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Abstract

Modeling flow in dynamically fracturing porous media is of high
interest for a wide range of natural and technical applications,
for instance, geothermal energy production or carbon capture
and storage. In this work, we present new mixed-dimensional
models for flow in porous media including fractures with time-
and space-dependent geometries. The models are implemented
using our new grid implementation Dune-MMesh which is tai-
lored for the discretization of mixed-dimensional partial differ-
ential equations with fully conforming interface of codimension
one. First, we propose a mixed-dimensional model for capillarity-
free two-phase flow in dynamically fracturing porous media.
The model is discretized by a fully conforming finite-volume
moving-mesh algorithm that explicitly tracks the fracture geom-
etry. Further, generalizing an earlier model for single-phase flow
in fractured porous media, we derive a dimensionally reduced
model including spatially varying apertures. In several numerical
examples, using a mixed-dimensional discontinuous Galerkin
discretization, the model demonstrates significant improvements
for curvilinear fracture geometries. Finally, we propose a mixed-
dimensional phase-field model for fracture propagation in poro-
elastic media combining discrete fracture and phase-field mod-
eling approaches. The corresponding discontinuous Galerkin
discretization tracks the fracture geometry by adding facets to
the fracture triangulation according to the phase-field indicator
and is validated with results known from literature.
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Abstract

Modeling flow in dynamically fracturing porous media is of high interest for
a wide range of natural and technical applications, for instance, geothermal
energy production or carbon capture and storage. In this work, we present new
mixed-dimensional models for flow in porous media including fractures with
time- and space-dependent geometries. The models are implemented using our
new grid implementation Dune-MMesh which is tailored for the discretization
of mixed-dimensional partial differential equations with fully conforming in-
terface of codimension one. First, we propose a mixed-dimensional model for
capillarity-free two-phase flow in dynamically fracturing porous media. The
model is discretized by a fully conforming finite-volume moving-mesh algo-
rithm that explicitly tracks the fracture geometry. Further, generalizing an earlier
model for single-phase flow in fractured porous media, we derive a dimension-
ally reduced model including spatially varying apertures. In several numerical
examples, using a mixed-dimensional discontinuous Galerkin discretization, the
model demonstrates significant improvements for curvilinear fracture geome-
tries. Finally, we propose a mixed-dimensional phase-field model for fracture
propagation in poro-elastic media combining discrete fracture and phase-field
modeling approaches. The corresponding discontinuous Galerkin discretization
tracks the fracture geometry by adding facets to the fracture triangulation ac-
cording to the phase-field indicator and is validated with results known from
literature.



iv Abstract

Zusammenfassung

DieModellierung der Strömung in dynamisch aufbrechenden porösenMedien ist
für eine Vielzahl natürlicher und technischer Anwendungen von großem Inter-
esse, z. B. für die geothermische Energieerzeugung oder die Speicherung vonCO2
im Untergrund. In dieser Arbeit stellen wir neue gemischt-dimensionale Modelle
für Strömungen in porösen Medien vor, die Risse mit zeit- und raumabhängigen
Geometrien enthalten. Die Modelle werden unter Verwendung unserer neuen
Gitterimplementierung Dune-MMesh implementiert, die für die Diskretisierung
von gemischt-dimensionalen partiellen Differentialgleichungen mit vollständig
konformen Grenzflächen von Codimension eins zugeschnitten ist. Zunächst
schlagen wir ein gemischt-dimensionales Modell für kapillarfreie Zweiphasen-
strömungen in dynamisch aufbrechenden porösen Medien vor. Das Modell wird
durch einen vollständig konformen Finite-Volumen Algorithmus mit bewegtem
Gitter diskretisiert, der die Rissgeometrie explizit verfolgt. Darüber hinaus leiten
wir in Verallgemeinerung eines früheren Modells für einphasige Strömung in
geklüfteten porösen Medien ein dimensionsreduziertes Modell her, das räumlich
variierende Öffnungsweiten einbezieht. In mehreren numerischen Beispielen, bei
denen eine gemischt-dimensionale diskontinuierliche Galerkin-Diskretisierung
verwendet wird, zeigt dasModell signifikante Verbesserungen für kurvenförmige
Rissgeometrien. Schließlich schlagen wir ein gemischt-dimensionales Phasen-
feldmodell für die Rissausbreitung in poro-elastischen Medien vor, das diskrete
Riss- und Phasenfeldmodellierungsansätze kombiniert. Die zugehörige diskon-
tinuierliche Galerkin-Diskretisierung verfolgt die Rissgeometrie entsprechend
dem Phasenfeldindikator durch das Hinzufügen von Kanten zur Triangulation
des Risses und wird mit aus der Literatur bekannten Ergebnissen validiert.



Introduction 1
1.1 Motivation

In several physical and environmental processes that concern multi-phase flows,
biological systems, and geophysical phenomena, important physical phenomena
occur along thin physical interfaces. In the context of subsurface engineering,
many applications and issues are strongly influenced, if not dominated, by
physical interfaces like thin heterogeneities or fractures. Groundwater flow,
geothermal energy production, enhanced oil recovery, carbon sequestration or
nuclear waste disposal are strongly influenced by geologically or artificially
induced fractures. As more specific example, fracture propagation plays a signif-
icant role in the exploitation of geothermal energy resources. Indeed, layers of
hot rock in the subsurface are not far below the earth’s surface, but they cannot
be exploited because of the rock formation low permeability. For instance, the
Cooper Basin in Australia contains hot granite rocks in just 3.5 km depth, with
temperatures up to 240 °C. One approach to increase the permeability of the rock
is to create an Enhanced Geothermal System (EGS) by pumping high-pressure
cold water down an injection well into the rock, cf. Figure 1.1. This technique
would increase the permeability of the formation by creating an engineered
fracture network and could make the production of such renewable energies
economically feasible.
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Figure 1.1: Enhanced Geothermal System [56].

In order to understand the ongoing processes, to make predictions and estimate
risks, it is crucial to construct mathematical and numerical models of these
systems, and to develop efficient numerical schemes that solve the corresponding
mathematical models in a feasible amount of time.

1.2 Modeling Fractures in Porous Media

Almost every porous medium formation in the subsurface contains fractures
or thin heterogeneities. The interaction between the dynamics of multi-phase
flows in porous media and propagating fractures is of paramount interest for
the understanding of these systems’ behavior. Fractures can serve either as
conduits or barriers for fluid flow depending on their detailed geometrical and
hydrological properties. For the fundamentals on fracture modeling in porous
media we refer to, e.g., [1, 12, 62].
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In this thesis, we target at problems whose fracture configurations do not allow
to represent them implicitly by an effective single- or multi-continuum model.
Rather we consider dominant fractures which must be kept explicit in the math-
ematical description of the process at the macroscopic Darcy scale. However,
in this full-dimensional approach, fractures result in geometric objects with an
extreme length-to-width ratio, which is challenging for any direct numerical
approach. Various numerical methods based on fundamentally different model-
ing concepts have been introduced to face this problem. An important class of
numerical methods relies on the discrete fracture matrix approach (see [51], and
[13, 14] for recent surveys) where fractures are considered as lower-dimensional
manifolds. Various approaches to derive such dimensionally reduced models
have been proposed in [3, 19, 47, 50]. In this way, the discrete fracture matrix
approach leads to a reduced computational effort and less geometrical issues,
especially when dealing with very thin fractures. Furthermore, it can be useful
to have an explicit representation of the fracture geometry, either if the fracture
network is equipped with its own flow model, or its geometry becomes an un-
known of the problem itself as in fracture propagation. Notably, the approach
leads to mixed-dimensional models.

One of the first numerical methods developed in the realm of discrete fracture
matrix ideas is the embedded discrete fracture method (EDFM). These meth-
ods employ two different (non-conforming) meshes for the fractures and the
bulk porous medium domain [49, 67] and applies finite volumes. Another non-
conforming discretization based on the finite element method is the extended
finite element method (XFEM) that employs an enriched ansatz space encoding
the fracture geometry (see, e.g., [31] or [33, 45] in a more general context). These
non-conforming discretizations have the advantage to be independent of the
background porous medium grid geometry, but the coupling of the discrete
solutions in the bulk porous medium and in the fractures is more complicated
to realize.

On the other hand, in conforming methods, the discretizations are easier cou-
pled and it is straightforward to equip the resulting lower-dimensional fracture
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domain with some flow model and a numerical discretization technique which
accounts for coupling with the bulk. Of course, the construction of the fracture
and bulk meshes looses the flexibility of the non-conforming approach. Starting
from [4, 51] there has been a rapid development of the numerical modeling based
on conforming finite element, finite volume and finite difference techniques. In
the case of saturated single-phase flow we refer to [10, 16, 63]. For what concerns
the coupling with other processes, [19] deals with poro-elastic media, [3, 59] with
two-phase flows, and [33] with reactive flows, to mention just a few. Moreover,
we refer to [8] for the formal derivation of a reduced-dimensional model for
reactive flows, and [54, 55, 57] for the mathematically rigorous approach for
unsaturated flow and reactive transport. A recently published work derives a
mixed-dimensional discrete fracture-matrix model, including fracture intersec-
tions, of flow and thermal transport in fractured thermo-poroelastic media [65].
This model is also extended to the case of fracture propagation with fracture
growth along existing cell faces [66]. Up to now, we mainly addressed work on
single-phase flow models. The modeling and numerics have also been extended
to two-phase flow in fractured porous media. For different model formulations
(pressure-related or fractional flow) and regimes (saturated and unsaturated)
we can refer to the work in [2, 18, 32, 37, 43, 59]. To derive reduced models, in
[47, 50] homogenization techniques have been proposed for a wide range of
settings.

Some approaches for modeling of fractures in porous media employ phase-field
representations of the fractures (see, e.g., [17, 40]). These approaches introduce a
phase-field variable that represents the fracture by a smooth indicator function.
The phase-field function is used to alter the physical properties of the medium
like permeability, and thus influences the flow process in the fractured porous
medium. All complexity is shifted from the geometry into the model, and there-
fore, any standard finite element discretization can be applied for discretization.
Phase-field models are generally used for modeling fracture propagation as
they are capable of capturing general fracture network geometries. In particular,
in contrast to discrete fracture models, it is not necessary to explicitly know
and discretize the fracture network. However, phase-field models are compu-



1.3 Mathematical Models 5

Figure 1.2: Fractures in porous media.

tationally rather expensive because a sufficient grid resolution is needed to
resolve the phase-field gradient. For this reason, one usually resorts to local
mesh adaptation.

In this work, we will propose new mixed-dimensional models based on the
discrete fracture matrix approach for single- or two-phase flow in porous media.
We will follow a fully conforming discretization approach on the basis of finite
volume and discontinuous Galerkin discretizations. Ultimately, we couple our
mixed-dimensional flow models with a phase-field model in order to study frac-
ture propagation. Let us start with a general description of some mathematical
models for flow in porous media.

1.3 Mathematical Models

In this section, we describe the fundamental mathematical models for flow in
porous media that are used in this work. We start with incompressible single-
phase flow on the Darcy scale. Then, we consider convection-dominated two-



6 1 Introduction

phase flow in porous media, and finally present the quasi-static Biot’s equations
for linear poro-elasticity.

1.3.1 Single-Phase Flow

The following model describes the steady-state flow of an incompressible fluid
through a porous medium, also called single-phase flow. It consists of Darcy’s
law and mass conservation and is formulated in terms of homogenized quantities
on the Darcy scale, see [41]. Let Ω ⊂ R𝑛, 𝑛 ∈ {2, 3}, be an open and bounded set
which is assumed to be filled with porous media. Then, single-phase flow in Ω
can be described by

div(v) = 𝑞,
v = −K𝜂 ∇𝑝 in Ω. (1.1)

In (1.1), 𝑝∶ Ω → R [Pa] is the pressure, v∶ Ω → R𝑛 [ms−1] is the Darcy velocity
and 𝑞 ∶ Ω → R [s−1] denotes a source term. The permeability matrixK = K(x) ∈
R𝑛×𝑛 [m2] is a symmetric and positive-definite tensor and 𝜂 ∈ R>0 [Pa s] is the
dynamic viscosity of the fluid. The system (1.1) is well-posed with appropriate
boundary conditions as elliptic system of partial differential equations.

1.3.2 Two-Phase Flow

The time-dependent dynamics of two incompressible and immiscible fluids in
porous media can be described by the subsequent model. It can be derived
by generalized, phase-dependent Darcy’s laws and the according continuity
equations for each of the phases, denoted as wetting (𝑤) and non-wetting (𝑛𝑤)
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phase. For some end time 𝑇 > 0, the two fluids are governed by a system of
partial differential equations given by(𝜙𝜌𝛼𝑆𝛼)𝑡 + div(𝜌𝛼v𝛼) = 𝜌𝛼𝑞𝛼,

v𝛼 = −𝜆𝛼(𝑆𝛼)K(∇𝑝𝛼 − 𝜌𝛼g) in Ω × (0, 𝑇 ), 𝛼 ∈ {𝑤, 𝑛𝑤}. (1.2)

Here, 𝑆𝛼 ∶ Ω×(0, 𝑇 ) → [0, 1] [−] is the saturation of the 𝛼-phase, 𝑝𝛼 ∶ Ω×(0, 𝑇 ) →
R [Pa] is the corresponding phase pressure and v𝛼 ∶ Ω × (0, 𝑇 ) → R𝑛 [ms−1] is
the phase velocity. The subscript 𝑡 denotes the time derivative. The system (1.2)
can be closed by the relations 𝑆𝑤 + 𝑆𝑛𝑤 = 1, (1.3a)𝑝𝑛𝑤 = 𝑝𝑤. (1.3b)

The second closing relation corresponds to the assumption of zero capillary
pressure and allows us to derive a hyperbolic-elliptic system of equations, see
(1.4) below. The given parameters in (1.2)-(1.3b) are the porosity 𝜙 = 𝜙(x) > 𝛿 [−]
for all x ∈ Ω with some 𝛿 ∈ (0, 1], the constant phase density 𝜌𝛼 ∈ R>0 [kgm−3],
and the gravitational acceleration vector g ∈ R𝑛 [ms−2]. The phase mobility
function is given by

𝜆𝛼(𝑆𝛼) = 𝑘𝛼(𝑆𝛼)𝜂𝛼 ,
where 𝑘𝛼 = 𝑘𝛼(𝑆𝑤) is the smooth monotone relative permeability with 𝑘𝑤(0) =0, 𝑘𝑤(1) = 1 and 𝑘𝑛𝑤(0) = 1, 𝑘𝑛𝑤(1) = 0. For each phase 𝛼, the dynamic viscosity is
denoted by 𝜂𝛼 [Pa s]. The function 𝑞𝛼 ∶ Ω×(0, 𝑇 ) → R [s−1] is a phase-dependent
source or sink term.

The two-phase flow model (1.2) reduces to the single-phase system (1.1) for the
wetting phase if 𝑆𝑤 ≡ 1 or, respectively, for the non-wetting phase if 𝑆𝑛𝑤 ≡ 1.
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1.3.2.1 Fractional Flow Formulation

From (1.2) we can derive the equivalent fractional flow formulation. This formu-
lation is more appropriate for convection-dominated or capillarity-free regimes
because the system decomposes into equations of elliptic and hyperbolic type.

Let us select the wetting phase saturation 𝑆 = 𝑆𝑤 eliminating 𝑆𝑛𝑤 by using (1.3a).
Introducing the fractional-flow function

𝑓 (𝑆) ∶= 𝜆𝑤(𝑆)𝜆(𝑆) ,
with 𝜆(𝑆) ∶= 𝜆𝑤(𝑆) + 𝜆𝑛𝑤(𝑆) being the total mobility, we can reformulate the
two-phase flow system (1.2)-(1.3b). For zero capillary pressure it is equivalent
to (𝜙𝑆)𝑡 + div F(𝑆, v) = 𝑞𝑤,

v + 𝜆(𝑆)K(∇𝑝 − 𝐺(𝑆)g) = 0,
div(v) = 𝑞𝑤 + 𝑞𝑛𝑤 in Ω × (0, 𝑇 ). (1.4)

In (1.4), the flux function F = F(𝑆, v) is defined as

F(𝑆, v) ∶= 𝑓 (𝑆)v − 𝑓 (𝑆)𝜆𝑛𝑤(𝑆)K(𝜌𝑛𝑤 − 𝜌𝑤)g.
The term 𝐺(𝑆) is given by

𝐺(𝑆) ∶= 𝜆𝑤(𝑆)𝜌𝑤 + 𝜆𝑛𝑤(𝑆)𝜌𝑛𝑤𝜆(𝑆) .
In (1.4), the unknowns are the (wetting phase) saturation 𝑆 = 𝑆𝑤, the total velocity
v = v𝑤 + v𝑛𝑤 and the global pressure 𝑝 = 𝑝𝑛𝑤 = 𝑝𝑤. Note that 𝑆𝑛𝑤 is computable
from (1.3a).



1.3 Mathematical Models 9

It remains to state initial conditions for 𝑆 and appropriate boundary conditions
for 𝑆 and v or 𝑝. Let us emphasize that the capillarity-free model (1.4) is of mixed
hyperbolic-elliptic type admitting discontinuous fronts as weak solutions for
the saturation equation. The well-posedness of the model is only known for the
case that v is sufficiently regular, but this regularity does not hold for general
mobility functions.

1.3.3 Linear Poro-Elasticity

An extension of the single-phase model (1.1) describing viscous fluid flow includ-
ing elastic solid deformation leads to Biot’s model of linear poro-elasticity. The
quasi-static Biot equations describe the behavior of an elastic porous medium
that is fully saturated with an incompressible fluid. They can be stated by the
subsequent system of partial differential equations which are derived in [15].
The pressure 𝑝 ∶ Ω × (0, 𝑇 ) → R and displacement u ∶ Ω × (0, 𝑇 ) → R𝑛 in the
porous matrix Ω satisfy− div(𝜎(u) − 𝛼𝑝𝗜) = 0,( 𝑝𝑀 + 𝛼 div(u))𝑡 − div (K𝜂 ∇𝑝) = 𝑞 in Ω × (0, 𝑇 ). (1.5)

The first equation in (1.5) expresses static equilibrium in the absence of external
loads and the second governs the fluid mass conservation in a deformable porous
medium. Indeed, the fluid content in the porous medium depends on pressure
through the Biot modulus and the volumetric deformation of the solid. In system
(1.5), we have Biot’s coefficient 𝛼 ∈ [0, 1] and the Biot modulus 𝑀 > 0 [Pa]. The
matrix 𝗜 ∈ R𝑛×𝑛 denotes the unit matrix.

We define the effective stress tensor 𝜎 in (1.5) using Hooke’s law, i.e.,𝜎(u) ≔ 𝜆 div(u)𝗜 + 2𝜇𝜖(u),
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where the symmetric gradient is𝜖(u) ≔ 12(∇u + (∇u)⊤),
and 𝜇, 𝜆 > 0 [Nm−2] are Lamé’s parameters, cf. [15]. Given the elasticity modulus𝐸 and Poisson’s ratio 𝜈, one can express Lamé’s parameters also as𝜆 = 𝐸𝜈(1 + 𝜈)(1 − 2𝜈) and 𝜇 = 𝐸2(1 + 𝜈) .
The effective stress and the total stress 𝜎total(u) are linked by𝜎total(u) = 𝜎(u) − 𝛼𝑝𝗜,
which is the stress that is used for the static equilibrium in Equation (1.5).

Biot’s equations for linear poro-elasticity (1.5) constitute a strongly coupled sys-
tem of partial differential equations of parabolic-elliptic type. Thewell-posedness
of this model has been carried out in [64].
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1.4 Outline

This work is structured as follows. In the beginning, we present our specialized
grid module Dune-MMesh that has been tailored for the flexible implementa-
tion of mixed-dimensional models on moving meshes in Chapter 2. Then, we
proceed to study the modeling of flow in fracturing porous media. Starting from
incompressible two-phase flow in porous media we present a corresponding
mixed-dimensional model with prescribed fracture propagation in Chapter 3.
For fractures with non-constant aperture, we developed a reduced model that
takes into account the fracture geometry, and we proposed a corresponding
mixed-dimensional discontinuous Galerkin method, see Chapter 4. In Chapter 5,
a phase-field model is integrated to compute the evolution of the fractures. This
leads to a new mixed-dimensional phase-field model for fracture propagation in
poro-elastic media. Finally, the work concludes with a summary of the results
in Chapter 6.





The Dune Grid
Implementation
Dune-MMesh 2

The content of the following chapter led to the publication ”Dune-MMesh: The
Dune Grid Module for Moving Interfaces” in ”Journal of Open Source Software”
[21]. All source code of the presented grid implementation Dune-MMesh is open
source and can be accessed in public repositories12. I came up with the presented
ideas, implemented the source code and performed the computations of the
numerical examples.

2.1 Introduction

In this chapter, we present our Dune grid module Dune-MMesh that is tailored
to numerical applications with moving physical interfaces. This software is the
basis for the implementation of the discretization schemes in the subsequent
chapters.

Dune-MMesh is an implementation of the well-developed Dune [11] grid inter-
face and is well-suited for the numerical discretization of partial differential
equations (PDEs). The package wraps two and three dimensional CGAL [68]
triangulations in high-level Dune objects like intersections of grid entities, index

1https://gitlab.dune-project.org/samuel.burbulla/dune-mmesh
2https://github.com/samuelburbulla/dune-mmesh
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and id sets and geometry transformations. Furthermore, it exports a predefined
set of facets as a separate interface grid. In two dimensions, the arbitrary move-
ment of vertices is enhanced with a re-meshing algorithm that implements
non-hierarchical adaptation procedures. Besides the adaptation of the triangu-
lation, Dune-MMesh provides the necessary data structures to adapt discrete
functions defined on the bulk grid or the interface. This adaptation approach
complements existing grid implementations within the Dune framework that
strictly rely on hierarchical adaptation. Various examples in Python have been
implemented based on the discretization module Dune-Fem [27] that demon-
strate the versatile applicability of Dune-MMesh. Due to the ability to handle
custom PDEs in their weak from written in Unified Form Language (UFL) and
the mesh adaptation capabilities, we believe Dune-MMesh provides a useful
tool for solving mixed-dimensional PDEs on moving interfaces that arise from
various fields of modeling.

Dune-MMesh has been made available via PyPI (the Python Package Index3) in
order to make installation as easy as possible. For this purpose, we implemented
packaging support for the Dune framework configuring and compiling the C++
backend during package installation. In fact, the new possibility to install, e.g.,
Dune-Fem via pip install dune-fem is a great simplification for setting up a new
installation of Dune.

2.2 Concepts

In this section, we introduce the concepts behind the implementation of Dune-
MMesh. The main concepts are the CGAL triangulation wrapper, the interface
grid implementation and the non-hierarchic adaptation functionality.

3https://pypi.org
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Figure 2.1: Left: The domain Ω contains a T-shaped interface Γ. Right: An
example for a triangulation of Ω conforming to the interface Γ.

2.2.1 Triangulation

Let us start with the definition of a triangulation of a domain. We consider a
(polytopal) domain Ω ⊂ R𝑛 that includes an (𝑛 − 1)-dimensional hypersurfaceΓ ⊂ Ω, also called interface.

Definition 2.1 (Triangulation): A triangulation of Ω is given by a family of𝑛-dimensional simplexes T and a family of (𝑛 − 1)-dimensional simplexes F
satisfying the following properties:

• ⋃𝐾∈T 𝐾 = Ω,
• ∀𝐾 ∈ T ∃F𝐾 ⊂ F ∶ 𝜕𝐾 = ⋃𝐹∈F𝐾 𝐹,
• ∀𝐾, 𝐾 ′ ∈ T ∶ either 𝐾 = 𝐾 ′ or |𝐾 ∩ 𝐾 ′| = 0 or ∃ 𝐹 ∈ F with 𝐾 ∩ 𝐾 ′ = 𝐹.

Here, we use the notation | ⋅ | for the corresponding Lebesgue measure.

Definition 2.1 likewise defines the triangulation of the interface hypersurfaceΓ with some families of (𝑛 − 1)-, (𝑛 − 2)-dimensional simplexes TΓ and FΓ.
In the next step, we combine bulk triangulation and interface triangulation by
clarifying what we mean by a triangulation that is conforming to the interface.
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Definition 2.2 (Conforming to the interface): We call a triangulation (T,F) ofΩ conforming to an interface triangulation (TΓ,FΓ) of Γ if the following condition
holds: ∀𝐾Γ ∈ TΓ ∃ 𝐹 ∈ F ∶ 𝐾Γ = 𝐹.
If a triangulation (T,F) is conforming to the interface triangulation (TΓ,FΓ),
a subset FΓ ⊂ F of facets can be identified with TΓ. In order to distinguish,
we introduce the notation F

𝐼 ≔ F ⧵FΓ to denote inner, non-interface facets.
Moreover, let us denoteF(𝐾) as the set of facets of cell 𝐾.
An example of a triangulation conforming to the interface is visualized in Figure
2.1 (right). Note that we also consider interfaces Γ that consist of a set of lower-
dimensional hypersurfaces and, therefore, network junctions can occur. Dune-
MMesh implements such triangulations with conforming network interfaces
for dimensions 𝑛 = 2, 3, and we will describe in the following, how this is
implemented.

2.2.2 CGAL Wrapper

In its core, Dune-MMesh is a wrapper of CGAL triangulations inR𝑛, 𝑛 = 2, 3, that
implements the Dune grid interface. A CGAL triangulation is a set of simplicial
cells and vertices where each cell gives access to its 𝑛 + 1 incident vertices and
cells. Facets are not explicitly represented: a facet is given by the pair of a cell𝑐 and an index 𝑖 and has two implicit representations. For 𝑛 = 3, edges are
represented by triples of a cell 𝑐 and two indices 𝑖 and 𝑗 that indicate the two
vertices of the edge.

In order to match the Dune grid reference cell numbering we apply an index
mapping, cf. Figure 2.2. Here, the edges of tetrahedrons are equipped with in-
dices according to the Dune reference element numbering. Dune intersections,
i.e., intersections of mesh entities of codimension 0 with a neighboring element
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Figure 2.2: CGAL representation of cells and corresponding Dune numbering
in brackets. The vertex numbering is maintained, facets are renumbered,
and the edges of tetrahedrons are equipped with indices according to the
Dune reference element numbering.

or with the domain boundary, can directly be represented by CGAL cell-index
representations of facets which are already equipped with an orientation. The
index and id sets of the Dune grid interface are realized by consecutive num-
bering of cells and vertices. Each higher dimensional entity id is defined by
the sorted tuple of corresponding vertex ids. The geometrical representation of
entities that are not intrinsically CGAL entities (e.g., codimensions 1, … , 𝑛 − 1)
is made unique by an ascending order of vertex ids. In addition, this prevents
twists of intersections and we obtain a twist free grid implementation. Various
iterators of CGAL triangulations can directly be used to construct the Dune grid
range generators. Additional (non-standard Dune) iterators have been added,
e.g., iterating over incident cells of a vertex.

In the next section, we describe how we extended the wrapping of the CGAL
triangulation to export a set of facets as interface grid.

2.2.3 Interface Grid

Consider a domain Ω ⊂ R𝑛, 𝑛 ∈ {2, 3}, that includes a (𝑛 − 1)-dimensional in-
terface Γ ⊂ Ω, as depicted in Figure 2.1 (left), cf. Definition 2.2. We assume the
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Figure 2.3: The outer normal vectors at junctions are independent of the
neighbor.

domain is triangulated by a triangulation T that is conforming to the interface
triangulation TΓ of Γ. Dune-MMesh features a second implementation of the
Dune grid interface that represents the interface triangulation TΓ. The interface
grid can be used like any other Dune grid as it implements all necessary function-
ality. For this purpose, facets are marked as belonging to the interface. Usually,
this is done when parsing the mesh file, but it can also be adding grid facets to
the interface manually. A codim-0 entity of the interface grid (an entity with the
same dimension as the interface grid) is represented by a CGAL cell-index pair, as
it is used for the codim-1 entities (having one dimension lower than the grid) of
the wrapper implementation. This representation is made unique by taking the
representation where the cell has the lower index. This side is also considered as
the positive side of the facet. All sub-entity objects can be generated by this rep-
resentation using the right indexing of vertices. The geometry representations
and element ids are made unique by ascending order of vertex ids as it is done
in the full-dimensional wrapper implementation. For iteration of the interface
grid’s entities, finite_edges_iterator or finite_facets_iterator is used
skipping all facets not belonging to the interface. Intersections and neighbor
relationships are obtained by CGAL’s incident_edges or incident_facets
iterators. Index sets are implemented by mappings of vertex ids. The interface
grid also supports networks. For this purpose, the intersection iterator returns
all common intersections with adjacent cells. Note that this can be more than
one for a single codim-1 sub-entity. However, the intersection outer normal is



2.3 Moving Mesh 19

always independent of the neighbor entity, cf. Figure 2.3.

Each bulk grid intersection can be identified as belonging to the interface or not.
It is also possible to convert bulk intersections to interface grid elements and
vice versa as the underlying representation is the same. When converting an
interface grid entity to a bulk intersection, Dune-MMesh returns the intersection
as seen from the cell with the lower index.

2.3 Moving Mesh

Most interface driven-problems have time-dependent interfaces Γ = Γ(𝑡). There-
fore, Dune-MMesh features capabilities of moving and re-meshing in two spatial
dimensions.

Figure 2.4: The movement of the interface can lead a degeneration of the
triangulation. Therefore, Dune-MMesh provides the necessary procedures
for adaptation.

2.3.1 Moving Vertices

Weassume thatmovement is given by a shift of interface (or all) vertices, e.g., as in
Figure 2.5. This movement can be performed by simply changing the coordinates
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of the vertices. Dune-MMesh provides the method moveInterface(shifts)
that takes as input a vector of shift coordinates indexed by interface vertex
indices. A second method moveVertices(shifts) is available for moving all
vertices of the triangulation indexed by bulk vertex indices. Note that moving
vertices might lead to degeneration of the triangulation, cf. Figure 2.4. To prevent
this, i.e., to ensure cells have positive volume, Dune-MMesh is equipped with
re-meshing routines that will be described in the subsequent.

2.3.2 Adaptation

Adaptation in Dune is hierarchical by definition as it is useful for the adaptation
of discrete functions. Whenever a grid element is supposed to be refined, it is
split into smaller cells belonging to a higher level of the grid hierarchy. If all
children in the highest refinement level of a grid element are supposed to be
coarsened, the children cells are merged to form a parent cell one level lower.
The procedure is as follows.

