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Abstract

Online services have become an indispensable part of our lives. The Internet of Things (connecting
electronic devices to the Internet) has added another possible application in recent years. The
resulting increase or fluctuation in the number of users means that these services must remain
available and accessible. Disruptions and outages have serious consequences. If, for example, the
scaling of a service does not function properly, the provider may incur considerable costs.

Cloud engineers work with so-called scaling policies to enable elastic systems that automatically
scale resources above a certain threshold of a metric. To avoid mistakes, architecture-based simula-
tions like Palladio’s can help. Palladio’s effectiveness has been demonstrated in various scenarios
such as software as a service. However, whether Palladio is also effective in the context of scaling
policy has not been sufficiently investigated so far.

The goal of this work is to investigate the feasibility of scaling policy simulation using Palladio.
Subjects of investigation are the accuracy of the simulations and whether the Palladio model helps
with the comprehensibility of scaling policies.

To determine the accuracy, measured values are recorded during an experiment and later compared
to the Palladio simulation results. A Kubernetes cloud system from the MoSaIC project is used as a
reference system. The use case of the project is container ships sending data, with the number of
ships increasing due to a new customer. To generate the load, the load testing software Gatling is
used. The experiment is divided into two phases, a scaling experiment and an elasticity experiment.
The former is used to quickly rank the MoSaIC Kubernetes system, which is a prerequisite for the
design of the elasticity experiment. The design provides two load scenarios (low and medium). With
these scenarios, two different scaling policy configurations, which differ in terms of the threshold
value, are put under load in the experiment. These scenarios, the system, and the scaling policies
were modeled with Palladio.

During the modeling process, we found that various factors made it difficult to model the experiment
scenario and run the simulation. The corresponding deficiencies and knockout criteria and possible
workarounds to circumvent the problems were documented. The scaling policies could not be
simulated to the full extent. Therefore it was not possible to simulate them. However, we were able
to show the potential of Palladio and that the Palladio model we used allows the tracking of how
self-adaptations were performed. That theoretically improves the understandability of the scaling
policies.

Future work can build on our findings and find out via further experimentation whether the docu-
mented deficiencies can be fixed or circumvented. In addition, an experiment should be conducted
to investigate whether the improved understandability of the scaling policies through Palladio can
also be proven.
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Kurzfassung

Onlinedienste sind in unserem Leben nicht mehr wegzudenken. Mit dem sogenannten Internet
der Dinge (Vernetzung von elektronischen Geräten mit dem Internet) kam in den letzten Jahren
eine weitere Anwendungsmöglichkeit hinzu. Die daraus resultierende steigende beziehungsweise
schwankende Anzahl an Nutzern setzt voraus, dass diese Dienste verfügbar und erreichbar bleiben.
Störungen und Ausfälle haben gravierende Folgen. Sollte beispielsweise die Skalierung eines Dien-
stes nicht ordnungsgemäß funktionieren, können erhebliche Kosten auf den Anbieter zukommen.

Cloud-Ingenieure arbeiten mit sogenannten Scaling Policies, um elastische Systeme zu ermöglichen,
die automatisch ab einem gewissen Schwellwert die Ressourcen skalieren. Um Fehler zu vermeiden,
können Architektur-basierte Simulationen wie von Palladio helfen. Palladios Effektivität wurde in
verschiedenen Szenarien wie zum Beispiel Software as a Service nachgewiesen. Allerdings wurde
bislang nicht ausreichend untersucht, ob Palladio auch im Kontext Scaling Policy effektiv ist.

Das Ziel dieser Arbeit ist die Untersuchung der Machbarkeit von Scaling Policy Simulationen mit
Palladio. Untersuchungsgegenstände sind die Genauigkeit der Simulationen und ob das Palladio-
Modell bei der Verständlichkeit der Scaling Policies hilft.

Um die Genauigkeit zu bestimmen, werden Messwerte während eines Experiments aufgezeichnet
und später mit den Ergebnissen der Palladio Simulation verglichen. Als Referenzsystem dient ein
Kubernetes Cloudsystem des MoSaIC-Projekts. Der Anwendungsfall des Projekts sind Container-
schiffe, die Daten senden, wobei die Anzahl der Schiffe durch einen neuen Kunden steigt. Um die
Last zu erzeugen wird die Lasttestsoftware Gatling verwendet. Das Experiment ist in zwei Phasen
unterteilt, in ein Skalierungs- und ein Elastizitätsexperiment. Ersteres dient zur schnellen Einstufung
des MoSaIC-Kubernetessystems, welches eine Vorbedingung für den Entwurf des Elastizitätsex-
periments ist. Der Entwurf sieht zwei Last-Szenarien (schwach und mittelstark) vor. Mit diesen
Szenarien werden im Experiment zwei verschiedene Scaling Policy- Konfigurationen, welche sich
hinsichtlich des Schwellwerts unterscheiden, unter Last gesetzt. Diese Szenarien wurden genauso
wie das System und die Scaling Policies mit Palladio modelliert.

Während des Modellierungsprozesses haben wir festgestellt, dass diverse Faktoren es erschw-
eren ein Modell für das von uns verwendete Experimentsszenario zu erstellen und die Simulation
auszuführen. Die entsprechenden Mängel und K.-o.-Kriterien wurden dokumentiert, genauso
wie mögliche Hilfskonstruktionen, um die Probleme zu umgehen. Wobei letztendlich die Scaling
Policies nicht vollständig modelliert werden konnten und es daher nicht möglich war diese zu
simulieren. Allerdings konnten wir das Potenzial von Palladio aufzeigen zeigen sowie, dass das ver-
wendete Palladio-Model die Nachverfolgung, wie Selbstanpassungen vollzogen wurden, prinzipiell
ermöglicht. Womit die Verständlichkeit der Scaling Policies theoretisch verbessert wird.

Zukünftige Arbeiten können auf unseren Erkenntnisse aufbauen und über weitere Experimente
herausfinden, ob sich die dokumentierten Mängel beheben oder umgehen lassen. Zudem sollte mit
einem Experiment untersucht werden, ob sich die verbesserte Verständlichkeit der Scaling Policies
durch Palladio auch belegen lässt.
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1 Introduction

The popularity of IoT (Internet of Things) systems is growing because with the connection to the
internet - trivial and well-known devices trigger a new user experience. Through this evolution,
these things get smart, e.g., Smart Home. Taivalsaari and Mikkonen [TM18] put it: “enriching
Thing X with an Internet connection, Services, and Apps - Thing X gets smart, or Smart Thing
X”. There are hardly any limits to the intended use. Gubbi et al. [GBMP13] for example, list the
seemingly infinite potential application areas.

Here, cloud computing becomes crucial because a Smart Thing X, as a vessel or any other device,
sends data from its sensor to a server, allowing it to process, store and access the data for further
use. That results in new challenges software developers and architects face. One major challenge
is the adequate provisioning or the scaling of computing resources. These systems should not
only be scalable but also be elastic. In cloud terminology elastic means a system is automatically
self-adaptive. The main goal is to be as cost-efficient and available as possible. It means to prevent
over-provisioning and under-provisioning by meeting the SLOs (Service level objectives) and not
overspending for unused resources.

Doing that sounds relatively straightforward and trivial. However, a recent example from a German
Covid vaccination registration website is not the only one where users still experience an unavailable
service, and the providers miss their SLOs 1.

It does not matter what exactly triggered the unavailability in this case. Whether the lack of server
capacity or a more complex architectural error that induced a bottleneck played are role. There are
tools to prevent such outages and build robust elastic cloud services.

Palladio, for example, is a model-driven performance predicting simulation tool [RBH+16] that has
proven to be effective for cloud use-cases, as Lehrig [Leh14], and Klinaku et al. [KBB19] showed.
However, Klinaku et al. [KBB19] reported several shortcomings. Therefore, it remains unclear if
Palladio would be ready to simulate scaling scenarios within a Kubernetes environment. In the case
that Palladio can successfully simulate scaling policies, it is crucial to investigate how accurate the
results are. It becomes more challenging for software architects to develop elastic services because
the systems become more complex. For instance, think about a microservices system with different
services, interfaces, and more than one possible use case. Here it would be costly to scale the whole
system if only one or two services are the bottleneck. This issue creates the need for simulation tools
to support developers. This thesis has its focus on feasibility and accuracy in that regard. Firstly,
this thesis investigates the feasibility of modeling such a system. A possibility to realize such an
autoscaling system is Kubernetes - a state-of-the-art technique. Therefore, a Kubernetes system
is selected as the reference system. Additionally, we assessed the accuracy of the performance

1https://www.t-online.de/region/duesseldorf/news/id_89344254/startprobleme-bei-der-vergabe-von-impfterminen-an-
aeltere.html
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1 Introduction

predictions and the ability to make decisions based on that. Furthermore, we examined whether
such a model helps to foster the explainability of such a system and its scaling behavior. This
thesis investigates the feasibility of simulating scaling policies with the architectural-based Palladio
approach. We evaluate the accuracy of the created simulations and the explainability of the scaling
policy model.

We measure the response time to determine the accuracy through an experiment on a Kubernetes
cloud system from the MoSaIC project. Kubernetes is a state-of-the-art technique to realize cloud
systems independent of the cloud provider. The use case of the project is vessels sending data. We
design an experiment where the number of vessels increases due to a new customer. That increase
should test our scaler and the scaling policy in place. Our scenario is to evaluate different scaling
policies regarding their effectiveness, as in a realistic use case where a developer wants to opt for
the optimal configuration.

The experiment is divided into two phases, a scaling, and an elasticity experiment. The scaleability
phase benchmarks the Kubernetes system, and the elasticity experiment tests the auto scaler with
the scaling policy. We use the load test software Gatling for the load generation and record the
measurements. Later we compare the measurements with the results of the Palladio simulation.
Lastly, we examined whether such a model helps to foster the explainability of such a system and its
scaling behavior.

Thesis Structure

Here, give an overview of your thesis structure.

Chapter 2 – Foundations: Here, we provide the information about Kubernetes, the MoSaIC
project, Cloud Computing, Scaling Policies, Architecture-based Simulations, Palladio, and
the explainability. In short, everything to understand our research.

Chapter 3 – Related work: The related work is separated into the analysis of AutoScaleSim and
analyses of Palladio’s SimuLizar in the context could systems and scaling.

Chapter 4 – Research Design: Here, we describe our research questions, how we designed our
research regarding the process, the experiment, and the methodology.

Chapter 5 – Results: The results chapter is separated into four parts, how and what scaling policy
we choose, the conduction and results of our experiment, the Palladio model results, and the
simulation results.

Chapter 6 – Evaluation: Here, we provide the evaluation of our research questions.

Chapter 7 – Conclusion: We conclude our thesis by summarizing the results, highlighting our
contributions, describing the lessons learned, considering the limitations, and taking a look
at possible future work.

2



2 Foundations

In this chapter we introduce the domain of this thesis, the used technology, and systems.

This thesis investigates the feasibility, accuracy, and explainability of predictions of scaling policies
in a cloud environment. To introduce the reader to the topic, we explain cloud computing and
scaling policies. Then we describe Kubernetes with which the demonstrator or experiment system
got created. Next we introduce the demonstration system, which is part of the MoSaIC project.
Further, we do the same with the domain architecture-based simulations and technology of the
predictions - Palladio, which is used to model the experiment system. Lastly, we give an overview
of what is explainability.

2.1 Cloud Computing

According to the NIST Definition of Cloud Computing [MG11], the domain of cloud computing
describes accessing computing resources via the network. Of course, in a manner that these resources
can be rapidly provisioned or released. Often users have no idea about the underlying layer of
services that they use, but they expect that the service is available and reacts quickly. It is a black
box to them, and they do not know that the computing resources run distributed in a cluster.

Cloud computing allows such a distributed cluster. In this cluster, services can be scaled when they
are needed to cope with a higher load or server failure occurs. Ideally, this should work self-adaptive
or automatically. Of course, administrators who observe such a system and react manually are more
expensive, error-prone and unlikely as fast as the self-adaption mechanism. With these prospects,
it makes sense to follow that route. Although, humans are still needed, for example, to assist or
observe.

Scalability is not the property that guarantees a self-adaptive behavior, which avoids inefficient
over-provisioning or a costly under-provisioning. It states the possibility that you can scale a
system and that there are no architectural or technological hurdles that prevent that. In contrast,
elasticity describes provisioning respectively deprovisioning resources automatically to an expected
respectively experienced workload [HKR13]. The reason to take such a scaling decision is to avoid
the unsound effects of an overload or an oversize of the available resource. In particular, to ensure
that the used resources are used as efficiently as possible.

In a world where cost-efficiency is a competitive advantage over competitors, it is crucial to be as
elastic as possible with the provided services. This is another motivation why this issue is relevant.
Yet, achieving this elasticity efficiency is not trivial. We describe a method to that in the following
section.

3



2 Foundations

Figure 2.1: The different styles of scaling policies, from [KHB21].

2.1.1 Scaling policies

In some literature self-adaption rules is the name of a measure to realize elastic cloud systems. In
others, it is called an auto-scaling algorithm. However, we think the more precise term is scaling
policy. In our work, we use the term scaling policy, as this is state of the art. The cloud provider
Amazon Web Services (AWS) defines the term scaling policy for EC2 (Amazon Elastic Compute
Cloud) 1 as follows: “choose scaling metrics and threshold values for the CloudWatch alarms that
invoke the scaling process.” Apart from the used technology, a scaling policy manages the scaling
of a system depending on the demand. The approach of the policy to observe the demand becomes
decided through the selected metric. Klinaku et al. [KHB21] describes a scaling policy terminology,
which is threefold: First, the if conditions for the action, and second, the actions to take. These
actions would be the scaling strategy. And third, constraints under which the system should stay in
a steady state. For instance, a simple example for a scaling policy that adds additional computing
resources is the following:

Threshold: 90 % CPU utilization

Action: Add one add

Constraint: No further scaling action in the next minute

The AWS documentation recommends using central processing unit (CPU) utilization as a metric.
To explain our example from above in more detail, we pick 90% CPU utilization as the threshold for
increasing to an additional instance. The system has to follow the constraint to do no further action
in the next minute. When we change the threshold from 90% to 85%, we change the configuration
of the policy, according to Klinaku et al. [KHB21]. Apart from different policy configurations, they
can differ in their style, too. In terms of style, a scaling policy can be decentralized or centralized.
A decentral policy may replicate a specific service while leaving the whole system, which consists
of more than a single service, untouched. On the contrary, a central policy scales the whole system
and does not focus on a specific service or component of the system. In addition [KHB21] not
only mention the control part as a style feature, but application awareness and anticipation are also
factors. See Figure 2.1 for an overview of the scaling policy styles.

Application awareness means that the policy is either aware or agnostic. Aware means the policy is
aware of services or applications that are running on the system. When it is agnostic, it does not take
the architecture into account. An example of an agnostic policy is when the system scales based
on utilization metrics like CPU/RAM (Random Access Memory) and does this without further

1https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-scaling-simple-step.html
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2.2 Kubernetes

knowledge. In contrast, designing a scaling policy concerning the architecture of a system makes the
policy style aware. That means using the length of a message queue to scale does imply awareness
of the service that uses the message queue. However, if additional knowledge about a bottleneck
component can be scaped through the message queue length to execute fine-grain scaling actions,
then the policy can be considered aware [KHB21].

The anticipation distinguishes between reactive and proactive. That means either foreseeing an
increasing load and scaling up proactively - or scaling up as a reaction to increasing load. It could
be possible to have a hybrid approach that uses reactive and proactive elements.

