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Abstract

Data is becoming the core corporate asset that will determine the business’s success. As a result, it
is critical for governing enterprise data. Previously, the Enterprise Content Management (ECM)
system was employed by many companies to manage and process their enterprise data, which
is a monolithic data governance application. As the ECM system is typically deployed on bare
metal or at most in a virtualized IT infrastructure, it lacks the flexibility to support Continuous
Integration (CI) and Continuous Delivery (CD) cost-effectively. Cloud computing has gained
popularity as a powerful platform for application deployment, owing to perceived benefits such as
elasticity to fluctuating load and reduced operational costs as compared to running in traditional
data centers. Therefore, it is promising to migrate the legacy ECM system into the cloud. The goal
of this thesis is to orchestrate stateful database workloads in Kubernetes that are typical for ECM
systems. For our concept verification, we included a comparison and analysis between traditional
and comparable cloud native Relational Database Management System (RDBMS) using IBM
DB2, PostgreSQL, CockRoachDB and Google Spanner. We proposed an implementation of the
Monitor-Analyze-Plan-Execute (MAPE) concept using the Kubernetes Operator framework. With
our prototype implementation, we proved that the Kubernetes operator is able to deploy a cluster for
DB2 consisting of a read/write primary and up to three read-only members. Various experiments
carried out on the prototype have evidenced its High Availability (HA), Disaster Recovery (DR)
features as well as read scalability.
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1 Introduction

1.1 Motivation

Data is subject to data governance as it is a strategic asset for any organization. The goal of data
governance is to manage business-relevant data strategically throughout its full lifecycle, from
generation to destruction. In addition, data governance defines who can take what action, upon what
data, in what situations and using what methods, and includes business processes, corporate policies
and regulatory compliance for ensuring effective data management. In the past, companies stored
unstructured data using homegrown monolithic data governance applications called ECM systems
on top of distributed content repositories. ECM systems are typically deployed on on-premise
baremetal-infrastructure which requires a professional team or technicians to manage and maintain.
Although the existing ECM systems are able to provide reliable and performant content services,
they lack the potential of CI as well as CD in a cost-effective way. Cloud computing technology has
become popular of late due to its economic and technical advantages, such as pay-per-use pricing
models, scalability, flexibility as well as elasticity. Migrating the legacy ECM system to the cloud
allows it to better support automated CI/CD by taking advantage of inherited built-in features of the
cloud.
In previous master theses, Shao [Sha20] split monolithic ECM applications into smaller self-
contained components, and Trybek [Try21] developed a cloud deployment model for the ECM
system but only the set of stateless services. Thereby, we aim to design and implement a deployment
model including stateful services, i.e. stateful database services. For our prototype, we looked at
the traditional database IBM DB2 as it is utilized to offer database services in legacy ECM systems.
Traditional database services are challenging to move to the cloud given that their deployment
architecture is not natively suitable for the cloud environment. Furthermore, considering Kubernetes
was originally designed to handle stateless workloads autonomously, deploying a stateful database
application within a Kubernetes cluster is a significant challenge that requires a more complex
database specific deployment design. We investigated the difference between traditional RDBMS
and cloud native RDBMS in terms of architecture, HA, DR features as well as horizontal scalability.
Based on our analysis, we designed a HADR cluster for DB2 to provide high available stateful
database services in Kubernetes. We constructed and implemented a Kubernetes custom operator
that can automatically deploy a cluster for DB2 employing the MAPE lifecycle as proposed by
Ritter et al. [RMM12] utilizing the Kubernetes Operator framework. In addition, in order to verify
and evaluate our approach, we developed a set of function verification tests for HA, DR features and
read scalability of the cluster for DB2 and performed various tests on it which we show later in this
thesis.
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1 Introduction

1.2 Organization

The remainder of this thesis is organized as follows. In Chapter 2, we compare traditional RDBMS
with cloud native RDBMS and analyze their differences regarding architecture, HA and DR features
as well as horizontal scalability. In Chapter 3, we discuss the necessary terms and technologies
utilized in this work. We introduce the previous work related to migrating the ECM system into the
cloud environment in Chapter 4. Chapter 5 presents the high-level concept of this work, including
what the MAPE concept is and how it relates to the implementation of our Kubernetes operator for
IBM DB2. Chapter 6 describes the design, implementation, and function verification tests of our
stateful database service prototype. Finally, we conclude this thesis and discuss future directions in
Chapter 7.
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2 Background

For the past 30 to 40 years, businesses and organizations have primarily stored and analyzed their
data using traditional database systems, such as RDBMS. They are based on Entity–Relationship
Model (ER Model), which means data is organized in structured forms using tables and relations.
Structured Query Language (SQL) is the standard language used to manage and access data in tables.
They have strong Atomicity, Consistency, Isolation, Durability (ACID) capabilities in support of
Online Transaction Processing (OLTP) workloads in secure environments.
The wide adoption of clouds has motivated a new RDBMS architecture design and technology. In
the context of Cloud, RDBMS should meet the following requirements:

• In terms of the cloud characteristic massive multi-tenancy, a large number of databases are
assigned to a large number of customers.

• There is no limit to horizontal scaling as such a system can be made out of inexpensive legacy
hardware.

• Since HA and DR in cloud environments mean high complexity, managing a very large and
complex RDBMS system must be done in an automated fashion. Manual administration does
not work any longer.

• Geographically distributed systems require even more complex logic and monitoring.

• On the data side, big data needs scalable database systems to produce valuable results quickly
at an acceptable cost.

In order to achieve these requirements, a new kind of database system called Cloud Native Databases
was introduced. These systems have built-in distributed system logic and run natively on cloud
platforms. They also adopt transaction-oriented SQL to manage and access data, which supports
ACID logic.
In this chapter, we first introduce the characteristics of traditional RDBMS and cloud native RDBMS
separately that relate to this work. Then we compare these two kinds of RDBMS in terms of these
key characteristics, namely HA, DR and horizontal scalability.

2.1 Traditional RDBMS Characteristics

In this section, we take IBM BD2 1 and PostgreSQL 2 as examples of traditional RDBMS to study
HA, DR and horizontal scalability.

1IBM BD2: https://www.ibm.com/db2
2PostgreSQL: https://www.postgresql.org/
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2 Background

2.1.1 IBM DB2

• High Availability and Disaster Recovery Design and Implementation
The IBM DB2 Server, the HADR framework provides a high availability solution for both
partial and complete production site failures. In a HADR environment, log data is shipped
continuously from a primary database to one or up to three standby databases and reapplied
to the standby databases. When the primary database fails, applications are redirected to a
standby database that automatically takes over the role of the primary database [BDK+12].
There are four synchronization modes in the HADR framework: Synchronous (SYNC)
mode, Near Synchronous (NEARSYNC) mode, Asynchronous (ASYNC) mode and Super
Asynchronous (SUPERASYNC) mode, which are presented in Figure 2.1. For SYNC and
NEARSYNC modes, the primary will wait for an ACKnowledgement (ACK) message from
the standby to confirm that the logs have been received and written to disk on the standby
(SYNC mode) or have been received on the standby (NEARSYNC mode). In terms of ASYNC
mode, replication is considered done as soon as the logs are delivered to the Transmission
Control Protocol (TCP) layer of the primary host machine. Transactions on the primary do
not wait for replication of logs to the standby in SUPERASYNC mode [DB2hadr].

Figure 2.1: HADR Synchronization Mode [DB2hadr]

• IBM DB2 Enterprise Server Horizontal Read Scalability
IBM DB2 Enterprise Servers realize horizontal scaling by adding more standbys as they
employ a shared-nothing architecture. It utilizes the HADR framework to add up to three
standby DB2 servers in the cluster achieving such scalability. Each standby server is set up
as a replication of the primary server and serves read-only requests. In the case of heavy
read requests from clients, additional standby servers will share some traffic with the primary
server offering a read performance benefit.

• IBM DB2 pureScale shared-everything Database Horizontal Scalability Feature
The IBM DB2 pureScale Server environment is intended for horizontal scaling solutions
that are built on a shared-everything architecture. That means multiple database instances
vest the same role as read-write members in a database cluster system sharing the same
storage disk but owning different database partitions. Incoming database requests from
DB2 clients are automatically directed to the member with the lowest workload to rebalance
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2.1 Traditional RDBMS Characteristics

the workload among the members. With the DB2 pureScale feature, we can transparently
add more members to scale out and cope with OLTP workload growth without application
changes and data redistribution.

2.1.2 PostgreSQL

• High Availability and Disaster Recovery Design and Implementation
PostgreSQL maintains high availability by ensuring that a standby server will take over if the
primary server crashes. As shown in Figure 2.2, there are two methods to ensure database
synchronization: file-based log shipping and streaming replication. PostgreSQL implements
file-based log shipping by transferring Write-Ahead Log (WAL) records one file at a time,
which contains all changes made in the database. Compared with file-based log shipping,
streaming replication allows more up-to-date data because it transfers WAL records between
the primary server and the standby server without waiting for the WAL file to be filled. In
the primary server, a process called WAL Sender is responsible for sending WAL records
to the standby server via TCP connection. A process named WAL Receiver running on the
standby server is used to receive WAL records. If the connection between the WAL Sender
and the WAL Receiver is broken, the standby server will first restore all the WAL available in
the archive directory via file-based shipping.

Figure 2.2: PostgreSQL File-based Log Shipping with Streaming Replication [posRep18]

• PostegreSQL Horizontal Read Scalability
PostgreSQL implements horizontal scaling in shared-nothing architecture and one primary
multi-replicas system by adding more replica database servers. After adding more replicas to
the cluster system, the PostgreSQL replication mechanism will synchronize data between the
primary and replicas. Read scalability is achieved as well since replicas can only serve read
requests.
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2 Background

2.2 Cloud Native RDBMS Characteristics

In this section, CockroachDB 3 and Google Spanner 4 are considered as examples of cloud native
RDBMS to study HA, DR and horizontal scalability.

2.2.1 CockroachDB

• High Availability and Disaster Recovery Design
High availability is accomplished by the consistent replication and automated repair features
of CockroachDB. The data is divided into ranges algorithmically and distributed across
nodes. Each range is replicated to nodes synchronously. CockroachDB ensures replication
consistency by using Raft algorithm which requires a quorum of replicas to agree on any
changes to a range before COMMIT [RM17]. It requires at a minimum three nodes in a
cluster because three is the smallest number that can achieve a quorum. If the cluster contains
three nodes, it can afford the failure of one node [RM17], which is shown in Figure 2.3a. The
concept of a raft group is based on one range not for the whole database, and there is one
master range but multiple replica ranges. If one node fails, the automated repair mechanism
will restart the node and add it to the cluster again. When it rejoins the CockroachDB
cluster, ranges are divided and rebalanced across the nodes automatically, which is reflected
in Figure 2.3b.

(a) CockroachDB Architecture (b) Nodes Self-organization via Rebalancing

Figure 2.3: CockRoachDB HA and DR Features [RM17]

• CockroachDB Horizontal Scalability
The solution for horizontal scaling in CockroachDB is simply incorporating new nodes
into the cluster system. There is an example of scaling out from three nodes to five nodes,

3CockroachDB: https://www.cockroachlabs.com/
4Google Spanner: https://cloud.google.com/spanner
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2.2 Cloud Native RDBMS Characteristics

which is represented in Figure 2.4. When adding new nodes (Node 4 and Node 5) into
the cluster, ranges are replicated first and rebalanced automatically across the nodes, as
shown in Figure 2.3b. As presented in Figure 2.4, CockroachDB uses a peer-to-peer gossip
protocol to communicate opportunities for rebalancing. This protocol provides an exchange
of information between nodes such as storage capacity, network address or other information
[RM17].

Figure 2.4: New Nodes Connection/Communication via Gossip [RM17]

2.2.2 Google Spanner

• High Availability and Disaster Recovery Design
Google Spanner uses a similar approach as CockroachDB to achieve high availability. It
provides high availability via synchronous replication between replicas in independent zones
[spannerHA22]. Each table in the Spanner is broken up into several splits by using ranges of
the primary key. These splits are rebalanced and distributed dynamically among different
zones based on the amount of data and load. Spanner uses a Paxos based replication scheme
in which writes are committed only when a majority quorum is reached [spannerHA22]. For
each split, there is a Paxos group that contains one leader split and several follower splits.
When a leader fails, the consensus is redetermined and a new leader is chosen using the Paxos
algorithm.