1. Mark: Grid cells are marked for coarsening or refinement.

2. Adapt: The cells are modified and discrete functions are restricted or prolon-
gated.

In Dune-MMesh, due to the moving mesh, non-hierarchic adaptation is unavoid-
able. However, we will try to follow the general Dune approach and separate
the adaptation into two stages.

Stage 1: Mark
Dune-MMesh provides utility functions to mark cells in expectation of a move-
ment of the interface or regarding to their current geometrical properties.
As an example, in Figure 2.5, two cells are marked for refinement because
their edge length will exceed the desired maximum edge length. One cell
is marked for coarsening because it would have negative volume after mov-
ing the interface and, therefore, it has to be removed. To be more precise,
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Figure 2.5: Moving the interface is performed by shifting vertices. The cells
are marked either for refinement (green) or coarsening (red).

the method ensureInterfaceMovement(shifts) (respectively ensureVertex-
Movement(shifts)) can be called to prepare Dune-MMesh for moving the ver-
tices. The routine takes the vertex shifts as argument and marks presumably
degenerate cells for coarsening. Hence, they will be somehow removed during
adaptation.

A second method for marking elements is markElements(). This method uses
a default indicator that marks elements depending on their current geometrical
properties. This indicator considers primarily maximal and minimal edge length
and aims at an objective edge length between ℎmin and ℎmax. If an edge is longer
(shorter) than maximum length ℎmax, the cell will be marked for refinement
(coarsening). Theminimal andmaximal edge lengths are initialized automatically
when constructing a mesh by determining the range of edge lengths occurring
the grid. Additionally, if the ratio of longest to shortest edge is larger than 4, the
cell is marked for coarsening. The number 4 stems from the fact that we will use
bisection, and a triangle where two edges are longer then ℎmax should not be
split into smaller triangles where an edge is shorter than ℎmin. Finally, a maximal
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Figure 2.6: Marking cells leads to insertion and removal of vertices. In this
example, the green points will be inserted to cut the long edges and the
red one will be removed to ensure positive cell volume.

radius ratio is taken into account to remove badly shaped cells. Coarsening has
always priority before refinement because refinement would not remove the
badly shaped cells.

Remark that markElements() also checks the elements of the interface grid.
Therefore, the interface will be refined and coarsened as well if edges of the
interface get too long or too short. As an alternative to the built in methods, it
is possible to use a proprietary procedure marking cells manually, or insert and
remove vertices directly.

Stage 2: Adapt
After marking cells an adapt routine performs the actual adaptation process.
The adaptation is performed by insertion and removal of points. In each cell
that is marked for refinement, we bisect the longest edge, cf. Figure 2.6 for an
example. In all cells marked for coarsening, one vertex is removed. Here, we
choose the vertex incident to the shortest edges of the cell, but first remove non-
interface and non-boundary vertices. When a vertex is removed, the resulting
star-shaped hole is re-triangulated with respect to the interface. For the purpose
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Figure 2.7: Two connected components are created (purple and yellow) that
consist of cells of the initial triangulation and are used for the projection
of discrete functions.

of projection, we introduce the concept of connected components. A connected
components is defined as the minimal set of cells from the triangulation before
adaptation covering the same connected area as a set of cells in the triangulation
after adaptation. The easiest representatives of these connected components
are the incident cells when bisecting an edge and the incident cells to a ver-
tex that is removed. However, we have to combine overlapping sets of these
representatives.

In Figure 2.7, the two connected components of our adaptation example are
visualized in purple and yellow as sets of cells of the initial triangulation. For a
conservative projection of discrete functions we compute a cut-set triangulation
which enables evaluation with agglomerated quadrature rules on triangles. Here,
we prolong from an old cell onto such a cut triangle and restrict onto the new
cell, cf. Figure 2.8. This whole projection is performed under the hood and just
requires the use of the callback adaptation in Dune-Fem. On the interface grid,
we use a similar concept that enables projection of discrete functions on the
interface.
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Figure 2.8: Non-hierarchic projection with cut-set triangulation.

2.4 Mixed-Dimensional Problems

2.4.1 Trace and Skeleton

Dune-MMesh exports both traces of bulk discrete functions on the interface and
skeleton representations of interface discrete functions on bulk edges. The trace
is a discrete function on the interface grid that evaluates a given bulk discrete
function. It can be restricted to both sides of the interface and can be used in UFL
forms. Analogously, the skeleton function is a discrete function that returns an
interface discrete function on interface bulk facets. Both trace and skeleton
can be used to couple bulk and interface problems. Such couplings occur, e.g., in
mixed-dimensional PDEs. For an example of such a coupling, see Section 2.5.1
below.

2.4.2 Coupled Solve

We provide two auxiliary functions to solve bulk and interface schemes in a
coupled way. The method iterativeSolve uses an iterative solution strategy
which alternately solves both schemes until the two norm between two iterates
is below an objective tolerance. A second auxiliary function monolithicSolve
solves bulk and interface scheme coupled monolithically. A Newton method is
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implemented by assembling the underlying Jacobian matrix where the coupling
Jacobian blocks are evaluated by finite differences.

2.5 Examples

We implemented a few examples to demonstrate how Dune-MMesh can be
used in different contexts. All examples can be found on the documentation
page of Dune-MMesh.4 The documentation page is considered as part of the
accompanying publication [21] and features a description of the installation
of Dune-MMesh, a class documentation of the C++ and Python API and a
presentation of the main concepts with examples.

2.5.1 Solving a Mixed-Dimensional Problem

To give a brief insight into the technical implementation, we want to present
one code example that uses the Python interface of Dune-MMesh. We consider
a domain that contains a T-shaped interface Γ embedded in domain Ω = (0, 1)2,
cf. Figure 2.1 (left).

The grid creation from a mesh file works as follows.

from dune.grid import reader
from dune.mmesh import mmesh
gridView = mmesh((reader.gmsh, "grids/tjunction.msh"), 2)
igridView = gridView.hierarchicalGrid.interfaceGrid

4https://dune-mmesh.readthedocs.io
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On domain Ω, we solve a mixed-dimensional Poisson equation−Δ𝑢 = 0 in Ω,−Δ𝑢Γ + J∇𝑢 ⋅ nK = 𝑞 in Γ,𝑢 = 0 on 𝜕Ω,
with the coupling ∇𝑢 ⋅ n = 𝑢Γ − 𝑢𝜔 along Γ
for some 𝜔 > 0. Note that the jump operator J⋅K above denotes the difference
of the values of the trace of ∇𝑢 ⋅ n on both sides of the interfacce Γ and will be
defined in more detail in Chapter 4. In this example, we use source term 𝑞 = 1
and 𝜔 = 10−6.
A weak formulation of the problem above reads as follows. Find 𝑢 ∈ 𝐻 10 (Ω),𝑢Γ ∈ 𝐻 1(Γ) s.t.

∫Ω ∇𝑢 ⋅ ∇𝑣 𝑑𝑥 − ∫Γ 𝑢Γ − 𝑢𝜔 𝑑𝑆 = 0,
∫Γ ∇𝑢Γ ⋅ ∇𝑣Γ 𝑑𝑥 + ∫Γ 𝑢Γ − 𝑢𝜔 𝑑𝑆 = ∫Γ 𝑞𝑣Γ 𝑑𝑥,

for all corresponding test functions 𝑣 ∈ 𝐻 10 (Ω), 𝑣Γ ∈ 𝐻 1(Γ).
We employ a (discontinuous) Galerkin discretization for the bulk and interface
problem that can be implemented as follows. First, we define (discontinuous)
Lagrange function spaces.

from ufl import *
from dune.fem.space import lagrange, dglagrange
space = dglagrange(gridView, order=1)
ispace = lagrange(igridView, order=1)
u = TrialFunction(space)
v = TestFunction(space)
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iu = TrialFunction(ispace)
iv = TestFunction(ispace)
uh = space.interpolate(0, name="uh")
iuh = ispace.interpolate(0, name="iuh")

Using UFL, we state the problem in its weak form and add the consistency
terms.

from dune.ufl import Constant
from dune.mmesh import interfaceIndicator
q = Constant(1, name="q")
omega = Constant(1e-6, name="omega")
beta = Constant(1e2, name="beta")
n = FacetNormal(space)
I = interfaceIndicator(igridView)
a = inner(grad(u), grad(v)) * dx
a += beta * inner(jump(u), jump(v)) * (1-I)*dS
a -= dot(dot(avg(grad(u)), n('+')), jump(v)) * (1-I)*dS
a += beta * inner(u - 0, v) * ds
a -= dot(dot(grad(u), n), v) * ds
ia = inner(grad(iu), grad(iv)) * dx
ib = q * iv * dx

The coupling between the two problems can be implemented using the trace
and skeleton functionality of Dune-MMesh.

from dune.mmesh import skeleton, trace
omega = Constant(1e-6, name="omega")
a -= (skeleton(iuh)('+') - u('+')) / omega * v('+') * I*dS
a -= (skeleton(iuh)('-') - u('-')) / omega * v('-') * I*dS
ia += (iu - trace(uh)('+')) / omega * iv * dx
ia += (iu - trace(uh)('-')) / omega * iv * dx

The two separate Galerkin schemes can be coupled monolithically with our
monolithic solution algorithm.

from dune.fem.scheme import galerkin
scheme = galerkin([a == 0])
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ischeme = galerkin([ia == ib])
from dune.mmesh import monolithicSolve
monolithicSolve(schemes=(scheme, ischeme), targets=(uh, iuh))

Finally, we can plot the solution of this problem as visualized in Figure 2.9.

Figure 2.9: The solution of the mixed-dimensional Poisson problem.

Further examples are presented in the following without the corresponding
source code, but it is available in full length on the documentation page5.

2.5.2 Finite-Volume Moving-Mesh Algorithm

In this section, we will present an example of how to move the interface and
adapt the mesh. For this purpose, we implement a finite-volume moving-mesh
method tracking a discontinuity of the solution in the discretization mesh, cf.
[25].

Let us consider the following transport problem.𝑢𝑡 + div 𝐹(𝑢) = 0, in Ω × (0, 𝑇 ), (2.1)𝑢(⋅, 0) = 𝑢0, in Ω, (2.2)

5https://dune-mmesh.readthedocs.io/en/latest/examples.html
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Figure 2.10: Standard finite volume scheme solving the transport equation.

where 𝐹(𝑢) = (1, 0)⊤𝑢, (2.3)𝑢0(𝑥, 𝑦) = (0.5 + 𝑥)𝜒𝑥<0.5. (2.4)

Further, the interface is supposed to move with the transport speed in 𝑓, i.e.,
m = (1, 0)⊤.
We use a finite-volume moving-mesh method to keep the discontinuity sharp. It
can be formulated in a weak form as

∫Ω(𝑢𝑛+1| det(Ψ)| − 𝑢𝑛)𝑣 𝑑𝑥 + Δ𝑡 ∫
F

(𝑔(𝑢𝑛,n) − ℎ(𝑢𝑛,n))J𝑣 K 𝑑𝑆 = 0 (2.5)

where Ψ ≔ 𝑥 + Δ𝑡n, and s is a linear interpolation of the interface’s vertex
movementm on the bulk triangulation. The numerical fluxes 𝑔(𝑢,n) and ℎ(𝑢,n)
are assumed to be consistent with the flux functions 𝐹(𝑢)⋅n and 𝑢s⋅n, respectively.
Here, we choose an upwind flux.

For reference, we run the finite volume scheme without moving the interface, cf.
Figure 2.10. The standard finite volume method shows the expected numerical
diffusion and leads to a runtime of 0.905 seconds with an 𝐿2 error ‖𝑢 − 𝑢𝑒𝑥𝑎𝑐𝑡‖𝐿2
of 0.107 at 𝑇 = 0.4.
In contrast, the result of the finite-volume moving-mesh method can be found
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Figure 2.11: Finite-volume moving-mesh method to track a discontinuity.

in Figure 2.11. The edges at the discontinuity have been moved by the same
speed as the transport and the mesh has been adapted accordingly. Here, we
measure a runtime of 2.235 seconds with an 𝐿2 error of 0.019. Remarkably, in
this specific example, the runtime has increased by a factor of 2.47x, while the
error has improved by a factor of 5.59x at the same time. Both errors have also
been plotted over time, see Figure 2.12.

In our opinion, this example shows that it is worth adapting if one can conserve
specific features of the solution.

Figure 2.12: Errors of standard finite volume scheme vs. finite-volume
moving-mesh method plotted over time.
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2.5.3 Mixed-Dimensional Poro-Elasticity

The following example demonstrates the monolithic solving strategy of Dune-
MMesh that is useful for strongly coupled mixed-dimensional systems. Let us
consider linear Biot equations, cf. (1.5), with an interface Γ considered as thin
heterogeneity. Neglecting the time derivative, the problem reads as follows. Find
u, 𝑝, 𝑝Γ s.t − div(K∇𝑝) = 𝑞, in Ω,− div(𝜎(u) − 𝛼𝑝I) = 0, in Ω,− div(KΓ∇𝑝Γ) = 𝑞Γ, in Γ,
where 𝜎(u) and all other quantities are defined as in Section 1.3.3. Additionally,
KΓ denotes the permeability of the thin heterogeneity Γ and 𝑞Γ is a corresponding
source term. We define coupling conditions between Ω and Γ imposed as interior
boundary conditions 𝑝 = 𝑝Γ,(𝜎(u) − 𝛼𝑝𝗜)n = −𝑝Γn, on Γ,
that describe pressure continuity and normal stress balance. Let us consider a
T-shaped interface Γ embedded in Ω = (0, 1)2, as sketched in Figure 2.1 (left). We
choose 𝜆 = 1.2, 𝜇 = 0.8, 𝛼 = 1, K = diag((10−4, 10−6)⊤), 𝐾Γ = I, 𝑞 = 0, and 𝑞Γ =10−6. Further, concerning boundary conditions, we impose zero displacement
on top and bottom, and zero pressure at left and right boundaries of the domainΩ. We impose natural boundary conditions else, in particular, at the tips of the
lower-dimensional domain Γ.
We implement a mixed-dimensional Interior Penalty Discontinuous Galerkin
(IPDG) scheme that directly includes the discontinuity of the displacement
along the interface Γ. Remarkably, the scheme also already incorporates the flux
balance at junctions of the interface. Including penalty and consistency terms,
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Figure 2.13: Mixed-dimensional model of poro-elasticity with a T-shaped
heterogeneity.

we have the following weak form of the problem𝐴(u, 𝑝; v, 𝜑) ≔∫Ω(K∇𝑝) ⋅ ∇𝜑 𝑑𝑥 − ∫Ω 𝑞𝜑 𝑑𝑥+ ∫
F⧵FΓ

𝛽ℎJ𝑝KJ𝜑K − {{K∇𝑝 ⋅ n}}J𝜑K 𝑑𝑆
+ ∫

F
𝑝𝐷
𝛽ℎ(𝑝 − 𝑝𝐷)𝜑 − K∇𝑝 ⋅ n𝜑 𝑑𝑠

+ ∫
FΓ

𝛽ℎ(𝑝+ − 𝑝Γ)𝜑+ − K∇𝑝+ ⋅ n+𝜑+ 𝑑𝑆
+ ∫

FΓ
𝛽ℎ(𝑝− − 𝑝Γ)𝜑− − K∇𝑝− ⋅ n−𝜑− 𝑑𝑆

+ ∫Ω(𝜎(u) − 𝛼𝑝𝗜) ∶ 𝜖(v) 𝑑𝑥+ ∫
F⧵FΓ

𝛽ℎJuKJvK − ({{𝜎(u) − 𝛼𝑝𝗜}} ⋅ n) ⋅ JvK 𝑑𝑆
+ ∫

F
𝑢𝐷
𝛽ℎ(u − u𝐷) ⋅ v − ((𝜎(u) − 𝛼𝑝𝗜) ⋅ n) ⋅ v 𝑑𝑠

− ∫
FΓ −𝑝Γ(v+ ⋅ n+) − 𝑝Γ(v− ⋅ n−) 𝑑𝑆
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and on the interface𝐴Γ(𝑝Γ; 𝜑Γ) ≔∫Γ(KΓ∇𝑝Γ) ⋅ ∇𝜑Γ − 𝑞Γ𝜑Γ + 𝛽(𝑝Γ − {{𝑝}})𝜑Γ 𝑑𝑥+ ∫
FΓ 𝛽ℎΓ J𝑝ΓKJ𝜑ΓK − {{KΓ∇𝑝Γ ⋅ nΓ}}J𝜑ΓK 𝑑𝑆.

This weak form has a similar representation in its implementation using UFL,
and Dune-MMesh adds the functionality to couple the two domain-specific
sub-problems. For the full implementation with all technical details we refer to
the documentation page.

The solution of the example is visualized in Figure 2.13. It shows the displace-
ment jump at the interface and how the pressure is distributed according to
the anisotropic permeability. In our opinion, this example shows that this dis-
cretization approach is well-suited for this kind of problem. It has a general
way to be written in weak form, its locally conservative and consistent for
anisotropic tensors, and it already captures discontinuities at the interface as
well as junctions.

2.5.4 Two-Phase Navier–Stokes with Rising Bubble

Let us consider incompressible Navier–Stokes equations with two immiscible
phases and surface tension. In fact, with Dune-MMesh, it is possible to track
the sharp interface between the two phases explicitly using the adaptation
facilities.

A domain Ω ⊂ R𝑛 is assumed to be separated into two phases Ω𝑖(𝑡), 𝑖 = 1, 2, by
a sharp interface Γ(𝑡), 𝑡 ∈ (0, 𝑇 ). The problem investigated reads as follows, cf.
[58].
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Find (𝑢, 𝑝) and Γ(𝑡) s.t.𝜌𝑢𝑡 + ∇ ⋅ (𝜌𝑢 ⊗ 𝑢) + ∇ ⋅ T(𝑢, 𝑝) = 0, in Ω𝑖(𝑡), 𝑖 = 1, 2,∇ ⋅ 𝑢 = 0, in Ω𝑖(𝑡), 𝑖 = 1, 2,
J𝑝K = 𝜎𝜿 ⋅ 𝑛, on Γ(𝑡),
J𝑢K = 0, on Γ(𝑡),̇𝑥 = 𝑢, 𝑥 ∈ Γ(𝑡),𝑢(0) = 𝑢0, in Ω𝑖(0), 𝑖 = 1, 2,Γ(0) = Γ0,

for 𝑡 ∈ (0, 𝑇 ). The stress tensor T(𝑢, 𝑝) is given by

T(𝑢, 𝑝) ≔ 𝑝𝗜 − 𝜇(∇𝑢 + (∇𝑢)⊤)),𝜇𝑖, 𝑖 = 1, 2, are the dynamic viscosities, 𝜌𝑖, 𝑖 = 1, 2, the densities of the two phases,𝜎 is the surface tension and 𝜿 denotes the signed mean curvature of the interface
times its normal.

The mean curvature times normal 𝜿 can be computed by an auxiliary problem
on the interface. Find 𝜿 ∈ [𝐻 1(Γ(𝑡))]𝑛 s.t.

∫Γ(𝑡) 𝜿 ⋅ 𝝓 + ∇Γx ⋅ ∇Γ𝝓 𝑑x = 0, in Γ(𝑡), ∀𝝓 ∈ [𝐻 1(Γ(𝑡))]𝑛,
compare, e.g., Equation (2.10) in [26], where ∇Γ denotes the tangential gradient.
It is easy to solve this problem on the interface numerically, as Dune-MMesh
exports the interface as separate interface grid. Note that our overall numerical
solution strategy follows a splitting scheme similar to the one presented in
[34].

As example, we compute the dynamics of a rising bubble for 𝑛 = 2. We start
with a circular Ω1 with radius 𝑟 = 0.25 centered in (0.5, 0.5) embedded in the
domain Ω = (0, 1) × (0, 2). The physical parameters are chosen as 𝜇1 = 𝜇2 = 1,
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𝜌1 = 1, 𝜌2 = 2, 𝜎 = 0.03 and 𝑇 = 12, and we set no-slip boundary conditions
everywhere on 𝜕Ω. Four snapshots of the resulting time series are plotted in
Figure 2.14. One can clearly observe how the bubble develops the typical shape
of a rising bubble.

Figure 2.14: Rising bubble in the two-phase Navier–Stokes example for 𝑡 ∈{0, 4, 8, 12}.
2.6 Computations for Flow in Fractured Porous Media

In the subsequent chapters of this work, we will describe how we applied Dune-
MMesh to some newly derived mixed-dimensional flow problems in fractured
porous media. Besides this, we used the method described in Chapter 3 to
perform numerical simulations for single-phase and two-phase flow in porous
medium with static fracture geometries. We will describe the results of these
computations shortly in this section.

As a first example, we present a results from a benchmark study for flow in three-
dimensional fractured porous media [13]. Our circum-centered finite volume
discretization has shown a remarkable agreement with the results of the other
methods. In particular, it performed much better than the classical cell-centered
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Figure 2.15: Verification benchmarks for single-phase flow in three-
dimensional porous media. Visualized is the pressure distribution
for Case 4, the field case. [13]

TPFA approximation while having exactly the same number of degrees of free-
dom. The result of the fourth test case of this benchmark study is visualized in
Figure 2.15 and shows the pressure distribution within the field-case fractured
porous medium.

During a summer school project within the SFB 1313 graduate school in 2019,
we coupled our solver to an inversion algorithm that determined the fracture
positions from a few pressure measurements. One of the pressure distributions
in the two-dimensional porous medium that has been used in this project is
visualized in Figure 2.16 (left). A comparison of our method to another model
using a phase-field representation of the fractures have shown good agreement
between the two.

We used the same fracture network geometry as in the previous example to
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Figure 2.16: Left: Pressure distribution in a two-dimensional fractured porous
medium that has been used during a summer school project. Right:
Gravity-driven two-phase flow in fracture network with several sharp
saturation fronts.

compute gravity-driven two-phase flow scenarios [23]. The result displayed in
Figure 2.16 (right) clearly shows the sharp saturation fronts between the two
phases. This example suggests that two-phase flow patterns in fractured porous
media can become very complex.





Two-phase Flow
in Dynamically

Fracturing
Porous Media 3

The content of the following chapter led to the publication ”A finite-volume
moving-mesh method for two-phase flow in dynamically fracturing porous
media” in ”Journal of Computational Physics” [24]. All source code and the data
of the simulation results have been published via DaRUS [20]. I worked out
the theoretical details, implemented the numerical scheme and performed the
numerical calculations.

In this chapter, we derive a mathematical model governing capillarity-free
two-phase flow in fractured porous media that extends previous models as it
accounts for fractures with space- and time-dependent aperture. The numerical
scheme presented in this chapter has been implemented using Dune-MMesh,
cf. Chapter 2, and makes extensive use of its interface grid implementation
and the adaptation capabilities modeling the propagating fractures as a moving
interface.

3.1 Introduction

Let us consider capillarity-free two-phase flow regimes in fractured porousmedia
at the Darcy scale. Neglecting capillary forces, we obtain mixed hyperbolic-
elliptic models for saturation and total pressure. As a consequence there can
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be discontinuous saturation fronts as weak solutions that travel through the
porous medium interacting with the fractures. Notably, we assume that the
two-phase flow model can be applied for the bulk domain as well as for the
fracture domain. This applies for fractures filled with debris but might also be
a valid ansatz if one accounts in an effective way for the surface roughness
induced by the fracture walls. In passing we note that this ansatz implies that
the porous media parameters like porosity or intrinsic permeability might vary
discontinuously when crossing the interface between bulk and fracture domain.
We focus on dynamically changing fracture geometries. The approach starts
from an initially given full-dimensional fracture domain that is characterized by
an aperture function along its longitudinal extension. The fracture might evolve
in time and also the aperture function might change dynamically. Notably, we
assume these motions to be given for all times and not to be part of the problem
unknowns.

In Section 3.2, we define the geometrical setting of our model. As we are inter-
ested in convection-dominated regimes we pass to the fractional-flow formula-
tion of the parabolic two-phase system. Then, we follow the discrete fracture
matrix ideas of [51] and apply transversal averaging for the fracture domains.
This derivation leads us to a new mixed-dimensional model that governs two-
phase flow in fracturing porous media (see equations (3.25)-(3.27) in Section
3.3). If we consider a static fracture geometry, this reduced discrete fracture
model coincides with the two-phase flow models as in, e.g., [32, 43]. To close
the reduced discrete fracture model we need to make some assumptions on the
coupling conditions regarding their physical meaning, see Section 3.2.
The main contribution of this chapter is a conforming numerical method for the
solution of the reduced discrete fracture model (3.25)-(3.27). It is presented in Sec-
tion 3.4. As discussed before, the major challenge of the conforming ansatz is the
mesh design which becomes even more complicated for time-dependent fracture
changes. We believe that the additional effort to construct conforming meshes,
including re-meshing, pays off in the easy coupling to the lower-dimensional
grid. Extending an approach from [25], we propose a moving-mesh algorithm
that preserves a conforming mesh at any point in time. Moreover, the (discrete)
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codimension-1 fracture manifold is represented for all times as a connected
union of facets of the mesh. Based on the moving mesh one can then construct a
finite volumemethod for the saturation equation. By constructing an appropriate
geometric flux that accounts for the exact mesh movement, the method remains
mass conservative even with moving meshes. The elliptic equation for the total
pressure is solved by a tailored two-point flux discretization. It is consistent
for isotropic permeability tensors and does not require the construction of any
cell stencils that change and might be expensive during re-meshing. The com-
plete finite-volume moving-mesh (FVMM) algorithm is summarized in Section
3.4.4.

We report on a series of numerical simulations using the FVMM algorithm.
Preliminary results for static fracture networks have already been published in
[23]. To validate the reduced discrete fracture model (3.25)-(3.27), we compare
numerical results for the original two-phase model (with full-dimensional frac-
ture and bulk domains) with results of the discrete fracture approach using the
FVMM algorithm. For elliptically shaped fractures that grow and are compressed
in time both numerical results match almost perfectly. Then, we proceed to two-
and three-dimensional examples that illustrate the interaction of infiltrating
saturation fronts with a prescribed set of fractures.

3.2 Derivation of the Discrete Fracture Model

In the context of fractured porous media, it is a wide-spread approach to model
sufficiently thin fractures as lower-dimensional manifolds. By doing so, we
implicitly assume that the original fracture’s aperture is clearly separated from
the pore scale. Then, it is justified that the fracture persists on the Darcy scale
instead of being homogenized. For single-phase flow, such discrete fracture
models have been initially proposed in [43, 51] using transversal averaging.
We suggest a mathematical model to describe two-phase flow in dynamically
fracturing porous media on the basis of a discrete-fracture network approach
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and using the fractional-flow formulation. Up to our knowledge, a two-phase
flow model with the dynamic change of the fracture geometry has not been
investigated before in the context of discrete fracture networks. The work on
two-phase flow discussed in Section 3.1 refers to static fracture networks.

For 𝑡 ∈ [0, 𝑇 ], let us consider a connected open set Ω𝑓(𝑡) ⊂ Ω, representing
the original fracture. We suppose that the domain Ω is partitioned according
to Ω = (Ω̄𝑏(𝑡) ∪ Ω̄𝑓(𝑡))∘ (see Figure 3.1 for a sketch of the geometry), whereΩ𝑏(𝑡) denotes the bulk porous medium with Ω𝑏(𝑡) ∩ Ω𝑓(𝑡) = ∅ and ∘ denotes the
interior of the set. We define space-time sets byΩ𝑡𝑏 ≔ {Ω𝑏(𝑡) × {𝑡} ∣ 𝑡 ∈ [0, 𝑇 ]},Ω𝑡𝑓 ≔ {Ω𝑓(𝑡) × {𝑡} ∣ 𝑡 ∈ [0, 𝑇 ]}.

Ω

Ω𝑏(𝑡)
Ω𝑓(𝑡)

Figure 3.1: Sketch of the domainΩ divided into a bulk porous
medium Ω𝑏(𝑡) and the fracture
region Ω𝑓(𝑡).

𝑑(s, 𝑡)
n

𝛾+𝛾−
Γ(𝑡)

s

Figure 3.2: The fracture domainΩ𝑓(𝑡) is replaced by the lower-
dimensional interface Γ(𝑡) and
aperture 𝑑 = 𝑑(s, 𝑡).

As in Section 1.3.2, we assume to have incompressible and immiscible two-phase
flow in the porous medium for both the bulk domain Ω𝑏(𝑡) and the fracture
domainΩ𝑓(𝑡). However, the porosities 𝜙, 𝜙𝑓, the intrinsic permeabilitiesK,K𝑓 and
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the relative permeabilities 𝑘𝛼, 𝑘𝑓𝛼 might differ. Within fractures a porous media
(two-phase) flow occurs, for instance, if they are filled with debris. Effective
porous media flow can also be induced by wall roughness. We assume that this
behavior can be characterized by the physical properties of a porous medium in
the fracture.

Adapting the fractional-flow formulation from (1.4), the fluid unknowns 𝑆 𝑖 ∶Ω𝑡𝑖 → [0, 1], 𝑝𝑖 ∶ Ω𝑡𝑖 → R and v𝑖 ∶ Ω𝑡𝑖 → R𝑛 are governed by(𝜙𝑖𝑆 𝑖)𝑡 + div F𝑖(𝑆 𝑖, v𝑖) = 𝑞𝑤,
v𝑖 + 𝜆𝑖(𝑆 𝑖)K𝑖(∇𝑝𝑖 − 𝐺 𝑖(𝑆 𝑖)g) = 0,

div(v𝑖) = 𝑞𝑤 + 𝑞𝑛𝑤 in Ω𝑡𝑖, 𝑖 ∈ {𝑏, 𝑓 }, (3.1)

with the coupling conditions

F𝑏(𝑆𝑏, v𝑏) ⋅ n = F𝑓(𝑆𝑓, v𝑓) ⋅ n,𝑝𝑏 = 𝑝𝑓,
v𝑏 ⋅ n = v𝑓 ⋅ n (3.2)

on 𝜕Ω𝑏(𝑡) ∩ 𝜕Ω𝑓(𝑡) for all 𝑡 ∈ (0, 𝑇 ) and 𝑖 ∈ {𝑏, 𝑓 }. Here, the functions 𝐺, 𝜆 and 𝐹
are defined as in Section 1.3.2.

The physical quantities, such as 𝜙 and K, are expected to differ in the two
subdomains and, therefore, are indicated by the superscript 𝑖 ∈ {𝑏, 𝑓 }. Appropriate
initial data and boundary conditions have to be added.

