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Abstract

This monograph deals with the state observer design for mechanical systems with uni-
lateral constraints. After the mathematical modeling is discussed in detail, necessary
tools, which extend Lyapunov stability theory, are provided. A state observer design
approach is investigated, which, in contrast to most existing observer designs, does
not assume that closed contacts are instantaneously detected through measurements.
In particular, a time discretization-based method is analyzed, which allows to circum-
vent some of the main difficulties caused by discontinuous time evolutions. Moreover,
various state observer designs are implemented and tested on an experimental setup
consisting of an impact oscillator.

In mechanical systems with unilateral constraints, collisions between different
bodies can lead to abrupt velocity changes, which are conveniently modeled as
instantaneous velocity jumps. The resulting time evolution is therefore discontinuous
and, in contrast to smooth systems, cannot be described by ordinary differential
equations. Among various available formalisms for such systems, measure differential
inclusions are particularly suitable for modeling mechanical systems that include both
unilateral constraints and friction. However, due to the discontinuous behavior, it is
difficult to generalize analysis and design methods for smooth nonlinear systems to
such systems.

The state estimation problem consists of reconstructing current state variables
of an observed system from measurements. A common approach to achieve this
goal is to design a state observer, which is an auxiliary system that is unilaterally
coupled to the observed system through measurements and is designed such that
the observer’s state converges to the true, searched-for state. An important tool
in the design process are Lyapunov-type stability theorems, which allow to assess
qualitative stability properties of solutions solely based on the dynamical model.
Specific theorems that address partial stability are provided, which fit into the existing
Lyapunov stability theory for non-smooth dynamical systems.

It is an important aspect for the observer design whether or not contact information,
such as collision time instants, can be extracted from measurements. Most available
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Abstract

state observer designs for impulsive systems assume explicit knowledge of this contact
information, which allows to let the impacts of the observer and the observed system
coincide and to exploit the maximal monotonicity property of the contact force laws.
In this thesis, particular attention is paid to the case where this contact information
is unknown. For a class of mechanical systems, it is proposed to attack the observer
problem by transforming and approximating the original continuous-time system by a
discrete linear complementarity system through the use of the Paoli-Schatzman time
discretization scheme. From there, a deadbeat observer and sufficient observability
conditions are derived. It is shown that the discrete adaptation of an existing passivity-
based observer design for linear complementarity systems can be applied. A key
point in using a time discretization is that the discretization acts as a regularization,
i.e. impacts take place over multiple time steps. This makes it possible to render the
estimation error dynamics asymptotically stable. Furthermore, the so-called peaking
phenomenon appears as singularity within the time discretization approach.

Finally, selected state observer designs are implemented and tested on an exper-
imental setup, which includes a single unilateral constraint. The advantages and
disadvantages of the approaches are discussed.
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Zusammenfassung

Diese Monographie behandelt den Entwurf von Zustandsbeobachtern für mechanische
Systeme mit einseitigen Bindungen. Nachdem die mathematische Modellierung
im Detail diskutiert wurde, werden notwendige Werkzeuge vorgestellt, welche die
bestehende Lyapunov Stabilitätstheorie erweitern. Es wird eine Entwurfsmethode
untersucht, welche im Gegensatz zu den meisten bestehenden Beobachtern nicht
erfordert, dass geschlossene Kontakte instantan über Messungen detektiert werden
können. Die analysierte Methode basiert auf einer Zeitdiskretisierung, welche es
erlaubt, einige durch unstetige Bewegungen verursachte Schwierigkeiten zu umgehen.
Schließlich werden verschiedene Zustandsbeobachter an einem Stoß-Oszillator als
Versuchsaufbau implementiert und getestet.

In mechanischen Systemen mit einseitigen Bindungen können Kollisionen zwischen
verschiedenen Körpern auftreten. Diese führen zu abrupten Geschwindigkeitsänderun-
gen, welche als instantane Geschwindigkeitssprünge modelliert werden. Die zeitliche
Entwicklung der Zustände ist deshalb unstetig und kann, im Gegensatz zu glatten Sys-
temen, nicht durch Differentialgleichungen beschrieben werden. Aus verschiedenen
Formalismen für solche Systeme haben sich Maßdifferentialinklusionen als besonders
praktisch zur Beschreibung von mechanischen Systemen mit einseitigen Bindungen
und Reibung erwiesen. Viele Analyse- und Auslegungsmethoden für glatte nichtlin-
eare Systeme lassen sich jedoch nur schwer für Systeme mit unstetigem Verhalten
generalisieren.

Das Problem der Zustandsschätzung bezieht sich darauf, aus Messdaten aktuelle
Zustände eines beobachteten Systems zu rekonstruieren. Ein verbreiteter Ansatz
um dies zu erreichen ist die Verwendung eines Zustandsbeobachters. Dieser besteht
aus einem virtuellen System, das über Messungen einseitig an das beobachtete
System gekoppelt ist und so entworfen wird, dass sein Zustand zum unbekannten,
gesuchten Zustand konvergiert. Ein wichtiges Werkzeug beim Beobachterentwurf
sind Lyapunov Stabilitätstheoreme, welche einen Rückschluss auf die qualitativen
Stabilitätseigenschaften zulassen, ohne explizite Lösungen des Systems zu kennen.
Spezifische Theoreme zur partiellen Stabilität werden vorgestellt, welche sich in die
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Zusammenfassung

bestehende Lyapunov Stabilitätstheorie für nicht-glatte dynamische Systeme einfügen
lassen.

Ein wichtiger Aspekt des Beobachterentwurfs ist es, ob Kontaktinformationen, wie
z.B. die Zeitpunkte von Kollisionen, instantan aus Messungen extrahiert werden kön-
nen. Die meisten bestehenden Zustandsbeobachter für impulsive Systeme erfordern
die explizite Kenntis von Kontaktinformationen, so dass man Stöße im Beobachter
und im beobachteten System zu den gleichen Zeitpunkten auftreten lassen kann. Dies
erlaubt es in einem zweiten Schritt die Maximalmonotonie der Kontaktkraftgesetze
auszunutzen. In dieser Arbeit wird speziell auf den Fall eingegangen, dass solche Kon-
taktinformationen nicht verfügbar sind. Für eine Klasse von mechanischen Systemen
wird vorgeschlagen, das Beobachterproblem durch die Überführung des zeitkon-
tinuierlichen Systems auf ein diskretes lineares Komplementaritätssystem mit Hilfe
der Paoli-Schatzman Diskretisierung anzugehen. Dadurch lassen sich ein Totschlag-
Beobachter und hinreichende Beobachtbarkeitskriterien herleiten. Es wird gezeigt,
dass die diskrete Anpassung eines existierenden passivitätsbasierten Beobachters für
lineare Komplementaritätssysteme angewendet werden kann. Ein wichtiger Vorteil der
Zeitdiskretisierung ist, dass die Diskretisierung als Regularisierung wirkt, d.h. Stöße
werden auf mehrere diskrete Zeitpunkte verteilt. Dies ermöglicht es, die Dynamik
des Schätzfehlers asymptotisch zu stabilisieren. Weiter ist das sogenannte Peaking
Phänomen als Singularität in der Zeitdiskretisierung zu sehen.

Schließlich werden ausgewählte Zustandsbeobachter an einem experimentellen
Versuchsaufbau, mit einer einzelnen einseitigen Bindung, implementiert und getestet.
Die Vor- und Nachteile der gewählten Ansätze werden diskutiert.

viii



1
Introduction

This monograph is concerned with the state observer design for mechanical systems
with unilateral constraints. In particular, the case where it cannot be instantaneously
concluded from measurements whether or not contacts between multiple bodies are
open or closed, is addressed. Furthermore, selected state observers are implemented
on an experimental setup, tested and compared. This introductory chapter gives
a motivation and outline for the subsequent chapters. An overview of the relevant
literature is given to put the present work into a greater context. Furthermore, the
aim and scope are presented.

1.1 Motivation

Mechanical systems with unilateral constraints are found in many engineering ap-
plications. In some systems involving multiple bodies, engineers aim to avoid the
consequences of contacts, such as collisions or friction. As a classical example, rail
squealing is an unwanted effect in railway vehicles passing curves, which is caused by
friction induced oscillations and shall be avoided as much as possible. Appropriate
models are required to analyze and reduce such effects. In other applications however,
unilateral constraints are essential in the sense that they form a key component of
the design. For example, the particular tasks of walking for legged robots or grasping
objects using robotic manipulators rely on contacts that can open and close. The
control of such systems requires accurate models of unilateral constraints and a good
understanding of their influence on the behavior of mechanical systems.

1



Chapter 1. Introduction

Modeling attempts for impacts and friction phenomena can be found throughout
the history of mechanics. Impacts between different bodies have for example been
modeled using rigid bodies together with spring and damper elements representing
the contacts. Such an approach has the disadvantage that it is difficult to identify
the corresponding parameter values in applications. Furthermore, this modeling
approach leads to stiff ordinary differential equations, which are problematic for
numerical integration. In contrast, non-smooth models allow for discontinuities in
the time evolution, which are an idealization of macroscopic observations. Think
about dropping a ball from a certain height and letting it bounce on the ground.
Then, macroscopically, the ball seems to behave as a rigid body which instantaneously
changes its velocity when contact with the ground occurs. Similar observations
can be made for slip-stick transitions in frictional contacts. Until now, a variety
of mathematical formalisms has been introduced and studied by different scientific
communities, all of which are suitable to describe the dynamics of certain non-smooth
systems which exhibit such discontinuities in their time evolution. A formalism
that allows to incorporate set-valued force laws (which are convenient for modeling
impulsive and non-impulsive contact forces) and proved to be particularly fruitful
for the derivation of numerical integration schemes is given by measure differential
inclusions. They will take a central role in this thesis, but it is important to keep the
connections to other frameworks in mind, as specific analysis or design problems can
more easily be solved in one or another framework.

The design of complex systems featuring unilateral constraints, does not only
require suitable models, but also systematic analysis and design methods. There has
been a great effort to generalize existing methods for smooth non-linear systems to
be applicable to non-smooth systems, including stability theory and various control
design strategies. However, in some cases such a generalization proves to be a difficult
task, for example for the problem of how to obtain estimates of the state of a system
for which not all states can directly be measured, which is a classical problem in
control theory. The need for such internal information is due to many purposes such
as state-feedback control, system identification, monitoring or decision making. As in
most applications only a limited number of sensors with a limited accuracy can be
used due to cost and physical constraints, it is desirable to reconstruct the required
information from only a few measurements. There are two main approaches to achieve
this goal in combination with an accurate system model. One is optimization-based,
i.e. the initial state at the beginning of a moving time window is estimated such that
a certain functional of the error between a model-based predicted output and the
measurements is minimized over that window. Since in most cases an online state
estimation is required, the computation time is a limiting factor in this approach.
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1.2. Literature overview

More commonly, a dynamical system approach is taken, in which a state observer is
used, which is an auxiliary system that is unilaterally coupled to the observed system
through measurements and is designed such that the observer’s state converges to the
true searched-for state. A typical core tool in the design process of state observers
are Lyapunov-type stability theorems, which are used to assess the stability of the
estimation error dynamics (i.e. the dynamics of the point-wise error between the
trajectories of the observer and the observed system). While stability theory has been
successfully generalized to non-smooth systems, it contains inherent difficulties when
it comes to the analysis of such an error dynamics. In fact, the very definition of
stability has to be altered in such a case. The closely related problems of tracking
control and controlled synchronization also rely on the stability analysis of an error
dynamics. These problems have been successfully solved for some classes of non-
smooth systems by introducing alternative stability definitions and related theorems.
However, these tools did not lead to solutions for the state observer problem, which
motivates the need for fundamental research in this area.

1.2 Literature overview

In this section, an overview of some relevant literature in the fields of non-smooth
dynamical systems and state observer design is given. As the number of works
published in both of these areas is very large, this review is by no means complete,
but helps to put the present work into context.

Non-smooth dynamical systems

Non-smooth systems refer to dynamical systems with a non-differentiable or dis-
continuous time evolution. They can be found in many research areas in science
and engineering. It is therefore no surprise that various formalisms and modeling
approaches have been developed in different scientific communities.

Particularly in non-smooth mechanics, on which the focus lies in this thesis, the
works of Moreau [78,79] and Jean [55,56] build an important foundation. Therein, the
dynamics is described by a measure differential inclusion (MDI), allowing for non-
differentiable and discontinuous time evolutions (see also [7, 68, 77]). The framework
makes extensive use of convex and non-smooth analysis (as treated for example
in [6, 93]) and permits the derivation of numerical integration schemes. Set-valued
force and impact laws are treated by Glocker and Pfeiffer [41, 87]. A comprehensive
overview of numerical methods and modeling approaches for non-smooth dynamical
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Chapter 1. Introduction

systems is given by Acary and Brogliato [1]. Furthermore, Brogliato gives a broad
overview of many additional topics in non-smooth mechanics in [22].

MDIs, which allow for non-differentiable and discontinuous trajectories, can
in some sense be seen as a generalization of ordinary differential equations with
discontinuous right-hand sides [38] and differential inclusions [5, 31, 38, 67], which
both are capable of describing non-differentiable but continuous time evolutions. This
will become clear in Chapter 2 of this monograph.

Systems that contain a continuous dynamics (described by continuous differential
equations) and a discrete dynamics are also collectively referred to as hybrid systems.
In hybrid system theory, which is often used in control theory literature, the two
dynamics are typically formulated separately and come with a switching law that
describes which one (or to be more precise, which hybrid mode) is active at a given
point in time. Refer for example to the books of Goebel et al. [45] and Haddad et
al. [48] for a broad treatment of hybrid systems. A disadvantage of these hybrid
systems is however, that accumulation points (meaning an infinite number of impacts /
state jumps or other types of switching events occurring within a finite time interval)
cannot be described. Note that MDIs also contain a continuous and a discrete (or
impulsive) part, but they are both combined in one compact equality and are capable
to describe such accumulation points.

In addition to the system descriptions above, many more formalisms and various
sub-classes of systems exist, which will not be discussed here.

State observer design

For linear systems, the state observer design problem can be considered solved, as
general state observer designs are available, together with verifiable observability
conditions (which assure that the searched-for information can in fact be reconstructed
from the available measurements). The well-known works of Luenberger [70, 71] for
deterministic linear systems and Kalman [58, 59] for stochastic linear systems build a
foundation for an observer theory for linear dynamical systems [83]. In contrast, for
non-linear dynamical systems, no such general observer designs are available. There
is however a large number of results that apply to non-linear systems with specific
structures. In particular, so-called normal forms are known, which are sub-classes of
non-linear systems, for which a general observer design is available. Examples are
systems with additive output nonlinearities (which only depend on the known input
and output), for which a Luenberger-type observer can be designed [64] or state-affine
systems [14, 15], for which a Kalman-like observer exists. Furthermore, triangular
forms allow for high gain observers, in which nonlinearities are dominated through
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1.2. Literature overview

correction terms with sufficiently large gains [49]. It is natural to search for invertible
state transformations that can transform a given non-linear systems to one of the
known normal forms. An observer can then be designed for the transformed system
and the state estimation is obtained via an inversion of the used transformation.

For various classes of non-smooth systems with a non-differentiable but continuous
time evolution, observer designs have been analyzed using different formalisms. For bi-
modal piecewise linear systems, a Luenberger-type observer was proposed by Juloski
et al. [57] and experimentally tested by Doris et al. [36]. Therein, sufficient conditions
for the stability of the estimation error dynamics were given based on piecewise
Lyapunov functions and linear matrix inequalities. For piecewise affine systems,
related results can be found from van de Wouw and Pavlov [99]. For Lur’e-type
systems, Brogliato and Heemels [23] as well as Arcak and Kokotovic [4] investigate
observer designs based on passivity theory. For bi-modal state-dependent switched
systems, Fiore et al. [39] investigated an observer design based on contraction theory.

For non-smooth systems with impulsive motion, i.e. with a discontinuous time
evolution, it is an important aspect whether or not the time instants, at which state
jumps occur, can instantaneously be extracted from measurements. If these time
instants are known, one can let the observer exhibit state jumps at the exact same
time instants as the observed system, which greatly facilitates the design process.
For example, well-known stability concepts can then directly be used to analyze the
estimation error dynamics. Most available observer designs for such systems assume
that these jump time instants are known. Heemels et al. [51] provided a passivity-based
observer design for linear complementarity systems (LCSs) in which state jumps
are induced externally (through impulsive inputs). For mechanical systems with
unilateral constraints, Menini and Tornambè [75] investigate velocity observers, i.e. a
reduced-order state observer for the case that all positions are measured, within the
hybrid systems framework. Therein, accumulation points are explicitly excluded from
the analysis. Within the same framework, Martinelli et al. [73] investigate observer
design for the case that the observed system is only observable through impacts.
Tanwani et al. [97], presented observers for various system classes, including certain
measure differential inclusions, for which it is assumed that the time instants of state
jumps are known. Also as measure differential inclusions, Tanwani et al. [98] deal with
state observers for Lagrangian systems, specifically including mechanical systems
with unilateral constraints. It is assumed therein, that all positions are measured
and observers are discussed, that provide estimates for the full state or only for the
corresponding velocities (similar to Menini [75]). Under the assumption that it can
only be detected whether contacts are open or closed (for example through tactile
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Chapter 1. Introduction

sensors), Baumann and Leine [11] proposed synchronization-based state observers
for certain linear mechanical systems (linear except for the unilateral constraints).

For the case that the time instants of state jumps are not available through mea-
surements, only few results are available in literature. Furthermore, the applicability
of the results is very limited. Kim et al. [63] and Menini and Tornambè [76] analyzed
invertible state transformations, which allow to transform impulsive hybrid systems
to a system representation without any state jumps. If one succeeds in finding such a
transformation, a conventional observer might be applied to the transformed system
and a state estimate is obtained by using the inverse transformation. However, finding
a suitable state transformation is a very difficult task (possibly impossible), which was
only demonstrated to be successful for mechanical one degree-of-freedom systems
with fully elastic impacts. Also within the hybrid systems framework, Bernard and
Sanfelice [13] proposed a local observer for linear systems (linear except for the state
jumps) which relies on a sufficiently fast linear observer in between state jumps and
correction terms that are not active in the vicinity of state jump time instants.

Related subjects

A number of related subjects are involved with similar difficulties as the state observer
design for impulsive systems, as they also require to analyze the stability of an
error dynamics. A major complication in such an analysis is the so-called peaking
phenomenon, which refers to the fact that a slight mismatch in the jump time instants
of two compared trajectories leads to a temporarily large Euclidean point-wise error,
even if the trajectories are nearly matching [17,19,68,94]. Due to this peaking, standard
stability concepts are not applicable. For tracking control, Biemond et al. [16, 17, 19]
proposed to use a more general distance function to define the error, and provided
corresponding stability definitions and theorems [18]. A similar approach has been
used by Baumann et al. [8, 9] to achieve controlled synchronization of impulsive
systems. Rijnen et al. [91, 91, 92] propose an alternative approach to tracking control
and a velocity estimation method.

1.3 Aim and scope

From the literature review, two main gaps can be identified regarding the observer
design for impulsive mechanical systems. First, even for low dimensional, linear
systems with one single unilateral constraint, no state observer design is available
if the impact time instants (where state jumps occur) cannot instantaneously be
detected through measurements. For example, if one wants to estimate the state of

6



1.4. Outline

a two-mass impact oscillator with one unilateral constraint, where only the position
of the non-impacting mass can be measured, it is not at all clear how to solve this
problem.

Second, only few experimental studies on observer design for impulsive mechanical
systems have been conducted, even for the case that the impact time instants are
known. Furthermore, no direct comparison can be found, which is in part due to
the fact, that different observer designs might use different measurements and are
therefore not directly comparable (at least their performance cannot be compared in
a fair way).

Based on these observations, the main objectives of this thesis can be summarized
as follows. It is a first objective to provide the reader with the necessary mathematical
background for modeling impulsive mechanical systems. Moreover, an overview of
the most relevant formalisms will be given and some interconnections between them
will be pointed out.

A second aim is to discuss stability theory as a fundamental tool for designing state
observers. In particular, tools for evaluating partial stability will be provided, which
directly extend existing Lyapunov-type theorems for measure differential inclusions.
Based on these results, the main difficulties stemming from the discontinuous time
evolution will be highlighted.

The main objective is to investigate if a new approach can be taken towards
state observer designs which do not require explicit knowledge of the impact time
instants of the observed system. As pointed out earlier, this problem stands as a
major challenge and has been treated by only a minor number of publications.

Finally, it is an objective to design and construct an experimental setup consisting
of an impact oscillator. Using this setup, selected state observers will be designed,
experimentally tested and compared as far as possible.

In accordance with these objectives, the subsequent chapters are structured as
outlined in the next section.

1.4 Outline

This first and introductory chapter has given a motivation, an overview of relevant
literature and defined the objectives and the scope treated in this thesis.

Chapter 2 gives a short introduction to various formalisms that are used to describe
non-smooth dynamical systems. Therein, measure differential inclusions take a central
role. Discontinuous differential equations and inclusions, as well as their solution
concepts, are discussed first as a stepping stone. Then the meaning and use of MDIs

7



Chapter 1. Introduction

are explained. Finally, linear complementarity systems are taken up as a selected
system class, which will reoccur in its discrete form in Chapter 6.

In Chapter 3, by employing the principle of virtual action, a derivation of the
equality of measures describing non-smooth mechanical systems is presented. Next,
constitutive contact laws, stemming from unilateral constraints, are reviewed. Sub-
sequently, two relevant time discretization schemes are discussed. Finally, state
transformations that eliminate state jumps are touched upon.

Chapter 4 treats partial stability for MDIs. First, the needed stability concepts are
defined and relevant Lyapunov-type theorems are given. These are a direct extension
of the well-known Lyapunov stability theorems for ODEs and their generalization
to MDIs. It will become clear, that these theorems are a fundamental tool for
various closely related tasks, such as tracking control, synchronization and state
observer design. Therefore, all of these tasks are strongly complicated by the peaking
phenomenon that is explained in the same chapter. Finally, as it gives a feeling for
necessary refinements and subtleties in the use of Lyapunov-type tools, the stability
of switched systems is discussed particularly.

In Chapter 5, some existing state observer designs that require knowledge on state
jump time instants are reviewed, with a focus on mechanical systems. Furthermore, a
slight extension is given to account for Coulomb friction.

Chapter 6 treats state observer design for a class of mechanical systems in the case
of unknown state jump time instants. The analysis builds upon a new discretization-
based approach, that makes use of the scheme of Paoli and Schatzman. It is shown that
this specific discretization leads to a discrete LCS. From there, a dead-beat observer
and sufficient observability conditions are derived. It is demonstrated that an existing
observer design for discrete LCSs can be applied after a necessary extension. Finally,
the usefulness of the approach is discussed by analyzing the results in a numerical
example.

In Chapter 7, an experimental setup consisting of an impact oscillator is built.
Selected observer designs are then implemented and their performance is analyzed
in experiments. The advantages and disadvantages of the different designs are
explained.

Finally, a conclusion on the outcome of this work is presented in Chapter 8 and
recommendations for future work are given.
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2
Formalisms in Non-smooth Dynamics

In this chapter, some mathematical formalisms are reviewed, that in contrast to
ordinary differential equations (ODEs) allow to accommodate non-smooth solutions
(i.e. solutions that are non-differentiable or discontinuous). The discussion is limited
to a selection of formalisms that are most relevant for the subsequent treatment of
mechanical systems with unilateral constraints.

Absolutely continuous solutions, which may be non-differentiable, can be described
by ordinary differential equations with discontinuous right-hand sides, together with a
generalized solution concept that allows non-differentiable functions to be considered
as solutions. Various such solution concepts exist in literature, two of which are
due to Carathéodory [32] and to Filippov [38]. In particular, the solution concept
of Filippov to discontinuous ODEs leads to the formalism of differential inclusions
(DIs). Moreover, these solution concepts are equivalent to replacing the original
systems with more general dynamical systems, which can be understood as ‘integral
versions’ of ODEs and DIs, namely measure differential equations (MDEs) and
measure differential inclusions (MDIs). It will be shown that measure differential
inclusions, as treated by Moreau [78], are capable of describing solutions that are
both discontinuous and non-differentiable (more precisely, solutions are allowed to be
functions of bounded variation). In particular, MDIs are sufficient to fully describe
mechanical systems with unilateral constraints and friction, which will be discussed
in the subsequent chapter. As a less general system class, linear complementarity
systems (LCSs) are discussed as well, as they build a foundation for the state observer
design treated in the following chapters. Also, links between some system classes are

9



Chapter 2. Formalisms in Non-smooth Dynamics

established, since the analysis of a specific problem might be easier in one or another
framework. Moreover, if two system classes are equivalent (in general or under some
conditions), results obtained for one system class might be transported to the other.
For discrete-time systems, various such equivalences are established in [52].

2.1 Discontinuous ODEs and differential inclusions

A first system class that allows for non-smooth solutions are ordinary differential equa-
tions (ODEs) with discontinuous right-hand sides. Besides their many applications,
they also serve as a stepping stone towards the more general measure differential inclu-
sions that will be discussed subsequently. Here, we restrict ourselves to discontinuous
ODEs1of the form

ẋ = f(t, x) = fi(t, x) for x ∈ Xi, (2.1)

where the right-hand side f : R × Rn → Rn is a vector-valued function which is
discontinuous in x. This is expressed by stating multiple right-hand sides fi(t, x),
each of which is continuous in their respective domain Xi. The variable t is referred
to as time, x is called state and the dot symbol (·) denotes the derivative with respect
to time, i.e. ẋ = dx/dt. The state-space Rn is divided into a finite number of disjunct,
non-empty subsets Xi with i ∈ {1, 2, · · · , N} and ∪iXi = Rn. These subsets are
separated by hyper-surfaces Sij , referred to as switching surfaces, which constitute sets
of discontinuity points of f . Typically, the switching surfaces, say between Xi and Xj ,
are characterized by functions hij : Rn → R through Sij = {x ∈ Rn | hij(x) = 0}.
The set S = ∪i,jSij contains all discontinuity points of f .

A continuously differentiable function x : [t0, t1] → Rn, with the given initial
condition x(t0) = x0, is a classical solution of (2.1) if it satisfies (2.1) for all
t ∈ [t0, t1]. If the right-hand side is continuous, i.e. fi(t, x) = fj(t, x) for all i, j
and x such that hij(x) = 0, then all solutions are classical solutions. If (2.1) is
discontinuous at the switching surfaces however, other definitions of solutions are
required, that can accommodate non-differentiable functions as solutions. Clearly,
non-differentiable functions do not satisfy (2.1), since their time derivative does not
exist at the points where they are not differentiable. Therefore, one has to specify in
what sense such functions have to fulfill (2.1) in order to be considered a solution.
This can be done in various ways. Two frequently used such solution concepts are due
to Carathéodory [32] and Filippov [38], which both require solutions to be absolutely

1also referred to as state-dependent switched systems in literature [69]. In contrast, if the condition x ∈ Xi

in (2.1) is replaced by i = σ(t), with a piecewise constant function σ(t) (called the switching function),
then the system is referred to as a time-dependent switched system.
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2.1. Discontinuous ODEs and differential inclusions

continuous.2 As such, solutions are in particular continuous, but not necessarily
differentiable.

A function x : [t0, t1] → Rn, with the initial condition x(t0) = x0 is called a
Carathéodory solution [32] of (2.1), if it is absolutely continuous and it fulfills
(2.1) almost everywhere (a.e.) on [t0, t1], i.e. for all t ∈ [t0, t1] except for a set of time
instants of Lebesgue measure zero. Roughly speaking, this means that (2.1) has to
hold everywhere except for some isolated time instants. This solution concept is
equivalent to requiring that solutions satisfy

x(t) = x(t0) +

∫ t

t0

f(τ, x(τ)) dτ (2.2)

for all t ∈ [t0, t1], where the integral can be understood in the sense of either Lebesgue
or Riemann-Stieltjes3. Therefore, Carathéodory solutions fulfill (2.1) in an ‘integral
sense’.

Example 2.1. As a simple example [96], consider the discontinuous ODE

ẋ =

{
1 if x ̸= 0

0 if x = 0
(2.3)

and take an initial condition x(0) = −1. As long as x(t) < 0, the dynamics is given by
ẋ = 1 and x(t) increases until it reaches x(1) = 0. From there, the dynamics is given
by ẋ = 0 such that the Carathéodory solution will stay at a value of x(t) = 0 ∀ t > 1

and therefore has a ‘kink’ at t = 1.