• Spanner Horizontal Scalability
Spanner achieves horizontal scalability thanks to its built-in scale-out architecture. It scales
horizontally by incorporating new zones into the cluster. Splits are replicated and evenly
distributed across all zones when a new zone comes along.
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2 Background

2.3 Comparison Between Traditional RDBMS and Cloud Native
RDBMS

2.3.1 High Availability and Disaster Recovery Design

In traditional databases, HA and DR are achieved by an architecture with one primary and
multiple standbys, which is shown in Figure 2.5a. When read and write requests come from client
applications, they are load balanced and routed to any cluster member or the primary database
instance respectively. Load balancing logic based on request type (Create, Retrieve, Update, Delete
(CRUD)) is provided by an external custom component. The data can only be modified on the
primary server. Due to its shared-nothing architecture, the write operations are replicated to the
standby server in a synchronous or optionally asynchronous fashion such to keep data current and
consistent. If committing the transaction with the synchronous method, one has to wait until the
update of the data on the standby server is acknowledged back to the primary. This will lead to a
longer response time depending on the network delay (i.e. geographical distance of the two or more
servers). When using asynchronous replication, the individual transaction is not blocked and is
committed without delay. The replication will happen later typically for a block of transactions
after a certain period (which can be set by the administrator). During this time, dirty reads would
be allowed if that was acceptable to the application. If the primary fails, the standby will become
the new primary thanks to the failover mechanism.
However, cloud native databases are distributed by architecture and design, and employ a shared-
nothing architecture, as presented in Figure 2.5b. The data is split into several partitions, evenly
distributed across the nodes after being automatically replicated. Load balancing is provided by a
built-in component of the database. Read/write traffic from client applications can be sent to any
node. An incoming read request will be routed to the node containing the partition with the data
requested. In terms of write operations, a consensus algorithm is used to keep data consistent across
the cluster. Once consensus is reached, the written data is available for a read operation from any
node in the cluster. If one node containing a partition that acts as master fails, this node will be
restarted and rejoin the cluster again. At the same time, a new primary partition will be elected
from other replicated partitions.
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2.3 Comparison Between Traditional RDBMS and Cloud Native RDBMS

(a) Traditional Database HA and DR Architecture

(b) Cloud Native Database Architecture

Figure 2.5: Comparison Between Traditional and Cloud Native Database About HA and DR
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2 Background

2.3.2 Horizontal Scalability

Figure 2.6: Static Scaling and Elastic Scaling for Unpredictable Workload Changes [FLR+14]

Traditional databases based on a shared-nothing architecture achieve their horizontal scaling by
including more standby database servers in the cluster, which then synchronize their database data
from the primary servers. However, traditional databases that have a shared-everything architecture
scale out by simply adding more database servers, since their database data is automatically
repartitioned across all cluster members. In the case of deploying traditional database servers on
barematel infrastructure, adding more standby servers to achieve horizontal scaling will lead to
an increase in the number of IT resources. As shown on the left side of Figure 2.6, the black line
represents the number of IT resources that will remain at a certain value after horizontal scaling.
The gray line represents the change in the number of workloads. If the workload is less than the
number of IT resources (indicated by the gray line under the black line in the diagram), resulting
in some IT resources being underutilized. While workloads exceed the number of IT resources
(indicated by the gray line above the black line in the diagram), there is a lack of resources to
support workloads.

Cloud native databases scale horizontally by inserting new nodes into the cluster. Thanks to
the cloud environment, cloud native databases can be elastically scaled in response to changes
in workloads and the provisioning and deprovisioning of IT resources via cloud platforms. As
illustrated in the right part of Figure 2.6, the number of IT resources grows and shrinks as actual
workloads change automatically.
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3 Foundations

This chapter lays the necessary foundation for this work, including Kubernetes architecture,
Kubernetes stateful architecture resources and the Operator.

3.1 Kubernetes

Containerization in Docker promotes the feasibility of running containerized applications on
multiple hosts in the cloud environment. The cluster architecture in containers makes it necessary
to operate multiple containers on different hosts. The cluster-based containerization in Docker
creates a need to bridge the gap between the clusters and cluster management [MSK19]. A cluster
orchestration platform should be able to monitor the scaling, load balancing and other services
of containers residing across different hosts [MSK19]. Kubernetes is an open-source container
orchestration engine for automating the deployment, scaling, and management of containerized
applications [k8s22].

3.1.1 Kubernetes Architecture

Figure 3.1: Kubernetes Architecture [MSK19]
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3 Foundations

The Kubernetes cluster shown in Figure 3.1 consists of one Master Node, and two Worker Nodes.
When interacting with Kubernetes, the command line tool, kubectl, is used to communicate with
Master Node to define and manage the whole cluster lifecycle.

Master Node

The Master Node, which is also known as Control Plane, is responsible for the management of
Kubernetes cluster. It is mainly the entry point for all administrative tasks, and hosts the controlling
processes that are available for the entire environment [SD19]. By default, there is a single Master
Node responsible for controlling the cluster, but multiple Master Nodes can be utilized to provide
high availability [NK20]. The Master Node is made up of different components including API
Server, Scheduler, Controller Manager, and ETCD [NK20].

• API Server
API Server provides an entry point for the Kubernetes control plane to control the entire
Kubernetes cluster. It receives all requests from the client and all other components in the
cluster, then authenticates them and updates the corresponding objects in the Kubernetes’s
database.

• Scheduler
Scheduler looks out for unscheduled Pods and deploys these Pods to an appropriate node in
the cluster. The scheduling decision is based on some factors such as resource requirements,
hardware/software/policy constraints, and affinity and anti-affinity specifications.

• Controller Manager
Controller Manager continuously watches the shared state of the cluster using API Server and
tries to alter the current state to the desired state. For example, it is responsible for noticing
and responding when nodes go down or ensuring the correct number of running replicas for
the application in the cluster.

• ETCD
ETCD is a distributed, consistent key-value store and is used to store all cluster metadata,
including configuration data and the state of the cluster.

Worker Node

Applications are running on the Pods that are deployed in the Worker Nodes. Each Worker Node is
managed by Master Node and contains the following components [NK20]:

• Kubelet
Kubelet is responsible for managing the containers running on the machine. It communicates
with the Master Node to report current states of the Worker Node and obtain decisions from
the Master Node.

• Container Runtime
Container runtime, such as Docker, is used to run containers in Pods. It is responsible
for pulling the container image from a registry, unpacking the container, and running the
container.
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• Kube-Proxy
Kube-Proxy runs on each Worker Node that implements the Kubernetes Service. It maintains
the network rules that allow communication to Pods from inside or outside the cluster.

3.2 Kubernetes Stateful Architecture Resources

To deploy stateful service successfully in Kubernetes, the following components need to be utilized
[k8s22; Luk17; MSK19; NK20; VSTK18]:

Namespaces

In Kubernetes, Namespaces provide a mechanism for isolating groups of resources within a single
cluster. Names of resources need to be unique within a Namespace, but not across Namespaces.
Using multiple Namespaces allows splitting complex systems with numerous components into
smaller distinct groups. They can also be used for separating resources in a multi-tenant environment,
splitting up resources into production, development and Quality Assurance (QA) environments.
When a Service is created, a corresponding Domain Name System (DNS) entry is created as
well. This entry is known as Fully Qualified Domain Name (FQDN), in the form of <service-
name>.<namespace-name>.svc.cluster.local. If a container only uses <service-name>, it will
resolve to the Service which is local to a Namespace. But in the case of connecting to Service
across Namespaces, using the fully FQDN is required.

Pod

Kubernetes manages resources in the unit of Pods, which are the smallest logical unit. In the
Pod, there is a group of one or more containers with shared storage and network resources, and
a specification for how to run the containers. In terms of Docker concepts, a Pod is similar
to a group of Docker containers with shared Namespaces and shared filesystem volumes. The
one-container-per-Pod model is the most common Kubernetes use case. A Pod is considered
as a wrapper around a single container. It can encapsulate an application composed of multiple
co-located containers that are tightly coupled and need to share resources. Kubernetes provides
Deployment and StatefulSet as implementation artefacts so called "workload resources" to define,
create and manage multiple Pods. Pods are created from a PodTemplate written in the YAML
file containing the definition and their desired state of components and associated services. The
Kubernetes controller handles resource replication, deployment and automatic healing in the event
of Pods failure.

Service

Since the IP address of Pods changes every time they are restarted, it is difficult to access a Pod
directly using its IP address. A Service is an abstraction for a group of Pods. It is bound to a
ClusterIP, which is a virtual IP address that never changes. When clients connect to the ClusterIP
which is only reachable from within the cluster, their traffic is automatically transferred to an
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appropriate backend Pod. To access the cluster from outside, there are two typical types of Service
in Kubernetes: NodePort and LoadBalancer. Concerning the NodePort service, Kubernetes opens
a static port on each node called NodePort. The service can be accessed from outside the cluster by
using the IP address of the node and the NodePort, like <NodeIP>:<NodePort>. The LoadBalancer
service works when using a cloud provider for the Kubernetes cluster. The cloud provider configures
the load balancer in its network to proxy the NodePort on multiple nodes, and the load balancing
algorithm depends on the cloud provider’s implementation. In addition, the NodePort and ClusterIP
services are also created automatically together with LoadBalancer, and are used to redirect the
external and internal traffic respectively to an appropriate Pod in the cluster.

Endpoints

Endpoints in Kubernetes are objects that get or store one or more IP addresses of Pods that are
assigned to them dynamically along with ports as well. If the service selector matches a pod label,
Kubernetes will automatically create an Endpoints object with the same name as the Service, which
stores the IP address and port of the Pod.

StorageClass

StorageClass is a Kubernetes storage mechanism that allows to provision Persistent Volume
dynamically in a Kubernetes cluster. Different classes might map to different quality-of-service
levels, or backup policies, or arbitrary policies determined by the cluster administrators.

Persistent Volume Claim

A Persistent Volume Claim (PVC) is a request for storage, on the specific size, StorageClass and access
modes, etc. Access mode can be either ReadWriteOnce, or ReadOnlyMany, or ReadWriteMany.
With ReadWriteOnce mode, only a single node can read or write the volume. In the case of
ReadOnlyMany mode, many nodes can only read the volume. However, many nodes can read or
write the volume in ReadWriteMany mode.

Persistent Volume

A Persistent Volume (PV) is a unit of storage in the cluster that has been provisioned by an
administrator or dynamically provisioned using Storage Classes. PVs can be provisioned statically,
and created by the administrator manually at configuration time. Dynamic provisioning is based on
StorageClass which is defined at configuration time. At run time, Kubernetes allocates PVs if there
is a PVC it matches to. PVs are independent of the lifecycle of the Pod that uses them, meaning that
even if the Pod dies, the data in the volume is not erased.
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StatefulSet

StatefulSet manages the deployment and scaling of a set of Pods where stateful applications are
running and provides guarantees about the ordering and uniqueness of these Pods. A StatefulSet
manages Pods that are based on an identical container specification, but maintains a sticky identity
for each of their Pods. In other words, these Pods are not interchangeable since each Pod has
a persistent identifier that it maintains across any rescheduling. StatefulSet Pods have a unique
identity that is comprised of an ordinal, a stable network identity, and stable storage. Each Pod in a
StatefulSet derives its hostname from the name of the StatefulSet and the ordinal of the Pod. The
pattern for the constructed hostname is $(statefulset name)-$(ordinal). Every Pod has its own stable
PV either by default or as defined per Storage Class. The data in PV will survive even when all
Pods die.

3.3 Operator

There are no primitives in Kubernetes to manage states by default. As a result, relying on Kubernetes
primitives alone brings difficulty managing stateful application requirements such as replication,
failover automation, backup/restore and upgrades. The Operator Pattern is introduced and can be
used to solve the problem of managing state [OTH+21].

3.3.1 Operator Design Pattern

The operator design pattern defines how to manage application and infrastructure resources using
domain-specific knowledge and a declarative state. With this pattern, the amount of manual
imperative work is reduced, such as backup and upgrade, which is required to keep an application
in the desired state [OTH+21].

As presented in Figure 3.2, a general operator has a software (called Controller) that reads the
desired specification and creates and manages the resources that were described by a domain-
specific language of the given custom resources. The Operator Pattern contains the following three
components [OTH+21]:

• Managed Resources
Managed resources are applications or infrastructure that we want to manage.

• Domain Specific Language
A Domain Specific Language allows specifying the desired state of Managed resources in a
declarative way.

• Controller
A Controller runs continuously to read and be aware of the desired state, report the current
state of Managed resources and apply changes to them in an automated way.
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Figure 3.2: General Structure of an Operator [OTH+21]

3.3.2 Operator Components in Kubernetes

Operators are custom software extensions to Kubernetes that make use of Custom Resource to
manage applications and their components in an application specific way [k8s22; OTH+21]. This is
achieved by combining Kubernetes Controllers with watched objects that describe the desired state.
There are three Operator components in Kubernetes:

• Controller
The controller, which is the brain of the operator, can watch one or more objects. The objects
can be either Kubernetes primitives such as Deployments, Services or things that reside
outside of the Kubernetes cluster such as Virtual Machine (VM)s. To ensure the watched
objects get transitioned to the desired state in a defined way, the controller will continuously
compare the desired state with the current state using the reconciliation loop and keep them
consistent.

• Custom Resource
Custom Resource (CR) allows to extend Kubernetes API with additional types not available
in the default Kubernetes distribution. Once a CR is installed, it can be queried via API
and manipulated by kubectl, like native types, such as Pods or Service. The desired state
is encapsulated in CRs and the controller applies changes to them to get their target state.
Custom Resource consists of one or more Kubernetes objects, such as Pod, StatefulSets and
Service. Therefore, updating the state of a CR is actually updating the state of corresponding
Kubernetes objects.

• Custom Resource Definition
Custom Resource Definition (CRD) API resource tells Kubernetes how to create a CR about
what the new resource kind is, what its specification looks like and how to validate its fields.

The diagram in Figure 3.3 illustrates the architecture of the operator in Kubernetes and how it works.
CRD defines a schema of settings available for configuring a CR that is an instance of CRD. When a
user modifies the CR configuration file with the desired state, the controller will get notified about
changes. There is a reconciliation loop in the controller that repeatedly compares the desired state
of the CR to its current state. If these two states don’t match, the controller takes action to adjust
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the current state to match the desired state as expressed in the CR configuration file. In order to
achieve the desired state of the CR, the controller applies changes based on the user’s modification
to Kubernetes objects that compose the CR to update their states.

