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Abstract

Autonomous driving offers great potential for reducing the number of acci-
dents as well as optimizing traffic flow. The safety validation of such an au-
tonomous system is an extremely difficult problem and new approaches are
needed because the conventional statistical safety proof based on field testing
is not feasible. The combination of real-world and simulation-based tests is a
promising approach to significantly reduce the validation effort of autonomous
driving.

As environment sensors such as lidar, camera, and radar are key technolo-
gies for a self-driving vehicle, they have to be validated to be able to rely on
virtual tests using synthetically generated sensor data. In particular, radar has
traditionally been one of the most complex sensor to model. Since a sensor
simulation is an approximation of the real sensor, a discrepancy between real
sensor measurements and synthetic data can be assumed. However, there ex-
ists no systematic and sound method for validating a sensor model, especially
for radar models.

Therefore, this work makes several contributions to address this problem
with the objective to gain an understanding of the capabilities and limitations
of sensor simulation for virtual testing of autonomous driving.

Considering that high fidelity radar simulations face challenges regarding the
required execution time, a sensitivity analysis approach is introduced with the
goal to identify the sensor effects that has the biggest impact on a downstream
sensor data processing algorithm. In this way, the modeling effort can be fo-
cused on the most important components in terms of fidelity, while minimizing
the overall computation time required.

Furthermore, a novel machine learning-based metric is proposed for evaluat-
ing the accuracy of synthetic radar data. By learning the latent features that
distinguish real and simulated radar point clouds, it can be demonstrated that
the developed metric outperforms conventional metrics in terms of its capa-
bility to measure characteristic differences. Additionally, after training, this
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Abstract

removes the need for real radar measurements as a reference to evaluate the
fidelity of a sensor simulation.
Moreover, a multi-layered evaluation approach is developed to measure the

gap between radar simulation and reality, consisting of an explicit and an
implicit sensor model evaluation. The former directly assesses the realism of
the simulated data, whereas the latter refers to an evaluation of a subsequent
perception application. It can be shown that by introducing multiple levels of
evaluation, the existing discrepancies can be revealed in detail and the sensor
model fidelity can be accurately measured across different scenarios in a holistic
manner.
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Zusammenfassung

Das autonome Fahren bietet ein großes Potenzial sowohl zur Verringerung der
Unfallzahlen als auch zur Optimierung des Verkehrsflusses. Der Sicherheits-
nachweis eines solchen autonomen Systems ist ein äußerst komplexes Problem
und es werden neue Ansätze benötigt, da der konventionelle statistische Nach-
weis auf Basis von Feldversuchen nicht wirtschaftlich ist. Hierzu bietet die
Kombination aus realen und simulationsbasierten Tests einen vielversprechen-
den Ansatz, um den Validierungsaufwand für autonomes Fahren deutlich zu
reduzieren.

Umgebungssensoren wie Lidar, Kamera und Radar sind Schlüsseltechnolo-
gien für ein selbstfahrendes Fahrzeug. Zudem müssen sie validiert werden, um
sich auf virtuelle Tests mit synthetisch erzeugten Sensordaten verlassen zu kön-
nen. Insbesondere Radar ist traditionell einer der am komplexesten zu model-
lierenden Sensoren. Da eine Sensorsimulation eine Annäherung an den realen
Sensor darstellt, kann eine Diskrepanz zwischen realen Sensormessungen und
synthetischen Daten angenommen werden. Es gibt jedoch keine systematische
und fundierte Methode zur Validierung eines Sensormodells, insbesondere für
Radarmodelle.

Daher leistet diese Arbeit mehrere Beiträge zur Lösung dieses Problems mit
dem Ziel, ein Verständnis für die Möglichkeiten und Grenzen der Sensorsimu-
lation für virtuelle Tests des autonomen Fahrens zu erlangen.

In Anbetracht der Tatsache, dass hochakkurate Radarsimulationen im Hin-
blick auf die erforderliche Ausführungszeit eine Herausforderung darstellen,
wird eine Sensitivitätsanalyse verwendet, mit dem Ziel, die Sensoreffekte zu
identifizieren, die den größten Einfluss auf einen nachgelagerten Sensordaten-
verarbeitungsalgorithmus haben. Auf diese Art und Weise kann der Model-
lierungsaufwand auf die Schlüsselkomponenten in Bezug auf die Wiedergabe-
treue fokussiert werden, wodurch die erforderliche Gesamtrechenzeit minimiert
werden kann.

Darüber hinaus wird eine neuartige, auf maschinellem Lernen basierende
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Zusammenfassung

Metrik zur Bewertung der Genauigkeit synthetischer Radardaten präsentiert.
Durch das Erlernen der latenten Merkmale, die reale und simulierte Radar-
Punktwolken unterscheiden, kann gezeigt werden, dass die entwickelte Metrik
herkömmliche Metriken in Bezug auf ihre Fähigkeit, charakteristische Unter-
schiede zu messen, übertrifft. Außerdem werden nach dem Training des neu-
ronalen Netzes keine weiteren realen Radarmessungen mehr benötigt, um die
Genauigkeit einer Sensorsimulation zu bewerten.
Zur Messung der Diskrepanz zwischen Radarsimulation und Realität wird

ein mehrstufiger Bewertungsansatz entwickelt, der aus einer expliziten und
einer impliziten Sensormodellbewertung besteht. Erstere bewertet direkt die
Exaktheit der simulierten Daten, während letztere sich auf die Bewertung
eines nachfolgenden Perzeptionsalgorithmus bezieht. Es kann gezeigt werden,
dass durch die Einführung mehrerer Bewertungsebenen die bestehenden Un-
terschiede im Detail aufgedeckt werden können und die Fidelität über ver-
schiedene Szenarien hinweg auf eine holistische Weise genau gemessen werden
kann.
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Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . 2
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Besides the vehicle electrification, autonomous driving (AD) is currently one
of the main trends in the automotive industry [7]. Fully automated driving
offers the greatest potential for minimizing the likelihood of accidents and op-
timizing traffic flow [8]. However, the continued postponement of the market
launch shows that besides the legal situation especially the testing and valida-
tion process of the AD system is highly complex and not yet solved. Although,
in 2016 various companies announced fully autonomous driving for 2025 [9,10],
as of today only a few dare to announce a concrete year for the release and
some even believe that it could still take decades [11].

Therefore, as the industry moves towards full automation as defined by the
Society of Automotive Engineers (SAE) International [12], it becomes more
and more necessary to develop not only advanced safety systems but also
the tools for their accurate analysis in order to validate the complex system
[13]. The safety validation of such an autonomous system is an extremely
challenging problem and new approaches are needed since a statistical proof of
safety based on real-world testing does not scale [14]. The combination of field
tests and simulation-based testing is a promising approach to substantially
reduce the validation effort of autonomous driving [15].
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1 Introduction

Both a reliable perception of the vehicle environment and its precise eval-
uation are essential requirements for safe autonomous driving functions. A
sensor-based environment detection with subsequent computer-based situa-
tion interpretation makes it possible to support the driving task of the au-
tonomous vehicle depending on the prevailing traffic situation or even actively
influence it. The sensors thus create the basis for any further processing of
the environmental information and are consequently crucial components of
any autonomous vehicle. Realistic models of environment perception sensors
such as radar, lidar and camera play a key role in the simulation-based testing
strategy [16]. These sensor models have to be validated in order to permit
any reliable prediction about the behavior of the real system through virtually
testing [17]. Especially the validation of radar models is a challenge and as of
today there is no generally accepted methodology to validate these models [18].
The objective of this dissertation is to develop methods to investigate the

capabilities and limits of a sensor simulation in order to derive reliable predic-
tions about a real system based on tests in a virtual environment. Furthermore,
this includes techniques for sensor model validation but also different methods
to model a radar simulation for virtually testing autonomous driving functions
such as object detection and tracking.
The present chapter introduces the motivation and relevance for this research

topic, discusses the challenges in validation of a sensor simulation and presents
the research questions addressed in this thesis. The final section concludes with
the approach and the thesis outline.

1.1 Motivation

Wachenfeld and Winner have shown that a vast amount of driving kilometers
is necessary to statistically proof the safety of an autonomous vehicle [2]. For
instance to ensure that an autonomous vehicle can handle 95% of the driven
kilometers safely, it would be necessary to drive a total of 10 million kilometers.
Even with all these kilometers it is not guaranteed that the right scenarios are
considered and all crucial situations tested, since the number of surprises de-
clines with increasing testing distance, as illustrated in Figure 1.1 [1]. Hereby,
an event is considered a surprise if the autonomous vehicle has reached an
unwanted condition. This indicates that with real driving tests alone a statis-
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1.1 Motivation

tical validation would not be economically reasonable. The combination of real
driving tests and tests in an artificial environment is a promising approach to
significantly reduce the validation effort of autonomous driving systems [15].

100 101 102 103
100

101

102

103

driven test kilometers ×103

su
rp

ri
se

s
pe

r
m

ill
io

n
ki

lo
m

et
er

s Measured event rate
Approx. trend line

Extrapolation

Figure 1.1: The frequency of adverse event findings with growing testing dis-
tance [1].

Virtual testing is a promising alternative, since it is less expensive, runs
faster and there is no risk to human safety. Furthermore, the simulation is not
exposed to the randomness in the real world. This means on the one hand that
specific critical situations can be forced to happen. On the other hand, this
particular inability to model the random behavior of real-life situations is a
reason why the simulation alone might not be sufficient to validate the system
completely in simulation, in view of the fact that a virtual model is always
an approximation of the real world [19]. Nonetheless, the question remains
whether this randomness is really needed. The proof that a simulation is valid
is still missing [20]. For these reasons, a combination of both is a promising
approach to reduce the testing and validation effort of autonomous driving.
However, the question arises when to use the simulation and when driving
tests, or in other words: Where are the limits of a simulation?

1.1.1 Simulation-based testing

In order to accelerate the validation process of autonomous vehicles, different
approaches exist to combine real and simulation-based testing methods, as

3



1 Introduction

shown in Figure 1.2. It divides potential testing approaches into nine classes
that differ in how they approximate the vehicle or the environment. In the
following, the different methods are discussed in order to elaborate the general
trade off between real and simulation-based testing.

Figure 1.2: Different methods for combining simulation-based and real testing
[2]. Orange arrows indicate decreasing cost, whereas blue arrows
indicate increasing fidelity.

Real-world driving tests accurately represent the vehicle and the environ-
ment, because no approximation is needed. Since it involves the real vehicle, in
real traffic, under real conditions, it is the only method guaranteed to produce
correct results [21]. However, real driving is not used for testing safety-critical
scenarios due to the risk of accidents and their consequences [1]. Furthermore,
the environment can not be fully controlled, so the tested scenarios are highly
dependent on the coincidences of reality. This also makes the reproducibility
of observed situations impossible. Since this test approach can be deployed
with the first street-legal prototypes at the earliest, other methods are needed
to build trust in the system’s safety prior to any real driving study or public
deployment.
There are several ways to simplify reality at the cost of a loss in accuracy.

In order to approximate the testing environment, real vehicles can be tested
in an artificial environment. Proving grounds are an often used alternative
[22]. The real environment is approximated in favor of reproducibility, safety,
observability and variability. However, creating artificial test environments
require additional time and money.
Instead of approximating the environment, an artificial vehicle can be used to

test the system in a real environment. This artificial vehicle can be represented
by a test driver who has the ability to intervene into the driving task or by

4
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a technical system that is superior to the autonomous vehicle due to a more
advanced or additional sensor setup. Since the system is tested on public
roads, for example, the reaction of passengers to an autonomous vehicle can
be studied in order to improve the acceptance of self-driving cars [23]. The
main limitations with this approach is its high cost, the risk of collision, and
that it requires a deployment-ready system [21].

In Figure 1.2, approaches that combine real and virtual systems are depicted
in gray, as they are technically not existent. This is due to the fact that, for
example, a virtual inverter cannot generate real voltage and a real radar sensor
is unable to sense a virtual environment.

Nonetheless, it is possible to combine an artificial and a real environment or
vehicle. An example for this are vehicle-in-the-loop (ViL) systems [24,25]. ViL
systems have been developed to test AD functions especially in safety critical
traffic situations. By incorporating the real test vehicle into a traffic simu-
lation, the advantages of both domains can be combined with this approach.
Hereby, the real sensors can be artificially stimulated with synthetically gen-
erated data produced by sensor models [26].

The highest level of abstraction of both vehicle and environment is repre-
sented by the full simulation. In contrast to the previous testing approaches,
the entire test domain is purely virtual, providing the greatest degree of safety,
controllability, observability and repeatability [27]. Additionally, this method
can also be deployed in early stages of AD development. Both the entire sys-
tem as a whole and the individual components can be tested. For example,
simulation can be used to find critical scenarios with the goal of validating
the autonomous system [15]. On the contrary, individual modules such as
the vehicle dynamic can be investigated to gain insights about behavior under
different operating conditions [28].

1.1.2 Usage of synthetic sensor data

In many of the previously described methods, sensor models play a crucial role.
This is because they perceive the virtual environment and can thus syntheti-
cally generate sensor data, which forms the basis for the general understanding
of the prevailing situation of an autonomous vehicle.

Several areas of application can be found in the literature for using syntheti-
cally generated sensor data in the development and testing process [29]. Sligar
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employs an accurate physics-based radar simulation to create virtual sensor
data set in order to train a machine learning-based object detection model [30].
In contrast, Hartstern et al. use probabilistic sensor models to identify the op-
timal sensor setup solution in early development stages since they provide a
wide range of modification parameters and adjustable settings [31]. Ponn et
al. utilize phenomenological sensor models to automatically create challeng-
ing and critical scenarios based on a sensor setup model of the autonomous
vehicle [32].
The primary challenge of virtually testing with synthetically generated sen-

sor data is that it requires developing and validating the employed sensor mod-
els as well as the environment models. If, however, this validity was shown, this
approach allows for high reproducibility, variability and safety during testing,
as the environment and the vehicle would only meet in a virtual world [1].

1.2 Problem statement

Since each sensor model is an approximation of the real sensor, a certain
simulation-to-reality gap can be assumed to exist. Hence, the fidelity of a
sensor model needs to be measured in order to be able to rely on virtual tests.
Although there exists many approaches to model a sensor in the literature, the
problem of quantitatively measure a sensor model fidelity and thus validating
the model remains to be solved [29].
Whereas being considered as a key sensor for AD, the radar sensor has tradi-

tionally been one of the most complex sensors to model [33]. Many approaches
exist to model a radar sensor system. Despite the fact that a lot of radar ef-
fects are understood and can be modeled today, a high fidelity simulation faces
challenges in terms of the required execution speed [34]. The reason for this is
that radar exhibits numerous physical characteristics, including interference,
ambiguities, clutter, ghost objects and multi-path reflections [35], which leads
to tremendously high demands on the computing power for a profound and
comprehensive sensor simulation. However, the question arises whether such
a detailed model is required for all simulation use cases. The sufficient level
of detail and thus the right trade-off between model realism and computation
time must be found.
Based on the aforementioned aspects the following research questions (RQ)
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can be derived:

RQ1 What is missing in existing sensor model validation approaches?

RQ2 Which features of the radar simulation are relevant for a downstream
application?

RQ3 How to determine the degree to which the radar simulation and experi-
mental measurements concur?

RQ4 How to measure the overall simulation-to-reality gap considering a target
application?

A detailed derivation of the research questions can be found in Section 2.4.
The research approach that is pursued in order to address these questions is
outlined in the following section.

1.3 Approach

Virtual tests does not remove the need for large quantities of tests in a real
environment. Instead, the objective of the present thesis is to investigate how
much a simulation can be trusted in order to be able to define the optimal
ratio between real and virtual tests. Furthermore, this work focuses on the
validation of sensor models for virtually testing autonomous driving functions.
The overarching goal is to develop methods to investigate the capabilities and
therefore the simulation-to-reality gap of a sensor simulation for simulation-
based testing.

