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Abstract

Pervasive simulation envisions to apply computationally expensive simulations in everyday scenarios
on resource-constrained mobile devices. The PerSiVal project aims to realize a bio-mechanical
simulation of the human arm as augmented reality application. To enable the execution of such
computationally expensive simulations on resource-constrained devices surrogate models are
applied. Nonetheless, the execution of the surrogate models can still be challenging. A solution
to deal with the constraint resources is the offloading of the surrogate model to a server that is
wirelessly connected to the mobile device. Challenges arise due to inevitable delays caused by
processing and communication between devices. To counterweight the delays, previous work has
applied a second, light-weight surrogate model with lower performance on the mobile device. The
goal of this thesis is the design and evaluation of Kalman filter-based approaches for fusion in the
presence of delays, jitter and losses. This work contributes an improved strategy for surrogate model
derivation, improved and light-weight surrogate models for the muscle simulation, a distribution
model for reproducible analysis and evaluation of distributed algorithms, an improved variant of the
fusion algorithm from previous work and the design and evaluation of Kalman filter-based solutions
to the fusion problem. While being computationally more demanding, the Kalman filter-based
approaches show a significant advantage in dealing with delays, jitter and losses in the evaluated
scenarios. Especially the constant velocity Kalman filter with input augmentation fusion works
best in the tested scenarios. Conclusively, the Kalman filter is a powerful framework that has been
successfully applied in the context of distributed pervasive simulations for continuous problems.
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1 Introduction

Pervasive simulation aims to enable simulation technology in everyday scenarios [1]. The usage
of novel Human Machine Interaction (HMI) technology, e.g., Augmented Reality (AR) or Virtual
Reality (VR) devices, allows a nearly seamless integration in daily tasks and procedures. In the
context of Industry 4.0 and Internet of Things (IoT) the business world is highly interested in
the realization of smart applications. Especially scenarios where humans interact with virtual or
automated systems require real-time capabilities, reliability and accuracy. To realize this vision,
energy and time consuming computations need to be executed on resource-constrained mobile
devices. Those mobile devices are usually battery-powered and restricted in their computational
power and available memory.

The interdisciplinary project PN 7-1 Pervasive Simulation and Visualization with Resource- and
Time-Constraints (PerSiVal) of the Cluster of Excellence SimTech [2] aims to implement the
real-time simulation of a bio-mechanical model of a human arm in an AR environment. The
demonstrator application realizes the following idea. A human is visually tracked. The pose is
estimated from the video source and used as an input to simulate the muscular system. Finally,
the simulation results are visualized as an overlay on the tracked human. The simulation is
based on a biophysical continuum-mechanical Finite Element Method (FEM) model [3]. This
computationally expensive approach cannot be deployed on today’s mobile devices. In fact, even on
modern supercomputers like Hawk most of the computational resources are occupied to simulate
the electrical state of one skeletal muscle [1].

In order to realize such expensive simulations on resource-constrained mobile devices, surrogate
simulation models are used. Those surrogate models focus on specific aspects of the simulation and
therefore only represent a fraction of the original FEM model. The surrogate models are derived
with the help of Machine Learning (ML) techniques, e.g., Neural Networks (NNs). Albeit the
execution of a NN on a mobile device differs from the original FEM simulation by an order of
magnitude, the computation can still be challenging. [1]

In previous work of the PerSiVal project, Hubatscheck [4] presents a distribution approach,
where computations are offloaded from the mobile device to a server infrastructure over wireless
communication. The mobile device executes a second, less accurate but faster, surrogate model.
High quality remote updates are used to improve the local estimates. Issues arise due to the existence
of inevitable delays caused by the simulation execution and communication between devices. To
account for these delays, the remote values have been weighted depending on their age. Therefore,
an older value receives less weight and fades out over time. This approach allows the usage of
delayed updates.

This thesis is motivated by the question whether the results of the distributed surrogate models
can be fused in a better way. The Kalman Filter (KF) is a prominent algorithm considered to be
optimal in state estimation for linear systems in the presence of white Gaussian noise. It can also be
applied in prediction, target tracking and sensor fusion. Thus, the goal of this thesis is the design
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1 Introduction

and evaluation of advanced methods based on the KF to fuse local and remote simulation results
with robustness against delays, jitter and losses. As a prerequisite, a continuous surrogate model for
the pervasive simulation is required. Furthermore, a distribution model is needed to formulate the
model assumptions of the underlying system. This allows a reproducible analysis and evaluation of
the distributed simulation.

This thesis is structured in eight chapters. Chapter 2 introduces background and related work. The
problem statement is given in Chapter 3. In Chapter 4 the derivation of an improved surrogate
model is presented. Chapter 5 shows the developed distribution model for deterministic analysis
and evaluation of the offloading strategies. An improved variant of [4] and the developed KF-based
approaches are described in Chapter 6. Chapter 7 contains the analysis and evaluation of the
developed methods. The thesis closes with a conclusion and future work in Chapter 8.
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2 Background and Related Work

In this chapter the background and related work of this thesis are presented. Section 2.1 introduces
the topic of the continuum-mechanical muscle simulation. The relevant foundations of ML for this
thesis are shown in Section 2.2, followed by an introduction to the KF in Section 2.3. This chapter
concludes with presentation and discussion of related work in Section 2.4.

2.1 Continuum-Mechanical Muscle Simulation

Usually, Hill-type muscle models are used for fast simulations. These models represent the muscle’s
mechanical response with simplifying assumptions, e.g., the muscles are one dimensional and
reduced to a point mass [3]. However, advanced applications, e.g., computer aided surgery or
augmented physiotherapy, require a muscle model with spacial deformations and forces. Röhrle [6]
presents an approach based on a continuum mechanical FEM which allows the modeling of realistic
muscular forces and geometries. Those kinds of simulations are computationally expensive, even
on modern High-Performance Computing (HPC) systems [7, 8]. Obviously, such methods cannot
be deployed on today’s mobile devices for applications in real-time.

Figure 2.1: Rendering of the continuum-mechanical arm model. [5]
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2 Background and Related Work

Sparse GridFEM SM
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Figure 2.2: Model derivation process for the AR application.

In order to enable the simulation of specific aspects of the continuum-mechanical simulation,
Valentin et al. [3] suggest an approach with a special type of surrogate model. In this work sparse
grids with hierarchical B-Splines are used to represent a human arm model with two muscles, the
Biceps and Triceps. This approach was extended in [5] and contains the five most important actuator
muscles for flexion and extension around the elbow joint:

• Musculus Biceps Brachii (Biceps)

• Musculus Brachialis (Brachialis)

• Musculus Brachioradialis (Brachioradialis)

• Musculus Anconeus (Anconeus)

• Musculus Triceps Brachii (Triceps)

The continuum-mechanical arm model is rendered in Figure 2.1.

The PerSiVal use case is an AR application where a target human is visually tracked. The estimated
motion is used as input to the simulated muscular system with activations and deformations which
are finally visualized as an overlay in real-time. [5]

The FEM works in a forward way. The muscles are stimulated with so called activations. The
conceptual idea of an activation is a kind of neurological control signal from the brain over the nerve
system that triggers the muscular system to perform specific tasks, e.g., a coordinated movement. In
a physiological sense, it is a bio-electrical signal that leads to specifically distributed contraction
of muscle fibers. It is also known as neurological or cognitive drive. In the model the activation
𝑎 ∈ [0, 1] describes how much a muscle, as a whole, is stimulated. The simulation performs an
iterative relaxation process that converges to an equilibrium. During this process the activations lead
to changes in the forces that cause deformations in the elastic material which again alter the current
forces and their impact. Those equilibrium states with activations and deformations in form of
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2.1 Continuum-Mechanical Muscle Simulation

three-dimensional meshes are saved and used to derive the sparse grid surrogate models. The data
points come from a setting with a static pose where the upper arm faces downwards to the ground.
In the current approach, there is only one Degree of Freedom (DoF) in the elbow angle \. [5]

For the PerSiVal AR application it is necessary to solve an inversion problem. Inputs and outputs of
the simulation model are transposed. This inversion is not trivial since it has no unique solution.
The elbow angles \ can be reached with multiple combinations of activations. The side constraint
for the inverse optimization problem is based on the assumption that the human body tries to
solve motion tasks as efficient as possible. In addition, it is assumed that the activations correlate
with the energy needed to reach a respective elbow angle. The optimization hypothesis expects
that minimum activation values yield the most efficient state to achieve a specific angle. In this
thesis this approach is called minimum activation strategy. [5] The derivation process is depicted in
Figure 2.2.

The sparse grid model for the elbow angle has the form 𝑓angle : R5 → R. The respective sparse grid
for the Biceps surface mesh has the form 𝑓biceps : R5 → R2809×3, i.e., the mesh consists of 2809
three-dimensional points. Similar sparse grid models with different mesh size can be obtained by
applying the same procedure. In this thesis, the focus is on the Biceps since not all muscle models
have been available for this work. [5]

In the original work, a model of the form 𝑓move2acts : R4 → R5 was proposed for the AR use case.
The input features are 𝒙 = (\, ¤\, ¥\, 𝑤)⊤ with the elbow angle \, the angular velocity ¤\, the angular
acceleration ¥\ and a weight 𝑤 placed on the hand. The target features are the activation values
in the interval [0, 1] for the five muscles mentioned earlier. The dynamic aspects of the model
have been achieved by augmentation methods in the inversion problem. The dynamics ( ¤\, ¥\) are
added from generated elbow trajectories based on a polynomial trajectory model for human elbow
motion [9]. The approach assumes that activations and deformations are reasonable for sufficiently
slow movements. The weights are simulated with the help of counter-activation, i.e., the antagonistic
muscles are activated to a certain degree to emulate additional weight. [5]
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2 Background and Related Work

2.2 Machine Learning

In this thesis Machine Learning (ML) approaches are applied to create surrogate models for the
pervasive simulation. The foundations of the methods used in this work are presented in this
section.

Mitchell [10] defines ML as follows:

“A computer program is said to learn from experience 𝐸 with respect to some class of
tasks 𝑇 , and performance measure 𝑃, if its performance at tasks in 𝑇 , as measured by
𝑃, improves with experience 𝐸 .”

This abstract definition allows many different types of ML depending on the nature of what the
system shall learn (𝑇), which experience or training signal (𝐸) it uses and how the system is
evaluated (𝑃) [11].

Prominent types of ML are supervised learning, unsupervised learning and reinforcement learn-
ing [12]. A ML task can be described by defining how the system shall process an example. This
example is represented by a collection of features, which are typically notated as vector 𝒙 ∈ R𝑛.
Each entry 𝑥𝑖 of 𝒙 describes another feature [13].

Supervised learning is a class of approaches where a set of input and target vectors are given,
e.g., classification and regression [12]. When the ML algorithm is asked to produce a function
𝑓 : R𝑛 → {1, . . . , 𝑘} that assigns one of a set of categories to the feature vector the task is called
classification [13]. In contrast, regression defines the task where the desired function outputs
a continuous value with the form 𝑓 : R𝑛 → R [13]. The input features are sometimes also
called predictors or independent variables, the outputs can also be named responses or dependent
variables [14].

Unsupervised learning aims to learn useful properties from a given dataset containing many
features [13], e.g., clustering or dimensionality reduction [12].

The goal in reinforcement learning is to find suitable actions in a given situation by maximizing a
reward [12]. Those systems typically interact with an environment, s.t. they receive feedback from
the world they are interacting with [13].

In this thesis supervised learning approaches, namely regression, are applied to predict the continuous
outputs of the pervasive simulation.

This section gives a brief summary of the most important aspects of ML that are relevant for this
work. There exists a huge amount of other types, tasks, models, methods and applications which
cannot be stated here. The interested reader might find further information in the books [11–16] or
in the documentation of scikit-learn [17] or similar ML frameworks.

2.2.1 Model Fitting and Selection

In regression the result of a ML algorithm can be interpreted as a model that realizes the function
�̂� = 𝑓 (𝒙) with 𝑓 : R𝑛 → R. This definition can also be extended to the multivariate case where
𝑓 : R𝑛 → R𝑚. The learning procedure based on the given dataset is sometimes also called
fitting. [13]
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Capacity

E
rr
or

Optimal
capacity

Overfitting
zone

Underfitting
zone

Generalization gap

Training error

Test error

Figure 2.3: Typical relationship between capacity and error. Illustration based on [13].

A common way to represent a dataset is the design matrix where each row contains one example and
the columns hold the features. As an example, the features 𝒙 ∈ R𝑛 of a dataset can be represented
as the design matrix 𝑿 ∈ R𝑁×𝑛 with 𝑁 examples. [13]

The central challenge of a ML model is the ability to produce correct results on new, unseen data
during training, which is known as generalization. This motivates to split the given dataset in a
training set and a test set. The model is solely fitted with data from the training set. Afterwards, its
performance is evaluated with the held out test set. With the help of an error measure, the training
performance can be evaluated. This is also called training error. Here lies a major difference
between an optimization problem and machine learning. The training procedure can be understood
as classical optimization problem, while ML also aims to minimize the generalization or test
error. These two measures correspond to two major challenges in ML: underfitting and overfitting.
While underfitting describes the issue that the model does not achieve sufficient performance on
the training dataset, overfitting occurs when the model performs poorly on the test data, i.e., the
difference between training and test error is too large. The capacity of a model describes “its ability
to fit a wide variety of functions” [13]. On the one hand, a model with low capacity tends to underfit
the training data. On the other hand, a model with high capacity can overfit if it memorizes details
from the training set instead of learning the “true” relation. The relationship between capacity
and error is visualized in Figure 2.3. The capacity of a model also correlates with its degrees of
freedom. [12, 13]

The issue of under- and overfitting motivates the concept of regularization. According to Goodfellow
et al. [13], regularization can be interpreted as any modification to a ML algorithm that intends
to improve the generalization but not the training error. As an example, for parametric models a
common form of regularization is the parameter norm penalty. The basic idea is to formulate an
additional cost on high parameter values. This approach sanctions unnecessary high values and
therefore restricts the degrees of freedom of a model. In practice, many regularization methods
come along with a set of hyperparameters for tuning. [13]
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All data

Training data Test data

Fold 1 Fold 2 Fold 3 Fold 5Fold 4

Fold 1 Fold 2 Fold 3 Fold 5Fold 4
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Fold 1 Fold 2 Fold 3 Fold 5Fold 4

Fold 1 Fold 2 Fold 3 Fold 5Fold 4

Split 1

Split 2

Split 4

Split 3

Split 5

Finding 
Parameters

Figure 2.4: 𝑘-fold CV schematic. Green indicates a split of the dataset used for training, blue for
testing. Illustration based on [18].

With all these concepts in mind, the question arises which model should be chosen. Not only the
model but also the optimization method and regularization along with all their hyperparameters
have to be selected and compared with respect to a chosen performance measure. The vast amount
of degrees of freedom in this procedure are a challenge for real world applications. In addition, for
many issues there are no better solutions available than trial and error. [13]

For the selection and tuning problem an extended approach is required. Iterative tuning of
hyperparameters to find the best model can introduce overfitting on the test dataset. Therefore, a
third, independent set, the validation dataset, is introduced. Finally, there are a training dataset for
the model fitting, a validation dataset for the model selection and hyperparameter tuning and a test
set for the final performance evaluation. [12]

The availability of data is an issue in many applications. For good model performance it is
appreciated to use as much data for training as possible. Conversely, if the validation set is small,
it might give an unreliable estimate of the generalization performance. To account for this target
conflict, Cross-Validation (CV) can be used. A prominent representative for CV is the 𝑘-fold CV.
The basic idea is to partition the data into 𝑘 groups. In 𝑘 runs, 𝑘 − 1 groups are used as the training
set, while the remaining group acts as validation set. Therefore, a proportion of (𝑘 − 1)/𝑘 is used
as training data in each run. The validation results are accumulated, e.g., by averaging over the
runs. The approach is visualized in Figure 2.4. Here, the trade-off lies between data usage and the
increased computation time by a factor of 𝑘 . The special case 𝑘 = 𝑁 , with 𝑁 total number of data
points, is called leave-one-out method. [12]

5- or 10-fold CV is considered as good compromise between computational cost and estimation
accuracy in the literature [14].

The entire CV based workflow is depicted in Figure 2.5. At first, the dataset is split in a training
and a test set. The training data is applied with CV to find the best parameters and models. The
most promising approaches are retrained on the whole dataset with the best hyperparameters found
through the CV routine. Finally, the models are evaluated on the held out test set to estimate the
generalization performance. [18]
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Figure 2.5: CV training workflow. Illustration based on [18].

Using CV to explore all combinations of hyperparameters is exponential in the number of parameters
and therefore critical for practical application. There exist more advanced approaches to identify
hyperparameters and select models, e.g., based on Baysian model comparison, which are out of
scope for this thesis. [12]

2.2.2 Linear Regression

Linear regression is a parametric model that is linear regarding its parameters. Therefore, it has
simple analytical properties. Nevertheless, nonlinear properties with respect to the input variables
can be modeled with the help of basis functions. This section is mainly cited from Bishop [12]
unless stated otherwise.

The most simple form, which is also linear regarding the features, is simply known as linear
regression:

�̂� = 𝑓 (𝒙, 𝒘) = 𝑤0 + 𝑤1𝑥1 + · · · + 𝑤𝑛𝑥𝑛 (2.1)

with the response �̂�, the input features 𝑥1, . . . , 𝑥𝑛 and the weight parameters 𝑤0, . . . , 𝑤𝑛.

A more useful class of models can be created as linear combination of a fixed set of nonlinear
functions of the input variables, known as basis functions:

𝑓 (𝒙, 𝒘) = 𝑤0 +
𝑀−1∑︁
𝑖=1

𝑤𝑖𝜙𝑖 (𝒙) (2.2)

where 𝒙 = (𝑥1, . . . , 𝑥𝑛)⊤ is the vector of input features, 𝒘 = (𝑤0, . . . , 𝑤𝑀−1)⊤ is the vector of
weights, 𝜙𝑖 (𝒙) are the basis functions, 𝑀 is the total number of parameters in the model and 𝑤0 is a
fixed offset also called bias.

9



2 Background and Related Work

For convenience, a dummy basis function 𝜙0(𝒙) = 1 can be defined, s.t.:

𝑓 (𝒙, 𝒘) = 𝒘⊤𝜙(𝒙) (2.3)

with 𝜙 = (𝜙0, ..., 𝜙𝑀−1)⊤.

Polynomial Regression (PR) or linear regression with polynomial features of the form 𝜙 𝑗 (𝑥) = 𝑥 𝑗

can be used to account for nonlinear relations. The costs are in O(𝑛𝑝) with input dimension 𝑛 and
the order of the polynomial 𝑝. Even though this is a power law growth rather than exponential it is
still expensive and often limits the usability. The interest lies in the powers of the features as well as
their interaction terms. For example, given two features the transformed polynomial features of
degree 2 have the form [19]:

𝒙 = (𝑥1, 𝑥2)⊤ (2.4)

𝜙poly2(𝒙) =
(
1, 𝑥1, 𝑥2, 𝑥

2
1, 𝑥1𝑥2, 𝑥

2
2

)⊤
(2.5)

Different other choices as basis functions are possible, e.g., Gaussian, Sigmoid, tanh or Fourier.

To fit the linear model a cost or error function has to be chosen for minimization. A common choice
is the least squares or sum-of-squared error approach with 𝑁 examples in the dataset:

𝐸𝑑 (𝒘) =
1
2

𝑁∑︁
𝑖=1

(
𝑦𝑖 − 𝒘⊤𝜙(𝒙𝑖)

)2 (2.6)

For a linear model this is equivalent to the maximum likelihood approach under conditional Gaussian
noise. This formulation has an analytical solution, the so called normal equation for the least squares
problem. It is acquired by setting the gradient of the error function to zero:

𝒘 =
(
𝚽⊤𝚽

)−1 𝚽⊤𝒚 (2.7)

with 𝚽 as the 𝑁 × 𝑀 design matrix with the elements Φ𝑖 𝑗 = 𝜙 𝑗 (𝒙𝑖), s.t.:

𝚽 =


𝜙0(𝒙1) 𝜙1(𝒙1) . . . 𝜙𝑀−1(𝒙1)
𝜙0(𝒙2) 𝜙1(𝒙2) . . . 𝜙𝑀−1(𝒙2)

...
...

. . .
...

𝜙0(𝒙𝑁 ) 𝜙1(𝒙𝑁 ) . . . 𝜙𝑀−1(𝒙𝑁 )


(2.8)

One method of regularization for linear regression is called parameter shrinkage or weight decay.
Therefore, a weight-dependent regularization term 𝐸𝑤 with the regularization coefficient _ is added
to the data-dependent term 𝐸𝑑 . One simple approach is the usage of the sum of squares of the
weight vector:

𝐸 (𝒘) = 𝐸𝑑 (𝒘) + _𝐸𝑤 (𝒘) (2.9)

=
1
2

𝑁∑︁
𝑖=1

(
𝑦𝑖 − 𝒘⊤𝜙(𝒙𝑖)

)2 + _

2
𝒘⊤𝒘 (2.10)

10



2.2 Machine Learning

It has the benefit that the solution can be found in a closed form as before with:

𝑤 =
(
_𝑰 +𝚽⊤𝚽

)−1 𝚽⊤𝒚 (2.11)

A more general variant introduces the regularization term with a variable exponent 𝑞:

𝐸𝑤 (𝒘) =
1
2

𝑀−1∑︁
𝑖=0

|𝑤𝑖 |𝑞 (2.12)

In that way 𝑞 controls how strong high parameters are penalized in a nonlinear fashion. The special
case 𝑞 = 1 is called lasso regression, 𝑞 = 2 is also known as quadratic penalizer or ridge regression.
With this regularization approach, the challenge to determine the optimal model capacity is shifted
from the selection of basis functions to finding optimal parameters for _ and 𝑞.