Figure 3.3: Kubernetes Operator Architecture and Mechanism

3.3.3 Operator SDK

Operators make it easy to manage complex stateful applications on top of Kubernetes. However,
writing a Kubernetes operator today might be difficult because of challenges such as using low-level
APIs, writing boilerplate, and a lack of modularity which leads to duplication [oprSDK20]. Operator
SDK, is an open-source toolkit whose main purpose is to build Kubernetes operators. The set
includes the operator-sdk utility, which provides a list of commands for generating an operator
template for any type of CR. The SDK imposes a standard project layout, and in return creates
skeletal Go source code for the basic Kubernetes API controller implementation and placeholders for
application-specific handlers. In addition, the SDK provides convenience commands for building a
Kubernetes operator and wrapping it in a Linux container, generating the YAML-format Kubernetes
manifests required for deployment [DW20].
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4 Related Work

This chapter describes related works conducted by previous master students of the University of
Stuttgart, and which were used to provide the foundation for this thesis.

4.1 Design Changes for Decomposing Monolithic ECM Systems

According to the degree of coupling, Shao [Sha20] divided monolithic ECM applications into
independent components. This allowed confining loosely coupled components into distinct
containers, whereas tightly coupled ones are put together in the same container. These components
run within containers and are packaged with all necessary dependencies and libraries. This division
enables the opportunity for continuous delivery, continuous integration, and cost-effective scaling.
Figure 4.1 shows the topology of the prototype developed by Shao. Four independent applications
running on Docker containers form the ECM platform. rmdbsrv includes the Object Catalog, and
lsdbsrv includes the Data Catalog. Both containers are built using IBM’s publicly available Docker
image: ibmcom/db2:latest. The Resource Manager Application and an HTTP server are both
included in wasrm. wasicn consists of an HTTP server, a web client, and its configuration database.
They had to be constructed manually based on the image: Centos 7. Users can communicate with
the system through the Web Client, which sends requests to or receives data from the Data Catalog,
Resource Manager and Object Catalog.

Figure 4.1: Topology of ECM System Developed by Shao [Sha20]
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4.2 Deploying ECM Workloads in Cloud Environments Based on
Kubernetes and Docker

Based on the prototype developed by Shao [Sha20], Trybek [Try21] migrated containerized ECM
solution into a Kubernetes cluster. The solution can be divided into two categories, web applications
(i.e. Web Client and Resource Manager) represent stateless components, while the database
components (i.e. Resource Manager and Object Catalog) are stateful services. Managing stateful
services like databases in a Kubernetes cluster is not simple, as Kubernetes was initially intended
for stateless workloads. Therefore, Trybek constructed a prototype that left stateful components
outside the Kubernetes cluster, as presented in Figure 4.2. Web Client and Resource Manager
provide the external Service with NodePort type to users and administrators respectively. The Web
Client requires internal connections to Object Catalog as well as Resource Manager. In addition,
Resource Manager connects to Object Catalog and Data Catalog via an internal Service. Object
Catalog and Data Catalog are operated as Docker containers and connect to database services
which are integrated into the Kubernetes cluster through Endpoints.

Figure 4.2: Topology of ECM System Inside a Kubernetes Cluster Developed by Trybek [Try21]
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This chapter describes at a high level the concepts behind this thesis for developing a Kubernetes
operator, responsible for managing a cluster for DB2 to provide stable stateful database services. To
start with, we introduce the MAPE concept proposed by Ritter et al. [RMM12] and explain how we
used it to implement a Kubernetes operator for DB2 based on MAPE with the Kubernetes Operator
SDK.

5.1 MAPE Concept

Figure 5.1: System Topology Applying the MAPE Loop Concept [RMM12]

Ritter et al. [RMM12] presented MAPE, a loop-based dynamic and cost-effective provisioning
framework for multi-tenant capable system topologies in 2012. Figure 5.1 shows a typical
architecture of a common three-tier system: Web Tier, Application Tier and Database Tier. A
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framework called Resource Provisioning Manager (RPM) built upon the MAPE loop concept,
monitors and manages (dynamically provisions) critical resources (application servers, database
servers). MAPE is a generic control-loop concept that uses four phases to control a target system
described as follows [RMM12]:

• Monitor
During the monitor phase, actual resource workloads for application and database servers on
a per tenant basis are gathered, aggregated and persisted to the RPM database.

• Analyze
In the analyze phase, the data resulting from the monitor phase is used to predict tenant-specific
workload peaks for critical system resources and future workloads.

• Plan
The plan phase compiles a plan of execution actions that adjust the system topology to achieve
the target values based on the results of the analyze phase.

• Execute
During the execute phase, the plan from the plan phase is finally executed by an orchestrator
that drives provisioning and de-provisioning workflows.

5.2 MAPE Implemented by Kubernetes Control Loop

Figure 5.2: ECM System Topology Refactored by Shao [Sha20] and Trybek [Try21] Applying a
Cluster Manager for DB2 Based on the MAPE Loop Concept in Kubernetes
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5.2 MAPE Implemented by Kubernetes Control Loop

We compared the MAPE with the Kubernetes design concept and found that the Kubernetes
control-loop together with the implementation of the Operator pattern do fit very well together as
Figure 5.2 outlines. This work proposes an approach to orchestrate DB2 database applications as
stateful services using a custom operator, namely, a Kubernetes operator for DB2. It is the missing
piece for the ECM system refactored by Shao [Sha20] and Trybek [Try21]. We develop and utilize
a cluster manager for DB2 to manage the cluster containing DB2 databases based on MAPE theory
proposed by Ritter et al. [RMM12]. Figure 5.2 shows the ECM system topology refactored by
Shao [Sha20] and Trybek [Try21] now using the cluster manager for DB2. The cluster manager
for DB2 is a logical component that consists of a StatefulSet Controller and a Kubernetes operator
for DB2. We utilize a StatefulSet to deploy DB2 database applications, as StatefulSet manages
stateful applications in Kubernetes. The StatefulSet Controller is a built-in Kubernetes controller
managing Pods in the StatefulSet in terms of creation, termination, recreation, rolling updates, etc.
Nevertheless, the Kubernetes operator for DB2 is a custom operator that is responsible for managing
the Pods hosting the DB2 database instances which together provide the HA characteristic and
the DR feature. Both controllers employ control loops to manage the state of their resources, as
described in the MAPE control-loop concept. The MAPE control loop phases implemented by
Kubernetes are summarized below:

• Monitor
During the monitor phase, the controller monitors the target resource and notifies its reconciler
of a change event once the resource has changed.

• Analyze
In the analyze phase, the reconciler analyzes whether the current state of the resource is the
same as the desired state.

• Plan
The plan phase compiles a plan of executive actions that describes how to communicate with
Kubernetes API Server to adjust the resource to achieve the desired state.

• Execute
During the execute phase, Kubernetes API Server executes the actions finally which are in
the plan from the plan phase.
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6 Prototype

This chapter describes how to design, develop, test and evaluate our prototype for orchestrating
stateful database services in Kubernetes. Section 6.1 describes the design details regarding the
cluster for DB2 and the Kubernetes operator for DB2. The implementation of them is introduced in
Section 6.2, and test scenarios and evaluations of our stateful database services are presented in
Section 6.3.

6.1 Design Approach

In the following sections, the design of the stateful database service prototype is discussed.
Section 6.1.1 describes the overall design of the prototype. Next, the design of the two most
important components of the prototype: i) a cluster for DB2 and ii) a Kubernetes operator for DB2,
will be elaborated in Section 6.1.2 and Section 6.1.3 respectively.

6.1.1 Design Overview

Figure 6.1: Topology of Stateful DB2 Database Service Prototype Inside a Kubernetes Cluster
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Figure 6.1 shows the topology of the DB2 stateful database service prototype which is based on the
concept introduced in Chapter 5. The prototype contains two components, a Kubernetes operator
for DB2 that creates and manages a cluster for DB2 based on user-defined CR-yaml file, and the
cluster for DB2 that is able to provide DB2 stateful database services for external applications.
After writing a CR-yaml file that is an instance of the CRD named DB2Cluster, the deployer deploys
it in the Kubernetes cluster. Once a CR is created by Kubernetes, the Kubernetes operator for
DB2 will create a CR namely a cluster for DB2, based on the specification of the CR-yaml file. In
addition, it will continuously monitor the current state of the cluster for DB2 and compare it with
the desired state. If the current state of the cluster for DB2 is not the same as the desired state, the
Kubernetes operator for DB2 will take action to update the state of components contained in the
cluster for DB2 to achieve the desired state.
In the cluster for DB2, StatefulSet which is actually a Kubernetes controller manages and maintains
four Pods containing DB2 database applications. A database application is running on a container
in the Pod. Under the management of StatefulSet, each Pod has an ordered, stable identity and
unique network identifier and is bound to a PV. If a pod dies, StatefulSet will recreate it with the
same identity and rebound it to the previous PV containing all database data. These four Pods play
different roles in the cluster for DB2: one is the primary, one is the principal standby and up to two
others are auxiliary standbys. The primary accepts both read and write requests, while all of them
support read-only requests. Although the data can only be changed in the primary database, the
primary does synchronize the changes with all standbys via log shipping. A built-in feature of IBM
DB2 was implemented to support HA and DR scenarios.

6.1.2 Design of the Cluster for DB2

Figure 6.2: Component Diagram of a Cluster for DB2
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The cluster for DB2 is expected to provide stable and reliable stateful database services supporting
HA, DR and read-scalability. Figure 6.2 shows, the cluster for DB2 contains four DB2 Pods, two
Governor components for the primary and the principal standby respectively, an ETCD Cluster
and a HADR framework. The following subsections will discuss in detail how HA, DR and read
scalability are achieved.

HA

The HA strategy adopted in this work is based on the DB2 built-in HADR feature presented in
Figure 6.2. This feature is fully integrated and requires no special hardware or software. Since this
DB2 Enterprise Edition supports the shared-nothing architecture shown in Figure 6.1, i.e. each
database uses its own storage. Thus, the HA is achieved by replicating data changes from the
primary database to all standby databases to keep them in sync, and in case of a primary failure, a
failover event from primary to standby is triggered.

Figure 6.3: State Diagram of Pods Related to Failover

Failover is the process of transferring ownership of database services from a failed server to a
healthy one. Failover can be manual or automated. Relying on manual failover might result in
higher downtime compared to automated failover. Therefore, in our prototype, we implement a
component called Governor that is responsible for performing failover automatically. Due to the
limitation of the HADR implementation, auxiliary standbys can only asynchronize data with the
primary database. The failover between the auxiliary standby and the primary will result in the
loss of certain data that was not synchronized in time. Thereby, we merely consider the automated
faiover between the principal standby and the primary. For both the primary and the principal
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standby, there is a Governor running on it separately, shown in Figure 6.2. The Governor monitors
the state of the primary and conducts the failover once the primary fails. The Kubernets built-in
ETCD Key-Value Database Cluster stores the data including the database instance designated as the
current primary, in the form of <CurrentPrimary, hostname> (i.e.<key, value>).

The overall process of failover for DB2 Pods with state transfer aspect is presented in Figure 6.3.
During the initial setup phase, if there is no primary in the cluster for DB2, the Pod will be set up
as the primary. Once the primary Pod is running, Governor running on it will set the value of
CurrentPrimary as its hostname and continuously check its health. If a primary already exists, the
next activated Pod will be assigned the principal standby role and linked with the primary as its
peer by the HADR framework. The Governor on the principal standby will take no action since it
confirms that it is not the current primary and the current primary is healthy now. Once the primary
fails due to a failure event, such as failed network/servers and the deletion of CR (DB2Cluster), the
automatic failover is triggered. In the failover phase, the Governor for the principal standby finds
the unhealthy state of the primary, then it will take over as the new primary and set its hostname as
the new value of CurrentPrimary in the ETCD Cluster. When the previous primary comes back,
Governor on it will solve the split-brain problem. The previous primary’s Governor obtains the
value of CurrentPrimary and detects that it is no longer the current primary. It also finds that the
new primary is healthy now. Based on these two conditions, the Governor for the previous primary
will reconfigure the previous primary as the new principal standby to rejoin the cluster for DB2.

DR

Benefiting from HADR, the cluster for DB2 implements DR feature by replicating data from the
primary to two auxiliary standbys in asynchronization mode, which is presented in Figure 6.2.
Therefore, auxiliary standbys exist as database backups of the primary. In addition, the primary and
auxiliary standbys are deployed in two separate locations. In the event that both the primary and the
principal standby stop working due to a disaster, DB2 database services can be provided again after
performing a disaster recovery plan manually. The disaster recovery plan restores database services
by means of recreating the primary and the principal standby from two auxiliary standbys.

