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Abstract

Secure Multi-Party Computation (SMPC) is a subfield of cryptography that allows multiple parties
to compute a function without disclosing the inputs. Different types of specialised computation of
specific (sub)functions are used to make SMPC computations more efficient. A recently published
paper introduced Arithmetic Tuples, a new approach for evaluating multivariate polynomials and
thereby, arithmetic circuits, in a minimal number of rounds and with practicable precomputation.
In this thesis, we demonstrate the practicality of the new approach by applying it to a variety of
real-world applications in which it has the potential to be particularly effective. These applications
are multiplexers, permutations, demultiplexers and prefix products, which include functions with
several outputs. We analyze each application and compare Arithmetic Tuples to the existing
approaches Beaver Triples and Binomial Tuples. Comparison criteria are the number of rounds, the
number of elements to be precalculated and the number of elements to be communicated.

Abstract in German (Kurzfassung)

Secure Multi-Party Computation (SMPC) ist ein Teilgebiet der Kryptographie, das es mehreren
Parteien ermöglicht, eine Funktion zu berechnen, ohne die Eingaben offenzulegen. Um SMPC-
Berechnungen effizienter zu machen, werden u.a. verschiedene Arten der spezialisierten Berechnung
bestimmter (Teil-)Funktionen verwendet. In einer kürzlich veröffentlichten Arbeit wurden arith-
metische Tupel vorgestellt, ein neuer Ansatz zur Berechnung multivariater Polynome und damit
arithmetischer Schaltungen in einer minimalen Anzahl von Runden und mit praktikabler Vorberech-
nung. In dieser Arbeit, wenden wir den neuen Ansatz auf praxisrelevante Anwendungen an, für die
der neue Ansatz vielversprechend erscheint. Diese Anwendungen sind Multiplexer, Permutationen,
Demultiplexer und Präfixprodukte, die Funktionen mit mehreren Ausgängen beinhalten. Jede
Anwendung wird analysiert und Arithmetic Tuples werden mit den bestehenden Ansätzen Beaver
Triples und Binomial Tuples verglichen. Vergleichskriterien sind die Anzahl der Runden, die
Anzahl der vorzuberechnenden Elemente und die Anzahl der zu übermittelnden Elemente.
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1 Introduction

Secure Multi-Party Computation (SMPC) is a subfield of cryptography that allows multiple parties
to compute a function on their inputs while not disclosing any information about the inputs other
than that can be derived from the final output. For this, the participating parties agree on an
arithmetic or Boolean circuit describing the function and deploy techniques to obscure inputs and
intermediate results.

For arithmetic circuits, this can be achieved by additive secret sharing, which allows simple linear
operations to be performed on the inputs while keeping them private. However, multiplications of
secret values require further correlated randomness independent of the inputs. For this, in SMPC
protocols like SPDZ [3], these values are preprocessed in an offline phase, whereas the actual
computation takes place in the online phase. One widely used form of correlated randomness is
Beaver Triples [1], with which it is possible to multiply two values with one round of communication
and three random values 𝑎, 𝑏, 𝑎𝑏. By this, it is then possible to evaluate any arithmetic circuit
consisting of AND and MULT gates and, therefore, any multivariate polynomial. Unfortunately,
Binomial Tuples lead to logarithmic many rounds for a product of variables which slows the
computation, especially in networks with high latency.

An extension of Beaver Triples that allows multiplication of any number of values in one round,
called Binomial Tuples [9, 11] leads to an exponentially growing number of correlated randomness
needed. Products of many variables can cause high memory requirements to store the random
values, and also generating them can become too time-consuming. Addressing this problem Reisert
et al. [11] recently introduced a generalization of Beaver Triples and Binomial Tuples that enable
products to be computed with minimal rounds and compared to Binomial Tuples, a practicable
number of correlated random values also for larger products.

In this work, we want to explore several possible applications for Arithmetic Tuples to aid in
the choice between Beaver Triples, Binomial Tuples and Arithmetic Tuples. One application is
multiplexers that have many use cases in SMPC. They can be used to implement array accesses,
branches or functions with several outputs like permutations of variables. Other applications we
analyze are demultiplexers, the counterpart to multiplexers, and prefix products which have been
addressed in [11]. In most cases, there are different approaches to realize these applications which
we also compare with each other.
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1 Introduction

1.1 Contribution

• We provide algorithms to determine the tuple size and bandwidth to compute a multilinear
polynomial using Beaver Triples, Binomial or Arithmetic Tuples. These algorithms can be
applied to any multilinear polynomial to determine which multiplication approach is best in a
specific scenario. Each algorithm can also be modified to suit different applications better
and can be extended to general polynomials.

• We present several possible applications for Arithmetic Tuples and give methods to determine
the tuple size, bandwidth and round complexity for each application with Beaver Triples,
Binomial and Arithmetic Tuples. For each application, we compare several approaches, like
multi-round evaluation or variations of the polynomials, that lead to different metrics. One of
these applications is multiplexers, which are an important component in many use cases like
branching.

• In the results, we compare how Beaver Triples, Binomial and Arithmetic Tuples perform
for each application. For this, we use the previously presented methods to compute each
approach’s tuple size, bandwidth and round complexity.

1.2 Structure

In the central part of this work, first Chapter 3 introduces Additive Secret-Sharing and the methods
to perform multiplications using Beaver Triples, Binomial- and Arithmetic Tuples. Furthermore,
the metrics tuple size, bandwidth and round complexity we use to compare these methods are
presented. Next Chapter 4 first introduces algorithms to measure these metrics for a given multilinear
polynomial using Beaver Triples, Binomial- and Arithmetic Tuples and afterwards presents possible
use cases for Arithmetic Tuples. These are multiplexers, permutations, demultiplexers and prefix
products. We define multilinear polynomials for each of these functions to apply the previously
introduced algorithms or find closed formulas for the metrics. Finally, Chapter 5, compares the
resulting metrics for each use case to give directions on what method to use for a scenario.
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2 Related Work

In this work, we look at applications for Arithmetic Tuples. To our knowledge, there is no further
research on applications for Arithmetic Tuples yet, except for what is presented in the original paper
on Arithmetic Tuples [11].

Here the protocol for an equality test and less-then comparison is shown. The equality check of two
private values is based on a bitwise equality check of a private value with a public constant. To
check if two private values 𝑥, 𝑦 are equal 𝑐 = 𝑥 − 𝑦 + 𝑟 for a random shared value, 𝑟 is opened, and
the bitwise equality check of 𝑐 and [𝑟] is computed. When 𝑐 and 𝑟 are decomposed to 𝑘 bits, this
equality check requires the multiplication of 𝑘 shares, for which Arithmetic Tuples can be used. In
the less-than-protocol, a prefix-OR is used, which can be expressed as a prefix product. Computing
prefix products with Arithmetic Tuples has therefore also been addressed in the paper. The paper
also benchmarks the evaluation of multivariate polynomials, establishing a ranking of inputs, and
evaluating neural networks.

For other related work, on the one hand, we have further alternatives or extensions to Binomial
Tuples that can be used to evaluate any multivariate polynomial and therefore also the polynomials
implementing our applications [2, 3, 8]. Regarding alternatives to Binomial Tuples in the two-party
case, Yao’s Garbled Circuit Protocol provides a constant round complexity to evaluate any function
represented as a Boolean circuit[4].

On the other hand, there is research on the specialized implementation of the here presented
applications of Arithmetic Tuples. One use case of multiplexers is conditional branching to select
the correct branch. Each branch has to be evaluated so that its result can be input into a multiplexer.
For this reason, the communication complexity depends on the whole circuit and not only on the
single active branch, which can slow the computation. In the work of Goel et al. [6], an alternative
approach is presented, for which the communication complexity depends only on the size of the
largest branch. It ensures that the information on which branch was selected is not leaked and can
be used to evaluate an arithmetic circuit over any field with a non-constant round complexity.

Another use case of multiplexers is accessing arrays. For this, every value in the array has to
be touched since it is an input to the arithmetic circuit. When working with a large amount of
data, reading it in its entirety becomes impractical. This can be avoided by using Oblivious RAM
(ORAM), which obscures access patterns without the need for accessing each entry [5, 10].
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3 Background and Fundamentals /
Preliminaries

3.1 Additive Secret-Sharing

Secret Sharing is a useful tool in SMPC. It allows sharing a secret value among a number of parties
so that it can only be reconstructed when a sufficiently large number of parties collaborate. One
prominent example is Shamir Secret Sharing [13] based on polynomial interpolation. It functions
by using the fact that a polynomial 𝑓 with degree 𝑘 − 1 can be unambiguously reconstructed with at
least 𝑘 points of 𝑓 , then allowing to evaluate 𝑓 (0) = 𝐷 to learn the secret 𝐷.

Here, however, the much simpler additive secret sharing is used. First of all, all computations take
place in a finite field like Z232 or Z𝑝 for a prime number 𝑝. With additive secret sharing a secret 𝑥 is
shared among 𝑁 parities 𝑃𝑖 , 0 ≤ 𝑖 < 𝑁 so that 𝑥 =

∑𝑁−1
𝑖=0 [𝑥]𝑖 . Where [𝑥]𝑖 denotes the share of 𝑥

held by party 𝑃𝑖 .

Additive secret sharing ensures that the value of 𝑥 can only be revealed if all 𝑁 parties collaborate,
and even 𝑁 − 1 dishonest parties can not learn anything about 𝑥 when collaborating. It can therefore
be used in a dishonest majority setting, where at most 𝑁 − 1 parties are corrupted. For example,
if Bob wants to share a secret value 𝑥 = 42 with Alice and Eve, he could give Alice the share
[𝑥]𝐴 = 17, Eve the share [𝑥]𝐸 = 5 and only remember his own share [𝑥]𝐵 = 42− [𝑥]𝐴− [𝑥]𝐸 = 20.
Then [𝑥]𝐴 + [𝑥]𝐵 + [𝑥]𝐸 = 𝑥, but even if Alice and Eve collaborate and reveal their shares to each
other, they can not learn Bob’s secret since [𝑥]𝐵 and therefore also 𝑥 could be any value in the finite
field.

To reveal (open) a shared secret 𝑥, all 𝑁 parties need to send their share of 𝑥 to all other parties and
then compute the sum of these shares.

Secret sharing alone has many applications, like distributing an encryption key among several
parties so that compromising a single party does not cause any damage. In this work, nevertheless,
we are interested in performing computations on these shares so that nothing more than the final
result is unveiled. For this, additive secret sharing has the advantage of being linear, allowing one
to perform some operations on shares of values so that after opening, the same result is obtained as
if these operations had been performed on the values themselves.

For one, the share of the sum of two values 𝑥, 𝑦 is the same as the sum of the shares of 𝑥, 𝑦

([𝑥 + 𝑦]𝑖 = [𝑥]𝑖 + [𝑦]𝑖). The following equation shows this:

𝑁−1∑︁
𝑖=0
[𝑥 + 𝑦]𝑖 = 𝑥 + 𝑦 =

𝑁−1∑︁
𝑖=0
[𝑥]𝑖 +

𝑁−1∑︁
𝑖=0
[𝑦]𝑖 =

𝑁−1∑︁
𝑖=0
( [𝑥]𝑖 + [𝑦]𝑖)(3.1)
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3 Background and Fundamentals / Preliminaries

Furthermore it holds, that [𝑘 ·𝑥]𝑖 = 𝑘 · [𝑥]𝑖 (see Equation (3.2)) and, that [𝑥+ 𝑘]𝑖 = [𝑥]𝑖 +𝛿1,𝑖 · 𝑘 (see
Equation (3.3)) for a publicly known constant 𝑘 and the Kronecker delta 𝛿1,𝑖 = 1 if 𝑖 = 0, 0 if 𝑖 ≠ 0.

𝑁−1∑︁
𝑖=0
[𝑘 · 𝑥]𝑖 = 𝑘 · 𝑥 = 𝑘 ·

𝑁−1∑︁
𝑖=0
[𝑥]𝑖 =

𝑁−1∑︁
𝑖=0

𝑘 · [𝑥]𝑖(3.2)

𝑁−1∑︁
𝑖=0
[𝑥 + 𝑘]𝑖 = 𝑥 + 𝑘 =

𝑁−1∑︁
𝑖=0
[𝑥]𝑖 + 𝑘 = ( [𝑥]0 + 𝑘) +

𝑁−1∑︁
𝑖=1
[𝑥]𝑖(3.3)

None of these techniques requires communication between the parties and can thus be performed
locally. Difficulties arise with the multiplication of two secret values since [𝑥 · 𝑦]𝑖 ≠ [𝑥]𝑖 · [𝑦]𝑖 in
most cases. To this, the so-called Beaver Triples by Beaver [1] are a possible solution. A Beaver
Triple is a three-tuple ( [𝑎]𝑖 , [𝑏]𝑖 , [𝑎𝑏]𝑖) containing correlated randomness that is generated before
the actual computation (online phase) in the offline phase. Using these tuple entries then allows
[𝑥 · 𝑦]𝑖 to be calculated by first opening the masked values (𝑥 − 𝑎) and (𝑦 − 𝑏). This does not
reveal any information about 𝑥 and 𝑦 since 𝑎, 𝑏 are random shared values. Because of that, we will
call tuple entries like 𝑎, 𝑏 sometimes mask. By opening, (𝑥 − 𝑎), (𝑦 − 𝑏) became publicly known
constant and each party 𝑃𝑖 can calculate

(𝑥 − 𝑎) (𝑦 − 𝑏) · 𝛿0,𝑖 + [𝑎]𝑖 (𝑦 − 𝑏) + [𝑏]𝑖 (𝑥 − 𝑎) + [𝑎𝑏]𝑖(3.4)

to obtain a share of 𝑥 · 𝑦. From now on, When adding a public constant 𝑘 , we will only write · · · + 𝑘
instead of · · · + 𝑘 · 𝛿0,𝑖 even though it still applies that 𝑘 is only added to the share of 𝑃0.

