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Abstract: We studied the broadband optical conductivity of CaMnBi2, a material with two-dimensional
Dirac electronic bands, and found that both components of the intraband conductivity follow a uni-
versal power law as a function of frequency at low temperatures. This conductivity scaling differs
from the Drude(-like) behavior, generally expected for free carriers, but matches the predictions for
the intraband response of an electronic system in a quantum critical region. Since no other indications
of quantum criticality are reported for CaMnBi2 so far, the cause of the observed unusual scaling
remains an open question.

Keywords: Dirac materials; optical-conductivity scaling; topological semimetals

1. Introduction

CaMnBi2 and its sister compound SrMnBi2 are some of the first materials in which
bulk electronic bands with Dirac-like dispersion were experimentally confirmed [1,2]. Both
materials are arranged in layers with square nets of Bi atoms (space group P4/nmm). The
materials are believed to possess two-dimensional Dirac bands that are anisotropic and
slightly gapped due to spin-orbit coupling [1–5]. The materials have antiferromagnetic
in-plane ordering of Mn ions with Néel temperatures between 270 and 290 K [1,3,6,7]. In
CaMnBi2, another transition at Ts ≈ 50 K was detected by various experimental techniques
including transport [2,3,8,9], magnetoresistance [2], susceptibility [3], thermopower [8], and
optical [10,11] measurements. The signatures of Ts are often tiny and not always resolved
in DC transport [6]. No indications of a phase transition were detected in specific-heat [3]
and neutron measurements [7]. The anomaly at Ts was first tentatively attributed to either
weak ferromagnetic order [2] or spin canting [3]. Based on optical and magnetic torque
measurements in combination with band-structure calculations, Yang et al. [11] recently
concluded on a spin-canting-induced band reconstruction at Ts, therefore clarifying the
nature of this transition. In this paper, we report on the optical conductivity measurements
in CaMnBi2. Below Ts, we found an unusual scaling of its intraband conductivity. This
scaling was previously attributed to manifestations of quantum criticality. Hence, it might
be an indication of quantum criticality in CaMnBi2, although other explanations cannot be
excluded.

2. Materials and Methods

Sample growth and characterization: single crystals of CaMnBi2 were grown using
a self-flux method similar to that described previously [6]. Elementary Ca (99.99%), Mn
(99.9%), and Bi (99.99%) were mixed in the molar ratio Ca:Mn:Bi = 1:1:8 and put into an
alumina tube before sealing it in a quartz tube. The mixture was heated up to 800 ◦C
during 10 h, kept at this temperature for 5 h, then slowly cooled down to 450 ◦C at a
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rate of 3 ◦C/h. The excess Bi flux was decanted at this temperature in a centrifuge. As
CaMnBi2 is somewhat air-sensitive, its handling was carried out in an inert gas atmosphere.
The obtained samples were carefully characterized by X-ray, transport, magnetic, and
specific-heat measurements as described in the Appendix A.

Optical measurements: the near-normal-incidence optical reflectivity R(ν) was mea-
sured from a large (roughly 2 by 3 mm) (001) surface of a CaMnBi2 crystal at a num-
ber of temperatures between 10 to 300 K over a broad frequency range from ν = 50 to
22,000 cm−1 (≈6 meV–2.75 eV) using two Fourier-transform spectrometers (Bruker IFS
113v and Bruker Vertex 80v equipped with a Hyperion IR microscope (all three devices are
from Bruker Corporation, Billerica, MA, USA)). At low frequencies, an in situ gold evapora-
tion technique was utilized for reference measurements. For frequencies above 1000 cm−1,
gold and protected silver mirrors served as references. The complex optical conductivity,
σ(ν) = σ1(ν) + iσ2(ν), was obtained using Kramers–Kronig transformations. The high-
frequency range was extended by involving the X-ray atomic scattering functions for
high-frequency extrapolations [12]. The results of the four-point DC resistivity measure-
ments were used for the low-frequency extrapolations. To avoid possible surface oxidation,
all measurements were performed on freshly cleaved surfaces.

