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Abstract: A formal analogy of fluctuating diffusivity to thermodynamics is discussed for messenger
RNA molecules fluorescently fused to a protein in living cells. Regarding the average value of the
fluctuating diffusivity of such RNA-protein particles as the analog of the internal energy, the analogs
of the quantity of heat and work are identified. The Clausius-like inequality is shown to hold for the
entropy associated with diffusivity fluctuations, which plays a role analogous to the thermodynamic
entropy, and the analog of the quantity of heat. The change of the statistical fluctuation distribution
is also examined from a geometric perspective. The present discussions may contribute to a deeper
understanding of the fluctuating diffusivity in view of the laws of thermodynamics.
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1. Introduction

There are growing experimental observations showing exotic physical properties of
messenger RNA molecules in living cells. A recent experimental study in [1] has offered
one such example. The RNA molecules, each of which is fluorescently labeled with a
protein, exhibit a heterogeneous diffusion phenomenon with fluctuating diffusivity for
two different types of cell: Escherichia coli cell (i.e., a bacterium) and Saccharomyces cerevisiae
cell (i.e., a yeast). For individual trajectories of such RNA-protein particles uniformly
distributed over the cytoplasm of each cell, analysis of the mean square displacement,
which behaves for elapsed time, t, as

x2 ∼ Dtα, (1)

has revealed that the diffusivity, D, i.e., the diffusion coefficient in units of [µm2/sα],
fluctuates in a wide range, whereas the diffusion exponent, α, is approximately constant,
taking a certain positive value less than unity. The latter reflects viscoelastic nature of the
cytoplasm [1] (see also, for example, [2–4] for relevant experimental works) and highlights
the phenomenon referred to as anomalous diffusion [5], which is of great interest for
various disciplines in the literature [6,7], showing subdiffusivity, i.e., 0 < α < 1.

As can be seen in Figure 3 in [1], the diffusivity obeys the following exponential law:

P0(D) ∼ exp(−D/D0), (2)

where D0 is the average value of D ∈ [0, ∞) and yields a typical value of the diffusivity.
There, it is appreciated that the different data in the two cell types follow this law, showing
robustness of the exponential diffusivity fluctuations. The distribution in Equation (2)
has played a key role for obtaining the non-Gaussian distribution of the displacements
of the RNA-protein particles [1]. (Such a role can also be found in recent works in [8,9],
for example.)

In spite of its simple form, the origin of the exponential diffusivity fluctuations remains
unclear. However, the following idea has been suggested [1]: the distribution in Equation (2)
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is the maximal entropy distribution. To accomplish this, a maximum-entropy-principle
approach has been developed in a recent work in [10]. Its basic observation is as follows.
The cytoplasm is regarded as a medium consisting of many local blocks (or regions), a
typical size of which has also been estimated based on the experimental data. In each of
these local blocks, the diffusivity in Equation (1) slowly varies on a time scale much larger
than that of dynamics of the RNA-protein particles. The quantity, S, is then introduced as a
measure of uncertainty about local diffusivity fluctuations over the medium, which turns
out to take the form of the Shannon entropy [11] given by

S[P] = −
∫

dDP(D) ln P(D) (3)

with P(D)dD being the probability of finding the diffusivity in the interval [D, D + dD].
Due to the large separation of time scales, it is considered that the fluctuation distribu-
tion to be observed may maximize this entropy. Together with the constraint on the
normalization condition,

∫
dDP(D) = 1, maximization of the entropy with respect to the

fluctuation distribution under the constraint on the expectation value of the diffusivity,∫
dDP(D)D = D, is found to give the following exponential distribution, P̂(D) ∝ exp(−λD)

with λ being a positive Lagrange multiplier associated with the constraint in the latter, show-
ing that it becomes the distribution in Equation (2) after the identification λ = 1/D0. We here
mention that this exponential distribution has formally the form of the canonical distribu-
tion [12], if it is assumed that D0 is proportional to the average value of temperature over
the local blocks [see Equation (11) below], and this fact turns out to constitute a key in our
later discussion.

The above idea has been further supported by explicitly showing [10] that the entropy
production rate becomes manifestly positive under the mechanism of the so-called “diffus-
ing diffusivity” [13], which offers a description of time evolution of diffusivity fluctuations
and leads to the exponential fluctuation distribution as a stationary solution of its evolution
equation (see, e.g., [14] for a recent development, where emergence of correlation time
characterizing diffusivity dynamics has been discussed). As shown in [1], this mechanism
combined with the approach of fractional Brownian motion [15] modeling the subdiffusion
of the RNA-protein particles yields the non-Gaussian displacement distribution observed
in the experiment. (In [16], it has been found that there exists the lower bound on the rate
suppressing the entropy production, which is independent of time.)