To ensure that the outputs of a SMPC are correct (to provide active security where parties could
deviate from the protocol), in SPDZ, the shares are authenticated using a Message Authentication
Code (MAC) key. For simplicity, we will disregard authentication in the following sections.
However, note that all operations are compatible with the MAC authentication.

3.2 Metrics

SMPC has additional parameters influencing the performance compared to a typical local computa-
tion. Mainly, that data has to be transmitted between different parties. Depending on the properties
of the network connecting participating parties, the time or resources needed to perform a SMPC
vary.

For one, if the latency in the network is high, a small round complexity is desirable. Typically,
in the here used SMPC protocols, after performing computations locally in parallel, the parties
need to communicate to share intermediate or final results and continue the calculation. The
number of times this communication occurs is called round complexity. Yet, the initial opening
round is not counted because its structure can vary depending on the specific protocol. For
example, recall the computation of a product 𝑥 · 𝑦 using beaver triples. Here we first had to open
the masked values (𝑥 − 𝑎) and (𝑦 − 𝑏) (opening round) and then the locally computed shares
of (𝑥 − 𝑎) (𝑦 − 𝑏) + [𝑎] (𝑦 − 𝑏) + [𝑏] (𝑥 − 𝑎) + [𝑎𝑏] (second round). So, in that case, the round
complexity is one.
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3.3 Binomial Tuples

Next, data rate restrictions can be a problem regarding SMPC. Therefore, with the bandwidth, we
also measure the number of field elements transmitted between the parties. Here, when we have a
look at the computation of a product 𝑥 · 𝑦 using beaver triples. Because of the three ring elements
(𝑥 − 𝑎), (𝑦 − 𝑏) and (𝑥 − 𝑎) (𝑦 − 𝑏) + [𝑎] (𝑦 − 𝑏) + [𝑏] (𝑥 − 𝑎) + [𝑎𝑏] we get a bandwidth of three.

Finally, independent of the network parameters, the number of additional field elements (tuple
entries) required in the computation slows down the generation of these elements in the offline
phase and requires sufficient memory resources. The tuple size measures this factor. Again, for the
same example as above, the tuple size is | ( [𝑎], [𝑏], [𝑎𝑏]) | = 3.

3.3 Binomial Tuples

Binomial Tuples make it possible to compute arbitrary polynomials 𝑓 (𝑥0, . . . , 𝑥𝑛−1) in only one
round of communication in addition to the opening round. This similarity to Arithmetic Tuples
makes a comparison between the two approaches meaningful. Additionally, Binomial Tuples are
used in Arithmetic Tuples to build elementary building blocks (see Section 3.4). For these reasons,
this section gives a short introduction to Binomial Tuples. The complete proof can be found in
[11].

The construction of Binomial Tupels is based on the Binomial Theorem, which states that a
Polynomial (𝑥 + 𝑦)𝑛 can be expanded to

∑𝑛
𝑘=0

(𝑛
𝑘

)
𝑥𝑛−𝑘𝑦𝑘 . This can be used to calculate shares of

𝑥𝑛 using a previously opened masked value (𝑥 − 𝑎) and shares [𝑎𝑒]𝑖 for 1 ≤ 𝑒 ≤ 𝑛:

[𝑥𝑛]𝑖 = [((𝑥 − 𝑎) + 𝑎)𝑛]𝑖 =
𝑛∑︁

𝑒=0

(
𝑛

𝑒

)
(𝑥 − 𝑎)𝑛−𝑒 [𝑎𝑒]𝑖(3.5)

However, to compute shares of a multivariate monomial of the form 𝑓 (𝑥0, . . . , 𝑥𝑛−1) =
∏𝑛−1

𝑘=0 𝑥
𝑑𝑘

𝑘

this is generalised using a tuple [(𝑎 (𝑒0,...,𝑒𝑛−1 ) ) (𝑒0,...,𝑒𝑛−1 ) ∈𝐸]𝑖 for 𝐸 =
>𝑛−1

𝑘=0 {0, . . . , 𝑑𝑘} and
𝑎 (𝑒0,...,𝑒𝑛−1 ) =

∏𝑛−1
𝑗=0 𝑎

𝑒 𝑗

𝑗
. The following equation then gives a sharing of 𝑓 :

[ 𝑓 (𝑥0, . . . , 𝑥𝑛−1)] =
∑︁
𝑒∈𝐸

(
[𝑎𝑒]𝑖

𝑛−1∏
𝑘=0

(
𝑑𝑘

𝑒𝑘

)
(𝑥𝑘 − 𝑎𝑘)𝑑𝑘−𝑒𝑘

)
(3.6)

For example to compute 𝑥2
0𝑥1 we need the tuple

(
𝑎 (0,0) , 𝑎 (0,1) , 𝑎 (1,0) , 𝑎 (1,1) , 𝑎 (2,0) , 𝑎 (2,1)

)
=(

1, 𝑎1, 𝑎0, 𝑎0𝑎1, 𝑎
2
0, 𝑎

2
0𝑎1

)
. Using equation 3.6 we then obtain:

[𝑥2
0𝑥1]𝑖 = 1 ·

(
2
0

)
(𝑥0 − 𝑎0)2 ·

(
1
0

)
(𝑥1 − 𝑎1)1 + [𝑎1]𝑖 ·

(
2
0

)
(𝑥0 − 𝑎0)2 ·

(
1
1

)
(𝑥1 − 𝑎1)0

+ [𝑎0]𝑖 ·
(
2
1

)
(𝑥0 − 𝑎0)1 ·

(
1
0

)
(𝑥1 − 𝑎1)1 + [𝑎0𝑎1]𝑖 ·

(
2
1

)
(𝑥0 − 𝑎0)1 ·

(
1
1

)
(𝑥1 − 𝑎1)0

+ [𝑎2
0]𝑖 ·

(
2
2

)
(𝑥0 − 𝑎0)0 ·

(
1
0

)
(𝑥1 − 𝑎1)1 + [𝑎2

0𝑎1]𝑖 ·
(
2
2

)
(𝑥0 − 𝑎0)0 ·

(
1
1

)
(𝑥1 − 𝑎1)0

= (𝑥0 − 𝑎0)2(𝑥1 − 𝑎1) + [𝑎1]𝑖 (𝑥0 − 𝑎0)2 + 2 · [𝑎0]𝑖 · (𝑥0 − 𝑎0) (𝑥1 − 𝑎1)
+ 2 · [𝑎0𝑎1]𝑖 (𝑥0 − 𝑎0) + [𝑎2

0]𝑖 (𝑥1 − 𝑎1) + [𝑎2
0𝑎1]𝑖

21



3 Background and Fundamentals / Preliminaries

The required tuple-size of a monomial
∏𝑛−1

𝑘=0 𝑥
𝑑𝑘

𝑘
equals |𝐸 | − 1 =

∏𝑛−1
𝑘=0 (𝑑𝑘 + 1) − 1 since for each

𝑒 ∈ 𝐸 we get a tuple entry 𝑎𝑒 except for 𝑒 = (0, . . . , 0). 𝑎 (0,...,0) = 1 and therefor is a publicly
known constant. In terms of bandwidth, with binomial tuples, the 𝑛 masked values (𝑥𝑖 − 𝑎𝑖) and
the share of 𝑓 have to be published, which leads to a bandwidth of 𝑛 + 1.

Finally, to build a polynomial of several monomials, one can combine the tuples required for each
monomial so that each entry occurs at most once. For example, the tuple for 𝑥2

0𝑥1 + 𝑥0𝑥1 is the same
as the tuple for 𝑥2

0𝑥1 because each entry for 𝑥0𝑥1 is already included in the tuple for 𝑥2
0𝑥1.

In this work, we will have a closer look at multilinear polynomials, of which each variable is of
a degree of zero or one. Thus each monomial is of the form

∏𝑛−1
𝑘=0 𝑥

𝑑𝑘

𝑘
with 𝑑𝑘 ∈ {0, 1}. In this

case, the size of the tuple is 2𝑚 − 1 with 𝑚 = |{𝑑𝑘 | 𝑑𝑘 = 1, 0 ≤ 𝑘 < 𝑛}|. Furthermore if we have

a polynomial of the form 𝑓 (𝑥0, . . . , 𝑥𝑛−1) = 𝑥0 · ... · 𝑥𝑛−1 +
∑𝑚

𝑗=0 𝑥
𝑑
( 𝑗)
0

0 · ... · 𝑥𝑑
( 𝑗)
𝑚−1

𝑚−1 , 𝑑
( 𝑗 )
𝑙
∈ {0, 1},

the tuple size for 𝑓 is given by 2𝑛 − 1. This is because each tuple entry required for a monomial

𝑥
𝑑
( 𝑗)
0

0 · ... · 𝑥𝑑
( 𝑗)
𝑚−1

𝑚−1 is already included in the tuple for 𝑥0 · ... · 𝑥𝑛−1, which has the size 2𝑛 − 1.

3.4 Arithmetic Tuples

The previously introduced Binomial Tuples achieve a minimal number of rounds, but the tuple size
grows exponentially with the number of variables in a monomial. However, keeping the tuple-size
minimal is essential since the offline phase has to generate the tuple in a reasonable amount of time
not to become the bottleneck of a SMPC and enough memory has to be available. For instance,
𝑥0 · ... · 𝑥15 requires a Binomial Tuple of size 216 − 1 = 65535 whereas an example arithmetic tuple
has only 157 entries.

The main idea of Arithmetic Tuples is to first build elementary building blocks from the initially
published masked values and the correlated randomness included in the tuple using the Binomial
Tuple approach. After publishing, these elementary building blocks can then be locally combined
to receive the desired polynomial while not revealing any information except the final result.

Figure 3.1 exemplary shows this method for a monomial 𝑥0𝑥1𝑥2𝑥3. Here 𝑥0𝑥1 and 𝑥2𝑥3 are built
using binomial tuples in order to be multiplied to obtain 𝑥0𝑥1 · 𝑥2𝑥3. However, publishing 𝑥0𝑥1
and 𝑥2𝑥3 would reveal more information than could be learned from 𝑥0𝑥1𝑥2𝑥3. For which reason
𝑥0𝑥1 and 𝑥2𝑥3 are masked by new randomness 𝑎01 and 𝑎23. Multiplying (𝑥0𝑥1 − 𝑎01) · (𝑥2𝑥3 − 𝑎23)
then yields the unwanted terms −𝑎23𝑥0𝑥1,−𝑎01𝑥2𝑥3, 𝑎01𝑎23. To remove these, a third elementary
building block 𝑎23𝑥0𝑥1 + 𝑎01𝑥2𝑥3 − 𝑎01𝑎23 is added. In the dashed boxes are the equations to
compute these three building blocks using binomial tuples where the 15 tuple entries used to
compute 𝑥0𝑥1𝑥2𝑥3 appear. In theory, also 𝑎23𝑥0𝑥1 and 𝑎01𝑥2𝑥3 are masked, but since the additive
building blocks are combined, these terms cancel out immediately.

Note that [𝑎23𝑎0𝑎1], [𝑎01𝑎2𝑎3] and [𝑎01𝑎23] are added to the same term and can therefore be
combined to a single tuple entry [𝑎23𝑎0𝑎1 + 𝑎01𝑎2𝑎3 − 𝑎01𝑎23] In general, tuple entries that are
added to the same term (and not used elsewhere) can be combined and are called additive tuple
entries. This lowers the tuple size, like in this example, from 15 to 13. It is also possible to obtain a
share [𝑥0𝑥1𝑥2𝑥3] by adding [𝑎23𝑎0𝑎1 + 𝑎01𝑎2𝑎3 − 𝑎01𝑎23] only after opening the building blocks.
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3.4 Arithmetic Tuples

In general, all building blocks of the form 𝑦 = 𝑎 · 𝑏 ·∑𝑛−1
𝑖=0 𝑥𝑖 − 𝑐 can be either built directly using

binomial tuples or recursively by building

𝑦0 = 𝑎 ·
⌈ 𝑛2 ⌉−1∑︁
𝑖=0

𝑥𝑖 − 𝑐0,

𝑦1 = 𝑏 ·
𝑛−1∑︁
𝑖=⌈ 𝑛2 ⌉

𝑥𝑖 − 𝑐1,

𝑦01 = 𝑐1 · 𝑎 ·
⌈ 𝑛2 ⌉−1∑︁
𝑖=0

𝑥𝑖 − 𝑐2 + 𝑐0 · 𝑏 ·
𝑛−1∑︁
𝑖=⌈ 𝑛2 ⌉

𝑥𝑖 − 𝑐3 − 𝑐0𝑐1 − 𝑐 + 𝑐2 + 𝑐3

and then calculating 𝑦 = 𝑦′ · 𝑦′′ + 𝑦′′′ (𝑎, 𝑏, 𝑐0, . . . , 𝑐3 are tuple entries (masks) or if not present
𝑎, 𝑏 = 1, 𝑐 = 0. e.g. 𝑥0 · ... · 𝑥7 = 𝑦 for 𝑛 = 8, 𝑎 = 𝑏 = 1, 𝑐 = 0). 𝑦, 𝑦′ are again of the same form as
𝑦 and 𝑦′′′ consists of three terms, of which two are of the same form as 𝑦, and the third are masks
that can be simply added to the building block. Here it can also be seen that the masks 𝑐2 and 𝑐3
cancel out if all additive building blocks are combined and therefore are unnecessary. To compute
a sum of monomials, the set of building blocks and, consequently also the tuples for each of the
monomials can be unified.