Equation (2.2) gives rise to a more general system class. To see this, note that
using the properties of the Riemann-Stieltjes integral, (2.2) can equivalently be written
as ∫

I
dx =

∫
I
f(t, x(t)) dt, (2.4)

where I ⊆ [t0, t1] is a compact time interval. Equation (2.4) constitutes a specific
measure differential equation (MDE). The name stems from the fact that the
integrals on both sides of (2.4) can be seen as (signed) vector measures,3 assigning
a tuple of real numbers to every I. For brevity, the notation dx : I 7→

∫
I dx and

f(t, x) dt : I 7→
∫
I f(t, x) dt is used such that the MDE (2.4) can be written in short

as
dx = f(t, x) dt. (2.5)

2as defined in Definition A.1.
3An introduction to integration and measure theory can be found in Appendix A. Therein, differential

measures are defined as well and the related notation is clarified.
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Chapter 2. Formalisms in Non-smooth Dynamics

For relations of the form (2.5), it is said that f(t, x) is the density of dx with respect
to dt. By explicitly stating the arguments, (2.5) would read dx(I) = f(t, x) dt(I).
Remark 2.2. The MDE (2.5) allows for an alternative interpretation in terms of
functionals. Let φ : I → R be a continuous real-valued function on the interval I
with compact support in I (i.e. its support is contained in I), written as φ ∈ C0(I,R).
Then, the integral equation (2.4) is equivalent to∫

I
φ dx =

∫
I
φ f(t, x(t)) dt ∀ φ ∈ C0(I,R). (2.6)

Therefore, by using the alternative short notation dx : φ 7→
∫
I φ dx and likewise

f(t, x) dt : φ 7→
∫
I φ f(t, x) dt, equation (2.5) holds in terms of functionals, which

by stating the arguments then reads dx[φ] = f(t, x) dt[φ]. The functional dx[φ] is
referred to as differential measure of x.

Going back to the original discontinuous ODE (2.1), Carathéodory solutions might
not exist, while other solution concepts, such as the subsequent Filippov concept, do
provide a solution. This is typically the case if solutions approach a switching surface
from both sides, such that solutions starting in the vicinity of the switching surface
are constrained to ‘slide’ on this switching surface.

Example 2.3. As a standard example [1, p. 62], consider the simple discontinuous
ODE

ẋ =

{
1 if x < 0

−1 if x ≥ 0
(2.7)

and take an initial condition x(0) = −1. As long as x(t) < 0, the dynamics is
given by ẋ = 1 and x(t) increases until it reaches x(1) = 0. From there, the
solution can neither increase nor decrease, because that would violate (2.7). However,
x(t) = 0 ∀ t > 1 violates (2.7) as well, such that no Carathéodory solution exists.

A function x : [t0, t1] → Rn, with the initial condition x(t0) = x0 is called a
Filippov solution of (2.1), if it is a solution of

ẋ ∈ F(t, x(t)) (2.8)

where F : R × Rn → P(Rn) is a set-valued extension constructed from f. Here,
P(Rn) denotes the collection of all subsets of Rn. Roughly speaking, F(t, x) is taken
as the smallest convex set that contains all the values of f(t, x) in a neighborhood
of x. In other words, it is the closed convex hull of all limit values of f(t, x̂) for x̂ → x

and x̂ /∈ S.
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2.1. Discontinuous ODEs and differential inclusions

Systems of the form (2.8), with an arbitrary set-valued F , are referred to as
differential inclusions (DIs). A function x : [t0, t1] → Rn, with the initial condition
x(t0) = x0 is called a solution of (2.8), if it is absolutely continuous and it fulfills (2.8)
almost everywhere on [t0, t1]. This solution concept is equivalent to specifying that a
solution has to fulfill

x(t) = x(t0) +

∫ t

t0

f̂(τ, x(τ)) dτ (2.9)

with f̂(t, x(t)) ∈ F(t, x(t)) for all t ∈ [t0, t1].

Example 2.4. Consider again the discontinuous ODE (2.7) in Example 2.3, for
which no Carathéodory solution exists. The set-valued Filippov extension of the
right-hand side at the switching surface x = 0 is given by F(t, x = 0) = [−1, 1].
Outside the switching function, the set-valued extension equals the right-hand side of
the ODE, i.e. F(t, x > 0) = −1 and F(t, x < 0) = 1. Now take the initial condition
x(0) = −1. Then the dynamics is given by ẋ = 1 as long as x(t) < 0, until the
solution reaches x(1) = 0. From there, the solution can neither increase nor decrease,
since that would violate the DI ẋ ∈ F(t, x(t)). However, x(t) = 0 ∀ t > 1 is a valid
solution, because 0 ∈ [−1, 1] = F(t, 0). Therefore, the Filippov solution exists and
‘slides’ along the switching surface x = 0 for t > 1.

Just as the integral version of a discontinuous ODEs gave rise to measure differential
equations, the integral equation (2.9) also motivates a more general system class.
Again, by using Riemann-Stieltjes integrals, (2.9) can equivalently be written as∫

I
dx =

∫
I
f̂(t, x(t)) dt with f̂(t, x) ∈ F(t, x) ∀ t (2.10)

where I ⊆ [t0, t1] is a compact interval. Using the short notation, (2.10) can be
written as

dx = f̂(t, x) dt with f̂(t, x) ∈ F(t, x) ∀ t. (2.11)

System (2.11) is a specific measure differential inclusion (MDI). Similar to Re-
mark 2.2 for MDEs, the MDI (2.11) can be interpreted in a functional sense as
well.

Such MDIs can also be used to describe discontinuous solutions, after a natural
generalization, which is discussed in the next section. Note that MDIs are the most
general system class discussed so far and they specifically include MDEs, DIs as well
as discontinuous ODEs.

Remark 2.5. Even if both a Filippov and a Carathéodory solution exist, they are
not necessarily equal. This can be seen by constructing a Filippov solution to the
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Chapter 2. Formalisms in Non-smooth Dynamics

ODE (2.3) in Example 2.1. The Filippov DI reads

ẋ ∈ F(t, x) = 1, (2.12)

i.e. the discontinuous ODE is replaced by a continuous ODE. Starting from the initial
condition x(0) = −1, the Filippov solution is therefore given by x(t) = t− 1 ∀ t > 0,
which strongly differs from the Carathéodory solution given in Example 2.1.

2.2 Measure differential inclusions

So far, it was shown that discontinuous ODEs and DIs are both system classes that
allow for absolutely continuous solutions (which are possibly non-differentiable but
continuous), if a suitable solution concept is provided. Equivalently, this can be
achieved by replacing the original system with specific MDEs or MDIs, which specify
the density of the differential measure dx of the solution with respect to dt. More
general MDIs allow for solutions from more general function classes. Of particular
interest are special functions of bounded variation, which can be decomposed as
x = xac + xs into an absolutely continuous part xac and a step function xs.

A step function xs is a piecewise constant function with discontinuities at a
countable set of time instants {t1, t2, ...}. If the step heights (or jumps) of each
component at the discontinuity points are given by a function a(t) through

x+s (t)− x−s (t) = a(t) ∀ t ∈ {t1, t2, ...}, (2.13)

then the step function can be expressed as

x+s (t) = x−s (t0) +

∫
[t0,t]

a(τ) dη. (2.14)

Therein, dη denotes the sum dη =
∑

k dδtk of Dirac measures, which are such that
for any open, closed or half-open interval I it holds that∫

I
adδtk =

{
a(tk) if tk ∈ I
0 if tk /∈ I. (2.15)

As before, equation (2.14) is equivalently expressed as

dxs = a(t) dη (2.16)

using the short notation, i.e. the differential measure dxs of a step function has a
density with respect to dη, and the density corresponds to the step heights. Now,
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2.2. Measure differential inclusions

let a(t) = g(t, x(t)) ∈ G(t, x(t)) with a given set-valued function G, where g(t, x) is
written to mean a dependence on t, x+(t) and x−(t) (following [78] and [68]). Then,
using dx = dxac + dxs results in∫

I
dx =

∫
I
f(t, x) dt+ g(t, x) dη with

f(t, x) ∈ F(t, x),

g(t, x) ∈ G(t, x),
(2.17)

which is a measure differential inclusion that allows for special functions of bounded
variation as solutions. In short, the MDI (2.17) reads

dx = f(t, x) dt+ g(t, x) dη with
f(t, x) ∈ F(t, x),

g(t, x) ∈ G(t, x).
(2.18)

Remark 2.6. The MDI (2.17) or (2.18) was motivated by combining a differential inclu-
sion (2.8) and the description (2.13) of a step function. Conversely, a non-impulsive
and an impulsive dynamics can be extracted from the MDI. Indeed, evaluating (2.17)
over an isolated discontinuity point tk, i.e.

x+(tk)− x−(tk) =

∫
{tk}

dx =

∫
{tk}

f(t, x) dt+

∫
{tk}

g(t, x) dη (2.19)

and using the fact that
∫
{tk} f(t, x) dt = 0 and

∫
{tk} g(t, x) dη = g(tk, x(tk)) yields

the impulsive dynamics

x+(tk)− x−(tk) = g(tk, x(tk)), (2.20)

with g(tk, x(tk)) ∈ G(tk, x(tk)). Moreover, evaluating (2.17) over a time interval
[t0, t], which does not contain any discontinuity points, i.e.∫

[t0,t]

dx =

∫
[t0,t]

f(t, x) dt+

∫
[t0,t]

g(t, x) dη, (2.21)

using the fact that
∫
[t0,t]

g(t, x) dη = 0 and taking the time derivative on both sides
of (2.21) gives

ẋ(t) = f(t, x(t)) (2.22)

for almost every t ∈ [ta, tb], with f(t, x)) ∈ F(t, x).

For a more compact notation, the MDI (2.18) is also written as

dx ∈ dΓ(t, x), (2.23)

and dΓ(t, x) is referred to as a set-valued measure function. A function x : R → Rn of
locally bounded variation, with the given initial condition x−(t0) = x0, is a solution
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Chapter 2. Formalisms in Non-smooth Dynamics

of the MDI (2.23), if it fulfills (2.23) for all t ≥ t0 [68]. Even though at points of
discontinuity tk, the solution x(tk) might not be defined, (2.23) is still fulfilled. It is
common to write x(t, t0, x0) = x(t) to explicitly state the dependence on the initial
conditions.

Compared to systems of differential equations, there are a number of properties of
MDIs that make the analysis more difficult. A discussion of these properties can for
example be found in [68] for general MDIs and in [85] for MDIs modeling mechanical
systems with unilateral constraints. First, as for ordinary differential equations, the
existence and uniqueness of solutions is not given in general. While for ODEs the
Lipschitz continuity of the right-hand side (together with linear boundedness w.r.t. t
in the case of non-autonomous ODEs) is sufficient for existence and uniqueness of
solutions [60], no such general condition is available for MDIs. Second, the solutions
of MDIs do not depend continuously on the initial conditions in some cases, meaning
that two solutions can diverge strongly within a short time horizon, even if their
initial conditions are close to each other. A typical example is the motion of a point
mass whose position is restricted by two unilateral constraints. In the vicinity of
the intersection of these unilateral constraints, the future motion of the point mass
may strongly depend on which constraint causes an impact first [77, p. 129]. It is a
third difficulty that, as for the example of the restricted point mass, solutions may be
confined to an admissible subset A of the state space. In this chapter, it is assumed
that at least one solution to the investigated MDI exists. Furthermore, it is assumed
that the MDI is consistent in the sense that for initial conditions x0 ∈ A in the
admissible set, all solutions remain in A.

2.3 Linear complementarity systems

A system class of particular interest are linear complementarity systems (LCSs),
which are linear dynamical systems that contain a variable which is determined by a
linear complementarity problem (LCP).

Continuous formulation

In its continuous-time formulation, an LCS can be written as

ẋ = Ax+ Bw, (2.24a)

z = Cx+Dw, (2.24b)

0 ≤ z ⊥ w ≥ 0, (2.24c)
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2.3. Linear complementarity systems

with the state x ∈ Rn and the variables z ∈ Rp and w ∈ Rp (referred to as comple-
mentarity variables). Therein, the inequalities have to be understood component-wise,
i.e. z = (z1, · · · , zp)T ≥ 0 is written to mean that every component zi ≥ 0,
i ∈ {1, · · · , p}. Furthermore, the notation z ⊥ w is used to express the orthogonal-
ity zTw = 0. The last line (2.24c) is referred to as an inequality complementarity.
Here it is assumed that the matrices A,B,C and D are constant, but in general
they can also be time dependent. The LCS consists of a linear ODE augmented
by an algebraic equation and an inequality complementarity. The meaning of the
LCS (2.24) only becomes clear after providing a suitable solution concept. With
the goal of allowing non-differentiable and discontinuous solutions, such a solution
concept was formalized by Heemels [53]. It does not rely on differential measures but
on so-called Bohl distributions, which only allow for accumulation points in forward
time. This allowed the authors to give sufficient conditions for the existence and
uniqueness of solutions [51, 53].

It is sometimes convenient to reformulate the inequality complementarity using
normal cones, which leads to alternative system descriptions for the LCS (2.24). The
normal cone NC to a non-empty, closed and convex set C ⊂ Rn, at a point x ∈ C,
is defined as

NC(x) := {y ∈ Rn |yT(x∗ − x) ≤ 0, ∀x∗ ∈ C} (2.25)

while NC(x) is empty for x /∈ C. In other words, the normal cone consists of the
set of normal vectors to C in x. If x is in the interior of C, the normal cone is
NC(x) = {0}.

Note that x in (2.25) is any element of Rn, not necessarily the state of a dynamical
system, which is why it has been written with serifs. As a general notation in this
thesis, variables contained in the description of a dynamical system in first order
form are written without serifs, whereas other variables (especially in the description
of mechanics) are written with serifs. This will allow to some extent to use standard
notations from systems and control theory and mechanics in parallel.

If C is taken as the set Rn+
0 , which is defined as the set of all elements of Rn

with non-negative components, then a useful relationship between normal cones
and inequality complementarities of the form 0 ≤ x ⊥ y ≥ 0 can be established.
Specifically, the equivalence

−y ∈ NRn+
0

(x) ⇔ 0 ≤ x ⊥ y ≥ 0 (2.26)

holds. Indeed, if the i-th component xi of x is positive, then by the definition of the
normal cone, the i-th component yi of y has to be zero. Otherwise, if xi = 0, it
follows from (2.25) that yi ≥ 0, such that the inequality complementarity holds for
each component i.
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Chapter 2. Formalisms in Non-smooth Dynamics

Using the equivalence (2.26), the inequality complementarity 0 ≤ z ⊥ w ≥ 0 in
the LCS can be replaced by −w ∈ NRp+

0
(z), which for the case D = 0 results in

ẋ = Ax+ Bw with − w ∈ NRp+
0

(Cx), (2.27)

which forms a differential inclusion. Similarly, for D ̸= 0, one obtains a differential
algebraic inclusion.

LCSs are connected to a number of other system classes. For example, due to
the complementarity ziwi = 0 ∀ i ∈ {1, · · · , p}, (2.24) contains 2p ‘modes’ and each
mode is described by a differential algebraic equation. As pointed out in [51], the LCS
can also be reformulated as more general hybrid systems, but such a reformulation is
generally cumbersome and leads to large system descriptions.

Discrete formulation

In Chapter 6, an LCS will be used in its discrete-time formulation, which is written as

xk+1 = Axk + Bwk,

zk = Cxk +Dwk,

0 ≤ zk ⊥ wk ≥ 0,

(2.28)

with the discrete state xk ∈ Rn and the complementary variables zk ∈ Rp and
wk ∈ Rp. For discrete LCSs, various links to other system classes, such as mixed
logical dynamical systems [12], extended linear complementarity systems [34], piece-
wise affine systems and others have been established in [52]. Without discussing the
details, it should be noted that these links and equivalences are much broader than
in the continuous-time case. As an example, let the complementarity variables zk, wk

and be scalar. Then, for a given xk, the variable wk can be calculated as

wk =

{
−D−1Cxk if D−1Cxk ≤ 0

0 if D−1Cxk > 0.
(2.29)

Using (2.29), wk can be eliminated in (2.28), which yields the piece-wise linear system

xk =

{
(A−D−1BC)xk if D−1Cxk ≤ 0

Axk if D−1Cxk > 0.
(2.30)
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3
Non-smooth multibody systems

In this chapter, the description of a non-smooth mechanical multibody system as
a measure differential inclusion (MDI) is derived. For smooth mechanical systems,
whose state trajectories are continuously differentiable, the principle of virtual work
leads to the equations of motion as a set of differential equations. It is shown, that
the equivalent principle of virtual action allows for a generalization to non-smooth
systems, whose state trajectories exhibit discontinuities in time, leading to an equality
of measures. In addition, set-valued force laws lead to a measure differential inclusion.
Readers who are not familiar with differential measures (or Stieltjes measures and
integrals) are referred to Appendix A prior to reading this chapter. Subsequently,
two time discretization schemes are shown and their main difference is discussed.
Finally, state transformations are discussed, which lead to continuous solutions in the
transformed state space.

3.1 Equality of measures

Principle of virtual work

Classically, the equations of motion, which describe the non-impulsive dynamics of
a mechanical system, can be derived from a fundamental axiom: the principle of
virtual work. A mechanical system S consists of particles (or material points) whose
positions in Euclidean space at a given time t are described by ξ(X, t) ∈ R3. Therein,
X ∈ R3 are particle coordinates in a reference position. The map ξ : (X, t) 7→ ξ(X, t)
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Chapter 3. Non-smooth multibody systems

is called a motion of the system S. The virtual work of a mechanical system S is
defined as the functional

δW [δξ] := −
∫
S
δξT(ξ̈dm− dF). (3.1)

Recall that the dot symbol (·) over variables refers to the time derivative. Furthermore,
if S is a collection of bodies, the integrals have to be understood in the sense of∫
S(·)dm :=

∫
S(·)ρdV (i.e. dm is the mass distribution) and

∫
S(·)dF :=

∫
S(·)bdV +∫

∂S
(·)sdA with force density b and surface force density s (i.e. dF is the force

distribution). A function family ξ̂(X, t, ε), depending on a variation parameter ε,
can be constructed such that ξ(X, t) = ξ̂(X, t, ε0) for a given ε0. The virtual
displacements δξ are then defined by

δξ(X, t) :=
∂ξ̂

∂ε
(X, t, ε0)δε, (3.2)

with the variation δε = ε−ε0 and under the assumption that ξ̂(X, t, ε) is differentiable
with respect to ε.
The principle of virtual work, as a postulate, states that at each time instant t the
virtual work vanishes for all virtual displacements δξ, i.e.

δW [δξ] = 0 ∀ δξ. (3.3)

Clearly, to fulfill the principle of virtual work at all times, it is required that the particle
velocities ξ̇ are continuous and differentiable. With the definition (3.1), the principle
of virtual work reads as

δW [δξ] = −
∫
S
δξTξ̈dm+

∫
S
δξTdF = 0 ∀ δξ. (3.4)

Integration by parts of the first term on the right hand side of (3.4) yields∫
S
δξTξ̈dm = −

∫
S
δξ̇Tξ̇dm+

d

dt

(∫
S
δξTξ̇dm

)
, (3.5)

which eliminates the particle accelerations ξ̈. Furthermore, a more compact form can
be obtained by using the definition of the kinetic energy T , which is given by

T :=
1

2

∫
S
ξ̇Tξ̇dm. (3.6)

Indeed, from the definition (3.6) it follows that the first term on the right hand side
of (3.5) is equal to −δT . Using this fact and (3.5) in (3.4) results in

δW [δξ] = − d

dt

(∫
S
δξTξ̇dm

)
+ δT +

∫
S
δξTdF = 0 ∀ δξ, (3.7)

which is known as Lagrange’s central equation [21].
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Generalized coordinates

In the following, the degrees of freedom are restricted to a finite number f , such that
all particle coordinates can be determined from a finite set of (minimal) generalized
coordinates q ∈ Rf . This restriction requires holonomic constraints (of the form
g(ξ) = 0) to be imposed on the possibly infinite dimensional model in particle
coordinates. For example, setting the distance between any two particles in the
Euclidean space to a constant value yields a rigid body model. In that case, the
particle positions can be expressed as r(X,q(t), t), such that ξ(X, t) = r(X,q(t), t)

describes the constrained motion. Equivalently, a set of (non-minimal) generalized
coordinates z ∈ Rh with h ≥ f might be used. The space Rh is then referred to as
the configuration space. However, if additional constraints restrict the motion to a
subspace or manifold of the configuration space, then that subspace is referred to as
configuration manifold.

Using minimal coordinates q ∈ Rf , it follows from

ṙ =
∂r

∂q
q̇+

∂r

∂t
, (3.8)

by taking the derivative with respect to q̇ on both sides, that

∂ṙ

∂q̇
=

∂r

∂q
. (3.9)

Hence, the kinetic energy T = 1
2

∫
S ṙTṙdm may be expressed in terms of minimal

coordinates and velocities, which takes the form

T (q, q̇, t) = T2(q, q̇, t) + T1(q, q̇, t) + T0(t), (3.10)

with the terms T2 = 1
2
q̇TM(q, t)q̇, T1 = a(q, t)Tq̇ and T0(t). Therein, M(q, t) is

referred to as mass matrix.
Admissible virtual displacements δr are in accordance with all (holonomic) con-

straints and are induced by the virtual displacements δq through δr = (∂r/∂q)δq =

(∂ṙ/∂q̇)δq. As a result it follows that

d

dt

(∫
S
δrTṙdm

)
=

d

dt

[∫
S
δqT

(
∂r

∂q

)T
ṙdm

]
=

d

dt

[∫
S
δqT

(
∂ṙ

∂q̇

)T(∂( 1
2
ṙTṙ)

∂ṙ

)T
dm

]

=
d

dt

[
δqT

(
∂T

∂q̇

)T]
,

(3.11)
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where the chain rule of differentiation has been used to obtain the second line and
T = 1

2

∫
S ṙTṙdm to arrive at the last line. Evaluating (3.7) for admissible virtual

displacement and using (3.11) results in

δW [δq] = − d

dt

(
∂T

∂q̇
δq

)T
+ δT +

∫
S
δqT

(
∂r

∂q

)T
dF = 0 ∀ δq, (3.12)

which is a necessary condition for (3.7) to hold.

Principle of virtual action

Up to this point, it was assumed that the generalized velocities are continuously
differentiable functions, which is necessary in order for (3.12) to hold. However,
on a macroscopic phenomenological level, it can be observed that colliding bodies
experience discontinuities in their velocities. In order to incorporate such discontinu-
ities in the description, the continuity requirement therefore has to be relaxed. This
can be achieved by generalizing the principle of virtual action, which is a postulate
equivalent to the principle of virtual work. More specifically, the virtual action
δA [28] is defined as the time integral of the virtual work over an arbitrary closed
time interval I, i.e.

δA[δq] :=

∫
I
δW [δq]dt. (3.13)

The principle of virtual action states that the virtual action for a time interval I
vanishes for arbitrary virtual displacements δq,

δA[δq] = 0 ∀ δq. (3.14)

It immediately follows from the principle of virtual work, δW [δq] = 0 ∀ δq, that
the integral in (3.13) vanishes and therefore the principle of virtual action (3.14) is
fulfilled. Conversely, the principle of virtual action implies the principle of virtual
work and the two principles are therefore equivalent. Indeed, the first two terms on
the right hand side of (3.12) can be rewritten as

d

dt

(
∂T

∂q̇
δq

)T
− δT =

[
d

dt

(
∂T

∂q̇

)
δq+

∂T

∂q̇
(δq)·

]T
−
(
∂T

∂q
δq+

∂T

∂q̇
δq̇

)T
= δqT

[
d

dt

∂T

∂q̇
− ∂T

∂q

]T
,

(3.15)

where the fact that (δq)· = δq̇ has been used to arrive at the last equality. The third
term on the right hand side of (3.12) can be simplified by defining the generalized
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3.1. Equality of measures

forces f as

f :=

∫
S

(
∂r

∂q

)T
dF. (3.16)

Integrating (3.12), using (3.15) and (3.16) and applying the principle of virtual action
leads to

δA[δq] = −
∫
I

[
d

dt

(
∂T

∂q̇
δq

)T
− δT −

∫
S
δqT

(
∂r

∂q

)T
dF

]
dt (3.17a)

= −
∫
I
δqT

[
d

dt

∂T

∂q̇
− ∂T

∂q

]T
− δqTf dt = 0 ∀ δq (3.17b)

= −
∫
I
δqT

[
d

dt

(
∂T

∂q̇

)T
−
(
∂T

∂q

)T
− f

]
dt = 0 ∀ δq. (3.17c)

Finally, it follows from the fundamental lemma of the calculus of variations that the
square bracket in (3.17c) vanishes for all t, which implies that the virtual work also
vanishes for all t.

The reason why the principle of virtual action was introduced, is that it allows
for a natural generalization to impulsive systems with discontinuous generalized
velocities [28]. To see this, denote the generalized velocities as u := q̇. Then (3.17c)
can be reformulated as

δA[δq] = −
∫
I
δqT

[
d

(
∂T

∂u

)T
−
(
∂T

∂q

)T
dt− dR

]
= 0 ∀ δq, (3.18)

where dR := fdt has been introduced and d(∂T/∂u) = (∂T/∂u)·dt has been used
(refer to the discussion on densities in Appendix A.2 for details). Since (3.18) holds
for all δq, it particularly holds for virtual displacements with compact support on I.
In that case (3.18) can be written in short notation as

d

(
∂T

∂u

)T
−
(
∂T

∂q

)T
dt− dR = 0, (3.19)

which is an equality of measures. The equality (3.19) remains meaningful for
generalized velocities u that are special functions of locally bounded variation, written
as u ∈ slbv(I,Rf ) (as defined in Appendix A.1). As such, u(t) can be discontinuous,
with a countable set of discontinuity points. Furthermore, the left limit u−(t) and the
right limit u+(t) of the generalized velocities exist for all t. Moreover, the generalized
velocities u correspond to the time derivative of q wherever they are defined. As a
consequence, the kinetic energy T ∈ slbv(I,R) is also a special function of locally
bounded variation. This implies dT = Ṫdt + (T+ − T−)dη, i.e. T admits an
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Chapter 3. Non-smooth multibody systems

additional density with respect to the atomic measure η which is defined as the finite
sum of Dirac point measures at the continuity points {tk} (see Section 2.2), i.e.

η =
∑
k

δtk with δtk (I) =
{
1 if tk ∈ I
0 if tk ̸∈ I.

(3.20)

Since T ∈ slbv(I,R), its derivatives are also special functions of locally bounded
variation, such that we have (∂T/∂u) ∈ slbv(I,R), which implies

d

(
∂T

∂u

)
=

d

dt

(
∂T

∂u

)
dt+

[(
∂T

∂u

)+
−
(
∂T

∂u

)−]
dη. (3.21)

As a consequence, it is natural to generalize dR to take the form dR = fdt+ fηdη

with some density fη, which is referred to as generalized impulsive force.
Therefore, the the generalization of (3.18) to nonsmooth systems can be written as

δA[δq] =

∫
I
δqT

[
d

dt

(
∂T

∂u

)
− ∂T

∂q
− f

]
dt

+

∫
I
δqT

[(
∂T

∂u

)+
−
(
∂T

∂u

)−
− fη

]
dη = 0 ∀ δq.

(3.22)

From the fact that (3.22) holds for arbitrary δq, it follows that the square brackets
vanish at all times, leading to the Lagrangian equations of the second kind

d

dt

(
∂T

∂u

)
− ∂T

∂q
= f , (3.23)

describing the non-impulsive motion, and their impulsive counterpart(
∂T

∂u

)+
−
(
∂T

∂u

)−
= fη. (3.24)

Note that the two equations (3.23) and (3.24) together are equivalent to the equality
of measures (3.19).

