
High Performance 4D Light Field Disparity Estimation,
Super-Resolution and Compression

Von der Fakultät für Informatik, Elektrotechnik und Informationstechnik

der Universität Stuttgart zur Erlangung der Würde eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigte Abhandlung

Vorgelegt von

Trung Hieu Tran

aus Hanoi, Vietnam

Hauptberichter: Professor Dr.-Ing. Sven Simon

Mitberichter: Professor Dr. Hassan Rabah

Tag der mündlichen Prüfung: 14.12.2022

Institut für Technische Informatik

der Universität Stuttgart

2022

To my beloved family

Abstract

This dissertation investigates the high-performance processing of 4D light field (LF) as a
combination of fast computation and high-quality output. It presents various contributions
revolving around the three essential processing tasks of 4DLF: disparity estimation, super-
resolution, and compression.

For the disparity estimation task, the goal is to develop a computational approach which
is not only fast in processing time but also able to obtain accurate disparity information.
For this purpose, we applied in the first step the variational computation framework from
optical flow literature to estimate a 4DLF disparity map which is then enhanced in a
post-processing step. The proposed approach greatly benefits from the intrinsic pixel
precision of variational formulation and the effectiveness of weighted median filtering as a
post-processing technique to achieve a highly accurate solution. Solving the variational
optimization problem requires a nested iterative computation over multi-scale 4DLF causing
a huge burden for CPU computation. The fast processing time is achieved by taking
advantage of parallel computation on Graphic Processing Units (GPUs) to alleviate this
high computational demand and at the same time efficiently handle the weighted median
filtering operator.

For the super-resolution task, two approaches are developed in this work. The first one is
an optimization-based approach dealing with the spatial super-resolution of 4DLF under
mixed noise conditions. The second one is a deep learning-based approach focusing on a
more general scenario, in which the reconstruction of high-resolution LF is carried out on
spatial, angular and spatial-angular dimensions. In the first approach, a super-resolution
model derived from a statistical perspective is presented. It assembles a joint ℓ1 − ℓ2 data
fidelity term and a weighted regularization term. The non-smooth convex optimization
problem is effectively solved by the alternating direction method of multipliers algorithm. It
is also shown that GPU acceleration is well-suited to speed up the iterative solving process
and results in a significant speed-up as compared to CPU execution. In the second approach,
4DLF is sliced into 3D epipolar (EPI) volumes, and a two-stage deep learning framework is
applied to reconstruct high-resolution volumes. Through 3D convolutional operations and

v

vi Abstract

efficient deep-learning architecture, the proposed network makes use of angular and spatial
information presented in the 3D EPI volume structure to reconstruct high-frequency details.
As a result, the reconstructed high-resolution LF demonstrates a balanced performance
distribution across all perspectives and presents superior visual quality compared to the
previous works.

For the 4DLF compression task, our work focus on exploiting the content similarity existing
in the perspective images of 4DLF to improve encoding performance. Amotion-compensated
wavelet decomposition scheme is therefore proposed to decompose 4DLF into high-/low-
pass sub-band views in which the redundancy of image data was eliminated. An application
of a standard coding tool, i.e. JPEG2000, demonstrates a clear improvement in compression
performance in both lossless and lossy compression scenarios. In addition, GPU acceleration
applied to the time-consuming lifting procedure shows a significant gain in processing time.

Zusammenfassung

In dieser Dissertation wird die hochperformante Verarbeitung von 4D-Lichtfeldern (LF) als
Kombination aus schneller Berechnung und hochwertiger Ausgabe untersucht. Es werden
verschiedene Beiträge vorgestellt, die sich um die drei wesentlichen Verarbeitungsaufgaben
von 4DLF drehen: Disparitätsschätzung, Super-Resolution und Kompression.

Für die Disparitätsschätzung wurde ein Berechnungsansatz entwickelt, der nicht nur
hinsichtlich der Verarbeitungszeit schnell ist, sondern auch in der Lage ist, eine genaue
Disparitätsinformationen zu ermitteln. Zu diesem Zweck haben wir in einem ersten Schritt
die Variationsberechnung aus der Literatur zum optischen Fluss angewendet, um eine 4DLF-
Disparitätskarte zu schätzen, die dann in einem Nachverarbeitungsschritt verbessert wird.
Der vorgeschlagene Ansatz profitiert in hohem Maße von der intrinsischen Pixelgenauigkeit
der Variationsformulierung und der Wirksamkeit der gewichteten Medianfilterung als Nach-
bearbeitungstechnik, um eine hochgenaue Lösung zu erzielen. Die Lösung des Variationsop-
timierungsproblems erfordert eine iterative Berechnung der 4D-Lichtfeldern auf mehreren
Skalen, was eine enorme Belastung für die CPU darstellt. Die schnelle Verarbeitungszeit
wird erreicht, indem die Vorteile der parallelen Berechnung auf Grafikprozessoren (GPUs)
genutzt werden, um die Rechenzeit zu verringern und gleichzeitig den gewichteten Medi-
anfilteroperator effizient zu verarbeiten.

Für die Fragestellung der Super-Resolution werden in dieser Arbeit zwei Ansätze entwickelt.
Der erste ist ein optimierungsbasierter Ansatz, der sich mit der räumlichen Super-Resolution
von 4D-Lichtfeldern bei Rauschen mit verschiedenen Charakteristika befasst. Der zweite
ist ein auf Deep Learning basierender Ansatz, der sich auf ein allgemeineres Szenario
konzentriert, in dem die Rekonstruktion hochauflösender Lichtfelder auf vier Dimensionen
durchgeführt wird. Im ersten Ansatz wird ein Super-Resolution-Modell vorgestellt, das
aus einer statistischen Perspektive abgeleitet ist. Es setzt sich aus einem gemeinsamen
ℓ1 − ℓ2-Term zur Datentreue und einem gewichteten Regularisierungsterm zusammen.
Das nicht-glatte konvexe Optimierungsproblem wird effektiv durch den Algorithmus der
alternierenden Richtungsmethode der Multiplikatoren gelöst. Es wird auch gezeigt, dass die
GPU-Beschleunigung gut geeignet ist, um den iterativen Lösungsprozess zu beschleunigen

vii

viii Zusammenfassung

und zu einer signifikanten Beschleunigung im Vergleich zur CPU-Ausführung führt. Im
zweiten Ansatz wird 4DLF in epipolare 3D-Volumina (EPI) zerlegt und ein zweistufiges
Deep-Learning-Verfahren angewendet, um hochauflösende Volumina zu rekonstruieren.
Durch 3D-Faltungs-operationen und eine effiziente Deep-Learning-Architektur nutzt das
vorgeschlagene Netzwerk die in der 3D-EPI-Volumenstruktur enthaltenen Direktional- und
Rauminformationen, um hochfrequente Details zu rekonstruieren. Als Ergebnis zeigt
die rekonstruierte hochauflösende LF eine ausgewogene Leistungsverteilung über alle
Perspektiven hinweg und präsentiert eine überlegene visuelle Qualität im Vergleich zu den
bisherigen Arbeiten.

Für die 4DLF-Kompression konzentriert sich unsere Arbeit auf die Ausnutzung der in-
haltlichen Ähnlichkeit, die in den perspektivischen Bildern der 4DLF besteht, um die
Kompressionsleistung zu verbessern. Daher wird ein bewegungskompensiertes Wavelet-
Zerlegungsschema vorgeschlagen, um 4DLF in Hoch-/Tiefpass-Subbandansichten zu zer-
legen, bei denen die Redundanz der Bilddaten eliminiert wurde. Die Anwendung eines
Standard-Codierungs-Methode wie JPEG2000, zeigt eine deutliche Verbesserung der Kom-
pressionsleistung sowohl in verlustfreien als auch in verlustbehafteten Kompressionsszenar-
ien. Darüber hinaus zeigt die GPU-Beschleunigung des zeitaufwändigen Lifting-Verfahrens
einen deutlichen Gewinn bezüglich der Verarbeitungszeit.

Acknowledgements

This dissertation would not have reached its conclusion if it were not for the support of the
kind people around me, to only some of whom it is possible to give a particular mention
here.

Firstly, I would like to express my sincere thanks to my advisor and mentor, Prof. Dr-Ing.
Sven Simon, for supervising me during this thesis and even more for entrusting me with
this research position. Without his patience in listening to me during our first call and his
hard-working over the weekend, I may not make my way to be in Germany and work on
this dissertation.

I would like to acknowledge the financial support from the German Academic Exchange
Service (DAAD) and Baden-Württemberg Stiftung without which I would not be able to
work on my dissertation.

My PhD life would be rough and tedious without the warm, joyful but fruitful working
environment for which I would like to thank my colleagues at the Parallel System Depart-
ment and later at the Computational Imaging System department. Thanks to Jajnabalkya
Guhathakurta, Yousef Baroud, Gasim Mammadov and Timo Schweizer for sharing with
me their interest in table tennis. I truly missed the competitive atmosphere we did have
together after working time. Many thanks to Steffen Kieß for his as-always excellent techni-
cal support, owing to which not a single of my technical issues stays unresolvable. Special
thanks to Kaicong Sun, Roman Krawtschenko, Zhe Wang and Seyyed Mahdi Najmabadi
for joining me on the research path. I am grateful for our productive cooperation and
co-author publications.

I want to thank Prof. Dr.-Ing. Andrés Bruhn for his enthusiastic course “Correspondence
Problems in Computer Vision” and being the chair of my committee. I made the right
decision by taking part in his course back in 2016 whose valuable knowledge allowed me
to make the very first step into the research topic. I am also grateful to Prof. Dr. David
Taubman for his knowledgeable advice and cooperation. Without his valuable input, I could
not go forward with the 4D light field compression. I very much appreciate Prof. Dr. Hassan

ix

x Acknowledgements

Rabah for being my second referee and Jun.-Prof. Dr. rer. nat. Benjamin Uekermann for
his time and effort in joining the committee.

Last but most importantly, I would like to express my deepest gratitude to my parent,
my wife, Anh, and my little precious, Hannah for their unconditional love and support.
They gave me the courage to move forward and were always there to cheer me up. This
dissertation is dedicated to them.

Contents

Abstract v

Zusammenfassung vii

Acknowledgements ix

List of Abbreviations xv

List of Figures xvii

List of Tables xxiii

1 Introduction 1
1.1 Introduction . 1
1.2 4D Light field Acquisition and Visualization 3
1.3 Related Works . 5

1.3.1 Disparity Estimation . 5
1.3.2 Light Field Super-resolution . 7
1.3.3 Light Field Image Compression . 10

1.4 Contributions . 10
1.5 Organization . 13

2 Variational 4D Light Field Disparity Estimation 15
2.1 Problem Setup and Notation . 15
2.2 Variational Disparity Estimation . 17

2.2.1 Data Term . 17
2.2.2 Regularization Term . 19

xi

xii Contents

2.3 Optimization Method . 19
2.3.1 Solving Quadratic Data-term and Smoothness Term 20
2.3.2 Solving Sub-quadratic Data Term and Smoothness Term 23
2.3.3 Coarse-to-fine Warping Strategy 24
2.3.4 Weighted Median Filtering . 29
2.3.5 Extension to Multi-channel Light Field 31
2.3.6 Per Perspective Robustification . 32

2.4 Numerical Computation . 33
2.4.1 Discreatization Strategy and Notation 33
2.4.2 Generalized Equation . 35
2.4.3 Solution to Quadratic Data Term and Smoothness Term 37
2.4.4 Solution to Sub-quadratic Data Term and Smoothness term 38

2.5 Experimental Results . 39
2.6 Summary . 42

3 GPU-Accelerated 4D Light Field Disparity Estimation 43
3.1 OpenCL-based 4DLF Disparity Estimation 43
3.2 GPU-Accelerated Architecture . 45

3.2.1 Local and Global Work-group Size 48
3.2.2 Global Memory Layout . 49

3.3 Evaluation results . 50
3.3.1 Experimental Setup . 50
3.3.2 Quantitative Comparison . 51
3.3.3 Performance Analysis . 53

3.4 Summary . 59

4 GPU-Accelerated 4D Light Field Super-resolution 61
4.1 Degradation Model and Notation . 61
4.2 Bayesian Image Super-resolution Framework 63

4.2.1 The Data-Fidelity Term . 64
4.2.2 Regularization Term . 65

4.3 Optimization Approach . 68
4.3.1 First-order Iterative Optimization Algorithm 69
4.3.2 Alternating Direction Method of Multiplier - ADMM 70

4.4 GPU-Accelerated Strategy . 75
4.4.1 Accelerated Steepest Gradient Descent 75
4.4.2 ADMM Solver . 76

4.5 Experimental Results . 81
4.5.1 Evaluation of LFSR Computational Framework 81

Contents xiii

4.5.2 Evaluation of GPU-based Gradient Descent Solver 86
4.5.3 Performance Analysis of GPU-based ADMM solvers 89
4.5.4 Comparison to LFSR Approaches 92
4.5.5 Comparison to GPU-Accelerated Approach 94

4.6 Summary . 95

5 EPI Volume-based High-Resolution Light Field Reconstruction 97
5.1 Problem Statement and Notation . 97
5.2 EPI Volume-based LF Super-Resolution 99

5.2.1 Overview of the Proposed Approach 99
5.2.2 EPI Volume Refinement Network 101
5.2.3 Preliminary Spatial Super-Resolution 104
5.2.4 Preliminary Angular Super-Resolution 104

5.3 Experimental Results . 105
5.3.1 Dataset and Training . 105
5.3.2 Model Analysis . 108
5.3.3 Spatial Super-Resolution . 108
5.3.4 Angular Super-Resolution . 112
5.3.5 Angular-Spatial Super-Resolution 116

5.4 Summary . 117

6 4D Light field Image Compression 119
6.1 Motion-compensation Light Field Compression 119
6.2 Acceleration of Coding Framework . 123
6.3 Experimental Results . 124
6.4 Summary . 127

7 Summary and Outlook 129
7.1 Summary . 129
7.2 Outlook . 130

Bibliography 133

List of Publications 145

List of Abbreviations

AAW Angular Attention Weight
ADMM Alternating Direction Method of Multipliers
AP Angular Patch
ASIC Application-Specific Integrated Circuit
ASR Angular Super-Resolution
ASSR Angular-Spatial Super-Resolution
CNN Convolutional Neural Network
CPU Central Processing Unit
DWT Discrete Wavelet Transform
EPI Epipolar Image
EVRN EPI Volume-based Refinement Network
FBN Feature Bottle-neck Layer
FPGA Field Programmable Gate Array
GPU Graphic Processing Unit
HDL Hardware Description Language
HLS High Level Synthesis
LF Light field
LFSR Light-field Super-Resolution
MISR Multi-Image Super-Resolution
MWD Motion-compensated Wavelet Decomposition
MRF Markov Random Field
NLTV Non Local Total Variation
PASR Preliminary Angular Super-Resolution
PCA Principal Component Analysis
PreLU Parametric Rectified Linear Unit
PSNR Peak Signal-to-Noise Ratio
PSSR Preliminary Spatial Super-Resolution
SAI Sub-Aperture Image
SAW Spatial Attention Weight

xv

xvi List of Abbrevations

SFE Shallow Feature Extraction
SISR Single Image Super-Resolution
SSIM Structural Similarity Index Measure
SSR Spatial Super-Resolution
TV Total Variation
WMF Weighted Median Filtering

List of Figures

1.1 Light field representation and acquisition. (a) Two-plane parameterisation.
(b) A sub-aperture image at angular location 𝜽𝑖 = (6, 3)𝑇 . (c) An angular
path at spatial location z𝑖 = (78, 170)𝑇 . 2

1.2 4DLF visualization. (a) 2D array of sub-aperture images; (b) 2D array of
angular patches; (c) 2D EPI; (d) EPI volume. 4

1.3 Light field image processing workflow . 11

2.1 Illustration of photo constancy and gradient constancy assumptions of two
adjacent SAIs . 17

2.2 Impact of proposed post-processing method on estimated disparity field.
The result is computed for buddha2 scene from Synthetic dataset [14]. (a)
top: the central sub-aperture image. bottom: the ground truth with two
interest areas. (b) Estimated occlusion area. (c) Computed disparity map.
(d) Zoom in ground truth for two interest areas. (e),(f) estimated disparity
and relative error before and after guided filtering respectively. 30

2.3 Relative error comparison on synthetic dataset [14] 40
2.4 Comparison on real-world dataset . 41
2.5 Real-world result. top scene from our laboratory captured light field. bottom

scene from EPFL dataset [18] . 42

3.1 Warping architecture . 45
3.2 Block diagram representation of a single warping level𝑾𝑙 46
3.3 Block diagram representation of a tensor calucation module J𝑙,𝑘 46
3.4 Block diagram representation of Weighted-Median-Filtering (𝔉) 47

xvii

xviii List of Figures

3.5 Visualization of disparity map quality computed by the fastest seven ap-
proaches. Top row and bottom row show the results of cotton scene and
pyramids scene respectively. Left column shows central sub-aperture images
and right columns visualize the two error metrics MSE100 and BadPix007. 51

3.6 Runtime and accuracy at different warping levels. 53
3.7 Comparison of disparity maps estimated by different approaches and con-

figurations on light field scene “boxes”. The full-size sub-aperture image
and disparity maps are presented in the first row, while two zoom-in re-
gions marked with red and green rectangles are in the second and the third
row respectively. (a) center sub-aperture image; (b) ground-truth disparity
map; (c) multi-label optimization approach (lf [28]); (d) ours, without
warping strategy and post-processing; (e) ours, without post-processing;
(f) ours, post-processing without occlusion weights (lfvar [72]); (g) ours,
post-processing with occlusion weights. 55

3.8 Timing profiling of main processes running at different configurations. init:
memory transfer and variable initialization. filtering: kernels 2,6. resam-
pling: kernels 1,10. warp: kernel 4. tensor: kernels 3,5,8. solver: kernels
7-9. remain: function calls, argument processing. 56

3.9 Improvement of accuracy when applying WMF on dino scene: (a) sub-
aperture image with two regions of interest (ROI); (b) estimated disparity
map; (c) binary map of selected region; (d) zoom-in ROIs; (e) ground-truth;
(f), (h) disparity map before and after WMF respectively; (g), (i) MSE of
(f) and (g) respectively; . 57

3.10 Runtime evaluation of weighted median filtering operator (kernels 11-13).
Selective and full strategy are applied to dino scene. 58

3.11 Average execution time of the proposed approach on different platforms. . 58

4.1 Light field representation and acquisition; (a) Two-plane parameterisation;
(b) 2D array representation of sub-aperture images (SAIs). 62

4.9 Regularization weights calculation for LF scene ‘boardgames’; top row: full
size image and weights are; bottom row: zoom-in region marked by blue
rectangle; (a) Ground-truth image; (b) weights at the 1st iteration; (c)
weights at the 10th iteration . 82

4.10 ×4 super-resolution of LF scene ‘dishes’ (𝜎 = 1, a = 1%); top row: full
size image; bottom row: zoom-in of region marked by blue rectangle; (a)
Ground-truth image; (b) bi-cubic up-sampling (21.72 dB); (c) 1 ADMM
iteration (24.96 dB) (d) 5 ADMM iteration (29.53 dB) 83

List of Figures xix

4.11 ×2 super-resolution of LF scene ‘medieval2’ (𝜎 = 10, a = 1%); left : a cropped
noisy LR input; right: four zoom-in of the marked region from an LR input
and three different configurations of data fidelity term. 84

4.12 Super-resolution ×4 results of LF scene ‘vinyl’ under different number of
inputs. top full size HR image; bottom zoom-in of marked region; (a) Ground-
truth image; (b) bi-cubic upsampling (24.04dB); (c) 3 SAIs (27.55dB); (d)
5 SAIs (29.33dB); (e) 9 SAIs (30.54dB); (f) 25 SAIs (31.65dB); (g) 49 SAIs
(32.09dB). 84

4.13 Optimization results of different solvers 85
4.14 ×2 super-resolution result of LF scene ‘vinyl’ degraded by motion blur. (a) a

cropped of ground truth with two marked region and motion blur kernel
shown at top left corner; (b) zoom-in of ground truth image; (c) bi-cubic
initial image (26.86dB); (d) after 1𝑠𝑡 ADMM iteration (30.27dB); (e) after
10𝑡ℎ ADMM iteration (35.43dB). 86

4.16 Light field image 4× super-resolution results. (a) Ground-truth high-resolution
sub-aperture image with two region of interests marked with red rectangles.
(b) Estimated disparity map. (c-g) are the zoom-in images of the two marked
regions on the ground-truth image, high-resolution images generated by
bilinear, bicubic, Y-RGB and RGB approach, respectively 88

4.17 Visual comparisons of LFSR approaches under various mixed noise settings.
From top to bottom (‘scene’ - 𝜎/a): ‘Rooster-clock’ - 20/0; ‘Coffee-beans-
vases’ - 20/5; ‘Smiling-crowd’ - 50/0; ‘Dishes’ - 50/20. 90

4.20 HR reconstruction results of DIV8K dataset [98]. left×2 results of image
0002; right×4 results of image 0084. 94

5.1 2D EPI projection of 4D LF scene horses [14]. top-left SAI at 𝜽𝑖 = [𝜌𝑖, 𝜏𝑖]𝑇 ;
top-right vertical EPI (𝛴𝑥𝑖 ,𝜌𝑖); bottom horizontal EPI (𝛴𝑦𝑖 ,𝜏𝑖). 99

5.2 Overview of 3D EPI volume SR framework. The framework consists of a
preliminary upsampling stage and an enhancement stage. The earlier stage
includes a preliminary spatial SR block (PSSR) and a preliminary angular SR
block (PASR). The later stage includes an EPI volume refinement network
(EVRN). 100

5.3 The network architecture of the proposed EPI volume refinement network
(EVRN) . 102

5.4 The network architecture of the proposed CNN-based method for PASR . . 105

xx List of Figures

5.5 Spatially super-resolution results achieved by state-of-the-art SSR methods
on 7 public datasets. The proposed approach outperforms single image
SR methods (EDSR [58], RCAN [120], DBPN [123]) and LF SSR methods
(pcabm [54], LFCNN [52], LFnet [59], EPI2D [57], SR4D [60], resLF [61]). 109

5.6 Qualitative comparison of SSR approaches on two scaling factors (×2,×4).
The SAI at 𝜽 = (4, 4) is visualized together with its zoom-in region marked
by a red rectangle. The first two rows: ×2 results of synthetic scene cof-
fee_beans_vases [15] and real-world scene general_55 [16]. The last two
rows:×4 results of synthetic scene smiling_crowd [15] and real-world scene
ISO_Chart [18]. 111

5.7 Visualization of PSNR and SSIM values on each SAI of light field scene
two_vases [15]. Compared to ResLF [61], the proposed approach achieve a
better reconstruction quality while maintaining a consistent performance
on all perspective images. 112

5.8 Comparison of two stages in reconstruction of spatially high resolution LF.
The SAI at 𝜽 = (4, 4) is visualized together with its zoom-in region marked
by a red rectangle. For each approach, an EPI at horizontal line marked in
green is extracted and compared to the EPI of Groundtruth. The first row,
from left to right: ×2 results of synthetic scene mona [14] and real-world
scenes Ankylosaurus_&_Diplodocus_1, Framed [18]. The second row, from
left to right: ×4 results of synthetic scene boxes [4] and real-world scenes
Flowers, Sign [18]. 113

5.9 Qualitative comparison of ASR approaches on real-world and synthetic light
field scenes. The SAI at 𝜽 = (3, 3) is visualized together with its zoom-in
region marked by a red rectangle. The first two rows: real-world scenes
lego [19] and flowers_plants_36 [16]. The last two rows: synthetic scenes
big_clock [15] and sideboard [4]. 115

5.10 Comparison of two stages in reconstruction of angularly high resolution LF.
The SAI at 𝜽 = (3, 3) is visualized together with its zoom-in region marked by
a red rectangle. For each approach, an EPI at horizontal line marked in green
is extracted and compared to the EPI of Groundtruth. From left to right:
synthetic scene Flying_dice_dense [15], real-word scene general_29 [16],
and synthetic scene bedroom [4]. 115

5.11 Angular-spatial super-resolution results of different approaches. The SAI
at 𝜽 = (3, 3) is visualized together with its zoom-in region marked by a red
rectangle. top row: real-world scene Rose [17]; bottom row: synthetic scene
boxes [14]; . 116

List of Figures xxi

6.1 Lightfield representation and acquisition. (a) Two-plane parameterisation.
(b) Lenslet-based sensor image. (c) Central sub-aperture image 120

6.2 Lightfield coding framework . 121
6.3 Demonstration of 3-level 2D MWD for a 5×5 view set of “bikes” lenslet

data [129]. 122
6.4 GPU-based computation of 1D MWD . 123
6.5 Estimated disparity map from light field data. top center view images.

bottom color coded disparity map. Two images from the left are real-world
data. The other is synthetic data. 124

6.6 Average PSNR value for different compression ratio on tested light field
images top results for synthetic data. bottom results for real-world data. . . 125

6.7 Timing evaluation of accelerated MWD in comparison to CPU implementation.126

List of Tables

1.1 Summary of published synthetic and real-world 4DLF dataset 4

3.1 Global work-group size of implemented kernels 48
3.2 Timing and accuracy comparison on Light field Benchmark [36] 52

4.1 Implementation of sparse matrix multiplication as linear operators 74
4.2 Global work size of GPU kernels . 81
4.3 The computation time comparison of 4D light field super-resolution on

different platforms. The time is measured for a single gradient step. 89
4.4 Quantitative comparison of LFSR approaches under various mixed noise

settings. 93
4.5 Evaluation of parallel computing approach for MISR problem on 8-bit natural

images in DIV8K dataset. MI Int.: Multi-image interpolation (56 cores Intel
Xeon Gold 5120), FL-MISR [64] (4 GTX 1080i), ours (1 GTX 1080i). . . . 94

5.1 Summary of training and test dataset . 106
5.2 Performance analysis of various model configurations. 107
5.3 Ablation investiation of attention modules (CAS, AAS, SAW). The average

PSNRs are computed for dataset EPFL with scaling factor×2 after 200 epochs.107
5.4 Quantitative comparison of SSR approaches in terms of reconstruction qual-

ity measured by PSNR/SSIM. The results of two up-scaling factor (×2,×4)
on seven public datasets are reported. 110

5.5 Quantitative comparison of ASR approaches on 7 light field datasets 114

6.1 Lossless compressed filesize in mega bytes (MB) 125

xxiii

Ch
ap
te
r 1

Introduction

1.1 Introduction

Light field refers to the concept of acquiring a complete description of light rays emitted
from a scene and traverse in space. It can be well parameterized by the 7D plenoptic
function 𝐿𝐿𝐿

(
𝑝𝑥 , 𝑝𝑦, 𝑝𝑧, \, 𝜙, _, 𝑡

)
[1] which returns the radiance (intensity) of a line beam

observed at a point
(
𝑝𝑥 , 𝑝𝑦, 𝑝𝑧

)
in space, along a gazing direction

(
\, 𝜙

)
, at a time 𝑡 and

wavelength _. In practice, it is of interest to capture only a snapshot of the function (at a
fixed time) and simplify the spectral information by using only 3 color components (i.e.
red, green, blue). By removing the time and wavelength parameters, we are left with a
5-parameters function, also known as 5D plenoptic function [2], which allows us to describe
the intensity of any light ray in 3D space regardless the viewpoint position and the change
of light direction. One more parameter can be omitted from the function, if one assumes
that the direction of a light ray is unchanged and considers only the light intensity being
visible at a specific position, i.e. placing of cameras. This is also the common setup of light
field imaging which results in a 4D light field [2] or Lumigraph [3]. Under the two plane
parameterization [2], each ray is indexed with a 4D coordinate by its intersection with
two parallel planes, as depicted in Figure 1.1a.

𝐿𝐿𝐿 : 𝛺 × 𝛱 → ℝ, (z, 𝜽) → 𝐿𝐿𝐿(z, 𝜽) (1.1)

where z = (𝑥,𝑦)𝑇 and 𝜽 = (𝜌, 𝜏)𝑇 denote coordinate pairs in the spatial plane 𝛺 ⊂ ℝ2

and in the directional plane 𝛱 ⊂ ℝ2. In practice, the value of this function can be a

1

2 1. Introduction

(a) (b) (c)

Figure 1.1: Light field representation and acquisition. (a) Two-plane parameterisation. (b)
A sub-aperture image at angular location 𝜽𝑖 = (6, 3)𝑇 . (c) An angular path at
spatial location z𝑖 = (78, 170)𝑇

vector of 3 color components (i.e. RGB color light field) and the two planes are dis-
cretized by the sampling rate of capturing devices (i.e. sensor size, number of cam-
eras,...).

Given a 4D light field𝐿𝐿𝐿, by fixing either the direction index 𝜽 = 𝜽𝑖 or spatial index z = z𝑖 , one
can obtain a sub-aperture image𝐿𝐿𝐿(z, 𝜽𝑖) or an angular patch𝐿𝐿𝐿(z 𝑗 , 𝜽). Figure 1.1 (b),(c) are
examples of a sub-aperture image and an angular patch extracted from a 4D synthetic light
field image, ‘dino’ [4]. The resolution of this light field is 512×512×9×9, where 512×512
is spatial resolution and 9×9 is angular resolution. The angular patch consists of pixels,
each at the same spatial location z𝑖 = (78, 170)𝑇 on sub-apertures.

Themain advantage of a light field image over the conventional image is its high dimensional
imaging content, as a light field image contains both directional information and spatial
information instead of only spatial information as in conventional image [5]. This rich-
content property of light field brings a great benefit to numerous applications such as
in autonomous systems [6], virtual reality [7], 3D television [8]. However, this benefit
also comes with a cost of computational resources. Processing 4D LF images requires
more memory bandwidth, computing power and runtime than the conventional 2D image.
Essential LF processing tasks such as disparity estimation, high-resolution reconstruction
and compression generally involves global optimization problem in which the solution can
only be iteratively calculated. Taking into account the large volume of image-like data
and the intensive floating-point computation of iterative solvers, Graphics Processing Units
(GPUs) obviously becomes a dominant platform for offloading and accelerating the LF
processing tasks. This dissertation investigates the high-performance processing of 4D
LF image as a combination of computing time and result quality. Particularly, we study

1.2. 4D Light field Acquisition and Visualization 3

the three essential LF processing tasks, i.e., disparity estimation, super-resolution, and
compression. For each task, we look for an approach in which both the algorithmic aspects
for high quality output and GPU-acceleration aspect for fast computation are considered in
order to achieve a high-performance outcome.

1.2 4D Light field Acquisition and Visualization

In general, light field acquisitions can be categorized in to three main classes: multi-sensor
capturing [9], time-sequential capturing [10] and multiplexed imaging [11–13]. The
multi-sensor capturing approach requires an array of image sensors distributed on a planar
or spherical surface to simultaneously capture light field samples from different viewpoints.
The time-sequential capturing approach, on the other side, uses a single image sensor to
capture multiple samples of light field through multiple exposures. The typical approach
uses a sensor mounted on a mechanical gantry to measure the light field at different
possitions [10]. The multiplexed imaging encodes high dimensional light field into a 2D
sensor plane, by multiplexing the angular domain into the spatial domain. One popular
example of this acquisition approach is plenoptic camera [11–13] in which a microlens
array is placed in between a main-lens and an image sensor. Each acquisition method
has its own advantages and disadvantages. Multi-sensor capturing approach is generally
more expensive but allows to capture very high spatial resolution of a dynamic screen.
The time-sequential capturing approach is inexpensive and can capture very high spatial
resolution but suffers from very long capturing time which makes it less preferable for
capturing a dynamic scenes. Multiplexed imaging approach is inexpensive and can handle
dynamic scene but produces low spatial resolution images. In addition, all acquisition
approaches impose a trade-off between angular resolution and either spatial resolution or
temporal resolution, i.e.: reducing the cost of the sensor by using low-resolution sensors in
exchange for increasing the number of sensors for higher angular resolution; increasing
capturing time in order to capture dense angular samples of the scene; increasing the
number of microlenses in order to increase the spatial resolution but at the same time
reducing the number of angular samples.

Seven published light field datasets, which are widely used in the literature, are listed in
Table 1.1. These dataset are employed in this dissertation for the evaluation of the proposed
approaches and the comparison to the related works. The datasets are categorized into
two groups: synthetic scenes and real-world scenes. The synthetic scene datasets [4,
14, 15] are generated by 3D object models and Blender software. This type of datasets
includes the disparity values and can be used for the quantitative evaluation of disparity

4 1. Introduction

Table 1.1: Summary of published synthetic and real-world 4DLF dataset
Datasets Type Angular Res. Spatial Res. Size
HCI13[14] synthetic 9×9 misc 7
HCI17[4] synthetic 9×9 512×512 28
InSyn[15] synthetic 9×9 512×512 92
StGantry[19] real-world 17×17 misc 13
StLytro[16] real-world 14×14 375×541 350
InLytro[17] real-world 15×15 434×625 36
EPFL[18] real-world 15×15 434×625 118

estimation approaches, as in chapter 2 and 3. The real-world datasets are captured by
Illum cameras [16–18] and a gantry setup [19].

(a) (b) (c) (d)

Figure 1.2: 4DLF visualization. (a) 2D array of sub-aperture images; (b) 2D array of angular
patches; (c) 2D EPI; (d) EPI volume.

The four dimension basis of light field makes it difficult for visualization and analysis.
Therefore, 4DLF is normally transformed into a set of lower dimensional data, such as 2D
images or 3D volume. The 2D representation includes sub-aperture image (SAI) [20,21],
angular patch (AP) [22,23], and epipolar image (EPI) [24,25]. The 3D representation
is also denoted as EPI volume [26, 27]. Figure 1.2 illustrates the variations of 4DLF
representation.

1.3. Related Works 5

1.3 Related Works

1.3.1 Disparity Estimation

Disparity estimation in 4D light field image processing may also refer to multi-view image
registration which aims to solve a correspondence matching problem. The output is a
displacement map 𝝎 (𝝎 : 𝛺 → ℝ) that represents the correspondence of pixels between
sub-aperture images. Suppose that the scene contains only Lambertian surfaces, the
following equality is the well-known property of a 4D light field 1

𝐿𝐿𝐿(z, 𝜽0) = 𝐿𝐿𝐿
(
z + 𝜽𝑘𝝎, 𝜽𝑘

)
(1.2)

𝜽0 ∈ 𝛱 presents a reference view position for which 𝝎 is calculated and 𝜽𝑘 ∈ 𝛱 is
an arbitrary view position. This equality shows that the two corresponding pixels, the
pixel at the position z in the view 𝜽0 and the pixel at the position z + 𝜽𝑘𝝎 in the view
𝜽𝑘 , have the same intensity value. This equation, also known as a brightness constancy
assumption, is due to the fact that the light beam which contacts these pixels’ locations
comes from the same 3D point in the captured scene. Knowing 𝝎, along with camera poses
information, one can derived depth value associated with each 3D point in the captured
scene. Therefore, the two terms disparity map and depth map are used interchangeably in
the literature.

In this section, a literature review of disparity estimation and recent efforts on accelerating
light field image processing are discussed. We limit our discussion on approaches that
work on 4D light field data and categorizes them into two groups: traditional and learning
approach. The traditional approach refers to the one which estimates a disparity map
directly from an input LF image, normally using a local or global optimization scheme.
Learning approach, on the opposite side, predicts the disparity map by learning a large
amount of LF data with a similar setup.

Most of the conventional approaches formulate the disparity estimation task as a multi-label
optimation problem in which the disparity range is discretized by a step size to form a label
set [23,28–34]. A cost volume is then constructed by associating each label assignment
with some costs based on the manipulation of LF image properties. Combining with priors,
the final disparity map is computed by regularization in a Markov Random Field (MRF)
framework. Jeon et al. [28] used the sum of absolute and gradient differences as the label
costs and proposed to use the phase-shift theorem to achieve better accuracy in narrow

1Without the loss of generality, we shift the coordinate of 𝛱 by 𝜽0 which leads to 𝜽0 =
[
0 0

]𝑇 and
𝜽𝑘 = 𝜽𝑘 − 𝜽0.

6 1. Introduction

baseline LF images. Tao et al. [29] suggest combining defocus and correspondence cue for
data costs which are then improved in [30] by adding occlusion response as a regularization
term. In [31], Neri et al. proposed to estimate the disparity map at various resolutions to
reduce the accuracy loss in flat surface regions. The author mitigated the computational
complexity by approximately solving a local minimization of functional. In [32], Si et al.
construct a cost volume using photo consistency constraint and regularized with a second-
order smooth term. Lee et al. [34] employed the Lambertian assumption and gradient
constraint and proposed foreground-background separation strategy to build a cost volume.
Anisimov et al. [33] used the census transform and Hamming distance to define label
costs which are then aggregated using Semi-Global Matching (SGM) principle. Williem
et al. [23] proposed two novel data costs, constrained angular entropy cost and adaptive
defocus cost which are showed robust again both noise and occluder.

Due to the flexibility in constructing label costs, multi-label optimization approaches are
generally robust against outliers and can provide a very accurate disparity map. However,
the common drawback of this type of approach is the high demand for memory and
computation in order to achieve a global optimum result. A general cost volume has the
resolution of𝐻×𝑊 ×𝐷×𝐶, where𝐻×𝑊 is the resolution of the disparity map,𝐷 and𝐶 are
the numbers of disparity labels and label costs respectively. The accuracy highly depends
on the size of the label set which is discretized from an assumed disparity range. Increasing
the size to cover a finer disparity step would result in more memory and computation
requirements. Other approaches formulate the disparity map as a continuous function and
solve a variational optimization problem [24,35]. Wanner et al. [24] initialized disparity
maps by local estimation of slope in Epiponar Plan Image (EPI). These maps wer then
used for weighting a data fidelity term in a global optimization scheme. Strecke et al. [35]
showed that depth map and normal map have a strong relationship and proposed to jointly
compute these two maps from a 4D light field.

Given enough training data, learning approaches can provide a higher accuracy compared
to traditional approaches [36]. In [37], Lou et al. trained a Convolution Neural Network
(CNN) to classify EPI-patch. The network predicted a confident cost to assign a depth label
to each pair of EPI-patch, vertical and horizontal. The cost volume was then regularized in
an MRF model. In [38], Heber et al. proposed a U-shaped network including encoding and
decoding parts which compute the disparity for each EPI line in the input EPI image. The
network is limited to processing only one spatial direction and results in a striking artifact
in the respective direction. This problem was then corrected in its enhanced version [26]
employed 3D convolutional operator and predict the disparity maps from 3D EPI volume.
VommaNet [39] proposed an end-to-end CNN approach that retrieves multi-scale features
and generates accurate disparity for reflective and texture-less regions. Epinet [25] uses a

1.3. Related Works 7

fully convolutional neural network to predict a disparity map directly from an input 4D
light field. The network took in four angular sets of sub-aperture images (i.e. horizontal,
vertical, diagonal and reverse diagonal) and output the disparity map in the central angular
position. Epi-shift [40] proposed a novel CNN-based approach that can deal with a wide
baseline light field while retaining a small receptive field.

Besides the CNN-based approaches that relied on the computation capability of deep
learning frameworks, the number of existing works on accelerating disparity estimation is
quite limited. In [41], Yuttaknonkit et al. optimized the memory access pattern in order
to deal with the memory bottleneck in rendering and depth extraction applications. They
worked on the plenoptic 2.0 image [13] in which the depth extraction process is much
simpler than 4D light field and only involves a local search of pixel patch on microlens
images. Qin et al. [42] and Ivan et al. [43] presented GPU acceleration architecture for
cost-volume based approaches. The cost volume in the first work is generated by simply
shifting the sub-aperture images toward the center angular and calculating the maximum
difference. This cost volume is less advanced compared to the one in [43] that employed
the matching cost from [23]. Both works skipped the global minimum solution and made
use of the winner-take-all algorithm to simplify the computation.

1.3.2 Light Field Super-resolution

The objective of LF image super-resolution is to reconstruct a higher resolution LF image
𝐿𝐿𝐿ℎ (z, 𝜽) given a lower resolution one𝐿𝐿𝐿𝑙 (z, 𝜽). Let (ℎ𝜏 , ℎ𝜌, ℎ𝑦, ℎ𝑥) and (𝑙𝜏 , 𝑙𝜌, 𝑙𝑦, 𝑙𝑥) be the res-
olution of 𝐿𝐿𝐿ℎ and 𝐿𝐿𝐿𝑙 respectively, the upscaling ratio is then (ZZ 𝜏 , ZZ 𝜌, ZZ𝑦, ZZ 𝑥) ≡ (ℎ𝜏

𝑙𝜏
,
ℎ𝜌

𝑙𝜌
,
ℎ𝑦

𝑙𝑦
,
ℎ𝑥
𝑙𝑥
).

Where ZZ 𝜏 is angular vertical scale, ZZ 𝜌 is angular horizontal scale, ZZ𝑦 is spatial vertical scale
and ZZ 𝑥 is spatial horizontal scale. In the literature, light field super-resolution problem
generally deals with an equally scaling factor for both horizontal and vertical dimension,
i.e., ZZ 𝑥=ZZ𝑦=ZZ z and ZZ 𝜏=ZZ 𝜌=ZZ 𝜽 . Depends on the values of directional scaling factor (ZZ 𝜽)
and spatial scaling factor(ZZ z), there are different light field super-resolution problems:
spatial super-resolution (SSR), angular super-resolution (ASR), and angular-spatial super-
resolution (ASSR).

In general, previous works can be categorized into two groups: optimization-based ap-
proaches and learning-based approaches. In optimization-based approaches, LF super
resolution is formulated as an optimization problem which typically consists of a data
fidelity term directly composed from input LF image and a regularization term based on
known priors. There are two main types of data terms that are used in the literature. One
of them penalizes the coherence between low and high-resolution LF image pairs [44–47].

8 1. Introduction

The other enforces the Lambertian consistency across the directional dimension by warping
SAIs from different view angles using pre-computed disparity maps [24,47,48]. Compared
to the data fidelity term, the choices of regularization terms are more diverse. Each work
proposed to use a different prior in order to achieve a better output quality and with
a feasible computation effort, i.e., total variation (TV) [24], bilateral TV[48], Markov
Random Field (MRF) [45], Gaussian [44], Graph-based [49], sparsity [46]. In [45], Bishop
et al. studied an explicit image formation model that characterizes the light field imaging
process by spatially-variant point spread functions (PSFs). The PSFs were derived under
Gaussian optics assumptions and employed in a Bayesian framework for super-resolution.
In [44], Mitra et al. showed that 4-D patches of different disparities have different in-
trinsic dimensions and proposed to learn a Gaussian prior for each quantized disparity
value. These priors were then employed to inference high-resolution 4-D patches under the
Maximum a posterior (MAP) criterion. LF super-resolution was modeled as a continuous
optimization problem using a variational framework in [24]. Disparity maps were extracted
by local estimation of pixel-wise slope in EPI. The data fidelity term was constructed by
warping surrounding views with the estimated disparity maps and masking with occlusion
maps, while total variation was used for regularization. In [48], Tran et al. treated LF
super-resolution as a multi-frame super-resolution problem in which degradation process
is modeled by three operators: down-sampling, blurring, and warping. A variational
optimization approach was employed to estimate disparity maps used by the warping
operator and bilateral TV was employed as an image prior. In [46], Alain et al. proposed a
patch-based super-resolution approach making use of a 5D transform filter that consists of
2D DCT transform, 2D shape-adaptive DCT and 1D haar wavelet. By a proper selection of
5D patches, a transformed signal exposes a high degree of sparsity which can be employed
as a prior to regularise a 𝐿2 data term. In [49], Rossi et al. proposed an approach which
couples two data-terms with a graph-based regularizer. A graph-based prior regularizes
high-resolution SAIs by enforcing the geometric light field structure. Block matching was
employed in their work for the estimation of disparity values and the construction of the
graph map.

Concerning Learning-based approaches, the earliest work which applies deep-learning
for reconstructing high-resolution LF is [50]. The authors employed the SISR approach
from [51] for SSR and proposed a CNN-based solution for ASR in which novel views
depending on its position will be synthesized from a vertical pair, a horizontal pair, or four
neighbors. An improved version was described in [52] where SISR was applied to each
SAI separately and learning variables were shared in the ASR network. In [53], Kalantari
et al. proposed to generate novel SAIs by exploiting disparity information in a two-stage
CNN. The first stage predicts disparity maps from a pre-computed cost-volume and the

1.3. Related Works 9

second stage synthesizes novel views from input images that are warped using predicted
disparity maps. In [54], a patch-based approach that employes linear subspace projection
was presented. A linear mapping function between low and high subspaces of low and
high LF patch volume was learned from a training dataset and applied to new LF images.
The authors used block matching to find matched 2D patches and extract aligned patch
volumes. Principal component analysis (PCA) was then employed to reduce patch volumes’
dimensions and project them into subspaces. The mapping function was computed in the
form of a 𝑙2-norm regularized least square problem. Fan et al. [55] proposed a two-stage
approach for SSR. In the first state, each SAI was upscaled using the SISR approach from
VDSR [56]. The output was then registered to a reference SAI by locally searching similar
patches. Both reference image and registered images were fed into a CNN network in the
second stage to reconstruct high-resolution SAI at the reference position. Similarly, Yuan et
al. [57] proposed another two-stage approach. In the first stage, EDSR [58] was employed
to super-resolute SAIs. In the second stage, the output of SISR was then enhanced by a
refinement CNN which relies on 2D EPI. In [22], Gul et al. proposed an approach targeting
lenslet images captured by plenoptic cameras [11, 12]. Microlens image patches were
used as input to two separate networks, i.e., one for ASR and the other for SSR. However,
the fully-connected layers employed in these networks limited its application to a certain
angular resolution. Wang et al. [59] developed a bidirectional recurrent CNN approach for
spatially upsampling 4D LF images. They employed multi-scale fusion layers for future
extraction to accumulate contextual information. Two networks for vertical and horizontal
image stacks were learned separately and a stack generalization technique was employed
to obtain a complete set of images. To fully exploit the 4D structure of LF images, Yeung
et al. [60] proposed to apply 4D convolution for SSR. The 4D convolution function was
implemented as spatial-angular separable convolution which allows extracting feature
maps from both spatial and angular domains. In [61], Zhang et al. proposed a residual
CNN-based approach for reconstructing LF images with higher spatial resolution. The
network takes in image stacks from four different angles and predicts a high-resolution
image at the center position. According to the difference in angular position, it requires six
different networks for a full reconstruction of the 4D LF image.