Read scalability

In this work, the strategy for horizontal scaling of the cluster for DB2 is increasing the number of
standbys that exclusively serve read queries, as presented in Figure 6.2. This approach for horizontal
scalability also improves the total read performance for the read-only service. Compared with only
one standby, scaling to three standbys helps reduce the number of read requests each standby needs
to handle.
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6.1.3 Design of the Kubernetes Operator for DB2

Figure 6.4: Structure of a Kubernetes Operator for DB2

The goal of the Kubernetes operator for DB2 is deploying a cluster for DB2 based on the CR
specification automatically, continuously monitoring and updating its state. As illustrated in
Figure 6.4, the following components form the three main parts of the Kubernetes operator for
DB2:

• API
API describes the configuration of a cluster for DB2, including programmatic API ( i.e.
db2cluster_types.go), CR and CRD. The CRD defines a schema of settings available for
configuring a cluster for DB2. The component db2cluster_types.go defines the same data
schema as the CRD but is implemented using GO programming language. CR specifies
values for the settings defined by the CRD. The relationship between them is clearly shown
in Figure 6.4, the CRD named db2clusters.db2.example.com can be generated by parsing
definitions in the db2cluster_types, and the CR is an instance of CRD.

• Controller
The controller is the most important component of the Kubernetes operator for DB2. The
controller creates managed resources by referring to the definition in the db2cluster_types.go
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and using the corresponding specific value in the CR. In the controller, the reconcile loop is
implemented which is responsible for enforcing the desired state on the actual state of the
cluster for DB2.

• Role and Service Accounts
Role-based access control (RBAC) is a method of controlling access to Kubernetes resources
based on the roles of individual users. As shown in Figure 6.4, a ServiceAccount called
db2operator-manager provides the Kubernetes operator for DB2 running in the Pod with the
identity that Kubernetes uses for authentication. The ClusterRole named db2operator-role
specifies the permissions that allow the Kubernetes operator for DB2 to interact with the
resources it manages, such as create, get and delete. Finally, db2operator-rolebinding which
is a RoleBinding object binds the ServiceAccount with ClusterRole, i.e. the Kubernetes
operator for DB2 has the specified permission to access Kubernetes resources.

6.2 Implementation

Section 6.2.2 The following section describes the implementation of the prototype which is designed
in Section 6.1. Section 6.2.1 and Section 6.2.2 introduces the implementation details of the cluster
for DB2 and the Kubernetes operator for DB2 respectively.

6.2.1 Implementation of the Cluster for DB2

Pods that comprise containers running a DB2 database application form a cluster for DB2. In
addition, containers are dependent on images to use them to construct a run-time environment
and run an application. In order for the cluster to have HA and DR characteristics, we need to
containerize the DB2 database application as an image, which is set up with the DB2 HADR feature
and has included our Governor component developed to manage automatic failover.

Initializing HADR

In this work, a shell script named setup_db2_instance.sh is adopted to initialize each DB2 instance
in the cluster for DB2. DB2 instances will be set up HADR with different HADR roles, such as
primary, principal standby and auxiliary standby. The HADR roles of them rely on the number
of instances in the cluster for DB2. To achieve the HA feature realized by HADR, the cluster for
DB2 must consist of at least two DB2 instances, one is the primary and the other is the principal
standby. If there are three DB2 instances existing in the cluster for DB2, in addition to the primary
and the principal standby, the other one is set up as the auxiliary standby. Consequently, DR
capability will be enabled. In the case of four DB2 instances, aside from the required primary
and the principal standby, the other two are auxiliary standbys. The pseudocode for setting up
HADR on a DB2 instance is presented in Algorithm 6.1. First, the HADR configuration file:
/hadr/hadr.cfg is mounted on a shared persistent volume, as each instance needs to write HADR
configuration to it. There is a potential for write conflicts owing to each instance writing to the
/hadr/hadr.cfg. Therefore, before each DB2 instance writes to /hadr/hadr.cfg, it examines if the
file is locked (i.e. if another instance is writing). If the file is unlocked, the DB2 instance writes
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directly, otherwise, it waits until it is unlocked. The example in Listing 6.1 shows the format of
/hadr/hadr.cfg. When the first instance finds that /hadr/hadr.cfg is empty, then it will write its
hostname and IP address into /hadr/hadr.cfg as primary. According to the number of DB2 instances
in the cluster specified in the CR-yaml file, the primary calculates the number of standbys and learns
about their HADR role types. Moreover, the primary checks the keywords (i.e. standby_hostname,
standby1_hostname, standby2_hostname) in /hadr/hadr.cfg every 30 seconds to determine if all
standbys are signed up. Otherwise, the primary will wait until all standbys complete the registration
of configuration information. Once all standbys have written the configuration information in
/hadr/hadr.cfg, the primary will set the HADR configuration parameters, and then start HADR on
the database as the primary. Subsequent instances find that there is already existing information
about the primary instance in /hadr/hadr.cfg, then their roles will be initialized to standby. The
role of the standby instance is principal standby or auxiliary standby depending on the number of
instances and the existing configuration in the /hadr/hadr.cfg. The setting priority of the principal
standby is higher than that of the auxiliary standby. In other words, the DB2 instance activated
earlier will be configured as the principal standby first. Similar to the primary, the standbys also
constantly check the keywords of /hadr/hadr.cfg to examine whether the remaining DB2 instances
are registered in it. After waiting for all instances to write configuration, the standby will also set
the HADR configuration parameters. However, before starting HADR on the database as a principal
standby or auxiliary standby, enabling read-only mode for the standbys is required. setup_hadr.sh
allows the standbys to be readable via using the commands: "DB2SET DB2_HADR_ROS=ON"
and "DB2SET DB2_STANDBY_ISO=UR".

Listing 6.1 Example of /hadr/hadr.cfg

primary_hostname=db2-0

primary_ipaddr=192.168.54.121

standby_hostname=db2-1

standby_ipaddr=192.168.182.222

standby1_hostname=db2-2

standby1_ipaddr=192.168.54.78

standby2_hostname=db2-3

standby2_ipaddr=192.168.182.219
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Algorithm 6.1: Setting up HADR on DB2 Instances with Different HADR Roles
input :The number of DB2 instances 𝑛𝑢𝑚, The name of DB2 database where set up HADR

on 𝑑𝑏𝑁𝑎𝑚𝑒

output
:

A DB2 instance that is set up with HADR

1 𝐹ℎ𝑎𝑑𝑟 ← /ℎ𝑎𝑑𝑟/ℎ𝑎𝑑𝑟.𝑐 𝑓 𝑔 ; /* HADR configuration file */

2 if 𝐹ℎ𝑎𝑑𝑟 is empty then
3 write hostname and IP to 𝐹ℎ𝑎𝑑𝑟 as primary;
4 wait for all standbys to write in 𝐹ℎ𝑎𝑑𝑟 ;
5 set HADR configuration parameters for primary;
6 start HADR on database 𝑑𝑏𝑁𝑎𝑚𝑒 as primary;
7 else
8 if 𝑛𝑢𝑚 = 2 then
9 write hostname and IP to 𝐹ℎ𝑎𝑑𝑟 as principal standby;

10 𝑠𝑡𝑎𝑛𝑑𝑏𝑦𝑅𝑜𝑙𝑒 ←principal standby;

11 if 𝑛𝑢𝑚 = 3 then
12 if info of principal standby does not exist in 𝐹ℎ𝑎𝑑𝑟 then
13 write hostname and IP to 𝐹ℎ𝑎𝑑𝑟 as principal standby;
14 𝑠𝑡𝑎𝑛𝑑𝑏𝑦𝑅𝑜𝑙𝑒 ←principal standby;
15 else
16 write hostname and IP to 𝐹ℎ𝑎𝑑𝑟 as auxiliary standby1;
17 𝑠𝑡𝑎𝑛𝑑𝑏𝑦𝑅𝑜𝑙𝑒 ←auxiliary standby1;

18 if 𝑛𝑢𝑚 = 4 then
19 if info of principal standby does not exist in 𝐹ℎ𝑎𝑑𝑟 then
20 write hostname and IP to 𝐹ℎ𝑎𝑑𝑟 as principal standby;
21 𝑠𝑡𝑎𝑛𝑑𝑏𝑦𝑅𝑜𝑙𝑒 ←principal standby;

22 else if info of auxiliary standby1 does not exist in 𝐹ℎ𝑎𝑑𝑟 then
23 write hostname and IP to 𝐹ℎ𝑎𝑑𝑟 as auxiliary standby1;
24 𝑠𝑡𝑎𝑛𝑑𝑏𝑦𝑅𝑜𝑙𝑒 ←auxiliary standby1;

25 else
26 write hostname and IP to 𝐹ℎ𝑎𝑑𝑟 as auxiliary standby2;
27 𝑠𝑡𝑎𝑛𝑑𝑏𝑦𝑅𝑜𝑙𝑒 ←auxiliary standby2;

28 wait for all instances to write in 𝐹ℎ𝑎𝑑𝑟 ;
29 set HADR configuration parameters for 𝑠𝑡𝑎𝑛𝑑𝑏𝑦𝑅𝑜𝑙𝑒;
30 enable read-only mode for the standby;
31 start HADR on database 𝑑𝑏𝑁𝑎𝑚𝑒 as 𝑠𝑡𝑎𝑛𝑑𝑏𝑦𝑅𝑜𝑙𝑒;

Setting HADR configuration parameters is the most critical step during setting up HADR. The
following discussion is about how to set HADR configuration parameters in the case of four DB2
instances existing in the cluster for DB2. Table 6.1 describes the implication of each HADR
configuration parameter. Table 6.2, Table 6.3, Table 6.4 and Table 6.5 respectively introduce the
detailed HADR configuration parameter settings of the primary, the principal standby, the auxiliary
standby1 and the auxiliary standby2. In terms of the primary, "HADR_LOCAL_HOST" is set as
its hostname, while "HADR_REMOTE_HOST" is set as the hostname of the principal standby.
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The settings of "HADR_LOCAL_SVC" and "HADR_REMOTE_SVC" refer to the corresponding
service name in /etc/services, which is shown in Listing 6.2. "HADR_REMOTE_INST" is set as
the instance of the principal standby. The value of "HADR_SYNCMODE" is NEARSYNC, since it
is nearly as good as SYNC, with significantly less communication overhead. "HADR_TIMEOUT"
is set to 120, which means that if a database does not receive a heartbeat message from its partner
database within 120s, the database considers the connection down and closes the TCP connection.
"HADR_PEER_WINDOW" is set with 120 as well, it enables failover operations with no data
loss if the primary failed within 120s. The combination of the hostnames and service ports of
all other instances is set as the value of "HADR_TARGET_LIST". However, in the case of only
one principal standby in the cluster, the setting of "HADR_TARGET_LIST" is not required. On
the principal standby, the values of "HADR_REMOTE_HOST", "HADR_REMOTE_SVC" and
"HADR_REMOTE_INST" correspond to the hostname, service port, and instance name of the
primary. "HADR_SYNCMODE" is set to NEARSYNC as well because if the principal standby
switches roles with the primary during failover, the synchronization mode for the new primary and
principal standby pair will also be NEARSYNC. Compared with the settings on the principal standby,
the biggest difference between the auxiliary standby settings is that "HADR_SYNCMODE" is set
to SUPERASYNC. The reason is that HADR restricts auxiliary standbys to be in SUPERASYNC
mode only, which has the shortest transaction response time of all synchronization modes.

Listing 6.2 HADR Service Ports in /etc/services

db2_hadrp 60006/tcp /*service port for the primary*/

db2_hadrs 60007/tcp /*service port for the principal standby*/

db2_hadra 60008/tcp /*service port for the auxiliary standby1*/

db2_hadrb 60009/tcp /*service port for the auxiliary standby2*/

HADR Configuration Parameter Implication
HADR_LOCAL_HOST HADR local hostname
HADR_LOCAL_SVC HADR local service name
HADR_REMOTE_HOST HADR remote hostname
HADR_REMOTE_SVC HADR remote service name
HADR_REMOTE_INST HADR instance name of remote server
HADR_TIMEOUT HADR timeout value
HADR_SYNCMODE HADR log write synchronization mode
HADR_PEER_WINDOW HADR peer window duration (seconds)
HADR_TARGET_LIST HADR target list

Table 6.1: Implications of HADR Configuration Parameters
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HADR Configuration Parameter Value
HADR_LOCAL_HOST primary_hostname
HADR_LOCAL_SVC db2_hadrp
HADR_REMOTE_HOST principal_standby_hostname
HADR_REMOTE_SVC db2_hadrs
HADR_REMOTE_INST principal_standby_instance_name
HADR_TIMEOUT 120
HADR_SYNCMODE NEARSYNC
HADR_PEER_WINDOW 120

HADR_TARGET_LIST
principal_standby_hostname:db2_hadrs
|auxiliary_standby1_hostname:db2_hadra
|auxiliary_standby2_hostname:db2_hadrb

Table 6.2: HADR Configuration Parameters for the Primary

HADR Configuration Parameter Value
HADR_LOCAL_HOST principal_standby_hostname
HADR_LOCAL_SVC db2_hadrs
HADR_REMOTE_HOST primary_hostname
HADR_REMOTE_SVC db2_hadrp
HADR_REMOTE_INST primary_instance_name
HADR_TIMEOUT 120
HADR_SYNCMODE NEARSYNC
HADR_PEER_WINDOW 120

HADR_TARGET_LIST
primary_hostname:db2_hadrp
|auxiliary_standby1_hostname:db2_hadra
|auxiliary_standby2_hostname:db2_hadrb

Table 6.3: HADR Configuration Parameters for the Principal Standby
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HADR Configuration Parameter Value
HADR_LOCAL_HOST auxiliary_standby1_hostname
HADR_LOCAL_SVC db2_hadra
HADR_REMOTE_HOST primary_hostname
HADR_REMOTE_SVC db2_hadrp
HADR_REMOTE_INST primary_instance_name
HADR_TIMEOUT 120
HADR_SYNCMODE SUPERASYNC
HADR_PEER_WINDOW 120

HADR_TARGET_LIST
primary_hostname:db2_hadrp
|principal_standby_hostname:db2_hadrs
|auxiliary_standby2_hostname:db2_hadrb

Table 6.4: HADR Configuration Parameters for the Auxiliary Standby1

HADR Configuration Parameter Value
HADR_LOCAL_HOST auxiliary_standby2_hostname
HADR_LOCAL_SVC db2_hadrb
HADR_REMOTE_HOST primary_hostname
HADR_REMOTE_SVC db2_hadrp
HADR_REMOTE_INST primary_instance_name
HADR_TIMEOUT 120
HADR_SYNCMODE SUPERASYNC
HADR_PEER_WINDOW 120

HADR_TARGET_LIST
primary_hostname:db2_hadrp
|principal_standby_hostname:db2_hadrs
|auxiliary_standby1_hostname:db2_hadra

Table 6.5: HADR Configuration Parameters for the Auxiliary Standby2

Implementing the Automatic Failover with Governor

Governor component is responsible for automatic failover leading to less downtime of stateful
database services. It continuously checks whether the primary is healthy, and performs failover
immediately once the primary is dead. Governor is a template for creating a custom fit high
availability solution using Kubernetes ECTD Key-Value Cluster for PostgreSQL 1, and the IBM
team modified it to fit DB2. On this basis, we refactored the code of Governor to allow it to realize
automatic failover for the designed cluster for DB2.