As said in the beginning, the term policy is fuzzy like Han et al. [HGGG12] have discussed previously.
They introduce scaling algorithms, where the main difference is that those algorithms act more
fine-grained than just adding or removing VM instances. We do not differentiate between scaling
algorithms and policies under the condition that this policy or algorithm consists at minimum of
a trigger, action, and constraint. In addition, technology-specific mechanisms are not part of that
[KHB21]. For that, we refer to the Kubernetes/MOSAIC section. In addition, there are several
possibilities to scale, for instance, vertically or horizontally or in some hybrid form, as done by
[BSM20]. To explain that, horizontal scaling means to in- or decrease the number of replicas.
Vertical scaling denotes the scaling of the computing power of an instance. That is a design decision
that is not limited by the technology, like Kubernetes, which is introduced in the next Section 2.2.

2.2 Kubernetes

Kubernetes is one possible technology to realize Cloud Computing. Moreover, it is an open-source
system initially developed by Google (now maintained by the Cloud Native Computing Foundation
CNCF) and a de facto standard to deploy containerized services in the cloud [NYK+20]. Kubernetes
serves as an orchestrator for these containers. A (docker) container is a unit of software that packages
code and its dependencies into a deployable unit 2.

According to Burns et al. [BBH18], with this container structure, Kubernetes has the following four
main benefits:

• Velocity

• Scaling

• Abstraction of infrastructure

• Efficiency

The property of velocity does not only denote speed. It also refers to the ability to react quickly and
still be available. In some regard, this overlaps with the scaling of the system. However, scaling
means only adapting to a changing workload. It does not mean to ship updates iteratively. In a
competitive situation and with continuous integration used, this is at least as crucial as scaling.
Immutable containers are the approach to achieve that. Although it is technically possible to update
an existing Docker container image, the core concept is to avoid it. Hence, containers get updated
through replacement. This method is beneficial because the old container gets not overwritten and

2https://www.docker.com/resources/what-container
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is still available for a potential rollback in case of an error. In addition, by applying infrastructure as
code, with documenting the desired state of the system or container declarative in a configuration
file, it is avoided that a wrong action leads to an incorrect state. Further, the desired state gets
documented, and if a mismatch occurs self-healing countermeasures will be taken because the
system monitors the status continuously.

There is another reason why scaling got mentioned separately. On the one hand, the term refers to
scaling the system, but on the other hand, it refers to scaling the developer teams. Both things are
easier to achieve by decoupling the system. In a container structure, containers are independent
of each other or just decoupled. They are decoupled by load-balancers as well as by predefined
APIs (Application Programming Interface). That isolation allows the scaling of containers and
allows small teams to work on microservices. The latter comes hand in hand with abstracting the
infrastructure. That means no developer is working on a specific machine, as well as the cluster of
machines is portable between different cloud environments.

Everything together makes the system more efficient. For example, the container structure enables
the possibility to save computing resources. The reason is, different subsystems are packed on the
same machine. That allows the creation of images that are as granular as possible to only include
the needed functionality. Changing that packing functionality for test systems, potentially reduces
the development costs as well [BBH18].

Pod

A Pod can be one or more containers that get grouped into an instance. Such a Pod is the smallest
deployable unit, so the design decision of grouping specific containers into one Pod should be
considered beforehand. For example, it is questionable to deploy a database and a front-end on the
same Pod. Depending on the plan to scale, a horizontally duplicated database leads to problematic
data inconsistencies. However, it can make sense to put two containers onto the same Pod. For
example, if both should run on the same machine, share the same network/memory, and are scaled
together, it can save work [BBH18].

The Pods are placed or packed by Kubernetes on a node that corresponds to a virtual or physical
machine. Those manifest the cluster that a specific Kubernetes instance takes care of 3. The
Kubernetes design exists to manage multiple Pods. For instance, by replicating a Pod, Kubernetes
can react to changing load. These additional mechanisms are described below.

ReplicaSet

A ReplicaSet is a mechanism that allows managing a group of pods. As the term replica implies, it
only works for a set of identical Pods. For instance, if four Pods are required, the ReplicaSet ensures
that four pods run. A reconciliation loop (controller) checks the number and arranges measures to
achieve this. That means, if one Pod fails, a replacement Pod is added immediately. If five Pods of
that instance run, the system kills the fifth instance.

3https://kubernetes.io/docs/concepts/workloads/pods/
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According to Burns et al. [BBH18], ReplicaSets are the foundation of robust applications with
automatic failover.

Although, the Kubernetes documentation 4 indicates that using a ReplicaSet directly makes sense in
cases where the pods follow a no-update or a custom update strategy. If this is not the case, other
mechanisms offer update strategy features.

Deployment

A Deployment is a mechanism that offers more features regarding updating Pods or even ReplicaSets.
As such, the Deployment works on a higher abstraction layer than a ReplicaSet. That explains
the possibility of Deployments to manage a ReplicaSet. However, it is recommended not to edit
these ReplicaSets manually [BBH18]. For instance, consider ReplicaSet which gets managed
by a Deployment and is restricted to three replicas. When a user tries to scale the ReplicaSet,
theDeployment has still two in its configuration. Therefore, the Deployment overrides the change
and kills the additional replica.

Managing the update strategy via the deployment, offers the advantage to reduce the downtime of
the service to zero [BBH18]. In addition, Kubernetes handles the updating, so it is not needed to do
that manually. The kind of an update is selectable in the Deployment via the strategy type. One
option is RollingUpdate, which means both versions will be online for some time. The user should
consider this complexity. If both versions are incompatible, the result is a malfunction of the service.
However, as stated by Burns et al. [BBH18], that problem exists for every update strategy. Further,
it is possible to adjust the RollingUpdate. By changing the max unavailable and the max surge, you
can indirectly influence the speed of the update or the available resources. With the max surge, you
define how many additional replicas are allowed. For example, ten percent max surge means, during
the update, 12 replicas may exist. Max unavailable is the counterpart, when this value gets set to ten
percent, then only one from ten replicas may be available. It is also possible to directly influence
the speed of the update by changing the minReadySeconds parameter or progressDeadlineSeconds.
The first decides which time period the system waits until a new Pod has to be ready to continue,
while the deadline determines the threshold to abort an update if reached.

The other option is Recreate, which stands for the simple approach to kill the old version and
let the Deployment replace them with the updated version. In the meantime, the services will be
unavailable, and the user will experience downtime.

Node

A Node is a physical or virtual machine that is a computing instance of a Kubernetes cluster. The
objects described above are placed/packed on such a Node.

4https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
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Service

A Service is something similar to that what we already called service outside of the Kubernetes
terminology. It covers more than one Pod or replicas of them. In short, the cooperation between
different Pods. This composition establishes service, and the Service objects resolve one particular
issue, how can different Pods communicate or reach each other. They do that by calling a REST
(Representational State Transfer) service defined by a tuple of IP address and port with IP address
and port attributes, 5. In addition, Services, as Pods, get their own DNS (Domain Name System)
record 6.

Namespace

It is possible to create a Namespace, apart from the default Namespace, which always exists. The
namespace concept allows encapsulating of Deployments, Pods, etc., which is helpful in a multiuser
environment. An access control Burns et al. [BBH18] helps to avoid abuse or misuse because it is
possible to restrict the access. Outside of its assigned Namespace, the object is not accessible, but it
also does not interfere with with other entities that exist in other Namespaces 7.

Labels and Annotations

While the Namespace is specific to the desired use-case, Labels and Annotations in Kubernetes are
not. These key-value pairs are attached to objects as Pods or Deployments [BBH18]. Used rightly,
they allow identifying these objects without using the DNS record or IP addresses. This process is
controlled by the user. For example, an (Representational State Transfer) has a required syntax, and
the user is free to store a revision number, etc., or decide not to. Same applies for Labels. Labels
and Annotations ease for example the allocation of replicas to a node.

Jobs

Kubernetes allows the creation of Jobs to specify tasks that will create Pods. After these tasks
terminate, the Pods are killed [BBH18]. Further, there is the possibility to establish a CronJob 8,
that denotes Jobs to run after a predefined schedule, e.g., for backups.

DaemonSets

DaemonSets help to realize Pod instances that should run on all or several nodes of a cluster [BBH18].
An example could be a log collection or a cluster storage 9.

5https://kubernetes.io/docs/concepts/services-networking/service/
6https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
7https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
8https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
9https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
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StatefulSet

A StatefulSet is something similar to a ReplicaSet. However, as the name says, it is specialized for
stateful Pods. Therefore, it guarantees that these Pods stay ordered and unique, which is crucial when
an application is stateful. That means data is stored regardless of which form. As a consequence, it
is not possible to interchange or exchange Pods or more specific requests. In addition, each replica
has a persistent hostname and unique index to ensure this. The index incorporates the sequence in
which the replicas got created [BBH18]. With that, the order is maintained.

Ingress

Ingress provides an API entry point which allows accessing the cluster from the outside, for example,
via HTTP (Hypertext Transfer Protocol). In addition, it serves as a load-balancer for the incoming
requests [BBH18].

Usage of Kubernetes

Users send the mentioned requests to the Kubernetes application. Meanwhile, a user of Kubernetes
can use kubectl via the command line to establish an SSH (Secure Shell - a cryptographic network
protocol) connection to send the commands the API provides. It is also possible to submit YAML
files instead. YAML is the format of Kubernetes object configurations and a data-serialization
language like XML.

With the terminology explained, we left one part out that is crucial for this thesis, the possibilities to
scale in Kubernetes. It is possible to scale Deployments, ReplicaSets, or Pods via API commands or
writing scripts that execute those commands relying on metrics. Though, Kubernetes has its scaling
mechanisms that do this on its own.

Those are the Horizontal Pod Autoscaler (HPA), Vertical Pod Autoscaler and Cluster Autoscaler
[NYK+20]. Both the vertical scaling and the cluster autoscaler are out of scope for us. Therefore,
we present only the HPA in more detail because the HPA is relevant in the course of this work.

Horizontal Pod Autoscaler

In the Cloud Computing section, we described how horizontal scaling works. In short, it in- or
decreases replicas. The HPA does it automatically with Pods and the help of a control loop. This
loop repeatedly checks that the pods are in bounds of the specified minimum or a maximum number
of replicas based on a selected metrics. This number of min/maxReplicas and the chosen metrics,
including a corresponding desired metric value, are part of the HPA definition regardless of being
declarative or imperative. In addition, to which object should be scaled, an HPA can scale Pods
directly or a ReplicaSet respectively Deployment that manages Pods [BBH18].

The next point of interest is, how does the scaling of the HPA works. Regardless of the selected
metrics or target values, it uses the following formula 2.1 from [HPA].
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Listing 2.1 This listing is an example of how the Horizontal Pod Autoscaler (HPA) scales up or
down. The rounding up is not included. E.g., if the result of desiredReplicas is a floating-point
number of 5.1, the HPA rounds it to 6 desired replicas.

desiredReplicas = currentReplicas * (currentMetricValue / desiredMetricValue)

To explain that in more detail, we use the example from the Kubernetes documentation [HPA].
With the fraction looking like that: 200.0/100.0, the resulting factor is 2.0. That factor doubles
the current number of replicas. With a fraction 50.0/100.0 resulting in 0.5, the replicas get halved.
This ratio follows the simple intuition that the doubled amount of resources are needed if the used
metric is also doubled or halved.

As said above, it is possible to specify more than one metric and if so, the metric with the highest
number of desired replicas is chosen to scale [HPA]. However, the metric selection and then
specifying the desired value is complex. Firstly, there are multiple options to select a default metric,
and secondly, that selection influences the value that can be set. For instance, a so-called resource
metric is the CPU utilization, and a possible value is an averageUtilization. Firstly, average means
that the metric becomes averaged between all existing Pods. Secondly, the user specifies the ratio in
listing 2.1 which gets multiplied with the currentReplicas. Besides, it is also possible to select a
direct or so-called targetValue. It might be that the metric does not even support setting a ratio.

But that is not all. As the name default metric suggests, Kubernetes supports beyond a limited
amount of default (memory and CPU) external, respectively, custom metrics. Custom metrics
get added manually. For example, [NYK+20] used the HPA with the Prometheus API for custom
metrics. One example of such a metric is the average arrival rate of HTTP requests. Prometheus is,
like Kubernetes, also an open-source project and part of the CNCF. The purpose of Prometheus
is to provide detailed monitoring [Tur18], and [NYK+20] showed that it helps to optimize the
performance of the HPA and that the scaling is slower with the default metrics. In addition, the
scraping time is an important parameter. The scraping time is the time window in which the values
are collected. It is set to 60 seconds by default, for the default metrics and the Prometheus custom
metrics. One can adapt them for both, too. However, Prometheus has features as the rate function.
That allows being more proactive because it takes the increase over time into account. As a result,
the Prometheus metrics are more effective, benefiting from the long 60 sec scraping time but still
reacting quick enough [NYK+20].

That is only one example that shows why it makes sense to use the HPA with custom metrics from
Prometheus.

2.3 MoSaIC Project

We introduced the concepts of cloud computing and scaling, that are realized by the technologies
of Kubernetes and its HPA. Consequently, in this section, we describe the MoSaIC project. The
project follows the mentioned concepts and uses Kubernetes and the HPA for the realization.
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MoSaIC stands for Modellierung, Simulation und Design selbst-adaptiver IoT-Systeme in der Cloud
in German, respectively Modeling, Simulation, and Design of self-adaptive IoT-Systems within the
Cloud in English. It is a project from the FZI (Forschungszentrum Informatik) and the University
Stuttgart together with Bosch as industrial partner.

The demonstrator implements the use-case of an expert tool that observes vessels as an expert tool.
That means a relatively constant amount of experts looks at data that comes from vessels. They
do that usually with tool support that helps to react in real-time to certain developments, e.g., face
problems that cause the vessel to stop. Then remote maintenance for their engines could be possible
with the help of the observed data. That is a realistic scenario, for example, instead of a vessel,
such a service exists for trucks. See Mercedes Benz Uptime 10, which offers such a service where
Remote Measuring is one aspect to avoid sudden stoppage.

However, as said, the MoSaIC project aimed to develop a demonstrator. As the name indicates, this
system was set up to demonstrate a realistic use-case, but it is a mock-up or prototype. That means
the implementation is neither used in reality nor usable. To realize this prototype a framework was
needed that enables the creation of load. For that purpose ProtoCom 11 is used as performance
prototype generator [BDH08]. ProtoCom is part of the Palladio toolchain and does a model-to-code
transformation. This transformation is helpful in the early design phase, or for cases when the
aim is to demonstrate certain aspects while no real-life system is available. The load or resource
demand gets artificially created after calibration on the systems it runs on. The load, for example, a
CPU demand, is derived from a calculation, e.g., calculating Fibonacci numbers. The measured
values are comparable with the predictions made by Palladio. In work from Lehrig and Zolynski,
ProtoCom showed that predictions and measurements correlate [LZ11].

In the case of this project, the performance prototype is crucial because the demand of the experiment
should correlate to the demand we model. Let us say the demand is 100 ms, then the measurement
of how long the demand runs should be 100 ms, too. In the same way, that works for the model.
It helps to focus on other factors and to eliminate at least a confounding factor. Therefore, the
performance prototype is embedded in a Kubernetes cloud cluster surrounded by the following
architecture.

We indicated above, that it is an expert tool, that means the expert users use a REST interface to
obtain data from the DataProvider component. This data comes from vessels, which serve as IoT
devices. They use an Ingress to send data to the Device Communication component. The REST
interface is realized with Spring MVC and runs on an Undertow server.

The MoSaIC system uses the opensource software Gatling 12 to load test the system. Gatling creates
load artificially and records the response time with time stamps in a simulation text file. The software
creates from that file graphical HTML reports. Gatling uses the JVM and is written in Scala. It also
provides a DSL (domain-specific language) to ease the development of load tests simulation scripts
for non-Scala experts.

10https://www.uptime-info.mercedes-benz.com/
11https://sdqweb.ipd.kit.edu/wiki/ProtoCom
12https://gatling.io/
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Figure 2.2: Architecture of the MoSaIC system. Illustration from the MoSaIC project.

