
Institute for Visualization and Interactive Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

Optical Flow Estimation with
Separable Cost Volume

Simon Tobias Bihlmaier

Course of Study: Informatik

Examiner: Prof. Dr.-Ing. Andrés Bruhn

Supervisor: Azin Jahedi, M.Sc.

Commenced: June 1, 2022

Completed: December 1, 2022

Abstract

Optical Flow Estimation is an important task in computer vision that involves finding correspondences
between subsequent frames. Recently many approaches have focused on learning to estimate optical
flow using neural networks. Constructing and processing correlation volumes using convolutional
neural networks is applied in many works and yields good results. Separable Flow by Zhang et al.
is an extension for correlation volume based methods such as Recurrent All-Pairs Field Transforms
for Optical Flow by Teed and Deng. It separates the four dimensional correlation volume into two
correlation volumes with only one instead of two displacement dimensions. At the time of its
release, state of the art estimation quality results were reported for Separable Flow on the Sintel and
KITTI datasets. By investigating the implementation provided by the authors, significant changes
of the model structure and training schedule compared to the paper can be discovered.

The goal of this thesis is to verify the published claims about the training regime, model structure,
estimation quality and number of parameters. This is accomplished by reverting identifiable changes
in multiple ablation steps. Evaluating the ablation step closest to the published description shows
that the claimed estimation quality can not be reproduced. The provided model implementation
combined with the published training schedule performs the most similar to the results of the
paper. Additionally, the claim that the four dimensional correlation volume does not need to be
stored in order to compute the three dimensional correlation volumes is investigated. This claim
is verified by providing an alternative parallel implementation for Graphics Processing Units that
fulfills the storage constraint. At the cost of longer computation times, the memory consumption of
Separable Flow can be reduced during training and inference. In an effort to improve the estimation
quality, Global Motion Aggregation by Jiang et al. is added to Separable Flow. On the ablation
training schedule, the combined model achieves better results than Global Motion Aggregation in
isolation.

3

Kurzfassung

Die Bestimmung des optischen Flusses ist eine wichtige Aufgabe im Maschinensehen, die darin
besteht Korrespondenzen zwischen aufeinanderfolgenden Bildern zu finden. In letzter Zeit haben
sich viele Ansätze mit dem Lernen der optischen Fluss Bestimmung mithilfe neuronaler Netze
beschäftigt. Die Konstruktion und Verarbeitung von Korrelationsvolumina mit Konvolutionalen
Neuronalen Netzwerken wird in vielen Arbeiten verwendet und führt zu guten Ergebnissen.
Separable Flow von Zhang et al. ist eine Erweiterung für Methoden wie Recurrent All-Pairs Field
Transforms for Optical Flow von Teed und Deng, die Korrelationsvolumina nutzen. Es trennt
das vierdimensionale Korrelationsvolumen in zwei Korrelationsvolumina mit nur einer statt zwei
Verschiebungsdimensionen auf. Zum Zeitpunkt der Veröffentlichung erzielte Separable Flow die
besten Ergebnisse auf den Sintel und KITTI Datensätzen. Bei der Untersuchung der von den
Autoren bereitgestellten Implementierung konnten signifikante Änderungen in der Modellstruktur
und im Trainingsplan gegenüber der Veröffentlichung festgestellt werden.

Das Ziel dieser Masterarbeit ist es, die Behauptungen der Veröffentlichung über das Trainingsregime,
die Modellstruktur, die Qualität der Schätzung und die Anzahl der Parameter zu überprüfen. Dies
wird erreicht, indem identifizierbare Änderungen in mehreren Ablationsschritten rückgängig
gemacht werden. Die Auswertung des Ablationsschritts, welcher der veröffentlichten Beschreibung
am nächsten kommt, zeigt, dass die behauptete Schätzungsqualität nicht reproduziert werden
kann. Die bereitgestellte Modellimplementierung in Kombination mit dem veröffentlichten
Trainingsplan kommt den Ergebnissen der Veröffentlichung am nächsten. Außerdem wird die
Behauptung, dass das vierdimensionale Korrelationsvolumen nicht gespeichert werden muss, um
die dreidimensionalen Korrelationsvolumina zu berechnen, untersucht. Diese Behauptung wird
überprüft, indem eine alternative parallele Implementierung für Grafikprozessoren beschrieben
wird, welche die Speicherbeschränkung erfüllt. Auf Kosten längerer Berechnungszeiten kann der
Speicherverbrauch von Separable Flow während des Trainings und der Inferenz reduziert werden.
Um die Qualität der Schätzung zu verbessern, wird Global Motion Aggregation von Jiang et al.
zu Separable Flow hinzugefügt. Auf dem Ablationstrainingsplan erzielt das kombinierte Modell
bessere Ergebnisse als Global Motion Aggregation allein.

4

Contents

1 Introduction 15

2 Related Work 17

3 Foundation 21
3.1 Convolutional Neural Networks . 21
3.2 Recurrent Neural Networks . 23
3.3 Attention Mechanism . 25
3.4 Optical Flow . 26
3.5 Error Measures for Optical Flow . 26
3.6 RAFT: Recurrent All-Pairs Field Transforms for Optical Flow 27
3.7 Separable Flow: Learning Cost Volumes for Optical Flow Estimation 31
3.8 Learning to Estimate Hidden Motions with Global Motion Aggregation 35
3.9 General Purpose GPU Computing . 36

4 Investigation of Differences between Paper and Implementation 39
4.1 Differences in the Training: Parameters and Schedule 39
4.2 Differences in the Model Structure . 41
4.3 Discussion . 50

5 Memory Saving Strategy for Separable Flow 51
5.1 Theoretical Savings . 51
5.2 Feasibility Considerations for Varying Model Structures 52
5.3 Alternative 3D Correlation Volume Computation 53
5.4 Results and Discussion . 60

6 Combining Separable Flow with Global Motion Aggregation 63
6.1 Approach . 63
6.2 Results and Discussion . 65

7 Conclusion and Outlook 67

A Equations of the Backward Pass 69

Bibliography 73

5

List of Figures

3.1 Convolution Visualization . 22
3.2 RAFT Overview . 27
3.3 RAFT Lookup Operation . 29
3.4 Separable Flow Overview: Initialization Phase 32
3.5 Overview of Global Motion Aggregation . 35
3.6 Example: Thread Block Grid . 37

4.1 Separable Flow: 4D Motion Features . 42
4.2 Separable Flow: Cost Volume Separation . 43
4.3 Separable Flow: 4D Cost Volume Aggregation 46
4.4 Separable Flow: Motion Aggregation and Regression Network 47

5.1 Saving Time: Minimizing Number of On-Demand Computations 54

6.1 Separable Flow Initialization Phase with GMA 63
6.2 Separable Flow Refinement Phase with GMA 64

7

List of Tables

4.1 Training Differences . 39
4.2 Changing Training Schedule: 50K and 100K Chairs Training Iterations 41
4.3 Model Structure Changes: Ablation Results . 48
4.4 Model Structure Changes: Sintel Finetuning Results 49

5.1 Omitting Storage of 4D Correlation Volume: Results 60

6.1 Separable Flow with GMA: Ablation Results 65
6.2 Separable Flow with GMA: Sintel Finetuning Results 66

9

List of Algorithms

5.1 Computation of the 3D Correlation Volume: Overview 55
5.2 Custom GPU kernel for Maximum and Average Channels 57

11

List of Abbreviations

BS batch size. 39

CNN Convolutional Neural Network. 21

Conv-GRU Convolutional Gated Recurrent Unit. 25

EPE end point error. 41

GMA Global Motion Aggregation. 19, 63

GPU Graphics Processing Unit. 5, 11, 16

GRU Gated Recurrent Unit. 24, 25

LR learning rate. 39

LSTM Long Short-Term Memory. 24

RAFT Recurrent All-Pairs Field Transform for Optical Flow. 16, 27, 48, 49, 50, 53

RNN Recurrent Neural Network. 23, 24, 25

SGA Semi-Global Guided Aggregation. 18, 19, 47

SGM Semi-Global Matching. 18

WD weight decay. 39

13

1 Introduction

Correspondence problems appear in many areas of computer vision. A correspondence problem is
the task of matching two sets of entities such that the mapping fulfills predefined criteria. Optical
flow estimation is a prominent example for such a problem in Computer Vision. It is defined as
finding a displacement field between corresponding pixels of two images.

Dynamic scenes possess several characteristics that make optical flow estimation challenging.
Arbitrary motion of objects can lead to occlusions by rotation, moving behind other objects or
moving out of frame. Varying illumination as well as shading can lead perceived flow that is not
reflected in true object motion relative to the camera.

Despite being a challenging problem, it is worthwhile to pursue solutions since it can be used as a
component of many low level vision tasks. Examples include object motion and depth estimation
as well as segmentation of moving objects [ODo05]. This enables higher level tasks such as
robot navigation [CGN14], video editing [TBKP12], scene reconstruction with dynamic objects
[ZZL+20] and hand gesture recognition in human computer interaction [CT98].

Due to the challenges mentioned, formulating objective functions that enforce the flow field to be
close to the real object motion is non-trivial. The simplest matching objective is the gray value
constancy assumption, where pixels are matched based on how similar their gray values are. Due
to the large search space and limited domain of gray values, matches between pixels have a high
probability to be ambiguous. This means that pixels may have multiple matches with the same gray
value.

Block matching combats this problem by considering the neighborhood of each pixel for gray value
constancy. By depending on differences between the gray values of both pixels neighborhoods,
ambiguities in the matching score of candidates are avoided.

Variational methods such as the method of Horn and Schunck [HS81], formulate the optical flow
task as a global optimization problem. An objective function over all pixels needs to be formulated.
This function may contain a term that penalizes deviations from the gray value constancy assumption
in the flow field called data term. An additional term can be introduced to enforce smoothness of
the flow field and resolve ambiguities. Oftentimes, improvements to the optimization objective
necessitate more complicated solution strategies which may lead to long computation times.

Deep learning based methods avoid the formulation of an objective function. Instead, supervised
deep learning methods receive training data that includes the ground truth flow field. Therefore, the
objective function is implicitly specified through examples. Innovations in such methods stem from
modifications to the model structure such that the model better suits the optical flow estimation task.
Improvements can also be achieved by providing more and better quality training data [BWSB12;
DFI+15a; GLU12; MG15; MIH+16] or modifying the parameters of the training procedure.

15

1 Introduction

The first deep learning techniques for optical flow estimation estimated the flow field in one
pass through a fully convolutional network. “Flownet: Learning optical flow with convolutional
networks” by Dosovitskiy et al. [DFI+15b] introduced the first convolutional neural network
architecture for optical flow. The images were processed by a large number of convolutional layers
connected in a sequential manner with forward skip-connections. Following this seminal work,
many other works have proposed improvements over conventional two dimensional (2D) fully
convolutional networks, for example by adding 3D convolutional layers [TBF+16] or coarse-to-fine
processing [RB17].

Recently, the iterative optical flow prediction method of “RAFT: Recurrent All Pairs Field Transforms
for Optical Flow” [TD20] has gained a tremendous amount of popularity because of its improved
the estimation quality over previous methods and comparatively short training times. Many other
successful methods in the following years such as [JCL+21; JMRB22; ZWPT21] have been based
on it. Especially “Separable Flow: Learning Motion Cost Volumes for Optical Flow Estimation” by
Zhang et al. [ZWPT21] stands out because of its estimation quality improvement over RAFT, which
led to becoming the state of the art optical flow estimation method on the Sintel [BWSB12] and
KITTI [GLU12; MG15] datasets at the time of submission. With the release of the supplementary
material and the implementation of the model, it was discovered that both contained significant
differences to their description in the paper. Particularly striking differences in the implementation
are the use of the 4D correlation volume during motion refinement and leaving out learned channels
of the 3D correlation volume. Those changes take away from the main innovation of the method
which lies in the use of learned 3D correlation volumes. Because of these differences, the question
arises whether it is possible to reproduce the results in the paper by reverting the changes made in
the provided implementation. In this thesis, the question will be answered by reversing changes
of the implementation and evaluating the model. Furthermore, the authors claimed that it is
possible to compute the 3D correlation volumes without storing the 4D correlation volume as an
intermediary result. However, they do not provide any evidence to back up their claim. This claim
will be investigated by providing a parallel computation strategy for Graphics Processing Units,
implementing it and evaluating the results. Finally, to improve the estimation quality of Separable
Flow, Global Motion Aggregation [JCL+21] will be added as a submodule to aggregate the motion
features. The approach for integrating the submodule into Separable Flow will be described and the
results of this expanded model will be discussed.

16

2 Related Work

Several techniques have been introduced to deep-learning based optical flow estimation methods
in recent years. They include the use of cost volumes in end-to-end trainable neural networks,
the use of coarse-to-fine approaches, iterative refinement and lookup of features as well as cost
volume aggregation and techniques to improve occlusion handling. In the following sections,
these techniques that laid the foundation for RAFT and in consequence Separable Flow will be
discussed.

Cost Volumes for Deep-Learning Methods Cost volumes have been used in many previous
works on correspondence problems. Deep Learning methods using cost volumes can be distinguished
by their ability to be trained end-to-end.

The method of DC Flow introduced by Xu et al. [XRK17] constructs the 4D cost volume using a
learned feature embedding for each pixel. It is not end-to-end trainable, necessitating a loss function
for learning the embedding that is detached from the main optical flow prediction task. The cost
volume is computed in a manner comparable to RAFT, using the pixel-pairwise scalar product of
the features. However the features are normalized and the result subtracted from one to convert
the correlation value into a cost value that is related to the euclidean distance between the feature
vectors.

In contrast to the previous method, end-to-end methods can pass the gradient of the flow estimation
loss through the cost volume. Consequently, the image features can be trained directly using a
single objective such as minimizing the end point error.

Dosovitskiy et al. [DFI+15b] compared the purely convolutional architecture FlowNetS with
an architecture that uses a correlation operation on learned image features called FlowNetC.
The correlation operation is range-limited, thus correlation values are only computed within the
specified displacement range. They found that FlowNetC performed worse than FlowNetS on large
displacements. This led to the hypothesis that limiting the maximum displacement of the correlation
operation may render the model incapable to predict large motions.

Similarly to FlowNet, PWC-Net [SYLK18] is a coarse-to-fine approach that computes the cost
volume up to a maximum displacement at each resolution level from the warped image features.
They argue that the maximum displacement can be set to a small value because the relative covered
radius doubles with each level.

Yang and Ramanan [YR19] enable correlation volumes to express pixel similarities according to
multiple different pixel embeddings. They propose the use of 4D correlation volumes with an
additional similarity channels dimension. In contrast to the multi channel 3D correlation volumes
of Separable Flow, they do not aggregate the correlation to merge all channels into one. Instead, a
hypothesis selection network is used to compute a weighting between flow hypothesis emerging
from each of the similarity channels.

17

2 Related Work

Deformable Cost Volumes is a method introduced by Lu et al. [LVW+20]. They strive to address the
problem of coarse-to-fine approaches of not being able to estimate the motion of small, fast moving
objects well. Furthermore, the method avoids artifacts created by warping the second frame. To
accomplish this, the unmodified second frame features in a neighborhood around the flow estimate
are used to construct the cost volume for a limited displacement range. This process can also be seen
as a sampling of values from a full displacement range correlation volume. For each location in the
feature map of frame one, the locations in a neighborhood around the correspondence in frame two
are sampled from the full range correlation volume. Therefore, the method differs significantly from
the previous approaches that calculate the cost volume from the warped second frame feature map.
The method RAFT presented in the next paragraph builds on the idea of incorporating the flow
estimate with the correlation volume by sampling from the correlation volume instead of warping
the second frame.

RAFT [TD20] expands on the idea of moving operations from the images to the cost volume. In
addition to sampling from the cost volume instead of warping the image features, they also move the
multi-scale aspect from the image features to the cost volume. Not the image features, but the full
4D cost volume is pooled along the displacement dimensions to create a cost volume pyramid.

Previous methods rely on operations such as the dot product as a similarity metric between
the features. However, the image features comparison metric can also be learned. Wang et al.
[WZD+20] propose “Displacement-invariant matching cost learning for accurate optical flow
estimation” (DICL) which learns a matching cost network that receives the concatenated image
features of one pixel in both frames as input and outputs the similarity. The matching cost network
is applied separately for each displacement hypothesis in the search window.

As an extension of 4D correlation volume based on image feature similarities, cost volumes may be
improved by applying a learned compression. Zhang et al. [ZWPT21] introduce Separable Flow,
which learns two 3D cost volumes as a compression of the non-learned 4D cost volume of a host
method such as RAFT. The 3D cost volumes have multiple channels that are either based on the
statistics or a learned aggregation of one of the displacement dimensions.

Cost Volume Aggregation Cost volume aggregation is another important aspect of the optical
flow estimation method Separable Flow. In the related domain of stereo matching, cost volume
aggregation has already been used in some methods to promote the similarity of neighboring
displacements [Hir08; HRB+12; ZPYT19; ZQY+20]. Works on stereo matching have inspired to
cross over such methods for stereo cost volumes to optical flow cost volumes.

Xu et al. [XRK17] adapt Semi-Global Matching (SGM) [Hir08] from 3D stereo to 4D optical flow
cost volumes. By processing the cost volume using their version of SGM before inferring the flow,
they were able to improve the accuracy of their method.

The cost volume aggregation in Separable Flow is also related to SGM. It is based on the
previous works GANet and DSMNet [ZPYT19; ZQY+20] on stereo matching. “GA-Net: Guided
Aggregation Net for End-to-end Stereo Matching” introduced an end-to-end learnable stereo cost
volume aggregation method called Semi-Global Guided Aggregation (SGA) that remodels SGM
such that it is end-to-end trainable. Because Separable Flow creates two 3D cost volumes, each of

18

them has only a single displacement dimension like in stereo matching. Thus, Semi-Global Guided
Aggregation (SGA) layers from GANet can be applied to the separated cost volumes without any
major modifications.

Occlusion Handling Depending on the type of approach that is chosen, different strategies are
applied to handle occlusions. In variational methods, occlusions are often seen as outliers because
they lead to violations in the gray value constancy assumption. Thus, optimization objectives are
formulated to limit the influence of large deviations from the gray value constancy assumption on
the energy function [BBPW04; ZPB07]. This means that the occlusion problem is solved alongside
many other effects causing violations such as noise and illumination changes.

Many deep learning methods also do not explicitly reason about occlusions. Instead, the model
structure is chosen such that information is well propagated between pixels, including occluded
ones. This facilitates learning good predictions for occluded pixels. In the case of Global Motion
Aggregation (GMA) introduced by Jiang et al. [JCL+21], the flow information called motion
features is propagated between all pixels. Information is aggregated in a weighted sum, where the
weights result from the self similarity of the first image features projected by a learned matrix.

Separable Flow compresses the 4D correlation volume into two 3D correlation volumes and applies
multiple SGA layers to the 3D correlation volumes. Zhang et al. conclude that their method
Separable Flow is able to overcome the ambiguities caused by occlusions because it can exploit
“[. . .] non-local contextual information and prior knowledge [. . .]” [ZWPT21, p.10814].

Thesis Organization

The further contents of this thesis are organized as follows.

In the next chapter, key concepts used in this thesis are explained. This includes structures used in
neural networks, the basics of optical flow, and detailed explanations of the three main optical flow
estimation methods covered in this thesis.

Chapter 4 investigates the differences between the paper and provided implementation of Separable
Flow. The identified changes are reverted and the resulting models evaluated in multiple steps.

After that, Chapter 5 explores whether it is possible to omit the storage of the 4D correlation volume
to separate it into two 3D correlation volumes. An implementation accomplishing this is described
and the memory savings as well as the computation time are measured.

To further improve the estimation quality, Chapter 6 describes how Global Motion Aggregation can
be integrated with Separable Flow. The final accuracy is evaluated for different model versions
from Chapter 4.

Finally, Chapter 7 concludes the thesis by giving a summary of the results and making suggestions
for further work.

19

3 Foundation

This chapter compiles the foundations that are relevant to this thesis. Sections 3.1–3.3 describe
well established neural network structures that are used in deep optical flow estimation. Following
this, Section 3.4 and 3.5 contain basic definitions for optical flow. Then the three deep optical flow
estimation methods RAFT, Separable Flow and Global Motion Aggregation are detailed. Finally,
Section 3.9 gives a short summary on general purpose computation with GPUs.

3.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) can consist of different combinations of layers. In this
section, the most common layer types in convolutional neural networks are described.

Convolutional Layers The most important layer in convolutional neural networks is the convo-
lutional layer, since it usually holds trainable parameters. This layer can be parameterized by the
number of input channels 𝐶in and output channels 𝐶out, kernel size, padding size and stride.

The most common convolutional layer for processing images is two dimensional. In 2D con-
volutional layers, the aforementioned parameters such as kernel size and padding are also
two dimensional. For an input tensor of shape (𝐶in, 𝐻,𝑊), the convolution layer produces
an output tensor of shape (𝐶out, 𝐻out,𝑊out). Furthermore, the kernel weights are of shape
(𝐶out, 𝐶in, kernel_size[0], kernel_size[1]) and the bias weights tensor has the size 𝐶out.

𝐻out =

⌊
𝐻 + 2 · padding[0] − kernel_size[0]

stride[0] + 1
⌋

(3.1)

𝑊out =

⌊
𝑊 + 2 · padding[1] − kernel_size[1]

stride[1] + 1
⌋

(3.2)

Equations (3.1) and (3.2) relate the size of the input of the convolutional layer to the size of the
output. Depending on the parameters of the layer, the spatial size of the output (𝐻out,𝑊out) may
increase or decrease. For example, if the stride is 1 and the kernel size is equal to 2 · padding + 1
then the output size will be the same as the input size.

(𝑥, �̂�) = (𝑥 · stride[0], 𝑦 · stride[1]) (3.3)

Each spatial index (𝑥, 𝑦) of the output can be mapped to an index range from (𝑥, �̂�) to (𝑥+𝐻𝑘 , �̂�+𝑊𝑘)
in the padded input tensor “in_pad”, as displayed in Equation (3.3). This is the spatial range that
is aggregated in every channel to arrive at the output for the corresponding index. To shorten the
equation, the alias (𝐻𝑘 ,𝑊𝑘) was chosen for the kernel size (kernel_size[0], kernel_size[1]).

21

3 Foundation

Figure 3.1: Visualization of applying a convolutional layer with kernel size (4, 4), padding size
(2, 2) and stride (1, 1). Input tensor: blue, Padding: white, Output tensor: cyan.
Image source: [DV16].

out(𝑐out, 𝑥, 𝑦) = bias(𝑐out) +
𝐶in−1∑︁
𝑐in=0

𝐻𝑘−1∑︁
𝑖=0

𝑊𝑘−1∑︁
𝑗=0

weight(𝑐out, 𝑐in, 𝑖, 𝑗) · in_pad(𝑐in, 𝑥 + 𝑖, �̂� + 𝑗) (3.4)

Equation (3.4) shows how the convolution is computed for every channel 𝑐out and spatial index
(𝑥, 𝑦) of the output “out”. For each channel in the output image, the spatial aggregation over all
channels in the input is calculated. In the spatial range specified by the kernel size, the input tensor
is aggregated in a sum weighted by the kernel. The bias of the corresponding output channel is
added to the result.

Figure 3.1 illustrates the spatial aggregation of four different output indices. In the lower part of
the image, the input is shown in blue with white padding and dark grey aggregation range that is
weighted by the kernel. Above the input, the output tensor is displayed in cyan, with the resulting
output index marked in dark grey. After each step in the sequence, the output index is moved by one
according to the stride of (1, 1).

Pooling Layers Convolutional neural networks often make use of pooling layers to reduce the
spatial size of the output. Since the operation is very similar to a convolutional layer, the same
parameters of kernel size, padding size and stride apply. Each index of the output summarizes a
patch of the input, by applying functions without learnable parameters such as the maximum or the
average.

out(𝑐, 𝑥, 𝑦) = max
𝑖∈{0,...,𝐻𝑘−1}
𝑗∈{0,...,𝑊𝑘−1}

in_pad(𝑐, 𝑥 + 𝑖, �̂� + 𝑗) (3.5)

Two dimensional maximum pooling is performed as specified in Equation (3.5). Equations (3.1)–
(3.3) apply to pooling as well. In contrast to convolutional layers, no mixing between channels takes
place. Therefore, each channel of the output corresponds to exactly one channel of the output.

out(𝑐, 𝑥, 𝑦) = 1
𝐻𝑘 ·𝑊𝑘

∑︁
𝑖∈{0,...,𝐻𝑘−1}
𝑗∈{0,...,𝑊𝑘−1}

in_pad(𝑐, 𝑥 + 𝑖, �̂� + 𝑗) (3.6)

Average pooling, as specified in Equation (3.6) calculates the average of the input patch (𝑥, �̂�) to
(𝑥 + 𝐻𝑘 , �̂� +𝑊𝑘) corresponding to each output index (𝑥, 𝑦). Unlike maximum pooling, in every
pass each value in the input patch contributes to the result. Therefore, non-zero gradients will be
passed to more input indices instead of only the index of the maximum for each output.