Without the closed form solution, the optimal parameters can be found with an optimization
algorithm. A prominent method is the Stochastic Gradient Descent (SGD) that iteratively updates
the model weights by following the steepest gradient of the error function:

𝒘 (𝜏+1) = 𝒘 (𝜏 ) − [∇𝐸 (2.13)

with the iteration number 𝜏 and learning rate [. Thus, it can also be used for sequential training in
small batches of data. This is especially helpful if the dataset for training is huge.

An important property for this work is the estimation of the error variance 𝜎2, which can be
estimated from residuals 𝜖 . With the assumption that the error 𝜖 is zero-mean Gaussian noise, i.e.,
normally distributed with mean 0 and variance 𝜎2 or 𝜖 ∼ N(0, 𝜎2), 𝜎2 can be calculated with:

𝑦 = 𝑓 (𝒙, 𝒘) + 𝜖 (2.14)

𝜎2 =
1
𝑁

𝑁∑︁
𝑖=1

(
𝑦𝑖 − 𝒘⊤𝜙(𝒙𝑖)

)2 (2.15)

In the multivariate case with the assumption of multivariate Gaussian noise with 𝜖 ∼ N(0,𝚺) the
error covariance matrix 𝚺 can be computed from the residual vectors 𝜖𝑛:

𝜖𝑛 = 𝑦𝑛 −𝑾⊤𝜙(𝒙𝑛) (2.16)

𝚺 =
1
𝑁

𝑁∑︁
𝑛=1

𝜖𝑛𝜖
⊤
𝑛 (2.17)

with weight matrix 𝑾.
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2.2.3 Nearest Neighbor Regression

The k-Nearest-Neighbor (k-NN) is a non-parametric regression approach that uses the examples
from the training set closest to 𝑥 in the input space by a defined distance metric [12, 14]:

�̂� =
1
𝑘

∑︁
𝒙𝑖∈𝑁𝑘 (𝒙)

𝒚𝑖 (2.18)

where 𝑁𝑘 (𝒙) models the neighborhood of the input vector 𝒙 that returns the 𝑘 closest points to 𝒙 in
the training set. 𝒙𝑖 and 𝒚𝑖 represent the input and target vectors of the 𝑘 neighboring data points. A
common choice for the distance metric is the Euclidean distance.

Instead of averaging, an alternative weighting approach can be applied. The KNeighborsRegressor
from the scikit-learn package [20] allows the target vectors 𝒚𝑖 to be weighted by the inverse of the
distance, which yields interpolation behavior instead of bounded zones of averages. This approach
can be formulated in a more general way:

�̂� =
∑︁

𝒙𝑖∈𝑁𝑘 (𝒙)
𝑤(𝒙𝑖 , 𝒙)𝒚𝑖 (2.19)

where the function 𝑤(𝒙𝑖 , 𝒙) gives the respective weight for 𝒚𝑖 with
∑

𝒙𝑖∈𝑁𝑘 (𝒙) 𝑤(𝒙𝑖 , 𝒙) = 1.

According to Hastie et al. [14], k-NN works well for low dimensional problems. Especially in
regression performance degrades significantly with high-dimensional features due to the curse of
dimensionality.

2.2.4 Neural Networks

Deep feedforward networks, feedforward neural networks or multilayer perceptrons, short NN, are
mathematical models inspired by neuroscience. This section is mainly cited from Goodfellow et al.
unless stated otherwise [13].

The approach is called network because it is composed of many different functions organized in
layers. The size of those layers is called width and represents how many units, also known as
neurons or nodes, are contained. The whole network consist of an input layer, an output layer and a
number of hidden layers in between. In a dense network or fully-connected network each neuron is
connected to all outputs of the previous layer. A typical NN architecture is depicted in Figure 2.6.
Commonly, a node calculates a weighted linear combination with an additional bias followed by a
nonlinear activation function 𝜙:

ℎ = 𝜙(𝒘⊤𝒙 + 𝑏) (2.20)

with ℎ the output of the node, 𝒙 the input vector, 𝒘 the linear weight vector 𝒘 and 𝑏 the bias. For
regression problems it is common to use a linear output layer. In this specific case, the activation
functions is the identity 𝜙(𝒙) = 𝒙. A NN without hidden layers and a linear output layer is equivalent
to linear regression.

The universal approximation theorem is fundamental for NNs. According to Goodfellow et al. [13],
any Borel measurable function from one finite-dimensional space to another can be approximated
with an arbitrary non-zero error with the help of a feedworward network with linear output layer

12
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Input #1

Input #3

Input #2

Input #5

Input #4

Hidden 
layer

Input 
layer

Output 
layer

Output #1

Output #2

Output #3

Output #4

Figure 2.6: Exemplary NN architecture. The presented network has one input, hidden and output
layer. It consists of 5 input features, 3 hidden nodes and 4 output nodes. The layers
are densely connected, i.e., each node is connected to all nodes of the previous layer.
Illustration based on [21].

which contains at least one hidden layer with a “squashing” activation function. Informally, this
means that even a single hidden layer NN can approximate any function given enough nodes.
Nevertheless, it gives no guarantee whether the training algorithm is capable of finding the
parameters or whether it might overfit.

Goodfellow et al. [13] state, the Rectified Linear Unit (ReLU) of the form 𝜙(𝑥) = max(0, 𝑥) is
an excellent default choice as activation function for hidden units. Strictly speaking ReLU is not
differentiable at 𝑥 = 0, which should be problematic for a gradient based optimizer. In practice, the
implementations just decide for one of the one-sided derivatives which can be heuristically justified
since the numerical optimization is subject to numerical error anyway. There are a lot of other
options and it is a very active field of research. Popular options are e.g., Sigmoid, tanh, leaky ReLU,
parametric ReLU and many more. The universal approximation theorem is also applicable for NNs
with ReLU as activation function, which is used in this thesis.

As stated in [13], early stopping is probably the most commonly used form of regularization due to
its effectiveness and simplicity. Furthermore, it implicitly reduces the computational cost of the
training. The parameter norm penalties, also known as weight decay, which have already been
discussed in Section 2.2.2 for the linear regression, can also be applied for NNs. Among others,
dataset augmentation, the addition of artificial noise or the usage of dropout layers are also popular
regularization approaches.

NNs are trained with a method called back-propagation. The basic idea is to represent the whole
NN as computational graph of functions. Beginning with the cost function to optimize, the gradient
is propagated backwards through the network by recursive application of the chain rule. In this
way, the error gradient flows backwards through the network where the respective parameters are
adapted accordingly.
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Goodfellow et al. [13] note, there is no consensus whether there is an optimal optimizer that should
be chosen for NN training. The most popular choices are SGD, SGD with momentum, RMSProp,
RMSProp with momentum, AdaDelta and Adam. The authors [13] suggest to use the algorithm the
user is the most familiar with to ease hyperparameter tuning.

2.2.5 Feature Scaling

According to [19], many learning algorithms benefit from standardizing of the dataset. Some
approaches even specify concrete requirements about the dataset, e.g., the data must be normally
distributed with zero mean and unit variance.

Standardization is a preprocessing that removes the mean and scales the data s.t. the mean is zero
and the variance one. This is achieved by:

𝑧 =
𝑥 − 𝑥

𝜎
(2.21)

with the transformed feature 𝑧, the raw feature 𝑥, the mean 𝑥 of 𝑥 and standard deviation 𝜎 of 𝑥.

Another choice of preprocessing is the linear mapping to a specific range. For example the
min-max-scaling transforms the feature to the interval [0, 1] with:

𝑧 =
𝑥 − min(𝑥)

max(𝑥) − min(𝑥) (2.22)

The target range in the interval [−1, 1] is also a common choice, which can be achieved by the
max-abs-scaling. This scaling does not center the data but scales all values by the maximum
absolute value of the dataset:

𝑧 =
𝑥

max( |𝑥 |) (2.23)

There exist various other approaches, e.g., non-linear transforms, transforms robust to outliers,
normalization, that are out of scope of this thesis. [19]

2.2.6 Metrics

This section introduces the metrics used for evaluation and model comparison in this work. As
introduced in Section 2.2.2, the Mean Squared Error (MSE) is a common cost function applied in
regression problems. It can be motivated from the maximum likelihood for linear models in the
presence of Gaussian noise [12]. Thus, it is an important metric for model performance:

MSE(𝑦, �̂�) = 1
𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖 − �̂�𝑖)2 (2.24)

with the ground truth 𝑦, the prediction �̂� and dataset size 𝑁 . A lower value indicates a better
model.
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For convenience, the Root Mean Squared Error (RMSE) can be used, which represents the MSE
but on the same scale as the target variable [11, 12]:

RMSE(𝑦, �̂�) =
√︁

MSE(𝑦, �̂�) (2.25)

Another metric for regression model performance is the Mean Absolute Error (MAE). It represents
the average absolute error, which can be intuitively interpreted since it is in the same scale as the
target variable. It is defined as follows [22]:

MAE(𝑦, �̂�) = 1
𝑁

𝑁∑︁
𝑖=1

|𝑦𝑖 − �̂�𝑖 | (2.26)

A lower value indicates a better model.

The Coefficient of determination (R2) yields another well interpretable measure [11]:

R2(𝑦, �̂�) = 1 −
∑𝑁

𝑖=1(𝑦𝑖 − �̂�𝑖)2∑𝑁
𝑖=1(𝑦𝑖 − �̄�)2

(2.27)

= 1 − RSS
TSS

(2.28)

with the empirical mean of the response �̄� =
∑𝑁

𝑖=1 𝑦𝑖, the Residual Sum of Squares (RSS)
RSS =

∑𝑁
𝑖=1(𝑦𝑖 − �̂�𝑖)2 and the Total Sum of Squares (TSS) TSS =

∑𝑁
𝑖=1(𝑦𝑖 − �̄�)2. The R2 represents

the ratio of the variance in the predictions and the variance of the constant prediction �̂�𝑖 = �̄� [11].
This can be interpreted as proportion of explained variance. The maximum is 1 and a higher value
indicates a better fit. Furthermore, a constant model that always outputs the expected value gets a
score of 0. Typically the R2 score is in the interval [0, 1] but can become negative for arbitrary
worse models. [22]

2.3 Kalman Filter

Since its publication by Kalman in 1960 the Kalman Filter (KF) has become a popular algorithm
for various tasks. The KF was originally developed to solve practical problems in communication
and control of statistical nature, e.g., prediction of random signals, separation of random signals
from noise or signal detection in the presence of noise. The approach defines and solves the so
called Wiener problem from the “state” perspective. [23]

The key idea of the KF is to improve the estimate of a desired signal by exploiting model knowledge
about the system under observation. Thus, a random signal is filtered by blending a model-based
prediction and a measurement in order to acquire an optimal estimate, which is better than either the
prediction or the measurement alone. Under the linear Gaussian assumption, the KF is an optimal
estimator in the least square sense. [24]
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Symbol Description

𝒙𝑘 State vector at time 𝑘

�̂�𝑘 Estimation of state vector 𝒙 at time 𝑘

�̂�𝑘 |𝑖 Estimation of state vector 𝒙 at time 𝑘 based on time 𝑖
𝑷𝑘 State covariance matrix at time 𝑘

𝑷𝑘 |𝑖 State covariance matrix at time 𝑘 based on time 𝑖
𝑨 State transition function or state transition matrix
𝒖𝑘 Control input at time 𝑘

𝑩 Control input model or control function
𝒛𝑘 Measurement vector at time 𝑘

𝑪 Measurement function or measurement matrix
𝒚𝑘 Innovation at time 𝑘

𝑺𝑘 System uncertainty or innovation covariance matrix at time 𝑘

𝑲𝑘 Kalman gain at time 𝑘

w𝑘 Process noise at time 𝑘

𝑸 Process noise covariance matrix
v𝑘 Measurement noise at time 𝑘

𝑹 Measurement covariance matrix

Table 2.1: Kalman filter symbols.

The Kalman Filter Algorithm The KF can be expressed as algorithm as follows. It is a two-step
recursive estimator for linear discrete-time state space models in the presence of white Gaussian
noise. The two steps are the prediction and the measurement update or correction. [24]

There exist many notation variants. The notation used in this thesis is derived from [24–27]. The
symbols are described in Table 2.1.

Given a linear system in discrete-time state space form:

𝒙𝑘+1 = 𝑨𝒙𝑘 + 𝑩𝑘𝒖𝑘 + w𝑘 (2.29)
𝒛𝑘 = 𝑪𝒙𝑘 + v𝑘 (2.30)

The KF algorithm consists of the following steps:
Initialization:

�̂�0 and 𝑷0 are initialized.

Prediction:

�̂�𝑘+1 |𝑘 = 𝑨�̂�𝑘 + 𝑩𝒖𝑘 (2.31)
𝑷𝑘+1 |𝑘 = 𝑨𝑷𝑘𝑨

⊤ + 𝑸 (2.32)
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Correction:

𝒚𝑘+1 = 𝒛𝑘+1 − 𝑪�̂�𝑘+1 |𝑘 (2.33)
𝑺𝑘+1 = 𝑪𝑷𝑘+1 |𝑘𝑪

⊤ + 𝑹 (2.34)

𝑲𝑘+1 = 𝑷𝑘+1 |𝑘𝑪
⊤𝑺−1

𝑘+1 (2.35)
�̂�𝑘+1 = �̂�𝑘+1 |𝑘 + 𝑲𝑘+1𝒚𝑘+1 (2.36)
𝑷𝑘+1 = (𝑰 − 𝑲𝑘+1𝑪)𝑷𝑘+1 |𝑘 (2.37)

The process and measurement noise random variables w𝑘 and v𝑘 are uncorrelated and have zero
mean with the covariance matrices 𝑸 and 𝑹 [27]:

E[w𝑘w⊤
𝑙 ] =

{
𝑸 𝑘 = 𝑙

0 otherwise
(2.38)

E[v𝑘v⊤𝑙 ] =
{
𝑹 𝑘 = 𝑙

0 otherwise
(2.39)

E[w𝑘v⊤𝑙 ] =
{
0 ∀𝑘, 𝑙 (2.40)

with 𝑸, 𝑹 symmetric and positive semi-definite.

In the one dimensional case, the Kalman gain describes a ratio in the interval [0, 1] that controls
how much the innovation 𝒚 is considered in the update step. The ratio is calculated based on the
relation between prediction and measurement uncertainty. The same principle is applied in the
multivariate case, but here the Kalman gain is a matrix. [24]

The state covariance matrix 𝑷𝑘 is a measure for the theoretical performance. The KF filter assumes
that everything given to it is true. Thus, if the assumptions do not hold, 𝑷𝑘 does not necessarily
indicate the true estimation error. [24]

The system model can be derived from discretized differential equations [26].

One important concept is observability [24]: States in the filter can be observed, hidden or
unobservable variables. An observed state can be directly measured in 𝒛, i.e., the respective entry
in the measurement matrix 𝑪 is one. Hidden states are not contained in 𝒛 but can be derived in
the KF due to the defined dependencies in the state transition matrix 𝑨. In contrast, unobservable
variables cannot be estimated by the filter. The observability of a given system can be analyzed
with the observability criterion from Kalman [26].

There exist extensions and alternative approaches for non-linear systems and non-Gaussian distribu-
tions, e.g., the Extended Kalman Filter, die Unscented Kalman Filter or the Particle Filter, which
are beyond the scope of this thesis [24].
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2.4 Related Work

The main scope of this thesis is the context of distributed pervasive simulations. The first class
of related work, about continuum-mechanical muscle simulation, has already been introduced in
Section 2.1. Other classes of literature, frequently borrowed from other domains, are introduced
in their respective chapters. The basics for ML methods applied in this thesis are presented
in Section 2.2. Related work of probabilistic modeling of communication technologies is introduced
in Section 5.2. The foundations of the KF and its related work regarding prediction, tracking and
delay handling are presented in Section 2.3 and Chapter 6.

A relevant class of related work is ML on mobile devices. There exist different sub-classes of
approaches, among others, the reduction of the model complexity, the usage of hardware acceleration
or the distributed deployment. Lane et al. [28] present the DeepX software accelerator, which can
be applied to optimize the internal structure of a trained NN. An example for the usage of hardware
acceleration in form of a Neural Processing Unit (NPU) is presented by Tan and Cao [29] where
for each NN layer it is decided whether it shall be executed on the NPU or Central Processing
Unit (CPU). Teerapittayanon et al. [30] present an approach in the context of image classification
where a NN architecture is split s.t. parts can be executed on the server while others remain on the
mobile device. Basically, if the desired accuracy level is not reached at an intermediate output, it is
forwarded to the next higher level for further improvement. A survey of deployment methods for
deep learning on mobile devices is presented in [31]. The named approaches are generic and do not
target mobile simulations in real-time.

Regarding simulation on mobile devices, Dibak et al. [32] present the application of the reduced
basis method for offloading computations in the context of heat simulation in materials. This work
focuses on another type of surrogate model for a different use case.

Another class is the previous work in the PerSiVal project. Kässinger et al. [1] and Hornischer [33]
apply a genetic algorithm to identify a reduced set of representative muscle coordinates which can
be interpolated to the whole muscle surface mesh with ML models. This approach is orthogonal
to this thesis and can be combined. Another work by Belz and Mehler [34] applies forecasting
methods to temporarily suspend the execution of the simulation surrogate model on the mobile
device. In this thesis the KF is explored as alternative forecasting model.

The closest work to this thesis is the work of Hubatscheck [4]. He describes an offloading
architecture, where a lower quality surrogate model is used on the mobile device to improve the
simulation accuracy in the presence of lower frequent and delayed high quality updates. In this
thesis the proposed continued update strategy from [4] is improved, which allows a more efficient
implementation. The performance is compared to the KF-based fusion strategies. This work
presents a KF fusion strategy that is equivalent to the continued update strategy under specific
parametrization. Additionally, the KF variant provides an error estimate. Furthermore, the KF
variant can be extended to a higher order filter which outperforms the continued update strategy in
the presence of delays, jitter and losses in the evaluated scenarios.
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This chapter introduces the system model for this thesis in Section 3.1 and presents the problem
statement in Section 3.2.

3.1 System Model

In the context of the Augmented Reality (AR) continuum-mechanical muscle simulation the system
can be modeled as depicted in Figure 3.1. A human target is tracked with a sensor by the mobile
device. This mobile device performs the visualization and is wirelessly connected via an access
point to a server infrastructure. A very small latency is required for the AR visualization. The
server infrastructure can be an edge or cloud setup, while an edge deployment is more likely due
to desired low latencies. The mobile device is battery-powered and limited in its computational

Access 
Point

Mobile Device Server

Visualization

Fusion

HPSLPS

Sensor

Tracked Target

Figure 3.1: System model overview. The main components of the system are the mobile device
and the simulation server. The mobile device senses the environment and runs the
target application, in this example the bio-mechanical simulation of a human arm with
AR visualization. The simulation is implemented with the distributed HPS and LPS
models and a fusion strategy. The mobile device is wirelessly connected to an access
point that establishes the connection to the simulation server.
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resources and available memory. Thus, the goal is to achieve an acceptable simulation performance,
with high accuracy and frame rate, while minimizing the energy consumption and utilization of the
mobile device. Consequently, reducing the amount of communication is also of interest. When the
cost of the simulation is particularly high, offloading techniques can make the difference whether
the application can be realized at all. The simulation is implemented with the help of surrogate
models. In previous work, Hubatscheck [4] has presented a distribution approach with two models, a
Low-Performance Surrogate (LPS) and a High-Performance Surrogate (HPS). The HPS is deployed
on the remote server, while the LPS is applied on the mobile device to counterweight inevitable
delays caused by the processing and transmissions between devices. In order to combine the
local and remote simulation results a fusion strategy is required. The wireless communication is
assumed to be a high-bandwidth state-of-the-art technology, e.g., Wi-Fi according to IEEE 802.11.
Nevertheless, delays with jitter and losses occur in practice, especially if the network load is high or
high bit error rates are present, which need to be dealt with.

3.2 Problem Statement

This thesis aims to design and evaluate advanced fusion methods with robustness against delays,
jitter and losses.

As a prerequisite, a continuous model for visualization is required. In a preceding research
project, Belz and Mehler [34] found issues in the given surrogate model. The model suffers from
discontinuities in the activations and deformations over generated smooth trajectories. Furthermore,
the model is limited in the available elbow angles in the range of ≈ [60, 100] °. Those shortcomings
lead to the research for an improved model, which is addressed in Chapter 4. The original FEM, on
which the simulation is based, works in the opposite direction of the AR surrogate model. Therefore,
an improved solution for the inversion problem is required. In addition, to quantify the smoothness
of the solution, a smoothness metric is needed. Furthermore, realistic movement data of a human
arm is recorded and preprocessed as prerequisite for the evaluation.

A second problem is the analysis and evaluation of the distributed algorithms. In practice,
concurrency, imperfect clocks and disturbances make real distributed systems difficult to analyze
and evaluate. Therefore, a distribution model is developed in Chapter 5 that allows reproducible
emulations of the distributed system under specified model assumptions. This enables the
deterministic analysis and evaluation of the advanced fusion methods.

The main problem of this thesis is the design of advanced fusion approaches with increased
robustness in the presence of delays, jitter and losses. The prominent Kalman Filter (KF) and its
possible applications in the distributed pervasive simulation context are explored in Chapter 6.
Furthermore, mechanisms to incorporate delayed simulation results are investigated to deal with
delays, jitter and losses.

Finally, the developed approaches are analyzed and evaluated in Chapter 7 regarding their robustness
against delays, jitter and losses.
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4 Continuum-Mechanical Pervasive Simulation

In this chapter the acquisition and preprocessing of movement data is presented in Section 4.1.
Section 4.2 introduces a smoothness metric for the model derivation in Section 4.3 which presents a
new solution to the surrogate inversion problem. The new light-weight surrogate models are trained
and tuned in Section 4.4 and evaluated in Section 4.5. In Section 4.6 the combined deployment of
the activation and deformation surrogate models is analyzed.