Despite its importance the acceleration of 4DLF super-resolution has drawn quite limited
attention in the literature. Most of the previous works focused only on the reconstruction
quality aspect and ignore the timing aspect. The proposed approaches generally consist of
computational expensive operations, e.g. graph processing [49] or 5D filtering [46]. One
of the efforts to accelerate the super-resolution task was discussed in [24], whose approach
resembles the classical SR model presented in [62]. However, this work merely used GPU
for experimental purpose. It lacks of detailed discussion on the arrangement of computing

10 1. Introduction

tasks and dealing with high dimensional LF data. Although multi-frame super-resolution
approaches [63, 64] can also be applied for 4DLF, considering the representation of 2D
array of SAIs, 4DLF has its own properties which could be employed for better modeling
and regularization.

1.3.3 Light Field Image Compression

Along with the increasing popularity of light field photography, the effective coding of light
field images has become an imperative challenge. Recent works on light field image coding
mainly focused on High Efficiency Video Coding (HEVC) framework, either proposing new
prediction tools [65–67] or directly applying HEVC to encode light field data [68, 69].
Liu et al. [68] proposed to reorder sub-aperture images as a pseudo video sequence and
then encode it using HEVC. In [69], Perra et al. applied a similar procedure but instead of
using sub-aperture images, they proposed to tile raw light field image into non-overlaping
sub-images. Ricardo et al. [65] proposed two prediction tools to HEVC framework that base
on the locally linear embedding and self-similarity compensated prediction. Li et al. [66]
worked on an adapted version of bi-directional inter-frame prediction to intra prediction
for coding raw light field images. In [70], Petri et al. proposed a coding scheme that
utilizes provided disparity map from Lytro software to segment the sub-aperture images
and losslessly encode them.

1.4 Contributions

The 4D parameterization of light field enables a seamless processing workflow of Light
field image. Images captured by different techniques, i.e. plenoptic camera [11, 12],
camera array [9], gantry setup [10], are converted into the uniform 4D representation for
which further processing tasks are effectively performed. Figure 1.3 presents the typical
LF image processing tasks studied in our work. Regardless of acquisition methods, the
raw images are processed and assembled into a 4DLF format through a pre-processing
step involving important tasks such as de-mosaicing, calibration, rectification, hot-pixel
detection [71]. On top of the 4DLF data, various processing tasks can be performed, which
include disparity estimation, high-resolution reconstruction, and compression as depicted
in Figure 1.3.

Disparity estimation is the most essential task in which the disparity maps are extracted
from the 4DLF data. The disparity maps holds important information describing the

1.4. Contributions 11

4D
Light-field

Chap. 2
Variational LF Disparity Estimation

Chap. 3
GPU-Accelerated LF Disparity Estimation

Disparity Estimation

Chap. 6
Motion-Compensation LF Compression

Compression

Chap. 4
GPU-Accelerated 4DLF SR

Chap. 5
EPI Volume-based LF Reconstruction

Super-resolution

Disparity Map

Reconstructed
Views

Bitstream

Figure 1.3: Light field image processing workflow

3D structure of the captured scene and are employed in the other processing tasks, i.e.,
super-resolution and compression. For 4DLF disparity estimation task, we applied in the
first step the variational computation framework from optical flow literature to estimate
a 4DLF disparity map which is then enhanced in a post-processing step. The proposed
approach greatly benefits from the intrinsic pixel precision of variational formulation and
the effectiveness of weighted median filtering as a post-processing technique to achieve a
highly accurate solution. A fast parallel computation on GPUs are presented for alleviating
the high computational demand of solving the optimization problem.

Given the the disparity maps, sub-aperture images can be well approximated from each
other by applying warping technique. Due to the fact that the warped sub-aperture
images expose a high degree of intensity similarity, we proposed an invertible motion-
compensated wavelet decomposition scheme for 4D LF compression. The decomposition
scheme effectively removes redundant information across multiple perspective images
and produces a set of the high-/low-pass sub-band views which are then encoded by
JPEG2000 encoder. The proposed approach supports both lossless and lossy compression
scenarios.

The acquisition of 4DLF assembling high-resolution information in both spatial and angular
domain remains a technology challenge which encourages intensive researches on light
field super-resolution (LFSR). LFSR aims for solving the ill-posed inverse problem in which
high-resolution 4D LF is reconstructed from a given low-resolution 4DLF. The increment in

12 1. Introduction

the resolution is considered for spatial domain, angular domain, and angular-spatial domain
which results in different super-resolution problems namely spatial SR, angular SR, and
angular-spatial SR, respectively. For spatial SR, we proposed a GPU-accelerated framework
which assembles mixed Gaussian-Impulse noise model and weighted regularization. As
a part of the degradation model, the disparity maps are employed to form data fidelity
terms considering the mix-noise condition from a statistical perspective. The framework
generalizes previous multi-image super-resolution approaches considering Total-variation
(TV) based regularization.

As an attempt to solve the three LFSR problems, we proposed a deep-learning-based ap-
proach in which the SR reconstruction is carried over the two processing stages. The first
stage preliminarily upsampling the size of 4D LF in spatial, angular or angular-spatial
domains. A novel refinement convolutional neural network based on 3D EPI volume is
proposed in the second stage to enhance the quality of the reconstructed 4DLF. Through
3D convolutional operations and efficient deep-learning architectures, angular and spatial
information presented in the 3D EPI volume structure is effectively exploited to reconstruct
high-frequency details. As a result, the reconstructed high-resolution light field demon-
strates a balanced performance distribution across all perspective images and presents
superior visual quality compared to the previous works.

In summary, the main contributions of our research are as follows:

• 4DLF disparity estimation approach from flow-field perspective and accuracy en-
hancement by post-processing are presented in Chapter 2. Paralleled implementation
of the proposed approach on GPU platforms is presented in Chapter 3.

• Optimization-based spatial super-resolution framework for 4DLF which couples ℓ1−ℓ2
data fidelity terms and weighted regularization. Alternating direction method of
multiplier is applied for solving the optimization problem and transforming it into a
simpler form which is suitable for GPU acceleration. The iterative solver are effectively
realized on GPU platform resulting in a significant performance boost, Chapter 4.

• A deep learning-based approach based on 3D epipolar image (EPI) for the recon-
struction of high-resolution 4DLF. Through a 2-stage super-resolution framework,
the proposed approach effectively addresses various LFSR problems, i.e., spatial SR,
angular SR, and angular-spatial SR. While the first stage provides flexible options to
up-sample EPI volume to the desired resolution, the second stage, which consists of
a novel EPI volume-based refinement network (EVRN), substantially enhances the
quality of the high-resolution EPI volume, Chapter 5.

1.5. Organization 13

• 4DLF compression approach based on motion-compensated wavelet decomposition
and its fast parallel computation on GPUs are presented in Chapter 6.

1.5 Organization

The rest of this dissertation is organized as follows.

• Chapter 2 presents an approach for estimating the 4DLF disparity map which assem-
bles variational optimization framework and post-processing technique. A detailed
solving strategy and numerical computation are also discussed.

• Chapter 3 presents the fast parallel computation of 4DLF disparity estimation on
GPUs. It also discusses a detailed analysis of the OpenCL implementation as well as
an extensive comparison to related approaches.

• Chapter 4 presents an optimization-based approach for reconstructing spatially HR
image from low-resolution 4DLF degraded by mixed Gaussian-Impulse noise. Iterative
solvers and their accelerated realization on GPUs are also discussed.

• Chapter 5 presents a novel deep learning-based approach for spatial, angular, and
angular-spatial super-resolution of 4DLF. An extensive evaluation and comparison to
related methods are also discussed.

• Chapter 6 presents a method to compress 4DLF image based on a motion-compensated
wavelet lifting scheme and the application of JPEG2000 encoder. The GPU acceleration
of the decomposition scheme is also discussed in this chapter.

• Chapter 7 concludes the thesis by summarizing the core contributions and discussing
future research directions.

Ch
ap
te
r 2

Variational 4D Light Field Disparity
Estimation

This chapter discusses the proposed approach to estimate the 4DLF disparity maps. We
follow the optical flow literature to formulate the disparity estimation problem in the
form of a variational optimization problem. Weighted median filtering is employed as a
post-processing technique to enhance the accuracy of the estimated 4DLF disparity map.
The chapter starts with a brief introduction to the 4DLF disparity estimation problem
and essential notations. The variational optimization problem is presented in the next
section, which discusses some configurations of data fidelity term and smoothness term.
The optimization strategy to solve the minimization problem Sec. 2.3, while its numerical
computation is in Sec. 2.4. Experimental results compared to commercial software and
contemporary approaches on both synthetic and real-world datasets are reported in Sec. 2.5.
Parts of the results of this chapter have been published in [72].

2.1 Problem Setup and Notation

A disparity map (also referred to as a displacement field) is a term commonly used in stereo
vision applications to describe the correspondent matching output [73]. A disparity map
represents pixel-wise motion from one image to the other and is usually defined in the
form of a 2-tuple mapping function 𝑀 (𝑥,𝑦) =

[
𝑢 (𝑥,𝑦) 𝑣 (𝑥,𝑦)

]ᵀ, where functions 𝑢 and
𝑣 , 𝑢, 𝑣 : ℕ2 → ℝ, denote the pixel shifts in 𝑥 direction and 𝑦 direction, respectively. Given

15

16 2. Variational 4D Light Field Disparity Estimation

an image pair consisting of a left image 𝐼𝑙 and a right image 𝐼𝑟 , the correspondent matching
property of the disparity map is described by the following equality,

𝛷
(
𝐼𝑙 (𝑥,𝑦)

)
= 𝛷

(
𝐼𝑟
(
𝑥 + 𝑢 (𝑥,𝑦), 𝑦 + 𝑣 (𝑥,𝑦)

))
, (2.1)

where,𝛷 is a feature function that returns a feature value at a pixel location (𝑥,𝑦). Some
examples of 𝛷 are intensity value, gradient value [74]. Eq. 2.1 represents a constancy
assumption which states that the feature values of two corresponding pixels, i.e., (𝑥,𝑦)
in 𝐼𝑙 and

(
𝑥 + 𝑢 (𝑥,𝑦), 𝑦 + 𝑢 (𝑥,𝑦)

)
in 𝐼𝑟 , are equal. The two motion functions 𝑢 and 𝑣 are

computed with regard to the left image 𝐼𝑙 .

As discussed in the previous chapter, one typical representation of a 4D LF, i.e., 𝐿𝐿𝐿(z, 𝜽),
is a 2D arrangement of its sub-aperture images. This representation brings us closer to
the context of multi-view stereo vision which deals with multiple images captured from
various camera positions. However the 4D LF imposes a constraint on the placements of
the cameras leading to much simpler configuration. Since the sampling in the directional
domain 𝛱 is assumed to be regular, it can be pictured as placing cameras on a flat surface
with equal spacing. For defining a disparity map in the case of 4D LF, let us first re-index
the directional coordinate 𝜽 by shifting its origin to the location of a reference SAI, i.e.
𝐿𝐿𝐿(z, 𝜽0), where 𝜽𝑜 is the directional index of the reference SAI. We denote the disparity
map with regard to 𝐿𝐿𝐿(z, 𝜽0) as 𝝎 (z). Let us define 𝑀𝑖 (z) =

[
𝑢𝑖 (z) 𝑣𝑖 (z)

]ᵀ is the motion
mapping functions between the reference SAI and the SAI located at 𝜽𝑖 . The relationship
between 𝑀𝑖 and 𝝎 is derived as follows,

𝑀𝑖 (z) =
[
𝑢𝑖 (z)
𝑣𝑖 (z)

]
=

[
^ 0
0 1

] [
𝜌𝑖 − 𝜌0
𝜏𝑖 − 𝜏0

]
𝝎 (z) = 𝐾 (𝜽𝑖 − 𝜽0)𝝎 (z), (2.2)

where ^ denotes a scalar constant compensating for the difference between horizon-
tal and vertical units (i.e., due to the non-square pixel, difference in horizontal/vertical
spacing of cameras), 𝜽∗ = [𝜌∗, 𝜏∗]ᵀ, 𝐾 =

[
^ 0
0 1

]
. By shifting the directional coordinate

(i.e., 𝜽0 = [0, 0]ᵀ) and absorbing 𝐾 into 𝜽 , we come to the final disparity map rela-
tion,

𝑀𝑖 (z) = 𝜽𝑖𝝎 (z) (2.3)

To further simplify the notation, let us rewrite𝐿𝐿𝐿𝑖 (z) = 𝐿𝐿𝐿(z, 𝜽𝑖) signifying the SAI at location
𝜽𝑖 , and write 𝝎 instead of 𝝎 (z). The equality in Eq. 2.1 can be rewritten for a pair of SAIs
as,

𝐿𝐿𝐿0(z) = 𝐿𝐿𝐿𝑖 (z + 𝜽𝑖𝝎). (2.4)

2.2. Variational Disparity Estimation 17

w=2 w=-2 w=2 w=-2 w=2 w=-2

Figure 2.1: Illustration of photo constancy and gradient constancy assumptions of two
adjacent SAIs

2.2 Variational Disparity Estimation

This section discusses the proposed approach for light field disparity estimation. We follow
optical flow literature [74,75] to define disparity estimation as the following variational
optimization problem

˜𝝎 = argmin
𝝎

∫
𝛺

𝐷 (𝝎) + 𝑆 (𝝎) 𝑑z. (2.5)

The disparity map is formulated as a continuous function (𝝎 : 𝛺 → ℝ). 𝐷 (𝝎) and 𝑆 (𝝎) are
data fidelity term and regularization term respectively. The data fidelity term penalizes the
constancy assumptions of 4DLF data, while the regularization term guarantees a reasonable
solution by enforcing known priors.

2.2.1 Data Term

Based on 4D LF properties, the data term is constructed with an assumption on constancy.
The two common constancy assumptions which were employed in the literature are bright-
ness (photo) constancy and gradient constancy [74,76]. The first assumes that the intensity
value of corresponding pixels is unchanged. Given a pixel z 𝑗 on the reference view 𝜽0, its
corresponding pixel on the view 𝜽𝑖 , follow Eq. 2.1, is z 𝑗 + 𝜽𝑖𝝎. The brightness constancy
assumption reads that 𝐿𝐿𝐿0(z) = 𝐿𝐿𝐿𝑖 (z + 𝜽𝑖𝝎), ∀𝜽𝑖 ∈ 𝛱 . To plot this assumption into our
optimization framework, we define the error function in intensity between corresponding
pixels as follows

𝐹𝑔,𝑖 (𝝎) = ‖𝐿𝐿𝐿0(z) − 𝐿𝐿𝐿𝑖 (z + 𝜽𝑖𝝎)‖22 (2.6)

18 2. Variational 4D Light Field Disparity Estimation

The gradient constancy assumption implies the equality of the local changes of two corre-
sponding pixels,

∇𝐿𝐿𝐿0(z) = ∇𝐿𝐿𝐿𝑖 (z + 𝜽𝑖𝝎)

↔
[
𝜕
𝜕𝑥
𝐿𝐿𝐿0(z)

𝜕
𝜕𝑦
𝐿𝐿𝐿0(z)

]
=

[
𝜕
𝜕𝑥
𝐿𝐿𝐿𝑖 (z + 𝜽𝑖𝝎)

𝜕
𝜕𝑦
𝐿𝐿𝐿𝑖 (z + 𝜽𝑖𝝎)

]
,

(2.7)

where ∇ = [𝜕
𝜕𝑥

𝜕
𝜕𝑦
]ᵀ signifies the gradient operator. Putting this assumption in an ℓ2 error

function gives us
𝐹𝐺,𝑖 (𝝎) = ‖∇𝐿𝐿𝐿0(z) − ∇𝐿𝐿𝐿𝑖 (z + 𝜽𝑖𝝎)‖22 (2.8)

Combining the two constancy assumptions, we have the following data term
𝐷2(𝝎) =

∑︁
𝜽𝑖 ∈𝛱

𝐹𝑔,𝑖 (𝝎) + 𝛾
∑︁
𝜽𝑖 ∈𝛱

𝐹𝐺,𝑖 (𝝎)

=
∑︁
𝜽𝑖 ∈𝛱

‖𝐿𝐿𝐿0(z) − 𝐿𝐿𝐿𝑖 (z + 𝜽𝑖𝝎)‖22 + 𝛾
∑︁
𝜽𝑖 ∈𝛱

‖∇𝐿𝐿𝐿0(z) − ∇𝐿𝐿𝐿𝑖 (z + 𝜽𝑖𝝎)‖22 ,
(2.9)

which is assembled by summing up the ℓ2 norms of intensity and gradient differences over
all sub-aperture images, i.e., 𝐿𝐿𝐿𝑖 (z), 𝜽𝑖 ∈ 𝛱/{𝜽0}. The parameter 𝛾 helps in controlling the
contribution of each constancy assumption.

The ℓ2 norm in Eq. 2.9 can be replaced by the ℓ1 norm which is more robust against noise
and outliers [76]. However, since ℓ1 is non-smooth leading to the non-existence of the
derivative at the point 0, it is more preferable to employ an approximate version of ℓ1 norm
defined as

𝛹 (𝑠2) =
√
𝑠2 + 𝜖,

where 𝜖 > 0 serves as a small regularization parameter, which also allows the derivative of
𝛹 to be available when 𝑠 = 0. This sub-quadratic function was used in the literature [74,75]
showing better performance as compared to ℓ2 norm and more effective in the term of
implementation as compared to ℓ1. Employing this sub-quadratic penalizer function, Eq. 2.9
is then rewritten as,

𝐷1(𝝎) =
∑︁
𝜽𝑖 ∈𝛱

𝛹
(
‖𝐿𝐿𝐿0(z) − 𝐿𝐿𝐿𝑖 (z + 𝜽𝑖𝝎)‖22

)
+ 𝛾

∑︁
𝜽𝑖 ∈𝛱

𝛹
(
‖∇𝐿𝐿𝐿0(z) − ∇𝐿𝐿𝐿𝑖 (z + 𝜽𝑖𝝎)‖22

)
. (2.10)

This data term penalizes the constancy assumption by applying the robustification on
each SAI pixel and across all available view angles. Instead of applying the robustification
perspective-wise, we could combine constancy assumptions of all perspectives in a single
robustification,

𝐷1(𝝎) =𝛹
(∑︁
𝜽𝑖 ∈𝛱

‖𝐿𝐿𝐿0(z) − 𝐿𝐿𝐿𝑖 (z + 𝜽𝑖𝝎)‖22
)
+ 𝛾𝛹

(∑︁
𝜽𝑖 ∈𝛱

‖∇𝐿𝐿𝐿0(z) − ∇𝐿𝐿𝐿𝑖 (z + 𝜽𝑖𝝎)‖22
)
. (2.11)

2.3. Optimization Method 19

We noticed that this model requires less computational resources as compared to perspective-
wise robustification while achieving a good estimation accuracy. The separate robustifica-
tions for the two constancy assumptions applied in this model is followed the suggestion
from Bruhn and Weickert [77]. This is favored in the situation that the correctness of the
two assumptions may not hold true at the same time.

2.2.2 Regularization Term

One of the well-known choices for the smoothness term is Tikhonov prior taking the
following form,

𝑆 (𝝎) = ‖𝛤𝝎‖22 , (2.12)

where 𝛤 denotes a regularization operator which is normally chosen as an approximation
of 𝑖𝑡ℎ order derivative. For example, setting 𝛤 to the first order derivative gives us the
regularization term 𝑆 (𝝎) = ‖∇𝝎‖22. The application of ℓ2 norm would simplify numeri-
cal computation, however, in exchange for the computational advantage, the Tikhonov
regularization generally suffers from an over-smooth effect. For the disparity estimation
problem, it is preferable to employ ℓ1 norm, also known as total variation (TV), which can
better handle outlier and produces a piece-wise smoothness in the disparity field [74,78].
Following the similar strategy as for the data fidelity term, the robustification function is
employed for alleviating the non-differentiable issue of ℓ1 norm,

𝑆 (𝝎) = 𝛼 𝛹𝜖3 (‖∇𝝎‖22), (2.13)

where the parameter𝛼 in (2.13) allows controlling the smoothness of the solution.

2.3 Optimization Method

This section discusses the minimization of the variational optimization problems in the
previous section. Since both data term and smoothness are differentiable, Euler-Lagrange
equations could be applied for minimizing the energy functions [74, 77]. The ultimate
goal is transforming the optimization problem into a linear system of equations so that we
can effectively solve them with common numerical methods. We start with the simpler
version of the problem, i.e., ℓ2 data-term and Tikhonov regularization with the first-order
derivative operator. Through solving this problem, a computation basis including the
notation and important transformation are established. This will support the development

20 2. Variational 4D Light Field Disparity Estimation

in the following sections covering the optimization of robust norms, coarse-to-fine strategy,
and numerical computation.

2.3.1 Solving Quadratic Data-term and Smoothness Term

Combining the square norm data-term, Eq. 2.9, and the Tikhonov smoothness term,
Eq. 2.12, give us the following cost function defined as a functional of the disparity map
𝝎 (z),

𝐸 [𝝎] =
∫
𝛺

L(z,𝝎,∇𝝎)𝑑z

=

∫
𝛺

∑︁
𝜽𝑖∈𝛱

𝐹𝑖,𝑔 + 𝛾
∑︁
𝜽𝑖∈𝛱

𝐹𝑖,𝐺 + 𝛼 ‖∇𝝎‖22 𝑑z

=

∫
𝛺

∑︁
𝜽𝑖∈𝛱

‖𝐿𝐿𝐿0(z) − 𝐿𝐿𝐿𝑖 (z + 𝜽𝑖𝝎)‖22 + 𝛾
∑︁
𝜽𝑖∈𝛱

‖∇𝐿𝐿𝐿0(z) − ∇𝐿𝐿𝐿𝑖 (z + 𝜽𝑖𝝎)‖22

+ 𝛼 ‖∇𝝎‖22 𝑑z,

(2.14)

where L signifies Lagrangian function, and 𝐹𝑔,𝑖 , 𝐹𝐺,𝑖 are square error functions with regard
to the brightness and gradient constancy assumptions respectively. To minimize this energy
function, we first approximate the nonlinear functional term 𝐿𝐿𝐿𝑖 (z + 𝝎𝜽𝑖) by employing the
Taylor series theorem,

𝐿𝐿𝐿𝑖 (z + 𝝎𝜽𝑖) ≈ 𝐿𝐿𝐿𝑖 (z) + 𝜌𝑖𝝎
𝜕

𝜕𝑥
𝐿𝐿𝐿𝑖 (z) + 𝜏𝑖𝝎

𝜕

𝜕𝑦
𝐿𝐿𝐿𝑖 (z)

= 𝐿𝐿𝐿𝑖 (z) + 𝝎𝜽ᵀ
𝑖
∇𝐿𝐿𝐿𝑖 (z)

(2.15)

Let us define w = [𝝎 1]ᵀ and introduce the term

∇𝜽𝑖𝐿𝐿𝐿 =

[
𝜽ᵀ
𝑖
∇𝐿𝐿𝐿𝑖 (z)

𝐿𝐿𝐿𝑖 (z) − 𝐿𝐿𝐿0(z)

]
. (2.16)

2.3. Optimization Method 21

We rewrite the photo constancy error function as,

𝐹𝑔,𝑖 (𝝎) = ‖𝐿𝐿𝐿𝑖 (z + 𝝎𝜽𝑖) − 𝐿𝐿𝐿0(z)‖22
≈

𝐿𝐿𝐿𝑖 (z) − 𝐿𝐿𝐿0(z) + 𝝎𝜽𝑇𝑖 ∇𝐿𝐿𝐿𝑖 (z)
2
2

=
w𝑇∇𝜽𝑖𝐿𝐿𝐿

2
2

= wᵀ
(
∇𝜽𝑖𝐿𝐿𝐿∇

ᵀ
𝜽𝑖
𝐿𝐿𝐿
)
w

= wᵀJ𝑔,𝑖w,

where J𝑔,𝑖 = ∇𝜽𝑖𝐿𝐿𝐿∇
ᵀ
𝜽𝑖
𝐿𝐿𝐿 denotes a Light field motion tensor computed for the photo constancy

assumption. This well-known motion tensor notation [75, 79] allows us to simplify the
expression in combination of perspective constancy constraints. J𝑔,𝑖 is a 2 × 2 symmetric
matrix defined for each pixel position z ∈ 𝛺 and for specific view point 𝜽𝑖 ∈ 𝛱 . For the
gradient constancy assumption, we follow a similar linearization process applying the
first-order Tailor expansion,

∇𝐿𝐿𝐿𝑖 (z + 𝜽𝑖𝝎) =
[
𝜕
𝜕𝑥
𝐿𝐿𝐿𝑖 (z + 𝜽𝑖𝝎)

𝜕
𝜕𝑦
𝐿𝐿𝐿𝑖 (z + 𝜽𝑖𝝎)

]
≈

[
𝜕
𝜕𝑥
𝐿𝐿𝐿𝑖 (z) + 𝝎𝜽𝑇𝑖 ∇

𝜕
𝜕𝑥
𝐿𝐿𝐿𝑖 (z)

𝜕
𝜕𝑦
𝐿𝐿𝐿𝑖 (z) + 𝝎𝜽𝑇𝑖 ∇

𝜕
𝜕𝑦
𝐿𝐿𝐿𝑖 (z)

]
,

(2.17)

The gradient constancy error function is rewritten as,

𝐹𝐺,𝑖 = ‖∇𝐿𝐿𝐿𝑖 (z + 𝜽𝑖𝝎) − ∇𝐿𝐿𝐿0(z)‖22

≈
(
𝜕

𝜕𝑥
𝐿𝐿𝐿𝑖 (z) −

𝜕

𝜕𝑥
𝐿𝐿𝐿0(z) + 𝝎𝜽𝑇𝑖 ∇

𝜕

𝜕𝑥
𝐿𝐿𝐿𝑖 (z)

)2
+

(
𝜕

𝜕𝑦
𝐿𝐿𝐿𝑖 (z) −

𝜕

𝜕𝑦
𝐿𝐿𝐿𝑜 (z) + 𝝎𝜽𝑇𝑖 ∇

𝜕

𝜕𝑦
𝐿𝐿𝐿𝑖 (z)

)2
= w𝑇∇𝜽𝑖𝐿𝐿𝐿𝑥∇

ᵀ
𝜽𝑖
𝐿𝐿𝐿𝑥w + w𝑇∇𝜽𝑖𝐿𝐿𝐿𝑦∇

ᵀ
𝜽𝑖
𝐿𝐿𝐿𝑦w

= wᵀ
(
∇𝜽𝑖𝐿𝐿𝐿𝑥∇

ᵀ
𝜽𝑖
𝐿𝐿𝐿𝑥 + ∇𝜽𝑖𝐿𝐿𝐿𝑦∇

ᵀ
𝜽𝑖
𝐿𝐿𝐿𝑦

)
w

= wᵀJ𝐺,𝑖w,

with J𝐺,𝑖 is a Light field motion tensor computed with regard to the gradient constancy
assumption at a viewpoint 𝜽𝑖 ∈ 𝛱 . The terms ∇𝜽𝑖𝐿𝐿𝐿𝑥 and ∇𝜽𝑖𝐿𝐿𝐿𝑦 are computed as fol-
low

∇𝜽𝑖𝐿𝐿𝐿[=

[
𝜽𝑇𝑖 ∇

𝜕
𝜕[
𝐿𝐿𝐿𝑖 (z)

𝜕
𝜕[
𝐿𝐿𝐿𝑖 (z) − 𝜕

𝜕[
𝐿𝐿𝐿0(z)

]
, [∈ {𝑥,𝑦},

which is similar to Eq. 2.16, except that the directional gradient operator (∇𝜽𝑖) is applied
to spatial derivative versions of 4D LF, i.e., 𝐿𝐿𝐿𝑥 = 𝜕

𝜕𝑥
𝐿𝐿𝐿(z, 𝜽) and 𝐿𝐿𝐿𝑦 = 𝜕

𝜕𝑦
𝐿𝐿𝐿(z, 𝜽), instead of

22 2. Variational 4D Light Field Disparity Estimation

the 4D LF itself. Let us define the total Light field motion tensors J as the sum of the tensors
at all viewpoints,

J = J𝑔 + 𝛾J𝐺 , J𝑔 =
∑︁
𝜽𝑖∈𝛱

J𝑔,𝑖, J𝐺 =
∑︁
𝜽𝑖∈𝛱

J𝐺,𝑖 . (2.18)

We then approximate the Lagrangian L in Eq.2.14 as

L(z,𝝎,∇𝝎) ≈ wᵀJ𝑔w + 𝛾wᵀJ𝐺w + 𝛼 ‖∇𝝎‖22
= wᵀJw + 𝛼 ‖∇𝝎‖22 ,

(2.19)

The solution 𝝎 is the stationary point of the energy functional Eq. 2.14, the following
Euler-Lagrange equation must be satisfied,

0 =
𝜕

𝜕𝝎
L − 𝜕

𝜕𝑥

𝜕

𝜕𝝎𝑥
L − 𝜕

𝜕𝑦

𝜕

𝜕𝝎𝑦
L, (2.20)

with 𝝎𝑥 and 𝝎𝑦 denote the 𝑥 and 𝑦 derivative of the disparity map 𝝎 (z). For the computa-
tion of the partial derivative, we first expand the Eq. 2.19,

L(z,𝝎,∇𝝎) = J11𝝎2 + 2J12𝝎 + J22 + 𝛼 (𝝎2
𝑥 + 𝝎2

𝑦),

where J11, J12, and J22 are extracted from the 2×2 symmetric LFmotion tensor,

J =
[
J11 J12
J21 J22

]
.

The partial derivatives in Eq. 2.20 are computed as follows,

𝜕

𝜕𝝎
L = 2J11𝝎 + 2J12,

𝜕

𝜕𝑥

𝜕

𝜕𝝎𝑥
L + 𝜕

𝜕𝑦

𝜕

𝜕𝝎𝑦
L = 2𝛼

𝜕

𝜕𝑥
𝝎𝑥 + 2𝛼

𝜕

𝜕𝑦
𝝎𝑦,

(2.21)

which turns Eq. 2.20 to,
0 = J11𝝎 + J12 − 𝛼div (∇𝝎) . (2.22)

Since this equation is applied to each pixel in the reference SAI and the divergence term
div (∇𝝎) can be effectively realized by linear operators, a linear system of equations would
be formed as will be discussed in Sec. 2.4.

2.3. Optimization Method 23

2.3.2 Solving Sub-quadratic Data Term and Smoothness Term

In the following, the optimization of robustification data-term and regularization term
is discussed. It is also our final choice of the energy function which provides the most
accurate estimation of the disparity map. Let us start with the general form of the energy
function:

𝐸 [𝝎] =
∫
𝛺

L(z,𝝎,∇𝝎)𝑑z

=

∫
𝛺

𝛹

(∑︁
𝜽𝑖∈𝛱

𝐹𝑖,𝑔

)
+ 𝛾𝛹

(∑︁
𝜽𝑖∈𝛱

𝐹𝑖,𝐺

)
+ 𝛼𝛹

(
‖∇𝝎‖22

)
𝑑z

(2.23)

Follow the linearization strategy and notation from the previous section, we rewrite the
Lagrangian function as follows

L(z,𝝎,∇𝝎) =𝛹
(
wᵀJ𝑔w

)
+ 𝛾𝛹

(
wᵀJ𝐺w)

)
+ 𝛼𝛹

(
‖∇𝝎‖22

)
, (2.24)

The partial derivatives in Eq. 2.20 are computed as follows

𝜕

𝜕𝝎
L = 2𝛹′(wᵀJ𝑔w)

(
J𝑔,11𝝎 + J𝑔,12

)
+ 2𝛾𝛹′(wᵀJ𝐺w)

(
J𝐺,11𝝎 + J𝐺,12

)
,

𝜕

𝜕𝑥

𝜕

𝜕𝝎𝑥
L + 𝜕

𝜕𝑦

𝜕

𝜕𝝎𝑦
L = 2𝛼

𝜕

𝜕𝑥

(
𝛹′ (‖∇𝝎‖22

)
𝝎𝑥

)
+ 2𝛼

𝜕

𝜕𝑦

(
𝛹′ (‖∇𝝎‖22

)
𝝎𝑦

)
,

(2.25)

where J∗,11, J∗,12 denotes the components of the LF motion tensor J∗ and 𝛹′(𝑠2) is the
derivative of the sub-quadratic function, 𝛹′(𝑠2) = 1

2
√
𝑠2+𝜖

= 1
2𝛹 (𝑠2) . For simplifying the

notation let us assign,

𝛹′
𝑔 =𝛹

′ (wᵀJ𝑔w)
, 𝛹′

𝐺 =𝛹′ (wᵀJ𝐺w)
, 𝛹′

𝑠 =𝛹
′ (∇ᵀ𝝎∇𝝎

)
, (2.26)

The Euler-Lagrange equation for the functional in Eq. 2.23 reads,

0 =
𝜕

𝜕𝝎
L − 𝜕

𝜕𝑥

𝜕

𝜕𝝎𝑥
L − 𝜕

𝜕𝑦

𝜕

𝜕𝝎𝑦
L

=𝛹′
𝑔 · (𝝎J𝑔,11 + J𝑔,12) + 𝛾𝛹′

𝐺 · (𝝎J𝐺,11 + J𝐺,12) − 𝛼div (𝛹′
𝑠∇𝝎),

(2.27)

with the sign · is introduced to avoid an ambiguity in the representation of𝛹′
∗ as a function.

It is obvious that Eq. 2.27 is non-linear with regard to 𝝎 due to the non-linear function𝛹′
∗.

24 2. Variational 4D Light Field Disparity Estimation

This non-linearity disables the construction of system of linear equations for optimizing the
cost function in Eq. 2.23. To overcome this issue, we follow the previous works [74,80] to
apply a fixed point iteration strategy,

0 =𝛹′(𝑘)
𝑔

(
𝝎 (𝑘+1)J𝑔,11 + J𝑔,12

)
+ 𝛾𝛹′(𝑘)

𝐺

(
𝝎 (𝑘+1)J𝐺,11 + J𝐺,12

)
− 𝛼div

(
𝛹
′(𝑘)
𝑠 ∇𝝎 (𝑘+1)), (2.28)

which computes the values of𝛹′
∗ using the solution from the previous iteration, i.e., 𝝎 (𝑘).

The non-linearity term𝛹′(𝑘)
∗ is then treated as a constant in the 𝑘 + 1𝑡ℎ iteration searching

for the unknown 𝝎 (𝑘+1). Assembling Eq. 2.28 for all pixels in the reference SAI allows us to
form a sparse system of linear equations which can be solved effectively, as discussed in
Section 2.4.

2.3.3 Coarse-to-fine Warping Strategy

In the previous section, we shown that applying Tailor expansion technique helps to turn
the functional 𝐿𝐿𝐿𝑖 (z+𝜽𝑖𝝎) into the linear combination of the mapping function 𝝎. Although
this linearization strategy simplifies the optimization problem, it takes the risk of loosing
accuracy due to the approximation of the functional. To overcome this issue, a coarse-to-fine
warping strategy [74,75] could be applied, in which the approximation of the functional
is postponed to the numerical step and disparity map is computed and gradually refined
from the coarsest scale to the finest scale.

Let us start with the Lagrangian without linearization,

L(z,𝝎,∇𝝎) =𝛹
(∑︁
𝛱

‖𝐿𝐿𝐿𝑖 (z + 𝜽𝑖𝝎) − 𝐿𝐿𝐿0(z)‖22
)
+ 𝛾𝛹

(∑︁
𝛱

‖∇𝐿𝐿𝐿𝑖 (z + 𝜽𝑖𝝎) − ∇𝐿𝐿𝐿0(z)‖22
)

+ 𝛼𝛹
(
‖∇𝝎‖22

)
.

Here, let us rewrite �̂̂�𝐿𝑖 = 𝐿𝐿𝐿𝑖 (z+𝜽𝑖𝝎) = 𝐿𝐿𝐿(z+𝜽𝑖𝝎, 𝜽𝑖) to simplify the notation. It follows that
�̂̂�𝐿0 = 𝐿𝐿𝐿0(z) = 𝐿𝐿𝐿(z, 𝜽0). The partial derivative 𝜕

𝜕𝝎L is computed as,

𝜕

𝜕𝝎
L = 2𝛹′

(∑︁
𝛱

�̂̂�𝐿𝑖 − 𝐿𝐿𝐿02
2

) ∑︁
𝜽𝑖∈𝛱

(
�̂̂�𝐿𝑖 − �̂̂�𝐿0

) 𝑑
𝑑𝝎

�̂̂�𝐿𝑖

+ 2𝛾𝛹′
(∑︁
𝛱

∇�̂̂�𝐿𝑖 − ∇�̂̂�𝐿0
2
2

) ∑︁
𝛱

(
∇�̂̂�𝐿𝑖 − ∇�̂̂�𝐿0

)ᵀ 𝑑
𝑑𝝎

∇�̂̂�𝐿𝑖,
(2.29)

while the other partial derivatives, i.e., 𝜕
𝜕𝑥

𝜕
𝜕𝝎𝑥

L, 𝜕
𝜕𝑦

𝜕
𝜕𝝎𝑦

L, are the same as in Eq. 2.25. The

2.3. Optimization Method 25

Euler-Lagrange equation reads

0 = �̃�′
𝑔 ·

∑︁
𝛱

(
�̂̂�𝐿𝑖 − �̂̂�𝐿0

) 𝑑
𝑑𝝎

�̂̂�𝐿𝑖 + 𝛾�̃�′
𝐺 ·

∑︁
𝛱

(
∇�̂̂�𝐿𝑖 − ∇�̂̂�𝐿0

)ᵀ 𝑑
𝑑𝝎

∇�̂̂�𝐿𝑖 − 𝛼div
(
𝛹′
𝑠∇𝝎

)
, (2.30)

where �̃�′
𝑔 =𝛹

′
(∑
𝛱

�̂̂�𝐿𝑖 − �̂̂�𝐿02
2

)
and �̃�′

𝐺
=𝛹′

(∑
𝛱

∇�̂̂�𝐿𝑖 − ∇�̂̂�𝐿0
2
2

)
.

Regarding the derivative of �̂̂�𝐿𝑖 by 𝝎, by definition

𝑑

𝑑𝝎
�̂̂�𝐿𝑖 =

𝑑

𝑑𝝎
𝐿𝐿𝐿𝑖 (z + 𝝎𝜽𝑖) = lim

𝛥𝝎→0

𝐿𝐿𝐿𝑖 (z + 𝝎𝜽𝑖 + 𝛥𝝎𝜽𝑖) − 𝐿𝐿𝐿𝑖 (z + 𝝎𝜽𝑖)
𝛥𝝎

,

which is actually the directional derivative of �̂̂�𝐿𝑖 (z) at the point z + 𝝎𝜽𝑖 in the direction of
𝜽𝑖 . Therefore, it reads

𝑑

𝑑𝝎
�̂̂�𝐿𝑖 = 𝜽ᵀ

𝑖
∇�̂̂�𝐿𝑖 .

In a similar manner, the derivative of ∇�̂̂�𝐿𝑖 by 𝝎 reads

𝑑

𝑑𝝎
∇�̂̂�𝐿𝑖 = H �̂̂�𝐿𝑖𝜽𝑖,

whereH is the 2×2Hessianmatrix,H =

[
𝜕
𝜕𝑥

𝜕
𝜕𝑥

𝜕
𝜕𝑥

𝜕
𝜕𝑦

𝜕
𝜕𝑦

𝜕
𝜕𝑥

𝜕
𝜕𝑦

𝜕
𝜕𝑦

]
. The Eq. 2.30 becomes

0 =𝛹′
𝑔

∑︁
𝜽𝑖∈𝛱

(
�̂̂�𝐿𝑖 − �̂̂�𝐿0

)
𝜽𝑇𝑖 ∇�̂̂�𝐿𝑖 + 𝛾𝛹′

𝐺

∑︁
𝜽𝑖∈𝛱

(
∇�̂̂�𝐿𝑖 − ∇�̂̂�𝐿0

)ᵀH �̂̂�𝐿𝑖𝜽𝑖 − 𝛼div
(
𝛹′
𝑖∇𝝎

)
. (2.31)

This Euler-Lagrange equation is much more complex than the one with linearization
(Eq. 2.27). The equation is non-linear with regard to 𝝎 due to the robust norm function
𝛹 and the warping SAI �̂̂�𝐿𝑖 = 𝐿𝐿𝐿(z + 𝜽𝑖𝝎, 𝜽𝑖). To construct a system of linear equations, we
follows the approach of Brox et al. [74] which makes use of an incremental computation
based on a multi-scale fixed-point iteration. As suggested in [75], this incremental com-
putation can be broken down into three steps. First, we apply a fix-pointed iteration on
𝝎

0 = 𝛹
′(𝑡+1)
𝑔

∑︁
𝜽𝑖∈𝛱

(
�̂̂�𝐿
(𝑡+1)
𝑖 − �̂̂�𝐿0

)
𝜽𝑇𝑖 ∇�̂̂�𝐿

(𝑡)
𝑖 + 𝛾𝛹′(𝑡+1)

𝐺

∑︁
𝜽𝑖∈𝛱

(
∇�̂̂�𝐿(𝑡+1)𝑖 − ∇�̂̂�𝐿0

)ᵀH �̂̂�𝐿
(𝑡)
𝑖 𝜽𝑖

− 𝛼div
(
𝛹
′(𝑡+1)
𝑖

∇𝝎 (𝑡+1)), (2.32)

which employs the estimated disparity map from the previous iteration, i.e., 𝝎 (𝑡), for

26 2. Variational 4D Light Field Disparity Estimation

the computation of the gradient ∇�̂̂�𝐿(𝑡) and hessian H �̂̂�𝐿
(𝑡), which are associated to the

photometric and the gradient assumptions respectively.

In the second step, let us introduce an increment 𝜹𝝎 (𝑘) which accounts for the change of 𝝎
between step 𝑘 (𝑡ℎ) and 𝑘 + 1(𝑡ℎ), such as 𝝎 (𝑘+1) = 𝝎 (𝑘) +𝜹𝝎 (𝑘). This allows us to transform
the unknown disparity amount 𝝎 (𝑘+1) into the known disparity 𝝎 (𝑘) and an unknown
incremental amount 𝜹𝝎 (𝑘). Assuming that 𝜹𝝎 only accounts for a small displacement, the
linearization strategy can be applied

�̂̂�𝐿
(𝑡+1)
𝑖 = 𝐿𝐿𝐿𝑖 (z + 𝜽𝑖𝝎

(𝑡+1))
= 𝐿𝐿𝐿𝑖 (z + 𝜽𝑖𝝎

(𝑡) + 𝜽𝑖𝜹𝝎
(𝑡))

≈ 𝐿𝐿𝐿𝑖 (z + 𝜽𝑖𝝎
(𝑡)) + 𝜹𝝎 (𝑡)𝜽ᵀ

𝑖
∇𝐿𝐿𝐿𝑖 (z + 𝜽𝑖𝝎

(𝑡))

= �̂̂�𝐿0 +
[
𝜹𝝎 (𝑡) 1

]
∇𝜽𝑖 �̂̂�𝐿

(𝑡)
,

(2.33)

with LF gradient operator ∇𝜽𝑖 follows Eq. 2.16. The gradient of the warped LF can also be
approximated in a similar manner

∇�̂̂�𝐿(𝑡+1)𝑖 = ∇𝐿𝐿𝐿𝑖 (z + 𝜽𝑖𝝎
(𝑡+1))

≈ ∇�̂̂�𝐿0 +
[
∇ᵀ𝜽𝑖 �̂̂�𝐿𝑥
∇ᵀ𝜽𝑖 �̂̂�𝐿𝑦

] [
𝜹𝝎 (𝑡)

1

]
,

(2.34)

where ∇ᵀ𝜽𝑖 �̂̂�𝐿∗ denotes the transpose version of LF gradient operator applied to the deriva-
tives �̂̂�𝐿[= 𝜕

𝜕[
�̂̂�𝐿(z, 𝜽), [∈ {𝑥,𝑦}. We then repeat the definition of the total LF mo-

tion tensor for photometric and gradient constancy assumptions applied to the warped
LF

Ĵ = Ĵ𝑔 + 𝛾 Ĵ𝐺 , Ĵ𝑔 =
∑︁
𝜽𝑖∈𝛱

∇𝑇𝜽𝑖 �̂̂�𝐿∇𝜽𝑖 �̂̂�𝐿, Ĵ𝐺 =
∑︁
𝜽𝑖∈𝛱

∇𝑇𝜽𝑖 �̂̂�𝐿𝑥∇𝜽𝑖 �̂̂�𝐿𝑥 + ∇𝑇𝜽𝑖 �̂̂�𝐿𝑦∇𝜽𝑖 �̂̂�𝐿𝑦 (2.35)

The summation in Eq. 2.32 can be rewritten by employing the total LF motion tensor
notation∑︁

𝜽𝑖∈𝛱

(
�̂̂�𝐿
(𝑡+1)
𝑖 − �̂̂�𝐿0

)
𝜽ᵀ
𝑖
∇�̂̂�𝐿(𝑡)𝑖 ≈

∑︁
𝜽𝑖∈𝛱

[
𝜹𝝎 (𝑡) 1

] [
𝜽ᵀ
𝑖
∇�̂̂�𝐿𝑖 (z)

�̂̂�𝐿𝑖 (z) − �̂̂�𝐿0(z)

]
𝜽ᵀ
𝑖
∇�̂̂�𝐿(𝑡)𝑖

= Ĵ
(𝑡)
𝑔,11𝜹𝝎

(𝑡) + Ĵ
(𝑡)
𝑔,12 ,

(2.36)

2.3. Optimization Method 27

and ∑︁
𝜽𝑖∈𝛱

(
∇�̂̂�𝐿(𝑡+1)𝑖 − ∇�̂̂�𝐿0

)ᵀ
H �̂̂�𝐿

(𝑡)
𝑖 𝜽𝑖 ≈ Ĵ

(𝑡)
𝐺,11𝜹𝝎

(𝑡) + Ĵ
(𝑡)
𝐺,12. (2.37)

The derivatives of robustification function𝛹∗ are computed as

𝛹
′(𝑡+1)
𝑔 ≈ 𝛹

′(𝑡)
𝑔 =𝛹′

([
𝜹𝝎 (𝑡) 1

]
Ĵ
(𝑡)
𝑔

[
𝜹𝝎 (𝑡) 1

]ᵀ)
,

𝛹
′(𝑡+1)
𝐺

≈ 𝛹
′(𝑡)
𝐺

=𝛹′
([
𝜹𝝎 (𝑡) 1

]
Ĵ
(𝑡)
𝐺

[
𝜹𝝎 (𝑡) 1

]ᵀ)
,

𝛹
′(𝑡+1)
𝑠 ≈ 𝛹

′(𝑡)
𝑠 =𝛹′

(∇𝝎 (𝑘) + ∇𝜹𝝎 (𝑘)
2
2

)
.