Now, a comment, which motivates our present work, has also been made on an
analogy with the thermodynamic relation concerning temperature [10]. Let us consider
the thermodynamic-like situation in such a way that D0 slowly changes, the time scale of
which should be much larger than that of variation of diffusivity fluctuations mentioned
above. It is shown, for the entropy in Equation (3) with the distribution in Equation (2), that
∂S/∂D0 = 1/D0. It is also assumed that the diffusivity is proportional to temperature in the
local block [see also the discussion after Equation (7) below], as in the Einstein relation [17],
and temperature slowly fluctuates depending on the blocks, (the values of which are
denoted by Ti’s discussed below), i.e., the medium is in nonequilibrium-stationary-state-
like situation. (In fact, such local temperature fluctuations are expected to be realized,
see [18].) Under this, the following relation then holds:

∂S̃
∂D0

=
1
T

, (4)

provided that
S̃ = cS, D0 = cT, (5)

where T denotes the average value of temperature over the local blocks and c is a positive
quantity characterizing mobility of the RNA-protein particles. [It is noticed that maxi-
mization of S̃ also leads to the distribution in Equation (2) after the redefinition of the
Lagrange multipliers.] The derivative appearing in Equation (4) indicates that the volume
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of the local block is kept unchanged, implying that c is fixed, which is discussed in our
later discussion. At the statistical level, the relation, therefore, has an analogy with the
thermodynamic relation concerning temperature, if S̃ and D0 are identified with the analogs of
the “thermodynamic entropy” and the “internal energy”, respectively.

In this paper, we study a formal analogy of the fluctuating diffusivity to thermody-
namics for the RNA-protein particles in the cytoplasm of the Escherichia coli cell as well as
Saccharomyces cerevisiae cell. Regarding the average value of the fluctuating diffusivity as
the analog of the internal energy, we identify the analog of the quantity of heat as well as
that of work. We also show that the analog of the Clausius inequality holds for the entropy
associated with diffusivity fluctuations, which is analogous to the thermodynamic entropy,
and the analog of the quantity of heat. The change of diffusivity fluctuation distribution for
realizing these analogs is also discussed from a geometric perspective. Thus, the present
discussions may give a step toward understanding the fluctuating diffusivity from the
viewpoint of the laws of thermodynamics.

2. Analogs of the Quantity of Heat and Work

Consider the medium in a certain state with a set of different diffusivities, {Di}i,
where Di denotes the ith value of the diffusivity and slowly varies. Here and hereafter, we
purposely develop our discussion in the discrete case of the diffusivity. Let us regard the
average value of the diffusivity with respect to some fluctuation distribution P(Di) to be
observed as the analog of the internal energy:

UD = ∑
i

DiP(Di). (6)

Due to the slow variation of the fluctuations, it is assumed that P(Di) deviates from
the exponential distribution in Equation (2) slightly, in general. In the thermodynamic-like
situation, the medium is considered to be found in the state with the local diffusivity
fluctuations with a certain statistical fluctuation, and these states are distinct each other
in the sense that the local property of diffusivity fluctuations in a given state differs
infinitesimally from that in the other states. Along a process connecting two such states,
the change of UD is given by

δUD = ∑
i

DiδP(Di) + ∑
i

P(Di)δDi, (7)

where δP(Di) stands for the change of the statistical form of the fluctuation distribution,
whereas δDi describes the change of the diffusivity due to external influence. In the case
when the statistical fluctuation takes the exponential form in Equation (2), the medium is
supposed to be in the state analogous to the “equilibrium state”.

We here discuss the following points. The experimental results in [1] have supported
the approach of fractional Brownian motion [15] as an underlying stochastic process for
modeling subdiffusion of the RNA-protein particles. Then, in [19,20], it has been shown,
for the subdiffusive behavior of random walkers such as the RNA-protein particles in
Escherichia coli cells, that the mean square displacement of the walkers is proportional to
temperature for large elapsed time, based on a generalized Langevin equation charac-
terizing viscoelastic nature of the cytoplasm, which is known to offer the subdiffusivity
equivalent to fractional Brownian motion, see, e.g., [21]: the proportionality factor includes
the friction constant depending on the diffusion exponent, which reflects the viscoelasticity
linked to elastic elements such as cytoskeletal filaments (see also, e.g., [22] for a similar
approach in this context). It is of interest to experimentally examine if these features
are observed.

