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Abstract
The ability to predict a robot’s motion through a dynamics model is critical for the
development of fast, safe, and efficient control algorithms. Yet, obtaining an accurate
robot dynamics model is challenging as robot dynamics are typically nonlinear and subject
to environment-dependent physical phenomena such as friction and material elasticities.
The respective functions often cause analytical dynamics models to have large prediction
errors. An alternative approach to analytical modeling forms the identification of a robot’s
dynamics through data-driven modeling techniques such as Gaussian processes or neural
networks. However, solely data-driven algorithms require considerable amounts of data,
which on a robotic system must be collected in real-time. Moreover, the information stored
in the data as well as the coverage of the system’s state space by the data is limited by
the controller that is used to obtain the data. To tackle the shortcomings of analytical
dynamics and data-driven modeling, this dissertation investigates and develops models in
which analytical dynamics is being combined with data-driven regression techniques. By
combining prior structural knowledge from analytical dynamics with data-driven regression,
physics-informed models show improved data-efficiency and prediction accuracy compared
to using the aforementioned modeling techniques in an isolated manner.

In the first part of this dissertation, we give a concise presentation of important concepts
that give rise to structural knowledge in rigid body dynamics. In particular, we discuss
how the solution to robot dynamics formulations follows from projection operations or
Lagrangian optimization. These concepts enable us to give a detailed overview of how
the equations of motion of a robotic system emerge from fundamental principles, and how
these principles provide valuable knowledge on the direction of dissipative forces, energy
conservation, and the length of constraint forces. In this exposition of rigid body mechanics,
a special emphasis is placed on implicit constraint equations, which despite their utility for
robot dynamics modeling are rarely detailed in machine learning literature. To this effect,
we leverage the Udwadia-Kalaba equations of motion and show their connection to the
derivation of implicitly-constrained dynamics using Lagrange multipliers.

In the second part, we use the preceding discussion on rigid body dynamics to develop
a unified view of the errors inside an analytical dynamics model. Moreover, we look at
analytical dynamics models as parametric networks, which like statistical models give
rise to estimation errors and approximation errors. Moreover, we develop the notion
of latent model errors that arise inside an analytical dynamics model. This discussion
enables us to systematically categorize existing literature on physics-informed regression of
robot dynamics into analytical dynamics modeling, analytical output residual modeling,
and analytical latent modeling. In the latter modeling approach, a data-driven model
approximates a latent unknown function inside an analytical dynamics model, whereas in
analytical output residual modeling, the output residual of an analytical dynamics model is
approximated by a data-driven model.

In the third part, we propose a framework for analytical latent modeling in which
Gaussian process regression is combined with implicitly-constrained rigid body dynamics.
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Abstract

In this framework, the unknown forces (or in an alternative formulation, the acceleration
that these forces cause) are modeled by a multi-output Gaussian process. This Gaussian
process is linearly transformed by rigid body dynamics to yield probabilistic predictions
of the system’s acceleration that by design must fulfill implicit constraints. Moreover, as
many latent functions inside a rigid body dynamics model are obtained from an affine
transformation of the unknown forces, we show how to predict the force inside a robot
arm’s end-effector using acceleration measurements.

The gathered insights on rigid body dynamics modeling and physics-informed regression
benefited from and contributed to, the design of a novel reaction wheel-driven unicycle
robot for learning control. The last part of this dissertation revolves around this new
testbed which we named “Wheelbot”. We detail the Wheelbot’s mechanical and electronics
design as well as propose a first state estimator and balancing controller. Moreover, we
demonstrate the Wheelbot’s ability to jump on its wheel from any initial position. Finally,
we discuss potential research questions on physics-informed robot regression that may be
investigated on this novel robotic testbed.
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Zusammenfassung
Deutscher Titel der Dissertation:
Physikalisch Strukturierte Regression
Implizit-eingeschränkter Roboter Dynamiken

Die Fähigkeit, die Bewegung eines Roboters anhand eines Dynamikmodells vorherzusa-
gen, ist für die Entwicklung schneller, sicherer und effizienter Regelungsalgorithmen von
entscheidender Bedeutung. Es ist allerdings in vielen Fällen eine große Herausforderung
ein genaues Modell der Roboterdynamik zu erhalten, da diese oft nichtlinear ist und
von umgebungsabhängigen physikalischen Phänomenen wie Reibung und Materialelastizi-
tät beeinflusst wird. Solche umgebungsabhängigen Funktionen führen häufig dazu, dass
analytische Dynamikmodelle große Vorhersagefehler aufweisen. Ein alternativer Ansatz
zur analytischen Modellierung besteht in der Identifizierung der Roboterdynamik durch
datengesteuerte Modellierungstechniken wie Gaußsche Prozesse oder neuronale Netze. Aus-
schließlich datengesteuerte Algorithmen erfordern jedoch erhebliche Datenmengen, die bei
einem Robotersystem in Echtzeit gesammelt werden müssen. Darüber hinaus werden die in
den Daten enthaltenen Informationen sowie die Abdeckung des Systemzustandsraums durch
die Daten, durch den zur Datenerfassung verwendeten Regler begrenzt. Um die Schwachstel-
len analytischer Modelle und datengesteuerter Modellierung zu beheben, werden in dieser
Dissertation Modelle untersucht und entwickelt, bei denen die analytische Dynamik mit
datengesteuerten Regressionsverfahren kombiniert wird. Durch die Kombination von struk-
turellem Vorwissen aus der analytischen Dynamik mit datengetriebenen Modellen zeigen
physikalisch informierte Modelle eine verbesserte Dateneffizienz und Vorhersagegenauigkeit
auf im Vergleich zur isolierten Verwendung der vorgenannten Modellierungstechniken.

Im ersten Teil dieser Dissertation werden wichtige Konzepte, die zu strukturellem Wissen
in der Starrkörperdynamik führen, kurz vorgestellt. Insbesondere erörtern wir, wie die
Formulierung einer Roboterdynamikfunktion aus Projektionsoperationen oder Lagrange-
scher Optimierung hervorgeht. Diese Konzepte ermöglichen es uns, einen detaillierten
Überblick darüber zu geben, wie die Bewegungsgleichungen eines Robotersystems auf Basis
grundlegender Prinzipien, wertvolles Wissen über die Richtung dissipativer Kräfte, die
Energieerhaltung und die Länge der Zwangskräfte liefern. In dieser Darstellung der Starr-
körpermechanik wird ein besonderer Schwerpunkt auf die impliziten Zwangsgleichungen
gelegt. Zu diesem Zweck nutzen wir die Bewegungsgleichungen in der Udwadia-Kalaba
Formulierung und zeigen ihre Verbindung zur Herleitung der implizit beschränkten Dynamik
mit Hilfe von Lagrange-Multiplikatoren.

Im zweiten Teil nutzen wir die vorangegangene Diskussion über die Starrkörperdynamik,
um eine einheitliche Sichtweise auf die Fehler innerhalb eines analytischen Dynamikmodells
zu entwickeln. In dieser Sichtweise betrachten wir analytische Dynamikmodelle als para-
metrische Netzwerke, die wie statistische Modelle zu Schätz- und Approximationsfehlern
führen. Darüber hinaus entwickeln wir den Begriff der latenten Modellfehler, die innerhalb
eines analytischen Dynamikmodells auftreten. Anhand dieser Diskussion können wir die

ix



Zusammenfassung

vorangegange Literatur zur physikalisch informierten Regression von Roboterdynamiken
systematisch in die analytische Dynamikmodellierung, die analytische Ausgangs-Residuen-
Modellierung und die analytische latente Modellfehler-Modellierung einteilen. Bei letzterem
Modellierungsansatz approximiert ein datengetriebenes Modell eine latente unbekannte
Funktion innerhalb eines analytischen Dynamikmodells, während bei der einfacheren analy-
tischen Ausgangs-Residuen-Modellierung das Residuum eines analytischen Dynamikmodells
durch ein datengetriebenes Modell approximiert wird.

Im dritten Teil schlagen wir ein neues Analysemodell für die analytische latente Mo-
dellfehler Modellierung vor, in dem Gauß-Prozess-Regression mit implizit eingeschränkter
Starrkörperdynamik kombiniert wird. In diesem Rahmen werden die unbekannten Kräfte
(oder, in einer alternativen Formulierung, die Beschleunigung, die diese Kräfte verursachen)
durch einen mehrdimensionalen Gauß-Prozess modelliert. Dieser Gauß-Prozess wird durch
die Starrkörperdynamik linear transformiert, um probabilistische Vorhersagen über die
Beschleunigung des Systems zu erhalten. Da viele latente Funktionen innerhalb eines Starr-
körperdynamikmodells aus einer affinen Transformation der unbekannten Kräfte gewonnen
werden, zeigen wir außerdem, wie man die Kraft im Endeffektor eines Roboterarms anhand
von Beschleunigungsmessungen vorhersagen kann.

Die gewonnenen Erkenntnisse über physikalisch-informierte Regression trugen zu der
Entwicklung des “Wheelbot” bei, einem neuartigen reaktionsradgetriebenen Einradroboter
für die Entwicklung lernender Dynamikmodelle und Regler. Im letzten Teil dieser Arbeit,
wird das mechanische und elektronische Design des Wheelbots beschrieben und ein erster
Entwurf der Zustandsschätzer und Regler vorgeschlagen. Außerdem demonstrieren wir
die Fähigkeit des Wheelbots, aus jeder beliebigen Ausgangsposition auf sein Rad zu
springen. Schließlich erörtern wir potenzielle Forschungsfragen zur physikinformierten
Roboterregression, die auf diesem neuartigen Roboterteststand in Zukunft untersucht
werden können.
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Acronyms

AD automatic differentiation

ALM analytical latent modeling (cf. Section 4.4)

APN analytical parametric network (cf. Section 4.2)

ARM analytical (output) residual modeling (cf. Section 4.3)

COG center of gravity

DELAN deep Lagrangian neural network

DOF degrees of freedom

EOM equations of motion

FD forward dynamics

ID inverse dynamics

KKT Karush-Kuhn-Tucker

GP Gaussian process

GP2 Gauss principle adhering Gaussian process (cf. Section 5.1.2)

MP Moore-Penrose

NN neural network

RNEA recursive Newton-Euler algorithm

SVD singular value decomposition

SE squared-exponential
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Chapter 1

Introduction

Before stepping onto a frozen lake, our brain must anticipate a whole host of physical
phenomena that determine whether we slip and subsequently fall or stay balanced and start
walking. In the blink of an eye, the human brain imagines the interaction between a shoe
and an icy surface, while also predicting how to flex the leg’s muscles such that the desired
movement is executed. The difference between a child stepping onto an icy surface for the
first time and an ice skating champion are the years of experience and training. During
these years, the professional athlete not only improved muscle strength and sensorimotor
coordination, but also developed intuition about how certain muscle movements steer the
body through space. It is this accurate prediction of motion that enables an actuated
dynamical system to perform maneuvers that otherwise remain unattainable.

A particularly interesting class of mechanical systems in which the range of potential
applications is often limited by the accuracy of the motion predictions are robots. Over the
last decades, the field of robotics flourished owing to advancements in electronics, software,
and control engineering. Robots such as the Boston Dynamic’s “Spot” and “Atlas”, and
ETH Zürich’s “ANYmal” (Hutter et al., 2016) have demonstrated impressive feats of agility.
These works show that what a robot can do is not merely determined by the cost of its
hardware, the strength of its actuators, or computation power, but foremost by its control
policy. The computation of a control policy is closely intertwined with the prediction of
the system’s motion. In mathematics and physics, the description of a system’s motion
over time is described through a dynamics function f : Rnx → Rny , which in its general
form is denoted in this work as

y = f(x), (1.1)

with the input vector x ∈ Rnx and output vector y ∈ Rny . The acquisition of an accurate
model f̂(x, θA) – where θA denotes the model’s parameters – is by no means trivial on
real-world robotic systems. Due to unmodelled physical phenomena such as friction, body
elasticities, and motor dynamics, the dynamics model may deviate from the system’s real
dynamics by an error function

ϵ(x, θA) = f(x)− f(x, θA). (1.2)

This error function between a system’s simulation and its real dynamics is of such utmost
importance to robotics in particular and engineering in the whole that it received its own
nickname being called the sim2real gap (Höfer et al., 2021).

With new robot designs aiming at reducing costs (Grimminger et al., 2020), increasing
compliance for operation near humans, improving energy efficiency by leveraging natural
dynamics (Badri-Spröwitz et al., 2022), or using soft bodies to unlock new potential

1



Chapter 1 Introduction

applications, closing the sim2real gap on the increasingly complex and intricate robot
systems is more than ever a significant challenge.

Approaches that model the dynamics of robotic systems either evolve around analytical
mechanics or data-driven modeling. As we will explore in this work, both approaches
have significant drawbacks. These drawbacks motivated a few recent works to combine
physics with data-driven learning under the collective heading of “physics-informed machine
learning” also referred to as structured learning, gray-box modeling, or hybrid modeling. To
this day, the existing works that combine physics models with machine learning, typically
see the physics model as given while all attention is placed on the design of the machine
learning algorithm which seeks to approximate the physics model’s errors. However, if we
do not question where and why the errors arise inside the physics model, we disregard a
rich source of information that could prove utile towards closing the sim2real gap.

In this work, we explore existing approaches in physics-informed regression of robot
dynamics. By focusing on implicitly constrained rigid body dynamics, we provide a
systematic view of the potential errors arising in analytical mechanics models and how to
approximate these with machine learning.

In particular, we look at the errors of a dynamics model not as merely given, but
instead investigate where these errors arise inside rigid body dynamics models
and how this knowledge can benefit the design of physics-informed machine
learning algorithms.

Further, we want to encourage the reader to envision physics models as parametric functions
that depending on their parameters span a function space. Similarly, machine learning
models such as neural networks or Gaussian processes also span a function space. Albeit,
in comparison to physics models, the function space that machine learning models span
can be straightforwardly enlarged by e.g., adjusting the number of network layers in
a neural network or resorting to a different covariance function in a Gaussian process.
However, increasing the representational power of these models comes with the caveat of
also requiring more data to find a point in this space which sufficiently reduces the model’s
error (Von Luxburg and Schölkopf, 2011). If we want to find such a point for a neural
network, we need to find a point in the model’s parameter space. Finding this particular
point is metaphorically spoken a search for the needle in the haystack where the amount of
hay one has to search through corresponds to the function space that the model spans. To
follow the needle in a haystack analogy, prior knowledge from physics may enable us to
alter the haystack in which we need to search for a good model approximation.

In this work, we argue that a significant part of a physics model’s errors often
arises in a potentially simpler and better-understood function space such as the
space of all possible friction functions. In this case, it is more data-efficient to
learn these latent errors before they have been transformed by known nonlinear
transformations arising from rigid body dynamics.

Finally, we present a design of a novel robotic testbed for nonlinear and learning control.
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Dynamics functions in robotics

The dynamics of robotic systems are typically described in terms of a vector of control
inputs u(t), which for example, can include the electric currents that are sent to motors in
a robot’s joint, as well as vectors of position, velocity, and acceleration denoted as q(t), q̇(t)
and q̈(t) respectively. In what follows, we generally omit the dependency of a function on
variables, writing f(x) := f , if this is clear from the context. A common approach for the
computation of control inputs in relation to its motion variables is inverse dynamics (ID)

u = fu(q, q̇, q̈). (1.3)

Inverse dynamics yields the control input that is required to maintain the motion variables
{q, q̇, q̈}. In turn, a common approach for controlling a robot is to plan a desired path
{qdes, q̇des, q̈des}Nq

i=1 and then compute the feed-forward control inputs via (1.3). These feed-
forward control inputs can be combined with a feedback controller, which ensures that the
system remains close to the desired path despite errors in (1.3).

For complicated maneuvers such as a robot playing table tennis (Koç et al., 2018) or a
quadrupedal robot recovering from a fall (Hwangbo et al., 2019), it is laborious to engineer
a path planning algorithm by hand. Instead, one can search for a viable control input
as the solution to an optimization problem that seeks to find extrema of a performance
index. Such a performance index is also referred to as the objective function in optimization
theory, loss in statistics, cost function in control theory, or reward function in reinforcement
learning. For example, the performance index can be designed such that an optimal control
signal {ui}Nu

i=1 minimizes the control energy as well as the Euclidean distance to a desired
state {qdes, q̇des, q̈des}. Typically, such a performance index heavily depends on the system’s
transition dynamics, which is a discrete-time function modeling the effect of the control
input at a given state onto the next state, written as

xk+1 = fT (xk, uk) (1.4)

with discrete input vector xk = [qk, q̇k] at discrete time step k. In robotics, the motion
variables are often chosen such that q̇ = dq

dt
and q̈ = d2q

dt2
, and the transition dynamics can be

obtained through the numerical integration of a differential equation, the so-called forward
dynamics (FD)

q̈ = fq̈(q, q̇, u). (1.5)

Numerous variations of the aforementioned dynamics models exist. For example, one may
also find a robot’s path as a solution to an optimization problem which is then fed to a
model of the robot’s ID. Also, in many data-driven dynamics models such as (Hwangbo
et al., 2019) and (Doerr et al., 2017), a sequence of states is chosen as both the inputs and
outputs of the dynamics model. Nevertheless, these approaches rely heavily on a dynamics
model that, in some form or another, describes the motion of the system.
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Table 1.1: Pros and cons of analytical rigid body models compared to data-driven models.

Physics models Data-driven models

+ Data-efficient - Data-hungry
+ Human-interpretable - Usually black-box
+ Out-of-sample generalization - Usually data-point interpolation
- Large prediction errors + Flexible function approximations
- Expert knowledge required + Less prior knowledge required
◦ Deterministic ◦ Possibly probabilistic

1.1 Motivation
To grasp the problems that underlie the computation of robot dynamics, we first discuss
what distinguishes a physics model from a data-driven model. Subsequently, we examine
data in the context of robotics as a scarce resource that may not be as straightforward
to acquire as it may initially seem. The main differences between analytical dynamics
and data-driven models are summarized in Table 1.1. The following discussion takes text
passages from (Geist and Trimpe, 2021) and (Rath et al., 2021).

Physics-based Models

Rigid body dynamics models are based on physical principles underlying the motion of
mechanical systems, e.g., Newton’s axioms of motion. These axioms spawn dynamics
equations such as the Newton-Euler equations and the Euler-Lagrange equations, as
detailed in Section 3. Analytical dynamics models are combinations of numerous physically
motivated functions such as coordinate transformations, forces, and the inertia matrix,
which depend on physical parameters such as the mass of a rigid body, a friction coefficient,
the length of a kinematic link, or the stiffness coefficient of a spring. The numerous functions
that form an analytical model can usually not be observed individually and are thus referred
to as being latent. Notably, the latent functions and parameter estimates of analytical
models yield a physical interpretation that can guarantee out of sample generalization
(i.e., the validity of the model in regions where no data has been observed), and earns
them the name white-box models. However, in real systems, physical phenomena such
as friction, damping, and contacts aggravate the accurate identification of an analytical
dynamics model. Furthermore, other physical phenomena such as body elasticities cannot
be modeled by analytical rigid body dynamics in the first place and therefore lead to
errors. In practice, some of the parameters of an analytical model are estimated from
data using linear regression or gradient-based optimization. However, the analytical model
errors and the limited representative power of analytical force models can lead to physically
inconsistent parameter estimates such as negative body masses (Ting et al., 2006) which
we discuss in detail in Section 4.3.

Data-driven Models

When analytical modeling is not feasible (e.g, because the physical process is unknown,
or the effort required to obtain a sufficiently small prediction error appears to be too
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Figure 1.1: An illustration of the curse of dimensionality.

large), the nonlinear dynamics can be directly learned from data. The design of the
data-driven model places prior assumptions on the functions it can approximate. To reduce
the prediction error of these models, one needs to estimate their parameters, a process
which is referred to as ‘training’. Parameters can be either the hyperparameters of the
kernel of a non-parametric method, such as a Gaussian process (GP), or the parameters of
a parametric method such as a neural network (NN). Training hyperparameters of a kernel
determines an entire population of functions while training the parameters of a parametric
model usually determines a specific function approximation. Data-driven models contrast
analytical models as their parameter estimates often do not yield a physically insightful
interpretation. Moreover, the sheer amount of parameters and interlinked latent functions in
many data-driven models eludes human comprehension. Thus, they are commonly referred
to as black-box models.

Challenges in Robot Dynamics Identification

Machine learning and NNs in particular have achieved impressive breakthroughs in areas
such as text-to-speech, language translation, image classification, 3D reconstruction, art
generation, and even playing computer games. Typically, the data for solving related
problems can either be scraped from the internet, generated by an accurate simulation, or
readily available in large-scale datasets such as ImageNet (Deng et al., 2009). In comparison,
the identification of robot dynamics challenges solely data-driven regression models by the
sheer complexity of the target function in relation to the properties and available amount
of the data. The main concern with the identification of dynamics via data-driven models
is sample complexity, i.e., the number of training points a data-driven model requires to
approximate a function sufficiently. The sample complexity of a data-driven model that
approximates robot dynamics is determined by the following aspects:

Curse of dimensionality As initially pointed out by Bellman (1961), the number of
points required to cover a space with an equidistant grid grows exponentially with the
number of dimensions of the space (Nelles, 2013, p. 190). This property of multi-dimensional
functions is referred to as the “curse of dimensionality”. As an example, we consider a
robot arm with six actuated revolute joints as illustrated in Figure 1.1. An ID model of
this robot has at least six output variables (observed joint torques) and at least 18 input
variables (position, velocity, and acceleration). Assuming the dataset forms an equidistant
grid over the input space with just 5 points in each direction, the resulting dataset has
6 · 518 ≈ 22, 9 · 1012 data points. In practice, the curse of dimensionality is slightly alleviated
as not every region of the state space is relevant or can be reached, some process dimensions
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are correlated, and other dimensions are redundant. Nevertheless, a data-driven model may
significantly benefit if the dimensionality of the problem can be reduced.

Properties of dynamics The dynamics of quadrupedal robots, as well as robot arms,
are nonlinear. As detailed in Chapter 3, dynamics functions are the result of a superposition
and nonlinear transformation (e.g., through kinematics) of nonlinear functions (e.g., friction
forces) that may each have a different scale in their input and output dimension. Moreover,
dynamics functions may be discontinuous or even jump if being subject to friction phenomena
or contacts. In turn, the prediction accuracy of a data-driven model may considerably
deteriorate at points that lie outside the convex hull of the training points. Moreover,
dynamics may vary over time and be subject to a considerable amount of noise. These
aspects increase the amount of data that a data-driven model requires to successfully
approximate a robot’s dynamics.

While the above points may increase the amount of data required to learn a dynamics
function, they would not pose a problem if enough data is available in the first place.
After all, many data-driven models such as NNs (Hornik, 1993) or a GP with a squared
exponential kernel are universal function approximators that, given sufficient data closely
approximate many different types of target functions. Yet, such approximation guarantees
do not specify the amount of data required for learning. Therefore, data collection comprises
another key aspect that renders robot dynamics identification particularly challenging due
to the problems listed below.

Real time constraints On physical systems, data has to be collected in real time while
the system is subject to wear and tear. In turn, acquiring a data set requires a considerable
amount of time and may result in high financial costs. Some works that rely on data of a
robot’s dynamics to synthesize a controller suggest training the data-driven controller in
simulation. This tackles real time constraints to a certain extent as data collection can be
significantly sped up. However, if a simulator or a robot dynamics model is erroneous, the
control policy trained on this simulator may not work on the real system. One possible
route towards bridging the sim2real gap is domain adaption, wherein a data-driven control
policy is first trained in simulation and then re-trained on the real system. While domain
adaptation might be viable, it significantly benefits or, may not be necessary if the robot’s
dynamics model is an accurate representation of the actual dynamics.

Information value It is not only the amount of data that determines the approximation
result of a data-driven model but also the information that is present in the data. It does
not suffice to collect hours of data from a resting robot, but instead, the system must be
excited i.e., moved on carefully selected trajectories. The design of excitation signals for
collecting informative data is in itself an ongoing field of research (Buisson-Fenet et al.,
2020).

Control Dilemma Steering a robot through its state space to collect data requires a
controller. This potentially spawns a chicken or egg causality dilemma, as the motive for
collecting data in the first place is to learn a dynamics model that enables the synthesis of
a controller. Fortunately, on most robotic systems one has access to a linear controller that
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enables the collection of data in a small part of the state space. The interpretation of a
state space being “small” depends on the sample complexity of the data-driven model.

It is possible to tackle the control dilemma by utilizing approaches such as model-based
RL. These methods alternate between using a control policy to collect data which is used
to improve the dynamics model, and using the dynamics model to improve the control
policy. Using a data-driven model for describing the dynamics as well as the controller may
require substantial amounts of data.

For robotic systems in which data collection is not an issue, one may still face the following
practical concerns that advocate against dynamics identification with solely data-driven
methods.

Resource consumption If a robot’s dynamics are considerably nonlinear, the data-
driven model must be able to approximate the target function closely. In turn, a parametric
data-driven model, e.g., a NN, will have many parameters. Training such a NN for several
days, often using multiple GPUs, consumes significant amounts of time, financial resources,
and energy.

Adjustability of black-box models If a robot interacts with its environment, its
dynamics may be subject to change. For example, a change in the dynamics occurs if a
robot arm picks up an object, a wheeled robot drives over different surfaces, or the joints
of a quadrupedal robot are subject to wear and tear. In a physics model, one could identify
and subsequently adjust the respective latent function, while in a data-driven model, it is
unclear how to incorporate the change in the dynamics without fully re-training the model.

Hardware requirements Making predictions with a data-driven model may require
more computational resources such as processing power and memory of a micro-controller
than using a physics-informed regression model.

In summary, robot dynamics often consists of involved nonlinear functions, while data
collection on robotic systems is cumbersome, and the amount of training data is limited.

Therefore, the main incentive for combining a data-driven model with prior
physics knowledge is to improve its sample efficiency, whereas the prime motive
for augmenting a physics model with data-driven learning is to increase its
prediction accuracy.

Improving sample efficiency or increasing prediction accuracy are two sides of the same
coin that evolves around mitigating the shortcomings of both modeling frameworks.

1.2 Current State of Research
Countless works exist on obtaining robot dynamics models. In what follows, a brief overview
of selected literature related to physics-informed regression of robot dynamics is given. The
presented works on physics-informed regression will be revisited in Section 4 after a unified
view of the errors in rigid body dynamics has been developed. This section is taken from
(Geist and Trimpe, 2021) and (Rath et al., 2021).
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Literature on data-driven models

Common data-driven models used for the identification of dynamics are (Bayesian) linear
regression, NNs, and GPs. Most works that learn dynamics functions using data-driven
models solely use transition dynamics or inverse transition dynamics. Nguyen-Tuong and
Peters (2011) surveys these approaches for robot control. NN have been used for the direct
identification of fluid flows (Morton et al., 2018), ODEs (via recurrent NNs) (Funahashi
and Nakamura, 1993), and actuated dynamics (Kuschewski et al., 1993). NNs were able
to learn transition dynamics and control policies on contact-rich domains (Chua et al.,
2018a; Nagabandi et al., 2020). Remarkably, Nagabandi et al. (2020) demonstrated that
NNs enable the inference of specific control policies for handling objects inside a robotic
hand. However, in Nagabandi et al. (2020) the training of a control policy for a specific
task-object combination requires several hours of data.

Deisenroth and Rasmussen (2011) learned the system’s transition dynamics with a GP.
This GP dynamics model was then used for the nonlinear control of real mechanical systems
with to NNs comparably small amounts of data. One key takeaway of Deisenroth and
Rasmussen (2011) has been the usage of a probabilistic model, which allows propagating
uncertainty in the observed state-actions through the system dynamics. In turn, this
approach significantly improved the robustness of a control policy trained on the GP
dynamics model. Other applications of dynamics modeling with GPs for control include
(Doerr et al., 2017, 2018; Eleftheriadis et al., 2017; Frigola et al., 2013; Kocijan et al., 2005;
Mattos et al., 2016; Nguyen-Tuong and Peters, 2010). The main disadvantage of GPs is
their computational complexity, which typically scales cubically with the number of data
points. Even though their computational complexity can be reduced using sparse GPs
(Quiñonero-Candela and Rasmussen, 2005), the computational effort required to work with
such models is considerably larger than using NNs.

Literature on rigid body dynamics models

Pioneering works on robot dynamics identification focused on the estimation of analytical
parameters. For example, the well-known approach of Atkeson et al. (1986) uses the
linearity of a rigid robot arm’s ID with respect to its parameters to estimate these via
linear regression. With the increased popularity of libraries for automatic differentiation,
recent works (Ledezma and Haddadin, 2017, 2018; Lutter et al., 2020; Sutanto et al., 2020)
use gradient-based optimization to estimate the physical parameters inside the analytical
model from data. Such approaches work well if the robot arm is rigid and the forces acting
on it are sufficiently known. However, the parameter estimation of an insufficient analytical
representation of a robot’s dynamics leads to physically inconsistent parameter estimates
as well as unsatisfactory model accuracy. We further discuss the problems of parameter
estimation in analytical dynamics models in Section 4.2.2.

Literature on Physics-informed Models

In what follows, we discuss recent works that combine data-driven models with rigid body
dynamics.

Building rigid body dynamics into neural networks As an alternative approach
to analytical modeling, Cranmer et al. (2020); Gupta et al. (2020); Lutter et al. (2019a,b)
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model dynamics via the Euler-Lagrange equations in which a NN approximates the system’s
Lagrangian or the entries of the inertia matrix. In turn, such a Lagrangian NN increases
the flexibility of the functional approximation of mass-related dynamic terms compared
to analytical dynamics models while still respecting energy conservation. If forces are the
major sources of analytical errors and mass-related quantities are not, then Lagrangian NNs
may add flexibility through the NN in the functional representation of a robot’s dynamics
where it might not be required. So far, this hypothesis has not been refuted, as the works
on Lagrangian NNs test their algorithms solely on pendulums or low-dimensional robot
arms without end-effector contacts.

A recent branch in structured modeling combines analytical models of mass-related
quantities and presumably known forces with data-driven modeling. Lutter et al. (2020)
augments an analytical FD model with a NN approximating a robot arm’s joint torques.
The parameters of the analytical model and NN are estimated jointly via automatic
differentiation. Recently, Hwangbo et al. (2019) and subsequently Lee et al. (2020) combined
an analytical simulation with a pre-trained NN – predicting measured joint torques. Notably,
the contact forces were modeled analytically as detailed by Hwangbo et al. (2018) while their
physical parameters are varied to robustify the trained control policy towards parameter
uncertainties. Significantly, NN control policies that were trained on such structured models
achieved so far unseen robustness of a quadruped’s locomotion policy. These seminal works
indicate that the sim2real gap can be closed by consciously combining analytical mechanics
with data-driven modeling.

Building rigid body dynamics into Gaussian Processes In real robotic systems,
noise and uncertainty are often significantly impacting the robot’s dynamics. For example,
a friction force denotes a macroscopic abstraction of microscopic tribologic phenomena,
which aggravates deterministic modeling. In addition, depending on the robot’s sensors,
the changes in the joint torques due to elasticities and backlash are often not observed
accurately and introduce uncertainty into the dynamics. As shown in Chua et al. (2018b);
Deisenroth and Rasmussen (2011), the synthesis of a robot’s control policy can significantly
benefit from the availability of an uncertainty measure for the planned motion. Popular
models for the identification of uncertain and noisy dynamics are either building on Bayesian
linear regression as e.g., (Ting et al., 2006), or often resort to GPs (Doerr et al., 2017, 2018;
Eleftheriadis et al., 2017; Frigola et al., 2013; Kocijan et al., 2005; Mattos et al., 2016). GPs
incorporate various model assumptions through the covariance function (kernel) and are
often more data-efficient than NNs. Yet, vanilla GP regression requires the computation of
the inverse covariance matrix, which demands a computational complexity of O((DN)3) and
a memory requirement of O((DN)2) where D denotes the number of the GP’s correlated
outputs. In addition, the inversion of the covariance matrix is prone to numerical problems,
and deriving an efficient computational implementation of multi-output GPs forms a
considerable obstacle. Despite these challenges, several models have been proposed that
combine GP regression with analytical dynamics.

Nguyen-Tuong and Peters (2010) used Atkeson et al. (1986) as a linear parametric
mean of a GP model (cf. Chapter 2.7 in Williams and Rasmussen (2006)). Conceptually
being similar to Nguyen-Tuong and Peters (2010), Saveriano et al. (2017) approximate the
residuals of an analytical transition dynamics model via one-dimensional GPs.
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Cheng et al. (2015) placed a GP on the Lagrangian inside a robot arm’s Euler-Lagrangian
ID. Yet, for GPs it is not clear how to formulate such a model for FD and to which extent
the end-effector forces can be incorporated. A Lagrangian GP leverages that the derivative
of a GP, if it exists, is itself a GP (Solak et al., 2003). Jidling et al. (2017) emphasized that
more generally GPs are closed under linear functionals. In turn, the authors proposed a
linearly transformed GP such that its predictions fulfill a linear operator equation e.g., the
mechanical stress field inside a linear elastic material.

1.3 Contribution
This dissertation is based on the following publications:

1. A. René Geist and Sebastian Trimpe. Learning constrained dynamics with Gauss
principle adhering Gaussian processes. In Proceedings of the 2nd Conference on
Learning for Dynamics and Control (L4DC), volume 120 of Proceedings of Machine
Learning Research (PMLR), pages 225–234, June 2020

2. A. René Geist and Sebastian Trimpe. Structured learning of rigid-body dynamics:
A survey and unified view from a robotics perspective. GAMM Mitteilungen, 44(2,
Special Issue: Scientific Machine Learning):34, June 2021

3. Lucas Rath⋆, A. René Geist⋆, and Sebastian Trimpe. Using physics knowledge for
learning rigid body forward dynamics with Gaussian process force priors. In Proceed-
ings of the 5th Conference on Robot Learning (CORL), volume 164 of Proceedings of
Machine Learning Research (PMLR), pages 101–111, 08–11 Nov 2021

4. A. René Geist, Jonathan Fiene, Naomi Tashiro, Zheng Jia, and Sebastian Trimpe.
The wheelbot: A jumping reaction wheel unicycle. IEEE Robotics and Automation
Letters, 7(4):9683–9690, 2022

This dissertation uses text from the above publications. If a figure from the above
publications is used in this dissertation, we do not explicitly cite the publication in the
figure’s description. The copyright to this text passages and figures if not belonging to the
authors remains with the respective publishers.