22

3.2 Recurrent Neural Networks

Normalization Layers Another highly popular ingredient of convolutional networks are normal-
ization layers. Over time different normalization strategies such as Batch Normalization [IS15],
Layer Normalization [BKH16], Instance Normalization [UVL16] and Group Normalization [WH18]
have been suggested. Normalization is usually performed between two learnable layers of the
network. During training the output distribution of the layers changes. In direct consequence the
input to the next layer does as well. Therefore, in the next training iterations, following layers will
have to compensate for this shift in the distribution by adjusting their parameters. Training may be
sped up by stabilizing the distribution of the output and avoiding such adjustments.

Ioffe and Szegedy [IS15] refer to this as internal covariate shift in their work on Batch Normalization.
They keep statistics over the mini-batch used during one training step and normalize the distribution
accordingly.

`(𝑐) = 1
𝐵 · 𝐻 ·𝑊

𝐵−1∑︁
𝑏=0

𝐻−1∑︁
𝑥=0

𝑊−1∑︁
𝑦=0

in(𝑏, 𝑐, 𝑥, 𝑦) (3.7)

𝜎2(𝑐) = 1
𝐵 · 𝐻 ·𝑊

𝐵−1∑︁
𝑏=0

𝐻−1∑︁
𝑥=0

𝑊−1∑︁
𝑦=0
(in(𝑏, 𝑐, 𝑥, 𝑦) − `(𝑐))2 (3.8)

out(𝑏, 𝑐, 𝑥, 𝑦) = 𝛾(𝑐)
(
in(𝑏, 𝑐, 𝑥, 𝑦) − `(𝑐)√︁

𝜎2(𝑐)

)
+ 𝛽(𝑐) (3.9)

Equations (3.7)–(3.9) show Batch Normalization for an input with channel dimension 𝐶 and spatial
dimensions (𝐻,𝑊). The mean and variance of each channel is computed over the batch dimension
𝐵 and spatial dimensions. Finally, the input “in” is shifted and scaled to center the output distribution
around zero with a standard deviation of one. A learned affine transform with parameters 𝛾 and
𝛽 is applied to ensure that the normalization can be reverted, such that the output distribution of
the layer is not restricted. At inference time, expectation ` and variance 𝜎 are set to the dataset
statistics aggregated over the course of training instead of the batch statistics. Batch normalization
is usually performed between the output of the convolutional layer and the activation function. As a
result, the effect of the convolutional layer bias is neutralized by shifting the channel mean to zero
and can be omitted. The shift parameter 𝛽 of the batch norm functionally replaces the bias.

3.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are one of the most common types of models for sequence
modeling tasks such as text and speech processing. Such networks apply the same function with
trainable weights to a hidden state and input in each time-step to update their hidden state, the
memory of the network, for the next time-step. Hence, in the backward pass the gradient has to be
propagated backward though time meaning through each application of the recurrent update function.
Because of this, even in a single backward pass, the update function weights can accumulate large
gradients since many time-steps contribute to the those same weights. This can lead to exploding
or vanishing gradients, which can prevent the weights from converging or lead to infeasibly slow
training [Hoc91].

23

3 Foundation

Long Short-Term Memory To combat the exploding and vanishing gradient problem, Hochreiter
and Schmidhuber [HS97] introduced a recurrent neural network architecture called Long Short-Term
Memory (LSTM). Through the use of gating, it is less susceptible and can therefore be used with
long sequences.

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑥𝑡 +𝑊𝑖ℎℎ𝑡−1 +𝑊𝑖𝑐𝑐𝑡−1 + 𝑏𝑖) input gate (3.10)
𝑓𝑡 = 𝜎(𝑊 𝑓 𝑥𝑥𝑡 +𝑊ℎ 𝑓 ℎ𝑡−1 +𝑊𝑐 𝑓 𝑐𝑡−1 + 𝑏 𝑓) forget gate (3.11)
𝑐𝑡 = 𝑓𝑡 ◦ 𝑐𝑡−1 + 𝑖𝑡 ◦ tanh(𝑊𝑐𝑥𝑥𝑡 +𝑊𝑐ℎℎ𝑡−1 + 𝑏𝑐) cell state (3.12)
𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑥𝑡 +𝑊𝑜ℎℎ𝑡−1 +𝑊𝑜𝑐𝑐𝑡 + 𝑏𝑜) output gate (3.13)
ℎ𝑡 = 𝑜𝑡 ◦ tanh(𝑐𝑡) hidden state (3.14)
𝑦𝑡 = 𝑊𝑦ℎℎ𝑡 + 𝑏𝑦 output (3.15)

Equations (3.10)–(3.15) show the function computed by a LSTM cell [SSB14]. This function
receives a sequence of inputs 𝑥𝑡 and produces the outputs 𝑦𝑡 for time-steps 𝑡 = (1, . . . , 𝑇). In this
case, 𝜎 is the logistic sigmoid function, ◦ is the hadamard product, weight matrices are denoted by
𝑊 and bias vectors by 𝑏. Both the cell state and the hidden state are passed on to the next time-step.
Intuitively, the forget gate 𝑓𝑡 determines how much each component of the previous cell state 𝑐𝑡−1
contributes to the next cell state 𝑐𝑡 , while the input gate 𝑖𝑡 controls the contribution of the input 𝑥𝑡
to 𝑐𝑡 . Furthermore, the output gate 𝑜𝑡 scales the activated cell state controlling the hidden state ℎ𝑡
which is then projected to form the cell output 𝑦𝑡 .

Gated Recurrent Unit Cho et al. [CMBB14] presented a new variant of recurrent cell called Gated
Recurrent Unit (GRU) for neural machine translation. GRU and LSTM units have been compared
by Chung et al. [CGCB14], who conducted experiments with both units on their estimation quality
for different sequence modeling tasks. They showed that both LSTM units and GRUs performed
better than traditional RNNs. Depending on the task, either a LSTM or GRU model was more
successful. Therefore, they could not conclude whether one of the models was strictly superior.
However, GRUs have fewer gates and therefore fewer trainable parameters.

𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑥𝑡 +𝑊𝑧ℎℎ𝑡−1 + 𝑏𝑧) update gate (3.16)
𝑟𝑡 = 𝜎(𝑊𝑟 𝑥𝑥𝑡 +𝑊𝑟ℎℎ𝑡−1 + 𝑏𝑟) reset gate (3.17)
ℎ̃𝑡 = tanh(𝑊ℎ̃𝑥𝑥𝑡 +𝑊ℎ̃𝑟 (𝑟𝑡 ◦ ℎ𝑡−1) + 𝑏ℎ̃) candidate activation (3.18)
ℎ𝑡 = (1 − 𝑧𝑡) ◦ ℎ𝑡−1 + 𝑧𝑡 ◦ ℎ̃𝑡 hidden state (3.19)

The computation realized by each GRU is displayed in equations (3.16)–(3.19). As previously,
inputs are denoted by 𝑥𝑡 and outputs 𝑦𝑡 may be computed as projections of the hidden state ℎ𝑡 .
Furthermore, weight matrices and bias vectors are denoted by𝑊 and 𝑏. Since there is no cell state
in GRUs, the only connection to the previous time-step 𝑡 − 1 is through the hidden state ℎ𝑡−1. The
reset gate 𝑟𝑡 is able to scale the contribution of the previous hidden state ℎ𝑡−1 to the candidate
activation ℎ̃𝑡 . Finally, the hidden state ℎ𝑡 is an elementwise interpolation between the candidate
activation ℎ̃𝑡 and the previous hidden state ℎ𝑡−1. This mixture is controlled by the update gate,
which is therefore able to determine which parts of the hidden state are retained or updated. LSTM
units have a similar update for their cell state, with separate forget and input gate to control the
mixture of the previous and updated state, as compared to the single update gate in GRU units.

24

3.3 Attention Mechanism

Convolutional Gated Recurrent Unit To preserve local information in convolutional recurrent
architectures for video processing, Ballas et al. [BYPC16] introduced Convolutional Gated Recurrent
Units (Conv-GRUs). Previous works processed the images using convolutional networks to extract
features before passing them to the recurrent inputs 𝑥𝑡 of a fully connected RNN. In contrast, this
work replaced the fully connected layers which are learnable affine projections inside the recurrent
unit with convolutional layers.

𝑧𝑡 = 𝜎(Conv([ℎ𝑡−1, 𝑥𝑡],𝑊𝑧)) update gate (3.20)
𝑟𝑡 = 𝜎(Conv([ℎ𝑡−1, 𝑥𝑡],𝑊𝑟)) reset gate (3.21)
ℎ̃𝑡 = tanh(Conv([𝑟𝑡 ◦ ℎ𝑡−1, 𝑥𝑡],𝑊ℎ)) candidate activation (3.22)
ℎ𝑡 = (1 − 𝑧𝑡) ◦ ℎ𝑡−1 + 𝑧𝑡 ◦ ℎ̃𝑡 hidden state (3.23)

Equations (3.20)–(3.23) show the calculation performed in Conv-GRUs [BYPC16]. All fully
connected layers in the GRU are replaced with convolutional layers. Weights of convolutional
kernels including the bias are denoted by 𝑊 and [•, •] denotes the concatenation of two tensors
along the channels dimension. The convolutional layers denoted by Conv() have the same number
of output channels as the gates and double the number of input channels to fit [ℎ𝑡−1, 𝑥𝑡].

3.3 Attention Mechanism

In their influential work on machine translation “Attention is all you need”, Vaswani et al. [VSP+17]
introduce Transformer networks. Convolutional and recurrent layers for processing variable-sized
inputs are replaced by a new type of attention mechanism called Scaled Dot-Product Attention in
their architecture. The main advantage over recurrent and convolutional networks is that information
is aggregated globally and non-sequentially in a single layer. In contrast, convolutional networks
require several layers and recurrent networks require multiple iterations to spread information across
the full spatial size of the input.

Attention(𝑄, 𝐾,𝑉) = softmax
(
𝑄𝐾𝑇
√
𝑑𝑘

)
𝑉 𝑄 ∈ R𝑀×𝑑𝑘 , 𝐾 ∈ R𝑁×𝑑𝑘 , 𝑉 ∈ R𝑁×𝑑𝑣 (3.24)

The attention is computed as displayed in Equation (3.24). The query, key and value matrices 𝑄, 𝐾
and 𝑉 are stacked from multiple vectors. For example, the query matrix 𝑄 = (𝑞0, . . . , 𝑞𝑀)𝑇 packs
query vectors 𝑞𝑖 as its rows. Usually, the query, key and value vectors are learned projections of
the feature vectors served as input to the attention mechanism. All pairs of query vectors 𝑞𝑖 and
key vectors 𝑘 𝑗 are compared via the dot product in the matrix operation 𝑄𝐾𝑇 to form a matrix of
similarity scores. Vaswani et al. [VSP+17] suspect that the performance of dot-product attention is
diminished by large similarity scores that may be caused by the long sum of the dot-product for
large vectors. Therefore, each similarity score is divided by the square root of the size of the query
and key vectors 𝑑𝑘 . After that, the softmax operation converts the similarity scores into weights.
The operation is applied to all similarities 𝑞𝑇𝑖 𝑘0/√𝑑𝑘, . . . , 𝑞𝑇𝑖 𝑘𝑁/√𝑑𝑘 for one query vector 𝑞𝑖 such that
the weights sum to one. Finally, all value vectors are weighted depending on how well their key
matched with the current query vector. Therefore, the sum (𝑞𝑇𝑖 𝑘0/𝛼)𝑣0 + · · · + (𝑞𝑇𝑖 𝑘𝑁/𝛼)𝑣𝑁 realized by
the last matrix multiplication with value matrix 𝑉 results in a mixture of all value vectors for each
query vector 𝑞𝑖 .

25

3 Foundation

3.4 Optical Flow

Optical Flow Estimation is a correspondence problem where the two sets of entities to be matched
are the pixels of two consecutive images in a sequence.

Ω = {0, 1, . . . , 𝐻 − 1} × {0, 1, . . . ,𝑊 − 1} domain (3.25)

Ω̂ = {0, 1, . . . , 255}3 co-domain (3.26)

𝐼 : Ω→ Ω̂ digital image (3.27)

Discrete color images 𝐼1 and 𝐼2 are defined as described in equations (3.25)–(3.27). The domain Ω

is a rectangular region with 𝐻𝑊 samples arranged in a grid with a spacing of one. Furthermore, the
co-domain Ω̂ is quantised and vector valued with color channels for red, green and blue. Each pixel
from the domain is mapped by the images to an element from the co-domain.

Now, the goal of optical flow estimation is to find a displacement field 𝑓 (𝑖, 𝑗) = (𝑢, 𝑣) that matches
each pixel (𝑖, 𝑗) of image 𝐼1 to its corresponding pixel index (𝑖 + 𝑢, 𝑗 + 𝑣) in image 𝐼2. The flow
estimate (𝑢, 𝑣) may also be non-integer to match pixels (𝑖, 𝑗) with sub-pixel precision to a position
between samples. In this thesis, the corresponding pixel index will usually be referred to by (𝑢, 𝑣)
directly for simplicity and brevity.

3.5 Error Measures for Optical Flow

Error measures express the performance of a model on a specific image pair in terms of a numerical
value. They can be used to evaluate and compare methods or as a loss function during training.

Oftentimes, error measures rely on norms, which also appear in other contexts in this thesis.

∥𝑥∥ 𝑝 =

(∑︁
𝑖∈indices(𝑥)

|𝑥(𝑖) |𝑝
) 1/𝑝

𝑝-norm (3.28)

∥𝑥∥1 =
∑︁

𝑖∈indices(𝑥)
|𝑥(𝑖) | absolute value norm (3.29)

∥𝑥∥2 =

√︄ ∑︁
𝑖∈indices(𝑥)

𝑥2(𝑖) euclidean norm (3.30)

∥𝑥∥∞ = max
𝑖∈indices(𝑥)

|𝑥(𝑖) | maximum norm (3.31)

The 𝑝-norm (3.28) is a generalized norm, where the parameter 𝑝 can be set to real values that are
equal or larger than one. Examples for 𝑝-norms are the absolute value norm (3.29), the euclidean
norm (3.30), and maximum norm (3.31). Although the maximum does not appear in this section, it
is used to limit the extent of the local grid for the lookup operation in Section 3.6.1.

AEE(𝑓gt, 𝑓𝑒) =
1
𝐻𝑊

𝐻−1∑︁
𝑖=0

𝑊−1∑︁
𝑗=0
∥ 𝑓gt(𝑖, 𝑗) − 𝑓𝑒 (𝑖, 𝑗)∥2 (3.32)

26

3.6 RAFT: Recurrent All-Pairs Field Transforms for Optical Flow

Figure 3.2: Overview of RAFT. Image Source: [TD20].

The Average Endpoint Error (AEE) is one of the most common quality measures for comparing
optical flow estimation methods. It corresponds to the average over the euclidean distance between
the ground truth and estimated flow vector at each of the pixels of image 𝐼1.

TAEE(𝑓gt, 𝑓𝑒) =
𝐻−1∑︁
𝑖=0

𝑊−1∑︁
𝑗=0
| | 𝑓gt(𝑖, 𝑗) − 𝑓𝑒 (𝑖, 𝑗) | |1

= ∥ 𝑓gt − 𝑓𝑒∥1

(3.33)

RAFT uses the 𝑙1-distance between the ground truth and estimated flow field in its loss function. It
can be seen as the total absolute end point error, since it uses the absolute value norm instead of the
euclidean norm between two flow vectors. Furthermore, it is not normalized by the number of pixels
and is therefore not suitable for comparison of methods as it is dependent on the image size.

3.6 RAFT: Recurrent All-Pairs Field Transforms for Optical Flow

This section gives an overview of RAFT [TD20]. RAFT is an end-to-end trainable, deep optical
flow estimation method implemented in PyTorch [PGM+19]. At the date of submission, it achieved
state-of-the-art estimation quality on the Sintel [BWSB12] and KITTI [GLU12; MG15] optical flow
benchmark datasets. As host method of Separable Flow with the best reported results, it is and
important foundation for this thesis.

Figure 3.2 shows the structure of RAFT, which can be divided into two phases. Phase one is a
computationally expensive preparation phase, where all operations are only performed once to
provide high quality features for the second phase. In phase two iterative updates are performed to
improve the flow estimate.

Initialization Phase The first phase starts with the input of two frames from adjacent time-steps
at full resolution (𝐻full,𝑊full). A convolutional feature encoder following the ResNet [HZRS16]
structure is employed to compute image features 𝐹1, 𝐹2 at an eighth of the image resolution for both
frames. Thus, the resolution of the image features is (⌊1/8𝐻full⌋ , ⌊1/8𝑊full⌋) = (𝐻,𝑊).

27

3 Foundation

Instead of the indices of the input image pixels, the spatial indices (𝑖, 𝑗) of the image features will
be referred to as pixels. The channels dimension size is increased from the 3 color channels to 256
feature channels. Another identical encoder is responsible for extracting context features 𝐹𝐶 and
the initial hidden state 𝐻0 from frame one.

𝐶 (𝑖, 𝑗 , 𝑢, 𝑣) = 𝐹1(𝑖, 𝑗) · 𝐹2(𝑢, 𝑣) (3.34)

Afterward, the correlation volume is computed by dot product between the image features 𝐹1 and
𝐹2 of all pairs of pixels (𝑖, 𝑗) and (𝑢, 𝑣), as specified in Equation (3.34). The last two dimensions
(𝑢, 𝑣) of the correlation volume correspond to the index of the pixel in 𝐹2 that the pixel (𝑖, 𝑗) from
𝐹1 is displaced to. By applying average pooling with kernel size (2, 2) and stride (2, 2) over the
displacement dimensions, the displacement dimensions are halved in size. This is repeated three
times and each repetition adds one volume to the correlation volume pyramid {𝐶0, 𝐶1, 𝐶2, 𝐶3} with
𝑙max = 4 levels. Because of that, the dimension size of the volumes is (𝐻,𝑊, ⌊𝐻/2𝑙⌋ , ⌊𝑊/2𝑙⌋). The
displacement dimension sizes are halved from each pyramid level 𝑙 − 1 to the next level 𝑙.

Iterative Refinement Phase Prior to the iterative update phase, the flow is initialized to zero.
Alternatively, the warm-start initialization strategy initializes the flow with a forward-projection of
the estimate from the frame pair of the previous time-step. Each iteration of the second phase starts
by performing the lookup operation described in Section 3.6.1. The lookup operation combines
the current flow estimate with the correlation volume to extract values from the volume reflecting
the current search progress at each index of 𝐹1. Since the lookup operation is performed on each
pyramid level, the resulting multi-scale correlation features are of shape (𝐻,𝑊, 𝑙max · (2𝑟 + 1)2),
where 𝑟 is the lookup radius. After that, the motion feature encoder applies two convolutional layers
to both the flow and lookup features and combines the result using another convolutional layer.

𝑧𝑡 = 𝜎(Conv3x3([ℎ𝑡−1, 𝑥𝑡],𝑊𝑧)) (3.35)
𝑟𝑡 = 𝜎(Conv3x3([ℎ𝑡−1, 𝑥𝑡],𝑊𝑟)) (3.36)
ℎ̃𝑡 = tanh(Conv3x3([𝑟𝑡 ◦ ℎ𝑡−1, 𝑥𝑡],𝑊ℎ)) (3.37)
ℎ𝑡 = (1 − 𝑧𝑡) ◦ ℎ𝑡−1 + 𝑧𝑡 ◦ ℎ̃𝑡 (3.38)

Equations (3.35)–(3.38) show the operations of the update module, which is a 2D convolutional
GRU (see Section 3.2) with kernel size (3, 3). In every time-step, the recurrent update module
receives the concatenation of the context features 𝐹𝐶 and current motion features 𝐹motion as well as
the previous hidden state 𝐻𝑡−1. The output is the new hidden state 𝐻𝑡 for the current time-step.

Two additional convolutional layers are applied to 𝐻𝑡 to arrive at the flow update ∇ 𝑓𝑡−1 which is
at 1/8 of the image resolution and the same resolution as the image features. Next the flow can be
updated as follows: 𝑓𝑡 = 𝑓𝑡−1 + ∇ 𝑓𝑡−1. At inference time only the final, up-sampled flow after the
last refinement step is returned. In contrast, during training the flow estimate at every refinement
step is up-sampled to image resolution and returned.

Loss Function The loss function for RAFT has to map the series of flow estimates (𝑓1, ..., 𝑓𝑁)
emitted by the model to a scalar loss value. This is accomplished by accumulating the deviations
from the ground truth flow of all flow estimates in the series.

28

3.6 RAFT: Recurrent All-Pairs Field Transforms for Optical Flow

𝑢

𝑣

fi,j

𝐶0(𝑖, 𝑗 , 𝑢, 𝑣)

𝑢

𝑣

fi,j

𝐶1(𝑖, 𝑗 , 𝑢, 𝑣)

𝐶𝐿 (𝑖, 𝑗 , 𝑘)

Figure 3.3: Illustration of the RAFT lookup operation.

ℒ =

𝑁∑︁
𝑖=1

𝛾𝑁−𝑖 ∥f𝑖 − fgt∥1 (3.39)

For each estimate in the sequence, the 𝑙1 distance to the ground truth flow is assigned as its sub-loss.
All sub-losses are part of a weighted sum, where the weights 𝛾𝑁−𝑖 increase exponentially from one
member to the next. The estimate after the first refinement step 𝑓1 is assigned the lowest weight of
𝛾𝑁−1 whereas the final estimate 𝑓𝑁 is weighted with 1. During the training of RAFT the weight
decay is set to 𝛾 = 0.8.

3.6.1 The Correlation Volume Lookup Operation

The correlation volume lookup is an operation that can be seen as a replacement for warping the
second frame prior to computing cost correlation volume with a limited displacement range. It
collects values for each index (𝑖, 𝑗) in 𝐶 (𝑖, 𝑗 , 𝑢, 𝑣) on a local grid around the current flow estimate
𝑓𝑡 (𝑖, 𝑗) = (�̃�, �̃�) within a radius 𝑟 .

Figure 3.3 illustrates this lookup operation. The blue grid corresponds to correlation volume
𝐶0(𝑖, 𝑗 , 𝑢, 𝑣) at pyramid level 𝑙 = 0 whereas the green grid corresponds to level 𝑙 = 1. Each
grid represents one slice of the correlation volume for some index (𝑖, 𝑗). Consequently, each cell
corresponds to an integer valued displacement index (𝑢, 𝑣). Since 𝐶1(𝑖, 𝑗 , 𝑢, 𝑣) is one step below
the largest pyramid level, it is the result of average pooling along the displacements dimensions of
level zero which is represented by doubling the cell size and the faded subdivision. In this case,
𝐶0 would be of shape (𝐻,𝑊, 𝐻,𝑊), while 𝐶1 would have the shape (𝐻,𝑊, ⌊𝐻/2⌋ , ⌊𝑊/2⌋). Local
grids are shown as red cells with crossed out centers. The local grid surrounds the flow estimate
𝑓𝑖, 𝑗 , with increments of one between grid cell centers. As the cell size increases with each level,
so does the lookup radius relative to the cells of the largest pyramid level (𝑙 = 0). Since 𝑓𝑖, 𝑗 and
all grid centers will usually be non-integer, bilinear interpolation is used to sample values from
the correlation volumes. Samples from all levels are concatenated, where each level contributes
(2𝑟 + 1)2 samples per index. The resulting tensor contains 𝑙max · (2𝑟 + 1)2 per index (𝑖, 𝑗) and is
therefore of shape (𝐻,𝑊, 𝑙max · (2𝑟 + 1)2).

29

3 Foundation

(𝐶𝐿)𝑙 (𝑖, 𝑗 , dx) = sample_bilinear(𝐶𝑙 (𝑖, 𝑗), 1
2𝑙
𝑓 (𝑖, 𝑗) + dx) (3.40)

dx ∈ N = {dx|dx ∈ Z2, ∥dx∥∞ ≤ 𝑟} (3.41)

Equations (3.40) and (3.41) describe the sampling process and grid size. For the each index (𝑖, 𝑗)
and grid node offset dx, a sample is taken from 𝐶𝑙 (𝑖, 𝑗) at a sampling point. Each sampling point
is calculated from the flow estimate 𝑓 (𝑖, 𝑗) = (�̃�, �̃�) which is scaled by 1/2𝑙 to fit the scale of the
pyramid level 𝑙. The flow estimate 𝑓 refers to the sub-pixel correspondence location (�̃�, �̃�) in 𝐹2.
Then the grid offset dx is added to move the sampling point to the corresponding local cell center.
Equation (3.41) states that each grid offset is an integer valued two dimensional vector where the
absolute value of each of the entries is less than or equal to the lookup radius 𝑟.