In between the Processing component comes into action. All three components, which are part of the
Kubernetes Namespace demonstrator and have its own Deployment/Pod, are connected to a Broker
component. This Broker is a message queue, in this case a RabbitMQ 13, which is the name of the
software used to create broker and the message queue. This queue manages the communication
between the demonstrator components and allows asynchronous communication between the devices
and the database, respectively the end user. The message queues are implemented via Spring
Boot, respectively 14. Spring Boot is a framework written in Java that allows the development of
microservices.

Message queues are used except for the possibility that the Device Communication can access the
MongoDB Datastore without using the Broker. The Broker and the Datastore are part of the default
namespace, as well as Prometheus and the Prometheus adapter.

To make it more understandable what the system does we describe the user, vessel and processing
use-case in more detail with the help of sequence diagrams.

We start the use-case for the devices respectively the vessels, shown in Figure 2.3.

13https://www.rabbitmq.com/
14https://spring.io/projects/spring-amqp
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Figure 2.3: Vessel sequence diagram. Illustration from the MoSaIC project.

Firstly a vessel is set online, which means through the Ingress and the Device Communication a
campaign is created. After that the vessel measures its data, this is done in a loop and repeats the
following process: Cache the measurement data in a one minute time window and send the telemetry
data through Ingress to the Device Communication. Here the data is saved in the Database. In
addition the status that the measurements are available is pushed via messaging.

Once the vessel is set offline, the corresponding campaign is finished.

If now an expert user wants to retrieve the data of the vessel, the use case works as follows. As
depicted in Figure 2.4 the first step of getting the data is to lookup the corresponding ID’s of the
Measurement campaigns. The idea is not to get the data directly for the Database. In the next step
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Figure 2.4: User sequence diagram. Illustration from the MoSaIC project.

the ID’s are used to get the desired telemetry data via messaging. As this data should be processed,
it comes from the Processing component and is then ready for the visualization. What happens in
the meantime is shown in the following Figure 2.5.

The data Processing component gets its data from the message queue as shown above in Figure 2.3.
As depicted in Figure 2.5 the next step is to check if the ID of the measurement campaign is already
in the cache, that happens when the vessel already sent telemetry data. If that is not the case and the
vessel sent for example for the first time, the data is retrieved from the Database, is converted and
put into the cache. Then the Data Processing sends a message that the processed data has arrived.
The latter shows what happens when new data arrives, then the data is converted again and pushed
into the cache.

As described above, the MoSaIC project uses the HPA scaling mechanism, which had the target to
scale on the development level, the demonstrator Pods.

Regarding the underlying hardware structure, the demonstrator is hosted on the bwCloud 15 and
the project has access on seven nodes with four CPU units respectively virtual cores. There is no
further knowledge on what are the exact underlying resources or how the bwCloud handles load in
terms of prioritization or scheduling. The architecture is as such, that the demonstrator works on
VMs and virtualized nodes.

15https://www.bw-cloud.org/
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Figure 2.5: Processing sequence diagram. Illustration from the MoSaIC project.
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2.4 Architecture-based Simulations

We proceed now with the simulation part of our work. In opposition to discrete event-based cloud
simulators as CloudSim [CRB+11], architecture-based respectively model-driven simulators as
Palladio [RBH+16] have the advantage that they consider the bigger picture. That is beneficial
because when an error occurs after the implementation of a system and that error is traced back to
a wrong design decision, changing the architecture at this point has consequences on the existing
implementation [RBH+16]. That requires additional and costly work as a consequence. An analogy
would be an airport where the building architecturally does not comply with the requirements. For
example, an inspection after the construction shows that the hallway is too tight for the expected
amount of passengers. Although, the software is hardly comparable with a building because nothing
gets demolished physically here. It becomes clear that such changes in architecture are not without
consequences here either. For instance, when such a change in the architecture affects many other
places in the source code. Therefore that should and can be avoided if the architecture and design
decisions get investigated before the actual implementation.

That is not different for cloud systems because that is not isolated and consists of multiple parts/layers
composed into a system. Though, the separation of concern can be part of a discrete event-based
simulator as well. For example, CloudSim distinguishes between Cloud Provider, Application
Provider, and End-User. And of course, CloudSim is specialized in modeling cloud-specific details,
as provisioning strategies [CRB+11], but it still lacks to capture the architectural depth.

However, the benefit of architecture-based simulations is the capability to represent the actual
architecture of such a complex cloud system and the different stakeholders/roles that act in it. Each
system part has its layer rather than only having an abstraction of the stakeholder parties. For
example, for Palladio, it is no problem to represent structures as containers or microservices and
how they interact. In addition to scaling policies, we described above how many aspects are worth
considering in the design phases of a scaling policy. It makes sense to include the architecture of
the whole system, especially with the Palladio plugin SimuLizar [BBM13], that added the ability to
model self-adapting systems. Event-based simulators, as CouldSim [GSFP20], do not have this
ability. Nevertheless, CloudSim [CRB+11] and his extensions [ATTG21] have shown that they can
cope with cloud-specific details, as provisioning or autoscaling. For Palladio and its extensions, this
is more an open question, which is one reason why we want to investigate that.

2.5 Palladio

To describe the architecture-based simulator Palladio in more detail, we start with the idea behind
it. The Palladio approach describes an approach that uses different models (repository, system,
resource environment, allocation, and usage) to capture these concerns, and by doing so to foster
the understanding of design decisions and their impact [RBH+16]. The aim is to improve the
architecture with the help of simulations by allowing to weigh up different design alternatives.
To do that, Palladio consists of a component model (PCM), a domain-specific language, and the
Palladio bench. The latter is available as an Eclipse plugin to apply the component model and make
it usable with the help of graphical editors. Its name is Palladio Bench, and this is a tool that runs
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on eclipse to create these models with the help of Sirius graphically. It works out of the box when
you download the provided all-in-one product from their homepage 16. The required Java version is
higher than 11. Though, we experienced error messages during the start-up using JAVA 16.

To describe briefly how a system is modeled with the PCM DSL, we take a look at Figure 2.6.

Figure 2.6: Different roles of Palladio, picture from [RBB+11].

We can see in the 2.6 graphic the separation of concern. Each part of a system is separated, and the
corresponding stakeholder, respectively developer, can independently model it. We will describe
each of the model entities in more detail in the chronological order they get modeled.

2.5.1 Repository

The component developer specifies the individual component in the Repository model. That
covers the interfaces of these components, including the methods of these interfaces. The interface
specification is the abstract method body, or more precisely, return types or parameters. Return
types can be void, which means none exists, and parameters have a name and a type. The component
interface contains this method structure or signature, as its name is in PCM. A component then can
provide an interface or require one. Require means that the methods of the interface are available
to be externally called. If the component provides an interface, then the component can model a
SEFF (Service Effect Specifications) for all methods the interface comprises. A SEFF represents
the behavior of this method, or in other words, implements the method.

16https://www.palladio-simulator.com/tools/download/
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Service Effect Specifications

To implement the method, a modeler can specify calls or actions. Actions can be either internal,
so they issue a resource demand, or external. An external call means invoking a SEFF from a
different component that requires the interface. Additional elements of the SEFF are the control flow
actions as a branch, fork, or loop action. To use a fork action means a paralleled behavior becomes
synchronized. Within a branch action, it is possible to branch via a condition or probabilistic values.
Another concept that is available for components is Passive Resource actions. A Passive Resource
has a limited capacity of tokens that can be acquired and released in a SEFF [RBB+11]. The concept
is to model a critical section. That means this section is only accessible if a token is available to
acquire.

2.5.2 Assembly

With the components defined, the system architect can proceed with Assembly/System model. It
represents the interaction between the components and the interfaces. The interfaces that appear in
the Repository model are available to the outside. That makes it possible to interact with the outside,
depending on whether being a provided or required interface. Such an interface is delegated with
the help of a fitting connector to an Assembly context inside the system. In general, an Assembly
context represents a component with its interfaces. Those contexts inside the system connect with
connectors, which is no delegation because the connections only work from required to provided
interfaces.

2.5.3 Resource Environment & Allocation

The system deployer is responsible for the available hardware, how this hardware connects via the
network, and what runs on the hardware. Therefore Palladio has two models for the system deployer,
the resource environment where he models the first two points and the allocation model where he
models the latter point. The resource environment consists of resource containers that have a CPU
with scheduling, cores/replicas, and a processing rate. Further, a resource container can have an
HDD or a delay. Moreover, with a Linking Resource, the capability of the network connection in
terms of latency and throughput is modeled. In this model, the hardware is not necessarily physical.
It is also possible to model virtual hardware as a VM. In the allocation, the deployer allocates the
components on the available resources. That means placing an assembly context (component) on a
resource container.

2.5.4 Usage Model

Last but not least, the domain expert specifies how users use the system in the Usage Model with
Usage Scenarios for each interface. A Usage Scenario has exactly one workload that can be closed or
open. The difference between both types is that the open workload only has the property inter-arrival
rate with an unbound number of users, while a closed one has the properties population and think
time. The population is the number of users, and the think time is the time between successfully
finishing one request and re-entering for the next. Both think time and inter-arrival rate have in

18



2.5 Palladio

common that they are random variables [RBB+11]. The inter-arrival rate, the time between different
users arrivals, is related to the think time. The Usage Scenario has a behavior where interfaces are
called that are available to the outside world. Such that they fit the use case, e.g., using control flow
actions as loops or branches. Moreover, more than one Usage Scenario may be modeled for one
system, regardless if they share the same workload type or not.
All described models together constitute a PCM instance, but this is not complete. It is possible to
model even more. In the description above, we limit ourselves to report that what is relevant for this
work.

As shown in Figure 2.6, the user has multiple options to continue with a PCM instance. For instance,
he could create a ProtoCom Performance Prototype as described in the MoSaIC section. However,
we are interested in the performance predictions, shown as model-to-model transformation. These
performance predictions include Quality of Service (QoS) metrics, for example, the performance
metric response time. Furthermore, Palladio offers reliability, maintainability, and cost metrics too.
An analyzer or simulator executes this simulation. However, this is a bit more complex. Palladio has
more than one analyzer, though, for instance, SimuCom or SimuLizar. For this thesis, the SimuLizar
simulator and its superset the CloudScale approach [BBL17] project are relevant because they added
the capability to model and simulate cloud systems.

The CloudScale approach realized that by extending the PCM with a Usage Evolution, Moni-
tors/Measuring Points, and Self-adaption Rules. These extensions allow modeling a dynamic
workload. That is a necessary condition to model and simulate an elastic cloud system. Apart from
the dynamic workload itself, the other elements are needed to monitor the state of a system and
then self-adapt by increasing the resources.

2.5.5 Usage Evolution

The Usage Evolution links a dynamic workload evolution with the static Usage Model. Above we
described how the Usage Model is specified. But it is not possible to model the evolution over time.
Therefore it was necessary to add that possibility by using the Descartes Load Intensity Meta-Model
(DLIM). The DLIM allows describing a varying load intensity of users respectively their arrival
rate over time in a closed workload. Originally, DLIM comes from LIMBO [KHK14] and was
integrated in Palladio by [LB14].

2.5.6 Monitor/Measuring Points

A Measuring Point allows specifying what to measure in a simulation, for example, the CPU of a
resource environment. In that case, a potential metric is the utilization of that particular CPU. But to
specify such a metric for a Measuring Point, a Monitor with a measurement specification is needed.
The Monitor points to a Measuring Point and can have more than one measurement specification.

The measurement specification has two properties, a metric and a boolean, defining whether the
specification can trigger self-adaptions. Setting this to true allows the creation of scaling policies.
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Figure 2.7: MAPE-K feedback loop according to [Mur04], labeled with the SimuLizar architecture,
from [BBM13].

2.5.7 Self-adaption rules

The self-adaption rules are the missing part of creating a scaling policy with Palladio. We al-
ready described the dynamic workload and the monitoring, but not how the reactions on it are
implemented.

As mentioned above, the simulator that works with the extended PCM is SimuLizar. SimuLizar
extends the SimuCom and adds the capability to cope with self-adaptive systems in transient phases.
A transient phase is a transition, e.g., the interval between two phases, where, for example, the load
changed. The self-adaptive system complies with the MAPE-K feedback loop from [Mur04].

The graphic 2.7 illustrates what the acronym MAPE-K means and how it influenced the concept of
SimuLizar. To explain that in more detail, there is a Monitor (Palladio Measurement Specification -
PMS) that monitors a metric respectively measurement. The measurements are analyzed if they
exceed a predefined threshold (Palladio Runtime Measurement - PRM). In the case of exceeding, a
self-adaption action is planned, and in the last step, the transformation is executed. In all of these
steps, the knowledge base about the system is accessible for the four steps [BBM13].

Options to realize Self-adaption rules are henshin diagrams, story diagrams (sdm), or QVTo scripts
[Bec17]. We focus on self-adaption rules that are specified in QVTo because it offers more options
to specify self-adaption rules. QVTo is part of the model transformation language QVT. The little o
stands for operational 17.

In the end, for the simulation, besides the allocation and the usage model, the user can optionally
specify the Monitor Repository file, a Reconfiguration File folder, a Service Level Objectives file,
the Usage Evolution file, and Action Model file for the (Transient Effect Analysis).

17https://wiki.eclipse.org/QVTo
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The latter comes from Stier and Koziolek [SK16], who extended SimuLizar further to include
transient effects, which occurs as overhead when an increasing load leads to the provision of an
additional VM, as the cost of the adaption. Becker et al. [BBM13] assumed that the self-adaption
has none of such additional cost, which means that Stier addressed this limitation with his work.

2.6 Explainability

Software explainability respectively explainable software is a growing research area as the authors
book the authors of the book “Self-aware computing systems” demonstrate [Kou17]. They delivered
fundamental research, for example, the definition of what a self-aware computing system is. Such a
system should be able to capture knowledge about its purpose and reason about that knowledge to
decide about future actions to fulfill its purpose. That includes generating knowledge that explains
the user or operator its decisions.

Such knowledge is crucial for a cloud system that takes decisions autonomously and relies on a
scaling policy. Stakeholders need to understand the system behavior to use or maintain it. To
improve the scaling of a cloud system, it is helpful to trace the actions triggered by the policy.
[GLV19] summarizes research on that for cyber-physical systems (CPS). These systems do complex
computations, use data respectively signal-processing for control tasks, and are at some point
distributed. Under that definition, most cloud computing systems are also CPS. The Explainable
Self-Learning Self-Adaptive Systems report from [GLV19] proposes retracing adaption decisions
to achieve explainability. That includes their trigger, the context, the chosen self-adaption rule, and
the expected actual effect.
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3 Related work

The related work touches on work that pursued a similar aim but has not sufficiently investigated
the prediction of scaling policies. We focus on other scaling simulation systems, like AutoScaleSim.
Furthermore, we take a look at work that has been done with Palladio to predict scaling policies in
self-adaptive systems.

3.1 AutoScaleSim

The simulation toolkit for auto-scaling of cloud applications AutoScaleSim, from Aslanpour et al.
[ATTG21], has the aim to fill the gap that existing simulators lacked in support for auto-scale
mechanisms. They used CloudSim as the foundation and extended it so that the autoscaler supports
the MAPE-K concept. This functionality does already exists in Palladio. The main entities involved
are the cloud provider, the application provider, and the end-user. The MAPE-K concept works
between the application provider and the cloud provider. However, the cloud provider is allowed
to handle monitoring, analyzing, and executing the system. The performance metrics that were
collected through AutoScaleSim are depicted in Figure 3.1

Figure 3.1: AutoScaleSim performance metrics, from [ATTG21].

They deployed and scaled their experiment set-up with OpenStack to validate their work. They
used traces from Wikipedia as the workload of users over time. In total, the traces were collected
over a time of 211 minutes. They investigated the tail latency, which refers to outliers of very long
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latency. That means the analysis looked at how auto scaler influences the tail latency. To do that,
they analyzed the 90th and 95th percentile of the response time in their simulator and the testbed.
Then they changed the scaling interval to two, four, and eight minutes. Furthermore, they used
instant and predictive analysis methods and used a threshold tuning of 70 %, 80 %, or 90 % for the
utilization.

