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Model Configurations

The following table contains a brief description of the most important model configurations
used in Chapters 6 and 7. It serves as a reference for better understanding the discussion of
the results and conclusions.

ID Description

I(45), I∗(59),
II(34), III(61),
IVd (24)

Roman numerals represent the basic daily model configurations,
which differ by the number of gauging stations (see parentheses)
used for the spatial precipitation interpolations and simulations;
see Tables 3.2 and 6.1.

ODK, EDK,
EDKs

Various kriging methods for interpolating precipitation (see
Abbreviations and Section 4.3). In each case, the interpolations are
performed with the same rain gauge configuration.

RM , RM>700,
RM>1000

Spatial precipitation simulations using random mixing (RM ) as
well as accounting for greater-equal constraints at gauging stations
above certain elevations (RM>700 above 700m.a.s.l. and RM>1000

above 1000m.a.s.l.); see Section 4.4.

C1WLS - C4WLS

Application of different complex reservoir compositions within
the FLEX model (see Table 5.3). The subscripts WLS (weighted) or
SLS (standard) indicate the used least square method for
calibration.

HY , HS, HW ,
HS<20mm

Different model runs for the hydrological year (HY ) as well as the
hydrological summer (HS, HS<20mm) and winter half-years
(HW ); see Subsection 6.3.1.

MI1 - MI5

Time-dependent analysis with varying modeling intervals (MI) in
terms of length of time period and swapped time intervals for
calibration and validation; see Table 6.15.

UE1 - UE4
Application of different discharge time series determined by
several combinations of unusual events (UE); see Subsection 6.3.2.

MI∗11 - MI∗4

Varying modeling intervals (MI∗, analogous to MI) with single
disregarded years for model calibration and validation; see Table
7.1.

Id, IIId, IIIh,
IVh,ESM , IIIh,ESM

Different rain gauge configurations and liquid water time series
with different temporal resolution (d = daily and h = hourly) and
consideration of an external snow model (ESM ); see Subsections
7.2 and 7.3.





Abstract

Flood risk management is becoming increasingly important due to more frequent and severe
flood events. Powerful and reliable hydrological models are required for decision-makers
as a useful prediction tool. Therefore, the general focus in hydrological modeling should
not only be on improving absolute performance by developing progressively more complex
model structures. Rather, it is about identifying and understanding where and why certain
modeling approaches fail and to find solutions accordingly.

This thesis initially provides a comprehensive quality control of the model input to system-
atically analyze possible data deficiencies. In addition to classical geostatistical interpolation
methods, a new conditional simulation method (random mixing (RM )) is used to generate
precipitation fields. By implementing inequality constraints, this stochastic approach allows
for a stronger consideration of measurement uncertainties. Two different model structures
are applied to test whether and to what extent a comparatively simple lumped model ap-
proach (FLEX) is inferior to the more complex spatially distributed HBV model. One great
advantage of FLEX is the straightforward adaptation of the model structure and application
to different temporal resolutions as well as relatively fast computation times.

Through own previous modeling attempts, it has been shown that the generation of robust
model outputs often failed regardless of model complexity. To further investigate the prob-
lem of unstable model results, certain modifications are made to the modeling approaches.
Model calculations are performed in hourly resolution to represent the fast-changing dis-
charge conditions in smaller watersheds. A spatial densification of the sparse hourly obser-
vation network with disaggregated daily data is achieved. An external spatially distributed
snow model (ESM ) is developed for simultaneous consideration of different aggregate
states of precipitation and snow processes. The concept of liquid water series is introduced
to be able to combine an ESM and the FLEX framework.

Another aspect of this thesis is a comprehensive, often neglected, assessment of data and
model adequacy for a better understanding of the implications for hydrological modeling.
A larger number of performance measures than usual are applied and evaluated. A time-
dependent model evaluation addresses the influence of time series lengths and different
modeling intervals, as well as separate modeling of hydrological seasons. The difficulty of
determining an unique parameter set that describes different discharge conditions equally
well is also discussed. In this context, an approach is tested which uses time series with
reduced data input determined by unusual events. The optimized parameter set can then
be applied selectively to model certain prevailing discharge conditions. In investigating the
model parameterization, precipitation time series simulated using RM are used to consider
the problem of equifinality. Finally, based on all these findings, the most promising model-
ing approaches are assembled and a conclusion on the predictive reliability is drawn.





Kurzfassung

Ein effizienter Hochwasserschutz und das dazugehörende Hochwasserrisikomanagement
gewinnen aufgrund häufiger auftretender und schwerer Hochwasserereignisse zunehmend
an Bedeutung. Es werden hierfür leistungsfähige und zuverlässige hydrologische Modelle
benötigt, welche an die Vor-Ort-Situation angepasst sind und den Planern sowie den Ent-
scheidungsträgern als Vorhersageinstrument dienen. Bisherige Studien zeigen, dass hydro-
logische Modelle oft noch nicht auf einem zufriedenstellenden und verlässlichen Niveau für
den operativen Einsatz sind.

Die Motivation für diese Arbeit entstand aus einem Projekt, welches sich mit der Notfall-
planung und Evakuierungsmaßnahmen für urbane Gebiete und Verkehrsinfrastruktur bei
extremen Hochwasserereignissen befasste. Das ausgewählte Untersuchungsgebiet weist ei-
ne sehr heterogene und alpine Topographie auf. Die Aufgabe der Hydrologie war es einen
robusten und verlässlichen Modellansatz zu finden, um bis dato unbeobachtete hydrome-
teorologische Extremereignisse generieren zu können. Aktuelle Entwicklungen in der hy-
drologischen Modellierung zeigen, dass der Trend zu immer komplexeren Modellstruktu-
ren mit höherem Daten- und Parameterbedarf geht. Der damit einhergehende, oft einseitige
Fokus auf der Leistungssteigerung von Kalibrierungsergebnissen und eine oftmals unzu-
reichende Modellvalidierung, können die erforderlichen Voraussetzungen für zuverlässige
Vorhersagen vortäuschen. Diese Studie konzentriert sich nicht nur auf die Verbesserung der
absoluten Modellgüte durch die Anwendung verschiedener Modell- und Prozessmodifika-
tionen. Vielmehr geht es darum, zu erkennen und zu verstehen, wo und warum bestimm-
te Modellierungsansätze scheitern, um anschließend Lösungen für Verbesserungen zu fin-
den. Die gängige Bewertung der Modellgüte erfolgt anhand der modellierten Ausgabeda-
ten. Es wird dabei häufig versucht die Abweichungen von beobachteten und modellierten
Daten durch eine Änderung der Modellstruktur und Parameter zu korrigieren. Diese Vorge-
hensweise basiert auf der weit verbreiteten Annahme, dass die Fehlervarianz grundsätzlich
durch die modellierten Daten hervorgerufen wird und die Messwerte als fehlerfrei ange-
nommen werden. Aus diesem Grund wird in dieser Arbeit ein besonderes Augenmerk auf
die Eingangsdaten und deren Verarbeitung gerichtet, bevor sie an die verwendeten Modelle
übergeben werden.

Zu Beginn der Untersuchungen konnten zwei wesentliche Schwächen der verwendeten
Modellkonfigurationen identifiziert werden. Einerseits haben alle Konfigurationen, unab-
hängig von ihrer Komplexität, erhebliche Defizite bei der Generierung robuster Modeller-
gebnisse. Dies macht sich durch einen deutlichen Unterschied der Modellgüte zwischen
Kalibrierung und Validierung bemerkbar. Andererseits sind deutliche Probleme bei der kor-
rekten Wiedergabe bestimmter Abflussbedingungen zu erkennen. Der Wasserhaushalt von
alpinen Einzugsgebieten wird stark durch die Speicherung und Abgabe von Wasser in Form
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von Schnee und Eis beeinflusst. Aus hydrologischer Sicht ist die Schneeschmelze ebenfalls
von besonderem Interesse, da sie im Frühjahr mit überlagernden intensiven und lang an-
haltenden Niederschlägen ein hohes Hochwasserpotenzial aufweist. Anfängliche Modellie-
rungsversuche ergaben inakzeptable Ergebnisse für die definierte Schneeschmelzperiode.
Aufgrund der Aufgabenstellung und damit verbundenen Ziele ist die Darstellung der mar-
kanten Hochwasserabflüsse entscheidend. Viele Modellierungsansätze haben gezeigt, dass
die Scheitelabflüsse bei der Kalibrierung und insbesondere bei der Validierung deutlich un-
terschätzt werden. Die Scheitelabflüsse werden bei der Validierung oft nicht einmal von den
Unsicherheitsbändern erfasst. Solche Modellergebnisse sind keine Grundlage für zuverläs-
sige Vorhersagen von bisher unbeobachteten Hochwasserereignissen.

Um die potentiellen Ursachen für die vorgenannten Defizite systematisch zu erfassen,
wird zunächst eine umfassende Qualitätskontrolle der Eingangsdaten durchgeführt. Dabei
werden geostatistische Interpolationsmethoden unterschiedlicher Komplexität miteinander
verglichen. Es wird eine neue bedingte Simulationsmethode (Random Mixing (RM )) für die
räumliche Interpolation von Niederschlagsfeldern angewendet. Dieser stochastische Ansatz
ermöglicht durch die Einbindung von linearen Ungleichheitsbedingungen (größer-gleich
Bedingungen) eine stärkere Berücksichtigung von Messunsicherheiten. Die Datenanalyse
zeigt, dass unabhängig von den verwendeten Konfigurationen der Niederschlagsstationen
und der angewandten Interpolationsmethoden ein deutliches Defizit in der Wasserbilanz
besteht. Die Verwendung der Konfiguration mit den meisten und räumlich am gleichmä-
ßigsten verteilten Niederschlagsstationen führt aber bereits zu einer Verringerung des Was-
serdefizits, insbesondere in den Winterhalbjahren. Die Berücksichtigung der Topographie
als Zusatzinformation bei den Kriging-Verfahren wirkt sich zusätzlich positiv auf die Was-
serbilanz aus. Ein weiterer Aspekt ist, dass akkumulierte räumliche Niederschlagsmengen
in der Regel nicht durch die kleinräumige Variabilität der Topographie beeinflusst werden.
Daher wird ein geglättetes digitales Höhenmodell (DEM ) verwendet, um die unplausi-
ble Nachbildung der zugrunde liegenden kleinräumigen Geländestruktur in den Nieder-
schlagsfeldern zu korrigieren. Mittels RM simulierte Niederschlagsfelder reduzieren das
Wasserdefizit um mehr als die Hälfte in dieser Studie. Die Wasserbilanz kann nahezu aus-
geglichen werden, wenn an den höchstgelegenen Niederschlagsstationen größer-gleich Be-
dingungen für die Simulationen berücksichtigt werden. Damit ist RM unter Einbindung
von größer-gleich Bedingungen geeignet Messunsicherheiten, insbesondere bei schwierigen
topographischen Randbedingungen, besser zu beschreiben.

Die Anwendung der beiden unterschiedlichen Modellstrukturen zeigt, dass ein vergleichs-
weise einfacher räumlich konzentrierter Modellansatz (FLEX, lumped) der komplexeren
räumlich verteilten Struktur des HBV-Modells (distributed) nicht grundsätzlich unterlegen
ist. Ein großer Vorteil des FLEX-Konzepts ist die relativ unkomplizierte Anpassung der
Modellstruktur und Anwendung auf unterschiedliche zeitliche Auflösungen. Die verhält-
nismäßig schnellen Rechenzeiten des Modells sind ein weiterer Pluspunkt. Somit können
mit vertretbaren Zeitaufwand Modellläufe in täglicher Auflösung mit hunderten simulier-
ter Niederschlagszeitreihen durchgeführt werden. Unabhängig von der Modellkomplexität
konnten bei vielen Modellierungsversuchen dennoch keine robusten Ergebnisse erzielt wer-
den. Dies ist ein Hinweis darauf, dass dieses Problem nicht primär von der Modellstruk-
tur oder der Parametrisierung verursacht wird. Das Gleiche gilt für die ungenügend dar-
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gestellten Abflussbedingungen. Für die Modellierung der Schneeschmelzperioden erweist
sich die räumlich verteilte Berücksichtigung der Eingangsdaten Niederschlag und Tempe-
ratur im HBV-Modell als vorteilhafter. Aus dieser Erkenntnis wird das Konzept der liquid
water Zeitreihen entwickelt. Dazu wird die Flexibilität der FLEX-Struktur genutzt, indem
der Schneeprozess im Modell deaktiviert wird. Stattdessen wird ein ausgelagertes Schnee-
modell (ESM ) unter Anwendung des Gradtag-Verfahrens (Temperatur-Index-Methode) er-
stellt, welches die Akkumulations- und Schmelzprozesse in einem räumlich verteilten Ras-
ter berechnet. Damit wird die gleichzeitige Berücksichtigung verschiedener Aggregatzu-
stände von Niederschlag und Schneeprozessen innerhalb des Einzugsgebiets möglich. Die
räumlich verteilte Wasserverfügbarkeit aus verschiedenen Bezugsquellen wird anschlie-
ßend zu einem räumlich konzentrierten Wert pro Zeitschritt aggregiert. Die resultierende
liquid water Zeitreihe kann so an das FLEX-Modell übergeben werden. Diese Methode liefert
auf Tagesbasis vielversprechende Ergebnisse, obwohl die Modellleistung für die Schnee-
schmelze besser, aber immer noch unbefriedigend ist. Daraus lässt sich schließen, dass für
eine sehr heterogene und alpine Topographie eine räumlich konzentrierte Darstellung der
Schneeprozesse allein nicht ausreichend ist. Die Kombination aus einem räumlich konzen-
trierten Grundgerüst zur Modellierung der Hauptabflusskomponenten und der individuel-
len Auslagerung von komplexen Prozessen erweist sich hier als geeignetes Werkzeug.

Das FLEX-Modell eignet sich aufgrund seiner verhältnißmäßig schnellen Rechenzeiten sehr
gut für höher zeitlich aufgelöste Modellierungen. Daher wird im Rahmen dieser Arbeit
auch der Einfluss der zeitlichen Auflösung eingehend untersucht. Die vorhandenen Nieder-
schlagsstationen mit stündlichen Daten sind sehr spärlich, weshalb das Messnetz zusätzlich
mit disaggregierten Daten von Tagesstationen verdichtet wird. Die täglichen Daten werden
mit der Nächste-Nachbarn-Methode disaggregiert, welche es ermöglicht die stündliche Nie-
derschlagsverteilung an jeder Tagesstation zu bestimmen. Die ausgewerteten stündlichen
Modellläufe weisen für alle verwendeten Stationskonfigurationen robustere Modellergeb-
nisse auf. Dies deutet darauf hin, dass in kleineren Einzugsgebieten eine hohe zeitliche Auf-
lösung erforderlich ist, um die sich schnell ändernden Abflussbedingungen ausreichend gut
darzustellen. Die zusätzliche räumliche Verdichtung des Messnetzes durch disaggregierte
Tagesdaten wirkt sich somit positiv auf die Modellleistung und Robustheit aus.

Ein weiterer Aspekt dieser Arbeit ist eine umfassende, oft etwas vernachlässigte, Evaluie-
rung der Daten- und Modelleignung, um ein besseres Verständnis für deren Auswirkungen
auf die hydrologische Modellierung zu erlangen. Es wird zunächst eine größere Anzahl
von Gütemaßen als üblich angewendet und ausgewertet. Einerseits sollte nicht außer Acht
gelassen werden, dass Gütemaße sehr empfindlich auf einzelne, unzulänglich modellierte
(Hochwasser-) Ereignisse reagieren können. Andererseits kann eine kontinuierliche Über-
oder Unterschätzung der Abflussbedingungen sich kaum nachteilig auf das Leistungsni-
veau auswirken. Es wurde gezeigt, dass die Bewertung nur auf Basis eines Gütemaßes
(z. B. NSE) zu falschen Bewertungen bezüglich der Qualität und Zuverlässigkeit der Mo-
dellausgabe führen kann. Andere Maße, wie z. B. die modifizierte Kling-Gupta Kennzahl
(KGEm), weisen in dieser Studie eine geringere Sensitivität zwischen den verschiedenen
Modellansätzen auf, was bei der Auswertung ebenfalls schwierig zu interpretieren sein und
zu falschen Entscheidungen führen kann. Gütemaße, wie der PBIAS, welche den Modell-
fehler anhand des Trends zur Über- oder Unterschätzung des Volumens beschreiben, erfor-
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dern bei der Interpretation ebenfalls eine gewisse Vorsicht. Eine scheinbar ausgeglichene
Volumenbilanz über den Gesamtmodellierungszeitraum kann unter Umständen nur durch
Kompensationseffekte einzelner deutlich voneinander abweichender und relativ schwacher
Ergebnisse verursacht werden, wie die jahresweise Auswertung der Modellgüte gezeigt hat.

Eine zeitabhängige Modellevaluierung kommt zu dem Ergebnis, dass die Länge der Zeitrei-
hen, hydrologische Jahreszeiten oder unterschiedliche Modellierungsintervalle nur eine un-
tergeordnete Rolle spielen. Hier sind vielmehr ausreichend häufige und möglichst unter-
schiedliche hydrologische Bedingungen, wie z. B. ausgeprägte Hochwasserereignisse und
längere Niedrigwasserperioden, entscheidend. Diese sollten sich möglichst gleichmäßig
über den gewählten Kalibrierungs- und Validierungszeitraum verteilen. Die saisonale Mo-
dellierung mit hydrologischen Sommer- und Winterhalbjahren zeigt, dass die erhaltenen Pa-
rametersätze jeweils unterschiedliche Informationen für das hydrologische Pendant liefern.
Das ist ein Beispiel dafür, wie schwierig es ist, einen einzigen Parametersatz zu bestimmen,
welcher unterschiedlichste Abflussbedingungen gleich gut beschreibt. Ein Ansatz könnte
sein, dass verschiedene Parametersätze separat auf Basis unterschiedlicher Abflussbedin-
gungen optimiert werden. Die so ermittelten Parametersätze können dann jeweils nach den
vorherrschenden Bedingungen angewendet werden. Ein solcher Ansatz wird anhand von
Zeitreihen mit reduziertem Dateneinsatz dargestellt, welche mit Hilfe von außergewöhn-
lichen hydrometeorologischen Ereignissen definiert werden. Es kann, mit Ausnahme der
Schneeprozesse, eine robuste Parametrisierung mit deutlich weniger Eingangsdaten und
geringerer Modelllaufzeiten für die restlichen Abflussbedingungen erreicht werden. Das
Problem der Äquifinalität wird bei der Analyse der Modellparametrisierung thematisiert.
Hierbei erweisen sich die mittels RM simulierten Niederschlagszeitreihen als geeignet, um
ausreichend viele Modellläufe mit identischer Modellgüte sowohl bei der Kalibrierung als
auch der Validierung zu erhalten. Damit lässt sich zeigen, dass die optimalen Parametersät-
ze variieren können. Diese Erkenntnis kann eine klare Entscheidung für den besten Modell-
ansatz erschweren und muss auch im Hinblick auf die Übertragbarkeit der Parameter auf
andere Modellierungszwecke berücksichtigt werden.

Schließlich werden aus all diesen einzelnen Erkenntnissen die vielversprechendsten Model-
lierungsansätze zusammengestellt. Auf der Grundlage dieser schrittweisen Anpassung der
Modellierungsansätze wird eine Schlussfolgerung über die Vorhersagesicherheit gezogen.
Die drei wichtigsten Modifikationen, welche zu einer wesentlich verbesserten Entwicklung
sowohl bei der Schneeschmelze als auch bei den Spitzenabflüssen beitragen, sind: Modell-
rechnungen in stündlicher Auflösung, eine räumliche Verdichtung des Messnetzes mit dis-
aggregierten Tagesdaten sowie ein externes räumlich verteiltes Schneemodell (ESM). Die
Hauptquellen von Unsicherheit können in dieser Studie auf diese drei Einflussfaktoren zu-
rückgeführt werden. Es wird sehr deutlich, wie wichtig eine qualitativ hochwertige räumli-
che und zeitliche Datenerfassung als Grundlage für zuverlässige Modellierungsansätze ist.
Es ist eine trügerische Annahme, dass immer komplexere Modellstrukturen die Verwen-
dung von realen Daten ersetzen können. Das genaueste Modell nutzt nichts, wenn es nicht
mit korrekten Daten versorgt und verifiziert wird. Die zeitunabhängige Auswertung mit
Abflussdauerlinien bestätigt, dass die Konfiguration, welche die zuvor genannten verbes-
sernden Modifikationen beinhaltet, die statistischen Abflusseigenschaften am besten wie-
dergibt. Die Auswertung der höchsten Abflussereignisse zeigt unter Berücksichtigung der
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Unsicherheiten ebenfalls, dass nur dadurch ein zuverlässiger Modellierungsansatz erreicht
wird, welcher für Hochwasservorhersagen anwendbar erscheint. Dennoch müssen Vorher-
sagen von bisher unbeobachteten extremen Hochwasserereignissen behutsam interpretiert
und bei Entscheidungen angewandt werden, da sie eine Extrapolation ins Unbekannte mit
zunehmenden Unsicherheiten darstellen.

Diese Arbeit zeigt die Eignung verschiedener Ansätze zur Datenverarbeitung und Model-
lauswahl, um von anfänglich inakzeptablen zu sehr guten und robusten Modellergebnis-
sen zu gelangen. Anhand vieler verschiedener Evaluierungen lässt sich erkennen, welche
Faktoren bei der hydrologischen Modellierung berücksichtigt werden müssen und welche
offenbar eher eine untergeordnete Rolle spielen. Das Ziel dieser Arbeit ist es, die Einzugs-
gebietseigenschaften, die erforderliche Datengrundlage, das Prozess- und Modellverhalten
sehr umfassend zu untersuchen. Daher wurden alle Untersuchungen an einem einzigen
Einzugsgebiet durchgeführt. Die Ergebnisse dieser Studie sollen bei vergleichbaren Frage-
stellungen helfen, um beim Thema Datenverarbeitung und Modellauswahl zielgerichteter
vorgehen zu können. Bei weiteren Anwendungen sind die vorgeschlagenen Lösungsansät-
ze und ihre Gültigkeit an einer größeren Anzahl von Einzugsgebieten mit unterschiedlichen
Eigenschaften sowie klimatischen Bedingungen zu untersuchen.





1 Introduction

More frequent and severe flood events demonstrate the importance of efficient flood protec-
tion and the corresponding flood risk management. In June 2013, one of the heaviest floods
in recent times occurred in Central Europe and caused noteworthy damages along the huge
rivers Danube and Elbe, as well as in smaller catchments in the Alps. The Federal Ministry
of the Interior (BMI) estimated the preliminary amount of damages to be around 6.7 billion
Euro (BMI, 2013). To reduce the risk of heavy damages in the future, hydrological model-
ing must be increasingly considered as an option for verifying predictions of extreme flood
events. Thus, an important basic for the establishment of the reliability of simulation mod-
els is an active communication between model developer and its possible users (Schlesinger
et al., 1979; Refsgaard and Henriksen, 2004).

1.1 Motivation

In literature, the application possibilities and limitations of hydrological models as well as
existing uncertainties are controversially discussed. It shows that the state of science is still
going beyond a satisfactory level. Savenije (2009) argued that good models do not exist.
Thus, the development of more appropriate models must be the challenge rather than the
competition to find the best model. Finding an universal model that performs equally well
independently of the application area and the boundary conditions is practically impossible
(Andréassian et al., 2009). In many studies, the enhancements focus only on increasing model
complexity and the involved improvements in calibration, but an adequate validation and
analysis of uncertainty is often missing.

“Difficulties in defining truly mechanistic model structures and difficulties of model calibration and
validation suggest that the application of distributed hydrological models is more an exercise in

prophecy than predictions.”

(Beven, 1993)

This upper statement illustrates the dilemma of achieving reliable predictions in hydrologi-
cal modeling. This is a good link to the motivation of this thesis which has been originated
within the project EvaSim (Coupled Traffic and Hydraulic Simulation to Aid in Emergency
Response Planning). The research project was funded by the German Federal Ministry of
Education and Research (BMBF ). Within this project, different scientific disciplines such as
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hydrological and hydraulic engineers, traffic planner and sociologist, as well as users from
engineering companies and decision makers from public institutions worked together. The
aim was to improve emergency response planning for urban areas and transportation in-
frastructure that can be affected by extreme flood events caused by heavy precipitation or
dam failures. With the linkage of hydrological models, flood wave spreading simulation as
well as the simulation and optimization of traffic flow evacuation scenarios in the case of
emergency were developed on real investigation areas. As final result, a tool which is trans-
ferable to any other similar region was provided. The focus for hydrology in this project
was on investigating extreme precipitation events and creating unobserved flood scenarios.
The modeled hydrographs were used as input for the hydraulic models and the derivation
of flood hazard maps.

The results of this project confirmed the difficulties of generating reliable hydrological
model predictions in order to apply them to the creation of appropriate rescue scenarios.
On the one hand, there is the need of preferably exact results for the users (e.g., hydraulic
modelers or decision makers) as a prediction tool. Then, there is the different understanding
that not only one solution exists but also a range of possible outcomes associated with un-
certainties. On the other hand, the obtained results, providing a good model performance
in calibration, could pretend a reliable solution. But, a careful evaluation of the results has
shown that especially parts of interest, e.g., flood events are represented relatively poor.
Thus, the simulation of synthetic flood events does not provide very reliable predictions.
However, such extreme events can cause heavy damages or in the worst case even cost hu-
man life. In this context, the risk of an uncertain or even wrong prediction could have serious
consequences. So, further investigations on data processing techniques and an appropriate
model choice are important.

1.2 Scope of the Thesis

A major problem in hydrological modeling is dealing with model inconsistencies. Beven
(2007) stressed that model rejection may have a more beneficial learning effect than the ac-
ceptance of a model. Identifying a model weakness or a process inadequately described by
the model, can contribute to further development and improvement. A model rejection is
often caused by inadequate input data or observations which are used for calibration and
validation.

This study addresses these issues such as data or model inadequacy. The influence of data
configuration and processing on the models is quantified. The appropriate model choice
for certain modeling purposes is investigated on the basis of different complex models and
process structures. In this study, the model assessments are always performed using var-
ious graphical, absolute and relative performance measures. Depending on the efficiency
criterion, the evaluation may focus on fulfilling different hydrological constraints, such as
discharge volume, high or low flow conditions. This approach is intended to show that some
sensitivity on the part of the decision maker is required in the selection of performance mea-
sures and the resulting model evaluation in order to draw the correct conclusions from such
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model outputs. The work presents approaches how the applied modifications can overcome
some limitations based on data and model inadequacies including uncertainty. Finally, the
purpose is to evaluate the predictive reliability, especially for flood events. The investiga-
tions performed are divided into the following three main parts:

Effects of Model and Process Complexity
Numerous hydrological models with a wide range of complexity are available. Within this
study, a distributed and a lumped model structure are applied. In addition, the lumped
model varies in its complexity by different configurations of the process describing reser-
voirs and corresponding parameter sets. Both models are used for the investigation of an
alpine headwater catchment.

In this context, it is investigated if a distributed model is more appropriate than a simple
lumped approach. Likewise, it is tested if within the lumped model structure different com-
plex reservoir configurations result in different model performances. These model struc-
tures differ in various data requirements and set-ups. As a consequence, the time required
to generate model output varies considerably. Modeling of snow processes is a sophisticated
task and often handled with relative simple assumptions in hydrological models. Therefore,
the question arises whether a lumped model structure is able to precisely describe snow
processes in a topographically highly variable area? For comparison, a distributed external
snow model with various modifications is applied and the concept of liquid water time series
is introduced.

This section also investigates to which extent temporal aggregation or disaggregation can
be an instrument for handling data or model limitations. This issue does not deal with
complexity in the sense of complex process descriptions, but rather about the fact that ag-
gregation or disaggregation require a higher effort for data preparation and processing as
well as for model calibration and evaluation. Within this framework, the effect of modeling
on a higher temporal resolution (e.g., hourly) and the following aggregation of the model re-
sults (e.g., daily) is analyzed. In addition, it is tested whether the incorporation of additional
data (e.g., observations of precipitation) on a lower temporal resolution cause a benefit for
high-resolution model calculations. For this purpose, an approach using the nearest-neighbor
method for disaggregating daily data is developed.

Assessment of Data and Model Adequacy
The target of this section is the evaluation of model output for their performance level and
their predictive reliability. These include aspects related to data quality, data processing, and
model robustness. The temporal and spatial available observations of the required input
data are often sparse or of limited quality. Hence, such an influence on model performance
and robustness is analyzed using various rain gauge densities and distributions as well as
modified temperature time series and possible data discrepancies.

In a further step, it is examined to what extent the model performance is influenced by the
way the input data are processed. Several conventional spatial interpolation methods are
used here, which are compared with a new conditional simulation method (random mixing).
The purpose of applying such a simulation method is to investigate the influence of input
uncertainty on the model calibration and its output. Measurement uncertainties due to the
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alpine topography of the study area are more strongly considered with the implementation
of linear inequality constraints.

A time-dependent performance analysis deals with various issues related to time periods
and durations of calibration and validation. The goal is to determine if such factors have
an impact on a high-performing and robust modeling approach. In addition, unusual hy-
drological sequences are used in an event-based modeling approach to determine if robust
model parameterizations can be achieved with significantly reduced data and time require-
ments. In the context of determining robust parameter sets, the issue of equifinality is also
addressed.

Model Reliability - Applicability for Flood Prediction
The aim of this section is the evaluation of model outputs for their predictive reliability and
finally the prediction capability of severe flood events. For this purpose, the most promis-
ing model approaches are combined and evaluated based on the results of the previous
findings. The extent to which different complex process descriptions (e.g., snow modeling)
or temporal resolution are required for the correct representation of specific hydrological
conditions is demonstrated. This topic concludes with a comparison of the development of
hydrological conditions identified as weaknesses during the modeling process.

1.3 Outline of the Thesis

The thesis starts in Chapter 2 with a general introduction to the state of science in hydro-
logical modeling, followed by the presentation of the two applied models. Finally, the ap-
proaches to evaluate the model performance are summarized.

In Chapter 3, the study area and its properties are introduced. A brief description of the
data availability, the selected time period and the different used station configurations is
provided.

Chapter 4 deals with data validation and processing. First, the sources of uncertainty and
the quality of the required data are surveyed. Conventional statistical methods such as krig-
ing and a new conditional simulation method (random mixing) for processing meteorological
input data are then applied and compared.

In the next sections, aspects concerning model complexity, model choice and model process-
ing are addressed. These investigations are shown and discussed in Chapter 5.

An assessment of data and model adequacy is provided in Chapter 6. Inconsistencies of
model results based on data inadequacy as well as modeling weakness are evaluated. In
addition, the influence of different data properties, processing and calibration strategies are
analyzed.

Finally, the model reliability and prediction capability for severe flood events are evaluated
in Chapter 7.
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Hydrological modeling has become a widely used discipline in hydrology. Savenije (2009)
defines hydrology as the science explaining the occurrence and behavior of water above,
over and through the Earth. In this context, a model is a simplified description of a complex
natural system. A hydrological system includes several physical, chemical and biological
processes which are used as input variables for a model (Clarke, 1973). It uses mathemat-
ical, statistical and numerical functions to express input variables and the processes of a
hydrological system transforming them to output variables. Models in hydrology represent
certain parts of the hydrological system like climate, surface and subsurface processes, as
well as their interactions. Andréassian et al. (2009) describes a hydrological model as a set
of equations that allow discharge simulations based on input data and a set of parameters.
Garrick et al. (1978) have already pointed out that for a given catchment the rainfall-discharge
relationship can be modeled comparatively well by simple conceptual models if proper pa-
rameter values are selected. In summary, a model is used to compensate the lack of sufficient
temporal or spatial knowledge of processes of interest (Oreskes et al., 1994).

In the following, a hydrological model is considered as rainfall-runoff model. The intended
use of these models is divided into forecasts and predictions. A forecast model deals with
the estimation of prospective discharge conditions which can also be operated in real-time.
On the other hand, predictions evaluate the effects of physical or climatic changes on the
hydrological system. Within the vast availability of hydrological models, the distinction be-
tween purely scientific and engineering models exists. A scientific model is a testing scheme
where a theory or hypothesis of a real-world system is verified against empirical evidence
(Silberstein, 2006). From the viewpoint of an engineer, a model is primarily a tool based
on a theory, with the focus on the functional adequacy in terms of a particular application
(Savenije, 2009; Gupta et al., 2012). For the credibility of models, a proper evaluation within
comprehensive benchmarks of terminology is necessary. Here, e.g., Schlesinger et al. (1979)
and Refsgaard and Henriksen (2004) distinguish between model qualification (adequacy of
the conceptual model), model verification (confirmation of the conceptual model by the
computer-based model) and model validation (ability for site-specific application).

Several authors argue that models are generally false and that models are known to be false
(Morton, 1993; Savenije, 2009). It is stated that a kind of incompatibility of models exists, in
the way that different models can suggest very different predictions for the same conditions.
This can cause a dilemma in decision making. Oreskes et al. (1994) even argued that it is im-
possible to verify and validate numerical models of natural systems. As, natural systems are
always open the obtained parameter sets and model results are never unique. Also, fixed
model structures are not always applicable for variable conditions. Models are often used
for a specific practical, as well as for a scientific target and do not guarantee transferability
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to similar conditions outside the considered domain. Thus, the use of flexible model struc-
tures is an alternative to traditional fixed approaches. Flexible components allow the user to
customize the model for its individual requirements and catchment conditions (Fenicia et al.,
2011; Kavetski and Fenicia, 2011). The development of models with an appropriate model
structure, good model performance and small parameter and predictive uncertainty should
be the scientific purpose (Savenije, 2009). Gupta et al. (2012) arranged the three stages of for-
mal model building into conceptual, mathematical and computational model. Within this
terminology, a conceptual model simplifies a natural system by specifying the boundaries,
input, output and state variables, incorporation of physical laws and consideration of un-
certainties. In a next step, a mathematical model determines the mathematical execution of
states, fluxes, parameters and boundary conditions within the system. Finally, the numerical
implementation of the above requirements is achieved with a computational model.

Another issue is that the examined physical systems are mostly inherently unpredictable.
So, the trustworthiness of simple obtainable predictions has to be regarded very critical
(Morton, 1993). Additionally, the association of terms such as verification and validation is of-
ten misleading in the context of model predictions and reliability. A verified model suggests
that its truth is demonstrated and thus its reliability. But, proving the truth of any statement
is just possible for closed systems. A numerical model is never a closed system because the
required observations and parameters are incompletely known and accompanied by infer-
ences and assumptions (Oreskes et al., 1994). The second term validation characterizes the
generation of acceptance. In this way, models which have a consistent numerical structure
and do not have identifiable errors can be assumed valid. Nevertheless, in the context of
modeling the term of validation is often used in an arguable way. Oreskes et al. (1994) men-
tioned that current model results of specific realizations are misleadingly accepted as valid
and that it would even be more wrong to interpret a model as an adequate description of
physical reality.

In recent studies, more and more issues regarding adequate model structures and complex-
ity, proper parameterization and equifinality are discussed (Hawkins, 2004; Beven, 2006; Feni-
cia et al., 2011; Hrachowitz et al., 2014; Del Giudice et al., 2015). There are no error-free models in
terms of complete knowledge about the parameters, model structure and input data. There-
fore, the modelers’ interest shifts more to the structural adequacy of the model (Gupta et al.,
2008, 2012). Structural inadequacy results from the imperfect representation of a natural
system by a model (Del Giudice et al., 2015). Many authors discuss the issue of finding an
appropriate level of model complexity (Jakeman and Hornberger, 1993; Lindström et al., 1997;
Perrin et al., 2003; Schoups et al., 2008; Fenicia et al., 2008; Kavetski and Fenicia, 2011; Hrachowitz
et al., 2014). Too complex models can cause model overfitting and parameter equifinality
problems (Beven, 1993; Gan and Biftu, 1996; Hawkins, 2004; Schoups et al., 2008; Gharari et al.,
2014). Equifinality discusses the fact that different reasonable parameter sets can be ob-
tained for representing the behavior of a system. The estimation of prediction uncertainty
should consider this aspect and not just refuse other acceptable representations (Beven, 2006,
2007). In this context, Hawkins (2004) points out the principle of parsimony which declares
the use of models that incorporate all requirements for the modeling purpose but nothing
more. Nevertheless, Doherty and Welter (2010) emphasizes that model structural noise can
be diminished by including as many parameters as possible to the calibration process. They
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recommend the addition of non-explanatory model parameters to the calibration process to
achieve a better model fit of the output variables. On the one hand, achieving reliable and
robust predictions is an interaction of finding an appropriate model complexity with a min-
imum of parameterization and structural uncertainty. On the other hand, an adequate func-
tional representation of the real system properties should be kept (Hrachowitz et al., 2014).

2.1 Model Complexity

Since the scientific community pays more attention to the development of models, also the
complexity increases continuously. For this reason, the choice of an appropriate level of
complexity of the model is crucial and must first be decided for each individual application.
This affects the requirements for computer capacity, input data, and finally the model to be
used (Bergström, 1991). Traditional conceptual rainfall-runoff models require relative few
data (discharge, precipitation, evapotranspiration and temperature) as input. In this regard,
one may inquire if the input data even contains adequate information to support more com-
plex models (Gupta et al., 2008; Schoups et al., 2008). The choice of model and its complexity
is dependent on the data availability and modeling purpose. Also, the case of overfitting
should be avoided. Overfitting defines models which imply more capabilities than required
or the use of approaches which are more complex than necessary (Hawkins, 2004). Two
types of overfitting can be specified. The use of nonessential flexible model structures or the
consideration of irrelevant elements (Hawkins, 2004). Gan et al. (1997) specified three issues
for a proper model choice. The selected model must be able to represent the fundamental
hydrological processes of the catchment. Thus, the specific catchment properties affect the
selection of a suitable model complexity (Kavetski and Fenicia, 2011). Another issue is the
choice of temporal resolution of the model calculations. The higher the temporal resolution
the more computing time is necessary. On the other hand, reproducing the dynamics of
hydrological processes requires sufficiently high temporal resolution. An appropriate time
step must be selected depending on the purpose and application of the individual modeling.
Thirdly, a suitable model calibration is essential (Gan et al., 1997).

Model complexity is defined in two ways within this study. First, the complexity depends on
the model type, e.g., lumped or fully-distributed, and thus on the varying data requirement.
Furthermore, the complexity is considered by the varying number of free parameters within
the same model.

2.1.1 Model Types

There are many different types of hydrological models presented in literature. A num-
ber of authors suggest classifications of models into different groups. Clarke (1973) distin-
guishes between four main groups of models (stochastic-conceptual, stochastic-empirical,
deterministic-conceptual and deterministic-empirical). Further, he groups models regard-
ing their spatial representation of the input variables into lumped, probability-distributed
and geometrically-distributed. A deterministic model provides the same output for a given
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input condition and does not take randomness into account. Stochastic models estimate a
range of likely output values from a given input condition (Gayathri et al., 2015). In Refs-
gaard and Knudsen (1996) hydrological models are divided in three main groups (empirical
black box, lumped conceptual and distributed physically based). An empirical model is a
data driven model and does not consider any physical processes. The unit hydrograph is
an example for this kind of model (Beven, 2012; Gayathri et al., 2015). Conceptual models de-
scribe the hydrological catchment behavior by functions, parameters and reservoirs which
are abstractions of physical processes (Refsgaard and Henriksen, 2004). These processes are
the interactions of precipitation, evapotranspiration, percolation, drainage and runoff gen-
eration. Parameters are estimated by model calibration, which requires time series of var-
ious meteorological and hydrological data. The HBV and SUPERFLEX models presented
in the next chapter belong to this group of models. Physically based models contain more
principles of physical elements which are represented by real measured parameters. These
kind of models do not require much effort on model calibration because their parameters
have a direct physical interpretation (Gayathri et al., 2015). Normally, physically based mod-
els are used in scientific applications for the small scale. In this case, physical parameters are
well controlled and have a relative small variability (Bergström, 1991). As an example, the
SWAT model can be mentioned here. Seibert (2003) argues that for calibrating conditions
that are outside the range of available observations, physically based models may be more
appropriate than conceptual models. In summary, the spectrum of models ranges from
lumped conceptual (simple) to distributed physically based (complex) structures (Gharari
et al., 2014).

In this study, only conceptual models are applied. Therefore, these model types are de-
scribed in more detail regarding their spatial representation of the included hydrological
processes in the section below. A shortcoming of conceptual model systems is the fact that
physical processes are often explained by parameters that are not directly related and mea-
surable (Gharari et al., 2014). Thus, such models need runoff data for calibration and val-
idation as well as no considerable changes of catchment properties should have occurred
within the modeling period. This may result in limited applicability to gauged catchments
only (Refsgaard and Knudsen, 1996). The calibration of conceptual models is a challenge and
has to deal with many factors such as nonlinearity of the models, large number of unknown
parameters, observation errors and low information content of data (Gupta and Sorooshian,
1985; Bárdossy and Singh, 2008). In addition, the quality of parameter sets is affected by the
conceptual model formulation and structure, the efficiency and robustness of the optimiza-
tion algorithm and not least by the selected objective functions used for optimization (Gan
and Biftu, 1996). Thus, the usability and reliability of hydrological models depend on an
accurate calibration procedure (Gupta et al., 1999).

Lumped models do not account for spatial heterogeneity in input data, model parameters,
and process representation. The model represents the catchment dynamics as a single
unit (Beven, 2012). These comparatively simple models, transforming precipitation
into runoff, are easy to apply and have low data requirements for parameter estimation
(Perrin et al., 2001; Del Giudice et al., 2015). In this study, the applied SUPERFLEX model
has a lumped structure.
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Semi-distributed models account for spatial catchment heterogeneity with zones of sim-
ilar properties. The attributes for partitioning a catchment into zones are the same
elevation, soil or land use class (Das et al., 2008). The input data (precipitation, tem-
perature, etc.) are prepared and transferred to the model according to the particular
zones. Hydrological process descriptions and parameter estimation can also be con-
sidered separately for each zone. This model type is an intermediate stage between
a lumped and a distributed model structure. It is able to include basic spatial hetero-
geneity of a catchment but still remains less complex than a distributed model.

