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Abstract: This study aimed to identify an optimal heat-treatment parameter set for an additively
manufactured AlSi10Mg alloy in terms of increasing the hardness and eliminating the anisotropic
microstructural characteristics of the alloy in as-built condition. Furthermore, the influence of
these optimized parameters on the fatigue properties of the alloy was investigated. In this respect,
microstructural characteristics of an AlSi10Mg alloy manufactured by laser-based powder bed
fusion in non-heat-treated and heat-treated conditions were investigated. Their static and dynamic
mechanical properties were evaluated, and fatigue behavior was explained by a detailed examination
of fracture surfaces. The majority of the microstructure in the non-heat-treated condition was
composed of columnar grains oriented parallel to the build direction. Further analysis revealed
a high fraction of pro-eutectic α-Al. Through heat treatment, the alloy was successfully brought
to its peak-hardened condition, while eliminating the anisotropic microstructural features. Yield
strength and ductility increased simultaneously after heat treatment, which is due to the relief of
residual stresses, preservation of refined grains, and introduction of precipitation strengthening. The
fatigue strength, calculated at 107 cycles, improved as well after heat treatment, and finally, detailed
fractography revealed that a more ductile fracture mechanism occurred in the heat-treated condition
compared to the non-heat-treated condition.

Keywords: additive manufacturing; mechanical properties; fatigue behavior; heat treatment; alu-
minum alloys

1. Introduction

Laser-based powder bed fusion of metals (PBF-LB/M), also known as selective laser
melting (SLM), as one of the highly promising additive manufacturing (AM) processes to
produce light metal parts, is a feasible complement to conventional fabrication methods in
various industries. PBF-LB/M enables the generation of parts by selectively scanning thin
layers of powder metals with a laser beam based on a three-dimensional computer-aided
design (CAD) model [1,2]. Like other AM technologies, PBF-LB/M allows the production
of individualized and geometrically complex shapes [3].

One of the commonly used alloys in PBF-LB/M processes is AlSi10Mg. This alloy
offers a relatively high fluidity, low shrinkage, and a reduced solidification temperature
range, which results in better casting properties [4]. It is also classified within the age-
hardenable alloys, as the addition of Mg enables the precipitation of nanoscale Mg2Si
particles and thus strengthens the alloy [5]. To achieve the desired mechanical properties,
heat treatment is usually applied to reach a peak-hardened condition.
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The excellent combination of low weight, high heat conductivity, and good mechanical
properties has led to this alloy being used in many different applications such as in the
aerospace and automotive industries [6,7]. However, due to reliability concerns associated
with the components produced using PBF-LB/M, their application is currently limited.
One of the most important properties to be considered when evaluating materials for
industrial applications is their fatigue behavior.

There exist a number of studies on the fatigue behavior of PBF-LB/M-fabricated
AlSi10Mg alloys. Aboulkhair et al. [8] investigated the influence of T6 heat-treatment
with conventional treatment parameters as well as machining on the fatigue properties
of AlSi10Mg alloys, reporting desirable fatigue properties for specimens subjected to
both T6 heat-treatment and surface machining. Mfusi et al. [9] revealed that the alloy
exhibits better fatigue strength after stress relief, though all other mechanical properties
obtained by the fabrication process deteriorate. Beretta et al. [10] explored the effect of
surface roughness as a result of build orientation on fatigue crack growth, demonstrating
that there is a moderate correlation between surface roughness parameters and surface
features measured by area, and they constructed a model to describe fatigue strength.
Tang et al. [11] demonstrated the possibility of using extreme-value statistics to predict
the fatigue life of additively manufactured as-built and heat-treated AlSi10Mg parts, with
inputs of pore size distribution measured on a polished plane. Zhang et al. [12] looked at the
effect of heat treatment on the microstructure and fatigue life of PBF-LB/M-manufactured
AlSi10Mg. In another study, Bhaduri et al. [13] investigated the mechanical properties, heat
treatment, and microstructural characteristics of a hybrid specimen fabricated by additive
manufacturing of AlSi10Mg on top of a conventionally fabricated AA6082 alloy. They
showed that the heat treatment affects the failure location, providing a path to fabricate
larger parts without loss of strength. In all these cases, different process parameters, e.g.,
laser power, scanning speed, slicing thickness, and the machine itself, were utilized to
additively fabricate the samples. Furthermore, the post-heat-treatment parameters, e.g.,
heat-treatment methods, timing, and temperatures, varied from case to case as well. Since
the modifications in microstructural characteristics and hence mechanical properties after
heat treatment depend on the initial microstructure of an alloy, i.e., as-built, it is important
to investigate the heat-treatment parameters and their intrinsic influences on a given alloy
with a specific microstructure and further extend these investigations into the resulting
mechanical properties.

