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Abstract: Operational and structural interventions in the field of stormwater management are usually
planned based on long-term simulations using rainfall-runoff models. The simulation results are
often highly uncertain due to imperfections of the model structure and inevitable uncertainties of
input data. The trend towards monitoring of combined sewer overflows (CSO) structures produces
more and more data which can be used to replace parts of the models and reduce uncertainty. In
this study we use highly resolved online flow and quality monitoring data to optimize static outflow
settings of CSO tanks. In a second step, the additional benefit of real time control (RTC) strategies is
assessed. In both cases the aim is the reduction of CSO emissions. The methodology is developed on
a conceptual drainage system with two CSO tanks and then applied to a case study area in Southern
Germany with six tanks. A measured time series of six months is sufficient for reliable optimization
results in the conceptual catchment as well as in the case study area system. In the investigated system
the choice of the optimization objective (minimum overflow volume or total suspended solids (TSS)
load) had no significant influence on the result. The presented method is particularly suitable for
areas in which reliable monitoring data are available, but hydrological parameters of the catchment
areas are uncertain. One strength of the proposed approach lies in the accurate representation of the
distribution of emissions between the individual CSO structures over an entire system. This way
emissions can be fitted to the sensitivity of the receiving water body at the specific outlets.

Keywords: modelling; CSO; urban drainage; sewer system; optimization; online monitoring

1. Introduction

Combined sewer overflows (CSO) during rain events can severely impact the ecologi-
cal and chemical status of surface waters (e.g., [1–3]). High peak flows, oxygen depletion
due to excessive organic loads from single events, ecotoxic concentrations of ammonia
(NH3), and siltation of the water body by fine sediments are the most relevant impacts
of combined sewer discharges on receiving waters [4–6]. Especially when the receiving
water body is small and sensitive, CSOs can cause significant damage to the aquatic ecosys-
tem [7–10]. Emitted volumes and loads of CSOs are often of similar, or greater magnitude
than the emissions from wastewater treatment plants (e.g., [11–13]).

Storage volumes within sewer systems lower the hydraulic load of the wastewater
treatment plant (WWTP) and reduce combined sewer discharges to surface waters. Con-
ventionally operated urban drainage systems are very rigid [14]. Adjusting the controlled
outflows from storage structures within the sewer system is the only way to modify and
enhance the sewer system performance in an existing system without capital intensive
construction measures. In addition, changing precipitation characteristics due to climate
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change and surface sealing due to ongoing urbanization will further increase the impact of
CSOs and their negative consequences (e.g., [15–17]).

Nowadays, many urban water management systems try to find a favored decision
from a list of options. In recent years, mathematical optimization techniques have been
exploited broadly to aid these decision-making procedures by assessing the performance of
different alternatives [18–20]. These techniques’ applications include the optimal planning
and design of urban drainage systems (UDSs) (e.g., [21–25]) optimal UDS retrofitting and
rehabilitation strategies (e.g., [26–34]), and optimizing control and the operation of UDSs
(e.g., [35–40]). As the main domain of the present study is optimizing the operation of
UDSs, in the following paragraphs we review previous studies in this field.

Previous studies have shown that the static optimization of controlled outflows in
the system and dynamic real-time control can help in adapting the drainage system to
changing boundary conditions and thus effectively reduce emissions (e.g., [41–43]).

The controlled outflows from the CSO tanks in the sewer system determine how much
combined sewage is transported to the treatment plant, how much water is retained in the
CSO tank, and what portion is ultimately discharged into the receiving water. Therefore, the
operational efficiency of the storage units within sewer system depends on the controlled
outflow settings. Optimizing these outflow settings is therefore an important contribution
to reduce emissions from CSOs without building additional storage structures or treatment
facilities. In complex systems with many distributed storage units, the optimization of
controlled outflow settings is a challenging task.

In practice, as well as in research, this optimization is almost exclusively done based
on sewer system models (e.g., [44–46]).

Physically-based modelling is the most common approach to simulating sewer net-
works and combined sewer overflows. Physically-based models characterize the entire
sewer system including catchment areas, dry weather flow patterns, transport within sewer
systems, and other physical model components. Corresponding model parameters are
often hard to determine and high uncertainties are inevitable [47].

During the last decades, data-driven modelling has been used increasingly in sewer
system modelling. Neural networks are designed to “learn” the relationship between
input and output data [48]. Neural networks are black-box models which do not require
characterization of the simulated system. However, the model parameters lack physical
interpretation. The neural network is mainly trained to predict the flows based on measured
rainfall (e.g., [49–52]). For optimization and control approaches, a description of system
dynamics is required in most cases [53] limiting the use of these models in the optimization
and control of sewer networks.