The general definition of Arithmetic Tuples, however, allows many other variations on how to build
𝑦, like splitting 𝑦 into more than two parts or at what degree binomial tuples are used to build 𝑦.
Moreover, it is possible to add additional rounds to publish intermediate results, which are then
again combined using Arithmetic tuples. Also, monomials with variables 𝑥𝑑

𝑖
of degree 𝑑 > 1

can be built by replacing 𝑥𝑖 by 𝑥𝑑
𝑖

in the elementary building blocks. Overall, it is important to
note that Arithmetic Tuples are not definite, and many variations can result in entirely different
metrics. There is often a trade-off between round complexity, tuple size and bandwidth. In this
work, whenever we write about the Arithmetic Tuple for some polynomial, it is, in fact, only one
possible example Arithmetic Tuple which we defined. In most cases, it will be optimized to achieve
a minimal round complexity of one. Strictly speaking, every Binomial Tuple and Beaver Triple is
also an Arithmetic Tuple since Arithmetic Tuples generalize these concepts.

To better understand Arithmetic Tuples, in Figure 3.2 on page 25, it is shown how 𝑥0 · ... · 𝑥3
and 𝑥4 · ... · 𝑥7 are combined to gain 𝑥0 · ... · 𝑥7 and in Section 4.1.3 an algorithmic approach to
build a monomial using arithmetic tuples is described. Furthermore, refer to [11] for the formal
definition.
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entals
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inaries

Figure 3.1: This figure illustrates how 𝑥0 · ... · 𝑥3 can be computed using Arithmetic Tuples. The leaves of this tree (dashed boxes) show how
the elementary building blocks are computed using the tuple entries and the previously opened masked values 𝑥𝑖 − 𝑎𝑖 for 0 ≤ 𝑖 < 4.
Afterwards, these elementary building blocks are opened and combined according to the tree’s structure.
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Figure 3.2: This figure illustrates how 𝑥0 · · · · · 𝑥15 can be computed using Arithmetic Tuples. Only the additive part is shown in detail. The tree for
the two multiplicative parts can be seen in Figure 3.1 with the exception of the missing masks 𝑎0123 and 𝑎4567. Note that additive tuples
are not combined in this illustration even though it is possible.
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4 Implementation and Methodology

4.1 Computing the tuple size and bandwidth for a multilinear
polynomial

4.1.1 Beaver Triples

With Beaver Triples, the metrics depend on the circuit used to compute the polynomial. For example,
𝑥0𝑥1𝑥2𝑥3 can be computed in two rounds by first computing 𝑥0𝑥1 and 𝑥2𝑥3 and then combining
them in the second round. Nevertheless, if in the first round 𝑥0 and 𝑥1, in the second round 𝑥0𝑥1
and 𝑥2 and in the third round 𝑥0𝑥1𝑥2 and 𝑥3 are combined, three rounds are necessary. Also, for
polynomials consisting of several monomials, the splitting strategy can affect the number of three
tuples needed because it can influence which blocks can be reused.

For this reason, we will first consider a general approach to determine a tuple size and bandwidth for
a multilinear polynomial with the aim to minimize round complexity and, in some cases, specialized
approaches for specific use cases.

The general approach is to go through each monomial in a polynomial and add each required tuple
entry and building block to a set. Algorithm 4.1 therefore calls on each monomial the recursive
procedure buildMonomial, which first splits monomials of degree two or more into two monomials
𝑙𝑒 𝑓 𝑡, 𝑟𝑖𝑔ℎ𝑡. 𝑙𝑒 𝑓 𝑡, 𝑟𝑖𝑔ℎ𝑡 are then used to add the tuple entries required two build 𝑙𝑒 𝑓 𝑡 · 𝑟𝑖𝑔ℎ𝑡 to the
tuple set. Here Mask(𝑚) means the unique mask for a monomial 𝑚, e.g. 𝑎01 for 𝑥0𝑥1, depending
on the concrete implementation. Finally, 𝑙𝑒 𝑓 𝑡, 𝑟𝑖𝑔ℎ𝑡 are added to the set of monomials that have to
be opened (as a masked value), and buildMonomial is recursively called on 𝑙𝑒 𝑓 𝑡,𝑟𝑖𝑔ℎ𝑡.

Storing these values in a set ensures that duplicates are not counted if we use |𝑇𝑢𝑝𝑙𝑒 | and
|𝑂𝑝𝑒𝑛𝑒𝑑𝐵𝑙𝑜𝑐𝑘𝑠 | + 1 to determine the tuple size and bandwidth.

To find the minimal number of rounds, the algorithm is not necessary since a monomial 𝑚𝑖 of degree
𝑑𝑖 requires 𝑟 (𝑚𝑖) = ⌈log 𝑑𝑖⌉ rounds to compute using beaver triples and then for a polynomial∑𝑛

𝑖=0 𝑚𝑖 max{𝑟 (𝑚𝑖) | 0 ≤ 𝑖 ≤ 𝑛} rounds are required.

4.1.2 Binomial Tuples

When considering Binomial Tuples, it is often possible to find an analytical solution to the tuple
size for a family of polynomials as already mentioned in Section 3.3. In general, an upper bound to
the tuple size for a multilinear polynomial 𝑓 (𝑥0, . . . , 𝑠𝑛−1) in 𝑛 variables is given by 2𝑛 − 1, since
{(𝑎𝑒0

0 , . . . , 𝑎
𝑒𝑛−1
𝑛−1 ) | (𝑒0, . . . 𝑒𝑛−1) ∈ {0, 1}𝑛 \ {(0, . . . 0)}} includes all necessary tuple entries for

all multilinear monomials in 𝑥0, . . . 𝑥𝑛−1.
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Algorithm 4.1 Algorithm to compute an upper bound to the number of tuple entries for a given
multilinear polynomial when using beaver triples.

procedure computeBeaverTupleSize(𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙)
𝑇𝑢𝑝𝑙𝑒 ← ∅
𝐵𝑢𝑙𝑑𝑖𝑛𝑔𝐵𝑙𝑜𝑐𝑘𝑠← ∅
for all 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙𝑠 𝑚in 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 do

buildMonomial(𝑚)
end for

end procedure
procedure buildMonomial(𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙)

if 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙.𝑑𝑒𝑔𝑟𝑒𝑒 < 2 then
return

end if
𝑙𝑒 𝑓 𝑡, 𝑟𝑖𝑔ℎ𝑡 ← splitMonomial(𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙)
𝑇𝑢𝑝𝑙𝑒 ← 𝑇𝑢𝑝𝑙𝑒 ∪ {Mask(𝑙𝑒 𝑓 𝑡),Mask(𝑟𝑖𝑔ℎ𝑡),Mask(𝑙𝑒 𝑓 𝑡) ·Mask(𝑟𝑖𝑔ℎ𝑡)}
𝑂𝑝𝑒𝑛𝑒𝑑𝐵𝑙𝑜𝑐𝑘𝑠← 𝑂𝑝𝑒𝑛𝑒𝑑𝐵𝑙𝑜𝑐𝑘𝑠 ∪ {𝑙𝑒 𝑓 𝑡, 𝑟𝑖𝑔ℎ𝑡}
buildMonomial(𝑙𝑒 𝑓 𝑡)
buildMonomial(𝑟𝑖𝑔ℎ𝑡)

end procedure
function splitMonomial(𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙)

Input 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙 =
∏𝑘

𝑖=0 𝑥𝑖

return
∏⌊𝑘/2⌋

𝑖=0 𝑥𝑖 ,
∏𝑘

𝑗=⌊𝑘/2⌋+1 𝑥 𝑗

end function

Algorithm 4.2 Algorithm to compute the Binomial Tuple size for a given multilinear polynomial.
procedure computeBinomialTupleSize(𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙)

𝑇𝑢𝑝𝑙𝑒 ← ∅
for all 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙𝑠 𝑚 =

∏𝑛−1
𝑖=0 𝑥

𝑑𝑖
𝑖
, 𝑑𝑖 ∈ {0, 1} in 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 do

𝑇𝑢𝑝𝑙𝑒 ← 𝑇𝑢𝑝𝑙𝑒 ∪ {(𝑎𝑒0
0 , . . . , 𝑎

𝑒𝑛−1
𝑛−1 ) | 𝑒𝑖 ∈ {0, 1} if 𝑑𝑖 = 1, 𝑒𝑖 = 0 else , 0 ≤ 𝑖 < 𝑛}

end for
Output |𝑇𝑢𝑝𝑙𝑒 |

end procedure

Finding the exact tuple size for an arbitrary multilinear polynomial can become more time-
consuming when its structure becomes more complex. In that case, we can use a simple algorithm
(Algorithm 4.2) to determine the tuple size for a given polynomial.

However, calculating the bandwidth of a polynomial in 𝑛 variables is simple since we only need to
open the 𝑛 masked variables and, finally, the sum of the computed shares of the monomials. This
gives a bandwidth of 𝑛 + 1 and the round complexity is always one.
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4.1 Computing the tuple size and bandwidth for a multilinear polynomial

4.1.3 Arithmetic Tuples

With Arithmetic Tuples, finding the tuple size and bandwidth analytically for an arbitrary polynomial
becomes more difficult. Therefore we use Algorithm 4.3 that uses the Procedure buildTree in
Algorithm 4.4 to build a tree similar to Figure 3.1 for each monomial in the polynomial. Here each
required tuple entry is added to the set 𝑇𝑢𝑝𝑙𝑒 so that duplicates are not considered. We then get
the tuple size with |𝑇𝑢𝑝𝑙𝑒 | and can analogically determine the bandwidth by counting the unique
building blocks.

In detail, the procedure buildTree 4.4 given a node and a monomial 𝑎 · 𝑏 ·∏𝑛−1
𝑖=0 𝑥𝑖 with up to two

prefactors 𝑎, 𝑏 first checks (ll.2) if the degree of the monomial is less then four (𝑛 ≤ 3). In that case,
the termination condition is met, and the current node of the tree is considered a leaf. The monomial
is then directly built using binomial tuples in the procedure addLeaf 4.5. This procedure adds all
tuple entries to the set necessary to build the term 𝑝 ·∏𝑘

𝑖=0 𝑥𝑖 − 𝑚𝑎𝑠𝑘, 𝑘 ∈ {1, 2} using binomial
tuples. Otherwise, the monomial is split into the two monomials 𝑙𝑒 𝑓 𝑡𝑀𝑜𝑛𝑜𝑚𝑖𝑎𝑙 = 𝑎 ·∏⌊𝑘/2⌋

𝑖=0 𝑥𝑖

and 𝑟𝑖𝑔ℎ𝑡𝑀𝑜𝑛𝑜𝑚𝑖𝑎𝑙 = 𝑏 ·∏𝑘
𝑗=⌊𝑘/2⌋+1 𝑥 𝑗 (ll.6).

