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Abstract 

In nature, the majority of microorganisms grow and accumulate on surfaces. These 

microorganisms are in general surrounded by an extracellular matrix, also generating a biofilm. 

Extensive research has been done to further understand these biofilms, especially those that 

cause human diseases such as subgingival biofilms where their accumulation on teeth over time 

can cause gingivitis and periodontitis. While dynamics, formation and composition of these 

biofilms are well known, techniques for continuously monitoring the formation of subgingival 

biofilm are limited. In recent years, advancements in the field of optical spectroscopic 

techniques have provided an alternative for analyzing three-dimensional microbiological 

structures, in addition to the traditional destructive or biofilm staining techniques. In this work, 

it was demonstrated that the use of confocal Raman spectroscopy, coupled with multivariate 

analysis, provides an approach to differentiate common subgingival bacteria. In addition, a 

workflow was developed that allows  for the spatial differentiation of bacteria in an in vitro 

model simulating a subgingival biofilm, a technique which was also confirmed by mapping a 

second mixed species in vitro biofilm found on medical devices.  

The present work demonstrates the use of confocal Raman Microscopy to differentiate common 

subgingival bacterial species (Actinomyces naeslundii, Fusobacterium nucleatum, 

Streptococcus mutans, Veillonella dispar and Prevotella nigrescens) and including their 

identification in unknown samples. In a second step, a workflow was established to evaluate 

and differentiate bacterial species in two dual-species in vitro biofilm models, using confocal 

Raman microscopy. The first biofilm model comprised of Actinomyces denticolens and 

Streptococcus oralis was cultured using the ‘Zürich in vitro model’. Candida albicans and 

Pseudomonas aeruginosa were cultured as a second dual-species biofilm to confirm the 

established workflow. Both biofilms were then analyzed using confocal Raman Microscopy. 

Cluster analysis was used to spatially differentiate and map the biofilm models over a specified 

area. To confirm species clustering within the cultured biofilms, confocal laser scanning 

microscopy was coupled with fluorescent in-vitro hybridization. Furthermore, dense bacteria 

interface area samples, as an artificial model of clusters in a biofilm, were used to test the 

developed multivariate differentiation model. This confirmed model was successfully used to 

differentiate species in a dual-species biofilm that were additionally compared and confirmed 

by morphology analysis. The results show that the developed workflow was able to identify 

main clusters of bacteria based on spectral ‘fingerprint region’ information acquired from 

confocal Raman microscopy. Using this workflow, it was demonstrated that confocal Raman 

microscopy can be used to spatially analyze dual-species in vitro biofilms, thus providing an 

alternative technique to map biofilm models.
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Zusammenfassung 

In der Natur akkumulieren die meisten Mikroorganismen mit Hilfe einer extrazellulären Matrix 

auf Oberflächen. Diese Akkumulation von Mikroorganismen ist auch als Biofilme bekannt. 

Zahlreiche Forschungsarbeiten wurden zu diesen Biofilmen durchgeführt, insbesondere zu 

denjenigen, die beim Menschen Krankheiten hervorrufen. Hierzu gehören subgingivale 

Biofilme, die durch ihre Ansammlung auf Zähnen im Laufe der Zeit zu Gingivitis und 

Parodontitis führen kann. Während Dynamik, Bildung und Zusammensetzung dieser Biofilme 

bekannt sind, gibt es nur wenige Methoden, die eine kontinuierliche Überwachung des 

Wachstums von subgingivalen Biofilmen ermöglichen. Fortschritte im Bereich der optischen 

Spektroskopie führten zu einer Alternative zur klassischen Analyse dreidimensionaler 

mikrobiologischer Strukturen, wie destruktive Methoden oder Biofilm-Färbetechniken. In 

dieser Arbeit wurde gezeigt, dass der Einsatz der konfokalen Raman-Spektroskopie in 

Verbindung mit einer multivariaten Analyse einen Ansatz zur Differenzierung gängiger 

subgingivaler Bakterien bietet. Darüber hinaus wurde ein Workflow entwickelt, der die 

räumliche Differenzierung von Bakterien in einem subgingivalen In-vitro Biofilmmodell 

ermöglicht. Dieser Prozess wurde an einem weiteren medizinisch relevanten In-vitro 

Biofilmmodell, bestätigt.  

In der vorliegenden Arbeit wurde der Einsatz der konfokalen Raman-Mikroskopie zur 

Differenzierung gängiger subgingivaler Bakterienarten (Actinomyces naeslundii, 

Fusobacterium nucleatum, Streptococcus mutans, Veillonella dispar und Prevotella 

nigrescens) und die Identifikation von Arten in unbekannten Proben demonstriert. In einem 

zweiten Schritt wurde ein Workflow zur Bewertung und Unterscheidung von Bakterienarten in 

zwei unterschiedlichen In-vitro Biofilmmodellen mit zwei Spezies unter Verwendung der 

konfokalen Raman-Mikroskopie entwickelt. Das erste Biofilmmodell, bestehend aus 

Actinomyces denticolens und Streptococcus oralis, wurde mit dem "Zürich in vitro Modell" 

kultiviert. Candida albicans und Pseudomonas aeruginosa wurden ebenfalls gemeinsam als 

Biofilm kultiviert, um den etablierten Workflow zu bestätigen. Beide Biofilme wurden mit 

konfokaler Raman-Mikroskopie analysiert. Mit Hilfe der Clusteranalyse wurden die 

Biofilmmodelle räumlich differenziert und dargestellt. Zur Validierung wurde die konfokale 

Laser Scanning Mikroskopie mit fluoreszierender In-vitro Hybridisierung eingesetzt. Darüber 

hinaus wurden Proben mit Bakteriengrenzflächen als Modell von Clustern in einem Biofilm 

verwendet, um das entwickelte multivariate Differenzierungsmodell zu testen. Dieses Modell 

wurde erfolgreich zur Differenzierung von Organismen in einem Zwei-Organismen Biofilm 

verwendet. Zusätzlich wurden die erhaltenen Ergebnisse mittels Morphologie-Analysen 

verglichen und bestätigt. Die Ergebnisse zeigen, dass der entwickelte Workflow geeignet war, 

die untersuchten Bakterien durch konfokale Raman-Mikroskopie zu identifizieren. Dies basiert 

auf den „Fingerprint Regionen“, die charakteristisch für verschiedene Spezies sind. Mit Hilfe 

dieses Workflows konnte gezeigt werden, dass die konfokale Raman Mikroskopie Zwei-

Organismen Biofilme in vitro räumlich analysieren und darstellen kann und somit eine 

alternative Technik zur Darstellung von Multi-Organsimen Biofilmmodellen darstellt. 
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1 Introduction 

On our planet, most microorganisms live in multicellular communities consisting of bacteria, 

archaea, protozoa, algae and fungi. These are embedded to varying degrees in a hydrated 

biopolymer matrix almost always composed of extracellular polymeric substances, 

polysaccharides, proteins, nucleic acid and lipids, and form so-called biofilms (Branda et al., 

2005). Historically, however, microorganisms were initially studied in their planktonic phases 

and research was focused mostly on the investigation and characterization of this growth phase 

of microorganisms. Even though biofilms were first described in 1936 (Zobell and Anderson, 

1936), it took much longer until this research field was recognized and further explored, a fact 

made evident by the vastly increasing number of publications on this topic over the past two to 

three decades (Figure 1). 

 
Figure 1: Number of publications with the terms 'Biofilm' and 'Biofilm mapping' per year between 

1975 and 2020 (https://www.webofscience.com/wos/woscc/basic-search) 

The formation of biofilms occurs on phase boundaries. The areas on which biofilm growth 

appears are at the interface from liquid to a solid, liquid to gaseous or solid to gaseous phase 

(Flemming and Wingender, 2010). Here, microorganisms tend to attach, assemble, proliferate 

and form clusters on surfaces, enabling their survival under many different conditions. Some 

examples of such biofilm formations are biofilms on rocks in rivers (liquid and solid phase) or 

biofilms on building facades (air and solid phase). 

Biofilms typically have a negative connotation because they can have a harmful effect on 

human health. Especially biofilms in a medical setting have high importance. It is estimated 

that these biofilms can be accounted for approximately 65% of all bacterial infections (Lewis, 

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

0

1000

2000

3000

4000

5000

6000

7000

8000
 Number of 'Biofilm' Publications

 Number of 'Biofilm mapping' Publications

Publication Year

N
u
m

b
e
r 

o
f 
'B

io
fi
lm

' P
u
b
lic

a
ti
o
n
s

0

10

20

30

40

50

60

70

80

 N
u
m

b
e
r 

o
f 
'B

io
fi
lm

 m
a
p
p
in

g
' P

u
b
lic

a
ti
o
n
s



INTRODUCTION 
 

- 2 - 

 

2001). They are usually the result of Streptococci sp., Staphylococci sp., gram negative bacteria, 

and/or fungal infections (Kokare et al., 2009). Of the many biofilm varieties studied, medical 

biofilms on implants are of high concern due to their resilience to antibiotics, which can result 

in recurring infections and the failure of treatments (Bryers, 2008; Whiteley et al., 2002).  

Oral biofilms, as an example of such medical biofilms, have been studied in relation to oral 

diseases, like gingivitis and periodontitis (Tanner et al., 1996). Subgingival biofilms are 

specifically important because they grow in the subgingival sulcus and are in direct contact with 

both the tooth surface and tissue cells, where bacteria accumulation could lead to gingivitis or 

the development of other periodontal infections (Marsh and Martin, 2009; Zijnge et al., 2012). 

Both infections have a high impact on the human health and their corresponding treatment costs 

are high as a result of their resistance to treatment (Costerton, 1999; Römling et al., 2014; 

Wolcott et al., 2010). 

Bacterial distribution in biofilms have been widely identified and quantified over the past few 

decades. However, in recent years, the effect of the architecture of oral biofilms on the extent 

of disease has been identified as a factor that can have an influence on the behavior and damage 

exerted to the host. For this reason, it is to no surprise that research on biofilm mapping has 

increased, parallel to biofilm research in general (Figure 1) and underlines the demand to further 

understand the architecture of biofilms in different settings. In comparison to all biofilm 

publications, research on biofilm mapping is still very limited, making up only 0.01% of 

publications including the word ‘biofilm’ in the title. 

For oral biofilms specifically, the most common mapping technique to analyze biofilms is the 

use of fluorescence in-situ hybridization (FISH) combined with confocal laser scanning 

microscopy (CLSM) (Kommerein et al., 2017; Thurnheer et al., 2019; Xiao et al., 2017). This 

technique has had a large impact in understanding the dynamics of oral biofilms, because it 

enabled researchers to view biofilms with good resolution and allowed for characterization. 

Nevertheless, the complex preparation procedure, the cost of materials and equipment and the 

time associated to this technique demands for new ways of analyzing biofilms (Pantanella et 

al., 2013). 

Recently, with the technical advancements in optical spectroscopy it became possible to 

identify specific chemical components with high spectral resolution (Rzhevskii, 2019). 

Confocal Raman Microspectroscopy (CRM) is a combination of Raman Spectroscopy with 

confocal optical microscopy. Due to its unique technical characteristics, it allows for a non-
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destructive and non-invasive analysis of a sample with no to little sample preparation, a spatial 

resolution of 1 µm and the opportunity to continuously evaluate a sample (Liu et al., 2022). 

CRM measures scattered radiation and sample specific energy shifts from samples that have 

been excited with a laser beam. With the technology improvements of specific filters to inhibit 

scattered light to enhance the Raman signal, the development of more specific detectors, and 

the establishment of intensity strong laser sources to receive increased Raman counts, it has 

greatly increased the importance of CRM in biofilm research in recent years. 

As a result of these improvements, CRM has been used successfully for the spatial resolution 

of biomedical environments like tissue samples or bacterial cells (Cals et al., 2018; Gualerzi et 

al., 2017; Rebrošová et al., 2017; Sil et al., 2017; Strola et al., 2013). However, the acquired 

signals from these biomedical components are highly complex (Colniță et al., 2017; Stöckel et 

al., 2016; Tewes, 2019). Therefore, differentiation based on Raman spectra has had significant 

limitations up to now (Beier et al., 2012, 2010; Cepeda-Pérez et al., 2016; Rebrošová et al., 

2017; Zhu et al., 2004). For this reason, CRM has only been used a few times for the analysis 

of environmental biofilms thus far. The focus of these studies was based on molecular details 

of spectra 1. of single species biofilms (Gieroba et al., 2020; Kusić et al., 2015; Ramirez-Mora 

et al., 2019; Wickramasinghe et al., 2020), 2. over time (Carey et al., 2017; Chao and Zhang, 

2012; Keleştemur et al., 2020; Liu et al., 2020) or 3. under the influence of stress, mostly 

chemicals (Daood et al., 2020; Jung et al., 2014). In all cases, spatial mapping was not yet 

considered in these settings. However, the results showed great opportunities for the 

development of mapping techniques using Raman-based technologies. 

1.1 Microorganisms and biofilms 

1.1.1 Physiology and biochemistry of microorganisms 

Microorganism is a basic term for unicellular organisms and can further be divided into 

eukaryotes and prokaryotes (Figure 2). Bacteria and archaea belong to the prokaryote group, 

because they are simple-built unicellular organisms without a separated nucleus from the rest 

of the cell. In this work the focus is on various bacterial species which are Actinomyces spp., 

Fusobacterium nucleatum, Streptococcus spp., Veillonella dispar, Prevotella nigrescens and 

Pseudomonas aeruginosa. Cells that have a separated nucleus are grouped as eukaryotes, 

including fungi, algae and protozoa. In this work Candida albicans was used as a fungal 

organism pathogenic to human and involved in biofilm formation on medical devices. Besides 

the difference in cellular organization, there are more distinctions between the two kingdoms 
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of species. Both show four common structures: 1. the plasma membrane, that forms a barrier 

between the interior of a cell and their living environment, consisting of approximately 50% 

lipid and 50% protein by weight; 2. the cytoplasm, a viscous substance inside the cell that 

contains macromolecules important for different functions within the cell that is mainly 

composed of water, salts, and proteins; 3. nucleic acids, the genetic material of the cell; and 4. 

ribosomes, that facilitate protein synthesis, typically containing 40% protein and 60% RNA. 

The chemical composition of cells is especially important for the use of Raman spectroscopy 

and will be further discussed in the next chapters. 

 
Figure 2: Schematic of a eukaryotic cell (left) and a prokaryotic cell (right) with main components of 

the cell (National Center for Biotechnology Information). 

Prokaryotes come in various shapes, but many fall into three categories: 1. cocci (spherical), 2. 

bacilli (rod-shaped), and 3. spirilli (spiral-shaped). These shapes can be helpful for cell 

differentiation based on microscopic images. While the shape of a cell exhibits unique features, 

so does the macromolecular composition of a cell. As for most eukaryotic cells the main 

component in a bacterial cell is water – approximately 70% of the total cell weight. The 

remaining amounts are components that include mostly macromolecules, small monomer 

quantities and inorganic ions. With macromolecules making up around 96% of the dry weight, 

they are very important in terms of Raman spectra and Raman-active compounds that are 

discussed in the next chapters. Common macromolecules, monomeric subunits, and their 

locations in the cells including ratios are found in Table 1. Depending on species, growth state, 

metabolism, or whether they are part of a biofilm, these ratios can change (Wan et al., 2018). 

Chapter 1.3.3 will show in detail that different molecular structures show unique Raman 

spectra. Using this information together with the knowledge about overall macromolecular 

compositions shown in Table 1, certain predictions can be made to differentiate species. This 

will be introduced in the next chapters. While Table 1 shows differences in the presence, 

absence and concentration of molecules between prokaryotes and eukaryotes (such as absence 
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of lipopolysaccharides or reduced RNA concentration in fungi), it will also be important to 

determine how differences within multiple bacterial species can be determined using Raman 

spectra. 

Table 1: Macromolecules that can be found in a bacterial cell with their monomers, location within 

the cell and percentage of dry cell weight. Numbers are based on Escherichia coli and Salmonella 

typhimurium (bacteria) and C.albicans chlamydospores (fungi) (applied from Madigan et al., 

2018;Jansons and Nickerson, 1970) 

Macromolecule 
Primary subunit 

(monomer) 
Location in a cell 

Percentage of dry weight 

Bacteria Fungi 

Proteins amino acids 

cell wall, cell membrane, 

pili, flagella, ribosomes, as 

enzymes in the cytoplasm. 

55% 32% 

Lipids fatty acids membranes, storage depots 9% 20-25% 

Polysaccharides 
sugars (carbohydrates 

molecules) 

cell wall, capsule, 

inclusions (energy and 

carbon storage) 

5% 35-40% 

Lipopolysaccharides sugars and fatty acids membranes 3.4% - 

RNA nucleotides ribosomes 20.5% 6.2% 

DNA nucleotides nucleoid, plasmid 3.1% 3-5% 

 

1.1.2 Development of biofilms 

Whenever microorganisms attach, assemble, proliferate and form clusters on surfaces to 

improve their survival under different conditions, they are referred to as biofilms. According to 

Jefferson (2004) three potential incentives can drive the formation of biofilms: 1. protection 

from harmful conditions (for example host defense), 2. sequestration to a nutrient-rich area 

(colonization), 3. utilization of cooperative benefits (community). 

More than 99% of microorganisms worldwide organize themselves in multi-cellular 

communities. They are found at the interfacial regions solid-liquid (such as aquatic biofilms on 

rocks), liquid-gaseous (such as ‘floating biofilms’), and solid-gaseous (such as biofilms on 

building facades). Biofilms are comprised of a whole range of microorganisms such as Gram-

negative and Gram-positive bacteria, archaea, protozoa, algae or fungi which are integrated 

differently in the biopolymer matrix consisting of extracellular polymeric substances (EPS), 

polysaccharides, proteins, nucleic acids and lipids. Biofilm structures provide protection to the 

inhabiting populations from chemical and physical environmental agents such as disinfectant 

solutions, biocides, antibiotics or radiation. Furthermore, the architecture and robustness of 

biofilms do not allow removal from the surface even with vigorous rinsing. 
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For that reason, biofilms are omnipresent in nature where nutrients are available and have 

specific roles in the habitats where they form. They play a key role in global chemical cycles 

such as the oxygen cycle, the carbon cycle and nitrogen cycle. They also function as natural 

filters in water bodies by purifying water through biodegradation of toxic organic and inorganic 

compounds and thereby reduce pollution. Humankind have used these specific characteristics 

to their advantage. For example, biofilms are used for the treatment of wastewater or for 

biologically cleaning oil spills in oceans (Brooijmans et al., 2009; Wuertz et al., 2005). In recent 

years, however, biofilms have tended to have a negative connotation, stemming from 

contaminations in water, foods, cosmetics or in production processes, as well as in hospitals 

(Hall-Stoodley et al., 2004). Especially in production processes, microbial growth causes 

damage to materials or impairs the function of technical equipment, resulting in increased 

energy consumption, reduced production efficiencies and costly downtimes (Di Pippo et al., 

2018). 

Biofilms are also found on and within humans where they can have positive and/or negative 

effects for the human host. When biofilms are part of a natural flora such as skin, mouth or gut 

flora, they can be rather beneficial because they inhibit the formation of pathogenic biofilms 

and support the digestion. In addition, they contribute to vitamins. They can additionally 

function as a protection layer against the colonization of pathogenic microorganisms, reducing 

the chance of diseases. 

However, when biofilms are discussed in a medical and human context, a lot of these biofilms 

are harmful and require medical attention. Some of the infections associated to biofilms are 

summarized in Table 2, with the most prominent example being biofilms found on a tooth 

surface, a prerequisite for periodontitis or gingivitis or biofilms on medical devices. 