Distributed models subdivide a catchment into smaller spatial units like regular grid cells.
Based on this division, input data and parameter values are required for each single
cell. The demand of spatially distributed information increases noticeable and espe-
cially the definition of the parameters for every single cell can generate difficulties. A
reduction of necessary information for the parameterization can be obtained if parts of
the hydrological processes are replaced by simplified conceptual modules (Brath et al.,
2004). The used distributed conceptual HBV-IWS model belongs to this type of model.
Increasing complexity of the model and the connected optimization process also de-
mand more computational resources than the previously mentioned model types.

2.1.2 Data Requirement

The quantitative data requirement usually rises with model complexity. For a basic lumped
model structure discharge, precipitation and potential evapotranspiration time series are
typically needed. If snow processes have to be taken into account, temperature data are also
required. In more complex model frameworks additional data like long term mean data,
land use or soil information is essential. The advantage of hydrological models with low
data requirement is their easy operational utilizability (Perrin et al., 2001).

Another kind of data requirement is the temporal or spatial resolution of the observations
and input information. A lumped model requires uniformly distributed input data such as
mean areal precipitation or temperature, which means that there is only one value consid-
ered for the whole catchment per time step. In contrast, a distributed model structure as-
sumes spatially variable input data for the corresponding hydrological unit (e.g., subcatch-
ments, zones or grid cells), which allows a more realistic representation of the catchment
properties. Choosing the appropriate spatial resolution depends on the spatial variability
of precipitation, catchment topography and size. Large and mountainous catchments are
potentially more affected by such conditions (Gan and Biftu, 1996).

2.1.3 Process Parameter

The amount of parameters used to describe the hydrological processes in conceptual mod-
els varies considerably. Finding an adequate number of free parameters and thus a level of
complexity is an important challenge in this context. Too few parameters restrict a sufficient
model flexibility and too many cause problems of parameter estimation and model robust-
ness (Perrin et al., 2003). The model parameters are usually not directly measurable and
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are assumed to be constant in time (Wagener, 2003). Thus, model parameters are identified
by optimization and the comparison of observed with modeled data. A more detailed and
complex representation of the hydrological processes within a model lead to a more compli-
cated determination of the parameter values, especially if these are independent (Nash and
Sutcliffe, 1970). Increased computer power allows the implementation of powerful optimiza-
tion algorithms to a greater extent and consequently a rising amount of model parameters
(Gan et al., 1997). Another assumption of more enhanced calibration procedures is the reduc-
tion of parameter uncertainty as well as the strengthening of consistent model structures
(Seibert, 2003). The more complex a model is, the more parameters are generally needed.
The increase of the amount of model parameters does not necessarily involve more input
data supporting the determination of the values (Beven, 2006). In this context, overparame-
terization of hydrological models due to a significant increase of the number of parameters
belongs to one of the major problems (Jakeman and Hornberger, 1993; Perrin et al., 2003). Per-
rin et al. (2001) identified that models with more parameters and thus degrees of freedom
perform better in the calibration mode. In validation mode, this trend is not recognizable
anymore and less parameterized models achieve similar model results.

2.2 Model Description

In this study, the HBV and SUPERFLEX model are applied. Both models belong to the
group of conceptual rainfall-runoff models and differ in complexity due to data require-
ment, amount of parameters and model structure. The original version of the HBV model
was modified at the Institute for Modelling Hydraulic and Environmental Systems at the
University of Stuttgart (IWS). The main distinction between the two models is their spatial
representation of hydrological processes in which the HBV is a distributed model and the
SUPERFLEX has a lumped structure. The HBV contains a fixed model structure whereas the
SUPERFLEX is based on a flexible model framework. These two approaches are intended to
provide insights into the diversity of catchment properties and support the choice between
a fixed or a flexible model structure.

2.2.1 HBV Model

The HBV is a well-known hydrological model which has been used in various studies and
operational applications worldwide for a long time. Thus, it is a continuously enhanced
modeling framework and well documented in many scientific publications and technical re-
ports. The first version of the HBV as a semi-distributed conceptual model was presented by
Bergström in 1972. It was developed for hydrological forecasting of Swedish drainage basins
at the Swedish Meteorological and Hydrological Institute (SMHI). The basic skills included
snow accumulation and melt, soil moisture accounting and runoff response (Bergström,
1992). A noteworthy development of the HBV was carried out by Lindström et al. (1997).
A few drawbacks regarding areal representation and physical inconsistencies, such as ne-
glecting of interception and elevation dependent evapotranspiration, were resolved. In this
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study, a distributed version of the HBV is used (Figure 2.1). This model structure was step-
wise developed at the IWS and is named HBV-IWS in the following. The basic architecture
of all following versions contains conceptual routines for the calculation of snow accumu-
lation and melt, soil moisture and runoff concentration. Snow processes are accounted for
using a degree-day approach and a fast-melt function in the case of rainfall into the snow
pack. A detailed description of the snow routine follows in Section 5.2.
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Figure 2.1: Scheme of the HBV-IWS model. S1 and S2 are the water levels of the correspond-
ing upper respectively lower reservoir.

The first modifications of the original HBV was the partition of the river basin in differ-
ent subcatchments. Inside the subcatchments a classification into zones regarding differ-
ent properties like elevation, soil and land use is feasible (Hundecha and Bárdossy, 2004).
Götzinger and Bárdossy (2007) modified the HBV-IWS model to a grid-based version. There,
the input data (precipitation and temperature) and catchment properties (soil and land use)
are considered for each single grid cell. Furthermore, the calculation of hydrological pro-
cesses such as evapotranspiration, snow accumulation and melt, soil moisture and runoff
concentration are performed for each grid cell. The runoff response still has a conceptual
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structure with reservoirs for direct discharge and base flow. A further modification intro-
duced by Götzinger and Bárdossy (2007) is the restructuring of the two reservoirs, where wa-
ter can drain through percolation from the upper soil reservoir to the groundwater system.
The production of direct runoff remains equal to the original version. The current version
features another change in the calculation of the total discharge. The upper reservoir in-
cludes another outlet for representing the inter flow in the sub-surface layer (Bárdossy and
Das, 2008; Bárdossy and Singh, 2008). A triangular weighting function with one free param-
eter MAXBAS transforms the direct discharge (near surface and inter flow) and base flow
into the total discharge. Interconnected nodes represent the river network and the gener-
ated flows are calculated using the Muskingum flood routing method. An overview about
different model structures of the HBV-IWS due to the spatial representation is given in Das
et al. (2008).

The current version of the HBV-IWS requires numerous information a priori. In addition to
the observation data discharge (Q), precipitation (P ) and mean temperature (Tm), as well as
information about topography (coordinates of grid cells and corresponding elevation), land
use classes and soil properties are necessary. The modeling time step and temporal data
resolution is daily in this study. The calculation of soil moisture (SM) requires input infor-
mation of field capacity (FC) and permanent wilking point (PWP). Using these parameters
the soil moisture is balanced by precipitation and evapotranspiration (Bárdossy and Singh,
2008) which is described by the following equations:

Peff = (SM/FC)β · P + Smelt, (2.1)

where P is the daily precipitation depth, Peff the effective precipitation, Smelt the amount
of snowmelt, SM the actual soil moisture, FC the maximum field capacity and β a model
parameter considering the non-linear relationship between soil moisture and field capacity.
The HBV-IWS provides three methods using different input information for calculating the
potential evapotranspiration (PE):

• Method 1: Original linear approach (Hundecha and Bárdossy, 2004)

PE = (1 + CET · (Tm − TM )) · PEM (2.2)

According to the daily mean temperature (Tm), the monthly long-term mean potential
evapotranspiration (PEM ) is modified to the daily potential evapotranspiration (PE),
where TM is the monthly long-term mean temperature and CET a monthly factor ac-
counting for temperature anomalies.

• Method 2 & 3: Hargreaves and Samani equation (Hargreaves and Samani, 1985)

PE = 0.0023 ·RA · (Tmax − Tmin)0.5 · (Tm + 17.8), (2.3)

where RA is the extraterrestrial radiation in mmd−1, Tmax the maximum and Tmin the
minimum daily temperature. The difference in method 2 and 3 is the calculation of
RA. Method 2 calculates RA for a given latitude by considering the solar constant,
solar declination and time of the year (Allen et al., 1998). Method 3 uses the yearly
variation of RA for certain latitudes in the northern hemisphere given in Iqbal (1983).
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According to these values and the latitude of the catchment area, method 3 assumes a
monthly value of RA as evapotranspiration equivalent in mmd−1 in advance. These
values are passed to the model as input information. Finally, the calculated PE of
method 2 or 3 is corrected by different monthly crop coefficients (Kc).

In the case of reduced water availability the actual evapotranspiration ETA is considered
instead of the potential evapotranspiration PE. Here, the PWP is the limiting parameter if
ETA or PE take place.
Insert a blank line

ETA = (SM/PWP ) · PE (2.4)

Table 2.1: Model parameters and ranges of the HBV-IWS.

Parameter Description Unit Min Max

DD Degree-day factor [mmd−1 ◦C−1] 0.5 5
DDw Rain-on-snow weight [d−1 ◦C−1] 0 2
k0 Storage coefficient for direct runoff [d] 0.1 2.5
k1 Storage coefficient for inter flow [d] 5 50
k2 Storage coefficient for base flow [d] 10 1000
kperc Storage coefficient for percolation [d] 20 100
L Threshold water level in upper reservoir [mm] 1 50
T0 Threshold temperature for snow/rain [◦C] -2 2
β Shape parameter for soil moisture routine [−] 1 6

In total, 15 parameters describe the HBV-IWS model. The nine parameters shown in Table
2.1 are optimized through calibration, whereby the range can be assumed as catchment in-
dependent. Other parameter values and ranges used for calibration like field capacity (FC),
permanent wilking point (PWP), model parameter CET and MAXBAS vary for different
catchments. Two more parameters are necessary if a river network is considered. In this
case, the flood routing is performed by the Muskingum method and includes a weighting
factor x and a retention constant k. The optimization of these parameters is done with an
automatic calibration using simulated annealing (Aarts and Korst, 1990). As objective func-
tion the Nash-Sutcliffe efficiency (NSE) is used (Nash and Sutcliffe, 1970). The maximization
of the objective function is performed for different aggregation time steps (Götzinger and
Bárdossy, 2007).

2.2.2 SUPERFLEX Framework

The SUPERFLEX framework is a conceptual hydrological model which deals with phys-
ically reasonable representations of catchment dynamics, moderate parameterization and
computational efficiency (Fenicia et al., 2011). The general model structure is built modular.
It contains individual reservoirs representing different hydrological processes such as inter-
ception, groundwater storage, slow and fast runoff responses. The numerical framework
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Figure 2.2: Scheme of the SUPERFLEX modeling framework. The reservoir index Sn refers
to interception (I), snow (W ), unsaturated soil (U ), riparian zone (R), fast out-
flow (F ) and slow outflow (S).

consists of robust techniques (Fenicia et al., 2011). According to Fenicia et al. (2011) the basic
components of the modeling framework are:

• reservoir elements representing water storage and release processes,

• lag functions for the transmission and delay of flows,

• junction elements for dividing, connecting and rescaling flows.

One advantage of this modeling framework is its flexible ability for arranging various reser-
voir configurations and applying variable lag functions. Thus, the model can be adapted
to individual catchment properties and tested for different discharge characteristics. An-
other skill of this modular concept is the experimental learning of the driving hydrological
processes within a catchment. Enabling and disabling of certain reservoirs present their in-
fluences and significance on the hydrological response of a catchment (Kavetski and Fenicia,
2011). The SUPERFLEX framework has a lumped model structure. In its full configuration,
which includes a snow model routine, the model requires data on precipitation, discharge,
mean temperature and potential evapotranspiration. All input and output variables are
expressed in mm. The discharge rate is calculated by dividing the water volume by the
catchment area and finally converting to the discharge depth. Precipitation input is rep-
resented by the mean areal precipitation for each time step. The mean values are gained
from spatial precipitation fields interpolated by different methods, which are described in
Section 4.3. The mean areal temperature values are processed in the same way. The areal
values of the potential evapotranspiration (PE) are calculated either by the required mean
areal temperature values or by prior interpolation.
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The SUPERFLEX model itself can vary considerably in its complexity in terms of the reser-
voir structures, lag-functions and parameter sets. The model framework has the capability
of easily modifying and simplifying its structure. The SUPERFLEX model incorporates six
interconnected reservoir modules in its complete set-up (Figure 2.2), which are briefly ex-
plained in the following:

• Interception reservoir (SI )
The interception and snow reservoir are responsible for the generation of effective pre-
cipitation (Peff ). Depending on the reservoir configuration, the resulting amount of
Peff is splitted to the subsequent reservoirs SU , SR, SF and/or SS . SI is conceptually
an overfall reservoir with a maximum storage capacity. The interception (I) is gener-
ated by the potential evapotranspiration (PE) transferred from the input data and the
available amount of water in the reservoir (Gharari et al., 2014).

• Snow reservoir (SW )
The regulation of snow accumulation and melt is done by this reservoir. The snow
processes are calculated by the degree-day approach (see Section 5.2). This reservoir
allows some modifications due to the typically linear relationship between snowmelt
and temperature. Kavetski et al. (2006a) implemented a smoother transition from rain
to snow and vice versa. As well, they modified the melting process to a smoother
behavior.

• Unsaturated soil reservoir (SU )
The reservoir of the unsaturated zone contains a ground (percolation) and an over-
fall (direct runoff) outlet. SU describes the maximum soil moisture capacity in the
root zone. Depending on the soil moisture conditions, the entering Peff is completely
stored in SU and successively delivered to the slow reservoir (SS) through percolation
or parts of Peff are directly routed to the fast reservoir (SF ). Another reduction of the
soil moisture is considered by plant transpiration (Gharari et al., 2014).

• Fast reacting reservoir (SF )
The direct runoff of the catchment is considered in the fast reacting reservoir (SF ).
SF is a linear reservoir controlled by the storage coefficient kF (Hrachowitz et al., 2014;
Gharari et al., 2014).

• Slow reacting reservoir (SS)
This reservoir calculates the slow portion of the total outflow and represents the
groundwater dynamics of a catchment. SS is also a linear reservoir controlled by the
storage coefficient kS (Hrachowitz et al., 2014; Gharari et al., 2014).

• Riparian reservoir (SR)
The riparian reservoir accounts for flow contributions from hillslopes and riparian
zones which can also generate faster outflows (Hrachowitz et al., 2014).

The model can be calibrated by two different regression schemes. These are the standard
(SLS) and weighted (WLS) least square methods (Kavetski and Fenicia, 2011). Both methods
differ in the assumption of the errors. The WLS error model assumes zero-mean Gaussian
errors and accounts for heterogeneity of variance. In contrast, the error model based on
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Table 2.2: Most relevant model parameters and descriptions of the SUPERFLEX modeling
framework.

Parameter Description Unit

Cntr Preferential recharge coefficient [−]

D Partition coefficient from fast to slow reservoir [−]

EI Interception [mmt−1]

Emult Evaporation multiplication factor [−]

EU Transpiration from unsaturated reservoir [mmt−1]

ETpar Transpiration threshold [−]

FR Proportion of wetlands in the catchment [−]

Imax Maximum interception threshold [mm]

kn Storage coefficient of reservoir n [t−1]

kW Degree-time factor for snowmelt [mmt−1 ◦C−1]

Peak,n Time lag of transfer function for reservoir n [t]

Pmax Maximum percolation capacity [mmt−1]

Pmult Precipitation multiplication factor [−]

Pn Recharge of reservoir n [mmt−1]

Ptot Total precipitation [mmt−1]

Qn Percolation/runoff from reservoir n [mmt−1]

Qtot Total runoff [mmt−1]

SU,max Maximum unsaturated storage capacity [mm]

Tm Snowmelt temperature [◦C]

T0 Threshold temperature for snow/rain [◦C]

wcor Snow correction factor [−]

αn Shape parameter for runoff generation of reservoir n [−]

β Shape parameter for Cntr [−]

the SLS regression scheme considers a constant variance of the residual errors (Kavetski and
Fenicia, 2011). The individual parameters can be set to active or fixed in advance of the cali-
bration, whereby only the active parameters are optimized. The most important parameters
and their description are shown in Figure 2.2 and Table 2.2. The current version also includes
some smoothing functions for the calculation of interception and snow processes which pa-
rameters are not explicitly illustrated. The model evaluation is performed by several objec-
tive functions simultaneously (Fenicia et al., 2008). This multi-objective optimization method
includes the Nash-Sutcliffe efficiency (NSE), coefficient of determination (R2) and the root
mean squared error (RMSE) in the applied model version. Such an approach allows a better
constrain of parameter values (Fenicia et al., 2008). The SUPERFLEX model uses a multistart
quasi-Newton optimizer (Nocedal and Wright, 2006) and 100 random starting seeds (Kavetski
and Clark, 2010). The posterior distributions of the predictions are investigated numerically



2.3 Model Evaluation 17

using Markov chain Monte Carlo (MCMC) methods. The uncertainty due to input and
model structure is examined with the Bayesian total error analysis (BATEA). The theoret-
ical background and numerical realization of the BATEA parameter estimation equations
are given in Kavetski et al. (2002) and Kavetski et al. (2006b). The model provides multipliers
for precipitation and evaporation. This is a convenient option for the parameterization of
input uncertainty (Kavetski et al., 2006b). A more detailed description of the model numerics,
optimization functions and uncertainty estimation is given in Kavetski et al. (2006b,c); Fenicia
et al. (2008); Kavetski and Clark (2010); Kavetski and Fenicia (2011).

In this study, four different reservoir configurations are investigated. The different config-
urations and the labeling of the individual reservoirs are shown in Subsection 5.1.2. The
complexity of the configurations is increased stepwise and the calibration is performed with
both regression schemes. The model runs are executed with ten iteration steps.

2.3 Model Evaluation

All model results have to be comprehensively evaluated to check their reliability and ensure
their comparability in terms of model performance, uncertainty and realism (Wagener, 2003).
The confidence of reasonable model use and verifiable predictions is based on the agreement
between the model and reality (Gupta et al., 2008). An appropriate and well-selected vari-
ety of indicators specifies the model performance. Also, potential sources of uncertainty
should be emphasized (Schaefli and Gupta, 2007). In this section, the applied methods of
model evaluation are described. Firstly, it is discussed how the performance of a model can
be estimated and which measures are available. Secondly, different approaches of model
calibration are introduced. The calibration of a conceptual model is mandatory to obtain re-
liable and efficient parameterization (Brath et al., 2004). The function of calibration is fitting
the model output to the observations by adjusting the model parameters. The agreement be-
tween observations and model output is usually specified by some statistical criteria which
allow an assessment of the model performance. Nevertheless, the indication of the model
performance solely is insufficient. A comprehensive evaluation requires additional infor-
mation because of its dependence on the quality of observed data, the area of application
and modeling time period (Bergström, 1991). After the calibration, the model needs to be
validated. The process of model validation examines if the model has a satisfactory range of
accuracy within its scope of application (Refsgaard and Henriksen, 2004). In other words, the
model calculations are performed by the optimized parameter set determined during cali-
bration and the required input variables. Afterwards, the level of agreement between the
observations which are the independent data and modeled output is investigated by perfor-
mance measures. The evaluation of a model can be performed by statistical and graphical
measures. A visual inspection of model results should always be included in an evaluation
procedure. This kind of subjective model evaluation allows the control of systematic (e.g.,
under- and overestimation) and dynamic (timing, rise and decline of peak flows) model re-
sponse (Krause et al., 2005). Willmott et al. (1985) has already defined that a comprehensive
procedure of evaluating the model performance has to include data plots, summary of uni-
variate statistics, difference measures, sensitivity studies and assessment of reliability. A
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sensitivity analysis provides a possibility to determine the influence of changed model in-
puts or parameters to the model output (Oudin et al., 2006; Moriasi et al., 2007; Fenicia et al.,
2008). A single statistical measure is not sufficient to evaluate the performance and par-
ticularly the reliability of a model. High values for the model performance can be achieved
despite comparative poor model results. Also, the reverse case can occur where a poor index
value suggest a rejection of reasonable model results (Jain and Sudheer, 2008).

In this context, the influence of different enhanced calibration periods and conditions is in-
vestigated. The interpretation of model validation is sometimes different and misleading.
Within this study, validation defines the process of testing parameter sets identified by cal-
ibration against an independent data set (e.g., different time period). The model and its
obtained results are accepted as valid if they fulfill certain performance criteria (Refsgaard
and Knudsen, 1996). The independent data set for model validation should have similar
properties like the data set used for model calibration (Klemeš, 1986). The reason is that it is
assumed that the optimized parameter set is only able to capture known conditions within
a certain range. The applied performance criteria are described in the subsequent section.
The analysis and assessment of model validation is presented in Chapter 5 and 6.

2.3.1 Model Performance

The model performance specifies the level of acceptable match between reality (observa-
tions) and model output (Wagener, 2003). Krause et al. (2005) quoted three reasons for the
necessity to evaluate model performance:

1. A quantitative assessment of model capability to simulate past, present and future
catchment behavior

2. Evaluating the effect of modeling changes due to parameter adjustment, model struc-
tural modifications, involvement of additional information, and the spatial and tem-
poral consideration of catchment characteristics

3. The comparison of present modeling achievements with former studies

Gupta et al. (2008, 2012) also described an urgent necessity for sophisticated and standard-
ized schemes for model evaluation due to greater interaction of model components and thus
more complex model structures. They argue that a model evaluation should be diagnostic
in terms of illustrating if model modifications aim for more realistic representations of the
real system and how a model should be updated. A performance evaluation implies the
model calibration and validation (Refsgaard and Henriksen, 2004). The first step of evaluat-
ing the model performance is a comparative data description and analysis with data plots.
Subsequently, the evaluation with different univariate measures such as mean and standard
deviation of observed and modeled data takes place (Willmott, 1981). Then, the model per-
formance is described by different, more sophisticated performance measures. The level of
model performance can be affected by different factors. First of all, the quantity and qual-
ity of the required input data have an essential influence. Then, model type, structure and
complexity can cause errors and reduce the power to explain the hydrological system. In
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this context, a proper interpretation of the explanatory power of the performance measures
is essential (Schaefli and Gupta, 2007). In general, the performance criteria can be classified in
absolute (e.g., RMSE) and relative (e.g., NSE) criteria. An adequate assessment of model
performance should always contain several absolute and relative measures (Legates and Mc-
Cabe, 1999; Fenicia et al., 2008; Ritter and Muñoz-Carpena, 2013). Several efficiency criteria used
in this study imply a summation of the error term normalized by a measure of the variabil-
ity in the observed input data. The summation considers the absolute or squared errors to
exclude the compensation of errors with differing sign. Hence, larger errors receive a higher
relevance whereas smaller errors tend to be neglected. The errors associated with high flow
values are usually larger than the ones with low flow values. Consequently, using this kind
of efficiency criteria as objective function for calibration procedures can cause a higher focus
on fitting the higher portions of the hydrograph than on the lower portions (Krause et al.,
2005).

The following list describes graphical methods and performance measures used here for
model evaluation. In this regard, the index “obs” denotes observed and “mod” modeled
data. The index “n” is the total number of observations and “i” the time step.

Data visualization for examining model adequacy and performance is realized for instance
with scatterplots, histograms, hydrographs and flow duration curves (Refsgaard and
Knudsen, 1996). Such graphical analyses show to which degree observed and mod-
eled data agree with each other. One can review if the model performs consistently
over the total time period (calibration and validation range) or depends on certain dis-
charge characteristics. Also, other features such as unexpected relationships between
observed and modeled data sets, existence of outliers and considerable model bias are
identifiable (Ritter and Muñoz-Carpena, 2013).

A scatterplot illustrates the relationship between two variables (e.g., observed versus
modeled discharge). Such a relative simple representation of comparable data sets can
already give a first hint for erroneous input data, model structure or parameterization.
It is possible to detect consistent under- or overestimations of the dependent variables.
Weak sections of the modeled output like certain discharge conditions can also be
distinguished. A constant underestimation of high discharges refers to such an issue.

Hydrographs compare the time series of observed and modeled discharge. Thereby,
model bias as well as differences in magnitudes can be detected. The difference to
scatterplots is the ability to identify temporal discrepancies (timing) between observed
and modeled data (Moriasi et al., 2007).

Another application of plots is the comparison of observed and modeled flow
duration curves. They display the general match of the discharge characteristics
or rather frequencies over a selected time period. The difference to scatterplots or
hydrographs is that the data pairs are not compared time-dependently, but according
to their non-exceedance probability.
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Coefficient of determination (R2)
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R2 specifies the proportion of the variance in observed data explained by the model.
The range of R2 is from 0 to 1 in which a value of zero signifies no correlation at
all. Lower error variance exists by higher values of R2 (Moriasi et al., 2007). R2 is
a correlation-based measure. On the one hand, one drawback of such measures is
their hypersensitivity to extreme values. On the other hand, they are insensitive to
additive and proportional differences between the observed and modeled variable.
One can be misled to interpret model results as good due to high values of R2, even
they are not (Legates and McCabe, 1999). Model results with almost no dispersion
between observed and modeled data have values close to 1 and indicate very good
model fits. But, even with high values of R2 the model predictions can be wrong due
to systematic under- and overestimations (Krause et al., 2005). Thus, R2 is not suitable
as single performance measure for model evaluation.

Root mean squared error (RMSE)

RMSE =

√√√√ 1

n
·
n∑
i=1

(Qobs,i −Qmod,i)2 (2.6)

The RMSE describes the standard deviation of the model prediction error and thus
the average error produced by the model. The range is from 0 to ∞. The unit is the
same as the input variable. Lower values specify a better model performance (Gupta
et al., 1999). The missing clarification of error source or type is one disadvantage of
the RMSE. Neither the proportion of systematic and unsystematic error nor the type
of systematic error (additive or proportional) can be determined (Willmott, 1981).

Percent bias (PBIAS)

PBIAS =

∑n
i=1 (Qobs,i −Qmod,i)2∑n

i=1Qobs,i
· 100 (2.7)

PBIAS measures the mean tendency of the modeled discharge to be larger or smaller
than the observed correspondent in %. The range is between −∞ and∞. The optimal
value is zero. Positive values indicate a model bias toward underestimation and neg-
ative values toward overestimation (Gupta et al., 1999). Moriasi et al. (2007) reported
satisfactory model performance if the PBIAS is within a range of ±25 %. Since effi-
ciency indices similar to the Pearson correlation, e.g., NSE can tend to low values due
to model bias generated by the calibration, a measure of bias should be considered for
a comprehensive model evaluation. Such a model bias can result from differences in
magnitude or time offset for time-dependent models (McCuen et al., 2006).
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Nash-Sutcliffe efficiency (NSE)

NSE = 1−
∑n

i=1 (Qobs,i −Qmod,i)2∑n
i=1

(
Qobs,i −Qobs

)2 (2.8)

NSE displays the relative magnitude of the residual variance to the variance of the
observations (Nash and Sutcliffe, 1970; Gupta et al., 1999). The range is between−∞ and
1. A value of 1 indicates a perfect fit between observed and modeled data. For a value
smaller than 0, the mean observed discharge is a better predictor than the model. At a
daily simulation time step, Singh et al. (2005) accepted a value of NSE ≥ 0.75 obtained
in the calibration period as satisfactory. In contrast, Moriasi et al. (2007) defines values
of NSE > 0.50 as satisfactory and values > 0.75 as very good. The ability for its use
to many different model types is an advantage (McCuen et al., 2006). An important
shortcoming of the NSE is the fact that sometimes high values can be achieved with
a poor model and in spite of a high value not all information of the input data is
extracted. If the variance of the considered variable is very large, even relatively poor
model fits can generate high values of NSE (Legates and McCabe, 1999; Schaefli and
Gupta, 2007; Jain and Sudheer, 2008). Its insensitivity to systematic model under- or
overestimations, especially during low flow periods, is another disadvantage which
should be considered (Krause et al., 2005; Pushpalatha et al., 2012).

Modified Kling-Gupta efficiency (KGEm)

KGEm = 1− βw ·
[∑n

i=1 (Qobs,i −Qmod,i)∑n
i=1Qobs,i

]2

− [1− r (Qobs,i, Qmod,i)]
2 (2.9)

Gupta et al. (2009) introduced an alternative model performance measure. The Kling-
Gupta efficiency splits the three components of the NSE (linear correlation, bias and
discharge variability) in its individual parts. The equation of the KGE weights all
three components equally by computing their Euclidean distance from the ideal point.
The optimum value ofKGE is at unity. The applied version of theKGE is modified by
Bárdossy et al. (2016). In this version, r (Qobs,i, Qmod,i) describes the correlation coeffi-
cient between observed and modeled discharge. The first term controls if the modeled
discharge fits the water balance of the observations and can be stronger weighted with
the parameter βw. In Bárdossy et al. (2016) a value of βw = 5 is selected.

In addition to the model performance measures listed above, the following measures are
sometimes applied to supplement a deeper investigation of flood events:

Relative volume error (EV ) Insert a blank line

EV =
Vobs − Vmod

Vobs
, (2.10)

where Vobs and Vmod are the total volumes of the observed and modeled hydrographs
of the particular evaluation period (Brath et al., 2004). Values of EV close to zero indi-
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cate similar observed and modeled volumes. A negative value of EV refers to higher
modeled than observed volumes and an overestimation of the volume for the eval-
uation period. A positive value means that the volume of the modeled time series
underestimates the observed volume.

The EV refers to relative values and, like the PBIAS, is another volume-based per-
formance measure. The EV is listed here for completeness. It is sometimes used as
an alternative to the PBIAS in this study, particularly when evaluating peak flows.
Some of the above presented efficiency criteria put a major effort on the reproduction
of the flow dynamics. Thus, it is further recommended to quantify volume errors with,
e.g., the EV or the PBIAS for a complete model evaluation (Krause et al., 2005).
Insert a blank line

Relative peak error (EP ) Insert a blank line

EP = 1−

∑n
i=1

∣∣∣Qpeakobs,i −Q
peak
mod,i

∣∣∣∑n
i=1Q

peak
obs,i

, (2.11)

where Qpeakobs,i and Qpeakmod,i are the observed and modeled peak flows. EP takes the ab-
solute difference between observed and modeled peak flows for all n peaks (Seibert,
2003). In the case of multiple peaks within one event, the maximum observed and
modeled peak are considered. The determination of peaks can be done in different
ways. For instance, a peak is selected if it exceeds the long-term mean discharge by
three times (Seibert, 2003). The range is between 0 and 1, while a value closer to 1 indi-
cates a better match between modeled and observed peaks.
Insert a blank line

Time to peak error (ET ) Insert a blank line

ET = T (Qpeakmod )− T (Qpeakobs ), (2.12)

where T (Qpeakmod ) and T (Qpeakobs ) are the corresponding times to peak. The evaluation of
the time to peak error takes the difference in time between the closest observed and
modeled peak into account (Brath et al., 2004). A value of zero indicates that observed
and modeled peak occur at the same time. A positive value of ET represents a time-
delayed modeled peak flow.

In summary, a combination of different statistical measures and a visual inspection of the
observed against the modeled data should be performed for a comprehensive model evalu-
ation. Many authors advise that the model evaluation by solely one performance measure
should be avoided (McCuen et al., 2006; Fenicia et al., 2008; Jain and Sudheer, 2008; Ritter and
Muñoz-Carpena, 2013). This prevents a user and decision maker drawing conclusions from
mistakenly well performing models.
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2.3.2 Split-sampling Methods

Hydrological models have to be evaluated to their reliability if they should be used for
practical applications like flood predictions. Traditionally, models are tested with a simple
split-sampling method, meaning that they are calibrated with observed discharge data for
a certain time period and then validated on another independent time period (Klemeš, 1986;
Refsgaard et al., 1995; Seibert, 2003). A disadvantage of this test method is that, if conditions
differ significantly from the calibration period, a robust check of model applicability for
such unknown conditions is difficult because no reference data are available (Xu, 1999). An
alternative to this procedure is the differential split-sample test. Here, a model is calibrated
on certain conditions as very wet or dry periods as well as significant cold or hot periods.
Then, the model is tested on the dissimilar counterpart (Klemeš, 1986; Xu, 1999). The evalua-
tion of model performance on dissimilar or rather unknown hydrological conditions is a first
approach to check the trustworthiness of predictions into the unknown (Seibert, 2003).

Different Time Periods
For sufficiently long time series, the data set is divided into sequences of equal length. Nec-
essarily, the calibration time period has to be long enough for capturing wide information
of the input data. A possible gain in information with longer data sets only results from
data with additional input about the underlying system behavior (Schoups et al., 2008). For
the case of insufficiently long time series, the proportion of 70 % for calibration and 30 % for
validation of the available data length is recommended (Klemeš, 1986). The reverse case is
also considered which means the calibration and validation time sequences are swapped.
Here, the model performance of both validation periods has to be similar and reasonable for
an acceptable model output (Klemeš, 1986).

In this study, the different modeling periods for calibration and validation are defined by
different starting points, such as calendar year or hydrological year.

Different Discharge Characteristics
Precipitation shows noticeable differences of seasonal variability (Bárdossy and Das, 2008).
During the winter season, the extent of precipitation over a catchment is more uniform.
In addition, snow accumulation and melting cause a temporal shift in the volume of wa-
ter. In contrast, summer events often have convective characteristics with high intensities
as well as high spatial variability. Thus, a model calibration and validation due to different
seasonal flow conditions is advisable. In this study, to investigate different discharge charac-
teristics, model calibration and validation is performed separately for hydrological summer
and winter half-years. Furthermore, a model evaluation for different flow conditions such
as snowmelt periods or peak flows is reasonable. This supports the identification of weak
points representing the real system behavior.

In this study, all sampling methods consider a warm-up period of one year prior to the cal-
ibration period to avoid effects of inappropriate initial conditions in the various reservoirs.
The warm-up period for the validation also considers the previous calibration period. This
part of the model results is ignored for the graphical evaluation and calculation of the effi-
ciency measures. The evaluation of the model performance is done for different time periods
and discharge characteristics. Different time periods are the total time period, hydrological
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summer and winter half-year, periods without major snow-driven processes and snowmelt
periods. Different discharge characteristics are mainly indicated by significantly high flow
conditions and so-called unusual events, as presented in the subsequent section.

2.3.3 Calibration on Unusual Events

Model calibration on certain sequences of the discharge time series which contain more
information than others can be sufficient for the determination of good parameter sets in
hydrological modeling. One advantage of this approach is that not the total time series is
used and thus the amount of input data and the computation time of the model can be re-
duced significantly. An important issue in model calibration is the extraction of information
contained in the observed values and their transfer into values for the model parameters.
Due to measurement errors, the information content of the observations is imperfect (Gupta
and Sorooshian, 1985). Thus, the selected time series of critical or unusual events requires
enough information to activate all model functionalities and parameters.

Singh and Bárdossy (2012) presented a method of model calibration on hydrologically un-
usual events. The identification of critical sequences of hydrological data time series was
done with the data depth function. In this study, the SUPERFLEX model is also calibrated
on unusual events. The selection of data sequences with the half-space depth function is
performed on different unusual hydrological conditions related to discharge and tempera-
ture. The next two subsections describe the concept of data depth and the identification of
unusual events.

Definition of Data Depth
The concept of data depth is used for the determination of the center of a multivariate data
set. This method was presented by Tukey (1974). The half-space depth DX(p) of a point p
with respect to the finite set X in the d dimensional space <d is defined as the minimum
number of points of the set X lying on one side of the hyperplane through the point p. The
minimum is calculated over all possible hyperplanes (Bárdossy and Singh, 2008).

The formulation of the half-space depth DX(p) of the point p with respect to set X is:

DX(p) = min
nh

(min (|{x ∈ X 〈nh, x− p〉 > 0}|) , (|{x ∈ X 〈nh, x− p〉 < 0}|)) (2.13)

In this equation, 〈x, y〉 is the scalar product of the d dimensional vectors, and nh is an ar-
bitrary unit vector in the d dimensional space representing the normal vector of a selected
hyperplane. If the point p is outside the convex hull of X then its depth is 0. Points on and
near the boundary have a low depth and points further inside have higher depths (Bárdossy
and Singh, 2008; Singh and Bárdossy, 2012). Amongst others, a detailed description of the
depth function and algorithms for its computation is presented by Bárdossy and Singh (2008).

Identification of Unusual Events
Unusual events cannot necessarily be limited to extreme high and low flow conditions
(Singh and Bárdossy, 2012). Hydrological catchment processes and dynamics are very com-
plex and their responses often occur in very different time scales, depending on current
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Figure 2.3: Two-dimensional data set X of daily mean temperature Tm. The plus markers
indicate points with a depth Di ≤ 5.

discharge volume, precipitation intensity and duration, as well as soil moisture conditions
due to antecedent water availability. Especially, in catchments where snow processes have
a strong impact on discharge characteristics unusual temperature lapse rates over a certain
time period can cause critical events. Accordingly, the detection of unusual events is done
on the following criteria:

• Discharge of the total time series (Qtot)

• Discharge of the hydrological winter half-year (Qw)

• Daily mean temperature (Tm)

• Antecedent temperature index (ATI)

The applied antecedent temperature index (ATI) is a parameter originating from a snow
accumulation and ablation model (SNOW-17) developed by Anderson (1973). There, the
ATI is used to describe the heat exchange between the surface layer of a snow pack and
the air temperature. This index supports the identification of events with critical snowmelt
potential:

ATIi = ATIi−1 + TIPM · (Tm,i −ATIi−1) (2.14)

The ATI at time step i considers the value of ATI at the previous time step i - 1, the mean
air temperature Tm at i and the antecedent temperature index parameter (TIPM ) for its
computation. The unit of the ATI is ◦C. TIPM is a weighting factor on temperatures of
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previous time intervals and ranges between 0 and 1. Smaller values of TIPM put more
weight on previous time intervals. In this study, a value of 0.5 is used for TIPM because
Anderson (1973) has already found reasonable results for mountainous watersheds using this
value.

The data set X passed to the depth function is built up of two consecutive time steps i (e.g.,
daily) defining the point p. It means that a data pair generated by discharge or temperature
data include the value of the actual (Xi) and the subsequent (Xi+1) time step. The ATI
considers the previous time step (Xi−1). Figure 2.3 shows such a two-dimensional data set
X using the daily mean temperature Tm. For each time step, the data depth Di of point
p with respect to the total two-dimensional data set X is calculated. In Singh and Bárdossy
(2012) a range of 1 to 5 for D0 is proposed. In this study, a threshold depth D0 of 5 is chosen.
Thus, events with Di ≤ D0 are assumed to be unusual.



3 Study Area and Database

The first part of this chapter provides a brief introduction to the selected hydrological catch-
ment and its properties. It is shown why this study area is appropriate for the intended
study objectives. In the second part of the chapter, the required data availability is pre-
sented.

3.1 Saalach Catchment

The Saalach catchment is located in the south-east of Bavaria in Germany and the province
of Salzburg in Austria. The total catchment area is 1034 km2. The river Saalach has a length
of 103 km and it is a tributary of the river Salzach. The upper part flows 70 km through
Austrian territory, then 19 km through Germany until the river forms the border between
Austria and Germany on a length of 14 km. The Saalach originates in the Kitzbühel Alps at
an elevation of about 2000m.a.s.l. and flows into the Salzach at an elevation of 400m.a.s.l.

northern of the city of Salzburg.

The upper river course of the Saalach on the Austrian side is mostly unaffected by structures
in the watercourse. In the German part, shortly downstream of the gauge Unterjettenberg
(Figure 3.1), a dam impounds the river to the lake Saalachsee and provides water to an hydro-
electric power plant. From there on, the river is considerably anthropogenically influenced
by straightening of the watercourse, embedded by dams and other hydraulic structures such
as ramps and weirs. The basic information of the catchment and river characteristics is taken
from the technical reports Schaipp (2002) and Savora and Sackl (2011).

3.1.1 General

The Saalach catchment is considered as one unit with an area of 929 km2 until the gauge
Unterjettenberg in this study. Figure 3.1 shows the topography of the region, the geograph-
ical extent of the investigated catchment and the course of the Saalach. It can be seen that
the catchment is surrounded by high mountain ranges and the river flows to a large extent
through steep valleys. It only flows about 15 km through a relatively broad flat area where
the flow direction turns from eastward to northward. The investigated upper river section
has a length of 77 km and the main part of the catchment area is located in Austria. Alti-
tudes ranging from 420m.a.s.l. to 2600m.a.s.l. indicate a high topographic variability. The
average elevation of 1260m.a.s.l. suggests a noteworthy influence of snow. The vegetation
is mainly characterized by forest which covers more than a third of the area. The valleys are
used agriculturally in which meadows and pastures predominate (Savora and Sackl, 2011).
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Figure 3.1: Topography of the study area and the upper Saalach catchment until the gauge
Unterjettenberg.

3.1.2 Meteorology

The catchment area is located on the north side of the Alps and is therefore affected by
orographic precipitation. Beside the Black Forest, the Alps and their foreland belong to
the regions with the highest sums of mean annual precipitation in Germany as well as in
Austria. Thus, this region is at risk of extreme precipitation events, especially if humid air
masses from the north or north-east are blocked at the mountain ranges and are forced to
release the moisture as rain.