The current node then gets two children. One 𝐴𝑑𝑑𝑁𝑜𝑑𝑒 indicating that its children should be
summed up, and one 𝑀𝑢𝑙𝑡𝑁𝑜𝑑𝑒 indicating that its children should be multiplied. This 𝑀𝑢𝑙𝑡𝑁𝑜𝑑𝑒

has the two masked monomials 𝑙𝑒 𝑓 𝑡𝑀𝑜𝑛𝑜𝑚𝑖𝑎𝑙 −Mask(𝑙𝑒 𝑓 𝑡𝑀𝑜𝑛𝑜𝑚𝑖𝑎𝑙) and 𝑟𝑖𝑔ℎ𝑡𝑀𝑜𝑛𝑜𝑚𝑖𝑎𝑙 −
Mask(𝑟𝑖𝑔ℎ𝑡𝑀𝑜𝑛𝑜𝑚𝑖𝑎𝑙) as children. Mask(𝑚) is a unique mask for a term 𝑚 so that 𝑚 = 𝑚′ ⇔
Mask(𝑚) = Mask(𝑚′). The 𝐴𝑑𝑑𝑁𝑜𝑑𝑒 has three children compensating for the unwanted
terms that arise if the two masked monomials are multiplied. These are 𝑙𝑒 𝑓 𝑡𝑀𝑜𝑛𝑜𝑚𝑖𝑎𝑙 ·
Mask(𝑟𝑖𝑔ℎ𝑡𝑀𝑜𝑛𝑜𝑚𝑖𝑎𝑙), 𝑟𝑖𝑔ℎ𝑡𝑀𝑜𝑛𝑜𝑚𝑖𝑎𝑙 ·Mask(𝑙𝑒 𝑓 𝑡𝑀𝑜𝑛𝑜𝑚𝑖𝑎𝑙) and Mask(𝑙𝑒 𝑓 𝑡𝑀𝑜𝑛𝑜𝑚𝑖𝑎𝑙) ·
Mask(𝑟𝑖𝑔ℎ𝑡𝑀𝑜𝑛𝑜𝑚𝑖𝑎𝑙). On each of these five nodes, the procedure is then called recursively
except for Mask(𝑙𝑒 𝑓 𝑡𝑀𝑜𝑛𝑜𝑚𝑖𝑎𝑙) ·Mask(𝑟𝑖𝑔ℎ𝑡𝑀𝑜𝑛𝑜𝑚𝑖𝑎𝑙) because it is only a product of tuple
entries.

This product, together with the mask of the current node, should be added to the tuple. Since they
are not used in multiplication, they can be combined. Therefore the function findHighesAddNode
starting from an 𝐴𝑑𝑑𝑁𝑜𝑑𝑒 returns the highest 𝐴𝑑𝑑𝑁𝑜𝑑𝑒 in the tree that can be reached without
crossing a 𝑀𝑢𝑙𝑡𝑁𝑜𝑑𝑒. All additive tuple entries underneath this ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝐴𝑑𝑑𝑁𝑜𝑑𝑒 can be combined
into a single tuple entry.

To achieve this, the tuple entries are not directly added to the tuple but to a tuple entry stored in
the ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝐴𝑑𝑑𝑁𝑜𝑑𝑒 (ll.17). This tuple entry is only added to the set 𝑇𝑢𝑝𝑙𝑒 at the end of the
procedure so that all children have already returned and added all terms to the entry (ll.22). The
same strategy is applied to combine the to-be-opened building blocks. In Figure 3.2 on page 25 is
an example of how building blocks can be combined. Here all but two leaves are combined into a
single building block (big dashed box). All tuple entries that are only added or subtracted to this
block can be combined into a single tuple entry.

When it comes to a polynomial of several monomials, it is possible to combine all additive building
blocks of the highest 𝑎𝑑𝑑𝑁𝑜𝑑𝑒 (i.e. that are not used in multiplication) and also monomials
that are directly built using Binomial Tuples (i.e. of degree ≤ 3) into a single building block.
This consequently also applies to the there used additive tuple entries, further lowering the tuple
size. Note that for simplicity, this optimization is not depicted in Algorithm 4.3 even though it is
considered in the results.
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4 Implementation and Methodology

Algorithm 4.3 Algorithm to determine the arithmetic tuple size and bandwidth for a given multilinear
polynomial.

procedure computeArithmeticTupleSize(𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙)
𝑇𝑢𝑝𝑙𝑒 ← ∅
𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝐵𝑙𝑜𝑐𝑘𝑠← {(𝑥𝑖 −Mask(𝑥𝑖)) | 𝑥𝑖 occuring in a multiplication in the polynomial}
for all 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙𝑠 𝑚 in 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 do

buildTree(new Node(𝑚, 𝑛𝑢𝑙𝑙), 𝑚, 0)
end for
Output |𝑇𝑢𝑝𝑙𝑒 | , |𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝐵𝑙𝑜𝑐𝑘𝑠 |

end procedure

This algorithm is optimal regarding tuple size for monomials of degree ≤ 12. However, for
monomials of degree > 12, there is a small optimization for the split routine and possibly further
optimizations, which are not implemented. In some cases, the only prefactor 𝑎 should be multiplied
to the right half instead of the left so that this building block can be reused to build a monomial
with two prefactors. For monomials of degree ≤ 16, this reduces the tuple size by at most eight and
at most two in the bandwidth.

There are several other possibilities for modification of the algorithm. For one, depending on the
concrete implementation and the size of the monomials, it could increase the performance to check
whether buildTree has already been called on a similar node. This node can then be reused, like
𝑥3𝑥4 − 𝑎34 or 𝑥7𝑥8 − 𝑎78 in Figure 3.1.

Moreover some changes influence bandwidth and tuple size when optimizing for different properties.
One possibility is to modify the termination condition so that, e.g. monomials of degree ≤ 4 are
considered a leaf and thus directly built using Binomial Tuples. Another option is to change the
splitting strategy in thesplitMonomial function so that the monomial is cut at a different position or
into more parts. The current version is optimized for the tuple size of a single monomial. However,
when working with a polynomial of several monomials, different splitting strategies could increase
the reusability of building blocks and thus decrease the tuple size.

For instance, if we look at the polynomial 𝑓 (𝑥0, . . . , 𝑥4) = 𝑥0𝑥1𝑥2𝑥3𝑥4 + 𝑥0𝑥1𝑥2𝑥3. By default,
𝑥0𝑥1𝑥2𝑥3𝑥4 would be split into the elementary building blocks 𝑥0𝑥1𝑥2 and 𝑥3𝑥4 none of which can
be reused to build 𝑥0𝑥1𝑥2𝑥3. In that case, we get 21 tuple entries for 𝑥0𝑥1𝑥2𝑥3𝑥4 and additional eight
entries (𝑎0, . . . , 𝑎3, 𝑎01 can be reused) for 𝑥0𝑥1𝑥2𝑥3, which leads to a total tuple size of 29 (when
not combining the highest additive tuple entries of each of the two monomials). In comparison,
if 𝑥0𝑥1𝑥2𝑥3𝑥4 is split into the building blocks 𝑥0𝑥1𝑥2𝑥3 and 𝑥4, the required tuple size for this
monomial increases from 21 to 26. However, the total tuple size stays at 26 since we have already
built 𝑥0𝑥1𝑥2𝑥3, decreasing the total tuple size for 𝑓 by three. This effect will also be considered
later on when we look at the polynomials of multiplexers.
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4.1 Computing the tuple size and bandwidth for a multilinear polynomial

Algorithm 4.4 Implementation of the buildTree procedure used in Algorithm 4.3.
1: procedure buildTree(𝑛𝑜𝑑𝑒, 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙, 𝑚𝑎𝑠𝑘)
2: if 𝑑𝑒𝑔𝑟𝑒𝑒 ≤ 3 then
3: addLeaf(𝑛𝑜𝑑𝑒, 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙, 𝑚𝑎𝑠𝑘) // see Algorithm 4.5
4: return
5: end if
6: 𝑙𝑒 𝑓 𝑡𝑀𝑜𝑛𝑜𝑚𝑖𝑎𝑙, 𝑟𝑖𝑔ℎ𝑡𝑀𝑜𝑛𝑜𝑚𝑖𝑎𝑙 ← splitMonomial(𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙)
7: 𝑙𝑒 𝑓 𝑡𝑀𝑎𝑠𝑘 ← new Mask(𝑙𝑒 𝑓 𝑡𝑀𝑜𝑛𝑜𝑚𝑖𝑎𝑙)
8: 𝑟𝑖𝑔ℎ𝑡𝑀𝑎𝑠𝑘 ← new Mask(𝑟𝑖𝑔ℎ𝑡𝑀𝑜𝑛𝑜𝑚𝑖𝑎𝑙)
9: 𝑚𝑢𝑙𝑡𝑁𝑜𝑑𝑒 ← new MultNode(𝑛𝑜𝑑𝑒)

10: 𝑚𝑢𝑙𝑡𝑁𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛[0] ← new Node(𝑙𝑒 𝑓 𝑡𝑀𝑜𝑛𝑜𝑚𝑖𝑎𝑙 − 𝑙𝑒 𝑓 𝑡𝑀𝑎𝑠𝑘, 𝑚𝑢𝑙𝑡𝑁𝑜𝑑𝑒)
11: 𝑚𝑢𝑙𝑡𝑁𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛[1] ← new Node(𝑟𝑖𝑔ℎ𝑡𝑀𝑜𝑛𝑜𝑚𝑖𝑎𝑙 − 𝑟𝑖𝑔ℎ𝑡𝑀𝑎𝑠𝑘, 𝑚𝑢𝑙𝑡𝑁𝑜𝑑𝑒)
12: buildTree(𝑚𝑢𝑙𝑡𝑁𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛[0], 𝑙𝑒 𝑓 𝑡𝑀𝑜𝑛𝑜𝑚𝑖𝑎𝑙, 𝑙𝑒 𝑓 𝑡𝑀𝑎𝑠𝑘)
13: buildTree(𝑚𝑢𝑙𝑡𝑁𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛[1], 𝑟𝑖𝑔ℎ𝑡𝑀𝑜𝑛𝑜𝑚𝑖𝑎𝑙, 𝑟𝑖𝑔ℎ𝑡𝑀𝑎𝑠𝑘)
14: 𝑎𝑑𝑑𝑁𝑜𝑑𝑒 ← new AddNode(𝑛𝑜𝑑𝑒)
15: 𝑎𝑑𝑑𝑁𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛[0] ← new Node(−𝑙𝑒 𝑓 𝑡𝑀𝑎𝑠𝑘 · 𝑟𝑖𝑔ℎ𝑡𝑀𝑎𝑠𝑘 − 𝑚𝑎𝑠𝑘, 𝑎𝑑𝑑𝑁𝑜𝑑𝑒)
16: ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝐴𝑁 ← findHighestAddNode(𝑎𝑑𝑑𝑁𝑜𝑑𝑒)
17: ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝐴𝑁.𝑡𝑢𝑝𝑙𝑒 ← ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝐴𝑁.𝑡𝑢𝑝𝑙𝑒 − 𝑙𝑒 𝑓 𝑡𝑀𝑎𝑠𝑘 · 𝑟𝑖𝑔ℎ𝑡𝑀𝑎𝑠𝑘 − 𝑚𝑎𝑠𝑘

18: ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝐴𝑁.𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝐵𝑙𝑜𝑐𝑘 ← ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝐴𝑁.𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝐵𝑙𝑜𝑐𝑘 − 𝑙𝑒 𝑓 𝑡𝑀𝑎𝑠𝑘 · 𝑟𝑖𝑔ℎ𝑡𝑀𝑎𝑠𝑘 −
𝑚𝑎𝑠𝑘

19: 𝑎𝑑𝑑𝑁𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛[1] ← new Node(𝑙𝑒 𝑓 𝑡𝑀𝑎𝑠𝑘 · 𝑟𝑖𝑔ℎ𝑡𝑀𝑜𝑛𝑜𝑚𝑖𝑎𝑙, 𝑎𝑑𝑑𝑁𝑜𝑑𝑒)
20: 𝑎𝑑𝑑𝑁𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛[2] ← new Node(𝑟𝑖𝑔ℎ𝑡𝑀𝑎𝑠𝑘 · 𝑙𝑒 𝑓 𝑡𝑀𝑜𝑛𝑜𝑚𝑖𝑎𝑙, 𝑎𝑑𝑑𝑁𝑜𝑑𝑒)
21: buildTree(𝑎𝑑𝑑𝑁𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛[1], 𝑙𝑒 𝑓 𝑡𝑀𝑎𝑠𝑘 · 𝑟𝑖𝑔ℎ𝑡𝑀𝑜𝑛𝑜𝑚𝑖𝑎𝑙, 0)
22: buildTree(𝑎𝑑𝑑𝑁𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛[2], 𝑟𝑖𝑔ℎ𝑡𝑀𝑎𝑠𝑘 · 𝑙𝑒 𝑓 𝑡𝑀𝑜𝑛𝑜𝑚𝑖𝑎𝑙, 0)
23: 𝑇𝑢𝑝𝑙𝑒 ← 𝑇𝑢𝑝𝑙𝑒 ∪ {𝑎𝑑𝑑𝑁𝑜𝑑𝑒.𝑡𝑢𝑝𝑙𝑒}
24: 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝐵𝑙𝑜𝑐𝑘𝑠← 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝐵𝑙𝑜𝑐𝑘𝑠 ∪ {𝑎𝑑𝑑𝑁𝑜𝑑𝑒.𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝐵𝑙𝑜𝑐𝑘}
25: end procedure

26: function splitMonomial(𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙)
27: Input 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙 = 𝑎 · 𝑏 ·∏𝑘

𝑖=0 𝑥𝑖 // 𝑏 = 1 fore one prefactor, 𝑎, 𝑏 = 1 for no prefac.
28: return 𝑎 ·∏⌊𝑘/2⌋

𝑖=0 𝑥𝑖 , 𝑏 ·∏𝑘
𝑗=⌊𝑘/2⌋+1 𝑥 𝑗

29: end function

30: function findHighestAddNode(node)
31: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑙𝑦𝐻𝑖𝑔ℎ𝑒𝑠𝑡𝐴𝑑𝑑𝑁𝑜𝑑𝑒 ← 𝑛𝑜𝑑𝑒