According to Lewis in 2001, 65% of all human infections from microorganisms have their roots 

in biofilms. Fighting these infections can require substantial economical investments. Thorpe 

et al. (2018) concluded that the costs to treat bacterial infections in the US in 2014 was around 

$2.2 billion, highlighting the need to increase research in this field. In fact, biofilms are up to 

1000-fold more resistant to antibiotics and disinfection than planktonic bacteria (Mah, 2012), 

making efficient and cost-effective treatment very difficult and therefore increasing the hospital 

costs of patients fighting these bacterial infections.  
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Table 2: Summary of human infections that are associated to biofilms with specific bacteria that are 

comprising these biofilms (applied from Purschke, 2012) 

infections or disease associated microorganisms 

caries 
Streptococcus spp., acid-forming cocci, Candida 

spp., anaerobic bacteria 

periodontitis anaerobic bacteria 

otitis media Haemophilus influenza 

chronic tonsillitis different species 

cystic fibrosis pneumonia Pseudomonas aeruginosa, Burkholderia cepacia 

endocarditis 
Streptococcus viridans, 

staphylococci 

necrotizing fasciitis Group A Streptococci 

musculoskeletal system Gram-positive cocci 

Osteomyelitis different species 

bile duct infection gut bacteria 

infectious liver stones gram-negative rod bacteria 

bacterial prostatitis gram-negative bacteria 

infections associated to medical devices  

contact lenses Pseudomonas aeruginosa, Gram-positive cocci 

stitch staphylococci 

respiration-associated pneumonia gram-negative rod bacteria 

prosthetic heart valve staphylococci, Enterococcus spp., Candida albicans 

arterial prosthetic 
staphylococci, P. aeruginosa, C. albicans, Klebsiella 

pneumoniae 

endovascular catheters staphylococci, Candida spp. 

cerebrospinal fluid shunt staphylococci, C. albicans, Cryptococcus 

peritoneal dialysis peritonitis different species 

bladder catheter infection 
P. aeruginosa, Klebsiella pneumoniae, Enterococcus 

spp. (E. coli), staphylococci, Candida spp. 

intrauterine device 
Actinomyces israelii, S. aureus, C. albicans, 

Enterococcus spp., staphylococci 

orthopedic prosthetics 
staphylococci, C. albicans, Enterococcus spp., P. 

aeruginosa 

 

The interesting question arises: why do bacterial biofilms cause such a great resistance to 

external factors, not only antibiotics and disinfections, but also environmental changes such as 

nutrient availability, temperature or pH changes? The formation of biofilms is divided in five 

different phases from an initial bacterial attachment to a surface, to the dispersion of bacteria 

from a biofilm. The different stages are summarized in Figure 3. 

In the first step, cells attach reversibly on inorganic or organic surface structures. This process 

is highly dependent on the material and structure of the surface. Biofilms will develop faster on 

rougher and hydrophobic materials than on smooth and/or hydrophilic surfaces (Pringle and 

Fletcher, 1983). However, many surfaces are coated by a fluidic milieu creating an environment 

of different chemical properties on the surface that adds to attachment of cells. Typically, Gram-

negative are the first bacteria that are able to attach to a surface because they show the polar 
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charge (which makes them hydrophilic) on the outside of their cells allowing for easy 

attachment in the second step. After some time, as a third progression, individual cells produce 

an EPS which attaches them to the surface and allows them to protect themselves from external 

forces and adverse conditions. Additionally, cells start to produce adhesins which function as 

molecular anchor proteins that additionally interact with the surface to strengthen attachment 

(Lawrence et al., 1987). 

 
Figure 3: Stages of biofilm formation. 1) initial surface attachment, 2) production of extracellular 

polymeric substance (EPS) and adhesins that lead to irreversible surface attachment, 3) formation of 

bacterial microcolonies, 4) biofilm maturation, 5) bacterial dispersion from the biofilm (Stoodley et 

al., 2002) 

Particularly the formation of EPS of attached bacteria has a large effect on the resistance to 

external forces. Although EPS consists of up to 98% of water, it is also comprised of 

polysaccharides, proteins, nucleic acids and lipids, creating an environment where 

microorganisms can get embedded in (Flemming, 2011). The composition of the EPS matrix, 

also known as ‘matrixome’, is an assembly of chemical und functional diverse biomolecules 

that can be grouped into either the category of molecules associated with the cell surface or 

molecules secreted extracellular. For biofilm formation, EPS plays a key role in the structural 

and functional properties of a biofilm that are not predictable or identifiable through the study 

of planktonic bacteria (Karygianni et al., 2020). These properties include surface adhesion-

cohesion, chemical heterogeneity, spatial organization, physical and social interactions and 

increased tolerance to antimicrobials. Forming the three-dimensional framework of biofilms, 

EPS allows the adhesion to surfaces, aggregation of cells and sorption of organic and inorganic 

compounds and ions (Flemming and Wingender, 2010), but can take on many more functions 

that are summarized in Table 3. Because of their broad and versatile functions within a biofilm, 

the EPS matrix is important for the survival of the biofilm. Depending on the embedded 

microorganisms, the nutrient availability and growth conditions, the composition of the EPS-

matrix varies. 
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Table 3: Different functionalities of the EPS components and role within a biofilm (applied from 

Flemming et al., 2007). 

Effect of EPS component Nature of EPS component Role in biofilm 

Constructive 
Neutral polysaccharides 

Amyloids 

Structural component 

Structural component 

Sorptive 
Charged hydrophobic 

polysaccharides 
Ion exchange, sorption 

Active Extracellular enzymes Polymer degradation 

Surface-active 
Amphiphilic 

Membrane vesicles 

Interface interactions 

Export from cell, sorption 

Informative 
Lectins 

Nucleic acids 

Specificity, recognition 

Genetic information, structure 

Redox active 
Bacterial refractory 

polymers 
Electron donor or acceptor? 

Nutritive Various polymers Source of C, N, P 

 

The three-dimensional framework allows the increased proliferation of bacteria and the 

continuous growth of microorganisms in layers. It is also noteworthy that within the biofilm 

forming process, bacteria that do not form individual biofilms are now able to live 

synergetically with biofilm-forming bacteria and use their EPS architecture for attachment 

(Tsuneda et al., 2003). Additionally, a large number of genes of microorganisms living in 

biofilms are regulated differently than in planktonic living cells. This sometimes leads to 

strongly pronounced phenotypic and physiological differences within the same species and also 

changes the specific macromolecular composition within cells (Sánchez et al., 2019). Once 

biofilms reach a certain maturation level, individual cells or microcolonies detach to colonize 

new locations and habitats. This dispersion and continuous colonization is the result of nutrient 

limitations or shear forces from fluidic flows (Stoodley et al., 2002). 

1.1.3 Oral subgingival bacteria and biofilms 

In dental medicine, biofilms are divided into two different groups depending on their location 

on a tooth: supragingival and subgingival biofilms. Supragingival biofilms are bacteria that 

adhere to a tooth surface above the gingiva while biofilms below the gingiva are called 

subgingival and are in direct contact with the gingival sulcus. Because of their varying growth 

conditions, different compositions of bacteria in a biofilm can appear. Here, accumulations of 

bacterial populations that prefer oxygen availability (aerobe or facultative anaerobe) are found 

in the supragingival area while populations that prefer no oxygen (anaerobe and obligate 
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anaerobe) are found in the subgingival area (Shi et al., 2015; Ximenez-Fyvie et al., 2000). 

Several bacterial species are able to also colonize both areas (facultative anaerobe). 

Because subgingival biofilms tend to be the driving force of gingivitis and periodontitis (Tanner 

et al., 1996), increased focus is put on the understanding of the dynamics of these bacterial 

biofilms and their architecture. Key subgingival microorganisms were identified previously by 

Socransky et al. in 1998 and were further specified by Abusleme et al. in 2013. Socransky et 

al. defined a model which explained the inter-relationship of bacterial species within a 

subgingival biofilm, associating specific organisms with health and disease status and placing 

these consortia into ‘Socransky’s complexes’ (Figure 4A). Examples of the Socransky 

complexes showed prevalence of A. naeslundii in the microbiota of a healthy periodontal 

region, whereas the prevalence of Veillonella spp. was more associated with the plaque present 

in periodontitis (Figure 4B). Abusleme et al. (2013) also identified subgingival species in 

periodontal healthy patients and patients with periodontitis. 

One unique characteristic of subgingival biofilms is the high complexity of bacterial species 

that are involved in the formation of biofilms (Ramberg et al., 2003; Ximenez-Fyvie et al., 

2000). Additionally, certain bacterial species colonize the surface early in the biofilm formation 

process (also known as early colonizers) while others tend to colonize at a later time point (also 

known as late colonizers) (Aruni et al., 2015). Early colonizers are able to colonize the pellicle 

coated tooth surface and are almost exclusively Gram-positive facultative anaerobic bacteria. 

Here, specific macromolecules such as adhesins in pellicles on the surface allow the interaction 

with bacterial receptor resulting in attachment (Marsh et al., 2011). In addition, early colonizers 

are also able to interact with each other resulting in even greater bacterial attachment (Marsh 

and Martin, 2009).  

Examples of early colonizers are Streptococci spp. and Actinomyces spp. (Figure 4C). 

Secondary colonizers such as P. intermedia, P. loescheii, Capnocytophaga spp and F. 

nucleatum are able to adhere to the early colonizers that are already present and later attracting 

late colonizers such as P.gingivalis (Kolenbrander and London, 1993). The process of bacteria 

adhering to one another is a process also known as ‘coaggregation’ where specific interactions 

of proteins and carbohydrates on the bacterial cell surface (in addition to hydrophobic, 

electrostatic and van der Waals forces) allow the bacteria-bacteria interactions forming the 

characteristic biofilm structure (Lemon et al., 2008). 
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Figure 4: Composition of subgingival biofilms. A) ‘Socransky’ diagram representation of the 

relationships of species within microbial complexes and between the microbial complexes (Socransky 

et al., 1998), B) Pie chart of mean % probe count of microbial ‘Socransky’ groups in subgingival 

biofilm samples from 22 periodontally healthy and 23 periodontitis subjects (Ximenez-Fyvie et al., 

2000), C) Averaged relative counts (%) of microbial ‘Socransky’ groups of initial biofilms after 6h 

from 15 subjects (Li et al., 2004). 

Ximenez-Fyvie et al. demonstrated in 2000 that all species defined in the ‘Socransky’ groups 

were present in subgingival biofilms with varying concentrations (Figure 4B). For instance, the 

two major groups of healthy and disease biofilms consisted of Actinomyces spp. and bacteria 

from the orange complex, making up 69.7% in healthy biofilms and 65.4% in diseased 

individuals, thus making them key members in the abundance and architecture of oral biofilms. 

Other noteworthy groups were also bacteria from the red complex and Streptococci spp. 

complex (Figure 4B). The analyzed biofilms in Figure 4B and their composition were based on 

fully matured biofilms. In comparison, species distribution in the initial subgingival biofilm 

process shows high proportions of mainly Streptococci spp. and Actinomyces spp. species 

(Figure 4C) with 5.97% A.naeslundii, 18.53% S.mitis, 10.48% and S.oralis (Li et al., 2004). 

Other bacteria that were found in substantial amounts in initial biofilms were Veillonella spp., 

Gemella spp., Rothia spp. or Neisseria spp. (Diaz et al., 2006). 
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Due to the role of early and late colonizers in the formation of subgingival biofilms, different 

species are found at different locations within the biofilm. As a result, it has been shown that 

many microorganisms tend to form clusters in subgingival biofilms, with dense ‘hotspot’ areas 

composed of only one of the species (Guggenheim et al., 2009; Zijnge et al., 2012). 

1.1.4 Bacterial and fungal biofilms with clinical relevance 

While gingival biofilms are formed almost exclusively from bacterial species, some biofilms in 

a clinical relevant setting are composed of bacteria and fungi (Puiu et al., 2017; Santus et al., 

2021). This makes them interesting to analyze for different reasons, for instance large structures 

such as the formation of hyphae or increased drug resistance. Additionally, fungi can act as a 

biotic surface that bacteria can attach to. In this work, bacteria-fungi biofilms were used to test 

the applicability of the developed Raman mapping workflow using other medically relevant 

biofilms beyond the oral environment such as biofilms on different types of prosthetics. These 

biofilms often proliferate on medical device surfaces as well as on and in the human body and 

for that reason are labeled as medical biofilms.  

Within the microbial population colonizing humans, C. albicans and P. aeruginosa are often 

identified coexisting in a human host (Peleg et al., 2010) and can be found in bladder catheter 

infections, endovascular catheters or on arterial and orthopedic prosthetics (Table 2). While oral 

biofilms tend to show synergistic behavior, conversely biofilms consisting of bacteria and fungi, 

such as P.aeruginosa and C.albicans, may also show antagonistic behavior (Hogan and Kolter, 

2002). Most research focuses on pathogenesis or quorum sensing of and within these biofilms 

(Grainha et al., 2020). 

Nevertheless, the influence of the architecture of biofilms on the pathogenesis of these dual-

species biofilms has not been considered much to this day (Rather et al., 2021). One example 

of linking architecture to survival strategies of P.aeruginosa in biofilms containing C.albicans 

was evaluated by Purschke et al. in 2012. Here, experiments were conducted determining the 

secretome at different time points in early biofilm development. Since both microorganisms are 

in direct competition for binding sites and nutrients, changes in proteomic composition and 

biofilm architecture appear over time (Purschke, 2012). In this study P.aeruginosa sequestered 

iron in the media by producing pyocyanin and 1-hydroxyphenazine to block growth of 

C.albicans (Kerr et al., 1999). 

Both microorganisms were also previously identified as contributors to oral candidiasis 

(Bandara et al., 2013) in the context of oral biofilm research. Additionally, they are both present 
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in substantial amounts in samples collected by oral swabbing (Hermann et al., 1999). The 

majority of research done on these biofilms have rather had a general medical background (not 

dental background, as shown in Table 2). Bridier et al. (2017) described the close relationships 

between the architecture of a biofilm and its functional properties, emphasizing the need to 

better describe and understand cell behavior, from single cell to multicellular scale, during 

biofilm structure development and maturation. Understanding the architecture of clinical 

relevant biofilms may ultimately help to treat biofilms better which is one of the motivations of 

this thesis. 

1.2 Methodology of identification of microorganisms 

In many different areas such as medicine, biology or technical processes, the characterization 

and identification of biofilms, including their biochemical composition, is highly important. 

Particularly for development of strategies to prevent and inhibit biofilms, this information is 

extremely valuable. While the microbial composition of biofilms in the medical field plays a 

key role in diseases, the architecture of the biofilm has an important role in understanding the 

disease mechanism. 

Several techniques have been used in the analysis of biofilms (Huang et al., 2020) under 

consideration of different factors such as microbial cells, metabolic activity, available nutrients 

and varying physico-chemical conditions (temperature, flow, pH, etc.). A summary of used 

mapping technologies for biofilms can be found in Figure 5. In general, mapping technologies 

can be placed into three main groups depending on the properties that are mapped by the 

technology. These include: 1. physical, 2. physico-chemical and 3. chemical properties. 

Depending on the question asked, some techniques are more qualified to be used than others 

are. For the analysis of biofilms, the understanding of physical characteristics and chemical 

properties of involved compounds and microorganisms is important, whereas physico-chemical 

analysis mostly refers to the attachment of bacteria and then ultimately biofilms but is not able 

to evaluate the architecture of samples. 

Common techniques used in understanding architecture include confocal laser scanning 

microscopy (CLSM), atomic force microscopy (AFM), scanning electron microscopy (SEM) 

and Fourier transform infrared spectroscopy (FT-IR). 

To date, fluorescence in-situ hybridization (FISH) coupled with CLSM is seen as the state-of-

the-art technique for oral biofilm architecture analysis because it allows the analysis of biofilm 
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structures, while at the same time also considering species composition and localization within 

the structure (Kommerein et al., 2017; Thurnheer et al., 2019; Xiao et al., 2017). CLSM allows 

the collection of spatial information through a structural non-destructive and three-dimensional 

technique to visualize the architecture of biofilms (Lawrence et al., 1998). Even though this 

techniques shows good resolution over a large sampling window of interest, detailed local 

resolution is limited and biofilm development cannot be analyzed over time (Barranguet et al., 

2004). Furthermore, sample preparation for the analysis is complex, expensive and requires 

extensive knowledge in the technique. 

 
Figure 5: Summary of different characterization technologies for biofilms. CLSM = Confocal laser 

scanning microscopy, SEM = scanning electron microscopy, AFM = atomic force microscopy, TEM = 

transmission electron microscopy, EIS = electrochemical impedance spectroscopy, IR = infrared 

spectra, FTIR = Fourier-transform infrared spectroscopy, EDX = energy-dispersive X-Ray 

spectroscopy, XPS = X-Ray photoelectron spectroscopy (applied from Huang et al., 2020) 

 

In contrast, SEM allows a much better resolution with an improved biofilm visualization. 

Sample preparation, however, requires fixation or drying of the sample which can have an 

influence on the structure and morphology of biofilms, reducing reproducibility, as well as the 

authenticity of the acquired images (Alhede et al., 2012). Recent improvements in sample 

preparation such as Cryo-SEM (Wille et al., 2017) and environmental scanning electron 
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microscopy (ESEM) (Fernández-Delgado et al., 2015) now allow for the analysis of un-fixed 

samples and thus improves biofilm analysis. 

Similar to SEM, AFM also allows the visualization of biofilm in the nanometer range and has 

been widely used for the analysis of topography examination due to its high resolution and 

sensitivity (Wright et al., 2010). For analysis, the required fixation methods can still have an 

effect on the integrity of the biofilms sample. With AFM being a sample-touching technique 

due to its scanning tip, the disruption can lead to detachment of cells from the biofilms having 

additional effects on the biofilm structure (James et al., 2016). 

For the above described visualization technologies for characterization of the species within a 

biofilm, sampling and staining are required, a process that can compromise the samples 

integrity and kill all living cells. Hence, there is a current lack of a simple, non-destructive, and 

cheap preparation procedures for biofilm visualization (Pantanella et al., 2013). In addition, 

with the exception of FISH, all other techniques don’t allow differentiation of bacteria unless 

the cell morphology is different and permits visual identification. 

Chemometric information based techniques, on the other hand, are able to produce information 

that allows for the distinction of microorganisms. Chemometric systems use mathematical, 

statistical and other methods to provide a maximum of chemical information in order to analyze 

chemical data. In this work, microorganisms are identified using specific vibrations of 

chemicals and compounds within a sample which, combined with chemometric systems, are 

able to differentiate different microorganisms. FTIR and CRM are techniques that fall into this 

group that collect chemical vibrations. Both methods deliver complementary information about 

the characteristics of a biofilm based on a molecular perspective (Gieroba et al., 2020; Sharma 

and Prakash, 2014). Here, these spectroscopic methods are based on the change of dipole 

moments (IR) or the polarization of molecules (CRM). These vibrations are excited through 

absorption of infrared light for FTIR or inelastic scattering of photons from a laser source 

(CRM). Due to the physical characteristics of these two methods, the same bond is excited 

differently resulting in diverse peak intensities. The most prominent example is the O-H stretch 

of water that shows a very prominent peak in IR spectra, due to their dipole moment, something 

that is only slightly visible in Raman spectra allowing for the analysis of samples in water. 

Compared with physical mapping techniques, the microspectroscopic approach allows a fast, 

non-destructive and label-free analysis of biofilms and can be seen advantageous for the 

analysis of the three-dimensional architecture and differentiation of biofilms. Because CRM 
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also allows the analysis of liquid samples, it can be advantageous for the analysis of biofilms 

samples and is, therefore, used in this thesis. 

1.3 Raman Spectroscopy Instrumentation 

By definition, Raman spectroscopy can be described as the analysis of molecules and crystals 

using inelastic scattering of light. The fundamental principle was first described by Adolf 

Smekal in 1923 (Smekal, 1923) and was proven by Chandrasekhara V. Raman five years later 

(Raman and Krishnan, 1928), winning him the Nobel Prize in 1930. 

It took, however, until the introduction and improvement of lasers, semiconductor detectors, 

more sensitive amplifiers and computer-based analysis tools to apply Raman-based 

technologies in common analysis procedures. While Raman spectroscopy has been used for the 

chemical characterization of different materials, the described advancements together with 

statistical methods now also allows the use of Raman for the study of biological samples as 

well. 

1.3.1 The Raman effect 

Monochromatic light, usually a laser source, is used in Raman spectroscopy to analyze a sample 

similar to infrared spectroscopy (IR). In both cases, a sample shows interactions with photons 

from the laser. In IR, the photons are absorbed by the sample and the energy of absorbed IR 

photons can be measured and visualized. 

For Raman spectroscopy, the scattering of photons is analyzed where two different types of 

scattering can be observed: 1. elastic scattering with the same frequency as the induced light -

also known as Rayleigh-scattering and 2. inelastic scattering resulting in a different, shifted 

frequency - also known as Raman-scattering (Kudelski, 2008). Elastic scattering occurs when 

no loss of energy of the incident photon can be observed, while inelastic scattering causes a loss 

of energy due to interactions with the sample. Only around 1 out of 108 photons of all scattered 

light is scattered inelastically as Raman-scattering (Hamasha, 2011). 

The interaction of a photon with the energy ℎ𝑣0 with a molecule causes a virtual absorption of 

the photon while moving the molecule’s energy level to a virtual state that can be found between 

a ground state and an excited state. This virtual state, however, although only short-lived, results 

in the scattering of a photon when moving to its original state. The interaction of the molecule 
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and the induced light can result in three different scattering scenarios that are also summarized 

in a Jablonski diagram in Figure 6.  