The mean annual precipitation ranges from 1100mm in the lower regions and more than
2000mm in the highest parts of the catchment. Figure 3.2 shows the long-term monthly
mean precipitation sums for four different rain gauge stations close to the catchment area.
Table 3.1 gives some general station information. The annual distribution of precipita-
tion shows a slight seasonality. Approximately 40 % (650mm) of the precipitation occurs
within the hydrological winter half-year and 60 % (950mm) in the hydrological summer
half-year. The monthly maximum precipitation amounts are observed from June to August
(170 − 230mm). Months with minimum precipitation amounts are October (85 − 110mm)



3.1 Saalach Catchment 29

and January/February (85 − 115mm). The mean annual temperatures vary between 4 ◦C

and 7 ◦C in the low and middle zones and 0 ◦C up to 3 ◦C for the highest zones. In gen-
eral, the minimum temperatures are measured in January and the maximum in July. The
mean annual potential evapotranspiration ranges between 350mm for the upper parts of
the catchment, and up to 550mm in the valleys.

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec.
0

50

100

150

200

250

p
re
ci
p
it
a
ti
on

su
m

[m
m

]

Piding ∗

Berchtesgaden ∗

Berchtesgaden−Jenner ∗

Schmittenhöhe ∗ ∗

Figure 3.2: Long-term monthly mean precipitation (*1981 - 2010, **1971 - 2000) for different
rain gauges in the study area.

Table 3.1: General information of some rain gauge stations in the study area.

station name
coordinates [m] elevation precipitation [mm]

E N [m.a.s.l.] annual winter summer

Piding 4568115 5293082 458 1464 600 864
Berchtesgaden 4575742 5278355 600 1563 611 952
Berchtesgaden-Jenner 4576453 5274562 980 1885 761 1124
Schmittenhöhe 4555675 5243633 1973 1502 623 878

3.1.3 Hydrology

The water body type can be classified as alpine with cold water temperatures in summer and
significant sediment transport. The Saalach has an high-alpine discharge character due to the
altitude of the headwaters. Beside rainfall events, the discharge is regulated by snowmelt.
With the beginning of the snowmelt period in March/April, the discharge increases until
its maximum is reached during the summer season with high precipitation amounts. In au-
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Figure 3.3: Daily discharge time series at gauge Unterjettenberg for the investigation period
2004 - 2013.

tumn, the flow rate starts decreasing and reaches its minimum during the subsequent win-
ter months (Figure 3.3). The long-term mean discharge (MQ) at the gauge Unterjettenberg is
3.6mmd−1. For the reference period from 1901 until 2012, the mean flood discharge (MHQ)
is 33.2mmd−1 and the highest observed flood discharge (HQ) is specified with 74.9mmd−1

on August 12, 2002.

3.2 Data Availability

An adequate availability of data is essential and required for all hydrological modeling pur-
poses. This section itemizes all information about the used data like source, time period,
amount of gauging stations, spatial and temporal resolution. The total investigation time
period is ten years and is set from the year 2004 until 2013. Although the available time
series for daily precipitation and discharge data are significantly longer, only a time period
of ten years is chosen. This provides a flexible data availability for the application at higher
temporal resolutions, because hourly data prior to 2004 are very sparse.

Catchment Properties
The catchment is subdivided into regular grid cells with a spatial resolution of 500m by
500m. All required input variables like precipitation (P ), temperature (T ) and potential
evapotranspiration (PE) are processed on this grid. The underlying digital elevation model
(DEM ) is provided by the LfU , Bavaria. Spatial information on land use, soil, and field
capacity is required for the HBV model. These data are not available in a digital grid-based
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format. Thus, an underlying land use map is digitized manually with the information of
BIS (LfU ). The required soil classification and field capacities are derived from the HAD
(BMU ).

Meteorological Data
The precipitation and temperature data are mainly provided by theDWD andZAMG. Sup-
plementary observation data are obtained by publicly accessible online platforms of German
(GKD) and Austrian (eHY D) state agencies. The data are not available to the same extent
in daily and hourly resolution. For the spatial representation and interpolation of the mete-
orological data, a rectangular area with a spatial resolution of 500m by 500m, and an extent
of 150 km by 150 km with a total area of 22500 km2 is used.
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Figure 3.4: Distribution of different daily rain gauge configurations (The plus signs indicate
the additional stations of configuration I .).

In this study, three configurations (I - III) of differently spatially distributed daily rain gauge
stations are considered. These configurations vary in the number of stations and thus in
the density capturing the study area. The spatial arrangement of the daily observation sta-
tions is shown in Figure 3.4 and further information is given in Table 3.2. It can be seen
that configuration II has the least number of stations and configuration III the most. Origi-
nally, configuration I has more stations than II but configuration I contains several stations
with incomplete time series which often just have data until the end of 2005. Therefore,
the configuration I and II are almost identical after 2005. The density of stations within the
catchment is 1.1 stations per 100 km2 for configuration III which is more than twice as the
other configurations. Although, the average minimum distance of two stations for configu-
ration I and III is the same, the ranges of the absolute minimum distances vary considerably.
For the configurations I and II the minimum distances of two stations ranges between 1.5 km

up to 28.4 km whereas configuration III has minimum distances of 0.7 km to 13.0 km. Espe-
cially, the high ranges of the minimum distance between two stations of configuration I and
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Table 3.2: Basic information of the investigated daily rain gauge configurations (The order
of operators is: DWD/ZAMG/eHYD).

description
daily rain gauge configuration

I II III

total number of stations 45 34 61
number per operator 36/9/- 25/9/- 25/9/27
station density of catchment [1/100 km2] 0.5 0.4 1.1
minimum distance of two stations [km] 1.5 - 28.4 2.9 - 28.4 0.7 - 13.0
average minimum distance [km] 5.5 6.9 5.6
average station altitude [m.a.s.l.] 716 748 767

II indicate a relative irregularly distributed and in some areas sparse gauging network. The
minimum station altitude is 412m.a.s.l. and the maximum is 1973m.a.s.l. for all three con-
figurations. There are 24 hourly rain gauge stations available (see Figure 5.9). The minimum
distance of two hourly stations varies between 3.9 km and 28.4 km. The average minimum
distance between two stations is 8.7 km and the density of rain gauge stations is 0.3 stations
per 100 km2 for the catchment area.
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Figure 3.5: Daily and hourly configuration of available temperature stations.

The availability and distribution of the daily and hourly temperature stations is shown in
Figure 3.5. The number of temperature stations is 22 for daily and 19 for hourly resolution.
The minimal distance between two stations ranges from 0.6 km to 28.4 km and the average
minimum distance between two stations is about 7.0 km. The station density for the catch-
ment is 0.5/100 km2. The lowest station is at 420m.a.s.l. and the highest at 1973m.a.s.l.
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Hydrological Data
The discharge data in daily and fifteen minute resolution for the gauge Unterjettenberg are
provided by the LfU . The daily discharge time series for the investigation period from
2004 until 2013 is shown in Figure 3.3. In total, three flood events occurred exceeding the
mean flood discharge (MHQ) of 33.2mmd−1 within this time period. One of the highest
ever observed flood events, with a daily peak flow of 70.5mmd−1, happened on July 2,
2013. No noteworthy peak flow conditions were observed at all in 2004, 2008, and 2012. A
sharp increase of the discharge caused by snowmelt in spring can be noticed in 2005, 2006
and 2009. An extensive low flow period for a couple of months occurred between the last
quarter of 2005 and the first quarter of 2006.
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Figure 3.6: Flow duration curve of gauge Unterjettenberg. The solid line defines the mean
duration of non-exceedance for the period 2004 - 2013, the dashed line indicates
the long-term mean (1901 - 2006) and the gray shaded area represents the range
of lower and upper hull curve.

The flow duration curve of the investigation time period and the long-term observations
in Figure 3.6 match very well for low and middle flow conditions until a duration of non-
exceedance of about 82 % (300 days). In the range of 82 % up to 99.5 % (363 days), the mean
discharge of the investigation period is slightly below the long-term mean observations.
For a duration of non-exceedance of 99.7 % (364 days), the mean discharge of the investi-
gation time period is clearly above the long-term mean. This can be explained by the fact
that within 2004 and 2013 several flood discharges were observed with higher flows than
21.2mmd−1(99.7 %). In particular, the flood events in 2005, 2010, and 2013 significantly
exceeded the long-term mean of 99.7 % duration of non-exceedance.



4 Data Validation and Processing

Every application of conceptual hydrological models requires a variety of input data for
model calibration and evaluation. The data quality has a significant influence on the estima-
tion of model parameters and thus on model performance. In the first section of this chapter,
some aspects regarding the potential errors and resulting uncertainty of the input data are
discussed. The second part of the chapter describes how data quality is analyzed and val-
idated. Finally, the methods of processing the input data are introduced. Here, mainly
meteorological point observations such as precipitation and temperature are converted to a
spatially distributed representation. In a first step, conventional interpolation methods such
as kriging are presented. Afterwards, a new conditional simulation method, called random
mixing (RM ) developed by Bárdossy and Hörning (2016a,b), is introduced. This method is
versatile for many hydrological applications. Among other things, different constraints can
be implemented to account for uncertainties due to measurement errors of input data.

4.1 Uncertainty of Input Data

It is widely accepted that measured data have inherently a degree of uncertainty, but this
has so far often been disregarded in model evaluation procedures (Moriasi et al., 2007). In
this section, potential error sources of the input data are shortly pointed out. Primarily, the
errors due to the measurement techniques and conditions are discussed. The amount of
available data also has a strong influence on input uncertainty. The size of a data set is de-
pendent on its spatial (lumped or distributed modeling approach) and temporal resolution,
as well as on the length of the used time series. An increase from daily to hourly resolution
has already a significant influence on data preprocessing and model computing time. For
this reason, a manual control of the data quality is unfeasible and just simple automatic vali-
dation techniques can be executed to remove the most clear erroneous data values. The data
maintained by public institutions should have a certain level of quality (Andréassian et al.,
2009). Nevertheless, a certain degree of uncertainty remains.

4.1.1 Meteorological Data

The available meteorological data used in this study are basically point measurements from
weather stations. These data are subject to various error sources and thus to uncertainty.
All input data are uncertain because of limited measurement procedures. Then, observa-
tions on a few points within a domain produce uncertainty due to the spatial variability of
the meteorological variables. Consequently, a well established observation network with a
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sufficient density and a preferably uniform distribution of monitoring stations is required
for the estimation of areal precipitation (McMillan et al., 2011). In regions with strong topo-
graphical variability, the locations of stations also have to cover the differences in altitude.
This accounts for the vertical variation of precipitation due to orographic effects. In litera-
ture, a density of one rain gauge station per 40− 50 km2 is indicated as sufficient. Whereas,
in mountainous regions, a much denser rain gauge network is required depending on the
prevailing wind conditions (Lecher et al., 2015). The required number of rain gauges can also
depend on the temporal resolution of the measurements. In Villarini et al. (2008), it is re-
ported that for the equal estimation of areal precipitation within a certain range of accuracy
less stations for larger accumulation time steps, e.g., daily are necessary than for hourly
or even higher temporal resolutions. Nevertheless, a network of observation stations can
hardly specify the exact extension of precipitation fields or the amount of precipitation at
ungauged locations between the stations. Thus, different geostatistical interpolation meth-
ods to convert point information to a spatial representation are used. Such a conversion of
meteorological variables adds additional uncertainty to the input data (Götzinger and Bár-
dossy, 2008).

To shift back the focus on measurement uncertainty of precipitation, the commonly used
measuring devices are briefly introduced. In Germany as well as in Austria, the Hellmann
gauge types are generally used. The recording of precipitation is based on the principle of
weighing or tipping buckets (McMillan et al., 2011; Lecher et al., 2015). Precipitation mea-
surements are exposed to systematic and random errors due to limitations of the devices
(Sevruk, 1996; Yu et al., 1997; Molini et al., 2001, 2005; Sevruk and Chvíla, 2005) and external
influences (Sevruk, 1983; Michelson, 2004; Chvíla et al., 2005; Sevruk et al., 2009). The main rea-
son for systematic errors are losses through wind. Depending on the location and altitude
of the station, and the physical state of precipitation, e.g., rain or snow as well as the size
and distribution of raindrops, the wind-induced losses vary considerably. In literature, av-
erage values for wind-induced errors are reported between 4− 6 % (Sevruk et al., 2009) up to
15 % for rainfall (Sevruk, 1996; Chvíla et al., 2005). The error due to wind for snow and mixed
precipitation is significantly higher and can reach up to 50 % for mixed precipitation and up
to 80 % for snow (Sevruk et al., 2009). There are more losses with increasing wind speeds and
decreasing rain intensities (Chvíla et al., 2005). In other words, larger wind-induced mea-
surement errors occur in high mountain regions due to higher wind speeds and proportion
of snow. Whereas, the influence of wind for convective rainfall events with larger raindrop
sizes in summer at shielded lower altitudes is less.

Other sources of systematic errors are evaporation, wetting, splashing and drifting. In
Michelson (2004), some loss constants for evaporation and wetting are listed. For a Hell-
mann rain gauge, loss constants for daily evaporation between 0.01 − 0.04mmd−1 for the
hydrological winter half-year and 0.09−0.16mmd−1 for the hydrological summer half-year
are specified. According to this, wetting constants vary between 0.14mm for rain, 0.10mm

for solid precipitation and 0.18mm for mixed precipitation per event in a period of twelve
hours. Furthermore, random errors can affect precipitation measurements. These are, e.g.,
clogging of the collecting vessel and funnel, reading errors, digitizing and transmission er-
rors (Sevruk, 1996). Another issue of precipitation data are volume errors which can result
from the measurements itself or the subsequent processing to areal precipitation. The conse-
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quence for rainfall-runoff modeling may be a biased parameter estimation due to inadequate
properties of the water balance and thus poor predictions (Kavetski et al., 2006b). The deter-
mination of other sources of errors and uncertainty due to the model structure as well as
parameterization inadequacies are also complicated by erroneous input variables (McMillan
et al., 2011).

4.1.2 Hydrological Data

Discharge observations are required in every application of conceptual hydrological mod-
els. Discharge values are necessary for the parameter estimation in the calibration phase and
for the comparison and evaluation of the model output in the validation phase. Commonly,
discharge data are not directly measured but derived from rating curves which have to be
determined for every discharge gauge individually. Such a rating curve puts a discharge
value explicitly in relation to a value of the water level. Water levels can be directly mea-
sured by different methods whereas the direct measurement of discharge is more complex.
Therefore, water levels are continuously measured and subsequently converted to discharge
data using the fitted rating curve. The rating curve is developed by several single discharge
measurements at a preferably wide range of water levels. For this, the flow velocity is mea-
sured with a current meter at a defined cross section of the gauge. To obtain a good approx-
imation of the average flow velocity, the total cross section is divided into several vertical
sections. At these vertical sections, point measurements of the flow velocity are performed
at defined water depths with the current meter. The width between two cross sections and
the associated water levels are also measured to calculate the cross-sectional areas. These
information allow the computation of the total discharge at a known water level (Linsley
et al., 1988). The individual data pairs of discharge and water level have to be transferred to
a continuous curve. The relationship between the water level and the discharge can usually
be described by a power or polynomial function. Probably, the most common function to fit
the data is: Q(W ) = a ·W b. Q is the discharge and W the corresponding water level. The
parameters a and b describe the flow dynamics and account for the geometry of the cross
section (Jónsson et al., 2002). The determination of these parameters are often done with a
linear regression if a logarithmic transformation Log(Q) = Log(a) + b · Log(W ) is applied
to the function above. Then, the variables Log(Q) and Log(W ) have a linear relationship.
To obtain the best fitting values of the parameters a and b, the least square method is used
where the square sum of the residuals is minimized (Jónsson et al., 2002).

The uncertainties of discharge data are often disregarded for the use of hydrological mod-
eling. This is justified with the fact that measurements of the discharge are the suppos-
edly only and best available data for model calibration. Nevertheless, erroneous discharge
data can lead to inadequate parameter estimations and consequently to model predictions
affected by uncertainty (Beven, 2012). The possible range of uncertainty due to imperfect
discharge data is discussed in the following sentences. The two error components of dis-
charge data are the measurement uncertainty and the uncertainty coming from the methods
of determining the rating curve (Tomkins, 2014). Measurement errors originate from the used
devices as well as the observer. Some sources of measurement uncertainty using a current
meter are the accurate determination of the water depth and the measurement of the flow
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velocity itself. Another problem is the change of cross section properties due to river bed
erosion or deposition, weedage and bank erosion (Harmel et al., 2006). This can have a crucial
influence on the relationship between water level and discharge. For this reason, a frequent
control through discharge measurements and if necessary adjustment of the rating curve is
compulsory. The most uncertain ranges of a rating curve are the very low and very high
water levels. For these water levels, measurements are usually not available and this part is
determined by extrapolation (Tomkins, 2014). In particular, the high discharge values are of
major importance for flood predictions. Jónsson et al. (2002) investigated the methodological
and personal uncertainty of determining rating curves. They applied different methods of
establishing rating curves with the same discharge measurements. They found that partic-
ularly for extreme high water levels, discharge differences up to 20 % can occur if different
rating curves are used. Harmel et al. (2006) specifies a survey of several values for the un-
certainty of discharge measurements and rating curves summarized from various studies.
Accordingly, the uncertainty of determining the discharge with flow velocity measurements
ranges between ±2 % for ideal conditions and up to ±20 % for poor conditions. On average
conditions, an uncertainty of ±6 % remains. Uncertainties in the range of ±5 % and ±10 %

are named for the relationship of water level and discharge (Harmel et al., 2006).

4.1.3 Estimation of Evapotranspiration

Evapotranspiration, besides precipitation and discharge, is a part of the water balance in a
catchment. For longer, continuous hydrological modeling purposes, the actual evapotran-
spiration (ETA) has to be estimated for a sufficient consideration of antecedent catchment
conditions before rainfall events (Beven, 2012). The potential evapotranspiration (PE) has to
be estimated for a subsequent calculation of ETA. The direct measurement of PE is difficult
whereas values of PE are usually estimated with empirical equations. PE is the amount of
water loss over an area which would occur with unlimited water availability (Beven, 2012).
Especially, during longer dry periods the actual evaporated amount of water (ETA) is not
equal to PE due to limited water availability. The calculation of ETA usually takes place in
a subroutine of the hydrological model. For instance, this is shown for the HBV model in
Subsection 2.2.1. There, the current water availability is represented by soil moisture stor-
age which is related to a proportion of ETA to PE. In this study, due to the lack of available
meteorological data, the approach of Hargreaves and Samani (1985) was used to estimate PE.
This method only uses data for the minimum (Tmin), maximum (Tmax) and mean (Tm) tem-
perature as presented in Subsection 2.2.1. Thus, a minimum of data is required compared to
more physically-based approaches such as Penman-Monteith. In addition, the devices mea-
suring weather parameters such as solar radiation and humidity are often prone to stability
errors (Samani, 2000). The estimation of PE can vary depending on the calculation method
(Singh et al., 2005).

An adequate assumption of evapotranspiration often gets insufficient attention in hydro-
logical modeling purposes. Consequently, data of evapotranspiration are also subject to
uncertainty because of their indirect determination through more or less complex empirical
equations and the required input variables. In literature, errors are reported up to±10 % and
for small evaporation rates even up to±20 % (Lecher et al., 2015). The influence of inadequate
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evapotranspiration data to the results of hydrological models are also investigated in several
studies. Different data sets of improved PE estimations are tested on two different rainfall-
runoff models in Andréassian et al. (2004). The evaluation of model performance shows that
both models react remarkably insensitive to different data inputs of PE. Nevertheless, the
calibrated model parameter sets differ from each other which allows the assumption that the
models are able to compensate different inputs of PE. Another study of Oudin et al. (2005a)
investigates the influence of considering PE with a long-term mean time series identically
for each year or an individual estimation of PE on a daily resolution. The values of PE are
estimated with the Penman approach and applied to four different rainfall-runoff models
on 308 catchments. The study shows that no significant improvement of the model perfor-
mance can be obtained with daily estimated inputs of PE. The differences in model perfor-
mance regarding the Nash-Sutcliffe efficiency (NSE) ranges between 0.1 % and 0.8 %. The
companion study analyzes 27 different approaches for estimating PE on 308 catchments.
The improvement of model performance (NSE) by using different PE time series is around
1 %. They conclude that even simple temperature-based equations for estimating PE are
capable for improving the model performance (Oudin et al., 2005b).

4.2 Quality Control

The data availability and quality influence the application of hydrological models and es-
pecially their proper calibration in different ways. Difficulties for model calibration can oc-
cur if the data have limited information content, considerable measurement errors or poor
representation of the spatial variability of meteorological input variables due to sparsely
distributed point measurements (Gupta and Sorooshian, 1985; Gan et al., 1997). The quality
of observation data is generally not determinable as well as unchangeable. Only the inade-
quacy of data can be identified and must be carefully verified. Thus, a quality control (QC)
of the meteorological input variables as well as discharge data are an important requirement
before using them in hydrological models. At least, a QC of model input variables should
avoid the use of apparently inadequate data which result in insufficient model calibration
and unreliable model predictions. For this purpose, a comprehensive QC starts with the
operation and the frequent maintenance of the measurement devices. This includes the cal-
ibration of the measuring sensors, a regular revision of its validity and a manual inspection.
In a second step, observation data have to be checked with different statistical procedures
(Estévez et al., 2011).

The subsequent sections show the results of QC regarding the meteorological input vari-
ables and discharge data. The subsection on rain gauge data describes the verification of
meteorological data in more detail. Potential inadequacies of the required data can already
be a hint for later occurring modeling limitations.

4.2.1 Rain Gauge Data

Subsection 4.1.1 specifies a variety of potential error sources for precipitation data. The
quality of rain gauge data is a highly influencing aspect for hydrological modeling. Among
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experts exists the conclusion that precipitation point measurements can only be checked by
human eye to obtain a reliable and good data quality (Einfalt and Michaelides, 2008). Never-
theless, the manual plausibility check of data is difficult to apply if, e.g., real-time data has
to be further processed for flood warning or the amount of investigated data is too large
(Einfalt and Michaelides, 2008).
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(b) Configuration III

Figure 4.1: Relationship between station altitude and mean annual precipitation sum.
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(b) Winter

Figure 4.2: Relationship between station altitude and mean precipitation sum of rain gauge
configuration III for the hydrological half-years.

The precipitation data sets used are checked and prepared for further processing. Firstly,
for every single rain gauge station data gaps within the time series are detected and filled
with missing values. Thus, every time series is complete and comparable according to the
time stamp over the total investigation period. Then, the time series are checked for extreme
high values and their physical possibility. Further procedures of detecting inadequate data
such as constant values for a certain time or unusually low as well as high values are sug-
gested in Einfalt et al. (2008), but not applied in this study. Additionally, the mean annual
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precipitation sums of each individual rain gauge is compared to geographical properties.
Such an analysis provides information about expected relationships between precipitation
patterns and elevation or orientation. Mean annual sums of precipitation typically increase
with elevation. The geographic direction of the gauging stations can also influence the mean
annual precipitation sums. The windward side of a mountain range usually records higher
mean precipitation sums than the lee side. Due to accumulation effects on the windward
side, even lower located gauging stations can measure above-average sums of precipitation.
Two gauging stations in the investigation area that exhibit just such an accumulation effect
are listed in BMU (2003). Both stations, Aschau-Stein (680 m.a.s.l.) and Ruhpolding-Seehaus
(753 m.a.s.l.) observe more than 2000mm of mean annual precipitation. Thus, higher mean
annual precipitation is not just related to increasing station altitudes (BMU, 2003) but also
to the geographical location. Due to the geographical orientation of the Alps in the study
area (Figure 3.1), such accumulation effects in the north-south direction must be taken into
account when evaluating precipitation data.

Table 4.1: Correlation (R) between station altitude [m.a.s.l.] and mean precipitation sum
[mm] for different station configurations and time periods.

time period
configuration II configuration III

all < 1000 < 900 < 700 all < 1000 < 900 < 700

annual 0.06 0.54 0.65 0.65 -0.01 0.18 0.30 0.60
summer 0.13 0.53 0.64 0.62 0.05 0.20 0.29 0.54
winter -0.01 0.53 0.63 0.66 -0.06 0.15 0.29 0.63

Stations with more than 12.5 % missing values are excluded for further data evaluation. The
threshold value corresponds to a maximum of one year of missing data within the investi-
gated period of eight years. This adjustment is intended to avoid too much corruption of the
mean annual values due to too many missing values. The remaining missing values in the
time series are considered as zero for calculating the precipitation sums. The mean annual
precipitation sums tend to be underestimated depending on the number of missing values
per gauging station. Figure 4.1 shows the relationship between station altitude and mean
annual precipitation sum of the rain gauge configurations II and III. The majority of the sta-
tions are located below an altitude of 900m.a.s.l. and there are only a few stations above
1000m.a.s.l.. For configuration II, a trend toward higher mean annual precipitation with in-
creasing station altitude up to 900m.a.s.l. is visible. A wide range of mean precipitation for
stations at the same elevations is also apparent. The total annual amounts of precipitation do
not exceed more than 1500mm for stations above 1000m.a.s.l. for both configurations. Con-
figuration III has more stations available between 800m.a.s.l. and 1000m.a.s.l.. The mean
precipitation sums show a high variability in this range and a trend of increasing precipita-
tion sums for higher altitudes is not obvious. The relatively low mean annual precipitation
sums at the higher stations may indicate underestimation due to systematic measurement
errors. Whereas, the partly high mean annual sums of lower stations are plausibel due to
the above described accumulation effects at the foothills of the Alps. Figure 4.2 shows the
mean precipitation sums of configuration III separately for the hydrological half-years. The
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Figure 4.3: Relationship between altitude and northing of the gauging stations (a) and mean
annual precipitation and northing (b) of configuration III.

patterns of precipitation sum and station altitude look quite similar for the summer and
winter half-years. Solely, the amount of precipitation is higher for the hydrological summer
half-years. A systematic measurement error due to snow, especially for higher gauging sta-
tions, is not clearly recognizable for the winter half-years. In the left plot of Figure 4.3, the
locations of the gauging station according to the north-south orientation are given. Station
altitudes generally increase in a southward direction. Therefore, shadowing effects can lead
to lower mean annual precipitation sums for higher, but also more in the hinterland located
stations.

Table 4.1 shows the correlation (R) between station altitude and mean precipitation sum for
the configuration II and III. The analyzed time period refers to the hydrological years from
2005 until 2012. Both configurations are further classified into groups of different station
compositions. The denomination all involves all available stations, while the numbers, e.g.,
1000, specify the altitude level above which all stations are disregarded in the calculation of
R. If all stations are considered, the results indicate that there is almost no correlation be-
tween station altitude and precipitation sum. For the hydrological winter half-years, even
a light anticorrelation is observable. This means that there are decreasing mean precipita-
tion sums with increasing station altitude. Regarding the different half-years, R is higher
for the summer half-years than for the winter half-years. This may be an indicator for mea-
surement errors due to snowfall. The more stations of higher altitudes are disregarded, the
higher is R. For configuration II, a significant increase of R already occurs if the stations
above 1000m.a.s.l. are ignored. Similar values of R are obtained by configuration III if just
the stations below 700m.a.s.l. are considered. This can be explained by the fact that between
700m.a.s.l. and 1000m.a.s.l. more stations are available which may influence the values of
R. These stations in the middle altitudes can be more affected by shadowing effects because
of the leeward locations in the valleys of the hinterland. If stations above 1000m.a.s.l. are
disregarded, another finding is that the differences in R between summer and winter half-
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years almost disappear. In the case where just stations below 700m.a.s.l. are used, R is even
higher during the winter half-years. The reason may be that stations at lower elevations
are less affected by measurement errors due to snow. On the other hand, during the sum-
mer half-years, other circumstances such as high rainfall intensities can cause measurement
uncertainties. The higher spatial variability of rainfall patterns due to convective events
may also influence the distribution of precipitation within the study area independently of
station altitudes.

According to the location of the study area on the north side of the Alps, a relationship
between mean precipitation sum and the north-south orientation of the stations is checked
(Figure 4.3). Despite mainly increasing station altitudes southwards, the mean annual pre-
cipitation sums do not show the same trend. The distribution of precipitation due to their
latitudinal location follows a rather horizontal parable. Above a northing of 5280000m an
increasing trend of the precipitation sums to the south exists. But, below the northing of
5280000m a decreasing trend of precipitation sums together with increasing station alti-
tudes is apparent southwards. This northing crosses the study area approximately between
the gauge Unterjettenberg and the city of Berchtesgaden (Figure 3.1). Looking at the topogra-
phy, it can be seen that south of this northing the first high mountain ranges appear. Thus,
the increasing trend of precipitation can again be caused by accumulation effects on the
north side of the mountain range as well as the lower amounts of precipitation to the south
can be the result of shadowing effects.

4.2.2 Temperature Data

Especially in mountainous catchment areas, such as the investigated Saalach catchment, ade-
quate temperature data are an important prerequisite. Temperature data are required for the
estimation of evapotranspiration as well as a proper representation of snow processes. As
already mentioned in Section 3.2 and illustrated in Figure 4.4, the temperature stations and
consequently the available point measurements are even more sparse than the rain gauge
stations. After revising the data time series with the requirement of less than one year of
missing data (12.5 %), only ten stations remain for the analysis.

After fitting a regression line to the data pairs of station altitude and mean annual tem-
perature, the slope of the regression line provides an average temperature lapse rate of
4 ◦C km−1. In literature, mean lapse rates of about 6.5 ◦C to 7 ◦C decrease per kilometer
height are specified for the lower troposphere (Linsley et al., 1988; Häckel, 2008). The esti-
mated temperature lapse rate is slightly below the literature values. This may be due to
regional variations or the relative short time series of eight years. Another reason is that
the slope refers to mean annual temperatures which also involves inversions. Usually, the
temperature decreases with increasing altitude but during an inversion the temperature pro-
file reverses and the temperature increases with height. This fact can reduce the estimated
temperature lapse rate somewhat. Nevertheless, the relation between station altitude and
temperature observations has a coefficient of determination (R2) of 0.99 and can be consid-
ered as linear. The assumption that temperatures decrease linearly with increasing elevation
is reasonable. Therefore, estimating the temperatures with linear lapse rates in grid cells
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Figure 4.4: Relationship between station altitude and mean annual temperature.

without observations on different altitudes might be practicable. The finding of an explicit
relation between elevation and mean temperature is essential for subsequent spatial inter-
polations. Especially, if wide vertical ranges are not covered by monitoring stations. Figure
4.4 illustrates that between 800m.a.s.l. and 1600m.a.s.l. no temperature stations are avail-
able. Thus, the almost linear relationship between station altitude and mean temperature
allows for reliable temperature estimations in this ungauged range.

4.2.3 Discharge Data

The QC of the discharge time series provides a rough survey of data inconsistencies. In a
first step, daily discharge time series of one upstream and one downstream gauge are com-
pared to the data of gauge Unterjettenberg. The gauge Weissbach is located 27 km upstream
of gauge Unterjettenberg and has a catchment area of 567.5 km2. The gauge Staufeneck is
11 km downstream and its catchment covers about 1022 km2. The time series have no data
gaps. Due to the relative short distances of gauge Unterjettenberg to the other two gauges
and average slopes between 0.4 % and 0.6 %, flow times of some hours are assumed. Thus,
extreme discharge changes between the three gauges for a daily time step should be very
rare. Consequently, a certain correlation between discharge data of two gauges at the same
time step is expectable. The discharge values of gauge Unterjettenberg are compared with
the two other gauges.

Figure 4.5 shows the different data sets, the coefficient of determination (R2) and the used
data quantity related to the total data set (Ndat). The left column refers to the data pairs of
Unterjettenberg/Weissbach and the right column to Unterjettenberg/Staufeneck. For the analy-
sis, the total data set and some modifications related to the long-term mean discharge (MQ)
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(a) total (b) total

(c) 2*MQ (d) 2*MQ

(e) MQ (f) MQ

(g) 0.5*MQ (h) 0.5*MQ

Figure 4.5: Comparison of different discharge data sets between two gauges. The left col-
umn presents the relationship between the gauges Unterjettenberg and Weissbach
and on the right side gauge Unterjettenberg is compared to Staufeneck.
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are considered. In the modified data sets, values above certain thresholds are disregarded
for all gauges. For example, the modification 2*MQ considers only values which are not
greater than twice theMQ. A quite high relationship between the respective pairs of gauges
is identified for the total data set and 2*MQ. The smaller the discharge values compared,
the lower the correlation between the data pairs. The gauges Unterjettenberg and Staufeneck
show a stronger relationship with the exception of the configuration 0.5*MQ. Reviewing all
scatterplots in Figure 4.5, two facts can be highlighted. Firstly, the discharge data of gauge
Weissbach show some constant values for varying values of gauge Unterjettenberg. These val-
ues appear successively from the end of January until mid of February 2006 in the time se-
ries. The mean daily temperatures in this period show values of almost permanently below
0◦C and often with severe frost below −4◦C in daily mean. This data inadequacy is proba-
bly related to the gauge Weissbach and could be caused by frozen measurement devices. The
second finding is a clear decline of the linear relationship for the very low discharge values
for both pairs of gauges. Several reasons could cause these effects. Changes of low flows
can occur due to local effects such as melting of remaining snowfields or intensive convec-
tive rainfall events with limited spatial extent in a subcatchment. Consequently, such small
discharge changes do not necessarily result from the total catchment and are just recorded
by single gauges. Another reason may be the influence of regulating the flow rate with
dams and weirs for hydro-electric power plants. Such an anthropogenic regulation of the
flow rate certainly occurs between Unterjettenberg and Staufeneck. Finally, differences in dis-
charge values can also be caused by peak flows passing the gauges on different time steps.
In summary, no apparent data inconsistencies can be detected for the gauge Unterjettenberg
for this data control.
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Figure 4.6: Cumulative curve of discharge volume for the hydrological years 2005 - 2012.

Another approach of data control is the comparison of discharge volumes between the dif-
ferent gauges. Here, the cumulative curve of discharge volume (Figure 4.6) and the annual
discharge volume (Figure 4.7) of all three gauges is presented for the hydrological years from
2005 until 2012. The cumulative discharge volumes represent a reasonable increase over the
time period in which the most upstream gauge has the lowest and the most downstream
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Figure 4.7: Annual discharge volume for the hydrological years 2005 - 2012.

gauge the highest total volume. As rough estimation, the ratio of total volume is compared
to the ratio of additional catchment area between the gauges. The average extra discharge
volume between the gauges Weissbach and Unterjettenberg is 44 % and the corresponding in-
crease of catchment area is 39 %. Accordingly, the additional discharge volume between the
gauges Unterjettenberg and Staufeneck is 7 % regarding 9 % larger catchment area. Thus, the
ratio of total volume between the gauges and additional catchment area also seems to be in
a realistic range.

Solely, the gauges Unterjettenberg and Staufeneck show an almost equal gradient for the last
part of the cumulative curve. Figure 4.7 shows that the differences in discharge volume
are already small for the hydrological year 2011 and for 2012 even slightly less discharge
volume is calculated for the downstream gauge Staufeneck. The ratios of discharge vol-
ume between the gauges Weissbach and Unterjettenberg are in a reasonable range for the two
years. Therefore, it can be an indicator for errors in the observations of gauge Staufeneck
within this period. The year 2008 also shows an disproportionate increase of discharge vol-
ume (18 %) between the gauge Unterjettenberg and Staufeneck whereas the ratio between the
gauges Weissbach and Unterjettenberg is below the mean (40 %). This could be an indicator
for inconsistent data of the gauge Unterjettenberg.

4.3 Conventional Spatial Statistical Methods

Meteorological observation data from point measurements at different locations are often
available. But, for hydrological modeling purposes estimates of meteorological input vari-
ables are usually required at any location in the catchment area. Such a spatial represen-
tation of the input variables should consider the variability of, e.g., temperature and pre-
cipitation patterns due to topographic effects and their non-uniform distribution. Thus, the
input variables need to be transferred from a point to a spatial representation. Traditional
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interpolation methods of precipitation point measurements are inverse distance weighting or
the Thiessen polygon method (Beven, 2012). Other interpolation approaches are geostatisti-
cal methods like kriging. The kriging methods and some specific results for this study are
briefly presented in the first part of this section. Further reading about the different kriging
methods can be found in, e.g., Kitanidis (1997), Wackernagel (1998) and Sorooshian (2008).

4.3.1 Ordinary Kriging

One of the most widely used geostatistical methods of interpolating meteorological vari-
ables is ordinary kriging (ODK). Kriging is based on a linear interpolation approach and
provides the possibility to estimate a value z∗(x0) at an unobserved location x0. A prerequi-
site for kriging are values z(xi) from observation stations at locations xi in the neighborhood
which allow the determination of a variogram. A variogram represents the spatial depen-
dence of a variable z(xi) for increasing distances. The experimental variogram γ(hij) is
defined as follows:

γ(hij) =
1

2n(hij)
·
n(hij)∑
i=1

[z(xi)− z(xi + hij)]
2 (4.1)

where n(hij) is the number of station pairs separated by the vector hij . Before applying
the kriging algorithm, a continuous function, called the theoretical variogram, must be fit-
ted to the discrete values of the experimental variogram. Different standard functions of
theoretical variograms can be found in Kitanidis (1997) or Sorooshian (2008).

The weighted linear combination of observations for estimating a value z∗(x0) can be de-
scribed as follows:

z∗(x0) =

n∑
i=1

λi · z(xi) (4.2)

where n is the amount of neighboring observations and λi represents the weight of the par-
ticular observation z(xi). Then, the linear equation system of ODK introducing the La-
grange multiplier ν:

n∑
j=1

λjγ(xi − xj) + ν = γ(xi − x0) i = 1, ..., n (4.3)

n∑
j=1

λj = 1 (4.4)

is solved to obtain the weights λj that are required in Equation 4.2.
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4.3.2 External Drift Kriging

External drift kriging (EDK) is used for the incorporation of secondary information. The
assumption is a linear relationship of the secondary variable y(xi) to the variable z(xi). For
example, elevation data from a digital elevation model (DEM ) can be used as external drift
for interpolating meteorological variables such as precipitation or temperature. The equa-
tion system for EDK with two Lagrange multipliers ν1 and ν2 is:

n∑
j=1

λjγ(xi − xj) + ν1 + ν2y(xi) = γ(xi − x0) i = 1, ..., n (4.5)

n∑
j=1

λj = 1 (4.6)

n∑
j=1

λjy(xj) = y(x0) (4.7)

Insert a blank line
The advantage ofEDK overODK is the consideration of secondary information such as el-
evation. In this study, many observation stations for precipitation as well as temperature are
located in lower regions whereas the topography of the investigation area is spatially highly
variable. The availability of stations in upper altitudes is very sparse and no observations at
all exist for the highest ranges. Especially, the interpolation of temperature point measure-
ments with ODK leads to erroneous estimations at unobserved locations in high altitudes.
The characteristic of decreasing temperature with increasing elevation is not correctly rep-
resented by ODK. EDK also accounts for the assumption of increasing precipitation sums
with increasing elevations.

4.3.3 EDK with DEM smoothing

The modified EDKs uses a smoothed DEM as secondary information. Accumulated pre-
cipitation measured by rain gauges is generally not affected by small scale variability of the
topography. Thus, interpolated precipitation patterns using the conventional EDK repro-
duce the structures of the underlying DEM in an unreasonable way. In Bárdossy and Pegram
(2013), a directional smoothing approach for the consideration of orographic and advective
effects on precipitation patterns is introduced. The original elevation h(x) at a location x can
be smoothed and shifted to the elevation hs(x):

hs(x) =
G∑
g=1

w(x− xg)h(xg) (4.8)
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where

w(x− xg) =


0 if |x− xg| > d or 〈v, (x− xg)〉 < 0

cw ·
(

1− |x−xg |d

)
otherwise

(4.9)

and
G∑
g=1

w(x− xg) = 1 (4.10)

G indicates the number of elevation grid points and xg is a grid point of the DEM . Vec-
tor v accounts for the predominant wind direction with a north and east component. The
smoothing distance is represented by d and w are weights. The selection of the constant cw
has to fulfill the constraint of Equation 4.10 (Bárdossy and Pegram, 2013).
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Figure 4.8: Difference between original and smoothed DEM.

In this study, the original DEM is smoothed with a distance of d = 5 km without shifting
into the prevailing wind direction. Figure 4.8 shows the difference between the original and
smoothed DEM . In the version of smoothed DEM , the microtopography such as small
steep valleys disappears.

4.3.4 Comparison of Kriging Methods and Water Balances

The different interpolation results for mean annual precipitation, obtained using the three
kriging methods for rain gauge configuration III, are shown in Figure 4.9. The map gener-
ated by ODK indicates a decrease of the mean annual precipitation in southern direction.
Especially, in the south-eastern part of the investigation area the high mountain ranges and



50 Data Validation and Processing

(a) ODK (b) EDK (c) EDKs

1100

1300

1500

1700

1900

2100

m
ea
n
p
re
ci
p
it
a
ti
on

[m
m

]

Figure 4.9: Mean annual precipitation interpolated by three different kriging methods. The
black crosses indicate the gauging stations of configuration III.

the expected higher precipitation amounts are not reproduced. The precipitation maps us-
ing a DEM as additional information account better for the orographic variability of the
precipitation. In both cases, the topography of the investigation area is visible whereas
the map of EDKs has smoother contours. There, only the broad valleys in the hinterland
shielded by the high mountain ranges receive clearly less precipitation in annual mean.

The mean annual differences of areal precipitation due to the rain gauge configuration and
kriging method are analyzed in Table 4.2. The spatial distribution of the precipitation differ-
ences is shown for ODK in Figure 4.10 and EDKs in Figure 4.11.

Table 4.2: Mean annual differences of areal precipitation [mm] between different rain gauge
configurations and kriging methods for the catchment Unterjettenberg.