The coupling conditions (3.2) express mass conservation and pressure equilib-
rium and are a natural choice such that problem (3.1) is equivalent to the problem
(1.4), defined on the complete domain Ω = Ω𝑏 ∪ Ω𝑓.
Now, let us replace the fracture Ω𝑓(𝑡) by a centered (𝑛 − 1)-dimensional hy-
persurface Γ(𝑡) and a given aperture function 𝑑 ∈ C

1(Γ𝑡) with 𝑑 > 0, where
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Γ𝑡 ≔ {Γ(𝑡) × {𝑡} ∣ 𝑡 ∈ (0, 𝑇 )}, cf. Figure 3.2. For this, we assume a simple geo-
metrical setup with no junctions, where the fracture can be represented as a
hypersurface and a smooth function defined on Γ(𝑡) that models the aperture.

We shall orient the two sides of the surface. To do so, we choose a normal
n = n(s, 𝑡) ∈ S

𝑛−1 in s ∈ Γ(𝑡) where S𝑛−1 denotes the set of vectors in R𝑛 with
unit length. The sides will be denoted by positive (+) and negative (-) signs where
n is assumed to point to the negative side. Later, we will also use the notation
n = n+ = −n−.
Let us consider for 𝑖 ∈ {𝑏, 𝑓 } smooth solutions 𝑆 𝑖, 𝑝𝑖 and v𝑖 of system (3.1) that
satisfy the coupling conditions (3.2). Then, the reduced model is obtained by
averaging along the line segments

𝐿(s, 𝑡) ∶= {s+ 𝑟2n | 𝑟 ∈ (−𝑑(s, 𝑡), 𝑑(s, 𝑡))} ⊂ Ω𝑓(𝑡), s ∈ Γ(𝑡), 𝑡 ∈ (0, 𝑇 ). (3.3)
We introduce the projection matrices N ≔ n ⊗ n ∈ R𝑛×𝑛 and T ≔ I − N ∈ R𝑛×𝑛.
For differentiable functions 𝜑 ∶ Γ → R and 𝜓 ∶ Γ → R𝑛 we define tangential
and normal derivations by∇𝜏𝜑 ≔ T∇ ̄𝜑, div𝜏 𝜓 ≔ div(T ̄𝜓 ), divn 𝜓 ≔ div(N ̄𝜓 ),
where ̄𝜑, ̄𝜓 are extensions of 𝜑, 𝜓 to an open set inR𝑛 including Γ. To each s ∈ Γ(𝑡)
we associate the fracture boundary points

s±(s, 𝑡) ≔ s ∓ 12𝑑(s, 𝑡)n. (3.4)

We refer to Figure 3.2 for illustration. Denote by𝛾±(𝑡) ≔ { s±(s, 𝑡) | s ∈ Γ }



3.2 Derivation of the Discrete Fracture Model 45

the boundary surfaces on each side of the fracture (see Figure 3.2). Using this
notation, we define for some function 𝜑 ∶ Ω𝑏 → R the bulk traces𝜑± = 𝜑±(s) ≔ lim𝜀→0𝜀>0 𝜑(s± ∓ 𝜀n),
and the jump and mean values by

J𝜑K ≔ 𝜑+ − 𝜑− and {𝜑}≔ 𝜑+ + 𝜑−2 .
We proceed and define reduced quantities on Γ(𝑡) by averaging along the line
segments 𝐿(s, 𝑡) from (3.3), namely

vΓ(s, 𝑡) ≔ 1𝑑(s, 𝑡) ∫𝐿(s,𝑡) Tv𝑓(⋅, 𝑡) 𝑑x = 1𝑑(s, 𝑡) ∫𝑑(s,𝑡)−𝑑(s,𝑡) Tv𝑓(s + 𝑟2n, 𝑡) 𝑑𝑟 , (3.5)

𝑆Γ(s, 𝑡) ≔ 1𝑑(s, 𝑡) ∫𝐿(s,𝑡) 𝑆𝑓(⋅, 𝑡) 𝑑x = 1𝑑(s, 𝑡) ∫𝑑(s,𝑡)−𝑑(s,𝑡) 𝑆𝑓(s + 𝑟2n, 𝑡) 𝑑𝑟 , (3.6)

𝑝Γ(s, 𝑡) ≔ 1𝑑(s, 𝑡) ∫𝐿(s,𝑡) 𝑝𝑓(⋅, 𝑡) 𝑑x = 1𝑑(s, 𝑡) ∫𝑑(s,𝑡)−𝑑(s,𝑡) 𝑝𝑓(s + 𝑟2n, 𝑡) 𝑑𝑟 . (3.7)

From now on, we assume that 𝜙𝑓 and K𝑓 are constant along each 𝐿(s, 𝑡). For
smooth functions 𝑘𝑓𝛼, 𝑓 𝑓 and 𝐺𝑓, that may depend non-linearly on 𝑆𝑓, we approx-
imate all evaluation in 𝐿(s, 𝑡) by the evaluation at the mean quantity, i.e.,𝑘𝑓𝛼(𝑆𝑓(x, 𝑡)) = 𝑘𝑓𝛼(𝑆Γ(s, 𝑡)) + 𝑂( ̄𝑑), (3.8)𝑓 𝑓(𝑆𝑓(x, 𝑡)) = 𝑓 𝑓(𝑆Γ(s, 𝑡)) + 𝑂( ̄𝑑), (3.9)𝐺𝑓(𝑆𝑓(x, 𝑡)) = 𝐺𝑓(𝑆Γ(s, 𝑡)) + 𝑂( ̄𝑑), (3.10)

for all x ∈ 𝐿(s, 𝑡)where ̄𝑑 ≔ max{𝑑(s, 𝑡) ∣ 𝑡 ∈ [0, 𝑇 ], s ∈ Γ(𝑡)}. For the simple affine
choice for 𝑘𝑓𝛼, i.e., 𝑘𝑓𝑤(𝑆𝑓) = 𝑆𝑓 and 𝑘𝑓𝑛𝑤(𝑆𝑓) = 1 − 𝑆𝑓, the 𝑂( ̄𝑑)-term in conditions
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(3.8)-(3.10) vanishes. In general, relations (3.8)-(3.10) hold if 𝑆𝑓 is regular enough.
The regularity of 𝑆𝑓 depends on the used models, we refer for rigorous results to
[50] and [54, 55, 57], albeit for different models.
The further derivation of our model is based on the following results.

Lemma 3.1: For 𝜑 ∈ C
1(Ω𝑡𝑓) and 𝜓 ∈ C

1(Ω𝑡𝑓)𝑛 we have for all (s, 𝑡) ∈ Γ𝑡 the
identities

(I.)

∫𝐿(s,𝑡) 𝑑𝑑𝑡𝜑(x, 𝑡) 𝑑x = 𝑑𝑑𝑡(𝑑(s, 𝑡)𝜑Γ(s, 𝑡))− 𝜕𝑡𝑑(s, 𝑡)2 (𝜑(s, 𝑡)|s=s− + 𝜑(s, 𝑡)|s=s+) (3.11)

(II.)

∫𝐿(s,𝑡) div 𝜓(x, 𝑡) 𝑑x = div𝜏 (𝑑(s, 𝑡)𝜓Γ(s, 𝑡))− ∇𝜏𝑑(s, 𝑡)2 ⋅ (T𝜓(s, 𝑡)|s=s− + T𝜓(s, 𝑡)|s=s+)− (𝜓(s, 𝑡)|s=s+ − 𝜓(s, 𝑡)|s=s−) ⋅ n
(3.12)

(III.)

∫𝐿(s,𝑡) ∇𝜑(x, 𝑡) 𝑑x = ∇𝜏(𝑑(s, 𝑡)𝜑Γ(s, 𝑡))− ∇𝜏𝑑(s, 𝑡)2 (𝜑(s, 𝑡)|s=s− + 𝜑(s, 𝑡)|s=s+) (3.13)

where 𝜑Γ(s, 𝑡) ≔ 1𝑑(s,𝑡) ∫𝐿(s,𝑡) 𝜑(x, 𝑡) 𝑑x and 𝜓Γ(s, 𝑡) ≔ 1𝑑(s,𝑡) ∫𝐿(s,𝑡) 𝜓(x, 𝑡) 𝑑x.
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Proof: The computations for (I.)-(III.) are similar. We provide the proof for (III.)
and compute𝑑(s, 𝑡)∇𝜏𝜑Γ(s, 𝑡) = 𝑑(s, 𝑡)∇𝜏( 1𝑑(s, 𝑡)) ∫𝐿(s,𝑡) 𝜑(x, 𝑡) 𝑑x + ∇𝜏(∫𝐿(s,𝑡) 𝜑(x, 𝑡) 𝑑x),= −∇𝜏𝑑(s, 𝑡)𝑑(s, 𝑡) ∫𝐿(s,𝑡) 𝜑(x, 𝑡) 𝑑x + ∫𝐿(s,𝑡) ∇𝜑(x, 𝑡) 𝑑x+ ∇𝜏𝑑(s, 𝑡)2 𝜑(s, 𝑡)|s=s− + ∇𝜏𝑑(s, 𝑡)2 𝜑(s, 𝑡)|s=s+ ,= −∇𝜏𝑑(s, 𝑡)𝜑Γ + ∫𝐿(s,𝑡) ∇𝜑(x, 𝑡) 𝑑x+ ∇𝜏𝑑(s, 𝑡)2 (𝜑(s, 𝑡)|s=s− + 𝜑(s, 𝑡)|s=s+).
Here, we used definition (3.4) and the definition of 𝜑Γ. Rearranging the terms and
using the chain rule results in (3.13). The derivation of the two other identities
follows analogously.

For 𝜑 = 𝜙𝑓𝑆𝑓 and 𝜓 = v𝑓 equations (3.11) and (3.12) read

∫𝐿(s,𝑡) 𝑑𝑑𝑡(𝜙𝑓𝑆𝑓(x, 𝑡)) 𝑑x = 𝑑𝑑𝑡(𝑑(s, 𝑡)𝜙𝑓𝑆Γ(s, 𝑡))− 𝜕𝑡𝑑(s, 𝑡)2 𝜙𝑓(𝑆𝑓(s, 𝑡)|s=s− + 𝑆𝑓(s, 𝑡)|s=s+), (3.14)

∫𝐿(s,𝑡) div v𝑓(x, 𝑡) 𝑑x = div𝜏 (𝑑(s, 𝑡)vΓ(s, 𝑡))− ∇𝜏𝑑(s, 𝑡)2 ⋅ (Tv𝑓(s, 𝑡)|s=s− + Tv𝑓(s, 𝑡)|s=s+)− Jv ⋅ nK. (3.15)

Here, we used coupling condition (3.2c) to write the jump Jv ⋅nK. For 𝜑 = 𝑝𝑓 and
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𝜓 = F𝑓(𝑆𝑓, v𝑓), using the approximations (3.8)-(3.10) and coupling conditions
(3.2), we can write

∫𝐿(s,𝑡) ∇𝑝𝑓(x, 𝑡) 𝑑x = ∇𝜏(𝑑(s, 𝑡)𝑝Γ(s, 𝑡)) − ∇𝜏𝑑(s, 𝑡){{𝑝}} + 𝑂( ̄𝑑), (3.16)

∫𝐿(s,𝑡) div F𝑓(𝑆𝑓, v𝑓) 𝑑x = div𝜏 (𝑑F𝑓(𝑆Γ, vΓ))− ∇𝜏𝑑2 ⋅ (TF𝑓(𝑆𝑓, v𝑓)|s− + TF𝑓(𝑆𝑓, v𝑓)|s+)− JF𝑓(𝑆, v) ⋅ nK + 𝑂( ̄𝑑). (3.17)

Now, integrating each equation in (3.1) for 𝑖 = 𝑓 along the line segments 𝐿(s, 𝑡),
we obtain a reduced model for the fracture in terms of the unknowns 𝑆Γ, 𝑝Γ and
vΓ. Integrating the saturation conservation equation (3.1) for 𝑖 = 𝑓 and using
(3.14)-(3.17) we obtain

∫𝐿(s,𝑡)(𝜙𝑓𝑆𝑓)𝑡 + div F𝑓(𝑆𝑓, v𝑓) 𝑑x
= (𝑑𝜙𝑓𝑆Γ)𝑡 − 𝜕𝑡𝑑(s, 𝑡)2 𝜙𝑓(𝑆𝑓(s, 𝑡)|s=s− + 𝑆𝑓(s, 𝑡)|s=s+)+ div𝜏 (𝑑F𝑓(𝑆Γ, vΓ)) − ∇𝜏𝑑2 ⋅ (TF𝑓(𝑆𝑓, v𝑓)|s− + TF𝑓(𝑆𝑓, v𝑓)|s+)− JF𝑓(𝑆, v) ⋅ nK + 𝑂( ̄𝑑)= 𝑑𝑞Γ𝑤 + 𝑂( ̄𝑑). (3.18)

For the last line we used 𝑞Γ𝑤 ≔ 1𝑑(s, 𝑡) ∫𝐿(s,𝑡) 𝑞𝑤 𝑑x.
We decomposeK𝑓 intoK𝑓 = 𝐾 𝑓𝑛N+K𝑓𝜏T and define g𝜏 = Tg. Further, we multiply
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the equation (3.1b) for 𝑖 = 𝑓 by T and N. By averaging over the line segments we
deduce using (3.16) the relation0 = ∫𝐿(s,𝑡) Tv𝑓 + 𝜆𝑓(𝑆𝑓)TK𝑓(∇𝑝𝑓 − 𝐺𝑓(𝑆𝑓)g) 𝑑x= 𝑑(s, 𝑡)vΓ+ 𝜆𝑓(𝑆Γ)K𝑓𝜏(∇𝜏(𝑑(s, 𝑡)𝑝Γ) − ∇𝜏𝑑(s, 𝑡){{𝑝}} − 𝑑(s, 𝑡)𝐺𝑓(𝑆Γ)g𝜏) + 𝑂( ̄𝑑) (3.19)

and 0 = 1𝑑(s, 𝑡) ∫𝐿(s,𝑡)Nv𝑓 + 𝜆𝑓(𝑆𝑓)NK𝑓(∇𝑝𝑓 − 𝐺𝑓(𝑆𝑓)g) 𝑑x
= {{v ⋅ n}} + 𝜆𝑓(𝑆Γ)𝐾 𝑓𝑛(− J𝑝K𝑑(s, 𝑡) − 𝐺𝑓(𝑆Γ)(g ⋅ n)) + 𝑂( ̄𝑑). (3.20)

To formulate a closed model it remains to impose suitable coupling conditions
at the interfaces between the subdomains. We approximate 𝑝𝑓 by a quadratic
polynomial ̃𝑝𝑓(𝜉 ) = 𝑎𝜉 2+𝑏𝜉 +𝑐, 𝜉 ∈ [− 𝑑2 , 𝑑2], along the line segment 𝐿(s, 𝑡). Here,
the coefficients 𝑎, 𝑏, 𝑐 depend on (s, 𝑡). This polynomial is supposed to satisfy the
four continuity conditions (3.2b), (3.2c) at the boundaries (compare Figure 3.3)
where one can be eliminated using (3.20). Averaging as in (3.7), we obtain the
relation

𝑝Γ = 1𝑑(s, 𝑡) ∫𝐿(s,𝑡) 𝑝𝑓(., 𝑡) 𝑑x = ∫ 𝑑2− 𝑑2 ̃𝑝𝑓(𝜉 ) 𝑑𝜉 + 𝑂( ̄𝑑) (3.21)

= {{𝑝}} − 𝑑12𝜆𝑓(𝑆Γ)K𝑓𝑛 Jv ⋅ nK + 𝑂( ̄𝑑). (3.22)
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𝜉
Figure 3.3: Within the fractures the pressure along the line segments is

approximated by a second-order polynomial that satisfies conditions (3.2)
at the boundary.

Combining equation (3.20) and (3.21) leads for 𝛼 ∈ {+, −} to
v𝛼 ⋅ n𝛼 = −𝜆𝑓(𝑆Γ)𝐾 𝑓𝑛(𝑝Γ − 𝑝𝛼𝑑/2 + 𝑝Γ − {{𝑝}}𝑑/4 − 𝐺𝑓(𝑆Γ)(g ⋅ n𝛼)) + 𝑂( ̄𝑑). (3.23)

This identity provides a coupling condition between the bulk and the fracture
problem, cf. (3.27) below. From the divergence constraint in (3.1) we obtain equa-
tion (3.15) directly with a source term 𝑑(s, 𝑡)𝑞Γ𝑛𝑤 where 𝑞Γ𝑛𝑤 ≔ 1𝑑(s,𝑡) ∫𝐿(s,𝑡) 𝑞𝑛𝑤 𝑑x
on the right-hand side. The coupling conditions for the mass balance (3.2a) can
be rewritten as(F(𝑆𝛼(s𝛼, 𝑡), v𝛼(s𝛼, 𝑡)) ⋅ n𝛼)|𝛾𝛼 = (F𝑓(𝑆𝑓(s𝛼, 𝑡), v𝑓(s𝛼, 𝑡)) ⋅ n𝛼)|𝛾𝛼= (F𝑓(𝑆Γ(s, 𝑡), v𝛼(s𝛼, 𝑡)) ⋅ n𝛼)|𝛾𝛼 + 𝑂( ̄𝑑) (3.24)

for 𝛼 ∈ {+, −}.
Before we summarize the reduced discrete fracture model, we come up with
some physical considerations. Within the reduced model, a different concept of
physical volume occurs. This is because the storage volume |Ω|storage that can
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be occupied by fluid is given by the volume of the bulk domain plus the aperture
integrated over the interface length. To be more precise, we define the storage
volume by |Ω|storage ≔ ∫Ω 1 𝑑x + ∫Γ(𝑡) 𝑑(⋅, 𝑡) 𝑑x.
This concept of storage volume in the reduced model leads to unconventional
behavior regarding mass conservation. For instance, when the fracture geometry
changes, we increase (or decrease) the physical volume within the fracture
while the volume of the surrounding bulk domain stays constant. This is in
contradiction to the full-dimensional setup where the volume of the bulk domain
will decrease (or increase) accordingly. We try to ensure mass conservation by
assuming no fluid exchange between bulk and fracture domain caused by the
change of aperture. Doing so, we can ensure mass conservation in both bulk
and fracture domain separately, even if the geometry of the fracture changes.

Within our model above, one can identify the terms 𝜕𝑡𝑑(s, 𝑡)(𝜙𝑓𝑆𝑓(s, 𝑡)|s=s±),∇𝜏𝑑TF𝑓(𝑆𝑓, 𝑓)|s± and ∇𝜏𝑑(s, 𝑡){{𝑝}} to govern the mass flux between fracture and
bulk domain due to non-constant aperture. Therefore, for the sake of our mass
conservation considerations, we will omit these terms. Further investigation
might lead to these additional terms in the reduced model, but supplementary
deliberation about the concept of mass conservation will be necessary.

3.3 The Reduced Discrete Fracture Model

Neglecting the 𝑂( ̄𝑑)-terms and incorporating the above mentioned considera-
tions, we summarize the reduced model equations (3.18), (3.19), (3.23) and (3.24).
For each 𝑡 ∈ (0, 𝑇 ) let as before Γ(𝑡) ⊂ Ω be a given family of hypersurfaces and𝑑(s, 𝑡) the corresponding aperture in s ∈ Γ(𝑡) and 𝐷(𝑡) ≔ Ω ⧵ Γ̄(𝑡).
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The wetting fluid saturation 𝑆 ∶ 𝐷𝑡 → [0, 1], the global pressure 𝑝 ∶ 𝐷𝑡 → R
and the total velocity v ∶ 𝐷𝑡 → R𝑛 in the bulk medium satisfy(𝜙𝑆)𝑡 + div F(𝑆, v) = 𝑞𝑤,

v + 𝜆(𝑆)K(∇𝑝 − 𝐺(𝑆)g) = 0,
div(v) = 𝑞𝑤 + 𝑞𝑛𝑤 in 𝐷𝑡, (3.25)

where F(𝑆, v) and 𝐺(𝑆) are defined as for (1.4). On Γ𝑡 we search for the reduced
quantities 𝑆Γ ∶ Γ𝑡 → [0, 1], 𝑝Γ ∶ Γ𝑡 → R and vΓ ∶ Γ𝑡 → R𝑛 satisfying(𝑑𝜙𝑓𝑆Γ)𝑡 + div𝜏(𝑑F𝑓(𝑆Γ, vΓ)) = JF(𝑆, v) ⋅ nK + 𝑑𝑞Γ𝑤,𝑑vΓ + 𝜆𝑓(𝑆Γ)K𝑓𝜏(∇𝜏(𝑑𝑝Γ) − 𝑑𝐺𝑓(𝑆Γ)g𝜏) = 0, in Γ𝑡.

div𝜏(𝑑vΓ) = Jv ⋅ nK + 𝑑(𝑞Γ𝑤 + 𝑞Γ𝑛𝑤) (3.26)

The systems (3.25), (3.26) are closed at the hypersurface Γ(𝑡) by the interface
conditions

F(𝑆𝛼, v𝛼) ⋅ n𝛼 = F𝑓(𝑆Γ, v𝛼) ⋅ n𝛼,
v𝛼 ⋅ n𝛼 = −𝜆𝑓(𝑆Γ)𝐾 𝑓𝑛(𝑝Γ − 𝑝𝛼𝑑/2 + 𝑝Γ − {{𝑝}}𝑑/4 − 𝐺𝑓(𝑆Γ)(g ⋅ n𝛼)) (3.27)

on Γ(𝑡) × {𝑡}, 𝑡 ∈ (0, 𝑇 ), 𝛼 ∈ {+, −}.
Remark 3.2: (i) In case of 𝑆 ≡ 𝑆Γ ≡ 0 and g = 0 the model (3.25)-(3.27) reduces
to the single-phase case as described in [51]. Here, our pressure coupling condition
corresponds to the shape parameter value 𝜉 = 23 .
(ii) For 𝑑 = 𝑐𝑜𝑛𝑠𝑡. we note that even if we construct the models as in [32] and [43],
we obtain different coupling conditions. For instance, in contrast to [32] we replaced𝐺𝑓(𝑆)|𝛾± by 𝐺𝑓(𝑆Γ) instead of 𝐺𝑓(𝑆±). This choice appears consistent to us as it is
used for all other terms depending on 𝑆.
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(iii) Reduced models for unsaturated flow [47] exhibit a very similar structure as
model (3.25)-(3.27). However, because of the advection-dominated regime neglecting
capillary pressure, the reduced model can not be directly linked to the unsaturated
case.

(iv) The assumption that 𝑝𝑓 is transversally constant leads to the coupling conditions𝑝 = 𝑝𝑓 and v ⋅n = 0. These conditions are analyzed in [57]. However, our conditions
that are built on a higher-order approximation include also the case of lower
permeable fractures (barriers) where usually J𝑝K ≠ 0.
The equations (3.25), (3.26) describe a mixed-dimensional problem of hyperbolic-
elliptic type in time-dependent domains. Special numerical methods and tools
are required to solve such kind of problem.

In the next section, we will describe our solution approach. We follow a finite
volume approach because of the hyperbolic character of the saturation equation.
As a novel contribution this approach is coupled with a moving-mesh concept
that keeps track of the moving lower-dimensional domains.

3.4 The Finite-Volume Moving-Mesh Algorithm

A large variety of numerical methods have been proposed for mixed-dimensional
models (see, e.g., [10, 13, 16, 32]). They can be classified in two categories: con-
forming and non-conforming methods. The non-conforming methods make
use of independent discretizations of full-dimensional and lower-dimensional
sets, whereas conforming methods assume some kind of conformity of the
lower-dimensional set to the bulk mesh. For instance, mesh elements of the
lower-dimensional mesh coincide with facets of the bulk mesh. Non-conforming
methods seem to suggest themselves as a good choice for moving interfaces
being much more easy to handle. However, the mutual geometrical relations are
not trivial to compute, and have to be recomputed, in principle, at each time
step. If instead one is able to manage a moving mesh, the geometrical relations



54 3 Two-phase Flow in Dynamically Fracturing Porous Media

become trivial. Therefore, we propose a moving-mesh method that permits the
efficient tracking of lower-dimensional mesh facets. We utilize the conformity
in a finite volume method by only adopting fluxes at the lower-dimensional
interface.

In the following, a finite volume discretization will be used for both the bulk and
the fracture problem. The coupling between the two problems is incorporated
by suitable fluxes at the edges of the codimension-1 interface which ensures,
in particular, conservation of mass. To keep track of the moving interface the
ansatz results in a new finite-volume moving-mesh method (FVMM).

We will use a two-point flux approximation for the discretization of the pressure
gradient in (3.25), (3.26). We use this simple approach because large effort is
necessary to update cell stencils during re-meshing. It is known that a standard
two-point flux approximation is not consistent on general triangular grids and for
anisotropic permeability tensors [30]. Therefore, we will propose an adaptation
of the two-point flux approximation that is consistent at least for isotropic
permeabilities in Section 3.4.3. This is achieved by locating the pressure values
at the cirumcenters.

Before we start with the description of the scheme, let us introduce some nota-
tion.

3.4.1 The Geometry of the Moving Mesh

In the sequel, we assume that the open subset Ω of R𝑛, 𝑛 ∈ {2, 3}, is a polygon.
Likewise, the interface Γ = Γ(𝑡) is assumed to be a polygonal hypersurface for
all 𝑡 ∈ [0, 𝑇 ]. In this section, we introduce the moving-mesh concept that ensures
that Γ(𝑡) is always represented as a union of facets of the triangulation for Ω.
For each 𝐹 ∈ F(𝐾), cf. Section 2.2.1, we denote by n𝐾 the outer normal to this
facet seen from 𝐾 weighted by the facet area. The outer normal defines an inner,
positive side of the facet and an outer, negative side. The adjacent cells are
therefore denoted by 𝐾+ = 𝐾 and 𝐾−.
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Turning to the evolution of the mesh, let 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑁 = 𝑇 , 𝑁 ∈ N,
be a series of time steps. In the following, we start with a triangulation which
is conforming to the interface for each time step 𝑡𝑖, 𝑖 = 0, ..., 𝑁. In between, we
assume that the vertices of T move linearly in time. That is, all 𝐾 = 𝐾(𝑡) ∈
T(𝑡), 𝑡 ∈ (𝑡𝑖, 𝑡𝑖+1), are given by 𝐾(𝑡) ≔ conv(p0(𝑡), … ,p𝑛(𝑡)), where p𝑖(𝑡) ∈ R𝑛
moves with speed s𝑖 ∈ R𝑛 according to

p𝑖(𝑡) = p𝑖(0) + 𝑡s𝑖, 𝑖 = 0, … , 𝑛.

T
F

𝐼
FΓ

TΓ(= F
Γ)

n𝐾
𝐾−

𝐾+
Figure 3.4: Visualization of the geometrical notations used in Section 3.4.1 for𝑛 = 2.

3.4.2 Moving-Mesh Method for the Saturation Equations

In this section, we describe the moving-mesh method that is used for handling
the propagation of fractures. Note that moving-mesh methods are typically
used to minimize artificial diffusion, for instance, when tracking discontinuities
in the solution of hyperbolic problems [39]. In contrast, we use it to track a
lower-dimensional interface.

The moving-mesh method requires an additional geometrical flux within the
finite volume formulation. This geometrical flux accounts for the mass flux
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across moving facets. Here, we want to incorporate the ideas that have been
applied in numerical methods for droplet dynamics [25]. Because it is only an
additional flux in the finite volume update step, it works without any re-meshing
and projection as long as the triangulation is not adapted, and reduces to the
classic finite volume scheme if no movement occurs. With this method one is
able to move the lower-dimensional fracture facets without moving mass in the
solution in the surrounding mesh.

Let us consider a single interval (𝑡𝑖, 𝑡𝑖+1). We assume that T(𝑡) does not degen-
erate for 𝑡 ∈ (𝑡𝑖, 𝑡𝑖+1), i.e., there is a 𝑐 > 0 such that for all 𝑡 ∈ (𝑡𝑖, 𝑡𝑖+1) we have|𝐾 | > 𝑐 for all 𝐾 ∈ T(𝑡). If this condition is not satisfied, the triangulation has
to be adapted first, which is be described in detail in Section 2.3.

Now, consider the space-time cell𝐾𝑠𝑡 = {(x, 𝑡) | x ∈ 𝐾(𝑡), 𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖+1}.
Integrating (3.25a) over𝐾𝑠𝑡 and using Reynolds’ transport theoremwe compute

∫𝐾𝑠𝑡(𝜙𝑆)𝑡 + div F(𝑆, v) 𝑑(x, 𝑡)
= ∫𝐾(𝑡𝑖+1) 𝜙𝑆(⋅, 𝑡𝑖+1) 𝑑x − ∫𝐾(𝑡𝑖) 𝜙𝑆(⋅, 𝑡𝑖) 𝑑x+ ∫𝑡𝑖+1𝑡𝑖 ∫𝜕𝐾(𝑡) (F(𝑆, v) − (𝜙𝑆)s) ⋅ n𝐾(𝑡) 𝑑𝑆 𝑑𝑡
= ∫𝑡𝑖+1𝑡𝑖 ∫𝐾(𝑡) 𝑞𝑤 𝑑x 𝑑𝑡. (3.28)

Here, s ∶ 𝐾(𝑡) → R𝑛 is the speed of a point

x(𝑡) = p0(𝑡) + 𝑛∑𝑖=1 𝜆𝑖(p𝑖(𝑡) − p0(𝑡)),
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with 𝜆𝑖 ∈ [0, 1], 𝑖 = 1, … , 𝑛, i.e.,
s(x) = s0 + 𝑛∑𝑖=1 𝜆𝑖(s𝑖 − s0).