 
Figure 6: Jablonski diagram of possible scattering interactions between an incident photon (green) 

and a Raman active molecule. 

As mentioned, the most common interaction is Rayleigh scattering, where the induced photon 

energy ℎ𝑣0 moves the molecule to a virtual state but the same energy ℎ𝑣0 is again emitted and 

for that reason the molecule doesn’t take up any energy nor does it change the frequency 

between the induced and emitted frequency. 

Additionally to Rayleigh scattering, Stokes-scattering can appear, although at lower frequency 

of 1 per every 108 occasions. In this case, the induced and emitted frequency is different because 

the molecule emits a photon with the energy ℎ(𝑣0 − 𝑣𝑣𝑖𝑏) so the molecule accepts energy 

putting it into an excited vibrational state and thus the scattered photon has a ℎ𝑣𝑣𝑖𝑏 lower 

energy. If the molecule is already in an excited vibrational level then after the excitation by a 

photon, the molecule falls back to the ground state thus having a ℎ𝑣𝑣𝑖𝑏 higher energy than the 

induced light resulting in a frequency of ℎ(𝑣0 + 𝑣𝑣𝑖𝑏). Out of the three scenarios, this anti-

Stokes scattering is the least likely because much less molecules are in an excited, rather than 

the ground state. For the analysis using Raman spectroscopy, these two events of inelastic 

scattering of the photons from a molecule are of interest (Rostron et al., 2016). The scattered 

photon with a ℎ𝑣𝑣𝑖𝑏 lower energy, also known as the Raman shift, is able to be detected and 

visualized by a Raman instrument using a CCD detector. Depending on the molecular structure 

and thus vibrational properties of the analyzed sample, the scattered photon has multiple 

different energy levels resulting in many different peaks at different wavelengths. 
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1.3.2 Molecular vibrations of molecules and resulting Raman peaks 

The presence of inelastic scattering is dependent on the polarizability of a sample. Changes in 

the polarization of molecules can be detected by Raman spectroscopy and appear due to 

molecular vibrations. They are based on the individual movements of atoms within the 

molecule. Vibrations appear from the excitation of the molecules through photons of induced 

light from the laser as described in Chapter 1.3.1. For Raman spectroscopy, polarization 

describes how easily or difficult an electron cloud around a molecule can be distorted by a 

photon. Here, the polarization depends on the specific atoms, their masses and their bond 

strength. Depending on the structure and atom interactions of the molecule it comprises a very 

unique vibrational spectrum that is detected by Raman spectroscopy as the result of energy 

changes. 

In general, atoms within a molecule show periodic motion even if the molecule doesn’t show 

rotational or translational motions, which is termed molecular vibration and their frequency is 

termed vibrational frequency. These molecular vibrations can additionally be induced through 

the photons from a laser source generating scattering. For this scattering, normal oscillation 

modes are considered. During a normal oscillation mode, all atoms within a molecule oscillate 

at the same frequency. A molecule comprised of N atoms has 3N-6 normal modes, while a linear 

molecule has 3N-5 normal modes (Landau and Lifshitz, 1976). Because the frequency of a 

normal mode depends on the bond-strength and the mass of the specific molecules, distinctive 

frequencies of these Raman specific active vibrational modes can be detected. This can be seen 

as peaks in a spectral readout and are measured in the units of wavenumbers   (cm-1) (Harris 

and Bertolucci, 1978). 

For the analysis of molecules, two different modes are Raman-active and can be detected: 1. 

stretching modes and 2. bending modes. Within the stretching mode, it can further be 

differentiated between symmetric and asymmetric stretch, where both types show a change in 

bond length between two atoms. When the bond length remains unchanged, but the angle 

between two bonds change then they are considered bending modes. Within the bending mode, 

it can further be differentiated between scissoring, rocking, twisting and wagging depending on 

the direction of atom bending. For simplicity, the different vibrational modes are shown in 

Figure 7. 

The molecule’s Raman spectrum is able to give information about a molecular structure. This 

information includes the Raman energy shift of a peak, the intensity of a peak and thus the 
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concentration present in the sample and the polarization properties of a peak that is linked to 

the molecule’s specific symmetry. Because microorganisms are comprised of many different 

molecular groups with many different vibrational modes, a broad range of spectral peaks are 

expected, often making a specific molecule identification difficult due to the overlapping of 

peaks. Nevertheless, certain chemical compounds show unique peaks that can be assigned to 

specific compounds and will be discussed in the next chapter. 

   

Figure 7: The different types of Raman-active vibrational modes for the molecule O=CH2. 

1.3.3 Information-rich spectral regions of microorganisms 

As described in Chapter 1.2, bacteria are comprised of different macromolecules besides water. 

These compositions can be species specific, offering an opportunity to differentiate species 

based on their specific macromolecular compositions. However, signals from these molecules 

can be very complex and can be superpositioned in a Raman spectra due to the similar vibrations 

within the molecule. For that reason, it is not trivial to attribute specific peaks to a molecular 

structure of a macromolecule. For the development of prediction and mapping models, the 

collection of many spectral information are essential to locate the areas that show the most 

significant differences. 

In a preliminary experiment, the full spectral range between 103.3-3205 cm-1 and a total of 1950 

wavenumbers were recorded (Figure 8) to determine information-rich areas within the 

spectrum. Here, two areas with peaks can be identified. In comparison, the peaks in the area 

600-1800 cm-1 are lower in intensity than the peak between 2840-3000 cm-1. Additionally, it 
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can be seen that the area between 600 and 1800 cm-1, also known as the ‘fingerprint region’, 

shows varying peaks and can be used for the identification and differentiation of 

microorganisms (Lorenz et al., 2017; Sato and Martinho, 2018; Socrates, 2001) and thus builds 

the basis for the developed workflow in this thesis. 

The spectral peaks in the area between 2840-3000 cm-1 can be directly associated to symmetric 

and asymmetric stretch vibrations of C-H3 and C-H2 bonds of fatty acids in phospholipids as 

well as proteins (Neugebauer et al., 2007). Because these macromolecules make up the majority 

of macromolecules within a cell, these vibrations are Raman active and due to their high 

concentrations of over 60% are large in their count, thus skewing the peak identification in the 

fingerprint area. 

Figure 8: Example of Raman spectra with an extended range (103.3-3205 cm-1) with S.mutans and 

A.naeslundii. 

 

In order to understand the chemical profile of microorganisms, it is important to know the 

individual spectra of the components present within a cell. While some compounds show 

unique spectral profiles that allow simple identification, many others show similar peaks and 

make identification difficult due to their overlap. 

Proteins, for example, are described as chains of amino acids that are linked by peptide bonds. 

With a total of 20 amino acids, the individual spectra can be very unique depending on their 

side chains that can be Raman active. A total of eleven structures could be identified that 

showed unique peak features while the other nine showed similar spectra to the other eleven 

and weren’t individually pictured. The exemplary spectra are shown in Figure 9. 
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Figure 9: Raman spectra of amino acids with a non-cyclic R side chain: (a) glycine, (b) L-alanine, (c) 

L-valine, (d) L-serine, (e) L-glutamate, (f) L-arginine and with a cyclic R side chain: (g) L-

phenylalanine, (h) L-tyrosine, (i) L-tryptophan, (j) L-histidine, (k) L-proline (applied from De Gelder, 

2008). 

Fatty acids as lipids make up the cell membrane of a microbial structure, but can also be found 

inside a cell as lipopolysaccharides and as a storage depot. Here, simple triglycerides are made 

up of three fatty acids and glycerol. In comparison, phospholipids are made of triglycerides and 

other components such as nitrogen or phosphorous compounds. Because the available lipids are 

known and can also be species specific, they can be used for classification. Examples of linear 

unbranched saturated fatty acids can be found in Chapter 8.2 of the Appendix and can be used 

as a reference for lipid identification in Raman spectra. In comparison to amino acid spectra, 

fatty acids show less spectral peaks because they show fewer vibrational modes that are Raman 

active. Nevertheless, they also show unique spectral peaks that allow differentiation. 

Polysaccharides are another important component group because they can be found as part of 

the capsule structure of bacteria, but they are also extensively present in EPS especially when 

forming biofilms. Glucanes, for example, are the major group of polysaccharides of EPS formed 

by S.mutans (Klein et al., 2015). The structure of polysaccharides are made of chain sugar 

monomers that can be found in different compositions based on individual bacteria. For 

simplicity, five major saccharides and their Raman spectra are shown in Chapter 8.2 in the 

Appendix that can be frequently found in biofilm and bacteria related questions. 

The last group of macromolecules that are present in higher abundance in microorganisms are 

nucleic acids in the form of DNA or RNA. They are composed of polymers of nucleotides 

where the nucleotides are attached to a sugar by a glycosidic bond and phosphate. The sequence 

is comprised of combinations of five different nucleotides which are adenine, cytosine, guanine 

and thymine (for RNA it is uracil instead). These nucleotides also show unique Raman spectra 

found in Chapter 8.2 of the Appendix. 
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Even though the microorganism’s molecular composition may be interesting in answering 

questions that require insights into the molecules present in a microorganism, it is not always 

necessary to know the exact composition, but rather to focus on the underlying differences 

between microorganism’s spectra. Understanding the absence or presence of certain peaks will, 

however, help the classification and understanding of microorganisms. Combined with robust 

training, calibration datasets and algorithms it allows differentiation. These statistical models 

will be discussed in Chapter 1.4. 

1.3.4 Raman-based methods for biofilm analysis 

Several Raman-based methods that allow the analysis of biological samples are available and 

are summarized in Table 4. The Raman-based technology described above refers to the classic 

analysis method using Raman Microscopy (RM) and can be seen as the basis for all the other 

analyses. All other technologies are variations of this method and offer substantial advantages 

in their application compared to RM and for that reason have their own specific applications 

that amplifies certain peaks of a spectra (Kudelski, 2008; Rostron et al., 2016). For simplicity, 

methods are put in relation to the analysis of biological samples and how they fit into the 

consideration of this thesis. 

Resonance Raman-Microspectroscopy, for example, uses a laser that generates incident 

photons close to the electronic transitions of a compound. Because of this, the quantum yield 

of the Raman effect is greatly improved, allowing for the reduction of acquisition time. While 

this characteristic is helping the acquisition of biofilms, the method requires the detection and 

use of chromophores such as cytochrome c (Virdis et al., 2014), carotenoid (Li et al., 2012) or 

rhodopsin (Bruun, 2013). Because these compounds are not naturally found in oral and other 

medical biofilms, these compounds would need to be incorporated in biofilms artificially, which 

may alter the structure of the sample. Instead, using a different laser source such as a UV-Light 

laser could allow the analysis of biofilm samples without the alteration of the sample. However, 

the laser would only allow for the amplification of aromatic amino acids or nucleic acids 

(Manoharan et al., 1990). Because these chemical components are present in all 

microorganisms of interest, this technology doesn’t allow the use for differentiation of bacterial 

species for mapping because spectral information are not species specific enough. 

Because biological samples typically show high fluorescence and only small peak 

characteristics, amplification methods that amplify peaks and thus reduce the fluorescent signal 

have been of interest. One of these methods is SERS. Fleischmann et al. first explained in 1974 
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the Raman signal amplification effect by showing the increased pyridine signal on a silver-

based electrode. It was shown that that due to the nanoscale roughness of metal surfaces, the 

signal of a laser is amplified. For SERS, either the use of a metallic surfaces or the attachment 

of particles to the analyte can be used for amplification (Ivleva et al., 2010). Nowadays, typical 

metals, like gold or silver are used, which can be attached to a surface by electrochemical 

roughening, coating of nano-structured substrates or the deposition of metallic nanoparticles 

usually in a colloidal form (Mikac et al., 2015). Previously, SERS was successfully used for the 

analysis of chemical variation of different biofilm stages (Chao and Zhang, 2012), location of 

specific compounds within a biofilm (Colniță et al., 2017) or biofilm characterization (Seda 

Keleştemur et al., 2018). While SERS is a great method for the acquisition of specific bands 

and demonstrated success in the analysis of biofilms it, again, requires a rather extensive sample 

preparation similar to resonance RM which limits the application for biofilm mapping. 

Additionally, not all component peaks are amplified in the same manner which can make 

species differentiation difficult (Zeiri et al., 2002). 

Table 4: Overview of Raman-based technologies that can be used for the analysis of microbiological 

samples and biofilms (applied from Kubryk, 2017). 

Technique Advantages Disadvantages Application 
Raman-

Microspectroscopy 

 Molecular/chemical 

Fingerprint 

 Water independent 

 Lateral  resolution in 

µm 

 Marker-free 

 Interference from 

fluorescence 

 Long measurement 

times 

 Low resolution 

 Biochemical imaging 

 Identification and 

characterization of 

single microorganisms 

and EPS 

 Analysis of biofilm 

formation 

Resonance Raman-

Microspectroscopy 

 High resolution and 

selectivity 

 Fast analysis 

 Chromophores are 

required 

 Photo-bleaching 

 Biochemical imaging 

 Fast identification and 

characterization of 

microorganisms 

 Cell sorting 

Surface enhanced 

Raman-Spectroscopy 

(SERS) 

 Signal amplification 

 Deletion of 

fluorescence signal 

 Fast analysis 

 Reproducability of 

spectra difficult 

 Dependent on analyte 

and point of absorption 

 Biochemical imaging 

 Fast identification and 

characterization of 

microorganisms and 

EPS 

 Analysis of quorum 

sensing 

Tip-enhanced Raman-

Spectroscopy (TERS) 

 Lateral resolution 

below the optical 

diffraction limit 

 Correlation between 

structural and 

topographic data 

 Difficult production of 

tips 

 Contamination of tips 

 Biochemical imaging 

 Characterization of 

single microorganisms 

 Analysis of cell 

surface dynamics 

 

In contrast to resonance Raman Microspectroscopy and SERS, TERS has the unique advantage 

that the technique can be used without any sample preparation and thus ensures the integrity of 

a sample. Additionally, the tip enhancement has the valuable benefit that a resolution of up to 
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20 nm is possible. Schmid et al. (2010) demonstrated that TERS allowed the mapping of a 

sample area as small as 10-50 nm in diameter. TERS, being similar to SERS, uses a metal-

covered tip, allowing a more precise sample positioning in the near field and also amplifying 

Raman signals. Previous studies showed that, due to the non-invasive and non-destructive 

analysis of samples, TERS was able to be used for the analysis of structures of polysaccharides 

and peptides within bacterial cells (Neugebauer et al., 2007; Pahlow et al., 2012). For that 

reason, TERS offers solutions to all described disadvantages of the other Raman-based methods 

including classic CRM. Nevertheless, while the advantages are clear, the production of such 

tips can be difficult and complex. This prevents TERS to be used more regularly, especially for 

mapping research using Raman techniques. It is due to the difficulty of manufacturing such tips 

that this technology was not considered in this thesis. 

1.4 Mathematical Methods and Data Analysis 

As pictured in Chapter 1.3.3, Raman spectra of microbiological samples contain Raman-signals 

from all macromolecules present in the cell that are: 1. Raman-active and 2. in the focus of the 

laser. As shown in Chapter 1.1, these discussed major macromolecules are present in all 

microbial cells and thus their specific Raman-active bonds from nucleic acids, proteins or lipids 

create similar Raman spectra, making the visual differentiation of spectra difficult. 

Additionally, bacteria in subgingival biofilms occupy the same habitat and, therefore, show 

even more similar chemical compositions. Even though differences in spectral fingerprint 

patterns of oral bacteria have been shown to be minor, they still allow differentiation between 

species to be made (Beier et al., 2012; Berger and Zhu, 2003). Conversely, microorganisms 

from different domains such as P.aeruginosa being a prokaryote and C.albicans being an 

eukaryote show more diverse peak profiles in their spectra, simplifying the differentiation of 

these microorganisms (Keleştemur et al., 2020). 

In order to extract useful information from spectral profiles, statistical and chemometric 

approaches are essential to gain inside knowledge into chemical composition and 

differentiation, also looking at their applicability for biofilm mapping. To deliver good 

informational output for these approaches, the nature of Raman spectra, such as fluorescent 

background or noise, hinders these processes from performing well. These need to be combined 

with common processing steps discussed in Chapter 3.3.1. Because Raman spectra of 

microorganisms are more complex than classic chemical samples, processing is crucial to 
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extract the full potential of statistical analysis and give the opportunity to use it for mapping 

approaches (Bocklitz et al., 2011). 

Within multivariate analysis, a broad spectrum of methods are available to analyze a large 

dataset with high amounts of samples (here Raman spectra in general) that show large numbers 

of variables (Raman peaks and their adjacent intensities) (Dillon and Goldstein, 1984). The 

purpose of these multivariate methods are to minimize dimensions of the data and find patterns 

and groups that allow discrimination and classification of species. For the analysis of 

microbiological data from Raman spectra, two basic methods are typically used: 1. 

unsupervised and 2. supervised classifications, whereas analysis models were previously also 

used in a combination of both types of classifications. 

With the unsupervised method, learning from the statistical model refers to creating underlying 

patterns from an unspecific dataset without any reference data to labeled outcomes or 

predictions. Such examples are principle component analysis (PCA) (Almarashi et al., 2012; 

Colniță et al., 2017; Gualerzi et al., 2017; Lu et al., 2011; Samek et al., 2015; Sil et al., 2017), 

cluster analysis (CA) (Bonifacio et al., 2010; Hutchings et al., 2010; Maitra et al., 2020; 

Parthasarathy et al., 2008) or hierarchical cluster analysis (HCA) (Cheeseman et al., 2021; Harz 

et al., 2005; Kniggendorf et al., 2011). In analytical statistics, unsupervised methods treat all 

variables in a database the same and use high-dimensional points for classification, but do not 

consider assigned classifications of variables. This makes the model efficient and easy to use 

and generates good output especially in models that require classifications into two groups. 

For more complex systems, supervised methods may be advantageous. Examples being partial 

least square analysis (PLS) (El Senousy et al., 2014; Fanesi et al., 2018; Feng et al., 2019; Villa 

et al., 2019), support vector machines (SVM) (Jung et al., 2014; Kusić et al., 2014) or linear 

discriminant analysis (LDA) (Krafft and Popp, 2019; Potter et al., 2020). Often, combinations 

of these systems are also used. Conversely to unsupervised methods, supervised methods 

require and use annotated classifications to maximize inter-class variance. However, these 

methods require knowledge of the dataset before examination, such as calibration datasets to 

be able to identify and group samples which can be problematic is some cases.  

For that reason, PCA is normally used for simple and linear dimensionality reduction while 

PLS is used for classification of different sample groups. In this thesis, three statistical 

approaches were used: 1. PCA and 2. CA as unsupervised approaches and 3. a variation of PLS 
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and LDA as a supervised method. These methods and their applicability for the different 

questions are introduced and discussed in Chapter 3.3.2. 

1.5 Insights and results from previous studies 

Publications that use CLSM as the mapping method of choice remain the majority in topics that 

require mapping techniques in a biofilm setting. The advantages over other mapping techniques 

have been discussed previously. CLSM shows good results when answering questions related 

to biofilm architecture. Because CLSM is a destructive technique that doesn’t allow continuous 

observation of growth of the same biofilm, new techniques are evolving that allow that. 

Nowadays, through advancements in technology, optical spectroscopy techniques offer the 

opportunity to identify chemical compounds in high spectral and spatial resolution (Rzhevskii, 

2019). In addition, it is also possible to combine the power of 3D sample analysis with focused 

chemical composition. CRM is one of these emerging techniques. For this reason, previous 

studies were able to demonstrate that the use of CRM is able to spatially differentiate complex 

biomedical sample in a tissue or bacteria setting (Cals et al., 2018; Gualerzi et al., 2017; 

Rebrošová et al., 2017; Sil et al., 2017; Strola et al., 2013). 