This serves the purpose to validate a sensor model and thus provide the basis
for a fundamental decision as to which test cases can be developed and tested
with the aid of simulated sensor data. On the one hand, this can shorten the
development time of an AD system and therefore save costs; on the other hand,
testing can also become safer and more controlled compared to real world only
tests.

Although this work focuses on the validation of a radar sensor simulation in
particular, the methods developed for this are not exclusively designed for this
type of sensor, but rather allow further abstractions to other sensor modalities
such as lidar or camera as well as simulation models in general.
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1.3.1 Contributions

In light of the given problem statement, this thesis contributes to the state of
the art in research on the validation of sensor models with multiple validation
approaches of a radar simulation for virtually testing autonomous driving. To
the author’s knowledge, a comparable comprehensive sensor model validation
has not yet been proposed. The core findings of this thesis can be found in
the following publications: [36], [37] and [38].
Contributions to specific problems can be summarized as follows:

� Validation framework (Chapter 3, [38]):
A modular framework is developed for sensor model validation. This
framework enables the simulation of real test drives in order to generate
and compare synthetically generated data with real sensor data. Fur-
thermore, subsequent perception algorithms can be used to investigate
their performance in the virtual domain.

� Radar sensor models (Chapter 3.2, [36,38]):
Three typical radar sensor models are implemented and evaluated. An
ideal sensor model is introduced, which emulates idealized behavior of
the radar sensor. As a second radar model, a data-driven sensor model
is developed that strives to approximate radar detections by learning
specific characteristics from real sensor measurements. Finally, a physical
model is implemented, which models the radar wave propagation based
on the ray tracing approach.

� Identifying relevant sensor effects (Chapter 4, [36]):
Given that high fidelity radar simulations face challenges regarding the
required computation time, this proposal introduces a sensitivity analy-
sis approach for developing and evaluating a radar simulation, with the
objective to identify the sensor effects that has the biggest impact on a
system under test. This allows the modeling effort to be focused on the
essential components in terms of fidelity, thus reducing the total compu-
tation time required. In addition, differences between the real and virtual
domain can be examined in detail as well as results and disparities can
be traced back to the contribution of the individual sub-modules of the
radar simulation.
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� Evaluating simulated radar data (Chapter 5, [37]):
A novel data-driven metric is proposed to learn the latent features that
distinguish simulated and real radar data. In this work, a neural net-
work is developed to differentiate real and synthetic radar sensor data
with the objective to learn the important features of real radar point
clouds. Moreover, the classifier’s confidence score for the ‘real radar
point cloud’ class is proposed as a metric to determine the degree of fi-
delity of synthetically generated radar data. The presented method is
evaluated and it can be demonstrated that the proposed deep evalua-
tion metric outperforms conventional metrics in terms of its capability
to identify characteristic differences between real and simulated radar
data. Additional, after training, this removes the necessity for real radar
data as a reference to evaluate the fidelity of sensor models.

� Measuring the simulation-to-reality gap of radar perception
(Chapter 6, [38]):
A multi-layered approach for measuring the radar simulation-to-reality
gap of radar perception for autonomous driving is introduced. This
method consists of a combination of an explicit and an implicit sensor
model evaluation. The former directly evaluates the realism of the syn-
thetically generated sensor data, while the latter refers to an evaluation
of a downstream desired application. The effectiveness of the proposal
is examined in terms of a sound sensor model assessment that reveals
existing discrepancies and provides an accurate estimation of the overall
sensor model fidelity across different scenarios.

1.3.2 Thesis outline

The present dissertation is structured in seven chapters, which are illustrated
in Figure 1.3 along with the stated research questions.

Following this introductory chapter, the technical background including the
radar principles, existing modeling approaches and the state of the art of sensor
model validation approaches are provided in Chapter 2 in order to answer the
first research question.

Chapter 3 introduces the developed framework to generate both real and
simulated sensor data as well as the implemented radar perception, including
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the developed radar models. This framework forms the basis for the following
developed methods to deal with the remaining research problems.
Thereafter, Chapters 4-6 entail the core contributions of this work and dis-

cuss the proposed methods.
Finally, Chapter 7 provides an in-depth discussion of the presented work

and concludes the dissertation with an outlook.

Figure 1.3: Thesis outline.
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This chapter introduces the fundamental concepts, covers the technical foun-
dations of the present dissertation, and summarizes existing work that is
strongly related to the problems addressed in this work. First, the radar’s
physical measurement principles as well as an overview of automotive radar en-
vironment perception is provided. Subsequently, existing radar sensor model-
ing approaches in addition to model validation methods are introduced. Based
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on this, this chapter concludes by addressing the first RQ1: What is missing
in existing sensor model validation approaches?

2.1 Automotive radar

Radar is an acronym for radio detection and ranging. In 1904, Christian
Huelsemayer patented a method for detecting distant metal objects through
electromagnetic waves [39]. The foundation for this was laid by James C.
Maxwell with his theory of electromagnetic waves and the proof of existence
of these waves by Heinrich Hertz in 1886 [40]. Radar sensors have their origins
in the military technology of World War II and also remained tied to military
applications for a long time [41]. The first time a vehicle was equipped with a
radar sensor was in 1998 to enable the adaptive cruise control (ACC) [42]. Since
then, many other applications have been developed based on the detection of
radar data, such as the automatic emergency brake [43] or the lane change
assistance [44]. There are currently different frequency bands available for use
in road traffic, while the 76–77 GHz and 24.0–24.25 GHz bands are mainly used.
The former is used for long-range sensors, whereas the latter band focuses on
mid range [45].
The major reason for the importance of radar in the automotive context is its

physical principle that offers unique performance features at reasonable costs
[46]. Contrary to video cameras and lidar sensors, radar is almost completely
unaffected by adverse weather and light conditions, and it remains functional
even in total darkness and snowfall, as illustrated in Figure 2.1. Furthermore,
by exploiting the reflections of electromagnetic waves between vehicle under-
body and road surfaces, even occluded objects can be detected [47]. Radar
is a key technology for AD systems due to its robustness against all weather
conditions and the direct acquisition of distance and velocity of targets via the
Doppler effect [48].
In the following, the principles of radar sensors are briefly elaborated, which

lay the foundation for environment perception and thus the scene understand-
ing based on radar data.
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Figure 2.1: Comparison of main environment sensor modalities in the AD con-
text (adapted from [3–5]). A larger number indicates a relatively
better capability.

2.1.1 Fundamentals

Radar is an active sensor, since it operates by radiating electromagnetic energy
and detecting the received echo from a reflected object (target). Based on the
characteristic of the echo signal, information about the target can be inferred
such as distance, radial velocity and angular location [35].

The transmission and reception of electromagnetic waves forms the func-
tional basis for the operation of a radar. However, this creates only a carrier
for information. In order to measure the distance, the information itself has
to be modulated to this carrier during transmission and demodulated again
when received. With modulation, the distance can be obtained from the time
it takes for the radiated energy to travel to an object and back [49].

An electromagnetic wave will undergo a frequency shift due to the Doppler
effect if the observer and transmitter move relative to each other [41]. This
effect occurs when the radar beam is reflected by an object moving relative
to the sensor. By exploiting this effect, the radial velocity of targets can be
directly measured.
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By using antenna systems, it is possible to furthermore determine both the
yaw and pitch angle of the received signal. For example, mechanical scan-
ning methods, where only one antenna is sufficient, or multi-antenna devices
are used [42]. With sufficiently high resolution, additional features can be
estimated such as the target’s size, shape, and even the object type can be
predicted [50].
In many applications, the radar sensor is designed to meet specific perfor-

mance requirements, such as maximum distance, distance resolution, maxi-
mum velocity, velocity resolution, and covered angular field of view. A simple
model to estimate the performance is the radar range equation (also simply
known as radar equation) [35]. The radar equation expresses the relation-
ship between the transmitted and received signal power, the distance to the
reflected target, the characteristic of the reflected object, and the antenna
properties [49]. Furthermore, it is not only useful for estimating the maximum
range at which a particular radar can detect an object, but it can serve as a
means for understanding the different factors affecting the performance and
can be calculated as follows:

Pr =
PtG

2λ2σ

(4π)3R4Lsys
. (2.1)

In Equation 2.1, Pr and Pt denote the received and transmitted power respec-
tively. The antenna properties are represented by the antenna gain G, which
can be further divided into transmit and receive gain. λ is the wavelength and
the size of the reflective object is governed by its radar cross section (RCS) σ.
The RCS further describes the intensity of the echo received from an object
exposed to an electromagnetic wave and depends on the object properties such
as material, shape, size [51]. Lsys takes into account the overall system loss,
including the atmospheric attenuation in fog or rain among others [49]. A
detailed derivation of the Equation 2.1 can be found in [41].

2.1.2 Environment perception

In radar applications, the sensor measures the reflection from objects by using
a single or an array of sensors. As mentioned before, by further processing
these echos, information like range, velocity, and angle of the objects can be
estimated. Radar sensors have already been used to develop various applica-
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tions for driver assistance functions, for instance blind spot detection, cut-in
warning, collision warning, and adaptive cruise control [49]. These functions
are well established in the automotive industry today.

However, the requirements in the AD context are much higher. The chal-
lenges for sensors and associated perception algorithms for autonomous vehi-
cles are enormous [14]. Compared to the conventional driver assistance sys-
tems, they must create a model of the whole static and dynamic environment
around the self-driving vehicle in order to build an understanding of the pre-
vailing situation [52]. The main applications for radar in the AD context are
briefly elaborated in the following, which can be divided into two different do-
mains, namely the detection of dynamic objects and the scene understanding
of non-moving or static objects.

Detection of dynamic objects

The typical use case for radar sensors are the detection of relevant dynamic
objects in the environment of the ego vehicle. Whereby, the question of rele-
vance depends on the environment or operational domain under consideration.
Whereas on the highway the number and types of objects is relatively lim-
ited, especially in the urban context a great number of different objects can be
relevant. In addition to cars, these include for example cyclists, pedestrians,
buses and trams. This means that radar has to provide the dimension and
the motion state as well as class information of objects [52]. To meet this
resulting high requirements, high-resolution radar sensors are used that can
measure multiple reflections per target to be able to distinguish different types
of targets [47, 50]. Hereby, it is not only necessary to detect and distinguish
different objects, but also to track them over time [53].

The typical procedure for radar detection is illustrated in Figure 2.2, which
is the tracking-by-detection approach. Starting with the measured reflections
from an object, reflections with similar properties are clustered together in
order to identify relevant objects [54]. For this clustering task, the previously
described information of the measurements such as velocity, range and angular
location are used and many approaches can be found in the literature [55–61].
Moreover, the size and dimension of a target can be estimated [62], which is
depicted as a bounding box in Figure 2.2.

However, up to this point the nature of the detected object, its seman-
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tic class, remains unknown. A classification algorithm strives to address this
problem by estimating whether a reflection or cluster belongs to a pedestrian,
a car, a cyclist, a truck or another class. For this purpose, additional fea-
tures such as the RCS of the reflection are used. Similar to computer vision
and lidar-based perception, data-driven or machine or deep learning-based ap-
proaches outperform traditional rule-based algorithms in radar classification
and various methods exist today [52, 63–69]. The semantic understanding
of the surroundings of the driverless system can be used in many use cases:
classification assisted tracking algorithms can outperform general tracking ap-
proaches [48, 70, 71], path planning has to take information about the object
classes into account, and identifying traffic participants can reduce or even
avoid critical situations early on [52].

Figure 2.2: Typical Radar detection pipeline. From left to right: measurement
of individual reflections, clustering of reflections that belong to an
object, predicting the object size, tracking of object over time.

Multiple target tracking or multi-object tracking (MOT) describes the pro-
cess of consecutively determining the number and states of multiple dynamic
objects based on noisy sensor measurements [72]. Tracking is also a key tech-
nology in many other fields such as robotics, automation and surveillance. In
autonomous driving, tracking algorithms play an essential role in fusion and
behavior planning.
The objective of a tracking algorithm is to recursively determine the shape of

the object in addition to its kinematic parameters, while the shape is usually
unknown and can even vary over time [73]. Since the sensor measurements
and thus the point cloud is often very sparse, it is nearly impossible to extract
a shape only based on the reflections from one point in time [74]. However,
by associating current object data to already known objects, a temporal data
track is filtered from which the object state for the next time step can be
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predicted.

Scene understanding of static objects

In typical driver assistance systems, reflections from non-moving objects, the
static world, were solely considered as obstacles [68]. But with the demand
for more advanced assistance systems, a more sophisticated perception of the
whole environment is needed and thus a semantic understanding of the static
surroundings must also be built, especially for self-driving vehicles.

Although radar sensor data is more sparse in comparison to camera or lidar
data, a lot of information can be inferred if it is accumulated over multiple
points in time and radar physics is exploited [52]. In this respect, occupancy
grid maps specifically designed for radar data can be used.

The scene understanding of static objects allow different important AD func-
tions to be developed. For self-localization, the precise knowledge of the ego-
car’s own motion and position is important. Landmarks are often used in that
regard, by recognizing distinctive and strongly reflective objects in the envi-
ronment [47]. This information can also be used for the road course estimation.
Prominent objects like reflector posts or guardrails can be used to draw con-
clusions on the most likely road course [48]. By additionally detecting objects
like parking cars, it is possible to estimate the free drivable space [75,76].

2.2 Radar simulation

In order to virtually develop and test perception functions, sensor models are
needed to synthetically generate the sensor data. The following sections give
an overview of the main elements of a sensor simulation and common modeling
approaches.

2.2.1 Main components of a sensor simulation

Although the focus in this dissertation is on the sensor model itself, additional
components are essential for a generation of synthetic data (see Figure 2.3).
Since a sensor perceives its environment, the surroundings needs to be modeled
in the simulation as well as the propagation of the energy transmitted and
received by the sensor.
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Figure 2.3: Components for a sensor system simulation. The guardrail is indi-
cated in orange.

As illustrated in Figure 2.3, different effects such as multi-path propagation
can occur in real situations. Hereby, the transmitted radio wave can be re-
flected from the ground or a guardrail before reaching the receiving antenna of
the radar. This can cause multi-path interference, phase shifting of the signal,
and ghost objects which impede the detection task and are therefore necessary
to be considered in a simulation [77]. The task of accurately modeling such ef-
fects is highly complex, since it requires multiple models to be developed such
as the transmitting and receiving procedure of the sensor, the propagation of
the waves in the environment including effects such as the reflection from ob-
jects as well as the proper modeling of the objects in the environment and their
physical properties, like the RCS. This is just one example of a physical phe-
nomenon that shows the various components and their interactions required
to accurately model this effect.
The main components for generating synthetic sensor data can be divided

into the environment model, the radio wave propagation model, and the actual
sensor model [78]. Various methods exist for modeling each component that
together represent the principal effect chain of the sensor data generation and
the typical modeling approaches are further elaborated in the following.

2.2.2 Common modeling approaches

There exist various approaches for modeling a radar sensor in the literature,
but the nomenclature to define the different types of sensor models is not
consistent. These definitions usually relate to the level of detail with which a
sensor model approximates the real sensor. The models are often categorized
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by the used modeling approach [4,79,80], the input and output interface [81–83]
or a combined version of both [29].

The common attributes used to describe the modeling approach include
ideal, data-driven or stochastic, phenomenological, physical, white box, gray
box, and black box. Furthermore, the interfaces denote the input and output
format to and from the sensor simulation. The former can consist of object
data like bounding boxes or the rendered environment, whereas the latter of
raw data, detections (radar point cloud) or also object lists. In this context,
raw data defines the data before a radar detection is generated. However, it
should be noted that all mixed forms of the modeling approach as well as the
input and output interfaces are possible. The used approach strongly depends
on the desired target application.

In this work, the different existing radar simulations are categorized by their
used modeling approach. The following modeling approaches are presented
below, which are also shown in the Figure 2.4: ideal radar model, data-driven
model, physical model.