With a slight abuse of notation, in the above formula, n𝐾(𝑡) ∶ 𝜕𝐾(𝑡) → S
𝑛−1

denotes the unit outer normal at the boundary of 𝐾(𝑡). Let us define the finite
volume ansatz-space of cell-wise constant functions

Sℎ(T) ≔ {𝑣 ∈ 𝐿2(R𝑛) | 𝑣𝐾 ≔ 𝑣|𝐾 ∈ P0(𝐾) ∀𝐾 ∈ T}.
We choose two discrete representatives of the saturation 𝑆 𝑖, 𝑆 𝑖+1 ∈ Sℎ(T) and
define 𝑆0 by 𝑆0𝐾 ≔ 1|𝐾 | ∫𝐾 𝑆(⋅, 0) 𝑑x. Now, using an implicit Euler time-stepping

for (3.28) and dividing by |𝐾(𝑡𝑖+1)| we evolve 𝑆 𝑖 → 𝑆 𝑖+1 by
𝜙𝑆 𝑖+1𝐾 − 𝜙𝑆 𝑖𝐾 |𝐾(𝑡𝑖)||𝐾(𝑡𝑖+1)| + (𝑡𝑖+1 − 𝑡𝑖) ∑𝐹∈F(𝐾(𝑡𝑖+1)) [𝑔𝐹(𝑆 𝑖+1𝐾+ , 𝑆 𝑖+1𝐾− , v) + ℎ𝐹(𝑆 𝑖+1𝐾+ , 𝑆 𝑖+1𝐾− )]

= 𝑡𝑖+1 − 𝑡𝑖|𝐾(𝑡𝑖+1)| ∫𝐾(𝑡𝑖+1) 𝑞𝑤 𝑑x.
Here, 𝑔𝐹(⋅, ⋅, v) is a numerical flux that is consistent with the flux function F(𝑆, v) ⋅
n𝐾, whereas the numerical flux ℎ𝐹(⋅, ⋅) has to be consistent with the geometric
flux function −(𝜙𝑆)s ⋅ n𝐾. Suitable choices are, for instance, a Lax-Friedrichs or
Godunov-type flux for 𝑔𝐹 and an upwind flux for ℎ𝐹. Because the flux function
F(𝑆, v) in our model is non-monotone in the first argument, we will use the
Godunov flux that results from an exact solution of the Riemann problem, cf.
Equation 3.29 below. The fluxes at the boundary have to be adapted according
to the boundary conditions.

With the additional geometrical flux and volume term the conservative quantity
is not transported in space although vertices of the triangulation move. We
show in Section 3.5.2 numerical examples demonstrating the performance of
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the scheme for constant initial data. The scheme can only be applied as long as
no cell degenerates. In order to prevent degeneration and improve mesh quality
we use the re-meshing techniques provided by Dune-MMesh, see Section 2.3 for
details. We can use this moving-mesh method for both the bulk and the lower-
dimensional domain. To couple the schemes, the fluxes at the inner fracture
facetsFΓ have to incorporate condition (3.27).

We shall describe our choice for the numerical flux 𝑔(⋅, ⋅, v) in more detail. The
flux has to be generalized for a discontinuous flux function as the physical
properties (in particular K) might vary in space. We start with the formulation
of the Godunov flux [46] which can be written as

𝑔(𝑆+, 𝑆−, v) = { min𝑆+<𝑆<𝑆− F(𝑆, v) ⋅ n𝐾, if 𝑆+ ≤ 𝑆−,
max𝑆−<𝑆<𝑆+ F(𝑆, v) ⋅ n𝐾, if 𝑆− < 𝑆+. (3.29)

Generalizing this flux for a discontinuous flux function we use the identity𝑔∗(𝑆+, 𝑆−, v) ≔ 𝑔+(𝑆+, 𝑆∗, v) = 𝑔−(𝑆∗, 𝑆−, v) for some 𝑆∗ ∈ [0, 1].
This generalization has to be applied on all facets where the physical parame-
ters of the adjacent cells are distinct, in particular between bulk and fracture
domain.

For a quadratic material law 𝑘𝑤(𝑆) = 𝑆2 and 𝑘𝑛𝑤(𝑆) = (1 − 𝑆)2 we implemented
explicit formulas which can be evaluated efficiently. In particular, we use the fact
that F(𝑆, v) has a single extremum (cf. Figure 3.6). This fact can also be exploited
to deduce an explicit formula for the generalized flux.

3.4.3 Circum-Centered Two-Point Flux Approximation on Moving
Meshes

We continue with the discretization of the elliptic part (3.25b)-(3.25c) governing
bulk pressure and velocity. The derivation shows themethod for the bulk problem
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in 𝐷(𝑡), but it is similar for the problem on the interface Γ(𝑡).
The finite volume approach for the divergence constraint (1.4c) reads∑𝐹∈F(𝐾(𝑡)) 𝑣𝐹 𝑑x = ∫𝐾(𝑡)(𝑞𝑤 + 𝑞𝑛𝑤) 𝑑x,
where 𝑣𝐹 is a suitable approximation of v ⋅ n on 𝐹 and 𝐾(𝑡) ∈ T(𝑡). A simple
choice for 𝑣𝐹 is the two-point flux approximation (TPFA) derived from equation
(1.4b), see [30]. Including the gravity term it reads𝑣𝐹 ≔ −T𝐹(𝑝𝐾− − 𝑝𝐾+ −G𝐹),
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where the transmissibility T𝐹 is defined by

T𝐹 ≔ T𝐾+T𝐾−
T𝐾+ + T𝐾− with T𝑖 ≔ 𝜆(𝑆𝑖)d𝑖K𝑖d𝑖‖d𝑖‖32 , 𝑖 ∈ {𝐾+, 𝐾−}.

Here, d𝑖 ≔ m𝐹 −m𝑖, 𝑖 ∈ {𝐾+, 𝐾−}, is the distance vector between the centerm𝐹
of facet 𝐹 and the cell centersm𝑖. K𝑖 for 𝑖 ∈ {𝐾+, 𝐾−} denotes the restriction of K
to 𝐾+ and 𝐾−. For consistency of the scheme it is necessary thatm𝐾+ ,m𝐾− ,m𝐹
are the cirumcenters of 𝐾+, 𝐾−, 𝐹. The gravitational influenceG𝐹 is defined by

G𝐹 ≔ G𝐾+ −G𝐾− , G𝑖 ≔ 𝐺(𝑆𝑖) (d𝑖 ⋅ g), 𝑖 ∈ {𝐾+, 𝐾−}.
The choices for the transmissibilities have been made such that−T𝐾+(𝑝∗ − 𝑝𝐾+ −G𝐾+) = T𝐾−(𝑝∗ − 𝑝𝐾− −G𝐾−)
holds for some intermediate pressure value 𝑝∗. This is the classical way to derive
the harmonic average occurring in the two-point flux approximation, and the
intermediate pressure actually can be eliminated.

As we assumed that the triangulation is conforming to the interface, some facets
coincide with lower-dimensional fracture elements 𝐾Γ ∈ TΓ. At such facets,
we include the coupling conditions (3.27) of the reduced model. Therefore, we
introduce intermediate pressure values 𝑝|𝛾+ and 𝑝|𝛾− at the boundaries of the
bulk medium next to the fracture. Conditions for the intermediate pressure
values can be stated by𝑣𝐹|𝛾+ = −T𝐾+(𝑝|𝛾+ − 𝑝𝐾+ −G𝐾+),𝑣𝐹|𝛾− = −T𝐾−(𝑝|𝛾− − 𝑝𝐾− −G𝐾−).
Then, the coupling conditions in (3.27) can be used to eliminate the intermediate
values. Defining

TΓ ≔ 2𝑑𝜆𝑓(𝑆𝑇Γ)𝐾 𝑓𝑛 , GΓ ≔ −𝑑2𝐺𝑓(𝑆𝐾Γ) (n𝐾 ⋅ g)
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we obtain (using an computer algebra system)

𝑣𝐹|𝛾+ = 𝑅 ( 3TΓ + 2T𝐾−−3TΓ − 3T𝐾−
T𝐾− ) ⋅ ( 𝑝𝐾+ +G𝐾+𝑝Γ +GΓ𝑝𝐾− +G𝐾− + 2GΓ)

where 𝑅 ≔ T𝐾+TΓ
T𝐾+T𝐾− + 3TΓ2 + 2TΓ(T𝐾+ + T𝐾−) .

Remark 3.3: The presented discretization is consistent for isotropic intrinsic per-
meabilities if we use circumcenters form𝐾+ ,m𝐾− ,m𝐹, and, therefore, locate the
pressure values at the circumcenters of the tetrahedral cells [30]. This is still valid for
the coupling to the fracture network as the circumcenters of the lower-dimensional
mesh elements are located at the orthogonal connection line of the circumcenters of
the two adjacent bulk cells.

In a recent benchmark study, we showed that this TPFA scheme with circum-
centers produces comparative results while having a comparably small number
of degrees of freedom [13].

3.4.4 The Complete FVMM Algorithm

With the Sections 3.4.1, 3.4.2 and 3.4.3 we can now present the complete FVMM
algorithm. It governs the discrete two-phase dynamics in the time-dependent
bulk domains as well as in the lower-dimensional fractures. It can be stated as
follows.

Consider a triangulationT(𝑡) of domain Ω which is conforming to the interface
triangulation TΓ(𝑡) of the time-dependent interface Γ(𝑡). We start the algorithm
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by averaging the initially given bulk saturation 𝑆0 and the fracture saturation𝑆Γ,0. For all 𝐾 ∈ T(0) and 𝐾Γ ∈ TΓ(0) set𝑆0𝐾 ≔ 1|𝐾| ∫𝐾 𝑆0(x) 𝑑x,(𝑆Γ)0𝐾Γ ≔ 1|𝐾Γ| ∫𝐾Γ 𝑆Γ,0(x) 𝑑x.
The cell-wise constant saturation values define discrete functions𝑆 𝑖 = (𝑆 𝑖𝐾)𝐾∈T(𝑡𝑖) ∈ Sℎ(T(𝑡𝑖)),(𝑆Γ)𝑖 = ((𝑆Γ)𝑖𝐾Γ)𝐾Γ∈TΓ(𝑡𝑖) ∈ Sℎ(TΓ(𝑡𝑖))
that will approximate the exact solution of system (3.25)-(3.27).

For each time step 𝑡𝑖 with given 𝑆 𝑖 ∈ Sℎ(T) and (𝑆Γ)𝑖 ∈ Sℎ(TΓ), we solve
the discrete system (3.30)-(3.33) below with a backward Euler time stepping
monolithically. Alternative solution strategies could be utilized here, e.g., IMPES
splitting, but our monolithic approach implemented with DuMux [44] turned
out to be reliable. Hereby, the size of the time step decreases automatically in
case of convergence issues during the Newton iteration, and is usually in the
order of magnitude suggested by the CFL condition.

We solve the systems below for (𝑆 𝑖+1, 𝑝𝑖+1) ∈ Sℎ(T) ×Sℎ(T) and((𝑆Γ)𝑖+1, (𝑝Γ)𝑖+1) ∈ Sℎ(TΓ) ×Sℎ(TΓ) defined by𝜙𝑆 𝑖+1𝐾 − 𝜙𝑆 𝑖𝐾 |𝐾(𝑡𝑖)||𝐾(𝑡𝑖+1)|𝑡𝑖+1 − 𝑡𝑖 + ∑𝐹∈F𝐼 (𝑔𝐹(𝑆 𝑖+1𝐾+ , 𝑆 𝑖+1𝐾− , 𝑣 𝑖+1𝐹 n𝐾) + ℎ𝐹(𝑆 𝑖+1𝐾+ , 𝑆 𝑖+1𝐾− ))+ ∑𝐹∈FΓ 𝑔𝐹(𝑆 𝑖+1𝐾+ , 𝑆 𝑖+1𝐾Γ , 𝑣𝐹|𝑖+1𝛾+ n) = 𝑞𝑖+1𝑤 (3.30)

∑𝐹∈F𝐼 𝑣 𝑖+1𝐹 n𝐾 + ∑𝐹∈FΓ 𝑣𝐹|𝑖+1𝛾+ n = 𝑞𝑖+1𝑤 + 𝑞𝑖+1𝑛𝑤 (3.31)
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for all 𝐾(𝑡𝑖) ∈ T(𝑡𝑖+1), and𝑑 𝑖+1𝜙Γ𝑆 𝑖+1𝐾Γ − 𝑑 𝑖𝜙Γ𝑆 𝑖𝐾Γ |𝐾Γ(𝑡𝑖)||𝐾Γ(𝑡𝑖+1)|𝑡𝑖+1 − 𝑡𝑖+ ∑𝐹∈F𝐼Γ (𝑑 𝑖+1𝑔𝐹(𝑆 𝑖+1𝐾+Γ , 𝑆 𝑖+1𝐾−Γ , v𝐹Γn𝐾Γ) + ℎ𝐹(𝑆 𝑖+1𝐾+Γ , 𝑆 𝑖+1𝐾−Γ ))= 𝑔𝛾+(𝑆 𝑖+1𝐾Γ , 𝑆 𝑖+1𝐾+Γ , 𝑣𝐹|𝑖+1𝛾+ n) + 𝑔𝛾−(𝑆 𝑖+1𝐾Γ , 𝑆 𝑖+1𝐾−Γ , 𝑣𝐹|𝑖+1𝛾− n) + 𝑑 𝑖+1(𝑞Γ)𝑖+1𝑤 ,
(3.32)

∑𝐹∈F𝐼Γ 𝑑 𝑖+1v𝐹Γ = 𝑣𝐹|𝑖+1𝛾+ n + 𝑣𝐹|𝑖+1𝛾− n𝐾 + 𝑑 𝑖+1((𝑞Γ)𝑖+1𝑤 + (𝑞Γ)𝑖+1𝑛𝑤 ) (3.33)

for all 𝐾Γ(𝑡𝑖) ∈ TΓ(𝑡𝑖+1). For abbreviation, we used 𝑑 𝑖 = 𝑑(⋅, 𝑡 𝑖),𝑞𝑖+1𝛼 = ∫𝐾(𝑡𝑖+1) 𝑞𝛼(x, 𝑡𝑖+1) 𝑑x and (𝑞Γ)𝑖+1𝛼 = ∫𝐾Γ(𝑡𝑖+1) 𝑞Γ𝛼(x, 𝑡𝑖+1) 𝑑xwhere 𝛼 ∈ {𝑤, 𝑛𝑤}.
For the purpose of readability we neglected the boundary terms in the formula-
tion above. At Dirichlet boundaries, the outer values 𝑆 𝑖+1𝐾− and 𝑝𝑖+1𝐾− (respectively𝑆 𝑖+1𝐾−Γ and 𝑝𝑖+1𝐾−Γ ) have to be replaced by the Dirichlet boundary value. At Neumann
boundaries, the corresponding normal fluxes 𝑔 and 𝑣𝐹 can be replaced directly
by the Neumann boundary flux.

3.4.5 Implementation

We implemented the FVMM algorithm (3.30)-(3.33) within the software frame-
work Dune [11] on the basis of the discretization module DuMux [44] and the
grid implementation Dune-MMesh [21]. The grid implementation Dune-MMesh
is essential for both the mixed-dimensional discretization and the moving-mesh
method. The details about Dune-MMesh have been described in Chapter 2.
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3.5 Numerical Experiments

We demonstrate the performance of the FVMM algorithm in some showcases.
For the sake of model validation, we investigate the error between a solution
of the reduced model (3.25)-(3.27) and a solution of the full-dimensional model
(3.1). In fact, the moving-mesh method can be used to obtain both solutions. In
the full-dimensional case, the re-meshing capability of Dune-MMesh is used to
track the boundary between bulk and fracture domain.

We consider three numerical experiments for 𝑛 = 2. In the first case we inves-
tigate how the FVMM algorithm performs for two-phase dynamics driven by
fracture prolongation only. Second, we analyze the same setting but with flow
injection into the fracture. Third, we perform a similar analysis with a squeezing
fracture. The solution of the reduced model is always compared to the reference
solution obtained by resolving the full-dimensional fracture. Finally, we consider
a static fracture network for 𝑛 = 3 and a two-dimensional setting with two
interfering fractures.

𝑡 = 0 𝑡 = 1
Figure 3.7: Geometrical setting where the fracture prolongates and squeezes

over time.

All source code that was used to produce the results and the raw data of the
simulation results is accessible via DaRUS [20].
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3.5.1 Geometrical Setting and Model Parameters

We choose a similar geometrical setting for the first three two-dimensional cases.
LetΩ = (0, 1)2 and 𝑇 = 1. The time-dependent fracture Γ(𝑡) is given by an ellipse
that prolongates and squeezes over time, i.e.,Γ(𝑡) = {𝑥1 = 𝑥2 ∣ 𝑟 (𝑥1, 𝑥2) ≤ 𝑅(𝑡)}, (𝑥1, 𝑥2)⊤ ∈ Ω. (3.34)

In (3.34) we have 𝑟(𝑥1, 𝑥2) ≔ √(𝑥1 − 0.5)2 + (𝑥2 − 0.5)2 and𝑅(𝑡) = 0.25+𝑡𝑣prolong.
The aperture is given by𝑑(𝑥1, 𝑥2, 𝑡) = (𝑑0 − 𝑡𝑣squeeze)√1 − (𝑟(𝑥1, 𝑥2) − 𝑅(𝑡))2, (𝑥1, 𝑥2)⊤ ∈ Ω.
The constants 𝑑0, 𝑣prolong, 𝑣squeeze ∈ R are chosen depending on the case. The
geometrical setting is visualized in Figure 3.7. The full-dimensional fracture
domain Ω𝑓 is given by Ω𝑓(𝑡) = {x ∈ Ω ∣ ‖x − s‖ ≤ 𝑑(x, 𝑡), s ∈ Γ(𝑡)}. Inspired by

plane Poisseuille flow, we use K𝑓 = 𝑑212I for the tangential permeability within
the fracture. This is also used in the full-dimensional setting.

The main parameters are chosen for all three cases as in Table 3.8, if not stated
differently. The choice of the parameters covers realistic settings without being
derived from a specific experiment.

3.5.2 Case 1: Two-Phase Flow Dynamics Driven by Fracture
Prolongation

As first benchmark problem we want to verify the moving-mesh concept. We
consider a setup where the initial saturation is chosen to be constant 𝑆(⋅, 0) =𝑆Γ(⋅, 0) = 1. Then, the evolution of 𝑆 is supposed to be driven by the deformation
of the fracture. We apply no external forces (g = 0) and set the pressure to
be zero at the boundaries. Therefore, we have 𝑝 ≡ 0 and 𝑝Γ ≡ 0. The fracture
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Figure 3.8: Model parameters for all test cases.
Parameter Value𝜌𝑤 1000 kgm−3𝜌𝑛𝑤 500 kgm−3

g (0, −9.81ms−2)𝜂𝑤 1 Pa s𝜂𝑛𝑤 10 Pa s
K 1 ⋅ 10−8m2 I
K𝑓 𝑑212 I𝜙, 𝜙𝑓 1𝑘𝑤(𝑆) 𝑆2𝑘𝑛𝑤(𝑆) (1 − 𝑆)2

movement is prescribed by 𝑑0 = 0.1, 𝑣prolong = 0.25 and 𝑣squeeze = 0. Hence, all
flow dynamics are only due to the change in the fractures’ geometry.

The result of the saturation distribution of this example is displayed in Figure
3.10. In the reduced case, the fracture is visualized as transparent overlay with
the corresponding aperture. A plot-over-line from the lower-left to the upper-
right corner (coinciding with the fracture center-line) is shown in Figure 3.9.
Within the fracture, the saturation of the full-dimensional reference solution is
averaged along the orthogonal line segments.

We can observe that the saturation within the fracture decreases from the
middle of the ellipse advancing to the tips. In the full-dimensional reference, the
space taken up by the fracture shows a zero saturation, whereas the saturation
is slightly increasing around the initial position of the (wetting-phase filled)
fracture. This behavior is reasonable in both cases as empty space is generated
within the fracture domain and is initialized with zero saturation. The results of
this example show the validity of the FVMM algorithm and its implementation.
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Figure 3.9: Plot-over-line of saturation for Case 1 at 𝑡 = 1 s. Reduced model
(solid) vs. full-dimensional model (dashed).

3.5.3 Case 2: Two-Phase Flow Dynamics Driven by Fracture
Prolongation and Fluid Infiltration

Now, let us consider a propagating fracture with gravity-driven two-phase flow
and compare the numerical solution again with a fully-resolved fracture. The
source term 𝑞𝑓𝑤 = 𝑞𝑓𝑛𝑤 = 10 s−1 realizes an infiltration in Γ, or Ω𝑓, respectively.
The initial saturation is chosen as 𝑆(x, 0) = 0 and 𝑆Γ(s, 0) = 0. The fracture
movement is defined by 𝑑0 = 0.01, 𝑣prolong = 0.25 and 𝑣squeeze = 0. No-flow
boundary conditions are imposed everywhere except at the top where we fix
the pressure to zero. Again, a plot-over-line through the fracture center-line
is displayed in Figure 3.12 and the saturation in Figure 3.14. For this case, we
plotted the computational mesh with its adaptation around the upper tip in
Figure 3.11.

We see good agreement of the results between the reduced and the full-dimensional
model. Small deviations at the fracture tips can be explained by the resolution
of the full-dimensional grid and the corresponding error in averaging along
the orthogonal line segments. Note that in this example the influence of the tip
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Figure 3.10: Saturation distribution for Case 1 at 𝑡 = 0.5 s (top) and 𝑡 = 1 s
(bottom). Left: Reduced model where fracture is visualized as transparent
overlay with corresponding aperture. Right: Full-dimensional reference
solution.
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Figure 3.11: As the upper fracture tip of the lower-dimensional fractures
moves to the upper right corner of the domain, the computational mesh is
adapted to this movement.

Figure 3.12: Plot-over-line for Case 2 at 𝑡 = 1 s. Reduced model (solid) vs. full-
dimensional model (dashed).
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movement on the saturation distribution can be well observed around the lower
left tip.

3.5.4 Case 3: Two-Phase Flow Dynamics Driven by Fracture Squeezing
and Fluid Infiltration

Let us consider a squeezing fracture with the physical parameters as in Case
2, but where the fracture movement is defined by 𝑑0 = 0.01, 𝑣prolong = 0 and𝑣squeeze = 0.005. Differently from Case 2, the fracture is not prolongated, but on
the contrary squeezed.

Figure 3.13: Plot-over-line for Case 3 at 𝑡 = 1.0. Reduced model (solid) vs. full-
dimensional model (dashed).

As in the cases before, we visualize the saturation in Figure 3.15 and a plot-
over-line through the fracture center-line in Figure 3.13 which shows a high
accordance between our two models.

The saturation profile in the bulk domain around the fracture tips matches
perfectly. For the saturation within the fracture we observe values larger than
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Figure 3.14: Saturation for Case 2 at 𝑡 = 0.5 s and 𝑡 = 1 s. Left: Reduced
model. Right: Full-dimensional reference.

one. This is outside the physical admissible region. We presume that this extreme
example leads to overshooting behavior due to the boundary condition of the
moving mesh method which does not take into account transmission between
fracture and bulk domain.

Cases 1 to 3 served to validate the approach as compared to the full-dimensional
model. The next two examples show the capability of the FVMM algorithm to
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Figure 3.15: Saturation for Case 3 for 𝑡 = 1.0. Left: Reduced model. Right: Full-
dimensional reference.

capture two-phase flow and fracture interaction.

3.5.5 Case 4: Static Fractures in Three Dimensions

We show a rather exploratory example of two-dimensional reduced fractures in
a three-dimensional bulk porous medium. The idea is to show that the proposed
reduced model and scheme can also be used in a three-dimensional setting. Three
penny-shaped fractures are located in a column as visualized in Figure 3.16 on
the left. In this example, the fractures are assumed to be static with constant
apertures 𝑑 = 0.01. The fracture permeability is chosen as K𝑓 = 1 ⋅ 10−4m2I. All
other physical parameters are chosen again as in Table 3.8. A Dirichlet saturation𝑆𝐷 = 1 and pressure 𝑝𝐷 = 0 is set at top and no-flow conditions are imposed on
all other boundaries. Thus, we have saturation inflow from the upper boundary
which is driven by gravitational forces. In particular, the fracture’s permeability
is higher than in the surrounding bulk porous medium.
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One can see in the time series in Figure 3.16 how the fracture inclusions act as
preferred paths for the fluid flow. This example shows that the reduced model
can be used also for more complex 2d-3d fracture networks.

3.5.6 Case 5: Fracture Propagation with Two Interfering Fractures

Another exploratory example of propagating fractures demonstrates the strong
influence of fracture propagation on the fluid flow. We consider the following
geometrical setup. Two horizontally aligned fractures are placed in a domainΩ = (0, 2) × (0, 1). The upper fracture is defined by Γ1 = (0.2, 2) × {0.75} and is
kept static. In contrast, the tip of the lower fracture Γ2 = (0, 0.2) × {0.25} moves
with speed 𝑠 in direction of the 𝑥-axis. We choose both fast and slow movement,𝑠 = 0.1 and 𝑠 = 1.0, respectively, and compare the two numerical solutions at
different time steps, see Figure 3.17. At 𝑡 = 1.8, 𝑡 = 18 respectively, the moving
fracture tip reaches the right boundary. All physical parameters are chosen as
in the examples above, the fractures’ apertures are fixed at 𝑑 = 0.01. Boundary
conditions are chosen as follows. We set no-flow boundary conditions on all
bulk boundaries, as well as at the tips of the fractures immersed within the
domain. Dirichlet values 𝑝𝐷 = 1 ⋅ 108 Pa and 𝑆𝐷 = 1 are chosen for the left
fracture boundary, zero Dirichlet values at the right fracture boundary.

We clearly see the propagation of discontinuous saturation fronts through frac-
ture and bulk. From 𝑡 = 1.5 on, the front has reached the upper fracture for both
tip propagation speeds. The upper fracture acts as a kind of barrier for further
vertical distribution as it transports the wetting-phase to the right boundary.
In the long term, i.e., 𝑡 = 18 for 𝑠 = 0.1, the wetting-phase concentration has
increased in almost the entire domain. In this example, we can clearly see the
influence of fracture propagation on the saturation distribution.
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Figure 3.16: Saturation for Case 4 with two-dimensional fractures in a
three-dimensional porous medium. Visualized are two contour levels at𝑆=0.1 and 𝑆=0.4 for 𝑡 ∈ {0.0, 0.2, 0.6, 1.0}.
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Figure 3.17: Saturation distribution for Case 5 with two interfering fractures
and a tip propagating at different speeds. Visualized is 𝑠=0.1 (left) and𝑠=1.0 (right) at 𝑇 = 0.1, 1.5, 1.8 and 18 (only 𝑠 = 0.1) seconds from top to
bottom.
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3.5.7 Bifurcating Fracture Network

Let us apply our method to a more complex fracture propagation scenario where
fracture tips also bifurcate. In this example, the movement of the tips and the
time of bifurcation is fully prescribed by a randomized generator. If one fracture
crosses another, the network is topologically connected again. We can clearly
observe how the fluid flow follows the propagating fracture paths, cf. Figure
3.18 and 3.19. Furthermore, the mesh adaptation is visualized which refines the
grid around the propagating, lower-dimensional fracture network.
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Figure 3.18: Two-phase flow in a randomly generated fracture propagation
scenario with bifurcations. Visualized is the saturation, the mesh and the
pressure at time steps 150 and 159.
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Figure 3.19: (continued) Time steps 429 and 450.



Modeling Flow
in Porous Media
with Fractures of
Varying Aperture 4

The content of the following chapter led to themanuscript ”Flow in PorousMedia
with Fractures of Varying Aperture” submitted to ”SIAM Journal on Scientific
Computing” [22]. All source code and the data of the simulation results have
been published [42]. Most of the ideas are mine and the Dune-MMesh module
is the basis for the implementation of the numerical scheme. Maximilian Hörl
performed the numerical calculations and worked out some of the theoretical
details.

In this chapter, the derivation of a generalized mixed-dimensional model for
single-phase flow in fractured porous media is presented that incorporates the
effect of non-constant fracture apertures. Dune-MMesh with its Python bindings,
presented in Chapter 2, was crucial for the implementation of the corresponding
mixed-dimensional discontinuous Galerkin discretization. The implementation
has been used to validate the new model against a full-dimensional reference
solution.

4.1 Introduction

As already described in Chapter 1, a common macroscopic modeling approach
for flow in fractured porous media is discrete fracture modeling where fractures
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are described explicitly as (𝑛 − 1)-dimensional interfaces between 𝑛-dimensional
bulk domains [3, 9, 43, 47, 51]. In contrast to a full-dimensional representation
of fractures, this avoids thin full-dimensional subdomains which require highly
resolved grids in numerical methods. Typically, discrete fracture models are
based on the idealized conception of a planar fracture geometry with constant
aperture. In this case, the resulting reduced model is not able to account for
curvilinear fractures and, for instance, it does not properly incorporate the effect
of surface roughness. Instead, it might be advantageous to describe the geometry
of a fracture by spatially varying aperture functions. In this chapter, we describe
an approach to model fractures as lower-dimensional manifolds that includes
the effect of non-constant apertures.

Let us consider single-phase flow in a fractured porous medium governed by
Darcy’s law, cf. (1.1). We suggest a new mixed-dimensional model that accounts
for asymmetric fractures with spatially varying aperture and, thereby, propose
an extension and alternative derivation of a model well-known in literature [51]
that was derived for fractures with constant aperture. For the derivation of the
new model, we proceed from a domain-decomposed system for Darcy’s flow
with a full-dimensional fracture as proposed in [51]. In contrast, we employ
a weak formulation of the model when averaging across the fracture which
allows to address the central issue of non-constant apertures. In fact, the central
issue is that the normal vectors at the internal boundaries of the initial full-
dimensional fracture are generally not aligned with the normal vector of the(𝑛 − 1)-dimensional fracture and depend on the aperture gradients instead.