32: while 𝑛𝑜𝑑𝑒 has a parent do
33: 𝑛𝑜𝑑𝑒 ← 𝑛𝑜𝑑𝑒.𝑝𝑎𝑟𝑒𝑛𝑡

34: if 𝑛𝑜𝑑𝑒 is a MultNode then
35: return 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑙𝑦𝐻𝑖𝑔ℎ𝑒𝑠𝑡𝐴𝑑𝑑𝑁𝑜𝑑𝑒

36: else if 𝑛𝑜𝑑𝑒 is an AddNode then
37: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑙𝑦𝐻𝑖𝑔ℎ𝑒𝑠𝐴𝑑𝑑𝑁𝑜𝑑𝑒 ← 𝑛𝑜𝑑𝑒

38: end if
39: end while
40: return 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑙𝑦𝐻𝑖𝑔ℎ𝑒𝑠𝐴𝑑𝑑𝑁𝑜𝑑𝑒

41: end function
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4 Implementation and Methodology

Algorithm 4.5 Implementation of the addLeaf procedure used in Algorithm 4.4.
procedure addLeaf(𝑛𝑜𝑑𝑒, 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙, 𝑚𝑎𝑠𝑘)

Input 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙 = 𝑝 ·∏𝑘
𝑖=0 𝑥𝑖 , 𝑘 ∈ {1, 2} // 𝑝 = 1 in case of no prefactors

𝐴𝑑𝑑𝑁𝑜𝑑𝑒ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝐴𝑁

if 𝑛𝑜𝑑𝑒.𝑝𝑎𝑟𝑒𝑛𝑡 is a 𝐴𝑑𝑑𝑁𝑜𝑑𝑒 then
ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝐴𝑁 ← findHighestAddNode(𝑎𝑑𝑑𝑁𝑜𝑑𝑒)
ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝐴𝑁.𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝐵𝑙𝑜𝑐𝑘 ← ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝐴𝑁.𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝐵𝑙𝑜𝑐𝑘 + 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙 − 𝑚𝑎𝑠𝑘

else
𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝐵𝑙𝑜𝑐𝑘 ← 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝐵𝑙𝑜𝑐𝑘 ∪ {(𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙 − 𝑚𝑎𝑠𝑘)}

end if
𝑎𝑖 ← Mask(𝑥𝑖), 0 ≤ 𝑖 ≤ 𝑘

if 𝑘 = 1 then
𝑇𝑢𝑝𝑙𝑒 ← 𝑇𝑢𝑝𝑙𝑒 ∪ {𝑝𝑎0, 𝑝𝑎1}
if 𝑛𝑜𝑑𝑒.𝑝𝑎𝑟𝑒𝑛𝑡 is a 𝐴𝑑𝑑𝑁𝑜𝑑𝑒 then

ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝐴𝑁.𝑡𝑢𝑝𝑙𝑒 ← ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝐴𝑁.𝑡𝑢𝑝𝑙𝑒 + 𝑝𝑎0𝑎1
else

𝑇𝑢𝑝𝑙𝑒 ← 𝑇𝑢𝑝𝑙𝑒 ∪ {𝑝𝑎0𝑎1}
end if

else if 𝑘 = 2 then
𝑇𝑢𝑝𝑙𝑒 ← 𝑇𝑢𝑝𝑙𝑒 ∪ {𝑝𝑎0, 𝑝𝑎1, 𝑝𝑎2, 𝑝𝑎0𝑎1, 𝑝𝑎0𝑎2, 𝑝𝑎1𝑎2}
if 𝑛𝑜𝑑𝑒.𝑝𝑎𝑟𝑒𝑛𝑡 is a 𝐴𝑑𝑑𝑁𝑜𝑑𝑒 then

ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝐴𝑁.𝑡𝑢𝑝𝑙𝑒 ← ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝐴𝑁.𝑡𝑢𝑝𝑙𝑒 + 𝑝𝑎0𝑎1𝑎2
else

𝑇𝑢𝑝𝑙𝑒 ← 𝑇𝑢𝑝𝑙𝑒 ∪ {𝑝𝑎0𝑎1𝑎2}
end if

end if
// Add 𝑚𝑎𝑠𝑘, 𝑝 to the tuple only if they are present.

if 𝑚𝑎𝑠𝑘 ≠ 0 then
𝑇𝑢𝑝𝑙𝑒 ← 𝑇𝑢𝑝𝑙𝑒 ∪ {𝑚𝑎𝑠𝑘}

end if
if 𝑝 ≠ 1 then

𝑇𝑢𝑝𝑙𝑒 ← 𝑇𝑢𝑝𝑙𝑒 ∪ {𝑝}
end if

end procedure

4.2 Multiplexer

MUXs are a powerful element in an arithmetic circuit. They can be used to implement array
accesses or branches in a program to calculate functions of the form:

𝑓 (𝑥) =


𝑓1(𝑥) if condition1
...

𝑓𝑛 (𝑥) if condition𝑛

(4.1)
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4.2 Multiplexer

(k-1)-MUX (k-1)-MUX

1-MUX

(a) Recursive definition a 𝑘-MUX using two
(𝑘 − 1)-MUX and one 1-MUX.

&

&

&

(b) Circuit diagram of a 𝑘-MUX using AND and OR
gates.

Figure 4.1: Visualisation of two approaches on how to find a polynomial for a 𝑘-MUX.

This alone is instrumental for branching programs that are, for example, derived from a state machine.
Also, in privacy-preserving machine learning MUXs can be used. For example, a Maxpool function
could be implemented by first applying a procedure that compares the inputs to determine which
has the greatest value and then using a MUX to select that input. In Section 4.2.3, we will further
review a specialised use case for multiplexers and its properties regarding SMPC.

4.2.1 Multiplexers in arithmetic circuits

In this work, we will define a 𝑘-MUX as multiplexer with 𝑘 binary selection variables 𝑠0, . . . , 𝑠𝑘−1
and thus 2𝑘 data variables 𝑥0, . . . , 𝑥2𝑘−1. This gives the function

𝑘-MUX(𝑠0, . . . , 𝑠𝑘−1, 𝑥0, . . . , 𝑥2𝑘−1) = 𝑥𝑖 for 𝑖 = (𝑠𝑘−1 . . . 𝑠1𝑠0)2(4.2)

Note that here 𝑠0 is the Least Significant Bit (LSB) and 𝑠𝑘−1 the Most Significant Bit (MSB).
Therefore e.g. 2-MUX(𝑠0, 𝑠1, 𝑥0, . . . , 𝑥3) with 𝑠0 = 0 and 𝑠1 = 1 gives 𝑥2.

To compute the result of a 𝑘-MUX using additive secret sharing, it is necessary to find a polynomial
𝑓 with 𝑓 (𝑠0, . . . , 𝑠𝑘−1, 𝑥0, . . . , 𝑥2𝑘−1) = 𝑘-MUX(𝑠0, . . . , 𝑠𝑘−1, 𝑥0, . . . , 𝑥2𝑘−1). For which, a first
approach is to find a polynomial for

1 −MUX(𝑠0, 𝑥0, 𝑥1) =
{
𝑥0 if 𝑠0 = 0
𝑥1 if 𝑠0 = 1

(4.3)

leading to 1-MUX(𝑠0, 𝑥0, 𝑥1) = (1 − 𝑠0)𝑥0 + 𝑠0𝑥1 = 𝑥0 − 𝑠0(𝑥0 − 𝑥1). There are two different
intuitions on extending this to a general 𝑘-MUX. On the one hand, we can combine two (𝑘−1)-MUX
and a 1-MUX to obtain a 𝑘-MUX as in Figure 4.1a. This gives the simple recursive definition:

𝑘-MUX(𝑠0, . . . , 𝑠𝑘−1, 𝑥0, . . . , 𝑥2𝑘−1) = 1-MUX(𝑠𝑘−1, 𝐴, 𝐵)(4.4)
= 𝐴 − 𝑠𝑘−1(𝐴 − 𝐵)(4.5)
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with

𝐴 = (𝑘 − 1)-MUX(𝑠0, . . . , 𝑠𝑘−2, 𝑥0, . . . , 𝑥2𝑘−1−1)

and

𝐵 = (𝑘 − 1)-MUX(𝑠0, . . . , 𝑠𝑘−2, 𝑥2𝑘−1 , . . . , 𝑥2𝑘−1)

On the other hand, the basic circuit of a MUX 4.1b using AND and OR gates can also give an
intuition on how to find a polynomial for a 𝑘-MUX. Here, for each data variable 𝑥𝑖 there is an AND
gate with inputs 𝑥𝑖 and 𝑠 𝑗 or 1 − 𝑠 𝑗 for 0 ≤ 𝑗 < 𝑘 so that the output is 𝑥𝑖 if 𝑖 = (𝑠𝑘−1 . . . 𝑠1𝑠0)2 and
0 if 𝑖 ≠ (𝑠𝑘−1 . . . 𝑠1𝑠0)2. These AND gates can be expressed in a polynomial 𝑔𝑖 (𝑠0, . . . , 𝑠𝑘−1, 𝑥𝑖)
as

𝑔𝑖 (𝑠0, . . . , 𝑠𝑘−1, 𝑥𝑖) = (𝑆0 · 𝑆1 · ... · 𝑆𝑘−1 · 𝑥𝑖)(4.6)

with 𝑆 𝑗 = 𝑠 𝑗 if 𝑖 𝑗 = 1 and 𝑆 𝑗 = (1 − 𝑠 𝑗) if 𝑖 𝑗 = 0 where 𝑖 = (𝑖𝑘−1 . . . 𝑖 𝑗 . . . 𝑖0)2 (𝑖 𝑗 is the j’th bit in
the binary representation of 𝑖). Because for all 𝑠 = (𝑠𝑘−1 . . . 𝑠1𝑠0)2 only 𝑔𝑠 can be unequal to zero,
we can form the sum over all 𝑔𝑖 to express the final OR gate. Thus we get the definition of 𝑘-MUX
as:

𝑓𝑘 = 𝑘-MUX(𝑠0, . . . , 𝑠𝑘−1, 𝑥0, . . . , 𝑥2𝑘−1) =
2𝑘−1∑︁
𝑖=0

𝑔𝑖(4.7)

By this definition for example a polynomial of a 2-MUX is then: 2-MUX(𝑠0, 𝑠1, 𝑥0, 𝑥1, 𝑥2, 𝑥3) =
((1 − 𝑠0) (1 − 𝑠1)𝑥0) + (𝑠0(1 − 𝑠1)𝑥1) + ((1 − 𝑠0)𝑠1𝑥2) + (𝑠0𝑠1𝑥3)

After simplifying both approaches result in the same polynomial, which can be used as an input to
the Algorithms 4.3 and 4.1 to compute the required tuple sizes and bandwidths.

The second definition is more complex, but it is still helpful because some essential properties of
these polynomials are easier to see with the second approach. Most importantly for all 0 ≤ 𝑖 < 2𝑘

in the product 𝑔𝑖 = 𝑆0 · 𝑆1 · ... · 𝑆𝑘−1 · 𝑥𝑖 each 𝑠 𝑗 (0 ≤ 𝑗 < 𝑘) additional to 𝑥𝑖 is included exactly
once. So the degree of each variable can be at most one, and thus

∑2𝑘−1
𝑖=0 𝑔𝑖 is indeed a multilinear

polynomial. Furthermore, in each 𝑔𝑖, the monomial 𝑠0 · ... · 𝑠𝑘−1𝑥𝑖 appears and is included in the
polynomial 𝑓𝑘 .

