bk +C
)∣∣∣∣2 (5.7)

is applied to the result of MAV filtering. The exponential part Ae−Bk of the curve fitting
in Eq. (5.7) shall account for the first region of the smoothed squared error magnitude data
whereas the constant C shall represent steady state. The results of this exponential fit with
offset have been plotted for different step sizes in Fig. 5.3(a) (dash-dotted curves). The fitted
curve for µ = 0.01 shows good agreement with the MAV filter output and proves graphically
the validity of the underlying mathematical model of Eq. (5.7).

The use of such a model allows us to derive the (initial) adaptation rate as its slope at k = 0
with

λLMS :=

∣∣∣∣∣ ∂

∂k

(
Ae−Bk +C

)∣∣∣∣∣
k=0

= AB. (5.8)

This is an intuitive definition since a steeper slope at the beginning of the adaptation process
coincides with a higher adaptation rate. We can interpret it as the (linear) per time step
reduction of the squared error magnitude |ek|2. The adaptation rates are indicated visually
by the tangents in Fig. 5.3(a). Table 5.1 contains the corresponding numerical values of λLMS

for different step sizes.

If we extend Eq. (5.7) by Tb with

Ae−
B
Tb

k ·Tb +C =⇒

∣∣∣∣∣ ∂

∂kTb

(
Ae−

B
Tb

kTb +C
)∣∣∣∣∣

kTb=0

=⇒ λ
′
LMS :=

AB
Tb

=
λLMS

Tb
, (5.9)

the resulting adaptation rate λ ′LMS can be interpreted as a squared error reduction frequency.
Therefore, we apply the dimension of a frequency in Table 5.1 to this extended parameter.

The other performance measure ∆rel,LMS addresses the adaptation accuracy and is extracted
by considering the coefficient offsets with respect to the constant MMSE coefficients in
steady state. It shall be defined by the square root of the weighted sum of squared differences
between the LMS coefficients and the MMSE coefficients. The definition of this mean steady
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µ = 0.01 µ = 0.001 µ = 0.0001
λLMS 1.02e-5 2.34e-6 3.78e-7

λ ′LMS [kHz] 434.62 99.93 16.13
∆rel,LMS 2.23e-3 5.42e-4 2.20e-1

Table 5.1: Adaptation rates and mean steady state coefficient offsets of
the LMS algorithm for different step sizes

state coefficient offset is given by

∆rel,LMS :=

√√√√M−1∑
m=0

∣∣cMMSE,m
∣∣

|cMMSE |
∣∣cLMS,m− cMMSE,m

∣∣2 (5.10)

and has the form of a standard deviation. If required, it can easily be extended to investiga-
tions including a DFE. Since coefficients with a larger magnitude are more likely to influence
equalization performance, the weighting factor of

∣∣cMMSE,m
∣∣/ |cMMSE | in Eq. (5.10) takes

this into account. For the results based on Eq. (5.10), we derive a mean steady state value for
cLMS taken from the last 1000 coefficient values, whose corresponding squared error values
|ek|2 have been used to initialize the MAV filter of Eq. (5.6), i.e.

cLMS :=
1

1000

K−1∑
k=K−1000

ck. (5.11)

Fig. 5.3(b) contains the temporal behavior of the coefficients, and the dashed lines represent
the MMSE coefficients aside. We can observe that the LMS coefficients visually approx-
imate the MMSE coefficients well in steady state for µ = 0.01. The very low value of
∆rel,LMS = 2.23e-3 for µ = 0.01 coincides with this impression. Since the FFE has not yet
reached steady state for µ = 0.0001 within the considered window of Fig. 5.3(b), we observe
a large deviation of ∆rel,LMS = 0.22. If we would enlarge the simulation window, this value
should decrease even below the others because the random walk effects are less for lower
adaptation step sizes.

Recalling again that PMD might change its characteristics within a time span of around
10 ms [111], which corresponds to a rate of 100 Hz for changes of OA-IM/DD link charac-
teristics, we can finally state that LMS adaptation is able to react fast and accurate. If we
stress the adaptation process with a transient change of the channel characteristics, it con-
verges within less than a microsecond as represented by Fig. 5.3(a) and the corresponding
performance measures. This is almost three orders of magnitude below the reported PMD
transition time. We can expect therefore that an adaptive LMS FFE-DFE can keep pace with
variations of optical channel impairments and even track its behavior. This is very important
since it can prevent a link from total breakdown or aid in the installation of optically switched
networks.
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5.2 Reduced Complexity LMS Algorithms

Although we have seen that the standard LMS algorithm converges sufficiently fast and
accurate in OA-IM/DD links, its implementation in parallel to an already running FFE-DFE
imposes further challenges at the very high bit rates considered here. In the best case, the
adaptation loop should not exceed a single processing cycle of the FFE-DFE. Despite its
simple structure, Eqs. (5.2) or (5.3) show that at least three consecutive steps have to be
performed within a processing interval Tb:

1. the multiplication of the error signal ek with the adaptation step size µ to get the term
µek,

2. M+N parallel multiplications of the term µek with the elements of the FFE-DFE input
sample vector x̆k1 to reach at the stochastic gradient term µekx̆k1 , and

3. further M +N parallel additions to calculate the final coefficient updates c̆k+1 = c̆k +

µekxk1 .

If we take into account the fact that the straightforward FFE-DFE operation already needs
M + N parallel multiplications followed by dld(M+N)e consecutive addition stages and
the final slicer operation, any relaxation of the timing budget is favorable. This justifies
any reasonable temporal relaxations of the calculations in the adaptation loop to achieve
an adaptive digital FFE-DFE EDC unit. The idea is to use coarsely quantized values of
µ , ek and the FFE related components xk1 of the EDC input sample vector x̆k1 in order
to replace the multiplications by simple sign operations as already suggested in literature
for the LMS algorithm [102]. Coarse quantization and the corresponding multiplications
can easily be implemented by comparators in the analog or digital domain. However, the
quantized versions of the LMS algorithm may have some impact on convergence speed and
accuracy. Therefore, we study the quantized versions of the LMS algorithm for the special
signal characteristics of an OA-IM/DD link in this chapter. The results of these algorithmic
simplifications are still presented with floating-point precision for the input signal vector
x̆k1 , the FFE-DFE coefficients c̆k and the FFE-DFE output zk in the analog, discrete-time
domain. A digital implementation should be straightforward. As we will see, a tradeoff
solution which still meets nearly the same performance as the standard LMS algorithm is
favorable. A concise summary about the main ideas and initial results have already been
presented in [98] whereas we develop a more systematic analysis here.

5.2.1 Error Sign Quantization

The error signal ek occurs as positive and negative values at the output of a FFE-DFE EDC
unit in an OA-IM/DD link and has approximately zero mean. The indication of the error
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signal with respect to the different TX signal levels in Fig. 4.15(b) on page 85 shows a rough
graphical proof of this statement. A coarse quantization of ek must always retain the sign
of ek because the sign controls the direction of the gradient term in the LMS adaptation
rule. Therefore, if we want to quantize the error signal with the most coarsest resolution, the
coefficient update equation becomes

c̆k+1 := c̆k +µsgn(ek) x̆k1 (5.12)

with the definition of

sgn(x) :=

{
x≥ 0 : 1
x < 0 : −1

, x ∈ R, (5.13)

for the sign function. We call this version error-sign LMS (ES-LMS) algorithm. Fig. 5.4
documents the necessary changes to the block diagram of Fig. 5.2. We only need an addi-
tional comparator after the determination of the error signal. In a digital two’s complement
representation of ek, the comparator for sign detection reduces to simply picking up the most
significant bit (MSB) of ek.

ek

µ

Zth

+1

b̂kzk

−1 0

Figure 5.4: Modification of Fig. 5.2 to obtain the ES-LMS algorithm

Using the adaptation rule of Eq. (5.12), the same simulations as for the LMS algorithm
have been executed. The results are depicted in Fig. 5.5 and listed in Table 5.2. Concern-
ing the course of |ek|2 in Fig. 5.5(a) and the adaptation rates in Table 5.2, a comparison to
the LMS algorithm shows that the ES-LMS algorithm adapts almost three times faster for
all adaptation step sizes. The LMS algorithm scales the gradient term µekx̆ki by the ac-
tual error magnitude |ek| ∈ R+ while the ES-LMS has a constant scaling set to |ek| := 1.
Therefore, the ES-LMS algorithm accelerates the adaptation process in the first phase of
adaptation but amplifies random walk. The mean steady state coefficient offset for µ = 0.01
calculates to ∆rel,ES−LMS = 2.43e-2 and is one order of magnitude larger than the value of
∆rel,LMS = 2.23e-3 for the LMS algorithm. The mean steady state coefficient offset com-
pared to the MMSE coefficients becomes also visible in the coefficient plot of Fig. 5.5(b).
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bined CD and first-order PMD (rD = 85 ps/nm, ∆τg,max =
12.36 ps), γOSNR = 21 dB, 1000 adaptation runs averaged)
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As a conclusion, we may state that the ES-LMS algorithm is more susceptible to the choice
of the adaptation step size. If we can tolerate a much slower adaptation rate adjusted by a
small µ , the mean steady state coefficient offset to the MMSE coefficients can be reduced
and made comparable to the LMS behavior.

