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ABBREVIATIONS

Abbreviations

• ambient CO2 aCO2

• elevated CO2 eCO2

• nitrogen N

• carbon C

• glycine Gly

• serine Ser

• glutamate Glu

• glutamine Gln

• citrate Cit

• malate Mal

• fumarate Fum

• malate & fumarate MF

• glucose Glc

• fructose Frc

• sucrose Suc

• photosynthesis PS

• photorespiration PR

• Hydroxypyruvate-reductase HPR

• Glutamine-Synthetase GS

• Nitrate-reductase NR

• Glutamin-oxoglutarat-amino-Transferase GOGAT

• sucrose-phosphate-synthase SPS

• glutamate glyoxylate amino-transferase GGT

• serine glyoxylate amino-transferase SGT
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ZUSAMMENFASSUNG

Zusammenfassung

Im Zuge dieser Arbeit wurde die Interaktion von erhöhter CO2 (eCO2) Konzen-

tration und Stickstoff Metabolismus untersucht. Für die Modellpflanze Ara-

bidopsis thaliana wurde zunächst nachgewiesen, dass eine mindestens sechswöchige

Exposition gegenüber eCO2 zu einem Rückgang der Photosyntheseleistung führt,

der für andere Spezies beschrieben war und als Akklimatisierung der Photosyn-

these bezeichnet wird. Deren Ursache ist unbekannt; es wird aber vermutet,

dass eine Beziehung zum Stickstoffmetabolismus besteht. Der erste Teil der

vorliegenden Arbeit stellt die Hypothese auf, dass dieser Zusammenhang über

den Stoffwechselweg der Photorespiration gebildet wird. Ausgang der Photores-

piration ist die Oxigenierung von Ribulosebisphosphat im Calvin-Benson Zyklus,

die unter eCO2 vermindert abläuft. Um der Hypothese nachzugehen, wurden

Metabolitprofile für akklimatisierte und nicht akklimatisierte Pflanzen des Wild-

typs Col-0 und der hpr1-1 Mutante aufgenommen. Die hpr1-1 Mutante weist

einen Defekt im Gen der peroxisomalen Hydroxy-Pyruvat-Reduktase auf und

ist daher nur bedingt in der Lage, im Rahmen der Photorespiration anfallendes

Hydroxy-Pyruvat zu metabolisieren. Die tageszeitlichen Verläufe der Metabolit-

profile und Aktivitäten ausgewählter Enzyme, die im Primärstoffwechsel zentrale

Positionen einnehmen, wurden einer simulationsgestützten Datenanalyse unter-

zogen, um Parameter relevanter Stoffwechselwege zu identifizieren. Dadurch

konnte nachgewiesen werden, dass die verringerte Photorespiration unter eCO2

verantwortlich für die Akklimatisierung ist. PR fungiert als Speicher für assim-

ilierten Stickstoff und liefert Kohlenstoff-Gerüste für dessen de novo Assimi-

lation. In der hpr1-1 Mutante ist der Rückfluss von Kohlenstoffverbindungen

aus dem PR in den Calvin-Benson Zyklus gestört, wodurch es zu einer starken

Akkumulation von Aminosäuren kommt.

Aufbauend auf diese Ergebnisse wurde die Interaktion zwischen PR und N As-

similation weiter untersucht. Ausgangspunkt dieser Untersuchungen war die

Beobachtung, dass im Rahmen der PR frei gesetztes Ammonium mit Nitrat um

die Kohlenstoffquelle für die Aminosäure-Synthese konkurriert und so möglicherweise

die Aktivität der hierfür relevanten Enzyme Glutaminsynthetase (GS) und Glutamin-

Oxoglutarat-Aminotransferase (GOGAT) stimuliert. Für Pflanzen, die mit Ni-

trat als einziger N-Quelle versorgt wurden, konnte nachgewiesen werden, dass

PR den Umsatz im GS/GOGAT Zyklus tatsächlich erhöht. Darüber hinaus

zeigte das Model, dass die Biomassebildung aus Hexosephosephosphaten im

Vergleich zur Nitrat Assimilation unter eCO2 bei reduzierter PR erhöht ist. Dies
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weist nach, dass unter eCO2 in der pflanzlichen Biomasse Stickstoffverbindungen

durch vermehrt assimilierten Kohlenstoff verdünnt werden. Weiterhin zeichnete

sich ab, dass ein gesteigerter Bedarf an Zellenergie für die Verarbeitung der PR-

Zwischenstufen das Wachstum der hpr1-1 Mutante beeinträchtigen könnte.

Um die systembiologischen Modellierungen durchführen zu können, wurde das

Software-Paket paropt entwickelt, das es ermöglicht, Optimierungen von Pa-

rametern von ODE-Systemen schnell und in hoher Qualität durchzuführen. Die

Software wurde in der Programmiersprache C++ geschrieben. Als package für die

Programmierumgebung R ist paropt öffentlich verfügbar, um die Software einem

breiten Publikum in der Biologie zugänglich zu machen und eine verbesserte

Nutzerfreundlichkeit zu erreichen. Besonders hervor zu heben ist, dass der

ODE-Solver und der implementierte Optimierer auf dem neusten Stand sind.

Um dem Anwender zu ermöglichen, das ODE-System in R zu schreiben ohne auf

die Geschwindigkeit von C++ verzichten zu müssen, wurde ein weiteres R package

mit dem Namen ast2ast entwickelt. Diese Software übersetzt einen Teil von R

in C++. Dadurch ist es möglich, ohne Kenntnisse in der Programmiersprache C++

die gesamte Simulation in R durchzuführen, was sehr benutzerfreundlich ist.

3



ABSTRACT

Abstract

This work investigates the interaction of elevated CO2 (eCO2) concentration

and nitrogen metabolism in plants. For the model plant Arabidopsis thaliana,

it was demonstrated that exposure to eCO2 for at least six weeks leads to a

decrease in photosynthetic activity which has been described for other species

and is referred to as acclimation of photosynthesis. The underlying reason

for acclimation is unknown. However, it is supposed that a relationship exists

to nitrogen metabolism. In this study, the hypothesis was investigated that

photorespiration (PR) builds the link between nitrogen metabolism and accli-

mation to eCO2. PR starts with the oxygenation of ribulose bisphosphate in the

Calvin-Benson cycle, and this is decreased at eCO2. To address the hypothesis,

metabolite profiles were recorded for acclimated and non-acclimated plants of

the wild-type Col-0 and the hpr1-1 mutant. This mutant has a defect in the

gene for the peroxisomal hydroxy-pyruvate reductase and is therefore restricted

in the turnover of hydroxy-pyruvate that is produced during PR. The diurnal

courses of the metabolite-profiles and activities of selected enzymes that oc-

cupy central positions in the primary metabolism were used in simulation-based

data analysis to identify parameters of relevant metabolic pathways. This al-

lowed proving that the reduced PR under eCO2 is responsible for acclimation.

PR acts as a store for assimilated nitrogen (N) and provides carbon scaffolds for

its de novo assimilation. In the hpr1-1 mutant, the reflux of carbon compounds

from the PR into the Calvin-Benson cycle is disrupted. This leads to a massive

accumulation of amino acids.

Based on these results the interaction between PR and N assimilation was fur-

ther investigated. It was found that ammonium, released during PR, competes

with nitrate for the carbon scaffolds in amino acid synthesis, and this appears to

stimulate the activity of the enzymes glutamine synthetase (GS) and glutamine-

oxoglutarate aminotransferase (GOGAT), which are most relevant in N fixation.

For plants supplied with nitrate as the sole N source, it was shown that PR in-

creases turnover in the GS/GOGAT cycle. Furthermore, the model showed

that the biomass formation from hexose phosphates was increased compared to

nitrate assimilation under eCO2 at reduced PR. This substantiates that under

eCO2 in plant biomass nitrogen compounds are diluted by additionally assim-

ilated carbon. Furthermore, it was shown that increased demand for cellular

energy in the processing of the PR-intermediates could negatively affect growth

of the hpr1-1 mutant.
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To enable systems biology modelling, the software package, paropt, was de-

veloped, which enables fast and reliable optimization of parameters of ODE

systems. The software was written in the C++ programming language. As a

package for the programming environment R, paropt is available to the scien-

tific community. The ODE solver and the implemented optimizer are state-of-

the-art technology. To enable writing of the ODE-system in R without having

to sacrifice the speed of C++, another R package was developed, called ast2ast.

This software translates a part of R into C++. Thus it is possible to conduct the

entire simulation in R without knowledge of the programming language C++.
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4 Objective and motivation

This study is devoted to investigating several  aspects of  elevated atmospheric CO2

(eCO2) and its interaction with plant central metabolism.

One focus is the acclimation of photosynthesis to eCO2. Currently many theories ex-

ist, attempting to explain this phenomenon (Wong, 1990; Griffin and Seemann, 1996;

Ainsworth  and Rogers,  2007).  However,  a  definite  proof  of  one of  the  proposed

mechanisms is missing. In this study the role of photorespiration (PR) was consid-

ered by comparing photosynthetic acclimation of wild type plants with that of the mu-

tant hpr1-1, which is defective in a late step of the photorespiratory pathway  (Timm

et al., 2008). 

To examine the acclimation of plants to eCO2, the first step was to establish  condi-

tions that lead to diminished photosynthetic activity after a certain time at eCO2.  To

this  end,  gas  exchange was measured over  full  diurnal  cycles following  different

times of exposure to eCO2 and net photosynthesis (PS) was calculated. 

After having established a 46 day interval of exposure to eCO2 as sufficient for accli-

mation, acclimated plants and plants exposed to eCO2 for only 48 h were used for

metabolic profiling over a full diurnal cycle with sampling intervals of 2 h. In addition,

enzymatic  activities  of sucrose-phosphate-synthase  (SPS),  hexokinases  (glucoki-

nase and fructokinase) and hydroxypyruvate-reductase (HPR) were quantified that

were later used for mathematical  modeling of  primary metabolism  (Krämer  et al.,

2022a). 

GC-MS/MS development

For the analysis of the physiological role of photorespiration a method was developed

that allowed quantification of photorespiratory intermediates, glycine (Gly) and serine

(Ser), on a GC-MS/MS device. The method comprised extraction, subsequent drying

of the samples and their derivatisation. Parameters of gas chromatography, e.g., the

heating rate of the column, had to be identified. In addition, a multiple reaction mode

(MRM) method was developed allowing detection of the metabolites within multicom-

ponent peaks with increased sensitivity. 

Software development

After accomplishment of the analytical work, the data set was used in mathematical

simulations.  To this end, an ODE-system was set up, describing sucrose-cycling, a

OBJECTIVE AND MOTIVATION
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simplified  Tri-Carbonic-Acid  (TCA)  cycle,  N assimilation,  and the photorespiratory

pathway. Using this model and the start values of the metabolites, the parameters for

the reactions represented in the model, were optimized in order to obtain  in silico

state trajectories matching the measured time courses. 

For executing these simulations, a software was developed that allows fast and high-

quality optimization of parameters of ODE-systems (Krämer et al., 2021). 

Cross-talk between PR and N-assimilation

Ample evidence has been presented for a link of PR and N-assimilation (Rachmile-

vitch, Cousins and Bloom, 2004; Bloom, 2015). However, there is an ongoing discus-

sion on how eCO2, which reduces the rate of PR,  affects N-assimilation (Andrews et

al., 2020; Bloom, Kasemsap and Rubio-Asensio, 2020). Thus, the consequences of

reduced or constrained flux through the PR pathway on N-metabolism cannot easily

be inferred. For a systematic study of the interaction of eCO2  and nitrogen (N) assim-

ilation, wildtype and hpr1-1 mutant plants were analyzed that grew at either ambient

CO2 (aCO2) or eCO2 with nitrate as sole N source. Samples were taken over a full di-

urnal cycle, and metabolic data was  obtained including the compounds glutamate

(Glu) and glutamine (Gln). Moreover, the vmax values of the three enzymes HPR, ni-

trate reductase (NR) and glutamine-synthetase (GS) were recorded. Using this data

in simulations, fluxes for PR and N assimilation  could be calculated and analyzed

(Krämer et al., 2022b). 

Beyond the cross-talk between PR and N-assimilation the question was addressed

why hpr1-1 plants suffer at aCO2.  The mutant  hpr1-1 is one of the few mutants af-

fected in the PR pathway that is viable at aCO2 concentrations. However, results of

metabolite analysis from the literature (Timm et al., 2008)  and own data contrasted

with  the  observed  dwarfed  and  chlorotic  phenotype  of  the  mutant  (J.  Li  et  al.,

2019) at aCO2. In this study several mechanism were proposed, such as high cell en-

ergy  costs  for  NH4
+ re-assimilation,  which  could  explain  the  mutant  phenotype

(Krämer et al., 2022b). 

OBJECTIVE AND MOTIVATION
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5 Theoretical background

Climate change

In the course of climate change the CO2  concentration in the atmosphere drastically

increases (Fig. 1) (Siegenthaler and Oeschger, 1978; Szulejko et al., 2017). This al-

teration in CO2 levels will cause a rise in sea levels (Titus and Narayanan, 1996) and

a drastic increase in temperature  (Syukuro and T. Wetherald, 1974; Syukuro and

Richard  T.,  1980) (https://github.com/Konrad1991/climatechange).  Rising  tempera-

tures affect plants in several ways. For instance, the number of collars and cumula-

tive leaf  area in  corn is  increased by higher  temperatures  (Hatfield and Prueger,

2015). Moreover, an enhanced biomass production was observed  (Tungate  et al.,

2007), and Slot and Kitajima (2015), showed that higher temperatures are accompa-

nied by increased respiration rates. Increasing CO2 concentrations will  affect ribu-

lose-1,5-bisphosphat-carboxylase/-oxygenase (RUBISCO). This key enzyme of the

Calvin-Benson-cycle catalyzes a carboxylation reaction if CO2 is the substrate. This

results in two molecules of  3-phosphoglycerate. In contrast, if oxygen is used, RU-

BISCO catalyzes oxygenation of ribulose-1,5-bisphosphat, which leads to one mole-

cule of 3-phosphoglycerate and one molecule of 2-phospho-glycolate  (Leegood  et

al., 1995). The altered ratio of CO2 to O2 will decrease the oxygenation- to-carboxyla-

tion  ratio  (Fig.  1)  (Sharkey,  1988).  Plants  have  to  eliminate 2-phospho-glycolate

(2PG) due to its strong toxicity,  and this is accomplished in a metabolic  pathway

called photorespiration (PR). Considering the decreasing oxygenation rate, the input

into PR will decrease in the future. 

THEORETICAL BACKGROUND
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Photorespiration

As can be seen in Fig.  1, the ratio of oxygenation vs. carboxylation is currently ca.

0.2, meaning that  about 20% of the reactions of RUBISCO are using O2  instead of

CO2. Therefore, the flux through PR is the second largest  following PS. Unsurpris-

ingly, almost all mutations in the PR pathway are lethal at aCO2. 

Reactions in the chloroplast

In case RUBISCO uses oxygen instead of CO2 as substrate, one molecule of 2PG is

produced, which has to be processed by the PR pathway to avoid accumulation of a

toxic compound (Leegood et al., 1995). The first step is the conversion of 2PG to gly-

colate by the enzyme phosphoglycolate phosphatase which removes the phosphate

group (Fig. 2). 

Figure  1:  Red:  CO2 concentration  across  the  last  60  years  (https://datahub.io/core/co2-
ppm#resource-co2-ppm_zip,  Download 01.12.2021 11:03).  Blue:  ratio  of  oxygenation and
carboxylation over the last 60 years. Based on the CO2 values and the equation of Sharkey,
1988. 

THEORETICAL BACKGROUND
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Reactions in the peroxisomes

Subsequently,  glycolate  is  transported  from  the  chloroplast  to  the  peroxisomes,

where it is oxidized by the glycolate oxidase to glyoxylate. The electrons are trans-

ferred to O2 forming H2O2. The H2O2 is  disproportionated by the enzyme catalase.

Next, glyoxylate is transaminated forming Gly. The N donor is either Ser or Glu re-

sulting in hydroxy-pyruvate (HyPy) or α-KG, respectively (Fig. 2).

Reactions in the mitochondria

Gly is transported into mitochondria, where two molecules of Gly are converted to

Ser. The first  reaction is catalyzed by the glycine-decarboxylase (GDC) which re-

lease NH4
+ and CO2 as byproducts. Thus, already assimilated C and N are lost dur-

ing PR. During the reactions NAD+ is reduced forming NADH, and the remaining C1-

body  is  transferred  to  5,6,7,8-tetrahydropteroylpolyglutamate  (THF),  producing

N5,N10-methylene-5,6,7,8- tetrahydropteroylpolyglutamate (CH2-THF) (Douce et al.,

2001). CH2-THF and another molecule of Gly are used by the serine-hydroxymethyl-

transferase (SHMT) to produce Ser and recover THF (Fig. 2). 

Back to peroxisomes and chloroplast

The next step is the transport of Ser into the peroxisomes. As already described, Ser

can serve as N donor for glyoxylate amination. This reaction is catalyzed by the en-

zyme serine/glyoxylate aminotransferase (SGT).  The resulting C-skeleton,  hydrox-

ypyruvate (HyPy), is reduced by HPR forming glycerate. Besides that, HyPy can also

be reduced in the cytosol. Therefore, mutants of the peroxisomal HPR are rare ex-

amples of PR pathway mutations which are not lethal at aCO2  (Timm et al., 2008).

The last step of PR is the transport of glycerate into the chloroplast, where it is phos-

phorylated by the glycerate-kinase forming 3-PGA, an intermediate of  the Calvin-

Benson-cycle (Fig. 2). 

Alternative reactions and cell-energy balance

While H2O2, which originates from glycolate oxidation, can be disproportionated by

catalase, it can also react with glyoxylate  yielding formiate and CO2. In addition,  it

can react with HyPy forming glycolate and CO2. Both reactions run non-enzymatically

(Walton and Butt, 1981; Cousins et al., 2008). It is known that ca. 10% of HyPy or

glyoxylate are decarboxylated (Walton and Butt, 1981) Thus, an additional loss of C

is the consequence. The formiate can be used to produce CH2-THF and is therefore

not lost (Wingler et al., 2000; Cousins et al., 2008). In conclusion, the PR pathway re-

THEORETICAL BACKGROUND
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sults in the loss of at least one unit of reduced carbon for two oxygenation reactions.

Furthermore, one ATP is required as substrate for glycerate kinase and another one

for the re-fixation of NH4
+ by GS. In addition to that, the Glutamin-oxoglutarat-amino-

transferase (GOGAT) requires two molecules of reduced ferredoxin for the conver-

sion of Gln and α-KG to two molecules of Glu. The GOGAT reaction is required in or-

der to maintain the flux through the GS/GOGAT cycle. This clearly demonstrates the

high energetic and metabolic costs of PR.

Peterhansel and Maurino, 2011, proposed two possible shortcuts of the PR pathway

taken from bacterial pathways. The first converts glycolate to glycerate via glyoxylate

and tartronate semialdehyde. Within this pathway only one CO2 is released and no

cell-energy is consumed. 

The second pathway is the conversion of glycolate to pyruvate (Pyr) with glyoxylate

and Mal as intermediates. This would result in the release of two molecules of CO2,

and again, no cell-energy would be consumed. Thus, the question arises, why plants

use the more costly and more complex PR pathway. 

THEORETICAL BACKGROUND
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Figure 2
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Nitrogen assimilation

Nitrogen (N) is an important  element in  plant  metabolism, being part  of  essential

compounds such as proteins and DNA  (Heldt and Piechulla, 2015). Therefore, the

assimilation of N is a pivotal metabolic process. 

Uptake of N

The first step in N acquisition is the uptake of either nitrate or ammonium from the

soil.  Despite ammonium assimilation requires less cellular energy, plants rarely use

ammonium (Noguero and Lacombe, 2016) although transporters exist enabling im-

port into root cells. Within the cytosol ammonium can be assimilated or transported

across the tonoplast  into the vacuole  (Ludewig, Neuhäuser and Dynowski, 2007).

The assimilation of NH4
+ is conducted by the isoenzymes glutamine synthetase 1 and

2 (GS1, GS2). In the root GS1 is the dominating activity, whereas in the shoots GS2

is the main isoform. Both isoforms transfer the nitrogen to Glu forming Gln in a cou-

pled reaction of ATP hydrolysis (Masclaux-Daubresse et al., 2010). 

Plants can import NO3
- using two different transport systems. A low affinity system,

which includes, among others, the nitrate transporter (NRT1.2) and a high affinity

system which includes NRT2.1 and NRT2.2  (Tsay et al., 1993, 2007; Noguero and

Lacombe, 2016). These transporters enable symport of NO3
- and H+ ions into the root.

Thus, nitrate acquisition depends on a pH gradient  across the membrane,  estab-

lished  by a  H+-ATPase  that exports  H+ while  dephosphorylating  ATP  (Seyoshi,

Ishikawa and Abdel-latif, 2010). 

N assimilation

Subsequently, NO3
-  can be transported into the vacuole, assimilated, or transported

via the xylem to the source tissues (P. Li  et al., 2008; Lin et al., 2008; He,  Ma and

Zhang, 2016). For NO3
- assimilation, it is reduced to nitrite by the enzyme nitrate re-

ductase. The enzyme requires NAD(P)H as electron donor (Chamizo-Ampudia et al.,

2017). Nitrite is transported into the plastids where it is reduced by nitrite reductase

(NiR) using 3 molecules of NADPH in the roots and 6 molecules of reduced ferre-

doxin in the shoot, respectively (Miller and Cramer, 2005). The product of the reac-

tion is ammonium, which acts as an uncoupling agent of ATP synthesis and must be

processed by the GS/GOGAT cycle (Bittsánszky et al., 2015). Ammonium is incorpo-

rated into Glu by GS forming Gln. This reaction is energetically  unfavorable and,

THEORETICAL BACKGROUND
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therefore, it is coupled to ATP dephosphorylation. In the shoots Gln and  α-KG are

used by GOGAT in the chloroplasts for production of two Glu molecules with reduced

ferredoxin acting as electron donor (Fig. 2) (Sahay et al., 2021). 

Cross-talk between PR and N assimilation

As the photorespiratory pathway is coupled to PS, strong diurnal dynamics can be

observed in the compounds related to PR, such as Gly, Ser and glycerate (Timm et

al., 2021). Because the flux through PR is the second largest observed in plant me-

tabolism, the NH4
+ released by PR by far exceeds that originating from primary N as-

similation  (Bauwe, Hagemann and Fernie, 2010). Additional compounds involved in

the PR pathway as well as primary N assimilation are α-KG and Glu. This illustrates

the interlink between the two pathways. For safely transporting NH4
+  from mitochon-

dria to plastids,  Linka and Weber, 2005,  proposed two alternative shuttles. These

would transport NH4
+ in the form of either Gln or citrulline. 

Due to the high activity of GDC involved in PR, a large amount of ammonium accu-

mulates in mitochondria, which has to be re-fixed by the GS/GOGAT cycle (Fig. 2). In

addition to that, Glu is consumed in the peroxisomes for Gly production. The resulting

α-KG must be transported to the plastids, where it is used in the GOGAT reaction. In-

terestingly, the import of α-KG takes place as an antiport exporting Mal into the cy-

tosol,  while  the export  of  Glu  is  connected  to an  import  of  Mal  into  the plastids

(Renné et al., 2003). Thus, the ratio of GGT to SGT activity is connected to the GS/

GOGAT cycle.

In this study the hpr1-1 mutant was used to study the effect altered PR flux. The mu-

tant shows accumulation of Gly and Ser (Timm et al., 2008) due to the impairment of

the HPR reaction. This in turn affects the ratio of GGT to SGT. The results of the sim-

ulations presented here show that the mutant requires higher GGT activities as the

wildtype Col-0. The byproduct of GGT is α-KG which is transported into the plastids

in exchange of Mal. In the cytosol Mal is oxidized by the cytosolic malate dehydroge-

nase (cMDH) forming NADH and oxaloacetate. NADH can be used by NR for N as-

similation (Rachmilevitch, Cousins and Bloom, 2004). The theory of  Rachmilevitch,

Cousins and Bloom, 2004, indicates that PR activity stimulates NADH production in

the cytosol as it leads to increased export of Mal from the plastids into the cytosol in

exchange with α-KG. 

N assimilation at eCO2

Bloom et al., 2014, showed that eCO2 leads to decreased nitrate assimilation. In con-

trast Andrews et al., 2019, 2020, found evidence that eCO2 does not affect NO3
-  as-

THEORETICAL BACKGROUND
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similation. 

Other effects of eCO2  linked to N assimilation are inhibition of succinate dehydroge-

nase and cytochrome C oxidase and an impairment of nitrite import into the plastids

(Asensio, Rachmilevitch and Bloom, 2015). 

The overall  flux  through PR is  decreased at  eCO2  and this  has  potential  conse-

quences for N assimilation. First of all the amount of α-KG originating from PR is de-

creased. In addition, the transport of Mal into the cytosol is coupled to the import of

α-KG into plastids. Thus, less Mal is available for the cMDH enzyme which results in

a  decreased  NADH/NAD+  ratio  thereby  limiting  NR  (Rachmilevitch,  Cousins  and

Bloom,  2004; Bloom  et al.,  2010). Moreover, the substrate availability for GS and

GOGAT could be disturbed because reduced PR alters the α-KG, Glu and NH4
+ avail-

ability.

NH3 plays  an important  role  in  the  stimulation  of  anapleurotic  reactions  as  it  in-

creases the activity of PEP carboxylase and Pyr kinase (Leegood et al., 1995). Ele-

vated CO2  concentrations reduce the flux into PR. Thus, the turnover of GDC is re-

duced and less NH4
+  is released. This results in a lower flux into the TCA cycle at

eCO2. 

THEORETICAL BACKGROUND
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Acclimation to eCO2

Plants which were transferred from aCO2 to eCO2 initially benefit from the altered en-

vironment. This results in higher net PS rates. However, after a certain time a decline

is observed  by up to 25%. This process is called acclimation to eCO2 (Griffin and

Seemann, 1996; Smith and Dukes, 2013) and is known for a long time. However, a

proven explanation is still lacking.

Proposed theories for the acclimation to eCO2

One theory that could explain the acclimation is the decreased stomatal conductance

at eCO2 (Shi et al., 2021). A higher internal CO2 concentration in the mesophyll would

result in closure of stomata, and as a consequence the transpiration rate would de-

crease and thus the source tissues are sub-optimally supplied with minerals. 

Another explanation is the down regulation of photosynthesis by an accumulation of

carbohydrates (Dabu et al., 2019; Gámez et al., 2020; Kizildeniz et al., 2021). Krapp

et al., 1993, showed that expression of genes involved in PS are down regulated by

the addition of carbohydrates. This implies that the capacity for utilization of carbohy-

drates is too low at eCO2 and thus, the increase in sugar levels would repress genes

encoding  components  of the  PS  machinery  (Drake,  Gonzàlez-Meler  and  Long,

1997). 

In addition, it is discussed that plant PS might be limited by N depletion. One expla-

nation would be that C uptake is faster then N assimilation which would result in in-

creasing C/N ratios (Chen et al., 2005; Bloom, 2010). Additional factors, such as dis-

turbed nitrate assimilation (Bloom et al., 2014), the inhibition of succinate dehydroge-

nase, cytochrome C oxidase or the impaired import of nitrite into plastids at eCO2

(Asensio Rachmilevitch and Bloom, 2015) could cause the increased C/N ratio. 

Another possibility to explain the acclimation to eCO2 would be diminished PR. As al-

ready  described,  this  could  decrease  nitrate  assimilation  by  reducing  the  NADH

amount (Bloom, 2010). Alternatively, the potentially lower NH3 concentration at eCO2

disturbs the anapleurotic reactions into the TCA-cycle and/or the GS/GOGAT cycle. 
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6 Method development 

The aim of  inferring metabolic  processes leading to photosynthetic  acclimation at

eCO2 by means of mathematical modeling required a thorough quantification of me-

tabolite dynamics over diurnal cycles, integrating data from different platforms such

as gas exchange and solute quantification. 

GC-MS/MS method development

For quantifying photorespiratory intermediates (Gly and Ser) and α-KG a gas chro-

matography device was used, which was coupled to two mass selective detectors

(GC-MS/MS). This method is often employed for detection of compounds involved in

plant metabolism (Lisec et al., 2006; Alseekh et al., 2021). But exact quantification of

metabolites is still a challenge.

To improve reliability of metabolite quantification, the first step was improving the ex-

traction of the metabolites from the plant tissue. As a starting point the method de-

scribed by Lisec  et al., 2006, was used. Further steps were needed in order to en-

hance the extraction of carbonic acids. An additional extraction with H2O was imple-

mented similar to the carbonic acid extraction already described by Küstner, Nägele

and Heyer, 2019. Afterwards, the samples were dried and the resulting pellets were

derivatized as described in the literature (Lisec et al., 2006). Subsequently, the me-

tabolites were measured as described in Krämer et al., 2022a. 

In conclusion, the procedure developed within the course of this study has several

improvements compared to previous methods. Regarding the carbonic acids the ex-

traction was drastically improved. Moreover,  the identified parameters for the GC-

MS/MS device allowed sensitive, fast quantification of the compounds Gly, Ser and

α-KG. Beyond that the metabolites could be quantified in an absolute manner, which

is a demanding task using GC-MS/MS. 

Software method development

In order to conduct the simulations of the metabolic networks the software  paropt

was  developed  and  published  as  a  package  for  the  R  programming  language

(Krämer et al., 2021). The R package paropt has several notable properties. First it

uses cutting edge ODE-solvers  (Hindmarsh  et al.,  2005) which  are  fast and yield

highly accurate results. Second, a state of the art particle swarm optimizer is imple-
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mented, which is particular suitable for parameter optimization of ODE-systems and

can  call  the  ODE-solver  using  parallel  instances.  Beyond  paropt  the  R package

ast2ast was developed (Krämer et al., 2022c). This software translates R code into

C++ code. Thus, it is possible to include more safety tests for the ODE-system, as

the input is a R function and not a already compiled C++ function, thereby preventing

more user errors. Moreover, the very error prone process of writing C++ code is not

necessary when using ast2ast. In Appendix A the theoretical background for the soft-

ware is explained. In conclusion, paropt and ast2ast are open-source software which

enables fast and accurate simulations. 
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7 Results and Discussion

Within this study several hypotheses regarding the interaction of PR and N assimila-

tion were investigated in the context of elevated CO2 concentrations.

Acclimation to eCO2

The first attempt was to figure out mechanisms causing photosynthetic acclimation to

eCO2. Therefore, conditions had to be established where plants show diminished net

PS. After 46 days at eCO2 acclimation could be demonstrated as a significant decline

in net PS compared to plants which were kept at eCO2 for 48 h. As can be seen in

Tab. 1  (Krämer  et al., 2022a) and Fig.  3, net PS shows a strong decrease for the

wildtype  Col-0  and  the  mutants aox1a and  hpr1-1.  The  mutant  aox1a  (SALK

084897C) showed almost the same behavior for the metabolic and enzymatic data

as the wildtype, therefore it was not considered in Krämer et al., 2022a.