It may be worth to point out that such features have also been discussed in a recent
work in [23] for DNA-binding proteins in Escherichia coli cells.

Therefore, as in the Einstein relation [17], considering a set of different temperatures,
{Ti}i, with Ti being the ith value of temperature in the local blocks, we shall assume the



Entropy 2021, 23, 333 4 of 8

following relation Di = cTi, where c is supposed not to drastically alter over the local blocks,
recalling that α in Equation (1) is approximately constant and the proportionality factor
mentioned above depends on the diffusion exponent. In the case when P(Di) = P0(Di), the
average value of Ti in its continuum limit is given by T in Equation (5). Under these, both
δP(Di) and δDi may be realized by the change of temperature and expansion/compression
of the cell. In fact, it has experimentally been observed in a recent work in [24] (see also
references therein) that cytoplasmic particles exhibit the subdiffusive behavior in Escherichia
coli cells. It has been then found that the average value of the diffusivity of such particles
decreases under compression of the cells. There, it seems natural to consider that this
compression process yields a mechanical external influence, while temperature, which
the cells are subject to, remains unchanged. In such a situation in the present context,
from Di = cTi, δDi is expected to come from the change of c, implying that c plays a role
analogous to external parameter.

Since we are considering that the average value of the diffusivity is the analog of the
internal energy, it is natural to identify the analog of work as

δ′WD = −∑
i

P(Di)δDi, (8)

and the analog of the quantity of heat is identified as

δ′QD = ∑
i

DiδP(Di), (9)

accordingly. Therefore, we obtain the analog of the first law of thermodynamics [12]:

δ′QD = δUD + δ′WD. (10)

3. Dependences on Temperature and the Analog of External Parameter

Based on the above discussions, let us examine how the analogs of the quantity of heat
and work depend on temperature and the analog of external parameter for the exponential
fluctuation distribution P0(Di). To do so, it may be useful to write it as

P0(Di) =
1
Z

exp(−Di/D0),Z = ∑
i

exp(−Di/D0), (11)

with D0 = cT in Equation (5), which formally takes the form of the canonical distri-
bution [12]. It is noticed that the value of Di/D0 does not depend on c. From this, in
Equation (7) with Equation (11), it is understood that the first term on the right-hand side
is associated with δP(Di) due to the change of T, whereas the second term is related to δDi
with the statistical form being kept unchanged, suggesting that its origin comes from the
change of c only.

Therefore, from Equations (8) and (9), we have

δ′QD =

〈
(Di − 〈Di〉)2

〉
cT2 δT (12)

and

δ′WD = −∂〈Di〉
∂c

δc, (13)

where δT and δc describe the changes of T and c, respectively, and the angle brackets
denote the average with respect to the fluctuation distribution in Equation (11). It may be
of interest to see that the analog of the quantity of heat in Equation (12) is described by the
variance of the diffusivity. Equivalently, with Z, Equations (12) and (13) are expressed as

δ′QD = c
∂

∂T

(
T2 ∂ ln Z

∂T

)
δT (14)
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and
δ′WD = −T2 ∂ ln Z

∂T
δc. (15)

4. Analog of the Clausius Inequality

In this section, we establish the analog of the second law of thermodynamics (our
discussion is based on a basic observation in [25], where robustness of this law has been
studied for a generalized entropic measure in the context of complex systems in nonequi-
librium stationary states). For the above-mentioned infinitesimal process, we first evaluate
the change of the entropy, S[P] = −∑i P(Di) ln P(Di), for the exponential fluctuation
distribution. Under the normalization condition on P(Di), the entropy change is given by

δS = −∑
i
(ln P(Di))δP(Di)

= δ′QD
D0

,
(16)

where Equation (2) (in the discrete case) has been used at the second equality. In the case
when the quantity c is fixed, which implies that the volume of the local block remains un-
changed consistently with the situation in Equation (4), using the relations in Equation (5),
we have

δS̃ =
δ′QD

T
, (17)

where it is understood that S̃ is analogous to the thermodynamic entropy. This also justifies
the identifications in Equations (8) and (9).