∆PI−II ∆PI−III ∆PII−III

ODK 2.1 4.2 2.1

EDK 4.6 -35.1 -39.7

EDKs 4.6 -35.2 -39.8

The mean annual differences between all rain gauge configurations interpolated by ODK
are marginal. The differences of processing the data with EDK or EDKs are negligible.
Taking topography into account as secondary information shows a clear increase of mean
annual precipitation for configuration III. On average, configuration III estimates between
35mm and 40mm more areal precipitation per year using EDK or EDKs. Thus, the con-
sideration of topographic information is essential in such a catchment. The strong influence
of a single gauging station located in a shielded valley in the south-east of the catchment
and recording low mean annual sums is given for ODK in Figure 4.10.
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Figure 4.10: Differences of mean annual precipitation between the configurations I - III cal-
culated by ODK.
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Figure 4.11: Differences of mean annual precipitation between the configurations I - III cal-
culated by EDKs. The black dots are additional stations of configuration I and
the black triangles are stations of configuration III. The bright gray line defines
the catchment.

Finally, the results for precipitation from the different interpolation methods are used to look
more closely at the water budget. All calculations refer to the hydrological year. The hydro-
logical year starts at the 1st of November and the denotation corresponds to the subsequent
year (Maniak, 1997). The reason for the shift to November is that a catchment usually has
the lowest water resources during this season. Thus, snow accumulation in November and
December which melts in spring of the next year is considered correctly. The hydrological
half-years are defined from 1st of November until 30th of April (winter) and from 1st of May
until 31th of October (summer).

In addition to the general water balance, the climatic water balance (CWB) is first consid-
ered as an important quantity for estimating water availability. The calculation of the CWB

takes the difference between precipitation depth (P ) and the depth of the potential evapo-
transpiration (PE) for a certain location and time period into account (BMU, 2003):

CWB = P − PE (4.11)
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Table 4.3: Annual and semi-annual climatic water balance (CWB) for different interpolation
methods of rain gauge configuration III. The analysis refers to the hydrological
year and half-years in the period of 2005 - 2012.

annual [mm] summer [mm] winter [mm]

ODK EDK EDKs ODK EDK EDKs ODK EDK EDKs

mean 836 908 911 447 486 487 388 422 423

min 637 735 738 202 250 252 222 261 262

max 956 1025 1027 565 599 600 540 579 580

The unit of all variables is mm. Initially, it is checked whether situations with water deficits
occur within the catchment during the investigation period. It is also possible to identify
seasonal differences in water availability. The quantities of available water for different time
periods are shown in Table 4.3. The results are mean areal values of the catchment Un-
terjettenberg and refer to the rain gauge configuration III. They have a positive balance for
all time periods. The mean annual values vary between 637mm and 1027mm depending
on the interpolation method. The mean amount of available water is almost the same for
the hydrological summers and winters. On average, slightly less water is available (46.5 %)
in winter. An almost equal ratio of the mean semi-annual water availability between both
half-years is plausibel for the Alps (BMU, 2003). The CWB in Table 4.3 show that the in-
terpolation methods using elevation as external drift outperform ODK. Higher amounts of
precipitation are assumed when considering elevation, and thus more water is available for
runoff generation. The average differences of available water are about 8 % for the annual
as well as semi-annual time periods. This indicates that the larger estimated quantities of
available water withEDK methods are independent of the season. The differences between
EDK andEDKs are negligible. The fact that theCWB are always positive within the inves-
tigated time period is confirmed by the evaluations in BMU (2003). However, mean annual
values up to 2000mm are reported for the Alps which are more than twice of the estimated
values here.

The general water balance determines the amount of water and its changes within a
catchment. The applied equation contains the depth of precipitation (P ) as input, discharge
(Q) and the potential evapotranspiration (PE) as output of the system:

P = Q+ PE + ∆S (4.12)

The term ∆S accounts for the storage and release change in the catchment through, e.g., soil
moisture or snow cover (Lecher et al., 2015). ∆S can be neglected for time periods longer than
one year. The unit of all variables ismm. In this study, the storage change and lateral in- and
outflows of the catchment are neglected. Nevertheless, this simplified estimation of the wa-
ter balance can be used as an indicator for inconsistent quantities of the system variables. A
distinct deficit or excess of the water balance for the total investigation period or individual
years are potential sources of uncertainty for the subsequent hydrological modeling.
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Figure 4.12: Annual and semi-annual water deficit or excess of rain gauge configuration III
interpolated with EDKs.

Figure 4.12 presents the water deficit or excess of the total water balance for each hydrolog-
ical year or half-year of the investigation time period. It can clearly be seen that the annual
and the semi-annual water balance for the hydrological summer are always negative. Only,
two half-years in winter have a positive water balance with a maximum excess of 9 %. The
summer half-years tend to higher deficits than the winter half-years. There, the semi-annual
deficit ranges between −14 % and −34 %. The maximum semi-annual water deficit reaches
values of −35 %. Looking at the mean annual and semi-annual water balance calculated for
the investigated time period from 2005 until 2012, it can be seen that the system has an over-
all water deficit. As presented in Table 4.4, the mean annual water deficit ranges between
19.3 % and 23.6 %, depending on the used interpolation method and rain gauge configura-
tion. The mean differences of water deficiency between the summer and winter half-years
range about 9.5 % and 13.0 %.

Table 4.4: Mean annual and semi-annual deficit of the water balance [%] for different con-
figurations of rain gauge stations (I - III) and interpolation methods.

annual (2005 - 2012) summer winter

ODK EDK EDKs ODK EDK EDKs ODK EDK EDKs

I -23.6 -21.6 -21.5 -26.8 -25.8 -25.7 -17.4 -13.5 -13.4

II -23.6 -21.8 -21.7 -27.0 -25.9 -25.8 -17.2 -13.8 -13.7

III -23.2 -19.4 -19.3 -26.9 -23.9 -23.8 -16.2 -10.8 -10.6
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Distinguishing the results between the different interpolation methods, it can be concluded
that the highest deficits are estimated withODK. The usedEDK andEDKs provide almost
equal results. According to the rain gauge configurations, it is shown that configuration I
and II have very similar results. Configuration III has about 2 % less deficit compared to the
other configurations. Whereby, the differences are slighty higher during the winter months.
Only, the water deficits interpolated by ODK do not show a noteworthy difference for all
rain gauge configurations. Consequently, the rain gauge configuration III interpolated by
EDKs is supposed to provide the most promising input data set for the hydrological models
due to the lowest water deficit in the water balance.

4.4 Application of a New Conditional Simulation Method -
Random Mixing

Precipitation uncertainty due to errors of point measurements and the derivation of inter-
polated precipitation fields at ungauged locations influences the calibration of hydrological
models. The introduced kriging methods only provide estimations at ungauged locations
with a minimum error variance. Consequently, the variability of real precipitation fields is
smoothed out (Götzinger and Bárdossy, 2008). Thus, the use of conditional simulation tech-
niques is an option to consider spatial variability and to quantify the uncertainty of precip-
itation data more reasonable. Conditional simulation methods embedded in a Monte Carlo
framework generate a set of realizations of a variable such as precipitation following certain
constraints. Each realization keeps the observed values at the conditioning points as well as
the spatial variability of the observations.

4.4.1 Basic Theory

The methodology of random mixing (RM ) is primarily introduced in the paper of Bárdossy
and Hörning (2016a) where this approach is applied to inverse modeling problems of ground-
water flow and transport. Here, a short introduction of the basic theory of RM is given and
for a comprehensive description it is referred to Bárdossy and Hörning (2016a,b) and Hörn-
ing et al. (2019). RM takes place in the standard normal space for which the data need to be
transformed if they have a non-Gaussian marginal distribution. A spatial random field Z(x)

is generated by a linear combination of n unconditional random fields Yi(x), all having the
same marginal distribution and covariance structure:

Z(x) =
n∑
i=1

αiYi(x) (4.13)

Different methods of generating such independent random fields Yi(x) and their sources are
specified in Bárdossy and Hörning (2016a). The weights αi of the linear equation system have
to fulfill:
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n∑
i=1

α2
i = 1 (4.14)

in order to preserve the covariance structure. Furthermore, the value of the conditional field
Z(xk) at the observation location xk has to be equal to the observed value zk:

Z(xk) = zk k = 1, ...,K (4.15)

Finally, the weights αi for n independent realizations of unconditional fields Yi(x) are iden-
tified so that:

n∑
i=1

αiYi(xk) = zk k = 1, ...,K (4.16)

The method of RM also allows for an extension of the simulation procedure by additional
information such as the topography represented by a DEM or other constraints.

4.4.2 Linear Inequality Constraints

The implementation of linear inequality constraints provide a stochastic approach for a
stronger consideration of uncertainties due to measurement errors. In this study, greater-
equal constraints are applied to precipitation data:

n∑
i=1

αiYi(xs) ≥ zs s = 1, ..., S (4.17)

which allow for values greater than the observed values zs at the conditioning points xs. The
implementation of such constraints can be limited to a number of conditioning points. The
selection of conditioning points needs to fulfill certain requirements such as exceeding a pre-
defined station altitude. This extension enables the analysis of potentially underestimated
precipitation amounts due to external influences such as wind or snow.

4.4.3 Potential for Hydrological Modeling

Conditional simulations such asRM enable to investigate the impact of input uncertainty on
the model calibration and its output. Primarily, the capability of RM is investigated based
on precipitation data in this study. Other meteorological input data such as temperature can
also be used. Hydrological models usually require time series for several years in a high
temporal resolution, e.g., daily or hourly, for calibration and evaluation procedures. Thus,
the simulation method needs to be fast for generating many realizations per time step for
long time series. RM satisfies this prerequisite and time series with a set of precipitation
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(a) Hydrological year (b) Hydrological half-year

Figure 4.13: Comparison of kriged and simulated daily mean areal precipitation depths
(hMAP ) for configuration II.

fields for each time step are simulated within a moderate computing time. In addition, a
fast hydrological model is required for processing many time series of simulated input data
within a reasonable time. The SUPERFLEX model (Subsection 2.2.2) has these attributes and
is chosen for this purpose.

The time series of daily mean areal precipitation (hMAP ) for rain gauge configuration II gen-
erated by EDKs and RM is compared in Figure 4.13. The data refer to the hydrological
years and half-years from 2005 until 2012 and the values of hMAP to the investigated catch-
ment area. Both scatterplots show that the values of hMAP simulated by RM are larger than
the values generated by EDKs for higher precipitation amounts. This tendency is appear-
ing stronger for the winter half-years, even for smaller precipitation amounts. The mean
annual precipitation sum of the catchment area is 1587mm if the precipitation is interpo-
lated by EDKs. Applying RM a mean annual value of 1784mm is calculated which is 11 %

more than the value obtained with the conventional kriging method. Separating the time
series by its hydrological half-years, the proportion of higher mean annual precipitation
generated by RM is 8 % for the summer and 16 % for the winter half-years. Nevertheless,
checking the accumulated precipitation sums of individiual precipitation events does not
necessarily show the tendency to higher values of hMAP for all cases. Figure 4.14 presents
the accumulated seven-day precipitation patterns of a noteworthy flood event in June 2010.
The maps are generated by RM and EDKs for the rain gauge configurations II and III. The
shown maps of RM are the mean of 100 realizations. Differences of the spatial structure are
visible but the value of hMAP hardly differs between the interpolation methods as well as
the rain gauge configurations.

The potential error sources of measuring precipitation data are pointed out in Subsection
4.1.1. Regarding to the catchment topography and the distribution of rain gauges in the
study area, a tendency of underestimated precipitation data can be assumed. This might



4.4 Application of a New Conditional Simulation Method - Random Mixing 57

hMAP=184mm

(a) Configuration IIRM

hMAP=180mm

(b) Configuration IIIRM

hMAP=182mm

(c) Configuration IIIEDKs
50

100

150

200

250

300

350

p
re
ci
p
it
a
ti
on

su
m

[m
m

]

Figure 4.14: Accumulated seven-day precipitation patterns of RM and EDKs for configu-
ration II and III.

hMAP=205mm

(a) Configuration IIRM

hMAP=224mm

(b) Configuration IIRM,≥1000

hMAP=222mm

(c) Configuration IIRM,≥700

100

150

200

250

300

350

400

450

p
re
ci
p
it
a
ti
on

su
m

[m
m

]

Figure 4.15: Comparison of accumulated five-day precipitation patterns of RM with and
without greater-equal constraints for configuration II.

be especially the case for observation data of upper located stations. Thus, greater-equal
constraints are applied to gauging stations above certain levels of elevation. The levels are
defined by elevations above 1000m.a.s.l. and 700m.a.s.l.

The effect of considering greater-equal constraints is analyzed for an accumulated five-day
precipitation event causing the highest flood within the investigation period in June 2013.
The resulting precipitation patterns, shown in Figure 4.15, vary considerable due to their
spatial structure. The calculated value of hMAP increases about 20mm considering greater-
equal constraints. Especially, the higher located stations southwestward have a strong de-
creasing influence on the precipitation amount for the configuration without greater-equal
constraints. Independently of the application of greater-equal constraints to all stations above
1000m.a.s.l. or 700m.a.s.l., the value of hMAP is approximately equal. The precipitation
pattern of configuration IIRM,≥700 is stronger influenced by a lower station located in the
southeastern hinterland.
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4.5 Summary

Firstly, the sources and potential quantities of uncertainty of the input variables are sum-
marized in this chapter. The main driving forces of a hydrological model are precipitation
and evapotranspiration. These data are often subject to systematic errors that are difficult
to detect and correct satisfactorily in advance (Bergström, 1991). Thus, a careful quality con-
trol (QC) should be the first step before data are used for further processing. A QC avoids
the use of apparently erroneous input data. Furthermore, the knowledge of potentially in-
adequate input information is helpful for the interpretation of the outputs in the model
evaluation.

The analysis of the rain gauge data shows the difficulty of determining systematic mea-
surement errors with sufficient certainty. Especially in such a study area, the relationship
or trends of the precipitation patterns due to the highly variable topography are not eas-
ily distinguishable from systematic measurement errors and data inadequacies. Thus, the
uncertainty of inadequate input data needs to be considered via other approaches. In this
study, random mixing (RM ) is applied to consider the uncertainty of precipitation data.
Additional greater-equal constraints are included for different levels of station altitudes. This
approach should account for a possible underestimation of precipitation amounts due to
the exposed location of upper stations. The available temperature data indicate a good lin-
ear relationship between station altitude and mean annual values. Consequently, a spatial
interpolation using external drift kriging (EDK) is reasonable. The QC of the discharge
data shows no obvious inconsistencies of the time series at gauge Unterjettenberg. Some
identified potential inadequacies in the time series refer to the other two available gauges
upstream and downstream of the gauge Unterjettenberg and do not influence the hydrolog-
ical modeling. Only, the time series of the year 2008 shows some irregularities which could
be related to inaccurate observations of gauge Unterjettenberg. This has to be analyzed in the
later evaluation of the model results.

In addition, the available meteorological point measurements must be transferred to a spa-
tial representation. For this, conventional kriging methods and a conditional simulation ap-
proach are used for the interpolation of precipitation. The interpolation of temperature and
evapotranspiration data is performed by EDK. The analysis of the interpolations using or-
dinary kriging (ODK) shows that the mean annual areal precipitation (hMAP ) is relatively
similar for all three rain gauge configurations. Considering elevation as secondary infor-
mation applying EDK or EDKs leads in a considerable increase of hMAP for rain gauge
configuration III compared to the other two configurations. The application of RM gen-
erates higher values for the daily mean areal precipitation and consequently for the mean
annual sum. Especially, for higher precipitation intensities and during the hydrological win-
ter half-years an increase of hMAP is observable using RM . Nevertheless, an event-based
analysis of accumulated precipitation patterns shows that RM does not necessarily account
for more hMAP than the kriging methods. The modification of RM implementing greater-
equal constraints allows to simulate higher precipitation amounts at the conditional points
above certain altitude levels. The effect of including such constraints is exemplary shown
for an accumulated intense precipitation event in Figure 4.15. There, the use of greater-equal
constraints clearly increases hMAP for such a single event. Thus, it can be a useful tool for
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considering measurement uncertainties due to difficult measurement conditions of higher
located observation stations.

The water balance has a noteworthy total deficit of 22 % on average for the Saalach catch-
ment. This result is obtained regardless of the rain gauge configuration and the kriging
method used. A deficit of less than 9 % is obtained calculating the water balance with the
mean areal precipitation simulated by RM . Applying greater-equal constraints to stations
above 1000m.a.s.l. reduces the deficit to 4 %. This may be an indicator for partly inade-
quate observation data as well as a limited spatial representation by the station distribution
and applied interpolation methods. Another reason for the deficient water balance seems
to be an overestimation of the potential evapotranspiration (PE). Mean annual values of
about 660mm for PE are estimated for the catchment area. Such an amount of PE as areal
mean value is too high according to values found in literature (BMU, 2003) and reported
in Subsection 3.1.2. In addition, the discrepancy between surface and subsurface catchment
area can lead to a deficient water balance. Geohydrological properties such as karst forms
can also influence the runoff characterisitics in the subsurface.



5 Effects of Model and Process Complexity

In this chapter, the choice of an appropriate level of model and process complexity is inves-
tigated and discussed. Usually, the more complex a model is, the more input information
is required. Thus, the potential of overparameterization or equifinality problems due to
an inadequate representation of the hydrological processes may also increase (Perrin et al.,
2001). In this study, two models with different levels of complexity are applied. The ob-
tained results are presented in this chapter. This approach should support the investigation
of structural model adequacy. A poor estimation of certain flow characteristics with simi-
lar input information appearing just in one model configuration can be an indicator for an
imperfect model structure. In such a case, the distinction between model structural and
input data error might be feasible. Such structural shortcomings can be caused by an inap-
propriate choice of model variables and processes, an inadequate process formulation or an
insufficient spatial and temporal resolution of the model (Del Giudice et al., 2015). The choice
of an appropriate model complexity should be executed in a systematic approach. For ex-
ample, the model complexity is increased stepwise that the positive as well as the negative
effects of the modifications are clearly assignable (see Subsection 5.1.2). Such an approach
supports the identification of a sound balance between model complexity and the quantity
as well as the quality of available input data (Schoups et al., 2008; Fenicia et al., 2008).

In the following step, it is tested if outsourcing of certain flow periods to an external more
complex process description supports a better representation of the model output. Here,
the snow module of the SUPERFLEX model consisting of a lumped snow process represen-
tation is disabled. Instead, a highly spatially distributed snow model is applied externally
prior to the actual model calculations. The stored and released water of the snow accumu-
lation and melt processes is externally calculated and respectively removed or added to the
precipitation time series and passed as a liquid water time series to the SUPERFLEX model.

Section 5.3 deals with model and process complexity due to computational effort. Depend-
ing on the modeling target, an appropriate temporal resolution of the model input and out-
put is required. For instance, modeling flood processes in small to mid-size catchments
needs a higher temporal resolution than the widely-used daily modeling time step. Nev-
ertheless, modeling approaches with high temporal resolution also have a higher level of
complexity in the sense of time-consuming pre- and postprocessing procedures as well as
distinct longer computational times for ,e.g., hourly model calculations. The extent to which
higher temporal resolution is beneficial in terms of improved model performance and ro-
bustness on the one hand, and processing time and effort on the other, is investigated.
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5.1 Complexity of Hydrological Model

The model outputs gained by different complex model structures are investigated using the
HBV-IWS and SUPERFLEX model introduced in Section 2.2. In the first part of this section,
the differences in model complexity due to the model type are compared. The HBV-IWS
model belongs to the more complex model types. Here, all input variables are distributed
on a regular grid, whereas, the SUPERFLEX model has a lumped structure and uses mean
areal values as input variables. In addition to the different spatial representations of input
variables and hydrological processes, the models also vary in the required amount of input
information. The second part of this section deals with the differing complexity represent-
ing the hydrological processes. For this purpose, the SUPERFLEX framework is taken. It
has the ability to easily add and remove reservoirs accounting for different hydrological
processes, such as interception, snow, slow and fast reacting outflows. By analyzing several
reservoir configurations, it is checked whether the results of more complex model structures
outperform the more simple approaches.

The representation of the model results in Chapter 5 and 6 of this study is divided in four
parts due to different time periods and flow conditions. The model output and performance
is generally analyzed on the total time series as well as on the snowmelt periods, the periods
without snowmelt and some single flood events. The snowmelt period is assumed from the
1st of March until the 31th of May. The period without snowmelt is named no snow and
disregards the assumed three months of snowmelt. The analysis of the peak flows contains
the four highest observed flood events within the corresponding investigation time period
(Figure 3.3). There are always two events part of the calibration as well as of the validation
procedure.

In order to distinguish the performance of different model configurations, the commonly
used Nash-Sutcliffe efficiency (NSE) is highlighted in bold in the following tables. Fur-
thermore, the SUPERFLEX model is labeled as FLEX and the HBV-IWS just as HBV for a
simplified representation.

5.1.1 Distributed or Lumped Model Structure

The comparison between the distributed and lumped model structure refers to the rain
gauge configuration I and the total period from 2004 until 2013. The precipitation patterns
are interpolated using ODK. The temporal resolution of the input and output variables
is daily. The first year is used as warm-up period and is disregarded for the performance
evaluation for both models. The models are calibrated for a period of five years (2005 - 2009)
and validated for the subsequent four years (2010 - 2013). The FLEX model is run with the
reservoir configuration C1 (Table 5.3) and is calibrated using the SLS regression scheme.

In Figure 5.1, the results of the model runs generated by the HBV and the FLEX model are
compared to the observed discharge data. Here, the total time series is considered separately
by the calibration and validation period. The scatterplots show that both models tend to
underestimate higher discharge conditions. The model results generated by the FLEX model
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(a) HBV (calibration) (b) FLEX (calibration)

(c) HBV (validation) (d) FLEX (validation)

Figure 5.1: Scatterplots of observed against modeled daily discharge for the total time series
separated by the calibration and validation period.

indicate a greater spread of discharge values for the low and middle flow ranges. The model
output for the snowmelt periods is shown in Figure 5.2. Both models mostly underestimate
the discharge within the snowmelt period whereas the results of the HBV model fit slightly
better for low flow conditions.

The corresponding model performance due to the different time periods and flow conditions
is summarized in Table 5.1 and 5.2. The evaluation also includes the model results obtained
for the precipitation inputs interpolated by EDK and EDKs. The influence of different
processed precipitation input data sets is marginal for the used rain gauge configuration on
both models. Solely, the HBV model shows better performances for the snowmelt periods if
EDK or EDKs are applied. The total time series is represented slightly better by the HBV
model according to the NSE. R2 and RMSE are in the same range for both models. Look-
ing at the PBIAS andKGEm, the FLEX model outperforms the HBV model. Especially, the
validation results of FLEX show very poor outputs for the snowmelt period. Here, the HBV
model performs distinctly better than the FLEX, even though the snowmelt periods are mod-
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(a) Snowmelt (calibration) (b) Snowmelt (validation)

Figure 5.2: Comparison between observed and modeled daily discharge of the snowmelt
period for the HBV and the FLEX model.

eled on a comparatively low performance level with both modeling approaches. The peak
flows are considerably underestimated by both models, especially in the validation period
(Figure 5.3). Nevertheless, the model performance of the total time series indicates good re-
sults in the calibration period for both models. But, the performance measures also show a
clear gap between the results of the calibration and validation. Figure 5.4 shows the model
behavior between the daily discharge Q at time t and the subsequent time step t + 1. This
visualization represents the model’s ability of reproducing the discharge dynamics within
two successive days. The scatter of the model results has always a narrower spread than
the scatter of the observed discharge data. This indicates that both models have problems
to account for the ranges with high discharge dynamics.
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Figure 5.3: Hydrographs of the highest observed flood events reproduced by the HBV and
the FLEX model (d < 0: calibration and d > 0: validation).
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Table 5.1: Model performance of the HBV model evaluated by different measures for rain
gauge configuration I.

cal.
total snowmelt no snow peak

ODK EDK EDKs ODK EDK EDKs ODK EDK EDKs ODK EDK EDKs

R2 0.83 0.84 0.84 0.73 0.76 0.77 0.86 0.86 0.86 0.83 0.85 0.85
RMSE 1.3 1.2 1.2 1.8 1.6 1.6 1.1 1.1 1.1 2.9 2.8 2.7
PBIAS 11.8 8.4 8.1 18.4 13.8 12.7 7.9 5.2 5.4 -1.7 -3.2 -5.9
NSE 0.81 0.82 0.83 0.57 0.65 0.66 0.85 0.85 0.86 0.81 0.82 0.83
KGEm 0.92 0.96 0.96 0.81 0.89 0.90 0.96 0.98 0.98 0.99 0.99 0.98

val.
total snowmelt no snow peak

ODK EDK EDKs ODK EDK EDKs ODK EDK EDKs ODK EDK EDKs

R2 0.76 0.76 0.75 0.74 0.73 0.73 0.77 0.77 0.76 0.78 0.78 0.79
RMSE 1.7 1.7 1.7 1.6 1.5 1.5 1.7 1.7 1.8 6.6 6.7 6.7
PBIAS 20.8 19.4 19.4 24.0 22.8 20.7 19.3 17.9 18.7 25.3 26.1 26.6
NSE 0.70 0.70 0.69 0.47 0.49 0.50 0.72 0.72 0.70 0.67 0.65 0.65
KGEm 0.77 0.79 0.79 0.69 0.72 0.76 0.80 0.82 0.81 0.67 0.64 0.63

Insert a blank line
Insert a blank line

Table 5.2: Model performance of the FLEX model evaluated by different measures for rain
gauge configuration I.

cal.
total snowmelt no snow peak

ODK EDK EDKs ODK EDK EDKs ODK EDK EDKs ODK EDK EDKs

R2 0.78 0.79 0.79 0.60 0.61 0.62 0.84 0.84 0.85 0.87 0.87 0.87
RMSE 1.4 1.4 1.4 2.0 2.0 2.0 1.1 1.1 1.1 2.9 2.9 2.9
PBIAS 4.5 4.1 4.3 14.2 14.1 14.2 -1.1 -1.6 -1.4 -8.1 -7.5 -8.5
NSE 0.77 0.78 0.78 0.46 0.47 0.47 0.84 0.84 0.85 0.81 0.81 0.82
KGEm 0.98 0.98 0.98 0.85 0.85 0.85 0.99 0.99 0.99 0.96 0.97 0.96

val.
total snowmelt no snow peak

ODK EDK EDKs ODK EDK EDKs ODK EDK EDKs ODK EDK EDKs

R2 0.72 0.70 0.70 0.62 0.58 0.58 0.76 0.75 0.75 0.86 0.85 0.86
RMSE 1.7 1.8 1.8 1.8 1.9 1.9 1.6 1.7 1.7 6.4 6.7 6.8
PBIAS 13.2 14.5 15.0 24.9 26.5 26.8 7.7 9.0 9.6 21.5 24.9 25.7
NSE 0.69 0.67 0.67 0.27 0.21 0.21 0.75 0.73 0.73 0.69 0.65 0.65
KGEm 0.89 0.87 0.86 0.64 0.59 0.59 0.95 0.94 0.94 0.76 0.68 0.66
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(a) HBV (calibration) (b) FLEX (calibration)

(c) HBV (validation) (d) FLEX (validation)

Figure 5.4: Scatterplots of discharge Q(t) and Q(t+1) for observed and modeled daily dis-
charge.

5.1.2 Different Reservoir Compositions of SUPERFLEX

In a next step, different levels of complexity within the SUPERFLEX framework are inves-
tigated (Table 5.3). The four applied configurations have four to six different reservoirs.
The combinations of active reservoirs are chosen in a physically meaningful way. Thus, all
model set-ups account for processes due to interception (SI ) and snow (SW ) as well as slow
(SS) and fast (SF ) reacting flow components are considered. The model results of the basic
reservoir configuration C1 are already introduced in the previous section. The other three
configurations differ in the alternating involvement of the unsaturated soil reservoir (SU )
and the riparian reservoir (SR). The configuration C4 includes all available reservoirs and
is consequently the most complex model set-up. The FLEX model is calibrated with the
regression schemes SLS and WLS for all investigated reservoir compositions.

The following analysis refers to the rain gauge configuration I and the precipitation patterns
are interpolated by EDKs. The model performance is evaluated for the total time series and
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Table 5.3: Reservoir compositions of the FLEX model. The cross denotes the involvement of
the individual reservoir.

conf. number of reservoir modules

ID reservoir
states

active
parameters SI SW SU SF SS SR

C1 6 22 X X X X

C2 7 23 X X X X X

C3 7 27 X X X X X

C4 8 28 X X X X X X

for an explicit examination the measures NSE (Table 5.4) and KGEm (Table 5.5) are used.
The tables also show the mean values (avg) and the absolute differences (∆) of the perfor-
mance measures for the calibration (cal) and validation (val) period. For a better compara-
bility, the different FLEX reservoir compositions are ranked (RK) according to their mean
performance (avg) as well as the absolute performance difference (∆) between calibration
and validation run.

The evaluation of both performance measures indicates a distinct gap between the results
of the calibration and the validation for all reservoir configurations. The values of NSE are
all in a good range for the calibration but the results of the validation are just in a satisfac-
tory order. Due to the absolute values of NSE, the calibration method using SLS performs
better than the approach with WLS. The differences in model performance between the
reservoir configurations are comparatively small. Checking the results for a more robust
configuration which means a smaller gap between the performance of the calibration and
validation, the set-ups of C3 and C4 calibrated with WLS outperform the other configura-
tions. Analyzing the model results with the KGEm which accounts more for a good fit of
the water balance, the calibration method usingWLS always outperforms the method using
SLS. The more complex the FLEX reservoir compositions, the better the model performance
tends to be.

Table 5.4: Model performance of different FLEX reservoir compositions and calibration
methods evaluated by NSE.

C1 C2 C3 C4

SLS WLS SLS WLS SLS WLS SLS WLS

NSEcal 0.78 0.76 0.79 0.76 0.79 0.75 0.80 0.73
NSEval 0.67 0.62 0.68 0.62 0.69 0.65 0.69 0.64
NSEavg 0.73 0.69 0.73 0.69 0.74 0.70 0.74 0.69
NSE∆ 0.11 0.14 0.11 0.15 0.10 0.10 0.11 0.09
RKNSE,avg 4 6 3 7 2 5 1 8
RKNSE,∆ 5 7 4 8 3 2 6 1
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Table 5.5: Model performance of different FLEX reservoir compositions and calibration
methods evaluated by KGEm.

C1 C2 C3 C4

SLS WLS SLS WLS SLS WLS SLS WLS

KGEcal 0.98 0.98 0.98 0.98 0.98 0.98 0.99 0.98
KGEval 0.86 0.91 0.87 0.91 0.87 0.93 0.90 0.94
KGEavg 0.92 0.95 0.92 0.95 0.92 0.96 0.94 0.96
KGE∆ 0.12 0.07 0.11 0.07 0.11 0.05 0.09 0.04
RKKGE,avg 8 4 7 3 6 2 5 1
RKKGE,∆ 8 4 7 3 6 2 5 1

Insert a blank line

5.1.3 Summary

In this section, the purpose of the investigation is to determine whether model complex-
ity influences model performance and robustness. Here, model complexity distinguishes
between distributed or lumped model types on the one hand and different complex reser-
voir compositions of the FLEX model on the other hand. Furthermore, the model results
give a first impression on which performance level the basic applications range and which
shortcomings are identified.

Independently of the used model structure and reservoir configuration, a distinct gap of
model performance between calibration and validation is distinguishable. The model per-
formance for the calibration periods always indicate good model results while the validation
periods show a reduction of about 10 % based on theNSE. Both models tend to overfit dur-
ing calibration, so robust model results cannot be achieved. The analysis of different time
periods and flow conditions reveal distinct shortcomings representing the snowmelt periods
and peak flows in all model set-ups. Thus, inadequacies concerning the model structure can-
not be distinguished at this point. Furthermore, a more complex modeling approach due
to a spatially distributed consideration of the input variables with the HBV model does not
necessarily show an improved and more robust model performance.

The investigation of different reservoir compositions of the FLEX model suggests that an
increased complexity of model set-up tends to slightly better and more robust model re-
sults. Especially, if the WLS regression scheme is applied for the calibration. The reservoir
configuration C4 matches the peaks better than the less complex compositions for both re-
gression schemes (Figure 5.5). Thereby, the model runs calibrated by the SLS regression
scheme generate higher peaks. The regression scheme SLS prefers the fitting of high flows,
whereas, WLS also puts a substantial weight to the low flows by approximating the het-
eroscedasticity of the errors (Kavetski and Fenicia, 2011). Figure 5.5 shows that the peaks are
better captured by the uncertainty bands using WLS.
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(b) FLEX (WLS)

Figure 5.5: Peak flow hydrographs for different reservoir compositions and regression
schemes of the FLEX model (Q95 %: Uncertainty bands of FLEXC4).

The analysis of the relative volume error (EV ) and peak error (EP ) is represented in Table
5.6. The EV of the total flow period indicates similar results for all three considered model
configurations. Only the modeling results of set-up FLEXC4 calibrated by WLS show a
slight overestimation of the observed discharge volume looking at the total time period of
the calibration. All other results indicate a volume underestimation for the total calibra-
tion as well as the total validation period. The validation period even has a larger volume
deficit. Due to the absolute values of EV , the model results obtained by both FLEX set-
ups present smaller volume deficits than the results of the more complex HBV model. The
results of the snowmelt period modeled by a lumped structure are comparable to the dis-
tributed approach. All considered model set-ups underestimate the discharge volume for
the calibration and the validation period. Nevertheless, the EV of the total and the snowmelt
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period are in a similar range for the HBV model. The FLEX model set-ups show a clear de-
cline for the snowmelt periods compared to the EV of the total period. Regarding the peaks,
the EV of the calibration period presents a volume overestimation for all three model con-
figurations whereas the modeled peak volume of the validation time period underestimates
the observed peak volume in all cases.

Looking at the peak error EP , the FLEX calibration runs show better results for the peaks
than the HBV model. But, the clear decline in model performance between calibration and
validation results is again visible. Here, model set-up FLEXC4 shows the poorest results
due to robustness.

Table 5.6: Relative volume (EV ) and peak (EP ) error for different model structures and flow
conditions.

HBV FLEXC4 (SLS) FLEXC4 (WLS)

cal. val. cal. val. cal. val.

EVtot 0.08 0.19 0.02 0.13 -0.04 0.07
EVsnow 0.13 0.21 0.16 0.32 0.11 0.24
EVpeak -0.06 0.27 -0.09 0.25 -0.23 0.19
EP 0.73 0.50 0.79 0.55 0.87 0.47

In summary, all investigated model structures show the same shortcomings like a lack
of robustness between calibration and validation period, inadequate representation of the
snowmelt periods and a distinct underestimation of the peak flows. Possible reasons for some
of these observed inadequacies might be the quality of available input data, e.g., the overall
water deficit of the system, systematic precipitation measurement errors of certain gauging
stations or an overestimated assumption of the potential evapotranspiration (see Section
4.2). This can result in parametrization and overfitting problems of the models. The sensitiv-
ity of model parameters due to the temporal model resolution can also be a problem. Conse-
quently, other approaches regarding the description of certain hydrological processes, data
properties and temporal resolution are taken into account to investigate potential deficits in
the next steps.

5.2 Process Complexity - External Snow Modeling

The first section shows that the representation of snowmelt processes is insufficient by both
investigated models. Especially, the results obtained by the FLEX model configurations in-
dicate a strong decline of model performance between calibration and validation (Table 5.2).
Calibration and validation period show a model bias towards underestimation as indicated
by the values of the PBIAS. The analysis of the relative volume error (EV ) shown in Table
5.6 also denotes a deficit of water volume during the snowmelt periods. The lumped repre-
sentation of snow accumulation and melt processes as used in the FLEX model seems to be
unsatisfactory. Therefore, the outsourcing of the snow processes to a spatially distributed
external snow model is tested in this section.
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5.2.1 General

Modeling snow processes is very complex and is often underrepresented in common hy-
drological models. Thus, snow modeling can be seen as a separate discipline in hydrology
and ranges from sole snow pack modeling to complete snowmelt-runoff models (SRM ).
Generally, temperature-based and energy balance snowmelt models of varying complexity
are available. The calibration of snow models is a challenge due to the typical lack of ade-
quate data such as snow depth, values of the snow water equivalent and well-distributed
temperature data. Further difficulties of snow modeling are the drift of snow and different
intense ablation processes depending on shadowing, slope inclination or orientation (Hock,
2003). Different studies of Braun and Lang (1986), Blöschl and Kirnbauer (1991), Kirnbauer et al.
(1994), Franz et al. (2010) and Kult et al. (2014) introduce different complex snow model ap-
proaches and investigate the resulting uncertainties for hydrological predictions.

Regarding lumped hydrological models, such as the used FLEX model, a major drawback is
the uniform consideration of the input variables for the whole catchment area. Snow accu-
mulation and melt processes are also represented uniformly. This causes problems in catch-
ments with a high topographic variability. The high range of elevations leads to meteorolog-
ical conditions where snowfall and rainfall can occur at the same time within a catchment.
Consequently, the simultaneous occurrence of snow accumulation and snowmelt influences
the water availability for runoff generation. Also, the temporal extension of snow cover at
lower elevations is usually shorter. Thinner snow packs melt faster than dense snow packs
at higher elevations. Another issue regarding snow modeling is the temporal resolution.
Smaller catchments require input data and modeling time steps on a higher temporal reso-
lution (Braun and Lang, 1986). A significant increase or decrease of the temperature with a
simultaneous appearance of precipitation can result in changing physical states during one
time step. For modeling snow, e.g., at daily resolution, the total precipitation amount may
be assumed to be rain or snow even though a change of the state has occurred within that
time step. Such meteorological conditions within a time step determine if available water
is stored as snow and result in reduced runoff conditions or the reverse case of fast melting
snow due to so called rain-on-snow (ROS) events and the involved fast and large availabil-
ity of water generating high runoff conditions.

5.2.2 Degree-Day Approach

The applied distributed external snow model (ESM ) uses the degree-day approach equally
to the snow routine in the HBV-IWS model. As no spatial observations of snow depth or
snow water equivalent exist, an automatic calibration of the snow model using observation
data for the parameter estimation is not feasible. For this reason, the usedESM is calibrated
manually through several runs with varying sets of snow parameters in a prescribed range
(Table 2.1). Subsequently, the liquid water time series is passed to the FLEX model for the
calibration and validation procedures. The snow reservoir (SW ) is disabled. Finally, the best
performing set of snow parameters is taken for further investigations.

The ESM is based on a regular grid with a spatial resolution of 500 m by 500 m. The dis-
tributed values of liquid water are averaged over the whole catchment area and transferred as
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Figure 5.6: Snow water equivalent time series of the external snow model (ESM) and two
runs of the FLEX model.

mean areal precipitation values (hMAP ) to the FLEX model. The scheme of the snow model
is described with the subsequent equations where the threshold temperature (T0) controls if
it rains or snows.

Snowmelt occurs, if T > T0:

Smelt = Min {SWE,DD · (T − T0)}
SWE = SWE − Smelt,

(5.1)

otherwise snow is accumulated, if T ≤ T0:

SWE = SWE + P

Smelt = 0

P = 0,

(5.2)

where Smelt is the amount of snowmelt, SWE the snow water equivalent, P the precip-
itation (all in mm) and T the temperature (◦C). The degree-day factor (DD) controls the
melting rate of snow in mm per ◦C and time step t.

Alpine catchments are prone to floods caused by ROS events that occur mainly at the end
of the winter season. Rainfall on an existing snow pack releases additional energy through
long wave radiation and latent heat inputs. This can generate enormous discharge condi-
tions due to the simultaneous occurrence of rainfall and the mobilization of stored water in
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the snow pack (Merz and Blöschl, 2003). Therefore, a modified degree-day factor (DDm) is
incorporated to the snow model which accounts for enhanced melting rates during ROS:

DDm = DD +DDw · P (5.3)

DD is the degree-day factor for periods without rainfall andDDw is a weight which controls
an increased snowmelt rate during ROS events (Bárdossy and Singh, 2008).

5.2.3 Results

The modeling of liquid water time series and the subsequent application of the FLEX model
is performed on daily resolution for this analysis. Rain gauge configuration I interpolated
by EDKs and the reservoir composition C4 are used for the model runs. The FLEX model is
calibrated using both regression schemes SLS andWLS. The evaluation of the FLEX model
performance is compared between the internal snow processing of reservoir configuration
C4 and the best performing configuration of ESM . The best obtained parameter set for the
ESM is T0 = 0.5 ◦C, DD = 2mmd−1 ◦C−1 and DDw = 0.02 d−1 ◦C−1.

hSWE,ESM =379mm
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hSWE,ESM =19mm

hSWE,FLEX=76mm

(c) 02.06.2013
0

50

100

150

200

250

300

350

400

450

500

sn
ow

w
a
te
r
eq
u
iv
a
le
n
t
S
W
E

[m
m

]

Figure 5.7: Comparison of accumulated spatial snow patterns generated by an external
snow model (ESM).

Different generated time series of SWE for the years 2005 - 2013 are shown in Figure 5.6.
Partly, the SWE courses differ considerably from each other. The ESM mostly calculates
the highest SWE during the winter periods, while the FLEX configuration calibrated by
SLS has the smallest amounts. The temporal distribution of SWE is quite similar for all
three runs. The complete melting of snow cover last a bit longer for the ESM . The version
FLEXWLS usually assumes much higher SWE during the summer months, when short
periods of snow cover occur. Figure 5.7 compares three spatial patterns of SWE under dif-
ferent boundary conditions in terms of their seasonal occurrence and duration of accumu-
lation. The spatial snow distributions are calculated with the ESM . The mean areal snow
water equivalent (hSWE) resulting from the two approaches to modeling snow processes
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(FLEXWLS and ESM ) is also given in the figure. The left figure shows the snow distri-
bution in late winter just before the beginning of snowmelt in one of the snowiest winters
during the investigation period. The whole catchment area is covered with snow. Neverthe-
less, the underlying topography with the wide river valleys is very visible. The accumulated
SWE is partly very high, which is also reflected in the values for hSWE . The distribution
of the first noteworthy formed snow cover in the early winter of a year is given in the mid-
dle. Here, the SWE is much lower and the lowlands are free of snow. Looking at these
two events, it is apparent that hSWE does not differ too much between the two modeling
approaches. Furthermore, the selected events also show that one approach does not gener-
ally assume higher hSWE than the other. The third pattern presents the snow situation that
resulted in the highest observed flood event during the total investigation period. The most
significant differences between the two model approaches occur here. The ESM only rep-
resents noteworthy SWE at the highest elevations of the catchment, which is also reflected
in a relatively low value for hSWE . In contrast, the internal snow model of FLEX assumes a
much higher value for hSWE , which appears to be very high as an mean areal value for this
time of the year.