The present study was firstly aimed at finding optimum heat-treatment parameters
for our fabricated alloy in terms of increasing the hardness and eliminating the anisotropic
microstructural properties of the manufactured parts. Furthermore, the influence of heat
treatment on the fatigue properties was investigated, and finally, fracture surface analyses
of the alloy were carried out.

2. Materials and Methods

2.1. PBF-LB/M Fabrication and Material

Since the main objective of this work was to investigate the influence of heat treatment
on microstructural characteristics and fatigue behavior of the AlSi10Mg alloy, the process-
ing conditions and chemical composition were kept identical. The processing conditions,
e.g., laser power, scanning speed, beam diameter, hatch space, slice thickness, and scanning
strategy. are listed in Table 1. The chess pattern with a field size of 5.89 mm × 5.89 mm
was displaced in each layer by 4.02 mm in X and 5.44 mm in Y direction to suppress the mi-
crostructural anisotropy that could otherwise arise from a unidirectional scanning strategy.
To fabricate the materials, a TruPrint 3000 machine (TRUMPF GmbH + Co. KG, Ditzingen,
BW, Germany) was utilized. The machine is equipped with a cylindrical build-chamber
of Ø300 mm × H400 mm and a fiber laser with a maximum power of 500 W. The build
platform was heated to 200 ◦C during the process to reduce residual stresses. Moreover,
to minimize the oxidation, a nitrogen atmosphere with an oxygen content of <0.3% was
applied during the process.
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Table 1. Process parameters that were applied.

Laser Power (W) Scanning Speed
(mm/s)

Beam Diameter
(mm) Hatch Space (mm) Slice Thickness

(mm) Scanning Strategy

420 1300 0.1 0.21 0.06 Chess pattern

The powder raw materials with particle sizes of 20 to 56 µm (see Figure 1) were
supplied by ECKA Granules Germany GmbH (Velden, BY, Germany). The powders had a
relatively high sphericity, 0.8 ± 0.1, and a high roundedness, 0.8 ± 0.2. Sphericity is defined
as the ratio of the particle surface area to the area of a sphere with the same volume, and
roundness is defined as the ratio of the average radius of curvature of the corners of the
object to the radius of the maximum inscribed circle [14]. This morphological property
favors better flowability of the powder during the recoating operation, more efficient
particle packing, and formation of a highly dense powder bed, which yields a superior
density, surface finish, and dimensional accuracy of the final fabricated component [15].
However, a few teardrop-shaped powder particles, as well as small satellites, were also
observed, which slightly reduced the flowability of the powder [16].

Figure 1. SEM image of the employed AlSi10Mg powder.

The chemical composition of the powder was kept constant (see Table 2) for all
specimens, and hence the conclusions of this study are valid only for this specific set of
chemical and process conditions.

Table 2. Chemical composition of the powder used for the fabrication of specimens in weight percentage.

Si Mg Fe Cu Mn Ni Zn Pb Sn Ti Al

9–11 0.2–0.45 0.55 0.05 0.45 0.05 0.1 0.05 0.05 0.15 balance

2.2. Specimen Specification and Finishing

To investigate the influence of heat treatment on the flow and Wöhler (S-N) curves,
round tensile and fatigue specimens were designed based on DIN 50125 and ASTM
E606/E606M standards [17], respectively. In both cases, the radius of specimens manufac-
tured directly by PBF-LB/M was one millimeter larger than the final dimensions for tests.
After machining, specimens were brought to the final dimension with an arithmetic average
surface roughness (Ra) of 2 µm, thereby eliminating any irregular surface features, such
as balling and satellites inherent to the PBF-LB/M manufacturing process (see Figure 2).
It is believed that these surface defects reduce the fatigue strength of SLM parts [18]. In
total, 6 tensile specimens and 30 fatigue specimens were fabricated. All specimens were
fabricated with their length normal (90◦) to the build platform surface. The Archimedes
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method and image processing of metallography cross-section images were used to measure
the relative density of specimens. An average relative density of 99.2 ± 0.3% was measured
for all specimens.
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2.3. Heat Treatment