To figure out which mechanism underlies acclimation to eCO2, metabolic and enzy-

matic data across a full  diurnal  cycle were gathered. Using this data,  simulations

Figure 3: Boxplots showing acclimation of net PS to eCO2. Net PS calculated for a full di-
urnal cycle. Col-0 non-acclimated n = 11, Col-0 acclimated n = 8, hpr1-1 non-acclimated
n = 7, hpr1-1 acclimated n =  12, aox1a non-acclimated n = 10, aox1a acclimated n = 11.
Data for Col-0 and hpr1-1 from Krämer et al., 2022a.
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were conducted employing the model presented in Krämer et al., 2022a. The result-

ing optimized parameters allowed flux analysis of the reactions represented in Fig. 3

of Krämer et al., 2022a. In addition, the obtained data could exclude some of the pro-

posed hypotheses in the literature.

The theory of Shi et al., 2021, stating that a reduced stomatal conductance at eCO2

causes the acclimation, was not supported when analyzing the mineral content of ac-

climated plants. As can be seen in Fig. S1 of  Krämer et al., 2022a, there is no de-

crease in mineral concentration for acclimated plants. In contrast the minerals are dif-

ferently distributed between the conditions. For instance, there is more sulfate but

less phosphate found in acclimated plants. Thus, the supply with minerals is not gen-

erally reduced, which should be the case for a total reduction in xylem flux caused by

reduced stomatal conductance. 

Furthermore, our data contradict the low carbohydrate capacity theory put forward by

Dabu et al., 2019, Gámez et al., 2020 and Kizildeniz et al., 2021. The theory is based

on a comparison of  plants at  aCO2 and eCO2,  respectively,  where the latter  had

higher sugar levels.  For the experimental design used in the current study, where

plants are exposed either long-term or short-term to eCO2, no difference in the levels

of carbohydrates Glc, Frc and Suc between acclimated and non-acclimated wildtype

plants were found (Fig. S2 ). Thus, it is unlikely that carbohydrates are the reason for

acclimation, especially when considering that elevated levels of carbohydrates over a

long time interval are needed to repress expression of gens involved in PS (Krapp et

al., 1993).

In the hpr1-1 mutant the non-acclimated plants showed lower Glc and Frc concentra-

tions (Fig. S2 Krämer et al., 2022a) compared to acclimated mutant plants. The treat-

ment effect was significant when only the hpr1-1 data is considered (Glc: P = 2.56e-

08; Frc: P = 1.42e-08). Notably, the difference in carbohydrate level is too low in or-

der to explain the strong decrease in net PS. It  should be mentioned that  hpr1-1

plants shifted from aCO2 to eCO2 for only a short time have strongly elevated meta-

bolic activity, which is evident from higher levels of respiration (see Table. S1 Krämer

et al., 2022a). Thus, the unusual low sugar levels in these plants may simply indicate

high turnover rates for primary metabolites. 

Furthermore, using only the non-acclimated Col-0 and hpr1-1 plants, significant dif-

ferences were found between the genotypes (Glc: P = 6.84e-05; Frc: P = 5.47e-05).

However, using only the acclimated plants no significant differences between Col-0

and hpr1-1 were detected. Thus, the reduced capacity for carbohydrate use at eCO2
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in the hpr1-1 mutant is either a short-term effect or is a remnant of the condition at

aCO2.

Li et al., 2019, proposed that Glc could be used in the oxidative part of the pentose-

phosphate pathway to generate CO2 which would decrease the flux into PR and thus

alleviate the photorespiratory phenotype. Thus, the reduced Glc and Frc level could

be due to the situation at aCO2  and the mutant requires more then 48 h to refill the

carbohydrate pools. 

An additional theory explaining the acclimation to eCO2 is the depletion of N. Several

mechanism were proposed, which could lead to decreased N levels. The first one

claims that N assimilation is not fast enough to keep up with the increased C uptake

at eCO2 (Chen et al., 2005). This theory cannot be falsified using the quantified data

or the analyzed fluxes. However, the acclimated plants have large amounts of NO3
-.

Thus, at least the uptake of N is not limiting. Bloom et al., 2014 and Asensio, Rach-

milevitch and Bloom, 2015,  showed that eCO2  affects the N assimilation in various

ways, e.g., inhibition of succinate dehdyrogenase or the impaired import of nitrite into

plastids. Notably, also the cytochrome C oxidase is inhibited at eCO2. However, the

data obtained for  the wildtype plants do not  show differences  in dark respiration,

which would be expected, if succinate dehdyrogenase and the cytochrome C oxidase

are inhibited (Tab. S1 Krämer et al., 2022a). 

Nevertheless, a strong decrease in dark respiration was observed for the mutant fol-

lowing acclimation to eCO2. A possible explanation could be reduced PS at eCO2  in

acclimated plants that would also reduce the input into PR, thus resulting in a smaller

GDC flux. As one of the byproducts of GDC is NH4
+, which is known to function as a

stimulator for anapleurotic reactions (Leegood et al., 1995) the flux into the TCA cy-

cle may be reduced in the acclimated plants, thus lowering respiration rates. There-

fore, the reduced respiration in acclimated hpr1-1 plants may not be the cause of ac-

climation, but a consequence of the reduced PS. 

Another explanation for the difference in dark respiration would be that the  hpr1-1

mutant  has  to  metabolize PR intermediates,  which  accumulated  during the light-

phase. Thus, the  nocturnal activity of GDC would increase dark respiration by pro-

ducing CO2. 

Furthermore, Bloom, 2010, suggested that the diminished PR at eCO2  could reduce

the NADH amount in the cytosol thus limiting NR activity. The transport of Mal into

the cytosol is connected to the import of α-KG into plastids. In the cytosol, Mal is oxi-

dized in order to produce NADH. Additionally, Mal is imported into the plastids in ex-

change with Glu. The data obtained for Mal and Fum in (Krämer et al., 2022a) is de-
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picted in Fig. 4. For Mal a significant genotype effect was observed (P = 0.0103). The

hpr1-1 plants show slightly increased values compared to Col-0 (Fig. 4 A). As the in-

formation about the distribution within the cell is lacking, the location of Mal accumu-

lation is not clear. It cannot be excluded that the export of Glu out of plastids was in-

creased in hpr1-1, and this might have alleviated the PR phenotype as more Glu is

available for GGT. However, this would have decreased the Mal pool available for

oxidation in the cytosol to supply NR with NADH. Interestingly, the Fum pool (Fig. 4

B) is increased for acclimated plants. As Fum is a C storage in Arabidopsis thaliana

(Chia et al., 2000) it is an indication that acclimated plants cannot use assimilated

carbon because N is limiting. 

Considering that the theory that PR increases NADH in cytosol suggested by Bloom,

2010, is in conflict with the fact that Mal is not only exported into the cytosol, but also

imported into the plastids due to photorespiratory activity, Krämer et al., 2022a, pro-

posed a different theory where PR acts as N sink for newly assimilated nitrogen.  A

flux analysis  (Krämer  et al.,  2022a) showed that the turnover  of total amino acids

(AA) and the Cit/ α-KG pool is elevated in acclimated plants compared to non-accli-

mated plants. This is even more pronounced in the hpr1-1 mutant. Because the mu-

tant requires more Glu in order to transaminate glyoxylate, the higher turnover makes

sense. In addition, the non-acclimated plants showed higher de novo assimilation of

N.  This demonstrated that N assimilation benefits from PR activity.  Gauthier  et al.,

2010, showed that the C skeletons for N assimilation originate from C assimilated

during the previous day which is stored as Cit. In conclusion, PR regenerates α-KG

(especially in the hpr1-1 mutant) by incorporating N into glyoxylate whereby the as-

similated N is stored in Gly and Ser. Reduced PR leads to a diminished N sink be-

cause the C skeletons for  Gly production are lacking and less α-KG is  recycled,

which is necessary for de novo N assimilation. If PR is reduced over a long time in-

terval, the N assimilation is negatively affected. Eventually, the increasing C/N ratio

leads to the acclimation to eCO2, as organic N compounds become limiting. 
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The alternative oxidase at eCO2

Plants can transfer the electrons stored in NADH to O2 either by the cytochrome

pathway or using  the alternative oxidase (AOX). During electron transfer in the cy-

tochrome pathway a pH gradient is created, which is used to produce ATP. The AOX

pathway bypasses three of the four instances contributing to build-up of the pH gradi-

ent and, thus, substantially reduces the efficiency of ATP synthesis  (Strodtkötter  et

al., 2009). As the flux through GDC is high, it was proposed that AOX helps oxidizing

NADH produced during the decarboxylation of Gly thereby preventing over-reduction

of plastides as PR consumes reducing equivalents produced during PS (Zhang et al.,

2017;  Sunil  et  al.,  2019).  Inhibition  of  AOX leads to reduced PR as reported by

(Zhang  et  al.,  2017).  Initially  the  aox1a  mutant  was considered in  Krämer  et  al.,

2022a, as this mutant is defective in AOX and therefore PR could be impaired. How-

ever, under the conditions used in the study  aox1a  plants showed no differences

compared to Col-0 regarding metabolite and enzymatic data. For the PR intermedi-

Figure 4: Boxplots of carbonic acids malate (A: Mal) and fumarate (B: Fum) (n
= 5). Acclimated = acc. Non-acclimated = non-acc. Begin of light-phase = 0 h.
End of light-phase is 8h. Data from Krämer et al., 2022a.
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ates Gly and Ser (Fig. 5 A) the mutant aox1a showed an only slightly significant in-

crease for Gly (P = 0.0318). The ratio between Ser and Gly (Fig. 5 B) decreased dur-

ing the day as the Gly concentration  was increased in the plants. The lowest ratio

was observed for non-acclimated Col-0 at the end of the light-phase, followed by

aox1a  acclimated and non-acclimated at the end of the light-phase. Therefore, the

contribution of AOX in degrading NADH produced by GDC is marginal at 1000 ppm

CO2. In conclusion, AOX seems to be important only at photorespiratory conditions,

e.g. high light and low CO2 as reported by (Zhang et al., 2017). 

Sunil  et al., 2019, showed that the H2O2 generated by PR is a signal to up-regulate

cyclic electron flow or AOX. Thus, the flux through PR partly regulates PS and there-

fore PR becomes an indicator for the overall PS activity. As H2O2 belongs to the reac-

tive oxygen species (ROS), it is involved in abiotic stress responses (G. Miller et al.,

2010; Voss et al., 2013). Results from the literature suggest that PR is involved in the

adjustment of the redox status in plants coping with stress such as low temperatures

or water stress (Cheng et al., 2007; Voss et al., 2013). Beyond that it is known that

PR can protect PS from photoinhibition as it consumes reducing equivalents at least

via GS. 

Future work is necessary to examine the stress response of plants at non-photorespi-

ratory conditions especially at eCO2. It  would be interesting how the interaction of

eCO2 with abiotic stress factors such as drought would affect plant metabolism. 
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Figure  5: Comparison of acclimated (acc) and non-acclimated (non-acc) Col-0 and aox1a
plants. Data for Col-0 from Krämer  et al. 2022a. A: Photorespiratory intermediates (n = 5).
A.1: Gly. A.2: Ser. B: log2 ratio of Ser to Gly using means of the data shown in A. 
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Cross-talk between PR and N assimilation

Non-acclimated hpr1-1 plants (Krämer et al., 2022a) showed a dwarfish and chlorotic

phenotype at aCO2 as already described in the literature by Timm et al., 2008 and J.

Li et al., 2019. This phenotype rapidly changes, when plants are transferred to eCO2.

Hence,  the plants suffer  at  aCO2.  However,  it  is  not  fully  understood  what limits

growth of the mutant plants. For instance, metabolic analysis revealed that hpr1-1

has more resources (e.g. amino-acids) when compared to Col-0 (Timm et al., 2021).

Considering the results in the literature, the question arose which mechanism causes

the distinct phenotype at aCO2. 

Beyond that, Krämer et al., 2022a, substantiated the link between PR and N assimi-

lation. Therefore, the impact of PR at photorespiratory conditions (aCO2) compared

to non-photorespiratory conditions (eCO2) was investigated in Krämer et al., 2022b. 

In this study,  Arabidopsis thaliana  plants (Col-0 and hpr1-1) were grown in hydro-

ponic cultures with NO3
- as sole N source. As a result, NH4

+ originates either from PR

or from the NR reaction. The obtained metabolic and enzymatic data-sets were used

in simulations using the R package paropt (Krämer et al., 2021). The ODE-system of

Krämer et al., 2022a, was substantially extended. Until then only C-compounds were

considered in dynamic models of primary metabolism of Arabidopsis thaliana (Nägele

et al., 2010; Küstner, Nägele and Heyer, 2019); albeit the total AA pool contains N,

only the C content was of interest. Even though the ODE-system of  Krämer  et al.,

2022a, did include the PR pathway only C was balanced. 

The extended ODE-system of Krämer et al., 2022b, contains the PR pathway; yet the

GDC/SHMT reaction is differently implemented. Instead of using one mass action re-

action representing GDC and SHMT together,  two different  reactions were imple-

mented. Previously, the assumption was made that due to the spatial proximity of the

two reaction centers of GDC and SHMT only one reaction in the ODE-system was

necessary  (Douce  et  al.,  2001).  However,  Rebeille,  Neuburger  and Douce,  1994

showed that the GDC rate is higher compared to the SHMT rate in pea mitochondria.

In addition, the model of Krämer et al., 2022a, used the GDC/SHMT reaction to con-

vert Gly to Ser, whereas the extended model of Krämer et al., 2022b, includes NH4
+

as state variable. Thus, the GDC and SHMT reactions have different tasks to accom-

plish in the model. In respect of the different structures of the ODE-systems and the

results of  Rebeille, Neuburger and Douce, 1994 two different reactions were imple-

mented, both as Michaelis-Menten (MM) kinetics. GDC consumes one Gly, forming

NH4
+, and the SHMT reaction converts Gly to Ser. Notably, it was excluded that the

SHMT flux could exceed the GDC flux,  as the required CH2-THF is produced by
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GDC.

The boundaries for the export of Ser to BM were roughly estimated in the old model.

In contrast, the new model links this reaction with the flux from AA to BM (AA2BM).

The flux Ser to BM was implemented as AA2BM multiplied with the proportion of Ser

in the proteom of Arabidopsis thaliana. 

The main change in the new model is the inclusion of the GS/GOGAT cycle. For this

reason the state variables Glu, Gln and α-KG were added. The refixation rate from

the model  described in  Krämer  et  al.,  2022a,  was replaced  by  the GS reaction.

Therefore, the vmax values of the enzymes were measured. Moreover, a flux from Glu

to α-KG was included given as the PR input into the system minus the HPR flux (PR

– HPR); this was possible because both fluxes have the same unit ‘[µmol N/ (g*h)]’

regarding N. The difference PR - HPR depicts the GGT reaction. For both enzymes,

GS and GOGAT, MM kinetics were implemented according to Meek and Villafranca,

1980. 

The enzymes involved in N assimilation show different activities over a full diurnal cy-

cle due to regulation of the enzymes involved  (Lillo, Meyer and Ruoff,  2001). Most

importantly the GS reaction is activated by a reducing milieu (Choi, Kim and Kwon,

1999). During the assay the activity is measured in a reducing environment. Thus the

values  are  potentially  overrated  particularly  during  the  dark-phase  (Berteli  et  al.,

1995; Gomes Silveira et al., 2003). As the redox state in the plastids is unknown the

impairment of GS during the dark-phase was estimated using computational experi-

ments as described in Krämer et al., 2022b. Thus, generating information about GS

activity during the dark-phase, which cannot be obtained by enzyme assays. 

Furthermore, a second supply  of NH4
+ was implemented, namely the NR reaction.

The substrate NO3
- was measured and the assumption was made that only a part of

the NO3
-  can be used by NR, because it is located in the cytosol, while most of the

NO3
- resides in the vacuole. The cytosolic portion was calculated based on cell vol-

umes determined by Koffler et al., 2013.

The results of the flux analysis revealed that PR stimulated the turnover in the GS/

GOGAT cycle.  The plants at aCO2  showed higher  turnover compared to those at

eCO2   and hpr1-1 at aCO2  had the largest fluxes. Notably, a strong diurnal dynamic

could be observed. In order to examine whether NH4
+ originates from NR or PR, the

ratio NR/PR was calculated for the light-phase. The results revealed that hpr1-1 had

to recycle more N primarily bound in Gly as compared to the wildtype. This was also

found at eCO2. Thus, even at 1000 ppm CO2  PR operates; otherwise no difference

for the ratio should be expected. Unsurprisingly, the ratio was elevated at eCO2 com-
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pared to aCO2 for Col-0 and the mutant. This means that the GS/GOGAT cycle has

to turn over more NH4
+ from PR at aCO2.

Unexpectedly, no differences for NR could be observed between treatments, even

though Bloom et al., 2014, showed a decreased NO3
- assimilation at eCO2. Thus, the

results support the findings of  Andrews et al., 2019 and Andrews et al., 2020, who

did not find reduced NO3
-  assimilation at eCO2. Admittedly, the assumption that the

NO3
- concentration is linked to the volume of the cytosol could have led to the result

of unaltered NR fluxes, because a constant input flux of NO3
-  into the cytosol is as-

sumed. 

Why does the hpr1-1 mutant suffer at aCO2 

The metabolic pools measured for hpr1-1 at aCO2  (Krämer et al., 2022b) prove that

the plants have ample resources such as Cit, Mal, Fum and the AA pool. This is in

contrast to the stunted growth and the chlorotic phenotype. Several hypotheses were

put forward, which could explain the phenotype of the mutant. 

The common opinion is that the mutant hpr1-1 suffers from an intoxication by PR in-

termediates. Even though the GDC and SHMT reaction are increased in hpr1-1 (Fig.

5 Krämer et al., 2022b) the capacity is still too low to entirely remove toxic intermedi-

ates as known from the literature (ca. twice the amount of the wildtype).

(Timm et al., 2008, 2011; Florian, Araújo and Fernie, 2013). It is noteworthy that ge-

netically modified Nicotiana tabacum cv. Petite Havana plants, capable of converting

glycolate to glycerate in the chloroplasts, showed increased biomass concentrations

and a strong increase in glycolate, Gly and Ser levels (South et al., 2019). Thus, high

glycolate level do not necessarily explain the mutant phenotype. 

Moreover, Li et al., 2019, found in the hpr1-1 mutant increased levels of 2-PG, which

is an inhibitor for triose-phosphate isomerase (TPI) and causes an increase in glycer-

aldehyde 3-phosphate concentrations. 

In this study, several other factors could be identified, which could contribute to the

limitation of  growth in hpr1-1. 

Potentially,  the mutant could suffer from elevated NH4
+  concentrations. As can be

seen in Fig. 6, NH4
+ is increased in plants grown at aCO2 compared to plants at eCO2

(P = 0.000315 and P = 1.15e-11 for the genotype and treatment respectively). Re-

markably,  hpr1-1 at aCO2  showed the highest concentration. Whether this increase

could harm the plants by deteriorating pH gradients is unclear. Another possibility by
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which NH4
+ could harm plants would be the high amount of cell energy required for

the re-fixation of NH4
+. Thereby ATP and reduced ferredoxin could become limiting. It

is known that the hpr1-1 mutant has a diminished ATP/ADP ratio (Timm et al., 2021),

still, the decrease in the ratio is not very large.  

Additionally, the distribution of N and C between different metabolites is disturbed in

the mutant.  For  instance,  large amounts of  Ser  are  found (Fig.  4  Krämer  et  al.,

2022b).  Beyond that  hpr1-1  has high demands for Glu in order to convert  HyPy.

Thus, it  is possible that Glu produced in the GS/GOGAT cycle is mainly used by

GGT, which would result in a limitation of protein production because Glu is not avail-

able.  Interestingly,  it  is  hypothesized that  the mitochondrial  GS converts Glu and

NH4
+ from PR to Gln, which is then transported to plastids (Linka and Weber, 2005).

Thus,  given that the GDC shows elevated activity in hpr1-1 at aCO2  (Krämer et al.,

2022b), Glu could be highly demanded for the transport of NH4
+, which would addi-

tionally limit the access to Glu for other processes. As hpr1-1 has lower chlorophyll

levels and Glu is one of the precursors for chlorophyll, the lack of Glu could explain

the chlorotic phenotype (Li et al., 2019). 

Most likely, hpr1-1 suffers from a combination of the proposed mechanisms, intoxica-

tion by PR intermediates, elevated NH4 
+ levels and a perturbed distribution of C and

N due to the high level of Ser and the high demand of Glu. 

Figure 6: Boxplots of NH4
+ concentration for Col-

0 and hpr1-1 at aCO2 and eCO2 (Data from 
Krämer et al., 2022b) (n = 40). 
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8 Outlook

The results of Krämer et al., 2022a and Krämer et al., 2022b, clearly demonstrate the

importance of PR and its role in N assimilation beyond the importance of PR in the

protection of PS from photoinhibiton and its role in the response to abiotic stress

(Voss et al., 2013) The results also showed that PR acts as N sink during the day. In

addition, PR stimulates the turnover in the GS/GOGAT cycle. As it is known that C

assimilated  during  the  previous  day  is  used  for  N  assimilation  (Gauthier  et  al.,

2010) PR activity is crucial to regain α-KG for N assimilation. 

However, the question by which mechanism eCO2 affects N assimilation in a negative

way is still open. In order to address this issue it would be necessary to establish a

mechanistic model which includes different cell compartments. In such a model, the

NO3
- concentration could be assessed more realistically, leading to better results for

the NR flux. Moreover, it would be interesting to know in which compartment the PR

intermediates are stored, as this would change the substrate amount for the partici-

pating enzymes in the mechanistic model. 
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RESULTS IN FORM OF PUBLICATIONS

Results in form of publications

– Krämer et al. 2022a: Acclimation to elevated CO2 affects the C/N balance

by reducing de novo N-assimilation

– Krämer et al. 2022b: Interaction of Nitrate Assimilation and Photorespi-

ration at Elevated CO2

– Krämer et al. 2021: R package paropt

– Krämer et al. 2022c: R package ast2ast
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Abstract

Plants exposed to elevated atmospheric CO2 concentrations show an increased pho-

tosynthetic activity. However, after prolonged exposure, the activity declines. This

acclimation to elevated CO2 is accompanied by a rise in the carbon-to-nitrogen ratio

of the biomass. Hence, increased sugar accumulation and sequential downregulation

of photosynthetic genes, as well as nitrogen depletion and reduced protein content,

have been hypothesized as the cause of low photosynthetic performance. However,

the reason for reduced nitrogen content in plants at high CO2 is unclear. Here, we

show that reduced photorespiration at increased CO2-to-O2 ratio leads to reduced

de novo assimilation of nitrate, thus shifting the C/N balance. Metabolic modeling of

acclimated and non-acclimated plants revealed the photorespiratory pathway to

function as a sink for already assimilated nitrogen during the light period, providing

carbon skeletons for de novo assimilation. At high CO2, low photorespiratory activity

resulted in diminished nitrogen assimilation and eventually resulted in reduced car-

bon assimilation. For the hpr1-1 mutant, defective in reduction of hydroxy-pyruvate,

metabolic simulations show that turnover of photorespiratory metabolites is

expanded into the night. Comparison of simulations for hpr1-1 with those for the

wild type allowed investigating the effect of a perturbed photorespiration on

N-assimilation.

1 | INTRODUCTION

Rising emissions have led to a dramatic increase of atmospheric CO2

concentration during the last decade (IPCC, 2014; Solomon

et al., 2009), and despite intensive research, for example, on conse-

quences for productivity at the ecosystem level (Liu et al., 2018; Long

et al., 2004), many questions regarding the effects of elevated CO2

(eCO2) on plant metabolism are still unanswered (Misra &

Chen, 2015). Plants benefit from eCO2 concentrations by an

increased net photosynthesis (NPS) rate. However, after a period of

several days to weeks of growth in eCO2 a decline is observed, which

is called acclimation to eCO2 (Griffin & Seemann, 1996; Smith &

Dukes, 2013). A multitude of studies have shown that various plant

species show this response, including important crops (Gutiérrez

et al., 2013; Shimono et al., 2010), and even though many theories

have been put forward, the physiological basis for acclimation to

eCO2 is still unclear.

One possible explanation is down regulation of photosynthesis

(PS) due to an accumulation of carbohydrates (Dabu et al., 2019;

Gámez et al., 2020; Kizildeniz et al., 2021). A clear increase of

glucose, fructose, and starch was observed in Arabidopsis thaliana

when grown for longer periods at eCO2 (Cheng et al., 1998). High

carbohydrate levels correspond to a dilution of nitrogen

(N) containing compounds such as amino acids (AA) and protein, and

the resulting low level of ribulose-1,5-bisphosphate-carboxylase/-

oxygenase (RUBISCO) (Chen et al., 2005; Cheng et al., 1998; Paul &
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Driscoll, 1997) could also explain reduced PS per weight unit as pro-

posed by Gifford et al. (2000), Kuehny et al. (1991), and

Wong (1990). Other concepts explaining acclimation to eCO2 are

directly related to N acquisition. Decreased stomatal conductance

resulting from higher internal CO2 concentrations in leaves may

cause low transpiration rates, thus interfering with mineral uptake

and transport (Ainsworth & Rogers, 2007; Shi et al., 2021). Nitrogen

partitioning within the plant and its availability to photosynthetically

active leaves was shown to contribute to acclimation in soybean

(Kanemoto et al., 2009), and its allocation to either biomass or opti-

mization of the photosynthetic apparatus is important for crop yield

(Biernath et al., 2013).

Because assimilation of N in the form of AA requires carbon skel-

etons, the provision of α-ketoglutarate (α-KG) takes a central role,

thus tightly linking the mitochondrial citrate cycle to de novo N fixa-

tion. Considering that glycolysis and day respiratory CO2 release are,

at least to some extent, inhibited by light, Gauthier et al. (2010)

questioned the origin of α-KG from recently assimilated carbon and

reported that remobilization of existing carbon pools is important for

α-KG provision. However, an alternative route to C-skeletons for AA

synthesis via malate produced in the chloroplast in the so-called pyru-

vate branch of the photorespiratory pathway has been proposed

(Bloom et al., 2020).

A striking feature of eCO2 is a reduction of the oxygenase activity

of RUBISCO, which is the entry point into photorespiratory metabo-

lism (Keys, 2006). This metabolic route links carbon (C) and N metabo-

lism, most obviously by producing the AA glycine (Gly), but has an

impact on various other metabolic pathways, including sulfur assimila-

tion and secondary metabolism (Abadie et al., 2021; Timm

et al., 2021). Recently, it was shown that in C3, but not in C4, plants

eCO2 improved the use of ammonium as a nitrogen source (Wang

et al., 2020). However, interactions between nitrogen metabolism, PS

and photorespiration (PR) are not yet well understood. Liang

et al. (2021) proposed that in rice, which is generally believed to over-

size its photosystem antenna, PR has a function of stabilizing the C/N

balance by consuming photosynthetic products and providing AAs for

nitrogen metabolism, thus preventing a continuous increase in the

C/N ratio, which would induce premature senescence and yield

reduction.

To investigate whether PR functions as a gatekeeper between

carbon and nitrogen assimilation, we set up a mathematical model

that allows simulation of fluxes through PR and PS, as well as calcula-

tion of de novo N fixation. We used this model to simulate fluxes in

plants exposed to either short-term or prolonged exposure to eCO2.

Under the latter conditions, photosynthetic acclimation caused a mar-

ked reduction in NPS. This was more pronounced in the hpr1-1

mutant of A. thaliana, which is defective in the peroxisomal hydroxy-

pyruvate-reductase (HPR). This enzyme catalyzes the last step in the

PR pathway providing glycerate for re-import into the chloroplast

(Timm et al., 2008). Instead, the mutant accumulates high levels of

serine (Ser) and Gly, thus altering the balance between C and N

metabolism.

2 | MATERIALS AND METHODS

2.1 | Plant materials and growth conditions

Arabidopsis thaliana wild-type Col-0 and the mutant hpr1-1

(SALK067724) were grown in soil (seedling substrate, Klasmann-

Deilmann GmbH) in a growth chamber with 8/16 h light/dark regime

(100 μmol m�2 s�1; 22/16�C). The hpr1-1 mutant was obtained from

the group of Hermann Bauwe at the University of Rostock; for details,

see Timm et al. (2008). All plants were grown at ambient CO2 concen-

trations (450 ± 20 ppm) for the first week. Afterward, half of them

were transferred to eCO2 (1000 ± 20 ppm), whereas the other plants

were transferred after 44 days. Plants were harvested after 46 days

of cultivation. Plants that grew longer at eCO2 concentrations are

denominated acclimated, while those that spent only 48 h at eCO2 are

termed non-acclimated. To exclude the possibility that the plants differ in

developmental states, leaves were counted of 10 plants per condition. A

Fisher's exact test resulted in a p-value of 0.9889. Thus, there was no dif-

ference in the developmental stage of the plants. From both sets of

plants, samples were taken every 2 h over a full diurnal cycle, with the

time point at the end of the night harvested only once. This time point

was used as the start and end of the simulations.

To examine metabolic changes caused by shifting plants from

ambient CO2 concentrations to eCO2, Col-0, and the hpr1-1 mutant

were grown at ambient CO2 levels and harvested at the beginning

and end of light phase.

2.2 | Gas-exchange measurements and
calculation of PR

The CO2 uptake by the plants was measured as already described by

Nägele et al. (2010). An entire rosette was measured over 24 h in a

growth chamber with 8/16 h light/dark regime (100 μmol m�2 s�1;

22/16�C, 65% RH, 1000 ppm CO2). Dark respiration was calculated

as a mean over the entire dark phase. While NPS was measured as

CO2 exchange of whole plant rosettes with the atmosphere, the input

into PR was calculated according to Sharkey (1988) (Equations (1) and

(2)). For the CO2 concentration at the carboxylation site, 600 ppm

were used.

v0 ¼ AþRdð Þ= ϕ�1 – 0:5
� � ð1Þ

where v0 is the oxygenation rate, A is the photosynthetic rate, Rd is

the respiration during the night, and ϕ is the ratio between oxygena-

tion and carboxylation of RUBISCO. Rd is the mean value of the entire

night without the first 5 min of the dark phase.

Φ¼ 2 τ�ð Þ= CO2½ � ð2Þ

where ϕ is the ratio between oxygenation and carboxylation, τ* is the

CO2 compensation point in the absence of dark respiration and [CO2]
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is the CO2 concentration at the carboxylation site. τ* was measured

according to the method described by Brooks and Farquhar (1985).