Table 5.7: FLEX performance using the internal snow routine or a liquid water time series.

cal.
total snowmelt no snow

SLS WLS SLS WLS SLS WLS

C4 ESM C4 ESM C4 ESM C4 ESM C4 ESM C4 ESM

R2 0.80 0.84 0.76 0.83 0.60 0.78 0.59 0.79 0.88 0.87 0.83 0.86
RMSE 1.3 1.2 1.5 1.2 2.0 1.6 2.0 1.5 1.0 1.0 1.3 1.1
PBIAS 2.0 3.9 -3.8 -0.1 16.3 14.0 10.6 13.7 -6.2 -1.8 -12.1 -8.0
NSE 0.80 0.84 0.73 0.83 0.46 0.66 0.42 0.68 0.87 0.87 0.79 0.85
KGEm 0.99 0.99 0.98 0.99 0.82 0.89 0.89 0.89 0.98 0.99 0.92 0.96

val.
total snowmelt no snow

SLS WLS SLS WLS SLS WLS

C4 ESM C4 ESM C4 ESM C4 ESM C4 ESM C4 ESM

R2 0.72 0.79 0.65 0.76 0.49 0.62 0.60 0.63 0.80 0.84 0.68 0.82
RMSE 1.7 1.6 1.8 1.6 2.1 2.0 1.8 1.9 1.5 1.4 1.8 1.5
PBIAS 12.7 15.5 7.2 12.2 31.7 32.0 24.0 30.1 3.9 7.8 -0.6 3.9
NSE 0.69 0.74 0.64 0.73 0.02 0.17 0.28 0.23 0.77 0.82 0.68 0.80
KGEm 0.90 0.87 0.94 0.91 0.41 0.44 0.66 0.50 0.98 0.96 0.97 0.98

Table 5.7 and 5.8 show the model results evaluated by different performance measures. The
used liquid water time series generated by theESM generally outperforms the FLEX version
with its internal snow routine for calibration. The values of NSE are higher for the total
period. The snowmelt period shows an improved NSE of more than 20 %. The other per-
formance measures indicate a similar trend for the calibration as well as validation period
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using a liquid water time series as model input. The more volume-based PBIAS partially
leads to a slightly different result. Independently of the snow process consideration and the
applied FLEX error model, the PBIAS is in the same range for all time periods and flow
conditions. The distinct gap of about 11−12 % (total), 13−18 % (snowmelt) and 10−12 % (no
snow) between the calibration and validation runs is also visible. The PBIAStot has values
close to zero and thus similar observed and modeled volumes for calibration. The modeled
values during validation tend to a volume underestimation for all set-ups. The PBIASsnow
indicates a stronger underestimation of the modeled volume for calibration and validation.
This consistent behavior for all set-ups at least suggests that no discharge volume disap-
pears in certain model reservoirs through the model parameterization. In conclusion, the
PBIAS returns a slightly worse performance overall for the data processed by the ESM .
Generally, an improved model performance is obtainable for the used liquid water time se-
ries due to the absolute values of the measures. Nevertheless, a distinct performance gap
between calibration and validation remains. Looking at the NSE, the gap between the cali-
bration and validation becomes less for the total and for the no snow periods compared to the
results of the HBV model and the basic FLEX reservoir configuration, as shown in Table 5.1
and 5.2. There, the difference in model performance expressed by the NSE varies between
11 − 16 % for calibration and validation. The application of the ESM reduces this gap to
5 − 10 % for the total and for the no snow periods. The model runs with a liquid water time
series also show slightly better results based on the performance gap than the model setup
with an internal snow reservoir (C4).

Table 5.8: Evaluation of peak flows for different considered snow processes.

C4SLS ESMSLS C4WLS ESMWLS

cal. val. cal. val. cal. val. cal. val.

EVpeak -0.09 0.25 -0.13 0.23 -0.23 0.19 -0.15 0.24
EP 0.79 0.55 0.84 0.63 0.88 0.47 0.79 0.58
NSEpeak 0.88 0.72 0.89 0.80 0.82 0.60 0.86 0.75

Table 5.8 summarizes the analysis of the peak flows. The EVpeak reflects an overestimated
modeled discharge volume for calibration and a distinct underestimation during validation
for all set-ups. The evaluation of the peaks regarding theEP and theNSEpeak shows that the
model runs using input data preprocessed by the ESM outperform the FLEX version with
an internal snow reservoir, especially in validation. Figure 5.8 presents that configuration
C4WLS generates higher peaks as well as a greater overestimation of the previous discharge
hydrograph for calibration. The second peak of the calibration is quite well fitted by both
approaches, while the model output using the liquid water time series generates higher peaks
for both validation events. The second peak validated by C4WLS shows a second smaller
peak during the descending flood event. The second peak can be explained by the fact that
the model accumulates too much snow at the time of the main flood event (Figure 5.7 (c))
and releases it as discharge with a delay. These circumstances indicate that this event is
influenced by snow and is better represented if the snow processes are calculated spatially
distributed in advance.
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Figure 5.8: Peak flow hydrographs modeled by FLEXWLS with an internal snow routine
(C4) and a liquid water time series (ESM).

The preceding application of an external distributed snow model generally leads to im-
proved model performances. However, the reproduction of snowmelt processes can still be
classified as unsatisfactory due to the robustness. The no snow periods indicate more robust
model results compared to the internal consideration of snow processes of FLEX as well as to
the model output of the HBV model analyzed in Subsection 5.1.1. The representation of peak
flows is more promising using an external processed liquid water time series due to robust-
ness and maximum discharge in validation. The temporal distribution of SWE during the
investigation period (Figure 5.6) shows considerable differences between the results of the
FLEX configurations and the ESM . ESM usually accumulates more snow during the win-
ter months than the internal snow routine of FLEX. The presentation of spatial snow patterns
and the comparison of the mean areal hSWE support the assumption that FLEX accumulates
too much snow during shorter events occurring outside the winter months. Spatially dis-
tributed snow processes seem to be beneficial for a more accurate consideration of variable
topography and consequently improves model outputs. The issue of changes from snow
to rain and the reverse case due to strong temperature changes around the threshold tem-
perature during a day are considered in Chapter 7. Such changes of precipitation types can
occur if the temperature increases above the threshold value for a couple of hours during
noon or if a front system leads to a significant jump in temperature. Therefore, it is analyzed
whether an hourly model resolution describes such snow processes more accurately.

5.3 Computational Effort - Different Temporal Resolutions

Depending on the modeling target, an appropriate temporal resolution of the model input
and output is required. Thus, it has to be clarified which kind of catchment and discharge
processes are of main interest. For instance, in the case of estimating discharge volumes for
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reservoir management of water supply or hydro power lower temporal resolutions such as
weekly or even monthly may be sufficient. In this study, the focus is on a robust parameter
estimation for flood predictions. For such modeling purposes, higher temporal resolutions
are generally necessary. Many studies applying hydrological models are based on a daily
time step. For the dimensioning and operation of flood control reservoirs, model results on a
daily resolution can be sufficient if the time to peak and the volume of a flood event are more
important than the absolute peak height. But, for modeling flood events in small to mid-
size catchments higher temporal resolutions are required. In such catchments, hydrological
processes causing flood events mostly occur within less than a day. Maximum discharge
conditions typically last only a few hours, which often results in considerable smoothing of
the peak discharge for data in daily resolution. However, exactly the absolute maximum
discharge is needed as information for flood protection measures and potential evacuation
plans if the investigation area is prone to inundations.

In the first part of this section, the daily model output of the FLEX model is aggregated to
lower temporal resolutions such as 2, 5 and 10 days. The aim of this analysis is to check if the
aggregation of the model output to lower temporal resolutions improves the model perfor-
mance and robustness. Available hourly data from precipitation and temperature stations
are sparse due to their quantity and spatial density. Therefore, in a second approach, daily
precipitation data are disaggregated to an hourly resolution. In this way, it is investigated
whether the model performance and robustness benefit from densifying the measurement
network with disaggregated data from daily stations as additional information. Both ap-
proaches have a higher level of process complexity in the sense of time-consuming pre- and
postprocessing procedures and distinct longer computational times for the hourly model
calculations. Against this background, it has to be investigated in which sense such an ef-
fort is justified regarding improved model performance and robustness.

5.3.1 Temporal Aggregation of Model Output

The results of aggregating the daily FLEX model output to temporal resolutions of 2, 5 and
10 days are exemplary shown on rain gauge configuration II. The reservoir composition C4
and the regression scheme WLS is applied. Table 5.9 shows the resulting model performance
measures for the different aggregation time steps.

Except for the PBIAS, the investigated performance measures show improving results for
higher aggregation time steps looking at the total period. The PBIAS remains on a con-
stant value for all aggregation levels. The model bias of the calibration period tend to a
slight overestimation and the results of the validation to an underestimation. The gap be-
tween the model performance of the calibration and validation decreases with increasing
aggregation time step. Here, the model performance described by R2 and NSE improves
by 4 % for the total calibration period and about 10 % for the total validation period from a
daily to an aggregated ten days resolution. The KGEm shows a quite constant performance
level independently of the temporal resolution and evaluated time period. Looking at dif-
ferent aggregation time steps for the snowmelt period, the trend of the used performance
measures is not that clear and consistent. R2 and KGEm show constant values for all ag-
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Table 5.9: FLEX performance evaluated by different measures and aggregation time steps.

cal.
total snowmelt no snow

1d 2d 5d 10d 1d 2d 5d 10d 1d 2d 5d 10d

R2 0.76 0.77 0.79 0.80 0.59 0.59 0.58 0.59 0.83 0.85 0.88 0.91
RMSE 1.5 1.4 1.3 1.1 2.0 2.0 1.9 1.7 1.3 1.2 1.0 0.8
PBIAS -3.8 -3.8 -3.8 -3.7 10.7 10.8 11.2 10.9 -12.1 -12.2 -12.4 -13.1
NSE 0.73 0.74 0.76 0.77 0.43 0.41 0.35 0.31 0.79 0.80 0.83 0.85
KGEm 0.98 0.98 0.98 0.98 0.89 0.89 0.88 0.89 0.92 0.92 0.92 0.91

val.
total snowmelt no snow

1d 2d 5d 10d 1d 2d 5d 10d 1d 2d 5d 10d

R2 0.65 0.68 0.71 0.76 0.59 0.64 0.65 0.83 0.68 0.72 0.76 0.76
RMSE 1.8 1.6 1.3 1.1 1.8 1.8 1.7 1.7 1.8 1.6 1.2 0.8
PBIAS 6.8 6.8 6.8 6.8 23.6 23.2 22.9 21.9 -1.1 -1.0 -0.9 -2.3
NSE 0.64 0.67 0.70 0.74 0.28 0.37 0.36 0.68 0.68 0.72 0.76 0.70
KGEm 0.94 0.95 0.95 0.96 0.67 0.69 0.70 0.75 0.97 0.98 0.98 0.98

gregation levels for the calibration period, while the model performance for the validation
period clearly improves with increasing temporal aggregation. In contrast, the NSE shows
a decreasing trend for the calibration period and an increasing trend for the validation pe-
riod. The RMSE indicates a slight improvement of the model performance for higher ag-
gregation levels for the calibration as well as the validation. Regarding the PBIAS, the
model tends to underestimate the discharge during the snowmelt period for the calibration
and even more for the validation. Especially, R2, NSE and KGEm have a distinct jump
of model performance between the aggregation level of 5 and 10 days for the validation.
These results show that interpreting the model performance describing the snow processes
is not straightforward. Snow processes are very complex and influenced by many factors.
Thus, errorenous snow accumulation can already cause a considerable deficit of stored dis-
charge volume which would confirm the magnitude of the PBIAS. The model bias tends
to an underestimation during the snowmelt period and an overestimation during the no snow
period. Snowmelt is a temporal extensive process. Melting water can be stored in the remain-
ing snow pack and released at a later date. The snowmelt rate also varies depending on the
depth and density of the snow pack. Such factors are difficult to capture at higher temporal
resolutions and could explain the jump in model performance at an aggregation time step
of 10 days.

5.3.2 Temporal Disaggregation of Model Input

It is now investigated whether a higher temporal resolution provides more information for
the hydrological catchment dynamics. An hourly input data and computation time step of
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the model is chosen. A higher temporal resolution may be necessary for representing fast
reacting discharge conditions such as peak flows which occur within a few hours in the study
area. A better representation of precipitation state changes from snow to rain and vice versa
during a day can also provide an improvement of the model results.
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Figure 5.9: Different rain gauge configurations of stations with hourly and disaggregated
hourly data.

As described in Section 3.2 and shown in Figure 5.9, the availability and consequently the
density of gauging stations with hourly precipitation data is more sparse than on daily res-
olution. For this reason, it is tested if additional information of disaggregated precipitation
data of daily gauging stations leads to an effect for model performance and robustness. The
disaggregation of the daily precipitation time series is performed with the nearest-neighbor
method. The assumption is made that the hourly precipitation distribution at the daily rain
gauge station is similar to that of the nearest hourly station. First, for each individual daily
station of rain gauge configuration II (10 extra stations) and III (37 extra stations), the ge-
ographically nearest hourly station is determined using the Euclidean distance. Then, the
relative precipitation distribution over the respective day is derived from the hourly precip-
itation values. For this purpose, the hourly value is divided by the daily precipitation sum,
which is calculated from the hourly data. Finally, the relative hourly precipitation values
are multiplied by the daily precipitation sum from the nearest daily gauging station. In this
way, a disaggregated hourly time series is obtained for each individual daily station. For
rain gauge configuration II, the minimum distance to the nearest hourly station is 2.9 km,
the maximum 10.4 km and the average distance is 6.0 km. The minimum distance to the
nearest hourly station is 0.7 km, the maximum 20.6 km and the average is 9.0 km for rain
gauge configuration III. Configuration III has greater maximum and average distances be-
tween a daily and the nearest hourly gauging station. This can be explained by the fact that
considerably more daily stations are available in the central part of the investigation area.
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Table 5.10: Hourly model performance of the FLEX model evaluated by different measures
for rain gauge configuration IV , IIh and IIIh.

cal.
total snowmelt no snow

IV IIh IIIh IV IIh IIIh IV IIh IIIh

R2 0.77 0.78 0.79 0.57 0.58 0.58 0.84 0.86 0.88
RMSE 0.07 0.07 0.07 0.09 0.09 0.09 0.06 0.05 0.05
PBIAS -4.5 -4.1 -5.2 10.3 9.0 8.6 -13.3 -12.0 -13.3
NSE 0.72 0.73 0.74 0.38 0.36 0.39 0.78 0.81 0.80
KGEm 0.97 0.98 0.97 0.89 0.90 0.91 0.91 0.92 0.91

val.
total snowmelt no snow

IV IIh IIIh IV IIh IIIh IV IIh IIIh

R2 0.72 0.75 0.75 0.60 0.61 0.60 0.76 0.78 0.80
RMSE 0.07 0.07 0.07 0.08 0.07 0.08 0.07 0.07 0.07
PBIAS 9.5 8.9 -0.3 24.7 21.1 13.6 2.5 3.2 -6.7
NSE 0.71 0.74 0.74 0.30 0.36 0.33 0.76 0.78 0.79
KGEm 0.93 0.94 0.98 0.64 0.73 0.86 0.98 0.98 0.97

There are neither daily nor hourly gauging stations available for the other configurations
(Figure 3.4 and 5.9). Thus, the central catchment area remains underrepresented if daily
gauging stations of configuration II are included.

The notation of the hourly rain gauge configuration with 24 stations is IV. The name of the
hourly rain gauge configurations including disaggregated daily data is identical to the daily
versions added with an index h. The mean observed discharge (Qobs,m) is 0.15mmh−1 for
the calibration as well as for the validation period. The FLEX model is run with reservoir
configuration C4 (Subsection 5.1.2). Regression scheme WLS is applied for optimization.
The results in Table 5.12 refer to the hydrographs of the four highest peak flows during the
chosen investigation period shown in Figure 5.3.

Table 5.10 shows the model performance evaluated by different measures resulting from
the three investigated hourly rain gauge configurations. The evaluation includes different
flow periods. Regarding all performance measures, the three different rain gauge configu-
rations perform almost similar for the calibration of the total period. Solely, for the R2 and
the NSE the model performance gets slightly better with a larger quantity of considered
rain gauge stations. The PBIAS indicates a model bias toward overestimation for all input
configurations. The RMSE of all configurations is equal for the calibration as well as the
validation period. Looking at the total validation period, the tendency of a better model per-
formance with an increasing number of rain gauge stations is given for all measures except
for the RMSE. The NSE suggests robust model results for all rain gauge configurations.
Taking the measuresR2 andKGEm into account, only configuration IIIh indicates good re-
sults due to model robustness. The same trend is given for the PBIAS where configuration
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Table 5.11: Evaluation of peak flows for different rain gauge configurations of hourly pre-
cipitation data.

IV IIh IIIh

cal. val. cal. val. cal. val.

EVpeak -0.17 0.22 -0.15 0.21 -0.22 0.11
EP 0.97 0.63 0.93 0.63 0.85 0.78
NSEpeak 0.90 0.78 0.91 0.78 0.88 0.85

IV and IIh indicate a model bias toward underestimation. In contrast, configuration IIIh
shows a model bias toward a very slight overestimation, which is the same trend like the
model results of the calibration period. Analyzing the other flow periods, the model perfor-
mance of the no snow period shows the same tendency regarding the different configurations
like the results of the total time series. All configurations even perform better with respect
to the NSE and the R2 than with the total time series. In contrast, the snowmelt period is
still the flow characteristic with the poorest model representation. All configurations have
the same level of performance and suggest model robustness for the snowmelt period due to
the R2 and RMSE. But, the values of NSE are on a low level for all three configurations
with more or less large gaps between calibration and validation period. The PBIAS of all
configurations indicates a model bias toward underestimation for the calibration as well as
the validation period. Configuration IIIh clearly outperforms the other configurations due
to model performance and robustness taking the PBIAS and the KGEm into account.

Table 5.11 compares the peak flow performance of the investigated hourly rain gauge config-
urations. The peak flows partly present large differences between calibration and validation.
Only configuration IIIh shows a model performance on a high and robust level regarding
theNSE. TheEVpeak, on the other hand, indicates a strong opposing trend between calibra-
tion (overestimation) and validation (underestimation) for all configurations. The analysis
of the EP indicates the best results for the calibration in the descending order of configura-
tion IV , IIh and IIIh. Configuration IIIh clearly outperforms the other configurations due
to the absolute value of EP during validation and model robustness. The largest deficits of
modeled discharge volume occur during the snowmelt period and the peak flows. Again, it
is apparent that the snowmelt period and the peak flows are the weakest points represented
by the model. The evaluation of the different configurations illustrate that the configuration
IV and IIh perform on a same level. Especially, the snowmelt period is better represented by
configuration IIIh. Configuration IIIh also has the smallest gaps between calibration and
validation for all performance measures regarding the peak flows.

The time until the occurrence of a peak is an important information for flood protection
measures of fast-reacting catchments with a response time of less than a day. The time to
peak error (ET ) is considered for a comprehensive performance evaluation on an hourly
temporal resolution. In Table 5.12, the ET of the different configurations are listed. Re-
garding the ET , all hourly rain gauge configurations perform equally well. Except for the
second peak of the validation (d = 67), where configuration IV consisting of only 24 hourly
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Table 5.12: Time to peak error (ET ) resulting from different rain gauge configurations for
the four highest peak flows (hourly resolution).

IV IIh IIIh

Qpeak,1 3 3 3
Qpeak,2 1 1 1
Qpeak,3 0 0 0
Qpeak,4 -4 0 0

rain gauge stations estimates the peak four hours too soon. Both configurations considering
additional information of disaggregated daily rain gauge stations match the peak of the val-
idation period exactly. The two peaks during the calibration period are represented identical
by all three configurations. In all cases, the model estimates the peaks with a delay of three
hours or one hour, respectively.

5.4 Summary

In this study, two different model types with a different consideration of the input variables
due to their spatial representation as well as the required amount of input information are
investigated on the background of model complexity. Varying model complexity is analyzed
by a flexible model structure which is stepwise increased in its complexity. In the first part
of this chapter, the objective is to determine if more model process complexity necessarily
generates a better model output. The decision to use a more complex approach should only
be made if there are noticeable improvements in terms of model robustness and performance
level.

The model results in Subsection 5.1.1 show that a more complex distributed approach (HBV)
does not necessarily outperform a lumped model structure (FLEX). The results of the FLEX
model against the HBV model demonstrate that good model performance can be achieved
even with a simple model structure. The comparison between the two models and after-
wards between different complex reservoir configurations of the FLEX model present a dis-
tinct gap of model performance between calibration and validation. The model performance
of the calibration period indicates good model results in all cases. The validation period has
a clear decline in model performance. Independently of the used model, the modeled dis-
charge output tends to overfit the observed discharge during the calibration. Consequently,
the estimated parameter sets do not generate robust model outputs in validation. The anal-
ysis of the different time periods and flow conditions shows that all model set-ups have dis-
tinct problems with representing the snowmelt periods and peak flows. Solely, the snowmelt
period is reproduced slightly better with the HBV model where the input variables such
as precipitation and temperature are considered spatially distributed. According to these
findings, clearly identifiable inadequacies concerning the model structure cannot be distin-
guished for none of the two models. Also, an improved and more robust representation of
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the hydrological processes is not obtainable with a more complex modeling approach such
as the spatially distributed HBV model.

The investigation of different reservoir compositions of the FLEX model indicates that a
more complex model set-up tends to slightly better and more robust model results. A more
robust parameter estimation for the FLEX framework could be achieved if other hydrolog-
ical processes in terms of additional reservoirs and parameters are considered. This may
lead to an increased complexity but avoids overfitting the model during the calibration pe-
riod. But, this improvement is achieved by an increase of 22 (simplest configuration) to 28
(most complex configuration) calibrated parameters. If the improvement of model output
is just marginal it has to be balanced which model configuration is finally selected. An ap-
propriate model choice must focus on a preferably parsimonious modeling approach on the
one hand and the best level of model performance on the other hand. It can be concluded
that all investigated model structures have the same shortcomings such as a lack of robust
parameterization, inadequate representation of the snowmelt periods and a distinct underes-
timation of the peak flows. Thus, the use of a simple lumped model structure like the FLEX
model seems to be feasible. Within the different complex lumped model configurations, the
most complex model set-up promises better and more robust model outputs. Nevertheless,
it has to be emphasized that an insufficient quality of required input variables during the
investigation period is problematic to obtain a good parameterization and good fits, inde-
pendently of the applied model structure. The fact of inadequate but fixed input variables
(observations) is deeper investigated in Section 6.2. Based on these conclusions, other ap-
proaches regarding the description of certain hydrological processes, data properties and
temporal resolution are taken into account in the subsequent sections.

As mentioned above, one clear drawback of both models is the representation of snow pro-
cesses. The snowmelt period is poorly estimated, especially by the lumped FLEX model. The
analysis of the model output indicates a deficit of water volume during the snowmelt periods
and consequently the modeled discharge series underestimates the observations. A lumped
model structure considers a mean value of temperature and precipitation per time step for
the whole catchment. Therefore, just one condition can be represented. In catchments with
very variable topography, different states of precipitation and consequently accumulation
and melt of snow can occur at the same time. A third scenario can be so called rain-on-snow
(ROS) events. Such different simultaneously occurring conditions cannot be represented
by a lumped catchment representation. For this reason, the snow processes of the lumped
model structure are released to a spatially distributed external snow model (ESM ). The
ESM uses the degree-day approach equally to the snow routine in the HBV model. The
output of the ESM is transferred as a liquid water time series to the FLEX model. Then, the
model is calibrated and validated with the common procedure. The separation of the snow
processes from the lumped model structure to a prior distributed accounting of snow accu-
mulation and melt shows noticeable improvements of the model results due to the absolute
performance values. The use of a liquid water time series represents the snowmelt periods
better. The results are still unsatisfactory due to the model robustness of these flow char-
acteristics. The no snow periods as well as the peak flows are better represented by this ap-
proach regarding performance level and robustness. Especially during the winter months,
the ESM accounts for more snow than the internal snow routine of the FLEX model. The
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consideration of spatially distributed snow processes appears beneficial for the present in-
vestigation area with a very variable topography. Additionally, the amount of optimizing
parameters is reduced by seven and the model complexity is decreased through the deacti-
vation of the snow reservoir. An ESM increases the processing effort slightly but just uses
three parameters in this case. Through the assumption of equal snow parameters for each
grid cell and the non-consideration of some smoothing functions the parameter demand is
less. An improved model performance can be obtained with an efficient substitution of the
available input information without adding more parameters.

In the last part of this chapter, another kind of modeling complexity due to computational
effort is discussed. Depending on the used temporal resolution, the temporal and com-
putational effort for data preprocessing, modeling procedures and postprocessing can in-
crease enormously. Thus, the modeling purpose determines the required temporal resolu-
tion. Lower temporal resolutions such as daily to monthly might be sufficient if short-time
discharge dynamics are not important for the modeling objective. Modeling of flood events
usually requires a temporal resolution of daily or even higher for representing the discharge
dynamics. The subsequent aggregation of the model output to lower temporal resolutions
analyzes if there is an improvement of the model output due to performance level and ro-
bustness. The modeling procedures are executed on a higher temporal resolution than the
evaluation and presentation of the model results. This investigation shows that the perfor-
mance level is generally better for higher aggregation time steps looking at the total time
period. The gap between the model performance of the calibration and validation also de-
creases with increasing aggregation time step. The evaluation of the snowmelt period does
not show such a clear and consistent trend for the performance measures. For some mea-
sures and lower aggregation time steps, the performance level decreases for the calibration
time period and increases for the validation period. Thus, a clear trend of the model per-
formance describing the snow processes is not recognizable. One reason of this behavior
can be the complexity of snow processes and its many influencing factors. For instance, an
errorenous snow accumulation can already cause a considerable deficit of stored discharge
volume which is then missing during the snowmelt period. In summary, the analysis of the
aggregated model output shows that there is an increase in performance level and even ro-
bustness for lower aggregation time steps. This can be due to the compensation of under-
and overestimated discharge periods. One potential shortcoming of the model is the adjust-
ment of the fast-reacting flow dynamics at higher temporal resolutions, which has a signif-
icant impact on model performance. This fact is smoothed out for aggregated time steps.
An opposing trend of increasing model performance for the calibration and decreasing per-
formance for the validation with increasing aggregation time steps can indicate that as well
other error sources such as inadequate input variables, volume errors or wrong parameter
estimates influence the model output.

The disaggregation of daily precipitation data to an hourly resolution deals with the ques-
tion if the model application benefits by the use of additional input information due to
performance level and robustness. Catchment areas with limited high-resolution gauging
stations and consequently with a sparse spatial coverage suffer from insufficient point in-
formation. These conditions can result in inadequate spatial interpolations of the model
input variables. The disaggregation of daily precipitation data is performed by the nearest-
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neighbor method. Independent of the considered rain gauge quantity, the model output on
an hourly resolution shows a more robust behavior between the calibration and validation.
The no snow period has a distinct better model performance compared to the total time se-
ries for all considered configurations. The snowmelt period is still the flow characteristic
with the poorest model representation due to the performance level. But, the model robust-
ness is also improved for the snowmelt period. The peak flows still indicate the largest gap
between the results of calibration and validation which is especially the case for the two
configurations with less gauging stations. Taking all performance measures into account, it
can be concluded that the configuration with most additional information outperforms the
other configurations. Therefore, the consideration of additional information, through ,e.g.,
the disaggregation of available daily data to a higher temporal resolution, is beneficial for
obtaining more robust model outputs.

In summary, a more complex spatially distributed model is not necessarily better than a
simpler lumped model approach. The most complex reservoir configuration is suggested
within the lumped model framework for obtaining better and more robust model outputs.
The outsourcing of more complex hydrological processes such as snow modeling is recom-
mended for a better spatial representation. Here, a lumped modeling framework has its
limitations. In smaller catchments, such as the study area, a high temporal modeling reso-
lution is necessary for catching the flow dynamics. Incorporating additional information by
disaggregating lower resolution input data improves the level of performance and, in par-
ticular, the robustness of the model output. This can be a beneficial approach for catchment
areas where input data on high temporal resolution are very rare.
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Bergström (1991) stated that the confidence of models as powerful instruments are at risk
if poor modeling ethics, not suitable model structures or inadequate model calibration and
verification are applied. Refsgaard and Henriksen (2004) also argued that the reliability of
models is often questioned when there is insufficient evidence of predictive ability. Thus,
the interaction between data, model structure, parameter sets and predictive uncertainty
has to be examined (Beven, 1993; Kavetski et al., 2006b).

Chapter 4 gives a review of sources and ranges of uncertainty concerning the required in-
put data. Measured data are often inaccurate to a certain extent and consequently the data
quality has to be analyzed. Such a quality control avoids the use of apparently erroneous
input data. The prior knowledge of potentially inadequate input information supports a
differentiated evaluation and interpretation of the model output. Chapter 4 also introduces
different spatial statistical methods for the interpolation of point information. Chapter 5
investigates and compares different complex model structures, preprocessing and data ag-
gregation approaches. There, shortcomings concerning model robustness and performance
between the different applied methods are just analyzed and evaluated. In Chapter 6, the
possible reasons and potential impact of the identified shortcomings due to the data avail-
ability and quality as well as the application of different data preprocessing methods are
presented. Finally, the model performance due to time-dependent and event-based criteria
as well as the model parameterization is evaluated.

6.1 Input Data Analysis

Models are a simplification of a real natural system. Nevertheless, models cannot be oper-
ated without observed data. In this context, Silberstein (2006) remarked appositely:

“Data are science, models are a complement to them, but not a replacement for them.”

This citation evokes the need for sufficient data collection and their quality control. In the
following subsections, the influence of data quantity and quality on the model robustness
and performance is analyzed and discussed. Chapter 5 shows that the results of widely
accepted and used hydrological models suggest a good representation of the reality due to
the performance level of the total calibration periods. But, a careful validation of the cali-
brated models with different preprocessed input data as well as a comprehensive analysis
of several performance measures on different discharge periods and characteristics indicate
distinct shortcomings of robust model outputs. Consequently, the potential to use such a
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model for reliable predictions is limited. These findings also confirm the citation above that
models are not able to compensate every lack of missing information due to incomplete or
inadequate input data.

6.1.1 Rain Gauge Density and Distribution

The first indications of potential data shortcomings due to the quality and spatial availabil-
ity in the investigation area are already shown in Chapter 3. Orographic effects at the north
side of the Alps indicate increasing mean annual precipitation depths with increasing station
altitude. Table 3.1 compares the mean annual precipitation for four rain gauge stations on
different elevations. The simple presentation of the measured data confirms the expected
trend for three considered stations until an elevation of about 1000m.a.s.l. The highest
available station on almost 2000m.a.s.l. has a clear decrease of approximately 400mm of
mean annual precipitation compared to the station on 1000m.a.s.l. This station is also the
most southern and very solitary located station of rain gauge configuration I and II (Figure
3.4). Especially, such a fact can have a distinct influence on model calibration and finally
on model robustness and performance if such a station provides poor data quality. Other
basic conditions, such as number of available stations, spatial station density, vertical dis-
tribution and the minimum distance between two stations (Table 6.1) may also influence
an adequate model calibration. An insufficient density of rain gauge networks can be a
problem. In particular, regions with a high variability in precipitation (e.g., due to a very
heterogeneous topography) and a sparse observation network can cause large uncertainty
if areal precipitation is estimated by interpolation.

Table 6.1: Basic information of the daily rain gauge configurations due to quantity and spa-
tial distribution.

description unit
daily rain gauge configuration

IVd II I∗ III

total number of stations [−] 24 34 59 61
station density of investiga-
tion area [1/1000 km2] 1.1 1.5 2.6 2.7

station density of catchment
area [1/1000 km2] 3.2 4.3 7.5 10.8

minimum distance of two
stations [km] 3.9 - 28.4 2.9 - 28.4 0.8 - 23.6 0.7 - 13.0

average minimum distance [km] 8.7 6.9 4.5 5.6

average station altitude [m.a.s.l.] 774 748 807 767

In this subsection, the FLEX model output of four different rain gauge configurations is
compared. The basic conditions listed in Table 6.1 show considerable differences in the total
number of stations, available stations in the catchment area, the minimum distance between
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Table 6.2: Flex performance for different discharge periods using varying daily rain gauge
configurations as precipitation input (calibration: 2005 - 2009, validation: 2010 -
2012).

cal.
total snowmelt no snow

IVd II I∗ III IVd II I∗ III IVd II I∗ III

R2 0.74 0.76 0.74 0.78 0.58 0.59 0.58 0.58 0.81 0.83 0.80 0.85
RMSE 1.6 1.5 1.6 1.4 2.1 2.0 2.1 2.0 1.4 1.3 1.4 1.1
PBIAS -4.5 -3.8 -3.9 -1.6 11.5 10.7 9.8 10.8 -13.6 -12.1 -11.7 -8.6
NSE 0.71 0.73 0.71 0.77 0.42 0.43 0.40 0.45 0.75 0.79 0.76 0.84
KGEm 0.97 0.98 0.97 0.98 0.88 0.89 0.89 0.88 0.90 0.92 0.92 0.96

val.
total snowmelt no snow

IVd II I∗ III IVd II I∗ III IVd II I∗ III

R2 0.63 0.67 0.66 0.73 0.45 0.51 0.50 0.59 0.70 0.73 0.73 0.79
RMSE 1.6 1.5 1.5 1.3 2.0 1.8 1.9 1.6 1.4 1.3 1.3 1.2
PBIAS 6.0 5.9 7.5 1.6 25.8 22.1 23.8 13.2 -3.1 -1.6 0.0 -3.8
NSE 0.58 0.64 0.63 0.73 0.06 0.19 0.16 0.41 0.67 0.72 0.72 0.78
KGEm 0.94 0.95 0.94 0.98 0.56 0.67 0.63 0.86 0.97 0.98 0.98 0.98

a station pair, etc. Rain gauge configuration II and III (Figure 3.4) are already known from
the former chapters. Configuration IVd only includes 24 daily stations for which also hourly
observations are available. The fourth analyzed rain gauge configuration I∗ differs from
configuration I in the total amount of 59 stations. Here, some additional stations from the
national park Berchtesgaden are considered which are located south of the city of Berchtes-
gaden and are only clustered in the corner at the German side (Figure 3.1). These gauging
stations have data until 2007. Consequently, the additional information is spatially and tem-
porally very inhomogeneous. Table 6.2 shows the FLEX model performance of the different
rain gauge configurations. As the additional stations of rain gauge configuration III have
no data for the year 2013, the evaluation disregards this year for an objective comparison of
the results.

The different performance measures of the calibration indicate that there is no distinct trend
for better model results due to an increased amount of gauging stations. Only rain gauge
configuration III shows clearly better model results compared to the other three configura-
tions for almost all performance measures. The improvements become particularly apparent
for the total and the no snow periods. The differences in model performance of the snowmelt
period are slight for all measures and rain gauge configurations. There are considerably
more differences between the rain gauge configurations if the model output of the valida-
tion is analyzed. Here, an order due to more available stations is visible. The total evaluation
indicates the worst model performance on a satisfactory to unsatisfactory level for configu-
ration IV . Then, configuration II and I∗ are at the same satisfactory level. Configuration
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III shows again the best performance on a very good level. Solely the representation of
the snowmelt period also remains on an unsatisfactory performance level. But, configuration
III is the only one which generates robust model outputs for the snowmelt period as well as
the other investigated flow periods.

This analysis demonstrates in which manner areal precipitation input resulting from sparse
or unbalanced rain gauge networks influences the model performance. The range of avail-
able gauging stations varies between 24 up to 61 stations. The water balance of the different
rain gauge configurations in Subsection 4.3.4 shows a distinct deficit of about 20 %. This is a
first indication for an insufficient quality of certain input data which can also cause problems
in model calibration. There, configuration III with the most available gauging stations is
already the most promising input data set due to the lowest water deficit (Table 4.4). These
findings are confirmed by the model output where the results obtained by configuration
III show by far the best and the only robust model performance. Looking at the calibra-
tion period, the model output of configuration IV , II and I∗ (24, 34 and 59 stations) has
very similar model performances. Despite the very different quantity and distribution of
the gauging stations, the FLEX model is obviously able to compensate the lack of informa-
tion through its parameterization. However, the results of the validation period reveal that
the individual parameter sets are not appropriate for generating robust model outputs. The
stations have to be well spatially distributed within the study area. This indicates the model
output of configuration I∗ and III . Both configurations have the same amount of gauging
stations which also means an equal station density for the total investigation area. Taking
now the station density of the catchment area as well as the minimum distance between the
individual station pairs into account (Table 6.1), configuration III has a much denser and
well distributed gauging network. Figure 3.4 also shows the irregularly distributed gauging
network of configuration I where the southern part of the investigation area only contains
very few stations. If the conditions mentioned above are fulfilled, as for configuration III ,
the quantity of available gauging stations has a positive effect on model performance and
robustness.

6.1.2 Temperature Influence on Different Flow Conditions

In addition to precipitation, temperature is another important model parameter, which is
particularly relevant for the correct representation of snow processes. The review of data
availability and control in Sections 3.2 and 4.2 shows that with 22 stations, there are even
less temperature stations available than rain gauge stations. Only ten of the 22 available
temperature stations fulfill the quality criterion of a maximum of one year of missing data
related to the entire investigation time period. The highest available temperature station is
at 1973m.a.s.l. On the other hand, the catchment area reaches altitudes of 2600m.a.s.l. and
has an average elevation of 1260m.a.s.l. The station density of 0.5/100 km2 is very sparse
within the catchment. A value of R2 = 0.99 suggests a linear relationship between station
altitude and mean annual temperature (Figure 4.4). However, a large range of altitudes
(800m.a.s.l. to 1600m.a.s.l. and above 2000m.a.s.l.) is not covered with stations and suf-
ficient measurement data. There are only three stations above 800m.a.s.l. that fulfill the
requirements of the quality control. This large deficit in vertical and horizontal information



6.1 Input Data Analysis 89

3 2 1 0 1 2 3 4 5 6

temperature change [ ◦C]

4

2

0

2

4

6

P
B
IA
S

[%
]

totalcal

totalval

(a) PBIAS (total)

3 2 1 0 1 2 3 4 5 6

temperature change [ ◦C]

20

10

0

10

20

30

40

P
B
IA
S

[%
]

snowcal

snowval

no snowcal

no snowval

(b) PBIAS (snow/no snow)

3 2 1 0 1 2 3 4 5 6

temperature change [ ◦C]

0.5

0.6

0.7

0.8

0.9

1.0

N
S
E

[−
]

totalcal

totalval

(c) NSE (total)

3 2 1 0 1 2 3 4 5 6

temperature change [ ◦C]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
S
E

[−
]

snowcal

snowval

no snowcal

no snowval

(d) NSE (snow/no snow)

Figure 6.1: Model performance analysis of different modified temperature time series.

can lead to significant uncertainties in the interpolation of the spatially distributed temper-
ature fields. Consequently, this can have a great influence on the subsequent averaging
to derive the uniform temperature value as lumped model input. The major drawbacks
of this uniform consideration of the temperature data, especially with respect to the snow
processes, are already discussed in Section 5.2. In addition, weather conditions such as in-
version or foehn effects can be mentioned here, which can reverse the temperature profile
or cause distinctly different temperature values at same elevations at the same time within
the catchment. Therefore, the influence of temperature on the various flow conditions is
evaluated in more detail in this subsection. For the investigations, the lumped temperature
time series is modified over the entire calibration and validation period (2004 - 2013), by re-
ducing or increasing the daily value in 0.5 ◦C steps. The temperature time series is reduced
or increased in a range from −2.0 ◦C to +5.0 ◦C. The precipitation time series is based on
configuration III with data at all stations for 2013.

Figure 6.1 presents the evaluation of the individual model runs with the modified temper-
ature time series using the performance measures PBIAS and NSE. The left diagrams
show the respective model performance for the total calibration and validation period. In
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(a) snowmelt (calibration) (b) snowmelt (validation)

Figure 6.2: Q-Q plots for assessing the predictive reliability of discharge for the snowmelt
period of different modified temperature time series.

the diagrams on the right, the model performance is divided according to the flow condi-
tions snowmelt and no snow. Regarding the PBIAS, the model results have no clear ten-
dency of improvement or deterioration for the total period and for the no snow period. The
PBIAS is not very sensitive to temperature changes in a range of 1.0 ◦C to 2.0 ◦C and then
changes quite abruptly. Furthermore, the gap in model bias between calibration and valida-
tion remains nearly constant. This difference increases slightly from a temperature change
of +4.0 ◦C. With respect to the total modeling period, a PBIAS close to zero during valida-
tion always assumes a model bias toward overestimation during calibration. However, the
general tendency for the total period is that the discharge is overestimated during calibration
and underestimated during validation. Looking at the PBIAS for the different flow condi-
tions, it can be seen that for both calibration and validation, the model bias always tends to
underestimate the discharge for snowmelt and overestimate it for no snow. The model bias
is generally slightly smaller and relatively insensitive to the temperature changes for the no
snow conditions. For snowmelt, the model bias towards underestimation increases from a
temperature change of +2.0 ◦C. In addition, the difference of the PBIAS between calibra-
tion and validation is slightly smaller at a temperature deviation of +2.5 ◦C and +3.0 ◦C. In
summary, no noteworthy changes in model performance for modified temperature time se-
ries in a range between −2.0 ◦C and +3.5 ◦C can be identified using the PBIAS. The NSE
is relatively constant during calibration for the total modeling period. A clear drop in perfor-
mance occurs from a temperature deviation of +5.0 ◦C. The NSE reproduces an increasing
trend of the model performance during validation in a range from +1.0 ◦C to +4.0 ◦C. This
also reduces the gap between calibration and validation and is even equal for a tempera-
ture deviation of +3.5 ◦C and +4.0 ◦C. The course of the NSE during the no snow period
is very similar to the total modeling period at a slightly higher performance level. Due to
the PBIAS and NSE, a reduction in daily mean temperatures does not appear to cause a
notable change in model performance. The application of modified temperature data also
shows no clear positive effect for the snowmelt period.
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Figure 6.2 assesses the predictive reliability of some selected configurations during the
snowmelt period using Q-Q plots. Again, it can be seen that especially the smaller to medium
discharges tend to be underestimated for all configurations during calibration and valida-
tion. No model output with modified temperature time series provides an improvement to
represent snowmelt conditions. Only the configuration with a temperature change of +2.0 ◦C

has a comparable distribution to the reference configuration. The two configurations with
larger temperature deviations tend to underestimate the discharge distribution more clearly
during calibration and validation.
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Figure 6.3: Peak flow hydrographs for different modified temperature time series.