3.6.2 Alternative Lookup: On-Demand 4D Correlation Volume Computation

The lookup operation can be performed directly on the image features 𝐹1 and 𝐹2 instead of the 4D
correlation volume 𝐶. This is motivated by the fact that the multi-scale correlation features at each
iteration step for each index (𝑖, 𝑗) only need the indices around the current flow estimate. Therefore,
by computing the values of 𝐶 on demand as needed by the lookup operation, the time complexity
can be reduced from

O
(
(𝐻𝑊)2𝐹 + 𝑀𝐻𝑊 · 𝑙max · (2𝑟 + 1)2

)
to O

(
𝑀𝐻𝑊𝐹 · 𝑙max · (2𝑟 + 1)2

)
. (3.42)

The first time complexity in Equation (3.42) has two parts. The number of pixels squared (𝐻𝑊)2
scalar products of the image features of length 𝐹 need to be calculated because the full correlation
volume is computed during the initialization phase. During the refinement phase, for each of the 𝑀
iterations, lookup operations on each flow estimate (𝐻𝑊) and level (𝑙max) with correlation radius 𝑟
are performed.

For the alternative lookup, no all-pairs features correlation needs to be computed during the
initialization phase. However, for the lookup in each refinement iteration, the correlation volume
indices need to be computed on demand. In consequence, the complexity of the features scalar
product contributes the additional factor 𝐹.

𝐶𝑙 (𝑖, 𝑗 , 𝑚, 𝑛) = avgPool2D(𝐶 (𝑖, 𝑗), kernel = (2𝑙, 2𝑙), stride = (2𝑙, 2𝑙)) (𝑚, 𝑛) (3.43)

=
1

22𝑙

2𝑙−1∑︁
𝑝=0

2𝑙−1∑︁
𝑞=0

𝐶 (𝑖, 𝑗 , 2𝑙𝑚 + 𝑝, 2𝑙𝑛 + 𝑞) (3.44)

=
1

22𝑙

2𝑙−1∑︁
𝑝=0

2𝑙−1∑︁
𝑞=0

𝐹1(𝑖, 𝑗) · 𝐹2(2𝑙𝑚 + 𝑝, 2𝑙𝑛 + 𝑞) (3.45)

= 𝐹1(𝑖, 𝑗) ·
1

22𝑙

(2𝑙−1∑︁
𝑝=0

2𝑙−1∑︁
𝑞=0

𝐹2(2𝑙𝑚 + 𝑝, 2𝑙𝑛 + 𝑞)
)

(3.46)

= 𝐹1(𝑖, 𝑗) · avgPool2D(𝐹2, kernel = (2𝑙, 2𝑙), stride = (2𝑙, 2𝑙)) (𝑚, 𝑛) (3.47)

Equations (3.43)–(3.47) were adapted with heavy modifications from [TD20] and form the basis for
Chapter 5. They show how values of the indices from each pyramid of 𝐶𝑙 (𝑖, 𝑗 , 𝑚, 𝑛) are calculated.
The first line (3.43) corresponds to computing the correlation volume pyramid, where the full

30

3.7 Separable Flow: Learning Cost Volumes for Optical Flow Estimation

volume is stored and pooled. At each level the step size of the pooled volume relative to the image
features 𝐹2 increases by a factor of 2𝑙 which is reflected in the indices of the second line (3.44)
of the equation. The average pooling is represented by sums over the size of the pooling window
and dividing by the number of indices covered. In line three (3.45), the correlation volume 𝐶 is
expanded with the on-demand computation of the same correlation volume index. Since the indices
of 𝐹1(𝑖, 𝑗) do not change, it is a constant factor that can be moved out of the sum in line four (3.46).
As the average pooling formulation remains unchanged, the normalizing factor and sums can be
replaced by the corresponding pooling function in line five (3.47).

As a result, the alternative lookup implementation requires to build a feature pyramid of 𝐹2 during
the initialization phase. Compared to the regular implementation of computing and pooling 𝐶,
this is inexpensive. The alternative implementation is particularly attractive for large images,
because the factor (𝐻𝑊)2 of the regular implementation grows quadratically compared to (𝐻𝑊) of
the alternative implementation which is linear in the number of pixels. Still, computing the full
correlation volume 𝐶 from 𝐹1 and 𝐹2 for large images of size (1088, 1920) only took 17% of total
inference time. Therefore, even for large images, the regular computation of 𝐶 is not a bottleneck
[TD20].

3.7 Separable Flow: Learning Cost Volumes for Optical Flow
Estimation

Separable Flow [ZWPT21] is an end-to-end trainable cost correlation volume extension. The method
is designed to be applicable to any method that uses cost correlation volumes. Therefore, in some
cases, the paper describes the general structure of the method to keep it universally applicable. In
other cases it is more specific to RAFT since they evaluated their strategy primarily in combination
with RAFT. For example, motion regression as flow initialization strategy for the RAFT refinement
module is discussed, however the paper does not explain how the correlation volume lookup is
performed for 3D correlation volumes. Like RAFT, Separable Flow is implemented using PyTorch
[PGM+19].

This section describes the structure of Separable Flow when used with RAFT, while staying as close
as possible to the paper.

To illustrate the initialization phase of Separable Flow, Figure 3.4 displays the data dependencies
between the most important intermediary results. Cost volume separation, three dimensional cost
volume aggregation and motion regression are the main contributions of the method. They give
rise to the addition of aggregation weights𝑊𝐶𝑢

SGA and𝑊𝐶𝑣

SGA as image features in the second block
from the top as well as the complete 3D correlation volume block shown in orange. The following
sections will describe these additions.

Cost Volume Separation The self-adaptive cost separation of the 4D cost volume into two 3D
cost volumes is the main innovation that is responsible for the name of the method. In RAFT, the
4D cost correlation volume contains scores for each pixel (𝑖, 𝑗) in frame one to match with any
pixel (𝑢, 𝑣) in frame two. However, Separable Flow scores the coordinates 𝑢 and 𝑣 of the matching

31

3 Foundation

Img.
(𝐻full,𝑊full)

Img. Feat.
(𝐻,𝑊)

Context
Features
Self-
Similarity
(H,W,H,W)

4D Correlation
Volume
(𝐻,𝑊 ,𝐻,𝑊)

3D Correlation
Volume
(𝐻,𝑊 ,𝐻)
(𝐻,𝑊 ,𝑊)

𝐼1 𝐼2

𝐹C 𝐻0 {𝑊𝐶𝑢

SGA,𝑊
𝐶𝑣

SGA} 𝐹1 𝐹2

𝐹qry 𝐹key

𝑊attn

𝐶

⋃3
𝑙=0{𝐶𝑙}

{𝐶max
𝑢 , 𝐶

avg
𝑢 , 𝐶max

𝑣 , 𝐶
avg
𝑣 }⋃𝐾−2

𝑘=1 {𝐶𝑘+2𝑢 , 𝐶𝑘+2𝑣 }

{𝐶𝑢, 𝐶𝑣}

cost aggregation and motion regression

{𝐶𝐴𝑢 , 𝐶𝐴𝑣 } 𝑓0 = (�̂�, �̂�)

⋃3
𝑙=0{𝐶

𝐴,𝑙
𝑢 , 𝐶

𝐴,𝑙
𝑣 }

Figure 3.4: Data dependencies between tensors during the initialization phase of Separable Flow
with RAFT as base method.

pixel in frame two independently for pixel (𝑖, 𝑗) in frame one. Therefore, the first volume 𝐶𝑢 only
contains scores for (𝑖, 𝑗 , 𝑢) and the second volume 𝐶𝑣 for (𝑖, 𝑗 , 𝑣).

separate : 𝐶 ∈ R𝐻×𝑊×|𝑈 |× |𝑉 | → 𝐶𝑢 ∈ R𝐻×𝑊×|𝑈 |×𝐾 , 𝐶𝑣 ∈ R𝐻×𝑊×|𝑉 |×𝐾 (3.48)

Equation (3.48) shows the domains of the 4D and 3D cost volumes as inputs and outputs of the
separate function. In this case, (𝐻,𝑊) is the size of the image features, (|𝑈 |, |𝑉 |) is the displacement
dimension size and 𝐾 the number of 3D correlation feature channels. The displacement dimensions
extent (|𝑈 |, |𝑉 |) may differ from the spatial size (𝐻,𝑊) of the image features 𝐹1 and 𝐹2 for example
due to down-sampling in the correlation volume pyramid.

𝐶1
𝑢 (𝑖, 𝑗 , 𝑢) =

1
|𝑉 |

∑︁
𝑣∈𝑉

𝐶 (𝑖, 𝑗 , 𝑢, 𝑣) 𝐶1
𝑣 (𝑖, 𝑗 , 𝑣) =

1
|𝑈 |

∑︁
𝑢∈𝑈

𝐶 (𝑖, 𝑗 , 𝑢, 𝑣) (3.49)

𝐶2
𝑢 (𝑖, 𝑗 , 𝑢) = max

𝑣∈𝑉
(𝐶 (𝑖, 𝑗 , 𝑢, 𝑣)) 𝐶2

𝑣 (𝑖, 𝑗 , 𝑣) = max
𝑢∈𝑈
(𝐶 (𝑖, 𝑗 , 𝑢, 𝑣)) (3.50)

The first two channels of the 3D correlation volumes correspond to the average and maximum
statistics over one of the displacement dimensions of 𝐶, as shown in equations (3.49) and (3.50). If
the correlation volume has the subscript 𝑢, then 𝐶𝑢 maintains the corresponding dimension and

32

3.7 Separable Flow: Learning Cost Volumes for Optical Flow Estimation

the complementary dimension that is referred to by index 𝑣 is summarized by its maximum or
average.

𝐴𝑢 = 𝜙𝑢 (𝐶1:2
𝑣) ∈ R𝐻×𝑊×|𝑉 |×𝐾−2 𝐴𝑣 = 𝜙𝑣 (𝐶1:2

𝑢) ∈ R𝐻×𝑊×|𝑈 |×𝐾−2 (3.51)

So far, there is no learnable component to the 3D correlation volume. This is changed by
Equation (3.51), which introduces learned attention tensors 𝐴𝑢 and 𝐴𝑣 . Each of them is computed
by applying one of the three dimensional convolution layers 𝜙𝑢 and 𝜙𝑣 . Unfortunately, parameters
such as kernel size of the convolutional layer are not specified. Because each of the remaining
𝐾 − 2 correlation volume channels requires its own attention weights, the number of convolution
output channels is set to 𝐾 − 2. Similarly, the size of the input channels is determined by the input
tensor 𝐶1,2

𝑢 with a channel dimension of 2. The convolution layers process the summary of the
complementary displacement dimension 𝐶1,2

𝑣 for 𝐶3:𝐾
𝑢 instead of the full 4D correlation volume 𝐶

for efficiency. For kernels sizes that are larger than (1, 1, 1), the attention weights may integrate
correlation values from neighboring pixels or the displacement along the their complementary
displacement dimension.

𝐶𝑘𝑢 (𝑖, 𝑗 , 𝑢) = 𝜎(𝐴𝑘−2
𝑢 (𝑖, 𝑗 , :)) · 𝐶 (𝑖, 𝑗 , 𝑢, :)

𝐶𝑘𝑣 (𝑖, 𝑗 , 𝑣) = 𝜎(𝐴𝑘−2
𝑣 (𝑖, 𝑗 , :)) · 𝐶 (𝑖, 𝑗 , :, 𝑣)

(3.52)

Finally, 𝐶3:𝐾
𝑢 results from a sum weighted by the attention 𝜎(𝐴𝑘𝑢 (𝑖, 𝑗 , :)) over the (𝑖, 𝑗 , 𝑢) slice of

the 4D correlation volume 𝐶 (𝑖, 𝑗 , 𝑢, :) for the channels 𝑘 ∈ {3, . . . , 𝐾}. By applying the softmax
operation 𝜎(•) to the weights, they are normalized such that all weights are positive and the sum
along the displacement dimension is one. The attention-based framework allows for arbitrary sizes
of𝑈 and𝑉 since the statistics and convolution stencil only depend on the channels dimension to stay
fixed, which is independent of |𝑈 | and |𝑉 |. This, for example, allows using the same convolutional
layers and thus the same separation module on each level of the correlation volume pyramid of
RAFT with varying displacement dimension sizes.

As shown in Figure 3.4, the 4D correlation volume phase results in a 4D correlation volume pyramid.
To make use of the advantages of the multi-scale correlation volumes, the correlation volumes
𝐶𝑙 at every level 𝑙 may be separated. Because the Separable Flow paper does not consider the
4D correlation volume pyramid, the following approach to make use of all 𝐶𝑙 is not described in
the paper. However it is part of the implementation. After separating all 𝐶𝑙 into 𝐶𝑙𝑢 and 𝐶𝑙𝑣, the
displacement dimensions are up-sampled and concatenated as follows.

𝐶𝑙𝑢 ∈ R𝐻×𝑊×⌊
𝐻/2𝑙 ⌋×𝐾 up-sampling

−−−−−−−−−→ �̃�𝑙𝑢 ∈ R𝐻×𝑊×𝐻×𝐾 (3.53)

𝐶𝑙=0
𝑢 , �̃�𝑙=1

𝑢 , . . . , �̃�𝑙=𝑙max ∈ R𝐻×𝑊×𝐻×𝐾 concatenation−−−−−−−−−−→ 𝐶𝑢 ∈ R𝐻×𝑊×𝐻×(𝑙max ·𝐾) (3.54)

By up-sampling, as can be seen in Equation (3.53), all multiscale 3D correlation volumes are
up-sampled to have the same spatial size of (𝐻,𝑊, 𝐻, 𝐾). Because the spatial dimensions match,
concatenation across the 3D correlation channels dimension can be applied to merge all levels
𝑙 into a single tensor. This tensor corresponds to one of the 3D correlation volumes 𝐶𝑢 and
𝐶𝑣 which contain the 𝐾 = 4 features for each level of the correlation volume pyramid with 𝑙max
levels. The resulting shapes are (𝐻,𝑊, 𝐻, (𝑙max · 𝐾)) and (𝐻,𝑊,𝑊, (𝑙max · 𝐾)). The single-tensor
representation is especially convenient for the next step because all levels can be aggregated on the
same resolution, eliminating the need for pyramidal aggregation.

33

3 Foundation

Correlation Volume Aggregation To aggregate non-local information from the 3D correlation
volumes, an end-to-end trainable aggregation module inspired by semi-global matching is applied
called semi-global guided aggregation. This aggregation method was introduced by Zhang et al.
[ZPYT19] and is intended for correlation cost volume aggregation in stereo matching networks.
However, the similarity between the stereo correlation volumes and the separated multi-channel
3D correlation volumes for optical flow allows the aggregation to be applied in both cases. The
3D correlation volumes have one displacement dimension and multiple channels, like the ones in
GA-Net [ZPYT19].

In Separable Flow, the cost aggregation network uses four global aggregation layers and eight
3D convolutional layers in an encoder-decoder configuration. Separate cost aggregation modules
are applied to the correlation volumes 𝐶𝑢 and 𝐶𝑣. Resulting aggregated correlation volumes are
denoted by 𝐶𝐴𝑢 and 𝐶𝐴𝑣 and are of shape (𝐻,𝑊, |𝑈 |) and (𝐻,𝑊, |𝑉 |). Accordingly the aggregation
module contracts the 3D correlation volume channels into a single channel.

Figure 3.4 displays the aggregation of the cost volumes as a red box for RAFT. The cost volume
aggregation module has two inputs: Aggregation Weights {𝑊𝐶𝑢

SGA,𝑊
𝐶𝑣

SGA} and 3D correlation
volumes {𝐶𝑢, 𝐶𝑣}. The origin of the weights for the aggregation volumes is not mentioned in the
paper. However, in the implementation the weights created by passing image 𝐼1 and image features
𝐹1 through a residual 2D convolutional network. Guidance of shape (𝐻,𝑊, 20) with 5 filter weights
for each of the 4 filter directions is emitted.

Motion Regression For initializing the flow 𝑓0 and to provide an additional term to the loss
connected directly to the 3D correlation volume, motion regression is employed.

f0 = {�̂�, �̂�} �̂� = 𝑈 · 𝜎(𝐶𝐴𝑢 (𝑖, 𝑗 , :)) �̂� = 𝑉 · 𝜎(𝐶𝐴𝑣 (𝑖, 𝑗 , :)) (3.55)

The initial flow 𝑓0 is assigned the concatenated displacement estimates for both channels. Each
channel is the result of a sum over all integer disparity candidates𝑈 and 𝑉 weighted by the softmax
of the aggregated 3D correlation volumes 𝐶𝐴𝑢 and 𝐶𝐴𝑣 . Thus, the disparity value associated with the
largest correlation score contributes the most to the final estimated displacement.

Lookup Operation for 3D Correlation Volumes In the same way as RAFT, the lookup operation
has to be performed during the motion refinement phase. However, Separable Flow differs from
RAFT as it replaces the 4D correlation volume by the 3D correlation volumes. Therefore the
lookup operation has to be adapted to work with 3D correlation volumes. Again, the lookup for
3D correlation volumes is not specified in the paper, since it is specific to using RAFT as base
method.

(𝐶𝐿𝑢)𝑙 (𝑖, 𝑗 , dx) = sample_linear(𝐶𝑙𝑢 (𝑖, 𝑗),
1
2𝑙
𝑓 (𝑖, 𝑗 , 0) + dx) (3.56)

(𝐶𝐿𝑣)𝑙 (𝑖, 𝑗 , dx) = sample_linear(𝐶𝑙𝑣 (𝑖, 𝑗),
1
2𝑙
𝑓 (𝑖, 𝑗 , 1) + dx) (3.57)

dx ∈ N = {dx|dx ∈ Z1, ∥dx∥∞ ≤ 𝑟} (3.58)

The implementation provides code for the 1D lookup operation. They make only minimal
changes to adapt the code for the 2D lookup to work with the 3D correlation volumes 𝐶𝑢 and 𝐶𝑣.
Equations (3.56) and (3.57) show how the lookup is performed on ever level 𝑙 of the correlation

34

3.8 Learning to Estimate Hidden Motions with Global Motion Aggregation

Figure 3.5: Overview of Global Motion Aggregation (GMA). Image Source: [JCL+21].

volume pyramid. The only difference is that all tensors have one dimension less. Firstly, the
3D correlation volume 𝐶𝑢 has one dimension less than 𝐶. Furthermore, the sampling point as
sum between the flow estimate and local grid offset is 1D instead of 2D. For 𝐶𝑢, only the first
component of the flow 𝑓 (𝑖, 𝑗 , 0) is picked and the corresponding offset dx is scalar as well. As a
result of 1D lookup, the size of the lookup features is not quadratic in the lookup radius 𝑟 but it is
linear. In consequence the resulting shapes of the lookup over all levels 𝐶𝐿𝑢 and 𝐶𝐿𝑣 are of shape
(𝐻,𝑊, 𝑙max · (2𝑟 + 1)) where 𝑙max is the number of 3D correlation volume pyramid levels.

Loss Function Similar to RAFT, a loss function with multiple terms and exponentially increasing
weights is used.

ℒ =

𝑁∑︁
𝑖=0

𝛾𝑁−𝑖 ∥f𝑖 − fgt∥1 (3.59)

Equation (3.59) shows the loss function of Separable Flow. An important difference to the loss
function of RAFT in Equation (3.39) is the inclusion of the initial flow 𝑓0 from motion regression.
The loss term for 𝑓0 is integrated by starting the sum at index 𝑖 = 0 instead of 𝑖 = 1. Therefore, the
intial flow has the smallest weight of all terms with 𝛾𝑁 where gamma is chosen as 𝛾 = 0.8.

3.8 Learning to Estimate Hidden Motions with Global Motion
Aggregation

Global Motion Aggregation [JCL+21] provides an aggregation module for the motion features of
RAFT. The goal is to propagate motion information to occluded pixels from similar pixels according
to the context features of image 𝐼1. To identify such pixels, a similiarity measure needs to be defined.

\ (𝑥𝑖) = 𝑊qry𝑥𝑖 𝜙(𝑥𝑖) = 𝑊key𝑥𝑖 𝜎(𝑥𝑖) = 𝑊val𝑦𝑖 (3.60)

This is achieved by first projecting the context features using individual learned projection matrices
𝑊 as can be seen in Equation (3.60).

35

3 Foundation

A relative positional encoding might be added to the key features, however this has been shown to
worsen the results in most cases. Afterwards, the resulting query and key features are compared
using the pixel-pairwise dot product, as shown by the yellow box in Figure 3.5.

𝑓 (𝑎𝑖 , 𝑏 𝑗) =
exp(𝑎𝑇𝑖 𝑏 𝑗/√𝐷)∑𝑁
𝑗=1 exp(𝑎𝑇𝑖 𝑏 𝑗/√𝐷)

(3.61)

Equation (3.61) shows how the scaled dot product attention is computed for each pair of query
features 𝑎𝑖 and key features 𝑏 𝑗 , where 𝐷 is the feature size. The equation is a reformulation of
Equation (3.24), where the softmax is applied to the scaled dot-product. In this case, the softmax is
written out explicitly as a fraction of the exponentiated products. Furthermore, the query and key
features are not stacked into matrices and the value features are not directly aggregated. By storing
the results for each pair of features, each contributing two spatial dimensions, the four dimensional
attention matrix is created.

�̂�𝑖 = 𝑦𝑖 + 𝛼
𝑁∑︁
𝑗=0

𝑓 (\ (𝑥𝑖), 𝜙(𝑥 𝑗))𝜎(𝑦 𝑗) (3.62)

Finally, the projected motion features are aggregated for each pixel 𝑖 with context features 𝑥𝑖 and
motion features 𝑦𝑖. Pixels with matching context feature projections have larger attention matrix
entries. Hence, their motion feature vector projections contribute more to the sum and are therefore
more impactful. As a last step all motion feature aggregates are scaled by the same learned factor
and added to the original motion features 𝑦𝑖 . The resulting aggregated motion features are denoted
by �̂�𝑖 .

Instead of [𝑦𝑖 , 𝑥𝑖] as in RAFT, the convolutional GRU update module now receives [𝑦𝑖 , �̂�𝑖 , 𝑥𝑖]. This
means that the update module receives both the aggregated and original motion features. Jiang et al.
[JCL+21] argue that their model may be able to learn selecting between the local flow estimate and
the globally aggregated estimate, depending on whether the local information is sufficient.

3.9 General Purpose GPU Computing

This section explains the basics of GPU computing that are relevant to this thesis. It is based on
NVIDIA GPUs as well as the CUDA general-purpose parallel computing platform [NVI22]. GPUs
have an architecture that is generally tailored towards the single instruction, multiple data paradigm
and parallel processing. This means that the same operation can be performed efficiently with many
different values as arguments in parallel. Consequently, they are especially suitable for tasks which
can benefit from thousands of parallel threads.

Streaming Multiprocessor The smallest unit of computation on NVIDIA GPUs is the Streaming
Multiprocessor (SM), which runs a group 32 threads called warp in lockstep. This means that all
threads in the warp execute the same instruction at the same time. Branching execution paths caused
for example by if-statements can lead to each of the paths being processed in sequence. Therefore,
divergence inside the warp should be avoided to keep all threads running in parallel.

36

3.9 General Purpose GPU Computing

Block Grid

blockIdx (0, 0)
thrIdx
(0, 0)

thrIdx
(0, 1)

thrIdx
(1, 0)

thrIdx
(1, 1)

blockIdx (0, 1)
thrIdx
(0, 0)

thrIdx
(0, 1)

thrIdx
(1, 0)

thrIdx
(1, 1)

blockIdx (1, 0)
thrIdx
(0, 0)

thrIdx
(0, 1)

thrIdx
(1, 0)

thrIdx
(1, 1)

blockIdx (1, 1)
thrIdx
(0, 0)

thrIdx
(0, 1)

thrIdx
(1, 0)

thrIdx
(1, 1)

blockIdx (2, 0)
thrIdx
(0, 0)

thrIdx
(0, 1)

thrIdx
(1, 0)

thrIdx
(1, 1)

blockIdx (2, 1)
thrIdx
(0, 0)

thrIdx
(0, 1)

thrIdx
(1, 0)

thrIdx
(1, 1)

Figure 3.6: Example for a thread block grid layout with a block dimension of (2, 2) and a block
grid of size (3, 2).

Thread Block Grids To organize and schedule the distribution of threads onto SMs, the concept
of thread blocks and grids is introduced. Thread blocks are groups of threads which run on the
same SM. They are organized in a one, two or three dimensional grid. Because of this, each thread
has the builtin 1D, 2D or 3D vectors “threadIdx”, “blockIdx” and “blockDim”. These vectors are
assigned such that each thread can identify the index of its block within the grid and its own index
within the block. Usually all threads run the same same program with the same arguments. Hence,
these variables are the main source of information which can be used during programming to ensure
that all threads operate on different data or even behave differently. Figure 3.6 shows an example
where the threads per block and number of blocks are configured as follows:

blockDim = (2, 2) numBlocks = (3, 2) (3.63)

In this example, the task may be to perform some operation for each pixel of an image of size (6, 4).
Then, each thread would calculate its pixel index as

pixelIdx.x = blockIdx.x · blockDim.x + threadIdx.x
pixelIdx.y = blockIdx.y · blockDim.y + threadIdx.y

(3.64)

By using the pixel index, each thread is able to identify and therefore read and write values of the
image array relative to its pixel index. An additional blocks dimension may be added with the size
of the number of images 𝐵 in the batch to process multiple images in the same way. In this case the
block dimension would be (𝐵, 2, 2).