4.1 Movement Data Acquisition and Preprocessing

In this section the data acquisition process and necessary preprocessing measures are presented.
The evaluation of algorithms for the PerSiVal application requires representative human motion
data. To this end, a Motion Capture (mocap) system from Vicon Motion Systems Ltd, UK, is
utilized to record realistic arm movements. The setup works with a set of eight Vicon Vantage V8
infrared cameras and optical markers.

For the recording six markers are placed on the experimentees right arm. Each joint, the shoulder,
elbow and wrist position is tracked with the help of two markers. The setup is shown in Figure 4.1
and the markers are described in Table 4.1.

Ɵ

Figure 4.1: Motion capture setup. The red dots indicate the positions of the optical trackers. The
estimated joint positions are marked with yellow crosses. The elbow angle \ is defined
as exterior angle.
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4 Continuum-Mechanical Pervasive Simulation

Shortname Description

RSB Right Shoulder Back
RSF Right Shoulder Front
REM Right Elbow Medial
REL Right Elbow Lateral
RWM Right Wrist Medial
RWL Right Wrist Lateral

Table 4.1: Motion capturing markers.

To acquire realistic movement data two motion tasks are defined:

1. Periodic movement – The experimentee shall perform a repeated arm movement from full
flexion to full extension. This task is performed multiple times with different speeds. For
reproducibility, the movement is performed to a periodic acoustic signal with a defined
frequency. Full flexion and extension shall be reached at the acoustic beats, i.e., the elbow
angle frequency is effectively halved. Data with the following frequencies has been recorded:
30, 35, 50, 60, 70, 100 min−1.

2. Arbitrary movement – The experimentee shall perform arbitrary motions.

The movement is recorded with the software Vicon Nexus 2.12 at a frame rate of 100 Hz. The
measurement contains a list of three-dimensional coordinates of the tracked markers for each
recorded frame. To approximate the position of the joints inside the experimentees body, the
deformation of the arm is neglected. Thus, the center point between the markers yields the position
of the joint:

𝒑 (𝑎,𝑏) = 𝒑𝑎 +
1
2
( 𝒑𝑏 − 𝒑𝑎) (4.1)

=
1
2
( 𝒑𝑎 + 𝒑𝑏) (4.2)

where 𝒑𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖)⊤ is the vector with the 𝑥, 𝑦 and 𝑧 coordinate of a tracked marker.

The elbow angle \ can be estimated with the inner product of the bone vectors [35]:

𝒃f = 𝒑 (RWM,RWL) − 𝒑 (REM,REL) (4.3)
𝒃u = 𝒑 (RSB,RSF) − 𝒑 (REM,REL) (4.4)

\ = 180 ° − arccos
(

𝒃f𝒃u

∥𝒃f∥2∥𝒃u∥2

)
(4.5)

with the forearm bone vector 𝒃f, the upper arm bone vector 𝒃u. As a side note, these bone vectors
do not model the physiological bones but link the estimated joint positions.

One practical problem is that the tracking of the markers is not flawless. Some markers are suffering
from dropouts where the mocap system looses track of a point for one or more frames. In the
offline processing setting, where future values are known, missing points can be estimated by linear
interpolation. The process is exemplarily shown in Figure 4.2.
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Figure 4.2: Tracking dropouts and interpolation of missing values. Invalid measurement values
have the value 0. In the offline processing the missing values are estimated with linear
interpolation.

Due to the shortcomings of the given surrogate model, another preprocessing step has to be added
before the motion data can be used for evaluation. As mentioned in the problem statement in
Section 3.2, the given surrogate model has a limited value range in the interval ≈ [60, 100] °. As it
will be presented in Section 4.3, this limitation is not an issue of the inversion process. Instead, its
origin is either in the sparse grid surrogate or in the continuum-mechanical model itself. Either way,
to account for this, the movement data is rescaled to the valid input range of the surrogate model
derived in Section 4.3. A min-max-scaling is applied, i.e., the minimum and maximum value of the
elbow angle \ in all measurements are identified and used to linearly map all measured angles \ to
the interval [55, 95] °. In this way, states that the surrogate model cannot estimate are avoided. As
an updated FEM or sparse grid model is not in scope of this thesis, this workaround is applied to
make the best use of the available data.

4.2 Definition of a Smoothness Metric

As described in the problem statement in Section 3.2, the given surrogate model from previous work
suffers from discontinuities. Section 4.3 targets to derive a new surrogate with improved smoothness.
Therefore, a measure of smoothness is required to quantitatively evaluate the possible solutions. To
the authors knowledge there exists no popular or commonly applied metric for this purpose. In the
context of regression problems in ML usually the accuracy is targeted, for example with scores
like the MSE, MAE or Mean Euclidean Distance (MED). The problem that will be elaborated in
Section 4.3 is different because there is no ground truth available. The challenge is to find a solution
that solves the given task where the smoothness is basically a side constraint. Standard deviation
and variance are classical measures of dispersion, which capture the distribution of values around
the mean. While those metrics model the smoothness to some degree, the activation values are not
assumed to be normally distributed over the elbow angles. Thus, these metrics are not well suited
for the given task.
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Inspired by the method of Horn and Schunck [36], another smoothness metric is derived. The
method of Horn and Schunck estimates optical flow with the help of assumed global smoothness
in the flow. The smoothness constraint is formulated as cost term in an energy functional to be
minimized [37]. There, the smoothness term is designed as integral over the squared gradient of the
flow. The gradient of a function represents the local change. Therefore, in the method of Horn and
Schunck minimization of that term ideally yields the smoothest solution. In this work, the term is
applied as smoothness measure for one-dimensional functions. In the discrete case, the integral can
be approximated with a sum. The square is kept as non-linear penalizer to prevent outliers. In order
to ease interpretability, the metric is normalized by the number samples. As a result, the Mean
Squared Gradient (MSG) is defined as:

MSG(𝒚) = 1
𝑁
∥∇𝒚∥2

2 (4.6)

with the vector ∇𝒚 that represents the sampled gradient values of the function 𝑓 (𝑥) and the number
of samples 𝑁 . Similar to the RMSE, the Root Mean Squared Gradient (RMSG) can be used for
convenience to interpret the result in the scale of the feature:

RMSG(𝒚) =
√︁

MSG(𝒚) (4.7)

Furthermore, the linear variant, the Mean Absolute Gradient (MAG) can be defined, as it allows a
more intuitive interpretation:

MAG(𝒚) = 1
𝑁
∥∇𝒚∥1 (4.8)

Finally, the Maximum Absolute Gradient (MAXAG) can be computed to detect the largest
discontinuity in a given feature vector:

MAXAG(𝒚) = max(∥∇𝒚∥1) (4.9)

The MAG represents the average change in a feature vector. Informally, with the quadratic term the
MSG also captures the consistency around that average change. For example, if some functions
connect two values 𝑦𝑠 and 𝑦𝑒 monotonically increasing, the MAG has the same value for all
functions, because the average change is the same. With the squared term the MSG penalizes
outliers in the gradient, e.g., a jump, s.t. the line between both points is the optimal course in
the MSG sense. This example is no formal proof but it shall give an intuition what both metrics
capture.

In this work, given a vector of values the gradient is estimated with a second order accurate central
differences approach using the gradient function from the python numpy package [38].

A follow up term research shows that there already exists a definition of the RMSG or Root Mean
Squared Slope (RMSS) which is used as surface roughness measure [39–41]. The RMSS is formally
introduced as:

RMSS( 𝑓 ) =

√︄
1
𝑙

∫ 𝑙

0

(
d 𝑓 (𝑥)

d𝑥

)2
d𝑥 (4.10)

with the sampling length 𝑙 in the interval [0, 𝑙]. This supports the choice of the RMSG as reasonable
smoothness metric.
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4.3 Model Derivation

4.3 Model Derivation

As described in the problem statement in Section 3.2, the given surrogate model suffers from
discontinuities in the predicted activation and deformation values. Therefore, an alternative inversion
approach is proposed in this section to improve continuity. The original inverted model has been
augmented with additional information to create the input features angular velocity, acceleration
and weight. This work focuses on the static relationship between activations, the elbow angle and
Biceps coordinates.

The inversion problem is defined as follows: Given a set of sparse grids { 𝑓angle, 𝑓biceps} a surrogate
model for the desired function 𝑓angle2acts is searched for with 𝑓angle : R5 → R that describes the
relationship from the five muscular activations to the elbow angle \ and 𝑓biceps : R5 → R2809×3

that represents the mapping from the activations to the spacial coordinates of the biceps surface
and 𝑓angle2acts : R → R5 the inverse of 𝑓angle. Since there is no unique solution to the inversion
of 𝑓angle2acts because multiple combinations of activations can lead to the same elbow angle, an
additional constraint is needed. The given surrogate models have been trained on a dataset derived
from an optimization with subject to minimum activation values. The minimum activation values
are motivated by the assumption that the human body tries to solve motion tasks as efficient as
possible. Under the hypothesis that the activations are correlated to the energy consumption, the
minimization of activations should yield good results.

The inversion problem is formulated as optimization problem with a cost function in analogy to [13].
Let the error function 𝐸angle(𝒂) be the squared angle error:

𝒂∗ = arg min
𝒂

𝐸 (𝒂) (4.11)

𝐸angle(𝒂) = ( 𝑓angle(𝒂) − \𝑡 )2 (4.12)

with \𝑡 the desired target angle and the vector of activations 𝒂 ∈ R5. 𝒂∗ denotes the vector of
activations that minimizes the cost function.

Furthermore, constraints are formulated as separate cost term 𝐸𝑐 and added with the help of a
Lagrange multiplier _𝑐 [12]:

𝐸 (𝒂) = 𝐸angle(𝒂) +
𝐶∑︁
𝑐=1

_𝑐𝐸𝑐 (4.13)

where 𝐶 is the number of additional error terms. Various error terms have been designed during
this thesis:

• Sum of Squared Activations (SSA) – The SSA cost term aims to minimize the activations and
therefore represents the approach from already existing work. In [5] the sum of activations
is used. The squared penalty is also a common choice for cost functions. The quadratic
term penalizes activations non-linearly, i.e., it puts an over-proportional weight on higher
activation values. Thus, the quadratic penalizer is chosen due to its stronger tendency to
avoid high activation values. Similarly to linear regression regularization, other exponents
can also be investigated, which is out of scope for this thesis.

𝐸SSA(𝒂) = ∥𝒂∥2
2 (4.14)
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• Squared Mean Activation Error (SMAE) – The core idea of the SMAE is to define a target
value for the mean activation �̄�t and penalize the squared deviation to the actual mean. This
term models the effect that a specific state is not reached in the most efficient way but with a
defined average level of activations. This approach could be used to model the tension and
relaxation for a given static elbow angle.

𝐸SMAE(𝒂) =
((

1
5

5∑︁
𝑖=1

𝑎𝑖

)
− �̄�t

)2

(4.15)

• Sum of Squared Mean Deviations (SSMD) – The SSMD is motivated by a physiological
effect called co-activation. Simplified, it describes the pattern that a motion task is usually
not executed by a single muscle. As an example, flexion is very unlikely solely the effect
of a contracted Biceps but rather a joint activity with the other flexors, e.g., Brachialis and
Brachioradialis. Mathematically, this can be described with the squared deviation to the
activation mean. While the SSA aims for low activation values, the SSMD tries to achieve
similar activations of all muscles. Unfortunately, this implementation is rather naïve since
it is likely that not all muscles are equally important for specific tasks. Without further
assumptions about the muscular system, this term is rather a proof of concept than a solution.
The operation ∗− denotes an element-wise subtraction between a scalar 𝑠 and a vector 𝒙, s. t.
𝑠 − 𝒙 = (𝑠 − 𝑥1, . . . , 𝑠 − 𝑥𝑛)⊤.

𝐸SSMD(𝒂) =

((

1
5

5∑︁
𝑖=1

𝑎𝑖

)
∗− 𝒂

)2

2

(4.16)

• Squared Activation Deviation (SAD) – The SAD can be used to specifically minimize the
deviation to a vector of target activation values 𝒂t.

𝐸SAD(𝒂) = ∥𝒂 − 𝒂t∥2
2 (4.17)

• Mean Squared Deformation Error (MSDE) – The MSDE targets to minimize the deviation to
a target surface deformation 𝒄t of the Biceps. In this way, activation values are acquired that
lead to a muscle deformation closest to a target muscle form. In this representation 𝑓biceps
maps to one flattened vector of coordinates 𝑓biceps : R→ R𝑁 with 𝑁 = 2809 · 3.

𝐸MSDE(𝒂) =
1
𝑁
∥ 𝑓biceps(𝒂) − 𝒄t∥2

2 (4.18)

The training of surrogate models requires a dataset that represents a solution to the inversion
problem. An iterative optimization approach is applied to generate this training dataset. The process
starts with no muscular activation 𝒂 = (0, 0, 0, 0, 0)⊤. With the sparse grid 𝑓angle the rest angle
can be determined at \ ≈ 60 °. Therefore, a greedy search for activations is performed that leads
to a change in the elbow angle with a step size of Δ\ = 0.1 ° in both directions. Each iteration is
initialized with the activations from the previous cycle. This approach aims to find a trajectory
through the elbow angles that minimizes discontinuities and avoids faraway local minima. To
solve the minimization problem, the bound L-BFGS-B optimizer from the python scipy package is
applied with numerical gradient estimation.
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(a) Result of the minimum activation strategy.
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(b) Result of the nearest activation strategy.
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(c) Result of the minimum deformation strategy.

Figure 4.3: Comparison of strategies to solve the inversion problem.

The following cost function implements the minimum activation strategy, which was proposed in
earlier work [5]:

𝐸minact(𝒂) = 𝐸angle(𝒂) + _SSA𝐸SSA(𝒂) (4.19)

with _SSA = 1e−3. The results are shown in Figure 4.3a. The plot shows strong discontinuities,
especially for high angles \.

Targeting to find a smoother solution yields the nearest activation strategy. It aims to find activations
that are closest to the activations from the previous iteration 𝒂t = 𝒂∗

𝜏−1:

𝐸nearestact(𝒂) = 𝐸angle(𝒂) + _SAD𝐸SAD(𝒂) + _SSA𝐸SSA(𝒂) (4.20)

with _SAD = 1e−3 and _SSA = 1e−6. The SSA term is kept but with weaker weight to add
an incentive for smaller activation values while the SAD term is dominant. The results are
shown in Figure 4.3b. For small angles it does not make a significant difference compared to the
minimum activation strategy. For large angles, on the contrary, the flexors are now activated nearly
identically.

The results appear to be artificial. Nearly identical activation values are most likely a result of the
mathematical formulation that cannot be backed with biological reasoning. Nevertheless, according
to the model and inversion strategy it is a valid solution. Motivated by the question whether there
might be a better approach that does not rely on assumptions about the activations, the minimum
deformation strategy is developed. Similar to the minimum activation strategy, this strategy is based
on the assumption that a human body tries to solve motion tasks as efficient as possible. But instead
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4 Continuum-Mechanical Pervasive Simulation

Activations Coordinates
Strategy RMSG MAG MAXAG RMSG MAG MAXAG

Minimum activation 0.077748 0.029176 0.995729 0.324711 0.218868 2.631073
Nearest activation 0.052141 0.022973 0.830327 0.304378 0.208463 1.127719
Minimum deformation 0.051803 0.023376 0.494052 0.304689 0.208879 1.207651

Table 4.2: Inversion strategy smoothness comparison.

of proclaiming that the activation itself is a good measure, the strategy relies on the assumption
that the minimum deformation between two iterations will yield the most efficient transition. Each
kind of movement has to correlate with some kind of energetic cost. As an additional benefit, the
resulting surface mesh of the biceps is likely to be very smooth over a given trajectory. Ideally, it
even is the smoothest. The error function is defined with the target coordinates acquired from the
activations of the previous iteration 𝒄𝑡 = 𝑓biceps(𝒂∗𝜏−1):

𝐸mindef(𝒂) = 𝐸angle(𝒂) + _MSDE𝐸MSDE(𝒂) + _SSA𝐸SSA(𝒂) (4.21)

with _MSDE = 1e−3 and _SSA = 1e−6. Again, the SSA remains in a weakened position to add
a incentive for small activations in case the MSDE does not have a unique solution. The result
is presented in Figure 4.3c. Again, the values for small angles look very similar to the previous
approaches. For large angles there are similar activations but with subtle differences. Especially,
the Anconeus plays a stronger role for \ ≥ 86 °. The approach does not suffer from discontinuities
compared to the minimum activation strategy. In addition, it does not overly insist on similar
activation values in contrast to the nearest activation approach. The smootheness metric results for
the three strategies is shown in Table 4.2. Both, the nearest activation and minimum deformation
strategies, outperform the minimum activation approach in all scores. The nearest activation and
the minimum deformation approach show very similar results. Surprisingly, compared to the
minimum deformation strategy the nearest activation strategy yields a higher MAXAG regarding
the activations, while the MAXAG of the coordinates is slightly lower. Intuitively, one would
assume the opposite based on the respective optimization goals. In summary, both approaches
perform similarly well regarding the smoothness.

The minimum deformation strategy is the most promising approach to deal with the inversion
problem. While being computationally more demanding, it yields reasonable results without strong
assumptions about the activations itself. Therefore, it is used for this thesis. The SMAE and the
SSMD remain conceptually to be used in future work.

With none of the strategies, the solver was able to find solutions for angles \ < 53.3 ° and \ > 99.6 °
given an angular error threshold of 1e−2 °. All three strategies lead to the same interval of reachable
elbow angles with this given threshold. For the remaining data points, the angular RMSE is smaller
than 1e−4 ° and therefore negligible. Conclusively, the limited angular sensitivity of the surrogate
model has to be caused either by the sparse grid surrogate or by the FEM model itself. Since those
models are out of scope for this thesis, a workaround based on rescaling of the movement data is
applied as presented in Section 4.1.

Finally, a training dataset for the surrogate models is created. A weighted k-NN with Euclidean
distance is chosen for interpolation of the dataset and defined as the ground truth model. This
choice is based on the facts that the sample width is quite narrow and the dimensionality of the
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model is low, i.e., 𝑑 = 1. The k-NN model is sampled uniformly with 𝑁 = 1000 angles in the
interval [53.3, 99.6] °. Due to the existence of the sparse grid models, the best value for 𝑘 can
be determined. The model 𝑓angle can be used to verify which angles actually should have been
reached with the sampled and interpolated activations. This gives an estimate of the approximation
error and helps choosing 𝑘 . The minimum RMSE is reached with 𝑘 = 2, RMSE = 1.81e−4
for 𝑘 ∈ [2, 10]. Thus, the 2-NN is used as ground truth model and applied in the creation of
the training dataset. As a side note, the distance-weighted 2-NN with the Euclidean distance for
interpolation in one dimension is equivalent to classical linear interpolation. For this experiment the
KNeighborsRegressor from the python scikit-learn package is applied. The training and selection
of surrogate models based on this dataset is described in the following Section 4.4.

4.4 Model Selection

In Section 4.3 the process for sparse grid inversion and dataset creation has been presented. This
section contains the training and selection of surrogate models for the AR application based on
this dataset. It is preferable to avoid the deployment of the 2-NN ground truth model because it
requires the complete original dataset. Furthermore, the search for the 𝑘 nearest neighbors can be
expensive for large datasets and high dimensions. In this one-dimensional scenario with evenly
spaced sampling points it is trivial and efficient to compute the relevant neighbors, s.t. the model
size is the main motivation to find a surrogate model.

As introduced in Section 2.2, the CV workflow is applied to evaluate the model candidates. The
dataset from Section 4.3 with 𝑁 = 1000 samples is randomly split in a training and test set
with a 80/20 ratio. The training set is applied with 5-fold CV grid search approach to identify
good hyperparameters and models. This exhaustive search of parameter values is very expensive.
Therefore, the search space is rather restricted for this thesis. This trade-off is acceptable, since
the goal of this thesis is not to find the very best model but rather a range of models with different
levels of performance and efficiency. The models are the foundation for the distribution approaches
presented in Chapter 6 and evaluated in Chapter 7.

The experiments in this section are based on the following scikit-learn implementations in python:
Pipeline, MaxAbsScaler, MinMaxScaler, StandardScaler, TransformedTargetRegressor, KFold,
GridSearchCV, MLPRegressor, PolynomialFeatures, LinearRegression, Ridge.

4.4.1 Activation Models

In this section a surrogate model for the function 𝑓angle2acts : R→ R5 is searched with the elbow
angle \ as input feature and the muscle activations 𝒂 = (𝑎1, . . . 𝑎5)⊤ as target features. As a
reference, the 2-NN ground truth model has 2320 parameters.

Linear Regression As a first model, the linear regression is applied with polynomial features.
The CV approach evaluates models over the space of the following design choices:

• Feature scaling ∈ {Identity, MinMax, MaxAbs, Standard}

• Polynomial degree 𝑑 ∈ [1, 30]
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Figure 4.4: Activation: Polynomial regression CV results. The plot shows the RMSE over the
polynomial degree 𝑑. The colors indicate the courses for the different scaling methods.

The activation values are already in the range [0, 1]. Therefore, no target scaling is applied.
Figure 4.4 shows the mean RMSE of the CV folds over 𝑑. Until 𝑑 = 6 the difference between
the scaling approaches is negligible. For 𝑑 > 13 the MaxAbs scaling performance begins to
diverge. The same applies for the MinMax scaling for 𝑑 > 22. The standardization yields the best
performance for high values of 𝑑. Thus, the Standard scaler is chosen as preprocessing for the
regression models. There is no sign of overfitting for MinMax, MaxAbs and standardization since
the RMSE is further decreasing over 𝑑. Therefore, no explicit regularization is applied. In principle,
the whole range of 𝑑 up to 30 can be used. Practically, it is questionable whether it is worth, due to
the increasing cost and the saturating course.