µ = 0.01 µ = 0.001 µ = 0.0001
λES−LMS 2.84e-5 6.55e-6 1.08e-6

λ ′ES−LMS [kHz] 1211.10 279.50 46.33
∆rel,ES−LMS 2.43e-2 2.44e-2 1.33e-2

Table 5.2: Adaptation rate and mean steady state coefficient offsets of
the ES-LMS algorithm for different adaptation step sizes

5.2.2 FFE Input Sample Quantization

The next step of simplification refers only to the FFE input vector xk1 since the DFE input is
already quantized by the slicer, which has already produced the bit estimates b̂k−1, . . . , b̂N in
previous processing cycles. The proposed sign operation to the elements of xk1 in [102]
would be of no advantage in OA-IM/DD links since direct detection results in xk1 ≥ 0
and signal-dependent noise even makes optimization of the simple threshold RX necessary.
Therefore, we have to change the sign approach by introducing a quantizer for the EDC input
samples with

QQx

(
xk1

)
:=

1
Qx−1

·


⌊

xk1 (Qx−1)+ 1
2

⌋
: xk1 < 1− 1

2(Qx−1)

Qx−1 : xk1 ≥ 1− 1
2(Qx−1)

, Qx ∈ N2. (5.14)

The number of quantization steps Qx ∈N2 is an adjustable parameter leading to the quantizer
levels

0,
1

Qx−1
,

2
Qx−1

, . . . ,
Qx−2
Qx−1

,1, (5.15)

for xk1 and forces 0≤ QQx(xk1)≤ 1 for our normalized signal representation. The subscript
· x in Qx actually refers to xk1 . However, we omit the additional subscript k1 for ease of
notation and readability.

We reach the lowest resolution and computational complexity for Qx = 2. In this case, the
adaptation rule for the quantized input LMS (QI-LMS) algorithm applied to the FFE is

ck+1 := ck +µekQ2
(
xk1

)
. (5.16)

The quantization function is applied to each element of the FFE input sample vector xk1 .
Fig. 5.6 shows the corresponding block diagram supplements for one branch of the adap-
tation loop. The quantizer element has to be supplied for each branch and implementation
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cost is therefore much higher than for the ES-LMS algorithm with only one additional com-
parator for the error signal. Another possibility for implementation of the QI-LMS algorithm
would be to have just one quantizer at the input to the FFE followed by a clocked delay chain
in parallel to the FFE carrying the elements of Q2(xk1).

Tb

Tb

µek

cm,k

∆Ti

cm

xki+τd−m

1

Qx0

Figure 5.6: Modification of Fig. 5.2 to obtain the QI-LMS algorithm

Fig. 5.7 shows the simulation results for the QI-LMS algorithm for Qx = 2. The princi-
pal squared error behavior in Fig. 5.7(a) does not deviate much from the standard LMS or
ES-LMS algorithms. The adaptation rate of λ ′QI−LMS = 426.11 kHz for µ = 0.001 according
to Table 5.3 is slightly lower than that of the standard LMS with λ ′LMS = 434.62 kHz for
µ = 0.01. Having a look at the coefficient values for this step size in Fig. 5.7(b) reveals,
that the steady state offset has increased compared to the ES-LMS algorithm. For µ = 0.01
and 0.001 it is even one order of magnitude larger compared to the ES-LMS and even two
orders for the standard LMS algorithm. Although the adaptation rates are comparable for
the QI-LMS and the ES-LMS algorithm, the accuracy of the QI-LMS version seems to be
quite susceptible. The geometrical interpretation of the term µekQ2(x̆k1) in Eq. (5.16) as a
gradient vector means that we only allow certain directions to follow during the coefficient
update process. We can only reach the optimum MMSE coefficient vector c̆MMSE if we can
write it as a linear combination of the starting coefficient vector c̆0 and some of the possible
quantized gradients. The best approaching one of those linear combinations determines the
offset we have to tolerate in Fig. 5.7(b). In order to reach the same level of accuracy, we
have two possibilities: we either reduce the adaptation step size to compensate for the coarse
quantization of the EDC input samples with Qx = 2 at the expense of reducing the adaptation
rate, too, or we increase the resolution of the input quantization.
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5 km, combined CD and first-order PMD (rD = 85 ps/nm,
∆τg,max = 12.36 ps), γOSNR = 21 dB, 1000 adaptation runs
averaged)
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µ = 0.01 µ = 0.001 µ = 0.0001
λQI−LMS 4.06e-5 9.98e-6 1.00e-6

λ ′QI−LMS [kHz] 1735.48 426.11 42.90
∆rel,QI−LMS 1.70e-1 1.70e-1 2.66e-2

Table 5.3: Adaptation rate and mean steady state coefficient offsets of
the QI-LMS algorithm for Qx = 2 and different adaptation
step sizes

Fig. 5.8 and Table 5.4 show that an increase of the signal resolution to Qx = 3 with adaptation
rule

c̆k+1 := c̆k +µekQ3
(
x̆k1

)
(5.17)

improves the adaptation performance in terms of accuracy for µ = 0.01 and 0.001 again.
The visible coefficient offset in Fig. 5.8(b) is comparable to the ES-LMS algorithm with
almost the same numerical values for the mean steady state coefficient offset. However, the
adaptation rates have even decreased below the values of the standard LMS algorithm in
Table 5.1.

µ = 0.01 µ = 0.001 µ = 0.0001
λQI−LMS 7.62e-6 2.19e-6 3.29e-7

λ ′QI−LMS [kHz] 325.42e3 93.70e3 14.05e3
∆rel,QI−LMS 3.17e-2 3.43e-2 2.50e-1

Table 5.4: Adaptation rate and mean steady state coefficient offsets of
the QI-LMS algorithm for Qx = 3 and different adaptation
step sizes

5.2.3 Thresholded Error Sign Quantization

In principle, the next step of simplification would be to combine the ES-LMS and QI-LMS
algorithm. However, the results in [98] have shown that, at least for the coarsest quantization
with error sign and Qx = 2 for the input sample vector xk1 to the adaptation loop, the coef-
ficient offset increases further. This is not surprising as the individual investigations for the
ES-LMS and QI-LMS algorithms have already shown a deviation. Especially, the latter one
shows worse performance at higher implementation cost in terms of quantizer units while
the ES-LMS is quite simple in its structure but shows a faster adaptation rate at compara-
tively small impact on accuracy compared to the standard LMS algorithm. Consequently, we
have to seek for methods to reduce the offset from the precalculated MMSE coefficients for
further improvement. Recalling that the reason for the mean steady state coefficient offset
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is random walk around the optimum MMSE coefficient vector c̆MMSE , we introduce a mea-
sure within the adaptation rule, which indicates that the adaptation process has reached the
optimum MMSE coefficient vector c̆MMSE sufficiently enough. If we reach a certain value
of this measure, we switch off the adaptation loop and keep the current coefficients. The er-
ror magnitude is a natural indicator for this optimality. The adaptation rule of the improved
ES-LMS algorithm can be written as

c̆k+1 := c̆k +

{
µsgn(ek) x̆k1 : |ek| ≥ |E|th
0 : |ek|< |E|th

. (5.18)

The symbolic notation of |E|th denotes the threshold for the error signal magnitude, below
which we keep the current coefficients. We call this adaptation method thresholded error-
sign LMS (TES-LMS) algorithm. A possible hardware block diagram is given in Fig. 5.9. It
shows that, besides the already known sign determination branch of the ES-LMS algorithm,
we just need a device determining the error signal magnitude followed by another comparator
in parallel. This second branch may act as a switch for the whole adaptation unit.

µ

ek

1

+10 |E|th

| · |
0

Zth

b̂kzk

−1

Figure 5.9: Modification of Fig. 5.2 to obtain the TES-LMS algorithm

The evaluation of the TES-LMS algorithm leads to the results in Fig. 5.10 and Table 5.5.
Besides the optimal adaptation step size, we have also to find the best value for the error
magnitude threshold. The optimal error threshold was found to be |E|th = 0.15 after having
searched with a resolution of 0.05. Comparing adaptation rates with respect to different
adaptation step sizes, the TES-LMS algorithm is always between the fast adapting ES-LMS
and the slower standard LMS algorithm. However, by introducing an error threshold, we
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Figure 5.10: Average TES-LMS-FFE adaptation behavior (L f = 5 km,
combined CD and first-order PMD (rD = 85 ps/nm,
∆τg,max = 12.36 ps), γOSNR = 21 dB, 1000 adaptation runs
averaged)
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could improve accuracy in terms of mean steady state coefficient offset by almost a factor of
10 compared to the ES-LMS algorithm.

µ = 0.01 µ = 0.001 µ = 0.0001
λT ES−LMS 1.97e-5 5.38e-6 8.61e-7

λ ′T ES−LMS [kHz] 842.41 229.76 36.78
∆rel,T ES−LMS 4.65e-3 5.51e-3 5.35e-2

Table 5.5: Adaptation rate and mean steady state coefficient offsets of
the TES-LMS algorithm for different adaptation step sizes

5.3 Summary and Conclusion

Finally, Table 5.6 summarizes the performance measures found for different adaptation al-
gorithms.