In what follows, we give a brief overview of the individual sections of this dissertation
and point out its main contributions.

Chapter 2 This chapter is based on Geist and Trimpe (2021) and Rath et al. (2021). In
Section 2.1, we introduce supervised regression as the general problem setting. As recent
works on physics-informed regression substantially benefited from modern libraries on
automatic differentiation, we briefly introduce this particular method for the computation
of analytical gradients at specific data points. Section 2.2 provides intuition on the
solution of linear matrix equations, which is an important concept to grasp how constraint
equations provide structural knowledge on the directions of forces. We briefly discuss
Lagrangian optimization in Section 2.3 as throughout this work, we encounter the concept
of a Lagrangian function whose partial derivatives, if carefully arranged, yield an alternative

⋆ Authors contributed equally.
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perspective on implicitly constrained dynamics and subsequently Lagrangian NNs. As this
work also details the combination of GP regression with implicitly constrained rigid body
dynamics, an extensive treatment of multi-output GP regression is given.

Chapter 3 This chapter is based on Geist and Trimpe (2021). Through a careful
bisection of some of the most common EOM in robotics, such as the Newton-Euler EOM
and Euler-Lagrange EOM, we arrive at a broader picture of how analytical mechanics
provides structural knowledge. An important part of this work is the discussion of implicitly
constrained rigid body dynamics in the Udwadia-Kalaba formulation. Further, we visualize
the structure that underlies constraint-related transformations by resorting to diagrams
illustrating the fundamental subspaces of a matrix as found in the literature on functional
analysis. Moreover, we show that both the Udwadia-Kalaba formulation of implicitly-
constrained EOMs as well as its formulation in terms of Lagrangian optimization can
be derived with Gauss’ principle as a starting point. In summary, Chapter 3 provides a
comprehensive overview of structural knowledge in rigid body dynamics that proved utile
for physics-informed regression of robot dynamics.

Chapter 4 This chapter is based on Geist and Trimpe (2021) and Rath et al. (2021).
We investigate how functions underlying rigid body dynamics have different causes, while
our knowledge of each of these functions may considerably differ. Borrowing concepts from
statistical learning theory, we then arrive at a concise description of potential errors in an
analytical dynamics model that distinguishes estimation errors from approximation errors.
This discussion enables us to compare the pros and cons of using ID and FD models in
physics-informed regression. Here, we emphasize that errors in physics-informed models
are from the interplay of wrong analytical parameters (e.g., inertia parameters), wrong
analytical functions (e.g., friction forces), and in the worst case the analytical model class
itself being an inaccurate depiction of the real dynamics (e.g., describing flexible bodies
with rigid body dynamics). Afterward, using the developed unified view on modeling errors
in rigid body dynamics, selected works on physics-informed regression are categorized into
analytical dynamics models, analytical (output) residual modeling, and analytical latent
modeling.

Chapter 5 This chapter is based on Geist and Trimpe (2020) and Rath et al. (2021).
We investigate the combination of GP regression with implicitly-constrained rigid body
dynamics. Through a series of simulation experiments, we show that placing a GP prior
on the unknown forces is superior to placing a GP prior on the unknown unconstrained
accelerations. Moreover, we illustrate how placing a GP on unknown latent functions inside
a rigid body dynamics model enables the identification of numerous other latent quantities
such as the system’s implicit constraint force using measurements of the constrained
acceleration. Moreover, we show that using Baumgarte stabilization in the proposed
probabilistic model enables long-term trajectory predictions that respect implicit constraint
knowledge.

Chapter 6 This chapter is based on Geist et al. (2022). The research of the previous
chapters was carried out in parallel with the development of a novel robotic testbed for
learning control named “Wheelbot”. In turn, the theoretical discussion of physics-informed

11



Chapter 1 Introduction

modeling benefited from and contributed to, the development of a small robot testbed that
possesses interesting properties that are commonly encountered in robotics. Such properties
include being subject to holonomic and non-holonomic constraints, being under-actuated,
and having naturally unstable dynamics that aggravate data collection. In addition, the
proposed robot uses brushless motors as these are commonly found on other robotic systems
as well as occupy only a small operating space to enable research in a confined laboratory
environment. This chapter details the mechanical, electronics, and firmware design.

12



Chapter 2

Mathematical Preliminaries

This section provides a comprehensive overview of mathematical preliminaries that are
helpful throughout this work. Section 2.1 is based on a discussion of gradient-based
optimization in physics-informed ML as found in Geist and Trimpe (2021). The introduction
to multi-output GPs is based on the supplementary material of our work on combining
GPs with implicitly constrained rigid body dynamics (Rath et al., 2021).

2.1 Supervised Regression: Model, Loss, and Optimizer

Machine learning methods can be categorized into supervised, unsupervised, and reinforce-
ment learning. Supervised learning assumes that the target function’s inputs and some
of its outputs can be observed. Unsupervised learning assumes that no output values are
given and instead, the model must infer structure from the input data. In reinforcement
learning, the desired outputs cannot be observed, but instead, some form of information on
the model’s performance is given.

Supervised learning can be divided into classification and regression. In classification,
the model predicts a probability that the input belongs to a certain discrete class, whereas
in regression, the model maps the input to a continuous quantity, which in our case is the
real number line R.

Dynamics function space Optimization Space

Data Loss Regularization Loss

Dataset

Optimizer sets 

Prediction

Figure 2.1: Illustration of supervised regression using a parametric model.
Adapted from Geist et al. (2017).

In this work, data-driven modeling solely refers to the supervised regression of a dynamics
function using data collected from the robotic system. The training data set

D := {X, Y } (2.1)

13
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consists of a set of N input vectors X := {x̃i}Ni=1 and output vectors Y := {ỹi}Ni=1 with
x̃i ∈ Rnx and ỹi ∈ Rny being noisy observations of the i-th input x or output y of the
dynamics (1.1). We assume that all states of the dynamics can be observed.

Before delving into non-parametric regression in Section 2.4, we first assume that the
robot’s dynamics shall be approximated by a parametric model taking the form

ŷ = f̂(x, θ), (2.2)

with θ ∈ Rnθ being a vector of model parameters and the model’s prediction ŷ ∈ Rny . Both,
analytical dynamics models, as well as neural networks, are parametric models. Typically,
the prediction accuracy of a parametric model is measured with respect to an objective
function which we simply refer to as loss. In machine learning, a commonly encountered
loss function is the quadratic loss with quadratic parameter regularization

ℓ(D, θ) =

(
N∑
i=1

αi∥(ỹi − f(x̃i, θ))∥p
)1/p

+ α0∥θ∥2, (2.3)

where besides p = 2 being the vector-2 norm, other common choices are p = 1 being
the sum of absolute values, and p = ∞ being the maximum value norm. The α1, ..., αN

are hyper-parameters that weigh the importance of each data point while α0 weighs the
parameter regularization term (Nelles, 2013, p. 28). The parameter regularization term
∥θ∥2 adds an incentive for the parameter values to be zero if they do not affect the loss
function. When a model is being trained, an optimization algorithm determines the model’s
parameters such that ideally the loss is minimized.

A supervised regression algorithm consists of a model, loss, and optimizer in some form or
another. For example, in linear regression as detailed in Section 2.2.1, the model is a linear
equation, the loss is the norm ∥Ax−b∥2, and the optimization technique forms the analytical
computation of the solution via the Moore-Penrose inverse. For considerably nonlinear
models such as NNs, it is rarely possible to find their parameters analytically. Finding a set
of parameters that reduces the loss to an acceptable value is often a difficult problem due to
the dimensionality of the parameter space. Analytical dynamics models quickly have more
than 100 parameters, while neural networks easily have several thousand parameters. In
turn, the optimization of a parametric model suffers under the curse of dimensionality. In
addition, physics-informed dynamics models are used if standard analytical or data-driven
approaches yield unsatisfactory predictions. Usually, this occurs if the system is high-
dimensional and subject to nonlinear physical phenomena. Therefore, most works utilizing
physics-informed models require the training of high-dimensional models on large datasets.
In turn, the models also have a considerable amount of parameters such that recent works
on physics-informed learning predominantly resort to gradient-based optimization instead
of using global optimization techniques.

2.1.1 Gradient-based Optimization

Gradient-based optimization forms a cornerstone of solely data-driven modeling as well
as constitutes one of the most common nonlinear local optimization techniques (Bottou
et al., 2018). Gradient-based optimization techniques require the computation of the partial
derivative of the loss with respect to the parameters, writing

g = ∇θℓ =
∂ℓ

∂θ
= [

∂ℓ

∂θ1
,
∂ℓ

∂θ2
, ...,

∂ℓ

∂θnθ

]T. (2.4)
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2.1 Supervised Regression: Model, Loss, and Optimizer

A gradient-based optimizer takes the general form

θk = θk−1 − ηk−1pk−1 with pk−1 = Rk−1gk−1, (2.5)

with θk being the vector of model parameters at optimization iteration k, pk−1 is a direction
vector, ηk−1 is the step size, and Rk−1 is a gradient transformation matrix (Nelles, 2013,
p. 90). Choosing Rk−1 = Inθ

performs a parameter update in the opposite direction of the
gradient or in other words the direction of steepest descent in the loss. Two commonly
used gradient-based optimizers are gradient descent with momentum and ADAM (Kingma
and Ba, 2014a). An astounding exposition of momentum is given in Goh (2017). Often
it is useful to include higher-order derivatives of the objective function in the parameter
update rule. As gradient-based optimization is a local optimization technique and ℓ is
usually nonlinear, it is indispensable to restart the optimization several times with random
initialization of θ, keeping only the best optimization results. In addition, as models based
on NN have a large number of parameters, the gradient update is computed only for a
randomly selected batch of data. This optimization procedure is called stochastic gradient
descent in machine learning literature.

As detailed by Baydin et al. (2017), gradients of a forward function can be obtained via:

• Analytical derivation and implementation, which is time-consuming and error-prone.

• Numerical differentiation, which is inaccurate due to round-off and truncation errors
and scales poorly with the size of θ.

• Symbolic differentiation yielding functions for the analytical gradient. However, these
expressions are also closed-form which hinders GPU acceleration and quickly becomes
cryptic due to an “expression swell” as pointed out by Corliss (1988).

• Automatic differentiation, which computes accurate gradients at given data points, is
considerably faster than the aforementioned methods and thanks to steady improve-
ments in the usability of optimization libraries, is straightforward to use.

2.1.2 Automatic Differentiation

At the core of automatic differentiation (AD), also called algorithmic differentiation or
”autodiff“, lies the insight that forward functions are compositions of elementary operations
whose derivatives are known. In return, the derivative of a function can be constructed
using the elementary operators’ gradient expressions with the chain rule of differentiation.
AD computes a numerical value of the derivative of a computational graph with branching,
recursions, loops, and procedure calls (Baydin et al., 2017).

The two basic forms of AD are forward-mode AD and reverse-mode AD. In what follows,
we assume a loss ℓ(θ) = ℓ(c(b(a(θ)))) where a(θ), b(a), and c(b) are functions of appropriate
size. In forward-mode AD, the gradient of a function is obtained via forward accumulation,
e.g., writing

∇θℓ(θ) = ∇cℓ(∇bc(∇ab∇θa)), (2.6)

where ∇θb = ∇ab∇θa denotes a Jacobian matrix.
In reverse-mode AD being also referred to as “backprop” in machine learning literature,

computes gradients via reverse accumulation, e.g., writing

∇θℓ(θ) = ((∇cℓ∇bc)∇ab)∇θa. (2.7)
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Figure 2.2: Graph illustrating backward mode automatic differentiation of the loss of a
forward dynamics model. Figure adapted from Geist and Trimpe (2021).

For functions, ℓ : Rn1 → Rn2 with n1 >> n2 reverse mode AD is preferred as it requires
fewer operation counts for the computation of vector-Jacobian products (Baydin et al.,
2017). However, reverse-mode AD can have increased memory requirements compared to
forward-mode AD. Many automatic differentiation packages allow to combine forward and
reverse accumulation. The following example illustrates the reverse-mode AD of a rigid
body dynamics model.

Example 2.1 (Computing the gradient of a structured model with reverse-mode AD).
Assume that the dynamics of a robotic system are modeled via FD as

ˆ̈q(x; θ) = M−1(x; θ)Q̂D(x; θ)︸ ︷︷ ︸
a

+M−1(x; θ)Q̂G(x; θ)︸ ︷︷ ︸
b

, (2.8)

in which Q̂G(x; θ) and Q̂D(x; θ) denote either analytical and/or data-driven models, and
intermediate function expressions are abbreviated as a = M−1Q̂D, b = M−1Q̂G. Note that
Figure 2.2 depicts the computational graph formed by (2.8). The parameters θ are estimated
jointly using an objective function ℓ(D, θ) := ℓ(θ) where the dependency on the data D is
being omitted in the notation. In reverse mode AD, the gradient of ℓ with respect to θ is
decomposed as

∇θℓ(θ) = ∇Q̂D
ℓ∇θQ̂D︸ ︷︷ ︸
m̄1

+∇M−1ℓ∇θM
−1︸ ︷︷ ︸

m̄2

+∇Q̂G
ℓ∇θQ̂G︸ ︷︷ ︸
m̄3

, (2.9)

with

m̄1 = ∇aℓ∇Q̂D
a︸ ︷︷ ︸

m̄4

∇θQ̂D, m̄2 =
(
∇aℓ∇M−1a︸ ︷︷ ︸

m̄5

+∇bℓ∇M−1b︸ ︷︷ ︸
m̄6

)
∇θM

−1, m̄3 = ∇bℓ∇Q̂G
b︸ ︷︷ ︸

m̄7

∇θQ̂G,

(2.10)

m̄4 = ∇ˆ̈qℓ∇a
ˆ̈q︸ ︷︷ ︸

m̄8

∇Q̂D
a, m̄5 = ∇ˆ̈qℓ∇a

ˆ̈q︸ ︷︷ ︸
m̄8

∇M−1a, m̄6 = ∇ˆ̈qℓ∇b
ˆ̈q︸ ︷︷ ︸

m̄9

∇M−1b, m̄7 = ∇ˆ̈qℓ∇b
ˆ̈q︸ ︷︷ ︸

m̄9

∇Q̂G
b.

(2.11)

Therefore, the gradient of a physics-informed model can be computed with AD. Yet, this
requires the computation of the numerical expressions for ∇θM

−1, ∇θQ̂G, and ∇θQ̂D.
Ideally, an AD library will compute these terms for us by also decomposing the gradients
into product sums of basic gradient functions.
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Example 2.1 illustrates that the computation of ∇θℓ(θ) requires the partial differentiation
of analytical latent functions. Yet, to do this efficiently, several requirements must be
fulfilled by an AD library, namely:

• Physics-informed models denote forward functions that consist of numerous basic
mathematical operators. Ideally, the AD library should only require that the physics-
informed model is expressed in terms of a computer library for basic linear algebraic
operations such as Numpy (Harris et al., 2020) or Torch (Paszke et al., 2019). In
turn, the model designer must only convert the derived analytical functions into the
programming language of the respective AD library.

• As detailed in Section 4.4.1, models for Q̂C, Q̂G, or M̂ can be obtained by transfor-
mation of an analytical or data-driven function via the partial derivative operators
∇q or ∇q̇. Therefore, the AD library must be able to automatically compute the
gradients w.r.t. to θ of gradients w.r.t. q or q̇ of latent functions.

Fortunately, recent developments in AD packages such as ”AutoGrad“ (Maclaurin et al.,
2015) and Torch’s autograd library allow to compute ∇θℓ(θ) in which ℓ(θ) is expressed
in either native python (Numpy) code or python (Torch) code. Importantly in these AD
packages, ∇θℓ(θ) can itself include higher-order partial derivatives without breaking the
AD routines. These AD packages have been further improved in libraries such as JAX
(Bradbury et al., 2018) and PyTorch (Paszke et al., 2019), which additionally combine AD
with compilers for GPU acceleration such as XLA1. These packages tremendously simplify
the synthesis of a physics-informed model, enable easy debugging of the respective computer
code, and provide computationally efficient implementations with GPU acceleration.

2.2 Linear Matrix Equations
At several points in this work, the solution to a linear equation is determined and provides
insight into the structure underlying a physical equation. For example, in Section 3.2,
the Newton-Euler equations of a rigid body system are transformed into the generalized
coordinate space through a linear transformation. In Section 3.3, we summarize the Euler-
Lagrange equations, which are obtained after the transformation of a Lagrangian function
with a matrix of partial differential operators. In Section 3.4.3, implicit constraint equations
of a rigid body system are linear with respect to the system’s acceleration which allows to
obtain expression of the implicit constraint forces. This latter point, we will use in Chapter
5 to linearly transform a GP prior that approximates the unknown forces inside a rigid body
dynamics model. The important role of linear transformations in rigid body mechanics
enables us to further discuss in Section 4.1 how errors in rigid body dynamics can be
approximated through data-driven models. In Section 6.3.2, we detail a state estimator that
uses the linearity of the system’s kinematics with respect to the gravitational acceleration
vector.

The following sections evolving around linear matrix equations are entirely based on
Beard (2002). Before discussing the mathematical structure underlying linear equations,
we briefly define some basic terminology. There are two important vector spaces for the
description of analytical dynamics, namely

1https://www.tensorflow.org/xla
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• Rn : The set of n-tuples of real numbers.

• Ln : The set of measurable functions f : Rn → R, which includes piecewise continuous
functions and the set of all physically realizable signals.

While analytical dynamics could be discussed in terms of matrix-valued functions whose
entries are elements of Ln, we discuss such matrix-valued functions after inserting a specific
point in state space. In turn, the matrix-valued functions underlying analytical mechanics
become real matrices at specific points in the state space. In Beard (2002), a more general
discussion in terms of Hilbert spaces is given where a linear operator may also denote a
convolution or differentiation.

To be able to compare elements of a vector space, an inner product is defined yielding an
inner product space. An inner product that is often used in Rn with x ∈ Rn and y ∈ Rn is
the dot product

⟨x, y⟩ = yTx =
n∑

i=1

xiyi, (2.12)

or alternatively, the weighted inner product

⟨x, y⟩W = yTWx =
n∑

i=1

n∑
j=1

wijxjyi, (2.13)

where W ∈ Rn is a positive definite matrix denoted as W > 0. The following definitions
are excerpts from (Beard, 2002), in which the definitions in terms of the more general case
of linear transformations between Hilbert spaces have been adjusted to the specific case of
matrix transforms between Rn and Rm.

Definition 2.2 (Orthogonal subspace). Let V,W ⊂ Rn, then V is orthogonal to W , written
V ⊥ W , if for all v ∈ V and w ∈ W , ⟨v, w⟩ = 0.

Definition 2.3 (Orthogonal complement). Let V ⊂ Rn, then the orthogonal complement
of V is the set V ⊥ = {x ∈ Rn : ∀v ∈ V, ⟨x, v⟩ = 0}.

Definition 2.4 (Orthogonal sum). If V and W are orthogonal subspaces of Rn, then their
orthogonal sum is V ⊕W = {x ∈ Rn : x = v + w, v ∈ V,w ∈ W}.

From the definitions above it follows that if V is a subspace of Rn, then Rn = V ⊕ V ⊥.
In other words, a vector space Rn may be split up in two sets of vectors whose elements
are orthogonal to each other.

A real-valued matrix A ∈ Rm×n is a linear operator as with x1, x2 ∈ Rn and α, β ∈ R it
holds that

A(αx1 + βx2) = αAx1 + βAx2. (2.14)

Definition 2.5 (Adjoint). Given A ∈ Rm×n, a matrix A∗ ∈ Rm×n is called an adjoint, if

⟨Ax, y⟩ = ⟨x,A∗y⟩ (2.15)

for any x ∈ Rn and y ∈ Rm.
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2.2 Linear Matrix Equations

Figure 2.3: Fundamental subspaces of a matrix A. Adapted from Beard (2002).

From Definition 2.5 it directly follows with (2.12) that the adjoint of A is its transposed
matrix AT, written A∗ = AT. The null space and range of a matrix and its adjoint
are referred to as the fundamental subspaces and form an important form of structural
knowledge that we will encounter throughout in this work.

Definition 2.6 (Null space). Given A ∈ Rm×n, the null space of A is defined as

N(A) = {x ∈ Rn : Ax = 0}. (2.16)

Definition 2.7 (Range space). Given A ∈ Rm×n, the range space of A is defined as

R(A) = {b ∈ Rm : ∃x ∈ Rn such that b = Ax}. (2.17)

As shown in more detail in Beard (2002), it holds that [R(A)]⊥ = N(A∗), [R(A∗)]⊥ = N(A),
and Rn = V ⊕ V ⊥, such that the theorems below follow.

Theorem 2.8 (Fundamental subspaces). Given A ∈ Rm×n:

1) Rn = R(A∗)⊕ N(A).

2) Rm = R(A)⊕ N(A∗).

3) n = dim(R(A∗)) + dim(N(A)).

4)m = dim(R(A)) + dim(N(A∗)). (2.18)

Theorem 2.9 (Range space dimensions). Given A ∈ Rm×n:

dim(R(A∗)) = dim(R(A)). (2.19)

In the above expression, we denoted the dimension of a vector space as dim(Rn)=n.
With Theorem 2.8 and Theorem 2.9, the fundamental subspaces of a linear equation of the
form

Ax = b, (2.20)

with A : Rn → Rm, x ∈ Rn and Rm can be illustrated in a subspace diagram as depicted in
Figure 2.3.

To shed further light on the fundamental subspaces underlying linear matrix transforma-
tions, the following sections detail two special cases, the least-squares linear equation, and
the minimum-norm linear equation. Afterward, we briefly discuss how the singular value
decomposition (SVD) of a A gives rise to the general solution of (2.20).

19



Chapter 2 Mathematical Preliminaries

Figure 2.4: Subspaces of a least-squares linear equation. Adapted from Beard (2002).

2.2.1 Least-squares Linear Equation

The least-squares linear equation takes the form

Ax = b, with A ∈ Rm×n, rank(A) = n and m > n. (2.21)

In turn, the fundamental subspaces of A are depicted in Figure 2.4 (Right), where N(A)
simply reduces to the null vector, while the m-vector b potentially consists of a null space
part bN ∈ N(AT) and a range space part bR ∈ R(A) such that b = bR + bN.

If b ∈ R(A), equation (2.21) can be solved directly. Left-multiplication of (2.21) by AT

yields ATb = ATAx. As the square matrix ATA has full rank, computing its inverse gives
rise to the solution for x as

x⋆ = (ATA)−1ATb = A+b, (2.22)

where A+ = (ATA)−1AT denotes the Moore-Penrose (MP) inverse of A for rank(A) = n. If
b ̸∈ R(A), no direct solution to (2.22) exists. Instead, the problem setting can be changed
to find the unique solution x⋆ that satisfies (2.21) while minimizing

x⋆ = argmin∥Ax− b∥2 = argmin(Ax− b)T(Ax− b). (2.23)

As any non-zero vector Ax must lie in R(A), the x minimizing ∥Ax− b∥2 is obtained when
bR = Ax⋆. In turn, the optimal x⋆ is given by (2.22). Figure 2.4 (Left) visualizes the least
squares optimization problem in terms of the fundamental subspaces of A, while Figure 2.4
(Right) sketches the corresponding vector diagram in Rm.

Weighted least-squares linear equation

The solution of the weighted least-squares optimization problem

x̃⋆ = argmin∥Ax− b∥2W = argmin(Ax− b)TW (Ax− b), (2.24)

with W > 0, is found by exchanging terms with b̃ = W 1/2b and Ã = W 1/2A to obtain the
standard-least squares problem (Beard, 2002, p. 78), (Udwadia and Kalaba, 2007, p.59). In
turn, equation (2.25) reduces to

x̃⋆ = argmin∥Ãx− b̃∥2. (2.25)

By comparison with (2.22), the solution to the weighted least-squares problem is obtained
via (2.25) as

x̃⋆ = (AWA)−1AWb. (2.26)
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Figure 2.5: Subspaces of a minimum-norm linear equation. Adapted from Beard (2002).

2.2.2 Minimum-norm Linear Equation

The minimum-norm linear equation takes the form

Ax = b, with A ∈ Rm×n, rank(A) = m and m < n. (2.27)

Therefore, the fundamental subspaces corresponding to (2.27) are depicted by Figure 2.5
(Right). As m < n and rank(A) = m the null space N(A) is non-trivial such that x splits
up into a range space part and null space part, writing x = xR + xN, while b ∈ R(AT). Due
to the existence of xN ∈ N(A), (2.27) has an infinite number of solutions x as illustrated in
Figure 2.5 (Left).

To find a unique solution of (2.27), one may wish to find

minimize ∥x∥2
subject to Ax = b. (2.28)

The optimal solution of (2.28) is found by first noting that there must exist a ζ ∈ Rm

such that x⋆ = ATζ. With (2.27), one obtains AATζ = b such that the solution to (2.28)
becomes

x⋆ = AT(AAT)−1b = A+b, (2.29)

where A+ = AT(AAT)−1 denotes the MP inverse of A for rank(A) = m. In other words,
(2.29) provides the vector that is shortest with respect to ∥x∥2 that if transformed by A
yields b. If b is replaced with Ax, one obtains the shortest part of the vector x with respect
to ∥x∥2 that is in R(AT) as

xR = AT(AAT)−1Ax = A+Ax. (2.30)

In turn, the shortest part of the vector x with respect to ∥x∥2 that is in N(A) is obtained as

xN = x− xR = (In − A+A)x. (2.31)

The matrices (A+A) and (I −A+A) are orthogonal projections as they are idempotent and
symmetric. With (2.31), the general solution to (2.28) is given by

x = A+b+ (In − A+A)h, (2.32)

where h denotes an arbitrary n-vector.
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Figure 2.6: Illustration of the solution to a minimum-norm linear equation in R2 where the
distance ∥x− x0∥2 is minimized. Adapted from Boyd et al. (2004).

Weighted minimum-norm linear equation

The weighted minimum-norm optimization problem reads

minimize ∥x− x0∥2W ,

subject to Ax = b, (2.33)

with W > 0 and the bias vector x0 ∈ Rn. Similar to Section 2.2.1, the problem in (2.33)
can be simplified to (2.28) by the change of variables x̃ = W 1/2(x− x0), Ã = AW−1/2, and
b̃ = b− Ax0 one obtains

minimize ∥x̃∥2,
subject to Ãx̃ = b̃. (2.34)

Subsequently, by comparison with (2.32), the optimal solution to (2.34) reads

x = W−1AT(AW−1AT)−1b+
(
In −W−1AT(AW−1AT)A

)
x0. (2.35)

For the special case that W := In and x ∈ R2, the optimal solution can be visualized as
depicted in Figure 2.6.

2.2.3 Singular Value Decomposition

The Singular-Value Decomposition (SVD) of a matrix A ∈ Rm×n with rank(A) = p is given
by

A =
[
U1 U2

] [Σ 0
0 0

] [
V T
1

V T
2

]
= U1ΣV

T
1 , (2.36)

with the diagonal matrix of singular values Σ = diag(σ1, σ2, ..., σp), σ1 ≥ σ2 ≥ σp > 0, and
U = [U1, U2] as well as V = [V1, V2] are orthogonal matrices with UTU = Im and V TV = In.
Moreover, we have U1 ∈ Rm×p and V1 ∈ Rn×p. The factorization of a positive definite
matrix

W = W 1/2W 1/2 (2.37)

is obtained as W 1/2 = U1Σ
1/2V T

1 with Σ1/2 = diag(σ1/2
1 , σ

1/2
2 , ..., σ

1/2
p ). In practice, one can

often use the Cholesky decomposition W = LLT using L instead of W 1/2.
Figure 2.7 extends Figure 2.3 to illustrate the fundamental subspaces of A in terms of

the SVD. When a vector x is multiplied with A, xR = V1Σ
−1UT

1 x is first transformed by V T
1
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2.2 Linear Matrix Equations

Figure 2.7: The singular value decomposition (SVD) describes A in terms of transformations
between several subspaces. Adapted from Beard (2002).

into Rp, then scaled by Σ, and finally transformed by U1 to reach Rm. During the journey
through the fundamental subspaces of A, the vector x lost the part xN = V T

2 x. We refer to
xN as ”lost“, as it cannot be recovered via multiplication of AxR with A+.

A comparison of Figure 2.7 with Figure 2.4 and Figure 2.5 shows that the aforementioned
linear equations are special cases inherent in the SVD of a matrix with p = rank(A) and
p < min(m,n). Therefore, the solution to the linear matrix equation Ax = b can be divided
into solving the least squares equation V T

1 x = Σ−1ζ, with ζ ∈ Rp for x, as well as solving
the minimum norm equation U1ζ = b for ζ. The minimum-norm solutions to the above
equations are stated in (2.22) and (2.29) such that

x⋆ = (V1V
T
1 )−1V1Σ

−1ζ, and ζ⋆ = UT
1 (U1U

T
1 )

−1b. (2.38)

Since V1 and U1 are orthogonal matrices, one obtains

x⋆ = A+b, (2.39)

with the MP inverse of A,
A+ = V1Σ

−1UT
1 b. (2.40)

If p < m, N(AT) contains non-zero vectors, such that the general solution to the linear
matrix equation reads

x = A+b+ (In − A+A)h, (2.41)

with h being an arbitrary n-vector. A matrix A+ is called the Moore-Penrose (MP) inverse
of a matrix A if the following conditions are fulfilled, cf. (Udwadia and Kalaba, 2007,
p. 45):

1) AA+A = A,

2) A+AA+ = A+,

3) AA+ = (AA+)T, that is AA+ is symmetric,
4) A+A = (A+A)T, that is A+A is symmetric. (2.42)

(2.43)

Generalized inverses that only fulfill the first condition in (2.42) are referred to as G-inverses,
and generalized inverses that fulfill the first and third condition in (2.42) are referred to
as L-inverses. Therefore, the MP inverse is also an L-inverse and the L-inverse is also a
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G-inverse. However, several L-inverses and G-inverses of a matrix A may exist whereas the
MP inverse of any matrix is unique and its existence is guaranteed (Udwadia and Kalaba,
2007, p. 46). The inverse A−1 of a square nonsingular matrix A fulfills all conditions in
(2.42) and hence could be deemed as a special case of the MP inverse. Udwadia and Kalaba
(2007) prove some important properties for an MP inverse A+ of a matrix A ∈ Rm×n of
any rank, namely

A+ = AT(AAT)+, (2.44)
A+ = (ATA)+AT, (2.45)

R(AT) = R(A+), (2.46)
R(A) = R(AA+), (2.47)

R(A+) = R(A+A), (2.48)
N(A) = R(I − A+A). (2.49)

(2.50)

and if rank(A) = n, then

A+ = (ATA)−1AT and A+A = In. (2.51)

2.3 Lagrangian Optimization
In Section 2.2, we obtained expressions for the solutions of linear equations solely by
means of algebra. In what follows, we outline the solution of a linear matrix equation
by additional means of calculus. In the later sections, these differing views on the same
problem provide additional insight into the structure underlying rigid body mechanics. The
following exposition of Lagrangian optimization is adapted from (Boyd et al., 2004, Chapter
5) unless noted otherwise.

2.3.1 Duality

Consider the primal optimization problem

minimize f(x)

subject to gi(x) = 0, i = 1, . . . ,m (2.52)
hj(x) ≤ 0, j = 1, . . . , k

with optimization variable x ∈ Rn, the non-empty domain of f being D =
⋂m

i=1 dom gi ∩⋂k
j=1 dom hj. The variable x ∈ Rn is a feasible point with respect to the constraints gi(x)

and h(x), if gi(x′) = 0 and hi(x
′) ≤ 0. The solution to (2.52) is denoted by x⋆ and its

function value by p⋆ = f(x⋆). As a first step towards finding a solution of (2.52), define
the Lagrangian as

L(x, λ) = f(x) + λTg(x) + νTh(x), (2.53)

with L : Rn × Rm × Rk → R, dom L = D × Rm × Rk, g(x) = vec(g1, . . . , gm), and
h(x) = vec(h1, . . . , hm). The vectors λ, ν are referred to as Langrange mutliplier vectors or
dual variables. Moreover, define the dual function

ℓ(λ, ν) = inf
x∈D

L(x, λ, ν). (2.54)
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2.3 Lagrangian Optimization

The dual function ℓ : Rm × Rk → R is concave even if (2.52) is non-convex and forms a
lower-bound bound on p⋆ for any νj ≥ 0, writing

ℓ(λ, ν) ≤ L(x′, λ, ν) ≤ f(x′), (2.55)

where x′ is a feasible point. The second inequality follows from λTg(x′) = 0 and νTh(x′) ≤ 0
when ν ≥ 0. The goal of the dual optimization problem is to find the largest lower bound
as in (2.55)

max
λ,ν

ℓ(λ, ν) subject to νj ≥ 0, λi ∈ R. (2.56)

The solution of (2.56) is denoted by {ν⋆, λ⋆}. The primal problem (2.52) seeks to minimize
f resulting in p⋆, while its dual problem (2.56) seeks to maximize ℓ(λ, ν) yielding d⋆ :=
ℓ(λ⋆, ν⋆). If the duality gap p⋆ − d⋆ is zero, the optimization problem is referred to as
having strong duality. Strong duality allows us to find p⋆ solely by optimization of the
convex optimization problem (2.56). We note that not every problem in the form of (2.52)
possesses strong duality. However, while not every convex problem has strong duality, the
problems we consider in this work such as linear problems do. If strong duality holds then
{x⋆, λ⋆, ν⋆} constitute a saddle-point of the Lagrangian L. The converse also holds that is
if {x⋆, λ⋆, ν⋆} is a saddle point of L, then the duality gap is zero. Constraint qualifications
are conditions that ensure whether strong duality holds in an optimization problem.