CUDA Kernels The program that runs in parallel on the GPU is called kernel, which is implemented
as a templated C++ function. Its template parameters determine the number of blocks and the
shape of each thread block as discussed in the previous example. Hence they have to be known at
compile time. As soon as the kernel is started, its blocks are scheduled to run on the SMs of the
GPU. Blocks of the same kernel may be scheduled in an arbitrary order and run at different times
on the same SM or on different SMs in parallel.

37

3 Foundation

Memory GPUs usually have a large global memory and multiple levels of caches with increasing
size. Here, the focus will lie on the global and shared memory. The global memory has a size in the
order of Gigabytes and is accessible by all threads on the same GPU. Its access latency is much
higher than the one of the shared memory. In this thesis, the kernel will usually receive references
to the input and output tensors in global memory. Each thread can then read from the input tensors
and write the result to its assigned index in the output tensor. In contrast to the global memory, the
shared memory is small as it is usually configured to be 48KB by default. Shared memory is much
faster than global memory, as it shares its physical hardware with the L1 cache. Also, it can only be
accessed by threads of in the same thread block. Because of that, it is used in this thesis to share
values loaded from global memory as well as intermediary results between the threads.

Synchronization Threads can be synchronized on different levels. Since the number of threads
in a block may exceed the number of threads in a warp, threads in the same block may not always
run in lockstep. To avoid data races between threads of the same block, synchronization on the
block level can be applied. Block level synchronization is an operation that prevents threads from
advancing past the synchronization point until all threads have arrived at the this point. For example,
synchronization can be applied in case all threads first write the shared memory at their index before
all threads may read arbitrary indices. By performing synchronization after the writing phase,
threads are forced to wait until all indices of the shared memory have been updated. Consequently,
the following read operations are guaranteed to read updated values.

38

4 Investigation of Differences between Paper
and Implementation

This chapter investigates differences between the paper and its implementation. The implementation
that accompanies the paper differs in several aspects from its description. One of them is the
training schedule and the settings that are used during training. Furthermore, several modifications
to the model structure could be identified in the implementation. These are described in the second
section of this chapter.

4.1 Differences in the Training: Parameters and Schedule

The training parameters and order of datasets have significant impact on the training outcome
and final estimation quality. When investigating the training schedule and parameters, significant
changes were discovered. Therefore, this section is dedicated to describing the differences between
the parameters of the paper and the implementation.

All changes are marked in Table 4.1. The dataset schedule shown in the first three columns
remains unchanged. During the first and second stage, training is performed solely on the Flying
Chairs [DFI+15a] (C) and Flying Things [MIH+16] (T) datasets. The third stage is called the
Sintel [BWSB12] finetuning stage, where samples from the Sintel (S), KITTI [MG15] (K), HD1K
[KNH+16] (H), Chairs and Things datasets are mixed. All datasets are combined in a weighted
mixture which may be used to balance the different number of samples in each dataset. Finally,
stage four draws samples from the KITTI dataset and is called KITTI finetuning.

Schedule Training Parameters

Stage Weights Data LR BS WD Crop Size Iterations

Chairs - C 4e-4 12 1e-4 [368, 496] → [320, 448] 100K→ 50K
Things Chairs T 1.25e-4 6→ 8 1e-4 [400, 720] → [448, 768] 100K
Sintel Things C+T+S+K+H 1.25e-4 6→ 8 1e-5 [368, 768] → [384, 832] 100K
KITTI Sintel K 1e-4 6→ 8 1e-5 [288, 960] → [320, 1024] 50K

Table 4.1: Differences in the training schedule and parameters between the paper and the imple-
mentation. The table contains the training Stage, from which stage to load the Weights,
the Datasets to use for training, learning rate (LR), batch size (BS), weight decay (WD),
the image crop size and number of refinement iterations.

39

4 Investigation of Differences between Paper and Implementation

The number of training iterations is is shown in the last column. One training iteration corresponds
to one parameter optimization step for a batch of samples. In the paper, 100K iterations are specified
for the first dataset in the schedule, however the implementation uses 50K iterations. Moreover, the
batch size increased from 6 to 8 frame pairs. This change was most likely made to ensure that each
of the 4 GPUs receives uniformly sized batch-splits of size 2.

Another change is in the image patch size, which specifies the height and width of the patches that
are extracted from the dataset during data augmentation. The model structure dictates that the input
frames spatial dimension sizes are divisible by 64. This means that it is impossible to use the patch
sizes specified in the paper because some of their dimensions do not fulfill the criterion. Most likely,
the divisibility criterion is the reason for the authors using different patch sizes which fulfill the
criterion while still being close to the ones specified in the paper. The part of the model that creates
the divisibility constraint is the convolutional encoder-decoder network in the 3D correlation volume
aggregation module. Like RAFT, the image features have spatial dimension (1/8𝐻full, 1/8𝑊full). At
the lowest level, the encoder-decoder network down-samples this dimension to (1/64𝐻full, 1/64𝑊full).
If 𝐻 and𝑊 are not divisible by 64, then the remainder of the division is lost, resulting in a smaller
spatial dimension after up-sampling. Consequently, the spatial dimensions may not match with
previous tensor sizes prior to down-sampling. In this case, subsequent operations like elementwise
addition that rely on identical spatial dimension of the tensor operands are impossible. Therefore,
the model can only be applied to patches which fulfill the divisibility criterion.

The loss function of the implementation also differs from the paper. According to the paper, the
motion regression step returns only the final motion regressed flow. The following equation with
𝑁 = 12 for 12 motion refinement flows f1, . . . , f𝑁 and the additional final motion regression flow f̃0
was published.

𝑤(𝑖) = 𝛾𝑁−𝑖 for 𝑖 ∈ {0, 1, . . . , 𝑁} (4.1)

ℒ = 𝛾𝑁 ∥ f̃0 − fgt∥1 +
𝑁∑︁
𝑖=1

𝑤(𝑖)∥f𝑖 − fgt∥1 (4.2)

weights = [𝛾𝑁 , . . . , 𝛾1, 1] (4.3)

The motion regression step in the implementation returns two additional flow estimates f̃(−1) , f̃(−2)
computed by motion regression from intermediary steps of the aggregation of the correlation
volume. To incorporate the additional flow estimates, the following loss equation is provided.

𝑤(𝑖) = 0.5 − 𝛾𝑁 + 𝛾𝑁−𝑖 for 𝑖 ∈ {0, 1, . . . , 𝑁} (4.4)

ℒ = 0.1∥ f̃(−2) − fgt∥1 + 0.3∥ f̃(−1) − fgt∥1 + 0.5∥ f̃0 − fgt∥1 +
𝑁∑︁
𝑖=1

𝑤(𝑖)∥f𝑖 − fgt∥1 (4.5)

weights = [0.1, 0.3, 0.5, 0.5 − 𝛾𝑁 + 𝛾𝑁−1, . . . , 0.5 − 𝛾𝑁 + 𝛾1, 1.5 − 𝛾𝑁] (4.6)

The weights array lists the weights for all 13 or 15 flow estimates. In both cases, gamma is assigned
to be 0.8 or 0.85 depending on the training stage. Therefore, the implemented loss function weights
the final motion regressed initial flow estimate much stronger with a weight of 0.5 instead of
0.812 ≈ 0.07 for 𝛾 = 0.8 and 𝑁 = 12.

In the evaluation parts of each section, two training schedules of different lengths appear. Namely,
the full schedule (C+T+S+K+H) consisting of three or four training stages, including the Sintel
optionally also the KITTI finetuning stages. Second, the pre-training schedule (C+T) which contains
only the initial two stages.

40

4.2 Differences in the Model Structure

Model Sintel KITTI

Method #Par Chairs It. Data clean final epe F1

RAFT 5.257M 100K C+T 1.43 2.71 5.04 17.4
SepFlow 6.0M 100K C+T 1.30 2.59 4.60 15.9
Downloaded 8.346M n/a C+T 1.30 2.60 4.61 15.9
Provided 8.346M 50K C+T 1.55 2.89 5.69 19.6
Provided 8.346M 100K C+T 1.31 2.68 5.08 17.0

Table 4.2: Changing Training Schedule: 50K and 100K chairs training iterations

To train the model significant amounts resources are required, especially regarding the GPU memory
and computation time. It can be trained using multiple GPUs. Training one model for one ablation
step takes up to five days on two NVIDIA RTX A6000 GPUs, while it takes 2.5 days on four
GPUs of this type. Thus, performing ablations requires substantial amounts of computation time
even on expensive hardware. In consequence, the number of ablation steps that can be trained is
limited. Due to the limited training time available ablations are only performed on the pre-training
schedule, as is also the case in the publications of RAFT and Separable Flow. For the same reason,
no experiments were conducted for reverting the loss function to that of the paper. All experiments
were conducted with the loss function that came with the implementation, which is the second loss
function specified by equations (4.4)–(4.6). The estimation quality of the ablation steps is evaluated
using the Sintel and KITTI training dataset. Because their ground truth flow is publically available,
an unlimited number evaluations can be performed.

Table 4.2 shows the differences of estimation quality when training the original repository model
(Provided) with 50K and 100K training iterations. Above these results, the first two rows contain
the results published for RAFT and Separable Flow (SepFlow). In the third column, the results of
evaluating the trained model provided by the Separable Flow authors (Downloaded) are shown.
For this model, the number of training iterations is unknown. The Downloaded model has almost
identical results to those reported in the paper. However, its parameter count is much higher with
an increase of 2.346M trainable parameters from a reported 6M to 8.346M. Using 50K training
iterations on the chairs dataset as specified by the implementation, the estimates of the Provided
model are of much lower quality on both Sintel and KITTI than the Downloaded model. By moving
from 50K to 100K chairs iterations, the Provided results are much closer to those of the Downloaded
and SepFlow model. This shows that the change in training iterations is an important first step
towards reproducing the results of the paper. However, especially on KITTI, the results of Provided
are still worse. The KITTI end point error (EPE) differs by 0.47 from SepFlow which is a higher
error than the RAFT model has.

4.2 Differences in the Model Structure

The largest differences between the paper and the implementation lie in the model structure. Three
main differences of the model structure can be identified. These three changes will be described in
the next three subsections. Furthermore, the approach to revert the changes will be detailed.

41

4 Investigation of Differences between Paper and Implementation

𝑡 − 1

loop

once

once

𝑡 = 0 𝐻0

𝑓𝑡−1

𝑓0

𝐻𝑡−1

𝐶𝐿

{𝐶𝐿𝑢 , 𝐶𝐿𝑣 }

𝐹motion

⋃3
𝑙=0{𝐶𝐴,𝑙}⋃3

𝑙=0{𝐶
𝐴,𝑙
𝑢 , 𝐶

𝐴,𝑙
𝑣 }

Figure 4.1: Data dependencies of tensors during the refinement phase of Separable Flow. Only
the first part with the correlation features lookup is shown. Highlighted in yellow:
4D correlation volume pyramid and multi-scale correlation features 𝐶𝐿 from the 4D
lookup operation.

4.2.1 Motion Features use 4D Correlation Volume

The first major structural change lies in the computation of the motion features. Figure 4.1 shows
the first part of the Separable Flow refinement phase. All data dependencies related to the change
are highlighted with yellow boxes for tensors and red arrows for dependencies.

To calculate the motion features, each refinement iteration receives the current flow estimate and
the correlation volume as input. According to the paper, the 4D correlation volume 𝐶 (𝑖, 𝑗 , 𝑢, 𝑣)
is replaced by the concatenated, aggregated 3D correlation volumes [𝐶𝐴𝑢 (𝑖, 𝑗 , 𝑢), 𝐶𝐴𝑣 (𝑖, 𝑗 , 𝑣)].
However, in the implementation, the aggregated 4D correlation volume pyramid

⋃3
𝑙=0{𝐶𝐴,𝑙} is

passed alongside the 3D correlation volume pyramid
⋃3
𝑙=0{𝐶

𝐴,𝑙
𝑢 𝐶

𝐴,𝑙
𝑣 } to the refinement iteration

module. In each refinement step, the 2D lookup operation is performed on all levels 𝑙 of 𝐶𝐴,𝑙.
Similarly, for 𝐶𝐴,𝑙𝑢 and 𝐶𝐴,𝑙𝑣 the lookup is applied with a one dimensional local grid of the
displacement value indices instead of a two dimensional one. The multi-scale correlation features
𝐶𝐿 , 𝐶𝐿𝑢 , 𝐶𝐿𝑣 are a concatenation of the results of the lookup on all levels along the channels
dimension, as described in Section 3.7. Finally, motion features are computed using a convolutional
neural network that receives the flow estimate and the correlation features of all three correlation
volumes. To arrive at the motion features, separate convolutional layers process each of the four
inputs. After that an additional convolutional layer is applied to the concatenated, preprocessed
inputs, resulting in the final motion features.

To remove the 4D correlation volume 𝐶𝐴 from the motion features and revert the change to the
model, the following steps are taken. First the lookup of the 4D correlation volume during the
refinement iterations is disabled because the resulting lookup features 𝐶𝐿 are no longer required.
Furthermore, the motion feature encoder is modified to account for the removal of 𝐶𝐿 . This
modification entails taking away the convolution layers responsible for processing 𝐶𝐿 . In addition,
the final channels dimension of the convolutional layer of the motion encoder can be decreased. This
decrease originates from the fact that the features of 𝐶𝐿 no longer contribute to the concatenation
along the channels dimension. In consequence, reverting the change leads to a reduction in the

42

4.2 Differences in the Model Structure

4D Correlation
Volume
(𝐻,𝑊 ,𝐻,𝑊)

3D Correlation
Volume
(𝐻,𝑊 ,𝐻)
(𝐻,𝑊 ,𝑊)

⋃3
𝑙=0{𝐶𝐴,𝑙}

{𝐶max
𝑢 , 𝐶

avg
𝑢 , 𝐶max

𝑣 , 𝐶
avg
𝑣 }⋃𝐾−2

𝑘=1 {𝐶𝑘+2𝑢 , 𝐶𝑘+2𝑣 }

{𝐶𝑢, 𝐶𝑣}

Figure 4.2: Excerpt of the data dependencies of tensors during the initialization phase of Separable
Flow. Only the cost volume separation part is of the initialization phase is shown.
Highlighted in yellow: Tensor containing the attention-based channels of the 3D
correlation volume.

parameter count of the model since the size of the multi-channel learnable convolution kernels
decreases. The exact impact of removing 𝐶𝐴 from the motion features with regard to the parameter
count and estimation quality will be discussed in Section 4.2.5.

4.2.2 Attention-Based Channels for the 3D Correlation Volume

The next change is located in the channels of the 3D correlation volumes. As described in Chapter 3,
those volumes have 𝐾 channels. For the initial two channels, the maximum and average statistics of
the 4D correlation volume are computed. Statistical channels are mentioned in the paper and are
also present in the provided implementation. However, the paper also describes the 4D correlation
volume to have 𝐾 − 2 further channels. They are computed in an attention-weighted sum over one
of the displacement dimensions of the 4D correlation volume. The learned attention and channels
are missing from the implementation.

Figure 4.2 illustrates this change in the context of an excerpt from the initialization phase of
Separable Flow. The yellow box shows the missing attention-based channels

⋃𝐾−2
𝑘=1 {𝐶𝑘+2𝑢 , 𝐶𝑘+2𝑣 }.

These channels depend on the 4D correlation volume pyramid
⋃3
𝑙=0{𝐶𝐴,𝑙} that is compressed over

all levels 𝑙. Besides the 4D correlation volume pyramid, the attention-based channels also depend
on the maximum and average statistics {𝐶max

𝑢 , 𝐶
avg
𝑢 , 𝐶max

𝑣 , 𝐶
avg
𝑣 } of the 4D correlation volume for

computing the attention weights. The weights’ computation is performed by a convolutional layer,
which is the only learnable component of the cost volume separation.

Considering the fact that the learnable part of cost volume separation is missing and the title
“Separable Flow: Learning Motion Cost Volumes for Optical Flow Estimation”, it is especially
striking that the implementation skips and important part of learning the 3D correlation volumes.
Only the 3D correlation volume aggregation remains as the second learnable part of the 3D
correlation volume discussed in the paper. Section 4.2.3 discusses another structural change related
to learning the correlation volume which only exists in the implementation.

43

4 Investigation of Differences between Paper and Implementation

1 def separate(corr_pyramid, attention_nets, num_levels=4):

2

3 corr_u_lvls = []

4 corr_v_lvls = []

5

6 for i in range(num_levels):

7 corr = corr_pyramid[i]

8

9 # ... compute C^max_u, C^avg_u, C^max_v, C^avg_v

10 # corr_u = concatenate(C^max_u, C^avg_u)

11 # corr_v = concatenate(C^max_v, C^avg_v)

12

13 attention1, attention2 = attention_nets

14

15 a_u = attention1(corr_v)

16 a_u = a_u.unsqueeze(dim=2)

17 a_u = a_u.softmax(dim=3)

18

19 a_v = attention2(corr_u)

20 a_v = a_v.unsqueeze(dim=3)

21 a_v = a_v.softmax(dim=2)

22

23 adaptive_corr_u = torch.einsum(

24 'bcuvij,bcuvij->bcuij',a_u, shaped_corr)

25 adaptive_corr_v = torch.einsum(

26 'bcuvij,bcuvij->bcvij',a_v, shaped_corr)

27

28 corr_u = torch.cat((corr_u, adaptive_corr_u), dim=1)

29 corr_v = torch.cat((corr_v, adaptive_corr_v), dim=1)

30

31 corr_u = F.interpolate(corr_u, [h2, h1, w1],

32 mode='trilinear', align_corners=True)

33 corr_v = F.interpolate(corr_v, [w2, h1, w1],

34 mode='trilinear', align_corners=True)

35

36 corr_u_lvls.append(corr_u)

37 corr_v_lvls.append(corr_v)

38

39 corr_u_final = torch.cat(corr_u_lvls, dim=1)

40 corr_v_final = torch.cat(corr_v_lvls, dim=1)

41

42 return corr_u_final, corr_v_final

Listing 4.1: Implementation of Attention-Based Channels

44

4.2 Differences in the Model Structure

Reverting the change requires implementing the missing attention-based channels. A simplified
version of the 3D correlation volume computation is shown in listing 4.1. Some of the variables
have been renamed and lines are moved or summarized as compared to the implementation. This is
done to highlight the semantics of the code and make it more concise. To separate the displacement
dimensions of the 4D correlation volume pyramid, the channels of the 3D correlation volume are
computed on each level. Two lists corr_u_lvls and corr_v_lvls are created in lines 3 and 4 to store
the up-sampled 3D correlation volume of every pyramid level. A loop iterates over all pyramid levels
i (line 6). On each level, the current level of the 4D correlation volume is loaded (line 7). Lines 9
to 11 represent the computation of the maximum and average channels, which are concatenated and
stored in variables corr_u and corr_v. This part was summarized because it was already present in
the provided implementation. Separate attention networks attention1 and attention2 are passed to
the function separate from the main Separable Flow module, since they need to persist as long as
the main module exists. They consist of a single 3D convolution layer with a kernel size of (3,3,3)
and appropriate padding (1,1,1) to preserve the spatial dimension size during the operation. These
networks are used to compute the 3D attention weights a_u and a_v of shapes (batch, K-2, V, H, W)

and (batch, K-2, U, H, W) from the maximum and average channels. Because each of the 𝐾 − 2
attention-based channel has its own attention weights channel, the convolution operation receives 2
maximum and average channels and returns the attention weights tensor with 𝐾 − 2 channels. To
create a uniform shape for the attention weights tensors, the missing𝑈 or𝑉 displacement dimension
is replaced by a dimension of size one. The resulting shapes are (batch, K-2, 1, V, H, W) for a_u

and (batch, K-2, U, 1, H, W) for a_v. Finally, the softmax operation is applied to the remaining
displacement dimension that has a size large than one, such that the values of all indices along this
dimension sum to one. The attention weighted sum over the batch and spatial dimension of the
4D correlation volume is implemented by the PyTorch operation einsum. It enables the use of the
Einstein summation convention, that makes it possible to specify tensor operations in a clear and
concise fashion. On the left side of the equation, the dimensions of both inputs are named with one
letter each and separated by a comma. After the arrow, the desired dimensions of the output are
specified in terms of the dimensions of the input. The v dimension is not present on the output side
in line 24 thus for each index of the output (𝑏, 𝑐, 𝑢, 𝑖, 𝑗) the sum over the v dimension of the inputs
product at the current (𝑏, 𝑐, 𝑢, 𝑣, 𝑖, 𝑗) index is taken.

output(𝑏, 𝑐, 𝑢, 𝑖, 𝑗) =
𝑉−1∑︁
𝑣=0

input1(𝑏, 𝑐, 𝑢, 𝑣, 𝑖, 𝑗) · input2(𝑏, 𝑐, 𝑢, 𝑣, 𝑖, 𝑗) (4.7)

Equation (4.7) describes the operation mathematically.

Lines 31-34 show how the spatial dimension on each pyramid level is up-sampled, such that
the spatial dimensions of each level are identical to the highest resolution level (H, 𝐻,𝑊) and
(W, 𝐻,𝑊). To accomplish this, trilinear interpolation is performed between values of each tensor
with lower spatial dimension size in the displacement dimensions. By up-sampling all levels to the
same resolution, they can be concatenated along the channels dimension, resulting in the final 3D
correlation volumes corr_u_final and corr_v_final (lines 39-40).

45

4 Investigation of Differences between Paper and Implementation

Img.
(𝐻full,𝑊full)

Img. Feat.
(𝐻,𝑊)

4D Correlation
Volume
(𝐻,𝑊 ,𝐻,𝑊)

𝐼1 𝐼2

𝑊𝐶
NLF 𝐹1 𝐹2

𝐶

𝐶𝐴

⋃3
𝑙=0{𝐶𝐴,𝑙}

Figure 4.3: Excerpt of the data dependencies of tensors during the initialization phase of Separable
Flow. Only the 4D correlation volume aggregation part of the initialization phase
is shown. Highlighted in yellow: Filter weights tensor 𝑊𝐶

NLF and aggregated 4D
correlation volume 𝐶𝐴.

4.2.3 Aggregation of the 4D Correlation Volume

Before the 3D correlation volumes can be computed by compressing the information of the 4D
correlation volume, first the 4D correlation volume pyramid has to be calculated. The final major
structural change can be found in the construction of the 4D correlation volume. In the paper,
Section 3.2.2 is dedicated to learning correlation volume aggregation. This chapter only mentions
aggregation of the 3D correlation volumes but not the 4D volume. In contrast, the provided model
uses non-local filters (NLF) to aggregate the 4D correlation volume before down-sampling to create
the pyramid.

Figure 4.3 shows the 4D cost volume aggregation in the context of the 4D correlation volume
construction during the Separable Flow initialization phase. The NLF weights 𝑊𝐶

NLF and the
aggregated cost volume 𝐶𝐴 are highlighted in yellow. To compute the NLF weights, the same
guidance subnetwork is used as for the 3D correlation volume aggregation weights, receiving the
image features and the image itself. Then the filter operation is applied to the 4D correlation volume
𝐶 with the filter weights

The use of non-local filters for 3D stereo correlation volume aggregation has been investigated
and therein the correlation volume for stereo matching has height, width, displacement and feature
dimensions [ZPYT19]. Therefore, they can be utilized to aggregate the 3D correlation volumes
of Separable Flow. However, the optical flow 4D correlation volume has height, width as well as
horizontal and vertical displacement dimensions. It was not possible to retrieve the source paper or
any kind of documentation of the specific NLF for 4D correlation volumes that was implemented in
the provided Python and CUDA C++ code. From the code, it is apparent that the filter is applied in
a sequential manner in four directions (left, right, up, down). Each directional filter application
updates the 4D correlation volume and the updated volume is then passed to the next directional
filter application.

46

4.2 Differences in the Model Structure

𝐶𝑢 Conv3×3×3(𝛼, 𝛽) SGA1 Multi-Channel
Lookup 1D

Motion
Regression 𝑓(−2)

SGA11
SGA12

3D Encoder
Decoder SGA2 Multi-Channel

Lookup 1D
Motion

Regression 𝑓(−1)

3D Encoder
Decoder SGA3 Motion

Regression 𝑓0

Conv3×3×3(𝛽, 1) 𝐶𝐴𝑢

Figure 4.4: Illustration of the provided motion aggregation and regression network. Orange
Background: Suggested operations to be removed.

Since the NLF does not change the shape of the 4D correlation volume, all following operations
are not affected by omitting the NLF operation. Consequently, the change can be reverted by
skipping the NLF operation between the 4D correlation volume creation and average pooling for
the correlation volume pyramid. After removing the NLF operation, the 4D correlation volume
creation from the image features is then directly followed by building the 4D correlation volume
pyramid. In addition, the guidance subnetwork is modified to only compute the 3D correlation
volume aggregation weights {𝑊𝐶𝑢

SGA,𝑊
𝐶𝑣

SGA}. Layers of the subnetwork that are only relevant for 4D
correlation volume aggregation𝑊𝐶

NLF are removed.