3. Results

The results of our optical experiments are shown in Figures 1 and 2. All measurements
were obtained on (001) planes of CaMnBi2 (in-plane response). Let us note here that,
although the in-plane Dirac bands of CaMnBi2 are known to be highly anisotropic [4,5], this
band anisotropy is not expected to be seen in the linear optical response because of the four-
fold in-plane symmetry. Indeed, our polarization-dependent reflectivity measurements do
not reveal any optical anisotropy. Hence, we discuss the measurements performed with
unpolarized light throughout the paper.
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optical conductivity σ1(ν) (panel (c)) of CaMnBi2 for select temperatures between 10 and 300 K. 

Figure 1. Frequency-dependent in-plane reflectivity R(ν) (panels (a,b)) and the real part of the
optical conductivity σ1(ν) (panel (c)) of CaMnBi2 for select temperatures between 10 and 300 K. The
development of a dip in R(ν) and a bump in σ1(ν) at around 1500 cm−1 (≈200 meV) is clearly seen at
T < 50 K and marked with the arrow in panel (c). Note the change in frequency scale at 8000 cm−1.
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Figure 2. Scaling of the intraband complex optical conductivity in CaMnBi2. The real (panel (a)) and imaginary (panel (b))
parts of the optical conductivity follow the Drude behavior for T > Ts ~ 50 K and scale as 1/ω0.5 at low temperatures. The
conductivity angle ϕ (panel (c)) is almost constant at these temperatures, while it increases quasi-linearly in the Drude case.

The obtained broadband optical spectra as functions of frequency are shown in
Figure 1. The interband part of the optical conductivity has been analyzed in Reference [11];
our experimental findings are in full agreement with these results. The goal of our paper is
to analyze the intraband low-energy response.

At low frequencies and for T > 50 K, the reflectivity R(ν) [ν =ω/(2π)] and both parts
of the complex conductivity are dominated by intraband electronic transitions and are
typically metallic: R(ν) approaches unity as ν diminishes, while σ1(ν) and σ2(ν) reveal
typical Drude behavior, as can be seen best from Figure 2a,b. The conductivity angle,
ϕ = arctan(σ2/σ1), is frequency dependent and follows the Drude model; see panel (c).

The low-energy interband transitions within the Dirac bands, which are known to
provide a power-law contribution to low-frequency σ1(ν) [13–17], are not seen in our
measurements. The low-frequency response of CaMnBi2 is completely dominated by free
carriers. This situation is, in fact, rather typical for different Dirac systems, in which the
Fermi level is situated far from the band crossings and/or the free-carrier contributions
from non-Dirac bands are significant [18–23].

At the spin-canting temperature Ts ≈ 50 K, dramatic changes occur in the optical
spectra. Apart from the formation of a low-frequency mode at approximately 200 meV
(Figure 2a,b) and a corresponding dip in reflectivity (Figure 1a) that were reported previ-
ously [10,11], the intraband absorption also drastically changes its shape. The single Drude
term is unable to describe the low-energy spectra. (Let us note that the two-Drude approach
used in Reference [11] is able to provide only a very rough description of the experimental
σ1(ω); see Figure 1b of Reference [11].) Instead, one can see that both components of the
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optical conductivity follow a power law. This power-law behavior is most apparent at low
temperatures: below 30 K. As evidenced from our fit, σ1(ω) and σ2(ω) both depend on
frequency as 1/ω0.5; this power law is shown as black solid lines in Figure 2a,b. This be-
havior of conductivity strongly differs from the conventional Drude response. In particular,
changes in the reactive part (σ2(ω)) are significant: instead of showing a broad maximum
(which corresponds to the scattering rate in the Drude case), σ2(ω) is now monotonic in
frequency. Furthermore, the pre-factors in the frequency dependencies of σ1(ω) and σ2(ω)
are identical, i.e., σ1 and σ2 are equal at a given frequency. This provides that ϕ = π/4.