2.3.2 Karush-Kuhn-Tucker Conditions

For an optimization problem of the form in (2.52) with differentiable functions f, g, h,
and a zero duality gap, the primal and dual optimal points {x⋆, λ⋆, ν⋆} must satisfy the
Karush-Kuhn-Tucker (KKT) conditions

∇f(x⋆) + (λ⋆)T∇g(x⋆)+(ν⋆)T∇h(x⋆) = 0

h(x⋆) ≤ 0

g(x⋆) = 0 (2.57)
ν⋆
i ≥ 0, i = 1, . . . , k

ν⋆
i hi(x

⋆) = 0, i = 1, . . . , k.

The first three equations of (2.57) follow from setting the gradient of the Lagrangian
(2.53) to zero that is ∇L = [∇xL

T,∇λL
T,∇νL

T]T=0. The last equation of (2.57) is a
complementary condition enforcing that if hi(x

⋆) > 0 then νi = 0. The KKT conditions are
cardinal for constrained optimization and many convex optimization algorithms make use
of the KKT conditions.

Example 2.10. Assume the following optimization problem

maximize f(x) = x1x2 + 1 with x1 ∈ R, x2 ∈ R
subject to g(x) = x2

1 + x2
2 − 1 = 0. (2.58)

The Lagrangian of (2.58) reads

L = x1x2 + 1 + λ(x2
1 + x2

2 − 1) with λ ∈ R, (2.59)
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Figure 2.8: 3D plot of the Lagrangian in Example 2.10 for different Lagrange multipliers λ.
The red line denotes all values of L(x, λ) such that g(x) = 0.

such that the KKT conditions2 are

∇L =
[
x2 + λ2x1 x1 + λ2x2 (x2

1 + x2
2 − 1)

]T
= 0. (2.60)

By solving (2.60) the optimal solution is obtained at x1 = ± 1√
2
, x2 = ± 1√

2
, and λ = −0.5.

As pointed out in (Kalman, 2009, p. 194), the term λg(x1, x2) ”levels“ L such that for the
optimal points {x⋆

1, x
⋆
2, λ

⋆} the KKT condition is fulfilled.
Figure 2.8 illustrates the change of L as a function of λ. Here C = {x ∈ R2 : g(x) = 0}

denotes the curve in the x1-x2 space for which the equality constraint is zero. Further,
u ∈ R2 denotes a vector normal to the curve C. As pointed out by Kalman (2009), at the
point x⋆ = {x⋆

1, x
⋆
2}, the directional derivative of L in direction of u must be zero

DuL = ∇LTu = 0. (2.61)

With DuL = Du(f + λg), it follows from (2.61) that λ = −Duf/Dug.

2.3.3 Norm Minimization with Equality Constraints

We finally return to the optimization problem

minimize ∥Cx− d∥
subject to Ax = b. (2.62)

The minimization of (2.62) is equivalent to optimizing

minimize
1

2
∥Cx− d∥2,

subject to Ax = b. (2.63)

As special cases, (2.63) includes the aforementioned least-squares problem as in (2.26)
(C = A, d = b, and no constraints) and least-norm problem as in (2.35) (C = W 1/2 and
d = W 1/2x0). The Lagrangian (2.53) of (2.63) is obtained as

L(x, λ) =
1

2
xTWx− dTCx+

1

2
dTd+ λT(Ax− b), (2.64)

2We note that if an optimization problem is solely subject to equality constraints the conditions in (2.60)
are usually referred to as the first order optimality condition.
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2.4 Gaussian Process Regression

with W := CTC, W ≥ 0, and the vector of Lagrange multipliers λ ∈ Rm. Subsequently,
the KKT conditions (2.57) for finding an optimal point of (2.64) read

∇L =

[
∇xL
∇λL

]
=

[
Wx− CTd+ ATλ

Ax− b

]
= 0. (2.65)

The above equation can be rewritten as the block matrix equation[
W AT

A 0

] [
x
λ

]
=

[
CTd
b

]
. (2.66)

The solution to (2.66) depends on the properties of matrices and vectors involved (Boyd
et al., 2004, p. 522). In optimization literature, the block-matrix on the left side of (2.66) is
referred to as the KKT matrix. If the KKT matrix is non-singular, the matrix inversion
lemma yields a unique solution to (2.66), cf. (Schön and Lindsten, 2011, p. 10) and (Boyd
et al., 2004, p. 650), as[

x⋆

λ⋆

]
=

[
W−1 −W−1AT(AW−1AT)−1AW−1 W−1AT(AW−1AT)−1

(AW−1AT)−1AW−1 −(AW−1AT)−1

] [
CTd
b

]
. (2.67)

Alternatively, (2.67) can be rewritten as

x⋆ = W−1
(
CTd− AT(AW−1AT)−1(AW−1CTd+ b)

)
, (2.68)

λ⋆ = (AW−1AT)−1
(
AW−1CTd− b

)
. (2.69)

For C := W 1/2 and d := W 1/2x0, (2.35) yields the general solution to the weighted minimum
norm problem (2.35), that is

x = W−1AT(AW−1AT)−1b+
(
In −W−1AT(AW−1AT)−1A

)
x0. (2.70)

2.4 Gaussian Process Regression
A Gaussian process (GP) defines a distribution over functions such that every selection
of function values {f(x1), f(x2), ..., f(xN)} are jointly Gaussian distributed (Williams and
Rasmussen, 2006, Chapter 2). In other words, a GP is often referred to as a probabilistic
model that defines a normal distribution over functions. GPs are non-parametric and provide
a measure of uncertainty of the estimation result in form of their posterior variance. As
GPs define normal distributions over functions, they reduce Bayesian inference which often
requires the numerical approximation of complicated integrals into a series of computational
efficient linear algebraic operations. A function f(x) is modeled through a GP as

f(x) ∼ GP (m(x), k(x, x′)) (2.71)

with a mean function also being referred to as mean

m(x) = E[f(x)], (2.72)

and a covariance function also being referred to as kernel

k(x, x′) = Cov[f(x), f(x′)] = E[(f(x)−m(x))(f(x′)−m(x′))]. (2.73)
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Figure 2.9: GP function samples for different SE kernel hyper-parameters.
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Figure 2.10: Left: Samples drawn from a GP prior with SE kernel. Center: GP samples
after conditioning on observations (black dots). Right: Real function (black
dash line), GP posterior mean (blue dot dash line), and the posterior GP’s
95-percent confidence interval. Figure adapted from Geist (2018).

After the specification of the mean, the kernel determines the mathematical properties of
the GP’s function approximation and how it extrapolates to new data (Duvenaud, 2014).
Following from Mercer’s theorem, a kernel k : R× R → R evaluated at k(x, x′) could be
thought of as an entry in an ”infinitely large“ matrix (Hennig, 2020). Not every function
with inputs {x, x′} qualifies as a kernel. A kernel k(x, x′) must be positive semidefinite
such that the Gram matrix Σ ∈ Rn×n with entries Σi,j = k(xi, xj) is positive semidefinite
writing vTΣv ≥ 0 for all vectors v ∈ Rn and hence Σ is a covariance matrix (Williams and
Rasmussen, 2006, p. 80).

A commonly used kernel in robot dynamics identification is the squared-exponential (SE)
function

k (x, x′) = σ2
f exp

(
− 1

2l2
(x− x′)

2

)
, (2.74)

with the length-scale l and the signal variance σ2
f . Kernel parameters such as {l, σ2

f} of
a non-parametric model are referred to as hyper-parameters. These hyper-parameters
shape the GP’s functions space, while in a non-probabilistic parametric model changing
the parameters determines a particular element inside the model’s function space. Figure
2.9 illustrates how the change in the hyper-parameters of a SE kernel affects the shape of
the GP samples.
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2.4 Gaussian Process Regression

2.4.1 Multi-output Gaussian Processes
A multi-output GP denotes the extension of the previously discussed one-dimensional GP
to a multi-dimensional process. The following exposition of multi-output GPs is taken
from Rath et al. (2021) and its supplementary material. In a multi-dimensional function
f(x) = [f1(x) . . . fn(x)]

T as a multi-task GP, writing f̂ ∼ GP(m(x), K(x, x′)), where m(x)
denotes a vector-valued mean function and K(x, x′) a matrix-valued kernel, such that

m(x) =
[
m1(x) . . . mn(x)

]T
, K(x, x′) =

k1,1(x, x
′) · · · k1,n′(x, x′)

...
. . .

...
kn,1(x, x

′) · · · kn,n′(x, x′)

 , (2.75)

where mj(x) is the scalar mean function of fj(x) and ki,j(x, x
′) corresponds to the scalar

kernel between fi(x) and fj(x
′). Given a data set D as in (2.1), a multi-output GP defines

a multivariate normal distribution over X as f̂(X) ∼ N (µX ,ΣX,X), with the mean vector
and covariance matrix respectively

µX =
[
m(x1)

T . . . m(xN )T
]T

, ΣX,X′ =

K(x1, x
′
1) · · · K(x1, x

′
N ′)

...
. . .

...
K(xN , x′1) · · · K(xN , x′N ′)

 , (2.76)

assuming X = X ′. The process measurements y are assumed to arise from i. i. d. Gaussian
noise, writing

yi = fi + ϵy, with ϵy ∼ N (0,Σy), Σy = diag(σ2
1, ...σ

2
n), (2.77)

with the noise variance of the i process being σ2
i . With Y (X) = f̂(X) + ϵY , with ϵY ∼

N (0 , ΣY ) and ΣY = IN⊗Σy, the the joint distribution of Y (X) and f̂(X∗) at the prediction
points X∗ = {x∗

1 . . . x
∗
NP

}, reads[
f̂(X∗)
Y (X)

]
∼ N

([
µX∗

µX

]
,

[
ΣX∗,X∗ ΣX∗,X

ΣX,X∗ ΣX,X +ΣY

])
. (2.78)

Conditioning on the observations yields the predictive posterior distribution

f̂(X∗)|D,Σy ∼ N (µ⋆,Σ⋆),
µ∗ = µX∗ + ΣX∗,X (ΣX,X + ΣY )

−1 (y − µX),
Σ∗ = ΣX∗,X∗ − ΣX∗,X (ΣX,X + ΣY )

−1ΣX,X∗ .
(2.79)

In practice, working with multi-output GPs does not significantly differ from one-
dimensional GPs if one gets acquainted with the covariance matrix entries at every input
point pair being also multi-dimensional. In this regard, if the process is one dimensional
that is n = 1, the above equations reduce to standard (one-dimensional) GP regression.
Figure 2.10 illustrates how conditioning affects the samples of a one-dimensional GP with
SE kernel.

Samples f̂ ∼ N (µX ,ΣX,X) are drawn from a normal-distribution by computing the
Cholesky decomposition L of the positive definite matrix ΣX,X = LLT and noting that

f̂ = µX + Lu, with u ∼ N (0, In). (2.80)

In practice, an additional noise variance ϵ is added to the diagonal of the covariance matrix
as this matrix is often nearly rank-deficient leading to numerical problems when computing
its Cholesky decomposition (Williams and Rasmussen, 2006, p. 201). In Section 5.3.2,
we briefly detail how using the Farthest Point Sampling algorithm to sparsify a data set
improves the conditioning number of the covariance matrix.
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2.4.2 Linearly Transformed Gaussian Processes

In recent decades, several works suggested using structural knowledge to transform GPs
and improve the models sample-efficiency. In this section, we discuss how sums of functions,
as well as linear operators acting on functions can be modeled with GP regression.

Sums of functions

Duvenaud (2014) provides a concise discussion on how to construct and combine kernels.
In particular, in (Duvenaud, 2014, Section 2.4) it is shown how to model sums of functions
with GP regression, leading to the following theorem:

Theorem 2.11. The sum of GPs f̂i ∼ GP(mi(x), Ki(x, x
′)) yields the GP

f̂ ∼ GP
(∑

mi(x),
∑

Ki(x, x
′)
)
. (2.81)

As shown in Section 5.1.3, in analytical mechanics one often encounters sums of forces
which subsequently can be modeled with GPs. Given the GPs f̂ a ∼ GP(ma(x), Kaa(x, x′)),
f̂b ∼ GP(mb(x), Kbb(x, x′)), and f̂ c ∼ GP(mc(x), Kcc(x, x′)), where

ma(x) = mb(x) +mc(x), and Kaa(x, x′) = Kbb(x, x′) +Kcc(x, x′), (2.82)

then these processes define a joint distribution as[
f̂ a

f̂b

]
∼ GP

([
mb(x) +mc(x)

mb(x)

]
,

[
Kbb(x, x′) +Kcc(x, x′) Kbb(x, x′)

Kbb(x, x′) Kbb(x, x′)

])
. (2.83)

Subsequently, one can predict f̂b(X∗) given measurements Y = f̂ a(X) + ϵY as

f̂b(X∗) | D,Σy ∼ N (µb,∗,Σb,∗), (2.84)

µb,∗ = µb
X∗ + Σba

X∗,X (Σaa
X,X + ΣY )

−1 (Y − µa
X), (2.85)

Σb,∗ = Σbb
X∗,X∗ − Σba

X∗,X (Σaa
X,X + ΣY )

−1Σab
X,X∗ . (2.86)

Linear operators

Another important form of structural knowledge are linear operations. Here, Solak et al.
(2003) showed that one may derive the joint distribution of a GP f̂ and its derivative
∂f̂/∂x such that the process f̂ can be conditioned on observations of ∂f̂/∂x. Similar to
normal distributions being closed under linear transformations (Schön and Lindsten, 2011),
Jidling et al. (2017) emphasize that GPs are closed under linear operations and provided
the following Theorem 2.12.

Theorem 2.12. A GP f ∼ GP(m(x), K(x, x′)) is closed under a linear operator Bx, cf.
Williams and Rasmussen (2006), writing

Bxf(x) ∼ GP
(
Bxm(x), BxK(x, x′)BT

x′

)
. (2.87)
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As detailed in the supplementary material of Jidling et al. (2017), the covariance function
of a linear transformed GP reads

Cov(Bxf(x),Bx′f(x′)) = E
[(
Bxf(x)− Bxm(x)

)(
Bx′f(x′)− Bx′m(x′)

)T]
,

= BxE
[(
f(x)−m(x)

)(
f(x′)−m(x′)

)T]BT
x′ ,

= BxK(x, x′)BT
x′ (2.88)

As initially pointed out in the supplementary material of Jidling et al. (2017) and further
discussed in (Geist and Trimpe, 2021), the following linear operators are often found in
rigid body dynamics:

Matrix transformations, writing

f̂C
i (x) = Ci(x)f̂i(x). (2.89)

Differentiation of a function, writing

f̂∇x
i (x) = ∇xfi(x)|x=z, (2.90)

which we denote by an abuse of notation and assuming x ∈ Rn as

f̂∇x
i (x) = ∇xfi(x) =

[
∂fi
∂x1

, . . . ,
∂fi
∂xn

]T
. (2.91)

Substitution of input variables by a nonlinear mapping x = u(z) such that

f̂u
i (x) = fi(z)|z=u(x), (2.92)

e.g., instead of using an angle coordinate x =̂ϕ for describing the pose of a pendulum, the
pendulums pose can be expressed as z = [cos(ϕ), sin(ϕ)]. This coordinate transformation
has the advantage that the entries of z are bounded to [−1, 1]. Another example is the
descriptions of z in terms of a NN with inputs x (Calandra et al., 2016).

Assume that two processes are modeled as

f̂ ∼ GP(m(x), K(x, x′)) and Bxf̂ ∼ GP(Bxm(x),BxK(x, x′)BT
x′). (2.93)

As due to 2.12, the above processes are both GPs, one can define their joint distribution as[
f̂

Bxf̂

]
∼ GP

([
m(x)

Bxm(x)

]
,

[
K(x, x′) K(x, x′)BT

x′

BxK(x, x′) BxK(x, x′)BT
x′

])
. (2.94)

In particular, the covariance function becomes Cov(Bxf̂ , f̂) = BxK(x, x′).
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2.4.3 Maximum Likelihood Estimation

Finding a good prior for a GP’s hyper-parameters is a significant challenge. As we point
out in (Rath et al., 2021), a standard method for estimating a GP’s hyper-parameter is
Type-II maximum likelihood estimation (MLE). Given Y ∼ N (µX ,ΣX,X + ΣY ), type-II
MLE seeks a θ⋆ = {θ⋆A, θ⋆M} minimizing the negative log likelihood, writing

θ⋆ = argmin
θ

1

2

[
(Y − µX)

T (ΣX,X + ΣY )
−1 (Y − µX) + log |ΣX,X + ΣY |

]
+

N

2
log 2π.

(2.95)
The left term inside the bracket in (2.95) assigns a cost to the data-fit while the log-
determinant term penalizes the function’s complexity (Williams and Rasmussen, 2006,
p. 113). For example, assume ΣX,X is defined in terms of an SE kernel, if the lengthscale l
approaches zero the process becomes very flexible such that observations are over-fitted.
In this case, ΣX,X + ΣY becomes a diagonal matrix and the log-determinant attains its
maximum value. Whereas, if the lengthscale l approaches infinity, the change in the process
approaches zero such that the observations are under-fitted. For this case, the determinant
becomes nearly rank deficient such that the log-determinant acquires a large negative value.
In practice, the effect of the log-determinant term on the likelihood can be underwhelming
such that it is common practice to resort to maximum a posteriori estimation in which an
additional prior parameter distribution is multiplied with the likelihood.
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Chapter 3

Rigid Body Dynamics

At the beginning of this work, we highlighted some of the challenges of robot dynamics
identification. In particular, we emphasized that a promising direction toward improving
the sample efficiency of a data-driven dynamics model forms the inclusion of additional
prior knowledge into the model. Prior knowledge or, using a less Bayesian lingo, “structural
knowledge”, we defined as functional relationships that are known to us and that we must not
identify from data. For robot dynamics identification, a useful source of structural knowledge
forms rigid body dynamics. The following exposition of Lagrangian mechanics is, to a large
part, identical to Geist and Trimpe (2021)1 while being rearranged and being significantly
extended. Here, we provide one perspective on how in Lagrangian mechanics, the system’s
equations of motion (EOM) emerge from the interplay of fundamental principles. Albeit,
algorithms for the derivation of EOM may differ in the principles on which they are built and
the system’s properties onto which these frameworks apply. Other formulations of rigid body
mechanics that are not detailed in this dissertation include Gibbs–Appell’s EOM, Kane’s
EOM, or Hamiltonian Dynamics. Although, if we stick to Lagrangian mechanics, algorithms
that derive a robot’s dynamic equations may possess over computational routines that
make them particularly fast to execute, e.g., the articulated-body algorithm (Featherstone,
2008, p. 128) or, even use different Algebras such as Lie Algebra (Murray et al., 1994),
Spatial Vector Algebra (Featherstone, 2008, p.Chapter 2) or Geometric Algebra (Hitzer
et al., 2013). The EOM derived through these frameworks are equivalent in the sense that
they must describe the same unique motion of the mechanical system.

While the following exposition is limited to robotic systems, rigid body dynamics is a
vast field. To keep the discussion concise and provide a consecutive narrative, we first
limit the discussion to the Newton-Euler equations of a system of Nb rigid bodies subject
to holonomic constraints. By resorting to generalized coordinates and explicit coordinate
transformations, we eliminate constraint forces from the EOM. Then, we briefly discuss how
the inertia matrix and conservative forces can be rewritten in terms of potential functions
in the Euler-Lagrange equations. Afterward, we discuss how additional implicit constraints
are incorporated into the EOM. With the discussion of explicit and implicit constraints, we
illustrate how constraint equations and potential functions provide structural knowledge of
the vector spaces in which certain forces are bound to lie. These insights, we then use to
discuss and extend recent works on physics-informed regression in the subsequent chapter.

1Wiley remains the copyrights holder for all texts and figures which have been taken from Geist and
Trimpe (2021).
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Chapter 3 Rigid Body Dynamics

3.1 Kinematics and Constraints
To derive the EOM of a multibody system, the motion variables – position, velocity, and
acceleration – of its Nb rigid bodies must be described with respect to an inertial frame.
The position of every point of the i-th rigid body can be described by a position vector
ri(t) ∈ R3 pointing to the origin of a body-fixed frame with respect to an inertial frame and
a rotation matrix Ri(t) ∈ SO(3) describing the rotation of the body-fixed coordinate frame
with respect to the inertial frame. SO(3) denotes the subgroup of orthogonal matrices
of size three with determinant +1. Practically speaking, SO(3) describes the space of all
plausible physical rotations in R3. Subsequently, the multibody system has at most 6Nb

degrees of freedom (DOF).
The velocity of a body is described by the translational velocity ṙi(t) = dri

dt
and the

rotational velocity ωi(t) =
dφi

dt
with the infinitesimal instantaneous rotation vector φi ∈ R3

(Woernle, p. 67). Alternatively, the rotational velocity ωi(t) = [ω1, ω2, ω3]
T can be described

in terms of Ri(t) via the Poisson equation, cf. (Woernle, p. 37) and (Schiehlen and Eberhard,
2014, p. 28), as

Si(t) = crossp{ωi} = Ṙi(t)Ri(t)
T, with crossp{ω} =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (3.1)

If a constant vector p′ is transformed by a rotation such that p(t) = Ri(t)p
′, then the

time-derivative of p(t) follows as, cf. (Woernle, p. 37) and (Siciliano et al., 2010, p. 107),

ṗ(t) = Ṙi(t)p
′ = Si(t)Ri(t)p

′ = ωi ×Ri(t)p
′. (3.2)

The rotation matrix Ri(t) is expressed in terms of a generalized coordinate vector q(t),
writing Ri(t) := R(q). Depending on the given mechanical system, different choices for q
exist. For example, one could use spherical coordinates to denote a point in space (Schiehlen
and Eberhard, 2014, p. 14) or Cardano angles to describe rotations (Schiehlen and Eberhard,
2014, p. 24). The vector q is termed minimal if it consists of independent coordinates
that equal the system’s DOF. Equation (3.1) conceptually connects a body’s vector of
instantaneous change in rotation φ̇i with the description of rotation by finite coordinates q.

Constraints

In multibody systems, the rigid bodies are usually subject to mechanisms that apply
constraint forces. These constraint forces reduce the system’s DOF or constrain the
system’s motion. In this work, the term constraints refers to algebraic equations that
describe the system’s admissible states (Featherstone, 2008, p. 44).

Constraints can be either holonomic or nonholonomic. A constrained system is holonomic
if its position variables are integrals of the velocity variables; otherwise, the system is
nonholonomic (Featherstone, 2008, p. 41). Alternatively put, a constraint that depends on
velocity variables is holonomic if it can be obtained by differentiating another constraint
equation (that only depends on position variables and time) with respect to time. Holonomic
constraints allow finding explicit coordinate transformation, which when inserted into the
original implicit constraint of the form c(q) = 0 reduces this equation to an identity. The
following example helps to visualize the previous statement.
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3.2 Explicitly Constrained Dynamics

Figure 3.1: Coordinates and constraint of a point-mass pendulum.

Example 3.1 (Pendulum constraints). Consider an ideal pendulum as shown in Figure
3.1. A point-mass m is constrained by a rod of length L to move on a circular path which
can be described via the implicit constraint equation

x2
1 + x2

2 = L2. (3.3)

The above constraint is holonomic. Instead of using the Cartesian position coordinates
{x1, x2}, the motion of the system can be described using the angle coordinate q1. The
angle coordinate q1 denotes one possible minimal generalized coordinate description of the
system. Every point in the generalized coordinate space spanned by q1 is admissible with the
constraint (3.3). To see this, the explicit constraint transformation[

x1

x2

]
= L

[
cos(q1)
sin(q2)

]
(3.4)

can be inserted into (3.3) to yield the identity L2(cos(q1)
2 + sin(q1)

2) = L2.

3.2 Explicitly Constrained Dynamics
To keep the discussion concise, we make the following assumptions for Section 3.2 and
Section 3.3:

• The EOM of a system of Nb rigid bodies shall be expressed in terms of nq minimal
generalized coordinates.

• The effect of the constraint forces onto the system’s motion are modeled through nE

independent and consistent holonomic constraint equations such that nq = 6Nb − nE.

• The origin of the body-fixed frame lies at the body’s center of gravity (COG).

While these assumptions are common for the derivation of robot dynamics, a more compre-
hensive description of multibody dynamics is given in Schiehlen and Eberhard (2014).

With the above assumptions, the Newton-Euler EOM of the i-th rigid body with respect
to the COG read, cf. (Schiehlen and Eberhard, 2014, p. 76),

M̃ip̈i = FC,i + Fe,i + FE,i (3.5)

with p̈i = vec{r̈i, ω̇i}, the block-diagonal matrix as M̃i = diag{miI3,ΘS,i} consisting of the
body’s mass mi and its inertia matrix ΘS,i, the bias force FC,i = FG,i + vec{0,−ω̃iΘS,iωi}
with the conservative forces FG,i, the impressed forces Fe,i = vec{fe,i, τe,i}, and the explicit
constraint forces FE,i = vec{fE,i, τE,i} (Schiehlen and Eberhard, 2014, p. 76).
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Chapter 3 Rigid Body Dynamics

3.2.1 Explicit Constraints

As the system is by assumption subject to nE independent holonomic constraints, it has
nq = 6Nb − nE DOF. In turn, the i-th bodies position and orientation can be written in
terms of explicit constraints as

ri(t) = ri(q, t), Ri(t) = Ri(q, t). (3.6)

Note that a free system (that is no constraint forces act onto the bodies) can be seen as a
special case of a holonomic constrained system in which nE = 0, q is of dimension 6Nb, and
(3.6) denotes a suitable coordinate transformation (Schiehlen and Eberhard, 2014, p. 51).
Differentiation of (3.6) with respect to time yields constraint equations for the system’s
velocities and accelerations as

ṙi(q, q̇, t) = Jr,iq̇ +
∂ri
∂t

, ωi(q, q̇, t) = JR,iq̇ +
∂φi

∂t
, (3.7)

r̈i(q, q̇, q̈, t) = Jr,iq̈ + J̇r,iq̇ +
∂ṙi
∂t

, ω̇i(q, q̇, q̈, t) = JR,iq̈ + J̇R,iq̇ +
∂φ̇i

∂t
, (3.8)

with the translational Jacobian matrix Jr,i(q, t) ∈ R3×nq and the rotational Jacobian matrix
JR,i(q, t) ∈ R3×nq (Woernle, p. 195). One can rewrite (3.8) more compactly as

p̈i(q, q̇, q̈, t) = Jiq̈ + J̃i, (3.9)

with the Jacobian matrix Ji = [JT
r,i, J

T
R,i]

T and J̃i = vec{J̇r,iq̇ + ∂ṙi
∂t
, J̇R,iq̇ +

∂φ̇i

∂t
}.

3.2.2 D’Alembert’s Principle with Explicit Constraints

The D’Alembert principle (also referred to as the D’Alembert-Lagrange principle) is one
of many constraint-related principles of analytical mechanics. These principles connect
constraint forces to the constraint equations that they evoke. Other principles are Jourdain’s
principle of least constraint (Jourdain, 1909), Kane’s principle (being closely connected
to Jourdaine’s principle (Piedboeuf, 1993)), or Gauss principle of least constraint. The
main object of interest in D’Alembert’s principle forms virtual displacements. Virtual
displacements are infinitesimal vectors that are compatible with the constraints while by
definition not varying the time variable (Udwadia and Kalaba, 2007, p. 133), (Schiehlen
and Eberhard, 2014, p. 85). A thorough introduction to virtual displacements and their
connection to the system’s actual and possible displacements is provided in (Layton, 2012,
Section 2.5). In Section 3.4, we further extend the discussion on virtual displacements when
in addition to explicit constraints, also implicit constraints are incorporated into the EOM.

To eliminate the constraint forces from (3.5), it is assumed that the constraints are
ideal. A constraint is called ideal, if its constraint forces do zero work under the virtual
displacements δpi = vec{δri, δφi}. In turn, it is postulated that the ideal constraint forces
FE,i respect the following inner product

Nb∑
i=1

δpTi FE,i = δpTFE = 0, (3.10)

with the δpi of all bodies being denoted jointly as δp = vec{δp1, δp2, . . . δpNb} as well as
the explicit constraint forces of all bodies being denoted as FE = vec{FE,1, FE,2, . . . , FE,Nb}.
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3.2 Explicitly Constrained Dynamics

Note that, if the i-th body is not subject to any constraint forces then FE,i = 0. Equation
(3.10) is being referred to as the D’Alembert principle (d’Alembert, 1743; Lagrange, 1787),
which in its multibody systems extended form (Schiehlen and Eberhard, 2014, p. 92) by
insertion of (3.5) reads

Nb∑
i=1

δpTi

(
M̃ip̈i − Fc,i − Fe,i

)
= 0. (3.11)

Due to the presence of FE, the components of δpi are dependent on each other.

3.2.3 Equations of Motion

In what follows, we outline how to obtain the EOM from (3.11) by resorting to explicit
constraint equations that are expressed in terms of a minimal set of generalized coordinates.
Importantly, the vector of virtual displacements δpi can be expressed in terms of the
generalized virtual displacement vector δq ∈ Rnq using (3.7), cf. (Schiehlen and Eberhard,
2014, p. 50), such that

δpi = Jiδq. (3.12)

By inserting (3.12) into (3.10) one obtains

Nb∑
i=1

δqTJT
i FE,i = δqTJTFE = 0, (3.13)

with J = [JT
1 , J

T
2 , . . . J

T
Nb

]T. As (3.13) must hold for an arbitrary δq, we also have JTFE = 0
such that

FE ∈ N(JT). (3.14)

Further, with (3.14) and R6Nb = R(J)⊕ N(JT), cf. Beard (2002), from (3.10) follows

δp ∈ R(J). (3.15)

By transformation of (3.11) into generalized coordinate form using (3.6), (3.7), (3.8),
and (3.12), one obtains

δqT
Nb∑
i=1

JT
i

(
M̃i(Jiq̈ + J̃i)− FC,i − Fe,i

)
= 0. (3.16)

As q is assumed to be minimal, (3.16) must hold for any δq such that the local EOM of the
i-th rigid body are obtained as Miq̈ = QC,i +Qe,i, with Mi(q, t) = JT

i M̃iJi, QC,i(q, q̇, t) =
JT
i (FC,i(q, q̇, t) − M̃iJ̃i), and Qe,i(q, q̇, t) = JT

i Fe,i (Schiehlen and Eberhard, 2014, p. 100).
In return, one obtains the EOM of the multibody system as

Mq̈ = Q, (3.17)

with Q = QC +Qe, the generalized inertia matrix M =
∑Nb

i=1Mi, the generalized bias force
QC =

∑Nb
i=1QC,i = (QF+QG) including the fictitious forces QF =

∑Nb
i=1 J

T
i vec{0,−ω̃ΘS,iωi}−

M̃iJ̃i) and the conservative forces QG =
∑Nb

i=1 J
T
i FG,i, as well as generalized impressed

forces Qe =
∑Nb

i=1Qe,i (Schiehlen and Eberhard, 2014, p. 107). As the impressed forces
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Chapter 3 Rigid Body Dynamics

possess different properties depending on their source of origin, we further split up the
impressed forces as

Qe = QD +Qu, (3.18)

with the dissipative forces QD(q, q̇, t) and actuation forces Qu(q, q̇, t). These forces are
discussed in further detail in Section 3.5.

Moreover, it is assumed that q is chosen such that M(q, t) and its inverse M−1(q, t) are
symmetric and positive-definite. Then, M−1(q, t) maps the nq-dimensional generalised force
space to the nq-dimensional generalized acceleration space.

3.3 Euler-Lagrange Equations
In this section, we detail how some of the terms in (3.18) can be obtained in terms of
potential functions. The resulting equations can be used to include energy conservation
into an analytical structured model as discussed in Section 4.4.1. A detailed introduction
to the Lagrange equations is given in (Layton, 2012, p. 68) and more specifically for robot
arms in (Siciliano et al., 2010, p. 247).

The Lagrangian function L(q, q̇) can be obtained as the difference between the kinetic
energy T (q, q̇) and the potential energy V (q, q̇), writing

L = T − V =
1

2
q̇⊤Mq̇ − V. (3.19)

In return, the Euler-Lagrange equation of a rigid body system’s i-th dimension can be
derived via the calculus of variations as

d

dt

∂L
∂q̇i

− ∂L
∂qi

= 0. (3.20)

Note that the Lagrangian differs from the system’s total energy E = T +V . The Lagrangian
is used to mathematically express that a conservative system must take a path of stationary
action via (3.20) such that E remains constant. Rewriting (3.20) in vector notation and
adding the non-conservative forces Qe yields

d

dt
∇q̇L −∇qL = Qe, (3.21)

with (∇q̇)i = ∂
∂q̇i

. One can apply the chain rule to expand the time-derivative of the
Lagrangian’s partial derivative as

d

dt
∇q̇L =

(
∇q̇∇⊤

q̇ L
)
q̈ +

(
∇q∇⊤

q̇ L
)
q̇, (3.22)

with the n× n matrix
(
∇q∇⊤

q̇ L
)
ij
= ∂2L

∂qi∂q̇j
. Therefore, one obtains (3.17) in terms of the

Lagrangian as
q̈ =

(
∇q̇∇⊤

q̇ L
)−1 (− (∇q∇⊤

q̇ L
)
q̇ +∇qL+Qe

)
. (3.23)

In what follows, it is assumed that V (q) only depends on q to keep the expressions concise.
The previous equation can also be written in terms of M = ∇q̇∇⊤

q̇ L to yield an alternative
description of the forward dynamics as

q̈ = M−1

(
−∇q(q̇

⊤M)q̇ +
1

2
∇q

(
q̇TMq̇

)
−∇qV +Qe

)
. (3.24)
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3.4 Implicitly Constrained Dynamics

Figure 3.2: Left: The feet of a quadruped (Open Dynamic Robot) are subject to contact
forces (Image used with courtesy of Grimminger et al. (2020)). Right: A
pneumatic-actuated leg (RH5 leg) has several kinematic loops that can be
modeled via implicit constraints which induce constraint forces at the cut joints
(Robot image adapted with courtesy from Kumar (2019)). Figure adapted from
Geist and Trimpe (2021).