2.3 | Metabolic profiling

Gas-chromatography coupled to mass spectrometry (GC–MS)/MS

analysis samples were extracted using 750 μl methanol with 25 nmol

ribitol as internal standard. After adding methanol, samples were incu-

bated for 15 min at 70�C and agitated for 10 min at RT followed by

centrifugation (5 min 17,000g). The supernatant was transferred to a

new vessel. Next, 400 μl H2O was added to the pellet, incubated at

95�C for 10 min followed by shaking for 10 min at RT. Then, samples

were centrifuged (5 min 17,000g) and the supernatant pooled with

solution from the previous step. Afterward, 300 μl H2O and 200 μl

chloroform were added to the suspension. After centrifugation (2 min

17,000g), the two phases were separated. Only the polar phase was

used for analysis and dried in a speedvac. The dried samples were

derivatized using 20 μl of methoxamine dissolved in pyridine

(40 mg ml�1) by incubation for 90 min at 30�C. Afterward, 80 μl N-

methyl-N-(trimethylsilyl)trifluoroacetamide were added and the mix-

ture incubated for 30 min at 50�C. The metabolites were measured

using GC–MS/MS. For injection, 1 μl of the derivatized sample was

used. The GC–MS/MS device was a GCMS-TQ8040 (Shimadzu).

Helium was used as carrier gas with a column flow of 1.12 ml min�1,

and for the stationary phase, a 30 m Optima 5MS-0.25 μm fused silica

capillary column was used. The injection temperature was 230�C. The

transfer line and ion source were set to 250 and 200�C, respectively.

The initial temperature of the column oven was 80�C and this was

increased by 15�C per min until the final temperature of 330�C was

reached, which was held for 6 min. After a solvent delay of 4.6 min,

spectra of the MS device were recorded in the multiple reaction mode

with specific target-ions for each metabolite. External standards were

used for quantification. Besides metabolic profiling via GC–MS/MS

analysis, additional metabolites, i.e. starch, hexose phosphates (HP),

carboxylic acids (fumaric acid, malic acid, and citric acid) as well as

minerals (nitrate, phosphate, and sulfate) and the total AA pool, were

quantified by HPLC as described previously (Küstner et al., 2019).

Levels of malate and fumarate (MF) were summed up as MF pool. For

the carboxylic acids and minerals, quantification was performed at the

beginning, the middle and the end of the light phase—as well as the

middle of the night. The HP were measured at every second time

point. Data for the remaining time points were obtained by spline

interpolation.

2.4 | Enzyme activities

The HPR activity was determined according to Bauwe (2017). The

activities of the enzymes sucrose-phosphate-synthase (SPS), glucoki-

nase, and fructokinase were measured according to Küstner

et al. (2019). All enzyme activities were determined at the beginning,

middle and end of the light phase, as well as in the middle of the night.

Values for the remaining time points were calculated by spline

interpolation.

2.5 | Simulations

For simulations, the Github-version of the R-package “paropt” was

used (Krämer et al., 2020) and https://github.com/Konrad1991/

paropt). During each simulation, the system of ordinary-differential-

equations (ODE) is repeatedly solved with different parameter sets.

Hence, for each parameter set, a unique state solutions is produced.

This in silico solution is compared to the measured states to yield an

error which is used to evaluate the parameters. Based on the errors of

each set, the optimizer updates the parameter sets. For optimization,

the particle swarm optimization algorithm was used; for details of

implementation, see (Akman et al., 2018; Krämer et al., 2020;

Sengupta et al., 2018). The package uses the SUNDIALS Software to

solve the ODE-system (Hindmarsh et al., 2005). Because of its superi-

ority in solving stiff ODE-systems, the backward-differential-equation

solver was used (Hindmarsh et al., 2005) with relative tolerance set to

1e-6 and absolute tolerances set for each state to 1e-8. For each run,

a different seed was set for random number generation. The code of

the ODE-system can be found in the supplement.

The on/off mode of illumination in the plant growth chamber cau-

sed abrupt transitions between day and night leading to overshooting

of changes in reaction rates (Küstner et al., 2019). To allow calculation

of a smooth day-night-transition, an interval from 0.1 h before and

0.1 h after start of the dark period was defined. Within this interval,

supporting data points for the ODE-solver were generated for PS and

PR. To achieve this, the property of the tangens hyperbolicus to show

increasing values of a sigmoid form from 0 to 1 for the interval [0,2]

was used (Equation (3)). This calculation is based on the approach of

Fenton and Karma (1998), who used it to produce a good fit of curves

for restitution of action potentials. Application of this method largely

prevented overshooting or undershooting at the day-to-night transi-

tion. However, simulations of metabolite dynamics using one com-

plete parameter set for day and night still yielded insufficient fit of

measured and calculated metabolite levels. This resulted from a char-

acteristic of the Catmull–Rom spline used for interpolations. This

spline is a cubic hermite spline that uses two points preceding and

two points following a given time point to calculate the value for that

time point. Thus, values at the end of the day have a strong impact on

the night and vice versa. To eliminate this mathematical artifact, it

was necessary to use separate parameter sets for day and night, for

which parameters were identified independently.

SupportingPoint¼ tanh 2=TimeIntervalLengthð ÞCurrentTimeð ÞÞ

DiffDayNight ð3Þ

where SupportingPoint is the PS or PR value at the current time point

within the interval, TimeIntervalLength = 0.2 h, CurrentTime is the time

point within the interval 0.1 h before and 0.1 h after start of the dark
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period minus the starting point of the interval, and DiffDayNight is the

ΔPS or ΔPR between day and night.

2.6 | Data analysis and statistics

Data evaluation, normalization, visualization and statistics were per-

formed in Microsoft Excel (Microsoft Office version 2010) and the R

software (The R Project for Statistical Computing; http://www.r-

project.org/).

3 | RESULTS

3.1 | Acclimation to eCO2

As a first step toward understanding the metabolic processes underly-

ing plant acclimation to eCO2, conditions were established that

allowed verification of eCO2 acclimation by gas exchange measure-

ments. Plants were grown at 1000 ppm CO2 for 6 weeks, and during

the seventh week NPS rates were compared to those of control plants

grown at ambient CO2 (450 ppm) for 6 weeks and shifted to eCO2

only 48 h ago. The latter treatment ensured that plants were not in a

transitional state between ambient and eCO2, but did also not yet

photosynthetically acclimate to eCO2. As shown in Table 1, plants

acclimated to eCO2 had diminished NPS. The non-acclimated wild

type, Col-0, had an average NPS rate of 132.04 μmolg�1 FW h�1,

while acclimated plants showed gas exchange rates of only

90.98 μmolg�1 FW h�1. For the hpr1-1 mutant, acclimation resulted

in photosynthetical activity of 104.96 μmolg�1 FW h�1, and non-

acclimated plants showed an activity of 152.78 μmolg�1 FW h�1.

While two-way-ANOVA for genotype and treatment revealed a clear

effect of acclimation (p = 0.00491), NPS of the mutant was not signif-

icantly different from wild type under eCO2. Nevertheless, the hpr1-1

mutant had a higher respiration than the wild type, indicating higher

metabolic activity during the dark phase (see Table S1).

Acclimation to eCO2 correlated with several changes in primary

metabolites (Figure S1). Among soluble sugars (Figure S2), hexoses

displayed the strongest effect of acclimation to eCO2, while sucrose

(Suc) remained fairly constant. Fructose (Frc) and glucose (Glc)

levels during the light phase declined by trend in acclimated wild

type but significantly rose in acclimated hpr1-1 plants (ANOVA for

treatment � genotype, F3,76 = 11.82, p = 0.0011). Thus, the higher

Frc concentration of non-acclimated wild type as compared to mutant

plants was lost during acclimation. Starch content at the end of the

day was not altered in acclimated plants, but was higher in hpr1-1 as

compared to Col-0 (Figure S3). MF accumulated during the light phase

and declined in the dark, creating a clear diurnal profile in both geno-

types that was more distinct in acclimated plants (Figure 1). These

two metabolites were pooled based on the similar behavior reported

by Küstner et al. (2019). Although absolute levels sank during acclima-

tion in Col-0 (p = 0.0435), diurnal dynamics persisted but declined in

the mutant. Citrate (Cit) displayed a diurnal pattern opposite to MF in

non-acclimated plants with strongly elevated levels in hpr1-1

(p = 9.19e-11). The diurnal oscillation was completely lost in accli-

mated wild type but still visible in the mutant. The non-acclimated

hpr1-1 mutant formed a clearly separated cluster in principal compo-

nent analysis (PCA) due to accumulation of compounds involved in

N-assimilation, such as total AA, nitrate and α-KG (Figure S4). Total

AA increased during the day in non-acclimated plants (r = 0.376,

p = 0.0002) and reached very high levels in hpr1-1 (Figure 2C). Accli-

mation caused a significant reduction in free AA only in the mutant

(F3,284 = 25.8, p = 8.4e-15). As with Cit, diurnal dynamics decayed in

acclimated wild type, but not in the mutant. As shown in Figure 2A,B,

Gly and Ser, which were separated from the total AA pool, massively

accumulated during the day in hpr1-1, but especially Ser levels

remained constant after acclimation. Both genotypes had lower

nitrate concentrations under eCO2 (p = 3.05e-7, Figure 2D).

For modeling, enzyme activities of SPS, the hexokinases

(fructokinase and glucokinase) and the HPR were considered key

enzymes in the pathways for sucrose build-up, sucrose cycling and

the photorespiratory salvage pathway, respectively. In the case of

HPR, this was done, because this activity discriminates the hpr1-1

mutant from the wild type. In vitro maximum turnover rates were

determined to obtain parameter boundaries for the values used in

modeling Michaelis–Menten kinetics (Figure S5). Fructokinase

showed an increased activity in the non-acclimated hpr1-1 mutant

(p = 3.77e-05). Even though no significant effect could be demon-

strated, there was also a tendency to an increased glucokinase activ-

ity. The wild type displayed a clearly increased SPS activity for

acclimated plants (p = 0.00977). This was not the case for hpr1-1.

Interestingly, no effect except the expected genotype effect was

observed for HPR activity.

3.2 | Metabolic changes caused by transfer from
ambient CO2 to eCO2

To distinguish between the effect of eCO2 treatment and the acclima-

tion to eCO2, a set of plants grown at ambient CO2 was analyzed and

compared to plants exposed to eCO2 for 48 h (Table S2). For the pho-

torespiratory intermediates Gly and Ser a strong decrease was

observed following the shift to eCO2. Thus, photorespiratory interme-

diates that build up at ambient CO2 did not persist in non-acclimated

plants, indicating formation of a new homeostasis. In addition,

TABLE 1 Means and standard deviation (SD) of net
photosynthesis in μmol/gFW�1 h�1 during light phase for Col-0 and
hpr1-1 in either non-acclimated or acclimated state. Measurements
were carried out at elevated CO2 (n = 12, 10, 11, and 12)

Genotype Acclimation Mean SD

Col-0 Non-acclimated 132.04 30.94

hpr1-1 Non-acclimated 152.78 37.70

Col-0 Acclimated 90.98 35.22

hpr1-1 Acclimated 104.96 42.74
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carbonic acids were measured at ambient CO2 concentrations and

plants shifted to eCO2. For the MF pool similar diurnal dynamics were

detected at ambient and eCO2, although, for the latter at lower abso-

lute concentrations. In contrast, Cit was strongly affected by the

eCO2 treatment. As can also be seen in Figure 1, the Cit pool showed

almost no diurnal dynamics under eCO2 in wild type plants, but was

highly dynamic at ambient CO2 (Table S2). The hpr1-1 mutant had

higher levels than wild type of Cit under ambient as well as eCO2, but

in this case diurnal dynamics persisted in non-acclimated plants and

declined only after acclimation (Figure 1).

3.3 | Model construction

For simulating the impact of eCO2 on interaction of carbon and

nitrogen metabolism, a model was set up as described in Figure 3.

The exchange of CO2 with the environment covers the sum of

three processes: photosynthetic fixation, PR and mitochondrial

respiration. Although mitochondrial respiration can only be mea-

sured during the dark phase, it was set as a constant rate over the

entire diurnal cycle, because Küstner et al. (2019) have demon-

strated that this improves modeling of diurnal metabolite dynam-

ics. Thus, the amount of mitochondrial respiration was added to

measured carbon uptake to calculate the flux of primary fixation.

This is termed adjusted PS. Like mitochondrial respiration, PR is a

process that releases CO2, thus reducing net carbon uptake. Dur-

ing the light phase, it must therefore also be added to the mea-

sured carbon uptake in order to calculate the rate of primary

fixation. The adjusted primary fixation was used as input term to

form HP, which are connected to the carbohydrates (Suc, Glc, and

Frc) in the sucrose-cycling pathway (Küstner et al., 2019; Nägele

et al., 2010). In addition, HP were considered as substrate for the

synthesis of MF which functioned as a precursor for the Cit/α-KG

pool. Cit and α-KG were modeled as one pool, because α-KG is

F IGURE 1 Measured values and results of simulations for citrate (Cit) (A) and the malate/fumarate (MF) pool (B). Lines represent the means
of 20 simulations. Means of measured values ± standard deviation (n = 5) are shown as dots. Light period is from 0 to 8 h. To prevent
overlapping, error bars were displaced by 0.25 h
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mostly generated via isocitrate dehydrogenases (Tcherkez et al.,

2017), while transamination reactions, e.g. using glutamate and

oxaloacetate for α-KG production, do not contribute significantly

(Hodges, 2002). Abadie et al. (2017) have shown that citrate,

isocitrate, and α-KG together form the source for Glu production,

no matter whether they stem from “old” or recently fixed carbon.

It has been demonstrated that during the light phase α-KG pro-

duction relies mostly on stored citrate (Tcherkez et al., 2009). How-

ever, various modes of the TCA cycle and anaplerotic reactions have

been proposed (Hanning & Heldt, 1993; Sweetlove et al., 2010), and

thus a connection of the MF and Cit/α-KG pool was allowed also in

the light, when phosphoenolpyruvate is used to form oxaloacetate.

Phosphoenolpyruvate in our model is part of the HP pool that con-

tains all short-lived intermediates. The MF pool served as substrate

for dark respiration. Although this is a simplification of the TCA cycle,

it allowed for dissection of Cit/α-KG dynamics, connected to AA

metabolism, and energy household.

3.3.1 | PR and C/N interaction at eCO2

PR activity was calculated according to Sharkey (1988) (Equations (1)

and (2)). Values of the CO2 compensation point (τ*) for wild type and

hpr1-1 were measured according to Brooks and Farquhar (1985),

resulting in a value of 50 ± 10 ppm for Col-0 and 92.5 ± 17.6 ppm for

the hpr1-1 mutant. No significant treatment effect was obtained in

our measurements. Because the CO2 concentration at the carboxyla-

tion site is unknown, PR rates were calculated assuming in internal

CO2 concentration of 600 ppm, following the suggestion of

Sharkey (1988). A parameter α was introduced into the rate equation

F IGURE 2 Measured values and results of simulations for glycine (Gly) (A), serine (Ser) (B), total amino-acids (AA) (C) and nitrate (Nit) (D). (A–
C) Lines represent the means of 20 simulations. Means of measured values ± standard deviation (n = 5) are shown as dots. Light period is from
0 to 8 h. To prevent overlapping, error bars were displaced by 0.25 h
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for PR in order to allow flux through the salvage pathway in the

absence of NPS, i.e. during the dark phase. Boundaries for α were set

between 0 and 5 for all simulations. Inclusion of α substantially

improved simulation of dynamics for Gly and Ser during the night,

especially for the hpr1-1 mutant, where metabolism of both AAs was

distinctly extended into the dark phase (Figure 2A,B). A striking fea-

ture of the hpr1-1 mutant was an altered ratio of PS to dark respira-

tion; the latter being strongly elevated (Table S1). According to

Sharkey (1988), this results in calculating a higher rate of PR, which,

due to the mutant phenotype, causes accumulation of Gly and Ser,

because PR flux is reduced in hpr1-1. This was confirmed by the

metabolite data (Figure 2) and caused a higher value of α during the

dark phase in this mutant.

It should be emphasized that the model shown in Figure 3 is a

pure carbon metabolism model, which, however, allows for calcula-

tion of N fluxes at the interconversions of carboxylates and

AA. While PR provides the carbon contained in the Gly pool, the

nitrogen is donated by either Glu or Ser. Therefore, the HPR rate,

which releases N, was subtracted from PR in order to take account

of the N delivered by Ser. The remaining N comes from Glu, which

in our model is contained in the AA pool. The corresponding rate

from AA to Cit/α-KG is called AAtoCA (Figure 3 and Equation (4)).

The stoichiometric factor 0.813 takes into account that the AA pool

has 1.23 μmol N per μmol C6.

AAtoCA¼ PRþαð Þ–HPR½ �0:813AA ð4Þ

where AAtoCA is the flux from AA pool into the Cit/α-KG pool, AA is

the current AA concentration, PR is the PR, α is the factor described

above, and HPR is the current value of the HPR activity.

During the reaction from Gly to Ser, one N is released in the form

of ammonia. This has to be re-fixed. The carbon skeleton is α-KG which

is represented by the Cit/α-KG pool. Therefore, a reaction called REFIX

was introduced into the model (Figure 3 and Equation (5)). REFIX repre-

sents the rate of Cit/α-KG to AA conversion and is proportional to the

rate from Gly to Ser. The factor 4.878 is the C/N ratio of the AA pool

and is used to transform the N1 flux into a C6 flux. Note that the

parameters gly_cleavage and gly_to_ser were set to the same value in

order to account for the spatial proximity of glycine cleavage enzyme

and the serine-hydroxymethyl-transferase (Douce et al., 2001).

REFIX¼gly gly_cleavage4:878 ð5Þ

where REFIX is the flux from Cit/α-KG pool into the AA pool, gly is the

current Gly concentration and gly_cleavage is the rate constant. Thus,

only the parameters for de novo N-assimilation needed to be opti-

mized according to the dynamics of AA and Cit/α-KG cycling.

As can be seen from Equations (4) and (5), the fluxes between AA

and the Cit/α-KG pool that arise from PR are only depending on Ser and

Gly concentrations. Besides these, a flux from the Cit/α-KG pool into the

AA pool, which is independent of PR activity but relies on the α-KG con-

centration as substrate, results from de novo N assimilation. Thus, by iden-

tifying the parameters for Equations (4) and (5), it is possible to

differentiate between refixation of ammonia and de novo N-fixation.

3.4 | Simulated fluxes at eCO2

Simulations of metabolite dynamics matched measured values with a

maximal deviation of 8.2% per time point and state and remained

F IGURE 3 Schematic representation of the ODE-model used for simulations. States within the system-boundaries: glycine (Gly), serine (Ser),
amino acids (AA), hexosephosphates (HP), sucrose (Suc), glucose (Glc), fructose (Frc), citrate (Cit), α-Ketoglutarate (α-KG), malate, and fumarate
(MF). States outside of the system: biomass (BM), starch (Starch), and export (Exp). Constant fluxes across the system boundaries: net
photosynthesis (adjusted photosynthesis), photorespiration (PR). A Michaelis–Menten kinetic was used for sucrose-phosphate-synthase (SPS),
hexokinases (HXK's = fructokinase and glucokinase), invertase (INV), and the hydroxypyruvate-reductase (HPR). The remaining statements are
modeled as mass action kinetics
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within the standard deviation with few exceptions (Figures 1, 2, and S2).

Although the default error calculated by the paropt algorithm is the sum

of absolute differences between measured and simulated states, a rela-

tive error was calculated by the cost function in order to improve results

especially for low concentrated metabolites Hence, it was possible to

optimize very small (e.g. Gly) as well as large states (e.g. AA) at the same

time with similar accuracy. Based on substrate concentrations and the

identified parameters, flux rates at specific time-points could be calcu-

lated. Figure 4 and Table 2 show the calculated fluxes. As expected,

fluxes in the AA-to-Cit/α-KG cycle, which are in part dependent on PR,

are significantly increased for the non-acclimated plants (Table 2).

The rate of Gly accumulation in the light was about 1.5-fold

higher in non-acclimated versus acclimated Col-0 and about doubled

F IGURE 4 Flux calculations for interconversion of total amino acids and the Cit/α-KG pool. AAtoCA is the amino acid consumption for Gly
synthesis (A). REFIX is the refixation of N produced by glycine-cleavage enzyme (B). Denovo is the de novo fixation of N (C). Error bars depict SD

simulations (n = 20). Light period is from 0 to 8 h. All values are evaluated every 2 h. To prevent overlapping of error bars calculated for identical
time points, bars were displaced by 0.25 h

TABLE 2 Means of 20 simulations for the fluxes, 6 h after
light-on, in μmol C6 gFW�1 h�1. Col-0 acclimated (C.acc), Col-0
non-acclimated (C.non), hpr1-1 acclimated (h.acc), and hpr1-1
non-acclimated (h.non). AAtoCA is the amino-acid consumption for
synthesis of Gly. REFIX is the refixation of N produced by glycine-
cleavage enzyme. denovo is the de novo fixation of N. Letters indicate
the results of Tukey's HSD following two-way ANOVA for
genotype � treatment. Groups sharing the same letters are not
significantly different (p ≤ 0.05; n = 20)

Fluxes C.acc C.non h.acc h.non

AAtoCA 30.22d 39.49c 70.19b 116.00a

REFIX 16.92d 22.19c 32.49b 45.45a

denovo 12.60d 21.98c 34.06b 69.77a
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in non-acclimated hpr1-1. These higher rates, in turn, stimulated

higher turnover of the AA-to-Cit/α-KG cycle. Simulations revealed

that this supported a significantly increased de novo N assimilation

using α-KG as substrate, while already fixed N was deposited as Gly

and, at least in the mutant, also as Ser (Figure 2).

As a consequence of the mutation, HPR activity was strongly

reduced in hpr1-1 plants. Thus, the flux from Ser to HP was limited,

which restricted the N flux from Ser to Gly. This in turn caused more

AA to be used for Gly formation with the effect of elevated de novo N

assimilation in the mutant (Figure 4 and Table 2).

4 | DISCUSSION

4.1 | Metabolic changes during acclimation
to eCO2

Three sets of plants were analyzed in this study—plants grown at

ambient CO2 concentration as well as plants either continuously

grown at eCO2 or shifted from ambient to eCO2 for 48 h. Comparison

of plants grown under ambient versus eCO2 revealed that the most

significant changes in the PR intermediates Gly and Ser completed

within the first 2 days at eCO2, while changes in Cit metabolism took

longer to reach a new homeostasis. Continuous growth at eCO2

resulted in a reduction of photosynthetic activity by about 20% in

wild type and 30% in the hpr1-1 mutant, thus clearly demonstrating

acclimation of PS to eCO2 within 44 days of exposure. Similar effects,

expressed as reduced rate of RUBISCO carboxylation (Vcmax), have

been reported by Jauregui et al. (2018) after 28 days at eCO2 under

long day conditions. In this study, the extent of acclimation coincided

with the amount of foliar starch that appeared to negatively affect

RUBISCO performance. Under the short day conditions applied in the

present study, no difference in starch content was observed for accli-

mated and non-acclimated plants, arguing against a direct effect of

the starch content. Interestingly, Jauregui et al. found dependence of

acclimation on the source of N fertilization: while plants fertilized with

nitrate did show acclimation, plants fertilized with a mixture of ammo-

nium and nitrate retained higher photosynthetic rates under eCO2

over extended periods of time (Jauregui et al., 2015), thus indicating

an interaction of acclimation with N fixation. Because the most impor-

tant source of ammonium during the light period is PR, we recorded

diurnal profiles of PR intermediates under ambient and eCO2 and

found the typical diurnal profiles, i.e. a light-dependent accumulation

of Gly and Ser in Col-0 and hpr1-1 even at eCO2. As already reported

by Timm et al. (2008), amplitudes were increased in the hpr1-1

mutant. This proved that PR still operates under the condition of a

doubled atmospheric CO2 concentration and is in agreement with

data reported by Sage (1994). In various studies involving PR mutants,

CO2 concentrations of 3000 ppm and even higher were used in order

to avoid oxygenation of RUBISCO (e.g. Timm et al., 2010). In the pre-

sent study, 1000 ppm were applied to substantially reduce, but not

eliminate, PR in both genotypes (Table S2 and Figure 2), because oth-

erwise the impact of perturbed PR on acclimation to eCO2 could not

be investigated. With PR operating in both genotypes at a reduced

rate in eCO2 the hpr1-1 mutant still showed increased Gly and Ser

levels when compared to the wild type, and thus the effect of differ-

ent PR fluxes could be examined. This revealed that diurnal dynamics

of Cit persisted in non-acclimated hpr1-1 plants, but dynamics

completely declined in wild type and acclimated hpr1-1. The

decreased diurnal dynamics of Cit reflect reduced consumption of

α-KG for ammonia re-fixation under eCO2, and this was strongly del-

ayed in the hpr1-1 mutant. Gauthier et al. (2010) showed that α-KG is

produced from carbon that was stored during the previous night. The

fact that the MF pool retained diurnal dynamics in both genotypes

under eCO2, although at reduced absolute levels (Table S2), while

dynamics declined for Cit, is strong evidence that the MF and Cit pool

are independent of each other. As demonstrated by Tcherkez et al.

(2009), α-KG predominantly derives from “old” Cit, while malate pro-

duction depends on phosphoenolpyruvate. However, the simulations

presented here do not finally disclose at which mode the TCA cycle

operates during the light phase (Sweetlove et al., 2010).

Even though PR was not stalled at 1000 ppm of CO2, its contribu-

tion to gas exchange was substantially reduced. With the rate of the

Gly accumulation in the light taken as an indicator of RUBISCO oxy-

genation, PR was reduced by about 35% in Col-0 and nearly 50% in

the hpr1-1 mutant. A central question addressed in this study was

whether reduced PR, and the concomitant reduction in ammonium

availability, could have caused photosynthetic acclimation as

suggested by the data of Jauregui et al. (2015). Because PR and PS

are interlinked (Sharkey, 1988), it is difficult to separate cause and

effect. However, comparison of the hpr1-1 mutant with Col-0 wild

type revealed important details. If we assume that the ratio of carbox-

ylation and oxygenation of RUBISCO is not affected by the hpr1-1

mutation, the much stronger reduction of daily Gly accumulation after

long-term exposure to eCO2 in hpr1-1 must be attributed to an

altered flux through the PR salvage pathway. With this flux and an

independent recording of photosynthetic activity, a ratio of PR to

NPS can be calculated, which is higher in non-acclimated plants (Col-0

ca. 17% and hpr1-1 ca. 26%) even though both sets of plants were

analyzed in an atmosphere with identical CO2 concentration. This

implies a decline of PR flux relative to NPS during acclimation to

eCO2, and this decline was supported by our flux simulations that

identified reduced PR fluxes in acclimated plants. There are two possi-

ble explanations for the higher PR flux in non-acclimated plants. Either

the higher PS in non-acclimated plants caused a local depletion of

CO2 at the carboxylation site that could not be compensated by CO2

diffusion within the leaf tissue, or metabolic and/or enzymatic alter-

ations in acclimated plants limited the capacity for PR.

Sage (1994) reported that for internal CO2 concentrations

between 200 and about 550 ppm, PS is limited by the regeneration of

ribulose-1,5-bisphosphate and, thus, responsive to changes in the

CO2-to-O2 ratio, while for higher internal CO2 (Ci) concentrations, PS

becomes limited by Pi regeneration and is than unaffected by changes

in Ci. Given that Ci is about 600 ppm under the conditions of eCO2

applied here, local depletion of CO2 at the carboxylation site becomes

unlikely. In contrast, however, some of the metabolite changes
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observed during acclimation favor a metabolic limitation of

PR. Acclimated Col-0 plants had a reduced ratio of sugars versus car-

boxylic acids during the light phase, indicating a metabolic shift

toward TCA cycle intermediates, which is indicative of a C-limited

metabolic state.

An increase in carboxylic acids, especially fumarate and citrate,

and a concomitant decline in the sugar-to-carboxylate ratio during the

light phase at eCO2 was also observed by Watanabe et al. (2014) for

Arabidopsis seedlings grown on artificial medium for 20 days. Seed-

lings showed a higher CO2 efflux rate at eCO2, resulting from the use

of carboxylates instead of sugars for respiration. The authors calcu-

lated a higher cost for ATP production at eCO2, which they related to

higher energy demand for carbohydrate export to the roots

(Watanabe et al., 2014). However, they also found higher rates of AA

production that could have stimulated ATP consumption. This was

not observed in our study, where the total AA pool (not containing

Gly and Ser) declined and nitrate levels were lowered after prolonged

exposure to eCO2.

In acclimated soil grown plants, transamination of glyoxylate by

glutamate could have become limiting due to the decrease in the AA

pool. This would cause a decline in PR flux and, thus, a depletion of

Calvin–Benson cycle intermediates, because the regeneration of

glycerate from Ser would slow down. The apparent stimulation of flux

into the TCA cycle could thus be considered a compensatory measure

to stimulate AA synthesis or may simply reflect reduced buildup of

sugars because of detracted export of triose-phosphates from the

plastids that resulted from reduced replenishment by the PR pathway.

This was especially obvious in hpr1-1, which, due to the mutation, has

a lower PR capacity than Col-0.

This implies that the capacity of the PR and the PS activity are

balanced in order to prevent accumulation of the toxic intermediates

2-PG, glycolate, and glyoxylate. While this is physiologically reason-

able, the question remains, why PR flux is reduced in acclimated

plants.

4.2 | N assimilation

To determine whether acclimation of PS and reduced PR are causally

linked, we developed a mechanistic model and identified kinetic

parameters that were used for flux calculation of C and N fixation

(Figures 3 and 4). For simulations, the upper boundaries for de novo N

fixation were set to lower values during the night. The physiological

background for this is high demand for reducing equivalents that are

generated during PS in the light period (Farré & Weise, 2012; Gibon

et al., 2006). Simulations of metabolite dynamics over a full diurnal

cycle revealed an impact of PR on de novo N assimilation. Remarkably,

non-acclimated plants shifted to high CO2 for not more than 48 h

showed higher de novo N fixation as compared to acclimated plants

(Figure 4). Hence, long-term exposure to high CO2 reduced N acquisi-

tion, resulting in an increased C/N ratio. This has also been observed

by Jauregui et al. (2016) and coincided with halving of the foliar

ammonium content, while nitrate content remained unchanged.