A heat-treatment procedure was designed based on the conventional T6 heat-treatment
to bring the alloy to its peak-hardened condition. To determine the peak-hardened condi-
tion, a series of parametric studies on small samples (5 × 5 × 5 mm3) were conducted (see
Figure 3). The solution heat-treatments (SHTs) were carried out for different times up to
2 h at 300, 400, and 500 ◦C. All samples were then quenched in water at room temperature.
SHT was followed by artificial aging (AA) at 140, 160, and 180 ◦C for times up to 48 h
(see Table 3). After identifying the adequate parameters, half of the tensile and fatigue
specimens were subjected to the selected heat-treatment condition to be brought to the
peak-hardened condition. It is worth mentioning that slight dimensional changes are ex-
pected due to the relief of residual stresses, formation and dissolution of secondary particles
and precipitates, vacancy concentration changes, and redistribution of alloying elements
among phases [19,20]. However, such changes were not studied in the present work.

Figure 3. Schematic representation of the heat-treatment parametric study for both SHT and
AA stages.
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Table 3. Heat-treatment conditions used in the parametric study.

Parameters/Stages Solution Heat-Treatment Artificial Aging

Time in hours 0:10, 0:20, 0:30, 1:00, 2:00 1:00, 2:00, 4:00, 8:00,
12:00, 24:00, 48:00

Temperature in ◦C 300, 400, 500 140, 160, 180

The Vickers microhardness values were measured under 600 mN/14 s loading con-
dition, repeated 15 times and averaged. The tensile behavior was evaluated at room
temperature and at a strain rate of 2 × 10−5 1/s. Fatigue tests were performed under
load-controlled condition at a frequency of 20 Hz and a stress ratio of R = −1. Both tensile
and fatigue tests were performed using a 25 kN machine (MTS Landmark) equipped with
an extensometer. In each condition, 3 tensile and 15 fatigue specimens were tested and
averaged to account for statistical deviations.

2.4. Characterization and Testing

Optical microscope (OM, Zeiss Axio Imager 2, Carl Zeiss AG, Oberkochen, BW, Ger-
many) and scanning electron microscope (SEM, Zeiss Auriga, Carl Zeiss AG, Oberkochen,
BW, Germany) were employed to examine the microstructure of non-heat-treated (NHT)
and heat-treated (HT) specimens as well as the fracture surfaces. Electron backscatter
diffraction (EBSD, HKL Nordlys II Detector, HKL Technology Inc., Danbury, CT, USA) and
energy-dispersive X-ray (EDX) spectroscopy were used for the detailed analytical work;
EBSD and EDX analyses provided information about the crystallographic orientation and
chemical composition, respectively. EBSD measurements were performed at an acceleration
voltage of 20 kV and a working distance of 14 mm. Orientation maps were acquired for
an area of 550 × 400 µm2 with a step size of 2 µm at 200× magnification. The camera was
operated at 5 frames averaging in a 4 by 4 binning mode.

Before characterizations, samples were polished down to 0.05 µm. To prepare the
samples, the following procedure was carried out: The samples were compression mounted
in a conductive compound (Buechler’s KonduktoMeter, Buechler GmbH, Koenigstetten,
Austria) and then manually ground down by P1000 grit SiC abrasive paper. This was
followed by stepwise automatic mechanical polishing under 20 N load with 9, 3, and then
1 µm polycrystalline diamond suspensions emulsified in an oil-based lubricant. Each step
took 7 min. Final polishing was performed for 2 min with MasterMet 2 colloidal silica
with a particle size of below 0.05 µm. Samples were cleaned between each step using
ethyl alcohol. After final polishing, samples were cleaned with distilled water. No etching
was necessary, as a scratch-free surface with sufficient image contrast could be achieved
immediately after polishing.

3. Results and Discussion

3.1. Heat Treatment

It is well known that an increase in the ultimate tensile strength (σUTS) and the yield
strength (σY) would enhance the fatigue life [21]. A high yield strength postpones the
micro-deformations responsible for fatigue crack initiation. A high tensile strength or
a low ratio of σY/σUTS, on the other hand, would result in a more effective material
hardening during cyclic loading and, therefore, a higher resistance to crack propagation
once deformation microbands have formed. Moreover, an increase in hardness indicates an
increase in both ultimate and yield strength [22]. Therefore, to minimize the experimental
effort and calibrate the heat-treatment process parameters to be applied to the specimens
for mechanical tests, heat-treatment conditions associated with maximum hardness were
selected. This ensures high strength and fatigue life after heat treatments. The evolution of
hardness during heat treatment is shown in Figure 4.
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Figure 4. Microhardness evolution of the alloy during SHT at 300, 400, and 500 ◦C followed by AA at 140, 160, and 180 ◦C.