The above equations contain parametrizations of the fictitious force as

QF = −
(
∇q∇⊤

q̇ T
)
q̇ +∇qT = −∇q(q̇

⊤M)q̇ +
1

2
∇q

(
q̇TMq̇

)
, (3.25)

and of the conservative force
QG = −∇qV (q). (3.26)

Remark 3.2 (Energy conservation in EOM formulations). The EOM derived via D’Alembert’s
principle as stated in (3.17) are identical to the EOM (3.23) that were derived via the
principle of least action. In particular, the functions {M,QC} forming the energy-conserving
part of the EOM are the same. Both of these formalisms arrive at EOMs that in the absence
of Qe are conservative. The significant algorithmic difference is that the derivation of
(3.17) starts with the formulation of forces, while (3.23) formulates {M,QC} in terms of
the Lagrangian (3.19).

3.4 Implicitly Constrained Dynamics
Section 3.2 outlined how constraint forces FE,i can be excluded from the EOM by a suitable
choice of generalized coordinates q that yield explicit holonomic constraints. This section
details how implicit constraints can be used to determine constraint forces inside the
system’s EOM.

Implicit constraints can be particularly useful for nonholonomic systems, systems with
kinematic loops, and systems subject to inequality constraints. For example, when the
foot of a quadruped presses onto a surface, the surface applies a reaction force. This force
reduces the DOF of the system. The force arising from the contact can be modeled using
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an implicit holonomic constraint. In return, one obtains an analytical expression for the
respective constraint force, which can be straightforwardly removed from the EOM if the
constraint is inactive. As another example, a hydraulic-actuated robot leg (Figure 2, right)
introduces kinematic loops that can be modeled via the addition of implicit constraints.

We base the following discussion on the EOM as in (3.17). However, we broaden the
problem setting compared to Section 3.2 by making the following assumptions:

• The system of rigid bodies is subject to constraint forces that now impose nE + nI

independent constraint equations with nI denoting the number of implicit constraints.
In return, the system has (nq − nI) DOF (Layton, 2012, p. 43).

• The constraint forces that impose the nE explicit holonomic constraints are eliminated
from the EOM via a suitable choice of generalized coordinates q ∈ Rnq as detailed in
Section 3.2.

In turn, (3.17) becomes
Mq̈ = Q+QI +Qz, (3.27)

where QI denotes implicit constrained forces whose value must be determined using {M,Q}
and the implicit constraint equations. The non-ideal constraint forces Qz denote the
non-ideal part of the implicit constraint forces and are further discussed in Section 3.5.3.

These assumptions cover by no means all possible descriptions of the EOM of a rigid
body system. For example, Aghili (2005) details several dynamics equations of implicitly
holonomic constrained systems which we do not cover in this work. Also, constraint
equations can be redundant, which requires a more extensive treatment on the connection
between forces and the vector spaces that constraint-related matrices span. A more
general discussion is given in Featherstone (2008) as well as Koganti and Udwadia (2016).
Nevertheless, the following discussion illustrates the interplay between many of the building
blocks that are frequently encountered when deriving dynamics equations and which yield
structure to a regression model as detailed in Section 5.

Implicit constraints can be expressed algebraically as c(q, t) = 0 if they are holonomic, or
more generally as c(q, q̇, t) = 0 if they are nonholonomic. We assume that differentiation
with respect to time yields implicit constraint equations on the system’s position, velocity,
and acceleration as detailed below in (3.28) and (3.29).

position velocity acceleration

holonomic: c(q, t) = 0
d/dt→ Ã(q, t)q̇ = b̃(q, t)

d/dt→ A(q, t)q̈ = b(q, q̇, t) (3.28)

nonholonomic: c(q, q̇, t) = 0
d/dt→ A(q, q̇, t)q̈ = b(q, q̇, t)

(3.29)

The terms such as A(q, t) = Ã(q, t) = ∂c(q,t)
∂q

and b(q, q̇, t) = ∂c(q,q̇,t)
∂t

denote partial derivatives
with respect to q or t, respectively. Comparing (3.28) and (3.29), one sees that both
holonomic and nonholonomic constraints can be denoted jointly on the acceleration level
through the constraining equation

Aq̈ = b, (3.30)

where we assume that only nI constraints are expressed implicitly such that A ∈ RnI×nq

and b ∈ RnI . In what follows, the implicit constraints can be rheonomic that is explicitly
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dependent on time or alternatively, scleronomic such that the constraints are not explicitly
time-dependent.

Remark 3.3 (Minimal state description of nonholonomic systems). To obtain a minimal
state description, a nonholonomic system requires more position variables than velocity
variables. For example, a unicyclist riding on a plane can reach any potential position on
the plane. Yet, as an ideally rolling wheel cannot slide sideways, the wheel’s translational
Cartesian velocities at the plane’s contact point can be described as a single velocity variable
pointing along a position-dependent axis. However, in this work, we limit the discussion to
the description of the system’s EOM using as many velocity variables q̇ as position variables
q. An introduction to the derivation of EOM of nonholonomic systems with a minimal state
representation is given in (Featherstone, 2008, p. 41) and (Schiehlen and Eberhard, 2014,
p. 114).

3.4.1 Virtual Displacements

To be able to eliminate constraint forces using the D’Alembert principle for multibody
systems (3.10), one must define what constitutes a virtual displacement vector δq. Of-
tentimes, the nonholonomic implicit constraints are assumed Pfaffian taking the form
Ã(q, t)q̇ = b̃(q, t) with Ã(q, t) and b̃(q, t) not being partial derivatives of a position-level
constraint. In this case, for holonomic and Pfaffian nonholonomic constrained systems the
virtual displacement is often defined as the infinitesimal vector δq that fulfills Ãδq = 0, cf.
(Udwadia and Kalaba, 2007, p. 131) and (Layton, 2012, p. 50). However, this definition is
not applicable for nonholonomic constraints of the form in (3.29). In this case, many works
resort to virtual velocity vectors which denote the infinitesimal variation in the velocity that
agrees with the constraints while not varying position and time (Schiehlen and Eberhard,
2014, p. 55). In return, one can turn to Jourdain’s principle of virtual power to discuss the
effect of nonholonomic constraint forces on the EOM. However, as our previous discussion
of explicit constraints was centered around the concept of virtual work, we instead define
virtual displacements in terms of acceleration variations as proposed by Udwadia et al.
(1997), such that virtual displacement denotes any infinitesimal vector δq ∈ Rnq fulfilling
the equation

Aδq = 0. (3.31)

The proof for (3.31) was initially proposed by Udwadia et al. (1997) and is further
discussed in (Udwadia and Kalaba, 2007, p. 223) and (Bauchau, 2011, p. 457). A brief
outline of the proof of (3.31) is given in Section A.1.

Unlike Section 3.2, in which δq denoted any infinitesimal vector inside Rnq , (3.31) implies
that in the presence of the additional implicit constraint forces, the virtual displacement
denotes any infinitesimal vector that fulfills

δq ∈ N(A), (3.32)

such that δq ∈ R(nq−nI). The above derivation of δq := δq̈ in terms of a variation of the
system’s accelerations occupies the same role as virtual velocities as discussed (Woernle,
p. 202). (Udwadia and Kalaba, 2007, p. 223) as well as (Bauchau, 2011, p. 457) outline the
relation of ”Gauss principle“ as also mentioned in (Schiehlen and Eberhard, 2014, p. 92) to
the minimization of a quadratic function as discussed in Section 3.4.3.
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δp ∈ R(J)

FE ∈ N(JT)

⊕

=

R6Nb

QI ∈ R(AT )

δq ∈ N(A)

JT

R(JT)

J
A

AT

R(A)

⊕

= =

RnIRnq

Section 3.2 Section 3.4

Figure 3.3: Under the assumption that the explicit and implicit constraints are independent,
the constraint forces and virtual displacements must lie in the null and range
spaces of J, JT, A, and AT as illustrated above. In the above diagram, being
inspired by Beard (2002), vertical lines denote vector spaces. One can move
a vector between two of these spaces by multiplication from the left with the
constraint-related matrix transformation indicated on the respective arrow.
Figure adapted from Geist and Trimpe (2021).

3.4.2 D’Alembert’s Principle with Implicit Constraints

The implicit constraints are the consequence of constraint forces and torques FI,i =
vec{fI,i, τI,i} acting onto each body. In turn, the D’Alembert’s principle for the multi-
body system (3.10) with the explicit transformation to generalized coordinates (3.12) as
well as

∑Nb
i=1 J

T
i FE,i = 0 due to the specific choice of q, reads

Nb∑
i=1

δpTi (FE,i + FI,i) = δqT
Nb∑
i=1

JT
i (FE,i + FI,i) = δqTQI = 0, (3.33)

with the generalized implicit constraint forces QI =
∑Nb

i=1 J
T
i FI,i. As (3.31) requires

δq ∈ N(A), (3.33) yields that

QI ∈ R(AT). (3.34)

Vector spaces and constrained dynamics

The assumption that the explicit and implicit constraint equations are independent, requires
(AJT) to have full row-rank at every non-zero state {q, q̇, t} that respects the constraints.
Under these assumptions, the insights on the direction of FE in (3.14), δp in (3.15), δq in
(3.31), and QI in (3.34) can be summarized in a single diagram as depicted in Figure 3.3.
Figure 3.3 emphasizes that at an admissible point in the system’s state-space {q, q̇, t}, the
virtual displacement vectors as well as constraint forces are bound to lie in spaces spanned
by the constraint-related matrices J and A.
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3.4.3 Implicitly Constrained EOM

In textbooks on multibody mechanics, (3.34) often directly motivates a parametrization of
the ideal constraint force in terms of a Lagrange multiplier vector λ(q, q̇, t) ∈ RnI as

QI = A⊤λ. (3.35)

Yet, as discussed in Section 2.3, at the gist of Lagrangian optimization lies an optimization
problem that we seek to minimize through a corresponding Lagrangian function. Naturally,
the question arises as to what may be the optimization function whose solution determines
the length of QI?

To find one possible answer to this question, we may resort to Gauß (1829), who observed
that for a system of point masses, the acceleration caused by the ideal constraint forces
appears to minimize a quadratic functional. Consecutively, Udwadia and Kalaba (1992)
extended this observation to multibody systems, such that the acceleration caused by
implicit constraint forces, q̈I = M−1QI follows from the following optimization problem

minimize G(q, q̇, t) = q̈⊤I Mq̈I (3.36)
subject to Aq̈ = b.

The above quadratic function, being referred to as Gauss’ principle of least constraint,
uniquely defines the length of the vector q̈I. The minimum-norm solution to (3.36) yields
the system’s EOM in terms of an MP inverse as initially shown for a system of mass
particles in Udwadia and Kalaba (1992), later being extended to rigid body systems by
Arabyan and Wu (1998), and discussed in ample detail in (Udwadia and Kalaba, 2007).
Following (Udwadia and Kalaba, 2007, 2002), we insert (3.27) into (3.36) using M > 0,
such that

minimize G(q, q̇, t) = q̈TI,sq̈I,s (3.37)

subject to Asq̈I,s = b− AsM
−1/2Q̄,

with the normalized acceleration q̈I,s = M1/2q̈I, As = AM−1/2, and Q̄ = Q+Qz. As detailed
in Section 2.2, the solution to (3.37) yields the equation

q̈ = M−1/2A+
s b+M−1/2(In − A+

s As)M
−1/2Q̄, , (3.38)

= M−1AT(AM−1AT)+b+ (I −M−1AT(AM−1AT)+A)M−1Q̄, (3.39)

= M−1
(
Q+Qz + AT(AM−1AT)+

(
b− AM−1(Q︸ ︷︷ ︸

QI

+Qz)
))

, (3.40)

Equation (3.38) is referred to in literature as the Udwadia-Kalaba Equations of Motion
(UKE) (Zhao et al., 2018). Importantly, Qz denotes the non-ideal part of the implicit
constraint forces and by definition remains in N(A) (Udwadia and Kalaba, 2000, 2001,
2002). The UKE also yield a unique solution if rank(A) < nI. Inside the UKE the forces Q̄
are first normalized by M−1/2 and then orthogonal projected through the matrix (I−A+

s As)
into N(As) (Koganti and Udwadia, 2016). Figure 3.4 visualizes the inner workings of the
UKE as initially shown by Koganti and Udwadia (2016).

While the above equations are valid for rank(A) ≤ nI, if rank(A) = nI then (AM−1AT)
is nonsingular such that (AM−1AT)+ = (AM−1AT)−1.
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Figure 3.4: From the UKE follows that according to Gauss’ principle the normalized
acceleration of an implicitly-constrained system M1/2q̈ consists of the vectors
(In − A+

s As)M
−1/2Q̄ and A+

s b. Adapted from Udwadia and Kalaba (2002).

As by definition Qz ∈ N(A), an explicit formula for the Lagrange multipliers is obtained
from (3.40) as

λ = (AM−1AT)+
(
b− AM−1Q). (3.41)

We note that when the implicit constraints are active, the forces Q split up into Q =
QR + QN with QR ∈ R(AT) and QN ∈ N(A). The force QR = −AT(AM−1AT)+AM−1Q
contributes to the implicit constraint force QI while QN = (I − AT(AM−1AT)+AM−1)Q
contributes to the system’s constrained acceleration. To simplify, the notation one can
rewrite (3.39) as

q̈ = Lb+ TM−1(Q+Qz), (3.42)
= Lb+M−1S(Q+Qz), (3.43)

with the matrices L = M−1AT(AM−1AT)+, T = I − LA = I −M−1AT(AM−1AT)+A, and
S = TT = I −ALT = I −AT(AM−1AT)+AM−1. Moreover, assuming M > 0, T and S are
oblique projection operators that map a vector into N(A) as detailed in Section A.2.

3.4.4 Implicit Constraints and Lagrangian Optimization

Further details on the UKE can be found in (Bauchau, 2011). A different approach that is
commonly encountered in robotics resorts to Lagrangian optimization.

Gauss’ principle as stated in (3.36) forms a special case of norm minimization with
equality constraints as discussed in Section 2.3. Therefore, the multiplication of (3.36) by
1
2

yields the Lagrangian

L =
1

2
q̈TMq̈ − Q̄Tq̈ +

1

2
Q̄TM−1Q̄+ λT(Aq̈ − b). (3.44)

To find the q̈ that minimizes (3.36), the KKT conditions of the Lagrangian read[
∇q̈L
∇λL

]
=

[
Mq̈ − Q̄+ λTA

Aq̈ − b

]
= 0, (3.45)

which after rearranging yields an index-3 system of differential-algebraic equations, cf.
(Schiehlen and Eberhard, 2014, p. 105), as[

M AT

A 0

] [
q̈
λ

]
=

[
Q̄
b

]
. (3.46)
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When M is positive definite and rank(A) = nI, the solution to (3.46) is given according to
(2.70) as

q̈ = M−1AT(AM−1AT)−1b+ (I −M−1AT(AM−1AT)−1A)M−1Q̄, (3.47)

with
λ = (AM−1AT)−1(AM−1Q− b). (3.48)

Equation (3.47) is identical to the EOM as in (3.39). We note that the definition of the
Lagrange multiplier in (3.44) resulting in (3.48) is sign opposite to the Lagrange multiplier
in (3.41). In turn, (3.48) the implicit constraint force becomes QI = −ATλ.

3.4.5 Singular Inertia Matrices

In some special cases, it is advantageous to derive the implicitly constrained EOM starting
from EOM as in (3.17) in which the inertia matrix M is positive semi-definite. In what
follows, we refer to EOM (3.17) before additional implicit constraint forces are introduced
as the unconstrained EOM.

Practical examples that demonstrate the utility of a singular inertia matrix include:

• Deriving unconstrained EOM via the Euler-Lagrange equations, in which for con-
venience the potential energy is derived in Cartesian coordinates while the kinetic
energy is formulated in terms of generalized coordinates (Udwadia and Phohomsiri,
2006, p. 2106), (Udwadia and Wanichanon, 2012, p. 333).

• Deriving unconstrained EOM using a redundant set of coordinates such that bodies
can be removed from the system without significantly altering the EOM (Udwadia
and Phohomsiri, 2006, p. 2109), (Udwadia and Wanichanon, 2012, p. 335)

• Deriving the rotational dynamics of a rigid body in terms of quaternions (Udwadia
and Schutte, 2010, p. 123), (Udwadia and Wanichanon, 2013, p. 438).

One possible approach towards the derivation of EOM of a system with a singular inertia
matrix has been proposed by Udwadia and Wanichanon (2013). First, the authors assume
that an unconstrained system of the form in (3.17) with M > 0 is subject to implicit
constraints that yield the constraining equation (3.30). As a next step, the authors define
the augmented mass matrix

M̄ := M + α2ATGA, (3.49)

where G(q, t) ∈ RnI×nI denotes any positive definite matrix with sufficiently smooth functions
(C2) as elements and α(t) any nowhere-zero real function that is also sufficiently smooth
(C2). Then M̄ is positive definite if and only if rank([M,AT]) = nq at each instant of time
(Udwadia and Wanichanon, 2013, Lemma 3.1). Moreover, the authors define the augmented
force as

Q̄(q, q̇, t) := Q(q, q̇, t) + AT(q, q̇, t)G(q, t)z(q, q̇, t), (3.50)

with z denoting an arbitrary vector. Subsequently, the EOM of the implicitly constrained
system are obtained by replacing inside (3.38) the terms M by M̄ and Q by Q̄, reading

q̈ = M̄−1/2(AM̄−1/2)+b+ M̄−1/2(I − (AM̄−1/2)+(AM̄−1/2))M̄−1/2(Q̄+Qz)), (3.51)
= M̄−1AT(AM̄−1AT)−1b+ (I − M̄−1AT(AM̄−1AT)−1A)M̄−1(Q̄+Qz)). (3.52)
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Chapter 3 Rigid Body Dynamics

Remarkably, besides M > 0, the constraints can be ideal or non-ideal, holonomic or
nonholonomic, scleronomic or rheonomic, and dependent on each other.

Udwadia and Wanichanon (2013) points out (p. 441) that their EOM are simpler as the
EOM proposed in Udwadia and Schutte (2010) as, (i) they only use AT instead of A+ to
define the unconstrained auxiliary system and (ii), they define the unconstrained auxiliary
system in terms of the arbitrary positive function α(t) and positive definite matrix G(q, t).

Deriving EOM with M ≥ 0 via Lagrangian Optimization Alternatively to the
derivation proposed by Udwadia and Wanichanon (2013), one arrives at a similar EOM via
the inversion of the KKT matrix in (3.46). The KKT matrix in (3.46) is also referred to as
the bordered Gramian matrix in optimization theory (Magnus and Neudecker, 2019, p. 66).
As pointed out in (Magnus and Neudecker, 2019, p. 69, Theorem 23), the matrix equation
(3.46) with M ≥ 0 and A ∈ RnI×nq has a solution if and only if

(Q+Qz) ∈ R([M,AT]) and b ∈ R(A), (3.53)

which reads

q̈ = M̃+AT(AM̃+AT)+b+ (I − M̃+AT(AM̃+AT)+A)M̃+(Q+Qz) + (I − M̃+M̃)h,
(3.54)

with M̃ = M + ATA and the arbitrary vector h. If we further assume rank([M,AT]) = nq

such that M̃ > 0 (Udwadia and Wanichanon, 2013, Lemma 3.1), we arrive at a special case
(α = 1, G = I) of (3.51).

3.5 Types of Forces
The previous discussion showed how constraint forces restrict the direction of a system’s
acceleration q̈ to follow a constraint path. Here, the size of the constrained acceleration,
and hence the system’s motion, is determined by the vector of forces Q+Qz. These forces
are caused by numerous physical phenomena such as tribologic effects, the interaction of
mass with force, or magnetic fields.

robot dynamics functions

inertia

fictitious

dissipativeactuation

forces

conservative

bias

elastic friction / damping

constraint

non-ideal implicit

Figure 3.5: Overview on functions that arise in a robot’s EOM. These functions differ in
the type of system knowledge used for their derivation. Some functions depend
on additional inertia terms (green), and others rely on external phenomena that
are often not known a-priori (yellow).
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Knowledge of the physical phenomena underlying forces enables informed decisions on
how to learn these functions from data. In particular, with prior knowledge of the cause of
a function, the inputs of a data-driven model approximating these functions may be chosen
only to include relevant state information and informative environmental variables. In what
follows, we briefly discuss the different types of forces that one may encounter in a robotic
system. Figure 3.5 provides an overview of the different forces that one may encounter
inside a rigid body system.

3.5.1 Conservative Forces

The bias force QC contains the conservative forces QG and the fictitious force QF. The
term “bias force” has been adapted from (Featherstone, 2008, p. 40). The bias force includes
all forces that only depend on the system’s kinematics and inertia functions as described
in Section 3.3. The fictitious force QF models the Coriolis and centrifugal forces. The
conservative forces QG arise from a physical potential function V (q, q̇) that may describe
the system’s potential energy when being subject to a spring or a gravitational field. The
bias force does not include friction forces, even though some particular friction forces may
be written in terms of a potential function (Kuypers, 2016, Chapter 6).

3.5.2 Dissipative Forces

The vector of dissipative forces QD(q, q̇, t), denote forces that act against the system’s
motion and, in turn, reduce the system’s kinetic energy. Dissipative forces include friction
forces between bodies as well as dissipative phenomena during the deformation of bodies.
Energy dissipation through body deformation is not discussed in this dissertation.

Direction of friction forces

A friction force that acts on a rigid body’s particle being in contact with a surface opposes
the particle’s velocity relative to the surface. This directional principle of friction forces
is useful structural knowledge. In practice, a friction force is a mathematical abstraction
that describes the surface integral over infinitesimal forces acting inside a body’s area of
contact with another surface. In turn, friction effects in a revolute joint are often described
via a torque vector. In robotic systems, the angle of revolute joints is often chosen as a
generalized coordinate qi such that the friction force inside a revolute joint is colinear to qi.
In particular, the friction force inside a revolute joint being colinear to qi always opposes
the velocity q̇i and in turn may be modeled as

QD,i(q, q̇, t, ρ) = −sign(q̇i)∥fD(q, q̇, t, ρ)∥1, (3.55)

with f being a parametric function of appropriate size and ρ denoting additional variables,
cf. (Bauchau, 2011, p. 88) and (Lutter et al., 2020). At this point, the function fD uses full
state information as input as no additional structural knowledge has been assumed. Yet,
friction force may depend on a Cartesian force that is applied normal to the contact area.
Modeling friction is a challenging endeavor in itself as it depends on various parameters
and may change over time while depending on many environmental parameters. Many
empirical models such as the Coulomb friction model, the viscous friction model, the Dahl
model, or the Lugre friction model have been proposed to describe friction phenomena.
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3.5.3 Non-ideal Constraint Forces

Oftentimes, constraint forces are not ideal and do virtual work. In such a case, Udwadia
and Kalaba (2002) proposed to divide the constraint force into an ideal part QI and a
non-ideal part Qz doing virtual work. The forces Qz are usually dissipative, but can also
denote actuation forces. Typically, QI causes a Cartesian Coulomb friction force Fz whose
transformation into the generalized coordinate space yields Qz. For example, the friction
force Qz between a robot’s foot and a surface is caused by the normal force FI that the
foot applies onto the surface. As emphasized by Udwadia and Kalaba (2000), the part of
any arbitrary force which is doing virtual work, Q′, writing δqTQ′ ̸= 0, must have the same
direction as δq and hence

Q′ ∈ N(A). (3.56)

3.5.4 Actuation Forces

The actuation forces Qu(q, q̇, t), also referred to as control forces, can decrease as well
as increase the system’s total energy. In addition, the actuation forces can be directly
controlled during the robot’s operation. In many robots the actuation forces are linear with
respect to the control inputs u, writing

Qu = B(q)u, (3.57)

with the input Jacobian B(q).

Actuation Dynamics In the control of a mechanical system, one usually calculates the
desired actuation force Qu,desired that is sent to computational routines, which in return
cause the actuators to impress Qu onto the system. Yet, Qu likely deviates from Qu,desired

due to friction and other unmodeled physical phenomena inside the actuators, flexibilities in
gear-belts or attached shafts, free-play in an attached transmission, and internal dynamics
of cascaded feedback control loops. To account for this deviation, one may introduce the
actuation error function

ϵu(ρ) = Qu,desired −Qu, (3.58)

with a suitably chosen vector of observables ρ, e.g., state data {q, q̇} from several time
steps, the error to a target state, or the current applied to the actuators. Note some parts
of ϵu(ρ) can be modeled via the dissipative forces QD.

Example 3.4 (Creation of an actuation force inside a robot’s joint). The generation
of torque inside a robot arm’s brushless motors requires that Qu,desired is transformed by
low-level control routines into motor currents. The motor currents create a magnetic field
that creates torque inside the motor. This motor torque is altered by a potential gear train
as well as friction, and finally Qu is applied to the joints. Here, the motor shaft can be
subject to torsional deformation, and a gear belt may strain until the static friction inside
the robot’s joint is overcome.

Joint Torques Currently, the most common robotic systems, such as many robot arms
and quadrupedal robots, connect bodies through revolute joints in which motors can cause
actuation forces inside the joint. In these systems, the generalized force being caused inside
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the joint is referred to as joint torque τ . As the dissipative forces act all inside the joints,
the joint torques for a robot arm’s EOM described in minimal coordinates become

τ := Qe = QD +Qu. (3.59)

The EOM of a robot arm whose end-effector is subject to a surface constraint may be
written as

τ = Mq̈ − (QC +QI +Qz) . (3.60)

That is, the joint torque can be observed as the difference between the forces acting onto
the system {QC +QI +Qz} and the inertial force {Mq̈}.

Computing Control as an Implicit Constraint Force As initially proposed by
Udwadia (2003), actuation forces may also be computed as an implicit constraint force
required to enforce that a mechanical system respects a set of implicit constraints. Peters
et al. (2008) used this idea to develop a framework that derives several well-known robot
control laws using implicitly-constrained rigid body dynamics equations. Moreover, Udwadia
and Koganti (2015) detail how some Lyapunov functions can be written to yield acceleration-
level constraints as in (3.30). Koganti and Udwadia (2016) further details how implicitly-
constrained forces arising from mechanical constraints can be combined with implicit
constraint forces arising from control constraints.
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Chapter 4

Physics Informed Regression

Analytical mechanics comprises an abundant source of structural knowledge for the regres-
sion of robot dynamics. Yet, if a practitioner is tasked to model a robot’s dynamics function,
questions emerge on how to leverage this structural knowledge for the identification of the
error functions. To alleviate these questions, we look at rigid body dynamics as a parametric
network that similarly to other parametric models is erroneous. This view on analytical
models allows us to distinguish errors into errors that arise from a faulty specification of the
dynamics and errors that arise from wrong analytical parameter estimates. This separation
of a dynamic model’s errors is done in the output space of the analytical model. We further
extend this discussion by assuming that errors may arise in latent functions hidden inside
the analytical model. This enables us to categorize current literature on physics-informed
regression with respect to how the models’ errors are reduced, namely into:

• Analytical parametric networks (APN): An analytical dynamics model is treated
as a parametric model whose parameters are estimated from data.

• Analytical (output) residual modeling (ARM): The error between the system’s
data and the output of an analytical dynamics model is approximated by a solely
data-driven model.

• Analytical latent modeling (ALM): A data-driven model replaces functions inside
an analytical mechanics model to approximate latent errors in the mechanics before
they are transformed by a-priori known transformations from physics.

This categorization of different physics-informed models allows us to develop a deeper
understanding of how errors arise inside a rigid body dynamics model.

Subsequently, we suggest that a physics model’s errors should be approximated
by data-driven models before these latent functions are transformed by known
transformations from physics. In this regard, the data-driven model may only
enlarge the function space of the physics-informed model where necessary.

The first paragraphs of this section evolving around the errors of physics-informed models
is based on (Geist and Trimpe, 2021)1. Albeit, this discussion has been re-written and the
notion of adventitious errors has been introduced. The discussion of existing literature in
physics-informed modeling is mostly identical to (Geist and Trimpe, 2021) and (Rath et al.,
2021).

1Wiley remains the copyrights holder for all text excerpts and figures which have been taken from Geist
and Trimpe (2021).
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4.1 Model Errors
As shown in Section 3, the FD can be expressed either in terms of force vectors that are
derived using explicit coordinate transformations (3.17), additional potential functions
(3.21), or resorting to implicit constraints (3.40), taking the form

q̈ = M−1(Q+Qz +QI). (4.1)

These formulations of the FD consist of sums of generalized forces that are multiplied by
M−1. In comparison, the system’s ID may take the form

Qu = Mq̈ −QC −QD −Qz −QI , (4.2)

in which the acceleration q̈ is transformed by M and the force vector by identity matrices.
To unify the discussion of FD and ID, it is assumed that the EOM may be written as a

sum of latent vector-valued functions f̂i(x, θA) that are transformed by latent matrix-valued
functions Ci(x, θA), e.g., f̂1 := QC and C1 := M−1, such that the system’s dynamics model
read

f̂A(x, θA) =
∑
i

Cif̂i, (4.3)

where x denotes the model’s input vector.

4.1.1 Approximation errors

Naturally, a dynamics model deviates from the system’s real dynamics f(x) by an error
function

ϵA(x, θA) = f(x)− f̂A(x, θA). (4.4)

A common approach towards the reduction of ϵA is to optimize the dynamics model
parameters θA such that a loss L(f̂ ,D; θA, θL) over the training data X is minimized.
Literature that follows this approach is discussed in Section 4.2. The intrinsic goal of such
an optimization is to find ideal dynamic model parameters

θ⋆A = argmin
θA

∥ϵA(x, θA)∥1. (4.5)

such that one obtains the ideal dynamics model

f̂ ⋆
A(x) = fA(x, θ

⋆
A) =

∑
i

C⋆
i (x)f̂

⋆
i (x) =

∑
i

Ci(x, θ⋆A)f̂i(x, θ⋆A). (4.6)

In turn, the vector-valued minimal error function of the dynamics model being referred to
as approximation error in analogy to statistical learning theory, reads

ϵ⋆A(x) = ϵA(x, θ
⋆
A) = f(x)− f̂ ⋆

A(x). (4.7)

By definition, the function ϵ⋆A does not depend on θA and denotes errors that cannot be
captured by the dynamics model. For example, ϵ⋆A may be caused by elasticities in the
system’s bodies, disturbances impressed by attached cables, unaccounted torsion of a shaft
inside a gearbox, or an insufficient analytical description of friction phenomena.
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Figure 4.1: Illustration of the errors of a rigid body dynamics model.
Figure adapted from Geist and Trimpe (2021).

As shown in Figure 4.1, the error functions underlying a dynamics model can be con-
ceptually illustrated as being elements of a function space. Figure 4.1 is inspired by the
survey of Von Luxburg and Schölkopf (2011) on statistical learning theory, which shares
interesting similarities to the problem of nonlinear dynamics identification. Notably, every
parameter vector θA defines with the dynamics model f̂A(x, θA) an element of a function
space FA = {f̂A : Rnx 7→ Rny}. The function space FA forms a subspace of the space of
all possible dynamics models F = {f ′ : Rnx 7→ Rny}, writing FA ⊂ F . When a certain
coordinate representation {x, y} is chosen to model dynamics, it is implicitly assumed that
there exists the real dynamics y = f(x) such that f ∈ F . In this case, changing θA can be
seen as moving f̂A around in FA where f̂ ⋆

A(x) denotes the element that is closest to f(x) in
terms of ∥ϵA∥1.

Physics-informed modeling approaches aim at reducing the approximation error of a
physics model by enlarging the function space through the thoughtful incorporation of a
data-driven model.

4.1.2 Estimation Errors

While ϵ⋆A does not depend on θA, optimization of θA seeks to minimize the estimation error

ϵE(x, θA) = ϵA(x, θA)− ϵ⋆A(x) = f̂ ⋆
A(x)− f̂A(x, θA). (4.8)

In practice, it is not feasible to observe all values of ϵA(x, θA). Instead, parameter identifi-
cation of f̂A(x, θA) is carried out on a dataset D = {X, Y }. The evaluation of ϵA(x, θA) on
the input data X is denoted in an abuse of notation by the vector ϵA(X, θA), which with
the output data Y yields the model’s output residual

ϵ̃A(D, θA) = Y − f̂A(X, θA). (4.9)

By definition, the model parameter vector θ̂A that achieves the minimal estimation error
ϵE(x, θ̂A) is obtained as

θ̂A = argmin
θA

L(f̂A,D; θA). (4.10)

The limited amount and quality of training data hinder the identification of θA. For example,
an optimizer is biased by the distribution of data in X. However, it is possible to adjust
X to remove biases as well as shape the loss L such that data points with a large error
considerably affect the estimate of θA, e.g., using a quadratic loss. In addition to problems
with data accumulation, the optimization of a nonlinear function can itself be a laborious
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process. On one hand, the global optimization methods require large amounts of samples
to cover significant parts of the optimization space whereas local optimization techniques
are prone to get stuck in local optima. The limitations of parameter estimation causes θA

to deviate from θ⋆A by a vector-valued parameter error function

ϵθA = θ⋆A − θA. (4.11)

With the above equation, the estimation error can be rewritten in terms of its defining
quantity ϵθA as

ϵE(x, θA) = f̂A(x; θ
⋆
A)− f̂A(x, θ

⋆
A − ϵθA). (4.12)

The decomposition of the error function into approximation errors ϵ⋆A(x) and estimation
errors ϵA(x, θA) reveals a dilemma in the design and optimization of a statistical model.
On one hand, adding a data-driven model to an analytical dynamics model enlarges its
function space and in turn, reduces ϵ⋆A(x). On the other hand, it is well known from
statistics literature that a large function class increases over-fitting of the training data and
subsequently increases ϵE(x, θA) (Von Luxburg and Schölkopf, 2011). If a model over-fits,
then its ability to generalize to unseen parts of the state space diminishes. Moreover,
increasing the model’s number of parameters aggravates parameter optimization, increases
the amount of data as well as time required to achieve a satisfactory optimization loss,
increases the model’s energy consumption, and increases the model’s memory requirements.
To make matters worse, if the model spans a too-small function space, such that it under-
fits, then the overall error ϵA(x, θA) increases significantly while the physical parameters
may attain physically inconsistent values. Physical inconsistent values form a particular
challenge in the parameter optimization of analytical dynamics models and are discussed in
more detail in Section 4.2.