To the best of my knowledge, CRM has only been used a few times for the analysis of 

environmental biofilms thus far, but never as a mapping technology. Instead, the focus of these 

studies were based on extracting information to evaluate molecular details of spectra 1. of single 

species biofilms (Gieroba et al., 2020; Kusić et al., 2015; Ramirez-Mora et al., 2019; Samek et 

al., 2015; Wickramasinghe et al., 2020), 2. over time (Carey et al., 2017; Chao and Zhang, 

2012; Keleştemur et al., 2020; Liu et al., 2020) or 3. under the influence of stress, mostly 

chemicals (Daood et al., 2020; Jung et al., 2014). While they give insights into the use and 

applicability of CRM in a microbiological setting, the acquired data is not suitable for 

answering questions with regard to the architecture of the analyzed samples. While SERS 

remains promising as a modified Raman microscopy technique (Chao and Zhang, 2012; 

Keleştemur et al., 2020; Seda Keleştemur et al., 2018) with the potential for higher levels of 

discrimination spectra, it only allows the cultivation of biofilms on specified SERS-active 

surfaces or modifications through nanoparticles. Because the focus of this thesis is on in-vitro 

models and chemically un-modified biofilm samples, classic CRM is considered in this 

research. 
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Nonetheless, a limited number of research groups have looked at chemometric information for 

the spatial distribution of bacteria in biofilms. For example, Beier et al. (2010) were able to 

demonstrate that it is possible to differentiate two Streptococci sp. in a pseudo-biofilm sample 

(term used by the author) and were able to confirm differentiation of species by PC-LR. This 

was the first time CRM appeared as an option for potential biofilm mapping. However, this 

analysis was based on modified bacteria by crystal violet staining of one species and the 

biofilms were not based on cultured biofilms over time. Gieroba et al., (2020) was able to use 

chemical maps to locate glucans and Amide I for different Streptococci sp.. While they were 

able to determine concentrations of different chemical compounds in a specified area, the 

research’s focus was not on the differentiation of species in a multi-species biofilms based on 

their chemometric spectra and was lacking the statistical evaluation that resulted in the chemical 

maps. Horiue et al., (2020) was able to map bacterial species in biofilms grown near drains of 

household bathrooms (known as pink biofilms due to their color) using specific pigment 

spectral bands and statistical methods. While differentiation of areas was possible, the study 

was unable to associate clusters to specific bacterial species. Lastly, Kniggendorf and 

Meinhardt-Wollweber, (2011) were able to demonstrate that resonance Raman spectroscopy 

was able to identify and locate different microbial species on granules samples from sequencing 

batch reactors for anaerobic ammonium oxidation. This method was not able to be applied in 

this work though because, as shown in Chapter 1.3.4, resonance Raman microscopy requires 

chromophores (cytochrome-c in the work), which are not expected in biofilms cultured in this 

thesis. 
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2 Objectives 

Previous scientific publications already suggested the use of CRM for differentiation of 

microorganisms based on their unique chemometric profiles (see Chapter 1.5). A vast majority 

of the research focuses on the analysis of natural microbiological and biofilm samples (Lee et 

al., 2021; Pezzotti, 2021), while only a few consider medical and oral biofilms (Gieroba et al., 

2020; Rebrošová et al., 2019). Additionally, spatial mapping of biofilms has not yet been 

evaluated in the context of using Raman technologies. 

The goal of this thesis is the development of a workflow to spatially map in-vitro biofilms 

(subgingival and other medically relevant biofilms) using chemometric profiles acquired from 

confocal Raman technologies. 

In the first step, it is hypothesized that using CRM with specific prediction models allow the 

differentiation of common oral bacteria from different Socransky complexes (Socransky et al., 

1998). These oral bacteria are part of the core subgingival microbiome and are additionally 

confirmed and quantified as such by Abusleme et al. (2013). Specifically, the core species 

evaluated were Fusobacterium nucleatum, Streptococcus mutans, Veillonella dispar, 

Actinomyces naeslundii and Prevotella nigrescens. Here, for the analysis of the identity of 

microorganisms, both planktonically and biofilm grown species were analyzed and compared 

by multivariate statistical models. In this first step the purpose was to lay the groundwork for 

the use of CRM in in-vitro research for subgingival biofilm models and establish the application 

of artificial subgingival biofilm models. 

In a second step, it is then hypothesized that CRM, coupled with multivariate analysis 

techniques such as a PCA and CA, are able to predict and differentiate subgingival bacteria in 

a biofilm model. To develop and confirm this approach, different datasets, samples and analysis 

technologies were used to confirm: 1. species clustering in the in-vitro grown subgingival dual-

species biofilm model, 2. the use of a multivariate analysis model in a mapping setup and 3. the 

use of chemometric information from Raman spectra for the mapping of in-vitro dual-species 

biofilm models. Distribution analysis using CRM in combination with multivariate analysis 

was performed with dense bacteria interface area (DBIA) samples using planktonic bacteria 

and was further compared to morphology and CLSM. Lastly, artificially grown in-vitro dual-

species biofilms were then mapped using the previously developed workflow and were also 

compared to morphology measurements of the biofilm. The developed method was then applied 

to additional medically relevant biofilms consisting of bacteria (P.aeruginosa) and fungi 

(C.albicans) to demonstrate the applicability of the developed method. 
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3 Material and Methods 

3.1 Materials 

3.1.1 Instruments 

Studies were performed at Procter&Gamble Greater London Innovation Centre in Egham, UK 

and Fraunhofer IGB in Stuttgart, Germany. 

Raman Microscopy 

At Procter&Gamble the instrument used for analysis was a ThermoFisher Scientific DXR2xi 

(ThermoFisher Scientific, Waltham, Massachusetts, USA), which was equipped with a 50x 

long working distance objective, a 532 nm filter and a 532 nm laser to capture a full spectral 

range of 50-3500 cm-1. Data acquisition was performed using a 25 µm confocal pinhole setup, 

5.0 mW laser power, 0.25 sec exposure time, 100 scans, a low baseline correction and a spectral 

detection range from 600-1800 cm-1 (Kriem et al., 2020). 

At Fraunhofer IGB, a Renishaw inVia™ Qontor (Renishaw plc, Wotton-under-Edge, UK), 

equipped with a 100× objective, a 532 nm filter and a 532 nm laser was used to capture a 

spectral range of 282.8-2016.2 cm-1 and 1015 collection points using a CCD camera. Data 

acquisition was performed using 50% laser power (equivalent to 25 mW), 1 sec exposure time 

and 10 accumulations (8 accumulations for biofilm mapping) (Kriem et al., 2021). 

Unless otherwise indicated, all spectral acquisitions have been acquired using the settings 

described above. 

 
Figure 10: Comparison of spectral peaks of two Raman instruments with V.dispar. (A) shows the  

average Raman spectra (from 96 spectra) generated with a ThermoFisher Scientific DXR2xi and (B) 

shows the Raman spectra (from 300 spectra) generated with a Renishaw inVia™ Qontor. Note that 

counts from the Renishaw instrument are generally around 5-fold higher than the counts from the 

ThermoFisher instrument. 
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V.dispar was used to display spectral peak differences of the two instruments. Average spectra 

are shown in Figure 10. Differences appear in the counts of peaks with Renishaw inVia™ 

Qontor counts being roughly a 5-fold higher than ThermoFisher Scientific DXR2xi. As seen in 

the acquisition settings, the Renishaw inVia™ Qontor is equipped with a more powerful laser 

allowing a 5-fold increased laser strength that results in the equivalent increased signal count. 

Because the objectives of this work are on the differentiation of spectral information, there is a 

dependency on the spectral information that can be accumulated. Figure 10 shows, that the 

Renishaw inVia™ Qontor is able to also detect minor peaks that improves the information 

available that can be used for statistical analysis and differentiation of species. Furthermore, 

Figure 10 shows that both systems are able to detect major peaks that are also specified in the 

peak assignment table of Table 14 (724 cm-1: Adenine; 1004 cm-1: Phenylalanine; 1127 cm-1: 

C-C, C-N stretch of proteins; 1174 cm-1: -; 1230 cm-1: Amide III; 1308 cm-1: -; 1339 cm-1: 

Tryptophan; 1447 cm-1: CH2 deformation; 1580 cm-1: Amide II; 1665 cm-1: Amide I). The 

comparison of the two systems showed that both systems can be used for Raman spectra 

evaluations in this work. The use of two different Raman systems and the similar peak detection 

also shows that repetitive results can be generated on different systems while Renishaw inVia™ 

Qontor shows increased detection of weaker peaks as well and for that reason was further used 

for biofilm mapping applications. 

Confocal Laser Scanning Microscopy (CLSM) 

An inverted microscope Zeiss LSM710 (Zeiss, Oberkochen, Germany) fitted with an Axio 

Observer Z1, a UV laser, an Ar-Laser (Lasos, Jena, Germany), a He-Ne laser (Zeiss, 

Oberkochen, Germany) and a computer-operated confocal laser scanning system was used for 

the analysis of biofilm architecture using FISH staining. Due to the species specific fluorescent 

stains, filters were set to 500-540 nm for detection of 6-FAM and 570–630 nm for Cy3. Images 

were obtained with a 100× oil immersion objective. 

Microscopic imaging 

Microscopic images using a Renishaw inVia™ Qontor were obtained as well, to obtain 

microscopic images as well as Raman spectra of the same image field simultaneously. 

Morphological analysis was done based on the shape of bacteria as described in Chapter 1.1.1. 

While S.oralis is cocci shaped, A.denticolens is rod shaped simplifying the differentiation 

process on the microscopic image. For differentiation an ImageJ (Rasband) plugin with the 

name MorphoLibJ was used (Morphological segmentation). This allowed for a rapid and un-
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biased differentiation of microbial shapes that can be used for comparison of distributions 

determined based on Raman mapping. 

Quantitative Polymer Chain Reaction (qPCR) 

A LightCycler® (Roche, Basel, Switzerland) RT-PCR instrument was used with settings 

described in Methods. 

3.1.2 Software 

Raman data acquisition with the ThermoFisher Scientific DXR2xi was performed using 

OMNICxi Version 1.6.0.26 (ThermoFisher Scientific, Madison, WI, USA). Raman data 

acquisition with the Renishaw inVia™ Qontor was performed using WiRe Version 5.3 and 5.4 

(Renishaw plc, Wotton-under-Edge, United Kingdom). Data processing of spectral data from 

both instruments was done using WiRe 5.2 (Wotton-under-Edge, United Kingdom). The 

specific applied processing steps are described in Chapter 3.3.1. 

Statistical multivariate analysis was achieved with two different software programs: Origin 

2019b (OriginLab Corporation, Northampton, MA, USA) and SIMCA15 (Umetrics, Umea, 

Sweden). PCA analysis was done using Origin 2019b and PLS analysis was done using SIMCA 

15. 

CA and mapping was performed using Renishaw WiRe 5.2 through a multivariate data analysis 

module. Details on the specific analysis in this work can be found when the principles of cluster 

analysis are discussed in Chapter 3.3.2. 

CLSM analysis with FISH staining was done using Zeiss ZEN Version 2.3 (Oberkochen, 

Germany). Images from CLSM were then processed and recombined using ImageJ (Rasband, 

1997). 

Additionally, all graphs and figures were created using Origin 2019b. 

3.1.3 Microorganisms 

Table 5 shows the different microorganism species used for the experiments. Before the 

experiments, species were confirmed using MALDI-TOF or PCR. 
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Table 5: Used Microorganisms and species ID. 

Species ID 

Actinomyces naeslundii 

Fusobacterium nucleatum 

Porphyromonas nigrescens 

Streptococcus mutans 

Veillonella dispar 

ATCC 12104 

ATCC 25586 

ATCC 33563 

ATCC 35668 

ATCC 17748 

Actinomyces denticolens 

Streptococcus oralis 

Veillonella dispar 

Candida albicans 

Pseudomonas aeruginosa 

DSM 20671 

DSM 20066 

DSM 20735 

ATCC 10231 

DSM 22644 

3.1.4 Consumables 

All chemicals were purchased from Sigma Aldrich (St. Louis, MO, USA) or VWR (Radnor, 

PA, USA) unless otherwise indicated. All bacteria strains were purchased from ATCC 

(Manassas, VA, USA) or DSMZ (Braunschweig, Germany). Primer sequences and gene 

fragments (gBlocks™) for RT-PCR quantification were obtained from Integrated DNA 

Technologies (Leuven, Belgium). gBlocks™ assembly was developed with Luka Kadovic and 

Marta Rubio Texeira from Integrated DNA Technologies. Oligonucleotides for FISH staining 

were purchased from biomers.net GmbH (Ulm, Germany). 

3.2 Methods 

Some of the methods mentioned have already been described in previous peer-reviewed 

publications by Kriem et al. in 2020 and 2021. 

3.2.1 Cultivation and sample preparation of planktonic bacteria 

Cultivation of oral bacteria 

Bacteria were available as glycerol stocks (25% glycerol (v/v)) stored at -80 °C. Brain Heart 

Infusion (BHI) medium (Sigma-Aldrich) was used for initial cultivation to ensure constant 

conditions for all experiments. Bacterial species used were A.naeslundii, A.denticolens, F. 

nucleatum, P.nigrescens, S.mutans, S.oralis and V.dispar (see Table 5 for strain IDs). Classic 

cultivation methods for the used bacterial strains suggest the use of defibrinated sheep blood as 

an enrichment of nutritional properties. However, cultivation was done without defibrinated 

sheep blood to avoid differences due to changing blood batches having an effect on spectral 

peaks. All species were incubated under anaerobic conditions (80% N2, 15% CO2, 5% H2) at 

37 °C in anaerobic jars (schuett-biotec GmbH, Göttingen, Germany). Sample handling was 

done under aerobic conditions. 
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First, bacterial stocks were thawed, streaked onto individual BHI agar plates with an inoculation 

loop and incubated anaerobically for 48 h. Then, a few colonies were selected and transferred 

to 15 mL Falcon tubes containing BHI medium and incubated anaerobically for an additional 

72 h. After that, the bacterial solutions were again diluted at a 1:100 ratio with fresh BHI 

medium, separated into three tubes and incubated anaerobically for an additional 96 h. In 

comparison, the solutions for the calibration of biofilms for mapping were diluted into five 15 

mL Falcon tubes containing modified fluid universal medium (mFUM) instead of BHI medium. 

This process of incubation was repeated for a total of three times per species. mFUM was 

prepared based on Gmür and Guggenheim, 1983. A detailed recipe for mFUM can also be found 

in Chapter 8.3.1 of the Appendix. 

For the acquisition of calibration spectra and the analysis of growth phase and state, every 24 h 

1500 µL of sample solution was put in Eppendorf tubes, centrifuged at 5000 rpm for 5 min and 

the supernatant was removed. Samples were resuspended in 1000 µL of 0.9 % NaCl (w/v) (for 

calibration spectra of biofilm mapping DI water was used instead of NaCl solution) and 

centrifuged for an additional 5 min. The supernatant was removed and the bacterial pellet was 

vortexed for 15 sec in order to suspend the pellet. 3 µL were then dispensed on a borosilicate 

glass slide (VWR) and air dried for 10 min under a laminar flow bench for confocal Raman 

spectral analysis (the analysis of hydrated samples was done immediately after dispensing 

without air drying). For the comparison of hydrated and dehydrated samples, the 24 h bacterial 

samples were also measured at 48 h, 72 h and 96 h to evaluate possible deterioration of the 

peaks over time. A schematic of sample analysis is shown in Figure 11. 

For the confirmation of the statistical biofilm mapping method, 3 µL of concentrated S.oralis 

bacteria solution were dispensed on a borosilicate slide (VWR) and air dried until visibly dry. 

Then 3 µL of concentrated A.denticolens solution was dispensed in very close proximity to the 

S.oralis spot, generating a natural transition area with two dense unmixed areas of each species. 

For simplicity purposes, these samples are labeled as DBIA samples in the following chapters. 
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Figure 11: Schematic of sample preparation for the calibration of planktonic bacteria and which 

sample were used for which analysis. 

Cultivation of microorganisms also found in other medical settings 

To cultivate the bacteria commonly found in medically relevant biofilms, C.albicans and 

P.aeruginosa (see Table 5 for strain IDs) were available as glycerol stocks (25% glycerol (v/v)) 

stored at -80°C. Although the organisms have different optimized growth media, YNBNP-

Medium (1,7 g / l Yeast Nitrogen Base w/o amino acids and ammonium sulfate, 25 mM 

Phosphate buffer pH 7,0, 2,5 mM N-Acetylglucosamine (Hogan and Kolter, 2002)) was used 

for cultivation in order to prevent the possibility of differences due to chemical modifications 

in the medium. Cultivation was done under normal aerobic conditions at 32 °C on a shaking 

platform set to 175 rpm. 

First, stocks were thawed, streaked onto individual LB agar plates for P.aeruginosa and YPD 

agar plates for C.albicans and were incubated for 48 h at 32°C. Then, a few colonies were 

selected and transferred to 15 mL Falcon tubes containing YNBNP medium and incubated for 

an additional 24 h at 32°C. This solution was used for calibration spectra acquisition and biofilm 

growth experiments. 

For the acquisition of calibration spectra 1500 µL of sample solution of each species was put 

in Eppendorf tubes after 24 h incubation time, centrifuged at 5000 rpm for 5 min and the 
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supernatant was removed. Samples were resuspended in 1000 µL of DI water and centrifuged 

for an additional 5 min. The supernatant was removed and the microbial pellet was vortexed 

for 15 sec in order to suspend the pellet. 3 µL were then dispensed on a borosilicate glass slide 

(VWR) and air dried for 10 min under a laminar flow bench for confocal Raman spectral 

analysis. 

3.2.2 Cultivation and sample preparation of biofilms 

Cultivation of oral biofilms 

Mono-species biofilms for the ThermoFisher Scientific DXR2xi were grown on sterilized CDC 

reactor glass discs (Biosurface Technologies Corporation, Bozeman, MN, USA) in 24-well 

polystyrene cell culture plates (Nunc A/S, Roskilde, Denmark). For biofilms cultivated for 

Renishaw inVia™ Qontor, 1 cm2 glass discs were cut from borosilicate glass slides (VWR) and 

sterilized. For the optimization of biofilm growth conditions, sterile sintered hydroxyapatite 

discs (Clarkson Chromatography Products Inc., South Williamsport, PA, USA) were 

implemented as a tooth alternative. Three different artificial saliva alternatives (Hahnel, DMM 

and PBS) were tested and compared to natural saliva (results shown in Chapter 3.2.3). Detailed 

recipes and preparation procedures can be found in the Chapter 8.3.2 of the Appendix. Finally, 

cultivation of biofilms was performed in 24-well polystyrene cell culture plates (VWR). 

Biofilm cultivation methods have been applied from Gmür and Guggenheim (1983) and have 

been mentioned in previous publications by the author. All cultivations of biofilms were done 

under anaerobic conditions (80% N2, 15% CO2, 5% H2) at 37 °C while sample handling was 

done under aerobic conditions. 

First, individual species were cultured anaerobically in 15 mL Falcon tubes containing BHI 

medium for approximately 65 h. Next, bacteria solutions were diluted using mFUM medium at 

a ratio 1:25 and were incubated anaerobically in 15 mL Falcon tubes for an additional 24 h. 

After 24 h, the solution was diluted again in 15 mL Falcon tubes with mFUM medium at a ratio 

of 1:1 and incubated anaerobically for 5 h. Before the formation of biofilms, discs were 

preincubated in 800 µL saliva (or artificial saliva) for 4 h at room temperature under shaking 

radial conditions at 100 rpm to insure pellicle formation. At this point, species solutions were 

also adjusted to OD600 1.0 by dilution with mFUM medium. 

To initiate biofilm formation, discs were placed into wells containing 800 µL saliva (or artificial 

saliva) and 800 µL mFUM medium. Immediately following, wells were inoculated with 

bacteria solutions (200 µL for mono-species biofilms, 100 µL S.oralis and 100 µL A.denticolens 
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for dual-species biofilms, multi-species biofilms of S.oralis, A.denticolens and V.dispar for a 

total of 200 µL at a ratio 1:1:1) and mixed carefully in the well by up-and-down pipetting of 

the solution. 24 h and 48 h after incubation start, the growth medium was removed and discs 

were dip washed three times with 0.9 % NaCl (w/v) solution and placed back in the well. The 

medium was then carefully replaced (800 µL saliva (or artificial saliva) and 800 µL mFUM 

medium) to not disrupt the forming biofilm. Harvesting of the biofilm occurred after 65h of 

total incubation time. Again, the medium was removed and discs dip washed three times with 

0.9 % NaCl (w/v) solution (for mono-species and dual-species biofilm mapping discs were dip 

washed in DI water). For RT-PCR and CLSM analysis of biofilms, more harvesting steps were 

necessary. These steps are discussed in Chapter 3.2.4. 

Cultivation of C.albicans and P.aeruginosa biofilms 

Methods from Purschke, 2012 were applied for the cultivation of mono-species and mixed 

biofilms found on catheters or open burn wounds (Hermann et al., 1999). They are labeled as 

medically relevant biofilms due to their clinical relevance. 1 cm² borosilicate glass coupons cut 

from glass slides (VWR) were used. After cultivation in 50 mL Falcon tubes for 24 h as 

described in Chapter 3.2.1, 10 mL of each solution was centrifuged for 10 min at 5000 rpm. 

