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Abstract

Partial differential equations (PDEs) are used to describe phenomena in a variety of fields,

such as physics, engineering, biology or finance. Due to unavoidable measurement errors or

data sparsity, the determination of accurate model parameters is often difficult and subject to

uncertainty in practical PDE applications. In order to take these uncertainties into account, it is

common to consider stochastic/random PDE models, where some of the model components are

described as random objects. In many situations, Gaussian random fields or processes are used

to model uncertain parameters in a PDE. Gaussian random fields provide a rich theory and are

comparatively easy to simulate, which makes them attractive for applications. However, in some

situations, the standard Gaussian model is not flexible enough since pointwise distributions of

Gaussian random fields are always Gaussian and, therefore, (semi-)heavy tailed distributions

cannot be displayed. Further, the paths of commonly used Gaussian random fields are spatially

continuous, which is unnatural in some applications, for example, when mathematical models

for subsurface/groundwater flow in fractured porous media are considered.

In order to overcome these restrictions of the standard Gaussian model, this thesis presents

distributionally flexible random fields with discontinuous realizations and explores their appli-

cation in the diffusion coefficient of an elliptic PDE.

The subordinated Gaussian random field is constructed by the composition of a Gaussian

random field on a higher-dimensional parameter space with independent Lévy subordinators.

This thesis investigates theoretical properties of these fields, including results on pointwise

distributions, covariance functions and the existence of pointwise moments, all of which are

important for practical applications.

Besides the theoretical investigations, the subordinated Gaussian random field is considered

in the diffusion coefficient of an elliptic PDE as an extension of the standard Gaussian model.

xi



xii Abstract

The existence of a unique solution is proven and possible spatial discretization techniques are

discussed. Further, an approximation theory for the considered diffusion coefficient is provided

and the resulting error propagation to the PDE solution is investigated.

In many applications of Uncertainty Quantification, one is interested in moments of (func-

tionals of) the solution to a random PDE. Therefore, problem specific multilevel Monte Carlo

estimators are constructed to approximate the mean of a random elliptic PDE, where the discon-

tinuous subordinated Gaussian random field occurs in the diffusion coefficient. General a-priori

error bounds are derived for these estimators and various numerical experiments complete

their investigation.

In addition to the subordinated Gaussian random field, the so called Gaussian subordinated

Lévy field is studied, which is constructed by the composition of a general Lévy process with a

positive transformation of a Gaussian random field. The resulting fields are discontinuous and

display great flexibility in the jump geometries. Besides theoretical investigations regarding the

pointwise distributions and the covariance formulas, these fields are considered in the diffusion

coefficient of an elliptic PDE.

Subordinated Fields and Random Elliptic Partial Differential Equations



Zusammenfassung

Partielle Differentialgleichungen (PDGs) werden zur Beschreibung von Phänomenen in ei-

ner Vielzahl verschiedener Bereiche, wie beispielsweise der Physik, dem Ingenieurwesen, der

Biologie oder dem Finanzwesen verwendet. Aufgrund von Messfehlern oder fehlerbehafteten

Daten ist die genaue Bestimmung von Modellparametern in praktischen PDG-Anwendungen

oft erschwert und Unsicherheiten ausgesetzt. Um diese Unsicherheiten zu berücksichtigen ist

es üblich stochastische/zufällige PDG-Modelle zu betrachten, bei denen einige der Modellpa-

rameter als Zufallsobjekte modelliert werden. Oft werden Gaußsche Zufallsfelder/Prozesse

verwendet, um unsichere Parameter in einer PDG zu modellieren. Gaußsche Zufallsfelder bieten

eine umfassende Theorie und sind vergleichsweise einfach zu simulieren, weswegen sie für

Anwendungen attraktiv sind. In einigen Situationen ist das klassische Gauß-Modell jedoch

nicht hinreichend flexibel, da punktweise Verteilungen von Gaußschen Zufallsfeldern immer

einer Normalverteilung folgen und daher Verteilungen mit schweren Rändern, sogenannte

Heavy-tailed-Verteilungen, nicht abgebildet werden können. Außerdem sind die Pfade in der

Praxis gängiger Gaußscher Zufallsfelder im Raum stetig, was in einigen Anwendungen unna-

türlich ist, zum Beispiel bei der mathematischen Modellierung von unterirdischen Strömungen

oder dem Grundwasserfluss in geklüfteten porösen Medien.

Um diese Einschränkungen des Gaußschen Standardmodells zu überwinden, werden in dieser

Arbeit Zufallsfelder mit unstetigen Realisierungen und flexiblen Verteilungseigenschaften vor-

gestellt und deren Anwendung im Diffusionskoeffizienten einer elliptischen PDG untersucht.

Das subordinierte Gaußsche Zufallsfeld wird durch die Komposition eines Gaußschen Zufalls-

feldes auf einem höherdimensionalen Parameterraum mit unabhängigen Lévy-Subordinatoren

konstruiert. Diese Arbeit untersucht theoretische Eigenschaften dieser Felder. Dies beinhaltet

Resultate zu punktweisen Verteilungen, Kovarianzfunktionen und der Existenz punktweiser

xiii



xiv Zusammenfassung

Momente, welche für praktische Anwendungen von großer Bedeutung sind.

Neben diesen theoretischen Untersuchungen wird das subordinierte Gaußsche Zufallsfeld

als Erweiterung des klassischen Gaußschen Modells im Diffusionskoeffizienten einer ellipti-

schen PDG betrachtet. Die Existenz einer eindeutigen Lösung des Problems wird bewiesen

und mögliche räumliche Diskretisierungstechniken werden diskutiert. Darüber hinaus liefert

diese Arbeit eine Approximationstheorie für den betrachteten Diffusionskoeffizienten und

untersucht, wie sich der resultierende Fehler auf die PDG-Lösung fortpflanzt.

In vielen Anwendungen der Unsicherheitsquantifizierung (Uncertainty Quantification) sind

Momente (von Funktionalen) der Lösung einer zufälligen PDG von Interesse. Daher werden

problemspezifische multilevel Monte-Carlo-Schätzer zur Approximation des Erwartungswerts

einer zufälligen elliptischen PDG konstruiert, in welcher das unstetige subordinierte Gaußsche

Zufallsfeld im Diffusionskoeffizienten auftritt. Es werden allgemeine a-priori-Fehlerschranken

für diese Schätzer bewiesen und verschiedene numerische Experimente vervollständigen deren

Untersuchung.

Als Alternative zum subordinierten Gaußschen Zufallsfeld wird das sogenannte Gaußsch’

subordinierte Lévy-Feld untersucht, das als Komposition eines allgemeinen Lévyprozesses mit

einer positiven Transformation eines Gaußschen Zufallsfeldes definiert ist. Die resultierenden

Zufallsfelder sind unstetig und weisen große Flexibilität bezüglich der Sprunggeometrien auf.

Neben theoretischen Untersuchungen der punktweisen Verteilungen sowie der Herleitung

von Formeln für die Kovarianzfunktion werden diese Felder im Diffusionskoeffizienten einer

elliptischen PDG betrachtet.

Subordinated Fields and Random Elliptic Partial Differential Equations
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Introduction and

contribution of this thesis 1

1.1 Introduction and motivation

Various real-world phenomena may be described by partial differential equations (PDEs).

Application areas of PDEs include, but are not limited to, electro- and thermodynamics, quantum

and fluid mechanics, heat propagation or flow problems. A popular PDE model, which is of

particular interest in this thesis, is described by the equation

−∇ · (a∇u) = f on a domain D ⊂ Rd, with dimension d ∈ N, (1.1)

equipped with some appropriate boundary conditions. Here, f is some source function, a

is the diffusion coefficient, which may be space-dependent and u denotes the solution to

the problem. In the following, this PDE is also referred to as elliptic model problem. Such

a problem arises, for example, in the context of subsurface/groundwater flow modeling in

heterogeneous/porous/fractured media or in other hydrology applications, where the diffusion

coefficient models the permeability of the considered material (see [14, 16, 36, 98, 101]1 and the

references therein).

In many applications of PDE models, information about input parameters is incomplete or the

available data suffer from measurement errors. In order to take this uncertainty into account,

one often considers randomized PDE models instead of their deterministic counterparts. This

opens the door to an immense research field which is known as Uncertainty Quantification.

Randomization of a PDE can be done in very different ways. For example, one might consider

1The references for the introduction and all following chapters can be found in the unified bibliography at the
end of this thesis after Chapter 8
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4 1 Introduction and contribution of this thesis

random boundary conditions, random domains, random differential operators or random

initial conditions for a time-dependent problem. Either way, a randomization of a PDE model

naturally yields a stochastic (i.e. random) solution. Since the exact probability distribution

of such a solution is usually not accessible, it is a classical goal in Uncertainty Quantification

to approximate moments (of functionals) of this solution. In the elliptic model problem (1.1),

the diffusion field a is often the candidate for a randomization, which is then considered to

be a random field on the domain D (see [1, 14, 16, 29, 30, 32, 55, 63, 81, 83, 101, 111, 112]). In the

majority of the cited articles, Gaussian random fields (GRFs) are used in the diffusion coefficient

a. GRFs are stochastically very well understood and provide a rich theory (see, for instance, [3]).

Further, they are attractive for any numerical application since they are comparatively easy

to simulate in most cases. However, GRFs also have limitations. The underlying distributions

are restricted to the Gaussian family and, therefore, lack flexibility since one cannot model,

for example, pointwise distributions with (semi-)heavy tails. Furthermore, realizations of

commonly used GRFs, like Matérn fields, are continuous in space. This is unnatural in some

situations, for instance, in the context of flow modeling in porous or fractured media, where

the values of the permeability a might change abruptly over the domain. Hence, diffusion

coefficients based on GRFs are not flexible enough for some applications of the elliptic model

problem (cf. [16, 49, 87, 119]) and there is a need for random field models which display a

high distributional flexibility and allow for discontinuities in space. On the other side, such a

random field model should also provide a sound theory and sample path generation should

be computationally cheap to make it well suited for practical applications. In this sense, a

reasonable tradeoff has to be found to construct highly flexible models which are numerically

and theoretically attractive.

There have been approaches to define more general random field models for the diffusion

coefficient a in the elliptic PDE (1.1) in the literature (cf. [94, 96]). For example, the authors

of [49] define the diffusion coefficient a as a transformation of a smoothed Lévy noise field.

This results in a coefficient with continuous realizations and high distributional flexibility. The

references [87] and [119] consider a jump-diffusion coefficient a in problem (1.1) to model two-

phase random media. In these references, the coefficient a is discontinuous along an interface,

which divides the solution domain into two subdomains. Jump-diffusion coefficients in the

elliptic model problem are also frequently used in Bayesian approaches for the corresponding

inverse problem. In this situation, level-set priors based on GRFs often serve as a model for the

coefficient a which allow for jump modeling since they are spatially discontinuous (see e.g. [46,

76]). However, the distributional flexibility is again limited since the stochasticity of the model

is governed by the underlying GRF. In the recent article [16], the authors propose a general

jump-diffusion coefficient for the elliptic model problem which has great flexibility in jump
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geometries and distributional properties. However, in its general form, it is not straightforward

to investigate theoretical properties of the random field model, which is important for practical

applications.

1.2 Contribution of this thesis

As explained in Section 1.1, the standard Gaussian model has too many limitations for some

applications of the elliptic model problem (1.1). The construction and theoretical investigation

of flexible, discontinuous random field models, which are easy to handle numerically, combined

with a theoretical and numerical consideration of their application in the diffusion coefficient

of the elliptic model problem is, in a nutshell, the topic and the contribution of this thesis.

Motivated by the subordinated Brownian motion, random fields on higher-dimensional param-

eter spaces are constructed combining GRFs with standard Lévy processes: the subordinated
Gaussian random field and the Gaussian subordinated Lévy field. Similar constructions of ran-

dom fields based on a subordination approach have received only little attention in the recent

literature: in the article [42] on generalized random fields, subordinated fields are described

in terms of multiple Itô-integrals. Deterministic transformations of GRFs and their excursion

sets are considered in [91] and the authors of [85] investigate the (asymptotic) Rosenblatt-type

distribution of (subordinated) fields. In [13], the concept of subordination is extended to multi-

variate Lévy processes and self-decomposibility of the resulting processes, which are defined

on a one-dimensional parameter space, is investigated. The subordinated GRF considered in

this thesis is constructed by the composition of a GRF on a higher-dimensional parameter

space with several independent Lévy subordinators. This definition yields a random field with

discontinuous paths and high distributional flexibility (see Chapter 5, which is a reproduction

of the article [95]). A main contribution of this thesis is the theoretical investigation of the

subordinated GRF in Chapter 5. The results include formulas for the pointwise characteristic

function, the spatial covariance function of the fields and a proof on the existence of pointwise

absolute moments of the subordinated GRF. These theoretical results are valuable for practical

applications, for example, when the subordinated GRF has to image certain statistical properties

of given real-world data.

The application of the subordinated GRF in the diffusion coefficient a of the elliptic model

problem (1.1) is the main contribution of Chapter 6, which is a reproduction of the article [96].

The diffusion coefficient a is often modeled as log-normal random field, which is not flexible

enough for some applications, like flow problems in fractured/porous media. In Chapter 6, the

coefficient a consists of a deterministic part, a transformation of a GRF and a transformation
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of the subordinated GRF. This significantly extends the flexibility of the standard model with

regard to the distributional properties and the ability for jump modeling. While the existence

of the resulting random weak solution is straightforward and proven by a pathwise application

of the Lax-Milgram lemma, its numerical approximation is more involved and essentialy splits

into two steps. The first step is the approximation of the diffusion coefficient itself since

GRFs and Lévy processes may in general not be simulated exactly on continuous domains.

In Chapter 6, the coefficient a is approximated by the combination of approximations of the

GRFs and the Lévy processes. An error bound is proven and, further, it is investigated how this

approximation error propagates to the random PDE solution, which is important to control the

overall error. The second step consists in the spatial discretization of the elliptic model problem

for a given sample of the diffusion coefficient. Chapter 6 considers pathwise finite element

methods to approximate paths of the solution. Combining both steps, Chapter 6 describes

how to obtain approximate samples of the random solution to the elliptic model problem,

where the diffusion coefficient incorporates the subordinated GRF. These solution samples

may be used, for example, to estimate (functionals of) moments of the solution, which is of

great interest in applications of Uncertainty Quantification. The main contribution of Chapter

7, which is a reproduction of the article [93], is the theoretical and practical investigation of

multilevel Monte Carlo methods for the elliptic model problem considered in Chapter 6, where

the subordinated GRF occurs in the diffusion coefficient. Based on the results of Chapter 6, an

a-priori error bound is derived for a multilevel Monte Carlo estimator for the approximation of

the expectation of the random solution. By construction, the number of jumps in samples of

the diffusion coefficient is defined by the jumps of the underlying Lévy subordinators in the

subordinated GRF. Using Lévy subordinators with high jump-activity results in a large number

of jump discontinuities in the diffusion coefficient. In order to improve the performance of

the multilevel Monte Carlo estimator in this regime, Chapter 7 also considers an extension

of the standard multilevel Monte Carlo estimator by the application of a variance reduction

technique, which is motivated by the recent paper [101].

Although the subordinated GRF allows to model spatial discontinuities and displays great

flexibility with regard to the pointwise distributions, it also has to be mentioned that the jump

geometries of the fields are naturally restricted as they always have a rectangular shape, which

might be unnatural in some applications. Therefore, the main contribution of Chapter 8, which

is a reproduction of the article [94], is to present another construction of a discontinuous

random field model by a subordination approach: the Gaussian subordinated Lévy field, which

essentially consists of a Lévy process evaluated at a positive transformation of a GRF. The

resulting random fields display high distributional flexibility and allow for jump modeling

with complex jump geometries. Chapter 8 presents valuable theoretical results on the random
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fields including pointwise characteristic functions, covariance functions and their numerical

approximation. A further contribution of Chapter 8 consists in the theoretical and numerical

investigation of the elliptic model problem (1.1), where the diffusion coefficient incorporates the

Gaussian subordinated Lévy field, resulting in a high flexibility with regard to the pointwise

distributions and the jump geometries.

1.3 Overall structure of the work

The rest of this thesis is structured as follows: Chapter 2 provides the theoretical and method-

ological background for this thesis. Sections 2.1 and 2.2 introduce Lévy processes and Gaussian

random fields and collect some theoretical results. The elliptic model problem is addressed in

Section 2.3 and Section 2.4 is devoted to Monte Carlo methods. Thereafter, Chapter 3 presents

the main results of this work in more detail, followed by a summary and a discussion of possible

future research directions. Finally, as the main part of this thesis, the cumulative part consists

of Chapters 5, 6, 7 and 8, which are reproductions of the four articles [95], [96], [93] and [94],

respectively. The unified bibliography can be found at the end of this thesis after Chapter 8.
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methodological background 2

The following chapter aims to introduce basic theoretical and methodological concepts that

are essential for the rest of this work. In Section 2.1 and 2.2, Lévy processes and GRFs are

introduced, which play an important role in this thesis. Section 2.3 takes a closer look into the

elliptic model problem (1.1) and Section 2.4 introduces Monte Carlo methods. For the remainder

of this work, the triplet (Ω,F ,P) always denotes a complete probability space.

2.1 Lévy processes

Lévy processes have an extensive theory, great distributional flexibility and allow for disconti-

nuity modeling. They play a crucial role in the construction of discontinuous random fields

in Chapters 5 and 8 and, therefore, we introduce them in the following section, highlighting

some of their fundamental properties. For a more detailed introduction to Lévy processes we

refer to [8] and [108]. The section is structured as follows: we start with the definition of a

Lévy process and some basic examples in Subsection 2.1.1. The rest of this subsection will be

devoted to the well-known Lévy-Khinchin formula and some other basic properties of Lévy

processes. In Subsection 2.1.2, we introduce the concept of time-changing with non-negative

Lévy processes, which strongly motivates the construction of discontinuous random fields in

Chapters 5 and 8.

9



10 2 Theoretical and methodological background

2.1.1 Definition and basic properties

Let T ⊆ R+ := [0,+∞) be a Borel-measurable index set. A (real-valued) stochastic process

X = (X(t), t ∈ T ) is a family of random variables on (Ω,F ,P)with values in R. That is, for

each t ∈ T , the mapping X(t) : Ω → R is F − B(R)-measurable, where B(R) denotes the

Borel σ-algebra, which is the smallest σ-algebra over R which contains all open subsets (see e.g.

[79, Definition 1.21 and Definition 9.1]). We say that a stochastic process X = (X(t), t ∈ T )

is a modification or a version of the stochastic process Y = (Y (t), t ∈ T ) if, for any t ∈ T , it

holds X(t) = Y (t) P-almost surely. For a fixed ω ∈ Ω, the mapping t 7→ X(t, ω) is called a

path of the stochastic process. We say that the stochastic process X has càdlàg (continue à

droite, limite à gauche) paths if there exists Ω0 ∈ F with P(Ω0) = 1 such that for any ω ∈ Ω0

the path t 7→ X(t, ω) is right-continuous with left limits, i.e. for all t ∈ T it holds

lim
s↘t

X(ω, s) = X(ω, t) and lim
s↗t

X(ω, s) exists,

(see [106, Chapter 1, Section 1]). Lévy processes build an extensive class of stochastic processes

which are attractive for many applications due to their flexibility and their theoretical properties

(see for example [109] for some applications in finance). They are formally defined as follows

(see e.g. [8, Section 1.3]).

Definition 2.1.1.

A stochastic process l = (l(t), t ∈ R+) is said to be a Lévy process if

i l(0) = 0 P-a.s.,

ii l has independent increments, i.e. for each 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn+1 < +∞ the random
variables (l(tj+1)− l(tj), 1 ≤ j ≤ n) are mutually independent,

iii l has stationary increments, i.e. for each 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn+1 < +∞ it holds

l(tj+1)− l(tj)
D
= l(tj+1 − tj)− l(0)

D
= l(tj+1 − tj),

iv l is stochastically continuous, i.e. for all a > 0 and s ≥ 0, it holds

lim
t→s

P(|l(t)− l(s)| > a) = 0.
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2.1 Lévy processes 11

In Definiton 2.1.1, we denote by
D
= equivalence in distribution. In general, the paths of a Lévy

process allow jumps and, hence, are discontinuous. It is well-known that any Lévy process

admits a càdlàg modification, which is also a Lévy process (see [106, Chapter 1, Theorem 30]).

In the following, we always consider the càdlàg version of a Lévy process. We continue with

four examples of Lévy processes that will reappear repeatedly in this thesis.

Example 2.1.2. A very popular Lévy process is given by the Brownian motion, which is a
Lévy process B = (B(t), t ≥ 0) with P-a.s. continuous paths and B(t) ∼ N (0, t) (see [79,
Definition 21.8]). A Poisson, Gamma or Normal Inverse Gaussian (NIG) process is a Lévy process
whose increments follow a Poisson, Gamma or NIG distribution, respectively. (see [109, Sections
5.3.1, 5.3.3 and 5.3.8]). Figure 2.1 shows samples of different Lévy processes.
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Figure 2.1: Three sample paths of a Brownian motion (left), a Poisson(5) process (second from
left), a Gamma(4,10) process (second from right) and a NIG(5,-1,1) process (right).

The class of Lévy processes may be parametrized by the so called Lévy triplet: Any Lévy

process is uniquely determined by a triplet (b, σ2
N , ν), which consists of constants b, σ2

N ∈ R
and a measure ν on (R,B(R)). This connection is formalized in the popular Lévy-Khinchin
formula, which gives an explicit representation of the pointwise characteristic function of any

Lévy process in terms of its Lévy triplet. A proof can be found, for example, in [8, Th. 1.3.3 and

p. 45] and [108, Theorem 8.1]. As usual, we denote by E(X) =
∫
ΩX dP the expectation of a

real-valued random variable X .

Theorem 2.1.3 (Lévy-Khinchin formula).

Let l be a real-valued Lévy process on R+. There exist parameters b ∈ R, σ2
N ∈ R+ and a

measure ν on (R,B(R)) such that the characteristic function ϕl(t) of the Lévy process l admits
the representation

ϕl(t)(ξ) := E(exp(iξl(t))) = exp(tψ(ξ)), ξ ∈ R,
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12 2 Theoretical and methodological background

for t ∈ R+. Here, ψ denotes the characteristic exponent of l, which is given by

ψ(ξ) := ibξ − σ2
N

2
ξ2 +

∫
R\{0}

eiξy − 1− iξy1{|y|≤1}(y) ν(dy).

The measure ν satisfies

ν({0}) = 0 and
∫
R
min(y2, 1) ν(dy) <∞, (2.1)

and a measure with this property is called Lévy measure. Further, (b, σ2
N , ν) is called Lévy triplet

of l.

We proceed with a remark on the connection between the Lévy-Khinchin formula, infinitely

divisible distributions and Lévy processes.

Remark 2.1.4. In its most general formulation, the Lévy-Khinchin formula gives a represen-
tation for the characteristic function of any infinitely divisible distribution and, conversely, any
distribution whose characteristic function admits a Lévy-Khinchin form is infinitely divisible (see
[108, Theorem 8.1]) . Further, there is a one-to-one correspondence between infinitely divisible
distributions and Lévy processes: if l is a Lévy process, then the random variable l(t) is infinitely
divisible for any t ∈ R+ (see [8, Proposition 1.3.1]) and, conversely, for any infinitely divisible
distribution µ there exists a Lévy process l with l(1) D

= µ (see [108, Theorem 7.10]).

The existence of moments plays a fundamental role in probability theory. For example, even

the well-known strong law of large numbers requires finiteness of the first absolute moment

of the considered distribution. In the purely Gaussian case, this is not a real problem since

the Gaussian distribution admits a finite n-th absolute moment for any n ∈ N. However,

when general Lévy processes are considered, this is not the case anymore. The Lévy-Khinchin

formula demonstrates that the pointwise distribution of any Lévy process l is determined by the

pointwise distribution of the real-valued random variable l(1). This suggests that the existence

of moments of a Lévy process at time t does not depend on the time parameter. In fact, one

can show that for any Lévy process l and any n ∈ N, it holds

E(|l(t)|n) < +∞ for all t ≥ 0 ⇔
∫
|x|≥1

|x|n ν(dx) < +∞,

where ν denotes the Lévy measure of l (see [8, Theorem 2.5.2]). Further, it is possible to prove

an even stronger property: in [23] the authors prove an explicit polynomial expansion of the
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2n-th absolute moment of a Lévy process in the time parameter, provided that the moment

exists. This property is needed in Chapter 8 and we formulate it in the following lemma. For a

proof we refer to [23, Proposition 2.3].

Lemma 2.1.5.

Let n ∈ N and l be a Lévy process with E(|l(1)|2n) < +∞. There exists real numbers
m1, . . . ,m2n, which are independent of t, such that

E(|l(t)|2n) = m1t+m2t
2 + · · ·+m2nt

2n,

for all t ≥ 0.

2.1.2 Subordinators and subordinated processes

Subordination in the context of Lévy processes means a time-change of a Lévy process with

respect to another non-negative Lévy process. It turns out that the resulting process is again

a Lévy process and this approach strongly motivates the construction of the discontinuous

random fields in Chapters 5 and 8.

A Lévy subordinator S = (S(t), t ≥ 0) is a Lévy process with P-almost surely non-

decreasing paths and, hence, any subordinator satisfies S(t) ≥ 0 P-a.s. for all t ≥ 0 (see [8,

Section 1.3.2]). For any t ∈ R+, the pointwise characteristic function of a Lévy subordinator S

admits the following form (see [8, Theorem 1.3.15])

ϕS(t)(ξ) = E(exp(iξS(t))) = exp
(
t
(
iγξ +

∫ ∞

0

eiξy − 1 ν(dy)
))
, for ξ ∈ R, (2.2)

where, ν is the Lévy measure of S and γ is called drift parameter. The Lévy measure ν of a

Lévy subordinator satisfies the condition

ν(−∞, 0) = 0 and
∫ ∞

0

min(y, 1) ν(dy) <∞.

Note that this condition is stronger than (2.1), which holds for any Lévy process. Since a Lévy

subordinator S is by definition a Lévy process, the Lévy-Khinchin formula holds and we obtain

σ2
N = 0 and b = γ +

∫ 1

0 y ν(dy) in Theorem 2.1.3 for the subordinator S. In the following,

we always mean the triplet (γ, 0, ν) corresponding to representation (2.2) if we refer to the

characteristic triplet of a Lévy subordinator.

Since Lévy subordinators are non-negative, they may be used as a time-change process. This
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leads to the construction of the subordinated Lévy process: if l is a Lévy process and S a Lévy

subordinator independent of l, then the process

t 7→ l(S(t))

is called subordinated Lévy process and it is again a Lévy process (see [8, Theorem 1.3.25]).

In this construction, l is often chosen as Brownian motion which yields the well-known

subordinated Brownian motion. Many Lévy processes admit a representation by a subordinated

Brownian motion. For examlple, the NIG process from Example 2.1.2 may be represented by

a (drifted) Brownian motion time-changed by an Inverse Gaussian process (see [109, Section

5.3.8]). Further, the extensive class of Generalized hyperbolic (GH) Lévy processes admit a

similar representation (see e.g. [15, Section 4]). We emphasize that this combination of a

continuous and a discontinuous stochastic process via the subordination approach motivates

the constructions of discontinuous random fields in Chapters 5 and 8.

2.2 (Gaussian) random fields

In Section 2.1 we introduced Lévy processes as a specific class of stochastic processes depend-

ing on a one-dimensional parameter. The generalization of a stochastic process to higher-

dimensional parameters is called random field and is used to model spatially dependent functions

in a stochastic setting. For example, random fields are often used to randomize spatially depen-

dent coefficients in PDEs, see e.g. [1, 14, 16, 30, 55, 101, 112] and the references therein for elliptic

problems. In this section we introduce random fields in general and the GRF, which builds

a very important subclass. We refer to [3] for a more detailed introduction. GRFs provide a

rich and well-understood theory and are comparatively easy to simulate. After their definition

in Subsection 2.2.1, we introduce the covariance operator and derive the Karhunen-Loève

expansion in Subsection 2.2.2, which yields a natural way to simulate GRFs. We close this

section with a brief motivation of the circulant embedding method to draw samples of a GRF

on a discrete grid following [64].

2.2.1 Definition of (Gaussian) random fields

In Subsection 2.1.1 we introduced a stochastic process as family of random variables parametrized

by a one-dimensional parameter. A random field is the natural extension to higher-dimensional
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parameter spaces: let D ⊂ Rd be a Borel set with d ∈ N. A random fieldR = (R(x), x ∈ D)

is a family of real-valued random variables on (Ω,F ,P) parametrized by x ∈ D (see e.g. [8,

Subsection 1.1.8]). The GRFs build one of the most popular classes of random fields. We start

with the definition of the multivariate Gaussian distribution: a vector-valued random variable

Z : Ω → Rn, n ∈ N, follows a multivariate Gaussian distribution if, for any α ∈ Rn, the

real-valued random variable

αTZ : Ω → R

follows a (one-dimensional) Gaussian distribution (see [3, Section 1.2]). In this case, we write

Z ∼ Nn(µ,Σ), where µ = (E(Z1), . . . ,E(Zn))
T is the mean vector and Σ is the covariance

matrix with entriesΣi,j = Cov(Zi, Zj) := E((Zi−E(Zi))(Zj−E(Zj))) for i, j = 1, . . . , n.

A random field W = (W (x), x ∈ D) is a GRF if, for any n ∈ N and any x1, . . . , xn ∈ D
the n-dimensional random vector

(W (x1), . . . ,W (xn)) : Ω → Rn

is multivariate Gaussian distributed (see e.g. [3, Section 1.2]). For a GRF W , we define the

mean µW : D → R and covariance function qW : D ×D → R by

µW (x) := E(W (x)),

qW (x, x′) := Cov(W (x),W (x′)) = E
(
(W (x)− E(W (x)))(W (x′)− E(W (x′)))

)
,

for x, x′ ∈ D. We say that the GRF W is centered if µW ≡ 0. Further, W is stationary or

isotropic if the mean µW is constant and there exists a function q̃W such that the covariance

function qW can be written in the form qW (x, x′) = q̃W (x− x′), resp. qW (x, x′) = q̃W (|x−
x′|2) for x, x′ ∈ D, where |x|2 := (x2

1 + · · · + x2
d)

1/2 denotes the Euclidean norm of

x = (x1, . . . , xd) ∈ Rd (see e.g. [3, Section 5]). The GRFs considered in the following are

always assumed to be mean-square continuous, which is a common assumption in the context

of GRFs (cf. [3, Chapter 1]).

It follows by the Kolmogorov existence theorem (see [79, Satz 14.36] and [44, 12.1.2 Theorem])

that all distributional properties of a random field are determined by its finite dimensional

distributions (cf. [4, Section 2.1]). Therefore, by definition, a GRF is uniquely determined by its

mean and covariance function. Further, we point out that there is a one-to-one correspondence

between GRFs and their mean and covariance functions: it is clear that for any GRF W there

exists the mean and a covariance function, which is always non-negative definite. On the other

hand, for a given functionµW : D → R and a non-negative definite function qW : D×D → R
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there always exists a GRF W with mean function µW and covariance function qW (see [44,

12.1.3 Theorem]).

GRFs allow for a detailed investigation of the path regularity. We refer to [3, Section 1.3] for

more details and a general investigation of path continuity of GRFs. It turns out that under quite

mild assumptions a GRF has (or can be assumed to have) almost surely continuous realizations.

For specific GRFs, continuity of realizations is often proven by the Kolmogorov continuity

theorem, which we state for completeness in the following (see [8, Theorem 1.1.18]).

Theorem 2.2.1 (Kolmogorov continuity theorem).

Let W = (W (x), x ∈ D) be a random field on the Borel set D ⊂ Rd with some d ∈ N and
suppose that there exist strictly positive constants γW , CW and ε such that

E(|W (x)−W (x′)|γW ) ≤ CW |x− x′|d+ε
2 ,

for all x, x′ ∈ D. Then, there exists a modification of W with almost surely continuous paths.

We emphasize that two random fieldsW1 = (W1(x), x ∈ D) andW2 = (W2(x), x ∈ D)

which are modifications of one another, have the same finite dimensional distributions (cf.

[28, Section 7]) and, hence, they have the same distributional properties by the Kolmogorov

existence theorem. In this sense, a GRF satisfying the assumptions of the Kolmogorov continuity

theorem can always be assumed to have almost surely continuous realizations in the sense that

one can always consider the almost surely continuous modification, which is also a GRF and

has the same distributional properties.

2.2.2 Covariance operator and Karhunen-Loève expansion

In this subsection, we derive the well-known Karhunen-Loève expansion, which is a series

representation of a GRF with respect to the eigenbasis of its covariance operator. In order to do so,

we need to introduce the (Lebesgue-)Bochner spaces for Banach-space-valued random variables.

Therefore, let B be a Banach space and denote by B′ its dual. A mapping Z : Ω → B is said

to be separably valued if there exists a closed, separable subspace B0 ⊆ B with Z(Ω) ⊆ B0

and Z is called weakly measurable if for any b′ ∈ B′ the mapping

ω 7→ b′(Z(ω)), ω ∈ Ω,
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is F − B(R)-measurable (see [74, Section 1.1]). Further, we say that Z : Ω → B is strongly
measurable, if Z is separably valued and weakly measurable (see [74, Theorem 1.1.6]) and Z :

Ω → B is strongly P-measurable if there exists a strongly measurable mapping Ẑ : Ω → B

with P(Z = Ẑ) = 1 (see [74, Proposition 1.1.16]). We can now define the (Lebesgue-)Bochner

spaces Lp(Ω;B) as the natural extension of the Lebesgue Lp spaces (see e.g. [74, Definition

1.2.15]).

Definition 2.2.2.

For p ∈ [1,+∞], we define Lp(Ω;B) to be the space of all (equivalence classes of) strongly
P-measurable mappings Z : Ω → B with ∥Z∥Lp(Ω;B) < +∞, where the norm is defined by

∥Z∥Lp(Ω;B) =


E(∥Z∥p

B)
1
p , if 1 ≤ p < +∞,

ess sup
ω∈Ω

∥Z∥B , if p = +∞.

Consider a centered GRF W = (W (x), x ∈ D) on a compact set D ⊂ Rd with paths

in L2(D), where we denote by Lp(D) the usual Lebesgue space, for p ∈ [1,+∞] (see e.g.

[2, Chapter 2]). Further, we assume that W : Ω → L2(D) is strongly measurable which is

equivalent to weak measurability in this case since L2(D) is separable (see [22, Theorem 4.13]).

We define the covariance operator of the GRF W :

QW : L2(D) → L2(D), ψ 7→
∫
D
qW (·, y)ψ(y) dy.

This operator is linear and well defined since for anyψ ∈ L2(D) it holds by Hölder’s inequality

∥QWψ∥2
L2(D) =

∫
D

( ∫
D
qW (x, y)ψ(y)dy

)2
dx

=

∫
D

( ∫
D
E(W (x)W (y))ψ(y)dy

)2
dx

≤
∫
D
E(W (x)2)dx

( ∫
D
E(W (y)2)1/2|ψ(y)|dy

)2
≤ ∥W∥4

L2(Ω;L2(D))∥ψ∥2
L2(D) < +∞.

For the rest of this subsection, we assume thatW has continuous paths and sup
x∈D

E(W (x)2)) <

+∞. In this case,W : Ω → L2(D) is strongly measurable (see [79, Theorem 14.16], [6, Lemma

4.51]) and the covariance function is continuous: For (x(n), n ∈ N), (y(n), n ∈ N) ⊂ D with
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x(n) → x, y(n) → y, for n→ ∞ it holds

lim
n→∞

E(W (x(n))W (y(n))) = E( lim
n→∞

W (x(n))W (y(n))) = E(W (x)W (y)),

where the exchange of limit and expectation is justified by the dominated convergence theorem

together with the Borell-TIS inequality (see [3, Theorem 2.1.1]). It follows now by the spectral

theorem that there exists a decreasing, non-negative sequence of real eigenvalues (λi, i ∈ N)
and eigenfunctions (ei, i ∈ N) ⊂ L2(D) of the covariance operatorQW such that (ei, i ∈ N)
is an orthonormal basis of L2(D) (see [115, Theorem VI.3.2]). Further, Mercer’s theorem states

that the covariance function can be expanded in terms of this eigenbasis. In fact, it holds

qW (x, y) =
∞∑
i=1

λiei(x)ei(y),

where the series converges absolutely and uniformly on D (see [3, Theorem 3.2.1]). Further,

the GRF W itself admits a representation in terms of the eigenbasis of QW , which is known as

the Karhunen-Loève expansion (see [3, Theorem 3.1.1, Theorem 3.1.2 and Lemma 3.2.2]). In fact,

it holds

W (x) =
∞∑
i=1

√
λiei(x)Zi,

where (Zi, i ∈ N) are i.i.d. N (0, 1)-distributed random variables and the series converges in

L2(Ω) and uniformly on D. This expansion is often used in applications when realizations

of a GRF have to be simulated: If the eigenbasis of a GRF W is known, the Karhunen-Loève

expansion motivates the numerical approximation of paths of W by an evaluation of the

truncated series

WN(x) :=
N∑
i=1

√
λiei(x)Zi ≈

∞∑
i=1

√
λiei(x)Zi = W (x),

with some cut-off index N ∈ N. This simulation approach is widely used in numerical

simulations (see, for example, [1, 14, 16, 30, 55, 101, 112] and Chapter 8).
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2.2.3 Sampling a Gaussian random field on a discrete grid: the
circulant embedding method

In Subsection 2.2.2, we introduced the Karhunen-Loève expansion, which is often used in

practical simulations since it yields a direct approach to produce (approximate) samples of a GRF

W by truncating the series at a finite threshold N ∈ N. If the eigenvalues and eigenfunctions

are available, the resulting approximation is naturally defined on the continuous parameter

domain. A conceptually different approach to simulate paths of a GRF is to produce samples

on a discrete grid on D.

We explain this in more detail for the case D = [0, 1] for simplicity. Consider a centered

GRF W on D with covariance function qW and let N ∈ N be given. We aim to simulate

the GRF W evaluated on the discrete grid (xi, i = 0, . . . , N) with grid points xi := i/N .

In other words, we aim to draw a sample from the random vector (W (x0), . . . ,W (xN))
T :

Ω → RN+1, which follows a zero-mean multivariate Gaussian distribution with covariance

matrix ΣN = (qW (xi, xj))
N
i,j=0 ∈ R(N+1)×(N+1). Assume that the covariance matrix admits a

decomposition of the form

ΣN = CCT , (2.3)

where C ∈ R(N+1)×k is a matrix with entries Ci,j , for i = 1, . . . , N +1 and j = 1, . . . , k for

some k ≥ N + 1. If Z = (Z1, . . . , Zk)
T is vector with independent standard normal random

variables, then the product CZ follows the same distribution as (W (x0), . . . ,W (xN))
T . In

fact, CZ is a centered and multivariate Gaussian distributed random vector with covariances

Cov((CZ)i, (CZ)j) =
k∑

l,m=1

Ci,lCj,mE(ZlZm) =
k∑

l=1

Ci,lC
T
l,j = (CCT )i,j,

for i, j = 1, . . . , N + 1, and, hence, the covariance matrix of CZ equals ΣN . Therefore, if a

decomposition of type (2.3) is available, sampling of the GRF W on the discrete grid reduces to

the generation of i.i.d. standard normal random variables and a transformation according to

the matrix C . We emphasize that the same approach can be applied on higher-dimensional

parameter spaces under appropriate ordering of the discrete points in the multidimensional

grid.

Obviously, the key of this sampling approach is the computation of the factorization (2.3).

Such a decomposition may for example be obtained by the Cholesky factorization which,

however, becomes extremely expensive when the resolution of the grid and, hence, the size of the
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covariance matrixΣN grows. The circulant embedding (CE) method provides a computationally

efficient way to compute a decomposition of type (2.3) for stationary GRFs on a regular grid

using the specific structure of the resulting covariance matrix: under lexicographical ordering

of the grid points, the covariance matrix is a nested block Toeplitz matrix and, further, it can

be embedded in a larger nested block circulant matrix, whose spectral decomposition can be

efficiently computed using the d-dimensional fast Fourier transform (FFT) (see e.g. [64]). In

this sense, the CE method can be seen as a computationally efficient alternative to the Cholesky

decomposition to compute the factorization of the covariance matrix ΣN and, hence, to draw a

sample of a GRF on the discrete grid. We refer to [64] for more details.

In contrast to the approximation of a GRF with a truncated Karhunen-Loève expansion, the

CE method does not require the truncation of a series and yields an exact simulation of the

field on the grid points. On the other hand, this simulation techniques is restricted to the case

of stationary fields and it requires the grid to be regular and evaluations of the GRF outside

this grid require an additional interpolation (cf. [65]).

We close this section with the definition of a very important class of stationary GRFs with

continuous paths: the Matérn fields. For a smoothness parameter ν > 1/2, correlation length

r > 0 and variance σ2 > 0, the Matérn-ν covariance function is given by qM(x, y) =

ρM(∥x− y∥2), for (x, y) ∈ Rd
+ × Rd

+, with

ρM(s) = σ2 2
1−ν

Γ(ν)

(2s√ν
r

)ν
Kν

(2s√ν
r

)
, for s ≥ 0,

where Γ(·) is the Gamma function and Kν(·) is the modified Bessel function of the second

kind (see [63, Section 2.2] and Chapter 5). A Matérn-ν GRF is a centered GRF with covariance

function qM .

2.3 The elliptic model problem and the finite element
method

In this section, we introduce the elliptic partial differential equation (PDE) which plays an

important role in this thesis (see Chapters 6 - 8). This type of equation may be used, for example,

as a simplified model for general subsurface flow problems or groundwater flow models in

heterogeneous/porous media (cf. [14, 16, 101]). For simplicity and ease of notation, we consider

the deterministic version of the problem in this section. In Subsection 2.3.2, we derive the

weak solution followed by a brief introduction to the finite element method in Subsections

2.3.3 and 2.3.4. For a more general introduction to elliptic PDEs and the finite element method
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we refer to [67] and [21]. We close the section with a discussion of a randomized version of the

considered PDE, which is considered in more detail in Chapters 6 - 8 of this thesis.

2.3.1 The deterministic elliptic model problem

Let D ⊂ Rd be a bounded, connected Lipschitz domain with d ∈ N. Further let a : D → R+

and f : D → R be measurable functions. We are interested in the solution u : D → R of the

PDE

−∇ · (a(x)∇u(x)) = f(x) on D, (2.4)

where we focus on the homogeneous Dirichlet boundary conditions

u(x) = 0 on ∂D, (2.5)

in this section to keep notation simple. Note that the extension to more general boundary

conditions is straightforward (see e.g. [67, 50] and Chapters 6 - 8). We denote by Ck(D)

the space of k-times continuously differentiable functions on the closure D, for k ∈ N0.

For a diffusion coefficient a ∈ C1(D) we say that u ∈ C2(D) is a classical solution if

it satisfies Equations (2.4) and (2.5) in the classical sense. This solution concept, however,

imposes restrictive regularity assumptions on a and u which are not fulfilled, for example,

for a discontinuous diffusion coefficient. Therefore, it is convenient to consider the so called

weak solution, which we introduce in the following subsection. We refer to [21, 50, 67] for more

details.

2.3.2 The weak solution

We denote byHk(D) := W k,2(D) the Sobolev spaces which consist of all measurable, k-times

weakly differentiable and square integrable functions on D with k ∈ N0 (see [2, Chapter

3]). Further, we denote by H1
0 (D) := {v ∈ H1(D) | Tv = 0} the space of weakly differ-

entiable, square integrable functions which vanish on the boundary in a weak sense. Here,

T : H1(D) → H1/2(∂D) denotes the trace operator, which is linear and continuous with

Tv = v|∂D for v ∈ C∞(D) (see [41]). We multiply (2.4) by a test function v ∈ V := H1
0 (D)
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and integrate by parts (see e.g. [113, Section 6.3]) to obtain∫
D
a(x)∇u(x) · ∇v(x)dx =

∫
D
f(x)v(x)dx,

for any v ∈ V . This motivates the weak formulation of the problem: For a measurable function

a ∈ L∞(D) and a linear, continuous functional F ∈ V ′, find u ∈ V such that

Ba(u, v) = F (v), for all v ∈ V, (2.6)

where the bilinear form Ba is defined by

Ba : V × V → R

(u, v) 7→
∫
D
a(x)∇u(x) · ∇v(x)dx.

If we assume that the diffusion coefficient a is bounded away from zero, we obtain the following

theorem by the Lax-Milgram lemma. Although this is a standard result, we give a proof for

completeness.

Theorem 2.3.1.

Let a ∈ L∞(D) with a(x) ≥ a− > 0 almost everywhere on x ∈ D and F ∈ V ′. There exists
a unique weak solution u ∈ V satisfying (2.6) . Further, it holds

∥u∥V ≤ C(a−,D, d)∥F∥V ′,

where C(a−,D, d) is a constant depending only on the indicated parameters.

Proof. We use Hölder’s inequality and the assumption a ∈ L∞(D) to obtain the

continuity of the bilinear form Ba:

|Ba(u, v)| ≤ ∥a∥L∞(D)∥∇u∥L2(D)∥∇v∥L2(D) ≤ ∥a∥L∞(D)∥u∥V ∥v∥V , for u, v ∈ V.
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Further, we obtain by the Poincaré inequality (see e.g. [22, Corollary 9.19])

Ba(u, u) ≥ a−

∫
D
|∇u(x)|22dx

= a−/2(∥∇u∥2
L2(D) + ∥∇u∥2

L2(D))

≥ a−/2(∥∇u∥2
L2(D) + 1/C(D, d)2∥u∥2

L2(D))

≥ a−/2 min
(
1, 1/C(D, d)2

)
∥u∥2

V ,

where C(D, d) denotes the Poincaré constant. The assertion now follows by the Lax-Milgram

lemma (see [21, 2.7.7 Theorem and 2.7.11 Remark]). □

2.3.3 The finite element method

In Subsection 2.3.2, we introduced the weak solution as the unique element u ∈ V which

satisfies the variational formulation (2.6) of the problem. In order to be able to compute

a numerical approximation of the solution, one has to discretize the (in general) infinite

dimensional solution space V . One approach to do so is the finite element (FE) method: assume

Vh denotes a finite-dimensional subspace of V with dim(Vh) = dh ∈ N. Here, h usually

denotes some accuracy parameter as explained below in more detail. Since Vh is a finite-

dimensional subspace of V it is closed and, hence, again a Hilbert space. We define the solution

approximation uh ≈ u on Vh by the relation

Ba(uh, vh) = F (vh), for all vh ∈ Vh. (2.7)

As in Theorem 2.3.1, we obtain the unique existence of uh ∈ Vh satisfying (2.7). If we denote

by {v(1)h , . . . , v(dh)h } a basis of Vh, Equation (2.7) becomes equivalent to

Ba(uh, v
(i)
h ) = F (v(i)h ), for i = 1, . . . , dh. (2.8)

The approximation uh of the weak PDE solution may be expanded in the basis of Vh. That is,

we may write uh =
∑dh

j=1 cjv
(j)
h , where c = (c1, . . . , cdh)

T ∈ Rdh is defined by the system of

linear equations

Bc = f, (2.9)

with the so called stiffness matrix B = (Ba(v
(j)
h , v

(i)
h ), i, j = 1, . . . , dh) ∈ Rdh×dh and load

vector f = (F (v(1)h ), . . . , F (v(dh)h ))T ∈ Rdh . Therefore, the computation of the solution

Robin Merkle University of Stuttgart



24 2 Theoretical and methodological background

approximation uh ≈ u in Vh reduces to the determination of the solution to the system of

linear equations (2.9). We refer to [21, 67] for a more detailed introduction to FE methods.

2.3.4 Finite element spaces and approximation error

In this Subsection we consider the case d = 2 in more detail. Given a finite dimensional

subspace Vh ⊂ V , Subsection 2.3.3 demonstrates how a numerical approximation uh to the

weak PDE solution u of (2.4) - (2.5) may be computed by solving a system of linear equations.

In the following, we describe one possible choice of Vh in more detail and discuss the quality

of the resulting approximation. We denote by K an admissible triangulation of the domain

D. That is, K consists of open, disjoint triangles T ⊂ D with
⋃̇

T ∈KT = D and, for any

pair of triangles T , T ′ ∈ K with T ̸= T ′, the intersection T ∩ T ′ is either empty, or a

common vertice, or a common edge of the triangles T , T ′ (see [67, Section 8.4]). We denote

the maximum diameter, i.e. the longest side-length of all triangles in K by

h := max
K∈K

diam(K),

and indicate this accuracy parameter by the notation Kh = K (see [67, Section 8.5]). The

parameter h is called finite element discretization parameter and is crucial for the error analysis

of the FE method, since it determines the resolution of the triangulation of the domain. We

define the finite dimensional subspace Vh ⊂ V by

Vh := {v ∈ V | v|K ∈ P1, K ∈ Kh}. (2.10)

Here, P1 denotes all polynomials of degree one in two variables which have the form p(x, y) =

p0 + p1x+ p2y with some coefficients p0, p1, p2 ∈ R. This definition leads to the FE method

with linear elements. Other FE spaces may, for example, be defined by partitioning the domain

D into rectangles or replacing P1 by polynomials of higher degree. The latter in general leads

to an improved accuracy of the approximation, provided the solution is smooth enough. We

refer to [21, Chapter 3], [67, Section 8.4] and [107, Section 6.2] for more details.

The regularity of the weak solution u ∈ V dictates the convergence rate of the FE approxi-

mation. In fact, if Kh is an admissible triangulation, uh the corresponding FE approximation on

Vh defined in (2.10) and u ∈ V ∩Hs(D) for some real value s ≥ 1, it holds (see [67, Section

8.5 and Theorem 8.62])

∥u− uh∥V ≤ Chmin(s−1,1)∥u∥Hs(D), (2.11)
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where C is a constant independent of h and ∥ · ∥s denotes the fractional Sobolev norm (see

[39]). The exponent min(s− 1, 1) of the discretization parameter h is bounded by one due to

the choice of polynomials of degree one in (2.10).

The existence result in Theorem 2.3.1 already implies u ∈ H1(D). Further, it turns out that

it suffices to assume f ∈ L2(D) and a ∈ C1(D) to obtain u ∈ H2(D), which is enough to

ensure full order convergence in the case of P1 basis functions (see e.g. [50, 112]). However,

we point out that the assumption a ∈ C1(D) is quite restrictive: in many applications (e.g.

flow models in fractured media) it is natural to consider discontinuous diffusion coefficients. In

general, lower regularity of the diffusion coefficient leads to lower regularity of the solution

and, hence, slower convergence of the FE method. For discontinuous diffusion coefficients

a we cannot expect full order convergence of the FE method for standard triangulations of

the domain and in general we obtain s ∈ (1, 3/2) in Equation (2.11) (cf. [10], [105] and [112]).

The article [105] presents explicit worst case regularity results for the weak solution of the

considered elliptic PDE with discontinuous, piecewise constant diffusion coefficient, where the

regularity depends on global bounds of the coefficient.

There are different approaches to improve the convergence of the FE method in the situation

of discontinuous diffusion coefficients. For example, the use of adapted meshes, where the

discontinuities lie on edges of the elements, improves the performance of the FE method

significantly (cf. [16] and Chapter 6). The construction of adapted triangulations is, however,

only possible if the jump locations are known a-priori. Another approach is the adaptive

FE method, in which the triangulation of the domain is refined specifically in regions with

high contribution to the approximation error (see [5, 66] and Chapter 8). In this approach, no

explicit knowledge on the jump locations is necessary. We refer to Chapters 6 and 8 where we

investigate these approaches in the context the discontinuous random fields presented in this

thesis.

We close this subsection with a comment on alternative methods to approximate the weak

PDE solution u. In most situations, the FE method is the method of choice for the considered

elliptic model equation (2.4) - (2.5). Of course, there are other numerical techniques to solve this

type of PDE. For example, one could also use finite difference or collocation methods (see e.g.

[11, 86, 102, 107]). However, in the case of discontinuous diffusion coefficients, these methods

are in general less suitable than the FE method, since they perform poorly in low-regularity

regimes or severely restrict the possible choices of domain triangulations.
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2.3.5 Random elliptic partial differential equations

In many applications, the coefficient a in (2.4) is modeled randomly in order to take into

account measurement errors or insufficient knowledge about the input data (cf. Section 1.1

and [16, 30, 101]). In this case, the diffusion coefficient is not only varying over the domain but

depends on an additional parameter ω ∈ Ω which reflects the randomness. Formally, we may

then consider the coefficient as a mapping

a : Ω×D → R+.

The corresponding PDE is called random elliptic PDE. If we fix ω ∈ Ω and assume that the

realizations a(ω, ·) : D → R+ are measurable mappings bounded from above and away from

zero, Theorem 2.3.1 yields the existence of a pathwise solution u(ω) ∈ V depending naturally

on ω ∈ Ω. In Chapters 6 - 8 we use the (discontinuous) random fields investigated in Chapters

5 and 8 in the construction of the diffusion coefficient.