4.1.3 Latent and Adventitious Errors

The significant difference between solely data-driven regression and physics-informed regres-
sion informs the inclusion of additional prior physics knowledge. So far, it has been assumed
that structural knowledge takes the form of an analytical dynamics model f̂A(X, θA) that
is used in the computation of the residual function (4.9). However, the individual functions
that form an analytical dynamics model {Ci, f̂i} possess unique mathematical properties
while also our knowledge of these latent analytical dynamics functions differs considerably.
It appears worthwhile to inspect the errors that arise in {Ci, f̂i} and how subsequently these
latent errors shape ϵA. Following this vein of thought, we assume that the real dynamics
function can be denoted in terms of the latent error functions {ϵCi , ϵf̂ ,i} as

f(x) = ϵ⋆A,A +
∑
i

(
Ci + ϵCi

)(
f̂i + ϵf̂ ,i

)
, (4.13)

where the adventitious approximation error ϵ⋆A,A denotes error functions that cannot be
captured by a parametric model as in (4.3) regardless of the model’s chosen function class.
For example, the elastic deformation of bodies cannot be captured by rigid body dynamics
and in turn, introduces an error ϵ⋆A,A into a data-driven rigid body dynamics model. Another
example for the creation of ϵ⋆A,A forms a cable that is attached to a robot’s body and whose
influence on the robot’s dynamics cannot be modeled given the system’s observable states.
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Figure 4.2: The additive relationship between the functions underlying a data-driven an-
alytical dynamics model is visualized as a 1D vector diagram. APN solely
focuses on the estimation of θA inside f̂A(x, θA). ARM additionally models
ϵ⋆A(x) by a data-driven model, which also may reduce ϵE(x, θA). ALM uses
specifically designed data-driven models to reduce approximation errors ϵ⋆A,I(x)

that originate from the miss-specification of latent functions inside f̂A(x, θA).

In analogy to the previous sections, the latent errors can be divided into latent approxi-
mation errors {ϵCi,I, ϵf̂i,I} and latent estimation errors {ϵCi,E, ϵf̂i,E}, writing

ϵCi(x, θA) = ϵCi,I(x) + ϵCi,E(x, θA) and ϵf̂i = ϵf̂i,I(x) + ϵf̂i,E(x, θA). (4.14)

Latent Estimation Errors

The latent functions {Ci, f̂i} give rise to estimation errors

ϵCi,E(x, θA) = C⋆
i (x)− Ci(x, θA), and ϵf̂i,E(x, θA) = f̂ ⋆

i (x)− f̂i(x, θA). (4.15)

In analogy to Section 4.1.2, the latent estimation errors {ϵCi,E(x, θA), ϵf̂i,E(x, θA)} solely
arise from an error in the model’s analytical parameters ϵθA = θA − θ⋆A.

When designing a physics-informed regression model, the individual parameter errors
ϵθA,i differently affect the dynamics model’s prediction. While a precise estimation of some
parameters in θA strongly influences the model’s prediction error ϵA, a large error in other
parameters may not significantly impact the model’s prediction. For example, for robots
that have a gearbox inside their joints, some rotational inertias may have a negligible effect
on the system’s dynamics compared to the gear friction torques. To avoid estimating model
parameters that barely affect the loss function, one can perform a parameter sensitivity
analysis. If all analytical parameters are treated as unknown and must be estimated from
data, the function space spanned by a parametric model increases and in turn, its sample
efficiency reduces.

Latent Approximation Errors

In addition, the model’s approximation error ϵ⋆A can be further divided into

ϵ⋆A = ϵ⋆A,A + ϵ⋆A,I, (4.16)

with the intrinsic approximation error ϵ⋆A,I denoting all errors that arise due to a miss-
specification of the latent functions {Ci, f̂i}. For example, due to an inaccurate friction
model f̂i an error ϵf̂i,I(x) is introduced into the model that could be removed by adjusting
the function class of f̂i. In particular, one could adjust the function class by the addition
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of a neural network to the analytical dynamics function f̂i approximating ϵf̂i,I(x). By
definition, the intrinsic approximation error ϵ⋆A,I arises from latent approximation errors
{ϵf̂i,I(x), ϵCi,I(x)}. To understand the relationship between ϵ⋆A,I and {ϵf̂i,I(x), ϵCi,I(x)}, we
consult Figure 4.2 which yields with (4.15) the equation

ϵ⋆A,I(x) + f̂ ⋆
A(x) =

∑
i

((
Ci + ϵCi,E + ϵCi,I

)(
f̂i + ϵf̂i,E + ϵf̂i,I

))
, (4.17)

=
∑
i

((
Ci − Ci + C⋆

i + ϵCi,I
)(
f̂i − f̂i + f̂ ⋆

i + ϵf̂i,I
))

, (4.18)

such that with (4.6) one arrives at

ϵ⋆A,I(x) =
∑
i

(
C⋆
i ϵf̂i,I + ϵCi,Iϵf̂i,I + ϵCi,If̂

⋆
i

)
. (4.19)

4.1.4 Types of Knowledge

The distinction between latent approximation errors and latent estimation errors allows us
to categorize {f̂i, Ci} based on the degree to which these functions are known during model
synthesis. Namely, a latent analytical function f̂i (and analogously a function Ci) may be:

• known, ϵf̂i,I = ϵf̂i,E = 0,

• parametrically-unknown, ϵf̂i,I = 0, ϵf̂i,E ̸= 0,

• unknown, ϵf̂i,I ̸= 0, ϵf̂i,E ̸= 0.

Typically, known robot dynamics functions are kinematics and constraint equations. Kine-
matic parameters can be often accurately determined using computer-aided design (CAD),
by measuring on the real robot, or by performing parametric estimation solely on the
system’s kinematics functions.

Inertia parameters can be determined using CAD. Yet, developing a CAD model with a
correct mass distribution is a laborious process. In turn, many robot manufacturers do not
provide accurate priors for the system’s inertia parameters. Instead, a manufacturer may
provide parameter estimates that have been obtained using basic optimization techniques
such as linear regression as detailed in Section 4.2. Therefore, inertia parameters are often
not precisely known a-priori. More complex functions such as friction may also be known
a-priori, if they have been identified in a separate previous experiment. From a data-driven
learning perspective, it is helpful to distinguish kinematic parameters θA,K ⊂ θA from inertia
parameters θA,I ⊂ θA.

Remark 4.1 (On the separation of kinematic and inertia parameters.). In some rigid body
dynamics algorithms, the kinematics functions are recursively computed using vectors that
point from a preceding joint to a body’s COG, and another vector that points from the body’s
COG to the next joint. Such a parameterization of the system’s kinematics does not allow
the estimation of the system’s COG positions independently from the distance between the
robot’s joints. In turn, in such a kinematics description the robot’s COG positions cannot
be estimated independently from the distance between the joints.
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Figure 4.3: Schematic of analytical structured modeling. Data-driven models can approx-
imate the output error of the analytical model (ARM) and/or reduce latent
errors inside the analytical model (ALM). Robot image used with courtesy of
Grimminger et al. (2020). Figure adapted from Geist and Trimpe (2021).

Parametrically unknown functions in rigid systems are typical {M,QC} as these functions
are derived only in terms of known kinematics, as well as the gravitational acceleration
constant. Unknown functions depend on a-priori unknown and complicated environmental
phenomena. A notorious candidate for unknown functions form friction forces in a robot’s
joints as well as in a robot’s end-effector. While a function may be unknown, we can still
have an analytical model prior, such as a Coulomb friction model, to reduce {ϵf̂i,I, ϵf̂i,E}.
Moreover, a function can be unknown, while the model designer has structural knowledge of
the mathematical properties of the function. For example, one might wish to approximate
an unknown friction function with a solely data-driven parametric function whose outputs
can only be dissipative.

4.1.5 Modeling Frameworks

Prior works towards the identification of rigid body dynamics differ in the imposed as-
sumptions on the system and its analytical description. In what follows, we propose a
categorization of physics-informed regression models for rigid body dynamics identification
and discuss how recently proposed models fit into these categories.

The first category of models that suggest improvements over solely analytical dynamics
models are analytical dynamics models whose parameters are estimated from data. We
refer to such approaches as ”Analytical Parameter Optimization“, which will be discussed
in Section 4.2. Analytical parameter optimization cannot reduce the error ϵA that remains
after parameter estimation.

As depicted in Figure 4.3, physics-informed regression models can be distinguished by
how ϵA is approximated using data-driven modeling, namely into:

• ARM, in which data-driven models approximates ϵA directly,

• ALM of latent analytical functions, in which data-driven models approximate f̂i
and/or Ci in (4.13) if the respective analytical model is inaccurate, or alternatively,

• ALM of latent residual functions, in which data-driven models approximate ϵCi and/or
ϵf̂i in (4.13) hence also using the analytical functions f̂i and Ci.
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For both ARM and ALM, the target function which shall be approximated by the data-
driven model must be specified. With the prior knowledge on where approximations errors
occur inside the analytical dynamics model, ALM is potentially more sample-efficient than
ARM as it allows to additionally:

• reduce the complexity of the target function,

• reduce the dimensionality of the target function,

• build prior knowledge on physical properties of the target function into the data-driven
model.

For example, if we assume that it is known (through empirical validation) that a large
part of the approximation errors arises from joint friction. Then a data-driven model can
directly be built into the analytical dynamics model such that it approximates the joint
friction. For the data-driven model, one can then only use inputs that are typically relevant
for friction functions and enforce that its outputs must be dissipative (cf. Section 4.4.2).

4.1.6 Errors in Forward & Inverse Dynamics

Before designing a physics-informed regression model, the model’s input and output variables
must be chosen, i.e., given the task at hand, should one resort to inverse dynamics,
forward dynamics, or transition dynamics? In many robotic textbooks, an ID formulation
is recommended for feed-forward control, while an FD formulation seems suitable for
simulation. However, apart from the model’s application, there are additional aspects that
should be considered when developing a physics-informed regression model.

Multiplicative Errors

A model deviates from observation of f(x) either through model errors {ϵ⋆A,A, ϵC1 , ϵf̂1} or
through observation noise. Equation (4.19) emphasizes that the intrinsic approximation
error ϵ⋆A,I follows from products between the ideal latent functions {C⋆

i , f̂
⋆
i } and the latent

error functions {ϵf̂i,I, ϵCi,I}. An important implication that underlies (4.19) is that the
structure of error functions in FD models differs substantially from ID dynamics.

The combination of the FD as in (3.17) with (4.13) yields

q̈ = ϵ⋆A,A +
(
M−1 + ϵC1

) (
Q+ ϵf̂1

)
. (4.20)

For FD as in (4.20), the latent errors are nonlinearly transformed such that the error at
the output of the analytical dynamics model reads

ϵA = ϵ⋆A,A +M−1ϵf̂1 + ϵC1Q+ ϵC1ϵf̂1 . (4.21)

In turn, a data-driven model approximating ϵA learns a nonlinear transformation of the
latent error functions {ϵC1 , ϵf̂1}.

In comparison, the system’s ID read

Qu = ϵ⋆A,A + (M + ϵC1) q̈ −
(
QC + ϵf̂1

)
. (4.22)
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For ID as in (4.22), the error function reads

ϵA = ϵ⋆A,A + ϵC1 q̈ + ϵf̂1 . (4.23)

In turn, the latent model errors arising inside the system’s forces can be directly approxi-
mated via ARM. For FD, the nonlinear transformation of errors renders ARM considerably
more challenging compared to using ID as also noted in the following remark.

Remark 4.2 (ARM of FD is often more challenging than of ID). ARM models ϵA directly
through a data-driven model. In ID models, the error in (4.23) denotes the sum of adven-
titious modeling errors and latent model errors. In FD models, the error in (4.21) is the
result of nonlinear transformations of the latent errors {ϵf̂1 , ϵC1}.

The following example shall illustrate the benefits of ALM inside FD.

Example 4.3 (Multiplicative errors in pendulum dynamics). The forward dynamics of an
undamped-uncontrolled pendulum in terms of its angle q reads

q̈(q) = M−1QG, (4.24)

with the inverse of the inertia matrix M−1 = 1/mL2 and the gravitational torque QG =
− sin(q)Lmg consisting of the gravitational acceleration g, the pendulum’s mass m, and
the length of the pendulum’s rod L. For the sake of this illustration, assume that the
estimate for the gravitational acceleration g is erroneous such that an a-priori available
model reads Q̂g = − sin(q)Lm(g + ϵf̂1) where ϵf̂1 denotes a constant function. Even though
ϵf̂1 is constant, if it is propagated through the dynamics function the output prediction
error becomes a nonlinear function

ϵA(q) =
− sin(q)

L
ϵf̂1 . (4.25)

Therefore, if the model designer is confident that the inverse inertia matrix M(q,m, L)−1

and the kinematic dependency sin(q)L are suitable parametrizations of the real system’s
physics, one can place a data-driven model on ϵf̂1 instead of ϵA. In turn, a less complex
data-driven model can be used. Alternatively, one can use the additional prior knowledge
that g > 0, such that Q̂G = − sin(q)Lmĝ2 where ĝ(x, θM) denotes a suitable data-driven
model.

Acceleration Noise and Transition Dynamics

Another significant quantity to consider is the acceleration noise. Estimates of q̈ are usually
obtained via numerical time-differentiation of velocity or position measurements. As a
consequence, the measurement noise is amplified in the acceleration estimate. As it is often
easier for data-driven models to approximate the comparably large noise in the model’s
output compared to the model’s input, FD models can be preferred to ID models. However,
as FD formulations are usually used to compute trajectory predictions via numerical
integration methods, these trajectory predictions contain an additional integration error.

This is also one reason that might explain why the majority of data-driven models
approximate transition dynamics (1.4) as position and velocity measurements are usually
readily available. However, solely data-driven dynamics models that directly approximate
the transition dynamics have 2nq output dimensions compared to nq outputs for an FD
model. If system data is sparse, the larger number of output dimensions advocates against
a direct approximation of transition dynamics (also referred to as discrete-time dynamics).
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Table 4.1: Summary of works on physics-informed regression of robot dynamics that are
detailed in this monograph. Table adapted from Geist and Trimpe (2021).

Publication Dynamics Data-driven
model type

Data-driven
approximation Optimization library

APN Ledezma et al. (2017) ID × × fmincon (Matlab)
Ledezma et al. (2018) ID(1) × × fmincon (Matlab)
Sutanto et al. (2020) FD(2) × × PyTorch (Python)
Lutter et al. (2021) FD/ID × × ×

ARM Nguyen-Tuong et al. (2010) ID GP ϵA ×
De La Cruz et al. (2011) ID LWPR ϵA ×
Um et al. (2014) ID GP ϵA ×
Grandia et al. (2018) ID GP/LWPR ϵ̃u GPy (Python)

ALM Cheng et al. (2015) ID GP L ×
Geist and Trimpe (2020) FD GP Qe, Qz scikit-learn (Python)
Rath et al. (2021) FD GP Qe, Qz PyTorch (Python)
Hwangbo et al. (2019) FD(3) NN Qe ×
Greydanus et al. (2019) FD NN H PyTorch (Python)
Lutter et al. (2019a) FD/ID NN M , QG PyTorch (Python)
Lutter et al. (2019b) FD/ID NN M , V PyTorch (Python)
Gupta et al. (2020) FD/ID NN M , V , B, Qe PyTor. / Flux (Julia)
Lutter et al. (2020) FD(4) NN Qe ×
Toth et al. (2019) FD NN H ×
Cranmer et al. (2020) FD NN L JAX (Python)

Measuring Joint Torques

Another important aspect relates to the measurement of Qu. As discussed in further detail
in Section 3.5.4, the desired control force Qu,desired may deviate from the observed control
force Qu. The identification of the mapping from Qu,desired to Qu is critical if we want
to use a dynamics model for control or simulation. However, the estimation of Qu via
current measurements in electric motors may be inaccurate. Alternatively, we can use
the end-effector force to estimate Qu. Yet, such estimates depend on mechanical system
parameters. In comparison, directly measuring Qu through force sensors in the actuators
yields accurate measurements. However, joint torque sensors are costly. Compared to
learning ID, learning FD has the advantage that we do not need to measure Qu.

In the subsequent sub-section, we discuss the different modeling frameworks and categorize
related literature in accordance with these categories.

4.2 Analytical Parameter Optimization

Analytical parameter optimization seeks to determine an analytical model f̂A(x, θA) through
optimization of its parameters θA. The insights about analytical models are useful for
improving future generations of analytical structured models.
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4.2 Analytical Parameter Optimization

4.2.1 Linear Regression of Analytical Dynamics

Siciliano et al. (2010, p. 280) refers to Atkeson et al. (1986) as the standard approach
used for the identification of the dynamics parameters of robot arms, which leverages the
linearity of the (rigid) robot arm’s ID with respect to the dynamical parameters (Siciliano
et al., 2010, p. 259), writing

Qu = Φ(q, q̇, q̈)θA. (4.26)

The least squares estimate of θA is obtained as

θ̂A = (Φ⊤Φ)−1Φ⊤Q̃u, (4.27)

with measurements of Qu being denoted as Q̃u and (Φ⊤Φ)−1Φ⊤ being the left pseudo-inverse
matrix of Φ. Some of these parameters denote linear combinations of dynamical parameters
(Siciliano et al., 2010, p. 280).

Many rigid body dynamics models are not linear in their parameters. Moreover, even
if a dynamics model is linear in its parameters, one might wish to distinguish known
from unknown parameters as discussed in Section 4.1.4. Another caveat of such linear
formulations of robot dynamics is that some entries of θA denote products of rigid body
dynamics parameters (Siciliano et al., 2010, p. 264). Moreover, the ability to include
dissipative force models is considerably limited.

A more flexible approach for analytical parameter optimization is to treat rigid body
dynamics models as analytical parametric networks (APN) (Ledezma and Haddadin, 2017,
2018; Lutter et al., 2020; Sutanto et al., 2020), which we discuss in the following.

4.2.2 Analytical Parametric Networks

Similar to neural networks, rigid body dynamics denotes a combination of differentiable
functions that can be trained with gradient-based optimization methods, in particular using
automatic differentiation. While technically these types of models are analytical dynamics
models, the techniques used are closely related to ones from data-driven modeling, which
blurs the line between analytical mechanics and solely data-driven modeling.

The use of automatic differentiation for dynamics model parameter estimation has a long
history. However, the success of deep learning in big-data applications spawned a series
of computational libraries for automatic differentiation and optimization. These libraries
significantly simplify the optimization of rigid body dynamics via automatic differentiation
as well as reduce the effort that is required to combine analytical dynamics with solely data-
driven models. As shown in Table 4.1, recent physics-informed regression models in robotics
are implemented using PyTorch (Paszke et al., 2019) as well as JAX (Bradbury et al., 2018).
These Python libraries allow the computation of analytical gradients of parametric functions
in a few lines of computer code thanks to modern libraries on automatic differentiation
such as AutoGrad (Maclaurin et al., 2015), while also enabling a fast computation of the
gradient functions through libraries for GPU accelerated computation such as XLA.

Ledezma and Haddadin (2017) reformulated the ID of a robot arm such that both
the kinematic and dynamic parameters can be estimated via gradient-based optimization.
In this approach, the ID of the robot arm are separated into a kinematic and dynamic

(1): An et al. (1985), (2): Luh et al. (1980), (3): Hwangbo et al. (2018), (4): Kim (2012)
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network which allows estimating the kinematic parameters before estimating the dynamic
parameters. This approach has been extended by Ledezma and Haddadin (2018) towards
the identification of ID of humanoid robots. The clear advantage of such an approach is
that the optimizer cannot change the kinematic parameters to compensate for modeling
errors in the system’s dynamics.

Physical Inconsistent Parameters

Inaccurate analytical representation of a robot’s dynamics often leads to physically incon-
sistent parameter estimates during parameter optimization, e.g., negative masses or too
short length parameters. A practical example forms robot arm dynamics in which friction
is not modeled sufficiently. The friction force gives rise to an error that the optimizer
could try to reduce by changing the model’s mass parameters. However, if the physical
parameters attain implausible values, then also the description of the analytical dynamics
loses its physical interpretability. In practice, physical implausible parameter estimates
often deteriorate the prediction error on the test data set.

Analytical Parameter Constraints

A common approach to prevent physically inconsistent parameters is to impose additional
constraints on the parameters. These constraints range from simple bounds that enforce
∇θA,i

L = 0 at the constraint’s boundary or impose additional structure into the dynamics
model such as defining a mass parameter as mi := θ2A,i.

Similar to Ledezma and Haddadin (2017), Sutanto et al. (2020) described a recursive
formulation of the Newton-Euler ID as a differentiable computational graph. Significantly,
Traversaro et al. (2016) show that not every positive-definite matrix constitutes a physically
plausible inertia matrix as the rotational inertia matrix must also fulfill triangular inequalities
with respect to the principal moments of inertia. These insights led Sutanto et al. (2020)
to a parametrization of the rotational inertia matrix of each body respecting triangular
inequalities. It should be noted that the experiments detailed in Sutanto et al. (2020) show
similar training results for the models with parametrization of the rotational inertia matrix
either solely in terms of positive definiteness or by taking the triangular inequality property
into account.

Even if an approach towards the estimation of an analytical dynamics model combines
constraints on the parameters, refrains from estimating ”known“ parameters, and trains
kinematics independently from dynamic parameters, the problem remains that some
important physical phenomena are often not sufficiently described by the analytical dynamics
model. While parameter estimation of an analytical dynamics model often yields better
results on small data sets than purely data-driven models (Ledezma and Haddadin, 2017;
Sutanto et al., 2020; Traversaro et al., 2016), the question arises how a data-driven model
can be incorporated into an analytical model to reduce ϵA.
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4.3 Analytical Residual Modeling
A straightforward approach to account for ϵA, is to add a data-driven model ϵ̂A(x, θM) with
parameters θM to the analytical dynamics model, writing

f̂(x, θA, θM) = f̂A(x, θA) + ϵ̂A(x, θM). (4.28)

We refer to the above model as an analytical (output) residual model (ARM). ARM forms a
natural extension to solely resorting to rigid body dynamics models. Such an approach to
physics-informed regression is conceptually easy to implement as the data-driven model can
be directly trained on observations of ϵA(x, θA). There are, of course, practical challenges
in ARM such as noise as well as optimizing the parameters θA alongside θM.

Many works on ARM exist in robotics literature. In what follows, we discuss a small
selection of ARM models that provides a first glance on the different problem setting one
can encounter in robot dynamics identification.

4.3.1 Semi-parametric GP Regression of Analytical Dynamics

To address the short-comings of the least-squares dynamics model (4.27), Nguyen-Tuong
and Peters (2010) proposed to combine (4.27) with GP regression resulting either in a
semi-parametric or fully-parametric structured model. The semi-parametric modeling
approach simply approximates the analytical model’s residual via a zero-mean GP, writing
ϵ̂A ∼ GP (0,k(x, x′)) such that

Q̂u ∼ Φ(x)θ̂A + GP (0,k(x, x′)) = GP
(
Φ(x)θ̂A,k(x, x

′)
)
, (4.29)

with k(x, x′) denoting a diagonal matrix-valued kernel function. A Gaussian distributed
estimate of the system’s dynamic parameters θ̂A can then be inferred via the posterior
distribution of (4.29) (Williams and Rasmussen, 2006, p. 27-29).

The second model proposed in Nguyen-Tuong and Peters (2010) uses the kernel trick to
obtain an analytical kernel of the ID, writing

kA(x, x
′) = Φ⊤WΦ + Σy, (4.30)

with Σy denoting a diagonal matrix of observation noise variances and W being a diagonal
matrix denoting the prior variance on θA. An algorithm that is defined solely in terms
of inner products in input space is lifted by the kernel trick into feature space (Williams
and Rasmussen, 2006, p. 12). The analytical kernel GP can then be combined with
ϵ̂A ∼ GP (0,k(x, x′)) to yield

Q̂u = GP (0,kA(x, x
′) + k(x, x′)) . (4.31)

Nguyen-Tuong and Peters (2010) showed using data of a real robot, that (4.29) and (4.31)
achieved comparable prediction accuracy, while (4.29) was slightly faster in computing
predictions. Similar to Nguyen-Tuong and Peters (2010), De La Cruz et al. (2011) combined
prior analytical knowledge of a robot arm’s ID with locally weighted parametric regression
(LWPR) such that its receptive field is a first-order approximation of the analytical model.
De La Cruz et al. (2011) assumed the analytical parameters as fixed. Other semi-parametric
models for learning robot arm ID are found in Camoriano et al. (2016).
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While k(x, x′) in (4.29) and (4.31) can be chosen as a matrix-valued kernel function
with off-diagonal entries, it is unclear how to design the off-diagonal kernel functions
correlating the different process dimensions. Therefore, Nguyen-Tuong and Peters (2010)
chose a diagonal k(x, x′) such that the dimensions of the dynamics function are modeled
by independent one-dimensional GPs.

4.3.2 Combining Recursive Newton-Euler with GPs

Um et al. (2014) augment the recursive-Newton-Euler-algorithm (RNEA) (Featherstone,
2008, p. 98) by a GP. First, the RNEA computes the system’s analytical ID using a forward
recursion of kinematic functions and a backward recursion of forces. In turn, the system’s
analytical joint torques Qe are computed. The observed joint torques Q̃e deviate from Qe

in the i-th joint by an error ϵA,i, writing

Q̃e,i = Qe,i + ϵA,i. (4.32)

The above equations assume that the error in the joint torque arises solely inside the joints,
e.g., through friction or shaft elasticities. In comparison to Nguyen-Tuong et al. (2008) where
ϵA,i(q, q̇, q̈), it is assumed that the error only depends on the velocity variables of the i-th joint
and force functions that act on the i-th body, writing ϵA,i(xi) with xi := [ωi, ω̇i, Qe,i+1, Fi+1]
where Fi+1 denotes the Cartesian force that acts normal to the axis of joint i + 1. This
error function is then modeled through a GP, writing

ϵ̂A,i ∼ GP
(
0, k(x(t1), x(t2))

)
, (4.33)

where k(x(t1), x(t2)) has been chosen as a squared exponential kernel.
The reduction of the dimensionality of the input space of the model is one important

aspect of how the combination of physics knowledge improves the sample efficiency of a
data-driven model. The forces {Qe,i+1, Fi+1} encode information underlying the analytical
dynamics model in only two variables.

Remark 4.4 (On choosing input variables in physics-informed regression.). When a data-
driven model approximates the errors in the prediction of an analytical dynamics model,
physics often yields structural knowledge on which variables to choose as inputs to the
data-driven model. The reduction of a data-driven model’s input space to span only relevant
input dimensions improves the model’s sample efficiency.

In summary, the fundamental principles underlying physics provide useful prior knowledge
for dimensionality reduction in data-driven dynamics identification.

4.3.3 Deriving Contact-invariant Errors

Inspired by the implicitly constrained dynamics descriptions detailed by Aghili (2005),
Grandia et al. (2018) learned the residual of a quadruped robot’s ID in a formulation
that stays invariant under changes in the contact configuration. Here, if the point-feet of
the quadruped is pressed onto a surface, holonomic constraints are activated which are
expressed via implicit constraints on the acceleration level (3.30). As the first step, the
authors model a quadruped’s dynamics as in (3.27)

Mq̈ = Q+QI + ϵA, (4.34)
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with QI = ATλ. In this particular example, A is chosen such that λT corresponds to a vector
of Cartesian forces that act on the quadruped’s feet while the respective constraints are
active. The implicit constraint forces QI are eliminated from the EOM using D’Alembert’s
principle (3.33), yielding the projected force error (I − A+A)ϵA as

(I − A+A)ϵA = (I − A+A)(Q−Mq̈). (4.35)

As pointed out in Section 3.4, the activation of a constraint summons an implicit
constraint force QI that opposes the part of Q that is in R(AT), and subsequently changes
the system’s acceleration. In turn, when the quadruped’s feet get in contact with the
ground, q̈ changes to the constrained acceleration and a jump occurs in ϵA. As learning
jumps in ϵA is difficult for many data-efficient regression models, Grandia et al. (2018) use
a coordinate transformation Ju to express the force error via

ϵA = A⊤ϵ̃c + Juϵ̃u (4.36)

with A⊤ϵ̃c ∈ R(A+) and Juϵ̃u ∈ N(A). A careful choice of Ju ensures that the activation of
constraints only changes the error ϵ̃c. Therefore, with (4.35) one obtains (I − A+A)ϵ̂A =
(I − A+A)Juϵ̃u and in return a constraint invariant formulation of the force error as

ϵ̃u =
(
(I − A+A)Ju

)+
(I − A+A)(Q−Mq̈). (4.37)

The authors approximated ϵ̃u using LWPR as well as GP regression. It is assumed that the
robot’s feet do not slip. If the robot’s feet are subject to stick-slip effects, a friction force
Qz may cause the error in (4.37) to also show discontinuities.

4.4 Analytical Latent Modeling
ARM treats ϵA(x, θA) as a black box without incorporating additional structural knowledge.
However, in many robotic systems, the function ϵA(x, θA) origins from numerous physical
phenomena spawning error functions that considerably differ in their magnitude and
mathematical properties.

Recent works on physics-informed regression suggest the approximation of unknown latent
functions with data-driven models to effectively reduce ϵ⋆A,I. We refer to physics-informed
regression models in which a data-driven model approximates latent functions {Ci, f̂i}
as analytical latent modeling (ALM). ALM allows to incorporate prior knowledge of the
mathematical properties of an analytical latent function into the design of its data-driven
approximation. In the following, we detail different works on ALM. These works differ in
the type of latent functions that are approximated with a data-driven model, namely:

• the entries of M , M−1, or a corresponding Lagrangian/ Hamiltonian,

• the entries of Qe such that the data-driven model respects dissipativity, uses kinematic
transformations, or learns in a function space with a smaller dimensionality compared
to f(x).

In addition, we proposed a novel approach to ALM in which implicitly constrained
transformations are incorporated into the physics-informed regression model. This particular
approach is detailed in Section 5.
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4.4.1 Learning Mass-related Quantities

The generalized inertia matrix M is of great significance for rigid body dynamics modeling.
The fictitious force QF can be derived in terms of M , cf. (3.25). Moreover, if QG denotes
the gravitational force then this force is also a function of the mass parameters. As discussed
in Section 4.1.6, in FD the force functions (Q+QI) are multiplied by M−1, while in ID the
inertial force Mq̈ has a significant impact on the final estimation results.

In the works presented in the previous section, it is a common assumption that the
inertia matrix and even its parameters are known a-priori. However, such an assumption
may neglect significant errors in M or M−1 and in the bias force QC. Therefore, recent
works model inertia-related quantities via a data-driven model by either directly modeling
the entries of M or by parametrization of the inertia matrix in terms of a Lagrangian /
Hamiltonian. The works on Lagrangian and Hamiltonian NNs were inspired by the seminal
work of Chen et al. (2018) on neural differential equations.

We note that these works often neglect errors in the dissipative forces QD. If QD is the
major source for analytical errors and mass-related quantities are not, then Lagrangian
NNs add flexibility through the NN in the functional representation of a robot’s dynamics
where it might not be required. So far, this hypothesis has not been refuted, as the works
on Lagrangian NNs test their algorithms solely on pendulums or low-dimensional robot
arms (without end-effector contacts).

Learning the Lagrangian

Often analytical parametrizations of M−1 and QC are either not available or the effort
required to obtain these is considered too large. Instead, one can express the system’s
dynamics in terms of the Lagrangian function L. If the Lagrangian is not explicitly time-
dependent one obtains an expression for the FD in (3.23) and for the corresponding ID.
One of the first works that modeled the Lagrangian function via a GP was proposed by
Cheng et al. (2015). Cheng et al. (2015) placed a GP prior on L inside of (3.23), writing

L̂ ∼ GP(0, k(x, x′)), (4.38)

to obtain a structured model for the ID of a conservative system. However, it is currently
not clear how to insert such an L̂ for obtaining an FD model as efficient multi-output GP
regression requires that L̂ is solely linearly transformed. In comparison, Cranmer et al.
(2020) models L via a NN. In return, the authors obtain structured models both for FD as
in (3.23) as well as ID.

Learning the Hamiltonian

Unlike the Newtonian and Lagrangian formulations of classical mechanics, Hamiltonian
mechanics is rarely used for describing the motion of rigid body systems. Still, Hamiltonian
dynamics is of utmost importance in other branches of mechanics such as quantum mechanics,
celestial mechanics, and thermodynamics (cf. Greydanus et al. (2019)). Hamiltonian
mechanics is a reformulation of classical mechanics using the Legendre transform into 2n
first-order ODEs in terms of position coordinates q ∈ Rn and a canonical impulse p ∈ Rn,
writing

q̇i =
∂H
∂pi

, ṗi = −∂H
∂qi

, (4.39)
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with H(q, p, t), H :∈ R2n → R denoting the Hamiltonian function. Similar to the Lagrangian
NN, Greydanus et al. (2019) models the Hamiltonian in the above equation via a NN. This
model was extended by Toth et al. (2019) using a generative NN structure which enables
the inference of Hamiltonian dynamics from high-dimensional observations such as images.