Ideal radar model

The simplest form of a radar simulation is represented by an ideal sensor
model, which approximates the real sensor without errors. It considers merely
the optical field of view without measurement errors, i.e. objects are detected
any time they are within the sensor’s FOV. Therefore, radar specific physical
effects are neglected and these type of models are also known as ground truth
models. Since they are relatively simple and fast to compute, they are espe-
cially suitable for early testing of AD algorithms in either ideal conditions or
under the assumption that sensor errors are neglectable [18].

Data-driven model

Data-driven sensor models rely on collected data from test drives in the real
world. They strive to address the modeling task by learning from the recorded
sensor data, since it inherently holds information about the perceived sur-
roundings. Thus, this approach eliminates both the need to model the radar
effects in detail and to have all the details about the environment. For this rea-
son, these type of models are also termed black box models [78]. Data-driven
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models can exhibit essential radar specific characteristics while remaining real-
time capable [33]. However, the drawback of these models is that they utterly
depend on the available training data, which in most cases has been recorded
on a proving ground in order to simplify the ground truth determination.
Consequently, the measured scenarios are usually restricted in regard to the
scenery of the environment. The generalization to more complex environments
is therefore difficult, because radar data are prone to vary strongly depending
on changes in the environment.

Physical model

Even though the electromagnetic radiation is governed by Maxwell’s equations,
it is generally not feasible to compute an analytical solution in a realistic
environment [84]. That is why alternative methods are needed to accurately
model a radar sensor.
Time-domain electromagnetic simulation techniques such as the finite in-

tegration technique [85], the finite element method [86], the method of mo-
ments [87], and the finite-difference time-domain method [88] are based on
the spatiotemporal discretization of Maxwell’s equations. These techniques
can be used for an in-depth simulation of the electromagnetic phenomena ob-
served in radar systems [89]. Although they are very accurate in principle,
assuming that the analysis space is large relative to the wavelength, numerical
methods based on the discretization of integral or differential equations face
the challenge of extremely large memory needs and very slow computational
speed [84]. Moreover, if the simulation frequency is around 77 GHz, which is
within the range of automotive radar senors, it is not practicable to simulate
the space enclosing an entire vehicle as a consequence of an exorbitantly long
computation time [90].
A broadly utilized approach to overcome this problem is the ray tracing

approach, which is based on the geometric optics diffraction theory. Hereby,
the radar waves are considered as a bundle of rays [91]. As a result, ray
tracing approaches enable to simulate various radar effects including reflec-
tion, multi-path propagation, or diffraction [84]. Despite the fact that this
approach requires less computation power than numerical methods, they are
still computationally expensive, which limits their use in real-time applications
like hardware in the loop setups [18]. Besides the limitation in execution time,
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these methods demand a high level of detail for the simulation of the environ-
ment. Particularly material and geometry properties of all surrounding objects
are a prerequisite for a high fidelity radio wave propagation simulation [92].

2.2.3 Radar simulation use cases

The different modules of the radar processing chain as well as the main radar
modeling approaches are depicted in Figure 2.4.

As described before, the radar sensor emits radio waves which interact with
the surroundings before the reflections are received at the sensor again. The
echo signal is then further processed in several steps, which include filtering,
the signal conversion from analogue to digital, fast Fourier transformation and
thresholding before radar detection is identified [35]. However, these steps are
not described in-depth here, since it is not the focus of this work. The output
of radar depends on the subsequent perception module. For object detection
usually radar detection are processed [65]. However, spectral data can also
serve as the basis for algorithms such as object detection [93]. Low resolution
radar sensors in particular often output measurements in form of radar object
lists, which can be directly processed by downstream modules such as object
level fusion or behavior planning. Additionally, typical perception modules
are illustrated in the Figure 2.4, which consists of clustering, classification and
object tracking.

Figure 2.4: Sensor simulation use cases and common modeling approaches.
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A sensor simulation strives to translate ground truth information, as avail-
able from simulation, to sensor data. Depending on the intended use case,
different output formats can be generated from a sensor simulation as indi-
cated exemplary in the Figure 2.4. It should be emphasized that variations
exist in the illustrated output interfaces of the different sensor model types.
Bypassing components, i.e. using their respective virtual model, allows a cer-
tain abstraction to be introduced. Thus, individual modules can be designed
and tested in an early phase, reducing the overall development time.
As mentioned above, the result of a tracking algorithm can be simulated

directly, which then serves as input for a subsequent behavior planning al-
gorithm. Hereby, the goal is to test the behavior planning individually by
generating radar specific object lists instead of radar detections [94]. Errors
can be inserted intentionally, such as an object suddenly being lost, i.e. no
longer being detected, in order to see how well the planner reacts to this.
Therefore, it is possible to test module specific critical scenarios.
This procedure can also be applied to other modules in the AD stack. The

processing chain up to the processing of the data by the perception module
can be modeled in simulation by generating sensor data to test individual com-
ponents in the perception system. For example, the ground truth information
in the simulation is used to generate radar data specifically for a classification
algorithm [30]. In contrast to real test drive measurements, it is relatively sim-
ple to determine the corresponding object class of a certain radar detection in
simulation. However, this is a very complex task in real test drives [95], among
other things due to the multi-path reflections. This simplifies the simulation-
based evaluation of the perception algorithm and thus can speed up its de-
velopment. Another advantage of the simulation relates to the generation of
critical scenarios that are rarely measured in real drives or are too dangerous
and expensive to test on a proving ground. These include, for example, highly
dynamic driving maneuvers, which are of specific interest for an evaluation of
object tracking approaches.
There exist different approaches to develop and test a sensor in a virtual

environment. As mentioned in the previous section, the sensor simulation
consists of two main components: the sensor model itself and the environment
model. Consequently, either only the environment of the sensor is represented
in the simulation or the sensor is modeled as well. The former using the real
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radar sensor hardware is referred to as the sensor stimulation, while the latter
is considered as the sensor simulation, which is the focus of this work. Sensor
stimulation describes the process of manipulating an entity in such a way that
its state matches an environmental scenario, even though it is not physically
in such a scenario, but for instance on a test bench [26]. In this way, the
real radar sensor is stimulated by modeling only the environment around the
radar in simulation. This allows the whole signal processing of the sensor to
be tested. In order to test specific parts of the radar signal processing chain,
modules of the sensor are approximated by models in simulation. This is
useful, for example, if the radar sensor does not yet exist.

However, the more components are replaced by their virtual counterparts,
the more complex it will be to generate accurate data, since each model in-
troduces additional uncertainties and has to be assessed in terms of its ca-
pability to approximate the corresponding real component. Furthermore, the
required computation time for a high-resolution and accurate simulation also
increases [36]. This shows that there exists a certain trade-off between accu-
racy and complexity or required computing time, which has to be solved for
the respective application purpose, because the requirements on the fidelity of
a radar simulation can vary substantially depending on the intended use [38].

2.3 Validation of a sensor simulation

In the sense of the well-known aphorism of George Box “All models are wrong”
[19] – which is often expanded with “..., but some are useful.” – it is not possi-
ble to create a simulation model that generates valid data under all conditions.
Accordingly, a certain deviation between real and synthetically generated sen-
sor data can be assumed to exist and the question arises what accuracy is
sufficient for which use case. At the same time, especially high fidelity radar
simulations face the challenge of large demands regarding the simulation exe-
cution time [36]. This is why the appropriate trade-off between computation
time and model realism must be found.

When virtually testing AD functions, valid sensor data is a prerequisite
for meaningful results. Therefore, in addition to the development of sensor
simulations, the models employed need to be validated in order to rely on
simulation-based tests. Oberkampf et al. define model validation as the as-

23



2 Radar Sensor Modeling and Validation

sessment of the error due to the assumptions and approximations made in the
formulation of the model [17]. In consequence, it is crucial to meticulously test
the sensor model to validate the model assumptions and simplifications with
respect to the intended use of the synthetic data. However, even though it
is relatively straightforward to measure the computation time of a simulation
run, the error evaluation or fidelity estimation of the synthetically generated
sensor data is a substantially challenging problem.
Since, as elaborated in the previous sections, a sensor simulation consists

of the different sub-components which each has to be modeled, the validation
of such a sensor simulation is of high complexity. In comparison to video
data generated by cameras, sensor data from lidar and in particular radar
data are significantly more sparse, which makes an evaluation based on visual
matching difficult. Radar data is difficult to interpret due to the presence of
noise, ambiguities, measurement artifacts caused by multi-path propagation,
and other influences. This complicates the comparison between simulated and
real radar sensor data.
In the following, the existing sensor simulation approaches are elaborated

and grouped by their validation scope. Depending on the level of detail of
the evaluation, four different categories are defined. The first two categories
include a direct or explicit assessment of the radar data. The first one consid-
ers merely the simulation domain, whereas the second category additionally
compares the simulated data with real radar data as a reference. In the third
category, an indirect or implicit evaluation of the synthetic data is performed.
Hereby, a target application is used that processes the radar data with the aim
of investigating how the result of an application differs when fed with real and
simulated data. The last class evaluates both the synthetically generated radar
data as well as the result of a subsequent application. The existing approaches
are listed in Table 2.1 and Table 2.2.

2.3.1 Explicit evaluation: simulation domain

The simplest method is to assess the generated sensor data only in the simu-
lation domain. Stolz and Nestlinger [96] and Muckenhuber et al. [82] propose
generic object-based sensor models. The sensor models convert an object list
into a sensor specific object list. However, both approaches provide concepts
for simple generic sensor models, but do not perform any evaluation of the
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model fidelity.
Chipengo et al. [34,92,97] are using ray tracing to model a high fidelity phys-

ical radar simulation. In order to verify the implemented radar phenomena,
different test case scenarios are defined which use three steel plates as obstacles
with a known reflectivity characteristic, i.e. RCS, to assess the resolutions in
different dimensions [34]. The three plates are placed at a range of 15 meters
relative to the sensor, while the radar itself is stationary. Since all obstacles
are located at the same range, only one target should be detected. However,
the estimated Doppler velocities of the targets are expected to vary, since two
plates fall into the same Doppler bin. Considering the third dimension, the
azimuth angle, the estimation of the direction of arrival should resolve all three
obstacles in the angle. The simulation results are compared in a qualitative
way concerning the assumed hypotheses.

The simulated data is often compared with expected results in a qualita-
tive way, i.e. by visual matching. The synthetically generated data can thus
be quickly inspected. However, the reliability of such a method is highly de-
pendent on the expertise of the examiner and is therefore prone to subjective
findings and erroneous assessments. Furthermore, this makes the reproducibil-
ity as well as the scalability of the evaluation difficult, which are essential
advantages of simulation-based testing.

2.3.2 Explicit evaluation: simulation and real domain

In this section, the existing approaches are presented that evaluate the synthet-
ically generated sensor data not only in simulation, but also in comparison with
real sensor measurements. Nevertheless, there exists no generally accepted
evaluation criteria or requirements for assessing the reliability of simulated
radar data [18]. One problem with the analysis of radar data is that there is
no standard interface like lidar with point clouds or camera with RGB images.
This complicates both the evaluation itself as well as the comparison between
different evaluation approaches. The data type used usually depends on the
downstream algorithm which processes the sensor data. Spectral data [71,75]
or radar detections [62, 65] often serve as the basis for environmental under-
standing. For this reason, several distinct methods have been presented in
the literature, which can be distinguished by the considered model output
interface.
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Table 2.1: Overview of existing radar simulations and sensor model validation
approaches.

Validation scope Authors Validation method

I. Explicit
evaluation:
simulation
domain

Stolz [96] none
Muckenhuber [82] none
Chipengo [34,92,97] qualitative assessment
Haider [98] qualitative; one dynamic scenario
Dudek [99–101] qualitative; two scenarios
Buehren [102] qualitative; one static scenario
Thieling [103] qualitative; two static scenario
Hanke [104] qualitative; two static scenario
Gubelli [105] qualitative; one scenario
Azodi [106] qualitative; one scenario
Sturm [107] qualitative; one scenario
Kim [108] qualitative; one scenario
Ouza [109] qualitative; one scenario

II. Explicit
evaluation:
simulation and
real domain

Machida [89] qualitative; and via correlation
Holder [110] qualitative; two scenarios
Schuler [111] qualitative; static in the laboratory
Holder [18] qualitative; specific phenomena
Hirsenkorn [83,112,113] qualitative; one static scenario
Hirsenkorn [114] qualitative; lidar
Wheeler [33] qualitative; three static scenarios
Bernstein [94] qualitative; one scenario
Eder [115] qualitative; one dynamic scenario
Cao [78] qualitative; static scenarios
Roth [116] qualitative; two dynamic scenarios
Slavik [79] qualitative; one scenario
Nathaniel [117] qualitative; one scenario
Martowicz [118] qualitative; one scenario
Li [119] qualitative;
Hanke [120] quantitative; static scenario; lidar
Deep [121] quantitative
Eder [122] quantitative; one dynamic scenario
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In the approach by Schuler et al. [111], a model for complex targets for radar
simulation is developed. A technique is presented to generate a simplified RCS
model of a vehicle with a limited number of virtual scattering centers. The
work is furthermore based on ray tracings simulations. The model is verified by
comparing the generated data with measurement data recorded in a laboratory
environment, a radar chamber. The evaluation is performed in a qualitative
manner.

Hirsenkorn et al. [83] perform tests on a small road besides fields with a
stationary target vehicle at three different distances. The sensor as well as the
target object remain static throughout the experiments. By comparing the
real and simulated received signal power, the elementary functionality of the
radar simulation is verified. Holder et al. [18] analyze their developed sensor
model regarding specific radar phenomena such as occlusion, separability, and
the sensitivity of RCS to the aspect angle. Different scenarios are defined to
specifically examine these effects whether the simulation outcomes match the
expectations.

In contrast to these qualitative approaches, Hanke et al. [120] use measur-
able criteria for the model validation, including correlation coefficients and
occupancy grids. However, they did not examine radar data in particular,
but point clouds from lidar sensors. Although lidar point clouds are similar
to radar detections, they generally have a denser spatial distribution. In the
simulation model by Eder et al. [122], a hybrid model is proposed combining
ray tracing with a data-driven approach. Furthermore, a quantitative evalu-
ation is conducted to assess the simulated data with recorded measurements.
Three different criteria are identified for that: the mean distance of all radar
detections to the enclosing bounding box, the number of detections and their
mean deviation, and the Kullback-Leibler divergence.

2.3.3 Implicit evaluation

Instead of assessing the generated sensor data directly, it is possible to evaluate
the prediction results of a subsequent algorithm which processes the data. In
the automotive context, these algorithms include object detection or classifi-
cation approaches. The typical validation procedure is to feed the algorithm
simulated data in addition to real measurements and compare the differences
in prediction. In this way, implications for the radar model can be implicitly
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derived without directly evaluating the sensor data, which are difficult to in-
terpret. Another advantage is that the evaluations of the algorithms employed
can be used, which are usually more mature because they have a longer history
and there are many approaches in the literature.
Jasinski [123] introduces a validation scheme to measure the reliability of

radar models. By calculating the intersection over union (IoU), the prediction
of a tracking method is evaluated. Reway et al. [124] propose a test method
for measuring the simulation-to-reality gap of camera-based object detection
techniques for AD. The test experiments are conducted on a proving ground
and represented in a virtual environment. Additionally, different weather con-
ditions are considered: day, night, rain and fog. With the purpose to measure
the simulation gap, different performance metrics are computed across the
real and virtual domains. These include typical object detection metrics like
precision, recall, and object tracking accuracy.