A relatively high hardness, i.e., 115 HV, of AlSi10Mg alloy measured in NHT condi-
tion already shows an enhancement compared to that of its conventionally manufactured
counterparts, 63 HV [4], which agrees with the data already published [23]. This obser-
vation can be justified by the size of columnar and equiaxed grains, in the range of 10 to
70 µm, compared to grain sizes of the order of a few hundred microns in conventionally
cast AlSi10Mg [4]. Figure 5 shows the inverse pole figure (IPF) map of the α-Al matrix
with a face-centered cubic crystal structure, which is the result of an EBSD analysis of the
microstructure in the NHT condition. Despite the presence of equiaxed grains, much of
the microstructure is composed of columnar grains with average length and thickness of
70 ± 5 µm and 10 ± 2 µm, respectively. Most columnar grains are oriented with their <001>
crystal direction parallel to the build direction. Such a texture has been widely reported
in PBF-LB/M-manufactured AlSi10Mg alloy and many other metallic alloys processed
by PBF-LB/M [24,25]. It is reported that the morphology and crystal orientation of these
columnar grains stay almost intact after solution treatment even at 530 ◦C for 6 h. Only
a slight grain growth can occur [26,27]. This texture arises parallel to the heat extraction
direction during columnar solidification of metallic alloys with cubic crystal structures [28].
Equiaxed grains with an average diameter of 8 ± 2 µm and a weaker texture than columnar
grains can be observed near the borders of weld beads. The columnar zone is expected to
have formed due to the rapid growth of grains with favorable <001> orientation parallel
to the heat flow direction. In general, thermal gradient G and solidification rate R at the
solid–liquid interface determine the grain morphology during solidification and the mor-
phology transition from equiaxed to columnar [29,30]. In this study, the thermal gradient
within the weld bead border, also known as hatch overlaps [31], was found to be as high
as 106 K/m, and the solidification rate behind the weld bead had the same speed as the
scanning speed, 1.3 m/s, which can explain the rapid growth of grains parallel to the heat
flow direction. Both the thermal gradient and solidification rate were calculated based on
Rosenthal’s theoretical solution of moving heat source [32] at liquidus–solidus region.

Furthermore, Si supersaturation of up to 2.7 at.% has been reported during the PBF-
LB/M of AlSi10Mg alloys [33,34], while the equilibrium solubility of Si in Al is below
0.1 at.% at room temperature. This high supersaturation also contributes to the hardness of
the material in the NHT condition. Consequently, grain refinement (Hall–Petch strength-
ening) and solid solution strengthening resulting from the high solidification rate [1] are
both considered as the primary factors for the relatively high hardness of the NHT PBF-
LB/M material [35]. In addition, the Orowan strengthening due to the presence of a high
density of dispersed Si particles at grain and subgrain boundaries is also expected to have
contributed to the high hardness [36].
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After SHT at 500 ◦C for only a few minutes, the material became considerably softer.
The microhardness rapidly decreased to 72 HV within 20 min before reversing to 78 HV
after an hour of SHT at 500 ◦C. An initially sharp drop of hardness followed by a steady
hardness level at longer holding times has also been reported by Aboulkhair [37]. This sharp
reduction in hardness is due to the microstructure coarsening. Moreover, it is also expected
that the amount of supersaturated Si in α-Al after quenching from 500 ◦C be lower than that
in the NHT condition [38], thereby diminishing the solid solution strengthening. The small
reversion of hardness after 20 min at 500 ◦C could be attributed to the partial dissolution of
coarse intermetallic components and therefore slight solid solution strengthening due to
an increase in the solute amounts of elements such as Fe and Si. It is necessary to point
out that the hardness decrease was more gradual for SHT at lower temperatures of 400
and 300 ◦C. Moreover, based on the equilibrium eutectic temperature of nearly 577 ◦C
for the binary Al-Si system, it might appear appropriate to pick a solution heat-treatment
temperature higher than 500 ◦C to dissolve more Si and more intermetallic compounds.
Nevertheless, given the presence of alloying elements other than Si and impurities, the
risk of incipient melting at a solution heat treatment temperature such as 550 ◦C would
be quite high. On this basis, we picked 500 ◦C as the solution heat-treatment temperature.
Choosing temperatures of this order for the solution heat-treatment of AlSi10Mg is also a
common practice according to the literature data [13].