Real-time control (RTC) can be an effective measure to reduce emissions from CSOs
(e.g., [41–43,54]). However, determining optimal control and operation strategies remains
a challenging task. Model predictive control provides adaptive control strategies where the
optimal control is calculated recursively with incoming information as rainfall forecasts [55].
These advanced techniques are highly promising for future developments, for example,
in smart cities, but too demanding to implement in existing conventionally operated
sewer systems.

Evaluation of the efficiency of RTC strategies is often done solely based on simulation
results (e.g., [43,56]). However, these modelling results are highly uncertain [57,58]. A major
source of uncertainty of sewer system models is the representation of the subcatchments
in the hydrological model part (runoff generation and overland flow). Previous studies
have identified the effective impervious area as particularly sensitive for stormwater runoff
simulations (e.g., [59–62]). The effective impervious area connected to the sewer is often
not, or only vaguely, known in conventionally operated sewer systems. For planning
purposes specific scenarios are simulated that reflect the expected development at a given
time (10 or 15 years). In reality, the connected area and its hydrological characteristics vary
constantly with every construction activity in the catchment. The real development often
deviates strongly from the planned development. The situation is becoming increasingly
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complex with the trend toward low-impact drainage such as permeable pavements and
green roofs.

Additionally, pollutant loads, which often are the target of optimization and RTC,
are represented insufficiently within sewer system models. The observed high levels
of uncertainty in stormwater quality modelling may lead to biased results and—as a
consequence—to non-optimal decisions in design and operation.

Previous data evaluation, as well as in the presented study, show major differences
between modelling results and measured data [63]. Calibrating sewer system models to
measured data can reduce model uncertainties [64]. However, considerable uncertainties
inevitably remain due to the model structure. To ensure the continuous accuracy of the
model, this calibration has to be performed repeatedly, which is rarely done in practice.
In addition, the planning process is based on an assumed development of the catchment
within planning horizons >15 years. Based on the simulation for the planned state of the
catchment, the static outflows of the CSO tanks are adjusted. This results in an operation
lasting several years for a future state of the system. Not only is it uncertain if that state is
ever attained, the dynamic development of the catchment is neglected entirely. This adds
to the uncertainties in the planning and operation of CSO tanks.

Several types of sensors have reached a mature stage and are well applicable in urban
drainage systems [65]. The political will, at least in some German federal states, also calls
for broad equipment of CSO structures with measuring devices [63,66]. Therefore, a general
trend towards more and continuous monitoring of combined sewer overflow structures is
developing, providing an ever-growing database to improve design and operation. This
development will further increase the number of use cases of the presented methodology.

We present and evaluate a new methodology for optimizing the operation of wastew-
ater systems based on measured discharge and quality time series as an alternative to
conventional sewer network modelling. Instead of calibrating the model with measured
data, we replace the hydrological model part by the measured flow and quality time series
as input to a transport model. This approach excludes all uncertainties from hydrological
modelling and replaces them with the uncertainties of the measured data itself.

In practice, although continuous monitoring in sewer systems is increasing, measured
data are only available for limited periods of time and can only reflect the current status.
The sewer networks are changing constantly due to construction measures within the
sewer system and connected catchment areas. For data-based optimization of the sewer
system, a uniform system behavior must be ensured. All sensors have to be operating
without disruptions and no exceptional operating conditions (e.g., maintenance work or
malfunctions) should occur. Therefore, it is important to know the lengths of the required
time series to gain reliable and robust optimization results.

Conventional modeling can predict various scenarios of land development, but op-
timization of the current state is often more uncertain. So why not optimize the existing
status in regular time intervals instead of modelling an uncertain future development state?
The databased optimization method decouples the highly uncertain hydrological model
from the more accurate transport model and still allows evaluation of different operational
scenarios under real runoff regimes. Considering that measurement of overflows is manda-
tory in some German federal states, this offers a wide range of applications for this robust
and pragmatic method for optimizing combined sewer system operation. The use cases
for the methodology are small systems which have no existing infrastructure or staff to
operate high maintenance RTCs.

The scope of this work includes an assessment of the robustness and applicability of
the new methodology. The research questions of this work are:

• How long are time series required to be to produce robust and reliable optimization
results?

• What influence does the optimization objective have on the results?
• How great is the realistic optimization potential in conventionally operated sewer

systems?
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• What additional benefit does RTC bring in terms of reducing emissions?

2. Materials and Methods
2.1. Measured Data

Two combined sewer overflow tanks in southern Germany were equipped with online
spectrometer probes for two years. Hydrometric measurements and precipitation data at
the CSO tanks were provided by the operator of the sewer system. The catchment and
CSO tank characteristics for both subcatchments are given in Table 1. Effective impervious
areas were determined by evaluating rainfall-runoff balances for the measured data from
August 2014 until June 2016. Controlled outflows were chosen proportional to the effective
impervious area.

Table 1. Catchment and combined sewer overflow (CSO) tank characteristics.