2.3.4 Explicit and implicit evaluation

Up to this point, the presented approaches have either explicitly or implic-
itly evaluated a sensor simulation according to its reliability. Despite that a
direct comparison is essential, it is alone not sufficient for sensor simulation
validation [16]. Although an ideal sensor model might lack accuracy in a direct
comparison, the results from a downstream algorithm can still show a large
consensus. Accordingly, sensor simulations in the context of AD should not be
treated as stand-alone applications. The target application which processes the
sensor data has to be considered [80]. Nevertheless, particularly the example
of an ideal sensor model shows that it is important to consider both evaluation
dimensions. Otherwise, a pure implicit evaluation could lead to the conclusion
that an ideal model has a higher fidelity than a more sophisticated physical
model. Since it is easier to process ideal sensor data for object detection, for
example, the gap between reality and simulation would be smaller with the
ideal model. However, this implication would be incorrect.
To the best of the author’s knowledge, there are no approaches that consider

both evaluation dimensions for radar models. For lidar simulations, Scharmann
et al. [16] and Rosenberger et al. [125] introduce similar methods. They exam-
ine lidar point clouds as well as the result of a subsequent algorithm. For the
former metrics such as point clouds distances and occupancy grids are used,
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while for the latter the optimal sub-pattern assignment (OSPA) metric [126]
is computed.

Table 2.2: Overview of existing radar simulations and sensor model validation
approaches (continued).

Validation scope Authors Validation method

III. Implicit
evaluation

Holder [127] qualitative; two scenarios
Jasinski [123] conceptual quantitative evaluation
Sligar [30] none
Reway [124] quantitative; one scenario; camera
Hartstern [31] none
Schouten [128] qualitative; simulation only
Hoeber [129] qualitative; camera
Ponn [4] none

IV. Explicit and
implicit
evaluation

Rosenberger [80] validation concept
Rosenberger [125] quantitative; two scenarios; lidar
Schaermann [16] quantitative; lidar

2.4 Discussion

In light of the presented state of the art in validation of radar simulation, this
section discusses the existing research gaps. The first research question of the
present dissertation (RQ1: What is missing in existing sensor model validation
approaches? ) is addressed in this chapter. Based on this, the main problems
that need to be solved for the validation of a sensor model are deduced and
the scope of this work is further presented.

2.4.1 What is missing in existing sensor model validation
approaches?

The existing radar simulations as well as the model validation approaches are
listed in Table 2.1 and Table 2.2. They are structured regarding their validation
scope and are further analyzed in Figure 2.5 in terms of the applied validation
method. The respective validation methods are used as meta-data to grasp the
level of detail of the assessments. Hereby, the methods are distinguished by the
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following classes: no validation (none), a qualitative assessment (qualitative),
and a quantitative evaluation of the simulated sensor data (quantitative).
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Figure 2.5: Approaches found in the literature for modeling radar systems
and validating sensor simulations, categorized by the evaluation
method used.

From Figure 2.5, it is evident that most approaches focus on the assessment
of the radar data directly, the explicit evaluation. However, merely three
authors can back up an evaluation of their model with objective numbers.
The majority of the listed proposals involve a qualitative assessment, often by
visually comparing the generated results with expectations. A few also do not
perform any evaluation of the simulated data at all. This can be especially
observed for the validation scope III and IV, the implicit evaluation and the
explicit and implicit evaluation.
To this day, no systematic approach could be identified that provides an

objective and quantitative method for the validation of a radar simulation for
AD. Most methods use only a qualitative model assessment of the sensor data.
There are, however, some approaches that include both the sensor data directly
and the downstream application in the evaluation. However, these are mainly
related to lidar sensors, which raises the question whether these approaches
are also suitable for radar data, since radar data have different characteristics,
such as much more sparse and stochastic data.
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2.4.2 Formulation of research problems

The general procedure of a sensor simulation validation is illustrated in Fig-
ure 2.6. At first, the test scenarios are defined which serve as the basis for
conducting real test drives to record the sensor measurements as well as for
the corresponding tests in the simulation. With the generation of both the
synthetic radar data and the radar measurements, the explicit evaluation can
be performed. By furthermore including a target application, the radar model
is implicitly assessed. Hereby, the target application is typically represented
by a radar perception algorithm such as clustering, object classification, or
tracking. In the following, the remaining research problems in the validation
of a radar simulation are derived and formulated.

RQ2: Which features of the radar simulation are relevant for a downstream
application?
As previously described, a radar simulation consists of different modules in-
cluding an environment model, a wave propagation model, and the sensor
model itself. Each model approximates various radar characteristics in order
to generate sensor data in a simulation. Given that a high fidelity radar simu-
lation often face the challenge of demanding computation times, the question
arises whether every effect must be modeled in a high level of detail or whether
certain properties can be simplified. Since it can further be assumed that this
consideration depends on the intended use of the sensor data, a method is
needed to identify relevant effects for a particular use case.

RQ3: How to determine the degree to which the radar simulation and experi-
mental measurements concur?
In comparison to camera and lidar data, radar measurements are much more
sparse and of stochastic nature. This one of the reasons why special expert
knowledge is required for the visual interpretation of radar sensor data. Thus,
the reliability of such a qualitative evaluation approach is highly dependent on
the expertise of the assessor and is therefore prone to subjective results and
incorrect assessments. However, as seen in Figure 2.5, most of the existing
approaches evaluate the sensor model in a qualitative way. Another disadvan-
tage of a manual and qualitative assessment of simulated sensor data is the
lack of scalability, which is one of the main advantages of simulation-based
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testing. This leads to the conclusion that a quantitative evaluation method-
ology is needed that uses metrics which are in particular suitable to evaluate
radar data.

RQ4: How to measure the overall simulation-to-reality gap considering a target
application?
Although an evaluation of the simulated sensor data is essential, it alone is not
sufficient for a complete validation of a sensor simulation. For example, an ideal
sensor model might lack accuracy in an explicit evaluation, but the outcome
from a subsequent algorithm can still show a high consensus. The intended
use of the simulated sensor data should therefore be considered. Moreover,
there exists no method that combines the results of both evaluation domains,
explicit and implicit. Consequently, in addition to a quantitative evaluation
of the synthetically generated radar data, a validation method should also in-
clude the intended use case. In order to scale the simulation and to be able to
evaluate multiple scenarios quickly, a validation method should enable a holis-
tic evaluation on the one hand, but should also allow an in-depth assessment
of specific situations on the other hand.

Figure 2.6: Existing research gaps in the validation of a sensor simulation.

RQ5: What sensor model fidelity is sufficient for which intended use?
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Besides the problem of estimating the sensor model fidelity, i.e. the measure-
ment of the discrepancy between real and simulated test, the question arises
what fidelity is needed for which use case. Due to demanding requirements in
terms of execution speed, furthermore, the sufficient degree of realism must be
found. Since a certain simulation-to-reality gap can be assumed to exist, the
problem remains what error is an acceptable disparity. In spite of that, there
currently exist no method to solve this problem.

RQ6: Which scenarios need to be tested for the application domain?
When validating a sensor simulation, it is reasonable to use real sensor data
for comparison. However, since especially the ground truth generation of the
measurement runs is very difficult in complex scenarios, such as urban envi-
ronments with a lot of different traffic participants, the measurement runs are
conducted on a simplified test site. As a consequence, since the reference data
such as sensor measurements are then also recorded on the proving ground,
the problem of transferability of results emerges. A methodology is needed to
overcome this gap between validation and the application domain.

2.4.3 Scope of work

Simulation-based tests do not remove the need for large quantities of tests in
the real world. Rather, the objective of this work is to investigate how much
a simulation can be trusted in order to be able to determine the ideal ratio
between real and virtual tests.

In particular, the present dissertation focuses on the development of mod-
els and methods to answer the first four research questions (RQ1-RQ4). This
provides the foundation for the remaining problems (RQ5-RQ6) and thus lead-
ing to a complete validation of a sensor simulation for AD. These models and
methods can then be leveraged to reduce the need for future real-world testing.
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This chapter is structured into three main sections and introduces the val-
idation framework for generating both real (Section 3.1) and synthetic radar
data (Section 3.2) in addition to the developed radar perception algorithms
(Section 3.3). The framework is illustrated in Figure 3.1 and serves as the
basis for the investigations in the following chapters.

Since sensor modeling itself is not the focus of this work, the developed
framework serves as a modular basis for further research. Furthermore, it is
not exclusively designed for radar models and perception algorithms, but allows
further abstractions to other sensor modalities and algorithms. For example,
data from a lidar or camera sensor can also be examined and evaluated.

3.1 Real sensor data generation

This section is divided into two parts: the reference data and the measurement
data generation. The former describes the state data of the ego vehicle and the
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Figure 3.1: Validation framework overview.

target vehicles. The state data includes the positions, orientations and veloci-
ties of the objects and is used as ground truth, whereas the measurement data
represents the data recorded from the radar sensor. The generation procedure
of both is elaborated in the following.

3.1.1 Reference data

The generation of real sensor measurements as a reference for comparison is
an crucial element for the sensor model validation. For the reason that a
simulation approximates real effects and thus has certain errors, it is necessary
to find out how large these errors are. Data from the system to be modeled can
be used as a reference to investigate the existing deviations. This means that
a real test drive is reproduced in the simulation to compare the synthetically
generated sensor data with real measured data.
In addition to the actual radar sensor recordings, further measurements

are necessary for the simulation of tests. The so-called ground truth data
of the environment is needed, which refers to the true or correct value of
a quantity. This supplementary information serves as a reference and can
be obtained by using a dedicated sensor system, which, however, introduces
additional uncertainties. In contrast to the determination of ground truth data
from real recordings, there is usually no residual uncertainty in the case of a
simulation. This is due to the fact that no reference sensors are needed for
ground truth measurement in simulation, since the data is directly accessible.
The ground truth data of the surroundings is primarily used to simulate the
tests in simulation. The information required can vary widely depending on
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the modeling approach used. Generally, the state information of objects in the
vicinity is used to represent the test scenario. This data includes quantities
such as position, orientation, velocity, object class, object size or the reflection
characteristic. For modeling the wave propagation as well as the environment,
additional quantities can be utilized including for example temperature or
atmospheric attenuation values to consider the influence of weather.

Figure 3.2: Proving ground in Immendingen, Germany [6].

However, the complexity of the ground truth data determination of a record-
ing is highly related to the variety of the prevailing environment. According
to this, the ground truth estimation in an urban environment is particularly
complex, as the states of many different objects, such as pedestrians, cyclists,
and cars, have to be determined. By simplifying the testing area to a dedi-
cated proving ground, certain traits can be achieved, including reproducibil-
ity, safety, controllability and the relatively simple measurement of the ground
truth information previously described [22].

In this work, the test drives are conducted on a specific proving ground from
Daimler AG in Immendingen Germany [6], which is depicted in Figure 3.2. On
this test site various scenarios can be tested, ranging from simple maneuvers
like overtaking to more complex situations including the encounter of multiple
vehicles at a junction. Additionally, different road signs are located on the site
with the purpose to test for example a traffic light detection. Apart from the
street, the rest of the surrounding terrain is relatively simple and lacks typical
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infrastructure elements such as sidewalks or buildings [130].
In order to determine the correct position and orientation of the surrounding

objects, a dedicated reference system is used. The true state of the objects
in the environment are referred to as reference data in the remainder of this
dissertation. Since the reference data serve as the basis for the simulation, a
high degree of accuracy is crucial. This can be achieved by using a differential
global positioning system (DGPS) with an inertial measurement unit (IMU).
Each object of a scenario in this work is equipped with this reference system
for a precise acquisition of position, orientation and velocity.

3.1.2 Measurement data

Besides the information of all the surrounding objects, the actual sensor mea-
surements are required for the validation of a sensor simulation. Since the
sensors used in this work are proprietary, their technical properties are not
described in detail. For the reason that the focus is on model validation rather
than the development of sensor simulations and this methodology is indepen-
dent of the specific sensor used, this limitation is reasonable. In the remainder
of this work, measurement data is referring to the real radar sensor detec-
tions. Furthermore, the sensor recordings are synchronized with the reference
data in order to enable a continuous evaluation between real and synthetically
generated data.

3.2 Synthetic sensor data generation

In this thesis, the generation of synthetic sensor data can be divided in two
main steps: the environment simulation and the actual sensor simulation. The
former refers to the modeling of the environment including infrastructure and
traffic participants as well as the control and movement of the objects based
on the defined test scenario. Whereas the latter denotes the generation of a
virtual scene of the surroundings as perceived by the radar. The implemen-
tation of both modules is elaborated in the following. In the course of this,
three different typical radar models are introduced, which are schematically
illustrated in Figure 3.3: an ideal sensor model, a data-driven or stochastic
sensor model, and a ray tracing-based model.

38



3.2 Synthetic sensor data generation

3.2.1 Environment simulation

A simulator or simulation platform serves as a tool to create a virtual environ-
ment as well as to control the movements of the objects in the virtual world. It
also calculates the optics, renders the visual output, and calculates the object
physics, including collisions. Objects include, for example, vehicles, buildings,
traffic signs, and the map.

There are various simulation tools in the automotive context such as Vires
Virtual Test Drive [131], IPG CarMaker [132], LG SVL [133]. However, a lot
of them are specifically designed for particular use cases. In this thesis, the
simulator Car Learning to Act (CARLA) [134] is used as the environment
simulation tool, because it is open-source, has a variety of assets built in, and
also already provide implementations of basic sensors.

Based on the recorded reference data, the scenario is extracted and serves
as a basis for simulation-based tests. Here, the ground truth states of the road
users are utilized to place their virtual counterparts in the simulation. More-
over, the testing site was virtually reproduced in the simulation and perceived
by the radar model to generate simulated radar detections.

3.2.2 Ideal radar model (IRM)

An ideal sensor model is an ideal model that imitates the idealized behavior
of the radar sensor. Such models simply take into account the geometric field
of view (FOV) without measurement errors or sensor-specific physical effects,
i.e. objects are always detectable if they are within the sensor’s sensing range.
Due to their simplicity and fast performance, they are suitable for early tests
of perception algorithms either under ideal conditions or under the assumption
that sensor errors are inconsiderable [18].

In order to assure a consistent sensor model output format across the sensor
models used in the form of a radar point cloud, the radar detections of the IRM
are distributed along the shell of a detected vehicle according to a simplified
scattering center model [111,135] (see Figure 3.3).

3.2.3 Data-driven radar model (DDM)

Stochastic or data-driven sensor models seek to approximate radar results by
learning certain features from real sensor measurements without having to
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Figure 3.3: A schematic illustration of the radar simulations developed: ideal
radar model ( ), data-driven model ( ), ray tracing-based model
( ).

explicitly model the radar phenomena. Since these measurements inherently
contain information about the observed surroundings, the need for extensive
details about the environment, such as the material properties of objects, is
omitted.
As a data-driven or stochastic model, a modified implementation of an

available radar sensor measurement model designed and trained by Scheel et
al. [136]. Here, the measurement model was learned from real datasets using
variational Gaussian mixtures. It is used to process multiple radar detections
of an object to perform measurement-to-object mappings in extended object
tracking. In this thesis, it is build on this approach in reverse by predicting the
radar measurements from a given object state. Moreover, samples are drawn
from the learned marginal density, which is conditioned on the aspect angle of
a detected vehicle, with the goal to generate radar detections. The number of
samples is determined by a distribution that depends on the radial distance
defined by the real radar measurements.

3.2.4 Ray tracing-based radar model (RTM)

Radar is an electromagnetic system for detecting and locating reflective objects
and works by radiating energy into space and detecting the echo signal reflected
from a target. The propagation of radio waves is modeled using a ray tracing
or rather a ray casting approach based on the diffraction theory of geometrical
optics [91]. In this concept, the radio waves are approximated as a bundle
of rays, and each ray that hits an object in the sensor’s FOV results in a
reflection.
Furthermore, the radar range equation, which is often simply referred to as
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the radar equation, relates the range of a radar to the effects of the antenna,
transmitter, environment, target, and the receiver. Accordingly, it is not only
useful for estimating the maximum range at which a radar can still detect
an object, but it can also serve as a means toward understanding the various
factors that contribute to the radar performance [41]. The radar equation is
defined as follows:

Pr =
PtG

2λ2σ

(4π)3R4Lsys
(3.1)

For this very reason, the radar equation is used in this work to estimate the
signal power received Pr. A detailed derivation of this formula can be found in
the work of Skolnik [35]. The symbols used are listed in Table 3.1 along with
their units and a brief description.