We can use this fact to find the binomial tuple for 𝑓𝑘 by defining the tuple for
∑2𝑘−1

𝑖=0 𝑠0 · ... · 𝑠𝑘−1𝑥𝑖
as:

𝐴 =

( [
𝑎𝑖𝑏

𝑒0
0 · · · · · 𝑏

𝑒𝑘−1
𝑘−1

]
| 𝑒0, . . . , 𝑒𝑘−1 ∈ {0, 1}, 0 ≤ 𝑖 < 2𝑘

)
(4.8)

∪
( [
𝑏
𝑒0
0 · · · · · 𝑏

𝑒𝑘−1
𝑘−1

]
| 𝑒0, . . . , 𝑒𝑘−1 ∈ {0, 1},¬𝑒0 = · · · = 𝑒𝑘−1 = 0

)
(4.9)

Here we denote the masks for the 𝑥𝑖 as 𝑎𝑖 and the masks for the 𝑠𝑖 as 𝑏𝑖 . Now let ℎ be any monomial
in 𝑓𝑘 . Then ℎ is of the form 𝑠

𝑗0
0 · ... · 𝑠

𝑗𝑘−1
𝑘−1 𝑥𝑖 for a 0 ≤ 𝑖 < 2𝑘 and 𝑗0, . . . , 𝑗𝑘−1 ∈ {0, 1}. To compute

ℎ using Binomial Tuples, each tuple entry is then of the form 𝑏
𝑒0
0 · · · · · 𝑏

𝑒𝑘−1
𝑘−1 𝑎

𝑒𝑘
𝑖

with 𝑒𝑖 = 0 if
𝑖 < 𝑘, 𝑗𝑖 = 0 and 𝑒𝑖 ∈ {0, 1} else. Therefore, it is also in 𝐴; consequently, 𝐴 is the binomial tuple
for 𝑓𝑖 . We can then define the binomial tuple size as

|𝐴| = 2𝑘 · 2𝑘 + 2𝑘 − 1 = (2𝑘 + 1)2𝑘 − 1
(4.10)
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The second definition based on Figure 4.1b additionally hints at a different version of a polynomial 𝑓 ′
𝑘

for a 𝑘-MUX. Instead of defining a polynomial 𝑓𝑘 (𝑠0, · · · , 𝑠𝑘−1, 𝑥0, . . . 𝑥2𝑘−1) we use a polynomial
𝑓 ′
𝑘
(𝑠0, · · · , 𝑠𝑘−1, 𝑠0, · · · , 𝑠𝑘−1, 𝑥0, . . . 𝑥2𝑘−1) with 𝑠𝑖 = (1−𝑠𝑖), 0 ≤ 𝑖 < 𝑘 . This has the disadvantage,

that the bandwidth increases by 𝑘 , because additionally the masked values (𝑠𝑖 − 𝑐𝑖) = ((1− 𝑠𝑖) − 𝑐𝑖)
have to be opened. With these values, however, it is then possible to compute

𝑘-MUX = 𝑓 ′𝑘 (𝑠0, · · · , 𝑠𝑘−1, 𝑠0, · · · , 𝑠𝑘−1, 𝑥0, . . . 𝑥2𝑘−1)
(4.11)

= 𝑠0 · ... · 𝑠𝑘−1𝑥0 + 𝑠0𝑠1 · ... · 𝑠𝑘−1𝑥1 + · · · + 𝑠0 · ... · 𝑠𝑘−1𝑥2𝑘−1

(4.12)

In contrast to Equation (4.7), 𝑓 ′
𝑘

consists of exactly 2𝑘 monomials of degree 𝑘 + 1 without any
additional lower degree terms. This reduction in the number of monomials is promising regarding
arithmetic tuple size. As for binomial tuple size, similar to Equations (4.8) and (4.9) we get
2𝑘 · 2𝑘 + 2𝑘 − 1 tuple entries

[
𝑎0𝑐

𝑒0
0 · · · · · 𝑐

𝑒𝑘−1
𝑘−1

]
, . . . ,

[
𝑎2𝑘−1𝑏

𝑒0
0 · · · · · 𝑏

𝑒𝑘−1
𝑘−1

]
for 𝑒0, . . . , 𝑒𝑘−1 ∈

{0, 1} and
[
𝑏
𝑒0
0 · · · · · 𝑏

𝑒𝑘−1
𝑘−1

]
for 𝑒0, . . . , 𝑒𝑘−1 ∈ {0, 1},¬𝑒0 = · · · = 𝑒𝑘−1 = 0. Apart from these

2𝑘 · 2𝑘 + 2𝑘 − 1 tuple entries, there are further tuple entries like [𝑐0 · · · · · 𝑐𝑘−1] so the binomial
tuple size for 𝑓 ′

𝑘
is greater than the tuple size for 𝑓𝑘 and it is better to use 𝑓𝑘 (in case of Binomial

Tuples).

As already mentioned depending on the used circuit, we get different results with beaver triples.
Instead of using the general algorithm for any polynomial, it is also possible to use a circuit
based on Figure 4.1a. Each 1-MUX in this circuit requires one multiplication to compute
𝑥 − 𝑠(𝑥 − 𝑦) on the inputs 𝑥, 𝑦 and 𝑠. In detail for the SMPC setting, each 1-MUX gets a share
of 𝑥, and the previously opened masked values (𝑥 − 𝑦 − 𝑎), (𝑠 − 𝑏) as inputs and computes
[𝑥] − (𝑠 − 𝑏) (𝑥 − 𝑦 − 𝑎) − [𝑏] (𝑥 − 𝑦 − 𝑎) − [𝑎] (𝑠 − 𝑏) − [𝑎𝑏]. For a 𝑘-MUX, we have 𝑘 phases
corresponding to the 𝑘 levels in the circuit. On each level, all 1-MUXs have the same 𝑠𝑖 as input but
different 𝑥, 𝑦. This means that for each 1-MUX, the tuple entries [𝑎] and [𝑎𝑏] are unique, whereas
[𝑏] is the same within each level/phase. So for the 2𝑘 − 1 1-MUXs and 𝑘 levels the tuple size is
2 · (2𝑘 − 1) + 𝑘 and the bandwidth is 2𝑘

2 + 𝑘 + 2𝑘 − 1 to publish the 2𝑘
2 + 𝑘 initial masked values plus

the 2𝑘 − 1 results of the 1-MUXs.

Until now, we only considered MUXs with 2𝑘 data variables for a 𝑘 ∈ N because naturally 𝑘

selection variables enable selecting between 2𝑘 values. Despite this, it is possible to use a 𝑘-MUX on
𝑚 data variables with 𝑚 < 2𝑘 by setting 𝑥𝑖 = 0 for 𝑖 ≥ 𝑚. This achieves that for (𝑠𝑘−1 . . . 𝑠0)2 ≥ 𝑚

𝑘-MUX(𝑠0, . . . , 𝑠𝑘−1, 𝑥0, . . . , 𝑥𝑚−1, 0 . . . , 0) is just zero. For example, if we want to select between
nine data variables, a ⌈log 9⌉ = 4-MUX is required. Whereas the polynomial of a general 4-MUX
contains 81 monomials, the polynomial 4-MUX(𝑠0, 𝑠1, 𝑠2, 𝑥0, . . . , 𝑥8, 0, . . . , 0) consists of only 62
monomials since each monomial in which a 𝑥𝑖 with 𝑖 ≥ 𝑚 appears is eliminated.

4.2.2 Multi round evaluation

For MUXs with several thousand or even millions of inputs, the tuple size can become excessively
large and slow down the computation. If it is necessary to handle such a high amount of inputs, it
could be advisable to accept a slightly higher round complexity. To illustrate this, we will build
a 16-MUX using Arithmetic Tuples and only one additional round. The procedure will be as
follows:
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In the initial opening round, publish the masked inputs. Then use these to locally compute the
elementary building blocks for 216−𝑘 (16− 𝑘)-MUXs. Each of these MUXs has 𝑠0, . . . , 𝑠16−𝑘−1 but
different 𝑥𝑖 as inputs, which still gives the potential for reusing building blocks. To ensure that no
additional information is leaked, add a new mask 𝑑 𝑗 to one of the highest additive building blocks
for each (16 − 𝑘)-MUX before publishing them. Afterwards, each party can now build

𝑀 𝑗 − 𝑑 𝑗 = (16 − 𝑘)-MUX(𝑠0, . . . , 𝑠16−𝑘−1, 𝑥 𝑗216−𝑘 , . . . , 𝑥 ( 𝑗+1)216−𝑘−1) − 𝑑 𝑗

for 0 ≤ 𝑗 < 216−𝑘 .

Using these these it is then possible to build 𝑘-MUX(𝑠16−𝑘 , . . . , 𝑠16−1, 𝑀0, . . . , 𝑀216−𝑘−1) with
Arithmetic Tuples which requires only one additional round.

To determine the tuple size, we can apply Algorithm 4.3 to each polynomial of the (16 − 𝑘)-MUXs
using the same tuple set and then add the tuple size for the 𝑘-MUX which already includes the
masks 𝑑 𝑗 . The bandwidth can also be determined in the same way.

4.2.3 Permutations

Apart from the mentioned direct use cases of MUXs, they can also serve more specialized purposes.
One area of functions that is relevant to examine is functions with more than one output of the form
𝑓 (𝑥) = ( 𝑓0(𝑥), . . . 𝑓𝑛 (𝑥)). This allows reusing building elements among the different functions
𝑓𝑖 , 0 ≤ 𝑖 ≤ 𝑛. To determine the tuple size and bandwidth of a function 𝑓 , with several outputs
Algorithms 4.1 to 4.3 can be applied to each 𝑓𝑖 separately but using the same set to store tuple
entries and opened building blocks.

Especially when for each 0 ≤ 𝑖 ≤ 𝑛 : the polynomial 𝑓𝑖 is the polynomial of a multiplexer, because
of the similar structure, the potential for reusing whole monomials seems promising.

Here we consider permutations (without repetition) over 𝑛 variables 𝑥0, . . . 𝑥𝑛−1. The goal is to
define a permutation function 𝑝 that gets the 𝑛 variables and some selection variables as input so that
it is possible to select between all 𝑛! possible permutations of the 𝑛 variables. Using binary selection
variables 𝑠𝑖 as used with MUXs ⌈log 𝑛!⌉ variables are necessary. Let 𝑠 = (𝑠⌈log 𝑛!⌉−1 . . . 𝑠0)2.

To make it unambiguous which 𝑠 leads to which permutation, we will define the s’th permutation
as the s’th permutation in lexicographic ordering. Note that there are more efficient methods to
generate permutations that are not in lexicographic ordering, like Heap’s Algorithm [7, 12], that
only switch two elements per iteration.

Depending on 𝑠, each 𝑝𝑖 should output a specific variable 𝑥 𝑗 , making it an obvious task for MUXs
where the same variable occurs multiple times at an input. In the polynomial, this will lead to some
monomials occurring multiple times, which either cancel out or can be summed up. These thereby
arising coefficients only require multiplication with a constant and thus do not increase the tuple
size. To illustrate the concrete construction, Table 4.1 shows the output of 𝑝 for all six possible
values of 𝑠 in the case of permutation of three variables. In this example, the 3! potential values
require three bits to encode 𝑠 and a 3-MUX for each output. The inputs to each MUX can be taken
from the three columns in the table giving:

𝑝0(𝑠0, 𝑠1, 𝑠2, 𝑥0, 𝑥1, 𝑥2) = 3-MUX(𝑠0, 𝑠1, 𝑠2, 𝑥0, 𝑥0, 𝑥1, 𝑥1, 𝑥2, 𝑥2, 0, 0) = 𝑥0 − 𝑠1𝑥0 + 𝑠1𝑥1 − 𝑠2𝑥0 +
𝑠2𝑥2 + 𝑠1𝑠2𝑥0 − 𝑠1𝑠2𝑥1 − 𝑠1𝑠2𝑥2
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𝑠 𝑝0(𝑠, 𝑥) 𝑝1(𝑠, 𝑥) 𝑝2(𝑠, 𝑥)
0 𝑥0 𝑥1 𝑥2
1 𝑥0 𝑥2 𝑥1
2 𝑥1 𝑥0 𝑥2
3 𝑥1 𝑥2 𝑥0
4 𝑥2 𝑥0 𝑥1
5 𝑥2 𝑥1 𝑥0

Table 4.1: Outputs of 𝑝(𝑠, 𝑥) so that 𝑝 gives all permutations of three variables 𝑥 = (𝑥0, 𝑥1, 𝑥2) in
lexicographic order for 0 ≤ 𝑠 < 3! = 6.

𝑘 𝑘! Used MUX # unique monomials in 𝑝 # monomials general MUX
2 2 1-MUX 4 3
3 6 3-MUX 20 27
4 24 5-MUX 102 243
5 120 7-MUX 505 2187
6 720 10-MUX 5180 59049
7 5040 13-MUX 51943 1594323
8 40320 16-MUX ∗ 43046721

Table 4.2: Number of possible permutations 𝑘!, MUXs used to describe 𝑝0, . . . , 𝑝𝑘!−1, number of
unique monomials in 𝑝 and number of monomials in one general MUX used in 𝑝 for
permutations of 𝑘 variables. (∗ takes too long to compute)

𝑝1(𝑠0, 𝑠1, 𝑠2, 𝑥0, 𝑥1, 𝑥2) = 3-MUX(𝑠0, 𝑠1, 𝑠2, 𝑥1, 𝑥2, 𝑥0, 𝑥2, 𝑥0, 𝑥1, 0, 0) = 𝑥1 − 𝑠0𝑥1 + 𝑠0𝑥2 + 𝑠1𝑥0 −
𝑠1𝑥1 + 𝑠2𝑥0− 𝑠2𝑥1− 𝑠0𝑠1𝑥0 + 𝑠0𝑠1𝑥1− 𝑠0𝑠2𝑥0 +2 · 𝑠0𝑠2𝑥1− 𝑠0𝑠2𝑥2−2 · 𝑠1𝑠2𝑥0 + 𝑠1𝑠2𝑥1 +2 · 𝑠0𝑠1𝑠2𝑥0−
2 · 𝑠0𝑠1𝑠2𝑥1

𝑝2(𝑠0, 𝑠1, 𝑠2, 𝑥0, 𝑥1, 𝑥2) = 3-MUX(𝑠0, 𝑠1, 𝑠2, 𝑥2, 𝑥1, 𝑥2, 𝑥0, 𝑥1, 𝑥0, 0, 0) = 𝑥2 + 𝑠0𝑥1 − 𝑠0𝑥2 + 𝑠2𝑥1 −
𝑠2𝑥2 + 𝑠0𝑠1𝑥0 − 𝑠0𝑠1𝑥1 + 𝑠0𝑠2𝑥0 − 2 · 𝑠0𝑠2𝑥1 + 𝑠0𝑠2𝑥2 − 𝑠1𝑠2𝑥1 − 2 · 𝑠0𝑠1𝑠2𝑥0 + 2 · 𝑠0𝑠1𝑠2𝑥1

These polynomials 𝑝0, . . . , 𝑝2 are based on the definition of multiplexers without publishing (1− 𝑠𝑖)
separately because this allows reusing more monomials and will lead to smaller tuple sizes. In total,
𝑝 consists of only 20 unique monomials where two are of degree four, whereas a general 3-MUX
consists of 27 where eight are of degree four. So even though three 3-MUXs are used, the number
of monomials stays in comparison low. The same scheme can be applied to any number of variables
to find polynomials for each output. Table 4.2 shows this comparison for permutations of up to
eight variables.