µ = 0.01 µ = 0.001 µ = 0.0001
λLMS 1.02e-5 2.34e-6 3.78e-7

λES−LMS 2.84e-5 6.55e-6 1.08e-6
λQI−LMS (Qx=2) 4.06e-5 9.98e-6 1.00e-6
λQI−LMS (Qx=3) 7.62e-6 2.19e-6 3.29e-7

λT ES−LMS 1.97e-5 5.38e-6 8.61e-7
λ ′LMS [kHz] 434.62 99.93 16.13

λ ′ES−LMS [kHz] 1211.10 279.50 46.33
λ ′QI−LMS [kHz] (Qx=2) 1735.48 426.11 42.90
λ ′QI−LMS [kHz] (Qx=3) 325.42e3 93.70e3 14.05e3

λ ′T ES−LMS [kHz] 842.41 229.76 36.78
∆rel,LMS 2.23e-3 5.42e-4 2.20e-1

∆rel,ES−LMS 2.43e-2 2.44e-2 1.33e-2
∆rel,QI−LMS (Qx=2) 1.70e-1 1.70e-1 2.66e-2
∆rel,QI−LMS (Qx=3) 3.17e-2 3.43e-2 2.50e-1

∆rel,T ES−LMS 4.65e-3 5.51e-3 5.35e-2

Table 5.6: Summary of adaptation rates and mean steady state coefficient
offsets for different adaptation step sizes

Fig. 5.11 represents results for the required OSNR vs. CD and first-order PMD, which have
not yet been involved in the discussion so far. It compares the LMS and the TES-LMS
behavior with precalculated MMSE. These curves are insofar interesting that they have been
recorded with initial setup of c0 = 1τd while constantly measuring the BER. We can state
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5.3. Summary and Conclusion

that the initial adaptation process has no severe influence on BER performance compared
to the precalculated MMSE coefficients. Furthermore, all simulations have been executed
with the same adaptation step size µ and error magnitude threshold |E|th. This means that
these parameters are fortunately valid for all OA-IM/DD parameter sets. A closer look at
the noise-limited region reveals that the TES-LMS algorithm outperforms the standard LMS
due to random walk suppression by the threshold operation. For the dispersion-limited region
both algorithm perform equally which justifies to replace the LMS algorithm in favor of the
TES-LMS algorithm.
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Chapter 6

Conclusion

This thesis has investigated low-complexity feed-forward and decision feedback equalizers
for electronic dispersion compensation (FFE-DFE EDC) applied to optically amplified, in-
tensity modulated links with direct detection (OA-IM/DD). It has proven that these methods
are implementation- and cost-effective electronic dispersion compensation (EDC) methods
for short-haul metropolitan area (MAN), aggregation or local area networks (LAN) to mit-
igate the intersymbol interference (ISI) impairments caused by chromatic (CD) and time-
variant polarization mode dispersion (PMD).

Starting with the detailed description of modeling the special signal and noise characteristics
of optically amplified, intensity modulated links with direct detection (OA-IM/DD) in Chs. 2
and 3, principle methods for electronic dispersion compensation (EDC) have been introduced
with special focus on feed-forward and decision feedback equalizers (FFE-DFE) including
their fractionally spaced counterparts. Different coefficient adjustment criteria ranging from
minimal bit error ratio (MIN-BER) to minimum mean squared error (MMSE) have been in-
troduced and studied intensively. First simulation results have revealed that low-complexity
feed-forward (FFE) with M = 5 and feed-forward and decision feedback equalizers (FFE-
DFE) with M = 3 and N = 1 coefficients are sufficient to cope with more advanced maximum
likelihood sequence estimation based Viterbi equalizers (MLSE-VE) for the very short-haul
range. Additionally, performance can be improved by application of fractionally spaced pro-
cessing at twice the symbol rate. A fractionally spaced feed-forward equalizer (∆T2-FSFFE)
with M = 10 and a fractionally spaced feed-forward and decision feedback equalizer (∆T2-
FSFFE-DFE) with M = 5 and N = 1 have been found to be optimal with respect to electronic
dispersion compensation (EDC) performance and implementation complexity. Compared to
symbol rate processing, fractionally spaced processing improves electronic dispersion com-
pensation (EDC) performance and simplifies clock and data recovery (CDR) circuitry at
the expense of doubled clock rate for the equalizer operation. Furthermore, the supposed
deficiency of minimum mean squared error (MMSE) coefficient adjustment in optically am-
plified, intensity modulated links with direct detection (OA-IM/DD) has been resolved after
a detailed analysis of the calculations involved in the minimum mean squared error (MMSE)
criterion. Instead of using the biased signal of the direct detection receiver directly for the
minimum mean squared error (MMSE) coefficient adjustment, a zero-mean adjusted input
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Chapter 6. Conclusion

can provide almost the same electronic dispersion compensation (EDC) performance as the
minimum bit error rate (MIN-BER) criterion. Finally, different adaptation algorithms based
on the least mean square (LMS) algorithm have been introduced and studied extensively.
The thresholded error-sign least mean square (TES-LMS) algorithm has been identified as
a compromise between adaptation speed and accuracy while also reducing implementation
cost.

Future investigations could extend the concept of thresholded error operation to the threshold
operation of the decision feedback equalizer (DFE). Since the thresholded error-sign least
mean square (TES-LMS) algorithm introduces a lower bound on the error magnitude, we
could also think of having a threshold with respect to an upper bound for the maximally
allowed error magnitude. This could lead to even more precision in the decision feedback
equalizer (DFE) and adaptation loop and could be a means for reducing error propagation.
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Appendix A

Principle of Envelope Detection in OA-
IM/DD Links

Recalling Eqs. (2.13) and (2.14), which contain the frequency domain solution of the analog
input frequency spectrum to the EDC device, with

X
(

f
)
= I
(

f
)

Hel
(

f
)

= IE0

(
AAF

(
f
)
∗AAF

(
f
))

Hel
(

f
)

= IE0

 ∞∫
−∞

AAF
(
ξ
)

AAF
(

f −ξ
)

dξ

 Hel
(

f
)
, (A.1)

the required calculation steps are illustrated in Fig. A.1. Thereby, we assume that the useful
part of the reamplified and filtered optical RX frequency spectrum AAF

(
f
)

is real-valued,
has rectangular shape and is strictly bandlimited with Bopt � f0.

Figs. A.1(a) and A.1(b) show the reamplified and filtered optical RX frequency spectrum
AAF

(
f
)

and the mirrored and by f shifted counterpart AAF
(

f −ξ
)

(dashed) according to the
above restrictions. Figs. A.1(c)–A.1(e) develop the different partial results from the convolu-
tion to obtain I

(
f
)
•−◦ i(t). Note that f acts as a parameter in the left-hand side subfigures and

determines when AAF
(
ξ
)

(continuous-lined) and AAF
(

f −ξ
)

(dashed) overlap (highlighted
bold) so that the convolution has a nonzero result. For the given frequency spectrum AAF

(
f
)

in Fig. A.1(a) we may therefore identify three different parameter ranges f ∈ (−∞,− f0],
f ∈ (− f0, f0] and f ∈ ( f0,∞) contributing to I

(
f
)
. The rectangularly shaped AAF

(
f
)

in
Fig. A.1(a) causes the partial results in Figs. A.1(c)–A.1(e) to have triangular shape while
doubling the covered bandwidth to 2 Bopt . All partial results of I

(
f
)

having equal resulting
shapes and the doubling of the covered bandwidth to 2 Bopt is a general property of enve-
lope detection for any arbitrary shape of AAF

(
f
)
. The final result for I

(
f
)

is depicted in
Fig. A.1(f). Only the part of I

(
f
)

near f = 0 Hz remains for X
(

f
)

after lowpass filtering as
indicated by Fig. A.1(f).
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Figure A.1: Principle of envelope detection
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Appendix B

Equivalent Baseband Transformation of
the OA-IM/DD Link

Here, we give the detailed derivation approving the transformation of Eq. (2.12) in Ch. 2 to
its equivalent baseband counterpart of Eq. (3.31) in Ch. 3.1.4.

First, we repeat the necessary partial results and transform them to frequency domain if not
yet present:

• Eq. (2.4), page 7:

aTX(t) = . . . ≈ ae(t) cos
(
2π f0t +ϕ0

)
(B.1)

ATX
(

f
)
=

1
2

(
ejϕ0 Ae

(
f − f0

)
+ e−jϕ0 Ae

(
f + f0

))
(B.2)

• Eq. (2.7), page 8:

aRX(t)◦−•ARX
(

f
)
= . . .= ATX

(
f
)

Hf
(

f
)

(B.3)

• Eq. (2.8), page 9:

aAF(t) = . . . ≈ G aRX(t) (B.4)

AAF
(

f
)
= G ARX

(
f
)

(B.3)
= G ATX

(
f
)

Hf
(

f
)

(B.2)
=

G
2

(
ejϕ0 Ae

(
f − f0

)
+ e−jϕ0 Ae

(
f + f0

))
Hf
(

f
)

(B.5)

• Eq. (2.14), page 10:

X
(

f
)
= IE0

(
AAF

(
f
)
∗AAF

(
f
))

Hel
(

f
)
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Then, we insert Eq. (B.5) into (B.6) and get
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. (B.7)

For further calculations, we make the following substitutions:

• for the integrals in the first two lines of Eq. (B.7):

ξ
′ := ξ − f0⇒

 ξ = ξ ′+ f0
dξ

dξ ′ = 1
(B.8)

• for the integrals in the last two lines of Eq. (B.7):

ξ
′′ := f −ξ − f0⇒

 ξ = f −ξ ′′+ f0
dξ

dξ ′′ =−1
(B.9)
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Using the substitutions in (B.8) and (B.9) for the corresponding partial integrals, we get
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In the integrals of the last two lines in Eq. (B.10) we have already interchanged the signs and
the limits.