Table 3.1: List of symbols, their units and description.

Symbol Unit Description

Bn
1/s noise bandwidth

G - transmitting & receiving antenna gain
kB J/K Boltzmann constant
Fn - noise figure
Lsys - overall system loss
Pt W transmitting power
Pn W noise power
Pr W receiving power
R m radial distance

SNR − signal-to-noise ratio
T0 K standard temperature
λ m wavelength of transmitted signal
σ m2 radar cross-section

The radar cross-section σ is assumed to be ideal depending on the aspect
angle to the object and is illustrated in Figure 3.4. In this work, the focus is
on vehicles as objects and the corresponding radar cross-section (RCS) values
are derived from the work of Abadpour et al. [137] and Matsunami et al. [138].

A simplified generic antenna gain G is employed for both transmitting and
receiving with a maximum gain of 20 dB and a side lobe suppression of -13
dB, derived from Gamba [49]. In addition, the antenna diagram is modeled
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Figure 3.4: Simplified radar cross-section.

with a simple sinc filter resulting in Figure 3.5).
In addition, the ability of a radar to detect an echo signal is limited by the

noise that is always present and occupies the same portion of the frequency
spectrum as the radio signal. This is denoted by the noise power Pn, which
depends on the Boltzmann constant k, the noise bandwidth Bn, the noise
figure Fn, and the standard temperature T0 and is defined as in Equation 3.2.
The noise power is approximated as additive white Gaussian noise (AWGN).

Pn = kBFnBnT0 (3.2)

In general, the performance of a radar sensor is indicated by the ratio be-
tween received signal power Pr and noise power Pn, which results in the signal-
to-noise ratio SNR and defined in Equation 3.3).

SNR =
Pr
Pn

(3.3)

Combining Equation 3.1 and Equation 3.2, the SNR of a radar sensor can
be computed as defined by the Equation 3.4.

SNR =
PtG

2λ2σ

kBFnBnT0(4π)3R4Lsys
(3.4)
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Figure 3.5: Simplified antenna diagram

For example, in rainy weather conditions the minimum SNR to generate
a detection is usually increased to minimize false positives. To generate a
detection from the reflected power and the SNR, a threshold detection is
used. Thus, detection of a radar signal is based on setting a threshold at the
output of the receiver. This threshold determines whether the output of the
receiver is perceived as a signal that is present or as noise.

Since noise is a random phenomenon, the detection of signals in the presence
of noise is a random phenomenon as well [41]. In this thesis, the probabilistic
behavior is considered with detection probabilities (DP). These probabilities
can be obtained in a simplified way by converting the signal-to-noise ratio using
receiver operating characteristic (ROC) curves [4]. ROC curves are affected
by the prevailing weather situation and can be dynamically adjusted in real
radar systems [94], resulting in a shift in the conversion from SNR to detection
probability. This is useful because, for example, in rainy weather, the minimum
SNR value for detection is usually increased to minimize false alarms.
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3.3 Radar perception

After both real radar measurements and synthetically generated radar data
have been collected in the previous steps, both serve as input for a target
application. This application represents the desired use case and represents the
next stage in the perception processing chain after the sensor. As illustrated
in Figure 3.1, a tracking-by-detection approach is used in this work as the
desired target application. However, the framework is not exclusively designed
for these modules and they serve only as exemplary placeholders in this work,
as they can also be replaced by other algorithms, such as a classification.
This is due to the fact that the perception algorithm is not the focus in the

present research work and the sensor simulation evaluation should be generi-
cally applicable and not developed for a specific perception approach. For this
reason, the perception module is considered as a black box in this research.
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4.1 Introduction

Realistic models of environment sensors such as lidar, camera, and radar play
a crucial role in a simulation-based testing strategy [16]. Furthermore, radar
is considered as a key sensor for autonomous driving [48] and has traditionally
been one of the most complex sensors to model [33].

Many different approaches to simulate a radar system have been reported
in the literature. Even though a lot of radar effects are understood and can
be modeled today, a high fidelity simulation faces challenges regarding the re-
quired execution time [92]. This stems from the fact that radar exhibits several
properties such as interference, multi-path reflections, ghost objects, clutter,
and attenuation [35]. Consequently, this leads to extremely high requirements
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on the computation power for an accurate sensor simulation. The question
arises whether a detailed radar sensor model is required in all simulation use
cases. The problem to find the sufficient level of detail remains unsolved and
the right trade-off between computation speed and model realism must be
found. In order to answer the question of whether the fidelity of a sensor
model is suitable for a particular application as well as to permit reliable pre-
dictions about the behavior of the real system through simulation-based tests,
the sensor model must first be validated [17]. However, although there exist
many different approaches to simulate a sensor, the problem of validating a
model still remains. In light of Chapter 2 which derived the different problems
need to be solved for a sensor model validation, this chapter addresses the sec-
ond research question RQ2: Which features of a radar simulation are relevant
for a downstream application?
Therefore, a sensitivity analysis approach for developing and validating a

radar simulation is introduced in this chapter. The objective is to identify
the radar sensor effects with the greatest impact on a target application. By
focusing on the most important effects, a high model accuracy can be achieved
while reducing the required computation time. In addition, a proof-of-concept
implementation of the sensitivity analysis method is presented to analyze a
clustering algorithm as an exemplary target application.
The remainder of this chapter is structured as follows. Section 4.2 elabo-

rates the developed method in-depth and the experiments are conducted and
evaluated in Section 4.3. Finally, the effectiveness of the proposed approach is
discussed in Section 4.4.

4.2 Method

The present section elaborates the developed approach, starting with an overview
of the proposed method, followed by an in-depth explanation of the different
components needed.

4.2.1 Sensitivity analysis approach

In order to address the second research question (RQ2), this section introduces
the developed method, which focuses on improving the existing approaches
by incorporating a quantitative and objective assessment of the relevance of
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the implemented radar sensor effects. This is accomplished by performing a
sensitivity analysis with the objective to measure the impact of each effect on
a target application.

Sensitivity analysis is the study of how uncertainty in the result of a model
can be attributed to different sources of uncertainty in the model input [139]. In
contrast, an uncertainty analysis concentrates on measuring the uncertainty in
model output. Model simplification in the context of computationally intensive
and complex models, quality assurance, or robust evaluations are examples of
applications of sensitivity analysis [140]. Furthermore, the sensitivity analysis
approaches can be inter alia divided in quantitative and qualitative methods,
while generally qualitative are more efficient, but less accurate. Fourier ampli-
tude sensitivity testing (FAST) was introduced by Cukier et al. [141] which is
an effective variance-based quantitative sensitivity analysis method and used
in this work. This is due to the fact that variance-based methods provide
quantitative measures of how much each parameter attribute to the overall
variance of the model response in addition to quantifying the effect of the in-
teraction between the parameters. Additionally, these methods can be applied
to complex non-linear and non-monotonic models such as sensor models [142].

A radar simulation often consists of multiple sub-modules in order to model
the radar characteristics. This includes for instance a model for the radar cross
section (RCS), an antenna model and many others. For each sub-model, the
question arises whether it can be simplified, for example, by using constant
values, or whether a detailed approximation is necessary. This stems from
the fact that the resulting computation time is no longer feasible if every
effect is modeled with the highest possible accuracy. The modeling of the
RCS for an existing vehicle alone is extremely complex and many approaches
exist in the literature [90, 111, 121], ranging from simple models to highly
accurate ray tracing based models. Therefore, for the selection of a suitable
modeling approach it is necessary to find out which relevance a certain radar
characteristic has on the final result of an target application such as object
detection. This has the goal to simplify the radar simulation with respect to the
complexity of the sub-modules and thus to minimize the required computation
time while maintaining a sufficient accuracy.

The developed method consists of mainly four different steps, which are
illustrated in Figure 4.1 and explained in the following.
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1. Firstly, the sensor characteristics or effects to be investigated and their
bounds are specified. Furthermore, a distinction is made between scenario-
dependent and sensor-dependent parameters, while the latter is focused
in the present work.

2. As a second step, the samples of the defined parameters are generated.
This results in a matrix which dimensions are defined by the number of
parameters and the number of samples used.

3. Subsequently, the samples are used to parameterize the model under
test in order to run the model. Thereby, this step is composed of several
steps. The real test drives are conducted and are simulated to generate
both the real sensor measurements as well as the synthetic sensor data.
Each is processed by the target application and the results are evaluated
to quantify the discrepancy between both.

4. In a final step, the actual sensitivity analysis is performed, which uses
the specified parameters with their bounds and the model response as
inputs, resulting in the sensitivity indices that describe the relevance of
the effects investigated.

Figure 4.1: Overview of the sensitivity analysis approach to measure the rele-
vance of sensor characteristics regarding a target application.
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In the following sections, the different modules needed for the sensitivity
analysis are elaborated.

4.2.2 Real sensor data generation

The generation of real radar sensor measurements as a reference for comparison
is an crucial part of the sensor model validation. In this regard, it is necessary
to determine the correct position and orientation of the surrounding objects,
i.e. the ground truth data, which is not a trivial problem. A high degree of
accuracy is essential, since the ground truth data is used to perform the test
drives in a virtual environment. In this work, simple scenarios on a proving
ground are tested along with a DGPS and an IMU as the reference system in
order to enable a precise ground truth acquisition. The sensor measurements
are recorded in a scenario in which the ego vehicle equipped with the radar is
stationary and a target vehicle drives a path in form of an eight in front of it.
This scenario is suitable for investigating the influence of the spatial change of
the observed vehicle on the generation of radar detections.

4.2.3 Synthetic sensor data generation

The generation of simulated sensor data consists of mainly two steps, the
reproduction of the test drives in the simulation and the actual rendering of
the virtual environment to generate the radar detections. In contrast to the
method presented, it would be conceivable to test all possible scenarios not
only those observed in the real test drives. However, since a comparison to
real sensor measurements is essential, only the observed tests are simulated.

The generated samples as well as the tested scenarios are used to perform
the test drives in the simulation. Thereby, the number of samples determines
how often and with which parametrization a specific scenario is simulated. The
open-source simulator CARLA is used to model the environment and run the
virtual tests.

Given the characteristics set out in Chapter 3, the ray tracing-based model
is utilized in the present approach to model the radar sensor. Since the radar
effects are modeled physically, they can be varied and analyzed in detail. In
particular with this modeling approach, it is necessary to identify the sufficient
level of detail of the individual sub-modules or effects in order to overcome the
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restrictions in computation time.
Radar is an electromagnetic sensor system for the detection and location

of reflecting objects. It operates by radiating energy into space and detecting
the received echo signals from an object in the environment. The radar range
equation describes the range of a radar in relation to the characteristics of the
target object, environment, transmitter, antenna, and the receiver. Therefore,
it is not only useful for estimating the maximum range at which a radar sensor
can detect an object, but it can also be used to understand the factors affecting
the radar performance [41]. For this very reason, the radar equation is utilized
in this method to investigate the impact of the different radar effects and
characteristics on a target application.

4.2.4 Radar perception and evaluation

Subsequently, after generating real and simulated radar data in the preceding
steps, both are fed to the radar perception algorithm and thus form the basis
for an evaluation. The perception represents the downstream stage after the
sensor in the AD processing chain and is realized by a spatial object clustering
algorithm using radar detections in this work. Furthermore, k-means cluster-
ing is a well known unsupervised learning algorithm and is used here. The
discrepancy of the prediction performance between real and simulated data is
evaluated by computing the difference between the euclidean distances of the
predicted cluster centers. In this way, the spatial distribution of the simulated
radar detections are investigated.

4.2.5 Parameters, generation of samples and sensitivity analysis

In the final step of the proposed method, the sensitivity analysis is performed
in order to identify the effects of individual radar characteristics in driving the
output and its uncertainty.
The specified parameters are listed in Table 4.1 and are described in de-

tail in Chapter 3. They serve as the input for the FAST technique with the
objective to measure the impact of the different sensor effects on the results
of the perception algorithm. Thereby, the bounds of the parameters are de-
fined according to typical automotive radar values reported by Gamba [49] and
Skolnik [35]. The parameters are further varied within these defined bounds
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in order to investigate the corresponding model response variance.

Table 4.1: Sensitivity analysis parameters with their specified bounds.

Symbol Description Unit Min/Max

AWGNoise AWGN standard deviation dB 0/8
DPoffset detection probability offset − −5./5
Gmax maximal antenna gain dB 10/25
Fn noise figure dB 10/20
Lsys overall system loss dB 0/20
RCSmean mean radar cross-section dBsm −10/10

The result of the FAST method are the following sensitivity indices: the
first-order sensitivity index Si and total-order sensitivity index ST i. The former
measures the main effect of a parameter, while the latter relates to the overall
impact of a certain parameter, i.e. the total effect. Furthermore, the difference
ST i − Si between both indices is a measure of the strength of the interactions
[140].

4.3 Experiments and results

In this section, the results of the developed method are evaluated. First,
the difference between both real and synthetic sensor data is analyzed by
comparing the clustering predictions. In this way, implications for the sensor
model can be derived purely subjectively and qualitatively, based mainly on
the expert knowledge about the radar and the simulation of the investigator.
In order to enable an objective and measurable assessment, the sensitivity
analysis approach is used for a deeper evaluation of the simulated data.

4.3.1 Clustering evaluation

A target object drives in this experiment a path in form of an eight in front of
the ego vehicle which itself is stationary and equipped with the radar sensor.
The scenario is indicated in Figure 4.2. Hereby, the goal of this scenario is
to assess the influence of the orientation as well as the range of the object on
the generation of radar detections. It is assumed that the detections change
in distribution and density over the distance.
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Figure 4.2: The evaluation result of the clustering algorithm fed with real and
synthetically generated radar data.

In this section, it is investigated whether and to what degree the radar sim-
ulation can model this behavior. Therefore, the target application, which is
represented by the clustering algorithm in this work, is fed with real and simu-
lated radar data. The difference between the resulting predictions is measured
by the euclidean distance between both predicted cluster centroids. The out-
come of this evaluation is illustrated in Figure 4.2 as well, with the degree of
error is emphasized with different colors. Moreover, a higher euclidean distance
indicates a larger spatial discrepancy between both sensor data sources.
From the figure, it can be observed that deviations between measurement

and simulation exist. However, in a holistic assessment the discrepancies are
relatively small over the whole scenario. The larger error are noticeable in
particular when the target object turns. This is probably due to an inaccu-
rate RCS model and/or model of the radar antenna, as these models strongly
influence the longitudinal and lateral resolution of the sensor data generation.
Additionally, in consideration of the fact that the target vehicle starts from
the negative y-axis, it can be noticed that larger deviations occur when the
vehicle is perceived from the rear view. This finding indicated that the simpli-
fied symmetric RCS model is not sufficient, at least in the longitudinal vehicle
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axis.

4.3.2 Sensitivity analysis results

In light of the clustering evaluation, it is apparent that since the radar sim-
ulation is comprised of several sub-modules, it is difficult to determine which
effect causes the error by qualitatively evaluating the result. Furthermore,
such a subjective evaluation is strongly dependent on the expert knowledge of
the examiner and is thus prone to errors. In order to address this problem, a
sensitivity analysis is performed with the goal of providing a measurable and
objective assessment of the relevance of the radar properties to the perception
algorithm. The results of the sensitivity analysis are covered in this section.

The parameters of the radar simulation are parameterized according to Ta-
ble 4.1 in order to identify the impact of each characteristic regarding the clus-
tering algorithm as the target application. The parameters are varied within
the defined bounds to generate the samples, resulting in a total of 390 sam-
ples used in this experiment. Each sample represents a specific radar model
configuration, which is fed to the simulation to generate the synthetic radar
data.