CSO Tank 1 CSO Tank 2

Connected area (ha) 106 220
Connected impervious area (ha) 34 75
Effective impervious area (ha) 17 54
Inhabitants 4770 10,985
Total tank volume (m3) 713 1949
Controlled outflow (L/s) 58 183

Inflow from the subcatchments was calculated based on controlled outflow measure-
ments and water level changes within the tanks according to Figure 1. Concentrations
for total suspended solids (TSS) were not measured directly, but absorption spectra were
recorded and from these spectra equivalent concentrations for TSS were calculated. The
TSS equivalent concentrations were monitored in the flow-dividing structure of the CSO
tanks by online UV/Vis spectrometer probes (s::can spectro::lyser, 200–750 nm; optical
path length 2 mm) in 5 min intervals. The global sensor calibration “Inflow Wastewater
Treatment Plant” provided by the manufacturer was used. Flow and water level data were
measured in 1 min intervals. Quality and flow time series from the inflow of both tanks
were available for 680 days from August 2014 until June 2016.

Figure 1. Schematic overview of first flush storage tanks with location of measurement devices [67]
after [68].
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2.2. Data Based Static Optimization

For data-based optimization, the system described was conceptualized. Tank sizes
and geometries were adapted from the two existing CSO tanks for which the measured
time series were obtained from (see Figure 2). To evaluate the method’s applicability and
understand the general relationships, the additional CSO tanks in the real sewer system
were not considered. Instead, the two CSO tanks were connected directly to the WWTP.
The combined outflow of both tanks was restricted by the treatment capacity and therefore
limited to 241 L/s.

Figure 2. Conceptual catchment for measured data-based system optimization; C = catchment,
D = controlled outflow, WWTP = wastewater treatment plant; T = combined sewer overflow tank,
VS = specific storage volume, Aimp = impervious area.

The system was set up in the Storm Water Management Model (SWMM) version
5.1.007 (United States Environmental Protection Agency, Washington, DC, USA) [69]
without implementation of subcatchments and rain gauges in the hydrological model part
(see input file in Supplementary Material). Instead, measured inflow and TSS concentration
time series were inserted directly into the model as inflow at the nodes for a total simulation
period of 680 days from August 2014 until June 2016. Simulations were run under kinematic
wave flow routing.

The controlled outflows from the two CSO tanks are the decision variables. Outflow
settings for minimum emissions were determined using the simulated annealing algorithm
in MATLAB [70] with a total of 16 months of measurement data as input. In all evaluated
scenarios the sum of the controlled outflows from both tanks (D1 + D2 = inflow to WWTP)
was kept constant. The following optimization objectives were assessed:

• Minimization of total overflow volume from both tanks
• Minimization of total TSS overflow load from both tanks
• Minimization of total overflow duration from both tanks

Mathematically, the optimal controlled outflows of the CSO tanks in this study can be
formulated as

dopt = arg min
d∈S [ fcost]

subject to :
D1 + . . . + Di ≤ const.

where dopt is the optimal choice for the decision variables d that define the controlled
outflow of each tank Di. d is the vector of decision variables generated by the optimization
engine and S is the feasible search space where all constraints are satisfied.
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The quality of the optimization results depends on the measured data used for opti-
mization. Therefore, different durations of the measured data times series were taken as
input for the data-based optimization to determine minimum timeseries lengths for robust
optimization results. Additionally, different error types were imprinted on the time series
to evaluate the influence on the optimization results.

2.3. Data Based Evaluation of Dynamic RTC Strategies

Dynamic RTC strategies were programmed in SWMM’s internal control editor. Both,
volume and quality based RTC strategies based on the results of static outflow optimization
were evaluated. In the volume-based RTC scenario a rule-based control algorithm was
implemented depending on the tanks’ water levels: Starting from optimal static outflow
settings for minimum total CSO volume, the controlled outflow at tank 1 is increased
by 31 L/s and the outflow of tank 2 is reduced by 31 L/s correspondingly if tank 1 is
filled more than 87.5% and tank 2 is filled less than 50%. If tank 2 is filled more than
87.5% and tank 1 is filled less than 50% the controlled outflow from tank 2 is increased by
35 L/s and the outflow of tank 1 is decreased by 35 L/s (Volume Based Control Rule in
Supplementary Material).

The quality-based RTC scenario additionally took online TSS measurements into
account by directly reading the TSS inflow concentration time series: Starting from static
optimal controlled outflows for minimum emitted load, the inflow concentration from
tank 1 is increased by 66 L/s and the outflow from tank 2 is decreased by 66 L/s if the
inflow concentration to tank 1 exceeds 100 mg/L TSS while the concentration at tank 2
is less 100 mg/L. If the TSS inflow concentration to tank 2 exceeds 100 mg/L while the
concentration at tank 1 is below 100 mg/L, the controlled outflow of tank 2 is increased by
33 L/s and the outflow from tank 2 is decreased by 33 L/s, respectively.