4.2.4 3D Motion Aggregation and Motion Regression Network

This section describes the 3D motion aggregation network as it is present in the provided imple-
mentation. The publication of Separable Flow contains only little information besides the number
of eight 3D convolutional and four Semi-Global Guided Aggregation (SGA) layers. It is not
possible to deduce the intended published structure from the publication. In the implementation
more convolutional layers and one additional SGA layer are used. However, too little information
is available to find concrete changes of the implementation. For example, it is unclear which
convolutional layers should be removed to arrive at the published layer count.

Figure 4.4 shows the simplified structure of the provided motion aggregation and regression network.
The 3D correlation volumes 𝐶𝑢 or 𝐶𝑣 resulting from the channels separation are passed to separate
networks. They have 𝛼 channels, which are in the number of pyramid levels 𝑙max times the number
of separation channels 𝐾 . First, a 3D convolution produces a tensor with 𝛽 channels from 𝐶𝑢 which
is then processed by the first SGA layer (SGA1). After that, the first auxiliary flow estimate 𝑓(−2) is
produced by applying a zero-centered lookup operation over all channels with a fixed displacement
range to result in a tensor with displacements {−𝑑max, . . . ,−1, 0, 1, . . . , 𝑑max} for each channel and
first frame feature index. The motion regression module then reduces the channels dimension to
one by using a single convolutional layer and applies motion regression as described in Section 3.7.
A 3D convolutional encoder decoder network with additional SGA11 and SGA12 layers is used to
process the result from SGA1. This layer is responsible for the divisibility constraint mentioned
in Chapter 4.1. Next, another SGA layer (SGA2) is applied to the previous result. Again, multi
channel lookup and motion regression allow for another auxiliary flow estimate 𝑓(−1) . The result of

47

4 Investigation of Differences between Paper and Implementation

Model Sintel KITTI

Method #Par Chairs It. Data clean final epe F1

RAFT 5.257M 100K C+T 1.43 2.71 5.04 17.4
SepFlow 6.0M 100K C+T 1.30 2.59 4.60 15.9
Downloaded 8.346M n/a C+T 1.30 2.60 4.61 15.9
Provided 8.346M 50K C+T 1.55 2.89 5.69 19.6
Provided 8.346M 100K C+T 1.31 2.68 5.08 17.0
NoCorr 7.602M 50K C+T 1.93 3.56 11.31 34.7
NoCorr 7.602M 100K C+T 1.93 3.51 11.12 35.4
↑& K=4 7.606M 50K C+T 2.00 3.53 11.84 38.3
↑& K=4 7.606M 100K C+T 1.78 3.25 10.29 31.0
↑& ↑& NoAgg 7.557M 50K C+T 1.85 3.34 10.42 32.3
↑& ↑& NoAgg 7.557M 100K C+T 1.81 3.33 10.50 32.0

Table 4.3: Results for model structure ablations. Bold: Best overall results, Underlined: Best
results of models trained in this thesis.

the lookup is processed further by an additional 3D convolutional encoder decoder network as well
as the final SGA3 layer. To produce the final initial flow estimate 𝑓0, motion regression is applied to
the output of SGA3. Finally, the aggregated 3D correlation volume 𝐶𝐴𝑢 is computed by applying a
convolution that reduces the channels dimension of the output of SGA2 from 𝛽 to one.

In conclusion, the seemingly trivial 3D cost aggregation network mentioned in the publication
is a complex motion aggregation and regression network. Due to the sparse description, it is
not possible to find concrete changes of the network structure. However, as previously discussed
for the loss function, the published loss does not utilize auxiliary flow estimates. Therefore, a
viable modification strategy may be to use 𝑓(−1) as initial flow estimate and remove all operations
corresponding to only 𝑓(−2) and 𝑓0. This would reduce the parameter count, especially by removing
the second encoder decoder network. Furthermore, by removing SGA3, the published count of four
SGA layers would be reached. However, because of the uncertainty of the modification strategy and
limited training time for ablations, such modifications were not explored with experiments.

4.2.5 Evaluation of Structual Changes

Now that all major structural differences have been discussed and reverted, this section discusses
the results with respect to the estimation quality and parameter count. Table 4.3 shows all the
results. Once more, the published results for RAFT, Separable Flow and trained model provided by
the Separable Flow authors Downloaded are shown in the topmost three rows. The pre-training
schedule with the first two training stages of Flying Chairs and Flying Things was used for the
ablations. For these methods, the best overall results are reported for Separable Flow on the Sintel
and KITTI training datasets.

48

4.2 Differences in the Model Structure

Model Sintel(test)

Method Chairs It. Data clean final

RAFT (2-view) 100K C+T+S+K+H 1.94 3.18
SepFlow (2-view) 100K C+T+S+K+H 1.50 2.67
NoAgg (2-view) 100K C+T+S+K+H 2.31 3.87

Table 4.4: Results for finetuning the final ablation step model on Sintel.

Below, the fourth and fifth row Provided show the results of the provided model for both 50K and
100K chairs iterations, as discussed in Section 4.1. These results are already close to those of
Separable Flow and Downloaded.

Results for structural ablation steps described in this section can be seen in the last six columns.
They are referred to as NoCorr, K=4 and NoAgg and will be discussed in the next paragraphs.

The first ablation step called NoCorr is a model that omits use of the 4D correlation volume in
the motion features. It corresponds to the change discussed in Section 4.2.1. As discussed in this
section, the Provided is modified such that the change is reverted. A large drop off in estimation
quality, for both 50K and 100K chairs iterations compared to the Provided model can be observed
on both Sintel and KITTI. Consequently, the inclusion of 4D correlation volume motion features
seems to have a large positive impact. In addition to the loss in quality, the model has 0.744M fewer
parameters than Provided. The cause of this is the removal of convolutions in the motion features
network, which are responsible for processing the 4D correlation features.

In the next structural ablation step K=4, two attention-based channels are added to the NoCorr model
from the previous ablation step. These channels are implemented as described in Section 4.2.2. By
adding two attention-based channels to the 3D correlation volume, some of the lost quality of the
previous ablation step can recuperated. This is evident from the improved results for 100K training
iterations compared to the previous ablation step. Especially in relation to the small increase of
merely 0.004M parameters, adding these extra channels is effective.

In the final ablation step NoAgg, the aggregation of the 4D correlation volume is omitted. Once
more, the model from the previous ablation step K=4 is modified according to Section 4.2.3 to
revert the change. The aggregation seems to have a slight positive impact on the estimation quality,
as removing them leads to a small drop in performance. Surprisingly, the performance for 50K
training iterations is improved compared to the previous step. Furthermore, in this final ablation
step, the estimation quality gap between the model with 50K Flying Chairs iterations compared to
100K iterations is quite small, similarly as in the first structural ablation step NoCorr. The larger
gap in estimation quality between the model with 50K and 100K chairs iterations for the Provided
model may be caused by its larger parameter count compared to NoCorr and NoAgg. More training
iterations may be required to make full use of the 4D correlation motion features and additional
parameters. Overall, the change saves around 0.05M parameters, owing to the exclusion of the filter
weights network from the model.

Table 4.4 shows the results for models finetuned on the third training stage, which is the Sintel
stage and evaluated on the Sintel test dataset. In the first two columns, the published results for
RAFT and Separable Flow are listed. Below, the results of the refined final ablation step NoAgg

49

4 Investigation of Differences between Paper and Implementation

are displayed. To evaluate the model, the results were submitted to the Sintel leaderboard website.
It can be observed that the estimation quality differences between the listed models are similar to
those of the models on the ablation training schedule. Therefore, the model from the final ablation
step NoAgg is still unable to reproduce the reported results. The estimation quality of all models is
lower when finetuning for Sintel and evaluating on Sintel test compared to the ablation training and
evaluation schedule.

4.3 Discussion

By finding and reverting the major structural changes of the model, it was possible to fit the model
that is described in the paper more closely. However, the results show that the model with the
structure specified in the original implementation performs best and is closest to the reported
estimation quality. Especially removing the 4D correlation volume as input to the motion features
decreased the performance significantly. Only adding the attention-based channels improved the
results. Intuitively, this seems reasonable because it is the only change that added parameters and
operations to the network, where all other changes do the opposite.

Considering the results of the structural ablations, it seems like achieving the results reported
in the paper is not possible with the structure from the paper, but only the one provided by the
implementation. This is backed by the provided model trained by the authors (Downloaded),
which has the same structure and parameter count of the Provided model. The results of the
Downloaded model were evaluated as part of this thesis and are very close to the results reported in
the paper. Hence, the key to the achieving the same estimation quality as the Downloaded model
with the provided model implementation has to be located in changes of operations without trainable
parameters or in the training procedure of the model.

While the change from 50K to 100K training iterations on the Flying Chairs dataset did improve
the performance on the ablation schedule, the results were still slightly worse than the ones of the
Downloaded model. Therefore, the authors of Separable Flow may have still used a different set of
training parameters than the implementation. However, they are not recoverable from the published
descriptions or the implementation.

Although the claims of the authors with respect to their combination of model structure, number of
trainable parameters and estimation quality could not be reproduced, their conclusion still holds for
the ablation results of this thesis: “The main benefit of our method is [...] its improved accuracy
(compared to parameter count, speed and accuracy of RAFT)” [ZWPT21, p. 10814]. The Provided
implementation with 100K training iterations achieves results that are superior to RAFT, although
the model structure is different and parameter count 1.4 times higher than stated in the Separable
Flow publication.

By changing the structure of the 3D motion aggregation and regression network as suggested in
Section 4.2.4, it might be possible to fit the description more closely. However, since the suggested
change is only based on evidence from the sparse published description, it may yet introduce new
differences to the model evaluated in the Separable Flow publication. For this reason as well as the
limited number of ablation steps caused by the long and computationally expensive training, no
experiments were conducted on this change.

50

5 Memory Saving Strategy for Separable Flow

One interesting claim of the paper is that the 4D correlation volume 𝐶 does not need to be stored as
an intermediary result for the computation of the 3D correlation volumes 𝐶𝑢 and 𝐶𝑣 [ZWPT21]. If
𝐶 is only used for 𝐶𝑢 and 𝐶𝑣, this implies that its storage could be omitted completely. Hence, it
would be possible to save storage space on the GPU during both training and inference time. This
section investigates whether it is possible to to perform the cost volume separation in this memory
saving fashion. An implementation is described and its memory and timing results are evaluated.

5.1 Theoretical Savings

This section investigates how much memory can theoretically be saved by omitting storage of the
4D correlation volume. The first important aspect of this is how much memory is consumed by 𝐶
and also by the 4D correlation volume pyramid.

storage(𝐶𝑙) = 𝐻 ·𝑊 · (𝐻/2𝑙) · (𝑊/2𝑙) · 4 Bytes (5.1)

= (𝐻𝑊)2 · (1/4𝑙) · 4 Bytes

Equation (5.1) shows the memory consumption for storing the 4D correlation volume 𝐶𝑙 at the
pyramid level 𝑙 for an image with dimensions (𝐻full,𝑊full) = (8𝐻, 8𝑊). Both 2D locations in the
image features of frame one and frame two that correspond to one value in the 4D correlation
volume contribute their dimension sizes. Each value in𝐶𝑙 of shape (𝐻,𝑊, 𝐻/2𝑙,𝑊/2𝑙) is a floating
point number that requires 4 Bytes of storage.

storage(
𝑁−1⋃
𝑙=0
{𝐶𝑙}) =

𝑁−1∑︁
𝑙=0

storage(𝐶𝑙) (5.2)

= (𝐻𝑊)2 · 4 Bytes ·
𝑁−1∑︁
𝑙=0

(1
4
) 𝑙

lim
𝑁→∞

storage(
𝑁−1⋃
𝑙=0
{𝐶𝑙}) = 4

3
· (𝐻𝑊)2 · 4 Bytes (5.3)

To compute the storage of the pyramid, the storage consumption of all levels is accumulated. For
𝑁 = 4 levels, the sum amounts to around 1.328, which is close to the value of 1.3 that the sum
converges to for 𝑁 →∞.

When considering an image of size (320, 448), then (𝐻,𝑊) would be (40, 56) and the 4D
correlation volume pyramid would consume at least 26.8MiB. Similarly, for a larger image size of
(512, 1024) = 8(64, 128) the memory requirement would be 357.9MiB.

51

5 Memory Saving Strategy for Separable Flow

At inference time, the storage savings should almost reach the amount of the size of the 4D
correlation volume pyramid. Only the additional storage requirement of the image feature pyramid
𝐹𝑙2 for levels 1-3 has to be deducted, since it is replaced in the original implementation by pooling
𝐶 directly.

In contrast to the inference time, during training time intermediary results of the forward pass from
the PyTorch functions have to be stored for use in the backward pass. During the backward pass,
additionally the gradient of the 4D correlation volume with respect to the loss 𝜕𝐿

𝜕𝐶𝑙 has to be stored.
This leads to additional storage requirements of the same size as the pyramid, doubling the overall
amount.

5.2 Feasibility Considerations for Varying Model Structures

To investigate whether it is feasible to omit storing𝐶 as an intermediary result, its data dependencies
are examined. Furthermore, operations required to perform the calculation are identified and
described.

As mentioned in Section 3.7 and Section 4.2, the 4D correlation volume depends on the features
of the first and second image as well as guidance for cost volume aggregation. The maximum,
average and attention-based channels of 𝐶𝑢 and 𝐶𝑣 as well as the motion features depend on the 4D
correlation volume pyramid

⋃3
𝑙=0{𝐶𝐴,𝑙}.

Implementation Paper

𝐹1, 𝐹2 → 𝐶 𝐹1, 𝐹2 → 𝐶 (5.4)

𝐶,𝑊𝐶
NLF → 𝐶𝐴 no aggregation (5.5)

𝐶𝐴→
3⋃
𝑙=0
{𝐶𝐴,𝑙} 𝐶 →

3⋃
𝑙=0
{𝐶𝑙} (5.6)

3⋃
𝑙=0
{𝐶𝐴,𝑙} → 𝐶𝑢, 𝐶𝑣

3⋃
𝑙=0
{𝐶𝑙} → 𝐶𝑢, 𝐶𝑣 (5.7)

. . . ,

3⋃
𝑙=0
{𝐶𝐴,𝑙} → 𝐹motion . . .→ 𝐹motion (5.8)

To omit storage of the correlation volume, its values need to be computed on-demand. In this
context, on-demand computation means that one index of 𝐶 is computed only at the point in time
when it is needed.

After computing 𝐶 (Equation (5.4)), it is aggregated in the implementation (Equation (5.5)). The
aggregation is performed using a non-local filter. It may introduce dependencies from each index
of the aggregated correlation volume 𝐶𝐴 to many indices of 𝐶. This can result in the need for
cascading on-demand computations of the correlation volumes. First, one index of the aggregated
4D correlation volume would be requested, leading to on-demand computations of the indices of 𝐶
that are dependencies of this index. Due to that, the computation of 𝐶𝑢 and 𝐶𝑣 in Equation (5.7)
becomes very costly, since all indices of 𝐶𝐴 are requested at least once. The second problem of
the implementation lies in the fact that the aggregated 4D correlation volume pyramid is used in

52

5.3 Alternative 3D Correlation Volume Computation

the computation of the motion features (Equation (5.8)). As described in Section 3.6, the paper
that introduced RAFT provides an implementation for the 4D correlation volume lookup with
on-demand computation of the motion features. However, despite the availability of the on-demand
lookup implementation, the same problem of cascading on-demand computation would still persist
in case 𝐶𝐴 is used. Therefore, omitting 𝐶 as an intermediary result is likely not feasible for the
provided implementation.

Following the model structure from the paper, both the aggregation of 𝐶 and its usage in the
motion features are not present. The dependencies for this structure are shown in the right column
of Equations (5.4)–(5.8). Because of the reduced structure which results in fewer on-demand
computations of 𝐶, the model is far more suitable for omitting the storage of the 4D correlation
volume. Methods for the model described in the paper to compute the maximum, average and
attention-based channels of the 3D correlation volume without storing the 4D correlation volume
will be investigated in the next section.

5.3 Alternative 3D Correlation Volume Computation

This section describes how the 3D correlation volumes are computed in the paper and how this
computation was implemented. The goal is to compute the 3D correlation volumes 𝐶𝑢 and 𝐶𝑣
from the image features 𝐹1 and 𝐹2 without storing the 4D correlation volume 𝐶 in a time-efficient
manner.

𝐶𝑙 (𝑖, 𝑗 , 𝑢, 𝑣) = 𝐹0
1 (𝑖, 𝑗) · 𝐹

𝑙
2(𝑢, 𝑣)

𝐶
avg,𝑙
𝑢 (𝑖, 𝑗 , 𝑢) = 1

|𝑉 |
∑
𝑣∈𝑉 𝐶

𝑙 (𝑖, 𝑗 , 𝑢, 𝑣) 𝐶
avg,𝑙
𝑣 (𝑖, 𝑗 , 𝑣) = 1

|𝑈 |
∑
𝑢∈𝑈 𝐶

𝑙 (𝑖, 𝑗 , 𝑢, 𝑣)

𝐶
max,𝑙
𝑢 (𝑖, 𝑗 , 𝑢) = max

𝑣∈𝑉
𝐶𝑙 (𝑖, 𝑗 , 𝑢, 𝑣) 𝐶

max,𝑙
𝑣 (𝑖, 𝑗 , 𝑣) = max

𝑢∈𝑈
𝐶𝑙 (𝑖, 𝑗 , 𝑢, 𝑣)

�̂�𝑢 = 𝜎(𝜙𝑢 (𝐶avg,𝑙
𝑣 , 𝐶

max,𝑙
𝑣)) �̂�𝑣 = 𝜎(𝜙𝑣 (𝐶avg,𝑙

𝑢 , 𝐶
max,𝑙
𝑢))

𝐶
𝑘+2,𝑙
𝑢 (𝑖, 𝑗 , 𝑢) = �̂�𝑘𝑢 (𝑖, 𝑗) · 𝐶𝑙 (𝑖, 𝑗 , 𝑢, :) 𝐶

𝑘+2,𝑙
𝑣 (𝑖, 𝑗 , 𝑣) = �̂�𝑘𝑣 (𝑖, 𝑗) · 𝐶𝑙 (𝑖, 𝑗 , :, 𝑣)

𝐶𝑙𝑢 = concat(𝐶max,𝑙
𝑢 , 𝐶

avg,𝑙
𝑢 , 𝐶

3:𝐾,𝑙
𝑢) 𝐶𝑙𝑣 = concat(𝐶max,𝑙

𝑣 , 𝐶
avg,𝑙
𝑣 , 𝐶

3:𝐾,𝑙
𝑣)

The equations above show how each channel of the 3D correlation volumes 𝐶𝑢 and 𝐶𝑣 is calculated.
Each channel depends directly on all indices of 𝐶. By replacing each occurrence of 𝐶 (𝑖, 𝑗 , 𝑢, 𝑣) by
its equation 𝐹1(𝑖, 𝑗) · 𝐹2(𝑢, 𝑣), the usage of 𝐶 as an intermediary result is eliminated. This means
that all usages of intermediary results are replaced by their corresponding on-demand computation.
At each level 𝑙 of the correlation volume pyramid, on-demand computation of indices is performed
as described in RAFT [TD20], see Section 3.6.2.

There is no need to modify the equation for the attention �̂�𝑢 and �̂�𝑣 because it receives and produces
data with 3D storage requirement with respect to image height and width. The input consists of the
maximum and average channels of the 3D correlation volume and the output is the attention of
shape (𝐻,𝑊, 𝐻, 𝐾) or (𝐻,𝑊,𝑊, 𝐾). Hence this operation can be implemented using the PyTorch
operations softmax and Conv3d, which do not allow for direct control over the storage allocated for
intermediary results.

53

5 Memory Saving Strategy for Separable Flow

𝐹0
1 𝐹𝑙2

𝑐 = 𝐹0
1 (𝑖, 𝑗) · 𝐹

𝑙
2(𝑢, 𝑣)

𝐶
avg,l
• (𝑖, 𝑗 , •) = 𝐶

avg,l
• (𝑖, 𝑗 , •) + 𝑐

dimsize(•)
𝐶max,l
• (𝑖, 𝑗 , •) = max(𝐶max,l

• (𝑖, 𝑗 , •), 𝑐)

�̂�• = 𝜎(𝜙•(𝐶avg
• , 𝐶max

•))
𝑐 = 𝐹0

1 (𝑖, 𝑗) · 𝐹
𝑙
2(𝑢, 𝑣)

𝐶𝑘+2• (𝑖, 𝑗 , •) = 𝐶𝑘+2• (𝑖, 𝑗 , •)
+�̂�•(𝑖, 𝑗 , •̄)𝑐

Figure 5.1: Approach for minimizing the number of on-demand computations of 𝐶. Blue boxes:
image features input, red boxes: CUDA operation, each index of 𝐶 is computed only
once, orange box: attention computed using PyTorch convolutions and softmax.

By contrast, the computation of the maximum, average and attention-based channels is implemented
using custom CUDA functions. This is necessary, since the computation of each correlation volume
index has to be performed on-demand and full control over storage of intermediary results is
required. Another important aspect is the computation time. For each of the 𝐻𝑊𝐻𝐾 indices of 𝐶𝑢,
𝑊 on-demand computations of𝐶 are required. Every on-demand index computation takes the scalar
product over two vectors of size 𝐹. In total, this leads to a time complexity in O((𝐻𝑊)2𝐾𝐹).

5.3.1 Speedup Strategies

Because the time complexity is quadratic in the number of pixels and multiplied by a large factor of
256 for the image feature size 𝐹, it is important to speed this computation up as much as possible.
To accelerate the custom operations, two different approaches were combined. First the number
of computations of each index of 𝐶 is minimized. Second indices of 𝐶𝑢 and 𝐶𝑣 are computed in
parallel on the GPU using CUDA.

Figure 5.1 shows how the number of on-demand computations of indices of 𝐶 is reduced. The
image features 𝐹0

1 and 𝐹𝑙2 in the blue boxes serve as input to the channels computation. In the upper
left red box, each index of 𝐶 is computed once. Each index contributes to the maximum and average
channels 𝐶max,𝑙

𝑢 , 𝐶avg,𝑙
𝑢 , 𝐶max,𝑙

𝑣 and 𝐶avg,𝑙
𝑣 by updating them directly. For the maximum channel,

the current maximum is compared to the on-demand correlation value. If the new value is larger,
the channel value is overwritten. In case of the average channel, each correlation value is divided
by the corresponding displacement dimension size and added to the current intermediate average
result. After the results of the maximum and average channels are finalized, the attention for 𝐾 − 2
attention-based channels is computed using a convolutional layer and a softmax operation. Finally,
the attention-based channels are computed, receiving the results of all previous operations as input.
All indices of 𝐶 are computed once more. Each value is reused for each of the 𝐾 − 2 additional
channels 𝐶𝑘+2𝑢 and 𝐶𝑘+2𝑣 . Updates are performed by adding the attention-weighted correlation value
to the intermediary channel results.

54

5.3 Alternative 3D Correlation Volume Computation

Further speedup is achieved by parallelizing the computation and running it on the GPU. Executing
the custom function on the GPU has the additional benefit that all PyTorch tensors of the model
and intermediary results are already stored on the GPU. Therefore, input and output Tensors of
the function do not need to be moved to and from the GPU Custom PyTorch functions can be
implemented in CUDA. Each custom function can consist of multiple executions of CUDA kernels.
A CUDA kernel is a function that is executed in parallel, where the same code runs with different
parameters in each thread, as described in Section 3.9. Two custom functions were implemented,
each with with only one kernel execution. The calculation steps are distributed as shown in
Figure 5.1. One function computes the maximum and average channels, while the other computes
the attention-based channels.

5.3.2 Implementation of the Forward Pass

This section describes how the forward pass of the custom functions is implemented. To understand
the custom functions better, Algorithm 5.1 shows the context they appear in. The algorithm
describes the calculation of the 3D correlation volumes 𝐶𝑢 and 𝐶𝑣 , which is similar to listing 4.1 in
the previous Chapter 4. However, implementations of the maximum and average channels, as well
as the attention-based channels have been contracted into functions. Each of these two functions is
a custom PyTorch function that runs a CUDA kernel on the GPU. For the first function, the frame
features of frame one at level zero and frame two at level 𝑙 are required as inputs to compute the
maximum and average channels. In case of the function for the attention-based channels, attention
weights are passed additionally. These two custom function calls are repeated for every level in the
4D correlation volume pyramid. At each level, both displacement dimensions are halved, so the
computation steps are quartered with every level increase.