Section 4.2 introduces the initial model problem with full-dimensional fracture
in a weak formulation. In Section 4.3, we present the derivation of the new
reduced model with a lower-dimensional fracture that accounts for a spatially
varying aperture. The reduced model is summarized and discussed in Section 4.4.
Section 4.5 introduces a discontinuous Galerkin (DG) discretization of the new
model. Finally, we present numerical results in Section 4.6.
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4.2 Darcy Flow with Full-Dimensional Fracture

Let Ω ⊂ R𝑛, 𝑛 ≥ 2, be a bounded domain that is occupied by an 𝑛-dimensional
porous medium. We suppose that the single-phase flow in Ω is governed by
Darcy’s law and mass conservation, cf. Section 1.3.1. In this section, we neglect
gravity and the symmetric and positive definite permeability matrix K = K(x) ∈
R𝑛×𝑛 [m3 s kg−1] is assumed to include the dynamic viscosity of the fluid. For the
sake of simplicity, we will impose homogeneous Dirichlet boundary conditions,
but the extension to the inhomogeneous case and Neumann boundary conditions
is straight forward. Then, a weak formulation of the Darcy system (1.1) is given
by the following problem. Find 𝑝 ∈ 𝐻 10 (Ω) such that

∫ΩK∇𝑝 ⋅ ∇𝜙 d𝑉 = ∫Ω 𝑞𝜙 d𝑉 for all 𝜙 ∈ 𝐻 10 (Ω).
Considering the case of a single fracture as an 𝑛-dimensional open subdo-
main Ωf ⊂ Ω crossing the entire domain Ω, the domain Ω is cut into two disjoint
connected subdomains Ω1 and Ω2, i.e., Ω ⧵ Ωf = Ω1 ∪̇ Ω2. Moreover, we suppose
that the fracture domain Ωf can be parameterized by a hyperplane Γ and two
functions 𝑑𝑖 ∶ Γ → R, 𝑖 ∈ {1, 2}, which describe the aperture of the fracture on
the left and right side of Γ such thatΩf = {𝛾 + 𝜆n ∈ Ω | 𝛾 ∈ Γ, 𝜆 ∈ (−𝑑1(𝛾), 𝑑2(𝛾))}. (4.1)

In Eq. (4.1), the vector n denotes the unit normal of the hyperplane Γ that points
into the direction of Ω2. Further, we write 𝑑 ≔ 𝑑1 + 𝑑2 > 0 for the total aperture
of the fracture. We only require the total aperture 𝑑 to be positive, not the
functions 𝑑1 and 𝑑2, i.e, the hyperplane Γ is not necessarily required to be fully
immersed within the fracture domainΩf. This is, in particular, convenient for the
description of curvilinear fractures. Without loss of generality, the hyperplane Γ
is represented by Γ = {x ∈ Ω | n ⋅ x = 0}.
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Figure 4.1: Sketch of the geometry for the full-dimensional Darcy prob-
lem (4.2).

In addition, we denote by 𝜌𝑖 ≔ 𝜕Ω𝑖 ∩ 𝜕Ω the exterior boundary of the overall
domain Ω inside the subdomain Ω𝑖 for 𝑖 ∈ {1, 2, f} and by Γ𝑖 ≔ 𝜕Ω𝑖 ∩ 𝜕Ωf the
interface between the bulk domain Ω𝑖 and the fracture domain Ωf for 𝑖 ∈ {1, 2}.
The specified geometric situation is sketched schematically in Figure 4.1. We
remark that it is required that the connecting lines between the interfaces Γ1
and Γ2 along n exist and are contained in the fracture domain Ωf.

Next, for 𝑖 ∈ {1, 2, f} and functions 𝑓 ∶ Ω → ⋅ and ̄𝑓 ∶ 𝜕Ω → ⋅, we introduce the
notation 𝑓𝑖 ≔ 𝑓 |Ω𝑖 and ̄𝑓𝑖 ≔ ̄𝑓 |𝜌𝑖 .
Following a domain decomposition approach, this allows us to reformulate the
Darcy problem (1.1) as− div(K𝑖∇𝑝𝑖) = 𝑞𝑖 in Ω𝑖, 𝑖 ∈ {1, 2, f}, (4.2a)𝑝𝑖 = 0 on 𝜌𝑖, 𝑖 ∈ {1, 2, f}, (4.2b)𝑝𝑖 = 𝑝f on Γ𝑖, 𝑖 ∈ {1, 2}, (4.2c)

K𝑖∇𝑝𝑖 ⋅ n𝑖 = Kf∇𝑝f ⋅ n𝑖 on Γ𝑖, 𝑖 ∈ {1, 2}. (4.2d)
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Here, for 𝑖 ∈ {1, 2}, we denote by n𝑖 the unit normal to the interface Γ𝑖 that points
into the bulk domain Ω𝑖. More specifically, n1 and n2 can be expressed by

n1 = −n − ∇𝑑1√1 + |∇𝑑1|2 , n2 = n − ∇𝑑2√1 + |∇𝑑2|2 .
Next, we set up a weak formulation for the domain-decomposed Darcy problem
in Eq. (4.2). For 𝑖 ∈ {1, 2, f}, we define the space 𝑉𝑖 by𝑉𝑖 ≔ {𝑝𝑖 ∈ 𝐻 10,𝜌𝑖(Ω𝑖) | K𝑖∇𝑝𝑖 ∈ 𝐻div(Ω𝑖)},
where 𝐻 10,𝜌𝑖 denotes the Sobolev space with homogeneous Dirichlet boundary
condition on 𝜌𝑖 and 𝐻div(Ω) = {u ∈ 𝐿2(Ω) ∣ divu ∈ 𝐿2(Ω)}.
Further, we define the domain-decomposed spaces

𝑉dd ≔ {(𝑝1, 𝑝2, 𝑝f) ∈ ×𝑖=1,2,f𝑉𝑖 | 𝑝𝑖 = 𝑝f a.e. on Γ𝑖, 𝑖 ∈ {1, 2}}, (4.3)Φdd ≔ ×𝑖=1,2,f𝐻 10,𝜌𝑖(Ω𝑖).
Then, a weak formulation of the domain-decomposed Darcy problem (4.2) is
given by the following problem. Find 𝑝 = (𝑝1, 𝑝2, 𝑝f) ∈ 𝑉dd such that

Bdd(𝑝, 𝜙) = Ldd(𝜙) for all 𝜙 = (𝜙1, 𝜙2, 𝜙f) ∈ Φdd. (4.4)

In Eq. (4.4), given 𝑝 = (𝑝1, 𝑝2, 𝑝f) ∈ 𝑉dd and 𝜙 = (𝜙1, 𝜙2, 𝜙f) ∈ Φdd, the bilinear
formBdd ∶ 𝑉dd × Φdd → R and the linear form Ldd ∶ Φdd → R are defined by

Bdd(𝑝, 𝜙) ≔ ∑𝑖=1,2,f∫Ω𝑖 K𝑖∇𝑝𝑖 ⋅ ∇𝜙𝑖 d𝑉 − ∑𝑖=1,2∫Γ𝑖 [𝜙f − 𝜙𝑖]K𝑖∇𝑝𝑖 ⋅ n𝑖 d𝜎, (4.5a)
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Ldd(𝜙) ≔ ∑𝑖=1,2,f∫Ω𝑖 𝑞𝑖𝜙𝑖 d𝑉 . (4.5b)

For the well-posedness of this weak formulation we refer to [21].

4.3 Derivation of a Reduced Model

Proceeding from the weak domain-decomposed Darcy problem (4.4), we will
derive a new reduced model in which the fracture cutting the domain Ω is solely
described by the hyperplane Γ between the two bulk subdomainsΩ1 andΩ2. The
reduced model is obtained by introducing fracture-averaged effective quantities,
splitting integrals over Ωf into a surface integral over Γ and a line integral in
normal direction, and transforming integrals over the interfaces Γ𝑖 into integrals
over Γ. Two coupling conditions on Γ can be obtained by approximating curve
integrals across the fracture domain Ωf using a quadrature rule and polynomial
interpolation.

4.3.1 Geometrical Setting and Notation

We start by expanding the normal vector n of the hyperplane Γ to an orthonormal
basisN ≔ (n, 𝝉1, … , 𝝉𝑛−1) in the spaceR𝑛. Further, wewrite the position vector x
as

x = 𝜂n + 𝑛−1∑𝑖=1 𝑡𝑖𝝉𝑖 ≕ (𝜂, 𝑡1, … , 𝑡𝑛−1)⊤N = (𝜂, t⊤)⊤
N
.

Then, for a function 𝑓 defined on Ω, we introduce the notation𝑓 (x) ≕ 𝑓 (𝜂, 𝑡1, … , 𝑡𝑛−1) = 𝑓 (𝜂, t), (4.6)
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If 𝑓 in Eq. (4.6) is a function defined on Γ, we usually omit the first argument and
write 𝑓 (x) = 𝑓 (0, t) ≕ 𝑓 (t). Besides, we define the maximum aperture 𝐷 by𝐷 ≔ sup{ 𝑑 (t) | (0, t⊤)⊤

N
∈ Γ }.

In addition, we introduce the notation𝑓 1|Γ1(t) = 𝑓 1|Γ1(𝑡1, … , 𝑡𝑛−1) ≔ 𝑓 1(−𝑑1(t), t), (4.7a)𝑓 2|Γ2(t) = 𝑓 2|Γ2(𝑡1, … , 𝑡𝑛−1) ≔ 𝑓 2(𝑑2(t), t). (4.7b)

Then, for 𝑖 ∈ {1, 2}, a surface integral over Γ𝑖 can be transformed into an integral
over Γ according to the relation

∫Γ𝑖 𝑓 𝑖 d𝜎 = ∫Γ 𝑓 𝑖|Γ𝑖√1 + |∇𝑑𝑖|2 d𝜎. (4.8)

It is convenient to introduce jump and average operators across Γ. Let 𝑓 ∶ Ω → R
and F ∶ Ω → R𝑛, and fix (0, t⊤)⊤

N
∈ Γ. Using the notation from Eq. (4.7), we

define by

J𝑓 K(t) ≔ 𝑓 |Γ2(t) − 𝑓 |Γ1(t), (4.9a)

JFK(t) ≔ F|Γ1(t) ⋅ [n + ∇𝑑1(t)] − F|Γ2(t) ⋅ [n − ∇𝑑2(t)] (4.9b)

the jump operators of 𝑓 and F and by{{𝑓 }}(t) ≔ 12(𝑓 |Γ1(t) + 𝑓 |Γ2(t)), (4.10a){{F}}(t) ≔ 12(F|Γ1(t) ⋅ [n + ∇𝑑1(t)] + F|Γ2(t) ⋅ [n − ∇𝑑2(t)]) (4.10b)

the average operators of 𝑓 and F across Γ. For vector-valued functions, the jump
and average operators explicitly depend on the geometry of the fracture since
they involve gradients of the aperture functions 𝑑1 and 𝑑2.
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It is evident that a reduced model cannot capture all information from the full-
dimensional model (4.4). In particular, inside the fracture domain Ωf, we will
restrict ourselves to a subspace of test functionsΦf ≔ {𝜙f ∈ 𝐻 10,𝜌f(Ωf) | 𝜕𝜂𝜙f = 0} ⊊ 𝐻 10,𝜌f(Ωf), (4.11)

i.e., we will only consider test functions 𝜙f ∈ Φf that are invariant perpendicular
to Γ. We introduce new reduced quantities on the interface Γ that are obtained
by averaging along straight lines perpendicular to Γ in Ωf. Specifically, for(0, t⊤)⊤

N
∈ Γ, we define the average pressure 𝑝Γ inside the fracture, the total

source term 𝑞Γ, and, for any test function 𝜙f ∈ Φf, the averaged test function 𝜙Γ
by

𝑝Γ(t) ≔ 1𝑑(t) ∫𝑑2(t)−𝑑1(t) 𝑝f(𝜂, t) d𝜂, (4.12a)

𝑞Γ(t) ≔ ∫𝑑2(t)−𝑑1(t) 𝑞f(𝜂, t) d𝜂, (4.12b)𝜙Γ(t) ≔ 1𝑑(t)∫𝑑2(t)−𝑑1(t)𝜙f(𝜂, t) d𝜂. (4.12c)

Then, due to the definition of the space Φf in Eq. (4.11), we have 𝜙Γ(t) = 𝜙f(𝜂, t)
for almost all (𝜂, t⊤)⊤

N
∈ Ωf. Further, we define the effective permeability KΓ of

the fracture as the mean of Kf in normal direction, i.e.,

KΓ(t) ≔ 1𝑑(t) ∫𝑑2(t)−𝑑1(t)Kf(𝜂, t) d𝜂. (4.13a)

Then, for (𝜂, t⊤)⊤
N

∈ Ωf, we have

Kf(𝜂, t) = KΓ(t) +O(𝑑(t)) (4.13b)

if Kf is continuously differentiable with respect to 𝜂. For any (0, t⊤)⊤
N

∈ Γ,
we denote by rt ∶ (−𝑑1(t), 𝑑2(t)) → R𝑛 a continuously differentiable path such
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that

rt(−𝑑1(t)) = (−𝑑1(t), t⊤)⊤N , rt(𝑑2(t)) = (𝑑2(t), t⊤)⊤N , (4.14a)

ṙt(−𝑑1(t)) = −n1(t)√1 + |∇𝑑1(t)|2, ṙt(𝑑2(t)) = n2(t)√1 + |∇𝑑2(t)|2. (4.14b)
Additionally, we assume that ṙt(𝑠) = d

d𝑠rt(𝑠) is an eigenvector of the perme-
ability Kf(rt(𝑠)) with eigenvalue 𝐾⟂

f (rt(𝑠)) for 𝑠 ∈ (−𝑑1(t), 𝑑2(t)). Then, we can
define the effective permeability 𝐾⟂Γ in normal direction as the mean value𝐾⟂Γ (t) ≔ 1𝐿(rt) ∫rt 𝐾⟂

f d𝑟 , (4.15a)

where 𝐿(rt) denotes the arc length of the path rt. Further, we have𝐾⟂
f (rt(𝑠)) = 𝐾⟂Γ (t) +O(𝑑(t)) (4.15b)

for 𝑠 ∈ (−𝑑1(t), 𝑑2(t)) if 𝐾⟂
f ∘ rt is continuously differentiable.

4.3.2 Averaging Across the Fracture

Starting from the weak formulation (4.4) of the domain-decomposed Darcy
problem (4.2), we derive a relation that governs the effective pressure 𝑝Γ inside
the reduced fracture Γ.
Let 𝜙f ∈ Φf. By splitting the integral over Ωf in Eq. (4.5b) into an integral over Γ
and a line integral in normal direction, we obtain

∫Ωf

𝑞f𝜙f d𝑉 = ∫Γ 𝜙f ∫𝑑2(t)−𝑑1(t) 𝑞f d𝜂dt = ∫Γ 𝑞Γ𝜙Γ d𝜎. (4.16)
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Likewise, splitting the integral over Ωf in Eq. (4.5a) and using Eq. (4.13) results
in

∫Ωf

Kf∇𝑝f ⋅ ∇𝜙f d𝑉 = ∫Γ ∇𝜙f ⋅∫𝑑2(t)−𝑑1(t)Kf∇𝑝f d𝜂dt
= ∫ΓKΓ∇𝜙f ⋅∫𝑑2(t)−𝑑1(t) ∇𝑝f d𝜂dt + O(𝐷)= ∫ΓKΓ∇𝜙Γ ⋅ [∇(𝑑𝑝Γ) − 𝑝1|Γ1∇𝑑1 − 𝑝2|Γ2∇𝑑2] d𝜎+ O(𝐷).

(4.17)

Here, we have utilized the continuity condition for the pressure from the def-
inition of the space 𝑉dd in Eq. (4.3) and we used Lemma 3.1 in [22] given the
assumption that 𝑑1, 𝑑2 ∈ 𝑊 1,∞(Γ) ∩ 𝐻 2(Γ). The calculation in Eq. (4.17) is exact if
the permeability Kf is constant perpendicular to Γ.
By transforming the integrals over the interfaces Γ𝑖 in Eq. (4.4), 𝑖 ∈ {1, 2}, into
integrals over Γ according to Eq. (4.8), one finds∑𝑖=1,2∫Γ𝑖[𝜙f − 𝜙𝑖]K𝑖∇𝑝𝑖 ⋅ n𝑖 d𝜎= ∑𝑖=1,2∫Γ[𝜙Γ − 𝜙𝑖|Γ𝑖](K𝑖∇𝑝𝑖)|Γ𝑖 ⋅ n𝑖√1 + |∇𝑑𝑖|2 d𝜎. (4.18)
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In summary, the weak formulation of the reduced model so far is given by the
following problem. Find 𝑝 = (𝑝1, 𝑝2, 𝑝Γ) such that∑𝑖=1,2∫Ω𝑖 K𝑖∇𝑝𝑖 ⋅ ∇𝜙𝑖 d𝑉 + ∫ΓKΓ∇𝜙Γ ⋅ [∇(𝑑𝑝Γ) − ∑𝑖=1,2 𝑝𝑖|Γ𝑖∇𝑑𝑖] d𝜎− ∑𝑖=1,2∫Γ[𝜙Γ − 𝜙𝑖|Γ𝑖](K𝑖∇𝑝𝑖)|Γ𝑖 ⋅ n𝑖√1 + |∇𝑑𝑖|2 d𝜎= ∑𝑖=1,2∫Ω𝑖 𝑞𝑖𝜙𝑖 d𝑉 + ∫Γ 𝑞Γ𝜙Γ d𝜎

(4.19)

holds for all test functions 𝜙 = (𝜙1, 𝜙2, 𝜙Γ).
Moreover, the weak problem in Eq. (4.19) corresponds to the following strong
formulation. Find 𝑝 = (𝑝1, 𝑝2, 𝑝Γ) such that− div(K𝑖∇𝑝𝑖) = 𝑞𝑖 in Ω𝑖, 𝑖 ∈ {1, 2}, (4.20a)− div [KΓ(∇(𝑑𝑝Γ) −∑𝑖=1,2𝑝𝑖|Γ𝑖∇𝑑𝑖)] = 𝑞Γ − JK∇𝑝K in Γ, (4.20b)𝑝𝑖 = 0 on 𝜌𝑖, 𝑖 ∈ {1, 2}, (4.20c)𝑝Γ = 0 on 𝜕Γ. (4.20d)

The system as it is in Eq. (4.20) is decoupled. Given a solution (𝑝1, 𝑝2) of the
bulk problem (4.20a), (4.20c), which, so far, is independent of 𝑝Γ, the effec-
tive pressure 𝑝Γ inside the fracture is obtained from the solution of the prob-
lem (4.20b), (4.20d). However, in order to obtain a well-posed problem, we will
supplement the bulk problem (4.20a), (4.20c) by two additional boundary con-
ditions at the fracture Γ. In general, these conditions will rely on the effective
pressure 𝑝Γ inside the fracture, which is why we refer to them as coupling
conditions.
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4.3.3 Coupling Conditions

4.3.3.1 First Coupling Condition

For the derivation of a first coupling condition, we fix (0, t⊤)⊤
N

∈ Γ and consider
the line integral of Kf∇𝑝f along the curve rt specified in Eq. (4.14). Applying the
trapezoidal rule yields

∫
rt
Kf∇𝑝f ⋅ dr = 𝑑(t){{K∇𝑝}}(t) +O(𝐷3), (4.21)

where we use continuity condition (4.2d). Using that ṙt is an eigenvector of Kf,
we obtain

∫
rt
Kf∇𝑝f ⋅ dr = ∫𝑑2(t)−𝑑1(t)Kf(rt(𝑠))∇𝑝f(rt(𝑠)) ⋅ ṙt(𝑠) d𝑠= 𝐾⟂Γ (t) ∫

rt
∇𝑝f ⋅ dr + O(𝐷) = 𝐾⟂Γ (t)J𝑝K(t) + O(𝐷), (4.22)

where we use Eq. (4.15) and the pressure continuity from Eq. (4.3). Combining
the Eqs. Eqs. (4.21) and (4.22) suggests the coupling condition

{{K∇𝑝}} = 𝐾⟂Γ𝑑 J𝑝K. (4.23)

By Equation (4.9b), the coupling condition (4.23) depends on the gradients of
the aperture functions 𝑑1 and 𝑑2.
4.3.3.2 Second Coupling Condition

For the derivation of a second coupling condition along Γ, we fix (0, t⊤)⊤
N

∈ Γ
and consider the definition of the mean pressure 𝑝Γ in Eq. (4.12a).
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Let 𝜓1, 𝜓2 ∈ C
∞(R) with 0 ≤ 𝜓1, 𝜓2 ≤ 1, 𝜓1(−𝑑1(t)) = 𝜓2(𝑑2(t)) = 1, and

supp(𝜓1) ⊂ 𝐵1(−𝑑1(t)), supp(𝜓2) ⊂ 𝐵1(𝑑2(t)) where 𝐵𝑟(𝑧) ≔ (𝑧 − 𝑟, 𝑧 + 𝑟). Fur-
ther, for 𝜖 > 0, define𝜓 𝜖1(𝑠) ≔ 𝜓1(𝑠 + 𝑑1(t)𝜖 − 𝑑1(t)), 𝜓 𝜖2(𝑠) ≔ 𝜓2(𝑠 − 𝑑2(t)𝜖 + 𝑑2(t))
such that supp(𝜓 𝜖1) ⊂ 𝐵𝜖(−𝑑1(t)) and supp(𝜓 𝜖2) ⊂ 𝐵𝜖(𝑑2(t)). In addition, for𝜖 > 0, let Ψ𝜖1 and Ψ𝜖2 be antiderivatives of 𝜓 𝜖1 and 𝜓 𝜖2 such that Ψ𝜖1(𝑠) → 0 for𝑠 → ∞ and Ψ𝜖2(𝑠) → 0 for 𝑠 → −∞. Then, for 𝑠 ∈ (−𝑑1(t), 𝑑2(t)), we define the
curve c𝜖t ∶ (−𝑑1(t), 𝑑2(t)) → R𝑛 by

c𝜖t(𝑠) ≔ (𝑠, t⊤)⊤
N

+ Ψ𝜖1(𝑠)∇𝑑1(t) − Ψ𝜖2(𝑠)∇𝑑2(t).
We remark that, since Ψ𝜖1 and Ψ𝜖2 vanish as 𝜖 → 0, the curve c𝜖t runs inside the
fracture domain Ωf if 𝜖 > 0 is sufficiently small. Besides, one can observe thaṫc𝜖t(𝑠) = n + 𝜓 𝜖1(𝑠)∇𝑑1(t) − 𝜓 𝜖2(𝑠)∇𝑑2(t)
for 𝑠 ∈ (−𝑑1(t), 𝑑2(t)). Consequently, if 𝜖 > 0 is sufficiently small, we have

ċ𝜖t(−𝑑1(t)) = −n1√1 + |∇𝑑1(t)|2, ̇c𝜖t(𝑑2(t)) = n2√1 + |∇𝑑2(t)|2.
Further, assuming that 𝑝f is bounded in Ωf, it is easy to see that1𝑑(t) ∫c𝜖t 𝑝f d𝑟 → 𝑝Γ(t) for 𝜖 → 0.
Next, we approximate the pressure 𝑝f in Ωf along the curve c𝜖t by means of
the third-order Hermite interpolation polynomial 𝜋 𝜖t defined by the following
conditions. 𝜋 𝜖t (−𝑑1(t)) = 𝑝1|Γ1(t), (4.24a)
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𝜋 𝜖t (𝑑2(t)) = 𝑝2|Γ2(t), (4.24b)̇𝜋 𝜖t (−𝑑1(t)) = ∇𝑝f(c𝜖t(𝑠)) ⋅ ċ𝜖t(𝑠)|𝑠=−𝑑1(t), (4.24c)̇𝜋 𝜖t (𝑑2(t)) = ∇𝑝f(c𝜖t(𝑠)) ⋅ ċ𝜖t(𝑠)|𝑠=𝑑2(t). (4.24d)

Assuming that 𝐾⟂
f |Γ𝑖 and [K𝑖∇𝑝𝑖]|Γ𝑖 are continuous for 𝑖 ∈ {1, 2}, we have𝐾⟂

f |Γ𝑖(t + Δt) = 𝐾⟂
f |Γ𝑖(t) + O(|Δt|0), (4.25a)[K𝑖∇𝑝𝑖]|Γ𝑖(t + Δt) = [K𝑖∇𝑝𝑖]|Γ𝑖(t) + O(|Δt|0) (4.25b)

for (0, t⊤)⊤
N
, (0, t⊤+ Δt⊤)⊤

N
∈ Γ. Thus, using Eq. (4.15) and Eq. (4.25), we can

express the interpolation conditions (4.24c) and (4.24d) as

̇𝜋 𝜖t (−𝑑1(t)) = −[K1∇𝑝1]|Γ1(t)𝐾⟂Γ (t) ⋅ n1(t)√1 + |∇𝑑1(t)|2 +O(𝐷) + O(𝜖0), (4.26a)

̇𝜋 𝜖t (𝑑2(t)) = [K2∇𝑝2]|Γ2(t)𝐾⟂Γ (t) ⋅ n2(t)√1 + |∇𝑑2(t)|2 +O(𝐷) + O(𝜖0). (4.26b)

if 𝜖 > 0 is sufficiently small. Further, for 𝑠 ∈ (−𝑑1(t), 𝑑2(t)), one has
𝜋 𝜖t (𝑠) ≔ 3∑𝑖=0 𝛼𝜖t,𝑖𝑠𝑖 = 𝑝f(c𝜖t(𝑠)) +O(𝐷4)

if 𝑝f is four times continuously differentiable along c𝜖t. Since the polynomial 𝜋 𝜖t
is uniquely defined by the conditions in Eq. (4.24), we can determine explicit
expressions for the coefficients 𝛼𝜖t,𝑖, 𝑖 ∈ {0, … , 3}. Specifically, we obtain𝛼𝜖t,3 = O(𝑑(t)−1) + O(𝜖0),𝛼𝜖t,2 = − 12𝐾⟂Γ (t)𝑑(t)JK∇𝑝K(t) +O(𝑑(t)0) + O(𝜖0),𝛼𝜖t,1 = 1𝑑(t)J𝑝K(t) − [𝑑2(t) − 𝑑1(t)]𝛼t,2 +O(𝑑(t)) + O(𝜖0),



4.3 Derivation of a Reduced Model 93

𝛼𝜖t,0 = {{𝑝}}(t) − 𝑑1(t)𝑑2(t)𝛼t,2 − 𝑑2(t) − 𝑑1(t)2𝐾⟂Γ (t) {{K∇𝑝}}(t) +O(𝑑(t)2) + O(𝜖0),
where we have utilized the first coupling condition (4.23) as well as Eq. (4.26).
As a result, we can approximate the mean pressure 𝑝Γ by

𝑝Γ(t) = lim𝜖→0 1𝑑(t) ∫c𝜖t 𝑝f d𝑟 = lim𝜖→0 1𝑑(t) ∫𝑑2(t)−𝑑1(t)𝜋 𝜖t (𝑠) d𝑠 +O(𝐷4). (4.28a)

With Simpson’s rule, we have1𝑑(t) ∫𝑑2(t)−𝑑1(t) 𝜋 𝜖t (𝑠) d𝑠 = 16[𝜋 𝜖t (−𝑑1(t)) + 4𝜋 𝜖t(𝑑2(t) − 𝑑1(t)2 ) + 𝜋 𝜖t (𝑑2(t))]. (4.28b)

Now, substituting the explicit form of the polynomial 𝜋 𝜖t into Eq. (4.28) suggests
the coupling condition

JK∇𝑝K = 12𝐾⟂Γ𝑑 (𝑝Γ − {{𝑝}}). (4.29)

We remark that, for a symmetric fracture with constant aperture, i.e., 𝑑1 =𝑑2 = 𝑑/2 ≡ const., the coupling conditions (4.23) and (4.29) coincide with the
coupling conditions formulated in [51] for 𝜉 = 23 . In fact, the general form of
their coupling conditions is given by

{{K∇𝑝}} = 𝐾⟂Γ𝑑 J𝑝K, JK∇𝑝K = 4𝐾⟂Γ(2𝜉 − 1)𝑑(𝑝Γ − {{𝑝}}) (4.30)

with a coupling parameter 𝜉 > 12 . The second coupling condition in Eq. (4.30)
arises in [51] after a motivation of the cases 𝜉 = 12 , 𝜉 = 34 and 𝜉 = 1 by approx-
imating the pressure and velocity inside or at the fracture by means of mean
values or differential quotients. For 𝜉 = 34 and 𝜉 = 1, this motivation does not
immediately transfer to our situation with a fracture of varying aperture due to
different normal vectors on the interfaces Γ1, Γ2, and Γ. Besides, the case 𝜉 = 12 ,
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where 𝑝Γ = {{𝑝}} is assumed, was found to be unstable [51]. Nonetheless, to high-
light the analogy to the model in [51], we may also write our coupling condition
in Eq. (4.29) with a general coupling parameter 𝜉 > 12 and, for convenience,
introduce the abbreviation 𝛽Γ ≔ 4𝐾⟂Γ(2𝜉 − 1)𝑑 . (4.31)

The derivation above labels the case 𝜉 = 23 as a reasonable choice in the sense
that the unique lowest-order interpolation polynomial satisfying the conditions
in Eq. (4.24) has been taken.

By rearranging Eqs. (4.23) and (4.29) and with 𝛽Γ as defined in Eq. (4.31), we find
that the coupling conditions can also be written as

K1∇𝑝1|Γ1 ⋅ n1√1 + |∇𝑑1|2 = 𝛽Γ2 ({{𝑝}} − 𝑝Γ) − 𝐾⟂Γ𝑑 J𝑝K, (4.32a)

K2∇𝑝2|Γ2 ⋅ n2√1 + |∇𝑑2|2 = 𝛽Γ2 ({{𝑝}} − 𝑝Γ) + 𝐾⟂Γ𝑑 J𝑝K. (4.32b)

Then, the coupling conditions as given in Eq. (4.32) can be substituted directly
into Eq. (4.18). This results in the relation− ∑𝑖=1,2∫Γ𝑖 [𝜙f − 𝜙𝑖]K𝑖∇𝑝𝑖 ⋅ n𝑖 d𝜎

= ∫Γ 𝐾⟂Γ𝑑 J𝑝KJ𝜙K d𝜎 + ∫Γ 𝛽Γ(𝑝Γ − {{𝑝}})(𝜙Γ − {{𝜙}}) d𝜎. (4.33)

Concluding the model derivation, we can now substitute Eq. (4.33) in Eq. (4.19)
and summarize the resulting model.
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4.4 Darcy Flow with Lower-Dimensional Fracture

In this section, we summarize the new reduced model derived in Section 4.3.
Besides, in Section 4.4.1, we introduce different variants of the new model with
a simplified, less accurate description of the varying fracture aperture. The
geometry of the reduced problem is sketched schematically in Figure 4.2.

n

Γ

Ω1

Ω2

d2

̺1

̺2

∂Γ

d1

Figure 4.2: Sketch of the geometry for the reduced Darcy problem (4.34).