The advanced quality-based scenario additionally considers the remaining capacity
within the sewer system. The above-described comparison of the inflow concentrations
is only performed if at least one of the CSO tanks is currently spilling into the receiving
water (Advanced Quality Based Control Rule in Supplementary Material).

As a benchmark for the evaluation of optimization results and RTC strategies, the
theoretical potential of the volume-based RTC was assessed by allocating the storage
volume of the two CSO tanks in one central tank combining both tank volumes (see [71,72]).
This approach allows determining of the minimum overflow volumes under a perfect
control strategy. This theoretical optimum represents an upper limit for the effectiveness
of an RTC. Hydraulic restrictions or flow times between the tanks are not taken into
account [71].

2.4. Case Study

To evaluate the applicability and potential for the reduction of overflows, the presented
static optimization approach was applied to a real combined sewer system in southern
Germany. The system consists of six CSO tanks conveying the combined wastewater to a
pumping station (PS), serving as the limitation for the combined controlled outflows (see
Figure 3). The data set consists of four years of high resolution (≤5 min) time series of water
level and outflow measurements for five of the six tanks. The sixth tank solely contains a
water level measurement and a Q/h-relationship between water level and outflow. Based
on the measured outflows and water levels the runoff conveyed to the CSO tanks (Qin) was
calculated as follows:

Qin = Qout +
dV
dt

+ QOver

where Qout is the measured outflow or a function of the outflow and water level in the
tank. During the filling phase, the runoff exceeding the outflow is represented by the
change in water volume in the tank over time (dV/dt). Once the tank is discharging into
the receiving water the overflow (QOver) is calculated with the free overflow equation by
Poleni–Weisbach. Time periods with technical failures or flooding by the receiving water
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were excluded entirely. Resulting in inflow time series of 1159 days with undisturbed
operation for all six tanks in the investigated system.

Figure 3. Case study catchment for measured data-based sewer system optimization; T = combined
sewer overflow tank, D = controlled outflow, PS = pumping station.

As a first step, the conventional hydrologic model (including rainfall-runoff simu-
lation) for the study area was reviewed to ensure high quality input data. A calibration
of this model was not performed. This model was used as a reference to evaluate the
capabilities and limitations of both approaches.

Secondly, the system was optimized based on the measured time series using the
method described above. By optimizing the controlled outflows based on sections of the
time series (1–12 months) the robustness of the optimization approach and the required
lengths of a measured time series were investigated. Additionally, repetitive optimizations
were carried out to evaluate the capability of the data based optimization to find a near
global optimum.

Furthermore, weighting factors were implemented in the optimization algorithm to
be able to prioritize specific tanks. Using these factors, the reduction of overflow activity
at the weighted tank is emphasized in the optimization results. This allows for an aimed
reduction of overflow activity at the weighted CSO tank.

3. Results and Discussion

After approximately 200 iterations in the conceptual catchment, the termination
criterion (50 iterations with no significant (<10−3) change in optimization objective) for the
simulated annealing was met and optimal static controlled outflow settings were reached.

Optimized outflows of tank 1 for a minimum emitted load or volume were very similar
with 66 L/s and 70 L/s, respectively (see Table 2). These controlled outflows resulted
in less than 0.2% difference for total emitted load and volume. A minimization of total
overflow duration led to an increased emitted TSS load during the simulation period of 1%
and 0.2% increased total emitted volume. This confirms previous findings that no major
variations in first flush characteristics have been observed within this system [68].

In an ideally operated sewer system, the controlled flows should be weighted by
the effective impervious area to evenly utilize the storage volume during rain events.
This results in an even filling, spilling, and emptying of the storage tanks and therefore
minimizes emitted volumes. Effective impervious area-weighted controlled outflows as
reference can be found in Table 1.
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Table 2. Optimized controlled outflows and resulting total emitted loads and volumes for different optimization objectives
and area-weighted controlled outflows.

Optimization Objective Controlled Outflow (L/s) Totally Emitted

Tank 1 Tank 2 Volume (m3) TSS Load (kg)

Minimum emitted volume 70 171 171,339 19,188
Minimum total emitted load 66 175 171,518 19,157
Minimum CSO duration 78 164 171,871 19,299
Area weighted controlled outflows 58 183 172,891 19,220

The area weighted controlled outflows generated 0.9% increase in emitted volume
and 0.3% increase in load compared to the measured data-based optimization results.
Therefore, area-weighted controlled outflow settings are almost optimal for minimizing
CSO emissions, indicating an even spatial distribution of rainfall heights throughout the
sewer system.