The influence of AA at 140, 160, and 180 ◦C after two hours of SHT followed by water
quenching can also be seen in Figure 4. At 160 ◦C, the hardness increases to 116 HV after
24 h. The slight hardness decrease after longer aging times indicates the onset of over-aging.
When aged at 140 ◦C, the material could not reach its peak hardness condition in 24 h. On
the other hand, when the alloy was aged at 180 ◦C, its hardness reached a maximum of
114 HV in just 16 h, followed by a relatively sharp drop in hardness due to over-aging.
Consequently, for further investigation of the tensile and fatigue behavior of the alloy, an
AA time of 24 h and temperature of 160 ◦C were selected.

The microstructures in the NHT and HT conditions are shown in Figures 6 and 7.
In both figures, the white arrows indicate the build direction. As can be seen, hatch
overlaps and the three distinct areas, which were visible in NHT condition with “fish scale”
morphology [39–41], can hardly be identified in HT condition. The three distinct areas are
fine subgrains of pro-eutectic (primary) α-Al in the center of the weld bead, larger subgrains
on the border of the weld bead, and a heat-affected zone with a broken intercellular
network. Similar results have been reported in several publications [38,42,43]. These
hatch overlaps disappear through compositional and microstructural homogenization
during SHT. The coalescence and coarsening of Si particles during the SHT, as implied
from the microstructure in the HT condition, leads to the dissolution of Si-rich eutectic
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regions. Irregular-shaped Si particles with sizes in the range of 0.2 and 4 µm can clearly be
observed in HT condition (Figure 7b). All these would imply the weakening of anisotropic
microstructure and mechanical properties of the NHT PBF-LB/M material fabricated either
parallel or perpendicular to the build platform. Moreover, several plate-like precipitates
with a length of 4 ± 1 µm are distributed in the microstructure. SEM-EDX analyses
indicated high concentrations of Fe in the precipitates. These precipitates are expected to
be β-Al5SiF [36].

Metals 2021, 11, x FOR PEER REVIEW 8 of 17 
 

 

The microstructures in the NHT and HT conditions are shown in Figure 6 and 7. In 

both figures, the white arrows indicate the build direction. As can be seen, hatch overlaps 

and the three distinct areas, which were visible in NHT condition with “fish scale” mor-

phology [39–41], can hardly be identified in HT condition. The three distinct areas are fine 

subgrains of pro-eutectic (primary) α-Al in the center of the weld bead, larger subgrains 

on the border of the weld bead, and a heat-affected zone with a broken intercellular net-

work. Similar results have been reported in several publications [38,42,43]. These hatch 

overlaps disappear through compositional and microstructural homogenization during 

SHT. The coalescence and coarsening of Si particles during the SHT, as implied from the 

microstructure in the HT condition, leads to the dissolution of Si-rich eutectic regions. 

Irregular-shaped Si particles with sizes in the range of 0.2 and 4 µm can clearly be ob-

served in HT condition (Figure 7b). All these would imply the weakening of anisotropic 

microstructure and mechanical properties of the NHT PBF-LB/M material fabricated ei-

ther parallel or perpendicular to the build platform. Moreover, several plate-like precipi-

tates with a length of 4 ± 1 µm are distributed in the microstructure. SEM-EDX analyses 

indicated high concentrations of Fe in the precipitates. These precipitates are expected to 

be β-Al5SiF [36]. 

 

Figure 6. Cross-sectional optical micrograph of (a) NHT and (b) HT specimens. The white arrow indicates the build direc-

tion. 

 

Figure 7. SEM results showing a cross-section of (a) NHT and (b) HT specimens. The white arrow represents the build 

direction. EDX map of Al (red) and Si (green) distribution in the area marked by a rectangle is superimposed. 

Figure 6. Cross-sectional optical micrograph of (a) NHT and (b) HT specimens. The white arrow indicates the build direction.