Finally, the model representation of the peak flows for the selected configurations is shown
in Figure 6.3. The most significant influences from the application of the modified temper-
ature time series are seen here. Regarding the NSE, the model performance for validation
is improved for all three configurations with modified temperature time series. Here, con-
figuration Q+3.5 ◦C provides the best and most robust model results for the peaks. The con-
figurations Q+2.0 ◦C and Q+3.5 ◦C produce significantly higher peaks in both calibration and
validation. At a temperature change of +5.0 ◦C, a clear decrease in model performance is
again visible in the calibration, although it is still above that of the reference run in the vali-
dation. In the second event of the validation, the smaller peak in the descending flood wave
disappears for the configurations Q+3.5 ◦C and Q+5.0 ◦C . This phenomenon can already be
observed with the application of an external distributed snow model in Section 5.2. The pos-
sible influence of snow on the flood events is already addressed there. The time of the flood
events within the year also suggests that the two events during validation (May/June) are
more likely to be influenced by snow than the two events during calibration (July/August).
This is confirmed by looking at the input data and by the model results with increased tem-
perature time series. Especially the two events in the validation are influenced by snow,
which cannot be represented satisfactorily by the uniformly assumed input data and the
lumped model structure.

The analysis of the temperature influence on the different flow conditions confirms that
besides precipitation and discharge, temperature should not completely disregarded as a
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possible source of uncertainty. While a large impact on the snowmelt periods is not apparent,
the influence can be significant for individual snow-affected events. The relatively steep and
short-term increase in discharge and the usually long-lasting high discharge volume during
snowmelt periods (Compare the hydrograph at the beginning of the second quarters in Fig-
ure 3.3) is obviously also dependent on other factors, with which the model has difficulties
in correctly representing.

6.1.3 Discrepancy of Input Variables

This subsection focuses on the question if discrepancies in available time series of input
variables have evident drawbacks on modeling purposes. Data discrepancy can appear
in different ways. Input data can have a time offset if they are not synchronized on the
time scale. Such an offset can have a significant effect on the goodness of fit of the model
(McCuen et al., 2006). These discrepancies occur due to record errors of the measurement
devices, the aggregation time interval as well as the distribution of the rain gauges inside
and outside of the modeled catchment. The effect of different aggregation time intervals on
the input variables precipitation and discharge is shown in the following item. The second
item of this subsection deals with potential inadequacies of indirect measurements such as
the potential evapotranspiration (PE). This variable is usually determined with more or
less complex empirical equations. Here, discrepancies can occur between the calculated and
the physically reasonable values for a certain region.

Time Offset of Input Data
Daily precipitation data provided by weather services are usually used. These data are
often not measured for a “full” day which means from 12:00 midnight to 12:00 midnight.
For instance, the German Weather Service (DWD) measures at 6:00 UTC and takes the last
24 hours as daily value for the previous day. Other observation data like discharge and
temperature are often assumed for a “full” day. This can cause a time offset between the
input variables because of different aggregation time intervals. The model representation of
flood events occurring in the first half of the day is also influenced if the precipitation of the
first hours is already considered in the previous day. Then, the amount of precipitation is
“missing” for the actual time step and for the discharge conditions being modeled.

The mean areal precipitation depth (hMAP ) of configuration IVd and IVagg are plotted
against each other in Figure 6.4. Configuration IVd includes 24 daily stations with the ag-
gregation time interval of the DWD. Configuration IVagg are the aggregated hourly data
to a “full” day for the corresponding 24 gauging stations. The mean annual precipitation
is about 1500mm for both configurations. The red plus represents the daily hMAP and the
black cross the daily hMAP aggregated for two days. Especially for the daily resolution, a
clear variation between configuration IVd and IVagg is visible. The precipitation amounts
are influenced by the different aggregation time intervals bringing a time offset. The as-
sumption that relevant precipitation events usually do not take more than 48 hours should
smooth out the effect of time offset for the data set of aggregated two-days (h2d) mean areal
precipitation. This fact is also seen in Figure 6.4 where the spread of the black crosses is
much smaller. The calculation of the coefficient of determination (R2) for the daily as well



6.1 Input Data Analysis 93

Figure 6.4: Comparison between station configuration IVd and IVagg for daily (h1d) and for
aggregated two-days (h2d) mean areal precipitation depth (hMAP ).

as the aggregated two-days data set verifies this assumption. R2 is 0.74 for the daily and
0.90 for the aggregated two-days data set. The resulting model output evaluated by the
NSE of these two configurations summarized in Table 6.3 does not reproduce this effect of
data discrepancy due to the time offset between discharge and precipitation data.

Table 6.3: Model performance (NSE) of daily (IVd) and aggregated hourly data (IVagg) for
investigating the effect of input data time offset.

total snowmelt no snow peak

IVd IVagg IVd IVagg IVd IVagg IVd IVagg

NSEcal 0.71 0.75 0.42 0.48 0.75 0.79 0.81 0.82
NSEval 0.60 0.58 0.17 0.16 0.65 0.63 0.61 0.49
NSE∆ 0.11 0.17 0.25 0.32 0.10 0.16 0.20 0.33

Overall, it can be stated that the supposedly correct synchronized precipitation time series
performs worse than the input times series with a time offset. Even though configuration
IVagg outperforms configuration IVd for the calibration period, worse results for the valida-
tion period are obtained for configuration IVagg. The largest decline of model performance
for configuration IVagg occurs for the peak flows. Due to robust model outputs, configura-
tion IVd shows better results for all evaluated time periods and flow conditions. In this case,
a time offset of input variables does not necessarily deteriorate the model output.
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Effects of Overestimated Evapotranspiration Data
Maps of annual long-term mean potential evapotranspiration (PE) suggest that the used
input values are obviously overestimated for the investigated region. In Subsection 3.1.2,
mean annual values of PE found in literature between 350mm and 550mm are mentioned.
In connection with possible reasons for the deficient water balance, an estimated and for
modeling purposes used mean annual value of about 660mm is reported in Section 4.5. To
quantify the influence of such a discrepancy on the model output, different modifications of
PE are applied to check if the model reacts sensitive on problematic PE values.

The first modification of the PE time series is the processing procedure of the PE values.
Three different configurations are analyzed. All PE values are calculated by the approach of
Hargreaves and Samani shown in Subsection 2.2.1. Except for the analysis of overestimated
PE data, the basic data set (I∗PE) is always used for FLEX model runs in this study. The
calculation of the PE values uses mean areal temperature values which are interpolated by
EDK. The configuration I∗PE,Tsim considers mean areal temperature values simulated by
RM . For the third configuration I∗PE,EDK , an individual PE time series is firstly generated
for all available 22 temperature stations. Afterwards, a mean areal PE value is interpolated
by EDK for each time step.

(a) lumped vs. distributed (b) kriged vs. simulated

Figure 6.5: Comparison of different potential evapotranspiration (PE) time series.

The scatterplots in Figure 6.5 compare the three different PE data sets. The left plot shows
the configuration I∗PE and I∗PE,EDK . The values of both configurations are close together and
the differences are apparently small. Nevertheless, it is recognizable that the distributed as-
sumption of PE values accounts for slightly lower values in the higher ranges. In contrast,
between the configurations I∗PE and I∗PE,Tsim exists a greater spread with higher values.
Here, the PE time series generated by simulated temperature values tends to have lower
values. This tendency is also confirmed by the mean annual potential evapotranspiration
(PEa) and the deficit of water balance in Table 6.4. Depending on the processing of the PE
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Table 6.4: Some facts and the resulting FLEX performance of different modified potential
evapotranspiration (PE) time series.

description unit
configuration

I∗PE I∗PE,Tsim I∗PE,EDK

mean annual PEa [mm] 662 599 646

deficit of water balance [%] 19.2 16.6 18.6

NSEcal [-] 0.709 0.708 0.715

NSEval [-] 0.638 0.639 0.642

time series, the PEa is decreased up to 60mma−1 which can reduce the deficit of water bal-
ance by almost 3 %. The model performance for the total time series presents almost identical
results for all three configurations. In order to see any difference in model performance, the
third decimal place is given for this case. Then, configuration I∗PE,EDK suggests the “best”
results.

Table 6.5 shows the parameters which basically influence the evapotranspiration processes
of the FLEX model. Apart from one parameter, all parameters are identical. Only the pa-
rameter controlling the maximum unsaturated storage capacity SU,max changes a bit. Ob-
viously, the differences of the three PE time series are negligible for parameter settings or
the model is able to compensate slight differences by adjusting just single parameters. A
distinct overestimation of PE during the summer month can be the main reason for the
deficit in water balance. The water deficiency in the system can influence the model param-
eterization, which especially controls the base flow. For this reason, the effect of potentially
overestimated PE values is tested by the corruption of PE sequences before heavy flood
events. The antecedent moisture conditions are changed by taking PE sequences of other
flood events as well as very dry periods.

Table 6.5: FLEX model parameters referring to processes driven by potential evapotranspi-
ration (PE).

model parameter unit
configuration

I∗PE I∗PE,Tsim I∗PE,EDK

maximum percolation capacity Pmax [mmt−1] 4.0 4.0 4.0

transpiration threshold ETpar [-] 30 30 30

maximum unsaturated storage
capacity SU,max

[mm] 17.4 14.7 19.8

maximum interception threshold Imax [mm] 10 10 10

Two flood events during the year 2005 (calibration) and 2013 (validation) are taken for the
analysis. The PE sequences are replaced 30 days before the flood event. The first configu-
ration is the respective sequence of the other event. In addition, three more configurations
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are used. The configurations with modified PE sequences before the flood event in 2005
are recalibrated by the FLEX model. The evaluation of the flood event in 2013 is done with
constant model boundary conditions (i.a. input variables and parameter set). Solely, the
model is revalidated with the modified PE sequences before the flood event.

The analysis of the resulting model output for the flood events in 2005 and 2013 are given in
Table 6.6. The evaluated parameter sets of the recalibrated model which basically influence
the evapotranspiration processes of the FLEX model are all identical. Thus, such a short cor-
rupted sequence has absolutely no effect on the parameter settings. The absolute peak flow
has higher discharges for the configurations with fewer total potential evapotranspiration
(PEtot) for both investigated flood events. Nevertheless, the two configurations (I∗HW05,1

and I∗HW05,3) present worse results looking at the model performance measures of the event
in 2005. Independently of calibration or validation period, the impact of a modified PE

sequence before a single flood event has almost no influence to the model performance
of the total time series. Here, all modified configurations perform equal or slightly worse
compared to the original configuration I∗. The calculation of the peak model performance
(NSEpeak and PBIASpeak) considers the corrupted 30 days before and 10 days after the
flood event. A more considerable impact is visible for the model performance of both peak
flows. Always the opposing PE condition performs distinct worse. The NSE has a decline
of 3 − 5 % and the PBIAS up to 7 %. The discharge conditions of the flood event in 2005
indicate a model bias toward overestimation due to the PBIAS. The flood event of 2013
shows a model bias toward underestimation.

Table 6.6: Analysis of modified potential evapotranspiration (PE) sequences before the
flood events in 2005 (Qpeak,obs = 34.5mm) and 2013 (Qpeak,obs = 70.6mm).

HW 2005 unit
configuration

I∗ I∗HW05,1 I∗HW05,2 I∗HW05,3 I∗HW05,4

PEtot [mm] 109 77 114 69 116

Qpeak,mod [mm] 27.1 28.5 28.0 28.2 26.6

NSEtot,cal [-] 0.71 0.70 0.71 0.70 0.71

NSEtot,val [-] 0.64 0.64 0.64 0.64 0.64

NSEpeak,cal [-] 0.82 0.77 0.83 0.78 0.83

PBIASpeak,cal [%] -14.2 -21.1 -14.3 -21.0 -12.3

HW 2013 unit
configuration

I∗ I∗HW13,1 I∗HW13,2 I∗HW13,3 I∗HW13,4

PEtot [mm] 77 109 114 69 116

Qpeak,mod [mm] 30.2 29.0 29.5 29.9 28.4

NSEtot,val [-] 0.64 0.63 0.63 0.64 0.62

NSEpeak,val [-] 0.59 0.56 0.57 0.58 0.55

PBIASpeak,val [%] 22.7 26.8 27.3 22.3 28.2
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For systematically erroneous PE values, Oudin et al. (2006) found a noticeable impact on the
model performance, especially if the PE was overestimated. Other studies demonstrated
that the model performance is almost not affected by inadequate or rather randomly cor-
rupted PE values, or that the model parameters are able to compensate PE biases. Accord-
ing to PE values found in literature for this area, it is evident that the used input time series
consider distinct overestimated PE values. The different processing approaches of the PE
time series are able to reduce the mean annual PEa as well as the deficiency in water balance
up to 3 %. But, these facts are apparently compensated by the model and do not bring any
effect on the model output. The results of modified PE sequences confirm the variation of
about 1 % in model performance evaluated by theNSE for the total time series which is also
reported by other studies in Subsection 4.1.3. The model performance of single flood events
shows a more distinct influence on corrupted PE sequences, but the impact on the absolute
peak discharge is almost negligible. The recalibrated model parameters are absolutely not
affected by such short modified sequences. The correction of systematically overestimated
PE time series is a difficult task and is not part of this investigation. At least, this short
analysis shows that the influence on the total time series and the absolute peak discharges is
negligible in the context of this study.

6.2 Effects of Data Processing

The Sections 4.3 and 4.4 introduce and discuss different interpolation (kriging) and simu-
lation (random mixing) methods as well as their effects on processing input variables. The
influence on the modeling process and output is now described within the next subsec-
tions. Initially, the three different applied kriging methods and the conditional simulation
method random mixing (RM ) are compared among each other. Then, the incorporation of
linear inequality constraints to RM (Subsection 4.4.2) is tested for investigating measure-
ment uncertainties of gauging stations on high elevations. In the last part of this section,
the uncertainty of input data and its effects to the model output is analyzed with the use of
many simulated precipitation time series as model input.

The indices of the different modifications of RM are used as follows: Only RM denotes the
configuration where the averaged precipitation field of 100 different simulation runs is used
as single model input. The superscript i refers to 100 different simulated precipitation fields
and the corresponding individual model runs. The index m explains the mean result of 100
model runs. The index min and max similarly denotes the worst and the best model runs
out of 100. The incorporation of greater-equal constraints is labeled with a greater sign. The
respective number stands for the level of elevation (e.g., 1000m.a.s.l.) above which greater-
equal constraints are applied to the gauging stations.

6.2.1 Comparison of Spatial Interpolation and Simulation Methods

Table 6.7 compares the resulting FLEX model performance of the different input configura-
tions gained by the three interpolation methods (ODK, EDK and EDKs) and the simula-
tion method (RM ) on the total, snowmelt and no snow period. The performance measures
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Table 6.7: Performance of the FLEX model evaluated by different measures and interpola-
tion/simulation methods (rain gauge configuration III).

cal.
total snowmelt no snow

ODK EDK EDKs RM ODK EDK EDKs RM ODK EDK EDKs RM

R2 0.78 0.78 0.78 0.78 0.60 0.58 0.58 0.59 0.85 0.85 0.85 0.85
RMSE 1.5 1.4 1.4 1.4 2.0 2.0 2.0 2.0 1.3 1.1 1.1 1.2
PBIAS -3.6 -1.6 -1.6 -3.1 11.9 10.8 10.8 9.4 -12.5 -8.7 -8.6 -10.3
NSE 0.75 0.77 0.77 0.76 0.46 0.44 0.45 0.44 0.80 0.84 0.84 0.83
KGEm 0.98 0.98 0.98 0.98 0.88 0.88 0.88 0.90 0.92 0.96 0.96 0.94

val.
total snowmelt no snow

ODK EDK EDKs RM ODK EDK EDKs RM ODK EDK EDKs RM

R2 0.69 0.67 0.67 0.70 0.67 0.65 0.65 0.67 0.71 0.69 0.69 0.73
RMSE 1.8 1.8 1.8 1.7 1.6 1.6 1.6 1.7 1.8 1.8 1.8 1.7
PBIAS -3.2 3.0 3.1 -2.2 13.7 15.2 15.3 13.0 -11.1 -2.7 -2.6 -9.3
NSE 0.67 0.67 0.67 0.68 0.44 0.46 0.46 0.39 0.69 0.68 0.68 0.72
KGEm 0.97 0.96 0.96 0.97 0.87 0.85 0.84 0.88 0.91 0.97 0.97 0.94

show very similar values for the total calibration period. Taking the validation period into
account, the differences between the interpolation and simulation methods as well as the
various performance measures are more apparent. Due to absolute performance level and
robustness, the results of RM slightly outperform the input configurations generated by
kriging methods for all measures. The analysis of the snowmelt period indicates a prefer-
ence for the kriging methods due to NSE. The KGEm which accounts more for a balanced
volume tends to the set-up generated by RM . The no snow period suggests a preference to
the both interpolation methods using an external drift if the absolute performance level is
taken, especially for the calibration period. Configuration RM and even ODK show better
results due to model robustness. The PBIAS for the total period shows values close to zero
during the calibration and validation for all configurations. The configurations ODK and
RM slightly overestimate the volume for calibration as well as validation. The configura-
tions EDK and EDKs show an opposing trend with a marginally overestimated volume
during calibration and a volume underestimation during validation. The PBIAS of the
snowmelt period clearly underestimates the volume during calibration and validation for all
configurations. The no snow period indicates a volume overestimation during calibration
and validation for all configurations. The discrepancy of underestimated volume during
the snowmelt and overestimated volume during the no snow period is obvious. It seems to
be enough total precipitation as model input due to the almost balanced volume for the total
period. But, the available precipitation amount is wrongly distributed between the snowmelt
and no snow period. Apparently, the snow reservoir of the model does not store or release
enough precipitation volume during the snowmelt period.
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Table 6.8: Different measures evaluating the peak flows for interpolation/simulation meth-
ods (rain gauge configuration III).

ODK EDK EDKs RM

cal. val. cal. val. cal. val. cal. val.

EVpeak -0.26 0.06 -0.11 0.19 -0.11 0.19 -0.26 0.04
EP 0.90 0.57 0.73 0.44 0.72 0.44 0.94 0.57
NSEpeak 0.79 0.69 0.84 0.55 0.84 0.55 0.81 0.70

A more detailed analysis of the peak flows is given in Table 6.8. Looking at the representation
of the peak flows, all performance measures show a great gap between the results of calibra-
tion and validation. Only the NSEpeak of configuration ODK and RM is in an acceptable
range like the other analyzed time periods. The EVpeak again shows a clear trend to overes-
timated volumes during calibration and underestimated volumes during validation. Both
configurations of ODK and RM outperform the configurations of EDK. The presented
model results in Table 6.7 and 6.8 have the identical shortcomings due to performance level
and model robustness as already shown on the tested approaches in Chapter 5. The perfor-
mance differences between the various interpolation and simulation methods are generally
not very significant. The conclusion of a marginal influence due to different processed pre-
cipitation input data sets is already done for different kriging methods in Subsection 5.1.1.
Even though the now investigated rain gauge configuration III contains more and spatially
well-distributed stations, the shortcomings of the model output remain. At this point, the
denser and spatially well-distributed station arrangement might bring no benefit in terms of
model robustness. Focusing on improved model robustness, the applied simulation method
(RM ) reveals the most promising results.

6.2.2 Data Modification with Random Mixing

In Chapter 4, the data quality is controlled using simple plausibility checks such as physical
relationships and water balance. One result is the almost always negative water balance of
the system. In the previous subsection, the discrepancy of input variables is investigated on
overestimated potential evapotranspiration (PE) data. The result of this analysis is that the
used input time series considers distinct overestimated PE values according to PE values
found in literature for this area. This finding is certainly the main part of the deficient water
balance. But, inadequate rain gauge data also contribute to a lack of water in the balance. In
the first part of Chapter 4, losses through wind are named as the main reason for systematic
errors measuring precipitation. Consequently, larger wind-induced measurement errors oc-
cur in high mountain regions due to higher wind speeds and proportion of snow. The QC
of the rain gauge data in Section 4.2 shows no clear trend of increasing mean annual pre-
cipitation sums for higher station altitudes. The relatively low mean annual precipitation
sums for the higher located stations suggest underestimated rain gauge data due to system-
atic measurement errors. Another indicator for erroneous precipitation data from higher
located rain gauge stations is the calculation of the correlation coefficient (R) in Table 4.1.
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If all stations are considered almost no relationship between station altitude and precipita-
tion sum is visible. Taking just the hydrological winter half-years into account, the results
even show a light anticorrelation. This fact may also indicate data quality problems due to
snowfall. Disregarding rain gauge stations above certain altitudes shows a clear increase
of R. A neglect of all stations above 1000m.a.s.l. means an increase of R from 0.06 to 0.54

depending on the station configuration.

For a better investigation of the above-mentioned problems due to potentially erroneous
precipitation data from higher located rain gauge stations, the conditional simulation
method random mixing (RM ), introduced in Section 4.4 is used. Different precipitation
time series are simulated incorporating greater-equal constraints to rain gauge stations above
altitude levels of 1000m.a.s.l. and 700m.a.s.l. In Section 4.5, the water balance by different
generated precipitation time series shows a reduction of the deficit from about 22 % to 4 %

applying greater-equal constraints to stations above 1000m.a.s.l. This subsection shows the
influence of simulated precipitation time series using greater-equal constraints on the model
output. The set-up of rain gauge configuration II is the base of the following model results.
The total amount of stations is 34 whereby four stations are located above 1000m.a.s.l. and
the total number of stations above 700m.a.s.l. is 13. The denotation of the indices is ex-
plained in the introduction of Section 6.2.

Table 6.9: Performance of the FLEX model evaluated by NSE and EV for interpolated and
simulated input data as well as incorporated greater-equal constraints (rain gauge
configuration II).

EDKs RM RM>700 RM>1000

cal. val. cal. val. cal. val. cal. val.

NSEtot 0.73 0.64 0.76 0.65 0.67 0.67 0.68 0.67
NSEsnow 0.43 0.28 0.42 0.35 0.31 0.38 0.34 0.41
NSEno snow 0.79 0.68 0.83 0.68 0.73 0.70 0.73 0.70
EVtot -0.04 0.07 -0.03 0.08 -0.05 0.08 -0.05 0.08
EVsnow 0.11 0.24 0.07 0.20 0.06 0.20 0.06 0.20
EVno snow -0.12 -0.01 -0.09 0.03 -0.12 0.03 -0.11 0.03

The results in Table 6.9 show that the model results obtained by RM slightly outperform
EDKs according to the NSE. Due to the measure EV , both input configurations are quite
similar except for the snowmelt period where RM again suggests better results. The perfor-
mance gap between calibration and validation period still remains for both configurations.
The model results which are calculated with simulated input data and incorporated greater-
equal constraints have a slight lower performance level in the calibration period according
to the NSE. But, the validation period performs better and more robust model outputs
are generally obtained. Considering the EV for different investigated periods, all input
configurations have the same weakness. The calibration as well as the validation underesti-
mates the volume of snowmelt period. Here, the use of simulated input data can obviously
reduce this deficit. Independently of the input configuration, the other evaluated flow peri-
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Figure 6.6: Hydrograph of flood event 2013 modeled by the FLEX model with different sim-
ulated precipitation time series (rain gauge configuration II).

ods show almost similar tendencies of overestimated flow volumes for the calibration and
an underestimation for the validation.

Figure 6.6 and Table 6.10 exemplify the results of the heaviest observed flood event within
the investigation period. The different corresponding simulated and accumulated precipi-
tation patterns are already shown in Figure 4.15. All modeled hydrographs generally have
the same trend where the peak is considerably underestimated and a second clear smaller
but smoother peak can be noticed. The second peak probably results from an inaccurate rep-
resentation of rain and snow in the internal lumped snow model. Two to three days before
the flood event, precipitation amounts of about 40 to 50mm are recorded, which are tem-
porarily fallen as snow down to 1000m.a.s.l. Snow is usually very wet and build just a
temporary snow pack which melts fast for this season. The constant snowmelt rate of the
model is probably too small for representing such fast occurring as well as disappearing
snow events during the summer period. The daily resolution of the modeling processes can
also have its influence. Such a delayed response of discharge is picked up in a subsequent
section. The peak hydrographs of the three configurations only present marginal differences
in Figure 6.6. But, the configurations using simulated precipitation time series with incorpo-
rated greater-equal constraints performs better. This tendency is also validated by the perfor-
mance measures in Table 6.10. The configuration with applied greater-equal constraints to all
gauging stations above 1000m.a.s.l. performs best for this event. Configuration RM>1000

assumes the most precipitation as well as discharge volume. All three configurations have a
clear positive balance of available water. Nevertheless, the model performance of all config-
urations can be ranked on a moderate to satisfactory level. The EV indicates a model bias
toward underestimated discharge volumes which is already seen in Figure 6.6. Neverthe-
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Table 6.10: Performance analysis of a single flood event in 2013 generated by different sim-
ulated precipitation time series (Qtot,obs = 191.2mm).

unit
configuration

RM RM>700 RM>1000

hMAP,5d [mm] 205.4 221.7 224.4

Qtot,mod [mm] 148.1 157.7 161.5

NSE [-] 0.47 0.50 0.52

KGEm [-] 0.74 0.84 0.87

EV [-] 0.23 0.18 0.16

EP [-] 0.39 0.41 0.42

less, between configuration RM and RM>1000 an performance improvement of 7 % for the
EV and 5 % for the NSE is achievable.

Using such simulated time series, which consider measurement uncertainties due to the
location of gauging stations, for instance with incorporating greater-equal constraints, is an
approach to address and verify these problems. Here, it can be seen that the use of greater-
equal constraints gives more robust model results. Nevertheless, volume problems still re-
main which can originate from other error sources such as overestimated input time series
of PE, investigated in Subsection 6.1.3. This fact can also result in modeling problems such
as determining good parameter sets.

6.2.3 Analysis of Input Data Uncertainty

An explicit reduction of the uncertainty of input data can support a better estimation of
other uncertainty sources. Uncertainty of interpolated precipitation estimations contribute
a noteworthy portion to the gaps between observed and modeled discharge. Thus, more
reliable and improved model predictions are hardly achievable without a clear decrease
of precipitation estimation errors (Moulin et al., 2009). An improved quality as well as a
more appropriate temporal and spatial resolution of the input data can emphasize inade-
quate model structures (Neumann and Gujer, 2008). Erroneous precipitation data can have
a significant declining influence on model performance (Moulin et al., 2009). Depending on
the model, Oudin et al. (2006) specified a mean decrease of the NSE from 35 % up to 50 %

if randomly corrupted precipitation values were used. They still estimated a decrease in
model performance of 15 % to 25 % for a systematic underestimation of precipitation. Bár-
dossy and Singh (2008) investigated the effect of observation errors on the identification of
robust parameter sets by corrupting discharge and temperature data. A further point is
the time dependence of interpolation errors (Moulin et al., 2009). This can happen if single
stations have data gaps or provide inaccurate values due to measurement errors for single
time steps or periods. Depending on the distribution of rain gauge stations, spatially limited
precipitation patterns can be captured insufficiently and result in under- or overestimation.
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Figure 6.7: FLEX model performance (NSE) for 100 simulated precipitation time series gen-
erated by RM and incorporated greater-equal constraints.

For this reason, the following subsection discusses how uncertainty of input data can be
taken into account for the calibration of hydrological models and the representation of the
model results. RM is used to simulate many precipitation fields which are able to describe
the variability of real precipitation fields. Each realization of RM maintains the observed
values at the conditioning points as well as the spatial variability of the observations. Here,
the model is calibrated by 100 different precipitation fields generated by RM as well as in-
corporated greater-equal constraints. The model is validated by the received 100 individual
parameter sets and respective precipitation fields. The model results of these input config-
urations are shown in Figure 6.7 and Table 6.11. The first entry of Table 6.11 is the reference
run which is the averaged input precipitation field of 100 simulation runs. The denotation
of the indices is explained in the introduction of Section 6.2.

The scatterplot in Figure 6.7 suggests that the configuration of RM has the best results for
the calibration runs. Both configurations with incorporated greater-equal constraints gener-
ally show lower values as well as a greater spread of the NSE. The validation runs reflect
other results. Here, the configuration of RM>1000 outperforms the others. Both configu-
rations of RM>700 and RM>1000 show more robust model results on a slight lower perfor-
mance level than the configuration RM (Table 6.11). Due to the standard deviation (S) of all
100 NSE, the scattering of the model performance increases from RM to RM>1000 for cali-
bration. The performance results for the validation have a reverse relationship. The model
results generated by 100 different input precipitation fields show that on average the model
performance is almost equal to the single model run. But, the range of model performance
due to the variability of the precipitation fields varies between 8 % to 10 % for RM . The
configurations with modified input data sets RM>700 and RM>1000 have ranges from 7 %

to 14 %. This evaluation suggests an impact of input data uncertainty between 7 % to 14 %
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Table 6.11: Performance analysis for different simulated input data as well as incorporated
greater-equal constraints (rain gauge configuration II).

RM RM>700 RM>1000

cal. val. cal. val. cal. val.

NSE 0.76 0.65 0.67 0.67 0.68 0.67
NSEi=100

m 0.74 0.64 0.67 0.65 0.67 0.67
NSEi=100

min 0.70 0.59 0.59 0.61 0.60 0.63
NSEi=100

max 0.78 0.69 0.73 0.69 0.74 0.70
Si=100
NSE 0.015 0.018 0.030 0.016 0.033 0.014

to the model performance due to the spatial variability of precipitation fields and potential
measurement drawbacks of topographically influenced gauging stations.

Figure 6.8 exemplarily shows the range of possible peak flow hydrographs due to 100 dif-
ferent precipitation time series simulated by RM without incorporated constraints. Some
parts of the hydrograph are not represented very well by the mean of all simulations. More
sections of the observed discharge hydrograph are captured if the range of model output
which originate by the uncertainty of the precipitation input is considered. Some clear dis-
crepancies between observed and modeled hydrographs remain, independently of the taken
simulation run. Here, other reasons are responsible for the modeling problems. For instance,
an insufficient representation of snow accumulation or melt can cause a delayed discharge
response or a volume shift.
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Figure 6.8: Peak flow hydrographs for 100 simulated precipitation time series (RM ).

Another option to investigate the uncertainty of input data is the consideration of multipli-
ers for precipitation and evapotranspiration (Sikorska et al., 2012). The SUPERFLEX frame-
work enables such an analysis. Nevertheless, the assumption of multiplicative precipitation
errors has its limitations, especially if the errors originate from time offsets between the pre-
cipitation and discharge time series (Kavetski et al., 2006b,c). Another restriction of such mul-
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tipliers is that just systematic variations with a constant value are applicable for the whole
time series. This approach needs the assumption of systematic uniform input data errors.
This study focuses more on the quantity and spatial distribution of rain gauge stations and
its influence on the spatial variability of precipitation fields. For this reason, the approach
with multipliers on lumped input time series is not further investigated.

6.3 Model Performance Analysis

One important issue of the analysis of model performance and finally the reliability of pre-
dictions is the detection of reasons for errors and uncertainty. These perceptions support
further proceeding in improving model predictions. They indicate if the predictions ben-
efit from more adequate model structures or accurate input information (Del Giudice et al.,
2015). Input and output data, model structures and their parameterization are sources of
uncertainty (Wagener, 2003; Kavetski et al., 2006b). The main part of prediction uncertainty
arise from inaccurate precipitation information and structural model deficiencies (Sikorska
et al., 2012). In a comprehensive model evaluation, the reliability and uncertainty of the
obtained output has to be assessed. Nevertheless, a general assumption of statistical uncer-
tainty estimation is that the applied model is true and the errors follow a stochastic process.
This can be problematic as models due to their conceptual process representation cannot be
considered as true and measurement devices often produce (systematic) errors (Neumann
and Gujer, 2008). Good or rather reliable model results can be assumed if the model perfor-
mance ranges within the obtained uncertainty bands (Refsgaard and Henriksen, 2004). The
magnitude of uncertainty bands are also useful measures for the reliability of the model re-
sults (Willmott et al., 1985). Other studies indicate model predictions as reliable if at least
95 % of the validation data is covered by the 95 % uncertainty band (Del Giudice et al., 2015).

The separation of error components and thus the estimation of the different uncertainty
sources is a difficult task and can impede a profound analysis of model accuracy (Kavet-
ski et al., 2006b). One of the challenges is the variety of potential error sources on the one
hand, and the availability of just one data pair (observed and modeled) for measuring the
deviations or residuals at every time step on the other hand (Beven, 2006). Especially, the un-
certainty originating from structural model deficiencies is particularly vague and difficult to
separate (Wagener, 2003). Structural inadequacy can originate from missing state variables
and processes. Another source due to numerical errors might be avoided by implementing
robust numerical methods (Gupta et al., 2012). Sources of model uncertainty can also inter-
act with each other. An improved model structure often involves supplementary process
descriptions and accordingly an increase of complexity due to more parameters. A reduc-
tion of model structural uncertainty may be expected on the one hand, but the parameter
uncertainty can increase on the other hand (Silberstein, 2006). Biased and deceptive esti-
mated parameter sets can be caused by input errors which again can differ from catchment
to catchment due to different data availability and quality as well as topographic diversity.
This can lead to difficulties especially if the parameters are intended for predictions in un-
gauged basins (Kavetski et al., 2006b). Another limitation for predictive reliability are biased
parameter sets arising from input uncertainty structures which are different in calibration
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from those in validation (Kavetski et al., 2006b). Doherty and Welter (2010) argue that model
calibration often fails in simulating all characteristics of a discharge time series equally well.
Depending on the calibration process, it may occur that, e.g., low flows are better estimated
than high flows or the other way round. The study of Gan et al. (1997) ascertained that wet
years outperform dry years as calibration data. Obviously, wet years contain more sufficient
information of low and high flow conditions to activate all model parameters.

This section of the study provides a model performance analysis due to time-dependent and
event-based criteria. The time-dependent analysis includes different lengths of time series,
hydrological seasons and various modeling intervals. Unusual events are used for the event-
based performance analysis. Subsequently, the model parameterization is considered with
different model configurations.

6.3.1 Time-dependent Performance Analysis

In Brath et al. (2004) a period not less than three months is suggested for model calibration
with hourly time step. A few other studies are mentioned which assume that such a calibra-
tion length is sufficient with hourly resolution. In Bayesian analysis an increasing length of
the calibration time period can maintain a reduction of the estimated model parameter un-
certainty (Doherty and Welter, 2010). Bergström (1991) is of the mind that there is no general
rule for the required length of a calibration period as long as an adequate range of significant
events is included in the data. Gan et al. (1997) argues similar that the data should include
a sufficient amount of average, dry and wet years. All model parameters characterizing
different flow conditions are thus activated during calibration. He proposes a time length
of three to five years. If a bad model fit is expected, the time interval should be selected as
short as possible for the most accurate performance index. Else, an insensitivity of the index
can occur to the critical time interval (McCuen et al., 2006).

This study uses a time period of ten years (2004 - 2013). As mentioned in Section 3.2, the time
period is chosen because of the required flexible data set-up for higher temporal resolutions
and the sparse availability of hourly data before 2004. Due to the general conditions of the
research project, the investigated time period is adapted and extended during this study.
For the first part of the investigations, just a time series from 2004 until 2009 is available.
In a second step, the time series is extended until 2013. The only drawback of the second
data set-up is the missing data for the additional rain gauge stations of configuration III

for the year 2013. In the meantime, precipitation data are available for the 27 additional sta-
tions of configuration III . Where the required preprocessing and subsequent model runs
are possible with justifiable efforts, the new data set is considered for the model evaluation
in Section 6.3. The flow duration curve in Figure 3.6 shows the non-exceedance probability
of the selected (2004 - 2013) and the long-term (1901 - 2006) time period. Both curves match
fairly well. Thus, the selected time series of ten years is representative for the long-term
discharge characteristics of this river. The selected time period even provides more rele-
vant and higher flood events. That should be beneficial for investigations of high discharge
conditions. Flood events which exceed the long-term mean of the 99.7 % duration of non-
exceedance occurred in 2005, 2010 and 2013.
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Length of Time Series
This paragraph presents the results of different long time series. The first modeling ap-
proaches just consider a data set from 2004 until 2009. Consequently, two of the highest
observed flood events are not included within the short time series until 2009. The cali-
bration (validation) length differs from 3 (2) to 5 (4) years to the regular investigation time
period from 2004 until 2013. The first year is always used as warm-up period and is dis-
regarded for the performance evaluation. Non of the four highest peak flows occur during
the validation period of the short time series. For this reason, the analysis of the peak flow
performance is skipped. Both time series are based on rain gauge configuration III .

Table 6.12: Observed and modeled discharge statistics for different long time series (1: 2004 -
2009 and 2: 2004 - 2013).

cal.
total [mm] snowmelt [mm] no snow [mm]

Qm Qmax Qsum S Qm Qmax Qsum S Qm Qsum S

obs1 3.6 34.5 3942 3.2 5.1 17.6 1405 2.9 3.1 2537 3.1
III1 3.6 29.0 3957 3.0 4.2 15.0 1172 2.8 3.4 2785 3.0
obs2 3.7 34.5 6667 2.9 5.3 17.6 2425 2.7 3.1 4242 2.8
III2 3.7 24.7 6772 2.7 4.7 11.9 2163 2.8 3.4 4609 2.6

val.
total [mm] snowmelt [mm] no snow [mm]

Qm Qmax Qsum S Qm Qmax Qsum S Qm Qsum S

obs1 3.7 20.7 2726 2.6 5.5 11.8 1020 2.4 3.1 1706 2.3
III1 3.4 20.2 2514 2.3 4.2 11.4 769 2.3 3.2 1744 2.2
obs2 3.6 70.6 5187 3.1 4.5 11.8 1646 2.2 3.2 3541 3.3
III2 3.5 29.4 5076 2.5 3.8 13.0 1407 2.4 3.4 3670 2.5

The statistics in Table 6.12 provide an overview of the observed and modeled discharge
conditions for each case. Qmax is always similar for the total and the no snow time period.
The comparison of the observed discharge data shows that the mean discharge Qm matches
quite well between the two time series as well as between calibration and validation period
for the total and the no snow period. Only the snowmelt period differs between the previ-
ously mentioned cases. Here, the short time series (obs1) has a higher Qm during validation
whereas the long time series (obs2) shows the opposite. The short discharge time series has
only very low maximum discharges Qmax for validation. In terms of the standard deviation
S, the observed discharge of the short time series shows slightly larger differences between
calibration and validation. The comparison between the observed and modeled statistics
indicates that the model is able to reproduce the basic statistics Qm, Qsum and S of the total
period for both time series as well as for the calibration and validation. Only the reproduc-
tion of Qmax has the known deficiencies. This is particularly noticeable for the long time
series. The observed Qmax is significantly higher during validation. Thus, the calibrated



108 Assessment of Data and Model Adequacy

Table 6.13: Model performance analysis of different long time series.

2004 - 2009 2004 - 2013
total snowmelt no snow total snowmelt no snow

cal. val. cal. val. cal. val. cal. val. cal. val. cal. val.

R2 0.83 0.70 0.73 0.51 0.89 0.81 0.78 0.69 0.58 0.66 0.85 0.72
RMSE 1.3 1.4 1.8 2.2 1.1 1.0 1.4 1.7 2.0 1.6 1.1 1.7
PBIAS -0.4 7.8 16.6 24.6 -9.8 -2.3 -1.6 2.1 10.8 14.5 -8.6 -3.6
NSE 0.83 0.69 0.62 0.13 0.88 0.80 0.78 0.69 0.44 0.47 0.84 0.71
KGEm 0.99 0.94 0.84 0.62 0.95 0.99 0.98 0.97 0.88 0.86 0.96 0.97

model extrapolates its information of the hydrological system into the unknown. Looking
at Qsum of the splitted times series, it can be seen that the missing discharge volume of the
snowmelt period is contained in the no snow period.

The findings of analyzing the descriptive statistics are also represented in the model per-
formance (Table 6.13). The overestimated discharge volume during the no snow period is
reflected by the negative values of PBIAS. The snowmelt period shows more robust re-
sults for the long time series. Regarding the total and no snow periods, the short time series
suggests a better model performance according to R2 and NSE. PBIAS and KGEm tend
more to the long time series. This investigation indicates that depending on the considered
performance measure a decision to both time series is possible. In summary, the short time
series seems to be the better approach. But, it should be noted that the short time series
has no significant peak flows in the validation period. In contrast, the two peak flows in the
validation of the long time series are significantly higher than those in the calibration. They
are probably the decisive reason for the slightly worse model performance in the total and
the no snow period.