Supernatant was then removed and replaced by new YNBNP medium and mixed for washing. 

The samples were centrifuged for another 10 min at 5000 rpm and the supernatant was again 

removed. Then, both solutions were set to OD600 1.0 (ca. 3×107 cells / mL for C.albicans; ca. 

1×109 cells / mL for P. aeruginosa) by dilution with YNBNP medium. 

For mono-species biofilm formation, discs were placed into a well of 24-well plates with 1000 

µL of either C.albicans or P.aeruginosa solution (for cultivation of dual-species biofilm 

organisms were mixed at 1:1 ratio resulting in 500 µL of each solution) and incubated 

aerobically in static conditions at 32 °C for 90 min. After initial incubation, the medium was 

removed and replaced by fresh YNBNP medium and incubated in static conditions aerobically 

at 32 °C for an additional 48 h. Finally, the medium was removed, the discs were dip washed 

three times in DI water, and were then air dried for 10 min in a laminar flow bench for Raman 

analysis. 

3.2.3 Optimization of oral biofilm cultivation methods 

Oral biofilms were cultivated using the ‘Zürich model’ (described in detail in Chapter 3.2.2). 

This method calls for a 50:50 mixture of mFUM medium and natural saliva for the cultivation 

of these biofilms. For the reproduction of results, the use of natural saliva can be problematic 
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as saliva for scientific studies show variances of the complex biochemical and electrophysical 

properties between individuals and in an individual over time (Darrene and Cecile, 2016; 

Hannig and Joiner, 2006; Lendenmann et al., 2000; Lynge Pedersen and Belstrøm, 2019). The 

variability of natural saliva reduces reproducibility of results which might have an impact on 

the Raman spectra and peaks. For this reason, the use of artificial saliva, as a replacement for 

natural saliva in the 50:50 ratio, was evaluated for this work. A full analysis of the use of 

artificial saliva can be found in Stöhrer, 2020. The analysis of different saliva alternatives 

demonstrated that PBS mixed with mFUM at a ratio of 50:50 shows the lowest difference to 

natural saliva with mFUM and, therefore, was used for future work and the cultivation of oral 

biofilm models (see Chapter 8.3.2 (Appendix) for evaluation of artificial saliva). 

3.2.4 Sample preparation for different analysis methods 

Throughout this thesis different analytical methods were used. RT-PCR was used for the 

evaluation of artificial saliva for oral biofilm cultivation (see Chapter 3.2.3). FISH, being the 

state-of-the-art method, coupled with CLSM measurements was used for the evaluation of 

biofilm architecture (see Chapter 4.2). Microscopy was used for the determination of success 

of Raman mapping and evaluation of the use of Raman for biofilm structure identification based 

on microorganism architecture (see Chapter 4.3 and 4.4). The methodologies of the three 

methods are described below. 

RT-PCR 

Sample and analysis procedure is also described in Stöhrer, 2020. After biofilm cultivation, 

biofilm discs were transferred to a 15 mL falcon tube containing 1 mL PBS. The falcon tubes 

were sonicated for 30 min at room temperature to remove the biofilm from the surface and 

generate single bacteria in solution. The detached biofilm was analyzed quickly to avoid 

agglutination. For analysis, 100 µL were used to quantify the composition of bacterial species 

in a multi-species biofilm based on different saliva. 

After biofilm detachment, 100 µL of the multi-species biofilm solution was transferred to a 

lysis tube from the DNA isolation and purification kit (‘innuSPEED Bacteria/Fungi DNA Kit’, 

AnalytikJena AG, Jena, Germany). At this point, DNA extraction was performed as described 

in the manual of the mentioned kit, where DNA was dissolved in 75 µL of solution. 

For the analysis of multi-species biofilms consisting of S.oralis, A.denticolens and V.dispar, 

RT-PCR was carried out in three individual wells in duplicates with species specific primers. 

This resulted in three different product fragments. Primer sequences are described in Table 6 
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and the resulting product fragments are shown in Table 7. This procedure ensures the analysis 

of multi-species biofilms and their quantification by individual species. 

Table 6: Primer sequences used for the quantification of multi-species biofilms purchased from IDT-

DNA (Leuven, Belgium). 

Organism Primer type Sequence (5’-3’) 

S.oralis Forward accaggtcttgacatccctctgacc 

 Reverse accacctgtcacctctgtcccg 

A.denticolens Forward tattgggcgtaaagggcttgtaggc 

 Reverse tcctcctgatatctgcgcattccac 

V.dispar Forward ctgagaggatgaacggccacattg 

 Reverse gctccgtcagactttcgtccattg 

 

Table 7: Product fragment sequence formed with the use of primer sequences described previously. 

Organism Product fragment (5’-3’) Fragment length (bp) 

S.oralis 
accaggtcttgacatccctctgaccgctctagagatag

agttttccttcgggacagaggtgacaggtggt 
70 

A.denticolens 

tattgggcgtaaagggcttgtaggcggctggtcgcgtc

tgccgtgaaaatccttcggcttaaccgggggcttgcgg

tgggtacgggccggcttgagtgcggtaggggaggctgg

aattcctggtgtagcggtggaatgcgcagatatcagga

gga 

150 

V.dispar 
ctgagaggatgaacggccacattgggactgagacacgg

cccagactcctacgggaggcagcagtggggaatcttcc

gcaatggacgaaagtctgacggagc 
101 

 

For the quantification of species, calibrations were established at different concentrations 

ranging from 101 to 109 templates/µL. For this calibration, a specific template containing all 

three product fragments was created in collaboration with IDT-DNA. Therefore, the following 

gBlock™ was generated with primer sequences underlined and DNA spacers highlighted in 

bold: 

CTGAGAGGATGAACGGCCACATTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATCTTC

CGCAATGGACGAAAGTCTGACGGAGCTGCATGATCTACGTGCGTCACATGCAGTACTATTGGGCGTAAAGGGCTT

GTAGGCGGCTGGTCGCGTCTGCCGTGAAAATCCTTCGGCTTAACCGGGGGCTTGCGGTGGGTACGGGCCGGCTTG

AGTGCGGTAGGGGAGGCTGGAATTCCTGGTGTAGCGGTGGAATGCGCAGATATCAGGAGGACACTAGCTCAGATT

CAGTAGACCGCTGTTGACCAGGTCTTGACATCCCTCTGACCGCTCTAGAGATAGAGTTTTCCTTCGGGACAGAGG

TGACAGGTGGT 

For the analysis, wells were prepared using a qPCR Sygreen Master Mix (Nippon Genetics, 

Düren, Germany) with specific mixing ratios (Table 9). Samples were then run under specific 

cycle settings as described in Table 8. 
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Table 8: qPCR cycle settings. 

Step 
Temperature 

(°C) 

Ramp Rate 

(°C/sec) 

Time Cycles 

Pre-incubation 95 4.4 2 min 1 

Denaturation 95 4.4 5 sec 1 

Amplification 

95 

65 

72 

4.4 

2.2 

4.4 

15 sec 

30 sec 

30 sec 
40 

Melting curve 

95 

40 

97 

4.4 

2.2 

0.06 

5 sec 

1 min 
∞ 

1 

Cooling 40 1.5 10 sec 1 

 

Table 9: Prepared master mix for qPCR application per sample. 

Content Volume (µL) 

qPCRBio Sygreen Mix Separate-Rox 500, 

Nippon Genetics, Germany 
10 

Forward Primer 0.8 

Reverse Primer 0.8 

DNA Sample Template 1 

Sterile ultrapure water 7.4 

 

DNA concentration per biofilm was recalculated based on the fact that 100 µL of a 1 mL biofilm 

suspension was used for DNA extraction, and DNA was diluted in 75 µL. Consequently, the 

results in copies/µL were multiplied by the factor 75 ∙
100

75
∙ 10 = 1000. 

Fluorescent in-situ hybridization (FISH) for confocal Laser Scanning Microscopy 

The structural analysis and comparison to Raman Microscopy were done using fluorescence in-

situ hybridization (FISH). The staining was performed according to the protocol previously 

described by Thurnheer et al. in 2004 using the probe combinations listed in Table 10 and was 

further detailed in in Kriem et al. (2021). Compositions of the chemicals used can be found in 

Chapter 8.4 in the Appendix. 

Biofilms were fixed using ice-cold 4% paraformaldehyde (PFA) and incubated at 4 °C for a 

time of 60 min with biofilms fully submersed in PFA. After fixation, the PFA solution was 

removed by dip washing the sample disc three times in 0.9 % NaCl (w/v). After dip washing, 

the discs were incubated again with lysozyme solution (1 mg/mL) for 8 min at room 

temperature and then dip washed twice with 0.9 % NaCl (w/v) for the permeabilization of 

biofilms. 
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Table 10. Sequence and formamide concentrations for fluorescence in-situ hybridization probes 

purchased from biomers.net GmbH (Ulm, Germany) 

Organism Name Label 
FAa 

(%) 

NaClb 

(mM) 

Probe concentration 

(µg/ml of 

hybridization buffer) 

Sequence (5’→3’) 
Source 

Streptococcus 

oralis 
MIT447 6-FAM 30 102 20 

CAC CCG TTC TTC TCT TAC A (Thurnheer et al., 

2004) 

Actinomyces 

denticolens 
ACT476 Cy3 30 102 20 

ATC CAG CTA CCG TCA ACC (Gmür and Lüthi-

Schaller, 2007) 
 

a Formamide concentration in the hybridization buffer 
b Concentration of NaCl used in the washing buffer  

 

Prior to first use, FISH probes were dissolved in TE-buffer for working concentrations of 20 

µg/mL for 6-FAM and 10 µg/mL for Cy3. Biofilm samples were pre-hybridized in 

hybridization buffer at 46 °C for 15 min without oligonucleotide probes with the samples fully 

submersed in the buffer. Biofilm disc were then transferred from the pre-hybridization buffer 

onto a tissue paper that was placed in a small Petri dish. 65 µl of hybridization buffer with probe 

was added onto the biofilm and the dish was sealed with Parafilm. The biofilms were then 

hybridized in the dark for 90 min at 46 °C. 

After hybridization, samples were washed in washing buffer (that was pre-heated to 48 °C in a 

waterbath) for 45 min at 48 °C. For CLSM analysis the samples were washed with 0.9 % NaCl 

(w/v), then fixed onto glass slides using nitrocellulose dissolved in butyl acetate (commonly 

known as nail polish) (Essence shine last&go!, cosnova, Frankfurt, Germany) and embedded 

in Mowiol® 4-88. Sample slides were then stored at 4 °C for at least 24 h but not more than 7 

days in order for the antifadent to dry and then be used for analysis. 

In total, 15 fluorescent labeled coupons (and 5 coupons of DBIA samples) were analyzed using 

an inverted microscope Zeiss LSM710 (Zeiss, Oberkochen, Germany) described in Chapter 

3.1.1. 

Raman and Microscopy 

All planktonic and biofilm samples were able to be used for analysis directly after sample 

preparation described in Chapters 3.2.1 and 3.2.2. 

3.3 Raman signal processing and multivariate analysis 

Spectral acquisitions of samples were done using one of the instruments described in Chapter 

3.1.1 with their specific acquisition settings. For ThermoFisher Scientific DXR2xi, spectra were 

pre-corrected using low baseline correction in spectral acquisition mode. 
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For planktonic samples and dual-species biofilms, random locations away from the sample 

border were chosen. For DBIA samples, a random border area between the two species was 

selected. For dual-species and DBIA sample acquisitions, microscopic images were taken for 

morphology analysis of the same area. 

Depending on the analysis question, different numbers of spectra were collected. These are 

specified in Figure 11. To perform spectral processing, all spectra of one analysis group was 

grouped together and the same processing steps were applied to the group. Unless otherwise 

indicated, all processing steps and settings remained identical for all groups to reduce noise 

effects and spectral variations due to spectral sample collection and processing. All 

reprocessing steps were performed using Renishaw WiRE 5.2 (Renishaw plc, Wotton-under-

Edge, UK). 

Table 11: List of collected spectra for the different analysis setups in this research. 

Type of analysis Bacteria Samples Spots Points 
Total Spectra per bacteria 

species or sample 

Growth phase 24 h 

48 h 

72 h 

96 h 

5 

5 

5 

5 

3 

3 

3 

3 

4 

4 

4 

4 

1 

1 

1 

1 

12 

12 

12 

12 

State Hydrated 

Dehydrated 

5 

5 

12 

12 

4 

4 

1 

1 
48 

48 

Calibration set for differentiation 5 21 4 1 84 

Planktonic bacteria prediction 3 9 1 4 36 

Mono-species Biofilm prediction 3 5 1 6 30 

Calibration set for mapping 2 15 1 20 300 

Mapping confirmation 2 3 Area: 15 x 15 µm 225 

Oral Biofilm mapping 2 15 Area: 18 x 18 µm 324 

Medical Biofilm mapping 2 3 Area: 35 x 35 µm 625 

 

3.3.1 Data processing 

A number of steps had to be performed in order 

to translate a raw Raman spectrum into a 

spectrum that allows comparison between the 

different species. This is largely because the 

raw spectrum shows too much noise and 

fluorescence, preventing analysis based on 

species-specific peak characteristics. These 

processing steps are specified below. To better 

visualize the effect of the processing steps, a mono-species A.denticolens biofilm spectra was 

used and is shown in Figure 12 to Figure 20.  

Figure 12: Raw Raman spectrum. 
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Truncation 

For the analysis and differentiation of bacterial 

species, the spectra between 600-1800 cm-1, 

also known as the ‘fingerprint region’, 706 data 

points were collected to show differences in 

molecular composition. While the 

ThermoFisher Scientific DXR2xi is able to 

collect spectra over this range, the Renishaw 

inVia™ Qontor collects a spectral range of 

282.8-2016.2 cm-1 and 1015 data points. For that reason, all spectra were truncated to a uniform 

range from 600-1800 cm-1 with 706 data points. Wavenumber data points were unified to ensure 

that statistical analysis tools can be executed properly. A shift in wavenumbers between spectra 

of one dataset would have resulted in insufficient statistical analysis because these tool require 

a uniform spectral range.  

Cosmic Ray removal 

In the second step, spontaneous cosmic rays 

were removed. Cosmic rays are sharp spikes in 

the spectra which are not directly related to the 

sample. These spikes are generated by cosmic 

rays (high energy particles usually coming from 

natural or artificial light) hitting the detector, 

producing a feature that is narrower than the 

classic Raman peaks. Removal of these peaks 

are necessary because they are not part of the spectral peaks of a sample and can result in 

improper multivariate statistical analysis. Cosmic rays can be removed in WiRe 5.2 after 

spectral acquisition using a Cosmic Ray Detection Wizard. Here, a width parameter of 3 and 

height parameter of 15 allowed for the detection of cosmic rays in microbiological spectra. 

Cosmic ray candidates were then checked manually and agreed on to be removed from the 

spectrum.  

 

 

 

 

Figure 13: Spectrum after truncation. 

Figure 14: Spectrum after Cosmic Ray removal. 
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Background removal 

The reference borosilicate glass slide spectrum 

can be found Chapter 8.5.1 in the Appendix. 

Borosilicate as the component of a glass slide 

shows two broad and one narrow band that can 

interfere with the spectral peaks of the 

microbiological samples. Here, the two most 

significant peaks can be found at 572 cm-1 

(broad), 794 cm-1 (narrow) and 1093 cm-1(broad), whereas the last two lay in the ‘fingerprint 

region’ (see Chapter 8.5.1 in Appendix). In order to remove borosilicate background noise from 

the spectrum, specific arithmetic operations were performed. To do so, the borosilicate 

spectrum was subtracted from the sample spectra. This background removal was performed for 

every spectral group because the samples did not have the same thickness. However, for some 

samples the borosilicate signal could only be partially corrected for. In addition, the arithmetic 

operation also compensated for the background that may have come from the laser induced 

background fluorescence from the bacterial sample (Yakubovskaya et al., 2019) and can be 

seen by the general up riding of the spectrum in its raw form. The negative values that resulted 

after background removal were the results of the high counts of the borosilicate spectrum and 

were compensated for by baseline correction.  

Baseline correction 

The type of baseline correction method used to 

estimate or adjust a baseline of the spectrum is 

critical (Guo et al., 2016). It allows the 

emphasis on spectral peak information rather 

than the artefact of different heights of spectra 

and thus greatly improves the statistical 

analysis, differentiation and comparability of 

different bacteria species. Mathematical methods for baseline correction, apart from first and 

second order deviations, are polynomial fits. WiRe 5.2 allows an intelligent polynomial 

baseline subtraction. After automatically excluding regions with peaks, the baseline was fitted 

to all remaining points. A polynomial order of 12 and noise tolerance of 1.5 was used for all 

spectra. This allowed for quick data processing and a tight baseline adjustment based on peak 

Figure 15: Spectrum after background removal. 

Figure 16: Spectrum after baseline correction. 
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behavior. Baseline corrections are spectra specific and were applied automatically to each 

spectrum by recalculating the baseline based on peak behavior. 

Noise filtering 

For increased automation potential, noise was 

reduced using noise filtering settings. Noise is 

the random small peaks that do not provide 

information on the peak behavior but can 

however silence important spectral peaks. 

Additionally, an increase in signal to noise ratio 

(by reducing noise) increases the success of a 

multivariate analysis because weak spectral features and differences can be taken into account. 

WiRe 5.2 allows a PCA based noise filtering where PCs are calculated and ranked on order of 

decreasing significance. After doing so, the components were inspected individually and the 

effect on the spectra was evaluated. After the manual inspection, PCs that retain all components 

that contain Raman information and the samples were selected. All other peaks/noise were then 

automatically removed, only leaving Raman peaks deriving from the sample itself. Finally, the 

analysis was done per data group. Selected PCs ranged from three to five depending on the 

amount of noise in the sample group.  

Smoothing 

In order to improve the signal to noise ratio 

further, smoothing was applied. A Savitzky-

Golay algorithm was used for processing 

(Savitzky and Golay, 1964). Savitzky-Golay 

smoothing uses a process known as 

convolution, by fitting continuous sub-sets of 

adjacent data points with a low-degree 

polynomial by the method of linear least squares. Both of these parameters can be defined 

before fitting. In this research, the smoothing window sub-set was set to 7 with a polynomial 

convolution order of 2. Due to the measurement settings, the spectrum consisted of 706 equally 

spaced data points where an analytical solution to the least-squares equations could be found. 

This then allowed the evaluation of a convolution coefficient that could be applied to all sub-

sets, resulting in a specific smoothed signal. This signal was calculated for every spectra 

individually.  

Figure 17: Spectrum after noise filtering. 

Figure 18: Spectrum after smoothing. 
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Normalization 

The spectral differences with regard to presence 

and/or absence of peaks between species are 

only minor, whereas there are more frequently 

differences in the intensities and heights of 

spectral peaks. These variances are a direct 

result of the acquisitions and the nature of 

samples. As differences can have an effect on the 

assignment of spectra to species and accuracy of calibration datasets. Therefore, it was 

necessary to normalize the spectra. Normalization was able to compensate for the changes in 

intensities. Generally the peak characteristics do not change after normalization. In this work, 

the minimum point of the spectrum was set to 0 while the maximum was set to 1. The 

normalization was calculated for every spectra individually.  

Differentiation 

As the last step for multivariate analysis, 

differentiation of spectra are performed. 

Savitzky-Golay differentiation was applied 

based on the same arguments made for 

smoothing. The fundamental principle of the 

process are described in Savitzky and Golay, 

1964. A window size of 9 and polynomial order 

of 2 was selected for a 2nd order differentiation based on the analysis performed. Differentiated 

spectra were selected for multivariate analysis, because the value of the peaks were increased 

by differentiation and therefore improved the grouping of species in multivariate statistical 

analysis (Rinnan, 2014). For the consideration of peak characteristics, this step was unnecessary 

because it reduces the visibility of peaks in the ‘fingerprint region’.  

3.3.2 Statistical modelling 

In general, a model is a mathematical function that allows the prediction of unknown data. An 

example of such mathematical functions is the use of calibration lines to quantify chemicals. 

Specific concentrations are plotted in a coordinate system that allow for the calculation of a 

regression line. Using common linear regression equations calculated from calibration lines, it 

is then possible to predict concentrations of an unknown sample. Qualitative analysis models 

Figure 19: Spectrum after normalization. 