Next, our interest is in the entropy change in the case when the fluctuation distribution
differs from the exponential one in Equation (2). Consider the two different distributions
of diffusivity fluctuations: one is the exponential fluctuation distribution P0(Di), and the
other is the fluctuation distribution P(Di). Then, we quantify the difference between them
by employing the Kullback–Leibler relative entropy [26] given by

K[P||P0] = ∑
i

P(Di) ln
P(Di)

P0(Di)
, (18)

which is positive semidefinite and vanishes if and only if P(Di) = P0(Di). In the present
infinitesimal process, let us write δP(Di) as follows:

δP(Di) = {γP∗(Di) + (1− γ)P(Di)} − P(Di), (19)

where P∗(Di) denotes some fluctuation distribution satisfying

K[P∗||P0] ≤ K[P||P0], (20)

and γ is a constant in the range 0 < γ < 1. For our subsequent discussion, the convexity of
the relative entropy in Equation (18) is crucial, which is given, in terms of these fluctuation
distributions, as follows:

K[γP∗ + (1− γ)P||P0] ≤ γK[P∗||P0] + (1− γ)K[P||P0]. (21)

With Equation (19), let us evaluate the change of the relative entropy given by

δPK[P||P0] = K[γP∗ + (1− γ)P||P0]− K[P||P0], (22)

where δP stands for the change with respect to P(Di). What is important here is the fact
that this change turns out to be not positive. In fact, from Equations (20)–(22), we have

δPK[P||P0] ≤ γ{K[P∗||P0]− K[P||P0]}
≤ 0.

(23)
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The change in Equation (22) itself is then calculated to be

δPK[P||P0] = −δS[P] +
δ′QD

D0
, (24)

where the normalization condition on the fluctuation distribution has been used. Conse-
quently, in the case when c is fixed, from Equations (5), (23) and (24), we obtain the analog
of the Clausius inequality:

δS̃ ≥ δ′QD
T

. (25)

5. Geometric Perspective of the Change of Statistical Fluctuation

We further discuss about the change in Equation (19), which enables us to realize it
based on a geometric perspective. For it, we examine Equation (20) up to the second order
of δP(Di), which leads to

1
γ ∑

i

(
ln

P(Di)

P0(Di)

)
δP(Di) +

1
2γ2 ∑

i

(δP(Di))
2

P(Di)
≤ 0. (26)

This can be then recast in the following inequality:

∑
i

(δP(Di)− hi)
2

ai
2 ≤ 1, (27)

where hi and ai are defined by

hi = γ P(Di) ln
P0(Di)

P(Di)
(28)

and

ai = γ

√√√√√
∑

j
P(Dj)

(
ln

P(Dj)

P0(Dj)

)2
 P(Di), (29)

respectively. This means that regarding {δP(Di)}i as a coordinate point in the space of
the change, under the condition, ∑i δP(Di) = 0, the change giving rise to the analog of
the Clausius inequality in Equation (25) exists inside an ellipsoid centered at the point
characterized by {hi}i with the semi-axes ai’s. In other words, the condition ∑i δP(Di) = 0
yields a hyperplane passing through the origin in the space, which intersects with the
ellipsoid: this gives a set of points of the intersection inside the ellipsoid, corresponding to
the change.

Therefore, these observations enable us to see a geometric perspective of the change
of statistical fluctuation distribution associated with the analogy between the fluctuating
diffusivity and thermodynamics, suggesting how such a change is performed.

6. Conclusions

We have developed a formal analogy between fluctuating diffusivity and thermody-
namics for RNA-protein particles in both Escherichia coli cell and Saccharomyces cerevisiae
cell. Regarding the average value of fluctuating diffusivity as the analog of the internal
energy, we have identified the analogs of the quantity of heat and work. For the exponential
diffusivity fluctuations, we have also examined how these analogs depend on temperature
and the analog of the external parameter, the change of which may be realized by expan-
sion/compression of the cell. In the analogy of the entropy associated with diffusivity
fluctuations to the thermodynamic entropy, we have then established the analog of the
Clausius inequality for the entropy and the analog of the quantity of heat. This analog
has also been discussed from a geometric perspective, suggesting how the change of the
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statistical fluctuation distribution is done. Therefore, these results allow us to study the
fluctuating diffusivity from the viewpoint of the laws of thermodynamics.

In [27], entropy concerned with the fluctuations of the volume of granules in soft
materials has been discussed in the context of subdiffusion. It may be of interest to examine
such a discussion for the RNA-protein particles if expansion/compression of the particles
is considered, where the analogy of the quantity c to external parameter may be found.
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