In the context of random PDEs one is often interested in expectations of (functionals of) the

random solution (see e.g. [14, 16, 101]). In general, we cannot draw exact samples u(ω) of the

solution to the random elliptic PDE. However, given a realization a(ω) of the random diffusion

coefficient, the corresponding pathwise weak solution u(ω) may be approximated by the FE

method introduced in the previous subsections. The approximations uh(ω) ≈ u(ω) on the

FE subspace Vh ⊂ V may then be used to approximate the expectation of (functionals of) the

solution by Monte Carlo methods, which are introduced in the following section.

2.4 Monte Carlo methods

In many applications of stochastic modeling, one is interested in estimations of moments of

some quantity of interest, for example the expected payoff of a financial derivative (see, for

example, [109] and [62]) or the expectation of solutions to random PDEs. In this section, we

introduce the (multilevel) Monte Carlo method to approximate the mean of some random

variable X (see e.g. [59]). This plays an important role in this thesis, especially in Chapter 7,

where we construct estimators for the expectation of the mean of the solution to a random

elliptic PDE. We start with the singlelevel Monte Carlo estimator which is motivated by the

strong law of large numbers, followed by the biased singlelevel Monte Carlo esimation for

situations in which it is not possible to draw exact samples of the quantity of interest. The

construction of its multilevel variant is presented in Subsection 2.4.3 and we close the section
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with some comments on extensions and alternatives to Monte Carlo methods. For notational

simplicity, we consider mainly real-valued random variables in this section and emphasize

that the presented methods easily extend to Banach space-valued random variables (see, e.g.,

Chapter 7 and the references therein).

2.4.1 The standard Monte Carlo method

We consider a real-valued, square integrable random variable X ∈ L2(Ω) and aim to estimate

the expectation E(X). The (standard) Monte Carlo (MC) method is motivated by the strong

law of large numbers: assume (X (i), i ∈ N) is a sequence of i.i.d. random variables following

the same distribution as X . For a natural number M ∈ N, we define the MC estimator

EM : Ω → R by

EM(X) :=
1

M

M∑
i=1

X (i) ≈ E(X).

It is obvious that this construction yields an unbiased estimator for E(X) and, further, we

immediately obtain by the Bienaymé-formula (see [79, Satz 5.7]) for the mean squared error

(MSE):

∥E(X)− EM(X)∥2
L2(D) =

∥∥∥ 1

M

M∑
i=1

E(X)−X (i)
∥∥∥2
L2(Ω)

=
Var(X)

M
. (2.12)

Therefore, for a growing number of samples, the MC estimator converges in L2(Ω) to E(X)

and the convergence of the root mean square error (RMSE) ∥E(X)−EM(X)∥L2(D) is of order

O(1/
√
M).

In many situations it is not possible to draw exact samples from the random variable X .

In this case, one has to use samples of an approximation X̃ ≈ X to estimate the expected

value of X by the MC method. For example, one could imagine the situation X = Q(u) with

a measurable transformation Q : H1(D) → R, where u : Ω → H1(D) is the (pathwise

weak) solution of some random elliptic PDE on a domain D as described in Section 2.3 and

X̃ = Φ(ũ) where ũ ≈ u is some (pathwise) FE approximation. This results in a biased version

of the MC estimator which is discussed in more detail in the following subsection.
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2.4.2 Biased singlelevel Monte Carlo estimation

As in the previous subsection, we aim to approximate the expected value E(X) for a random

variableX ∈ L2(Ω). Further, we assume that we cannot draw samples from theX directly but

have to use approximations instead. In fact, we assume (Xℓ, ℓ ∈ N) ⊂ L2(Ω) is a sequence

of random variables which approximate X , that is Xℓ → X , for ℓ→ ∞ in some sense, e.g. in

L2(Ω). If we choose L ∈ N and a sample number M ∈ N, we may approximate the quantity

of interest by a MC estimator of XL, that is

E(X) ≈ EM(XL) =
1

M

M∑
i=1

X (i)
L ,

where (X (i)
L , i ∈ N) are i.i.d. copies of XL. The estimator is EM(XL) is also called sin-

glelevel Monte Carlo (SLMC) estimator since it is based on a single approximation level L. The

approximation error of the SLMC estimator may be split into the bias and the statistical error :

∥E(X)− EM(XL)∥L2(Ω) ≤ ∥X −XL∥L2(Ω) + ∥E(XL)− EM(XL)∥L2(Ω)

= ∥X −XL∥L2(Ω) +
(Var(XL)

M

)1/2
. (2.13)

Therefore, in order to obtain an approximation of E(X) of a certain accuracy, one has to choose

the approximation level L high enough to achieve a small bias and the sample number M large

enough to avoid a large statistical error. We emphasize that the costs to draw a sample from the

distribution of Xℓ in general grows if ℓ becomes larger, since this index usually corresponds to

some accuracy parameter of a certain numerical method, as described in the end of Subsection

2.4.1.

2.4.3 The multilevel Monte Carlo method

The popular multilevel Monte Carlo (MLMC) estimator uses multigrid ideas to improve the

efficiency the SLMC estimator (cf. [57]). In its current form, the MLMC method has first

been presented by Heinrich in [70] who introduced it to compute high dimensional parametric

integrals. The ideas originated in his related work [69]. In the popular paper [57], Giles used the

MLMC algorithm to estimate an expected value arising from a stochastic differential equation.

Since then, it has been applied to various applications: see for example, [7, 27, 58] for finance

related applications to stochastic differential equations (SDEs) governed by Brownian motions,
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the references [61, 117] for Lévy-driven SDEs and the references [1, 14, 16, 30, 93, 101, 112] for

applications to random elliptic PDEs. We emphasize that these lists are by far not exhaustive.

We sketch the idea behind MLMC briefly in the following. As in the previous subsection, we

aim to estimate the expected value of a random variable X using samples of random variables

(Xℓ, ℓ ∈ N) approximating X (see Subsection 2.4.2).

Consider a fixed number L ∈ N as above. We define X−1 := 0 and obtain the following

telescopic expansion for the expected value of XL ≈ X .

E(XL) =
L∑

ℓ=0

E(Xℓ −Xℓ−1). (2.14)

The idea behind the MLMC estimator is to estimate the left hand side of (2.14) by the sum of

independent SLMC estimators of the differences Xℓ −Xℓ−1 on the right hand side of (2.14).

To be more specific, for level-dependent sample numbers Mℓ ∈ N, with ℓ = 0, . . . , L, the

MLMC estimator EL(XL) is defined by

EL(XL) :=
L∑

ℓ=0

EMℓ
(Xℓ −Xℓ−1) =

L∑
ℓ=0

1

Mℓ

Mℓ∑
i=1

X (i,ℓ)
ℓ −X (i,ℓ)

ℓ−1 ,

where, for each ℓ = 0, . . . , L, the random variables (X (i,ℓ)
ℓ −X (i,ℓ)

ℓ−1 , i = 1 . . . ,Mℓ) are i.i.d.

following the distribution of the difference Xℓ −Xℓ−1. It is obvious that EL(XL) is unbiased

for the estimation of E(XL) and the variance may be computed by the Bienaymé-formula :

Var(EL(XL)) = ∥E(XL)− EL(XL)∥2
L2(Ω)

=
∥∥∥ L∑

ℓ=0

E(Xℓ −Xℓ−1)− EMℓ
(Xℓ −Xℓ−1)

∥∥∥2
L2(Ω)

=
L∑

ℓ=0

∥E(Xℓ −Xℓ−1)− EMℓ
(Xℓ −Xℓ−1)∥2

L2(Ω)

=
L∑

ℓ=0

Var(Xℓ −Xℓ−1)

Mℓ

,

where we used (2.12) in the last step. Similar to the SLMC-error in (2.13), we split the error of

the overall approximation EL(XL) ≈ E(X) into the bias and the statistical error:

∥E(X)− EL(XL)∥L2(Ω) ≤ ∥X −XL∥L2(Ω) +
( L∑

ℓ=0

Var(Xℓ −Xℓ−1)

Mℓ

)1/2
. (2.15)
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Choosing L and the sample numbers Mℓ, for ℓ = 0, . . . , L, large enough ensures that the bias

and the statistical error are small enough. The main difference and advantage of the MLMC

estimator consists in the composition of the statistical error.

In order to obtain a certain statistical error, one should choose the sample numbers Mℓ

such that the statistical error is evenly distributed on the levels ℓ = 0, . . . , L. Further, it is

reasonable to assume that the variances Var(Xℓ −Xℓ−1) decay with growing level ℓ, since

Var(Xℓ −Xℓ−1)
1/2 ≤ ∥Xℓ −Xℓ−1∥L2(Ω) ≤ ∥Xℓ −X∥L2(Ω) + ∥X −Xℓ−1∥L2(Ω) → 0,

for ℓ→ ∞. Therefore, in order to equilibrate the contributions of the statistical error over all

levels in (2.15), the sample numbers Mℓ should also decrease with growing ℓ. In other words,

in contrast to the SLMC estimator, which requires the (computationally expensive) generation

of M samples on the highest accuracy level L in (2.13), the MLMC estimator requires many

samples to be drawn on the lower accuracy levels and a significantly smaller number of samples

with high accuracy, which in general leads to a significant reduction of the computational costs.

We refer to [57] and [59] for more details.

2.4.4 Extensions and multilevel Monte Carlo for random PDEs

There are various extensions and modifications of the (multilevel) Monte Carlo approach.

For example, the Multi-index Monte Carlo method was first presented in [68] and uses multi-

dimensional levels ℓ instead of a scalar level parameter ℓ. Another modification is the (multilevel)

quasi-Monte Carlo approach where samples are not random but chosen carefully in a deter-

ministic way (cf. [59, 40, 60]). We do not go into further details and refer to [59] for a more

detailed overview.

MLMC is often applied in the context of random PDEs where one is interested in moments

of functionals of the solution: consider the general elliptic PDE introduced in Section 2.3.

Modeling the diffusion coefficient a as a random field a : Ω×D → R+ naturally leads to a

randomized version of the problem with random PDE solution u : Ω → V , where V denotes

the solution space of the considered PDE (see Subsection 2.3.5). The MLMC method may

then be used to approximate (functionals of) moments of the random elliptic PDE solutions,

which has been further investigated in the literature in the last decade. We refer to the the

articles [1, 14, 16, 30, 32, 81, 83, 93, 101, 111, 112] and the references therein for more details. In

Chapter 7, we consider the subordinated GRF (see Chapter 5) in the diffusion coefficient of

the elliptic model problem. Samples of the random solution u(ω) cannot be produced exactly

but have to be approximated. In order to estimate the expectation E(u) by MLMC, we use
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the FE method to produce pathwise approximations Xℓ(ω) = uhℓ
(ω) to the random PDE

solutionX(ω) = u(ω), where we adapted the notation from the previous subsection and hℓ is

a decreasing sequence of FE mesh refinement parameters. The corresponding MLMC estimator

is analyzed theoretically and numerically in Chapter 7.

2.4.5 Stochastic Galerkin and stochastic collocation

The (ML)MC method is one approach to approximate moments of functionals of random PDE

solutions. In addition, there exist approaches which are not sampling-based, where stochastic

Galerkin and stochastic collocation methods are particularly worth mentioning. The idea

behind these approaches is to rewrite the random PDE as a deterministic problem on a higher-

dimensional parameter space and discretize it in both, the stochastic space and the spatial

domain, by common deterministic methods. The deterministic reformulation of the problem

may be obtained by interpreting the driving random variables of the input field as additional

parameters besides the spatial parameter x ∈ D ⊂ Rd, d ∈ N.

We sketch the idea for the elliptic PDE with random diffusion coefficient a : Ω×D → R+

from Subsection 2.3.5. Assume the coefficient a admits an expansion of the form

a(ω, x) =
∞∑
i=1

ei(x)ξi(ω), (2.16)

P-almost surely for x ∈ D, with some deterministic functions ei : D → R and independent

random variables ξi : Ω → Γ ⊆ R, for i ∈ N. For example, the ξi could be uniformly

distributed on [−1, 1] = Γ. Under admissible assumptions, the random field a may be

associated with the deterministic operator

A : ΓN ×D → R

(y, x) 7→
∞∑
i=1

ei(x)yi,

where we use the notation y = (y1, y2, . . . ) ∈ ΓN :=×∞
i=1

Γ and we obtain the representation

a(ω, x) = A(ξ(ω), x),

P-almost surely for the random vector ξ = (ξ1, ξ2, . . . ) from (2.16) and x ∈ D. This relation

may be used to reformulate the random elliptic PDE as deterministic PDE on an infinite-

dimensional parameter space. If ∥ei∥L∞(D) decays fast, the coefficient is essentially determined
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by the first summands in (2.16) and, hence, the operator A may be approximated by

AN : ΓN ×D → R

(yN , x) 7→
N∑
i=1

ei(x)yi,

for some N ∈ N large enough. In this sense, the diffusion coefficient a may be associated with

a deterministic operator A on an infinite-dimensional parameter space, which is approximated

by the operator AN on a parameter space with dimension N + d < +∞. Moments of the

random PDE solution may then be approximated by the solution to a deterministic PDE related

to the operator AN on a higher-dimensional parameter space (see e.g. [12]).

Stochastic Galerkin (SG) and stochastic collocation (SC) differ in the numerical methods

used to discretize the deterministic PDE associated to the operator AN . The former uses a

Galerkin approach and the latter applies a collocation method. SG and SC have been successfully

applied to random elliptic PDEs in various situations (see [11, 12, 33, 48, 100] and the references

therein). The weak point of both approaches are high stochastic dimensions of the problem:

both approaches perform well if the contributions ∥ei∥L∞(D) of the deterministic functions

decay fast. However, for problems with high stochastic dimension, where ∥ei∥L∞(D) decays

slowly, SG and SC are not feasible since the dimension of the corresponding deterministic

PDE grows rapidly as the stochastic dimension increases (cf. [11, 32]). The random elliptic

PDEs considered in this thesis incorporate random fields with complex discontinuities and

random jump location, which results in a very high stochastic dimension and, hence, SG and

SC approaches are out of reach.
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3.1 Main results
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2. Robin Merkle and Andrea Barth, Subordinated Gaussian random fields in elliptic partial
differential equations, published in Stochastics and Partial Differential Equations: Analysis

and Computations (2022),

[96], link: https://doi.org/10.1007/s40072-022-00246-w

Chapter 6 of this thesis is a reproduction of this article.

3. Robin Merkle and Andrea Barth, Multilevel Monte Carlo estimators for elliptic PDEs with
Lévy-type diffusion coefficient, published in BIT Numerical Mathematics (2022),

[93], link: https://doi.org/10.1007/s10543-022-00912-4

Chapter 7 of this thesis is a reproduction of this article.

4. Robin Merkle and Andrea Barth, On properties and applications of Gaussian subordinated
Lévy fields, submitted to Methodology and Computing in Applied Probability, preprint

available on arxiv: https://arxiv.org/pdf/2208.01278.pdf, [94]
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The statement on the contributions of the author of this thesis to these articles can be found

in Chapter 4.

In the rest of this section, these articles will also be referred to as Article 1 - 4. After a brief

overview of the articles, their main results are going to be presented in more detail. Article

1, 2 and 3 are naturally connected since they all consider the subordinated GRF, highlighting

different aspects of it. The subordinated GRF is a discontinuous random field constructed by the

composition of a general GRF with independent Lévy subordinators (see Sections 2.1 and 2.2).

Article 1 (reproduced in Chapter 5) investigates theoretical properties of the subordinated GRFs

and Article 2 (reproduced in Chapter 6) considers the fields in the diffusion coefficient of an

elliptic PDE (see Section 2.3). Advanced multilevel Monte Carlo methods (see Subsection 2.4.3)

for an efficient approximation of the expectation of the corresponding random elliptic PDE are

presented in Article 3 (reproduced in Chapter 7). In order to overcome some of the restrictions

of the subordinated GRF regarding the jump geometry, Article 4 (reproduced in Chapter 8)

presents another approach to construct discontinuous random fields: the Gaussian subordinated

Lévy field (GSLF). These fields are constructed by the composition of a Lévy process with a

positive transformation of a general GRF. Article 4 consists of theoretical investigations of the

GSLF and considers an elliptic PDE, where the fields occur in the diffusion coefficient.

Section 1.1 already emphasized the restrictions of GRF models in the elliptic model problem

regarding the distributional flexibility and the ability to model spatial discontinuities. In or-

der to overcome these restrictions, Article 1 proposes a subordination approach to generate

discontinuous random fields on higher-dimensional parameter spaces. Being more precise,

the subordinated GRF is constructed by changing the spatial variables of a GRF on a higher-

dimensional parameter space with respect to several Lévy subordinators (see Sections 2.1 and

2.2). One of the reasons why GRFs are commonly used in stochastic modeling is their rich and

well understood theory. This raises the question whether the subordinated GRF also allows for

a detailed investigation of some of its theoretical properties, which is the main topic of Article 1.

It turns out that the profound theory of real-valued Lévy processes and GRFs allows to derive

important theoretical results for the subordinated GRF. For instance, the Lévy-Khinchin formula

for Lévy processes (see Theorem 2.1.3) together with the distributional properties of a GRF

allow to prove a Lévy-Khinchin-type formula for an explicit representation of the pointwise

distribution of the subordinated GRF (see Corollary 5.4.3 and Theorem 5.4.6). This is valuable for

example for practical applications where pointwise distributions have to be fitted to real-world

data. Technically, the most important theoretical instrument used in the derivation of this

result is a lemma on the computation of the expectation of functionals of the subordinated GRF.

It allows the expectations with respect to the GRF and the Lévy processes to be taken iteratively

(see Lemma 5.4.1). Besides pointwise distributional properties, the covariance function of a
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random field plays an important role in practical applications. Often, one aims to tailor a

stochastic model in order to mimic a specific correlation structure determined by real-world

data. In Article 1, a semi-explicit formula for the covariance function of the subordinated GRF

is presented, which may be used for this purpose (see Section 5.5). The distributional flexibility

of the subordinated GRF raises the question up to which order pointwise moments of the field

exist. This is relevant for many statistical methods since the existence of moments up to a

certain order is often required. In case of a GRF, pointwise distributions follow a Gaussian

distribution and, therefore, absolute moments of any order exist. However, when a general

subordinated GRF is considered, it is a-priori not clear under which assumptions pointwise

moments exist. This question is answered in Article 1 (see Section 5.6), where conditions on the

tails of the distributions of the GRF and the corresponding Lévy processes are derived which

ensure the existence of pointwise absolute moments up to a specific order.

The results presented in Article 1 provide useful instruments for theoretical and practical

applications of the subordinated GRF. One of these applications is to consider the field in

the diffusion coefficient of an elliptic PDE (see also Section 2.3 and Subsection 2.3.5). Such

a problem might, for example, be interesting for subsurface/groundwater flow modeling in

fractured or porous media. The resulting random PDE is investigated theoretically in Article 2.

In order to achieve a high flexibility of the model, the diffusion coefficient of the considered PDE

is defined as the sum of a deterministic part, a transformation of a GRF and a transformation of

the subordinated GRF. The existence of a random weak solution to the corresponding PDE is

shown by a pathwise application of the Lax-Milgram lemma (cf. Subsection 2.3.2). However,

accessing this solution is a different matter and mainly consists of two steps: drawing samples

of the diffusion coefficient and, given such a sample, approximating the pathwise weak solution

by some numerical method. Regarding the first step, the main issue is that samples of the

constructed diffusion coefficient a may in general not be simulated exactly, since this includes

the simulation of paths of GRFs and Lévy subordinators, which is in general only possible in an

approximative way. For example, one may use a truncated Karhunen-Loève expansion or the

circulant embedding method to produce approximate realizations of the GRFs (see Subsections

2.2.2 and 2.2.3) and piecewise constant approximations of the Lévy processes obtained from

simulated values on a discrete grid (see Article 2 and [15]). Combining approximations of the

GRFs and the Lévy subordinators leads to an approximate version of the diffusion coefficient,

which naturally induces a perturbation in the considered PDE. In order to investigate the

corresponding approximation error of the PDE solution, one has to quantify the error for the ap-

proximation of the diffusion coefficient itself. While it is well-investigated how approximation

errors for GRFs may be quantified, it is a non-trivial question how a combined approximation

of the GRF and the Lévy subordinators affects the approximation of the subordinated GRF.
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However, in Article 2 it is shown that, under moderate assumptions, one may quantify the

overall error for the approximation of the diffusion coefficient in an Ls(Ω;Lt(D))-sense for

admissible 1 ≤ t ≤ s < +∞ (see Section 6.4). It has to be pointed out that it is in general not

possible to obtain a bound in an Ls(Ω;L∞(D))-norm as it is the case in purely Gaussian mod-

els (see e.g. Lemma 6.4.4). Note that this is to be expected since the L∞-norm is not natural for

the approximation of the diffusion coefficient due to the discontinuities with random location.

Having quantified the approximation error of the diffusion coefficient it remains to investigate

how this approximation affects the PDE solution. The classical theory for perturbed diffusion

coefficients in the considered elliptic PDE gives an upper bound on the approximation error of

the solution in terms of the approximation error of the diffusion coefficient measured in the

L∞-norm on the spatial domain (see [84]). Since this is too sharp for the diffusion coefficient

with the subordinated GRF, another approach had to be used in Article 2. Hölder’s inequality

allows for the derivation of a bound on the approximation error of the random solution by

the approximation error of the diffusion coefficient in an Ls(Ω;Lt(D))-norm instead of the

stronger Ls(Ω;L∞(D))-norm under certain integrability assumptions, which completes the

investigation of the error induced by the approximation of the diffusion coefficient (see Theorem

6.5.11). Being able to produce approximate samples of the diffusion coefficient with sufficient

accuracy, it remains to discretize the PDE in space in order to approximate the corresponding

pathwise PDE solution. Finite element (FE) methods with standard triangulations perform

poorly due to the low regularity of the problem caused by the jumps of the diffusion coefficient

(see also Subsection 2.3.4). Therefore, besides standard meshes, sample-adapted triangulations

are used for the spatial discretization, where the edges of the elements align with the jump

discontinuities of the coefficient. This improves the performance of the FE method as numerical

examples on the strong error estimation confirm (see Section 6.7).

In practical applications one is often interested in the estimation of (functionals of) moments

of a random PDE solution (see, for example, the references mentioned in Subsection 2.4.4).

Article 3 considers the random elliptic PDE from Article 2 with the goal to approximate the

expectation of the random solution. Due to the high stochastic dimension of the problem,

sampling-based approaches are used since stochastic Galerkin or stochastic collocation ap-

proaches are out of reach (cf. Subsection 2.4.5). A multilevel Monte Carlo (MLMC) estimator for

the mean of the random PDE solution is constructed, where a FE method with linear elements

is used to obtain pathwise approximations of the weak PDE solution (see Subsections 2.4.3 and

2.4.4). Naturally, the approximation error of the MLMC estimator may be split into the bias and

the statistical error (see Subsection 2.4.3). Both error components depend on the FE approxima-

tion error and the approximation of the diffusion coefficient, as it has been considered in Article

2. An a-priori error bound is derived on the approximation error of the MLMC estimator in
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terms of the sample numbers, the FE approximation parameters and the parameters for the

approximation of the diffusion coefficient (see Theorem 7.6.3). In order to equilibrate all error

contributions, this a-priori bound is used to derive rules for the choice of the parameters of

the MLMC estimator: the level-dependent sample numbers, the FE approximation parameters

and parameters for the approximation of the Lévy subordinators and the GRFs (see Corollary

7.6.4). As in Article 2, the MLMC estimator is used in combination with a FE method with

standard meshes and with sample-adapted triangulations. The latter improve the performance

of the MLMC estimator (see Subsection 7.8.2). However, this approach is only applicable for

Lévy processes with low jump intensity, since otherwise the computation of adapted meshes

becomes computationally unfeasible. Article 3 proposes an approach to improve the MLMC

estimation for coefficients with high jump intensity by a variance reduction technique (see

Section 7.7). In fact, the presented MLMC estimator is combined with a control variate (CV)

approach, which is highly motivated by the recent article [101]. Being precise, a (Gaussian

kernel-)smoothed version of the diffusion coefficient is used to construct a control variate

(see Article 3 and [62, Section 4]) in order to reduce the variance of the MLMC estimator.

It turns out that the approximation error for the smoothed diffusion coefficient in terms of

the approximation of the GRFs and the Lévy subordinators is bounded by the corresponding

approximation error for the unsmoothed coefficient (see Lemma 7.7.3). This is used to prove a

bound on the error of the constructed MLMC-CV estimator in terms of the level-dependent

sample numbers, the FE approximation parameters and the approximation parameters for the

GRFs and the Lévy subordinators (see Theorem 7.7.5) and to derive rules for the choice of these

approximation parameters in order to equilibrate all error contributions (see Corollary 7.7.6).

Numerical examples demonstrate the improved performance of the constructed estimator (see

Section 7.8.3).

One restriction of the subordinated GRF is its jump geometry: by construction, the jump-

domains of the subordinated GRF are always rectangular and therefore not rotationally invariant.

Article 4 proposes another approach to construct discontinuous random fields on higher param-

eter dimensions. The GSLF is the composition of a general one-dimensional Lévy process with

a positive transformation of a GRF. This results in a generalization of the level-set approach

for GRFs (see Section 8.3) and the corresponding random fields are discontinuous in space.

Further, the discontinuities display a high geometrical flexibility and complexity. Similar to the

situation of the subordinated GRF in Article 1, the key for the theoretical investigation of the

GSLF in Article 4 is a lemma which allows to compute expectations of functionals of the GSLF

by the computation of expectations with respect to the Lévy process and the GRF iteratively

(see Lemma 8.4.1). This allows access to the pointwise distribution of the GSLF (see Corollary

8.4.3). The mentioned lemma is also applied to derive a formula for the covariance function of
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the GSLF (see Section 8.6). As already pointed out in the context of the subordinated GRF, it is

in general impossible to simulate exact realizations of GRFs and Lévy processes on continuous

domains. Therefore, one has to use approximations of the GRF and the Lévy process to produce

(approximate) realizations of the GSLF. In Article 4, a corresponding error bound is derived in

an Lp(Ω;Lp(D))-norm for admissible 1 ≤ p < +∞ and the pointwise distribution of the

approximated random fields are investigated (see Section 8.5). Articles 2 and 3 consider the

subordinated GRF in the diffusion coefficient of an elliptic PDE. This application is also of

interest in the context of the GSLF. Therefore, Article 4 presents some theoretical investiga-

tions on the random elliptic model problem where the GSLF occurs in the diffusion coefficient

(see Section 8.8). This leads again to a discontinuous diffusion coefficient and, therefore, one

cannot expect full order convergence in the FE method for the pathwise approximation of the

random weak solution. In the context of the subordinated GRF, sample-adapted meshes lead to

a significant improvement of the FE method, provided that the jump intensity of the underlying

Lévy subordinators is small enough (cf. Articles 2 and 3). In the context of the GSLF, a direct

alignment of the FE meshes according to the jump discontinuities is impossible, since the jump

interfaces are given implicitly. Further, their complex geometrical properties will in general

not allow for an exact alignment. Therefore, in Article 4, an adaptive FE method is applied to

improve the accuracy of the FE method compared to standard triangulations (see Section 8.8),

which is confirmed in numerical examples (see Subection 8.8.3).

3.2 Summary and outlook

In order to overcome the restrictions of the standard Gaussian model in random elliptic PDEs

regarding its distributional flexibility and path continuity, this thesis uses subordination ap-

proaches to construct random fields with discontinuous paths which are distributionally flexible

and investigates their application in the diffusion coefficient of an elliptic problem. This repre-

sents an important step in order to generalize the standard Gaussian model towards flexible,

discontinuous random field diffusion models with accessible distributional properties.

The subordinated GRF is constructed by the composition of a GRF on a higher-dimensional

parameter space with independent Lévy subordinators and the Gaussian subordinated Lévy

field is constructed by the composition of a general Lévy process with some positive transfor-

mation of a GRF. Both approaches yield random field models which display great pointwise

distributional flexibility and allow for discontinuity modeling in the spatial domain. The various

theoretical investigations of the random fields presented in this thesis include, among others,

pointwise characteristic functions and formulas for the covariance functions. These results
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are valuable for practical applications since they may be used to fit the random fields to given

real-world data. The application of the proposed random fields in the diffusion coefficient of a

random elliptic model problem significantly increases the variability compared to the standard

Gaussian model in terms of distributional flexibility and the ability to model jump disconti-

nuities. This is important for some applications, for example, when subsurface/groundwater

flow in fractured/porous media is considered. Besides crucial theoretical results on the corre-

sponding random elliptic PDE and insightful numerical experiments on the estimation of the

strong error, this thesis presents problem specific MLMC estimators for the random elliptic

PDE, where the subordinated GRF occurs in the diffusion coefficient. The estimators are of

great importance for applications since they are comparatively easy to implement and allow for

an efficient approximation of the mean of the solution to the considered random PDE. Apart

from a theoretical analysis of the MLMC estimators, various numerical experiments complete

their investigation.

This thesis may serve as starting point for various directions of further research and open

research questions. Regarding the random field models and their construction, it would be

interesting to investigate other subordination-based constructions of random field models.

Further, it has to be emphasized that the constructions presented in this thesis are not re-

stricted to Gaussian random fields and Lévy processes and one could consider other classes of

fields/processes in these constructions. Besides this general research direction, it would be of

great interest to develop problem specific methods to fit the subordinated GRF or the GSLF

to real-world data in order to obtain models which display certain pointwise distributional

properties and covariance structures. Here, the presented formulas for the subordinated GRF

and the GSLF will be useful (see Chapters 5 and 8 and especially Subsection 5.5.3).

Concerning the application of the subordinated GRF and the GSLF in the elliptic model prob-

lem, one possible starting point for future research could be the spatial discretization technique.

Besides FE methods with standard triangulations, this thesis investigates discontinuity-adapted

triangulations and residual-based adaptive FE methods to discretize the considered random

elliptic interface problem (see Chapters 6 - 8). In addition to these approaches, there are other

extensions of the standard FE method which could be applied in the context of the subordinated

GRF and the GSLF. Here, the immersed FE (IFE) method has to be mentioned explicitly. Instead

of sample-dependent triangulations, the IFE method uses domain triangulations that do not

depend on the diffusion coefficient. On the other hand, information about the location of

the jump discontinuities in the diffusion coefficient is directly incorporated in the FE basis

functions (see [88]). In [119], this approach has successfully been applied to two-dimensional

random elliptic interface problems with a single, deterministic jump interface.

Besides the spatial discretization, it would also be interesting to use the subordinated GRF
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and the GSLF in other PDEs. For example, the recent articles [17] and [110] consider a discon-

tinuous random field as the coefficient in a time-dependent advection-diffusion equation. In

these papers, the diffusion coefficient is modeled in the same way as in [16] and one could also

consider the subordinated GRF or the GSLF as coefficient in such an equation.

Regarding the discretization of the stochastic domain, the current thesis presents problem

specific MLMC estimators to approximate the mean of the random elliptic PDE, where the

subordinated GRF occurs in the diffusion coefficient. Here, sample-wise approximations of the

PDE solution are computed by a FE method. In the recent literature various (Deep) Neural Net-

work approaches have been applied to learn the solution operator to PDEs and these methods

often outperform classical PDE solvers in terms of computational efficiency (see, for example,

[80] and [89]). Using (Deep) Neural Networks as a surrogate model to generate approximate

samples of PDE solutions efficiently in combination with multilevel approaches could improve

the computational performance of the estimator. Besides Monte Carlo approaches, there are

also conceptionally different discretization techniques in Uncertainty Quantification. Stochas-

tic Galerkin and stochastic collocation methods are currently out of reach for the random

PDE problems considered in this thesis due to the high stochastic dimension of the diffusion

coefficient with random jump discontinuities (see also Subsection 2.4.5). Quasi-Monte Carlo

(QMC) methods have been successfully applied to random elliptic problems in the recent

literature (see, for example, [82, 81, 47, 63] and the references therein). In contrast to Monte

Carlo approaches, QMC methods are based on carefully chosen deterministic samples with low

discrepancy instead of (pseudo-)random numbers. In some situations this approach allows for

the construction of highly efficient estimators (see [59] and [40]). The application of problem

specific QMC methods in the context of the random elliptic PDE considered in this thesis would

be of great interest, but also poses major challenges due to the high stochastic dimension of

the diffusion coefficient. In addition to QMC approaches, the recently developed continuous

level Monte Carlo (CLMC) method also has to be mentioned (see [38]). The CLMC algorithm

may be considered as a generalization of MLMC where the level parameter ℓ is not discrete

but continuous. Sample-wise FE approximations of a random elliptic PDE are computed with

adaptive mesh refinement techniques using goal-oriented FE error estimators. The CLMC

method has been successfully applied to log-normal coefficients and a similar approach could

be applied to the discontinuous random elliptic PDEs considered in this thesis.
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Abstract: Motivated by the subordinated Brownian motion, we define a new class of (in general
discontinuous) random fields on higher-dimensional parameter domains: the subordinated Gaus-
sian random field. We investigate the pointwise marginal distribution of the constructed random
fields, derive a Lévy-Khinchin-type formula and semi-explicit formulas for the covariance function.
Further, we study the pointwise stochastic regularity and present various numerical examples.

5.1 Introduction

In many applications of stochastic modeling, it is meaningful to consider random fields which

are discontinous in space (e.g. in fractured porous media modeling). In the situation of a

one-dimensional parameter space, like financial modeling, Lévy processes turned out to be a

very powerful class of (in general) discontinuous stochastic processes, combined with useful

properties, see for example [109], [8], [108].

Whereas the extension of R-valued Lévy processes with one-dimensional parameter space to

Hilbert space H-valued Lévy processes is straight forward (see for example [15]), the extension

of Lévy processes to higher-dimensional parameter spaces is more challenging. The reason can
1IANS/SimTech, University of Stuttgart, Stuttgart, Germany
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46 5 On some distributional properties of subordinated Gaussian random fields

be found at the very starting point of the definition of Lévy processes where time increments

are considered: In fact, the definition of Lévy processes makes explicitly use of the total or-

dered structure underlying the considered time interval. The absence of such a structure on a

higher-dimensional parameter space makes it difficult to extend the definition of a standard

Lévy process to higher-dimensional parameter spaces.

Subordinated fields did receive only little attention in the recent literature. In some classical

papers on generalized random fields, of which [42] is an important representative (see also

the references therein), subordinated fields are defined in terms of iterated Itô-integrals. In

the recent article [91], the authors investigate deterministic transformations of Gaussian ran-

dom fields, so called Gaussian subordinated fields, and study excursion sets. The Rosenblatt

distributions and long-range dependence of (subordinated) fields are looked into in [85]. The

article [13] presents an extension of the concept of subordination to multivariate Lévy processes

and investigates self-decomposibility of the resulting processes defined on a one-dimensional

parameter domain. In the recent paper [25], the authors define the so called weak subordination

of multivariate Lévy processes as a generalization of the classical subordination. The resulting

multivariate processes depend on a one-dimensional time parameter and the authors prove that

weak subordination is an extension of the classical (strong) subordination. In [24] and [26],

the authors consider multivaritate Brownian motions (weakly) subordinated by multivariate

Thorin subordinators, investigate self-decomposibility as well as the existence of moments

of the resulting distributions and present some applications in mathematical finance. The

considered subordinated multivariate processes are defined on a one-dimensional parameter

domain.

In contrast, the main contribution of our work is to prove properties of the (discontinuous)

subordinated random fields on higher-dimensional parameter domains and of their pointwise

distributions, which are important in applications (see for example [118], [18] and [16]).

We present an approach for an extension of a subclass of Lévy processes to more general

parameter spaces: Motivated by the subordinated Brownian motion, we employ a higher-

dimensional subordination approach using a Gaussian random field together with Lévy subor-

dinators.

Figure 5.1 illustrates the approach with samples of a Gaussian random field (GRF) on [0, 1]2

with Matérn-1.5 covariance function and the corresponding subordinated field, where we used

Poisson and Gamma processes on [0, 1] to subordinate the GRF. These examples illustrate how

the jumps of the Lévy subordinators produce jumps in the two-dimensional subordinated GRF.

The flexibility of the resulting random fields make them attractive for a variety of applications.

In the recent article [96], the authors consider a randomized elliptic partial differential equa-

tion, where the subordinated GRF occur in the diffusion coefficient, to name just one possible
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Figure 5.1: Sample of Matérn-1.5-GRF (left), Poisson-subordinated GRF (middle) and Gamma-
subordinated GRF (right).

application.

The question arises whether it is possible to transfer some theoretical results of one–

dimensional Lévy processes to these random fields on higher-dimensional parameter spaces. In

particular, a Lévy-Khinchin-type formula to access the pointwise distribution of the constructed

random field is of great interest (see Section 5.4). In Section 5.5 we investigate the covariance

structure of the subordinated fields and show how it is influenced by the choice of subordinators.

The stochastic regularity of the subordinated fields is studied in Section 5.6. There, we derive

conditions which ensure the existence of pointwise moments. In the last section we present

some numerical experiments on the theoretical results presented in this paper intended to help

fitting random fields to data.

5.2 Preliminaries

In this section we give a short introduction to Lévy processes and Gaussian random fields as

basis for the construction of subordinated Gaussian random fields. Throughout the paper, let

(Ω,F ,P) be a complete probability space.

5.2.1 Lévy processes

Let T ⊆ R+ := [0,+∞) be an arbitrary time domain. A stochastic processX = (X(t), t ∈
T ) on T is a family of random variables on the probability space (Ω,F ,P). A stochastic

process l on T = [0,+∞) is said to be a Lévy process if l(0) = 0 P-a.s., l has independent and

stationary increments and l is stochastically continuous. A very important characterization

property of Lévy processes is given by the so called Lévy-Khinchin formula (see, for example,

[8, Th. 1.3.3 and p. 29]).
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48 5 On some distributional properties of subordinated Gaussian random fields

Theorem 5.2.1 (Lévy-Khinchin formula).

Let l be a real-valued Lévy process on T = R+ := [0,+∞). There exist parameters b ∈
R, σ2

N ∈ R+ and a measure ν on (R,B(R)) such that the pointwise characteristic function ϕl(t),
for t ∈ T , admits the representation

ϕl(t)(ξ) := E(exp(iξl(t)))

= exp
(
t
(
ibξ − σ2

N

2
ξ2 +

∫
R\{0}

eiξy − 1− iξy1{|y|≤1}(y) ν(dy)
))
,

for ξ ∈ R. The measure ν on (R,B(R)) satisfies∫
R
min(y2, 1) ν(dy) <∞,

and a measure with this property is called Lévy measure.

It follows from the Lévy-Khinchin formula that every Lévy process is fully characterized by

the so called Lévy triplet (b, σ2
N , ν).

Within the class of Lévy processes there exists a subclass which is given by the so called

subordinators: A Lévy subordinator on T is a Lévy process that is non-decreasing P-almost

surely. The pointwise characteristic function of a Lévy subordinator l(t), for t ∈ T , admits

the form

ϕl(t)(ξ) = E(exp(iξl(t))) = exp
(
t
(
iγξ +

∫ ∞

0

eiξy − 1 ν(dy)
))
, for ξ ∈ R, (5.1)

(see [8, Theorem 1.3.15]). Here, ν is the Lévy measure and γ is called drift parameter of l. The

Lévy measure ν on (R,B(R)) of a Lévy subordinator satisfies

ν(−∞, 0) = 0 and
∫ ∞

0

min(y, 1) ν(dy) <∞.

Since any Lévy subordinator l is a Lévy process, the Lévy-Khinchin formula holds and we obtain

σ2
N = 0 and b = γ +

∫ 1

0 y ν(dy) in Theorem 5.2.1 for the subordinator l. In the following,

we always mean the triplet (γ, 0, ν) corresponding to representation (5.1) if we refer to the

characteristic triplet of a Lévy subordinator.
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5.2.2 Gaussian random fields

Let D ⊂ Rd be a spatial domain. A random field R = (R(x), x ∈ D) is a family of random

variables on the probability space (Ω,F ,P). In our approach to extend Lévy processes on

higher-dimensional parameter domains, one important component is given by the Gaussian

random field (see [3, Sc. 1.2]):

Definition 5.2.2.

A random field W : Ω×D → R on a d-dimensional domain D ⊂ Rd is said to be a Gaussian
random field (GRF) if, for anyx(1), . . . , x(n) ∈ D withn ∈ N, then-dimensional random variable
(W (x(1)), . . . ,W (x(n))) is multivariate Gaussian distributed. For a GRFW and arbitrary points
x(1), x(2) ∈ D, we define the mean function by µW (x(1)) := E(W (x(1))) and the covariance
function by

qW (x(1), x(2)) := E
(
(W (x(1))− µW (x(1)))(W (x(2))− µW (x(2)))

)
.

The GRF W is called centered, if µW (x(1)) = 0 for all x(1) ∈ D.

Note that every Gaussian random field is determined uniquely by its mean and covariance

function. We denote by Q : L2(D) → L2(D) the covariance operator of W which is, for

ψ ∈ L2(D), defined by

Q(ψ)(x) =

∫
D
qW (x, y)ψ(y)dy, for x ∈ D.

Here, L2(D) denotes the set of all square integrable functions over D. Further, if D is compact,

there exists a decreasing sequence (λi, i ∈ N) of real eigenvalues of Q with corresponding

eigenfunctions (ei, i ∈ N) ⊂ L2(D) which form an orthonormal basis of L2(D) (see [3,

Section 3.2] and [115, Theorem VI.3.2 and Chapter II.3]). The GRF W is called stationary if

the mean function µW is constant and the covariance function qW (x(1), x(2)) only depends

on the difference x(1) − x(2) of the values x(1), x(2) ∈ D. Further, the stationary GRF W is

called isotropic if the covariance function qW (x(1), x(2)) only depends on the Euclidean length

|x(1) − x(2)|2 of the difference of the values x(1), x(2) ∈ D (see [3], p. 102 and p. 115).
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5.3 The subordinated Gaussian random field

Throughout the rest of this paper, letd ∈ N be a natural number withd ≥ 2 andT1, . . . , Td > 0

be positive values. We define the horizon vector T := (T1, . . . , Td) and consider the spatial

domain [0,T]d := [0, T1]× · · · × [0, Td] ⊂ Rd. In the following, we will also use the notation

(0,T]d := (0, T1]× · · · × (0, Td]. After a short motivation we define next the subordinated

field and show that it is indeed measurable.

5.3.1 Motivation: the subordinated Brownian motion

In order to motivate the novel subordination approach for the extension of Lévy processes,

we shortly repeat the main ideas of the subordinated Brownian motion which is defined as a

Lévy-time-changed Brownian motion: Let B = (B(t), t ∈ R+) be a Brownian motion and

l = (l(t), t ∈ R+) be a subordinator. The subordinated Brownian motion is then defined to

be the process

L(t) := B(l(t)), t ∈ R+.

It follows from [8, Theorem 1.3.25] that the processL is again a Lévy process. Note that the class

of subordinated Brownian motions is a rich class of processes with great distributional flexibility.

For example, the well known Generalized Hyperbolic Lévy process can be represented as a

NIG-subordinated Brownian motion (see [15] and especially Lemma 4.1 therein).

5.3.2 The definition of the subordinated Gaussian random field

Let W = (W (x), x = (x1, . . . , xd) ∈ Rd
+) be a GRF such that W is F ⊗ B(Rd

+)− B(R)-
measurable. We denote by µW : Rd

+ → R the mean function and by qW : Rd
+ × Rd

+ → R the

covariance function of W . Let lk = (lk(x), x ∈ [0, Tk]) be independent Lévy subordinators

with triplets (γk, 0, νk), for k ∈ {1, . . . , d}, corresponding to representation (5.1). Further, we

assume that the Lévy subordinators are stochastically independent of the GRF W . We consider

the random field

L : Ω× [0,T]d → R with L(x1, . . . , xd) := W (l1(x1), . . . , ld(xd)),

for (x1, . . . , xd) ∈ [0,T]d and call it subordinated Gaussian random field (subordinated GRF).
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Remark 5.3.1. Note that assuming thatW has continuous paths is sufficient to ensure thatW
is a jointly measurable function since W is a Carathéodory function in this case (see [6, Lemma
4.51]). A sufficient condition for the pathwise continuity of GRFs is given, for example, in [3,
Theorem 1.4.1] (see also the discussion in [3, Section 1.3, p. 13]). A specific example for a class
of GRFs with at least continuous samples is given by the Matérn GRFs: for a given smoothness
parameter ν > 1

2
, a correlation parameter r > 0 and a variance parameter σ2 > 0 the Matérn-ν

covariance function on Rd
+ × Rd

+ is given by qMW (x, y) = ρM(|x− y|2) with

ρM(s) = σ2 2
1−ν

Γ(ν)

(2s√ν
r

)ν
Kν

(2s√ν
r

)
, for s ≥ 0,

where Γ(·) is the Gamma function and Kν(·) is the modified Bessel function of the second kind
(see [63, Section 2.2 and Proposition 1]). Here, | · |2 denotes the Euclidean norm on Rd. A Matérn-ν
GRF is a centered GRF with covariance function qMW .

The subordinated GRF constructed above is one possible way to extend the concept of the

subordinated Brownian motion to higher-dimensional parameter domains. However, construc-

tion of a random field by subordination in each spatial variable is not confined to this approach.

For example, the construction itself is not limited to the case that W is a GRF and l is a Lévy

subordinator. One could consider more general random fields (R(x), x ∈ Rd
+) subordinated

by d positive valued stochastic processes. However, in general it might be difficult or impossible

to investigate theoretical properties of the resulting random field. In contrast, the subordinated

GRFs inherits several properties from the GRF and the Lévy subordinators investigated in the

following sections.

5.3.3 Measurability

In Subsection 5.3.2 we introduced the subordinated GRF L as a random field. Strictly speaking,

we therefore have to verify that point evaluations of the field L are random variables, meaning

that we have to ensure measurability of these objects. Note that this is not trivial, since - due

to the construction of L - the Lévy subordinators induce an additional ω-dependence in the

spatial direction of the GRF W . The following lemma proves joint measurability of L.

Lemma 5.3.2.

Let L be a subordinated GRF on the spatial domain [0,T]d as constructed in Subsection 5.3.2,
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52 5 On some distributional properties of subordinated Gaussian random fields

where we use the notation x = (x1, . . . , xd) ∈ [0,T]d. The mapping

L : Ω× [0,T]d → R, (ω, x) 7→ W (ω, l1(ω, x1) . . . , ld(ω, xd)),

is F ⊗ B([0,T]d)− B(R)-measurable.

Proof. For any k ∈ {1, . . . , d}, the Lévy process lk has càdlàg paths and, hence, the

mapping lk : Ω× [0, Tk] → R+, is F ⊗B([0, Tk])−B(R+)-measurable (see [106, Chapter 1,

Theorem 30] and [108, Section 30]). We consider domain-extended versions of the processes: for

any k ∈ {1 . . . , d}, we define the mapping l̃k(ω, x) := lk(ω, xk), for (ω, x) ∈ Ω× [0,T]d,

which is F⊗B([0,T]d)−B(R+) measurable by [6, Lemma 4.51]. An application of [6, Lemma

4.49] yields the F ⊗ B([0,Td])− B(Rd
+)-measurability of the mapping

Ω× [0,T]d → Rd
+, (ω, x) 7→ (l̃1(ω, x), . . . , l̃d(ω, x)) = (l1(ω, x1), . . . , ld(ω, xd)).

Further, the mapping (ω, x) 7→ ω is F ⊗ B([0,T]d)−F -measurable and, hence, [6, Lemma

4.49] yields that the mapping

Ω× [0,T]d → Ω× Rd
+,

(ω, x) 7→ (ω, (l̃1(ω, x), . . . , l̃d(ω, x))) = (ω, (l1(ω, x1), . . . , ld(ω, xd))),

isF⊗B([0,Td])−F⊗B(Rd
+)-measurable. By assumption, the GRFW isF⊗B(Rd

+)−B(R)-
measurable and, therefore, the mapping

L : Ω× [0,T]d → R, (ω, x) 7→ W (ω, (l1(ω, x1) . . . , ld(ω, xd))),

is F ⊗ B([0,Td])− B(R)-measurable as composition of measurable functions. □

5.4 The pointwise distribution of the subordinated GRF
and the Lévy-Khinchin formula

In this section we prove a Lévy-Khinchin-type formula for the subordinated GRF in order to

have access to the pointwise distribution. This is important, for example, in view of statistical

fitting and other applications. In order to be able to do so we need the following technical

lemma about the expectation of the composition of independent random variables, which is a
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generalization of the corresponding assertion given in the proof of [108, Theorem 30.1].

Lemma 5.4.1.

LetW : Ω×Rd
+ → R be a P-a.s. continuous random field and let Z : Ω → Rd

+ be a Rd
+-valued

random variable which is independent of the random field W . Further, let g : R → R be a
deterministic, continuous function. It holds

E(g(W (Z)) = E(m(Z)),

where m(z) := E(g(W (z)) for deterministic z ∈ Rd
+.

Proof. Step 1: Assume that g is globally bounded. We denote by Cb(Rd
+) the space of

continuous, bounded functions on Rd
+ equipped with the usual supremum norm. We define

the function

F : Cb(Rd
+)× Rd

+ → R, (f, x) 7→ g(f(x)),

which is continuous and, hence, Borel-measurable. For a fixed threshold A > 0, we de-

fine the cut function χA(x) := min(x,A), for x ∈ R and consider the random field

WA(ω, x) := W (ω, χA(x1), . . . , χA(xd)), for ω ∈ Ω and x = (x1, . . . , xd) ∈ Rd
+. Since

W has continuous paths and [0, A]d is compact, WA has paths in Cb(Rd
+) and we have the

pathwise identity g(WA(Z)) = F (WA, Z). Using the independence of W and Z together

with [35, Proposition 1.12] yields

E(g(WA(Z)) = E(F (WA, Z)) = E(E(F (WA, Z) |σ(Z))) = E(mA(Z)),

where mA(z) := E(g(WA(z))) for z ∈ Rd
+. Further, since g is continuous and bounded

and W has continuous paths, we obtain the pathwise convergence g(WA(Z)) → g(W (Z))

and mA(Z) → m(Z), for A → ∞. Using again the boundedness of g and the dominated

convergence theorem, we obtain E(g(W (Z))) = E(m(Z)).

Step 2: In this step we assume that g(x) ≥ 0 on R but g does not necessarily have to be

bounded. It follows that m is also non-negative on Rd
+. Since g and m are non-negative we

obtain the P-a.s. monotone convergence of χA(g(W (Z)))) → g(W (Z))) for A → +∞.

We define mA(z) := E(χA(g(W (z))), for z ∈ Rd
+, and obtain by the monotone convergence

theorem

mA(Z) → m(Z) P-a.s. for A→ +∞.
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Using Step 1 and the monotone convergence theorem we obtain:

E(g(W (Z))) = lim
A→+∞

E(χA(g(W (Z)))) = lim
A→+∞

E(mA(Z)) = E(m(Z)).

Step 3: Finally, we consider an arbitrary continuous function g : R → R. We write g+ =

max{0, g}, g− = −min{0, g} as well as

m̃+(z) = E(g+(W (z))), m̃−(z) = E(g−(W (z))),

for z ∈ Rd
+ and obtain the additive decomposition g(x) = g+(x) − g−(x) for x ∈ R and

m(z) = m̃+(z) − m̃−(z) for z ∈ Rd
+ by the additivity of the integral with respect to the

integration domain. We apply Step 2 to optain

E(g(W (Z))) = E(g+(W (Z)))− E(g−(W (Z)))

= E(m̃+(Z))− E(m̃−(Z))

= E(m(Z)),

which proves the assertion. □

Remark 5.4.2. We emphasize that the assumptions on the random field W and the random
variableZ in Lemma 5.4.1 are very mild. In particular, we do not assume the existence of continuous
densities of the random field W or the random vector Z . Further, we mention that the assertion
obviously may be extended to deterministic, bounded and continuous functions g : R → C which
are complex-valued.

A GRF W is pointwise normally distributed with parameters specified by the mean µW and

covariance function qW . Using this together with Lemma 5.4.1 and Remark 5.4.2 we obtain

the following semi-explicit formula for the pointwise characteristic function of a subordinated

GRF.

Corollary 5.4.3.

Let W be a P-a.s. continuous GRF on Rd
+ with mean function µW : Rd

+ → R and covariance
function qW : Rd

+ × Rd
+ → R. Further, let lk = (lk(t), t ∈ [0, Tk]), for k = 1, . . . , d, be

independent Lévy subordinators which are independent ofW . The pointwise characteristic function
of the subordinated GRF defined by L(x) := W (l1(x1), . . . , ld(xd)), for x = (x1, . . . , xd) ∈
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[0,T]d, admits the formula

E(exp(iξL(x))) = E(exp(iξW (l1(x1), . . . , ld(xd))))

= E
(
exp

(
iµW (l1(x1), . . . , ld(xd))−

1

2
ξ2σ2

W (l1(x1), . . . , ld(xd))
))
,

for ξ ∈ R and any fixed point x = (x1, . . . , xd) ∈ [0,T]d. Here, the variance function
σ2
W : Rd

+ → R+ is given by σ2
W (x) := qW (x, x) for x ∈ Rd

+.