We define the solution and test function spacesΦb ≔ ×𝑖=1,2𝐻 10,𝜌𝑖(Ω𝑖), ΦΓ ≔ 𝐻 10 (Γ), Φ ≔ Φb × ΦΓ.
A weak formulation of the reduced interface model derived in Section 4.3 is
given by the following problem. Find 𝑝 = (𝑝b, 𝑝Γ) ∈ Φ such that

A(𝑝, 𝜙) = R(𝜙) for all 𝜙 = (𝜙b, 𝜙Γ) ∈ Φ. (4.34)
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For 𝑝 = (𝑝b, 𝑝Γ), 𝜙 = (𝜙b, 𝜙Γ) ∈ Φ with 𝑝b = (𝑝1, 𝑝2), 𝜙b = (𝜙1, 𝜙2) ∈ Φb, the
bilinear form A ∶ Φ × Φ → R and the linear form R ∶ Φ → R are defined by

A(𝑝, 𝜙) ≔ Ab(𝑝b, 𝜙b) +AΓ(𝑝, 𝜙Γ) +I(𝑝, 𝜙),
R(𝜙) ≔ Rb(𝜙b) +RΓ(𝜙Γ).

The bilinear formsAb ∶ Φb × Φb → R,AΓ ∶ Φ × ΦΓ → R, andI ∶ Φ × Φ → R,
which in this order represent the flow in the bulk domain, the effective flow
inside the fracture, and the lower-dimensional coupling between them, as well
as the corresponding linear formsRb ∶ Φb → R andRΓ ∶ ΦΓ → R, are given
by

Ab(𝑝b, 𝜙b) ≔ ∑𝑖=1,2∫Ω𝑖 K𝑖∇𝑝𝑖 ⋅ ∇𝜙𝑖 d𝑉 ,
AΓ(𝑝, 𝜙Γ) ≔∫ΓKΓ∇𝜙Γ ⋅[∇(𝑑𝑝Γ) − 𝑝1|Γ1∇𝑑1 − 𝑝2|Γ2∇𝑑2] d𝜎,
I(𝑝, 𝜙) ≔ ∫Γ 𝐾⟂Γ𝑑 J𝑝bKJ𝜙bK d𝜎 + ∫Γ 𝛽Γ(𝑝Γ − {{𝑝b}})(𝜙Γ − {{𝜙b}}) d𝜎,
Rb(𝜙b) ≔ ∑𝑖=1,2∫Ω𝑖 𝑞𝑖𝜙𝑖 d𝑉 ,
RΓ(𝜙Γ) ≔ ∫Γ 𝑞Γ𝜙Γ d𝜎.

The well-posedness of this model is proved in [22] and, for the sake of complete-
ness, we give a short summary of the result.

For 𝑖 ∈ {1, 2}, let 𝑞𝑖 ∈ 𝐿2(Ω𝑖), 𝑞Γ ∈ 𝐿2(Γ), and 𝑑1, 𝑑2 ∈ 𝑊 1,∞(Γ) with 𝑑1 + 𝑑2 >𝑑min for a constant 𝑑min > 0. Besides, let K𝑖 ∈ 𝐿∞(Ω𝑖;R𝑛×𝑛) for 𝑖 ∈ {1, 2} and
KΓ ∈ 𝐿∞(Γ;R𝑛×𝑛) as well as 𝐾⟂Γ ∈ 𝐿∞(Γ). In addition, let K1, K2, and KΓ be
symmetric and uniformly elliptic, i.e., there exist constants 𝜅bmax ≥ 𝜅bmin > 0
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and 𝜅Γmax ≥ 𝜅Γmin > 0 such that𝜅bmin|z|22 ≤ K𝑖(x𝑖)z ⋅ z ≤ 𝜅bmax|z|22,𝜅Γmin|z|22 ≤ KΓ(t)z ⋅ z ≤ 𝜅Γmax|z|22
for all z ∈ R𝑛. Besides, we require that𝜅Γmin ≤ 𝐾⟂Γ (t) ≤ 𝜅Γmax.
Then, the following theorem states the well-posedness of our new model.

Theorem 4.1: Given the condition

[𝜅Γmax𝜅Γmin
]2 𝐷𝑑min

[(2𝜉 − 1)‖∇𝑑 ‖2𝐿∞(Γ;R𝑛) + ‖∇𝑑1 − ∇𝑑2‖2𝐿∞(Γ;R𝑛) ] < 16, (4.38)

the reduced Darcy problem (4.34) has a unique solution (𝑝b, 𝑝Γ) ∈ Φ.
Proof. See [22].

In case of a classical solution, a corresponding strong formulation of the weak
system Eq. (4.34) is given by− div(K𝑖∇𝑝𝑖) = 𝑞𝑖 in Ω𝑖, 𝑖 ∈ {1, 2}, (4.39a)− div [KΓ(∇(𝑑𝑝Γ) −∑𝑖=1,2𝑝𝑖|Γ𝑖∇𝑑𝑖)] = 𝑞Γ − JK∇𝑝K in Γ, (4.39b){{K∇𝑝}} = 𝐾⟂Γ𝑑 J𝑝K on Γ, (4.39c)

JK∇𝑝K = 𝛽Γ(𝑝Γ − {{𝑝}}) on Γ, (4.39d)𝑝𝑖 = 0 on 𝜌𝑖, 𝑖 ∈ {1, 2}, (4.39e)𝑝Γ = 0 on 𝜕Γ. (4.39f)
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Note that the quantity

uΓ ≔ −KΓ(∇(𝑑𝑝Γ) − 𝑝1|Γ1∇𝑑1 − 𝑝2|Γ2∇𝑑2)
in Eq. (4.39b) takes the role of the effective velocity inside the reduced fracture Γ.
Further, for a symmetric fracture with constant aperture, i.e., 𝑑1 = 𝑑2 = 𝑑/2 ≡
const., the model in Eq. (4.39) coincides with the model proposed in [51]. There-
fore, the new model Eq. (4.39) can be viewed as an extension of the model in [51]
for general asymmetric fractures with spatially varying aperture.

4.4.1 Model Variants

According to the derivation of the reduced model (4.39) in Section 4.3, there
should be a gap between the bulk domainsΩ1 andΩ2 on either side of the fracture
as illustrated in Figure 4.2. However, for numerical calculations in practice, the
bulk domains Ω1 and Ω2 are usually rectified such that the interface Γ is part of
their boundary, i.e., 𝜕Ωrct.1 ∩ 𝜕Ωrct.2 = Γ. The corresponding reduced model with
simplified bulk geometry is obtained from the model in Eq. (4.39) by replacing
the bulk domains Ω1 and Ω2 with the domainsΩrct.1 = {𝛾 + 𝜆n ∈ Ω | 𝛾 ∈ Γ, 𝜆 < 0}, (4.40a)Ωrct.2 = {𝛾 + 𝜆n ∈ Ω | 𝛾 ∈ Γ, 𝜆 > 0}. (4.40b)

This kind of bulk rectification requires one to neglect the terms containing
aperture gradients ∇𝑑1, ∇𝑑2 in the coupling conditions (4.39c) and (4.39d). The
geometrical difference between the full-dimensional model in Eq. (4.2), the
reduced model in Eq. (4.39), and the corresponding reduced model with bulk
rectification is illustrated in Figure 4.3.

In contrast to the model in [51], the new model Eq. (4.39) contains aperture
gradients ∇𝑑1, ∇𝑑2 in the effective flow equation (4.39b) and in the coupling con-
ditions (4.39c) and (4.39d). In order to study the effect of the aperture gradients
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Ω1 Ω2
(a) Ωf Ω1 Ω2

(b)

Ω1 Ω2
(c)

Figure 4.3: Bulk domains (a) in the full-dimensional model (4.2), (b) in
the reduced model (4.39) without rectification, (c) in the reduced
model (4.39) with rectification.

as well as the effect of a rectified bulk geometry as discussed above, we define
simplified variants of the reduced model (4.39). On the one hand, we can neglect
the aperture gradients ∇𝑑1, ∇𝑑2 in Eq. (4.39b), i.e., Eq. (4.39b) is replaced by the
equation − div [KΓ∇(𝑑𝑝Γ)] = 𝑞Γ − JK∇𝑝K in Γ. (4.41)

On the other hand, the aperture gradients ∇𝑑1, ∇𝑑2 could be neglected in the
coupling conditions (4.39c) and (4.39d), which corresponds to a rectification
of the bulk domains Ω1 and Ω2. This suggests to define the following model
variants.
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Model I: The new model (4.39) without change.
Model I-R: The model (4.39) with the bulk domains Ω1 and Ω2 replaced

by the rectified domains Ωrct.1 and Ωrct.2 from Eq. (4.40). Terms
containing ∇𝑑1, ∇𝑑2 are neglected in Eqs. (4.39c) and (4.39d)
but not in Eq. (4.39b).

Model II: The model (4.39) with unchanged bulk domains. Terms
containing ∇𝑑1, ∇𝑑2 are neglected in Eq. (4.39b) but not
in Eq. (4.39c) and (4.39d).

Model II-R: The model (4.39) with the bulk domains Ω1 and Ω2 replaced
by the rectified domains Ωrct.1 and Ωrct.2 from Eq. (4.40). Terms
containing ∇𝑑1, ∇𝑑2 are neglected completely.

Model II-R is basically the model proposed in [51] with the only difference that
the aperture 𝑑 in Eq. (4.41) can still be a function that is not necessarily constant
as assumed in [51]. In particular, in model II-R, there is no information about the
aperture gradients ∇𝑑1, ∇𝑑2 and the bulk geometry at the fracture. In contrast, the
new model I includes all this information. The models I-R and II are intermediate
models.

4.5 Discontinuous Galerkin Discretization

In this section, following [10], we formulate three DG discretizations, one for
the full-dimensional model (4.2), one for the reduced models II and II-R, and
one for the reduced models I and I-R from Section 4.4, where, in this order,
each discretization extends the previous one. The choice of a DG scheme as
discretization for the reduced fracture models comes naturally as it can easily
deal with discontinuities across the fracture and suits the formulation of the
coupling conditions (4.39c) and (4.39d) in terms of jump and average operators.
For simplicity, we assume that Ω is a polytopal domain. Besides, we consider
inhomogeneous Dirichlet boundary conditions for all discretizations.
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4.5.1 Meshes and Notation

LetI be the index family of bulk domains, i.e.,I = {1, 2, f} in the full-dimensional
case and I = {1, 2} for the reduced models. Further, for 𝑖 ∈ I, let Tℎ,𝑖 be a poly-
topal mesh of the bulk domain Ω𝑖 of open and disjoint elements 𝑇ℎ,𝑖 ∈ Tℎ,𝑖.
Besides, we write Tℎ ≔ ⋃𝑖∈I Tℎ,𝑖 for the overall bulk mesh. Moreover, we
denote byFℎ the facet grid induced byTℎ which contains all one-codimensional
intersections between grid elements 𝑇 ∈ Tℎ with neighboring grid elements
or the domain boundary 𝜕Ω. For the reduced models, we denote byF

Γℎ a one-
codimensional mesh of the interface Γ induced by the bulk gridsTℎ,1 andTℎ,2.
Specifically, for the reduced models I-R and II-R, i.e., in case of a reduced model
with rectified bulk domains as defined in Eq. (4.40), the fracture meshF

Γℎ is part
of the facet grid Fℎ and given by

F
Γℎ ≔ {𝐹 ∈ Fℎ | 𝐹 ⊂ Γ}. (4.42a)

In the other case, for the reduced models I and II without bulk rectification, the
fracture mesh F

Γℎ can be defined by

F
Γℎ ≔ {PΓ(𝐹1) ∩PΓ(𝐹2) | 𝐹𝑖 = 𝜕𝑇𝑖 ∩ Γ𝑖 ≠ ∅, 𝑇𝑖 ∈ Tℎ,𝑖 for 𝑖 ∈ {1, 2}}. (4.42b)

In Eq. (4.42b),PΓ denotes the orthogonal projection onto the hyperplane Γ given
by

PΓ ∶ Ω → Ω, (𝜂, t⊤)⊤
N

↦ (0, t⊤)⊤
N
. (4.43)

Regarding the facet grid Fℎ, we distinguish between the set of facets F𝜕ℎ on the
domain boundary 𝜕Ω and the set of facets F∘ℎ in the interior of Ω excluding the
interface grid F

Γℎ , i.e., we can write Fℎ as the disjoint union
Fℎ = F

∘ℎ ∪̇ F
𝜕ℎ ∪̇ (FΓℎ ∩Fℎ).
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In addition, for the reduced models, we denote by E
Γℎ the set of edges of the

interface gridF
Γℎ , i.e., the set of two-codimensional intersections between ele-

ments 𝐹 ∈ F
Γℎ or the boundary 𝜕Γ. More specifically, we distinguish between

the set of edgesE∘ℎ in the interior of the interface Γ and the set of edgesE𝜕ℎ at
the boundary 𝜕Γ such thatEΓℎ =E

∘ℎ ∪̇E𝜕ℎ .
For 𝐴 ⊂ R𝑛, let P𝑘(𝐴) denote the space of polynomials on 𝐴 whose degrees do
not exceed 𝑘 ∈ N0. Then, we define the finite-dimensional function spacesΦbℎ ≔ {𝜙ℎ ∈ 𝐿2(Ω) | 𝜙ℎ|𝑇 ∈ P𝑘𝑇(𝑇 ) for all 𝑇 ∈ Tℎ}, (4.44a)ΦΓℎ ≔ {𝜙Γℎ ∈ 𝐿2(Γ) | 𝜙Γℎ |𝐹 ∈ P𝑘𝐹(𝐹 ) for all 𝐹 ∈ F

Γℎ }, (4.44b)Φℎ ≔ Φbℎ × ΦΓℎ (4.44c)

with individual polynomial degrees 𝑘𝑇 ∈ N and 𝑘𝐹 ∈ N for each bulk element 𝑇 ∈
Tℎ and interface element 𝐹 ∈ F

Γℎ .
For an internal facet 𝑆 ∈ F

∘ℎ (or E∘ℎ, respectively) with adjacent mesh ele-
ments 𝑀1 ≠ 𝑀2 ∈ Mℎ and outer normals n𝑀1 and n𝑀2 , we define

J𝜙ℎK|𝑆 ∶= 𝜙ℎ|𝑀1n𝑀1 + 𝜙ℎ|𝑀2n𝑀2 , (4.45a)

J𝜻ℎK|𝑆 ∶= 𝜻ℎ|𝑀1 ⋅ n𝑀1 + 𝜻ℎ|𝑀2 ⋅ n𝑀2 , (4.45b){{𝜙ℎ}}|𝑆 ∶= 12(𝜙ℎ|𝑀1 + 𝜙ℎ|𝑀2), (4.45c){{𝜻ℎ}}|𝑆 ∶= 12(𝜻ℎ|𝑀1 + 𝜻ℎ|𝑀2), (4.45d)

for 𝜙ℎ ∈ Φbℎ and 𝜻ℎ ∈ [Φbℎ]𝑛 (or 𝜙ℎ ∈ ΦΓℎ and 𝜻ℎ ∈ [ΦΓℎ]𝑛, respectively).
4.5.2 Discrete Model with Full-Dimensional Fracture

Let 𝑔 denote the given pressure on the boundary 𝜕Ω for the Dirichlet condition
in Eq. (4.2b). Then, in order to obtain a DG discretization of the full-dimensional
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model (4.2), we define the bilinear formA
bℎ ∶ Φbℎ × Φbℎ → R associated with bulk

flow and the corresponding linear form R
bℎ ∶ Φbℎ → R by

A
bℎ (𝑝bℎ , 𝜙bℎ) = ∑𝑇∈Tℎ ∫𝑇K∇𝑝bℎ ⋅ ∇𝜙bℎ d𝑉 + ∑𝐹∈F∘ℎ ∫𝐹 𝜇𝐹J𝑝bℎK ⋅ J𝜙bℎK d𝜎− ∑𝐹∈F∘ℎ ∫𝐹 [J𝜙bℎK ⋅ {{K∇𝑝bℎ}} + J𝑝bℎK ⋅ {{K∇𝜙bℎ}}] d𝜎+ ∑𝐹∈F𝜕ℎ ∫𝐹 𝜇b𝐹𝑝bℎ𝜙bℎ d𝜎 − ∑𝐹∈F𝜕ℎ ∫𝐹 [𝑝bℎK∇𝜙bℎ + 𝜙bℎK∇𝑝bℎ]⋅ d𝝈,

(4.46a)

R
bℎ(𝜙bℎ) = ∑𝑇∈Tℎ ∫𝑇 𝑞𝜙bℎ d𝑉 + ∑𝐹∈F𝜕ℎ [ ∫𝐹 𝜇b𝐹𝑔𝜙bℎ d𝜎 − ∫𝐹 𝑔K∇𝜙bℎ ⋅ d𝝈]. (4.46b)

In Eq. (4.46), 𝜇b𝐹 is a penalty parameter which we define facet-wise, for 𝐹 ∈
Fℎ ⧵FΓℎ , by
𝜇b𝐹 ≔ {𝜇b0 (𝑘𝑇+1)(𝑘𝑇+𝑛)ℎ𝑇 , if 𝐹 ∈ F

𝜕ℎ , 𝐹 ⊂ 𝜕𝑇 , 𝑇 ∈ Tℎ,𝜇b0 max𝑇=𝑇1,𝑇2 {(𝑘𝑇+1)(𝑘𝑇+𝑛)ℎ𝑇 }, if 𝐹 ∈ F
∘ℎ , 𝐹 ⊂ 𝜕𝑇1 ∩ 𝜕𝑇2, 𝑇1 ≠ 𝑇2 ∈ Tℎ. (4.47)

In Eq. (4.47), 𝜇b0 > 0 is a sufficiently large constant and ℎ𝑇 denotes the maximum
edge length of a grid element 𝑇 ∈ Tℎ.
A DG discretization of the full-dimensional system (4.2) is now given by the
following problem. Find 𝑝bℎ ∈ Φbℎ such that

A
bℎ (𝑝bℎ , 𝜙bℎ) = R

bℎ(𝜙bℎ) for all 𝜙bℎ ∈ Φbℎ. (4.48)

4.5.3 Discrete Model with Lower-Dimensional Fracture

Let 𝑔Γ and 𝑔 = (𝑔1, 𝑔2) denote the given pressure functions on the external
boundaries for the Dirichlet conditions (4.39e) and (4.39f). We continue to extend
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the DG discretization in Eq. (4.48) to a discretization of the reduced interface
models I, I-R, II, and II-R from Section 4.4. Here, the models I and I-R and the
models II and II-R can be treated together, respectively, since they only differ in
their bulk geometry with otherwise identical weak formulation.

We define the bilinear forms AΓ1ℎ ∶ ΦΓℎ × ΦΓℎ → R, AΓ2ℎ ∶ Φbℎ × ΦΓℎ, and Iℎ ∶Φℎ × Φℎ → R, as well as the linear formR
Γℎ ∶ ΦΓℎ → R, by

A
Γ1ℎ (𝑝Γℎ , 𝜙Γℎ) = ∑𝐹∈𝐹 Γℎ ∫𝐹KΓ∇(𝑑𝑝Γℎ) ⋅ ∇𝜙Γℎ d𝜎 + ∑𝐸∈E∘ℎ ∫𝐸 𝜇Γ𝐸J𝑝ΓℎK ⋅ J𝜙ΓℎK d𝑟− ∑𝐸∈E∘ℎ ∫𝐸 [J𝜙ΓℎK ⋅ {{KΓ∇(𝑑𝑝Γℎ)}} + J𝑑𝑝ΓℎK ⋅ {{KΓ∇𝜙Γℎ}}] d𝑟+ ∑𝐸∈E𝜕ℎ [ ∫𝐸 𝜇Γ𝐸𝑝Γℎ𝜙Γℎ d𝑟 − ∫𝐸 [𝜙ΓℎKΓ∇(𝑑𝑝Γℎ) − 𝑑𝑝ΓℎKΓ∇𝜙Γℎ] ⋅ dr],

(4.49a)

A
Γ2ℎ (𝑝bℎ , 𝜙Γℎ) = −∑𝐹∈𝐹 Γℎ ∫𝐹 [𝑝(1)ℎ ∇𝑑1 + 𝑝(2)ℎ ∇𝑑2]⋅ KΓ∇𝜙Γℎ d𝜎

+ ∑𝐸∈E∘ℎ ∫𝐸{{𝑝bℎ}}J𝜙ΓℎK ⋅ KΓ∇𝑑 d𝑟 + ∑𝐸∈E𝜕ℎ ∫𝐸 𝜙Γℎ[𝑝(1)ℎ ∇𝑑1 + 𝑝(2)ℎ ∇𝑑2]⋅ dr, (4.49b)

Iℎ(𝑝ℎ, 𝜙ℎ) = ∑𝐹∈FΓℎ ∫𝐹 𝐾⟂Γ𝑑 J𝑝bℎK ⋅ J𝜙bℎK d𝜎
+ ∑𝐹∈FΓℎ ∫𝐹 𝛽Γ(𝑝Γℎ − {{𝑝bℎ}})(𝜙Γℎ − {{𝜙bℎ}}) d𝜎, (4.49c)

R
Γℎ(𝜙ℎ) = ∑𝐹∈𝐹 Γℎ∫𝐹 𝑞Γ𝜙Γℎ d𝜎 + ∑𝐸∈E𝜕ℎ[∫𝐸 𝜇Γ𝑔Γ𝜙Γℎ d𝑟 −∫𝐸 𝑑𝑔ΓKΓ∇𝜙Γℎ ⋅ dr], (4.49d)

where 𝑝ℎ = (𝑝bℎ , 𝑝Γℎ), 𝜙ℎ = (𝜙bℎ , 𝜙Γℎ) ∈ Φℎ with 𝑝bℎ = (𝑝(1)ℎ , 𝑝(2)ℎ ) ∈ Φbℎ. For the
reduced models I and II without bulk rectification, the evaluation of bulk func-
tions in Φbℎ on the interface Γ in the Eqs. (4.49b) and (4.49c) is to be understood
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in the sense of restrictions to the interfaces Γ1 and Γ2 as defined in Eq. (4.7).
Besides, in Eq. (4.49a), 𝜇Γ𝐸 is a penalty parameter on the interface Γ in analogy
to Eq. (4.47).

A DG discretization of the the reduced interface models II and II-R is now given
by the following problem. Find 𝑝ℎ = (𝑝bℎ , 𝑝Γℎ) ∈ Φℎ such that

A
bℎ (𝑝bℎ , 𝜙bℎ) +A

Γ1ℎ (𝑝Γℎ , 𝜙Γℎ) +Iℎ(𝑝ℎ, 𝜙ℎ) = R
bℎ(𝜙bℎ) +R

Γℎ(𝜙Γℎ) (4.50)

holds for all 𝜙ℎ = (𝜙bℎ , 𝜙Γℎ) ∈ Φℎ.
Finally, a DG discretization of the reduced models I and I-R extending the
discretization in Eq. (4.50) can be formulated as follows. Find 𝑝ℎ = (𝑝bℎ , 𝑝Γℎ) ∈ Φℎ
so that

A
bℎ (𝑝bℎ , 𝜙bℎ) +A

Γ1ℎ (𝑝Γℎ , 𝜙Γℎ) +A
Γ2ℎ (𝑝bℎ , 𝜙Γℎ) +Iℎ(𝑝ℎ, 𝜙ℎ) (4.51)= R

bℎ(𝜙bℎ) +R
Γℎ(𝜙Γℎ) (4.52)

holds for all 𝜙ℎ = (𝜙bℎ , 𝜙Γℎ) ∈ Φℎ.
4.6 Numerical Experiments

In the following, we present a few numerical results to validate the new reduced
interface model (4.39) and explore its capabilities. In particular, we investigate
how the use of a simplified bulk geometry and the disregard of aperture gra-
dients ∇𝑑1, ∇𝑑2 affects the accuracy of the reduced model. For this, numerical
solutions of the reduced models I, I-R, II, and II-R from Section 4.4.1 are compared
with a numerical reference solution of the full-dimensional model (4.2). Specif-
ically, for the full-dimensional reference solution, the average pressure 𝑝ref.Γ
across the fracture is computed according to Eq. (4.12a). Then, the different re-
duced models are assessed in terms of their solution for the effective pressure 𝑝Γ
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inside the fracture and its deviation from the averaged reference solution 𝑝ref.Γ ,
particularly, by calculating the discrete 𝐿2-error over the interface Γ.
All subsequent test problems are performed on the computational domain Ω =(0, 1)𝑛 ⊂ R𝑛 with 𝑛 = 2 or 𝑛 = 3 and feature a single fracture with sinusoidal
aperture that is represented by the interface Γ = {x ∈ Ω | 𝑥1 = 12 } in the reduced
model (4.39) and its variants. For the reduced models, the coupling parameter 𝜉
is chosen as 𝜉 = 23 as suggested by the derivation in Section 4.3. Further, all test
problems feature a vanishing source term 𝑞 ≡ 0 so that the flow is determined
only by the choice of boundary conditions. In addition, the bulk permeability
is defined as K1 = K2 ≡ I, where I ∈ R𝑛×𝑛 denotes the identity matrix. The
fracture permeability Kf differs depending on the test case.

The results in this section were obtained from an implementation of the DG
schemes (4.48), (4.50), and (4.52) in Dune [11]. The program code is openly avail-
able [42]. Specifically, the implementation relies on Dune-MMesh [21], a grid
module tailored for applications with interfaces. In particular, Dune-MMesh
is a useful tool for mixed-dimensional models, such as the DG schemes (4.50)
and (4.52), as it allows to export a predefined set of facets from the bulk grid as
separate interface grid and provides coupled solution strategies to simultane-
ously solve bulk and interface schemes. Further, the implementation depends on
Dune-Fem [28], a discretization module providing the capabilities to implement
efficient solvers for a wide range of partial differential equations. We access it
through its Python interface, where, using the Unified Form Language (UFL) [5],
the description of models is close to their variational formulation.

4.6.1 Flow Perpendicular to a Fracture with Constant Total Aperture

4.6.1.1 Two-Dimensional Test Problem

For the first test problem, we consider a fracture with a serpentine geometry
in the two-dimensional domain Ω = (0, 1)2. Nonetheless, the fracture is chosen
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such that it exhibits a constant total aperture 𝑑. Specifically, we define the
aperture functions 𝑑1 and 𝑑2 by𝑑1(𝑥2) = 𝑑0 + 12𝑑0 sin(8𝜋𝑥2), 𝑑2(𝑥2) = 𝑑0 − 12𝑑0 sin(8𝜋𝑥2),
where 𝑑0 > 0 is a free parameter. Then, the total aperture is constant and
given by 𝑑(𝑥2) = 2𝑑0. Further, on the whole boundary 𝜕Ω, we impose Dirichlet
conditions and require the pressure 𝑝 to be equal to 𝑔(x) = 1 − 𝑥1. Thus, the
flow direction will be from left to right, perpendicular to the fracture. For the
full-dimensional model (4.2), the permeability inside the fracture is defined by
Kf = 12I. As a consequence, the effective fracture permeabilities in the reduced
model (4.39) and its variants are given by KΓ = 12I and 𝐾⟂Γ = 12 . In particular,
the fracture is less permeable than the bulk domains Ω1 and Ω2. The fracture
geometry and the resulting full-dimensional solution are illustrated in Figure 4.4
for the case of 𝑑0 = 10−1. The relatively large aperture is intended to show the
capabilities of our new model.

Figure 4.4: Full-dimensional numerical reference solution for the pressure 𝑝
(left) and the velocity −K∇𝑝 (right) for the case of 𝑑0 = 10−1.

Figure 4.5 shows the DG solutions for the pressure 𝑝Γ in the reducedmodels I, I-R,
II, and II-R in comparison to the full-dimensional reference solution 𝑝ref.Γ . On the
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one hand, the effective pressure 𝑝Γ = 𝑝Γ(𝑥2) is plotted for a fixed valued of 𝑑0 =10−1, where one can see a clear difference between the solutions of the various
reduced models. As expected, model I performs best, while model II-R performs
worst. On the other hand, Figure 4.5 also displays the 𝐿2-error ‖𝑝Γ − 𝑝ref.Γ ‖𝐿2(Γ) as
function of the aperture parameter 𝑑0, where, again, the solution of model I sticks
out as the most accurate. In Figure 4.5, the 𝐿2-errors of the reduced models I-R
and II-R show a similar behavior. In particular, their convergence towards the
reference solution 𝑝ref.Γ for a decreasing aperture is considerably slower than the
convergence for the models I and II. Thus, in this test problem, it is primarily the
rectification of the bulk domains Ω1 and Ω2 that negatively affects the model
error and rate of convergence with respect to a decreasing aperture. However,
comparing the solutions of model I and model II, there is also an undeniable
effect on the accuracy of the solution in connection with the inclusion of aperture
gradients ∇𝑑1, ∇𝑑2 in Eq. (4.39b). For small apertures, the error of model I seems
to stagnate. This is attributed to numerical errors in the computation of the full-
dimensional reference solution 𝑝ref.Γ and discussed in more detail in Section 4.6.2.

4.6.1.2 Three-Dimensional Test Problem

Next, we extend the test problem from Section 4.6.1.1 to the three-dimensional
case. For this, we define the aperture functions 𝑑1 and 𝑑2 by𝑑1(𝑥2, 𝑥3) = 𝑑0 + 12𝑑0( sin(8𝜋𝑥2) + sin(8𝜋𝑥3)),𝑑2(𝑥2, 𝑥3) = 𝑑0 − 12𝑑0( sin(8𝜋𝑥2) + sin(8𝜋𝑥3))
with a parameter 𝑑0 > 0 so that the total aperture 𝑑(𝑥2, 𝑥3) = 2𝑑0 is constant. The
resulting geometry is illustrated in Figure 4.6. The permeability and boundary
conditions are defined as in Section 4.6.1.1.

Figure 4.7 displays the numerical reference solution for the averaged pres-
sure 𝑝ref.Γ for 𝑑0 = 10−1. Besides, the DG solutions for the effective pressure 𝑝Γ
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Figure 4.5: Numerical solutions for the effective pressure 𝑝Γ for the reduced
model (4.39) and its variants in comparison to the numerical reference
solution 𝑝ref.Γ for 𝑑0 = 10−1 (left) and 𝐿2-error ‖𝑝Γ−𝑝ref.Γ ‖𝐿2(Γ) as function
of 𝑑0 (right).

in the reduced model (4.39) and its variants are shown in Figure 4.8. Here, in
comparison with the reference solution in Figure 4.7, a behavior analogous
to the two-dimensional case in Figure 4.5 becomes apparent. The solution of
model I matches well with the reference solution, whereas the solutions of the
models I-R and II reproduce the sine-like pattern of the reference solution at a
too low amplitude and the solution of model II-R is virtually constant. This is
also reflected by the 𝐿2-error ‖𝑝Γ − 𝑝ref.Γ ‖𝐿2(Γ), which is displayed in Figure 4.9
as function of the aperture parameter 𝑑0. The 𝐿2-error shows the same trends
for a declining aperture as observed in the two-dimensional case.