Figure 20: Spectrum after differentiation. 
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such as the grouping of multiple characteristics are not possible with such univariate 

mathematical functions and require the use of multivariate models that allow the consideration 

of different variables. The goal of such models is the extraction of information while remaining 

reliable for the prediction of unknown data. For the differentiation of multiple microorganisms 

based on their chemical spectra, these multivariate approaches were selected as the methods of 

choice because they could be well integrated into the mapping of biofilms. Further, they allowed 

for the use of the whole spectrum range and were not confined to specific areas. As a ground 

principle for multivariate analysis approach, each sample spectrum was taken as one 

observation with each data point in a spectrum representing one variable. 

In this work, three different multivariate models were used for the comparison of data. Their 

specific analytical characteristics will be introduced further in the next chapters. Subject to the 

questions being asked, different statistical methods were applied accordingly. 

Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) is seen as the foundation of all latent variable projection 

methods and one of the simpler multivariate analysis approaches and was first invented and 

used by Pearson in 1901. PCA is able to reduce the dimensionality of a data set by choosing 

components explaining most of the variances in the data. As a result giving form of PCA, score 

data plots summarize the observations and are able to identify patterns, trends and clusters. 

Alternatively, loading data plots summarize the variables and explains the positions of 

observations in a score plot (Shlens, 2005). Applicability of PCA for differentiation of bacteria 

based on their Raman spectra was demonstrated successfully by Lu et al., 2011 in the past. For 

the information extraction of this work, the resulting score plot is valuable because it 

demonstrates the possibility of separating bacterial groups statistically based on their Raman 

spectra. 

PCA provides a data-driven hierarchical coordinate system to capture the maximum variation 

in a dataset. Using PCA, the model first calculated an average for each wavenumber. In the 

datasets of this research, this resulted in a total of 706 average values. Next, these values were 

standardized in order to prevent certain variables from dominating the analysis. In the second 

step, a covariance matrix was computed considering the calculated averages to see if a 

relationship could be found between the samples. To analyze the distribution of samples in a 

two-dimensional score plot, eigenvectors and eigenvalues were computed to determine the 

principal components (PC) of the data. Principal components are sets of new variables. The 

system tries to put as much information in the first principal components in order to explain the 
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maximum possible variance with the first component. The process continued by explaining the 

second most information with the second component and so on. 

Two chosen PCs then allowed for the definition of a model plane (in this work the first two PCs 

were selected but combinations of other PCs were possible to create score and loading plots but 

don’t show improved separation of clusters). Then, all observations in the calibration dataset 

were able to be visualized in the score plot using PCs as the axis of the plane and the coordinate 

values stemming from the individual samples. In this work, known bacterial species were used 

in combination with their spectra and thus it was possible to color code each bacterial species 

individually to determine specific clusters in the score plots. For some analysis settings in the 

development and proof of the analysis workflow, it was necessary to determine confidence 

ellipses (CE) to demonstrate the accuracy and confidence of the group assignments. Here, all 

ellipses were based on a 95% confidence. 

For this reason, PCA was mostly used for models that required differentiation of two species 

because it allowed for easier classification. 

Orthogonal Two-Way Partial Least Square Analysis with Discriminant Analysis (O2PLS-DA) 

PLS-DA is a multivariate dimensionality-reduction tool that has been popular in the field of 

chemometrics and was applied in this thesis for that reason. In comparison to PCA being a 

model that corresponds to the demonstration of maximum variance, Orthogonal Two-Way 

Partial Least Square Analysis with Discriminant Analysis (O2PLS-DA) corresponds to 

maximum separation and is an extension of Partial Least Square (PLS) analysis. The model was 

first described by Trygg and Wold in 2002. Compared to PCA, OPLS focuses on predictive 

information in one component and, then in the next step, on other systematic information that 

can then found in higher components. This maximum separation is performed using known 

class information found in the averaged spectrum for every bacterial species generated after all 

processing steps. Thus, the separation is performed in a so-called supervised approach. In this 

work, known class information represent the calibration spectra generated. 

OPLS is a regression and prediction method. Additionally, the method works with discrete 

values therefore making it a discriminant analysis. For the classification model, two steps are 

necessary: 1. Training a model using representative, calibration data (here the known spectra 

collected to setup the calibration dataset) and 2. Testing the model by using new data (to prove 

the calibration dataset, more known values were collected. Using these data and calibration 
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values, predictions were made to evaluate how well the calibration dataset is able to predict 

new sample spectra by comparing it to all the datasets generated for each species). 

In the first step, the model groups the variables from the collected Raman spectra into 

explanatory variables (X) and dependent variables (Y). For this analysis step, O2PLS-DA takes 

into account multiple Y-values for the model. The variables are then further decomposed into 

latent structures in an iterative process with scores t for X and u for Y. Using the information 

of explanatory and dependent variables it is then possible to display these values in a score plot. 

In order to confirm the O2PLS-DA model for the differentiation of species, it was necessary to 

prove the model by a validation approach. Consequently, additional spectra of all species that 

were not part of the calibration dataset were collected and used for cross validation. Sample 

preparation remained the same to prevent a spectral effect based on sample preparation. Here, 

both types of variables were calculated and compared to the calibration O2PLS-DA model. This 

model then allowed for the classification of the bacteria to a specific bacterial species. This 

process was repeated for the classification of mono-species biofilm Raman spectra based on a 

calibration dataset consisting of spectra generated from planktonic bacteria. 

Data was visualized in two ways: 1. Performing O2PLS-DA on the datasets and 2. Showing the 

prediction results and grouping of the spectra. As the identity of the sample was known before 

the statistical analysis, the accuracy of the calibration model was able to be determined. 

Cluster Analysis (CA) 

Several methods of determining distributions of spectra over a specified area have been 

previously described. These methods include PLS-based (Trygg and Wold, 2002; Villa et al., 

2019; Zhu et al., 2007) or PCA-based (Almarashi et al., 2012; Colniță et al., 2017; Jung et al., 

2014) approaches. Additional methods try to cluster data based only on information found in 

the data that describes the objects and their specific relationships. One of these methods is 

Cluster Analysis (CA) (Jarvis and Goodacre, 2004; Kniggendorf et al., 2011). CA is a method 

that allows the grouping of a set of spectra into clusters of similar spectra. This analysis allows 

for the calculation of a centroid spectra for each cluster, gathered by taking the mean of all 

spectra in the cluster and can be correlated to previous calibration spectra. The underlying 

mathematical equation for the differentiation and clustering within the CA method can be found 

in Döring et al. (2006). 

Within CA different centroid initializing methods, the selection of the number of clusters or the 

fuzzification rate have an influence on the success of differentiation of subgroups (Schwämmle 
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and Jensen, 2010). For simplicity of this work, only the selected settings that are beneficial for 

the mapping of biofilms are further discussed and evaluated. 

K-means clustering is a common initialization method with the purpose of selecting initial 

centroids found across the whole dataset (Bradley and Fayyad, 1998). With this method, the 

first centroid of the dataset is chosen at random and the next centroids for the additional clusters 

are selected in a way that the spectra are furthest away from the existing centroid that have the 

highest probability of being selected. Thus, the amount of centroids is dependent on the number 

of clusters chosen. Even though K-mean clustering (also known as hard clustering) allows the 

assignment of spectrum to only one cluster, fuzzification clustering (also known as soft 

clustering) was selected. With the help of fuzzification parameters, it was possible that a 

spectrum could belong to multiple clusters giving the spectra values between 0 to 1, depending 

on how much the spectrum fits to the cluster. The cluster with the highest value is then assigned 

to the spectrum. Because no definite assignment needed to be made, fuzzy c-means clustering 

showed the best cluster differentiation in the validation of the model and was selected for that 

reason. In addition, background and signal-to-noise ratios have an effect on the success of the 

method and have been evaluated previously by Guo, 2018. Because background and signal-to-

noise have been removed from the spectra as part of the workflow in the processing steps, 

Euclidean distance measure was able to be used, which is a standard measure of the distance 

between the spectrum vector and the mean spectrum vector. 

The number of restarts within the cluster analysis determines new initial centroids with every 

restart. The result of every restart is determined by the sum of the total distance from each 

spectrum to its centroid. As a result, the restart with the shortest total distance is then selected 

as the final centroids. Increasing the number of restarts increases the chances of having 

optimized centroids, but requires more computing power and for that reason time for a result. 

The number of iterations determines how many attempts are made to align spectra closest to 

the centroid clusters to receive the smallest distance vector. Again, increasing the number of 

iterations increases the chances of having optimized alignments but increases the time for 

computing the results. 

Use of the statistical methods 

PLS-DA can be seen as a “supervised” version of PCA (being an “unsupervised” version) in 

the sense that it achieves dimensionality reduction but with full awareness of the class labels. 

The terms “supervised” and “unsupervised” refers to whether the model uses a reference or not 

to setup the model. Ruiz-Perez et al. (2020) as well as Scott and Crone (2021) both showed that 
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no clear distinction can be made which model to apply for which datasets and that the analysis 

is specific to the data. Both statistical models were considered for the analysis of datasets. 

Chapter 4.1.4 compares the results of both methods for the differentiation of five oral species. 

The analysis of the influence of growth phase (Chapter 4.1.2) and state (Chapter 4.1.3) both 

required an unsupervised analysis to prevent a biased analysis and to demonstrate the 

similarities and interchangeability of collected spectra. 

Overall, due to a maximum separation of data groups approach, O2PLS-DA will improve the 

visualization and interpretation of a model and is, for that reason, a better analysis model for 

the differentiation of multiple bacterial species while PCA can be used for the differentiation 

of two bacterial species (“OPLS vs PCA,” 2020) or to gain further understanding in a dataset. 

Additionally, O2PLS-DA allows for the prediction of bacterial species on uncorrelated 

information of Raman spectra based on calibration datasets. For that reason, O2PLS-DA also 

works well for the analysis of omics data (Bouhaddani et al., 2016). To show the differences of 

the two multivariate statistical models, they are compared with each other based on their score 

plots from an identical dataset (Chapter 4.1.4).  

The comparison of models in Chapter 4.1.4 revealed that O2PLS-DA shows better 

differentiation of species in the score plot, which was the reason why the method was also 

applied for the prediction of spectra in Chapter 4.1.5. In contrary, PCA showed good 

differentiation for datasets of two species and were used in Chapters 4.3.2 and 4.4.2 to 

demonstrate that the collected spectra show sufficient differences to be applied for mapping 

using Raman spectra. 

Table 12: Application of different statistical methods including the used software for analysis (see 

Chapter 3.1.2 for more software details) 

Statistical 

method 
Chapter Role in biofilm Used software 

PCA 
4.1.2  

4.1.3 
Unbiased determination if collected data is similar or different Origin 2019b 

 
4.3.2  

4.4.2 

Differentiation of two bacterial species to generate calibration 

datasets 
Origin 2019b 

PCA and 

PLS 
4.1.4 

Comparison of the two modelling methods for differentiation 

of five species 

Origin 2019b and 

SIMCA15 

PLS 4.1.5 
Use of the method for the prediction and cross-validation of a 

calibration dataset with a supervised approach 
SIMCA15 

CA 

4.3.3 

4.3.4 

4.4.3 

Mapping of Raman spectra based on statistical models using an 

unsupervised approach 
Renishaw WiRe 5.2 
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O2PLS-DA and PCA are both modelling methods without the consideration of dimensions of 

the collected data and cannot be applied for the mapping of Raman spectra in this thesis. 

Additionally, Jarvis and Goodacre (2004) and Kniggendorf et al. (2011) both showed the 

applicability of hierarchical cluster analysis for mapping of Raman spectra. For that reason and 

because CA is an unsupervised analysis method, this model was used for biofilm mapping in 

Chapters 4.3.3, 4.3.4 and 4.4.3. Table 12 gives a summary of the methods that were used to 

answer which question and where it was applied in this thesis. 

3.3.3 Biofilm distribution mapping using CA 

In this work, Renishaw WiRe 5.2 allows CA through an included mapping analysis tool. As 

part of the tool, different parameters can be selected that are summarized and were tested 

beforehand (see Table 13 with all selectable parameters in WiRe 5.2 for CA). Criteria for the 

selection were 1. accuracy of results and 2. time for the calculation of results. As a result of 

preliminary mapping trials using DBIA samples, CA was performed using K++ initialization, 

fuzzy c-means as the clustering type with 2.0 fuzzification parameters, Euclidean distance 

metrics and 10 iterations and restarts. Subsampling was used and the subsampling percentage 

was set automatically. The centroid spectra were then compared to the calibration spectra 

generated from planktonic bacteria (for DBIA samples) and mono-species biofilm samples (for 

multi-species biofilms). Depending on the cluster affiliation, each spectral point in the same 

group was colored accordingly (red for A.denticolens and green for S.oralis as seen in Figure 

33) and mapped. 

As already stated in Chapter 3.1.1, microscopic image analysis based on morphology of 

A.denticolens and S.oralis was performed using morphological segmentation in the Plugin 

MorphoLibJ in ImageJ (Rasband, 1997). These images were then compared to the images 

generated through CA analysis from Raman acquisitions. Percentages of coverage for each 

bacterial species and analysis type was evaluated with ImageJ. Furthermore, both images were 

overlayed to identify areas that were not classified as the same bacterial species. 

Relative coverages were evaluated based on different approaches. The types of coverage 

analysis are demonstrated using examples shown in Figure 21. Here, Example 1 shows two 

identical images of red and green areas for both Raman and morphology mapping. The 

difference in total coverage is 0 and there are no areas where the colors do not match. Example 

2, on the other hand, still has an identical total area coverage (of 50% each) but since the shape 



MATERIAL AND METHODS 
 

- 52 - 

 

of the red and green area have changed there are areas where the colors are not identical 

anymore. Thus, the layover image shows a difference in locational coverage of 25%. 

Table 13: Parameters that can be selected as part of the WiRe 5.2 that were tested and evaluated for 

mapping. 

Parameter Available options 

Initialization type 
Random 

K++ 

Clustering type 
K-means 

Fuzzy c-means 

Distance metric 
Euclidean 

Correlation 

Number of clusters 1 - ∞ 

Number of iterations 1 - ∞ 

Number of restarts 1 - ∞ 

Fuzzification parameter* 1 - ∞ 

Sampling options 
Subsampling 

Automatically setting the subsampling percentage 

*Only available for the fuzzy c-means clustering type 

 

Example 3 now shows changes in the total coverage and locations of the areas. Considering the 

morphology studies as the true method, the Raman image shows an under-representation of the 

red area (with 6%) while it shows an over-representation of the green area (of 6%) when 

compared with each other. Looking at the locational differences of the areas now the colors 

disagree in several areas making up for a total of 24%. Thus, it can be concluded that the 

difference in total coverage is not equivalent to the locational total coverage and needs to be 

evaluated separately because different conclusion can be made depending on the approach used. 

 
Figure 21: Examples of relative coverages and approaches of determination. 
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4 Results 

This thesis aims to evaluate chemometric characteristics of bacterial species for differentiation 

and to provide a first workflow to map biofilms using confocal Raman microscopy. For the 

proof-of-concept design, multiple steps were necessary: 1. optimization of biofilm growth 

conditions (see Chapter 8.3.2 in the Appendix) 2. demonstration of bacterial species 

differentiation based on Raman spectra and 3. design of a workflow to differentiate bacteria in 

biofilms.  

Parts of the results were already published in peer-reviewed journals (Kriem et al., 2021, 2020). 

4.1 Differentiation of oral bacteria 

4.1.1 Raman spectra for five subgingival bacterial species 

Spectra of five different bacterial strains were analyzed using CRM as described in Materials 

and Methods. The spectra are summarized in Figure 22 showing the plots of averaged Raman 

spectra, generated from a total of 84 spectra per strain. Overall, many vibrational peaks were 

similar in the acquired spectra, however, several unique peaks could be assigned to each of the 

individual bacterial species as displayed in Table 14. In several publications the same specific 

peaks were assigned  to chemical compounds present within a bacterial cell (De Gelder et al., 

2007; Kumar et al., 2016; Sil et al., 2017). 

 
Figure 22: Averaged processed Raman signal (84 spectra total per species) from five different 

subgingival species of the calibration group with standard deviations. A.naeslundii (An), S.mutans 

(Sm), V.dispar (Vd), F.nucleatum (Fn) and P.nigrescens (Pn). Areas of differences in bands between 

species are indicated (700-900 cm-1, 1275-1425 cm-1, 1500-1625 cm-1) 
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Some of these peaks actually can be identified by visually inspecting the spectra. By selecting 

the unique peak patterns of the different species, it is possible to discriminate between the 

individual species. Using a reference database of Raman spectra, it was previously shown that 

it is possible to identify predominant chemical signature patterns in spectral peaks (De Gelder 

et al., 2007; Kumar et al., 2016; Sil et al., 2017). Even though peak identification between 

different studies are almost aligned, Raman peaks, due to the nature of samples and instruments, 

can shift which needs to be considered according to Kuhar et al. (2018). 

Table 14: Specific peak assignments for the different species and their presence or absence compared 

to other species. Peak assignments are based on assignments by De Gelder et al. (2007); Kumar et al. 

(2016) and Sil et al. (2017).  

 
 

The presence of proteins is indicated by Amide I and Amide III peaks that are most significant 

at ~1250 cm-1 (Amide III) and ~1660 cm-1 (Amide I). Amino acids are identified as 

Phenylalanine at ~1003 cm-1 and C-N and C-C stretches are found at ~1125 cm-1. CH2 

deformations at ~1450 cm-1 are the result of lipids in the cell. The results for Streptococci 

species in this work are comparable with the results from Berger and Zhu (2003) who 

previously identified components in S.mutans  and S.sanguinis (Amide I at 1651 cm-1, C-H2 

deformation at 1457 cm-1, C-N and C-C stretch at 1127 cm-1, phenylalanine at 1005 cm-1; 

changes in wavenumbers come from Raman shifts of a different Raman analysis setup (Berger 

and Zhu, 2003)). 

Differences in peak patterns between the five selected species are found mostly in the region 

between 700-900 cm-1. This area is specific for nucleotides (DNA and RNA) due to ring 

breathing vibrations. Additionally, the area between 1500 cm-1 and 1625 cm-1 shows peaks that 
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are the result of different amino acid compositions within bacterial species and thus can be used 

for differentiation of species. Minor differences can also be observed from 1275 cm-1 and 1425  

cm-1, revealing peaks from amino acids, fatty acids and saccharides (De Gelder et al., 2007; 

Kumar et al., 2016; Sil et al., 2017). Due to the nature of Raman acquisitions, different chemical 

compounds can have overlapping peaks (as shown in Chapter 1.3.3) that do not always allow 

for the specific identification of chemical groups.  

For this work, identification of specific peaks for chemical compounds is not the goal, rather it 

is the use of differences in peaks for species differentiation based on multivariate methods. 

Nevertheless, identification of specific peaks for individual species is beneficial for 

discrimination. Major peaks such as Amides and nucleobases can be found in all species as 

being part of every bacteria. While the precise peak locations for proteins is difficult to 

determine due to overlaps of peaks from other compounds, Amide I and III peaks can especially 

be used for the detection and quantification of proteins. Amide II peaks are often inactive or 

very weak (Kuhar et al., 2021), but are visible in oral bacteria samples. Nucleic acids (Thymine, 

Cytosine, Adenine and Guanine) as the main components of DNA structures can be found at 

different positions within the spectra for all species, which applies to every microbiological 

sample. Lastly, different amino acids such as phenylalanine, tyrosine and tryptophan also show 

several compound specific peaks within the ‘fingerprint region.’ Theoretically, all amino acids 

can be found within the spectra, but due to overlap of peaks based on similar rotations, however, 

they cannot be differentiated (Socrates, 2001). 

The analysis shows that there are spectral differences between the five analyzed oral species, 

which is due to the chemical composition of the bacteria. The specific peak assignment of 

signals in the ‘fingerprint region’ is important and helps with bacterial species differentiation. 

For the development of a workflow to map biofilms based on their Raman spectra and the 

underlying statistical methods, it is important that the spectra are different, not why they are 

different. Understanding why spectra are different will help to explain the differences between 

species though and should be considered for the analysis. The primary focus is thus on the 

evaluation of differences of peaks in the whole spectra and secondary, the specific peak 

assignment. Specific peak assignments may be helpful to understand the different chemical 

composition of bacteria.  

Because the chemical composition of cells is a key factor in correctly identifying species based 

on their Raman spectra, conditions that can have an influence on cellular composition need to 

be considered. These include 1. the chemical changes and resulting Raman spectra based on a 
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bacteria’s growth phase and 2. the influence of the state of bacteria whether they are analyzed 

in a hydrated or dehydrated state. 