For ease of notation, we may switch back to common integration variables with ξ ′→ ξ and
ξ ′′→ ξ and get
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We are now able to identify the different contributing partial integrals À–Ã to the solution
of X

(
f
)

in Eq. (B.11) with respect to the different ranges of the frequency parameter f
given the electrical LPF Hel

(
f
)
. Similar assumptions as in Ch. 2 or in App. A hold for the

reamplified and filtered optical RX frequency spectrum∣∣∣∣∣AAF
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.

The partial integrals À–Ã of Eq. (B.11) are nonzero if the multiplication of their func-
tional arguments are nonzero, which in turn means that they overlap as already illustrated
in App. A. Since the frequency range of the SSMF transfer function Hf

(
f
)

exceeds the op-
tical signal bandwidth, the overlapping region mainly depends on Ae

(
f
)
. The particular

arguments during integration have to be in the range
[
−Bopt/2,Bopt/2

]
. The overlapping

regions to contribute to X
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and the corresponding parameter range for the frequency f are
then:
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In the light of the frequency ranges, which have been found in Eqs. (B.12)–(B.15), and the
fact that the cutoff frequency of the electrical LPF Hel

(
f
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is f3 dB,el� f0, the partial integrals
À and Ã vanish. The analog input signal to the EDC device simplifies then to
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with some resorting of the function arguments Ae( ·) and Hf( ·) as well as summing up. In
the result of Eq. (B.16) we obtain towards f = 0 frequency shifted versions of the SSMF
transfer function. The corresponding time domain expressions of the function argument
of the convolution integral are highlighted underbraced by the Fourier transform operator
F{·}. Finally, we use them to switch back to the time domain solution

x(t) =
IE0G2

2

((
ae(t)∗

(
hf(t) e−j2π f0t

)) (
ae(t)∗

(
hf(t) ej2π f0t

)))
∗hel(t)
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=
IE0G2

2

∣∣∣∣ae(t)∗
(

hf(t) ej2π f0t
)∣∣∣∣2 ∗hel(t) (B.17)

where we have exploited that the two time domain convolution expressions are related by
complex conjugation.
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Appendix C

Downhill Simplex Optimization
Method

We shortly highlight the algorithmic steps of the downhill simplex method tailored to adjust
a FFE-DFE with respect to minimal BER [130]. Its performance depends heavily on the
initial coefficient setup. The method itself does not promise to converge to the globally
optimal solution if the function to be optimized is not strictly monotone, i.e. it has several
local optimums. Fortunately, strict monotony is given for our problem, and we have not
observed any convergence problems with our optimization target function, which we recall
from Eq. (4.23) on page 71 with

c̆BER = arg min
c̆

BER
(

L f ,∆τg,OSNR,M,N,ctot ,τd,Zth

)
. (C.1)

We assume that the OA-IM/DD link and RX processing parameters L f , ∆τg, OSNR, M, N
and Zth are arbitrary but fixed during the execution of the algorithm. Therefore, we omit the
cumbersome BER notation with those parameter from above but keep the dependence on
them in mind.

In the very first step, we have to define M+N+1 initial coefficient setups c̆ j, j = 0, . . . ,M+

N, which are the vertices of a simplex in the (M +N)-dimensional solution space as illus-
trated in Figure C.1 for M+N = 3.

c̆3

c̆2

c̆1

c̆0

Figure C.1: Initial simplex for M+N = 3
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Within our simulations, we always set

c̆ j :=

{
0 : j = 0
1 j : j > 0

with 1 j being the unit vector of the j-th dimension. This initial simplex represents the di-
agonally halved (M+N)-dimensional unit cube, which leads to the pyramidal shape in Fig-
ure C.1 for three dimensions.

Then, we repeat the following steps for each value of the decision delay τd separately:

1. Simulate the BERs for all c̆ j, j = 0, . . . ,M+N.

2. Extract the best performing coefficient setup with

c̆ jmin := arg min
c̆ j

BER
(
c̆ j
)
,

the worst performing coefficient setup with

c̆ jmax,1 := arg max
c̆ j

BER
(
c̆ j
)

and the second worst performing coefficient setup with

c̆ jmax,2 := arg max
c̆ j

c̆ j 6=c̆ jmax,1

BER
(
c̆ j
)
.

3. Determine the relative BER difference between the best and worst performing coeffi-
cient setup with

BERrel =
BER

(
c̆ jmax,1

)
−BER

(
c̆ jmin

)
BER

(
c̆ jmax,1

)
+BER

(
c̆ jmin

)
2

and use it as a termination criterion, i.e. check BERrel against a positive constant δ ∈
R+.

4. If BERrel < δ , we have found the δ -optimal minimal BER adjustment for a FFE-DFE
and given decision delay τd , and we can terminate the algorithm.

Otherwise, we proceed with the actual algorithm steps:

5. First, we reflect the worst performing coefficient setup at the mean value of all other
setups to get

c̆′jmax,1
:=

2
M+N

M+N∑
j=0

j 6= jmax,1

c̆ j− c̆ jmax,1
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as depicted in Figure C.2 and determine BER
(

c̆′jmax,1

)
.

c̆2

c̆′3

c̆1

c̆0

Figure C.2: Reflection of the worst performing vertex with jmin = 0 and
jmax,1 = 3 for M+N = 3

6. If the tested coefficient setup c̆′jmax,1
. . .

• . . . performs best with

BER
(

c̆′jmax,1

)
< BER

(
c̆ jmin

)
,

then expand further in that direction as shown in Figure C.3 and replace c̆ jmax,1

using the recursive relation

c̆ jmax,1 :=
3

M+N

M+N∑
j=0

j 6= jmax,1

c̆ j− c̆ jmax,1 .

Use the new set of coefficient setups and restart the algorithm.

c̆2

c̆3

c̆1

c̆0

Figure C.3: Reflection and expansion of the worst performing vertex
with jmin = 0 and jmax,1 = 3 for M+N = 3

• . . . constitutes an improvement by outperforming the second worst setup with

BER
(

c̆ jmax,2

)
> BER

(
c̆′jmax,1

)
> BER

(
c̆ jmin

)
,

then keep the reflected vertex and replace

c̆ jmax,1 := c̆′jmax,1
.

Use the new set of vertices and restart the algorithm.
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• . . . still performs worse than all others with

BER
(

c̆′jmax,1

)
≥ BER

(
c̆ j
)
, j = 0, . . . ,M+N,

then try a single vertex contraction defined by

c̆′′jmax,1
:=

1
2

 1
M+N

M+N∑
j=0

j 6= jmax,1

c̆ j + c̆ jmax,1

 ,

which is covered by the illustration in Figure C.4, and determine BER
(

c̆′′jmax,1

)
again.

c̆′′3

c̆1

c̆0

c̆2

Figure C.4: Single contraction of the worst performing vertex with
jmin = 0 and jmax,1 = 3 for M+N = 3

7. If the contracted coefficient setup c̆′′jmax
leads to . . .

• . . . a further improvement with

BER
(

c̆′′jmax,1

)
< BER

(
c̆ jmax,1

)
,

keep the contracted vertex and replace

c̆ jmax,1 := c̆′′jmax,1
.

Use the new set of vertices and restart the algorithm.

• . . . no improvement, which expresses itself in

BER
(

c̆′′jmax,1

)
≥ BER

(
c̆ jmax,1

)
,

then contract all vertices of the simplex near the best performing one illustrated
in Figure C.5 and expressed in mathematical terms by

c̆ j :=
1
2
(
c̆ jmin + c̆ j

)
, j = 0, . . . ,M+N.

Use the new set of vertices and restart the algorithm.
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c̆2

c̆3

c̆1

c̆0

Figure C.5: Multiple contraction of all vertices near the best performing
one with jmin = 0 and jmax,1 = 3 for M+N = 3

Finally, we compare the coefficient setup results of all runs with different decision delays
and fix this parameter to its optimum, too.

Concerning numerical stability, we have found out that we were able to set BERrel = 0 as
termination criterion without any stability problems. This implies that

BER(c̆0) = BER(c̆1) = . . .BER
(
c̆M+N

)
⇐⇒ c̆0 = c̆1 = . . .= c̆M+N

after the termination of the algorithm, and that we have arrived at a unique solution.
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Appendix D

LLS FIR Channel Approximation of the
OA-IM/DD Link

Since the application of the ZF criterion to FFE-DFE EDC configurations requires knowl-
edge of the FIR filter model of the underlying communications channel, we have to apply
appropriate means to determine the coefficients of this FIR filter for the OA-IM/DD link. We
rely on the well-known LLS approach as implementation of a Wiener filter assuming ergodic-
ity. Note that this procedure is only able to account for the linear behavior of the OA-IM/DD
link. The inherent nonlinearity adds to the deviation of the model from the actual behavior.