Figure 4 displays the discharged CSO volume and load from both CSO tanks per
ha of connected impervious area for the area-weighted controlled outflows and for the
optimized controlled outflows under different optimization objectives. The emitted area
specific volume and load via CSO tank 2 is 1.5–2 times higher than from tank 1. This cannot
be explained by an imbalance of the specific storage volume of the tanks. With 21 m3/ha
for tank 1 and 26 m3/ha for tank 2, the storage volume is distributed evenly through the
system. This effect is caused by the hydrologic response of the system itself and cannot be
considered in planning processes unless measured data is available.

Figure 4. Emitted connected area specific combined sewer overflow (CSO) volume (left) and total suspended solid (TSS)
load (right) from both CSO tanks for area weighted and optimized controlled outflows.

The results also show that a shift of emissions from one tank to another can be achieved
by changing the controlled outflows of the tanks with only minor increase of total emissions.
A change of the controlled outflow at tank 1 from 70 L/s (volume optimized outflow
Figure 4) to 78 L/s (duration optimized outflow) increases the total emitted volume by
only 0.3%. At the same time, the emitted volume at tank 1 reduces by 16% from 33,662 m3

to 25,800 m3. In a system where one tank discharges in a particularly sensitive stream, this
may by a beneficial management option.
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3.1. Robustness of Optimization Results

For data-based optimization of sewer network operation, the length of the underlying
measurement time series is of particular importance. For this reason, the system was
optimized for different lengths of the measured time series.

The results of the optimization with the goal to minimize the total emitted load of
TSS depend much more on the length of the underlying time series than the volume-based
optimization (see Figure 5). An optimization with the aim to minimize emitted CSO
volume, therefore, delivers more robust results. With increasing time-series lengths, the
optimization results of the load and volume-based optimization approximate each other.

Figure 5. Influence of different durations of measured data on optimization results for volume (left) and load optimized
controlled outflows (right).

A time series input of four months is sufficient for sewer system optimization in the
conceptual system. Using this database, robust optimal controlled outflows for both CSO
tanks can be obtained. The number of overflow or rain events during this optimization
period does not seem to have a major influence on optimization results as long as a
minimum of 10 rain events within the measured data period is exceeded. The expected
correlation between number of events and goodness of optimization results was not found
(see Figure S1 in Supplementary Material).

One aim of the sewer system optimization based on measured data was to exclude
errors and uncertainties caused by the hydrological model during conventional sewer
system modelling. However, the measured data itself is also subject to uncertainties and
measurement errors. Only if these are not significant, can robust optimization results
be obtained with the measured data-based approach. To evaluate the influence of these
errors on the optimization results, different error types were imprinted artificially on the
measured data before sewer system optimization. The influence of different error types on
the optimization results is shown in Table 3.

Table 3. Influence of different measurement errors on data-based optimization results.

Error Type Influence Evaluated by Effect on Optimization Results

Undirected random errors noise none to minor

Systematic errors error factors, uncalibrated TSS probe, drifting of
concentration minor to medium

Combined errors combination of the error types mentioned above medium to strong
System simplifications neglecting flow components as overflow strong: unusable optimization results
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Undirected random errors have only minor influence on optimization results. System-
atic errors show a stronger influence. However, the optimization still generates controlled
outflows close to the optimum. A combination of errors further increases the impact.

Lack of overflow volume measurements at the CSO tanks can lead to simplified inflow
balancing. Neglecting flow components in inflow balancing did not lead to satisfactory
optimization results. Optimization without considering overflow volumes resulted in equal
controlled outflows for both CSO tanks. By neglecting the overflow volumes, almost no
overflow events occur anymore and thus the optimization based on volume minimization
is not successful. Instead of minimizing the total emitted CSO volume, the optimization
objective could be to minimize the deviation of the levels of the CSO tanks from each
other. This could improve the optimization results if the overflow quantities are not
directly measured.

An optimization with the objective to minimize the deviation of filling levels between
both tanks neglecting the overflow component as input data led to controlled outflows of
65 L/s for tank 1 and 176 L/s for tank 2. The emitted volume increased 0.2% compared to
the static overflow settings resulting from the minimization of overflow volumes using the
complete time series as input. Whether this generally applies in other systems remains to
be tested.

Every error type that changed the inflow ratio between both tanks has an impact on
the optimization results proportional to the change in the relationship. Consequently, in a
system where inflows are changed by the same factor, for example, using a measurement
probe with the same systematic error at both sites, the optimization result remains identical.

3.2. Evaluation of RTC Strategies

The measured data-based simulation allows the comparison of different control strate-
gies. Figure 6 shows the emission reduction of the different dynamic RTC strategies
compared to static controlled outflows optimized for minimum discharged CSO volume.
The maximum theoretical potential of a volume-based control is only 3–4% compared to a
system with statically optimized controlled outflows. In reality, this theoretical potential
cannot be achieved due to flow times between the tanks and the hydraulic capacity of the
connected sewer network. Therefore, the real control potential is even lower.