Hydrological Seasons
This subsection examines the model behavior for different configurations regarding the hy-
drological year (HY ) as well as the hydrological summer and winter half-years. One reason
for using hydrological years as input time series is that the snow reservoir of a catchment
system is assumed to be empty at the beginning of November. This should avoid a deficit
of precipitation volume if the snow reservoir is initially empty starting at the beginning of
a calendar year. These circumstances are relevant for mountainous catchments. In order to
compensate for these effects, the first year is always used as warm-up period in this study,
regardless of the model set-up. The considered time series for this analysis ranges from
November 2004 to October 2013.

Figure 6.9 shows the validation results separated by the hydrological summer and winter
half-years. The model validation is performed once with the optimized parameter set from
the hydrological winter and summer half-years. The objective of this illustration is to check
whether the model is capable to predict the dissimilar or the rather unknown hydrological
condition. During the validation phase, only two events occur where the observed discharge
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(a) Hydrological summer (HS) (b) Hydrological winter (HW )

Figure 6.9: Validation of the hydrological seasons using the optimized parameter sets of the
summer and winter half-years.

Qobs is greater than 20mm. Both events are measured during the hydrological summer half-
year. Both parameter sets underestimate the peak flow almost identically. In the hydrological
winter half-years, no events with an observed dischargeQobs of more than 20mm occur. For
this reason, the two discharge events are not shown in Figure 6.9 in order to be able to
compare the results for the two hydrological half-years more clearly.

The scatterplot for the hydrological winter represents that the higher discharges (> 5mm)
are completely underestimated by the winter parameter set. The modeled discharge by the
summer parameters shows a behavior towards under- and overestimation for these dis-
charge conditions. Looking at the left figure of the hydrological summer, the scattering of
the modeled discharge by the winter parameters is much larger than the summer set-up.
Especially for higher discharges, the modeled discharge by the winter parameter set tends
to a large spread towards under- and overestimation. Only on the basis of the two scatter-
plots, it appears that the original parameter set produces the better model results for the
hydrological summer half-years. For the hydrological winter half-years, only the scatterplot
cannot be used to make such a clear statement. It is also difficult to say which parameter set
represents the dissimilar hydrological condition better. For this reason, the corresponding
model performance is considered in the next paragraph.

The model represents the mean discharge and the standard deviation very well in calibra-
tion (Table 6.14). The validation results show a quite good representation of the observed
mean discharge according to the related parameter set. The standard deviation of the mod-
eled discharge during the validation period is smaller for all set-ups. This fact is obviously
due to events with a discharge of more than 20mm, which are clearly underestimated by
the model. If these events are disregarded or if the set-up of winter half-years is considered,
the standard deviation of the modeled data also agrees well with the observed ones. The
overall view of the performance measures shows that the hydrological summer half-years
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Table 6.14: Model performance analysis of different calibration and validation set-ups re-
garding hydrological seasons.

Qobs,m Qmod,m Sobs Smod RMSE PBIAS NSE

H
Y cal. 3.6 3.7 2.9 2.9 1.5 -3.6 0.73

val. 3.6 3.5 3.0 2.6 1.8 1.8 0.65

H
S

cal. 4.5 4.5 3.1 2.9 1.2 -0.5 0.85
val.HS 4.3 4.3 3.7 2.8 1.8 -0.1 0.77
val.HW 4.3 4.0 3.7 3.3 2.4 6.2 0.57

H
S
<
2
0
m

m cal. 4.3 4.4 2.6 2.6 1.1 -1.5 0.83
val.HS 4.1 4.2 2.4 2.3 1.0 -1.8 0.80
val.HW 4.1 3.9 2.4 3.0 1.9 4.6 0.33

H
W

cal. 2.7 2.8 2.3 2.3 0.9 -0.8 0.83
val.HW 2.9 2.5 2.0 1.8 1.2 13.8 0.63
val.HS 2.9 2.0 2.0 1.2 1.8 30.6 0.21

are best represented by all different model set-ups. If discharges > 20mm are not taken
into account for the performance calculations, even robust model results are obtained for
the summer parameter set. The model bias (PBIAS) indicates a light overestimation of the
model results for all calibration set-ups and the validation periods of the summer half-years
with the corresponding parameter set. All set-ups including winter months or the win-
ter parameter set show a trend to slightly overestimated model results for the calibration
and always a tendency for underestimation during the validation phase. Both configura-
tions of the hydrological summer half-years also show better model results when the NSE
is evaluated. The use of the hydrological time series does not show an improvement to
the model performance and robustness compared to time series regarding a calendar year
(see also Table 6.7). The seasonal model evaluation shows that the hydrological summer
half-years perform better than the total time period and the winter half-years. These worse
results for the winter times correspond to the findings already gained during the evaluation
of the snowmelt periods. It shows again, that the process representation of the very com-
plex snow accumulation and melt seems to be a weakness of the lumped model structure.
However, the winter parameter set better reproduces the dissimilar hydrological conditions
in the summer half-years than the other way round. The more complex calibration of the
winter period apparently better activates the various hydrological processes represented by
the model structure and associated parameters.

Different Modeling Intervals
The last part of the time-dependent performance analysis deals with different modeling in-
tervals (MI). The simple split-sampling method differs with regard to the respective length
of the time period and swapped time intervals for calibration and validation (Table 6.15).
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This approach investigates if there are clearly different conditions between calibration and
validation period and to what extent these have an influence on model performance. The
specific representation of the peak flows in calibration or validation receives special attention.
The two considerably higher flood events are so far only taken into account in the valida-
tion. For configurations with swapped time series, these events are part of the calibration.
This is used to investigate whether it has an influence on the previously significantly un-
derestimated representation of the peak flows. Another point is the influence of a different
division of the time intervals for calibration and validation. Can a longer calibration period
provide additional input information that has an influence on model robustness and perfor-
mance? The data for the period 2004 to 2013 are used for all configurations. The first year
before the calibration interval is always a warm-up period and is not taken into account for
the calculation of performance measures. The evaluation of peak flows includes events from
the years 2005, 2006, 2010 and 2013 (Figure 6.12).

Table 6.15: Configuration overview and description for the different modeling intervals
(rain gauge configuration III).

ID description
modeling interval no. of years
cal. val. cal. val.

MI1
basic configuration, precipitation
data for 2013 included

’05 - ’09 ’10 - ’13 5 4

MI2 swapped calibration time period ’09 - ’13 ’04 - ’07 5 4

MI3 short calibration time period ’05 - ’08 ’09 - ’13 4 5

MI4 long calibration time period ’05 - ’10 ’11 - ’13 6 3

MI5
swapped long calibration time
period

’08 - ’13 ’04 - ’06 6 3

The following discussion of the descriptive statistics is solely qualitative for the different
modeling intervals. The univariate measures mean discharge (Qobs,m) and standard devia-
tion (S) of all observed data sets show almost equal discharge conditions for the total and the
no snow period of calibration and validation. The modeled mean matches fairly well to the
observed mean for calibration as well as validation for all model set-ups. The modeled stan-
dard deviation tends to be slightly underestimated in both calibration and validation. The
snowmelt periods show clearer differences in the univariate measures for both calibration
and validation as well as the different configurations. Qobs,m as well as S of configuration
MI1 and MI4 during calibration are much higher than the validation period. Configura-
tion MI5 shows the opposite case. Only configuration MI2 and MI3 have almost similar
observed conditions for calibration and validation according to both univariate measures.

Figure 6.10 presents the calibration and validation results of configuration MI1 and MI4

for the snowmelt period. The scatterplot of MI4 shows especially for higher discharges a
wider spread and a trend to overestimation during calibration. The two scatterplots for the
validation do not differ so much anymore. The parameterization of the model seems to be
able to compensate this in the validation of MI4. Regarding the swapped time series of
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(a) MI1 (calibration) (b) MI4 (calibration)

(c) MI1 (validation) (d) MI4 (validation)

Figure 6.10: Scatterplots of different chronological modeling intervals (snowmelt period).

(a) MI2 (calibration) (b) MI5 (calibration)

(c) MI2 (validation) (d) MI5 (validation)

Figure 6.11: Scatterplots of different swapped modeling intervals (snowmelt period).
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configuration MI2 and MI5, the differences between the scatterplots of the calibration as
well as the validation are not so clear (Figure 6.11). Only some overestimated data points
are recognizable for the higher discharges of MI5. The scatterplots of the snowmelt period
show that a longer calibration period does not necessarily get better performance results,
especially with respect to the robustness of the model results. This behavior can be noted
for both chronological and swapped time series.

Table 6.16: Model performance analysis of different calibration and validation modeling in-
tervals. (∗Only the event of 2013 is taken into account for validation.)

MI1 MI2 MI3 MI4 MI5

cal. val. cal. val. cal. val. cal. val. cal. val.

to
ta

l RMSE 1.4 1.7 1.4 1.4 1.4 1.7 1.5 1.8 1.5 1.6
PBIAS -1.6 2.1 -0.7 -9.1 -1.1 7.1 -3.5 -2.0 -1.2 -10.2
NSE 0.78 0.69 0.80 0.76 0.76 0.71 0.76 0.67 0.73 0.72

sn
ow

RMSE 2.0 1.6 1.6 2.0 2.0 1.9 2.1 1.7 1.6 2.3
PBIAS 10.8 14.5 14.3 9.9 10.2 17.4 8.7 7.0 12.2 11.0
NSE 0.44 0.47 0.57 0.42 0.38 0.39 0.31 0.46 0.51 0.31

no
sn

ow RMSE 1.1 1.7 1.3 1.2 1.1 1.6 1.2 1.8 1.5 1.2
PBIAS -8.6 -3.6 -8.0 -19.1 -7.5 2.0 -10.1 -6.4 -8.0 -23.2
NSE 0.84 0.71 0.84 0.84 0.83 0.75 0.84 0.70 0.75 0.81

pe
ak

RMSE 2.7 7.2 4.8 2.6 2.8 7.1 3.0 8.2∗ 7.0 2.7
PBIAS -11.2 14.5 4.8 -10.4 -5.3 17.7 -9.5 2.1∗ 5.5 -13.9
NSE 0.84 0.60 0.82 0.85 0.83 0.61 0.83 0.66∗ 0.62 0.84

In a further step, the various configurations are evaluated on the basis of the model per-
formance. Looking at the NSE, the configuration MI1 seems to provide better and more
robust model results for the snowmelt period than configuration MI4 (Figure 6.10). The
RMSE shows an almost identical performance. The PBIAS even suggests a better model
performance of MI4 because of a lower model bias toward underestimation for calibration
as well as validation (Table 6.16). Configuration MI2 performs better for the swapped time
intervals of the snowmelt period. Analyzing the model performance of the five configura-
tions for the total time period, configuration MI2 performs best for RMSE and NSE. Due
to the PBIAS, configurationMI4 is the best, followed by the basic configurationMI1. Con-
figuration MI5 has the worst performance results for the total time period. Configuration
MI2 also performs best when evaluating the four peak flow events. A comparison of the two
configurations MI2 and MI5 with swapped time period shows that the higher peak flows
in calibration are still clearly underestimated (Figure 6.12). However, configuration MI2

reproduces the two highest peak flows better than any other configuration in calibration or
validation. The calibrated peak flows of configuration MI5 are at the same low level as those
configurations where these events are part of the validation. Despite the clear differences
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in calibration of MI2 and MI5, the two validated peaks have almost identical hydrographs.
The chronological configurations of MI1 and MI3 show hardly any differences in calibra-
tion and validation of the peaks. Only the configuration MI4 generates higher peaks, where
the first three events are part of the calibration.
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Figure 6.12: Peak flow hydrographs of different modeling intervals. (∗The first three peaks are part
of the calibration.)

The evaluation of the different modeling intervals indicates that there is no configuration
that consistently reproduces the best result for all discharge conditions and performance
measures. Configuration MI3 with a shortened calibration interval generates comparable
results as the basic configurationMI1. Only the PBIAS has a slightly higher mean tendency
towards an underestimated modeled discharge for the validation. In contrast, a longer cali-
bration interval (MI4) only has a positive influence on the validation of peak flows. For the
remaining discharge conditions, the model performance is even worse. No improvement
of the model results is apparent with a longer calibration interval (MI5) for the swapped
time period. Based on the performance measures RMSE and NSE, as well as the model
robustness, the swapped time period of configurationMI2 tends to be the best modeling ap-
proach. However, the performance analysis also indicates that the PBIAS has a tendency
for overestimating all discharge conditions apart from the snowmelt period during valida-
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tion. This may be due to the fact that the model weights the responsible parameters of the
fast reacting processes more strongly due to the two higher flood events in calibration and
thus also smaller peaks are rather overestimated. The investigations on the basis of different
modeling intervals show that the length of calibration has no clear influence on the model
performance for the selected time series. The configuration MI4 with the longest calibration
time period tends to have even worse model results. Regarding model robustness but also
quality, the swapped time series generate the better results. Configuration MI2 provides
the best results for calibration and validation, especially for peak flows. For the chronologi-
cal modeling approaches, the two highest peak flows are part of the validation period. This
is the case of extrapolation, since the model must reproduce unknown discharge conditions
in validation. The two highest peaks are part of the calibration for the swapped time series.
Thus, the peak flows of validation are the case of interpolation. The model already knows
these discharge conditions from calibration. In this case, all model parameters that describe
the different discharge conditions are better activated during calibration. The fact of inter-
and extrapolation cases must be taken into account when Chapter 7 attempts to clarify the
question of applicability for the prediction of flood events.

6.3.2 Event-based Performance Analysis on Unusual Events

The higher the temporal resolution of model calculations, the higher are usually the com-
putational times. Finding an appropriate compromise between temporal resolution and
sufficient information output by the model is a challenging task. Thus, in many studies the
model is just calibrated on single flood events or a series of events (Brath et al., 2004). An
alternative is the calibration on unusual events (UE) which can reduce the data demand for
model calibration significantly. Unusual events are periods of a data time series (e.g., dis-
charge or temperature) which contain more information than the rest of the time series. In
the following, it is assessed if model calibration on unusual events is sufficient for estimating
good and robust parameter sets. The theory of determining unusual events with the depth
function is given in Subsection 2.3.3. Unusual events are selected from the total discharge
time series (Qtot), the discharge time series of the hydrological winter half-years (Qw), the
antecedent temperature index (ATI) and the daily mean temperature (Tm). In total, four
different combinations of unusual event time series are considered as model input:

• UE1: Qtot

• UE2: Qtot & Qw

• UE3: Qtot & ATI

• UE4: Qtot & Tm

The response of a catchment to an unusual event usually takes more time than just the
current and the subsequent day at which such conditions are identified. The antecedent
hydrological situation also influences the flow behavior. Every five previous and subsequent
days of an unusual event are considered for model calibration and evaluation. The used
calibration data set varies between 9.2 % up to 19.4 % due to the total amount of data. The
model validation always considers the complete time series.
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Table 6.17: Model performance resulting from calibration on unusual event times series.

III UE1 UE2 UE3 UE4

cal. val. cal. val. cal. val. cal. val. cal. val.

to
ta

l RMSE 1.4 1.7 1.8 1.8 1.3 1.8 1.5 1.7 1.4 1.7
PBIAS -1.6 2.1 -2.3 14.6 -0.2 11.7 0.6 11.9 -1.1 14.4
NSE 0.78 0.69 0.92 0.64 0.93 0.66 0.91 0.69 0.91 0.70

sn
ow

RMSE 2.0 1.6 1.3 2.7 1.1 2.7 1.5 2.4 1.4 2.7
PBIAS 10.8 14.5 18.2 37.3 5.3 35.2 11.1 34.7 5.4 41.0
NSE 0.44 0.47 0.89 -0.54 0.91 -0.55 0.78 -0.28 0.78 -0.57

no
sn

ow RMSE 1.1 1.7 1.8 1.5 1.4 1.4 1.5 1.4 1.4 1.1
PBIAS -8.6 -3.6 -4.0 4.0 -4.0 0.8 -0.7 1.3 -2.6 2.0
NSE 0.84 0.71 0.92 0.80 0.94 0.83 0.92 0.83 0.92 0.88

pe
ak

RMSE 2.7 7.2 2.4 4.3 2.4 4.5 2.6 4.6 2.4 3.6
PBIAS -11.2 14.5 -13.3 9.1 -4.3 19.8 -1.1 14.1 -6.3 9.6
NSE 0.84 0.60 0.87 0.85 0.88 0.84 0.85 0.84 0.87 0.90

data ratio [%] 100 100 9.2 100 16.9 100 16.1 100 19.4 100

The model performance in Table 6.17 indicates very good calibration results regarding the
NSE for the total time series. However, the validation performance is similar or even
slightly worse than the reference model set-up. The PBIAS shows that nearly all configura-
tions tend to minimal overestimation of the discharge during the calibration. The validation
shows the opposing effect where all configurations of UE have a clear model bias toward
underestimation. This fact can be explained if the model performance of the snowmelt pe-
riods is considered. Here, all measures indicate very poor model results for the validation
period. Regarding theNSE, even the mean observed discharge is a better predictor than the
model. A look on the other two evaluated flow conditions of no snow and peak flow, presents
a different picture. There, very good and quite robust model results are obtained according
to the performance measures for the calibration as well as the validation period. The best
results are achieved if the unusual events are determined by two selection criteria. Here, the
configuration UE4 (Qtot & Tm) outperforms the remaining configurations.

The hydrographs of the peak flows also show the improvements between the configurations
of III (complete time series), UE1 (onlyQ) and UE4 (Qtot & Tm) in Figure 6.13. The delayed
second peak of the last event disappears for both UE time series. The match of observed and
modeled peak flows is very good for the last three peaks of configuration UE4. Only the first
event causes difficulties in its reproduction for all set-ups. Configuration UE1 has even for
the lower discharges a relatively large range for the uncertainty bands. Here, configuration
UE4 also shows improved uncertainty bands, which suggests more robust model results.
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Figure 6.13: Peak flow hydrographs of different unusual event configurations.
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In summary, this investigation shows that the approach of model calibration on unusual
events is obviously not applicable for snowmelt periods. Here, the used time series does not
contain sufficient information and the calibrated model parameters are not transferable to
the validation. A second temperature driven criterion for determining the unusual events
is necessary. So, enough hydrological information is extracted from the total time series
to activate the model functionalities and parameters describing the other flow conditions
during the validation period. Except for the snowmelt periods, this approach is useful to
calibrate a hydrological model because of its reduced computing time for estimating robust
parameter sets.

6.3.3 Analysis of Model Parameterization

The robustness and the resulting reliability of a model arise from its capability to repre-
sent all occurring hydrological conditions as good as possible (Perrin et al., 2001). Using the
model performance of the calibration time period as only benchmark for the predictive ca-
pability of a model is a fundamental error (Refsgaard and Henriksen, 2004). It can often be seen
that model results show a significant drop of model performance for the validation period.
One reason can be the overparameterization of the model by too many degrees of freedom
in contrast to the information contained in the observations (Bergström, 1991; Seibert, 1997).
Poor input information due to data quality and data processing can also cause such a gap
between the performance during calibration and validation. Hence, these reasons are an
explicit indicator for the presence of either erroneous data or inadequate model structure
(Fenicia et al., 2008). The higher the difference in performance measures between the cali-
bration and the validation period, the less transferable are the estimated model parameters.
In contrast, higher performance measures during validation can be assumed to be purely
random (Bárdossy and Das, 2008).

It can be seen that many factors influence the process of determining a robust model pa-
rameterization. Therefore, the aim of model calibration should not only focus on finding
the best performing parameter set. Instead, different objectives should be achieved with
the best possible set of parameters. This includes a good model performance for the in-
vestigation time period and a meaningful accounting for the hydrological processes. The
obtained model results should be quite insensitive to small changes of the parameter val-
ues. Finally, the use of a transferred parameter set to other time periods does not decline
the model performance (Bárdossy and Singh, 2008). Problems of under- or overestimated dis-
charge conditions do not only arise from erroneous input data (mainly precipitation). They
can also result from compensation effects in the model structure. A frequent underestima-
tion of unusual peak flows could lead the model to increase the precipitation or speed up
the outflow of the storages controlling the fast flow to reduce the model error. As a conse-
quence of such compensation effects, the model can tend to overestimate generally smaller
peak flows or wrongly adjust other storage parameters. Parameter uncertainty may be de-
creased by splitted calibration procedures for different seasonal or flow conditions (Seibert,
1997). Parameters with no relevant influence on the results increase the degree of freedom
in a model. This can be a source of uncertainty. A sensitivity analysis supports finding
such parameters and helps to identify a robust parameterization (Bergström, 1991). Another
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Table 6.18: Model parameterization and performance of different FLEX reservoir composi-
tions (validation: 2010 - 2013).

model parameter model configuration

symbol unit
limit

C1WLS C2WLS C3WLS C4WLS
lower upper

Imax [mm] 0.1 10 10 10 10 10

T0 [◦C] -3 4 1.5 2.3 3.3 4.0

Tm [◦C] -3 1.5 0.6 0.3 0.0 -0.4

kW [mmt−1 ◦C−1] 0.01 150 1.3 1.3 1.3 1.2

kF [t−1] 5 · 10−4 1 5.0 · 10−4 5.0 · 10−4 0.34 0.51

kS [t−1] 1 · 10−5 0.5 7.8 · 10−3 0.5 · 10−5 2.8 · 10−3 1.0 · 10−5

NSEcal [−] −∞ 1 0.76 0.76 0.75 0.73

NSEval [−] −∞ 1 0.62 0.62 0.65 0.64

NSE∆ [−] - - 0.14 0.15 0.10 0.09

NSEsnow,cal [−] −∞ 1 0.47 0.45 0.44 0.42

NSEsnow,val [−] −∞ 1 0.31 0.32 0.27 0.28

NSEsnow,∆ [−] - - 0.16 0.13 0.17 0.14

source of uncertainty is the fact that the calibration on different time sequences can result
in unequal “optimal” parameter sets (Gan and Biftu, 1996). In this context, Beven (1993) pro-
posed the concept of equifinality where acceptable model predictions can be obtained by
different model structures or parameter sets. Achieving good model simulations with vary-
ing values of one parameter can even occur if the simulations are sensitive to changes of
this parameter. This can be an indication for compensating this parameter sensitivity by
other parameters (Seibert, 1997). The range of obtained parameter values can be used as
an indicator for parameter uncertainty. The parameter value may not spread over a wide
range for similar good model simulations. Else, it is a hint for a poorly defined parameter
(Seibert, 1997). The parameter set obtained by the calibration might be unique and should be
independent of the calibration time sequences (Gan et al., 1997; Gupta et al., 1999). However,
completely different meteorological conditions can result in poor discharge simulations for
validation (Seibert, 1997). Another drawback of many actual catchment models is the inca-
pability of reproducing low and high flow conditions with a single parameter set (Wagener,
2003). Schoups et al. (2008) discovered better model fits if temporally variable parameter sets
are used. The parameters can be obtained by different seasons or by certain events.

Here, the analysis of the model parameterization does not include all parameters. The se-
lection of parameters refers to those which describe important hydrological processes and
occur in all chosen model configurations. Snowmelt periods are identified as particular weak
points of the previous model representation. For this reason, special attention is paid to the
parameters that describe the snow processes. Table 6.18 shows the parameterization and
performance (NSE) of different FLEX reservoir compositions which are presented in detail
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in Subsection 5.1.2. The model parameterization of the four different rain gauge configura-
tions is compared in Table 6.19. The model evaluation of this input data analysis is discussed
in Section 6.1. The predictive reliability of discharge for the snowmelt period is shown with
quantile-quantile (Q−Q) plots for both model set-ups in Figure 6.14.

Table 6.19: Model parameterization and performance of different rain gauge configurations
(validation: 2010 - 2012).

model parameter model configuration

symbol unit
limit

IVd II I∗ III
lower upper

Imax [mm] 0.1 10 10 10 10 10

T0 [◦C] -3 4 4.0 4.0 4.0 2.2

Tm [◦C] -3 1.5 -0.5 -0.4 -0.5 0.6

kW [mmt−1 ◦C−1] 0.01 150 1.2 1.2 1.2 1.6

kF [t−1] 5 · 10−4 1 0.46 0.49 0.83 5.0 · 10−4

kS [t−1] 1 · 10−5 0.5 3.0 · 10−5 3.0 · 10−5 2.6 · 10−3 4.0 · 10−5

kR [t−1] 0.05 6 0.06 0.06 0.06 0.05

NSEtot,cal [−] −∞ 1 0.71 0.73 0.71 0.77

NSEtot,val [−] −∞ 1 0.58 0.64 0.63 0.73

NSEtot,∆ [−] - - 0.13 0.09 0.08 0.05

NSEsnow,cal [−] −∞ 1 0.42 0.43 0.40 0.45

NSEsnow,val [−] −∞ 1 0.06 0.19 0.16 0.41

NSEsnow,∆ [−] - - 0.36 0.24 0.25 0.04

Both model approaches have in common that the results have a significant drop in per-
formance between calibration and validation for almost all model runs. This performance
degradation can be observed in all reservoir compositions, regardless of their complexity
and consequently the number of parameters (degrees of freedom). In relation to the model
performance of the total time series, the more complex model structures even show slightly
more robust model results (Table 6.18). Looking at the model performance for configurations
with different numbers of rain gauge stations as input data, it can be seen that the more sta-
tions are available, the more robust model results are obtained (Table 6.19). In fact, during
the snowmelt period, configuration III is the only model run that provides acceptable and
robust predictions. These results indicate that rather a low quality of the input data due to,
e.g., an insufficient spatial distribution of rain gauge stations than a model overparameter-
ization or inadequate model structure is responsible for the drop in performance. A closer
look at the parameter values shows that the model calibrates some parameters towards the
value limits. For example, the parameter Imax always assumes the upper limit for all ana-
lyzed model runs. Imax is the maximum interception threshold of the overfall reservoir SI .
This reservoir controls which portion of precipitation evaporates and/or is available for the
subsequent runoff processes after exceeding the threshold of Imax. The increase of the upper
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(a) reservoir (calibration) (b) rain gauge (calibration)

(c) reservoir (validation) (d) rain gauge (validation)

Figure 6.14: Q-Q plots for assessing the predictive reliability of discharge for the snowmelt
period of different reservoir and rain gauge configurations.

parameter limit for Imax is not meaningful, since physically unrealistically high interception
values are then accepted before runoff formation occurs. A sensitivity analysis with reduced
or increased upper limits for Imax consequently leads to implausible reservoir characteris-
tics. Other parameters, such as Tm, T0 and kF have partly clear varying values between the
different model runs. The two reservoir compositions C1WLS and C2WLS achieve almost
the same model performance despite considerably different values for the parameters Tm,
T0 and kS (Table 6.18).

The Q-Q plots (Figure 6.14) show that the model calibrates the low to middle discharges
(< 10mmd−1) very similarly regardless of the configuration. However, it can be observed
for the middle to higher discharges during the snowmelt period (> 10mmd−1) that in some
configurations the discharge is continuously under- or overestimated for calibration. The
highest discharges are better represented for the model configurations with overestimated
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discharges in the middle range. This can be seen even more clearly for the total time series,
which is not presented graphically here. The Q-Q plots of the validation show a quite simi-
lar behavior for all model configurations. The discharges are slightly underestimated up to
middle conditions, before a slight overestimation occurs. Here, contrary to the calibration
results, all configurations behave identically. The storage coefficient kF , which describes the
fast outflow processes, is calibrated towards the lower limit in all three model runs C1WLS ,
C2WLS and III , in which the middle to high discharges are continuously underestimated.
For all other model runs, the calibration value of kF is in a same reasonable range. How-
ever, it cannot be entirely excluded that the overestimation of middle discharges is caused
by compensation effects of the fast outflow components in order to match the highest peak
flows better. Rain gauge configuration III clearly outperforms all other listed model runs
regarding the model performance and robustness. Configuration III provides the most
plausible values for the snow parameters. This model set-up is the only one that achieves
satisfactory performance results for the snowmelt period. For the remaining rain gauge con-
figurations, the values of T0 correspond to the upper limit and Tm always has negative
values (Table 6.19). The approach with different reservoir configurations does not show sig-
nificant differences in predictive capability. This is confirmed by the relatively equal and
narrow value range of the NSE. On the other hand, the approach with different rain gauge
stations clearly emphasizes the configuration III , which is also reflected by the values of
NSE for validation.

In the first part of this analysis, individual runs of different model set-ups and resulting sin-
gle parameter sets are compared. In a second step, the model results and the parameteriza-
tion from simulated precipitation time series using RM as well as incorporated greater-equal
constraints are analyzed. The evaluation is shown in Figure 6.15 using the two parameters
snowmelt temperature Tm and the storage coefficient ks. For this purpose, all 100 model
runs of the three RM input configurations are sorted according to the calibration model
performance (NSEcal). Then, the groups of identical NSEcal are sorted using the NSE for
validation. NSE∆ describes the gap between the model performance of calibration and
validation. For the calculation of the standard deviation S, only combinations are taken
into account that have at least four equal model runs based on the sorting of NSE. For in-
stance, this means for configurationRM>700 that there are only three combinations where at
least four model runs achieve an identical model performance. The number of equal model
runs within the combinations varies between four and nine. Figure 6.15 shows that con-
figuration RM has the most combinations of the same model performance (11). The more
rain gauge stations are simulated with greater-equal constraints, the less equal combinations
are identifiable. The 11 combinations of RM include 59 of 100 model runs. In compari-
son, RM>1000 contains 30 and RM>700 only 17 model runs. For the configurations with
greater-equal constraints, this is especially due to the clearly higher variation of the model
performance (NSE) during calibration (see also Table 6.11). As already discussed in previ-
ous evaluations, the configurationRM generates the highest absolute values ofNSE during
calibration, but also the greatest gaps of NSE between calibration and validation. Despite
the more robust model results based on NSE∆ when using greater-equal constraints, a larger
deviation of the parameters Tm and ks can be seen for equal and similar model performances
of the configurations RM>1000 and RM>700. The parameter uncertainty for identical model
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(a) Tm (calibration) (b) ks (calibration)

(c) Tm (gap) (d) ks (gap)

Figure 6.15: Analysis of model parameter uncertainty using S and NSE based on model
results generated by RM simulations.

performances ofRM is greater for Tm than for ks. The parameter uncertainty of Tm increases
with increasing values of NSE∆. The variation of ks is much smaller except for one outlier.
Compared to the defined parameter limits (Table 6.19), the obtained parameter values, espe-
cially for ks, are within an acceptable range for all three configurations of RM . The analysis
of the model parameterization shows that some parameters always tend to their value lim-
its. Other parameters indicate this behavior depending on the model set-up, which is an
indication that model structure or complexity as well as the input configuration have a con-
siderable influence on a sound parameterization. Nevertheless, test model runs for finding
reasonable parameter ranges clearly show that adjusted or wider parameter limits do not
support the calibration of optimal parameter sets. Continuously filled reservoirs are gener-
ated over the total modeling period. Consequently, the adjustment of the parameter limits
can only be done to a very limited extent in order to obtain physically plausible reservoir
characteristics. As mentioned in the discussion at the beginning of this chapter, a problem of
model parameterization can be that a single parameter set is not able to represent all runoff
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conditions sufficiently. In addition, in this case a lumped model approach must describe the
hydrological processes of a highly variable topography. This fact is repeatedly underlined
by the fact that the configuration with the most comprehensive horizontal and vertical dis-
tribution of rain gauge stations provides the best model results. The quality of the input
data seems to have a stronger influence on a sound parametrization than the complexity of
model structure. The evaluation of the model runs with simulated precipitation time series
shows that identical model performances with unequal optimum parameter sets are possi-
ble. This already mentioned concept of equifinality has to be considered if a parameter set
should be transferred to other time periods or hydrological conditions.

6.4 Summary

In this chapter, the issue of data and model adequacy is addressed from different perspec-
tives. A comprehensive analysis of the input data and their different effects on the model
behavior is the beginning of a successful modeling approach. In a second step, the effects of
data processing are investigated and new simulation techniques are applied to better quan-
tify the uncertainties of input data. Finally, different time-dependent and event-based mod-
eling approaches are used to evaluate their impact on model performance and robustness.
Model parameterization is also part of this assessment.

One of the main driving forces in hydrological modeling is precipitation as data input. The
areal precipitation is often derived from point measurements using interpolation methods.
Catchments with a high variability of precipitation due to a very heterogeneous topography
have large uncertainties with respect to the estimation of areal precipitation. Sparse or un-
balanced rain gauge networks therefore affect the model performance and robustness. The
model shows that its parameterization is able to compensate for varying input information
from very different station configurations. Almost identical and good model performances
are achieved during the calibration, which can not be confirmed at all during the validation.
In this context, good and reliable model results can only be obtained with configuration
III , which has the most and spatially best-distributed rain gauge stations. The investiga-
tions with modified temperature time series show that a positive effect on the snowmelt peri-
ods, which have been insufficiently represented by the model so far, is not clearly apparent.
However, the influence of increased temperature values during individual snow-affected
events can be significant, as shown by the evaluation of the peak flows. This can also have
an improvement in terms of robustness of the model performance for the total time period.
Nevertheless, the results also support previous findings that substantial deficiencies in the
representation of certain flow conditions can occur due to the uniformly assumed input
data and the lumped model structure. Evaluations of possible discrepancies in the input
data, such as a time offset or overestimated values for PE, indicate only negligible effects
on model performance for this study.

The effect of different applied spatial interpolation and simulation methods is relatively
small. Nevertheless, it can be emphasized that the results obtained with RM simulations
perform slightly better in terms of absolute performance level and robustness. The consid-
eration of an external drift, such as a smoothed DEM is also useful when using kriging
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methods. The shortcomings of unreliable model predictions and the significant underesti-
mation of peak flows during validation generally remain for all approaches. RM simulations
with incorporated greater-equal constraints are an appropriate tool to account for measure-
ment uncertainties at higher located rain gauge stations. The variability of real precipitation
fields is described by many realizations using RM as well as incorporated greater-equal con-
straints. By evaluating model runs with many different precipitation fields, an order of
magnitude can be given for the resulting uncertainties of this input variable.

The various approaches to analyze time-dependent model performance focus on time se-
ries length, hydrological seasons, and different modeling intervals. Here, the use of time
series of different lengths shows that it is not so much the length, but rather the occurrence
of unusual hydrological events (e.g., flood events) within the modeling period that affects
performance. This suggests that the selection of the study period must include sufficiently
varied discharge conditions to activate all model parameters. Modeling using the hydrolog-
ical year does not yield benefits. The summer half-years outperform the winter half-years in
seasonal modeling. Nevertheless, the parameter set of the winter half-year obviously pro-
vides more information for validation of the hydrological counterpart. The values of the
NSE imply that the respective seasonal modeling can provide slightly better model perfor-
mance compared to the modeling of the total period. This may also indicate that a single
parameter set is not able to represent all (seasonal) discharge conditions equally well. The
final time-dependent performance analysis also shows that the use of modeling intervals of
different lengths or orders does not provide a general determination of the best modeling
approach. However, it can be stated that the swapped time series produces the better and
more robust results. This is especially observed in the prediction of peak flows, where the
higher flood events already occur during the corresponding calibration.

The event-based model evaluation using unusual events is used to investigate whether a
reduced data series is sufficient to provide good and robust predictions. This approach can
help to considerably reduce computational times for data series with very high temporal
resolution or length. The results show that this method is not suitable to adequately repre-
sent snowmelt processes. In addition to discharge, a second temperature-dependent criterion
should be considered to determine unusual events. Thus, the model needs only about 20 %

of the data series to derive a robust parameterization for the other discharge conditions.

Finally, the model parameterization is considered. The investigation of different model con-
figurations show that best parameter sets are variable. Thus, the same model performance
can be achieved, regardless of the complexity of model structure or the configuration of in-
put data. However, the evaluation of snow parameters also suggests that configurations
with unbalanced rain gauge distributions and unstable model results tend to assume physi-
cally implausible values or those at the parameter limits. Even the evaluation with the same
model complexity and rain gauge configuration, but using many simulated precipitation
time series, indicates that identical model performances are possible with unequal optimal
parameter sets. Another influencing factor in determining the optimal parameter set could
also be the selected time period of the calibration. This problem of equifinality should be
taken into account when discussing the transferability of the “optimal” parameter set to
other modeling purposes.



7 Model Reliability - Applicability for Flood
Prediction

Discussions about climate change, increasingly frequent weather anomalies and extreme
flood events around the world intensify the need for reliable predictions. In this context,
hydrological models can and have to play an important part in the future. Nevertheless, the
use of models to predict extreme flood events is always an extrapolation into the unknown
of a hydrological system, since no trustworthy data for the verification of such conditions
exist (Bergström, 1991; Seibert, 2003). Even if a model fits more or less perfect to observations
in the calibration and the validation process there is no guarantee that the model predictions
to future or till then unknown conditions perform on the same reliable level (Oreskes et al.,
1994). Thus, hydrological models are just useful for decision making if they provide reliable
predictions for conditions where no observation data are available (Klemeš, 1986).

The last chapter attempts to clarify whether and to what extent the results of the investi-
gations in this study allow a statement on the model reliability and applicability for flood
prediction. In the previous chapters, numerous approaches and results relating to model
and process complexity as well as data and model adequacy are presented and discussed.
The flow chart in Figure 7.1 summarizes all the implemented evaluations of this study. The
upper part of the diagram refers to the results of Chapter 5 and the lower part to Chapter 6.
The boxes and arrows in bold represent the configurations which lead to considerable im-
provements of the model results in terms of model complexity, performance and robustness
during the stepwise investigation. The dashed boxes in the lower part of the diagram sep-
arate the three main topics “input data analysis”, “effects of data processing” and “model
performance analysis”. The dashed arrows refer to analyses that are not directly related
to the stepwise adaptation of the data and model set-up. The upper part of the flow chart
illustrates that in terms of computing time, model performance and robustness, the model
configuration FLEX C4WLS proves to be the most suitable basic set-up for further investi-
gations on flood predictions. An external spatially distributed modeling of snow processes
(ESM ) with subsequent spatial aggregation as a liquid water time series as model input
seems necessary for an accurate consideration of the variable topography. The previous
evaluations also show that an hourly resolution is required to represent the discharge dy-
namics, especially in the case of fast-reacting peak flows and in transition between snow and
rain. A disaggregation of daily data for the spatial compression of the observation network
(III) achieves significant improvements. Considerations regarding the time dependency
from the block of the model performance analysis are also taken up again.
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Figure 7.1: Flow chart of the performed model evaluations.
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7.1 Annual Evaluation of Model Performance

A review of the results of the investigation on time dependency shows that neither the
length of the time series nor a modeling of the hydrological seasons have any significant
(improving) influence on the model results. The evaluation of different modeling intervals
also demonstrates that longer calibration periods do not necessarily lead to a more robust
and better model parameterization. The cases of inter- or extrapolation during calibration
are obviously more relevant here. The swapped time series with the two highest peaks in
calibration tend to show better results. In this context, it should be clarified whether, in
addition to the highest peak flows, other unusual events or phases also affect the model per-
formance and robustness in the individual years. For this reason, the model performance
is first evaluated annually using 100 model runs with simulated precipitation time series
(RM ). This should help to identify potential weak parts of the time series. In the following,
some hydrological characteristics of the time series are first summarized for a better inter-
pretation of the results. The quality control of discharge data (Subsection 4.2.3) provides,
among other things, indications of discrepancies at the gauge Unterjettenberg for the year
2008. In comparison to the measured values at the upstream and downstream gauges, the
observed discharge volume at the gauge Unterjettenberg seems to be lower than those actu-
ally occurring. In the evaluation of the different modeling intervals (Subsection 6.3.1), the
configuration (MI2) also tends to perform best, where the year 2008 is neither considered
in the calibration nor in the validation. The four highest peak flows occur during the years
2005, 2006, 2010 and 2013. By far the largest measured event is that in 2013. The wettest
and driest years in terms of annual mean daily observed discharge (Qobs,m) are 2009 with
4.3mmd−1 and 2011 with 2.7mmd−1, respectively.

Figure 7.2 presents the annual model performance based on the four measures RMSE,
PBIAS, NSE and KGEm. The vertical line indicates the start of the validation period. The
highest values for RMSE and thus the largest standard deviation of the model prediction
error are found in the four years with the highest peak flows. Especially for the year 2013, in
which the peak flow is very clearly underestimated in the predictions, theRMSE shows that
it tends to give more weight to higher discharges and the usually associated higher absolute
errors. 2008 has the smallest value for the RMSE. The PBIAS is in a satisfactory range
of ±15 % on average for the individual years. The PBIAS indicates a model bias towards
overestimation for the two years with the highest peak flows for calibration. The year 2008
again suggests very good results. A clear model bias towards underestimation is observed
for the two years with the flood events and the year 2012 during validation. The year 2011
stands out with an opposite model bias in validation, which may be related to the fact that
it is the driest year of the investigation period. The years 2008 and 2011 reach an unsatis-
factory level for the NSE with values close to 0.5. 2010 is the only year during validation
that achieves an acceptable performance level of 0.74 for the NSE. At a supposedly high
performance level, the values for the KGEm show a significantly lower sensitivity between
the different years. The weakest years are 2006 and 2012. Based on the KGEm, 2008 is
also one of the best performing years. The annual evaluation shows that a very different
classification of good and weak years can be made depending on the selected performance
measure.
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Figure 7.2: Annual analysis of different performance measures based on model results using
RM simulations (rain gauge configuration II).

The following Tables 7.1 and 7.2 present the set-up and model performance for different
configurations in which the years 2008, 2011 and 2013 are disregarded for calibration or
validation. These three years are selected according to the subsequent criteria. The year 2013
is chosen because of the highest flood event ever measured there. In addition, a potentially
weak year should always be part of the calibration and one of the validation period. Here,
the NSE is the determining performance measure for the selection of the supposedly weak
years 2008 and 2011 (Figure 7.2), as this is an objective function in the optimization process of
FLEX. The two performance measures PBIAS and KGEm are calculated subsequently and
are therefore not directly part of the model optimization. The modified modeling intervals
are marked with an asterisk (MI∗). The model performance of the associated reference
configurations are given in Table 6.16.