Metals 2021, 11, x FOR PEER REVIEW 8 of 17 
 

 

The microstructures in the NHT and HT conditions are shown in Figure 6 and 7. In 

both figures, the white arrows indicate the build direction. As can be seen, hatch overlaps 

and the three distinct areas, which were visible in NHT condition with “fish scale” mor-

phology [39–41], can hardly be identified in HT condition. The three distinct areas are fine 

subgrains of pro-eutectic (primary) α-Al in the center of the weld bead, larger subgrains 

on the border of the weld bead, and a heat-affected zone with a broken intercellular net-

work. Similar results have been reported in several publications [38,42,43]. These hatch 

overlaps disappear through compositional and microstructural homogenization during 

SHT. The coalescence and coarsening of Si particles during the SHT, as implied from the 

microstructure in the HT condition, leads to the dissolution of Si-rich eutectic regions. 

Irregular-shaped Si particles with sizes in the range of 0.2 and 4 µm can clearly be ob-

served in HT condition (Figure 7b). All these would imply the weakening of anisotropic 

microstructure and mechanical properties of the NHT PBF-LB/M material fabricated ei-

ther parallel or perpendicular to the build platform. Moreover, several plate-like precipi-

tates with a length of 4 ± 1 µm are distributed in the microstructure. SEM-EDX analyses 

indicated high concentrations of Fe in the precipitates. These precipitates are expected to 

be β-Al5SiF [36]. 

 

Figure 6. Cross-sectional optical micrograph of (a) NHT and (b) HT specimens. The white arrow indicates the build direc-

tion. 

 

Figure 7. SEM results showing a cross-section of (a) NHT and (b) HT specimens. The white arrow represents the build 

direction. EDX map of Al (red) and Si (green) distribution in the area marked by a rectangle is superimposed. 

Figure 7. SEM results showing a cross-section of (a) NHT and (b) HT specimens. The white arrow represents the build
direction. EDX map of Al (red) and Si (green) distribution in the area marked by a rectangle is superimposed.

The increase in hardness from 72 to 116 HV after 24 h of artificial aging at 160 ◦C can
be explained by precipitation hardening [44]. Aging is initiated by the formation of Guinier–
Preston zones (GP zones) rich in Mg and Si, followed by the formation of metastable phases,
e.g., β” and β’, which eventually evolve to nanoscale β-Mg2Si precipitates [5]. It is also
interesting to note that the weight fraction of pro-eutectic α-Al in NHT condition is much
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higher than what is predicted from the phase diagram under equilibrium, namely 65 wt.%
compared to the equilibrium fraction of only 24 wt.%. This observation can be attributed
to the nonequilibrium nature of the PBF-LB/M processes.

3.2. Tensile

Figure 8 presents engineering tensile stress–strain curves for NHT and HT specimens.
For each condition, the average tensile properties are summarized in Table 4. The results
indicate an improvement in both yield strength and ductility in the HT condition. The high
work hardening rate of NHT material is due to the presence of dislocations inherent to
PBF-LB/M (see texture gradients in NHT, Figure 5). These preexisting dislocations facilitate
yielding but tangle quickly, leading to a high work hardening rate. Another contribution to
the work hardening rate might have arisen from the partitioning of strain between α-Al
and eutectic regions of the material in NHT condition. It could be expected that the strain
is initially localized in the softer α-Al. The strain is then gradually transferred to the harder
interdendritic regions. In other words, the plastic strain in the α-Al in dendrite cores is
larger than the macroscopic (global) strain. This results in a more rapid stress rise (work
hardening rate) compared to the case of a uniform strain distribution. A similar observation
has also been reported in [45].
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Table 4. Tensile properties in NHT and HT conditions.

Conditions/Properties σY (Rp0.2) in MPa σUTS in MPa εfracture in %

NHT 187 ± 3 347 ± 5 4.5 ± 0.3

HT 240 ± 3 305 ± 3 6.0 ± 0.3

Typically, in structural metals such as Al-Si alloys, an increase in the strength com-
promises the ductility, also known as the strength–ductility trade-off [46]. In the present
case, however, as in the work of Hitzler et al. [47], both yield strength and ductility were
improved after heat treatment. The high strength in the HT is expected to be primarily
related to Mg2Si precipitates, which are less likely to form in the NHT condition. The
relatively low yield strength in the NHT condition also suggests that the temperature in
the gauge section of tensile specimens during PBF-LB/M processing was lower than the
build platform temperature. The high strength in the HT condition can also be related to
the retention of a fine grain size after SHT, thus preserving the impact of the Hall–Petch
strengthening in the HT condition. Enhanced ductility in the HT condition, on the other
hand, might be related to a reduction in the residual stresses in the NHT condition.