As you can see in Figure 3.2, the simulator is capable of predicting trends when changing the interval
but misses the tail latency by a lot. In addition, it overestimates the effect of the eight-minute scaling
interval on average response time.

Figure 3.2: AutoScaleSim scaling interval evaluation, from [ATTG21].

As visible in Figure 3.3, the AutoScaleSim underestimates the effect of the predictive analysis. The
reason is that a predictive approach can react significantly faster than an instant method. The result
for the average response time is still accurate, even if the difference in the simulation is smaller than
in reality.

The utilization threshold tuning results in a significant difference regarding the tail latency, see
3.4. However, regarding the average response time or the 50th and 75th percentile, the simulator is
accurate. Even if we consider that the trend is not correctly predicted. The tight (90 % utilization)
does perform considerably well for the 50th and 75th but is beaten on average.

Even with some limitations, the accuracy of 81 % (mean absolute percentage error) is described as
reasonable for such variable environments by Aslanpour et al. [ATTG21]. It is limited to horizontal
scaling, not able to model a sophisticated system beyond web applications, as it is a non-architecture
based simulator extending CloudSim.
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Figure 3.3: AutoScaleSim analysis method evaluation, from [ATTG21].

Figure 3.4: AutoScaleSim threshold tuning evaluation, from [ATTG21].
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3.2 SimuLizar Analysis

The effectiveness of SimuLizar was investigated multiple times. The analysis from its introduction
by Becker et al. [BBM13] showed that self-adaptive systems in transient phases can be modeled.
The performance prediction is also accurate enough to differentiate between design alternatives.
The accuracy that would allow to do that was set to a value less than 30 %, which SimuLizar kept.

However, at the time, SimuLizar was limited to a static Usage Model, but this limitation was ad-
dressed with the CloudScale approach from Lehrig and Becker [LB14], which means that scalability,
elasticity, and efficiency analyses are supported now. This was backed by the case study done by
Becker [Bec17].

Stier and Koziolek [SK16] did two experiments that demonstrated the accuracy of performance
perditions regarding horizontal scaling for the used example system. That was improved by the
extensions for the transient effects, e.g., start-up time of scaling action. It also helped to identify
additional design flows in the scale-out conditions. In addition, two experiments showed that the
approach helped to increase the accuracy for a horizontally scaled application. Figure 3.5 visualizes
the reduction of the prediction error. The experiment was executed on an IaaS OpenStack cloud
and a reference system that hosted media web-based.

Figure 3.5: Experiment A, from [SK16].

In addition, there was a case study that investigated the Applicability of Palladio for Assessing
the Quality of Cloud-based Microservice Architectures [KBB19]. The reference system was a
cloud application deployed on AWS. However, they did not investigate scaling policies because the
company where the case study was conducted had no scaling policies in place. Therefore they could
not investigate its accuracy. Further, they even deemed it infeasible to model elastic scenarios with
message queues because they found no way to react to their status. The work showed that Palladio
can model a complex microservice application and get a reasonable accuracy. Although, as Figure
3.6 shows, the accuracy became worse with an increasing number of users.

Another related work that investigated something similar to us was done by Klinaku et al. [KHB21],
which evaluated Architecture-based Scaling Policies for Cloud Applications.
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Figure 3.6: Evaluation from [KBB19].

Before they implemented scaling policies, they did a workshop to determine scaling policies along
the dimensions we presented in our foundations. The dimensions were validated during a workshop
with three experts from academia and the industry. Further, they created their scaling policies with
the help of a self-defined Scaling Policy Model that included ScalingTrigger, TargetGroup (what to
scale), AdjustmentType (how to scale), and PolicyConstraints. In the end, they came up with three
policies:

• CRP based on Overall Response Time Architecture Aware

• CRP based on Utilization Architecture Agnostic

• DRP based on Queue Length Architecture Agnostic

The first letter of the abbreviation shows that two from three policies are centralized (CRP). The
other is decentralized (DRP). All of them were reactive. They reached an agreement to use scraping
time and quiescence period (60 secs) as a constraint to avoid oscillation. Furthermore, the policies
were bound to a specific number of resource containers. The acronym follows the matrix from
Figure 2.1, at least for control and anticipation. Their performance can be viewed in 3.7, while they
all perform better than no scaling policy (np), there is only a slight difference between them. The
difference comes from the fact that the crpu policy reacts slightly faster than the others. The reason
is that utilization of 70 % is looser than the other thresholds. Although, the difference between
them was considered as not statistically significant by [KHB21]. The model where the policies were
applied came from [KBB19], resulting in the fact that no measurement data is available to assess
the accuracy of the modeling.
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Figure 3.7: Mean response time of the policies, as inspected by Klinaku et al. [KHB21].

Figure 3.8: Mean utilization during the experiment, as inspected by Klinaku et al. [KHB21]..

The scaling policies on the model site were realized using QVTo, which is problematic because of
the effort. Another problem is that no meta model to specify a scaling policy existed. The latter is
problematic because the unknown execution semantic can cause arbitrary effects. Therefore a meta
model for defining PCM-based Scaling Policies for Cloud Applications was deemed as future work,
as well as an accuracy analysis.
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This thesis aims to investigate the feasibility and aiding the explainability of scaling policies using
architectural-based simulations.

That means to model scaling policies for an architectural-based simulator - Palladio - and run the
simulations. With the simulation results, we want to answer if it is feasible to model scaling policies
and if the results aid the explainability. Both questions touch on the research gap - is Palladio ready
to simulate scaling policies.

4.1 Research Gap

Although related work touched a similar topic, neither Klinaku et al. [KBB19], nor Klinaku et
al. [KHB21] assessed the accuracy of the self-adaption/scaling policy modeling mechanisms of
Palladio. As described in the related work, Klinaku et al. [KBB19] showed that it is feasible to
create a cloud microservice with PCM and run the simulation with a satisfying number of accuracy.
But they did not investigate the accuracy of scaling policies. Klinaku et al. [KHB21] used the
system from Klinaku et al. [KBB19] to show that it is possible to model scaling policies. Though,
they could not show how accurate the simulations are because of missing data. Further, Stier and
Koziolek [SK16] did an accuracy analysis for a scaling mechanism but not by using a microservice
or Kubernetes messaging system. In addition, their scaling mechanism did not fit the scaling policy
description introduced by Klinaku et al. [KHB21].

That means the research gaps encompass the accuracy analysis of scaling policies that run in a
Kubernetes messaging system and the question if the PCM model respectively simulation aids
in terms of the explainability of scaling policies. For the latter, we found no related work which
investigated that before.

4.1.1 Research Questions

The research gap leads to the following research questions:

• RQ1 What is the feasibility of evaluating cloud scaling policies through the architecture-based
Palladio?

RQ1.1 How accurate are the results of the simulation compared to reality?

RQ1.2 Is the best-performing configuration predicted correctly?

RQ1.3 Is the simulation predicting the best performing scaling policy style correctly?

• RQ2 Can architecture-based simulations aid in improving the overall explainability?
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As we described, the missing part regarding the feasibility to model and simulate scaling policies
with PCM is an accuracy analysis that demonstrates an acceptable accuracy. Therefore the focus of
this thesis is the accuracy of the simulations, see RQ1.1. However, accuracy captured in percent
is only one possible perspective and a validity threat for this thesis. We are aware of the model
calibration complexity. The virtualized Kubernetes system induces this complexity. To manage
this risk, we added a second perspective, see RQ1.2. If the best-performing design alternative is
predicted correctly, then the performance prediction is not useless. In other words, if the trend is
correctly captured, the results are more robust to calibration issues.

Regarding the second research question (RQ2), we rely on Greenyer et al. [GLV19] and their proposal
that retracing adaption decisions aids the explainability of adaption decisions. Therefore we want
to investigate if Palladio can provide the retrace ability of adaption decisions after simulating. Of
course, this is vague and only an initial step for research. We could not ask domain experts with a
survey to validate our findings through time constraints.

Before we conducted our research, we formulated the following hypotheses:

• H1 It is feasible but with some limitations.

• H1.1 We expect better accuracy than the 30 % named by Becker et al. [BBM13] to be
acceptable by the performance engineering community.

• H1.2 We expect that the best-performing configuration is predicted correctly. Even if Aslan-
pour et al. [ATTG21] showed that this is not straight forward.

• H1.3 We expect correct results of predicting the best-performing style, as well.

• H2 We would expect that the model helps to foster the explainability by providing information
to trace the scaling decisions.

4.2 Process

The process to answer the research questions has the following parts.

Firstly, we want to select the scaling policy to implement. We do that together with the MoSaIC
project. The second part is adding this scaling policy to the MoSaIC system and the model. Our
focus is on the model, where we can use an existing model and existing QVTo scripts from other
projects. Then we prepare the experiment by selecting a scenario and a load to stress the system
through a load-test. The next part is executing the load-test and collecting data. In parallel, we make
the model ready and calibrate it. After that, we run the simulation and collect data. Both data sets
are the foundation for the evaluation of the research questions see Figure 4.1.

The load test of the experiment is a special case, therefore we will explain this item in more detailed.
It has the following sub-items:

• Scalability

• Elasticity
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Figure 4.1: The process of this thesis.

The need for an SLO and to benchmark the computational capability of the system requires the
execution of a scalability experiment before doing an elasticity experiment. We need it because
it was unclear which load results in a 100 % CPU utilization. In addition, we had only a rough
SLO available from the stakeholder. This SLO was partly usable because it was generic and not
suited to our specific setting. A fitting SLO is important for choosing an adequate number of vessels
for the elasticity experiment. Otherwise, we would risk running a setting that does not stress the
system. That is problematic because scaling is only reasonable when one node cannot handle the
load anymore. The scaling action is an action to keep the SLO.

From the available use cases of the MoSaIC system, we selected the vessel scenario shown in Figure
2.3. The plan is to run a ramped-up load scenario with 100 vessels as baseload. Over 15 minutes,
we increase the number of vessels in four steps. The increment per step would be 100 additional
vessels. That results in 500 vessels are sending data at the end of the four ramp-ups. And repeat
that for four available nodes but with a higher amount of vessels.

This so-called Strawman (linear search - increasing with a constant factor) approach is deemed
as inefficient by [SMC+08], who also describe better alternatives as the Bbinsearch algorithm.
Binsearch is an adaption of the binary search, that doubling the rate. The intention behind a
scalability experiment is to save time in the experiment process. That does not only apply to the
elasticity experiment. It also applies to the scalability experiment. It is reasonable to use a more
efficient method to find the utilization sweet spot or peak rate. The alternative of trying via brute
force or the Strawman to find a suitable configuration would cost too much time. Therefore we
adapt our plan and opt for something similar. Instead of a linear increment, we double the number
of vessels, e.g., starting with 500 and doubling the baseload to 1000, triple it to 1500, pp. That
approach ensures to reach the point of 100 % utilization faster. We also differentiate between one
and four nodes. As a result, we start with a fourfold higher number of vessels for four nodes.

The target is to observe the response time and the utilization of the system to find out the fitting
configuration. This configuration should stress the system close to its maximum. We do not want to
over-stress it because that would confound the result. With that knowledge, we can continue with
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the elasticity load. The elasticity load should test the auto scaler with two scenarios - a low and
a medium. Low and medium refers to the number of vessels. The low case should not stress the
system much because we want to observe what happens if the system saturates. The medium case
should have an amount that goes beyond the computational capability of one or two nodes. That
means the system should do at least one scaling action. However, as the name medium indicates,
the system should be capable to process the load without all four nodes.

The motivation for this plan is the use-case, where a new customer joins the services and adds his
vessels to the system. Other than in a unprecedented scenario, the provider can plan and control the
way the vessels join and how the system configuration should react on the additional load. That is
the reason we do not consider a high or extreme scenario regarding the number of vessels. With the
result of the scalability experiment, the provider knows the capability of his system and can use
that as reference to plan. In such a scenario an accurate simulator is helpful to know upfront which
scaling threshold and ramp-up time is to favor in terms of performance.

4.3 Methodology

We assess the accuracy of the simulation by using the metric response time of the usage scenario
and the utilization of the measured resources. The response time is the main metric to calculate
accuracy by dividing the measurement by the simulation. We use the mean absolute percentage
error (MAPE) [KK16], with the following formula:

(4.1) MAPE = 100
#

∑=
C=1
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Where # denotes the number of data points, �C is actual, and �C is the forecast value. MAPE is
a suited measure of forecast accuracy and was also used by [ATTG21] to specify the accuracy of
AutoScaleSim.

Similar to Aslanpour et al. [ATTG21] we do not solely focus on the mean value of the response
time. In addition to the mean, we analyze the 95th and the 99th percentile to determine the accuracy.
Other than Aslanpour et al. [ATTG21], we decided to take an even closer look at the tail latency by
replacing the 90th with the 99th percentile. That allows judging on the tail latency and the effect
of outliers. That is relevant because the mean value can hide the impact of scaling policies. The
reason is the transient phases, where the scaling actions are active. In that time window, including
the period of the high utilization, the response time is higher than during a steady state. The result
is that only a few requests need a long time. Therefore, to assess the quality of a scaling policy
the tail latencies reveal the effectiveness of the scaling decision. For instance, if the tail latency of
scaling policy A is significantly higher than the tail latency scaling policy B - policy A reacted too
late. At least on a high level where the policy shares the same style and differs in the configuration.
Hence, we decided to concentrate on adapting one parameter at a time. That means we do not
change the cool-down period and the threshold together. On a low level, where the styles of the
policies are different, a broader approach is handy. That does not mean ignoring the tail latency. It
means checking the efficiency through the nodes used, too.
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RQ 1.1 and RQ 1.2 ask for the trend conformance regarding the best-performing policy predicted
correctly. However, for that, we should consider the standard variation. The reason for this is we
fear that the calibration is problematic for the tail latency. Including extreme values at this point
undermines our objective to add another perspective to manage that risk.

The second research question (RQ2) has no specific metric. As described above, we want to investi-
gate Palladio’s self-adaption tracing capability. We define that the result allows us to understand
why an additional resource is added or removed. That means retracing the values of the scaling
trigger values in some graphical form.
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The results chapter is separated into four parts, how and what scaling policy we choose, the
conduction and results of our experiment, the Palladio model results, and the conduction and results
of the simulation.

5.1 Scaling Policy Results

The selection of the scaling policy should be done in agreement with the project partners of the
MoSaIC project. Initially, the plan was to propose ideas to them during a workshop, as Klinaku et al.
[KHB21] did in their work. However, the process was delayed after creating a proposal. Instead of
presenting our ideas, we passively followed the discussion from the project partners. This discussion
is described in section Section 5.1.1.

5.1.1 Workshop

The workshop consisted of two meetings, separated by one week. During the preparation of the
workshop, it became clear that the elicitation is not trivial. The stakeholders agreed that it is difficult
to select scaling policies that fit their demonstration purpose. From the model perspective, one
requirement was that the policies should be easy to implement and work out of the box. The aim is
to model them, which means it is necessary to use metrics/mechanisms that can be modeled with
Palladio. Further, it was agreed to start with horizontal scaling to keep it simple. In addition, the
industry partner favors horizontal scaling.

Then concerns about modeling the HPA were part of the discussion. The HPA formula is more
complicated than a simple threshold-based scaler, but the concerns were related to the Pod concept.
In Kubernetes, the HPA scales the Deployments or Pods, which translates to a container. It is possible
to consider the Palladio resource container as a Node consisting of several Deployments/Pods. The
problematic part here is to model the Kubernetes utilization metric because Palladio only provides
it for the Resource container as a whole. With multiple Deployments on one Node and an HPA that
scales single deployments, that does not work and leads to constraints on how to realize the HPA.
For instance, find a workaround, e.g., isolate the Deployments, or use a different metric like the
response time.