The mean daily observed discharge (Qobs,m) is relatively equal for the calibration and the
validation period for all configurations. Only the configurations MI∗11, MI∗2 and MI∗4 show
considerably lower values during validation. The mean daily modeled discharge (Qmod,m)
matches very well during calibration. The representation of Qmod,m in validation is also
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Table 7.1: Configuration overview and description for the different modeling intervals with
disregarded years (MI∗).

ID description
modeling interval disregarded no. of years

cal. val. years cal. val.

MI1 basic configuration ’05 - ’09 ’10 - ’13 5 4

MI∗11 ’13 5 3

MI∗12 ’08 4 4

MI∗13 ’08, ’11 4 3

MI∗2 swapped calibration ’09 - ’13 ’04 - ’07 ’11 4 4

MI∗3 short calibration ’05 - ’08 ’09 - ’13 ’13 4 4

MI∗4 long calibration ’05 - ’10 ’11 - ’13 ’13 6 2

good and usually tends to be marginally underestimated. The configurations MI∗2 and MI∗4
overestimate Qmod,m in validation. The RMSE generally indicates a higher model predic-
tion error for validation. In those configurations where the year 2013 is disregarded during
validation, the RMSE is lower than in calibration. This shows that apparently a single very
unusual flood event that is not well represented by the model is sufficient to noticeably af-
fect the model prediction error of the total validation period. The PBIAS suggests good
model results for all configurations. The model bias tends to be slightly overestimated dur-
ing calibration and slightly underestimated during validation. With a model bias toward
overestimation, the two configurations MI∗2 and MI∗4 again show deviating behavior dur-
ing validation. According to the NSE, the modified basic configurations MI∗11−3 and MI∗2
are improved in all modeling sequences in which individual weak years are not taken into
account. The NSE increases from 0.69 to 0.73 for the configuration MI∗11 without 2013 in
validation. It should be noted that the NSE even improves to 0.74 for configuration MI∗12,
although 2013 is included in the validation. The configurationsMI∗12,MI∗13 andMI∗2 , which
do not take 2008 into account, seem to provide the best model results based on theNSE. The
configurations MI∗3 and MI∗4 show a small drop in performance for calibration. Configura-
tion MI∗3 includes 2008 in addition to a shortened calibration phase. There is an additional
significant decline in performance during validation ofMI∗4 , which only considers the years
2010 and 2011. In particular, 2011 is already identified as a potentially weak year in the per-
formance analysis of the RM simulations due to the NSE and PBIAS (Figure 7.2). The
variation of KGEm is relatively small for all configurations. MI∗2 has to be emphasized
here, since it shows the strongest drop in performance during validation. This is probably
due to the overestimated discharge volume, which is also indicated by the values of Qmod,m
and the PBIAS.

An annual performance evaluation is also carried out for the configurations MI∗12 and MI∗2
based on the previous findings. MI∗12 shows the most promising model performance of
the modified basic configurations, and for MI∗2 the possible overestimation of the discharge
volume during validation is examined more detailed. MI1 and MI2 are the corresponding
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Table 7.2: Performance analysis of different modeling intervals with disregarded years (rain
gauge configuration III).

Qobs,m Qmod,m RMSE PBIAS NSE KGEm

M
I 1 cal. 3.7 3.7 1.4 -1.6 0.78 0.98

val. 3.6 3.5 1.7 2.1 0.69 0.97

M
I
∗ 1
1 cal. 3.7 3.7 1.4 -1.6 0.78 0.98

val. 3.4 3.3 1.3 1.7 0.73 0.98

M
I
∗ 1
2 cal. 3.8 3.8 1.4 0.0 0.81 0.99

val. 3.6 3.4 1.6 4.4 0.74 0.97

M
I
∗ 1
3 cal. 3.8 3.8 1.4 0.0 0.81 0.99

val. 3.8 3.6 1.7 7.1 0.73 0.96

M
I
∗ 2 cal. 4.0 4.0 1.4 0.1 0.80 0.99

val. 3.5 3.9 1.5 -10.1 0.75 0.93

M
I
∗ 3 cal. 3.5 3.5 1.4 -1.1 0.76 0.98

val. 3.6 3.4 1.3 7.1 0.75 0.96

M
I
∗ 4 cal. 3.6 3.8 1.5 -3.5 0.76 0.98

val. 3.3 3.5 1.3 -3.7 0.63 0.96

reference configurations. Figure 7.3 shows the annual performance values of the PBIAS
and the NSE. Table 7.3 above the figure assigns the counters to the corresponding years of
the chronological and swapped time series which are presented in the same figure. The val-
ues of PBIAS show that those of configuration MI∗12 are always greater than those of MI1.
The configurations of MI2 and MI∗2 have the reverse behavior. Nevertheless, the deviations
are relatively small for both configuration pairs. The configurations MI1 and MI∗12 show
an alternating behavior of over- and underestimation in a range of ±10 % for the individual
years during calibration as well as validation. Although configuration MI∗2 shows values
close to zero for all years of the calibration disregarding 2011, the course of values during
validation is almost identical to configuration MI2. Both tend to overestimate the discharge
during all years of validation. The performance curve of the NSE is only almost identical
for the configurations MI2 and MI∗2 . In contrast, the NSE differs more clearly for the other
configurations MI1 and MI∗12. Here, configuration MI∗12 outperforms MI1 in almost every
year. Only for the year 2012, configuration MI∗12 has a clear drop in performance compared
to the reference configuration. Despite this clear outlier in configuration MI∗12, the NSE
improves by 0.05 for the total validation period (Table 7.2).

The annual evaluation of the 100 model runs at the beginning of this section already shows
that the classification of good and weak years is difficult depending on the selected perfor-
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Table 7.3: Counter assignment to the respective years for Table 7.3.
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Figure 7.3: Annual performance analysis for different modeling intervals with disregarded
years (rain gauge configuration III).

mance measure. Nevertheless, individual conspicuous years are selected, which are disre-
garded for modeling. The evaluation of the model performance related to the total calibra-
tion or validation period shows that disregarding potential weak years does not necessarily
lead to improved model results. It can also be seen that improvements are not equally in-
dicated by all performance measures. The way how years with particularly high discharge
events are taken into account also influences the model results. Disregarding the year 2013
usually leads to an improvement. It also has a positive effect on the model results if the high-
est discharge events occur during calibration (case of interpolation). Here, it has a greater
impact than the additional disregard of a single year. MI2 and MI∗2 have almost the same
performance level. Disregarding 2011 rather causes a slightly stronger model bias toward
overestimation. This may be related to the fact that 2011 is the driest discharge year of the
investigation period and thus lacks crucial information on these runoff conditions. The year
2008 has a negative impact on the model performance. Possible measurement errors have
already been identified in the profound data quality analysis in advance. This is confirmed
by the annual evaluation and the disregard of this year. Furthermore, the evaluation of the
modeled hydrograph shows that the model has massive problems to represent the snowmelt
period correctly. Some years just show anomalies for certain performance measures, such
as PBIAS and KGEm, where a correct representation of the water balance has a greater
weight. The years 2006 and 2012 are to be mentioned here. On the one hand, 2012 is among
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the wettest years and 2006 contains one of the highest peak flows. On the other hand, both
years also show above-average SWE. In particular, 2012 stands out due to a very high dis-
charge volume, especially in the first half of the year, and very many small peak flows. The
year 2007 is always characterized by very good model performances for all measures. In
terms of Qobs,m, the year ranks in the middle range of the investigation period. The year has
an extremely low snow winter and three mean flood events. It is again seen that especially
the snow processes are a problem for the lumped model structure. Years with some higher
flood events and a regular alternation of low and high flow conditions also seem to contain
more sufficient information to activate all model parameters.

The evaluation shows that individual weak years can have a significant impact on the total
performance of the model. An annual evaluation can be used to identify such periods. It
also helps to analyze the hydrological conditions of single years and the resulting model
behavior in more detail. Subsequently, it has to be decided whether these periods can be
disregarded for a stabilization of the model parameterization. For example, this may be the
case if there are obvious errors in the input data. However, this should be done carefully,
so that periods are not left out, whose poor model representation can be traced back to
other causes such as unusual hydrological conditions or structural model errors. The model
analysis (e.g., MI1 and MI∗11) shows that individual performance measures, such as the
RMSE or NSE, react very sensitive to single extreme events. The interpretation of the
model bias using the PBIAS must also be done carefully. The annual evaluation ofMI1 and
MI∗12 indicates a clearly alternating behavior of under- and overestimation for calibration
and validation. The PBIAS of the total calibration and validation period suggests another
conclusion. Here, the performance would be classified much better because of compensation
effects.

7.2 Most Reliable Model Set-up for Flood Prediction

The flow chart at the beginning of Chapter 7 already highlights the most promising ap-
proaches made in the previous investigations. These improvements found so far have not
yet been combined and finally evaluated in one model set-up. An external snow model
(ESM ) and the concept of a liquid water time series as model input are only applied at daily
resolution for rain gauge configuration I . The analyses show that an hourly resolution is
required to catch the flow dynamics in such study areas with heterogeneous topography. A
sufficiently large quantity of well spatially distributed rain gauge stations also has a signifi-
cant positive effect on model performance and robustness. Here, the disaggregation of daily
precipitation data to an hourly resolution is an appropriate tool to further densify sparse
observation networks. Rain gauge configuration III outperforms the other configurations
for both daily and hourly resolution. Therefore, configuration III with an hourly liquid wa-
ter time series is analyzed as the most promising model set-up for reliable flood predictions
in the first part of this section. Configuration IV with 24 stations in hourly resolution is
used as reference. In the second part of this section, the model reliability is evaluated using
observed and modeled flow duration curves.
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Table 7.4: Hourly performance analysis of different rain gauge and liquid water configura-
tions.

RMSE PBIAS NSE KGEm

cal. val. cal. val. cal. val. cal. val.

to
ta

l IIIh 0.07 0.07 -5.2 -1.0 0.74 0.76 0.97 0.99
IVh,ESM 0.06 0.06 -2.5 14.8 0.79 0.78 0.99 0.88
IIIh,ESM 0.05 0.05 -2.6 3.1 0.82 0.87 0.99 0.99

sn
ow

IIIh 0.09 0.08 8.6 13.3 0.39 0.33 0.91 0.86
IVh,ESM 0.08 0.08 14.9 33.9 0.59 0.28 0.87 0.41
IIIh,ESM 0.07 0.05 13.7 20.5 0.62 0.65 0.89 0.78

no
sn

ow IIIh 0.05 0.06 -13.3 -7.6 0.80 0.81 0.91 0.96
IVh,ESM 0.05 0.06 -12.8 6.0 0.82 0.85 0.91 0.98
IIIh,ESM 0.05 0.05 -12.3 -5.0 0.85 0.89 0.92 0.99

pe
ak

IIIh 0.10 0.16 -21.7 6.5 0.88 0.90 0.76 0.98
IVh,ESM 0.11 0.20 -17.3 21.1 0.86 0.84 0.85 0.78
IIIh,ESM 0.11 0.10 -24.4 2.9 0.88 0.96 0.70 1.00

Table 7.4 first summarizes the evaluation of performance measures for different hourly
model results. The values of RMSE are very similar for the respective configurations dur-
ing calibration and validation. The evaluation of the no snow period results in slightly better
values than for the snowmelt period. Except for the configuration IIIh,ESM , the RSME is
significantly higher for the peak flows during validation. The interpretation of the results us-
ing the PBIAS is not quite so clear for the different investigation periods as well as config-
urations. The model tends to slightly overestimate the volume for all configurations during
calibration. The PBIAS of the total calibration as well as validation period is close to zero
for the configurations IIIh and IIIh,ESM . A clear tendency for one or the other is not so ob-
vious, since the total period is well represented by both approaches. Configuration IVh,ESM
provides the worst results here, especially in terms of robustness. It has the most significant
model bias toward underestimation in all periods during validation. PBIASsnow presents
a volume underestimation by the model for all configurations, both in calibration and vali-
dation. This is even more distinct for the two approaches with ESM , although theoretically
more precipitation volume is available to the model in this period. Here, the results of the
snowmelt period would suggest the FLEX configuration with an internal snow model. In con-
trast, PBIASno snow shows a volume overestimation for almost all modeling sequences. The
no snow period has better results for configuration IIIh,ESM . The PBIASpeak displays the al-
ready frequently observed trend of overestimation during calibration and underestimation
during validation. The PBIAS of validated peak flows also tends to the configuration with
an ESM . The NSE provides robust results at a high performance level for all investigated
time periods, except for the snowmelt period. Only configuration IIIh,ESM shows significant
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Table 7.5: Mean areal precipitation depth (hMAP ) and peak error (EP ) for different hourly
rain gauge and liquid water configurations.

unit
IIIh IVh,ESM IIIh,ESM

cal. val. cal. val. cal. val.

hMAP,tot [mm] 7947 6012 8150 5675 7959 6026

hMAP,snow [mm] 1852 1161 2752 1652 2719 1832

hMAP,no snow [mm] 6095 4851 5397 4023 5240 4194

hMAP,peak [mm] 514 467 498 413 514 470

EP [-] 0.85 0.85 0.75 0.66 0.89 0.90

improvements and acceptable results for snowmelt. The two approaches with an ESM gen-
erally produce better results. The rain gauge configuration has a greater influence on model
performance when representing peak flows. The configurations III outperform the config-
uration IVh,ESM regardless of the consideration of the snow process. Based on the NSE,
configuration IIIh,ESM performs best. The KGEm basically reflects a similar trend, where
configurations III , especially with an ESM , outperform configuration IVh,ESM . Here, the
values of KGEm suggest an almost perfect model fit for the total time period. Only for the
peak flows does configuration IVh,ESM perform better in calibration, whereas configurations
III then again show very good model performances in validation.

Table 7.5 lists the mean areal precipitation depth (hMAP ) as well as the peak error (EP )
for different hourly rain gauge configurations. Configurations IIIh and IIIh,ESM result in
about 135mm to 160mm more precipitation in the system over the total modeling period of
nine years. Nevertheless, the configurations III with more rain gauge stations do not nec-
essarily lead to more hMAP for all periods and modeling sequences. Configuration IVh,ESM
always assumes higher hMAP in calibration for the model approaches with ESM , except
for the peak flows. The precipitation depth for the total as well as the snowmelt period is
also the highest during calibration for all model set-ups. In contrast, both configurations
with a denser gauging network produce considerably higher hMAP for the total validation
period. The greatest differences occur in the way snow processes are accounted for. There is
a clear shift of hMAP toward the snowmelt period for both approaches with an ESM . hMAP

is almost identical for configurations IIIh and IIIh,ESM during the peak events. These two
configurations have significantly more precipitation volume than configuration IVh,ESM ,
especially during validation. The comparison of precipitation depth (hMAP ) as input and
volume error of the model (PBIAS) indicate that not only the absolute available precipita-
tion volume is important, but also its temporal distribution and thus the storage and release
of the individual model reservoirs. This is particularly evident during the snowmelt period,
where despite significantly more hMAP available, there is a larger volume underestimation
in the approaches with ESM . Nevertheless, the NSE shows a clear model stabilization
during validation for configuration IIIh,ESM . The results of EP clearly argue for both con-
figurations IIIh and IIIh,ESM in terms of performance level and robustness. Configuration
IVh,ESM has a significant drop in performance here. IIIh,ESM shows the best model perfor-
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mance at a very good level. The evaluation in Subsection 6.1.1 already provides the findings
that denser and spatially well-distributed rain gauge stations improve the model results.
This is also confirmed when comparing configurations IIIh,ESM and IVh,ESM at hourly
resolution. The application of an ESM also leads to improvements. However, the station
configuration appears to have the slightly greater influence on model performance than the
ESM when modeling peak flows. In conclusion, configuration IIIh,ESM suggests the best
and most robust model output.
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Figure 7.4: Annual performance analysis for different rain gauge and liquid water configura-
tions.

The annual evaluation of model performance has already identified individual years with
potentially poor influence on the model results in the previous Section 7.1. Figure 7.4 now
shows the annual evaluation for different rain gauge and liquid water configurations in
hourly resolution. The purpose of this presentation (PBIAS and NSE) is to determine
if there are any changes in annual model performance based on temporal resolution (see
also Figure 7.2 and 7.3). Configuration IIId is used as reference at daily resolution. The
comparison of configurations IIId and IIIh shows a consistent behavior for the PBIAS
during validation and for the NSE during calibration. The respective other modeling se-
quence does not give such an uniform result. The largest difference is found by analyzing
the PBIAS in 2007. Here, IIIh has the most significant model error toward volume overes-
timation for all configurations considered. The annual values of the PBIAS have a similar
course for all four configurations during validation. All approaches with rain gauge config-
uration III overestimate the volume for 2011. All other years show a model error toward
underestimation. The result is a mean value that is close to zero over all years. This trend is
consistent with the annual evaluations on daily basis. Configuration IVh underestimates the
discharge volume in all validated years, in some cases quite significantly. The evaluation of
the NSE demonstrates that the configurations with ESM tend to perform better. IIIh,ESM
outperforms all others in both calibration and validation. The two configurations IIId and
IIIh achieve roughly the same results. The comparison based on theNSE indicates that the
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year 2008 is almost equally poorly represented regardless of temporal resolution and rain
gauge configuration. This further confirms the assumption that the discharge data for this
year are erroneous. The model performance for 2011 is supposedly weak when modeled
on a daily resolution. The performance improves based on NSE for all hourly model ap-
proaches in 2011. Particularly significant improvements are seen in both PBIAS and NSE
for the two versions with ESM . The year 2011 has the lowest annual mean daily observed
discharge (Qobs,m) and has below mean SWE in the first half of the year. The annual hy-
drograph is characterized by several small events. The highest peak flow already occurs in
mid-January. This may indicate that there are many short-term alternating conditions of
snow and rain during the year. A higher temporal resolution and a spatially distributed
consideration of snow accumulation and melt seems to have a positive effect on the model
output here. The year 2012 shows a decrease in performance for both PBIAS and NSE,
especially for configuration IVh. However, no clear relationship to the rain gauge configu-
ration or the consideration of the snow processes can be established here.
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Figure 7.5: Flow duration curve of different modeling approaches for the calibration period
2005 - 2009.
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Flow duration curves are already presented in Chapter 2 as a possible tool to display the
general match of the discharge characteristics or rather frequencies over a selected time
period. The used data pairs are not compared time-dependent but according to their non-
exceedance probability. The introduction of the data availability in Chapter 3 already shows
that the investigation period is representative for the long-term discharge characteristics
at the gauge Unterjettenberg. Even higher flood events have been observed within the se-
lected period, which is useful in terms of examining predictive reliability for extreme events.
This section concludes with an evaluation of model reliability using observed and modeled
flow duration curves. The objective is to verify the extent to which the duration of non-
exceedance of observed and modeled discharge match over the calibration or the validation
period for different modeling approaches.
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Figure 7.6: Flow duration curve of different modeling approaches for the validation period
2010 - 2013.

The results are presented in Figure 7.5 for calibration and Figure 7.6 for validation. The
solid black line defines the mean duration of non-exceedance of the observed discharge
data for the respective modeling period. The red dashed line corresponds to the modeled
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counterpart. The gray and red shaded area represents the related range of lower and up-
per hull curve. The enlarged section of the figure corresponds to the upper 5 % duration
of non-exceedance. The NSE is given as a quantitative measure for the different model
approaches. The order of the selected modeling approaches starts with the comparison of
distributed (HBV) and lumped (FLEX) model structure with rain gauge configuration Id at
daily resolution. The third subfigure represents the most promising rain gauge configura-
tion IIId. The results for configuration IIIh,ESM with ESM in hourly resolution are shown
in the fourth subfigure. Both calibration and validation have increasing model performances
according to the preceding order of modeling approaches. The value of NSE is on a very
good level for all four configurations during calibration. The performance differences are
more obvious during validation. There is a clear jump between distributed and lumped
model structure as well as configuration IIId and IIIh,ESM .

A closer look at the flow duration curve during calibration suggests that the approach using
the HBV model (Id) is most likely to underestimate the discharge conditions. Configuration
Id (FLEX) tends to overestimate discharge the most, especially at the higher discharge con-
ditions. Configuration IIId appears to have the most promising model results up to about
80 % probability of non-exceedance, also taking the range of the hull curve into account.
Configuration IIIh,ESM best represents the very high discharges. The statistics of the mean
discharge over the calibration period are presented very similarly to IIId. However, it can be
seen that configuration IIIh,ESM is a bit more prone to overestimating discharge in some ar-
eas of the upper boundary. The four selected model approaches have basically the same ten-
dency during validation as during calibration. The problem with underestimated discharges
becomes even more pronounced when using the HBV model. The first three configurations
indicate the same weaknesses toward underestimation for the highest peak discharges. Here,
configuration IIIh,ESM clearly outperforms all others, which is also confirmed by the very
good value of NSE. The evaluation of the flow duration curve shows that configuration
IIIh,ESM is the only one to provide very good results for both level of model performance
and robustness. Based on the comparison of observed and modeled discharge statistics, it
can be summarized that IIIh,ESM is the most reliable modeling approach for the prediction
of extreme events.

7.3 Development of Snowmelt Periods and Peak Flows

The last section of this study again addresses the two identified weaknesses of the rainfall-
runoff modeling for the selected study area: snowmelt periods and peak flows. Finally, for the
two discharge characteristics, the development is shown that results from different model-
ing approaches, which are influenced by data availability, quality and processing, as well as
model and process complexity.

Figure 7.7 shows the predictive reliability of the two discharge conditions for three modeling
approaches with hourly resolution. The three configurations IIIh, IVh,ESM and IIIh,ESM
are used for this evaluation. The two left subfigures represent the results for calibration
and validation during the snowmelt period. For the calibration, the Q-Q plot reproduces a
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(a) snowmelt (calibration) (b) peak flow (calibration)

(c) snowmelt (validation) (d) peak flow (validation)

Figure 7.7: Q-Q plots for assessing the predictive reliability of hourly model results with and
without ESM .

relatively good and similar curve for all three configurations. All three configurations have
in common that the medium-high discharges are more clearly overestimated. The range
of low discharges is slightly underestimated by all three approaches. Configuration IIIh
generally tends to overestimate discharge the most. For the high discharge, it is configura-
tion IVh,ESM . The predictive reliability of validation differs significantly more between the
three configurations for the snowmelt period. It can also be observed that the maximum dis-
charges are considerably lower than during the calibration phase. For configuration IIIh,
the predicted distribution at the low discharges still agrees very well with the observations.
At the higher discharges, however, a continuously increasing overestimation is observed.
Configuration IVh,ESM shows an opposing trend toward underestimation. Then, the high
discharge values again agree much better with the observed distribution. The distribution
of configuration IIIh,ESM generally is much closer to the 1:1 line. Thus, IIIh,ESM provides
the most reliable results for considering snowmelt periods. The general observation that low
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discharges tend to be underestimated and high discharges tend to be overestimated may
indicate that the release of water from the snow reservoir is initially too delayed and then
over-represented by the model as it progresses.

Q-Q plots of the peak flows are shown in the two subfigures on the right (Figure 7.7). The pre-
dictive reliability of all three configurations agrees well with observations at low discharges,
both in calibration and validation. Configuration IIIh again continuously overestimates the
discharge distribution during calibration. The other configurations underestimate the distri-
bution above medium discharge conditions. This fact is much more pronounced for configu-
ration IVh,ESM . Looking at the prediction uncertainty during validation, configuration IIIh
now has an opposing behavior toward underestimation. Configuration IVh,ESM shows the
greatest predictive uncertainty for peak flows during validation. Configuration IIIh,ESM
has the best agreement with the observed discharge distribution. The analysis of predic-
tive uncertainty for the two discharge conditions snowmelt and peak flows concludes that
configuration IIIh,ESM generates the most reliable model predictions. Particularly, when
considering peak flows, it is apparent that a combination of rain gauge configuration and
consideration of snow processes lead to significant improvements. Here, a simple graphical
representation by Q-Q plots is a suitable tool to compare the predictive reliability of different
modeling approaches.
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Figure 7.8: Peak flow development using different FLEX model configurations.
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To conclude this study, the major developments for modeling peak flows are shown in Fig-
ure 7.8 and Table 7.6. The three main improving points concerning spatially well-distributed
rain gauge stations, application of a spatially distributed external snow model (ESM ) and
higher temporal resolution are compared here. In addition, the predictive uncertainty of
the individual model approaches is evaluated. In contrast to the previous evaluation with
Q-Q plots, this interpretation is time-dependent and takes the uncertainty bands into ac-
count. In Table 7.6, two additional measures (COV ER and SHARPNESS) are presented
for the evaluation of the predictive uncertainty. An extensive mathematical derivation of
these quantities is omitted here. Further information about the methodology and the mea-
sures are provided in various publications (Gneiting et al., 2007; Pinson et al., 2007; Thordarson
et al., 2012; Del Giudice et al., 2015). The SHARPNESS describes the mean distance between
the lower and upper uncertainty bands. The measure COV ER indicates the percentage of
validation data included within the 95 % uncertainty bands.

Table 7.6: Evaluation of predictive reliability with additional performance measures for the
peak flows during validation.

unit Id IIId IIIh IIIh,ESM

SHARPNESS [mmd−1] 11.0 8.6 10.0 7.8

COV ER [%] 93 88 95 98

Figure 7.8 compares four different FLEX model configurations. Hourly model results are
aggregated to daily resolution. In addition to the graphical comparison, the two perfor-
mance measuresNSE and EP are also given for the individual model runs. Configurations
Id and IIId are characterized by different rain gauge configurations as daily input data for
the model. Although Configuration IIId shows significant improvements for the total pe-
riod and other discharge conditions in the evaluations of this study so far, this is not as
evident for the peak flows on daily resolution. In particular, peak flows during calibration
are more underestimated by IIId. Even though the two main peaks of IIId are represented
worse, the NSE indicates slightly better results. The better modeled conditions prior to
the flood event are one reason for this. The results of the validation do not show clear dif-
ferences, which is also confirmed by the NSE and EP . The uncertainty bands of IIId are
narrower than Id, but do not cover all observations. This is also verified for validation by the
two performance measures in Table 7.6. Configuration IIIh has clearly better model results.
The NSE indicates a robust performance on a very good level. Although the peak flows are
still underestimated during the validation, they are already much better represented, which
can also be seen for the value of EP . The SHARPNESS is slightly worse compared to the
approach at daily resolution. On the other Hand, the performance measure COV ER im-
proves. In all three model approaches considered so far, it is noticeable that after the main
peak of the last validated event (2013), a second smaller peak is always assumed by the model.
A considerable part of the discharge volume is released with a delay during this flood event.
Obviously, this is due to incorrect assumptions of snow accumulation and melt processes,
since this second peak disappears in the last model approach with ESM (IIIh,ESM ). The
spatial and temporal resolution seems to be of great influence, as stable snow packs do not
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usually form over the entire elevation profile of the catchment at this time of the year. Here,
the limitations of a lumped model structure are that it can only assume snow or rain at one
time step, which is solved by applying an ESM . In addition, both peak flows during valida-
tion are very well represented. Regarding theEP , a further improvement is achieved, which
is also reflected in robust model outputs. The two performance measures SHARPNESS
and COV ER show the best results in terms of predictive reliability.

The successive adjustment of the model set-up develops the representation of the peak flows
very successfully. Both daily configurations (Id and IIId) do not suggest robust and reliable
model outputs at the beginning. The underestimated peaks during validation are absolutely
unacceptable for the prediction of flood events. The model calculations in hourly resolu-
tion then result in significant improvements. Del Giudice et al. (2015) considers predictions
to be reliable if COV ER is greater-equal 95 %. This is valid for configurations IIIh and
IIIh,ESM within this evaluation. With respect to all applied evaluation criteria, configura-
tion IIIh,ESM provides the most reliable predictions.

7.4 Summary

The objective of the last chapter of this study is to make a statement about the predictive
reliability of different modeling approaches, especially for flood events. Figure 7.1 provides
an overview of all relevant data processing and model choice approaches performed in this
study. Based on the most promising findings so far, evaluations of model performance,
model reliability, and the development of inadequate represented discharge conditions have
now been performed.

An annual analysis of model performance helps identifying unusual phases of the investi-
gation time period that may be caused by extreme hydrological conditions or data inade-
quacies. For this purpose, simulation runs generated by RM are used, since a single model
run can be erroneous due to other reasons. One of the main findings of this evaluation is
that the identification of supposedly weak years can vary considerably. Depending on the
performance measure, an assessment can even be completely contrary. Using this proce-
dure, conspicuous years are identified and disregarded during calibration and validation in
various model approaches. The evaluation shows that disregarded individual years does
not necessarily improve model performance. A major influence is whether the highest peak
flows are considered during calibration (interpolation) or validation (extrapolation). Thus,
disregarding individual years must be done very carefully in order not to lose important
unusual hydrological information. A poorer model performance can also reveal structural
model deficiencies of reproducing certain hydrological conditions. Nevertheless, this ap-
proach is also able to identify years whose poor model representation is apparently due to
erroneous input data. Furthermore, the analysis shows that some measures (e.g., PBIAS)
suggest a good model performance over the total period. However, this is only due to com-
pensating effects of alternating underestimated and overestimated years, which would be
considered as insufficient in a year-by-year evaluation.
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In a next step, the improvements found are combined in one model configuration. The ob-
jective is to determine the most reliable model set-up for flood prediction. Here, a model
approach with hourly resolution and a spatially distributed external calculation of snow
processes is appropriate. Furthermore, the spatial densification of the hourly observation
network with daily rain gauge stations yields a significant benefit. These modifications
of the model set-up provide a considerably increase in model performance and finally the
required robustness for reliable predictions. The annual evaluation of model performance,
also realized on an hourly basis, using the PBIAS and theNSE show the basically same po-
tential deficiencies within the selected investigation period. The poor performance of 2008
is also confirmed by the NSE for all hourly configurations. For 2011, clear improvements
can be achieved with the application of an ESM in hourly resolution. Based on the NSE,
it can be summarized that the approaches with ESM have better performances. Especially
for the representation of snowmelt periods and peak flows, acceptable to very good results are
achieved with configuration IIIh,ESM . This indicates that a high spatial and temporal reso-
lution of input data and model set-up is required to represent certain hydrological processes
that are rapidly changing both spatially and temporally. Finally, the general agreement of
the discharge characteristics is evaluated using time-independent flow duration curves. The
selected order of modeling approaches has an increasing model performance for both cali-
bration and validation. Configuration IIIh,ESM is the only one to provide very good results
in terms of performance level as well as robustness. Due to the very good agreement of the
non-exceedance probability, it is consequently the most reliable modeling approach for the
prediction of extreme events.

The previous evaluations show that the model calculations on a daily time step can lead to
an inadequate representation of the catchment dynamics. Daily values account for a uni-
form distribution of input data (e.g., precipitation and temperature) over the day which can
be problematic if the hydrological response of the catchment takes considerably less than
a day. Such an influence of temporal resolution or consideration of snow processes is also
a source of uncertainty. In addition to a required high temporal resolution, the combina-
tion of sufficiently dense rain gauge networks and the consideration of spatially distributed
snow processes is beneficial. Thus, an increase in predictive reliability can be achieved. The
reasons for the mostly underestimated peak flows are complex. One reason is certainly er-
roneous observations for the events with high precipitation intensities, since precipitation
measurements can be very uncertain due to spatial variations. This can cause a lack of
precipitation volume in the input data. In some cases, there is enough modeled discharge
volume available, which is simply distributed incorrectly in time. Insufficient model struc-
tures or process parameterizations can be responsible for this. The end of this chapter shows
the extent to which the interaction of uncertainty sources and measures to reduce them can
yield robust and reliable approaches for modeling flood events. The successive adjustment
of the model set-up shows very clearly how the evaluation of the peak flows has developed
from absolutely unacceptable to very good and robust.
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Efficient flood protection and the corresponding flood risk management are becoming in-
creasingly important due to more frequent and severe flood events. For this purpose, pow-
erful and reliable hydrological models are required, which are adapted to the on-site situa-
tion and serve as a prediction tool for planners and decision-makers. Previous studies show
that hydrological models are often not yet at a satisfactory and reliable level for operational
use.

The motivation for this work arose from a project dealing with emergency planning and
evacuation measures for urban areas and transport infrastructure during extreme flood
events. The selected study area has a very heterogeneous and alpine topography. The
task of hydrology was to find a robust and reliable modeling approach to generate previ-
ously unobserved hydrometeorological extreme events. Recent developments in hydrolog-
ical modeling show that the trend is towards increasingly complex model structures with
higher data and parameter demand. The accompanying, frequently one-sided, focus on im-
proving the performance of calibration results and often inadequate model validation, can
pretend to provide the necessary conditions for reliable predictions. This thesis focuses not
only on improving absolute model performance by applying various model and process
modifications. Rather, the objective was to identify and understand where and why certain
modeling approaches fail in order to subsequently find solutions for improvements. The
common evaluation of model performance is based on the modeled output data. This often
involves an attempt to correct the discrepancies between observed and modeled data by
adjusting the model structure and parameters. This approach is based on the widespread
assumption that the error variance is basically caused by the modeled data and that the mea-
sured values are assumed to be error-free. For this reason, this thesis pays special attention
to the input data and its processing before it is passed to the used models.

At the beginning of the investigations, two major shortcomings of the applied model con-
figurations could be identified. On the one hand, all configurations, regardless of their com-
plexity, have considerable deficits in generating robust model results. This is noticeable by
a significant gap in model performance between calibration and validation. On the other
hand, clear problems in the correct reproduction of certain discharge conditions are evident.
The water balance of alpine catchments is strongly influenced by the storage and release
of water in the form of snow and ice. From a hydrological perspective, snowmelt is also of
particular interest, as it has a high flood potential in spring with overlying intense and long-
lasting precipitation. Initial modeling attempts yielded unacceptable results for the defined
snowmelt period. Based on the task and related objectives, the representation of the highest
peak flows is crucial. Many modeling approaches have shown that the peak flows are signif-
icantly underestimated during calibration and especially during validation. The peak flows
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are often not even captured by the uncertainty bands during validation. Such model results
are not a basis for reliable predictions of previously unobserved flood events.

In order to systematically identify the potential causes for the aforementioned deficits, a
comprehensive quality control of the input data is first performed. Geostatistical interpola-
tion methods of different complexity are compared. A new conditional simulation method
(random mixing (RM )) for the spatial interpolation of precipitation fields is applied. This
stochastic approach allows for a stronger consideration of measurement uncertainties by
incorporating linear inequality (greater-equal) constraints. The data analysis shows that re-
gardless of the used rain gauge configuration and the applied interpolation method, there
is a significant deficit in the water balance. However, using the configuration with the most
and most spatially uniformly distributed rain gauge stations already leads to a reduction
of the water deficit, especially in the winter half-years. The consideration of topography as
additional information in the kriging methods has an additional positive effect on the wa-
ter balance. Another aspect is that accumulated spatial precipitation amounts are usually
not affected by the small-scale variability of topography. Therefore, a smoothed digital el-
evation model (DEM ) is used to correct for the implausible replication of the underlying
small-scale terrain structure in the precipitation fields. Precipitation fields simulated using
RM reduce the water deficit by more than half in this study. The water balance can be al-
most balanced if greater-equal constraints are considered for the simulations at the highest
located rain gauge stations. Thus, RM incorporating greater-equal constraints is suitable to
better describe measurement uncertainties, especially under difficult topographic boundary
conditions.

The application of the two different model structures demonstrates that a comparatively
simple lumped model approach (FLEX) is not fundamentally inferior to the more complex
spatially distributed structure of the HBV model. A major advantage of the FLEX approach
is the fairly straightforward adaptation of the model structure and application to different
temporal resolutions. The relatively fast computation times of the model are another benefit.
Thus, model runs at daily resolution with hundreds of simulated precipitation time series
can be performed with a reasonable expenditure of time. Nevertheless, regardless of the
model complexity, robust results could not be obtained in many modeling attempts. This
is an indication that this problem is not primarily caused by the model structure or param-
eterization. The same is valid for the insufficiently represented discharge conditions. For
the modeling of snowmelt periods, the spatially distributed consideration of the input data
precipitation and temperature in the HBV model proves to be more advantageous. From
this finding, the concept of liquid water time series is developed. For this purpose, the flexi-
bility of the FLEX structure is used by disabling the snow process in the model. Instead, an
external snow model (ESM ) is developed using the degree-day method, which calculates
the accumulation and melting processes in a spatially distributed grid. This allows simulta-
neous consideration of different aggregate states of precipitation and snow processes within
the catchment. The spatially distributed water availability from different sources is then
aggregated to a spatially lumped value per time step. The resulting liquid water time series
can then be passed to the FLEX model. This method yields promising results on a daily ba-
sis, although the model performance for snowmelt is better but still unsatisfactory. It can be
concluded that for a very heterogeneous and alpine topography, a lumped representation
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of snow processes alone is not sufficient. The combination of a lumped basic framework for
modeling the main runoff components and the individual outsourcing of complex processes
proves to be a suitable tool here.

Due to its relatively fast computation times, the FLEX model is very well suited for modeling
with higher temporal resolution. Therefore, the influence of the temporal resolution is also
investigated in detail within the scope of this work. The existing rain gauge stations with
hourly data are very sparse, which is why the observation network is additionally densified
with disaggregated data from daily stations. The daily data are disaggregated using the
nearest-neighbor method, which allows to determine the hourly precipitation distribution
at each daily station. The evaluated hourly model runs indicate more robust results for all
applied rain gauge configurations. This suggests that in smaller catchments a high temporal
resolution is required to represent the fast changing discharge conditions sufficiently well.
The additional spatial densification of the observation network by disaggregated daily data
thus has a positive effect on model performance and robustness.

Another aspect of this thesis is a comprehensive, often neglected, assessment of data and
model adequacy to gain a better understanding of their implications for hydrological mod-
eling. A larger number of performance measures than usual are first applied and evaluated.
On the one hand, it should not be ignored that performance measures can be very sensitive
to single, inadequately modeled (flood) events. On the other hand, it may be that system-
atic overestimation or underestimation of discharge conditions by the model has hardly any
negative effect on the performance level of the individual quality measures. It has been
shown that evaluations based only on one performance measure (e.g., NSE) can lead to
wrong decisions concerning the quality and reliability of model output. Other measures,
such as the modified Kling-Gupta efficiency (KGEm), have rather low sensitivity between
different model approaches in this study. This can also be difficult to interpret in the eval-
uation and lead to wrong decisions. Measures such as PBIAS, which describe model bias
in terms of volume overestimation or underestimation, also require some caution. An ap-
parently very good volume balance over the total modeling period may be caused only by
compensation effects of individual clearly diverging and relatively poor results, as shown
by annual evaluations of model performance.

The time-dependent model evaluation concludes that the length of the time series, hydro-
logical seasons, or different modeling intervals are only of minor relevance. Here, suffi-
ciently frequent and as varying as possible hydrological conditions, such as severe flood
events and extended low water phases, are rather decisive. These should occur as equally
as possible during the selected calibration and validation period. Seasonal modeling using
hydrological summer and winter half-years shows that the parameter sets obtained provide
different information for the hydrological counterpart. This is an example of the difficulty
in determining an unique parameter set describing different flow conditions equally well.
Thus, one approach could be to optimize different parameter sets separately based on dif-
ferent discharge conditions. The different parameter sets can then be applied according to
the prevailing conditions. Such an approach is demonstrated using time series with reduced
data input determined by unusual hydrometeorological events. Except for snow processes,
robust parameterization for specific discharge conditions can be achieved with a significant
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reduction in data use and computation time. The problem of equifinality is also addressed
in the analysis of model parameterization. Here, the precipitation time series simulated us-
ing RM prove to be suitable for obtaining a sufficient number of model runs with identical
model performance in both calibration and validation. Thus, it can be shown that the opti-
mal parameter sets can vary. This finding can impede a clear decision on the best modeling
approach and must also be considered with respect to the transferability of parameters to
other modeling purposes.

Finally, the most promising modeling approaches are assembled from all these individual
findings. Based on this stepwise adjustment of the modeling approaches, a conclusion on
the predictive reliability is drawn. The three most important modifications that contribute
to a substantially improved development in both snowmelt and peak flows are: Model cal-
culations in hourly resolution, a spatial densification of the observation network with dis-
aggregated daily data, and an external spatially distributed snow model (ESM ). The main
sources of uncertainty can be attributed to these three influencing factors in this study. The
importance of high-quality spatial and temporal data collection as a basis for reliable model-
ing approaches becomes very apparent. It is a misleading assumption that increasingly com-
plex model structures can replace the use of real data. The most accurate model is useless if
it is not supplied and verified with correct data. The time-independent evaluation with flow
duration curves confirms that the configuration which includes the aforementioned improv-
ing modifications best reproduces the statistical discharge characteristics. The evaluation of
the highest peak flows, taking into account the uncertainties, also shows that only in this
way a reliable modeling approach is achieved, which appears to be applicable for flood pre-
dictions. Nevertheless, predictions of previously unobserved extreme flood events must be
interpreted cautiously and applied in decision-making, as they represent an extrapolation
into the unknown with increasing uncertainties.

This work shows the adequacy of different approaches to data processing and model choice
to progress from initially unacceptable to very good and robust model results. Based on
many different evaluations, it can be seen which factors have to be considered in hydrolog-
ical modeling and which seem to play a rather minor role. The aim of this thesis is to inves-
tigate the catchment characteristics, the required data base, the process and model behavior
very comprehensively. Therefore, all investigations were performed on a single catchment.
The results of this study should support a more targeted approach to data processing and
model choice in similar applications. For further uses, the proposed solutions and their va-
lidity are to be investigated on a larger number of catchments with different characteristics
as well as climatic conditions.
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