The principal setup of the procedure for general ∆Ti-spaced sampling is depicted in Fig. D.1.
The OA-IM/DD link of Fig. 2.1 on page 6 together with appropriate sampling of the electrical
RX signal and the LLS FIR approximation are placed in parallel. Both have the input bit
stream bk in common.

The task is to find an optimal coefficient setup for the LLS FIR filter, which approximates
the output of the OA-IM/DD system by

xki ≈ x′k1
=

Mc/2∑
j=−Mc/2

h jbki− j = hTbki. (D.1)

The indexing of the bit sequence with the general EDC input sample index ki shall implicitly

xki εki

x′ki

sampling
&

OA-IM/DD linkbkbit
source

linear LS FIR

channel filter

Figure D.1: Setup to determine the LLS FIR channel approximation
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represent the upsampling operation

bki :=

{
bk : ki mod i = 0
0 : elsewhere

, i ∈ N1, (D.2)

which we apply to the original TX bit sequence bk. In addition, we have introduced a scalar
product notation for the convolution in Eq. (D.1) with the vectors

h :=


h−Mc/2

...
hhMc/2

 and bki :=


bki+Mc/2

...
bki−Mc/2

 . (D.3)

According to this notation, the actual delay of the LLS filter is set to Mc/2 within our non-
causal modeling approach (cf. the introduction of the decision delay parameter for the FFE
in Ch. 4.2). This turns out to be beneficial for the further derivations in the main part of this
thesis. Since an OA-IM/DD link is affected by ASE noise together with direct detection,
linear fitting is suboptimal, and we have to tolerate a deviation measured by

eki = xki− x′ki
. (D.4)

The general approach of Wiener filtering, which minimizes this deviation in the mean square
sense, is to say

h = arg min
h

E
[∣∣eki(h)

∣∣2] ergodicity
= arg min

h
lim

KLS→∞

1
iKLS

iKLS−1∑
ki=0

∣∣eki(h)
∣∣2 . (D.5)

This results in the common LLS problem formulation if we assume ergodic signal charac-
teristics. The parameter KLS denotes the number of TX bits bk, which contribute to this
channel estimation procedure. It is obvious that we cannot determine the limit for KLS→ ∞

within our computer simulations. However, a number of KLS ≈ 1e6 has proven to produce
an unbiased estimate for the limit with sufficiently low statistical significance. Therefore, we
neglect the limiting operation in the following. Using the squared magnitude of eki results in
a convex optimization problem, for which a unique minimum exists.

The calculations to determine the coefficients of the LLS FIR filter follow the common pro-
cedure of minimizing continuous and differentiable functions. Using Eqs. (D.1)–(D.4), we
can calculate the gradient with respect to the channel coefficient vector h and get

1
iKLS

∇h

iKLS−1∑
ki=0

∣∣eki(h)
∣∣2 = 1

iKLS
∇h

iKLS−1∑
ki=0

∣∣∣xki− x′ki
(h)
∣∣∣2

=
1

iKLS
∇h

iKLS−1∑
ki=0

∣∣∣xki−hTbki

∣∣∣2
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=
1

iKLS
∇h

iKLS−1∑
ki=0

(
xki−hTbki

)2

=
1

iKLS
∇h

iKLS−1∑
ki=0

x2
ki
−2xkih

Tbki +
(

hTbki

)2

︸ ︷︷ ︸
=hTbkib

T
ki

h


=

1
iKLS

∇h

iKLS−1∑
ki=0

x2
ki
−2∇hhT 1

iKLS

iKLS−1∑
ki=0

xkibki︸ ︷︷ ︸
=:pxb

+∇hhT 1
iKLS

iKLS−1∑
ki=0

bkib
T
ki︸ ︷︷ ︸

=:Rbb

h

= 0−2pxb +2Rbbh, bki ∈ N, h j,xki,x
′
ki
∈ R. (D.6)

The vector pxb is the cross-correlation vector between the electrical RX signal samples xki

and the upsampled bit vector bki . The matrix Rbb is the autocorrelation matrix of the upsam-
pled bit sequence. Rbb 6= I, since bki originates from a PRBS, whose underlying structure is
a LFSR.

Setting the gradient of Eq. (D.6) to zero results in the required LLS approximation coeffi-
cients with

1
iKLS

∇h

iKLS−1∑
ki=0

∣∣eki(h)
∣∣2 !
= 0 ⇐⇒ h = R−1

bb pxb. (D.7)

We can deduce from Eq. (D.7) that we have to measure Rbb and pxb with a sufficient number
of electrical RX samples and TX bits to get accurate estimates. A numerical matrix inversion
of Rbb followed by the right-hand side multiplication with pxb is the concluding step to
determine the coefficients of the LLS FIR channel approximation.

168



References

[1] K. Kao and G. Hockham, “Dielectric-fibre surface waveguides for optical frequen-
cies,” Proceedings of the Institution of Electrical Engineers, vol. 113, no. 7, pp. 1151–
1158, July 1966.

[2] IEEE 802.3: LAN/MAN CSMA/CDE (ETHERNET) ACCESS METHOD, IEEE Std.

[3] P. J. Winzer and R.-J. Essiambre, “Receivers for advanced optical modulation for-
mats,” in Proc. 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society
LEOS, vol. 2, 2003, pp. 759–760.

[4] P. Winzer, R. J. Essiambre, and S. Chandrasekhar, “Dispersion-tolerant optical com-
munication systems,” in Proc. European Conference on Optical Communications
(ECOC), 2004.

[5] M. Ohm, “Multilevel optical modulation formats with direct detection,” Ph.D. disser-
tation, Institut für Nachrichtenübertragung, Universität Stuttgart, 2006.

[6] M. Serbay, C. Wree, and W. Rosenkranz, “Experimental investigation of RZ-8DPSK
at 3-times 10.7 Gb/s,” in Proc. 18th Annual Meeting of the IEEE Lasers and Electro-
Optics Society LEOS 2005, 2005, pp. 483–484.

[7] G. P. Agrawal, Nonlinear fiber optics, 4th ed. Elsevier/Academic Press, 2007.

[8] M. Bohn, G. Mohs, C. Scheerer, C. Glingener, C. Wree, and W. Rosenkranz, “An
adaptive optical equalizer concept for single channel distortion compensation,” in 27th
European Conference on Optical Communication (ECOC), vol. 1, 30 Sept.-4 Oct.
2001.

[9] M. Secondini, E. Forestieri, and G. Prati, “Performance of MSE configured PLC op-
tical equalizers for chromatic dispersion compensation,” IEEE Photon. Technol. Lett.,
vol. 15, no. 2, pp. 248–250, 2003.

[10] ——, “PLC optical equalizer for chromatic and polarization-mode dispersion com-
pensation based on MSE control,” IEEE Photon. Technol. Lett., vol. 16, no. 4, pp.
1173–1175, 2004.

169



References

[11] C. Doerr, S. Chandrasekhar, P. Winzer, A. Chraplyvy, A. Gnauck, L. Stulz, R. Pafchek,
and E. Burrows, “Simple Multichannel Optical Equalizer Mitigating Intersymbol In-
terference for 40-Gb/s,” Journal of Lightwave Technology, vol. 22, no. 1, pp. 249–256,
January 2004.

[12] M. Bohn, P. Krumrich, and W. Rosenkranz, “Automatic control of optical equalizers,”
in Optical Fiber Communication Conference OFC/NFOEC, vol. 3, 6-11 March 2005.

[13] R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion
compensation by signal predistortion using digital processing and a dual-drive Mach-
Zehnder Modulator,” IEEE Photon. Technol. Lett., vol. 17, no. 3, pp. 714–716, 2005.

[14] J. H. Winters and R. D. Gitlin, “Electrical signal processing techniques in long-haul
fiber-optic systems,” IEEE Trans. Commun., vol. 38, no. 9, pp. 1439–1453, 1990.

[15] M. Hueda, D. Crivelli, and H. Carrer, “Performance of MLSE-based receivers in light-
wave systems with nonlinear dispersion and amplified spontaneous emission noise,”
in IEEE Global Telecommunications Conference (GLOBECOM), vol. 1, 29 Nov.-3
Dec. 2004.

[16] O. Agazzi, M. Hueda, H. Carrer, and D. Crivelli, “Maximum-likelihood sequence
estimation in dispersive optical channels,” Journal of Lightwave Technology, vol. 23,
no. 2, pp. 749–763, Feb. 2005.

[17] G. Bosco and P. Poggiolini, “Long-distance effectiveness of MLSE IMDD receivers,”
IEEE Photonics Technology Letters, vol. 18, no. 9, pp. 1037–1039, May 2006.

[18] T. Freckmann and J. Speidel, “Viterbi equalizer with analytically calculated branch
metrics for optical ASK and DBPSK,” IEEE Photon. Technol. Lett., vol. 18, no. 1, pp.
277–279, 2006.

[19] R. Waegemans, S. Herbst, L. Holbein, P. Watts, P. Bayvel, C. Fürst, and R. I. Kil-
ley, “10.7 Gb/s electronic predistortion transmitter using commercial FPGAs and D/A
converters implementing real-time DSP for chromatic dispersion and SPM compen-
sation,” Opt. Express, vol. 17, no. 10, pp. 8630–8640, 2009.