Figure 6. CSO emissions of the assessed real-time control strategies compared to CSO emissions from static volume
optimized controlled outflows.

Compared to results from international studies (e.g. [41,43,56,73,74]) the emission
reduction potential determined by dynamic control strategies is very low. A comparably
low RTC potential was found by [44] for CSO reduction in Barcelona of up to 3%. Low
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RTC potential was also presented by [75] depending on the respective climatic conditions.
Taking uncertainties into account, [76] also found only very small effects of control strategies
on the number of CSOs and spilled volumes.

A reason for the small RTC potential in this study could be the small study area
comprised of only two CSO tanks. The RTC reduction potential may be higher in larger
catchment areas. Furthermore, in most studies, the emission reduction potential of RTC
strategies of controls is only given in relation to an arbitrary initial system state. No static
optimization of controlled outflows is conducted prior to simulating RTC scenarios. This
is a major shortcoming of many studies on RTC potential because the effectiveness of the
RTC is often overestimated. In this study the RTC potential is assessed compared to an
already statically optimized system.

The assessed volume-based control strategy saves 0.5% of the total emitted CSO
volume and 0.7% of the total emitted load. The quality-based control strategies are more
effective than the volume-based strategy regarding emitted load. With a permanently
running quality-based RTC, 0.6% of the discharged solids can be saved compared to
optimized static outflows resulting in 2.6% more emitted volume.

The wear of the throttle devices due to permanent changes in the setpoints is an oper-
ational disadvantage of an RTC. A quality-based control strategy, which only intervenes
under high system utilization, for example, during overflows as assessed in this study,
protects the throttle devices in comparison to a permanently operating control. With such a
strategy (quality-based control during overflow in Figure 6), the emitted TSS load can be
reduced by up to 3% with only 1% increase in volume emissions. For quality-based control
strategies, the hydraulic system utilization should therefore always be taken into account.

In all the assessed RTC scenarios, a reduction of overflow volume also led to a re-
duction of emitted TSS load. In the examined catchment area, volume-based RTC or
volume-based static outflow optimizations are therefore always beneficial for the receiving
waters. Conversely, a reduction of TSS load does not necessarily lead to a reduction in
the overflow volume. Emitting more CSO volume is not generally problematic for the
receiving water. In the investigated catchment CSO flows are far below the hydraulic peak
in the rivers. However, for dissolved substances, which were not considered in this study,
this increase in discharged volume can have a significant impact on peak concentrations of
dissolved components within the receiving water. Considering the precautionary principle,
the reduction of CSO volume should also be defined as a management goal. From this point
of view, volume-based optimization or RTC strategies should be preferred over quality
dependent measures.

The total emission reduction by RTC strategies depends very much on control ranges
of the tank outflows. The higher the control range, the higher the emission reduction.
However, the hydraulic capacity of the sewer network below must be considered in any
case for the selection of the maximum controlled outflows in sewer systems. At the same
time, with larger deviations from the optimal static outflow settings during RTC operations,
the effects of possibly wrong control decisions become greater.

The ecological benefit of the volume-based RTC strategy may be higher than suggested
by the 0.5% total reduction in the emitted volumes. As shown in the event-wise evaluation
of the CSO volumes (Figure 7) the reduction for the single overflow events ranges from 0
to 100% with an average over all events of 11%. In two events the RTC strategy generates
additional 0.4% CSO volume. Especially during small overflow events, the RTC shows its
benefit with particularly high emission reduction percentages. Since the water level of the
receiving water is usually lower during small overflow events and the CSO volume is less
diluted this may bring additional ecological benefits. These aspects suggest larger positive
ecological effects of the RTC strategies for the receiving streams than the numerical values
might indicate.
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Figure 7. Combined sewer overflow volume reduction for the individual overflow events of the volume based real-time
control compared to static optimized outflows.

The data-based optimization of controlled outflows could also be used in a semi-static
approach. Semi-static control strategies automatically optimize controlled outflows in
the system at regular intervals. However, these time horizons with a duration of several
months are significantly larger than those for real-time controls. The advantage of this
type of control is the automatic adaptation of the system to changing boundary conditions,
without the technical effort and wear on the throttle devices when operating RTCs. In
addition, since the control decisions do not have to be made in real-time, additional security
can be achieved by postprocessing the data. This subsequent data preparation step can be
particularly useful for measurements that are relatively susceptible to measurement errors
such as online quality measurements. If a catchment area is still developing, optimizing the
system on a regular basis or after significant changes in the catchment enables operators to
achieve an efficient protection of water bodies.

3.3. Estimation of Optimization Potential

The optimization potential in combined sewer systems operated with area weighted
controlled outflows is low if effective impervious areas are known precisely. However, in
practice the effective impervious areas are often unknown and therefore the sewer systems
are not operated under optimal conditions. To assess the true optimization potential,
emissions under optimized controlled outflows were compared to a reference scenario
in the conceptual catchment. The controlled outflows in the reference scenario reflect an
uneven system development. As data analyses from real systems in Germany have shown,
this represents a realistic practical operation of the system [63].