In the one-dimensional case, the Lévy-Khinchin formula gives an explicit representation

of the pointwise characteristic function of a Lévy process. This representation also applies

to the subordinated Brownian motion, since it is itself a Lévy process (see Subsection 5.3.1).

Note that in the construction of the subordinated Brownian motion one cannot replace the

Brownian motion by a general one-parameter GRF on R+ without losing the validity of the

Lévy-Khinchin formula. Hence, in the case of a subordinated GRF on a higher-dimensional

parameter space, it is natural that we have to restrict the class of admissible GRFs in order to

obtain a Lévy-Khinchin-type formula which is the d-dimensional analogon of Theorem 5.2.1.

We recap that the pointwise characteristic function of a standard Brownian motion B is given

by

ϕB(t)(ξ) = E(exp(iξB(t))) = exp
(
− 1

2
tξ2
)
, for ξ ∈ R,

for t ≥ 0. Note that the Brownian motion ist not characterized by this property, i.e. not every

zero-mean GRF on R+ with the above pointwise characteristic function is a Brownian motion,

since this specific characteristic function can be attained by different covariance functions,

whereas the covariance function of the Browian motion is given uniquely by qBM(s, t) =

Cov(B(s), B(t)) = min{s, t} for s, t ≥ 0 (see for example [109, Section 3.2.2]). Motivated

by this, we impose the following assumptions on the GRF on Rd
+.

Assumption 5.4.4.

Let W = (W (x), x ∈ Rd
+) be a zero-mean continuous GRF. We assume that there exists a

constant σ > 0 such that the pointwise characteristic function of W is given by

ϕW (x)(ξ) = E(exp(iξW (x))) = exp
(
− 1

2
σ2ξ2(x1 + · · ·+ xd)

)
,

for ξ ∈ R and every x = (x1, . . . , xd) ∈ Rd
+.
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Remark 5.4.5. Note that for a zero-mean, continuous and stationary GRF W̃ = (W̃ (x), x ∈
Rd

+), the GRF W defined by

W (x) :=
√
x1 + · · ·+ xdW̃ (x), for x = (x1, . . . , xd) ∈ Rd

+,

satisfies Assumption 5.4.4.

We are now able to derive the Lévy-Khinchin-type formula for the subordinated GRF.

Theorem 5.4.6 (Lévy-Khinchin-type formula).

Let Assumption 5.4.4 hold. We assume independent Lévy subordinators lk = (lk(x), x ∈ [0, Tk]),
with Lévy triplets (γk, 0, νk), for k = 1, . . . , d, are given corresponding to representation (5.1).
Further, we assume that these processes are independent of the GRF W . We consider the subor-
dinated GRF defined by L : Ω × [0,T]d → R with L(x) := W (l1(x1), . . . , ld(xd)) for x =

(x1, . . . , xd) ∈ [0,T]d. The pointwise characteristic function of the random field L is, for any
x = (x1, . . . , xd) ∈ [0,T]d, given by

ϕL(x)(ξ) = E(exp(iξW (l1(x1), . . . , ld(xd))))

= exp
(
− (x1, . . . , xd) ·

(σ2ξ2

2
(γ1, . . . , γd)

t +

∫
R\{0}

1− eiξz + iξz1{|z|≤1}(z)νext(dz)
))
,

for ξ ∈ R. Here, the jump measure νext is defined through

νext([a, b]) :=


ν#
1 ([a, b])

...
ν#
d ([a, b])

 ,
for a, b ∈ R where the Lévy measure ν#

k , for k = 1, . . . , d and a, b ∈ R, is given by

ν#
k ([a, b]) :=

∫ ∞

0

∫ b

a

1√
2πσ2t

exp

(
− x2

2σ2t

)
dx νk(dt).

Proof. It follows by [108, Theorem 30.1 and Lemma 30.3] that the measures ν#
k are Lévy

measures for k = 1, ..., d. For notational simplicity we prove the assertion for d = 2. For

general d ∈ N the assertion follows by the same arguments.
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Claim 1: For a Lévy measure ν on (R+,B(R+)) it holds for every ξ ∈ R:∫ ∞

0

exp(−ξ
2

2
y)− 1ν(dy) =

∫
R\{0}

exp(iξx)− 1− iξx1{|x|≤1}(x)ν
♯(dx),

where the measure ν♯ is defined by ν♯(I) =
∫∞
0

∫ b

a
1√
2πt

exp(−x2

2t
)dxν(dt), for I = [a, b]

with a, b ∈ R. We use the notation fs(x) :=
1√
2πs

exp(−x2

2s
) for s > 0 and x ∈ R and derive

this equation by a direct calculation using the definition of the measure ν♯:∫
R\{0}

exp(iξx)− 1− iξx1{|x|≤1}(x)ν
♯(dx)

=

∫
R\{0}

(exp(iξx)− 1− iξx1{|x|≤1}(x))

∫ ∞

0

fs(x)ν(ds)dx

=

∫ ∞

0

( ∫
R\{0}

exp(iξx)fs(x)dx− 1− iξ

∫ 1

−1

xfs(x)dx
)
ν(ds)

=

∫ ∞

0

exp(−sξ
2

2
)− 1ν(ds).

In the last step we used that the characteristic function of a N (0, s)-distributed random

variable is given by ϕ(ξ) = exp(− sξ2

2
) for ξ ∈ R and s > 0. Further, we used the fact that

f ′
s(x) = −x/sfs(x) to see that∫ 1

−1

xfs(x) = −s(fs(1)− fs(−1)) = 0.

Claim 2: (See [8, p. 53]) For a Lévy subordinator l with triplet (γ, 0, ν) it holds

E(exp(−ξl(t))) = exp(−t(γξ +
∫ ∞

0

(1− exp(−ξy))ν(dy))),

for t ≥ 0 and ξ > 0.

With these two assertions at hand we can now prove the Lévy-Khinchin-type formula. The

case ξ = 0 is trivial since both sides equal 1 in this case. Let (x, y) ∈ [0,T]2 and 0 ̸= ξ ∈ R
be fixed. Using Lemma 5.4.1 and Remark 5.4.2 with g(·) = exp(iξ·) and Z = (l1(x), l2(y))

we calculate

E(exp(iξW (l1(x), l2(y)))) = E(m(l1(x), l2(y)))
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where

m(x′, y′) := E(exp(iξW (x′, y′))) = exp(−1

2
σ2ξ2(x′ + y′)) for (x′, y′) ∈ R2

+,

where we used Assumption 5.4.4. Therefore, using the independence of the processes l1 and l2
together with Claim 2 we obtain

ϕL(x,y)(ξ) = E(exp(−1

2
σ2ξ2l1(x)))E(exp(−

1

2
σ2ξ2l2(x)))

= exp(−x(γ1
σ2ξ2

2
+

∫ ∞

0

(1− exp(−ξ
2

2
y))ν̂1(dy)))

· exp(−y(γ2
σ2ξ2

2
+

∫ ∞

0

(1− exp(−ξ
2

2
y))ν̂2(dy))),

where we define the (Lévy-)measures ν̂1 and ν̂2 by ν̂k([a, b]) = νk([a/σ
2, b/σ2]) for a, b ∈ R+

and k = 1, 2. Now, using Claim 1 we calculate

ϕL(x,y)(ξ) = exp
(
− x(γ1

σ2ξ2

2
−
∫
R\{0}

exp(iξx)− 1− iξx1{|x|≤1}(x)ν̂
♯
1(dx)))

− y(γ2
σ2ξ2

2
−
∫
R\{0}

exp(iξx)− 1− iξx1{|x|≤1}(x)ν̂
♯
2(dx))

)
,

where the measures ν̂♯
k for k = 1, 2 are given by:

ν̂♯
k([a, b]) =

∫ ∞

0

∫ b

a

1√
2πt

exp(−x
2

2t
)dxν̂k(dt)

=

∫ ∞

0

∫ b

a

1√
2πσ2t

exp(− x2

2σ2t
)dxνk(dt),

for a, b ∈ R. This finishes the proof. □

Using Theorem 5.4.6 together with the convolution theorem (see for example [79, Lemma

15.11 (iv)]) we immediately obtain the following corollary.

Corollary 5.4.7.

Let Assumption 5.4.4 hold. We assume d independent Lévy subordinators lk = (lk(x), x ∈
[0, Tk]) are given for k = 1, . . . , d, which are independent of W and the corresponding Lévy
triplets are given by (γk, 0, νk) for k = 1, . . . , d. We consider the subordinated GRF L : Ω×
[0,T]d → R defined byL(x) := W (l1(x1), . . . , lk(xd)), for x = (x1, . . . , xd) ∈ [0,T]d. Fur-
ther, we assume that independent Lévy processes l̃k on [0, Tk] are given with triplets (0, σ2γk, ν

#
k )
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for k = 1, . . . , d in the sense of the one-dimensional Lévy-Khinchin formula, see Theorem 5.2.1.
Here, the Lévy measure ν#

k is defined by

ν#
k ([a, b]) :=

∫ ∞

0

∫ b

a

1√
2πσ2t

exp

(
− x2

2σ2t

)
dx νk(dt),

for k = 1, . . . , d and a, b ∈ R. The pointwise marginal distribution of the subordinated GRF
satisfies

L(x)
D
= l̃1(x1) + · · ·+ l̃d(xd),

for every x = (x1, . . . , xd) ∈ [0,T]d.

We point out that the case of stationary GRFs is excluded by Assumption 5.4.4. Therefore,

we consider this situation in the following remark where we again assume d = 2 for notational

simplicity.

Remark 5.4.8. LetW be a stationary, centered GRF with covariance function qW ((x, y), (x′, y′))

= q̃W ((x−x′, y−y′)), for (x, y), (x′, y′) ∈ R2
+, and pointwise variance σ2 := q̃W ((0, 0)) >

0. Let l1 and l2 be independent Lévy subordinators, which are also independent of W . We
obtain by Lemma 5.4.1 the following representation for the pointwise characteristic function of the
subordinated random field defined by L(x, y) := W (l1(x), l2(y)), for (x, y) ∈ [0,T]2:

ϕL(x,y)(ξ) = E(exp(iξW (l1(x), l2(y))) = E(m(l1(x), l2(y))),

where

m(x′, y′) = E(exp(iξW (x′, y′))) = exp
(
− 1

2
σ2ξ2

)
,

which is a constant function in (x′, y′). Therefore we obtain

ϕL(x,y)(ξ) = exp
(
− 1

2
σ2ξ2

)
,

for (x, y) ∈ [0,T]2. Hence, in case of a stationary GRF, the subordinated GRF is pointwise
normally distributed with variance σ2.

We conclude this subsection with a remark on the given Lévy-Khinchin formula.
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Remark 5.4.9. With the approach of subordinating GRFs on a higher-dimensional domain, we
obtain a discontinuous Lévy-type random field and a Lévy-Khinchin formula which allows access
to the pointwise distribution of the random field. Further we obtain a similar parametrization of
the class of subordinated random fields, as it is the case for Lévy processes on a one-dimensional
parameter space: Under the assumptions of Theorem 5.4.6, every subordinated GRF can be char-
acterized by the tuple (σ2, γ1, . . . , γd, νext, qW ), where qW : Rd

+ × Rd
+ → R is the covariance

function of the GRF. Further, the class of subordinated GRFs is linear in the sense that for the sum
of two independent subordinated GRFs one can construct a single subordinated GRF with the same
pointwise characteristic function.

5.5 Covariance function

One advantage of the subordinated GRF is that the correlation between spatial points is ac-

cessible. The correlation structure is hereby determined by the covariance function of the

underlying GRF and the specific choice of the subordinators. For statistical applications it is

often important to image or enforce a specific correlation structure in view of fitting random

fields to physical phenomena. In this context the question arises whether one can find analyti-

cally explicit formulas for the covariance function of a subordinated Gaussian random field.

This will be explored in the following section.

For notational simplicity we restrict the dimension to be d = 2 in this section but we point

out that analogous results apply for dimensions d ≥ 3. A direct application of Lemma 5.4.1

yields the following corollary.

Corollary 5.5.1.

Let W be a continuous, zero-mean GRF on R2
+. Further, let l1 and l2 be two independent Lévy

subordinators which are independent of W . Then the subordinated GRF L defined by L(x, y) :=
W (l1(x), l2(y)), for (x, y) ∈ R2

+, is zero-mean with covariance function

qL((x, y), (x
′, y′)) := E(L(x, y)L(x′, y′)) = E

(
qW ((l1(x), l2(y)), (l1(x

′), l2(y
′)))
)
,

for (x, y), (x′, y′) ∈ R2
+, where qW : R2

+ × R2
+ → R denotes the covariance function of the

GRF W .

Proof. For (x, y) ∈ [0,T]2, we use Lemma 5.4.1 and the fact that the GRF W is

centered to deduce E(L(x, y)) = E(W (l1(x), l2(y))) = 0. Let (x, y), (x′, y′) ∈ [0,T]2 be
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fixed. Another application of Lemma 5.4.1 with W̃ (x1, y1, x2, y2) := W (x1, y1) ·W (x2, y2),

g = idR and Z := (l1(x), l2(y), l1(x
′), l2(y

′)) yields the desired formula. □

5.5.1 The isotropic case

We use Corollary 5.5.1 to derive a semi-explicit formula for the covariance function of the

subordinated GRF, where the underlying GRF is isotropic.

Lemma 5.5.2.

Let W : Ω× R2
+ → R be a zero-mean, continuous and isotropic GRF with covariance function

qW ((x, y), (x′, y′)) = q̃W (|x− x′|, |y − y′|). Further, suppose that l1 and l2 are independent
Lévy subordinators on [0, T1] (resp. [0, T2]) with density functions f1 and f2, i.e. fx

1 (·) (resp.
ly2(·)) is the density function of l1(x) (resp. l2(y)) for (x, y) ∈ (0,T]2. The covariance function
of the subordinated GRF L with L(x, y) := W (l1(x), l2(y)), for (x, y) ∈ [0,T]2, admits the
representation

qL((x, y), (x
′, y′)) =

∫
R+

∫
R+

q̃W (s, t)f |x−x′|
1 (s)f |y−y′|

2 (t)dsdt,

for (x, y), (x′, y′) ∈ [0,T]2 with x ̸= x′ and y ̸= y′.

For x = x′ and y ̸= y′ it holds

qL((x, y), (x, y
′)) =

∫
R+

q̃W (0, t)f |y−y′|
2 (t)dt,

for x ̸= x′ and y = y′ one obtains

qL((x, y), (x
′, y)) =

∫
R+

q̃W (s, 0)f |x−x′|
1 (s)ds,

and for (x, y) = (x′, y′) the pointwise variance is given by

Var(L(x, y)) = qL((x, y), (x, y)) = q̃W (0, 0).

Proof. The assertion follows immediately by Corollary 5.5.1 together with the independence

of the processes l1 and l2 and the fact that |lk(x)− lk(x
′)| D

= lk(|x− x′|) for x, x′ ∈ [0, Tk]

and k = 1, 2 by the definition of a Lévy process. □
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5.5.2 The non-isotropic case

In this subsection, we derive a formula for the covariance function of the subordinated GRF

for the case that the underlying GRF is not isotropic. In the following, we use the notation

x ∧ y := min(x, y) and x ∨ y := max(x, y) for real numbers x, y ∈ R. The next lemma

will be useful in the proof of the covariance representation.

Lemma 5.5.3.

Let l = (l(x), x ∈ [0, T ]) be a general Lévy process with density function f : (0, T ]×R → R,
i.e. the probability density function of the random variable l(x) is given by f x(·), for x ∈ (0, T ].
In this case, the joint probability density function of the random vectorZ := (l(x∧x′), l(x∨x′)),
with x ̸= x′ ∈ (0, T ], is given by fZ(s, t) = fmin(x,x′)(s) · f |x′−x|(t− s) for t, s ∈ R.

Proof. Let x, x′ ∈ (0, T ] with x < x′ and x1, x2 ∈ R be fixed. The increment

l(x′)− l(x) is stochastically independent of the random variable l(x), which yields

P(l(x) ≤ x1 ∧ l(x′) ≤ x2) = E(1{l(x)≤x1}1{l(x′)≤x2})

= E(1{l(x)≤x1}1{l(x′)−l(x)≤x2−l(x)})

=

∫
R

∫
R
1{s≤x1}1{t≤x2−s}f

x(s)f x′−x(t)dtds

=

∫ x1

−∞

∫ x2−s

−∞
f x(s)f x′−x(t)dtds

=

∫ x1

−∞

∫ x2

−∞
f x(s)f x′−x(t− s)dtds.

For the case that x′ < x the same argument yields

P(l(x) ≤ x1 ∧ l(x′) ≤ x2) =

∫ x1

−∞

∫ x2

−∞
f x′(s)f x−x′(t− s)dsdt,

which finishes the proof. □

Remark 5.5.4. Note that Lemma 5.5.3 immediately implies that the joint density fZ(s, t) of
the two-dimensional random vector Z = (l(x ∧ x′), l(x ∨ x′)) for a Lévy subordinator l with
x ̸= x′ ∈ (0, T ] is given by

fZ(s, t) = fmin(x,x′)(s) · f |x′−x|(t− s), for s, t ∈ R+.
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With this lemma at hand we are able to derive a formula for the covariance function of the

subordinated (non-isotropic) GRF. Without loss of generality we consider points (x, y), (x′, y′)

with x ≤ x′ and y ≤ y′ in the following lemma. Formulas for the other cases follow by the

same arguments with Lemma 5.5.3 and Remark 5.5.4.

Lemma 5.5.5.

Let W : Ω × R2
+ → R be a zero-mean, continuous and non-isotropic GRF with covariance

function qW . Further, suppose that l1 and l2 are independent Lévy subordinators on [0, T1] (resp.
[0, T2]) with density functions f1 and f2, i.e. fx

1 (·) (resp. ly2(·)) is the density function of l1(x)
(resp. l2(y)) for (x, y) ∈ (0,T]2. The covariance function of the subordinared GRF L with
L(x, y) := W (l1(x), l2(y)), for (x, y) ∈ [0,T]2, admits the representation

qL((x, y), (x
′, y′)) =

∫
R+

∫
R+

∫
R+

∫
R+

qW ((x1, x2), (x3, x4))f
x
1 (x1)f

y
2 (x2)

× f x′−x
1 (x3 − x1)f

y′−y
2 (x4 − x2)dx1 dx2 dx3 dx4,

for (x, y), (x′, y′) ∈ (0,T]2 with x < x′ and y < y′.
For x = x′ and y < y′, it holds

qL((x, y), (x, y
′)) =

∫
R+

∫
R+

∫
R+

qW ((x1, x2), (x1, x4))f
x
1 (x1)f

y
2 (x2)

× f y′−y
2 (x4 − x2)dx1 dx2 dx4,

and for x < x′ and y = y′ it holds

qL((x, y), (x
′, y)) =

∫
R+

∫
R+

∫
R+

qW ((x1, x2), (x3, x2))f
x
1 (x1)f

y
2 (x2)

× f x′−x
1 (x3 − x1)dx1 dx2 dx3.

For (x, y) = (x′, y′) one obtains for the pointwise variance of the field

Var(L(x, y)) = qL((x, y), (x, y)) =

∫
R+

∫
R+

qW (x1, x2, x1, x2)f
x
1 (x1)f

y
2 (x2)dx1dx2.

Proof. Using Corollary 5.5.1, the independence of the processes l1 and l2, Lemma 5.5.3
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and Remark 5.5.4 we calculate for (x, y), (x′, y′) ∈ (0,T]2 with x < x′ and y < y′:

qL((x, y), (x
′, y′)) =

∫
R4
+

qW ((x1, x2), (x3, x4))dP(l1(x),l2(y),l1(x′),l2(y′))(x1, x2, x3, x4)

=

∫
R+

∫
R+

∫
R+

∫
R+

qW ((x1, x2), (x3, x4))f
x
1 (x1)f

y
2 (x2)

× f x′−x
1 (x3 − x1)f

y′−y
2 (x4 − x2)dx1 dx2 dx3 dx4.

The remaining cases follow by the same argument. □

5.5.3 Statistical fitting of the covariance function

The parametrization property of the subordinated GRF (see Remark 5.4.9) motivates a direct

approach of covariance fitting: For a natural number N ∈ N, we assume that discrete points

{(xi, yi), i = 1, . . . , N} are given with corresponding empirical covariance function data

Cemp = {Cemp
i,j , i, j = 1, . . . , N}, where Cemp

i,j represents the empirical covariance of the

field evaluated at the points (xi, yi) and (xj, yj). We search for the solution to the problem

argmin
{
∥q̃L − Cemp∥∗

∣∣∣ admissible tuples (σ2, γ1, γ2, νext, qW )
}

where we use the notation q̃L := {qL(xi, yi), i, j = 1, . . . , N} and ∥ · ∥∗ is an appropriate

norm on RN , e.g. the Euclidian norm. In order to solve this type of problem, the formulas for

the covariance function given by Lemma 5.5.2 and Lemma 5.5.5 can be used, but still accessing

the solution will be challenging due to the complexity of the set of admissible parameters.

5.6 Stochastic regularity - pointwise moments

In this section we consider pointwise moments of a subordinated GRF L. In particular, we

derive conditions which ensure the existence of pointwise p-th moments of the subordinated

GRF L defined by L(x) := W (l1(x1), . . . , ld(xd)), for x = (x1, . . . , xd) ∈ [0,T]d.

Obviously, in order to guarantee the existence of moments of the random variable L(x),

we have to impose conditions on the GRF W and the subordinators l1, . . . , ld. The follow-

ing theorem gives a better insight into the interaction between the underlying GRF and the

stochastic regularity of the subordinators and presents coupled regularity conditions on the

tail behaviour of both components of the random field.
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Theorem 5.6.1.

We assume that W is a centered and continuous GRF on Rd
+ with covariance function qW :

Rd
+ × Rd

+ → R. Further, we assume that there exist a positive number N ∈ N, coefficients
{cj, j = 1, . . . , N} ⊂ [0,+∞) and d-dimensional exponents {α(j), j = 1, . . . , N} ⊂ Rd

+

such that the pointwise variance function σ2
W of W satisfies

σW (z) = qW (z, z)1/2 ≤
N∑
j=1

cjz
α(j)

, for z1, . . . , zd ≥ 0. (5.2)

Here, we use the notation zα = zα1
1 · · · · · zαd

d for z = (z1, . . . , zd) ∈ Rd
+ and α =

(α1, . . . , αd) ∈ Rd
+. We consider a fixed point x ∈ [0,T]d and assume that the densities

f x1
1 , . . . , f

xd
d of the evaluated processes l1(x1), . . . , ld(xd) fulfill

f xi
i (z) ≤ C|z|−ηi, for z ≥ K and i = 1, . . . , d, (5.3)

with positive decay rates {ηi, i = 1, . . . , d}. Here, the constants C and K are independent
of z but may depend on the evaluation point x = (x1, . . . , xd) and ηi may depend on xi, for
i = 1, . . . , d. We define the number

a := min{(ηi − 1)/α(j)
i

∣∣ i = 1, . . . , d, j = 1, . . . , N, α(j)
i ̸= 0}.

Then, the random variable L(x) admits a p-th moment for p ∈ [1, a), i.e. L(x) ∈ Lp(Ω;R) for
p ∈ [1, a).

Proof. Let Z ∼ N (0, σ2) be a real-valued, centered, normally distributed random

variable with variance σ2 > 0. It follows by Equation (18) in [116] that the p-th absolute

moment of Z admits the form E(|Z|p) = Cpσ
p, for all p > −1, with a constantCp depending

on p. Let p ≥ 1 be a fixed number. We use Lemma 5.4.1 to calculate

E(|L(x)|p) = E(|W (l1(x1), . . . , ld(xd))|p) = E(m(l1(x1), . . . , ld(xd))),

with

m(x′
1, . . . , x

′
d) := E(|W (x′

1, . . . , x
′
d)|p) = Cpσ

p
W (x′

1, . . . , x
′
d),
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for (x′
1, . . . , x

′
d) ∈ Rd

+. Hence, we obtain

E(|L(x)|p) = CpE
(
σp
W (l1(x1), . . . , ld(xd))

)
.

Next, we use the tail estmations (5.2) and (5.3), Hölder’s inequality and the independence of

the subordinators to calculate

E(|L(x)|p) = CpE
(
σp
W (l1(x1), . . . , ld(xd)

)
≤ Cp

∫
Rd
+

( N∑
j=1

cjz
α(j)
)p
f x1
1 (z1) . . . f

xd
d (zd)d(z1, . . . , zd)

≤ C(N, p)
N∑
j=1

cpj

d∏
i=1

∫ +∞

0

z
pα

(j)
i

i f xi
i (zi)dzi︸ ︷︷ ︸

=:Iji

.

It remains to show that all the integrals I ji are finite. For i ∈ {1, . . . , d} and j ∈ {1, . . . , N}
with α(j)

i = 0 we have I ji = 1. If α(j)
i ̸= 0 it holds

I ji =
( ∫ K

0

+

∫ +∞

K

)
z
pα

(j)
i

i fxi
i (zi)dzi

≤ Kpα
(j)
i + C

∫ +∞

K

z
pα

(j)
i −ηi

i dzi < +∞,

where the integral in the last step is finite since pα(j)
i − ηi < −1 for all i ∈ {1, . . . , d} and

j ∈ {1, . . . , N} with α(j)
i ̸= 0. □

We close this section with three remarks on the assumptions and possible extensions of

Theorem 5.6.1.

Remark 5.6.2. The assumption given by Equation (5.2) is, for example, fulfilled for the d-
dimensional Brownian sheet with N = 1, c1 = 1 and α(1) = (1/2, . . . , 1/2) ∈ Rd

+. Condition
(5.2) also accomodates the GRFs we considered in the Lévy-Khinchin formula (see Theorem 5.4.6
and Assumption 5.4.4) with N = d, c1 = · · · = cd = 1 and α(j) = 1/2 · êj for j = 1, . . . , d,
where êj is the j-th unit vector in Rd. Further, this assumption is fulfilled for any stationary GRF
W . Indeed, in case of a stationary GRF the assumption is satisfied for α(1) = (ε, 0, . . . , 0) for
any ε > 0 and, hence, Theorem 5.6.1 yields that every moment of the corresponding evaluated
subordinated GRF exists, independently of the specific choice of the subordinators. This is consistent
with Remark 5.4.8. The assumption on the Lévy subordinators in Equation (5.3) is natural and can be

Subordinated Fields and Random Elliptic Partial Differential Equations



5.7 Numerical examples 67

verified easily in many cases, see also [15, Assumption 3.7 and Remark 3.8]. For example, if for some
non-negative integern ∈ N, the n-th derivative of the characteristic function ϕl(xi)(·) is integrable
over R, then Equation (5.3) holds with ηi = n, K = 0 and C = 1

2π

∫ +∞
−∞ | dn

dtn
ϕl(xi)(t)| dt (cf.

[73, Lemma 12]).

Remark 5.6.3. We point out that the statement of Theorem 5.6.1 remains valid if we consider
Lévy distributions with discrete probability distribution which satisfy a discrete version of (5.3): If
the GRF W satisfies (5.2) and the evaluated discrete subordinators l1(x1), . . . , ld(xd) satisfy

fxi
i (k) = P(li(xi) = k) ≤ C|k|−ηi, for k ≥ K and i ∈ {1, . . . , d}, (5.4)

then we obtain that E(|L(x1, . . . , xd)|p) <∞ for p ∈ [1, a) with the real number a defined in
Theorem 5.6.1.

Remark 5.6.4. For the pointwise existence of moments given by Theorem 5.6.1, it is not necessary
to restrict the subordinating processes to the class of Lévy subordinators. More generally, one
could consider a GRF W satisfying (5.2) and general Lévy processes l1, . . . , ld satisfying (5.3)

for |z| ≥ K . In this case, Theorem 5.6.1 still holds for the random field L defined by L(x) :=
W (|l1(x1)|, . . . , |ld(xd)|), for x = (x1, . . . , xd) ∈ [0,T]d.

5.7 Numerical examples

In the following, we present numerical experiments on the theoretical results given in this paper.

The goal of this section is to use the knowledge on theoretical properties of the subordinated

GRF to investigate existing numerical methods for the approximation of pointwise distributions

(Subsection 5.7.1) as well as methods to verify or disprove the existence of moments of a random

variable (Subection 5.7.2). The numerical methods may also be useful for a fitting of random

fields to existing data in applications. All our numerical experiments have been performed

with MATLAB.

5.7.1 Experiments on the Lévy-Khinchin formula

The Lévy-Khinchin-type formula (Theorem 5.4.6) allows access to the pointwise distribution of

a subordinated GRF which motivates the investigation of numerical methods to approximate
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the pointwise distribution. To be more precise, we use Corollary 5.4.7 to obtain a pointwise dis-

tributional representation of a subordinated GRF as the sum of one-dimensional Lévy processes

with transformed Lévy triplets. We use this representation to investigate the performance of

different methods to approximate the distribution of Lévy processes.

Assume L = (W (l1(x), l2(y)), (x, y) ∈ [0, 1]2) is a subordinated GRF where the GRF

W satisfies Assumption 5.4.4 and the two subordinators l1 and l2 are characterized by the

Lévy triplets (γk, 0, νk) for k = 1, 2. It follows by Corollary 5.4.7 that L admits the pointwise

distributional representation

L(x, y)
D
= l̃1(x) + l̃2(y), (5.5)

for (x, y) ∈ [0, 1]2. Here, the processes l̃k on [0, 1] are independent Lévy processes with triplets

(0, σ2γk, ν
#
k ), for k = 1, 2, in the sense of the one-dimensional Lévy-Khinchin formula (see

Theorem 5.2.1) and the Lévy measure ν#
k is defined by

ν#
k ([a, b]) :=

∫ ∞

0

∫ b

a

1√
2πσ2t

exp

(
− x2

2σ2t

)
dx νk(dt),

a, b ∈ R and k = 1, 2. We choose specific spatial points and use two different methods to

approximate the distribution of the Lévy processes on the right hand side of (5.5): the compound

Poisson approximation (CPA) (see [109, Section 8.2.1]) and the Fourier inversion method for

Lévy processes (see [56] and [15]) which allows for a direct approximation of the density of the

right hand side of (5.5). In order to investigate the performance of these two approaches, the

corresponding results are then compared with samples of the subordinated GRF on the left

hand side of Equation (5.5).

5.7.1.1 Compound Poisson approximation

We recall that a Gamma(aG, bG) process lG has independent Gamma-distributed increments and

lG(t) follows a Gamma(aG · t, bG) distribution. In our first example we choose Gamma(4, 12)

processes to subordinate the GRF W defined by W (x, y) =
√
x+ y W̃ (x, y), for (x, y) ∈

R2
+, where W̃ is a Matérn-1.5-GRF with pointwise standard deviation σ = 2 (see Remark 5.4.5).

We fix the evaluation point (x, y) = (1, 1) and use the CPA method to obtain samples of

the Lévy process on the right hand side of (5.5) which can then be compared with samples

of the subordinated GRF. Figure 5.2 (left and middle) shows the corresponding histograms

for 10.000 samples of each distribution. We observe an accurate fit of the samples generated

by the different approaches: the first histogram, corresponding to the exact sampling of the
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Figure 5.2: Samples of the subordinated GRF W (l1(1), l2(1)) (left), the sum of the correspond-
ing transformed Lévy processes l̃1(1)+ l̃2(1) generated by the CPA method (middle)
and both histograms in one plot (right).

subordinated GRF, displays the same characteristics as the histogram generated by CPA, which

shows that the CPA method is appropriate to simulate the distribution of the right hand side of

Equation (5.5).

5.7.1.2 Fourier inversion method

The second approach is to approximate the density function of the right hand side of (5.5) by the

Fourier inversion (FI) method (see [56] and [15]) and compare it with samples of the subordinated

GRF. Figure 5.3 illustrates the results for this approach where we used the evaluation point

(x, y) = (1, 1), the same GRF as in Subsection 5.7.1.1, Gamma(4, 12) subordinators and

100.000 samples of the subordinated GRF. As one can see in Figure 5.3, the approximated

Figure 5.3: Samples of Gamma(4, 12)-subordinated GRF and approximated density (FI).

density of the right hand side of (5.5) perfectly matches the pointwise distribution of the
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subordinated GRF. We want to confirm this observation by a Kolmogorov-Smirnov-Test (see

for example [103, Section VII.4]). Figure 5.4 illustrates how the empirical CDF, obtained by

sampling the subordinated GRF, converges to the target CDF which is approximated by the

Fourier inversion method using Equation (5.5). A Kolmogorov-Smirnov-test with 10.000

samples and a level of significance of 5% is passed.

Figure 5.4: Approximated target CDF (FI) vs. empirical CDF using 100 (left), 1.000 (middle) and
10.000 (right) samples of the subordinated GRF with Gamma(4, 12) subordinators.

In the next experiment we use a modified subordinator, which results in a less smooth

pointwise density of the subordinated GRF. We repeat the experiment with Gamma(0.5, 10)

subordinators where the GRF, the evaluation point and the sample size remain unchanged.

Figure 5.5 shows 100.000 samples of the subordinated GRF and the density of the process given

by the right hand side of Equation (5.5) approximated via the Fourier Inversion method. As in

Figure 5.5: Samples of Gamma(0.5, 10)-subordinated GRF and approximated density (FI).

the first experiment, the results given by Figure 5.5 indicate that the approximated density of
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the right hand side of (5.5) matches the pointwise distribution of the subordinated GRF. Figure

5.6 illustrates how the empirical CDF, obtained by sampling of the subordinated GRF, converges

to the approximated target CDF of the right hand side of Equation (5.5), which is computed by

the Fourier inversion method. A Kolmogorov-Smirnov-test with a level of significance of 5%

is passed.

Figure 5.6: Approximated target CDF (FI) vs. empirical CDF using 100 (left), 1.000 (middle)
and 10.000 (right) samples of the subordinated GRF with Gamma(0.5, 10) subor-
dinators.

5.7.2 Pointwise moments

Theorem 5.6.1 guarantees the existence of pointwise moments of the subordinated GRF if

the GRF and the corresponding subordinators satisfy certain conditions. In the following

numerical experiments, we investigate the results of different statistical methods to investigate

numerically the existence of pointwise moments of a certain order in the specific situation of

the subordinated Gaussian random field. We set d = 2 and assume W to be a Brownian sheet

on R2
+. Further, we use Lévy processes with different stochastic regularity - in terms of the

existence of moments - to subordinate the GRF W .

5.7.2.1 Statistical methods to test the existence of moments of a random variable

The existence of moments of a specific distribution is one of the most frequently formulated

assumptions in statistical applications. For example, already the strong law of large numbers

assumes finiteness of the first moment of the corresponding random variable. Nevertheless, in

the literature only few statistical methods exist to verify or disprove the existence of moments,

given a specific sample of random variables (see e.g. [92, 71, 99, 52, 53, 54]). One of the earlier

methods to verify the existence of moments of a distribution was proposed in 1963 by Mandelbrot
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(see [92] and [34]). It is based on the simple observation that the estimated (sample-)moments

will converge to a certain value for an increasing sample size if the theoretical moment exists.

On the other side, if the theoretical moment does not exist, the estimated moment will diverge

or behave unstable when the sample size increases. However, this quite intuitive method is

rather heuristic and depends highly on the experience of the researcher (see also [52]). Another

popular direct way to investigate the existence of moments of a certain distribution is the

sample-based estimation of a decay rate α for the corresponding density function proposed

by Hill in [71]. However, the Hill-estimator requires a parameter k > 0 which specifies the

sample values which are considered as the tail of the distribution and it turned out that the

Hill-estimator is very sensitive to the choice of this parameter k. Further, the method makes the

quite restrictive assumption that the underlying distribution is of Pareto-type (see [99, 52, 53]

and [54]). In 2013, Fedotenkov proposed a bootstrap test for the existence of moments of a given

distribution (see [52]). The test performs well for specific distributions, however, its accuracy

deteriorates fast when moments of higher order are considered (see also [53]). Recently, Ng

and Yau proposed another sample-based bootstrap test for the existence of moments which

outperforms the previously mentioned methods for many distributions (see [99]). The test is

based on a result from bootstrap asymptotic theory which states that the m out of n bootstrap

sample mean (see [20]) converges weakly to a normal distribution. For a detailed description

of the test statistic and further theoretical investigations we refer the interested reader to [99].

Based on these observations, we investigate the results of direct moment estimation via

Monte Carlo (MC) and the bootstrap test proposed by Ng and Yau to analyze the existence of

(pointwise) moments of the subordinated GRF.

For our numerical examples we choose three different Lévy distributions to subordinate the

Brownian sheet W : a Poisson distribution, a Gamma distribution and a Student-t distribution.

Therefore, we use a discrete and a continuous distribution where all moments are finite and a

continuous distribution, which only admits a limited number of moments. Hence, we consider

three fundamentally different situations. In all three experiments, we consider the evaluation

point x = (x1, x2) = (1, 1) ∈ R2
+ for the subordinated GRFL. Note that the two-dimensional

Brownian sheet satisfies Equation (5.2) in Theorem 5.6.1 with N = 1, c1 = 1 and α(1) =

(1/2, 1/2).

5.7.2.2 Poisson-subordinated Brownian sheet

In this example, we use Poisson(3) processes to subordinate the two-dimensional Brownian

sheet. It is easy to verify that condition (5.4) is satisfied for any ηi > 0, i = 1, 2, since point

evaluations of a Poisson process are Poisson distributed. Theorem 5.6.1 implies the existence of
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the p-th moment of the evaluated field L(1, 1) for any p <∞ (see Remark 5.6.3). We estimate

the p-th moment for p ∈ {4, 6, 8} by a MC-estimation using M samples of the evaluated GRF

L(1, 1) for different values of M ∈ N, i.e.

E(|L(1, 1)|p) ≈ EM(|L(1, 1)|p) = 1

M

M∑
i=1

|L(i)(1, 1)|p,

where (L(i)(1, 1), i ≥ 1) are i.i.d. samples of the evaluated field L(1, 1). As explained in

Subsection 5.7.2.1, the MC-estimator EM(|L(1, 1)|p) is expected to converge for M → ∞ if

the p-th moment exists and one expects unstable behaviour if this is not the case. Figure 5.7

shows the development of the MC-estimatorEM(|L(1, 1)|p) for the p-th moment as a function

of the number of samples M . For every moment, we take 5 independent MC-runs to validate

that they converge to the same value. As expected, Figure 5.7 shows a stable convergence of

Figure 5.7: Five independent realizations of the MC-estimatorEM(|L(1, 1)|p) ≈ E(|L(1, 1)|p)
as a function of the sample numbers M with a Poisson(3)-subordinated Brownian
sheet; p = 4 (left), p = 6 (middle), p = 8 (right).

the MC-estimator for a growing number of samples for every considered moment. Further, the

different independent MC-runs converge to the same value - the theoretical p-th moment for

p ∈ {4, 6, 8}.

In the next step, we perform the bootstrap test (see Subsection 5.7.2.1 and [99]). We test the

existence of the p-th moment for p ∈ {1, 2, 3, 4, 5, 6, 7, 8} using M = 107 samples of the

subordinated evaluated GRF L(1, 1). Hence, the null and alternative hypothesis are given by

H0 : E(|L(1, 1)|p) < +∞ vs. H1 : E(|L(1, 1)|p) = +∞,

for the different values of p. We choose the significance level αs = 1% and perform 100

independent test runs. Figure 5.8 shows the proportion of acceptance of the null hypothesis in

the 100 test runs as a function of the considered moment p ∈ {1, 2, 3, 4, 5, 6, 7, 8}. As we

see in Figure 5.8, the bootstrap test accepts the null hypothesis H0 in almost every test run for
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Figure 5.8: Results for 100 independent runs of the bootstrap test for the existence of the p-th
moment using Poisson(3) processes to subordinate the Brownian sheet.

every considered moment p ∈ {1, 2, 3, 4, 5, 6, 7, 8} which is in line with our expectatations

since all these moments exist. We conclude that both approaches, the MC moment estimation

and the bootstrap test, perform as expected in this experiment.

5.7.2.3 Gamma-subordinated Brownian sheet

In our second numerical example we consider Gamma processes to subordinate the Brownian

sheet. We recall that, for aG, bG > 0, a Gamma(aG, bG)-distributed random variable admits

the density function

x 7→ baGG
Γ(aG)

xaG−1 exp(−xbG), for x > 0,

where Γ(·) denotes the Gamma function. A Gamma process (l(t))t≥0 has independent Gamma

distributed increments and l(t) follows a Gamma(aG · t, bG)-distribution for t > 0. Therefore,

condition (5.3) holds for any ηi > 0, for i = 1, 2 and, hence, Theorem 5.6.1 again implies

the existence of every moment, i.e. E(|L(1, 1)|p) < ∞ for any p ≥ 1. We choose aG = 4,

bG = 10 and estimate the p-th moment ofL(1, 1)with p ∈ {4, 6, 8} by a MC-estimation using

a growing number of samples M ∈ N. Figure 5.9 shows the development of the MC-estimator

EM(|L(1, 1)|p) for the p-th moment as a function of the number of samples M . As in the first

experiment, we take 5 independent MC-runs to validate the convergence to a unique value. In

line with our expectations, the results show a stable convergence of the MC-estimations for
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the different moments of this subordinated GRF.

Figure 5.9: Five independent realizations of the MC-estimatorEM(|L(1, 1)|p) ≈ E(|L(1, 1)|p)
as a function of the sample numbers M with a Gamma(4, 10)-subordinated Brow-
nian sheet; p = 4 (left), p = 6 (middle), p = 8 (right).

In this experiment we again perform the bootstrap test for the existence of the p-th moment

for p ∈ {1, 2, 3, 4, 5, 6, 7, 8} using M = 107 samples of the subordinated evaluated GRF

L(1, 1). Hence, the null and alternative hypothesis are given by

H0 : E(|L(1, 1)|p) < +∞ vs. H1 : E(|L(1, 1)|p) = +∞,

for the different values of p. We choose the significance level αs = 1% and perform 100

independent test runs. Figure 5.10 shows the proportion of acceptance of the null hypothesis in

the 100 test runs as a function of the considered moment p ∈ {1, 2, 3, 4, 5, 6, 7, 8}. As in the

1 2 3 4 5 6 7 8
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Figure 5.10: Results for 100 independent runs of the bootstrap test for the existence of the p-th
moment using Gamma(4,10) processes to subordinate the Brownian sheet.

first experiment, the test results meet our expectations, since almost every test run accepts the
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null hypothesis for any moment p ∈ {1, 2, 3, 4, 5, 6, 7, 8}.

5.7.2.4 Student t-subordinated Browinan Sheet

In our last experiment we consider a Lévy process where the pointwise distribution only admits

a finite number of moments. The Student-t-distribution with three degress of freedom admits

the density function

ft(x) =
Γ(2)√

3πΓ(3/2)

(
1 +

x2

3

)−2

, for x ∈ R. (5.6)

It follows by [78, Theorem 3] that a Student-t distributed random variable with three degrees

of freedom is infinitely divisible. Hence, we can define Lévy processes lj , for j = 1, 2, such

that lj(1) follows a Student-t distribution with three degrees of freedom (see [108, Theorem

7.10]). Using these processes and the Brownian sheet W , we consider the subordinated GRF

L(x1, x2) := W (|l1(x1)|, |l2(x2)|) for (x1, x2) ∈ [0, T1]× [0, T2] (see Remark 5.6.4). For our

numerical experiment we again evaluate the field at (x1, x2) = (1, 1). Using (5.6) we obtain

ft(x) ≤ C|x|−4, for x ∈ R.

Therefore, condition (5.3) is satisfied for ηi = 4, for i = 1, 2, and it is violated for any ηi > 4

(see also Remark 5.6.4). Since the Brownian sheet satisfies condition (5.2) with N = 1, c1 = 1

and α(1) = (1/2, 1/2), Theorem 5.6.1 yields that E(|L(1, 1)|p) <∞ for p < 6 and we expect

that this boundary is sharp, i.e. we expect that E(|L(1, 1)|p) = ∞ for p ≥ 6.

We estimate the p-th moment for p ∈ {5, 6, 8} with the MC-estimatorEM(|L(1, 1)|p) with

growing sample number M ∈ N. In Figure 5.11 we see the development of the MC-estimator

for the p-th moment as a function of the number of samples. For every moment, we take

5 independent MC-runs. The results indicate a convergence of the MC-estimations of the

p-th moment for p = 5: in this case the estimation stabilizes with growning sample size

and all 5 independent MC-estimations seem to converge to a unique value. However, for

the higher moments p = 6 and p = 8, we see upward breakouts and instable behaviour

of the corresponding MC-estimator for increasing sample sizes. Further, the 5 independent

MC-runs do not indicate a convergence to a unique value. For all the considered moments

p ∈ {5, 6, 8}, these results are in line with our expectations, since the p-th moment of the

evaluated subordinated GRF L(1, 1) admits a p-th moment for p < 6 and this boundary is

sharp (see Theorem 5.6.1).

We perform the bootstrap test for the existence of the p-th moment for p ∈ {1, 2, 3, 4, 4.5, 5,
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Figure 5.11: Five independent realizations of the MC-estimator EM(|L(1, 1)|p) ≈
E(|L(1, 1)|p) as a function of the sample numbers M with a Student-t-
subordinated Brownian sheet; p = 5 (left), p = 6 (middle), p = 8 (right).

5.2, 5.4, 5.6, 5.8, 6, 6.5, 7, 8} using M = 107 samples of the subordinated GRF L(1, 1).

Hence, the null and alternative hypothesis are again given by

H0 : E(|L(1, 1)|p) < +∞ vs. H1 : E(|L(1, 1)|p) = +∞,

for the different values of p. We choose the significance level αs = 1% and perform 100

independent test runs. Figure 5.12 shows the proportion of acceptance of the null hypothesis in

the 100 test runs as a function of the considered moment p and the test statistic values for the 100

test runs. In all of the 100 test runs the null hypothesis is accepted for p ∈ {1, 2, 3, 4, 4.5, 5}.

Figure 5.12: Results for 100 independent runs of the bootstrap test for the existence of the
p-th moment using Student-t-distributed random variables as subordinators: share
acceptance of H0 (left), test statistic values for the test runs (right).

Further, in almost all of the 100 test runs H0 is rejected for the cases p ∈ {6, 6.5, 7, 8}, which

is absolutely in line with the theoretical results for this specific choice of the subordinated

GRF. Only for p ∈ (5, 6), the test rejects the null hypothesis in some of the test runs although
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the theoretical moment exists. Overall, the test results for the existence of moments of the

Student-t-subordinated GRF match our expectations based on Theorem 5.6.1.
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6.1 Introduction

Over the last decade partial differential equations with stochastic operators/data/domain became

a widely studied object. This branch of research is oftentimes called Uncertainty Quantification.

Especially for problems where data is sparse or measurement errors are unavoidable, like

subsurface flow problems, the theory provides an approach to quantify this uncertainty. There

are two main approaches to discretize the uncertain problem: intrusive and non-intrusive

methods. The former require the solution of a high dimensional partial differential equation,

where the dimensionality depends on the smoothness of the random field or process (see for

example [12], [55], [97] and the references therein). The latter consist of (essentially) sampling

methods and require multiple solutions of a low dimensional problem (see, among others, [1],

[14], [16], [110], [87], [112]). Up to date mainly Gaussian random fields were used to model the

diffusivity in an elliptic equation (as a model for a subsurface flow problem). Gaussian random

fields have the advantage that they may be used in both approaches and that they are stochas-

tically very well understood objects. A great disadvantage is however, that the distributions

underlying the field are Gaussian and therefore the model lacks flexibility, in the sense that

the field cannot have pointwise marginal distributions with heavy-tails. Further, Gaussian

random fields that are commonly used in applications, like Matérn fields, have P-almost surely

spatial continuous paths. In view of these limitations, some extensions of Gaussian models for

the diffusivity in elliptic PDEs have been explored in the literature: The paper [87] presents

a multilevel Monte Carlo method for elliptic equations with jump-diffusion coefficients for

two-phase random media, where the diffusion coefficient assumes two different values on

random domains. Discontinuous models for the diffusion coefficient in elliptic PDEs have also

been used in the context of Bayesian inversion, where geometric priors or level-set priors are

used as a model for the diffusion, see e.g. [75] and [76]. In the recent article [49], the diffusion

coefficient of an elliptic PDE is modeled as a transformation of smoothed Lévy noise fields.

The authors investigate the existence, integrability and approximation of the corresponding

stochastic PDE solution. The presented model yields a high distributional flexibility of the

diffusion coefficient, however, the considered fields are continuous in space.

In this paper we propose a two-dimensional subordinated Gaussian random field as stochas-

tic diffusion coefficient in an elliptic equation. The subordinated Gaussian random field is a

type of a (discontinuous) Lévy field. Different subordinators display unique patterns in the

discontinuities and have varied marginal distributions (see [95]). Naturally the spatial regularity

of a subordinated Gaussian random field depends on the subordinator. We prove existence

and uniqueness of a solution to the elliptic equation in a pathwise sense and provide different

discretization schemes.
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We structured the rest of the paper as follows: In Section 6.2 we introduce a general pathwise

existence and uniqueness result for a stochastic elliptic equation under mild assumptions on

the coefficient. These assumptions accommodate the subordinated Gaussian random fields

we introduce in Section 6.3. In Section 6.4 we approximate the specific diffusion coefficient

which is used in this paper and show convergence of the elliptic equation with the approxi-

mated coefficient to the unapproximated solution in Section 6.5. Section 6.6 provides spatial

approximation methods and in Section 6.7 numerical examples are presented.

6.2 The stochastic elliptic problem

In this section we introduce the framework of the general stochastic elliptic boundary value

problem which allows for discontinuous diffusion coefficients. For the general setting and

pathwise existence theory we follow [16]. In the following, let (Ω,F ,P) be a complete prob-

ability space. Let (B, ∥ · ∥B) be a Banach space and Z be a B valued random variable, i.e.

a measurable function Z : Ω → B. The space Lp(Ω;B) contains all strongly measurable

B-valued random variables with ∥Z∥Lp(Ω;B) < +∞, for p ∈ [1,+∞], where the norm is

defined by

∥Z∥Lp(Ω;B) =


E(∥Z∥p

B)
1
p , if 1 ≤ p < +∞,

ess sup
ω∈Ω

∥Z∥B , if p = +∞.

6.2.1 Problem formulation

Let D ⊂ Rd for d ∈ N be a bounded, connected Lipschitz domain. We consider the equation

−∇ · (a(ω, x)∇u(ω, x)) = f(ω, x) in Ω×D, (6.1)

where a : Ω×D → R+ is a stochastic (jump-diffusion) coefficient and f : Ω×D → R is a

(measurable) random source function. Further, we impose the following boundary conditions

u(ω, x) = 0 on Ω× Γ1, (6.2)

a(ω, x)−→n · ∇u(ω, x) = g(ω, x) on Ω× Γ2, (6.3)
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where we assume to have a decomposition ∂D = Γ1

.
∪ Γ2 with two (d − 1)-dimensional

manifolds Γ1, Γ2 such that the exterior normal derivative −→n · ∇u on Γ2 is well-defined

for every u ∈ C1(D). Here, −→n is the outward unit normal vector to Γ2 and g : Ω ×
Γ2 → R a measurable function. Note that we just reduce the theoretical analysis to the case

of homogeneous Dirichlet boundary conditions to simplify notation. The extension to the

inhomogeneous case is straightforward.

We now state assumptions under which the elliptic boundary value problem has a unique

solution.

Assumption 6.2.1.

Let H := L2(D). We assume that

i for any fixed x ∈ D the mapping ω 7→ a(ω, x) is measurable, i.e. a(·, x) is a (real-valued)
random variable,

ii for any fixed ω ∈ Ω the mapping a(ω, ·) is B(D) − B(R+)-measurable and it holds
a−(ω) := ess inf

x∈D
a(ω, x) > 0 and a+(ω) := ess sup

x∈D
a(ω, x) < +∞,

iii 1
a−

∈ Lp(Ω;R), f ∈ Lq(Ω;H) and g ∈ Lq(Ω;L2(Γ2)) for some p, q ∈ [1,+∞] such
that r := (1

p
+ 1

q
)−1 ≥ 1.

Remark 6.2.2. Note that Assumption 6.2.1 implies that the real-valued mappings a−, a+ :

Ω → R are measurable. This can be seen as follows: For fixed p ≥ 1 consider the mapping

Ip : Ω → R, ω 7→ ∥a(ω, ·)∥Lp(D) =
( ∫

D
a(ω, x)pdx)

)1/p
,

which is well-defined by Assumption 6.2.1. It follows from the definition of the Lebesgue integral
and Assumption 6.2.1 i that the mapping ω 7→ Ip(ω) is F − B(R) measurable. For a fixed
ω ∈ Ω, by the embedding theorem for Lp spaces (see [2, Theorem 2.14]), we get

a+(ω) = lim
m→∞

∥a(ω, ·)∥Lm(D).

Since this holds for all ω ∈ Ω we obtain by [6, Lemma 4.29] that the mapping

ω 7→ a+(ω),
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is F − B(R)-measurable. The measurability of ω 7→ a−(ω) follows analogously. Note that we
do not treat the random coefficient a : Ω×D → R as a L∞(D)-valued random variable, since
L∞(D) is not separable and therefore the strong measurability of the mapping a : Ω → L∞(D)

is only guaranteed in a very restrictive setting. Nevertheless, the measurability of the functions
a+ and a− allows taking expectations of these real-valued random variables. In order to avoid
confusion about that, we use the notation E(ess supx∈D | · |s)1/s.