Different results have been observed in other publications as well. For instance, in [48],
the T6 heat-treatment decreased the yield strength but improved the ductility. On the
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other hand, in [36], the treatment increased yield strength compared to the alloy in NHT
condition. These differences may be due to differences in fabrication, heat treatment,
and other pre- and post-processing parameters, e.g., preheating temperature, stress relief
process, machining, as well as SHT and AA temperature and duration.

3.3. Fatigue

The S-N curves for the NHT and HT conditions during fully reversed loading (R = −1)
are shown in Figure 9. The Wöhler curve was fitted according to the Basquin fatigue
model, Sa = a (Nf)b, where Sa is the stress amplitude, Nf is the number of cycles to failure,
and a and b are the fitting parameters. The survival probability Ps at 90% is depicted as
an envelope around the fitted curves as well. The resulting curves show that the heat
treatment significantly improved the fatigue life of the alloy in both low and high cyclic
loads. The calculated fatigue strength at 107 cycles (SN) for the specimens in HT conditions
is approximately 80 MPa, which shows an increase of 60% from NHT fatigue strength
of 50 MPa. An increase in SN in the HT condition has also been observed in [49], where
50 MPa and 75 MPa fatigue strength is reported in NHT and HT condition. However,
slightly dissimilar results have also been reported [50]. Differences are likely related to the
employment of various fabrication process parameters and T6 heat-treatment parameters
in individual studies. In contrast to conventionally cast products, fabrication parameters
and heat-treatment conditions are currently not well established. It is also important to
note the increase in the value of the Basquin slope (b) after heat treatment from −0.16 to
−0.19. It illustrates that while there is an overall improvement of fatigue behavior in all
stress amplitudes, a greater improvement occurs in the low cycle fatigue behavior.
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Figure 9. S-N curves for the NHT and HT conditions. All tests were performed at stress ratio R = −1
and stress concentration factor Kt = 1. Ps denotes the 90% survival probability. The four specimens
selected for fractography are marked with letters a and b.

To obtain a complete picture of the influence of the increased yield stress after heat
treatment on fatigue life, the modified Goodman method [51] was employed and the fatigue
endurance diagram was plotted (see Figure 10). This method reduces the experimental
effort by providing an estimate of the fatigue life at different R-values based on one set
of measurements at R = −1. This form of representation enables the comparison of the
results of this work with already published data based on measurements performed at
different R-values. In Figure 10, the knowledge of mechanical properties under tensile
loading conditions and SN under fully reversed cyclic loading in the axial direction is
used to predict the fatigue performance of materials in NHT and HT conditions under
cyclic loading conditions with nonzero mean stress (Sm). It is evident that despite a slight
decrease in the ultimate tensile strength, the fatigue life region is expanded by 90% in the
HT condition, which is due to the increase in the yield strength after heat treatment. It
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appears that the delayed onset of micro-deformation caused by the higher yield strength of
the alloy in HT condition is the dominant factor controlling the fatigue strength. Moreover,
the influence of heat treatment is more pronounced in the negative Sm range.

Figure 10. Modified Goodman diagram for both NHT and HT materials. Yield, ultimate tensile, and
fatigue strengths are marked by σY , σUTS, and SN, respectively.

3.4. Fractography

In order to describe better the connection between fatigue properties and features of
the fracture surface, e.g., the size, type, and location of defects and the crack initiation and
propagation regions, detailed fractography analyses were conducted. Fracture surfaces
for two specimens in the NHT condition under Sa = 64 and 112 MPa (Figure 11) and two
HT specimens under Sa = 96 and 128 MPa (Figure 12) were examined. The main zones of
crack initiation (i), crack propagation (ii), transition area (iii), and final overload fracture
(iv) can be observed clearly for all specimens. These zones have been observed in other
studies as well [52,53]. The influence of applied Sa on all stages of fracture evolution can
be seen, where at lower stresses the fatigue crack propagation and transition region are
larger compared to the specimens tested under higher stresses.
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microscopy images of the whole fracture surface. Top-right: SEM micrograph of the crack initiation
and propagation zones. Below: defects responsible for the fatigue fracture initiation.
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In most cases, the crack initiates from one defect with a size of around 100 to 150 µm
on the surface of the specimens. However, as shown in Figure 11b, only at extremely high
applied Sa, e.g., 112 MPa, multiple crack initiation sites, i.e., cleavage fans, were observed,
rather like the ones reported in [52]. The initiating defects are irregular in shape, while
other noncritical smaller defects, i.e., gas pores, remain spherical (Figure 11a). Looking
closer, one can detect unmelted aluminum powders within the initiating defects, which
indicates a lack of fusion (Figure 11b).