Learning the Entries of the Inertia Matrix

As shown in (3.19), the kinetic energy of a rigid body system is described in terms of the
generalized inertia matrix M . Thereby, the FD as in (3.24), as well as its ID, can be denoted
in terms of M instead of L. However, it is inexpedient to directly model the function
entries of M using a data-driven model. As also discussed by Traversaro et al. (2016), the
inertia matrix M as derived in Section 3.2 must be positive definite. Therefore, Lutter
et al. (2019a) proposed a parametrization of M in terms of a lower triangular matrix L(q, q̇)
such that M̂ = L̂(q, q̇)L̂(q, q̇)T ensures that M̂ is symmetric. In addition, the diagonal of
L̂(q, q̇) is enforced to be positive such that all eigenvalues of M̂ are positive (cf. Section
4.2.2). To do so, the output layer of the NN that forms the diagonal entries of L̂(q, q̇) uses
a non-negative activation function such as ReLU or Softplus onto which a small positive
number is added to prevent numerical instabilities. Lutter et al. (2019a) modeled the
potential forces QG as well as non-conservative forces QD jointly via a NN. The authors
named the resulting structured model a Deep Lagrangian Neural Network (DELAN). Lutter
et al. (2019b) showed that DELAN can be used for the energy-based control of a Furuta
pendulum in which they used the fact that the conservative force can be written in terms
of a NN parametrization of the potential energy function V̂ (q), writing QG = −∇qV̂ (q).
Albeit, the prediction accuracy of DELAN approximating the dynamics of a real cart-pole
and a real Furuta pendulum compare less favorable to white-box system identification as
proposed by Atkeson et al. (1986) with the incorporation of viscous friction as in (Ting
et al., 2006). Yet, the fact that DELAN achieved almost comparable prediction accuracy
on these systems without using any prior knowledge of the system’s underlying kinematics
and mass parameters constitutes a notable achievement.

Gupta et al. (2020) extended DELAN by leveraging that the control force is affine in the
control signal u, writing Qu = B(q)u. Gupta et al. (2020) added NN parametrizations of
B(q) and V (q), such that the deep Lagrangian network becomes

q̈ = (L̂L̂T )−1

(
−∇q(q̇

⊤L̂L̂T )q̇ +
1

2

(
∇q

(
q̇T L̂L̂T q̇

))T
−∇qV̂ (q) + B̂(q)u+ Q̂d

)
. (4.40)

4.4.2 Learning Joint Torques

For many analytical descriptions of the system’s dynamics, one can assume that some of the
analytical latent functions form better approximations of the real physics than others. For
example, for a robot arm, one can argue that the inertia matrix M , the fictitious force QC,
and the gravitational force QG form good parametrizations of the respective physics. The
parameters θA of these analytical functions are most likely unknown but can be estimated
alongside the parameters of a data-driven model. In this case, the conservative parts of
the dynamics expressed in terms of {M,QC} would still conserve the model’s total energy
Ê(q, q̇; θA) = 1

2
q̇TM̂(q; θA)q̇ + V̂ (q, q̇; θA) similarly to the structured Lagrangian models.

Under this assumption, the majority of the dynamics’ errors stem from an inaccurate
description of the impressed forces Qe , which in the following is referred to as joint torques.
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The following works, learn the dynamics of robots with motor torques being applied inside
the robot’s joints.

Direct identification of joint torques and combination with a contact model

Hwangbo et al. (2019) identified the joint torques Qe induced by a quadruped’s electric
motors via a NN a-priori. The authors used a simple control scheme to let a quadruped
trot and meanwhile measured Qe using joint-torque sensors as well as position errors and
velocities. Then, a NN was trained to predict Qe given a sequence of position errors and
velocities. In this manner, the authors learned the complete mapping of Qe including
complex interlaced control routines of the motors (PD torque control, PID current control,
field-oriented control) as well as transmission and friction disturbances.

Afterward, the trained NN joint torque model is combined with a rigid body simulation
(Hwangbo et al., 2018). The simulator uses a hard contact model that respects Coulomb
friction cone constraints. Then, a NN-based reinforcement learning algorithm was trained
to control the quadruped in simulation. Notably, the kinematic and mass parameters of
the analytical model were randomly initialized to increase the robustness of the control
policy during training.

The fact that the trained control policy achieved impressive results on the real quadruped,
indicates that the gap between modeled and real dynamics can be bridged via a ran-
domization of physical parameters (body length and mass) of a good analytical model in
combination with a prior identification of Qe. This work was further extended by Lee et al.
(2020) who trained an unprecedented robust control policy for a quadruped robot traversing
challenging terrain.

Modeling of joint torques inside forward dynamics

Lutter et al. (2020) (being the authors of DELAN) combined Newton-Euler dynamics in
Lie Algebra form Kim (2012) with a NN parametrization of Qu. The authors compared
several models for Qu, with fNN denoting a NN model, namely

Viscous: Q̂e = Qu,desired − θv q̇, (4.41)

Stribeck: Q̂e = Qu,desired − sign(q̇)
(
fs + fd exp

(
−θsq̇

2
))

− θv q̇, (4.42)

NN Friction: Q̂e = Qu,desired − sign(q̇) ∥fNN (q, q̇)∥1 , (4.43)

NN Residual: Q̂e = Qu,desired − fNN(q, q̇), (4.44)

FF-NN: Q̂e = fNN(Qu,desired, q, q̇). (4.45)

Equations (4.41), (4.42), and (4.43) are guaranteed to be sole dissipative, while the more
classical NN parametrization in (4.44) and (4.45) do not respect energy dissipativity.
However, the first three models assume that the internal motor control routines do not
cause an overshoot such that |Qu,i| > |Qu,desired,i|.

The different structured FD models were trained on data from simulated and real
pendulums. Additionally, these models were compared to NN black-box modeling as well
as the linear regression model denoted in (4.26) and (4.27) (cf. Atkeson et al. (1986)). The
training results show that a random initialization of the link parameters compares similarly
to having a good prior knowledge of the link parameters. This indicates that it is possible
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4.4 Analytical Latent Modeling

to learn analytical and NN parameters jointly inside a structured model. Further, the
joint torque models which enforce dissipativity of Q̂e made significantly better long-term
predictions. The long-term predictions were computed by feeding the models’ acceleration
predictions to a Runge-Kutta-4 solver.
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Chapter 5

Implicitly-constrained Gaussian
Processes
As detailed in Section 3.2, the current literature on ARM and ALM evolves around the
combination of data-driven regression with explicitly constrained rigid body dynamics.
Only a few works that revolve around the dynamics identification of quadrupedal robots
used implicit-constraint knowledge to structure a data-driven model, e.g., (Grandia et al.,
2018). As discussed in Section 3.4, for many mechanical systems including quadrupedal
robots and robot arms, implicit constraint equations yield information on implicit constraint
forces QI as well as on constrained motion as long as the implicit constraints are active.

In what follows, we present a framework that combines GP regression with implicitly-
constrained rigid body dynamics. While the errors in these dynamics can also be identified
using NNs, we resort to GP regression as it allows us to obtain probabilistic predictions of
latent processes, such as the implicit constraint forces QI, through multivariate distributions
as detailed in Section 5.1.3. These sections are based on Geist and Trimpe (2020) as well
as Rath et al. (2021).

5.1 Model Synthesis
For convenience, we briefly recall the EOM of implicitly constrained systems as in (3.42),
providing an analytical dynamics model f̂A(x, θA) as

q̈ = Lb+ PQ̄,

with M > 0, the matrices L = M−1AT(AM−1AT)+, P = TM−1 with T = (I −
M−1AT(AM−1AT)+A), and Q̄ = Q + Qz. The above EOM always fulfills the implicit
constraining equation (3.30) being

A(q, q̇, t)q̈ = b(q, q̇, t),

where the terms {A, b} are obtained from differentiating the implicit constraints a sufficient
number of times as shown in (3.28) and (3.29). Note that predictions {qk+1, q̇k+1} made
via integration of (3.42) only respect the implicit constraints on the position-level and
velocity-level, if the inputs to the EOM as in (3.42) denoted by {qk, q̇k} themselves respect
the implicit constraints on position- and velocity-level.

As discussed in Section 4.1, for robotic systems, the EOM deviates from the real dynamics
by an error ϵA, such that

ỹ(x)− f̂A(x, θA) = ϵy(x) + ϵA(x, θA), (5.1)
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with the observations of the dynamics ỹ, the input state vector x = [q, q̇, t] (if the system
is autonomous x = [q, q̇] ), and the observation noise ϵy(x). The observation noise ϵy is
modeled as

ϵ̂y ∼ N (0,Σy) , (5.2)

where Σy denotes a diagonal matrix containing the measurement variances.
Similar to recent works on physics-informed ALM as detailed in Section 4.4.2, we place

the following assumptions on the implicitly constrained EOM:

Assumption 5.1. The bodies of the mechanical system are rigid.

Assumption 5.2. The robot’s kinematics, implicit constraints, and their parameters are
known a-priori.

As noted in Section 4.1.4, the above assumptions imply that the mass-related quantities
{M,QC} are parametrically-unknown ( ϵC,I = 0, ϵC,E ̸= 0) such that C⋆ = P + ϵC,E, whereas
the forces {Q,Qz} introduce a latent error ϵf̂ = ϵf̂ ,I + ϵf̂ ,E, and thereby, the process that
generates the observations reads

ỹ = ϵ̂y + ϵ⋆A,A + (P + ϵC,E)(QK + ϵf̂ ), (5.3)

where QK refers to all force functions from which an accurate parametric model can be
derived from analytical mechanics. If {M,QC} are assumed to be only parametrically-
unknown and Qu is known, then QK = QC +Qu.

The latent estimation errors {ϵC,E, ϵf̂ ,E} are a consequence of limited resources during
optimization, such as the amount and distribution of data as well as the time available for
training. One can attempt to reduce the estimation error through a conscious selection of
the loss, by preprocessing data and collecting a sufficient amount of data in relevant parts
of the state space.

The approximation errors {ϵ⋆A,A, ϵf̂ ,I} in (5.3) can be modeled through a combination of
ARM and ALM (cf. Section 4). In principle, one could model the approximation errors
in the above equations through a NN fNN(x, θM). As the combination of the analytical
dynamics model f̂A(x, θA) with a NN is also a differentiable parametric model, it is possible
to estimate the model’s parameters {θA, θM} via automatic differentiation. However,
we model the approximation error through GP regression as they provide a measure of
prediction uncertainty in the form of the posterior variance. Additionally, they allow
incorporating various model assumptions through the kernel. As pointed out by Deisenroth
and Rasmussen (2011), the synthesis of a robot’s control policy may significantly benefit
from a measure of uncertainty in the planned motion.

5.1.1 GP Priors

To obtain a physics-informed regression model for the system’s implicitly constrained
dynamics, a multi-dimensional GP prior is placed on the errors of (5.3), writing

ϵ̂⋆A,A ∼ GP
(
0, kϵ⋆A,A

(x, x′; θM)
)
, and ϵ̂f̂ ∼ GP

(
0, kϵf̂ (x, x

′; θM)
)
. (5.4)

The matrix-valued kernels in (5.4) such as kϵf̂ : Rnx×nx′ 7→ Rnq×nq determine the covariance
between the individual dimensions of the error functions.
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Figure 5.1: Computational graph of the proposed framework. A robot arm’s forward
dynamics model is augmented by a GP modeling the errors in the analytical
forces Q̄. The semi-parametric model predicts acceleration q̈ while potentially
including knowledge in form of analytical functions {M,A, b,QK}. Figure
adapted from Rath et al. (2021).

Assumption 5.3. No additional knowledge on the errors of the implicitly-constrained
dynamics functions is available.

With the above assumption, a suitable choice for the kernels {kϵ⋆A,A
, kϵf̂ , kϵ⋆A,A

} are diago-
nal matrices of squared-exponential kernels, as the estimation of off-diagonal covariance
functions from data forms in itself a challenging endeavour (Alvarez et al., 2012).

The above GP prior yields a physics-informed model for Q̄, as

ˆ̄Q ∼ GP
(
QK(x; θA), kϵf̂ (x, x

′; θM)
)
. (5.5)

With the parametrically-unknown functions {M,QC}, the zero-mean GP GP(0, kϵf̂ ) effec-
tively models the unknown forces QD and Qz.

5.1.2 Gauss Principle Adhering Gaussian Processes

To combine GP regression with (5.3), we leverage that ỹ is obtained in terms of sums of
functions, in which ϵf̂ is being solely linearly transformed. As detailed in Section 2.4.2, the
sum of GPs yield GPs (Duvenaud, 2014), while the transformation of a GP by a bounded
linear operator is also a GP (Williams and Rasmussen, 2006). In turn, inserting the GP
priors (5.4) into the implicitly-constrained dynamics (3.42) yields a physics-informed GP
model as

ˆ̈q ∼ GP
(
Lb+ PQK, kϵ⋆A,A

+ Pkϵf̂P
T
)
. (5.6)

The above model is referred to as a Gauss’ Principle adhering Gaussian Process (GP2) and
is illustrated in Figure 5.1. By construction, the GP2’s predictions satisfy the implicit-
constraint equations on acceleration-level (3.30). To make predictions with (5.6), the GP
conditional posterior formula is used as denoted in (2.79).

Efficient Computation of Linear-transformed Kernel Functions

A considerable practical challenge forms the fast computation of the covariance matrix
Σq̈

X,X′ over two input data sets X = [x1, x2, ..., xN ] with X ∈ Rnq̈×N and X ′ = [x′
1, x

′
2, ..., x

′
N ]
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with X ′ ∈ Rnq̈×N ′ as detailed in Section 2.4. In our first work on GP2 (Geist and Trimpe,
2020), Σq̈

X,X′ is computed via a double for-loop, while the hyper-parameter of the GP’s are
computed via the numerical gradient of a maximum-likelihood. As discussed in Section
2.1.1, the computation through double for-loops and optimization using numerical gradients
is slow.

In comparison, in (Rath et al., 2021), we propose a significantly faster workflow by
resorting to GPU acceleration and automatic differentiation. In this implementation of
GP2, the line of code that computes Σq̈

X,X′ can be found in code attached as supplementary
material to (Rath et al., 2021). The code is written using the ”Python“ programming
language resorting to the ”PyTorch“ machine learning library. In particular, in this Python
implementation of GP2, the ”SGPKernel“ class computes Σq̈

X,X′ as

# Mulitask covariance linear transformation --> T1 * Cov * T2^\transp
cov_quant1_quant2 = torch.einsum(’iab,ijbc,jdc->ijad’,

linearoperator1,
covar_F_F,
linearoperator2

)
return cov_quant1_quant2

Here, we used Torch’s ”Einsum“ function as it resulted in a fast computation of Σq̈
X,X′ .

Figure 5.2 illustrates how the above code computes the matrix Σq̈
X,X′ . Here, Σq̈

X,X′ is
stored as a four dimensional tensor of size N ×N ′ × nq̈ × nq̈ which can be interpreted as
a N × N ′ matrix of nq̈ × nq̈ matrices that depend on the respective i-th and j-th input
points. This matrix is computed using the tensors ”linearoperator1“ of size N × a× b and
”linearoperator2“ of size N ′ × c × d as well as the covariance matrix prior ”covar_F_F“
of size N × N ′ × b × c. Note that in Figure 5.2, ”linearoperator1“ denotes the three-
dimensional array [[H(x1)], [H(x2)], ..., [H(xN )]] as in this example we compute Σq̈

X,X′ . The
above computation of a structured covariance matrix allows to use arbitrary matrix-valued
parametric functions as ”linearoperator1“, e.g., one can derive the joint distribution between
the system acceleration and its implicit constraint forces. As detailed in Section 5.1 such a
joint distribution can be used to predict the implicit constraint force solely using acceleration
measurements.

Figure 5.2: Illustration of the computation of the structured GP’s covariance matrix Σq̈
X,X′ .

Figure adapted from Rath et al. (2021).

With the above code, PyTorch can compute Σq̈
X,X′ using GPU acceleration, which

significantly speeds up the computation. Moreover, if Σq̈
X,X′ is used to compute the

GP’s maximum likelihood, PyTorch allows GPU accelerated computation of the analytical
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gradients with respect to the model parameters {θA, θM}.

5.1.3 Joint Distributions

A remarkable feature of structured GP regression is the probabilistic prediction of latent
quantities inside the implicitly-constrained dynamics using acceleration measurements.

With the assumptions made at the beginning of this Chapter, the unknown forces Qz +Q
are the major source of the approximation error ϵf̂ ,I. In (5.5), Q̄ is modeled through a GP
with a single kernel function. However, we can consider a slightly more general case in
which Q and Qz are modeled as individual GPs

Q̂ ∼ GP (QK, kQ) , and Q̂z ∼ GP (mQz , kQz) , (5.7)

such that the GP model of Q̄ reads

ˆ̄Q ∼ GP
(
mQ̄, kQ̄

)
, (5.8)

with mQ̄ = QK +mQz and kQ̄ = kQ + kQz . In this case, the parametric function prior QK

could be chosen as a combination of an analytical model of QC and a Coulomb friction
model. Moreover, kQz could be itself a linearly transformed kernel that uses structural
knowledge arising from the known implicit constraints.

We recall from (3.41) that the system’s Lagrange multipliers are given as

λ = L′b− LTQ,

with L′ = (AM−1AT)+ and using the fact that(
(AM−1AT)+

)T
=
(
(AM−1AT)T

)+
= (AM−1AT)−1. (5.9)

In addition, as stated in (3.17), if the implicit constraints are inactive the system’s uncon-
strained acceleration a is obtained as

a = M−1Q. (5.10)

In what follows, it assumed ϵ⋆A,A = 0. As a robot’s implicit dynamics result from a sum
of linearly transformed processes which are modeled as either by parametric functions or
GPs, the joint distribution between the processes {q̈, a, λ, Q̄,Q,Qz} reads

ˆ̈q
â

λ̂
ˆ̄Q

Q̂

Q̂z


∼GP





Lb+PmQ̄

M−1QK
L′b−LTQK

mQ̄

QK
mQz

 ,



PkQ̄P
T PkQM

−1 PkQL PkQ̄ PkQ PkQz

M−1kQP
T M−1kQM

−1 M−1kQL M−1kQ M−1kQ 0
LTkQP

T LTkQM
−1 LTkQL LTkQ LTkQ 0

kQ̄P
T kQM

−1 kQL kQ̄ kQ kQz

kQP
T kQM

−1 kQL kQ kQ 0
kQzP

T 0 0 kQz 0 kQz




(5.11)

with L′ = (AM−1AT)+. A zero in the off-diagonal terms of the joint distribution implies
that the two processes are uncorrelated.

Remark 5.1 (Joint distribution of dynamics processes). From the joint distributions (5.11)
it follows that with (2.84) one can use the proposed framework to predict {q̈, a, λ, QI , Q̄,
Q, Qz} using measurements of either {q̈, a, λ, QI , Q̄, Q, Qz}.
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Remark 5.1 assumes that during optimization the two GPs Q̂ and Q̂z solely approximate
the latent function Q or Qz, respectively. If the hyper-parameter estimates of Q̂ are strongly
influenced by the errors arising from Qz, and vice versa, predictions made using Remark 5.1
can be erroneous. It remains an open question how one can ensure that a force GP prior
which models a specific force function is not influenced by the errors that arise from other
forces. One possible approach to solve this problem is to first estimate the hyper-parameters
of Q̂ on data of the unconstrained system, and afterward, solely train the hyper-parameters
of Q̂z on data of the constrained system. Another approach is to use additional structural
knowledge to only feed relevant inputs to the GPs Q̂ and Q̂z to aggravate the approximation
of errors arising from other physical phenomena.

As a first step toward more elaborate structured GP models, we modeled either the
acceleration {a+ az} or forces {Q+Qz} inside the analytical model as a single GP, e.g.,
yielding a force prior as in (5.5) using a diagonal matrix of squared-exponential kernels.

In the subsequent Sections, we are going to discuss first experiments on dynamics
identification with GP2 as in (Geist and Trimpe, 2020) and (Rath et al., 2021). In Section
5.2.2, we show how to predict a given measurements of q̈ as well as make predictions
of q̈ assuming that we obtained measurements from the system while being subject to
differing implicit constraints A′q̈ = b′. In Section 5.3.3, we briefly show the prediction of
the end-effector contact force using measurements of q̈.

5.2 Learning Implicitly-constrained Accelerations
In our initial work on GP2 (Geist and Trimpe, 2020), it is suggested to place a GP prior
on the unconstrained acceleration ā = a+ az = M−1Q̄, writing

ϵ̂ā ∼ GP
(
0, kϵf̂ (x, x

′; θM)
)
, (5.12)

yielding a prior on ā as

ˆ̄a ∼ GP
(
āK(x; θA), kϵf̂ (x, x

′; θM)
)
, (5.13)

with the known or parametrically-unknown acceleration functions āK, e.g., being modeled
as āK := M−1(QC +Qu). In turn, an alternative formulation to (5.6) of a GP2 assuming
ϵ⋆A,A = 0 is obtained as

ˆ̈qā ∼ GP
(
Lb+ T āK, kϵ⋆A,A

+ Tkϵf̂T
T
)
. (5.14)

From the exposition of errors as in Section 4.1 it follows that if M is parametrically-unknown
the approximation of ā through a GP is inferior to placing a GP prior on Q̄
as in (5.5). After all, the main source of approximation error is assumed to arise from
unidentified force functions. Clearly, the approximation of these force errors after the
transformation by M−1 introduces additional nonlinearities into the error function. The
superiority of GP2 using (5.5) compared to (5.14) has been validated empirically in (Rath
et al., 2021), and it is discussed in Section 5.3.

Nonetheless, the experiments on dynamic’s identification using the GP2 proposed in
(Geist and Trimpe, 2020) grant clarity on the benefits and limitations of an implicitly-
constrained GP. Subsequently, these experiments are detailed in the following, starting
with an exposition of the mechanical system benchmarks.
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surface
mass particle

tangent plane,

(a) Mass particle sliding on a surface. (b) 2D Unicycle. (c) Duffing oscillator.

Figure 5.3: Implicitly constrained rigid body systems.
Figure adapted from Geist and Trimpe (2020).

5.2.1 Mechanical System Benchmarks

In (Geist and Trimpe, 2020), three rigid body dynamics systems were chosen as simple
benchmarks for testing the GP2 model as in (5.14). These systems present three types of
constraints typically encountered in robotic systems while being particularly simple systems
to ease the analysis of the learning result. The first system denotes a particle sliding over a
surface constraint. The second system is a rigid body subject to a 2D wheel constraint,
which in a sense is a drastically simplified version of the Wheelbot’s dynamics as presented
in Section 6.2.2. The last system introduces control forces into a coupled oscillator through
holonomic constraints.

Particle on surface

A particle, as illustrated in Figure 5.3a with the known mass m slides along a surface.
While Figure 5.3a depicts the constraint forces as a consequence of orthogonal projections.
However, the constraint projection in the system’s force space is only orthogonal if the
system’s mass matrix is diagonal.

While the dynamics of the particle are unknown, we want to leverage the surface geometry.
The unconstrained acceleration of the particle amounts to a = M−1[u1, u2, u3 −mg]T with
M−1 = diag(1/m), g = 9.81m

s2
, and control forces ui. The mass slides on the surface

q3 = p1q
2
1 + p2q

2
2 + p3q1 + p4 cos(p5q1), with the states and constraint parameters being

denoted as {qi, q̇i} and θA = [p1, ..., p5]. The second time-derivative of the constraint yields
the constraining equation (3.30) as[

2p1q1 + p3 − p4p5 sin(p5q1), 2p2q2, −1
]︸ ︷︷ ︸

A(x, θA)

q̈ =
[
−2p1q̇

2
1 − 2p2q̇

2
2 + p4p

2
5q̇

2
1 cos(p5q1)

]︸ ︷︷ ︸
b(x, θA)

, (5.15)

In addition, a velocity quadratic damping force Qz decelerates the mass non-ideally such
that q̈z,i = −a0(v

2/|v|)q̇i, with the translatory velocity v(x) and damping coefficient a0.
One obtains the system’s constrained dynamics by inserting (5.15) as well as a and q̈z into
(3.42). While θA and ui can be readily measured and {A, b,M} are obtained from a brief
mechanical analysis, modeling Q and Qz pose a considerable challenge for a plethora of
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mechanical systems. Surface constraints are common implicit constraints that occur if a
robot arm’s end-effector or the feet of a quadrupedal robot interact with their environment.

2D Unicycle

The unicycle as depicted in Figure 5.3b commonly describes the motion of simple wheeled
robots (Siciliano et al., 2010, p. 478). This example is described in further detail in (Udwadia
and Kalaba, 2007, p. 213). Here, a non-holonomic constraint q̇2/q̇1 = tan(q3) enforces that
the system’s translation velocity must point along the line C-G. After rearranging the
nonholonomic constraint, its differentiation yields the implicit acceleration-level constraint
as

A =
[
sin(q3) − cos(q3) 0

]
, and b = −q̇1q̇3 cos(q3)− q̇2q̇3 sin(q3). (5.16)

The inertia matrix and forces of the implicitly unconstrained system are derived as

M =

 m 0 −mR sin(q3)
0 m mR cos(q3)

−mR sin(q3) mR cos(q3) Ic

 , Q =

mRq̇3
2 cos(q3) + cos(q3)u1,

mRq̇3
2 sin(q3) + sin(q3)u1,

u2

 ,

(5.17)

with R denoting the distance between the points C and G, and IC being the system’s
inertia at G around the e3 axis. Further, u1 denotes a control input in direction of C-G
and u2 is a control input around q3. The system is decelerated in the driving direction by
Qz. Qz is induced by velocity quadratic damping.

Controlled Duffing’s Oscillator

The Duffing’s oscillator as depicted in Figure 5.3c models the behavior of two masses
that are subject to cubic spring forces and liner damping. This system is described in
further detail in (Udwadia and Kalaba, 2007, p. 120). An external control force imposes
the constraint q2 = q1 + p1 exp(−p2t) sin(p3t). Differentiation of the constraint yields the
implicit acceleration-level constraint via

A =
[
−1 1

]
, (5.18)

b = −p1 exp(−p2t)
(
p23 sin(p3t) + 2p2p3 cos(p3t)− p22 sin(p3t)

)
. (5.19)

In turn, the control force arises as an implicit constraint force, which by enforcing the
constraint ensures that over time the oscillation of the masses synchronizes as depicted in
Figure 5.4. The uncontrolled dynamics are derived as

M =

[
m 0
0 m

]
, and Q = K

[
q1
q2

]
+ C

[
q̇1
q̇2

]
+

[
knl
1 (q1 − q2)

3

knl
2 q32 − knl

1 (q1 − q2)
3

]
, (5.20)

where Q origins from spring and damping forces with

K =

[
k1 −k1
−k1 k1 + k2

]
, and C =

[
c1 −c1
−c1 c1 + c2

]
. (5.21)
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(c) Unconstrained accelerations.
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(d) Constrained accelerations.

Figure 5.4: Duffing’s oscillator’s positions and accelerations plotted over time.
Figure adapted from Geist and Trimpe (2020).

5.2.2 Simulation Results

The benchmark systems detailed in Section 5.2.1 yield data that is used in the following
to analyze the properties of the proposed GP2 model. We compare the GP2 to standard
(multi-output) GPs.1

The system parameters are detailed in the supplementary material of (Geist and Trimpe,
2020). The training data was generated using the system’s analytic ODE and consists of ran-
domly sampled observations lying inside the constrained state space fulfilling the respective
position- (if the constraint is holonomic), velocity-, and acceleration-level constraints.

Predictions are made on an equidistant discretization of the constrained state space. The
training data is normalized to have zero mean and unit standard deviation.

GP models

As a first baseline for model comparison, the individual q̈i are modeled independently as

q̈i ∼ GP(0, kSE(x, x
′)), (5.22)

with squared exponential (SE) covariance function kSE(x, x
′). Further, we compare to a

standard multi-output GP model, the (GPy, 2012) implementation of the LMC (Alvarez
et al., 2012) with matrix

Bi = WiW
T
i + Inκ, Wi ∈ Rn×r, and κ > 0, (5.23)

1The simulation code is available on: https://github.com/AndReGeist/gp_squared
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Table 5.1: Comparison of the normalized GPs’ predicted mean RMSE, and maximum
constraint error for 10 runs. For the RMSE, the mean, min. (subscript) and max.
(superscript) values are shown. Table taken from Geist and Trimpe (2020).

RMSE max. constraint error
Surface Unicycle Duffing Surface Unicycle Duffing

Analy.ODE — — — 2·10−15 6·10−17 2·10−14

SE .235 .272
.190 0.27 0.40

0.20 .011 .033
.004 2.6 0.22 6.4

ICM .244 .277
.223 0.21 0.27

0.15 .003 .005
.002 1.5 0.22 0.5

LMC .194 .233
.159 0.21 0.28

0.15 .003 .006
.001 1.8 0.26 0.023

GP2, θA=θ∗A,µā=0 .058 .066
.045 0.10 0.20

0.06 .007 .019
.001 4·10−12 2·10−12 1·10−8

GP2, θA=θ∗A,µā ̸=0 .023 .032
.018 0.08 0.15

0.05 .005 .029
.002 1·10−13 6·10−13 3·10−8

GP2, est. θA,µā=0 .065 .071
.056 0.13 0.30

0.05 .009 .028
.003 0.12 9·10−13 0.013

GP2, est. θA,µā ̸=0 .027 .037
.020 0.12 0.20

0.06 .020 .077
.004 0.09 9·10−13 0.006

reading

K(x, x′) = B1kSE(x, x
′) +B2kbias(x, x

′) +B3klinear(x, x
′). (5.24)

Inhere, klinear and kbias denote a linear and bias covariance function, respectively (Williams
and Rasmussen, 2006). The model K(x, x′) = B1kSE(x, x

′) is referred to as the in-
trinsic model of coregionalization (ICM). The hyperparameters are optimized by max-
imum likelihood estimation via L-BFGS-b (Zhu et al., 1997). For the GP2, we model
ā ∼ GP(0, kSE(x, x

′)), with the same optimization settings as for the other models.
For the GP2 with ”µā ̸= 0“, the analytical mean function ā in (5.14) is set to a for the

surface particle and 2D unicycle, while for the Duffing’s oscillator ā models the linear
part of the acceleration induced by dampers and springs. Here, the spring and damping
parameters θA are estimated alongside the other GP hyper-parameters θM.

Optimization and prediction

For each of the 10 optimization runs, 100 observations are sampled while the optimization
is restarted 30 times for the benchmark GPs and five times for the GP2 model. The
prediction results after optimization are depicted in Table 5.1. For the surface particle and
2D unicycle, the GP2 shows improved prediction accuracy. The performance can be further
increased via the incorporation of additional structural knowledge in form of µā (”µā ̸= 0“ in
Table 5.1). If θA is estimated (”est. θA“ in Table 5.1) the constraint error increases. Albeit,
the constraint error is significantly smaller compared to the untransformed models. For
the surface particle and Duffing’s oscillator, θA was estimated accurately, whereas the 2D
unicycle’s parameters (Ic, R) converged to their correct ratio.

In the case of Duffing’s oscillator, the implicit constraint force is a time-dependent
control force. Unlike the unconstrained dynamics that show nonlinear oscillatory behavior,
the constrained system dynamics move similarly to a single linearly damped oscillator.
In this scenario, the GP2 compares less favorably to the other models as it is learns
the unconstrained dynamics. For all examples, the GP2 demonstrates a considerable
improvement regarding constraint satisfaction.
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0° 360°180°

State-space slice

Figure 5.5: Samples of a GP2 before and after conditioning on data of the 2D unicycle.
Figure adapted from Geist and Trimpe (2020).

Figure 5.5 illustrates how the GP2 samples of q̈1(x) at q3 = 90 deg and q3 = −90 deg are
forced to zero as the unicycle can only translate in driving direction.

Extrapolation

For an illustration of the prediction characteristics on the surface particle example, the
constraint parameters are assumed as given, while θM is estimated on 200 observations.
Figure 5.6a illustrates that the GP2 model extrapolates the prediction result using the
particle dynamics ĥ at a velocity of zero such that az = 0. In this case, extrapolation is
possible as ā(X) = ā(x∗). That is the acceleration function ā is the same at the training
data and test data. This is not the case for velocity input dimensions when damping plays
a dominant role. In comparison, after a certain distance, the SE-GP resorts back to the
prior mean function, which has been chosen as zero.

Transfer Learning

In many systems, altering the constraint configuration {A(x, θp), b(x, θp)} to a different
known configuration {A′(x, θ′p), b

′(x, θ′p)} does not change {ā,M}. For example, in the mass
particle system, one could take the mass from one shape of surface to a different surface
with the same tribological properties. In this case, it is possible to transfer knowledge in
form of D from one system to a different system using the joint distribution[

ĥ

ĥ′

]
∼ GP

([
µĥ(x|θp)
µĥ′(x|θ′p)

]
,

[
T (x|θp)kϵf̂ (x, x′)T (x′|θp)T T (x|θp)kϵf̂ (x, x′)T ′(x′|θ′p)T
T ′(x|θ′p)kϵf̂ (x, x′)T (x′|θp)T T ′(x|θ′p)kϵf̂ (x, x′)T ′(x′|θ′p)T

])
. (5.25)

In other words, under the above assumptions, we condition a GP2 modeling ĥ′ on data of ĥ
through (5.25). Figure (5.6a) illustrates that ĥ′(x) resulting from a particle sliding over the
surface q3 = 0.1q1 − 0.15q2 − 0.1 cos(3q1) can be predicted by conditioning on observations
y(x) that stem from the structurally similar system ĥ(x).