After evaluating the derivatives and grouping terms, equation (3.23) then leads to
the equations of motion of the form

M(q, t)u̇− hg(q,u, t) = f . (3.25)

It follows directly from (3.10), i.e. T = T2 + T1 + T0, that the equations of motion
include the term M(q, t)u̇, since T2 = 1

2
uTM(q, t)u. In particular, if the particle

coordinates are scleronomic, i.e. not explicitly depending on time, the kinetic energy
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3.2. Constitutive contact laws

is of the quadratic form T (q,u) = T2(q,u) = 1
2
uTM(q)u, with a mass matrix

which does not explicitly depend on time. All other terms resulting form taking the
derivatives in (3.23) are referred to as gyroscopic accelerations and are gathered in
hg(q,u, t). Similarly, equation (3.24) leads to the impact equations of the form

M(q, t)(u+ − u−) = fη, (3.26)

and the equality of measures (3.19) results in

M(q, t) du− hg(q,u, t) dt = dR. (3.27)

3.2 Constitutive contact laws

The equality of measures is to be complemented with constitutive laws, in particular
contact laws. They include set-valued force laws, used to model contact forces such as
friction and unilateral constraint forces, as well as normal and frictional impact laws,
describing velocity changes due to collisions. It is convenient to formulate separate
force laws for the normal and tangential components of the contact forces and to
express them as normal cone inclusions.

Two bodies are in contact if two points, one on the surface of each body, are in
contact. For two bodies B1 and B2 that can be in contact, let P be the body-fixed
point on B1, which momentarily (i.e. at a fixed time instant) has the shortest distance
to B2. Similarly, let Q be the body-fixed point on B2 that momentarily has the shortest
distance to B1. The contact distance (or gap) gN is the signed distance between P

and Q. In other words, the two bodies are in contact if gN = 0, they are separated if
gN > 0 and they penetrate each other if gN < 0. Assuming that the surfaces of all
bodies are smooth, the connecting line between P and Q is always normal to both
surfaces.

Let (n, t1, t2) be an orthonormal body-fixed frame attached to point P , such that
n(q, t) is the unit outward normal in P and t1(q, t) and t2(q, t) span the tangential
plane to the body surface in P , as shown in Figure 3.1. The relative position rPQ of
Q with respect to P can then be written as

rPQ = gNn, (3.28)

which does not contain any tangential components, as P and Q always lie on a
connecting line along n. The contact distance in normal direction is therefore given by
the projection

gN := nTrPQ. (3.29)
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Figure 3.1: Contact geometry.

The relative velocity γ := vQ − vP between the contact points, referred to as contact
velocity, is decomposed into the components

vQ − vP = ṙPQ = γNn+ γT1t1 + γT2t2. (3.30)

Therefore, the relative velocity in normal direction is the projection

γN = nT(vQ − vP ), (3.31)

whereas the relative velocity in tangential direction, i.e. the projection onto the
t1-t2-plane, is given by

γT := (γT1 γT2)
T = (t1 t2)

T (vQ − vP ). (3.32)

The contact forces FP , acting on B1 in P , and FQ, acting on B2 in Q, are decomposed
in a similar fashion as

FQ = −FP = λNn+ λT1t1 + λT2t2, (3.33)

where, due to the law of interaction, the contact forces are of equal magnitude but
of opposite direction. In view of their incorporation into the equality of measures
(3.27), it is convenient to also decompose the virtual work δWC of the contact forces
into a normal and a tangential part. To do this, first calculate δWC as

δWC = δrTOPFP + δrTOQFQ = (δrOQ − δrOP )
TFQ =

(
∂rPQ

∂q
δq

)T
FQ. (3.34)
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Because of ṙPQ = (∂rPQ/∂q)q̇+ (∂rPQ/∂t) it follows that ∂rPQ/∂q = ∂ṙPQ/∂q̇.
Therefore, with (3.30) and (3.33), the virtual work δWC equates to

δWC = δqT

(
∂ṙPQ

∂q̇

)T
FQ

= δqT

(
n
∂γN
∂q̇

+ t1
∂γT1

∂q̇
+ t2

∂γT2

∂q̇

)T
(λNn+ λT1t1 + λT2t2)

= δqT

[(
∂gN
∂q

)T
λN +

(
∂γT1

∂q̇

)T
λT1 +

(
∂γT2

∂q̇

)T
λT2

]
,

(3.35)

where the fact that γN = ġN was used to obtain the last equality. Finally, the virtual
work δWN := δqT(∂gN/∂q)TλN of the normal components can be introduced and
all the remaining terms are summarized in δWT , such that

δWC = δWN + δWT . (3.36)

Multiple contacts, i.e. n pairs of contact points on the surfaces of two contacting
bodies, lead to multiple contact distances, which are denoted giN for the i-th contact
and summarized in gN := (g1N , · · · , gnN )T.

Unilateral constraints

Unilateral constraints are inequality constraints of the form gN (q, t) ≥ 0, where
the notation gN = (g1N , · · · , gnN )T ≥ 0 is used to express that every component
giN ≥ 0, i ∈ {1, · · · , n}. These unilateral constraints correspond to not admitting
penetration between contacting bodies, with negative values representing penetration,
which shall be inadmissible. To prevent penetration of contacting bodies, contact
forces λi

N are required in all contacts. The assumption that no adhesion and no
distance effects are present between contacting bodies, leads to the constitutive law

0 ≤ λN ⊥ gN ≥ 0, (3.37)

where the notation λN ⊥ gN is used to express the orthogonality λT
NgN = 0. Hence,

(3.37) is equivalent to giN ≥ 0, λi
N ≥ 0, giNλi

N = 0 for all i and is therefore referred
to as an inequality complementarity. The law (3.37) is often called Signorini
condition and by (2.26) can be written as a normal cone inclusion of the form

−λN ∈ NRn+
0

(gN ), (3.38)

where the set Rn+
0 := {y ∈ Rn | y ≥ 0} was used. As before, (3.38) has to be

understood component-wise, i.e. −λi
N ∈ NR+

0
(giN ) for all i ∈ {1, · · · , n}.
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As shown in [41, chap. 7], the force law (3.38) can be equivalently be formu-
lated on velocity level, using contact velocities γi

N := (∂giN/∂q)Tu+ (∂giN/∂t). The
reformulation is due to the continuity properties of q(t) and u±(t) and reads

giN = 0 : − λi
N ∈ NR+

0
(γi

N ),

giN > 0 : λi
N = 0,

(3.39)

which is convenient in view of the time discretization that will follow in Section 3.4.
The generalized normal contact force fN can be obtained by a balance of the

virtual work of the normal contact forces. By using the components in (3.36) one
obtains

δWN = δqTfN = δqT

(
∂gN
∂q

)T
λN ∀ δq. (3.40)

As a consequence, the generalized normal contact force fN has the form

fN = WNλN , (3.41)

where WN := (∂gN/∂q)T has been used to denote the so-called generalized force
directions.

With (3.41) a force law for the generalized force fN can be deduced as a normal
cone inclusion as well. To see this, the set

A := {q ∈ Rf | gN (q) ≥ 0} (3.42)

of admissible generalized coordinates is introduced. In general, A can be non-convex,
which requires a more general definition of the normal cone than for convex sets.
Here, the constraint functions giN are assumed to be of class C1 and to fulfill the
additional regularity condition that all level curves giN (q) = 0 intersect transversally.
Roughly speaking, one then obtains a convex set when zooming in on any point of
the set A. Since Rn+

0 is a convex cone, it follows from the definition of the normal
cone (2.25) that

NRn+
0

(gN ) = {y ∈ Rn | yT(g∗N − gN ) ≤ 0 ∀ g∗N ∈ Rn+
0 }

= {y ∈ Rn | yT(g∗N − gN ) ≤ 0 ∀ g∗N ∈ lim
ε→0+

Bε(gN ,Rn+
0 )},

(3.43)

where the notation Bε(x,K) := {y ∈ K | ∥x− y∥ ≤ ε} was used for the intersection
of the ball with constant radius ε > 0, around a point x ∈ Rn, with a general subset
K ⊂ Rn. Note that the restriction of g∗N to Bε(gN ,Rn+

0 ) is sufficient since Rn+
0 is a

cone. Next, by the definition of continuity, for every ε > 0 there exists a δ(ε) > 0

such that the implication ∥q∗ − q∥ ≤ δ ⇒ ∥gN (q∗) − gN (q)∥ ≤ ε holds. Hence,
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by expressing the constraints gN (q) as functions of the generalized coordinates and
using their continuity, the normal cone can equivalently be written as

NRn+
0

(gN (q)) = {y ∈ Rn | yT(gN (q∗)− gN (q)) ≤ 0 ∀ q∗ ∈ lim
δ→0+

Bδ(q,A)}

= {y ∈ Rn | yT ∂gN (q)

∂q
(q∗ − q) ≤ 0 ∀ q∗ ∈ lim

δ→0+
Bδ(q,A)},

(3.44)
where a first order approximation for the difference gN (q∗) − gN (q) was used to
obtain the last equation. With WN = (∂gN/∂q)T, it follows from (3.41) and (3.44)
that the force law for fN is given by the normal cone inclusion

−fN ∈ NA(q), (3.45)

where the normal cone to the (possibly non-convex) set A is defined as

NA(q) := {y ∈ Rf | yT(q∗ − q) ≤ 0 ∀ q∗ ∈ lim
ε→0+

Bε(q,A)}. (3.46)

Friction

A widely used law for modeling friction forces is Coulomb’s friction law. In its spatial
formulation, it gives a force law for the components λi

T = (λT1 λT2)
T of the i-th

frictional contact in the t1-t2-plane, and can be formulated as a normal cone inclusion
for closed contacts

giN = 0 : γi
T ∈ NCT (λi

N
)(−λi

T ),

giN > 0 : λi
T = 0.

(3.47)

Therein, γi
T is the relative sliding velocity and the set CT describes the set of ad-

missible friction forces −λT . For isotropic Coulomb friction, it describes a disc
CT (λ

i
N ) = {−λT | ∥λT ∥ ≤ µiλi

N} with a radius depending on the normal contact
force λi

N and a constant friction coefficient µi. However, other shapes of the set
CT might be required. For example, an elliptic set CT can be used to obtain an
orthotropic friction law.

Similar to the normal contact forces, the generalized friction force f iT of the i-th
contact takes the form

f iT = Wi
Tλ

i
T , (3.48)

with Wi
T := (∂γi

T /∂u)
T denoting the generalized friction force directions. Indeed,

by using the tangential components in (3.36), the balance of the virtual work reads

δWT,i = δqTf iT = δqT

(
∂γi

T

∂u

)T
λi

T ∀ δq, (3.49)

from which (3.48) directly follows.

29



Chapter 3. Non-smooth multibody systems

Impact law

On a macroscopic phenomenological level, it is observed that collisions between
bodies in a mechanical multibody system lead to instantaneous velocity jumps. These
velocity discontinuities require impulsive forces Λi

N , acting normal to the contact
plane of the i-th contact. The simultaneous occurrence of a velocity jump with a
corresponding impulse is referred to as an impact. In that case, an impact law
relates the post-impact relative velocities γ+

N to the pre-impact relative velocities γ−
N

in normal direction to the contact plane. A widely used impact law is the generalized
Newtonian impact law [40], which accounts for superfluous contacts (i.e. inactive in
the sense that Λi

N = 0 and is formulated with ξN := γ+
N + εγ−

N component-wise as

giN = 0 : 0 ≤ Λi
N ⊥ ξiN ≥ 0,

giN > 0 : Λi
N = 0,

(3.50)

where ε = diag{εi} with constant coefficients of restitution εi ∈ [0 1]. With this,
whenever a contact is active in the sense that Λi

N > 0, it follows that the relative
normal contact velocity is reversed and scaled according to γi+

N = −εiγ
i−
N . The

impact law (3.50) can alternatively be written as a normal cone inclusion for closed
contacts, as in

giN = 0 : ξiN ∈ NR−
0
(−Λi

N ),

giN > 0 : Λi
N = 0.

(3.51)

In the case of frictional contacts, impulsive tangential forces Λi
T lead to tangential ve-

locity discontinuities accordingly. A corresponding impact law [42] can be formulated
with ξiT = γi+

T + εiTγ
i−
T similar to the normal direction as

giN = 0 : ξiT ∈ NCT (Λi
N

)(−Λi
T ),

giN > 0 : Λi
T = 0,

(3.52)

where CT (Λ
i
N ) = {−ΛT | ∥ΛT ∥ ≤ µiΛi

N}.

3.3 Measure differential inclusion

Using the structure of the generalized contact forces fC = fN +
∑

i f
i
T = WNλN +∑

i W
i
Tλ

i
T and impulses fη = WNΛN +WTΛT in the equality of measures (3.27)

results in

dq = udt,

Mdu− h(t,q,u) dt = WN dPN +WT dPT ,
(3.53)
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where h contains the gyroscopic accelerations hg as well as all generalized forces which
are not due to the contact forces. The matrix WN is composed of the generalized
force directions of all unilateral constraints and the matrix WT = (W1

T · · ·Wm
T )

contains the generalized force directions of all m frictional contacts. The percussion
measures dPN and dPT are composed of the non-impulsive constraint forces λN

and λT = (λ1
T
T · · ·λm

T
T)T as well as the corresponding impulsive forces ΛN and

ΛT , according to

dPN = λN dt+ΛN dη ,

dPT = λT dt+ΛT dη.
(3.54)

The components of all constraint forces and impulses are determined by the force
laws (3.39), (3.47), (3.51) and (3.52).

For an even more compact formulation, the percussion measures can be summa-
rized in dP := (dPT

N dPT
T )

T. With W = (WN WT ) it then follows that

dq = udt,

M du− h(t,q,u) dt = W dP.
(3.55)

3.4 Time discretization

In the following, two specific time discretization schemes for measure differential
inclusions of the form (3.55) are discussed. Moreau’s time-stepping scheme is perhaps
the most widely used scheme within the Nonsmooth Dynamics community as it can be
applied for the simulation of systems with multiple unilateral constraints with Coulomb
friction. It directly discretizes the equality of measures and a combined contact-impact
law on position-switched velocity level. As a consequence, the switching nature of
the generalized Newtonian impact law is inherited. Conversely, the less known
time discretization scheme of Paoli and Schatzman involves an impact law directly
formulated on position level, instead of on position-switched velocity level. As a
consequence, velocity changes over impacts take place over two consecutive time
steps in the discretization. Both the Moreau and the Paoli-Schatzman scheme are
part of the category of event-capturing schemes, that spread the effects of impacts
over one or multiple time steps and can therefore overcome accumulation points.
Conversely, event-driven schemes use higher order ODE solvers between impacts,
but require every impact to be detected such that the impact equations can be solved.
Event-driven schemes are therefore not applicable if accumulation points can occur.
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Moreau’s time-stepping scheme

In order to discretize the equality of measures (3.55), first note that both sides can be
understood as measures of a given time interval I, and can therefore be written in
the integral form ∫

I
dq =

∫
I
udt,∫

I
(M du− h(t,q,u) dt) =

∫
I
W dP,

(3.56)

for a given time interval I. Furthermore, by introducing P :=
∫
I dP with the normal

and tangential components PN =
∫
I dPN and PT =

∫
I dPT , the force and impact

laws can be gathered in a combined contact-impact law. Under the assumption that
ξiN = γi+

N + εiγ
i−
N is constant on I, the combined contact-impact law for the normal

component reads
giN = 0 : ξiN ∈ NR−

0
(−P i

N ),

giN > 0 : P i
N = 0

(3.57)

and for the tangential component, with ξiT = γi+
T + εTiγ

i−
T constant on I, it holds

that
giN = 0 : ξiT ∈ NCT (P i

N
)(−Pi

T ),

giN > 0 : Pi
T = 0.

(3.58)

For a given time interval I = [tk, tk+1], with tk+1 = tk +∆t, the first equality of
measures in (3.56) is discretized by approximating the integral on the right-hand side
using the trapezoidal rule, leading to

qk+1 − qk ≈ 1

2
(uk + uk+1)∆t. (3.59)

Therein, quantities with an index k refer to apporoximants at time t = tk = k∆t, e.g.
qk ≈ q(tk). In order to discretize the second equality in (3.56), Moreau’s scheme
makes use of a midpoint tM = tk+

∆t
2

between two consecutive discrete time instants,
with qM = qk + uk

1
2
∆t. The discretization is

M(qM )(uk+1 − uk)− h(tM ,qM ,uk)∆t = W(qM , tM )Pk, (3.60)

where Pk is an approximant of P = PN + PT for I = [tk, tk+1]. Finally, the
discretized contact laws are

giN (qM , tM ) = 0 : ξiN,k ∈ NR−
0
(−P i

N,k),

giN (qM , tM ) > 0 : P i
N,k = 0

(3.61)
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and
giN (qM , tM ) = 0 : ξiT,k ∈ NCT (P i

N,k
)(−Pi

T,k),

giN (qM , tM ) > 0 : Pi
T,k = 0.

(3.62)

It is important to note that due to the contact laws (3.61) and (3.62) formulated on
position-switched velocity level, the calculation of an index set J = {i | giN = 0} is
required in every time step to distinguish closed contacts from open contacts with
giN > 0. Furthermore, even if the normal cone inclusions are maximal monotone, the
contact laws (3.61) and (3.62) are not monotone due to their switching nature.

Paoli-Schatzman scheme

As before, the starting point for the Paoli-Schatzman discretization scheme [85, 86] is
the equality of measures (3.55). However, it is restricted to mechanical systems with
a single frictionless unilateral constraint, or more generally, to multiple frictionless
unilateral constraints which are decoupled in the sense that wT

i M
−1wj = 0 for i ̸= j

with wi = (∂giN/∂q)T. This scheme was originally motivated by the fact that it
allows for a rigorous convergence proof [86] (more rigorous than can be given for
Moreau’s scheme). The relations (3.56) and (3.59) hold as before and the scheme
can be written as

qk+1 = qk +∆tuk+1,

M(qk)(uk+1 − uk)− h(tk,qk,uk)∆t = W

(
qk+1 + εqk−1

1 + ε

)
Pk.

(3.63)

To keep a simple notation, it is assumed here that the coefficients of restitution
εi = ε are equal for all contacts. The crucial difference to other discretizations is
the somewhat heuristic formulation of the combined contact-impact law directly on
position level, which is written with the kinematic variable

ζk := g

(
qk+1 + εqk−1

1 + ε

)
(3.64)

as an inequality complementarity

0 ≤ ζk ⊥ Pk ≥ 0, (3.65)

or, alternatively, as a normal cone inclusion

−Pk ∈ NRn+
0

(ζk). (3.66)

Since the discrete law (3.65) is formulated on position level, the calculation of an
index set is avoided. This discrete impact law may seem somewhat heuristic as it is
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not a direct discretization of the combined contact-impact law (3.57). However, its
meaningfulness becomes clear when evaluated over multiple time steps. To see this,
let W be constant and g(q) = WTq be linear for simplicity. Then ζk can be taken
as ζk = gk+1 + εgk−1 with gk = WTqk. Letting ζk vanish over two consecutive
time steps, i.e. ζk−1 = ζk = 0, it follows that

ζk − ζk−1

∆t
=
gk+1 − gk

∆t
+ ε

gk−1 − gk−2

∆t
= WT

(qk+1 − qk

∆t
+ ε

qk−1 − qk−2

∆t

)
= WT(uk+1 + εuk−1) = γk+1 + εγk−1 = 0.

(3.67)
The last equality, γk+1 + εγk−1 = 0, shows that Newton’s impact law is fulfilled in
a discretized sense over two time steps. In case of an impact, the relative normal
velocity of the contact point is reversed over two time steps.

Example 3.1. To illustrate the impact behavior of the Paoli-Schatzman scheme,
consider a bouncing ball system (also discussed by Paoli [85]), with one degree of
freedom, described by dq = u dt and mdu − mgdt = dPN with dPN according
to (3.54). The ball is restricted to q ≥ 0. As shown in Figure 3.2, on the right, the
velocity reversals due to impacts take place over two consecutive time steps. For a
coefficient of restitution ε = 0.5, the discrete solution (black) penetrates the unilateral
constraint at impacts, while for ε = 0 (gray), the constraint is satisfied at the impact.
The parameters for this example are m = 1, g = 9.81 and the initial condition is
q(0) = 0.75 and u(0) = 0.

0 0.5 1 1.5

0

0.5

t

q
0.39

Figure 3.2: Left: The bouncing ball system. Right: Trajectories simulated with the
Paoli-Schatzman scheme for coefficients of restitution ε = 0.5 (black) and ε = 0

(gray). Velocity reversals due to impacts occur over two consecutive time steps.
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3.5. State transformations

3.5 State transformations

The collection of generalized minimal coordinates q ∈ Rf and generalized minimal
velocities u ∈ Rf in x = (qT uT)T ∈ Rn is referred to as the state1of the system.
The space Rn (with n = 2f) of possible states is called the state space of the system.
An integral curve in the state space, which is induced by a motion q(t), is referred to
as a trajectory. A natural question that arises when analyzing or designing a general
nonlinear system is, if there exists an alternative representation, which is of a special
structure that simplifies the analysis or design. For smooth nonlinear systems of the
form

ẋ = f(x, t) (3.68)

one typically seeks a state transformation, which is a mapping ϕ : x 7→ z from the
original state x ∈ X ⊂ Rn to a new state z = ϕ(x) ∈ Z ⊂ RN , such that the
dynamics has a specific form when expressed in z. Typically such transformations
are required to preserve the existence of solutions (if given for the original system).
For systems of the form (3.68), state transformations are therefore usually required to
be diffeomorphisms, i.e. ϕ has to be a bijection and both ϕ and its inverse ϕ−1 are
required to be differentiable. In that case the Jacobian (∂ϕ−1)/(∂z), as well as its
inverse, are continuous. The dynamics in the transformed state

ż =
∂ϕ

∂x
f(x, t) =

∂ϕ

∂x

∣∣∣∣
x=ϕ−1(z)

f(ϕ−1(z), t)

=

(
∂ϕ−1

∂z

)−1

f(ϕ−1(z), t) =: f̂(z, t)

(3.69)

then has a continuous right-hand side if the original system has a continuous right-hand
side.

When analyzing non-smooth dynamical systems, more general state transforma-
tions are applied. It is natural to seek coordinate transformations that render the
trajectories of the transformed system continuous. In that case various difficulties that
are caused by discontinuities in the state trajectories (such as the peaking phenomenon
described in Section 4.3) could be circumvented. Two types of such transformations
are reviewed in the following.

1Note that variables and functions related to the state space description are written without serifs, whereas
in the original description of the mechanical system serifs are used (to avoid confusion if the same letter is
assigned a different meaning in the state space description).
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Zhuravlev-Ivanov transformation

With the goal of eliminating discontinuities in vibro-impact systems with one unilateral
constraint, Ivanov [54] introduced non-smooth state transformations for systems of
the form2

dq = u dt,

du = f(t, q, u) dt+ dPN ,
(3.70)

where dPN = λNdt+ ΛNdη, together with the contact force laws

−λN ∈
{
NR+

0
(u) if q = 0

0 if q > 0 ,
− ΛN ∈

{
NR+

0
(ξ) if q = 0

0 if q > 0
(3.71)

with the kinematic variable ξ = u++εu−. Note that system (3.70) and (3.71) includes
a unilateral constraint g(q) = q ≥ 0 and Newton’s impact law. Ivanov’s simplest
transformation ϕ : (q, u) 7→ (s, v) that eliminates discontinuities is such that

q = |s|,

u = Rv sgn(s) with R := 1− 1− ε

1 + ε
sgn(sv),

(3.72)

where the sign function is defined as

sgn(t) :=


1 if t > 0

0 if t = 0

−1 if t < 0.

(3.73)

For a coefficient of restitution ε = 1 this state transformation is equal to what
has previously been suggested by Zhuravlev [104]. In that case, the geometrical
interpretation of the transformation ϕ is that every point in the right half plane of
the original state space (q, u), for which q ≥ 0, is mapped to two equivalent points in
the transformed state space (s, v). These two image points are equivalent by a point
reflection at the origin, as shown in Figure 3.3 on the left. The resulting dynamics in
the transformed state is described by

ṡ = Rv,

v̇ = R−1sgn(s)f(t, |s|, Rv sgn(s)),
(3.74)

2In [54], a hybrid system formulation is used, which is equivalent to the MDI given here. Also, the
treatment can be extended to multiple degrees of freedom systems with a single unilateral constraint.
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which is a system of differential equations with discontinuous right-hand sides. Due
to the sign functions, discontinuities clearly occur for s = 0, but also for v = 0 as
the variable R includes sgn(sv). As a consequence, solutions of (3.74) are generally
non-differentiable at s = 0 and v = 0, but solutions are continuous functions of time.

Among other applications, the Zhuravlev-Ivanov transformation can be used for
stability analysis [54] or controller design [84]. However, even though trajectories are
continuous in the transformed representation, system (3.74) is not suitable for other
purposes. For example, the design of state observers aims at determining the current
state from measurements. Clearly, both s and sgn(s) cannot be measured, as s does
not correspond to a physical quantity. All other measurements, such as the original
states q and u, or functions thereof, are identical for trajectories in the transformed
state space, which can be mapped onto each other by point wise mirroring at the
origin. In that case it is said that system (3.74) is not observable for any physical
measurement. However, one can argue that it is not necessary to distinguish between
equivalent points, as they are mapped to the same points in the original state space.
This leads to the ideas in the next section, which is concerned with transformations
that can lead to an increase in the dimension of the state space.

Gluing and immersion transformations

Another way of achieving continuous trajectories is by finding a state transformation
ψ : x 7→ z that maps the original state x ∈ X ⊂ Rn to the transformed state
z ∈ Z ⊂ RN , which is such that the pre-impact states x−(t) and the post-impact
states x+(t) are mapped to the same point z(t) = z+(t) = z−(t) in the transformed
state space, for all possible solutions of the original non-smooth system. Hence for
x+ ̸= x−, the two points x+ and x− are ‘glued together’ in a graphical sense in the
transformed state space, as shown in Figure 3.3 on the right.

In geometric terms (without properly introducing the related objects) one intends
to define an equivalence relation ∼ on X , which is such that x+(t) ∼ x−(t) for all
possible trajectories. Subsequently, the transformation is defined by a projection from
X to the quotient set X/∼, followed by a one-to-one mapping from X/∼ to Z .

In some cases, an increase in the state space dimension N > n leads to a great
simplification of the description. The state transformation is then referred to as an
immersion transformation.

Kim et al. [62] introduced gluing functions, which are immersion transformations
ψ : x 7→ z mapping x ∈ X ⊂ Rn to z ∈ Z ⊂ RN , N ≥ n which additionally fulfill
a number of conditions ensuring the smoothness of trajectories in the transformed
state space. Menini et al. [76] investigated immersion transformations for mechanical
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Figure 3.3: Coordinate transformations mapping discontinuous two dimensional state
trajectories to continuous state trajectories, for the example of a mechanical one
degree-of-freedom system with elastic impacts (state (q, u)). The Zhuralvev-Ivanov
transformation ϕ leads to two equivalent points in the transformed state space (s, v).
Immersion transformations ψ can map to a transformed state space of a higher
dimension (z1, z2, z3).

systems with a single unilateral constraint and perfectly elastic impacts (i.e. with
a coefficient of restitution equal to one). As a convenient procedure, the authors
suggest to define an auxiliary output, which is a chosen function of the measured
output, and to define the transformed state as a number of time derivatives of this
auxiliary output. This approach was shown to be useful for the analysis of simple one
degree-of-freedom impact oscillators, for which the transformation also constitutes a
gluing function. The core idea is illustrated by a simple example in the following.

Example 3.2 (Menini et al. [76]). Consider a one degree of freedom impact oscillator
with elastic impacts of the form3

dq = u dt,

mdu = −(kq + du) dt+ dPN ,

y = q

(3.75)

3In [76], a hybrid system formulation is used, which is equivalent to the MDI given here.
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with dPN = λNdt+ ΛNdη, together with the combined contact force laws

−λN ∈
{
NR+

0
(u) if q = 0

0 if q > 0 ,
− ΛN ∈

{
NR+

0
(ξ) if q = 0

0 if q > 0
(3.76)

with the kinematic variable ξ = u+ + u− (which corresponds to a coefficient of
restitution ε = 1). For brevity, introduce k := k/m and d := d/m. Then, by taking
the time derivatives of the auxiliary output y = q2, an immersion transformation is
found leading to a linear system. Indeed, with x = (q u)T and

z = ψ(x) :=

 q2

2qu

2u2 − 2kq2 − 2dqu

 =

y

ẏ

ÿ

 , (3.77)

the transformed dynamics is linear and reads

ż =

 0 1 0

0 0 1

−4dk −(2d2 + 4k) −3d

 z, (3.78)

which is readily verified by taking the time derivative of (3.77). An impact equation
is not required for the transformed dynamics. Indeed, the transformed state z is
continuous as it consists of a combination of continuous monomials: q2 is continuous
as q is continuous, qu is continuous as q = 0 at points of discontinuity of u and u2 is
continuous since u+ = −u− at all points of discontinuity of u.
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4
Partial stability

Stability theory is concerned with the qualitative behavior of solutions with respect
to limit sets (such as equilibria). Roughly speaking, if any solution that starts near a
given limit set stays near that limit set for all future times, then the limit set is called
stable. Lyapunov stability theory has originally been developed for smooth differential
equations and provided useful tools to examine a system’s stability properties in closed
form. Since then, it has been generalized to various other systems including differential
inclusions and measure differential inclusions. Furthermore, since the first definitions
of stability [66], many new notions of stability have been introduced.