4.6.2 Flow Perpendicular to an Axisymmetric Fracture

For this next test problem, we again consider a sinusoidal fracture in the two-
dimensional domain Ω = (0, 1)2, however, this time with a non-constant total



110 4 Modeling Flow in Porous Media with Fractures of Varying Aperture

Figure 4.6: Bulk domains Ω1
(black) and Ω2 (red) for𝑑0 = 10−1. Figure 4.7: Numerical reference

solution 𝑝ref.Γ for 𝑑0 = 10−1.
aperture 𝑑. More particularly, the aperture functions 𝑑1 and 𝑑2 are defined by𝑑1(𝑥2) = 𝑑0 + 12𝑑0 sin(8𝜋𝑥2), 𝑑2(𝑥2) = 𝑑0 + 12𝑑0 sin(8𝜋𝑥2) (4.54)

with a free parameter 𝑑0 > 0. Thus, the interface Γ is the center line of an
axisymmetric fracture and the total aperture 𝑑 ranges between 𝑑0 and 3𝑑0. In
addition, the permeability Kf inside the fracture and the given pressure 𝑔 at the
external boundary 𝜕Ω are defined as in Section 4.6.1.1. The fracture geometry and
full-dimensional solution from the DG scheme (4.48) are shown in Figure 4.10
for the case of 𝑑0 = 10−1.
A comparison between the numerical solution 𝑝Γ of the different reduced models
and the averaged full-dimensional reference solution 𝑝ref.Γ inside the fracture
can be found in Figure 4.11. Here, it occurs that the solutions of the models I and
I-R and the solutions of the models II and II-R respectively show a very similar
behavior. While the solutions of model II and II-R slowly display convergence
towards the reference solution with declining aperture parameter 𝑑0, there is
already a remarkable agreement between the solutions of model I and I-R and
the reference solution. As compared to the solutions of model II and II-R, the
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Figure 4.8: Numerical solutions for the effective pressure 𝑝Γ inside the fracture
for the reduced model (4.39) and its variants for 𝑑0 = 10−1: model I (top
left), model I-R (top right), model II (bottom left), and model II-R (bottom
right).

solutions of model I and I-R are more accurate by several orders of magnitude.
Thus, in contrast to the test problem in Section 4.6.1.1, the artificial rectification
of the bulk domains Ω1 and Ω2 is virtually without effect, while the inclusion
of aperture gradients ∇𝑑1, ∇𝑑2 in Eq. (4.39b) seems all the more significant in
order to obtain accurate solutions. This is probably due to the symmetry of the
problem and cannot be expected in general.

Further, it is noticeable in Figure 4.11 that, for the models I and I-R, the 𝐿2-error
with respect to the numerical reference solution 𝑝ref.Γ suffers a stop of conver-
gence at small values of the aperture parameter 𝑑0. Inspecting the numerical
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Figure 4.9: 𝐿2-error ‖𝑝Γ − 𝑝ref.Γ ‖𝐿2(Γ) as function of 𝑑0.
reference solution 𝑝ref.Γ for small apertures, one observes an oscillatory behavior,
which might be associated with the integration of the full-dimensional reference
solution according to Eq. (4.12a). In particular, these spurious oscillations display
amplitudes in the range of 10−5 to 10−6 and hence can fully explain the total𝐿2-error and stop of convergence in Figure 4.11. Furthermore, the symmetry
of the test problem in this section suggests that the effective pressure inside

Figure 4.10: Full-dimensional numerical reference solution for the pressure 𝑝
(left) and the velocity −K∇𝑝 (right) for the case of 𝑑0 = 10−1.
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Figure 4.11: Numerical solutions for the effective pressure 𝑝Γ for the reduced
model (4.39) and its variants in comparison to the numerical reference
solution 𝑝ref.Γ for 𝑑0 = 10−1 (left) and 𝐿2-error ‖𝑝Γ−𝑝ref.Γ ‖𝐿2(Γ) as function
of 𝑑0 (right) with respect to the numerical reference solution 𝑝ref.Γ (in
color) and the presumably exact reference solution 𝑝ref.Γ ≡ 12 (gray).

the fracture exactly equals 𝑝refΓ ≡ 12 . Thus, we can consider the 𝐿2-error with
respect to this presumably exact solution, which is also shown in Figure 4.11.
Remarkably, in this case, one observes unimpeded convergence with the decline
of the aperture parameter 𝑑0. This confirms that we are dealing with a numerical
error in the computation of the reference solution and not with a systematic
model error.

4.6.3 Tangential Flow through an Axisymmetric Fracture

In this test problem, we consider an axisymmetric sinusoidal fracture as in Sec-
tion 4.6.2 with the aperture functions 𝑑1 and 𝑑2 defined by Eq. (4.54). We de-
fine the permeability inside the fracture by Kf = 2I for the full-dimensional
model (4.2), which results in the effective permeabilities KΓ = 2I and 𝐾⟂Γ = 2 for
the reduced model (4.39) and its variants. In particular, the fracture permeability
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is larger than the bulk permeability. The pressure 𝑝 at the boundary 𝜕Ω is given
by the function 𝑔(x) = 4𝑥1(1−𝑥1)(1−𝑥2), what results in an inflow at bottom of
the domain with the fracture as the preferential flow path. Figure 4.12 illustrates
the fracture geometry and the resulting solution from the DG scheme (4.48)
for 𝑑0 = 10−1.

Figure 4.12: Full-dimensional numerical reference solution for the pressure 𝑝
(left) and the velocity −K∇𝑝 (right) for the case of 𝑑0 = 10−1.

Figure 4.13 shows the DG solutions 𝑝Γ of the different reduced models in com-
parison with the numerical reference solution 𝑝ref.Γ . In particular, it can be seen
that the models II and II-R display a similar behavior and are the least accurate,
while model I shows the best match with the reference solution. Further, in
Figure 4.13, the 𝐿2-error ‖𝑝Γ − 𝑝ref.Γ ‖𝐿2(Γ) displays a convergence with the de-
cline of the aperture parameter 𝑑0 for all variants of the reduced model (4.39),
where the solution of model I converges faster than the solutions of the other
models. However, for model I, the convergence stagnates at small apertures,
which is associated with numerical errors in the computation of the reference
solution 𝑝ref.Γ as discussed in Section 4.6.2. Notably, for the test problem in this
section, one finds by comparing the solution of model I with the solutions of
model I-R and model II in Figure 4.13 that both the artificial rectification of the
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Figure 4.13: Numerical solutions for the effective pressure 𝑝Γ for the reduced
model (4.39) and its variants in comparison to the numerical reference
solution 𝑝ref.Γ for 𝑑0 = 10−1 (left) and 𝐿2-error ‖𝑝Γ−𝑝ref.Γ ‖𝐿2(Γ) as function
of 𝑑0 (right).

bulk domains Ω1 and Ω2 and the negligence of aperture gradients in Eq. (4.39b)
significantly impair the accuracy of the solution.

We conclude that, for fractures with non-constant aperture, the solutions of our
proposedmodel provide systematically better approximations to the reference so-
lution as the solutions of previously proposed models. A discontinuous Galerkin
discretization has been introduced that is able solve the mixed-dimensional
model equations efficiently. In the next chapter, we will apply the presented
ideas to the physically more complex model of linear poro-elastic media coupled
with fracture propagation.





Fracture Propagation
in Poro-elastic Media 5
The content of the following chapter led to the manuscript ”Modeling fracture
propagation in poro-elastic media combining phase-field and discrete fracture
models” submitted to ”Computer Methods in Applied Mechanics and Engineer-
ing” (under revision). All source code of the implementation is available in a
public repository1. I conceived of the presented idea, developed the theory and
performed the numerical computations.

This chapter describes an advanced application of Dune-MMesh, cf. Chapter
2, to the modeling of fracture propagation in poro-elastic media combining
mixed-dimensional discrete fracture models and phase-field modeling.

5.1 Introduction

Modeling flow in dynamically fracturing porous media is of high interest for
a wide range of natural and technical processes, in particular in the context
of subsurface engineering applications. In all these processes, several physical
effects mutually influence each other: variations of the fluid pressure lead to
deformation of the porousmatrix, which in turn induces variation of the fractures
aperture. This, again, alters the fracture’s conductivity, and strongly influences

1https://github.com/samuelburbulla/pfdfm
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the pressure distribution within the fluid system. Thermal effects could also
influence the physical properties of fluid and porous matrix. Moreover, when
fracture propagation is taken into account, the change in pressure could also
modify the fracture networks topology in an irreversible manner. The numerical
modeling of flow in fractured porous media represents a serious challenge,
not only because of these interfering effects, but also because of the extreme
geometrical dimensions of fractures.

For the modeling of fracture propagation, phase-field models have been proposed
that approximate sharp fractures by a diffuse indicator-like phase-field function.
This variational approach, initially proposed for fractures in elastic material [6],
has been applied to various flow models in porous media [48, 52, 53]. However,
phase-field models, which are very flexible with regard to different fracture
geometries and network topologies, are computationally rather expensive due
to the grid resolution required. On the other hand, there are contributions
employing sharp representations of the fractures that keep track of the fracture
as a geometric discontinuity, e.g., [60, 61]. Numerically coupled approaches as
the X-field [36] have been proposed in order to reduce the computational cost
by combining sharp and diffuse interface approaches. In particular, in the cited
work the authors consider brittle fracture in an elastic media and the phase-field
solution is sought only in a portion of the domain around the fracture tip.

In this chapter, we extend the X-field idea to poro-elasticity and propose some
adaptations. More precisely, we solve the phase-field equation in the whole
domain, even if we actually use the phase-field solution only to describe the
evolution of the fracture tips. This way, we overcome the issue in the X-field
approach of finding the correct movement of the tips and setting the boundary
conditions of the phase-field domain.

With this approach, we combine the desired properties of both phase-fieldmodels
and discrete fracture models in one mathematical model. On the one hand, we
always have an explicit geometrical representation of the fracture network, on
the other hand, we retain the geometric flexibility of the phase field approach.
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This work is structured as follows. In Section 5.2, we introduce the geometri-
cal setting as well as the poro-elastic equations that provide the basis of our
mixed-dimensional phase-field model. Then, in Section 5.3, following the ideas
of discrete fracture modeling and phase-field approximation of fractures, we
present our new hybrid model in equations (5.15)-(5.25), and we prove that it
is thermodynamically consistent. In Section 5.4, we present the weak form of
our discontinuous Galerkin discretization which directly incorporates discon-
tinuities across fracture facets as we choose a fully conforming mesh. Finally,
in Section 5.5, we present the results of two numerical experiments, and study
some properties of our numerical scheme.

5.2 The Fracturing Process in Fluid-Filled Porous
Media

In this section, we collect the assumptions and constitutive laws that govern
the physical processes relevant for our work. These assumptions are the basis
for the formulation of discrete and phase-field representations of fractures in
Section 5.3.

5.2.1 The Fractured Domain

LetD ⊂ R𝑛 denote a two- or three-dimensional domain (𝑛 = 2, 3) partitioned into
a poro-elastic domainB ⊂ D and a fracture subsetC ⊂ D, as depicted in Figure
5.1 (left). We assume that the width of the fracture domain C is significantly
smaller than its longitudinal size. In this case, it is reasonable to approximate
the fracture by a one-codimensional regular manifold immersed in D. Precisely,
let us assume that we can represent the full-dimensional fracture C by the
one-codimensional manifold Γ ⊂ C and an aperture function 𝑑 ∶ Γ × (0, 𝑇 ) →𝑑(x, 𝑡) ∈ (0, ∞), as depicted in Figure 5.1 (right).
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Note that we will derive a reduced equation on Γ that is supposed to capture
the full-dimensional flow effects in C. Furthermore, from the displacement
u ∶ Ω × (0, 𝑇 ) → R𝑛 of the poro-elastic domain Ω, we will define the time-
dependent aperture function by the normal displacement jump, cf. (5.10) below.
Note that in the reduced setting the poro-elastic domain is Ω = D ⧵ Γ, deformed
by the displacement u, which can be now discontinuous across Γ.
Indeed, we assume that Γ is orientable so we can identify the two sides, 𝛾+ and𝛾−, with outer normal vector n+ and n−, respectively. Correspondingly, the
value of the traces of u are indicated as u+ and u−. Further, we will denote the
two-sided inner boundary of Ω by 𝛾 ≔ 𝛾+ ∪ 𝛾−.

D

B

C
𝑑Γ

Ω

Figure 5.1: The domainD is partitioned into a poro-elastic domainB

and a fracture domain C. The fracture domain will be represented by
one-codimensional manifold Γ and corresponding aperture function 𝑑.

We use Biot’s model, cf. Section 1.3.3, describing poro-elastic behavior in the
bulk domainB.
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5.2.2 Fracture Pressure

Within the equi-dimensional fracture domainC, we assume that the fluid motion
is described by the following continuity equation for single-phase flow in porous
media, cf. [53].

The pressure 𝑝𝐹 ∶ C × (0, 𝑇 ) → R satisfies

(𝑝𝐹𝑀)𝑡 − div(K𝐹𝜂 ∇𝑝𝐹) = 𝑞, (5.1)

where K𝐹 ∈ R𝑛×𝑛 [𝑚2] is the permeability within the fracture.

We assume that the permeability within the fracture can be split into the normal
component𝐾 𝑓𝑛 and the tangential tensor𝐾 𝑓𝜏 . Then, we apply lubrication theory to
formulate𝐾 𝑓𝜏 as a function of the aperture 𝑑 of the fracture. Under the assumption
of plane Poiseuille flow we have

𝐾 𝑓𝜏 = 𝑑212𝗜
as tangential permeability (in all directions) [53]. For the normal permeability
component, we choose the normal contribution of the bulk permeability𝐾 𝑓𝑛 = n⊤Kn.
The pressure within the fracture has to be coupled to the pressure in the porous
matrix. For this purpose, we impose pressure continuity, normal stress equilib-
rium and continuity of normal fluid velocity across the fracture-bulk interface,
as described by the subsequent coupling conditions.
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At the interface 𝜕C = 𝜕B ⧵ 𝜕D betweenB and C we impose𝑝 = 𝑝𝐹, (5.2)(𝜎(u) − 𝛼𝑝𝗜)n = −𝑝𝐹n, (5.3)
K∇𝑝 ⋅ n = K𝐹∇𝑝𝐹 ⋅ n, (5.4)

with n denoting the outer normal to 𝜕C. It remains to formulate boundary and
initial conditions for Equations (1.5) and (5.1).

5.2.3 Boundary and Initial Conditions

We impose zero displacement and no-flow conditions at the boundary ofD, and
set an initial null value for all unknowns, i.e.,

u = 0, ∇𝑝 ⋅ n = 0, on 𝜕D × (0, 𝑇 ), (5.5)𝑝(⋅, 0) = 0, u(⋅, 0) = 0, in Ω × (0, 𝑇 ), (5.6)𝑝𝐹(⋅, 0) = 0, in C × (0, 𝑇 ). (5.7)

Finally, we have to clarify what we consider as driving force for fracture propa-
gation. For this purpose, we use the criterion of Griffith [38].

5.2.4 Griffith’s Criterion and Stress Splitting

Griffith’s criterion of fracture mechanics states that in a physical point 𝑥 ∈ D a
fracture is created when the elastic energy restitution rate associated to this point
exceeds Griffith’s critical energy 𝑔𝑐 ∶ D → R [Jm−1], cf. [38]. As propagation
of fractures is essentially driven by tensile forces in the poro-elastic medium,
we additively decompose the stress tensor𝜎(u) = 𝜎+(u) + 𝜎−(u) (5.8)
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into a tensile part 𝜎+(u) and a compressive part 𝜎−(u). We use a splitting
introduced in [7] where the trace of the stain tensor tr(𝜖(u)) = div(u) is split
into positive and negative parts

div+(u) = max(div(u), 0), div−(u) = min(div(u), 0).
Consequently, the effective stress tensor is split into𝜎+(u) ≔ 𝐾 div+(u)𝗜 − 2𝜇𝑛 div(u)𝗜 + 2𝜇𝜖(u),𝜎−(u) ≔ 𝐾 div−(u)𝗜,
where 𝐾 = 2𝜇𝑛 + 𝜆 is the bulk modulus.

On the basis of this stress tensor decomposition, we formulate the elastic energy
that is responsible for driving fracture propagation, namelyΨ+(u) ≔ 12𝜎+(u) ∶ 𝜖(u).
Following the variational approach of [17], we define the elastic energy associated
to the fracture by 𝑊𝐺(u, Γ) ≔ ∫Ω Ψ+(u) 𝑑𝑥 + ∫Γ 𝑔𝑐 𝑑𝑠. (5.9)

We emphasize that Ω, and therefore u, are dependent on Γ. Finally, the basic
principle of the variational approach to fracture is to minimize𝑊𝐺. This principle
will be used in Section 5.3.3 where we approximate Γ using a diffuse phase-field
approximation.
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5.3 Derivation of the Mixed-Dimensional Phase-Field
Model

We proceed with the derivation of our mixed-dimensional phase-field model.
This model consists of partial differential equations defined on domains with
different dimensions, in our case, Ω and Γ with dimensions 𝑑 and 𝑑 −1, that form
a coupled system. The physical assumptions stated in this section will serve as
basis for the mathematical model. For modeling purposes, we divide the fracture
into two parts:

1. An initially given fracturemanifold Γ0with correspondingmixed-dimensional
flow model.

2. A propagating part Γ∗ that is approximated by a diffuse phase-field repre-
sentation.

Γ Γ∗
Figure 5.2: We divide fractures into initially given manifold Γ0 and propagat-

ing part Γ∗.
The division is schematically depicted in Figure 5.2. Note that this section is
structured as follows. We start with the definition of the fracture aperture
induced by the displacement. Then, in Section 5.3.2, based on the full-dimensional
equation (5.1), we derive a reduced model equation on Γ0 with appropriate
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coupling conditions between fracture and porous matrix. Afterwards, in Section
5.3.3, we formulate the propagation of the fracture in the diffuse phase-field
framework. Finally, in Section 5.3.4, we summarize all equations of our mixed-
dimensional phase-field model.

5.3.1 The Fracture Aperture

The displacement of the porous matrix can be used to determine the magnitude
of the fracture aperture 𝑑 = 𝑑(u) as a function of the normal displacement of
the porous matrix on both sides of the fracture Γ0. We define the aperture as𝑑(u) ≔ max(−Ju ⋅ nK, 0) + 𝑑0, (5.10)

where the jump operator J⋅K is given by

J𝜓K ≔ 𝜓|𝛾+ − 𝜓 |𝛾− , Ju ⋅ nK ≔ u|𝛾+ ⋅ n+ + u|𝛾− ⋅ n−. (5.11)

The residual aperture 𝑑0 > 0 ensures the well-posedness of the reduced equation
(5.18) below. It can also be physically motivated, for instance, considering surface
roughness. Note that we restrict the aperture in (5.10) to the positive part as we
will not incorporate contact mechanics constraints.

5.3.2 The Reduced Model

A widely used approach to model fractured porous media, and in particular
flow, is to reduce the dimension of the fracture domain to a one-codimensional
manifold. The main advantage is the lower computational complexity since it is
not necessary to resolve the aperture with the grid. We derive a reduced model
on Γ0 by integrating equation (5.1) along orthogonal line segments𝐿(s) = {s + 𝑡n | 𝑡 ∈ (−𝑑2 , 𝑑2)}
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for all s ∈ Γ0. This idea was initially proposed in [51] and leads to a partial
differential equation on Γ0 formulated in terms of the mean pressure𝑝Γ(s) ≔ 1𝑑 ∫𝐿(s) 𝑝𝐹 𝑑𝑥.
Following the derivation as in Chapter 3, using equation (5.1) and the coupling
conditions (5.2) and (5.4), we find the reduced model equation on Γ0 given by

𝑑(u)(𝑝Γ𝑀)𝑡 − div(𝑑(u)𝐾 𝑓𝜏𝜂 ∇𝑝Γ) + JK𝜂 ∇𝑝 ⋅ nK = 𝑑(u)𝑞,
with the coupling condition

−K𝜂 ∇𝑝 ⋅ n = −2𝐾 𝑓𝑛𝜂 𝑝Γ − 𝑝𝑑(u) ≕ 𝐶(𝑝, 𝑝Γ,u). (5.12)

On the internal boundary 𝛾 between Γ0 and Ω, equation (5.12) realizes a linear
relation between the pressure jump and the normal flux. Other choices could be
made, as explained in [51].

The next step of the derivation is the description of fracture propagation by a
phase-field representation.

5.3.3 Phase-Field Representation

Many approaches to the modeling of fracture propagation represent sharp
fractures by diffuse phase-field functions. The general concept behind this idea
is briefly described in the following for readers’ convenience.

The Ambrosio–Tortorelli functional [6] given by𝛾𝑙(𝜑) ≔ 12𝑙 (1 − 𝜑)2 + 𝑙2 |∇𝜑|2, (𝑙 > 0)
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can be used to approximate the sharp line Γ∗ by a diffuse representation 𝜑 ∶Ω → [0, 1]. For a sequence of minimizers {𝜑𝑙}𝑙>0, i.e.,𝜑𝑙 = argmin𝜑∈𝑉 ∫Ω 𝛾𝑙(𝜑) 𝑑𝑥,
where 𝑉 = {𝜑 ∈ 𝐻 1(Ω) ∣ 𝜑|Γ∗ = 0}, we have the property

∫Ω 𝛾𝑙(𝜑) 𝑑𝑥 → |Γ∗|, (5.13)

for 𝑙 → 0 in the sense of Γ-convergence [6]. The function 𝜑𝑙 is a smooth function
such that 𝜑𝑙 = 1 indicates the porous matrix Ω and 𝜑𝑙 = 0 indicates Γ∗, while the
phase-field parameter 𝑙 > 0 governs the width of the smooth transition zone, cf.
[52].

In order to account for reduced resistance of fractured material, we introduce
a convex degradation function 𝐴(𝜑) that satisfies 𝐴(0) = 𝑘, 𝐴(1) = 1, and𝐴′(1) > 0, in our case 𝐴(𝜑) ≔ (1 − 𝑘)𝜑2 + 𝑘.
Here, the number 𝑘 ≪ 1 is some residual resistance to ensure well-posedness of
our model. Now, switching from a sharp to a diffuse representation of Γ∗ and
using (5.13), we reformulate the energy 𝑊𝐺(Γ), previously defined in (5.9), in
terms of the phase-field variable𝑊𝜑(u, 𝜑) ≔ ∫Ω𝐴(𝜑)Ψ+(u) + 𝑔𝑐𝛾𝑙(𝜑) 𝑑𝑥 + ∫Γ0 𝑔𝑐 𝑑𝑥.
As we also incorporate poro-elastic effects, we extend the energy to the free
energy of the mixed-dimensional poro-elastic medium. For this purpose, we
introduce a degraded effective stress tensor �̃� (u, 𝜑) based on stress splitting (5.8)
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by �̃� (u, 𝜑) ≔ 𝐴(𝜑)𝜎+(u) + 𝜎−(u),
where only the tensile part is degraded with 𝐴(𝜑). Then, we introduce the free
energy functional

𝑊(u, 𝑝, 𝜑, 𝑝Γ) ≔ 𝑊𝜑(u, 𝜑) + ∫Ω 12𝜎−(u) ∶ 𝜖(u) + 𝑝22𝑀 𝑑𝑥
+ ∫Γ0 𝑑(u) 𝑝2Γ2𝑀 𝑑𝑥 (5.14)

= ∫Ω 12 �̃�(u, 𝜑) ∶ 𝜖(u) + 𝑝22𝑀 + 𝑔𝑐𝛾𝑙(𝜑) 𝑑𝑥+ ∫Γ0 𝑑(u) 𝑝2Γ2𝑀 + 𝑔𝑐 𝑑𝑥.
The energy functional (5.14) is the base for the system of partial differential
equations below.

In the next section, we summarize all equations of our mixed-dimensional
phase-field model, and we will prove that our model is thermodynamically
consistent.
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5.3.4 The Mixed-Dimensional Phase-Field Model

Our mixed-dimensional phase-field model consists in the following system of
partial differential equations. For a given 𝑙 > 0, find the displacement u ∶Ω × (0, 𝑇 ) → R𝑛, the phase-field 𝜑 ∶ Ω × (0, 𝑇 ) → [0, 1], the pressure 𝑝 ∶Ω × (0, 𝑇 ) → R and the fracture pressure 𝑝Γ ∶ Γ0 × (0, 𝑇 ) → R satisfying− div(�̃� (u, 𝜑) − 𝛼𝑝𝗜) = 0, in Ω × (0, 𝑇 ), (5.15)−𝑔𝑐𝑙 (1 − 𝜑) − 𝑔𝑐𝑙Δ𝜑 + 𝐴′(𝜑)Ψ+(u) = 0, in Ω × (0, 𝑇 ), (5.16)( 𝑝𝑀 + 𝛼 div(u))𝑡 − div (K𝜂 ∇𝑝) = 𝑞, in Ω × (0, 𝑇 ), (5.17)

𝑑(u)(𝑝Γ𝑀)𝑡 − div(𝑑(u)𝐾 𝑓𝜏𝜂 ∇𝑝Γ)+𝑑(u)𝑡 + JK𝜂 ∇𝑝 ⋅ nK = 𝑑(u)𝑞, in Γ0 × (0, 𝑇 ), (5.18)

with boundary and initial conditions

u = 0, ∇𝜑 ⋅ n = 0, ∇𝑝 ⋅ n = 0, on 𝜕D × (0, 𝑇 ), (5.19)∇𝑝Γ ⋅ nΓ = 0, on 𝜕Γ0 × (0, 𝑇 ), (5.20)∇𝜑 ⋅ n = 0, on 𝛾 × (0, 𝑇 ), (5.21)−K𝜂 ∇𝑝 ⋅ n = 𝐶(𝑝, 𝑝Γ,u), on 𝛾 × (0, 𝑇 ), (5.22)

(�̃� (u, 𝜑) − 𝛼𝑝𝗜)n = −(𝑝Γ − 𝑝2Γ2𝑀)n, on 𝛾 × (0, 𝑇 ), (5.23)

u(⋅, 0) = 0, 𝑝(⋅, 0) = 0, in Ω, (5.24)𝑝Γ(⋅, 0) = 0, in Γ0, (5.25)

where (5.19) and (5.24)-(5.25) incorporate the initial conditions (5.5) from Section
5.2.3. Note that (5.22)-(5.23) implicitly represent two conditions since 𝛾 denotes
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the two-sided inner boundary of Ω. The normal nΓ denotes the outer normal on
the boundary of Γ0.
In our opinion, this mixed-dimensional form has a more straight-forward char-
acter than the equivalent phase-field description of the flow problem, cf., for
instance, [53]. The model is clearly separated into a bulk flow problem, a flow
equation within the lower-dimensional fracture, and coupling conditions be-
tween those two domains.

5.3.5 Weak Formulation of the Model

Let us state the weak formulation of model (5.15)-(5.25). This form is useful
for the proof of the thermodynamical consistency, and will be the basis of the
discretization scheme.

As admissible functional spaces for displacement, phase-field and the pressures,
we choose Φ𝑢 ≔ {v ∈ [𝐻 1(Ω)]𝑛 ∣ v|𝜕D = 0 },Φ𝜑 = 𝐻 1(Ω), Φ𝑝 = 𝐻 1(Ω), Φ𝑝Γ = 𝐻 1(Γ0),
where the displacement has imposed Dirichlet values on the outer boundary ofΩ only. Incorporating boundary conditions (5.5)-(5.7), the model (5.15)-(5.25) in
its weak form reads as follows.



5.3 Derivation of the Mixed-Dimensional Phase-Field Model 131

For a given 𝑙 > 0 and at each time 𝑡 ∈ (0, 𝑇 ), find u = u(𝑡) ∈ Φ𝑢, 𝜑 = 𝜑(𝑡) ∈ Φ𝜑,𝑝 = 𝑝(𝑡) ∈ Φ𝑝 and 𝑝Γ = 𝑝Γ(𝑡) ∈ Φ𝑝Γ such that

∫Ω(�̃� (u, 𝜑) − 𝛼𝑝𝗜) ∶ 𝜖(v) 𝑑𝑥 + ∫𝛾(𝑝Γ − 𝑝2Γ2𝑀)n ⋅ v 𝑑𝑠 = 0, (5.26)

∫Ω −𝑔𝑐𝑙 (1 − 𝜑)𝜙 + 𝑔𝑐𝑙∇𝜑 ⋅ ∇𝜙 + 𝐴′(𝜑)Ψ+(u)𝜙 𝑑𝑥 = 0, (5.27)

∫Ω( 𝑝𝑀 + 𝛼 div(u))𝑡𝜓 + (K𝜂 ∇𝑝) ⋅ ∇𝜓 𝑑𝑥+∫𝛾 𝐶(𝑝, 𝑝Γ,u)𝜓 𝑑𝑠 = ∫Ω 𝑞𝜓 𝑑𝑥, (5.28)

∫Γ0 𝑑(u)(𝑝Γ𝑀)𝑡𝜓Γ + (𝑑(u)𝐾 𝑓𝜏𝜂 ∇𝑝Γ) ⋅ ∇𝜓Γ+𝑑(u)𝑡𝜓Γ 𝑑𝑥 − ∫𝛾 𝐶(𝑝, 𝑝Γ,u)𝜓Γ 𝑑𝑠 = ∫Γ0 𝑑(u)𝑞𝜓Γ 𝑑𝑥, (5.29)

for all v ∈ Φ𝑢, 𝜙 ∈ Φ𝜑, 𝜓 ∈ Φ𝑝, 𝜓Γ ∈ Φ𝑝Γ , and initial conditions (5.24)-(5.25) for
u, 𝑝 and 𝑝Γ. Note that, in the formulation above, we used the notation

∫Γ0Jv ⋅ nK 𝑑𝑥 = ∫𝛾 v ⋅ n 𝑑𝑠, (v ∶ Ω → R𝑛)
which relates jumps on the interface Γ0 to inner boundary integrals at 𝛾.
In the next step, we prove that our model (5.15)-(5.25) is thermodynamically
consistent.

5.3.6 Thermodynamical Consistency

Any physically meaningful model should be thermodynamically consistent, in
the sense that for any solution of the model an appropriate total energy is non-
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increasing over time or, in the presence of forcing term, grows in a controlled
way as explained later. For our mixed-dimensional phase-field model, we prove
this property in the following theorem.