While the pathways of PS, PR, and N fixation involve various sub-

cellular compartments, compartmentalization was not included in the

model, because metabolite measurements were not subcellulary

resolved. Thus, the reported concentrations of Gly and Ser in whole

cell extracts very likely underestimate the local concentrations in

mitochondria and peroxisomes. In case of the local concentration

were higher than disclosed here, fluxes would be larger, resulting in

higher turnover between Cit and AA. While this would change the

absolute fluxes, relations reported for genotypes and treatments

would not be affected. Our simulations indicated that at eCO2 re-

fixation of ammonium released during Gly cleavage was low due to

low PR activity (Figure 4 and Table 2). Thus, under eCO2, only a small

amount of N is deposited in the form of Gly and Ser, two AAs with

very low carbon content. An important consequence of reduced Gly

turnover in the peroxisome is a low rate of glutamate transamination

and, therefore, release of α-KG becomes restricted (Bloom

et al., 2020). Because α-KG is the prime carbon skeleton for de novo

AA production, this could negatively affect de novo N acquisition, thus

leading to an elevated C/N ratio. Hodges (2002) reported that provi-

sion of α-KG by mitochondrial isocitrate-dehydrogenase should be

inhibited in the light due to the production of NADH. Alternatively,

α-KG could be produced by aspartate transaminase, but this would

not create a net flux of N into the AA pool. Thus, deposition of already

fixed N in AAs with low C content could be essential for effective de

novo N assimilation. This concept puts PR into the role of a storage

pathway for assimilated N during the light phase, when, because of a

non-cyclic TCA (Sweetlove et al., 2010), provision of carbon for AA

synthesis is limited. Gauthier et al. (2010) pointed out that C stored

during the previous night has to be re-mobilized in order to supply

α-KG for de novo N assimilation. Our data substantiates this finding by

demonstrating that N present within the α-KG family of AA can tem-

porarily be stored in the PR pathway in order to increase α-KG avail-

ability for de novo N assimilation. This is also supported by the finding

that the non-acclimated hpr1-1 mutant, which stores large amounts of

Gly and Ser, showed the highest de novo fixation of N and, in accor-

dance with that, had elevated total AA content.

It should also be mentioned that eCO2 may negatively affect N

assimilation by additional mechanisms, such as the inhibited transport

of nitrite into the plastids and inhibition of succinate dehydrogenase,

thus lowering energy provision for N assimilation (Asensio

et al., 2015). These effects cannot be addressed in the mechanistic

model presented here and may potentially add to the inhibition of de

novo N assimilation. However, Bloom et al. (2014) showed that the

impact of eCO2 on nitrate assimilation is the most important effect,

thus emphasizing the importance of the provision of carbon skeletons

for N assimilation and the storage of N in the PR pathway.

Besides the N storage function, reduced PR turnover could also

affect malate availability in the cytosol. As proposed by Bloom

et al. (2010) and Rachmilevitch et al. (2004), the cutback in ammonium

release due to lower PR rates might cause decreased export of malate

from the plastids that are exchanged against α-KG as part of the

malate shuttle. Bloom et al. (1989) pointed to the high demand for

electrons produced by PS in the assimilation of nitrate. Malate in the
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cytosol could be required to produce NADH as substrate for the

nitrate-reductase. Long-term exposure to eCO2 might therefore cause

a shift in the C/N based on a shortage of NADH in the cytosol. In the

hpr1-1 mutant, however, large amounts of NADH are produced by

the glycine-cleavage enzyme (Leegood et al., 1995), and this could

relate to the high AA levels in this mutant. An unsolved question

regarding PR as promoter of malate transport into the cytosol and its

use for NADH production remains with its function also in the

exchange against glutamate produced in the plastids (Nunes-Nesi

et al., 2010; Renné et al., 2003). This transport is essential for provid-

ing glutamate for the transamination that converts glyoxylate into Gly.

Thus, the malate transport hypothesis may not be able to fully explain

the benefits of PR for N assimilation.

4.3 | Metabolic dysfunctions in the hpr1-1 mutant
at ambient CO2 concentrations

The design of the current study involved plants exposed to eCO2

either long-term or short-term to uncover mechanisms of eCO2

acclimation. Thus, the metabolic effects of the hpr1-1 mutation

under ambient CO2 are not immediately visible. However, consider-

ing literature data and metabolic features of non-acclimated hpr1-1

plants, some peculiarities of the mutant became obvious. The hpr1-1

mutant had high AA as well as starch and citrate levels, but never-

theless produced less biomass. Timm et al. (2010) and Li et al. (2019)

described a chlorotic phenotype, and this was attributed to a possi-

ble intoxication by glycolate, glyoxylate or 2-phospho-glycolate

(Dellero et al., 2016). After a 48 h shift to eCO2, we observed

reduced hexose levels and higher dark respiration in hpr1-1 as com-

pared to wild type, as well as increased hexokinase activity, indicat-

ing enhanced catabolism. This is supported by low MF levels and an

accumulation of α-KG especially during the night. While it is very

likely that this relates to processing of the high Gly and Ser stock

that piled up under ambient CO2 (Table S2), it also demonstrates a

metabolic shift from sugar to carboxylate metabolism. This is accom-

panied by strongly elevated phosphate levels, which are inhibitory

to SPS and cytosolic fructose-bisphosphate phosphatase via stimula-

tion of fructose-6-phosphate-2-kinase. It could thus be envisaged

that hpr1-1 is limited in carbohydrate supply and, hence, in provision

of cell wall material for growth. However, our flux calculations also

point to an additional problem. Turnover of Gly was strongly

expanded into the night in hpr1-1 (Figure 2) and may thus fall into a

period of low abundance of glutamine synthetase 2 (GS2), which is

responsible for re-fixation of ammonia. Seabra et al. (2013) have

shown that GS2 abundance is low during the night, and although

posttranslational regulation might compensate for low protein abun-

dance under normal conditions, this may not suffice for the high Gly

levels present in hpr1-1, which may then lead to accumulation of

toxic levels of ammonia. However, it cannot be excluded that non-

enzymatic decarboxylation of hydroxypyruvate occurs in hpr1-1,

which, as suggested by Cousins et al. (2011), would lead to intoxica-

tion by glycolate.

5 | CONCLUSIONS

Our model is capable of describing the fluxes between the AA and

Cit/α-KG pools, thus allowing the assessment of N re-fixation and de

novo assimilation. Simulations for conditions of varied PR activity rev-

ealed that the storage capacity of the PR pathway for N in the form of

Gly and Ser is correlated with the level of de novo N assimilation.

Reduced PR activity after long-term eCO2 exposure therefore appears

to at least contribute to photosynthetic acclimation to eCO2 by creat-

ing a C/N imbalance.
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Supporting Information

Table S1: Means ± SD of dark respiration in µmol/gFW*h (n = 12, 10, 11, and 12 for Col-0 and hpr1-1 
acclimated and non-acclimated to elevated CO2 respectivly). ANOVA for genotype and treatment 
revealed a significant interaction (P < 2-16). TukeyHSD is presented. Groups not sharing the same letter 
are significantly different.

Genotype and condition Dark respiration

Col-0 non-acclimated -20.99 ± 5.49b

Col-0 acclimated -21.29 ± 5.90b

hpr1-1 non-acclimated -30.38 ± 6.35a

hpr1-1 acclimated -22.23 ± 4.08b

Table S2: Means ± SD of metabolites measured at ambient CO2 concentrations vs. data from 48 h of elevated 
CO2 concentrations (n = 5). 

Begin of light period End of light period

Ambient CO2 Elevated CO2 Ambient CO2 Elevated CO2

Metabolites Col-0 hpr1-1 Col-0 hpr1-1 Col-0 hpr1-1 Col-0 hpr1-1

Gly 0.054
± 0.015 

0.119 
± 0.061

0.015
± 0.003

0.019
± 0.004

0.225 
± 0.039

1.512 
± 0.366

0.15
± 0.055

0.33
± 0.16

Ser 0.513 
± 0.124

10.141 
± 3.62

0.43
± 0.17

0.91
± 0.40

1.085 
± 0.238

21.571
 ± 3.66

0.56
± 0.15

2.29
± 1.10

MF 9.45 
± 1.36

12.21 
± 2.63

7.627
± 4.27

4.85
± 0.91

19.55 
± 2.82

27.20 
± 2.76

12.33
± 3.39

14.99
± 3.68

Cit 11.76 
± 0.79

16.32 
± 1.13

11.426
± 2.138

21.62
± 1.28

6.65 
± 0.33

10.73 
± 1.22

11.177
± 2.62

17.62
± 2.45
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Figure S1: Heatmap of metabolite profiling data (n = 5). Data are centered and scaled for each
metabolite. Dendrograms were calculated by hierarchical clustering. C = Col-0 and H = hpr1-1.
Acclimated  to  eCO2 = acc  and  non-acclimated  to  eCO2 = non,  respectively.  Numbers  display
simulation time points. Light period is from 0 to 8 h Amino-acid pool = AA and hexosephosphates
= HP 
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Figure S2: Means ± standard deviation of measured values (n = 5) and results of simulations for
hexosephosphates  (HP) (A),  sucrose (Suc)  (B),  glucose (Glc) (C) and fructose (Frc)  (D).  Lines
present the mean of 20 simulations. The measured values are indicated by dots. Light period is from
0 to  8  h.  To  prevent  overlapping  of  error  bars  calculated  for  identical  time points,  bars  were
displaced by 0.25 h.
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Figure S3: Diurnal dynamics of starch content.  Means ± standard deviation of measured values (n
= 6). Light period is from 0 to 8 h. To prevent overlapping of error bars calculated for identical time
points, bars were displaced by 0.25 h.
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Figure S4:  PCA of metabolite profiling data. Data are centered and scaled. (n = 5).
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Figure  S5:  Measured  values  of  enzymatic  activities  (n  =  5)  hydroxy-pyruvate-reductase  (A),
glucokinase (B), fructokinase (C) and  sucrose-phosphate-synthase (D). Lightperiod for 0, 4 and 8
h. Darkperiod at 16 h. 
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Code of ODE-Model:

auto MODEL (double &t, std::vector<double> &params, std::vector<double> &states, double & 
PS, double & PR, double & RESPIRATION, double & STARCH) -> void {

/*
Extracting the parameter
*/
// Sucrose cycling =======================
double SPS_VM = params[0];
double SPS_KM = params[1];

double INV_VM = params[2];
double INV_KM = params[3];
double INV_GLC_KI = params[4];
double INV_FRC_KI = params[5];

double HXK_GLC_VM = params[6];
double HXK_FRC_VM = params[7];
double HXK_GLC_KM = params[8];
double HXK_FRC_KM = params[9];
double HXK_GLC_KI = params[10];
double HXK_FRC_KI = params[11];

double SUC_EXP = params[12];

double HP_TO_MF = params[13];

double HP_TO_BM = params[14];

double AA_TO_BMEXP = 0.;
double AA_TO_BMEXP_Day = params[15];
double AA_TO_BMEXP_Night = params[16];
if(t < 8.2) {
AA_TO_BMEXP = AA_TO_BMEXP_Day;
} else {
AA_TO_BMEXP = AA_TO_BMEXP_Night;
}

// PR =====================================
double GLY_TO_SER_day = params[17];
double GLY_TO_SER_night = params[18];
double GLY_TO_SER = 0.;
if(t < 8.2) {
GLY_TO_SER = GLY_TO_SER_day;
} else {
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GLY_TO_SER = GLY_TO_SER_night;
}
double HPR_VM = params[19];
double HPR_KM = params[20];

double alpha = params[21];

double PRIM_FIX;
double prim_day = params[22];
double prim_night = params[23];
if(t < 8.2) {
PRIM_FIX = prim_day;
} else {
PRIM_FIX = prim_night;
}

double CIT_TO_MF = params[24];
double MF_TO_CIT = params[25];

double SER_TO_BM = params[26];
double SWITCH_HPR = params[27];
/*
Extracting states
*/
double HP = states[0];
double SUC = states[1];
double GLC = states[2];
double FRC = states[3];
double CIT = states[4];
double MF = states[5];
double AA = states[6];
double GLY = states[7];
double SER = states[8];

double SPS = (SPS_VM*HP)/(SPS_KM + HP);
double HXK_GLC = (HXK_GLC_VM*GLC) / (HXK_GLC_KM + GLC*(1. + 
HP/HXK_GLC_KI)); 
double HXK_FRC = (HXK_GLC_VM*FRC) / (HXK_FRC_KM + FRC*(1. + 
HP/HXK_FRC_KI)); 
double INV = (INV_VM*SUC) / (INV_KM*(1. + FRC/INV_FRC_KI) + SUC*(1. + 
GLC/INV_GLC_KI));
double HPR = (HPR_VM*SER) / (HPR_KM + SER); 

double hpr_adjusted = HPR;
if(t > 8.) {
hpr_adjusted = HPR*SWITCH_HPR;
}
HPR = hpr_adjusted;

PR = PR + alpha;
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double PR_prime = PR/2.;

double x = PR_prime - HPR;

if(x < 0.0) {

x = 0.;
HPR = PR_prime; // there is only a certain amount of glyoxylate available for HPR
}

double GLY_CLEAVAGE = GLY_TO_SER;

double G_T_N = GLY*GLY_CLEAVAGE; 
if((PR_prime - HPR) < 0.) {
G_T_N = G_T_N + HPR - PR_prime;
}

double refixation = GLY*GLY_CLEAVAGE*4.878; // N1 flux. --> *4.878 = (1/1.23)*6

double RESP_from_CA = 0.;
if( ((RESPIRATION + 0.5*GLY*GLY_CLEAVAGE)/6.) > 0.) {
RESP_from_CA = 0.;
} else {
RESP_from_CA = (RESPIRATION + 0.5*GLY*GLY_CLEAVAGE)/6.; 
}

double NETPS = PS/6. - (PR/6.) -(RESP_from_CA);
if(t > 8.) {
NETPS = PS/6.;
}

/*
Actual ODE System
*/
double ddtHP = states[0] = hpr_adjusted/2. + NETPS -STARCH - SPS + HXK_FRC + HXK_GLC 
- HP_TO_MF*HP - HP*HP_TO_BM;// C6 N0
double ddtSuc = states[1] = SPS - INV - SUC_EXP*SUC; // C6 N0
double ddtGlc = states[2] = INV - HXK_GLC; // C6 N0
double ddtFrc = states[3] = INV - HXK_FRC; // C6 N0
double ddtCIT = states[4] = x*0.813*AA - PRIM_FIX*CIT + MF*MF_TO_CIT - refixation -
CIT*CIT_TO_MF; // C6 N0 
double ddtMF = states[5] = HP_TO_MF*HP + CIT*CIT_TO_MF + RESP_from_CA -
MF*MF_TO_CIT; // C6 N0 
double ddtAA = states[6] = - AA_TO_BMEXP*AA -x*0.813*AA + refixation + 
PRIM_FIX*CIT; // C6 N1.23
double ddtGLY = states[7] = PR_prime -GLY*GLY_CLEAVAGE -GLY*GLY_TO_SER;//C2 N1!
double ddtSER = states[8] = GLY*GLY_TO_SER*(2./3.) + GLY*GLY_CLEAVAGE*(1./3.) - 
hpr_adjusted -SER_TO_BM*SER; //C3 N1!
}
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Summary

In this study plants were grown at either ambient or elevated CO2  concentrations with

nitrate  (NO3
-)  as  sole  N  source.  To  investigate  the  interaction  of  N  assimilation  with

photorespiration (PR) the mutant hpr1-1 was used. Using metabolic and enzymatic data of

a full diurnal cycle mathematical simulations were conducted. The results demonstrates

that  PR  stimulates  the  Glutamine-synthetase  2  (GS)/  Glutamine-Oxoglutarate-

aminotransferase (GOGAT) cycle. 

Therefore we propose the theory that the hpr1-1 mutant suffers from the need to maintain

high fluxes through the GS/GOGAT cycle as this demands a lot of cell energy. Beyond that

we show that carbon (C) and nitrogen (N) are differently distributed within the mutant. 

Moreover, we investigated the flux changes in N assimilation. We could show that nitrate

assimilation is not inhibited at eCO2. Furthermore, we analyzed that the ratio of biomass

production from hexosephosphates (HP) to nitrate assimilation showing that the ratio is

elevated at eCO2. Therefore we suggest that N is diluted at eCO2. 
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Significant statements

The mutant  hpr1-1  suffers  from increased  turnover  in  the  GS/GOGAT cycle.  Thereby

limitin growth of the plant. Nitrate reduction is not limited at eCO2 rather the ratio between

C and N assimilation is affected. 
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Introduction

In  the  course  of  climate  change  a  substantial  increase  of  the  atmospheric  CO2

concentration is expected in the 21th century (IPCC, 2014; Szulejko et al., 2017). Because

CO2  is  the substrate for  plant photosynthesis,  alteration in the CO2  level  have a direct

impact  on  plant  metabolism.  The  enzyme  ribulose-1,5-bisphosphat-carboxylase/-

oxygenase (RUBISCO) catalyses CO2 fixation, but can also use O2 as substrate, resulting

in the production of 2-phosphoglycolate, which is then further processed in the so called

photorespiration  (PR)  pathway  (Shih  et  al.,  2015).  As  carboxylation  is  preferred  over

oxygenation  (Sharkey,  1988) higher  CO2 concentrations  will  distinctly  reduce  the

probability of oxygenation in the course of climate change (Sharkey, 1988) 

In the course of PR two molecules of 2-phosphoglycolate (2-PG) are converted to one

molecule of glyceraldehyd-3-phosphate, which is fed back into the Calvin-Benzen-cycle

(Huma et al., 2018). More precisely, 2-PG is converted to glycolate which is subsequently

oxidized to glyoxylate, producing H2O2 as a byproduct in peroxisomes. Next, glyoxylate is

transaminated to glycine (Gly). The N source is either serine (Ser) or glutamate (Glu).

resulting in the production of hydroxypyruvate and  α-Ketoglutarate (α-KG), respectively

(Nunes-Nesi, Fernie and Stitt, 2010). Hydroxypyruvate is reduced by the hydroxypyruvate-

reductase  (HPR)  forming  glycerate  which  can  be  phosphorylated  to  glyceraldehyd-3-

phosphate (Timm et al., 2008a). Gly is transported to mitochondria, where it is used by the

glycine-decarboxylase (GDC),  converting Gly,  NAD+  and  Tetrahydrofolic  acid  to  NADH,

CO2, NH4
+

 and  N5, N10  -Methylene Tetrahydrofolic acid. The CO2  evolution in this step is

eponym for the PR (Rebeille, Neuburger and Douce, 1994). An second molecule of Gly is

converted  together  with  N5,  N10  -Methylene Tetrahydrofolic  acid  to  serine  (Ser)  by  the

enzyme  serine-hydroxymethyl  transferase  (SHMT).  Ser  is  transported  into  the

peroxisomes, where it serves as N donor for Gly production from glyoxylate (Nunes-Nesi,

Fernie  and  Stitt,  2010).  Besides  the  amount  of  energy  consumed  in  PR,  toxic

intermediates occur  such as glycolate and glyoxylate,  which must  be removed quickly

(Dellero  et  al.,  2016).  Even  though  the  entire  pathway,  starting  from  oxygenation  of

Rubisco, seems futile there is strong evidence that PR is crucial in the response to abiotic

stress (Voss et al., 2013), is important for photoprotection (Guan et al., 2004) and nitrogen

(N) assimilation (Cousins and Bloom, 2004; Bloom, 2015; Kraemer et al., 2021).
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Various studies have shown that eCO2 negatively affects N assimilation and that this is at

least partly due to reduced PR (Bloom et al., 2014; Bloom, 2015; Bloom, Kasemsap and

Rubio-Asensio,  2020;  Kraemer  et  al.,  2021).  As  mentioned  above  the  GDC  reaction

releases NH4
+ which has to be refixed. This is done in the Glutamine-synthetase 2 (GS)/

Glutamine-Oxoglutarate-aminotransferase  (GOGAT)  cycle.  GS  uses  NH4
+  and  Glu  to

produce glutamine (Gln), which is used for transamination of α-KG by GOGAT, yielding two

molecules Glu  (Huma  et al.,  2018).  Thus, PR has an impact on α-KG production and

amino acid homeostasis as well as the malate shuttle that transports α-KG into the plastids

(Nunes-Nesi, Fernie and Stitt,  2010). Notably,  Wallsgrove et al.,  1987 showed that GS

mutants suffer under non-photorespiratory conditions. 

Bloom, 2015 proposed that increased PR flux causes higher Mal levels in the cytosol that

maintain turnover in the GS/GOGAT cycle and, concomittantly, produce NADH serving as

substrate for nitrate-reductase (NR). However,  Andrews et al.,  2019 showed that eCO2

affects N assimilation independently on the form of N administered, and that no inhibition

of nitrate (Nit) assimilation was detectable. Thus, themechanism by which eCO2 interfers

with N assimilation remains unclear. 

In this study we focus on the role of PR fluxes for N assimilation. We compare Arabidopsis

thaliana  plants grown at either eCO2 or ambient CO2  (aCO2) concentration. To achieve

different PR fluxes, we used the hpr1-1 mutant which lacks peroxisomale HPR (Timm et

al., 2008a). This results in elevated levels of Gly and Ser  (Timm  et al., 2011), stunnted

growth at aCO2 and a chlorotic phenotype  (Li  et al., 2019). The mutant shows elevated

levels of α-KG and free amino-acids (Timm et al., 2021). We propose that growth reduction

in  the  mutant  is  at  least  partly  due  to  a  disturbed  energy  household  resulting  from

insufficient α-KG levels.

Kraemer et al., 2021 identified kinetic parameters for which the ode-solver (Hindmarsh et

al., 2005) yield an in silico solution of the state trajectories similar to the measured ones.

This  approach was previously  used by Nägele  et  al.,  2010 and  Küstner,  Nägele  and

Heyer, 2019.
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Results

Diurnal dynamics of metabolites

Net photosynthetic rates (PS) increased when plants were grown at eCO2. The wildtype

had significant higher  PS as compared to the mutant (P < 2e-16)  under both conditions

(Col-0 at aCO2  = 85.41 ± 12.75 µmol/g * h, Col-0 at eCO2 = 128.13 ± 44.96 µmol/g * h,

hpr1-1 at aCO2 = 76.78 ± 19.91 µmol/g * h, hpr1-1 at eCO2  = 98.56 ± 35.75 µmol/g * h).

These  results  are  in  accordance  with  previous  observations (Jauregui  et  al.,  2016).

Nevertheless,  a significant increase in MF over the day-time was observed for the  hpr1-1

mutant (P = 4.1e-10). Interestingly, also Cit amounts were elevated in the hpr1-1 mutant as

compared to the wildtype at aCO2 (P = 2.47e-07) and showed a different response to eCO2

with an increase in the wildtype (P = 0.0007089 t-test solely for wildtype) and a decline in

the mutant (P = 5.075e-06 t-test solely for hpr1-1). 

The PR intermediates Gly and Ser were elevated in the mutant under both conditions (Fig.

4 (a) and (b)).  As expected, the concentrations were higher at aCO2  compared to eCO2.

For  NH4
+, which is  also produced during PR, a significant genotype and treatment effect

was observed with  hpr1-1 showing elevated concentration and a general  decrease for

eCO2 (P = 5.67e-05 and P = 4.38e-06, respectively). 

Similar  to  the  NH4
+  concentration,  Glu  levels  (Fig.  5  (a))  were  elevated in  the  mutant

compared to the wildtype (P = 0.000771).  Additionally,  the Glu concentration  was also

significantly increased in mutant plants growing at aCO2  (P = 2.03e-10). This effect could

not be observed for Col-0. For Gln (Fig. 5 (b)) neither genotype nor treatment effects were

observed. However, when considering only the mutant data, a significant treatment effect

became obvious, showing elevated levels at aCO2 (P = 0.0163). The α-KG concentration

(Fig. 5 (c)) was strongly increased for hpr1-1 at aCO2, thus clearly pointing to an increased

Glu turnover for transamination of glyoxylate. 

Furthermore,  the  AA  pool  (Fig.  5  (d))  was elevated  in  the  mutant  (P  <  2.0e-16).

Considering only the mutant, also a significant treatment effect  was observed (P < 2.0e-

16). Thus, no indications for N-starvation in the mutant were found, which must therefore

be excluded as a reason for low biomass production of hpr1-1.
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Diurnal dynamics of enzyme kinetics

Three  enzyme  kinetics  were  determined in  order  to  use  them  as  lower  and  upper

boundaries in the optimization process (see below). For  NR (Fig. S2 (a)) Col-0 at eCO2

showed the highest activity. This  constituted a significant  genotype effect (P = 0.03461)

that  was  unexpected  considering  the  reported  decrease of  N assimilation  at  eCO2  by

Bloom et al., 2014. In addition, a time effect with highest activity at midday was observed

independent of the condition (P = 0.00165). GS activity (Fig. S2 (b)) was clearly affected

by treatment with higher activity at aCO2 (P = 4.14e-13). Notably, hpr1-1 had even higher

GS activity than Col-0 for plants grown at aCO2 (P = 0.00206). Probably, higher turnover

rates of the GS/GOGAT cycle are required in order to supply enough Glu as N provider for

PR. Not surprisingly a genotype effect was found for HPR activity (Fig,. S2 (c); P < 2e-16).

In addition, a treatment effect was detected, which was dependend on the hpr1-1 data (P =

0.0461). 

Model construction

To investigate the impact of elevated CO2 and altered PR flux on dynamics of metabolic

networks, an ODE-model was constructed that covered not only carbon but also nitrogen

metabolism. Simulations of the model can predict in silico time courses for all states, i.e. all

metabolites over full  diurnal  cycles. The only information needed for solving the ODE-

system are the starting condition for all states and a  set of kinetic parameters. 

The model used for this study is depicted in Fig. 1. Outside the system boundary lie the

states for O2, CO2, BM, Starch, EXP, and NO3
-. Within the system boundary the levels of

Gly, Ser, HP, MF, Cit, α-KG, Glu, Gln, AA and NH4
+ are considered for simulations. For the

fluxes hp2BM/EXP, hp2MF, Cit2MF, MF2Cit, Cit2KG, Ser2AA, AA2BM/EXP mass balance

kinetics  were used.  The  remaining  reactions  are  represented  as  Michaelis-Menten

kinetics. 

The  PR  is  represented  by  the  reaction  yielding Gly  and  is  calculated  according  to

(Sharkey, 1988). Gly is converted to Ser, the state of which was used as the precursor for

the HPR reaction that feeds into the HP pool. Ser can also flow into the AA pool during the

night representing the reaction of Ser-Pyruvate aminotransferase. 

The HP pool  consists  of  Glucose-6-Phosphate and Fructose-6-Phosphate,  which were

also used to represent all short-lived intermediates, e.g., the intermediates of the Calvin-

Benson-Cycle.  Photosynthesis was the input into  this pool. The HP pool  was set as the

precursor for cell wall synthesis and the supply of carbon to sinks. In the ODE-Model these
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reactions are represented by hp2BM/EXP. In addition, HP is the substrate and the product

of starch production and degradation, respectively. Starch production and degradation was

assumed to be linear. As suggested by Gauthier et al., 2010 and Tcherkez et al., 2009, Cit

is not or only to a very low extent produced during the day. Therefore, HP was used as the

precursor for the MF pool. In addition, Cit can also be used to produce MF. MF is used for

respiration  which  was  set constant  during  the  entire  simulation  time  as  described  by

Küstner et al., 2019  and Kraemer et al., 2021.  Due to the production of CO2  during the

GDC reaction the respiration was adjusted in order to prevent an erroneous C-balance. 

During the reaction from Gly to Ser NH4
+  is produced and, together with Glu can be used

by the GS to produce Gln (Fig. S2). Gln can transaminate α-KG, catalyzed by GOGAT, to

produce two molecules of Glu. Two reactions can yield α-KG. The first reaction is from Cit,

representing  the  TCA.  The  second  is   from Glu  and represents  the  reaction  of  Glu-

Glyoxylate-Aminotransferase. For Gly production, one molecule of N is required. This can

derive from Ser, which is represented by the HPR reaction in the model, or from Glu. The

PR flux into the system, the  HPR and the reaction from Glu to α-KG are all  N1-fluxes

(µmol N1/(gFW*h)].  Thus,  the three fluxes can be balanced,  and Glu to  α-KG  can be

expressed as PR minus HPR. 

Alternatively, NH4
+ can be produced by reduction of nitrate through NR (Fig. S2). Because

the  large  proportion  of   NO3
- stored  in  the  vacuole  cannot  be  used  by  NR,  the

concentration was adjusted, based on the cellular proportion of the cytosole  in mature

leaves (Koffler et al., 2013), which is . This results in about 5% of the total cell volume. NR

is the only flux that provides newly  assimilated N. Thus, the step towards AA production

was  linked  to  NR.  Accordingly, the  flux  from  Glu  to  AA was  implemented  using  NR

multiplied by a correction factor (correct) in the interval [0.5, 1], meaning that at least 50%

of new N is used for AA production. This factor was based on observations by Gauthier et

al.,  2010,  who  found  that  ca.  50%  of  Ser  consists  of  new  N.  The  photorespiration

intermediates (Gly and Ser) are the only other N sinks, where new N can be stored. Thus

the correction factor determines in which compounds new N is stored. 

Because PR flux as defined by  Sharkey, 1988, is directly dependent on photosynthesis,

the summand α was introduced to allow turnover of photorespiratory intermediates such

as glycolate during the night, 

The step from Gly to Ser is  catalyzed by the two enzymes  GDC and  SHMT.  For both

reactions Michaelis-Menten kinetics were  employed. However, turnover of  SHMT cannot

exceed that of GDC, and thus SHMT was limited to the GDC value. It is, however, known
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from the literature that the  GDC flux  may well be substantially  higher then the  SHMT

reaction (Rebeille, Neuburger and Douce, 1994). 

Because the model structure presented in Fig. 1 does not allow the amino acids Gly and

Ser to contribute to biomass via the  AA route, a separate pathway was established for

these compounds. Based on proteome information for Arabidopsis (Berardini et al., 2015),

a proportion of about 10% of the amino acids in protein is Ser. However, it is higher in

Rubisco, which makes up around one third of total protein (Atkinson et al., 2017), and thus

ca. 14% of the proteome of Arabidopsis consists of Ser. Thus, the flux from Ser to BM was

set as 14% of the flux from AA to BM/EXP.

Preliminary parameter identification

Several generations of parameter optimization using the above described model structure

yielded acceptable results for most states. However, particularly Glu levels during the night

were underestimated as can be seen in Fig. 2 (a). Choi et al., 1999 showed that the GS

enzyme  of  Canavalina  lineata is  activated  by  a  reduction  at  two  cysteine  residues

conserved  among all  known plastidial  GS  sequences.  The  authors  demonstrated  that

reductants like dithiothreitol increase the activity of the plastidial isoform. Because during

during protein extraction, dithiothreitol  was added (see Materials & Methods), it  is very

likely that GS activity especially during the night was overestimated.   Although it is known

that after light-off  the redox  milieu of the chloroplasts changes rapidly  (Dietz and Hell,

2015),  the extend of change in GS activity is unknown.  To mathematically assess GS

activity during the night, a numerical experiment was conducted (see Fig. 2 (b)). Activity of

GS  during  the  night  was  intentionally  reduced  in  steps  of  10%  and  10  simulations

conducted. As can be seen in Fig 2b, the cumulative error of simulations was minimized

for  nocturnal  GS activity  between  20%  and 50% of  the  non-inactivated enzyme.  This

agrees with the data of  Choi et al.,  1999, who showed that dithiothreitol  increases the

activity by ca. a factor of two. Thus, we added a factor in the model by which the GS can

be down-regulated by the optimizer during the night. 