(2.38)

We can then rewrite Eq. 2.32 into a much cleaner form

0 =𝛹′(𝑡)
𝑔 ·

(̂
J
(𝑡)
𝑔,11𝜹𝝎

(𝑡) + Ĵ(𝑡)𝑔,12
)
+𝛾𝛹′(𝑡)

𝐺
·
(̂
J
(𝑡)
𝐺,11𝜹𝝎

(𝑡) + Ĵ(𝑡)𝐺,12
)
−𝛼div

(
𝛹
′(𝑡)
𝑠 · (∇𝝎 (𝑡) +∇𝜹𝝎 (𝑡))

)
.

(2.39)
Important changes of Eq. 2.39 as compared to Eq. 2.32 are the switch from the unknown
disparity value 𝝎 (𝑡+1) to the unknown incremental amount 𝜹𝝎𝑡 and the removal of non-
linearity in the warped LF (i.e., �̂̂�𝐿(𝑡+1)𝑖 , and ∇�̂̂�𝐿(𝑡+1)𝑖). However the above equation is still
non-linear with regard to 𝜹𝝎 (𝑡) due to the nonlinear function𝛹′(𝑡)

∗ . To overcome this issue,
a fixed-point iteration on an inner loop searching for 𝜹𝝎 (𝑡) is applied

0 = 𝛹
′(𝑡,𝑙)
𝑔 ·

(̂
J
(𝑡)
𝑔,11𝜹𝝎

(𝑡,𝑙+1) + Ĵ
(𝑡)
𝑔,12

)
+ 𝛾𝛹′(𝑡)

𝐺
·
(̂
J
(𝑡)
𝐺,11𝜹𝝎

(𝑡,𝑙+1) + Ĵ
(𝑡)
𝐺,12

)
− 𝛼div

(
𝛹
′(𝑡,𝑙)
𝑠 · (∇𝝎 (𝑡) + ∇𝜹𝝎 (𝑡,𝑙+1))

)
,

(2.40)

where the superscript (𝑡, 𝑙) denotes the outer loop 𝑡 (𝑡ℎ) searching for 𝝎 and then inner
loop 𝑙𝑡ℎ searching for 𝜹𝝎. The derivatives �̂�′

∗ are computed using the known value of 𝝎 (𝑡)

and 𝜹𝝎 (𝑙) estimated from the previous iteration. Taking a closer look, one can see the
similarity between the system of equation in Eq. 2.28 and Eq. 2.40. This similarity suggests
that we can reuse the solver of the former for solving the latter taking into account the
following key observations. First, the total LF motion tensors in the former equation are
computed from the original LF while the latter computes them from the warped LF. Second,
the smoothness term includes a so call initial disparity. Both equations can be derived from
the following form of the energy function

𝐸 [𝝎] =
∫
𝛺

𝛹
(
wᵀJ𝑔w

)
+ 𝛾𝛹

(
wᵀJ𝐺w)

)︸ ︷︷ ︸
𝐷 (J𝑔,J𝐺 ,𝝎)

+𝛼𝛹
(
‖∇𝝎0 + ∇𝝎‖22

)︸ ︷︷ ︸
𝑆 (𝝎0,𝝎)

𝑑z, (2.41)

28 2. Variational 4D Light Field Disparity Estimation

with the initial disparity map 𝝎0 helps in the regularization of 𝝎. For Eq. 2.28, 𝝎0 is
set to 0. Here let us define auxiliary data and smoothness functions 𝐷 (J𝑔, J𝐺 ,𝝎) and
𝑆 (𝝎0,𝝎).

For solving the Eq. 2.40, the outer-inner iterations are incorporated, in the third step, into
a coarse-to-fine warping scheme [74,75] applied on a set of spatially scaled LF (referred
to as LF spatial pyramid). The outer loop starts with the initialization of the disparity
map at each level in the pyramid started from the coarsest level. The inner loop is for the
refinement of the initial map by estimating the incremental disparity amount. Algorithm 1
outlines this coarse-to-fine strategy.

Algorithm 1: Coarse-to-fine warping Strategy
Input: {𝐿𝐿𝐿}𝑡 , 𝑡 = 0, 1..𝑇
Output: 𝝎

1 for 𝑡 := 𝑇 downto 0 do
2 if 𝑡 = 𝑇 then
3 {𝝎}𝑡 := 0 ⊲ Initializing with zeros
4 else
5 {𝝎}𝑡 :=↑ {˜𝝎}𝑡+1 ⊲ Up-sampling {˜𝝎}𝑡+1
6 end
7 �̂̂�𝐿(z, 𝜽𝑖) :=

{
𝐿𝐿𝐿(z + 𝜽𝑖{𝝎}𝑡 , 𝜽𝑖)

}
𝑡

⊲ Wapring with {𝝎}𝑡
8 Ĵ𝑔 :=

∑
𝜽𝑖∈𝛱

∇𝑇𝜽𝑖 �̂̂�𝐿∇𝜽𝑖 �̂̂�𝐿

9 Ĵ𝐺 :=
∑

𝜽𝑖∈𝛱
∇𝑇𝜽𝑖 �̂̂�𝐿𝑥∇𝜽𝑖 �̂̂�𝐿𝑥 + ∇𝑇𝜽𝑖 �̂̂�𝐿𝑦∇𝜽𝑖 �̂̂�𝐿𝑦

10
{
𝜹˜𝝎

}
𝑡
:= argmin

𝜹𝝎

∫
𝛺

𝐷

(̂
J𝑔, Ĵ𝐺 , 𝜹𝝎

)
+ 𝑆

(
{𝝎}𝑡 , 𝜹𝝎

)
𝑑z ⊲ Optimizing the Eq. 2.41

11 {˜𝝎}𝑡 := {𝝎}𝑡 + {𝜹˜𝝎}𝑡
12 end

A set of low-resolution light field image, denoted as {𝐿𝐿𝐿}𝑡 , 𝑡 = 0, 1, ..𝑇 , is first generated
from the input 4D light field 𝐿𝐿𝐿. 𝑇 denotes the maximum coarse-to-fine level. {𝐿𝐿𝐿}𝑡 has the
same angular resolution as of 𝐿𝐿𝐿, but has spatial resolution scaled by ZZ 𝑡 . The parameter
ZZ

(
ZZ ∈ ℝ, 0 < ZZ < 1

)
denotes a predefined scaling factor which remains constant in all

warping levels. Instead of calculating the disparity map 𝝎 directly from the light field
𝐿𝐿𝐿, a refined disparity map {˜𝝎}𝑡 is estimated for each of low-resolution light field {𝐿𝐿𝐿}𝑡
starting from the coarsest level (𝑡 = 𝑇). Given a light field 𝐿𝐿𝐿 with the spatial resolution
of 𝐻 ×𝑊 , the spatial resolution of a light field

(
{𝐿𝐿𝐿}𝑡

)
at a warping level 𝑡 is ZZ 𝑡𝐻 ×ZZ 𝑡𝑊 .

This is also the resolution of pre-estimated disparity map
(
{𝝎}𝑡

)
and refined disparity

map
(
{˜𝝎}𝑡

)
at the warping level 𝑡 . The pre-estimated disparity map at the coarsest level

({𝝎}𝑇) is initialized to 0, Algorithm 1 line 3. For other warping levels, it is calculated by

2.3. Optimization Method 29

up-scaling the refined disparity map {˜𝝎}𝑡+1 from the coarser level, Algorithm 1 line 5. The
pre-estimated disparity map is employed for generating a warped LF, Algorithm 1 line 7.
We then calculate the total LF motion tensor Ĵ𝑔 and Ĵ𝐺 from the warped LF (lines 8,9).
The refined disparity map {˜𝝎}𝑡 is then calculated by finding the incremental displacement
{𝜹𝝎}𝑡 and adding it to {𝝎}𝑡 , Algorithm 1 lines 10-11.

2.3.4 Weighted Median Filtering

Due to occlusion, Eq. 2.5 often fails to capture an accurate disparity value at displacement-
edge region. This is due to the fact that occluded pixels may not find their correspondences
in all sub-aperture images. Therefore, the constancy assumptions become less reliable and
result in the wrong estimation of disparity value at these locations. In order to alleviate
this problem, we follow the previous works [81,82] to apply weighted median filtering
to refine the estimated disparity map. Besides helping to improve disparity accuracy, this
enhancement step also offers some practical advantages at the architecture level. First, the
filter-based operation is well-suited for parallel computing and requires less computation
effort than an approach that explicitly models occlusion [30]. Secondly, as an independent
processing task, it can also be switched on or off for balancing the output quality and the
processing time.

Given a disparity map 𝝎 : 𝛺 → ℝ and a non-negative weighting function 𝑤 : 𝛺 ×
N → ℝ+,N ⊂ 𝛺 , the weighted median filter is defined by solving the following equa-
tion

˜𝝎] = argmin
𝑥

∑̃︁
]∈𝛺

𝑤𝑤],]̃ |𝑥 − 𝝎]̃ | , (2.42)

where],]̃ ∈ 𝛺 denotes the pixel location where the weightedmedian filtering is applied. The
subset N can span the full domain (i.e., non-local median) or narrow to the neighborhood
of] (i.e., local median) [83]. We employ the later type in this work and define N𝑟 (]) as a
square region surrounding] with the radius of 𝑟 .

There are many options for the weighting kernel (𝑤],]̃). One typical choice is the box kernel
which uses constant weights. The box kernel gives us the normal effect of the median filter
which is good for removing noise. However, the neighbor is treated in an equal manner
which may lead to morphological artifacts and canceling narrow structures [82]. Since we
compute the disparity map with respect to the central sub-aperture image, it makes sense
to perform post-processing to sharpen the disparity field with respect to this reference view
through a guided image kernel as introduced in [84]. For applying the guided median filter,
we first construct a binary mask marking occluded areas where there is a high possibility

30 2. Variational 4D Light Field Disparity Estimation

(a) (b) (c)

(d) (e)
0.2%

1 %

(f)

Figure 2.2: Impact of proposed post-processing method on estimated disparity field. The
result is computed for buddha2 scene from Synthetic dataset [14]. (a) top: the
central sub-aperture image. bottom: the ground truth with two interest areas.
(b) Estimated occlusion area. (c) Computed disparity map. (d) Zoom in ground
truth for two interest areas. (e),(f) estimated disparity and relative error before
and after guided filtering respectively.

of erroneous pixels. We then apply the guided median filtering on the disparity map with
respect to these occluded areas. We notice that the necessary condition for occlusion is
depth discontinuity, and therefore we propose a simple occlusion detection based on the
computed displacement field

𝑃𝑜𝑐𝑐 = 𝑓 (𝐵𝑟 ∗ |∇2𝝎 |2), (2.43)

where 𝑓 (·) is a binary marking function that marks the response above some threshold and
𝐵𝑟∗ denotes the convolution with a box kernel with size 𝑟 to expand suspected occlusion
areas. An example of marked occluded areas is shown in Figure 2.2(b). The guided median
filter with the central sub-aperture image 𝐼𝑐 = 𝐿(z, 𝜽0) as a guide is applied to the marked
area. This allows us to have a sharper and more precise disparity discontinues as could be
seen in Figure 2.2(e),(f).

The limitation of guided median filtering is that it only relies on the texture information
from the reference SAI. This could introduce ghosting artifact due to the striking change in
guided texture which, however, is not reflect the disparity gap. To alleviate this issue, we

2.3. Optimization Method 31

employ the weighting kernel in [81] in which the weight 𝑤𝑤]̃,] presents how likely the two
pixels]̃ and] belong to the same depth and is formulated as follow

𝑤𝑤]̃,] =
𝑜 (]̃)
𝑜 (]) 𝑒

−‖]̃−] ‖22
2𝜎21 𝑒

−‖𝐿𝐿𝐿 (],𝜽0)−𝐿𝐿𝐿 (]̃,𝜽0) ‖22
2𝜎22 . (2.44)

where𝑜 (]), defined in Eq. 2.45, is an occlusionweight adopted from [85].

𝑜 (z) = 𝑒
−𝑏 (z)2

2𝜎23 𝑒
−𝑝 (z)2

2𝜎24 (2.45)

𝑏 (z) and 𝑝 (z) are occluded boundary function and projection error function respectively.
𝑏 (z) allows selecting occluding boundary by a one-side divergence.

𝑏 (z) =
{
sum{∇𝝎 (z)}, sum{∇𝝎 (z)} < 0
0, otherwise

(2.46)

The projection error function penalizes the accuracy of the constancy assumption with a
given disparity 𝝎 (z).

𝑝 (z) = 𝐿𝐿𝐿(z, 𝜽0) − �̂̂�𝐿(z, 𝜽𝑖) (2.47)

2.3.5 Extension to Multi-channel Light Field

In the previous sections, we presented the application of constancy assumptions and total
variation priors in a variational optimization approach to estimate the disparity map. Until
this point, the computation has been derived for single-color channel LF. This section
discusses an extension to multi-channel LF, i.e., color LF, hyper spectral LF. As compared to
single-channel LF, the key difference of multi-channel LF lies in the formulation of the data
term which essentially depends on the characteristics of the enclosing channels, which is
either correlated or non-correlated. In the case of correlated color channels (i.e., RGB color
space), the constancy assumptions of all color channel can be summed up within a robust
norm

𝐷 (𝝎) =𝛹
(∑︁
𝜽𝑖∈𝛱

∑︁
𝑐∈{𝑅𝐺𝐵}

�̂̂�𝐿𝑐𝑖 − �̂̂�𝐿𝑐0(z)22) + 𝛾𝛹 (∑︁
𝜽𝑖∈𝛱

∑︁
𝑐∈{𝑅𝐺𝐵}

∇�̂̂�𝐿𝑐𝑖 − ∇�̂̂�𝐿𝑐0
2
2

)
, (2.48)

32 2. Variational 4D Light Field Disparity Estimation

where �̂̂�𝐿𝑐𝑖 = 𝐿𝐿𝐿𝑐 (z + 𝝎𝜽𝑖, 𝜽𝑖) denotes the color component 𝑐 of the warped multi-channel LF.
Eventually, this data term leads to the following LF motion tensors

Ĵ𝑔 =
∑

𝑐∈{𝑅,𝐺,𝐵}
Ĵ𝑔,𝑐 (2.49)

Ĵ𝐺 =
∑

𝑐∈{𝑅,𝐺,𝐵}
J𝐺,𝑐, (2.50)

with J𝑔,𝑐 and J𝐺,𝑐 are respectively photometric and gradient light field motion tensors of
the color channel 𝑐. Each type of constancy assumption requires only one robustification
function (𝛹) and Eq. 2.40 remains valid.

Regarding non-correlated color channels (i.e., HSV color space), the constancy assumptions
of each color channel need to be separately evaluated by robust functions as suggested in
[86]

𝐷 (𝝎) =
∑︁

𝑐∈{𝐻,𝑆,𝑉 }
𝛽𝑐𝛹

(∑︁
𝜽𝑖∈𝛱

�̂̂�𝐿𝑐𝑖 − �̂̂�𝐿𝑐0(z)22) + 𝛾𝑐 ∑︁
𝑐∈{𝐻,𝑆,𝑉 }

𝛹

(∑︁
𝜽𝑖∈𝛱

∇�̂̂�𝐿𝑐𝑖 − ∇�̂̂�𝐿𝑐0
2
2

)
, (2.51)

which give use the following outer-inner iterative equation

0 =
∑︁

𝑐∈{𝐻,𝑆,𝑉 }
𝛽𝑐𝛹

′(𝑡,𝑙)
𝑔,𝑐 ·

(̂
J
(𝑡)
𝑔,𝑐,11𝜹𝝎

(𝑡,𝑙+1) + Ĵ
(𝑡)
𝑔,𝑐,12

)
+ 𝛾𝑐

∑︁
𝑐∈{𝐻,𝑆,𝑉 }

𝛹
′(𝑡)
𝐺,𝑐

·
(̂
J
(𝑡)
𝐺,𝑐,11𝜹𝝎

(𝑡,𝑙+1) + Ĵ
(𝑡)
𝐺,𝑐,12

)
− 𝛼div

(
𝛹
′(𝑡,𝑙)
𝑠 · (∇𝝎 (𝑡) + ∇𝜹𝝎 (𝑡,𝑙+1))

)
,

where the derivative𝛹∗ and LF motion Ĵ∗ tensors are separately computed for each color
channels.

2.3.6 Per Perspective Robustification

So far, the robust norm has been applied to a super pixel which is the assemble of SAI pixel
from all perspectives. When applying to each perspective pixel separately, we have the
following data term

𝐷 (𝝎) =
∑︁
𝜽𝑖∈𝛱

𝛽𝑖𝛹

(�̂̂�𝐿𝑖 − �̂̂�𝐿02
2

)
+

∑︁
𝜽𝑖∈𝛱

𝛾𝑖𝛹

(∇�̂̂�𝐿𝑖 − ∇�̂̂�𝐿0
2
2

)
.

Here we introduce two sets of parameters 𝛽𝑖 and 𝛾𝑖 to weight the contributions of robust
norms at each perspective. The main idea is that the constancy assumption may become

2.4. Numerical Computation 33

less reliable for some particular perspectives. For example in plenoptic image, the SAIs at
the border normally suffer from distortion and vignetting effects [71]. This data term gives
us the following outer-inner iterative equation

0 =
∑︁
𝜽𝑖∈𝛱

𝛽𝑖𝛹
′(𝑡,𝑙)
𝑔,𝑖

·
(̂
J
(𝑡)
𝑔,𝑖,11𝜹𝝎

(𝑡,𝑙+1) + Ĵ
(𝑡)
𝑔,𝑖,12

)
+ 𝛾𝑖

∑︁
𝜽𝑖∈𝛱

𝛹
′(𝑡)
𝐺,𝑖

·
(̂
J
(𝑡)
𝐺,𝑖,11𝜹𝝎

(𝑡,𝑙+1) + Ĵ
(𝑡)
𝐺,𝑖,12

)
− 𝛼div

(
𝛹
′(𝑡,𝑙)
𝑠 · (∇𝝎 (𝑡) + ∇𝜹𝝎 (𝑡,𝑙+1))

)
,

(2.52)

As compared to Eq. 2.40, it could be seen that the above equation requires much more
computational resources. Both the number of computation and the storage size are multi-
plied by a factor of 𝑠𝜌𝑠𝜏 , where 𝑠𝜌 and 𝑠𝜏 are the number of perspective in horizontal and
vertical directions of LF.

2.4 Numerical Computation

This section discusses the numerical computation to the solution to the problem discussed
in the previous sections. Noticed that our derived Euler-Lagrange equations share a similar
form to that presented in optic flow literature [74,75,77], i.e., except for the number of
unknown and the computation of LF motion tensor which are formulated for 4DLF disparity
estimation problem. Therefore, the numerical computation, presented in this section, inher-
ited largely from these works, especially from the lecture notes[87].

2.4.1 Discreatization Strategy and Notation

The proposed variational model consists of two dimensional functions defined on the spatial
coordinate 𝛺 , i.e., 𝑓 (z) : 𝛺 → ℝ, z = [𝑥 𝑦]ᵀ ∈ 𝛺 . Although treated as continuous
functions, the numerical computation needs to be carried out on their discretization basis.
For discretization, we define a two-dimensional regular Cartesian grid of the size 𝐻 ×𝑊 ,
where 𝐻 is the height and𝑊 is the width of the sub-aperture image

{(𝑖𝛥𝑥 , 𝑗𝛥𝑦) |1 ≤ 𝑖 ≤𝑊, 1 ≤ 𝑗 ≤ 𝐻 },

with the indices of the discrete coordinate given by (𝑖, 𝑗) and the step sizes in 𝑥 and 𝑦
direction are 𝛥𝑥 and 𝛥𝑦 , respectively. Discretized functions, therefore, belong to a finite di-

34 2. Variational 4D Light Field Disparity Estimation

mensional vector space𝛺 = ℝ𝐻×𝑊 with the scalar product defined as

< 𝑈 ,𝑉 >=
∑︁
𝑖, 𝑗

𝑉𝑖, 𝑗𝑈𝑖, 𝑗 , 𝑈 ,𝑉 ∈ 𝛺.

For the computation of the first-order derivative, we apply the central difference[
𝜕

𝜕𝑥
𝑋

]
𝑖, 𝑗

=
[𝑋]𝑖+1, 𝑗 − [𝑋]𝑖−1, 𝑗

2𝛥𝑥
,

and the second order derivative[
𝜕
𝜕2𝑥
𝑋

]
𝑖, 𝑗

=
[𝜕
𝜕𝑥
𝑋]

𝑖+ 1
2 , 𝑗

−[𝜕
𝜕𝑥
𝑋]

𝑖− 1
2 , 𝑗

𝛥𝑥
=

[𝑋]𝑖+1, 𝑗−[𝑋]𝑖, 𝑗]
𝛥𝑥

− [𝑋]𝑖, 𝑗−[𝑋]𝑖−1, 𝑗
𝛥𝑥

𝛥𝑥
=

[𝑋]𝑖+1, 𝑗+[𝑋]𝑖−1, 𝑗−2[𝑋]𝑖, 𝑗
𝛥2
𝑥

.

The derivative across the boundary is set to 0, i.e., vanished as follow reflecting Neumann
boundary condition.

As forming a system of linear equations would require the column-vector representation of
discretized functions, let us define a linear mapping function𝛷

𝛷 : ℝ𝑊×𝐻 → ℝ𝑊𝐻

𝑋 → x, [x]𝑘 = [𝑋]𝑖, 𝑗 , 𝑘 = 𝑖𝐻 + 𝑗,
(2.53)

which performs a vectorization on a 2D array input. Since this mapping function is an
isomorphism, there exists an inverse mapping𝛷−1 that reverts the column vector into its
2D form. Besides, the properties of a linear mapping function, 𝛷 has also the following
property applied to Hadamard operators

𝛷 (𝐴 � 𝐵) = 𝛷 (𝐴) �𝛷 (𝐵),
𝛷 (𝐴 � 𝐵) = 𝛷 (𝐴) �𝛷 (𝐵),

(2.54)

where � and � denote the Hadamard product and Hadamard division respectively. Let us
define a shifting map𝛯𝑖, 𝑗 which respectively shifts the image 𝑖 pixel and 𝑗 pixel horizontally
and vertically.

𝛯𝛿𝑖 ,𝛿 𝑗 : ℝ𝑊×𝐻 → ℝ𝑊×𝐻

𝑋 → 𝑌, [𝑌]𝑖, 𝑗 = [𝑋]𝑖+𝛿𝑖 , 𝑗+𝛿 𝑗 ,
(2.55)

2.4. Numerical Computation 35

which is equal to applying a matrix transformation on a vectorization

𝛷

(
𝛯𝛿𝑖 ,𝛿 𝑗 (𝑋)

)
= 𝑆𝛿𝑖 ,𝛿 𝑗𝛷 (𝑋).

2.4.2 Generalized Equation

As will be shown in the next section, the Euler-Lagrange equations derived in the previous
sections share the following form

0 = [𝑀1]𝑖, 𝑗 [𝑋]𝑖, 𝑗 + [𝑀2]𝑖, 𝑗
+ [𝑃1]𝑖, 𝑗

(
[𝑋]𝑖+1, 𝑗 − [𝑋]𝑖, 𝑗

)
+ [𝑃2]𝑖, 𝑗

(
[𝑋]𝑖−1, 𝑗 − [𝑋]𝑖, 𝑗

)
+ [𝑄1]𝑖, 𝑗

(
[𝑋]𝑖, 𝑗+1 − [𝑋]𝑖, 𝑗

)
+ [𝑄2]𝑖, 𝑗

(
[𝑋]𝑖, 𝑗−1 − [𝑋]𝑖, 𝑗

)
,

(2.56)

where matrices 𝑀∗, 𝑄∗, 𝑃∗, 𝑋 ∈ ℝ𝑚×𝑛 and [·]𝑖, 𝑗 denotes the element at 𝑖𝑡ℎ row and 𝑗𝑡ℎ col.
While 𝑀∗, 𝑄∗, 𝑃∗ are constant, the matrix 𝑋 is an unknown that we are going to estimate.
Assembling Eq. 2.56 of all possible indices (𝑖, 𝑗), we obtain a system of linear equations
taking the form

𝐴x = b,

where 𝐴 ∈ ℝ𝑚𝑛×𝑚𝑛, and x, b ∈ ℝ𝑚𝑛. In order to derive the structure of the sparse matrix
𝐴 and column vector b, let us rewrite Eq. 2.56 in vector form

0 = 𝛷 (𝑀1) � x +𝛷 (𝑀2)
+𝛷 (𝑃1) �

(
𝑆1,0x − x

)
+𝛷 (𝑃2) �

(
𝑆−1,0x − x

)
+𝛷 (𝑄1) �

(
𝑆0,1x − x

)
+𝛷 (𝑄2) �

(
𝑆0,−1x − x

)
,

(2.57)

where x = 𝛷 (𝑋) and vectorization function 𝛷 : ℝ𝑚×𝑛 → ℝ𝑚𝑛 simply forms a column
vector x by stacking all columns of matrix 𝑋 . The transformation matrix 𝑆𝛿𝑖 ,𝛿 𝑗 ∈ ℝ𝑚𝑛×𝑚𝑛

shifts the matrix 𝑋 by 𝛿𝑖 and 𝛿 𝑗 pixels in 𝑥 and 𝑦 direction, respectively. From Eq. 2.57, it
is obvious that

b = −𝛷 (𝑀2)
𝐴 = diag

(
𝛷 (𝑀1) −𝛷 (𝑃1) −𝛷 (𝑃2) −𝛷 (𝑄1) −𝛷 (𝑄2)

)
+ diag

(
𝛷 (𝑃1)

)
𝑆1,0

+ diag
(
𝛷 (𝑄1)

)
𝑆0,1 + diag

(
𝛷 (𝑃2)

)
𝑆−1,0 + diag

(
𝛷 (𝑄2)

)
𝑆0,−1,

(2.58)

where diag(y) denotes the diagonal matrix constructed from the column vector y, i.e.,
[diag(y)]𝑖,𝑖 = [y]𝑖 . To employ iterative solvers such as Jacobi and Gauss-Seidel for solving
the sparse system of linear equations, we first need to decompose the sparse matrix 𝐴 into

36 2. Variational 4D Light Field Disparity Estimation

three parts
𝐴 = 𝐷 +𝑈 + 𝐿,

where 𝐷, 𝑈 , and 𝐿 denote the diagonal component, upper triangular part, and lower
triangular part. From the construction of 𝐴 in Eq. 2.58, we have

𝐷 = diag
(
𝛷 (𝑀1) −𝛷 (𝑃1) −𝛷 (𝑃2) −𝛷 (𝑄1) −𝛷 (𝑄2)

)
𝑈 = diag

(
𝛷 (𝑃1)

)
𝑆1,0 + diag

(
𝛷 (𝑄1)

)
𝑆0,1

𝐿 = diag
(
𝛷 (𝑃2)

)
𝑆−1,0 + diag

(
𝛷 (𝑄2)

)
𝑆0,−1.

(2.59)

From this point, the Jacobi iterative method can be applied to solve the sparse system of lin-
ear equations. The iterative step for finding the solution x is as follows

x(𝑘+1) = 𝐷−1
(
b − (𝐿 +𝑈)x(𝑘)

)
.

To avoid the sparse matrix implementation, we are going to derive element-wise numerical
computation. Let us first revert the above equation back to its matrix form

𝛷−1(x(𝑘+1)) = 𝛷−1(𝐷−1) �
(
𝛷−1(b) −𝛷−1 (𝐿x(𝑘)) −𝛷−1 (𝑈 x(𝑘)

))
, (2.60)

where 𝛷−1
(
x(𝑘+1)

)
= 𝑋 (𝑘+1), 𝛷−1 (

𝐷−1) = 1 � (𝑀1 − 𝑃1 − 𝑃2 − 𝑄1 − 𝑄2), 𝛷−1(b) = −𝑀2,
and

𝛷 (−1) (𝑈 x
)
=𝑃1 �𝛷−1(𝑆1,0x) +𝑄1 �𝛷−1(𝑆0,1x),

𝛷 (−1) (𝐿x) =𝑃2 �𝛷−1(𝑆−1,0x) +𝑄2 �𝛷−1(𝑆0,−1x),

with𝛷−1(𝑆𝛿𝑖 ,𝛿 𝑗x) = 𝛯𝛿𝑖 ,𝛿 𝑗 (𝑋). We rewrite Eq. 2.60 as

𝑋 (𝑘+1) =-
(
𝑀2 + 𝑃1 � 𝛯1,0(𝑋 (𝑘)) + 𝑃2 � 𝛯−1,0((𝑘)𝑋) +𝑄1 � 𝛯0,1(𝑋 (𝑘)) +𝑄2 � 𝛯0,−1(𝑋 (𝑘))

)
�

(
𝑀1 − 𝑃1 − 𝑃2 −𝑄1 −𝑄2

)
,

(2.61)

which allows us to form this element-wise computation

[𝑋] (𝑘+1)
𝑖, 𝑗

=
−[𝑀2]𝑖, 𝑗 − [𝑃1]𝑖, 𝑗 [𝑋] (𝑘)𝑖+1, 𝑗 − [𝑃2]𝑖, 𝑗 [𝑋] (𝑘)𝑖−1, 𝑗 − [𝑄1]𝑖, 𝑗 [𝑋] (𝑘)𝑖, 𝑗+1 − [𝑄2]𝑖, 𝑗 [𝑋] (𝑘)𝑖, 𝑗−1

[𝑀1]𝑖, 𝑗 −
(
[𝑃1]𝑖, 𝑗 + [𝑃2]𝑖, 𝑗 + [𝑄1]𝑖, 𝑗 + [𝑄2]𝑖, 𝑗

)
(2.62)

2.4. Numerical Computation 37

For Gauss-Seidel method, the iterative step for finding the solution x is

x(𝑘+1) = (𝐿 + 𝐷)−1
(
b −𝑈 x(𝑘)

)
.

Taking advantage of the triangular from of (𝐿 + 𝐷), the forward substitution technique
can be used to sequentially compute (𝐿 + 𝐷)−1 leading to the iterative computation of
x

x(𝑘+1) = 𝐷−1(𝑏 −𝑈 x(𝑘) − 𝐿x(𝑘+1)) (2.63)

In Eq. 2.63, it is important that the elements of x are computed with a strict order, i.e.,
starting from the first element and one after another. Following the similar transformation
as of Jacobi method, an element-wise computation of 𝑋 is as follows

[𝑋] (𝑘+1)
𝑖, 𝑗

=
−[𝑀2]𝑖, 𝑗 − [𝑃1]𝑖, 𝑗 [𝑋] (𝑘)𝑖+1, 𝑗 − [𝑃2]𝑖, 𝑗 [𝑋] (𝑘+1)𝑖−1, 𝑗 − [𝑄1]𝑖, 𝑗 [𝑋] (𝑘)𝑖, 𝑗+1 − [𝑄2]𝑖, 𝑗 [𝑋] (𝑘+1)𝑖, 𝑗−1

[𝑀1]𝑖, 𝑗 −
(
[𝑃1]𝑖, 𝑗 + [𝑃2]𝑖, 𝑗 + [𝑄1]𝑖, 𝑗 + [𝑄2]𝑖, 𝑗

)
2.4.3 Solution to Quadratic Data Term and Smoothness Term

This section discusses the application of the proposed numerical computation to the vari-
ational problem discussed in Sec. 2.3.1. Let us rewrite the Euler-Lagrange equation,
Eq. 2.22,

0 = [J11]𝑖, 𝑗 [𝝎]𝑖, 𝑗 + [J12]𝑖, 𝑗 − 𝛼
(
[𝝎𝑥𝑥]𝑖, 𝑗 + [𝝎𝑦𝑦]𝑖, 𝑗

)
, (2.64)

in which the LF tensor components (J∗), disparity map (𝝎) and derivative terms (𝝎∗) are
treated as 2D array matrices in ℝ𝐻×𝑊 . The divergent term div ∇𝝎 = 𝝎𝑥𝑥 + 𝝎𝑦𝑦, with
𝝎𝑥𝑥 =

𝜕
𝜕2𝑥

𝝎 (𝑥,𝑦) and 𝝎𝑦𝑦 = 𝜕
𝜕2𝑦

𝝎 (𝑥,𝑦) are computed as follow

[𝝎𝑥𝑥]𝑖, 𝑗 =
[𝝎𝑥]𝑖+ 1

2 , 𝑗
-[𝝎𝑥]𝑖− 1

2 , 𝑗

𝛥𝑥
=

[𝝎]𝑖+1, 𝑗 -[𝝎]𝑖, 𝑗
𝛥𝑥

- [𝝎]𝑖, 𝑗 -[𝝎]𝑖−1, 𝑗
𝛥𝑥

𝛥𝑥
=

[𝝎]𝑖+1, 𝑗 + [𝝎]𝑖−1, 𝑗 -2[𝝎]𝑖, 𝑗
𝛥2
𝑥

[𝝎𝑦𝑦]𝑖, 𝑗 =
[𝝎𝑦]𝑖, 𝑗+ 1

2
-[𝝎𝑦]𝑖, 𝑗− 1

2

𝛥𝑦
=

[𝝎]𝑖, 𝑗+1-[𝝎]𝑖, 𝑗
𝛥𝑦

- [𝝎]𝑖, 𝑗 -[𝝎]𝑖, 𝑗−1
𝛥𝑦

𝛥𝑦
=

[𝝎]𝑖+1, 𝑗 + [𝝎]𝑖−1, 𝑗 -2[𝝎]𝑖, 𝑗
𝛥2
𝑦

(2.65)

38 2. Variational 4D Light Field Disparity Estimation

Here a half-step central differential for computing the second order derivative of 𝝎 is
applied. This allows us to form the following

0 =[J11]𝑖, 𝑗 [𝝎]𝑖, 𝑗 + [J12]𝑖, 𝑗 −
𝛼

𝛥2
𝑥

(
[𝝎]𝑖+1, 𝑗 − [𝝎]𝑖, 𝑗

)
− 𝛼

𝛥2
𝑥

(
[𝝎]𝑖−1, 𝑗 − [𝝎]𝑖, 𝑗

)
− 𝛼

𝛥2
𝑦

(
[𝝎]𝑖, 𝑗+1 − [𝝎]𝑖, 𝑗

)
− 𝛼

𝛥2
𝑦

(
[𝝎]𝑖, 𝑗−1 − [𝝎]𝑖, 𝑗

) (2.66)

Mapping it to Eq. 2.56 gives us the matrices 𝑋 , 𝑀∗,𝑃∗, and 𝑄∗

𝑋 =[𝝎], 𝑀1 = [J11], 𝑀2 = [J12],

𝑃1 = − 𝛼

𝛥2
𝑥

[𝐼], 𝑃2 = − 𝛼

𝛥2
𝑥

[𝐼], 𝑄1 = − 𝛼

𝛥2
𝑦

[𝐼], 𝑄2 = − 𝛼

𝛥2
𝑦

[𝐼], (2.67)

where [𝐼] ∈ ℝ𝐻×𝑊 denotes a matrix filling with one, i.e., [𝐼]𝑖, 𝑗 = 1, 𝑖 ∈ [1,𝑊], 𝑗 ∈
[1, 𝐻].

2.4.4 Solution to Sub-quadratic Data Term and Smoothness term

Let us rewrite Eq. 2.40 considering the inter loop at the iteration 𝑙+1𝑡ℎ

0 = 𝛹
′(𝑙)
𝑔 ·

(̂
J𝑔,11𝜹𝝎 (𝑙+1) + Ĵ𝑔,12

)
+ 𝛾𝛹′(𝑙)

𝐺
·
(̂
J𝐺,11𝜹𝝎 (𝑙+1) + Ĵ𝐺,12

)
− 𝛼div

(
𝛹
′(𝑙)
𝑠 · (∇𝝎 + ∇𝜹𝝎 (𝑙+1))

)
,

(2.68)

which has the following discretized form

0 =
(
[𝛹′
𝑔]

(𝑙)
𝑖, 𝑗
[̂J𝑔,11]𝑖, 𝑗 + 𝛾 [𝛹′

𝐺]
(𝑙)
𝑖, 𝑗
[̂J𝐺,11]𝑖, 𝑗

)
[𝜹𝝎] (𝑙+1)

𝑖, 𝑗

+
(
[𝛹′
𝑔]

(𝑙)
𝑖, 𝑗
[̂J𝑔,12]𝑖, 𝑗 + 𝛾 [𝛹′

𝐺]
(𝑙)
𝑖, 𝑗
[̂J𝐺,12]𝑖, 𝑗

)
− 𝛼 [div

(
𝛹
′(𝑙)
𝑠 ∇𝝎

)
]𝑖, 𝑗 − 𝛼 [div

(
𝛹
′(𝑙)
𝑠 ∇𝜹𝝎 (𝑙+1))]𝑖, 𝑗 ,

(2.69)

It follows that

𝑋 = [𝜹𝝎] (𝑙+1)

𝑀1 = [𝛹′
𝑔] (𝑙) � [̂J𝑔,11] + 𝛾 [𝛹′

𝐺] (𝑙) � [̂J𝐺,11]
𝑀2 = [𝛹′

𝑔] (𝑙) � [̂J𝑔,12] + 𝛾 [𝛹′
𝐺] (𝑙) � [̂J𝐺,12] + 𝛼 [div

(
𝛹
′(𝑙)
𝑠 ∇𝝎

)
] .

(2.70)

2.5. Experimental Results 39

Applying a similar strategy as in previous section, the divergent term is computed as
follows

[div
(
𝛹
′(𝑙)
𝑠 ∇𝝎

)
]𝑖, 𝑗 =

∑︁
[∈{𝑥,𝑦}

∑︁
(𝑢,𝑣)∈N[

[𝛹′
𝑠]

(𝑙)
𝑖+𝑢,𝑗+𝑣 + [𝛹′

𝑠]
(𝑙)
𝑖, 𝑗

2
[𝝎]𝑖+𝑢,𝑗+𝑣 − [𝝎]𝑖, 𝑗

𝛥2
[

, (2.71)

where N[, [∈ {𝑥,𝑦} signifies the direct neighbor set, N𝑥 = {(1, 0), (−1, 0)} and N𝑦 =

{(0, 1), (0,−1)} follows the notation in [77]. In the same manner, the divergent term of
incremental amount 𝜹𝝎 is computed as

[div
(
�̂�
′(𝑙)
𝑠 ∇𝜹𝝎 (𝑙+1))]𝑖, 𝑗 = ∑︁

[∈{𝑥,𝑦}

∑︁
(𝑢,𝑣)∈𝑁[

[�̂�′
𝑠]

(𝑙)
𝑖+𝑢,𝑗+𝑣 + [�̂�′

𝑠]
(𝑙)
𝑖, 𝑗

2

[𝜹𝝎] (𝑙+1)
𝑖+𝑢,𝑗+𝑣 − [𝜹𝝎] (𝑙+1)

𝑖, 𝑗

𝛥2
[

.

(2.72)

The matrices 𝑃∗ and 𝑄∗ can be derived as

𝑃1 =
[�̂�′
𝑠]

(𝑙)
𝑖+1, 𝑗 + [�̂�′

𝑠]
(𝑙)
𝑖, 𝑗

2𝛥2
𝑥

, 𝑃2 =
[�̂�′
𝑠]

(𝑙)
𝑖−1, 𝑗 + [�̂�′

𝑠]
(𝑙)
𝑖, 𝑗

2𝛥2
𝑥

𝑄1 =
[�̂�′
𝑠]

(𝑙)
𝑖, 𝑗+1 + [�̂�′

𝑠]
(𝑙)
𝑖, 𝑗

2𝛥2
𝑦

, 𝑄2 =
[�̂�′
𝑠]

(𝑙)
𝑖, 𝑗−1 + [�̂�′

𝑠]
(𝑙)
𝑖, 𝑗

2𝛥2
𝑦

(2.73)

2.5 Experimental Results

The performance of the proposed variational framework was evaluated using both synthetic
and real-world datasets. The synthetic 4D Light field dataset [14] was used for quantitative
comparisons with related work. All the real-world dataset was captured using lenslet-based
light field camera Lytro. We used both light field data provided by EPFL [18] and data
captured by our Lytro Ilium camera.

We implemented robustification model,i.e., Eq. 2.23, in MATLAB. The computation ran on
Intel i5 2.4Ghz CPU with 8GB Ram and required 4 minutes for Lytro dataset and 9 minutes
for the Synthetic dataset. The parameters 𝛼, 𝛽∗, 𝛾∗ are adjusted for each light field data.
The other parameters were selected as 𝑙 = 11, [= 0.8, 𝜎 = 0.5, 𝜖 = 0.0012. We notice that
the most time consuming tasks are warping (�̂̂�𝐿𝑖 = 𝐿𝐿𝐿𝑖 (z + 𝜽𝑖𝝎)) and computing light field
motion tensor (̂J𝑔, Ĵ𝑔). These tasks could be dramatically speeded up on high-parallelism
platforms such as GPU or FPGA.

40 2. Variational 4D Light Field Disparity Estimation

BUDDHA BUDDHA2 MONA PAPILLON STILLLIFE HORSES MEDIEVAL0

5

10

15

20

25

30

7.
28

26
.5
5

15
.0
8

7.
13

4.
51

16
.4
4

21
.7
6

8.
37

15
.0
5

12
.9

8.
79

6.
33

16
.8
3

11
.0
9

5.
03

11
.5
2

12
.7
5

8

4.
2

11
.7
8

8.
73

7.
74

22
.1
4

16
.0
7

12
.2
1

7.
07

14
.5
9

22
.1
8

4.
69

9.
88

8.
91

6.
06

2.
27

6.
22 6.
38

5.
23

13
.1
2

10
.5
6

6.
2

3.
6

10
.2

5.
35

4.
54

10
.5
6

8.
31

5.
85

3.
36

8.
08

5.
23

4.
21

8.
9

7.
64

5.
4

3.
12

7.
21

5.
1

4.
19

8.
5

7.
53

5.
15

3.
08

7.
05

4.
76

%
of
pi
xe
ls
wi
th
re
lat
ive
er
ro
r>
0.
2%

Wanner et al. [88] Heber et al. [20] Heber et al. [89]
Wang et al. [30] Jeon et al. [28] RGB

HSV GFILTER WMF

Figure 2.3: Relative error comparison on synthetic dataset [14]

The relative error is adopted as a common metric for comparison. For each synthetic
light field data, we computed the percentage of pixels with a relative depth error of
more than 0.2%. As mentioned by Heber [20], this is the smallest meaningful accuracy
level since the depth discretization of the provided ground truth is too low. We reported
the result for both RGB and HSV color space and the post-processing result of the best
solution.

Figure 2.3 shows the relative error results of the previous works and ours. It could be
seen from the bar chart that our proposed framework outperforms previous continuous
modelling approaches [20,88,89] in term of accuracy. Compared with the RGB color space,
the computation on the HSV color space provides more precision due to the separate robus-
tification of the data term. The guided median filtering (GFILTER) and weighted median
filtering (WMF) further improve the accuracy by sharpening the disparity discontinues.
Compared to GFILTER which employs only texture information from the reference SAI
to sharpen the disparity map, WMF is more robust due to the incorporation of occlusion
weights leading to a slightly improvement in the accuracy. We notice that the approach of
Wang et al. [30] is very sensitive to estimated occlusion results, and tends to have a wrong
disparity estimation at strong texture areas. Their approach therefore is less accurate when
compared to the others.

Compared with the work of Jeon et al. [28], our approach provides better results for the
five out of seven synthetic light field data, while scores less for the two challenging scenes
’STILLLIFE’ and ’HORSES’. We noticed that these scenes contains a large amount of depth
discontinues in which our constancy assumptions does not hold true. This may suggest

2.5. Experimental Results 41

Center view Lytro software Wang et al. [30] Jeon et al. [28] Proposed approach

Figure 2.4: Comparison on real-world dataset

a future work on data terms which explicitly model occlusion for 4DLF image. However,
there are some advantages of our approach that worth mentioning. First, our approach
does not require previous knowledge of disparity range as well as spatial disparity unit for
each disparity label due to the continuous formation. Without this knowledge, discrete
label-based approaches [30],[28] need to increase the number of labels and reduce the
spatial unit in order to sufficiently cover the disparity range. It consequently increases the
computation time. In addition, a number of well-turned parameters for each data and each
processing steps are critical in their approach [28] in order to guarantee a smooth disparity
field without outliers. Our approach, in contrary, relies mainly on weighting of data and
smoothness term.

As qualitative comparison, the results on real-world dataset obtained by using Lytro camera
is presented. The images are captured using Ilium versionwhich provides a spatial resolution
of around 434 × 625 and a directional resolution of about 15 × 15. Due to the vignetting
impact of microlens, the effective directional resolution is limited to only 193 views (85.7%).
Figure 2.5 presents the results of our proposed approach for different scenes. Along with
the central sub-aperture image, there is also a rendered 3D view as well as a color-coded
disparity map. Figure 2.4 shows the disparity map for two different scenes computed by
the Lytro software, the methods of Wang et al.[30], Jeon et al. [28] and ours. The results
for [30],[28] are computed using their provided codes. The figure shows that our proposed
approach provides solutions with more details and fewer artifacts.

42 2. Variational 4D Light Field Disparity Estimation

Figure 2.5: Real-world result. top scene from our laboratory captured light field. bottom
scene from EPFL dataset [18]

2.6 Summary

In this chapter, we presented a variational computation approach for the 4DLF disparity
estimation problem. Coarse-to-fine warping scheme was employed to alleviate the invalidity
of linearization at large displacement area. Weighted median filtering was employed
as a post-processing technique to further enhance the accuracy at occluded area. The
numerical computation derived for iterative solving of the disparity maps provides a detailed
information for further development of the acceleration approach. The experimental results
demonstrate our capability of computing accurate disparity solution on both challenging
synthetic and real-world light field dataset.

Ch
ap
te
r 3

GPU-Accelerated 4D Light Field
Disparity Estimation

As discussed in the previous chapter, solving the minimization problem to estimate the
disparity maps of 4DLF images involves a nested iteration over multi-scale 4D data, which
indeed demands a high computational effort. To alleviate the high computational require-
ment, this chapter presents a GPU-accelerated approach in which the time-consuming
computing tasks are offloaded to GPU. This results in a significant speed-up of disparity
estimation. The chapter starts with an overview to the OpenCL computing framework
and its application to 4DLF disparity estimation. The architecture of the proposed ac-
celerator with regard to the numerical computation presented in Chapter 2 is discussed
in the next section. In Sec. 3.3.1, an extensive evaluation and detailed analysis of the
GPU realization are reported. Parts of the results of this chapter have been published
in [21].