[20] A. Färbert, S. S. Langenbach, N. Stojanovic, C. Dorschky, T. Kupfer, C. Schulien,
J. Elbers, H. Wernz, H. Griesser, and C. Glingener, “Performance of a 10.7 Gbit/s
Receiver with Digital Equaliser using Maximum Likelihood Sequence Estimation,”
in Optical Communication, 2005. ECOC 2004. 30st European Conference on, 2004.

[21] D. Fritzsche, D. Breuer, L. Schürer, A. Ehrhardt, H. Oeruen, and C. G. Schäffer,
“Experimental investigation of real time 10 Gbit/s MLSE equalizer using 4-states and
16-states Viterbi detector,” in Proceedings of the 28th IEEE conference on Global
telecommunications (GLOBECOM), 2009, pp. 3728–3732.

170



References

[22] P. P. Monteiro, M. J. Lima, J. Ferreira da Rocha, A. L. Teixeira, B. Franz, and B. Wed-
ding, “An electrically adjustable equalizer for very high bit rate transmission systems
based on dispersion supported transmission,” in Proc. IEEE Int. Electronics, Circuits
and Systems Conference, vol. 3, 1998, pp. 193–196.

[23] H. Wu, J. A. Tierno, P. Pepeljugoski, J. Schaub, S. Gowda, J. A. Kash, and A. Hajimiri,
“Integrated transversal equalizers in high-speed fiber-optic systems,” IEEE J. Solid-
State Circuits, vol. 38, no. 12, pp. 2131–2137, 2003.

[24] B. Franz, D. Rosener, R. Dischier, F. Buchali, B. Junginger, T. Meister, and K. Aufin-
ger, “43 Gbit/s SiGe based electronic equalizer for PMD and chromatic dispersion
mitigation,” in 31st European Conferenceon Optical Communication (ECOC), vol. 3,
25-29 Sept. 2005.

[25] H. Jiang, R. Saunders, and S. Colaco, “SiGe equalizer IC for PMD mitigation and sig-
nal optimization of 40 Gbits/s transmission,” in Proc. Optical Fiber Communication
Conference (OFC/NFOEC), vol. 3, 2005.

[26] J. Sewter and A. Chan Carusone, “A 3-Tap FIR Filter With Cascaded Distributed
Tap Amplifiers for Equalization Up to 40 Gb/s in 0.18-mu CMOS,” IEEE Journal of
Solid-State Circuits, vol. 41, no. 8, pp. 1919–1929, Aug. 2006.

[27] A. Carusone and D. Johns, “Digital LMS adaptation of analog filters without gradi-
ent information,” IEEE Transactions on Circuits and Systems II: Analog and Digital
Signal Processing, vol. 50, no. 9, pp. 539–552, Sept. 2003.

[28] T. Veigel, M. Grözing, M. Berroth, and F. Buchali, “Design of a Viterbi Equalizer
Circuit for Data Rates up to 43 Gb/s,” in European Solid-State Circuits Conference
(ESSCIRC), 2009.

[29] S. Strebel, “Parallele Entzerrung und LDPC-Decodierung mit einem FPGA-
Baustein,” Diplomarbeit, Institut für Nachrichtenübertragung, Universität Stuttgart,
2008.

[30] M. Werner, Information und Kodierung, 2nd ed. Vieweg+Teubner Verlag, 2009.

[31] H. Klimant, D. Piotraschke, and D. Schönfeld, Informations- und Kodierungstheorie,
3rd ed. B.G. Teubner Verlag, 2006.

[32] S. ten Brink, “Design of concatenated coding schemes based on iterative decod-
ing convergence,” Ph.D. dissertation, Institut für Nachrichtenübertragung, Universität
Stuttgart, 2002.

[33] B. Vasic and I. B. Djordjevic, “Low-density parity check codes for long-haul optical
communication systems,” IEEE Photon. Technol. Lett., vol. 14, no. 8, pp. 1208–1210,
2002.

171



References

[34] M. Jäger, T. Rankl, J. Speidel, H. Bülow, and F. Buchali, “Performance of turbo equal-
izers for optical PMD channels,” Journal of Lightwave Technology, vol. 24, no. 3, pp.
1226–1236, March 2006.

[35] T. Rankl, “Performance and Bounds of Optical Receivers with Electronic Detection
and Decoding,” Ph.D. dissertation, Institut für Nachrichtenübertragung, Universität
Stuttgart, 2009.

[36] E. Voges and K. Petermann, Optische Kommunikationstechnik - Handbuch für Wis-
senschaft und Industrie, 1st ed. Springer-Verlag, 2002.

[37] ITU-T Recommendation G.692: Optical interfaces for multichannel systems with op-
tical amplifiers, International Telecommunications Union (ITU) Std.

[38] ITU-T Recommendation G.694.1: Spectral grids for WDM applications: DWDM fre-
quency grid, International Telecommunications Union (ITU) Std.

[39] ITU-T Recommendation G.694.2: Spectral grids for WDM applications: CWDM
wavelength grid, International Telecommunication Union (ITU) Std.

[40] ITU-T Recommendation G.698.1: Multichannel DWDM applications with single-
channel optical interfaces, International Telecommunication Union (ITU) Std.

[41] ITU-T Recommendation G.698.2: Amplified multichannel dense wavelength divi-
sion multiplexing applications with single channel optical interfaces, International
Telecommunication Union (ITU) Std.

[42] J. Proakis, Digital Communications, 4th ed. McGraw-Hill, 2001.

[43] M. Seimetz, High-Order Modulation for Optical Fiber Transmission, 1st ed.
Springer-Verlag, 2009.

[44] U. Tietze, C. Schenk, and C. Schenk, Halbleiter-Schaltungstechnik. Springer, 2002.

[45] E. Forestieri, “Evaluating the error probability in lightwave systems with chromatic
dispersion, arbitrary pulse shape and pre- and postdetection filtering,” J. Lightw. Tech-
nol., vol. 18, no. 11, pp. 1493–1503, 2000.

[46] J. R. Barry, E. A. Lee, and D. G. Messerschmitt, Digital Communication, 3rd ed.
Kluwer Academic Publishers, 2003.

[47] M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of communication
systems. Plenum Press, 1994.

[48] ITU-T Recommendation G.975: Forward error correction for submarine systems, In-
ternational Telecommunications Union (ITU) Std.

172



References

[49] G. Bosco, A. Carena, V. Curri, R. Gaudino, and P. Poggiolini, “On the use of NRZ,
RZ, and CSRZ modulation at 40 Gb/s with narrow DWDM channel spacing,” Journal
of Lightwave Technology, vol. 20, no. 9, pp. 1694–1704, Sept. 2002.

[50] G. J. Foschini and C. D. Poole, “Statistical theory of polarization dispersion in single
mode fibers,” J. Lightw. Technol., vol. 9, no. 11, pp. 1439–1456, 1991.

[51] C. D. Poole and R. E. Wagner, “Phenomenological approach to polarisation dispersion
in long single-mode fibres,” Electronics Letters, vol. 22, no. 19, pp. 1029–1030, 1986.

[52] C. D. Poole, “Statistical treatment of polarization dispersion in single-mode fiber,”
Opt. Lett., vol. 13, no. 8, pp. 687–689, 1988.

[53] S. Otte, “Nachrichtentechnische Modellierung und elektronische Entzerrung hochbi-
tratiger optischer übertragungssysteme,” Ph.D. dissertation, Christian-Albrechts-
Universität Kiel, 2003.

[54] J. Speidel, “Communications III,” Lecture, Institut für Nachrichtenübertragung, Uni-
versität Stuttgart.

[55] N. S. Muhammad, “Coding and Modulation for Spectral Efficient Transmission,”
Ph.D. dissertation, Institut für Nachrichtenübertragung, Universität Stuttgart, 2010.

[56] N. J. Shen, P. and. Gomes, P. A. Davies, W. P. Shillue, and P. G. Huggard, “PMD Ef-
fects on the Analogue Signal Transmission,” National Radio Astronomy Observatory,
Tech. Rep., 2004.

[57] J. Yang, W. L. Kath, and C. R. Menyuk, “Polarization mode dispersion probability
distribution for arbitrary distances,” Opt. Lett., vol. 26, no. 19, pp. 1472–1474, 2001.

[58] D. Marcuse, C. R. Manyuk, and P. K. A. Wai, “Application of the Manakov-PMD
equation to studies of signal propagation in optical fibers with randomly varying bire-
fringence,” J. Lightw. Technol., vol. 15, no. 9, pp. 1735–1746, 1997.

[59] J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in
optical fibers.” Proc. of National Academy of Science USA, vol. 97, no. 9, pp. 4541–
4550, April 2000.

[60] J. Lima, I. R., R. Khosravani, P. Ebrahimi, E. Ibragimov, A. E. Willner, and C. R.
Menyuk, “Polarization mode dispersion emulator,” in Proc. Optical Fiber Communi-
cation Conference (OFC), vol. 3, 2000, pp. 31–33.

[61] V. Systems, “VPI TransmissionMaker: Photonic modules reference manual,” 2002.