6.2.2 Weak solution

We denote by H1(D) the Sobolev space on D with the norm ∥v∥H1(D) := (∥v∥2
L2(D) +

∥∇v∥2
L2(D))

1/2, for v ∈ H1(D) (see for example [50, Section 5.2]). Further, we denote by T

the trace operator T : H1(D) → H
1
2 (∂D) where Tv = v|∂D for v ∈ C∞(D) (see [41]). We

define the subspace V ⊂ H1(D) as

V := {v ∈ H1(D) | Tv|Γ1
= 0},

with the standard Sobolev norm, i.e. ∥ · ∥V := ∥ · ∥H1(D). We identify H = L2(D) with its

dual space H ′ and work on the Gelfand triplet V ⊂ H ≃ H ′ ⊂ V ′. Hence, Assumption 6.2.1

guarantees that f(ω, ·) ∈ V ′ and g(ω, ·) ∈ H− 1
2 (Γ2) for P-almost every ω ∈ Ω. We multiply

Equation (6.1) by a test function v ∈ V , integrate by parts and use the boundary conditions

(6.2) and (6.3) to obtain∫
D
−∇ · (a(ω, x)∇u(ω, x))v(x)dx =

∫
D
a(ω, x)∇u(ω, x) · ∇v(x)dx

−
∫
Γ2

g(ω, x)[Tv](x)dx.

This leads to the following pathwise weak formulation of the problem: For any ω ∈ Ω, given

f(ω, ·) ∈ V ′ and g(ω, ·) ∈ H− 1
2 (Γ2), find u(ω, ·) ∈ V such that

Ba(ω)(u(ω, ·), v) = Fω(v) (6.4)

for all v ∈ V . The function u(ω, ·) is then called pathwise weak solution to problem (6.1) - (6.3).

Here, the bilinear form Ba(ω) and the operator Fω are given by

Ba(ω) : V × V → R, (u, v) 7→
∫
D
a(ω, x)∇u(x) · ∇v(x)dx,
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and

Fω : V → R, v 7→
∫
D
f(ω, x)v(x)dx+

∫
Γ2

g(ω, x)[Tv](x)dx,

for fixed ω ∈ Ω, where the integrals in Fω are understood as the duality pairings:∫
D
f(ω, x)v(x)dx = V ′⟨f(ω, ·), v⟩V and∫

Γ2

g(ω, x)[Tv](x)dx =
H− 1

2 (Γ2)
⟨g(ω, ·), T v⟩

H
1
2 (Γ2)

,

for v ∈ V . For a proof of the following existence result we refer to [16, Theorem 2.5].

Theorem 6.2.3.

Under Assumption 6.2.1, there exists a unique pathwise weak solution u(ω, ·) ∈ V to problem
(6.4) for very ω ∈ Ω. Furthermore, u ∈ Lr(Ω;V ) and

∥u∥Lr(Ω;V ) ≤ C(a−,D, p)(∥f∥Lq(Ω;H) + ∥g∥Lq(Ω;L2(Γ2))),

where C(a−,D, p) > 0 is a constant depending on a−, p and the volume of D.

In addition to the existence of the solution, the following remark gives a rigorous justification

for the measurability of the solution mapping

u : Ω → V, ω 7→ u(ω, ·),

which maps any ω ∈ Ω on the corresponding pathwise weak PDE solution.

Remark 6.2.4. Let (vn, n ∈ N) ⊂ V be an orthonormal basis of the separable Hilbert space
V . For every n ∈ N we define the mapping

Jn : Ω× V → R

(ω, v) 7→
∫
D
a(ω, x)∇v(x) · ∇vn(x)dx−

∫
D
f(ω, x)vn(x)dx−

∫
Γ2

g(ω, x)[Tvn](x)dx.

It is easy to see that this mapping is Carathéodory for any n ∈ N, i.e. Jn(·, v) is F -B(R)-
measurable for any fixed v ∈ V and Jn(ω, ·) is continuous on V for any fixed ω ∈ Ω. We define
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the correspondences

ϕn(ω) := {v ∈ V | Jn(ω, v) = 0},

for every n ∈ N. It follows from [6, Corollary 18.8] that this correspondence has a measurable
graph, i.e.

{(ω, v) ∈ Ω× V | v ∈ ϕn(ω)} ∈ F ⊗ B(V ).

Further, by Assumption 6.2.1 and the Lax-Milgram Lemma (see for example [67, Lemma 6.97] and
[16, Theorem 2.5]) we know that for every fixed ω ∈ Ω, there exists a unique solution u(ω, ·) ∈ V

satisfying (6.4) for every v ∈ V . Therefore, we obtain for the graph of the solution mapping:

{(ω, u(ω, ·)) | ω ∈ Ω} = {(ω, v) ∈ Ω× V | Jn(ω, v) = 0, for all n ∈ N}
=
⋂
n∈N

{(ω, v) ∈ Ω× V | v ∈ ϕn(ω)} ∈ F ⊗ B(V ).

This implies for an arbitrary measurable set Ṽ ∈ B(V )

{(ω, u(ω, ·)) | ω ∈ Ω} ∩ Ω× Ṽ ∈ F ⊗ B(V )

and therefore

{ω ∈ Ω | u(ω, ·) ∈ Ṽ } ∈ F ,

by the projection theorem (see [6, Theorem 18.25]), which gives the measurability of the solution
mapping.

6.3 Subordinated Gaussian random fields

A random field W : Ω×D → R is called an R-valued Gaussian random field (GRF) if for any

tuple (x1, . . . , xn) ⊂ D and any number n ∈ N the Rn-valued random variable

[W (x1), . . . ,W (xn)]
T : Ω → Rn
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is multivariate normally distributed (see [3, Section 1.2]). Here xT denotes the transpose of the

vector x. We denote by

m(x) := E(W (x)), x ∈ D, and

q(x, y) := Cov(W (x),W (y)), x, y ∈ D,

the associated mean and covariance function. The covariance operator Q : L2(D) → L2(D)

of W is defined by

Q(ψ)(x) =

∫
D
q(x, y)ψ(y)dy for x ∈ D.

Further, ifD ⊂ Rd is compact andW is centered, i.e. m ≡ 0, there exists a decreasing sequence

(λi, i ∈ N) of real eigenvalues of Q with corresponding eigenfunctions (ei, i ∈ N) ⊂ L2(D)

which form an orthonormal basis of L2(D) (see [3, Section 3.2] and [115, Theorem VI.3.2 and

Chapter II.3]).

Example 6.3.1. One important class of continuous GRFs is given by the Matérn family: for a
given smoothness parameter ν > 1/2, correlation parameter r > 0 and variance σ2 > 0, the
Matérn-ν covariance function is given by qM(x, y) = ρM(|x − y|2), for (x, y) ∈ Rd

+ × Rd
+,

with

ρM(s) = σ2 2
1−ν

Γ(ν)

(2s√ν
r

)ν
Kν

(2s√ν
r

)
, for s ≥ 0,

where Γ(·) is the Gamma function and Kν(·) is the modified Bessel function of the second kind
(see [63, Section 2.2 and Proposition 1]). Here, |x|2 := (

∑d
i=1 x

2
i )

1
2 denotes the Euclidean norm of

the vector x ∈ Rd. A Matérn-ν GRF is a centered GRF with covariance function qM .

6.3.1 Construction of subordinated GRFs

LetD > 0 be fixed and I = [0, D] or I = R+ with R+ := [0,+∞). A real-valued stochastic

process l = (l(t), t ∈ I) is said to be a Lévy process on I if l(0) = 0 P-a.s., l has independent

and stationary increments and l is stochastically continuous (see [8, Section 1.3]). One of the

most important properties of Lévy processes is the so called Lévy-Khinchin formula (see [8, Th.

1.3.3]).
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Theorem 6.3.2 (Lévy-Khinchin formula).

Let l be a real-valued Lévy process on the interval I ⊆ R+. There exist constants, γl ∈ R,
σ2
l ∈ R+ and a measure ν on (R,B(R)) such that the characteristic function ϕl(t), for t ∈ I ,

admits the representation

ϕl(t)(u) := E(exp(iul(t)))

= exp

(
t

(
iγlu−

σ2
l

2
u2 +

∫
R\{0}

eiuy − 1− iuy1{|y|≤1}ν(dy)

))
.

Motivated by Theorem 6.3.2 we denote by (γl, σ
2
l , ν) the characteristic triplet of the Lévy

process l. A (Lévy-)subordinator is a Lévy process which is non-decreasing P-a.s.. By [8,

Theorem 1.3.15] it follows that the Lévy triplet of a Lévy subordinator always admits the form

(γl, 0, ν) with a measure ν on (R,B(R)) satisfying

ν(−∞, 0) = 0 and
∫ ∞

0

min(y, 1) ν(dy) <∞.

Remark 6.3.3. LetB = (B(t), t ≥ 0) be a standard Brownian motion and l = (l(t), t ≥ 0)

be a Lévy subordinator. The stochastic process defined by

L(t) := B(l(t)), t ≥ 0,

is called subordinated Brownian motion and is again a Lévy process (see [8, Theorem 1.3.25]).

In [95] the authors propose a new approach to extend standard subordinated Lévy processes

on a higher dimensional parameter space. Motivated by the rich class of subordinated Brownian

motions, the authors construct discontinuous random fields by subordinating a GRF on a

d-dimensional parameter domain by d one-dimensional Lévy subordinators. In case of a two-

dimensional parameter space the construction is as follows: For a GRF W : Ω × R2
+ → R

and two (Lévy-)subordinators l1, l2 on [0, D], with a finite D > 0, we define the real-valued

random field

L(x, y) := W (l1(x), l2(y)), for x, y ∈ [0, D].
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Figure 6.1 shows samples of a GRF with Martérn-1.5 covariance function and the corresponding

subordinated field where we used Poisson and Gamma processes as subordinators.

Figure 6.1: Sample of Matérn-1.5-GRF (left), Poisson-subordinated GRF (middle) and Gamma-
subordinated GRF (right).

This construction yields a rich class of discontinuous random fields which also admit a

Lévy-Khinchin-type formula. Further, the newly constructed random fields are also interesting

for practical reasons, since formulas for the covariance functions can be derived which is very

useful for applications, e.g. in statistical fitting. For a theoretical investigation of the constructed

random fields we refer to [95].

6.3.2 Subordinated GRFs as diffusion coefficients in elliptic problems

In the following, we define the specific diffusion coefficient that we consider in problem (6.1) -

(6.3). In order to allow discontinuities, we incorporate a subordinated GRF in the coefficient

additionally to a Gaussian component. The construction of the coefficient is done so that

Theorem 6.2.3 is applicable and, at the same time, the coefficient is as versatile as possible.

Definition 6.3.4.

We consider the domain D = (0, D)2 with D < +∞2. We define the jump-diffusion coefficient
a in problem (6.1) - (6.3) with d = 2 as

a : Ω×D → (0,+∞),

(ω, x, y) 7→ a(x, y) + Φ1(W1(x, y)) + Φ2(W2(l1(x), l2(y))), (6.5)

where

2For simplicity we choose a square domain, recangular ones may be considered in the same way
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• a : D → (0,+∞) is deterministic, continuous and there exist constants a+, a− > 0 with
a− ≤ a(x, y) ≤ a+ for (x, y) ∈ D.

• Φ1, Φ2 : R → [0,+∞) are continuous.

• W1 and W2 are zero-mean GRFs on D respectively on [0,+∞)2 with P-a.s. continuous
paths.

• l1 and l2 are Lévy subordinators on [0, D] with Lévy triplets (γ1, 0, ν1) and (γ2, 0, ν2)

which are independent of the GRFs W1 and W2.

Remark 6.3.5. The first two assumptions ensure that the diffusion coefficient a is positive over
the domain D. To show the convergence of the approximated diffusion coefficient in Subsection
6.5.1 we have to impose independence of the GRFs W1 and W2 (see Assumption 6.5.2 and the
proof of Theorem 6.5.5). This assumption is in the sense natural as also one-dimensional Lévy
processes admit an additive decomposition into a continuous part and a pure-jump part which
are stochastically independent (Lévy-Itô decomposition, see e.g. [8, Theorem 2.4.11]). For the same
reason the assumption that the Lévy subordinators are independent of the GRFs is also natural (see
for example [8, Section 1.3.2]).

In order to verify Assumption 6.2.1 i and ii we need the following lemma. For a proof we

refer to [95, Lemma 3.2]).

Lemma 6.3.6.

For fixed (x, y) ∈ D the mapping ω 7→ a(ω, x, y) is F −B(R+)-measurable. Further, for fixed
ω ∈ Ω, the mapping (x, y) 7→ a(ω, x, y) is B(D)− B(R+)-measurable.

Definition 6.3.4 guarantees the existence of a pathwise weak solution to problem (6.1), as we

prove in the following theorem.

Theorem 6.3.7.

Leta be as in Definition 6.3.4 and let f ∈ Lq(Ω;H), g ∈ Lq(Ω;L2(Γ2)) for some q ∈ [1,+∞).
Then there exists a unique pathwise weak solution u(ω, ·) ∈ V to problem (6.1) for P-almost
every ω ∈ Ω. Furthermore, u ∈ Lr(Ω;V ) for all r ∈ [1, q) and

∥u∥Lr(Ω;V ) ≤ C(a−,D)(∥f∥Lq(Ω;H) + ∥g∥Lq(Ω;L2(Γ2))),

Robin Merkle University of Stuttgart



90 6 Subordinated Gaussian random fields in elliptic PDEs

where C(a−,D) > 0 is a constant depending only on the indicated parameter and the volume of
D.

Proof. In order to apply Theorem 6.2.3 we have to verify Assumption 6.2.1. We have

a−(ω) = inf
x∈D

a(ω, x) ≥ a− for every fixed ω ∈ Ω by Definition 6.3.4. Further, W2(ω) is

continuous on K(ω) := [0, l1(ω,D)]× [0, l2(ω,D)] and therefore

a+(ω) = sup
(x,y)∈D

a(ω, x, y)

≤ a+ + sup
(x,y)∈D

Φ1(W1(ω, x, y)) + sup
(x,y)∈K(ω)

Φ2(W2(ω, x, y)) < +∞.

For 1 ≤ r < q define p := (1
r
− 1

q
)−1 > 0. We observe that

0 ≤ 1

a−(ω)
≤ 1

a−
<∞,

P-a.s. and hence 1/a− ∈ Lp(Ω;R). Therefore, Assumption 6.2.1 holds with r = (1/p+1/q)−1

and the assertion follows by Theorem 6.2.3. □

6.4 Approximation of the diffusion coefficient

To simulate the solution to the elliptic equation we need to define a tractable approximation

of the diffusion coefficient. Here, we face a new challenge regarding the GRF W2 which is

subordinated by the Lévy processes l1 and l2: Due to the fact that the Lévy subordinators in

general can attain any value in [0,+∞) we have to consider (and approximate) the GRF W2

on the unbounded domain [0,+∞)2. In most cases where elliptic PDEs of the form (6.1) have

been considered with a random coefficient, the problem is stated on a bounded domain, see

e.g. [16], [30], [29], [63], [65]. Many regularity results for GRFs formulated for a bounded

parameter space cannot easily be transferred to an unbounded parameter space (see also [3,

Chapter 1], especially the discussion on p. 13). Even the Karhunen-Loève expansion of a

GRF requires compactness of the domain (see e.g. [3, Section 3.2]). We avoid an unbounded

parameter domain by bounding the subordinators from above in Subsection 6.4.1. Furthermore,

to show convergence of the solution in Section 6.5 we need to bound the diffusion coefficient

from above by a deterministic upper bound A (see Theorem 6.5.11 and Remark 6.5.9). Note

that the weaker assumption of Lp integrability of the pathwise upper bound a+ instead of a

deterministic upper bound A of the diffusion coefficient is not enough in this setting. The
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reason being that the absence of a deterministic upper bound A would lead to an additional

ω-dependence in the regularity constants in Assumption 6.5.7 which would be difficult to

handle in the convergence theorem in Subsection 6.5.2 (see also Remark 6.5.9). Therefore, we

cut off the diffusion coefficient at a deterministic level A (see Subsection 6.4.2). Subsequently

we show that this induces an error in the solution approximation which can be controlled and

which vanishes for growingA (see Subsection 6.5.1 and Theorem 6.5.1). Summarized, we derive

an approximation in three steps: First, we bound the subordinators, and, second, we cut off the

diffusion coefficient. Finally, we consider approximations of the GRFs and the subordinators

and prove the convergence of this approximation of the diffusion coefficient under suitable

assumptions.

6.4.1 First approximation: bounding the Lévy subordinators

For a fixed K ∈ (0,+∞), we define the cut-function χK : [0,+∞) → [0, K] as χK(z) :=

min(z,K) for z ∈ [0,+∞). Instead of problem (6.1) we consider the following modified

problem

−∇ · (aK(ω, x)∇uK(ω, x)) = f(ω, x) in Ω×D, (6.6)

and impose the boundary conditions

uK(ω, x) = 0 on Ω× Γ1, (6.7)

aK(ω, x)
−→n · ∇uK(ω, x) = g(ω, x) on Ω× Γ2. (6.8)

Here, the diffusion coefficient is defined by

aK : Ω×D → (0,+∞),

(ω, x, y) 7→ a(x, y) + Φ1(W1(x, y)) + Φ2(W2(χK(l1(x)), χK(l2(y)))). (6.9)

For functions f ∈ Lq(Ω;H) and g ∈ Lq(Ω;L2(Γ2)) with q ∈ [1,+∞), there exists a weak

solution uK ∈ Lr(Ω;V ) to problem (6.6) - (6.8) for r ∈ [1, q) (see Theorem 6.3.7)3.

Remark 6.4.1. We note that the influence of this problem modification can be controlled: one

3For simplicity we assume one fixed K for all spatial dimensions. The results in the subsequent sections hold for
individual independent values in each spatial dimension as well.
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may choose K > 0 such that

P(max( sup
x∈[0,D]

l1(x), sup
y∈[0,D]

l2(y)) ≥ K) = P(max(l1(D), l2(D)) ≥ K) < ε

for any ε > 0. In other words, pathwise the modified problem coincides with the original one up
to a set of samples, whose probability can be made arbitrarily small.

6.4.2 Second modification: diffusion cut-off

We consider again the cut function χA(z) := min(z, A) for z ∈ [0,+∞) with a fixed positive

number A > 0 and consider the following problem

−∇ · (aK,A(ω, x)∇uK,A(ω, x)) = f(ω, x) in Ω×D, (6.10)

where we impose the boundary conditions

uK,A(ω, x) = 0 on Ω× Γ1, (6.11)

aK,A(ω, x)
−→n · ∇uK,A(ω, x) = g(ω, x) on Ω× Γ. (6.12)

The diffusion coefficient aK,A is defined by

aK,A : Ω×D → (0,+∞),

(ω, x, y) 7→ χA

(
a(x, y) + Φ1(W1(x, y)) + Φ2(W2(χK(l1(x)), χK(l2(y))))

)
. (6.13)

Again, Theorem 6.3.7 applies in this case and yields the existence of a pathwise weak solution

uK,A ∈ Lr(Ω;V ) for r ∈ [1, q) if f ∈ Lq(Ω;H) and g ∈ Lq(Ω;L2(Γ2)). The error of the

modification vanishes for growing A as shown in the end of Section 6.5.1.

6.4.3 Approximation of GRF and subordinators

In the following, we show how to approximate the modified diffusion coefficient aK,A using

approximations W (εW )
1 ≈ W1, W

(εW )
2 ≈ W2 of the GRFs and l(εl)1 ≈ l1, l

(εl)
2 ≈ l2 of the Lévy

subordinators. We aim to approximate the GRFs W1 and W2 in the diffusion coefficient by

sampling on a discrete grid. These approximations may be extended to the whole domain

using linear interpolation (see [64] and [65]). Certain regularity assumptions on the GRFs
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then allow for a quantification of the corresponding approximation error (see Lemma 6.4.4).

In [15], the authors considered approximations of general Lévy processes and quantified the

approximation error in an Ls(Ω)-sense uniformly in x ∈ [0, D]. Such an approximation may

be obtained by piecewise constant approximations constructed from samples of the process

(lj(xi), i = 1, . . . , Nl) on a discrete grid (xi, i = 1, . . . , Nl) ⊂ [0, D] with Nl ∈ N
grid points, for j = 1, 2 (see Section 6.7, [15] and [109]). Motivated by this, we formulate

the following working assumptions on the covariance operators of the Gaussian fields, the

subordinators and the data of the elliptic problem.

Assumption 6.4.2.

Let W1 be a zero-mean GRF on [0, D]2 and W2 be a zero-mean GRF on [0, K]2. We denote by
q1 : [0, D]2 × [0, D]2 → R and q2 : [0, K]2 × [0, K]2 → R the covariance functions of these
random fields and by Q1, Q2 the associated covariance operators defined by

Qjϕ =

∫
[0,zj ]2

qj((x, y), (x
′, y′))ϕ(x′, y′)d(x′, y′),

for ϕ ∈ L2([0, zj]
2) with z = (D,K) and j = 1, 2. We denote by (λ(1)

i , e
(1)
i , i ∈ N) resp.

(λ(2)
i , e

(2)
i , i ∈ N) the eigenpairs associated to the covariance operators Q1 and Q2. In particular,

(e(1)i , i ∈ N) resp. (e(2)i , i ∈ N) are ONBs of L2([0, D]2) resp. L2([0, K]2).

i We assume that the eigenfunctions are continuously differentiable and there exist positive
constants α, β, Ce, Cλ > 0 such that for any i ∈ N it holds

∥e(1)i ∥L∞([0,D]2), ∥e(2)i ∥L∞([0,K]2) ≤ Ce,

∥∇e(1)i ∥L∞([0,D]2), ∥∇e(2)i ∥L∞([0,K]2) ≤ Cei
α,

∞∑
i=1

(λ(1)
i + λ(2)

i )iβ ≤ Cλ < +∞.

ii There exist constants ϕ, ψ, Clip > 0 such that the continuous functions Φ1, Φ2 : R →
[0,+∞) from Definition 6.3.4 satisfy

|Φ′
1(x)| ≤ ϕ exp(ψ|x|), |Φ2(x)− Φ2(y)| ≤ Clip |x− y| for x, y ∈ R.

In particular, Φ1 ∈ C1(R).

iii f ∈ Lq(Ω;H) and g ∈ Lq(Ω;L2(Γ2)) for some q ∈ (1,+∞).

Robin Merkle University of Stuttgart
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iv a : D → (0,+∞) is deterministic, continuous and there exist constants a+, a− > 0 with
a− ≤ a(x, y) ≤ a+ for (x, y) ∈ D.

v l1 and l2 are Lévy subordinators on [0, D] with Lévy triplets (γ1, 0, ν1) and (γ2, 0, ν2) which
are independent of the GRFs W1 and W2. Further, we assume that we have approximations
l(εl)1 , l(εl)2 of these processes and there exist constants Cl > 0 and η > 1 such that for every
s ∈ [1, η) it holds

E(|lj(x)− l(εl)j (x)|s) ≤ Clεl,

for εl > 0, x ∈ [0, D] and j = 1, 2.

Remark 6.4.3. Note that the first assumption on the eigenpairs of the GRFs is natural (see
[16] and [63]). For example, the case that Q1, Q2 are Matérn covariance operators are included.
Assumption 6.4.2 ii is necessary to be able to quantify the error of the approximation of the diffusion
coefficient. Assumption 6.4.2 iii is necessary to ensure the existence of a solution and has already
been formulated in Assumption 6.2.1. The last assumption ensures that we can approximate the
Lévy subordinators in an Ls-sense. This can always be achieved under appropriate assumptions
on the tails of the distribution of the subordinators, see [15, Assumption 3.6, Assumption 3.7 and
Theorem 3.21].

For any numerical simulation we have to approximate the GRF as well as the subordinating

Lévy processes, which results in an additional approximation of the coefficient aK,A given in

Equation (6.13). In the following we want to quantify the error induced by this approximation.

It follows by an application of the Kolmogorov-Chentsov theorem ([35, Theorem 3.5]) that

W1 and W2 can be assumed to have Hölder-continuous paths with Hölder exponent b ∈
(0, (2γk − 2)/(2k)) for 0 < γ ≤ min(1, β/(2α)) and every k ∈ N (see the proof of [16,

Lemma 3.5]). Further, it follows by an application of the Sobolev embedding theorem that

W1 ∈ Ln(Ω;C0,γ([0, D]2)) and W2 ∈ Ln(Ω;C0,γ([0, K]2)), i.e.

E

((
sup

z ̸=z′∈[0,D]2

|W1(z)−W1(z
′)|

|z − z′|γ2

)n)
, E

((
sup

z ̸=z′∈[0,K]2

|W2(z)−W2(z
′)|

|z − z′|γ2

)n)
< +∞,

(6.14)

for every n ∈ [1,+∞) and γ < min(1, β/(2α)) (see [29, Proposition 3.1]).

Next, we prove a bound on the error of the approximated diffusion coefficient, where the
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GRFs are approximated by a discrete evaluation and (bi-)linear interpolation between these

points (see [64] and [65]).

Lemma 6.4.4.

We consider the discrete grids G(εW )
1 = {(xi, xj)| i, j = 0, . . . ,M (1)

εW
} on [0, D]2 and G(εW )

2 =

{(yi, yj)| i, j = 0, . . . ,M (2)
εW
} on [0, K]2 where (xi, i = 0, . . . ,M (1)

εW
) is an equidistant grid

on [0, D] with maximum step size εW and (yi, i = 0, . . . ,M (2)
εW
) is an equidistant grid on

[0, K] with maximum step size εW . Further, letW (εW )
1 andW (εW )

2 be approximations of the GRFs
W1, W2 on the discrete grids G(εW )

1 resp. G(εW )
2 which are constructed by point evaluation of the

random fields W1 and W2 on the grids and linear interpolation between the grid points. Under
Assumption 6.4.2 i it holds for n ∈ [1,+∞):

∥W1 −W (εW )
1 ∥Ln(Ω;L∞([0,D]2)) ≤ C(D,n)εγW

∥W2 −W (εW )
2 ∥Ln(Ω;L∞([0,K]2)) ≤ C(K,n)εγW

for γ < min(1, β/(2α)) where β and α are the parameters from Assumption 6.4.2.

Proof. Note that for any fixed ω ∈ Ω and Dij := [xi, xi+1] × [yj, yj+1] with i, j ∈
{1, . . . ,M (1)

εW
}, it holds

max
(x,y)∈Dij

W (εW )
1 (x, y), min

(x,y)∈Dij

W (εW )
1 (x, y)

∈ {W1(xi, yj),W1(xi+1, yj),W1(xi, yj+1),W1(xi+1, yj+1)}.

This holds since W (εW )
1 is constructed by (bi-)linear interpolation of the GRF W1 and the

piecewise linear interpolants attain their maximum and minimum at the corners (the Hessian

evaluated at the (unique) stationary point of the bilinear basis functions is always indefinite).

Therefore, for a fixed (x, y) ∈ [xi, xi+1] × [yj, yj+1] it follows from the intermediate value

theorem that W (εW )
1 (x, y) = W1(x

′, y′) for appropriate (x′, y′) ∈ [xi, xi+1] × [yj, yj+1].

Using this observation we estimate
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∥W1 −W (εW )
1 ∥n

Ln(Ω;L∞([0,D]2))

= E
(

sup
(x,y)∈[0,D]2

|W1(x, y)−W (εW )
1 (x, y)|n

)
≤ E

(
sup

(x,y),(x′,y′)∈[0,D]2,

|(x,y)T−(x′,y′)T |2≤
√
2εW

|W1(x, y)−W1(x
′, y′)|n

)

= εnγ
W E

(
sup

(x,y),(x′,y′)∈[0,D]2,

|(x,y)T−(x′,y′)T |2≤
√
2εW

|W1(x, y)−W1(x
′, y′)|n

εnγ
W

)

≤ 2
nγ
2 εnγ

W E
((

sup
(x,y) ̸=(x′,y′)∈[0,D]2,

|(x,y)T−(x′,y′)T |2≤
√
2εW

|W1(x, y)−W1(x
′, y′)|

|(x, y)T − (x′, y′)T |γ2

)n)

≤ 2
nγ
2 εnγ

W E
((

sup
(x,y) ̸=(x′,y′)∈[0,D]2

|W1(x, y)−W1(x
′, y′)|

|(x, y)T − (x′, y′)T |γ2

)n)
≤ C(D)εnγ

W ,

where we used Equation (6.14) in the last step. Equivalently the error bound for W2 follows. □

Remark 6.4.5. Note that Lemma 6.4.4 immediately implies for m ∈ [1,+∞)

∥W1 −W (εW )
1 ∥Ln(Ω;Lm([0,D]2)) = E

(( ∫
[0,D]2

|W1(x, y)−W (εW )
1 (x, y)|md(x, y)

) n
m

) 1
n

≤ D
2
mE
(

sup
(x,y)∈[0,D]2

|W1(x, y)−W (εW )
1 (x, y)|n

) 1
n

= D
2
m∥W1 −W (εW )

1 ∥Ln(Ω;L∞([0,D]2)) ≤ C(D,m, n)εγW .

6.4.4 Convergence to the modified diffusion coefficient

Given some approximations W (εW )
1 ≈ W1, W

(εW )
2 ≈ W2 as in Lemma 6.4.4 and approxima-

tions l(εl)1 ≈ l1, l
(εl)
2 ≈ l2 as in Assumption 6.4.2 v as well as some fixed constants K,A > 0,
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we approximate the diffusion coefficient aK,A in (6.13) by a(εW ,εl)
K,A : Ω×D → (0,+∞) with

a(εW ,εl)
K,A (x, y)

= χA

(
a(x, y) + Φ1(W

(εW )
1 (x, y)) + Φ2(W

(εW )
2 (χK(l

(εl)
1 (x)), χK(l

(εl)
2 (y))))

)
(6.15)

for (x, y) ∈ D. To prove a convergence result for this approximated coefficient (Theorem 6.4.8)

we need the following two technical lemmas. The second can be proved by the use of [108,

Proposition 1.16]. For a detailed proof we refer to [95].

Lemma 6.4.6.

For n,m ∈ [1,+∞) with n ≥ m and φ ∈ Ln([0, D]2 × Ω;R, λ⊗ P), where λ denotes the
Lebesgue measure on (R2,B(R2)), it holds

∥φ∥Ln(Ω;Lm([0,D]2)) ≤ C(D,n,m)∥φ∥Ln([0,D]2×Ω;R).

Proof. The case n = m is trivial. For n > m we use Hölder’s inequality and obtain

∥φ∥Ln(Ω;Lm([0,D]2)) =
( ∫

Ω

( ∫
[0,D]2

|φ(x, y)|md(x, y)
) n

m

dP
) 1

n

≤
( ∫

Ω

( ∫
[0,D]2

|φ(x)|nd(x, y)
)
D

2(n−m)
m dP

) 1
n

= D
2
m
− 2

n∥φ∥Ln([0,D]2×Ω;R).

□

Lemma 6.4.7.

LetW : Ω×Rd
+ → R be a P-a.s. continuous random field and let Z : Ω → Rd

+ be a Rd
+-valued

random variable which is independent of the random field W . Further, let φ : R → R be a
deterministic, continuous function. It holds

E(φ(W (Z)) = E(ζ(Z)),

where ζ(z) := E(φ(W (z)) for deterministic z ∈ Rd
+.
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Theorem 6.4.8.

Let W (εW )
1 ≈ W1, W

(εW )
2 ≈ W2 be approximations of the GRFs on discrete grids as in Lemma

6.4.4. Further, let 1 ≤ t ≤ s < η and 0 < γ < min(1, β/(2α)) such that sγ ≥ 2. Under
Assumption 6.4.2 we get the following error bound for the approximation of the diffusion coefficient:

∥aK,A − a(εW , εl)
K,A ∥Ls(Ω;Lt([0,D]2)) ≤ C(εγW + ε

1
s
l ),

with a constant C which does not depend on the discretization parameters εW and εl.

Proof. Since the cut function χA is Lipschitz continuous with Lipschitz constant 1 we

calculate

∥aK,A − a(εW , εl)
K,A ∥Ls(Ω;Lt([0,D]2))

≤ ∥Φ1(W1)− Φ1(W
(εW )
1 )∥Ls(Ω;Lt([0,D]2))

+ ∥Φ2(W2(χK(l1), χK(l2)))− Φ2(W
(εW )
2 (χK(l

(εl)
1 ), χK(l

(εl)
2 )))∥Ls(Ω;Lt([0,D]2))

=: I1 + I2

First, we consider I1 and use Assumption 6.4.2 ii and the same calculation as in Remark 6.4.5

to get

I1 ≤ D
2
t ∥Φ1(W1)− Φ1(W

(εW )
1 )∥Ls(Ω;L∞([0,D]2)).

The mean value theorem yields, for fixed (x, y) ∈ [0, D]2 and an appropriately chosen value

ξ ∈ (min(W1(x, y),W
(εW )
1 (x, y)),max(W1(x, y),W

(εW )
1 (x, y))),

|Φ1(W1(x, y))−Φ1(W
(εW )
1 (x, y))|

= |Φ′
1(ξ)| |W1(x, y)−W (εW )

1 (x, y)|
≤ ϕ exp(ψ|ξ|)|W1(x, y)−W (εW )

1 (x, y)|
≤ ϕ max{exp(ψ|W1(x, y)|), exp(ψ|W (εW )

1 (x, y)|)}
× |W1(x, y)−W (εW )

1 (x, y)|,
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for P-almost every ω ∈ Ω. As already mentioned in the proof of Lemma 6.4.4, for any ω ∈ Ω

and fixed Dij := [xi, xi+1]× [yj, yj+1] with i, j ∈ {1, . . . ,M (1)
εW
}, it holds

max
(x,y)∈Dij

W (εW )
1 (x, y), min

(x,y)∈Dij

W (εW )
1 (x, y)

∈ {W1(xi, yj),W1(xi+1, yj),W1(xi, yj+1),W1(xi+1, yj+1)}.

Therefore, we obtain the pathwise estimate

∥Φ1(W1)− Φ1(W
(εW )
1 )∥L∞([0,D]2)

≤ max
(x,y)∈[0,D]2

ϕ max{exp(ψ|W1(x, y)|), exp(ψ|W (εW )
1 (x, y)|)}

× max
(x,y)∈[0,D]2

|W1(x, y)−W (εW )
1 (x, y)|

≤ ϕ exp
(
ψ max{ max

(x,y)∈[0,D]2
|W1(x, y)|, max

(x,y)∈[0,D]2
|W (εW )

1 (x, y)|}
)

× max
(x,y)∈[0,D]2

|W1(x, y)−W (εW )
1 (x, y)|

= ϕ exp
(
ψ max

(x,y)∈[0,D]2
|W1(x, y)|

)
max

(x,y)∈[0,D]2
|W1(x, y)−W (εW )

1 (x, y)|.

Finally, we obtain for any n1, n2 ∈ [1,+∞) with 1/n1 + 1/n2 = 1 by Hölder’s inequality

I1 ≤ D
2
t ∥Φ1(W1)− Φ1(W

(εW )
1 )∥Ls(Ω;L∞([0,D]2))

≤ D
2
tϕ ∥ exp(ψ|W1|)∥Lsn1 (Ω;L∞([0,D]2)) ∥W1 −W (εW )

1 ∥Lsn2 (Ω;L∞([0,D]2))

≤ C(D)εγW ,

where we used Lemma 6.4.4 and the fact that ∥ exp(ψ|W1|)∥Lsn1 (Ω;L∞([0,D]2)) < ∞ (see [3,

Theorem 2.1.1] and the proof of Theorem 6.5.5 for more details).

For the second summand we calculate:

I2 ≤ ∥Φ2(W2(χK(l1), χK(l2)))− Φ2(W2(χK(l
(εl)
1 ), χK(l

(εl)
2 )))∥Ls(Ω;Lt([0,D]2))

+ ∥Φ2(W2(χK(l
(εl)
1 ), χK(l

(εl)
2 )))− Φ2(W

(εW )
2 (χK(l

(εl)
1 ), χK(l

(εl)
2 )))∥Ls(Ω;Lt([0,D]2))

= I3 + I4.
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We use the same calculation as in Remark 6.4.5 and the Lipschitz continuity of Φ2 to calculate

for the summand I4

I4 ≤ D
2
t ∥Φ2(W2(χK(l

(εl)
1 ), χK(l

(εl)
2 )))− Φ2(W

(εW )
2 (χK(l

(εl)
1 ), χK(l

(εl)
2 )))∥Ls(Ω;L∞([0,D]2))

≤ ClipD
2
t ∥W2(χK(l

(εl)
1 ), χK(l

(εl)
2 ))−W (εW )

2 (χK(l
(εl)
1 ), χK(l

(εl)
2 ))∥Ls(Ω;L∞([0,D]2))

≤ ClipD
2
t ∥W2 −W (εW )

2 ∥Ls(Ω;L∞([0,K]2))

≤ ClipD
2
tC(K, s)εγW ,

where we used Lemma 6.4.4. It remains to bound the summand I3. We estimate using

Lemma 6.4.6

I3 = ∥Φ2(W2(χK(l1), χK(l2)))− Φ2(W2(χK(l
(εl)
1 ), χK(l

(εl)
2 )))∥Ls(Ω;Lt([0,D]2))

≤ D
2
t
− 2

s∥Φ2(W2(χK(l1), χK(l2)))− Φ2(W2(χK(l
(εl)
1 ), χK(l

(εl)
2 )))∥Ls([0,D]2×Ω)

= D
2
t
− 2

s

( ∫
[0,D]2

E
(
|Φ2

(
W2(χK(l1(x)), χK(l2(y)))

)
− Φ2(W2(χK(l

(εl)
1 (x)), χK(l

(εl)
2 (y))))|s

)
d(x, y)

) 1
s

≤ ClipD
2
t
− 2

s

( ∫
[0,D]2

E(|W2(χK(l1(x)), χK(l2(y)))

−W2(χK(l
(εl)
1 (x)), χK(l

(εl)
2 (y)))|s)d(x, y)

) 1
s

.

We know by Lemma 6.4.7 that it holds for (x, y) ∈ [0, D]2

E(|W2(χK(l1(x)), χK(l2(y)))−W2(χK(l
(εl)
1 (x)), χK(l

(εl)
2 (y)))|s)

= E(φ(χK(l1(x)), χK(l2(y)), χK(l
(εl)
1 (x)), χK(l

(εl)
2 (y))))

where

φ(x, y, v, w) := E(|W2(x, y)−W2(v, w)|s).
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For (x, y) = (v, w) it holds φ(x, y, v, w) = 0 and for (x, y) ̸= (v, w) ∈ [0, K]2 we get

φ(x, y, v, w) = |(x, y)T − (v, w)T |γs2 E
( |W2(x, y)−W2(v, w)|s

|(x, y)T − (v, w)T |γs2

)
≤ |(x, y)T − (v, w)T |γs2 E

((
sup

z ̸=z′∈[0,K]2

|W2(z)−W2(z
′)|

|z − z′|γ2

)s)
≤ C(K)|(x, y)T − (v, w)T |γs2

by Equation (6.14). Further, we know from Hölder’s inequality for γs ≥ 2 that it holds

|(x, y)T − (v, w)T |γs2 = ((x− v)2 + (y − w)2)
γs
2

≤ 2
γs
2
−1(|x− v|γs + |y − w|γs)

and therefore we calculate

E(|W2(χK(l1(x)), χK(l2(y)))−W2(χK(l
(εl)
1 (x)), χK(l

(εl)
2 (y)))|s)

≤ 2
γs
2
−1C(K)E(|χK(l1(x))− χK(l

(εl)
1 (x))|γs + |χK(l2(y))− χK(l

(εl)
2 (y))|γs)

≤ 2
γs
2
−1C(K)E(|l1(x)− l(εl)1 (x)|γs + |l2(y)− l(εl)2 (y)|γs)

≤ 2
γs
2 C(K)Clεl

where we used the Lipschitz continuity ofχK and Assumption 6.4.2 v in the last step. Therefore,

we finally obtain

I3 ≤ ClipD
2
t 2

γ
2C(K)

1
sC

1
s
l ε

1
s
l =: C(Clip, D, t, γ, s,K,Cl)ε

1
s
l

which proves that

∥aK,A − a(εW , εl)
K,A ∥Ls(Ω;Lt([0,D]2)) ≤ C(D,K,Clip, t, γ, s, Cl)(ε

γ
W + ε

1
s
l ).

□

6.5 Convergence analysis

In this section we derive an error bound for the approximation of the solution. We split the

error in two components: the first component is associated with the cut-off of the diffusion

coefficient we described in Subsection 6.4.2. The second error contributor corresponds to the
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approximation of the GRFs and the Lévy subordinators we considered in Subsection 6.4.4.

Let r ∈ [1, q) with q as in Assumption 6.4.2 iii and denote by uK ∈ Lr(Ω;V ) the weak

solution to problem (6.6) - (6.9). Further, let u(εW ,εl)
K,A ∈ Lr(Ω;V ) be the weak solution to the

problem

−∇ · (a(εW ,εl)
K,A (ω, x)∇u(εW ,εl)

K,A (ω, x)) = f(ω, x) in Ω×D, (6.16)

with boundary conditions

u(εW ,εl)
K,A (ω, x) = 0 on Ω× Γ1, (6.17)

a(εW ,εl)
K,A (ω, x)−→n · ∇u(εW ,εl)

K,A (ω, x) = g(ω, x) on Ω× Γ2. (6.18)

Note that Theorem 6.3.7 also applies to the elliptic problem with coefficient a(εW ,εl)
K,A . The aim

of this section is to quantify the error of the approximation u(εW ,εl)
K,A ≈ uK

4. By the triangle

inequality we obtain

∥uK − u(εW ,εl)
K,A ∥ ≤ ∥uK − uK,A∥+ ∥uK,A − u(εW ,εl)

K,A ∥ =: E1 + E2 (6.19)

for any suitable norm ∥ · ∥. Here, uK,A is the solution to the truncated problem (6.10) - (6.13).

We consider the two error contributions E1 and E2 separately in this section. The results

presented in Subsections 6.5.1 and 6.5.2 prove the following theorem:

Theorem 6.5.1.

Under Assumptions 6.5.2 and 6.5.7 it holds

∥uK − u(εW ,εl)
K,A ∥Lr(Ω;V ) → 0 for A→ +∞, εW , εl → 0,

for admissible values of r ≥ 2 (see Remark 6.5.6 and Theorem 6.5.11). As a consequence, we obtain

P(∥uK − u(εW ,εl)
K,A ∥V > δ) → 0 for A→ +∞, εW , εl → 0,

for any δ > 0. Furthermore, it holds

P({ω ∈ Ω | uK(ω) ̸= uK,A in V } = P({ω ∈ Ω | ess sup
(x,y)∈D

aK(ω, x, y)} > A}) → 0,

4The error of the approximation uK ≈ u may be controlled as in Remark 6.4.1 but cannot be quantified for the
solution.
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for A→ +∞. Therefore, the solution uK,A to the modified problem (6.10) - (6.12) coincides with
the solution uK to problem (6.6) - (6.8) up to a set of samples, whose probability can be made
arbitrarily small for growing A. With Remark 6.4.1 we conclude that the solution uK,A coincides
with the solution u to problem (6.1) - (6.3) with diffusion coefficient a defined in Equation (6.5) up
to a set of samples, whose probability can be made arbitrarily small for growing thresholds K and
A.

6.5.1 Bound on E1

Assumption 6.5.2.

We assume that the GRFs W1 and W2 occurring in the diffusion coefficient (6.5) are stochastically
independent.

The aim of this subsection is to show that the first error contributor E1 in Equation (6.19)

vanishes for increasing cut-off thresholdA. The strategy consists of two separated steps: in the

first step we show the stability of the solution, which means that the valueE1 can be controlled

by the quality of the approximation of the diffusion coefficient aK,A ≈ aK . In the second step,

we show that the quality of the approximation of the diffusion coefficient can be controlled by

the cut-off threshold A. The first step is given by Theorem 6.5.4. In order to prove it we need

the following lemma.

Lemma 6.5.3.

For fixed cut-off levels A and K we consider the solution uK ∈ Lr(Ω;V ) and its approximation
uK,A ∈ Lr(Ω;V ) for r ∈ [1, q). It holds the pathwise estimate

∥uK − uK,A∥V ≤ aK,+C(a−,D)∥∇uK −∇uK,A∥L2(D),

for P-almost every ω ∈ Ω. Here, the constantC(a−,D) only depends on the indicated parameters
and we define aK,+(ω) := max{1, ess sup

(x,y)∈D
aK(ω, x, y)} <∞ for ω ∈ Ω.

Proof. For a fixed ω ∈ Ω we consider the variational problem: find a unique ŵ ∈ V

such that

BaK(ŵ, v) = ⟨uK − uK,A, v⟩L2(D),
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for all v ∈ V . By the Lax-Milgram theorem there exists a unique solution ŵ ∈ V with

∥ŵ∥V ≤ C ′(a−,D)∥uK − uK,A∥L2(D),

(see Theorem 6.3.7 and [16, Theorem 2.5]). Therefore, we obtain by Hölder’s inequality

∥uK − uK,A∥2
L2(D) = BaK(ŵ, uK − uK,A)

= ⟨aK∇ŵ,∇uK −∇uK,A⟩L2(D)

≤ aK,+∥∇ŵ∥L2(D)∥∇uK −∇uK,A∥L2(D)

≤ ∥uK − uK,A∥L2(D)aK,+C
′(a−,D)∥∇uK −∇uK,A∥L2(D)

≤ 1

2
∥uK − uK,A∥2

L2(D) + a2K,+C
′(a−,D)2/2∥∇uK −∇uK,A∥2

L2(D),

where we used Young’s inequality in the last step. Finally, we obtain

∥uK − uK,A∥2
V = ∥uK − uK,A∥2

L2(D) + ∥∇uK −∇uK,A∥2
L2(D)

≤ (1 + a2K,+C
′(a−,D)2)∥∇uK −∇uK,A∥2

L2(D).

□

Theorem 6.5.4.

Let f ∈ Lq(Ω;H) and g ∈ Lq(Ω;L2(Γ2)) for some q ∈ [1,+∞). Further, for a given number
t ∈ (1,+∞) we define the dual number n := t

t−1
. Then, for any for r ∈ [1, q/n), it holds

∥uK − uK,A∥Lr(Ω;V ) ≤ C(D, a−, r) (∥f∥Lq(Ω;H) + ∥g∥Lq(Ω;Γ2)))

× E(ess sup
x∈D

|aK(x)− aK,A(x)|rt)
1
rt

Proof. By a direct calculation we obtain

∥∇uK −∇uK,A∥2
L2(D) ≤

1

a−

∫
D
aK,A|∇uK −∇uK,A|22d(x, y).
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Since uK and uK,A are weak solutions of problem (6.6) - (6.9) resp. (6.10) - (6.13) it holds∫
D
aK,A∇uK,A · ∇uKd(x, y) =

∫
D
aK|∇uK|22d(x, y),∫

D
aK,A|∇uK,A|22d(x, y) =

∫
D
aK∇uK · ∇uK,Ad(x, y),

P-almost surely and therefore∫
D
aK,A|∇uK −∇uK,A|22d(x, y) =

∫
D
(aK,A − aK)∇uK(∇uK −∇uK,A)d(x, y).

We estimate using Hölder’s inequality

∥∇uK −∇uK,A∥2
L2(D) ≤

1

a−
∥aK − aK,A∥L∞(D)∥∇uK∥L2(D)∥∇uK −∇uK,A∥L2(D)

≤ 1

a−
∥aK − aK,A∥L∞(D)∥uK∥V ∥∇uK −∇uK,A∥L2(D)

and therefore we obtain

∥∇uK −∇uK,A∥L2(D) ≤
1

a−
∥aK − aK,A∥L∞(D)∥uK∥V .

Using Lemma 6.5.3 we obtain the pathwise estimate

∥uK − uK,A∥V ≤ C(a−,D)aK,+∥aK − aK,A∥L∞(D)∥uK∥V .

Using again Hölder’s inequality we have

∥uK − uK,A∥Lr(Ω;V ) ≤ C(a−,D)E(ess sup
x∈D

|aK(x)− aK,A(x)|rt)
1
rtE(anrK,+∥uK∥nr

V )
1
nr .

By assumption it holds nr < q. Therefore, we can choose a real number ρ > 1 such that

nrρ < q. We define the dual number ρ′ := ρ

ρ−1
∈ (1,+∞) and use Hölder’s inequality to

calculate

∥uK − uK,A∥Lr(Ω;V ) ≤C(a−,D)E(ess sup
x∈D

|aK(x)− aK,A(x)|rt)
1
rt

× E(anrρ
′

K,+)
1

nrρ′ ∥uK∥Lnrρ(Ω;V ).

Obviously Theorem 6.3.7 applies also to problem (6.6) - (6.9). Therefore, since nrρ < q by
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assumption we conclude

∥uK − uK,A∥Lr(Ω;V ) ≤C(D, a−, r)E(ess sup
x∈D

|aK(x)− aK,A(x)|rt)
1
rt

× (∥f∥Lq(Ω;H) + ∥g∥Lq(Ω;Γ2))),

where we additionally used the fact that E(anrρ
′

K,+)
1

nrρ′ < +∞ (see Theorem 6.5.5). □

In other words, finding a bound for the error contribution E1 in Equation (6.19) reduces

to quantifying the quality of the approximation of the diffusion coefficient aK,A ≈ aK . For

readability the proof of the following theorem can be found in the appendix at the end of this

article.

Theorem 6.5.5.

For any n ∈ (1,+∞) it holds

E(ess sup
x∈D

aK(x)
n)

1
n < +∞.

Further, for any δ > 0 there exists a constant A = A(δ, n) > 0 such that

E(ess sup
x∈D

|aK(x)− aK,A(x)|n)1/n < δ.

We close this subsection with the following remark on the convergence of the error contrib-

utor E1 in Equation (6.19).

Remark 6.5.6. From Theorem 6.5.4 together with Theorem 6.5.5 we obtain

∥uK − uK,A∥Lr(Ω;V ) → 0, for A→ ∞,

for every r < q.
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6.5.2 Bound on E2

The aim is to bound the second term of Equation (6.19) given by

E2 = ∥uK,A − u(εW ,εl)
K,A ∥

in an appropriate norm. For technical reasons we have to impose an additional assumption on

the solution of the truncated problem. The subsequent remarks discuss situations under which

this assumption is fulfilled.

Assumption 6.5.7.

We assume that there exist constants jreg > 0 and kreg ≥ 2 such that

Creg := E(∥∇uK,A∥kreg

L2+jreg (D)
) < +∞. (6.20)

Since uK,A ∈ H1(D) we already know that ∇uK,A ∈ L2(D). Assumption 6.5.7 requires

a slightly higher integrability over the spatial domain. Since this is an assumption on the

regularity of the solution uK,A we denote the above constant by Creg.

Remark 6.5.8. Note that Assumption 6.5.7 is fulfilled if there exists θ ∈ (0, 1) such that

∥uK,A∥H1+θ(D) ≤ C(f, a) (6.21)

with some constant C(f, a) with E(C(f, a)kreg) <∞. This is true since for any ρ ≥ 2 and an
arbitrary function φ ∈ H1+θ(D) the inequality

∥∇φ∥Lρ(D) ≤ C∥∇φ∥
H

1− 2
ρ (D)

≤ C∥φ∥
H

2− 2
ρ (D)

holds for θ := 1− 2
ρ

(see [39, Theorem 6.7]). Here, the constant C = C(D, θ) depends only on
the indicated parameters. Hence, the condition (6.21) implies Equation (6.20) with jreg = 2θ

1−θ
.

Remark 6.5.9. Note that there are several results about higher integrability of the gradient of
the solution to an elliptic PDE of the form (6.10) - (6.13). For instance [105] yields that the solution
uK,A has H1+δ/(2π) regularity with δ = min(1, a−, A

−1) under mixed boundary conditions and
under the assumption that aK,A is piecewise constant (see [105, Theorem 7.3]). This corresponds to
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the case where no Gaussian noise is considered (i.e. Φ1 ≡ 0) and a is constant. Another important
result is given in [43]. It follows by [43, Theorem 1] that under the assumption that there exists
q > 2 with f ∈ Lq(D) P-a.s. there exists a constant C = C(D, ∥f∥Lq(D), a−, A) and a
positive number ϑ = ϑ(D, ∥f∥Lq(D), a−, A) > 0 only depending on the indicated parameters,
such that:

∥∇uK,A∥L2+ϑ(D) ≤ C. (6.22)

In particular, if the right hand side f of the problem is deterministic, then ϑ and the constant C in
(6.22) are deterministic and one immediately obtains

E(∥∇uK,A∥kreg
L2+ϑ(D)) < +∞,

for any kreg ≥ 1 and a deterministic, positive constant ϑ > 0.

Next, we show that for a given approximation of the diffusion coefficient, the resulting error

contributor E2 is bounded by the approximation error of the diffusion coefficient. Similar to

the corresponding assertion we gave in Subsection 6.5.1 we need the following lemma for the

proof of this error bound. For a proof we refer to Lemma 6.5.3.