Algorithm 5.1 Computation of the 3D Correlation Volume: Overview
Require: maxPyramidLevel ≥ 0
Require: 𝐾 ≥ 2

1: 𝐹0
1 ← FrameFeatureNet1(𝐼1)

2: 𝐹0
2 ← FrameFeatureNet2(𝐼2)

3: for 𝑙 ← 1, . . . , maxPyramidLevel do
4: 𝐹𝑙2← Pool2d(𝐹𝑙−1

2 , kernel=2, stride=2)
5: end for
6: for 𝑙 ← 0, . . . , maxPyramidLevel do
7: (𝐶𝑙𝑢)1:2, (𝐶𝑙𝑣)1:2←MaxAvg(𝐹0

1 , 𝐹𝑙2) // Call function for max and avg channels
8: 𝐴𝑢 ← 𝜙𝑢 ((𝐶𝑙𝑣)1:2)
9: 𝐴𝑣 ← 𝜙𝑣 ((𝐶𝑙𝑢)1:2)

10: (𝐶𝑙𝑢)3:𝐾 , (𝐶𝑙𝑣)3:𝐾 ← Compress(𝐹0
1 , 𝐹𝑙2,𝐴𝑢,𝐴𝑣) // Call function for attention-based channels

11: (𝐶𝑙𝑢)1:𝐾
up ← Upsample((𝐶𝑙𝑢)1:𝐾)

12: (𝐶𝑙𝑣)1:𝐾
up ← Upsample((𝐶𝑙𝑣)1:𝐾)

13: end for
14: 𝐶𝑢 ← Concatenate((𝐶0:maxlevel

𝑢)1:𝐾
up)

15: 𝐶𝑣 ← Concatenate((𝐶0:maxlevel
𝑣)1:𝐾

up)

55

5 Memory Saving Strategy for Separable Flow

After showing the context in which the custom functions appear, the implementation of the first two
functions will be described in this block. Algorithm 5.2 provides a sketch of the GPU kernel of the
custom function for the maximum and average channels. The provided pseudocode is optimized
to have good cache coherency of loading data from global GPU memory under the constraints of
sharing each index computation of 𝐶 to update the channels of 𝐶𝑢 and 𝐶𝑣 .

As already mentioned, the kernel is invoked by a custom PyTorch function. This function allocates
memory for the output 𝐶max

𝑢 , 𝐶avg
𝑢 , 𝐶max

𝑣 and 𝐶avg
𝑣 of the kernel. Alongside the previously described

inputs to the custom function, the output arrays are passed to the kernel. All threads have access to
the kernel arguments which are located in the global memory of the GPU. The custom function also
specifies special template parameters that indicate the number of blocks and the number of threads
in each dimension.

blockDim ∈ N3 threadDim ∈ N2

blockDim.𝑥 = batchSize

blockDim.𝑦 =
⌈
𝐻

𝐻block

⌉
threadDim.𝑥 = 𝐻block = 𝑢blockMax = 4

blockDim.𝑧 =
⌈
𝑊

𝑊block

⌉
threadDim.𝑦 = 𝑊block = 𝑣blockMax = 8

They were chosen as can be seen above, with three block dimensions and two thread dimensions.
Variables 𝐻block and 𝑊block are compile time constants which determine the size of the patch of
image 𝐼1 that is processed by each block. Based on the thread dimensions, block dimensions are
chosen such that the set of all blocks covers all pixels of all first frames in the batch with one thread
each. If the spatial image dimension sizes height 𝐻 and width𝑊 are not divisible by 𝐻block and
𝑊block respectively, which will lead to edge block threads that are outside the image. These threads
are handled by performing out-of-bounds checks on data loading operations between global memory
and shared memory. Each thread has to be able to identify in where it is located in each thread.
For this reason, kernels have built-in variables threadIdx and blockIdx as well as blockDim. In the
implementation the variables are assigned as follows.

Block-Local Thread Index 𝑡 ∈ N2 Global Thread Index / Pixel Index 𝑝 ∈ N2

𝑡.𝑥 = threadIdx.𝑥 𝑝.𝑥 = blockIdx.𝑦 · threadDim.𝑥 + threadIdx.𝑥
𝑡.𝑦 = threadIdx.𝑦 𝑝.𝑦 = blockIdx.𝑧 · threadDim.𝑦 + threadIdx.𝑦

The idea for parallelizing the computation is that each thread is responsible for computing some of
the indices of the output 𝐶𝑢 (𝑏, 𝑖, 𝑗 , 𝑢, 𝑣) and 𝐶𝑣 (𝑏, 𝑖, 𝑗 , 𝑢, 𝑣). Each thread can be assigned a global
index (𝑏, 𝑝.𝑥, 𝑝.𝑦). In this case, the thread is responsible for output indices (𝑖, 𝑗) = (𝑝.𝑥, 𝑝.𝑦) of
the output for the 𝑏-th image pair of the batch. By assigning index responsibility zones, data read
and write conflicts between the threads can be avoided.

Because there is one thread for all indices (𝑏, 𝑖, 𝑗), each thread needs to iterate only over the
displacement indices (𝑢, 𝑣) and the image feature channel indices 𝑓 . These indices are partitioned
into blocks as well. However, in contrast to (𝑖, 𝑗), they are all processed by the same thread. Iterative
processing in blocks of a small constant size has the advantage of enabling the use of the highly
limited and fast shared memory for storing intermediate results. Such shared storage is denoted by
the subscript •cache.

56

5.3 Alternative 3D Correlation Volume Computation

Algorithm 5.2 Custom GPU kernel for Maximum and Average Channels
1: for 𝑣block ← 0 . . . 𝑣blockMax, 𝑢block ← 0 . . . 𝑢blockMax do
2: 𝑣offset ← 𝑣block ·𝑊block
3: 𝑢offset ← 𝑢block · 𝐻block
4: sync()
5: 𝐶cache(𝑡.𝑥, 𝑡.𝑦, :, :) ← 0
6: 𝐶max

𝑣,cache(𝑡.𝑥, 𝑡.𝑦, :, :) ← −∞, 𝐶
avg
𝑣,cache(𝑡.𝑥, 𝑡.𝑦, :, :) ← 0

7: 𝐶max
𝑢,cache(𝑡.𝑥, 𝑡.𝑦, :, :) ← −∞, 𝐶

avg
𝑢,cache(𝑡.𝑥, 𝑡.𝑦, :, :) ← 0

8: for 𝑓block ← 0 . . . 𝑓blockMax do
9: 𝑓offset ← 𝑓block · 𝑓blockSize

10: 𝐹1,cache(𝑡.𝑥, 𝑡.𝑦) ← 𝐹1(𝑏, 𝑝.𝑥, 𝑝.𝑦, 𝑓offset : 𝑓offset + 𝑓blockSize)
11: 𝐹2,cache(𝑡.𝑥, 𝑡.𝑦) ← 𝐹2(𝑏, 𝑢offset + 𝑡.𝑥, 𝑣offset + 𝑡.𝑦, 𝑓offset : 𝑓offset + 𝑓blockSize)
12: sync()
13: for 𝑢 ← 0 . . . 𝐻block, 𝑣 ← 0 . . .𝑊block do

14: 𝐶cache(𝑡.𝑥, 𝑡.𝑦, 𝑢, 𝑣) ←
𝑓blockSize∑
𝑓 =0

𝐹1,cache(𝑏, 𝑡.𝑥, 𝑡.𝑦, 𝑓) · 𝐹2,cache(𝑏, 𝑢, 𝑣, 𝑓)

15: end for
16: sync()
17: end for
18: for 𝑢 ← 0 . . . 𝐻block, 𝑣 ← 0 . . .𝑊block do
19: 𝐶max

𝑣,cache(𝑡.𝑥, 𝑡.𝑦, 𝑣) ← max(•, 𝐶cache(𝑡.𝑥, 𝑡.𝑦, 𝑢, 𝑣))
20: 𝐶max

𝑢,cache(𝑡.𝑥, 𝑡.𝑦, 𝑢) ← max(•, 𝐶cache(𝑡.𝑥, 𝑡.𝑦, 𝑢, 𝑣))
21: 𝐶

avg
𝑣,cache(𝑡.𝑥, 𝑡.𝑦, 𝑣) ← • + 𝐶cache(𝑡.𝑥, 𝑡.𝑦, 𝑢, 𝑣)/𝐻

22: 𝐶
avg
𝑢,cache(𝑡.𝑥, 𝑡.𝑦, 𝑢) ← • + 𝐶cache(𝑡.𝑥, 𝑡.𝑦, 𝑢, 𝑣)/𝑊

23: end for
24: 𝐶max

𝑣 (𝑏, 𝑝.𝑥, 𝑝.𝑦, 𝑣offset : 𝑣offset +𝑊block) ← max(•, 𝐶max
𝑣,cache(𝑡.𝑥, 𝑡.𝑦, 0 : 𝑊block))

25: 𝐶max
𝑢 (𝑏, 𝑝.𝑥, 𝑝.𝑦, 𝑢offset : 𝑢offset + 𝐻block) ← max(•, 𝐶max

𝑢,cache(𝑡.𝑥, 𝑡.𝑦, 0 : 𝐻block))
26: 𝐶

avg
𝑣 (𝑏, 𝑝.𝑥, 𝑝.𝑦, 𝑣offset : 𝑣offset +𝑊block) ← • + 𝐶avg

𝑣,cache(𝑡.𝑥, 𝑡.𝑦, 0 : 𝑊block)
27: 𝐶

avg
𝑢 (𝑏, 𝑝.𝑥, 𝑝.𝑦, 𝑢offset : 𝑢offset + 𝐻block) ← • + 𝐶avg

𝑢,cache(𝑡.𝑥, 𝑡.𝑦, 0 : 𝐻block)
28: end for

The algorithm can be divided into two phases for each block of (𝑢, 𝑣) displacement indices. In the
first phase, a subvolume of 𝐶 is computed and stored in 𝐶cache. During the second phase, 𝐶cache is
used to update the corresponding subvolume of 𝐶max

𝑣,cache, 𝐶
avg
𝑣,cache, 𝐶

max
𝑢,cache and 𝐶avg

𝑢,cache. Line one
starts the iteration over all displacement blocks denoted by (𝑢block, 𝑣block). Variables 𝑢offset and
𝑣offset are helper variables assigned with the minimum index in the current displacement block.
The subvolume processed by thread 𝑖, 𝑗 in this iteration is (𝑖, 𝑗 , 𝑢offset : 𝑢offset + 𝑢blockMax, 𝑣offset :
𝑢offset + 𝑣blockMax). When considering all threads in the thread block, then the subvolume is
(𝑖offset : 𝑖offset + 𝐻block, 𝑗offset : 𝑗offset +𝑊block, 𝑢offset : 𝑢offset + 𝑢blockMax, 𝑣offset : 𝑣offset + 𝑣blockMax).

Phase one is started by synchronizing all threads, to prevent overwriting the results of the previous
iteration while some threads are still using them (line 4). When all threads in the block have arrived
at line 4, overwriting the caches begins by initializing all values of the subvolume intermediary 4D
correlation volume result to zero (line 5). After that, the subvolume results for the 3D correlation
volume are reset. Maximum channel values are initialized with −∞ while average channel ones
are initialized to 0 (lines 6,7). Similarly to the displacement indices, the features are processed in

57

5 Memory Saving Strategy for Separable Flow

blocks to update the subvolume 𝐶cache. Line 8 initiates the iteration over all feature blocks. For
each block, the minimum feature index 𝑓offset in the block is computed. Next, the image features
are loaded from global memory to the shared memory (line 10,11). Because threads in the same
block share the values of 𝐹2,cache, synchronization is performed in line 12 to prevent threads from
advancing before all threads have completed loading their part of the features. Finally, each thread
updates its responsibility range of 𝐶cache by iterating over all (𝑢, 𝑣) displacements in the block for
its specific (𝑖, 𝑗) = (𝑡.𝑥, 𝑡.𝑦) index. This operation is performed completely in the cache, resulting
in the minimum possible delay for loading and storing the values in the arrays. After the updates for
all blocks of image features have finished on all threads in the thread block, the subvolume 𝐶cache
now contains the values of 𝐶 for its specific index range. Phase one ends by synchronizing all
threads to ensure that all values of 𝐶cache are updated to completion (line 16). Synchronization in
this case also prevents threads from overwriting the feature caches before all threads have finished
the previous iteration.

In the second phase the entries of the 3D correlation cache are updated and the results are written back
to the full 3D correlation volume in global memory. The first step is to iterate over all displacements
in the current displacement block and update𝐶1:2

𝑢,cache(𝑡.𝑥, 𝑡.𝑦, 𝑢) as well as𝐶1:2
𝑣,cache(𝑡.𝑥, 𝑡.𝑦, 𝑣). Line

19 shows the update for 𝐶max
𝑣,cache. For every index 𝑣, the maximum over all cached values for index

𝑢 is computed. In this context, the • symbol is a shorthand for the value on the left side of the
assignment. Following 𝐶max

𝑣,cache, 𝐶
max
𝑢,cache is calculated in the same fashion with switched indices.

The average channels are computed in a similar fashion. However the 𝑢 or 𝑣 indices are divided by
the height or width of 𝐼2 at level 𝑙. Then the results are accumulated (lines 21,22). These operations
only involve cached arrays, therefore data loading times are minimized. Finally, the second step
writes the update back to global memory. In lines 24-27, the update is performed in a similar fashion
as lines 19-22. However, cached block results are used to update the global result by computing the
maximum between the partial cache maximum and the current global maximum for each index.
The global average is updated by adding the contribution of the cached block result.

By repeating phase one and phase two, eventually all displacement blocks are processed by every
thread. Hence, every subvolume of𝐶 has been computed once and used to update the 3D correlation
volume channels 𝐶1:2

𝑢 and 𝐶1:2
𝑣 . After all updates are complete, the 3D correlation channels in

global memory have arrived at their final result.

A second custom function is required to compute the attention-based channels of the 3D correlation
volume. The kernel for this function can be implemented similarly to the kernel for the maximum and
average channels. Phase one of Algorithm 5.2 can be utilized in the same manner, since the attention
based channels calculation also requires 𝐶. The only exception is that the caches of the maximum
and average 3D correlation volume channels are replaced with caches for the attention based channels
that are initialized to zero. In contrast, the second phase has to be modified heavily, by introducing
a new step that loads the attention weights 𝐴𝑘+2𝑢 and 𝐴𝑘+2𝑣 for each displacement block from global
memory to the cache. In addition, loops over the attention-based channels with index 𝑘 are added
to the in-cache 3D correlation volume update and cache to global memory update. Furthermore,
the in-cache update equation is 𝐶𝑘+2𝑣 (𝑡.𝑥, 𝑡.𝑦, 𝑣) ← • + (𝐶 (𝑡.𝑥, 𝑡.𝑦, 𝑢, 𝑣) · 𝐴𝑘+2𝑣 (𝑡.𝑥, 𝑡.𝑦, 𝑢)) in this
case. For the cache to global memory update, the operation of incrementing the previous global
result is used as previously for the average channels.

58

5.3 Alternative 3D Correlation Volume Computation

5.3.3 Custom Backward Pass

To be able to train the model without storing 𝐶, the two custom functions need to have a backward
pass function that complements their forward pass function. This section shows the derivatives of the
equations for the forward pass. Furthermore, it shows how the backward pass was implemented.

The first step is to derive the equations for the backward pass. Each one of the maximum, average
and attention-based channels of 𝐶𝑢 and 𝐶𝑣 requires derivatives for every input 𝐹1, 𝐹2 and 𝐴𝑘 .

The PyTorch backward function receives the gradient of the loss 𝐿 with respect to the outputs of the
corresponding forward function. It is expected to return the gradients of its inputs with respect to
𝐿.

𝑋𝑘 = 𝑔𝑘 (. . . , 𝑖𝑝, . . .)(𝜕𝐿
𝜕𝑖𝑝

)
𝑔𝑘

=
𝜕𝐿

𝜕𝑋𝑘

𝑔𝑘 (. . . , 𝑖𝑝, . . .)
𝜕𝑖𝑝

(5.9)

This means that the derivative can be computed by applying the chain rule as shown in Equation (5.9).
In this equation, 𝑋𝑘 is the output tensor of function 𝑔𝑘 which receives 𝑖𝑝 as an input tensor.

(𝐶max
𝑢)𝑖, 𝑗 ,𝑢 = max

𝑣∈𝑉

(
(𝐹0

1)𝑖, 𝑗 · (𝐹
𝑙
2)𝑢,𝑣

)
= (𝐹0

1)𝑖, 𝑗 · (𝐹
𝑙
2)𝑢,�̃� with �̃� = argmax

𝑣∈𝑉

(
(𝐹0

1)𝑖, 𝑗 · (𝐹
𝑙
2)𝑢,𝑣

)
(5.10)

Equation (5.10) shows the maximum channel of the 3D correlation volume 𝐶𝑢. If the index �̃� that
maximizes the dot product is known for every index (𝑖, 𝑗 , 𝑢) of 𝐶𝑢, then the maximum operation
can be removed and only the dot product of 𝐹0

1 (𝑖, 𝑗) and 𝐹𝑙2(𝑢, �̃�) remains.

𝜕 (𝐶max
𝑢)𝑖, 𝑗 ,𝑢

𝜕 (𝐹0
1)𝑖, 𝑗

=
𝜕

𝜕 (𝐹0
1)𝑖, 𝑗

(
(𝐹0

1)𝑖, 𝑗 · (𝐹
𝑙
2)𝑢,�̃�

)
= (𝐹𝑙2)𝑢,�̃� (5.11)

Next, the operation is derived by its first input 𝐹0
𝑖, 𝑗

. The resulting derivative for every index (𝑖, 𝑗 , 𝑢)
is shown in Equation (5.11).(𝜕𝐿

𝜕 (𝐹0
1)𝑖, 𝑗

)
𝐶max
𝑢

=
𝜕𝐿

𝜕 (𝐶max
𝑢)𝑖, 𝑗

𝜕 (𝐶max
𝑢)𝑖, 𝑗

𝜕 (𝐹0
1)𝑖, 𝑗

=
∑︁
𝑢∈𝑈
(𝐹𝑙2)𝑢,�̃�

𝜕𝐿

𝜕 (𝐶max
𝑢)𝑖, 𝑗 ,𝑢

(5.12)

Now the equation for the derivative of 𝐶max
𝑢 is known. However the backward function calls for the

derivative of the loss 𝐿. By applying the chain rule as Equation (5.9) and accumulating over indices
𝑢 the resulting Equation (5.12) describes the contribution of 𝐶max

𝑢 to the derivative of the loss with
respect to the input 𝐹0

1 for every index (𝑖, 𝑗).

(𝐶max
𝑢)𝑖, 𝑗 ,𝑢
𝜕 (𝐹𝑙2)𝑢,𝑣

=
𝜕

𝜕 (𝐹𝑙2)𝑢,𝑣
(
(𝐹0

1)𝑖, 𝑗 · (𝐹
𝑙
2)𝑢,�̃�

)
= [𝑣 = �̃�𝑖, 𝑗 ,𝑢] (𝐹0

1)𝑖, 𝑗 (5.13)

(𝜕𝐿

𝜕 (𝐹𝑙2)𝑢,𝑣

)
𝐶max
𝑢

=
𝜕𝐿

𝜕 (𝐶max
𝑢)𝑢

𝜕 (𝐶max
𝑢)𝑢

𝜕 (𝐹𝑙2)𝑢,𝑣
=

𝐻−1∑︁
𝑖=0

𝑊−1∑︁
𝑗=0
[𝑣 = �̃�𝑖, 𝑗 ,𝑢] (𝐹0

1)𝑖, 𝑗
𝜕𝐿

𝜕 (𝐶max
𝑢)𝑖, 𝑗 ,𝑢

(5.14)

Another input in the calculation of 𝐶max
𝑢 is 𝐹𝑙2. Equation (5.13) and (5.14) show the corresponding

derivatives for this input. Since the derivative of (𝐹𝑙2)𝑢,�̃� with respect to (𝐹𝑙2)𝑢,𝑣 is only non-zero
in case 𝑣 = �̃�𝑖, 𝑗 ,𝑢, the condition [𝑣 = �̃�𝑖, 𝑗 ,𝑢] is added. If the equality holds, it evaluates to one,
otherwise it evaluates to zero.

59

5 Memory Saving Strategy for Separable Flow

Model Settings GPU(MiB) Time(s/it)

Method MemSave Patch Size BS T(12) I(12,32) T(12) I(12) I(32)

RAFT - (320, 448) 12 16877 1475 - - -
NoAgg No (320, 448) 12 22777 1472 2.56 0.19 0.32
NoAgg Yes (320, 448) 12 21894 1447 9.34 0.21 0.33
RAFT - (512, 1024) 1 6846 2195 - - -
NoAgg No (512, 1024) 1 9205 2305 2.32 0.62 0.78
NoAgg Yes (512, 1024) 1 8160 1799 8.31 0.79 0.95

Table 5.1: Results for the alternative memory saving implementation compared to the original one.
Consumed GPU memory and time per iteration were measured during both training and
inference time. BS: batch size, T: training, I: inference.

Similarly to 𝐶max
𝑢 , derivatives of the channel for the other correlation volume 𝐶max

𝑣 need to be
determined for every input. In addition, the derivatives for the average channels 𝐶avg

𝑢 , 𝐶avg
𝑣 and the

attention-based channels 𝐶𝑘+2𝑢 , 𝐶𝑘+2𝑣 need to be determined for every input.

The implementation of the backward pass calculates other derivatives such as 𝐶max
𝑣 , 𝐶avg

𝑢 , 𝐶𝑘+2𝑢

and many more. Since the number of the derivatives is large and they are similar, they will not be
described in this chapter. All derivatives are listed alongside their corresponding forward equations
in the appendix A.

Because the backward pass is computationally more expensive than the forward pass, it is important
to apply the same speedup techniques as in the forward pass. Therefore, the backward functions
of the forward pass were also implemented using custom PyTorch functions that are running
CUDA kernels. As in the forward pass, two kernels are set up. The first one computes derivatives
for maximum and average channels, while the second one is responsible for the derivatives of
the attention based channels. Indices �̃�(𝑖, 𝑗 , 𝑢) and �̃�(𝑖, 𝑗 , 𝑣) in 𝐶 of the maximum 𝐶max

𝑢 (𝑖, 𝑗 , 𝑢),
𝐶max
𝑣 (𝑖, 𝑗 , 𝑣) are needed during the backward pass. Therefore, at training time the kernel of the

forward pass is modified to compute the argmax �̃�(𝑖, 𝑗 , 𝑢) and �̃�(𝑖, 𝑗 , 𝑣) alongside the maximum
channel. During the forward pass, all relevant inputs and outputs of the forward pass required for the
backward pass such as 𝐹0

1 (𝑖, 𝑗 , 𝑢), 𝐹
𝑙
2(𝑖, 𝑗 , 𝑢), �̃�(𝑖, 𝑗 , 𝑢) and �̃�(𝑖, 𝑗 , 𝑣) are stored. A similar strategy

to utilize shared memory as in the forward pass is followed for some parts of the backward pass
implementation.

As a result of the large number of derivatives, implementing and testing the kernels is laborious.
Thus the kernels are not as well optimized compared to the forward pass. The implementation of
the backward pass equations will not be discussed further.

5.4 Results and Discussion

By providing a description of the operations for calculating 𝐶𝑢 and 𝐶𝑣 without storing 𝐶, it was
shown in Section 5.3 that it is possible to omit the storage of the 4D correlation volume. Now that
the alternative implementation of the forward and backward pass have been introduced, the results
will be presented to show that sizeable storage savings are achieved while keeping computation

60

5.4 Results and Discussion

times feasible. Table 5.1 shows the results of the implementation with and without the alternative
memory-saving 3D correlation volume computation. Experiments were performed with the NoAgg
model, which corresponds to the last ablation step in Chapter 4. For comparison, the same
experiment with regard to storage was performed using the default RAFT model that stores the
4D correlation volume. In this case, MemSave: Yes indicates that the alternative, memory saving
implementation was used. Results at training time are listed with 12 refinement iterations, while at
inference time both results for 12 and 32 iterations are listed. Furthermore, at training time, the
specified batch size was used for the measurement. However, for measurements at inference time a
batch size of 1 was used, irrespective of the batch size specified in the table. The storage consumption
and timing results were measured on a single NVIDIA TITAN RTX GPU. To measure the storage
consumption, a simplified version of the training and inference procedure that is compatible with
both RAFT and Separable Flow was executed. After each training or inference iteration, the memory
consumption on the GPU was measured using the function torch.cuda.mem_get_info. The largest
memory consumption reported by this function over all iterations is the final memory consumption
displayed in the table. To measure the training speed, the timestamps after every 100 training
iterations in log files from training were analyzed. Finally, inference speeds were measured using the
PyTorch benchmark class torch.utils.benchmark.Timer to run and average the times of full forward
passes of the models.

The first three rows contain results for a small image size of (320, 448) and a large batch size of 12.
From the second to third row, 884MiB of memory are saved during training. Dividing by the batch
size, around 74MiB are saved for each image in the batch. At inference time on the other hand, only
25MiB of memory are saved for each image, which is only a third of the saving at training time.
Similarly, the gap between the relative increase in training and inference time is large. While the
training time increases by a factor of around 3.6, the inference time only increases by 1.1 times the
previous value.

Compared to the results for RAFT in the first row, the memory consumption during training for
the Separable Flow models called NoAgg is much higher. The difference during training is at least
5017MiB However, at inference time the additional storage consumption between RAFT and NoAgg
without memory saving is negligible with difference of 3MiB in favor of NoAgg. Therefore, the
difference is also in favor of NoAgg when memory saving is enabled and the difference amounts to
28MiB.