[62] N. S. Bergano, F. W. Kerfoot, and C. R. Davidsion, “Margin measurements in optical
amplifier system,” IEEE Photon. Technol. Lett., vol. 5, no. 3, pp. 304–306, 1993.

173



References

[63] S. Song, V. Bhatnagar, and J. Livas, “On the Gaussianly-distributed Q-factor in optical
communication systems,” in Proc. 13th Annual Meeting IEEE Lasers and Electro-
Optics Society 2000 (LEOS), vol. 2, 2000, pp. 409–410.

[64] J. Lima, I. T., A. O. Lima, J. Zweck, and C. R. Menyuk, “Computation of the Q-factor
in optical fiber systems using an accurate receiver model,” in Proc. Optical Fiber
Communications Conference (OFC), 2003, pp. 100–101.

[65] A. Kalra, J. Zweck, and C. R. Menyuk, “Comparison of bit-error ratios for receiver
models with integrate-and-dump and realistic electrical filters using the Gaussian
approximation,” in Proc. Conference on Lasers and Electro-Optics (CLEO), vol. 1,
2004.

[66] G. Bosco and P. Poggiolini, “On the Q-factor inaccuracy in the performance analy-
sis of optical direct-detection DPSK systems,” IEEE Photonics Technology Letters,
vol. 16, no. 2, pp. 665–667, Feb. 2004.

[67] T. Foggi, E. Forestieri, G. Colavolpe, and G. Prati, “Maximum-likelihood sequence
detection with closed-form metrics in OOK optical systems impaired by GVD and
PMD,” J. Lightw. Technol., vol. 24, no. 8, pp. 3073–3087, 2006.

[68] H. F. Haunstein, R. Schlenk, H. M. Kallert, and V. A. Pauli, “BER measurements of
a 40Gb/s receiver with adaptive threshold using polarization scrambling,” in Proc.
Digest of the LEOS Summer Topical Meetings Holey Fibers and Photonic Crys-
tals/Polarization Mode Dispersion/Photonics Time/Frequency Measurement and Con-
trol, 2003.

[69] H. Sunnerud, P. A. Andrekson, and M. Karlsson, “Optimum receiver decision point
in presence of PMD in fiber-optic communication systems,” IEEE Photon. Technol.
Lett., vol. 15, no. 11, pp. 1651–1653, 2003.

[70] O. Coskun and K. Chugg, “Baud rate timing recovery and slicer threshold estimation
for the adaptive dispersion compensation of fiber optical channels,” in Conference
Record of the Thirty-Seventh Asilomar Conference on Signals, Systems and Comput-
ers, vol. 1, 9-12 Nov. 2003.

[71] M. Siegrist, A. Dittrich, W. Sauer-Greff, and R. Urbansky, “Iterative Equalization for
Nonlinear Channels with Intersymbol Interference,” in Proc. IEEE Workshop Signal
Processing, 2001, pp. 95–98.

[72] B. Vasic, I. B. Djordjevic, and R. K. Kostuk, “Low-density parity check codes and
iterative decoding for long-haul optical communication systems,” J. Lightw. Technol.,
vol. 21, no. 2, pp. 438–446, 2003.

174



References

[73] A. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm,” IEEE Transactions on Information Theory, vol. 13, no. 2, pp.
260–269, Apr. 1967.

[74] J. Forney, G., “Maximum-likelihood sequence estimation of digital sequences in the
presence of intersymbol interference,” IEEE Trans. Inform. Theory, vol. 18, no. 3, pp.
363–378, 1972.

[75] ——, “The Viterbi Algorithm,” in Proceedings of the IEEE, 1973.

[76] G. Fettweis and H. Meyr, “Parallel Viterbi algorithm implementation: breaking the
ACS-bottleneck,” IEEE Trans. Commun., vol. 37, no. 8, pp. 785–790, 1989.

[77] ——, “High-rate Viterbi processor: a systolic array solution,” IEEE Journal on Se-
lected Areas in Communications, vol. 8, no. 8, pp. 1520–1534, 1990.

[78] ——, “High-speed parallel Viterbi decoding: algorithm and VLSI-architecture,” IEEE
Commun. Mag., vol. 29, no. 5, pp. 46–55, 1991.

[79] H. Dawid, G. Fettweis, and H. Meyr, “A CMOS IC for Gb/s Viterbi Decoding: System
Design and VLSI Implementation,” IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, vol. 4, no. 1, pp. 17–31, March 1996.

[80] J. Elbers, H. Wernz, H. Griesser, C. Glingener, A. Färbert, S. Langenbach, N. Sto-
janovic, C. Dorschky, T. Kupfer, and C. Schulien, “Measurement of the dispersion
tolerance of optical duobinary with an MLSE-receiver at 10.7 Gb/s,” in Optical Fiber
Communication Conference (OFC/NFOEC), vol. 4, 6-11 March 2005.

[81] S. Benedetto, E. Biglieri, and V. Castellani, Digital Transmission Theory. Prentice-
Hall, 1987.

[82] A. Oppenheim, R. Schafer, and J. Buck, Zeitdiskrete Signalverarbeitung. Pearson
Studium, 2004.

[83] M. Schetzen, The Volterra and Wiener theories of nonlinear systems. Wiley, 1980.

[84] G. Feldhaus, “Volterrafilter zur Modellierung und Entzerrung optischer übertra-
gungssysteme mit Direktempfänger,” Ph.D. dissertation, Universität Darmstadt, 2003.

[85] M. Bohn and C. Xia, “Electrical and optical equalization strategies in direct detected
high-speed transmission systems,” AEU - International Journal of Electronics and
Communications, vol. 63, no. 7, pp. 526–532, 2009.

[86] C. Xia, M. Ajgaonkar, and W. Rosenkranz, “Nonlinear Electrical Equalization in
MMF Links for 10-Gigabit Ethernet,” in Proc. 30th European Conference on Opti-
cal Communication (ECOC), vol. 4, 2004.

175



References

[87] ——, “On the performance of the electrical equalization technique in MMF links for
10-Gigabit Ethernet,” J. Lightw. Technol., vol. 23, no. 6, pp. 2001–2011, 2005.

[88] T. Freckmann and J. Speidel, “Linear and Nonlinear Electronic Feed-Forward Equal-
izers for DQPSK,” in Annual Meeting of the IEEE Lasers & Electro-Optics Society
(LEOS), October 2007.

[89] N. Al-Dhahir and J. Cioffi, “Efficient computation of the delay-optimized finite length
MMSE-DFE,” IEEE Transactions on Signal Processing, vol. 44, no. 5, pp. 1288–
1292, May 1996.

[90] Y. Gong and C. Cowan, “Optimum decision delay of the finite-length DFE,” IEEE
Signal Processing Letters, vol. 11, no. 11, pp. 858–861, nov. 2004.

[91] E. Chng and S. Chen, “Determining the optimal decision delay parameter for a linear
equalizer,” International Journal of Automation and Computing, vol. 2, pp. 20–24,
2005.

[92] C.-C. Yeh and J. Barry, “Approximate minimum bit-error rate equalization for binary
signaling,” vol. 2, Jun. 1997, pp. 1095–1099.

[93] ——, “Adaptive Minimum Bit-Error Rate Equalization for Binary Signaling,” IEEE
Transactions on Communications, vol. 48, no. 7, pp. 1226–1235, July 2000.

[94] V. Bhatia, B. Mulgrew, and A. T. Georgiadis, “Minimum BER DFE Equalizer in Al-
pha Stable Noise,” in The 2004 European Signal Processing Conference (EUSIPCO),
2004.

[95] J. Levendovszky, L. Kovacs, and E. van der Meulen, “Minimum Probability of Error-
Based Equalization Algorithms for Fading Channels,” EURASIP Journal on Wireless
Communications and Networking, 2007.

[96] G. Katz and D. Sadot, “Minimum BER Criterion for Electrical Equalizer in Optical
Communication Systems,” Journal of Lightwave Technology, vol. 24, pp. 2844–2850,
2006.

[97] J. Nelder and R. Mead, “A simplex method for function minimization,” Computer
Journal, vol. 7, pp. 308–313, 1965.

[98] D. Efinger and J. Speidel, “Investigation of Fast and Efficient Adaptation Algorithms
for Linear Transversal and Decision-Feedback Equalizers in High-Bitrate Optical
Communication Systems,” in 9. ITG Fachtagung Photonische Netze, Leipzig, 2008.

[99] R. Lucky, J. Salz, and E. J. Weldon, Principles of Data Communication. McGraw-
Hill, 1968.

176



References

[100] R. Lucky, “Automatic Equalization for Digital Communication,” Bell Systems Techni-
cal Journal, vol. 44, pp. 547–588, 1965.

[101] N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary Time Series, 1st
M.I.T. Paperback ed. The MIT Press, 1964.

[102] S. Haykin, Adaptive filter theory, 4th ed. Prentice Hall, 2001.

[103] J. R. Treichler, I. Fijalkow, and J. Johnson, C. R., “Fractionally spaced equalizers,”
IEEE Signal Processing Mag., vol. 13, no. 3, pp. 65–81, 1996.

[104] J. Speidel, “Uebertragungstechnik II,” Lecture, Institut für Nachrichtenübertragung,
Universität Stuttgart.