The number of general permutations grows factorial, leading to zeros and variables occurring
several times in the inputs of the MUXs. This results in a rapid increase in the multiplexer size.
Permutations of only eight variables already require a 16-MUX for each output. To avoid this, it
is possible to restrict the set of permutations to only rotating the position of the variables; then,
the number grows linearly with the number of variables. Therefore for 2𝑘 variables, no zeroes or
duplicate variables are necessary to find a polynomial using MUXs. Also, many other variations
are imaginable, like shifts, where zeroes are shifted in.
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4.3 Demultiplexer

The counterpart of a MUX is a DEMUX which has one data input, multiple outputs and sev-
eral selection bits deciding to which output the data is forwarded. It implements the function
𝑓 (𝑠0, . . . , 𝑠𝑘−1, 𝑥) = ( 𝑓0, . . . , 𝑓2𝑘−1) with

𝑓𝑖 (𝑠0, . . . , 𝑠𝑘−1, 𝑥) =
{
𝑥 𝑖 = (𝑠𝑘−1𝑠𝑘−2 . . . 𝑠0)2
0 else

, 0 ≤ 𝑖 < 2𝑘

(4.13)

A DEMUX’s circuit diagram consists of one AND gate 𝑔𝑖 for each output with inputs
𝑥, 𝑠0, . . . , 𝑠𝑘−1, 𝑠0, . . . 𝑠𝑘−1. The polynomials for 𝑓𝑖 can then be defined as 𝑓𝑖 = 𝑔𝑖 = 𝑆0 · · · · · 𝑆𝑘−1
with 𝑆 𝑗 = 𝑠 𝑗 if 𝑖 𝑗 = 1 and 𝑆 𝑗 = 𝑠 𝑗 if 𝑖 𝑗 = 0 where 𝑖 = (𝑖𝑘−1 . . . 𝑖 𝑗 . . . 𝑖0)2.

To compute these products in a SMPC setting, on the one hand, we can publish 𝑥, 𝑠𝑖 and 𝑠𝑖 = (1− 𝑠𝑖)
as masked values and thus get for each function exactly one unique monomial. Or on the other
hand, it is possible to publish only 𝑥 and 𝑠𝑖 . Then 𝑠𝑖 is replaced with (1− 𝑠𝑖) in the polynomial after
simplifying, giving at most 2𝑘 terms in each monomial. For two selection bits and four outputs, this
gives the polynomials:

𝑓0 = 𝑠0 · 𝑠1 · 𝑥 = (1 − 𝑠0) (1 − 𝑠1)𝑥 = 𝑥 − 𝑠0𝑥 − 𝑠1𝑥 + 𝑠0𝑠1𝑥

𝑓1 = 𝑠0 · 𝑠1 · 𝑥 = 𝑠0(1 − 𝑠1)𝑥 = 𝑠0𝑥 − 𝑠0𝑠1𝑥

𝑓2 = 𝑠0 · 𝑠1 · 𝑥 = (1 − 𝑠0)𝑠1𝑥 = 𝑠1𝑥 − 𝑠0𝑠1𝑥

𝑓3 = 𝑠0𝑠1𝑥

At first, the first approach seems more promising since we only get one term in each polynomial.
However, since 𝑓0 = (1 − 𝑠0) · · · · · (1 − 𝑠𝑘−1) · 𝑥 already includes all monomials that appear in
the other polynomials, the same number of monomials need to be computed, of which most are of
lower degree.

The tuple size of Binomial Tuples for the second approach is the same as for one degree 𝑘 + 1
monomial 𝑠0 · . . . · · ·𝑘−1 𝑥, which is 2𝑘+1 − 1. The first approach gives several degrees 𝑘 + 1
monomials leading to a larger tuple size for binomial tuples.

4.4 Prefix Products

The prefix product of a monomial 𝑥0 · · · · · 𝑥𝑛−1 gives the terms 𝑥0, 𝑥0𝑥1, 𝑥0𝑥1𝑥2, . . . , 𝑥0 · · · · · 𝑥𝑛−1.
Therefore it is also a function with multiple outputs. Prefix Products are, for example, used in some
protocols that compare two bit-decomposed values. In [11], such a protocol and also a method to
compute shares of prefix products of a monomial 𝑥0 · · · · · 𝑥2𝑘−1 is discussed.
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4.4 Prefix Products

Algorithm 4.6 This algorithm outputs index pairs (𝑖, 𝑗) of products 𝑥𝑖 · · · · · 𝑥 𝑗 that can be combined
to obtain the prefix product 𝑥0 · · · · · 𝑥𝑘−1 of a product 𝑥0 · · · · · 𝑥𝑛−1 with 𝑘 ≤ 𝑛.

procedure decomposePrefix(𝑘)
𝑖 ← 0
𝑗 ← 0
while 𝑖 < 𝑘 do

𝑗 ← 𝑖 + 2⌊log(𝑘−𝑖) ⌋ − 1
output(𝑖, 𝑗)
𝑖 ← 𝑗 + 1

end while
end procedure

For example, to compute the prefix products of 𝑥0 · · · · · 𝑥7 first [𝑥0 · · · · · 𝑥7] is computed
using Arithmetic Tuples as described in Section 3.4. This also gives the masked values (𝑥0 −
𝑎0), . . . , (𝑥2𝑘−1 − 𝑎2𝑘−1), (𝑥0𝑥1 − 𝑎01), . . . , (𝑥6𝑥7 − 𝑎67), (𝑥0 · · · · · 𝑥3 − 𝑎0123), (𝑥4 · · · · · 𝑥7 − 𝑎4567).
These then can then be used to locally compute the shares of all prefix products of 𝑥0 · · · · · 𝑥7:

[𝑥0] = [𝑥0]
[𝑥0𝑥1] = (𝑥0𝑥1 − 𝑎01) + [𝑎01]
[𝑥0𝑥1𝑥2] = (𝑥0𝑥1 − 𝑎01) (𝑥2 − 𝑎2)
[𝑥0 · · · · · 𝑥3] = (𝑥0 · · · · · 𝑥3 − 𝑎0123) + [𝑎0123]
[𝑥0 · · · · · 𝑥4] = (𝑥0 · · · · · 𝑥3 − 𝑎0123) (𝑥4 − 𝑎4)
[𝑥0 · · · · · 𝑥5] = (𝑥0 · · · · · 𝑥3 − 𝑎0123) (𝑥4𝑥5 − 𝑎45)
[𝑥0 · · · · · 𝑥6] = (𝑥0 · · · · · 𝑥3 − 𝑎0123) (𝑥4𝑥5 − 𝑎45) (𝑥6 − 𝑎6)
[𝑥0 · · · · · 𝑥7] = [𝑥0 · · · · · 𝑥7]

The products of masked values can be computed with Binomial Tuples if the necessary tuple entries
have been added to the tuple. As has been proven in [11], such a product is at most of the degree 𝑘

as can be seen in the example for 𝑘 = 3.

To determine the tuple size for an arbitrary 𝑘 , we can first compute the tuple set for 𝑥0 · · · · · 𝑥2𝑘−1
using Algorithm 4.4 and then add the missing binomial tuple entries. To add the missing binomial
tuple entries, it is necessary to find out which masked values from the previous step are to be
combined to acquire a specific prefix. For this, Algorithm 4.6 can be used. The bandwidth is the
same as the bandwidth to compute 𝑥0 · · · · · 𝑥2𝑘−1 since no further field elements are sent.

We want to compare this method to two more naive approaches: First, it is possi-
ble to compute the shares directly with Binomial Tuples, for which we need the tuple(
𝑎
𝑑0
0 · · · · · 𝑎

𝑑2𝑘−1
2𝑘−1 | (𝑑0, . . . , 𝑑2𝑘−1) ∈ {0, 1}2

𝑘 \ {(0, . . . , 0)}
)

of size 2(2𝑘 ) − 1. For this, the band-
width is 2𝑘 to open the initial masked values. Secondly, we can apply Algorithm 4.4 to each prefix
product of 𝑥0 · · · · · 𝑥2𝑘−1 reusing the same tuple set.
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5 Results

Now we will analyze how the applications for arithmetic tuples perform regarding the metrics tuple
size, bandwidth and round complexity. For this, the methods presented in Chapter 4 are applied
to measure these metrics for beaver triples, binomial tuples and arithmetic tuples. The presented
algorithms were implemented in Java. We also need to compare different approaches in some cases,
like the different function definitions for multiplexers.

5.1 Multilinear Monomials

First, we will give an overview of the metrics for computing the value (not only a share) of a single
multilinear monomial 𝑚𝑛 = 𝑥0 · · · · · 𝑥𝑛−1 of degree 𝑛. For Beaver Triples, when using the same
splitting strategy as in Algorithm 4.1 𝑛 − 1 multiplications are necessary, and thus the tuple size
is 3(𝑛 − 1) the bandwidth 2(𝑛 − 1) + 1 and the round complexity ⌈log 𝑛⌉. Following the results
in Section 3.3, we need a binomial tuple of size 2𝑛 − 1, get a bandwidth of 𝑛 + 1 and a round
complexity of one. With our example Arithmetic Tuple, only one round in addition to the opening
round is necessary. To determine tuple size and bandwidth, we can use Algorithm 4.3 on the input
𝑚𝑛. The results are shown in Table 5.1.

Using these values, we can later also see how many tuple entries were reused in Algorithm 4.3 on
the input of a polynomial of several monomials.

5.2 Multiplexer

In Section 4.2, we introduced several possibilities to implement MUXs. We defined two different
polynomials 𝑓𝑘 and 𝑓 ′

𝑘
describing a 𝑘-MUX. The difference between 𝑓𝑘 and 𝑓 ′

𝑘
was that for 𝑓 ′

additionally, the negated inputs 𝑠0, . . . , 𝑠𝑘−1 were used so that products including (1 − 𝑠𝑖) did not
have to be simplified.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Tuple Size 3 7 13 21 29 38 47 63 79 91 103 118 133 145 157
Bandwidth 3 4 7 8 9 13 17 18 19 20 21 27 33 38 43

Table 5.1: Tuple size and bandwidth to compute 𝑥0 · · · · ·𝑥𝑛−1 using Arithmetic Tuples as determined
by Algorithm 4.3.
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5 Results
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Figure 5.1: Line diagrams comparing the tuple size and bandwidth for MUXs using Beaver Triples.

For beaver triples, we also considered a third approach based on a circuit that implements a 𝑘-MUX
using 2𝑘 − 1 1-MUXs. The round complexity differs for the three versions. With the third approach,
one round for each of the 𝑘 layers in the circuit is necessary. For the two polynomials 𝑓𝑘 and 𝑓 ′

𝑘
,

𝑘 + 1 is the highest degree the monomials in 𝑓𝑘 , 𝑓
′
𝑘

have. So here we get a round complexity of
⌈log(𝑘 + 1)⌉, which is smaller than the 𝑘 rounds of the third approach.

Figure 5.1 compares the tuple size and bandwidth of the three approaches. The tuple size and
bandwidth for 𝑓𝑘 and 𝑓 ′

𝑘
are determined by Algorithm 4.1, and for the circuit-based computation,

the tuple size is 2(2𝑘 − 1) + 𝑘 and the bandwidth 2𝑘−1 + 𝑘 + 2𝑘 − 1. Here the circuit-based method
performs best. For a 12-MUX, we get a tuple size of 725376 for 𝑓𝑘 , 34138 for 𝑓 ′

𝑘
and 8202 for the

circuit. The circuit-based approach thus leads to significantly smaller tuple sizes. Still, we will use
𝑓 ′
𝑘

to compare beaver triples to Binomial and Arithmetic Tuples because they perform better than
𝑓𝑘 for larger MUXs and achieve a more minor round complexity than the circuit (4 vs 12 rounds for
a 12-MUX). Both Binomial and Arithmetic Tuples minimize the round complexity, so choosing an
approach with fewer rounds increases comparability.

For Binomial Tuples, we have already shown that using 𝑓𝑘 leads to a smaller tuple size. Therefore we
now compare the tuple size and bandwidth to compute 𝑓 ′

𝑘
using Beaver Triples, 𝑓𝑘 using Binomial

Tuples and 𝑓𝑘 , 𝑓
′
𝑘

using Arithmetic tuples. Furthermore, we also need to compare if using 𝑓𝑘 or 𝑓 ′
𝑘

is better in the case of Arithmetic Tuples.