3.1 OpenCL-based 4DLF Disparity Estimation

The acceleration is achieved by the mean of parallel computation using GPUs and the
OpenCL framework. For a better understanding of our proposed architecture choices, termi-
nologies and basic properties of the OpenCL framework are first overviewed.

In OpenCL, a computing system is considered a collection of many compute devices such as
CPUs, GPUs, DSPs, FPGAs, and other accelerators. Each compute device typically consists
of a number of compute units, which in turn comprises multiple compute elements. A

43

44 3. GPU-Accelerated 4D Light Field Disparity Estimation

programming workload in OpenCL is divided into work-groups and work-items which are
executed on compute units and compute elements respectively. The maximum number of
work items constituting a workgroup is device-dependent. Each work-group is executed
independently with respect to the other work-groups, while work-items within a work-
group are more or less dependent due to the fact that they are executed in a thread-based
manner and on the same compute unit. Each work-item executes a set of C-like instructions
organized as a function, also known as a kernel.

OpenCL bases on the Host-Device model in which the computing program is loaded and
started on a host and then some or most of the programming workload might be off-loaded
to devices. On each device, the memory model distinguishes different memory regions:
global, local, constant, and private memory. Global memory is read-write accessible by all
work-items across work-groups. Local memory is specified to a work-group and is only
accessible to work-items located in the same work-group. Constant memory is read-only
and has the same access-range as global memory. Private memory is specified to a work-
item and therefore not visible to other work-items. Global memory and local memory are
generally mapped to off-chip memory on compute device and on-chip memory on compute
unit respectively. Therefore, global memory is generally more plentiful and requires longer
access latency compared to local memory. All constant are first stored on global memory
and then cached in constant cache. It would cost the same latency as accessing global
memory for the first time. Variables defined in private memory will be mapped to registers
located at compute units. If there are not enough registers, it will be mapped to global
memory.

In general, there are three main problems which need to be addressed to increase the
overall performance: optimizing the number of memory transfers, reducing overall memory
access time, and parallelizing accelerated algorithm. Memory transfer is one of the main
limitations of the Host-Device model in which a large amount of data is transferred between
the host’s main memory and devices’ global memory. This operation is typically carried
out over the PCI Express bus which is with high latency and is also the bottle-neck of the
whole program workload. In the proposed accelerator, the number of memory transfers
is minimized to two which occur at the beginning and the end of the computation. The
first transfer is for sending 4D LF data and algorithm’s parameters to GPUs’ global memory
and the last transfer is for copying back the estimated disparity map from GPUs’ global
memory to the host’s memory. Important factors that affect the overall memory access
time are the type of memory, memory access pattern, and data caching. Different memory
types have different access latencies. Global memory requires the longest access time, then
comes cached constant memory, local memory, and private memory (registers). A good
practice applied in this work is maximizing the usage of memory in a higher hierarchy.

3.2. GPU-Accelerated Architecture 45

Memory access patterns and data caching are also considered and will be discussed further
in Section 3.2.2. In the following sections, the parallelization of the disparity estimation
algorithm will be discussed in detail. The algorithm is first decomposed into a set of
processing functions. These functions are then analyzed to identify their capability of
parallel computation. Based on this, the global work size of each GPU kernel is then decided.
In the end, all the functions are transformed into OpenCL kernel code and executed for
GPU devices.

3.2 GPU-Accelerated Architecture

Figure 3.1 presents the overall computation flow of the proposed approach. As discussed
in the previous chapter, warping and coarse-to-fine strategy are employed to handle large
disparities in our algorithm. Instead of directly estimating a disparity map 𝝎 of a 4D light
field 𝐿𝐿𝐿(z, 𝜽), the input light field is spatially down-sampled to get a coarser 4D light field{
𝐿𝐿𝐿(z,𝝎)

}
𝑡
for which an associated disparity map {𝝎}𝑡 is then estimated. At each level

𝑡 (𝑡 = 0, 1, ..,𝑇), the spatial resolution of
{
𝐿𝐿𝐿(z,𝝎)

}
𝑡
is ZZ 𝑡 times smaller than of the input

light field. For example, if 𝑛𝑦, 𝑛𝑥 are the height and the width of one sub-aperture image
in the input 4D light field, the height and the width of downsampled light field at level
𝑡 will be

⌊
𝑛𝑦ZZ

𝑡
⌋
and

⌊
𝑛𝑥ZZ

𝑡
⌋
respectively. Initially, the disparity map {𝝎}𝑇 is set to zero

and fed to coarse-to-fine computation block (𝑊𝑡). At the end of each coarse-to-fine level
𝑡, 𝑡 ≠ 0, we apply median filter (’M filter’) on the estimated disparity map {˜𝝎𝑡 }𝑡 to remove
noise and upscale it by a factor of ZZ −1. This upscaled disparity map is then inputted to
the next warping level (𝑊𝑡−1) as demonstrated in Figure 3.1. The weighted median filter

WT

WT−1

W0

LLL(z,θ)

{ω}T = 0

{ω̃}0

{ω̃}T−1

{ω̃}T

M Filter Upscale

M Filter Upscale

FFF

{ω}T−1

{ω}T−2

{ω}0

Figure 3.1: Warping architecture

46 3. GPU-Accelerated 4D Light Field Disparity Estimation

Jt,1

Jt,2

Jt,K

{ω}t

LLL(z,θ) +++
Jg
t

+++
JG
t

Ψ
′
tΨ
′
tΨ
′
t Solver +++

{ω̃}t

0
[
{∆ω}t

]n−1

Figure 3.2: Block diagram representation of a single warping level𝑾𝑙

LLL(z,θ0)

{
L̂̂L(z,θk)

}
t

{
L̂̂Lx(z,θk)

}
t

{
L̂̂Ly(z,θk)

}
t

G Filter

Downscale Warp Tensor

Tensor

Tensor

Gradient
+++

G Filter

Downscale Gradient

LLL(z,θk)

{
LLL(z,θk)

}
t{ω}t

{
L̂̂L(z,θk)

}
t

{
L̂̂Lx(z,θk)

}
t

{
L̂̂Ly(z,θk)

}
t

JG
t,k

Jg
t,k

Figure 3.3: Block diagram representation of a tensor calucation module J𝑙,𝑘

(𝔉) is applied to the output of the last level, the finest level, to improve the quality of the
estimated disparity map.

Figure 3.2 is the block diagram representation of a single coarse-to-fine level (𝑊𝑡) which
includes the motion tensor calculation unit J𝑡,𝑘 (𝑘 = 1, .., 𝐾), robust-weight updating unit
(𝛹 ′
𝑡), and a Jacobian-based iterative solver. The number 𝐾 denotes the total number of
sub-aperture images in the input light field used for calculating the disparity map. Let
𝑛𝜌 and 𝑛𝜏 are the number of horizontal and vertical viewpoints of the input light field,
the maximum value of 𝐾 is then 𝑛𝜌𝑛𝜏 . J𝑡,𝑘 block calculates the motion tensor of each sub-
aperture image (𝐿𝐿𝐿(z, 𝜽𝑘)) at a particular coarse-to-fine level 𝑡 . The outputs of this block are
gradient motion tensor

(
J𝐺
𝑡,𝑘

)
and intensity motion tensor

(
J𝑔
𝑡,𝑘

)
which are then summed

over all sub-aperture images to form the overall motion tensors J𝐺𝑡 and J𝑔𝑡 respectively.
These motion tensors are then used by𝛹 ′

𝑡 block to calculate the joint motion tensor and
robust weights which are required for the iterative solver.

The detailed computation flow of a J𝑡,𝑘 block is presented in Figure 3.3. The input
sub-aperture image (𝐿𝐿𝐿(z, 𝜽𝑘)) is downsampled to get a lower resolution (coarser) im-

3.2. GPU-Accelerated Architecture 47

Weight

Masking
W Filter

LLL(z,θ0)
LLL(z,θ1)
{ω̃}0 {ω}0

Figure 3.4: Block diagram representation of Weighted-Median-Filtering (𝔉)

age
{
𝐿𝐿𝐿(z, 𝜽𝑘)

}
𝑡
. A low-pass filter (’G Filter’) is applied before downsampling to reduce

aliasing. The coarse image
{
𝐿𝐿𝐿(z, 𝜽𝑘)

}
𝑡
is then shifted toward the coordinate of the ref-

erence position 𝜽0 by previously estimated disparity map 𝝎𝑡 to get a warped image{
�̂̂�𝐿(z, 𝜽𝑘)

}
𝑡
.

For gradient motion tensors, the horizontal and vertical derivatives of warped images need
to be calculated. This is done by Gradient block as showed in the Figure 3.3. The Tensor block
calculates the vertical derivative tensor, horizontal derivative tensor and intensity tensor
denoted as J𝐺𝑥

𝑡,𝑘
, J𝐺𝑦

𝑡,𝑘
and J𝑔

𝑡,𝑘
respectively. The gradient motion tensor is then calculated as

the average of the two derivative tensors as in Eq. 3.1.

J𝐺
𝑡,𝑘

=
J𝐺𝑥

𝑡,𝑘
+ J𝐺𝑦

𝑡,𝑘

2
(3.1)

The functionality of Tensor unit is the same for all of its three instances. Given a warped
sub-aperture image �̃�𝐿𝐿(z, 𝜽𝑘), its motion tensor is calculated as follows

J𝑘 =
[
𝜽ᵀ
𝑘
∇�̃�𝐿𝐿

‖𝜽𝑘 ‖ �̃�𝐿𝐿𝜽

] [
𝜽ᵀ
𝑘
∇2�̃�𝐿𝐿 ‖𝜽𝑘 ‖ �̃�𝐿𝐿𝜽

]
. (3.2)

With ∇ denotes the spatial gradient operator and �̃�𝐿𝐿𝜽 denotes the directional derivative.
These two terms are calculated as follows

∇�̃�𝐿𝐿(z, 𝜽𝑘) =

𝜕
𝜕𝑥
�̃�𝐿𝐿(z,𝜽𝑘)+ 𝜕

𝜕𝑥
𝐿𝐿𝐿(z,𝜽0)

2
𝜕
𝜕𝑦
�̃�𝐿𝐿(z,𝜽𝑘)+ 𝜕

𝜕𝑦
𝐿𝐿𝐿(z,𝜽0)

2

 ,
𝐿𝐿𝐿𝜽 (z, 𝜽𝑘) =

�̃�𝐿𝐿(z, 𝜽𝑘) − 𝐿𝐿𝐿(z, 𝜽0)
‖𝜽𝑘 ‖

.

(3.3)

From Eq. 3.3, it is obvious that the reference sub-aperture image
{
𝐿𝐿𝐿(z, 𝜽0)

}
𝑡
and its

derivative images is required for the calculation of motion tensors at each J𝑡,𝑘 block. Instead

48 3. GPU-Accelerated 4D Light Field Disparity Estimation

Table 3.1: Global work-group size of implemented kernels
Kernel Horizontal size Vertical size

1 Downscale (
𝑛𝜌𝑛𝑥ZZ

𝑡
)
^𝑥

(
𝑛𝜏𝑛𝑦ZZ

𝑡
)
^𝑦

2 G Filter
3 Gradient
4 Warp
5 Tensor
6 M Filter (

𝑛𝑥ZZ
𝑡
)
^𝑥

(
𝑛𝑦ZZ

𝑡
)
^𝑦

7 Solver
8 Sum

(+++)
9 Robust weight

(
𝛹

′
𝑡

)
10 Upscale

(
𝑛𝑥ZZ

𝑡−1)
^𝑥

(
𝑛𝑦ZZ

𝑡−1)
^𝑦

11 Weight
(𝑛𝑥)^𝑥

(
𝑛𝑦

)
^𝑦12 Masking

13 W Filter

of recalculating this data every time, it is separately calculated and reused for all of J𝑡,𝑘
blocks. This calculation is depicted in gray color in Figure 3.3.

The weighted median filtering computation consists of three units as depicted in Figure 3.4.
The Weight unit computes the filter weights as described in Eq. 2.44. Beside the reference
sub-aperture image 𝐿𝐿𝐿(z, 𝜽0), a neighbor sub-aperture image 𝐿𝐿𝐿(z, 𝜽1), 𝜽1 = [1 1]ᵀ and
disparity map {˜𝝎}0 are also needed to calculate occlusion weights in Eq. 2.45. TheMasking
unit produces a binary mask indicating the region of interest where weighted median
filtering (‘W Filter’ unit) should be applied. The generation of this mask includes two steps:
detecting the edge in the disparity map using Sobel filter and dilating the edge region by a
radius of 𝑟𝑑 .

3.2.1 Local and Global Work-group Size

For each kernel execution, a global (work-group) size and a local (work-group) size need to
be decided. The global size specifies the number of work-groups which need to be scheduled
and the local size specifies the number of work-items associated with one work-group.
They are typically defined in the form of a 2-tuple parameter consisting of horizontal and
vertical size. The global size needs to be a multiple of the local size. In this work, we

3.2. GPU-Accelerated Architecture 49

apply a common practice that divides the computation work-load by the number of pixel
locations in the output. In other words, each work-item will be in charge of calculating
the output value for one particular pixel location. Let ^ = (^𝑥 , ^𝑦) is a local work-group
size, where ^𝑥 and ^𝑦 denote the number of work-items in 𝑥 and 𝑦 direction respectively.
Therefore, each work-group contains ^𝑥^𝑦 work-items and computes output value for a
patch of size ^𝑥 × ^𝑦. A global size can be simply derived from the local size and the
resolution of the output image. Suppose 𝑛𝑥 and 𝑛𝑦 are respectively the width and the
height of the 2D output, global size will be set to

(
(𝑛𝑥)^𝑥 ,

(
𝑛𝑦

)
^𝑦

)
, where operator (•)^ is

defined as
(𝑛)^ = ^

⌈𝑛
^

⌉
, ^ ∈ ℕ, 𝑛 ∈ ℝ. (3.4)

Table 3.1 reports the global work-group size of kernels that are implemented in our proposed
architecture. The first ten kernels are executed at each coarse-to-fine level in which the
resolution of images is changed. Therefore, their sizes are adapted by the scaling factor of
ZZ and level index 𝑡 . The last 3 kernels are for the weighted median filter which is executed
only one time at the finest level. 𝑛𝑥 , 𝑛𝑦, 𝑛𝜌, 𝑛𝜏 are the resolution of the input 4D light field.
𝑛𝑥 , 𝑛𝑦 are the width and the height of a sub-aperture image. 𝑛𝜌, 𝑛𝜏 are the number of
horizontal and vertical viewpoints respectively. For the first five kernels which are executed
on 4D data, the global work-group size is defined to cover a tiling version of all sub-aperture
images. The horizontal size and vertical size are then the multiplication of the height and
the width of resampled sub-aperture images (𝑛𝑦ZZ 𝑡 , 𝑛𝑥ZZ 𝑡) with the directional resolution
(𝑛𝜏 , 𝑛𝜌).

3.2.2 Global Memory Layout

In OpenCL, there are two main approaches to organize data on global memory. The most
straightforward approach is using Buffer object in which multi-dimensional data is flattened
into a 1D array of bytes. A Buffer object can be addressed using a pointer and is allowed
to read and write during kernel execution. Another approach is using Image2D object
which offers many advantages over a Buffer object, i.e. texture cache, vector access, auto
handling bordering, and pixel interpolation. Texture cache is optimized for 2D spatial
locality, so reading image addresses that are close to each other will achieve the best
performance [90]. A pixel location must be accessed by a function that will return a
vector of color channels (RGBA). The only drawback of Image2D is its memory protection
procedure which allows the object to be either write-only or read-only and cannot be both
read and write during kernel execution. This limitation indeed has no impact in our case,

50 3. GPU-Accelerated 4D Light Field Disparity Estimation

since the computational flow is arranged for eliminating any read-write requirement on
the same memory object.

The access pattern in LF image processing is generally not sequential or structured as
normally applied in conventional 2D image processing applications. Depending on the way
4D pixel data is stored on the global memory, it may generate short-burst memory accesses
when pixels from a sub-aperture image or an angular patch are read or written [43]. In
order to study the impact of memory access on the performance of our accelerator, we
investigate two memory layouts for mapping 4D LF image data to an Image2D object:
angular major (AM) and spatial major (SM). In SM layout, sub-aperture images are tiled
to form a 2D array, while angular patches are tilted in AM layout. Suppose z𝑠, z𝑎 ∈ ℕ2 are
indices of pixels in SM and AM layout respectively. The relationship between these indices
and the coordinates of 4D LF image is expressed in (3.5).

z𝑠 =
[
𝑛𝑥 0
0 𝑛𝑦

]
𝜽 + z, z𝑎 =

[
𝑛𝜌 0
0 𝑛𝜏

]
z + 𝜽 (3.5)

3.3 Evaluation results

3.3.1 Experimental Setup

We carry out our experiments on both CPU and GPU platforms. A CPU platform equipped
with Intel Core i7-5820K (with 6×32 KB L1 cache, 6×256 KB L2 cache, and 15 MB of L3
cache) serves as a baseline implementation. The accelerated architecture is implemented
with the OpenCL 1.2 framework and executed on four GPU devices: two Nvidia GPUs
(GeForce GTX 1080 Ti, Geforce GTX 680) and two AMD GPUs (Radeon R9 390 and
FirePro W9100). Except that Geforce GTX 680 is connected to the PCIe v1 x16 bus, the
others are connected to the PCIe v3 x16 bus. Throughout our experiments, GeForce GT
1080 Ti is employed as a default executed device unless otherwise stated. We select
this device since it provides the best performance and also is comparable to the related
approaches.

Our experiment consists of two parts. In the first part, we quantitatively compare the
performance of the proposed approach with state-of-the-art approaches. Both estimation
error of the disparity map and processing time are considered. In the second part, a detailed
analysis of our accelerated architecture is performed. The runtime on different platforms
and the contribution of different parts of the algorithm to the output quality and runtime

3.3. Evaluation results 51

Figure 3.5: Visualization of disparity map quality computed by the fastest seven approaches.
Top row and bottom row show the results of cotton scene and pyramids scene
respectively. Left column shows central sub-aperture images and right columns
visualize the two error metrics MSE100 and BadPix007.

are reported. Regarding algorithm parameters, we empirically fixed the number of warping
levels, scaling factor, local work-group size, and number of solver iteration to 10, 0.85,
16×16, and 100 respectively. Other parameters are data-dependent and are tuned for
minimizing disparity error.

3.3.2 Quantitative Comparison

For quantitative evaluation, we employed the 4D light field dataset from Honauer et al. [91].
The dataset contains 25 synthetic LF scenes which are categorized into 4 subsets: Stratified,
Training, Test and Additional. The first two subsets are selected in this experiment since
they include ground-truth disparity maps and results from state-of-the-art algorithms [36].
Stratified subset is designed to pose isolated challenges with spatially increasing difficulty,
i.e. fine gaps, low textures, noisy regions, and Training subset is for simulating photo-
realistic scenes. Each LF scene has a resolution of 9×9×512×512 in which 9×9 denotes the
directional resolution (81 viewpoints in total) and 512×512 denotes the spatial resolution
(or the resolution of each sub-aperture image). The output disparity maps are processed

52 3. GPU-Accelerated 4D Light Field Disparity Estimation

Table 3.2: Timing and accuracy comparison on Light field Benchmark [36]
Approaches

training stratified Avg.dino cotton sideboard boxes pyramids stripes dots backgammon
error time error time error time error time error time error time error time error time error time

GVLD 0.407 -0.84 0.395 -1.01 1.241 -0.77 7.159 -1.03 0.005 -0.75 0.880 -0.66 2.096 -1.10 6.329 -0.90 2.314 -0.86
fsl[93] 1.002 0.23 4.039 0.17 3.061 0.40 9.691 0.32 0.019 0.09 3.796 -0.06 9.901 0.13 4.086 0.05 4.449 0.19
vommanet[39] 0.168 0.28 0.184 0.28 0.608 0.28 1.924 0.27 0.024 0.27 0.914 0.27 1.154 0.27 3.304 0.28 1.035 0.28
epinet[25] 0.167 0.29 0.191 0.29 0.827 0.29 6.240 0.30 0.008 0.29 0.950 0.29 1.635 0.29 3.629 0.30 1.706 0.29
bsl_i[33] 1.088 0.57 3.395 0.61 8.907 1.06 11.304 0.89 0.024 0.27 5.427 0.41 14.014 0.04 5.386 0.25 6.193 0.63
epi2[88] 2.076 0.94 4.318 0.96 4.651 0.94 10.928 0.95 0.022 0.84 6.104 0.93 6.657 0.88 20.748 0.84 6.938 0.91
rprf[94] 0.615 1.16 0.803 1.05 1.241 1.14 10.651 1.11 0.043 1.08 9.112 0.92 20.832 1.04 4.948 1.01 6.031 1.07
epi_shift[40] 0.392 1.27 0.475 1.28 1.261 1.28 9.790 1.28 0.037 1.54 1.686 1.44 13.154 1.44 12.788 1.44 4.948 1.38
rm3de[31] 0.360 1.65 0.341 1.66 1.071 1.65 7.625 1.75 0.058 1.66 1.001 1.54 3.293 1.54 9.212 1.67 2.870 1.65
lfvar[72] 0.482 1.70 0.468 1.58 1.343 1.69 7.179 1.72 0.007 2.13 0.920 1.53 2.121 1.39 6.728 1.43 2.406 1.71
soa_epn[37] 0.471 1.86 0.484 1.87 1.167 1.88 7.698 1.86 0.020 1.86 1.296 1.84 24.004 1.85 4.016 1.86 4.895 1.86
epi1[95] 1.226 1.93 2.247 1.93 2.852 1.93 8.717 1.93 0.027 1.96 2.670 1.96 5.730 1.91 9.559 1.93 4.128 1.94
ofsy[35] 0.782 2.30 2.653 2.27 2.478 2.34 9.561 2.47 0.008 2.29 7.269 2.09 14.756 1.99 7.549 2.41 5.632 2.29
fbs3[34] 0.662 2.83 0.764 2.78 1.158 2.82 8.904 2.88 0.029 2.85 1.315 2.62 2.088 2.72 5.669 2.68 2.574 2.78
cae[23] 0.382 2.92 1.506 2.91 0.876 2.94 8.424 2.92 0.048 2.93 3.556 2.88 5.082 2.98 6.074 2.91 3.243 2.92
lf[28] 1.164 3.05 9.168 2.99 5.071 2.99 17.434 2.98 0.273 2.97 17.454 3.04 5.676 2.99 13.007 2.99 8.656 3.00
ps_rf[96] 0.751 3.11 1.161 3.09 1.945 3.01 9.043 3.08 0.043 2.97 1.382 3.04 8.338 2.99 6.892 2.99 3.694 3.04
sc_gc[32] 0.504 3.28 1.865 3.28 1.823 3.36 12.286 3.29 0.072 3.32 15.622 3.34 19.812 3.36 5.647 3.26 7.204 3.31
spo[97] 0.310 3.31 1.313 3.31 1.024 3.32 9.107 3.33 0.043 3.35 6.955 3.29 5.238 3.33 4.587 3.34 3.572 3.32
lf_occ[30] 1.137 4.00 1.068 3.80 2.304 4.13 9.850 4.02 0.098 4.07 8.131 4.29 3.301 4.03 21.587 3.71 5.934 4.04

(red: best, green: second best, blue: third best)

using the HCI evaluation toolkit [92] and compared to benchmark results [36] published
by the end of 2019 when the proposed approach was published.

Table 3.2 reports the accuracy (error) and computation time (time) of state-of-the-art
approaches on 8 LF scenes and their average. error (MSE100) is the mean square error of
the estimated disparity map multiplying by 100 and time is 𝑙𝑜𝑔10 of runtime in second 1.
The proposed approach (GVLD) achieves the fastest runtime on all LF scenes and shows the
third-best accuracy on average. In particular, we score the best accuracy on two stratified
LF scenes (pyramids and stripes) and the third-best accuracy on one training LF scene
(boxes). This high accuracy (i.e. pyramids scene) pays tribute to the intrinsic sub-pixel
precision of variational principle which models disparity map as a continuous function.
We notice that the main source of error in our estimated disparity map comes from the
occluded and reflected regions where the photo constancy assumption becomes less reliable.
Compared to our previous work lfvar [72], GVLD demonstrates better performance in
both accuracy and processing speed. For all test scenes, GVLD provides lower errors and
more than 350× faster runtime. The improvement in accuracy is due to the application
of WMF in which occlusion information is taken into account. The two approaches that
achieve the best accuracy are epinet [25] and vommanet [39] which are based on deep
learning techniques. This precision comes with the cost of a large amount of data and
time for training end-to-end convolutional networks. Our approach, in contrast, works

1We follow the standard metrics provided with the benchmark [91].

3.3. Evaluation results 53

0123456789
warp level

0.0

0.02

0.04

0.06

0.08

0.1

0.12

Ru
nt

im
e

(s
)

dino
boxes
sideboard
cotton
runtime

0

2

5

7

10

12

15

17

20
M

SE
10

0

Figure 3.6: Runtime and accuracy at different warping levels.

independently from training data and can be directly deployed for new LF data. In addition,
our approach outperforms these deep learning approaches in the term of processing time
considering the same execution platform (Geforce 1080 TI). The difference in runtime
is more than 10× on average. This is due to the high complexity of their convolutional
networks for mimicking the disparity estimation process. It is computationally expensive
and leads to long inference time even running on optimized deep learning frameworks
such as Tensor Flow.

Figure 3.5 visualizes the quality of disparity maps computed by the fastest seven ap-
proaches. Besides the MSE100 metric, we also report the BadPix007 metric which denotes
the percentage of pixels whose absolute error compared to the ground truth is larger
than 0.07. The proposed approach presents an extremely low pixel error ratio (0.11%)
compared to the other approaches on pyramids scene and score the third position in cotton
scene.

3.3.3 Performance Analysis

As discussed earlier, our approach employed the coarse-to-fine warping strategy to cope
with the large displacement issue. This strategy gradually refines disparity maps in each

54 3. GPU-Accelerated 4D Light Field Disparity Estimation

warping level and produces the final output with higher precision. This accuracy indeed
comes with more computation effort as shown in Figure 3.6. The plot demonstrates the
impact of this strategy on accuracy and runtime at different warping levels. The number of
warp levels is set to 10 with the scaling factor ZZ = 0.85. The spatial resolutions at level 0
(finest level) and level 9 (coarsest level) are 512×512 and 118×118 respectively. At the end
of each warping level, the estimated disparity map is upsampled to the original resolution
and compared to the ground-truth. We report the error (MSE100) and the average of
accumulated runtime (in second) of four LF scenes in training subset. In this test, we
execute our approach on GeForce 1080 TI using the same algorithm parameters as in the
previous section. It could be seen from Figure 3.6 that the results of the coarsest level show
large errors compared to the ground-truth due to the lack of fine structure information.
However, this error is gradually reduced after each warping level and reaches the minimum
at the finest resolution. While the accumulated runtime steadily increases over 10 warping
phases, the improvement in accuracy is sharp for the first 7 levels and slows down in the last
3 levels. The reason for this behavior is that the smaller the warping level is, the less newly
fine structure information is added to the previous level. The improvement in accuracy
is, therefore, smaller when compared to coarser levels. In addition, for the scene which
consists of large occluded area (i.e. boxes), the disparity error at these areas can affect the
overall error and leads to a fluctuation in the last three levels as can be seen in Figure 3.6.
This observation suggests a way to further achieve a faster processing speed with a small
loss of accuracy.

To understand the impacts of different parts of the proposed approach to the accuracy,
we experimented on a challenging light field scene (boxes), see Figure 3.7. In this ex-
periment, four configurations of the proposed algorithm are tested and compared to a
multi-label optimization approach (lf [28]). lf was selected for this evaluation, since it
shares many similarities to ours in approaching the disparity estimation problem. Two
constancy assumptions including photo constancy and gradient constancy are employed to
characterize disparity map and guided median filtering is applied to refine the output. The
main difference between lf and ours is that lf bases on multi-label optimization while our
approach bases on the variational principle. A multi-label optimization approach requires a
discretization of disparity value to create a set of labels that are then assigned to each pixel
in the disparity map. Since the disparity range is unknown, this type of approach generally
struggles with the loss of accuracy due to discretization and the trade-off between the
number of labels and the computation requirements. As could be seen in Figure 3.7 (c),
the effect of discretized disparity labels can be observed in lf ’s result. Our approach, on the
other hand, benefits from the intrinsic sub-pixel precision of variational formulation and
provides a smooth and accurate result. Even without post-processing, the MSE100 error of

3.3. Evaluation results 55

MSE100 17.434 17.358 8.158 7.179 7.159

(a) (b) (c) (d) (e) (f) (g)

Figure 3.7: Comparison of disparity maps estimated by different approaches and configura-
tions on light field scene “boxes”. The full-size sub-aperture image and disparity
maps are presented in the first row, while two zoom-in regions marked with red
and green rectangles are in the second and the third row respectively. (a) center
sub-aperture image; (b) ground-truth disparity map; (c) multi-label optimiza-
tion approach (lf [28]); (d) ours, without warping strategy and post-processing;
(e) ours, without post-processing; (f) ours, post-processing without occlusion
weights (lfvar [72]); (g) ours, post-processing with occlusion weights.

our approach is less than half of lf, Figure 3.7 (e). It is also noticed that the warping strategy
plays an important role in the proposed algorithm. Without warping, the linearization of
(2.5) becomes invalid and leads to wrong estimation of the disparity values, as in Figure 3.7
(d). The contribution of post-processing to the accuracy is also evident in Figure 3.7 (f)
and (g). Post-processing corrects the disparity value at disparity edge area and leads to
a reduction of 1 in MSE100 error metric. Compared to our previous work (lfvar [72]),
the use of WMF which includes occlusion weights provides a slight improvement in the
accuracy.

Each part of the proposed approach contributes differently to the overall processing time.
For a deeper analysis of this timing concern, the implemented program is divided into seven
main parts for which timing profiling is conducted with various programming configurations.
Besides the number warping level, scaling factor, and the number of iterations that are fixed,
the other parameters that affect the running time are color schemes (grayscale, RGB) and
angular resolution (3×3, 5×5, 7×7, 9×9). In addition to these parameters, we also analyze
the impacts of global memory layouts, discussed in Section 3.2.2. The timing profiling is

56 3. GPU-Accelerated 4D Light Field Disparity Estimation

3x3 5x5 7x7 9x9
Gray RGB Gray RGB Gray RGB Gray RGB

Angular Resolution

0.0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Ti
m

es
 (s

)

0.07

0.09

0.11

0.16

0.09

0.14

0.23

0.34init
remain
psi_solver
warp
tensor
resampling
filtering

(a) Buffer object
3x3 5x5 7x7 9x9

Gray RGB Gray RGB Gray RGB Gray RGB

Angular Resolution

0.0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Ti
m

es
 (s

)
0.05

0.06

0.09

0.11

0.06

0.09

0.13

0.18

init
remain
psi_solver
warp
tensor
resampling
filtering

(b) Image2D: AM layout
3x3 5x5 7x7 9x9

Gray RGB Gray RGB Gray RGB Gray RGB

Angular Resolution

0.0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Ti
m

es
 (s

)

0.05
0.06

0.08
0.09

0.06

0.08

0.11

0.14

init
remain
psi_solver
warp
tensor
resampling
filtering

(c) Image2D: SM layout
Figure 3.8: Timing profiling of main processes running at different configurations. init:

memory transfer and variable initialization. filtering: kernels 2,6. resampling:
kernels 1,10. warp: kernel 4. tensor: kernels 3,5,8. solver: kernels 7-9. remain:
function calls, argument processing.

done by executing the program 100 times for each setup and reporting the average runtime.
The experimental results are shown in Figure 3.8. Overall, Image2D object demonstrates
better performance compared to Buffer object. This pays tribute to the texture cache
running behind every access to pixel data. Using Image2D object, the SM layout provides a
higher performance compared to AM layout, especially for higher angular resolutions. The
most noticeable improvement is come from the tensor part of our accelerator. This behavior
is expectable because LF motion tensor heavily relies on the calculation of derivatives. The
amount of memory access for spatial derivative dominates the memory access for angular
derivative in the proposed approach. psi_solver computes the robust weights and iterative
solutions of the Jacobian solver. The input to this part, joint light field motion tensor, has
the same structure regardless of programming configuration. It leads to a constant running
time as can be seen in Figure 3.8. The runtime of init part is proportional to angular data
size since the most time-consuming task during the initialization is transferring LF data
from the host computer to GPU global memory.

In the proposed approach, WMF is applied to the output of the last warping level to
enhance its quality. This step indeed improves the accuracy of the estimated disparity map.
However, we notice that its contribution is only significant in the regions around the depth
discontinue where most of the erroneous pixels are located. Instead of running this filter
on the whole image, we generate a binary mask identifying pixels with a high potential of
error and use it as a guide to applying WMF. Figure 3.9 demonstrates use of WMF on the
disparity map of dino scene. The blurry regions around the depth edges, Figure 3.9 (f),
(g), are corrected by WMF and become sharper and more accurate, Figure 3.9 (h), (i).

3.3. Evaluation results 57

(a) (b) (c)

0.00
0.08
0.16
0.24
0.32
0.40
0.48
0.56
0.64
0.72

(d) (e) (f) (h)(g) (i)
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Figure 3.9: Improvement of accuracy when applying WMF on dino scene: (a) sub-aperture
image with two regions of interest (ROI); (b) estimated disparity map; (c)
binary map of selected region; (d) zoom-in ROIs; (e) ground-truth; (f), (h)
disparity map before and after WMF respectively; (g), (i) MSE of (f) and (g)
respectively;

Figure 3.10 reports the runtime of WMF with five different window sizes increasing from
3×3 to 11×11. There are two strategies are tested, applying to all the pixels (full) and
applying to selected pixels (selective) using the binary mask in Figure 3.9 (c). Compared to
the first strategy the second strategy requires less computation effort and runtime. We can
achieve the speed-up of 5× when using selective strategy in the case of large window size
(i.e. 11×11).

Figure 3.11 shows the average runtime of the proposed approach running on 4 GPU plat-
forms. We report the runtime of three memory layouts and compare them to a CPU imple-
mentation. CPU runtime is 47.3s which is 80-255× slower than our buffer object version and
128-365× slower than the version using Image2D object (SM Layout).

58 3. GPU-Accelerated 4D Light Field Disparity Estimation

3 x 3 5 x 5 7 x 7 9 x 9 11 x 11
Window size

0

25

50

75

100

125

150

175
Ti

m
es

 (m
s)

3.9 4.4 7.9
17.4

35.3

4.4 9.2

27.2

79.4

177.5selective
full
speed up

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Sp
ee

d
up

1.1

2.1

3.5

4.6

5.0

Figure 3.10: Runtime evaluation of weighted median filtering operator (kernels 11-13).
Selective and full strategy are applied to dino scene.

FirePro W9100 GTX 680 Radeon R9 390 GTX 1080 Ti
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ti
m

es
 (s

)

0.26

0.59

0.26

0.19

0.23

0.40

0.22

0.14

0.22

0.37

0.21

0.13

BUF
AM
SM
speed up

0

50

100

150

200

250

300

350

Sp
ee

d
up

180

80

181

255

206

120

216

346

216

128

225

365

Figure 3.11: Average execution time of the proposed approach on different platforms.

3.4. Summary 59

3.4 Summary

In this chapter, a GPU accelerated approach for light field disparity estimation is presented.
The numerical computation to iteratively compute the solution derived in the previous
chapter is effectively realized under OpenCL framework. In order to evaluate the per-
formance of the proposed approach considering both accuracy and timing aspects, an
extensive evaluation is conducted on synthetic 4D LF dataset. The quantitative comparison
shows our superior performance compared to the previous approaches. On average, the
proposed approach is 10+ times faster than published works running on a similar GPU
platform and provides the most accurate solution among optimization-based approaches.
Experiment on several GPU platforms (Nvidia and AMD GPUs) show a speed up more than
80× as compared to the CPU implementation.

Ch
ap
te
r 4

GPU-Accelerated 4D Light Field
Super-resolution

This chapter discusses a GPU accelerated approach for the reconstruction of spatially
high-resolution perspective image from low-resolution 4DLF degraded by mixed Gaussian-
Impulse noise. The LF super-resolution model derived from the statistical perspective
consists of a joint ℓ1-ℓ2 data fidelity term and a weighted regularization term. While the first
term provides a proper treatment to mixed Gaussian-Impulse noise conditions, the second
term introduces an effective way to integrate image features for a better regularization
effect. The proposed optimization problem can be effectively solved with the alternating
direction method of multipliers (ADMM). A GPU accelerated architecture is presented for
speeding up the iterative solver. Experiments on synthetic 4DLF dataset [91] and natural
image dataset DIV8K [98] are conducted to evaluate the performance of the proposed
approach and compared to related works. Parts of the results of this chapter have been
published in [48,99].

4.1 Degradation Model and Notation

Light field is a 4D parameterization of the plenoptic function [2], it is visually described as a
ray indexed by its intersectionwith two parallel planes, as depicted in Figure 4.1(a).

𝐿𝐿𝐿 : 𝛺×𝛱 → ℝ, (z, 𝜽) → 𝐿𝐿𝐿(z, 𝜽) (4.1)

61

62 4. GPU-Accelerated 4D Light Field Super-resolution

(a)

τ

ρ

x

y

(b)

Figure 4.1: Light field representation and acquisition; (a) Two-plane parameterisation; (b)
2D array representation of sub-aperture images (SAIs).

where z = [𝑥,𝑦]𝑇 and 𝜽 = [𝜌, 𝜏]𝑇 denote coordinate pairs in the spatial plane 𝛺 ⊂ ℝ2

and in the directional plane 𝛱 ⊂ ℝ2 respectively. In practice, the value of this function
can be a vector of 3 color components (i.e., RGB color light field) and the two planes
are discretized by the sampling rate of capturing devices (e.g., sensor size, number of
cameras,...). Given a 4D light field 𝐿𝐿𝐿, spatial information could be obtained from one
perspective by keeping the directional component 𝜽 unchanged and varying over spatial
domain 𝛺 . Such spatial information gives us a sub-aperture image (SAI), or a view, of the
captured scene. Fig. 4.1(b) shows a 5×5 angular views of LF scene ‘table’ [91]. From this
perspective, a 4D LF is a collection of 2D images captured from different viewpoints and
the reconstruction of high-resolution SAIs shows a strong connection to the multi-image
super-resolution (MISR) problem.

Let us rearrange the 2D angular view of low-resolution SAIs into a 1D set of 𝑠𝑘 low-resolution
observations 𝑌𝑘 ∈ ℝ𝑠𝑦×𝑠𝑥 , 𝑘 ∈ [1, 𝑠𝑘]. Our goal is to approximate the high-resolution version
𝑋 ∈ ℝ𝑠𝑌×𝑠𝑋 , where 𝑠𝑦 × 𝑠𝑥 and 𝑠𝑌 × 𝑠𝑋 are the size of low-resolution images and the size of
high-resolution image, respectively. In practice, a low-resolution image 𝑌𝑘 is considered
as a degraded version of the high-resolution image 𝑋 . This degradation can be modelled
by the application of three linear operators: warping (W𝑘), blurring (B), and down-
sampling (D), as depicted in Fig. 4.2. The warping operator represents the positioning
of the camera. Shifting the camera’s position will result in the corresponding shifts of
pixels in the captured image. This effect is actually the source of the angular dimension
in 4D Light field. We define the warping operator as W𝑘 : ℝ𝑠𝑌×𝑠𝑋 → ℝ𝑠𝑌×𝑠𝑋 which
transforms a high-resolution image into a new one observed from a different perspective.
The blurring operation represents the point spread function (PSF) which describes the
response of an imaging system to an object point. Depending on the setup of lenses and

4.2. Bayesian Image Super-resolution Framework 63

B DW

Figure 4.2: Degradation process

imaging sensors, PSFs can become very complicated and even spatially variant. However,
as shown in the literature [24,63,100,101], it is sufficient to assume a spatially invariant
version of PSF which can be modelled by a linear operator, i.e. B : ℝ𝑠𝑌×𝑠𝑋 → ℝ𝑠𝑌×𝑠𝑋 . The
down-sampling operator represents the digital sampling process of an imaging sensor, i.e.,
D : ℝ𝑠𝑌×𝑠𝑋 → ℝ𝑠𝑦×𝑠𝑥 . As a combination of these linear operators, the image foundation
process can be described as

𝑌𝑘 = D𝑘 ◦ B ◦W𝑘 (𝑋) + 𝜖𝑘,∀𝑘 ∈ [1, 𝑠𝑘], (4.2)

where 𝜖𝑘 represents the measurement error or the additive noise which is practically as-
sumed to follow the Gaussian distribution or Laplace distribution. For a better presentation,
we transform the Eq. 4.2 into its vector form:

y𝑘 = 𝐷𝐵𝑊𝑘x + 𝝐𝑘 . (4.3)

In Eq. 4.3, y𝑘, 𝝐𝑘 ∈ ℝ𝑠𝑥𝑠𝑦 and x ∈ ℝ𝑠𝑋 𝑠𝑌 are the column-vector representations of 𝑌𝑘, 𝜖𝑘 and
𝑋 . Linear transformation matrices 𝐷 , 𝐵, and𝑊𝑘 respectively replaced the linear operators
D, B, andW𝑘 . To further simplify the notation, we define 𝑝 = 𝑠𝑋𝑠𝑌 , 𝑞 = 𝑠𝑥𝑠𝑦, and
combine 𝐷, 𝐵 and𝑊𝑘 into 𝐴𝑘 , i.e., 𝐴𝑘 = 𝐷𝐵𝑊𝑘 . It follows that 𝐵,𝑊𝑘 ∈ ℝ𝑝×𝑝 , 𝐷 ∈ ℝ𝑞×𝑝 ,
and 𝐴𝑘 ∈ ℝ𝑞×𝑝 .

4.2 Bayesian Image Super-resolution Framework

Let us start with the standard Bayesian formulation which poses super-resolution problem as
finding a maximum a posteriori (MAP) high-resolution image x given a set of low-resolution
samples {y𝑘 | 𝑘 = 1, .., 𝑠𝑘}

x = argmax
x

P(x|y𝑖, ..., y𝑠𝑘),

64 4. GPU-Accelerated 4D Light Field Super-resolution

whereP(x|y𝑖, ..., y𝑠𝑘) is called posterior and represents the conditional probability density of
x given the set of degraded images (y𝑘). Follows Bayes’ rule, we have

P(x|y1, ..., y𝑠𝑘) =
P(x)

𝑠𝑘∏
𝑘=1

P(y𝑘 |x)

𝑠𝑘∏
𝑘=1

P(y𝑘)
,

with P(y𝑘 |x) is likelihood function which encodes the likelihood that the high-resolution
image x is due to the low-resolution observation y𝑘 . The likelihood function is defined with
an assumption of the known noise model of 𝝐𝑘 in the observation of y𝑘 . Here, we assume
that the noise affecting the observed low-resolution image y𝑘 is independent. Therefore,
the likelihood P(y1, ..., y𝑠𝑘 |x) =

𝑠𝑘∏
𝑘=1

P(y1 |x) and the normalization factor P(y1, ..., y𝑠𝑘) =
𝑠𝑘∏
𝑘=1

P(y𝑘). P(x) is an image prior describing the properties of the high-resolution image
being reconstructed. Since the low-resolution samples are known, P(y𝑘), 𝑘 = 1, ..., 𝑠𝑘 are
constants, the above MAP problem can be transformed into a minimization of negative
log-likelihood

argmax
x

P(x|y1, ..., y𝑠𝑘) = argmin
x

−𝑙𝑛P(x) −
𝑠𝑘∑︁
𝑘=1

𝑙𝑛P(y𝑘 |x).

The above two logarithmic terms represent the typical setup of an optimization problem
consisting of a data-fidelity term (i.e., 𝐸 (x) := −∑𝑠𝑘

𝑘=1 𝑙𝑛P(y𝑘 |x)) and a regularization
term (i.e., 𝑅(x) := −𝑙𝑛P(x)) as shown in Eq. 4.4. In the following sections, the choices of
these two terms are discussed in more detail.

x̂ = argmax
x

P(x|y1, ..., y𝑠𝑘) := argmin
x

𝐸 (x) + 𝑅(x) (4.4)

4.2.1 The Data-Fidelity Term

The construction of the data fidelity term depends on the noise models which are commonly
assumed to follow Gaussian and Laplace distribution [102].

For additive Gaussian noise, 𝝐𝑘 ∼ N(`𝑘, 𝜎2
𝑘
) follows a normal distribution with the proba-

bility density function given by
(
1/

√︃
2𝜋𝜎2

𝑘

)
𝑒−(`𝑘−𝝐𝑘)

2/2𝜎2
𝑘 . Assuming a 0 central distribution

4.2. Bayesian Image Super-resolution Framework 65

(i.e. `𝑘 = 0), the likelihood function P(y𝑘 |x) reads

P(y𝑘 |x) ∝ exp

(
𝑠𝑘∑︁
𝑘=1

‖𝐴𝑘x − y𝑘 ‖22

)
,

which results in a well-known least square fidelity term. In the case of Laplace noise (i.e., im-
pulse noise), 𝝐𝑘 ∼ L(`𝑘, 𝑏) has the probability density function given by 1

2𝑏𝑒
−‖`𝑘−𝝐𝑘 ‖1/𝑏 ,

P(y𝑘 |x) ∝ exp

(
𝑠𝑘∑︁
𝑘=1

‖𝐴𝑘x − y𝑘 ‖1

)
.

This results in an ℓ1 norm data fidelity term, which shows robustness against outliers
and superior performance with impulse noise [63, 103]. In order to handle the mixed
Gaussian-impulse noise situation, we followed the previous works [104,105] to combine ℓ1
and ℓ2 norm resulting in a joint ℓ1 − ℓ2 data fidelity term,

𝐸 (x) =
∑︁
𝑙∈{1,2}

_𝑙

𝑠𝑘∑︁
𝑘=1

‖𝐴𝑘x − y𝑘 ‖𝑙𝑙 ,

with parameters _1 and _2 control the contribution of ℓ1 and ℓ2 norm respectively.