In the fatigue propagation region, a relatively smooth surface, due to repeated com-
pression of the crack, can be observed. In the transition area between crack propagation
and final overload fracture, parabolic stripes can be identified, signifying the propagation
direction (see Figure 13). At the center of each stripe, a defect could consistently be found.
These defects, which are away from the main initiating defect on the surface of the speci-
mens, induce a minor crack initiation and propagation. These cracks can then merge to the
main crack propagating on a different plane and form these small parabolic stripes [54].

In the overload region, large irregular defects due to lack of fusion (LOF) can be
observed. At higher magnifications, a quasi-cleavage pattern, i.e., small cleavage facets
and dense shear ridges mixed with dimple regions, is visible in the crack propagation zone
of the fracture surface, indicating quasi-brittle fracture of NHT specimens (see Figure 14a).
After heat treatment, as discussed in Section 3.1, the columnar dendritic α-Al subgrains are
fully eliminated, and the eutectic Si network evolves into larger Si particles. Larger dimples
are more pronounced on the fracture surface of the HT specimens, indicating an increase
in ductility and hence an improvement in low cycle SN of the HT alloys (see Figure 14b).

Figure 13. Fractography at the transition zone between crack initiation and propagation zone of
NHT specimens.
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4. Conclusions

Based on the results obtained in this study for the AlSi10Mg alloy, the following
conclusions can be drawn:

1. The microstructure of the NHT material is mainly composed of columnar grains
oriented with their <001> crystal direction parallel to the build direction, which is
due to the existence of a high thermal gradient within the hatch overlaps.

2. SEM results for the NHT condition indicated a weight fraction of primary α-Al higher
than the equilibrium content. This is caused by the rapid solidification conditions.
Additionally, the nonequilibrium nature of the process suppresses the growth of
secondary dendritic arms in α-Al.

3. A relatively high hardness of 115 HV was measured for the NHT condition. It is due
to the presence of exceptionally fine grains and a high concentration of supersaturated
alloying elements within the aluminum matrix. Another contributing factor to the
high hardness is the presence of fine Si particles at the grain and subgrain boundaries.
It is also worth mentioning that as hardness is associated with plastic deformation,
the good work hardening characteristic of the NHT material, as shown in the tensile
test results, must have contributed to its high hardness.

4. Solution heat-treatment at 500 ◦C for two hours followed by quenching and then artifi-
cial aging at 160 ◦C for 24 h was selected after performing a series of parametric studies
to bring the alloy to its peak-hardened condition. After the heat treatment, columnar
dendritic subgrains, as well as hatch overlaps, disappear through compositional
homogenization, which implies the elimination of the anisotropic microstructural and
mechanical properties of the NHT material. At peak-hardened condition, the hard-
ness of 116 HV was measured, which is primarily caused by precipitation hardening
of the alloy with nanoscale β-Mg2Si precipitates.

5. The flow curves indicate a simultaneous improvement of both yield strength and
tensile elongation in HT condition. This can be explained very well by the following
effects: Firstly, the residual stress accumulated in the specimen during the PBF-LB/M
process is recovered after the heat treatment, thus reducing the probability of fracture
in regions of the NHT specimen under high local stresses. Secondly, the impact of
the Hall–Petch strengthening factor is preserved after heat treatment, as the grain
size after SHT remains similar to that observed in NHT condition. Lastly, Mg2Si
precipitation further contributes to strengthening.
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6. Although there is a slight decrease in the ultimate tensile strength, fatigue life after
heat treatment is improved because of an increase in the yield strength. Moreover, in
both NHT and HT specimens, fatigue failure is initiated from large defects located
just below or on the specimen surface for all stress levels. The heat treatment did
not have much influence on the size of initiating defects, which were typically of the
order of 100 to 150 µm.

7. The fracture mechanism after heat treatment changes from quasi-brittle to a more
ductile type. Fracture surface examinations indicated that the quasi-cleavage pattern
of the alloy in the NHT condition converts into relatively larger dimples in the crack
propagation zone in the HT condition.
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