Lemma 6.5.10.

For fixed cut-off levels A, K and fixed approximation parameters εW , εl we consider the PDE
solutions uA,K ∈ Lr(Ω;V ) and u(εW ,εl)

K,A ∈ Lr(Ω;V ) for r ∈ [1, q). It holds the pathwise
estimate

∥uK,A − u(εW ,εl)
K,A ∥V ≤ aK,+C(a−,D)∥∇uK,A −∇u(εW ,εl)

K,A ∥L2(D),

for P-almost every ω ∈ Ω. Here, constant C(a−,D) depends only on the indicated parameters
and aK,+(ω) := max{1, ess sup

(x,y)∈D
aK(ω, x, y)} <∞ for ω ∈ Ω.

Theorem 6.5.11.

Let r ≥ 2 and b, c ∈ [1,+∞] be given such that it holds

rcγ ≥ 2 and 2b ≤ rc < η

with a fixed real number γ ∈ (0,min(1, β/(2α)). Here, the parameters η, α and β are deter-
mined by the GRFs W1, W2 and the Lévy subordinators l1, l2 (see Assumption 6.4.2).

Subordinated Fields and Random Elliptic Partial Differential Equations



6.5 Convergence analysis 109

Let m,n ∈ [1,+∞] be real numbers such that

1

m
+

1

c
=

1

n
+

1

b
= 1,

and let kreg ≥ 2 and jreg > 0 be the regularity specifiers given by Assumption 6.5.7. If it holds
that

n < 1 +
jreg
2

and rm < kreg,

then the approximated solution u(εW ,εl)
K,A converges to the solution uK,A of the truncated problem

for εW , εl → 0 and it holds

∥uK,A − u(εW ,εl)
K,A ∥Lr(Ω;V ) ≤ C(a−,D, r)Creg∥a(εW ,εl)

K,A − aK,A∥Lrc(Ω;L2b(D))

≤ CregC(a−,D, r)(εγW + ε
1
rc
l ).

Proof. By a direct calculation we obtain the pathwise estimate

∥∇uK,A −∇u(εW ,εl)
K,A ∥2

L2(D) ≤
1

a−

∫
D
a(εW ,εl)
K,A (|∇uK,A −∇u(εW ,εl)

K,A |22)dx.

Since uK,A (resp. u(εW ,εl)
K,A ) is the weak solution to problem (6.10) - (6.13) (resp. (6.16) - (6.18)) we

have ∫
D

a(εW ,εl)
K,A ∇u(εW ,εl)

K,A · ∇uK,Adx =

∫
D
aK,A|∇uK,A|22dx,∫

D
a(εW ,εl)
K,A |∇u(εW ,εl)

K,A |22dx =

∫
D
aK,A∇uK,A · ∇u(εW ,εl)

K,A dx

P-a.s. and therefore∫
D

a(εW ,εl)
K,A |∇uK,A −∇u(εW ,εl)

K,A |22dx

=

∫
D
(a(εW ,εl)

K,A − aK,A)∇uK,A · (∇uK,A −∇u(εW ,εl)
K,A )dx.
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Using Hölder’s inequality we calculate

∥∇uK,A −∇u(εW ,εl)
K,A ∥2

L2(D)

≤ 1

a−
∥(a(εW ,εl)

K,A − aK,A)∇uK,A∥L2(D)∥∇uK,A −∇u(εW ,εl)
K,A ∥L2(D)

and therefore

∥∇uK,A −∇u(εW ,εl)
K,A ∥L2(D) ≤

1

a−
∥(a(εW ,εl)

K,A − aK,A)∇uK,A∥L2(D),

Next, we apply Lemma 6.5.10 to obtain the following estimate.

∥uK,A − u(εW ,εl)
K,A ∥V ≤ C(a−,D)aK,+∥(a(εW ,εl)

K,A − aK,A)∇uK,A∥L2(D)

Hence, it remains to bound the norm ∥(a(εW ,εl)
K,A − aK,A)∇uK,A∥L2(D). By Hölder’s inequality

we obtain

∥(a(εW ,εl)
K,A − aK,A)∇uK,A∥L2(D)

≤ ∥a(εW ,εl)
K,A − aK,A∥L2b(D)∥∇uK,A∥L2n(D).

Applying Hölder’s inequality once more we estimate

∥uK,A − u(εW ,εl)
K,A ∥Lr(Ω;V )

≤ C(a−,D)∥a(εW ,εl)
K,A − aK,A∥Lrc(Ω;L2b(D))E(armK,+∥∇uK,A∥rm

L2n(D))
1

rm

By assumption it holds rm < kreg. Hence, we can choose a real number ρ > 1 such that

rmρ < kreg . We define the dual number ρ′ := ρ

1−ρ
∈ (1,+∞) and use Hölder’s inequality to

obtain

E(armK,+∥∇uK,A∥rm
L2n(D))

1
rm ≤ E(armρ′

K,+ )
1

rmρ′ ∥∇uK,A∥Lrmρ(Ω;L2n(D)) ≤ C(D, r)Creg,

where we again used the fact that E(anrρ
′

K,+)
1

nrρ′ < +∞ (see Theorem 6.5.5) together with

Assumption 6.5.7. Finally we obtain the estimate

∥uK,A − u(εW ,εl)
K,A ∥Lr(Ω;V ) ≤ C(a−,D, r)Creg∥a(εW ,εl)

K,A − aK,A∥Lrc(Ω;L2b(D))

≤ CregC(a−,D, r)(εγW + ε
1
rc
l ),

where we applied Theorem 6.4.8 in the last estimate. □
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We close this section with a remark on how to choose the parametersA, εW and εl to obtain

an approximation error smaller than any given threshold δ > 0.

Remark 6.5.12. For any given parameter K large enough (see Remark 6.4.1), we choose a
positive numberA > 0 such that the first error contributor satisfiesE1 = ∥uK −uK,A∥Lr(Ω;V ) <

δ/2 (see Theorem 6.5.4 and Theorem 6.5.5). Afterwards, under the assumptions of Theorem 6.5.11,
we may choose the approximation parameters εW and εl small enough, such that the second error
contributor satisfiesE2 = ∥uK,A−u(εW ,εl)

K,A ∥Lr(Ω;V ) < δ/2. Hence, we get an overall error smaller
than δ (see Equation (6.19)).

6.6 Pathwise sample-adapted finite element approximation

We want to approximate the solution u to the problem (6.1) - (6.3) with diffusion coefficient

a given by Equation (6.5) using a pathwise finite element (FE) approximation of the solution

u(εW ,εl)
K,A of problem (6.16) - (6.18) where the approximated diffusion coefficient a(εW ,εl)

K,A is given

by (6.15). Therefore, for almost all ω ∈ Ω, we have to find a function u(εW ,εl)
K,A (ω, ·) ∈ V such

that it holds

B
a
(εW ,εl)

K,A (ω)
(u(εW ,εl)

K,A (ω, ·), v) :=
∫
D
a(εW ,εl)
K,A (ω, x)∇u(εW ,εl)

K,A (ω, x) · ∇v(x)dx

=

∫
D
f(ω, x)v(x)dx+

∫
Γ2

g(ω, x)[Tv](x)dx =: Fω(v), (6.23)

for every v ∈ V . Here,K,A, εW , εl are fixed approximation parameters. In order to solve this

variational problem numerically we consider a standard Galerkin approach with linear elements

and assume V = (Vℓ, ℓ ∈ N0) to be a sequence of finite-dimensional subspaces Vℓ ⊂ V

with dim(Vℓ) = dℓ for ℓ ∈ N0. We denote by (hℓ, ℓ ∈ N0) the corresponding sequence of

refinement sizes which is assumed to decrease monotonically to zero for ℓ→ ∞. Let ℓ ∈ N0

be fixed and denote by {v(ℓ)1 , . . . , v
(ℓ)
dℓ
} a basis of Vℓ. The (pathwise) discrete version of (6.23)

reads:

Find u(εW ,εl)
K,A,ℓ (ω, ·) ∈ Vℓ such that

B
a
(εW ,εl)

K,A (ω)
(u(εW ,εl)

K,A,ℓ (ω, ·), v(ℓ)i ) = Fω(v
(ℓ)
i ) for all i = 1, . . . , dℓ.
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We expand the function u(εW ,εl)
K,A,ℓ (ω, ·) with respect to the basis {v(ℓ)1 , . . . , v

(ℓ)
dℓ
}:

u(εW ,εl)
K,A,ℓ (ω, ·) =

dℓ∑
i=1

civ
(ℓ)
i ,

where the coefficient vector c = (c1, . . . , cdℓ)
T ∈ Rdℓ is determined by the linear equation

system

B(ω)c = F(ω),

with a stochastic stiffness matrix B(ω)i,j = B
a
(εW ,εl)

K,A (ω)
(v(ℓ)i , v

(ℓ)
j ) and load vector F(ω)i =

Fω(v
(ℓ)
i ) for i, j = 1, . . . , dℓ.

Remark 6.6.1. Let (Kℓ, ℓ ∈ N0) be a sequence of triangulations on D and denote by θℓ > 0

the minimum interior angle of all triangles in Kℓ. We assume θℓ ≥ θ > 0 for a positive constant θ
and define the maximum diameter of the triangulation Kℓ by hℓ := max

K∈Kℓ

diam(K), for ℓ ∈ N0.

Further, we define the finite dimensional subspaces by Vℓ := {v ∈ V | v|K ∈ P1, K ∈ Kℓ},
where P1 denotes the space of all polynomials up to degree one. The convergence of the FE method
is determined by the regularity of the solution: If we assume that for P-almost all ω ∈ Ω it holds
u(εW ,εl)
K,A (ω, ·) ∈ H1+κa(D) for some positive number κa > 0, the pathwise discretization error is

bounded by Céa’s lemma P-a.s. by

∥u(εW ,εl)
K,A (ω, ·)− u(εW ,εl)

K,A,ℓ (ω, ·)∥V ≤ Cθ,D
A

a−
∥u(εW ,εl)

K,A (ω, ·)∥H1+κa (D)h
min(κa,1)
ℓ ,

(see [16, Section 4] and [67, Chapter 8]). If the bound ∥u(εW ,εl)
K,A ∥L2(Ω;H1+κa (D)) ≤ Cu = Cu(K,A)

is finite for the fixed approximation parameters K,A, we immediately obtain

∥u(εW ,εl)
K,A − u(εW ,εl)

K,A,ℓ ∥L2(Ω;V ) ≤ Cθ,D
A

a−
Cuh

min(κa,1)
ℓ .

We note that, by construction of our random field, we always obtain an interface geometry with
fixed angles and bounded jump height, which have great influence on the solution regularity, see
e.g. [105].

For general elliptic jump-diffusion problems, one obtains a discretization error of order

κa ∈ (1/2, 1). In general, we cannot expect the full order of convergence κa = 1 for

discontinuous diffusion coefficients. Without special treatment of the interfaces with respect
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to the triangulation, one cannot expect a convergence rate which is higher than κa = 1/2

for the deterministic interface problem (see [10] and [16]). The convergence of the FE method

may be improved by the use of triangulations which are adapted to the discontinuities. This is

explained in more detail in the following subsection.

6.6.1 Sample-adapted triangulations

In [16], the authors suggest sample-adapted triangulations to improve the convergence rate

of the FE approximation: Consider a fixed ω ∈ Ω and assume that the discontinuities of

the diffusion coefficient are described by the partition T (ω) = (Ti, i = 1, . . . , τ(ω)) of

the domain D where τ(ω) describes the number of elements in the partition. We consider

finite-dimensional subspaces V̂ℓ(ω) ⊂ V with (stochastic) dimension d̂ℓ(ω) ∈ N. We denote

by θ̂ℓ(ω) the minimal interior angle within Kℓ(ω) and assume the existence of a positive

number θ > 0 such that inf{θ̂ℓ(ω) | ℓ ∈ N0} ≥ θ for P-almost all ω ∈ Ω. Assume that

Kℓ(ω) is a triangulation of D which is adjusted to the partition T (ω) in the sense that for

every i = 1, . . . , τ(ω) it holds

∂Ti ⊂
⋃

κ∈Kℓ(ω)

∂κ and ĥℓ(ω) := max
K∈Kℓ(ω)

diam(K) ≤ hℓ,

for all ℓ ∈ N0, where (hℓ, ℓ ∈ N0) is a deterministic, decreasing sequence of refinement

thresholds which converges to zero (see Figure 6.2).

Figure 6.2: A sample of a Poisson-subordinated Matérn-1.5-GRF (left) with corresponding
sample-adapted triangulations (right).

Sample-adapted triangulations lead to an improved convergence rate for elliptic problems
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with discontinuous coefficients (see [16, Section 4.1] and Section 6.7). This is especially true

for jump-diffusion coefficients with polygonal jump geometry, which is the case for the subor-

dinated GRF considered in this paper (see Figure 6.2, [16], [31]). The question arises whether

mean squared convergence rates can be derived analytically (cf. Assumption 6.7.1). While it is

not possible to prove convergence rates for the mean squared error for our diffusion coefficient

in general due to the regularity of the stochastic solution, in practice one can (at least) recover

the convergence rates of the deterministic jump-diffusion problem in the strong error (see

Section 6.7, [16, Section 4.1] and [31, Section 2]). In fact, in the non-adapted case it is possible

to get even better convergence rates than expected for some examples.

6.7 Numerical examples

In the following experiments we work on the domain D = (0, 1)2 and use a FE method with

hat-function basis as described in Section 6.6. Here, we distinguish between the standard FEM

approach with standard triangulations and the sample-adapted FEM approach. The aim of

our numerical experiments is to compare the sample-adapted with the non-adapted approach

and investigate how different Lévy subordinators and GRFs influence the strong convergence

rate. In our first example we use Poisson processes with low intensity to investigate the

superiority of the presented sample-adapted triangulation. In the second example we use

Poisson subordinators with a significantly higher intensity. Besides Poisson subordinators we

also use Gamma processes which have infinite activity.

6.7.1 Strong error approximation

Remark 6.6.1 and Subsection 6.6.1 motivate the following assumption on the approximation

error of the FE method for non-adapted and adapted triangulations for the rest of this paper

(see [16, Assumption 4.4]).

Assumption 6.7.1.

There exist deterministic constants Ĉu, Cu, κ̂a, κa > 0 such that for any εW , εl > 0 and any
ℓ ∈ N0, the finite element approximation errors of û(εW ,εl)

K,A,ℓ ≈ u(εW ,εl)
K,A in the (sample-adapted)
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subspaces V̂ℓ, respectively u(εW ,εl)
K,A,ℓ ≈ u(εW ,εl)

K,A in Vℓ, are bounded by

∥u(εW ,εl)
K,A − û(εW ,εl)

K,A,ℓ ∥L2(Ω;V ) ≤ ĈuE(ĥ2κ̂a

ℓ )1/2, respectively,

∥u(εW ,εl)
K,A − u(εW ,εl)

K,A,ℓ ∥L2(Ω;V ) ≤ Cuh
κa

ℓ ,

where the constants Ĉu, Cu may depend on a, f, g,K,A but are independent of ĥℓ, hℓ, κ̂a and
κa.

In each numerical experiment we choose a problem dependent cut-off level K for the

subordinators in (6.9) large enough so that its influence is negligible (see Remark 6.4.1). Further,

we choose the cut-off level for the diffusion coefficient A in (6.13) large enough such that it

has no influence in numerical experiments, e.g. A = 50 and therefore the error induced

by the error contributor E1 in (6.19) can be neglected in our experiments. We estimate the

strong error using a standard Monte Carlo estimator. Assume that a sequence of (sample-

adapted) finite-dimensional subspaces (V̂ℓ, ℓ ∈ N0) ⊂ V is given where we use the notation

of Section 6.6. For readability we only treat the case of pathwise sample-adapted finite element

approximations in the rest of the theoretical consideration in this subsection. We would like to

point out, however, that similar arguments lead to the corresponding results for standard FE

approximations.

Under the assumptions of Theorem 6.5.11 and Assumption 6.7.1 we obtain

∥uK,A − û(εW ,εl)
K,A,ℓ ∥L2(Ω;V ) ≤ ∥uK,A − u(εW ,εl)

K,A ∥L2(Ω;V ) + ∥u(εW ,εl)
K,A − û(εW ,εl)

K,A,ℓ ∥L2(Ω;V ) (6.24)

≤ C(εγW + ε
1
2c
l + E(ĥ2κ̂a

ℓ )1/2),

with a constant C = C(Creg, D, a−, Ĉu). Therefore, in order to equilibrate all error contribu-

tions, we choose the approximation parameters εW and εl in the following way:

εW ≃ E(ĥ2κ̂a

ℓ )1/(2γ) and εl ≃ E(ĥ2κ̂a

ℓ )c. (6.25)

For readability, we omit the cut-off parameters K and A in the following and use the notation

ûℓ,εW ,εl = û(εW ,εl)
K,A,ℓ . Choosing the approximation parameters εW , εl according to (6.25), we can

investigate the strong error convergence rate by a Monte Carlo estimation of the left hand side

of (6.24): for a fixed natural number M ∈ N we approximate

∥uK,A − û(εW ,εl)
K,A,ℓ ∥2

L2(Ω;V ) = ∥uK,A − ûℓ,εW ,εl∥2
L2(Ω;V ) ≈

1

M

M∑
i=1

∥u(i)
ref − û(i)

ℓ,εW ,εl
∥2
V , (6.26)
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where (u(i)
ref , i = 1, . . . ,M) are i.i.d. realizations of the stochastic reference solution uref ≈

uK,A and (û(i)
ℓ,εW ,εl

, i = 1 . . . ,M) are i.i.d. realizations of the FE approximation ûℓ,εW ,εl of the

PDE solution on the FE subspace V̂ℓ. In all examples we choose the sample number M so that

the standard deviation of the MC samples is smaller than 10% of the MC estimator itself.

6.7.2 PDE parameters

In all of our numerical examples we choose a ≡ 1/10, f ≡ 10, Φ1 = 1/100 exp(·) and

Φ2 = 5 |·|. Further, we impose mixed Dirichlet-Neumann boundary conditions if nothing else is

explicitly mentioned. To be precise, we split the domain boundary ∂D by Γ1 = {0, 1}× [0, 1]

and Γ2 = (0, 1) × {0, 1} and impose the pathwise mixed Dirichlet-Neumann boundary

conditions

uK,A =

0.1 on {0} × [0, 1]

0.3 on {1} × [0, 1]
and aK,A

−→n · ∇uK,A = 0 on Γ2,

for ω ∈ Ω.

We choose W1 to be a Matérn-1.5-GRF on D with correlation length r1 = 0.5 and different

variance parameters σ2
1 . Further, we set W2 to be a Matérn-1.5-GRF on [0, K]2 which is

independent of W1 with different variances σ2
2 and correlation lengths r2. We use a reference

grid with 801×801 equally spaced points on the domain D for interpolation and prolongation.

6.7.3 Poisson subordinators

In this section we use Poisson processes to subordinate the GRF W2 in the diffusion coefficient

in (6.5). We consider both, high and low intensity Poisson processes and vary the boundary

conditions. Further, using Poisson subordinators allows for a detailed investigation of the

approximation error caused by approximating the Lévy subordinators l1 and l2 according to

Assumption 6.4.2 v.

6.7.3.1 The two approximation methods

Using Poisson processes as subordinators allows for two different simulation approaches in

the numerical examples: the first approach is an exact and grid-independent simulation of a

Poisson process using for example the Method of Exponential Spacings or the Uniform Method
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(see [109, Section 8.1.2]). On the other hand, one may also work with approximations of the

Poisson processes satisfying Assumption 6.4.2 v.

We recall that a Poisson(λ) process l is a Lévy process with l(t) ∼ Poiss(tλ) for t > 0, i.e. it

admits the discrete density

P(l(t) = k) = e−tλ (tλ)
k

k!
, for k ∈ N0.

We sample the values of the Poisson(λ) processes l1 and l2 on an equidistant grid {xi, i =

0, . . . , Nl} with x0 = 0 and xNl
= 1 and step size |xi+1 − xi| ≤ εl ≤ 1 for all i =

0, . . . , Nl − 1. Further, we approximate the stochastic processes by a piecewise constant

extension l(εl)j ≈ lj of the values on the grid:

l(εl)j (x) =

lj(xi) x ∈ [xi, xi+1) for i = 0, . . . , Nl − 1,

lj(xNl−1) x = 1.

for j = 1, 2. Since the Poisson process has independent, Poisson distributed increments, values

of the Poisson process at the discrete points {xi, i = 0, . . . , Nl} can be generated by adding

independent Poisson distributed random variables. In the following we refer to this approach

as the approximation approach to simulate a Poisson process. Note that in this case Assumption

6.4.2 v holds with η = +∞. In fact, for any s ∈ [1,+∞) we obtain for j = 1, 2 and an

arbitrary x ∈ [0, 1) with x ∈ [xi, xi+1):

E(|lj(x)− l(εl)j (x)|s) = E(|lj(x)− lj(xi)|s) ≤ E(|lj(xi+1 − xi)|s) ≤ E(|lj(εl)|s),

which is independent of the specific x ∈ [0, 1). Note that this also holds for x = D = 1 and

therefore

sup
x∈[0,1]

E(|lj(x)− l(εl)j (x)|s) ≤ E(|lj(εl)|s).

For a Poisson process with parameter λ we obtain

E(|lj(εl)|s) = e−λεl

∞∑
k=0

ks (λεl)
k

k!
≤ εl

∞∑
k=1

ksλ
k

k!
≤ Clεl,

where the series converges by the ratio test.

Since the Poisson process allows for both approaches - approximation and exact simulation

of the process - the use of these processes are suitable to investigate the additional error in
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the approximation of the PDE solution resulting from an approximation of the subordinators.

Note that the main difference of the proposed approaches is that the approximation approach

is grid dependent and the exact simulation of the Poisson process is not. The differences in the

computational costs for the two approaches are insignificant in our numerical examples.

6.7.3.2 Poisson subordinators: low intensity and mixed boundary conditions

In this example we choose l1 and l2 to be Poisson(1) subordinators. Further, the variance

parameter of the GRF W1 is set to be σ2
1 = 1.52 and the variance and correlation parameters

of the GRF W2 are given by σ2
2 = 0.32 and r2 = 1.

For independent Poisson(1) subordinators l1 and l2 we chooseK = 8 as the cut-off parameter

(see (6.9)). With this choice we obtain

P( sup
t∈[0,1]

lj(t) > K) = P(lj(1) > K) ≈ 1.1252e−06,

for j = 1, 2, such that this cut-off has no influence in the numerical example. Note that

for Matérn-1.5-GRFs we can expect γ = 1 in Equation (6.14) (see e.g. [110, Chapter 5], [63,

Proposition 9] and [30, Section 2.3]).

We approximate the GRFs W1 and W2 by the circulant embedding method (see [64] and

[65]) to obtain approximations W (εW )
1 ≈ W1 and W (εW )

2 ≈ W2 as in Lemma 6.4.4. Since

η = +∞ and f ∈ Lq(Ω;H) for every q ≥ 1 we choose for any positive δ > 0

r = 2, c = b = 1 + δ

to obtain from Theorem 6.5.11

∥uK,A − u(εW ,εl)
K,A ∥L2(Ω;V ) ≤ Creg

C(D)

a−
(εW + ε

1
2c
l ),

where we have to assume that jreg ≥ 2((1 + δ)/δ − 1) and kreg ≥ 2(1 + δ)/δ for the

regularity constants jreg, kreg given in Assumption 6.5.7. For δ = 0.05 we obtain

∥uK,A − u(εW ,εl)
K,A ∥L2(Ω;V ) ≤ Creg

C(D)

a−
(εW + ε

1
2.01
l ). (6.27)

Therefore, we get γ = 1 and c = 2.01/2 in the equilibration formula (6.25).

Figure 6.3 shows two different samples of the diffusion coefficient and the corresponding

FE approximations of the PDE solution. The FE discretization parameters are given by hℓ =
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Figure 6.3: Different samples of the diffusion coefficient with Poisson(1) subordinators and the
corresponding PDE solutions with mixed Dirichlet-Neumann boundary conditions.

0.4 · 2−(ℓ−1) for l = 1, . . . , 7. We set uref = û7,εW ,εl , where the approximation parameters

εW and εl are choosen according to (6.25) and we compute M = 100 samples to estimate

the strong error by the Monte Carlo estimator (see Equation (6.26)). In this experiment we

investigate the strong error convergence rate for the sample-adapted FE approach as well as

convergence rate for the non-adapted FE approach (see Section 6.6). In Subsection 6.7.3.1 we

described two approaches to simulate Poisson subordinators. We run this experiment with both

approaches: first, we approximate the Poisson process via sampling on an equidistant level-

dependent grid and, in a second run of the experiment, we simulate the Poisson subordinators

exactly using the Uniform Method described in [109, Section 8.1.2]. The convergence results

for the both approaches for this experiment are given in the Figure 6.4.

Figure 6.4: Convergence results for Poisson(1) subordinators using the approximation approach
and the Uniform Method with mixed Dirichlet-Neumann boundary conditions.

We see a convergence rate of approximately 0.7 for the standard FEM discretization and

full order convergence (κ̂a ≈ 1) for the sample-adapted approach. On the right hand side of

Figure 6.4 on sees that the sample-adapted approach is more efficient in terms of computational

effort if we consider the error-to-(averaged)DOF-plot. Only on the first level the standard FEM
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approach seems to be more efficient (pre-asymptotic behaviour). If we compare the results

for the approximation method with the Uniform Method (see Subsection 6.7.3.1), we find that,

while the convergence rates are the same, the constant of the error in the sample-adapted

approach is slightly smaller for the Uniform Method. This shift is exactly the additional error

resulting from an approximation of the subordinators in the approximation approach. We also

see that, compared to the approximation approach, on the lower levels the averaged degrees

of freedom in the sample-adapted FEM approach is slightly higher if we simulate the Poisson

subordinators exactly. This is caused by the fact that in this case we do not approximate the

discontinuities of the field which are generated by the Poisson processes. This results in a

higher average number of degrees of freedom on the lower levels because discontinuities are

more likely close to each other.

6.7.3.3 Poisson subordinators: low intensity and homogeneous Dirichlet boundary
conditions

Next, we consider the elliptic PDE under homogeneous Dirichlet boundary conditions. All

other parameters remain as in Subsection 6.7.3.2. Figure 6.5 shows samples of the diffusion

coefficient and the corresponding FE approximation of the PDE solution. We estimate the

Figure 6.5: Different samples of the diffusion coefficient with Poisson(1) subordinators and the
corresponding PDE solutions with homogeneous Dirichlet boundary conditions.

strong error convergence rate for this problem in the same way as in the previous example

using M = 250 samples and we use the approximation approach to simulate the Poisson

subordinators (see Subsection 6.7.3.1). Convergence results are given in Figure 6.6. As in the

experiment with mixed Dirichlet-Neumann boundary conditions we obtain convergence order

of κa ≈ 0.7 for the standard FEM approach and full order convergence for the sample-adapted

approach. Also in case of homogeneous Dirichlet boundary conditions the sample-adapted

FEM is more efficient in terms of the averaged number of degrees of freedom.
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Figure 6.6: Convergence results for Poisson(1) subordinators using the approximation approach
and homogeneous Dirichlet boundary conditions.

6.7.3.4 Poisson subordinators: high intensity and mixed boundary conditions

In this section we want to consider subordinators with higher intensity, resulting in a higher

number of discontinuities in the diffusion coefficient. Therefore, we consider l1 and l2 to

be Poisson(5) processes. We set K = 1 in the diffusion coefficient (6.9) and consider the

downscaled process

l̃j(t) =
1

15
lj(t),

for t ∈ [0, 1] and j = 1, 2. With this choice it is reasonable to expect that this cut-off has no

numerical influence since

P
(
sup
t∈[0,1]

lj(t)

15
> 1

)
= P(lj(1) > 15) ≈ 6.9008e−05,

for j = 1, 2. The reason we consider the downscaled process is that otherwise we would have

to simulate the GRF W2 on the domain [0, 15]2 which is very time consuming. Note that the

downscaling of the subordinators has no effect on the jump activity. The variance parameter of

the field W1 is chosen to be σ2
1 = 1 and the parameters of the GRF W2 are set to be σ2

2 = 0.32

and r2 = 0.5. Figure 6.7 shows samples of the coefficient and the corresponding pathwise FEM

solution.

As in the first experiment, we again run this experiment using both methods described in

Subsection 6.7.3.1: the approximation approach using Poisson-distributed increments and the

Uniform Method. We use the discretization steps hℓ = 0.1 · 1.7−(ℓ−1) for ℓ = 1, . . . , 7 and
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Figure 6.7: Different samples of the diffusion coefficient with Poisson(5) subordinators and the
corresponding PDE solutions with mixed Dirichlet-Neumann boundary conditions.

M = 150 samples.

Figure 6.8: Convergence results for Poisson(5) subordinators using the approximation approach
and the Uniform Method with mixed Dirichlet-Neumann boundary conditions.

In Figure 6.8 we see that we get almost full order convergence for the sample-adapted FE

method for both approximation approaches of the Poisson processes. Compared to the low-

intensity examples with Poisson(1) subordinators given in Subsection 6.7.3.2 and 6.7.3.3, we get

a slightly lower convergence rate of approximately 0.55 for the standard FEM approach. This

holds for both approximation methods of the Poisson subordinators. Hence, we see that the

way how the Poisson subordinators are simulated seems to have no effect on the convergence

rate.

6.7.3.5 Poisson subordination of a GRF with short correlation length: high intensity
and mixed boundary conditions

In our construction of the jump-diffusion coefficient, the jumps are generated by the subordi-

nated GRF. To be precise, the number of spatial jumps is determined by the subordinators and
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the jump intensities (in terms of the differences in height between the jumps) are essentially

determined by the GRF W2. This fact allows to control the jump intensities of the diffusion

coefficient by the correlation parameter of the underlying GRFW2. In the following experiment

we want to investigate the influence of the jump intensities of the diffusion coefficient on the

convergence rates.

In Subsection 6.7.3.4 we subordinated a Matérn-1.5-GRF with pointwise standard deviation

σ2
2 = 0.32 and a correlation length of r2 = 0.5. In the following experiment we set the

standard deviation of the GRF W2 to σ2
2 = 0.52 and the correlation length to r2 = 0.1 and

leave all the other parameters unchanged. Figure 6.9 compares the resulting GRF with the field

W2 with parameters σ2
2 = 0.32 and r2 = 0.5 which we used in Subsection 6.7.3.4.

Figure 6.9: Samples of a Matérn-1.5-GRF with σ2
2 = 0.32, r2 = 0.5 (top) and with parameters

σ2
2 = 0.52, r2 = 0.1 (bottom).

Subordinating the GRF with small correlation length (bottom plots in Figure 6.9) result in

higher jump intensities in the diffusion coefficient as the subordination of the GRF with higher

correlation length (top plots in Figure 6.9). Figure 6.10 shows samples of the diffusion coefficient

and the corresponding PDE solutions where the parameters ofW2 are σ2
2 = 0.52 and r2 = 0.1.

As expected, the resulting jump coefficient shows jumps with a higher intensity compared to

the jump coefficient in the previous experiment where we used the GRF W2 with parameters
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Figure 6.10: Different samples of the diffusion coefficient with Poisson(5) subordinators and the
corresponding PDE solutions with mixed Dirichlet-Neumann boundary conditions
and small correlation length r2 = 0.1 of the GRF W2.

σ2
2 = 0.32 and r2 = 0.5 (see Figure 6.7).

We estimate the strong error convergence rate using this high-intensity jump coefficient

using M = 200 samples and approximate the Poisson subordinators by the Uniform Method.

Figure 6.11: Convergence results for Poisson(5) subordinators using the Uniform Method with
mixed Dirichlet-Neumann boundary conditions and GRF parameters σ2

2 = 0.52

and r2 = 0.1.

Figure 6.11 shows that for the GRFW2 with small correlation length the convergence rates are

reduced for both approaches: the standard FEM approach and the sample-adapted version. We

cannot preserve full order convergence in the sample-adapted FEM but observe a convergence

rate of approximately 0.75. In the non-adapted approach we obtain a convergence rate of

approximately 0.45. Looking at the error-to-(averaged)DOF-plot on the right hand side of

Figure 6.11 we see that still the sample-adapted approach is by a large margin more efficient

in terms of computational effort. This experiment confirms our expectations since the FEM

convergence rate has been shown to be strongly influenced by the regularity of the jump-

diffusion coefficient (see e.g. [16] and [105]).
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6.7.4 Gamma subordinators

In order to also consider Lévy subordinators with infinite activity we take Gamma processes to

subordinate the GRF in the remaining numerical examples. We set the standard deviation of

the GRF W1 to be σ2
1 = 1.52 and we choose σ2

2 = 0.32 and r2 = 1 for the Matérn-1.5-GRF

W2 and leave the other parameters unchanged.

For aG, bG > 0, a Gamma(aG, bG)-distributed random variable admits the density function

x 7→ baGG
Γ(aG)

xaG−1 exp(−xbG), for x > 0,

where Γ(·) denotes the Gamma function. A Gamma process (l(t), t ≥ 0) has independent

Gamma distributed increments. Being precise, l(t) − l(s) ∼ Gamma(aG · (t − s), bG) for

0 < s < t (see [109, Chapter 8]). The following lemma is essential to approximate the Gamma

processes.

Lemma 6.7.2.

Let Z be a Gamma(aG, bG) distributed random variable for positive parameters aG, bG > 0. It
holds

E(Zn) = b−n
G

Γ(aG + n)

Γ(aG)
,

for all n ∈ N0.

Proof. We calculate

E(Zn) =
baGG

Γ(aG)

∫ ∞

0

xn+aG−1 exp(−xbG)dx

=
baGG

Γ(aG)

Γ(aG + n)

baG+n
G

∫ ∞

0

baG+n
G

Γ(aG + n)
xn+aG−1 exp(−xbG)dx

= b−n
G

Γ(aG + n)

Γ(aG)
,

where we used that the integral over the Gamma density equals one in the last step. □

In our numerical experiments we choose lj to be a Gamma(4, 10) process for j = 1, 2. Since

increments of a Gamma process are Gamma-distributed random variables it is straightforward

to generate values of a Gamma process on grid points (xi)
Nl
i=0 ⊂ [0, 1] with |xi+1 − xi| ≤ εl
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for i = 0, . . . , Nl − 1. We then use the piecewise constant extension of the simulated values

{lj(xi), i = 0, . . . , Nl − 1, j = 1, 2} to approximate the Lévy subordinators:

l(εl)j (x) =

lj(xi) x ∈ [xi, xi+1) for i = 0, . . . , Nl − 1,

lj(xNl−1) x = 1.

for j = 1, 2. Note that in this case Assumption 6.4.2 v is fulfilled for any fixed η < +∞. To

see that we consider a fixed s ∈ N with s ≤ η and calculate for an arbitrary x ∈ [0, 1) with

x ∈ [xi, xi+1):

E(|lj(x)− l(εl)j (x)|s) ≤ E(|lj(xi+1)− lj(xi)|s)
≤ E(|lj(εl)|s)

= b−s
G

Γ(aGεl + s)

Γ(aGεl)

= b−s
G

s−1∏
i=1

(aGεl + i)aGεl

≤ Clεl.

Figure 6.12 shows samples of the jump-diffusion coefficient with Gamma(4, 10) subordinators

and corresponding FE solution where we used mixed Dirichlet-Neumann boundary conditions.

Figure 6.12: Different samples of the diffusion coefficient with Gamma(4, 10) subordinators
and the corresponding PDE solutions with mixed Dirichlet-Neumann boundary
conditions.

We set the diffusion cut-off to K = 2 since in this case we obtain

P( sup
t∈[0,1]

lj(t) ≥ 2) = P(lj(1) ≥ 2) ≈ 3.2042e−06,

for j = 1, 2. The use of infinite-activity Gamma subordinators in the diffusion coefficient does

not allow anymore for a sample-adapted approach to solve the PDE problem. Hence, we only

use the standard FEM approach to solve the PDE samplewise and estimate the strong error
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convergence. We useM = 200 samples to estimate the strong error on the levels ℓ = 1, . . . , 5

where we set the non-adaptive FEM solution u7,εW ,εl on levelL = 7 to be the reference solution.

We choose the FEM discretization steps to be hℓ = 0.4 · 2−(ℓ−1) for ℓ = 1, . . . , 7.

Figure 6.13: Convergence results for Gamma(4, 10) subordinators with mixed Dirichlet-
Neumann boundary conditions.

Figure 6.13 shows a convergence rate of approximately 0.8 for the standard-FEM approach.

Since we do not treat the discontinuities in a special way we cannot expect full order convergence.

In fact, the given convergence is comparably good since in general we cannot prove a higher

convergence order than 0.5 for the standard deterministic FEM approach without special

treatment of the discontinuities (see [10] and [16]). The convergence rate of approximately 0.8

in this example is based on the comparatively large correlation length of the underlying GRF

W2 (see 6.7.3.5).

In Subsection 6.7.3.5 we investigated the effect of a rougher diffusion coefficient on the

convergence rate for Poisson(5) subordinators. In the following experiment we follow a similar

strategy and use a shorter correlation length in the GRF W2 which is subordinated by Gamma

processes. Therefore, we choose the parameters of the Matérn-1.5-GRF W2 to be σ2
2 = 0.32

and r2 = 0.05. Figure 6.14 shows a comparison of the resulting GRFs W2 with the different

correlation lengths.

In Figure 6.15, the GRF with small correlation length results in higher jumps of the diffusion

coefficient and stronger deformations of the corresponding PDE solution compared to the

previous example (see Figure 6.12).
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Figure 6.14: Samples of a Matérn-1.5-GRF with correlation length r2 = 1 (top) and with corre-
lation length r2 = 0.05 (bottom).

Figure 6.15: Different samples of the diffusion coefficient with Gamma(4, 10) subordinators

and the corresponding PDE solutions with mixed Dirichlet-Neumann boundary

conditions where the correlation length of W2 is r2 = 0.05.

We estimate the strong error taking M = 200 samples where we use the non-adapted FEM

solution u9,εW ,εl on level L = 9 as reference solution and choose the FEM discretization steps

to be hℓ = 0.1 · 1.5−(ℓ−1) for ℓ = 1, . . . , 9. Figure 6.16 shows the convergence on the levels

ℓ = 1, . . . , 6.

We observe a convergence rate of approximately 0.45 which is significantly smaller than

the rate of approximately 0.8 we obtained in the example where we used a GRF W2 with
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Figure 6.16: Convergence results for Gamma(4, 10) subordinators with mixed Dirichlet-
Neumann boundary conditions where the correlation length of W2 is r2 = 0.05.

correlation length r2 = 1 (see Figure 6.13). This again confirms that, for subordinated GRFs,

the convergence rate of the FE method is highly dependent on the correlation length of the

underlying GRF W2 and the resulting jump-intensity of the diffusion coefficient.

6.8 Appendix: Proof of Theorem 6.5.5

Theorem 6.8.1 (Theorem 6.5.5).

For any δ > 0 and any n ∈ (1,+∞) there exists a constant A = A(δ, n) > 0 such that

E(ess sup
x∈D

|aK(x)− aK,A(x)|n)1/n < δ.

Proof. Step 1: Tail estimation for the coefficient
By Assumption 6.4.2 ii, the functions Φ1,Φ2 from Definition 6.3.4 fulfill

|Φ′
1(x)| ≤ ϕ exp(ψ|x|), |Φ2(x)− Φ2(y)| ≤ Clip|x− y|,

for x, y ∈ R. By the mean value theorem, for any x ∈ R there exists a real number ξ ∈ R
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with |ξ| ≤ |x| such that it holds

|Φ1(x)| ≤ C(1 + |x|Φ′
1(ξ)) ≤ C(1 + |x|ϕ exp(ψ|ξ|))

≤ C(1 + |x|ϕ exp(ψ|x|)) ≤ ϕ̃ exp(ψ̃|x|), (6.28)

for positive constants ϕ̃ and ψ̃ which are independent of x ∈ R.

Since the GRFs W1 and W2 are P-a.s. bounded on D resp. on [0, K]2 it follows from [3,

Theorem 2.1.1] that µ1 := E( sup
(x,y)∈D

W1(x, y)) < +∞ and

P(∥W1∥L∞(D) > m) ≤ 2P( sup
(x,y)∈D

W1(x, y) > m) ≤ 2 exp
(
− (m− µ1)

2

2σ2
D

)
, (6.29)

for m > µ1 with a finite constant σ2
D defined by

σ2
D := sup

(x,y)∈D
E(W1(x, y)

2) =
∞∑
i=1

λ(1)
i e

(1)
i (x, y)2 ≤ C2

e

∞∑
i=1

λ(1)
i < +∞,

by Assumption 6.4.2 i. For a given ε ∈ (0, 1) we choose the real number A such that it holds

A > 3 ϕ̃ exp
(
ψ̃(
√
2σ2

D| ln(ε/2)|+ µ1)
)
. (6.30)

With this choice we obtain the bound

P( sup
(x,y)∈D

Φ1(W1(x, y)) > A/3) ≤ ε. (6.31)

This can be seen by the following calculation

P( sup
(x,y)∈D

Φ1(W1(x, y)) > A/3) ≤ P( sup
(x,y)∈D

ϕ̃ exp(ψ̃|W1(x, y)|) > A/3)

= P(∥W1∥L∞(D) > 1/ψ̃ ln(A/(3ϕ̃)))

≤ 2 exp
(
− (1/ψ̃ ln(A/(3ϕ̃))− µ1)

2

2σ2
D

)
≤ ε,

where we used (6.28) in the first step, the estimate (6.29) in the third step and condition (6.30)

in the last step.

Subordinated Fields and Random Elliptic Partial Differential Equations



6.8 Appendix: Proof of Theorem 6.5.5 131

Obviously, an estimation as in Equation (6.29) holds for the GRF W2:

P(∥W2∥L∞([0,K]2) > m) ≤ 2P( sup
(x,y)∈[0,K]2

W2(x, y) > m)

≤ 2 exp
(
− (m− µ2)

2

2σ2
K

)
, (6.32)

for m > µ2 with µ2 := E( sup
(x,y)∈[0,K]2

W2(x, y)) < +∞ and

σ2
K := sup

(x,y)∈[0,K]2
E(W2(x, y)

2) =
∞∑
i=1

λ(2)
i e

(2)
i (x, y)2 ≤ C2

e

∞∑
i=1

λ(2)
i < +∞.

By the Lipschitz continuity of Φ2 we conclude the existence of a constant ϕ2 > 0 such that

|Φ2(x)| ≤ ϕ2(1 + |x|), (6.33)

for x ∈ R. If we again fix a positive ε ∈ (0, 1) and choose the real number A such that

A > 3ϕ2

(√
2σ2

K| ln(ε/2)|+ µ2 + 1),

we obtain the following bound

P( sup
(x,y)∈[0,K]2

Φ2(W2(x, y)) > A/3) ≤ ε. (6.34)

This can be seen by the following calculation:

P( sup
(x,y)∈[0,K]2

Φ2(W2(x, y)) > A/3) ≤ P(ϕ2(1 + ∥W2∥L∞([0,K]2)) > A/3)

≤ P(∥W2∥L∞([0,K]2) > A/(3ϕ2)− 1)

≤ 2 exp
(
− (A/(3ϕ2)− 1− µ2)

2

2σ2
K

)
≤ ε.

Step 2: Finite moments of the coefficient
In this step we want to show that for any n ∈ [1,+∞) it holds

E(ess sup
x∈D

|aK(x)|n) =: CaK(n,K,D) < +∞. (6.35)
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We use the definition of the coefficient aK in (6.9) and Hölder’s inequality to calculate

E(ess sup
x∈D

|aK(x)|n)

≤ E(|a+ + sup
(x,y)∈D

Φ1(W1(x, y)) + sup
(x,y)∈[0,K]2

Φ2(W2(x, y))|n)

≤ 3
n−1
n

(
an+ + E( sup

(x,y)∈D
Φ1(W1(x, y))

n) + E( sup
(x,y)∈[0,K]2

Φ2(W2(x, y))
n)
)

= 3
n−1
n (an+ + I1 + I2).

Therefore, it remains to show that it holds I1, I2 < +∞.

By Fubini’s theorem, for every nonnegative random variable X it holds

E(X) =

∫
Ω

X dP =

∫
Ω

∫ ∞

0

1{X≥c}dc dP =

∫ ∞

0

P(X ≥ c)dc

if the right hand side exists. We use this fact and Equation (6.28) to estimate for I1:

I1 ≤ ϕ̃nE(exp(ψ̃n∥W1∥L∞(D))

= ϕ̃n

∫ ∞

0

P(exp(ψ̃n∥W1∥L∞(D)) > c)dc

= ϕ̃n

∫ ∞

0

P(∥W1∥L∞(D) > ln(c)/(ψ̃n))dc

= ϕ̃nψ̃n

∫ +∞

−∞
exp(ψ̃nc)P(∥W1∥L∞(D) > c)dc

≤ ϕ̃nψ̃n
( 1

ψ̃n
+ µ1 exp(ψ̃nµ1) +

∫ ∞

µ1

2 exp(ψ̃nc− (c− µ1)
2

2σ2
D

)dc
)
< +∞,

where we split the integral and used Equation (6.29) in the last step. In a similar way, we use

Equation (6.33) to calculate for the second summand I2:

I2 ≤ ϕn
2E((1 + ∥W2∥L∞([0,K]2))

n)

= ϕn
2

∫ ∞

0

P((1 + ∥W2∥L∞([0,K]2))
n > c)dc

= ϕn
2

∫ ∞

0

P(∥W2∥L∞([0,K]2) > c
1
n − 1)dc

= ϕn
2n

∫ ∞

−1

(c+ 1)n−1P(∥W2∥L∞([0,K]2) > c)dc

≤ ϕn
2n
(
(µ2 + 1)n + 2

∫ ∞

µ2

(c+ 1)n−1 exp(−(c− µ2)
2

2σ2
K

)dc
)
< +∞,
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where we used Equation (6.32) in the last step. This proves Equation (6.35).

Step 3: Estimate for the approximation of the diffusion coefficient.
Now, let δ ∈ (0, 1) be arbitrary. Choose A = A(δ) > 0 such that

A > max
{
3a+, 3 ϕ̃ exp

(
ψ̃(
√
2σ2

D| ln(ε/2)|+ µ1)
)
, 3ϕ2

(√
2σ2

K| ln(ε/2)|+ µ2 + 1
)}

for ε := 1−
√
1− (δ2s/CaK(2s,K,D)).

We estimate using Hölder’s inequality:

E(ess sup
x∈D

|aK(x)− aK,A(x)|s) ≤ E(∥aK∥s
L∞(D)1{∥aK∥L∞(D))≥A})

≤ E(∥aK∥2s
L∞(D))

1
2P(ess sup

x∈D
|aK(x)| ≥ A)

1
2

= CaK(2s,K,D)
1
2P(ess sup

x∈D
|aK(x)| ≥ A)

1
2

For the second factor we estimate using the independence of W1 and W2

P(ess sup
x∈D

|aK(x)| ≥ A)

= 1− P(ess sup
x∈D

|aK(x)| ≤ A)

≤ 1− P(∥Φ1(W1)∥L∞(D) ≤ A/3) · P(∥Φ2(W2)∥L∞([0,K]2) ≤ A/3)

≤ 1− (1− P(∥Φ1(W1)∥L∞(D) ≥ A/3)) · (1− P(∥Φ2(W2)∥L∞([0,K]2) ≥ A/3))

≤ 1− (1− ε)2

≤ δ2s/CaK(2s,K,D),

where we used Equations (6.31) and (6.34) in the fourth step and therefore we obtain

E(ess sup
x∈D

|aK(x)− aK,A(x)|s)1/s ≤ δ.

□
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7.1 Introduction

Partial differential equations with random operators / data / domain are widely studied. For

problems with sparse data or where measurement errors are unavoidable, uncertainties may be

quantified using stochastic models. Methods to quantify uncertainty could be divided into two

different branches: intrusive and non-intrusive. The former requires solving a high dimensional

partial differential equation, where part of the dimensionality stems from the smoothness of

the random field or process (see among others [12], [55], [97] and the references therein). The

latter are (essentially) sampling methods and require repeated solutions of lower dimensional

problems (see, among others, [1], [14], [16], [110], [87], [112]). Among the sampling method the

multilevel Monte Carlo approach has been successfully established to lower the computational

complexity for various uncertain problems, to the point where (depending on the dimension) it

is asymptotically as costly as a single solve of the deterministic partial differential equation on

a fine discretization level (see [14], [16], [30] and [59]). In the cited papers mostly Gaussian

random fields were used as diffusivity coefficients in the elliptic equation. Gaussian random

fields are stochastically very well understood objects and they may be used in both approaches.

The distributions underlying the field are, however, Gaussian and therefore the model lacks

flexibility, in the sense that fields cannot have pointwise marginal distributions having heavy-

tails. Furthermore, Gaussian random fields with Matérn-type covariance operators have P-

almost surely spatial continuous paths. There are some extensions in the literature (see, for

example, [16], [87] and [49]).

In this paper we investigate multilevel Monte Carlo methods for an elliptic PDE where

the coefficient is given by a subordinated Gaussian random field. The subordinated Gaussian

random field is a type of a (discontinuous) Lévy field. Different subordinators display unique

patterns in the discontinuities and have varied marginal distributions (see [95]). Existence and

uniqueness of pathwise solutions to the problem was demonstrated in [96]. Spatial regularity

of the solution depends on the subordinated Gaussian random field which itself depends on

the subordinator. The discontinuities in the spatial domain pose additional difficulty in the

pathwise discretization. A sample-adapted approach was considered in [96], but is limited

to certain subordinators. Here we investigate not only the limitations of a sample-adapted

approach in multilevel sampling, but also a control variates ansatz as presented first in [101].

We structured the rest of the paper as follows: In Section 7.2 we introduce a general stochastic

elliptic equation and its weak solution under mild assumptions on the coefficient. These

assumptions accommodate the subordinated Gaussian random fields we introduce in Section 7.3.

In Section 7.4 we approximate the diffusion coefficient and state a convergence result of

the elliptic equation with the approximated coefficient to the unapproximated solution. In
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Section 7.5 we discuss spatial approximation methods, which are needed for the multilevel

Monte Carlo methods introduced in Section 7.6 and its control variates variant in Section 7.7.

Numerical examples are presented in the last section.

7.2 The stochastic elliptic problem

In this section, we briefly introduce the general stochastic elliptic boundary value problem

with random diffusion coefficient and define the corresponding weak solution. This provide

the theoretical framework for Section 7.4, where stochastic elliptic PDEs with a specific dis-
continuous random coefficient are considered. For more details on the existence, uniqueness

and measurability of the solution to the considered PDE, we refer the reader to [96] and [16].

For the rest of this paper we assume that a complete probability space (Ω,F ,P) is given.

Let (H, (·, ·)H) be a Hilbert space. A H-valued random variable is a measurable function

Z : Ω → H . The space Lp(Ω;H) contains all strongly measurable functions Z : Ω → H

with ∥Z∥Lp(Ω;H) <∞, for p ∈ [1,+∞], where the norm is defined by

∥Z∥Lp(Ω;H) :=


E(∥Z∥p

H)
1
p , if 1 ≤ p < +∞,

ess sup
ω∈Ω

∥Z∥H , if p = +∞.

For a H-valued random variable Z ∈ L1(Ω;H) we define the expectation by the Bochner

integral E(Z) :=
∫
Ω Z dP. Further, for a square-integrable, H-valued random variable Z ∈

L2(Ω;H), the variance is defined by Var(Z) := ∥Z − E(Z)∥2
L2(Ω;H). We refer to [35], [77],

[79] or [104] for more details on general probability theory and Hilbert space-valued random

variables.

7.2.1 Problem formulation

Let D ⊂ Rd, for d ∈ N, be a bounded, connected Lipschitz domain. We set H := L2(D) and

consider the elliptic PDE

−∇ · (a(ω, x)∇u(ω, x)) = f(ω, x) in Ω×D, (7.1)
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where we impose the following boundary conditions

u(ω, x) = 0 on Ω× Γ1, (7.2)

a(ω, x)−→n · ∇u(ω, x) = g(ω, x) on Ω× Γ2. (7.3)

Here, we split the domain boundary in two (d− 1)-dimensional manifolds Γ1, Γ2, i.e. ∂D =

Γ1

.
∪Γ2, where we assume that Γ1 is of positive measure and that the exterior normal derivative

−→n · ∇v on Γ2 is well-defined for every v ∈ C1(D). The mapping a : Ω × D → R is a

measurable, positive and stochastic (jump-diffusion) coefficient and f : Ω × D → R is a

measurable random source function. Further, −→n is the outward unit normal vector to Γ2 and

g : Ω × Γ2 → R a measurable function. Note that we just reduce the theoretical analysis

to the case of homogeneous Dirichlet boundary conditions on Γ1 to simplify notation. One

could also consider non-homogeneous Dirichlet boundary conditions, since such a problem

can always be considered as a version of (7.1) - (7.3) with modified source term and Neumann

data (see also [16, Remark 2.1]).