To highlight the increased savings for larger image sizes, the experiment was repeated with a larger
image size of (512, 1024) and a batch size of 1. Consequently, the number of pixels increased from
143360 to 524228 by an approximate factor of 3.7. First the NoAgg models will be compared. A
larger reduction of 1045MiB in GPU storage consumption can be observed between original and
alternative implementation for the single image in the batch. At inference time the reduction is
halved with a decrease of 506MiB. However, the relative decrease of around 22% is especially
noticeable in this case because the absolute memory consumption during inference is only 2305MiB
or 1799MiB depending on the implementation. Similarly to the small image size, the time per
iteration during training is increased by a factor of around 3.6. During inference, the difference in
time per iteration increased by a factor of 1.5 for 12 refinement iterations and 1.2 for 32 iterations,
which is much larger than for the smaller image size.

Comparing the NoAgg models with RAFT on the large image size shows similar results at training
time than for the smaller image. RAFT consumes at least 1314MiB less than the NoAgg models.
During inference, RAFT consumes 110MiB less than NoAgg without memory saving, whereas

61

5 Memory Saving Strategy for Separable Flow

before the difference was negligible. When using memory saving with NoAgg the results are once
more in favor of the Separable Flow model by a margin of 396MiB.

In Section 5.1 the expected memory savings were discussed from a theoretical standpoint. For
training and inference on the small image pairs, storage consumption differences of around 26.8MiB
and 53.6MiB were expected. The results showed 25MiB and 74MiB, thus the training has a larger
memory difference than expected. The prediction may overlook an occasion that requires additional
storage of the same size as the 4D correlation pyramid, which would lead to a more accurate
prediction of 80.4MiB especially when subtracting the size of the image feature pyramid 𝐹𝑙2.

Based on the results, the most useful application for the alternative implementation may be for
the inference of image pairs with a high pixel count. It can be observed that the storage savings
increase dramatically when raising the pixel count. At the same time, the inference time for a large
number of 32 refinement iterations only increases by a factor of 1.2. This may be a good trade-off
in applications where the global GPU memory is limited and no training will be performed. During
training with large batch sizes, the memory of the GPU can be exhausted rapidly. However, due to
applying data augmentations such as cropping and limited resolution of the images in the training
dataset, usually the image size is not as large during training compared to inference. Furthermore,
the large increase of training time caused by the alternative implementation may lead to a trade-off
for saving memory that will be rarely worthwhile.

The memory consumption of Separable Flow during training with and without memory saving seems
especially large compared to RAFT. Even when omitting the storage of the 4D correlation volume,
Separable Flow models still consume much more memory than RAFT. Since the implementation
of Separable Flow is based on RAFT, the additional memory requirement has to be caused by
expensive additional operations such as 3D cost volume aggregation introduced by Separable Flow.
In contrast to training time, the NoAgg model with memory saving consumes significantly fewer
memory than RAFT during inference. This may be attributed to the large storage savings of the
memory saving implementation for large images. In addition, expensive operations with regard to
the storage size of intermediary results may be overshadowed during inference since such results
can be deleted as soon as they have served as input to the next operation. It has to be noted that the
default RAFT model was used, which stores the 4D correlation volume. Therefore, RAFT may
achieve storage requirements that are lower than NoAgg with memory saving enabled, when using
the alternative implementation. The alternative implementation enables RAFT to omit the storage
of 4D correlation volume.

This chapter investigated the claim made by the paper that omitting the storage of the 3D correlation
volume is possible. By describing the equations to accomplish this, it was shown that this is possible.
After that, an implementation of the equations in the form of a GPU kernel was presented. The
purpose of the implementation was to examine whether the computation is feasible with respect to
the time taken. The results showed that the training time increased by around 3.6 times and the
inference time by between 1.1-1.5 of the original when using the alternate implementation. Thus, it
is feasible to perform training and inference with the alternate implementation and save around
1GiB of memory during training for an image size of (512, 1024) and batch size of 1. Compared to
RAFT however, the memory consumption during training is much larger. Therefore, the presented
memory saving approach does not lead to an advantage during training with regard to memory
consumption compared to RAFT.

62

6 Combining Separable Flow with Global
Motion Aggregation

This section describes how Global Motion Aggregation can be integrated with Separable Flow to
improve the estimation quality. Global Motion Aggregation was already introduced in Section 3.8,
where its structure is explained in detail. In the next section, the approach of integrating GMA with
Separable Flow will be described. After that, the results of GMA in combination with the original
model and final ablation step model are presented.

6.1 Approach

To combine GMA with a method that is similar to RAFT, the initialization phase and the iterative
refinement phase of the method need to be modified. The initialization phase computes the
inputs for the refinement phase such as the context features and the 4D correlation volume 𝐶.
During the motion refinement phase, motion features are computed and the recurrent update step is
performed.

Img.
(𝐻full,𝑊full)

Img. Feat.
(𝐻,𝑊)

Context
Features
Self-
Similarity
(H,W,H,W)

𝐼1 𝐼2

𝐹C 𝐻0 {𝑊𝐶𝑢

SGA,𝑊
𝐶𝑣

SGA} 𝑊𝐶
NLF 𝐹1 𝐹2

𝐹qry 𝐹key

𝑊attn

⋃3
𝑙=0{𝐶𝐴,𝑙}⋃3

𝑙=0{𝐶
𝐴,𝑙
𝑢 , 𝐶

𝐴,𝑙
𝑣 } 𝑓0 = (�̂�, �̂�)

Figure 6.1: Data dependencies of the Separable Flow initialization phase with GMA additions
highlighted in yellow.

Figure 6.1 shows the initialization phase of Separable Flow. Because the computation of the 3D and
4D correlation volume pyramids as well as the initial flow is not relevant to GMA, the depiction of
their data dependencies is greatly simplified. All data dependencies relevant to GMA such as the
self similarity of the projected context features𝑊attn are highlighted in yellow. This self similarity

63

6 Combining Separable Flow with Global Motion Aggregation

𝑡 − 1

loop

once

once

𝑡

𝑡 = 0 𝐻0

𝑓𝑡−1

𝑓0

𝐻𝑡−1

𝐶𝐿

{𝐶𝐿𝑢 , 𝐶𝐿𝑣 }

𝐹motion

𝐹value

�̂�motion

Recurrent Update: Sep Conv GRU

𝐻𝑡

Δ 𝑓𝑡−1

⋃3
𝑙=0{𝐶𝐴,𝑙}⋃3

𝑙=0{𝐶
𝐴,𝑙
𝑢 , 𝐶

𝐴,𝑙
𝑣 }

𝑊attn

𝐹𝐶

𝑓𝑡 = 𝑓𝑡−1 + Δ 𝑓𝑡−1 𝐻𝑡

Figure 6.2: Data dependencies of the Separable Flow refinement phase with additions of GMA
highlighted in yellow.

is computed only once per image pair and it is responsible for globally weighting the contributions
of the motion features.

𝑥, 𝑦 ∈ {0, 1, . . . , 𝐻𝑊 − 1} (𝐹qry)𝑥 = 𝑊qry(𝐹𝐶)𝑥
𝑊qry,𝑊key ∈ Rchannels(𝐹𝐶)×channels(𝑊qry) (𝐹key)𝑦 = 𝑊key(𝐹𝐶)𝑦

(6.1)

The key features 𝐹key and query features 𝐹qry for the attention mechanism are computed using a 2D
convolutional layer with a kernel size of one. It is applied to the context features, which corresponds
to a matrix multiplication for each pixel. Thus the context features 𝐹𝐶 at each pixel 𝑥 are projected
to arrive at 𝐹key and 𝐹qry.

(�̃�attn)𝑥,𝑦 =
(𝐹qry)𝑥 · (𝐹key)𝑦√︁

channels(𝐹qry)
(𝑊attn)𝑥 = softmax

(
(�̃�attn)𝑥

)
(6.2)

Finally the self similarity is computed by taking the scalar product between the query and key
features of all pixels and normalizing them by the square root of the size of the query features. The
softmax operation is applied to have the similarities for pixel 𝑥 and every other pixel 𝑦 sum to one.

64

6.2 Results and Discussion

Model Sintel (train) KITTI (train)

Method Chairs It. Data clean final epe F1

RAFT 100K C+T 1.43 2.71 5.04 17.4
SepFlow 100K C+T 1.30 2.59 4.60 15.9

GMA 100K C+T 1.30 2.74 4.69 17.1
Repo 100K C+T 1.31 2.68 5.08 17.0

NoAgg 100K C+T 1.81 3.33 10.50 32.0
Provided + GMA 100K C+T 1.27 2.67 4.79 16.6
NoAgg + GMA 100K C+T 1.96 3.64 11.24 34.0

Table 6.1: Ablation results for integrating GMA into Separable Flow. Only 2-view initialization
results are listed. Bold: Best overall results, Underlined: Best results of models trained
in this thesis.

The iterative refinement phase of Separable Flow is depicted in Figure 6.2. After each iteration, the
motion features are globally aggregated using the attention from the initialization step.

(𝐹value)𝑥 = 𝑊value(𝐹motion)𝑥 (�̂�motion)𝑥 =
𝐻𝑊−1∑︁
𝑦=0
(𝑊attn)𝑥,𝑦 · (𝐹value)𝑦 (6.3)

Value features 𝐹value are projected from the motion features. The motion features are then aggregated
in a weighted sum over the elementwise product of (𝑊attn)𝑥 and 𝐹value for each pixel 𝑥.

6.2 Results and Discussion

This section discusses the results of integrating GMA with Separable Flow. Table 6.1 shows the
results of adding GMA to two different models of Separable Flow. The implementation allows to
combine GMA with any of the ablation steps. In this case the original model Provided and the final
ablation step NoAgg with 100K training iterations were chosen. These models were chosen because
the original model performed the best, while the final ablation step is closest to the model described
in the paper. All listed models were trained with the C+T schedule and evaluated on the Sintel and
KITTI training datasets.

The first three rows contain results for the methods RAFT, Separable Flow and GMA from their
respective paper. Separable Flow has the best reported results among those methods. Rows four and
five display the results of the Provided and NoAgg model. Finally, the last two rows show the results
for the previous two models combined with GMA. For the final ablation model NoAgg the results
are worse with than without GMA, thus showing the worst overall results. In contrast, the original
model performs better with GMA. When evaluating on the training datasets, it even outperforms
GMA and has the best overall results on Sintel clean.

65

6 Combining Separable Flow with Global Motion Aggregation

Model Sintel(test)

Method Chairs It. Data clean final

RAFT (2-view) 100K C+T+S+K+H 1.94 3.18
RAFT (warm-start) 100K C+T+S+K+H 1.61 2.86
SepFlow (2-view) 100K C+T+S+K+H 1.50 2.67
GMA (warm-start) 100K C+T+S+K+H 1.39 2.47
Provided + GMA (2-view) 100K C+T+S+K+H 1.55 2.79

Table 6.2: Sintel refinement results for integrating GMA into Separable Flow.

Because the Provided model with GMA performed well during the ablations, the model was
finetuned for Sintel with the training schedule C+T+S+K+H for an additional 100K iterations and
evaluated on the Sintel test dataset. The results are displayed in Table 6.2. Rows one through
four show the results of RAFT, Separable Flow and GMA with added information about the flow
initialization. The flow for the RAFT and GMA methods can either be zero-initialized (2-view) or
initialized with the previous forward-projected flow estimate (warm-start). Only the warm-start
result was reported for GMA on Sintel test. Therefore, in contrast to the previous table, results will
also be listed with warm-start instead of 2-view only. Since Separable Flow uses motion regression
to arrive at an initial flow estimate, it does not use the previous result. Therefore it is a 2-view
method. On Sintel test, the results of GMA are superior to all other methods. The reported results
for Separable Flow are worse than GMA, but better than RAFT. Provided + GMA ranks between
RAFT with warm-start and Separable Flow.

In conclusion, the ablation step for the original model with GMA seemed promising. However,
the finetuned model for Sintel could not compete with the results of GMA warm-start, which is
not a completely unexpected result for the following reasons. The reported results for Separable
Flow during the ablations were the best overall, outperforming GMA. However, on the test dataset
GMA yielded better results than Separable Flow. Because the provided original model is a modified
version of the model structure and training schedule described in Separable Flow, it may also
experience the same performance drop on the test dataset compared to GMA. Furthermore, the
usage of warm-start initialization may be the deciding factor that gives GMA the advantage over
Separable Flow and the Provided model which use 2-view initialization.

66

7 Conclusion and Outlook

This thesis investigated the publication and implementation of the deep optical flow estimation
approach Separable Flow. A comparison of the model structure, training regiment as well as the
reported results was performed. The published method of separating a 4D cost volume into two 3D
cost volumes promises state of the art estimation quality with the potential of reducing the required
computational and memory resources.

Training and evaluating the implementation on the ablation schedule produced results inferior to the
reported ones. Several differences between the publication and implementation were discovered
and described. The implemented training schedule differed in the number of training iterations
and image augmentation patch size from the reported one. By moving to the published number of
training iterations, the ablation results could be greatly improved over the previous results. However,
these results were still slightly worse than the reported ones.

Several discrepancies of the model structure were discovered as well. To start with, the implementa-
tion still used the 4D correlation volume for motion features although the publication stated that it is
replaced by the 3D correlation volumes. Another difference was discovered in the implementation
of the 3D correlation volumes themselves. They did not have learned channels, as described in the
publication. Finally, a custom aggregation method was present in the implementation, which was
absent from the paper.

Every structural change of the model was reverted and evaluated in a series of ablation steps.
The 4D correlation volume motion features and aggregation were removed and the learned 3D
correlation volume channels implemented. This experiment showed that especially the removal of
the 4D correlation volume motion features worsened the results, which highlights the importance
of using 4D correlation features during motion refinement. After that, the estimation quality was
recovered slightly by adding the learned 3D correlation volume channels. However, none of the
ablation steps yielded better results than the original model implementation with increased training
iterations. Compared to RAFT which uses only 4D correlation features, the superior performance
of this model on the ablation schedule indicates potential benefits of additionally including the 3D
correlation features. While the ablation steps lowered the parameter count from 8.35M to 7.56M
parameters, the reported parameter count of 6.0M parameters could not be reached. This suggests
that it was not possible to revert all structural changes.

To verify the claim that the 4D correlation volume does not need to be stored, the correlation volume
separation was implemented with on-demand computation of 4D correlation volume indices. For
efficiency reasons, the PyTorch CUDA extension mechanism was used. The parallel GPU separation
implementation of the forward and backward pass was described. It was shown that the use of this
implementation is possible and feasible at both inference and training time. For a large image size,
more than one gigabyte of GPU memory could be saved during training and 500 megabytes at
inference time. The training time was increased by a factor of around 3.6 whereas the inference

67

7 Conclusion and Outlook

time only increased slightly. Therefore, the alternative implementation may be especially suitable
for inference of large images, while training may be performed with the regular implementation to
save time.

Finally, Global Motion Aggregation was added as a submodule to Separable Flow to improve the
estimation quality. The results on the ablation training schedule were promising, achieving better
results than GMA and the best overall results on the Sintel clean dataset. However, when finetuning
and testing on Sintel, GMA dominated while the combined method was still better than RAFT with
warm-starting.

Outlook

Additional Experiments The publication of Separable Flow is not very specific with respect to
the parameters of its modules’ layers such as convolutional layers. Hence, with the availability of
computing resources to perform many ablations, further experiments may be conducted to improve
the estimation quality or reduce the parameter count. For example, the paper does not specify the
dimension of the parameters of the 3D convolutional layer that is used to learn the aggregation
weights for the self adaptive 3D correlation volume channels. As the implementation does not
include those channels, there is no specification for these layers. In consequence, they were chosen
in this thesis as the standard kernel size of (3, 3, 3). Further experiments may show improved results
for different kernel sizes. Another experiment could be conducted with a model that has aggregation
networks with fewer parameters. Especially the size and number of layers between the aggregated
3D correlation volumes and the motion regression of the initial flow could be reduced. To this end,
the suggested modification in Section 4.2.4 may be tested by training and evaluating additional
ablation steps. This could reduce the parameter count and fit the published description better.

Backward Pass Optimization The training speed is still much slower when using the alternative
3D correlation volume implementation, especially when considering the difference of the inference
speed. This can be attributed to the backward pass which was implemented as a parallel CUDA
program that runs on the GPU but was optimized not optimized to the same degree as the forward
pass. Because of the large amount of derivative equations that need to be implemented, it was too
tedious to optimize this fully by using shared memory in all cases. Therefore, the backward pass
can be optimized further by expanding the use of shared memory to all parts of the implementation.
Moreover, the computation time may be decreased by running one thread for each of the displacement
dimensions, while the inner loops iterate over the dimensions of the frame one features. This is
especially useful for the implementation of some of the derivatives because data conflicts and
synchronization overhead can be avoided. A faster backward pass may enable the training of
Separable Flow models on inexpensive GPUs with less memory and acceptable training times.

68

A Equations of the Backward Pass

This chapter lists the equations for the forward and backward pass of the 3D correlation volume
computation with on-demand 4D correlation volume. Each of the loss derivatives with respect to
one input were implemented as part of a PyTorch CUDA extension.

Forward equations for the maximum channels 𝐶max
𝑢 and 𝐶max

𝑣

(𝐶max
𝑢)𝑖, 𝑗 ,𝑢 = max

𝑣∈𝑉

(
(𝐹0

1)𝑖, 𝑗 · (𝐹
𝑙
2)𝑢,𝑣

)
= (𝐹0

1)𝑖, 𝑗 · (𝐹
𝑙
2)𝑢,�̃� (A.1)

(𝐶max
𝑣)𝑖, 𝑗 ,𝑣 = max

𝑢∈𝑈

(
(𝐹0

1)𝑖, 𝑗 · (𝐹
𝑙
2)𝑢,𝑣

)
= (𝐹0

1)𝑖, 𝑗 · (𝐹
𝑙
2)�̃�,𝑣 (A.2)

with �̃�𝑖, 𝑗 ,𝑢 = argmax
𝑣∈𝑉

(
(𝐹0

1)𝑖, 𝑗 · (𝐹
𝑙
2)𝑢,𝑣

)
and �̃�𝑖, 𝑗 ,𝑣 = argmax

𝑢∈𝑈

(
(𝐹0

1)𝑖, 𝑗 · (𝐹
𝑙
2)𝑢,𝑣

)
(A.3)

Derivative and backward equations for the maximum channel 𝐶max
𝑢

𝜕 (𝐶max
𝑢)𝑖, 𝑗 ,𝑢

𝜕 (𝐹0
1)𝑖, 𝑗

=
𝜕

𝜕 (𝐹0
1)𝑖, 𝑗

(
(𝐹0

1)𝑖, 𝑗 · (𝐹
𝑙
2)𝑢,�̃�

)
= (𝐹𝑙2)𝑢,�̃� (A.4)(

𝜕𝐿

𝜕 (𝐹0
1)𝑖, 𝑗

)
𝐶max
𝑢

=
𝜕𝐿

𝜕 (𝐶max
𝑢)𝑖, 𝑗

𝜕 (𝐶max
𝑢)𝑖, 𝑗

𝜕 (𝐹0
1)𝑖, 𝑗

=
∑︁
𝑢∈𝑈
(𝐹𝑙2)𝑢,�̃�

𝜕𝐿

𝜕 (𝐶max
𝑢)𝑖, 𝑗 ,𝑢

(A.5)

(𝐶max
𝑢)𝑖, 𝑗 ,𝑢
𝜕 (𝐹𝑙2)𝑢,𝑣

=
𝜕

𝜕 (𝐹𝑙2)𝑢,𝑣

(
(𝐹0

1)𝑖, 𝑗 · (𝐹
𝑙
2)𝑢,�̃�

)
= [𝑣 = �̃�𝑖, 𝑗 ,𝑢] (𝐹0

1)𝑖, 𝑗 (A.6)(
𝜕𝐿

𝜕 (𝐹𝑙2)𝑢,𝑣

)
𝐶max
𝑢

=
𝜕𝐿

𝜕 (𝐶max
𝑢)𝑢

𝜕 (𝐶max
𝑢)𝑢

𝜕 (𝐹𝑙2)𝑢,𝑣
=

𝐻−1∑︁
𝑖=0

𝑊−1∑︁
𝑗=0
[𝑣 = �̃�𝑖, 𝑗 ,𝑢] (𝐹0

1)𝑢,𝑣
𝜕𝐿

𝜕 (𝐶max
𝑢)𝑖, 𝑗 ,𝑢

(A.7)

Derivative and backward equations for the maximum channel 𝐶max
𝑣

𝜕 (𝐶max
𝑣)𝑖, 𝑗 ,𝑣

𝜕 (𝐹0
1)𝑖, 𝑗

=
𝜕

𝜕 (𝐹0
1)𝑖, 𝑗

(
(𝐹0

1)𝑖, 𝑗 · (𝐹
𝑙
2)�̃�,𝑣

)
= (𝐹𝑙2)�̃�,𝑣 (A.8)(

𝜕𝐿

𝜕 (𝐹0
1)𝑖, 𝑗

)
𝐶max

𝑣

=
𝜕𝐿

𝜕 (𝐶max
𝑣)𝑖, 𝑗

𝜕 (𝐶max
𝑣)𝑖, 𝑗

𝜕 (𝐹0
1)𝑖, 𝑗

=
∑︁
𝑣∈𝑉
(𝐹𝑙2)�̃�,𝑣

𝜕𝐿

𝜕 (𝐶max
𝑣)𝑖, 𝑗 ,𝑣

(A.9)

(𝐶max
𝑣)𝑖, 𝑗 ,𝑣
𝜕 (𝐹𝑙2)𝑢,𝑣

=
𝜕

𝜕 (𝐹𝑙2)𝑢,𝑣

(
(𝐹0

1)𝑖, 𝑗 · (𝐹
𝑙
2)�̃�,𝑣

)
= [𝑢 = �̃�𝑖, 𝑗 ,𝑢] (𝐹0

1)𝑖, 𝑗 (A.10)(
𝜕𝐿

𝜕 (𝐹𝑙2)𝑢,𝑣

)
𝐶max

𝑣

=
𝜕𝐿

𝜕 (𝐶max
𝑣)𝑣

𝜕 (𝐶max
𝑣)𝑣

𝜕 (𝐹𝑙2)𝑢,𝑣
=

𝐻−1∑︁
𝑖=0

𝑊−1∑︁
𝑗=0
[𝑢 = �̃�𝑖, 𝑗 ,𝑣] (𝐹0

1)𝑖, 𝑗
𝜕𝐿

𝜕 (𝐶max
𝑣)𝑖, 𝑗 ,𝑣

(A.11)

69

A Equations of the Backward Pass

Forward equations for the average channels 𝐶avg
𝑢 and 𝐶avg

𝑣

(𝐶avg
𝑢)𝑖, 𝑗 ,𝑢 =

1
|𝑉 |

∑︁
𝑣∈𝑉
(𝐹0

1)𝑖, 𝑗 · (𝐹
𝑙
2)𝑢,𝑣 (A.12)

(𝐶avg
𝑣)𝑖, 𝑗 ,𝑣 =

1
|𝑈 |

∑︁
𝑢∈𝑈
(𝐹0

1)𝑖, 𝑗 · (𝐹
𝑙
2)𝑢,𝑣 (A.13)

Derivative and backward equations for the average channel 𝐶avg
𝑢

𝜕 (𝐶avg
𝑢)𝑖, 𝑗 ,𝑢

𝜕 (𝐹0
1)𝑖, 𝑗

=
𝜕

𝜕 (𝐹0
1)𝑖, 𝑗

(
1
|𝑉 |

∑︁
𝑣∈𝑉
(𝐹0

1)𝑖, 𝑗 · (𝐹
𝑙
2)𝑢,𝑣

)
=

1
|𝑉 |

∑︁
𝑣∈𝑉
(𝐹𝑙2)𝑢,𝑣 (A.14)(

𝜕𝐿

𝜕 (𝐹0
1)𝑖, 𝑗

)
𝐶

avg
𝑢

=
𝜕𝐿

𝜕 (𝐶avg
𝑢)𝑖, 𝑗

𝜕 (𝐶avg
𝑢)𝑖, 𝑗

𝜕 (𝐹0
1)𝑖, 𝑗

=
1
|𝑉 |

∑︁
𝑢∈𝑈

(∑︁
𝑣∈𝑉
(𝐹𝑙2)𝑢,𝑣

)
𝜕𝐿

𝜕 (𝐶avg
𝑢)𝑖, 𝑗 ,𝑢

(A.15)

𝜕 (𝐶avg
𝑢)𝑖, 𝑗 ,𝑢

𝜕 (𝐹𝑙2)𝑢,𝑣
=

𝜕

𝜕 (𝐹𝑙2)𝑢,𝑣

(
1
|𝑉 |

∑̂︁
𝑣∈𝑉
(𝐹0

1)𝑖, 𝑗 · (𝐹
𝑙
2)𝑢,�̂�

)
=

1
|𝑉 | (𝐹

0
1)𝑖, 𝑗 (A.16)(

𝜕𝐿

𝜕 (𝐹𝑙2)𝑢,𝑣

)
𝐶

avg
𝑢

=
𝜕𝐿

𝜕 (𝐶avg
𝑢)𝑢

𝜕 (𝐶avg
𝑢)𝑢

𝜕 (𝐹𝑙2)𝑢,𝑣
=

1
|𝑉 |

𝐻−1∑︁
𝑖=0

𝑊−1∑︁
𝑗=0
(𝐹0

1)𝑖, 𝑗
𝜕𝐿

𝜕 (𝐶avg
𝑢)𝑖, 𝑗 ,𝑢

(A.17)