In this chapter, the notion of stability of partial equilibria is introduced for measure
differential equations and its links to other stability concepts are discussed. Theorems
allowing to conclude stability properties solely based on the dynamics equations
also serve as important tools for designing state observers, tracking controllers or
for analyzing synchronization. However, for impulsive systems with state jumps,
a phenomenon commonly referred to as ‘peaking’ requires new approaches. This
peaking phenomenon is caused by discontinuities in the solutions, which is why the
stability of switched systems (without such discontinuities) and partial stability of
discrete-time systems are discussed as well.

4.1 Stability concepts

Consider a measure differential inclusion (MDI) of the form

dx ∈ dΓ(t, x), (4.1)
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where dΓ(t, x) is a set-valued measure function and x(t) represents the state which
is depending on time t. A function x : R → Rn of locally bounded variation, with
the given initial condition x−(t0) = x0, is a solution of the MDI (4.1), if it fulfills
(4.1) for all t ≥ t0 [68]. At points of discontinuity ti, the solution x(ti) is not defined.
However, (4.1) is still fulfilled as it has to be understood in an integral sense. It is
common to write x(t, t0, x0) = x(t) to explicitly state the dependence on the initial
conditions.

In the following, notions of stability are introduced, which are qualitative properties
of solutions of the MDI (4.1) with respect to equilibria. A point x∗ in the state space
is an equilibrium point of (4.1) if there exists a solution of (4.1) for which it holds
that x(t, t0, x∗) = x∗ for all t ≥ t0. As a consequence, for equilibrium points it must
hold that dx = 0 which implies 0 ∈ dΓ(t, x∗).

In many applications only a part of the state variables is of interest. To separate
such state variables in the dynamics, let the state x ∈ Rn be composed of two parts,
x = (yT zT)T, with y ∈ Rn1 , z ∈ Rn2 and n1 + n2 = n. An autonomous system

dx ∈ dΓ(x), (4.2)

can then equivalently be written as

dy ∈ dΓ1(y, z),

dz ∈ dΓ2(y, z).
(4.3)

Solutions of (4.3) are written as (y(t, t0, y0, z0), z(t, t0, y0, z0)) for given initial condi-
tions y−(t0) = y0 and z−(t0) = z0. A subspace of the state space, for which y = y∗,
is a partial equilibrium of (4.3) if there exists a solution of (4.3) for which it holds
that y(t, t0, y

∗, z0) = y∗ for all t ≥ t0 and any initial condition z−(t0) = z0. It
follows that dy = 0 must hold for partial equilibria, implying 0 ∈ dΓ1(y

∗, z) for all z.
Note that non-autonomous systems can be seen as special cases of (4.3). Indeed,

letting z = t be the time, (4.3) yields the nonautonomous MDI dy ∈ dΓ1(y, t),
together with ṫ = 1.

Definition 4.1 (Stability of partial equilibria1). A partial equilibrium of system (4.3)
with y(t) = y∗ is said to be

i. stable if for any number ε > 0 there exists a number δ(ε, z0) > 0 such that for
all solutions with initial conditions y−(t0) = y0 and z−(t0) = z0 it holds that

∥y0 − y∗∥ < δ ⇒ ∥y(t, t0, y0, z0)− y∗∥ < ε

for all t ≥ t0 where the solution is defined. It is called uniformly stable if
δ = δ(ε), independent of z0.
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ii. locally attractive if there exists a number γ(z0) > 0 such that

∥y0 − y∗∥ < γ ⇒ lim
t→∞

∥y(t, t0, y0, z0)− y∗∥ = 0.

It is called globally attractive if γ → ∞.

iii. attractively stable (locally or globally) if it is stable and attractive (locally or
globally). It is further called uniformly attractively stable (locally or globally)
if it is uniformly stable and attractive (locally or globally) with γ independent
of z0.

As a special case, if y∗ = 0 is a stable partial equilibrium of system (4.1), then
it is said that the system is stable with respect to y or that the y-dynamics of
system (4.3) is stable. According to Definition 4.1, stability of a partial equilibrium
point expresses that all solutions starting nearby that partial equilibrium will stay
near for all future times. If all solutions starting nearby are approaching the partial
equilibrium as time tends to infinity, the partial equilibrium is attractive.

If y = x is the full state, then Definition 4.1 coincides with the classical stability
definition of an equilibrium point in the sense of Lyapunov.

4.2 Lyapunov-type methods

The stability notions introduced in Section 4.1 refer to qualitative properties of
solutions of a general MDI (4.1). In many cases, these solutions cannot be found in
closed form. Therefore, methods have been developed to prove stability of equilibria
solely based on the MDI itself. Lyapunov originally developed such a method, which
is now known as Lyapunov’s direct method, for ordinary differential equations. The
method is based on finding so-called Lyapunov functions which can be understood
as a generalized measure for the deviation of the solution from an equilibrium. A
generalization to autonomous MDIs is discussed in [68]. In a similar fashion (but
more general), the subsequent theorem gives a tool for the assessment of partial
stability for MDIs. It makes use of the following definition.

Definition 4.2 (Class K function). A continuous function α : R0+ → R0+ is said to
belong to class K if α(0) = 0 and it is strictly increasing.

1In literature, partial stability often has a different meaning and refers to the property that solutions
starting near an equilibrium point x∗ stay near that equilibrium point, but only in their y-component, see
for example [100]. A comparison of the different concepts can be found in [101] and a link to time-varying
systems in [29].
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Theorem 4.3. Let there be a partial equilibrium of system (4.3) with y = 0. Let
x = (yT zT)T and define Dh := {x ∈ A | ∥y∥ < h}. Then the following statements
hold.

i. If there exists a class K function α, a constant h > 0 and a scalar, continuously
differentiable function V (y, z) with V (0, z) = 0∀ z such that

α(∥y∥) ≤ V (y, z) ∀ x ∈ A, (4.4a)

dV (y, z) ≤ 0 ∀ x ∈ Dh, (4.4b)

then the partial equilibrium with y = 0 is stable (i.e. system (4.3) is stable with
respect to y).

ii. If there exist class K functions α and β and a constant h > 0 such that (4.4)
holds and in addition

V (y, z) ≤ β(∥y∥) ∀ x ∈ A, (4.5)

then the partial equilibrium with y = 0 is uniformly stable (i.e. system (4.3) is
uniformly stable w.r.t. y).

iii. If there exist class K functions α, β and γ and a constant h > 0 such that (4.4),
(4.5) hold and in addition

V̇ (y, z) ≤ −γ(∥y∥) ∀ x ∈ Dh, (4.6)

whenever V̇ is defined, then the partial equilibrium with y = 0 is (locally)
uniformly attractively stable (i.e. system (4.3) is (locally) uniformly attractively
stable w.r.t. y). The statement holds globally if Dh = A.

Proof. The proof of Theorem 4.3 is divided into three parts, one for each statement.

i. Let x(t0) ∈ Dh. From dV ≤ 0 it directly follows that V (y(t), z(t)) ≤
V (y(t0), z(t0)) for t0 ≤ t. Together with (4.4a) it therefore holds that

α(∥y∥) ≤ V (y(t), z(t)) ≤ V (y0, z0).

Since V (y, z0) is continuous in y and V (0, z0) = 0, there exists a δ(ε, z0) for
every ε > 0, such that V (y, z0) < α(min(ε, h)) < α(ε) for all y with ∥y∥ < δ.
Specifically, for ∥y0∥ < δ it follows that

α(∥y∥) ≤ V (y(t), z(t)) ≤ V (y0, z0) < α(ε).

Finally, since α is monotonically increasing, it follows that ∥y∥ < ε, which
concludes the stability proof.
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ii. Since β is continuous and β(0) = 0, there exists a number δ(ε) (independent of
z0) for every number ε > 0, such that β(δ) < α(min(ε, h)) < α(ε). Specifically,
for ∥y0∥ < δ it follows with (4.5) that

α(∥y∥) ≤ V (y(t), z(t)) ≤ V (y0, z0) ≤ β(∥y0∥) < α(ε).

Since α is monotonically increasing, it follows that ∥y∥ < ε, which concludes
the uniform stability proof.

iii. Uniform stability follows from ii. Due to (4.4), V (y(t), z(t)) is non-increasing
and bounded from below. Therefore the limit L := limt→∞ V (y(t), z(t)) ≥ 0

exists. By reductio ad absurdum L = 0. To see this, assume L > 0. Since V is
non-increasing, V (y, z) ≥ L for all t ≥ t0. With (4.5) it follows that L ≤ β(∥y∥)
and therefore ρ := β−1(L) ≤ ∥y∥. Therefore, the inequality

V (y+(t), z+(t)) = V (y0, z0) +

∫
[t0,t]

dV

≤ V (y0, z0)−
∫
[t0,t]

γ(∥y∥) dt

≤ V (y0, z0)− γ(ρ)(t− t0)

(4.7)

shows, that for t∗ = t0 + V (y0, z0)/γ(ρ) it holds that V (y(t∗), z(t∗)) = 0,
which contradicts the initial assumption.

Finally, as a consequence of L = 0, it must hold that limt→∞ α(∥y(t)∥) = 0,
which implies limt→∞ y(t) = 0 and therefore proves attractivity.

The function V in Theorem 4.3 is referred to as Lyapunov function. The
inequality dV (y, z) ≤ 0 in (4.4b) has to be understood in an integral sense, such that
due to

∫
[ta,tb]

dV = V (y+(tb), z
+(tb))− V (y−(ta), z

−(ta)) ≤ 0 for all ta ≤ tb, the
Lyapunov function is required to be non increasing along solutions of (4.3). The
fact that V can depend on both y and z provides more freedom in the selection of a
suitable Lyapunov function. In many cases however, it is sufficient to use a positive
definite Lyapunov function that only depends on y. In that case, the conditions (4.4a)
and (4.5) are directly fulfilled (see for example Lemma 4.3 in [60]) and dV (y) ≤ 0

for all x ∈ Dh is sufficient for stability of the partial equilibrium. The fact that the
inequalities (4.4a) and (4.5) only have to hold for x ∈ A also provides more flexibility
in the selection of Lyapunov function candidates.

It can be shown2, that from x ∈ lbv(I, D), it follows that (V ◦ x) ∈ lbv(I,R) if
the function V : D → R is Lipschitz continuous on I. When checking the conditions
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of Theorem 4.3 for a such a Lyapunov function, it is useful to write the differential
measure dV as

dV = V̇ (x(t)) dt+ (V +(x(t))− V −(x(t))) dη, (4.8)

where V +(x(t)) = V (x+(t)) due to continuity of V. The non-positivity of dV is then
checked by evaluating if the densities V̇ and V + − V − are non-positive.

Example 4.4. Consider again the impact oscillator (3.75) and (3.76) from Exam-
ple 3.2 with a coefficient of restitution ε < 1 and the kinematic variable ξ = u++εu−.
Since the positions q are restricted to be non-negative, the set A of admissible
states is A = {x = (q u)T | q ≥ 0}. To verify stability of the equilibrium
x∗ = (q∗ u∗)T = (0 0)T, take a quadratic Lyapunov function of the form V = xTPx

with

P =
1

2

(
k + δ d

m
δ

δ m

)
. (4.9)

This Lyapunov function corresponds to the total mechanic energy, augmented by
additional terms including 0 < δ < d. For the non-impulsive dynamics it follows

V̇ = 2xTPẋ

=

(
k + δ

d

m

)
qq̇ + δq̇u+ δqu̇+muu̇

=

(
k + δ

d

m

)
qu+ δu2 +

(
δ
1

m
q + u

)
(−kq − du+ λN )

= −(d− δ)u2 − δ
k

m
q2,

(4.10)

which is negative definite since m, d and k are strictly positive and δ < d. In the last
step, it has been used that qλN = 0 and uλN = 0 due to the force law (3.76). For
the impulsive dynamics, it follows

V + − V − = x+
T
Px+ − x−

T
Px−

= (x+ + x−)TP(x+ − x−)

=
1

2

(
q+ + q−

u+ + u−

)T(
k + δ d

m
δ

δ m

)(
q+ − q−

u+ − u−

)

= −1

2
m(1− ε2)(u−)2,

(4.11)

2See for example [78] (Proposition 12.6) or [68] (Proposition 6.3).
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4.2. Lyapunov-type methods

where in the last step it has been used that q+ = q− = 0 whenever an impact occurs
and u+ = −εu−. Hence V + − V − is non-positive and the Lyapunov function V is
decreasing during impulsive and non-impulsive motion, as visualized in Figure 4.1
for a selected initial condition and given parameters. Note that the shape of the
Lyapunov function in the inadmissible set Ac, i.e. for q < 0, is irrelevant.

0

0

x0

x−(t1)

x+(t1)
Ac A

q

u

Figure 4.1: Left: Level curves of V = xTPx (gray) for Example 4.4 and solution
(black) for a selected initial condition x0 = (0.5 0.3)T and parameters m = 1,
k = 1, d = 0.2, ε = 0.8 and δ = 1e− 3. Right: The example system.

Remark 4.5. A linear, time-invariant system ẋ = Ax is globally asymptotically
stable (or, more precisely, its equilibrium x∗ = 0) if (and only if) for every matrix
Q = QT ≻ 0 there exists a matrix P = PT ≻ 0, such that the linear matrix equation

ATP+ PA = −Q (4.12)

is fulfilled ( [30], Thm. 5.5), which is known as the Lyapunov equation. Furthermore,
V = xTPx then serves as a Lyapunov function. Indeed, by calculating

V̇ = ẋTPx+ xTPẋ = xT(ATP+ PA)x = −xTQx ≺ 0, (4.13)

it is seen that V is decreasing along solutions for x ̸= 0, since Q is positive definite.
When searching a Lyapunov function, it can be useful to solve the linear matrix
inequality (LMI)

ATP+ PA ≺ 0 (4.14)

instead of (4.12), as one is usually not interested in any specific Q, and efficient
numerical solvers exist for LMIs.
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Chapter 4. Partial stability

Systems where only a part of the state variables are of interest are not the only
application for Lyapunov-type partial stability methods. Various other stability
problems can be recast as a partial stability problem, even though the entire state is
of interest. To name just a few, the following stability problems are directly linked to
partial stability.

• Attractive incremental stability refers to the qualitative system property
that all solutions of a system dx ∈ dΓ(x) converge to each other as time tends
to infinity. To assess this property, one can view two solutions x1 and x2 of
the original system as solutions of two identical systems

dx1 ∈ dΓ(x1),

dx2 ∈ dΓ(x2).
(4.15)

After introducing the error x̃ := x1 − x2 this is equivalent to

dx̃ ∈ dΓ(x̃+ x2)− dΓ(x2) =: dΓ̃(x̃, x2),

dx2 ∈ dΓ(x2),
(4.16)

such that attractive incremental stability is equivalent to attractive stability of
(4.16) with respect to x̃.

• Full state synchronization refers to the qualitative property that solutions of
two coupled, but possibly non-identical, systems

dx ∈ dΓ(x, x̂),

dx̂ ∈ dΓ̂(x, x̂),
(4.17)

converge to each other. Once again, with the error x̃ := x − x̂ this can be
written as

dx̃ ∈ dΓ(x̃+ x̂, x̂)− dΓ̂(x̃+ x̂, x̂) =: dΓ̃(x̃, x̂),

dx̂ ∈ dΓ̂(x̃+ x̂, x̂) =: dΓ̌(x̃, x̂),
(4.18)

and stability of (4.18) with respect to x̃ is equivalent to full state synchronization
of the two systems (4.17).

• State observers are auxiliary systems, which are unilaterally coupled to
another system and are designed such that full state synchronization between
both systems is achieved. The state observer design for mechanical systems
with unilateral constraints is discussed in Chapters 5 and 6.
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4.3. Peaking

4.3 Peaking

While the stability definitions in Section 4.1 are suitable for analyzing non-smooth
trajectories (including state jumps), they can be insufficient when considering the
error between two such trajectories. If one defines the error between two trajectories
x1(t) and x2(t) as the point-wise difference x̃ = x1 − x2, then a small time mismatch
between impact time instants (where the state jumps occur) leads to error peaks:
even if two trajectories are close to each other, the Euclidean error norm ∥x̃∥ (that
was used in Definition 4.1 and Theorem 4.3), becomes large in the time interval
between the impact time instants. To illustrate this, Figure 4.2 shows two trajectories
for the impact oscillator of Example 4.4 under a periodic external forcing (on the
left), together with the time evolution of ∥x̃∥. While the impact oscillator of Example
4.4 cannot be expected to be globally incrementally stable, as it can generally exhibit
chaotic behavior, the plots show that for selected parameters and excitation the
solutions converge to each other (at least locally). However, due to the peaking
phenomenon, the error dynamics is not stable by Definition 4.1 and therefore the
introduced Lyapunov theorem cannot directly be used to investigate incremental
stability, synchronization or state observers.

0
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2

3

q

−2
0

2
u
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∥x̃∥

−1 0 1 2

−4

−2

0

2
x̃0

x̃+(t1)

x̃−(t1)

q̃

ũ

Figure 4.2: Left: Peaking of the error norm ∥x̃∥ between two trajectories x1 (solid
black) and x2 (dashed gray) of the impact oscillator of Example 4.4. Right: State-space
trajectory (black) of the error x̃ and level curves of a quadratic function V (x̃) (gray).

Approaches to circumvent the peaking problem can be grouped in two main
categories. The first category is concerned with transforming or modifying the
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Chapter 4. Partial stability

dynamics at hand, such that no more state jumps occur and the available Lyapunov-
type theorems are applicable. For example, by applying the state transformations
introduced in Section 3.5, it might be possible to obtain a transformed dynamics
without state jumps, and therefore without peaking. Alternatively, one can regularize
the impulsive dynamics by replacing the impact equations with a smooth dynamics
approximating the non-smooth behavior. Such a regularization typically involves stiff
differential equations, which makes regularization-based simulation and optimization
of non-smooth systems difficult. However, it is a useful analysis approach, which can
be taken for stability analysis.

The second category is concerned with alternative definitions of stability, which
apply in the presence of peaking. For example, within the hybrid systems framework,
Biemond et al. [18] propose alternative definitions of incremental stability and provide
corresponding Lyapunov-type theorems. These definitions and theorems rely on a
more general distance function d(x1, x2) to be used in lieu of the Euclidean distance
∥x1−x2∥ that was used in Definition 4.1 and Theorem 4.3. The construction of specific
distance functions, which do not exhibit peaking, was shown to be useful to solve the
tracking problem for impulsive systems [17] and for controlled synchronization [9].

4.4 Stability of switched systems

In many cases, the regularization or discretization of a MDI leads to a switched
system, which is characterized by differential or difference equations with multiple
right-hand sides together with a switching law that describes which of these right-hand
sides is active. Also, for the case of mechanical systems with unilateral constraints,
the MDI itself can be seen as an approximation of a smooth, but switched, dynamics.
In fact, the impact equations and the impact law describe discontinuous velocities,
which can be observed on a macroscopic level, but are only an approximation of an
unknown smooth dynamics on a microscopic level. In view of the peaking problem,
it is therefore instructive to discuss the stability of switched systems as well. Here,
only state dependent switching laws are considered, i.e. the state-space Rn can be
divided into subsets Xi, referred to as cells, and each cell is assigned with only one of
the possible right-hand sides. Furthermore, the discussion is restricted to piecewise
affine (PWA) systems, which are a well-studied subgroup of switched systems and
can be written as

ẋ = Aix+ bi for x ∈ Xi (i ∈ {1, ..., N}), (4.19)

with constant system matrices Ai ∈ Rn×n, bi ∈ Rn and the state x ∈ Rn. The
cells Xi are separated by a finite set of hyperplanes Hjx+ hj = 0 (j ∈ {1, ..., N}).
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4.4. Stability of switched systems

Here, it is assumed that the right-hand side of (4.19) is continuous. The PWA system
(4.19) can be seen as a special case of the MDI (4.1), such that the (partial) stability
Theorem 4.3 can directly applied. Corresponding Lyapunov functions are typically
called common Lyapunov functions, as they are applied for all cells. To ensure that
a common Lyapunov function V is non-increasing, it consequently has to hold that

V̇ =
∂V

∂x
(Aix+ bi) ≤ 0 ∀ x ∈ Xi (i ∈ {1, ..., N}). (4.20)

However, for many PWA systems (and also for more general switched systems), it is
not possible to find a single Lyapunov function that fulfills (4.20) for all cells. A much
less conservative stability analysis can be based on multiple Lyapunov functions, e.g.
one Lyapunov function Vi for each cell, such that

V (x) = Vi(x) for x ∈ Xi. (4.21)

Instead of (4.20), each Vi then only has to decrease inside its corresponding cell Xi,
i.e. for all i ∈ {1, ..., N} it has to hold that

V̇i =
∂Vi

∂x
(Aix+ bi) ≤ 0 ∀ x ∈ Xi. (4.22)

Furthermore, one has to ensure that Vj(x
+) ≤ Vi(x

−) whenever the solution tran-
sitions between neighboring cells, i.e. if x− ∈ Xi and x+ ∈ Xj . The easiest way to
ensure this is to use Lyapunov functions that are continuous at the hyperplanes which
are separating the cells.

Example 4.6. Consider the bi-modal, piecewise linear (PWL) system

ẋ =

{
A1x if Hx > 0

A2x if Hx ≤ 0,
(4.23)

with the matrices

A1 =

(
0 1

− k
m

− d
m

)
, A2 =

(
0 1

− k+κ
m

− d
m

)
and H =

(
1

0

)T

. (4.24)

The system describes a one degree-of-freedom oscillator with a unilateral spring, as
depicted in Figure 4.3 on the right, with mass m, damping d, two spring rates k and
κ and the state x = (q u)T. Both springs are relaxed for q = 0 and x∗ = 0 is clearly
an equilibrium. To prove asymptotic stability of x∗, the piecewise quadratic Lyapunov
function

V (x) =

{
V1(x) = xTP1x if Hx > 0

V2(x) = xTP2x if Hx ≤ 0
(4.25)
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with the matrices

P1 =
1

2

(
k + δ d

m
δ

δ m

)
, P2 =

1

2

(
k + κ+ δ d

m
δ

δ m

)
(4.26)

with δ < d can be used. In fact, by a similar calculation as in (4.10), it is verified
that V̇1 = −(kd/m)q2 − (δ − d)u2 and V̇2 = −((k + κ)d/m)q2 − (δ − d)u2, which
are both negative definite. Figure 4.3, on the left, shows the solution of (4.23) for a
given initial condition x0 = (0.5 0.3), which is clearly attracted by the equilibrium
x∗ = 0. Furthermore, as can be seen from the level curves, the piecewise quadratic
Lyapunov function is decreasing along the solution.

0

0

x0

q

u

Figure 4.3: Left: Level curves of the piecewise quadratic Lyapunov function V (x) (gray)
for Example 4.6 and solution (black) for a selected initial condition x0 = (0.5 0.3)T

and parameters m = 1, k = 1 κ = 10, d = 0.2 and δ = 1e− 3. Right: The example
system.

Remark 4.7. As for the non-switched case, LMI solvers are a useful tool for finding
the Lyapunov functions of a time-invariant PWL system. The necessary condition
(4.22) is fulfilled if the LMIs

AT
i Pi + PiAi ≺ 0 (4.27)

hold. However, the LMIs (4.27) only have to hold for x ∈ Xi and they might only
allow for a solution if this additional information is incorporated into the LMI.
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4.5 Stability of discrete-time systems

For the (partial) stability of discrete-time systems, Lyapunov-type theorems exists
which are very similar to the continuous-time case. In view of Chapter 6, where the
time discretization of a mechanical system with unilateral constraints is analyzed, the
main results are stated here for completeness. Consider a discrete-time dynamical
system of the form

xk+1 = F(xk) (4.28)

with the discrete state xk ∈ Rn, a mapping F : Rn → Rn and an iteration parameter
k ∈ Z defining the discrete time.3 The index notation has to be understood in the
sense that xk = x(k) and is used here for a more compact writing. As before, let
the state xk be composed of two parts, xk = (yTk zTk)

T, such that system (4.28) can
equivalently be written as

yk+1 = F1(yk, zk),

zk+1 = F2(yk, zk).
(4.29)

Solutions of (4.29) are written as (y(k, k0, y0, z0), z(k, k0, y0, z0)), indicating the
dependence on given initial conditions y(k0) = y0 and z(k0) = z0, or in short as
(yk, zk), omitting the initial conditions. A subspace of the state space, for which
y = y∗, is a partial fixed point of (4.29) if there exists a solution of (4.29) for which
it holds that y(k, k0, y∗, z0) = y∗ for all k ≥ k0 and any initial condition z0. It follows
that F1(y

∗, zk) = y∗ for all zk must hold for partial fixed points.

Definition 4.8 (Stability of partial fixed points). A partial fixed point with yk = y∗

of system (4.29) is said to be

i. stable if for any number ε > 0 there exists a number δ(ε, z0) > 0 such that for
all solutions with initial conditions y0 and z0 it holds that

∥y0 − y∗∥ < δ ⇒ ∥y(k, k0, y0, z0)− y∗∥ < ε

for all k ≥ k0. It is called uniformly stable if δ = δ(ε), independent of z0.

ii. locally asymptotically stable if there additionally exists a number γ(z0) > 0

such that

∥y0 − y∗∥ < γ ⇒ lim
k→∞

∥y(k, k0, y0, z0)− y∗∥ = 0,

and globally asymptotically stable if γ → ∞.

3If the discrete-time system is obtained by uniformly sampling a continuous-time system with time t, then
t = k∆t with a fixed time step ∆t.
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Theorem 4.9. Let there be a partial fixed point of system (4.3) with yk = 0. Then
the following statements hold.

i. If there exists a scalar, continuously differentiable function V (y, z) with V (0, z) =

0∀ z and a class K function α such that

α(∥y∥) ≤ V (y, z), (4.30a)

V (yk+1, zk+1)− V (yk, zk) ≤ 0, (4.30b)

then the partial fixed point with y = 0 is stable (i.e. system (4.29) is stable with
respect to y).

ii. If there additionally exists a class K function β such that

V (y, z) ≤ β(∥y∥), (4.31)

then the partial fixed point with y = 0 is uniformly stable (i.e. system (4.3) is
uniformly stable w.r.t. y).

Proof. The proof is similar to the continuous time case and can be found in [82].

Remark 4.10. A linear, time-invariant system xk+1 = Axk is globally asymptotically
stable (i.e. its fixed point x∗ = 0) if (and only if) for every matrix Q = QT ≻ 0 there
exists a matrix P = PT ≻ 0, such that the linear matrix equation

ATPA− P = −Q (4.32)

is fulfilled, which the discrete version of the Lyapunov equation in Remark 4.5. Similar
to the continuous case, Vk = xTkPxk then serves as a Lyapunov function, which can
be seen by calculating

Vk+1 − Vk = xTk+1Pxk+1 − xTkPxk = xTk(A
TPA− PA)xk = −xTkQxk ≺ 0. (4.33)

The quadratic function V is decreasing along solutions for xk ̸= 0 if Q is positive
definite. If the specific choice of Q is not of interest, the LMI

ATPA− P ≺ 0 (4.34)

can be solved to find a suitable P which provides a Lyapunov function, instead of
solving (4.32).
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State observers with known impact time

instants

The state estimation problem is concerned with obtaining non-measured state variables
(or parameters) from a number of measurement signals. These unknown states are
often needed for control purposes, monitoring or for parameter identification. The
estimation typically relies on a model of the observed system. One of the two main
approaches to solve this problem is optimization-based: one estimates the initial state
at the beginning of a moving time window, such that a certain functional of the error
between a model-based predicted output and the measurements is minimized over
that window. More commonly however, a dynamical system approach is used. A
state observer is set up, which is a (virtual) dynamical system, whose state (or a
transformation thereof) asymptotically converges to the true state and therefore serves
as a state estimation. Convergence is achieved through a unidirectional coupling
between the state observer and the observed system through measurements. More
precisely, for a system of the form

dx ∈ dΓ(t, x, v),

y = h(x)
(5.1)

with the state x ∈ Rn, input v ∈ Rm and the (measured) output y ∈ Rp, a state
observer is an auxiliary system

dz ∈ d∆(t, z, v, y),

x̂ = ψ(z, v, y)
(5.2)
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with the observer state z ∈ RN and estimated state x̂ ∈ Rn, for which it holds that
the dynamics of the estimation error x̃ = x− x̂ is (globally) attractively stable (which
particularly implies that limt→∞ ∥x− x̂∥ = 0 and that small initial estimation errors
result in small future estimation errors). The design process for such a state observer
consists of the selection of a suitable measure function ∆ and a function ψ. In
general N ≥ n, and observers are referred to as embedding observers if N > 0. A
good starting point is usually an identity observer, for which N = n and x̂ = z.