Neural Network As a second approach NNs are investigated in the search for a surrogate model.
Due to the higher training cost and number of hyperparameters the search space is further limited.
The following design space is explored in the CV process:

• Feature scaling: {Identity, MinMax}

• # hidden layer: 𝑙 ∈ [1, 3]

• # hidden nodes per layer: ℎ ∈ {𝑥 = 2𝑝 | 𝑝 ∈ [0, 10]}

The following design choices are fixed during evaluation:

• Activation function: ReLU

• Batch size: 32

• 𝐿2 regularization: 𝛼 = 1e−4

• Optimizer: Adam with learning rate [ = 1e−3, 𝛽1 = 0.9, 𝛽2 = 0.999

• Early stopping with 10 % data as validation set with tolerance tol = 1e−4 and 𝑛no_change = 10

• Maximum number of epochs: 1000
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4.4 Model Selection

Rank Architecture RMSE Parameters

1 NN [1 [8, 128, 128] 5] 0.005979 18325
2 NN [1 [4, 128, 256] 5] 0.006277 34957
3 NN [1 [8, 256, 256] 5] 0.006424 69397
4 NN [1 [4, 256] 5] 0.006613 2573
5 NN [1 [4, 64, 512] 5] 0.006672 36173
6 NN [1 [32, 128, 128] 5] 0.006690 21445
7 NN [1 [4, 64, 64] 5] 0.006753 4813
8 NN [1 [4, 64, 128] 5] 0.006895 9293
9 NN [1 [4, 1024] 5] 0.006949 10253

10 NN [1 [8, 64, 256] 5] 0.006955 18517

Table 4.3: Activation: Top 10 NN architectures in CV.

The 10 best NN architectures of the CV search are shown in Table 4.3. The notation [𝑛[ℎ1, . . . , ℎl]𝑚]
describes the NN architecture with the number of input features 𝑛, the number of target features 𝑚
and the number of hidden nodes in each hidden layer ℎ1, . . . , ℎl.

The best NN has a slightly worse RMSE than the polynomial regression model with 𝑑 = 10 and a
RMSE of 0.005474. Additionally, the NN is far more expensive. Compared to the ground truth
model the NN needs ≈ 7.9 times more parameters, while the regression model only needs about
2.37 %. The only other NN with a nearly reasonable size is the architecture [1 [4, 256] 5]. Thus, a
second CV run for fine tuning with models 1 and 4 is performed over the the following parameters:

• Feature scaling: {Identity, MinMax, Standard}

• 𝐿2 regularization: 𝛼 ∈ {𝛼 = 10−𝑝 | 𝑝 ∈ [1, 7]}

In this experiment, the MinMax scaler is confirmed to work best with the given architectures.
Furthermore, for the [1 [8, 128, 128] 5] model 𝛼 = 1e−4 is the optimal parameter in the search
range. The architecture [1 [4, 256] 5] performs slightly better with 𝛼 = 1e−5 which yields a RMSE
of 0.006154. Nonetheless, none of the NNs of the analyzed design space can outperform the higher
order polynomial models.

The performance on the test set is evaluated in Section 4.5.

4.4.2 Biceps Deformation Models

This section shows the search for a surrogate model of the function 𝑓angle2coords : R → R2809×3

which represents the relation between the elbow angle \ and the 3D surface mesh of the Biceps.
Previous work [5] shows that the prediction of the surface mesh with NNs works better if the relative
deformation to the rest state at 𝒂 = (0, 0, 0, 0, 0)⊤ is used as target instead of the coordinates. The
relative deformation is given by 𝒄 = 𝒅 + 𝒐, with the coordinates 𝒄, the deformations 𝒅 and the
rest point offset 𝒐. Therefore, the deformations are also used as target features in this work. As a
reference, the 2-NN ground truth model has ≈ 3.9e6 parameters.
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Figure 4.5: Deformation: Polynomial regression CV results. The plot shows the RMSE over the
polynomial degree 𝑑. The colors indicate the courses for the different scaling methods.

In contrast to the activations, the deformations are not a priori defined on a fixed interval but share
the same unit. In order to avoid a prioritization of some coordinates by individual feature scaling
another method needs to be developed. The coordinates are scaled as a group, i.e., the relative scale
between single coordinates is preserved.

Linear Regression The CV evaluates the polynomial regression models over the space of the
following design choices:

• Feature scaling ∈ {Identity, MinMax, MaxAbs, Standard}

• Target scaling ∈ {Identity, MinMaxGroup, MaxAbsGroup, StandardGroup}

• Polynomial degree 𝑑 ∈ [1, 30]

The CV results suggest that the target scaling makes a negligible difference. Therefore, no target
scaling is assumed for further evaluations. Figure 4.5 shows the mean RMSE of the CV folds over
𝑑. The course of the RMSE is qualitatively identical to the activation case. Thus, the Standard
scaler is also chosen as preprocessing for the regression models.

Neural Network The search space for the deformation case is further restricted due to the higher
cost caused by the increased output dimension. The following design space is explored in the CV
process:

• Feature scaling: {MinMax}

• Target scaling: {Identity, MinMaxGroup}

• # hidden layer: 𝑙 ∈ [2, 5]

• Architectures: arch ∈ { 𝑓arch(𝑛, 𝑚, 𝑙 + 1) | 𝑙 ∈ [2, 5]}
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4.5 Model Evaluation

Rank Architecture RMSE Parameters

1 NN [1 [10, 92, 880] 8427] 0.039564 7507059
2 NN [1 [7, 38, 227, 1382] 8427] 0.049848 11978808
3 NN [1 [21, 415] 8427] 0.052748 3514804
4 NN [1 [5, 21, 92, 415, 1868] 8427] 0.060459 16567906
5 NN [1 [92] 8427] 0.313271 783895

Table 4.4: Deformation: NN architectures CV results.

The function 𝑓arch(𝑁, 𝑀, 𝐿) produces a NN architecture with exponential layer growth given the
number of features 𝑁 , the number of targets 𝑀 and the number of layers 𝐿 where only the hidden
layers and output layer are counted. Thus, the number of hidden layers 𝑙 = 𝐿 − 1. This architecture
generation function has been developed in [1]:

ℎ𝑖 =
⌈
𝑎𝑒𝑏𝑖 + 𝑐

⌉
(4.22)

𝑎 =
𝑀

𝑀 + 𝐿
(4.23)

𝑏 =
ln

(
𝑀−𝑁+𝑎

𝑎

)
𝐿

(4.24)

𝑐 = 𝑁 − 𝑎 (4.25)

The rest of the hyperparameters for NN training is chosen as in the activation scenario.

The CV results show that the MinMaxGroup scaler outperforms the Identity scaler for each
architecture. The CV result is shown in Table 4.4. The best performing architecture is the
[1 [10, 92, 880] 8427] with 𝑙 = 3 and an RMSE of 0.039564 and ≈ 7.5e6 parameters. Therefore, it
contains ≈ 1.9 times more parameters than the ground truth model. Another potential candidate is
the [1 [21, 415] 8427] architecture with ≈ 89.9 % of the parameters.

The performance on the test set is evaluated in Section 4.5.

4.5 Model Evaluation

The surrogate model test set performance for the activation models is shown in Table 4.5. The
polynomial regression models provide a wide range of performance over degree 𝑑. In this special
case with one input feature, the number of parameters is linear in 𝑑. Therefore, it is possible to
use high order polynomials without over-proportional costs. The R2 score shows that performance
increases strongly over the lower degrees and begins to saturate for high values of 𝑑. The degree is
limited to 15 because the model performance is considered to be good enough for the planned use
case. While the NNs also show good performance, their costs are many times higher. Therefore,
the best option is to choose a polynomial regression model with the desired performance.

The test set performance for the deformation case is presented in Table 4.6. While the costs are
higher compared to the activation case the results are qualitatively the same. One noticeable
difference is the existence of large negative R2 scores for the NNs. The coordinate dataset contains
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Rank Model RMSE MAE R2 Parameters

1 PR15 0.003755 0.002097 0.999591 80
2 PR14 0.004037 0.002107 0.999513 75
3 PR13 0.004566 0.002615 0.999321 70
4 PR12 0.004882 0.002953 0.999242 65
5 NN [1 [8, 128, 128] 5] 0.006297 0.003541 0.998546 18325
6 PR11 0.006355 0.003606 0.998576 60
7 PR10 0.006560 0.003567 0.998505 55
8 PR9 0.006949 0.003744 0.998315 50
9 PR8 0.008026 0.004689 0.997809 45

10 PR7 0.009980 0.005886 0.996564 40
11 PR6 0.010145 0.005726 0.996501 35
12 NN [1 [4, 256] 5] 0.013009 0.006570 0.993412 2573
13 PR5 0.017945 0.010406 0.987222 30
14 PR4 0.028953 0.017117 0.968828 25
15 PR3 0.050625 0.030221 0.908523 20
16 PR2 0.071321 0.041287 0.826938 15
17 PR1 0.109163 0.074534 0.655474 10

Table 4.5: Activation: Surrogate model test set performance. Ordered by RMSE.

Rank Model RMSE MAE R2 Parameters

1 PR15 0.016345 0.010192 0.976380 134832
2 PR14 0.017925 0.010687 0.976225 126405
3 PR13 0.019880 0.011820 0.975936 117978
4 PR12 0.024380 0.016101 0.975521 109551
5 PR11 0.028248 0.018790 0.975046 101124
6 PR10 0.029411 0.018782 0.974786 92697
7 PR9 0.033986 0.022051 0.973631 84270
8 NN [1 [10, 92, 880] 8427] 0.043808 0.030764 -7.2e19 7507059
9 PR8 0.045595 0.031645 0.971059 75843

10 PR7 0.057715 0.040136 0.969713 67416
11 PR6 0.060629 0.041143 0.968462 58989
12 PR5 0.066975 0.047086 0.965783 50562
13 NN [1 [21, 415] 8427] 0.071310 0.049670 -1.5e19 3514804
14 PR4 0.078593 0.054800 0.962658 42135
15 PR3 0.161229 0.111231 0.929121 33708
16 PR2 0.245172 0.163248 0.880201 25281
17 PR1 0.371736 0.267774 0.793868 16854

Table 4.6: Deformation: Surrogate model test set performance. Ordered by RMSE.
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4.6 Model Combination

coordsacts2coordsangle2actsangle acts

(a) Model chaining approach. The coordinates are computed based on the elbow angle by a chain of models
with the activations as intermediate result.

coordsangle2coords

angle2acts

angle

acts

(b) Model stacking approach. The coordinates and activations are computed independently based on the
elbow angle by a stack of models.

Figure 4.6: Strategies for activation and coordinate estimation.

features that nearly do not change. Therefore, their variance is very small which can lead to huge R2

values. In general, the reached R2 scores are lower compared to the activation case. This indicates
that the deformation variance is harder to capture in the models. As in the activation case, the
NNs are far more expensive compared to the polynomial regression models. Thus, a polynomial
regression model with desired accuracy-cost-trade-off can be chosen according to the application
requirements.

4.6 Model Combination

In previous work [5] model chaining is applied to calculate the coordinate values. This approach is
shown in Figure 4.6a. In a first step, the movement data is used as features for activation prediction.
Then, the activations are applied as inputs to predict the deformation. The second model, which
maps from activations to coordinates, is a surrogate for the sparse grid that represents the forward
simulation like the original FEM model.

This approach is not optimal for the AR application. Firstly, errors in the first prediction propagate
through the second model and lead to inconsistencies. Secondly, the 𝑓acts2coords function has more
DoFs and therefore is a harder problem that requires more expensive surrogate models.

The 𝑓acts2coords NN model from [5] has ≈ 43.9e6 parameters. It is evaluated on the same test set as
the 𝑓angle2coords models in Section 4.5. Its evaluation with ground truth activations yields an RMSE
of 0.680851, an MAE of 0.424991 and an R2 of -3.5e18. Thus, it produces an ≈ 1.8× higher RMSE
with ≈ 2600× more parameters compared to simple linear regression.

This does not mean that the given NN is a weak model. It is designed to fulfill another purpose and
therefore uses the available resources sub-optimally for the reduced task. As a result, focus on the
necessary aspects of a surrogate model plays an important role in efficient deployment. The parallel
model stacking approach, depicted in Figure 4.6b, is better suited for the given task. Even the linear
regression yields better results by also avoiding inconsistent states by error propagation.
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5 Distribution Model for System Emulation

This chapter presents the developed distribution model for analysis and evaluation of the distributed
algorithms. Real distributed systems are difficult to analyze and evaluate due to e.g. concurrency,
imperfect clocks or disturbances. Therefore, effects seen in a real system are hard to analyze and
reproduce. Instead, a distribution model is developed and applied for deterministic emulation
of the distributed system. The main motivation for the developed distribution model is to allow
reproducible simulations for evaluation purposes. The model allows a single threaded emulation
of concurrent and deterministic processes distributed on nodes that communicate with messages
over communication channels. Section 5.1 introduces the model concept and architecture and
Section 5.2 presents the probabilistic modeling of jitter and losses.

5.1 Cycle-based Emulation of the Distributed System

The main components of the distribution model are nodes, channels, processes and messages. A
node represents a device with computational resources and network interfaces. Nodes are connected
via unidirectional communication channels. Application functionality is implemented in processes
which are deployed on nodes. Processes can exchange information with the help of messages.
Messages are transferred through a network interface of a node over a channel to the respective
receiver. The architecture of an exemplary system with two nodes is visualized in Figure 5.1. Each
node contains one process. The nodes are connected with unidirectional channels. With this setup a
classical request-response or client-server structure can be modeled.

Processes A process is an abstraction of a functional aspect of a system. The model can be split
into a logical and a physical view. In the logical view, there exist only processes which exchange
information in the form of messages. Processes can be interpreted as functions that produce a
set of output messages based on a set of input messages: 𝑓𝑃 : {𝑚i1 , . . . , 𝑚i𝑘 } → {𝑚o1 , . . . , 𝑚o𝑙 }.

C2S: Channel

S2C: Channel

Client: Node Server: Node
P2: ProcessP1: Process

Figure 5.1: Distribution model architecture of an exemplary system with two nodes. Each node
contains one process. The nodes are cyclically connected with unidirectional channels.
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This logical view is not aware of the concept of time or delay in a physical sense. A process
simply produces an output in the form of a message based on the input messages it was given. If it
needs a notion of time, an artificial message can be passed to it that contains the timestamp of the
beginning of its execution. The same applies for algorithms with pseudo-random behavior [42].
Those algorithms need to be transformed s.t. they are deterministic and implement randomness
with a pseudo-random number generator that receives the seed via an input message. In this way,
the processes behave deterministically, which is a necessary property to achieve reproducibility in
the emulation. In consistency with those assumptions, processes create all messages during the
execution but deliver them at once when the process terminates, i.e., processes do neither send nor
receive messages during execution.

Nodes A node represents a device, e.g., mobile device, personal computer or server, on which
processes can be deployed. Nodes can possess communication interfaces which can be connected
via channels. For this thesis, two types of nodes are relevant. The first type of node is message
invoked. This means, whenever a desired message is received, the deployed process is executed.
The second type of node is a time-based node. This type does not require the arrival of a desired
message but schedules its process on a cyclic basis. Strictly speaking, this could also be modeled
with the help of an artificial message with the desired period. Thus, the time-based type is a
convenience definition. The nodes are modeled with a single processing unit and one deployable
process. This restriction is made for simplification and may be extended in future work.

Cycle-based Emulation The key idea of the distribution model is the realization of concurrency
in a sequential manner. Thus, concurrency of processes deployed on nodes is achieved with a
two-phase cycle-based emulation of the system with discrete time steps. The system is scheduled
periodically with a predefined emulation cycle time 𝑇E. Each emulation cycle contains two phases.

In Phase I, the node execution phase, all existing nodes are executed once. In this phase the
processes can be executed, if the scheduling conditions of the process are fulfilled, i.e., the message
of interest has arrived or the time trigger is active. While the processes implement the logical
view of the system, the nodes realize the physical view. The processing delays 𝑇𝑃 are emulated
by the nodes. The logical process is fully executed in the cycle in which it is triggered. The delay
is emulated by holding back the output messages for 𝑛 further emulation cycles. Consequently, a
subsequent execution of the process is prohibited until the delay time has elapsed. This behavior is
implemented with a blocking counter.

In the following Phase II, the channel execution phase, all channels are executed. Consequently,
the messages are passed after all processes have terminated in Phase I. In this way, concurrency is
reduced to the granularity of one emulation cycle.

In combination with the presented assumptions and modeling decisions the discretization causes a
minimum amount of time that is needed for any activity. A process on a node requires at least one
cycle to produce an output message, since the termination check is performed at the beginning of the
next node cycle in Phase I. The output messages are only delivered to the channel after successful
termination. A transmission over a channel also requires at least one emulation cycle. The messages
are exchanged in Phase II. Thus, the receiving process can consider the message at the earliest in
the next Phase I. This effectively results in a minimum transmission time. Therefore, every action
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0 1 2 3 4 5

Phase I

Phase II

Figure 5.2: Shortest round-trip between two processes 𝑃S and 𝑃R on two nodes. The orange arrows
indicate the information input and output of the sending process 𝑃S. The blue lines
illustrate the duration of the process execution. The green lines show the message flow
between processes over time.

requires at minimum 𝑇E. Consequently, the shortest round-trip between two processes on two nodes
requires four emulation cycles. The processing of the second node’s response is carried out in the
fifth emulation cycle. This is exemplary visualized in Figure 5.2.

Channel Design In general it is assumed that the communication works in an asynchronous
way. A sending process is not blocked except for the handover of the messages to the concurrent
communication layer. Various models of a channel can be implemented for emulation of different
channel behavior and situations.

receiversender input outputqueue transmit receive

Figure 5.3: Architecture of the tail-drop channel.

The tail-drop channel, visualized in Figure 5.3, is modeled with two buffers, the input and the output
buffer. If a node sends a message over the channel, it is placed in the input buffer. After 𝑛 emulation
cycles the message is transmitted to the output buffer where it can be fetched by the receiver. This
holding back for 𝑛 cycles emulates the channel delay 𝑇𝐶 . The channel is rejecting further send
requests while a message is in transit, i.e., tail-drop behavior. This behavior comes with a drawback.
If a node cannot successfully queue a message due to dropping, it is lost without further notice. The
model could be extended s.t. the sending process receives an artificial input message with a state
feedback. Nonetheless, this results in further delays, since the earliest retry is possible after the
next process termination. While this approach is a valid model, it is considered too restrictive for
modeling real world systems with concurrent communication layers. This shortcoming is solved
with the head-drop channel.

39



5 Distribution Model for System Emulation

receiversender input outputqueue transmit receivesendsend

Figure 5.4: Architecture of the head-drop channel.

The head-drop channel, illustrated in Figure 5.4, is designed to emulate communication systems
that run concurrently to the sending process on a lower level. In this channel variant, messages are
not immediately dropped if the preceding message is still in transit. Instead, the new message is
appended to the input queue. Whenever the channel is idle, i.e., the send queue is empty, the oldest
message from the input queue is transferred to the send queue. To emulate the channel delay 𝑇𝐶 , the
message is kept there for 𝑛 emulation cycles. As soon as the message is transmitted to the output
queue it can be received by the message consumer. A message is passed along the sequence of
queues in First-In-First-Out (FIFO) order. Thus, the order of messages is preserved. The send
queue has size one, i.e., it can store only one message at a time. This represents a bottleneck in
the communication, i.e., there are no parallel transmissions. The output queue also has size one.
With the FIFO property this only hands over the most recent message to the receiver. Another
interpretation of this behavior is a receiving process that discards all but the newest message. The
input queue is modeled as circular buffer. This implements the head-drop behavior, i.e., if the queue
is full, the oldest message is dropped in favor of the new one. With an input queue size of one,
only the newest message of the sender is kept. This “latest-greatest” property is chosen to achieve
a minimum delay for the AR application. Usually, messages cannot be unqueued once sent in
state-of-the-art systems. Since queue sizes have an upper bound in practice a full queue typically
results in some kind of backpressure. For example, the sending process can be suspended until
the communication system can accept the send request which is called buffer-blocking. This effect
increases the model complexity a lot and is therefore out of scope for this thesis. The suggested
communication pattern can be implemented in practice using an application layer packet processing
framework.

Figure 5.5 illustrates two examples of message flows through the head-drop channel over emulation
cycles. For this example the channel delay 𝑇C is 2 ms, the send period 𝑇S is 1 ms and the emulation
cycle time 𝑇E is 1 ms. In Figure 5.5a the first message 𝑚1 is queued by the sending process 𝑃S at
𝑡 = 0 ms. Since the send queue is free, the message is moved to the send queue. To account for
the delay 𝑇C, the message is kept there for one further emulation cycle. In the following emulation
cycle, 𝑚1 is passed over to the output queue. The receiving process 𝑃R fetches the 𝑚1 at 𝑡 = 2 ms,
which effectively results in the desired delay 𝑇C. Although the second message 𝑚2 is send by 𝑃S at
𝑡 = 1 ms, it has to wait in the input queue until 𝑚1 leaves the send queue. Afterwards, it follows the
same procedure as 𝑚1. Consequently, for 𝑚2 the delay 𝑇C is extended by the wait time of 1 ms in
this case, which results in a total transmission delay of 3 ms. Figure 5.5a shows the same scenario
but with a third message 𝑚3 sent at 𝑡 = 2 ms. Due to the input queue size of one, 𝑚2 is dropped and
replaced by 𝑚3. At this point 𝑚2 is lost without further notice, which results in the consecutive
transmission of 𝑚1 and 𝑚3.

Extensions of the head-drop channel model with message losses and randomized delays are presented
in Section 5.2.
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(b) Dropped message at input queue after subsequent send attempt.