7.2.2 Weak solution

In this subsection, we introduce the pathwise weak solution of problem (7.1) - (7.3) following

[96]. We denote by H1(D) the Sobolev space on D equipped with the norm

∥v∥H1(D) =

(∫
D

|v(x)|2 + |∇v(x)|22dx
) 1

2

, for v ∈ H1(D),

with the Euclidean norm |x|2 := (
∑d

i=1 x
2
i )

1
2 , for x ∈ Rd (see for example [50, Section 5.2] for

an introduction to Sobolev spaces). We denote byT the trace operatorT : H1(D) → H
1
2 (∂D)

where Tv = v|∂D for v ∈ C∞(D) (see [41]) and we introduce the solution space V ⊂ H1(D)

by

V := {v ∈ H1(D) | Tv|Γ1
= 0},

where we take over the standard Sobolev norm, i.e. ∥ · ∥V := ∥ · ∥H1(D). We identify H with

its dual space H ′ and work on the Gelfand triplet V ⊂ H ≃ H ′ ⊂ V ′.

We multiply Equation (7.1) by a test function v ∈ V and integrate by parts (see e.g. [113,

Section 6.3]) to obtain the following pathwise weak formulation of the problem: For P-almost
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all ω ∈ Ω, given f(ω, ·) ∈ V ′ and g(ω, ·) ∈ H− 1
2 (Γ2), find u(ω, ·) ∈ V such that

Ba(ω)(u(ω, ·), v) = Fω(v) (7.4)

for all v ∈ V . The function u(ω, ·) is then called pathwise weak solution to problem (7.1) -

(7.3). The bilinear form Ba(ω) and the operator Fω are defined by

Ba(ω)(u, v) :=

∫
D
a(ω, x)∇u(x) · ∇v(x)dx, and

Fω(v) :=

∫
D
f(ω, x)v(x)dx+

∫
Γ2

g(ω, x)[Tv](x)dx,

for u, v ∈ V and fixed ω ∈ Ω, where the integrals in Fω are understood as the duality pairings:∫
D
f(ω, x)v(x)dx = V ′⟨f(ω, ·), v⟩V and∫

Γ2

g(ω, x)[Tv](x)dx =
H− 1

2 (Γ2)
⟨g(ω, ·), T v⟩

H
1
2 (Γ2)

.

7.3 Subordinated Gaussian random fields

In [95], the authors proposed a new subordination approach to construct discontinuous Lévy-

type random fields: the subordinated Gaussian random field. Motivated by the subordinated

Brownian motion, the subordinated Gaussian Random field is constructed by replacing the

spatial variables of a Gaussian random field (GRF) W on a general d-dimensional domain

D ⊂ Rd by d independent Lévy subordinators (see [95], [109], [8]). For d = 2, the detailed

construction is as follows: For two positive horizons T1, T2 < +∞, we define the domain

D = [0, T1] × [0, T2]. We consider a GRF W = (W (x, y), (x, y) ∈ R2
+) with P-a.s.

continuous paths and assume two independent Lévy subordinators l1 = (l1(x), x ∈ [0, T1])

and l2 = (l2(y), y ∈ [0, T2]) are given (see [95] and [8]). The subordinated GRF is then

defined by

L(x, y) = W (l1(x), l2(y)), for (x, y) ∈ [0, T1]× [0, T2]. (7.5)

The corresponding random field L = (L(x, y), (x, y) ∈ [0, T1],×[0, T2]) is in general

discontinuous on the spatial domain D.

Figure 7.1 demonstrates how the subordinators l1 and l2 create discontinuities in the subordi-
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Figure 7.1: Sample of a Matérn-1.5-GRF (left) and a corresponding Poisson-subordinated GRF
(middle) and Gamma-subordinated GRF (right).

nated GRF. In the presented samples, the underlying GRF is a Matérn-1.5 GRF. We recall that,

for a given smoothness parameter νM > 1/2, correlation parameter rM > 0 and variance

σ2
M > 0, the Matérn-νM covariance function on Rd

+×Rd
+ is given by qM(x, y) = ρM(|x−y|2),

for (x, y) ∈ Rd
+ × Rd

+, with

ρM(s) = σ2
M

21−νM

Γ(νM)

(2s√νM
rM

)νM
KνM

(2s√νM
rM

)
, for s ≥ 0,

where Γ(·) is the Gamma function andKν(·) is the modified Bessel function of the second kind

(see [63, Section 2.2 and Proposition 1]). A Matérn-νM GRF is a centered GRF with covariance

function qM . It has been shown in [95] that the subordinated GRF constructed in (7.5) is

separately measurable. Further, the corresponding random fields display great distributional

flexibility, allow for a Lévy-Khinchin-type formula and formulas for their covariance functions

can be derived which makes them attractive for applications. We refer the interested reader to

[95] for a theoretical investigation of the constructed random fields.

7.4 The subordinated GRF in the elliptic model equation

In this section we incorporate the subordinated GRF in the diffusion coefficient of the elliptic

PDE (7.1) - (7.3). Further, we show how to approximate the diffusion coefficient and state the

most important results on the approximation of the corresponding PDE solution following [96].

For the proofs and a more detailed study of subordinated GRFs in the elliptic model equation

we refer the reader to [96].
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7.4.1 Subordinated GRFs in the diffusion coefficient

It follows from the Lévy-Itô decomposition that any Lévy process on a one-dimensional (time)

domain can be additively decomposed into a deterministic drift part, a continuous noise part

and a pure-jump process (see [8, Section 2.4]). Motivated by this, we construct the diffusion

coefficient a in the elliptic PDE as follows (cf. [96, Definition 3.4]).

Definition 7.4.1.

We consider the domain D = (0, D)2 with D < +∞2. We define the jump-diffusion coefficient
a in problem (7.1) - (7.3) with d = 2 as

a : Ω×D → (0,+∞),

(ω, x, y) 7→ a(x, y) + Φ1(W1(x, y)) + Φ2(W2(l1(x), l2(y))), (7.6)

where

• a : D → (0,+∞) is deterministic, continuous and there exist constants a+, a− > 0 with
a− ≤ a(x, y) ≤ a+ for (x, y) ∈ D.

• Φ1, Φ2 : R → [0,+∞) are continuous .

• W1 and W2 are zero-mean GRFs on D respectively on [0,+∞)2 with P-a.s. continuous
paths.

• l1 and l2 are Lévy subordinators on [0, D].

It follows by a pathwise application of the Lax-Milgram lemma that the elliptic model problem

(7.1) - (7.3) with the diffusion coefficient constructed in Definition 7.4.1 has a unique pathwise

weak solution. For a proof we refer to [96, Theorem 3.7].

Theorem 7.4.2.

Let a be as in Definition 7.4.1 and let f ∈ Lq(Ω;H), g ∈ Lq(Ω;L2(Γ2)) for some q ∈ [1,+∞).
Then there exists a unique pathwise weak solution u(ω, ·) ∈ V to problem (7.1) - (7.3) for P-almost

2For simplicity we chose a square domain, rectangular ones may be considered in the same way.
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every ω ∈ Ω. Furthermore, u ∈ Lr(Ω;V ) for all r ∈ [1, q) and

∥u∥Lr(Ω;V ) ≤ C(a−,D)(∥f∥Lq(Ω;H) + ∥g∥Lq(Ω;L2(Γ2))),

where C(a−,D) > 0 is a constant depending only on the indicated parameters.

7.4.2 Problem modification

Theorem 7.4.2 guarantees the existence of a unique solution u to problem (7.1) - (7.3) for the

specific diffusion coefficient a constructed in Definition 7.4.1. However, accessing this pathwise

weak solution numerically is a different matter. Here, we face several challenges: The first

difficulty is related to the domain on which the GRF W2 is defined. The Lévy subordinators

l1 and l2 can in general attain any value in [0,+∞). Hence, it is necessary to consider the

GRF W2 on the unbounded domain [0,+∞)2. However, most regularity and approximation

results on GRFs are formulated for the case of a parameter space which is at least bounded

and cannot easily be extended to unbounded domains (see e.g. [3, Chapter 1]). Therefore, we

modify the diffusion coefficient a from Definition 7.4.1 and cut the Lévy subordinators at a

deterministic threshold K > 0 depending on the choice of the subordinator. The resulting

problem then coincides with the original problem up to a set of samples, whose probability can

be made arbitrary small (see [96, Remark 4.1]). Furthermore, we have to bound the diffusion

coefficient itself by a deterministic upper bound A in order to show the convergence of the

solution (see [96, Section 5] for details). Therefore, we also cut the diffusion coefficient at a

deterministic level A > 0. It can be shown that this induces an additional error in the solution

approximation which can be controlled and vanishes for growing threshold A (see [96, Section

5.1, esp. Theorem 5.4 and Theorem 5.5]). The two described modifications of the original

problem (7.1) - (7.3) are formalized in this subsection.

We define the cut function χK(z) := min(z,K), for z ∈ [0,+∞), with a positive number

K > 0. Further, for fixed numbers K,A > 0, we consider the following problem

−∇ · (aK,A(ω, x)∇uK,A(ω, x)) = f(ω, x) in Ω×D, (7.7)

where we impose the boundary conditions

uK,A(ω, x) = 0 on Ω× Γ1, (7.8)

aK,A(ω, x)
−→n · ∇uK,A(ω, x) = g(ω, x) on Ω× Γ. (7.9)
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The diffusion coefficient aK,A is defined by 3

aK,A : Ω×D → (0,+∞),

(ω, x, y) 7→ χA

(
a(x, y) + Φ1(W1(x, y)) + Φ2(W2(χK(l1(x)), χK(l2(y))))

)
, (7.10)

where we assume that the functions a, Φ1, Φ2, the GRFsW1,W2 and the Lévy subordinators l1,

l2 are as described in Definition 7.4.1. Again, Theorem 7.4.2 applies in this case and yields the

existence of a pathwise weak solution uK,A ∈ Lr(Ω;V ), for r ∈ [1, q), if f ∈ Lq(Ω;H) and

g ∈ Lq(Ω;L2(Γ2)). In [96], the authors investigated in detail how this modification affects

the solution u of the original problem and how the resulting error can be controlled by the

choice of the deterministic thresholds K and A. Therefore, from now on we decide to consider

problem (7.7) - (7.10) for a fixed choice ofK andA and focus on the approximation of the GRFs

W1,W2 and the Lévy subordinators l1, l2 in the following. We come back on the choice of K

and A in specific situations in Section 7.8.

7.4.3 Approximation of the GRFs and the Lévy subordinators and
convergence of the approximated solution

In order to approximate the random solution uK,A of problem (7.7) - (7.10) we have to generate

samples from the GRFs W1, W2 and the Lévy subordinators l1, l2 to obtain samples of the

diffusion coefficient aK,A defined in Equation (7.10). However, the GRFs W1, W2 and the

Lévy subordinators l1, l2 may in general not be simulated exactly and, hence, appropriate

approximations have to be used. Therefore, we have to impose some additional assumptions on

the GRFs and the Lévy subordinators. We summarize our working assumptions in the following

(cf. [96, Assumption 4.2]).

Assumption 7.4.3.

Let W1 be a zero-mean GRF on [0, D]2 and W2 be a zero-mean GRF on [0, K]2. We denote by
q1 : [0, D]2 × [0, D]2 → R and q2 : [0, K]2 × [0, K]2 → R the covariance functions of these
random fields and by Q1, Q2 the associated covariance operators defined by

Qjϕ =

∫
[0,zj ]2

qj((x, y), (x
′, y′))ϕ(x′, y′)d(x′, y′),

3We assume one fixed K for all spatial dimensions to keep notation simple. However, the results presented in
the subsequent sections also hold for individual values in each spatial dimension.
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for ϕ ∈ L2([0, zj]
2) with z = (D,K) and j = 1, 2. We denote by (λ(1)

i , e
(1)
i , i ∈ N) resp.

(λ(2)
i , e

(2)
i , i ∈ N) the eigenpairs associated to the covariance operators Q1 and Q2. In particular,

(e(1)i , i ∈ N) resp. (e(2)i , i ∈ N) are orthonormal bases of L2([0, D]2) resp. L2([0, K]2).

i We assume that the eigenfunctions are continuously differentiable and there exist positive
constants α, β, Ce, Cλ > 0 such that for any i ∈ N it holds

∥e(1)i ∥L∞([0,D]2), ∥e(2)i ∥L∞([0,K]2) ≤ Ce,

∥∇e(1)i ∥L∞([0,D]2), ∥∇e(2)i ∥L∞([0,K]2) ≤ Cei
α,

∞∑
i=1

(λ(1)
i + λ(2)

i )iβ ≤ Cλ < +∞.

ii There exist constants ϕ, ψ, Clip > 0 such that the continuous functions Φ1, Φ2 : R →
[0,+∞) from Definition 7.4.1 satisfy

|Φ′
1(x)| ≤ ϕ exp(ψ|x|), |Φ2(x)− Φ2(y)| ≤ Clip |x− y| for x, y ∈ R.

In particular, Φ1 ∈ C1(R).

iii f ∈ Lq(Ω;H) and g ∈ Lq(Ω;L2(Γ2)) for some q ∈ (1,+∞).

iv l1 and l2 are Lévy subordinators on [0, D] which are independent of the GRFs W1 and W2.
Further, we assume that we have approximations l(εl)1 , l(εl)2 of these processes and there exist
constants Cl > 0 and η > 1 such that for every s ∈ [1, η) it holds

E(|lj(x)− l(εl)j (x)|s) ≤ Clεl,

for εl > 0, x ∈ [0, D] and j = 1, 2.

The first assumption on the eigenpairs of the GRFs is natural (see [16] and [63]). Assump-

tion 7.4.3 ii is necessary to be able to quantify the error of the approximation of the diffusion

coefficient and Assumption 7.4.3 iii guarantees the existence of a solution. The last assumption

ensures that we can approximate the Lévy subordinators with a controllable Ls-error. Here,

the parameter εl may be interpreted as the maximum stepsize of the grid on [0, D] on which

the piecewise constant approximation l(εl)j of the Lévy process lj is defined (see Section 7.8).

The prescribed error bound may then always be achieved under appropriate assumptions on
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the tails of the distribution of the Lévy subordinators, see [15, Assumption 3.6, Assumption 3.7

and Theorem 3.21].

For technical reasons we have to work under the following assumption on the integrability

of the gradient of the solution ∇uK,A of problem (7.7) - (7.10) (cf. [96, Assumption 5.7]). This

assumption is necessary to prove convergence of the approximation to the solution uK,A in

Theorem 7.4.5. Its origin lies in the fact that we cannot approximate the Lévy subordinators in

an Ls(Ω;L∞([0, D]))-sense due to the discontinuities. To showcase this consider a Poisson

process with constant jump size 1 (cf. [109, Section 5.3.1]): for almost every path, a piecewise

constant approximation of the process on an equidistant grid leads to a pathwise error of at

least 1 measured in the L∞([0, D])-norm. Note that the approximation property given by

Assumption 7.4.3 (iv) is weaker than an approximation in the Ls(Ω;L∞([0, D]))-norm.

Assumption 7.4.4.

We assume that there exist constants jreg > 0 and kreg ≥ 2 such that

Creg := E(∥∇uK,A∥kreg

L2+jreg (D)
) < +∞.

There are several results on higher integrability of the gradient of the solution to an elliptic

PDE of the form (7.7) - (7.10) which guarantee the condition of Assumption 7.4.4. We refer to

[96, Section 5.2] and especially Remark 5.8 and Remark 5.9 therein for more details.

We now turn to the final approximation of the diffusion coefficient using approximations

W (εW )
1 ≈ W1, W

(εW )
2 ≈ W2 of the GRFs and l(εl)1 ≈ l1, l

(εl)
2 ≈ l2 of the Lévy subordinators

(see Assumption 7.4.3): We consider discrete grids G(εW )
1 = {(xi, xj)| i, j = 0, . . . ,M (1)

εW
} on

[0, D]2 and G(εW )
2 = {(yi, yj)| i, j = 0, . . . ,M (2)

εW
} on [0, K]2 where (xi, i = 0, . . . ,M (1)

εW
)

is an equidistant grid on [0, D] with maximum step size εW and (yi, i = 0, ...,M (2)
εW
) is

an equidistant grid on [0, K] with maximum step size εW . Further, let W (εW )
1 and W (εW )

2

be approximations of the GRFs W1, W2 on the discrete grids G(εW )
1 resp. G(εW )

2 which are

constructed by point evaluation of the random fields W1 and W2 on the grid points and linear

interpolation between the them. Such an approximation may be obtained, for example, by the

circulant embedding method (cf. [64] and [65]).

We approximate the diffusion coefficient aK,A from Equation (7.10) by
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a(εW ,εl)
K,A : Ω×D → (0,+∞) with

a(εW ,εl)
K,A (x, y)

= χA

(
a(x, y) + Φ1(W

(εW )
1 (x, y)) + Φ2(W

(εW )
2 (χK(l

(εl)
1 (x)), χK(l

(εl)
2 (y))))

)
(7.11)

for (x, y) ∈ D. Further, we denote by u(εW ,εl)
K,A ∈ Lr(Ω;V ), with r ∈ [1, q), the weak solution

to the corresponding elliptic problem

−∇ · (a(εW ,εl)
K,A (ω, x)∇u(εW ,εl)

K,A (ω, x)) = f(ω, x) in Ω×D, (7.12)

with boundary conditions

u(εW ,εl)
K,A (ω, x) = 0 on Ω× Γ1, (7.13)

a(εW ,εl)
K,A (ω, x)−→n · ∇u(εW ,εl)

K,A (ω, x) = g(ω, x) on Ω× Γ2. (7.14)

Note that Theorem 7.4.2 also applies to the elliptic problem with coefficient a(εW ,εl)
K,A . We are

now able to state the most important result on the convergence of the approximated solution

u(εW ,εl)
K,A to uK,A. For a proof we refer the reader to [96, Theorem 5.11].

Theorem 7.4.5.

Assume q > 2 in Assumption 7.4.3. Let r ∈ [2, q) and b, c ∈ [1,+∞] be given such that it holds

rcγ ≥ 2 and 2b ≤ rc < η

with a fixed real number γ ∈ (0,min(1, β/(2α)). Here, the parameters η, α and β are deter-
mined by the GRFs W1, W2 and the Lévy subordinators l1, l2 (see Assumption 7.4.3).

Let m,n ∈ [1,+∞] be real numbers such that

1

m
+

1

c
=

1

n
+

1

b
= 1,

and let kreg ≥ 2 and jreg > 0 be the regularity specifiers given by Assumption 7.4.4. If it holds
that

n < 1 +
jreg
2

and rm < kreg,

then the approximated solution u(εW ,εl)
K,A converges to the solution uK,A of the truncated problem

Subordinated Fields and Random Elliptic Partial Differential Equations



7.5 Pathwise finite element approximation 147

for εW , εl → 0 and it holds

∥uK,A − u(εW ,εl)
K,A ∥Lr(Ω;V ) ≤ C(a−,D, r)Creg∥a(εW ,εl)

K,A − aK,A∥Lrc(Ω;L2b(D))

≤ CregC(a−,D, r)(εγW + ε
1
rc
l ).

This result is essential since it guarantees the convergence of the approximated solution

u(εW ,εl)
K,A to the solution uK,A with a controllable upper bound on the error. Further, the error

estimate given by Theorem 7.4.5 will be used in the error equilibration for the MLMC esti-

mator in Section 7.6. It allows to balance the errors resulting from the approximation of the

diffusion coefficient and the finite element (FE) error resulting from the pathwise numerical

approximation of the PDE solution.

7.5 Pathwise finite element approximation

In this section, we describe the numerical method which is used to compute pathwise approxi-

mations of the solution to the considered elliptic PDE following [96, Section 6]. We use a FE

approach with standard triangulations and sample-adapted triangulations of the spatial domain,

which is described in the following.

7.5.1 The standard pathwise finite element approximation

We approximate the solution u to problem (7.1) - (7.3) with diffusion coefficient a given by

Equation (7.6) using a pathwise FE approximation of the solution u(εW ,εl)
K,A of problem (7.12) -

(7.14) with the approximated diffusion coefficient a(εW ,εl)
K,A given by (7.11). Therefore, for almost

all ω ∈ Ω, we aim to approximate the function u(εW ,εl)
K,A (ω, ·) ∈ V such that it holds

B
a
(εW ,εl)

K,A (ω)
(u(εW ,εl)

K,A (ω, ·), v) :=
∫
D
a(εW ,εl)
K,A (ω, x)∇u(εW ,εl)

K,A (ω, x) · ∇v(x)dx

=

∫
D
f(ω, x)v(x)dx+

∫
Γ2

g(ω, x)[Tv](x)dx =: Fω(v), (7.15)

for every v ∈ V with fixed approximation parameters K,A, εW , εl. We compute a numerical

approximation of the solution to this variational problem using a standard Galerkin approach
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with linear elements: assume V = (Vℓ, ℓ ∈ N0) is a sequence of finite-dimensional subspaces

Vℓ ⊂ V with increasing dim(Vℓ) = dℓ. Further, we denote by (hℓ, ℓ ∈ N0) the corresponding

refinement sizes which are assumed to converge monotonically to zero for ℓ→ ∞. Let ℓ ∈ N0

be fixed and denote by {v(ℓ)1 , . . . , v
(ℓ)
dℓ
} a basis of Vℓ. The (pathwise) discrete version of (7.15)

reads: Find u(εW ,εl)
K,A,ℓ (ω, ·) ∈ Vℓ such that

B
a
(εW ,εl)

K,A (ω)
(u(εW ,εl)

K,A,ℓ (ω, ·), v(ℓ)i ) = Fω(v
(ℓ)
i ) for all i = 1, . . . , dℓ.

Expanding the function u(εW ,εl)
K,A,ℓ (ω, ·) with respect to the basis {v(ℓ)1 , . . . , v

(ℓ)
dℓ
} yields the rep-

resentation

u(εW ,εl)
K,A,ℓ (ω, ·) =

dℓ∑
i=1

civ
(ℓ)
i ,

where the coefficient vector c = (c1, . . . , cdℓ)
T ∈ Rdℓ is determined by the linear equation

system

B(ω)c = F(ω),

with a stochastic stiffness matrix B(ω)i,j = B
a
(εW ,εl)

K,A (ω)
(v(ℓ)i , v

(ℓ)
j ) and load vector F(ω)i =

Fω(v
(ℓ)
i ) for i, j = 1, . . . , dℓ.

Let (Kℓ, ℓ ∈ N0) be a sequence of triangulations on D and denote by θℓ > 0 the minimum

interior angle of all triangles in Kℓ. We assume θℓ ≥ θ > 0 for a positive constant θ and

define the maximum diameter of the triangulation Kℓ by hℓ := max
K∈Kℓ

diam(K), for ℓ ∈ N0

as well as the finite dimensional subspaces by Vℓ := {v ∈ V | v|K ∈ P1, K ∈ Kℓ}, where

P1 denotes the space of all polynomials up to degree one. If we assume that for P-almost all

ω ∈ Ω it holds u(εW ,εl)
K,A (ω, ·) ∈ H1+κa(D) for some positive number κa > 0, and that there

exists a finite bound ∥u(εW ,εl)
K,A ∥L2(Ω;H1+κa (D)) ≤ Cu = Cu(K,A) for the fixed approximation

parameters K,A, we immediately obtain the following estimate using Céa’s lemma (see [16,

Section 4], [96, Section 6], [67, Chapter 8])

∥u(εW ,εl)
K,A − u(εW ,εl)

K,A,ℓ ∥L2(Ω;V ) ≤ Cθ,D
A

a−
Cuh

min(κa,1)
ℓ .

By construction of the subordinated GRF, we always obtain an interface geometry with fixed

angles and bounded jump height in the diffusion coefficient, which have great influence on

the solution regularity, see e.g. [105]. Note that, for general deterministic interface problems,
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one obtains a pathwise discretization error of order κa ∈ (1/2, 1) and in general one cannot

expect the full order of convergence κa = 1 without special treatment of the discontinuities of

the diffusion coefficient (see [10] and [16]). The convergence may be improved by the use of

sample-adapted triangulations.

7.5.2 Sample-adapted triangulations

In [16], the authors suggest sample-adapted triangulations to improve the convergence of the

FE approximation for elliptic jump-diffusion coefficients. This approach is also used in this

paper and the convergence of the corresponding FE method is compared to the performance

with the use of standard triangulations. The construction of the sample-adapted triangulations

is explained in the following. Consider a fixed ω ∈ Ω and assume that the discontinuities of

the diffusion coefficient are described by the partition T (ω) = (Ti, i = 1, . . . , τ(ω)) of the

domain D with τ(ω) ∈ N and Ti ⊂ D. Assume that Kℓ(ω) is a triangulation of D which is

adjusted to the partition T (ω) in the sense that for every i = 1, . . . , τ(ω) it holds

∂Ti ⊂
⋃

κ∈Kℓ(ω)

∂κ and ĥℓ(ω) := max
K∈Kℓ(ω)

diam(K) ≤ hℓ,

for all ℓ ∈ N0, where (hℓ, ℓ ∈ N0) is a deterministic, decreasing sequence of refinement thresh-

olds which converges to zero. We denote by V̂ℓ(ω) ⊂ V the corresponding finite-dimensional

subspaces with dimension d̂ℓ(ω) ∈ N. Figure 7.2 illustrates the adapted triangulation for a

sample of the diffusion coefficient where we used a Poisson(5)-subordinated Matérn-1.5-GRF.

0 0.5 1
0

0.5

1

Figure 7.2: Sample of the diffusion coefficient using a Poisson-subordinated Matérn-1.5-GRF
(left) with corresponding sample-adapted triangulation (right).
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The sample-adapted approach leads to an improved sample-wise convergence rate for the

elliptic PDE with discontinuous diffusion coefficient (see e.g. [16, Section 4.1]). This is particu-

larly true in the situation of jump-diffusion coefficients with polygonal jump geometry, which

is the case for the diffusion coefficients considered in this paper (see Figure 7.2, [16], [31], [96,

Sections 6 and 7]). However, one should also mention that the sample-adapted approach causes

additional computational costs since adapted meshes have to be constructed for each single

sample of the diffusion coefficient. This might inflate the computational costs especially in

situations of jump coefficients with many interfaces or jumps which are closely located to each

other (see also Section 7.7 and Subsection 7.8.3).

While mean squared convergence rates cannot be derived theoretically in our general setting

due to the stochastic regularity of the PDE solutions, in practice one at least recovers the

convergence rates of the deterministic jump-diffusion problem in the strong error, which also

has been investigated numerically in [96]. This observation, together with the comments in

the end of Subsection 7.5.1, motivate the following assumption for the remaining theoretical

analysis (see [96, Assumption 7.1]).

Assumption 7.5.1.

There exist deterministic constants Ĉu, Cu, κ̂a, κa > 0 such that for any εW , εl > 0 and any
ℓ ∈ N0, the FE approximation errors of û(εW ,εl)

K,A,ℓ ≈ u(εW ,εl)
K,A in the (sample-adapted) subspaces V̂ℓ,

respectively u(εW ,εl)
K,A,ℓ ≈ u(εW ,εl)

K,A in Vℓ, are bounded by

∥u(εW ,εl)
K,A − û(εW ,εl)

K,A,ℓ ∥L2(Ω;V ) ≤ ĈuE(ĥ2κ̂a

ℓ )1/2, respectively,

∥u(εW ,εl)
K,A − u(εW ,εl)

K,A,ℓ ∥L2(Ω;V ) ≤ Cuh
κa

ℓ ,

where the constants Ĉu, Cu may depend on a, f, g,K,A but are independent of ĥℓ, hℓ, κ̂a and
κa.

We remark that we expect 1 ≥ κ̂a ≥ κa > 0 in Assumption 7.5.1 due to the observations

given in the beginning of Subsection 7.5.2 (see also [96], [16] and Section 7.8).

Remark 7.5.2. Assumption 7.4.4 on the integrability of the solution gradient and Assumption
7.5.1 on the convergence rate of the FE method are presented independently. We point out that both
assumptions highly depend on the Sobolev regularity of the solution which dictates the integrability
of the solution gradient (see for example [96, Remark 5.8]) and controls the convergence rate of the
FE method (see for example [96, Remark 6.1]). Hence, both assumptions depend on the regularity
of the solution, which itself is related to the specific choice of diffusion coefficient and, therefore,
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depends on Assumption 7.4.3. To describe the relation of these three assumptions is not possible in
an explicit manner in the general stochastic setting considered, but one should keep in mind that
they are not independent from each other.

7.6 MLMC estimation of the solution

In this section we construct a multilevel Monte Carlo (MLMC) estimator for the expectation

E(uK,A) of the PDE solution and prove an a-priori bound for the approximation error. We start

with the introduction of a general singlelevel Monte Carlo (SLMC) estimation since the MLMC

estimator is an extension of this approach.

The next lemma follows by the definition of the inner product on the Sobolev space H1(D)

and will be useful in our theoretical investigations.

Lemma 7.6.1.

For independent, centered V -valued random variables Z1 and Z2 it holds

E((Z1, Z2)V ) = 0.

Proof. We use the definition of the inner product on V ⊂ H1(D) together with the

independence of Z1 and Z2 to calculate

E((Z1, Z2)V ) =

∫
D
E(∂xZ1)E(∂xZ2) + E(∂yZ1)E(∂yZ2) + E(Z1)E(Z2)d(x, y) = 0.

□

Let (u(i), i ∈ N) ⊂ L2(Ω;V ) be a sequence of i.i.d. random variables and M ∈ N a

fixed sample number. The singlelevel Monte Carlo estimator for the approximation of the mean

E(u(1)) is defined by

EM(u(1)) :=
1

M

M∑
i=1

u(i) ≈ E(u(1)),

and we have the following standard result (see also [14] and [16]).
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Lemma 7.6.2.

Let M ∈ N and (u(i), i ∈ N) ⊂ L2(Ω;V ) be a sequence of i.i.d. random variables. It holds

∥E(u(1))− EM(u(1))∥L2(Ω;V ) =

√
Var(u(1))

M
≤ ∥u(1)∥L2(Ω;V )√

M
and

∥EM(u(1))∥L2(Ω;V ) ≤ ∥u(1)∥L2(Ω;V ).

One major disadvantage of the SLMC estimator described above is the slow convergence of

the (statistical) error for increasing sample numbers M (see Lemma 7.6.2 and [57]). Multilevel

Monte Carlo (MLMC) uses multigrid concepts to reduce the computational complexity for

the estimation of the mean compared to the singlelevel approach. The idea is to compute

samples of FE approximations with different accuracy where one takes many samples of FE

approximations with lower accuracy (and lower computationally costs) and less samples of FE

approximations with higher accuracy (and higher computational cost), see also [57] and [59].

For fixed parametersK,A the goal is to approximate the value E(uK,A). For ease of notation,

we focus here on the sample-adapted discretization with the corresponding approximation

û(εW ,εl)
K,A,ℓ with average refinement parameter E(ĥ2κ̂a

ℓ )1/2 and convergence rate κ̂a in this section

(see Assumption 7.5.1). However, the reader should always keep in mind that all results also

hold in the case of standard triangulations where E(ĥ2κ̂a
ℓ )1/2 should be replaced by hκa

ℓ . We

remind that the approximation parameters εW > 0 and εl > 0 correspond to the stepsize of

the discrete grids on which the approximations W (εW )
j ≈ Wj of the GRFs and l(εl)j ≈ lj of the

Lévy subordinators are defined, for j = 1, 2 (see Subsection 7.4.3).

Assume a maximum level L ∈ N is given. We consider finite-dimensional subspaces

(V̂ℓ, ℓ = 0, . . . , L) of V with refinement sizes ĥ0 > · · · > ĥL > 0 and approximation

parameters εW,0 > · · · > εW,L for the GRFs and εl,0 > · · · > εl,L for the Lévy subordinators.

Since we fix the parameters K and A in this analysis, we omit them in the following and

use the notation ûεW,ℓ,εl,ℓ,ℓ := û
(εW,ℓ,εl,ℓ)

K,A,ℓ for the FEM approximation of u
(εW,ℓ,εl,ℓ)

K,A on V̂ℓ, for

ℓ = −1, . . . , L, where we set ûεW,−1,εl,−1,−1 := 0. If we expand the expectation on the finest

level in a telescopic sum we obtain the following representation

E(ûεW,L,εl,L,L) =
L∑

ℓ=0

E(ûεW,ℓ,εl,ℓ,ℓ − ûεW,ℓ−1,εl,ℓ−1,ℓ−1). (7.16)

This motivates the multilevel Monte Carlo estimator, which estimates the left hand side of

Equation (7.16) by singlelevel Monte Carlo estimations of each summand on the right hand side
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(see [57]). To be precise, let Mℓ be a natural number for ℓ = 0, ..., L. The multilevel Monte

Carlo estimator of ûεW,L,εl,L,L is then defined by

EL(ûεW,L,εl,L,L) :=
L∑

ℓ=0

EMℓ
(ûεW,ℓ,εl,ℓ,ℓ − ûεW,ℓ−1,εl,ℓ−1,ℓ−1),

=
L∑

ℓ=0

1

Mℓ

Mℓ∑
i=1

(û(i,ℓ)
εW,ℓ,εl,ℓ,ℓ

− û(i,ℓ)
εW,ℓ−1,εl,ℓ−1,ℓ−1)

where (û(i,ℓ)
εW,ℓ,εl,ℓ,ℓ

)Mℓ
i=1 (resp. (û(i,ℓ)

εW,ℓ−1,εl,ℓ−1,ℓ−1)
Mℓ
i=1) are Mℓ i.i.d. copies of the random variable

ûεW,ℓ,εl,ℓ,ℓ (resp. ûεW,ℓ−1,εl,ℓ−1,ℓ−1) for ℓ = 0, . . . , L (see also [57]). The following result gives an

a-priori bound on the MLMC error. Similar formulations can be found, for example, in [14], [1]

and [16].

Theorem 7.6.3.

We set r = 2 and assume q > 2 in Assumption 7.4.3. Further, let b, c ≥ 1 be given such that
Theorem 7.4.5 holds. For L ∈ N, let ĥℓ > 0, Mℓ, εW,ℓ > 0 and εl,ℓ > 0 be the level-dependent
approximation parameters for ℓ = 0, ..., L such that ĥℓ, εW,ℓ, and εl,ℓ are decreasing with respect
to ℓ. It holds

∥E(uK,A)− EL(ûεW,L,εl,L,L)∥L2(Ω;V ) ≤ C
(
εγW,L + ε

1
2c
l,L + E(ĥ2κ̂a

L )1/2 +
1√
M0

+
L−1∑
ℓ=0

εγW,ℓ + ε
1
2c
l,ℓ + E(ĥ2κ̂a

ℓ )1/2√
Mℓ+1

)
,

where C > 0 is a constant which is independent of L and the level-dependent approximation
parameters. Note that the numbers γ > 0 and c ≥ 1 are determined by the GRFs resp. the
subordinators (cf. Theorem 7.4.5).

Proof. We estimate

∥E(uK,A)− EL(ûεW,L,εl,L,L)∥L2(Ω;V ) ≤ ∥E(uK,A)− E(ûεW,L,εl,L,L)∥L2(Ω;V )

+ ∥E(ûεW,L,εl,L,L)− EL(ûεW,L,εl,L,L)∥L2(Ω;V )

=: I1 + I2.
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We use the triangular inequality, Theorem 7.4.5 and Assumption 7.5.1 to obtain

I1 ≤ E(∥uK,A − ûεW,L,εl,L,L∥V ) ≤ CregC(a−,D)(εγW,L + ε
1
2c
l,L) + ĈuE(ĥ2κ̂a

L )
1
2 .

For the second term we use the definition of the MLMC estimator EL and Lemma 7.6.2 to

obtain

I2 ≤
L∑

ℓ=0

(Var(ûεW,ℓ,εl,ℓ,ℓ − ûεW,ℓ−1,εl,ℓ−1,ℓ−1)

Mℓ

)1/2
≤

L∑
ℓ=0

1√
Mℓ

(
∥ûεW,ℓ,εl,ℓ,ℓ − uK,A∥L2(Ω;V ) + ∥uK,A − ûεW,ℓ−1,εl,ℓ−1,ℓ−1∥L2(Ω;V )

)
.

Similar as for the first summand I1 we apply Theorem 7.4.5 and Assumption 7.5.1 to get

∥ûεW,ℓ,εl,ℓ,ℓ − uK,A∥L2(Ω;V ) ≤ CregC(a−,D)(εγW,ℓ + ε
1
2c
l,ℓ ) + ĈuE(ĥ2κ̂a

ℓ )
1
2 ,

for ℓ = 0, . . . , L and for ℓ = −1 it follows from Theorem 7.4.2 that

∥uK,A∥L2(Ω;V ) ≤ C(a−,D)(∥f∥Lq(Ω;H) + ∥g∥Lq(Ω;L2(Γ2))),

since q > 2. Finally, we calculate

I1 + I2

≤ CregC(a−,D)
(
εγW,L + ε

1
2c
l,L +

εγW,0 + ε
1
2c
l,0√

M0

+
L∑

ℓ=1

1√
Mℓ

(εγW,ℓ + ε
1
2c
l,ℓ + εγW,ℓ−1 + ε

1
2c
l,ℓ−1)

)
+ Ĉu

(
E(ĥ2κ̂a

L )
1
2 +

E(ĥ2κ̂a
0 )1/2√
M0

+
L∑

ℓ=1

1√
Mℓ

(E(ĥ2κ̂a

ℓ )
1
2 + E(ĥ2κ̂a

ℓ−1)
1
2 )
)

+
1√
M0

C(a−,D)(∥f∥Lq(Ω;H) + ∥g∥Lq(Ω;L2(Γ2)))

≤ C
(
εγW,L + ε

1
2c
l,L + E(ĥ2κ̂a

L )1/2 +
1√
M0

+
L−1∑
ℓ=0

εγW,ℓ + ε
1
2c
l,ℓ + E(ĥ2κ̂a

ℓ )1/2√
Mℓ+1

)
,

where we used the monotonicity of (εW,ℓ)
L
ℓ=0, (εl,ℓ)

L
ℓ=0 and (ĥℓ)

L
ℓ=0. □

The error estimate of Theorem 7.6.3 allows for an equilibration of the error contributions

resulting from the approximation of the diffusion coefficient and the approximation of the

pathwise solution with the FE method which then leads to a higher computational efficiency
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compared to the singlelevel approach. This leads in general to the strategy that one takes only

few of the accurate, but expensive samples for large ℓ ∈ {0, . . . , L} and one generates more

on the cheap, but less accurate samples on the lower levels, which can be seen in the following

corollary (see also [16, Section 5], [57] and [59]).

Corollary 7.6.4.

Let the assumptions of Theorem 7.6.3 hold. ForL ∈ N and given (stochastic) refinement parameters
ĥ0 > · · · > ĥL > 0 choose εW,ℓ > 0 and εl,ℓ > 0 such that

εW,ℓ ≃ E(ĥ2κ̂a

ℓ )1/(2γ) and εl,ℓ ≃ E(ĥ2κ̂a

ℓ )c, (7.17)

and sample numbers Mℓ ∈ N according to

M0 ≃ E(ĥ2κ̂a

L )−1 and Mℓ ≃ E(ĥ2κ̂a

L )−1E(ĥ2κ̂a

ℓ−1)(ℓ+ 1)2(1+ξ) for ℓ = 1, . . . , L, (7.18)

for some positive parameter ξ > 0. Then, it holds

∥E(uK,A)− EL(ûεW,L,εl,L,L)∥L2(Ω;V ) = O(E(ĥ2κ̂a

L )1/2).

Proof. We use Theorem 7.6.3 together with Equation (7.17) and Equation (7.18) to obtain

∥E(uK,A)− EL(ûεW,L,εl,L,L)∥L2(Ω;V )

≤ C
(
εγW,L + ε

1
2c
l,L + E(ĥ2κ̂a

L )1/2 +
1√
M0

+
L−1∑
ℓ=0

εγW,ℓ + ε
1
2c
l,ℓ + E(ĥ2κ̂a

ℓ )1/2√
Mℓ+1

)
≤ CE(ĥ2κ̂a

L )1/2
(
4 +

L∑
ℓ=1

1

(ℓ+ 1)1+ξ

)
≤ C(4 + ζ(1 + ξ))E(ĥ2κ̂a

L )1/2,

where ζ(·) denotes the Riemann zeta function. □

7.7 Multilevel Monte Carlo with control variates

The jump discontinuities in the coefficient aK,A of the elliptic problem (7.7) - (7.10) have a

negative impact on the FE convergence due to the low regularity of the solution (see Section

7.5 and [96]). In Subsection 7.5.2 we presented one possible approach to enhance the FE
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convergence for discontinuous diffusion coefficients: the sample-adapted FE approach with

triangulations adjusted to the discontinuities. However, this approach may be computationally

not feasible anymore if one has many jump interfaces. For instance, using subordinators

with high jump activity (e.g. Gamma subordinators) may result in a very high number of

discontinuities making the construction of sample-adapted triangulations extremely expensive.

Besides the usage of adapted triangulations, variance reduction techniques can also be used

to improve the computational efficiency of the MLMC estimation of the mean of the PDE

solution, as we see in this section. We start with an introduction to a specific variance reduction

technique, the control variates (CV), and show subsequently how we use a control variate in

our setting (cf. [101]).

7.7.1 Control variates as a variance reduction technique

Assume Y is a real-valued, square integrable random variable and (Yi, i ∈ N) is a sequence

of i.i.d. random variables which follow the same distribution as Y . For a fixed number of

samples M ∈ N, the SLMC estimator for the estimation of the expectation E(Y ) is given by

EM(Y ) = M−1
∑M

i=1 Yi (see Section 7.6) and we have the following representation for the

statistical error (see Lemma 7.6.2):

∥E(Y )− EM(Y )∥L2(Ω;R) =

√
Var(Y )

M
. (7.19)

The use of control variates aims to reduce the statistical error of a MC estimation by reducing

the variance on the right hand side of (7.19). Assume we are given another real valued, square

integrable random variableX with known expectation E(X) and a corresponding sequence of

i.i.d. random variables (Xi, i ∈ N) following the same distribution as X . For a given number

of samples M ∈ N, the control variate estimator is then defined by

ECV
M (Y ) =

1

M

M∑
i=1

Yi − (Xi − E(X)),

Subordinated Fields and Random Elliptic Partial Differential Equations



7.7 Multilevel Monte Carlo with control variates 157

(see, for example, [62, Section 4.1]). The estimator ECV
M (Y ) is unbiased for the estimation of

E(Y ) and the standard deviation is

Var(ECV
M (Y ))1/2 = ∥E(Y )− ECV

M (Y )∥L2(Ω;R)

=

√
Var(Y ) + Var(X)− 2Cov(X, Y )

M
,

where Cov(X, Y ) denotes the covariance of the random variables X and Y . Hence, the

standard deviation of the estimator ECV
M (Y ), i.e. the statistical error, is smaller than the

standard deviation of the SLMC estimatorEM(Y ) if the random variables X and Y are highly

correlated (see [62, Section 4.1.1]).

In [101], the authors presented a MLMC-CV combination for the estimation of the mean of the

solution to the problem (7.1) - (7.3), where the diffusion coefficient a is modeled as a lognormal

GRF. They use a smoothed version of the GRF and the pathwise solution to the corresponding

PDE problem to construct a highly-correlated control variate. The considered GRFs have at

least continuous paths leading to continuous diffusion coefficients. In the following, we show

how we use a similar approach for our discontinuous diffusion coefficients to enhance the

efficiency of the MLMC estimator for the case of subordinators with high jump activity.

7.7.2 Smoothing the diffusion coefficient

In this section we construct the control variate which is used to enhance the MLMC estimation

of the mean of the solution to (7.7) - (7.10) for subordinators with high jump activity. Our

approach is motivated by [101].

For a positive smoothing parameter νs > 0 we consider the Gaussian kernel on R2:

ϕνs(x, y) = e
−x2+y2

2ν2s (2πν2
s )

−1, for (x, y) ∈ R2.

Further, we identify the jump-diffusion coefficient aK,A from Equation (7.10) with its extended

version on the domain R2, where we set aK,A(x, y) = 0 for (x, y) ∈ R2 \ D, and define the

smoothed version a(νs)K,A by convolution with the Gaussian kernel:
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a(νs)K,A(x, y) =

∫
R2

ϕνs(x
′, y′)aK,A(x− x′, y − y′)d(x′, y′)

=

∫
R2

ϕνs(x− x′, y − y′)aK,A(x
′, y′)d(x′, y′), for (x, y) ∈ D.

Obviously, Theorem 7.4.2 applies also to the elliptic PDE (7.7) - (7.9) with smoothed coefficient

a(νs)K,A, which guarantees the existence of a solution u(νs)
K,A ∈ Lr(Ω;V ) , for r ∈ [1, q), with

f ∈ Lq(Ω;H) and g ∈ Lq(Ω;L2(Γ2)), and yields the bound

∥u(νs)
K,A∥Lr(Ω;V ) ≤ C(a−,D, νs)(∥f∥Lq(Ω;H) + ∥g∥Lq(Ω;L2(Γ2))). (7.20)

If the smoothing parameter νs is small, the solution corresponding to the smoothed coefficient

a(νs)K,A is highly correlated with the solution to the PDE with (unsmoothed) diffusion coefficient

aK,A. Therefore, the smoothed solution is a reasonable choice as a control variate in the MLMC

estimator since it is highly correlated with the solution to the rough problem and easy to

approximate using the FE method due to the high regularity compared to the rough problem

(see also [101] and [67, Sections 8 and 9]). Figure 7.3 shows a sample of the diffusion coefficient

and smoothed versions using a Gaussian kernel with different smoothness parameters.

Figure 7.3: Sample of the diffusion coefficient aK,A using a Gamma-subordinated Matérn GRF
(left), smoothed versions of the coefficient using Gaussian kernel smoothing with
smoothness parameter νs = 0.02 (middle) and νs = 0.06 (right).

7.7.3 MLMC-CV estimator

Next, we define the MLMC-CV estimator following [101]. We fix a positive smoothing parameter

νs > 0. We assumeL ∈ N and consider finite-dimensional subspaces (V̂ℓ, ℓ = 0, . . . , L) of V

with refinement sizes ĥ0 > · · · > ĥL > 0 and approximation parameters εW,0 > · · · > εW,L

for the GRFs and εl,0 > · · · > εl,L for the Lévy subordinators (see Subsection 7.5.2). To
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unify notation, we focus here again on the sample-adapted discretization with corresponding

approximation û(εW ,εl)
K,A,ℓ with averaged refinement parameter E(ĥ2κ̂a

ℓ )1/2 and convergence rate

κ̂a for the theoretical analysis of the estimator (see Assumption 7.5.1 and Section 7.6) and point

out again that similar results hold for the non-adapted FE approach. Since we again fix the

parameters K and A in this analysis, we omit them in the following and use the notation

ûεW,ℓ,εl,ℓ,ℓ := û
(εW,ℓ,εl,ℓ)

K,A,ℓ for the FEM approximation on V̂ℓ, for ℓ = 0, . . . , L. Similar, we

denote by û(νs)
εW,ℓ,εl,ℓ,ℓ

:= û
(νs,εW,ℓ,εl,ℓ)

K,A,ℓ , for ℓ = 0, . . . , L, the (pathwise) solution to problem (7.1)

- (7.3) with diffusion coefficient a
(νs,εW,ℓ,εl,ℓ)

K,A as the smoothed version of the coefficient a
(εW,ℓ,εl,ℓ)

K,A

constructed in (7.11). We define the CV basis experiment by

ûCV
εW,ℓ,εl,ℓ,ℓ

:= ûεW,ℓ,εl,ℓ,ℓ − (û(νs)
εW,ℓ,εl,ℓ,ℓ

− E(u(νs)
K,A)), for ℓ = 0, . . . , L, (7.21)

and we set ûCV
εW,−1,εl,−1,−1 = 0. For the moment, we assume that the expectation E(u(νs)

K,A) of the

solution to the smoothed problem is known. Later, we elaborate more on appropriate approxi-

mations of this expectation (see Remark 7.7.7). The MLMC-CV estimator for the estimation of

the expectation of the solution is then defined by

ECV,L(ûCV
εW,L,εl,L,L

) :=
L∑

ℓ=0

EMℓ
(ûCV

εW,ℓ,εl,ℓ,ℓ
− ûCV

εW,ℓ−1,εl,ℓ−1,ℓ−1),

with sample sizes Mℓ ∈ N for ℓ = 0, . . . , L.

Remark 7.7.1. The smoothness parameter νs controls the variance reduction achieved in the
MLMC-CV estimator and its optimal choice remains an open question (see [101]). This parameter
shifts variance from the rough problem to the smoothed problem within the MLMC-CV estimator.
Too large choices of νs lead to a small correlation between the rough and the smoothed problem
which might result in a poor variance reduction in the MLMC-CV estimator. On the other hand,
choosing νs too small might result in high costs for the computation of the CV (see also Remark
7.7.7). Therefore, the smoothness parameter should be chosen to balance these two viewpoints,
which is highly problem dependent (see Subsection 7.8.3 and [101]).

7.7.4 Convergence of the MLMC-CV estimator

For the theoretical investigation of the MLMC-CV estimator we extend Assumption 7.5.1 by

the following assumption on the mean-square convergence rate of the pathwise FE method for

the smoothed problem.
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Assumption 7.7.2.

There exist deterministic constants Ĉu,s, Cu,s such that for any εW , εl > 0 and any ℓ ∈ N0, the
FE approximation errors of û(νs,εW ,εl)

K,A,ℓ ≈ u(νs,εW ,εl)
K,A in the subspaces V̂ℓ, respectively u(νs,εW ,εl)

K,A,ℓ ≈
u(νs,εW ,εl)
K,A in Vℓ, are bounded by

∥u(νs,εW ,εl)
K,A − û(νs,εW ,εl)

K,A,ℓ ∥L2(Ω;V ) ≤ Ĉu,sE(ĥ2
ℓ)

1/2, respectively,

∥u(νs,εW ,εl)
K,A − u(νs,εW ,εl)

K,A,ℓ ∥L2(Ω;V ) ≤ Cu,shℓ,

where the constants Ĉu,s, Cu,s may depend on a, f, g,K,A but are independent of ĥℓ and hℓ.
Further, we assume that Assumption 7.4.4 also holds for the solution u(νs)

K,A corresponding to the
elliptic PDE with the smoothed coefficient a(νs)K,A.

Note that this assumption is natural since we expect (pathwise) full order convergence of the

linear FE method for the smoothed elliptic PDE (see also [1], [14], [16], [101] and [67, Section

8.5] together with [50, Section 6.3]). The assumption on the integrability of the gradient of

the solution corresponding to the smoothed problem is also natural under Assumption 7.4.4,

since the solution has a higher regularity than the solution uK,A to the elliptic problem with

the jump-diffusion coefficient aK,A. The following lemma states that the approximation error

of the smoothed coefficient can be bounded by the approximation error of the rough diffusion

coefficient.

Lemma 7.7.3.

For t > 1 and fixed parameters νs, K,A > 0 and any εW , εl > 0 it holds for P-almost every
ω ∈ Ω

∥a(νs)K,A − a(νs,εW ,εl)
K,A ∥t

Lt(D) ≤ C(t, νs,D)∥aK,A − a(εW ,εl)
K,A ∥t

Lt(D),

with a constant C = C(t, νs,D) which depends only on the indicated parameters.

Proof. Let t′ > 1 such that 1/t+ 1/t′ = 1. We calculate using Hölder’s inequality and
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the integrability of the Gaussian kernel ϕνs

∥a(νs)K,A − a(νs,εW ,εl)
K,A ∥t

Lt(D)

≤
∫
D

( ∫
R2

|ϕνs(x
′, y′)(aK,A(x− x′, y − y′)

− a(εW ,εl)
K,A (x− x′, y − y′))|d(x′, y′)

)t
d(x, y)

≤
∫
D

( ∫
R2

|aK,A(x− x′, y − y′)− a(εW ,εl)
K,A (x− x′, y − y′)|td(x′, y′)

)
×
( ∫

R2

ϕνs(x
′, y′)t

′
d(x′, y′)

)t/t′
d(x, y)

≤ C(t, νs,D)∥aK,A − a(εW ,εl)
K,A ∥t

Lt(D).

□

In order to proof the convergence of the MLMC-CV estimator we need the following error

bound on the approximation of the solution of the smoothed problem (cf. Theorem 7.4.5). As

expected, this error bound depends on the approximation parameters εW of the GRFs and εl
of the Lévy subordinators in the same way as the error bound of the unsmoothed problem in

Theorem 7.4.5.

Theorem 7.7.4.

Assume q > 2 in Assumption 7.4.3. Let r ∈ [2, q) and b, c ∈ [1,+∞] be given such that it holds

rcγ ≥ 2 and 2b ≤ rc < η

with a fixed real number γ ∈ (0,min(1, β/(2α)). Here, the parameters η, α and β are deter-
mined by the GRFs W1, W2 and the Lévy subordinators l1, l2 (see Assumption 7.4.3).