Therefore, all parties agreed to firstly select naive policies that scale based on simple metrics like
CPU utilization and secondly to use an abstraction layer that that can be modeled with Palladio.
The result is a policy that scales the nodes rather than the Deployments or Pods. The result was
refined with a wiki page. The collected information was the basis of the second meeting.
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At the second meeting, two possibilities were presented, homogeneous Deployment and non-
homogeneous Deployment. Homogeneous means that on a single Node all three MoSaIC Deploy-
ments run. Here scaling means scaling all Deployments together, as shown in Figure 5.1.

Figure 5.1: Homogeneous Deployment. Illustration from the MoSaIC project.

In contrast, non-homogeneous refers to the fact that the deployments were split so that one node
consists of two Deployments and the second has only one Deployment, see Figure 5.2.

Figure 5.2: Inhomogeneous Deployment. Illustration from the MoSaIC project.

The homogeneous approach is agnostic, in contrast the non-homogeneous is aware. It is aware,
when the reason for the arrangement is the architecture of the system. For example, as the Device
Communication is considered a bottleneck, it is put on a separate node. Then both nodes are
monitored, and the node with the higher utilization is scaled. Hence this is a more sophisticated
solution.
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Further, it was agreed to implement the scaler by a project partner. That means they decided against
using an existing scaler with similar functionality that already existed on GitHub. Apart from that,
the implementation details have been omitted. In the terminology of [KHB21], the TargetGroup and
AdjustmentType have been set. However, the Scaling Trigger and PolicyConstraints were subject to
being determined in the implementation.

5.1.2 Implementation

The scaler that implements the findings of the workshop has the name Node Utilization Scaler.
The controller of the scaler is written with the help of fabric8 1, a Java opensource framework for
Kubernetes APIs and later containerized with JIB 2.

The first policy is called node utilization scaler with the following properties. The scaler has an
upper and lower threshold that are parametrized. So it is easy to change the thresholds, without
having to deploy a new container. For instance, it will scale down if the lower threshold is set to
0.3 and 30 % utilization is reached. If the upper threshold is set to 0.8 and a utilization of 80 % is
reached it will scaled up. It monitors the utilization over a window of 15 seconds, where the average
CPU utilization is collected and used to reconcile.

The scaler has a minimum number of one node or replica and a maximum number of four replicas.
The scaling adjustment is one. That means it scales only one node at a time. Further, the cooldown
period of two minutes prevents any scaling action in the next two minutes. To classify the scaling
mechanism according to [KHB21] we have a centralized, agnostic, and reactive scaler.

Due to time constraints no autoscaler with an inhomogeneous deployment was realized.

1https://fabric8.io/
2https://github.com/GoogleContainerTools/jib/tree/master/jib-maven-plugin
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5.2 Experiment Results

In this section, we describe the results of the experiment. We split the results into two parts, the
Elasticity Experiment preparation section, and the elasticity experiment section.

The preparation for the elasticity experiment is the scalability experiment. We needed the first to
find the peak rate of the MoSaIC system. Without the scalability experiment, it would have been
impossible to run a specific load that tests the scaling policy and the autoscaler. Therefore we first
conducted the scalability experiment with no autoscaler and scaling policy active. After that, we
can pick a reasonable load and execute the elasticity experiment. This experiment is described in
the section 5.2.3 Elasticity Experiment Conduction.

5.2.1 Elasticity Experiment Preparation

As described in the foundation chapter, we use Gatling to execute the load tests. As already described
the use case that will create the load it the vessel scenario from Figure 2.3. It was possible to include
also the expert user with his use case shown in Figure 2.4. We decided against that and used only
the vessel scenario to reduce the co-founding factors.

We had two possibilities to run the load test experiments, either triggering it locally with a batch
script and port forwarding, or directly on the cluster as Kubernetes job. The local solution was
instable and the port forward often aborted abruptly. That forced us to use the job solution. That
has also downsides but was more stable, when it runs and it was easier to change the parameters of
the scenario.

Gatling communicates with Ingress and sets a device online. After the device is online it sends data
forever. Between each sending operation of the same vessel, there is a 60-second pause. The load
test terminates when the maximum simulation time is reached.

Scalability Experiment Load

The load for the scalability experiment looks like the following. We started with a baseload of H,
where H denotes the number of vessels sending data at the start of the experiment. The number
of vessels is then increased over four increment steps, by multiply H with the step factor. The step
factor for the baseload is one, for the first increment step two and so forth. By a different counting
method, the baseload is step one and the last is step five. So that we finish with the step factor five
and increase the baseload fivefold. That is the binary search The experiment duration is 15 minutes,
with three minutes pause between each increment step. The devices are ramped-up over a period of
5 seconds, that means Gatling will set all the devices online in that time window.

For a graphical representation, compare Figure 5.3.

We start the scalability experiment with H set to 100, 300, 400 and 500 vessels for one node. For
that we allowed only one replica in the Kubernetes deployment. To save time we skipped two and
three replicas by scaling to four replicas of each demonstrator services (Device Communication,
Data Processing and Data provider). For four nodes we increased H to 500, 1000, 1500 and 2000
vessels. That range represents a multiplication by the factor four of the one node baseload.
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Figure 5.3: Gatling Load for the scalability experiment.

We track the response time but exclude the five seconds ramp-up period. In addition we check the
CPU utilization metric of Prometheus after the experiment to validate the scalability experiment.

Scalability Experiment Results

The results of the scalability experiment are the following. The scenarios with the baseload of 500
and 2000 vessels reach the peak rate of the system. The reason why we come to this conclusion
is the fact that one node processes 2000 without major anomalies in the response time. However,
when one node has to deal with 2500 vessels, the response time increases significantly. Regardless,
if we look at the mean or the percentiles, compare with 5.4.

It is close to one second for the percentiles, and the mean response times increased too. The same
happens with four times the number of vessels on four nodes. Although the percentiles increase
less continuously here, and the response time decreases for 10000 vessels, compare Figure 5.5.

For both cases, the number of vessels does not create an overload situation. Although, the last
increment step puts them under load that is reflected in the response time.

After we execute the scalability experiments, we can look at the CPU utilization of the nodes. We
can see that response time observations are backed by the utilization numbers. The peak load of
2500 vessels for one node and 10000 for four reach the 100 % utilization time. We consider that
100 % utilization of the system means 400 % of the CPU, because the nodes have four virtual cores.
Although, the peaks for some nodes are not completely equal. Figure 5.6 of the Prometheus output
shows that the lines do not fully overlap. That means the Kubernetes default Ingress load-balancer
seems not to distribute the load equally. A limitation of the Prometheus utilization is the scale of
the graphic. It is hard to tell how long the peak load persisted. In addition, we did not observe the
influence of the ramp-up and the setOnline invocation.

Therefore we do not think that the peaks show a persisting overload situation, which is also an
observation of the scalability experiment. To discuss that in more detail, we refer to Figure 5.7 that
shows how the system is stressed. The colorful peaks show the response time percentiles of the
sendData method. They do not occur permanently, only for a limited amount of time.
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Figure 5.4: Scalability experiment with a baseload of 500 ran on one node.

Figure 5.5: Scalability experiment with a baseload of 2000 ran on four nodes.
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Figure 5.6: Utilization measured by Prometheus, the peaks are labeled with the maximum number
of vessels.

Figure 5.7: Response time percentiles for sendData.
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We think the peak utilization comes from the ramp-up of the last increment step. After the last data
is sent and the first batch of this step is finished, the system reaches an idle state soon. That happens
because all active vessels wait 60 seconds to send again.

For a scalability experiment, this phenomenon is not problematic. Our aim was not to create a
constant load. Although, there is a certain uncertainty about what we benchmarked. After seeing
Figure 5.7, one would argue we observed that a ramp-up period of five seconds and more than 500
vessels create an overload. That argument is reasonable, but as we excluded the ramp-up time and
the sendData executions in that period, the response time analysis from above is not disturbed by
that.

We can conclude that we have learned how many vessels would create a sensible elasticity experiment.
In addition, the unequal distribution of the send data executions creates noise and is not suited for
an elasticity experiment. And that a SLOs of one second response time for the 95 percentile would
make sense because that is the ceiling we nearly hit with our experiment.

The exact numbers of the graphical representation can be viewed in the tables A.1 and A.2

42



5.2 Experiment Results

5.2.2 Elasticity Experiment Conduction

With the obtained knowledge of the scalability experiment, we can proceed with conduction. That
means first determine the load scenario, describe the set-up and show the results.

Elasticity Experiment Load

From our perspective, we had the following requirements for the load: triggering a scaling action
to more than one additional load. Then concerning the constraint 300 seconds is theoretically
enough to scale three times from one node to four, depending on the utilization from the issued
load. However, we decided to run the experiment for 1200 seconds because we wanted to observe
a longer time window with an equally distributed load. Therefore we changed the ramp-up time
from five to 60 seconds. The reason is after a device is online, it sends data and then executes the
next send operation 60 seconds later. With that setting, we guarantee a constant load instead of
squeezing everything into five seconds and creating an overload.

That makes sense for two reasons. Firstly, it is realistic. The system use case is that a new customer
adds his vessels to the system. Under normal circumstances, a predictable event is planned. As
such, we would assume the ramp-up is configured in the same fashion. Secondly, idle phases are
bad for our scaling policy or autoscaler. If the implementation would be more robust then it is
less problematic. For instance, considering values from a longer period than 15 seconds, then it is
likely different. But in this case, the system will oscillate between up and downscaling within the
time constraint. Chance decides whether the system is currently under load or idle. For our scaling
threshold tuning experiment, this behavior makes not much sense.

The load itself is increased by one increment step, as Figure 5.8 shows.

Figure 5.8: Gatling Load for the elasticity experiment.

In addition, we set the baseload to 1500 vessels, which is the number of vessels one node processed
without problems in our scalability experiment. So under normal circumstances no scaling should
be occur during the first 360 seconds. Then we have the first increment, which is no longer a multiple
of the base load. From our scalability experiment we know that roughly 2000 vessels will over-stress
one node. As described in the Process section, we need a low and medium scenario. Therefore, we
decided to add 2000 vessels in the low scenario to provoke a scaling action. And for the medium
scenario we would add 1500 vessels more, so 3500 in the increment step. That range of 3500 and
5000 vessels active should lead to one scaling action more, that means it should use two nodes for
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the low and three for the medium scenario. Together with two scaling threshold values, the loose
and tight utilization of Aslanpour et al. [ATTG21] threshold tuning experiment. That means a CPU
utilization of 0.7 and 0.9.

Set-Up

The plan elasticity experiment is shown in the following Figure 5.9. The plan is to run two experiment
runs back to back. After experiment run one is finished, we wait until the autoscaler scales back to
one node. In addition, the utilization is steady below 0.05, which means the service is idle. And the
last scaling decision was more than two minutes ago to avoid a delay of a scaling action. Last but
not least, we delete the Pod of the Node Utilization Scaler to ensure no problem persists and ease
the log recording.

Figure 5.9: The process of the elasticity experiment execution.

Figure 5.10 shows the experiment scenarios with the two load scenarios, the tuned thresholds, and
how often we repeated the experiment.

In addition, we recorded the response time through Gatling and the nodes used through the log of
the node utilization autoscaler Pod. Other than in the scalability we do not exclude the ramp-up
period, because the transient phase is of interest to judge about the scaling policy.
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Figure 5.10: The elasticity experiment scenarios and the collected metrics.
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Elasticity Experiment Results

The system acted as we expected it, so it did not scale during the baseload phase. It scaled soon
after the first increment step started, in every case to two nodes.

But only for the loose threshold of 0.7 CPU utilization, the scaler scaled to three nodes. The reason
is with 5000 vessels, the utilization reached from time to time 0.8, but only once in of 14 runs (we
added two more, each 5000 scenario, to gain confidence) it could have been enough for the tight
threshold of 0.9. But that happened in one of the runs with 0.7 as a threshold. Therefore it changed
nothing.

However, we cannot conclude that the utilization behaved differently because of the lower threshold.
In terms of response time, the threshold made not a difference in the low scenario, compare Figure
5.11.

Figure 5.11: The threshold tuning experiment response time distribution - the low scenario.

As you would expect, the loose threshold of 0.7 leads to more resources used and has the faster
response time. The lower threshold value is in the lead for both the mean and the percentiles. But
that does not tell the whole story, in some runs the higher value was competitive without scaling to
a third node. We also can observe a higher standard deviation for the that threshold, we reflects
that the system behaves less constant and it depends on chance how good the response times are
during the transient phase. In addition, both scaling policies keep the system at our SLO of 1000
milliseconds response time. But for the 99th percentile both fail to keep the SLO with the medium
load.

Another thing to note is that we still experienced peaks during the ramp-up period, even if the period
was much higher than at the scalability experience. What is also visible is a dent or plunge during
the ramp-up of the increment step, as shown in Figure 5.13 or Figure 5.8. The cause of the behavior
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Figure 5.12: The threshold tuning experiment response time distribution - the medium scenario.

is timed-out invocations of setOnline. It was only a little fraction of devices, at most 400 from 5000.
That was consistent through all runs with the same amount of vessels. Therefore, we do not think
that it distorted the result.

Figure 5.13: Response time peaks during the elasticity experiment.

Another thing to note is visible in Figure 5.14, where we see the number of requests per second. We
would expect that Gatling distributes the device sending data equally. But there is an oscillation that
gets bigger with more devices. And has peaks and valleys after some setOnline invocations timed
out.
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Figure 5.14: Request distribution of the elasticity experiment
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5.3 Model Results

A model of the MoSaIC system already existed, and it was updated constantly by the project partners.
But the model never consisted of the full demonstrator, which was also still under construction during
this thesis. However, we used it as inspiration and modeled our version because it was impossible
to use the model for our profile. But it still represented the state of the actual development.

The concept that we aimed to realize was to include a load balancer, which changes the probability
of the transitions during the simulation, see Figure 5.15.

Figure 5.15: The concept behind our implementation.

In the next section, we describe the model superficially when it is part of the demonstrator and is
part of the MoSaIC project. Whereas the parts we modeled for our purpose, we describe it in more
detail.

Repository

In the repository model, the Mongo database, the RabbitMQ Broker, and each of the three MoSaIC
demonstrator services have an interface and component. The three services are Device Communi-
cation, Data Provider, and Data Processing. As described in the foundations, the corresponding
interfaces provide the required and implemented methods for the components. For instance, each
of the three services requires the interface of the Mongo database and the broker, but none needs
the mutual interfaces of the other demonstrator service. As described, the communication between
them works over messaging implemented via the Broker component. The RabbitMQ Broker is
different because it has three interfaces, and these three are infrastructure interfaces, compare Figure
5.16.

Device Communication, Data Provider and Data Processing required only the message queue or
infrastructure interface it needs. The device communication only needs the data available queue,
the Data Provider the reply and request queue, and the Data Processing all three. The component
has for each queue a Passive Resource which is used in the SEFF.
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Figure 5.16: Picture detail of the Rabbit Broker with the corresponding interfaces.

For the scaling functionality described above in the concept, we need an additional component and
interface. See Figure 5.17 for that Load Balancer. In the graphic, the Load Balancer provides an
interface for Device Communication. But at the same time, it requires the interface G times.

The idea of the load balancer is to provide the interface of the component to scale once and
require it G times, where G is the number of the maximum number of replicas to scale. In our
case, for the node scenario, the number is four. Analog as in Figure 5.17, Data Provider and Data
Processing respectively, the provided and required roles for the interface are similar to the Device
Communication. That also means that we model another SEFF in the Load Balancer for each of
their methods.

50



5.3 Model Results

Figure 5.17: The load balancer component and its interface.