[105] U.-V. Koc, K.-Y. Tu, and N. Kaneda, “Adaptive Electronic Equalization Using Higher-
Order Statistics For PMD Compensation in Long-Haul Fiber-Optic Systems,” in Proc.
28th European Conf. Optical Communication ECOC 2002, vol. 3, 2002, pp. 1–2.

[106] C. Xie, S. Chandrasekhar, D. Werner, and H. Haunstein, “Performance Evaluation
of Electronic Equalizers for Dynamic PMD Compensation in Systems with FEC,” in
Proc. Optical Fiber Communications Conf. OFC 2007, March 2007.

[107] F. Buchali, “Advanced electronic equalization and signal processing for optical com-
munication,” 17th International Travelling Summer School on Microwaves and Light-
waves, July 2007.

[108] I. Djordjevic and B. Vasic, “Approaching Shannon’s Capacity Limits of Fiber Optics
Communications Channels Using Short LDPC Codes,” in Lasers and Electro-Optics,
2004. (CLEO). Conference on, 2004.

[109] ——, “Iteratively Decodable Codes from Orthogonal Arrays for Optical Communi-
cation Systems,” IEEE Communications Letters, vol. 9, no. 10, pp. 924–926, October
2005.

[110] I. Djordjevic, O. Milenkovic, and B. Vasic, “Generalized Low-Density Parity-Check
Codes for Optical Communication Systems,” Journal of Lightwave Technology,
vol. 23, no. 5, pp. 1939–1946, May 2005.

[111] H. Bülow, W. Baumert, H. Schmuck, F. Mohr, T. Schulz, F. Kuppers, and W. Weier-
shausen, “Measurement of the maximum speed of PMD fluctuation in installed field
fiber,” in Optical Fiber Communication Conference, 1999, and the International Con-
ference on Integrated Optics and Optical Fiber Communication. OFC/IOOC ’99.
Technical Digest, vol. 2, 21-26 Feb. 1999, pp. 83–85vol.2.

[112] B. Widrow and M. E. Hoff, “Adaptive Switching Circuits,” in 1960 IRE WESCON
Convention Record, Part 4. New York: IRE, 1960, pp. 96–104.

177



References

[113] B. Widrow and J. McCool, “A comparison of adaptive algorithms based on the meth-
ods of steepest descent and random search,” IEEE Trans. Antennas Propagat., vol. 24,
no. 5, pp. 615–637, 1976.

[114] B. Widrow and S. Stearns, Adaptive Signal Processing. Pearson Education, 1985.

[115] R. Lucky, “Techniques for adaptive equalization of digital communication systems,”
Bell System Technical Journal, vol. 45, pp. 255–286, February 1966.

[116] J. Mazo, “Analysis of Decision-Directed Equalizer Convergence,” Bell System Tech-
nical Journal, vol. 59, no. 10, pp. 1857 –1876, December 1980.

[117] Y. Sato, “A Method of Self-Recovering Equalization for Multilevel Amplitude-
Modulation Systems,” IEEE Trans. Commun., vol. 23, no. 6, pp. 679–682, 1975.

[118] D. Godard, “Self-recovering equalization and carrier tracking in two-dimensional data
communication systems,” IEEE Trans. Commun., vol. 28, no. 11, pp. 1867–1875,
1980.

[119] J. Johnson, R., P. Schniter, T. J. Endres, J. D. Behm, D. R. Brown, and R. A. Casas,
“Blind equalization using the constant modulus criterion: a review,” Proc. IEEE,
vol. 86, no. 10, pp. 1927–1950, 1998.

[120] E. Walach and B. Widrow, “The least mean fourth (LMF) adaptive algorithm and its
family,” IEEE Trans. Inform. Theory, vol. 30, no. 2, pp. 275–283, 1984.

[121] M. U. Otaru, Z. A., L. Cheded, and A. Sheikh, “Adaptive Equalizer Based on a Power-
of-Two-Quantized-LMF Algorithm,” in Eusipco 2006, 2006.

[122] A. Carusone and D. Johns, “Analog filter adaptation using a dithered linear search al-
gorithm,” in Circuits and Systems, 2002. ISCAS 2002. IEEE International Symposium
on, vol. 4, 26-29 May 2002, pp. IV–269–IV–272vol.4.

[123] F. Buchali, S. Lanne, J. Thiery, W. Baumert, and H. Bülow, “Fast eye monitor for
10 Gbit/s and its application for optical PMD compensation,” in Optical Fiber Com-
munication Conference and Exhibit, 2001, OFC 2001, vol. 2, 2001, pp. TuP5–1 –
TuP5–3.

[124] F. Buchali and H. Bülow, “Adaptive PMD compensation by electrical and optical tech-
niques,” Lightwave Technology, Journal of, vol. 22, no. 4, pp. 1116–1126, April 2004.

[125] H. Haunstein, R. Schlenk, K. Sticht, A. Dittrich, W. Sauer-Greff, and R. Urbansky,
“Control of combined electrical feed-forward and decision feedback equalization by
conditional error counts from FEC in the presence of PMD,” in Proc. Optical Fiber
Communications Conf. OFC 2003, 2003, pp. 474–476.

178



References

[126] B. Wedding, A. Chiarotto, W. Kuebart, and H. Bülow, “Fast adaptive control for elec-
tronic equalization of PMD,” in Proc. Optical Fiber Communication Conf. and Exhibit
OFC 2001, vol. 2, 2001.

[127] F. Buchali, W. Baumert, H. Bülow, and J. Poirrier, “A 40 Gb/s eye monitor and its
application to adaptive PMD compensation,” in Optical Fiber Communication Con-
ference and Exhibit, 2002. OFC 2002, 17-22 Mar 2002, pp. 202–203.

[128] X. Yi, F. Buchali, W. Chen, and W. Shieh, “Adaptation Algorithms for Receiver Based
Electronic Dispersion Equalization,” in Optical Fibre Technology / Australian Optical
Society (ACOFT/AOS), Australian Conference on. Australian Optical Society, July
2006, pp. 4–6.

[129] B. Franz, F. Buchali, D. Roesener, and H. Bülow, “Adaptation Techniques for Elec-
tronic Equalizers for the Mitigation of Time-Variant Distortions in 43 Gbit/s Op-
tical Transmission Systems,” in European Conference on Optical Communications
(ECOC), September 2007.

[130] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in C - The
Art of Scientific Computing, 2nd ed. Cambridge University Press, 1992.

179


	Acronyms and Abbreviations
	Notation and Symbols
	Abstract
	Kurzfassung
	Introduction
	Intensity-Modulated Optical Links with Direct Detection
	Physical Layer Simulation Model
	General Approach
	Discrete-Time Signal Representation
	Discrete-Frequency Signal Representation
	Efficient Transformation between Discrete-Time and Discrete-Frequency Signal Representation
	Equivalent Baseband Description

	Device Modeling
	Optical Transmitter
	Bit Source
	NRZ Impulse Shaping
	CW Laser
	MZ Modulator
	Optical Band-Pass Filter

	Optical Fiber Channel
	CD Model
	PMD Models
	First-Order PMD Model
	Combined CD and First-Order PMD Model
	Time-Variant Higher Order PMD Model


	Optical RX Front End
	EDFA and OSNR Definition
	Photodetection and Electrical Low-Pass Filter

	Sampling

	Signal Impairments in OA-IM/DD Links
	Linear and Nonlinear ISI
	Signal-Dependent Noise


	Electronic Dispersion Compensation -  Methods and Performance in OA-IM/DD Links
	Maximum Likelihood Sequence Estimation
	MLSE Viterbi Equalizer
	Branch Metric Acquisition
	Fractionally Spaced MLSE Viterbi Equalizer

	Feedforward and Decision Feedback Equalizers
	FFE-DFE Structure
	FFE-DFE Coefficient Adjustment Criteria
	Minimal BER Criterion
	Zero-Forcing Criterion
	LLS FIR Channel Approximation
	Concatenated LLS FIR Channel Approximation and FFE Response
	Inclusion of the DFE
	Numerical Examples

	MMSE Criterion
	Basic Theory
	Numerical Examples


	Fractionally Spaced FFE-DFE

	Simulation Results and Discussion
	Low-Complexity FFE-DFE Structure Optimization
	FFE
	FFE-DFE
	Delta T_2-FSFFE
	Delta T2-FSFFE-DFE
	Summary and Conclusion

	MMSE Suitability for OA/IM-DD Links
	Benefits and Implications of Fractionally Spaced Processing
	EDC Performance Enhancement
	Sampling Phase Susceptibility
	Fractional Sample Spacings Below Delta T_2

	Comprehensive FFE-DFE Performance Analysis vs. MLSE Viterbi Equalizer

	Summary and Conclusion

	Adaptive Equalizers
	LMS Algorithm
	Basic Theory
	Convergence Behavior

	Reduced Complexity LMS Algorithms
	Error Sign Quantization
	FFE Input Sample Quantization
	Thresholded Error Sign Quantization

	Summary and Conclusion

	Conclusion
	Principle of Envelope Detection in OA-IM/DD Links
	Equivalent Baseband Transformation of the OA-IM/DD Link
	Downhill Simplex Optimization Method
	LLS FIR Channel Approximation of the OA-IM/DD Link
	References