4.2.2 Regularization Term

In Bayersian framework, it is generally assumed that x is an Markov random field (MRF)
with a strictly positive joint probability density. Therefore, following Hammersly-Clifford
theorem, its joint probability density must have the form of a Gibbs distribution[106–
108]:

P(x) := 1
𝑍
𝑒𝑥𝑝

(
− 1
𝑇

∑︁
𝐶∈C

𝑉𝐶 (x)
)
, (4.5)

where 𝑍 is a normalizing constant, 𝑇 stands for temperature and controls the degree of
peaking [108]. 𝑉𝐶 is called potential defined for a local group of pixels or clique 𝐶. The
sum is for a set C of all possible cliques. The definition of clique set C and the selection of
the potential 𝑉𝐶 lead to various types of image prior, which practically share the following
form

66 4. GPU-Accelerated 4D Light Field Super-resolution

(a) (b) (c)

Figure 4.3: Configurations of N(u): (a) 4 neighbors; (b) 8 neighbors; (c) 16 neighbors.

P(x) ∝ exp ©«
∑︁
u∈𝛺

∑︁
v∈N (u)

𝑤 (u, v)𝛷 (xu, xv)
ª®¬ , (4.6)

where u, v ∈ 𝛺 , with 𝛺 ⊂ ℕ2 represents the 2D indices of x. 𝑤 : 𝛺2 → ℝ and 𝜙 :
ℝ2 → ℝ are respectively weighting function and distance function. The weighting function
characterizes the dependency in pixel locations, while the distance function penalizes the
difference in pixel intensities. N(u) represents a set of indices defined with regarding to
the index u, as in Fig. 4.3. For example, if we set the distance function𝛷 (xu, xv) = x2u + x2v,
the weighting function 𝑤 (u, v) = 𝛼

2 and limit N to a single index (i.e., N(u) = {u}),
Eq. 4.6 gives us the following ℓ2 regularization term

𝑅(x) = 𝛼 ‖x‖22 = 𝛼
∑︁
u∈𝛺

x2u (4.7)

In another setup, let us set the distance function𝛷 (xu, xv) = (xu − xv)2 and the weighting
function 𝑤 (u, v) = 𝛼 . N(u) has two indices, one is immediately to the right of u (denoted
as u𝑥+1) and the other is immediately below of u (denoted as u𝑦+1). Eq. 4.6 leads to another
ℓ2 regularization on the gradient of x.

𝑅(x) = 𝛼 ‖∇x‖22 = 𝛼
∑︁
u∈𝛺

(xu − xu𝑥+1)2 + (xu − xu𝑦+1)2 (4.8)

The regularization terms in Eq. 4.7 and Eq. 4.8 belong to the Tikhonov regularization
family

𝑅(x) = ‖𝛤x‖22 ,

4.2. Bayesian Image Super-resolution Framework 67

where 𝛤 indicates the Tikhonov matrix which can be chosen as an identity matrix (Eq. 4.7),
preferring the solutions with smaller norm, or a difference operator (Eq. 4.8), enforcing
the smoothness of the solution.

The Tikhonov regularization is a practical choice to improve the conditioning of the problem
while keeping the computation effort not too high. However, a common drawback of this
approach is over-smoothing problem leading to poor performance on images with many
discontinues (e.g., dense texture regions, occlusions,...). A well-known alternative to
Tikhonov regularization is total variation (TV) regularization [109]

𝑅(x) = ‖∇x‖1 .

This prior shares a similar setup as Eq. 4.8, except that the distance function is set to an
absolute difference, i.e.,𝛷 (x𝑖, x𝑘) = |x𝑖 − x𝑘 |. Compared to ℓ2 norm, the ℓ1 norm performs
better on edges where there is a rapid change in pixels’ values. The piece-wise smooth
effect of TV prior is generally desirable and contributes to the quality of the final solution.
As a combination of TV prior and bilateral filter, Farsiu et al. introduce Bilateral TV (BTV)
regular [63]

𝑅(x) = 𝛼
∑︁
u∈𝛺

∑︁
v∈N𝑤 (u)

_‖u−v‖1 |xu − xv |, (4.9)

where N𝑤 (u) contains the indices the lie in the lower triangular of a square window
centered at u. In Eq. 4.9, the weighting function has the form of𝑤 (u, v) = _‖u−v‖1 , with 0 <
_ < 1, giving a spatially decaying effect to the summation of the regularization terms. The
BTV prior can be considered as a windowed version of Non-local Total Variation [110,111]
(NLTV) defined in the form

R(x) =
∑︁
u∈𝛺

∑︁
v∈𝛺

|xu − xv |
𝑑 (u, v)

, (4.10)

where 0 < 𝑑 (u, v) ≤ ∞ is a positivemeasure defined between the points u and v.

In this work we focus on the following weighted regularization term,

R(x) =
∑︁
u∈𝛺

∑︁
v∈N (u)

𝑤 (u, v) |xu − xv |, (4.11)

which can be considered as a generalized version of many total variation based image priors,
i.e. TV [109], BTV [63], NLTV [111], and BSWTV [112]. In the vector form, Eq. 4.11 can

68 4. GPU-Accelerated 4D Light Field Super-resolution

be rewritten as
R(x) =

∑︁
v∈N (u)

‖𝑊d � (𝑆d − I)x‖1 , d = u − v, (4.12)

where 𝑆d ∈ ℝ𝑝×𝑝 denotes the shifting matrix which shift x by d (in 2D coordinate), �
denotes the Hadamard product. Weighting functions are assembled in weighting matrix
𝑊d = diag(wd), with wd ∈ ℝ𝑝 . The main advantage of this regularization term is the
flexibility in defining a weighting function to capture the unique properties of the SR
problem. For example, setting N(u) to direct neighborhood and the weighting to a
constant gives us TV [109] which regularizes the local smoothness between adjacent pixels.
Setting weighting to a function of the pixel distance gives us BTV [63], which assumes
that the smoothness is spatially dependent. Another weighting scheme based on bilateral
spectrum used in [112] provides a successful regularization for mixed Gaussian-Poisson
noise images. Considering the 4D LF data, we proposed a discontinue-aware weighting
scheme which assembles three data properties, i.e., spatial distance, edge and occlusion
feature,

wd := 𝑤𝑑w𝑒 � w𝑜, 𝑤d ∈ ℝ,w𝑒,w𝑜 ∈ ℝ𝑝, (4.13)

where the spatial weight𝑤d := exp
(
‖d‖22
𝜎𝑠

)
adjusts the impact of weighting w.r.t. the relative

distance d and provide a bilateral filtering effect. The edge weight w𝑒 := exp
(
‖∇x‖22
𝜎𝑒

)
and

the occlusion weight w𝑜 penalize the smoothness at image discontinuing area follows a
similar weighting strategy as discussed in Sec. 2.3.4.

4.3 Optimization Approach

Combining the data-fidelity term and regularization term discussed in the previous section,
we finalize theminimization problemwith the following cost function

J(x) =_1
𝑠𝑘∑︁
𝑘=1

‖𝐴𝑘x − y𝑘 ‖1 + _2
𝑠𝑘∑︁
𝑘=1

‖𝐴𝑘x − y𝑘 ‖22 +
𝑠𝑑∑︁
𝑑=1

‖𝑊𝑑 � (𝑆𝑑 − I)x‖1 , (4.14)

Although non-smooth, the cost function is convex, and the existence of the global minimized
solution is guaranteed. There are many algorithms that can be used to optimize it. One
of the traditional approaches for solving this problem is applying a first-order iterative
algorithm such as the steepest gradient descent. A more recent approach is the alternating
direction method of multipliers (ADMM) [113], which breaks a complex optimization
problem into smaller sub-problems, each can be solved in a simpler manner. Although

4.3. Optimization Approach 69

ADMM requires more computation for each iterative step as compared to gradient descent,
we notice that the overall computation of ADMM is much less considering the similar
minimization threshold. In the following, we discuss the use of these approaches for solving
the Eq. 4.14.

4.3.1 First-order Iterative Optimization Algorithm

This approach iteratively steps in the steepest descent direction of the objective function,
which is the opposite direction of the gradient at the current point. Gradient descent
requires the computation of the first-order derivative of the energy function J(x). However,
ℓ1 norm is non-smooth and it is not differentiable at 0. Instead of computing the gradient,
we consider the sub-gradient of ℓ1 function [114] which is the sign function defined as
follows

sgn(x) := ∇ ‖x‖1 , [sgn(x)]𝑖 :=

1, x𝑖 > 0,

−1, x𝑖 < 0,

0, x𝑖 = 0,

(4.15)

The gradient of the cost function in Ep. 4.14 can be derived as

∇J(x) =
∑︁

𝜌∈{1,2}

𝑠𝑘∑︁
𝑘=1

_𝜌𝐴
ᵀ
𝑘
sgn(𝐴𝑘x−y𝑘)�|𝐴𝑘x−y𝑘 |𝜌−1+

𝑠𝑑∑︁
𝑑=1

𝑊
ᵀ
𝑑
�(𝑆ᵀ

𝑑
−I)sgn

(
𝑊𝑑�(𝑆𝑑−I)x

)
,

(4.16)

As soon as the gradient of the cost function is computed, the value of x(𝑛+1) in the next
iterative step can be updated by simply scaling the gradient by a constant 𝛽, referred to as
a step size, and added up to x(𝑛),

x(𝑛+1) = x(𝑛) + 𝛽∇J𝜌 (x(𝑛)), (4.17)

here the step size 𝛽 plays a vital role in deciding how fast the optimization will converge to
the global minimum solution. Choosing a step size that is too-large can lead to an osculation
around the minimum and result in a solution that is even worse than the solution from the
current iterative step. However, choosing a too-small step size will lead to more iteration,
which eventually demands more computation and solving time. Finding the right step
size would involve solving for 𝛽, which minimizes the cost function for the next update of
x,

argmin
𝛽

J𝜌 (x(𝑛) + 𝛽∇J𝜌 (x(𝑛))).

70 4. GPU-Accelerated 4D Light Field Super-resolution

Algorithm 2: Backtracking line search
Input: 𝛽0, 𝛾, 𝜐
Output: 𝛽

1 𝛿 := 𝜐 < ∇J𝜌 (x),∇J𝜌 (x) >
2 for 𝑘 in 0, 1, 2, ... do
3 𝛥 := J𝜌 (x) − J𝜌

(
x + 𝛽𝑘∇J𝜌 (x)

)
4 if 𝛥 < 𝛿𝛽 (𝑘) then
5 𝛽 (𝑘+1) := 𝛾𝛽 (𝑘)
6 else
7 break
8 end
9 end

10 return 𝛽 (𝑘)

This approach is referred to as an exact line search which is generally infeasible to solve
due to the cost of computation per iteration. An alternative is backtracking line search
[115] which starts with a relatively large step size and repeatedly shrinks it by a factor
𝛾 ∈ (0, 1) until the Armjo-Goldstein condition is fulfilled,

J𝜌 (x) − J𝜌
(
x + 𝛽 (𝑘)

)
≥ 𝛽 (𝑘)𝛿,

where 𝛽 (𝑘) = 𝛾𝛽 (𝑘−1), and 𝛿 represents the local slop of the function of 𝛽 along the search
direction −∇J𝑟ℎ𝑜 (x). The pseudo-code of backtracking line search is listed in Algorithm 2.
The two parameters 𝛾,𝜐 ∈ (0, 1) are for controlling the update speed and 𝛽 (0) is the
upper-bound of the step size.

4.3.2 Alternating Direction Method of Multiplier - ADMM

The main advantage of ADMM is the ability of transferring a complicated optimization
problem into simpler sub-problems. In our case, ADMM allows us to reform the ℓ𝑝 − ℓ1
problem into ℓ2 and proximal problems which can be solved effectively. In the follow-
ing, we are going to discuss the application of ADMM for the two type of data fidelity
terms.

We start by rewriting the objective function into amore compact form,

J(x) = ‖𝐴x − b‖22 + ‖𝐹x − b′‖1 , (4.18)

the matrices 𝐹 , 𝐴 and columns vectors b, b′ are defined as in Eq. 4.19. Notice that 𝛼1 and
𝛼2 are absorbed into the matrices and column vectors for simplifying the notation. The

4.3. Optimization Approach 71

size of 𝐴, 𝐹 , b and b′ are respectively 𝑞𝑠𝑘 × 𝑝, (𝑞𝑠𝑘 + 𝑝𝑠𝑑) × 𝑝, 𝑞𝑠𝑘 × 1 and (𝑞𝑠𝑘 + 𝑝𝑠𝑑) × 1.
All transformation matrices (𝐴𝑘 and 𝑆𝑑) and weighting matrices (𝑊𝑑) are assembled into
𝐴 and 𝐹 . Low-resolution images 𝑏𝑘 are stacked into b along with padding zeros. 𝑂𝑝𝑠𝑑 is
zero vector with the size of 𝑝𝑠𝑑 × 1.

𝐴 :=
√
_2

𝐴1

𝐴2

...

𝐴𝑠𝑘

, b :=

√
_2

y1
y2
...

y𝑠𝑘

, 𝐹 :=

[
_1√
_2
𝐴

𝑆

]
, b′ :=

[
_1√
_2
b

𝑂𝑝𝑠𝑑

]
, 𝑆 :=

𝑊1 � (𝑆1 − 𝐼)
𝑊2 � (𝑆2 − 𝐼)

...

𝑊𝑠𝑑 � (𝑆𝑠𝑑 − 𝐼)

(4.19)

Taking the compact representation, we rewrite the optimization problem in Eq. 4.14 into
the form of ADMM problem,

minimize
x,z

‖𝐴x − b‖22 + ‖z‖1

subject to 𝐹x − z = b′,
(4.20)

with the augmented Lagragian reads,

L𝜗

(
x, z,w

)
:= ‖𝐴x − b‖22 + ‖z‖1

+ wᵀ (𝐹x − z − b′) + 𝜗
2
‖𝐹x − z − b′‖22

(4.21)

The ADMM problem, Eq. 4.20, is then broken into the following sub-problems for the two
unknowns x and z.

x(𝑘+1) = argminx L𝜗 (x, z(𝑘),w(𝑘)) (4.22a)

= argminx ‖𝐴x − b‖22 + 𝜗
2

𝐹x − z(𝑘) − b′ + w(𝑘)

𝜗

2
2

z(𝑘+1) = argminx L𝜗 (x(𝑘+1), z,w(𝑘)) (4.22b)

= argminz ‖z‖1 + 𝜗
2

z − (
𝐹x(𝑘+1) − b′ + w(𝑘)

𝜗

)2
2

w(𝑘+1) = w(𝑘) + 𝜗
(
𝐹x(𝑘+1) − z(𝑘+1) − b′

) (4.22c)

The sub-problem of x (Eq. 4.22a) has the form of a least square approximation prob-

72 4. GPU-Accelerated 4D Light Field Super-resolution

lem,

x̃ = argmin
x

‖𝐺x − c‖22, (4.23)

with 𝐺 =

[
𝐴√︁
𝜗/2𝐹

]
, and c =

[
b√︁

𝜗/2
(
z(𝑘) + b′ − w(𝑘)/𝜗

)] . The sub-problem of z, in Eq. 4.22b,
is actually a proximal operator of ℓ1 function,

z(𝑘+1) = prox𝜗−1‖·‖1

(
𝐹x(𝑘+1) − b′ + w(𝑘)

𝜗

)
,

which has the following closed form solution

z(𝑘+1) =
[����𝐹x(𝑘+1) − b′ + w(𝑘)

𝜗

���� − 1
𝜗

]
+

� sgn
(
𝐹x(𝑘+1) − b′ + w(𝑘)

𝜗

)
(4.24)

4.3.2.1 Solving Least Square Problem

In previous sections, we have see that the sub-problem of x has the form of least-square
approximation, i.e. x̃ := argmin

x
‖𝐴x − b‖22, where 𝐴 ∈ ℝ𝑚×𝑛, x ∈ ℝ𝑛×1, and b ∈

ℝ𝑚×1. The objective function can be represented in the form of a convex quadratic func-
tion

𝑓 (x) = xᵀ𝐴ᵀ𝐴x − 2bᵀ𝐴x + bᵀb,

whose solution should satisfy the so-called normal equation (i.e.,∇𝑓 (𝑥) = 0)

𝐴ᵀ𝐴x = 𝐴ᵀb

If the columns of𝐴 are linearly independent, the least-square approximation has the unique
solution x = (𝐴ᵀ𝐴)−1𝐴ᵀb. However, it is normally the case that its columns are linearly
dependent and the positive semi-define matrix𝐴ᵀ𝐴 is singular. In such a case, the inverse of
𝐴ᵀ𝐴 does not exist. In addition, a direct computation of (𝐴ᵀ𝐴)−1 is not feasible due to the
size and sparsity of 𝐴. For these reasons, iteratively solving the least-square approximation
problem is a preferable choice. In this work, we employ a well-known conjugate gradient
approach on normal equation [115] which guarantees the convergence to the minimum
least-square even in the case of singular matrix [116]. Algorithm 3 presents the pseudo-code
of the conjugate gradient descent algorithm on the normal equation.

4.3. Optimization Approach 73

Algorithm 3: Conjugate Gradient
Input: 𝐴, b, x0
Output: x

1 𝑟0 := 𝐴ᵀb −𝐴ᵀ𝐴x0
2 𝑝0 := 𝑟0
3 𝜋0 := 𝑟

ᵀ
0 𝑟0

4 for 𝑘 in 0, 1, ..𝑁 do
5 if 𝜋𝑘 < 𝑇 then
6 break
7 end
8 𝛼𝑘 := 𝑝ᵀ

𝑘
𝐴ᵀ𝐴𝑝𝑘

9 x𝑘+1 := x𝑘 + 𝜋𝑘
𝛼𝑘
𝑝𝑘

10 𝑟𝑘+1 := 𝑟𝑘 − 𝜋𝑘
𝛼𝑘
𝐴ᵀ𝐴𝑝𝑘

11 𝜋𝑘+1 := 𝑟
ᵀ
𝑘+1𝑟𝑘+1

12 𝑝𝑘+1 := 𝑧𝑘+1 + 𝜋𝑘+1
𝜋𝑘
𝑝𝑘

13 end

Figure 4.4: Implementation of Downsampling Operator

4.3.2.2 Treatment of Linear Operators

All computations are eventually broken down to matrix multiplication for which the largest
computational efforts are on 𝐴𝑘, 𝑆𝑑, 𝑘 ∈ [1, 𝑠𝑘], 𝑑 ∈ [1, 𝑠𝑑], and their adjoint versions
𝐴
ᵀ
𝑘
, 𝑆
ᵀ
𝑑
. These matrixes are practically very large and sparse. For example, given a pair of

low-resolution and high-resolution: 𝑠𝑥 × 𝑠𝑦 := 128 × 128 and 𝑠𝑋 × 𝑠𝑌 = 512 × 512 (i.e., 4×
super-resolution). Assuming 𝑠𝑘 = 16 and 𝑠𝑑 = 8, the size of 𝐴 is 218 × 218 and the size of
𝑆 is 221 × 218. Direct computation of these matrices is infeasible. Therefore, we decide to
implement these matrices in the form of linear functions of 2D variables instead of sparse
matrices and vectorized inputs. Table 4.1 shows the mapping of matrix to linear function
on 2D array.

74 4. GPU-Accelerated 4D Light Field Super-resolution

Table 4.1: Implementation of sparse matrix multiplication as linear operators
Matrix Function
𝐴𝑘x D ◦ B ◦W𝑘 (𝑋)
𝐴
ᵀ
𝑘
x W∗

𝑘
◦ B∗ ◦ D∗(𝑋)

𝑆𝑘x Su(𝑋)
𝑆
ᵀ
𝑘
x S−u(𝑋)

For downsampling operator D, a simple resampling scheme is employed as depicted in
Fig. 4.4. For each block of ZZ 𝑥 × ZZ𝑦 pixels, one pixel at the top-left location is picked and
put into the low-resolution grid. The adjoint operator D∗ is therefore simply putting back
the corresponding pixel to this location. The bluring operator B is modelled by a simple
Gaussian kernel with a standard deviation of 𝜎 = 1

4

√︁
ZZ 2 − 1 and a size of 3𝜎 as suggested

in [117]. The warping operatorW𝑘 and its adjoint operatorW∗
𝑘
are implemented as

forward-warping function and approximated as reverse warping function respectively.
These functions are associated with a set of disparity maps at each of the perspectives
employed for super-resolution. Assumes that a set of 𝑠𝑘 low-resolution sub-aperture images
each with its perspective index is in 𝑃 = {𝜽1, 𝜽2, ..., 𝜽𝑠𝑘 } are inputs to estimate an super-
resoltion image at 𝜽0 ∈ 𝑃 . For each perspective 𝜽𝑘 , we need to find the disparity map 𝝎𝑘 .
The forward warping functionW𝑘 will warp the SAI from perspective 𝜽0 to 𝜽𝑘 using𝝎𝑘 , i.e.,
�̂̂�𝐿(z, 𝜽𝑘) = 𝐿𝐿𝐿(z+𝜽𝑘𝝎𝑘, 𝜽𝑘), while the reverse warping functionW∗

𝑘
will warp the input SAI

from perspective 𝜽𝑘 to 𝜽0 using 𝝎0, i.e., �̂̂�𝐿(z, 𝜽0) = 𝐿𝐿𝐿(z + 𝜽0𝝎0, 𝜽0).

The transformation matrix 𝑆 can be implemented in the form of weighted directional
gradient (∇𝑈 ,𝑉) computed for a direction set 𝑈 = {d𝑖 |d𝑖 ∈ ℕ2, 𝑖 = 1, .., 𝑠𝑑} and a weight
set 𝑉 = {𝑉𝑖 |𝑉𝑖 ∈ ℝ𝑠𝑋×𝑠𝑌 , 𝑖 = 1, .., 𝑠𝑑}. Let 𝐼 be the SAI at perspective 𝜽0, 𝐼 (z) = 𝐿𝐿𝐿(z, 𝜽0), we
computed ∇𝑈 ,𝑉 𝐼 as follow,

𝑮 = ∇𝑈 ,𝑉 𝐼 =
(
𝜕

𝜕d1
,
𝜕

𝜕d2
, ..,

𝜕

𝜕d𝑠𝑑

)
𝐼 ,

with theweighted directional derivative 𝜕/𝜕d𝑖 approximated by finite differences,

𝑮𝑑𝑖 (z) =
𝜕

𝜕d𝑖
𝐼 (z) = 𝑉𝑖 (z) (𝐼 (z) − 𝐼 (z + d𝑖)) .

The adjoint matrix 𝑆ᵀ is then computed in the form of weighted directional divergence,

div𝑈 ,𝑉𝑮 = ∇𝑈 ,𝑉 · 𝑮 =

𝑠𝑑∑︁
𝑖=1

𝜕𝑮d𝑖
𝜕d𝑖

.

4.4. GPU-Accelerated Strategy 75

4.4 GPU-Accelerated Strategy

This section discusses the proposed GPU-accelerated architectures for 4D light field super-
resolution. The acceleration is achieved by the mean of parallel computation using graphics
processing units. OpenCL library is employed in this work to implement proposed architec-
tures. OpenCL was selected over CUDA because of its cross-platform compatibility. The
source codes using OpenCL can be compiled and run on different platforms, i.e. AMD GPU,
NVIDIA GPU. For the super-resolution of 4D light field images, the selected algorithm is
first decomposed into a set of processing functions. These functions are then analyzed to
justify their capability of parallel computation. This information is then used to decide the
global work size of each GPU kernel. In the end, all the functions are transformed into
OpenCL kernel code and executed for each work-item.

4.4.1 Accelerated Steepest Gradient Descent

For the steepest gradient descent approach the main computation task is the calculation of
the gradient in Eq. 4.16, which can be rewritten in the following compact form,

∇J(x) = 𝐴ᵀ
(
_1sgn(𝐴x − b) + _2(𝐴x − b)

)
+ 𝑆ᵀsgn(𝑆x), (4.25)

with 𝐴, b, and 𝑆 are formed by respectively stacking the transformation matrices 𝐴𝑘 , the
low-resolution inputs y𝑘 , and the weighted differential matrices𝑊𝑑 � (𝑆𝑑 − 𝐼), 𝑘 = 1, ..., 𝑠𝑘 ,
𝑑 = 1, ..., 𝑠𝑑 . The overall computation flow of a gradient descent iterative step is depicted in
Fig. 4.5(a). In the figure, OpenCL kernels are denoted by a black background box. Starting
with the computed HR solution x(𝑛) from the previous iterative step, we follow Eq. 4.25 to
compute the gradient ∇J(x(𝑛)). An optional backtracking line-search is applied to estimate a
step size 𝛽 before updating the HR solution x(𝑛+1) = x(𝑛) +𝛽∇J(x(𝑛)).

Figure 4.5(b) shows the computation flow of backtracking line search following Algorithm. 2.
Before starting the main loop searching for a suitable step size, we compute the scaling
factor 𝛿 by applying a dot product kernel. The objective function of the current HR solution
(J(x(𝑛))) needs to be computed only one time for each line search task. Each iteration
includes a sum kernel to compute an intermediate HR solution advancing in the search
direction and an objective function. The 𝛽 update function decides between updating
𝛽 and stop the loop, Algorithm 2 line 4-8. The objective function Eq. 4.14 requires the
application of matrices 𝐴, 𝑆 , a sum kernel and three norm kernels as shown in Fig. 4.5(c).
It is also noticed that the norm kernels return a scalar. Since it is not an advantage to
compute scalar operations on GPU, we execute these operations on CPU. This includes the

76 4. GPU-Accelerated 4D Light Field Super-resolution

𝑨 sum sgn sum 𝑨ᵀ

𝑺 𝑺ᵀsgn
sum sum

line
search

𝛽

1

b −1

1x(𝑛)

x(𝑛+1)
1

𝛼

_1

_2

(a)

dot

sum J

J
𝛽 update

𝛿

𝛽 (𝑘)𝛿

𝛥

∇J𝜌

x
𝛽 (𝑘+1)

𝛽 (𝑘)

1

−1

1

(b)

𝑨 sum
ℓ1

ℓ2

𝑺 ℓ1

b
x(𝑛) J(x)_2

_2

𝛼

(c)

Figure 4.5: Block digram representation of proposed GPU-based light field image super-
resolution. (a) Overall computation of one steepest descent step. (b) line-search.
(c) Computation of the objective function J

scalar sum, denoted by , and 𝛽 update function, Fig. 4.5(b). The implementation of
transformation matrices 𝐴, 𝑆 and their adjoint versions 𝐴ᵀ, 𝑆ᵀ are going to be discussed in
the next section.

4.4.2 ADMM Solver

This section discusses the OpenCL realization of optimization strategy presented in Sec.4.3.2.
For a better handling of the computation flow, we did the following modifications to ADMM
iteration in Eq. 4.22. First, the order of sub-problems is rearranged such that x-step comes
after z-step and w-step. This way allows us to make use of the computation of 𝐹x for
all sub-problems. Secondly, the parameter 𝜗 is absorbed into w (i.e., w instead of w/𝜗)
to save unnecessary scalar multiplications. 𝜗 only takes part in the computation of the
proximal operator (𝑧-step) and solving of the least square problem (𝑥-step). Fig. 4.6

4.4. GPU-Accelerated Strategy 77

illustrates the modified computations of ADMM solver which is also listed in Algorithm 4.

Algorithm 4: Minimization of the cost function in Eq. 4.14 with ADMM iterative solver.
Input: 𝜗, x0, 𝑁
Output: x

1 x(0) := x0
2 w(0) := 0
3 for 𝑛 in 1, 2, ..𝑁 do
4 a := 𝐴x(𝑛−1) − b
5 u := 𝐹x(𝑛−1) − b′ + w(𝑛−1)

6 z(𝑛) := prox𝜌−1‖·‖1 (u) ⊲ Solving Eq. 4.22b

7 w(𝑛) := u − z(𝑛) ⊲ Computing Eq. 4.22c

8 f := 2w(𝑛) − w(𝑛−1)

9 v := 𝐴ᵀa + 𝜗
2 𝐹
ᵀf

10 x(𝑛) := xstep(v, x(𝑛−1)) ⊲ Solving Eq. 4.22a

11 end
12 return x(𝑛)

The ADMM solver takes in three arguments, the parameter 𝜗 , an initial guess (x0) and
the number of iterations (𝑁), as in Algorithm 4. Before the iteration, we initialized x with
x0, a bi-cubic up-sampling of the low-resolution image, and w with zeros, line 1, 2. Each
iteration starts with the computation of 𝐴x and 𝐹x which are associated to ℓ2 and ℓ1 terms
of the objective function, Eq. 4.18. While 𝐴x is subtracted by b, line 4, 𝐹x is subtracted by
b′ and summed with w, line 5. Since 𝐹 is a stack of 𝐴 and 𝑆 and b′ includes b, Eq. 4.19,
we avoid the re-computation of 𝐴x − b by extracting it from 𝐹x − b′ as depicted in Fig. 4.6.
The sum and subtract operations in line 5 are realized by two-arguments sum kernels (i.e.,
sum in Fig. 4.6). The gray box attached to each input to the sum kernel denotes the scalar
scaling of the input. On line 6, we conduct a z-step by computing the proximal operator of
u. This proximal operator is realized by an OpenCL kernel prox, as in Fig. 4.6, followed by
a sum kernel which realizes w-step, line 7 Algorithm 4.

After the computation of z and w, the next step is preparing the residual input for
the conjugate gradient descent solver in x-step, v = 𝐺ᵀ (𝐺x − c). From Eq. 4.23, we

78 4. GPU-Accelerated 4D Light Field Super-resolution

F sum sum prox sum

sum F ⊺

A⊺

sum

x-step

x(n−1)

w(n−1)

b′
x(n)

w(n)

−1

1 1

1

−1

1

2

−1

α2
α1

ϑ
2

Figure 4.6: Computation flow of one ADMM iteration.

v

x(n−1)

dot π(0)

p(0)

r(0)

x(0)

(a)

p(k−1)

x(k−1)

r(k−1)

G G⊺ dot α

sum2

sum2

sum2

dot π(k)

1

π(k−1)

α 1

π(k)

π(k−1)

−π(k−1)

α

1

p(k)

r(k)

x(k)

(b)

Figure 4.7: Computation flow of xstep. (a) Pre-computation; (b) Conjugate gradient
descent iteration.

have

v =

[
𝐴√︁
𝜗/2𝐹

]𝑇 [
𝐴x − b√︁

𝜗/2
(
𝐹x − z(𝑛) − b′ + w(𝑛)

)]
= 𝐴ᵀ (𝐴x − b) + 𝜗/2𝐹 ᵀ (𝐹x − z(𝑛) − b′ + w(𝑛))

= 𝐴ᵀa + 𝜗
2
𝐹𝑇 f

(4.26)

With the computation of f, Algorithm 4 line 8, as f = 2w(𝑛)−w(𝑛−1) = u−z−w(𝑛−1) +w(𝑛) =

𝐹x(𝑛−1) −z−b′+w(𝑛). The computations of f and v are realized by two sum kernels directly
before and after 𝐹𝑇 as in Fig. 4.6. Notice that we made a scaling of 𝐴𝑇a by 𝛼2

𝛼1
since the a is

extracted from 𝐹x − b′ which has a different scalar scaling of matrix 𝐴 and column vector
b. Another note from the implementation of Fig. 4.6 is that the group of OpenCL kernels
marked by a dashed rectangle would be combined into a single kernel, since these kernels
share element-wise operators.

As discussed in the previous section, conjugate gradient descent on normal equation is
employed to solve ℓ2 optimization problem of x-step. Fig. 4.7 depicts the computation

4.4. GPU-Accelerated Strategy 79

flow of x-step, while its pseudo code is listed in Algorithm 5. There are two inputs, i.e. v,
x(𝑛−1), and two scalar parameters, i.e., 𝜏 , 𝐾 . The computed HR image from the previous
ADMM iteration x(𝑛−1) is used as the initial guess for the conjugate gradient descent
solver, while the residual v is used to initialize r(0), p0 and compute the initial error 𝜋 (0).
The two parameters 𝜏 and 𝐾 specify the error threshold and the maximum number of
conjugate gradient iterations, respectively. The stop condition is that either the residual
r is sufficiently small or the maximum number of iterations is reached, Algorithm 5 line
4,5. All computations in Algorithm 5 can be effectively broken down into GPU kernel
implementation. Beside the forward and backward transform (𝐺,𝐺ᵀ), there are two
kernels sum and dot, as in Fig. 4.7, which represents element-wise sum and dot product
respectively.

Algorithm 5: Solving x-step
Input: v, x(𝑛−1), 𝜏, 𝐾
Output: x

1 x(0) := x(𝑛−1)

2 p(0) := r(0) := v
3 𝜋 (0) :=< r(0), r(0) > ⊲ dot product
4 for 𝑘 in 1, 2, ..𝐾 do
5 if 𝜋 (𝑘−1) < 𝜏 then
6 v := 𝐺ᵀ𝐺p(𝑘−1)

7 𝛼 :=< v, p(𝑘−1) >

8 r(𝑘) := r(𝑘−1) − 𝜋 (𝑘−1)

𝛼
v(𝑘−1)

9 𝜋 (𝑘) :=< r(𝑘), r(𝑘) >
10 p(𝑘) := p(𝑘−1) + 𝜋 (𝑘)

𝜋 (𝑘−1) r(𝑘−1)

11 x(𝑘) := x(𝑘−1) + 𝜋 (𝑘−1)

𝛼
p(𝑘−1)

12 end
13 end
14 return x(𝑘)

From the Eq. 4.19 and Eq. 4.23, we can derive the computation of 𝐺𝑇𝐺 in the form of 𝐴
and 𝑆 as

𝐺𝑇𝐺 = 𝐴𝑇𝐴 + 𝜗
2
𝐹 ᵀ𝐹 =

(
1 + 𝜗

2
𝛼2
1

𝛼2

)
𝐴𝑇𝐴 + 𝜗

2
𝑆𝑇𝑆,

with the kernel realization of 𝐴,𝑆 and its adjoint version 𝐴ᵀ, 𝑆ᵀ shown in Fig. 4.8. The
figure illustrates the change in the size of the column vector after each kernel execution.
Regarding Fig. 4.8, fwarp, bwarp, blur, up, and down denote the forward warp, reverse
warp, blur, up-sampling and down-sampling kernel respectively. wdg kernel realizes the

80 4. GPU-Accelerated 4D Light Field Super-resolution

fwarp blur down

upblurbwarp

Rp Rpsk Rpsk

Rqsk

RqskRpskRp

A

AT

wdg wddRp Rpsd Rp

S ST

Figure 4.8: Kernel realization of 𝐴,𝐴ᵀ, 𝑆, 𝑆ᵀ

weighted directional gradient (i.e., ∇𝑈 ,𝑉), while the weighted directional divergence (i.e.,
div𝑈 ,𝑉) is implemented by wdd kernel.

For each kernel execution, a global (work-group) size and a local (work-group) size need to
be decided. The global size specifies the number of work-groups that need to be scheduled,
and the local size specifies the number of work-items associated with one work-group.
They are typically defined in the form of a 2-tuple parameter consisting of horizontal and
vertical size. The global size needs to be a multiple of the local size. In this work, we
apply a common practice that divides the computation workload by the number of pixel
locations in the output. In other words, each work-item will be in charge of calculating the
output value for one particular pixel location. Let ^ = (^𝑥 , ^𝑦) is a local work-group size,
where ^𝑥 and ^𝑦 denote the number of work-items in 𝑥 and 𝑦 direction respectively. Each
work-group contains ^𝑥^𝑦 work-items and computes output value for a patch of size ^𝑥 ×^𝑦 .
In our work, most OpenCL kernels have an array of 2D images as output. For example, the
forward warp kernel (fwarp) generates 𝑠𝑘 HR image data and weighted direction gradient
kernel (wdg) results in 𝑠𝑑 HR image data. To make use of the Image2D object, we tile these
images in the form of a 2D array. Suppose 𝑛𝑥 , 𝑛𝑦, and 𝑠 are respectively the width, the
height of the image, and number of images, global size will be set to

(
{𝑛𝑥 }^𝑥 ,𝑠 ,

{
𝑛𝑦

}
^𝑦,𝑠

)
,

where operator {•}^,𝑠 is defined as

{𝑛}^,𝑠 = ^
⌈
𝑛
⌈√
𝑠
⌉

^

⌉
, ^, 𝑛, 𝑠 ∈ ℕ+. (4.27)

Table 4.2 reports the global work-group size of implemented kernels in Fig. 4.8. As discussed
in Sec.4.3.2.2, the transform matrix is realized in the form of linear operators. The column
vector is actually realized as a 2D array stored with OpenCL Image2D object. The forward

4.5. Experimental Results 81

Table 4.2: Global work size of GPU kernels
Kernel Horizontal size Vertical size
1 up

{𝑠𝑋 }^,𝑠𝑘 {𝑠𝑌 }^,𝑠𝑘2 blur
3 fwarp
4 bwarp {𝑠𝑋 }^,1 {𝑠𝑌 }^,15 wdd
6 down {𝑠𝑥 }^,𝑠𝑑 {𝑠𝑦}^,𝑠𝑑
7 wdg {𝑠𝑋 }^,𝑠𝑑 {𝑠𝑌 }^,𝑠𝑑

warp operatorsW𝑘, 𝑘 ∈ [1, 𝑠𝑘] are implemented with a single OpenCL kernel (i.e., fwarp)
which warps the 2D input high-resolution image (𝑠𝑋×𝑠𝑌) to 𝑠𝑘 perspectives resulting in a
tensor (𝑠𝑘×𝑠𝑋×𝑠𝑌). The reverse warp operatorsW∗

𝑘
, 𝑘 ∈ [1, 𝑠𝑘] are implemented by kernel

bwarp which warps 𝑠𝑘 images to the perspective of HR image and then apply an element-
wise sum of them resulting in a 2D array (𝑠𝑋×𝑠𝑌). In a similar manner, the weighted
directional gradient kernel (wdg) generates a tensor (𝑠𝑑×𝑠𝑋×𝑠𝑌) from input HR image, while
kernel wdd realizes the weighted directional divergence outputting a 2D array with the
same size as HR image. B and B∗ are implemented with kernel blur, while D and D∗

are realized with kernel down and up respectively.

4.5 Experimental Results

This section presents the performance evaluation of the proposed approach, which is divided
into two parts. In the first part, we analyze the reconstruction quality of the proposed
algorithm and the performance of the GPU implementation of the iterative solvers including
gradient descent and ADMM. In the second part, we compare our approach with the related
works concerning super-resolution and acceleration performances.

4.5.1 Evaluation of LFSR Computational Framework

Light field scenes from 4D synthetic dataset [91] are employed to evaluate the robustness
of the SR model and analyze the convergence of iterative solvers. This dataset is selected
since it includes plenty of scenery and provides accurate disparity maps. We follow the
degradation model discussed in Sec. 4.1 to prepare the input data with two test scaling
factors, i.e.,×2,×4. The observation noises are parameterized by 𝜎 and a , which respectively
denotes the standard deviation of Gaussian noise (i.e., N(` = 0, 𝜎)) and the percentage of

82 4. GPU-Accelerated 4D Light Field Super-resolution

(a) (b) (c)

Figure 4.9: Regularization weights calculation for LF scene ‘boardgames’; top row: full size
image and weights are; bottom row: zoom-in region marked by blue rectangle;
(a) Ground-truth image; (b) weights at the 1st iteration; (c) weights at the 10th
iteration

impulse noise (i.e., salt and pepper). In order to match the practical use cases in which the
high-resolution disparity maps are not available, the provided disparity maps are down-
scaled by the same factor as of the test case (i.e.,×2,×4) and then are interpolated back to
the original size and used in the warping functions.

The regularization weights computed for the scene ‘boardgames’ are shown Figure 4.9. It is
expected that a strong weighting is applied to the region where high-frequency information
is occupied (i.e., texture edges, occlusions). The regularization weight is a combination
of spatial weight (𝑤𝑑), edge weight (w𝑒), and occlusion weight (w𝑜). To strengthen
the regularizing effect, the weights are recomputed for each ADMM iteration using the
current computed super-resolution image x. When the optimization starts, x is initialized
to a bi-cubic up-sampling of the low-resolution image. This explains the blur edges of
regularization weights at iteration 1, as shown in Fig. 4.9 (b). However, it could be observed
after each ADMM iteration that the qualities of x and regularization weight are gradually
improved. As shown in Fig. 4.9 (c), the regularization weight after 10 ADMM iterations
capture well the high-resolution structure of the reconstructed scene.

Fig. 4.10 visualizes the SR result for the×4 test case of LF scene ‘dishes’. We employed 17
LR sub-aperture images as inputs to calculate the cost function in Eq. 4.14 which is then
solved by ADMM iterative solver. The SAIs are picked up from 5×5 angular views in a star-

4.5. Experimental Results 83

(a) (b) (c) (d)

Figure 4.10: ×4 super-resolution of LF scene ‘dishes’ (𝜎 = 1, a = 1%); top row: full size
image; bottom row: zoom-in of region marked by blue rectangle; (a) Ground-
truth image; (b) bi-cubic up-sampling (21.72 dB); (c) 1 ADMM iteration
(24.96 dB) (d) 5 ADMM iteration (29.53 dB)

like structure. As compared to the bi-cubic up-sampling image used as an initial solution
(Fig. 4.10 (b)), the reconstructed HR image after the first ADMM iteration (Fig. 4.10 (c))
demonstrates an obvious improvement in visibility. Although the noise effect from the
combination of multiple SAIs is still visible, it is possible to observe the texture content
(i.e., small characters in the middle of the zoom-in region). After 5 ADMM iterations, the
noise effect is removed, resulting in a significant enhancement in visual quality with 4.6dB
and 7.8dB improvement as compared to the 1st iteration’s solution and the initial solution,
respectively.

To evaluate the contribution of ℓ1 and ℓ2 data terms in reconstructing HR perspective
image under mix-noise condition, we prepare a test case in which LR Light field is severely
damaged by noise effects, see Fig. 4.11. While keeping the regularization part unchanged,
we tuned data fidelity parameters (_1, _2) to find a solution with the highest PSNR score
for each model (i.e., ℓ1, ℓ2, ℓ1 + ℓ2). We observed that using only ℓ2 data fidelity tends to
oversmooth the solution due to the effect of the ℓ2 norm. Although ℓ1 data fidelity well
preserves the sharp edge structure, it also carries the effect of the noisy pixels into the
solution. The proposed mix-noise data term combines the impacts of both ℓ2 norm and ℓ1
norm and provides a better reconstruction quality.

The number of input LR images plays an important role in the quality of the reconstructed
HR image. Although demanding higher computation resources, we observed that more
input SAIs tend to provide higher reconstruction qualities. Fig. 4.12 reports the ×4 super-

84 4. GPU-Accelerated 4D Light Field Super-resolution

LR (PSNR/SSIM) 1 (29.72/0.685)

2 (31.91/0.786) 1 + 2 (32.07/0.789)

Figure 4.11: ×2 super-resolution of LF scene ‘medieval2’ (𝜎 = 10, a = 1%); left : a cropped
noisy LR input; right: four zoom-in of the marked region from an LR input
and three different configurations of data fidelity term.

(a) (b) (c) (d) (e) (f) (g)

Figure 4.12: Super-resolution ×4 results of LF scene ‘vinyl’ under different number of
inputs. top full size HR image; bottom zoom-in of marked region; (a) Ground-
truth image; (b) bi-cubic upsampling (24.04dB); (c) 3 SAIs (27.55dB); (d)
5 SAIs (29.33dB); (e) 9 SAIs (30.54dB); (f) 25 SAIs (31.65dB); (g) 49 SAIs
(32.09dB).

resolution results of LF scene ‘vinyl’ where different numbers of LR sub-aperture images
are used. As can be seen from the figure, giving more input images to the computational
problem (Eq. 4.14) results in a better visual quality of HR solutions, which is also evident
from the reported PSNR scores. Specifically, an improvement of 3.5dB as compared to
bi-cubic up-sampling can be achieved with three input images. When increasing the number
of LR images to 5, 9, 25, and 49, we observed an incremental gains of 1.8dB, 1.2 dB, 1.1
dB and 0.44 dB, respectively.

4.5. Experimental Results 85

0 50 100 150 200 250 300
Computation

102

2 × 102

3 × 102

4 × 102

6 × 102
Lo

ss
admm-5
admm-10
gd
gd-ls

Figure 4.13: Optimization results of different solvers

In order to compare the convergence of the iterative solvers, we employ the matrix transform
functions (i.e.,𝐴,𝑆) and their adjoint versions (i.e., 𝐴ᵀ, 𝑆ᵀ) as computation units (CU).
As derived in Sec. 4.3, these transforms are the most dominant computation tasks and
exist in every iterative step. Each CU is either a combination of 𝐴 and 𝑆 as for computing
the cost function J or 𝐴ᵀ and 𝑆ᵀ as for computing the gradient ∇J. In this experiment,
we built a cost function for ×2 SR problem of LF scene ‘vinyl’ and applied four different
configurations of the iterative solvers to optimize it. The first two are gradient descent
solver (GD) without and with line search denoted as gd and gd-ls respectively. The last
two are ADMM solvers in which we configure the maximum number of conjugate gradient
steps to 5 (admm-5) and 10 (admm-10). Fig. 4.13 presents the plot of the loss function
against the accumulated CU. Providing a good step size, GD without line search can make
a rapid reduction in the cost function for the first few iterations. However, due to the fixed
step size, the GD cannot optimize the loss function further after 80 CUs. In contrast, gd-ls
seems slow at the beginning due to the search for an appropriate step size but is able to
surpass gd at around 100 CUs and approach the global minimum after around 300 CUs.
Avoiding the costly line-search tasks, both configurations of the ADMM solver demonstrate
a superior convergence rate as compared to GD. We also observed that setting the maximum
number of conjugate descent steps to 5 does shorten the computation effort for the first
few iterations. However, at later iterations when the early stop condition is satisfied, i.e.,
Algorithm 5 line 5, both settings result in a similar performance.

The proposed computation framework can also be applied to a more challenging image
condition such as motion blur. In such a case, the motion blur can be modelled by a

86 4. GPU-Accelerated 4D Light Field Super-resolution

(a) (b) (c) (d) (e)

Figure 4.14:×2 super-resolution result of LF scene ‘vinyl’ degraded by motion blur. (a)
a cropped of ground truth with two marked region and motion blur kernel
shown at top left corner; (b) zoom-in of ground truth image; (c) bi-cubic
initial image (26.86dB); (d) after 1𝑠𝑡 ADMM iteration (30.27dB); (e) after
10𝑡ℎ ADMM iteration (35.43dB).

convolutional kernel as a realization of the linear operator B (see Fig. 4.2). Fig. 4.14 shows
our×2 SR result for low-resolution LF input degraded by a 45 degree motion blur. The
blur kernel is shown on the top left corner of Fig. 4.14(a) and two zoom-in regions of the
bi-cubic upsampling of degraded low-resolution SAI are shown in Fig. 4.14(c). Taking
25 SAIs as inputs to our reconstruction algorithm, we can achieve more than a 3 dB
improvement in PSNR score after one ADMM iteration. The high-resolution LF image is
well reconstructed after 10𝑡ℎ ADMM iterations with clear texture information and motion
trace.