The shell script setup_db2_instance.sh also contributes to the generation of a Governor configuration
file called db2.yml. db2.yml not only collects configurations about the DB2 database but also
contains the settings of Kubernetes ECTD Key-Value Cluster.

1Governor: https://github.com/compose/governor

51

https://github.com/compose/governor


6 Prototype

Listing 6.3 Example of db2.yml

timestamp_file: /database/config/db2inst1/timestamp_file

force_takeover_window: 300

loop_wait: 10

env: test

truth_manager: etcd3

etcd3:

scope: etcd

ttl: 30

endpoint: ['10.109.75.82:2379']

timeout: 20

db2:

ip: db2-0

ip_other: db2-1

db: HADRDB

authentication:

username: db2inst1

password: db2inst1

op_timeout:

connect: 120

start: 180

start_as_standby: 180

start_as_primary: 180

Listing 6.3 presents an example of db2.yml, and its settings are explained below:

• timestamp_file: the absolute path of the timestamp file recording the time when the DB2
database is set as primary.

• force_takeover_window: the number of seconds in which a forced takeover will not occur.
The Governor on the standby compares whether the time since the last connection to its peer
is within this duration, and if not, a forced takeover will be performed.

• loop_wait: the number of seconds each loop will sleep, including the loop for running a HA
manager, the loop for checking the health of the current primary, the loop for examining the
running status of the DB2 database, etc.

• env: the purpose of the Governor development. In this work, it is fixed at test.

• truth_manager: the version of ETCD interface. In this work, it is fixed at etcd3.

• etcd3: configurations of Kubernetes ECTD Key-Value Cluster.

□ scope: the relative path used on ETCD’s HTTP API. In this work, it is fixed at etcd.

□ ttl: the Time to live (TTL) to update the data of the current primary stored in the ETCD
Cluster. It is considered as the duration before the automatic failover process is initiated.

□ endpoint: the endpoint of the ETCD Cluster. Its scheme is host:port.

□ timeout: the number of seconds the Governor waits to establish a connection to the
ETCD Cluster.
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• db2: configurations of the DB2 database.

□ ip: the IP address of the local host.

□ ip_other: the IP address of the remote host (its peer).

□ db: the name of the DB2 database.

□ authentication: the configuration of the DB2 database authentication.

∗ username: the username for accessing the DB2 database specified in the .db2.db
field.

∗ password: the password for accessing the DB2 database specified in the .db2.db
field.

• op_timeout: configurations of the timeout.

□ connect: the number of seconds to wait for a connection to the DB2 database specified
in the .db2.db field.

□ start: the number of seconds to wait to start the DB2 database manager.

□ start_as_standby: the number of seconds to wait to start HADR as primary on the DB2
database specified in the .db2.db field.

□ start_as_primary: the number of seconds to wait to start HADR as standby on the DB2
database specified in the .db2.db field.

The failover logic of the Governor is illustrated in Algorithm 6.2. This algorithm is running in a
loop to monitor the cluster for DB2 continuously. The algorithm implements HA for the cluster for
DB2 employing a HA manager that contains a state_handler (maps to a db2 object) to check for
HADR roles, and a truth_manager (maps to an ETCD object) to put or get the hostname of the
current primary. From the viewpoint of the Governor, the host whose HADR role is primary is
considered as the leader. The automated failover of the Governor is divided into two phases: i) the
principal standby takeover phase, and ii) the phase where the previous primary comes back as the
new principal standby. Once the current primary fails, the Governor on the principal standby will
enter the takeover phase (corresponding to line 2 to line 8 in Algorithm 6.2). As mentioned before,
db2.yml specifies the TTL of updating the data of the current leader saved in the ETCD Cluster.
This TTL is a lease on the key-value pair <leader, value> as well, indicating that the key-value pair
will expire beyond this period. The failure of the primary causes its Governor to stop updating this
key-value pair. As a result, the Governor on the principal standby gets nothing about the current
leader from the ETCD cluster, implying that there is no leader currently. Thereby, the Governor of
the principal standby will attempt to update the value of the current leader as the local hostname
using the method 𝑡𝑟𝑢𝑡ℎ_𝑚𝑎𝑛𝑎𝑔𝑒𝑟.𝑎𝑐𝑞𝑢𝑖𝑟𝑒_𝑙𝑒𝑎𝑑𝑒𝑟 (). Since its HADR role is not primary, the
method 𝑠𝑡𝑎𝑡𝑒_ℎ𝑎𝑛𝑑𝑙𝑒𝑟.𝑝𝑟𝑜𝑚𝑜𝑡𝑒() is called to perform the takeover by running the command:
"db2 take over hadr on db db_name by force". Consequently, the previous principal standby becomes
the new primary. When the previous primary recovers from a failure, the Governor on it will begin
the phase of setting the previous primary as the new principal standby (corresponding to line 24 to
line 27 in Algorithm 6.2). The Governor of the previous primary finds that a leader already exists,
but its current HADR role is primary. A split-brain issue will arise, implying that the cluster for
DB2 will most likely have two primaries. To solve the split-brain problem, the previous primary
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will demote itself with the method 𝑠𝑡𝑎𝑡𝑒ℎ𝑎𝑛𝑑𝑙𝑒𝑟.𝑑𝑒𝑚𝑜𝑡𝑒() executing the command: "db2stop".
The Governor detects that the previous primary is no longer active after demotion as it is always
monitoring the health of the DB2 database. Due to the fact that the timestamp of the current primary
storing in the ETCD Cluster is more recent than the timestamp of the previous primary when it
became the primary, the Governor of the previous primary will restart HADR on it as the new
principal standby employing command: "db2 start hadr on db db_name as standby".

Algorithm 6.2: Failover Algorithm of Governor
input :A HA manager ℎ𝑎 = (𝑠𝑡𝑎𝑡𝑒_ℎ𝑎𝑛𝑑𝑙𝑒𝑟, 𝑡𝑟𝑢𝑡ℎ_𝑚𝑎𝑛𝑎𝑔𝑒𝑟), where 𝑠𝑡𝑎𝑡𝑒_ℎ𝑎𝑛𝑑𝑙𝑒𝑟 is

a db2 object, and 𝑡𝑟𝑢𝑡ℎ_𝑚𝑎𝑛𝑎𝑔𝑒𝑟 is an ETCD object
output
:

The status of ℎ𝑎, 𝑠𝑡𝑎𝑡𝑢𝑠

1 if db2 state is ok then
2 if no leader exists then
3 if 𝑡𝑟𝑢𝑡ℎ_𝑚𝑎𝑛𝑎𝑔𝑒𝑟.𝑎𝑐𝑞𝑢𝑖𝑟𝑒_𝑙𝑒𝑎𝑑𝑒𝑟 () then
4 if not 𝑠𝑡𝑎𝑡𝑒_ℎ𝑎𝑛𝑑𝑙𝑒𝑟.𝑖𝑠_𝑝𝑟𝑖𝑚𝑎𝑟𝑦() then
5 𝑠𝑡𝑎𝑡𝑒_ℎ𝑎𝑛𝑑𝑙𝑒𝑟.𝑝𝑟𝑜𝑚𝑜𝑡𝑒();
6 update leader timestamp in 𝑡𝑟𝑢𝑡ℎ_𝑚𝑎𝑛𝑎𝑔𝑒𝑟 to current timestamp;
7 update primary timestamp in 𝑠𝑡𝑎𝑡𝑒_ℎ𝑎𝑛𝑑𝑙𝑒𝑟 to current timestamp;
8 𝑠𝑡𝑎𝑡𝑢𝑠← " promoted self to leader ";

9 else
10 𝑠𝑡𝑎𝑡𝑢𝑠← " already be a leader ";

11 else
12 if 𝑠𝑡𝑎𝑡𝑒_ℎ𝑎𝑛𝑑𝑙𝑒𝑟.𝑖𝑠_𝑝𝑟𝑖𝑚𝑎𝑟𝑦() then
13 𝑠𝑡𝑎𝑡𝑒_ℎ𝑎𝑛𝑑𝑙𝑒𝑟.𝑑𝑒𝑚𝑜𝑡𝑒();
14 𝑠𝑡𝑎𝑡𝑢𝑠← " demoted self due to potential split brain ";

15 else
16 if I am the leader then
17 if not 𝑠𝑡𝑎𝑡𝑒_ℎ𝑎𝑛𝑑𝑙𝑒𝑟.𝑖𝑠_𝑝𝑟𝑖𝑚𝑎𝑟𝑦() then
18 𝑠𝑡𝑎𝑡𝑒_ℎ𝑎𝑛𝑑𝑙𝑒𝑟.𝑝𝑟𝑜𝑚𝑜𝑡𝑒();
19 update leader timestamp in 𝑡𝑟𝑢𝑡ℎ_𝑚𝑎𝑛𝑎𝑔𝑒𝑟 to current timestamp;
20 update primary timestamp in 𝑠𝑡𝑎𝑡𝑒_ℎ𝑎𝑛𝑑𝑙𝑒𝑟 to current timestamp;
21 𝑠𝑡𝑎𝑡𝑢𝑠← " promoted self to leader ";

22 else
23 𝑠𝑡𝑎𝑡𝑢𝑠← " already be a leader ";

24 else
25 if 𝑠𝑡𝑎𝑡𝑒_ℎ𝑎𝑛𝑑𝑙𝑒𝑟.𝑖𝑠_𝑝𝑟𝑖𝑚𝑎𝑟𝑦() then
26 𝑠𝑡𝑎𝑡𝑒_ℎ𝑎𝑛𝑑𝑙𝑒𝑟.𝑑𝑒𝑚𝑜𝑡𝑒();
27 𝑠𝑡𝑎𝑡𝑢𝑠← " demoted self due to potential split brain ";

28 else
29 restart HADR;

30 return 𝑠𝑡𝑎𝑡𝑢𝑠;
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Building Custom DB2 Image

This section will introduce how to build a DB2 image that contains HADR feature and the Governor
component with Dockerfile. Listing 6.4 shows the detailed Dockerfile responsible to build a custom
DB2 image. The steps included in the Dockerfile are as follows:

1) Choose ibmcom/db2 as a base image.

2) Copy the directory db2_setup which contains shell scripts to set up HADR and Governor, and
the Governor component coded in Python.

3) Copy and run the shell script install_python2.sh installing python2 and related packages required
in the Governor component

4) Copy shell scripts a_setup_governor.sh and b_create_table.sh to the directory /var/custom, and
add execution permission to them. They will be automatically executed after the DB2 database
setup has been completed. a_setup_governor.sh runs the Governor component in the background
with no hangups. b_create_table.sh creates a table in the DB2 database. It is utilized to verify
the HA feature by inserting data into the primary database and reading the same data from all
standby databases.

Listing 6.4 Dockerfile for Building a Custom DB2 Image

FROM ibmcom/db2

COPY db2_setup /var/db2_setup

COPY install_python2.sh install_python2.sh

RUN bash install_python2.sh

RUN mkdir /var/custom

COPY a_setup_governor.sh /var/custom

RUN chmod a+x /var/custom/a_setup_governor.sh

COPY b_create_table.sh /var/custom

RUN chmod a+x /var/custom/b_create_table.sh

Before building our DB2 image, we deploy a registry server running within the Docker container
utilizing the below commands:
# create the registry directory

sudo mkdir -p /opt/data/registry

# start the registry container

sudo docker run -d --restart=always -p 5000:5000 -v /opt/data/registry:/tmp/registry --name

db2-operator-registry registry

The following commands are used to build the custom DB2 image and push it to our private image
registry server. They must be executed in the same directory as the above Dockerfile.
# build image

docker build -t 129.69.209.196:5000/my-db2:latest .