Trajectory prediction Figure 5.6b illustrates trajectory predictions of the surface
particle computed by a Runke-Kutta-45 (RK45) ODE solver. The solver uses either the
analytical dynamics model, the SE model, or the GP2 model. While the SE trajectory
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Figure 5.6: Comparison of GP2 predictions compared to a SE-GP on the surface particle
system. (a) Given y from one surface (blue), predictions of q̈ on the same
and q̈′ on another surface (yellow). (b) Trajectory prediction by integration of
acceleration predictions using RK45.
Figures adapted from Geist and Trimpe (2020).

prediction leaves the surface, the GP2’s prediction remains on the surface independent
of the overall prediction performance. Here, the GP2 predictions’ Euclidean error to the
surface increases in the same order of magnitude as with the analytical ODE.

It is not surprising that a standard GP FD model creates large errors when used for
making trajectory predictions of an implicitly constrained system. After all, the GP is
conditioned on data that stems from a constrained manifold inside the system’s state-space.
For example, for the surface particle, the positions lie on the surface, the velocities are
tangent to this surface, and the acceleration fulfills the constraining equation. Even noisy
observations remain close to this constrained manifold. When making trajectory predictions
with a standard GP, the error in the predicted acceleration may cause the system’s position
to drift away from the values that have been observed in the training data. As we saw
in Figure 5.6a, after a certain distance between training inputs and prediction inputs the
SE-GP’s predictions resorts back to its prior mean.

Inferring the Unconstrained Acceleration

As pointed out in Remark 5.1, the GP2 framework enables the prediction of latent quantities
that underlie the dynamics. For example, as the GP2 results from a linear transformation
of ā, the joint distribution is obtained as
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Figure 5.7: Prediction of ā|y. Figure adapted from Geist and Trimpe (2020).

[
ˆ̄a

ĥ

]
∼ GP

([
µā(x, x

′)
µĥ(x, x

′)

]
,

[
Kā(x, x

′) kϵf̂ (x, x
′)T (x′)T

T (x)Kā(x, x
′) T (x)kϵf̂ (x, x

′)T (x′)T

])
. (5.26)

That is, ā(x) can be inferred by conditioning it on observations of the system’s acceleration
y. Figure 5.5 shows the posterior distribution ā|y using (5.26). For the surface particle
with v = 0 and u = 0, ā3 is simply g = 9.81m

s2
. For the 2D unicycle with u = 0, ā solely

consists of a damping force that increases with the translatory velocity.

5.3 Learning Implicitly-constrained Forces
In this section, we address several shortcomings of the GP2 framework as discussed in
Section 5.2. In this regard, we propose a framework that allows for learning high-dimensional
dynamics with GP2. This framework is significantly faster compared to Section 5.2 by
resorting to automatic differentiation with GPU accelerated computation of gradients and
resorting to recursively computed rigid body dynamics. Notably, a GP prior is placed
on the unknown forces of the system rather than its unconstrained acceleration, which
eases the inclusion of prior knowledge on force properties into the GP. Through a series of
simulation experiments, we show that this alternative approach improves the model’s data
efficiency compared to standard GP regression and GP2 as in Section 5.2.

The GP2 model as formulated in (5.6) is used throughout this section and has been
derived at the beginning of Section 5.

5.3.1 Robot Arm Forward Dynamics Simulation

To explore the computational limits of structured GP regression a high-dimensional system,
we chose a KUKA robot arm whose end-effector is in persistent contact with a surface as a
benchmark. This robot arm possesses over seven rotational joints (as depicted in Figure
5.8a) and is simulated in “PyBullet” (Coumans and Bai, 2016–2021). With seven joints, the
robot’s FD model has 7 accelerations q̈ as outputs in which each process dimension depends
on 21 inputs {q, q̇, u}. Data is collected by controlling the robot’s end-effector along linear
trajectories while pressing onto the surface as depicted in Figure 5.8a. This task can be
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(a) Robot arm in PyBullet.
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Figure 5.8: Simulation of a robot arm whose end-effector is in contact with a surface.
Figures adapted from Rath et al. (2021).

seen as an abstraction of a robot arm performing welding, cutting, or marking maneuvers
on surfaces. The contact between the end-effector and the surface creates ideal-constraint
forces QI as depicted in Figure 5.1, which prevents the end-effector from penetrating the
surface, as well as friction forces {QD, Qz} which are challenging to be modeled beforehand.2

Dynamics Modeling

A key prerequisite for a fast implementation of GP2 is the derivation of the robot’s dynamics
model using the same ML library used to optimize the model’s (hyper-)parameters. In our
case, the dynamics function and GP have been implemented in the “PyTorch” optimization
library (Paszke et al., 2019). After all, the GP2 model (5.6) requires the computation of
the system’s kinematics as well as the analytical functions M,QK, A, b. For example, with
the robot arm having seven joints, just the calculation of the GP prior (5.5) over 1000
data points requires the computation of a (7 · 1000) × (7 · 1000) dimensional covariance
matrix where every entry also requires the computation of analytical functions M,QK, A, b.
Fortunately, the computational graph of the kinematics, dynamic terms, and subsequently
the entries of the covariance matrix solely depend on the specific state inputs, such that
the computation of these terms can be done in parallel.

The robot arm’s FD has been derived based on (Featherstone, 2008, p. 119) and Remy
(2019). The correctness of the PyBullet simulated dynamics and our PyTorch dynamics
implementation is ensured by carefully comparing the simulated states, i.e., the position,
velocity, and acceleration. Instead of relying on the contact dynamics model provided by
PyBullet, we compute the surface normal force QI using our PyTorch dynamics library
which is subsequently fed to the PyBullet simulation during data collection. QI is computed
using Baumgarté Stabilization, as detailed in Section 5.3.4, to ensure that the end-effector
does not leave the surface during the simulation due to small numerical errors. Moreover,
we compute a viscous friction force Fz that is being applied to the end-effector, reading
Fz = −θvṗE with the friction coefficient θv and the Cartesian end-effector velocity ṗE.

2The simulation code of the proposed framework is available at: https://git.io/JP4Fs
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Using our multibody library, Qz is computed using Fz and subsequently integrated into the
PyBullet simulation. The parameter of the friction function is set such that it significantly
alters the motion of the robot arm. Without Fz, the analytical regression model matches
the above-discussed analytical simulation model. In turn, the effect of Fz on the robot
dynamics can be seen in the error between the analytical regression model and the simulated
acceleration as depicted in Figure 5.11.

5.3.2 Data Generation

After setting up the simulation environments, running the experiment requires defining
trajectory planning and control algorithms. While running the simulation, we measured
the joint angles q and the control inputs u. The joint velocity q̇ and acceleration q̈ are
obtained by using a low-pass filter and appealing to numerical differentiation. After data
collection, we applied Farthest Point Sampling (Qi et al., 2017) to remove adjacent data
points as well as reduce the data set’s size. The post-processed data is split into a training
and a test data set.

Trajectory planning

While the robot is sliding its end-effector over the surface, we want to collect informative
data for training different regression models. Therefore, we uniformly sample the end-
effector positions inside a rectangular region on the contact plane within the end-effector
reachable space. We then coordinate the robot end-effector to sequentially connect the
points following a straight-line trajectory, thereby ensuring that the end-effector remains in
contact with the surface. Between each pair of points, a task-space trapezoidal velocity
profile is generated for the end-effector position. At each point, the arriving and starting
velocities are zero. In addition, this profile allows setting a travel time and a maximum
task-space acceleration between points which is used to avoid exceeding the actuator limits.
The generated end-effector task-space position, velocity, and acceleration trajectories are
depicted in Figure 5.9. While the end-effector position trajectory is given by the trapezoidal
profile, the desired orientation is set to a constant such that the rounded tip remains
perpendicular to the surface.

Task space inverse dynamics control and nullspace control

To track the task-space reference trajectories with the robot arm, we use a task-space inverse
dynamics controller (Siciliano et al., 2010, p. 347). The task of controlling a manipulator
consists of finding a time history of the generalized control forces Qu that are created by
the actuator’s control input u.

The robot arm has 7 degrees of freedom while we want to track a six-dimensional end-
effector trajectory (3D position and 3 Euler angles). We can achieve the same reference with
more than one configuration by changing the arm’s elbow elevation. The question arises of
how to set the extra DOF. In this work, we additionally use null-space control, which involves
modification of the desired joint-space acceleration, such that the error dynamics remains
untouched but constrain the acceleration through a secondary optimization objective. Here,
this subspace is the null-space of a Jacobian matrix that follows from the robot’s differential
kinematics.
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Figure 5.9: Task space trajectory of the robot arm’s end-effector during data collection.
Figure adapted from Rath et al. (2021).

Data Selection

Sampling at 240 Hz generates a substantial amount of data points. During training, the
computational complexity of GPs scales cubically with the number of data points which
requires reducing the size of the initially large data set. Another problem arises when
points in the training data set lie too close to each other inside the input space. This
results in an almost singular covariance matrix potentially causing numerical problems
during the computation of its Cholesky decomposition (Mohammadi et al., 2017). This
problem can be avoided by selecting sufficiently distinct data set points to guarantee a
numerically well-behaved covariance matrix. One practical way to select distinct data
points is clustering or smart sampling techniques. In this work, a clustering algorithm
divides the initial large amount of training points into clusters of similar data and only
retains a single point per cluster. However, standard clustering techniques such as K-means
clustering are computationally too slow for our data set size. Therefore, we use the Farthest
Point Sampling algorithm (FPS), which has been used for Deep Learning with PointNet++
(Qi et al., 2017) for selecting a subset of relevant and informative points from a point cloud
in a fast and efficient manner. The sampled points are chosen as the training dataset, while
the removed points comprise the test dataset.

5.3.3 Simulation Results

In what follows, the proposed structured GP (S-GP) (5.6) is analyzed and compared to
different baseline models. As a baseline for comparison, we trained the parameters of
(3.42) with Qz = 0 as well as a feed-forward NN on ten thousand data points. The trained
analytical model and the NN achieved on the test data set a mean absolute error (MAE)
of 0.57 and 0.13, respectively. For all GP models, we chose a squared exponential (SE)
kernel. The 154 hyper-parameters of each GP were estimated according to (2.95) using
Adam (Kingma and Ba, 2014b) without parameter constraints.
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Figure 5.10: The hyper-parameters of GP FD models are trained on an increasing number
of training points, then the (a) mean absolute acceleration prediction error and
the (b) acceleration-level constraint error on the test data set are compared.
Figure adapted from Rath et al. (2021).

Prediction accuracy and data efficiency

Figure 5.10 illustrates the GPs’ test-data MAE of each joint-dimension over an increasing
size of the training data set. In this figure, the term “S-GP” refers to the model in (5.6)
with QK = 0 while the term “S-GP + analytical mean” assumes an analytical model
QK = QG + QC + Qu as the GP’s prior mean function. For both S-GP models, we
assume that accurate analytical parameters are given, that is θA = θ⋆A. We assume
{QG + QC} as known as these analytical functions are being derived solely in terms of
known kinematics and inertia functions and the gravitational acceleration constant (Geist
and Trimpe, 2021). The structured GP models are compared to standard GP regression
in which each acceleration function is modeled by a single independent SE GP. As shown
in Figure 5.10a, analytical prior knowledge improves the data efficiency of the GP. The
proposed S-GP models compares also favorably to placing a GP prior on the system’s
unconstrained acceleration, as initially proposed by Geist and Trimpe (2020). Moreover, the
incorporation of implicit constraint knowledge in (5.6) significantly reduces the constraint
error {Aˆ̈q − b} as illustrated in Figure 5.10b.

Figure 5.11 illustrates different acceleration predictions made with these models using
1000 training points. The analytical baseline model does not contain a function describing
surface friction. This, in turn, causes the model to yield large prediction errors in the robot
arm’s joints that are close to the end-effector.

Estimation of Analytical Parameters

Another important aspect of the proposed structured modeling framework forms the
simultaneous estimation of θA and θM. To illustrate how θA and θM are estimated jointly,
we train the same S-GP with QK = 0 as in the previous simulation on thousand data
points. Yet, instead of assuming that we obtained a good prior for θA, we now estimate the
end-effector’s inertia parameters alongside the GP’s 154 hyper-parameters. For example,
one could imagine that a tool such as a brush or milling machine is being fixed to the
end-effector changing its inertia parameters. Figure 5.12 illustrates the optimization results.
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Figure 5.11: Acceleration predictions q̈4,pred (Top) and prediction error (Bottom) of different
forward dynamics models with the noisy acceleration over time (Black), the
predicted mean acceleration (purple) and – if available – the ±2 std. deviation
confidence region (light purple). The y-axis scaling of Figure 5.11a deviates
from the other figures. Figure adapted from Rath et al. (2021).
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Figure 5.12: Parameter optimization results of an analytical model (black) and the proposed
structured GP model (blue). Figure adapted from Rath et al. (2021).

Compared to training the parameters of an analytical model without surface friction, the
parameter estimates of the proposed S-GP converge faster while the prediction’s MAE for
all joint-dimensions improves.

Prediction of Lagrange Multipliers

With the joint distributions between the GP2’s latent processes (5.11), one can predict the
model’s Lagrange multipliers λ at inputs X⋆ by conditioning on acceleration measurements
at inputs X using the conditioning formula (2.84), writing

λ̂(X∗)|D, θ = µb
X∗ + Σba

X∗,X (Σaa
X,X + ΣY )

−1 (Y − µa
X), (5.27)

with µb = (AM−1AT)+b − LQK , µa = M−1Qb + PQK, Σba = L(X∗)ΣQ̄
X∗,XP

T(X) and
Σaa

X,X = P (X)kQ̄(X,X)PT(X). Figure 5.13 illustrates the prediction of λ by conditioning
on D via (5.27) using the proposed structured GP model. As expected, the Lagrange
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Figure 5.13: Top: Surface equation error in simulation. Bottom: Prediction of Lagrange
multiplier λ by conditioning a GP2 (5.6) on acceleration measurements.
Figure adapted from Rath et al. (2021).

multiplier remains positive such that the end-effector is impressing a positive force on the
surface. The prediction of a loss of contact with structured GPs is left to future work. The
estimation of the Lagrange multipliers as well as the surface normal force QI is useful for
impedance control as commonly used in legged robotics.

5.3.4 Baumgarte Stabilization for Trajectory Predictions

Compared to differential-algebraic formulations of the EOM, the EOM (3.42) has the
advantage that numerical ODE solvers can be used to compute a trajectory given initial
conditions {q0, q̇0}. Moreover, it is particularly straightforward to combine data-driven
modeling with analytical equations. Yet, (3.42) only respects the acceleration-level con-
straints explicitly. In turn, a trajectory prediction in the absence of measurement noise
only lies on the position-level constraint c(q) = 0 if the initial state {q0, q̇0} lies on the
position-level constraint. In practice, a numerical integration method inevitably makes
errors on the system’s acceleration which causes the predicted position and velocity to drift.
This integration drift is additionally aggravated by the noise in the state observations.

To ensure that trajectory predictions converge to the position-level surface constraint,
one can resort to Baumgarte stabilization.

Baumgarte stabilization forms a common technique in multi-body dynamics to ensure
that the trajectory predictions made with an ODE formulation of the EOM fulfill implicit
position level-constraints. In what follows, we assume the implicit constraint equations c(q)
are holonomic with dc(q)

dt
= Aq̇ = 0. Given a measured/predicted state-acceleration pair

{q′, q̇′, t, q̈′}, the error made in the position-, velocity-, and acceleration-level constraints
amounts to

ec = c(q′), (5.28)
eċ = A(q′)q̇′, (5.29)
ec̈ = A(q′)q̈′ − b(q′, q̇′). (5.30)

In this case, Baumgarte (1972) suggests extending the error dynamics to yield a stable
damped oscillator equation for ec as

ec̈ + 2ωn,q̈ξn,q̈ėc + ω2
n,q̈ec = 0, (5.31)
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Figure 5.14: Long-term trajectory prediction and corresponding error functions obtained
by numerical integration with an integration time step of 0.0024 s using the
different GP models’ acceleration predictions of the fourth output dimension.
The true trajectory is depicted by the black dotted line. Figure adapted from
Rath et al. (2021).

with the natural frequency ωn,q̈ > 0 and damping ratio ξn,q̈ > 0. Usually ξn,q̈ is chosen to
be unitary, such that the constraint error dynamics are critically damped. By inserting
(5.28), (5.29), and (5.30) into (5.31) one obtains

Aq̈′ = b̃, (5.32)

with b̃ = b+ 2ωn,q̈ξn,q̈Aq̇
′ + ω2

n,q̈eq̈c(q
′).

Remark 5.2. Substituting b in (3.42) with b̃ ensures that for long trajectory predictions, ec
converges to zero at the cost of introducing a small error to the predictions of q̈.

Figure 4 illustrates trajectory predictions for one of the joint dimensions which are
computed by resorting to symplectic Euler numerical integration, using the different GP
models. The different GP models are the same as in Figure 5.10a using 1000 training
points. Due to measurement noise in the initial state as well as numerical integration and
prediction errors, the GPs diverge from the true trajectory over time. As a consequence
of Assumptions 1 and 2, one can guarantee that trajectory predictions computed with
(5.6) converge onto the surface equation c(q) = 0 by replacing b inside the GP2 with b̃ as
(5.32). In turn, the position-level surface constraint error converges to zero for the GP
models using Baumgarte stabilization. Here, only in the prior mean at the prediction
locations {L(X⋆)b+PmQ̄(X

⋆, θA)} and the function P (x⋆, θA) inside the covariance function
kq̈(x

⋆, x) = P (x⋆, θA)kef̂ (x
⋆, x)P (x, θA) the function b must be replaced by b̃. Figure 5.14

illustrates how the usage of Baumgarte stabilization ensures that the trajectory prediction
of the robot’s third joint respects the surface constraint c(q) = 0.
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Chapter 6

The Wheelbot: Developing a Robot
Testbed for Learning Control

The previous discussion of a unified view on physics-informed regression has been decisively
influenced by the development of a novel robotic testbed named “Wheelbot”. We developed
this robot in parallel to conducting the research on physics-informed regression as presented
in Chapter 3 and Chapter 5. Before we delved into the depth of mechatronics system
engineering, little we knew on the sacrifice it takes to develop the first jumping unicycle
robot. Yet, by venturing deep into the abyss of real mechatronic system design, we were
able to cast a glance at typical challenges of robotics engineering and how to ease some
of those using physics-informed regression. Albeit, we see the purpose of this robot as a
relatively affordable platform for education and research on nonlinear dynamics and control.
This section is based on Geist et al. (2022)1.

Recent advancements in actuators, sensors, and embedded controllers, saw the explosion
of low-cost 3D rapid prototyping; have enabled the development of a wide variety of
novel robotic testbeds. Such systems enrich the controls and robotics community by
exposing unique compositions of dynamical properties while also providing a platform for
the exploration of novel mechatronic solutions.

When contemplating the architecture of a robotic testbed, the designer first encounters
several system-level design decisions, including the number of degrees of freedom (DOF)
and the layout of the mechanical and electrical components. While a variety of interesting
arrangements exist in such a large design space, this work is specifically focused on the realm
of nonlinearly-coupled, under-actuated systems, wherein the number of actuators is less
than the DOF. A textbook example of such a system is the “cart-pole pendulum”, with only
two DOF (the position and pendulum angle) and one actuator controlling the cart’s position.
The cart-pole pendulum’s low-dimensional dynamics eases the analysis of experimental data,
while its simple design reduces cost and maintenance. Yet, for systems with more DOF,
interesting questions arise on how to identify and leverage coupling terms for control. In
what follows, we propose a control testbed that offers challenging under-actuated dynamics
with interesting dynamical properties and unprecedented control capabilities while also
being compact and relatively low-cost.

1IEEE remains the rights holder for all text excerpts and figures which have been taken from Geist et al.
(2022).
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Figure 6.1: The design of the Wheelbot is inspired by several robotic testbeds. From left
to right: The “Cubli” balancing cube (Muehlebach and D’Andrea, 2018), the
“Ascento” robot (Klemm et al., 2019), the “Rezero” ballbot of the ETH Zürich
(Hertig et al., 2013), and an orthogonal-configuration unicycle robot of the
Pusan National University (Lee et al., 2013).

Self-balancing Wheeled Testbeds

Typically utilizing off-the-shelf electric motors, wheeled robots are interesting control
testbeds that usually require a small operating space while also providing a wide range
of different dynamical properties. Figure 6.1 illustrates a selection of robotic testbeds
that decisively influenced the design of the Wheelbot. The wheels of such robots can be
distinguished into rolling wheels and reaction wheels. Rolling wheels leverage friction forces
for locomotion and are found on Ballbots Fankhauser and Gwerder (2010); Nagarajan et al.
(2014) as well as Segway-esque robots such as the Ascento Klemm et al. (2019). Reaction
wheels apply free torques and are used in simple wheeled pendulums such as Rouleau (2015)
and more complex cube-like structures such as Gajamohan et al. (2013).

From a dynamics perspective, balancing with a reaction wheel requires fast changes
in the motor’s direction of rotation and may also evoke high motor velocities. In turn,
the actuation of a reaction wheel with an electric motor summons rate-dependent control
constraints as the maximum torque produced by an electric motor in the direction of
rotation is inversely proportional to its rotational speed. In comparison, rolling wheels
rotate at comparably lower speeds and may introduce nonholonomic kinematic constraints
as in the case of the Ascento Klemm et al. (2019). Moreover, using rolling wheels may
require the linearized closed-loop system dynamics to be non-minimum phase as in the case
of Fankhauser and Gwerder (2010); Klemm et al. (2019); Nagarajan et al. (2014).

Brushless electric motors have enabled wheeled robots such as the Cubli (Gajamohan
et al., 2013; Muehlebach and D’Andrea, 2017) and Ascento (Klemm et al., 2019) to
perform fast-changing maneuvers that are subject to discontinuous contact dynamics. Since
such dynamics are difficult to model a priori, linear control algorithms tend to perform
below expectations, motivating the usage of different control strategies that either identify
modeling errors from data or incorporate probabilistic nonlinear error functions into the
control design.
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Figure 6.2: The Wheelbot is a reaction wheel-driven unicycle robot that uses brushless
motors to self-erect after toppling.2

The Wheelbot Concept

The Wheelbot arose from the desire for a compact, under-actuated control testbed with
nonholonomic and fast-changing discontinuous dynamics that could be operated in a
relatively small space. To meet these objectives, the small unicycle robot shown in Fig. 6.2
was designed to include two actuated wheels attached to a rigid body, with one rolling on
the ground and the other acting as a reaction wheel. A special feature of the robot is its
symmetry in the sense that both wheels can act as a reaction wheel or a rolling wheel.

Previous literature proposes reaction wheel unicycle robots whose rotation axis is either
coaxial to a line connecting the center of both wheels as in Deisenroth (2010); Rizal et al.
(2015); Vos (1992); or it is orthogonal to such a line as in Lee et al. (2013); Rizal et al. (2015);
Rosyidi et al. (2016). Unicycle robots with coaxially-oriented reaction wheels do not directly
actuate the unstable roll DOF but instead turn the robot in the tilting direction while the
rolling wheel prevents the robot from toppling. In contrast, an orthogonal-configuration
unicycle directly actuates the roll DOF.

When designing the Wheelbot, we opted for an orthogonal configuration to directly
control the unstable roll and pitch DOF. As the roll, pitch, and yaw dynamics are decoupled
when linearized around the upright equilibrium, an orthogonal configuration allows one
to tune the roll and pitch balancing controllers independently from each other. These
controllers then act as a starting point for tackling more challenging research questions
that revolve around the identification and control of the robot’s yaw dynamics or, as a
subsequent step, the control of the robot along a desired trajectory. Recently proposed

2A video of the Wheelbot is available at: https://youtu.be/4XLB8JoPpZ8
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Table 6.1: System overview.
Table taken from
Geist et al. (2022)

Category Value

Overall weight 1.4 kg
Wheel weight 0.24 g
Operating time ∼20 min
Max. battery voltage 25.2 V
Battery capacity 1.3 Ah
Max. motor current 19 A
Max. motor torque ∼1.3 Nm
Max. motor rate 300 rad/s

⌀105

12
222
0

166

166

Figure 6.3: Dimensions (mm).
Figure taken from
Geist et al. (2022).

designs for orthogonal-configuration unicycles (Lee et al., 2013; Rizal et al., 2015; Rosyidi
et al., 2016) resort to large, high-inertia reaction wheels to reduce wheel acceleration and in
turn avoid exposing the system’s electronics to larger currents at faster wheel speeds. Yet,
to be able to self-erect from any initial pose, the reaction wheel of the Wheelbot need to be
considerably smaller than those of the aforementioned orthogonal-configuration unicycles,
which led to a number of interesting design challenges. To the best of our knowledge, the
Wheelbot forms the first unicycle robot that can self-erect from any initial position and is
able to recover from significant disturbances around its roll and pitch axis.

6.1 System Description
The detailed design of the Wheelbot began with several high-level architectural decisions:

1. The outer geometry of the robot should allow it to self-erect from any initial position.

2. The robot’s bottom and top half should be identically constructed, thereby reducing
the number and complexity of the 3D-printed parts.

3. The robot should carry its own power supply.

4. The control of the robot should be shared between an onboard embedded processor
and a wirelessly-connected supervisory controller.

The realization of these points required solving numerous mechanical, electrical, and
programmatic challenges.

6.1.1 Mechanical Design

To build a safe, easy-to-maintain, and reasonably low-cost testbed, the mechanical design
of the Wheelbot focused on the combination of off-the-shelf components with simple 3D-
printable parts. The robot consists of two identical wheel assemblies mounted to a center
frame. The majority of the mechanical components were created from Onyx ABS plastic,
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Table 6.2: Component specifications.
Table taken from Geist et al. (2022).

Component Specification

Motors T-Motor Antigravity 6007 KV160
Motor-controller uDriver v2
Additional µController Maevarm M2 (ATmega32U4 processor)
IMUs TDK-Invensense ICM-20948 9-DOF
Encoders Avago Technologies AEDM5810Z12
Batteries LiPo - 11.1V (3S), 650mAh, 75 C

using a Markforged OnyxOne 3D printer. Threaded brass inserts are heat impressed into
the 3D printed parts such that screws can be removed without wear and tear.

Center frame The center assembly consists of a 3D-printed chassis sheltering micro-
controllers, four batteries, cables, four inertia measurement units (IMUs), and two wheel
assemblies. The batteries are placed symmetrically with respect to the x and y axis of
the body-fixed frame since they contribute considerably to the system’s overall weight and
inertia. As discussed in 6.4.2, the cubic design of the chassis allows the system to self-erect
from any initial position. The width and height of the chassis cube structure are provided
in Fig. 6.3.

ball bearings

alumininum shaft

optical encoder

3D printed parts

threaded insert

O-ring laser-cut
copper rings

motor rotor

motor stator

Figure 6.4: Sectional drawing of the wheel assembly.
Figure taken from Geist et al. (2022).

Wheel assembly As depicted in Fig. 6.4, each wheel assembly consists of several 3D-
printed parts, a reaction wheel, a brushless electric motor, and an optical encoder. Since the
reaction wheel’s mass and inertia determine the torque required for a stand-up maneuver as
well as the time constant of the system’s roll dynamics, the design focuses on maximizing
the rotational inertia while keeping the mass as low as possible. To reduce the reaction
wheel’s mass while maximizing its inertia, we laser-cut 1 mm thick copper rings, which are
then stacked onto a 3D printed hub attached to the reaction wheel’s motor, as depicted in
Fig. 6.4, yielding a 320 gram wheel with a rotational moment of inertia of 5 · 10−4 kg-m2.
A rubber O-ring (75 mm inside diameter, 5 mm cross-section diameter) was fitted to the
outer rim of the wheel to increase grip when touching the ground.
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High-level
Controller

Stabilizing
Controller

Self-erection
Controller

Motors

Encoders
State

Estimation

User
Input

Maevarm M2 Motor Controller

IMUs

SPI

SPISPI

WiFi

Figure 6.5: Overview of the software architecture.
Figure taken from Geist et al. (2022).

6.1.2 Electronics Design

Table 6.1 gives a general system overview, while Table 6.2 provides a summary of the
chosen electronic components. Based on the mass properties obtained from the robot’s
CAD model, we utilized the simulation detailed in Section 6.2.2 to determine the required
motor torque for performing a stand-up maneuver. The chosen brushless motor has a stall
torque of 1.3 Nm and maximum speed under load of 300 rad/s (2860 RPM) when operated
at 24.5V. Power is supplied by four 12.6V, 650mAh Lithium-Polymer (LiPo) batteries
arranged as two parallel pairs of serially connected packs to provide a nominal fully-charged
voltage of 25.2V.

The motors are controlled by a “µDriver v.2”, a compact dual-channel brushless-motor
controller based on the TI TMS320F28069 micro-controller and a pair of TI DRV8305
smart three-phase gate drivers. The µDriver v.2 can operate up to a maximum of 44V
while delivering up to 30A per channel. Motor commands and feedback signals are
transmitted between the µDriver and a compact 16-MHz ATmega32U4-based MAEVARM
M2 microcontroller via a high-speed Serial-Peripheral Interface (SPI) connection.

The SPI interface of the M2 is also used to collect data from four TDK-Invensense
ICM-20948 9-DOF inertial measurement units (IMUs) attached to four corners of the cube
structure. Each IMU provides the triaxial acceleration, angular rate, and magnetic field
measurements, though in the present configuration, the magnetometer readings are not
used due to high noise from the nearby brushless motors. To maximize sensitivity while
avoiding saturation, the range of the accelerometers is set to ±2g0 where g0 denotes the
gravitational acceleration constant g0 ≈ 9.81m/s2, while the gyroscopes are set to 500 deg/s.
Figure 6.6 shows typical measurements of the IMUs. As illustrated in Fig. 6.5, the robot’s
state estimator and controllers are executed on the M2, which is also responsible for the
receipt of user inputs via a Nordic nRF25LE1 2.4-GHz wireless link.

The use of brushless motors in such a compact design comes with the risk of significant
Electro-Magentic Inference (EMI). To reduce the EMI emission, the motor cables are
twisted and wrapped around ferrite rings to reduce high-frequency current oscillations. In
addition, all SPI communication cables are shielded with a grounded copper mesh and
located as far from the motor cables as possible.

6.1.3 Software Design

The embedded software for both the M2 and the motor driver is written in the “C”
programming language. Running at a fixed loop rate of 100 Hz, the M2 receives user inputs
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(a) Accelerometer data.

(b) Gyro data.

Figure 6.6: Data of the Wheelbot’s four tri-axis IMUs. Left: Data is collected while the
motor is switched off and the Wheelbot is rotated by hand. Right: Data is
collected while the robot is balancing. The accelerometer and gyro data stem
from two separate experiments.
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front view side view

reaction wheel

rolling wheel

Figure 6.7: Generalized coordinates
describing the system’s pose.
Figure taken from Geist et al. (2022).

front view side view

Figure 6.8: The locations of the robot’s
IMUs is described in terms of the
coordinate systems {I}, {C},
{W}, and {B}.
Figure taken from Geist et al. (2022).

over the wireless link, reads data from the four IMUs and two encoders, executes the state
estimator and control routines, and outputs desired current values to the µDriver. The
Wheelbot’s user inputs and data are processed on a PC using the “Python” programming
language via the “Tkinter” package.

6.2 Dynamics Modeling
Data-driven dynamics identification is the raison d’etre of this work. Yet, before delving
into some of the fundamental principles underlying the dynamics of robotic systems in
Section 3, we first approach robot dynamics modeling from a practitioner’s point of view.
In the concrete example of the Wheelbot, kinematic and dynamic models may be possibly
used to:

• Understand the system’s physical properties and test designs during the development
phase.

• Obtain more accurate estimates of the system’s state by incorporating the mechanical
prior knowledge into an observer design.

• Provide a simulation environment for the development of state estimation and control
routines before facing additional challenges that accompany embedded system design.

• Provide a model for a predictive controller to improve control performance.

6.2.1 System Coordinates

The system’s pose is described via the generalized coordinates q ∈ R5 with q = [q1, ..., q5]
T,

the generalized velocity by q̇ = dq
dt

, and the generalized acceleration as q̈ = d2q
dt2

. The
body-fixed coordinate system is denoted as {B} with coordinate axes {eB1 , eB2 , eB3 } and
origin B. As illustrated in Fig. 6.7 and Fig. 6.8, the system coordinates are:

• Contact point positions x and y: The Cartesian positions of {C}’s origin with respect
to the inertial frame {I}.
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• Roll angle q1: A rotation of {W} around eC1 .

• Pitch angle q2: A rotation of {B} around eW2 .

• Yaw angle q3: A rotation of {C} around eI3.

• Rolling wheel angle q4: Describing the rolling wheel’s rotation around eW2 .

• Reaction wheel angle q5: Describing the reaction wheel’s rotation around eB1 .

A vector is transformed from the inertial frame {I} to the body-fixed frame {B} by a
yaw-roll-pitch Euler rotation sequence, reading

RBI(q1, q2, q3) = RT
2 (q2)R

T
1 (q1)R

T
3 (q3). (6.1)

The rotation from {B} to {I} is given as RIB = RT
BI . With (6.1) one obtains kinematic

expressions for the position and orientation of the system’s three rigid bodies.

6.2.2 Rigid body Dynamics

The derivation of the rigid body dynamic equations is based on the following assumptions:

1. The system’s bodies are rigid.

2. The rolling wheel ideally rolls without slip.

3. Motors are not subject to friction or hysteresis effects.

4. Motor dynamics are neglected, being considerably faster than other dynamic terms.

While some of these are clearly simplifying assumptions, the reality gap will be taken
care of by feedback control, possibly combined with learning, which is, among others, an
interesting challenge of this testbed. With Assumption 2), the friction forces that act on
the rolling wheel enforce an implicit nonholonomic constraint

[ẋ− rwq̇4 cos(q3), ẏ − rwq̇4 sin(q3)]
T = 0, (6.2)

with wheel radius rw. The above constraint is nonholonomic, reducing the generalized
coordinates required to describe the system’s configuration to q.