4. Discussion

The strong non-Drude intraband response of CaMnBi2 is rather surprising. Free
electrons are generally expected to follow a Drude(-like) conductivity ansatz [24]. One
can notice that the conductivity scaling observed here was widely discussed in the past in
relation to quantum phase transitions (QPTs). The presence of a QPT leads to universal
power-law scaling behaviors of the response functions [25]. In particular, the frequency-
dependent complex conductivity should follow such a behavior. For the frequency region
where kBT < h̄ω, the conductivity can be a universal function of frequency [25]. In our
case, this inequality is fulfilled. Van der Marel et al. [26] argued that scale invariance,
causality, and time reversal symmetry require that, for a quantum critical system, the
complex conductivity in this frequency region follows:

σ(ω) = |σ(ω)|eiϕ(ω) = Cωγ−2eiπ(1−γ/2), (1)

where γ is a critical exponent and C is a constant. This ansatz implies that both σ1(ω) and
σ2(ω) depend on frequency as ωγ−2 and the phase ϕ is frequency independent and set
by the same exponent γ. If we apply Equation (1) to the recorded spectra of σ1 and σ2, we
find the critical exponent γ to be 3/2. According to the scaling analysis, this value of the
critical exponent should provide a frequency-independent value for the conductivity angle,
ϕ = π/4. As noticed above, this result indeed follows from our data.

Interestingly, the same optical conductivity scaling (with γ = 3/2) was theoretically
elaborated by Ioffe and Millis [27] in relation to a possible QPT in the superconducting
cuprates. Van der Marel [28] suggested a generalized form of this relation (with the
critical exponent not fixed at 3/2) that merges with a proposition of Anderson [29] for a
one-dimensional Luttinger liquid in the collision-less limit.

It should be noted that the Dirac bands in CaMnBi2 are two-dimensional (due to the
planar net of Bi atoms) and that they possess a very high anisotropy within this plane [4,5].
In fact, the electronic band structure can be viewed as a gapped dispersive nodal line in two
dimensions, with the Fermi velocity in one direction being much smaller than the Fermi
velocity in another one. It is known that the presence of a nodal line effectively reduces
the dimensionality of electronic transport [16,17,30]. This reduction can possibly occur in
CaMnBi2, leading to a quasi-one-dimensional situation and, eventually, to the realization
of a quantum critical state.

Certainly, the nature of the observed scaling has to be clarified in further theoretical
and experimental studies; the observed scaling is not necessarily related to quantum
criticality. The goal of this paper is to report this unusual conductivity behavior and to
suggest a possible explanation. Still, one can note that the possible quantum criticality in
CaMnBi2 (if it is confirmed) should likely be related to the magnetism in this system and,
particularly, to the spin-canting transition at Ts. This conclusion follows from the fact that
the observed conductivity scaling appears only below this temperature.

5. Conclusions

In summary, we performed broadband optical conductivity measurements of CaMnBi2
—a highly anisotropic material with two-dimensional nets of Bi atoms and anisotropic Dirac
bands. We detected the formation of a finite-frequency absorption mode at T < Ts = 50 K,
which is in agreement with previous studies. Most importantly, the optical response of
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itinerant electrons at these temperatures is not of the Drude type. Instead, it follows a
fractional power-law behavior, σ1(ω)~σ2(ω)~ω−0.5, that is similar to the behavior proposed
for quantum critical systems with the critical exponent γ = 3/2. These findings might
indicate that CaMnBi2 is in the vicinity of a quantum phase transition. More input from
the theory side and further experiments are necessary to confirm this proposition.
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Appendix A

Electronic transport and magnetic susceptibility: temperature-dependent DC re-
sistivity, ρ(T), was measured in a custom-made setup at temperatures down to 2 K. To
highlight the discussed feature in resistivity near Ts, we plot ρ(T) on an enlarged scale
in Figure A1a. To further confirm the Ts feature, we performed temperature-dependent
measurements of magnetic susceptibility, χ(T), at 2 T down to 10 K with a commercial
setup (MPMS, Quantum Design Inc., San Diego, CA, USA) based on a superconducting
quantum interference device. The results of these measurements are shown in Figure A1b.
To clearly observe the anomaly at Ts, we performed a polynomial fit of the χ(T) curve at
T > Ts and subtracted the fit from the experimental data. The value of ∆χ(T) obtained in
this way is shown in Figure A1c. For T << Ts, ∆χ(T) remains almost constant.