Both sensor data sources are evaluated according to the procedure previ-
ously elaborated. This evaluation result serves as the input for the sensitivity
analysis, i.e. for the FAST method. Since this method requires a scalar value
per simulation run as the input, the analysis is performed with three different
approaches to calculate the evaluation value: the minimum, mean and maxi-
mum of the euclidean distance over all points in time of a simulation run. As
a result, this leads to three different sensitivity analysis as illustrated in the
Figures 4.3, 4.4 and 4.5.

It is apparent that no effect alone is solely responsible for the model re-
sponse, which can be inferred from the first-order sensitivity indices Si of each
evaluation. Furthermore, since the interaction coefficient is relatively high,
no parameter can be neglected. The interaction coefficient is computed by
subtracting both indices ST i − Si [142].
The main effect of both the standard deviation of the additive white Gaus-

sian noise (AWGN) as well as the noise figure remain in the same range of
10 − 20%. The total loss is relatively large when the mean and maximum
values are evaluated, suggesting that the upper limit of this parameter is set
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Figure 4.3: Sensitivity analysis results using minimum evaluation value.

Figure 4.4: Sensitivity analysis results using mean evaluation value.
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Figure 4.5: Sensitivity analysis results using maximum evaluation value.

too high. Based on the clustering evaluation of the previous section, it can be
assumed that only minimal discrepancies occur in the near field. Additionally,
large deviations between synthetically generated and measured sensor data are
expected in the far field. Given these assumptions, the high first-order sensi-
tivity of the detection probability for the minimum evaluation case is due to
a higher number of radar detections in the radar near field, which is caused
by the used ray tracing method. Based on the investigated scenario, a high
impact of the antenna model can be observed, which is plausible since the
antenna gain varies strongly with the azimuth angle to the object. Contrarily,
the impact of the RCS model has the least effect in the maximum case, i.e. in
the far field. This result indicates that a RCS model solely depending on the
aspect angle might not be sufficient.

4.4 Discussion

This section summarizes and discusses the contributions of this chapter to the
second research problem RQ2: Which features of a radar simulation are rele-
vant for a downstream application? A sensitivity analysis approach is used to
identify the relevance of different sensor characteristics. This chapter makes
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two significant contributions to the dissertation – a novel sensor model valida-
tion method as well as its implementation for automotive radar.
In the present chapter, a method was proposed for evaluating a sensor simu-

lation in order to determine the impact of specific sensor effects regarding the
prediction result of a target application. This general method can be applied
to a wide variety of simulation models and was specifically used for a radar
sensor model that especially has high computation requirements. A spatial
clustering algorithm was further used as the target application, which repre-
sents a typical use case for processing radar data. The perception algorithm
is fed with both real sensor measurements as well as synthetically generated
data with the purpose of comparing both prediction outputs. To conduct the
experiments and investigate the effectiveness of the developed method, the
FAST algorithm was used to perform a sensitivity analysis result taking the
result of the clustering evaluation as input.
It can be shown that a sensitivity analysis enables a more detailed, mea-

surable and objective evaluation of the simulated sensor data in comparison
to a qualitative assessment. The results from specific situations can be traced
back to the contribution of the individual sub-modules or sensor effects of the
radar simulation, resulting in an efficient analysis of the simulation. Therefore,
the developed approach complements the research towards virtual validation
of AD functions.
There are different conceivable extensions of the approach to further enhance

the evaluation. Since this approach is dependent on the predefined radar ef-
fects to be analyzed, there is a risk that important effects are neglected or
overlooked. In order to deal with this problem, analysis methods such as
failure mode and effect analysis could be applied, which may not completely
eliminate the problem, but at least provide a systematic approach for mitigat-
ing it. Furthermore, a radar simulation consists typically of multiple models,
including also an environment model. Therefore, the method could also be
extended to investigate whether or in which use cases, for example, a detailed
vehicle model is required and which parameters are relevant for that. Ad-
ditionally to radar effects, simulation-related parameters can be investigated,
such has the number of emitted rays or the number of reflections during ray
tracing. The required computing time can also be included, which increases
exponentially with a large number of reflections.
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5.1 Introduction

Robust perception and sensing of the environment of a self-driving vehicle are
essential tasks to build an understanding of the surrounding scene [68]. Since
automotive radar is widely employed within modern advanced driver assistance
systems (ADAS) and is a key technology for AD [48], radar sensor models are
becoming more and more important.

To permit any implications about a real system based on simulated sensor
data, the used model have to be validated [80]. In order to solve this validation
problem, the fidelity of the model must first be measured to be able to deter-
mine whether it is sufficient or not. Despite the fact that many approaches
exist in the literature to model a radar sensor, there is no generally accepted
method to evaluate simulated radar data [18]. Additionally, an approach for
measuring the level of accuracy of a sensor model does not yet exist and the
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problem of defining an appropriate metric remains. As elaborated in Chap-
ter 2, the majority of approaches found in the literature provide qualitative
and subjective assessments of simulated radar data. However, a qualitative
evaluation relying on a visual matching of the data does not scale, which is
one of the key advantages of simulation-based testing. In addition, existing
quantitative evaluation approaches rely on self-defined metrics that assess spe-
cific sensor properties such as the spatial distribution between synthetic and
real sensor data. This leads to the problem that some important effects may
be neglected or overlooked, since the challenge of selecting the appropriate
metric is tantamount to deciding which property or physical effect is relevant,
which has not yet been solved. Furthermore, existing fidelity evaluation ap-
proaches rely on real sensor measurements as a reference for comparison. This
assumes on the one hand that the sensor already exists and on the other hand
that measurement data has been recorded. Especially the latter, as described
in Chapter 3, is only practicable in simple test environments, because of the
complex ground truth determination. However, no approach exists to assess
the accuracy of the simulated sensor data in another environment where it is
not feasible to generate reference data.
Consequently, a method is needed that allows an objective and quantitative

evaluation of synthetically generated radar data, taking into account the im-
portant sensor characteristics. For this purpose, the present chapter proposes
an approach to answer the third research question RQ3: How to determine the
degree to which the radar simulation and experimental measurements concur?
A machine learning-based evaluation approach to assess a radar model is

presented in this thesis. Therefore, a neural network (PointNet++ [143]) is
trained in order to classify real and synthetic radar data with the objective
of learning the latent and characteristic features of real radar point clouds.
Moreover, the classifier’s confidence score of the ‘real radar point cloud ’ class
is proposed as a metric to measure the degree of fidelity of simulated radar
data.
The remainder of this chapter is organized as follows: The developed method

is introduced in detail in Section 5.2. Based on this, the experiments and the
results are described in Section 5.3. Finally, the effectiveness of the proposed
approach is discussed in the Section 5.4, including a concise outlook on further
research.
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5.2 Method

This section proposes the developed method which focuses on the enhancement
of the existing approaches at the detection level by incorporating a quantita-
tive evaluation without the need for self-defined metrics. A machine learning-
based approach is introduced and in order to investigate the effectiveness of the
method, the proposed deep evaluation metric (DEM) is compared with con-
ventional metrics to assess the fidelity of simulated radar point clouds. The
approach consists of the following four main steps which are illustrated in Fig-
ure 5.1: generation of real and simulated radar data, conventional metrics as
well as the developed DEM.

Figure 5.1: Overview of the proposed machine learning-based evaluation
method.

5.2.1 Sensor data generation

This sections briefly describes the sensor data generation used in this chapter,
since it was elaborated in detail in Chapter 3.

The first step comprises the generation of real radar measurements. There-
fore, the required test drives are conducted on a proving ground with the ego
vehicle and one target vehicle. A DGPS is used in combination with an IMU
for an accurate acquisition of the position, orientation and velocity of the ve-
hicles. A precise ground truth measurement is needed, because it serves as
the basis to produce the same tests in the simulation. Furthermore, the radar
data is recorded with various scenarios ranging from simple stationary scenes
to highly dynamic overtaking maneuvers.

On the other hand, the generation of simulated sensor data is mainly divided
in two steps: the simulation of the test drives based on the recorded ground
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truth data, and the generation of the actual sensor data, i.e. the synthetic
radar point cloud. The procedure of the latter is indicated in Figure 5.2 and
the implementation details of the underlying sub-modules and formulas used
are thoroughly explained in Chapter 3.

Figure 5.2: Processing pipeline of the developed radar simulation.

5.2.2 Conventional metrics

The existing conventional evaluation metrics are introduced in this section.
Two different metrics are implemented to investigate and estimate the accuracy
of simulated radar point clouds.
In the present thesis, each radar detection is defined by its two-dimensional

location and the Doppler velocity, both dimensions are compared to evalu-
ate the difference between real and synthetic radar data. In this regard, the
normalized sum of the smallest Euclidean distance is computed from every
point in the real point cloud X = (x1, ..., xM) to the simulated point cloud
Y = (y1, ..., yN), where xm, yn ∈ R3 are three-dimensional points. The used
point cloud to point cloud distance is first proposed by Browning et al. [144]
and is defined as:

D′pp(X, Y ) :=
1

M

M∑
m=1

min
1≤n≤N

||xm − yn||. (5.1)

The metric has the benefit that the disparity in values of each point and
the difference in the number of points between both radar data sources are
considered. Furthermore, it is divided by the respective number of points in
order to normalize the result. Additionally, the worst-case is assumed, as D′pp
is a non-symmetrical range metric:

Dpp(X, Y ) := max(D′pp(X, Y ), D′pp(Y,X)). (5.2)
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As for the second metric, the Wasserstein distance is used to compare the
point distributions between both radar point clouds. This metric is also known
as the earth mover’s distance (EMD). It is further based on the Kantorovich-
Rubinstein theorem [145], which addresses the optimal transportation problem
[146]. Thus, EMD measures the disparity between two distributions by the
optimal cost of rearranging one distribution into the other:

EMD(X, Y ) :=

∑M
m=1

∑N
n=1 fm,ndm,n∑M

m=1

∑N
n=1 fm,n

. (5.3)

Besides the three-dimensional point clouds X and Y , m and n represents
the number of points in the point sets. In addition, the solution to the trans-
portation problem between both radar data distributions is described by the
optimal flow fm,n. The Euclidean distance is used for the ground distance dm,n.
Therefore, EMD naturally extends the notion of a distance between individual
radar points to that of a distance between distributions of points. An in-depth
elaboration of the used formulas can be found in Rubner et al. [147].

5.2.3 Deep evaluation metric

Conventional existing metrics rely on self-defined metrics which assess specific
characteristics like the spatial distribution between synthetic and real radar
data. The problem of selecting an appropriate metric remains, which is equiv-
alent to selecting the relevant sensor properties or physical effects.

The following section proposes a machine learning-based metric to estimate
the fidelity of simulated sensor data. The aim of the developed method is to
train a neural network to distinguish between real and simulated radar point
clouds. Contrarily to the previously described conventional evaluation ap-
proach, the intent of the data-based method is to learn the latent features that
distinguish real from synthetic radar point clouds without having to determine
in advance which characteristic specifically to consider. Therefore, the classi-
fier’s predicted confidence score of the ’real radar point cloud ’ class is proposed
as a metric to measure the accuracy of simulated radar data.

The process of choosing and adjusting a suitable neural network architecture
is elaborated in the following in addition to the used data set and the training
and testing procedure.
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Network architecture

The radar point clouds have to be transformed to a regular format before
inserting them into a neural network, because the input of most networks
follow a regular structure like a grid map representation. In this respect, Qi et
al. provide with PointNet++ [143] an architecture to overcome this limitation
and work directly with point clouds without the need for previous mapping.
PointNet++ is a hierarchical network and is able to learn local features and to
deal with point sets that vary in density. Schumann et al. [66] and Danzer
et al. [62] have already shown that PointNet++ can be applied to radar data,
which is why this approach is used in this thesis.

Data set

In order to simplify the data acquisition, only the radar detections around
the target vehicle are considered. Since the test drives are performed on an
empty proving ground, this is a reasonable simplification. As described in the
previous chapters, the simulated sensor data is generated by reproducing the
real test drives in the virtual domain. This is the reason why the resulting data
set is rather balanced between real and synthetic measurements. 235 scenarios
are tested, which corresponds to 1.59 × 105 point clouds with 3 × 106 radar
detections in total. Hereby, each radar detection that is fed into the neural
network, contains two spatial coordinates along with the Doppler velocity.
Finally, the entire set is randomly split into a training and testing data set
with a 70/30 ratio.

Training and testing

The used network is trained from scratch, using both synthetic and real radar
data. In order to avoid model overfitting, the data set is augmented during
the training process. For this reason, the data is perturbed using random
Gaussian noise with a zero mean and a standard deviation of 0.1. The resulting
random noise is used to alter each feature dimension of every data point,
i.e. the spatial positions as well as the Doppler velocity of the detections are
modified. For the purpose of maintaining a fixed input size for each point cloud,
sampling is performed by randomly drawing (undersampling) or duplicating
(oversampling) each set up to 10 detections. Furthermore, the initial learning
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rate of the model is set to 0.001 and the batch size for training is 32. The
Adam optimizer is utilized for training and is performed for 20 epochs on two
two NVIDIA GeForce RTX 2080 Ti GPUs. Throughout testing, the batch size
is set to 1 to allow a variable number of points to be fed into the model. The
trained network achieves a classification accuracy of 82.14% within testing.

5.3 Experiments and results

The experimental setup is introduced in this section. Subsequently, the perfor-
mance of the trained network is investigated in order to analyze whether and
to what extent the model has learned the latent features that differentiate both
real and simulated radar point clouds and is thus able to distinguish between
them. Based on this, it is further analyzed whether the result of the final
network layer, i.e. the confidence score of the ‘real radar point cloud’ class,
can be used as a metric to measure the sensor model fidelity. Therefore, the
DEM is evaluated in comparison with the implemented conventional metrics
and the effectiveness of both approaches is compared and discussed.

5.3.1 Experimental setup and classification performance

For the sake of comparability, the metrics are compared using the same scenario
in which a target vehicle drives a path in the shape of an eight in front of the
stationary ego vehicle. The ego vehicle is equipped with the radar sensor and
the scenario is illustrated in Figure 5.3. It can be assumed that the real radar
point clouds change in distribution and density over different positions and
orientations of the target vehicle. Thus, the goal of this scenario used is to
investigate to what degree the radar model is capable to model this behavior.

Given that the implemented radar simulation incorporates a random module
(detection probability) in order to model the stochastic nature of real radar
measurements, the evaluation results are also subject to random effects. In
order to diminish these effects, the scenario is simulated 100 times and the
results are averaged over these runs.

Besides the path of the target vehicle, the predictions of the classification
of the trained network is color coded in Figure 5.3. Hereby, the model is fed
with real radar data as well as synthetically generated sensor data to examine
the capability of the model to differentiate between both data sources. This
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specific scenario was withheld from the training and testing set to guarantee
an unbiased evaluation of the model performance.

Figure 5.3: Classification results on the withheld scenario. The model is fed
with real radar data as well as the corresponding synthetic radar
point clouds. The green detections indicate all correct classifica-
tion predictions. Additionally, the false positives (input: simu-
lated, prediction: real) and false negatives (input: real, prediction:
simulated) are illustrated.

In the examined scenario, the model achieves a classification accuracy of
88.59% with simulated and 91.99% with real radar measurements as input. It
can be observed that most of the false predictions are located in specific areas
for both inputs. The center of the false predictions is located at a longitudinal
distance of about 27 meters and a lateral distance of approximately 5 meters.
The results indicate that either the vehicle was not observed enough in the
training before in this area or that this specific zone exhibits a weakness of the
radar simulation. Contrarily, the larger part of the false negatives are found
in the near field of the sensor.
In summation, the neural network can predict most of the radar point clouds

correctly, which indicates that the model could learn the distinctive features
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that differentiate real and synthetic radar data. This allows a deeper investi-
gation of the proposed deep evaluation metric in comparison with conventional
metrics.

5.3.2 Results of evaluation approaches

At first, the post-processing procedure is elaborated. Based on this, the qual-
itative and the quantitative evaluation are performed and compared between
the different metrics.