4.5.2 Evaluation of GPU-based Gradient Descent Solver

In this section, we discuss the evaluation of the GPU-accelerated gradient descent solver.
The scene ‘dino’ is employed in this experiment. This synthetic scene contains various
sharp-edged objects placed at different depths, hence it is suitable for testing the estimated
disparity maps and the use of them for super-resolution. Bicubic interpolation is used
as a baseline super-resolution method for quality comparison. The accelerated solver
is implemented using the OpenCL 1.2 framework and deployed on two GPU platforms:
GeForce GTX 1080 Ti GPU and GeForce GTX 680. The same algorithm is implemented and

4.5. Experimental Results 87

0.0 0.5 1.0 1.5 2.0
Time (s)

29.5

30.0

30.5

31.0

31.5

32.0

32.5

33.0

P
S
N

R
 (

d
b
)

t= 0. 035

t= 0. 082

t= 1. 045

Y-RGB
RGB
Bicubic

Figure 4.15: Rate distortion curve of Y-RGB and RGB strategies running on GeForce GTX
1080 Ti

executed on CPU devices to measure the speeding up of the proposed approach. In this
experiment, parameters are set as follow, _ = 0.7 , 𝛼 = 0.04, |N𝑤 (u) | = 1 (Eq. 4.9). The
number of iterations is varied to see the changes in output quality which is measured by
the Peak Signal to Noise Ratio (PSNR).

The ‘dino’ 4D light field data has the resolution of 9 × 9 × 512 × 512 in which 9 × 9
denotes the directional resolution (81 viewpoints in total) and 512 × 512 denotes the
spatial resolution (or the resolution of each sub-aperture image). In order to prepare the
low-resolution 4D light field for our experiment, the original 4D light field is spatially
downsampled by a factor of 4. Therefore, the input 4D light field has the resolution
of 9 × 9 × 128 × 128. The disparity estimation algorithm is applied to this input data
to extract a set of disparity maps associated with each of the viewpoints (81 in total).
These disparity maps are then upsampled by a factor of 4 so that they can be used in our
warping kernel. For each low-resolution sub-aperture image, the extra 4 direct neighbors
of it are employed as the input for the super-resolution algorithm. For example, let
𝜽0 =

[
4 4

]𝑇 is the directional index of the low-resolution image of which the high-
resolution image is going to be estimated, this image along with the other 4 images at
directional indexes

{ [
3 4

]𝑇
,
[
5 4

]𝑇
,
[
4 3

]𝑇
,
[
4 5

]𝑇 }
will become the input for the

super-resolution algorithm. In total, there are 5 low-resolution images and 5 disparity
maps associated with them are used for super-resolution. Without using the ground-truth
disparity map, we observe that this is the best number of input images which gives a good

88 4. GPU-Accelerated 4D Light Field Super-resolution

(a) (b) (c) (d) (e) (f) (g)

Figure 4.16: Light field image 4× super-resolution results. (a) Ground-truth high-resolution
sub-aperture image with two region of interests marked with red rectangles.
(b) Estimated disparity map. (c-g) are the zoom-in images of the two marked
regions on the ground-truth image, high-resolution images generated by
bilinear, bicubic, Y-RGB and RGB approach, respectively

quality high-resolution image. More input images will result in worse quality due to the
error introduced by estimated disparity maps.

For RGB color image super-resolution, two strategies are applied. The first strategy is
transforming the RGB input light field to YCbCr color space and applying super-resolution
algorithm only on Y channel. This strategy is motivated by the fact that Cb and Cr channels
are responsible for chrominance information which contributes less to the sharpness of
a color image. By applying the super-resolution on only a single color channel, further
speeding up can be achieved with an acceptable reduction in the quality of a high-resolution
image. In this strategy, the RGB 4D light field is first transformed to YCbCr color space.
The Y channel images are extracted and super-resoluted using the proposed GPU-based
architecture. The Cb and Cr channel images are simply upsampled by using bilinear
interpolation. The super-resoluted Y channel images are then combined with Cb and
Cr channel images and transformed back to RGB color space. The second strategy is
applying super-resolution algorithm on 3 color channels (i.e. R, G, B channels) separately.
This approach requires a higher computation time compared to the previous strategy but
provides a higher quality output. The first strategy and the second strategy are labeled as
’Y-RGB’ and ’RGB’ respectively.

Fig. 4.15 compared the output quality of the two strategies in term of runtime and psnr
value. The psnr of the upsampled high-resolution image using bicubic interpolation is 30.42.
Our GPU-based implementation of Y-RGB and RGB can quickly pass this baseline result
at 0.035s and 0.082s respectively. As expected, the Y-RGB strategy requires less time for
computation and scores better for high-speed constraint (less computation time) compared
to RGB strategy. However, RGB can achieve better quality output if enough computation

4.5. Experimental Results 89

time is given. The RGB strategy begins to get higher psnr than Y-RGB after 1.045s and
continue increasing.

Table 4.3: The computation time comparison of 4D light field super-resolution on different
platforms. The time is measured for a single gradient step.
Strategy Platform Time (ms) Speed-up
Y-RGB 2.2Ghz Intel Core i5 993 1.0

Y-RGB NIVIDA Geforce GTX 680 9.17 108.28
NIVIDA Geforce GTX 1080i 4.87 203.90

RGB NIVIDA Geforce GTX 680 28.17 35.25
NIVIDA Geforce GTX 1080i 13.94 71.23

Table 4.3 reports the computation time of super-resolution algorithm running on different
platforms. The computation time is measured for a single steepest gradient descent step.
Compared to Y-RGB strategy implemented for Intel CPU, the implementation of the same
strategy executed on GTX 680 and GTX 1080i can achieve the speeding up by the factor of
108× and 203× respectively. RGB strategy generally requires 3× more time than Y-RGB, but
it is still faster than the CPU-based implementation of Y-RGB by 35× and 71× when executed
on GTX 680 and GTX 1080i respectively. It is also noticeable that the execution time of
GTX 1080i is almost 2× shorter than that of GTX 680. This is reasonable since the first GPU
device is more powerful than the second. GTX 1080i possesses 2.3× more computation
units (CUDA cores) and 1.5× faster clock frequency than GTX 680.

Fig. 4.16 compared the high-resolution images calculated by the GPU-based implementation
of proposed strategies (Y-RGB and RGB) and the two baseline methods: bilinear and bicubic
interpolations. It can be seen from the figure that our estimated high-resolution image
possesses higher visual quality than the interpolation methods. Looking closely at the
two zoom-in regions, the proposed approach provides sharper images with more details
compared to bicubic and bilinear interpolations. Comparing between Y-RGB and RGB
strategies, the RGB strategy provides even a better visual quality, especially in regions
where color changes are high.

4.5.3 Performance Analysis of GPU-based ADMM solvers

For analyzing the performance improvement of the proposed GPU accelerated approach, we
perform an evaluation of three realization strategies of ADMM iterative solvers. Fig. 4.18
reports the cumulative execution time of the three GPU implementations. The initial GPU
implementation (i.e., buf) is considered as a baseline, in which a 1D buffer object is used

90 4. GPU-Accelerated 4D Light Field Super-resolution

Ground Truth Input SAI De-resLF De-3DVSR DRLF Ours

Figure 4.17: Visual comparisons of LFSR approaches under various mixed noise settings.
From top to bottom (‘scene’ - 𝜎/a): ‘Rooster-clock’ - 20/0; ‘Coffee-beans-vases’
- 20/5; ‘Smiling-crowd’ - 50/0; ‘Dishes’ - 50/20.

for holding variable and input data in GPU global memory. In the second implementation,
denoted as 𝑖2𝑑 , 1D buffer objects are replaced by Image2D objects. This allows us to make
use of the texture cache provided in GPU architecture for speeding up access to image-like
data. The third implementation, denoted as 𝑖2𝑑_𝑙𝑜𝑐𝑎𝑙 takes advantage of local memory
for buffering and sharing data within a work-group. Since local memory is close to the
computing unit, this provides a high-speed data pool for kernel tasks which frequently
require access to multiple neighbor pixels (i.e. blurring, warping). For this experiment, we
use 5×5 angular views as input for×4 SR to a spatial resolution of 512×512. The number of
ADMM iterations and CG iterations is set to 10 and 5, respectively. The execution time of the
ADMM solver can be divided into three parts. The 𝑖𝑜 part covers the time for transferring
input data from CPU memory into GPU global memory and reading back the reconstructed
HR image from GPU to GPU memory. The𝑤𝑧 − 𝑠𝑡𝑒𝑝 part represents the computation time

4.5. Experimental Results 91

buf i2d i2d_local
0

500

1000

1500

2000

2500

3000

3500

Ti
m

es
 (m

s)

3105

2500

1773

io
wz-step
x-step

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ee

d
up

1.2x

1.8x

Figure 4.18: Cumulative execution time and speed-up after each optimization

of updating w and z in an ADMM iteration, while 𝑥 − 𝑠𝑡𝑒𝑝 part measures the time to solve
for x by applying conjugate gradient descent technique, see Fig. 4.6. As could be seen
from Fig. 4.18, the IO time only accounts for a small amount of overall execution time,
while most of the time is spent on 𝑥 − 𝑠𝑡𝑒𝑝 and𝑤𝑧 − 𝑠𝑡𝑒𝑝. As compared to the 𝑏𝑢𝑓 version,
the texture cache provided by Image2D object 𝑖2𝑑 does shorten the computation time of
ADMM solver by a factor of 1.2×. The local memory sharing technique further speeds up
the computation time by a factor of 1.8×.

The advantage of using the OpenCL framework is that the accelerated solver can be
executed on various platforms. Fig. 4.19 shows the execution time of 𝑖2𝑑_𝑙𝑜𝑐𝑎𝑙 on various
GPU platforms. In this test, we vary the number of input LR images: 9, 25, 49, and 81,
which are denoted as 3 × 3,5 × 5,7 × 7, and 9 × 9, respectively. The regularization window
size is configured to 5 × 5, and the number of conjugate gradient steps is set to 5. For each
case, we measure the execution time of a single ADMM iteration and compare it to the CPU
implementation, executed on i7-5820K 3.30GHz. In general, we observed a higher speed
up as compared to CPU execution when more input images are provided. The speedup
ranges from 21× to 42× in the case of 3× 3 inputs and from 32× to 75× in the case of 9× 9
inputs.

92 4. GPU-Accelerated 4D Light Field Super-resolution

GTX 1080Ti Radeon R9 390 GTX 680 Tesla K10
0

50

100

150

200

250

300
ru

nt
im

e
(m

s)

3x3 5x5 7x7 9x9

20

30

40

50

60

70

80

90

sp
ee

du
p

40

23

35

26

55

38

47

35

70

53
57

41

77

66

62

43

Figure 4.19: Execution time of GPU-based ADMM solver under different number of inputs
on various OpenCL platforms

4.5.4 Comparison to LFSR Approaches

In this section, we evaluate the performance of the proposed method under severe mixed
noise conditions and compare it to the related approaches (i.e., resLF [61], DRLF [118],
and 3DVSR [27]). These approaches currently provide state-of-the-art performance in
reconstructing high-resolution LF images. To the best of our knowledge, only DRLF [118]
supports LFSR with noisy input. For the evaluation, we randomly select five scenes from
the Inria LF dataset [15]. For each scene we generate low resolution LF (×2) and insert
noises with four configurations, (𝜎=20, a=0%), (𝜎=20, a=5%), (𝜎=50, a=0%), (𝜎=50, a=20%).
These Gaussian noise settings are selected due to the pre-trained weights published by
DRLF. DRLF needs different trainings for dealing with different noise conditions, and there
are only three pre-trained weights published for three Gaussian noise configurations 𝜎=10,
𝜎=20, and 𝜎=50. In addition, DRLF does not directly process noisy LR inputs. It provides
separate networks for de-nosing and super-resolution. Therefore, we applied first their
de-noising network to noisy LR inputs and then applied their SR network to the de-noised
LR outputs. In this way, we are able to evaluate the performance of the other two state-
of-the-art LFSR approaches (i.e., resLF [61], 3DVSR [27]) using the de-noised LR output
from DRLF.

The experimental results are reported in Table 4.4 and visualized in Fig. 4.17. For the two
approaches, resLF and 3DVSR, which do not support noisy LF input, we generate de-noised

4.5. Experimental Results 93

LF with DRLF and use it as an input to resLF and 3DVSR. These results are denoted as
De+resLF and De+3DVSR respectively. For all noise settings, our approach provides the best
reconstruction quality in terms of PSNR. For mixed noise settings, the proposed method
achieves an averagely highest SSIM score as compared to the other approaches. These
high scores pay tribute to the robustness of the proposed model in which de-noising and
super-resolution are jointly resolved. Without de-nosing resLF and 3DVSR completely fails
to reconstruct a good quality HR image. In practice, they up-scale not only the texture but
also the existing noise. Their scores are, therefore, even worse as compared to bi-cubic
upsampling approach in which noises are blurred out. From Fig. 4.17, it is evident that the
reconstructed HR image from the other approaches is over-smoothed while our approach
preserves well the texture content and high-frequency information, e.g., and object edges
in Dishes scene, background pattern in Smiling-crowd scene. Since DRLF supports only
Gaussian noise, it fails to recognize impulse noise in the LR input. The impulse noise
is either ignored, i.e., when Gaussian noise level is low, or mistreated, i.e., in a severe
Gaussian noise setting. Consequently, the reconstructed HR images are presented with
noisy traces, i.e., Coffee-beans-vases scene or losing texture detail, i.e., the flower bud in

Table 4.4: Quantitative comparison of LFSR approaches under various mixed noise
settings.

Noise Scenes BIC resLF De+resLF 3DVSR De+3DVSR DRLF Ours
(𝜎/a) (psnr/ssim) (psnr/ssim) (psnr/ssim) (psnr/ssim) (psnr/ssim) (psnr/ssim) (psnr/ssim)

20/0

Dishes 22.63/0.378 21.20/0.316 28.80/0.886 19.32/0.252 28.74/0.891 28.71/0.888 30.47/0.846
Rooster-clock 22.81/0.375 21.24/0.304 30.73/0.864 19.36/0.241 31.15/0.879 30.84/0.881 31.48/0.798

Coffee-beans-vases 21.55/0.507 20.41/0.453 25.24/0.801 18.86/0.389 25.51/0.812 25.62/0.818 26.31/0.801
Smiling-crowd 21.81/0.493 20.56/0.428 25.93/0.836 18.84/0.359 26.11/0.853 25.97/0.851 29.27/0.832
Electro-devices 22.67/0.322 21.17/0.260 28.41/0.824 19.28/0.201 28.67/0.836 28.26/0.823 30.74/0.793

mean 22.29/0.415 20.91/0.352 27.82/0.842 19.13/0.288 28.04/0.854 27.88/0.852 29.66/0.814

20/5

Dishes 18.89/0.283 17.51/0.234 26.15/0.671 15.31/0.177 25.31/0.629 26.18/0.663 30.36/0.843
Rooster-clock 19.19/0.267 17.69/0.212 27.91/0.710 15.42/0.158 27.18/0.680 27.80/0.720 31.39/0.794

Coffee-beans-vases 18.25/0.394 16.99/0.342 23.56/0.646 14.96/0.274 23.13/0.625 23.81/0.652 26.22/0.797
Smiling-crowd 18.14/0.383 16.86/0.329 23.97/0.693 14.53/0.249 23.17/0.658 23.86/0.695 29.12/0.829
Electro-devices 18.93/0.231 17.51/0.184 26.00/0.631 15.30/0.135 25.29/0.595 25.76/0.621 30.65/0.789

mean 18.68/0.312 17.31/0.260 25.52/0.670 15.10/0.199 24.82/0.638 25.48/0.670 29.55/0.810

50/0

Dishes 16.11/0.162 14.56/0.129 20.81/0.819 11.81/0.086 20.51/0.818 20.62/0.821 27.74/0.715
Rooster-clock 15.90/0.133 14.28/0.101 21.62/0.787 11.43/0.065 21.36/0.789 21.28/0.793 28.55/0.669

Coffee-beans-vases 15.92/0.246 14.44/0.196 19.85/0.693 11.83/0.138 19.69/0.694 19.71/0.709 24.26/0.672
Smiling-crowd 16.28/0.247 14.80/0.203 19.02/0.686 12.13/0.146 18.88/0.695 18.91/0.692 26.40/0.717
Electro-devices 15.99/0.120 14.41/0.093 21.10/0.743 11.60/0.062 20.92/0.745 20.81/0.732 28.20/0.662

mean 16.04/0.182 14.50/0.145 20.48/0.746 11.76/0.100 20.27/0.748 20.27/0.749 27.03/0.687

50/20

Dishes 13.00/0.094 11.78/0.075 18.87/0.743 9.50/0.047 18.66/0.736 18.85/0.745 26.89/0.704
Rooster-clock 13.23/0.080 11.91/0.061 19.76/0.721 9.48/0.038 19.56/0.714 19.40/0.721 27.80/0.675

Coffee-beans-vases 12.78/0.145 11.61/0.115 17.82/0.622 9.45/0.077 17.69/0.618 17.60/0.635 23.78/0.674
Smiling-crowd 12.66/0.148 11.52/0.121 16.44/0.621 9.44/0.083 16.33/0.622 16.39/0.625 25.54/0.721
Electro-devices 13.05/0.068 11.78/0.053 19.40/0.690 9.45/0.033 19.25/0.684 19.09/0.677 27.44/0.656

mean 12.94/0.107 11.72/0.085 18.46/0.680 9.46/0.056 18.30/0.675 18.26/0.681 26.29/0.686

94 4. GPU-Accelerated 4D Light Field Super-resolution

GT (PSNR/SSIM) MI Int. (28.44/0.868)

FL-MISR (32.99/0.936) Ours (33.53/0.943)

GT (PSNR/SSIM) MI Int. (26.19/0.688)

FL-MISR (30.54/0.876) Ours (30.81/0.877)

Figure 4.20: HR reconstruction results of DIV8K dataset [98]. left×2 results of image 0002;
right×4 results of image 0084.

Dishes scene.

4.5.5 Comparison to GPU-Accelerated Approach

Table 4.5: Evaluation of parallel computing approach for MISR problem on 8-bit natural
images in DIV8K dataset. MI Int.: Multi-image interpolation (56 cores Intel
Xeon Gold 5120), FL-MISR [64] (4 GTX 1080i), ours (1 GTX 1080i).

Image Index 0001 0002 0007 0027 0055 0066 0084
Resolution of GT 5376×5760 5568×5760 1920×2880 2112×2880 5760×5760 1920×2880 5760×3840

Upscaling 2×
MI Int. PSNR/SSIM 30.49/0.9215 28.44/0.8677 33.68/0.8810 28.37/0.8988 33.80/0.9018 35.21/0.9296 29.11/0.8277Runtime (𝑠) 0.51 0.52 0.11 0.20 0.53 0.11 0.36
FL-MISR PSNR/SSIM 37.11/0.9620 32.99/0.9360 35.09/0.9111 33.21/0.9417 38.03/0.9564 37.12/0.9452 34.13/0.9410Runtime (𝑠) 1.50 1.29 0.69 0.71 1.3 0.66 1.21
Ours PSNR/SSIM 37.24/0.9713 33.53/0.9430 35.42/0.9220 33.73/0.9497 38.13/0.9616 37.51/0.9539 34.60/0.9454

Runtime (𝑠) 0.92 1.14 0.15 0.24 0.72 0.18 0.83
Upscaling 3×

MI Int. PSNR/SSIM 26.74/0.8460 25.65/0.7749 32.03/0.8395 25.15/0.8212 30.79/0.8153 32.65/0.8968 26.19/0.6883Runtime (𝑠) 1.00 0.99 0.11 0.13 0.55 0.11 0.38
FL-MISR PSNR/SSIM 33.24/0.9446 29.43/0.8941 33.99/0.8941 30.17/0.9139 35.90/0.9379 36.06/0.9398 30.54/0.8764Runtime (𝑠) 1.78 1.73 0.32 0.38 1.93 0.35 1.65
Ours PSNR/SSIM 33.39/0.9517 30.04/0.9017 34.50/0.8984 30.57/0.9293 36.22/0.9402 36.35/0.9447 30.81/0.8774

Runtime (𝑠) 1.13 1.17 0.23 0.25 1.22 0.23 0.84

As discussed in Sec. 4.1, the proposed framework shares a similar setup as a multi-frame
super-resolution problem and indeed can be applied as well for this kind of problem. To
evaluate the performance of our accelerated framework, we conducted an experiment
on the natural image dataset DIV8K [98] and compared to recent related work on the
field (FL-MISR [64]). We follow the experimental setup described in [64] to prepare the
low-resolution images and perform the HR image reconstruction with our accelerated solver.
Particularly, we pick up seven images from DIV8K dataset and generate, for each of them,

4.6. Summary 95

four LR images for×2 SR and nine LR images for×3 SR. The shifting of×2 and×3 image sets
are respectively 1

2px and 1
3px. Since FL-MISR use ℓ1 data fidelity and BTV regularization in

their model, we turn off our ℓ2 term and configure nonlocal weighting (i.e.𝑊d) to match
BTV condition. The accelerated ADMM iterative solver is then executed to minimize the cost
function in Eq. 4.14. For a fair comparison, we stop our iterative solver as soon as the quality
of the reconstructed image is comparable to FL-MISR and measure the execution time.
Quantitative evaluation results are listed in Table 4.5, while visual comparison are shown
in Fig. 4.20. From the table, it is obvious that our GPU accelerated solver outperforms
FL-MISR in processing speed for all test cases while providing a better reconstruction
quality. As compared to FL-MISR, our GPU-based solver achieves an average speed-up of
2.46× and 1.57× for up-scaling×2 and up-scaling×3 respectively. This performance boost
tributes to the effectiveness of ADMM solver and the realization strategy of transformation
matrices (𝐴𝑘, 𝑆d). In contrast to FL-MISR, which chooses to implement 𝐴𝑘, 𝑆d with sparse
matrices, our approach takes advantage of linear functions (i.e.,W,B,D) to optimize
GPU memory and computation resource. Therefore, our GPU-based solver can fit well
within a single GTX 1080i GPU, while FL-MISR needs four of them to solve the same
problem.

4.6 Summary

This chapter presents a GPU-accelerated computational framework for reconstructing
high-resolution perspective image from 4DLF data under mixed Gaussian-Impulse noise
conditions. The proposed SR model derived from a statistical perspective takes advantage
of a joint ℓ1 − ℓ2 data fidelity term for dealing with mixed noise conditions and weighted
non-local total variation for enforcing LF image prior. Our approach combines the de-noising
effect and SR reconstruction into a single optimization problem which, as shown in the
experimental results, allows us to surpass the current state-of-the-art approaches in which
de-noise and SR problems are resolved separately. The non-smooth convex optimization
problem resulting from the proposed SR model is effectively solved by ADMM algorithm.
By transforming the minimization of ℓ1 − ℓ2 − ℓ1 mixture cost function into least square
approximation and proximal operator problems, ADMM overcomes the main problem of
gradient descent technique in finding a suitable step-size. We showed that GPU acceleration
is well-suited to speeding up the iteratively solving process. To verify the robustness of the
proposed SR model and evaluate the performance of the accelerated optimizer, an extensive
experiment is conducted on 4D synthetic LF dataset and high-resolution natural image
dataset. The experimental results show that the proposed approach outperforms the previ-
ous work in accelerating the super-resolution task and optimizing GPU resources. While

96 4. GPU-Accelerated 4D Light Field Super-resolution

providing a better reconstruction quality, our accelerated framework provides an average
speed up of 2.46× and 1.57× for×2 and×3 SR tasks, respectively. The accelerated solver
achieves a speedup of 77× as compared to CPU implementation.

Ch
ap
te
r 5

EPI Volume-based High-Resolution
Light Field Reconstruction

This chapter presents a deep learning-based approach for reconstructing high resolution
4DLF. Its main contribution is threefold. First, a novel 3D EPI volume-based framework for
addressing various LF SR problems, i.e., ASR, SSR, and ASSR are developed. Specifically,
the framework comprises two consecutive stages, i.e., preliminary up-sampling stage and
volume-based enhancement stage. The first stage allows different options to be used for
up-sampling the input volume to the desired resolution. Then, in the second stage, the novel
EVRN corrects the high-frequency information by incorporating both spatial information in
SAI and angular information in 2D EPI to reconstruct a high-quality LF image. Secondly,
a simple but effective deep CNN model is proposed for preliminary up-sampling angular
dimensions. Although its output quality is later greatly improved by EVRN, this model
itself already surpasses existing approaches in ASR. Thirdly, an extensive evaluation is
conducted on 90 challenging synthetic and real-world LF scenes from 7 public LF datasets.
In this evaluation, we analyzed the performance of the proposed approach and compared
it to state-of-the-art approaches. Parts of the results of this chapter have been published
in [27].

5.1 Problem Statement and Notation

For a better observation and analysis, various ways to visualize 4D LF are introduced in
the literature. Common visualizations are using 2D slices, i.e., sub-aperture image (SAI),

97

98 5. EPI Volume-based High-Resolution Light Field Reconstruction

angular patch image (API), or epipolar image (EPI). By fixing the directional index 𝜽 = 𝜽𝑖
or the spatial index z = z𝑖 , one can respectively obtain a SAI 𝐿𝐿𝐿(z, 𝜽𝑖) or an API 𝐿𝐿𝐿(z𝑖, 𝜽).
Fig. 1.1 (b),(c) are examples of a sub-aperture image and an angular patch extracted from
a 4D synthetic light field image, dino [4]. The resolution of this light field is 512×512×9×9,
where 512×512 is the spatial resolution and 9×9 is the angular resolution. The angular
patch consists of pixels, each at the same spatial location z𝑖 = (78, 170)𝑇 on a sub-aperture.
An EPI can be acquired by fixing one index in the spatial plane and one index in the angular
plane while varying the remaining two indices. By fixing vertical indices, i.e., 𝑦=𝑦𝑖, 𝜏 =𝜏𝑖 ,
we have the horizontal EPI 𝛴𝑦𝑖 ,𝜏𝑖 (𝑥, 𝜌) = 𝐿𝐿𝐿

(
[𝑥,𝑦𝑖]𝑇 , [𝜌, 𝜏𝑖)]𝑇

)
. A similar procedure applies

to vertical EPI 𝛴𝑥𝑖 ,𝜌𝑖 (𝑦, 𝜏). Fig. 5.1 illustrates the two types of EPIs.

As pointed out in [24], a point in 3D space is projected onto a line in EPI whose slope is
decided by the depth of this point. For example, in Figure 5.1 the point located at (𝑥𝑖, 𝑦𝑖)
projected onto two lines in horizontal EPI (𝛴𝑦𝑖 ,𝜏𝑖) and vertical EPI (𝛴𝑥𝑖 ,𝜌𝑖). Notice that all
letters crossed by the line𝑦 = 𝑦𝑖 (i.e., dotted green line) reside on the same depth and result
in identical slope in horizontal EPI 𝛴𝑦𝑖 ,𝜏𝑖 . This property of EPI represents the geometric
information of the scene and was exploited in many LF image processing applications (i.e.
disparity estimation [24,26], super-resolution [24,57]). In this work, we consider a 3D
version of EPI, namely EPI volume [26], in which the second spatial dimension is added.
The intuition behind this volume data is the combination of both spatial coherence (i.e. 𝑥 vs.
𝑦) and EPI coherence (i.e. 𝑥 vs. 𝜌) that can be employed for reconstructing high-quality LF
image. Horizontal EPI volume𝑉𝑉𝑉 𝜏𝑖 and vertical EPI volume𝑉𝑉𝑉 𝜌𝑖 are defined in Equation 5.1.
An EPI volume is an orthogonal 3D slide through 4D LF and can be considered as a stack of
2D EPI along a spatial axis, e.g.,𝑉𝑉𝑉 𝜏𝑖 is constructed by stacking horizontal EPI 𝛴𝑦𝑖 ,𝜏𝑖 along
spatially vertical axis 𝑦.

𝑉𝑉𝑉 𝜏𝑖 : ℝ
3 → ℝ, (𝑥, 𝜌,𝑦) → 𝐿𝐿𝐿

([
𝑥

𝑦

]
,

[
𝜌

𝜏𝑖

])
𝑉𝑉𝑉 𝜌𝑖 : ℝ

3 → ℝ, (𝑦, 𝜏, 𝑥) → 𝐿𝐿𝐿

([
𝑥

𝑦

]
,

[
𝜌𝑖

𝜏

]) (5.1)

Let us define that 4D LF image has the resolution of𝑊×𝐻×𝐴×𝐴, where 𝐻,𝑊 ∈ ℕ+ re-
spectively represent the height and width of each SAI and 𝐴=2𝐾 + 1, 𝐾 ∈ℕ+ denotes the
angular resolution. The resolutions of 𝜌-axis and 𝜏-axis are set equally, since this square
array of views is commonly used in literature [52,54,57,59–61] and available in public
dataset [4,14–19]. The resolution of horizontal EPI volume𝑉𝑉𝑉 𝜏𝑖 and vertical EPI volume
𝑉𝑉𝑉 𝜌𝑖 are then𝑊×𝐴×𝐻 and 𝐻×𝐴×𝑊 respectively.

5.2. EPI Volume-based LF Super-Resolution 99

x
y

τ
y

Σxi,ρi

x
ρ

Σyi,τi

(xi, yi)

(yi, τi)

(xi, ρi)

Figure 5.1: 2D EPI projection of 4D LF scene horses [14]. top-left SAI at 𝜽𝑖 = [𝜌𝑖, 𝜏𝑖]𝑇 ;
top-right vertical EPI (𝛴𝑥𝑖 ,𝜌𝑖); bottom horizontal EPI (𝛴𝑦𝑖 ,𝜏𝑖).

5.2 EPI Volume-based LF Super-Resolution

5.2.1 Overview of the Proposed Approach

The proposed approach targets the super-resolution of 3D projected versions of a 4D LF
image. Instead of directly upsampling a 4D LF image (e.g, SR4D [60]), we first decompose it
into a complete set of 3D EPI volumes. Each EPI volume is then super-resolved to its desired
resolution. The high-resolution sets of EPI volumes are finally merged to form the final high-
resolution 4D output. Fig. 5.2 illustrates the overall process of the proposed EPI volume
SR framework. The framework is comprised of two main processing stages: a preliminary
up-sampling stage and a volume enhancement stage. The first stage involves two tasks:
preliminary spatial super-resolution (PSSR) and preliminary angular super-resolution
(PASR). The second stage includes an EPI volume-based refinement network (EVRN).
Given a 3D EPI volume (𝑉𝑉𝑉 𝑙) with the resolution of𝑊×𝐴×𝐻 , PSSR and PASR sequentially
up-sample the spatial resolution to ZZ z𝑊×ZZ z𝐻 and the angular resolution to ZZ 𝜽𝐴, where ZZ z
and ZZ 𝜽 are spatial and angular scaling factor respectively. This preliminarily up-sampling
volume is provided as an input to EVRN which will, in turn, refine the 3D EPI structure

100 5. EPI Volume-based High-Resolution Light Field Reconstruction

Vl

PSSR PASR EVRN

Vh

PSSR

VVV (x, 1, y)
SISR

VVV (x, 2, y)
SISR

VVV (x,A, y)
SISR

PASR

VVV (x, 1, y)

VVV (x, 2, y)

VVV (x, 3, y)

VVV (x,A, y)

NVS

NVS

Figure 5.2: Overview of 3D EPI volume SR framework. The framework consists of a prelim-
inary upsampling stage and an enhancement stage. The earlier stage includes
a preliminary spatial SR block (PSSR) and a preliminary angular SR block
(PASR). The later stage includes an EPI volume refinement network (EVRN).

and return an enhanced high-resolution volume. PSSR and PASR can be applied separately
or jointly depending on SR applications (i.e., SSR, ASR, and ASSR).

Algorithm 6: Volume-based super-resolution (VSR) function
1 Function VSR(𝐿𝐿𝐿𝑙 , Y, F):
2 {𝑉𝑉𝑉 }Y := Slice(𝐿𝐿𝐿𝑙 , Y) ⊲ Extract Y-axis volumes
3 {𝑉𝑉𝑉 }∗ := {} ⊲ Initialize empty volume set
4 for𝑉𝑉𝑉 in {𝑉𝑉𝑉 }Y do
5 {𝑉𝑉𝑉 }∗ := {𝑉𝑉𝑉 }∗ + F (𝑉𝑉𝑉)
6 end
7 𝐿𝐿𝐿ℎ := Merge({𝑉𝑉𝑉 }∗, Y) ⊲ Reconstruct 4D LF
8 return 𝐿𝐿𝐿ℎ
9 end

The function VSR in Algorithm 6 describes the application of the proposed framework for
the reconstruction of high-resolution LF image. VSR takes in three parameters: a low-
resolution LF (𝐿𝐿𝐿𝑙), a directional axis (Y ∈ {𝜌, 𝜏}), and a volume-based SR function (F). The
directional axis is needed to determine the direction of 3D projection which will result in
either vertical volume (Y=𝜌) or horizontal volume (Y=𝜏). The volume-based SR function
encodes the configuration of PSSR and PASR as in Fig. 5.2, i.e., only PSSR, only PASR,
and both. The procedure of VSR is as follows. First, a set of EPI volumes are extracted
from the input 𝐿𝐿𝐿𝑙 (line 2). Depending on Y, function Slice(·) will return either horizontal
volume or vertical volume set

(
{𝑉𝑉𝑉 }Y = {𝑉𝑉𝑉 Y𝑖 , 𝑖 = 1, .., 𝐴}

)
. Next, a high-resolution volume

set {𝑉𝑉𝑉 }∗ is acquired by applying volume SR function (F) to each volume in {𝑉𝑉𝑉 }Y (line

5.2. EPI Volume-based LF Super-Resolution 101

3 − 6). Finally, we combine 3D volumes in {𝑉𝑉𝑉 }∗ to form a high-resolution 4D output (line
7).

Algorithm 7: Spatial-angular super-resolution of 4D LF
Input: 𝐿𝐿𝐿𝑙
Output: 𝐿𝐿𝐿ℎ

1 𝐿𝐿𝐿 := 𝐿𝐿𝐿𝑙
2 if spatial super-resolution then
3 F := R

(
S(·)

)
⊲ Apply PSSR and EVRN

4 𝐿𝐿𝐿 := 0.5
(
VSR(𝐿𝐿𝐿, 𝜏, F) + VSR(𝐿𝐿𝐿, 𝜌, F)

)
5 else if angular super-resolution then
6 if spatial super-resolution then
7 F := S(·) ⊲ Apply only PSSR
8 𝐿𝐿𝐿 := VSR(𝐿𝐿𝐿, 𝜏, F)
9 end

10 F := R
(
A(·)

)
⊲ Apply PASR and EVRN

11 𝐿𝐿𝐿 := VSR(𝐿𝐿𝐿, 𝜏, F) ⊲ Upscale 𝜌-axis
12 𝐿𝐿𝐿 := VSR(𝐿𝐿𝐿, 𝜌, F) ⊲ Upscale 𝜏-axis

13 end
14 𝐿𝐿𝐿ℎ := 𝐿𝐿𝐿

The applications of VSR function in SSR, ASR, and ASSR are described in Algorithm 7. In
the case of SSR, F is comprised of PSSR, denoted as S, and EVRN denoted as R, (line
3). VSR is applied to horizontal and vertical volumes separately and then the output LFs
are averaged (line 4). In the case of ASR, F is set as PASR, denoted as A, followed by
EVRN (line 10). The super-resolution of horizontal volumes (line 11) and vertical volumes
(line 12) will increase the angular resolution to ZZ 𝜽𝐴 ×𝐴 and ZZ 𝜽𝐴 × ZZ 𝜽𝐴 respectively. As
for ASSR, a similar procedure to ASR is applied, except that PSSR is previously employed
to spatially up-sample the input light field (line 7,8).

5.2.2 EPI Volume Refinement Network

The proposed network bases on global residual learning architecture that is implemented
with a long skip connection and an element-wise addition as illustrated in Fig. 5.3. Global
residual learning allows EVRN to avoid learning complicated transformation and focus on
the reconstruction of high-frequency information differing between low and high-resolution
EPI volume. 3D convolutional kernels are utilized in our network instead of 2D convolutions
since this type of kernel was shown to be effective with 3D EPI volume data [26]. EVRN is
comprised of two parts: attention-based residual learning extracts densely residual-based

102 5. EPI Volume-based High-Resolution Light Field Reconstruction

SF
E

C
A

R }
F

B
N

C
A

R } }

F
B

N
C

A
R }

F
B

N
SF

E

A
A

W ×××

SF
E

F
B

N
SF

E

SA
W ×××

SF
E

}

1×
1×

1×
1

+++

W×A×H×C W×A×H×2C W×A×H×RC

} concatenation ××× element-wise mul. +++ element-wise add. convolution activation dense global pooling reshape

gl
ob

al
p

oo
l

re
sh

ap
e

2
A
→

A

si
gm

oi
d

re
sh

ap
e

AAW

gl
ob

al
p

oo
l

re
sh

ap
e

5×
5×

1

si
gm

oi
d

re
sh

ap
e

SAW

1×
1×

1×
C

P
R

eL
U

FBN

3×
3×

3×
C

P
R

eL
U

SFE

3×
3×

3×
C

P
R

eL
U

3×
3×

3×
C

gl
ob

al
p

oo
l

re
sh

ap
e

1
×

C
r

pr
el

u
1
×

C

si
gm

oi
d

re
sh

ap
e

××× +++

CAR

Figure 5.3: The network architecture of the proposed EPI volume refinement network
(EVRN)

features and attention-based multi-path learning reconstructs high-frequency information.

5.2.2.1 Attention-based Residual Learning

This part consists of a shallow feature extraction layer (SFE) followed by 𝑅 local residual
learning blocks. Dense connection [119] is employed to alleviate gradient vanishing and
improve signal propagation. With this setup, the feature maps of all preceding layers are
combined and used as input to the current layer. Since the accumulated feature size gets
bigger after each layer and demands a high computational effort, we decide to compress
the concatenated features by a feature bottle-neck layer (FBN). FBN consisting of a 1×1×1×𝐶
convolutional layer followed by a PReLU activation layer will reduce the dense-feature
size to 𝐶 channels before inputting to a channel attention-based residual layer (CAR) as in
Fig. 5.3.

For the local residual learning block, we follow RCAN [120] to integrate channel atten-
tion [121] for adaptively scaling residual features. As shown in [120], this technique
improves the reconstruction quality of high-resolution images. The architecture of CAR
is comprised of a well-known feature extraction combination conv-prelu-conv followed by
a channel attention weighting block (CAW). CAW starts with a global average pooling
layer which collapses an input feature from𝑊×𝐴×𝐻×𝐶 to 1×1×1×𝐶. It is then reshaped
to 1×𝐶 and is followed by a 1D down-sampling convolution (1×𝐶𝑟) and 1D up-sampling
convolution (1×𝐶). Here 𝐶𝑟 = 𝐶

𝑟
with 𝑟 is a predefined reduction ratio. After going

through a sigmoid activation layer, the 1×𝐶 scaling weight is reshaped and broadcasted

5.2. EPI Volume-based LF Super-Resolution 103

to the form 𝑊×𝐴×𝐻×𝐶 being ready for an element-wise multiplication with the input
feature.

5.2.2.2 Attention-based Multi-Path Learning

This part is comprised of two separate learning paths targeting spatial and angular aspects
of the feature maps. Each path includes an FBN, two SFEs, and an attention-based weighting
block as in Fig. 5.3. There are two types of attention-based weighting, one is for spatial
feature dimensions denoted as SAW and the other is for angular feature dimension denoted
as AAW. FBN is employed to reduce the size of densely connected feature-maps generated
by the residual learning part. After this block, the feature size is reduced from (𝑅 + 1)𝐶
channels to 𝐶 channels. The reduced feature map is fed to an SFE whose output is refined
by an element-wise multiplication with attention weights computed by AAW or SAW. After
the second SFE, the feature maps from the two paths are concatenated and squeezed to
form the final residual feature map. The high-resolution EPI volume is acquired by adding
up the residual information to the preliminarily up-sampled volume.

SAW consists of a global pooling, a 2D convolution, and a sigmoid activation layer. In global
pooling layer, Average Pooling (𝑃𝑎𝑣𝑔) and Max Pooling (𝑃𝑚𝑎𝑥) are applied to the input
feature 𝐹 ∈ ℝ𝑊×𝐴×𝐻×𝐶 and results in 𝐹𝑎𝑣𝑔, 𝐹𝑚𝑎𝑥 ∈ ℝ𝑊×1×𝐻×1. These feature maps are then
concatenated and reshaped to form the global pooling feature 𝐹𝑝𝑜𝑜𝑙 ∈ ℝ𝑊×𝐻×2. We then
applied a 2D convolution with kernel size 5×5×1 followed by a sigmoid activation function.
These weighting values are then reshaped and broadcasted to the form𝑊×𝐴×𝐻×𝐶 for
an element-wise multiplication. The following equation summarizes the computation of
spatial attention weights.

𝑊𝑠 (𝐹) = 𝜎
(
𝑓5×5×1

([
𝑃𝑎𝑣𝑔 (𝐹); 𝑃𝑚𝑎𝑥 (𝐹)

]))
(5.2)

AAW consists of a global pooling, a fully connected, and a sigmoid activation layer. Given
an input feature 𝐹 ∈ ℝ𝑊×𝐻×𝐴×𝐶 , we follow a similar procedure as of SAW to compute
global pooling features 𝐹𝑝𝑜𝑜𝑙 ∈ ℝ2𝐴. Here, 𝑃𝑎𝑣𝑔 and 𝑃𝑚𝑎𝑥 are applied to spatial and
channel dimensions of the input feature map and the output features are concatenated
along the angular dimension. We then compute 𝐴 weighting values by applying a fully
connected layer followed by a sigmoid activation function. Equation 5.3 outlines this
computation.

𝑊𝑎 (𝐹) = 𝜎
(
𝐷2𝐴:𝐴

([
𝑃𝑎𝑣𝑔 (𝐹); 𝑃𝑚𝑎𝑥 (𝐹)

]))
(5.3)

104 5. EPI Volume-based High-Resolution Light Field Reconstruction

5.2.3 Preliminary Spatial Super-Resolution

Given an EPI volume𝑉𝑉𝑉 𝑙 with a resolution of𝑊×𝐴×𝐻 as an input, the output of PSSR is an
EPI volume𝑉𝑉𝑉 ℎ with a resolution of ZZ z𝑊×𝐴×ZZ z𝐻 , where ZZ z is a spatial scaling factor (i.e.,
2, 4). The procedure of PSSR is as follows. First, 2D images (SAIs) along angular dimension
(𝑉𝑉𝑉 𝑙 (𝑥, 𝑖,𝑦), 𝑖 = 1, 2, .., 𝐴) are extracted from the input volume. Secondly, each image is
separately super-resolved to the desired resolution by a SISR method. Finally, we combine
these up-sampled images to form the output volume𝑉𝑉𝑉 ℎ, see Fig. 5.2.

In this work, deep learning-based methods (i.e., EDSR [58], RCAN [120]) are employed
to up-sample SAIs. With many advanced learning architectures introduced lately and
sufficient training data, deep learning-based approaches easily outperform optimization-
based approaches and provide state-of-the-art performance in the SISR task. However, as
pointed out in the literature [57,59–61] that SISR alone did not perform well on light field
images due to missing the contribution of external information shared across multiple SAIs.
This such information is well contained in an EPI volume and is exploited in the proposed
EVRN to enhance the output of SISR. As will be shown later in the experimental result,
the proposed approach substantially improves the reconstruction quality of SISR on both
challenging synthetic and real-world LF data.

5.2.4 Preliminary Angular Super-Resolution

In this stage, a novel perspective image is generated for each consecutive pair of SAIs in
the input volume. This task is done by a novel view synthesis module (NVS) as depicted in
Figure 5.2. Given an EPI volume𝑉𝑉𝑉 𝑙 with a resolution of𝑊×𝐴×𝐻 as an input, the output of
PASR is an EPI volume𝑉𝑉𝑉 ℎ with a resolution of𝑊×(2𝐴−1)×𝐻 . The angular resolution of
the volume is up-sampled by a scaling factor of ZZ 𝜽 = 2𝐴−1

𝐴
.

The synthesis of a novel view can be seen as the interpolation of a novel pixel along a
line on an EPI image, see Fig. 5.1. This task is indeed trivial if the slope of this line,
also referred to as disparity value [24], is known in advance. Therefore, many previous
approaches [24,48,53] proposed to firstly estimate disparity maps and then exploit them
for synthesizing novel views. However, as shown in [22,52], this explicit estimation of a
disparity map is not necessary since a learning-based approach which directly inferences
novel views can already provide better performance. In this work, two different approaches
of NVS are evaluated, i.e., nvs-cnn and nvs-mean. nvs-cnn is the proposed end-to-end CNN
learning to synthesize a novel view from an input image pair. In nvs-mean, the new view is
computed by simply averaging the two input images. As will be shown in Section 5.3.4,

5.3. Experimental Results 105

} concatenation

+++ element-wise add.

convolution

activation

ResBlock

1×
1×

C

P
R

eL
U

3×
3×

C

P
R

eL
U

3×
3×

C

+++

3×
3×

C

P
R

eL
U

R
es

B
lo

ck
}

R
es

B
lo

ck

} }

R
es

B
lo

ck

}

R
es

B
lo

ck

+++

3×
3×

1

F0 F1 F
R’-2

F
R’

Figure 5.4: The network architecture of the proposed CNN-based method for PASR

this straightforward approach can provide good results in the case of narrow baseline LF
images captured by plenoptic cameras [11,12].

The network architecture of nvs-cnn is presented in Fig. 5.4. Similar to EVRN, global/local
residual learning and dense connection are employed in the proposed network. We stack
two input images to form an input feature 𝑋 ∈ ℝ𝑊×𝐻×2. A shallow feature extraction
layer consisting of a 2D convolutional kernel 3×3×𝐶′ followed by a PReLU activation is
applied to 𝑋 . This results in a feature map 𝐹0 ∈ ℝ𝑊×𝐻×𝐶 ′. After going through 𝑅′ layers
of residual blocks, we get a residual feature map 𝐹𝑅′ ∈ ℝ𝑊×𝐻×𝐶 ′ which is added to 𝐹0
and then squeezed by a 2D convolution kernel 3×3×1 to acquire a novel perspective image
(𝐼 ∈ ℝ𝑊×𝐻). For residual block, we use a simple design that consists of a bottleneck layer,
i.e., 2D convolution kernel (1×1×𝐶′) followed by a PReLU, and a common combination
conv-prelu-conv as in Fig. 5.4.