Figure 5.5: Head-drop channel examples. The graphics illustrate the message flow through the
head-drop channel model over emulation time.

5.2 Probabilistic Modeling of Communication Channels

The model presented so far has a deterministic transmission behavior with a constant channel delay,
i.e., the resulting message delay can vary dependent on the time the message has to wait in the input
queue. This assumption does not hold for state-of-the-art communication technology, e.g., wireless
channels with varying bit error rates leading to retransmissions or shared networks with varying
cross-traffic leading to varying queuing delay in network elements. In this setting, the developed
system has to deal with varying transmission delays, message losses, duplicates and out-of-sequence
arrivals. This thesis focuses on varying transmission delays and message losses. In the following,
these effects are modeled in a probabilistic way.

Mukherjee [43] presents an analysis of round-trip delays of Internet packets. The analysis is based
on three settings, containing data for a regional, a backbone and a cross-country network segment.
According to Mukherjee, the low frequency components of delay can be approximated with a
shifted gamma distribution. The shape and scale parameters vary with network segment and load.
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Furthermore, Mukherjee states that he cannot provide a precise answer why the distribution is
gamma. Nonetheless he reasons that the gamma distribution is versatile, e.g., it contains exponential,
Erlang and 𝜒2 distributions as special cases, which are known to model nature well. In addition, the
delays are positive and the empirical histograms show non-symmetric shapes with long tails. These
properties can be captured with the gamma distribution. Mukherjee assumes that possible reasons
for the large tail can be systematic batching and FIFO processing.

Based on [43], Corlett et al. [44] provide an analysis of datasets about one-way packet delays on the
Internet. They found that during quiet periods very long and thin tails occur which can be well
modeled with a shifted exponential distribution. This is consistent to the results of Mukherjee [43]
because the exponential distribution is a special case of the gamma distribution.

Sui et al. [45] present a characterization of Wi-Fi latencies in large-scale operational networks. Sui
et al. argue that while the wired latencies are relatively stable and can be optimized, e.g., with
content delivery networks, the last hop to a mobile device can be unpredictable. They consider the
Wi-Fi latency to be the dominant factor for the end-to-end delays. Their results show that the Wi-Fi
latencies follow a long tail distribution. As an example, their measurements show a low median
of 3 ms, while the 90th percentile is around 20 ms and the 99th percentile is around 250 ms.

Chou and Miao [46] present an approach for optimized streaming where the network delays are
also modeled as gamma distribution. In more detail, they model the network to be an independent
time-invariant packet erasure channel with random delays. This means that the sender queues a
message, which can be instantaneously lost with some probability 𝑝l, independent of the send time 𝑡s.
If the message is not lost in this process, it reliably arrives at the receiver. The forward-trip time or
transmission delay is randomly drawn from a probability distribution 𝑝𝑑 (𝜏 | not lost). Each message
loss and delay is independent of other messages. Chou and Miao [46] state that the independence and
time-invariance is reasonable over short periods of time, i.e., a few seconds, under the assumption
the sender messages are not self-congesting. In other words, each message of a sender has to
leave the bottleneck queue before the next message of the same sender arrives. Otherwise, the
messages cause a congestion. Therefore, loss and delay of a message are approximately i.i.d. based
on the underlying state of the network. More sophisticated modeling can be realized with hidden
Markov models. Chou and Miao [46] note, given the recent past it is sufficient to simply estimate 𝑝l
and 𝑝𝑑 (𝜏 | not lost), which allows a change of the parameters over time.

Kalman and Girod [47] present an extension to the i.i.d. model, where successive delays over the
channel are modeled as a first order discrete Markov process. The authors of [47] claim that their
approach yields far better accuracy than the i.i.d. model. The application of this modeling approach
is beyond the scope of this thesis.

In this work, an approach based on the work of Chou and Miao [46] is implemented. The channels
are also modeled as independent time-invariant packet erasure channels with random delays. The
loss probability 𝑝l is considered in the transition of a message from the input to the send queue. This
represents the point of time in the real system where the message is actually sent. If the message
is not dropped, the delay 𝑇C is drawn from the distribution 𝑝𝑑 (𝜏 | not lost). To be more precise,
since the probabilities model the state of the underlying network, the random variables are drawn
from their distributions at the beginning of each emulation cycle. In case they are not required they
are simply dropped. In this way, with the help of a seeded pseudo-random number generator, the
pseudo-random properties of the channels are reproducible over time, s.t. multiple emulation runs
share the same network behavior. As a side note, the probabilistic loss mechanism has not been
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Figure 5.6: Example for gamma distributed delays 𝜏. The plot shows the probability density
functions for different combinations of 𝑎, 𝑏, s.t. the expected value E[𝜏] = 10e−3.

implemented during this thesis. This is acceptable because the focus is on delay and jitter. The
resulting behavior is equivalent to 𝑝l = 0. Note that messages can be lost anyway in case of sender
caused congestion.

The analysis, precise modeling and characterization of a potential deployment system is a topic on
its own and therefore out of scope for this thesis. Thus, the delays are assumed to be simply gamma
distributed. The gamma distribution probability density function is given by [11, 12, 43]:

Gamma(𝜏 |𝑎, 𝑏) = 𝑏𝑎

Γ(𝑎) 𝜏
𝑎−1𝑒−𝑏𝜏 (5.1)

Γ(𝑥) =
∫ ∞

0
𝑢𝑥−1𝑒−𝑢𝑑𝑢 (5.2)

with the random variable 𝜏, shape parameter 𝑎, the inverse scale or rate parameter 𝑏 and 𝜏, 𝑎, 𝑏 > 0.
With the following equations the distribution parameters can be calculated from the expected
value E[𝜏] and variance V[𝜏]:

𝑎 =
E[𝜏]2

V[𝜏] (5.3)

𝑏 =
E[𝜏]
V[𝜏] (5.4)

The proof can be found in Appendix B. Therefore, the distribution can be conveniently estimated
from a given or assumed set of expected value and variance. As an alternative, a shift parameter
could be added as in [46]. This case requires further insights and assumptions about the split between
constant and randomized delays and their dependencies, e.g., message sizes, load, disturbances, and
is therefore neglected in this thesis. As an example, different courses of the gamma distribution
with the same expected value E[𝜏] = 10e−3 are shown in Figure 5.6.
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Furthermore, for bidirectional communication the forward and backward channel are assumed to be
symmetric. Thus, the overall transmission delay of the round-trip 𝜏𝑠 is divided into the forward and
backward channel by halving the expected value E[𝜏𝑠] and variance V[𝜏𝑠]. The proof can be found
in Appendix B:

E[𝜏1/2] =
1
2
E[𝜏𝑠] (5.5)

V[𝜏1/2] =
1
2
V[𝜏𝑠] (5.6)

In the modeled channel, successive messages have to wait for the preceding transmission to be
completed. This approximation is only valid for connections with a dominant bottleneck, as for
example with Wi-Fi as first/last hop. With the presented probabilistic model message order is
preserved. The model can be easily extended to account for this scenario. Instead of the input and
send queue, a transmission buffer can be used. As above, when a message is queued, it can be lost
with some probability 𝑝l. If it is not lost, it is placed in the transmission buffer for a random delay
drawn from 𝑝𝑑 (𝜏 | not lost). Consequently, the stay of the messages in the channel is independent
from each other, s.t. messages can overtake. A crucial difference of this extension is that successive
messages do not wait for the preceding transmission to be completed.

The probabilistic FIFO head-drop channel model with order preservation is applied in this work.
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In this chapter possible applications of the Kalman Filter (KF) for the pervasive simulation problem,
which is described in Chapter 3, are investigated. In the pervasive simulation case, the goal is to
offload the expensive simulation to a server. The distribution architecture is visualized in Figure 6.1c.
On the mobile device there is a sensor, which acquires input data for the pervasive simulation with a
fixed frequency 𝑓S. This data is transferred to the remote device, where the offloaded simulation is
executed in the form of a HPS model. The simulation results are send back to the mobile device

Mobile Device

Visualization

Forecasting

HPS

Sensor

(a) Scenario I.

Mobile Device

Visualization

Fusion

HPS

Sensor

LPS

(b) Scenario II.

Mobile Device Server

Visualization

Fusion

HPS

Sensor

LPS

(c) Scenario III. 𝑇C1 and 𝑇C2 show the transmission delays and 𝑇P the processing delay of the HPS
execution.

Figure 6.1: Offloading scenarios.
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for visualization. In this scenario inevitable delays arise due to necessary communication and
processing times. This architecture is based on the work of Hubatscheck [4]. There, the usage of a
LPS model on the mobile device is proposed. The LPS can be used to improve the infrequent and
delayed simulation results from the server and acts as fallback in case of server or communication
issues. Hubatscheck [4] presents a fusion algorithm that merges the LPS results with continued
HPS results.

In this work KF-based approaches are investigated and compared to the continued update strategy
from [4]. The KF is an optimal estimator for linear systems in the presence of white Gaussian
noise. If the assumption holds that the given system is linear and suffers from disturbances
that behave like white Gaussian noise, the KF is an optimal estimator for the given problem.
Consequently, under the given assumptions there is no better solution. Even though the assumption
might only hold to a certain degree, for many problems like filtering and fusion of noisy sensor
measurements, even under existence of delays, there exist well studied solutions and approaches.
Thus, with reasonable analogies and assumptions, those approaches can be transferred to the
pervasive simulation problem.

The following scenarios are investigated in this chapter:

I One Simulation Model. No Transmission Delays. No Processing Delays. No Loss.

The simulation is based on the heavyweight HPS. This scenario can be motivated in two
ways. Motivation A: The delays are negligibly small but the communication costs shall be
minimized. Motivation B: There exists no remote device. The HPS is deployed on the mobile
device as depicted in Figure 6.1a. The goal is to minimize computational costs by temporary
suspension of the HPS for some time steps. This idea has been already investigated in [34]
where forecasting models are applied to predict intermediate outputs. For this scenario, time
series models are applicable that solely rely on the history of simulation results. In this work,
the KF is applied as an alternative forecasting model.

II Two Simulation Models. No Transmission Delays. No Processing Delays. No Loss.

Scenario II is similar to Scenario I but here a second surrogate model, the LPS, is added.
The same motivations as in Scenario I apply. The architecture of this scenario is visualized
in Figure 6.1b. Instead of pure time series forecasting methods, the LPS can improve the
forecasting quality with its explanatory character, i.e., it adds information about the relation
between simulation inputs and outputs.

III Transmission Delays, Processing Delay and Message Loss.

Scenario III confronts the idealized Scenarios I and II with the existence of delays and message
loss and is visualized in Figure 6.1c. Thus, it represents a setting with the HPS on the server
and an optional LPS on the mobile device with conditions of a real world system. A crucial
difference to the previous scenarios is that due to the delay, updates from the server cannot be
considered for the current estimate anymore.

Section 6.1 presents an improved variant of the continued update strategy from [4]. Relevant
details for the application of the KF are shown in Section 6.2. The pervasive simulation problem
targeted in this thesis is not a classical sensing and fusion problem. Nevertheless, the idea is to
draw analogies between the two perspectives and to transfer solutions known from the control and
signal theoretical point of view to the pervasive simulation case. The following analogies motivate
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the approaches presented in this chapter: The basic idea is to interpret the simulation result of
the HPS as sensor measurement with very low noise, ideally no noise. Scenario I is addressed in
Section 6.3 as a classical tracking problem. In Scenario II the LPS is added as second sensor with
a higher frequency and lower accuracy. This is tackled in Section 6.4 with analogies to a sensor
fusion problem. Since the LPS does not fulfill the white Gaussian noise property, due to a bias like
error, alternative approaches are investigated in Section 6.5. Finally, Scenario III is addressed in
Section 6.6 with the analogy of delayed measurements.

6.1 Improving the Continued Update Strategy

The continued update fusion strategy from Hubatscheck [4] is defined as follows:

Δ𝑙 = 𝑙𝑡+ℎ − 𝑙𝑡 (6.1)
𝑐𝑡+ℎ = 𝑢𝑡 + Δ𝑙 (6.2)
𝑚𝑡+ℎ = 𝛼 · 𝑐𝑡+ℎ + (1 − 𝛼) · 𝑙𝑡+ℎ (6.3)

with the LPS result 𝑙𝑡 , the HPS update 𝑢𝑡 , the continued update 𝑐𝑡+ℎ, the merged update 𝑚𝑡+ℎ and
the merge parameter 𝛼 ∈ [0, 1]. The HPS update from the server 𝑢𝑡 is extrapolated with the change
in the LPS result Δ𝑙. Finally, the continued update 𝑐𝑡+ℎ is merged with the LPS result 𝑙𝑡 as weighted
average with the weight parameter 𝛼.

The contribution of this work is the following improvement:

𝑚𝑡+ℎ = 𝛼 · 𝑐𝑡+ℎ + (1 − 𝛼) · 𝑙𝑡+ℎ (6.4)
= 𝛼 · (𝑢𝑡 + Δ𝑙) + (1 − 𝛼) · 𝑙𝑡+ℎ (6.5)
= 𝛼 · (𝑢𝑡 + 𝑙𝑡+ℎ − 𝑙𝑡 ) + 𝑙𝑡+ℎ − 𝛼 · 𝑙𝑡+ℎ (6.6)
= 𝛼 · (𝑢𝑡 − 𝑙𝑡 )︸   ︷︷   ︸

𝑜𝑡

+ 𝑙𝑡+ℎ (6.7)

= 𝛼 · 𝑜𝑡 + 𝑙𝑡+ℎ (6.8)

with the offset 𝑜𝑡 = 𝑢𝑡 − 𝑙𝑡 between the HPS and LPS at time 𝑡. This conversion has convenient
properties. On the one hand, the approach can be described as offset or error correction at time 𝑡.
Thus, 𝛼 describes how strong the error correction shall be considered. If 𝛼 = 1 the error is fully
compensated. On the other hand, this form can be implemented more efficiently. The fusion process
only needs to remember the local estimate 𝑙𝑡 of the time of the request to the server. When the
HPS update 𝑢𝑡 arrives delayed, the offset 𝑜𝑡 is calculated once and used as correction term for the
following time steps weighted with 𝛼.

6.2 Kalman Filter in Practice

This section introduces relevant basic concepts and helpful approximations for the practical
application of the KF before the it is applied to the distributed pervasive simulation problem in the
next sections.
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6.2.1 Numerical Instability

According to Labbe [24], the KF can suffer under numerical instability in practice. The issue arises
when the update equation leads to non-symmetric covariance matrices due to floating point errors
in the subtraction:

𝑷𝑘+1 = (𝑰 − 𝑲𝑘+1𝑪)𝑷𝑘+1 |𝑘 (6.9)

A traditional workaround preserves symmetry by averaging the error between the symmetric
values [24]:

𝑷𝑘+1 =
1
2
(𝑷𝑘+1 + 𝑷⊤

𝑘+1) (6.10)

Instead, Labbe [24] suggests to use the so called Joseph equation which ensures symmetry even
though the Kalman gain might not be optimal:

𝑷𝑘+1 = (𝑰 − 𝑲𝑘+1𝑪)𝑷𝑘+1 |𝑘 (𝑰 − 𝑲𝑘+1𝑪)⊤ + 𝑲𝑘+1𝑹𝑲
⊤
𝑘+1 (6.11)

Derivations for the equation can be found in [24, 26]. Nonetheless, the filter can still diverge if
𝑷𝑘+1 |𝑘 becomes non-negative for some reason [24, 48]. For critical applications, e.g., where failure
might lead to loss of equipment or life, Labbe [24] highlights the importance of avoiding those
issues. As stated in [16, 48] other solutions are the use of the square root filter, the information
filter or the combination, the square root information filter, which are out of scope for this thesis. In
general, there is a trade-off between numerical stability and computational effort [48]. In this thesis
the KF is implemented with Equation (6.11).

6.2.2 Filter Initialization

According to Labbe [24], many schemes for filter initialization exist. He proposes the following,
where the filter remains uninitialized until the first measurement 𝒛0 is received:

𝒙0 = 𝑪−1𝒛0 (6.12)

Since 𝑪 is rarely square, the Moore-Penrose pseudo-inverse can be used instead. For the error
covariance initialization one approach is to use the measurement uncertainty 𝑹 for identical states
and squared maximum values for hidden states. This method is also described by Bar-Shalom
et al. [49] as one-point initialization. They suggest to use half the known maximum value squared.
Further improvements can be made if domain knowledge is applied. For example, if the state
contains a velocity ¤𝑥 but only the position 𝑥 is observed, its initial value can be estimated from the
difference of the two first measurements [24]. Bar-Shalom et al. [49] call this method two-point
differencing. In this case the state vector and state covariance matrix can be estimated with:

𝒙0 =

[
𝑥

¤𝑥

]
=

[
𝑧0

𝑧0−𝑧−1
Δ𝑡

]
(6.13)

𝑷0 =

[
𝑹 𝑹

Δ𝑡
𝑹
Δ𝑡

2𝑹
Δ𝑡2

]
(6.14)
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Here, 𝑧−1 is the first received measurement, 𝑧0 is the second and Δ𝑡 is the time passed between
measurements. Thus, 𝑘 = 0 indicates the time step at which the KF is properly initialized and yields
the first valid estimate.

Bar-Shalom et al. [49] highlight that the initial state covariance has to be consistent with the error in
the initial state. They recommend to choose a covariance s.t. the error is at most two times the
respective standard deviation.

6.2.3 N-th Order Kalman Filter

The choice of the system model is crucial for the performance of a KF. One option to acquire
the linear state space model is the derivation via differential equations. When there is no further
knowledge about the system available, a kind of black box approach, one can still make use of the
Newtonian equations. This is especially helpful for continuous processes, i.e., where constancy of a
derivative of the tracked signal can be assumed. The order of the system is determined by the order
of derivatives contained in the differential equation. The content of this section is based on [24]
unless stated otherwise.

Zeroth Order Kalman Filter The zeroth order KF can also be described as constant position
model. It assumes that there is no change in the state 𝑥, i.e., 𝑥 has a constant value:

𝑥 = 𝑥0 (6.15)

with position 𝑥. This gives the following state space formulation:

𝒙 = [𝑥] (6.16)
𝒛 = [𝑧] (6.17)
𝑨 = [1] (6.18)
𝑪 = [1] (6.19)

First Order Kalman Filter The first order KF is also known as constant velocity model. As the
name suggests, it assumes a motion with constant velocity of the form:

𝑣 =
d𝑥
d𝑡

(6.20)

𝑥 = 𝑣𝑡 + 𝑥0 (6.21)
𝑥𝑡 = 𝑥𝑡−1 + 𝑣𝑡−1Δ𝑡 (6.22)
𝑣𝑡 = 𝑣𝑡−1 (6.23)

with position 𝑥, velocity 𝑣, time 𝑡 and the sampling period of the KF Δ𝑡.
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This results in the following state space formulation:

𝒙 =

[
𝑥

¤𝑥

]
(6.24)

𝒛 = [𝑧] (6.25)

𝑨 =

[
1 Δ𝑡

0 1

]
(6.26)

𝑪 =
[
1 0

]
(6.27)

Second Order Kalman Filter Analogously, the second order KF or constant acceleration model
can be defined with the following equations:

𝑎 =
d2𝑥

d𝑡2
(6.28)

𝑥 =
1
2
𝑎𝑡2 + 𝑣0𝑡 + 𝑥0 (6.29)

𝑥𝑡 = 𝑥𝑡−1 + 𝑣𝑡−1Δ𝑡 +
1
2
𝑎𝑡−1Δ𝑡

2 (6.30)

𝑣𝑡 = 𝑣𝑡−1 + 𝑎𝑡−1Δ𝑡 (6.31)
𝑎𝑡 = 𝑎𝑡−1 (6.32)

with position 𝑥, velocity 𝑣, acceleration 𝑎, time 𝑡 and the sampling period of the KF Δ𝑡. Which
results in the following state space formulation:

𝒙 =


𝑥

¤𝑥
¥𝑥

 (6.33)

𝒛 = [𝑧] (6.34)

𝑨 =


1 Δ𝑡 Δ𝑡2

0 1 Δ𝑡

0 0 1

 (6.35)

𝑪 =
[
1 0 0

]
(6.36)

This derivation of kinematic systems using Newtonian equations can be arbitrarily extended to
e.g. jerk, snap, crackle, pop and so on. Labbe [24] states, for the best performance the filter order
needs to match the system’s order. Usually, adding terms beyond the dynamic of the real system
degrades the estimate. Furthermore, a lower order filter can track a higher order system. This
requires an increased process noise but often provides good results. The author [24] also suggests
to experiment with this approach before considering a more complex adaptive approach.