For this, Figure 5.2 compares the tuple size and bandwidth of Arithmetic Tuples (for 𝑓𝑘 and
𝑓 ′
𝑘
, Binomial Tuples (for 𝑓𝑘) and Beaver Triples (for 𝑓 ′

𝑘
). As could be expected, Beaver Triples

achieve the smallest tuple size by allowing a non-minimal round complexity. In the case of
one-round protocols, Arithmetic Tuples for 𝑓𝑘 are best for 𝑘-MUXs with 𝑘 ≤ 3 because no mask
for 𝑠𝑖 , 0 ≤ 𝑖 < 2 is necessary and other than with Binomial Tuples the additive tuple entries
are combined. But for higher values of 𝑘 , Arithmetic Tuples for 𝑓 ′

𝑘
have the smallest tuple size.

Generally, it can be observed that for higher values of 𝑘 , the savings from arithmetic tuples increase
compared to binomial tuples. For 𝑘 = 16, the Binomial Tuple is of size 4295032831 and the
Arithmetic Tuple for 𝑓 ′

𝑘
is only of size 6781756, which is a reduction by more than 99.84%.
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5.2 Multiplexer

k 1 2 3 4 5 6 7 8 9 10
|𝑇𝑘 | 6 28 104 336 928 2432 6016 16128 40448 93184

Alg. 4.3 5 21 77 232 633 1607 3859 10238 25778 57477
Reduction 17% 25% 26% 31% 32% 34% 36% 37% 36% 38%

Table 5.2: Tuple size to compute the polynomial 𝑓 ′
𝑘

with (Alg. 4.3) and without (|𝑇𝑘 |) reusing tuple
elements among the monomials.

In a theoretical scenario where storing a field element like a tuple entry takes 8 Byte (64 Bit) and 8
MB of Random Access Memory (RAM) being available, it would be possible to store at most 106

elements. In this scenario, with Binomial Tuples, we could compute at most a 9-MUX, and with
Arithmetic Tuples, a 13-MUX, which has 16 times more inputs.

The bandwidth is smallest for Binomial Tuples since here, only one field element in addition to the
2𝑘 + 𝑘 inputs is transmitted. Apart from that, Arithmetic Tuples for 𝑓 ′

𝑘
have a reduced bandwidth

compared to Arithmetic Tuples for 𝑓𝑘 even though for 𝑓 ′
𝑘
, the 𝑘 additional values 𝑠𝑖 have to be

opened in the first opening round.

Based on MUXs, we now want to examine how significant the savings potential is through reusing
and combining tuple elements over several monomials. For this, we calculate the tuple size if each
monomial in 𝑓 ′

𝑘
would be built separately |𝑇𝑘 | and compare it to the results of Algorithm 4.3. |𝑇𝑘 |

is given by the sum of the tuple sizes for each monomial in 𝑓 ′
𝑘

as they can be taken from Table 5.1.
In Table 5.2, these values are displayed for 1 ≤ 𝑘 ≤ 10. The percentage reduction achieved is also
given. This number increases with 𝑘 , and for 𝑘 = 16, it reaches 44%. For 𝑘 = 1, the only reduction
is achieved by combining the additive tuple entries of the two monomials. However, since the
reduction through combining is at most 2𝑘 − 1, it can be seen that reusing does have a significantly
positive effect on the tuple size.

A variation of Algorithm 4.4 was to use a different splitting strategy. Since in 𝑓𝑘 each monomial
is a product of selection variables 𝑠𝑖 and one data variable 𝑥𝑖, it could be beneficial to separate
the selection from the data variables so that the product of selection variables can be reused for
multiplication with several data variables.

However, this only achieves a slight reduction in tuple size for 𝑘 = 3 because for 𝑘 < 3, the
monomials are directly built using binomial tuples; therefore, this change in the splitting strategy
does not matter. For 𝑘 > 3, the penalty for not splitting the monomial in the middle outweighs the
potential for reusing more tuple entries.

5.2.1 Multi round evaluation

As described in Section 4.2.2, we exemplary want to build a 16-MUX in two rounds using Arithmetic
Tuples. In the second column of Table 5.3 is the tuple size to build the 216−𝑘 (16 − 𝑘)-MUXs in the
first round. Here the reduction through reusing among the multiplexers is taken into account. The
third column shows the tuple size for the single 𝑘-MUX in the second round, and the fourth column
the total tuple size. The fourth column is the percentage reduction compared to the tuple size
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5 Results
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Figure 5.2: Line diagrams comparing the tuple size and bandwidth for MUXs using Beaver Triples,
Binomial Tuples and Arithmeitc Tuples.

k First Round Second Round Σ Reduction Bandwidth
1 4969274 5 4969279 27% 764985
2 4218652 21 4218673 38% 597646
3 3792776 77 3792853 44% 491332
4 3547520 232 3547752 48% 402952
5 3112176 633 3112809 54% 266317
6 2702532 1607 2704139 60% 264747
7 2431793 3859 2435652 64% 264161
8 1903613 10238 1913851 72% 264441
9 1377938 25778 1403716 79% 265697
10 1115654 57477 1173131 83% 203115
11 919736 128209 1047945 85% 143373
12 659527 291185 950712 86% 165352
13 401436 638849 1040285 85% 220980
14 213000 1367833 1580833 77% 269962
15 98306 2904889 3003195 56% 535607

Table 5.3: Tuple sizes to compute a 16-MUX in two rounds with Arithmetic Tuples. It also shows
the reduction in comparison to one round and the bandwidth.

required to build a 15-MUX in a single round. Finally, the last column contains the total bandwidth,
which consists of the 216 + 2𝑘 initial masked values and the building blocks that are opened in the
two rounds.

We obtain the best results in terms of tuple size for 𝑘 = 12 when using 16 multiplexers of size
four and a 12-MUX to combine them. By this, a reduction of 86% in tuple size compared to the
one-round version is achieved. Also, the bandwidth is reduced by 83% from 955669 to 165352 but
is lowest for 𝑘 = 11
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5.3 Demultiplexer
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Figure 5.3: ,
Line diagrams comparing the tuple size and bandwidth for Permutations of 𝑘 Variables using

Beaver Triples, Binomial Tuples and Arithmetic Tuples.

5.2.2 Permutations

In the evaluation, we used Algorithms 4.1 to 4.3 (more specifically, a small variation for several
polynomials) to find the tuple size and bandwidth to compute the polynomials 𝑝𝑖 describing
permutations. As already mentioned, using the definition 𝑓 ′ for the MUXs’ polynomials leads to
larger tuples for Beaver Triples, Binomial and Arithmetic Tuples. Therefore in Figure 5.3 for each
of the approaches, 𝑓 is used to find a polynomial 𝑝𝑖 for each of the outputs. Here, Binomial Tuples
achieve smaller tuple sizes than arithmetic tuples and also have a significantly smaller bandwidth.

We also tested the mentioned rotations and shifts. For both Binomial Tuples performed better than
Arithmetic Tuples in bandwidth and tuple size. All three functions have in common that the data
variables 𝑥𝑖 are input to multiple, and for rotations and permutations, even all, data input slots of
the MUXs. Therefore in the polynomials arise more (or even all possible) products of selection
variables 𝑠𝑖 and one data variable 𝑥𝑖 , explaining why Binomial Tuples outperform Arithmetic Tuples
for these functions.

5.3 Demultiplexer

To determine the tuple sizes with Algorithms 4.1 to 4.3 for a 𝑘-DEMUX, we can either use the first
approach with 2𝑘 monomials of degree 𝑘+1 or build each monomial in 𝑓0 = (1−𝑠0) · · · · · (1−𝑠𝑘−1) ·𝑥
separately to reuse them for the other 2𝑘 − 1 functions. 𝑓0 only leads to one monomial of degree
𝑘 + 1 and 2𝑘 − 1 monomials of a lower degree. As could be expected, for Beaver Triples, Binomial-
and Arithmetic Tuples for 𝑓0 achieve smaller tuple sizes than the other possibility. Therefore, we
will only compare tuple sizes and bandwidth using 𝑓0 in detail. The round complexity is, of course,
one for Binomial- and Arithmetic Tuples and ⌈log 𝑘 + 1⌉ for Beaver Triples. Figure 5.4 shows the
tuple size and bandwidth for DEMUXs of size one to twelve. Notable here is that the tuple size of
Beaver Triples is greater than the tuple size of Binomial Tuples for 𝑘 ≤ 6. The higher potential
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Figure 5.4: Line diagrams comparing the tuple size and bandwidth for DEMUXs using Beaver
Triples, Binomial Tuples and Arithmetic Tuples.

for reusing tuple entries of Binomial Tuples outweighs the smaller tuple size to compute a single
monomial with Beaver Triples. For similar reasons, also Arithmetic Tuples lead to larger tuples for
all 𝑘 ≤ 12, and the difference is even increasing.

5.4 Prefix Products

Figure 5.5 shows the tuple size and bandwidth for prefix products determined as described in
Section 4.4. The approach that combines Arithmetic and Binomial Tuples achieves the smallest
tuple size. In contrast, the Binomial Tuple’s size grows exponentially in the number of variables and
quickly becomes impractical. Binomial Tuples, however, lead to the smallest bandwidth and to get
shares of the prefix products, no additional round to the initial round is necessary. Note that here
for each approach, the given bandwidth does not include opening the shares of the results. With
Arithmetic Tuples, it is possible to get shared and public values after one round. However, with the
combined approach, the shares obtained after one round would still have to be opened to receive the
absolute values.

When opening the prefix products of 𝑥0 · · · · · 𝑥2𝑘−1, it is possible to calculate the inputs 𝑥𝑖 for
0 ≤ 𝑖 < 2𝑘 by solving 𝑥𝑖 =

𝑥0 · · · · ·𝑥𝑖
𝑥0 · · · · ·𝑥𝑖−1

. Therefore in most cases, obtaining shares is sufficient, and
then the Arithmetic Tuples and the combined approach lead to the same round complexity. In this
case, it is better to use the combined approach from [11] because of the smaller tuple size and
bandwidth.
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5.4 Prefix Products
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Figure 5.5: Line diagrams comparing the tuple size and bandwidth for the prefix product of
𝑥0 · · · · · 𝑥2𝑘−1 using the method from the paper [11], Binomial Tuples and Arithmetic
Tuples.
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6 Conclusion

In this work, we analyzed several possible applications for Arithmetic Tuples regarding important
metrics in SMPC. The possibility and speed of carrying out a calculation depends on the size of the
correlated randomness (tuple size), the number of field elements transmitted (bandwidth) and the
number of rounds (round complexity). We used the here presented algorithms to measure these
metrics or found closed formulas.

One important application were multiplexers, which can be used in many different ways. For
multiplexers, we could show that Arithmetic Tuples achieve a significantly smaller tuple size
compared to the other one-round protocol, Binomial Tuples. Whereas Binomial Tuples perform
better in terms of bandwidth. Here we get a typical trade-off between tuple size, bandwidth and
round complexity. For the smallest tuple size with no requirements for minimal round complexity,
it is best to use the circuit-based approach with Beaver Triples. For minimal rounds and a moderate
Tuple size, it is best to choose Arithmetic Tuples, and for minimal rounds and minimal bandwidth,
Binomial Tuples are most suitable.

With multiplexers, we have also exemplified the potential of multi-round evaluation with Arithmetic
Tuples. Adding only one round makes it possible to build a 16-MUX with an at most by 86%
reduced tuple size and an at most by 85% reduced bandwidth. With a version of Beaver Triples, we
need five rounds, and the tuple size is decreased by 90% compared to one round with Arithmetic
Tuples. This value was almost reached by the Arithmetic Tuples based approach that needs three
fewer rounds.

For other applications, we have seen that Binomial Tuples can perform better in tuple size than our
Arithmetic Tuples approach. The polynomials for these applications comprise a large proportion of
the possible multilinear monomials with these variables. For such “dense” polynomials, Binomial
Tuples have the advantage of better reusability of tuple entries.

Finally, we have considered prefix products for which the combined approach based on Arithmetic and
Binomial Tuples presented in [11] produced the best tuple size. In contrast, a more straightforward
approach based on Binomial Tuples led to the smallest bandwidth but with exponentially growing
tuple sizes.

In summary, with multiplexers and prefix products, we have seen two practical applications
that benefit from the Arithmetic Tuples approach. Moreover, we have observed that slightly
more sophisticated methods can significantly improve the metrics. For multiplexers, additionally
publishing the negated selection bits and for prefix products combining Arithmetic and Binomial
Tuples both lead to smaller tuple sizes and bandwidths.
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6 Conclusion

Outlook

In this work, we only looked at a few example applications. Still, the here presented algorithms
can be applied to any multilinear polynomials and could even be extended to general polynomials,
as mentioned in Section 4.1.3. This invites one to test out more applications. As we have seen,
defining a different polynomial for an application or combining different approaches, as with prefix
product, can significantly impact the metrics. Therefore experimenting with other polynomial
definitions and general approaches could also be a starting point for further research.
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