Postprocessing

Apart from the result averaging of over 100 simulation runs, the data are
further post-processed in order to ensure a valid comparison between different
metric results. For the reason that the resulting values can vary widely, a
min-max normalization is applied, i.e. rescaling the range of data to [0, 1].
Moreover, the axes are reversed in a way that zero represents the worst (lowest
sensor model fidelity) and one the best possible result, meaning high sensor
model accuracy. As the final post-processing step, the data is smoothed for a
clearer visualization to be able to compare the trend of the different results.
For this, the Savitzky-Golay filter [148] is applied.

Qualitative evaluation

In the following, the key differences between both radar data sources are de-
fined, which are identified by a qualitative evaluation based on visual matching
of both radar measurements. Significant sample points of both the real and
simulated radar point clouds are depicted in Figure 5.4. According to this, the
metrics are then examined to what degree they can quantifiable reproduce the
observed qualitative disparities.

Since the developed radar model uses a ray casting-based technique to ap-
proximate the radar wave propagation, it is evident that on the one hand large
differences between real and synthetic radar point clouds occur, especially at
close range due to an increase in the number of simulated detections. On the
other hand, the number of radar detections decreases too much with increasing
range in comparison to the real measurements.
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Figure 5.4: The real and simulated radar detections are illustrated and the
white boxes indicate the frame number.

Apart from that, an additional effect can be observed, which occurs in par-
ticular in the near field. This effect is the formation of a L-shaped point clouds
in this area, which is due to the fact that only the outer shell of the vehicle
is modeled and the resulting aggregated high number of points in the close
range make the edges of the shell to be clearly visible. However, this point
cloud shape is rather untypical for radar, since generally detections can also
be found inside the vehicle shell.

Quantitative evaluation

In order to further analyze the metrics, the results are additionally plotted
over time in Figure 5.5. It is especially apparent that all three metrics indicate
a relatively high model fidelity, in particular the EMD (µ = 0.79, σ = 0.09)
and Dpp (µ=0.90, σ=0.09). However, the proposed DEM predicts the lowest
fidelity with a relatively high standard deviation (µ=0.72, σ=0.19).
Whereas the EMD does not imply any decline of fidelity of the simulated

data in the near field, i.e. around frame 150 and 430, the Dpp has a strong
minimum peak in the areas directly in front of the sensor. This minimum
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Figure 5.5: The moderately transparent and solid lines indicate the unfiltered
results, whereas the dashed lines represent the smoothed point
cloud metric results.
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can be explained by the significant increase in the number of points in the
simulated data, which causes an strong increase in the calculated sums of the
individual radar points. Although DEM indicates a low fidelity in both near
ranges mentioned, peaks upwards can additionally be noticed in these zones.
These are probably caused by the turning point of the observed vehicle, as the
object is perpendicular to the sensor in these positions and thus the previously
described L-shape disappears, which could result in an sharp increase of the
fidelity estimated. However, in Figure 5.4 it can be observed that the number
of points differ considerably especially in the near field, which should result in
a further descent of fidelity. The effect of too few simulated points appearing
at longer distances is not significantly reflected by any of the metrics presented.
The number of points might be too small to allow a reliable prediction of the
neural network. For EMD and Dpp, an insufficient number obviously does not
affect the estimated quality of the simulated point cloud.

5.4 Discussion

The present section recapitulates and discusses the main contributions of this
chapter to the third research problem RQ3: How to determine the degree to
which the radar simulation and experimental measurements concur? A novel
data-driven metric is introduced to measure the relevant characteristics of
radar measurements in order to estimate the accuracy of a radar simulation
for AD.
In this chapter, a machine learning-based metric, the DEM, is presented

to estimate the fidelity of simulated radar detections. To analyze the effec-
tiveness of the proposed approach, conventional metrics are used and their
ability to measure relevant differences between real and synthetic sensor data
is compared.
It can be shown that the developed DEM, unlike the conventional metrics,

is able to identify the weaknesses of the simulated radar detections in the
near-field region. However, it was not possible to measure all effects such as
the inaccurate number of detections at long ranges, which none of the metrics
were able to do. Overall, the proposed metric shows great potential as it could
reflect the intuitive result of a qualitative assessment much better than the
other metrics.

68



5.4 Discussion

Various extensions of the approach are conceivable to further improve the
data evaluation. Future work will focus on improving the training data, for
example by learning the entire scene perceived by a sensor or including classes
other than cars, such as pedestrians or cyclists. In addition to enhancing the
training data, it can be investigated to what extent it is beneficial to include
time information to account for the temporal evolution of objects. Addition-
ally, it can be further examined whether the network is able to generalize the
predictions to other scenarios not observed before. It is also conceivable to
investigate to what degree general statements can be made about the quality
of radar data without using real measurement data as a reference, for example,
if the real radar sensor does not yet exist.
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6.1 Introduction

Since the safety validation of an AD system is an incredibly complex problem,
novel approaches are needed. This is because a statistical proof of safety based
on real testing in the real world does not scale [14]. The combination of field
tests and tests in a virtual environment is a promising method to considerably
decrease the validation effort of autonomous driving [15].
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In the literature, numerous application areas for the use of simulated sensor
data in the development and test process can be found [29]. Sligar uses an
accurate physics-based radar simulation to create a synthetic sensor data set
to train a machine learning-based object recognition model [30]. In contrast,
Hartstern et al. use probabilistic sensor simulations to determine the optimal
sensor setting at early stages of development, because they provide a wide
range of modification parameters and customizable settings [31]. Ponn et al.
use phenomenological sensor models to automatically create critical scenarios
based on a sensor setup model of the autonomous vehicle [32].
Since the requirements for a sensor model can vary greatly depending on the

target application, the sensor model must be validated and the right compro-
mise between model realism and computation time must be found. Especially
for highly realistic radar simulations, the computation time requirements are
very high. Although it is relatively simple to measure the run time of a simula-
tion execution, estimating the accuracy of a sensor simulation is quite complex,
because not only the sensor model itself but also the virtual environment has
to be assessed [80].
Schlager et al. derive the accuracy of a sensor simulation by focusing on the

inputs and outputs as well as the modeling technique used [29]. If a sensor
simulation relies on rendering methods such as ray tracing, the sensor model is
classified as high fidelity. However, this is a rather qualitative evaluation and
does not necessarily apply to radar models. Furthermore, various approaches
can be found in the literature that qualitatively compare synthetic and real
radar data [34,90,121]. Apart from a direct evaluation of virtual sensor data,
the model can also be evaluated indirectly by investigating the disparity of the
results from a subsequent algorithm, which processes the sensor data [94,127].
As an alternative, there exist different evaluation methods for lidar simula-

tions, which are based on distance metrics and occupancy grids [16, 125, 144].
However, the question arises whether these approaches can be applied to radar
data, considering that they are much more stochastic and sparse in comparison
to lidar point clouds [18]. As for camera data, Reway et al. introduce a testing
method to measure the difference between simulation and real video data by
indirectly assessing the model with an object detection algorithm fed with real
and simulated data [124].
Despite the fact that many radar simulation approaches exist in literature,
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the problem of quantitatively evaluating the overall accuracy of a sensor model
remains unsolved. However, it is crucial to validate the employed radar sim-
ulation to be able to rely on simulation-based tests [80], because it can be
assumed that a discrepancy exist between a radar simulation and the actual
radar sensor.

Consequently, a novel method is needed that allows to accurately estimate
the simulation-to-reality gap, serving the objective to decide whether a given
model is sufficient for an intended use. Therefore, the target application should
be considered in a model evaluation, since the requirements on the simula-
tion can vary depending on the desired use. Thus, this chapter introduces a
methodology to address the fourth research problem RQ4: How to measure the
overall simulation-to-reality gap considering a target application?

A multi-level testing method is proposed to measure the overall gap be-
tween simulation and reality for virtually testing perception functions. The
remainder of the present chapter is structured as follows: Firstly, Section 6.2
elaborates the developed validation methodology, including the defined eval-
uation levels. Based on this, Section 6.3 presents the conducted experiments
in order to analyze the effectiveness of the approach. Finally, Section 6.4 con-
cludes this chapter with a discussion and a concise outlook on possible further
work.

6.2 Method

The present section introduces the method which focuses on measuring the
simulation-to-reality gap of a radar simulation regarding an intended use in
order to render existing differences visible. A multi-level testing method is
developed and the procedure is illustrated in Figure 6.1.

The approach consists of a combination of an explicit and an implicit sensor
model evaluation. Whereas the former directly evaluates the synthetic data,
the latter refers to an indirect assessment by analyzing the prediction result of a
subsequent target application. Additionally, a multi-object tracking approach
is chosen as an exemplary intended use of the radar data in this thesis, which
is a typical use case of radar perception in the AD context.

Both assessment levels are further subdivided into a holistic (high level) and
a detailed (low level) evaluation. This results in four separate fidelity levels
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Figure 6.1: Overview of the proposed validation approach in order to measure
the radar simulation gap.

(FL) illustrated in Figure 6.2. This separation into four fidelity levels allows a
holistic sensor model assessment that makes existing discrepancies transparent
and enables an accurate measurement of the overall model fidelity.

Figure 6.2: Four different fidelity levels are introduced to allow an accurate
estimation of the overall radar model fidelity.

In the following, the different modules are elaborated, in particular the pro-
posed fidelity levels along with the quantification of the overall radar simulation
gap is described in detail.

6.2.1 Radar data generation and perception

The present section briefly describes the implemented generation of real and
synthetic data as well as the perception algorithm used. The employed models
are elaborated in-depth in Chapter 3.
The generation of the real radar data along with the ground truth acquisition

is analogous to the previous chapters. In the following experiments, all three
radar models developed are used to generate synthetic data. This serves the
goal to examine the developed method on different use cases and to analyze
to what extent the method can measure the strengths and weaknesses of the
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different modeling procedures. For this reason, the following typical models
of a sensor are used: an ideal radar model (IRM), a data-driven or stochastic
model (DDM), and a physically-based model using ray tracing (RTM).

The radar point clouds generated by these employed models are further
processed by a perception module, which is represented in this thesis by a
tracking-by-detection approach as the target application. This module is com-
prised of a clustering and a tracking method.

6.2.2 Explicit sensor model evaluation (ESME)

In this work, the direct or explicit sensor model evaluation focuses on the
radar detection level, which relates to the interface after a reflection passes
the detection threshold, leading to the radar point cloud. Both the real and
the synthetically generated radar data are compared regarding their similarity.
Thereby, the evaluation is conducted on two different levels of detail. The first
FL refers to a single score metric to evaluate the fidelity of the simulated data
in a holistic perspective, i.e. focusing on the point cloud as a whole (high
level evaluation). In contrast, the second FL independently investigates the
individual features of the point cloud, including the number of detections (low
level evaluation).

Explicit - high level evaluation

Each detection in the radar point cloud is defined by its two-dimensional po-
sition as well as the Doppler velocity. The normalized sum of the smallest
Euclidean distance from every point in the real X = (x1, ..., xM) and synthetic
point cloud Y = (y1, ..., yN) is used, where xm, yn ∈ R3 are three-dimensional
points. The point cloud to point cloud distance Dpp introduced in Chapter 5
is also used here and defined as follows:

Dpp(X, Y ) :=
1

M

M∑
m=1

min
1≤n≤N

||xm − yn||. (6.1)

As the second metric, the Gaussian Wasserstein distance (WD) is used,
which was introduced in Chapter 5 as the earth mover’s distance. It compares
the point distributions of two point clouds and measures the discrepancy be-
tween two sets determined by the optimal cost of rearranging one into the

75



6 Measuring the Simulation-to-Reality Gap of Radar Perception

other. The Wasserstein distance is defined as follows:

WD(X, Y ) :=

∑M
m=1

∑N
n=1 fm,ndm,n∑M

m=1

∑N
n=1 fm,n

. (6.2)

Besides the point clouds X and Y , m and n represent the number of points
in the clouds. Furthermore, the optimal cost between both distributions is
defined by the optimal flow fm,n. As the ground distance dm,n the Euclidean
distance is used. In consequence, WD naturally expands the notion of a range
between single detections to that of a distance between distributions of points.

Explicit - low level evaluation

In order to enable a detailed assessment of the synthetic data and to render
existing deviations visible, individual features of the point cloud are specifically
evaluated. Since a radar point is defined by its two-dimensional position (radial
distance r, azimuth φ) and the Doppler velocity, each dimension is assessed
separately and the respective differences are measured across the real and
simulated domain by the feature specific Wasserstein distance (WDfeature).
This results in the following metrics: WDr, WDφ, WDDoppler. As the last
metric of this fidelity level, the difference in the number of points is considered
by the absolute point number error (PNE).

6.2.3 Implicit sensor model evaluation (ISME)

The indirect or implicit sensor model evaluation investigates the output of a
subsequent perception module fed with real and simulated sensor data. By
feeding the data from both domains into a perception algorithm optimized for
real radar data and comparing both resulting predictions, the strengths and
weaknesses of the sensor simulation can be investigated. Analog to ESME,
ISME is subdivided into high and low level evaluation. The former focuses on
the overall prediction evaluation, whereas the latter independently measures
the discrepancies of specific features of the prediction result. The metrics used
are briefly described in the following, because the assessment of perception
methods is generally better investigated and more mature compared to the
evaluation of radar detections.
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Implicit - high level evaluation

For this holistic fidelity level, two different metrics are used to measure the
overall performance of the object tracking. The widely known optimal sub-
pattern assignment (OSPA) is used as the first metric, which was proposed by
Schumacher et al. [126]. OSPA measures two different characteristics, account-
ing for localization and cardinality errors. Furthermore, it has two adaptable
parameters p and c that can be interpreted as the outlier sensitivity and car-
dinality penalty respectively. In this thesis, they are set to p = 2 and c = 5.

In order to measure the performance of the bounding box prediction, the
intersection over union (IoU) is used as the second metric. The IoU is defined
as the area of intersection between the predicted shapes based on synthetic
and real radar data, divided by the area of the union of the two shapes.

Implicit - low level evaluation

With the purpose of evaluating the object tracking prediction, the root mean
squared error (RMSE) of the longitudinal x-position and lateral y-position
estimation are computed. Furthermore, the cardinality estimates are compared
by calculating the absolute cardinality error, with the estimate based on real
radar measurements as the ground truth.

6.2.4 Measuring the simulation-to-reality gap

After evaluating each level individually in the previous sections, the final step
is to combine all results into an overall gap. Therefore, the simulation-to-
reality gap G is proposed with the goal to measure the total disparity between
the radar simulation and reality. It is calculated as follows:

1. choose a test scenario

2. perform the test drive and record ground truth data and sensor measure-
ments

3. reproduce the tests in a virtual environment in order to generate syn-
thetic sensor data

4. run the perception module with real and synthetic sensor data
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5. perform explicit as well as the implicit sensor model evaluation

6. normalize metric results to the interval [0, 1] so that zero represents the
best case (no deviation)

7. aggregate evaluation results on each fidelity level

8. compute the averaged gap over all fidelity levels to obtain the combined
simulation-to-reality gap G

6.3 Experiments and results

In order to analyze the effectiveness of the developed method in terms of
its capability to accurately estimate the gap between simulation and reality,
the performed experiments are elaborated in this section. At first, the three
radar simulations (IRM, DDM, RTM) are evaluated in-depth for one exemplary
scenario to analyze to what degree they can model the real sensor behavior
across the different FL. Based on this, the fidelities of the radar simulations
are further investigated across different scenario categories.