6.2.4 Covariance Estimation

The choice of covariance matrices are crucial for the KF performance. The state covariance matrix 𝑷
does not necessarily represent the error covariance of the states. When the filter is overconfident of
its estimate the filter is called “smug”. In practice, the estimated state covariance 𝑷 depends solely
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on the definitions of 𝑸 and 𝑹. Therefore, 𝑷 is the result of the model which highly depends on the
assumptions and accuracy of 𝑸 and 𝑹. Real systems and sensors typically do not have a Gaussian
error with zero mean but kurtosis and skew. [24]

The matrices 𝑹 and 𝑸 can be acquired from sensor specification, derived from measurements or
applicated in a trial and error approach. In this way 𝑹 and 𝑸 are design parameters of the KF [25].
Labbe [24] and Marchthaler and Dingler [26] describe the following approaches to approximate the
process covariance matrix 𝑸:

Continuous White Noise Model The basic idea of the continuous model is the discretization of
the continuous white noise 𝑸𝑐. The process covariance 𝑸 can be computed with:

𝑸 =

∫ Δ𝑡

0
𝑨(𝑡)𝑸𝑐𝑨(𝑡)⊤d𝑡 (6.37)

where 𝑨(𝑡) is the state transition matrix at time 𝑡. 𝑸𝑐 depends on the spectral density Φ𝑠 of the
white noise. It is placed at the position in the matrix where the expected disturbance occurs. For
example, with the constant acceleration assumption it models the deviation from the constancy as
white Gaussian noise, s.t.:

𝑸𝑐 =


0 0 0
0 0 0
0 0 1

 Φ𝑠 (6.38)

In practice, it is difficult to estimate Φ𝑠. Therefore, it is often used as tuning parameter that is
applicated in experiments. The covariance matrices 𝑸𝑖 for the filter order 𝑖 are defined as follows:

𝑸0 =
[
Δ𝑡

]
Φ𝑠 𝑸1 =

[
Δ𝑡3

3
Δ𝑡2

2
Δ𝑡2

2 Δ𝑡

]
Φ𝑠 𝑸2 =


Δ𝑡5

20
Δ𝑡4

8
Δ𝑡3

6
Δ𝑡4

8
Δ𝑡3

3
Δ𝑡2

2
Δ𝑡3

6
Δ𝑡2

2 Δ𝑡

 Φ𝑠 (6.39)

Piecewise White Noise Model This model assumes a constant highest order term for each period
of time, i.e., the discontinuities have random, uncorrelated values with zero mean. In contrast, the
continuous model assumes continuously varying noise. In this model, the impact of the piecewise
constant disturbance w is defined with the noise gain 𝑮:

𝒙𝑘+1 = 𝑨𝒙𝑘 + 𝑮w (6.40)

The resulting process covariance matrix is defined as:

𝑸 = E[𝑮ww⊤𝑮⊤] (6.41)
= 𝑮Cov[w]𝑮⊤ (6.42)

For example, in the constant velocity case, the noise affects the velocity as discontinuous jump
in acceleration which yields 𝑮 = [ 1

2Δ𝑡,Δ𝑡]
⊤ and the covariance matrix Cov[w] = [𝜎2

𝑎] with the
acceleration variance 𝜎2

𝑎. As a rule of thumb, the author [24] suggests to choose 𝜎𝑎 between 1
2Δ𝑎
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and Δ𝑎, with Δ𝑎 as the maximum change of acceleration between samples. In practice, the value is
often applicated in experiments. The resulting covariance matrices 𝑸𝑖 for the filter order 𝑖 are:

𝑄0 =
[
Δ𝑡2

]
𝜎2
𝑣 𝑄1 =

[
Δ𝑡4

4
Δ𝑡3

2
Δ𝑡3

2 Δ𝑡2

]
𝜎2
𝑎 𝑄2 =


Δ𝑡6

36
Δ𝑡5

12
Δ𝑡4

6
Δ𝑡5

12
Δ𝑡4

4
Δ𝑡3

2
Δ𝑡4

6
Δ𝑡3

2 Δ𝑡2

 𝜎
2
𝑗 (6.43)

Direct Discretization Model The direct discretization is similar to the piecewise model, but
here the disturbance directly affects the highest order term in the filter. This gives the following
covariance matrices 𝑸𝑖 for the filter order 𝑖:

𝑄0 =
[
1
]
𝜎2
𝑝 𝑄1 =

[
Δ𝑡2 Δ𝑡

Δ𝑡 1

]
𝜎2
𝑣 𝑄2 =


Δ𝑡4

4
Δ𝑡3

2
Δ𝑡2

2
Δ𝑡3

2 Δ𝑡2 Δ𝑡
Δ𝑡2

2 Δ𝑡 1

 𝜎
2
𝑎 (6.44)

Simplification of 𝑸 In this approach, the process covariance matrix is strongly simplified and
only models the highest order term as the variance 𝜎2. Given the constant acceleration assumption
𝑸 can be defines as:

𝑄 =


0 0 0
0 0 0
0 0 𝜎2

𝑎

 (6.45)

Labbe [24] reasons, this represents an approximation of the previous approach, since for small
Δ𝑡 all other terms tend towards zero. Furthermore, in the prediction state covariance update the
contribution of those components is negligible if the values of 𝑸 are small compared to 𝑷. Although
this approach is strictly speaking not correct, the author [24] highlights is usefulness. Nevertheless,
he also warns that the developed filter might not work as intended and recommends to spend more
validation effort as compensation. In [25] an example for a constant velocity KF is presented which
uses a diagonal matrix as 𝑸. Thus, neglecting only the covariance terms is also a simplification
option.

Comparison of 𝑸 Estimation Methods With a trick from Marchthaler and Dingler [26] the
estimation models can be compared: the lower right entry of 𝑸 models by definition the variance
of the noise of the highest order term. Therefore, the presented matrices can be normalized and
compared. For the continuous white noise model Δ𝑡Φ𝑠 is substituted with 𝜎2. The piecewise
model is transformed with 𝜎2

𝑖−1 = Δ𝑡2𝜎2
𝑖

where 𝑖 denotes the order of the noise term. The direct
discretisation model already has the desired form.
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Continuous White Noise Model:

𝑄0 =
[
1
]
𝜎2
𝑝 𝑄1 =

[
Δ𝑡2

3
Δ𝑡
2

Δ𝑡
2 1

]
𝜎2
𝑣 𝑄2 =


Δ𝑡4

20
Δ𝑡3

8
Δ𝑡2

6
Δ𝑡3

8
Δ𝑡2

3
Δ𝑡
2

Δ𝑡2

6
Δ𝑡
2 1

 𝜎
2
𝑎 (6.46)

Piecewise White Noise Model:

𝑄0 =
[
1
]
𝜎2
𝑝 𝑄1 =

[
Δ𝑡2

4
Δ𝑡
2

Δ𝑡
2 1

]
𝜎2
𝑣 𝑄2 =


Δ𝑡4

36
Δ𝑡3

12
Δ𝑡2

6
Δ𝑡3

12
Δ𝑡2

4
Δ𝑡
2

Δ𝑡2

6
Δ𝑡
2 1

 𝜎
2
𝑎 (6.47)

Direct Discretization Model:

𝑄0 =
[
1
]
𝜎2
𝑝 𝑄1 =

[
Δ𝑡2 Δ𝑡

Δ𝑡 1

]
𝜎2
𝑣 𝑄2 =


Δ𝑡4

4
Δ𝑡3

2
Δ𝑡2

2
Δ𝑡3

2 Δ𝑡2 Δ𝑡
Δ𝑡2

2 Δ𝑡 1

 𝜎
2
𝑎 (6.48)

For the zeroth order filter all methods give the same shape for the covariance matrix. For higher
order filters the different approaches result in different scaling factors for the respective matrix
elements.

Labbe [24] states that the estimation models are approximations. None of them has a significant
benefit over the others. Nevertheless, one might perform better compared to the others, which
has to be evaluated in experiments. A benefit of the piecewise model is that it can be intuitively
derived from theoretically expected disturbances or measurements. With the normalization approach
from [26], this benefit can be applied to the other methods as well. Thus, a value for the highest
order variance 𝜎2

𝑖
can be estimated and multiplied with the desired model matrix.

Covariance Estimation from Samples The covariance matrix is formally defined as [12]:

Cov[x, y] = E[(x − E[x]) (y⊤ − E[y⊤])] (6.49)
= E[xy⊤] − E[x]E[y⊤] (6.50)

For a zero mean random vector w this gives the following equation that can be approximated with
the sample mean of measured values:

Cov[w] = Cov[w,w] (6.51)
= E[ww⊤] − E[w]E[w⊤]︸        ︷︷        ︸

0

(6.52)

≈ 1
𝑁

𝑁∑︁
𝑖

w𝑖w⊤
𝑖 (6.53)

6.2.5 Filter Evaluation

The KF performance measure is different from other estimators. For the resulting estimation error
classical metrics like the MSE or RMSE can be applied if the ground truth is known. These metrics
are useful because the KF provides an optimal estimate in the least square sense. [24]
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In addition the KF provides an estimate of the state estimation error in the form of the state
covariance matrix 𝑷. As already mentioned, 𝑷 does not necessarily represent the error, because
the filter can over- and underestimate the real deviation from the ground truth. A helpful tool for
performance estimation is plotting the residuals and the estimated standard deviation. From the
Gaussian perspective, approximately 68 % of the residuals should lie within the 1𝜎 range. [24]

The Normalized Estimation Error Squared (NEES) is a useful metric for the performance evaluation
if the ground truth signal is available. The NEES 𝜖𝑘 is defined as:

�̃�𝑘 = 𝒙𝑘 − �̂�𝑘 (6.54)

𝜖𝑘 = �̃�⊤𝑘 𝑷
−1
𝑘 �̃�𝑘 (6.55)

with the ground truth 𝒙𝑘 , the filter estimate �̂�𝑘 and the estimation error �̃�𝑘 . It can be interpreted
more intuitively in the one-dimensional case:

𝜖 =
𝑥2
𝑘

𝑃𝑘

(6.56)

=
𝑥2
𝑘

𝜎2
𝑘

(6.57)

Thus, the NEES describes the actual state residual normalized by the estimated variance. A random
variable of the form �̃�⊤𝑷−1�̃� is 𝜒2 distributed with 𝑛 degrees of freedom, where 𝑛 is the dimension
of 𝒙. Therefore, its expected value is 𝑛. Consequently, the average 𝜖 can be computed and compared
to its expected value 𝑛. [24]

In cases where no ground truth is available, the Normalized Innovation Squared (NIS) can be applied
analogously to the NEES but with the innovation 𝒚𝑘 and innovation covariance matrix 𝑺𝑘 [49]:

𝜖v𝑘 = 𝒚⊤𝑘 𝑺
−1
𝑘 𝒚𝑘 (6.58)

Labbe [24] suggests to compute the average and test whether 𝜖 < 𝑛. There exist advanced
consistency evaluation approaches for the KF in form of hypothesis testing which are beyond the
scope of this thesis [49].

6.2.6 Computational Complexity

Murphy [16] states, the computational complexity of the KF is in O(𝑁3). Thrun et al. [50] further
elaborate that the complexity of today’s best known algorithms for inversion of a 𝑑 × 𝑑 matrix is
approximately O(𝑑2.8). Thus, the complexity of the KF update is approximately cubic in size 𝑚

of the measurement vector 𝒛. With 𝑛, the size of the state vector, the complexity is at least bound
in O(𝑛2) due to the matrix multiplication. Furthermore, Thrun et al. add that for applications
where the measurement space is much lower than the state space, 𝑚 ≪ 𝑛, O(𝑛2) dominates the
computational cost.
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6.3 Kalman Filter Tracking

6.3 Kalman Filter Tracking

First, the KF is applied to Scenario I, where the goal is to estimate intermediate results when only
sparse updates of the HPS model are available. The intermediate results are produced with the
help of a tracking KF. The basic idea is to make use of the prediction step for time steps where
no “measurement” from the HPS is available. In this scenario the KF is applied as time series
forecasting model. Since the HPS is interpreted as ground truth model, the measurement covariance
matrix 𝑹 should be zero. Nonetheless, very small values are used to avoid numerical issues,
e.g., a singular covariance matrix. Thus, 𝑹 is chosen to be 𝜎HPS𝑰, e.g., with 𝜎HPS = 1e−9. This
approximation is acceptable as long as 𝑹 is reasonably small compared to the process covariance
matrix 𝑸. The filter is initialized with 𝒙 = 0 and 𝑷 = 𝜎init𝑰 with a large enough 𝜎init to model the
uncertainty. Due to the very low measurement covariance the KF converges nearly instantaneous on
measurement arrival. Nonetheless, for implementation in the final application a proper initialization
scheme, as described in Section 6.2.2, should be chosen. Because of the computational complexity,
presented in Section 6.2.6, each target variable is tracked independently with an individual KF. In
this way, the complexity is linear in the number of features instead of cubic. For independent targets
this approach yields equivalent estimates.

As black box kinematic system model the n-th order KF is applied as described in Section 6.2.3. The
zeroth order KF or constant position model produces a constant prediction. This behavior is similar
to the naïve forecasting, which simply predicts the latest measurement value [21]. The constant
velocity model extends the prediction model with a velocity component. Thus, the predicted values
are a linear function over time. A similar behavior can be acquired with the Holt’s forecasting method
which uses the same prediction model, but applies exponential smoothing for state estimation [21].
Analogously, the constant acceleration model predicts a parabola-shaped course. An exemplary
course of the different tracking filters is visualized in Figure 6.2. The plots show that each order
has its own strengths and weaknesses. The filter performs best when the type of target motion is
matching the constancy assumption, e.g., a first order filter performs best when the target velocity is
actually constant and a second order filter performs better in phases with constant acceleration.

6.4 Kalman Filter Fusion

Next, the KF is applied in Scenario II, which extends Scenario I with a LPS model on the mobile
device. Thus, the goal of the fusion is to combine simulation results from the LPS and HPS. The
LPS results are available in every cycle, while the HPS updates arrive with a lower frequency.
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(a) Example course of the constant position KF.
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(b) Example course of the constant velocity KF.
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(c) Example course of the constant acceleration KF.

Figure 6.2: Example courses of the first three n-th order KFs. The tracked target is the activation
value of the biceps. The HPS update is fused every tenth time step. The KF has a
sample time of Δ𝑡 = 10 ms. 𝜎 represents the estimated error standard deviation of the
KF.

56



6.4 Kalman Filter Fusion

The standard way of fusing measurements from different sources is the augmented measurement
vector. For example, given two uncorrelated measurements 𝑧1 and 𝑧2, the state space formulation of
a zeroth order KF can be defined as:

𝒙 = [𝑥] (6.59)
𝑨 = [1] (6.60)

𝒛 =

[
𝑧1
𝑧2

]
(6.61)

𝑹 =

[
𝜎2
𝑧1

0
0 𝜎2

𝑧2

]
(6.62)

𝑪 =

[
1
1

]
(6.63)

According to Brown and Hwang [51] it is also possible to fuse independent measurements in a
sequential manner. This is convenient for the given scenario. Instead of augmentation of the KF
matrices, the HPS measurement can be fused on arrival in a second update run. Each measurement
is fused with its respective measurement covariance 𝑹. Therefore, an execution sequence could
look like the following example:

𝑘 = 0 KF.predict()

KF.update(𝒛LPS, 𝑹LPS)

𝑘 = 1 KF.predict()

KF.update(𝒛HPS, 𝑹HPS)

KF.update(𝒛LPS, 𝑹LPS)

𝑘 = 2 KF.predict()

KF.update(𝒛LPS, 𝑹LPS)

𝑘 = 3 . . .

As system model, a desired order KF can be chosen as in Scenario I. As in Section 6.3, 𝑹HPS is
chosen with a very small value because it is the ground truth. The error covariance 𝑹LPS can be
estimated from the test set residuals or residuals over the simulated trajectory with Equation (2.17).
To track the targets individually, independence is assumed, i.e., only the variances, the diagonal
elements, are used. With the underlying zero mean assumption, the estimated variances are
equivalent to the MSE. If the residuals do not have a true zero mean in practice, the values of the
estimated variances are implicitly increased which is good because it indicates a higher uncertainty.
However, a bias violates the KF requirements and can lead to divergence of the estimate. In fact, the
underfitted polynomial regression LPS models with low degree show a high bias and low variance
over the simulation trajectory. This issue is addressed next in Section 6.5.

57



6 Distribution Approaches

6.5 Kalman Filter Fusion with a Biased Model

According to Marchthaler and Dingler [26], a common approach to deal with a biased measure-
ment 𝑧LPS is to augment the state vector. The key idea is to add the offset 𝑜 as additional state. In
this way, the KF estimates the offset during execution. An example for this approach is the offset
compensation of an acceleration sensor with slow offset drift in the context of velocity and position
estimation. A possible zeroth order KF can be defined as:

𝒙 =

[
𝑥

𝑥offset

]
(6.64)

𝒛 =

[
𝑧HPS
𝑧LPS

]
(6.65)

𝑨 =

[
1 0
0 1

]
(6.66)

𝑹 =

[
𝜎2
𝑧HPS

0
0 𝜎2

𝑧LPS

]
(6.67)

𝑪 =

[
1 0
1 −1

]
(6.68)

While this system is observable, an issue arises in the setting with lower frequent HPS updates.
When the system is split in sequential updates as in Section 6.4 the LPS system is not observable
anymore:

𝒛 = [𝑧LPS] (6.69)

𝑹 = [𝜎2
𝑧LPS

] (6.70)

𝑪 =
[
1 −1

]
(6.71)

According to the observability criterion of Kalman, a linear time invariant system is observable if
and only if the observability matrix 𝑶 has rank 𝑛, where 𝑛 is the order of the system [26]:

𝑶 =


𝑪

𝑪𝑨
...

𝑪𝑨𝑛−1


(6.72)

(6.73)
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6.5 Kalman Filter Fusion with a Biased Model

Proof of (un)observability:

𝑶full =

[
𝑪

𝑪𝑨

]
(6.74)

=


1 0
1 −1
1 0
1 −1


(6.75)

rank(𝑶full) = 2 (6.76)

𝑶LPS =

[
𝑪

𝑪𝑨

]
(6.77)

=

[
1 −1
1 −1

]
(6.78)

rank(𝑶LPS) = 1 (6.79)

For the system to be observable, the rank of 𝑶LPS has to be two as the full system with 𝑶full. Since
rank(𝑶LPS) = 1 ≠ 2 this concludes the proof that the system is not observable. A prototypical
implementation shows that ignoring this fact results in a drift of the position and offset estimates in
the unobservable phase without HPS updates. Therefore, an alternative solution is required.

The fusion strategy from Hubatscheck [4], presented and improved in Section 6.1, provides good
results in the presence of delays. It is very similar to the polynomial regression delta forecasting
approach, developed in [34], where the future values are predicted with the help of a polynomial
regression surrogate model. The approaches are mathematically identical regarding the continued
update, although they have been developed for different purposes. The key idea is that the prediction
course is the result of the latest HPS sampling point plus the change of the LPS model Δ𝑙 over time.
For 𝛼 = 1 the forecast solely depends on the continued update 𝑐𝑡+ℎ:

𝑐𝑡+ℎ = 𝑢𝑡 + 𝑙𝑡+ℎ − 𝑙𝑡︸   ︷︷   ︸
Δ𝑙

(6.80)

with the HPS update 𝑢𝑡 and LPS result 𝑙𝑡 . This concept can be converted in KF language. Assuming
that the state 𝑥 accurately represents the HPS result the change in the LPS Δ𝑙 can be fed into the KF
as control input 𝒖, s.t.:

𝒙 =
[
𝑥
]

(6.81)

𝒛 =
[
𝑧HPS

]
(6.82)

𝒖 =
[ 𝑧LPS𝑘 −𝑧LPS𝑘−1

Δ𝑡

]
(6.83)

𝑨 =
[
1
]

(6.84)

𝑩 =
[
Δ𝑡

]
(6.85)

𝑹 =
[
𝜎2
𝑧HPS

]
(6.86)

𝑪 =
[
1
]

(6.87)

We call this approach Kalman filter with constant position tracking and input augmentation fusion
(KFCPU). In fact, the special case 𝛼 = 1 of the continued update strategy is equivalent to the KFCPU
with 𝑹 = [0].
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Proof:

Update:

𝑺𝑘+1 = 𝑪︸︷︷︸
𝑰

𝑷𝑘+1 |𝑘 𝑪⊤︸︷︷︸
𝑰

+ 𝑹︸︷︷︸
[0]

(6.88)

𝑲𝑘+1 = 𝑪𝑷𝑘+1 |𝑘𝑪
⊤𝑺−1

𝑘+1 (6.89)

= 𝑷𝑘+1 |𝑘𝑺
−1
𝑘+1 (6.90)

= 𝑷𝑘+1 |𝑘𝑷
−1
𝑘+1 |𝑘︸          ︷︷          ︸

𝑰

(6.91)

𝒚𝑘+1 = 𝒛𝑘+1 − 𝑪�̂�𝑘+1 |𝑘 (6.92)
= 𝒛𝑘+1 − �̂�𝑘+1 |𝑘 (6.93)

�̂�𝑘+1 = �̂�𝑘+1 |𝑘 + 𝑲𝑘+1𝒚𝑘+1 (6.94)
= �̂�𝑘+1 |𝑘 + 𝒚𝑘+1 (6.95)
= �̂�𝑘+1 |𝑘 + 𝒛𝑘+1 − �̂�𝑘+1 |𝑘 (6.96)
= 𝒛𝑘+1 (6.97)

𝑷𝑘+1 = (𝑰 − 𝑲𝑘+1𝑪)𝑷𝑘+1 |𝑘 (6.98)
= [0] (6.99)

Prediction:

�̂�𝑘+1 |𝑘 = 𝑨�̂�𝑘 + 𝑩𝒖𝑘 (6.100)

= [𝑥𝑘] + [Δ𝑡]
[ 𝑧LPS𝑘 −𝑧LPS𝑘−1

Δ𝑡

]
(6.101)

= [𝑥𝑘 + 𝑧LPS𝑘
− 𝑧LPS𝑘−1] (6.102)

The update with 𝑹 = [0] leads to 𝑥𝑘+1 = 𝑧𝑘+1 which is continued in the next prediction with the
one step difference of the LPS 𝑧LPS𝑘

− 𝑧LPS𝑘−1 . This concludes the proof that KFCPU with 𝑹 = [0]
is equivalent to the continued update strategy with 𝛼 = 1.