SEFF

The SEFF of the Device Communication, Data Provider, and Data Processing, the Mongo database
are generic. For instance, sendTelemetryData compare Figure 2.5 from the Device Communication
has an internal action with a CPU resource demand and two external call actions afterward that
call the database to store and data available queue of the Broker. The Data Processing is slightly
more sophisticated, as here we have the case where the data is either in the cache or not. Here, a
probabilistic branch action has two transitions with a probability of 0.5. So that in 50 % of the
cases, we model a resource demand for loading the data in the cache. For the other 50 % nothing is
modeled because then the data is already in the cache.

As the Broker, the infrastructure interfaces have a different model because they model the behavior
of a message queue. So within the SEFF, a token of the Passive Resource capacity is acquired and
then released again, see Figure 5.18, below you can see the four different Passive Resources.

For the Load Balancer, the idea in the SEFF is to create a branch action with probabilistic branches.
As described in the concept above, one branch starts with a 1.0 probability and the other ones with
0.0 probability. In the initial state, there is no scaling or load balancing.

The SEFFs of the Load Balancer component all look the same. We do not model a new behavior.
Instead, we externally call the original SEFF. That instantiates the expected behavior of a load
balancer that passes the load without changing the functionality. We do that G and four times in the
probabilistic branch action respectively. It is crucial to edit the role external service in the model
explorer (properties view). Otherwise, the load balancer has no effect because each branch points
to the same Assembly Context. But more on that in the Assembly section.

Figure 5.19 shows an example of how that SEFF looks, in that case we only would scale to three
nodes. However the concept stays the same, only one transition has a probability greater than zero.
Our scaler scales during runtime, we describe the realization of our concept in the Self-Adaption
Rule section. Here, we transform the probability value, which equally balances the load between
the scaled instances.
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Figure 5.18: The SEFF of the Infrastructure interfaces.

Figure 5.19: The SEFF of the Probabilistic Branch Action.

52



5.3 Model Results

Assembly

The system or assembly model of the MoSaIC demonstrator system starts with four interfaces from
the outside. Those interfaces are the REST interface for the users and the Ingress for the Device
Data. The REST interface subsequently connects with the Data Provider and the Ingress with device
communication. All services communicate over queues, resulting in each Assembly Context of the
three main components requiring infrastructure roles to connect to the Broker context. However,
we cannot do that with the Data Processing and the message queues it uses. The message queues
have their own interface and subsequently their own Usage Scenario. We will explain the latter
later, however, this means we need to remove the Data Processing from the Load Balancer. The
consequence is, each Data Processing Assembly Context replica has its own message queue interface
and is not connected to the load balancer.

We add the load balancer in front of the Data Provider and Device Communication components and
direct from there to the actual instances, to visualize that see Figure 5.20. Here you can see all the
required interfaces that we modeled in the repository model. At this point, it is crucial that in the
SEFF, each external call points to a different required Role because we replicate the demonstrator
Assembly Contexts G times. In the node scenario, we now have four Assembly Contexts per service.
Respectively twelve overall instead of three. We recommend naming the Assembly Contexts with
an ascending number, e.g., Data Provider 4.

Figure 5.20: Picture detail of Assembly Context of the load balancer.

In addition, only the components to scale, the demonstrator services, get a replicate as Assembly
Context. We do not scale the Broker or the database. That all means the components to scale call
the same database or Broker interfaces as before.

Resource Environment & Allocation

The initial model has three resource containers with a CPU Processing Resource, one for the
database, one for the broker, and one shared between the Device Communication, Data Provider,
and Data Processing. The Allocation Assembly Context is placed in the allocation model. The
containers were all linked with each other through a linking resource.
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For our load balancing approach, we add three additional containers with the same properties.
That includes the processing rate and replicas. Then we connect them with the existing linking
resource, too. The allocation depends on the implemented scaling mechanism. For our homogeneous
node utilization scaler, we replicate the existing allocation on the new resource container. For the
inhomogeneous scenario, this has to be changed as well for the HPA. The HPA regardless, if the
subsystem capability is used or not, requires more adaption. For instance, if the HPA only scales
one service, only that has to be replicated.

A minor implementation detail, the load balancer has an Allocation Assembly Context, too. It is
needed to allocate on a resource container, like every other context in use. But it does not generate
load. Therefore we can neglect it and put it on any available resource container.

Usage

The Usage Model has three different Usage scenarios, one for the devices and two for the messaging
of the broker. While the latter is just an external call, the model of the device is the process for
setting the device online, sending telemetry data, and setting it offline. The parameter for the devices
in a closed workload is one user with a think time of ten seconds. The two messaging scenarios it is
also a population of one and a think time of ten seconds.

Figure 5.21 shows the Usage Scenario of the vessel. We added a ten-second delay after sending
data, which is in a loop with 100 iterations. That is set to 100 to emulate the forever.

It is also possible to model the behavior in an open workload, where instead of the number of users
and the think time, the interarrival rate becomes specified. This rate could be calibrated with values
from measurements to get better accuracy. However, a problem here is that modeling it as shown in
Figure 5.21 executes setOnline as often as sendData, which is wrong. The price of this solution is
to neglect the setOnline call. Figure 5.22 shows the new Usage Scenario for send data.

The Usage Model includes additionally to the send Usage Scenario G Usage Scenarios for the data
available message queue, which manages the communication with the Data Processing component.
Figure 5.23 depicts four Usage Scenarios, G is four because the system has four nodes where the
Data Processing can run on. The population is set to 1 to activate the message queue, that means
only if all four nodes are used each Usage Scenario has a population of four. The case shown in
Figure 5.23 shows one activated message queue.

However, as this concept made sense for an equal distributed load, with the behavior seen above
during the elasticity experiment, it became questionable to model the usage like that. To address
that source of inaccuracy, we decided to change from an closed workload to an open. In the open
workload we just simulated the the data sending by an specified inter-arrival time.

We saw problems with using the gamma distribution in the Usage Model. Firstly, it was not
documented how to specify gamma (shape or rate first) and we experienced problems. We obtained
only a few data points in the sendData case compared to the exponential distribution. Therefore we
deiced to use the exponential distribution to avoid these problems.
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Figure 5.21: Experiment Usage Scenario with a closed workload.
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Figure 5.22: Experiment Usage Scenario with an open workload.

Figure 5.23: Usage Scenarios for the data available message queue.
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Usage Evolution

The Usage Evolution consists of the Usage Model and the active user (vessels) evolution over time.
In the latter, we imitate the load we issue with Gatling and save it in a DLIM file.

To model our load, the custom editor was not enough. We had to use the tree editor. We specified the
rough behavior, the number of peaks, and that the trend type. The options noise/burst or overarching
trends are not used. Then we edited the DLIM file in the three editors. Theoretically, it is possible
to model the load solely in the three editors, as you can add as many time-dependent function
containers as you need and specify their properties.

As described above, a DLIM file has a trend type. In this case, we decided on a logarithmic trend
with order ten. We use it because it is the easiest way to imitate the steps. Other types as the
polynomial or sinus are not suited to do that. However, a linear trend allows a specification of such
steps, but we decided against them. The reason is that with a linear trend, all devices become active
at the same time. To our understanding, this is not how Gatling works, which leads to a logarithmic
trend with high order.

We had to adapt the Usage Evolution after the Usage Model adaption from a closed to an open
workload. We tried to model the evolution of the inter-arrival time, compare Figure 5.24. However,
this evolution caused problems and did not work as expected. Therefore, we decided to omit the
Usage Evolution for our simulation model.

Figure 5.24: The usage evolution of an decreasing inter-arrival time.

Measuring Point & Monitor Repository

As described in the foundation, the Monitor Repository and Measuring Points allow controlling what
usage or resource is measured and which metric is monitored. We first create the Measuring Point
for the Resource Containers of the nodes we want to scale. In the next step, we created the Monitor
Repository by creating one Monitor per Measuring Point and multiple monitor specifications per
Monitor. That means we collect at least three different metrics per Resource Container, Utilization,
State of Active Resources, and Description Resource Demand. Depending on the metric, the

57



5 Results

specification has a further child, which specifies how the metric is collected. That child can be
feed-through or time-driven. The first does not specify anything in addition, but the time-driven
allows changing the window increment and length. The length refers to the initial point in time to
record the measurement, while increment refers to the time between the consecutive measurements.
Further, the utilization of active resources is a special case. It does not work without a monitor
specification of active resources within the same Monitor to be measured.

You can find a more detailed description of modeling measuring points and monitor repositories
here 3, point 13. Another possibility to specify the measuring point and monitor repository is the
SimuLizar Usability Extension [NMM+18]. The extension supports the creation via wizards and
saves work by creating some parts automatically. This extension is helpful but has some bugs. After
saving, the dashboard flickers. Moreover, using Palladio version 4.3, the existing Measuring Point
and Monitor Repository are deleted and replaced.

In addition, we faced the problem that the utilization of active resources metric only worked with
4.3 or lower. With 5.0 or nightly, we experienced a NullPointer Exception, which seemed a bug to
us.

MDSD Profiles and Stereotypes

At this point, we wanted to introduce the self-adaption rules. The QVTo scripts have a major
drawback. It is impossible to store values during the execution, which makes the scaling policy
stateless. For concepts as the quiescence period, this is a show stopper. However, with MDSD
profiles and stereotypes 4 it is possible to use the so-called taggedValues. In these taggedValues, you
can store before, during, and afterward, values that enable stateful concepts as the silent, quiescence
period or how many instances are scaled right now.

Therefore we created a scaling policy EMF profile 5, which is extended by the MDSD profiles. We
imported the metamodel element system because our tagged values should appear in the assembly
respectively system model, compare Figure 5.25. When the upper element appeared, we created
the stereotype ScalingPolicySystems, which extends the system. Then we added two tagged values
to the stereotype, scaledUnits, and lastScalingDecision. Both are EDouble fields with the default
values zero. That creates the capability to have stateful scaling policies specified through QVTo.

This solution is simple, but it is cumbersome to execute. Apart from the profile, you need to specify
an architectural template. Otherwise, we were not able to test it. With that template (6) and execute
the .architecturaltemplates file in an inner- eclipse application, you can apply the profile/stereotype
in the model and also use it with the QVTo script.

This solution has pitfalls because exception messages like “no profile applied” or “invalid/out
of bounds” appear. It is not wise to close the model before removing the profile or have two
models with the same profile applied within one workspace. That caused trouble because the check

3https://sdqweb.ipd.kit.edu/wiki/Palladio_Usecase_Tutorial
4https://sdqweb.ipd.kit.edu/wiki/MDSDProfiles
5https://sdqweb.ipd.kit.edu/wiki/EMF_Profile_Definition
6https://sdqweb.ipd.kit.edu/wiki/Architectural_Templates
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Figure 5.25: Our EMF Profile diagram

hasProfileApplied fails. It only works when the profile/stereotype is applied to a model/workspace
where none is already applied. The solution for us was to do our simulation, and before the closing
eclipse, we removed the profile.

In addition, an error during the execution of the QVTo to self-adaption requires a restart of the
eclipse. An example of that is the state when values from the taggedValues are invalid. That is an
indication that something is wrong, and you need to restart. Also, we could not use Integer fields
respectively using setTaggedValue. Here the warning that the call is ambiguous was prompted by
the editor. We fixed that by changing from Integer to Double. Apart from that, it seemed that there
were some Palladio version conflicts. In our case, a model created with the nightly version did not
work in 4.3, even after replacing the representation.aird to solve the Sirius version conflict. To ease
that in the future, we wrote a tutorial to use our profile.

At this point, the question arises, why do we not directly implement an AT when we defined one.
We looked at it and had no solution for the problem that we could not use in prm:PRM (Palladio
Runtime Measurement) within the AT completion. If we did add that and execute the simulation,
our AT was unapplied. We need the Runtime Measurements because the silent period requires
tracking the simulation time at the point in time a scaling action becomes executed. There is a
solution for that, but because of time reasons, we continued with the profile.

Self-adaption rules

A self-adaption rule works as a model transformation during runtime. In our case, as described in
the concept above, to transform the probabilistic branch transitions. But if and only if the scaling
conditions are met, e.g., the threshold is reached, no scaling operation was done for the duration
of the quiescence period, and scale the right amount to the right time. It is possible to create the
described load balancer from above during runtime, or you rely on elements that already exist in
the model. That has the consequence of a precondition that, e.g., resource containers already exist
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before executing the scaling policy QVTo script. That is easier for usability but also harder to
implement and to understand. So as described above, we modeled the elements with the Sirius
editors.

Within the QVTo code, the first step is to set the properties according to the scaling policy to model,
see listing 5.1.

Listing 5.1 Set the properties.

// The utilization thresholds

property upperThreshold: Real = 0.9;

property lowerThreshold: Real = 0.3;

// constraint

property quiescencePeriod : EDouble = 120;

We then start with the preparation of the scaling. That means collecting the runtime measurements,
allocation, and system elements from the executed model. In addition, it is crucial too to check
if the stereotype/profile is correctly applied. In the next step, we ensure that the allocation and
measurements are not empty.

After that, we can start with the scaling process by collecting the measuring point of our selected
metric by its id and checking it against the defined thresholds. The entry call is shown in the listing
5.2, where we call the checkCondition method with the selected Measuring Point of the Resource
Container and the utilization metric.

Listing 5.2 Entry call of the checkCondition method.

// ID from the measurement specification

property overallUtilizationId: String = '\_Z-x\_oDdwEeysRuXy5LSnPA';

Set {prms->any(measurementSpecification.id=(overallUtilizationId)))} -> xcollect(

runtimeMeasurement.checkCondition());

In the checkCondition method, we first retrieve the values from the tagged values. At the initial
entering, the number of scaled units and the last scaling decision is zero. Then we move forward
to check the measurement value and if it is reached or not. We do that as shown in listing 5.3
by checking against the upper threshold in case of scaling out. Further, we check if the current
simulation time is greater than the point in time of the last scaling decision plus the silent or
quiescence period. In addition, it is also possible to add a further condition, e.g., that in the first 100
seconds of the simulation, no scaling action is taken. In addition, if the simulation time is smaller
than the quiescence period, the constraint will prevent any scaling action. We needed to check that
to avoid an incorrectly implemented constraint. If the scaled units are smaller than one - no scaling
action happened before - the constraint does not apply.
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Listing 5.3 Here the threshold and constraints are checked.

if(self.measuringValue > upperThreshold and ((simulationTime < quiescencePeriod and

ScaledUnits < 1) or (simulationTime > lastScalingDecision + quiescencePeriod))

When the threshold and the constraints are evaluated as true, we need to know the scaling history.
Scaling for the first time is not difficult because we know that the scaled units are zero, and we add
the first node replica. But the process is different when there already were scaling actions executed.
Then we need to check that beforehand. We do that with a switch case of the current scaled units,
see listing 5.4. Then we call the scaling action and update our tagged value last scaling decision
with the current simulation time so that the constraint from above is evaluated correctly.

Listing 5.4 The process how to determine, which scaling action to take.

switch {

case (currentScaledUnits = 0) do {

scaleOutModelByOneUnit(allocation);

setTaggedValue(systemAllocation, simulationTime, spStereotype,

lastScalingDecisionTagged);

};

case (currentScaledUnits = 1) do {

scaleOutToUnit2(allocation);

setTaggedValue(systemAllocation, simulationTime, spStereotype,

lastScalingDecisionTagged);

};

}

Let us assume currentScaledUnits is zero. Then we call the function scaleOutModelByOneUnit
with the allocation contexts of the model as a parameter. What happens next is that for each of
these allocation contexts, we filter for our load balancer, see listing 5.5. As we named it LB, we can
find it with its entity name and then go deeper into its SEEF and search for probabilistic branch
transitions. In our case, it was the easiest to identify them by their entity name. The precondition
for it is a consistent entity naming.

In the case of scaling the first node, we only need to transform two branch probabilities, the one that
had 1.0 and one which was zero, to 0.5 for both. As a result, we now balanced the load to a second
instance during runtime. For more instances, we set the probability to 1/G, where is the number of
replicas.

In addition to the branch probabilities, we need to change the population value of the Usage Scenarios
as well. This is works analogously as above, compare listing 5.6.