Theorem 5.1 (Thermodynamical consistency): The model (5.15)-(5.25), is ther-
modynamically consistent with respect to the free energy (5.14) if 𝑑(u) > 𝑑0. That
is, the solution of (5.26)-(5.29) fulfills𝑑𝑑𝑡𝑊 (u, 𝑝, 𝜑, 𝑝Γ) ≤ ∫Ω 𝑝𝑞 𝑑𝑥 + ∫Γ0 𝑑(u)𝑝Γ𝑞 𝑑𝑥. (5.30)

Proof. In the following we will indicate with 𝜕u𝑊(u, 𝑝, 𝜑, 𝑝Γ)[v] the Gateaux
(functional) derivative of 𝑊 with respect to u applied to a suitable test function
v, 𝜕u𝑊(u, 𝑝, 𝜑, 𝑝Γ)[v] = limℎ→0+ 𝑊(u + ℎv, 𝑝, 𝜑, 𝑝Γ) − 𝑊 (u, 𝑝, 𝜑, 𝑝Γ)ℎ ,
and analogously for the other components. We have𝑑𝑑𝑡𝑊 (u, 𝑝, 𝜑, 𝑝Γ) = 𝜕u𝑊(u, 𝑝, 𝜑, 𝑝Γ)[u𝑡] + 𝜕𝑝𝑊(u, 𝑝, 𝜑, 𝑝Γ)[𝑝𝑡]+ 𝜕𝜑𝑊(u, 𝑝, 𝜑, 𝑝Γ)[𝜑𝑡] + 𝜕𝑝Γ𝑊(u, 𝑝, 𝜑, 𝑝Γ)[𝑝Γ,𝑡].
Since, using the given boundary conditions,

𝜕u𝑊(u, 𝑝, 𝜑, 𝑝Γ)[u𝑡] = ∫Ω �̃� (u, 𝜑) ∶ 𝜖(u𝑡) 𝑑𝑥 + ∫Γ0Ju𝑡 ⋅ nK
𝑝2Γ2𝑀 𝑑𝑥,𝜕𝑝𝑊(u, 𝑝, 𝜑, 𝑝Γ)[𝑝𝑡] = ∫Ω( 𝑝𝑀)𝑝𝑡 𝑑𝑥,𝜕𝜑𝑊(u, 𝑝, 𝜑, 𝑝Γ)[𝜑𝑡] = ∫Ω −𝑔𝑐𝑙 (1 − 𝜑)𝜑𝑡 + 𝑔𝑐𝑙∇𝜑 ⋅ ∇𝜑𝑡+ 𝐴′(𝜑)Ψ+(u)𝜑𝑡 𝑑𝑥,
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𝜕𝑝Γ𝑊(u, 𝑝, 𝜑, 𝑝Γ)[𝑝Γ,𝑡] = ∫Γ0 𝑑(u)(𝑝Γ𝑀)𝑝Γ,𝑡 𝑑𝑥,
we obtain, using (5.26)-(5.29),𝑑𝑑𝑡𝑊 (u, 𝑝, 𝜑, 𝑝Γ)= ∫Ω(𝛼𝑝𝗜) ∶ 𝜖(u𝑡) 𝑑𝑥 − ∫𝛾(𝑝Γ − 𝑝2Γ2𝑀)n ⋅ u𝑡 𝑑𝑠 + ∫Γ0Ju𝑡 ⋅ nK

𝑝2Γ2𝑀 𝑑𝑥
− ∫Ω 𝛼 div(u𝑡)𝑝 + (K𝜂 ∇𝑝) ⋅ ∇𝑝 𝑑𝑥 − ∫𝛾 𝐶(𝑝, 𝑝Γ,u)𝑝 𝑑𝑠
− ∫Γ0(𝑑(u)𝐾 𝑓𝜏𝜂 ∇𝑝Γ) ⋅ ∇𝑝Γ + 𝑑(u)𝑡𝑝Γ 𝑑𝑥 + ∫𝛾 𝐶(𝑝, 𝑝Γ,u)𝑝Γ 𝑑𝑠+ ∫Ω 𝑝𝑞 𝑑𝑥 + ∫Γ0 𝑑(u)𝑝Γ𝑞 𝑑𝑥≤ −∫Γ0(𝑝Γ − 𝑝2Γ2𝑀)Ju𝑡 ⋅ nK 𝑑𝑥 − ∫Γ0Ju𝑡 ⋅ nK(𝑝Γ − 𝑝2Γ2𝑀) 𝑑𝑥
− ∫𝛾 𝐶(𝑝, 𝑝Γ,u)(𝑝 − 𝑝Γ) 𝑑𝑠 + ∫Ω 𝑝𝑞 𝑑𝑥 + ∫Γ0 𝑑(u)𝑝Γ𝑞 𝑑𝑥≤ ∫Ω 𝑝𝑞 𝑑𝑥 + ∫Γ0 𝑑(u)𝑝Γ𝑞 𝑑𝑥.

Note that we used the property

−𝐶(𝑝, 𝑝Γ,u)(𝑝 − 𝑝Γ) = 2𝐾 𝑓𝑛𝜂𝑑(u) (𝑝Γ − 𝑝)(𝑝 − 𝑝Γ) ≤ 0.
This proves the statement of (5.30).
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5.3.7 Towards Propagating Sharp Fracture

Up to this point, we assumed that Γ0 is fixed in time, and the propagating part
of the fracture Γ∗ is only approximated by a diffuse phase-field representation.
However, ultimately, one would like to consider a propagating sharp fractureΓ0 = Γ0(𝑡) whose geometry follows the diffuse approximation. This would also
allow to update the lower-dimensional domain and equip the propagated part
of the fracture with the desired mixed-dimensional flow model. In mathematical
terms, this means that Γ0(𝑡) = Γ0(0) ∪ Γ∗(𝑡),
where Γ∗(𝑡) is the sharp interface limit of the phase-field representation 𝜑. This
evolution of the fracture geometry is not analyzed in a rigorous way at the con-
tinuous level in this work. In the numerical approximation section we describe
its treatment in a discrete in time framework.

5.4 Mixed-Dimensional Discontinuous Galerkin
Discretization

In this section, we present our discontinuous Galerkin (dG) discretization of
model (5.26)-(5.29). The choice of discontinuous Galerkin discretizations is mo-
tivated by the fact that they can directly represent discontinuities across the
fracture interface in the solution function spaces. Hereby, our approach will
consider a subset of the grid facets as representation of the lower-dimensional
fracture. In other words, we consider an approximation based on conforming
grids.
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5.4.1 Notation

Before we start with the description of the scheme, let us clarify some notation.
LetT be a conforming triangulation of Ω,F the set of inner facets, andF𝐷 the
Dirichlet boundary facets. The triangulation T is assumed to be conforming to
the fracture Γ0, i.e., there is a subset FΓ ⊂ F of facets that can be interpreted as
a triangulationTΓ of Γ0, cf. Figure 5.3 and Chapter 2. In order to distinguish, we
denote the (𝑑 − 2)-dimensional facets of the surface triangulation TΓ by F

Γ.

Ω

Γ

T

TΓ = FΓ

Figure 5.3: A subset of grid facetsFΓ of the bulk triangulationT coincides
with the triangulationTΓ of the lower-dimensional fracture Γ0.

We define the finite-dimensional functional spaces of displacement, phase-field
variable and the pressures byΦ𝑢ℎ ≔ {vℎ ∈ [𝐿2(Ω)]𝑛 | vℎ|𝑇 ∈ P𝑝(𝑇 ) ∀𝑇 ∈ T},Φ𝜑ℎ ≔ {𝜙ℎ ∈ 𝐿2(Ω) | 𝜙ℎ|𝑇 ∈ P𝑞(𝑇 ) ∀𝑇 ∈ T},Φ𝑝ℎ ≔ {𝜙ℎ ∈ 𝐿2(Ω) | 𝜓ℎ|𝑇 ∈ P𝑟(𝑇 ) ∀𝑇 ∈ T}, andΦ𝑝Γℎ ≔ {𝜓Γ,ℎ ∈ 𝐿2(Γ0) | 𝜓Γ,ℎ|𝑇 ∈ P𝑟(𝑇 ) ∀𝑇 ∈ TΓ},
where P𝑝(𝑇 ) denotes the set of polynomials on 𝑇 with degree ≤ 𝑝.
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For any 𝜓 ∈ Φ𝑝ℎ (or the other spaces, respectively) we denote the two values on
each side of a facet 𝐹 ∈ F by 𝜓+ and 𝜓−. Here, the normal n of facet 𝐹 is assumed
to point from the + to the − side, and we also denote n+ = n and n− = −n. The
restriction to specific sides of a facet is denoted with the ± superscript. We use
the jump operators as defined in (5.11) and the average operator defined as{{𝜓 }} ≔ 12(𝜓+ + 𝜓−).
A similar notation can be applied to the traces of bulk functions evaluated on
fracture elements 𝑇Γ ∈ TΓ as each fracture element can be identified with a facet𝐹Γ ∈ F.

5.4.2 Discontinuous Galerkin Formulation

Let us state the incomplete interior penalty discontinuous Galerkin (IIPDG) forms
of our Galerkin finite element (semi-)discretization. For a detailed background
on the discontinuous Galerkin method we refer to [29].

The IIPDG forms of our Galerkin finite element (semi-)discretization for our
mixed-dimensional phase-field model read𝐵𝑢(u, v) ≔∫

T

(�̃� (u, 𝜑) − 𝛼𝑝𝗜) ∶ 𝜖(v) 𝑑𝑥+ ∫
F⧵FΓ

𝛽𝑢ℎ JuK ⋅ JvK − {{(�̃� (u, 𝜑) − 𝛼𝑝𝗜)n}} ⋅ JvK 𝑑𝑠
+ ∫

FD

𝛽𝑢ℎ (u − u𝐷) ⋅ v − ((�̃�(u, 𝜑) − 𝛼𝑝𝗜)n) ⋅ v 𝑑𝑠,
+ ∫

FΓ(𝑝Γ − 𝑝2Γ2𝑀)n+ ⋅ v+ + (𝑝Γ − 𝑝2Γ2𝑀)n− ⋅ v− 𝑑𝑠, (5.31)
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𝐵𝜑(𝜑, 𝜙) ≔∫
T

−𝑔𝑐𝑙 (1 − 𝜑)𝜙 + 𝑔𝑐𝑙∇𝜑 ⋅ ∇𝜙 + 𝐴′(𝜑)Ψ+(u)𝜙 𝑑𝑥
+ ∫

F

𝛽𝜑ℎ J𝜑KJ𝜙K − {{𝑔𝑐𝑙∇𝜑 ⋅ n}}J𝜙K 𝑑𝑠, (5.32)

𝐵𝑝(𝑝, 𝜓 ) ≔∫
T

( 𝑝𝑀 + 𝛼 divu)𝑡𝜓 + (K𝜂 ∇𝑝) ⋅ ∇𝜓 𝑑𝑥+ ∫
F⧵FΓ

𝛽𝑝ℎ J𝑝KJ𝜓K − {{K𝜂 ∇𝑝}} ⋅ nJ𝜓K 𝑑𝑠
+ ∫

FΓ 𝐶(𝑝+, 𝑝Γ,u)𝜓+ + 𝐶(𝑝−, 𝑝Γ,u)𝜓− 𝑑𝑠 − ∫
T

𝑞𝜓 𝑑𝑥, (5.33)

𝐵𝑝Γ(𝑝Γ, 𝜓Γ) ≔∫
TΓ 𝑑(u)(𝑝Γ𝑀)𝑡𝜓Γ + 𝑑(u)𝐾 𝑓𝜏𝜂 ∇𝑝Γ ⋅ ∇𝜓Γ + 𝑑(u)𝑡𝜓Γ 𝑑𝑥
+ ∫

FΓ 𝛽𝑝ΓℎΓ J𝑝ΓKJ𝜓ΓK − {{𝑑(u)𝐾 𝑓𝜏𝜂 ∇𝑝Γ}} ⋅ nJ𝜓ΓK 𝑑𝑠− ∫
TΓ 𝐶(𝑝+, 𝑝Γ,u)𝜓Γ + 𝐶(𝑝−, 𝑝Γ,u)𝜓Γ 𝑑𝑥− ∫
TΓ 𝑑(u)𝑞𝜓Γ 𝑑𝑥. (5.34)

Here, ℎ (resp., ℎΓ) denotes the characteristic size of the two cells adjacent to
the corresponding facet. The penalty parameters 𝛽𝑢, 𝛽𝜑, 𝛽𝑝 and 𝛽𝑝Γ have to be
chosen sufficiently large to ensure well-posedness of the scheme. We choose

𝛽𝑢 = (𝜆 + 2𝜇)𝛽0, 𝛽𝜑 = 𝑔𝑐𝑙𝛽0, 𝛽𝑝 = n⊤Kn𝜂 𝛽0, 𝛽𝑝Γ = 𝑑(u)𝐾 𝑓𝜏𝜂 𝛽0,
where 𝛽0 = 100. In the formulation above, we use 𝐶(𝑝, 𝑝Γ,u) as defined in (5.22).
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The time-derivative is discretized using a backward Euler method.

5.4.3 Iterative Solution Strategy

Due to numerical difficulties related to the indefiniteness of the Jacobian of
the non-linear system (5.15)-(5.17), cf. [53], we do not solve it monolithically.
Instead, we apply an iterative solution strategy between displacement/pressure
equations and the phase-field equation that reads as follows.

1. For given 𝜑ℎ, find uℎ ∈ Φ𝑢ℎ, 𝑝ℎ ∈ Φ𝑝ℎ and 𝑝Γ,ℎ ∈ Φ𝑝Γ,ℎ s.t.𝐵𝑢(uℎ, v) + 𝐵𝑝(𝑝ℎ, 𝜓 ) + 𝐵𝑝Γ(𝑝Γ,ℎ, 𝜓Γ) = 0,
for all v ∈ Φ𝑢ℎ, 𝜓 ∈ Φ𝑝ℎ and 𝜓Γ ∈ Φ𝑝Γ,ℎ .

2. For given uℎ, 𝑝ℎ and 𝑝Γ,ℎ, find 𝜑ℎ ∈ Φ𝜑ℎ,𝐵𝜑(𝜑ℎ, 𝜙) = 0,
for all 𝜙 ∈ Φ𝜑ℎ.

3. Repeat step 1 and 2 until convergence.

In our numerical examples, we choose the difference between two iterates of 𝜑ℎ
measured in the 𝐿2-norm as indicator of convergence.

5.4.4 Tracking the Sharp Fracture

In our numerical approach, as already mentioned in Section 5.3.7, we reconstruct
the updated sharp fracture that is approximated by the diffuse phase-field rep-
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resentation. Therefore, the orders of the spatial discretization of displacement,
phase-field and pressure are chosen as𝑝 = 2, 𝑞 = 1, 𝑟 = 1,
because we observe that this choice (in particular, second order displacement,
first order phase-field) allows the fracture to propagate along facets of the mesh.
Choosing a second order displacement leads to a linear elastic energy Ψ+(u)
in equation (5.16) and, therefore, the phase-field does not necessarily decrease
constantly in cells, cf. Figure 5.4.

Figure 5.4: The phase-field solution around a propagating fracture tip for
different discretization orders of the displacement. The white line shows
the 𝜑 = 0.01 contour line that will be used as threshold to add new facets.
Left: First order displacement. Right: Second order displacement.

Then, during time stepping, we update the set of fracture facetsFΓ. If the value of
the phase-field variable at the center of a facet falls below the threshold 𝜑0 = 0.01,
we add this facet to the set of fracture facetsFΓ. Thereby, the discontinuity of the
displacement follows the propagation path, and the flow model is incorporated
in the propagated fracture. We remark that this approach automatically captures
topology changes like joining fractures and, we anticipate due to the nature
of our method, also bifurcations. However, we introduce a rather strong mesh-
dependency. Note that we only add (and do not remove) new facets to the
fracture network which implicitly makes the fracture propagation an irreversible
process.
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It is important to ensure that the total energy of the system decreases over
time, in particular, when we add facets to the fracture. We will investigate this
behavior in numerical examples below, cf. Section 5.5.

Table 5.1: Parameters of the numerical experiments.
Symbol Quantity Value Unit𝐸 Young’s modulus 108 Pa𝜈 Poisson’s ratio 0.2 -𝑀 Biot’s modulus 108 Pa𝛼 Biot coefficient 1 -𝜂 viscosity 10−3 kgm−1 s−1
K Bulk permeability 10−12 𝗜 m2𝑔𝑐 Griffith’s critical energy 103 Jm−1𝑑0 residual aperture 10−14 m𝛽0 penalty parameter 100 -𝑘 residual resistance 10−12 -𝑝inj injection pressure 5 × 10−3 m3 s−1𝑑0 point source distribution 103 m−2𝑥0 point source position (2, 2) mΔ𝑡 time step size 0.1 s𝑇 end time 10 sℎ mesh size at boundary 0.2 mℎ𝑓 mesh size at fracture 0.01 m𝑙 phase-field parameter 2ℎ𝑓 m

5.4.5 Implementation

The proposed discontinuous Galerkin discretization has been implemented
within the open source framework DUNE [11] on the basis of the discretization
module Dune-Fem [27] and our grid implementation Dune-MMesh [21]. The
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bilinear forms stated in (5.31)-(5.34) can be directly written in Python using UFL
[5] and the Dune-Fem framework generates the corresponding Galerkin schemes
as efficient C++ code. The nonlinear problems are solved by a Newton method
together with the direct linear solver UMFPack. All conforming triangular grids
are generated using the Python API of Gmsh [35].

The tools necessary tools to solve the mixed dimensional problem are available
in our grid implementation Dune-MMesh. First of all, Dune-MMesh can expose
a set of facets of the bulk grid (those which represent the fracture) as a separate
computational surface grid, and on this grid, the lower-dimensional forms can
also be stated using UFL. Second, Dune-MMesh provides trace operators to
access bulk discrete functions from the surface grid, and vice versa, in order to
implement the coupling terms. Finally, a specialized Newton method is provided
that assembles the coupling blocks of the Jacobian by finite differences and,
therefore, makes a mixed-dimensional monolithic solution algorithm available.
The source code to reproduce the results presented in Section 5.5 can be found
in a public repository2.

5.5 Numerical Experiments

In this section, we consider two numerical experiments to show the performance
of the mixed-dimensional phase-field model (5.15)-(5.25). The setups are inspired
by the test cases in [53] and [48], and we consider their results as reference.

5.5.1 Horizontal Fracture

In the first numerical experiment, we investigate the propagation of a single
horizontal fracture. Consider a domainD = (0, 4)2m with a single, horizontal
fracture Γ0 = (1.8, 2.2) × {2}m located in the center of the domain, as depicted in

2https://github.com/samuelburbulla/pfdfm
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1.8 1.8

2
0.4

Figure 5.5: Geometrical setting of first numerical experiment with a centered
horizontal fracture. Lengths in [m].

Figure 5.5. The fracture is pressurized by a point source injection that is modeled
by 𝑞(x) = 𝑝inj 𝑑0𝜋 exp(−𝑑0‖x − x0‖2). (5.35)

All physical and all discretization parameters of our examples are listed in Table
5.1 and are taken from [48]. We will investigate the corresponding displace-
ment, pressure and phase-field distributions, and study some properties of our
method.

Our findings for the first example can be observed in Figures 5.7-5.11. The domainΩ is warped by the displacement 3u to visualize the opening of the fracture. The
distribution of vertical displacement is displayed in Figure 5.7 and shows the
typical elliptical opening of the fracture. The pressure distribution visualized
in Figure 5.8 follows, as expected, the propagating fracture thanks to its higher
permeability. Here, also the lower-dimensional domain Γ is plotted. We obtain
negative pressure values at the tips of the fracture which have been also observed
in literature [48, 53]. In Figure 5.9, the phase-field is visualized and indicates the
propagation of the fracture tips.
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Figure 5.6: Horizontal displacement u𝑥 [m] for 𝑡 ∈ {0.1, 5, 10}s.

Figure 5.7: Vertical displacement u𝑦 [m] for 𝑡 ∈ {0.1, 5, 10}s.

Figure 5.8: Pressure 𝑝 [Pa] for 𝑡 ∈ {0.1, 5, 10}s.

Figure 5.9: Phase-field 𝜑 for 𝑡 ∈ {0.1, 5, 10}s.
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Figure 5.10: The maximum pressure [Pa] and the maximum fracture’s
aperture [m] plotted over time 𝑡 ∈ [0, 10]s. The dashed line shows the
reference solution taken from [48] (Example 1).

In order to observe the maximum pressure and aperture of the fracture over
time, we plotted these values in Figure 5.10. In Figure 5.11 (left), we compare
the propagation speed of the fracture for three values of 𝑙 ∈ {0.08, 0.04, 0.02} and
observe that it is independent of 𝑙 and, as we choose 𝑙 = 2ℎ𝑓, the propagation
gets smoother under mesh refinement. The number of iterations between the
poro-elastic problem and the phase-field equation can be found in Figure 5.12.

A quantitative comparison shows that our method provides similar values as
results in literature, e.g., see [48] (Example 1). In our computation, the fracture’s
propagation starts at around 𝑡 = 1.5s which is similar to around 𝑡 = 1.8s in the
aforementioned reference, see Figure 5.10 (left). The maximum pressure value
reaches 750000Pa, while it lies between 600000Pa and 700000Pa in the reference.
Further, the maximal fracture aperture approaches 0.01m in both cases, compare
Figure 5.10 (right), what suggests that the displacement values are similar. A
difference can be observed in the behavior of the maximum pressure where our
computations suggest an increase starting from 𝑡 = 4s instead of a plateau-like
value in the reference solution. The difference probably comes from the fact that
the reference applies the source term exclusively within the diffuse fracture and
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Figure 5.11: The length of the fracture [m] for different values of 𝑙 and the free
energy 𝑊 compared to the accumulated sources 𝑄(𝑡) for 𝑡 ∈ [0, 10]s.

computes the aperture implicitly by a post-processing routine.

Moreover, in Figure 5.11 (right) we visualize the free energy in comparison to
the accumulated sources𝑄(𝑡) ≔ ∫𝑡0 ∫Ω 𝑝𝑞 𝑑𝑥 + ∫Γ0 𝑑(u)𝑝Γ𝑞 𝑑𝑥 𝑑𝑡.
Note that the time derivative of 𝑊(u, 𝑝, 𝜑, 𝑝Γ) is smaller than the one of the
accumulated source term on the right hand side of (5.30). This is in accordance
with the statement in Theorem 5.1.
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Figure 5.12: The number of iterations between poro-elastic problem and
phase-field equation for 𝑡 ∈ [0, 10]s. Each iteration contains about 2-5
Newton iterations. Left: Example 1. Right: Example 2.

5.5.2 Two Joining Fractures

Consider the domain D = (0, 4)2m with two fractures Γ0 = Γ1 ∪ Γ2 whereΓ1 = (1.8, 2.4) × {2}m and Γ2 = {2.6} × (1.8, 2.2)m, cf. Figure 5.13. All physical
parameters are chosen as in the first numerical example, and we use the same
source term to pressurize the horizontally aligned fracture.

The distribution of the displacement is displayed in Figures 5.14-5.15. The pres-
sure distribution and the phase-field are visualized in Figures 5.16-5.17 respec-
tively.

Due to propagation, the two fractures join and create a connected fracture
network. From the tips of the vertical part propagation continues in a diagonal
direction as observed in [53]. However, unlike this previous work, we get an
explicit geometrical representation of the developed fracture network and we
claim that the solution of the flow problem is more accurate. It is hard to compare
both modeling approaches in terms of computational time, but we want to
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Figure 5.13: Geometrical setting of the second numerical experiment with two
fractures that are supposed to join. Lengths in [m].

highlight that in our approach grid refinement could be restricted to the area
around the tips where higher resolution for the phase-field is necessary.



148 5 Fracture Propagation in Poro-elastic Media

Figure 5.14: Horizontal displacement u𝑥 [m] for 𝑡 ∈ {1.8, 1.9, 25}s.

Figure 5.15: Vertical displacement u𝑦 [m] for 𝑡 ∈ {1.8, 1.9, 25}s.

Figure 5.16: Pressure 𝑝 [Pa] for 𝑡 ∈ {1.8, 1.9, 25}s.

Figure 5.17: Phase-field 𝜑 for 𝑡 ∈ {1.8, 1.9, 25}s.
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6.1 Conclusion

In this work, we presented new approaches to the mixed-dimensional modeling
of flow in fractured and dynamically fracturing porous media.

We started with an overview of our grid module Dune-MMesh that is tailored for
the implementation of mixed-dimensional models. The Dune-MMeshmodule set-
tles the foundations of a completely new way to implement mixed-dimensional
models. Furthermore, it creates new capabilities for numerical methods with
conforming moving interfaces surrounded by a re-meshing triangulation. A
set of examples has been presented including mixed-dimensional problems,
the finite-volume moving-mesh algorithm and some flow scenarios in highly
branched fractured porous media.

In Chapter 3, we presented the derivation of a dimensionally reduced model
for two-phase flow in fractured porous media that takes into account time-
dependent fracture growth and changing apertures. The finite-volume moving-
mesh algorithm has been proposed to capture dynamic fracture propagation
by an explicit geometrical representation of the fracture geometries. The new
method is able to track both the movement of lower-dimensional and full-
dimensional fractures. Therefore, it has been used to verify the newly derived
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model in several benchmark cases by comparing solutions of the reduced and the
full-dimensional fracture representations. The solutions showed good agreement
and this indicated the validity of the reduced model and the finite-volume
moving-mesh algorithm.

In Chapter 4, we derived a new model for single-phase flow in fractured porous
media where fractures with non-constant aperture are represented as lower-
dimensional interfaces. The model accounts for asymmetric fractures with spa-
tially varying aperture and can be viewed as a generalization of a previous
model [51]. The new model allows to study rough-surfaced, possibly curvilinear
real-world fracture geometries. In various numerical experiments based on a
new mixed-dimensional discontinuous Galerkin method we found a remarkable
agreement between the solution of the new interface model and a reference
solution. Moreover, it has been observed that neglecting any of the terms in the
model associated with a varying fracture aperture can substantially impair the
accuracy of the solution.

Finally, in Chapter 5, we presented a new mixed-dimensional phase-field model
for modeling fracture propagation in poro-elastic media. Our new model com-
bines ideas from discrete fracture modeling and phase-field models for fracture
propagation. The advantage of this new modeling approach is that we have an
explicit representation of the fracture network while preserving the geomet-
ric flexibility of the phase-field model. It has been proven that the new model
is thermodynamically consistent. We proposed a mixed-dimensional interior
penalty discontinuous Galerkin discretization on the basis of a fully conforming
discretization. The mesh dependency introduced in the combined approach was
shown to decrease refining the mesh. Finally, we applied the method to some
commonly used fracture propagation scenarios and observed that our numerical
solutions reproduce the expected behavior known from literature.
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6.2 Outlook

In future work, the proposed models and methods could be applied to more
complex flow and fracture propagation scenarios, and they could also be extended
to include additional physical effects. Moreover, the analysis of most of the
presented models remains open and might be investigated in future work.

Extensions of the proposed models include heterogeneous flow systems with
different flow models for bulk and fracture domains, e.g., incorporating the
roughness of the fracture walls, using free-flow regimes inside the fracture, or
adding thermal transport or precipitation effects. The additional terms derived
in Chapter 4 accounting for non-constant apertures can also be included in
the model equations for two-phase flow or for poro-elastic media, where the
fracture aperture is non-constant in general. Further, the junctions of fractures
within the lower-dimensional fracture network represent an issue that can be
investigated further. We did not care about coupling conditions at junctions of
the fracture network (except once in Chapter 3), as we get mass conservation
implicitly from our discontinuous Galerkin discretization. However, non-trivial
conditions have been proposed to coupled unknowns at a junction of a network
depending on the physical model, and further investigation could focus on the
case of intersecting fractures with different physical properties.

The presented methods might also be applied to complex (three-dimensional)
real-world scenarios with time-dependent flow problems and dynamically prop-
agating fractures. However, especially considering three-dimensional compu-
tations, the performance should be improved. The two-dimensional examples
presented in Chapter 5 with several hundred thousands of degrees of freedoms
and several hundred time steps already take hours on a single-core machine,
and it might be of interest to see more complex fracture propagation patterns,
e.g., as depicted in Figure 1.2. For instance, in order to significantly improve the
performance of the solver, one could develop an MPI parallel version of Dune-
MMesh. Initial work in this direction has been done, but the full functionality
of Dune-MMesh, especially the monolithic solving routine and re-meshing, is
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non-trivial in parallel and not supported yet. Further, extended continuous finite
element spaces with additional degrees of freedoms just at the interface could
be implemented as this would reduce the total number of degrees in comparison
to the discontinuous discretization. Finally, one could choose suitable iterative
solvers for the sub-problems in bulk and lower-dimensional domain and split-
ting algorithms like fixed-stress splitting to solve the (non-)linear systems more
efficiently.

In any case, Dune-MMesh is well-suited for the implementation of discretizations
for any complex mixed-dimensional model or for any mathematical problem
with a moving interface and we are looking forward to see how others will use
this resource.
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Abstract

Modeling flow in dynamically fracturing porous media is of high
interest for a wide range of natural and technical applications,
for instance, geothermal energy production or carbon capture
and storage. In this work, we present new mixed-dimensional
models for flow in porous media including fractures with time-
and space-dependent geometries. The models are implemented
using our new grid implementation Dune-MMesh which is tai-
lored for the discretization of mixed-dimensional partial differ-
ential equations with fully conforming interface of codimension
one. First, we propose a mixed-dimensional model for capillarity-
free two-phase flow in dynamically fracturing porous media.
The model is discretized by a fully conforming finite-volume
moving-mesh algorithm that explicitly tracks the fracture geom-
etry. Further, generalizing an earlier model for single-phase flow
in fractured porous media, we derive a dimensionally reduced
model including spatially varying apertures. In several numerical
examples, using a mixed-dimensional discontinuous Galerkin
discretization, the model demonstrates significant improvements
for curvilinear fracture geometries. Finally, we propose a mixed-
dimensional phase-field model for fracture propagation in poro-
elastic media combining discrete fracture and phase-field mod-
eling approaches. The corresponding discontinuous Galerkin
discretization tracks the fracture geometry by adding facets to
the fracture triangulation according to the phase-field indicator
and is validated with results known from literature.
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