To this point using the KF looks like a very complicated variant of a simple approach. The benefit
lies in the extension to higher order models. The control signal 𝒖 contains the discrete derivative
of 𝑧HPS over time. Consequently, a second and third order KF can be defined analogously.
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6.5 Kalman Filter Fusion with a Biased Model

Kalman filter with constant velocity tracking and input augmentation fusion (KFCVU):

𝒙 =

[
𝑥

¤𝑥

]
(6.103)

𝒛 =
[
𝑧HPS

]
(6.104)

𝒖 =

[
d2𝑧LPS

d𝑡2

]
(6.105)

𝑨 =

[
1 Δ𝑡

0 1

]
(6.106)

𝑩 =

[
Δ𝑡2

2
Δ𝑡

]
(6.107)

𝑹 =
[
𝜎2
𝑧HPS

]
(6.108)

𝑪 =
[
1, 0

]
(6.109)

Kalman filter with constant acceleration tracking and input augmentation fusion (KFCAU):

𝒙 =


𝑥

¤𝑥
¥𝑥

 (6.110)

𝒛 =
[
𝑧HPS

]
(6.111)

𝒖 =

[
d3𝑧LPS

d𝑡3

]
(6.112)

𝑨 =


1 Δ𝑡 Δ𝑡2

2
0 1 Δ𝑡

0 0 1

 (6.113)

𝑩 =


Δ𝑡3

6
Δ𝑡2

2
Δ𝑡

 (6.114)

𝑹 =
[
𝜎2
𝑧HPS

]
(6.115)

𝑪 =
[
1, 0, 0

]
(6.116)

As in the zeroth order case, the derivatives of 𝑧LPS can be approximated with the discrete difference
approach. Higher orders can be defined analogously.

The process covariance matrix 𝑸 can be estimated from simulated or measured data in the following
way. If 𝒖 accurately captures the HPS dynamic, the estimate of the KF is perfect. Thus, the
difference between 𝒖 and the same order derivative of 𝒛HPS is the origin of the process error one
order above the filter order. Thus, 𝑸 can be shaped with the presented models in Section 6.2.4 and
scaled with 𝜎2

𝑖
= Δ𝑡2𝜎2

𝑖+1 where 𝑖 is the filter order. The variance 𝜎2
𝑖+1 can be computed with the

difference of the derivatives and Equation (6.53).

The classical fusion, presented in Section 6.4, and the bias compensated KFCVU are exemplary
visualized in Figure 6.3. The LPS estimate suffers from a drifting bias compared to the HPS. If
this bias is not compensated it makes the prediction even worse at some points because it draws
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(a) Example course of the constant velocity KF with classical fusion.
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(b) Example course of the constant velocity fusion KFCPU with input augmentation
fusion.

Figure 6.3: Example courses of first order KF fusion with a biased model. The tracked target is the
activation value of the biceps. The HPS update is fused every tenth time step. The KF
has a sample time of Δ𝑡 = 10 ms. 𝜎 represents the estimated error standard deviation
of the KF.

the state estimate away from the ground truth. In contrast, the KFCVU successfully exploits change
information from the LPS. A drawback of this approach is that it can drift over time, i.e., if HPS
updates are rare or not available for some time a fallback strategy is advised.

62



6.6 Incorporation of Delayed Measurements

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

Time in s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
ct

iv
a
ti

on

LPS

HPS

KF

σ

TT

Figure 6.4: Example course of the KFCPU in the presence of delay. The delay is compensated with
the BTTF approach. The tracked target is the activation value of the biceps. The HPS
update is fused every tenth time step with a constant delay of 30 ms. The KF has a
sample time of Δ𝑡 = 10 ms. 𝜎 represents the estimated error standard deviation of the
KF. TT shows the hidden course of the time travel of the BTTF KF.

6.6 Incorporation of Delayed Measurements

In Scenario III transmission delays and message losses are added to the previous scenarios. Many
approaches exist in the literature to deal with delayed measurements since it is a natural challenge
that arises in real world multi-sensor systems. The delayed measurement problem is also known as
Out-of-Sequence Measurement (OOSM) problem or negative-time measurement problem [52]. An
overview of available OOSM approaches can be found in [53–55].

The classical KF requires measurements to arrive in order. For the AR application a minimum delay
is preferable. Thus, buffering measurements, as suggested in [53], and waiting for the HPS arrival
is not an option because it delays the output and therefore violates the low-latency requirement.
Neglecting the HPS updates is obviously no option as well since it degrades the system to a LPS
only execution.

According to [56], the recalculation of the KF through the delay period yields an optimal estimate.
After arrival of the delayed measurement the KF produces the same estimates as if the measurement
has not been delayed. Informally, the KF jumps back in time, fuses the measurement and relives the
past to the current time step by replaying the history of inputs to the KF. Thus, it is called Back to the
Future (BTTF) approach in this thesis. Especially for large delays the approach is computationally
expensive and requires memory to store the history of states and relevant KF inputs. The BTTF
approach is exemplary visualized in Figure 6.4. In this thesis the BTTF strategy is implemented s.t.
it only remembers the latest measurement per time step. This is a reasonable simplification because
the later arriving HPS update replaces the LPS measurement. It is acceptable since the HPS update
is dominant with a near zero covariance matrix.
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Another elegant but expensive approach is the so called state space augmentation, described by [55,
57, 58]. The basic idea is the usage of a fixed-lag smoother [48] with a time-varying measurement
matrix 𝑪. There exist different variants, the state augmentation, the measurement augmentation
and the sample state augmentation [55]. The common concept is the explicit addition of lagged
variables to the state vector 𝒙. In case of the measurement augmentation lagged measurements are
added to the state. This is helpful, if the measurement vector 𝒛 is smaller than 𝒙. The sample state
augmentation dynamically augments the state on measurement creation and arrival, i.e., it adds and
removes states from the state vector. Gopalakrishnan et al. [55] state that all three augmentation
approaches are expected to give identical state estimates, equivalent to the filter recalculation, for a
linear system. In this thesis, the Measurement Augmentation (MA) from [58] based on [57] is used,
because in the given use case, the measurement vector size is always smaller or equal to the state
vector dimension. The augmented system is defined as:

𝒙′𝑘 =
[
𝒙𝑘 𝒚𝑘−1 . . . 𝒚𝑘−𝐿

]⊤ (6.117)

𝑨′ =



𝑨 0 · · · 0
𝑪 0 · · · 0
0 𝑰 0 0
...

. . .
. . . 0

0 𝑰 0


(6.118)

𝑩′ =


𝑩

0
...

0


(6.119)

𝑪′
𝑘 =

[
𝛾0,𝑘𝑪 𝛾1,𝑘 𝑰 . . . 𝛾𝐿,𝑘 𝑰

]
(6.120)

𝑸′ =

[
𝑸 0
0 0

]
(6.121)

(6.122)

where 𝒚𝑘−1, . . . , 𝒚𝑘−𝐿 are the delayed noise-free true outputs in the augmented state 𝒙, 𝐿 is
the maximum allowed delay, 𝑨, 𝑩,𝑪 and 𝑸 are the matrices of the original state space system.
Measurements with a delay greater than 𝐿 are dropped. The mask parameter 𝛾𝑙,𝑘 is used to adjust
𝑪𝑘 according to the respective measurement delay 𝑑:

𝛾𝑙,𝑘 =

{
1 𝑙 = 𝑑

0 otherwise
(6.123)

Note that 𝑪𝑘 is time-varying. The augmented state system is applied with the classical KF
equations.

There exist other, sub-optimal, but more efficient approximative methods for incorporation of
delayed measurements. For example, Larsen et al. [56] propose an approach based on measurement
extrapolation or Bar-Shalom et al. [52] present a solution based on retrodiction. Those and further
methods remain to be investigates in future work.
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7 Evaluation

In this chapter, the developed Kalman Filter (KF)-based approaches are evaluated in the context
of three scenarios. Section 7.1 describes the experiment setup. Scenario I and II, as presented in
Chapter 6, aim to temporary suspend the computationally expensive HPS execution. The KF can be
applied as forecasting model which is investigated in Section 7.2. Scenario III adds the challenge of
delays, jitter and losses to the previous scenarios. Consequently, the robustness of the developed
approaches in the presence of the named challenges is evaluated in Section 7.3. Preliminary runtime
analysis results are presented in Section 7.4, followed by the evaluation summary in Section 7.5.

7.1 Experiment Setup

The pervasive simulation use case is the bio-mechanical simulation of a human arm in an AR
environment. The visualization is assumed to require inputs for a fixed frame rate 𝑓V. The human
target is tracked by a sensor with the frequency 𝑓S. In this experiment, 𝑓V and 𝑓S are assumed to be
equal, i.e., each sensed input produces a simulation result. For a real system 𝑓V and 𝑓S might be
different. The data for this experiment has been recorded at a rate 𝑓S of 100 Hz. This rate also lies
in the desired range between 60 Hz and 120 Hz for today’s AR devices.

The analyzed scenarios are described in detail in Chapter 6. Scenario I aims to temporary suspend
the execution of the computationally expensive HPS on the mobile device with the help of forecasting
models. Scenario II extends Scenario I with an additional LPS model that can be applied to improve
the forecasting quality due to its explanatory nature. Scenario III extends the previous scenarios
with delays, jitter and losses. In this distributed scenario, the HPS is deployed on a remote server.

The concrete architecture for the experiment is implemented with the distribution model, presented
in Chapter 5. The architecture contains two nodes as depicted in Figure 5.1. The local node
represents the mobile simulation device which cyclically schedules the simulation process. To
match the frequency of the recorded data, the cycle time of the local process 𝑇L is 10 ms. The remote
node implements the simulation server on which the HPS is deployed in Scenario III. The processes
communicate via messages. The process on the remote node is message invoked, i.e., it is executed
on message arrival from the local process. This models a classical client-server architecture with a
request-response pattern. The messages are delivered over uni-directional communication channels.
The channels are implemented as head-drop FIFO channels, i.e., all but the newest message are
dropped in case of congestion. The channels are assumed to be symmetric, i.e., the forward and
backward channels need the same amount of time for message passing.

The emulation of the distributed system is executed with a cycle time 𝑇E of 1 ms. The processing
delays of the local process 𝑇𝑃L and the remote process 𝑇𝑃L are chosen the be 2 ms. The local
processing time 𝑇𝑃L is neglected in the evaluation between visualization and ground truth, i.e., only
additional delays caused by the distribution are considered. This is acceptable because the local
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Figure 7.1: Gamma distributed channel delays 𝜏 in the experiment. The plot shows the probability
density functions for different expected values E[𝜏] for one channel. The variance is
constant with V[𝜏] = 50 ms2. The dashed lines indicate the position of the expected
value of the respective distribution.

process delay is much less than the local process cycle time: 𝑇𝑃L ≪ 𝑇L. The channel delays 𝑇C are
derived from a desired Round-Trip Time (RTT) 𝑇RTT:

𝑇C =
𝑇RTT − 𝑇PR

2
(7.1)

Note that even in the static case, where the channel delays 𝑇C are constant, the resulting RTT may
vary due to the fixed cycle time of the local process, i.e., messages might have to wait until they
are received, or sender caused congestion, i.e., if the sender overloads the communication system,
messages might have to wait for the completion of the transmission of the preceding message.

To emulate jitter in the message delays, the channels are optionally implemented in a probabilistic
way, as described in detail in Section 5.2. The message delays are assumed to be simply gamma
distributed, i.e., 𝑝𝑑 (𝜏 | not lost) follows a gamma distribution. As described in Section 5.2, the RTT
can be decomposed in the forward and backward delay by halving the expected value and variance.
Therefore, in the probabilistic case E[𝜏] and V[𝜏] of 𝑝𝑑 (𝜏 | not lost) are chosen as:

E[𝜏] = 𝑇C (7.2)

V[𝜏] =
𝜎2

s
2

(7.3)

with 𝜎s = 10 ms. The probability density functions for the randomized channel delays are exemplary
visualized in Figure 7.1. For this experiment the message loss probability is chosen as 𝑝l = 0, i.e.,
there is no additional probabilistic message loss. Except for the dropped messages due to newer
available data in cases with sender caused congestion the channels are considered to be reliable.

For the experiment the five muscle activations are used as simulation target. The polynomial
regression PR15 is applied as HPS. As LPS the linear regression model PR1 is chosen. It is the
weakest but also the smallest LPS available in this work. In theory arbitrary combinations of
models can be chosen, which is beyond the scope of this work. For this experiment the sensor
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7.2 Kalman Filter-based Forecasting

Name Description

KFCP Kalman filter with constant position tracking
KFCV Kalman filter with constant velocity tracking
KFCA Kalman filter with constant acceleration tracking
KFCPF Kalman filter with constant position tracking and fusion
KFCVF Kalman filter with constant velocity tracking and fusion
KFCAF Kalman filter with constant acceleration tracking and fusion
KFCPU Kalman filter with constant position tracking and input augmentation fusion
KFCVU Kalman filter with constant velocity tracking and input augmentation fusion
KFCAU Kalman filter with constant acceleration tracking and input augmentation fusion

Table 7.1: KF-based approaches investigated in the evaluation.

data is assumed to be ideal, i.e., there is no noise. The evaluation is based on a trajectory with
arbitrary motion. It is chosen because it contains “unpredictable” movement patterns that are
more challenging compared to the periodic measurements. The experiment for the muscle surface
deformation remains for future work. Comparable results are expected for this case.

The KF-based approaches require the covariance matrices for process and measurement noise 𝑸
and 𝑹. Those are estimated from simulation results of the given models on the evaluation trajectory
with help of the methods described in Chapter 6, especially Section 6.2.4. The variances are
acquired with the help of Equation (6.53). In this way the approaches are tuned on the given
trajectory.

The evaluated KF-based approaches are listed in Table 7.1. The filters KFCP, KFCV and KFCA
are the zeroth, first and second order tracking KFs, as introduced in Section 6.3. KFCPF, KFCVF
and KFCAF represent the respective order tracking filters combined with the classical fusion, as
presented in Section 6.4. KFCPU, KFCVU and KFCAU are the respective order tracking filters with
input augmentation fusion for LPS models with a bias as shown in Section 6.5.

The algorithms have been implemented, evaluated and visualized with the following software:
Anaconda 4.13.0 with Python 3.10.4 and the following packages: c3d 0.5.1, matplotlib 3.5.2,
numpy 1.23.1, pandas 1.4.3, scikit-learn 1.1.1, scipy 1.8.1, tensorflow 2.9.1. The evaluation has
been performed on the following system: Intel Xeon X5650 @ 2.67 GHz, 6 Cores, 20 GB RAM,
Windows 10 (22H2), 64 bit.

7.2 Kalman Filter-based Forecasting

This section evaluates the KF-based approaches in Scenario I and II in which the HPS and optionally
a second LPS are deployed on the mobile device with the goal of forecasting intermediate simulation
outputs while the expensive HPS execution is temporarily suspended. The temporary suspension of
the HPS is specified by the request period𝑇R. For example, in the specified setup with a local process
invocation each 𝑇L = 10 ms, 𝑇R = 20 ms means HPS execution in every second cycle, 𝑇R = 50 ms
in every fifth cycle and so on. The request period is evaluted in the range 𝑇R ∈ [20, 100] ms.
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Figure 7.2: Comparison of process covariance estimation models. The plot shows the RMSE
improvement of the continuous (cont.) and direct discretization (d.d.) model compared
to the piecewise model (zero line) over the request period 𝑇R. A higher improvement
value indicates a lower RMSE and therefore a better filter.

Before the different KF-based approaches are benchmarked, the different models for process
covariance matrix estimation are selected for each type of filter. The estimation models are presented
in detail in Section 6.2.4. In this section, the piecewise white noise model, the continuous white
noise model and the direct descretization model are evaluated in the given scenarios. As described
in Section 6.2.4, all models are approximations of the process noise and can be represented in a way
s.t. they can be interpreted as differently shaped base matrices that are scaled with the underlying
variance. The piecewise white noise model yields a direct way of variance estimation from the
simulation results and is therefore applied for variance estimation. Afterwards, the estimated
variance is used to scale the normalized covariance matrices from the other estimation models.

There is no difference in scaling for the zeroth order KFs. Thus, the estimation models result in
identical covariance matrices. An analysis of the RMSE over the request periods 𝑇R ∈ [20, 100] ms
indicates that all covariance estimation models lead to a filter performance with an RMSE of similar
order. Figure 7.2 shows the RMSE improvement of the estimation models over 𝑇R. The RMSE
over the range of 𝑇R is shown in Table 7.2. The results suggest that the piecewise model performs
best for the constant velocity models on average over 𝑇R. For the constant acceleration models, the
results indicate an average advantage of the continuous estimation model over the other models. As
already mentioned, the difference in the RMSE is relative small compared to the absolute RMSE.
The covariance matrices are not fine tuned, i.e., the variances are only estimated from the seen data.
Thus, the effects of the covariance matrix estimation model and potential fine tuning of the variance
can overlap. Since fine tuning is out of scope of this experiment, the piecewise model is applied for
the zeroth and first order KFs and the continuous model for the second order KFs for the rest of the
evaluation.

With the preselected covariance estimation approaches, the performance of the KF-based approaches
is evaluated over 𝑇R ∈ [20, 100] ms. The results are presented in Figure 7.3. Figure 7.3a shows
the resulting RMSE of the different KF-based approaches. The performance of the polynomial
regression models PR6 and PR14 are represented as dashed horizontal lines for comparison. The
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7.3 Kalman Filter-based Delay Compensation

Average RMSE
Filter Piecewise Continuous D.d.

KFCP 0.01383635 0.01383635 0.01383635
KFCV 0.00432850 0.00433869 0.00435925
KFCA 0.00490315 0.00489703 0.00489756
KFCPF 0.01259582 0.01259582 0.01259582
KFCVF 0.00451206 0.00452175 0.00454139
KFCAF 0.00569089 0.00569041 0.00569130
KFCPU 0.00577393 0.00577393 0.00577393
KFCVU 0.00290152 0.00290549 0.00291381
KFCAU 0.00408435 0.00407840 0.00407878

Table 7.2: Comparison of process covariance estimation models. Average RMSE over 𝑇R ∈
[20, 100] ms of the piecewise, continuous and direct discretization (d.d.) approaches.

KFCP represents the naïve forecasting performance, i.e., it outputs the latest estimate as constant
forecast. In the zeroth order case, the fusion with the KFCPF cannot significantly improve the
performance for low request periods. For higher request periods the fusion slightly improves the
estimates but compared to the other approaches the filter performance is weak. In contrast, the
KFCPU exploits the additional LPS information and shows a significant improvement in RMSE. The
first and second order tracking filters KFCV and KFCA show a similar performance till 𝑇R ≈ 60 ms.
Beyond that point the KFCA performance drops compared to the KFCV. For first and second order
filters, the classical fusion without bias correction even increases the RMSE. While the performance
is nearly identical for small request periods, the performance degrades over 𝑇R. In contrast, the
fusion with input augmentation shows a significant improvement for all filter orders. The advantage
is small for low request periods and grows with 𝑇R. In one specific case 𝑇R = 20 ms the performance
of KFCAU is slightly worse than KFCA but in a similar range. The best performing filter is the
KFCPU which shows the least RMSE for all request periods.

Figure 7.3b shows the average NEES over 𝑇R. The NEES is solely computed based on the position
state and variance even for higher order filters because the position estimate is the state of relevance
for this experiment. The estimates of for example velocity and acceleration are not required for
the AR application and are therefore filter internal. Thus, the expected value of the average NEES
should be one. The plot shows that the filters are mostly overconfident with a NEES higher than one
in the analyzed scenarios, i.e., the actual error is higher than the estimated variance indicates. This
result is no issue for the given use case because only the actual accuracy of the estimated position
compared to the ground truth is relevant. For scenarios where the error variance estimation of the
KF is actually used, the consistency of the error estimate becomes an important topic.

7.3 Kalman Filter-based Delay Compensation

This section evaluates Scenario III, where the presented KF-based approaches are challenged with
delays, jitter and losses. Scenario III is more challenging compared to Scenario I and II because
HPS updates are always delayed. In the previous Scenarios I and II the HPS results have been
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Figure 7.3: Evaluation results of the KF-based forecasting approaches.

available instantaneously, i.e., results can be incorporated in the same cycle. In Scenario III the
updates can be considered at the earliest in the next cycle, i.e., the minimum age of the HPS update
is 10 ms. Thus, the KF is always in “forecasting mode” where the lookahead is determined by the
age of the HPS updates. There also exists a challenge regarding the initialization. Since the first
HPS update arrives delayed as well, the performance of the approaches is limited to available initial
information. For example the models without LPS have no choice but to output an initial guess,
e.g., zero. In general, the transient behavior of filters is an important topic. In the given use case
with available high precision measurements from the HPS, the transient phase is very short and the
steady-state performance is more important. Thus, the error metrics are acquired in a corrected way,
i.e., the transient phase is ignored by cutting the first 40 samples. For this experiment, the request
period is varied in the interval 𝑇R ∈ [10, 100] ms and the desired round-trip time in the interval
𝑇RTT ∈ [8, 98] ms.
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Figure 7.4: Evaluation results of the KF-based approaches with delays and losses. The plot shows
the RMSE over 𝑇RTT.
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For incorporation of delayed measurements, the BTTF and MA strategies have been presented in
Section 6.6. Both approaches are expected to yield identical estimates for a linear system. The
evaluation results show that the difference in the RMSE for both methods over all KFs, request
periods and RTTs is negligible as expected. The mean absolute difference in RMSE is 7.867e−17
and the maximum absolute difference is 1.522e−14 which are probably caused by numerical
inaccuracies or the BTTF behavior that replaces old LPS measurements with HPS results instead
of keeping both. In this experiment both methods are applicated to store a history of the past 20
values. In this way, delayed measurement with a maximum age of 200 ms can be incorporated. The
effective maximum age of a delivered message in the experiment has been measured with 190 ms.
Therefore, all delayed updates haven been incorporated by the fusion algorithms.

In Section 6.5 equivalence of the continued update strategy and the KFCPU has been proofed for
𝑹 = [0] and 𝛼 = 1. In this experiment 𝑹 = [1e−9] is used. Nevertheless, the results show that
both approaches reach a nearly identical RMSE values with a mean absolute difference of 4.023e−7
and maximum absolute difference 5.132e−7. Therefore, the KFCPU is used as representative for the
continued update strategy.