5.3 Experimental Results

5.3.1 Dataset and Training

Seven published light field datasets, listed in Table 5.1, are employed for training and
testing the proposed approach. There are three synthetic datasets generated by 3D object
models and blender software [4, 14, 15]. The other four datasets are real-world data
captured by Illum cameras [16–18] and a gantry setup [19]. While synthetic scenes have

106 5. EPI Volume-based High-Resolution Light Field Reconstruction

Table 5.1: Summary of training and test dataset
Datasets Type Angular Training Test
HCI13[14] synthetic 9×9 5 2
HCI17[4] synthetic 9×9 20 4
InSyn[15] synthetic 9×9 31 8
StGantry[19] real-world 17×17 9 3
StLytro[16] real-world 14×14 250 53
InLytro[17] real-world 15×15 28 8
EPFL[18] real-world 15×15 81 12

Sum - - 424 90

the same angular resolution of 9×9, the angular resolution of real-world scenes varies from
14×14 to 17×17. To have an uniform light field data for training and testing, we follow the
previous work [57, 59–61] to remove the border views and keep only 9×9 sub-aperture
images in the middle.

5.3.1.1 Training EVRN

The LF images in the training set are transformed into YCbCr color space and only Y channel
data is used for training. In the inference phase, we apply the trained network to each color
space separately and then convert them back to RGB color image. Each LF image is spatially
cropped into 4D patch (𝑃𝐻 ∈ ℝ48×48×9×9) with a stride of 16 pixels. Plain patches which do
not include texture information are ignored. For each 2D patch with the size of 48×48 from
𝑃𝐻 , we apply bicubic down-sampling with a scaling factor ZZ z (ZZ z = 2, 4) to acquire a low
spatial resolution patch 𝑃𝐿𝑆 ∈ ℝZZ

−1
z 48×ZZ −1

z 48×9×9. Each 2D patch in 𝑃𝐿𝑆 is then up-sampled
using SISR method to generate a spatial pre-scaling 4D patch 𝑃𝑆 . A low angular resolution
4D patch (𝑃𝐿𝐴 ∈ ℝ48×48×5×5) is extracted from 𝑃𝐻 by removing 2D patches at angular position
(𝜌𝑖, 𝜏𝑖), where (𝜌𝑖 mod 2) ∧ (𝜏𝑖 mod 2) = 0. We then up-sampled 𝑃𝐿𝐴 using the technique
discussed in Section 5.2.4 to acquire angular pre-scaling 4D patch 𝑃𝐴. An angular-spatial
pre-scaling 4D patch 𝑃𝑆𝐴 is generated by applying the same procedure to 𝑃𝑆 . At this point,
we have three 4D patch pairs

(
{𝑃𝑆}, {𝑃𝐻 }

)
,
(
{𝑃𝐴}, {𝑃𝐻 }

)
, and

(
{𝑃𝑆𝐴}, {𝑃𝐻 }

)
to train EVRN

for SSR, ASR, and ASSR respectively. For each 4D patch pair, e.g.,
(
{𝑃𝑆}, {𝑃𝐻 }

)
, a 3D EPI

volume pair
(
{𝑉𝐿}, {𝑉𝐻 }

)
is formed by extracting and combining the horizontal and vertical

EPI volumes from each 4D patch set.

Padding is enabled in all 3D convolution layers to reserve the resolution. The number of

5.3. Experimental Results 107

Table 5.2: Performance analysis of various model configurations.

Models Synthetic Real-world
PSNR SSIM PSNR SSIM

model 1 38.61 0.9613 38.09 0.9581
model 2 38.63 0.9613 38.13 0.9588
model 3 38.77 0.9627 38.21 0.9592

Table 5.3: Ablation investiation of attention modules (CAS, AAS, SAW). The average PSNRs
are computed for dataset EPFL with scaling factor×2 after 200 epochs.

Modules Combination of attention modules
CAW 7 3 7 3 7 3 7 3

SAW 7 7 3 3 7 7 3 3

AAW 7 7 7 7 3 3 3 3

PSNR 36.92 36.95 36.93 36.95 36.94 36.97 36.94 36.98

residual blocks 𝑅 and channel size 𝐶 were set to 7 and 64 respectively. ℓ1 loss function
was used since it provides better results for SR in the proposed approach. The proposed
network was implemented in TensorFlow running on a PC with an Nvidia 1080Ti GPU. As
an optimizer, a variation of the Adam optimizer, AdamW [122], was used. AdamW adds a
weight decay as regularization to the Adam optimizer. The learning rate was initialized to
2×10−4 and decreased by a factor of 2 after 10 epochs. The weight decay was set to 10−4. For
the initialization of convolution parameters, Glorot uniform initializer was used. The bias of
the CNN layers and the PReLU parameters were initialized to zero.

5.3.1.2 Training NVS-CNN

To prepare the training data for NVS-CNN, we first extracted EPI volumes from 4D patches
𝑃𝐻 . For each EPI volume, we use even-index views as ground-truths and the two neighbor
views as inputs. This gives us 4 training pairs for each EPI volume. We empirically set the
number of residual blocks 𝑅′ and the number of feature channels𝐶′ to 7 and 64 respectively.
Padding is enabled in all convolution layers to preserve the spatial dimension. For this
training, we employ Adam optimizer (𝛽1 = 0.9, 𝛽2 = 0.999). The learning rate is set to
2×10−4 which is halved after every 10 epochs.

108 5. EPI Volume-based High-Resolution Light Field Reconstruction

5.3.2 Model Analysis

To analyze the contribution of attention modules to the performance of the proposed
approach, we conducted an experiment in which three models were tested. In the first
model, all attention modules were removed from the network. The second model includes
only the channel attention module (CAW), and the third model includes all attention
modules. These models were trained for SSR tasks (ZZ = 2) and their results are listed
in Table 5.2. It can be seen from the table that attention modules help to improve the
reconstruction quality. Without attention modules, model 1 scores 38.61 dB and 38.09 dB
on average for synthetic and real-world light field data respectively. These figures slightly
increase in model 2 where the CAW module is included. Employing attention modules in
both multi-path learning (AAW, SAW) and residual learning (CAW) provides the highest
quality in terms of PSNR and SSIM.

A more comprehensive ablation study of attention modules can be found in Table 5.3. In
this experiment, we investigated the effects of various combinations of attention modules.
The eight networks were trained for spatial super-resolution application with scaling factor
×2 and have the same configuration of residual blocks (R=4) and channel size (C=16).
RCAN was employed for the PSSR stage, and the angular size of EPI volume was set
to 3. After 200 epochs, we evaluate the performance of trained networks on the EPFL
dataset and report the average PSNR values. From Table 5.3, it can be seen that the
baseline network (without any attention modules) gives the lowest PSNR value (36.92dB).
Furthermore, we observed that channel attention (CAW) and angular attention (AAW)
demonstrate a clear contribution to the performance of EVRN. While SAW itself provides
not much improvement, its combination with AAW and CAW delivers the best performance
(36.98dB).

5.3.3 Spatial Super-Resolution

In this section, the evaluation results of 3DVSR applied to the SSR problem are discussed.
We employed EDSR [58] and RCAN [120] for preliminary spatial super-resolution and
tested against two scaling factors ZZ z= 2 and ZZ z= 4. Nine state-of-the-art approaches are
selected for quantitative and qualitative comparisons. Among them, there are three SISR
approaches (EDSR [58], DBPN [123], RCAN [120]) and six approaches provided for 4D LF
(pcabm [54], LFnet [59], LFCNN [52], EPI2D [57], SR4D [60], resLF [61]). The result of
bicubic interpolation is presented as a baseline result. All methods, except LFCNN, EPI2D,
and LFnet, were tested using their released codes and pre-trained models. For EPI2D and
LFnet, since the authors did not publish their source codes, we followed their papers to

5.3. Experimental Results 109

×2

0.93 0.94 0.95 0.96 0.97
33

35

37

39

RCAN

EDSR

EPI2D

LFCNN
SR4D

LFnet

resLF

DBPN

3DVSR

SSIM

PS
N

R

×4

0.83 0.85 0.87 0.89

29

30

31

32

33

RCAN

EDSR

EPI2D

SR4DLFnet

resLF

DBPN

3DVSR

SSIM

PS
N

R
Figure 5.5: Spatially super-resolution results achieved by state-of-the-art SSR methods on 7

public datasets. The proposed approach outperforms single image SR methods
(EDSR [58], RCAN [120], DBPN [123]) and LF SSR methods (pcabm [54],
LFCNN [52], LFnet [59], EPI2D [57], SR4D [60], resLF [61]).

implement the models. Although the source code of LFCNN is available, its pre-trained
model is not provided. Therefore, we retrained LFCNN, as well as EPI2D and LFnet, using
our training dataset.

Table 5.4 and Figure 5.5 list quantitative results for×2 and×4 in terms of PSNR and SSIM
metrics. For each scene, the quality metrics are calculated as an average of 7×7 SAIs in the
middle. These values are then averaged over the test dataset. The two configurations of
PSSR using EDSR and RCAN are denoted as 3DVSR-EDSR and 3DVSR-RCAN respectively.
It can be seen from the table that the proposed approach scores the best PSNR and SSIM
value for both ×2 and ×4 problems on average. Compared to SISR approaches EDSR and
RCAN, 3DVSR respectively improves the reconstruction quality by 3.87dB and 3.63dB
for×2 and 3.13dB and 2.67dB for×4. This improvement pays a tribute to the proposed
enhancement network (EVRN) which exploits EPI volume structure to correct the high-
frequency information from the output of SISR. The advantage of using EPI volume is also
evident when compared to the 2D EPI-based approach [57]. Using a similar SISR technique
(i.e. EDSR), the proposed approach scores 1.96 dB and 1.4dB better on average for×2 and
×4 respectively.

Qualitative comparisons of six light field SSR approaches are shown in Fig. 5.6. It can
be observed from the figures that the proposed approach shows superior performance
in visual effects for both synthetic and real-world scenes. For example, only 3DVSR can

110 5. EPI Volume-based High-Resolution Light Field Reconstruction

Table 5.4: Quantitative comparison of SSR approaches in terms of reconstruction quality
measured by PSNR/SSIM. The results of two up-scaling factor (×2,×4) on seven
public datasets are reported.

Approach Scale HCI17[4] HCI13[14] InLytro[17] InSyn[15] EPFL[18] StGantry[19] StLytro[16] avg
Bicubic ×2 28.33/0.876 35.02/0.951 30.64/0.900 29.18/0.892 28.30/0.850 33.52/0.965 31.83/0.924 30.97/0.908
pcabm[54] ×2 28.94/0.886 35.56/0.949 31.10/0.901 29.69/0.894 28.80/0.853 30.10/0.885 32.05/0.920 30.89/0.898
EDSR[58] ×2 31.51/0.926 39.57/0.973 33.27/0.932 33.70/0.932 30.50/0.890 39.06/0.985 35.62/0.957 34.75/0.942
DBPN[123] ×2 31.93/0.930 39.90/0.974 33.50/0.934 34.27/0.935 30.80/0.893 39.30/0.985 36.00/0.959 35.10/0.944
RCAN[120] ×2 32.25/0.932 39.91/0.975 33.57/0.934 34.39/0.936 30.90/0.894 39.82/0.986 36.21/0.960 35.29/0.945
LFCNN[52] ×2 31.67/0.904 38.03/0.963 33.48/0.928 32.12/0.906 32.22/0.926 37.30/0.974 34.91/0.941 34.25/0.935
LFnet[59] ×2 32.31/0.913 39.04/0.968 34.06/0.931 33.13/0.916 32.95/0.931 38.27/0.976 35.53/0.943 35.04/0.940
EPI2D[57] ×2 33.63/0.929 41.18/0.976 35.15/0.943 35.11/0.930 34.14/0.943 40.36/0.986 37.04/0.956 36.66/0.952
SR4D[60] ×2 32.49/0.943 39.99/0.977 33.96/0.944 32.29/0.929 30.21/0.889 35.36/0.965 37.53/0.972 34.55/0.946
resLF[61] ×2 35.14/0.956 39.84/0.974 35.43/0.956 35.27/0.948 34.36/0.954 37.04/0.975 37.67/0.966 36.39/0.961
3DVSR-EDSR ×2 35.91/0.954 43.26/0.984 37.38/0.955 37.01/0.948 36.53/0.955 41.53/0.988 38.74/0.965 38.62/0.964
3DVSR-RCAN ×2 36.08/0.955 43.20/0.984 37.46/0.955 37.02/0.949 36.77/0.956 41.76/0.988 38.83/0.966 38.73/0.965
Bicubic ×4 24.06/0.694 30.15/0.857 26.66/0.775 24.77/0.765 24.88/0.706 27.37/0.860 26.84/0.790 26.39/0.778
pcabm[54] ×4 24.65/0.726 30.77/0.865 27.14/0.792 25.37/0.780 25.37/0.725 26.51/0.790 27.32/0.804 26.73/0.783
EDSR[58] ×4 26.17/0.784 33.83/0.905 28.78/0.830 28.05/0.842 26.67/0.766 30.97/0.932 29.30/0.857 29.11/0.845
DBPN[123] ×4 26.58/0.797 34.19/0.912 29.05/0.835 28.83/0.854 27.01/0.776 31.34/0.936 29.68/0.864 29.52/0.853
RCAN[120] ×4 26.70/0.801 34.46/0.913 29.07/0.837 28.88/0.856 27.15/0.777 31.66/0.940 29.81/0.867 29.68/0.856
LFCNN[52] ×4 26.07/0.700 31.47/0.859 28.35/0.796 26.51/0.756 27.22/0.783 28.61/0.861 28.17/0.789 28.06/0.792
LFnet[59] ×4 27.16/0.745 33.33/0.890 29.41/0.829 28.02/0.799 28.43/0.818 30.52/0.900 29.56/0.829 29.49/0.830
EPI2D[57] ×4 28.15/0.786 35.60/0.914 30.56/0.851 29.66/0.838 29.64/0.847 32.30/0.935 30.70/0.856 30.94/0.861
SR4D[60] ×4 27.15/0.830 34.08/0.921 29.61/0.864 27.47/0.839 26.84/0.786 28.26/0.854 30.75/0.896 29.17/0.856
resLF[61] ×4 28.83/0.844 34.30/0.917 30.63/0.881 29.79/0.875 29.53/0.869 30.63/0.903 30.80/0.882 30.64/0.882
3DVSR-EDSR ×4 29.59/0.833 37.07/0.938 31.63/0.875 31.13/0.870 30.85/0.872 33.36/0.946 32.07/0.883 32.24/0.888
3DVSR-RCAN ×4 29.70/0.836 37.17/0.939 31.69/0.876 31.23/0.872 31.09/0.872 33.53/0.948 32.15/0.885 32.37/0.890

(red: best, blue: second best)

reconstruct a correct pattern of wooden sticks in general_55 and clear detail of two faces
in Smilling_crowd. In pcabm [54], the low-resolution light field image is divided into sets
of patches that are then super-resolved separately. Although the overlapping of patches
helps to smooth the output images, the inconsistencies in reconstruction quality between
patches are unavoidable and lead to blocky artifacts (i.e. ISO_Chart, Smilling_crowd). In
LFCNN [52], each SAI is super-resoluted independently using a SISR approach [51] whose
CNN is quite trivial and shallow. LFCNN’s results are, therefore, over-smoothed in all the test
scenes. SR4D [60] and resLF [61] include multiple SAIs in their super-resolution process.
This allows them to exploit external information to reconstruct high-resolution images.
However, these approaches still fail to reconstruct high quality images in challenging light
field scenes with noisy and high-frequency pattern (i.e. general_55) or highly degraded
content (i.e.,×4 down-sampled: ISO_Chart and Smilling_crowd). From the figure, their
results are ambiguous and with obvious artifacts. Compared to EPI2D, we follow a similar
approach in which the output of SISR is enhanced by reinforcing EPI structures of light
field images. However, instead of relying on a narrow and feature-limited EPI as in EPI2D,
we proposed to refine an EPI volume that allows us to exploit global information across
multiple EPIs. Our results, therefore, show significantly better image qualities where the

5.3. Experimental Results 111

Groundtruth
 (PSNR/SSIM)

Bicubic
 (26.19/0.883)

pcabm
 (26.83/0.913)

SR4D
 (28.99/0.945)

resLF
 (29.70/0.959)

EPI2D
 (28.58/0.942)

LFCNN
 (27.44/0.919)

3DVSR-RCAN
 (31.84/0.972)

Groundtruth
 (PSNR/SSIM)

Bicubic
 (33.80/0.916)

pcabm
 (33.89/0.923)

SR4D
 (36.00/0.960)

resLF
 (36.60/0.963)

EPI2D
 (36.39/0.958)

LFCNN
 (34.56/0.934)

3DVSR-RCAN
 (39.60/0.977)

Groundtruth
 (PSNR/SSIM)

Bicubic
 (22.29/0.711)

pcabm
 (23.14/0.750)

SR4D
 (25.95/0.845)

resLF
 (26.21/0.890)

EPI2D
 (27.22/0.857)

LFCNN
 (22.30/0.714)

3DVSR-RCAN
 (29.76/0.912)

Groundtruth
 (PSNR/SSIM)

Bicubic
 (25.24/0.783)

pcabm
 (25.98/0.812)

SR4D
 (28.64/0.916)

resLF
 (28.75/0.909)

EPI2D
 (28.48/0.904)

LFCNN
 (25.24/0.784)

3DVSR-RCAN
 (30.22/0.935)

Figure 5.6: Qualitative comparison of SSR approaches on two scaling factors (×2,×4).
The SAI at 𝜽 = (4, 4) is visualized together with its zoom-in region marked
by a red rectangle. The first two rows: ×2 results of synthetic scene cof-
fee_beans_vases [15] and real-world scene general_55 [16]. The last two
rows: ×4 results of synthetic scene smiling_crowd [15] and real-world scene
ISO_Chart [18].

texture is recovered correctly and with more high-frequency details.

To investigate the reconstruction quality concerning different perspectives, we conducted
an experiment in which the scene two_vases is used as input to perform both ×2 and ×4
SSR. For each view, the PSNR and SSIM values are computed and the results are visualized
in Fig. 5.7. Here, we compared our results with the results of the state-of-the-art approach
ResLF [61]. resLF employs a star-like structure of SAIs as input to super-resolute a single
SAI lying in the center. This strategy is indeed beneficial to reconstruct high-resolution
images. As in Table 5.4, resLF surpasses EPI2D and SR4D for the most of test dataset.
However, the disadvantage of resLF’s approach is the unequal treatment of SAI at different
perspectives. The SAI close to the border has fewer input images than the SAI close to
the center. Therefore, reconstruction qualities of non-central views are relatively lower.
In contrast, the proposed approach jointly uses EPI information and spatial information
to reconstruct an EPI volume and thus achieves much higher output qualities with more
stable distribution across all perspectives.

112 5. EPI Volume-based High-Resolution Light Field Reconstruction

40.5

41.0

41.5

42.0

.979

.980

.981

.982

32.5

33.0

33.5

34.0

.914

.915

.916

.917

×2 SSR ×4 SSR

ours resLF ours resLF

P
SN

R
SS

IM

Figure 5.7: Visualization of PSNR and SSIM values on each SAI of light field scene
two_vases [15]. Compared to ResLF [61], the proposed approach achieve
a better reconstruction quality while maintaining a consistent performance on
all perspective images.

Fig. 5.8 presents a quantitative and qualitative comparison of EPI volumes reconstructed
after the first stage (PSSR) and the second stage (EVRN). To better justify the improve-
ment in angular dimension, we extract EPI images for each output and compare them
to the EPI of the ground truth. From the figure, it is evident that the EVRN substan-
tially improves the quality of reconstructed volume in both spatial and angular dimen-
sions.

5.3.4 Angular Super-Resolution

This section discusses the evaluation of the proposed approach for the angular super-
resolution of light field images. The seven datasets, listed in Table 5.1, are employed in this
evaluation. For each scene in the test set, the angular resolution is down-sampled from 9×9
to 5×5 while the spatial resolution remains intact. With these low-resolution LFs as inputs,
we then reconstruct the original size LFs following the procedures discussed in Section 5.2.4.
This means that 56 missed perspective images are reconstructed from 25 input images. In
the PASR stage, we tested two approaches, one generates novel views by averaging and the
other uses an end-to-end CNN. The results of these two PASR approaches as well as the final
results after applying the refinement network are reported. We compare our approach with

5.3. Experimental Results 113

Groundtruth
 (PSNR/SSIM)

Bicubic
 (35.86/0.956)

PSSR-x2
 (40.84/0.980)

EVRN
 (42.51/0.987)

0.0

0.2

0.4

0.6

0.8

1.0

Groundtruth
 (PSNR/SSIM)

Bicubic
 (33.66/0.969)

PSSR-x2
 (36.14/0.977)

EVRN
 (38.81/0.981)

0.0

0.2

0.4

0.6

0.8

1.0

Groundtruth
 (PSNR/SSIM)

Bicubic
 (29.38/0.938)

PSSR-x2
 (33.37/0.966)

EVRN
 (36.29/0.974)

0.0

0.2

0.4

0.6

0.8

1.0

Groundtruth
 (PSNR/SSIM)

Bicubic
 (28.28/0.794)

PSSR-x4
 (31.63/0.883)

EVRN
 (32.84/0.902)

0.0

0.2

0.4

0.6

0.8

1.0

Groundtruth
 (PSNR/SSIM)

Bicubic
 (24.54/0.754)

PSSR-x4
 (26.25/0.846)

EVRN
 (27.34/0.883)

0.0

0.2

0.4

0.6

0.8

1.0

Groundtruth
 (PSNR/SSIM)

Bicubic
 (25.09/0.763)

PSSR-x4
 (26.68/0.832)

EVRN
 (28.35/0.875)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.8: Comparison of two stages in reconstruction of spatially high resolution LF.
The SAI at 𝜽 = (4, 4) is visualized together with its zoom-in region marked
by a red rectangle. For each approach, an EPI at horizontal line marked in
green is extracted and compared to the EPI of Groundtruth. The first row, from
left to right: ×2 results of synthetic scene mona [14] and real-world scenes
Ankylosaurus_&_Diplodocus_1, Framed [18]. The second row, from left to right:
×4 results of synthetic scene boxes [4] and real-world scenes Flowers, Sign [18].

three previous approaches (vsyn [53], LFCNN [52], and LFSR [22]).

Table 5.5 lists quantitative results of ASR approaches running on the 7 public datasets.
We employed PSNR and SSIM as quality metrics that are computed for newly generated
SAIs and are averaged over all scenes in each dataset. nvs-mean and nvs-cnn denotes
the two PASR approaches. nvs-mean computes a novel perspective image by averaging
two neighboring images, while nvs-cnn inferences a novel image using a residual CNN
as depicted in Fig. 5.4. The outputs of nvs-mean and nvs-cnn enhanced by EVRN are
denoted as 3DVSR-mean and 3DVSR-cnn respectively. LFSR [22] has a strict requirement
of supported angular resolution. This approach employs a fully-connected network in its
output layer that always produces an angular-resolution of 14×14. For this reason, only
real-world datasets [16–19] are tested with this approach. From Table 5.5, it can be seen
that the proposed approach provides the highest reconstruction quality. 3DVSR improves
PSNR and SSIM values by a large margin as compared to the previous approaches (i.e. a
minimum of 3dB improvement in all test datasets). In narrow baseline light field image
captured by a plenoptic camera [16–18], the difference between two neighboring views

114 5. EPI Volume-based High-Resolution Light Field Reconstruction

Table 5.5: Quantitative comparison of ASR approaches on 7 light field datasets
Approach HCI17[4] HCI13[14] InLytro[17] InSyn[15] EPFL[18] StGantry[19] StLytro[16] avg
nvs-mean 29.23/0.878 42.25/0.987 40.35/0.979 27.73/0.828 37.81/0.975 25.53/0.728 40.35/0.981 34.75/0.908
nvs-cnn 37.02/0.971 44.15/0.992 40.49/0.975 38.76/0.979 37.89/0.974 30.02/0.847 40.75/0.980 38.44/0.960
vsyn[53] 23.34/0.665 29.41/0.764 32.03/0.899 21.40/0.613 27.76/0.794 19.35/0.542 30.34/0.887 26.23/0.738
LFSR[22] -/- -/- 39.91/0.980 -/- 37.63/0.979 22.24/0.688 39.57/0.977 34.84/0.906
LFCNN[52] 30.97/0.883 38.78/0.967 35.36/0.948 29.09/0.834 34.43/0.949 26.01/0.739 36.41/0.957 33.01/0.897
Wang18[124] 31.66/0.893 41.74/0.984 37.31/0.967 29.36/0.831 36.18/0.969 27.04/0.741 38.86/0.971 34.59/0.908
Wu19[125] 29.93/0.917 30.76/0.832 33.73/0.922 28.67/0.871 29.48/0.843 20.80/0.631 32.45/0.937 29.40/0.850
Wu19a[126] 33.19/0.936 43.28/0.985 39.90/0.969 32.12/0.899 37.68/0.966 27.51/0.746 40.03/0.973 36.24/0.925
3DVSR-mean 40.12/0.979 47.07/0.994 44.22/0.985 40.32/0.979 43.64/0.987 32.30/0.854 43.41/0.985 41.58/0.966
3DVSR-cnn 40.00/0.981 45.15/0.994 43.04/0.982 40.90/0.982 42.30/0.986 32.11/0.861 42.20/0.980 40.81/0.967

(red: best, blue: second best)

is almost invisible due to their sub-pixel displacement values (e.g. less than 0.5 pixel).
In this case, a straightforward approach such as nvs-mean can score very well and the
benefit of employing CNN in the PASR stage is limited, i.e., nvs-cnn provides less than 0.4
dB improvement as compared to nvs-mean. However, for the other test datasets, nvs-cnn
presents a clear improvement as compared to nvs-mean (i.e., 1.9dB to 7.8dB). By exploiting
the EPI volume structure to refine the results of the PASR stage, 3DVSR achieves significant
improvements over nvs-mean and nvs-cnn by an average of 6.8 dB and 2.4 dB respectively.
It is interesting to see that the performance of 3DVSR-mean is comparable to 3DVSR-cnn
with a slightly better PSNR value (i.e. 0.7 dB). This demonstrates the superior performance
of EVRN in reconstructing novel perspective images.

Fig. 5.9 shows the visual comparisons of evaluated ASR approaches on both synthetic
and real-world light field scenes. vsyn [53] consists of two CNNs, one predicts auxiliary
disparity maps and the other synthesizes novel views. It assumes that the disparity values
of input light fields fall within a range that is quantized by a fixed step size. Based on the
quantized disparity values, a cost volume is computed and is used as an input to the first
CNN. The output disparity maps from the first CNN are used to pre-compute novel views
that are then refined by the second CNN. The quality of the novel views highly depends on
the accuracy of estimated disparity maps which in turn depend on the cost volume and
assumed disparity range. From the figure, it can be seen that vsync does not generalize well
and performs badly on light field scenes with a large disparity range (i.e. lego, big_clock,
sideboard). Although the visual quality of the plenoptic scene (i.e., flowers_plants_36),
for which vsyn was trained, is much better, it still suffers from the over-smoothed effect.
In LFSR [22], novel views are generated by the mean of super-resolution of APIs. Since
no spatial information is considered in its process, the results of LFSR are noisy and with
obvious artifacts. Both LFCNN and our cnn-based PASR approach (nvs-cnn) follow a similar
strategy in which novel perspective images are synthesized by using their surrounding

5.3. Experimental Results 115

Groundtruth
 (PSNR/SSIM)

nvs-mean
 (26.07/0.812)

nvs-cnn
 (36.17/0.977)

LFCNN
 (27.00/0.835)

vsyn
 (19.87/0.665)

Wang18
 (25.42/0.813)

Wu19
 (29.81/0.783)

Wu19a
 (29.09/0.877)

3DVSR-mean
 (35.60/0.969)

3DVSR-cnn
 (36.66/0.981)

Groundtruth
 (PSNR/SSIM)

nvs-mean
 (34.88/0.964)

nvs-cnn
 (38.46/0.986)

LFCNN
 (33.83/0.963)

vsyn
 (26.03/0.769)

Wang18
 (31.10/0.958)

Wu19
 (29.78/0.920)

Wu19a
 (37.39/0.980)

3DVSR-mean
 (39.25/0.987)

3DVSR-cnn
 (38.66/0.987)

Groundtruth
 (PSNR/SSIM)

nvs-mean
 (22.56/0.857)

nvs-cnn
 (34.43/0.986)

LFCNN
 (27.38/0.918)

vsyn
 (18.15/0.700)

Wang18
 (22.61/0.865)

Wu19
 (25.83/0.870)

Wu19a
 (28.21/0.955)

3DVSR-mean
 (35.36/0.985)

3DVSR-cnn
 (36.48/0.989)

Groundtruth
 (PSNR/SSIM)

nvs-mean
 (25.69/0.815)

nvs-cnn
 (36.93/0.986)

LFCNN
 (29.40/0.927)

vsyn
 (20.75/0.587)

Wang18
 (25.64/0.835)

Wu19
 (24.34/0.911)

Wu19a
 (31.59/0.964)

3DVSR-mean
 (37.37/0.987)

3DVSR-cnn
 (37.69/0.989)

Figure 5.9: Qualitative comparison of ASR approaches on real-world and synthetic light
field scenes. The SAI at 𝜽 = (3, 3) is visualized together with its zoom-in region
marked by a red rectangle. The first two rows: real-world scenes lego [19] and
flowers_plants_36 [16]. The last two rows: synthetic scenes big_clock [15] and
sideboard [4].

Groundtruth
 (PSNR/SSIM)

Wu19a
 (31.64/0.915)

PASR
 (27.42/0.765)

EVRN
 (38.38/0.969)

0.0

0.2

0.4

0.6

0.8

1.0

Groundtruth
 (PSNR/SSIM)

Wu19a
 (42.99/0.990)

PASR
 (40.25/0.986)

EVRN
 (45.69/0.995)

0.0

0.2

0.4

0.6

0.8

1.0

Groundtruth
 (PSNR/SSIM)

Wu19a
 (37.00/0.944)

PASR
 (32.17/0.881)

EVRN
 (41.88/0.980)

0.0

0.2

0.4

0.6

0.8

1.0

(a) (b) (c)

Figure 5.10: Comparison of two stages in reconstruction of angularly high resolution LF.
The SAI at 𝜽 = (3, 3) is visualized together with its zoom-in region marked
by a red rectangle. For each approach, an EPI at horizontal line marked in
green is extracted and compared to the EPI of Groundtruth. From left to right:
synthetic scene Flying_dice_dense [15], real-word scene general_29 [16], and
synthetic scene bedroom [4].

116 5. EPI Volume-based High-Resolution Light Field Reconstruction

Groundtruth
 (PSNR/SSIM)

bicubic+mean
 (37.18/0.965)

4Dcubic
 (37.71/0.970)

LFCNN
 (38.28/0.973)

RCAN+mean
 (38.53/0.975)

3DVSR
 (40.96/0.987)

Groundtruth
 (PSNR/SSIM)

bicubic+mean
 (32.31/0.904)

4Dcubic
 (32.93/0.914)

LFCNN
 (34.01/0.925)

RCAN+mean
 (33.20/0.918)

3DVSR
 (37.97/0.962)

Figure 5.11: Angular-spatial super-resolution results of different approaches. The SAI
at 𝜽 = (3, 3) is visualized together with its zoom-in region marked by a red
rectangle. top row: real-world scene Rose [17]; bottom row: synthetic scene
boxes [14];

neighbor images. However, as opposed to the simple architecture of LFCNN which only
consists of convolution layers and activation layers, nvs-cnn employed many effective
deep-learning structures (i.e. global/local residual learning, dense connection). nvs-cnn,
therefore, outperforms LFCNN with much better visual quality. Compared to nvs-cnn, the
novel perspective images generated by nvs-mean are more ambiguous with over-smoothed
regions and artifacts as the result of the averaging method. However, after being refined by
EVRN the visual qualities of these images are significantly enhanced (i.e., 3DVSR-mean) and
are comparable to the enhanced version of nvs-cnn (i.e., 3DVSR-cnn).

Fig. 5.10 compares the angular super-resolution results of Wu19a [126] and the pro-
posed approaches after the first stage (PASR) and after the second stage (EVRN). In this
experiment, nvs-mean is employed as a preliminary angular super-resolution approach,
and the output volume of PASR is fed to EVRN for the final enhancement. Compared to
our PASR, Wu19a provides a better reconstruction quality with sharper content and less
angular error. However, the refined volume of EVRN is by far better than the output of
Wu19a. As a result, we achieve a minimum of 3.3dB improvement in PSNR and less error
in EPIs.

5.3.5 Angular-Spatial Super-Resolution

In the ASSR problem, the resolution of 4D light field images is super-resoluted angularly
and spatially. In other words, it consists of a super-resolution of each given SAI and a
synthesis of novel perspective images which have the same higher resolution. As discussed

5.4. Summary 117

in Section 5.2.1, the proposed approach handle ASSR in two stages. The first stage consists
of PSSR followed by PASR to generate a 4D light field with the desired resolution. This
preliminary up-sampled light field is then enhanced by EVRN in the second stage to acquire
the final output. To evaluate the proposed approach, we conducted an experiment in which
the spatial scaling factor was set to ZZ z = 2 and a similar ASR configuration as in Section
V.D. was applied.

The spatial-angular super-resolution results are shown in Fig. 5.11. bicubic+mean denotes
a baseline approach that employs bicubic interpolation for SSR and averages neighbor
views to generate novel perspective images. 4Dcubic denotes an approach in which cubic
interpolation is applied on two spatial and two angular dimensions. RCAN+mean denotes
the result of our preliminary stage which uses RCAN [120] for PSSR and nvs-mean for
PASR. The result after an enhancement using EVRN is denoted as 3DVSR. Compared to the
baseline approach and 4Dcubic, LFCNN provides a small improvement in reconstruction
quality. Although LFCNN achieves an increase of about 1dB, its improvement in visual
quality is negligible. The results of LFCNN are still ambiguous and lack high-frequency
information. A similar performance can be seen in the results of RCAN+mean which are
mostly over-smoothed due to the effect of averaging views. Compared to these approaches,
3DVSR produces a significant improvement in PSNR value (i.e., a minimum of 2.4 dB
and 3.9 dB in scenes Rose and boxes respectively) and an obvious enhancement in visual
quality.

5.4 Summary

This chapter presents a deep learning-based light field super-resolution approach. Based
on EPI volume structure, a 3D projected version of 4D light field, we proposed a 2-stage
framework that effectively addresses various problems in light field super-resolution, i.e.,
ASR, SSR, and ASSR. While the earlier stage provides flexible options to up-sample the
input volume to the desired resolution, the later stage consisting of an EPI volume-based
enhancement CNN substantially improves the reconstruction quality of the high-resolution
EPI volume. The proposed enhancement network built on 3D convolutional operations and
efficient deep-learning structures, i.e., global/local residual learning, dense connection,
multi-path learning, and attention-based scaling, effectively combines angular and spatial
information from the 3D EPI volume structure to reconstruct high-frequency details. An
extensive evaluation performed on 90 challenging synthetic and real-world light field scenes
from 7 published datasets shows that the proposed approach outperforms state-of-the-art
methods to a large extent for both spatial and angular super-resolution problems, i.e., an

118 5. EPI Volume-based High-Resolution Light Field Reconstruction

average PSNR improvement of more than 2.0 dB, 1.4 dB, and 3.14 dB in SSR×2, SSR×4, and
ASR respectively. The reconstructed 4D light field demonstrates a balanced performance
distribution across all perspective images and presents superior visual quality compared to
the previous works.

Ch
ap
te
r 6

4D Light field Image Compression

This chapter presents a compression framework for light field images. The main idea is
to exploit the similarity across sub-aperture images extracted from 4D light field data to
improve encoding performance. For this purpose, we employed the variational optimisation
approach to estimate the disparity maps from light field images (Chapter 2), which are then
applied to a motion-compensated wavelet lifting scheme. The lifting scheme decomposes
4D light field images into high-/low-pass sub-band views in which the redundancy of image
data is eliminated. Making use of JPEG2000 for coding all sub-band views as well as
disparity maps, our approach can therefore support both lossless and lossy compression.
GPU acceleration is proposed to the motion-compensated wavelet decomposition (MWD)
task, which is the second most time-consuming computation after disparity estimation
in the proposed coding framework. The coding framework is tested with both synthetic
and real-world light field datasets. The experimental results show that our approach
outperforms JPEG–LS and the direct application of JPEG2000 in both lossless and lossy
compression scenarios. In addition, a significant gain in processing time is achieved by our
GPU-accelerated implementation as compared to CPU-based implementation. Parts of the
results of this chapter have been published in [127].

6.1 Motion-compensation Light Field Compression

Compared to traditional photography, light field photography presents the capability to
capture both spatial and directional information of the scene. Since the development of
commercial hand-held plenoptic cameras, e.g., Lytro or Raytrix [128], LF imaging has

119

120 6. 4D Light field Image Compression

(a) (b) (c)

Figure 6.1: Lightfield representation and acquisition. (a) Two-plane parameterisation. (b)
Lenslet-based sensor image. (c) Central sub-aperture image

been brought to a broader audience spanning from experts to casual users. The growth
in popularity of LF imaging gives rise to the need to store, access and transfer LF data
in a more efficient way. Due to its multi-dimension and rich-content property, LF images
generally require more storage capacity, bandwidth and transferring time. For example,
a single captured plenoptic-based LF image from a plenoptic-based camera, i.e., Raytrix
R42 ([128]), comprises of 42Mpx 2D image which requires 252 Mbyte storage. Such an
image when transferred in an uncompressed format results in a frame rate of 0.5 fps on a 1
Gbps network connection. The plenoptic image has a special structure distinguishing from
the traditional 2D image, see Figure 6.1(b). It assembles a 2D array of micro-lens images
which can be structured in the form of 4D array, Figure 6.1(a), and then re-arranged in the
form of 2D array of sub-aperture images (SAIs), Figure 6.1(c). It is evident that there is a
large similarity of scenery in sub-aperture images. Due to the small base-line property, the
disparity value in plenoptic-based 4D LF is quite small (i.e., below 2 pixels). Therefore there
is only a few pixel-shift from one SAI to the next neighbor SAI. This redundancy in LF image,
specially plenoptic image, motivates the proposed encoding strategy.

Our coding framework is presented in Figure 6.2. Instead of directly coding raw light
field images in the pixel domain, LF images are transformed into the wavelet domain
before undergoing entropy coding. Specifically, the light field image is firstly decoded
into multiple sub-aperture images, which is done by the View Extraction module, and a
disparity map is then extracted from them by Disparity Estimation module. The light field
toolbox developed by Dansereau et al. [71] is used for the first task and a variational
optimisation approach proposed in Chapter 2 is applied for the second. The estimated
disparity maps and all sub-aperture images are sent to the Motion-compensated Wavelet
Decomposition (MWD) module to extract high-pass and low-pass sub-band views. These sub-

6.1. Motion-compensation Light Field Compression 121

View
extraction

Disparity
Estimation

Motion-
compensated

Wavelet
Decomposition

Sub-band Compression Coded
Bitstream

High/Low-pass sub-
band viewsView set

Plenoptic images
Disparity map

Figure 6.2: Lightfield coding framework

band views and the disparity maps are then encoded by JPEG2000 in Sub-band Compression
module.

In our framework, the 2D wavelet transform and the motion compensation are jointly
performed in order to effectively exploit the inter-view redundancy of sub-aperture images.
The decomposition scheme is based on the lifting implementation of Discrete Wavelet
Transform (DWT) [130]. In order to flexibly handle both lossless and lossy compression
scenarios, we deploy a two-step lifting scheme based on Haar and bi-orthogonal 5/3 wavelet
kernel. These two schemes are invertible. Therefore it allows us to reconstruct the original
LF data from lossless bit-stream without losses. In the case that higher compression ratio is
preferred, quantization can be applied in Sub-band Compression module before the entropy
coding to further reduce the size of encoded data.

Consider a Light field 𝐿𝐿𝐿 as a 2D grid of sub-aperture images defined on directional domain
𝛱 . Let 𝑃 ⊂ 𝛱 is a set of view indexes belonging to a row or a column of this grid. We apply
the lifting scheme for each view 𝑉𝑘 (z) = 𝐿(z, 𝜽𝑘), 𝜽𝑘 ∈ 𝑃 . Here 𝑘 = 0, 1, 2, ... is indexed
from left to right or from top to bottom. A general form of a two-step lifting scheme is
formulated in Equation 6.1,

ℎ𝑘 (z) = 𝑉2𝑘+1(z) + 𝛼1𝑉2𝑘 (z) + 𝛼2𝑉2𝑘+2(z)
𝑙𝑘 (z) = 𝑉2𝑘 (z) + 𝛽1ℎ𝑘 (z) + 𝛽2ℎ𝑘−1(z)

(6.1)

where ℎ𝑘 (z) and 𝑙𝑘 (z) are high-pass and low-pass sub-band view, respectively. The weight
parameters (𝛼1, 𝛼2, 𝛽1, 𝛽2) depends on wavelet kernel. For Haar and 5/3 transform, they
are set to (−1, 0, 12, 0) and (−1

2,−
1
2,

1
4,

1
4) respectively.

LetW𝑖, 𝑗 [𝑓] denote the motion-compensated mapping of 2D function 𝑓 (z) from the coor-
dinate of view 𝑉𝑖 to the coordinate of view 𝑉𝑗 . The disparity-compensated version of this

122 6. 4D Light field Image Compression

a. Original view set b. Level 1

c. Level 2 d. Level 3

Figure 6.3: Demonstration of 3-level 2D MWD for a 5×5 view set of “bikes” lenslet
data [129].

two-step lifting scheme is as follows

ℎ𝑘 (z) =𝑉2𝑘+1(z) + 𝛼1W2𝑘,2𝑘+1[𝑉2𝑘] (z) + 𝛼2W2𝑘+2,2𝑘+1[𝑉2𝑘+2] (z)
𝑙𝑘 (z) =𝑉2𝑘 (z) + 𝛽1W2𝑘+1,2𝑘 [ℎ𝑘] (z) + 𝛽2W2𝑘−1,2𝑘 [ℎ𝑘−1] (z)

(6.2)

SAIs with the index 2𝑘 and the index 2𝑘 + 2 are warped into the coordinate of the SAI
at the index 2𝑘 + 1. Since the texture in three images are aligned, the weighted sum
to compute high-pass sub-band view ℎ𝑘 results in an 2D array which are sparser than
the one computed from Eq. 6.1. The inverse transform could be simply derived from
Equation 6.2.

𝑉2𝑘+1(z) =ℎ𝑘 (z) − 𝛼1W2𝑘,2𝑘+1[𝑉2𝑘] (z) − 𝛼2W2𝑘+2,2𝑘+1[𝑉2𝑘+2] (z)
𝑉2𝑘 (z) =𝑙𝑘 (z) − 𝛽1W2𝑘+1,2𝑘 [ℎ𝑘] (z) − 𝛽2W2𝑘−1,2𝑘 [ℎ𝑘−1] (z)

(6.3)

The above 1D transform is extended to 2D transform by applying first the 1D transform
horizontally and then vertically. In the case that there is more than one MWD level, the
decomposition in the next level is computed on low-pass sub-band views from the current

6.2. Acceleration of Coding Framework 123

1 2 3 4 5 6 7 8 9

W

S

l1

W

S

l2

W

S

l3

W

S

l4

W

S

l5

S
h1

W

S
h2

W

S
h3

W

S
h4

W

Figure 6.4: GPU-based computation of 1D MWD

level. Figure 6.3 illustrates three-level MWD of a light field image with 5×5 directional
resolution.

6.2 Acceleration of Coding Framework

In the proposed coding framework, the most time consuming task is disparity estimation, in
which disparity maps are extracted from 4D LF data by solving the variational optimization
problem. The numerical computation of the iterative solvers and its GPU implementation
are described in Chapter 2 and Chapter 3 respectively. The encoding of high/low-pass
sub-band views in sub-band compression step is carried out by standard compression tools,
i.e., JPEG2000, whose GPU-acceleration have been well addressed in the literature [131–
133]. In this section, we are going to discuss the GPU implementation of MWD which
comprises of warping operation and lifting scheme. The warping operation, as discussed
in Chapter 3, is well-suited for GPU acceleration. The lifting scheme is in principle the
weighted sums of 2D arrays and can be effectively implemented in the form of an OpenCL
kernel.

Figure 6.4 depicts the GPU-accelerated computation of 1D MWD. The two OpenCL kernels
are illustrated in a black background rectangle. W denotes the warping kernel and 𝑆

124 6. 4D Light field Image Compression

denotes the weighted sum kernel. Different from the warping kernel described in Chapter 3,
which warps SAIs from all perspectives into the coordinate of the reference SAI, the warping
kernel in MWDmaps the input SAI into the coordinates of two neighbor SAIs. By combining
two warping operations into a single kernel, we take advantage of texture cache to reduce
retrieving time of pixel values from the input SAI stored in global memory. Kernel 𝑆 takes
three memory objects stored in global memory as inputs and performs a pixel-wise weighted
sum of them. The global work-group sizes of the two kernels are then set to the horizontal
and vertical sizes of SAI.

6.3 Experimental Results

In this section, we compare the compression performance of our proposed coding framework
to JPEG–LS and JPEG2000 codecs. Both synthetic and real-world light field images are
considered in our experiment. Five synthetic data are taken from the synthetic 4D light field
dataset [14] and the other five real-world images are taken from JPEG pleno database [129].
The synthetic light field images have the directional resolution of 9×9 and the spatial
resolution of 768×768 (except horses with 1152×512 resolution). All the real-world

swans1 books stillLife

Figure 6.5: Estimated disparity map from light field data. top center view images. bottom
color coded disparity map. Two images from the left are real-world data. The
other is synthetic data.