For linear systems, general observability conditions, under which a state observer
exists, can be given [30]. Furthermore, general state observer designs such as the
Luenberger observer for time-invariant systems [70,71] or the Kalman observer for
time-varying systems [59] are known. For nonlinear systems, the design of a state
observer is more difficult for several reasons. First, observability conditions are
generally not only depending on the system but also on the input. Furthermore, if a
state observer exists, it cannot be assumed that its state is of the same dimension as
of the observed system. In some cases, a higher state dimension is necessary, which
makes it more difficult to find its dynamics. Lastly, for linear systems a separation
principle holds: if a state observer and a stabilizing controller are designed separately,
it can be shown that the closed-loop system combining both is asymptotically stable.
This separation principle does in general not hold for nonlinear systems.

State observer designs for nonlinear systems are problem specific and general
design techniques do not exist. However, for some specific structures of smooth
nonlinear systems, often referred to as normal forms, extensions of the Luenberger
and Kalman observers exist. For example, systems with an additive triangular non-
linearity [49], state affine systems [14, 15] or a combination of both [14] all allow
for such extensions. When designing state observers for nonlinear systems, it is
therefore natural to seek state transformations that lead to one of the known nor-
mal forms in the transformed state. As a starting point, various conditions under
which such a transformation exists are given in literature. Other techniques include
linearization-based observer designs, where observers for linear systems are applied to
the linearization of a nonlinear system. For example, the extended Kalman filter1 [95]
or the extended Luenberger observer [20] are often applied, but there is no guarantee
for the asymptotic stability of the corresponding error dynamics. Next, for some
classes of nonlinearities, such as Lipschitz continuous nonlinearities, it is possible to
dominate the nonlinearities through correction terms with sufficiently large gains (in
so-called high-gain observers [61]).

1The well-known Kalman filter was developed for linear systems with stochastic disturbances. However,
the technique can be applied to deterministic systems as well, in which case it is referred to as a Kalman
observer.
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5.1. Switched unilateral constraints (Baumann & Leine)

For mechanical systems with unilateral constraints and Coulomb friction, which
are described by measure differential inclusions of the form (5.2), maximal monotone
nonlinearities form an important class. First, Coulomb-type friction laws, typically
formulated as normal cone inclusions, are maximal monotone for given normal contact
forces. As it will be shown in the subsequent sections, the maximal monotonicity
property, in combination with a suitable Lyapunov function, is favorable in the stability
analysis of the estimation error dynamics. For the state observer design for impulsive
systems with state jumps, an important aspect is whether or not the impact time
instants (at which the state jumps occur) are known. Clearly, if impacts in the observer
and the observed system do not occur at the same time instants, the estimation error
dynamics is not asymptotically stable in the classical sense. For mechanical systems
with unilateral constraints, the combined contact-impact law is typically formulated
on position-switched velocity level. It turns out that for given positions, this law is
also maximal monotone in many cases, which is very useful in the state observer
design.

The goal of this chapter is to review and unify some state observer designs for
mechanical systems with unilateral constraints, for known impact time instants, and
to extend some designs to account for Coulomb-friction. It also serves as preparation
for Chapter 6, which is concerned with the state observer design for such systems but
with unknown impact time instants.

5.1 Switched unilateral constraints (Baumann & Leine)

One example of a state observer that only requires knowledge of the impact time
instants in form of a boolean function was presented by Baumann and Leine in [11].
Therein, the concept of switched unilateral constraints is introduced, which is recalled
in the following and extended to account for non-opening contacts with Coulomb
friction. The starting point is a non-smooth mechanical system consisting of a linear,
time-invariant structure subjected to geometric unilateral constraints (leading to
impacts) and non-opening frictional contacts with a constant normal contact force.
The system under consideration is typically a vibro-impact system with frictional
linear guides. Hence, the dynamics is described by

dq = udt,

M du+ (Cu+Kq− f(t)) dt = WN dPN +WT dPT

(5.3)

where the system matrices K = KT ≻ 0, M = MT ≻ 0 and C ≻ 0 are assumed to be
constant and positive definite. The matrix WN is composed of the generalized force
directions of each unilateral constraint and the matrix WT contains the generalized
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Chapter 5. State observers with known impact time instants

force directions of the non-opening frictional contacts. Both WN and WT are
assumed constant and all generalized force directions to be linearly independent.
The system is excited by an external forcing f(t). The percussion measures dPN and
dPT are composed of the non-impulsive constraint forces λN ,λT and the impulsive
force ΛN according to

dPN = λN dt+ΛN dη ,

dPT = λT dt.
(5.4)

Note that all friction forces are non-impulsive, as only non-opening frictional contacts
with a constant normal contact force are considered here. Furthermore, the Coulomb-
type friction law (3.47) is assumed, which takes the form

γi
T ∈ NCT (λi

N
)(−λi

T ) (5.5)

for the i-th friction contact, with a convex force reservoir CT (λ
i
N ). Assuming the

generalized Newtonian impact law, recall that the force laws in normal direction are
formulated component-wise on position-switched velocity level as

−λi
N ∈

{
NR+

0
(γi

N ) if giN = 0

0 if giN > 0 ,
− Λi

N ∈
{
NR+

0
(ξi) if giN = 0

0 if giN > 0 ,
(5.6)

with the kinematic variable ξi = γi+
N + εiγ

i−
N . However, if the time instants for which

the contacts are closed are known in form of boolean functions χi(t), such that χi = 1

for giN = 0 and χi = 0 for giN > 0, the force laws can equivalently be written as

−λi
N ∈

{
NR+

0
(γi

N ) if χi(t) = 1

0 if χi(t) = 0 ,
− Λi

N ∈
{
NR+

0
(ξi) if χi(t) = 1

0 if χi(t) = 0 .
(5.7)

The force laws (5.7) have been introduced as switched unilateral constraint in [11],
since χi acts as a switching function which could be an external input.

A state observer for the system (5.3), (5.4), (5.5), (5.7) is obtained by a copy of
the system with the only difference, that in the observer, the switching function is
generated by the contact distances giN of the observed system. Denoting all observer
related variables with a circumflex symbol (ˆ), this leads to

dq̂ = ûdt,

Mdû+ (Cû+Kq̂− f(t)) dt = WN dP̂N +WT dP̂T

(5.8)

with dP̂N = λ̂Ndt + Λ̂Ndη and dP̂T = λ̂Tdt. The idea is now to use the same
switching functions χi(t) as in (5.7) when setting up the force laws for λ̂N and Λ̂N .
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In other words, the switching functions of the state observer are generated by the
gap function of the observed system through measurements, written as

−λ̂i
N ∈

{
NR+

0
(γ̂i

N ) if χi(t) = 1

0 if χi(t) = 0 ,
− Λ̂i

N ∈
{
NR+

0
(ξ̂i) if χi(t) = 1

0 if χi(t) = 0 .
(5.9)

It is readily verified that the force law for the normal contact force is (maximal)
monotone, i.e. it holds that

(λi
N − λ̂i

N )(γi
N − γ̂i

N ) ≤ 0 (5.10)

for any two λi
N and λ̂i

N with corresponding γi
N and γ̂i

N . In analogy, for the impulsive
normal contact forces, we have

(Λi
N − Λ̂i

N )(ξi − ξ̂i) ≤ 0, (5.11)

from which it directly follows for elastic impacts with εi = 1 ∀ i that

(Λi
N − Λ̂i

N )T((γi+
N + γi−

N )− (γ̂i+
N + γ̂i−

N )) ≤ 0. (5.12)

However, (5.12) holds for more general cases, such as for arbitrary but identical
coefficients of restitution εi = ε ∀ i, as shown in detail in [8].

For the tangential forces of the observer, the same force law is used as for the
observed system, i.e.

γ̂i
T ∈ NCT (λi

N
)(−λ̂i

T ) (5.13)

for the i-th friction contact. Therein, the normal forces λi
N in the frictional contacts are

assumed to be known and are therefore chosen identical to (5.5). As a consequence, the
corresponding normal cone inclusion for every friction contact is maximal monotone,
such that it holds that

(γT − γ̂T )T(λT − λ̂T ) ≤ 0, (5.14)

for any two λT and λ̂T obeying (5.5) and (5.13) with corresponding γT and γ̂T .
To see how crucial the monotonicity properties (5.10), (5.12) and (5.14) are

for showing attractive stability of the error dynamics by Lyapunov’s direct method,
introduce the estimation errors q̃ = q− q̂ and ũ = u− û. The error dynamics then
reads (in part)

dq̃ = ũ dt,

M dũ+ (Cũ+Kq̃) dt = WN (dPN − dP̂N ) +WT (dPT − dP̂T ).
(5.15)
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Considering the quadratic energy-like Lyapunov function V = 1
2
(q̃TKq̃+ ũTMũ),

it follows for the non-impulsive motion that

V̇ = ũTM ˙̃u+ q̃TK ˙̃q

= ũT(−Dũ+WN (λN − λ̂N ) +WT (λT − λ̂T ))

= −ũTDũ+ (γN − γ̂N )T(λN − λ̂N ) + (γT − γ̂T )T(λT − λ̂T ),

(5.16)

which is non-positive since D is positive definite and the force laws in normal and
tangential direction are monotone. Furthermore, for the impulsive motion,

V + − V − =
1

2
(ũ+ + ũ−)TM(ũ+ − ũ−)

= (γ̃+
N + γ̃−

N )T(ΛN − Λ̂N )
(5.17)

is also non-positive due to the monotonicity (5.12) of the impact law. Therefore,
dV = V̇ dt + (V + + V −) dη ≤ 0, which proves stability of the observer error
dynamics. Moreover, under the assumption that the contact duration is always finite
(i.e. the unilateral constraints open from time to time) and that the frictional contacts
are never permanently in stick (i.e. they slide from time to time), the error dynamics
is attractively stable, as shown in Appendix B in analogy to [8].

Remark 5.1. The utilization of the measured switching functions χi in the force laws
(5.9) of the state observer can be seen as a Luenberger-type correction term inside the
nonlinearity. In fact, yi = χi are measured outputs. Now let the observer’s switching
functions χ̂i be such that χ̂i = 1 for giN (q̂) = 0 and χ̂i = 0 for giN (q̂) > 0. Then,
with the predicted outputs ŷi = χ̂i, it holds that

χi = χ̂i + (χi − χ̂i) = χ̂i + Li(yi − ŷi), (5.18)

which contains a correction term with a constant gain Li = 1. However, unlike for
typical correction terms, these gains Li are fixed and cannot be used to tune the
observer performance.

Remark 5.2. The measured switching functions contain more information than just
the impact time instants. If a contact i is closed and χi(t) = 1 is measured, then it is
known that giN (q) = 0. Therefore, it was suggested in [8] to introduce (unphysical)
position jumps in the observer, which includes augmenting (5.8) with an ‘impact
equation’ of the form

K(q̂+ − q̂−) = WNΣ (5.19)

for the positions. Therein, Σ are artificial impulsive forces that are chosen such that
giN (q̂+) = 0 whenever χi(t) = 1. For details, the reader is referred to [8, 10].
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5.2. Full position measurement

5.2 Full position measurement

The idea of using position measurements in the force laws of a state observer can
also be applied to non-linear mechanical systems. Several such observers have been
analyzed in literature for the case where all positions are measured.

Velocity observers (Tanwani et al. [98])

Observers that only estimate velocities have been investigated by Menini and Tor-
nambè [75] in the hybrid systems framework and by Tanwani et al. [98] for MDIs of
the form

dq = udt,

M(q)du− h(t,q,u) dt = WN dPN

(5.20)

together with dPN = λNdt+ΛNdη and the contact laws

−λi
N ∈

{
NR+

0
(γi

N ) if giN = 0

0 if giN > 0 ,
− Λi

N ∈
{
NR+

0
(ξi) if giN = 0

0 if giN > 0
(5.21)

with the kinematic variable ξi = γi+
N + εiγ

i−
N . Since all positions q are continuously

measured, this measurement can be used as an argument to all functions depending
on q in the state observer.

Moreover, if the measurements are accurate enough to directly serve as a position
estimate (for example, if the measurements are affected by only a low noise level) it
is sufficient to only estimate the unknown velocities u. This can be achieved by using
a reduced-order velocity observer 2of the form

M(q) dz− ĥ(t,q, û) dt+M(q)Lû dt = WN dP̂N ,

û = z+ Lq ,
(5.22)

with the observer state z, together with dP̂N = λ̂Ndt+ Λ̂Ndη and the contact laws

−λ̂i
N ∈

{
NR+

0
(γ̂i

N ) if giN (q) = 0

0 if giN (q) > 0 ,
− Λ̂i

N ∈
{
NR+

0
(ξ̂i) if giN (q) = 0

0 if giN (q) > 0
(5.23)

with the kinematic variable ξ̂i = γ̂i+
N + εiγ̂

i−
N . Note that ĥ can differ from h, giving

more flexibility in the design process. However, if h(t,q,u) is globally Lipschitz
continuous in u, it is sufficient to take ĥ(t,q,u) = h(t,q,u) [98].

2The order is reduced in the sense that the state of the observer is lower dimensional than the state of
the observed system. The structure (5.22) can be seen as a generalization of reduced-order observers for
linear system (which are treated for example in [83]).
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In order to better understand the structure of (5.22), note that the second equation
in (5.22) implies that dû = dz+ Ldq. Together with the first equation in (5.20) it
follows dû = dz+ Ldq = dz+ Ludt, such that the first equation in (5.22) can be
re-written as

M(q)dû− ĥ(t,q, û)dt−M(q)L(u− û)dt = WNdP̂N . (5.24)

The reformulation (5.24) reveals that the observer dynamics contains a Luenberger-
type correction term L(u − û). However, since the velocities u are not directly
measured, the observer structure (5.22) is more useful.

Attractive stability of the estimation error dynamics can be shown by using a
quadratic Lyapunov function V = ũTM(q)ũ, under additional assumptions on
the nonlinear terms h, ĥ as well as M(q) (refer to [98] for a detailed listing of all
assumptions). Similar to Section 5.1, the maximal monotonicity of the contact laws is
crucial for attractive stability.

The main drawback of the observer (5.22) in practical implementations is that
crucial information is lost by discretely sampling the measurement signal. If the
positions are only known at discrete points in time, impacts are easily missed if an
impact occurs between two sampling time instants. More comments on this problem
will be made in Chapter 7.

Remark 5.3. Similar to Remark 5.1, using the measured positions y = q in the force
laws (5.23) of the state observer can be interpreted as a Luenberger-type correction
term inside the nonlinearity. With the predicted output ŷ = q̂, it holds that

giN (q) = giN (q̂+ (q− q̂)) = giN (q̂+ Li(y − ŷ)), (5.25)

which contains a correction term with a constant gain Li = I, which cannot be tuned.
However, in view of observers for unknown impact time instants, letting this gain be
tunable is a possible staring point.

Remark 5.4. Similar to Section 5.1, the reduced order observer (5.22), (5.23) can
be extended to include non-opening contacts with Coulomb friction and constant
normal forces. This is also true for the full state observer discussed in the following
and will be used in the experiments in Chapter 7.

Full state observers (Tanwani et al. [98])

Similar to the velocity observer above, a full state observer can be built for the system
(5.20), (5.20), that makes use of a correction term based on the velocity estimation
error, while only the positions are measured. Its working principle is similar to the
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velocity observer above, which is why it is only shortly stated here. The observer
takes the form

dz1 = z2 dt+ La(q− z1)dt,

M(q) dz2 − ĥ(t,q, û) dt− Lb(q− z1) dt = WN dP̂N ,
(5.26)

with the observer state z = (zT1 zT2 )
T, together with the force laws (5.23) and the

state estimates
q̂ = z1,

û = z2 + L(q− q̂).
(5.27)

Furthermore, the gains are defined through La = LI+ L1 and Lb = L2 +MLL1,
where L > 0, L1 = LT

1 ≻ 0 and L2 = LT
2 ≻ 0. The meaning of this structure

becomes more clear after a reformulation, which is found as

dq̂ = ûdt+ L1(q− q̂) dt,

M(q)dû− ĥ(t,q, û)dt− L2(q− q̂)dt−M(q)L(u− û)dt = WNdP̂N .
(5.28)

The reformulation (5.28) shows that the observer contains two Luenberger-type
correction terms, depending on the position and velocity errors. As for the velocity
observer, the formulation (5.26), (5.27) is more useful if only the positions are
measured.

5.3 Monotonicity, passivity and linear matrix inequalities

The state observer designs in Section 5.1 and Section 5.2 have been obtained by first
selecting a specific dynamics for the observer and then showing attractive stability
using Lyapunov-type stability theorems (as in Chapter 4). A system property that
is closely related to Lyapunov stability and for linear systems allows to conclude
stability based on linear matrix inequalities, is passivity. In the following, some basic
relations are discussed for linear systems, which allow for a passivity interpretation
of the previous observers and which will also be used in a discrete (and extended)
form in Chapter 6.

Definition 5.5 ([25]). A linear time-invariant system of the form

ẋ = Ax+ Bw,

z = Cx,
(5.29)

with the state x ∈ Rn, an input w ∈ Rp and an output z ∈ Rp, is said to be passive
if there exists a non-negative function V : Rn → R (called the storage function) with
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V (0) = 0 such that

V (x+(t))− V (x−(t0)) ≤
∫ t

t0

1

2
z(τ)Tw(τ) dτ (5.30)

∀w and ∀ t ≥ t0. It is moreover called strictly passive if

V (x+(t))− V (x−(t0)) ≤
∫ t

t0

1

2
z(τ)Tw(τ) dτ −

∫ t

t0

S(x(τ)) dτ (5.31)

∀w and ∀ t ≥ t0, with a positive definite function S : Rn → R (which ensures that
the inequality (5.30) holds strictly, unless x(τ) = 0∀ τ ∈ [t0, t]).

The idea behind this definition is that if V is the internal energy, a passive system
does not produce energy during its motion. The change in the internal energy is
always lower or equal to the supplied energy, here given by the right hand side
of (5.30).

Clearly, if the relation between the input and the output is such that zTw ≤ 0∀ t,
then the storage function V serves as a Lyapunov function for a stability proof. This
is especially useful when analyzing an error dynamics such as

˙̃x = Ax̃+ Bw̃,

z̃ = Cx̃,
(5.32)

with an error x̃ = x− x̂, input difference w̃ = w− ŵ and output difference z̃ = z− ẑ.
Then, if the inputs are defined by a given monotone mapping H : Rp → Rp through
−w ∈ H(z) and −ŵ ∈ H(ẑ), the inequality z̃Tw̃ = (z− ẑ)T(w − ŵ) ≤ 0 directly
follows from the monotonicity property of H.

Passivity, being a system property, can conveniently be checked using the following
theorem, in which the notation M ⪰ 0 and M ≻ 0 is used to express that a matrix
M is positive semidefinite and positive definite, respectively. Likewise, M ⪯ 0 and
M ≺ 0 express negative semidefiniteness and negative definiteness of M.

Theorem 5.6 ([24]). System (5.32) is passive if and only if there exists a matrix
P = PT ⪰ 0 such that the following matrix conditions hold

ATP+ PA ⪯ 0, (5.33a)

PB− CT = 0. (5.33b)

In that case V = 1
2
xTPx is a storage function. Moreover, system (5.32) is strictly

passive if and only if the inequality (5.33a) holds strictly, i.e. there exists a matrix
Q ≻ 0 such that

ATP+ PA = −Q (5.34)
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Proof. Here, only the sufficiency part is shown, which is easily checked by calculation
of V̇ . The time derivative of V = 1

2
xTPx is

V̇ = xTPẋ =
1

2
xT(ATP+ PA)x+ xTPBw. (5.35)

Therefore, with the conditions (5.33) it follows

V̇ ≤ xTPBw = xTCTw = zTw, (5.36)

which is equivalent to (5.30). Similarly, if (5.33a) and (5.34) hold, we have

V̇ = −xTQx+ xTPBw = xTCTw − xTQx = zTw − xTQx, (5.37)

from which it follows that (5.31) holds. The necessity part can be found in [24] (see p.
85).

Theorem 5.6 is a useful tool in many design processes that involve stability. It
therefore leads to the question, if similar results hold for non-smooth systems. However,
it is not straightforward how to define passivity for such systems in the first place.
The following definition, being proposed here for systems that are linear during
non-impulsive motion, is motivated by energy considerations.

Definition 5.7. A time-invariant system of the form

dx = (Ax) dt+ Bdω,

z = Cx,
(5.38)

with the state x ∈ Rn, an input dω = wdt +Wdη ∈ Rp and an output z ∈ Rp, is
said to be passive if there exists a non-negative function V : Rn → R (called the
storage function) with V (0) = 0 such that

V (x+(t))− V (x−(t0)) ≤
∫
[t0,t]

1

2
(z+ + z−)Tdω (5.39)

for all dω and for all t ≥ t0. It is moreover called strictly passive if

V (x+(t))− V (x−(t0)) ≤
∫
[t0,t]

1

2
(z+ + z−)Tdω −

∫
[t0,t]

S(x(τ)) dτ (5.40)

for all dω and for all t ≥ t0, with a positive definite function S : Rn → R the
inequality (5.39) holds strictly, unless x(τ) = 0∀ τ ∈ [t0, t].
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Note that during non-impulsive motion, z+ = z− = z, such that the inequality
(5.39) is identical to (5.30). With Definition 5.7, the following can be stated.

Proposition 5.8. System (5.38) is passive if and only if there exists a matrix
P = PT ⪰ 0 such that the conditions (5.33) from Theorem 5.6 hold. In that case
V = 1

2
xTPx is a storage function. Moreover, system (5.38) is strictly passive if and

only if in addition (5.34) holds.

Proof. First, consider a time interval with non-impulsive motion. During that time
interval the dynamics (5.38) is equivalent to the linear system (5.29) and the inequal-
ities (5.39), (5.40) are equivalent to (5.30) and (5.31). Therefore, it follows from
Theorem 5.6 that the conditions (5.33) are necessary for passivity and, in addition,
(5.34) is necessary for strict passivity. Moreover (5.33) is sufficient for passivity during
non-impulsive motion, and V = 1

2
xTPx is a storage function. Furthermore, (5.34) is

sufficient for strict passivity. What is left to show, is that (5.39) holds during impulsive
motion, which follows from calculating

V (x+)− V (x−) =
1

2
(x+ + x−)TP(x+ − x−)

=
1

2
(x+ + x−)TPBW

=
1

2
(z+ + z−)TW,

(5.41)

where the impulsive dynamics x− − x− = BW and conditions (5.33) have been
used.
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6
Discrete state observer with unknown

impact time instants

In this chapter, the state observer problem is investigated for mechanical systems
with impulsive motion, i.e. systems with state jumps caused by unilateral constraints,
without explicitly measuring the impact time instants. It is an important aspect for
the state observer design for systems with state jumps whether or not the time instants
at which the state jumps occur are known. As discussed in Chapter 5, most proposed
observers assume that these impact time instants can directly be extracted from
measurements, for example by measuring all relevant positions in a system [74,75,98]
or by directly measuring the presence of contact through contact or tactile sensors [11].
This allows for the design of a state observer that exhibits state jumps at the exact
same time instants as the observed system. By exploiting the assumption of maximal
monotonicity of the impact law, it is then possible to construct a Lyapunov function
for the estimation error dynamics (i.e. the time evolution of the difference between
the estimated state and the actual state) which does not increase over impacts. Simply
put, the observer problem then reduces to stabilizing the error dynamics for the
non-impulsive motion (restricted to the constructed Lyapunov function).

Only few attempts have been made to design state observers in the case of unknown
impact time instants. The main difficulty for observer design with unknown impact
time instants is that the state jumps of the observed system and the state observer do
not coincide [62,76]. This results in the peaking phenomenon: even if the observer
state nearly matches the real state, a slight mismatch in the impact time instants leads
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to a temporarily large Euclidean velocity error caused by velocity jumps [17,19,68,94].
The peaking phenomenon makes it difficult to show the asymptotic stability of the
error dynamics based on Lyapunov’s direct method. One approach for such systems
is to find a state transformation that transforms the original system into a new system
without state jumps (as discussed in Chapter 3), for which conventional state observer
techniques can be applied [62,76]. However, such a transformation does not always
exist and is in general difficult to find. Another approach is to introduce a distance
metric that gives a distance between two states (such as from the observed system and
a state observer), but does not change its value over state jumps [17]. Such a distance
metric that is ‘blind’ to state jumps can be used together with suitable stability notions
(see e.g. [18] for definitions of incremental stability for hybrid systems) to find a
corresponding Lyapunov function. These approaches have been shown to be useful
to solve the tracking problem [19] or for controlled synchronization [9], where all
states are known. However, they do not imply a suitable state observer design and
calculations can be cumbersome.
The starting point for a new approach is to recognize two main hurdles which are
inherent to the problem of observer design for unilaterally constrained mechanical
systems. The first problem is the simple fact that jumps in the state, occurring
in a continuous-time system, generally form a hurdle for Lyapunov-type analysis
and thereby for observer design. The second problem is related to the impact law
describing the velocity jump in unilaterally constrained systems. As discussed in
Chapter 3, instantaneous impact laws such as Newton’s or Poisson’s impact law [43,44]
are formulated on velocity level, i.e. they directly relate post-impact relative velocities
to pre-impact relative velocities. The generalized versions of these impact laws
distinguish between superfluous unilateral constraints which, although closed, do not
participate in the impact process, and actively participating unilateral constraints.
The combined active-inactive behavior of generalized impact laws on velocity level
is conveniently expressed through set-valued functions, e.g. normal cone inclusions,
which enjoy the favorable property of maximal monotonicity (being related to, but
in some sense more strong than, dissipativity of the impact law [102]). Maximal
monotonicity of force laws or impact laws leads to contraction properties, which
in essence are favorable for tracking or observer design. However, and her lies
the problem, the generalized impact laws are only to be applied to closed unilateral
constraints (i.e. when contact is present). Instantaneous impact laws for multibody
systems are therefore formulated on position-switched velocity level. The switching on
position level (from closed to open and vice versa) destroys the favorable properties of
these impact laws, making the observer design of unilaterally constrained mechanical
systems an incredibly difficult task. These two key problems, state jumps and loss
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of maximal monotonicity of the impact law, explain why the observer design of this
class of systems stands as a major problem.
In the following, a new approach is investigated, with the goal of circumventing the
main difficulties. First, instead of analyzing the continuous-time problem with state
jumps, a numerical scheme is used to transform the system to a discrete-time system,
approximating the former depending on the chosen time step. The time discretization
sidesteps the problem of state jumps as a discrete system only describes state updates
over time steps. Moreover, a practical implementation of an observer on digital
hardware requires the transformation to discrete-time. As discussed in Chapter 3, the
time-stepping scheme of Moreau [79] (see also [1, 68]) is perhaps the most celebrated
(velocity-impulse-based) scheme within the Nonsmooth Dynamics community as it
can be applied to the simulation of systems with multiple unilateral constraints with
Coulomb friction. Recall that the Moreau scheme directly discretizes the equality of
measures, which describes the system dynamics, and a combined contact-impact law
on position-switched velocity level. Regarding the second key problem, it is favorable
to make use of the Paoli-Schatzman scheme, which involves an impact law directly
formulated on position level, instead of on position-switched velocity level. Thereby
the problem of switching of the impact law on position level is circumvented, giving
access to the maximal monotonicity property and its related contraction property.
The aim of this chapter is to investigate if this approach is useful to solve the observer
design problem of unilaterally constrained mechanical systems without measuring
impact time instants. It is based on the results in [89, 90] of the author.
A related area of research is the design of observers within the switched systems
framework, i.e. for systems whose dynamics are described by a set of subsystems and
a switching law describing how to switch between them. The switching can depend on
the value of an external switching signal, in which case a distinction is made between
known and unknown switching signals (with unknown switching signals making the
design of observers more difficult). To name just a few examples, in [2, 103] systems
with an external switching system are investigated. In other cases the switching is
state dependent [57, 99]. Even though these publications are not concerned with
impulsive motion (i.e. with state jumps), they are related to the approach taken here.
More precisely, a discrete-time system will be used, which can be recast as a piecewise
affine system where the switching is state and input dependent.