Heat-capacity measurements: heat capacity was measured as a function of tempera-
ture, employing the relaxation method (PPMS, Quantum Design Inc., San Diego, CA, USA).
The sample was attached with Apiezon N vacuum grease to the sapphire platform, and
the heat capacity of this platform (including the vacuum grease) was measured in advance
and then subtracted from the total heat capacity. Figure A1d displays our results of the
specific-heat measurements. The data reveal a small λ-type anomaly at 290 K, which is
associated with the antiferromagnetic ordering of Mn atoms. The Néel temperature is in
good agreement with that reported by Guo et al. [6] from neutron powder diffraction data
and is slightly higher than the findings in other reports [3,7]. The low-temperature Cp/T
data can be well fitted with a power law, Cp/T = γ + βT2 + δT4 + εT6, with the Sommerfeld
term γ = 6.78 mJ/(molK2). The higher powers of this polynomial represent the lattice
and magnon contributions. They are very small and amount to β = 0.00126(1) J/(molK4),
δ = 2.04(3) × 10−5 J/(molK6), and ε = −9.3(2) × 10−8 J/(molK8). Most importantly, Cp/T
is featureless at Ts and in agreement with a previous report [3].
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Figure A1. Characterization measurements of CaMnBi2. DC resistivity ρ(T) (a), magnetic susceptibility χ(T) (b), and the
deviation of χ(T) from its high-temperature behavior (c). The data in panels (a–c) are shown at the temperatures near Ts

to highlight the presence of a transition. Molar specific heat (d). The main frame shows a Sommerfeld plot (blue circles)
with a fit (red line) to a polynomial in T2 (see text). The insets provide an overview on a linear temperature scale and a
magnification around the 290 K anomaly. The unit cell volume is shown as a function of temperature in panel (e). The red
solid line represents a fit of the experimental data to Equation (A1) with the parameters given in the text. The inset displays
a section of the diffraction pattern (λ = 0.709319 Å) versus Bragg angle 2Θ and temperature. The Bragg reflections shown
are indexed as 200 at 18.15◦, 114 at 19.58◦, 105 at 20.60◦, 211 at 20.65◦, 203 at 21.30◦, and 212 at 21.63◦.

X-ray measurements: in order to check the structural aspect, we performed temperature-
dependent X-ray powder diffraction measurements at 295, 100, 50, 20, and 5 K. The X-ray
patterns were collected on a CaMnBi2 sample contained in a 0.3-mm diameter quartz glass
capillary under He exchange gas using Mo Kα1 radiation. Temperatures between 295 and
5 K were adjusted in a home-built cryostat. As revealed in Figure A1e, there are no visible
splittings or broadenings of the Bragg reflections, which would be indicative of a structural
phase transition. The tetragonal lattice parameters were obtained from Rietveld profile
refinements of the diffraction patterns assuming the space group P4/nmm (No. 129) and
the atom and lattice parameters reported by Brechtel et al. [31] as starting parameters. They
perfectly follow a simple Debye law:

V(T) = V0 + IvT
T

Θ3
D

∫ ΘD/T

0

x3

ex − 1
dx, (A1)
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with V0 = 223.58(3) Å, ΘD = 279(4) K, and Iv = 0.0130(7) Å (here, V0 is the unit-cell volume at
0 K, ΘD is the Debye temperature, and the pre-factor Iv is a linear function of the Grüneisen
parameter in the Debye approximation [32]). As seen from Figure A1e, no anomalies in the
thermal expansion, which could indicate a structural phase transition, were detected. This
is consistent with the absence of broadenings or splittings of the Bragg reflections. Thus,
any detectable structural transition at Ts is excluded.
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