Photorespiration  in  the  hpr1-1  mutant

For identification of the km parameter of the HPR reaction (Fig S2 (c)) a broad interval was

set, because this  reaction  integrates  activity  of  several  enzymes and transporters,  for

which no parameter boundaries are known. First Ser is transported out of the mitochondria
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and  then  into  the  peroxisomes,  where  it  is  de-aminated by  Serine-Glyoxylate

transaminase, before hydroxypyruvate is actually reduced by the HPR reaction. Finally the

product glycerate is phosphorylated by the glycerate-kinase, before it re-enters the Calvin-

Benson cycle. 

Notably, is that it is unclear whether in Col-0 HPR is the limiting step in the PR pathway.

The identified minimum of the km value for  HPR in Col-0 was  set as lower boundary for

simulations of the hpr1-1 mutant to prevent compensation of the lower vmax in the mutant

as  a  purely  mathematical  means  of  generating  higher  fluxes  despite  of  the  mutation.

However, using this approach the in silico Ser pool was slightly higher then the measured

Ser  pool  for  the mutant  at  eCO2  (Fig.  3)  albeit  not  at  aCO2.  Based on this  result  we

decreased the lower boundaries for the km value at eCO2 until decent Ser time courses are

obtained. After a decrease of 30% decent results were obtained (Fig. 4 (b)). Mentionable,

we decreased the lower boundary to 40% of the original value but still got the same result

as by a decrease of only 30%. 

Observed flux dynamics

Using the parameter sets obtained from the simulations, flux rates at time points of harvest

were calculated. Fig. 6 shows fluxes for PR relevant reactions. Surprisingly,  HPR (Fig. 6

(c)) shows high fluxes in the mutant (P < 2e-16) compared to wildtype. This resulted from

the extremely high substrate level and indicates a metabolic state clearly different from

wildtype. For instance the Ser levels at the beginning of the day are substantially higher in

the mutant compared to Col-0 at aCO2. As expected, the HPR flux was increased at aCO2

(P < 2e-16) due to the larger PR input flux. Similar GDC and SHMT (Fig. 6 (a) and (b)) are

increased  (  P <  2e-16 and  P <  2e-16,  respectively)  when  comparing  eCO2  to  aCO2.

Moreover the hpr1-1 mutant shows increased levels for GDC (P = 1.16e-10) compared to

Col-0. In contrast the SHMT reaction is increased in the wildtype compared to hpr1-1 even

though not significantly.

Flux within the GS/GOGAT cycle was tightly linked  to PR (Fig. 7). For  GS and  GOGAT

(Fig. 7 (a) and (b)) a genotype and treatment effect was observed (GS genotype = P < 2e-

16, GS treatment = P < 2e-16, GOGAT genotype = P < 2e-16 and GOGAT treatment = P <

2e-16). The highest flux was obtained for hpr1-1 at aCO2 followed by Col-0 at aCO2. Plants

grown at aCO2 showed a higher flux compared to plants grown at eCO2 independent of the

genotype. For plants grown at eCO2  also a slightly higher flux is observed for  hpr1-1 as

62



compared  to  Col-0,  supporting  an  earlier  finding  that  PR takes  place  even  at  a  CO 2

concentration of 1000 ppm (Kraemer et al., 2021). 

In  summary, the mutant showed a higher turnover in the GS/GOGAT cycle compared to

the wildtype. In addition, turnover in the GS/GOGAT cycle is decreased at eCO2. However,

the  fluxes  of  NR (Fig.  7  (c))  behaves  differently.  Analyzing  the  NR flux  revealed  a

significant genotype and treatment effect (P = 2.09e-06 and P = 0.00110), where Col-0

shows higher fluxes compared to the mutant and the flux is elevated at eCO 2 compared to

aCO2.  
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Discussion

Interaction of eCO2 and N-assimilation

Several studies have shown that eCO2 decreases the N content of plant biomass  (Bloom

et al., 2014; Andrews et al., 2020). However, it is unclear how N acquisition is affected. In

the current study, we found a higher vmax for NR in Col-0 at eCO2 and consistently elevated

fluxes for this condition (Fig. 7 (c)). 

Two possible reasons could explain why N assimilation did not catch up with C acquisition

at  eCO2.  Either  reduced  stomatal  conductance  could  have  led  to  reduced  nitrate

availability, or the lack of reducing equivalents could have slowed down the turnover of

NR. In contrast to observations for wheat under eCO2 (Del Pozo et al., 2007), we found no

indications  for  reduced  mineral  uptake  in  Arabidopsis wildtype  plants  (Fig  S3  (a)).

However, the Nitrate pool was significantly lower in the hpr1-1 mutant (Fig S3 (a)), pointing

to a decreased uptake capability in the mutant, probably because of energetic constraints

(see below). Thus our results, suppor earlier reports  (Andrews et al., 2019) that showed

reduced total N and shoot N, no matter of the N source supplied, to accompany increased

biomass formation under eCO2. For eCO2, we found a higher ratio of NR and GDC, which

both feed the pool of ammonium used for Gln synthesis  (Fig. 8 (a)). A lower GDC flux

would reduce the load on the GS/GOGAT cycle, and this should allow a higher proportion

of de novo N assimilation. Indeed, we calculated a lower flux for the GS/GOGAT cycle at

eCO2 (Fig. 7a, b), demonstrating a tight link between PR and GS/GOGAT turnover. This

link  has also been shown by  Häusler  et  al.,  1994 and Wallsgrove et  al.,  1987  ,  who

reported that barley lacking GS activity suffered at photorespiratory conditions. In addition,

it is known that even short incubation at eCO2  result in a reduction of GS and GOGAT

activity (Guo et al., 2013; Wu et al., 2020). Our finding that the GS/GOGAT cycle contained

significantly more newly assimilated N at eCO2 (Fig. 8 (a)) indicates that N incorporation is

improved at eCO2.  

In order to analyze whether enough N is assimilated at eCO2 for the production of biomass

the ratio between the flux HP2BMEXP and NR was analyzed (Fig. 8 (b)). The wildtype and

the mutant showing an increased ratio at eCO2  when compared to plants at aCO2. Thus,

more C is used for the production of structural carbon at eCO2. This is also substantiated
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by the finding that plants at eCO2 have increased starch levels (Fig. S3 (b)). Therefore, our

results are in support of the hypotheses of (Gifford et al., 2000, Kuehny et al., 1991 and

Wong, 1990,  stating that decreased N content of wildtype plants at eCO2 is a result of

dilution by elevated C levels due to increased PS (Taub & Wang, 2008). In the mutant,

however, we found a large pool of free amino acids (Fig. S1, 4 and 5), and this agrees with

earlier  findings  (Timm  et  al.,  2008b).  This  contrasts  with  the  stunted  growth,  reduced

biomass and chlorotic phenotype of the mutant (Timm et al., 2008a; Li et al., 2019). Based

on our results, we propose three different explanations for this phenotype. 

Phenotype of the hpr1-1 mutant

As  mentioned  above,  an  energetic  constraint  could  be  responsible  for  the  metabolic

disturbance in the mutant. As shown in Fig. 7, the fluxes for GS and GOGAT are increased

in  hpr1-1 especially at  aCO2.  Thus, large amounts of ATP and reduced ferredoxin are

required to sustain synthesis of Glu, which is needed for the removal of glyoxylate. Fig. 8

(a) depicts the NR-to-GDC ratio, which is highest in Col-0 at eCO2  followed by  hpr1-1

under  the  same condition  and the  wildtype at  aCO2.  Based on a  TukeyHSD test  the

wildtype at aCO2  differ significantly from Col-0 at eCO2.  Furthermore, is Col-0 at eCO2

significantly different when compared to the mutant at eCO2 and aCO2. However, the hpr1-

1 mutant at aCO2 lacks far behind. The lower this ratio, the more NH4
+ has to be refixed,

consuming ATP and reducing equivalents  without  net  gain of  biomass.  While  this  can

easily explain the already known (Timm et al., 2008a) fact that Col-0 at eCO2 yields the

highest biomass, followed - in this order - by hpr1-1 at eCO2, Col-0 at aCO2 and hpr1-1 at

aCO2,, it leaves unclear, why large amounts of amino acids accumulate in the mutant.

Alternatively,  the mutant  could  be poisoned by  photorespiratory  intermediates such as

phosphoglycolate, glycolate or glyoxylate. As can be seen in Fig. 6 the GDC and SHMT

fluxes are strongly increased in hpr1-1 at aCO2. Nevertheless, the fact that the HPR flux is

substantially  extended  into  the  night  shows  that  even  after  light-off  photorespiratory

intermediates have to be removed, which could not be metabolized during the day in spite

of increased GDC and SHMT activity. Accumulation of phosphoglycolate during the day

would strongly inhibit triose phosphate isomerase (Anderson, 1971), and this would block

C assimilation in the Calvin-Benson cycle. However, how should a bottelneck in the last

step  of  the  PR  pathway  increase  buildup  of  the  early  metabolites?  As  described  in
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Kraemer  et  al.,  2021 successful  simulations  of  our  metabolic  model  required

implementation of an additional source of the PR intermediate glycolate, and this is most

likely  provided  by  the  spontaneous  reaction  of  hydroxypyruvate  with  H2O2 that  yields

glycolate (Walton and Butt, 1981). This reaction is favored by the large amount of Ser in

the mutant at aCO2. Thus, more glycolate is produced in the hpr1-1 mutant, increasing the

probability of a toxic effect and also leading to an additional loss of assimilated carbon in

the form of CO2.  Besides intoxication by photorespiratory intermediates, it would also be

possible that an increased level of  NH4
+  (Fig. 4 (c)) could interfere with ATP production,

because  it  is  in  equilibrium  with  ammonia  that  acts  as  an  uncoupling  agent  of  ATP

synthesis. 

Finally, the metabolic bottleneck created by the hpr1-1 mutation causes large amounts of

C and N being bound in the form of Gly and Ser. As a consequence, the equilibrium of free

amino-acids, brought about by transamination reactions, is severely disturbed, and this

could interfere with protein synthesis in the shoot as well as the supply of the roots and

other sinks with AA. Not only N but also C compounds show altered distributions in hpr1-1

as compared to the wildtype (Fig. S1, and Fig. 5). Especially the carboxylates Cit, malate

and fumarate, were significantly enriched, while among soluble sugars only glucose was

reduced  in  hpr1-1.  While  this  may  argue  against  a  disturbed  sucrose  supply  to  sink

organs, the low nitrate content of hpr1-1 in aCO2 could indicate low carbon supply to the

root system. The low glucose level in the shoot could result enhanced use in the pentose

phosphate  pathway  as  suggested  by  Li  et  al.,  2019,  who  stated  that  high  pentose-

phosphate  pathway  activity  could  provide  additional  CO2 that  would  alleviate  the  PR

syndrome, but restrict biomass formation. Most likely a combination of all  three effects

contributes to the mutant phenotype at aCO2. 

Conclusion 

We showed that the hpr1-1 mutant suffers from several limitations. Besides a high demand

for ATP and reducing equivalents for the increased turnover of the GS/GOGAT cycle, a

possible intoxication by photorespiratory intermediates or NH4
+ could interfer with biomass

formation, and lastly but not least, an unfavorable redistribution of N and C compounds

could impact  protein and, ultimately, biomass production. Our study confirms a tight link

between PR and the GS/GOGAT cycle and adds to our understanding of how plant N

assimilation is affected by eCO2. 
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Material and Methods

Plant growth

Arabidopsis thaliana wildtype Col-0 and the mutant hpr1-1 (SALK067724) were grown in a

hydroponic culture for 50 days in a growth chamber with 8 h/16 h light/dark regime (100

µmol m-2 s-1; 22°C/16°C). For the first 17 days plants were grown at aCO2 (450 ±20 ppm).

Afterwards half of the plants were transferred to eCO2  (1000 ±20 ppm). The hydroponic

medium was as described in  Brauner et al., 2014 with the difference that no  NH4
+  was

supplied and the NO3
- concentration was reduced to 30% of the originial value. This asured

sufficient,  but  not  excess  supply  of  N  (Tab.  1).  Photosynthesis  measurements  were

conducted one week before harvesting as described by Küstner, Nägele and Heyer, 2019.

Using the result of the photosynthesis measurements the photorespiration was calculated

according to  Sharkey, 1988. For τ* the values published by  Kraemer et al.,  2021 were

used. 

Table 1: Test for sufficient N supply for Col-0 after growth for 50 days in hydroponic media.

% N of original
Media

100% 50% 30% 20% 10%

%  of  plants
with deficiency
syndrome 

46 20 0 0 0

 

Metabolite measurements

Gly, Ser, α-KG, glucose, fructose and sucrose were measured by quantitative GC-MS/MS.

Samples were extracted using 750 µL methanol with 25 nmol ribitol as internal standard.

After 15 min at 70°C followed by shaking for 10 min at RT samples were centrifuged (5

min 17,000 g). The supernatant was transfered to a new vessel, and 400 µL of H2O were

added.  After  incubation  for  10  min  at  95°C samples  were  agitated  for  10  min  at  RT.

Following  centrifugation  (5  min,  17,000g)  and  the  supernatants  were  pooled.

Subsequently, 300 µL  H2O and 200 µL chloroform were added. After centrifugation (2 min,

17,000 g) the two phases were seperated and the polar phase was dried in a speedvac

and  used  for  analysis.  Dried  samples  were  derivatized  using  20  µL of  methoxamine

dissolved in pyridine (40 mg/mL) by incubation for 90 min at 30°C. Next, 80 µL N-methyl-
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N-(trimethylsilyl)trifluoracetamide (MSTFA) were added  and the solution was incubated for

30 min at 50°C. Metabolites were measured by gas-chromatography coupled to mass-

spectrometry (GC-MS/MS). For injection, 1 µL of the derivatized sample was used. The

GC-MS/MS device was a GCMS-TQ8040 (Shimadzu, Munich, Germany) using helium as

carrier gas at a flow of 1.12 mL/min. The stationary phase was a 30 m Optima 5MS-0.25

µm fused silica capillary column. Injection temperature was 230°C. The transfer line and

ion  source  were  set  to  250°C and  200°C,  respectively.  The  initial  temperature  of  the

column oven was 80°C and this was increased by 15°C/min until the final temperature of

330°C was reached, which was held for 6 min. After a solvent delay of 4.6 min, spectra of

the MS device were recorded in the multiple reaction mode (MRM) with specific target-ions

for each metabolite. External standards were used for quantification.

Starch, hexosephosphates, carbonic acids (fumaric acid, malic acid and citric acid) and the

total amino-acid pool were quantified as described by Küstner, Nägele and Heyer, 2019.

NH4
+  was quantified according to  Vega-Mas, Asier and Marino, 2015. Glu and Gln were

measured according to (Graham and Aprison, 1966; Pérez-de la Mora et al., 1989).

Enzymatic activities

Activity of hydroxy-pyruvate-reductase was determined according to  Fernie, Bauwe and

Weber, 2017. GS activity was measured according to  Berteli et al., 1995; Gomes Silveira

et  al.,  2003.  Briefly,  protein  was  extracted  into  a  100  mM  Tris-HCl  (pH  7.6)  buffer

containing 2.5 mM Dithiothreitol and 10 mM MgCl2. The assay buffer contains 125 mM

Tris-HCl (pH 7.6), 5 mM ATP, 80 mM MgSO4, 125 mM Hydroxylamin-NaOH (pH 7) and 100

mM Glutamate (pH 7.2).  To an assay buffer volume of 80 µL, 120 µL of protein extract

were added and incubated for different time-points (0, 20, 25 and 30 min). To determine

the  background  an  assay  buffer  was  used  without  Hydroxylamin-NaOH  (pH  7).  The

reaction was stopped using 60 µL of a solution consisting of 1.5 mL 10% w/v FeCl3*6 H2O

in 0.2 N HCl,  1.5 mL 24% w/v Trichloracetat and 1.5 mL 20% v/v HCl. Afterwards, the

absorption  was  determined  at  540  nm.  For  calibration  curves  L-Glutaminsäure-γ-

Monohydroxamat was used
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All enzyme activities were determined at the beginning, middle and end of the light phase–

as well as in the middle of the night. Values for the remaining time-points were calculated

by spline interpolation.

Data analysis and statistics
Data evaluation,  normalization,  visualization and statistics were performed in  Microsoft

Excel® (Microsoft Office version 2010, http://www.microsoft.com) and the R software (The

R Project for Statistical Computing; http://www.r-project.org/). Parameter optimization was

performed in a way that in silico time courses matched the measured time courses best.

For optimization and simulations the R-package paropt was used (Krämer et al., 2021). 

69



ACKNOWLEDGMENTS

The authors would like to thank Prof Hermann Bauwe for a generous gift of seeds of the

hpr1-1 mutant  used  in  this  study.  Nadja  Beuttenmüller  and  Annika  Allinger  are

acknowledged  for  expert  plant  cultivation.  K.K.  received  a  scholarship

“Landesgraduiertenförderung  (LGF)”  of  the  Federal  State  of  Baden-Wuerttemberg

(Germany). 

AUTHOR CONTRIBUTIONS

Konrad Krämer: Designed the study, conducted experiments, developed the model, and

wrote the manuscript. Judith Brock: Conducted experiments. Arnd G. Heyer: Designed the

study and wrote the manuscript.

DATA AVAILABILITY STATEMENT

Raw data can be made available by the authors upon request.

70



References

Anderson, L. (1971) ‘Chloroplast And Cytoplasmic Enzymes In Pea Leaf Triose Phosphate
Isomerases’, BIOCHIMICA ET BIOPHYSICA ACTA, 22, pp. 237–244.

Andrews, M. et al. (2019) ‘Elevated CO2 effects on nitrogen assimilation and growth of C3
vascular  plants  are  similar  regardless  of  N-form assimilated’,  Journal  of  Experimental
Botany, 70(2), pp. 683–690. doi: 10.1093/jxb/ery371.

Andrews,  M.  et  al. (2020)  ‘Will  rising  atmospheric  CO2 concentration  inhibit  nitrate
assimilation  in  shoots  but  enhance  it  in  roots  of  C3  plants?’,  Physiologia  Plantarum,
170(1), pp. 40–45. doi: 10.1111/ppl.13096.

Atkinson,  N.  et  al. (2017)  ‘Rubisco  small  subunits  from  the  unicellular  green  alga
Chlamydomonas complement Rubisco-deficient mutants of Arabidopsis’, New Phytologist,
214(2), pp. 655–667. doi: 10.1111/nph.14414.

Berardini, T. Z. et al. (2015) ‘The arabidopsis information resource: Making and mining the
“gold standard”  annotated reference plant  genome’,  Genesis,  53(8),  pp.  474–485.  doi:
10.1002/dvg.22877.

Berteli,  F.  et al. (1995) ‘Salt stress increases ferredoxin dependent glutamate synthase‐
activity and protein level in the leaves of tomato’, Physiologia Plantarum, 93(2), pp. 259–
264. doi: 10.1111/j.1399-3054.1995.tb02226.x.

Bloom, A. J.  et al. (2014) ‘Nitrate assimilation is inhibited by elevated CO2 in field-grown
wheat’, Nature Climate Change, 4(6), pp. 477–480. doi: 10.1038/nclimate2183.

Bloom, A. J. (2015) ‘Photorespiration and nitrate assimilation: A major intersection between
plant  carbon  and  nitrogen’,  Photosynthesis  Research,  123(2),  pp.  117–128.  doi:
10.1007/s11120-014-0056-y.

Bloom,  A.  J.,  Kasemsap,  P.  and Rubio-Asensio,  J.  S.  (2020)  ‘Rising atmospheric  CO2

concentration inhibits nitrate assimilation in shoots but enhances it in roots of C3 plants’,
Physiologia Plantarum, 168(4), pp. 963–972. doi: 10.1111/ppl.13040.

Brauner, K. et al. (2014) ‘Exaggerated root respiration accounts for growth retardation in a
starchless  mutant  of  Arabidopsis  thaliana’,  Plant  Journal,  79(1),  pp.  82–91.  doi:
10.1111/tpj.12555.

Choi, Y. A., Kim, S. G. and Kwon, Y. M. (1999) ‘The plastidic glutamine synthetase activity
is directly modulated by means of redox change at two unique cysteine residues’,  Plant
Science, 149(2), pp. 175–182. doi: 10.1016/S0168-9452(99)00163-6.

Cousins,  A.  B.  and  Bloom,  A.  J.  (2004)  ‘Oxygen  consumption  during  leaf  nitrate
assimilation in a C3 and C4 plant: The role of mitochondrial respiration’,  Plant, Cell and
Environment, 27(12), pp. 1537–1545. doi: 10.1111/j.1365-3040.2004.01257.x.

71



Dellero, Y.  et al. (2016) ‘Photorespiratory glycolate – glyoxylate metabolism’,  Journal of
Experimental Botany, 67(10), pp. 3041–3052. doi: 10.1093/jxb/erw090.

Dietz,  K.  J.  and  Hell,  R.  (2015)  ‘Thiol  switches  in  redox  regulation  of  chloroplasts:
Balancing redox state, metabolism and oxidative stress’, Biological Chemistry, 396(5), pp.
483–494. doi: 10.1515/hsz-2014-0281.

Fernie,  A.  R.,  Bauwe,  H.  and  Weber,  A.  P.  M.  (2017)  Photorespiration  Methods  and
Protocols, Methods in Molecular Biology. Springer Nature. doi: 10.1007/978-1-4939-7225-
8_12.

Gauthier,  P.  P.  G.  et  al. (2010)  ‘In  folio  isotopic  tracing  demonstrates  that  nitrogen
assimilation  into  glutamate  is  mostly  independent  from  current  CO2 assimilation  in
illuminated  leaves  of  Brassica  napus’,  New  Phytologist,  185(4),  pp.  988–999.  doi:
10.1111/j.1469-8137.2009.03130.x.

Gifford, R. M., Barrett, D. J. and Lutze, J. L. (2000) ‘The effects of elevated CO2 on the C:N
and  C:P  mass  ratios  of  plant  tissues’,  Plant  and  Soil,  224(1),  pp.  1–14.  doi:
10.1023/A:1004790612630.

Gomes Silveira, J. A. et al. (2003) ‘Proline accumulation and glutamine synthetase activity
are increased by salt-induced proteolysis in cashew leaves’, Journal of Plant Physiology,
160(2), pp. 115–123. doi: 10.1078/0176-1617-00890.

Graham,  L.  T.  and  Aprison,  M.  H.  (1966)  ‘Fluorometric  Determination  of  Aspartate,
Glutamate,  and  gamma-Aminobutyrate  in  Nerve  Tissue  Using  Enzymic  Methods’,
Analytical Biochemistry, 15(3), pp. 487–497.

Guan, X. Q. et al. (2004) ‘Photoprotective function of photorespiration in several grapevine
cultivars  under  drought  stress’,  Photosynthetica,  42(1),  pp.  31–36.  doi:
10.1023/B:PHOT.0000040566.55149.52.

Guo,  H.  et  al. (2013)  ‘Elevated  CO2 modifies  N  acquisition  of  Medicago  truncatulaby
enhancing  N  fixation  and  reducing  nitrate  uptake  from  soil’,  PLoS  ONE,  8(12).  doi:
10.1371/journal.pone.0081373.

Häusler, R. E., Lea, P. J. and Leegood, R. C. (1994) ‘Control of photosynthesis in barley
leaves with reduced activities of glutamine synthetase or glutamate synthase - II. Control
of  electron  transport  and  CO2 assimilation’,  Planta,  194(3),  pp.  418–435.  doi:
10.1007/BF00197543.

Hindmarsh, A. C.  et al. (2005) ‘SUNDIALS: Suite of nonlinear and differential/algebraic
equation solvers’,  ACM Transactions on Mathematical Software, 31(3), pp. 363–396. doi:
10.1145/1089014.1089020.

Huma, B. et al. (2018) ‘Stoichiometric analysis of the energetics and metabolic impact of
photorespiration in C3 plants’, Plant Journal, 96(6), pp. 1228–1241. doi: 10.1111/tpj.14105.

IPCC (2014) ‘Summary for Policymakers’,  Climate Change 2014: Mitigation of Climate
Change.  Contribution  of  Working  Group  III  to  the  Fifth  Assessment  Report  of  the
Intergovernmental Panel on Climate Change, pp. 1–33. doi: 10.1017/CBO9781107415324.

72



Jauregui,  I.  et  al. (2016)  ‘Root-shoot  interactions explain  the reduction  of  leaf  mineral
content  in  Arabidopsis  plants  grown  under  elevated  [CO2]  conditions’,  Physiologia
Plantarum, pp. 65–79. doi: 10.1111/ppl.12417.

Koffler,  B.  E.  et  al. (2013)  ‘High  resolution  imaging  of  subcellular  glutathione
concentrations  by  quantitative  immunoelectron  microscopy  in  different  leaf  areas  of
Arabidopsis’, Micron, 45, pp. 119–128. doi: 10.1016/j.micron.2012.11.006.

Kraemer,  K.  et  al. (2021)  ‘Acclimation  to  elevated  CO2 affects  the  C  /  N  balance  by
reducing de novo N-assimilation’,  Physiologia Plantarum,  (August 2021), pp. 1–13. doi:
10.1111/ppl.13615.

Krämer,  K.  et  al. (2021)  ‘paropt:  Parameter  Optimizing of  ODE-Systems’.  Available at:
https://cran.r-project.org/package=paropt.

Kuehny, J. S.  et al. (1991) ‘Nutrient dilution by starch in CO2-enriched chrysanthemum’,
Journal of Experimental Botany, 42(6), pp. 711–716. doi: 10.1093/jxb/42.6.711.

Küstner, L., Nägele, T. and Heyer, A. G. (2019) ‘Mathematical modeling of diurnal patterns
of carbon allocation to shoot and root in Arabidopsis thaliana’,  npj Systems Biology and
Applications, 5(1), pp. 1–11. doi: 10.1038/s41540-018-0080-1.

Li,  J.  et  al. (2019)  ‘A cytosolic  bypass  and  g6p  shunt  in  plants  lacking  peroxisomal
hydroxypyruvate  reductase1’,  Plant  Physiology,  180(2),  pp.  783–792.  doi:
10.1104/pp.19.00256.

Nägele, T. et al. (2010) ‘Mathematical Modeling of the Central Carbohydrate Metabolism in
Arabidopsis Reveals a Substantial Regulatory Influence of Vacuolar Invertase on Whole
Plant  Carbon  Metabolism’,  Plant  Physiology,  153(1),  pp.  260–272.  doi:
10.1104/pp.110.154443.

Nunes-Nesi,  A.,  Fernie,  A.  R.  and  Stitt,  M.  (2010)  ‘Metabolic  and  signaling  aspects
underpinning the regulation of plant carbon nitrogen interactions’,  Molecular Plant, 3(6),
pp. 973–996. doi: 10.1093/mp/ssq049.

Pérez-de la Mora, M.  et al. (1989) ‘A glutamate dehydrogenase-based method for the
assay  of  l-glutamic  acid:  Formation  of  pyridine  nucleotide  fluorescent  derivatives’,
Analytical Biochemistry, 180(2), pp. 248–252. doi: 10.1016/0003-2697(89)90425-9.

Del Pozo, A. et al. (2007) ‘Gas exchange acclimation to elevated CO2 in upper-sunlit and
lower-shaded canopy leaves in relation to nitrogen acquisition and partitioning in wheat
grown in field chambers’,  Environmental and Experimental Botany,  59(3), pp. 371–380.
doi: 10.1016/j.envexpbot.2006.04.009.

Rebeille,  F.,  Neuburger,  M.  and  Douce,  R.  (1994)  ‘Interaction  between  glycine
decarboxylase,  serine  hydroxymethyltransferase  and tetrahydrofolate  polyglutamates in
pea leaf mitochondria’, Biochemical Journal, 302(1), pp. 223–228. doi: 10.1042/bj3020223.

Sharkey,  T.  D.  (1988)  ‘Estimating  the  rate  of  photorespiration  in  leaves’,  Physiologia
Plantarum, 73(1), pp. 147–152. doi: 10.1111/j.1399-3054.1988.tb09205.x.

73



Shih, P. M. et al. (2015) ‘Biochemical characterization of predicted Precambrian RuBisCO’,
Nature Communications, 7. doi: 10.1038/ncomms10382.

Stitt,  M.  and  Krapp,   a  (1999)  ‘The  interaction  between  elevated  carbon  dioxide  and
nitrogen  nutrition:  the  physiological  and  molecular  background’,  Plant,  Cell  and
Environment, 22, pp. 553–621. doi: 10.1046/j.1365-3040.1999.00386.x.

Szulejko,  J.  E.  et  al. (2017)  ‘Global  warming  projections  to  2100  using  simple  CO2
greenhouse gas modeling and comments on CO2 climate sensitivity factor’,  Atmospheric
Pollution Research, 8(1), pp. 136–140. doi: 10.1016/j.apr.2016.08.002.

Taub, D. R. and Wang, X. (2008) ‘Why are nitrogen concentrations in plant tissues lower
under elevated CO2? A critical examination of the hypotheses’, Journal of Integrative Plant
Biology, 50(11), pp. 1365–1374. doi: 10.1111/j.1744-7909.2008.00754.x.

Tcherkez, G. et al. (2009) ‘In folio respiratory fluxomics revealed by 13C isotopic labeling
and H/D isotope effects highlight the noncyclic nature of the tricarboxylic acid “cycle” in
illuminated leaves’, Plant Physiology, 151(2), pp. 620–630. doi: 10.1104/pp.109.142976.

Timm, S.  et  al. (2008a)  ‘A cytosolic  pathway for  the conversion of  hydroxypyruvate to
glycerate during photorespiration in Arabidopsis’,  Plant Cell, 20(10), pp. 2848–2859. doi:
10.1105/tpc.108.062265.

Timm,  S.  et  al. (2011)  ‘The  hydroxypyruvate-reducing  system  in  arabidopsis:  Multiple
enzymes  for  the  same  end’,  Plant  Physiology,  155(2),  pp.  694–705.  doi:
10.1104/pp.110.166538.

Timm, S. et al. (2021) ‘Metabolite profiling in arabidopsis thaliana with moderately impaired
photorespiration  reveals  novel  metabolic  links  and  compensatory  mechanisms  of
photorespiration’, Metabolites, 11(6). doi: 10.3390/metabo11060391.

Vega-Mas,  I.,  Asier,  S.  and  Marino,  D.  (2015)  ‘High-throughput  Quantification  of
Ammonium Content in Arabidopsis’, bio-protocol, 5, pp. 14–17.

Voss, I.  et al. (2013) ‘Emerging concept for the role of photorespiration as an important
part of  abiotic stress response’,  Plant Biology,  15(4),  pp. 713–722. doi: 10.1111/j.1438-
8677.2012.00710.x.

Wallsgrove, R. M. et al. (1987) ‘Barley Mutants Lacking Chloroplast Glutamine Synthetase
—Biochemical  and  Genetic  Analysis’,  Plant  Physiology,  83(1),  pp.  155–158.  doi:
10.1104/pp.83.1.155.