The outline of this chapter is as follows. In Section 6.1 the continuous-time observer
problem is formulated for a specific system class. Based on the Paoli-Schatzman
scheme, a suitable time discretization is then derived in Section 6.2. Subsequently,
a deadbeat observer for the discrete observer problem is presented in Section 6.3.
Furthermore, a passivity-based observer design for linear complementarity systems is
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transported to the discrete-time setting in Section 6.4. Finally, numerical results for
an impact oscillator system are given in Section 6.5. The usefulness of the presented
approach is discussed in Section 6.6.

6.1 Continuous-time state observer problem

Here, linear mechanical systems with unilateral constraints of the form

dq = udt,

Mdu+ (Kq+Du− f(t))dt = WdP
(6.1)

are considered (similar to Section 5.1, but without considering friction). For the
sake of simplicity, it is assumed that the mass matrix M, the stiffness matrix K and
the damping matrix D are constant. Furthermore, the unilateral constraints are
described by linear inequality conditions g(q) = WTq ≥ 0 and the generalized force
directions, given by the columns of W = (∂g/∂q)T, are assumed to be constant and
linearly independent (W has full rank). Note that since all contacts are assumed to
be frictionless, the indices referring to the normal direction are omitted for easier
readability, e.g. it is written dP instead of dPN . The system is subjected to a bounded,
time-dependent external forcing f(t). As before, the differential contact effort measure
is dP = λdt+Λdη and for the components of the constraint forces λ the formulation
(3.39) on position-switched velocity level is used. With γ = WTu it can be expressed
component-wise as

gi(q) = 0 : 0 ≤ γi ⊥ λi ≥ 0 , gi(q) > 0 : λi = 0. (6.2)

In addition, the generalized Newtonian impact law (3.50) is used, which is written
component-wise as

gi(q) = 0 : 0 ≤ ξi ⊥ Λi ≥ 0 , gi(q) > 0 : Λi = 0, (6.3)

with the kinematic variable ξi := γ+
i + εγ−

i . For the sake of simplification, a global
coefficient of restitution ε ∈ [0, 1] is assumed, although this is not essential.

6.2 Discrete-time state observer problem

In the following an approach is pursued, where first the dynamics is discretized and
then a state observer for the discrete (and therefore approximate) system is designed.
The main goal of this approach is to alleviate the problem of state jumps in the
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observer design.
For system (6.1) the Paoli-Schatzman discretization scheme can be written as

qk+1 = qk +∆tuk+1,

M(uk+1 − uk) + (Kqk +Duk − fk)∆t = WPk,
(6.4)

together with the discrete law

ζk := gk+1 + εgk−1,

0 ≤ ζk ⊥ Pk ≥ 0,
(6.5)

where ∆t is the (constant) time step size and an index k refers to the corresponding
variable being evaluated (or approximated) at t = tk := k∆t, e.g. qk := q(tk). The
above discretization has the form of a semi-implicit Euler scheme, directly applied
to the MDI (6.1). Likewise the discrete contact distance is gk = WTqk and the
corresponding discrete contact velocity is γk = WTuk.

Recall that what makes the Paoli-Schatzman scheme special is the fact that the
discrete impact law (6.5), i.e. 0 ≤ gk+1 + εgk−1 ⊥ Pk ≥ 0, is formulated on
position level, thereby circumventing the calculation of an index set. As discussed in
Section 3.4, the somewhat heuristic impact law contains Newton’s impact law in a
discretized sense. Velocity jumps that occur instantaneously in continuous time take
place over an interval of two time steps in the discretization, which can be seen as a
regularization.

In the following, the state space representation of the discretized system (6.4),
(6.5) is derived, with the discrete state xk :=

(
qT
k uT

k

)T. Recall that variables and
matrices related to the state space description are written without serifs, whereas in
the original description of the mechanical system serifs were used (therefore, variables
denoted by the same letter, are assigned a different meaning depending on whether
they are written with or without serifs). Rewriting the stepping equations (6.4) in
matrix form yields(

I −∆tI

0 M

)
xk+1 =

(
I 0

−∆tK M−∆tD

)
xk +

(
0

W

)
Pk +

(
0

∆tI

)
fk. (6.6)

Therein, I and 0 denote an identity matrix and a zero matrix of appropriate dimen-
sions. The matrix on the left hand side can be inverted, which leads to an update
rule for the state

xk+1 =

(
I ∆tM−1

0 M−1

)[(
I 0

−∆tK M−∆tD

)
xk +

(
0

W

)
Pk +

(
0

∆tI

)
fk

]
.

(6.7)
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Finally, after simple matrix multiplications, the discrete dynamics can be written as

xk+1 = Axk + BPk + Efk, (6.8)

with the corresponding system matrix A, given by

A =

(
I−∆t2M−1K ∆t(I−∆tM−1D)

−∆tM−1K I−∆tM−1D

)
, (6.9)

and the matrices B and E

B =

(
∆tM−1W

M−1W

)
, E =

(
∆t2M−1

∆tM−1

)
. (6.10)

To complete the state space description, the discrete impact law (6.5) has to be
expressed in the state variables. This is achieved by using the contact distance
gk = WTqk and substitution of the first equation of (6.4) in (6.5):

ζk = WT(qk+1 + εqk−1) = WT(qk+1 + ε(qk −∆tuk))

=
(
WT 0

)
xk+1 + ε

(
WT −∆tWT

)
xk

=
(
WT 0

)
[Axk + BPk + Efk] + ε

(
WT −∆tWT

)
xk

= Cxk +DPk + Ffk,

(6.11)

with the matrix C defined by

C =

(
[(1 + ε)I−∆t2M−1K]TW

∆t[(1− ε)I−∆tM−1D]TW

)T

, (6.12)

and the matrices D and F given by

D = ∆tWTM−1W , F = ∆t2WTM−1. (6.13)

The matrix D above is recognized to be a scaled version of the so-called Delassus
matrix WTM−1W [22], which is symmetric and positive definite as W is assumed
to have full column rank. Summarizing the discrete system dynamics (6.8), (6.11) and
(6.5) and introducing an output equation yk = Gxk (i.e. the available measurements)
results in

xk+1 = Axk + BPk + Efk, (6.14a)

ζk = Cxk +DPk + Ffk, (6.14b)

0 ≤ ζk ⊥ Pk ≥ 0, (6.14c)

yk = Gxk, (6.14d)
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which is a discrete linear complementarity system (LCS) [50, 53]. For a given
state xk and excitation fk, the equations (6.14b) and (6.14c) form together a linear
complementarity problem (LCP) [33, 80], which has to be solved for ζk and Pk in
each time step.

Remark 6.1. As noted in [85], the time-stepping scheme of Paoli-Schatzman admits
a unique solution if the set A := {q ∈ Rf | g(q) ≥ 0} of admissible positions is
convex. Here, the inequality constraints are restricted to linear constraints of the
form g(q) = WTq. It is therefore straightforward to verify that A is always convex
in this setting. Also, the LCP (6.14b), (6.14c) has a unique solution if all principal
minors of the matrix D are strictly positive (i.e. it is a so-called P -matrix, see for
example [33]), which is fulfilled since D is symmetric and positive definite.

6.3 A discrete-time deadbeat observer

A state observer that is able to reconstruct the exact state in finite time is commonly
called a deadbeat observer. One way to obtain such a deadbeat observer is to simply
calculate the state from a collection of known system outputs. Clearly, this method
requires exact output measurements and a perfectly accurate model. For discrete
linear time invariant systems, one way to calculate the initial state is to propagate the
discrete dynamics over n−1 steps and to relate it to the measured output in each step.
This results in a system of linear equations that can be solved for the initial condition.
In the following, it will be shown that for discrete LCS, it is possible to reconstruct the
current state from a number of outputs, by solving a linear complementarity problem.
Sufficient conditions guaranteeing the existence of a unique solution to this LCP then
serve as an observability condition. Unsurprisingly, one of these conditions is that
the unconstrained motion (which is described by a linear system) is observable. In
order to use a more standard notation, consider discrete LCS of the form

xk+1 = Axk + Bwk + Evk,

zk = Cxk +Dwk + Fvk,

0 ≤ zk ⊥ wk ≥ 0,

yk = Gxk,

(6.15)

with the state xk, some external input vk, the output yk and the complementary
variables zk and wk, which play the role of the kinematic variable ζk and the discrete
percussion Pk in (6.14). For the sake of simplicity, the treatment is restricted for the
moment to the case without external inputs, i.e. vk = 0∀ k. However, all subsequent
steps can straightforwardly be extended to include inputs, as will be discussed in
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Remark 6.3 below. The first step is to connect the outputs to the initial condition by
successively calculating the outputs using (6.15), which results in


y0
y1
...
yk

 =


G

GA
...

GAk

 x0 +


0 0 0 . . . 0

GB 0 0 . . . 0

GAB GB 0 . . . 0
...

...
GAk−1B GAk−2B . . . GB 0




w0

w1

...
wk

 . (6.16)

For a more compact notation, it is convenient to summarize (6.16) with
Yk :=

(
yT0 . . . yTk

)T and Wk :=
(
wT

0 . . .wT
k

)T in

Yk = Okx0 +MkWk, (6.17)

where Ok and Mk represent the matrices in square brackets in (6.16). In a similar
fashion, the corresponding sequence


z0
z1
...
zk

 =


C

CA
...

CAk

 x0 +


D 0 0 . . . 0

CB D 0 . . . 0

CAB CB D . . . 0
...

CAk−1B CAk−2B . . . CB D




w0

w1

...
wk

 , (6.18)

is summarized with Zk =
(
zT0 . . . zTk

)T in the compact form

Zk = Okx0 +MkWk. (6.19)

Note that matrices with a similar structure are denoted by the same letter, but
distinguished by overlines. Since zi and wi satisfy the inequality complementarity
0 ≤ zi ⊥ wi ≥ 0 for all i, it directly follows that

0 ≤ Zk ⊥ Wk ≥ 0. (6.20)

Finally, after propagating the first equation in (6.15) over k time steps with vk = 0∀ k,
xk can be expressed as

xk = Akx0 +
[
Ak−1B Ak−2B . . . B 0

]
Wk =: Akx0 +QkWk. (6.21)

Now let k = n− 1 with the number of states n. For a better readability, all indices are
omitted if they equal n− 1. Then, the equations (6.17), (6.19) and (6.20) with known
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outputs Y := Yn−1 and the unknown initial state x0 and contact efforts W := Wn−1

are
Y = Ox0 +MW,

Z = Ox0 +MW,

0 ≤ Z ⊥ W ≥ 0,

(6.22)

and form a mixed linear complementarity problem (MLCP) [46]. Therein, the
matrices O,M,O and M are given by the system properties. The goal is to calculate
the initial state x0 and complementarity variables W for given outputs Y. It is worth
mentioning that the MLCP (6.22) does have a solution, because it is generated by
(6.14), which does admit a solution. The matrix O is the well known observability
matrix for the non-impulsive motion. Therefore, if the system is observable in the
absence of impacts, O has full column rank and the first equation of (6.22) can
uniquely be solved for

x0 = O† [Y −MW] , (6.23)

with the left inverse O† (which is equal to the inverse O−1 if O is square). By
inserting (6.23) in the remaining equations of the MLCP one arrives at

Z =
[
M−OO†M

]
W +OO†Y,

0 ≤ Z ⊥ W ≥ 0,
(6.24)

being a linear complementarity problem (LCP) [80]. This LCP (and with it the
MLCP) is guaranteed to have a unique solution if all principal minors of the matrix[
M−OO†M

]
are strictly positive [80], which can not easily be checked in this

general form. However, it has to be checked for a specific system at hand and serves,
together with the rank condition for O, as a sufficient observability condition. Once
W is known from the LCP solution, the current state can be calculated with (6.23)
and (6.21), i.e.

xn−1 = An−1O†Y + [Q− An−1O†M]W, (6.25)

where Q := Qn−1.

Remark 6.2. In order to obtain a state estimate at every time step k one applies
(6.24),(6.25) to a moving time window with a length of n time steps, i.e.

xk = An−1O†Yk,n−1 + [Q− An−1O†M]Wk,n−1. (6.26)

where Yk,n−1 :=
(
yTk−n+1 . . . y

T
k

)T and Wk,n−1 :=
(
wT

k−n+1 . . .w
T
k

)T.
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Remark 6.3. It is easy to verify that if inputs are taken into consideration, the moving
window deadbeat observer reads

xk = An−1O†Yk,n−1 + [Q− AkO†M]Wk,n−1 + [R− AkO†N]Vk,n−1,

Zk,n−1 =
[
M−OO†M

]
Wk,n−1 +OO†Yk,n−1 +

[
N−OO†N

]
Vk,n−1,

0 ≤ Zk,n−1 ⊥ Wk,n−1 ≥ 0,
(6.27)

where Vk,n−1 :=
(
vTk−n+1 . . . v

T
k

)T are the collected inputs. Furthermore, the matrix

R :=
[
Ak−1E Ak−2E . . . E 0

]
has been introduced, and the two remaining

matrices are

N :=


0 0 0 . . . 0

GE 0 0 . . . 0

GAE GE 0 . . . 0
...

...
GAk−1E GAk−2E . . . GE 0

 ,

N :=


F 0 0 . . . 0

CE F 0 . . . 0

CAE CE F . . . 0
...

...
CAk−1E CAk−2E . . . CE F

 .

(6.28)

6.4 Passivity-based observers for discrete LCS

The deadbeat approach presented in the last section suffers from one main drawback:
the state estimate is highly sensitive on measurement and model errors. One reason
is that the observability matrix O is often ill-conditioned and, therefore, taking
the (left) inverse, strongly amplifies measurement noise. Therefore an asymptotic
state observer is much more desirable in practical applications. For continuous-time
linear complementarity systems, Heemels et al. [51] suggest a Luenberger-type state
observer, where the observer gains are determined based on a linear matrix inequality
related to system passivity. The equivalent procedure is presented here for discrete
linear complementarity systems. In analogy to Section 5.3, passivity for discrete-time
systems is defined as follows (see also [26]).
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Definition 6.4. A linear time-invariant discrete-time system

xk+1 = Axk + Bwk,

yk = Cxk +Dwk,
(6.29)

written in short as system (A,B,C,D), is said to be passive if there exists a non-
negative function V : Rn → R+

0 (called the storage function) with V (0) = 0 such
that

V (xk+1)− V (xk) ≤ yTkwk (6.30)

for all wk and ∀ k. Furthermore, it is called strictly passive if there exists a positive
definite function S : Rn → R such that

V (xk+1)− V (xk) ≤ yTkwk − S(xk) (6.31)

for all wk and for all k.

As in the continuous-time case, linear matrix inequalities serve as necessary and
sufficient conditions for passivity that can be checked numerically. A well-known
result, adapted from [24] to discrete-time systems, is the following.

Theorem 6.5. System (6.29) is passive if and only if there exists a matrix P = PT ⪰ 0

such that the following matrix inequality holds(
ATPA− P ATPB− CT

BTPA− C BTPB− (D+DT)

)
⪯ 0. (6.32)

Proof. The proof is a direct adaptation of the continuous-time counterpart found
in [24].

For the slightly stronger property of strict passivity the following holds.

Proposition 6.6. System (6.29) is strictly passive if there exists a matrix P = PT > 0

and a constant µ > 0 such that the matrix inequality(
ATPA− P+ µP ATPB− CT

BTPA− C BTPB− (D+DT)

)
⪯ 0 (6.33)

holds.

Proof. The proof is a slight modification of the sufficiency part in 6.5, and a direct
adaptation of the continuous-time counterpart found in [24].

77



Chapter 6. Discrete state observer with unknown impact time instants

Note that proof of the converse statement in Proposition 6.6 has been given in [72]
for continuous-time systems.

Now consider a general discrete LCS (not necessarily the discretization of the
dynamics of a mechanical system) of the form (6.15). The proposed Luenberger-type
state observer for the discrete LCS (6.15) is in analogy to [51]

x̂k+1 = Ax̂k + Bŵk + Evk + L1(yk − ŷk),

ẑk = Cx̂k +Dŵk + Fvk + L2(yk − ŷk),

0 ≤ ẑk ⊥ ŵk ≥ 0,

ŷk = Gx̂k,

(6.34)

where all observer related quantities are written with a circumflex (ˆ). The observer
consists of a copy of the original system, augmented by two correction terms, both
linear in the output difference. Defining the observation errors as x̃k := xk − x̂k,
z̃k := zk − ẑk and w̃k := wk − ŵk, it follows that

x̃k+1 = (A− L1G)x̃k + Bw̃k,

z̃k = (C− L2G)x̃k +Dw̃k,

z̃Tkw̃k ≤ 0.

(6.35)

The last relation in (6.35) is easily checked by expanding

z̃Tkw̃k = (zk − ẑk)
T(wk − ŵk) = zTkwk − zTkŵk − ẑTkwk + ẑTkŵk. (6.36)

Therein, the first and the last term vanish and the two other terms are non-positive
due to the inequality complementarities in (6.15) and (6.34). Note that the inequality
z̃Tkw̃k ≤ 0 represents the monotonicity property of the discrete impact law for mechan-
ical systems. It is, however, not an inequality complementarity. The equations (6.35)
do therefore not form a full description of the error dynamics, because w̃k cannot
be expressed as a function of the estimation error x̃k. Instead, the last three lines of
(6.15) and (6.34) have to be used. As a consequence, w̃k depends on xk, x̂k and vk,
where x̂k can be replaced by xk− x̃k (or the other way around). As pointed out in [51]
for the continuous-time case, the error dynamics is therefore non-autonomous and
has two states, x̃k and xk (or alternatively x̃k and x̂k). However, only the estimation
error x̃k has to tend to zero as k increases. From the inequality in (6.35), it follows
that if system (A− L1G,B,C− L2G,D) is strictly passive, the corresponding storage
function serves as a Lyapunov function to show asymptotic stability of the estimation
error. Indeed, by selecting a quadratic Lyapunov function candidate V (x̃k) = x̃TkPx̃k
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with P = PT > 0, it follows

V (x̃k+1)− V (x̃k) = x̃Tk+1Px̃k+1 − x̃TkPx̃k

= (x̃k+1 + x̃k)
TP(x̃k+1 − x̃k)

= ((A− L1G)x̃k + Bw̃k + x̃k)
TP((A− L1G)x̃k + Bw̃k − x̃k),

(6.37)
which, after first subtracting and then again adding the term 2z̃Tkw̃k, can be written
as

V (x̃k+1)− V (x̃k) =

(
x̃k
w̃k

)T
H

(
x̃k
w̃k

)
+ 2z̃Tkw̃k, (6.38)

where the matrix H is given by

H =

(
(A− L1G)TP(A− L1G)− P (A− L1G)TPB− (C− L2G)T

BTP(A− L1G)− (C− L2G) BTPB− (D+DT)

)
. (6.39)

Because z̃Tkw̃k ≤ 0, it follows that if the system (A− L1G,B,C− L2G,D) is passive,
it holds that H ⪯ 0 and therefore V (x̃k+1) − V (x̃k) ≤ 0. More strongly, it holds
that V (x̃k+1)− V (x̃k) ≤ −µV (x̃k) if the system (A− L1G,B,C− L2G,D) is strictly
passive. In that case the non-autonomous estimation error dynamics is exponentially
stable. The matrix inequality(

(A− L1G)TP(A− L1G)− P+ µP (A− L1G)TPB− (C− L2G)T

BTP(A− L1G)− (C− L2G) BTPB− (D+DT)

)
⪯ 0,

(6.40)
that that needs to be fulfilled in order to ensure strict passivity, is nonlinear in the
unknowns L1,L2 and P. However, by introducing S := PL1 and applying the Schur
complement lemma (see Proposition B.2), it can be checked that (6.40) is equivalent
to the linear matrix inequality (LMI) −P+ µP −(C− L2G)T ATP− GTST

−(C− L2G) −(D+DT) BTP

PA− SG PB −P

 ⪯ 0. (6.41)

Since P is invertible, L1 can be recovered in a second step as L1 = P−1S. The
transformation from the nonlinear matrix inequality (6.40) to the LMI (6.41) is
very useful, since efficient numerical LMI solvers are available. Note, however, that
imposing additional constraints on the solutions of (6.41) could lead again to a
nonlinear matrix inequality.
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An extended version for position measurements

For a mechanical system, zk represents the kinematic variable ζk = gk+1 + εgk−1 in
(6.5). Therefore zk, and with it z̃k, depend on one past value gk−1 of the contact
distance and one future value gk+1. It therefore makes sense to extended the observer
(6.34) to include past and future measurements at tk−1 and tk+1, respectively. This
can be achieved by adding more correction terms, summarized in

x̂k+1 = Ax̂k + Bŵk + Evk + L1(yk − ŷ
(−)

k ),

ẑk = Cx̂k +Dŵk + Fvk + L2(yk − ŷ
(−)

k ),

ŷk = Gx̂k,

(6.42)

where yk and ŷk are extended outputs and G is the corresponding extended output
matrix according to

yk =

 yk
yk+1

yk−1

 , ŷ
(−)

k =

 ŷk
ŷ(−)
k+1

ŷ(−)
k−1

 , G =

 G

GA

GÃ

 . (6.43)

Therein, ŷ(−)
k+1 := G(Ax̂k + Bŵk + Evk) is the predicted future output without

considering the correction terms. Similarly, y(−)
k−1 refers to the past output, obtained

by back-propagation without considering correction terms. As it was done in (6.11),
positions can be back-propagated with the kinematic equation qk−1 = qk −∆tuk.
Here, we restrict ourselves to the case where the output yk depends only on positions
qk. The reason for this is that obtaining past velocities uk−1 by back-propagation
would involve past values wk−1 and vk−1, such that the estimation error dynamics
would become structurally different from (6.35). Furthermore, in cases where A

is not invertible, the back-propagation might not have a (unique) solution. Past
outputs are written as yk−1 = Gxk−1 = GÃxk with the back-propagation matrix
Ã := [(I − ∆tI)T (0 0)T]T, where I is a unit matrix of appropriate dimensions.
With x̃k = xk − x̂k the error dynamics can be written as

x̃k+1 = (A− L1G)x̃k + Bw̃k,

z̃k = (C− L2G)x̃k +Dw̃k,

z̃Tkw̃k ≤ 0.

(6.44)

Therein, with L1 = (L1 L3 L5) and L2 = (L2 L4 L6), the matrices are defined as
B = B− L3GB and D = D− L4GB. Clearly (6.44) is of the same form as (6.35) but
with more design variables. Therefore, the same steps as in (6.37) to (6.41) lead to
an LMI.
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Remark 6.7. The observer dynamics (6.42) can alternatively be written as

x̂k+1 = (A− L1G− L3GA− L5GÃ)x̂k + (B− L3GB)ŵk + (E− L3GE)vk

+ L1yk + L3yk+1 + L5yk−1,

ẑk = (C− L2G− L4GA− L6GÃ)x̂k + (D− L4GB)ŵk + (F− L4GE)vk

+ L2yk + L4yk+1 + L6yk−1,

0 ≤ ẑk ⊥ ŵk ≥ 0.

(6.45)

To ensure the existence of a unique solution, the observer gain L4 has therefore to be
designed such that D− L4GB is a P -matrix.

Remark 6.8. If L3 can be designed such that B− L3GB = 0, the state error in (6.44)
becomes independent of w̃k. We are then left with designing L1 and L5 such that
the error dynamics is asymptotically stable. This corresponds to an unknown input
observer as it is known for linear systems. However, as in the numerical example
below, such a gain L3 often does not exist.

6.5 Numerical example

As an example system, consider the two-mass oscillator depicted in Figure 6.1. The
oscillator with masses m1 = m2 = m, spring constants k and damping ratios d is
excited by an external force F (t) applied to the first mass. The movement of the
second mass is restricted by a motion limiting stop. The positions of the two masses,
relative to the equilibrium positions for F = 0, are described by the coordinates q1
and q2. The system dynamics is described by (6.1) with the constant system matrices

M =

(
m 0

0 m

)
, D =

(
2d −d

−d d

)
, K =

(
2k −k

−k k

)
, (6.46)

as well as

W =

(
0

−1

)
, f =

(
1

0

)
F (t). (6.47)

The parameters are given by m = 1 kg, k = 1500 N/m, d = 0.5 Ns/m and the
coefficient of restitution is ε = 0.8. Furthermore, a periodic excitation F (t) =

a sin(ωt) is used, with an amplitude of a = 10 N and a frequency ω = 5.25 · 2π rad/s.

To reduce large differences in the order of magnitude of numerical values during
the solution, uk and wk are scaled by the time step length ∆t prior to solving the
LMI. More precisely, in (6.15), the velocity uk is replaced by ∆qk := qk − qk−1 and
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Figure 6.1: An example system with one unilateral constraint.

wk by ∆twk. As a result, scaled system matrix entries are obtained (which are not
given here). The LMI (6.41) and its extended counterpart are then solved with the
scaled system matrices using the Matlab integrated LMI solver feasp, which is based
on a projective method [81].

In the following, three cases of different difficulty will be inspected:

• Case I with output yk = qk, i.e. all positions are measured with

G =

(
1 0 0 0

0 1 0 0

)
• Case II with output yk = q1k, i.e. only the position of the non-colliding mass

is measured with G =
(
1 0 0 0

)
• Case III with yk = q2k−q1k, i.e. the difference between the two mass positions

are measured with G =
(
−1 1 0 0

)
Even though in all three cases positions are measured, these cases are different in their
difficulty because they do not fulfill the same observability conditions. Case I is the
easiest, since we directly know from measurements whether or not the contact is open
or closed. In that case the observer designs discussed in Chapter 5 are applicable.
The observability matrix O has full column rank in all three cases, indicating that
the non-impulsive dynamics is observable in all cases. For the (discretized) impulsive
dynamics, we introduced a sufficient observability condition in Section 6.3: if the
matrix

[
M−OO†M

]
is a P -matrix, then the LCP (6.24) has a unique solution. This

observability condition is fulfilled in case I and case II, but not in case III . Therefore,
for the cases I and II, observability is confirmed and the deadbeat observer (6.24),
(6.25) is applicable, while for case III observability remains undetermined and the
deadbeat observer is not applicable. Regarding the passivity-based observers from
Section 6.4, for case I both the LMI (6.41) and its extended counterpart admit a
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solution. For case II, only the LMI of the extended observer version admits a solution,
which shows the necessity to include past and future measurements in the observer in
the presence of unilateral constraints. Finally, for case III, both LMIs do not admit a
solution. Therefore, the passivity-based observer is not applicable in case III which we
will exclude from further discussion. In the following the discussion will concentrate
on case II, since it was observed in the numerical analysis that case I shows a similar
behavior, but case II is more difficult and therefore more interesting. The first thing
observed from the numerical LMI solution of case II is that the entries of the observer
gains Li (i = 1, . . . , 6) increase as the step size ∆t decreases. Figure 6.3 shows the
maximum absolute value of all observer gain entries as a function of ∆t2. The
observer gains are roughly inversely proportional to the squared time step size. As a
result of the high observer gains for small time steps, the initial observer error is often
strongly amplified at the beginning. In Figure 6.4 the trajectories of the impacting mass
are plotted for both, the discretization of the observed system and the corresponding
extended passivity-based observer, with ∆t = 10−4 s and selected initial conditions.
The velocity estimation strongly deviates from the true trajectory for a short period
of time. This phenomenon is also known as ‘peaking’ in the literature on high-gain
observers [61], but is not to be confused with the peaking phenomenon of impulsive
systems, which refers to the fact that the Euclidean error between trajectories can
jump to high values, even if the trajectories are arbitrarily close. The Lyapunov
function (and with it the state estimation error), however, decreases quickly, as shown
in Figure 6.2. A real-time implementation of the state observer is challenging for
very small time steps. In the numerical example, the average computation time per
time step on a standard desktop PC is 2.5 · 10−5 s. Here, ∆t = 10−4 s was chosen
for presentation. For other time steps ∆t, the qualitative behavior of the extended
passivity-based observer is similar, with higher deflections in the transient phase for
lower ∆t.