# push image to our registry

docker push 129.69.209.196:5000/my-db2:latest
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6.2.2 Implementation of the Kubernetes Operator for DB2 with Kubernetes
Operator SDK

This section describes how to develop a Go-based Kubernetes operator for DB2 with Kubernetes
Operator SDK in detail. Kubernetes Operator SDK makes writing operators easier by providing
high-level APIs and abstractions to write the operational logic in a more intuitive way. Moreover,
its scaffolding and code generation are helpful to bootstrap a new project quickly. Kubernetes
Operator SDK provides the following workflow for a new Go-based operator [oprSDK20]:

1) Create a new operator project using the SDK Command Line Interface (CLI)

2) Define new resource APIs by adding CRD

3) Implement the Controller with managed resources, reconciling logic and RBAC

4) Use the SDK CLI to build and generate the operator deployment manifests

The following sections will describe the detailed implementation of each step in the workflow
separately.

Creating a Project of the Kubernetes Operator for DB2

First of all, we create a directory for the project of the Kubernetes operator for DB2 and initialize it
with the following commands:

# create a project directory

mkdir db2-operator

# init the project

cd db2-operator

operator-sdk init --domain example.com --repo github.com/example/db2-operator

Then we create an API for CR using DB2Cluster type and a controller utilizing the command as
follows:

# create API and controller

operator-sdk create api --group db2 --version v1 --kind DB2Cluster --resource --controller

Defining the API for CRD DB2Cluster

After creating an API, DB2Cluster resource API is scaffolded at api/v1/db2cluster_types.go
where we can define this API. The definition of DB2Cluster resource is described in Listing 6.5.
Size specifies the number of Pods in a cluster for DB2 with valid values from two to four.
StorageClassforDB defines the StorageClass type to create PVs for mounting databases. The
following specifications: DBName, DBInstance, DBInstancePassword, and StorageClassforHADR
are related to HADR feature. EtcdEndpoint is the entry for ETCD Cluster used by the Governor
component. DBName, DBInstance, and DBInstancePassword are related to the DB2 database
configuration. StorageClassforHADR defines the StorageClass type to create PV for mounting
the HADR configuration file (/hadr/hadr.cfg). According to the above definition of DB2Cluster
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resource API, the CR configuration file has to be formatted as shown in Listing 6.6. Once the API
is defined with spec/status fields and CRD validation markers, the CRD manifests can be generated
and updated by performing the command: "make manifests".

Listing 6.5 Defining DB2Cluster Resource API in api/v1/db2cluster_types.go

// DB2ClusterSpec defines the desired state of DB2Cluster

type DB2ClusterSpec struct {

// INSERT ADDITIONAL SPEC FIELDS - desired state of cluster

// Important: Run "make" to regenerate code after modifying this file

// Size: the number of Pods in the Cluster for DB2

// +kubebuilder:validation:Minimum=2

// +kubebuilder:validation:Maximum=4

Size int32 `json:"Size"`
// EtcdEndpoint: the endpoint of etcd cluster

EtcdEndpoint string `json:"EtcdEndpoint"`
// DBName: name of db2 database

// +kubebuilder:default:="HADRDB"

DBName string `json:"DBName,omitempty"`
// DBInstance: name of db2 instance

// +kubebuilder:default:="db2inst1"

DBInstance string `json:"DBInstance,omitempty"`
// DBInstancePassword: password of db2 instance

// +kubebuilder:default:="db2inst1"

DBInstancePassword string `json:"DBInstancePassword,omitempty"`
// StorageClassforHADR: StorageClass to mount hadr.cfg file which can be shared

StorageClassforHADR string `json:"StorageClassforHADR"`
// StorageClassforDB: StorageClass to mount database

// +kubebuilder:default:="default"

StorageClassforDB string `json:"StorageClassforDB,omitempty"`
}

Listing 6.6 CR Configuration File Format

apiVersion: db2.example.com/v1

kind: DB2Cluster

metadata:

name:

spec:

Size:

EtcdEndpoint:

DBName:

DBInstance:

DBInstancePassword:

StorageClassforHADR:

StorageClassforDB:
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Implement the Controller

The controller of a Kubernetes operator for DB2 is developed in the file controller-
s/db2cluster_controller.go by specifying managed resources, implementing reconciling logic
and defining RBAC permissions.

1) Specifying Resources Watched by the Controller

Listing 6.7 Specifying Resources Watched by the Controller in controllers/db2cluster_controller.go

// SetupWithManager sets up the controller with the Manager.

func (r *DB2ClusterReconciler) SetupWithManager(mgr ctrl.Manager) error {

return ctrl.NewControllerManagedBy(mgr).

For(&db2v1.DB2Cluster{}).

Owns(&appsv1.StatefulSet{}).

Owns(&corev1.Service{}).

Owns(&corev1.PersistentVolumeClaim{}).

Complete(r)

}

As mentioned before in Section 6.1.1, a cluster for DB2 needs two Services and a StatefulSet
to manage Pods running DB2 database applications. Section 6.2.1 describes that the HADR
configuration file (/hadr/hadr.cfg) must be mounted in a shared PV for each DB2 instance to access.
Therefore, we need to declare that Service, StatefulSet and PVC are owned and managed by the
controller, as shown in Listing 6.7.

2) Implementing Reconciling Logic

The most critical part of implementing the controller is to realize reconcile loop of a reconciler to
create and manage a cluster for DB2.
Figure 6.5 presents the process of reconciliation of the Kubernetes operator for DB2. If the db2cluser
object which is an entity of CRD DB2Cluster does not exist, the reconciler will remove PVCs used
by Pods in the StatefulSet, since the associated PVCs are not destroyed automatically in order to
persistently preserve the data when the StatefulSet is deleted. Next, the controller examines whether
these Kubernetes resources exist in the specified Namespace, Services for the primary service and
the read-only service, PVC for HADR and StatefulSet for managing Pods that constituted a cluster
for DB2. According to the results, it will create Kubernetes resources that do not currently exist.
A primary service and a read-only service generated by the reconciler using the Kubernetes API
k8s.io/api/core/v1 are identical to those created using YAML files in Listing 6.8 and Listing 6.9.
The Service type is set to NodePort to allow both services to be accessible for applications outside
of the Kubernetes cluster. External applications are able to connect to the primary service and
the read-only service via nodePort 30001 and 30002 respectively. The configurations of port and
targetPort are the same for both services. The specified port in the spec field relates to port 50000
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exposed within the Kubernetes cluster while the targetPort corresponds with port 50000 that is
identical to the containerPort of each Pod. With the selector role:primary, the Pod owning the label
role:primary will be targeted by the primary service. Similarly, the read-only service identifies its
member Pods have the label app:db2 which is the same as its selector.

Listing 6.8 Primary Service YAML File

# Primary Service

apiVersion: v1

kind: Service

metadata:

name: {db2Cluster.Name}-primary #db2Cluster.Name is specified in the CR YAML file

labels:

app: db2

spec:

type: NodePort

ports:

- name: writeport

targetPort: 50000

port: 50000

nodePort: 30001

selector:

role: primary

Listing 6.9 Read-only Service YAML File

# Read-only Service

apiVersion: v1

kind: Service

metadata:

name: {db2Cluster.Name}-read-only #db2Cluster.Name is specified in the CR YAML file

labels:

app: db2

spec:

type: NodePort

ports:

- name: readport

targetPort: 50000

port: 50000

nodePort: 30002

selector:

app: db2

The PVC for creating a PV to mount the HADR configuration file (/hadr/hadr.cfg) is generated
by the reconciler employing Kubernetes API k8s.io/api/core/v1. The equivalent YAML file is
presented in Listing 6.10. Since the PV referring to this PVC has to be accessible by many Pods,
the StorageClass with a Network File System (NFS) volume plugin is chosen to provision the PV in
this work. Moreover, its accessModes is configured as ReadWriteMany allowing multiple Pods to
read/write on the PV bound to it. This PVC requests 1 Gi storage for its corresponding PV.
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Listing 6.10 YAML File of PVC for Generating PV to Mount HADR Configuration File

# PVC for HADR

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

name: {db2Cluster.Name}-shared-hadr #db2Cluster.Name is specified in the CR YAML file

spec:

accessModes:

- ReadWriteMany

#db2Cluster.Spec.StorageClassforHADR is specified in the CR YAML file

storageClassName: {db2Cluster.Spec.StorageClassforHADR}

resources:

requests:

storage: 1Gi

The reconciler utilizes Kubernetes API k8s.io/api/apps/v1 to create the StatefulSet for the cluster
for DB2. The configurations of this StatefulSet are illustrated in Listing 6.11. The selector
of the StatefulSet is set to app:db2 to ensure that all Pods have this label within the specific
NameSpace belong to it. The .spec.selector field of the StatefulSet must match the labels of
its section .spec.template.metadata.labels. Failing to specify a matching selector will result in
a validation error during the StatefulSet creation. As every Pod is labeled with app:db2 in the
section .spec.template.metadata.labels, all Pods in the StatefulSet are related to the read-only
service. The .spec.replicas field defines the number of Pods in the cluster for DB2 depending
on the specification from the CR YAML file. The StatefulSet will use the settings under the
.spec.template domain as a template to create each Pod it manages. Each Pod of this StatefulSet
launches one container to run the my-db2 image at the latest version hosted by our private
registry. This image is pulled only if it does not exist locally owing to IfNotPresent setting of the
.spec.template.spec.containers.imagePullPolicy section. In the .spec.template.spec.containers.ports
section, port 50000 is selected as the DB2 database manager is listening on it for connections. The
following section .spec.template.spec.containers.env describes necessary environment variables
concerned with the settings of HADR and the Governor component. The explanation of these
environment variables is described in Table 6.6. The PV called db2database is mounted to the
path /database within the container storing the data of the database persistently. The shared PV
with the name hadr-data mounted at /hadr to provide the storage for the HADR configuration file
(/hadr/hadr.cfg). In order to read the log of the Governor locally, a hostPath volume mounts the
directory /home/xiaomin/log from the host node’s filesystem into the container at /var/log/governor.
The field .spec.template.spec.containers.securityContext defines constraints applied to the container.
Its setting privileged: true indicates the container is run as privileged.
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Listing 6.11 YAML File of StatefulSet Deployed in the Cluster for DB2

apiVersion: apps/v1

kind: StatefulSet

metadata:

name: {db2Cluster.Name} #db2Cluster.Name is specified in the CR YAML file

labels:

app: db2

spec:

selector:

matchLabels:

app: db2

replicas: {db2Cluster.Spec.Size} #db2Cluster.Spec.Size is specified in the CR YAML file

template:

metadata:

name: db2

labels:

app: db2

spec:

containers:

- name: db2

image: 129.69.209.196:5000/my-db2:latest

imagePullPolicy: "IfNotPresent"

ports:

- containerPort: 50000

env:

- name: BLU

value: "false"

- name: ENABLE_ORACLE_COMPATIBILITY

value: "false"

- name: UPDATEAVAIL

value: "NO"

- name: REPODB

value: "false"

- name: IS_OSXFS

value: "false"

- name: PERSISTENT_HOME

value: "true"

- name: DBNAME

#db2Cluster.Spec.DBName is specified in the CR YAML file

value: {db2Cluster.Spec.DBName}

- name: DB2INSTANCE

#db2Cluster.Spec.DBInstance is specified in the CR YAML file

value: {db2Cluster.Spec.DBInstance}

- name: DB2INST1_PASSWORD

#db2Cluster.Spec.DBInstancePassword is specified in the CR YAML file

value: {db2Cluster.Spec.DBInstancePassword}

- name: LICENSE

value: "accept"

- name: TO_CREATE_SAMPLEDB

value: "false"

61



6 Prototype

- name: HADR_ENABLED

value: "true"

- name: ETCD_ENDPOINT

#db2Cluster.Spec.EtcdEndpoint is specified in the CR YAML file

value: {db2Cluster.Spec.EtcdEndpoint}

- name: REPLICAS

#db2Cluster.Spec.Size is specified in the CR YAML file

value: {db2Cluster.Spec.Size}

volumeMounts:

- name: db2database

mountPath: /database

- name: hadr-data

mountPath: /hadr

- name: log-path

mountPath: /var/log/governor

securityContext:

privileged: true

volumes:

- name: hadr-data

persistentVolumeClaim:

#db2Cluster.Name is specified in the CR YAML file

claimName: {db2Cluster.Name}-shared-hadr

- name: log-path

hostPath:

path: /home/xiaomin/log

volumeClaimTemplates:

- metadata:

name: db2database

spec:

#db2Cluster.Spec.StorageClassforDB is specified in the CR YAML file

storageClassName: {db2Cluster.Spec.StorageClassforDB}

accessModes: ["ReadWriteOnce"]

resources:

requests:

storage: 1Gi
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Environment Variables Value Implication
BLU false sets BLU Acceleration to disabled
ENABLE_ORACLE_COMPATIBILITY false sets Oracle Compatibility to disabled

UPDATEAVAIL NO there is no existing instance running a new container
with a higher Db2 level

REPODB false does not create a Data Server Manager repository
database

IS_OSXFS false the operating system is not macOS

PERSISTENT_HOME true the default setting is "true" and should only be
specified as "false" when running it on Windows

DBNAME db2Cluster.Spec.DBName sets the name of the DB2 database
DB2INSTANCE db2Cluster.Spec.DBInstance sets the name of the DB2 insatnce
DB2INST1_PASSWORD db2Cluster.Spec.DBInstancePassword sets the password of the DB2 insatnce