Walton, N. J. and Butt,  V. S. (1981) ‘Metabolism and decarboxylation of glycollate and
serine in leaf peroxisomes’, Planta, 153(3), pp. 225–231. doi: 10.1007/BF00383891.

Wong, S. C. (1990) ‘Elevated atmospheric partial pressure of CO2 and plant growth - II.
Non-structural carbohydrate content in cotton plants and its effect on growth parameters’,
Photosynthesis Research, 23(2), pp. 171–180. doi: 10.1007/BF00035008.

Wu, F. et al. (2020) ‘Response of nitrogen metabolism in masson pine needles to elevated
CO2’, Forests, 11(4), pp. 1–13. doi: 10.3390/F11040390.

74



Figures

Figure 1: Overview of the model. In black are the states indicated. Outside system boundary: O2,
CO2, BM, Starch, EXP, and NO3

-. Within the system boundary: Gly, Ser, HP, MF, Cit, α-KG, Glu,
Gln, AA and NH4

+. For the following fluxes mass balance kinetics are used: hp2BM/EXP, hp2MF,
Cit2MF,  MF2Cit,  Cit2KG,  Ser2AA,  AA2BM/EXP.  The  remaining  reactions  are  represented  as
Michaelis-Menten kinetics.
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Figure 2: GS inactivation. (a) Diurnal course of Glu for Col-0 at ambient
CO2 concentrations. Dots represent mean of measured values (n = 5 per
group).  Bares  indicate  the  error  of  measurements.  Line  represent  the
mean of 10 simulations. Light phase indicated by yellow bar and dark
phase  indicated  by  black  bar.  (b)  Error  plotted  against  the  factor
multiplied  on  GS  during  the  night.   Each  boxplot  represents  10
simulations  for Col-0 at ambient  CO2 concentrations.  The dashed line
indicates the threshold at which decent results for all states can be found.
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Figure 3: PR in hpr1-1 aCO2. Diurnal course of Ser for hpr1-1 at eCO2

concentrations.  Dots  represent  mean  of  measured  values  (n  =  5  per
group).  Bares  indicate  the  error  of  measurements.  Line  represent  the
mean  of  20  simulations  using  the  minimum  of  the  km  value  of  the
simulations of Col-0 aCO2 as lower boundary. Light phase indicated by
yellow bar and dark phase indicated by black bar.
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Figure 4: Diurnal course of photorespiration intermediates [(a) Gly, (b)
Ser] and ammonium [(c)].  In red the wildtype and in blue the hpr1-1
mutant.  Dashed  lines  and  triangles  represent  elevated  CO2

concentrations.  Continous  lines   and  closed  circles  represent  ambient
CO2 concentrations. Dots or triangles represent mean of measured values
(n  =  5  per  group).  Bares  indicate  the  error  of  measurements.  Line
represent the mean of 20 simulations. Light phase indicated by yellow bar
and dark phase indicated by black bar. 
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Figure 5: Diurnal course of (a) Glu, (b) Gln, α-KG (c) and total AA (d).
In  red  the  wildtype  and in  blue  the  hpr1-1  mutant.  Dashed lines  and
triangles  represent  elevated  CO2 concentrations.  Continous  lines   and
closed circles represent ambient CO2 concentrations. Dots or triangles
represent mean of measured values (n = 5 per group). Bares indicate the
error of measurements. Line represent the mean of 20 simulations. Light
phase indicated by yellow bar and dark phase indicated by black bar. 
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Figure  6:  Diurnal  course  of  fluxes  for  GDC (a),  SHMT (b)  and HPR (c).  In  red  the
wildtype  and  in  blue  the  hpr1-1  mutant.  Dashed  boxplots  represent  ambient  CO2

concentrations. Dotted boxplots represent elevated CO2 concentrations. Data based on 20
simulations. Light phase indicated by yellow bar and dark phase indicated by black bar.
Boxplots are dodged by 0.25 h in order to prevent overlapping.
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Figure 7: Diurnal course of fluxes for GS (a), GOGAT (b) and NR (c). In red the 
wildtype and in blue the hpr1-1 mutant. Dashed boxplots represent ambient CO2 
concentrations. Dotted boxplots represent elevated CO2 concentrations. Data based on 
20 simulations. Light phase indicated by yellow bar and dark phase indicated by black 
bar. Boxplots are dodged by 0.25 h in order to prevent overlapping. 
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Figure 8: Ratio of NR to GDC during the day (a). Ratio of HP2BMEXP
to  NR  during  the  day  (b).  Dashed  boxplots  represent  ambient  CO2

concentrations. Dotted boxplots represent elevated CO2 concentrations.
Data based on 20 simulations. Boxplots are dodged by 0.25 h in order to
prevent overlapping. 
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Figure S1:  Diurnal  course of (a)  HP,  (b) MF, and Cit  (c).  In  red the
wildtype  and  in  blue  the  hpr1-1  mutant.  Dashed  lines  and  triangles
represent  elevated  CO2 concentrations.  Continous  lines   and  closed
circles represent ambient CO2 concentrations. Dots or triangles represent
mean of measured values (n = 5 per group). Bares indicate the error of
measurements. Line represent the mean of 20 simulations.  Light phase
indicated by yellow bar and dark phase indicated by black bar. 
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Figure  S2:  Diurnal  course  of  measured activities  (at  least  n  = 5 per
group) for (a) NR, (b) GS, and HPR (c). In red the wildtype and in blue
the  hpr1-1  mutant.  Dashed  boxplots  represent  ambient  CO2

concentrations. Dotted boxplots represent elevated CO2 concentrations.
Light phase indicated by yellow bar and dark phase indicated by black
bar. Boxplots are dodged by 0.25 h in order to prevent overlapping. 
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Figure S3: Nitrate conc. (n = 40) (a) Starch conc. at the beginning ad end
of day (n = 5 per group) (b). In red the wildtype and in blue the hpr1-1
mutant. Dashed boxplots represent ambient CO2 concentrations. Dotted
boxplots represent elevated CO2 concentrations. Light phase indicated by
yellow bar and dark phase indicated by black bar. Boxplots are dodged
by 0.25 h in order to prevent overlapping. 
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2 optimizer

R topics documented:
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Index 10

optimizer Optimize parameters of ode-systems

Description

Optimize parameters used in an ode equation in order to match values defined in the state-data.frame

Usage

optimizer(
integration_times,
ode_system,
relative_tolerance,
absolute_tolerances,
lb,
ub,
states,
npop,
ngen,
error,
solvertype

)

Arguments

integration_times

a vector containing the time course to solve the ode-system (see Details for more
Information)

ode_system the ode-system which will be integrated by the solver (see Details for more
Information).

relative_tolerance

a number defining the relative tolerance used by the ode-solver.
absolute_tolerances

a vector containing the absolute tolerance(s) for each state used by the ode-
solver.

lb a data.frame containing the lower bounds for the parameters (see Details for
more Information).
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optimizer 3

ub a data.frame containing the upper bounds for the parameters (see Details for
more Information).

states a data.frame containing the predetermined course of the states (see Details for
more Information).

npop a number defining the number of particles used by the Particle Swarm Optimizer.

ngen a number defining the number of generations the Particle Swarm Optimizer
(PSO) should run.

error a number defining a sufficient small error. When the PSO reach this value opti-
mization is stopped.

solvertype a string defining the type of solver which should be used (bdf, ADAMS, ERK
or ARK. see Details for more Information).

Details

The vector containing the time course to solve the ode-system should contain the same entries as
the time vector in the state-data.frame (it can be also be a different variable instead of time).

The ode system should be a Rcpp-function with a specific signature Rcpp::NumericVector ode(double
time, std::vector<double> parameter, Rcpp::NumericVector states). The first entry defines the time
point when the function is called. The second argument defines the parameter which should be
optimized. There exist two different types of parameters. Parameters can be either constant or
variabel. In order to calculate a variable parameter at a specific timepoint the Catmull-Rom-Spline
is used. This vector contains the already interpolated parameters at the specific time-point, in the
same order as defined in the data.frames containing the lower- and upper-boundaries. The last ar-
gument is a vector containing the states in the same order as defined in the data.frame containing
the state-information. Thus, it is obligatory that the state-derivates in the ode-system are in the
same order defined as in the data.frame. Furthermore, it is mandatory that the function return a
Rcpp::NumericVector with the same dimension as the input vector containing the states. The re-
sulting vector has to contain the right hand side of the ode-system.

For constant parameters use only the first row (below the headers) if other parameters are variable
use “NA“ in the following rows for the constant parameters.

For variable parameters at least four points are needed. If a variable parameter is not available at
every time point use “NA“ instead.

The two data.frames containg lower and upper-boundaries need the parameter in the same order.

The data.frame containing the state information should hold the time course in the first column.
The header-name time is compulsory. The following columns contain the states. Take care that the
states are in the same order defined in the ode system. If a state is not available use “NA“. This is
possible for every time points except the first one. The ode solver need a start value for each state
which is extracted from the first row of this file (below the headers).

The error between the solver output and the measured states is the sum of the absolute differences
divided by the number of time points. It is crucial that the states are in the same order in the text
file cointaining the state-information and in the ode-system to compare the states correctly!

For solving the ode system the SUNDIALS Software is used (https://computing.llnl.gov/projects/sundials).
The last argument defines the solver-type which is used during optimization: “bdf“, “ADAMS“,
“ERK“ or “ARK“. bdf = Backward Differentiation Formulas, ADAMS = Adams-Moulton, ERK =
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4 optimizer_pointer

explicite Runge-Kutta and ARK = implicite Runge-Kutta. All solvers are used in the NORMAL-
Step method in a for-loop using the time-points defined in the text-file containing the states as
output-points. The bdf- and ARK-Solver use the SUNLinSol_Dense as linear solver. Notably here
is that for the ARK-Solver the ode system is fully implicit solved (not only part of it).

Examples can be found in the vignette.

optimizer_pointer Optimize parameters of ode-systems

Description

Optimize parameters used in an ode equation in order to match values defined in the state-data.frame

Usage

optimizer_pointer(
integration_times,
ode_sys,
relative_tolerance,
absolute_tolerances,
lower,
upper,
states,
npop,
ngen,
error,
solvertype

)

Arguments

integration_times

a vector containing the time course to solve the ode-system (see Details for more
Information)

ode_sys the ode-system which will be integrated by the solver (see Details for more
Information).

relative_tolerance

a number defining the relative tolerance used by the ode-solver.
absolute_tolerances

a vector containing the absolute tolerance(s) for each state used by the ode-
solver.

lower a data.frame containing the lower bounds for the parameters (see Details for
more Information).

upper a data.frame containing the upper bounds for the parameters (see Details for
more Information).
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states a data.frame containing the predetermined course of the states (see Details for
more Information).

npop a number defining the number of particles used by the Particle Swarm Optimizer.

ngen a number defining the number of generations the Particle Swarm Optimizer
(PSO) should run.

error a number defining a sufficient small error. When the PSO reach this value opti-
mization is stopped.

solvertype a string defining the type of solver which should be used (bdf, ADAMS, ERK
or ARK. see Details for more Information).

Details

The vector containing the time course to solve the ode-system should contain the same entries as
the time vector in the state-data.frame (it can be also be a different variable instead of time).

The ode system should be of type Rcpp::XPtr<OS>. The OS is predefined in the package. The
function should possess the following signature: int ode(double &time, std::vector<double> &pa-
rameter, std::vector<double> &states). The first entry defines the time point when the function is
called. The second argument defines the parameter which should be optimized. There exist two
different types of parameters. Parameters can be either constant or variabel. In order to calculate
a variable parameter at a specific timepoint the Catmull-Rom-Spline is used. This vector contains
the already interpolated parameters at the specific time-point, in the same order as defined in the
data.frames containing the lower- and upper-boundaries. The last argument is a vector containing
the states in the same order as defined in the data.frame containing the state-information. Thus,
it is obligatory that the state-derivates in the ode-system are in the same order defined as in the
data.frame. Within the function the new states have to be saved in the states-vector. Please be aware
that when using the approach with the Rcpp::XPtr the optimization is run in parallel. Thus, the
function has to be thread-safe (among other things don’t use any R Code)!

For constant parameters use only the first row (below the headers) if other parameters are variable
use “NA“ in the following rows for the constant parameters.

For variable parameters at least four points are needed. If a variable parameter is not available at
every time point use “NA“ instead.

The two data.frames containg lower and upper-boundaries need the parameter in the same order.

The data.frame containing the state information should hold the time course in the first column.
The header-name time is compulsory. The following columns contain the states. Take care that the
states are in the same order defined in the ode system. If a state is not available use “NA“. This is
possible for every time points except the first one. The ode solver need a start value for each state
which is extracted from the first row of this file (below the headers).

The error between the solver output and the measured states is the sum of the absolute differences
divided by the number of time points. It is crucial that the states are in the same order in the text
file cointaining the state-information and in the ode-system to compare the states correctly!

For solving the ode system the SUNDIALS Software is used (https://computing.llnl.gov/projects/sundials).
The last argument defines the solver-type which is used during optimization: “bdf“, “ADAMS“,
“ERK“ or “ARK“. bdf = Backward Differentiation Formulas, ADAMS = Adams-Moulton, ERK =
explicite Runge-Kutta and ARK = implicite Runge-Kutta. All solvers are used in the NORMAL-
Step method in a for-loop using the time-points defined in the text-file containing the states as
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6 solve_ode_system

output-points. The bdf- and ARK-Solver use the SUNLinSol_Dense as linear solver. Notably here
is that for the ARK-Solver the ode system is fully implicit solved (not only part of it).

Examples can be found in the vignette.

solve_ode_system Solves ode-system and compare result to measured states

Description

Solves ode-system and compare result to measured states

Usage

solve_ode_system(
integration_times,
ode_system,
relative_tolerance,
absolute_tolerances,
start,
states,
solvertype

)

Arguments

integration_times

a vector containing the time course to solve the ode-system (see Details for more
Information)

ode_system the ode-system which will be integrated by the solver (see Details for more
Information).

relative_tolerance

a number defining the relative tolerance used by the ode-solver.

absolute_tolerances

a vector containing the absolute tolerance(s) for each state used by the ode-
solver.

start a data.frame containing a parameter-set (see Details for more Information).

states a data.frame containing the predetermined course of the states (see Details for
more Information).

solvertype a string defining the type of solver which should be used (bdf, ADAMS, ERK
or ARK. see Details for more Information).
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Details

The vector containing the time course to solve the ode-system should contain the same entries as
the time vector in the state-data.frame (it can be also be a different variable instead of time).

The ode system should be a Rcpp-function with a specific signature Rcpp::NumericVector ode(double
time, std::vector<double> parameter, Rcpp::NumericVector states). The first entry defines the time
point when the function is called. The second argument defines the parameter which should be
optimized. There exist two different types of parameters. Parameters can be either constant or
variabel. In order to calculate a variable parameter at a specific timepoint the Catmull-Rom-Spline
is used. This vector contains the already interpolated parameters at the specific time-point, in the
same order as defined in the data.frames containing the lower- and upper-boundaries. The last ar-
gument is a vector containing the states in the same order as defined in the data.frame containing
the state-information. Thus, it is obligatory that the state-derivates in the ode-system are in the
same order defined as in the data.frame. Furthermore, it is mandatory that the function return a
Rcpp::NumericVector with the same dimension as the input vector containing the states. The re-
sulting vector has to contain the right hand side of the ode-system.

For constant parameters use only the first row (below the headers) if other parameters are variable
use “NA“ in the following rows for the constant parameters.

For variable parameters at least four points are needed. If a variable parameter is not available at
every time point use “NA“ instead.

The data.frame containing the state information should hold the time course in the first column.
The header-name time is compulsory. The following columns contain the states. Take care that the
states are in the same order defined in the ode system. If a state is not available use “NA“. This is
possible for every time points except the first one. The ode solver need a start value for each state
which is extracted from the first row of this file (below the headers).

The error between the solver output and the measured states is the sum of the absolute differences
divided by the number of time points. It is crucial that the states are in the same order in the text
file cointaining the state-information and in the ode-system to compare the states correctly!

For solving the ode system the SUNDIALS Software is used (https://computing.llnl.gov/projects/sundials).
The last argument defines the solver-type which is used during optimization: “bdf“, “ADAMS“,
“ERK“ or “ARK“. bdf = Backward Differentiation Formulas, ADAMS = Adams-Moulton, ERK =
explicite Runge-Kutta and ARK = implicite Runge-Kutta. All solvers are used in the NORMAL-
Step method in a for-loop using the time-points defined in the text-file containing the states as
output-points. The bdf- and ARK-Solver use the SUNLinSol_Dense as linear solver. Notably here
is that for the ARK-Solver the ode system is fully implicit solved (not only part of it).

Examples can be found in the vignette.

solve_ode_system_pointer

Solves ode-system and compare result to measured states

Description

Solves ode-system and compare result to measured states
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8 solve_ode_system_pointer

Usage

solve_ode_system_pointer(
integration_times,
fctptr,
relative_tolerance,
absolute_tolerances,
start,
states,
solvertype

)

Arguments

integration_times

a vector containing the time course to solve the ode-system (see Details for more
Information)

fctptr is a pointer to the ode-system which will be integrated by the solver (see Details
for more Information).

relative_tolerance

a number defining the relative tolerance used by the ode-solver.
absolute_tolerances

a vector containing the absolute tolerance(s) for each state used by the ode-
solver.

start a data.frame containing a parameter-set (see Details for more Information).

states a data.frame containing the predetermined course of the states (see Details for
more Information).

solvertype a string defining the type of solver which should be used (bdf, ADAMS, ERK
or ARK. see Details for more Information).

Details

The vector containing the time course to solve the ode-system should contain the same entries as
the time vector in the state-data.frame (it can be also be a different variable instead of time).

The ode system should be of type Rcpp::XPtr<OS>. The OS is predefined in the package. The
function should possess the following signature: int ode(double &time, std::vector<double> &pa-
rameter, std::vector<double> &states). The first entry defines the time point when the function is
called. The second argument defines the parameter which should be optimized. There exist two
different types of parameters. Parameters can be either constant or variabel. In order to calculate
a variable parameter at a specific timepoint the Catmull-Rom-Spline is used. This vector contains
the already interpolated parameters at the specific time-point, in the same order as defined in the
data.frames containing the lower- and upper-boundaries. The last argument is a vector containing
the states in the same order as defined in the data.frame containing the state-information. Thus,
it is obligatory that the state-derivates in the ode-system are in the same order defined as in the
data.frame. Within the function the new states have to be saved in the states-vector.

For constant parameters use only the first row (below the headers) if other parameters are variable
use “NA“ in the following rows for the constant parameters.
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For variable parameters at least four points are needed. If a variable parameter is not available at
every time point use “NA“ instead.

The data.frame containing the state information should hold the time course in the first column.
The header-name time is compulsory. The following columns contain the states. Take care that the
states are in the same order defined in the ode system. If a state is not available use “NA“. This is
possible for every time points except the first one. The ode solver need a start value for each state
which is extracted from the first row of this file (below the headers).

The error between the solver output and the measured states is the sum of the absolute differences
divided by the number of time points. It is crucial that the states are in the same order in the text
file cointaining the state-information and in the ode-system to compare the states correctly!

For solving the ode system the SUNDIALS Software is used (https://computing.llnl.gov/projects/sundials).
The last argument defines the solver-type which is used during optimization: “bdf“, “ADAMS“,
“ERK“ or “ARK“. bdf = Backward Differentiation Formulas, ADAMS = Adams-Moulton, ERK =
explicite Runge-Kutta and ARK = implicite Runge-Kutta. All solvers are used in the NORMAL-
Step method in a for-loop using the time-points defined in the text-file containing the states as
output-points. The bdf- and ARK-Solver use the SUNLinSol_Dense as linear solver. Notably here
is that for the ARK-Solver the ode system is fully implicit solved (not only part of it).

Examples can be found in the vignette.
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How to use paropt
The package paropt is built to optimize the parameters of ode-systems. The aim is to match the output of
the in silico solution to previously measured states. The user has to supply an ode-system in the form of an
Rcpp-function or as an external pointer to a C++ function. The information about states and parameters
are passed on as data.frames. In this vignette, a predator-prey system is used as an example to demonstrate
how the functions of ‘paropt’ can be used.

Using a Rcpp-function
If using a Rcpp-function the following signature has to be fulfilled: ‘Rcpp::NumericVector ode(double t,
std::vector params, Rcpp::NumericVector y)’. The first entry defines the time point on which the function
is called. The second argument defines the parameter which will be optimized. Notably, the parameters
are in the same order as in the data.frames containing the information about the boundaries. The last
argument is a vector containing the states in the same order as defined in the data.frame containing the
state-information. Thus, the state-derivates in the ode-system must be defined in the same order as in the
data.frame. Furthermore, it is mandatory that the function return a Rcpp::NumericVector with the same
dimension as the input vector containing the states. The vector should contain the right-hand side of the
ode-system.

#include <Rcpp.h>

// [[Rcpp::export]]
Rcpp::NumericVector ode_system(double t, std::vector<double> params,

Rcpp::NumericVector states) {
Rcpp::NumericVector states_deriv(2);
double a = params[0];
double b = params[1];
double c = params[2];
double d = params[3];
double predator = states[0];
double prey = states[1];
double ddtpredator = states_deriv[0] =

1
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predator*c*prey - predator*d;
double ddtprey = states_deriv[1] =

prey*a - prey*b*predator;
return states_deriv;

}
/*** R
path <- system.file("examples",

package = "paropt")

# states
df <- read.table(paste(path,

"/states_LV.txt", sep = ""),
header = TRUE)

# parameter
lb <- data.frame(time = 0, a = 0.8,

b = 0.3, c = 0.09, d = 0.09)
ub <- data.frame(time = 0, a = 1.3,

b = 0.7, c = 0.4, d = 0.7)

# Optimizing
library(paropt)
set.seed(1)
output <- optimizer(integration_times = df$time,

ode_system = ode_system,
relative_tolerance = 1e-6,
absolute_tolerances = c(1e-8, 1e-8),
lb = lb, ub = ub, states = df,
npop = 40, ngen = 1000,
error = 0.0001, solvertype = "bdf")

kableExtra::kbl(output)

# Plots
par(mfrow = c(2,1))
plot(df$time, output$States[,1],

pch = 19, type = 'l',
ylab = "predator",
xlab = "time",
ylim = c(0, 30))

points(df$time,
states$n1, pch = 19,
col = "darkred", type = 'p')

legend(80, 30,
legend=c("in silico", "measured"),
col=c("black", "darkred"), lty=1, cex=0.8)

plot(df$time, output$States[,2],
pch = 19, type = 'l',
ylab = "prey",
xlab = "time", ylim = c(0, 65))

points(df$time,
states$n2,
pch = 19, col = "darkred",

2
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type = 'p')
legend(80, 60,

legend=c("in silico", "measured"),
col=c("black", "darkred"),
lty=1, cex=0.8)

# Solving
optimized_parameter <-

as.data.frame(output$Parameter)
names(optimized_parameter) <-

c("time", "a", "b", "c", "d")
output_solver <- solve_ode_system(

integration_times = df$time,
ode_system = ode_system,
relative_tolerance = 1e-6,
absolute_tolerances = c(1e-8, 1e-8),
start = optimized_parameter,
states = df, solvertype = "bdf")

output_solver
*/

Using an external pointer to a C++ function
If using an external pointer to a C++ function, the following signature is mandatory: int ode(double &t,
std::vector& params,std::vector& states). The arguments are in principle the same as in the Rcpp-function
approach. However, the right-hand side has to be stored in the input vector states. For instance, one could
first extract the content of the state vector by storing it in suitable variables. Afterwards, the vector states
can be filled with the right-hand side information which is defined by using the previously defined variables.
The order of the states and parameters has to be the same as in the data.frames to calculate the error
correctly and use the correct parameters.

It is crucial that the function is thread-safe!
// [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>
// [[Rcpp::depends(paropt)]]
// [[Rcpp::plugins(cpp11)]]

typedef int (*OS)(double &t,
std::vector<double> &params,
std::vector<double> &states);

int ode_system(double &t,
std::vector<double> &params,
std::vector<double> & states) {

double a = params[0];
double b = params[1];
double c = params[2];
double d = params[3];
double predator = states[0];
double prey = states[1];
states[0] = predator*c*prey - predator*d;
states[1] = prey*a - prey*b*predator;

3
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return 0;
}

// [[Rcpp::export]]
Rcpp::XPtr<OS> test_optimization() {

Rcpp::XPtr<OS> xpfun = Rcpp::XPtr<OS>(new OS(&ode_system));
return xpfun;

}

/*** R
#states
path <- system.file("examples",

package = "paropt")
states <- read.table(

paste(path,"/states_LV.txt", sep = ""),
header = T)

# parameter
lb <- data.frame(time = 0, a = 0.8,

b = 0.3, c = 0.09, d = 0.09)
ub <- data.frame(time = 0, a = 1.3,

b = 0.7, c = 0.4, d = 0.7)

# Optimizing
library(paropt)
set.seed(1)
df <- optimizer_pointer(

integration_times = states$time,
ode_sys = test_optimization(),
relative_tolerance = 1e-6,
absolute_tolerances = c(1e-8, 1e-8),
lower = lb, upper = ub, states = states,
npop = 40, ngen = 1000, error = 0.0001,
solvertype = "bdf")

df
# Plots
par(mfrow = c(2,1))
plot(df$time, output$States[,1],

pch = 19, type = 'l',
ylab = "predator",
xlab = "time",
ylim = c(0, 30))

points(df$time,
states$n1, pch = 19,
col = "darkred", type = 'p')

legend(80, 30,
legend=c("in silico", "measured"),
col=c("black", "darkred"), lty=1, cex=0.8)

plot(df$time, output$States[,2],
pch = 19, type = 'l',
ylab = "prey",

4
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Table 1: Example for states

time predator prey
0 10.0000000 10.0000000
2 0.5195882 0.2421567
4 0.4386158 0.2367276
6 0.4670779 0.1002269
8 0.8659140 0.6587734

10 0.5328101 0.1171064
12 0.5941835 NA
14 0.7752122 0.4206482
16 0.7011195 0.7855264
18 0.4713157 0.0121704
20 0.2323933 0.9040727
22 0.3483769 0.8297733
24 0.0598382 0.0510475

xlab = "time", ylim = c(0, 65))
points(df$time,

states$n2,
pch = 19, col = "darkred",
type = 'p')

legend(80, 60,
legend=c("in silico", "measured"),
col=c("black", "darkred"),
lty=1, cex=0.8)

# Solving
optimized_parameter <-

as.data.frame(df$Parameter)
names(optimized_parameter) <-

c("time", "a", "b", "c", "d")

output_solver <- solve_ode_system_pointer(
integration_times = states$time,
fctptr = test_optimization(),
relative_tolerance = 1e-6,
absolute_tolerances = c(1e-8, 1e-8),
start = optimized_parameter,
states = states, solvertype = "bdf")

output_solver
*/

State-input
The information of the states has to be supplied as a data.frame. The first column must be namee time.
This column contains the independent variable across which the solver integrates (it does not have to be
the time. In this document it is always called time). It is followed by the information of the states at the
specific time points. Notably, the order of the states is the same as in the ode-system to correctly calculate
the error. If a state is not available at all time points use ‘NA’ to ignore this state for error calculation at the
specified time point. However, the first line below the header cannot contain ‘NA’ as it contains the start
values for the ode-solver.
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Table 2: Example for the lower boundaries

time const variable
0 1 1
2 NA 2
4 NA 3
6 NA 4
8 NA 5

10 NA 6
12 NA 7
14 NA 8
16 NA 9
18 NA 10
20 NA 11
22 NA 12
24 NA 13

Table 3: Example for the upper boundaries

time const variable
0 2 20
2 NA 20
4 NA 20
6 NA 20
8 NA 20

10 NA 20
12 NA 20
14 NA 20
16 NA 20
18 NA 20
20 NA 20
22 NA 20
24 NA 20

Parameter-input
Constant parameters do not change their value during the integration of the ode-system. The boundaries for
these parameters have to be defined in the first row. Notably, the first column of the data.frames containing
the lower or upper boundaries is the time column. The name ‘time’ is mandatory for this column. If a
parameter is not constant, at least four different time-points are needed. The information for the parameter
at the time-points are fed into an interpolation-function to calculate values at each time-point the ode-system
is called. The interpolation is conducted in a wrapper-function around the actual ode-system. Thus, the
parameters passed on to the ode-system are the previously splined values for the specific time-point. For
instance if the ode-system is called at t = 3.5 the parameter ‘variable’ is not defined. In this case the
parameters have to be interpolated. This is conducted using a Catmull-Rom-Spline. The parameter-vector
passed to the ode-system already contains the splined parameters at timepoint t.

What happens during an evaluation of a parameterset
During the optimization the optimizer creates a bunch of possible solutions within the parameter boundaries.
Each solution is passed to the ode-solver which integrates along the time and returns the states at the time-
points specified in the data.frame containing the state-information. The in silico solution is compared to the
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measured states to evaluate the parameterset. The error used is the sum of the absolute differences between
in silico and measured states, divided by the number of timepoints.

Result of simulations
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Figure 1: Result for the predator data. Black: in silico values, Red: measured values

The arguments for function optimizer and optimizer_pointer

optimizer(integration_times, ode_system,
relative_tolerance, absolute_tolerances,
lb, ub, states,
npop, ngen, error, solvertype)

The first argument is the time-vector containing either the same information as defined in the time-column
defined in the data.frame containing the states (see Table1) or only a subset (it can only be shortened at the
end).
It is mandatory to start with the first entry of the time-column, however it is possible to stop at a certain
time-point before the last one. Thus, it is possible to optimize only a part of the problem.

The next argument is the compiled ode-system followed by the relative tolerance and the absolute toler-
ances that are used by the ode-solver. These are followed by the data.frames defining the lower and upper
boundaries of the parameter. Next the data.frame containing the state information is passed to the function.

To optimize the parameters a particle swarm optimizer (PSO) is used. Therefore, the number of particles
(npop = 40 is a good starting point for many problems) and the number of generations (ngen) have to be
passed to the function. The number of generations defines the maximum number of generations the PSO
should run. However, if the PSO finds a suitable parameter set which has an error below or equal a threshold
defined by the user it stops. This threshold is defined by the error-argument.
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Figure 2: Result for the prey data. Black: in silico values, Red: measured values

The last argument defines the type of solver to be used. Four different solver exist: ‘bdf’, ‘ADAMS’, ‘ERK’
and ‘ARK. All solvers are part of the SUNDIALS project. For details see ’https://computing.llnl.gov/
projects/sundials’ and Hindmarsh et al. (2005). The bdf solver is the backward differential formular solver
of CVODE and is best suited for stiff problems. It uses a dense matrix module (SUNDense_Matrix) and
the corresponding nonlinear solver (SUNLinsol_Dense). The ADAMS solver is the ADAMS-MOULTON
solver of CVODE and is most suitable for non-stiff problems. The ‘ERK’ solver is an explicit Runge-Kutta
solver which is like the ADAMS-MOULTON solver used for non-stiff-problems. The ‘ARK’ solver is a fully
implicite Runge-Kutta-solver that uses the same matrix and nonlinear solver module as ‘bdf’. The integration
itself occurs in a for-loop using the ‘CV_NORMAL’ step-function for all four solvers. If integration for a
specific parameter set is not possible the error is set to 1.79769e+308 (which is the maximum of a double).
If you want to test a specific parameter set just call the function ode_solving. The function requires the
same parameter as the optimizer. Naturally, the arguments for the PSO, the error-threshold as well as the
parameter lower- and upper-bounds are not needed.