6.3. Experimental Results 125

Table 6.1: Lossless compressed filesize in mega bytes (MB)
Image Raw JpegLS Jpeg2000 Haar 5/3

sy
nt
he
tic

buddha2 143.33 90.38 62.42 58.04 57.18
mona 143.33 77.44 52.16 40.99 40.82
papillon 143.33 70.17 51.57 44.47 44
stillLife 143.33 113.86 79.59 67.79 66.5
horses 143.33 96.41 60.8 59.93 58.65

re
al-
wo
rld

books 183.09 93.84 103.74 89.18 86.19
bikes 183.09 106.73 92.14 84.72 78.73
danger 183.09 105.42 90.41 80.83 74.68
pillars 183.09 91.48 76.87 71.21 66.74
swans1 183.09 95.1 88.45 80.39 75.02

light field data are captured using Lytro Illum camera that provides 15×15 sub-aperture
images and each with 434×625 spatial resolution. Because of the vignetting effect and
the geometrical distortion of the microlens, the border views are either dark or contain
less intensity similarity to the other views. Therefore MWD is applied only for the middle
13×13 views. The remaining views are directly encoded by Sub-band Compression module.

31

33

35

37

39

41

43

0 0,2 0,4 0,6 0,8 1 1,2

P
SN

R
 (

d
b

)

Bit rate (bpp)

Jpeg2000 Haar 5/3

(a) 𝑃𝑆𝑁𝑅𝑌𝑈𝑉

28

30

32

34

36

38

40

42

0 0,2 0,4 0,6 0,8 1 1,2

P
SN

R
 (

d
b

)

Bit rate (bpp)

Jpeg2000 Haar 5/3

(b) 𝑃𝑆𝑁𝑅𝑌

30

32

34

36

38

40

42

0 0,2 0,4 0,6 0,8 1 1,2

P
SN

R
 (

d
b

)

Bit rate (bpp)

Jpeg2000 Haar 5/3

(c) 𝑃𝑆𝑁𝑅𝑌𝑈𝑉

26

28

30

32

34

36

38

40

42

0 0,2 0,4 0,6 0,8 1 1,2

P
SN

R
 (

d
b

)

Bit rate (bpp)

Jpeg2000 Haar 5/3

(d) 𝑃𝑆𝑁𝑅𝑌

Figure 6.6: Average PSNR value for different compression ratio on tested light field images
top results for synthetic data. bottom results for real-world data.

126 6. 4D Light field Image Compression

64x64 128x128 256x256 512x512 1024x1024
0

500

1000

1500

2000

2500

3000

Ti
m

es
 (m

s)

58 87
210

775

2542

MWD level 1
MWD level 2
MWD level 3

20

40

60

80

100

120

Sp
ee

d
up

21.7x

56.9x

93.2x

101.1x

123.5x

Figure 6.7: Timing evaluation of accelerated MWD in comparison to CPU implementation.

For disparity estimation, the algorithm and its implementation discussed in Chapter 2
and 3 are employed. Figure 6.5 demonstrates the estimated disparity map of 3 light field
images used in our experiment. The disparity maps are smooth but still reserve sharp
edges at depth discontinuing area. It is because of the intrinsic sub-pixel precision provided
by the continuous formation and the sub-quadratic regularization. We notice that it is
not necessary to use the finest level disparity maps for MWD. The performance loss is
quite small when the down-sampled and quantized versions of disparity maps are used. In
this experiment, we down-sampled the estimated disparity maps by a factor of two and
quantized them to 2 bits representing three pixel shift levels -1,0, and 1. The modified
disparity maps are encoded into the bit stream. They are bi-cubic up-scaled before being
applied in the warping function.

The lossless compression results are listed in Table 6.1. The last two columns show the
results of our coding framework using Haar and bi-orthogonal 5/3 wavelet kernel. The
other columns report the compressed file size of JPEG2000, JPEG–LS and the original light
field data size. From the table, it could be seen that the compressed file sizes produced by
our algorithm are smaller than those compressed by JPEG–LS and JPEG2000. On average,
it is about 25% and 5.5% better for synthetic data and 11% and 7.3 % better for real-world
data compared to JPEG–LS and JPEG2000 respectively. This is attributed to MWD which
effectively removes redundant information across multiple sub-aperture images and results
in high-pass sub-band views. From Table 6.1, it also appears that the 5/3 wavelet kernel
outperforms the Haar kernel for all of the test images.

6.4. Summary 127

For lossy compression, we set JPEG2000 encoder in our Sub-band Compression module to
lossy mode. All the sub-band views are encoded with the same compression ratio. The
disparity map is however always compressed losslessly. The compression ratios set for this
test are 20,40,100,200. Figure 6.6 compares the average PSNR calculated on YUV color
space. We use the equation suggested from JPEGPleno call for proposal [134],[135] for
this PSNR computation. From the figure, it is apparent that our coding framework with
5/3 wavelet kernel consistently provides a better compression quality when compared to
JPEG2000 in both synthetic and real-world datasets. The gain compared to JPEG2000
increases at a lower compression ratio and is even better for the luminance component. It
could also be seen from the figure that the compression performance when using Haar kernel
is different between synthetic and real-world datasets. It possesses the same compression
quality as with 5/3 kernel on the real-world dataset but worse quality in the case of synthetic
data.

Figure 6.7 shows the timing evaluation of the GPU-accelerated MWD. In this experiment,
4D LF images have the directional resolution of 9 × 9 while its spatial resolution is varied
from 64 × 64 to 1024 × 1024. The amount of pixel data, therefore, ranges from 0.33 Mpx to
85 Mpx. The CPU implementation of MWD is executed on Intel(R) Xeon(R) Gold 6148
CPU @ 2.40GHz while its GPU-accelerated version is run on Nvidia GeForce GTX 1080 Ti.
Besides the total running time of MWD, the processing time of each MWD level and the
speed-up of GPU-based MWD are also reported, see Figure 6.7. Overall GPU-based MWD
demonstrates a superior performance as compared to CPU-based MWD. The gain in using
GPU for MWD becomes more and more significant when the spatial resolution of 4D LF
increases. At 64 × 64, the speed-up is 21.7×. This number is doubled at 128 × 128 and reach
123.5× at 1024 × 1024.

6.4 Summary

In this chapter, a compression framework based on motion-compensated wavelet decom-
position for light field images has been proposed. By employing the estimated disparity
maps for warping sub-aperture images in a two-step wavelet lifting scheme, we are able
to generate high-/low-pass sub-band views in which redundant information existing in
the pixel domain is suppressed. As being the second most time-consuming task in the
coding framework after disparity estimation, a GPU-accelerated version of MWD is highly
expected. An efficient acceleration strategy with 2 OpenCL kernels are proposed for 1D
MWD computation. Experimental results show that our proposed framework performs
better than JPEG–LS and JPEG2000. In the case of lossless compression, our approach

128 6. 4D Light field Image Compression

provides 5.5% and 7.3% better compression ratio compared to JPEG2000 and 25% and
11% better compression ratio compared to JPEG–LS for synthetic and real-world data
respectively. In the case of lossy compression, the result of using 5/3 wavelet kernel
shows consistently better PSNR values compared to JPEG2000. The GPU-accelerated MWD
achieves a significant speed-up as compared to CPU-based MWD, ranging from 21.7× to
123.5× for spatial resolution from 64 × 64 to 1024 × 1024 respectively.

Ch
ap
te
r 7

Summary and Outlook

7.1 Summary

In this dissertation we studied important 4DLF processing tasks including disparity estima-
tion, super-resolution, and compression. For each of processing tasks, the output quality
and computation time are considered as the two key aspects of the processing performance.
On top of the proposed computational approaches which aim for high quality output, GPU is
employed as a realization platform in order to alleviate the huge demand on computational
resources and achieve high processing speed.

In Chapter 2 we presented a 4DLF disparity estimation approach which combines the
robustness of variational optimization framework and effectiveness of weighted median
filtering for computing an accurate disparity solution. Following optic flow literature, a
systematic notation for variational 4DLF disparity estimation is introduced. This allows
us to simplify the construction of the optimization problem as well the development of
the numerical computation. In our optimization problem, the data term assembled the
brightness and gradient constancy assumptions and isotropic total variation is employed
for smoothness term. While separate robustifications are applied to the two constancy
assumptions, we proposed a joint penalization of perspective images to reduce the compu-
tational effort. For optimization, coarse-to-fine warping scheme was employed to improve
the accuracy in the case of large displacement. A detail numerical computation applying
Euler-Lagrange equation to construct a linear system of equations and the derivation of
explicit iterative solutions are also discussed.

129

130 7. Summary and Outlook

In Chapter 3 we discussed the realization of the numerical computation presented in
Chapter 2 on GPUs. The computation was decomposed and rearranged into a set of
computing tasks which are then realized as OpenCL kernels. To cope with the high-
dimension structure of 4D LF data, two memory layouts for storing the 4D LF data were
investigated. An extensive evaluation was conducted, in which the performance of our
approach was analyzed and compared to related approaches.

In Chapter 4 we presented a GPU-accelerated computation framework for spatial super-
resolution of 4DLF image. The super-resolution model is derived from statistical perspective
assembling a joint ℓ1 − ℓ2 data fidelity term and weighted regularization term. We showed
that ADMM can be applied for effectively solving the non-smooth convex optimizaton
problem. Tackle the limitation of sparse matrix implementation by linear function approxi-
mation, the iterative solver is realized on GPUs, thereby achieving a significant speed up
as compared to sequentially solving on CPUs. Validation of the proposed super-resolution
model, performance evaluation as well as the comparison to related works are also pre-
sented.

In Chapter 5 we presented a deep learning-based approach for dealing with the three
super-resolution tasks namely spatial-, angular-, and spatial-angular super-resolution. The
approach consists of two processing stages, the first stage preliminarily up-samples the
4DLF into desired resolution. The second stage enhances the quality of pre-scaled 4DLF
in a novel EPI volume refinement network. The evaluation demonstrates our superior
performance as compared to the state-of-the-art approaches.

In Chapter 6 we presented a compression approach for encoding 4DLF images. By employ-
ing the estimated disparity maps for warping sub-aperture images in a two-step wavelet
lifting scheme, we are able to generate high-/low-pass sub-band views in which redun-
dant information existing in the pixel domain is suppressed. The coding framework is
tested with both synthetic and real-world light field dataset. The experimental results
show that our approach outperforms JPEG–LS and the direct application of JPEG2000 in
both lossless and lossy compression scenarios. In addition, a significant gain in process-
ing time is achieved by a fast parallel computation on GPUs as compared to CPU-based
implementation.

7.2 Outlook

In this dissertation, the acceleration of the 4DLF image processing tasks is conducted by
the means of GPU execution. GPU is a preferable platform due to its capability of parallel

7.2. Outlook 131

processing and floating point operations. In addition, it is designed for handling image-like
data such as 4DLF images. Important operations of 4DLF image processing such as filtering,
interpolation, warping benefit greatly from the texture cache available in GPU platform.
Besides GPU, Field Programmable Gate Array (FPGA) is also a good choice for accelerating
the 4DLF processing tasks with the potential to achieve much higher processing speed and
much lower energy consumption. However, there are some challenges which need to be
overcome when realizing the proposed approaches on FPGA platform. First, there is a
limited capacity for floating point operation on FPGA devices. All computations should
be carried out in the form of fixed-point operations. The bit size of data and its dynamic
range need to be investigated and decided for each of the processing tasks. Second, each
processing operation need its own custom-logic which is typically described in hardware
description language (HDL), such as VHDL or Verilog. Consequently, FPGA implementation
requires a lot more effort as compared to GPU implementation. Although high level synthesis
(HLS) tools offer a practical way to simplify the implementation process, one needs to
decide between HLS and HDL to balance between development effort and performance.
Third, FPGA has limited amount of low-latency memory (i.e., block ram or distributed ram)
which, in general, cannot afford a full-size 4DLF image. 4DLF is therefore need to be kept
in external memory. A proper accessing and buffering scheme is required for optimizing the
4DLF processing performance. Alleviating the mentioned challenges to bring the proposed
approaches on the FPGA platform is listed as our future works.

Bibliography

[1] E. H. Adelson and J. R. Bergen. The plenoptic function and the elements of early
vision. Comput. Model. Vis. Process., pages 3–20, 1991.

[2] Marc Levoy and Pat Hanrahan. Light field rendering. In ACM Proc. 23rd Annu. Conf.
Comput. Graph. Interact. Tech., pages 31–42, 1996.

[3] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen. The
lumigraph. SIGGRAPH,, pages 43–54, 1996.

[4] Katrin Honauer, Ole Johannsen, Daniel Kondermann, and Bastian Goldluecke. A
dataset and evaluation methodology for depth estimation on 4d light fields. Lect.
Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformat-
ics), 10113 LNCS:19–34, 2017.

[5] Marc Levoy. Light fields and computational imaging. Computer (Long. Beach. Calif).,
(8):46–55, 2006.

[6] Juan Casavílca Silva, Muhammad Saadi, Lunchakorn Wuttisittikulkij, Davi Ribeiro
Militani, Renata Lopes Rosa, Demóstenes Zegarra Rodríguez, and Sattam Al Otaibi.
Light-field imaging reconstruction using deep learning enabling intelligent au-
tonomous transportation system. IEEE Transactions on Intelligent Transportation
Systems, 2021.

[7] Ryan S Overbeck, Daniel Erickson, Daniel Evangelakos, Matt Pharr, and Paul Debevec.
A system for acquiring, processing, and rendering panoramic light field stills for
virtual reality. ACM Transactions on Graphics (TOG), 37(6):1–15, 2018.

[8] Lixia Ni, Zhenxing Li, Haifeng Li, and Xu Liu. 360-degree large-scale multiprojection
light-field 3d display system. Applied optics, 57(8):1817–1823, 2018.

133

134 Bibliography

[9] Bennett Wilburn, Neel Joshi, Vaibhav Vaish, Eino-Ville Talvala, Emilio Antunez, Adam
Barth, Andrew Adams, Mark Horowitz, and Marc Levoy. High performance imaging
using large camera arrays. In ACM Trans. Graph., volume 24, pages 765–776. ACM,
2005.

[10] Jonas Unger, Andreas Wenger, Tim Hawkins, Andrew Gardner, and Paul Debevec.
Capturing and rendering with incident light fields. Technical report, Inst. Creative
Tech., Univ. Southern California, 2003.

[11] Edward H Adelson and John Y A Wang. Single lens stereo with a plenoptic camera.
IEEE Trans. Pattern Anal. Mach. Intell., (2):99–106, 1992.

[12] Ren Ng, Marc Levoy, Mathieu Brédif, Gene Duval, Mark Horowitz, Pat Hanrahan,
and Others. Light field photography with a hand-held plenoptic camera. Comput.
Sci. Tech. Rep. CSTR, 2(11):1–11, 2005.

[13] Andrew Lumsdaine and Todor Georgiev. The focused plenoptic camera. In IEEE Int.
Conf. Image Process., pages 1–8. IEEE, 2009.

[14] Sven Wanner, Stephan Meister, and Bastian Goldlucke. Datasets and benchmarks
for densely sampled 4d light fields. In VMV 2013 Vis. Model. Vis., pages 225–226,
2013.

[15] Jinglei Shi, Xiaoran Jiang, and Christine Guillemot. A framework for learning depth
from a flexible subset of dense and sparse light field views. IEEE Transactions on
Image Processing, pages 5867–5880, June 2019.

[16] Stanford lytro light field archive. Accessed: Feb. 2020.

[17] Lytro illum light field dataset. Accessed: Feb. 2020.

[18] Martin Rerabek and Touradj Ebrahimi. New light field image dataset. In 8th
International Conference on Quality of Multimedia Experience (QoMEX), number
CONF, 2016.

[19] Light fields from the lego gantry. Accessed: Feb. 2020.

[20] Stefan Heber, Rene Ranftl, and Thomas Pock. Variational shape from light field.
Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioin-
formatics), 8081 LNCS:66–79, 2013.

[21] Trung-Hieu Tran, Gasim Mammadov, and Sven Simon. Gvld: A fast and accurate
gpu-based variational light-field disparity estimation approach. IEEE Transactions
on Circuits and Systems for Video Technology, 31(7):2562–2574, 2021.

Bibliography 135

[22] M. Shahzeb Khan Gul and Bahadir K. Gunturk. Spatial and angular resolution
enhancement of light fields using convolutional neural networks. IEEE Trans. Image
Process., 27(5):2146–2159, 2018.

[23] In Kyu Park, Kyoung Mu Lee, and Others. Robust light field depth estimation using
occlusion-noise aware data costs. Trans. Pattern Anal. Mach. Intell., 40(10):2484–
2497, 2018.

[24] Sven Wanner and Bastian Goldluecke. Variational light field analysis for disparity
estimation and super-resolution. IEEE Trans. Pattern Anal. Mach. Intell., 36(3):606–
619, 2014.

[25] Changha Shin, Hae-Gon Jeon, Youngjin Yoon, In So Kweon, and Seon Joo Kim.
Epinet: A fully-convolutional neural network using epipolar geometry for depth from
light field images. In IEEE Conf. Comput. Vis. Pattern Recognit., pages 4748–4757,
2018.

[26] Stefan Heber, Wei Yu, and Thomas Pock. Neural epi-volume networks for shape
from light field. In Proc. IEEE Int. Conf. Comput. Vis., pages 2271–2279, 2017.

[27] Trung-Hieu Tran, Jan Berberich, and Sven Simon. 3dvsr: 3d epi volume-based
approach for angular and spatial light field image super-resolution. Signal Processing,
192:108373, 2022.

[28] Hae-Gon Jeon, Jaesik Park, Gyeongmin Choe, Jinsun Park, Yunsu Bok, Yu-Wing Tai,
and In So Kweon. Accurate depth map estimation from a lenslet light field camera.
In IEEE Conf. Comput. Vis. Pattern Recognit., pages 1547–1555, 2015.

[29] Michael W Tao, Sunil Hadap, Jitendra Malik, and Ravi Ramamoorthi. Depth from
combining defocus and correspondence using light-field cameras. In Proc. IEEE Int.
Conf. Comput. Vis., pages 673–680, 2013.

[30] Ting-Chun Wang, Alexei A Efros, and Ravi Ramamoorthi. Occlusion-aware depth
estimation using light-field cameras. In Proc. IEEE Int. Conf. Comput. Vis., pages
3487–3495, 2015.

[31] Alessandro Neri, Marco Carli, and Federica Battisti. A multi-resolution approach
to depth field estimation in dense image arrays. In IEEE Int. Conf. Image Process.,
pages 3358–3362. IEEE, 2015.

[32] Lipeng Si and Qing Wang. Dense depth-map estimation and geometry inference
from light fields via global optimization. In Asian Conf. Comput. Vis., pages 83–98.
Springer, 2016.

136 Bibliography

[33] Yuriy Anisimov and Didier Stricker. Fast and efficient depth map estimation from
light fields. In Int. Conf. 3D Vis., pages 337–346. IEEE, IEEE, oct 2017.

[34] Jae Young Lee and Rae-Hong Park. Depth estimation from light field by accumulating
binary maps based on foreground–background separation. IEEE J. Sel. Top. Signal
Process., 11(7):955–964, 2017.

[35] Michael Strecke, Anna Alperovich, and Bastian Goldluecke. Accurate depth and
normal maps from occlusion-aware focal stack symmetry. In IEEE Conf. Comput. Vis.
Pattern Recognit., pages 2814–2822, 2017.

[36] 4d light field benchmark. Accessed: Oct. 2019.

[37] Yaoxiang Luo, Wenhui Zhou, Junpeng Fang, Linkai Liang, Hua Zhang, and Guojun
Dai. Epi-patch based convolutional neural network for depth estimation on 4d light
field. In Proc. Int. Conf. Neural Information Processing, pages 642–652, 2017.

[38] Stefan Heber, Wei Yu, and Thomas Pock. U-shaped networks for shape from light
field. Br. Mach. Vis. Conf. 2016, BMVC 2016, 2016-Septe(1):37.1–37.12, 2016.

[39] Haoxin Ma, Haotian Li, Zhiwen Qian, Shengxian Shi, and Tingting Mu. Vommanet:
an end-to-end network for disparity estimation from reflective and texture-less light
field images. arXiv Prepr. arXiv1811.07124, 2018.

[40] Titus Leistner, Hendrik Schilling, Radek Mackowiak, Stefan Gumhold, and Carsten
Rother. Learning to think outside the box: Wide-baseline light field depth estimation
with epi-shift. In Int. Conf. 3D Vis., 2019.

[41] Yuttakon Yuttakonkit, Shinya Takamaeda-Yamazaki, and Yasuhiko Nakashima. Per-
formance optimization of light-field applications on gpu. IEICE Trans. Inf. Syst.,
99(12):3072–3081, 2016.

[42] Yanwen Qin, Xin Jin, and Qionghai Dai. Gpu-based depth estimation for light field
images. In 2017 Int. Symp. Intell. Signal Process. Commun. Syst., volume 6, pages
640–645. IEEE, nov 2017.

[43] Andre Ivan, In Kyu Park, and Others. Light field depth estimation on off-the-shelf
mobile gpu. In IEEE Conf. Comput. Vis. Pattern Recognit. Work., pages 634–643,
2018.

[44] K. Mitra and A. Veeraraghavan. Light field denoising, light field superresolution and
stereo camera based refocussing using a gmm light field patch prior. In 2012 IEEE

Bibliography 137

Computer Society Conference on Computer Vision and Pattern Recognition Workshops,
pages 22–28, June 2012.

[45] T. E. Bishop and P. Favaro. The light field camera: Extended depth of field, aliasing,
and superresolution. IEEE Transactions on Pattern Analysis and Machine Intelligence,
34(5):972–986, May 2012.

[46] M. Alain and A. Smolic. Light field super-resolution via lfbm5d sparse coding. In
2018 25th IEEE International Conference on Image Processing (ICIP), pages 2501–
2505, Oct 2018.

[47] M. Rossi, M. E. Gheche, and P. Frossard. A nonsmooth graph-based approach to
light field super-resolution. In 2018 25th IEEE International Conference on Image
Processing (ICIP), pages 2590–2594, Oct 2018.

[48] Trung Hieu Tran, GasimMammadov, Kaicong Sun, and Sven Simon. Gpu-accelerated
light-field image super-resolution. In Proc. - 2018 Int. Conf. Adv. Comput. Appl.
ACOMP 2018, pages 7–13. IEEE, 2018.

[49] M. Rossi and P. Frossard. Geometry-consistent light field super-resolution via graph-
based regularization. IEEE Transactions on Image Processing, 27(9):4207–4218, Sep.
2018.

[50] Youngjin Yoon, Hae-Gon Jeon, Donggeun Yoo, Joon-Young Lee, and In So Kweon.
Learning a deep convolutional network for light-field image super-resolution. In
Conf. Comput. Vis. Work., 2015.

[51] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Learning a deep con-
volutional network for image super-resolution. In European conference on computer
vision, pages 184–199. Springer, 2014.

[52] Youngjin Yoon, Hae Gon Jeon, Donggeun Yoo, Joon Young Lee, and In So Kweon.
Light-field image super-resolution using convolutional neural network. IEEE Signal
Process. Lett., 24(6):848–852, jun 2017.

[53] Nima Khademi Kalantari, Ting-Chun Wang, and Ravi Ramamoorthi. Learning-based
view synthesis for light field cameras. ACM Transactions on Graphics (Proceedings of
SIGGRAPH Asia 2016), 35(6), 2016.

[54] Reuben A. Farrugia, Christian Galea, and Christine Guillemot. Super resolution of
light field images using linear subspace projection of patch-volumes. IEEE J. Sel.
Top. Signal Process., 11(7):1058–1071, 2017.

138 Bibliography

[55] Hanzhi Fan, Dong Liu, Zhiwei Xiong, and Feng Wu. Two-stage convolutional neural
network for light field super-resolution. In Int. Conf. Image Process., pages 1167–
1171. IEEE, sep 2017.

[56] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate image super-resolution
using very deep convolutional networks. In 2016 IEEE Conf. Comput. Vis. Pattern
Recognit., pages 1646–1654. IEEE, jun 2016.

[57] Yan Yuan, Ziqi Cao, and Lijuan Su. Light-field image superresolution using a
combined deep cnn based on epi. IEEE Signal Process. Lett., 25(9):1359–1363,
2018.

[58] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and KyoungMu Lee. Enhanced
deep residual networks for single image super-resolution. In IEEE Conf. Comput. Vis.
Pattern Recognit. Work., jul 2017.

[59] Yunlong Wang, Fei Liu, Kunbo Zhang, Guangqi Hou, Zhenan Sun, and Tieniu Tan.
Lfnet: A novel bidirectional recurrent convolutional neural network for light-field
image super-resolution. IEEE Trans. Image Process., 27(9):4274–4286, 2018.

[60] Henry Wing Fung Yeung, Junhui Hou, Xiaoming Chen, Jie Chen, Zhibo Chen, and
Yuk Ying Chung. Light field spatial super-resolution using deep efficient spatial-
angular separable convolution. IEEE Transactions on Image Processing, 28(5):2319–
2330, 2018.

[61] Shuo Zhang, Youfang Lin, and Hao Sheng. Residual networks for light field image
super-resolution. IEEE Conf. Comput. Vis. Pattern Recognit., pages 11046–11055,
2019.

[62] Simon Baker and Takeo Kanade. Limits on super-resolution and how to break them.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(9):1167–1183,
2002.

[63] S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar. Fast and robust multiframe
super resolution. IEEE Transactions on Image Processing, 13(10):1327–1344, Oct
2004.

[64] Kaicong Sun, Trung-Hieu Tran, Jajnabalkya Guhathakurta, and Sven Simon. Fl-misr:
fast large-scale multi-image super-resolution for computed tomography based on
multi-gpu acceleration. Journal of Real-Time Image Processing, pages 1–14, 2021.

Bibliography 139

[65] R. Monteiro, L. Lucas, C. Conti, P. Nunes, N. Rodrigues, S. Faria, C. Pagliari, E. da
Silva, and L. Soares. Light field hevc-based image coding using locally linear
embedding and self-similarity compensated prediction. In 2016 IEEE International
Conference on Multimedia Expo Workshops (ICMEW), pages 1–4, July 2016.

[66] Y. Li, R. Olsson, and M. Sjöström. Compression of unfocused plenoptic images
using a displacement intra prediction. In 2016 IEEE International Conference on
Multimedia Expo Workshops (ICMEW), pages 1–4, July 2016.

[67] C. Conti, P. Nunes, and L. D. Soares. Hevc-based light field image coding with
bi-predicted self-similarity compensation. In 2016 IEEE International Conference on
Multimedia Expo Workshops (ICMEW), pages 1–4, July 2016.

[68] D. Liu, L. Wang, L. Li, Zhiwei Xiong, Feng Wu, and Wenjun Zeng. Pseudo-
sequenli2016compressionce-based light field image compression. In 2016 IEEE
International Conference on Multimedia Expo Workshops (ICMEW), pages 1–4, July
2016.

[69] C. Perra and P. Assuncao. High efficiency coding of light field images based on tiling
and pseudo-temporal data arrangement. In 2016 IEEE International Conference on
Multimedia Expo Workshops (ICMEW), pages 1–4, July 2016.

[70] Petri Helin, Pekka Astola, Bhaskar Rao, and Ioan Tabus. Sparse modelling and
predictive coding of subaperture images for lossless plenoptic image compression.
In 2016 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D
Video (3DTV-CON), pages 1–4. IEEE, jul 2016.

[71] Donald G Dansereau, Oscar Pizarro, and Stefan B Williams. Decoding, calibration
and rectification for lenselet-based plenoptic cameras. In Proc. IEEE Conf. Comput.
Vis. pattern Recognit., pages 1027–1034, 2013.

[72] Trung-Hieu Tran, Zhe Wang, and Sven Simon. Variational disparity estimation
framework for plenoptic images. In IEEE Int. Conf. Multimed. Expo, pages 1189–
1194, 2017.

[73] Masatoshi Okutomi and Takeo Kanade. A multiple-baseline stereo. IEEE Transactions
on pattern analysis and machine intelligence, 15(4):353–363, 1993.

[74] Thomas Brox, Andrés Bruhn, Nils Papenberg, and Joachim Weickert. High accuracy
optical flow estimation based on a theory for warping. In Eur. Conf. Comput. Vis.,
pages 25–36. Springer, 2004.

140 Bibliography

[75] Andrés Bruhn, Joachim Weickert, Timo Kohlberger, and Christoph Schnörr. A
multigrid platform for real-time motion computation with discontinuity-preserving
variational methods. International Journal of Computer Vision, 70(3):257–277, 2006.

[76] Rene Ranftl, Stefan Gehrig, Thomas Pock, and Horst Bischof. Pushing the limits
of stereo using variational stereo estimation. In 2012 IEEE Intelligent Vehicles
Symposium, number 1, pages 401–407. IEEE, jun 2012.

[77] Andrés Bruhn and Joachim Weickert. Towards ultimate motion estimation: Com-
bining highest accuracy with real-time performance. In Tenth IEEE International
Conference on Computer Vision (ICCV’05) Volume 1, volume 1, pages 749–755. IEEE,
2005.

[78] Andrés Bruhn, Joachim Weickert, and Christoph Schnörr. Lucas/kanade meets
horn/schunck: Combining local and global optic flow methods. International journal
of computer vision, 61(3):211–231, 2005.

[79] Gunnar Farneback. Very high accuracy velocity estimation using orientation tensors,
parametric motion, and simultaneous segmentation of the motion field. In Proceed-
ings Eighth IEEE International Conference on Computer Vision. ICCV 2001, volume 1,
pages 171–177. IEEE, 2001.

[80] Tony F Chan and Pep Mulet. On the convergence of the lagged diffusivity fixed point
method in total variation image restoration. SIAM journal on numerical analysis,
36(2):354–367, 1999.

[81] Deqing Sun, Stefan Roth, and Michael J Black. Secrets of optical flow estimation
and their principles. In IEEE Conf. Comput. Vis. Pattern Recognit., pages 2432–2439.
IEEE, 2010.

[82] Ziyang Ma, Kaiming He, Yichen Wei, Jian Sun, and Enhua Wu. Constant time
weighted median filtering for stereo matching and beyond. In Proceedings of the
IEEE International Conference on Computer Vision, pages 49–56, 2013.

[83] Yingying Li and Stanley Osher. A new median formula with applications to pde
based denoising. Communications in Mathematical Sciences, 7(3):741–753, 2009.

[84] Kaiming He, Jian Sun, and Xiaoou Tang. Guided image filtering. IEEE Trans. Pattern
Anal. Mach. Intell., 35(6):1397–1409, 2012.

[85] Peter Sand and Seth Teller. Particle video: Long-range motion estimation using
point trajectories. Int. J. Comput. Vis., 80(1):72, 2008.

Bibliography 141

[86] Henning Zimmer, Andrés Bruhn, and Joachim Weickert. Optic flow in harmony.
International Journal of Computer Vision, 93(3):368–388, 2011.

[87] Andrés Bruhn. Correspondence problems in computer vision. Univesity of Stuttgart,
Institute for Visualization and Interactive Systems. Lecture Notes, April 2016.

[88] Sven Wanner and Bastian Goldluecke. Globally consistent depth labeling of 4d light
fields. In IEEE Conf. Comput. Vis. Pattern Recognit., pages 41–48. IEEE, 2012.

[89] Stefan Heber and Thomas Pock. Shape from light field meets robust pca. In Eur.
Conf. Comput. Vis., pages 751–767. Springer, 2014.

[90] Nvidia Corporation. OpenCL Programming Guide for the CUDA Architecture version
4.2. Technical report, 2012.

[91] Katrin Honauer, Ole Johannsen, Daniel Kondermann, and Bastian Goldluecke. A
dataset and evaluation methodology for depth estimation on 4d light fields. In Asian
Conf. Comput. Vis., pages 19–34. Springer, 2016.

[92] 4d light-field benchmark tools. Accessed: Oct. 2019.

[93] Yuriy Anisimov, Oliver Wasenmüller, and Didier Stricker. Rapid light field depth
estimation with semi-global matching. jul 2019.

[94] Chao-Tsung Huang. Robust pseudo random fields for light-field stereo matching. In
IEEE Int. Conf. Comput. Vis., volume 2017-Octob, pages 11–19. IEEE, oct 2017.

[95] Ole Johannsen, Antonin Sulc, and Bastian Goldluecke. What sparse light field coding
reveals about scene structure. In IEEE Conf. Comput. Vis. Pattern Recognit., pages
3262–3270, 2016.

[96] Hae-Gon Jeon, Jaesik Park, Gyeongmin Choe, Jinsun Park, Yunsu Bok, Yu-Wing Tai,
and In So Kweon. Depth from a light field image with learning-based matching
costs. IEEE Trans. Pattern Anal. Mach. Intell., 41(2):297–310, 2019.

[97] Shuo Zhang, Hao Sheng, Chao Li, Jun Zhang, and Zhang Xiong. Robust depth
estimation for light field via spinning parallelogram operator. Comput. Vis. Image
Underst., 145:148–159, 2016.

[98] Shuhang Gu, Andreas Lugmayr, Martin Danelljan, Manuel Fritsche, Julien Lamour,
and Radu Timofte. Div8k: Diverse 8k resolution image dataset. In Int. Conf. on
Comp. Vis. Work., pages 3512–3516, 2019.

142 Bibliography

[99] Trung-Hieu Tran, Kaicong Sun, and Sven Simon. A gpu-accelerated light-field super-
resolution framework based on mixed noise model and weighted regularization.
Journal of Real-Time Image Processing, 19(5):893–910, 2022.

[100] R. Farrugia and C. Guillemot. Light field super-resolution using a low-rank prior
and deep convolutional neural networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, pages 1–1, 2019.

[101] Kaicong Sun, Trung-Hieu Tran, Roman Krawtschenko, and Sven Simon. Multi-frame
super-resolution reconstruction based on mixed poisson–gaussian noise. Signal
Processing: Image Communication, 82:115736, 2020.

[102] Paul Rodríguez. Total variation regularization algorithms for images corrupted with
different noise models: A review. J. Electr. Comput. Eng., 2013(1), 2013.

[103] Mila Nikolova. A variational approach to remove outliers and impulse noise. Journal
of Mathematical Imaging and Vision, 20(1):99–120, 2004.

[104] Tongtong Jia, Yuying Shi, Yonggui Zhu, and Lei Wang. An image restoration model
combining mixed l1/l2 fidelity terms. J. Vis. Commun. Image Represent., 38:461–473,
2016.

[105] M. Hakim, A. Ghazdali, and A. Laghrib. A multi-frame super-resolution based on
new variational data fidelity term. Applied Mathematical Modelling, 87:446–467,
2020.

[106] Martin Pleschberger, Stefan Schrunner, and Jürgen Pilz. An Explicit Solution for
Image Restoration using Markov Random Fields. Journal of Signal Processing Systems,
92(2):257–267, 2020.

[107] Federica Sciacchitano, Y Dong, and PC Hansen. Image reconstruction under non-
Gaussian noise. PhD thesis, PhD thesis. Technical University of Denmark, 2017.

[108] Stuart Geman and Donald Geman. Stochastic Relaxation, Gibbs Distributions, and
the Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, PAMI-6(6):721–741, 1984.

[109] Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based
noise removal algorithms. Physica D: nonlinear phenomena, 60(1-4):259–268, 1992.

[110] Stefan Kindermann, Stanley Osher, and Peter W Jones. Deblurring and denoising of
images by nonlocal functionals. Multiscale Modeling & Simulation, 4(4):1091–1115,
2005.

Bibliography 143

[111] Guy Gilboa and Stanley Osher. Nonlocal operators with applications to image
processing. Multiscale Modeling and Simulation, 7(3):1005–1028, 2008.

[112] K. Sun and S. Simon. Bilateral spectrum weighted total variation for noisy-image
super-resolution and image denoising. IEEE Trans. Signal Process., 69:6329–6341,
2021.

[113] Stephen Boyd, Neal Parikh, and Eric Chu. Distributed optimization and statistical
learning via the alternating direction method of multipliers. Now Publishers Inc, 2011.

[114] Naum Zuselevich Shor. Minimization methods for non-differentiable functions, vol-
ume 3. Springer Science & Business Media, 2012.

[115] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

[116] W. J. Kammerer and M. Z. Nashed. On the Convergence of the Conjugate Gradient
Method for Singular Linear Operator Equations. SIAM Journal on Numerical Analysis,
9(1):165–181, mar 1972.

[117] Markus Unger, Thomas Pock, Manuel Werlberger, and Horst Bischof. A convex
approach for variational super-resolution. In Joint pattern recognition symposium,
pages 313–322. Springer, 2010.

[118] Mantang Guo, Junhui Hou, Jing Jin, Jie Chen, and Lap-Pui Chau. Deep spatial-
angular regularization for light field imaging, denoising, and super-resolution. IEEE
Transactions on Pattern Analysis & Machine Intelligence, (01):1–1, 2021.

[119] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected
convolutional networks. In IEEE Conf. Comput. Vis. Pattern Recognit., pages 2261–
2269, 2017.

[120] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu. Image
super-resolution using very deep residual channel attention networks. In ECCV,
2018.

[121] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. Cbam: Convo-
lutional block attention module. In The European Conference on Computer Vision
(ECCV), September 2018.

[122] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In Int.
Conf. Learning Representations, May 2019.

144 Bibliography

[123] M. Haris, G. Shakhnarovich, and N. Ukita. Deep back-projection networks for super-
resolution. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 1664–1673, June 2018.

[124] Yunlong Wang, Fei Liu, Zilei Wang, Guangqi Hou, Zhenan Sun, and Tieniu Tan.
End-to-end view synthesis for light field imaging with pseudo 4dcnn. In Proceedings
of the European Conference on Computer Vision (ECCV), September 2018.

[125] G. Wu, Y. Liu, Q. Dai, and T. Chai. Learning sheared epi structure for light field
reconstruction. IEEE Transactions on Image Processing, 28(7):3261–3273, 2019.

[126] G. Wu, Y. Liu, L. Fang, Q. Dai, and T. Chai. Light field reconstruction using convo-
lutional network on epi and extended applications. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 41(7):1681–1694, 2019.

[127] Trung-hieu Tran, Yousef Baroud, Zhe Wang, Sven Simon, and David Taubman.
Light-field image compression based on variational disparity estimation and motion-
compensated wavelet decomposition. In IEEE Int. Conf. Image Process., pages 3260–
3264, 2017.

[128] Raytrix| 3d light-field machine vision. Accessed: Jul. 2022.

[129] JPEG Pleno Database: EPFL Light-field data set. http://jpeg.org/plenodb/lf/epfl/.

[130] Wim Sweldens. The lifting scheme: A construction of second generation wavelets.
SIAM Journal on Mathematical Analysis, 29(2):511–546, 1998.

[131] Jiri Matela, Vít Rusňák, and Petr Holub. Efficient jpeg2000 ebcot context modeling
for massively parallel architectures. In 2011 Data Compression Conference, pages
423–432. IEEE, 2011.

[132] Jiří Matela, Martin Šrom, and Petr Holub. Low gpu occupancy approach to fast
arithmetic coding in jpeg2000. In International Doctoral Workshop on Mathematical
and Engineering Methods in Computer Science, pages 136–145. Springer, 2011.

[133] Miłosz Ciżnicki, Michał Kierzynka, Piotr Kopta, Krzysztof Kurowski, and Paweł Gep-
ner. Benchmarking jpeg 2000 implementations on modern cpu and gpu architectures.
Journal of Computational Science, 5(2):90–98, 2014.

[134] T. Ebrahimi, S. Foessel, F. Pereira, and P. Schelkens. Jpeg pleno: Toward an efficient
representation of visual reality. IEEE MultiMedia, 23(4):14–20, Oct 2016.

[135] Workplan and Specs of JPEG Pleno. http://jpeg.org/jpegpleno/workplan.html.

List of Publications

Journal Articles

1. T.H. Tran, K. Sun, and S. Simon, “A GPU-Accelerated Light-field Super-resolution
Framework Based on Mixed Noise Model and Weighted Regularization,” Journal of
Real-time Image Processing, 19(5), pp. 893-910, 2022.

2. T.H. Tran, J. Berberich, and S. Simon, “3DVSR: 3D EPI Volume-based Approach for
Angular and Spatial Light-field Image Super-Resolution,” Signal Processing, vol. 192,
p. 108373, 2022.

3. T.H. Tran, G. Mammadov, and S. Simon, “GVLD: A Fast and Accurate Gpu-based
Variational Light-field Disparity Estimation Approach,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 31, no. 7, pp. 2562–2574, 2021.

4. K. Sun, T.H. Tran, J. Guhathakurta, and S. Simon, “FL-MISR: Fast Large-Scale Multi-
Image Super-Resolution for Computed Tomography based onMulti-GPU Acceleration,”
Journal of Real- Time Image Processing, 19(2), 331-344, 2021.

5. K. Sun, T.H. Tran, R. Krawtschenko, and S. Simon, “Multi-Frame Super-Resolution
Reconstruction based on Mixed Poisson–Gaussian Noise,” Signal Processing: Image
Communication, vol. 82, p. 115736, 2020.

6. Z. Wang, T.H. Tran, P.K. Muthappa and S. Simon, “A JND-based pixel-domain algo-
rithm and hardware architecture for perceptual image coding,” Journal of Imaging,
5(5), p.50, 2019.

7. S.M. Najmabadi, T.H. Tran, S. Eissa, H.S. Tungal, and S. Simon, “An Architecture
for Asymmetric Numeral Systems Entropy Decoder - a Comparison with a Canonical
Huffman decoder,” Journal of Signal Processing Systems, 91(7), pp. 805-817, 2019.

145

146 7. List of Publications

Peer-reviewed Conference Papers

1. T.H. Tran, S. Simon, B. Chen, D. Russ, D. Claus, “A lightweight and robust VCSEL-based
3D-depth sensing approach for mobile application,” in Digital Optical Technologies
2021 (Vol. 11788, pp. 70-77). SPIE.

2. T.H. Tran, G. Mammadov, K. Sun, and S. Simon, “GPU-Accelerated Light-field Im-
age Super- Resolution,” in International Conference on Advanced Computing and
Applications (ACOMP), pp. 7–13. IEEE, 2018.

3. T.H. Tran, Z. Wang, and S. Simon, “Variational Disparity Estimation Framework for
Plenoptic Images,” In IEEE International Conference on Multimedia and Expo (ICME),
pp. 1189-1194. IEEE, 2017. Best PhD student paper award

4. T.H. Tran, Y. Baroud, Z. Wang, S. Simon, and D. Taubman, “Light-field Image Com-
pression Based on Variational Disparity Estimation and Motion-Compensated Wavelet
Decomposition,” in IEEE International Conference Image Processing, pp. 3260–3264.
IEEE, 2017.

5. S.M. Najmabadi, P. Pandit, T.H. Tran, and S. Simon, “A resource-efficient monitoring
architecture for hardware accelerated self-adaptive online data stream compression,”
In 2017 Signal Processing: Algorithms, Architectures, Arrangements, and Applications
(SPA), pp. 222-227. IEEE, 2017. Best paper award

6. S.M. Najmabadi, H.S. Tungal, T.H. Tran, and S. Simon, “Hardware-based architecture
for asymmetric numeral systems entropy decoder,” In 2017 Conference on Design
and Architectures for Signal and Image Processing (DASIP), pp. 1-6. IEEE, 2017.

	Abstract
	Zusammenfassung
	Acknowledgements
	List of Abbreviations
	List of Figures
	List of Tables
	1 Introduction
	1.1 Introduction
	1.2 4D Light field Acquisition and Visualization
	1.3 Related Works
	1.3.1 Disparity Estimation
	1.3.2 Light Field Super-resolution
	1.3.3 Light Field Image Compression

	1.4 Contributions
	1.5 Organization

	2 Variational 4D Light Field Disparity Estimation
	2.1 Problem Setup and Notation
	2.2 Variational Disparity Estimation
	2.2.1 Data Term
	2.2.2 Regularization Term

	2.3 Optimization Method
	2.3.1 Solving Quadratic Data-term and Smoothness Term
	2.3.2 Solving Sub-quadratic Data Term and Smoothness Term
	2.3.3 Coarse-to-fine Warping Strategy
	2.3.4 Weighted Median Filtering
	2.3.5 Extension to Multi-channel Light Field
	2.3.6 Per Perspective Robustification

	2.4 Numerical Computation
	2.4.1 Discreatization Strategy and Notation
	2.4.2 Generalized Equation
	2.4.3 Solution to Quadratic Data Term and Smoothness Term
	2.4.4 Solution to Sub-quadratic Data Term and Smoothness term

	2.5 Experimental Results
	2.6 Summary

	3 GPU-Accelerated 4D Light Field Disparity Estimation
	3.1 OpenCL-based 4DLF Disparity Estimation
	3.2 GPU-Accelerated Architecture
	3.2.1 Local and Global Work-group Size
	3.2.2 Global Memory Layout

	3.3 Evaluation results
	3.3.1 Experimental Setup
	3.3.2 Quantitative Comparison
	3.3.3 Performance Analysis

	3.4 Summary

	4 GPU-Accelerated 4D Light Field Super-resolution
	4.1 Degradation Model and Notation
	4.2 Bayesian Image Super-resolution Framework
	4.2.1 The Data-Fidelity Term
	4.2.2 Regularization Term

	4.3 Optimization Approach
	4.3.1 First-order Iterative Optimization Algorithm
	4.3.2 Alternating Direction Method of Multiplier - ADMM

	4.4 GPU-Accelerated Strategy
	4.4.1 Accelerated Steepest Gradient Descent
	4.4.2 ADMM Solver

	4.5 Experimental Results
	4.5.1 Evaluation of LFSR Computational Framework
	4.5.2 Evaluation of GPU-based Gradient Descent Solver
	4.5.3 Performance Analysis of GPU-based ADMM solvers
	4.5.4 Comparison to LFSR Approaches
	4.5.5 Comparison to GPU-Accelerated Approach

	4.6 Summary

	5 EPI Volume-based High-Resolution Light Field Reconstruction
	5.1 Problem Statement and Notation
	5.2 EPI Volume-based LF Super-Resolution
	5.2.1 Overview of the Proposed Approach
	5.2.2 EPI Volume Refinement Network
	5.2.3 Preliminary Spatial Super-Resolution
	5.2.4 Preliminary Angular Super-Resolution

	5.3 Experimental Results
	5.3.1 Dataset and Training
	5.3.2 Model Analysis
	5.3.3 Spatial Super-Resolution
	5.3.4 Angular Super-Resolution
	5.3.5 Angular-Spatial Super-Resolution

	5.4 Summary

	6 4D Light field Image Compression
	6.1 Motion-compensation Light Field Compression
	6.2 Acceleration of Coding Framework
	6.3 Experimental Results
	6.4 Summary

	7 Summary and Outlook
	7.1 Summary
	7.2 Outlook

	Bibliography
	List of Publications