Let m,n ∈ [1,+∞] be real numbers such that

1

m
+

1

c
=

1

n
+

1

b
= 1,

and let kreg ≥ 2 and jreg > 0 be the regularity specifiers given by Assumption 7.4.4. If it holds
that

n < 1 +
jreg
2

and rm < kreg,

then the approximated solution u(νs,εW ,εl)
K,A of the smoothed problem converges to the solution u(νs)

K,A
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of the truncated smoothed problem for εW , εl → 0 and it holds

∥u(νs)
K,A − u(νs,εW ,εl)

K,A ∥Lr(Ω;V ) ≤ C(a−,D, r)Creg∥a(νs,εW ,εl)
K,A − a(νs)K,A∥Lrc(Ω;L2b(D))

≤ CregC(a−,D, r, νs)(εγW + ε
1
rc
l ).

Proof. This theorem follows by the same arguments used in [96, Theorem 5.11] together

with Lemma 7.7.3. □

We are now able to prove the following a-priori bound on the mean-square error of the

MLMC-CV estimator, similar to Theorem 7.6.3.

Theorem 7.7.5.

We set r = 2 and assume q > 2. Further, let b, c ≥ 1 be given such that Theorem 7.4.5 (and
Theorem 7.7.4) hold. For L ∈ N, let ĥℓ > 0, Mℓ, εW,ℓ > 0 and εl,ℓ > 0 be the level-dependent
approximation parameters, for ℓ = 0, ..., L, such that ĥℓ, εW,ℓ, and εl,ℓ decrease with respect to
ℓ. It holds

∥E(uK,A)− ECV,L(ûCV
εW,L,εl,L,L

)∥L2(Ω;V ) ≤ C
(
εγW,L + ε

1
2c
l,L + E(ĥ2κ̂a

L )1/2 +
1√
M0

+
L−1∑
ℓ=0

εγW,ℓ + ε
1
2c
l,ℓ + E(ĥ2κ̂a

ℓ )1/2√
Mℓ+1

)
,

where C > 0 is a constant which is independent of L and the level-dependent approximation
parameters. Note that the numbers γ > 0 and c ≥ 1 are determined by the GRFs resp. the
subordinators (cf. Theorem 7.4.5 and Theorem 7.7.4).

Proof. We split the error by

∥E(uK,A)− ECV,L(ûCV
εW,L,εl,L,L

)∥L2(Ω;V ) ≤ ∥E(uK,A)− E(ûCV
εW,L,εl,L,L

)∥L2(Ω;V )

+ ∥E(ûCV
εW,L,εl,L,L

)− ECV,L(ûCV
εW,L,εl,L,L

)∥L2(Ω;V )

=: I1 + I2.

For the first term we estimate using Theorem 7.4.5 and Assumption 7.5.1 together with Theorem
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7.7.4 and Assumption 7.7.2 to obtain

I1 ≤ E(∥uK,A − ûεW,L,εl,L,L∥V ) + E(∥û(νs)
εW,L,εl,L,L

− u(νs)
K,A∥V )

≤ ∥uK,A − u
(εW,L,εl,L)

K,A ∥L2(Ω;V ) + ∥u(εW,L,εl,L)

K,A − ûεW,L,εl,L,L∥L2(Ω;V )

+ ∥u(νs)
K,A − u

(νs,εW,L,εl,L)

K,A ∥L2(Ω;V ) + ∥u(νs,εW,L,εl,L)

K,A − û(νs)
εW,L,εl,L,L

∥L2(Ω;V )

≤ CregC(a−,D, νs)(εγW,L + ε
1
2c
l,L) + ĈuE(ĥ2κ̂a

L )
1
2 + Ĉu,sE(ĥ2

L)
1/2

≤ CregC(a−,D, νs)(εγW,L + ε
1
2c
l,L) + C̃E(ĥ2κ̂a

L )
1
2 .

For the second term we use the definition of the MLMC-CV estimator ECV,L and Lemma 7.6.2

to estimate

I2 ≤
L∑

ℓ=0

∥E(ûCV
εW,ℓ,εl,ℓ,ℓ

− ûCV
εW,ℓ−1,εl,ℓ−1,ℓ−1)− EMℓ

(ûCV
εW,ℓ,εl,ℓ,ℓ

− ûCV
εW,ℓ−1,εl,ℓ−1,ℓ−1)∥L2(Ω;V )

=
L∑

ℓ=0

(Var(ûCV
εW,ℓ,εl,ℓ,ℓ

− ûCV
εW,ℓ−1,εl,ℓ−1,ℓ−1)

Mℓ

)1/2
≤

L∑
ℓ=0

1√
Mℓ

∥ûCV
εW,ℓ,εl,ℓ,ℓ

− ûCV
εW,ℓ−1,εl,ℓ−1,ℓ−1∥L2(Ω;V )

≤
L∑

ℓ=0

1√
Mℓ

(
∥ûCV

εW,ℓ,εl,ℓ,ℓ
− uK,A + (u(νs)

K,A − E(u(νs)
K,A))∥L2(Ω;V )

+ ∥uK,A − (u(νs)
K,A − E(u(νs)

K,A))− ûCV
εW,ℓ−1,εl,ℓ−1,ℓ−1∥L2(Ω;V )

)
.

We estimate each term in this summand with the same strategy as we did for the term I1 using

Theorem 7.4.5 and Assumption 7.5.1 together with Theorem 7.7.4 and Assumption 7.7.2 to obtain

∥ûCV
εW,ℓ,εl,ℓ,ℓ

− uK,A + (u(νs)
K,A − E(u(νs)

K,A))∥L2(Ω;V )

≤ ∥ûεW,ℓ,εl,ℓ,ℓ − uK,A∥L2(Ω,V ) + ∥u(νs)
K,A − û(νs)

εW,ℓ,εl,ℓ,ℓ
∥L2(Ω;V )

≤ CregC(a−,D, νs)(εγW,ℓ + ε
1
2c
l,ℓ ) + C̃E(ĥ2κ̂a

ℓ )
1
2 ,

for ℓ = 0, . . . , L and for ℓ = −1 we get by Theorem 7.4.2 and Equation (7.20)

∥uK,A − (u(νs)
K,A − E(u(νs)

K,A))∥L2(Ω;V ) ≤ ∥uK,A∥L2(Ω;V ) + Var(u(νs)
K,A)

1
2

≤ C(a−,D, νs)(∥f∥Lq(Ω;H) + ∥g∥L2(Ω;L2(Γ2))).
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Together, we obtain

I1 + I2 ≤

CregC(a−,D, νs)
(
εγW,L + ε

1
2c
l,L +

εγW,0 + ε
1
2c
l,0√

M0

+
L∑

ℓ=1

1√
Mℓ

(εγW,ℓ + ε
1
2c
l,ℓ + εγW,ℓ−1 + ε

1
2c
l,ℓ−1)

)
+ C̃

(
E(ĥ2κ̂a

L )
1
2 +

E(ĥ2κ̂a
0 )1/2√
M0

+
L∑

ℓ=1

1√
Mℓ

(E(ĥ2κ̂a

ℓ )
1
2 + E(ĥ2κ̂a

ℓ−1)
1
2 )
)

+
1√
M0

C(a−,D, νs)(∥f∥Lq(Ω;H) + ∥g∥Lq(Ω;L2(Γ2)))

≤ C
(
εγW,L + ε

1
2c
l,L + E(ĥ2κ̂a

L )1/2 +
1√
M0

+
L−1∑
ℓ=0

εγW,ℓ + ε
1
2c
l,ℓ + E(ĥ2κ̂a

ℓ )1/2√
Mℓ+1

)
,

where we used monotonicity of (εW,ℓ)
L
ℓ=0, (εl,ℓ)

L
ℓ=0 and (ĥℓ)

L
ℓ=0 in the last step. □

As it is the case for the a-priori error bound for the MLMC estimator (see Theorem 7.6.3),

Theorem 7.7.5 allows for an equilibration of all error contributions resulting from the approxi-

mation of the diffusion coefficient and the approximation of the pathwise solution by the FE

method, which can be seen by the following corollary.

Corollary 7.7.6.

Let the assumptions of Theorem 7.7.5 hold. ForL ∈ N and given (stochastic) refinement parameters
ĥ0 > · · · > ĥL > 0 choose εW,ℓ > 0 and εl,ℓ > 0 such that

εW,ℓ ≃ E(ĥ2κ̂a

ℓ )1/(2γ) and εl,ℓ ≃ E(ĥ2κ̂a

ℓ )c,

and sample numbers Mℓ ∈ N such that for some positive parameter ξ > 0 it holds

M0 ≃ E(ĥ2κ̂a

L )−1 and Mℓ ≃ E(ĥ2κ̂a

L )−1E(ĥ2κ̂a

ℓ−1)(ℓ+ 1)2(1+ξ) for ℓ = 1, . . . , L.

Then, it holds

∥E(uK,A)− ECV,L(ûCV
εW,L,εl,L,L

)∥L2(Ω;V ) = O(E(ĥ2κ̂a

L )1/2).

Proof. See Corollary 7.6.4. □
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We want to emphasize that Theorem 7.7.5 and Corollary 7.7.6 imply the same asymptotical

convergence of the MLMC-CV estimator as the MLMC estimator which has been considered in

Section 7.6. However, it is to be expected that the MLMC-CV estimator is more efficient due

to the samplewise correction by the control variate and the resulting variance reduction on

the different levels. We close this section with a remark on how to compute the mean of the

control variate.

Remark 7.7.7. Unlike we assumed the CV mean E(u(νs)
K,A) is in general unknown for fixed

parameters K,A, and νs > 0. Corollary 7.7.6 yields that it is sufficient to approximate the CV
mean with any estimator which is convergent with order E(h2κ̂a

L )1/2. In fact, we denote by

EstLCV (u
(νs)
K,A) ≈ E(u(νs)

K,A),

the realization of the desired estimator and we assume the existence of a constant CCV > 0 such
that it holds

∥EstLCV (u
(νs)
K,A)− E(u(νs)

K,A)∥L2(Ω;V ) ≤ CCVE(ĥ2κ̂a

L )1/2,

in the notation of Theorem 7.7.5. Further, instead of the basis experiment ûCV
εW,ℓ,εl,ℓ,ℓ

from (7.21) we
consider

ũCV
εW,ℓ,εl,ℓ,ℓ

:= ûεW,ℓ,εl,ℓ,ℓ − (û(νs)
εW,ℓ,εl,ℓ,ℓ

− EstLCV (u
(νs)
K,A)), for ℓ = 0, . . . , L,

and we set ũCV
εW,−1,εl,−1,−1 = 0 and denote the corresponding MLMC-CV estimator by

ECV,L(ũCV
εW,L,εl,L,L

). Then, by Corollary 7.7.6, it holds

∥E(uK,A)− ECV,L(ũCV
εW,L,εl,L,L

)∥L2(Ω;V )

≤ ∥E(uK,A)− ECV,L(ûCV
εW,L,εl,L,L

)∥L2(Ω;V ) + ∥EstLCV (u
(νs)
K,A)− E(u(νs)

K,A)∥L2(Ω;V )

= O(E(ĥ2κ̂a

L )1/2).

For example, the CV mean could be estimated by another MLMC estimator on the level L where
the parameters are chosen according to Corollary 7.7.6.
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7.8 Numerical examples

In the following section we present numerical examples for the estimation of the mean of the

solution to the elliptic PDE (7.7) - (7.10). We perform convergence tests with the proposed

multilevel Monte Carlo estimators defined in Section 7.6 and Section 7.7. In our numerical

examples, we consider different levels L ∈ N and choose the sample numbers (Mℓ, ℓ =

0, . . . , L) and the level dependent approximation parameters for the GRFs (εW,ℓ, ℓ = 0, . . . , L)

and the subordinators (εl,ℓ, ℓ = 0, . . . , L) according to Corollary 7.6.4 resp. Corollary 7.7.6 if

nothing else is explicitly mentioned. Our numerical examples aim to compare the performance

of the MLMC estimator with non-adapted triangulations with the MLMC estimator which

uses sample-adapted triangulations. Further, we compare the performance of the standard

MLMC estimator with the MLMC-CV estimator for high-intensity subordinators whose sample

paths possess a comparatively high number of jump discontinuities. This results in a high

number of jumps in the diffusion coefficient and, therefore, the sample-adapted triangulations

are not feasible anymore. All our numerical experiments are performed in MATLAB R2021a on

a workstation with 16 GB memory and Intel quadcore processor with 3.4 GHz.

7.8.1 PDE parameters

In our numerical examples we consider the domainD = (0, 1)2 and choose a ≡ 1/10, f ≡ 10,

Φ1 = 1/100 exp(·) and Φ2 = 5 | · | for the diffusion coefficient in (7.10) if nothing else is

explicitly mentioned. Further, we impose the following mixed Dirichlet-Neumann boundary

conditions: we split the domain boundary ∂D byΓ1 = {0, 1}×[0, 1] andΓ2 = (0, 1)×{0, 1}
and impose the pathwise mixed Dirichlet-Neumann boundary conditions

uK,A =

0.1 on {0} × [0, 1]

0.3 on {1} × [0, 1]
and aK,A

−→n · ∇uK,A = 0 on Γ2,

for ω ∈ Ω. We use a reference grid with 401× 401 equally spaced points on the domain D
for interpolation and prolongation. The GRFs W1 and W2 are set to be a Matérn-1.5-GRFs on

D (resp. on [0, K]2) with varying correlation lengths and variance parameters. Note that for

Matérn-1.5-GRFs we can expect γ = 1 in Theorem 7.4.5 (see [96, Section 7], [110, Chapter

5], [30]). We simulate the GRFs W1 and W2 by the circulant embedding method (see [64] and

[65]) to obtain approximations W (εW )
1 ≈ W1 and W (εW )

2 ≈ W2 as described in Section 7.4.3.

In the experiments, we choose the diffusion cut-off A in (7.10) large enough such that it has no
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influence on the numerical experiments for our choice of the GRFs, e.g. A = 100 and choose

the cut-off level K for each experiment individually depending on the specific choice of the

subordinator.

7.8.2 Numerical examples for the MLMC estimator

In this section we conduct experiments with the MLMC estimator introduced in Section 7.6. We

consider subordinators with different intensity and GRFs with varying correlation lengths in

order to cover problems with different solution regularity. The comparatively low jump activity

of the subordinators used in this section (see also Subsection 7.8.3) allows the application

of the pathwise sample-adapted approach introduced in Subsection 7.5.2 which can then be

compared with the performance of the MLMC estimator with standard triangulations. During

this section, we refer to these approaches with adapted FEM MLMC and non-adapted FEM
MLMC. In our experiments, we use Poisson processes to subordinate the GRF W2 in the

diffusion coefficient in (7.10). We consider both, Poisson processes with high and low intensity

parameter leading to a different number of jumps in the diffusion coefficient. For the simulation

of the Poisson processes we have two options: the processes may be approximated under

Assumption 7.4.3 iv but they may also be simulated exactly (see Subsection 7.8.2.1). Hence,

using Poisson subordinators allows for a detailed investigation of the approximation error

caused by the approximation of the Lévy subordinators l1 and l2. This will be explained briefly

in the following subsection (see also [96, Section 7.3.1]).

7.8.2.1 The two approximation methods

We simulate the Poisson processes by two conceptional different approaches: the first approach

is an exact and grid-independent simulation of a Poisson process using the Uniform Method
(see [109, Section 8.1.2]). On the other hand, we may simulate approximations of the Poisson

processes satisfying Assumption 7.4.3 iv in the following way (see [96, Section 7.3.1]): We

sample values of the Poisson(λ) processes l1 and l2 on an equidistant grid {xi, i = 0, ..., Nl}
with x0 = 0 and xNl

= 1 and step size |xi+1 − xi| ≤ εl ≤ 1 for all i = 0, . . . , Nl − 1 and

approximate the stochastic processes by a piecewise constant extension l(εl)j ≈ lj of the values

on the grid:

l(εl)j (x) =

lj(xi) x ∈ [xi, xi+1) for i = 0, ..., Nl − 1,

lj(xNl−1) x = 1.
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for j = 1, 2. Since the Poisson process has independent, Poisson distributed increments,

values of the Poisson process at the discrete points {xi, i = 0, . . . , Nl} may be generated by

adding independent Poisson distributed random variables with appropriately scaled intensity

parameters. For the rest of this paper, we refer to this approach as the approximation approach
to simulate a Poisson process. Comparing the results of the MLMC experiments using the

two described approaches for the simulation of the Poisson processes allows conclusions to

be drawn on the numerical influence of an additional approximation of the subordinator (see

Subsection 7.8.2.2). This is further important especially for situations in which the choice of

the subordinators does not allow for an exact simulation of the process.

Note that Poisson processes satisfy Assumption 7.4.3 iv with η = +∞ (see [96, Section

7.3.1]). Since γ = 1 (see Subection 7.8.1), η = +∞ and f ∈ Lq(Ω;H) for every q ≥ 1 we

choose for any positive δ > 0

r = 2, c = b = 1 + δ

to obtain from Theorem 7.4.5

∥uK,A − u(εW ,εl)
K,A ∥L2(Ω;V ) ≤ CregC(a−,D)(εW + ε

1
2c
l ),

where we have to assume that jreg > 2((1 + δ)/δ − 1) and kreg > 2(1 + δ)/δ for the

regularity constants jreg, kreg given in Assumption 7.4.4 since it is not possible to verify this

rigorously for our diffusion coefficient (see also [96, Subsection 5.2]). For δ = 0.5 we obtain

∥uK,A − u(εW ,εl)
K,A ∥L2(Ω;V ) ≤ CregC(a−,D)(εW + ε

1
3
l ).

Therefore, we get γ = 1 and c = 1.5 in the equilibration formula (7.17) for the numerical

examples with the Poisson subordinators.

7.8.2.2 Poisson(1) subordinators

In our first numerical example we use Poisson(1) - subordinators. With this choice, we get on

average one jump in each direction of the diffusion coefficient. The variance and the correlation

parameters for the GRF W1 (resp. W2) are set to be σ2
1 = 1.52 and r1 = 0.5 (resp. σ2

2 = 0.12

and r2 = 0.5). Figure 7.4 shows samples of the diffusion coefficient and the corresponding

PDE solution.

The cut-off threshold K for the subordinators in (7.10) is chosen to be K = 8. With this
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Figure 7.4: Different samples of the diffusion coefficient with Poisson(1) subordinators and the
corresponding PDE solutions with mixed Dirichlet-Neumann boundary conditions.

choice we obtain

P( sup
t∈[0,1]

lj(t) > K) = P(lj(1) > K) ≈ 1.1252e−06,

for j = 1, 2, such that this cut-off has a negligible influence in the numerical example. We

compute the RMSE ∥E(uK,A)− EL(ûεW,L,εl,L,L)∥L2(Ω;V ) for the sample-adapted and the non-

adapted approach using 10 independent runs of the MLMC estimator on the levels L =

1, . . . , 5, where we set hℓ = hℓ = 0.3 · 1.7−(ℓ−1), for ℓ = 1, . . . , 5. Further, we use a

reference solution computed on level 7 with singlelevel Monte Carlo using the FE method with

adapted triangulations. We run this experiment with both approaches for the simulation of the

subordinators introduced in Subsection 7.8.2.1: the approximation approach and the Uniform

Method.

Figure 7.5: Convergence of the MLMC estimator for Poisson(1) subordinators (left) and time-
to-error plot (right).

The left graph of Figure 7.5 shows almost full order convergence of the adapted FEM MLMC

method and a slightly slower convergence of the non-adapted FEM MLMC approach. Closer
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inspection of the figure shows that the choice of the simulation method of the subordinator does

not affect the convergence rate of the MLMC estimator: where the Uniform Method yields a

slightly smaller RMSE compared to the approximation approach in the sample-adapted case, the

behaviour is almost the same for both simulation techniques in the non-adapted FEM MLMC

method. The right hand side of Figure 7.5 demonstrates a slightly improved efficiency of adapted

FEM MLMC compared to non-adapted FEM MLMC. The advantage of the sample-adapted

approach can be further emphasized by the use of subordinators with a higher jump intensity

and different correlation lengths of the underlying GRF, as we see in the following subsections.

7.8.2.3 Poisson(5) subordinators - smooth underlying GRF

In the second numerical example we increase the jump-intensity of the subordinators and inves-

tigate the effect on the performance of the MLMC estimators. We use Poisson(5) subordinators

leading to an expected number of 5 jumps in each direction in the diffusion coefficient. The

variance and the correlation parameter for the GRF W1 (resp. W2) are set to be σ2
1 = 0.52 and

r1 = 0.5 (resp. σ2
2 = 0.32 and r2 = 0.5). Figure 7.6 shows samples of the diffusion coefficient

and the corresponding PDE solution.

Figure 7.6: Different samples of the diffusion coefficient with Poisson(5) subordinators and the
corresponding PDE solutions with mixed Dirichlet-Neumann boundary conditions.

The cut-off threshold K for the subordinators in (7.10) is chosen to be K = 15. With this

choice we obtain

P( sup
t∈[0,1]

lj(t) > 15) = P(lj(1) > 15) ≈ 6.9008e−05,

for j = 1, 2, such that this cut-off has a negligible influence in the numerical example. In order

to avoid an expensive simulation of the GRF W2 on the domain [0, 15]2 we set K = 1 instead

and consider the downscaled processes

l̃j(t) =
1

15
lj(t),
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for t ∈ [0, 1] and j = 1, 2. Note that this has no effect on the expected number of jumps of the

processes. We use the Uniform Method to simulate the Poisson subordinators and estimate the

RMSE of the MLMC estimators for the sample-adapted and the non-adapted approach using 10

independent MLMC runs on the levels L = 1, . . . , 5, where we set hℓ = hℓ = 0.2 · 1.7−(ℓ−1)

for ℓ = 1, . . . , 5. Further, we use a reference solution computed on level 7 with singlelevel

Monte Carlo using the FE method with adapted triangulations.

Figure 7.7: Convergence of the MLMC estimator for Poisson(5) subordinators (left) and time-
to-error plot (right).

Figure 7.7 shows almost full order convergence of the adapted FEM MLMC method and a

slightly slower convergence for the non-adapted FEM MLMC approach. The right hand side of

Figure 7.7 demonstrates a higher efficiency of the sample-adapted approach. However, one has

to mention that differences in the performance of the estimators are rather small due to the

comparatively high convergence rate for the non-adapted MLMC approach of approximately

0.85. This is due to the fact that the jumps in the diffusion coefficient are comparatively small on

account of the high correlation length of the underlying GRF W2. We will see in the following

subsection that an increased intensity of the jump heights in the diffusion coefficient has a

significant negative influence on the performance of the non-adapted FEM MLMC approach.

7.8.2.4 Poisson(5) subordinators - rough underlying GRF

In the jump-diffusion coefficient (see (7.10)), the jumps are generated by the subordinated GRF

in the following way: the number of spatial jumps is determined by the subordinators and the

jump heights (measured in the differences in diffusion values across a jump) are essentially

determined by the GRF W2 and its correlation length. Hence, we may control the jump heights
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in the diffusion coefficient by the correlation parameter of the underlying GRF W2. In the

following experiment we investigate the influence of the jump heights in the diffusion coefficient

on the convergence rates of the MLMC estimators.

In Subsection 7.8.2.3 we subordinated a Matérn-1.5-GRF with correlation length r2 = 0.5 by

Poisson(5) processes. In the following experiment we set the correlation length of the GRF W2

to r2 = 0.1 and leave all the other parameters unchanged. Figure 7.8 presents samples of the

resulting GRFs with the different correlation lengths.

Figure 7.8: Different samples of Matérn-1.5-GRFs with correlation lengths r = 0.5 (left) and
r = 0.1 (right).

By construction of the diffusion coefficient, the subordination of GRFs with small correlation

lengths (right plots in Figure 7.8) results in higher jump heights in the diffusion coefficient

as the subordination of GRFs with higher correlation lengths (left plots in Figure 7.8). This

relationship is demonstrated in Figure 7.9 (cf. Figure 7.6).

Figure 7.9: Different samples of the diffusion coefficient with Poisson(5) subordinators and
small correlation length in the underlying GRF and the corresponding PDE solutions
with mixed Dirichlet-Neumann boundary conditions.

We use the Uniform Method to compute the RMSE of the MLMC estimators for the sample-

adapted and the non-adapted approach using 10 independent MLMC runs on the levels L =

1, . . . , 5, where we set hℓ = hℓ = 0.2 · 1.7−(ℓ−1) for ℓ = 1, . . . , 5. Further, we use a reference

solution computed on level 7 with singlelevel Monte Carlo using the FE method with adapted

triangulations. Figure 7.10 reveals that the increased jump heights in the diffusion coefficient

have a negative impact on the convergence rates of both estimators: the adapted and the non-

adapted FEM MLMC approach. We obtain a convergence rate of approximately 0.85 for the
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Figure 7.10: Convergence of the MLMC estimator for Poisson(5) subordinators and small corre-
lation length in the underlying GRF (left) and time-to-error plot (right).

adapted FEM MLMC estimator and a smaller rate of approximately 0.7 for the MLMC estimator

with non-adapted triangulations. Compared to the experiment discussed in Subsection 7.8.2.3,

where we used Poisson(5) subordinators and a higher correlation length in the underlying GRF,

we observe that both convergence rates are smaller in the current example. This matches our

expectations since the FEM convergence rate has been shown to be influenced by the regularity

of the jump-diffusion coefficient (see e.g. [16] and [105]). It is also important to mention that

the RMSE is significantly smaller for the adapted FEM MLMC estimator due to the increased

jump heights in this example. The higher efficiency of the sample-adapted approach is also

demonstrated in the time-to-error plot on the right hand side of Figure 7.10: In this example we

see a significant improvement in the time-to-error plot for the adapted FEM MLMC approach

compared to the non-adapted FEM MLMC estimator.

7.8.3 Numerical examples for the MLMC-CV estimator

In the following section, we present numerical examples for the MLMC-CV estimator introduced

in Section 7.7. In Subsection 7.8.2 we considered Poisson subordinators and compared the non-

adapted FEM MLMC estimator with the sample-adapted approach and saw that the latter leads

to an improved performance of the estimator. However, this approach is computationally not

feasible anymore if we consider subordinators with infinite activity, i.e. which have infinitely

many jumps on any finite interval. One example of an infinite activity process is the Gamma

process (see also [109, Section 5.3]). The aim of this section is to compare the (non-adapted

FEM) MLMC estimator with the MLMC-CV estimator for diffusion coefficients with Gamma-
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subordinated GRFs.

7.8.3.1 Gamma subordinators

We approximate the Gamma processes in the same way as we approximate the Poisson subordi-

nators in the approximation approach (see Subsection 7.8.2.1) and obtain a valid approximation

in the sense of Assumption 7.4.3 iv for any η < +∞ (see [96, Section 7.4] and [9]). In our

numerical experiments we choose l1 and l2 to be Gamma(4, 10) processes. We set the diffusion

cut-off to K = 2 to obtain

P( sup
t∈[0,1]

lj(t) ≥ K) = P(lj(1) ≥ 2) ≈ 3.2042e−06,

for j = 1, 2. Hence, the influence of the subordinator cut-off is again negligible in our numerical

experiments. Due to the high jump intensity we have to choose a sufficiently small smoothness

parameter νs since otherwise important detailed information of the diffusion coefficient might

be unused. In our two numerical examples, we choose νs = 0.01. This leads to a performance

improvement in the MLMC-CV estimator for Gamma(4, 10) subordinators, as we see in our

numerical experiments (see also Remark 7.7.1).

7.8.3.2 MLMC-CV vs. MLMC for infinite activity subordinators

In our numerical examples, the variance of the W1 is set to be σ2
1 = 1.52 and the correlation

length is defined by r1 = 0.5. The parameters of the GRF W2 are varied in the experiments.

Since we aim to compare the performance of the MLMC estimator with the MLMC-CV estimator

we use optimal sample numbers in the numerical experiments in this subsection: Assume

level dependent FE discretization sizes hℓ are given, for ℓ = 1, . . . , L with fixed L ∈ N.

Further, we denote by V ARℓ the (estimated) variances of uεW,ℓ,εl,ℓ,ℓ − uεW,ℓ−1,εl,ℓ−1,ℓ−1 (resp.

uCV
εW,ℓ,εl,ℓ,ℓ

− uCV
εW,ℓ−1,εl,ℓ−1,ℓ−1 for the MLMC-CV estimator). The optimal sample numbers are

then given by the formula

Mℓ = h−2
L

√
V ARℓhℓ

L∑
i=1

√
V ARih

−1
i , for ℓ = 1, . . . , L,

since this choice minimizes the variance of the MLMC(-CV) estimator for fixed computational

costs (see [59, Section 1.3]). As discussed in Remark 7.7.7, the expectation of the mean of

the control variate E(u(νs)
K,A) is usually not known explicitly and needs to be approximated
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separately. We estimate E(u(νs)
K,A) by a realization of a non-adapted FEM MLMC estimator on

level L (see Section 7.6), which is of sufficient accuracy as discussed in Remark 7.7.7.

In the following numerical example we choose σ2
2 = 0.32 and r2 = 0.05 for the GRF W2.

Figure 7.11 shows samples of the diffusion coefficient and the corresponding PDE solutions. We

Figure 7.11: Different samples of the diffusion coefficient with Gamma(4, 10) subordinators with
small correlation length in the underlying GRF together with the corresponding
PDE solutions with mixed Dirichlet-Neumann boundary conditions.

define the level dependent FE discretization parameters hℓ = 0.3 · 1.7−(ℓ−1) for ℓ = 1, . . . , 5

and compare the MLMC estimator with the MLMC-CV estimator. We perform 10 independent

MLMC runs on the levels L = 1, . . . , 5 to estimate the RMSE where we use a reference

solution on level 7 computed by singlelevel Monte Carlo. The results are given in the following

figure. Figure 7.12 shows a similar convergence rate of approximately 0.75 for the MLMC and

Figure 7.12: Convergence of the MLMC and the MLMC-CV estimator for Gamma(4, 10) subor-
dinators with small noise and small correlation length in the underlying GRF (left)
and time-to-error plot (right).

the MLMC-CV estimator. However, the sample-wise correction by the smooth PDE problem in

the MLMC-CV estimator improves the approximation which yields significantly smaller values

for the RMSE on the different levels compared to the standard MLMC estimator. The efficiency

improvement obtained by the control variate is further demonstrated on the right hand side
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of Figure 7.12: The time-to-error plot demonstrates that the computational effort which is

necessary to achieve a certain accuracy is significantly smaller for the MLMC-CV estimator

compared to the standard MLMC estimator. Note that the computation of the expectation of the

solution to the smoothed problem E(u(νs)
K,A) is included in the simulation time of the MLMC-CV

estimator.

In our last numerical example we choose Φ1 = 0.2 exp(·), Φ2 = 3| · | and σ2
2 = 0.52, r2 =

0.2 for the GRFW2 and leave all other parameters unchanged. This leads to diffusion coefficient

which is more noise accentuated has slightly reduced jump heights (see also Subsection 7.8.2.4)

as can be seen in Figure 7.13.

Figure 7.13: Different samples of the diffusion coefficient with Gamma(4, 10) subordinators
with strong noise and higher correlation length in the underlying GRF together
with the corresponding PDE solutions with mixed Dirichlet-Neumann boundary
conditions.

As in the last experiment, we define the level dependent FE discretization parameters hℓ =

0.3·1.7−(ℓ−1) for ℓ = 1, . . . , 5 and compare the MLMC estimator with the MLMC-CV estimator.

We use 10 independent MLMC runs on the levels L = 1, . . . , 5 to estimate the RMSE and use

a singlelevel Monte Carlo estimation on level 7 as reference solution. The results are given in

Figure 7.14.

The reduced jump heights together with the emphasized (continuous) noise in the diffusion

coefficient leads to a slightly improved convergence rate of approximately 0.85 for the estima-

tors in this example (cf. Figure 7.12). As in the first experiment, we see that the usage of the

control variate yields a significant improvement which is reflected in smaller values for the

RMSE on the different levels compared to the standard MLMC approach. As expected, the right

hand side of Figure 7.14 shows an improved efficiency of the MLMC-CV estimator compared to

the standard MLMC estimator without control variates.
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Figure 7.14: Convergence of the MLMC and the MLMC-CV estimator for Gamma(4, 10) sub-
ordinators with strong noise and underlying GRF with higher correlation length
(left) and time-to-error plot (right).

7.8.4 Numerical examples: summary

In our numerical experiments we presented a varied choice of subordinators and parameters of

the GRFs. As expected, we see that the convergence rate of the MLMC estimator deteriorates if

the jump heights, i.e. the contrast in the diffusion coefficient, increases. We get a convergence

rate of approximatively 0.9 (resp. 0.85) for the adapted (resp. non-adapted) FEM MLMC

estimator in the examples with Poisson(1) subordinators (see Subsection 7.8.2.2). While similar

rates have been observed in the first example with Poisson(5) subordinators (see Subsection

7.8.2.3), we obtain smaller convergence rates for both approaches with Poisson(5) subordinators,

but a GRFW2 with smaller correlation parameter r2, leading to a higher contrast in the samples

of the diffusion coefficient. Here, we get a convergence rate of approximatively 0.85 (resp. 0.7)

for the adapted (resp. non-adapted) FEM MLMC estimator. Further, the absolute difference

between the respective RMSE values (i.e. the advantage of adapted FEM MLMC over non-

adapted FEM MLMC) increases significantly in this example (see Subsection 7.8.2.4). In contrast

to the sample adapted MLMC estimator, we cannot expect an improved convergence rate in the

MLMC-CV estimator. However, the standard deviation of the MLMC-CV estimator is reduced

by the variance reduction effect caused by the control variate which is demonstrated in the

numerical examples in Subsection 7.8.3.
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Abstract: We consider Gaussian subordinated Lévy fields (GSLFs) that arise by subordinating
Lévy processes with positive transformations of Gaussian random fields on some spatial domain
D ⊂ Rd, d ≥ 1. The resulting random fields are distributionally flexible and have in general
discontinuous sample paths. Theoretical investigations of the random fields include pointwise
distributions, possible approximations and their covariance function. As an application, a random
elliptic PDE is considered, where the constructed random fields occur in the diffusion coefficient.
Further, we present various numerical examples to illustrate our theoretical findings.

8.1 Introduction

Ample applications that are modeled stochastically require stochastic processes or random

fields, which allow for discontinuities or possess higher distributional flexibility than the

standard Gaussian model (see for example [72], [109] and [118]). In case of a one-dimensional

parameter domain, where the parameter often represents time, Lévy processes are widely

used (see e.g. [109] for some applications in finance). For higher-dimensional parameter

domains, some extensions of the Gaussian model have been proposed in the literature: The

authors of [49] consider (smoothed) Lévy noise fields with high distributional flexibility and
1IANS/SimTech, University of Stuttgart, Stuttgart, Germany
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continuous realizations in the context of random PDEs. In [16], the authors propose a general

random field model which allows for spatial discontinuities with flexible jump geometries.

However, in its general form, it not easy to investigate theoretical properties of the random

field itself. In the context of Bayesian inversion, the level set approach combined with Gaussian

random fields is often used as a discontinuous random field model (see, e.g. [76], [45] and

[46]). The distributional flexibility of the resulting model is, however, again restricted since the

stochasticity is governed by the Gaussian field. Another extension of the Gaussian model has

been investigated in the recent paper [95]. The construction is motivated by the subordinated

Brownian motion, which is a Brownian motion time-changed by a Lévy subordinator (i.e. a non-

decreasing Lévy process). As a generalization, the authors consider Gaussian random fields on a

higher-dimensional parameter domain subordinated by several independent Lévy subordinators.

The constructed random fields allow for spatial jumps and display great distributional flexibility.

However, the jump geometry is restricted in the sense that the jump interfaces are always

rectangular.

In this paper, we investigate another specific class of discontinuous random fields: the

Gaussian subordinated Lévy fields (GSLF). Motivated by the subordination of standard Lévy

processes, the GSLF is constructed by subordination of a general real-valued Lévy process by

a transformation of a Gaussian random field. It turns out that the resulting fields allow for

spatial discontinuities with flexible jump geometries, are distributionally flexible and relatively

easy to simulate. Besides a theoretical investigation of the constructed random fields, we

present numerical examples and introduce a possible application of the fields in the diffusion

coefficient of an elliptic model equation. Such a problem arises, for instance, in models for

subsurface/groundwater flow in heterogeneous/porous media (see [16], [36], [98] and the

references therein).

The rest of the paper is structured as follows: In Section 8.2 we shortly introduce Lévy

processes and Gaussian random fields, which are crucial for the definition of the GSLF in

Section 8.3. The pointwise distribution of the random fields are investigated in Section 8.4,

where we derive a formula for its (pointwise) characteristic function. Section 8.5 deals with

numerical approximations of the GSLF, including an investigation of the approximation error

and the pointwise distribution of the approximated fields. Our theoretical investigations are

concluded in Section 8.6, where we derive a formula for the covariance function. In Section 8.7,

we present various numerical examples which validate and illustrate the theoretical findings of

the previous sections. Section 8.8 concludes the paper and highlights the application of the

GSLF in the context of random elliptic PDEs, exploring theoretical as well as numerical aspects.
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8.2 Preliminaries

In the following section, we give a short introduction to Lévy processes and Gaussian random

fields following [95] since they are crucial elements for the construction of the Gaussian

subordinated Lévy field. For more details we refer the reader to [3, 108, 8]. Throughout the

paper, we assume that (Ω,F ,P) is a complete probability space.

8.2.1 Lévy processes

We consider an Borel-measurable index set T ⊆ R+ := [0,+∞). A stochastic process
X = (X(t), t ∈ T ) on T is a family of random variables on the probability space (Ω,F ,P).

Definition 8.2.1.

A stochastic process l on T = [0,+∞) is said to be a Lévy process if

i l(0) = 0 P-a.s.,

ii l has independent increments, i.e. for each 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn+1 the random variables
(l(tj+1)− l(tj), 1 ≤ j ≤ n) are mutually independent,

iii l has stationary increments, i.e. for each 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn+1 it holds l(tj+1)−l(tj)
D
=

l(tj+1 − tj)− l(0)
D
= l(tj+1 − tj), where D

= denotes equivalence in distribution,

iv l is stochastically continuous, i.e. for all a > 0 and for all s ≥ 0 it holds

lim
t→s

P(|l(t)− l(s)| > a) = 0.

The well known Lévy-Khinchin formula yields a parametrization of the class of Lévy processes

by the so called Lévy triplet (γl, b, ν). A proof can be found, for example, in [8, Th. 1.3.3 and p.

29].

Theorem 8.2.2 (Lévy-Khinchin formula).

Let l be a real-valued Lévy process on T ⊆ R+ := [0,+∞). There exist parameters γl ∈ R,
b ∈ R+ and a measure ν on R such that the characteristic function ϕl(t) of the Lévy process l
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admits the representation

ϕl(t)(ξ) := E(exp(iξl(t))) = exp(tψ(ξ)), ξ ∈ R,

for t ∈ T . Here, ψ denotes the characteristic exponent of l which is given by

ψ(ξ) = iγlξ −
b

2
ξ2 +

∫
R\{0}

eiξy − 1− iξy1{|y|≤1}(y)ν(dy), ξ ∈ R.

Further, the measure ν satisfies ∫
R
min(y2, 1) ν(dy) <∞,

and is called Lévy measure and (γl, b, ν) is called Lévy triplet.

8.2.2 Gaussian random fields

A random field defined over the Borel set D ⊂ Rd is a family of real-valued random variables

on the probability space (Ω,F ,P) parametrized by x ∈ D. The Gaussian random field defines

an important example (see [3, Sc. 1.2]):

Definition 8.2.3.

A random field (W (x), x ∈ D) on a d-dimensional domain D ⊂ Rd is said to be a Gaussian
random field (GRF) if, for any x(1), . . . , x(n) ∈ D with n ∈ N, the n-dimensional random
variable (W (x(1)), . . . ,W (x(n))) follows a multivariate Gaussian distribution. In this case, we
define the mean function µW (x(i)) := E(W (x(i))) and the covariance function qW (x(i), x(j)) :=

E((W (x(i)) − µW (x(i)))(W (x(j)) − µW (x(j)))), for x(i), x(j) ∈ D. The GRF W is called
centered, if µW (x) = 0 for all x ∈ D.

Note that every GRF is determined uniquely by its mean and covariance function. The

GRFs considered in this paper are assumed to be mean-square continuous, which is a common

assumption (cf. [3]). We denote by Q : L2(D) → L2(D) the covariance operator of W which

is defined by

Q(ψ)(x) =

∫
D
qW (x, y)ψ(y)dy, for x ∈ D,

for ψ ∈ L2(D). Here, L2(D) denotes the Lebesgue space of all square integrable functions

Subordinated Fields and Random Elliptic Partial Differential Equations



8.3 The Gaussian subordinated Lévy field 183

over D (see for example [2]). If D is compact, it is well known that there exists a decreasing

sequence (λi, i ∈ N) of real eigenvalues of Q with corresponding eigenfunctions (ei, i ∈
N) ⊂ L2(D)which form an orthonormal basis ofL2(D) (see [3, Section 3.2] and [115, Theorem

VI.3.2 and Chapter II.3]). A GRF W is called stationary if the mean function µW is constant

and the covariance function qW (x(1), x(2)) only depends on the difference x(1) − x(2) of the

values x(1), x(2) ∈ D and a stationary GRF W is called isotropic if the covariance function

qW (x(1), x(2)) only depends on the Euclidean length |x(1)−x(2)|2 of the difference of the values

x(1), x(2) ∈ D (see [3], p. 102 and p. 115).

Example 8.2.4. The Matérn-GRFs are a class of continuous GRFs which are commonly used
in applications. For a certain smoothness parameter ν > 1/2, correlation parameter r > 0 and
variance σ2 > 0, the Matérn-ν covariance function is defined by qM(x, y) = ρM(|x− y|2), for
(x, y) ∈ Rd

+ × Rd
+, with

ρM(s) = σ2 2
1−ν

Γ(ν)

(2s√ν
r

)ν
Kν

(2s√ν
r

)
, for s ≥ 0.

Here, Γ(·) is the Gamma function andKν(·) is the modified Bessel function of the second kind (see
[63, Section 2.2 and Proposition 1]). A Matérn-ν GRF is a centered GRF with covariance function
qM .

8.3 The Gaussian subordinated Lévy field

In this section we define Gaussian subordinated Lévy fields. Since their construction is moti-

vated by the subordination of standard Lévy processes we shortly repeat this procedure: If l

denotes a Lévy process and S denotes a Lévy subordinator (i.e. a non-decreasing Lévy process),

which is independent of l, the time-changed process

t 7→ l(S(t)), t ≥ 0,

is called subordinated Lévy process. It can be shown that this process is again a Lévy process

(cf. [8, Theorem 1.3.25]).

In order to construct the GSLF we consider a domain D ⊂ Rd with 1 ≤ d ∈ N. Let

l = (l(t), t ≥ 0) be a Lévy process, W : Ω×D → R be an F ⊗ B(D)-B(R)-measurable

GRF which is independent of l and F : R → R+ be a measurable, non-negative function. The
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Gaussian subordinated Lévy field is defined by

L(x) = l(F (W (x))), for x ∈ D.

Note that assuming the GRF W to have continuous paths is sufficient to ensure joint measura-

bility (see [6, Lemma 4.51]). Since the Lévy process l is in general discontinuous, the GSLF L

has in general discontinuous paths. This is demonstrated in Figure 8.1, which shows samples

of the GSLF.

Figure 8.1: Sample of a Matérn-1.5-GRF-subordinated Poisson process.

Remark 8.3.1. Discontinuous random fields often serve as prior model to solve inverse problems
with a Bayesian approach as an alternative to the standard Gaussian prior (see e.g. [76, 72]). In
these situations, the prior model is often set to be a Gaussian(-related) level-set function. One way
to construct such a prior model is as follows:

u(x) =
n∑

i=1

ui1Di
(x), x ∈ D,

where n ∈ N, (ui, i = 1, . . . , n) ⊂ R are fixed and

Di = {x ∈ D | ci−1 ≤ W (x) < ci},

with fixed levels (ci, i = 1, . . . , n) ⊂ R and a GRF W (see e.g. [46, 45]). The GSLF, as defined
above, may be interpreted as a generalization of the Gaussian level-set function.

Remark 8.3.2. It is easy to see that the GSLF is measurable: A Lévy process l : Ω× R+ → R
has càdlàg paths and, hence, is F ⊗ B(R+)− B(R)-measurable (see [106, Chapter 1, Theorem
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30] and [108, Chapter 6]). Further, since F and W are measurable by assumption, the mapping

(ω, x) 7→ F (W (ω, x)), (ω, x) ∈ Ω×D,

is F ⊗ B(D)− B(R+)-measurable. It follows now by [6, Lemma 4.49], that the mapping

(ω, x) 7→ (ω, F (W (ω, x))), (ω, x) ∈ Ω×D,

is F ⊗ B(D)−F ⊗ B(R+)-measurable. Therefore, the GSLF

(ω, x) 7→ l(ω, F (W (ω, x))), (ω, x) ∈ Ω×D,

is F ⊗ B(D)− B(R)-measurable (cf. [6, Lemma 4.22]).

8.4 The pointwise characteristic function of a GSLF

In the following section we derive a formula for the pointwise characteristic function of the GSLF,

which determines the pointwise distribution entirely. Such a formula is especially valuable

in applications, where distributions of a random field have to be fitted to data observed from

real-world phenomena. We start with a technical lemma on the computation of expectations of

functionals of the GSLF.

Lemma 8.4.1.

Let l = (l(t), t ≥ 0) be a stochastic process with a.s. càdlàg paths and W+ be a real-valued,
non-negative random variable which is stochastically independent of l. Further, let g : R → R be
a continuous function. It holds

E(g(l(W+))) = E(m(W+)),

with m(z) := E(g(l(z))) for z ∈ R+.

Proof. The proof follows the same arguments as the proof of [95, Lemma 4.1]. □

Remark 8.4.2. Note that Lemma 8.4.1 also holds for complex-valued, continuous and bounded
functions g : R → C (cf. [95, Remark 4.2]). Further, we emphasize that Lemma 8.4.1 also holds
for an Rd

+-valued random variable W+ and a random field (l(t), t ∈ Rd
+), independent of W+,
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which is a.s. càdlàg in each variable, i.e. for P-almost all ω ∈ Ω, it holds

lim
n→∞

l(t(n)1 , . . . , t(n)d ) = l(t1, . . . , td),

for t(n)j ↘ tj , for n→ ∞, j = 1, . . . , d, and any t = (t1, . . . , td) ∈ Rd
+.

With Lemma 8.4.1 at hand, we are able to derive a formula for the pointwise characteristic

funciton of the GSLF.

Corollary 8.4.3.

Let l = (l(t), t ≥ 0) be a Lévy process with Lévy triplet (γl, b, ν) and W = (W (x), x ∈ D)

be an independent GRF with pointwise mean µW (x) = E(W (x)) and variance σW (x)2 :=

Var(W (x)) for x ∈ D. Further, let F : R → R+ be measurable. It holds

ϕl(F (W (x)))(ξ) = E
(
exp(iξ l(F (W (x))))

)
=

1√
2πσW (x)2

∫
R
exp

(
F (y)ψ(ξ)− (y − µW (x))2

2σW (x)2

)
dy,

for x ∈ D, where ψ denotes the characteristic exponent of l defined by

ψ(ξ) = iγlξ −
b

2
ξ2 +

∫
R\{0}

eiξy − 1− iξy1{|y|≤1}(y)ν(dy), ξ ∈ R.

Proof. We consider a fixed x ∈ D and use Lemma 8.4.1 with g(·) := exp(iξ·) and

W+ := F (W (x)) to calculate

E
(
exp(iξ l(F (W (x))))

)
= E(g(l(W+)) = E(m(W+)) = E(m(F (W (x)))),

where m is defined through

m(z) = E(exp(iξl(z)) = exp(z ψ(ξ)), z ∈ R+,
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by the Lévy-Khinchin formula (see Theorem 8.2.2). Hence, we obtain

E
(
exp(iξ l(F (W (x))))

)
= E

(
exp(F (W (x))ψ(ξ))

)
=

1√
2πσW (x)2

∫
R
exp

(
F (y)ψ(ξ)− (y − µW (x))2

2σW (x)2

)
dy.

□

8.5 Approximation of the fields

The GSLF may in general not be simulated exactly since in most situations it is not possible

to draw exact samples of the corresponding GRF and the Lévy process. The question arises

how the GSLF may be approximated and if the corresponding approximation error may be

quantified. In this section we answer both questions. We prove an approximation result for the

GSLF where we approximate the GRF and the Lévy process separately. To be more precise, we

approximate the Lévy processes using a piecewise constant càdlàg approximation on a discrete

grid (see e.g. [15] and the remainder of the current section). The GRF may be approximated

by a truncated Karhuen-Loève-expansion or using values of the GRF simulated on a discrete

grid, e.g. via circulant embedding (see, e.g. [16, 1, 112] resp. [64, 65]). Naturally, we have to

start with some assumptions on the regularity of the GRF and the approximability of the Lévy

process. For simplicity, we consider centered GRFs in this subsection.

Assumption 8.5.1.

Let W be a zero-mean GRF on the compact domain D. We denote by qW : D × D → R the
corresponding covariance function and by ((λi, ei), i ∈ N) the eigenpairs associated to the
corresponding covariance operator Q as introduced in Section 8.2.2. In particular, (ei, i ∈ N) is
an orthonormal basis of L2(D).

i We assume that the eigenfunctions are continuously differentiable and there exist positive
constants α, β, Ce, Cλ > 0 such that for any i ∈ N it holds

∥ei∥L∞(D) ≤ Ce, ∥∇ei∥L∞(D) ≤ Cei
α,

∞∑
i=1

λii
β ≤ Cλ < +∞.

ii F : R → R+ is Lipschitz continuous and globally bounded by CF > 0, i.e. F (x) <
CF , x ∈ R.
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iii l is a Lévy process on [0, CF ] with Lévy triplet (γl, b, ν) which is independent of W . Further,
we assume there exists a constant η > 1 and càdlàg approximations l(εl) of this process such
that for every s ∈ [1, η) it holds

E(|l(t)− l(εl)(t)|s) ≤ Clεl, t ∈ [0, CF ), (8.1)

for εl > 0 and

E(|l(t)|s) ≤ Clt
δ, t ∈ [0, CF ), (8.2)

with δ ∈ (0, 1] and a constant Cl > 0.

We continue with a remark on Assumption 8.5.1.

Remark 8.5.2. Assumtion 8.5.1 i is natural for GRFs and guarantees certain regularity properties
for the paths of the GRF (see e.g. [16, 96, 29]). Equation (8.1) ensures that we can approximate
the Lévy subordinators in an Ls-sense. This can be achieved under appropriate assumptions
on the tails of the distribution of the Lévy processes, see [15, Assumption 3.6, Assumption 3.7,
Theorem 3.21] and [96, Section 7]). There are several results in the direction of condition (8.2). For
example, in [90] and [37], the authors formulate general assumptions on the Lévy measure which
guarantee Equation (8.2) and similar properties. Further, in [90] the authors explicitly derive the
rate δ in Equation (8.2) for several Lévy processes. In [23, Proposition 2.3], an exact polynomial
time-dependence of the absolute moments of a Lévy process under the assumption that the absolute
moment of the Lévy process exists up to a certain order was proven. In order to illustrate (8.2), we
present a short numerical example: for three different Lévy processes, we estimate E(|l(t)|s) for
t = 2i with i ∈ {1, 0,−1, . . . ,−16} using 107 samples of the process l and different values for
the exponent s ≥ 1. The results are shown in Figure 8.2, where the estimated moments E(|l(t)|s)
are plotted against the time parameter t. The results clearly indicate that E(|l(t)|s) = O(t),
t→ 0 which implies (8.2) with δ = 1 in the considered examples.

We close this subsection with a remark on a possible way to construct approximations of

Lévy processes.

Remark 8.5.3. One way to construct a càdlàg approximation l(εl) ≈ l is a piecewise constant
extension of the values of the process on a discrete grid: assume {ti, i = 0 . . . , Nl}, with t0 = 0
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Figure 8.2: Estimated s-moment for different Lévy processes and different values of s. Top:
Gamma(2,4) process, middle: Poisson(5) process, bottom: NIG(2,1,1) process.

and tNl
= CF is a grid on [0, CF ] with |ti+1 − ti| = ti+1 − ti = εl > 0 for i = 0, . . . , Nl − 1

and {l(ti), i = 0, . . . , Nl} are the values of the process l on this grid. We define

l(εl)(t) =
Nl∑
i=1

1[ti−1,ti)(t) l(ti−1), t ∈ [0, CF ).

Such a construction yields an admissible approximation in the sense of Assumption 8.5.1 iii for
many Lévy processes (see e.g. [96, Section 7] for the case of Poisson and Gamma processes). Note
that the values of the process on the grid may be simulated easily for many Lévy processes using
the independent and stationary increment property.
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8.5.1 Approximation of the GRF

In this subsection, we shortly introduce two possible approaches to approximate the GRF

W. Both approaches are admissible for the construction of approximations of the GSLF in

Subsection 8.5.2. In the following and for the rest of the section, we consider D = [0, D]d.

Assumption 8.5.1 allows conclusions to be drawn on the spatial regularity of the GRF W . The

next lemma on the approximation of the GRF W follows from the regularity properties of W

(see [96, Lemma 4.4] and [29]).

Lemma 8.5.4.