In principle, the optimizer_pointer and solve_ode_system_pointer do the same as the functions optimizer
and solve_ode_system. However, they use an external pointer to a C++ function. Thus, they show a
better performance. Notably, it was necessary to change the PSO function for optimizer_pointer in order
to permit parallelization. Therefore even with the same seed, the results differ between optimizer and
optimizer_pointer.

Particle swarm optimizer (PSO)
This PSO-implementation is a modified version of ‘https://github.com/kthohr/optim’ (for a general overview
see Sengupta, Basak, and Peters (2018)). The PSO has several key features. First of all, a bunch (number of
particles defined by the user) of possible parameter sets is created within the boundaries defined by the user.
Each parameter set is called a particle. All particles together are called the swarm. Each possible parameter
set is passed to the solver which integrates the system. The result is used to calculate the error. Thus, each

8
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particle has a current solution and a current personal best value. Furthermore, each particle possesses a
neighborhood that consists of 0-3 other particles (for details see Akman, Akman, and Schaefer (2018)). The
PSO uses a combination of its history (personal best value) and the information of the best particle of the
neighborhood to change its current value. Notably, in this package, a randomly adaptive topology is used.
This means, that the neighborhood is recalculated each time when the global best solution (best solution of
the entire swarm) has not improved within one generation.
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2 translate

translate Translates a R function into a C++ function and returns an external
pointer (XPtr) to this function. Further information can be found in
the vignette: ’Detailed Documentation’.

Description

Translates a R function into a C++ function and returns an external pointer (XPtr) to this function.
Further information can be found in the vignette: ’Detailed Documentation’.

Usage

translate(f, verbose = FALSE, reference = FALSE)

Arguments

f The function which should be translated from R to C++.

verbose If set to true the output of RcppXPtrUtils::cppXPtr is printed.

reference If set to true the arguments are passed by reference.

Details

The following types are supported:

1. numeric vectors

2. numeric matrices

Variables can be either numeric vectors or matrices. Notably, it is possible that the variable change
the type within the function. It is possible to declare a variable of a scalar numeric data type.
This is done by adding ’_db’ to the end of the variable. Each time ’_db’ is found the variable
is declared as a scalar numeric data type. In this case the object cannot change its type!
The following functions are supported:

1. assignment: = and <-

2. allocation: vector and matrix

3. information about objects: length and dim

4. Basic operations: +, -, *, /

5. Indices: [] and at

6. mathematical functions: sin, asin, sinh, cos, acos, cosh, tan, atan, tanh, log, ^ and exp

7. concatenate objects: c

8. comparison: ==, !=, >, <, >= and <=

9. printing: print

10. returning objects: return

11. catmull-rome spline: cmr
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12. to get a range of numbers the ’:’ function can be used

Some details about the implemented functions

• allocation of memory works: Following forms are possible: vector(size_of_elements), vec-
tor(value, size_of_elements), vector(other_vec, size_of_other_vec), matrix(nrows, ncols), ma-
trix(value, nrows, ncols) and matrix(vector, nrows, ncols). The latter fills the matrix or the
vector with the specified ’value’.

• For indices squared brackets ’[]’ can be used as common in R. Despite the results of calcu-
lations cannot be used! Beyond that the function ’at’ exists which accepts as first argument
a variable and as the second argument you pass the desired index. The caveat of using ’at’
is that only one entry can be accessed. Whereas ’[]’ can return more then one element. The
’at’function returns a reference to the vector entry. Therefore variable[index] can be-
have differently then at(variable, index). The function has to be use carefully when ’at’
is used. Especially if ’[]’ and ’at’ are mixed the function behaviour is difficult to predict.
Please test it before using in a serious project.

• For loops can be written as used in R
– Nr.1

for(index in variable){
# do whatever
}

– Nr.2
for(index in 1:length(variable){
# do whatever
}

• Be aware that it is not possible to assign the result of a comparison to a variable.
• The print function accepts either a scalar, vector, matrix, string, bool or nothing (empty line).
• In order to return an object use the ’return’ function (The last object is not returned automati-

cally as in R).
• In order to interpolate values the ’cmr’ function can be used. The function needs three argu-

ments.
1. the first argument is the point of the independent variable (x) for which the dependent

variable should be calculated (y). This has to be a vector of length one.
2. the second argument is a vector defining the points of the independent variable (x). This

has to be a vector of at least length four.
3. the third argument is a vector defining the points of the dependent variable (y). This has

to be a vector of at least length four.

Be aware that the R code is translated to ETR. An expression template library which tries
to mimic R. However, it does not behave exactly like R! Please check your compiled function
before using it in a serious project. If you want to see how ast2ast differs from R in detail
check the vignette: ’Detailed Documentation’.

Value

The external pointer of the generated C++ function
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4 translate

Examples

#Further examples can be found in the vignette: 'Detailed Documentation'.
#Hello World
## Not run:
f <- function() { print("Hello World!")}
pointer_to_f_cpp <- ast2ast::translate(f)
Rcpp::sourceCpp(code = "
#include <Rcpp.h>
typedef void (*fp)();

// [[Rcpp::export]]
void call_fct(Rcpp::XPtr<fp> inp) {
fp f = *inp;
f();

}
")
call_fct(pointer_to_f_cpp)

## End(Not run)
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Detailed Documentation
Konrad Krämer

• Documentation
– Objects
– Variable declaration
– Basic arithmetics
– Subsetting
– Helper functions
– Comparison functions
– Control flow
– Printing
– Math functions
– Interpolation

Documentation
The package ast2ast translates an R function into a
C++ function and returns an external pointer (XPtr)
to this function. The scope of ast2ast is to gener-
ate functions that can be used during solving ode-
systems (derivative function or jacobian function) or
during optimization. More generally, the translated
function can be used in fields where it is necessary to
evaluate a function very often. Especially when the
function is evaluated by C++ the generated external
pointer is very sufficient.
First of all, the supported objects and functions listed
below are explained in detail. Here, the arguments
which have to be passed to the functions are described
and it is explained what the function returns. Fur-
thermore, for each function, a small example is given
showing how to use it. Moreover, it is explained how
the function differs from R equivalents. If another
differences are detected please report them.
This paragraph explains how the examples in this vi-
gnette are executed. First of all, an Rcpp function
is created, which executes the output of the function
translate. If you want to know how these functions
work in detail you can go to the vignette Informa-
tion for Package authors. In the examples, only the
R code is shown to show how to write the code.

Supported objects:

• vectors (containing numbers)
• matrices (containing numbers)

Supported functions:

• assignment: = and <-

• allocation: vector and matrix
• information about objects: length and dim
• Basic operations: +, -, *, /
• Indices: [] and at
• mathematical functions: sin, asin, sinh, cos,

acos, cosh, tan, atan, tanh, log, ˆ and exp
• concatenate objects: c
• control flow: for, if, else if, else
• comparison: ==, !=, >, <, >= and <=
• printing: print
• returning objects: return

Objects

There exist two containers that can be used in ast2ast
functions. Both containers can only hold the numeric
type of R (which is equivalent to double). The first
container is a vector and the second one is a matrix.
It is possible to declare a variable of a scalar
numeric data type. This is done by adding _db
(e.g. varname_db) to the end of the variable.
Each time _db is found the variable is declared
as a scalar numeric data type. In this case, the
object cannot change its type!
It is pivotal to follow the rules of variable naming
in C++. For instance, it is not allowed to use ‘.’
in variable names. Moreover, the following functions
are implemented in C++ and thus it is not possible
to use these names:

getlength VVSIN VVacos VVtanh
getattributes sinus acosinus tangensh
is_matrix VVsinh VVCOSH VVMINUS
VEC sinush cosinush VSMINUS
at VVasin VVtan SVMINUS
d2i asinus tangens VVPLUS
i2d VVCOS VVatan VSPLUS
ass cosinus atangens SVPLUS

1
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VVTIMES It exp matrix
VSTIMES STORE combine NA
SVTIMES for_ coca NA
VVDIV li cd NA
VSDIV cmr colon NA
SVDIV VVEXP length NA
subassign VVlog dim NA
subset ln vector NA

Features of ast2ast

• The variables can change the type within a func-
tion. This is usually not possible when using
C++.

• The index of vectors and matrices starts at 1 as
in R.

• The index has to be in the boundaries of the
vector or matrix. Even though this is different
from the behavior in R it is a nice feature. If
you access an element outside the boundaries of
a vector in R NA is returned.

• The memory of the matrices is arranged column-
wise as in R.

• In R arguments passed to a function are always
copied. In ast2ast functions, it is possible to pass
only the memory address of an object (called
a reference). To do this, you have to set the
reference parameter of the translate function to
TRUE. If you pass a function by reference you
can modify the object without returning it (see
Example 1). In the Rcpp function, the vari-
able x is printed before and after the call of the
function fetr. Notably, if no return is used in
the R code translated by ast2ast nothing is re-
turned (in R the last object is returned in this
case). You see that x is 10 before the call of the
function and it is 1 after the call of the func-
tion. But the function does not return anything.
Thus, the object x is modified in the function
without copying it.

Example 1
f <- function(variable) {

variable <- 1
}
library(ast2ast)
fetr <- translate(f)
x <- 10
output <- byref(fetr, x)

## x before call of function:
## 10
## x after call of function:
## 1

Figure 1: Benchmark

output

## NULL

Caveats:

• Sometimes large overhead of the containers
– Variables which are scalars are represented

as vectors of length 1. This is also how
R handles scalar variables. As in C++
scalar variables are not defined as vectors
the speed of the translated R function can
be substantially lower compared to a native
C++ function.

Variable declaration

In Example 2 the various ways of declaring vari-
ables are presented. To assign a value to a variable
you can use <- or =. As already mentioned only nu-
meric values are possible. If you want to assign a
vector you can use either the c or vector function.
The c function works in the same way as R and can
handle any combinations of scalars, vectors or ma-
trices. The function vector differs in two ways from
the R equivalent. First of all, you cannot use terms
such as vector(length = size) as this is not possible in
C++. In contrast, you just write vector(size). The R
function rep is not available in ast2ast but it is pos-
sible to write vector(value, size) which in R would be
written as rep(value, size). A third way to use the
vector function is to pass another vector and the size
e.g. vector(other_vector, size). The matrix function
works in the same way as the vector function. How-
ever, instead of the size, two arguments are needed
the number of rows and the number of columns.

Example 2

2
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f <- function() {
a <- 1
a_db <- 3.14
b = 2
c <- c(1, 2, 3)
d = vector(2)
e <- vector(3.14, 4)
f <- vector(c, 3)
g <- matrix(2, 2)
h <- matrix(6, 2, 2)
i <- matrix(e, 2, 2)

print("a")
print(a)
print(a_db)
print()
print("b")
print(b)
print()
print("c")
print(c)
print()
print("d")
print(d)
print()
print("e")
print(e)
print()
print("f")
print(f)
print()
print("g")
print(g)
print()
print("h")
print(h)
print()
print("i")
print(i)
print()

}
library(ast2ast)
fetr <- translate(f)
vardec(fetr)

Basic arithmetics

As usual in R it is possible to use basic arithmetic op-
erations on scalars, vectors and matrices (Example
3).

Example 3

f <- function() {

a <- 2
b <- 3
print("scalar operations")
print(a + b)
print(a - b)
print(a / b)
print(a * b)

print()

print("vector & scalar operations")
a <- c(1, 2, 3)
b <- 4
print(a + b)
print(b - a)

print()

print("2 vectors (same length)")
a <- 6:8
b <- 1:3
print(a / b)
a <- 1:6
b <- 1:3
print(a / b)
print("2 vectors (different length)")
print("multiple of each other")
a <- 1:6
b <- 1:3
print(a / b)
print("not a multiple of each other")
a <- 1:5
b <- 1:3
print(a / b) # different to R no warning

print()

print("matrix & scalar operations")
a <- 3
b <- matrix(3, 2, 2)
print(a*b)
print(b + 4)

print()

print("matrix & vector operations")
a <- 5:6
b <- matrix(3, 2, 2)
print(b - a)
print(a / b)

3
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print()

print("matrix & matrix operations")
a <- matrix(3, 2, 2)
b <- matrix(4, 2, 1) # difference to R!
print(a + b)

print()

print("mixed operations")
a <- 1
b <- 2:5
c <- matrix(50, 2, 2)
d <- a + b - c/2
print(d)
}

library(ast2ast)
fetr <- translate(f)
call_fct(fetr)

Subsetting

If you want to subset a vector or a matrix object you
can use either [] or the at function. The [] is slower
than at but more powerful (Example 4).

The following objects can be passed to [] when using
a vector or matrix:

• nothing

• numeric scalar

• logical

• vector

• matrix

• result of comparison

• caveat: it is not possible to pass the results
of calculations!

In case of a matrix, it is possible to pass one of
the above objects to access specific rows or columns
respectively ([rows, cols]).

In contrast to [], the at function accepts only a scalar
or two scalars for vectors or matrices, respectively.
Thus, only a single element is accessed by this func-
tion! However, this function works faster. The result
of at cannot be subsetted further. The at function re-
turns the numeric type which is used when a variable
is declared with the extension _db.

Example 4

f <- function() {

print("pass nothing")
a <- 1:8
print(a)
a[] <- 100
print(a)
print()

print("pass logical")
a <- 1:8
print(a)
a[TRUE] <- 100
print(a)
print()

print("pass scalar")
a <- 1:8
print(a)
a[1] <- 100
print(a)
print()

print("pass vector")
a <- 1:8
b <- 2:5
print(a)
a[b] <- 100
print(a)
print()

print("pass result of ==")
a <- 1:8
a[a < 5] <- 100
print(a)
print()

print("pass result of !=")
a <- 1:8
b <- c(1, 2, 3, 0, 0, 0, 0, 8)
a[a != b] <- 100
print(a)
print()

print("pass result of <=")
a <- 1:8
b <- c(1, 2, 3, 0, 0, 0, 0, 8)
a[a <= b] <- 100
print(a)
print()

4
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print("pass result of >=")
a <- 1:8
b <- c(1, 2, 3, 0, 0, 0, 0, 9)
a[a >= b] <- 100
print(a)
print()

print("pass result of >")
a <- 1:8
b <- c(0, 2, 3, 0, 0, 0, 0, 9)
a[a > b] <- 100
print(a)
print()

print("pass result of <")
a <- 1:8
b <- c(0, 2, 3, 0, 0, 0, 0, 9)
a[a < b] <- 100
print(a)
print()

print("pass scalar, scalar")
a <- matrix(3, 4, 4)
a[1, 1] <- 100
print(a)
print()

print("pass vector, vector")
a <- matrix(3, 4, 4)
b <- c(1, 3)
c <- c(2, 4)
a[b, c] <- 100
print(a)
print()

print("pass ==, >=")
a <- matrix(1:16, 4, 4)
b <- 1:4
c <- c(1, 8, 3, 8)
a[b == c, b >= c] <- 100
print(a)
print()

print("at")
a <- 1:16
at(a, 2) <- 100

print(a)
print()

print("at")
a <- matrix(1:16, 4, 4)
at(a, 1, 4) <- 100
print(a)
print()
}

library(ast2ast)
fetr <- translate(f)
call_fct(fetr)

Helper functions

There exist three helper function. The length func-
tion returns the number of elements of a vector or
matrix. The dim function returns the number of rows
and columns of a matrix. The : function can be used
to create a range of numbers. For example 1:3 cre-
ates a vector with the elements 1, 2 and 3 or 1.1:5.3
returns a vector with the elements 1.1, 2.1, 3.1, 4.1
and 5.1. See Example 5 in order to see how the
functions can be applied.

Example 5
f <- function() {

a <- 1:4
print(a)
a <- 1.1:5.2
print(a)

a <- 1:16
print(length(a))

b <- matrix(1:4, 2, 2)
print(dim(b))

}

library(ast2ast)
fetr <- translate(f)
call_fct(fetr)

Comparison functions

As usual in R it is possible to compare two objects
using one of the following options (Example 6):

• ==
• <=
• >=
• !=

5
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• <
• >

Example 6
f <- function() {

a <- 1:4
b <- c(1, 2, 3, 5)
c <- 9
print(a == b)
print(a <= b)
print(a >= b)
print(a != b)
print(a < c)
print(a > c)

}

library(ast2ast)
fetr <- translate(f)
call_fct(fetr)

Control flow

It is possible to write for-loops and ‘if’, ‘else if’, and
‘else’ branches as in native R (Example 7).

for(index in variable){
# do whatever
}
for(index in 1:length(variable){
# do whatever
}

Example 7
f <- function() {

a <- 1:4
for(i in a) {

print(i)
}

for(i in 1:length(a)) {
a[i] <- i + i

}

for(i in 1:length(a)) {
if(i < 4 && i > 1) {

print(i)
}

}

}

library(ast2ast)
fetr <- translate(f)

call_fct(fetr)

Printing

Using the function print as common in R (see Ex-
amples 2, 3, 4, 5, 6):

• print() is different to R
• print(“string”)
• print(logical)
• print(scalar)
• print(vector) is different to R
• print(matrix)

Math functions

Following mathematical functions are available (see
Example 8):

• sin
• asin
• sinh
• cos
• acos
• cosh
• tan
• atan
• tanh
• log
• ˆ and exp

Example 8
f <- function() {

a <- 1:4
print(sin(a))
print(cos(a))
print(aˆ2)
print(exp(a, 3))

}

library(ast2ast)
fetr <- translate(f)
call_fct(fetr)

Interpolation

To interpolate values, the ‘cmr’ function can be used.
The function needs three arguments (see Example
9):

• the first argument is the point of the indepen-
dent variable (x) for which the dependent vari-
able should be calculated (y). This has to be a
vector of length one.

6
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• the second argument is a vector defining the
points of the independent variable (x). This has
to be a vector of at least length four.

• the third argument is a vector defining the points
of the dependent variable (y). This has to be a
vector of at least length four.

Example 9
f <- function() {

dep <- c(0, 1, 0.5, 2.5, 3.5, 4.5, 4)
indep <- 1:7

evalpoints <- c(0.5, 1, 1.5, 2, 2.5,
3, 3.5, 4, 4.5, 5,
5.5, 6, 6.5)

for(i in evalpoints) {
print(cmr(i, indep, dep))

}
}

library(ast2ast)
fetr <- translate(f)
call_fct(fetr)

7
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Information for package authors
Konrad Krämer

• Information for Package authors
• How to use ast2ast
• Rcpp Interface
• RcppArmadillo Interface
• Pointer Interface
• Examples

– r2sundials
– paropt

Information for Package authors
This section of the documentation describes how the
external pointers produced by ast2ast can be used in
packages. This information is intended for package
authors who want to use ast2ast to enable a simple
user interface as it is not necessary anymore for the
user to write C++. The R code is translated to a
modified version of an expression template library
called ETR (https://github.com/Konrad1991/ETR)
which tries to mimic R.

The core class object is named VEC and can be ini-
tialized with any type. Furthermore, is a typedef de-
fined for VEC called sexp alluding to the fact that
all R objects are SEXP objects at C level. This class
contains another class called STORE which manages
memory. To do this a raw pointer of the form T*
is used. Thus, all objects are located at the heap.
Beyond that, it is important that no static methods
are implemented or that memory is associated with
functions or global variables. Therefore, the VEC
objects can be used in parallel. However, the user
has to take care that only one thread edits an ob-
ject at a time. VEC a.k.a. sexp can be converted
to Rcpp::NumericVectors, Rcpp::NumericMatrices,
arma::vec and arma::mat. Moreover, it is also pos-
sible to copy the data from Rcpp::NumericVectors,
Rcpp::NumericMatrices, arma::vec or arma::mat to a
sexp variable. Currently, the constructors for doing
this are not implemented, only the operator= is im-
plemented. Thus, the variable of type sexp has to be
defined before the information of the Rcpp or Rcp-
pArmadillo variables are passed. It is possible to con-
struct a sexp object by using a double* pointer and
a size information (= int). The information about

the Rcpp-, RcppArmadillo- and pointer-interface is
explained in depth in the sections below.

After translating the R function each variable is of
type sexp except if the user uses the _db extension. In
this case, the variable is of type double. All arguments
passed to a function are of type sexp or sexp&. It
is not possible to transfer one variable as sexp and
another one as sexp&. The function returns either
void or a sexp object.

How to use ast2ast
In this paragraph, a basic example demonstrates how
to write the R code, translate it and call it from C++.
Particular emphasis is placed on the C++ code. First
of all, the R function is defined which accepts one
argument called a, adds two to a and stores it into b.
The variable b is returned at the end of the function.
The R function called f is translated to an external
pointer to the C++ function.
f <- function(a) {

b <- a + 2
return(b)

}
library(ast2ast)
f_cpp <- translate(f)

The C++ function depends on RcppArmadillo and
ast2ast therefore the required macros and headers
were included. Moreover, ETR requires std=c++17
therefore the corresponding plugin is added. The
function getXPtr is defined by the function RcppX-
PtrUtils::cppXPtr. In the last 5 lines, the translated
code is depicted. The function f returns a sexp and
gets one argument of type sexp called a. The body
of the function looks almost identical to the R func-
tion. Except that the variable b is defined in the first
line of the body with the type sexp. The function i2d
converts an integer to a double variable. This is nec-
essary since C++ would identify the 2 as an integer
which is not what the user wants in this case.
// [[Rcpp::depends(ast2ast, RcppArmadillo)]]
#include <RcppArmadillo.h>
#include <Rcpp.h>
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// [[Rcpp::plugins(cpp17)]]
using namespace Rcpp;

#include <etr.hpp>
// [[Rcpp::export]]
SEXP getXPtr();

sexp f(sexp a) {
sexp b;
b = a + i2d(2);
return(b);

}

Afterwards, the translated R function has to be used
in C++ code. This would be your package code for
example. First, the macros were defined for Rcp-
pArmadillo and ast2ast. Subsequently, the necessary
header files were included. As already mentioned
ast2ast requires std=c++17 thus the required plu-
gin is included. To use the function, it is necessary
to dereference the pointer. The result of the derefer-
enced pointer has to be stored in a function pointer.
Later the function pointer can be used to call the
translated function. Therefore, a function pointer
called fp is defined. It is critical that the signature
of the function pointer matches the one of the trans-
lated function. Perhaps it would be a good idea to
check the R function before it is translated. After
defining the function pointer, a function is defined
which is called later by the user (called call_package).
This function accepts the external pointer. Within
the function body, a variable f is defined of type fp
and inp is assigned to it. Next, a sexp object called a
is defined which stores a vector of length 3 containing
1, 2 and 3. The function coca is equivalent to the c
function R. Afterwards a is printed. Followed by the
call of the function f and storing the result in a. The
variable a is printed again to show that the values
are changed according to the code defined in the R
function.
// [[Rcpp::depends(RcppArmadillo, ast2ast)]]
#include "etr.hpp"
// [[Rcpp::plugins("cpp17")]]

typedef sexp (*fp)(sexp a);

// [[Rcpp::export]]
void call_package(Rcpp::XPtr<fp> inp) {

fp f = *inp;
sexp a = coca(1, 2, 3);
print(a);

a = f(a);
print("a is now:");
print(a);

}

The user can call now the package code and pass the
R function to it. Thus, the user only has to install
the compiler or Rtools depending on the operating
system. But it is not necessary to write the function
in Rcpp.
call_package(f_cpp)

## 1
## 2
## 3
## a is now:
## 3
## 4
## 5

Rcpp Interface
In the last section, the usage of ast2ast was described.
However, only sexp variables were defined. Which are
most likely not used in your package. Therefore in-
terfaces to common libraries are defined. First of all,
ast2ast can communicate with Rcpp which alleviates
working with the library substantially. The code be-
low shows that it is possible to pass a sexp object to
a variable of type NumericVector or NumericMatrix
and vice versa. Here, the data is always copied.
// [[Rcpp::depends(ast2ast, RcppArmadillo)]]
#include <RcppArmadillo.h>
#include <Rcpp.h>
// [[Rcpp::plugins(cpp17)]]
using namespace Rcpp;
#include <etr.hpp>

// [[Rcpp::export]]
void fct() {

// NumericVector to sexp
NumericVector a{1, 2};
sexp a_; // sexp a_ = a; Error!
a_ = a;
print(a_);

// sexp to NumericVector
sexp b_ = coca(3, 4);
NumericVector b = b_;
Rcpp::Rcout << b << std::endl;

// NumericMatrix to sexp
NumericMatrix c(3, 3);
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sexp c_; // sexp c_ = c; Error!
c_ = c;
print(c_);

// sexp to NumericMatrix
sexp d_ = matrix(colon(1, 16), 4, 4);
NumericMatrix d = d_;
Rcpp::Rcout << d << std::endl;

}

trash <- fct()

## 1
## 2
## 3 4
## 0 0 0
## 0 0 0
## 0 0 0
## 1.00000 5.00000 9.00000 13.0000
## 2.00000 6.00000 10.0000 14.0000
## 3.00000 7.00000 11.0000 15.0000
## 4.00000 8.00000 12.0000 16.0000

RcppArmadillo Interface
Besides Rcpp types, sexp objects can transfer data to
RcppArmadillo objects and it is also possible to copy
the data from RcppArmadillo types to sexp objects
using the operator =. The code below shows that it
is possible to pass a sexp object to a variable of type
vec or mat and vice versa. Here the data is always
copied.
// [[Rcpp::depends(ast2ast, RcppArmadillo)]]
#include <RcppArmadillo.h>
#include <Rcpp.h>
// [[Rcpp::plugins(cpp17)]]
using namespace arma;
#include <etr.hpp>

// [[Rcpp::export]]
void fct() {

// vec to sexp
arma::vec a(4, fill::value(30.0));
sexp a_; // sexp a_ = a; Error!
a_ = a;
print(a_);

// sexp to vec
sexp b_ = coca(3, 4);
vec b = b_;
b.print();

// mat to sexp
mat c(3, 3, fill::value(31.0));

sexp c_; // sexp c_ = c; Error!
c_ = c;
print(c_);

// sexp to mat
sexp d_ = matrix(colon(1, 16), 4, 4);
mat d = d_;
d.print();

}

trash <- fct()

## 30
## 30
## 30
## 30
## 3.0000
## 4.0000
## 31 31 31
## 31 31 31
## 31 31 31
## 1.0000 5.0000 9.0000 13.0000
## 2.0000 6.0000 10.0000 14.0000
## 3.0000 7.0000 11.0000 15.0000
## 4.0000 8.0000 12.0000 16.0000

Pointer Interface
You can pass the information of data stored on heap
to a sexp object. The constructor for type vector
accepts 3 arguments:

• int defining the size of the data.
• a pointer (T*) to the data
• int called cob (copy, ownership, borrow).

The constructor for the type matrix accepts 4 argu-
ments:

• int defining number of rows
• int defining number of cols
• a pointer (T*) to the data
• int called cob (copy, ownership, borrow).