4.1.2 Influence of the growth phase of bacteria on the Raman spectra 

With their research, Strola et al. (2014) indicated that Raman spectra can detect biochemical 

changes of metabolic states in bacterial species based on their specific growth phases using 

Escherichia coli and Bacillus subtilis. In order to generate a stable calibration dataset for the 

five selected bacterial species, the impact of the growth phase of the bacteria had to be 

evaluated. Results of the growth phase studies for the five species of interest and their 

equivalent PCA analysis are shown in Figure 23. Mean spectra are shown. 

All spectra show the major peaks described earlier independent of growth phases and also don’t 

change in their specific signal counts (equivalent to the height of peaks). Notably, peaks at ~782 

cm-1, ~1004 cm-1, ~1451 cm-1, ~1575 cm-1 and ~1665 cm-1 remain consistent throughout the 

growth phases of all five species. Changes in signal counts (and thus height) appear between 

1000 – 1250 cm-1. Overall, spectra after 24 h differ the most from the other evaluated time 

points. One explanation for the change could be that metabolic changes appear in the first 48h 

and then remain consistent throughout the considered time points. Indeed it was shown that the 

bacterial species have reached the stationary growth phase within the first 48h (growth 

experiments were performed by Stöhrer (2020) and showed that stationary growth phases were 

reached after 23 h for S.oralis, 39 h for V.dispar and 39 h for A.denticolens, data not shown). 

In order to evaluate whether spectral differences based on metabolic changes and growth phase 

can have an influence on the calibration datasets, PCA was performed. The goal of PCA 

analysis was to determine whether the described changes in the spectral profiles were 

significant enough to generate spectra changes. This would imply that growth phases need to 

be taken into account resulting in growth phase dependent calibration sets. 

Analyzing the PCA score plots of each species, PC1 and PC2 F.nucleatum and P.nigrescens 

explain 72.4 % of the variance of the data while the score plot for S.mutans shows 70.5 %, 

A.naeslundii shows 61.5 % of the variance and V.dispar explaining the lowest variance of data 

with 53.3 %. Overall, none of the species analyzed show a clear clustering at one time point 

that can be visually separated from any other time points. Only spectra at 96 h for A.naeslundii 

shows a dense region but cannot be identified as a cluster because of overlap with spectra from 

other time points appear as well.  
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For the growth phases of planktonic bacteria it can be concluded that spectra used for the 

evaluation and the resulting PCA analyses at different time points do not show significant 

differences. For all five evaluated species, spectra after 24h show different signal counts but 

not significant enough to have an effect on the PCA. Spectra after 48 h, 72 h and 96 h remain 

very similar. For setting up the calibration database, samples after 72 h were selected for two 

reasons: 1. Biofilms grown in ‘Zürich model’ were cultivated over a similar time period and 2. 

they align with the majority of the analyzed spectra at different time points (48 h and 96 h). 

4.1.3 Influence of sample preparation on the Raman spectra 

Nocker et al. (2012) previously showed that air-drying has an effect on the viability of bacteria 

cells. Additionally, Li et al. (2019) demonstrated that changes in the Raman spectra appear 

based on their viability, indicating that the influence of the state of the analyzed bacteria on 

Raman spectra need to be evaluated. An advantage of Raman spectroscopy is that water is not 

showing specific peaks within the spectrum, unlike techniques such as FT-IR. This potentially 

allows the use of Raman spectroscopy for bacterial and biofilm detection in liquid media or 

hydrated biofilms. In order to confirm this theory, dehydrated and hydrated samples (sample 

preparation described in Chapter 3.2.1) were compared and are shown in Figure 24 including 

PCA analysis for each species of interest. Mean spectra with standard deviation are shown. 

Indeed, the presence of water doesn’t have an effect on the spectra in the ‘fingerprint region.’ 

Therefore, the spectra between the hydrated and dehydrated state do not show additional or 

missing peaks. Major peaks remain present for both states. However, areas show differences in 

the height of peaks, albeit minor. When visually investigating spectra it can be concluded that 

both datasets show increased standard deviations in some areas and therefore the variance 

within the datasets are increased. While the variance in peaks are small for all the major peaks, 

increased variance appears in the area between 1000 – 1250 cm-1. Because these height 

differences are present both in the growth phase and hydration studies, it may be possible that 

these height differences do not impact the datasets. 

In order to evaluate whether the effect of a liquid environment could have an influence on the 

calibration datasets, spectra were compared similarly to the growth phase analysis. When 

analyzing the PCA score plots of each species (hydrated vs. dehydrated spectra), PC1 and PC2 

show less variance of data as for the growth phase study thus indicating a bigger variance of 

the spectra. Nonetheless, A.naeslundii shows 58 % of variance of the dataset, F.nucleatum 61.8 

%, P.nigrescens 54.1 %, S.mutans 67.8 % and V.dispar 43%. P.nigrescens is the only species 
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that shows two dense areas of data points of either hydrated or dehydrated samples within the 

score plot (dehydrated sample data points predominantly in the first and second quadrant, 

dehydrated sample data points predominantly in the first and second quadrant), while overlaps 

of the other four species do not allow any differentiation. Nevertheless, for P.nigrescens, there 

is no clearly defined cluster also indicating that the state of samples has no significant influence 

on spectral peaks. 

These results demonstrate that differences between recorded spectra in a dehydrated and 

hydrated state, resulting from an air-drying process, are not significant in Raman spectra. 

Nevertheless, all sample acquisitions were done on dehydrated samples, due to easier handling 

procedures. 
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Figure 23: Average spectra for five different species at four different growth phases (24h in red, 48h 

in blue, 72h in green, 96h in purple) (A, C, E, G, I) and their PCA analysis of recorded spectra 

accordingly (B, D, F, H, J). 
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Figure 24: Average spectra for five different species in a hydrated and dehydrated state including the 

standard deviation (blue = hydrated, red = dehydrated) (A, C, E, G, I) and their PCA analysis of 

recorded spectra accordingly (B, D, F, H, J). 
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4.1.4 Multivariate analysis of species 

Within this thesis, two different multivariate models, O2PLS-DA and PCA, were used and 

applied depending on the questions that had to be answered. Both methods had their advantages 

and disadvantages. PCA, for example, considers all spectra in a dataset equally and maps 

spectra in a score plot based on differences to each other without pre-grouping. While the 

method works well for samples with well-defined boundary conditions, they have limited 

success with the analysis and differentiation of large datasets with many variables and groups 

that are similar. This may reduce the predictability for models. PCA showed good results for 

the differentiation of datasets containing two groups of species (Almarashi et al., 2012; Colniță 

et al., 2017; Samek et al., 2015). Instead, PLS models have pre-defined groups with the purpose 

of maximizing separation of group clusters within a score plot based on variables of interest. 

At the same time, some applications do not require a maximized separation, but rather, a 

differentiation of a dataset without the pre-grouping of the Raman spectra of selected bacterial 

species. 

When considering the differentiation of five different subgingival oral species in this work 

(A.naeslundii, F.nucleatum, S.mutans, P.nigrescens and V.dispar), the same dataset was used 

for both multivariate models to determine which method allowed for the best differentiation 

and therefore species assignment to new spectra. Score plot results for PCA analysis and  

O2PLS-DA analysis are shown in Figure 25. Parts of the multivariate analysis were published 

before (Kriem et al., 2020).  

Figure 25A shows score plots of the two greatest variations (PC1 and PC2) in the datasets and 

were plotted as X and Y using PCA as the multivariate method. According to the first two PCs, 

dense areas of spectra can be seen. Except for A.naeslundii, all species clusters were spread 

over at least two quadrants. Due to the overlaps of spectra, no clear clusters could be identified 

but tendencies can be seen. Clusters are spread more over the whole score plot, not allowing 

for clear differentiation. Since variance of samples are based on the variables of all species, it 

indicates that spectral differences are not major, resulting in an inconclusive score plot and 

incomplete separation of the score plots. A.naeslundii, S.mutans and V.dispar, however, shows 

the best separation in the five species score plot (Figure 25A, first row) and for that reason, 

were also considered independently in a PCA analysis of these three species (Figure 25A, 

second row) to attempt to improve separation of the three selected species in the score plot. 
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Figure 25: Multivariate analysis of selected oral bacteria show the distribution of the same set of 

spectra (84 spectral samples for each strain) for A. PCA Analysis and B. O2PLS-DA Analysis that 

have been both used in this work. First row: T-score plot of five species: A.naeslundii (red circles), 

S.mutans (blue square), V.dispar (green triangle), F.nucleatum (purple triangle) and P.nigrescens 

(orange diamond). Second Row: T-score plot of three species that showed clusters in the five species 

score plot: A.naeslundii (red circles), S.mutans (blue square) and V.dispar (green triangle). Third 

row: T-score plot of three species that showed that didn’t show clear cluster differentiation in the five 

species score plot: A.naeslundii (red circles), F.nucleatum (purple triangle) and P.nigrescens (orange 

diamond). 

When analyzing the three species model, PCA analysis allows sufficient analytical evidence for 

the differentiation and clustering of the three species in the score plot. Therefore, these three 

species can be differentiated due to sufficient peak characteristics that are species-specific. 

When looking at A.naeslundii, F.nucleatum and P.nigrescens, which show substantial overlap 

in the five species analysis, the three species model separation still remains partial. Clusters are 

still spread over multiple quadrants with overlapping areas of spectra from the three species. It 
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can be concluded that PCA analysis is not able to differentiate these three species, because their 

peak features are too similar. Additionally, the spectra for P.nigrescens show big variances. 

Spectra are spread across three quadrants, being the main reason why the species cannot be 

differentiated. PCA of datasets containing spectra of four species were not considered in this 

thesis. 

Figure 25B shows T-score plots of different scenarios using the two greatest variations in the 

datasets and plotted as X and Y using O2PLS-DA as the multivariate method of five species. 

Based on the O2PLS-DA algorithm, every data point shown represents a Raman spectra and 

also contains information of all measured species. Based on the selection of the two greatest 

variances, three clearly distinct clusters can be identified, as well as one cluster showing an 

overlap of all three species (A.naeslundii, F.nucleatum and P.nigrescens).  Spectra for V.dispar 

can be found exclusively in the third quadrant while S.mutans are found in the fourth. Looking 

at the third cluster, P.nigrescens is found only in the second quadrant and A.naeslundii in the 

first quadrant. Only F.nucleatum shows distributions in two quadrants (first and second). Since 

variance of samples are based on the average of a specific dataset, Figure 25B, first row uses 

all five species to build the averages. This process results in the insufficient separation of 

A.naeslundii, F.nucleatum and P.nigrescens, because their calculated variances, and therefore 

their Raman spectra are too similar. 

In order to further analyze the available datasets, some species have been excluded from the 

multivariate analysis to determine whether this allows separation the same way as for the PCA 

analysis. The second row of Figure 25B uses A.naeslundii, S.mutans and V.dispar for analysis. 

These three species previously showed strong differentiation within the five species model. For 

that reason, it is no surprise that the calculated variances also shows three clearly separated 

clusters. 

The third row focused on the three species that previously showed overlaps in the five species 

model. The O2PLS-DA T-score plot of the three species was generated from the three species 

(A.naeslundii, F.nucleatum and P.nigrescens) that could not be differentiated in the initial five 

species T-score plot. By solely using an O2PLS-DA model for the three species, it was possible 

to clearly discriminate species. This analysis employs the average of the spectra of A.naeslundii, 

F.nucleatum and P.nigrescens (pre-defined cluster) for the calculation of variation. This change 

allows the separation of species due to the recalculation of averages based on the available data. 

Because data from S.mutans and V.dispar are omitted here, the average are more defined and 

separated because the model doesn’t have to consider data from the other two species. While 
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spreading of the data points remains similar to the other three species model and less compared 

to the five species model, it can be concluded that O2PLS-DA was able to differentiate the three 

species (A.denticolens, S.oralis, V.dispar) in this multivariate setup (Kriem et al., 2020). 

Comparing the two selected multivariate analysis methods they were both successful in 

differentiating A.naeslundii, S.mutans and V.dispar in a model exclusively considering these 

three species. Due to the nature of the model, O2PLS-DA shows increased separation compared 

to PCA because of the underlying mathematical calculation and O2PLS-DA using the 

maximum separation of clusters based on a supervised approach. The differentiation of 

A.naeslundii, F.nucleatum and P.nigrescens was only successful when using O2PLS-DA. 

Overall, when looking at the five species models, separation and differentiation of species is 

more present for O2PLS-DA rather than PCA. This is due to dense clusters because O2PLS-DA 

achieves separation when species data is used separately (see Figure 25B second and third row). 

In conclusion, for the analysis and prediction of multiple species O2PLS-DA should be the 

model of choice. When using a two-step approach, unknown species spectra should be able to 

be classified correctly. If a prediction of a species is inconclusive in the five species model 

because the spectra falls into the overlapping area of A.naeslundii, F.nucleatum and 

P.nigrescens, the specific three species model should then be able to predict species correctly. 

This approach however is not possible when using PCA modelling (Kriem et al., 2020). 

For simplicity and the proof-of-concept design, the three species consisting of A.naeslundii, 

S.mutans and V.dispar were used for prediction of species because peak characteristics of the 

species were unique enough to be differentiated using both models. Additionally, O2PLS-DA 

was selected for the prediction of species in a planktonic and biofilm state due to the dense and 

well separated clusters in the dataset model. 

4.1.5 Identification of bacteria with Raman 

In order to test the robustness of the O2PLS-DA multivariate analysis using Raman spectra for 

bacteria differentiation model, the calibration datasets consisting of A.naeslundii, S.mutans and 

V.dispar was selected (each species dataset consisting of 84 spectra). These datasets were then 

used to predict species for which new sets of spectra were generated (36 spectra for planktonic 

bacteria samples and 30 spectra for mono-species biofilm spectra). Two sets of predictive 

analyses were carried out using this training data method: 1. predict the identity of 

planktonically grown organisms and 2. predict the identity of biofilm grown organisms. 
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Figure 26: O2PLS-DA analysis of planktonic cell spectra for three species shows the distribution of 

spectra (36 spectra for each strain) after discriminant analysis in a 2D sphere; A.naeslundii (red 

circles), S.mutans (blue squares) and V.dispar (green triangle). 

Figure 26 shows the score plot for spectra from unknown planktonic bacteria cells for three 

species when analyzed with O2PLS-DA. The distribution in each of the quadrants is the same 

as the calibration spectra (Figure 25B), but the spectra are more spread in the score plot 

indicating a larger variance between the spectra. After the spectra were collected for prediction, 

they were compared to the model that has been set up with calibration spectra (Figure 25B, 

second row) for cross validation. Table 15 shows the comparison of predicting planktonic cells 

using the O2PLS-DA model. The diagonal, bold values show the spectra that agree with the 

calibration spectra while the other values represent the errors of classification. Here, none of 

the spectra were misclassified by the model, resulting in a prediction accuracy of 100% for a 

total of 36 spectra for each strain (Kriem et al., 2020). This demonstrated that the developed 

model is able to successfully differentiate planktonic subgingival oral bacteria based on their 

chemometric Raman spectra. 

Table 15: Comparison of the performance of species identification using the O2PLS-DA model for 

planktonic cells. The columns indicate the known/calibration species; the rows indicate the prevalence 

of predicted species using the O2PLS-DA model of the known/calibrated species spectra.

 

In a second step, the same calibration set was tested to determine whether it also allows the 

prediction of species grown as mono-species biofilms. Figure 27 shows the score plot for mono-

species biofilm cell spectra for three species (30 spectra for each strain) when analyzed with 

O2PLS-DA. The distribution into quadrants is the same as for the calibration spectra. In Figure 

  Known Species 

  A.naeslundii S.mutans V.dispar 

Predicted     

A.naeslundii  36 (100%) 0 0 

S.mutans  0 36 (100%) 0 

V.dispar  0 0 36 (100%) 

Total Successful Prediction: 108 (100%)    
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27, the V.dispar cluster was distributed between the second and third quadrant. In comparison 

to the O2PLS-DA plot from the planktonic spectra (Figure 26), clusters are more defined and 

closer together, indicating less variance between the individual spectra of each species dataset. 

For the prediction of species, spectra were also compared to the model that was set up with 

calibration spectra consisting of spectra from planktonic bacteria (Figure 25B, second row) for 

cross validation of the model. Table 16 shows the comparison of predicting mono-species 

biofilm cells using the O2PLS-DA model generated from planktonic bacteria. The training set 

of data enabled the correct identification of more than 76% of S.mutans, more than 90% of 

V.dispar and 100% of A.naeslundii (Kriem et al., 2020). In summary, the model was still able 

to predict 90% of all spectra in the dataset successfully with A.naeslundii showing the best 

prediction rate and S.mutans showing the least prediction rate. 

 
Figure 27: O2PLS-DA analysis of mono-species biofilm spectra (30 spectra for each strain) for three 

species shows the distribution of spectra after discriminant analysis in a 2D sphere; A.naeslundii (red 

circles), S.mutans (blue squares) and V.dispar (green triangle). 

Table 16: Comparison of the performance of species identification using the O2PLS-DA model for 

mono-species biofilm spectra. The columns indicate the known/calibration species; the rows indicate 

the prevalence of predicted species using the O2PLS-DA model of the known/calibrated species 

spectra. 

 

In summary, the prediction of species for both oral planktonic and mono-species biofilm spectra 

demonstrated that acquired Raman spectra can be used to differentiate species based on their 

chemometric profile. 

  Known Species 

  A.naeslundii S.mutans V.dispar 

Predicted     

A.naeslundii  30 (100%) 0 0 

S.mutans  2 (6.6%) 23 (76.7%) 5 (16.7%) 

V.dispar  0 2 (6.7%) 28 (93.3%) 

Total Successful Prediction: 81 (90%)    

 



RESULTS 
 

- 67 - 

 

4.2 Analysis of biofilm structure 

The next step was the use of multivariate analysis models based on Raman spectra in the 

differentiation of multi-species biofilms. Biofilms consisting of two bacterial species were 

generated and a workflow for mapping biofilms based on Raman spectra was developed. 

A.denticolens and S.oralis are seen as key players in the initial formation of subgingival 

biofilms (early colonizers) (Ammann et al., 2013; Kolenbrander and London, 1993). The 

analysis of biofilm structures with Raman mapping was therefore performed with these two 

species. Since hydroxyapatite surfaces, imitating a tooth surface, showed large Raman peaks in 

the ‘fingerprint region’ of bacterial samples (Chapter 8.5.2 in the Appendix)  they were replaced 

by borosilicate glass to reduce background noise. 

The biofilms were analyzed using FISH and CLSM as a control. A qualitative characterization 

of dual-species biofilms was performed (see Chapter 3.2.4 for the methods used) and is shown 

in Figure 28 as a stack of 16 individual images (individual images before the stack are found in 

Chapter 8.7 in the Appendix). Biofilms were stained with two species-specific oligonucleotides 

(6-FAM for S.oralis and Cy3 for A.denticolens) according to the protocol described in Chapter 

3.2.4. A quantification of species distribution was not performed in this work. Figure 28 shows 

an exemplary image of a total of 15 analyzed samples with similar distribution patterns.  

The CLSM image shows that dual-species biofilms were formed successfully using the 

modified ‘Zürich model’. Because labeled oligonucleotides were designed for the staining of 

bacterial RNA and DNA, they were able to stain the whole cell. Due to that characteristic it was 

possible to correlate morphology of bacterial cells with staining by FISH with S.oralis being 

cocci shaped (green stain) and A.denticolens being rod shaped (red stain) (Figure 28). 

S.oralis (green color) was more prevalent in the biofilm than A.denticolens (red color). 

Distribution patterns in the biofilm also showed cluster formation in areas that were 

predominantly S.oralis and other areas that were predominantly A.denticolens. Due to the 

layering of multiple images, some areas appear in a yellow/orange color. These yellow/orange 

colors range from having both bacterial species present in the same point but in different layers 

and can mostly be observed in transition areas of two clusters (Kriem et al., 2021). These areas 

can be especially interesting for the mapping of dual-species biofilms and can be the source of 

possible artefacts due to both species being present at a specific location. 
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Figure 28: CLSM image of the FISH-stained dual-species biofilm. 16 individual images with a z-step 

size of 1.018 µm of the biofilm stained with species-specific 16S rRNA FISH probes for S.oralis 

(MIT447, green) and A.denticolens (ACT476, red) were overlaid to one image using ImageJ. The 16 

individual images before they were combined to a Z-stack are found in Chapter 8.7 (Appendix). 