Large entries in the observer gains Li (i = 1, . . . , 6) have a negative influence on
the observer’s robustness against measurement noise, since in the observer dynamics
(6.45), they are multiplied by the measurements. Because the observer gain entries
are roughly inversely proportional to the squared step size ∆t2, one might therefore
be tempted to select a large step size. However, a large time step would cause a
pronounced deviation between the continuous-time system and the discrete-time
model. Furthermore, the ability of the time discretization to describe collisions
which are separated by a short period of time also depends on the chosen time
step. Compared to the observer design for linear systems, where the designer is
usually facing a performance-robustness tradeoff when selecting the observer gains,
the situation is more complicated here. For each system at hand, the observer’s
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Figure 6.2: Lyapunov function V (x̃k) = x̃TkPx̃k over time t (in s) for the example in
Figure 6.4.

sensitivity to variations in the step size has to be analyzed and it has to be decided, if
a certain step size leads to admissible noise levels.
Interestingly, in our example, measurement noise has a marginal influence on the
observer’s impact law, compared to the strong influence on the non-impulsive motion
due to the high observer gains. In Figure 6.5, the first two plots show the true and
estimated velocities u2 and û2 for the extended observer with additive, normally
distributed noise on the measurements. More precisely, we use yk = Gxk + dk with
dk ∼ N (0, σ2), i.e. dk is a discrete random variable drawn from a normal distribution
with zero mean and standard deviation σ. It is observed, that even small standard
deviations lead to strong noise levels on the velocity estimation û2. The step hight
during the impulsive motion however is only marginally altered by the measurement
noise, as is shown in the zoom plots on the right hand side of Figure 6.5. Conversely,
a time step ∆t which is long compared to the impact duration, mainly affects the
step height of the observer during the impulsive motion, whereas the non-impulsive
motion is only marginally altered. This is shown in the last plot of Figure 6.5. Therein,
the true trajectory is generated by simulating an LCS with a time step ∆tsim which is
an order of magnitude smaller than the time step ∆t used for the observer design.
From the zoom on the right hand side, it can be observed that due to the difference
in the time steps, the observer’s step height during the impulsive motion is smaller
than the actual step height.

It is worth mentioning that the chosen time step does not have an immediate effect
on the impact law of the discrete-time model. Furthermore, without measurement
noise and modeling errors, the impact law of the passivity-based state observer is
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Figure 6.3: Case II : Logarithmic plot of the maximum observer gain entry
max{∥Li∥max} (i = 1, . . . , 6) as a function of the squared step size ∆t2 (in s2).
Here ∥Li∥max := maxi,j |ℓij | if ℓij are the scalar entries of Li.

identical to the impact law of the discretized observed system after the estimation
error converged to zero. However, before the estimation error converged to zero (i.e.
if the output of the observer is not identical to the measurements), the observer’s
impact law is not physical and the correction terms in the observer dynamics have
an influence on how the contact velocity changes during phases of contact. In other
words, the chosen time step does have an effect on the observer’s impact law, but
since this impact law is not physical, this does not impose any constraints on the time
step.

6.6 Conclusion

This chapter is an attempt to give the research on developing an observer design for
unilaterally constrained mechanical systems without using contact measurement a
new impulse. As the results show again, this remains a difficult task. In the following
the merits are summarized and identified.

The first important step has been to consider a discrete approximation of the
original continuous-time system. It has been shown that the deliberate choice of the
Paoli-Schatzman scheme leads to a discrete linear complementarity system (whereas
other schemes do not). This can be seen as a result, which may also be useful outside
the scope of observer design.

The formulation as discrete LCS opens the way for the derivation of a deadbeat
observer for this type of systems. It has been shown that a deadbeat observer for a
discrete LCS leads to a mixed LCP. In addition, a sufficient observability condition
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Figure 6.4: Example case II with ∆t = 10−4 s and the initial conditions x0 =

(0,−10−4, 1, 2) and x̂0 = (0,−10−1, 10−4, 10−4) (in m and m/s resp.). Trajectories
of the impacting mass (solid black: observed system (discretized), dashed gray:
extended observer) over 10 periods of excitation (t in s, q2 in m, u2 in m/s). On
the left, the transient phase is shown with a different zoom: the extended observer
strongly deviates from the true trajectory in the beginning, due to the large observer
gains.

has been obtained, by requiring that the mixed LCP has a unique solution. The
deadbeat observer, however, is not robust with respect to measurement noise, but
may serve as starting point for future research.

Furthermore, the formulation as discrete LCS allows to use existing observer
design techniques for LCS as developed by [51]. Hereto, the existing results for
continuous-time LCS have been transported to discrete LCS. The observer consists
of a copy of the observed system, augmented by Luenberger-type correction terms.
Here, we consider the observed system and the observer both to be discrete-time
systems with matching time steps. It turns out, that the observer gains which follow
from a LMI are inversely proportional to the squared time step ∆t2.

Because a small ∆t leads to high observer gains, lowering the time step increases
the sensitivity with respect to measurement noise. Conversely, as we are using a
discrete version of the continuous time problem, increasing the time step yields a
larger modeling error, since the discretization is an approximation. Compared to
the performance-robustness tradeoff encountered in many other observer designs,
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Figure 6.5: Influence of measurement noise and a time step error on the velocity esti-
mation û2 of the impacting mass for case II (initial conditions identical to Figure 6.4).
Solid black: observed system (discretized), gray: extended observer (u2 in m/s, t in s).
The first plot shows the influence of a normally distributed measurement noise with
zero mean and a standard deviation σ = 10−10 m. In the second plot, the standard
deviation is 10−9 m. In the third plot, the true trajectory is generated by simulating
the LCS with ∆tsim which is smaller than ∆t of the observer.

the selection of the time step here is more complicated. For every system at hand it
has to be checked if an admissible choice of the step size can lead to an acceptable
performance.
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Although the presented observer design is not inherently robust, we come to a
fundamental insight: The discretization using the Paoli-Schatzman scheme can be
viewed as a regularization which reveals that the peaking phenomenon of impulsive
mechanical systems is in fact a singularity with respect to the time step ∆t.

Lastly, one can conclude that the body of methods that has been presented
here links, somewhat unexpectedly, different research topics: measure differential
inclusions, mixed LCPs and linear complementarity systems. The Paoli-Schatzman
scheme plays a crucial role in establishing these links.
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7
Experimental observer performance

analysis

In this chapter, several state observers are implemented for an experimental setup.
The setup consists of a two degrees of freedom impact oscillator with a single unilateral
constraint. After discussing the setup in detail, its mechanical model is presented and
the model parameters are identified in from experimental data. Based on this model,
observer gains are designed for several state observers that have been discussed in
Chapter 5 and the estimation performances are analyzed in experiments. Finally, the
strengths and weaknesses are discussed and the performances are compared (as far
as possible). Earlier experimental results of the author can also be found in [88].

7.1 Experimental setup

The experimental setup, for which the observers will be designed, consists of an impact
oscillator, which is a mass-spring-damper system with a single unilateral constraint.
More precisely, two steel blocks are mounted on a carriage of a linear roller guide
(Smalltec SMLFS-20), as shown in Figure 7.1. Each steel block is additionally attached
to four linear coil tension springs that connect the blocks to both ends of the linear
guide as well as to each other through eyelets. All springs are under pretension
to prevent buckling during operation. A unilateral constraint is implemented as a
limiting stop in form of a massive aluminium block that can be freely positioned
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force sensor limiting stop

extension beam pinsstinger

shaker

mass 1 mass 2

Figure 7.1: The experimental setup. Two masses on a linear roller guide are connected
to pre-stressed coil springs. The motion of mass 2 (on the right) is restricted by a
limiting stop. Mass 1 (on the left) is excited by an electrodynamic shaker.

at any location on the linear guide. The linear guide and all surrounding parts are
mounted on an adjustable frame consisting of aluminium profiles (40 × 40 mm).

In order to reduce plastic deformation due to the impulsive impact forces, two
tempered steel support pins are installed in the contact points of both mass 2 and
the aluminium block. As shown in Figure 7.2, one of the support pins is electrically
isolated from the rest of the setup. This is achieved by a thin isolating plastic foil
between the support pin and the aluminium block as well as a synthetic washer
under the screw head of the connected screw. Both the electrically isolated pin and
the colliding block are connected to a generic adjustable laboratory DC voltage
source, generating a voltage difference of Vc = 5V between the colliding parts. The
contacting pins are therefore part of an open electric circuit and are acting as an
electric switch, such that the circuit closes when contact occurs. In that case, a voltage
drop between the two pins can be measured. This voltage measurement signal is
then used to generate a switching function χ(t) indicating whether the contact is
open or closed. For the performance assessment of the state observers, the velocities
and positions of both masses are measured using two laser Doppler vibrometers (the
specific sensing and actuation instrumentation is listed in Table 7.5). While one laser
is pointing directly to mass 2 through bores in the surrounding parts, an extension
beam is used for mass 1 because of spacial restrictions. Finally, an electrodynamic
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Figure 7.2: Left: The rigid motion stop with changeable position on the linear guide.
The support pin and the connecting screw (highlighted in gray) are electrically isolated
from all other parts through an isolating foil and an isolating washer. Right: Sectional
drawing of a carriage on the linear roller guide, with mounted steel block.

shaker (permanent magnetic vibration exciter) induces an excitation force on mass
1 (on the left). The shaker itself is excited by a time dependent voltage input V (t),
which is generated by a function generator and amplified by a power amplifier. The
excitation force, which is also a required input for the state observers, is measured
with a force sensor mounted on mass 1, being connected to the shaker over a stinger.
Finally, all measurement signals are recorded through USB connected data acquisition
hardware and a matching data recording software, as depicted in Figure 7.3.

Shaker Brüel & Kjaer, type 4808
Function generator Agilent 33210A
Power amplifier Brüel & Kjaer, type 2712
Laser Doppler vibrometer Polytec OFV-505 and OFV-353 (sensor heads)

OFV-5000 and OFV-3001 (controllers)
Force sensor Endevco, model 2311
Data acquisition Dewetron DEWE-50-USB2-8

with DAQP-LV and DAQP-ACC-A modules

Table 7.1: Instrumentation for actuation and sensing
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Figure 7.3: Schematic measurement setup. Two laser Doppler vibrometers (LDV)
measure the positions and velocities of the two masses. Contact is detected by
measuring the voltage between mass 2 and the stop. Furthermore, a piezoelectric
force sensor measures the excitation force which is applied by an electrodynamic
shaker.

7.2 Mechanical model and parameters

The experimental setup is modeled as a two degrees of freedom oscillator with linear
springs and damping elements, as depicted in Figure 7.4. The model dynamics is of
the form (5.3) with the constant system matrices

M =

(
m1 0

0 m2

)
, D =

(
d1 0

0 d2

)
, K =

(
k1 + k3 −k3
−k3 k2 + k3

)
, (7.1)

and the generalized force directions and the external forcing according to

WN =

(
0

−1

)
, WT =

(
−1 0

0 −1

)
, f(t) =

(
F (t)

0

)
. (7.2)

The generalized Newtonian impact law is assumed, with a constant coefficient of
restitution (COR) ε < 1, which yields a maximal monotone impact law. Note that no
damper between the two masses is included in this model, as a preliminary parameter
identification suggested a vanishing damping coefficient.

The model parameters for the experimental setup have been identified in two
stages. In a first step, dry friction was neglected and the the spring stiffnesses and
damping constants were estimated in the sense of a linear experimental modal analysis.
More precisely, the electrodynamic shaker was excited by a harmonic voltage input
with a constant amplitude and a frequency sweep between 0.5 Hz and 150 Hz. The
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Figure 7.4: Mechanical model of the experimental setup.

parameters were then obtained by a least squares fit of the position and velocity
trajectories in the time domain. The resulting parameters are m1 = 0.760 kg,
m2 = 0.696 kg, k1 = 5195N/m, k2 = 1004N/m, k3 = 953N/m, d1 = 1.00Ns/m

and d2 = 1.15Ns/m. In a second step, the friction coefficients were tuned in
order to better match experiments with an excitation of constant frequency but
for various amplitudes, resulting in µ1 = 0.04 and µ2 = 0.035. The COR has
been identified in an experiment containing 316 impacts, with pre-impact relative
velocities in the range γ−

N ∈ [−0.5, 0] m/s. Since it is known at all times from
measurements whether the contact is open or closed, a COR can be calculated for
each impact, by dividing the post-impact velocity by the corresponding negative
pre-impact velocity. The resulting CORs are shown in Figure 7.5, where each cross
represents one impact. It is observed, that ε is not constant, but decreases as the
absolute value |γ−

N | of the pre-impact velocity increases. Above 0.2 m/s the relation
is fairly linear with a minor slope, but ε strongly increases for low pre-impact relative
velocities. As discussed in Chapter 5, it is essential for the observer design, that the
impact law is maximal monotone, which requires the COR to be constant. In the
experiments that will be used to evaluate the observers, the pre-impact velocities will
predominantly be located in the range γ−

N,i ∈ [−0.5,−0.2] m/s. Therefore, the
COR is approximated as a constant ε = 0.056 (which corresponds to the mean value
identified for γ−

N,i ∈ [−0.5,−0.2] m/s).

7.3 State observer design

In the following, the state observers presented in Chapter 5 are designed and im-
plemented for the experimental setup. The state observer gains need to fulfill all
assumptions that were made in the derivation of the respective observer. Furthermore,
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Figure 7.5: Measured COR ε as a function of the pre-impact relative velocity γ−
N .

if a range of observer gains is admissible, the gains have to be selected such that the
sensitivity with respect to measurement noise and modeling errors is low enough for
the practical application.

Observer with switched unilateral constraints (Baumann & Leine)

The state observer (5.8), (5.9) will be used including the position jumps (5.19) in
Remark 5.2, and will henceforth be referred to as ‘Baumann & Leine’ observer. The
design does not include any gains that have to be tuned. The state estimation only
relies on an accurate model (including the location of the unilateral constraint) and a
precise measurement of the impact time instants.

Velocity observer (Tanwani et al.)

The observer (5.22), (5.23) will subsequently be called ‘Tanwani (reduced)’. Here, a
scalar observer gain will be used, i.e. L = LI with L ∈ R and I an identity matrix
of appropriate dimensions. Then, using the formulation (5.24) and the fact that the
model of the experimental system is linear, the estimation error dynamics can be
written as

Mdũ+ (D+ML)dt = W(dP− dP̂) , (7.3)

with W = (WN WT ), dP = (dPT
N dPT

T )
T and dP̂ = (dP̂T

N dP̂T
T )

T. Finally,
using V = ũTMũ as a Lyapunov function1reveals that the error dynamics is attrac-
tively stable if L satisfies the LMI

D+ML =

(
d1 +m1L 0

0 d2 +m2L

)
≻ 0. (7.4)

1Alternatively, applying Proposition 5.8 with P = M and C = (0 WT) leads to the same result.
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Therefore the gain has to be chosen such that L > max{−d1/m1, −d2/m2}. For
the experiment, a value of L = 150 has been selected (after some manual tuning).

Full state observer (Tanwani et al.)

In analogy to the velocity observer, the full state observer (5.26), (5.27), (5.23) will
be referred to as ‘Tanwani (full)’. Again, its state estimate converges globally to the
true state if the observer gains fulfill an LMI. Considering the quadratic Lyapunov
function V = q̃TRq̃ + ũTMũ with R = L2 = LT

2 ≻ 0, it follows that the error
dynamics is attractively stable if the LMI(

L1L2 0

0 (D+ML)

)
≻ 0. (7.5)

is satisfied. Moreover, recall that L > 0 and L1 = LT
1 ≻ 0 in the given observer

structure. In the experiment, the gains L = 150 and L1 = L2 = LI will be used,
where I is an identity matrix of appropriate dimensions.

7.4 Performance measures

An objective, quantitative comparison of different state observers is difficult for several
reasons. First, if the observers are not using the same measurements as inputs, any
direct comparison is unfair, since the number and types of measurements has a
strong influence on the information content of the measurements. Second, most
observer designs include tunable gains. The selection of these gains has a direct
influence on the observer performance. Therefore, the performance of observers is
only directly comparable if these gains are designed according to some common
criterion or method. Nevertheless, standard error measures allow for a comparison
of the abilities of the given designs.

In the following, the error measures for positions and velocities are kept separate,
since some designs only estimate the velocities. In particular, the mean estimation
error norms will be compared, which are defined for the position and velocity errors
as

eq̃ :=
1

N

N∑
k=0

∥q̃k∥ and eũ :=
1

N

N∑
k=0

∥ũk∥, (7.6)

where the Euclidean norm ∥x∥ :=
√
xTx is used. Furthermore, q̃k = q̃(k∆t) and

ũk = ũ(k∆t) are the discrete measurements, sampled uniformly with a time step
∆t, and the sums are taken over all measurement points k ∈ {0, · · · , N}. As it is
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more intuitive, these measures will also be stated as relative values with respect to
the maximum measured position and velocity norms, i.e.

erelq̃ :=
eq̃

maxk∥qk∥
and erelũ :=

eũ
maxk∥uk∥

. (7.7)

Moreover, for a more refined comparison it will be convenient to visualize the mean
error norms with respect to a moving time window with a length of n < N data
points, referred to as

emov
q̃ :=

1

n

n∑
k=0

∥q̃k∥ and emov
ũ :=

1

n

n∑
k=0

∥ũk∥. (7.8)

7.5 Performance evaluation and comparison

For a comparison, all state observers are applied to the same experiments, in which
non-periodic motions were generated by feeding a harmonic input voltage signal with
a modulated frequency and a modulated amplitude to the excitation shaker. Note
that even though this voltage input is harmonic, the resulting excitation force acting
on the impact oscillator is generally non-harmonic, since it is affected by the response
of the impact oscillator as well as various non-modeled influences such as the shaker
internal dynamics.

In the experiment, an input of the form

V (t) = a(t) sin(ω(t) t) (7.9)

is generated, with a modulated excitation frequency in the range ω(t) ∈ [15π, 19π] rad
s

.
More precisely, ω(t) = 17π + sin(0.2πt) rad

s
, resulting in an excitation frequency

centered at 8.5Hz (which is near the resonance frequency), modulated with a cycle
duration of 10 s. In addition, the amplitude was manually modulated in the range
a(t) ∈ [0.7, 1.3]V. The system’s state, the excitation force and the voltage between the
impacting parts have been measured over a time interval of 100 s and all measurement
signals were sampled at a rate of 20 kHz.

Quantitative results

The initial conditions for all state observers (as well as for the simulation) are set
to zero, q̂(0) = 0 and û(0) = 0. Furthermore, the measurement signals start at a
selected time instant, which is such that for t = 0, the measured velocities are large
and therefore it can be observed at the beginning of the trajectories how quickly
the estimates are converging to the true state. The measured initial conditions are
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q(0) = (1.88,−4.19)T [mm] and u(0) = (0.26, 0.87)T [m/s]. The discretization time
step ∆t for all observers has been set to ∆t = 10−3s, which is 20 times slower than
the measurement sampling rate. This discretization time step ensures that velocity
jumps due to impacts occur within one observer time step. In fact, it can be observed
from the measurement signals, that the velocity changes at impacts take place over
a time interval of about 30 · 10−5s, which is 6 times longer than the measurement
sampling time interval.

Figure 7.6 shows the measured and estimated trajectories for all observers during
an initial transient phase (left) as well as during an interval with converged state
estimations (right). The minimal order observer ‘Tanwani (reduced)’, only estimates
velocities. Therefore, its positions agree with the measured positions at all times. For
the selected observer gain, the estimated velocities converge fairly quickly to the true
velocities and show a good match over the entire measurement interval.

The full state observer ‘Tanwani (full)’, estimates both positions and velocities.
With the selected observer gains, the estimated positions and velocities converge to
the true velocities quickly.

The observer based on switched unilateral constraints and position jumps (‘Bau-
mann & Leine’) converges more slowly in comparison. The reason for this is that
the convergence rate cannot be tuned as no adjustable correction terms are present
in the observer. As shown in Figure 7.6 (on the left), the state estimation initially
corresponds to a pure simulation, but strongly improves as soon as contact is detected
at the first impact (especially the positions that undergo unphysical jumps). The
overall estimation accuracy is lower in comparison to tunable observers that include
correction terms, as might have been expected. Especially in longer time intervals
without impacts, the state estimation strongly relies on the model accuracy. Figure 7.7
shows the end of such an impact free interval, with pronounced estimation errors
that are reduced as soon as more contacts are detected. For comparison, a pure
simulation, which does not include any correction based on measurements but makes
use of the measured excitation force as an input is also shown in Figure 7.6 and 7.7.

Table 7.8 shows the mean Euclidean norm of the position and velocity estimation
errors as performance measures for all state observers. While they are all within the
same order of magnitude, the Baumann & Leine observer comes with the largest
estimation errors. This is no surprise, as it only uses knowledge of the collision
time instants, while the other observers contain a permanent correction based on
position measurements. The mean Euclidean error norms of the Baumann & Leine
observer, relative to the maximal measured position and velocity norms, are at 4.8 %
for the position estimates and 4.2 % for the velocity estimates. In comparison, the
full Tanwani observer achieves a mean relative velocity error norm of 2.0 %. The
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reduced Tanwani observer yields the most accurate velocity estimates with the chosen
observer gains, with a mean relative error norm of 1.8 %, and its position is zero since
the position measurements are directly used as estimates.

For a more refined comparison, Figure 7.8 shows the mean error norms with respect
to a moving time window are shown for a representative time interval (with a moving
window length of about 2 excitation cycles). It can be observed, that the estimation
error of the Tanwani observers strongly increases in some time intervals, for example
around t = 8 s. These are time intervals with a high density of impacts. The impacts
are exciting unmodeled spring-internal vibrations, which lead to a superimposed
velocity oscillation at a frequency of about 100Hz. This can be observed in Figure 7.6
on the right, in the plot for u2, looking at the gray measurement signal. Since these
vibrations are not contained in the mechanical model, the estimation error strongly
increases. In addition, since in the Tanwani observers the impact time instants are
detected using a threshold, slight mismatches between the observer’s and the true
impact time instants occur, which also result in increased estimation errors, although
only during very short time intervals.

Baumann Tanwani Tanwani Simulation
& Leine (reduced) (full)

Inputs f(t), χ(t) f(t),q(t) f(t),q(t) f(t)

Estimates q̂, û û q̂, û q̂, û

erelq̃ [%] 4.8 0 0.5 26.4
erelũ [%] 4.2 1.8 2.0 23.7
eq̃ [mm] 0.9005 0 0.0838 4.9639
eũ [m/s] 0.0489 0.0210 0.0228 0.2749

Table 7.2: Performance comparison

Remark 7.1. Here, only the performance of the state observers for known impact
time instants have been shown. As discussed in Chapter 6, the discretization-based
approach for the case of unknown impact time instants resulted in large observer
gains (especially for small time steps, which are desired). In the practical application,
the noise sensitivity turned out to be unacceptably large. Furthermore, an ad-hoc
adaptation to achieve a practical observer is not trivial.
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Figure 7.6: Extract from the time evolution of the positions and velocities of the
measured signals (dark gray), the state estimations (Baumann & Leine: dashdotted red,
Tanwani (reduced): solid green, Tanwani (full): dashed blue) and a pure simulation
that only uses the measured excitation force as an input (solid light gray). Left:
Transient phase, right: converged state estimates.
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Tanwani (reduced): solid green, Tanwani (full): dashed blue) and a pure simulation
that only uses the measured excitation force as an input (solid light gray).
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7.5. Performance evaluation and comparison
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Figure 7.8: Position and velocity estimation error in a selected representative time
interval (Baumann & Leine: red, Tanwani (reduced): green, Tanwani (full): blue).
For comparison, the pure simulation is shown in light gray.
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8
Conclusion

In this monograph, the state observer design problem was investigated for mechanical
systems with unilateral constraints, with a special focus on the case where it cannot
instantaneously be concluded from measurements whether contacts are open or
closed. The main insights have been provided by the analysis of a discretization-based
approach to the state observer problem and by the experimental performance analysis
of selected state observers for impulsive systems.

8.1 Summary and contributions

In Chapter 2, a short introduction to the formalism of measure differential inclusions
was given and its capabilities have been discussed. MDIs are especially well suited
for modeling mechanical systems with unilateral constraints and an equality of
measures that describes such systems has been derived in Chapter 3. The derivation
follows a classical path, but since the equations of motion for smooth mechanical
systems, as well as the axioms they are derived from, require the time evolution to
be continuously differentiable, a generalization to differential measures is required
to allow for a discontinuous or non-differentiable motion. This generalization can
be made starting from the equations of motion, as it can be found in the works
of Moreau [79], or by generalizing the underlying axioms. However, in Chapter 3,
the principle of virtual action has been chosen as a starting point, as suggested by
Capobianco [27].
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Partial stability results for MDIs were presented in Chapter 4, which are a direct
extension of their smooth counterpart. They provide a fundamental tool for problems
that involve the stabilization of an error dynamics, such as state observer design,
tracking control or synchronization problems. By discussing the known peaking
phenomenon, it was highlighted that further generalizations or alternative approaches
are necessary for analyzing an error dynamics.

Existing state observer designs were reviewed in a unified framework in Chapter 5.
Furthermore, the extension to account for Coulomb friction was discussed for the
special case of non-opening frictional contacts with known normal contact forces.
Under these restrictions the friction force laws are maximal monotone, which fits into
the stability proofs for the estimation errors, which rely on the maximal monotonicity
of the force laws for the normal contact forces.

A new approach to the observer design problem for the case of unknown impact
time instants was investigated in Chapter 6 for the class of impulsive mechanical
systems which are linear in the absence of contacts. A key point was the use of the
specific time discretization scheme of Paoli and Schatzman in order to side-step the
main difficulties involved with the stability analysis of the estimation error dynamics:
first, peaking of the estimation error due to velocity jumps does not occur in the time
discretization, as the discrete system only describes updates over time steps. Second,
normal contact force and impact laws, which are generally formulated on (position-
switched) velocity level, loose their favorable property of maximal monotonicity
(which holds for closed contacts) due to the switching on position level. The Paoli-
Schatzman scheme however discretizes the normal contact force laws directly on
position level. For the discretized system, sufficient observability conditions have
been obtained from deriving a dead-beat observer by directly calculating initial
conditions from a set of output measurements. Another useful result was, that
for linear constraint equations, the chosen discretization leads to a discrete linear
complementarity problem. Therefore, the discrete adaptation and extension of an
existing passivity-based observer design could be applied. In a numerical case study,
the usefulness of the taken approach was analyzed and limitations were highlighted.
Specifically, it was shown that for a two degree-of-freedom impact oscillator, where
only the position of the non-impacting mass is measured, a state observer can indeed
be designed. It turned out however, that the contained observer gains have to be
chosen inversely proportional to the chosen discretization time step, which results in
a high noise sensitivity and is therefore problematic in real-world applications.

In Chapter 7, selected state observer designs (for known impact time instants)
have been realized and tested on an experimental setup. The setup consists of a two
degree-of-freedom impact oscillator with a single unilateral constraint. It was found
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that all the implemented observers can provide useful state estimations. However,
tunable observers that use continuous measurements are, as one might expect, more
accurate.

8.2 Recommendations

As this thesis shows, many problems related to state observation of non-smooth
mechanical systems still remain unsolved. Several topics for future research that are
of particular interest can be identified.

First, the state observers in Chapter 5, that make use of the explicit knowledge of
contact time instants, have been shown to be applicable in experiments. However,
only the accuracy of the state estimation has been analyzed. One of the main purposes
of the observers is to provide a state estimate for state-feedback control. In general,
when designing such a controller, the closed-loop dynamics including the observer
has to be analyzed. In some cases a ‘separation principle’ holds, that allows to design
the controller and the observer separately. It is an open question for what control
applications such a separation principle could be provided with the observers in
Chapter 5. Furthermore, the observers have not yet been tested experimentally in a
control setup.

The approach in Chapter 6 relies on using the Paoli-Schatzman time discretization
scheme for constructing an observer. With this specific scheme, the calculation of an
index set (indicating whether a contact is open or closed at a given time instant) is
avoided. This property might also be useful in optimization-based state estimation
methods, where the initial state at the beginning of a moving time window is estimated
by minimizing a certain functional of the estimation error (between a model-based
predicted output and the measurements) over that window. Since in most cases an
online state estimation is required, the computation time is a limiting factor in this
approach.