The specific controlled outflow at CSO tank 1 was set to 6.6 L/(s·ha) (= 126 L/s) and
to 1.4 L/(s·ha) (= 115 L/s) at CSO tank 2. The remaining tank characteristics were not
changed and can be found in Table 1.

In the reference scenario, a large proportion of the emitted volume is discharged by
CSO tank 2. At CSO tank 1, 10,000 m3 of combined sewage is discharged into the receiving
water during 10 overflow events. At CSO tank 2, with 196,000 m3, 20 times the volume
is discharged during 47 overflow events. This represents 95% of the emitted volume and
90% of the emitted loads of the entire system. With 82% of the total volume and 79% of the
total load, the emissions in the measured data-based optimized system are less emphasized
on CSO tank 2. The remaining higher proportion of the total emissions by CSO tank 2 is
caused by the overall larger connected catchment area and storage volume of tank 2.

Figure 8 shows the total emitted load and volume in the reference scenario as well as
under data-based optimized outflows and volume-based RTC. Under optimized outflow
conditions, 17% of the total emitted volume and 15% of the total emitted load can be
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reduced. Thus, around 1/6 of the relevant emissions can be saved by a static adjustment of
the throttle outflows.

Figure 8. Emitted volume and load in the reference scenario, after measured data-based optimization,
with real-time control and inevitable system emission.

With an optimal RTC of the controlled outflows, 20% of the emitted volume can be
reduced, adding only 3% to the emission reduction compared to the statically-optimized
system. However, as described in Section 2.3, the optimal RTC is a theoretical optimum for
one central tank and not achievable in a real system.

Identifying in which sewer systems optimization is particularly profitable is the
main question before optimization studies. Therefore, the treatment performance of the
wastewater treatment plant and the available specific storage volume in the combined
sewer were varied to assess the impact on the overall optimization potential. Since an
optimization towards minimization of emitted CSO volume and load gave very similar
results, only volume-based optimizations were carried out.

In an ideal catchment area, storage volumes are distributed evenly and proportional
to the connected impervious area. If the expected development of the catchment area
during the planning process does not take place, this results in an uneven distribution
of the specific storage volumes throughout the sewer system. Our results show that the
optimization potential increases with an increasing imbalance (uneven distribution) of the
specific storage volumes. However, the effect of a four-times larger specific storage volume
of tank 2 to tank 1 leads to only a 5% increased optimization potential regarding discharged
CSO volume.

To assess the influence of the existing storage capacity of the sewer system on the
optimization potential, controlled outflows in catchment areas with evenly distributed
specific storage volumes were optimized. To know in which systems the highest opti-
mization potential can be expected helps to prioritize suitable catchment areas for sewer
system optimization in practice. Specific storage volumes from 10 to 40 m3/ha were evalu-
ated. The optimization potential is highest for an average specific storage volume around
20 m3/ha (see Figure S2 in Supplementary Material). The reason for the smaller effect
of an optimization in particularly small-sized systems is the relatively little free volume
which can be activated by changing the controlled outflows. In systems with higher specific
storage volumes, there is enough free volume that there is enough buffer in the system to
compensate for unfavorable controlled outflow settings. Thus, the optimization potential is
greatest in systems with a medium specific storage volume. This hypothesis is confirmed
by changing the maximum combined sewer inflow to the WWTP. The highest optimization
potential was shown by a medium to low treatment capacity.
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3.4. Case Study

Figure 9 shows the standardized measured and conventionally simulated annual
discharge frequencies. The hydrological model KOSIM [77], which is widely applied in
Germany, was used for conventional rainfall-runoff simulation [78]. The simulation was
run with a 30-year stochastic rainfall time series generated by NiedSim 3 [79].

Figure 9. Standardized simulated and measured overflow frequencies for the status quo.

The frequencies of each tank are normalized to the annual average of the entire system
to visualize the discharge distribution and avoid the influence of natural variations in
the annual precipitation. The comparison with the measured overflow activity in the
study area has shown that the conventional model is capable of optimizing the overall
discharged volumes of the system. However, the actual distribution of CSO discharges
along the system could not be represented to a satisfactory extend. With T2 discharging
into a sensitive water body and T3 being one of the biggest tanks in the system, with
significant overflow volumes, the discharges of two relevant tanks are overestimated in
the conventional model. Operational decisions based on the simulation results might lead
to unexpected or unwanted changes in the overflow distribution. Thus, for an efficient
protection of the receiving water body, knowledge about the distribution of discharges
is vital.