Consider the discrete grid G(εW ) = {(xi(1), . . . , xi(d))| i(1), . . . , i(d) = 0, . . . ,MεW } on D
where (xi, i = 0, . . . ,MεW ) is an equidistant grid on [0, D] with maximum step size εW .
Further, let W (εW ) be an approximation of the GRF W on the discrete grids G(εW ) which is
constructed by point evaluation of the random field W on the grid and multilinear interpolation
between the grid points. Under Assumption 8.5.1 i, it holds for n ∈ [1,+∞):

∥W −W (εW )∥Ln(Ω;L∞(D)) ≤ C(D,n, d)εγW

for γ < min(1, β/(2α)), where β and α are the parameters from Assumption 8.5.1 i.

It follows by the Karhunen-Loève-Theorem (see e.g. [3, Section 3.2]) that the GRF W admits

the representation

W (x) =
∞∑
i=1

√
λiZiei(x), x ∈ D,

with i.i.d. N (0, 1)-distributed random variables (Zi, i ∈ N) and the sum converges in the

mean-square sense, uniformly in x ∈ D. The Karhunen-Loève expansion (KLE) motivates

another approach to approximate the GRF W : For a fixed cut-off index N ∈ N, we define the

approximation WN by

WN(x) =
N∑
i=1

√
λiZiei(x), x ∈ D. (8.3)

Under Assumption 8.5.1 we can quantify the corresponding approximation error (cf. [16,

Theorem 3.8]).
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Lemma 8.5.5.

Let Assumption 8.5.1 i hold. Then, it holds for any N ∈ N and n ∈ [1,+∞):

∥W −WN∥Ln(Ω;L∞(D)) ≤ C(D,n, d)N−β
2 .

Proof. It follows by [16, Theorem 3.8] that

∥W −WN∥2
Ln(Ω;L∞(D)) ≤ C(D,n, d)

∞∑
i=N+1

λi,

for all N ∈ N. We use Assumption 8.5.1 i to compute

∞∑
i=N+1

λi =
∞∑

i=N+1

λii
βi−β ≤ N−β

∞∑
i=N+1

λii
β ≤ CλN

−β,

which finishes the proof. □

In the following, we denote by WN an approximation of the GRF of W . The notation is

clear if we approximate the GRF by the truncated KLE. If we approximate W by sampling

on a discrete grid (cf. Lemma 8.5.4), then we use εW = 1/N and abuse notation to write

WN = W (1/N). Regardless of the choice between these two approaches, we thus obtain an

approximation WN ≈ W with

∥W −WN∥Ln(Ω;L∞(D)) ≤ C(D,n, d)R(N), (8.4)

for N ∈ N and n ∈ [1,+∞), where R(N) = N−γ if we approximate the GRF by discrete

sampling and R(N) = N−β
2 if we approximate it by the KLE approach.

8.5.2 Approximation of the GSLF

We are now able to quantify the approximation error for the GSLF where both components,

the Lévy process and the GRF, are approximated.

Theorem 8.5.6.

Let Assumption 8.5.1 hold and assume an approximation WN ≈ W of the GRF is given, as
introduced in Subsection 8.5.1. For a given real number 1 ≤ p < η and a globally Lipschitz
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continuous function g : R → R, it holds

∥g(l(εl)(F (WN)))− g(l(F (W )))∥Lp(Ω;Lp(D)) ≤ C(ε
1
p

l +R(N)
δ
p ),

for N ∈ N and εl > 0, where δ is the positive constant from (8.2).

Proof. We calculate using Fubini’s theorem and the triangle inequality

∥g(l(εl)(F (WN)))− g(l(F (W )))∥Lp(Ω;Lp(D))

≤ ∥g(l(εl)(F (WN)))− g(l(F (WN)))∥Lp(Ω×D)

+ ∥g(l(F (WN)))− g(l(F (W )))∥Lp(Ω×D)

=: I1 + I2

Further, we use the Lipschitz continuity of g together with Lemma 8.4.1 to obtain for any x ∈ D

E(|g(l(εl)(F (WN(x))))− g(l(F (WN(x))))|p)
≤ CgE(|l(εl)(F (WN(x)))− l(F (WN(x)))|p)
= E(m(F (WN(x)))

with

m(z) = E(|l(z)− l(εl)(z)|p) ≤ Clεl

for z ∈ [0, CF ) by Assumption 8.5.1 iii. Therefore, we obtain

E(|g(l(εl)(F (WN(x))))− g(l(F (WN(x))))|p) ≤ Clεl,

for all x ∈ D and, hence,

Ip1 =

∫
D
E(|g(l(εl)(F (WN(x))))− g(l(F (WN(x))))|p)dx

≤ DdClεl.

For the second summand we calculate using Lemma 8.4.1 and Remark 8.4.2 with l̃(t1, t2) :=

l(t1)− l(t2) and W̃+ := (F (W (x)), F (WN(x)))

E(|l(F (W (x)))− l(F (WN(x)))|p) = E(m̃(F (W (x)), F (WN(x)))),
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with

m̃(t1, t2) = E(|l(t1)− l(t2)|p), t1, t2 ∈ [0, CF ).

For CF > t1 ≥ t2 ≥ 0, the stationarity of l together with Assumption 8.5.1 iii yields

m̃(t1, t2) = E(|l(t1 − t2)|p) ≤ Cl|t1 − t2|δ.

Further, for 0 ≤ t1 ≤ t2 < CF we have

m̃(t1, t2) = E(|l(t2)− l(t1)|p) = E(|l(t2 − t1)|p) ≤ Cl|t2 − t1|δ.

Overall, we obtain for any ω ∈ Ω the pathwise estimate

m̃(F (W (x)), F (WN(x))) ≤ Cl|F (W (x))− F (WN(x))|δ,

for any x ∈ D. We apply Hölder’s inequality and Equation (8.4) to obtain

E(|l(F (W (x)))− l(F (WN(x)))|p) = E(m̃(F (W (x)), F (WN(x)))),

≤ ClE(|F (W (x))− F (WN(x))|δ)
≤ ClE(|F (W (x))− F (WN(x))|)δ

≤ ClCFE(|W (x)−WN(x)|)δ

≤ ClCFC(D, d)
δR(N)δ,

for any x ∈ D. Finally, we use the Lipschitz contnuity of g to obtain:

Ip2 =

∫
D
E(|g(l(F (WN(x))))− g(l(F (W (x))))|p)dx

≤ C(Cl, D, d, δ, CF , Cg)R(N)δ.

Overall, we end up with

∥g(l(εl)(F (WN)))− g(l(F (W )))∥Lp(Ω;Lp(D)) ≤ C(Cl, D, d, δ, CF , Cg, p)(ε
1
p

l +R(N)
δ
p ).

□
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8.5.3 The pointwise distribution of the approximated GSLF

In Section 8.4 we investigated the pointwise distribution of a GSLF and derived a formula for its

pointwise characteristic function. In Section 8.5, we demonstrated how approximations of the

Lévy process l and the underlying GRFW may be used to approximate the GSLF and quantified

the approximation error. This is of great importance especially in applications, since it is in

general not possible to simulate the GRF or the Lévy process on their continuous parameter

domains. The question arises how such an approximation affects the pointwise distribution of

the field. For this purpose, we prove in the following a formula for the pointwise charateristic

function of the approximated GSLF.

Corollary 8.5.7.

We consider a GSLF with Lévy process l and an independent GRF W . Let l(εl) ≈ l be a càdlàg
approximation of the Lévy process and WN ≈ W be an approximation of the GRF, where we
assume that the mean function µW of the GRF W is known and does not need to be approximated.
For x ∈ D, the pointwise characteristic function of the approximated GSLF is given by

ϕl(εl)(F (WN (x)))(ξ) = E
(
exp(iξl(εl)(F (WN(x))))

)
= E(ρl(εl)(F (W

N(x)), ξ)), ξ ∈ R,

where

ρl(εl)(t, ξ) = E(exp(iξl(εl)(t))),

denotes the pointwise characteristic function of l(εl). Further, consider the discrete grid {ti, i =
0, . . . , Nl} with t0 = 0, tNl

= CF and |ti+1 − ti| = εl, for i = 0, . . . , Nℓ − 1.

If the Lévy process is approximated according to Remark 8.5.3 and the GRF is approximated
with the truncated KLE, that is

WN(x) = µW (x) +
N∑
i=1

√
λiZiei(x) ≈ µW (x) +

∞∑
i=1

√
λiZiei(x) = W (x), x ∈ D,

with some N ∈ N, i.i.d. standard normal random variables (Zi, i ∈ N) and eigenbasis
((λi, ei), i ∈ N) corresponding to the covariance operator Q of W (cf. Section 8.5.1) and
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F (·) < CF , we obtain

ϕl(εl)(F (WN (x)))(ξ) =
1√

2πσ2
W,N(x)

∫
R
exp

(
t⌊F (y)/εl⌋ψ(ξ)−

(y − µW (x))2

2σ2
W,N(x)

)
dy, ξ ∈ R.

Here, σ2
W,N is the variance function of the approximation WN , which is given by

σ2
W,N(x) := Var(WN(x)) = E

( N∑
i=1

√
λiZiei(x)

)2
=

N∑
i=1

λie
2
i (x), x ∈ D.

The function ψ denotes the characteristic exponent of l defined by

ψ(ξ) = iγlξ −
b

2
ξ2 +

∫
R\{0}

eiξy − 1− iξy1{|y|≤1}(y)ν(dy),

for ξ ∈ R and, for any positive real number x, we denote by ⌊x⌋ the largest integer smaller or
equal than x.

Proof. As in the proof of Corollary 8.4.3, we use Lemma 8.4.1 to calculate

ϕl(εl)(F (WN (x)))(ξ) = E
(
exp(iξl(εl)(F (WN(x))))

)
= E(ρl(εl)(F (W

N(x)), ξ)), ξ ∈ R.

In the next step, we compute the charateristic function of the approximation l(εl) of the Lévy

process constructed as described in Remark 8.5.3. We use the independence and stationarity of

the increments of the Lévy process to obtain

l(εl)(t) =
Nl∑
i=1

1[ti−1,ti)(t)l(ti−1) =
Nl∑
i=1

1[ti−1,ti)(t)
i−1∑
j=1

l(tj)− l(tj−1)
D
=

⌊t/εl⌋∑
k=1

lεlk ,

where (lεlk , k ∈ N) are i.i.d. random variables following the distribution of l(εl) and we denote

by
D
= equivalence of the corresponding probability distributions. The convolution theorem (see

e.g. [79, Lemma 15.11]) yields the representation

ϕl(εl)(t)(ξ) =
⌊t/εl⌋∏
k=1

E(exp(iξl(εl)k )) =
⌊t/εl⌋∏
k=1

exp(εlψ(ξ)) = exp(⌊t/εl⌋εlψ(ξ))

= exp(t⌊t/εl⌋ψ(ξ)),
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for t ∈ [0, CF ) and ξ ∈ R. Therefore, we obtain

ϕl(εl)(F (WN (x)))(ξ) = E(exp(t⌊F (WN (x))/εl⌋ψ(ξ))), ξ ∈ R.

The second formula for the characteristic function of the approximated field now follows from

the fact that WN(x) ∼ N (µW (x), σ2
W,N(x)). □

8.6 The covariance structure of GSLFs

In many modeling applications one aims to use a random field model that mimics a specific

covariance structure which is, for example, obtained from empirical data. In such a situation it

is useful to have access to the theoretical covariance function of the random fields used in the

model. Therefore, we derive a formula for the covariance function of the GSLF in the following

section.

Lemma 8.6.1.

Assume W is a GRF and l is an independent Lévy process with existing first and second moment.
We denote by µW , σ2

W and qW , the mean, variance and covariance function ofW and by µl(t) =

E(l(t)), µ(2)
l (t) := E(l(t)2) the functions for the first second moment of the Lévy process l. For

x ̸= x′ ∈ D, the covariance function of the GSLF L is given by

qL(x, x
′) =

∫
R2

cl(F (u), F (v))f(W (x),W (x′))(u, v)d(u, v)

−
∫
R
µl(F (u))fW (x)(u)du

∫
R
µl(F (v))fW (x′)(v)dv,

where we define

fW (x)(u) :=
exp

(
− (u−µW (x))2

2σ2
W (x)

)
√
2πσ2

W (x)
,

ΣW (x, x′) :=

[
σ2
W (x) qW (x, x′)

qW (x, x′) σ2
W (x′)

]
,
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f(W (x),W (x′))(u, v) :=

exp
(
− 1

2

(
u− µW (x)

v − µW (x′)

)T

ΣW (x, x′)−1

(
u− µW (x)

v − µW (x′)

))
,√

(2π)2
(
σ2
W (x)σ2

W (x′)− q2W (x, x′)
)

cl(u, v) := µl(|u− v|)µl(u ∧ v) + µ(2)
l (u ∧ v),

for u, v ∈ R with u ∧ v := min(u, v). For x = x′ ∈ D, the pointwise variance is given by

σ2
L(x) = qL(x, x) =

∫
R
µ(2)
l (F (u))fW (x)(u)du−

( ∫
R
µl(F (u))fW (x)(u)du

)2
.

Proof. We compute using Lemma 8.4.1, for x ∈ D

µL(x) := E(L(x)) = E
(
l(F (W (x)))

)
= E

(
µl(F (W (x))))

)
.

Further, we calculate for x, x′ ∈ D

qL(x, x
′) = E

(
(L(x)− µL(x))(L(x

′)− µL(x
′))
)

= E(L(x)L(x′))− µL(x)µL(x
′).

Next, we consider0 ≤ t1 ≤ t2 and use the fact that l has stationary and independent increments

to compute

E(l(t1)l(t2)) = E
(
(l(t2)− l(t1))l(t1)

)
+ E(l(t1)2) = µl(t2 − t1)µl(t1) + µ(2)

l (t1).

Similarly, we obtain for 0 ≤ t2 ≤ t1

E(l(t1)l(t2)) = E
(
(l(t1)− l(t2))l(t2)

)
+ E(l(t2)2) = µl(t1 − t2)µl(t2) + µ(2)

l (t2),

and, hence, it holds for general t1, t2 ≥ 0:

cl(t1, t2) := E(l(t1)l(t2)) = µl(|t1 − t2|)µl(t1 ∧ t2) + µ(2)
l (t1 ∧ t2).
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Another application of Lemma 8.4.1 and Remark 8.4.2 yields

E(L(x)L(x′)) = E(l(F (W (x)))l(F (W (x′)))) = E(cl(F (W (x)), F (W (x′)))).

Putting these results together, we end up with

qL(x, x
′) = E(L(x)L(x′))− µL(x)µL(x

′)

= E(cl(F (W (x)), F (W (x′))))− E(µl(F (W (x))))E(µl(F (W (x′)))),

for x, x′ ∈ D. The assertion now follows from the fact that W (x) ∼ N (µW (x), σ2
W (x))

and (W (x),W (x′))T ∼ N2((µW (x), µW (x′))T ,ΣW (x, x′)), for x ̸= x′ ∈ D, together with

cl(t, t) = µ(2)
l (t) for t ≥ 0. □

8.7 Numerical examples

In this section, we present numerical experiments on the theoretical results presented in the

previous sections. The aim is to investigate the results of existing numerical methods and to

illustrate the theoretical properties of the GSLF which have been proven in the previous sections,

e.g. the pointwise distribution of the approximated fields or the quality of this approximation

(see Theorem 8.5.6). Further, the presented numerical experiments and methods may also be

useful for fitting the GSLF to existing data in various applications.

8.7.1 Pointwise characteristic function

Corollary 8.4.3 gives access to the pointwise characteristic function of the GSLF L(x) =

l(F (W (x))), x ∈ D, with a Lévy process l and a GRF W , which is independent of l. Using

the characteristic function and the Fourier inversion (FI) method (see [56]) we may compute

the pointwise density function of the GSLF. Note that in both of these steps, the application of

Corollary 8.4.3 and of the Fourier inversion theorem, numerical integration is necessary which

may be inaccurate or computationally expensive. In this subsection, we choose specific Lévy

processes together with a GRF and compare the computed density function of the corresponding

GSLF with the histogram of samples of the simulated field. To be precise, we choose a Matérn-

1.5-GRF, a Gamma process, set F = | · |+ 1 and consider the GSLF L(x) = l(F (W (x)) on

D = [0, 1]2. The distributions and the corresponding density functions are presented in Figure

8.3. In line with our expectations, the FI approach perfectly matches the true distribution of
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the field at (1, 1).

Figure 8.3: 105 samples of the GSLF evaluated at (1, 1) and the corresponding density functions
approximated via FI. Left: Gamma(3,10) process and a Matérn GRF with σ = 2.
Right: Gamma(2,4) process with Matérn GRF with σ = 1.5.

8.7.2 Pointwise distribution of approximated fields

In Subsection 8.7.1 we presented a numerical example regarding the pointwise distribution of

the GSLF. In applications, it is not possible to draw samples from the exact GSLF and, hence,

one has to use approximations instead. The effect of such an approximation on the pointwise

distribution of the random field has been investigated theoretically in Subsection 8.5.3. In this

section, we aim to provide a numerical example in order to visualize the distributional effect of

sampling from an approximation of the GSLF. For a specific choice of the Lévy process l, the

transformation functionF and the GRFW , we use Corollary 8.5.7 and the FI method to compute

the pointwise distribution of the approximated field l(εl)(F (WN(x))) ≈ l(F (W (x))) for

different approximation parameters εl (resp. N ) of the Lévy process (resp. the GRF). The

computed densities are then compared with samples of the approximated field. We set D =

[0, 1]2 and consider the evaluation point x = (0.4, 0.6). The GRF W is given by the KLE

W =
∞∑
k=1

√
λkek(x, y)Zk,

where the eigenbasis is defined by

ek(x, y) = 2 sin (πkx) sin (πky) , λk = 10(k2π2 + 0.12)−ν,
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level 1 2 3 4 5 6
εl 1 0.5 0.01 0.001 0.0001 1e-7
N 3 5 250 2500 25000 1e7

Table 8.1: Discretization parameters for the approximation of the GSLF.

with ν = 0.6 (see [51, Appendix A]). Further, we set F (x) = 1 + min(|x|, 30) and choose

l to be a Gamma(3,10) process. The threshold 30 in the definition of F is large enough to

have no effect in our numerical example since the absolute value of W does not exceed 30 in

all considered samples. We use piecewise constant approximations l(εl) of the Lévy process l

on an equidistant grid with stepsize εl > 0 (see Remark 8.5.3) and approximate the GRF W

by the truncated KLE with varying truncation indices N . To be more precise, we choose 6

different approximation levels for these two approximation parameters, as described in Table

8.1. For each discretization level, we compute the characteristic function using Corollary 8.5.7,

approximate the density function via FI and compare it with 105 samples of the approximated

field evaluated at the point (0.4, 0.6). The results are given in Figure 8.4. As expected from

Figure 8.4: Approximated pointwise densities (FI) of the GSLF on the different discretization
levels together with samples of the corresponding approximated GSLF.

Subsection 8.7.1, we see that the densities of the pointwise distribution of the approximated

GSLF, which are approximated by FI, fit the actual samples of the approximated field accurately.

In order to get a better impression of the influence of the approximation on the different levels,

Figure 8.5 shows the densities of the evaluated approximated GSLF on the different levels,
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together with the density of the exact field. We see how the densities of the approximted GSLF

converge to the density of the exact field for εl → 0 and N → ∞. The results also show that

the effect of the approximation of the GSLF should not be unterestimated: on the lower levels,

we obtain comparatively large deviations of the pointwise densities from the density of the

exact field, which should be taken into account in applications. Obviously, the effect of the

approximation depends heavily on the specific choice of the Lévy process and the underlying

GRF.

Figure 8.5: Approximated pointwise densities (FI) of the GSLF on the different discretization

levels together with the pointwise density of the actual GSLF.

8.7.3 Numerical approximation of the GSLF

In Section 8.5, we considered approximations l(εl) ≈ l of the Lévy process and WN ≈ W of

the GRF and derived an error bound on the corresponding approximation l(εl)(F (WN(x))) ≈
l(F (W (x))) (see Theorem 8.5.6). In fact, under Assumption 8.5.1, if we choose the approxima-

tion parameter N of the GRF W such that R(N) ∼ ε1/δl with R(N) from Equation (8.4), we

obtain an overall approximation error which is dominated by ε1/pl :

∥l(εl)(F (WN))− l(F (W ))∥Lp(Ω;Lp(D)) = O(ε1/pl ), εl → 0.

In this section, we present numerical experiments to showcase this approximation result.

We set F (x) = min(|x|, 30) and consider the domain D = [0, 1]2. Let

W (x, y) =
∞∑
k=1

√
λkek(x, y)Zk,
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be a GRF with corresponding eigenbasis

ek(x, y) = 2 sin (πkx) sin (πky) , λk = 100 (k2π2 + 0.22)−ν, ν > 0.5. (8.5)

With this choice, Assumption 8.5.1 i is satisfied with α = 1 and 0 < β < 2ν − 1 , since

∞∑
k=1

λkk
β ≤ C

∞∑
k=1

kβ−2ν <∞,

where we used that λk ≤ Ck−2ν for k ∈ N. Hence, we obtain by Lemma 8.5.5

∥W −WN∥Ln(Ω;L∞(D)) ≤ C(D,n)N−β
2 ,

for 0 < β < 2ν − 1, i.e. R(N) = N−β
2 in Equation (8.4) and Theorem 8.5.6. In our experi-

ments, we choose the Lévy subordinator l to be a Poisson or Gamma process. Approximations

l(εl) ≈ l of these processes satisfying Assumption 8.5.1 iii may be obtained by piecewise con-

stant extensions of values of the process on a grid with stepsize εl (see Remark 8.5.3). For these

processes, we obtain δ = 1 in (8.2) (see Remark 8.5.2 and [96, Section 7]). Overall, Theorem

8.5.6 yields the error bound

∥l(εl)(F (WN))− l(F (W ))∥Lp(Ω;Lp(D)) = C(ε
1
p

l +N− β
2p ),

for 0 < β < 2ν − 1. Hence, in order to equilibrate the error contributions from the GRF

approximation and the approximation of the Lévy process, one should choose the cut-off index

N of the KLE approximation of the GRF W according to

N ≃ ε
− 2

2ν−1

l , (8.6)

which then implies

∥l(εl)(F (WN))− l(F (W ))∥Lp(Ω;Lp(D)) ≤ Cε
1
p

l . (8.7)

In our experiments, we set the approximation parameters of the Lévy process to be εl = 2−ℓ,

for ℓ = 2, . . . , 10 and the cut-off indices of the GRF are choosen according to (8.6). In order to

verify (8.7), we draw 150 samples of the random variable

l(εl)(F (WN))− l(F (W )),
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for the described approximation parameters to estimate the corresponding Lp norm of the

approximation error for p ∈ {1, 2, 2.5, 3, 3.3} which is expected to behave as O(ε1/pl ).

In our first example, we set l to be a Poisson(8) process and ν = 2.5 in Equation (8.5). In

order to obtain a sufficiently accurate reference field in each sample, we take 150 summands in

the KLE of the GRF W and use an exact sample of a Poisson process computed by the Uniform

Method (see [109, Section 8.1.2]). The resulting estimates for the Lp approximation error are

plotted against εl for p ∈ {1, 2, 2.5, 3.3}, which is illustrated in the Figure 8.6. As expected,

Figure 8.6: Estimated Lp approximation errors against the discretization parameter εl for
different values of p using a Poisson(8) process (top) and overview for p =
1, 2, 2.5, 3, 3.3 (bottom).

the approximatedLp errors converge asymptotically with rate ε1/pl for the considered moments

p. The bottom plot of Figure 8.6 shows an overview of theLp approximation errors for different

values of p and illustrates that the Lp-errors indeed converge with different rates.

In our second numerical example, we set l to be a Gamma(2,4) process. Further, we set

ν = 2 in Equation (8.5). The approximations l(εl) ≈ l of the Lévy process on the different

levels are again computed by piecewise constant extensions of values of the process on an

equidistant grid with stepsize εl. Aiming to verify Equation (8.7), we use 150 samples to estimate

the Lp approximation error, for p ∈ {1, 2, 2.5, 3, 3.3}. In order to compute a sufficiently

accurate reference field in each sample, we use 500 summands in the KLE approximation of

the GRF W and the Gamma process is computed on a reference grid with stepsize εl = 2−13.
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The convergence of the estimated Lp error plotted against the discretization parameter εl is

visualized in Figure 8.7, which shows the expected behaviour of the estimated Lp error for the

considered moments p. As in the previous experiment, we provide a plot with all estimated Lp

errors in one figure (see bottom plot in Figure 8.7), which again confirms that the Lp-error of

the approximation converge in εl with rate 1/p for the considered values of p.

Figure 8.7: Estimated Lp approximation errors against the discretization parameter εl for
different values of p using a Gamma(2,4) process (top) and overview for p =
1, 2, 2.5, 3, 3.3 (bottom).

8.7.4 Empirical estimation of the covariance of the GSLF

Lemma 8.6.1 gives access to the covariance function of the GSLF. This is of interest in applica-

tions, since it is often required that a random field mimics a specific covariance structure which

is determined by (real-world) data. In this example, we choose specific GSLFs and spatial points

to compute the corresponding covariance using Lemma 8.6.1 and compare it with empirically

estimated covariances using samples of the GSLF. We choose D = [0, 2]2 and estimate the

covariance with a single level Monte Carlo estimator using a growing number of samples of the

field L evaluated at the two considered points x, x′ ∈ D. IfM denotes the number of samples

used in this estimation and EM(x, x′) denotes the Monte Carlo estimation of the covariance,
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the convergence rate of the corresponding RMSE for a growing number of samples is −1/2,

i.e.

RMSE := ∥qL(x, x′)− EM(x, x′)∥L2(Ω) = O(1/
√
M), M → ∞.

In our experiments, we use Poisson and Gamma processes and W is set to be a centered GRF

with squared exponential covariance function, i.e.

qW (x, x′) = σ2 exp(−|x− x′|22/r2), x, x′ ∈ D,

with pointwise variance σ2 > 0, correlation length r > 0 and F = | · |. In our first experiment

we choose l to be a Gamma process with varying parameters. The RMSE is estimated for

a growing number of samples M and 100 independent MC runs. The results are shown in

Figure 8.8. As expected, the approximated RMSE convergences with order O(1/
√
M) for both

experiments. In our second example we set l to be a Poisson process (see Figure 8.9). As in the

Figure 8.8: Convergence of RMSE of empirical covariance qL(x, x′); left: l is a Gamma(4,1.5)
process, r = 1, σ2 = 4, x = (0.2, 1.5), x′ = (0.9, 0.8), qL(x, x′) ≈ 3.0265;
right: l is a Gamma(5,6) process, r = 1.2, σ2 = 1.52, x = (0.9, 1.2), x′ =
(1.6, 0.5), qL(x, x′) ≈ 0.236.

previous example, we see a convergence rate of order O(1/
√
M) of the MC estimator for the

covariance in each experiment. For small sample numbers, the error values for the estimation

of the covariances might seem quite high: for example, in the left plot of Figure 8.9, using

M = 100 samples, we obtain an approximated RMSE which is approximately two times the

exact value of the covariance. This seems to large at first glance. However, one has to keep

in mind that the RMSE is bounded by
√
Var(L(x) · L(x′))/

√
M and the standard deviation

of the product of the evaluated field may become quite large. In fact, in the left hand side of
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Figure 8.9: Convergence of RMSE of empirical covariance qL(x, x′); left: l is a Poisson(8)
process, r = 0.5, σ2 = 1.52, x = (0.5, 0.8), x′ = (0.6, 1.5), qL(x, x′) ≈ 6.4807;
right: l is a Poisson(3) process, r = 1, σ2 = 1, x = (1.2, 0.6), x′ = (0.9, 1.7),
qL(x, x

′) ≈ 1.6485.

Figure 8.9 we obtain
√
Var(L(x) · L(x′)) ≈ 138, 46 which fits well to the observed results,

being approximately 10 =
√
100 times the approximated RMSE for M = 100 samples. In

practice, it is therefore important to keep in mind that the estimation of the covariance based

on existing data might require a large number of observations.

8.8 GSLFs in elliptic PDEs

In the previous sections, we considered theoretical properties of the GSLF and presented

numerical examples to validate and visualize these results. In the last section of this paper

we present an application of the GSLF in the context of PDEs. This might be interesting, for

example, to model subsurface/groundwater flow in uncertain heterogeneous or fractured media.

In such a modeling situation the media is often modeled by a random field, which should

therefore be distributionally flexible and allow for spatial discontinuities, both of which are

fulfilled in the case of the GSLF. This motivates the investigation of a general elliptic PDE

where the GSLF occurs in the diffusion coefficient. We introduce the considered elliptic PDE in

Subsection 8.8.1 following [93], [96] and [16]. Spatial discretization methods are discussed in

Subsection 8.8.2 and we conclude this section with numerical experiments in Subsection 8.8.3.
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8.8.1 Problem formulation and existence of solutions

Let D ⊂ R2 be a bounded, connected Lipschitz domain2. Define H := L2(D) and consider

the elliptic PDE

−∇ · (a(ω, x)∇u(ω, x)) = f(ω, x) in Ω×D, (8.8)

where we impose the boundary conditions

u(ω, x) = 0 on Ω× Γ1, (8.9)

a(ω, x)−→n · ∇u(ω, x) = g(ω, x) on Ω× Γ2. (8.10)

Here, we split the boundary ∂D = Γ1

.
∪ Γ2 in two one-dimensional manifolds Γ1, Γ2 and

assume that Γ1 is of positive measure and that the exterior normal derivative −→n · ∇v on Γ2

is well-defined for every v ∈ C1(D), where −→n is the outward unit normal vector to Γ2. The

mappings f : Ω×D → R and g : Ω×Γ2 → R a measurable functions and a : Ω×D → R
is defined by

a : Ω×D → (0,+∞),

(ω, x, y) 7→ a(x, y) + Φ1(W1(x, y)) + Φ2(l(F (W2(x, y)))), (8.11)

where

• a : D → (0,+∞) is deterministic, continuous and there exist finite constants a+, a− >

0 with a− ≤ a(x, y) ≤ a+ for (x, y) ∈ D.

• Φ1, Φ2 : R → [0,+∞) are continuous.

• F : R → R+ is Lipschitz continuous and globally bounded by CF > 0, i.e. F (x) <

CF , x ∈ R.

• W1 and W2 are zero-mean GRFs on D with P-a.s. continuous paths.

• l is a Lévy process on [0, CF ].

Note that we consider the case of a homogeneous Dirichlet boundary condition on Γ1 in the

theoretical analysis to simplify notation. Non-homogeneous Dirichlet boundary conditions

could also be considered, since such a problem can always be formulated as a version of (8.8) -

2Note that the extension to dimensions d > 2 is straightforward.
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(8.10) with modified source term and Neumann data (see also [16, Remark 2.1]).

Next, we shortly introduce the pathwise weak solution of problem (8.8) - (8.10) following [96]

and [93]. We denote by H1(D) the Sobolev space and by T the trace operator T : H1(D) →
H

1
2 (∂D) where Tv = v|∂D for v ∈ C∞(D) (see [41]). Further, we introduce the solution

space V ⊂ H1(D) by

V := {v ∈ H1(D) | Tv|Γ1
= 0},

where we take over the standard Sobolev norm, i.e. ∥ · ∥V := ∥ · ∥H1(D). We identifyH with its

dual space H ′ and work on the Gelfand triplet V ⊂ H ≃ H ′ ⊂ V ′. Multiplying the left hand

side of Equation (8.8) by a test function v ∈ V and integrating by parts (see e.g. [113, Section

6.3]) we obtain the following pathwise weak formulation of the problem: For fixed ω ∈ Ω and

given mappings f(ω, ·) ∈ V ′ and g(ω, ·) ∈ H− 1
2 (Γ2), find u(ω, ·) ∈ V such that

Ba(ω)(u(ω, ·), v) = Fω(v) (8.12)

for all v ∈ V . The function u(ω, ·) is then called pathwise weak solution to problem (8.8) -

(8.10) and the bilinear form Ba(ω) and the linear operator Fω are defined by

Ba(ω) : V × V → R, (u, v) 7→
∫
D
a(ω, x)∇u(x) · ∇v(x)dx,

and

Fω : V → R, v 7→
∫
D
f(ω, x)v(x)dx+

∫
Γ2

g(ω, x)[Tv](x)dx,

where the integrals in Fω are understood as the duality pairings:∫
D
f(ω, x)v(x)dx = V ′⟨f(ω, ·), v⟩V and∫

Γ2

g(ω, x)[Tv](x)dx =
H− 1

2 (Γ2)
⟨g(ω, ·), T v⟩

H
1
2 (Γ2)

,

for v ∈ V .

Remark 8.8.1. Note that any real-valued, càdlàg function f : [a, b] → R on a compact
interval [a, b], with a < b, is bounded. Otherwise, one could find a sequence (xn, n ∈ N) ⊂ [a, b]

such that |f(xn)| > n for alln ∈ N. In this case, since [a, b] is compact, there exists a subsequence
(xnk

, k ∈ N) ⊂ [a, b] with a limit in [a, b], i.e. xnk
→ x∗ ∈ [a, b] for k → ∞. Since f is
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right-continuous in x∗ and limx↗x∗ f(x) exists, f is bounded in a neighborhood of x∗, i.e. there
exists δ, C > 0 such that |f(x)| ≤ C for x ∈ [a, b] with |x− x∗| < δ, which contradicts the
fact that |f(xnk

)| > nk since |xnk
− x∗| < δ and nk > C both hold for k large enough.

The diffusion coefficient a is jointly measurable by construction (see Remark 8.3.2) and, for

any fixed ω ∈ Ω, it holds a(ω, x, y) ≥ a− > 0 for all (x, y) ∈ D and

a(ω, x, y) ≤ a+ + sup
(x,y)∈D

Φ1(W1(ω, x, y)) + sup
z∈[0,CF ]

Φ2(l(ω, z)) < +∞,

for all (x, y) ∈ D, where the finiteness follows by the continuity of Φ1, Φ2, W1 and Remark

8.8.1.

It follows by a pathwise application of the Lax-Milgram lemma that the elliptic model problem

(8.8) - (8.10) with the diffusion coefficient a has a unique, measurable pathwise weak solution

(see [96, Theorem 3.7, Remark 2.4] and [16, Theorem 2.5]):

Theorem 8.8.2.

Let f ∈ Lq(Ω;H), g ∈ Lq(Ω;L2(Γ2)) for some q ∈ [1,+∞). There exists a unique pathwise
weak solution u(ω, ·) ∈ V to problem (8.8) - (8.10) with diffusion coefficient (8.11) for P-almost
every ω ∈ Ω. Furthermore, u ∈ Lr(Ω;V ) for all r ∈ [1, q) and

∥u∥Lr(Ω;V ) ≤ C(a−,D)(∥f∥Lq(Ω;H) + ∥g∥Lq(Ω;L2(Γ2))),

where C(a−,D) > 0 is a constant depending only on the indicated parameters.

8.8.2 Spatial discretization of the elliptic PDE

In the following, we briefly describe numerical methods to approximate the pathwise solution

to the random elliptic PDE, partially following [96, Section 6]. Our goal is to approximate the

weak solution u to problem (8.8) - (8.10) with diffusion coefficient a given by Equation (8.11).

Therefore, for almost all ω ∈ Ω, we aim to approximate the function u(ω, ·) ∈ V such that

Ba(ω)(u(ω, ·), v) :=
∫
D
a(ω, x)∇u(ω, x) · ∇v(x)dx

=

∫
D
f(ω, x)v(x)dx+

∫
Γ2

g(ω, x)[Tv](x)dx =: Fω(v), (8.13)
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for every v ∈ V . We compute an approximation of the solution using a standard Galerkin

approach with linear basis functions. Therefore, assume a sequence of finite-element subspaces

is given, which is denoted by V = (Vℓ, ℓ ∈ N0), where Vℓ ⊂ V are subspaces with growing

dimension dim(Vℓ) = dℓ. We denote by (hℓ, ℓ ∈ N0) the corresponding refinement sizes

with hℓ → 0, for ℓ → ∞. Let ℓ ∈ N0 be fixed and denote by {v(ℓ)1 , . . . , v
(ℓ)
dℓ
} a basis of Vℓ.

The (pathwise) discrete version of problem (8.13) reads: Find uℓ(ω, ·) ∈ Vℓ such that

Ba(ω)(uℓ(ω, ·), v(ℓ)i ) = Fω(v
(ℓ)
i ) for all i = 1, . . . , dℓ.

If we expand the solution uℓ(ω, ·) with respect to the basis {v(ℓ)1 , . . . , v
(ℓ)
dℓ
}, we end up with

the representation

uℓ(ω, ·) =
dℓ∑
i=1

civ
(ℓ)
i ,

where the coefficient vector c = (c1, . . . , cdℓ)
T ∈ Rdℓ is determined by the linear system of

equations

B(ω)c = F(ω),

with stochastic stiffness matrix B(ω)i,j = Ba(ω)(v
(ℓ)
i , v

(ℓ)
j ) and load vector F(ω)i = Fω(v

(ℓ)
i )

for i, j = 1, . . . , dℓ.

8.8.2.1 Standard linear finite elements

Let (Kℓ, ℓ ∈ N0) be a sequence of admissible triangulations of the domainD (cf. [67, Definition

8.36]) and denote by θℓ > 0 the minimum interior angle of all triangles in Kℓ, where we assume

θℓ ≥ θ > 0 for a positive constant θ. For ℓ ∈ N0, we denote by hℓ := max
K∈Kℓ

diam(K) the

maximum diameter of the triangulation Kℓ and define the finite dimensional subspaces by

Vℓ := {v ∈ V | v|K ∈ P1, K ∈ Kℓ}, where P1 denotes the space of all polynomials up

to degree one. If we assume that there exists a positive regularity parameter κa > 0 such

that for P-almost all ω ∈ Ω it holds u(ω, ·) ∈ H1+κa(D) and ∥u∥L2(Ω;H1+κa (D)) ≤ Cu for

some constant Cu >∞, we immediately obtain the following bound by Céa’s lemma (see [16,

Section 4], [96, Section 6], [67, Chapter 8])

∥u− uℓ∥L2(Ω;V ) ≤ C hmin(κa,1)
ℓ , (8.14)
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for some constant C which does not depend on hℓ. For general deterministic elliptic interface

problems, one obtains a discretization error of order κa < 1 and, hence, one cannot expect the

full order of convergence κa = 1 in general for standard triangulations of the domain (see [10]

and [16]). Therefore, we present one possible approach to enhance the performance of the FE

method for the considered elliptic PDE in Subsection 8.8.2.2. We point out that it is not possible

to derive optimal rates κa > 0 such that (8.14) holds for our general random diffusion coefficient

(see also [96], [16]). However, we investigate the existence of such a constant numerically in

Section 8.8.3. We close this subsection with a remark on the practical simulation of the GRFs

W1, W2 and the Lévy process l in the diffusion coefficient (8.11).

Remark 8.8.3. It is in general not possible to draw exact samples of the Lévy process and the
GRFs in the diffusion coefficient (8.11). In practice, one has to use appropriate approximations
l(εl) ≈ l of the Lévy process and WN

1 ≈ W1, W
N
2 ≈ W2 of the GRFs with approximation

parameters εl > 0 and N ∈ N, as introduced in Section 8.5. In the context of FE approximations
of the PDE (8.8) - (8.10) with diffusion coefficient (8.11), the question arises, how to choose these
approximation parameters in practice, given a specific choice of the FE approximation parameter
hℓ in (8.14). Obviously, the choice of εl and N should depend on the FE parameter hℓ, since a
higher resolution of the FE approximation will be worthless if the approximation of the diffusion
coefficient is poor.

In [96], the authors considered the PDE (8.8) - (8.10) with a different diffusion coefficient a. The
coefficient considered in the mentioned paper also incorporates GRFs and Lévy processes, which
in turn have to be approximated in practice, leading to an approximation ã ≈ a. The authors
derived a rule on the choice of the approximation parameters, such that the error contributions from
the approximation of the diffusion coefficient and the FE discretization are equilibrated (see [96,
Section 7]). We want to emphasize that this result is essentially based on the quantification of the
approximation error ã− a of the corresponding diffusion coefficient in an Lp(Ω, Lp(D))-norm,
for some p ≥ 1 (see [96, Theorem 4.8 and Theorem 5.11]).

In Theorem 8.5.6, we derived an error bound on the approximation error of the GSLF in the
Lp(Ω, Lp(D))-norm under Assumption 8.5.1. A corresponding error bound on the approximation
of the diffusion coefficient defined in (8.11) immediately follows under mild assumptions on Φ1

and Φ2. Therefore, following exactly the same arguments as in [96] together with Theorem 8.5.6,
we obtain the following rule for the practical choice of the approximation parameters εl and N
such that the overall error contributions from the approximation of the GRFs, the Lévy process and
the FE discretization are equilibrated and the error is dominated by the FE refinement parameter
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hℓ: For ℓ ∈ N, choose εl and N such that

εl ≃ h2κa

ℓ and R(N) ≃ h
2κa
δ

ℓ .

For example, if we approximate the GRF by the KLE approach (see Subsection 8.5.1), one should

choose the cut-off index such that N ≃ h
− 4κa

βδ

ℓ with β from Assumption 8.5.1 i.

8.8.2.2 Adaptive finite elements

As we pointed out in the last section, one cannot expect full order convergence (κa = 1) for the

FE method with linear elements in the considered elliptic problem due to the discontinuities in

the diffusion coefficient. One common way to improve the FE method is to use triangulations

which are adapted to the jump discontinuities in the sense that the spatial jumps lie on edges of

elements of the triangulation. This approach leads to sample-dependent triangulations which

has been proven to enhance the performance of the FE method significantly compared to the

use of standard triangulations, which are not adjusted to the jumps (see for example [16] and

[96] and the references therein). In the cited papers, the jump locations are known and the

jump geometries allow for an (almost) exact alignment of the triangulation to the interfaces

due to their specific geometrical properties. This is, however, not the case for the diffusion

coefficient considered in the current paper, where the spatial jump positions are not known

explicitly, nor is it possible to align the triangulation exactly in the described sense due to the

complex jump geometries.

Another possible approach to improve the FE method are adaptive finite elements (see e.g. [5]

and [66] and the references therein). The idea is to identify triangles with a high contribution to

the overall error of the FE approximation, which are then refined. For a given FE approximation

uℓ ∈ Vℓ ⊂ V of the solution u ∈ V , the discretization error u− uℓ is estimated in terms of

the approximated solution uℓ and no information about the true solution u is needed. This

may be achieved by the use of the Galerkin orthogonality and partial integration. For a given

triangulation T = {K, K ⊂ D}with corresponding FE approximation uℓ, the approximation

error of the FE approximation to the considered elliptic problem (8.8) - (8.10) may be estimated

by

errT (uℓ, a, f, g) =

(∑
K∈T

errT (uℓ, a, f, g,K)

) 1
2

.
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Here, errT (uℓ, a, f, g,K) corresponds the error contribution of the approximation on the

element K ∈ T , which may be approximated by

errT (uℓ, a, f, g,K) = h2
K∥f∥2

L2(K) +
∑

e∈∂K∩Γ2

he∥g −−→n K · a∇uℓ

∣∣
K
∥2
L2(e)

+
∑

e∈∂K\(Γ2∪Γ1)

he∥−→n K · a∇uℓ

∣∣
K
+−→n J(K,e) · a∇uℓ

∣∣
J(K,e)

∥2
L2(e), (8.15)

where we denote by e ∈ ∂K an edge of the triangle K ∈ T and J(K, e) ∈ T is the

unique triangle which is the direct neighbor of the triangle K along the edge e. Further, hK

is the diameter of the triangle K and he is the length of the edge e (see [66] and [19]). The

triangle-based estimated error obtained by Equation (8.15) allows for an identification of the

triangles with the largest contribution to the overall error. This may then be used to perform a

local mesh refinement, which usually consists in the refinement of triangles with high error

contribution. One common strategy is to start with an initial triangulation, compute the error

contribution of each triangle according to Equation (8.15) and refine all triangles which have

an approximated error contribution which is at least 50% of the error contribution with the

largest approximated error (see e.g. [114, Section 5]).

Example 8.8.4. Consider the PDE problem (8.8) - (8.10) with homogeneous Dirichlet boundary
conditions on D = (0, 1)2 and f ≡ 10. The diffusion coefficient a as defined in Equation (8.11)

is given by

a(x, y) = 0.1 + l(min{|W1(x, y)|, 30}),

where l is a Poisson(2) process and W1 is a centered GRF with squared exponential covariance
function. In order to illustrate the adaptive mesh generation decribed above, we consider 3 samples
of the diffusion coefficient and compute the adaptive meshes, where we use an initial mesh with
FE refinement parameter h = 0.025 and refine all triangles which have an estimated error
contribution exceeding 50% of the largest estimated error. Figure 8.10 shows the three samples
of the diffusion coefficient and the corresponding adaptive triangulations. It is nicely illustrated,
how the element-wise a-posteriori estimation of the error according to Equation (8.15) enables an
identification of the triangles which lie near the discontinuities of the diffusion coefficient and,
hence, have a comparatively high error contribution. This results in a local refinement leading to a
higher mesh resolution near the discontinuity.
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Figure 8.10: Samples of the diffusion coefficient a (top) and adaptive triangulations (bottom).

8.8.3 Numerical experiments for the random elliptic PDE

In this section, we present numerical examples for the experimental investigation of the exis-

tence of a positive parameter κa > 0 such that Equation (8.14) holds. Further, in the presented

examples, we compare the performance of a standard FE discretization with the FE approach

using the local refinement strategy described in Subsection 8.8.2.2. We consider the domain

D = (0, 1)2 and set f ≡ 10, a ≡ 0.1, Φ1 = 0.1 exp(·), Φ2 = | · | , F = min(| · |, 30) in

Equation (8.11). W1 and W2 are centered GRFs with squared exponential covariance function

(see Subsection 8.7.4), where we set σ = 0.5 and r = 1. We use the circulant embedding

method (see cf. [64] and [65]) to draw samples of the GRFsW1, W2 on an equidistant grid with

stepsize hW = 1/200 = 0.005 and obtain evaluations everywhere on the domain by multilin-

ear interpolation. Due to the high spatial regularity of W1 and W2 and the high correlation

length, this stepsize is fine enough to ensure that the approximation error of the GRFsW1, W2

is negligible. The Lévy process l is set to be a Poisson process with intensity parameter λ > 0,

which will be specified later. It follows that l(t)− l(s) ∼ Poiss((λ(t− s)) for 0 ≤ s ≤ t and

we draw samples from the Poisson process by the Uniform Method (see [109, Section 8.1.2]).

The goal of our numerical experiments is to approximate the strong error: We set hℓ =
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0.25 · 2−(ℓ−1), for ℓ = 1, . . . , 8 and approximate the left hand side of Equation (8.14) by

RMSE2 := ∥u− uℓ∥2
L2(Ω;V ) ≈

1

M

M∑
i=1

∥u(i)
ref − u(i)

ℓ ∥2
V , (8.16)

for ℓ = 1, . . . , 5, where (u(i)
ref − u(i)

ℓ , i = 1, . . . ,M) are i.i.d. copies of the random variable

uref − uℓ and M ∈ N. We use a reference grid on D with 801 × 801 grid points for

interpolation and prolongation and take uref := u8 as the pathwise reference solution. The

RMSE is estimated for the standard FE method and for the FE method with adaptive refinement

as described in Subsection 8.8.2.2. In order to obtain comparable approximations on each FE

level, we compute the adaptive meshes as follows: for ℓ ∈ {1, . . . , 5}, we denote by nℓ the

number of triangles in the non-adaptive triangulation with FE mesh refinement parameter hℓ.

The (sample-dependent) adaptive mesh on level ℓ is obtained by performing the local refinement

procedure described in Subsection 8.8.2.2 until the number of triangles in the adaptive mesh

exceeds nℓ. The resulting mesh is then used to compute the adaptive FE approximation on

level ℓ.

8.8.3.1 Homogeneous Dirichlet boundary conditions

In our first experiment, we choose homogeneous Dirichlet boundary contitions on ∂D and

set λ = 2. Figure 8.11 shows samples of the diffusion coefficient and the corresponding PDE

solutions approximated by the FE method. We use M = 150 samples so approximate the

Figure 8.11: Samples of the diffusion coefficient with λ = 2 and corresponding FE solution to
the elliptic PDE with homogeneous Dirichlet boundary conditions.

RMSE according to Equation (8.16) with the non-adaptive and the adaptive FE approach. Figure

8.12 shows the approximated RMSE plotted against the inverse FE refinement parameter. For

the adaptive FE approximations, the sample-dependent mesh refinement parameters on each

discretization level are averaged over all 150 samples. We see a convergence with rate ≈ 0.65

for the standard FE method, which is in line with our expectations (see Section 8.8.2). Further,
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we observe that the adaptive refinement strategy yields an improved convergence rate of

≈ 0.85 and a smaller estimated RMSE on the considered levels. The right hand side of Figure

Figure 8.12: Convergence of the (standard and adaptive) FE method (left) and degrees-of-
freedom to error plot (right) where l is a Poisson(2) process and we impose homo-
geneous Dirichlet boundary conditions.

8.12 shows the estimated RMSE plotted against the degrees of freedom of the linear FE-system

on each discretization level. For the adaptive FE method, the degrees of freedom are averaged

over all samples. After a pre-asymptotic behaviour on the first and second level, we see that the

adaptive FE method performs more efficient in terms of the degrees of freedom: the adaptive

FE method achieves a certain RMSE with less degrees of freedom compared to the standard FE

method.

8.8.3.2 Mixed Dirichlet-Neumann boundary conditions

In the second numerical example, we use mixed Dirichlet-Neumann boundary conditions: we

split the domain boundary ∂D by Γ1 = {0, 1} × [0, 1] and Γ2 = (0, 1)× {0, 1} and impose

the following pathwise boundary conditions

u =

0.1 on {0} × [0, 1]

0.3 on {1} × [0, 1]
and a−→n · ∇u = 0 on Γ2,

for ω ∈ Ω. Further, we set λ = 3, which results in a higher number of jumps in the diffusion

coefficient. Figure 8.13 shows samples of the diffusion coefficient and the corresponding PDE

solutions approximated by the FE method. As in the first experiment, we use M = 150

samples to approximate the RMSE according to (8.14) with the standard FE approach and the
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Figure 8.13: Samples of the diffusion coefficient with λ = 3 and corresponding FE solution to
the elliptic PDE with mixed Dirichlet-Neumann boundary conditions.

adaptive approach. The approximated values are plotted against the inverse FE refinement

parameter. The results are presented in Figure 8.14, which shows a convergence rate of ≈ 0.6

for the standard FE approach, which is slightly smaller than the observed convergence rate of

≈ 0.65 in the first numerical example, where we imposed homogeneous Dirichlet boundary

conditions and considered a Poisson process with intensity parameter λ = 2, leading to a

smaller expected number of jumps in the diffusion coefficient. Further, Figure 8.14 shows a

convergence rate of ≈ 0.85 for the adaptive FE approach and smaller magnitudes of the RMSE

compared to the standard FE method. The right plot of Figure 8.14 reveals the higher efficiency

of the adaptive FE method compared to the standard approach in the sense that the number

of degrees of freedom, which are necessary to achieve a certain error, is significantly smaller

compared to the standard FE approach. Further, we see that the performance difference of

the standard and the adaptive FE method is larger compared to the first example due to the

higher number of expected jumps in the diffusion coefficient, which renders the adaptive local

refinement strategy even more suitable for this problem. Overall, the results are in line with

our expectations.

8.8.3.3 Mixed Dirichlet-Neumann boundary conditions and jump-accentuated
coefficients

In our last experiment we consider mixed Dirichlet-Neumann boundary conditions as in the

previous section. The diffusion coefficient is set to be

a(x, y) = 0.01 + 0.01 exp(W1(x, y)) + 30 l(F (W2(x, y)),

for (x, y) ∈ D, where l is a Poisson(4) process. This leads to a jump-accentuated coefficient

with high contrast. We take M = 500 samples to estimate the RMSE for the standard FE

method and the adaptive approach according to (8.16). The results are presented in Figure 8.15.
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Figure 8.14: Convergence of the (standard and adaptive) FE method (left) and degrees-of-
freedom to error plot (right) where l is a Poisson(3) process and we impose mixed
Dirichlet-Neumann boundary conditions.

Figure 8.15: Convergence of the (standard and adaptive) FE method (left) and degrees-of-

freedom to error plot (right) where l is a Poisson(4) process, we impose mixed

Dirichlet-Neumann boundary conditions and use a high-contrast diffusion coeffi-

cient.

We obtain a convergence rate of ≈ 0.55 for the standard FE approach and ≈ 0.8 for the

adaptive FE method, which is slightly slower than the observed rates in the previous experiment.

This is in line with our expectations since we have an increased jump intensity in the underlying

Poisson process and larger jump heights in the diffusion coefficient, both having a negative

influence on the convergence rate of the FE method (see also [96, 16, 105]). Figure 8.15 also

reveals, as expected, that the magnitude of the RMSE is significantly smaller in the adaptive FE

approach. The right plot of Figure 8.15 demonstrates that the adaptive refinement strategy is
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able to achieve a certain error with significantly less degrees of freedom in the corresponding

linear FE system, than the standard FE approach.
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