For the discrete observer problem, sufficient observability conditions have been
provided in Chapter 6. Roughly speaking, observability conditions guarantee that
enough information is contained in the measurements to recover the initial state (and
with it the current state, which can be obtained by propagating the system model
from the recovered initial condition). Such observability conditions are an important
aspect for the observer design. First, before trying to find a new observer structure,
one wants to know if the observer problem is theoretically solvable. Second, with
a given observer design at hand in practice, it is necessary to know what kinds of
measurements are required and how many sensors have to be used. However, for
non-smooth systems (and also for smooth non-linear systems), it is difficult to provide
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verifiable observability conditions. This problem has not explicitly been addressed in
this thesis, but further research in this direction is essential for an observer theory for
non-smooth systems. Furthermore, it might provide more insight of how to construct
observers.

From the experimental analysis in Chapter 7 it became clear, that observers
that only use contact measurements strongly rely on the model accuracy in time
intervals without contact. Moreover, observers that use position measurements
require a threshold for detecting contact, which causes slight mismatches between
the observer’s impact time instants and the true impact time instants. In practice, it
can be difficult to set these thresholds properly. For those reasons, the possibility of a
combination of contact measurements and continuous position measurements should
be investigated to overcome these shortcomings.
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A
Stieltjes integrals and measures in

Non-smooth Dynamics

In Nonsmooth Dynamics, an equality of measures takes the place of the usual
equations of motion to describe the dynamics of a mechanical system (see Chapter 3).
Its derivation and analysis require basic knowledge on Riemann-Stieltjes integrals and
their connections to measure theory. The interested reader who is unfamiliar with
measure and integration theory may find it difficult to extract the essential points for
its application in mechanics from literature. This is due to several reasons. Firstly,
the terminology is often not completely identical among different texts. Definitions
of the same objects may slightly vary and it is difficult to oversee the consequences
of such differences. Furthermore, there exist two competing expositions of measure
theory in literature. For example Moreau [78], whose works constitute a foundation
for most of Nonsmooth Dynamics, understands measures as linear functionals on
the vector space of continuous functions with compact support. Conversely, most
textbooks on measure theory introduce measures as functions mapping subsets of a
given set to the positive real numbers. Moreover, measure theory is a vast subject,
such that it is easy to lose track of what is important for the application in mechanics.

In this appendix, a short overview over the key points is given while introducing a
minimum number of concepts. All subjects are based on the lecture notes [47] and
standard textbooks [35,37,65] as well as some papers [78,79]. Similar treatments with
more depth can be found in [41, 68]. Whenever possible, the set of real numbers R is
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Appendix A. Stieltjes integrals and measures in Non-smooth Dynamics

used instead of the most general sets treated in measure theory. Theorems are stated
without proof for a more compact exposition.

A.1 Function classes of special interest in measure theory

First, some classes of functions are introduced that possess favourable properties with
respect to the specific measures and integrals that will be introduced subsequently.
Let I ⊂ R be a real interval and ∥ · ∥ be a norm on Rn.

Definition A.1. A real-valued function f : I → Rn is called absolutely continuous
on I if for every ε > 0 there exists a δ(ε) > 0 such that

N∑
i=1

(bi − ai) < δ ⇒
N∑
i=1

∥f(bi)− f(ai)∥ < ε

for all finite sequences of pairwise disjunct subintervals (ai, bi) of I with ai < bi.

Definition A.2. Let f : I → Rn and let J ⊆ I be a subinterval. Then the variation
of f on J is defined as the nonnegative extended real number

var(f ,J ) := sup

{
N∑
i=1

∥f(xi)− f(xi−1)∥
}

,

where the suppremum is taken over all strictly increasing finite sequences x0 < x2 <

· · · < xN of points on J .

The function f is said to be of bounded variation on I if and only if
var(f , I) < ∞, which is expressed as f ∈ bv(I,Rn). As a weaker condition, f
is of locally bounded variation on I if var(f , [a, b]) < ∞ for every compact subin-
terval [a, b] of I, which is expressed as f ∈ lbv(I,Rn).

For functions of bounded variation, two useful decompositions exist:

i. Jordan decomposition: If f ∈ bv(I,Rn), then there exists a pair of functions fp
and fn, both with non-decreasing entries, such that

f = fp − fn,

and the pair is unique up to addition of a constant.

ii. Lebesgue decomposition: Every function f ∈ bv(I,Rn) can be decomposed into
a sum of three functions as

f = fac + fstep + fsing
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such that fac is an absolutely continuous function, fstep is a step function and
fsing is a so-called singular function, which can be characterized as a function
of bounded variation whose classical derivative vanishes almost everywhere.
Moreover, these functions are unique up to a constant.

Functions f ∈ lbv(I,Rn), for which the singular part fsing vanishes in the
Lebesgue decomposition, are called special functions of locally bounded varia-
tion1, written as f ∈ slbv(I,Rn).

A.2 The Riemann-Stieltjes integral

In order to capture discontinuity events in the description of a mechanical system,
the equations of motion have to be understood in an integral sense. To this end,
it is instrumental to introduce in the following a notion of an integral, which is a
generalization of the classical Riemann integral and will be called the Riemann-
Stieltjes integral. Its definition is taken from Moreau [78].
Let I be a real interval of any form and let φ : I → R be a continuous real-valued
function on the interval I with compact support in I (i.e. its support is contained in
I), written as φ ∈ C0(I,R). For any partition

Sm : a = τ0 < τ1 < ... < τm = b

of an interval [a, b] ∈ I, we introduce its size

|Sm| := max
1≤i≤m

{τi − τi−1}.

Let f : I → Rn be a given function of bounded variation. Then, for selected values
ξSm
i ∈ [τi−1, τi] in every subinterval of a given partition Sm, a Riemann-Stieltjes

sum can then be built as

H(Sm, ξSm , φ, f) :=

m∑
i=1

φ(ξSm
i )[f(τi)− f(τi−1)].

It can be shown2that for any sequence of partitions with |Sm| → 0 as m → ∞, the
Riemann-Stieltjes sum converges to a limit, independent of the selected values ξSm .
This limit is denoted as∫

[a,b]

φ df := lim
|Sm|→0

H(Sm, ξSm , φ, f) (A.1)

1In accordance with [3].
2 [78], Proposition 6.1.
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and is called the Riemann-Stieltjes integral of φ with respect to f . If f is the identity
function, the classical Riemann integral is obtained.

Notation A.3. The short writing df [φ] is used here to mean the the bounded functional
φ 7→

∫
[a,b]

φ df , which is referred to as the differential measure3of f .

Remark A.4. The Riemann-Stieltjes integral is also defined for more general bounded
functions φ and f . For example, if the integrand φ is discontinuous, the Riemann-
Stieltjes integral is still defined as in (A.1), but only if the limit exists. In that case it is
said that φ is Riemann-Stieltjes integrable with respect to f . Functions φ ∈ C0(I,R)
are always integrable with respect to f ∈ lbv(I,Rn).

Remark A.5. For vector-valued functions φ : I → Rn the Riemann-Stieltjes integral
is defined as follows. For scalar functions f : I → R it is defined as

∫
[a,b]

φ df :=

(∫
[a,b]

φ1 df , · · · ,
∫
[a,b]

φn df

)T
, (A.2)

and for vector-valued functions f : I → Rn it is∫
[a,b]

φTdf :=

∫
[a,b]

n∑
i=1

φi dfi. (A.3)

The differential measures for these cases are written as df [φ] and df [φT] respectively.

Linearity

An immediate consequence of the definition of the Riemann-Stieltjes integral is its
linearity with respect to f and φ, i.e. for any c ∈ R the following properties hold:∫

[a,b]

φd(f1 + f2) =

∫
[a,b]

φ df1 +

∫
[a,b]

φ df2,

∫
[a,b]

φd(cf) = c

∫
[a,b]

φdf ,∫
[a,b]

(φ1 + φ2) df =

∫
[a,b]

φ1 df +

∫
[a,b]

φ2 df ,

∫
[a,b]

(cφ) df = c

∫
[a,b]

φdf .

3In literature on Nonsmooth Dynamics it is often referred to as differential measure, owing to the fact
that one branch of measure theory defines measures as continuous linear functionals on the vector space of
continuous functions with compact support.
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Subintervals

It is common that the notation
∫
I df stands for

∫
χI df with the characteristic function

χI ∈ C0(I,R) of the interval I, which is defined as

χI(t) :=

{
1 if t ∈ I
0 if t ̸∈ I.

(A.4)

For any interval I, the mapping νf : I 7→
∫
I df defines the Lebesgue-Stieltjes vector

measure for f , which is introduced in Section A.3. Indeed, as shown in [78], we have
the following properties:∫

[a,b]

df = f+(b)− f−(a),

∫
[a,b)

df = f−(b)− f−(a),∫
(a,b)

df = f−(b)− f+(a),

∫
(a,b]

df = f+(b)− f+(a),

(A.5)

which correspond to (the vector form of) the properties (A.10).
As a direct consequence, it follows that for an interval that consists of a singleton
{a} it holds that ∫

{a}
df = f+(a)− f−(a) . (A.6)

Densities

Let I be a real interval, h : I → R be a continuous function and f ∈ slbv(I,Rn).
Then for every φ ∈ C0(I,R), i.e. for every continuous function with compact support
on I, it holds that φh ∈ C0(I,R). The product of the differential measure
df [φ] : φ 7→

∫
I φ df with h is declared to be the functional

h df [φ] : φ 7→
∫
I
φh df . (A.7)

If the differential measure dg[φ] of a function g ∈ slbv(I,R) can be written as
dg[φ] = h df [φ], i.e. it is such that

dg[φ] : φ 7→
∫
I
φhdf (A.8)

holds, then it is said that h is the density of dg with respect to df , which is written
in short notation as dg = h df .

In view of the application in mechanics, the densities of the differential measures
of two main function classes are crucial.
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1. If I is a real interval and fac : I → Rn is absolutely continuous, then fac is
differentiable almost everywhere (i.e. everywhere, except for a set of Lebesgue
measure4zero) on I and it holds that

fac(b) = fac(a) +

∫
(a,b]

ḟac dt ∀ a, b ∈ I,

with the derivative ḟac = dfac/dt. As a consequence, for the Stieltjes functional
of fac it holds that dfac[φ] = ḟac dt[φ], i.e. it has a density ḟac w.r.t. dt. In short,
dfac = ḟac dt.

2. A second important class are step functions, which are piecewise constant
functions with a countable number of discontinuities. Taking a unit step
function

htk (t) =

{
1 if t ≥ tk
0 if t < tk,

with a discontinuity at a given t = tk, it follows with the definition (A.1) and a
given time interval I that∫

I
φdhtk =

{
φ(tk) if tk ∈ I
0 if tk /∈ I.

The differential measure dhtk [φ] is commonly written as dδtk [φ] and referred
to as Dirac (differential) measure. Now, take a step function fs : I → Rn

for which f+s (ti) ̸= f−s (ti) at a countable number of discontinuity points
ti, i = 1, 2, · · · and f+s (t) = f−s (t) = fs(t) ∀ t ̸= ti. It can then be verified that

f+s (b) = f−s (a) +

∫
[a,b]

(
f+s − f−s

)∑
i

dδti ,

showing that step functions fs have a density (f+s − f−s ) w.r.t. a sum of
Dirac measures. For brevity, it is typically written dη :=

∑
i dδti such that

dfs[φ] = (f+s − f−s )dη[φ] (or dfs = (f+s − f−s )dη in short).

Partial integration

For the Riemann-Stieltjes integral, a very useful integration by parts formula exists.
Namely, if I is a real interval and u : I 7→ Rn and v : I 7→ Rn are two functions of

4Measures, and particularly the Lebesgue measure, will be defined in Section A.3
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bounded variation, then it holds that∫
I
d(u · v) =

∫
I
u+dv +

∫
I
v−du

=

∫
I
u−dv +

∫
I
v+du,

(A.9)

which is written in short as d(u · v) = u+dv + v−du = u−dv + v+du [78].

A.3 Measures on R

In the following, some basic measure theoretic definitions are introduced. In view of
the application in mechanics, the treatment is restricted to the set R of real numbers
(or Rn if necessary) wherever possible.

The use of measures aims at generalizing concepts such as length, area or volume,
which assign a non-negative number to all subsets of a given base set.

Definition A.6. A σ-Algebra on R5is a system A of subsets of R with the following
properties:

i. R ∈ A

ii. A ∈ A ⇒ R\A ∈ A

iii. A1, A2, ... ∈ A ⇒
∞⋃
i=1

Ai ∈ A

Of special interest is the Borel σ-Algebra B(R) on R, which is implicitly defined
as the smallest σ-Algebra containing all open intervals with rational endpoints, i.e.
all elements of the set E = {(a, b) ⊂ R |a < b and a, b ∈ Q}. Due to this implicit
definition, it is said that B(R) is generated by the generator E . Note that generators
are not unique, i.e. various generators can generate the identical σ-Algebra. Elements
of B(R) are called Borel sets and particularly include all real intervals of the form
[a, b], [a, b), (a, b], (a, b) with a ≤ b and a, b ∈ R.

Definition A.7. A measure6on R is a map µ : B(R) → [0,∞] which fulfills

i. µ(∅) = 0

ii. µ

( ∞⋃
i=1

Ai

)
=
∑
i

µ(Ai) for any sequence of disjoint sets Ai ∈ B(R)

5More generally, in measure theory, an arbitrary non-empty set Ω is used in the definition of a σ-Algebra.
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Property ii. is referred to as σ-additivity. Furthermore, if µ(A) < ∞ for all A ∈ B(R),
then µ is called a finite measure.

As a slight generalization, so-called signed measures are introduced to allow for a
notion of measures which can take negative values.

Definition A.8. A signed measure on R is a map ν : B(R) → (−∞,∞] for which
µ(∅) = 0 and for which σ-additivity holds.

For signed measures there exists a Jordan decomposition: If ν is a signed measure
on R, then there exist two unique (non-negative) measures µ+ and µ− on R, such
that ν = µ+ − µ−.

In the sequel, tuples µ = (µ1, · · · , µn) of measures µ1, · · · , µn on R are referred
to as vector measures7on R. Similarly, tuples ν = (ν1, · · · , νn) of signed measures
ν1, · · · , νn on R are called signed vector measures on R.

Lebesgue-Stieltjes measure

In the following, specific measures are introduced, which are based on functions of
bounded variation.

Theorem A.9. If f : R → R is a monotonically increasing, right continuous function,
then there exists a unique measure µf on R, called the Lebesgue-Stieltjes measure
of f , for which it holds that µf ((a, b]) = f(b)− f(a) for all a, b ∈ R.

Note that the set J := {(a, b]|a, b ∈ R)} is not a σ-algebra. Therefore the map
µ : J → [0,∞] defined by µ((a, b]) = f(b) − f(a)∀ a, b ∈ R is not a measure.
However, J is a subset of the Borel σ-algebra B(R) and a well known extension
theorem of Carathéodory guarantees the existence of a measure µf on R such that
µf (A) = µ(A) ∀A ∈ J .

Several cases of the Lebesgue-Stieltjes measure for specific functions f are of
special interest.

i. For the identity function, i.e. f(t) = t, we have µf ((a, b]) = b − a, which
defines the Lebesgue measure and is equal to the length of the measured
interval. It is customary that for this case, µf is denoted as dt.

6The domain of a measure in literature is typically required to be any σ-Algebra on a given non-empty
set Ω. However, especially in older texts, some authors use other spaces for the domain, such as so-called
σ-rings. Measures with B(R) as the domain are sometimes called Borel measures on R.

7In literature, vector measures are typically introduced as measures that map to a Banach space. However,
both the domain and the codomain of a vector measure are not standardized in the literature on vector
measures. A detailed treatment can be found in the very readable book [35].
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ii. The unit step function f(t) =

{
1 if t ≥ tk

0 if t < tk
leads to the Dirac measure

µf ((a, b]) =

{
1 if tk ∈ (a, b]

0 if tk ̸∈ (a, b]
=: δtk ((a, b]),

which indicates whether a given point tk lies within the measured interval.

iii. If f is a monotonically increasing, continuously differentiable function, it holds
that f+(t) = f−(t) = f(t) and µf ((a, b]) = f(b)− f(a) =

∫ b

a
ḟ(t)dt.

The Lebesgue-Stieltjes measure can be generalized to a signed measure. Using the
Jordan decomposition of a function f ∈ bv(I,R), i.e.

f = fp − fn

with non-decreasing functions fp and fn, the signed Lebesgue-Stieltjes measure of
f can be defined as

νf (A) = µfp(A)− µfn(A) ∀A ∈ B(R).

As a consequence, it holds that

νf ([a, b]) = f+(b)− f−(a),

νf ([a, b)) = f−(b)− f−(a),

νf ((a, b]) = f+(b)− f+(a),

νf ((a, b)) = f−(b)− f−(a).

(A.10)

Notation A.10. In view of the Lebesgue measure, which is commonly denoted as dt,
the notation df is henceforth used to mean the signed Lebesgue-Stieltjes measure of
f . Accordingly, it is written df(A) to mean νf (A) and for signed Lebesgue-Stieltjes
vector measures of Rn-valued functions f we write df(A) to mean νf (A).

A.4 The Lebesgue integral

In the following, it will be defined what it means to integrate a function with respect
to a given measure. The introduced integral allows for a broader class of functions to
be integrated, compared to the well-known Riemann-Integral. The construction of
this so-called Lebesgue integral will follow several steps. First the integral is defined
for non-negative simple functions. Second, the integral is defined for non-negative
functions. Third, the integral of signed functions is introduced. Lastly, the notion of
the integral is extended to integrals with respect to signed measures.
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First, the definition of the characteristic function is re-stated as

χA(t) :=

{
1 if t ∈ A

0 if t ̸∈ A,
(A.11)

where A is any subset of the real numbers, A ⊆ R. A simple function s : I → R
takes finitely many values α1, · · · , αN on the interval I ⊂ R and can be written as

s =

N∑
i=1

αiχAi ,

where Ai = s−1(αi) are pairwise disjunct.
The Lebesgue Integral of a non-negative simple function (αi > 0) with respect to a
measure µ on R is defined as

∫
I
sdµ :=

N∑
i=1

αiµ(Ii).

More generally, the Lebesgue integral of a non-negative (measurable) function f is
defined as ∫

I
f dµ := sup

s

{∫
I
sdµ | s ≤ f ∀ t

}
,

where the supremum is taken over all simple functions and s ≤ f refers to a pointwise
inequality, s(t) ≤ f(t)∀ t. A signed function f can be decomposed as f = f+ − f−,
where f+ and f− are non-negative functions, and its integral is defined as∫

I
f dµ :=

∫
I
f+ dµ−

∫
I
f− dµ.

Finally, the integral of a (measurable) function f with respect to a signed measure ν

on R is defined using the Jordan decomposition ν = µ+ − µ−, where µ+ and µ− are
(non-negative) measures on R, as∫

I
f dν :=

∫
I
f dµ+ −

∫
I
f dµ−.

Densities

It is common that the notation
∫
A
f dµ stands for the integral

∫
fχA dµ with the

characteristic function χA of the set A. Clearly, the characteristic function is a simple
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function if A consists of a finite number of intervals. In that case it therefore holds
that ∫

A

dµ :=

∫
χA dµ = µ(A).

The same is true for signed measures ν, i.e.
∫
A
dν = ν(A). Moreover, if f is a

µ-integrable function, then

ν(A) :=

∫
A

f dµ , A ∈ B(R)

is a signed measure on R. In that case, it is said that ν has density8f with respect to
µ and we use the short notation dν = f dµ (also dν(A) = f dµ(A)).

Theorem A.11. A function g is integrable w.r.t. such a signed measure ν if gf is
integrable w.r.t. µ and in that case it holds that∫

A

g dν =

∫
A

gf dµ,

or, written in short, g dν = gf dµ (also g dν(A) = gf dµ(A)).

With regard to the application in mechanics, the densities of the Lebesgue-Stieltjes
measure of two main function classes are crucial.

1. If I is a real interval and fac : I → R is absolutely continuous, then it is
differentiable almost everywhere on I and it holds that

fac(b) = fac(a) +

∫
(a,b]

ḟacdt ∀ a, b ∈ I,

with the derivative ḟac = dfac/dt. The signed Lebesgue-Stieltjes measure of
fac, for which it holds that νfac((a, b]) = fac(b)− fac(a) =

∫ b

a
ḟac dt, therefore

has a density ḟac w.r.t. the Lebesgue measure dt. In short, dfac = ḟac dt

(meaning dνfac = ḟac dt).

2. We have already seen, that the Lebesgue-Stieltjes measure of a unit step function
is equal to the Dirac measure δtk with respect to its discontinuity point tk. Now,
take a step function fs for which f+

s (ti) ̸= f−
s (ti) at a countable number of

discontinuity points ti, i = 1, 2, · · · and f+
s (t) = f−

s (t) = fs(t) ∀ t ̸= ti. It
can then be verified that

dfs((a, b]) := νfs((a, b]) =

∫
(a,b]

(
f+
s − f−

s

)∑
i

dδti ,

8The density is sometimes called Radon-Nikodym derivative of ν w.r.t. µ and is then denoted as dν/dµ.
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which requires the fact that the (Lebesgue) integral of a given function g(t)

with respect to δtk over an interval (a, b] is

∫
(a,b]

gdδtk =

{
g(tk) if tk ∈ (a, b]

0 if tk ̸∈ (a, b],
= g(tk)δtk ((a, b]).

Eventually, one can conclude that step functions fs have a density f+
s − f−

s

with respect to the sum of Dirac measures. For brevity, this sum will from now
on be denoted as dη :=

∑
i dδti and we have dfs = (f+

s − f−
s ) dη.

A.5 Overview

The preceding sections mainly described the relations between three objects, namely
functions of bounded variation, the Riemann-Stieltjes integral and the signed
Lebesgue-Stieltjes measure. For a quick overview the following diagram shows the
most important relations.

RS
Integral

Signed LS
vector measure

Function of bounded variation

(LS) (RS)

Figure A.1: An overview over the most important relations. LS stands for Lebesgue-
Stieltjes and RS stands for Riemann-Stieltjes.

118



B
Some tools and proofs

B.1 Schur complement and passivity LMIs

The negative (semi-)definiteness of a matrix is preserved under congruence transforma-
tions. To see this, let A ∈ Rn×n be a square, positive definite matrix, T ∈ Rn×n be an
invertible matrix and B = TTAT. Then it follows from A ≺ 0 that xT(A+AT)x < 0

for all x ∈ Rn, which implies that

xT(B+ BT)x = xT(TTAT+ TTATT)x

= xTTT(A+ AT)Tx

< 0 ∀ x ∈ Rn.

(B.1)

Therefore, A ≺ 0 implies B ≺ 0. Furthermore, since T is invertible, for every y ∈ Rn

there exists an x ∈ Rn such that y = Tx. Therefore it follows from (B.1) that B ≺ 0

implies A ≺ 0. These facts lead to the following.

Lemma B.1. (Schur complement) Let A be a symmetric partitioned matrix

A =

(
A11 A12

AT
12 A22

)
,

with A22 square and invertible. Then the following conditions hold:

1. A ≺ 0 if and only if A22 ≺ 0 and A11 − A12A
−1
22 A

T
12 ≺ 0

2. A ⪯ 0 if and only if A22 ≺ 0 and A11 − A12A
−1
22 A

T
12 ⪯ 0.
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The expression A11 − A12A
−1
22 A

T
12 is referred to as Schur complement of the block

A22.

Proof. The conditions 1. and 2. directly follow from (B.1) with

T =

(
I 0

−A−1
22 A

T
12 I

)
,

where I and 0 are an identity matrix and a zero matrix of appropriate dimensions.

Lemma (B.1) leads to the following consequence, which can be applied to passivity
based LMIs.

Corollary B.2. For given matrices A,B,C,D and α ∈ R, the following matrix
inequalities are equivalent, if all blocks in the partitioned matrices H1 and H2 are
symmetric.

1. H1 :=

(
ATPA− αP ATPB− CT

BTPA− C BTPB− (D+DT)

)
⪯ 0 and P ≻ 0

2. H2 :=

−αP −CT ATP

−C −(D+DT) BTP

PA PB −P

 ⪯ 0

Proof. The proposition directly follows from applying condition 2. of Lemma B.1 to
H2. Indeed, the Schur complement of the lower right block −P in H2 equates to(

−αP −CT

−C −(D+DT)

)
−
(
ATP

ATB

)
(−P)−1(PA PB)

=

(
−αP −CT

−C −(D+DT)

)
+

(
ATPA ATPB

BTPA BTPB

)
= H1.

Therefore, the equivalence of 1. and 2. in Corollary B.2 follows.
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B.2. Non-opening contacts with Coulomb friction and a known normal contact force

B.2 Non-opening contacts with Coulomb friction and a known normal
contact force

In Section 5.1, it was shown that the error dynamics of a state observer with switched
unilateral constraints is stable. This was achieved by using the quadratic Lyapunov
function V = 1

2
(q̃TKq̃+ ũTMũ) and verifying that dV ≤ 0. What is left to show, is

that the error dynamics is attractively stable, which requires the following steps that
are adapted from Baumann [8, p. 62] to include Coulomb friction forces.

1. The first step is to show that limt→∞ q̃ is constant and limt→∞ ũ = 0, which
is unaffected by Coulomb friction and therefore is identical to the proof in [8]. In
summary: Since V is bounded from below and non-increasing, it converges to a limit
V∞ := limt→∞ V (q̃(t), ũ(t)) ≤ V (q̃(t0), ũ(t0)). Next, since V̇ ≤ −ũTDũ and
V + − V − ≤ 0, it follows that V∞−V (q̃(t0), ũ(t0)) ≤ limt→∞ −

∫ t

t0
ũ(τ)TDũ(τ) dτ .

The left side of this inequality is finite, which implies that limt→∞
∫ t

t0
ũ(τ)TDũ(τ) dτ

is finite as well, and limt→∞
∫ t

t0
ũ(τ)TMũ(τ)dτ < ∞ due to the equivalence of

norms and D ≻ 0, M ≻ 0. Furthermore, the term ũTMũ dτ tends to an abso-
lutely continuous function (because V∞ is constant and ẽ is absolutely continuous).
Therefore, by an extension of the Lemma of Barbalat (see [8, Proposition A.3]),
limt→∞ ũ(t)TMũ(t) = 0, which implies

lim
t→∞

ũ(t) = 0 and lim
t→∞

q̃(t) = c (B.2)

with a constant c.
2. Since limt→∞ ũ = 0, it follows that the contact velocity error in the frictional

contacts tends to zero as well, i.e. limt→∞ γ̃
i
T = limt→∞ Wi

T ũ = 0 for all i. There-
fore, the corresponding friction force error λi

T − λ̂i
T = 0 vanishes whenever γi

T ̸= 0

(the frictional contact is in slip), because the normal forces of the frictional contacts
in the observer and the observed system are assumed to be identical).

3. Integrating the equality of measures of the error dynamics

M dũ+ (Cũ+Kq̃) dt = WN (dPN − dP̂N ) +WT (dPT − dP̂T ) (B.3)

over a time interval [t, t+∆t], taking the limit t → ∞, and inserting (B.2) results in

∆tKc = lim
t→∞

WN

∫
[t,t+∆t]

(dPN − dP̂N )

+ lim
t→∞

WT

∫
[t,t+∆t]

(dPT − dP̂T ).

(B.4)

Next, since all generalized force directions, i.e. all columns of (WN WT ) are assumed
to be linearly independent, one can conclude that the limits on the right side of (B.4)
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exist. Since the unilateral constraints are assumed to never be permanently closed,
there exists for every t and every constraint j an interval [tj , tj +∆t] with t < tj ,
such that λj

N = λ̂j
N = 0 and Λj

N = Λ̂j
N = 0 in that interval (if ∆t is chosen small

enough). Similarly, since the frictional contacts are never permanently in stick, there
exists for every t and every friction contact i an interval [ti, ti +∆t] with t < ti, in
which λi

T = λ̂i
T = 0 (if ∆t is chosen small enough). Therefore, one can conclude

that the limits on the right side of (B.4) vanish, such that ∆tKc = 0. Finally, since
∆tK is positive definite, q̃ = c = 0.
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