A global optimum of controlled outflows for the study area could not be identified
in the unweighted optimization approach. The equifinality of the hydraulic system leads
to several optimal settings of the controlled outflows leading to similar total overflow
volumes. This effect has been already observed in the conceptual system with two tanks.
On average, the reduction potential for the study area was 2% for the overflow volume
and 6% for the overflow duration. With a well monitored and operated system as a case
study, the optimization potential was expected to be low in this particular case. However,
further investigation of the underlying input data gave valuable insights regarding the
applicability of this approach in practice.

The required time series to generate robust optimization results for the study area
consists of approximately six months containing a minimum of 200 mm cumulated rainfall
(see Figure 10). These findings suggest that it is not necessary to conduct long-term
investigations/simulations to identify an optimum for a system. Shorter time series in high
quality and resolution seem to be more valuable for a practical sewer system optimization.
The early convergence of the optimization results shows that the supposed advantage
of the long-term simulation covering longer simulation periods is not relevant. Further
studies are required to draw general conclusions regarding the amount of data required
for the optimization in relation to system or operational characteristics. It is expected
that system characteristics (e.g., slope, specific storage volumes, flow times, etc.) strongly
influence the amount of data required for robust optimization results.
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Figure 10. Deviation of the minimum emitted volume using long-term (four year) time series as input for optimization
from optimization results using shortened time series.

Implementing weighting factors in the optimization, allows a targeted reduction of
overflow volume or duration at certain CSO tanks. In the study area it was possible to
reduce the overflow volume of T2 by 95% without increasing the total emissions of the
system compared to the status quo of the system (Figure 11). Depending on the size and
relevance of a tank within a system the specific reduction potential and its influence on the
total emissions vary significantly. The targeted optimization allows the investigation of
different strategies to protect the receiving water bodies under the real runoff behavior in
the catchment. Firstly, it allows an estimation of how effective a change in the controlled
outflow would be for the receiving water and secondly it demonstrates its influence on the
overall overflow behavior of the system.

Figure 11. Emitted volumes of all tanks and the total system relative to the emitted volumes of the
status quo.

4. Conclusions

Optimization of controlled outflows from CSO tanks based on measured data was
readily applicable to both a conceptual catchment and an existing system and provided
reliable results. The data-based approach provides an alternative to hydrological modelling
of the catchments. The true system overflow behavior during rain events can be repro-
duced more realistically than in conventional sewer system modelling. Any intervention
downstream of the measurement point can be considered in simulation scenarios (e.g.,
expansion of storage volumes, enhanced CSO treatment).
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• In conventionally operated sewer systems, a simple static measured data-based opti-
mization of the controlled outflows can reduce a major part of the emissions to the
receiving water body (up to 17% of the emitted volume in the conceptual catchment).

• From a total emission perspective, the additional benefit of RTC compared to optimal
static outflow settings is low (maximum 3% theoretical potential in this study). There-
fore, a static outflow optimization should always be the first step of any operational
improvement measured in sewer systems. Considering event-wise reductions, the
real ecological benefit of RTC strategies may be higher.

• Data-based optimization has the largest benefit in sewer systems where the actual
degree of development is unknown. In these systems, sensitive and hard to determine
parameters required for hydrologic modelling, such as effective impervious area, are
highly uncertain. With increasing use, low impact development (LID) parameters are
even harder to determine since the degree of imperviousness can hardly be determined.
However, to gain reliable results, the measured input data for the transport model has
to be of good quality.

• An additional indicator for the optimization potential of a sewer system is the buffer
capacity in the form of specific storage volumes. Systems with medium to low spe-
cific storage capacity have a larger optimization potential and should therefore be
prioritized when performing optimization measures.

• For a reliable optimization of controlled outflows all flow components of the CSO tanks
have to be considered. Neglecting components such as overflow volumes leads to
invalid optimization results when optimizing the system for minimum CSO volumes.

• Different optimization objectives like minimization of overflow duration, load, and
volume gave similar results in this study. Therefore, the additional benefit that costly
quality measurements bring with them is usually not justified.

• In the investigated conceptual system, a time series of about four months with medium
precipitation characteristics and about 10 precipitation events is sufficient. The in-
vestigation in the case study areas resulted in six months and a minimum of 200
mm cumulated rainfall. Further studies will show general conclusions regarding the
influence of catchment and system characteristics on the required time series length.

• Instead of a uniform utilization of the storage volumes within sewer systems and
an even distribution of overflows, the goal of sewer system operation may be the
protection of particularly sensitive water bodies. A shift of the emission fractions from
one CSO tank to another can be achieved by targeting a reduction at the relevant tank
within the optimization. This can lead to a significant emission reduction at one CSO
without major impact on total emissions.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-444
1/13/6/751/s1, Figure S1: Influence of the number of rain and overflow events and average event
precipitation on optimization results, Figure S2: Influence of (evenly distributed) specific storage
volume on volume based optimization potential compared to area weighted controlled outflows.
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