Then the only thing left is to update the current scaled units tagged value, in this case after the first
scaling action, to one.
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Listing 5.5 The scaling functionality.

allocationContexts -> forEach(allocation) {

switch {

case((Assembly_LB)) do {

forEach(allocation.seff) {

switch {

case(seff) do {

var branchSet:Set(ProbabilisticBranchTransition) := xselect(seff::

ProbabilisticBranchTransition);

branchSet -> forEach(probabilityBranchTransition) {

switch {

case((ProbabilisticBranchTransition2))) do {

probabilityBranchTransition.branchProbability := 0.5

};

else switch {

case(ProbabilisticBranchTransition1))) do {

probabilityBranchTransition.branchProbability := 0.5

};

};

}

}

};

};

}

}

};

}

The only difference for scaling more instances is how many probabilities are changed and setting
the right number of probabilities. The process to scale in is done analogously, only by adopting the
threshold check and calling different methods to transform the branch transition probabilities and
reducing the scaledUnits.

The scaling mechanism we showed above referred to the simple Node Utilization Scaler. However, it
is also possible to model the more complex HPA scaler. First, we need to replicate the HPA formula
see the listing 2.1 in the foundations. The difference is that we calculate the ratio beforehand by
dividing the measurement through the thresholds and multiplying that with the current number of
replicas or units, see listing 5.8.

In the further process, we check the ratio and then the scaling status of the system to determine
the scaling actions to take. So let us assume the ratio is below one because the measured value is
smaller than the threshold. That will never result in a scale-out action only to scale-in. The next
question is, how many Pods are running. When we know that, we can scale down to one Pod. See
listing 5.9, for different ratios the approach is analog. Although a ratio greater than one can also
result in scaling out. For instance, a ratio greater than two and smaller than three results in scaling
one instance if only one node is running. The reason is the ceiling, which we implemented without
rounding but using multiple if and elif branches.
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Listing 5.6 The scaling functionality.

usageScenarios -> forEach(usageScenario_UsageModel){switch {

case(usageScenario_UsageModel.entityName=('dataProcessingDataAvailableQueueConsuming2'))

do{

if(usageScenario._population = 0){log("Second Queue added");

usageScenario._population := 1;}

};

};

};

Listing 5.7 Updating the scaled units taggedValue.

var newNumberOfReplicas:Real := 1;

setDoubleTaggedValue(systemAllocation, newNumberOfReplicas, spStereotype,

scaledUnitsTaggedValue);

The difference to the Node Utilization Scaler is that we call more than one method to change the
branch transition at a time. That means the HPA can add more resources at once and is faster if the
load increases fast.

We hard-coded the scaling process for demonstration, but it is possible to do that dynamically. For
instance, we could introduce another taggedValue called nodes to scale, which has to be specified in
the profile before the simulation. As a result, the script creates the whole load balancer in the QVTo
script.
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Listing 5.8 The HPA formula in realized in QVTo.

var ratio: EDouble := (self.measuringValue) / (threshold) * currentUnits;

Listing 5.9 The HPA scaling modeled in QVTo.

if (simulationTime > lastScalingDecision + quiescencePeriod or currentScaledUnits < 1){

if (ratio < 1){

if(currentUnits = 4){

scaleInModelAtOneUnit(allocation);

scaleInToUnit2(allocation);

scaleInToUnit3(allocation);

setTaggedValue(systemAllocation, simulationTime, spStereotype,

lastScalingDecisionTagged);

}

elif(currentUnits = 3){

scaleInModelAtOneUnit(allocation);

scaleInToUnit2(allocation);

setTaggedValue(systemAllocation, simulationTime, spStereotype,

lastScalingDecisionTagged);

}

elif(currentUnits = 2){

scaleInModelAtOneUnit(allocation);

setTaggedValue(systemAllocation, simulationTime, spStereotype,

lastScalingDecisionTagged);

}

else{

}

};
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Listing 5.10 ProtoCom demand.

resourceDemand.initializeStrategy(DegreeOfAccuracyEnum.HIGH, 1000);

5.3.1 Calibration

The calibration process is twofold. Firstly, the calibration of the ProtoCom performance prototype
to create a demand that corresponds to the demand of our model. ProtoCom simplifies that by
allowing to set a processing rate, see 5.10.

In the implementation of the device communication a CPU demand, protocomService.cpuDe-
mand(50), of 50 is issued for send data.

At this point, we have to decide either to use the 50 ms in the Resource Demand or the exact time
the 50 ms needs to run in the cluster. The design decision was in favor of using the 50 ms and
introducing a possible source for inaccuracy.

During the experiment, it became clear that a recalibration of ProtoCom before creating the demand
respectively a restart of the nodes reduces this inaccuracy. This observation was backed by running
several benchmarks. See Figure 5.26, where a 1000 load was issued and the result show a wide
range, except for minion 06, which was restarted just before running the benchmark.

Figure 5.26: Result of a benchmark run on all available nodes.

The structure of the BW cloud and the virtualized nodes/the virtual machines allow no control
on the underlying hardware. We guess that could cause such mismatches respectively require a
recalibration before the actual experiment. Therefore each resource container in the model has a
processing rate of 1000.

The second part of the calibration is to calibrate the elements of the system that trigger now ProtoCom
demand. The setOnline method does need as much time as it takes to process the invoking. Therefore
we run a benchmark load-test and use the mean duration for the Resource Demand.

Apart from the ProtoCom demands, the system has elements that do not use ProtoCom. The
setOnline method does need as much time as it takes to process the invoking. Therefore we run a
benchmark load-test and use the mean duration for the Resource Demand. That became obsolete
after we removed the method from the Usage Model.

We added another calibration part with the decision in favor of the inter-arrival time. We used the R
package fitdistrplus from Delignette-Muller and Dutang [DD15] to create the distribution rates that
fit the inter-arrival time of the three workload variants. The reason that we only used three is to save
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time. In addition, the difference between the different thresholds within a load was marginal. Before
creating the Maximum Likelihood Estimation (MLE) of our distribution, we removed the zeros and
outliers from the data set. The outliers are everything above the 75th percentile. The reason for
removing the zeros is to allow the gamma fitting, which failed otherwise. The reason to remove the
outliers is to compensate for the Gatlings inequal inter-arrival distribution. This inequality leads
to the oddity that the inter-arrival time is decreasing with more vessels instead of increasing. It
makes no sense to have a less intensive load with more devices. Therefore we opted to remove the
outliers. After that, the inter-arrival rate increased with more devices. We choose the gamma and
exponential distribution based on the histogram and to have a reference.

Figure 5.27 and Figure 5.28 visualize the fitting. Visually it seems that the gamma distribution fits
better to the baseload, whereas for the medium and low load the exponential

Figure 5.27: Comparison of gamma and exponential fitting for the low load.

The log-likelihood values supported our decisions regarding the baseload. The measure shows how
well the maximum likelihood fittings fit the dataset. However, according to that measure gamma
fitted the medium and low load better too. Although, the difference between gamma and exponential
concerning the log-likelihood is not big. We assume the difference should not be severe and is
not a major issue to only use the exponential distribution because of issues with the Usage Model.
However, this is a subject for further evaluation.

The used distributions are, a rate of 21.07226 (SD 0.1005747) for the base load, a rate of 11.18811
(SD 0.01932798) for the medium load and a rate of 15.88159 (SD 0.03546713) for the low load.
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Figure 5.28: Comparison of gamma and exponential fitting for the base load.
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5.4 Simulation Results

We run the simulations 500 seconds in the baseload with our QVTo autoscaler implementation
switched on. We opted for a static system during the additional load phase because we wanted
to emulate the scaling behavior. In our experiments, during the baseload phase scaling occurred,
while during the additional load it did rarely occur. It only occurred in one of our four scenarios.
The simulation used four nodes to 100 % during the whole simulation. We run the simulations
with SimuLizar for 500 seconds and repeated them 10 times for each setting. The showed results
compare the autoscaler QVTo to implementation that starts with four nodes.

The results are the following. The autoscaler implementation produces similar response time values,
except for the higher percentiles. This fact is not surprising because of the scaling we have a transient
phase, which results in a few higher response times. Figure 5.29 shows that behavior, with a big
difference for the 99th percentile, with the difference is getting smaller with more data points. This
observation holds true for all three different load scenarios, but the difference gets smaller with a
higher load, and the response times are getting better, compare Figure 5.30 and Figure 5.31.

Regarding the used nodes, the utilization of the Palladio resource containers was throughout the
whole simulation at 100 %. With a longer experiment duration, it decreases but soon is zero. We
think that is a bug because Palladio ran out of memory and stopped to simulate sending data. Under
these circumstances, it is no surprise that the different scaling thresholds do not show any difference
regarding the response time.

Figure 5.29: Comparison QVTo Scaling Policy implementation with no scaling through the
baseload.
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Figure 5.30: Comparison QVTo Scaling Policy implementation with no scaling through the low
load.

Now we proceed from the autoscaler implementation to the modeling without autoscaling. The
results of the three different load scenarios do not differ much, but there is still a significant difference
visible. The prediction of the medium load has the best response times and the prediction of the
baseload the worst.
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Figure 5.31: Comparison QVTo Scaling Policy implementation with no scaling through the medium
load.

Figure 5.32: Comparison simulation results of the three load scenarios.
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In this chapter, we evaluate the result with an analysis of the research questions. Then we discuss,
based on the results, our hypothesis regarding acceptance or rejection. In addition, we discuss what
threatens the validity of our results.

6.1 Analysis

Our thesis has two viewpoints, feasibility, and explainability. We first analyze the feasibility part
and, after that, the explainability.

6.1.1 RQ1- Feasibility

One goal of this thesis is to demonstrate feasibility of Palladio simulating scaling policies through
accurate simulations. That was the focus of the following sub-questions.

RQ1.1

RQ1.1 asks how accurate are the simulation results.

In short, they are not accurate. At least for our experiment scenario and consecutively this thesis.

We simulated single parts of the experiments without the transient phases because of several
limitations and shortcomings. We failed to model the complete experiment scenario because we
could not create a working Usage Evolution. We can compare the numbers of single load stages
between the transient phases. Here we calibrated the inter-arrival time of the sending operations
with a fitted distribution of the experiment data.

The Gatling data to compare the simulations is the data where we fitted the distribution. That means
we excluded the ramp-up but did not remove the zeros and the outliers. The results of this approach
show an acceptable accuracy.

If we consider the effect of our fitting procedure, the results for predicting the low and medium load
stage are acceptable. Figure 6.1 and Figure 6.2 show that the mean response time was missed by a
range of 50 to 100 ms. The exponential distribution has more problems with the 95th and the 99th
percentile, but still, it is not a multiple of the response time.

The accuracy performance changes for the baseload prediction. Here the simulation predicts a
response time twice as high. We have to consider that the exponential fitting fitted less well than for
the other cases, compare Figure 5.28.
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Figure 6.1: Comparison of the simulation with the measurement - low load.

All things considered, we can say that with the Distribution fitting, we can create reasonably accurate
performance predictions. At least if the distributions fits. As a result we think the prediction shown
in figure 5.32 reflects how good the likelihood of the fitting is. That means creating a good fitting is
a bigger concern than the performance of Palladio.

Still, it is no scaling policy model which would allow us to weigh up design decisions. We can not
asses which scaling policy configuration or style produces the better tail latencies.

RQ1.2

RQ1.2 asks if the best performing scaling policy configuration is predicted correctly.

As described in RQ1.1, we cannot predict the scaling policies correctly, so we failed to predict the
best-performing policy.

Regarding the trend correctness, which means to pick the best performing policies, our results
show doubts that the distribution covers that correctly. For instance, the prediction result says the
medium load has the best response times, which is the opposite in reality. However, this is not an
exclusive problem of the scaling policy simulation. As said before, we assume this is related to the
exponential distribution, as the histogram of the baseload is not fit well.

At least our comparison of the autoscaler simulation with the normal implementations validates our
implementation to a certain degree. And it shows the potential of Palladio to predict the transient
phase during the scaling process, compare Figure 5.29 ff. In addition, the result confirms the findings
of Klinaku et al. [KHB21]. It is possible to model scaling policies with Palladio, but the accuracy
remains unclear.
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Figure 6.2: Comparison of the simulation with the measurement - medium load.

RQ1.3

RQ1.3 asks if the best performing scaling policy style is predicted correctly.

We cannot answer this research question because we had to skip this experiment due to time
constraints caused by the problems we faced.
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Figure 6.3: Comparison of the simulation with the measurement - baseload.
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6.1.2 RQ2- Explainability

RQ2 asks if Palladio can aid in improving the explainability of scaling policies. We can confirm
that by showing Palladios potential to retrace scaling decisions. Both Figure 6.4 and Figure 6.5
show how Palladio can aid the explainability of self-adaption decisions.

At the bottom of both graphics, the activity of an additional resource is shown by the red dots. In
Figure 6.4, we can see that the response time decreases significantly when the additional resource is
active. The improved response time is the effect of the self-adaption triggered by the utilization of
the system.

The point in time when self-adaption is triggered is shown in Figure 6.5. The first time the red dot
in the upper chart is above the utilization of 0.8 (scaling threshold), the additional replica becomes
active. In addition, the trend of increasing utilization is stopped, and the metric is below the scale-in
threshold. The two minutes quiescence period prevents scale-in action until roughly 450.

That shows, Palladio helps to effectively trace back the reason and the effect of a self-adaption. At
least in this scenario and under the premise, the viewer is able to interpret the graphs correctly.
Therefore we can answer RQ2 with yes, it does theoretically aid the explainability of scaling
policies.
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Figure 6.4: The overall response time together with the activity of an additional replica.
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Figure 6.5: The utilization together with the activity of an additional replica.
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6.2 Discussion

After seeing the result, we have to reject our hypotheses for RQ1. For our experiment setting, it was
not feasible to simulate scaling policies to the full extent.

Even more, we have to note that we were not even able to model the NUA and the elasticity
experiment. That is worse than having an inaccurate performance prediction and questions the
effectiveness of Palladio in that regard. It makes not much sense to compare it to the MAPE of
Aslanpour et al. [ATTG21]. However, we have to consider several validity threats that prevent
the generalization of our findings. There are good reasons to believe Palladio can model scaling
policies, as others showed to some extent. Even if it failed for our experiment.

At least five factors influenced the outcome of our thesis and could be the reasons for the failed
simulation.

The first is the effect of ProtoCom, which could be the reason why we obtained a permanent
utilization of 100 % of the Palladio resource container. However, this is contradicted by the results
of the individual load phases. Those response time results are not off by a multiple. However, these
results also do not seem to show a system that is utilized to 100 %.

That leads to the second factor, which is potential model flaws. The model was created by the
MoSaIC project and was constantly reviewed. Some flaws were addressed, e.g., the database
becoming the bottleneck because the resource demand was set too high. But there is no silver bullet
to validate the model other than running experiments as ours. At least if there is enough time to do
that.

The third factor is related to that but does go beyond model flaws. The MoSaIC system is a messaging
system using Kubernetes. A Palladio model that includes both concepts was not evaluated before.
And now we added a third concept, which does not make it easier to isolate problems.

The fourth factor is Gatling and its load distribution for the MoSaIC experiment scenarios. That
was the reason why we could not use the Usage Evolution that increases the number of users. Or
it was at least the reason that caused problems to proceed. Probably with more time and further
experiments, there is a fix either the load distribution of Gatling or to evolve the inter-arrival time.

The last and fifth factor is Palladios memory usage during the simulation execution. First, it is not
ideal that parts of the simulation can run short without interrupting the simulation. That creates the
risk to obtain misleading results. It is not better when Palladio crashes because the Java Runtime
Environment does not have enough memory available to continue. We observed that phenomenon
on two machines with at least 16 GB RAM available. At this stage, it is not clear how to interpret
that. Thats probably prevents an extensive analysis of systems with a low inter-arrival time or
requires more powerful hardware.