Derivative and backward equations for the average channel 𝐶avg
𝑣

𝜕 (𝐶avg
𝑣)𝑖, 𝑗 ,𝑣

𝜕 (𝐹0
1)𝑖, 𝑗

=
𝜕

𝜕 (𝐹0
1)𝑖, 𝑗

(
1
|𝑈 |

∑︁
𝑢∈𝑈
(𝐹0

1)𝑖, 𝑗 · (𝐹
𝑙
2)𝑢,𝑣

)
=

1
|𝑈 |

∑︁
𝑢∈𝑈
(𝐹𝑙2)𝑢,𝑣 (A.18)(

𝜕𝐿

𝜕 (𝐹0
1)𝑖, 𝑗

)
𝐶

avg
𝑣

=
𝜕𝐿

𝜕 (𝐶avg
𝑣)𝑖, 𝑗

𝜕 (𝐶avg
𝑣)𝑖, 𝑗

𝜕 (𝐹0
1)𝑖, 𝑗

=
1
|𝑈 |

∑︁
𝑣∈𝑉

(∑︁
𝑢∈𝑈
(𝐹𝑙2)𝑢,𝑣

)
𝜕𝐿

𝜕 (𝐶avg
𝑣)𝑖, 𝑗 ,𝑣

(A.19)

𝜕 (𝐶avg
𝑣)𝑖, 𝑗 ,𝑣

𝜕 (𝐹𝑙2)𝑢,𝑣
=

𝜕

𝜕 (𝐹𝑙2)𝑢,𝑣

(
1
|𝑈 |

∑̂︁
𝑢∈𝑈
(𝐹0

1)𝑖, 𝑗 · (𝐹
𝑙
2)�̂�,𝑣

)
=

1
|𝑈 | (𝐹

0
1)𝑖, 𝑗 (A.20)(

𝜕𝐿

𝜕 (𝐹𝑙2)𝑢,𝑣

)
𝐶

avg
𝑣

=
𝜕𝐿

𝜕 (𝐶avg
𝑣)𝑣

𝜕 (𝐶avg
𝑣)𝑣

𝜕 (𝐹𝑙2)𝑢,𝑣
=

1
|𝑈 |

𝐻−1∑︁
𝑖=0

𝑊−1∑︁
𝑗=0
(𝐹0

1)𝑖, 𝑗
𝜕𝐿

𝜕 (𝐶avg
𝑣)𝑖, 𝑗 ,𝑣

(A.21)

70

Forward equations for the attention-based channels 𝐶𝑘+2𝑢 and 𝐶𝑘+2𝑣

(𝐶𝑘+2𝑢)𝑖, 𝑗 ,𝑢 =
∑︁
𝑣∈𝑉

(
(𝐹0

1)𝑖, 𝑗 · (𝐹
𝑙
2)𝑢,𝑣

)
(𝐴𝑘𝑢)𝑖, 𝑗 ,𝑣 (A.22)

(𝐶𝑘+2𝑣)𝑖, 𝑗 ,𝑣 =
∑︁
𝑢∈𝑈

(
(𝐹0

1)𝑖, 𝑗 · (𝐹
𝑙
2)𝑢,𝑣

)
(𝐴𝑘𝑣)𝑖, 𝑗 ,𝑢 (A.23)

Derivative and backward equations for the attention-based channel 𝐶𝑘+2𝑢

𝜕 (𝐶𝑘+2𝑢)𝑖, 𝑗 ,𝑢
𝜕 (𝐹0

1)𝑖, 𝑗
=

𝜕

𝜕 (𝐹0
1)𝑖, 𝑗

(∑︁
𝑣∈𝑉

(
(𝐹0

1)𝑖, 𝑗 · (𝐹
𝑙
2)𝑢,𝑣

)
(𝐴𝑘𝑢)𝑖, 𝑗 ,𝑣

)
=

∑︁
𝑣∈𝑉
(𝐹𝑙2)𝑢,𝑣 (𝐴

𝑘
𝑢)𝑖, 𝑗 ,𝑣 (A.24)(

𝜕𝐿

𝜕 (𝐹0
1)𝑖, 𝑗

)
𝐶𝑘+2
𝑢

=
𝜕𝐿

𝜕 (𝐶𝑘+2𝑢)𝑖, 𝑗
𝜕 (𝐶𝑘+2𝑢)𝑖, 𝑗
𝜕 (𝐹0

1)𝑖, 𝑗
=

∑︁
𝑢∈𝑈

(∑︁
𝑣∈𝑉
(𝐹𝑙2)𝑢,𝑣 (𝐴

𝑘
𝑢)𝑖, 𝑗 ,𝑣

)
𝜕𝐿

𝜕 (𝐶𝑘+2𝑢)𝑖, 𝑗 ,𝑢
(A.25)

𝜕 (𝐶𝑘+2𝑢)𝑖, 𝑗 ,𝑢
𝜕 (𝐹𝑙2)𝑢,𝑣

=
𝜕

𝜕 (𝐹𝑙2)𝑢,𝑣

(∑̂︁
𝑣∈𝑉

(
(𝐹0

1)𝑖, 𝑗 · (𝐹
𝑙
2)𝑢,�̂�

)
(𝐴𝑘𝑢)𝑖, 𝑗 ,�̂�

)
= (𝐹0

1)𝑖, 𝑗 (𝐴
𝑘
𝑢)𝑖, 𝑗 ,𝑣 (A.26)(

𝜕𝐿

𝜕 (𝐹𝑙2)𝑢,𝑣

)
𝐶𝑘+2
𝑢

=
𝜕𝐿

𝜕 (𝐶𝑘+2𝑢)𝑢
𝜕 (𝐶𝑘+2𝑢)𝑢
𝜕 (𝐹2

𝑙
)𝑢,𝑣

=

𝐻−1∑︁
𝑖=0

𝑊−1∑︁
𝑗=0

(
(𝐹0

1)𝑖, 𝑗 (𝐴
𝑘
𝑢)𝑖, 𝑗 ,𝑣

𝜕𝐿

𝜕 (𝐶𝑘+2𝑢)𝑖, 𝑗 ,𝑢

)
(A.27)

𝜕 (𝐶𝑘+2𝑢)𝑖, 𝑗 ,𝑢
𝜕 (𝐴𝑘𝑢)𝑖, 𝑗 ,𝑣

=
𝜕

𝜕 (𝐴𝑘𝑢)𝑖, 𝑗 ,𝑣

(∑̂︁
𝑣∈𝑉

(
(𝐹0

1)𝑖, 𝑗 · (𝐹
𝑙
2)𝑢,�̂�

)
(𝐴𝑘𝑢)𝑖, 𝑗 ,�̂�

)
= (𝐹0

1)𝑖, 𝑗 · (𝐹
𝑙
2)𝑢,𝑣 (A.28)(

𝜕𝐿

𝜕 (𝐴𝑘𝑢)𝑖, 𝑗 ,𝑣

)
𝐶𝑘+2
𝑢

=
𝜕𝐿

𝜕 (𝐶𝑘+2𝑢)𝑖, 𝑗
𝜕 (𝐶𝑘+2𝑢)𝑖, 𝑗
𝜕 (𝐴𝑘𝑢)𝑖, 𝑗 ,𝑣

=
∑︁
𝑢∈𝑈

(
(𝐹0

1)𝑖, 𝑗 · (𝐹
𝑙
2)𝑢,𝑣

) 𝜕𝐿

𝜕 (𝐶𝑘+2𝑢)𝑖, 𝑗 ,𝑢
(A.29)

Derivative and backward equations for the attention-based channel 𝐶𝑘+2𝑢

𝜕 (𝐶𝑘+2𝑣)𝑖, 𝑗 ,𝑣
𝜕 (𝐹0

1)𝑖, 𝑗
=

𝜕

𝜕 (𝐹0
1)𝑖, 𝑗

(∑︁
𝑢∈𝑈

(
(𝐹0

1)𝑖, 𝑗 · (𝐹
𝑙
2)𝑢,𝑣

)
(𝐴𝑘𝑣)𝑖, 𝑗 ,𝑢

)
=

∑︁
𝑢∈𝑈
(𝐹𝑙2)𝑢,𝑣 (𝐴

𝑘
𝑣)𝑖, 𝑗 ,𝑢 (A.30)(

𝜕𝐿

𝜕 (𝐹0
1)𝑖, 𝑗

)
𝐶𝑘+2

𝑣

=
𝜕𝐿

𝜕 (𝐶𝑘+2𝑣)𝑖, 𝑗
𝜕 (𝐶𝑘+2𝑣)𝑖, 𝑗
𝜕 (𝐹0

1)𝑖, 𝑗
=

∑︁
𝑣∈𝑉

(∑︁
𝑢∈𝑈
(𝐹𝑙2)𝑢,𝑣 (𝐴

𝑘
𝑣)𝑖, 𝑗 ,𝑢

)
𝜕𝐿

𝜕 (𝐶𝑘+2𝑣)𝑖, 𝑗 ,𝑣
(A.31)

𝜕 (𝐶𝑘+2𝑣)𝑖, 𝑗 ,𝑣
𝜕 (𝐹𝑙2)𝑢,𝑣

=
𝜕

𝜕 (𝐹𝑙2)𝑢,𝑣

(∑̂︁
𝑢∈𝑈

(
(𝐹0

1)𝑖, 𝑗 · (𝐹
𝑙
2)�̂�,𝑣

)
(𝐴𝑘𝑣)𝑖, 𝑗 ,�̂�

)
= (𝐹0

1)𝑖, 𝑗 (𝐴
𝑘
𝑣)𝑖, 𝑗 ,𝑢 (A.32)(

𝜕𝐿

𝜕 (𝐹𝑙2)𝑢,𝑣

)
𝐶𝑘+2

𝑣

=
𝜕𝐿

𝜕 (𝐶𝑘+2𝑣)𝑣
𝜕 (𝐶𝑘+2𝑣)𝑣
𝜕 (𝐹2

𝑙
)𝑢,𝑣

=

𝐻−1∑︁
𝑖=0

𝑊−1∑︁
𝑗=0

(
(𝐹0

1)𝑖, 𝑗 (𝐴
𝑘
𝑣)𝑖, 𝑗 ,𝑢

𝜕𝐿

𝜕 (𝐶𝑘+2𝑣)𝑖, 𝑗 ,𝑣

)
(A.33)

𝜕 (𝐶𝑘+2𝑣)𝑖, 𝑗 ,𝑣
𝜕 (𝐴𝑘𝑣)𝑖, 𝑗 ,𝑢

=
𝜕

𝜕 (𝐴𝑘𝑣)𝑖, 𝑗 ,𝑢

(∑̂︁
𝑢∈𝑈

(
(𝐹0

1)𝑖, 𝑗 · (𝐹
𝑙
2)�̂�,𝑣

)
(𝐴𝑘𝑣)𝑖, 𝑗 ,�̂�

)
= (𝐹0

1)𝑖, 𝑗 · (𝐹
𝑙
2)𝑢,𝑣 (A.34)(

𝜕𝐿

𝜕 (𝐴𝑘𝑣)𝑖, 𝑗 ,𝑢

)
𝐶𝑘+2

𝑣

=
𝜕𝐿

𝜕 (𝐶𝑘+2𝑣)𝑖, 𝑗
𝜕 (𝐶𝑘+2𝑣)𝑖, 𝑗
𝜕 (𝐴𝑘𝑣)𝑖, 𝑗 ,𝑢

=
∑︁
𝑣∈𝑉

(
(𝐹0

1)𝑖, 𝑗 · (𝐹
𝑙
2)𝑢,𝑣

) 𝜕𝐿

𝜕 (𝐶𝑘+2𝑣)𝑖, 𝑗 ,𝑣
(A.35)

71

Bibliography

[BBPW04] T. Brox, A. Bruhn, N. Papenberg, J. Weickert. “High accuracy optical flow estimation
based on a theory for warping”. In: European conference on computer vision. Springer.
2004, pp. 25–36 (cit. on p. 19).

[BKH16] J. L. Ba, J. R. Kiros, G. E. Hinton. “Layer normalization”. In: arXiv preprint
arXiv:1607.06450 (2016) (cit. on p. 23).

[BWSB12] D. J. Butler, J. Wulff, G. B. Stanley, M. J. Black. “A naturalistic open source movie for
optical flow evaluation”. In: European Conf. on Computer Vision (ECCV). Ed. by A.
Fitzgibbon et al. (Eds.) Part IV, LNCS 7577. Springer-Verlag, Oct. 2012, pp. 611–625
(cit. on pp. 15, 16, 27, 39).

[BYPC16] N. Ballas, L. Yao, C. Pal, A. C. Courville. “Delving Deeper into Convolutional
Networks for Learning Video Representations.” In: ICLR (Poster). 2016 (cit. on
p. 25).

[CGCB14] J. Chung, C. Gulcehre, K. Cho, Y. Bengio. “Empirical evaluation of gated recurrent
neural networks on sequence modeling”. In: NIPS 2014 Workshop on Deep Learning,
December 2014. 2014 (cit. on p. 24).

[CGN14] H. Chao, Y. Gu, M. Napolitano. “A survey of optical flow techniques for robotics
navigation applications”. In: Journal of Intelligent & Robotic Systems 73.1 (2014),
pp. 361–372 (cit. on p. 15).

[CMBB14] K. Cho, B. van Merriënboer, D. Bahdanau, Y. Bengio. “On the Properties of Neural
Machine Translation: Encoder–Decoder Approaches”. In: Proceedings of SSST-8,
Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation. 2014,
pp. 103–111 (cit. on p. 24).

[CT98] R. Cutler, M. Turk. “View-based interpretation of real-time optical flow for gesture
recognition”. In: Proceedings Third IEEE International Conference on Automatic
Face and Gesture Recognition. IEEE. 1998, pp. 416–421 (cit. on p. 15).

[DFI+15a] A. Dosovitskiy, P. Fischer, E. Ilg, P. Häusser, C. Hazırbaş, V. Golkov, P. v.d. Smagt,
D. Cremers, T. Brox. “FlowNet: Learning Optical Flow with Convolutional Networks”.
In: IEEE International Conference on Computer Vision (ICCV). 2015. url: http:
//lmb.informatik.uni-freiburg.de/Publications/2015/DFIB15 (cit. on pp. 15, 39).

[DFI+15b] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. Van Der
Smagt, D. Cremers, T. Brox. “Flownet: Learning optical flow with convolutional
networks”. In: Proceedings of the IEEE international conference on computer vision.
2015, pp. 2758–2766 (cit. on pp. 16, 17).

[DV16] V. Dumoulin, F. Visin. “A guide to convolution arithmetic for deep learning”. In:
ArXiv e-prints (Mar. 2016). eprint: 1603.07285 (cit. on p. 22).

73

http://lmb.informatik.uni-freiburg.de/Publications/2015/DFIB15
http://lmb.informatik.uni-freiburg.de/Publications/2015/DFIB15
1603.07285

Bibliography

[GLU12] A. Geiger, P. Lenz, R. Urtasun. “Are we ready for Autonomous Driving? The KITTI
Vision Benchmark Suite”. In: Conference on Computer Vision and Pattern Recognition
(CVPR). 2012 (cit. on pp. 15, 16, 27).

[Hir08] H. Hirschmuller. “Stereo Processing by Semiglobal Matching and Mutual Informa-
tion”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 30.2
(2008), pp. 328–341. doi: 10.1109/TPAMI.2007.1166 (cit. on p. 18).

[Hoc91] S. Hochreiter. “Untersuchungen zu dynamischen neuronalen Netzen”. In: 1991 (cit. on
p. 23).

[HRB+12] A. Hosni, C. Rhemann, M. Bleyer, C. Rother, M. Gelautz. “Fast cost-volume filtering
for visual correspondence and beyond”. In: IEEE transactions on pattern analysis
and machine intelligence 35.2 (2012), pp. 504–511 (cit. on p. 18).

[HS81] B. K. Horn, B. G. Schunck. “Determining optical flow”. In: Artificial intelligence
17.1-3 (1981), pp. 185–203 (cit. on p. 15).

[HS97] S. Hochreiter, J. Schmidhuber. “Long short-term memory”. In: Neural computation
9.8 (1997), pp. 1735–1780 (cit. on p. 24).

[HZRS16] K. He, X. Zhang, S. Ren, J. Sun. “Deep residual learning for image recognition”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2016, pp. 770–778 (cit. on p. 27).

[IS15] S. Ioffe, C. Szegedy. “Batch normalization: Accelerating deep network training by
reducing internal covariate shift”. In: International conference on machine learning.
PMLR. 2015, pp. 448–456 (cit. on p. 23).

[JCL+21] S. Jiang, D. Campbell, Y. Lu, H. Li, R. Hartley. “Learning to Estimate Hidden Motions
with Global Motion Aggregation”. In: 2021 IEEE/CVF International Conference
on Computer Vision (ICCV). IEEE Computer Society. 2021, pp. 9752–9761 (cit. on
pp. 3, 4, 16, 19, 35, 36).

[JMRB22] A. Jahedi, L. Mehl, M. Rivinius, A. Bruhn. “Multi-Scale Raft: Combining Hierarchical
Concepts for Learning-Based Optical Flow Estimation”. In: 2022 IEEE International
Conference on Image Processing (ICIP). IEEE. 2022, pp. 1236–1240 (cit. on p. 16).

[KNH+16] D. Kondermann, R. Nair, K. Honauer, K. Krispin, J. Andrulis, A. Brock, B. Gussefeld,
M. Rahimimoghaddam, S. Hofmann, C. Brenner, et al. “The HCI Benchmark Suite:
Stereo and Flow Ground Truth With Uncertainties for Urban Autonomous Driving”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops. 2016, pp. 19–28 (cit. on p. 39).

[LVW+20] Y. Lu, J. Valmadre, H. Wang, J. Kannala, M. Harandi, P. Torr. “Devon: Deformable
volume network for learning optical flow”. In: Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision. 2020, pp. 2705–2713 (cit. on p. 18).

[MG15] M. Menze, A. Geiger. “Object Scene Flow for Autonomous Vehicles”. In: Conference
on Computer Vision and Pattern Recognition (CVPR). 2015 (cit. on pp. 15, 16, 27,
39).

74

https://doi.org/10.1109/TPAMI.2007.1166

Bibliography

[MIH+16] N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Dosovitskiy, T. Brox. “A Large
Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow
Estimation”. In: IEEE International Conference on Computer Vision and Pattern
Recognition (CVPR). arXiv:1512.02134. 2016. url: http://lmb.informatik.uni-
freiburg.de/Publications/2016/MIFDB16 (cit. on pp. 15, 39).

[NVI22] NVIDIA. CUDA C++ Programming Guide. 2022. url: https://docs.nvidia.com/
cuda/cuda-c-programming-guide/index.html (visited on 11/02/2022) (cit. on p. 36).

[ODo05] P. O’Donovan. “Optical flow: Techniques and applications”. In: International Journal
of Computer Vision 1 (2005), p. 26 (cit. on p. 15).

[PGM+19] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala. “PyTorch: An
Imperative Style, High-Performance Deep Learning Library”. In: Advances in Neural
Information Processing Systems 32. Curran Associates, Inc., 2019, pp. 8024–8035.
url: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-
performance-deep-learning-library.pdf (cit. on pp. 27, 31).

[RB17] A. Ranjan, M. J. Black. “Optical flow estimation using a spatial pyramid network”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2017, pp. 4161–4170 (cit. on p. 16).

[SSB14] H. Sak, A. W. Senior, F. Beaufays. “Long Short-Term Memory Based Recurrent
Neural Network Architectures for Large Vocabulary Speech Recognition”. In: (2014)
(cit. on p. 24).

[SYLK18] D. Sun, X. Yang, M.-Y. Liu, J. Kautz. “PWC-Net: CNNs for Optical Flow Using
Pyramid, Warping, and Cost Volume”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). June 2018 (cit. on p. 17).

[TBF+16] D. Tran, L. Bourdev, R. Fergus, L. Torresani, M. Paluri. “Deep End2End Voxel2Voxel
Prediction”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops. June 2016 (cit. on p. 16).

[TBKP12] M. Tao, J. Bai, P. Kohli, S. Paris. “SimpleFlow: A Non-iterative, Sublinear Optical
Flow Algorithm”. In: Computer Graphics Forum. Vol. 31. 2pt1. The Eurographs
Association & John Wiley & Sons, Ltd. Chichester, UK. 2012, pp. 345–353 (cit. on
p. 15).

[TD20] Z. Teed, J. Deng. “RAFT: Recurrent All Pairs Field Transforms for Optical Flow”. In:
Europe Conference on computer Vision (ECCV). 2020 (cit. on pp. 3, 16, 18, 27, 30,
31, 53).

[UVL16] D. Ulyanov, A. Vedaldi, V. S. Lempitsky. “Instance Normalization: The Missing
Ingredient for Fast Stylization”. In: CoRR abs/1607.08022 (2016). arXiv: 1607.08022.
url: http://arxiv.org/abs/1607.08022 (cit. on p. 23).

[VSP+17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
I. Polosukhin. “Attention is all you need”. In: Advances in neural information
processing systems 30 (2017) (cit. on p. 25).

[WH18] Y. Wu, K. He. “Group normalization”. In: Proceedings of the European conference
on computer vision (ECCV). 2018, pp. 3–19 (cit. on p. 23).

75

http://lmb.informatik.uni-freiburg.de/Publications/2016/MIFDB16
http://lmb.informatik.uni-freiburg.de/Publications/2016/MIFDB16
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://arxiv.org/abs/1607.08022
http://arxiv.org/abs/1607.08022

[WZD+20] J. Wang, Y. Zhong, Y. Dai, K. Zhang, P. Ji, H. Li. “Displacement-invariant matching
cost learning for accurate optical flow estimation”. In: Proceedings of the 34th
International Conference on Neural Information Processing Systems. 2020, pp. 15220–
15231 (cit. on p. 18).

[XRK17] J. Xu, R. Ranftl, V. Koltun. “Accurate optical flow via direct cost volume processing”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2017, pp. 1289–1297 (cit. on pp. 17, 18).

[YR19] G. Yang, D. Ramanan. “Volumetric correspondence networks for optical flow”. In:
Proceedings of the 33rd International Conference on Neural Information Processing
Systems. 2019, pp. 794–805 (cit. on p. 17).

[ZPB07] C. Zach, T. Pock, H. Bischof. “A duality based approach for realtime tv-l 1 optical
flow”. In: Joint pattern recognition symposium. Springer. 2007, pp. 214–223 (cit. on
p. 19).

[ZPYT19] F. Zhang, V. Prisacariu, R. Yang, P. H. Torr. “GA-Net: Guided Aggregation Net for
End-to-end Stereo Matching”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2019, pp. 185–194 (cit. on pp. 18, 34, 46).

[ZQY+20] F. Zhang, X. Qi, R. Yang, V. Prisacariu, B. Wah, P. Torr. “Domain-invariant Stereo
Matching Networks”. In: Europe Conference on Computer Vision (ECCV). 2020
(cit. on p. 18).

[ZWPT21] F. Zhang, O. J. Woodford, V. A. Prisacariu, P. H. Torr. “Separable Flow: Learning
Motion Cost Volumes for Optical Flow Estimation”. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV). 2021, pp. 10807–10817 (cit. on
pp. 3, 4, 16, 18, 19, 31, 43, 50, 51).

[ZZL+20] T. Zhang, H. Zhang, Y. Li, Y. Nakamura, L. Zhang. “Flowfusion: Dynamic dense rgb-d
slam based on optical flow”. In: 2020 IEEE International Conference on Robotics
and Automation (ICRA). IEEE. 2020, pp. 7322–7328 (cit. on p. 15).

All links were last followed on November 25, 2022.

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	2 Related Work
	3 Foundation
	3.1 Convolutional Neural Networks
	3.2 Recurrent Neural Networks
	3.3 Attention Mechanism
	3.4 Optical Flow
	3.5 Error Measures for Optical Flow
	3.6 RAFT: Recurrent All-Pairs Field Transforms for Optical Flow
	3.7 Separable Flow: Learning Cost Volumes for Optical Flow Estimation
	3.8 Learning to Estimate Hidden Motions with Global Motion Aggregation
	3.9 General Purpose gpu Computing

	4 Investigation of Differences between Paper and Implementation
	4.1 Differences in the Training: Parameters and Schedule
	4.2 Differences in the Model Structure
	4.3 Discussion

	5 Memory Saving Strategy for Separable Flow
	5.1 Theoretical Savings
	5.2 Feasibility Considerations for Varying Model Structures
	5.3 Alternative 3D Correlation Volume Computation
	5.4 Results and Discussion

	6 Combining Separable Flow with Global Motion Aggregation
	6.1 Approach
	6.2 Results and Discussion

	7 Conclusion and Outlook
	A Equations of the Backward Pass
	Bibliography