LICENSE accept accepts the terms and conditions of the Db2 software
contained

TO_CREATE_SAMPLEDB false does not create a sample database
HADR_ENABLED true enables HADR feature
ETCD_ENDPOINT db2Cluster.Spec.EtcdEndpoint specifies the endpoint of the ETCD Key-Value Cluster
REPLICAS db2Cluster.Spec.Size defines the number of Pods in the cluster for DB2

Table 6.6: Environment Variables of the Container Launched in StatefulSet’s Pods

Once the specification of the cluster for DB2 is changed, the reconciler will update the corresponding
Kubernetes resources to achieve the desired state. Finally, the reconciler will update the labels of
Pods to role:primary or role:standby based on their HADR roles. As a result, the Pod with the
label role:primary is always mapped to the primary service. This reconciling process is running
continuously to enforce the desired CR state on the current state of the cluster for DB2.
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Figure 6.5: Reconciling Logic of the Kubernetes Operator for DB2
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Algorithm 6.3: Failover Management of Reconciler in the Kubernetes Operator for DB2
input :A list of Pods that are in the StatefulSet 𝑝𝑜𝑑𝐿𝑖𝑠𝑡
output
:

Labels of Pods are updated with HADR roles, and auxiliary standbys connect to the

new primary

1 for 𝑝𝑜𝑑 in 𝑝𝑜𝑑𝐿𝑖𝑠𝑡 do
2 ℎ𝑎𝑑𝑟𝑅𝑜𝑙𝑒 ← getHadrRolefromPod();
3 ℎ𝑎𝑑𝑟𝑆𝑡𝑎𝑡𝑒 ← getHadrStatefromPod();
4 ℎ𝑎𝑑𝑟𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑆𝑡𝑎𝑡𝑢𝑠← getHadrConnectStatusfromPod();
5 if ℎ𝑎𝑑𝑟𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑆𝑡𝑎𝑡𝑒 = CONNECTED then
6 if ℎ𝑎𝑑𝑟𝑅𝑜𝑙𝑒 = PRIMARY then
7 set pod’s label as "role:primary";
8 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑟𝑖𝑚𝑎𝑟𝑦 ← 𝑝𝑜𝑑.𝑁𝑎𝑚𝑒;

9 else if ℎ𝑎𝑑𝑟𝑅𝑜𝑙𝑒 = STANDBY and ℎ𝑎𝑑𝑟𝑆𝑡𝑎𝑡𝑒 = PEER then
10 set pod’s label as "role:standby";
11 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑛𝑑𝑏𝑦 ← 𝑝𝑜𝑑.𝑁𝑎𝑚𝑒;

12 else if ℎ𝑎𝑑𝑟𝑅𝑜𝑙𝑒 = STANDBY and ℎ𝑎𝑑𝑟𝑆𝑡𝑎𝑡𝑒 = REMOTE_CATCHUP then
13 set pod’s label as "role:standby";

14 if (ℎ𝑎𝑑𝑟𝑆𝑡𝑎𝑡𝑒 = DISCONNECTED_PEER or ℎ𝑎𝑑𝑟𝑆𝑡𝑎𝑡𝑒 = DISCONNECTED) and
ℎ𝑎𝑑𝑟𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑆𝑡𝑎𝑡𝑒 = DISCONNECTED then

15 if ℎ𝑎𝑑𝑟𝑅𝑜𝑙𝑒 = PRIMARY then
16 if 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑟𝑖𝑚𝑎𝑟𝑦 ! = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑛𝑑𝑏𝑦 and

𝑝𝑜𝑑.𝑁𝑎𝑚𝑒! = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑟𝑖𝑚𝑎𝑟𝑦 then
17 set pod’s label as "role:primary";
18 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑟𝑖𝑚𝑎𝑟𝑦 ← 𝑝𝑜𝑑.𝑁𝑎𝑚𝑒;
19 auxiliary standbys connect to 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑟𝑖𝑚𝑎𝑟𝑦;

20 else if ℎ𝑎𝑑𝑟𝑅𝑜𝑙𝑒 = STANDBY then
21 if 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑟𝑖𝑚𝑎𝑟𝑦 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑛𝑑𝑏𝑦 then
22 set pod’s label as "role:standby";
23 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑛𝑑𝑏𝑦 ← 𝑝𝑜𝑑.𝑁𝑎𝑚𝑒;

Standby HADR Parameter Primary
Connect Disconnect

Principal
Standby

HADR_STATE PEER DISCONNECTED
DISCONNECTED_PEER

HADR_CONNECT_STATUS CONNECTED DISCONNECTED
Auxiliary
Standby

HADR_STATE REMOTE_CATCHUP REMOTE_CATCHUP_PENDING
HADR_CONNECT_STATUS CONNECTED DISCONNECTED

Table 6.7: HADR State and HADR Connect Status of DB2 Databases
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After failover, labels of Pods are required to change as the HADR role changes. In addition, the Kuber-
netes operator for DB2 needs to update HADR configuration parameters "HADR_REMOTE_HOST"
and "HADR_REMOTE_SVC" of auxiliary standbys with the hostname and service port of the new
primary allowing them to connect to the new primary, as the Governor component just manages
failover between the primary and the principal standby. The reconciler addresses both of these
requirements utilizing an algorithm, the pseudocode for which is given in Algorithm 6.3. For each
Pod of StatefulSet, the reconciler gets HADR configuration by means of executing the command:
"db2pd -db database_name -hadr " in the Pod and extracts the HADR role, the HADR state and the
HADR connect status from it. The reconciler determines HADR connectivity between the primary
and standbys based on the values of the HADR state and the HADR connect status. Table 6.7 Figure
1 illustrates the HADR state and the HADR connect status of the primary and each standby with and
without connection. In the case of connected, the reconciler will set a role label for Pod according
to its HADR role and record the Pod’s name of the current primary and the principal standby
respectively. When the failover has been completed, but the HADR connection is lost because the
previous primary has not been recreated as the new principal standby. When the previous principal
standby becomes the new primary, there will be an inconsistency between its label and HADR role.
At this point, the reconciler will update its label allowing auxiliary standbys to connect to it. Once
the previous primary becomes the new principal standby, its label will be updated accordingly as
well.

3) Specifying RBAC Permissions

As mentioned in Section 6.1.3, the Kubernetes operator for DB2 needs a ServiceAccount bounding to
a ClusterRole that specifies the permissions to access Kubernetes resources. Thanks to Kubernetes
Operator SDK, permissions can be specified via RBAC markers above the reconcile function like
the following:

//+kubebuilder:rbac:groups=core,resources=persistentvolumeclaims,verbs=get;list;watch;create;

update;patch;delete

//+kubebuilder:rbac:groups=core,resources=services,verbs=get;list;watch;create;update;patch;

delete

//+kubebuilder:rbac:groups=apps,resources=statefulsets,verbs=get;list;watch;create;update;

patch;delete

//+kubebuilder:rbac:groups=core,resources=pods,verbs=get;list;watch;create;update;patch;delete

//+kubebuilder:rbac:groups=core,resources=pods/exec,verbs=get;list;watch;create;update;patch;

delete

In the above specification, the Kubernetes operator for DB2 is granted all permissions to access
Kubernetes resources: Service, StatefulSet, PVC, Pod and Pod/exec. The ClusterRole manifest is
generated from these markers via controller-gen after executing the command: "make manifests".

Deploying the Kubernetes Operator for DB2

Benefiting from Kubernetes Operator SDK, building an image of the Kubernetes operator for DB2
and deploying it to the Kubernetes cluster is reasonably simple as only the following commands are
required:
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# build an image of the Kubernetes operator for DB2 and push it to the private registry

make docker-build docker-push IMG="129.69.209.196:5000/db2-operator:latest"

# deploy the Kubernetes operator for DB2 to the Kubernetes cluster

make deploy IMG="129.69.209.196:5000/db2-operator:latest"

Kubernetes Operator SDK uses GoogleContainerTools’ distroless as the base image to build the
image of the Kubernetes operator, as it only contains the custom application and its runtime
dependencies without shells or any other programs in a standard Linux distribution. The image of
the Kubernetes operator for DB2 is uploaded to our private registry server. After executing the above
commands, a Kubernetes operator for DB2 is up and running in the namespace db2-operator-system,
as well as related ServiceAccount, ClusterRole, RoleBinding, and CRD are deployed.

6.3 Test and Evaluation

In this section, we first introduce the infrastructure and settings of the test environment. Moreover,
we design various test scenarios to evaluate the prototype mentioned in Section 6.1.1 regarding HA,
DR and read scalability.

6.3.1 Infrastructure

The prototype was tested on the infrastructure of the Institute of Parallel and Distributed Systems at
the University of Stuttgart. It consists of an Open Stack instance that manages the virtual machines
running Ubuntu 20.04.5 that are used in this work. We constructed a Kubernetes cluster composed
of three VMs, one of which serves as the master node, while the other two serve as worker nodes.
Kubernetes 1.24.4 runs on all VMs and the container engine is Docker 20.10.21.

6.3.2 Test Setup

Before conducting different test scenarios, we first deployed a cluster for DB2 within the above
Kubernetes cluster. The deployment process is summarized in the following steps:

1) Deploy an ETCD cluster providing an ETCD service.

2) Deploy a Kubernetes operator for DB2 using the commands mentioned in Section 6.2.2.

3) Create a cluster for DB2 based on the configuration file shown in Listing 6.13.

4) Set up an HAProxy running on the Docker container to connect to DB2 database services
according to the configuration file presented in Listing 6.12.

5) Develop a client which connects to the HAProxy and performs CRUD operations on the DB2
database for testing.
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Listing 6.12 HAProxy Configuration File

global

log stdout format raw local0 info

defaults

mode tcp

log global

option tcplog

option dontlognull

option http-server-close

option redispatch

retries 3

timeout http-request 10s

timeout queue 1m

timeout connect 10s

timeout client 1m

timeout server 1m

timeout http-keep-alive 10s

timeout check 10s

maxconn 3000

frontend db2-primary

bind 0.0.0.0:23307

mode tcp

log global

default_backend db2_cluster_primary

backend db2_cluster_primary

log global

balance roundrobin

server node01 129.69.209.194:30001 check inter 5s rise 2 fall 3

server node02 129.69.209.195:30001 check inter 5s rise 2 fall 3

frontend db2-read-only

bind 0.0.0.0:23308

mode tcp

log global

default_backend db2_cluster_read_only

backend db2_cluster_read_only

log global

balance roundrobin

server node01 129.69.209.194:30002 check inter 5s rise 2 fall 3

server node02 129.69.209.195:30002 check inter 5s rise 2 fall 3

listen stats

mode http

bind 0.0.0.0:1080

stats enable

stats hide-version

stats uri /haproxyamdin?stats

stats realm Haproxy\ Statistics

stats auth admin:admin

stats admin if TRUE
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As described in Listing 6.12, the HAProxy configures a frontend named db2-primary which handles
all incoming read/write requests on port 23307. This frontend will forward all received requests to
the backend named db2_cluster_primary as specified in the section default_backend. Considering
the Service type of the primary service is Nodeport, the backend db2_cluster_primary corresponds
to it via IP addresses of VM nodes and port 30001. Similarly, a frontend with port 23308 called
db2-read-only is set up to forward read requests to the backend db2_cluster_read_only which is
related to the read-only service of the cluster for DB2 through port 30002. Both backends employ a
round-robin load balancing strategy, indicating that the traffic is forwarded to the corresponding
server in turn. The last section configures HAProxy stats which provides detailed statics on HAProxy
deployment including data transmission, the number of connections as well as server status. The
real-time information of HAProxy implementation is accessible via <hostip:1080> from a web
browser using the name and the password given in the section stats auth.

Listing 6.13 CR Configuration File

apiVersion: db2.example.com/v1

kind: DB2Cluster

metadata:

name: db2

spec:

Size: 4

EtcdEndpoint: "10.109.75.82:2379"

DBName: "HADRDB"

DBInstance: "db2inst1"

DBInstancePassword: "db2inst1"

StorageClassforHADR: "managed-nfs-storage"

StorageClassforDB: "openebs-hostpath"

A cluster for DB2 is created and the external client can access the database service after performing
the above steps. The cluster for DB2 contains four Pods with names ranging from db2-0 to
db2-3. DB2 database applications are deployed inside containers of Pods that are governed by
StatefulSet. Each DB2 database application has a db2 instance named db2inst1 and a database
named HADRDB.

An example of how a client can connect to the primary database via the primary service is shown in
Figure 6.6. Once a Service object with the name primary-service and a selector role:primary is
created, the corresponding Endpoints will also be created containing the IP addresses and ports
of all Pods with the label role:primary. The IP addresses and ports of Pods in Endpoints are
updated dynamically based on the specification changes of the primary-service selector. The
type of primary-service is NodePort, thus it will open port 30001 on each VM node within the
Kubernetes cluster. When the client sends requests to HAProxy, HAProxy redirects requests to
the VM node which has an available primary database service, and the VM node will forward
them to primary-service accordingly. primary-service will select an IP address of Pod with port
50000 from Endpoints in a random mode and forward requests from the client to it. The Service in
Kubernetes is an abstraction that specifies a logical collection of Pods. The forwarding function of
Service is actually implemented by kube-proxy running on each node of a Kubernetes cluster. Under
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the iptables mode, kube-proxy watches Service and Endpoints objects, and accordingly updates
iptables on its host nodes to allow forwarding traffic to the actual IP address of the Pod. Finally, a
connection between the client and the primary db2 database is established.