As outlined in further detail by Daud et al. (2017), the system’s equations of motion are
obtained via the Euler-Lagrange equations (3.21).

The Wheelbot’s EOM was derived using Matlab’s symbolic toolbox. These symbolic
equations were then transferred to an s-function in Simulink.

Simulation Model

In Simulink, the s-function dynamics model is combined with controllers and state-estimation
routines. The controller model includes time delays in the obtained reference signal while
the simulated IMU measurements are perturbed by Gaussian noise, whose distribution
closely resembles the characteristics of the real IMU noise. The Wheelbot’s simulated
motion is animated using a Simulink “VR sink”.
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t

Figure 6.9: Simulink simulation of the Wheelbot. A feed-forward control signal is added to
the balancing control, rotating the system three times around yaw in 4 s.

6.3 State Estimation
An accurate and drift-free estimate of the robot’s tilt angles q1 and q2 is critical for
good control performance. Tilt estimates are obtained by integrating the gyroscope’s
angular rates and using the accelerometer measurements. The integration of the gyroscopes
rate measurements yields accurate (though drifting) tilt estimates. In comparison, the
accelerometers provide drift-free yet noisy estimates of the tilt angles by using a carefully
designed filter. In turn, the gyroscope and accelerometer tilt estimates are fused in a
complementary fashion to yield accurate and drift-free tilt estimates as shown in Fig. 6.10.

The initial derivation of the tilt estimator Trimpe and D’Andrea (2010) and similarly
Muehlebach and D’Andrea (2018) assume that the IMUs are attached to a body rotating
around a non-accelerated pivot point. We show in Section 6.3.3 that for unicycle robots, the
estimation algorithm can be extended to estimate the pivot point acceleration via motor
encoder measurements. In turn, we propose a novel approach to tilt estimation that also
applies to other types of rolling wheel robots, including Ballbots and Segway-esque robots.

6.3.1 Tilt and Rate Estimation using Gyroscopes

To obtain an estimate of the Euler rates {q̇1, q̇2, q̇3}, the measured gyro rates iωi ∈ R3 are
first transformed into {B}, writing Bωi = RBi

iωi, and afterwards using the previous tilt
estimate {q̂1(k − 1), q̂2(k − 1)} transformed into {I}, writingq̇1,Gq̇2,G

q̇3,G

 =

 eT1R2

eT2
eT3R1R2

 4∑
k=1

Bωi(k)

4
, (6.3)

where here, as well as in what follows, we use the abbreviation R1 := R1(q̂1(k − 1)) and
R2 := R2(q̂2(k − 1)) and omit the discrete time step k. Afterwards, the Euler rates in (6.3)
are integrated to obtain drifting pose estimates {q1,G, q2,G, q3,G}.

6.3.2 Tilt Estimation using Accelerometers

A fundamental challenge in the computation of the tilt angle lies in distinguishing the
gravitational acceleration from the acceleration that is caused by the system’s motion. A
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common method for estimation of a robot’s tilt angle are extended, or unscented Kalman
filters (Hertig et al., 2013; Klemm et al., 2019). These approaches usually rely on local
approximations of the attitude dynamics, which model the temporal correlation between
the observed data. In turn, Kalman filtering approaches are susceptible to errors of the
dynamics and noise parameters.

As an alternative approach, Trimpe and D’Andrea (2010) proposed a tilt estimation
algorithm for a rigid body with a non-accelerated pivot point that has been used on various
balancing robots Gajamohan et al. (2013); Muehlebach and D’Andrea (2017); Trimpe
and D’Andrea (2012). Given knowledge of the robot’s kinematics model, the estimator
in Trimpe and D’Andrea (2010) is computationally less demanding than Kalman filtering
while providing a least-squares optimal estimation result. We thus follow this approach
and extend it to a moving pivot in the next subsection.

Each accelerometer measures acceleration with respect to an observer in free fall. In turn,
the acceleration measurement of the i-th sensor at position pi with respect to {B} reads

Bmi =
B p̈i − Bg + Bni, (6.4)

with the acceleration due to the IMU’s movement p̈i, gravitational acceleration g, and
measurement errors ni.

The approach in Trimpe and D’Andrea (2010) requires that the position vector piW
between the non-accelerated pivot point and each of the IMUs remains constant with
respect to {B}. Consequently, we select the rolling wheel’s center W as the pivot point and
estimate its acceleration p̈W as detailed in Section 6.3.3. By subtracting p̈W from Bmi, we
reduce (6.4) to the problem of estimating the pose of a rigid body with a non-accelerated
pivot point, writing

Bm̂i =̂
Bmi − B p̈W = B p̈iW − Bg + Bni, (6.5)

with
B p̈iW = BΩBpiW , (6.6)

where piW points from the wheel center to the i-th IMU and B p̈iW = RBIR̈IB
BpiW , with

R̈IB = RIB
BΩ. The matrix

BΩ = Bω̃2 + B ˙̃ω, (6.7)

represents the body’s angular as well as centripetal acceleration with the angular velocity
of {B} relative to {I} being ω, and ω̃piW = ω × piW . By inserting (6.6) into (6.5), one
obtains a set of linear equations as

M = QP +N, (6.8)

M =
[

Bm̂1
Bm̂2 . . . Bm̂L

]
∈ R3×L, (6.9)

Q =
[

Bg BΩ
]

∈ R3×4 , (6.10)

P =

[
1 1 . . . 1

Bp1W
Bp2W . . . BpLW

]
∈ R4×L, (6.11)

N =
[

Bn1
Bn2 . . . BnL

]
∈ R3×L, (6.12)

with the matrix of known sensor location P having full row-rank by design. As pointed out
in Trimpe and D’Andrea (2010), the optimal Q, Q⋆, that minimizes

min
Q̂

E
[
∥Q̂−Q∥2

]
subj. to E[Q̂] = Q, (6.13)
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Figure 6.10: Block diagram of the tilt estimator.
Figure adapted from Geist et al. (2022).

is given by
Q̂ = [B ĝ, BΩ̂] = MPT(PPT)−1 = M [X⋆

1 , X
⋆
2 ], (6.14)

with X⋆
1 ∈ RL×1 being constant and only depending on the IMU positions. With (6.1), the

gravitational acceleration reads

Bg = RT
2R

T
1
Ig = g0

− cos(q1) sin(q2)
sin(q1)

cos(q1) cos(q2)

 . (6.15)

Finally, with B ĝ as in (6.14), the tilt angle estimates are obtained as

q1,A = arctan

(
B ĝ2√

B ĝ21 +
B ĝ23

)
, q2,A = arctan

(−B ĝ1
B ĝ3

)
. (6.16)

Muehlebach and D’Andrea Muehlebach and D’Andrea (2018) further extended Trimpe
and D’Andrea (2010) by formulating (6.4) as a maximum likelihood estimation problem
with the additional constraints that the gravitational acceleration lies on a sphere of radius
g0, Bω̃2 is symmetric and B ˙̃ω is skew-symmetric. This leads to a non-convex optimization
problem which can be solved iteratively. The estimator proposed by Muehlebach and
D’Andrea (2018) shows improved performance at the cost of a slightly higher computational
load. The Wheelbot uses Trimpe and D’Andrea (2010) as it already provides a sufficiently
accurate tilt estimate. Both Trimpe and D’Andrea (2010) and Muehlebach and D’Andrea
(2018) can be used for wheeled balancing robots by estimating the pivot acceleration, as
proposed in the next section.

6.3.3 Pivot Acceleration Estimation using Encoder

If we assume p̈W = 0 in the tilt angle estimation via (6.14) and (6.16), a translational
acceleration of the robot causes a non-zero tilt estimate even though the system did not
tilt during the movement as shown in Figure 6.11 (Left, red line). We suggest to mitigate
this error through the estimation of p̈W and its insertion into (6.5).

To estimate p̈W , we decompose the acceleration into its partial components as depicted
in Fig. 6.8, writing

B p̈W = B p̈CI +
B p̈WC , (6.17)
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Control: OFF Control: ON
pushIMU 2

IMU 1

Figure 6.11: Left: The robot is translationally accelerated without rotating the system.
Right: The balancing robot is pushed such that q2 < 0. Top: Estimation of
B p̈W using q̈4,E. Bottom: Pitch estimate q2,A with and without estimation of
B p̈W . The lines are obtained by low pass filtering q2,A.
Figure adapted from Geist et al. (2022).

where the vector pCI points from I to the wheel contact point C, and pWC points from C
to W . As the rolling wheel is assumed to not slip, the acceleration at the ground contact
point reads

B p̈CI = RT
2R

T
1

[
rwq̈4 rwq̇3q̇4 0

]T
. (6.18)

Note that the encoder measures q̇4,E = q̇4 − q̇2. As q̇4 ≫ q̇2, we assumed q̇4,E ≈ q̇4.
An estimate for q̈4,E is obtained by low-pass filtering q̇4,E and resorting to numerical
differentiation. The acceleration due to the change of pWC reads

B p̈WC = RT
2R

T
1

 2rw cos(q1)q̇1q̇3 + rw sin(q1)q̈3
rw sin(q1)(q̇

2
1 + q̇23)− rw cos(q1)q̈1

−rw cos(q1)q̇
2
1 − rw sin(q1)q̈1

 . (6.19)

To determine the significance of the individual acceleration terms in (6.17), we ran a
simulation of the Wheelbot in which the controller has been periodically excited, resulting
in a pirouette-esque motion. This simulation as well as further experiments on the real
robot indicate that in (6.17) only the term depending on q̈4 significantly contributes to p̈w
such that the other terms are being omitted for the estimation of the pivot acceleration.

Figure 6.11 illustrates the influence of the pivot acceleration estimation on the computation
of the pitch angle. The ground truth estimate of B p̈W is obtained by applying a non-causal
low-pass filter with a cutoff frequency of 60Hz to rwq̈4,E. The first-order low-pass used
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Figure 6.12: Balancing controller rejecting different pushes.
Figure adapted from Geist et al. (2022).

to filter q2,A has a cutoff frequency of 0.32Hz. This cutoff frequency matches the cutoff
frequency of the low-pass filter part of the complementary filter that is used to filter the
q2,A estimates. In Fig. 6.11 (Left), the robot is held at q1 = q2 = q3 = 0 while being only
translational accelerated. In turn, the IMUs directly measure B p̈W = e1rwq̈4. Notably,
the low-pass filtered estimate of q2,A with the estimation of B p̈w remains close to zero. In
Fig. 6.11 (Right), the robot is pushed such that q2 turns negative and then positive while
the controller overshoots. Notably, the low-pass filtered q2,A with the estimation of B p̈W
reproduces the correct qualitative shape of q2 during the push.

6.3.4 Sensor fusion via complementary filtering

The gyroscopes tilt estimate {q1,G, q2,G} as in Section 6.3.1 is combined with the accelerom-
eters tilt estimate {q1,A, q2,A} as in Section 6.3.2 using the following formula[

q̂1
q̂2

]
= α

[
q1,A
q2,A

]
+ (1− α)

[
q1,G
q2,G

]
, (6.20)

with fusion parameter α = 0.02. Equation (6.20) corresponds to a discrete-time comple-
mentary filter that combines the high-frequent part of the gyroscope tilt estimate with the
low-frequent part of the accelerometer tilt estimate Brown and Hwang (1997).

6.4 Control
In what follows, we present a straightforward design of a balancing controller as a proof
of concept. In Section 6.4.2, we demonstrate the system’s capability to jump onto one of
its wheels by combining balancing control with cautiously engineered feed-forward control
signals.
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6.4.1 Balancing Control

Linear quadratic regulator (LQR) control synthesis has been used successfully for the
control of unstable wheeled robots (Fankhauser and Gwerder, 2010; Klemm et al., 2019;
Lee et al., 2013; Li et al., 2014). To obtain an LQR for balancing, the system’s dynamics
(??) are linearized around the upright equilibrium position (q = 0, q̇ = 0), to yield a linear
state space model as

d

dt

[
qI
qII

]
=

[
A1 0
0 A2

] [
qI
qII

]
+

[
B1 0
0 B2

] [
u1

u2

]
, (6.21)

with qI = [q1, q̇1, q5, q̇5], qII = [q2, q̇2, q4, q̇4], and system matrices of appropriate size. Due
to the linearization around the upright equilibrium, the roll and pitch dynamics in (6.21)
are decoupled. As in the linearized dynamics, the yaw angle q3 and its velocity q̇3 are not
controllable, the corresponding dynamic modes are being omitted from (6.21). We note that,
in practical experiments, specific control actions lead to considerably agile movements along
the yaw DOF. Additionally, the system’s nonlinear dynamics model possesses numerous
coupling terms between the yaw dynamics and the other states, indicating that viewed
from a nonlinear system’s perspective, the yaw dynamics can be controlled. However, an
analysis of the system’s nonlinear yaw dynamics exceeds the scope of this work.

The LQR’s positive semi-definite weighting matrices for the roll controller {Q1, R1} and
pitch controller {Q2, R2} are chosen as diagonal matrices. The diagonal elements of the Q
and R matrices form tuning knobs that increase the quadratic cost of the respective state
error or control input. With the A and B matrices from (6.21), carefully chosen {Q,R}
matrices, and the system’s sample-time of 0.01s, the LQR gains for the discrete-time system
are obtained as K1 =

[
4.5 0.25 0.0003 0.0018

]
and K2 =

[
1.6 0.14 0.04 0.0344

]
,

such that

u1 = K1

[
q̂1 − q̄1 q̇1,G q5,E q̇5,E

]T
,

u2 = K2

[
q̂2 − q̄2 q̇2,G q4,E q̇4,E

]T
, (6.22)

with the estimator tilt angle bias {q̄1, q̄2}. To improve performance during non-steady state
operation, the tilt angle bias has been estimated in a calibration routine before start.

Fig. 6.12 illustrates how the Wheelbot rejects pushes coming from different directions
with respect to {B}. Fig. 6.12 (Bottom) depicts the motor current. With an estimated
motor torque constant of KT = 0.075, the motors apply during disturbance rejection
approximately u = KT · 13A ≈ 1Nm.

6.4.2 Jump-up Maneuvers

The jump-up maneuver for a Wheelbot is challenging as:

• Self-erection takes less than half a second at a control frequency of 100 Hz, while
traversing a significant part of the system’s state space, leaving a small error margin
for computing control signals.

• During self-erection, the robot’s ground contact points change, and in turn also its
dynamics change.
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1 2 3 4

Figure 6.13: Stand-up experiment. Figure adapted from Geist et al. (2022).

• When the wheel hits the ground, discontinuities and stick-slip effects may be introduced
to the dynamics.

• The dynamics can be subject to forces arising from the deformation of mechanical
components.

While similar challenges are often encountered in other systems, such as quadrupedal
robots, the Wheelbot provides a comparably compact and low-dimensional system for
research on iterative learning and repetitive control algorithms. Here, as soon as a balancing
controller fails, the robot can automatically self-erect, and the experiment can be continued.

The robot self-erects either in a two-step or a one-step maneuver. The system first
accelerates one wheel in the two-step maneuver until the rolling wheel has ground contact.
Afterward, the robot rotates to its upright equilibrium position either by using its reaction
wheel, which we refer to as “stand-up” or by its rolling wheel, which we refer to as “roll-up”.

Stand-up

Figure 6.13 (Top) illustrates a stand-up maneuver. First, the reaction wheel applies torques
u1 to rotate the robot such that its center of gravity (COG) lies at S1 by αS1 = 60deg.
Then, the reaction wheel moves the system from S2 by αS2 = 30 deg such that q1≈ 0 deg.
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1 2 3

4

Figure 6.14: Roll-up experiment. Figure adapted from Geist et al. (2022).

Figure 6.13 depicts the experimental results of a two-step stand-up. Here, the reaction
wheel accelerates until q̂1≈ 30 deg (Fig. 6.13, 2 ), then accelerates until q̂1≈ 0 deg (Fig.
6.13, 3 ) and finally switches to the roll balancing controller (Fig. 6.13, 4 ). Notably, the
torque produced by an electric motor in the direction of rotation is inversely proportional
to its rotational speed. Therefore, preceding the stand-up, the reaction wheel is accelerated
to −290 rad/s. At the beginning of the stand-up, the normal force between the ground and
the wheel does not suffice to prevent slip. Therefore, the pitch balancing controller is only
switched on when the robot is nearly upright.

Roll-up

As depicted in Fig. 6.14 (Top), during a roll-up, the rolling wheel first applies torques u2 to
rotate the robot such that βS1 = 55 deg and its COG lies at R1. Secondly, the rolling wheel
rotates the system by βR2 = 35deg to its upright equilibrium position with the system’s
COG being located at R2. For the roll-up maneuver to be physically realizable, the normal
force between the robot’s wheel and the ground must be sufficiently large to prevent slip.
Fig. 6.14 illustrates the experimental validation of a two-step roll-up maneuver. As the
pivot acceleration estimation has not been switched off during the first step of the roll-up
maneuver (Fig. 6.14, 1 → 2 ), the pitch estimate drifts to zero. Importantly, the rolling
wheel is quickly decelerated before establishing surface contact to prevent the wheel’s O-ring
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from melting due to frictional heat. Afterward, the roll-up maneuver pauses for 1.5 s such
that the pitch estimate converges to 35 deg. In the second step of the roll-up (Fig. 6.14, 2
→ 4 ), q̂2 − q̄2 is used to activate the roll controller.

6.5 Summary
The Wheelbot’s compact design and challenging composition of dynamical properties inspire
research on the many unexplored areas of control theory. For example, one appealing goal
is fast nonlinear trajectory control, e.g., using model-predictive control. Moreover, due to
its low-cost components and simple assembly, one can straightforwardly set up a robot
fleet for research on networked control systems. As the Wheelbot can self-erect, it forms
a platform for exploring algorithms that learn either dynamics or controller parameters
while avoiding failure. Here, the system’s low-dimensional dynamics ease the analysis and
visualization of such safe learning algorithms.

In addition, the proposed testbed is interesting for a variety of learning control tasks
including iterative/repetitive tasks of jumping up and continuous tasks of balancing. While
we derived a dynamics model using solely first principles, the actual dynamics of the robot
are subject to phenomena that are difficult to model analytically such as friction, motor
dynamics, contacts, and material deformations. These phenomena render the Wheelbot a
suitable testbed to study physics-informed learning approaches as detailed in Section 4.

Finally, as the Wheelbot’s dynamics possess several interesting properties while being
relatively simple in its design, we hope that this robot may assist in the education of
students interested in robotics and control systems.
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Conclusion

This dissertation developed a unified view of physics-informed regression of robot dynamics.
To this end, we analyzed how data-driven modeling techniques can be combined with
implicitly-constrained rigid body dynamics. First, mechanical principles that lead to
structural knowledge in rigid body dynamics were introduced in Chapter 3. These principles
provided an overview of how a robot’s EOM gives rise to valuable prior knowledge about
the direction of dissipative forces, conservation of energy, and the length of constraint
forces. We further discussed the utility of implicit constraint equations for robot dynamics
modeling. In Chapter 4, a unified view of the errors within an analytical dynamics model
was developed. In this view, analytical mechanics typically gives rise to function expressions
in which linear operators (e.g., the inertia matrix or differential operators) act on latent
functions (e.g., dissipative forces). Moreover, a rigid body dynamics model can be seen as
a parametric network whose predictions deviate from a ground truth due to estimation and
approximation errors. Based on this discussion, previous literature on physically-informed
regression of robot dynamics was analyzed and categorized into parameter estimation of
analytical dynamics models, ARM, and ALM. In ARM, an analytical dynamics model acts
as a function prior to a data-driven model. In turn, the data-driven model approximates
the error between the analytical dynamics model’s predictions and observations of the
dynamics. In comparison, ALM requires additional expert knowledge to distinguish between
the functions forming an analytical dynamics model as known, parametrically-unknown, or
unknown. In turn, a data-driven model can be built into the analytical dynamics model to
approximate the unknown functions, while the parameters of the parametrically-unknown
functions can be estimated from data. In Chapter 5, a new dynamics model is proposed in
which GP regression is combined with implicitly constrained rigid body dynamics. The
proposed algorithm is tested on several dynamical systems, including a 2D unicycle and
a 6D robot arm. The insights gained on physics-informed regression of robot dynamics
contributed to and benefited from the development of the “Wheelbot”. The Wheelbot
is a reaction wheel-driven unicycle robot designed for research on data-driven dynamics
modeling and nonlinear control. In Chapter 6, the mechanical and electronic design of this
robot was described, and a first design of a state estimator and controller is proposed. We
further experimentally validated the robustness of the controller and demonstrated the
Wheelbot’s ability to self-erect from any initial position.
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7.1 Discussion of Contributions

Section 1.3 provides a comprehensive overview on the contributions of this dissertation.
These contributions can be summarized as

1. providing a concise introduction of implicitly-constrained rigid body mechanics linking
algebraic derivations of a robot’s EOM with Lagrangian optimization,

2. developing a unified view of physics-informed regression for robot dynamics modeling,

3. developing the GP2 as a dynamics model that combines GP regression with implicitly-
constrained rigid body dynamics,

4. and designing the Wheelbot, forming a novel robotic testbed for nonlinear control
and data-driven modeling.

In the following section, we discuss these individual contributions and point to future
research directions in the subsequent sections.

In Chapter 3, we gave a brief over on rigid body dynamics using the functional
analysis perspective on linear operators as outlined in Beard (2002). We believe that the
description of analytical mechanics in terms of linear operators and their fundamental
subspaces provides helpful intuition on the structure underlying mechanical principles. It
must be noted that the usual suspects for the derivation of robot dynamics such as the
Euler-Lagrange equations and Newton-Euler equations seek to derive EOM that humans
can easily comprehend. These formulations of a robot’s dynamics have not been formulated
to enable easy integration of data-driven modeling. For example, angle coordinate is often
not a good choice as an input to a regression model. That is, the points 0 and 2π even
though they may denote the same orientation of a coordinate system in Cartesian space,
are two distinct points in R with non-zero norm. Therefore, one needs to carefully evaluate
how, as well as which, generalized coordinates shall be fed to a data-driven model inside a
physics-informed regression algorithm. The question arises if some analytical models of a
robot’s EOM are better suited for the combination with data-driven models either in terms
of computational efficiency or mathematical properties improving sample efficiency.

7.2 Going Deeper into Analytical Latent Modeling

In Chapter 4, we developed a unified view of physics-informed models that distinguishes
models into analytical dynamics models, ARM, and ALM. In ARM, the data-driven model
directly approximates the residual between an analytical model and the observations. In
comparison, in ALM, the data-driven model approximates latent functions inside the
analytical model such that the outputs of the data-driven model are transformed by
analytical expressions. Notably, the discussed literature on ALM approximates either a
Lagrangian or a generalized force through a data-driven model. This also includes our work
on GP2 as detailed in Chapter 5 in which a GP approximated unknown generalized forces
inside a robot’s analytical FD model. One possible route toward improving ALM models is
to incorporate additional physics knowledge. We see two possible routes towards improving
the sample-efficiency of ALM, namely (i) model the dynamics of a robot’s joint torque
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Figure 7.1: Serial robot MABI MAX 100. Image courtesy of Minh Trinh of the Laboratory
for Machine Tools and Production Engineering of RWTH Aachen University.

through a physics-informed model as detailed in Section 7.2.1, or (ii) incorporate prior
knowledge of differential kinematics and contact physics as outlined in Section 7.2.2.

7.2.1 ALM of Joint Torques

Our work led to an ongoing collaboration with the Laboratory for Machine Tools and
Production Engineering of the RWTH Aachen University, in which we investigated how
to design a physics-informed ID model of the “MABI MAX 100” industrial serial robot as
depicted in Figure 7.1. With a milling tool attached to its end-effector, the MABI MAX
100 shall be used to mill metal parts, while requiring a considerably smaller space compared
to conventional CNC milling machines. The precise control of the robot’s end-effector
during such a machining task requires an accurate dynamics model. Previous attempts
at modeling the robot’s ID showed insufficient prediction accuracy resorting either to an
analytical model that is linear in θA as detailed in Section 4.2.1, directly trained a NN,
or used a Lagrangian NN as discussed in Section 4.4.1. As an alternative approach, in
the ongoing project, we combine insights from Section 4 and Section 5 to investigate how
to combine RNEA (Featherstone, 2008, p. 98) with NN regression. Similar to Um et al.
(2014) and Lutter et al. (2020), we assume that the largest error inside a robot’s dynamics
resides in the description of the joint torques, which subsequently shall be approximated by
a NN. Here, we choose a NN instead of a GP as proposed in Section 5, as the combination
of RNEA being a parametric model with NN is straightforward and the computational
complexity of the algorithm does not grow with the number of input points. Our first
experiments followed the approach of (Um et al., 2014) and directly approximated the
errors in the joint torques through an individual NN per joint that only receives as inputs
relevant state information.

ALM with an Analytical Joint Torque Model The joint torques arise due to forces
acting on the bodies and the control force being caused inside the joint. These joint
torques not only depend on dissipative forces, but also on elastic deformation of shafts
inside the joint and potential slack inside a gear. We currently investigate how analytical
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models of these phenomena may additionally benefit ALM with a RNEA. The basic idea is,
instead of approximating the errors in the joint torques directly through a NN, one can
use several smaller NN inside an analytical model of the joint torques. These NNs can
then be specifically designed to account for the dissipativity of the friction torques, energy
conservation in the motor shaft deformations, or slack in the gears of the robots.

Joint Optimization of Analytical and Data-driven Model Parameters Another
aspect of this ongoing project is the estimation of unknown parameters of the analytical
model. In principle, it is possible to learn unknown analytical parameters with the
parameters of a NN using automatic differentiation. However, the parameter gradients
of an analytical dynamics model differ considerably in their magnitude compared to the
NN’s parameter gradients. This difference in the size of the gradients aggravates the joint
optimization of analytical parameters and NN parameters. One could in principle, mitigate
this problem by switching between the optimization of the analytical parameters and NN
parameters (cf. coordinate descent). Yet, it is unclear how such an approach affects the
optimization result.

7.2.2 ALM of Robot-Surface Interactions

In Chapter 5, we modeled the surface friction forces arising between a robot’s end-effector
and a surface as Qz which we approximated by a GP. Here, we modeled Qz in the robot
arm’s generalized coordinate space Rnq being referred to as the joint space. However, as
shown in Figure 7.2, end-effector friction forces are caused in the task space, that is the
six-dimensional space that describes the end-effector’s position in Cartesian coordinates and
its orientation. In particular, through a series of tribologic and elastomechanical phenomena,
the end-effector force FI ∈ R being normal to the surface causes Fz.

As pointed out by Um et al. (2014), a data-driven model learning the friction forces acting
in a robot’s joint may only depend on the local joint coordinates and the forces acting in
and on the joint. The same idea may also apply to a data-driven model that shall directly
approximate Fz and whose output is then transformed through the ”manipulator geometric
Jacobian“ JT

E into the joint space, cf. (Siciliano et al., 2010, p. 148). Figure 7.2 illustrates
this approach. A data-driven model that learns the friction force Fz may only have a single
output dimension as the predicted friction force must oppose the end-effector’s velocity.
Moreover, one can ensure that the outputs of the data-driven model are dissipative as
discussed in Section 4.4.2, and that this data-driven model receives as inputs the end-effector
position relative to the surface, velocities, as well as FI. In summary, using knowledge of
the system’s kinematics and dynamics may significantly reduce the dimensionality of the
regression problem.
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Figure 7.2: In a robot arm whose end-effector touches a surface, a force normal to the
surface QI cause the non-ideal friction forces FI being tangential to the surface.
If the coordinate transformation JT

E is known, a data-driven model can learn
the end-effector friction in the lower-dimensional task space while potentially
incorporating additional physics knowledge. Left half of the image is taken from
Rath et al. (2021).

Compliancy in End-effector and Surface Material Depending on the robotic system,
it may not suffice to model the end-effector contact as a single point between a rigid surface
and a rigid body. Instead, the end-effector may also be subject to deformation in the
surface and to compliance in its end-effector. Under these assumptions, it is considerably
more difficult to identify the forces acting on a robot’s end-effector. Nonetheless, it may be
possible to derive a suitable analytical model that could be augmented with a data-driven
model.

Changes in the Contact Configuration For simplicity’s sake, this dissertation assumed
that the implicit constraints in a robot’s dynamics description are equalities. Yet, a robot’s
leg or end-effector is typically modeled as being subject to inequality constraints. In turn,
implicit constraints can become inactive which implies that parts of QI, Qz become zero.
On the other hand, if the contact closes, not only the implicit constraints will become
active, but also a collision causes an instantaneous change in the system’s velocities. The
inclusion of collisions into physics-informed regression models is another interesting future
research question.

7.3 Physics-informed Control of the Wheelbot

In the beginning of this dissertation, we pointed out that the control of a robotic system
is closely intertwined with modeling its dynamics. As the logical next step, we plan to
explore how the control of the Wheelbot may benefit from physics-informed regression.
This includes steering the Wheelbot along a reference trajectory by using model predictive
control as depicted in Figure 7.3. As a promising starting point, an LQR controller design
could be developed that incorporates an implicitly-constrained dynamics model into the
controller design as shown in Klemm et al. (2020). Another interesting aspect forms
safe-learning control of a data-driven control policy, where during the exploration of the
system’s dynamics a data-driven controller is being optimized. Interesting approaches
towards safely learning to drive the Wheelbot along a reference trajectory are (Berkenkamp
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Figure 7.3: Illustration of an early prototype of the Wheelbot driving along a curve.

et al., 2017), (Berberich et al., 2020a), and (Berberich et al., 2020b).
An intriguing future research direction for physics-informed regression is how to transfer

knowledge between several dynamical systems also being referred to as transfer learning. A
discussion of transfer learning in the context of physics-informed regression requires that the
notion of structural knowledge must be extended to several presumably structurally similar
systems. In this regard, the Wheelbot is a particularly well-suited testbed for transfer
learning. On one hand, it is straightforward to assemble a fleet of Wheelbots which allows
to investigate how dynamics knowledge can be exchanged between several similar systems.
On the other hand, one can easily replace the wheel assembly of the Wheelbot to obtain
a coaxial-oriented reaction wheel or a pendulum reaction wheel unicycle robot. In these
problem settings, questions arise on how to exchange knowledge between physics-informed
regression models as well as between the closed-loop dynamics of these systems. Interesting
works evolving around transfer learning in robotics from a control theoretic perspective are
(Raimalwala et al., 2016) and (Helwa and Schoellig, 2017).
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Technical Proofs

A.1 Derivation of Virtual Displacements
As shown by Udwadia et al. (1997), (3.31) follows from the Taylor expansion about time t
of a displacement q(t+ dt) assuming that position and velocity are given fixed quantities at
time t, such that

q(t+ dt) = q(t) + (dt)q̇(t) +
(dt)2

2
q̈(t) +O(dt3), (A.1)

with dt being an infinitesimal quantity. If the system would not be subject to any implicit
constraints and neglecting the higher order terms O(dt3), the particle would move to the
position according with (3.17) to qU = q(t) + (dt)q̇(t) + (dt)2

2
M−1Q. With (A.1) one defines

the virtual displacement at time (t+ dt) as the difference between the actual displacement
q(t+ dt) = vec{q, q̇, q̈} and a possible displacement s(t+ dt) = vec{q, q̇, q̈′}, writing

δq(t+ dt) = qb(t+ dt)− qa(t+ dt) =
(dt)2

2
[q̈b(t)− q̈a(t)] =

(dt)2

2
δq̈(t). (A.2)

tangent plane

surface mass particle

Figure A.1: Due to the presence of implicit constraints, the system (e.g., a mass particle
sliding over a surface) moves from q(t) to q(t + dt). Without the constraint
the system moves to qU(t + dt). In a hypothetical thought experiment, the
system could move to s(t+dt) differing from q(t+dt) in the variation δq(t+dt).
Figure adapted from (Udwadia and Kalaba, 2007, p. 223).

Figure (A.1) illustrates how the virtual displacement emerges as a variation of the systems
state from q(t+ dt) to s(t+ dt). As every possible motion must fulfill (3.30), we can insert
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qa(t + dt) and qb(t + dt) into (3.30), and take the difference between the expressions to
obtain

A(q(t), q̇(t), t)δq̈(t) = Aδq(t+ dt) = 0, (A.3)

which with (A.2) and dt → 0 yields (3.31).

A.2 Oblique Projections inside the UKE
The matrices T = I − M−1AT(AM−1AT)+A and S = I − AT(AM−1AT)+AM−1 with
A ∈ RnI×nq , M ∈ Rnq×nq , and M > 0 are oblique projectors. That is these matrices are
idempotent but not symmetric. T is idempotent as

T 2 = I +M−1AT(AM−1AT)+AM−1AT(AM−1AT)+A− 2M−1AT(AM−1AT)+A, (A.4)
= I −M−1AT(AM−1AT)+A = T. (A.5)

S is idempotent as

S2 = I + AT(AM−1AT)+AM−1AT(AM−1AT)+AM−1 − 2AT(AM−1AT)+AM−1, (A.6)
= I − AT(AM−1AT)+AM−1 = S. (A.7)

It is starightforward to varify that the matrices S and T are not symmetric. T denotes a
projector into N(A) as

0 = ATv = (A− AM−1AT(AM−1AT)+A)v = (A− A)v = 0, (A.8)

with v ∈ Rnq and using the fact that if M > 0 then AM−1AT(AM−1AT)+A = A (Bernstein,
2018, p. 636, Fact 8.4.17). S denotes also a projector into N(A) as

0 = SATv, (A.9)
= (AT − AT(AM−1AT)+AM−1AT)v, (A.10)
= (AT − AT)v, (A.11)

with v ∈ RnI shows that S maps a vector ATv ∈ R(AT) to null.
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