6.3.1 Single scenario - qualitative evaluation

The radar models are qualitatively evaluated based on their respective object
tracking performance. Hereby, they are analyzed to what extent they can
approximate the result of the prediction algorithm fed with real radar mea-
surements.
In the example scenario, the sensor is stationary located in (0, 0) and a target

vehicle drives a path in form of an eight in front of it. The predictions of the
tracking module fed with real and simulated data from each radar model are
illustrated in Figure 6.3.
Since the object tracking is optimized with real radar measurements, the

predictions of the object position show a relatively small deviation from the
true track of the vehicle. Due to the fact that the IRM is rather simple,
only small deviations can be observed, similar to the predictions based on real
data. These results are expected, because the radar detections are uniformly
distributed along the bounding box of the target vehicle. Therefore, the po-
sition estimation is simpler in comparison to the more stochastic detections
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Figure 6.3: The color-coded points indicate the radar-based predicted tracks
based on real and simulated radar sensor data, while the gray line
represents the ground truth object track (GT Track).
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generated by DDM and RTM, as they also model sensor errors, resulting in
more noisy data in general. The latter model has a constant offset since the
simple ray casting approach is utilized. As a result, the radar points are dis-
tributed more along the visible edge of the object, leading to a slightly shifted
prediction. Despite the fact that similar results are observed with the synthetic
detections generated by DDM, the observed error is relatively smaller. This
can be explained by the fact that the radar points are spread over the entire
vehicle and are not predominantly concentrated on the outer shell.

6.3.2 Single scenario - quantitative evaluation

Despite that IRM is an ideal radar model, it provides a more realistic estimate
in terms of object tracking prediction, i.e. similar to the real radar tracking
predictions. With the purpose to measure an accurate overall model fidelity
(simulation-to-reality gap), not only the tracking prediction but also the direct
result of the model, in this case the radar point cloud, must be considered.
The results of the implicit as well as the explicit sensor model evaluation

are combined in order to obtain a comprehensive estimate of the overall gap
between simulation and reality. For a holistic evaluation of the sensor model,
several metrics are used at each level, each assessing different features in the
data. The findings of the approach elaborated in Section 6.2 are presented in
Table 6.1.
Here, the value of a metric relates to the mean value across the scenario.

Since the resulting range of values can vary greatly between the different met-
rics, min-max normalization is applied to rescale the data range to [0, 1]. Ag-
gregating the individual results of each evaluation level makes it easier to inter-
pret the results of the metrics, as shown in Figure 6.4. In addition, the overall
gap between simulation and reality G is shown, allowing a quantification of
the overall fidelity with respect to the intended use under study.
Based on the results, it can be observed that the qualitative evaluation by

the visual comparison is reflected in the metric results, in the sense that the
IRM shows a better performance in the implicit than in the explicit evaluation
compared to the other models. However, due to the relatively very large de-
viations in the explicit comparison, the ideal model shows the highest overall
gap.
On the other hand, for the data-driven model and the ray tracing-based
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Table 6.1: The assessment results of the radar models implemented are pre-
sented for the different fidelity levels. The down arrow (resp. up
arrow) indicates that the performance is better if the quantity is
smaller (resp. greater).

Fidelity Level Metric IRM DDM RTM

FL I OSPA ↓ 0.342 0.314 0.304
IoU ↑ 0.545 0.347 0.346

FL II
RMSEx ↓ 0.292 0.287 0.231
RMSEy ↓ 0.243 0.258 0.189
Cardinality Error ↓ 0.093 0.0 0.004

FL III DPP ↓ 0.381 0.051 0.152
WD ↓ 0.398 0.055 0.173

FL IV

PNE ↓ 0.435 0.304 0.064
WDr ↓ 0.26 0.341 0.331
WDφ ↓ 0.089 0.102 0.112
WDDoppler ↓ 0.409 0.04 0.161
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Figure 6.4: Aggregated results of the fidelity levels together with the resulting
overall simulation-to-reality gap for scenario ‘eight’.

model, a significant difference between FL I and the other levels is clearly
visible. This can be explained by a large difference in the bounding box pre-
diction, which translates into a poor IoU score. With the exception of FL II,
the results of the other fidelity levels are very similar, which is why the total
deviation of DDM and RTM is almost the same.

6.3.3 Evaluation across multiple scenarios

In contrast to the evaluation of a specific scenario, this section extends the
evaluation of the accuracy of each model to different categories of scenar-
ios. Multiple different scenario categories are evaluated, because the output
of sensor data as well as the performance of object tracking can vary greatly
depending on the situation tested. The scenarios are divided into single (s)
and multi-object (m) scenarios, as indicated in Table 6.2. In addition, typical
difficult scenarios were selected to demonstrate the proposed method. The
chosen scenarios do not claim to cover all relevant scenarios, but rather are of
exemplary character.
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Table 6.2: List of tested scenarios and their description.

Scenario Name Description

oncomings target enters sensor FOV in far range
overtakes target enters FOV in near range and overtakes ego
leadings ego follows a leading target
eights target drives an eight in front of static ego
occlusionm multiple targets are occluded
leadingm ego follows multiple leading targets driving in parallel
overtakem multiple targets overtake ego
crossingm multiple targets cross in front of ego

The results of the respective gaps between simulation and reality are shown
in a radar diagram illustrated in Figure 6.5. It can be seen that the ray
tracing-based model achieves the smallest error in almost all tested scenarios.
However, the exception is the crossing scenario, where both IRM and RTM
perform relatively poorly, while DDM has the smallest deviation from the real
data. It is also observed that the deviations are larger in the multiple vehicle
scenarios than in the single object scenarios. This is probably due to the fact
that the radar models used are relatively simple and therefore do not take into
account effects such as multi-path reflections.

6.4 Discussion

In this section, the main contributions of the present chapter to the following
research question are discussed RQ4: How to measure the overall simulation-
to-reality gap considering a target application? A multi-layered sensor model
evaluation approach is proposed in order to measure the gap between a radar
simulation and the real radar sensor.

To analyze the effectiveness of the developed method, three typical radar
models were implemented and their fidelity assessed. It can be shown that
the different levels of evaluation introduced can reveal existing discrepancies
in detail visible as well as investigate the sensor model fidelity across different
scenarios. In addition, this quantitative and objective evaluation approach
enables scaling of virtual tests and provides the basis for an informed decision
based on simulation results, thus reducing the validation effort of AD functions.
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Figure 6.5: The simulation-to-reality gap of each radar model across multiple
scenarios with IRM( ), DDM( ), RTM( ).
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Despite the fact that this thesis studies the applicability of radar simulations
for tracking multiple objects, the presented concept is not exclusively designed
for this class of perception module, but also allows further abstractions for
other algorithms such as classification. Still, the metrics used for evaluating
the implicit perception models would need to be modified to fit the particular
use case. Moreover, the multi-layered approach could be straightforwardly
adapted to other sensor modalities like lidar sensors, since lidar point clouds
are comparable to detections from a radar.

Apart from an extension of the method, some improvements of the approach
are also conceivable. An apparent enhancement exists in the metric calculation,
because some information might be lost due to the averaging of the evaluation
results over a scenario run. Therefore, it needs to be investigated to what
extent a deeper analysis of the time series can improve the overall model es-
timation. Additionally, it was assumed that the used metrics on each FL are
weighted equally. Although this is a reasonable procedure, the weighting prob-
lem needs to be further explored in future work. Similar to the weighting of the
metrics, it was assumed that each model fidelity level is equally important, but
depending on the use case, a similar perception result may be favored over an
exact radar point cloud and vice versa. Therefore, it is necessary to determine
what model quality requirements are needed for the varying use cases.
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Simulation-based testing in the context of AD relies inter alia on accurate
models of the environment, sensors, and their signal propagation. These mod-
els are by necessity approximations, but must be designed to adequately rep-
resent the real world. This thesis is a step towards developing sound and vali-
dated sensor simulation approaches for virtual testing of autonomous driving
functions, serving the broader goal of gaining trust in simulation and synthetic
data to reduce the overall validation effort and the need for real-world testing.
This chapter summarizes the approach taken in this thesis, highlights the main
contributions made, and discusses the limitations of the developed methods.
This is complemented with an outlook of further potential research directions.

7.1 Conclusion

Having virtual tests does not eliminate the need for a significant number of tests
in a real environment. Rather, the overarching objective of this dissertation
was to investigate the extent to which a sensor simulation can be trusted and
to measure this trust in a quantifiable way. By analyzing the capabilities and
limitations of a sensor model, reliable predictions about the real system can
be derived based on tests in a virtual environment.

Therefore, different approaches for the validation of a sensor simulation were
provided in this thesis along with techniques to model a radar simulation for
virtually testing AD functions such as object detection and tracking. This work
proposed several contributions to different aspects of sensor model validation.
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In the following, the developed approaches are recapitulated and discussed
with respect to the research problems derived and formulated in Section 2.4.

RQ1: What is missing in existing sensor model validation approaches?
The first research problem is addressed in Chapter 2. Existing approaches on
radar simulation and sensor model validation were structured regarding the
validation method used.
The most significant observation is that there exist no systematic proof of

fidelity that provides an objective and quantitative method for the validation
of a radar simulation for AD. Although most approaches focus on the direct
assessment of the synthetically generated radar data, merely three authors
can back up their sensor model evaluation with objective numbers. Most
of the proposals presented perform a qualitative evaluation, often by visually
comparing the generated results with expectations. A few also do not assess the
simulated data at all. Additionally, since there is currently no benchmark for
objective assessment of sensor model accuracy, many approaches proclaim their
validity based on a momentary observation in individual scenarios. However,
no approach exist that investigates a larger number of scenarios.
Besides a direct evaluation of the sensor data, some approaches include a

downstream target application in the assessment as well. Nevertheless, these
methods are mainly applied to data from a lidar sensor. This raises the ques-
tion of whether these approaches are also suitable for radar simulations, since
radar data are typically much more sparse and stochastic in nature.
A detailed derivation of the resulting research problems can be found in

Section 2.4.

RQ2: Which features of the radar simulation are relevant for a downstream
application?
Chapter 4 deals with the second research question. A sensitivity analysis
approach is developed to identify the relevant sensor characteristics w.r.t. to a
target application.
Furthermore, the method proposed assesses a sensor simulation with the

objective to determine the impact of specific sensor effects regarding a desired
use case. This approach can generally be applied to various simulation models
and was used in this work especially for a radar simulation, which in par-
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ticular often has computationally intensive requirements. Moreover, a spatial
clustering algorithm is used as a typical target application that processes radar
data. The algorithm is fed with simulated as well as real radar measurements
with the purpose of comparing both prediction results. In order to perform
the sensitivity analysis, the FAST algorithm is used taking the result of the
clustering evaluation as input. This serves the purpose of drawing conclusions
about the relevance of individual parameters or features based on the measured
sensitivity.

The investigation of the effectiveness of the proposed approach can show
that a sensitivity analysis allows a more detailed, objective and measurable
evaluation of the synthetically generated radar data compared to a qualitative
assessment. Furthermore, the results from specific situations can be attributed
to the contribution of each sensor property of the radar simulation, leading to
an efficient analysis of the simulation result.

RQ3: How to determine the degree to which the radar simulation and experi-
mental measurements concur?
This section recapitulates and discusses the main contributions of Chapter 5,
which addresses the third research problem.

A novel data-driven metric is proposed to objectively measure the latent
features of radar point clouds in order to estimate the accuracy of a radar sim-
ulation. The machine learning-based metric, DEM, is introduced to estimate
the fidelity simulated radar detections. In order to investigate the effective-
ness of the proposed metric, conventional metrics are used and their ability to
measure the discrepancy between real and synthetically generated sensor data
is compared.

From the conducted experiments, it is found that the developed DEM is able
to detect the shortcomings of the simulated radar point clouds in the near-field
region, unlike the conventional metrics. However, it was not possible to cap-
ture all radar characteristics, such as the inaccurate number of detections at
long ranges, which none of the metrics could. All in all, the developed metric
shows great potential as it could reproduce the expected outcome of a quali-
tative evaluation much better than the other conventional metrics.

RQ4: How to measure the overall simulation-to-reality gap considering a target

89



7 Conclusion and Outlook

application?
The present research question is addressed in Chapter 6 and the main contri-
butions and findings are discussed in the following.
A multi-layered approach to sensor model evaluation is developed with the

goal of estimating the simulation fidelity of a radar simulation for virtual test-
ing of perception algorithms. Four different fidelity levels are introduced to
allow both a direct evaluation of the sensor data (explicit sensor model evalu-
ation) and the consideration of a target application that further processes the
sensor data (implicit sensor model evaluation). On the other hand, this multi-
level validation procedure provides an in-depth evaluation of specific aspects of
the simulation as well as a holistic evaluation resulting from the combination
of all fidelity levels.
With the purpose of investigating the efficiency proposed validation ap-

proach, three typical radar simulations are implemented and their accuracy
is assessed. From the results, it can be shown that the different levels of eval-
uation introduced can reveal existing differences in detail visible as well as
examine the sensor model across different scenarios. Therefore, this objective
and quantitative method makes the scaling of simulation-based tests possi-
ble and provides the basis for a profound decision based on tests in a virtual
environment.

7.2 Further work

The present section addresses the remaining two research questions for the val-
idation of a sensor simulation from Section 2.4. Following this, general aspects
for further research directions are discussed.

RQ5: What sensor model fidelity is sufficient for which intended use?
Apart from the problem of measuring the accuracy of a sensor simulation,
i.e. the gap between real and synthetic sensor data, the question remains what
fidelity is sufficient for which use case. Due to the high demands on the ex-
ecution speed, a sufficient degree of realism must be found. Since a certain
discrepancy between simulation and reality can be assumed, the problem re-
mains which error is an acceptable discrepancy.
One conceivable approach is to include safety-relevant aspects [149]. In this
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respect, the fidelity evaluation is extended by an additional dimension with
regard to the significance for safety. Thus, differences could be neglected if
they are not meaningful for the safety validation of the autonomous vehicle.
An example of this would be a discrepancy that is in the far range where it
is unlikely that critical situation will arise. On the other hand, a discrepancy
between simulated and real sensor data in the close range directly in front of
the ego-vehicle should be weighted more strongly, since an imminent threat
could be present. In this way, the lowest required model fidelity could be de-
termined at which the same criticality still prevails in the simulation as in the
real reference scenario.

RQ6: Which scenarios need to be tested for the application domain?
As the ground truth generation of the test drives is very complex, e.g. in dense
urban environments, the tests are often carried out on a simplified test site.
Since the reference data such as sensor measurements are then also recorded on
the test site, the problem of transferability of the results arises. Novel methods
are needed to overcome this gap between validation and application domain.

There exist different approaches that proposed methods to find and generate
critical scenarios. However, these often focus on the system level of an AD sys-
tem [150–152] or on other sensor modalities such as lidar [153] or camera [154].
To the best of the author’s knowledge, there are no methods applied to radar
simulations in particular. In addition, these methods focus on finding critical
scenarios related to system safety, but do not consider what tests are required
to validate a sensor model. Therefore, a possible approach is to investigate
how these methods can be adapted to validate a radar simulation. For this
purpose, the implemented models and the developed evaluation methods from
this work could be used.

General future research directions

In addition to the research problems formulated for the validation of a sensor
simulation, other research directions dealing with simulation-based testing in
general are discussed in the following.

The present dissertation focused on the validation of a radar simulation.
However, additional novel methods are needed to compare different sensor
models while ensuring comparability of results. One possible solution to this
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could be a common benchmark for model evaluation involving a public database
of sensor recordings, similar to the well-known KITTI [155] or nuScenes [156]
for perception algorithms. Apart from the actual sensor data, this still re-
quires additional development work with regard to, for example, standardized
interfaces and formats for virtual maps or scenario descriptions. Some formats
already exist, but they have not yet found wide acceptance and need to be
further developed and matured.
As described in Chapter 2, the environment model is an essential part of a

sensor simulation. The modeling effort of new environments is very time con-
suming and expensive. Therefore, novel methods are needed to automate the
modeling process. This is very challenging because, in addition to information
about the infrastructure physical properties, such as roughness values of ob-
jects, also play an important role, especially for the generation of sensor data.
Addressing this issue would also help to bridge the gap between validation and
scope described earlier.
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