The plots in Figure 7.4 show the RMSE over𝑇RTT for three exemplary values of𝑇R ∈ [10, 30, 100] ms.
For𝑇R = 10 ms in Figure 7.4a, the courses of the approaches are qualitatively similar to the forecasting
case but with a higher RMSE values. The strong increase of the RMSE between 𝑇R = 20 ms and
𝑇R = 30 ms is the edge of the avoid area which is explained later in this section. With increasing 𝑇R
the curves are slightly reshaped and shifted upwards. Furthermore, the edge of the avoid area moves
to the right. The plots suggest that some methods are more robust against delays, losses and higher
request periods than others. For example Figure 7.4c shows that KFCVF, KFCPU and KFCVU do not
degrade as strong as many others. The KFCVU outperforms all competitors in all scenarios.

The experiment results for Scenario III with jitter qualitatively show the same results with slightly
increased RMSE values. Figure 7.5 exemplarily shows the RMSE of KFCPU and KFCVU as
three-dimensional plots over 𝑇R and 𝑇RTT. The plots on the left are the results based on the static
channel delays. The plots on the right show the results based on the randomized channel delays
which emulate jitter. In this visualization the avoid area clearly stands out. On the upper right of
each RMSE plot, there is an area with increased RMSE for low request periods and high RTTs.
The effect is caused by overload of the channels. The local process sends more requests than the
channel can handle and causes congestion. Even though head-dropping is applied, i.e., only the
newest message is actually transmitted as soon as the send queue is free, the messages have to wait
which results in an increased delay. This increased delay is correlated with the increased RMSE. As
a result, less frequent requests can improve the accuracy if congestion in the channels is avoided.
Thus, it is named avoid area. The plots also indicate that delay is worth than sparse requests for the
simulation accuracy.

7.4 Runtime Analysis

In this section, preliminary runtime evaluation results are presented. Table 7.3 shows the me-
dian runtime of 10000 model executions. Surprisingly, the lowest runtime is achieved by the
NN [1 [4 , 256] 5] with 2573 parameters. In comparison the PR1 has only 10 parameters and
the PR15 80. This effect has to be caused by a different degree of optimization or overhead in
the implementation. Mathematically, the linear regression model requires the least number of
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(d) KFCVU with jitter.

Figure 7.5: Evaluation results of the KF-based approaches with delays, jitter and losses. The plot
shows the RMSE over 𝑇R and 𝑇RTT.

operations, in this case 5 multiplications and 5 additions. The PR models also have linear complexity
in the polynomial degree and number of responses in this case because there is only one input
feature. Nonetheless, all PR models require a similar amount of computation time. The increase of
time from PR1 to PR15 is only 16.9 %, while only the regression part without the polynomial feature
creation requires 15 times more operations. Even the more expensive NN [1 [8, 128, 128] 5] with
18325 parameters needs only 24.3 % more time.

The mean execution times of the local process in Scenario III with static delays over all 𝑇R and
𝑇RTT are presented in Table 7.4. This local process contains a mocked LPS, i.e., it is implemented
as data player. Thus, the times do not include the LPS execution. The values indicate that the
filter types, i.e., tracking, fusion and input augmentation fusion, require a similar amount of time
independent from the underlying tracking filter order. The tracking filters without fusion are also
the most efficient ones. In the MA case, on average the input augmentation requires ≈ 1.4 times
more time and the classical fusion requires ≈ 2.2 times more compared to the tracking. The MA
shows a reduction of the mean execution time in all cases compared to the BTTF strategy. The
improved continued update strategy has a mean execution time of 21 µs and is therefore much more
efficient. Note that the KF-based approaches are applicated for a worst case delay of 200 ms.
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Model Median time in ms

NN [1 [8, 128, 128] 5] 0.455
PR15 0.366
PR13 0.363
PR14 0.360
PR12 0.354
PR11 0.351
PR10 0.348
PR9 0.346
PR8 0.341
PR7 0.337
PR6 0.333
PR5 0.330
PR4 0.328
PR3 0.323
PR2 0.320
PR1 0.313
NN [1 [4, 256] 5] 0.266

Table 7.3: Runtime of surrogate models. Ordered by time.

Mean time in ms
Filter BTTF MA

KFCP 0.534 0.458
KFCV 0.509 0.465
KFCA 0.519 0.475
KFCPF 1.612 0.997
KFCVF 1.657 1.015
KFCAF 1.672 1.045
KFCPU 0.843 0.641
KFCVU 0.772 0.650
KFCAU 0.781 0.662

Table 7.4: Runtime of KF-based approaches.
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Figure 7.6: Comparison of the KF delay handling methods. The plots show the mean execution
time over 𝑇R and 𝑇RTT. Note that the axis are swapped compared to the previous plots.

A shorter history reduces the computational costs for both BTTF and MA. Figure 7.6 exemplarily
shows the mean execution time of the KFCPU with the BTTF and MA strategies. In general both
plots show a similar behavior. Both methods share a peak of runtime for small delays and request
periods. The peak of the BTTF approach is slightly lower. The MA approach shows an advantage
over BTTF for high delays and low request periods. The average runtime of the MA is mainly
affected by the number of received HPS updates.

In summary, the KF-based approaches require more time on average compared to the execution of
the PR15 ground truth model. Note that the comparison is not fair. The model times have been
acquired in a specific time evaluation setup with deactivated garbage collector. In contrast, the local
process execution times have been measured in a simulation run where also other factors contribute,
e.g., logging mechanisms, garbage collector or simulation overhead. Nonetheless, the improved
continued update strategy is ≈ 31 times faster compared to the accuracy equivalent KFCPU. A more
detailed runtime optimization and evaluation of the presented approaches, especially for the AR
application target hardware, are topics on their own and remain for future work.

7.5 Summary and Discussion

This section summarizes and discusses the most important evaluation results. The evaluation
has shown that the developed KF-based approaches can be successfully applied in the context of
distributed pervasive simulations.

In Scenarios I and II the KF-based approaches have been utilized as forecasting models to
intermediately suspend the HPS. The constant velocity and constant acceleration tracking filters
have a similar and significant advantage over the constant position tracking on the tested trajectory,
especially for low request periods. For high request periods, the constant acceleration shows a
stronger degradation compared to the constant velocity tracking. The classical fusion with a biased
model can even increase the estimation error. The developed input augmentation fusion for biased
models shows a significant improvement in accuracy. The KFCVU, the constant velocity KF with
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input augmentation fusion, has the best performance in the tested scenarios. This significant
improvement is achieved with the fusion of a weak linear regression LPS model. LPS models with
better performance can be applied to further improve the estimation accuracy with the drawback of
increased computational costs. In theory, the estimate of the input augmentation fusion approach
can drift for long phases without HPS updates because those are required for bias correction.
Nonetheless, this effect has not been visible in the evaluated cases.

In Scenario III the KF-based approaches have been successfully applied in the presence of delays,
jitter and losses. As expected, the BTTF and MA approaches for incorporation of delayed
measurements have shown practically identical results. Furthermore, the difference in accuracy
between the continued update strategy and the KFCPU is negligible in practice. In general, the
results of Scenario III are qualitatively similar to Scenario I and II. The performance degrades
with increasing request period and RTT while the impact of the delay is more severe. The results
also show that sender caused congestion in the communication channels, even with a head-drop
channel, degrades the overall performance. Therefore, too frequent requests should be avoided in
the presence of large delays. Again, the best performing model is the KFCVU and therefore better
than the KFCPU and the continued update strategy in the evaluated cases. In Scenario III with
jitter the KFCVU has an average improvement of 37.2 %, a maximum improvement of 69.6 % and a
minimum improvement of 8.2 % in RMSE compared to the KFCPU, and thus the continued update
strategy, over the tested request periods and round-trip times.

Preliminary results of a runtime analysis have shown that the KF-based approaches are computa-
tionally more demanding compared to the light-weight PR surrogate models. Furthermore, the
improved continued update strategy is ≈ 31 times faster compared to its KF-based equivalent
KFCPU. In summary, the continued update strategy is a light-weight and robust strategy in the
presence of delays, jitter and losses with good performance. The KF-based approaches, especially
the KFCVU, outperform the continued update strategy at a higher computational cost. In general,
whether the presented offloading strategies are worth applying depends on various factors, e.g.,
the computational costs and quality of available surrogate models, the cost and accuracy of the
offloading strategy, the underlying network properties and the application requirements regarding
accuracy and smoothness. All presented fusion methods introduce discontinuous jumps when the
HPS update arrives. This effect becomes worse with longer suspension of the HPS or higher delays.
Those jumps can be filtered for the visualization, e.g., with a low pass filter. On the downside this
filtering introduces a delay-like phase shift which again conflicts with the desired minimum delay.
Ultimately, the trade-off between smoothness and accuracy has to be applicated according to the
respective application requirements. The KF framework provides a powerful toolbox to develop a
problem specific offloading and fusion strategy.

76



8 Conclusion and Future Work

In this thesis, concepts to improve the robustness of distributed pervasive simulations, jointly
executed on a mobile device and a supporting server infrastructure, have been designed with respect
to delays, jitter and losses. Pervasive simulation envisions to deploy computationally expensive
simulations on resource-constrained mobile devices, limited in available energy, computational
power and memory. The interdisciplinary PerSiVal project targets to deploy the simulation of a
bio-mechanical muscle model of the human arm as Augmented Reality (AR) application on mobile
devices. The key for realization is the usage of surrogate models which approximatively represents
relevant aspects of the original Finite Element Method (FEM) model. In previous work, Machine
Learning (ML) methods, e.g., Neural Networks (NNs), have been utilized to reach that goal. While
the efficiency of those surrogate models differs from the FEM by an order of magnitude, their
real-time execution can still be challenging. Therefore, Hubatscheck [4] has presented a distribution
approach, where a High-Performance Surrogate (HPS) is executed on a remote server. A second,
light-weight Low-Performance Surrogate (LPS) is deployed on the wirelessly connected mobile
device, which is used to counterweight inevitable delays caused by processing on the remote server
and communication between devices. This thesis has been motivated by the question whether the
fusion of the distributed surrogate models can be performed in a better way to improve robustness
with respect to delays, jitter and losses.

As a first contribution and prerequisite for the rest of the work, an improved surrogate model
has been designed. The surrogate model so far available in the project has suffered from strong
discontinuities. During this thesis, a metric for smoothness quantification has been derived which
allows the comparison of different surrogate model derivation strategies. The surrogate model for
the AR application works inversely to the original FEM model, i.e., it estimates muscle activations
and surface deformations given the elbow angle. This work has proposed new solutions to this
inversion problem. Previous work [5] has applied the minimum activation strategy, motivated
by the assumption that minimum activations represent the most efficient state to reach a specific
angle. As a result, this thesis has shown that this strategy leads to strong discontinuities over the
angular trajectory. Two alternative approaches have been proposed. The minimum deformation
strategy has been considered best suited for the given task. It has shown a significant improvement
in smoothness and does not require artificial assumptions about the activations in contrast to the
other presented solutions. In the following surrogate models have been trained and evaluated.
For this regression task NN and polynomial regression models have been benchmarked. The
polynomial regression models have outperformed the investigated NNs in accuracy and number of
parameters. Furthermore, an improved deployment strategy for the muscle surface estimation has
been proposed. In comparison to the previous model chaining approach, a significant improvement
in accuracy and reduction in size has been shown with the model stacking approach. In future work,
further optimizations or different types of light-weight surrogate models can be explored, e.g., the
reduction of polynomial terms in regression with the best subset selection [14] or sparse, kernelized
approaches like support vector regression [12, 14].
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8 Conclusion and Future Work

As a second contribution, a distribution model has been developed that allows the deterministic
analysis and evaluation of the distribution approaches. The model emulates a distributed system
with concurrent processes on nodes that communicate via messages over first-in-first-out channels.
To account for jitter in the communication delays the channels have been modeled in a probabilistic
way. In this scenario, the delays have been assumed to be gamma distributed. The channels have
been modeled with head-drop behavior, i.e., in case of sender caused congestion only the newest
messages are transmitted. Thus, loss of messages occurs if the sender overloads the channel capacity.
In summary, a useful tool for deterministic analysis and benchmark of the distributed algorithms
under the modeled assumptions has been developed. In future work, the model can be applicated
with parameters from the real target system to match the concrete deployment environment.

The third contribution of this work are different Kalman filter-based concepts to optimize the
local and distributed execution of the pervasive simulation. Furthermore, this thesis has proposed
an optimization of the continued update strategy from [4], which allows for a more efficient
implementation. The Kalman Filter (KF) has been successfully applied for forecasting and delay
compensation in the distributed pervasive simulation context. Different strategies for tracking,
fusion and fusion with a biased LPS have been presented. For delay compensation the Back to the
Future (BTTF) and Measurement Augmentation (MA) strategies have been successfully applied.
The BTTF is also known as filter recalculation in the literature. The key idea is to save the history
of the states and inputs to the KF. If a delayed update arrives, the filter is reset to the historic state
that matches the point of time of the update. Subsequently, the filter is iterated with the historic
inputs until the current point of time is reached again. Informally, this behavior can be described as
a time travel of the filter. In contrast, the MA approach extends the KF state vector with lagged
measurement values. This augmented filter is basically a time-varying fixed-lag smoother which
is expected to give identical results as the BTTF strategy for linear systems. This work has also
shown that the continued update strategy from [4] is closely related to the zeroth order KF with
input augmentation. In fact, equivalence has been proven for a specific set of parameters. The KF
variant additionally provides an estimate of the error. Furthermore, this variant can be extended to a
higher order filter which has outperformed the continued update strategy in the presence of delays,
jitter and losses in the evaluated scenarios. A general advantage of the proposed methods is their
linear scaling in the number of independently tracked features. Due to the curse of dimensionality,
the surrogate model complexity is expected to grow at least over-proportionate with the number
of input features. In future work, given any constancy assumption of simulation results that can
be exploited by the KF tracking, the presented approaches should be evaluated regarding their
cost-performance trade-off. Conceptually, adaptive approaches like the interactive multiple model
filter can be investigated [24]. This approach is usually applied for maneuvering target tracking and
allows the combination of multiple KFs with individual system models to exploit the strengths of
the best fitting model in the current scenario. Another interesting class of adaptive filters worth
investigating, described in [24, 26], can estimate the process covariance during filter execution.

Evaluation results have shown that the developed KF-based approaches have been successfully
applied in the distributed pervasive simulation context in the presence of delays, jitter and losses.
Preliminary runtime analysis results indicate that the KF-based approaches are computationally
more demanding than the optimized continued update strategy and the light-weight polynomial
regression surrogate models. The improved continued update strategy implements a light-weight
fusion strategy worth considering if the performance is sufficient. Nonetheless, the best performing
constant velocity KF with augmented input fusion has shown a significant advantage regarding
fusion accuracy in all evaluated scenarios. In the most challenging case with delays, jitter and
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losses it shows an average improvement of 37.2 %, a maximum improvement of 69.6 % and a
minimum improvement of 8.2 % in the RMSE over the evaluated parameter space compared to the
continued update strategy. For the presented use case, the bio-mechanical muscle simulation with
one degree of freedom, the polynomial regression surrogate models of higher order are very accurate,
small and have a nearly negligible impact on runtime. Thus, the success of having found very
good and light-weight surrogate models degrades the usefulness of offloading with the KF-based
approaches. It is worth mentioning that runtime optimization has not been the focus of this work.
Instead, the focus lies on the potential analysis of the presented methods. Thus, the approaches are
optimized for e.g. numerical stability or ease of use in the evaluation. Optimized algorithms exist
for sub-problems with approximative solutions which could be integrated as part of future work. In
general, it depends on various factors, e.g., the computational costs and quality of available surrogate
models, the costs and accuracy of the offloading strategy, the underlying network properties and the
application requirements regarding accuracy and smoothness, whether an offloading approach is
worth considering. Ultimately, the trade-off between accuracy and conservation of resources has to
be applicated according to the respective application requirements and constraints.

In conclusion, this thesis has successfully presented the application of the KF framework in the
context of distributed pervasive simulations for continuous problems. It is a powerful toolbox that
comes in many different flavors. The PerSiVal project is working on an extended muscle model
with more degrees of freedom. In future work, the presented methods and solutions shall be applied
and evaluated in the context of the new challenge.
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A Kurzfassung

Die Vision der so genannten Pervasive Simulation ist die Verwendung von rechenaufwändigen
Simulationen auf Ressourcen-beschränkten mobilen Endgeräten in alltäglichen Situationen. Das
PerSiVal Projekt hat die Realisierung einer biomechanischen Simulation eines menschlichen Arms
als Augmented Reality Applikation zum Ziel. Um die Ausführung solch teurer Simulationen
auf Ressourcen-beschränkten Endgeräten zu ermöglichen, werden so genannte Surrogat-Modelle
verwendet. Die Ausführung solcher Surrogat-Modelle kann weiterhin herausfordernd sein. Eine
Lösung, um mit der Ressourcen-Beschränkung umzugehen, ist das Auslagern des Surrogat-Modells
auf einen Server, der kabellos mit dem mobilen Endgerät verbunden ist. Hierbei sind unvermeidbare
Verzögerungen, verursacht durch Prozessierung und Kommunikation, eine große Herausforderung.
Um diesen entgegenzuwirken, ist in vorangegangener Arbeit ein Ansatz entwickelt worden, der ein
zweites, leichtgewichtiges Surrogat-Modell mit niedrigerer Performance auf dem mobilen Endgerät
ausführt. Das Ziel dieser Thesis ist das Design und die Evaluation von Ansätzen, basierend auf dem
Kalman-Filter, für das Fusionsproblem in der Gegenwart von Verzögerungen, Jitter und Datenverlust.
Diese Arbeit präsentiert folgende Kontributionen: eine verbesserte Strategie für die Surrogat-
Model Ableitung, verbesserte und leichtgewichtige Surrogat-Modelle für die Muskelsimulation, ein
Verteilungsmodell für die reproduzierbare Analyse und Evaluation von verteilten Algorithmen, eine
verbesserte Variante des Fusionsansatzes aus vorheriger Arbeit und das Design und die Evaluation
von Kalman-Filter-basierten Lösungen für das Fusionsproblem. Während diese rechenaufwändiger
sind, haben sie signifikante Vorteile gegenüber Verzögerungen, Jitter und Datenverlust in den
evaluierten Szenarien. Das Kalman-Filter erster Ordnung mit Eingangsaugmentation erbringt die
besten Resultate in den getesteten Szenarien. Schlussendlich bietet das Kalman-Filter ein mächtiges
Rahmenwerk, das erfolgreich im Kontext verteilter pervasiver Simulation für kontinuierliche
Probleme angewendet worden ist.
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B Proofs

Gamma Distribution Parameter Derivation Given Equation (B.1) and Equation (B.2) from
[12] the parameters 𝑎 and 𝑏 can be computed as follows:

E[𝜏] = 𝑎

𝑏
(B.1)

V[𝜏] = 𝑎

𝑏2 (B.2)

=
E[𝜏]
𝑏

(B.3)

𝑏 =
E[𝜏]
V[𝜏] (B.4)

𝑎 = E[𝜏] · 𝑏 (B.5)

=
E[𝜏]2

V[𝜏] (B.6)

Symmetric Split of Gamma Distributions The additive property of the gamma distribu-
tion states [59]: If 𝜏1, 𝜏2, . . . , 𝜏𝑛 are independent and gamma distributed with parameters
(𝑎1, 𝑏), (𝑎2, 𝑏), . . . (𝑎𝑛, 𝑏), then

∑𝑛
𝑖=1 𝜏𝑖 is gamma distributed with:

𝑎 =

𝑛∑︁
𝑖=1

𝑎𝑖 (B.7)

𝑏 = 𝑏 (B.8)

Thus, a random variable 𝜏𝑠 can be symmetrically decomposed into two random variables 𝜏1 and 𝜏2,
s.t. 𝜏𝑠 = 𝜏1 + 𝜏2. For this purpose, the expected values and variances of the random variables 𝜏1 and
𝜏2 are identical and half of the expected value and variance of 𝜏𝑠.
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B Proofs

Proof:

𝜏1 ∼ Gamma(𝑎1, 𝑏) (B.9)
𝜏2 ∼ Gamma(𝑎2, 𝑏) (B.10)
𝜏𝑠 = 𝜏1 + 𝜏2 ∼ Gamma(𝑎1 + 𝑎2, 𝑏) (B.11)
𝑎𝑔 = 2𝑎1 = 2𝑎2 (B.12)

E[𝜏𝑠]2

V[𝜏𝑠]
= 2
E[𝜏1]2

V[𝜏1]
(B.13)

𝑏𝑔 = 𝑏1 = 𝑏2 (B.14)
E[𝜏𝑠]
V[𝜏𝑠]

=
E[𝜏1]
V[𝜏1]

(B.15)

E[𝜏𝑠]E[𝜏𝑠]
V[𝜏𝑠]

= 2
E[𝜏1]2

V[𝜏1]
(B.16)

E[𝜏𝑠]E[𝜏1]
V[𝜏1]

= 2
E[𝜏1]2

V[𝜏1]
(B.17)

E[𝜏𝑠] = 2E[𝜏1] (B.18)

E[𝜏1] =
1
2
E[𝜏𝑠] (B.19)

E[𝜏1/2] =
1
2
E[𝜏𝑠] (B.20)

E[𝜏𝑠]
V[𝜏𝑠]

=
E[𝜏1]
V[𝜏1]

(B.21)

2E[𝜏1]
V[𝜏𝑠]

=
E[𝜏1]
V[𝜏1]

(B.22)

V[𝜏1] =
1
2
V[𝜏𝑠] (B.23)

V[𝜏1/2] =
1
2
V[𝜏𝑠] (B.24)
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