Figure 6.6: Example of a Client Accessing the Primary DB2 Database Service
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The following Figure 6.7 illustrates an example of a client connecting to the read-only DB2 database
service. The process for a client to access the read-only service is the same as that for the primary
service. However, the read-only service called read-only-service employs a selector app:db2 to
target all Pods owning the label app:db2. Because the primary database and all standby databases
can handle read queries, each Pod in the StatefulSet is given the general label app:db2.

Figure 6.7: Example of a Client Accessing the Read-only DB2 Database Service
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6.3.3 Test Scenario of High Availability

In this section, we describe a test scenario to evaluate the prototype in terms of the high availability
of the primary service. In our scenario, the primary service outage is due to the failure of the Pod
in which the primary database application is running. We simulated a failure event by deleting
Pod running the primary DB2 database, and observed whether the following reactions occurred as
expected:

1) StatefulSet recreates the deleted Pod with the same identity

2) The principal standby takes over as the new primary

3) The previous primary becomes the new principal standby

4) Auxiliary standbys connect to the new primary

(a) HADR Details of the Primary (db2-0)

(b) HADR Details of the Principal Standby (db2-1)

(c) HADR Details of the Auxiliary Standby1 (db2-2)

(d) HADR Details of the Auxiliary Standby2 (db2-3)

Figure 6.8: HADR Details of Each Pod Before Failover
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Figure 6.9: Process of Label Changes for Pods in Failover

(a) HADR Details of the Primary (db2-0)

(b) HADR Details of the Principal Standby (db2-1)

(c) HADR Details of the Auxiliary Standby1 (db2-2)

(d) HADR Details of the Auxiliary Standby2 (db2-3)

Figure 6.10: HADR Details of Each Pod After Failover

Before deleting the Pod with the primary database application, we checked the HADR role, state
and connection status of the DB2 database in each Pod. According to Figure 6.8 showing HADR
details, we concluded that db2-0 was the primary, db2-1 was the principal standby, as well as db2-2
and db2-3 were auxiliary standbys before failover. Next, we deleted the Pod and monitored the
process of failover using the commands: "kubectl delete pod db2-0" and "kubectl get pods -L
role -w" separately. Figure 6.9 presents the process of the primary being destroyed, recreated, and
becoming a new principal standby, as well as the principal standby becoming the new primary
once the previous primary fails. In Figure 6.9, ① indicates the primary and the principal standby
before failover, while ② indicates the situation after failover. Finally, we examined the HADR role,
state and connection status again to confirm that the failover was successful, which is illustrated
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in Figure 6.10. After failover, db2-1 (the previous principal standby) became the new primary,
and db2-0 (the previous primary) became the new principal standby. db2-2 and db2-3 were still
auxiliary standbys but connected to the new primary db2-1.

Figure 6.11: Availability Metrics

The availability metrics used to evaluate our proposed prototype from the HA perspective are
defined as follows, as well as in Figure 6.11:

• Reaction Time
The time between the failure event of the primary and the reaction of StatefulSet that recreates
the failed Pod.

• Failover Time
The time between the failure event of the primary and the previous principal standby taking
over as the new primary.

• Service Outage Time
The duration in which the primary database service was not available.

We repeated this scenario 10 times and all measurements are reported in Table 6.8 in unit seconds.
As observed in Table 6.8, the reaction times of all experiments are relatively close and measured
between 1.720 to 2.859 seconds. However, the failover times are unstable and vary widely, the
minimum is 3.621 seconds while the maximum is 36.309 seconds. This is due to the Governor
component checking whether the situation satisfies the failover condition (i.e. the primary fails
and no data of the current primary exists in the ETCD cluster) every 20 seconds, and performing
failover based on this condition. The duration of the failover period is determined by the location of
the primary failure event within the 20-second interval. If the primary failure happens immediately
following a condition check, it will not be identified until the next condition check occurs. Conversely,
the condition check occurs directly after the primary failure event, then the primary failure event
will be detected right away. Equally, the Kubernetes operator for DB2 examines for HADR role
changes on a regular basis. Thus, the location of the failover event during the interval determines
the duration of a service outage. On the other hand, the service outage time also depends on the
failover time, as shown in Figure 6.11.

74



6.3 Test and Evaluation

In summary, the cluster for DB2 provides a stateful primary database service featuring HA achieved
by automated failover. This primary service is able to recover within 19.642 seconds on average in
the event of a primary failure.

(Unit: seconds) Reaction Time Failover Time Service Outage Time
1 2.859 3.621 6.425
2 1.995 4.322 6.839
3 2.403 9.655 18.180
4 2.066 5.856 13.793
5 2.022 36.309 41.639
6 2.051 9.632 14.555
7 1.720 4.839 9.570
8 2.058 29.886 32.728
9 2.624 9.679 18.111
10 2.059 33.286 34.581

Average 2.186 14.709 19.642

Table 6.8: Results of 10 Experiments Measuring Availability

6.3.4 Test Scenario of Disaster Recovery

This section introduces the test scenario examining our disaster recovery plan with aspects of RPO
and RTO. The definitions and the differences between these two metrics are described below and
illustrated in Figure 6.12 as well:

• RPO
RPO refers to the interval between the last data backup and a disaster. It focuses on how far
back in time the disaster occurred. In other words, RPO measures the amount of data lost in a
disaster.

• RTO
RTO is the period within which the service is restored after a disaster. It emphasizes how
long the service can be recovered following a disaster i.e. the downtime of the service.

Figure 6.12: Definition and Differences Between RPO and RTO
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First, we inspected the current state of the cluster for DB2 before a disaster, which is shown in
Figure 6.13. Next, we simulated a disaster by shutting down HADR and the Governor component
on db2-0 (the primary) and db2-1 (the principal standby), as they cannot be recovered by both the
StatefulSet Controller and the Kubernetes operator for DB2. Next, we removed the role labels from
them using the command: "kubectl label –overwrite pods pod_name role=". At this point, the
primary service was no longer available. Following this, we conducted the disaster recovery plan in
the following steps:

1) Set up HADR on db2-2 as the primary using the commands list in Listing 6.14

2) Set up HADR on db2-3 as the principal standby using the commands list in Listing 6.15

3) Start Governor on both db2-2 and db2-3

4) Check the primary service is available again

After performing the above disaster recovery plan, we examined the current state of the cluster for
DB2 again, which is presented in Figure 6.14. Moreover, we extracted the time of the last performed
backup from the value of the HADR parameter STANDBY_REPLAY_LOG_TIME. We computed
the RPO and RTO based on it, as well as the recorded disaster occurrence time and service recovery
time. The RPO and RTO of our cluster for DB2 are 17 minutes and 6 minutes respectively.

In conclusion, the designed cluster for DB2 can provide the DR feature with better RPO and
RTO. Nonetheless, the service is limited to being restored by operating a disaster recovery plan
manually.

(a) HADR Details of the Primary (db2-0)

(b) HADR Details of the Principal Standby (db2-1)

(c) HADR Details of the Auxiliary Standby1 (db2-2)

(d) HADR Details of the Auxiliary Standby2 (db2-3)

Figure 6.13: HADR Details of Each Pod Before a Disaster

76



6.3 Test and Evaluation

(a) HADR Details of the New Primary (db2-2)

(b) HADR Details of the New Principal Standby (db2-3)

(c) HADR Role of Each Pod in Current Cluster for DB2

Figure 6.14: HADR Details of Each Pod After a Disaster

Listing 6.14 Commands for Setting up HADR on db2-2 as Primary

# take over as the new primary

db2 takeover hadr on db HADRDB by force

# HADR configurations

db2 "update db cfg for HADRDB using HADR_TARGET_LIST NULL"

db2 "update db cfg for HADRDB using HADR_SYNCMODE NEARSYNC"

db2 "update db cfg for HADRDB using HADR_REMOTE_HOST db2-3"

db2 "update db cfg for HADRDB using HADR_REMOTE_SVC db2_hadrb"

# restart HADR as the primary

db2 deactivate db HADRDB

db2 stop hadr on db HADRDB

db2 start hadr on db HADRDB as primary by force

db2 activate db HADRDB

Listing 6.15 Commands for Setting up HADR on db2-3 as Principal Standby

# HADR configurations

db2 "update db cfg for HADRDB using HADR_TARGET_LIST NULL"

db2 "update db cfg for HADRDB using HADR_SYNCMODE NEARSYNC"

db2 "update db cfg for HADRDB using HADR_REMOTE_HOST db2-2"

db2 "update db cfg for HADRDB using HADR_REMOTE_SVC db2_hadra"

# restart HADR as the standby

db2 deactivate db HADRDB

db2 stop hadr on db HADRDB

db2 start hadr on db HADRDB as standby

db2 activate db HADRDB
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6.3.5 Test Scenario of Read Scalability

In this section, two scenarios are described to examine the read performance of the cluster for DB2
and the read request distribution. The first scenario focuses on the read performance based on the
average response time for read requests per client. Furthermore, the second scenario is designed to
evaluate the distribution of read requests across Pods in the cluster for DB2. In both scenarios, we
deployed a cluster for DB2 named db2 with two Pods (one primary and one principal standby), three
Pods(one primary, one principal standby and one auxiliary standby) and four Pods (one primary,
one principal standby and two auxiliary standbys) separately. The names of these Pods consist of
the cluster name db2 and its order. In terms of HADR roles, db2-0 is the primary, db2-1 is the
principal standby, db2-2 and db2-3 are auxiliary standbys. In order to ensure HA of the cluster for
DB2, there must be at least two Pods in it. But we need to test the case where only one Pod handles
read requests as a control for other experiments as well. Nonetheless, we carried it out by sending
read-only requests to the primary service, implying that these requests are only sent to one primary
Pod.

In the first scenario, a client application was realized to simulate various numbers of clients
simultaneously sending read requests to the read-only service, with each client sending 1000 read
queries. We repeated experiments on different clusters for DB2 with two to four Pods in the cases of
10 clients, 20 clients and 30 clients respectively, and calculated the average response time for 1000
read requests per client in all cases. In the Figure 6.15 which shows the results of experiments on
read performance, the horizontal axis represents the number of Pods handling read requests while
the vertical axis indicates the average response time for 1000 read requests per client measured
in seconds. Independent of the number of clients connected to the read-only service, there is a
gradual decrease in the average response time for 1000 read requests per client as the number of
Pods handling read requests increases. Specifically, compared with the case of only one Pod, the
read-only service corresponds to more Pods that can provide better read performance.

Figure 6.15: Average Response Time for 1000 Read Requests Per Client in Different Clusters for
DB2
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In the second scenario, we used the client application to simulate that various numbers of clients
send read requests to the read-only service at the same time, with each client performing 1000
read queries. These experiments are also repeated on different clusters for DB2 with two to four
Pods in the cases of 10 clients, 20 clients and 30 clients respectively, and their results are presented
in Figure 6.16. Its horizontal axis represents the number of Pods handling read requests, and the
vertical axis of it indicates how many transactions are handled per Pod. Since each client performed
a read query in one transaction, the number of transactions collected on each Pod can infer how
many read requests were handled by it. Regardless of how many clients are connected, as the
number of standbys grows, the number of transactions handled by the primary (the blue part in
Figure 6.16) falls. This means that the read-only service offers load balancing, and the standbys
share some of the traffic with the primary when there are a large number of read requests to be
processed.

Figure 6.16: Transaction Distribution in Different Clusters for DB2 with Different Numbers of
Clients

To sum up, the cluster for DB2 can provide a read-only service with better read performance and
distribute read requests to each Pod corresponding to it in a load-balanced manner in the event of
more standbys.
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7 Conclusion and Outlook

This thesis investigated on how to orchestrate data governance workloads as stateful services in
cloud environments. More specifically, it focuses on deploying stateful database services in the
Kubernetes managed cluster for the ECM system. We compared traditional databases (IBM DB2
and PostgreSQL) and modern cloud native databases (Cockroach DB and Google Spanner) with
regards to architecture, HA, DR features and horizontal scalability. We saw that each node in
cloud native databases is equivalent and can serve read/write operations. In addition, cloud native
databases are designed to exploit the cloud’s elasticity to scale up or down in response to workload
changes. Due to the limitation of architecture design, traditional databases can only guarantee
HA through a primary-standby architecture with a failover mechanism, with the primary server
serving read/write requests and standby servers handling read-only requests. Based on this analysis,
we designed a cluster for DB2 that offers stateful database services, with the primary service
focusing on read and write requests while the read-only requests being served exclusively by standby
servers. We adopted the IBM DB2 HADR framework to support the HA of the cluster for DB2 and
implemented a custom Governor component to perform failover automatically between the primary
and the principal standby. Incorporating additional auxiliary standbys into the cluster ensures the
DR characteristics of the cluster for DB2. Moreover, we designed and implemented a Kubernetes
operator for DB2 to deploy a cluster for DB2 mentioned above in an automated manner. To prove
our approach, we conducted various test scenarios against our prototype in terms of HA, DR and
read scalability. The results of the HA tests show that failover can be performed automatically and
the primary service can recover in an average of 19.642 seconds in the event the primary server
fails. The results of the DR tests illustrate that the primary service can be restored after a disaster
by applying a disaster recovery plan manually. The results of read scalability tests demonstrate that
adding standbys can improve the read performance of the cluster for DB2 and share read traffic for
the primary.

The future works might include implementing automatic failover not only between the primary and
all standbys but also between the principal standby and auxiliary standbys, as well as automatically
adding or removing standbys based on the volume of traffic requested.
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