If cob is 0 then the data is copied. Else if cob is 1 then
the pointer itself is copied. Meaning that the own-
ership is transferred to the sexp object and the user
should not call delete [] on the pointer. Be aware that
only one sexp variable can take ownership of one vec-
tor otherwise the memory is double freed. Else if cob
is 2 the ownership of the pointer is only borrowed.
Meaning that the sexp object cannot be resized. The
user is responsible for freeing the memory! The code
below shows how the pointer interface works in gen-
eral. Showing how sexp objects can be created by
passing the information of pointers (double*) which
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hold data on the heap. Currently, only constructors
are written which can use the pointer interface.
// [[Rcpp::depends(ast2ast, RcppArmadillo)]]
#include <RcppArmadillo.h>
#include <Rcpp.h>
// [[Rcpp::plugins(cpp17)]]
using namespace arma;
#include <etr.hpp>

// [[Rcpp::export]]
void fct() {

int size = 3;

// copy
double* ptr1;
ptr1 = new double[size];
int cob = 0;
sexp a(size, ptr1, cob);
delete [] ptr1;
a = vector(3.14, 5);
print(a);

print();

// take ownership
double* ptr2;
ptr2 = new double[size];
cob = 1;
sexp b(size, ptr2, cob);
b = vector(5, 3);
print(b);

print();

// borrow ownership
double* ptr3;
ptr3 = new double[size];
cob = 2;
sexp c(size, ptr3, cob);
//error calls resize
//c = vector(5, size + 1);
c = vector(4, size);
print(c);

print();
sexp d(size, ptr3, cob);
d = d + 10;
print(d);
print();

delete[] ptr3;
}

trash <- fct()

## 3.14
## 3.14
## 3.14
## 3.14
## 3.14
##
## 5
## 5
## 5
##
## 4
## 4
## 4
##
## 14
## 14
## 14

The pointer interface is particularly useful if the user
function has to change the data of a vector or matrix
of type NumericVector, vec, NumericMatrix or mat.
Assuming that the user passes a function that accepts
its arguments by reference it is easy to modify any
variable which has a type that can return a pointer
to its data. In the code below it is shown how sexp
objects are constructed using the pointer interface.
Thereby changing the content of variables which has
an Rcpp type, a RcppArmadillo type, or is of type
std::vector.
// [[Rcpp::depends(ast2ast, RcppArmadillo)]]
#include <RcppArmadillo.h>
#include <Rcpp.h>
// [[Rcpp::plugins(cpp17)]]
using namespace Rcpp;
using namespace arma;
#include <etr.hpp>

typedef void (*fp)(sexp& a);

// [[Rcpp::export]]
void call_package(Rcpp::XPtr<fp> inp) {

fp f = *inp;

// NumericVector
NumericVector a_rcpp{1, 2, 3};
sexp a(a_rcpp.size(), a_rcpp.begin(), 2);
f(a);
Rcpp::Rcout << a_rcpp << std::endl;

//arma::vec
vec a_arma(2, fill::value(30));
sexp b(2, a_arma.memptr(), 2);
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f(b);
a_arma.print();

// NumericMatrix
NumericMatrix c_rcpp(2, 2);
sexp c(2, 2, c_rcpp.begin(), 2);
f(c);
Rcpp::Rcout << c_rcpp << std::endl;

//arma::mat
mat d_arma(3, 2, fill::value(30));
sexp d(3, 2, d_arma.memptr(), 2);
f(d);
d_arma.print();

}

f <- function(a) {
a <- a + 2

}

library(ast2ast)
fa2a <- translate(f, reference = TRUE)
trash <- call_package(fa2a)

## 3 4 5
## 32.0000
## 32.0000
## 2.00000 2.00000
## 2.00000 2.00000
##
## 32.0000 32.0000
## 32.0000 32.0000
## 32.0000 32.0000

Examples
In this section two examples are shown to illustrate
how ast2ast could be used in R packages. First, it
is shown how ODE-systems can be solved very effi-
ciently. In order to do this the R package r2sundials
is used. The second examples point out how ast2ast
can be used together with the R package paropt to
optimize parameters of ODE-systems. Both exam-
ples only construct wrapper functions that are used
by the package code. Probably it would be more ef-
ficient when the package code itself would take care
of the transfer of data between Rcpp/RcppArmadillo
and ast2ast.

r2sundials

In this example it is shown how ODE-systems can
be solved by using r2sundials and ast2ast. The code
below shows how r2sundials is used normally. Either

using an R function or an external pointer to a C++
function.
library(Rcpp)
library(ast2ast)
library(r2sundials)

## Loading required package: rmumps
library(RcppXPtrUtils)
library(microbenchmark)

# R version
ti <- seq(0, 5, length.out=101)
p <- list(a = 2)
p <- c(nu = 2, a = 1)
y0 <- 0
frhs <- function(t, y, p, psens) {

-p["nu"]*(y-p["a"])
}

res_exp <- r2cvodes(y0, ti,
frhs, param = p)

attributes(res_exp) <- NULL

# External pointer
ptr_exp <- cppXPtr(code = '
int rhs_exp(double t, const vec &y,

vec &ydot,
RObject &param,
NumericVector &psens) {

double a = 1;
double nu = 2;
ydot[0] = -nu*(y[0] - a);
return(CV_SUCCESS);

}
',
depends=c("RcppArmadillo",

"r2sundials","rmumps"),
includes="using namespace arma;\n

#include <r2sundials.h>",
cacheDir="lib", verbose=FALSE)

pv <- c(a = 1)
res_exp2 <- r2cvodes(y0, ti,

ptr_exp, param = pv)
attributes(res_exp2) <- NULL

In the code below is the wrapper function defined
which is later called by r2sundials. This function is
called rhs_exp_wrapper and has the correct function
signature. Furthermore, a global function pointer
named Fct is defined of type void (*user_fct) (sexp&
y_, sexp& ydot_). Within rhs_exp_wrapper* the
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data of the vectors y and ydot are used to con-
struct two sexp objects which are passed to Fct.
Thus, the vector ydot is modified by the function
passed from the user. Furthermore, another func-
tion called solve_ode is defined. Which calls the
code from r2sundials, solves the ODE-system, and
returns the output to R. In R the user defines the
R function ode. Next, the function is translated and
passed to solve_ode. Comparing the results shows
that all three approaches (R, C++, ast2ast) gener-
ate the same result. Afterwards a benchmark is con-
ducted showing that R is substantially slower than
C++ and that the translated function is almost as
fast as C++. Mentionable, it is possible to increase
the speed of the ast2ast version by using the at func-
tion and the *_db* extension.
// [[Rcpp::depends(RcppArmadillo)]]
// [[Rcpp::depends(rmumps)]]
// [[Rcpp::depends(r2sundials)]]
// [[Rcpp::depends(ast2ast)]]
// [[Rcpp::plugins("cpp17")]]
#include "etr.hpp"
#include "RcppArmadillo.h"
#include "r2sundials.h"
using namespace arma;
using namespace Rcpp;

typedef int (*fp)(double t, const vec &y,
vec &ydot, RObject &param,
NumericVector &psens);

typedef void (*user_fct)(sexp& y_,
sexp& ydot_);

user_fct Fct;

int rhs_exp_wrapper(double t, const vec &y,
vec &ydot, RObject &param,
NumericVector &psens) {

NumericVector p(param);
const int size = y.size();
sexp ydot_(size, ydot.memptr(), 2);

double* ptr = const_cast<double*>(
y.memptr());

sexp y_(size, ptr, 2);
Fct(y_, ydot_);
return(CV_SUCCESS);

}

// [[Rcpp::export]]
NumericVector solve_ode(XPtr<user_fct> inp,

NumericVector time,

NumericVector y) {
Fct = *inp;
XPtr<fp> ptr = XPtr<fp>(new fp(

&rhs_exp_wrapper));

Environment pkg =
Environment::namespace_env("r2sundials");

Function solve = pkg["r2cvodes"];
NumericVector output = solve(y, time,

ptr, time);

return output;
}

# ast2ast version
ti <- seq(0, 5, length.out=101)
y0 <- 0

library(ast2ast)
ode <- function(y, ydot) {

nu <- 2
a <- 1
ydot[1] <- -nu*(y[1] - a)

}
pointer_to_ode <- translate(ode,

reference = TRUE)
res_exp3 <- solve_ode(pointer_to_ode,

ti, y0)
attributes(res_exp3) <- NULL

stopifnot(identical(res_exp,
res_exp2,
res_exp3))

out <- microbenchmark(
r2cvodes(y0, ti,

frhs, param = p),
r2cvodes(y0, ti,

ptr_exp, param = pv),
solve_ode(pointer_to_ode,

ti, y0))

boxplot(out, names=c("R", "C++", "ast2ast"))

R C++ ast2ast
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paropt

In the second example, it is shown how ast2ast is
used together with paropt. Again the code below
consists of an Rcpp part and a part written in R.
Within Rcpp the C++ code is defined which de-
scribes the Lotka-Volterra model (ode_system). For
details check the documentation of paropt. Subse-
quently, a function is defined that returns an external
pointer to the ODE-system (test_optimization). As
already described in the last example a wrapper func-
tion is created which calls the actual ODE-system
(ode_system_wrapper). Furthermore, a function is
defined which calls the code from the package paropt
called optimize_paropt and conducts the optimiza-
tion. Within R the ODE-system is defined, trans-
lated and used for optimization. Both versions the
pure C++ function and the translated R code yield
the same result. The C++ function is almost as fast
as the translated R code. Interesting is the fact that
paropt calls the ODE-solver in parallel. This exam-
ple demonstrates that the translated function can be
called in parallel. Which is not possible with R func-
tions. Admittedly, the printing is conducted by Rcpp.
Therefore it is unknown how printing behaves in par-
allel.
// [[Rcpp::depends(RcppArmadillo)]]
// [[Rcpp::depends(ast2ast)]]
// [[Rcpp::plugins("cpp17")]]
// [[Rcpp::depends(paropt)]]
#include "etr.hpp"
#include "RcppArmadillo.h"
using namespace Rcpp;

// paropt version
typedef int (*OS)(double &t,

std::vector<double> &params,
std::vector<double> &states);

int ode_system(double &t,
std::vector<double> &params,
std::vector<double> & states) {

double a = params[0];
double b = params[1];
double c = params[2];
double d = params[3];

double n1 = states[0];
double n2 = states[1];

states[0] = n1*c*n2 - n1*d;
states[1] = n2*a - n2*b*n1;

return 0;
}

// [[Rcpp::export]]
XPtr<OS> test_optimization() {

XPtr<OS> xpfun = XPtr<OS>(new OS(
&ode_system));

return xpfun;
}

// ast2ast version
typedef int (*paropt_fct)(double &t,

std::vector<double> &params,
std::vector<double> & states);

typedef void (*user_fct2)(sexp& p,
sexp& y);

user_fct2 Fct_paropt;

int ode_system_wrapper(
double &t,
std::vector<double> &params,
std::vector<double> & states) {

sexp p(params.size(), params.data(), 2);
sexp s(states.size(), states.data(), 2);
Fct_paropt(p, s);
return 0;

}

// [[Rcpp::export]]
List optimize_paropt(XPtr<user_fct2> inp,

NumericVector time,
DataFrame lb,
DataFrame ub,
DataFrame states) {

Fct_paropt = *inp;
XPtr<paropt_fct> ptr = XPtr<paropt_fct>(

new paropt_fct(&ode_system_wrapper));

Environment pkg =
Environment::namespace_env("paropt");

Function optim =
pkg["optimizer_pointer"];

NumericVector abs_tols{1e-8, 1e-8};

List output = optim(time, ptr, 1e-6,
abs_tols, lb, ub,
states, 40,
1000, 0.0001,
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"bdf");

return output;
}

#states
path <- system.file("examples",

package = "paropt")
states <- read.table(paste(

path,
"/states_LV.txt",
sep = ""),

header = T)

# parameter
lb <- data.frame(time = 0,

a = 0.8,
b = 0.3,
c = 0.09,
d = 0.09)

ub <- data.frame(time = 0,
a = 1.3,
b = 0.7,
c = 0.4,
d = 0.7)

suppressMessages(library(paropt))
set.seed(1)
start_time <- Sys.time()
df_cpp <- optimizer_pointer(

integration_times = states$time,
ode_sys = test_optimization(),
relative_tolerance = 1e-6,
absolute_tolerances = c(1e-8, 1e-8),
lower = lb, upper = ub, states = states,
npop = 40, ngen = 1000, error = 0.0001,
solvertype = "bdf")

end_time <- Sys.time()
cpp_time <- end_time - start_time

# ast2ast with at and _db
ode <- function(params, states) {

a_db = at(params, 1)
b_db = at(params, 2)
c_db = at(params, 3)
d_db = at(params, 4)
n1_db = at(states, 1)
n2_db = at(states, 2)
at(states, 1) = n1_db*c_db*n2_db -

n1_db*d_db;
at(states, 2) = n2_db*a_db -

n2_db*b_db*n1_db;
}

pointer_to_ode <- ast2ast::translate(
ode,
reference = TRUE)

set.seed(1)
start_time <- Sys.time()
df_ast2ast <- optimize_paropt(pointer_to_ode,

states$time,
lb, ub, states)

end_time <- Sys.time()
a2a_time <- end_time - start_time

stopifnot(identical(df_cpp[[8]],
df_ast2ast[[8]]) )

times <- data.frame(cpp = cpp_time,
ast2ast = a2a_time)

kableExtra::kbl(times)

cpp ast2ast
27.93203 secs 35.86573 secs
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10 Appendix A

A.1 Communication of R with C and C++  

R is a programming language which has a large set of packages useful for statistical

modeling, visualization and data import and manipulation  (Wickham, 2015). The R

language is a successor of the programming language S, which was created in the

1980s and was used for statistical analysis (R Core Team, 2017). As in any program-

ming language, R uses variables to store data. Notably, R does not provide direct ac-

cess to the memory of the computer. Rather it uses data structures called objects.

Mentionable, the user does not have to care about memory management as it is the

case in the programming language C. More precisely the memory of an object which

is not needed anymore is deleted by the Garbage collector (GC). 

As R  was written in C, all  objects are represented at the C level as pointers to a

structure called SEXPREC.  (R Core Team, 2017). These pointers are called S-ex-

pressions (SEXP). SEXPs can hold every R object, because it comprises subtypes

for every R data structure. For instance, the types REALSXP, INTSXP or VECSXP

hold at R level a numeric vector, an integer vector and a list, respectively (Wickham,

2015). Therefore, a function accepts and returns only SEXPs at the C-level. Beyond

that it is necessary within a C function exposed to R to protect all SEXP objects from

the GC. Otherwise the GC assumes that they are not needed anymore and tries to

delete them which results in unexpected behaviour. In order to protect a SEXP object

one has to put the object on the so called protect stack. Afterwards, when the object

is not needed anymore it has to be removed from the stack, otherwise the memory

will not be deleted. The process of writing C functions for R is simplified using the

package tidyCpp (Dirk Eddelbuettel, 2021) as it offers a clean and simple C++ layer

over R’s complicated C API. In addition using tidyCpp does not require to put SEXP

objects on the protect stack in order to prevent the garbage collector to delete them.

It is also not necessary to remove objects from the protect stack at the end of func-

tions. 

For instance, the calculation of the sum of a numeric vector (Fig. AI A) requires the

extraction of the length of the vector. Afterwards a new SEXP object is created which

contains the result  and is returned at  the end.  Subsequently  two double  pointers

have to be created and directed to the memory location of the input vector and the

output vector. Using these variables the actual operation is conducted in a for loop
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(Fig. AI A). The last step is the return of the SEXP object output. Even if using tidy-

Cpp R’s C interface is rather complicated and affords a deep knowledge of R and C.

An alternative is the use of the R package Rcpp (D Eddelbuettel & Francois, 2011;

Dirk Eddelbuettel & Balamuta, 2018). This package conducts the translation of R ob-

jects into C++ data structures and vice versa. Thus, the software developer can con-

centrate on the actual code. For example, in Fig. AI B the code for calculating a sum

of a numeric vector is more compact and does not contain the extraction steps or the

need to use raw pointers. Thus, the programs are less error prone.

 

Figure AI: Calculating sum of a vector. A: Using R’s C interface. B: Using the R
package Rcpp. 

 A

 #include <tidyCpp>
 // [[Rcpp::depends(tidyCpp)]]

 // [[Rcpp::export]]
 SEXP sum(SEXP x)
 {
   int nx = R::length(x);
  
   R::Protect output(R::allocVectorNumeric(1) );
   out[0] = 0.0;
   double* rx = R::numericPointer(x);
   double* out = R::numericPointer((output));
 

   for(int i = 0; i < nx; i++) {
     out[0] += rx[i];
   }
   return output;
 }

 B

 #include <Rcpp.h>
 using namespace Rcpp;

 // [[Rcpp::export]]
 double sum(NumericVector x) {
   double sum = 0.0;
   for(auto& i : x) {
     sum += i;
   }
   return sum;
 }
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paropt

Internal structure of the R package paropt

A.2 paropt

The R package paropt was developed for easy and fast optimization of parameters of

ODE-systems (Krämer et al., 2021). The program is written in C++, which  is one of

the programming languages yield the fastest executing code, and also has a simple

interface to R objects (Dirk Eddelbuettel & Balamuta, 2018). Several objects must be

created to conduct simulations. A function describing the  ODE-system, information

about the states, and boundaries of the parameter space. The ODE-system can ei-

ther be a normal Rcpp-function (Fig. AII  A) or an external pointer to a C++ function

(Fig. II B).

An external pointer to a C++ function enables storing a C++ function in an R object of

the type external pointer. This object can be passed from R to a C++ program, which

can extract the pointer and use the C++ function. In contrast, the Rcpp-function al-

ways has a thin R wrapper around the  C++ function in use. 

In principal, both functions are structured in the same way. However, the Rcpp-func-

tion returns the result of the right hand side (rhs) in a new vector, while  in case of us-

ing an external pointer, the result is stored in the vector previously containing the

state information at timepoint t. 

The  advantage  of  using  the  external-pointer  interface  is  that  the  thin  R-wrapper

around the Rcpp-function is removed. Furthermore, it is possible to call the extracted

external pointer C++ function in parallel as no R objects are used during the function

call. This allows to solve the ODE-system with different parameter sets on several

CPU cores simultaneously. However, the caveat is that the user cannot use any R

objects (e.g. Rcpp::NumericVector) or any R functions within the ODE-system. In ad-

dition, the user must make sure that the function can be called in parallel. 
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Figure AII:  Ode-system describing the  Lotka-Volterra  model  as  used within  the  package
paropt. A: Using a normal Rcpp function. B: Using an external pointer to a C++ function. 

A
 
#include <Rcpp.h>

 // [[Rcpp::export]]
 Rcpp::NumericVector ode_system(

  double t,
  std::vector<double> 

params,
                               Rcpp::NumericVector 
states) {
  
  Rcpp::NumericVector states_deriv(2); 
  
   double a = params[0];
   double b = params[1];
   double c = params[2];
   double d = params[3];
  
   double predator = states[0]; 
   double prey = states[1]; 
              
   double ddtpredator = states_deriv[0] =
  predator*c*prey - predator*d;
   double ddtprey = states_deriv[1] = prey*a 
-  

prey*b*predator;
  
   return states_deriv;
 }

B
 
// [[Rcpp::depends(RcppArmadillo)]] 
 #include <RcppArmadillo.h>
 // [[Rcpp::depends(paropt)]]
 // [[Rcpp::plugins(cpp11)]]

typedef int (*OS)(double &t, std::vector<double>  
&params, std::vector<double> &states);

 int ode_system(double &t,
            std::vector<double>  &params,  
            std::vector<double> & states) {

  
  double a = params[0];
  double b = params[1];
  double c = params[2];
  double d = params[3];
  
   double predator = states[0]; 
   double prey = states[1]; 
  
      double ddtpredator = states[0] = 
  predator*c*prey - predator*d;
    double ddtprey = states[1] = prey*a -   

 prey*b*predator;
  
   return 0;
 }
 

 // [[Rcpp::export]]
 Rcpp::XPtr<OS> test_optimization() {
   Rcpp::XPtr<OS> xpfun = Rcpp::XPtr<OS>(new  
OS(&ode_system));
  
   return xpfun;}
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Besides the ODE-system the user has to pass the state information as a data.frame

called  dfStates. The  dfStates  object is linearized,  i.e.  all entries appearing in dfS-

tates are put in one consecutive vector (stateVector). This is conducted by concate-

nating the columns of dfStates together.  

An additional vector called cutVector is used in order to safe the length of the respec-

tive columns. In addition, a vector called timeVector is created which stores the inde-

pendent variable entries of the stateVector (most often it is the time). In conclusion,

the object dfStates is now represented by three vectors. This allows a more efficient

memory access. The three vectors are needed for the calculation of the error term

for a chosen parameter set. The error term is given as the difference between the in

silico state trajectories and the measured state courses, which are stored in the three

vectors  stateVector,  timeVector  and  cutVector.  Notably,  an extra vector is defined

which contains only the intial conditions at the starting  point. 

In addition, paropt needs the lower and upper boundaries of the parameters that shall

be optimized. Both boundary sets are passed as data frames and are also linearized

as described for the state information. Using the lower and upper boundaries, hence-

forth called lb and ub, the parameters are optimized using a particle swarm optimiza-

tion algorithm. 

Particle swarm optimization

The particle  swarm optimization  (PSO)  algorithm is  a  tool for  global  optimization

which was first described  in 1995 (Eberhart & Kennedy, 1995). The algorithm is in-

spired by the behavior of bird flocks looking for corn  (Eberhart & Kennedy, 1995;

Kennedy & Eberhart, 1995). For describing how the PSO works several terms have

to be defined. The so called search space is defined in the case of paropt by lb and

ub.  In  case only  one parameter  (one dimensional:  1-D)  had to be optimized the

search space would be a line in case of two parameters (two dimensional: 2-D) an

area would be defined and so forth. At each point of the search space the function,

for which the parameters should be optimized, can be evaluated and returns a scalar

numerical value, the so called fitness. The point where the maximum or minimum of

the fitness value is located within search space is the global optimum (Clerc, 2012). 

Within the search space exists a swarm of particles. Each particle consists of a cur-

rent position within the search space (a N dimensional (= N-D) vector) and the corre-

sponding fitness value of the current position (1-D). Moreover, the particle contains a
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parameter set describing the personal best position (a N-D vector) and the corre-

sponding fitness value (1D). Besides, each particle contains a velocity (a N-D vector)

which is used to update the current position of the particle (Clerc, 2012; Sengupta et

al., 2018). The swarm itself contains a vector (a N-D vector) which defines the up to

now best parameter set and a scalar value bearing the fitness for these parameters. 

Before  operation, the  PSO must  be  initialized  by  attributing  each  particle  in  the

search space a position at random. For each particle the fitness is calculated and a

random velocity is ascribed. Subsequently, the local best parameters and fitness val-

ues are stored. Next, the global best particle is identified and the corresponding pa-

rameters and fitness are stored in the memory of the swam (Zambrano-Bigiarini  et

al., 2013).  

After initialization the swarm explores the parameter space for a certain amount of

times. Each iteration is called a generation. During each iteration the following steps

are conducted. A new velocity for each particle is calculated and its  current position

is updated based on the new velocity. Using the new position the fitness is calcu-

lated, this is done for  all particles of the swarm. Afterwards, it is checked for each

particle whether a new personal best position is found. Next, it is checked whether

one of the personal best positions represent a global best position. 

Velocity calculation

In the canonical PSO the velocity of particle i is calculated  based on the following

equation (Sengupta et al., 2018):

Vi_new = Vi + 2.0*rand*(personal_best – current_position) + 2.0*rand*(global_best – current_position)

Where:

Vi_new: new velocity of particle i

Vi: Velocity of particle i

rand: random scalar

personal_best: parameter defining personal best fitness for particle i

current_position: current parameters in search space of particle i

global_best: parameters of the best fitness of the entire swarm

The mode of updating  the velocity has been  improved repeatedly. Zambrano-Bigia-

rini, Clerc and Rojas, 2013, represented the following form of updating the velocity of

particle i:
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Vi_new = ω*Vi + cog*rand*(personal_best – current_position) + soc*rand*(global_best – current_position)

Where:

Vi_new: new velocity of particle i

Vi: Velocity of particle I

ω: factor ω

rand: random scalar

cog: cognitive factor

soc: social factor

personal_best: parameter defining personal best fitness for particle i

current_position: current parameters in search space of particle i

global_best: parameters of the best fitness of the entire swarm

In its improved version,  swarm explosion, which is the uncontrolled increase of parti-

cle velocities is prevented by the ω factor which constraints the own velocity (Zam-

brano-Bigiarini  et al., 2013).  The ω factor in the PSO used by  paropt  starts at 0.9

and linearly decrease to 0.4 during the simulations. Thus, at the beginning each parti-

cle explore the search space whereas at the end the communication between the

particles becomes more important.  

The cognitive factor regulates the contribution of the personal best parameters for ve-

locity calculation. A high proportion of this factor would thus lead to conducting a lo-

cal search (Kennedy, 1997). This parameter is set to 2.5 as a start value and linearly

decreases during each generation to a final value of 0.5 (Sengupta et al., 2018). The

social factor describes the  orientation  of a single particle i  towards the global best

particle of the swarm. This parameter is linearly increased from 0.5 to 2.5 during the

optimization (Sengupta et al., 2018). 

Topologies used in PSO

Despite improvement, the above presented approach suffers from premature conver-

gence. Thus, the swarm may only find local minima (or maxima) and become trapped

without  being able to further improve the  fitness  value  (Zambrano-Bigiarini  et al.,

2013). To address this issue, different topologies were used in case of  paropt  a so

called randomly adapted topology was implemented (Gong & Zhang, 2013). Akman,

Akman and Schaefer, 2018, showed that a random adaptive topology is best suited
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for the optimization of parameters of ODE-systems. This approach is also used in

paropt  (Krämer et al., 2021). It implies that the current position of a particle is not

compared with the global best solution, which would result in a star topology. Instead,

for each particle a random neighborhood is calculated.  Each particle has a certain

amount  of  other  particles  called  neighbors.  These  are  usually between  zero and

three. For each neighborhood the best particle is identified and used instead of the

global best solution. Neighborhoods are used until the global best fitness value does

not improve for a previously defined number of generations (Akman et al., 2018; Sen-

gupta et al., 2018). 

Calculating the fitness value

As described above, for each generation the fitness value is calculated for each parti-

cle. Thus, the ODE-system has to be solved using the initial conditions of the states

and a parameter set given by the current position of a particle. For solving the ODE-

system paropt uses the SUNDIALS collection of nonlinear and differential/algebraic

equation solvers (Hindmarsh et al., 2005),  that very efficiently yield  high quality re-

sults (Rackauckas, 2018). Parameters being variable within the simulation time were

interpolated using a Catmull-Rom-Spline (Twigg, 2003). Comparing the in silico solu-

tion of the ODE-solver to the real set  of the states given in the stateVector results in

the fitness value used by the PSO algorithm. Different error calculations were tested

with the sum of the absolute differences and a relative error (percentage error) were

most efficient for optimization. 
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A.3 ast2ast

During parameter optimization using the R package paropt (Krämer et al., 2021) the

ODE-system under consideration is solved very often. Thus, the function describing

the system should allow fast calculation. To achieve this, the ODE-system has to be

coded in a fast programming language such as Fortran, C, C++ or Julia. The R pack-

age paropt has an interface for functions written in C++. However, the caveats of us-

ing a fast language are the increased complexity during programming and the lack of

safeguards such as access to computer memory, which lies outside the boundaries

of a vector. In addition, a weakness  of paropt lies in the fact that both, the parameter

and state arguments, are vectors. In case of large parameter or state spaces this

bears the risk of index errors. However, these errors cannot be handled by paropt,

because the user transfers an already compiled function. 

To offer an application interface which allows writing the ODE-system in an inter-

preted  language  and  prevent  index  errors,  the  package  ast2ast  was  developed

(Krämer K. 2022c). The idea behind is that the user writes the function in the R lan-

guage, which is then translated into C++. Subsequently the compiled C++ function is

transferred to  paropt.  The program consist  of two parts,  one written in R and  the

other in C++. The C++ part is an expression template library, called ETR (Expression

template library R), which mimics the behavior of R (https://github.com/Konrad1991/

ETR), whereas the R part is responsible for transfer from R to ETR. 

Metaprogramming in R

Metaprogramming is a technique to inspect and manipulate code. Thus, code is used

as a kind of data. This enables many features specific for R, e.g., expressions like: ‘y

~ a*b*c’ can be used (Wickham, 2015). Furthermore, the code in R is internally rep-

resented as an abstract syntax tree (AST). Within the AST, function calls are the

branches and constants or symbols represent the leaves (Fig. AIII) (Wickham, 2015).

It is possible to inspect and manipulate the AST of R code. For example in C++ it is

not possible to use ‘<-’ to assign a value to a variable. Thus, the assignment operator

‘<-’ has to be replaced by ‘=’ in order to translate R to C++/ETR.
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ETR

Expression templates are a technique to efficiently implement basic arithmetic opera-

tions (+, -, *, /) and other functions for vectors, matrices or other objects. There exists

numerous expression template libraries  like,  e.g.,  armadillo  (Sanderson & Curtin,

2018).  C++ offers the possibility to write expression template libraries as it includes

several features: object orientated programming, templates for function and classes

and the ability to overload operators (Härdtlein et al., 2010). 

Object orientated programming

Object orientated programming is the use of types called classes, which encapsulate

attributes and methods (Loudon & Grimm, 2018). The code of the classes are only

blueprints, which means that only after the instantiation memory is allocated for the

class (see Fig. AIV: Rectangle r(3, 4) as an example). 

 

Figure AIII: Abstract syntax
tree  representation  of  R
code.
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Figure AIV: Example for a class Rectangle and how to 
instantiate the class and call a method.

 class Rectangle {
public:

int length;
int width;

Rectangle(int l, int w) : length(l), width(w) {}

int square() {
return length * width;

}

 };

int main() {

Rectangle r(3, 4);

std::cout << r.square() << std::endl;

}
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Templates

A template allows implementation of a function or class only once and call it with dif-

ferent types. The different types are constructed by the compiler (Loudon & Grimm,

2018). For instance, Fig. AV shows a function called printer which accepts a template

argument as parameter. In the main function the user indicates the type in <> brack-

ets or the compiler deduces the type of the function (as for the type bool). 

Operator overloading

The last technique required to implement expression template libraries is the ability to

overload operators i.e. defining the behavior of operators e.g. ‘+’ for a certain type

(Härdtlein et al., 2010; Loudon & Grimm, 2018). For instance one can overload the

‘+’ operator for vectors. Meaning that a function is defined which is called when ‘+’ is

used for vectors. Thus, it is possible to add the entries of two vectors using only the

operator ‘+’ and not a for loop. 

In  Fig.  AVI a  class  VEC is  defined which  has a std::vector  as an attribute.  This

std::vector contains a template type T which depends on the instantiation of the class

VEC. In the main function the class VEC is always called with the type double. The

example in Fig. AVI shows three different operators which are overloaded. The first

operator is the ‘=’ operator. The function defined for operator ‘=’ now accepts another

Figure  AV:  Example  for  a  function  tem-
plate and how to call it.

template<typename T>
void printer(T inp) {

std::cout << inp << std::endl;
}

int main() {

int i = 1;
double d = 5.3;
bool b = true;

printer<int>(i);
printer<double>(d);
printer(b);

}
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instance of class VEC. Within the body of the ‘=’ function the data stored in the other

vector is stored within the std::vector data. Notably, the function ‘=’ shows this behav-

ior only for objects of type VEC. In case one would add two objects of type double

the ‘normal’ ‘=’ function would be called.

Next the operator[ ] is overloaded. This enables  access to a specific member of the

std::vector data. The last operator which is overloaded is the ‘+’ operator. The func-

tion ‘+’ can now be called with two vectors. Within the function-body a loop iterates

over both vectors whereby adding the entries at index i and storing it in a new vector

called res. In the main function three vectors are defined v1, v2 and v3. Afterwards,

v1 and v2 are added and stored in v3. 
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Expression template libraries

One could argue that it is only necessary to overload the operators in order to create

a nice interface for numerical operations. For instance, defining how two vectors are

added one would iterate over the two vectors, adding the scalar elements and store it

in a new vector. In case one would add two vectors the approach would be efficient.

However,  as C++ is eagerly evaluated the approach would be very inefficient  for

longer expressions. For example if three vectors are added the first step would be to

Figure AVI: Example for operator overloading in classes.

template<typename T>
class VEC {
  public:
    std::vector<T> data;

    VEC(int size, double value) : data(size, value) {}

    VEC& operator=(const VEC<T>& inp) {
      for(int i = 0; i< inp.data.size(); i++) {
        data[i] = inp.data[i];
      }

      return *this;
    }

    double& operator[](int i) {
      return data[i];
    }

};

VEC<double> operator+(VEC<double>& left, VEC<double>& right) {
  VEC<double> res(left.data.size(), 0);
  for(int i = 0; i< res.data.size(); i++) {
    res[i] = left[i] + right[i];
  }

  return res;
}

int main() {

  VEC<double> v1(2, 2.5);
  VEC<double> v2(2, 10.2);
  VEC<double> v3(2, 0.0);

  v3 = v1 + v2;
  std::cout << v3[0] << " " << v3[1] << std::endl;

}
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add the first two vectors. Next, the resulting vector would be stored on the heap and

added to the third one. Thus, the approach needs a lot of memory and it is necessary

to iterate two instead of one time over the length of the vectors. 

To avoid these problems the data involved in operations is stored in special classes.

For example the following expression should be calculated: a * b + c - d. Where a, b,

c and d are all vectors. To do this three classes were instantiated. The first one is

from type multiply and hereafter called MUL and contains the data from a and b. The

second class is from type subtract and called SUB in the following. SUB contains the

data from c and d. The third class is of type  add  and is called  ADD.  The instance

ADD contains MUL and SUB as data. For each of the classes add, subtract and mul-

tiply the operator [] is overloaded. If the operator [] is called at position x the operation

is conducted. In the case of add the vector entries at position x are added in case of

subtract the entries are subtracted and in the case of  multiply the entries are multi-

plied. Thus, an expression tree is constructed (Fig. AVII) which has similarities with

the AST. If the object  ADD is passed to another vector (Fig. AVI) the operator [] is

called which in turn calls the *, - and + operation for each entries in the vectors. Thus,

the loop is only conducted once using the expression templates approach. 

 

 

Figure  AVII:  Expression  tree  of
the operation a*b + c-d
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