An investigation and solving some of the factors could eliminate the problems we faced and confirm
the feasibility of modeling scaling policies with Palladio.

In contrast, we can accept our hypothesis that Palladio helps to aid the explainability of scaling
policies. The validity threat is that we miss proof that our findings are generalizable and hold after
a controlled experiment.
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The goal of this thesis was to evaluate the architecture-based simulations of Palladio. More specifi-
cally, to evaluate Palladios elasticity capabilities through modeling scaling policies.

We will summarize our work in this chapter, outline the benefits, limitations, lessons learned, and
suggest future work.

7.1 Summary

This thesis saw through the selection, implementation, benchmarking, modeling, and simulation of
scaling policies. To assess the feasibility of creating simulations that help software developers to
evaluate design decisions.

One of the key aspects of work is the complexity of selecting a suited scaling policy. Scaling policies
come in different styles and configurations. Therefore stakeholders have a wide range of possibilities
to choose a policy. Fuzzy requirements and different states of knowledge delay the process further
and are additional reasons why a common knowledge base would help to ease that process. That
knowledge could be enriched by effective simulators that outline the advantages and drawbacks of
each solution.

The implementation of a simple scaling policy is easier, be it the HPA or something like the Node
Utilization Scaler. In most cases, the difficult part is gluing things together and testing the correctness
of the implementation. That is also a possible area of application for simulations.

Benchmarking a cloud environment is easy to execute with a load test tool as Gatling and with a
structured approach like doubling the user parameter stepwise. Such a scalability experiment as the
one we conducted lightens the design of an elasticity experiment.

The elasticity experiment and the evaluation of two different scaling policy configurations worked
but cost a lot of time. In the end, we could assess that the lower utilization threshold is the more
effective solution regarding the response time.

The hardest part of our thesis was the modeling part. Palladio is a powerful tool that offers a ton of
possibilities. But along the possibilities, the complexity rises to infinity. It was not problematic to
create a scaling policy but hard to get it running. And still, details prevented us from simulating the
elasticity experiment scenario.

Therefore we have to reject that it is feasible to model scaling policies with Palladio. Parts of the
simulator showed its potential, and compared to the effort it took to benchmark and run the elasticity
experiment, the simulation finished in no time. However, that applies only under the condition that
the model exists and works.
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The explainability is related to that because it might be easier to observe statistics from Prometheus
on the real Kubernetes cluster. Nevertheless, implementing and debugging the QVTo autoscaler
implementation worked with the monitor capabilities of Palladio.

7.2 Benefits

The biggest benefit and contribution is the documented experience with Palladio. Hopefully,
everyone who intends to work with Palladio to create scaling policies can rely on our experiments.

We wrote a detailed profile guide and published it on GitHub. That should help to create QVTo
scaling policies in the future. We also proposed how the HPA formula could be implemented.
This implementation could be realized if the modeling problems are solved. In addition, [KHB21]
already mentioned the problems the scaling policy definition with QVTo has. In our case, we think
that it is even worse regarding the effort. However, the biggest problem is not QVTo itself. Of
course, it is a shortcoming that you cannot store values straight forward, but the crucial thing is the
fact that the workaround is hardly if at all documented. This is something that was mentioned by
Klinaku et al. [KBB19], even though they said that in a different context. So that is a problem in
general for PCM, Palladio, and QVTo. In addition, we documented the shortcomings that prevented
us from assessing the accuracy of the scaling policy model. That contribution should also help in
future work.

Further, we contributed a scalability and elasticity experiment for the MoSaIC system. The first
will help everyone who will work with the MoSaIC system in the future because we benchmarked
the system. With that knowledge, it is clear which amount of vessels the system can handle and that
the ramp-up should be excluded or chosen wisely. Additionally, our elasticity experiment showed
that a lower scaling threshold leads to a better response time latency. And we documented that
the utilization metric is problematic because it did not reflect the high response times during our
scalability experiment. We also helped to detect flaws in the implementation. The MoSaIC project
can use that to design better scaling policies in the future.

We also helped create a more useful Gatling load test implementation for experiments. The concept
with a baseload and an additional load in a second ramp-up makes it easier to conduct experiments.
Before, the implementation allowed only incrementing using the same step size, which is cumber-
some. That is the same for the experiment duration, which was a constant before. [KHB21] already
mentioned the problems the scaling policy definition with QVTo has, in our case we think that it is
even worse regarding the effort. However, the biggest problem is not QVTo itself. Of course it is a
shortcoming that you cannot store values straight forward, but the crucial thing is the fact that the
workaround is hardly if at all documented. This is something that was mentioned by [KBB19], even
though they said that in a different context. So that is a problem in general for PCM, Palladio and
QVTo.

The key benefit is, that we described the process to that in detail and hopefully future work is not
confronted by the same hurdles as we were. So that in future it will be easier to use QVTo to specify
more complex scaling policies. See the guide in the appendix.
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Further, we contributed a scalability and elasticity experiment for the MoSaIC system. The first
will help everyone who will work with the MoSaIC system in the future, because we benchmarked
the system and it is now clear which amount of vessels the system can handle and that the ramp-up
should be excluded.

We adapted the Gatling load test, so that it is more useful for experiments. The concept with a base
load and an additional load in a second ramp-up makes it easier to conduct experiments. Before,
the implementation allowed only an increase of the same step size, which is cumbersome. That is
the same for the experiment duration, which was a constant before.

Moreover, we showed that it works to calibrate the inter-arrival rate with a distribution.

7.3 Limitations

One limitation for our elasticity experiment is that we excluded the setOnline from our simulation
because we had problems simulating the whole scenario. We addressed the distortion risk of the
result by excluding the ramp-up from the experiments. That is the phase where setOnline was
executed. Although doing that does not erase the influence of this method. In addition, we had
to rush the selection of the distribution because of time reasons. Better distributions than gamma
or exponential may exist because we did not evaluate them in much depth or search for other
possibilities.

Another limitation is, we monitored one resource container/node in the scaling policy threshold. It
is probably possible to aggregate several measuring points into one measuring specification. But
we found no documentation for that. Aggregating means that the autoscaler monitors an average
among all active nodes or pods. We were not able to model the behavior like that. That is also
related to the problem of why we could not model the HPA.

Further on that issue, the HPA and our NUA also observed the utilization metric of more than one
node/pod or Palladio resource container. The load is distributed equally in the SEFF. Therefore, we
expect an equal utilization distribution on the available nodes. However, we cannot be sure about
that. To sum it up, most limitations touch the model and Palladio part.

7.4 Lessons Learned

A lesson learned is that we showed that it is possible to model more complex scaling policies with a
threshold, constraints, and more than one additional resource instance. Further, it is no problem
to realize the different scaling policy styles from Klinaku et al. [KHB21] with Palladio. For the
proactive scaler, it is not trivial, but as we modeled the HPA mechanism, we showed that it is
possible to model a more proactive scaling policy.

We noticed during the elasticity experiment that the utilization metric is relatively weak to reflect
the response time. For instance, while the system seemed overstressed, the monitored utilization
was still below the scaling threshold. Therefore the autoscaler did not scale, and the high response
time did not improve.
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We saw that the MoSaIC system, or more precisely the setOnline method had problems with timeouts.
That resulted in failures, and the devices never sent data. With no recovery method, e.g., a control
loop that tries setOnline, this is not ideal and probably unrealistic. The problem arose during the
second ramp-up when we tried a longer ramp-up time than 20 seconds and got worse with every
second of ramp-up time more. We suspect that this is because with a five sec ramp-up time setOnline
was executed during a period where the system was nearly idle. Hence, it was not a problem to
avoid the time out, but with a better-distributed load, the system is not idle anymore. Therefore it is
more likely that setOnline times out. This behavior is not severe for our purpose. But it is worth to
be taken into consideration for further experiments. In addition, the get campaigns method for the
expert user timed out too. Therefore, we decided to leave the expert users out of our experiment
scenario. Not just because of that issue but also to avoid unnecessary co-founding factors. However,
we reported the behavior, and it became clear that the number of campaigns is the issue. That
resulted in a fix by restricting the number of campaigns.

Another lesson learned is the behavior of Gatling. We were surprised about the oscillation in the
sendData during our experiments. It seems that with more sendData invocations the oscillation
got bigger, while the failed setOnline executions amplified the oscillation. At least there was a
correlation because as soon the setOnline failed, sendData executions of these devices were missing.
At this time window, Gatling did react to that by redistributing the sendData of the remaining
devices. As a result, the created unbalance stayed and affected the system, which correlated to a
peak load visible in the response time. Adding to that, we also saw why Aslanpour et al. [ATTG21]
opted for traces instead of creating their load. Creating your load is beneficial because it gives you
full control. But it is also way more effort to get to a reasonable load.

The next lesson learned affects the Usage evolution. We saw that the Usage Evolution for the
inter-arrival time is either not working properly or not used correctly. We found no documentation
on that matter. Therefore it is hard to tell what exactly went wrong. Although it seems likely that the
inter-arrival time with the capability to define StoEx (Stochastic Expressions) is not suited for the
Usage Evolution. The population field of the closed workload, which specifies the Usage Evolution
evolves there, only allows numbers and does not offer the possibility to enter StoEx. In addition, we
learned that specifying a gamma distribution as inter-arrival time did not work as well as with an
exponential distribution.

Regarding Palladio, we learned that low interarrival times seem to challenge Palladio respectively
hardware. Palladio either crashed because there is insufficient memory for the Java Runtime
Environment to continue. Another possibility would be that Palladio stopped the data collection of
the response time early, for the same reason. Another Palladio problem was that the newer versions
of Palladio (5.0 and nightly) do not allow the usage of the utilization metric, which resulted in a
NullPointerException.

Overall, after conducting various experiments on a cloud system, we can confirm the need for
working and accurate performance predictions. The process of executing experiments takes a lot of
effort. It would save a lot of that when the simulator could answer at least some questions faster.

7.5 Future Work

We suggest that future work should investigate the following issues.
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It could be that more powerful hardware will solve in the memory problem we described in the
previous chapters. It seems unrealistic to expect a more efficient implementation soon. An alternative
is to assess possible workarounds to avoid the problem. We ran out of time to try that. That applies
also to the remaining four factors we described in our discussion that prevented us from modeling
our scaling policy for the MoSaIC system.

We assume that future work is also needed to successfully model the HPA. In addition, we propose
an investigation of possibilities to preserve a mapping from the Kubernetes pods to the resource
containers. It is important to show that because otherwise, it is not possible to determine whether
Palladio is ready to model Kubernetes applications that are using the HPA. And if it does not work,
to adapt or extend Palladio to allow metrics in nested systems. For example, to monitor an allocation
context too.

There are intentions to extend SimuLizar by the Slingshot approach [KB20], among other things
the plan is to allow analyses between layers. At this point, it would also make sense to address the
shortcomings the current solution has, apart from the documentation of existing elements.

One of them is the Usage Evolution. It would be interesting to know what the Usage Evolution does
when it should evolve an open workload. Was that considered during the development, and should
that be possible? In addition, we think it is interesting to investigate if it is possible to evolve the
inter-arrival time specified through StoEx, also if it is possible with distributions.

Along with that, the problems with gamma distributions should be further investigated. First how to
use it correctly, and secondly if the results with such a distribution are significantly better than with
the exponential distribution.

Another item for future work is explainability. We initially planned to do more work in that area
to support our perception that Palladio simulations allow retracing adaption decisions. That was
skipped because of time reasons. So that has to be investigated further. One possibility to do that
would be a survey with stakeholders that work with scaling policies to furnish evidence on that
matter.
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A Appendix

Distribution code

Listing A.1 R code

# Precondition: remove zeros with excel excel filter before importing

# Otherwise the fitting will fail

elastData <- read.csv(file = '../ElastData.csv')

library("fitdistrplus")

# remove outliers

outliers <- boxplot(elastData$V5)$out

ElastData <- elastData[-which(elastData$V5 %in% outliers),]

# convert to seconds

gamma <- fitdist(ElastData/1000, "gamma")

exp <- fitdist(ElastData/1000, "exp")

# plot to check the fitting

plot.legend <- c("gamma", "exponentional")

denscomp(list(gamma,exp), legendtext = plot.legend)

# output for the Usage Model Calibration

summary(gamma)

summary(exp)
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A Appendix

Experiment results

Vessels 2000 4000 6000 8000 10000
Mean 283 288 367 426 352
95th 660 652 975 1165 820
90th 548 556 764 931 683
SD 186 186 287 335 233

Table A.1: Scalability experiment. Response time in ms of send data with baseload 2000 on four
nodes. Values after the floating point were removed.

Devices 500 1000 1500 2000 2500
Mean 281 221 236 259 438
95th 624 563 493 504 962
90th 555 452 423 442 888
SD 177 156 133 133 294

Table A.2: Scalability experiment. Response time of send data with base load 500 on one node.
Values after the floating point removed.

Load Low Medium
Threshold 0.7 0.9 0.7 0.9
Mean 332 578 181 186
95th 862 1677 424 425
99th 2751 3624 580 564
SD 396 658 144 126
Nodes used 3 2 2 2

Table A.3: Measured data from the elasticity experiment. Mean, 95th, 99th and SD in ms.
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Load Base Low Medium
Case Simulation Measurement Simulation Measurement Simulation Measurement
Mean 146 52 127 77 117 109
95th 254 116 219 250 201 317
99th 318 176 276 374 248 485
SD 56 132 51 82 46 201
Nodes used 4 2 4 2 4 3

Table A.4: Measured and simulated data from the elasticity experiment. Mean, 95th, 99th and SD in ms.
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A Appendix

Profile Guide

This tutorial explains the use of an EMF/MDSD Profile in a PCM project.

Use

Using the ScalingPolicyProfile works as follows.

Right click on ScalingPolicyCatalogue.architecturaltemplates and run with run configurations.

Figure A.1

Then Eclipse Application and create a new one. Change Program to Run / Run a product to
org.eclipse.platform.ide.

After that you can work with the Profile.

The easiest way to apply is:

1. Open the system model

2. Right click on it

3. MDSD Profiles

4. First select Apply/Unapply Profiles -> ScalingPolicyProfile -> add
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Figure A.2

Listing A.2

[pool-4-thread-167] WARN : Rule application failed with message: The system has no

ScalingPolicyProfile applied!

5. Second select Apply/Unapply the Stereotype -> ScalingPolicySystem -> add

6. Refresh the project with F5

It should look like this.

Be aware of the fact that the profile application is unstable. It often does not work correctly. For
instance, if the profile is still applied after opening the workspace, it will not work. You need to
open it without one applied. If not, the script will fail at the check hasProfileApplied.
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Figure A.3

Trouble Shooting

If an error is thrown during the execution of the QVTo self-adaption, then a restart of eclipse is
needed. Often when getTaggedValue is printed out as invalid - that is an indication to try a restart.
Also, we were not able to use Integer fields respectively to use setTaggedValue (there was a warning
that the call is ambiguous), which might be fixed in future versions.

So it is important to debug. Also, if Palladio version conflicts appear, in our case, a model created
with the nightly version did not work in 4.3, even after replacing the representation.aird.

To test the profile, see TestModelProfile and NodeUtilization scaling policy. By executing the QVTo
script with SimuLizar, you can test and debug.

Developing

For developing we refer to the sdq wiki. Read the MDSD 1, EMF 2 and AT 3 guides. The latter
describes how to create an EMF profile in the first part and in the second the AT. Also follow the
AT guide instructions to create the .architecturaltemplates.

Be careful that all IDs are correct, watch the console of the outer Eclipse.

1https://sdqweb.ipd.kit.edu/wiki/MDSDProfiles
2https://sdqweb.ipd.kit.edu/wiki/EMF_Profile_Definition
3https://sdqweb.ipd.kit.edu/wiki/Architectural_Templates



Figure A.4

The Profile is publicly available on 4.

4https://github.com/PhilippGruber/ScalingPolicyProfile
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