4.3 Model development for spatial mapping of biofilms 

It has been demonstrated that CRM is able to differentiate oral subgingival species based on 

their chemometric profile (Chapter 4.1). In a second step this information was used to establish 

a workflow and multivariate model for two-dimensional mapping of bacteria in a dual-species 

biofilm which includes the acquisition and processing steps necessary before modelling as 

described in Chapter 3.3.1. This first approach serves as a proof-of-concept design for the 

evaluation of biofilms using Raman spectra. While this work only focuses on subgingival 

biofilms and biofilms composed of C.albicans and P.aeruginosa, this workflow can be applied 

to mapping of biofilms of interest in general, when species specific calibration datasets are 

available.  

In order to perform biofilm mapping using Raman spectra, a Renishaw inVia™ Qontor was 

used due to the higher sensitivity of the instrument (see Chapter 3.1.1). Since Raman spectra 

from complex samples like microorganisms are instrument specific to some extent, new 

calibration datasets had to be generated to develop a model for the spatial differentiation of 

bacteria in a biofilm. 
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For the differentiation and mapping of biofilms using CRM with the Renishaw inVia™ Qontor 

CA was used. O2PLS-DA and PCA are both modelling methods without the consideration of 

area dimensions of the collected data and cannot be applied for the mapping of Raman spectra. 

To develop a method for spatial mapping of biofilms, different datasets, samples, and analysis 

technologies were used to confirm: 1. species clustering in the in-vitro grown subgingival dual-

species biofilm model 2. the use of a multivariate analysis model for spatial differentiation of 

bacteria and 3. the use of chemometric information from Raman spectra collected from in-vitro 

dual-species biofilm models to achieve two-dimensional mapping. This analysis was compared 

to-state-of- the-art methods like FISH/CLSM and morphology of samples. An overview of the 

different calibration datasets, analyzed samples and the technologies used for the workflow is 

shown in Figure 29. 

 
Figure 29: Experimental design setup for the differentiation and confirmation of Raman mapping in a 

dual-species biofilm model. 

4.3.1 Calibration of planktonic bacteria and mono-species biofilms using 

Renishaw inVia™ Qontor 

In a first step, calibration datasets were acquired for three species (A.denticolens, S.oralis and 

V.dispar). S.oralis and V.dispar are both cocci shaped and therefore, morphological 

differentiation is difficult. For the proof-of-concept, their shape makes it difficult to compare 

morphology and Raman maps. As seen in Figure 4B and C, Streptococcus sp. and Actinomyces 

sp. make up the majority of species present while Veillonella sp. are only present in small 

concentrations. Additionally, Figure 42 suggests that Streptococcus sp. and Actinomyces sp. 

have the highest concentration when grown in-vitro with the ‘Zürich model’, making up more 

than 97% of the total cell count. Because Streptococcus spp. play a key role in the early 

colonization of a surface and also have high concentrations in a subgingival biofilm, S.oralis 

(cocci shaped) was selected together with A.denticolens (rod shaped) for the analysis of dual-

species biofilms while V.dispar was not used further for the proof-of-concept experiments.  
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Calibration datasets were generated for the two organisms, S.oralis and A.denticolens to enable 

accurate mapping using Raman spectra. The two calibration datasets were created from mono-

species biofilms and planktonic bacteria for A.denticolens and S.oralis. The confirmation of the 

CA as the multivariate model of choice required the use of planktonic bacteria to identify 

species for DBIA samples. Even though differences between biofilm and planktonic bacteria 

spectra are only minor, they may still be sufficient to give inconclusive results for the CA and 

should not be used interchangeably (see Figure 30C and F). 

  
Figure 30: Averaged processed Raman signals (300 spectra for each dataset) before Savitsky-Golay 

differentiation for S.oralis and A.denticolens and their standard deviations. (A) and (B) shows the 

spectra for A.denticolens with (A) for planktonic bacteria and (B) for mono-species biofilms. (C) 

shows the spectral difference between planktonic bacteria and mono-species biofilm spectra. A 

negative number indicates a higher count in the planktonic spectra while a positive count indicates a 

higher count in the biofilm spectra (D) and (E) shows the spectra for S.oralis with (D) for planktonic 

bacteria and (E) for mono-species biofilms. (F) shows the spectral difference between planktonic 

bacteria and mono-species biofilm spectra. A negative number indicates a higher count in the 

planktonic spectra while a positive count indicates a higher count in the biofilm spectra. (G) and (H) 

shows the spectral  difference between A.denticolens and S.oralis for (G) planktonic bacteria and (H) 

mono-species biofilms. Negative numbers indicate a higher count for S.oralis spectra while positive 

counts indicate higher counts A.denticolens. 

Spectra of A.denticolens and S.oralis were analyzed using CRM as described in Materials and 

Methods. Figure 30 shows the plots of averaged Raman spectra with 300 spectra acquired per 

strain and either as planktonic or biofilm bacteria with the Renishaw inVia™ Qontor. In 

comparison to the dataset acquisition described in previous chapters, the number of spectra in 
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the dataset have been increased to reduce the variance and increase the robustness of the dataset 

as suggested by Guo (2018). This should improve predictability of species in biofilm settings. 

Reference databases in previous works demonstrated that it is possible to identify dominant 

chemical signature patterns in microorganisms that can be found and differentiated in a Raman 

spectra (De Gelder et al., 2007; Kumar et al., 2016; Sil et al., 2017) as data already showed in 

Chapter 4.1.1. As for the data generated with the ThermoFisher DXRxi instrument (Chapter 

4.1), major common peaks in microbiological samples such as Amide I and Amide III, which 

can be identified at ~1250 cm-1 (Amide III) and ~1660 cm-1 (Amide I), were also found using 

the Renishaw inVia™ Qontor. Amino acids can be seen at multiple wavenumbers. In this study, 

oral bacteria mostly identified as Phenylalanine and are seen at ~1000 cm-1 and C-N and C-C 

stretches (specific for proteins) at ~1125 cm-1. Additionally, the presence of lipids can be seen 

as CH2 deformations at ~1450 cm-1. These described peak patterns were found across both oral 

bacteria species in planktonic and biofilm conditions (Figure 30).  

A.denticolens only showed small peak differences between planktonic and biofilm bacteria. The 

biggest differences appeared at ~982 cm-1 (Polysaccharides) and ~1129 cm-1 (C-N, C-C stretch 

Protein) (Figure 30C) with an increase in counts for the mono-species biofilm spectra. S.oralis 

however showed a change of peaks in multiple regions, with an increase of counts at ~982 cm-1 

(Polysaccharides), ~1003 cm-1 (phenylalanine) and ~1452 cm-1 (C-H2 deformation) while there 

is a reduction of signal counts predominantly between 900 cm-1 to 1350 cm-1 and at ~1524 cm-1 

(C=C stretch) and ~1746 cm-1 (C=O stretch) (Figure 30F). 

The differences observed, however, were not due to the presence or absence of peaks, but 

mostly, the height and signal counts of these peaks (Figure 30C and F). This indicates an up or 

down regulation of processes within the cell due to the planktonic or biofilm growth phase. This 

was also seen when comparing species. Most peaks are present for both A.denticolens and 

S.oralis, while heights of these peaks differ. No reoccurring pattern of height increases or 

decreases of certain peaks can be identified for planktonic and biofilm bacteria when comparing 

A.denticolens and S.oralis. Overall, considering the absolute differences between the two 

species of planktonic bacteria and mono-species biofilm spectra, the differences typically 

ranged between 0 to 0.2 on a normalized scale between 600 – 1800 cm-1 with few peaks showing 

differences greater than 0.2 (Figure 30G and H) (Kriem et al., 2021). This indicates that 

A.denticolens and S.oralis show similar chemical compositions with differences in counts of 

peaks. These differences may, however, be substantial enough to be differentiated statistically. 
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As seen in the spectral differences between the two species in Figure 30G, the amount of peak 

differences of up to about 0.3 allows the use of planktonic bacteria for DBIA samples. 

Especially the counts throughout the spectra between 600 – 1800 cm-1 for S.oralis are increased 

(seen by the negative numbers) while only three peaks show significant higher counts for 

A.denticolens (~1454 cm-1, ~1654 cm-1, ~1678 cm-1). Using DBIA samples is well suited to 

validate differentiation of bacteria using CRM in biofilms on a system where the investigated 

areas are already defined. 

The same assumption can be made for the use of mono-species biofilm bacteria for 

differentiation in a dual-species biofilm then because several peaks show differences as seen in 

Figure 30H. Here, counts larger than 0.1 on a normalized scale are increased for A.denticolens 

mono-species biofilm spectra at ~747 cm-1, ~840 cm-1, ~901 cm-1 and ~1130 cm-1 when 

compared to S.oralis mono-species biofilm spectra. On the other hand, spectral counts are 

increased for S.oralis at ~1003 cm-1, ~1033 cm-1, ~1482 cm-1, ~1656 cm-1. Hence, there are 

different peaks in A.denticolens and S.oralis mono-species biofilm spectra allowing 

differentiation.  

Showing visual spectral changes based on presence, absence and height of spectral peaks is not 

sufficient enough to analyze biofilm identities in depth. In order to evaluate the spectra 

generated for the calibration datasets, statistical analyses were performed to demonstrate that 

the collected Raman spectra are: 1. able to be used for the differentiation in general and 2. able 

to be used for mapping. 

4.3.2 Multivariate analysis of calibration datasets 

In order show that bacterial spectra for A.denticolens and S.oralis can be used for 

differentiation, PCA analysis was performed on the collected and processed Raman data 

(individual processing steps are described in Chapter 3.3.1) for both planktonic and mono-

species biofilm spectra (Figure 31). PCA was selected as the statistical analysis of choice 

because it works well for systems that only considers two groups. 

Figure 31 shows the score plots of the first two principal components (PC1 and PC2). From the 

visual inspection of the score plots, it can be concluded that the chemometric profile of 

A.denticolens and S.oralis could be used to differentiate the two species in both conditions. For 

planktonic bacteria spectra the two PCs explained 41.7% (the summary of both PCs) of the 

overall variance present in the dataset (Figure 31A), while only 26.2% of the variance of the 

mono-species biofilms was explained (Figure 31B). The PCA analysis demonstrated that two 
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distinguishing clusters were shown, allowing a cluster analysis for the distribution analysis of 

multi-species biofilms. 

 
Figure 31: PCA Analysis of selected oral bacteria show the distribution of the 2nd order derivative of 

spectra (300 spectral samples for each strain) in a score plot. A.denticolens is marked in red while 

S.oralis is marked in green. A) Score plot for planktonic bacteria spectra with a 95% confidence 

ellipse. B) Score plot for mono-species biofilm spectra with a 95% confidence ellipse. 

Planktonic S.oralis showed a larger variance in the dataset, resulting in a broader spreading of 

data points within the cluster, while spectra clusters for A.denticolens were more narrow. High 

variance can additionally be seen in the size of the confidence ellipse (CE). Due to the size of 

the CE for planktonic S.oralis bacteria, increased variance is present in the calibration dataset. 

This is represented by the spread of data points over three quadrants. Additionally, the 

distribution of spectra also displays one larger group of spectra and one smaller group, thus 

indicating variation in the dataset within the spectra groups. Nevertheless, a clear difference 

between the two clusters can be determined (Figure 31A) and allows for the use in the 

differentiation of bacteria for DBIA samples. 

PCA analysis of the mono-species biofilm samples show stronger differentiation of the groups. 

Even though less variance is described by the two PCs in biofilm conditions with 26.2 %, the 

clusters show more defined separation of the species. Additionally, both clusters visually show 

a similar CE size, suggesting that the variance of the spectra within the clusters is comparable 

(Figure 31B) (Kriem et al., 2021). Moreover, the clusters are uniformly spread without multiple 

groups within the cluster suggesting sufficient confidence for the application in referencing 

bacteria in biofilm mapping experiments. 
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4.3.3 Evaluation of mapping analysis model 

One key element of this work is the evaluation whether Raman spectra can be used for the 

analysis and differentiation of bacteria within a biofilm consisting of different bacterial species. 

In order to implement the gathered information from previous chapters, it is now necessary to 

connect these results with methods that are able to link Raman spectra to the locations in which 

the spectra were taken and put it in relation to other spectra. Previous research (Harz et al., 

2005; Kniggendorf et al., 2011) displayed a convincing potential of CA for the differentiation 

of bacteria in multi-species biofilms and was thus evaluated in this thesis. Details of the method 

can be found in Chapter 3.3.2 and 3.3.3. 

After demonstrating that the generated datasets, derived from S.oralis and A.denticolens, allow 

differentiation of the species (Chapter 4.3.2), the next step was to select an appropriate analysis 

model to demonstrate spatial differentiation based on chemometric profiles acquired by CRM. 

To this day, there is no method available that allows the growth of mono-species biofilms on 

one specific surface with a spatial separation of less than 10 µm (which is needed for successful 

CRM acquisitions). In order to be able to validate the selected multivariate method, mapping 

of known species in a defined area is necessary. As evaluated previously, the spectra of 

planktonic bacteria may be used for the analysis because they show similar chemometric 

features to biofilm grown bacteria (Chapter 4.3.1). Planktonic bacteria allow easier sample 

handling and the preparation of an artificial interface of known species necessary to evaluate 

the performance of the method. Sample preparation is described in detail in Chapter 3.2.1. 

Using this method allows for the manual construction of a ‘biofilm-like’ structure where species 

and their location are known and a spatial separation of less than 10 µm is possible. The used 

samples were hence labeled as DBIA samples to show a clear distinction between biofilm 

samples and manually constructed ‘biofilm-like’ structures. 

By using cocci (S.oralis) and rod shaped (A.denticolens) bacteria for the validation of the 

method, the shape of bacteria can be used to validate mapping results from CRM with 

morphology. To further add to the comparison of species, FISH/CLSM, the standard method 

for subgingival biofilm mapping, was also used to verify the mapping (see Chapter 4.2). Due 

to the nature of the method and sample preparation, FISH/CLSM analysis is not possible to be 

performed on the same sample area as for CRM and morphology. Hence, two samples from the 

same batch of experiments were used for the evaluation. Details on the sample preparation are 

described in Chapter 3.2.2. 
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Figure 32: Distribution of A.denticolens and S.oralis in a DBIA sample. Morphological and Raman 

analysis was performed using the identical random area in a sample. Morphological analysis was 

done using ImageJ. Raman analysis was performed using cluster analysis with WiRE 5.2. FISH 

analysis was performed on a new sample from the same experimental batch the image of one layer is 

shown. 

Raman distribution images from CA were compared to morphological distribution and FISH 

distribution in Figure 32. Overall, all three images show two clusters of distribution in the 

transition area between A.denticolens and S.oralis while some methods were more successful 

in differentiating than others. Morphology images showed a defined edge between the two 

areas. Separation details are more clear in morphology analysis because of its ability to 

differentiate small areas (<1 µm) better than Raman mapping. CLSM is able to reach similar 

results but due to the limitation of the instrument (available objectives) a close analysis of a 

zoomed view was not possible.  

FISH/CLSM confirmed morphology imaging by indicating the same edge. It needs to be noted, 

however, that FISH imaging was taken over an image area of 100 µm x 100 µm (due to the 

instrument limitations and availability of objectives) while Raman and morphology imaging 

was done over an image area of 18 µm x 18 µm. In this example, FISH/CLSM was successfully 

used to analyze larger areas with reduced resolution. It also showed a clear interface between 
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the two bacteria species, therefore confirming what can be seen in detail for the morphology 

analysis. 

Raman imaging also showed a similar biofilm boundary as determined by morphology analysis. 

Due to the technical limitation of the Raman imaging process (1 µm steps), the edge at the 

transition area is not as specifically assigned, as in morphology imaging. Additionally, some 

areas that were defined as A.denticolens in the morphology image have been classified as 

S.oralis (five 1 µm² points) in the Raman images and vice versa (five 1 µm² points) while eight 

1 µm² points were unable to be classified as either bacteria. When compared to all acquired 

points (324 point in total), these misidentified points only make up a total of 5.56 % and can 

therefore be seen as minimal. 

Overall, visually all three images demonstrate a clear boundary between the two species. When 

comparing all three mapping methods, it can be concluded that CA was confirmed as a method 

for distribution evaluation of multi-species biofilms using spectral Raman mapping based on 

the analysis using DBIA samples (Kriem et al., 2021). Besides the test of different variations 

of CA as described in Chapter 3.3.3, CA was the only method tested for biofilm mapping using 

Raman spectra. 

4.3.4 Mapping of dual-species biofilms 

The previous chapter showed that bacteria can be differentiated using DBIA samples in a 

‘biofilm-like’ setting with planktonic bacteria as a calibration dataset. This demonstrated the 

possible applicability of CA for the analysis of biofilms. In order to confirm the results from 

the DBIA analysis in Chapter 4.3.3, CA was now applied to in-vitro dual-species biofilms using 

mono-species biofilm spectra as the calibration dataset. The map acquisition of dual-species 

was done according to procedures described in Chapter 3.2.2. For the analysis and validation 

of the use of Raman distribution mapping, 15 random areas (18 µm x 18 µm) of 15 in-vitro 

biofilm clustered bacteria samples were selected and analyzed based on their morphology and 

Raman spectra in combination with CA. Here, the same settings and approach was used as in 

Chapter 4.3.3 that were determined in Chapter 3.3.3. The spatial distribution of A.denticolens 

and S.oralis in dual-species biofilms are demonstrated in Figure 33. Additionally, spatial maps 

from morphology and Raman spectra analysis are compared with each other and shown as layer 

images. 
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Figure 33: Distribution of A.denticolens (red areas) and S.oralis (green areas) in 15 dual-species 

biofilms. Image window is 18 µm x 18 µm Morphological and Raman analysis was performed using 

the identical random area in a sample. Morphological analysis was done using MorphoLibJ in 

ImageJ. Raman analysis was performed using PCA based cluster analysis with WiRE 5.2. Grey areas 

show unidentified areas. Morphology and Raman images were layovered to show areas that were not 

classified as the same species and were labeled blue (values in Chapter 8.8 of the Appendix). 
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The analysis of bacteria based on their morphology using MorphoLibJ in ImageJ generated 

detailed information and enabled detection and differentiation of individual organisms within a 

biofilm. Especially small clusters with low amounts of bacteria are detected here. Additionally, 

morphology analysis confirms clusters identified using FISH/CLSM that was already shown in 

Figure 28. 

Unlike morphology, CA using Raman spectra was not always able to make a distinct 

classification of bacteria for some sample areas. If Raman spectra were unable to be classified 

as either S.oralis or A.denticolens, the specific areas were color coded in grey. Each acquired 

Raman spectra accounts for an area of 1 µm2. The number of squares that are not accounted to 

one species are counted and put into relation to the total analyzed area of 324 µm2. Inability to 

classify bacteria based on their Raman spectra can be seen in samples 1, 4 and 5 totaling for 23 

µm2, 23 µm2, 17 µm2 or 6.98%, 6.76% and 3.18% of total analyzed area per sample respectively 

(see the distribution based on Raman; all coverage values are shown in Chapter 8.8 of the 

Appendix). The other 12 samples showed 100% classification of either A.denticolens or 

S.oralis. 

To further evaluate the bacteria assignment, centroid spectra of the clusters from CA were 

compared to the mono-species biofilm calibration spectra created previously (Figure 30B and 

E). Depending on the assignment, clusters were then colored in either red (for A.denticolens) 

or green (for S.oralis). Comparing location of clusters from Raman and CA with morphology 

showed, that the assigned clusters were similar, thus also confirming results from Figure 28. 

In order to validate the clustering from Raman spectra, the maps were compared to morphology 

analysis. The morphology maps were generated over the same area, and layover images were 

created (Layover images in Figure 33). Here, areas that we classified as identical bacterial 

species remained in their code color (red for A.denticolens and green for S.oralis). Areas that 

were classified as A.denticolens by morphology and S.oralis by Raman spectra and vice versa 

were labeled in a blue color in the layover image (also see Chapter 3.3.3 for further details on 

labeling). 

When looking at the layover images in Figure 33 all major clusters have been identified 

correctly in all 15 analyzed samples. Grey areas in the Raman images in samples 1, 4 and 5 

were classified as incorrect cluster assignment. Additionally, CA missed the detection and 

assignment of small clusters and individual bacteria. Besides the insufficient classification of 

small clusters, transition areas of two clusters also show increased misclassification (Kriem et 



RESULTS 
 

- 79 - 

 

al., 2021). The calculated relative total coverage distribution of each sample and mapping type 

are shown in Figure 34 (see Chapter 8.8 (Appendix) for values). 

 
Figure 34: Coverage distribution was calculated from samples shown in Figure 33 for morphology 

and Raman analysis using ImageJ. Percent difference of total coverage between the two analysis 

methods was compared considering morphology analysis as the true distribution. Negative values in 

differences indicate reduced identification of the species in Raman analysis compared to morphology 

analysis while a positive value indicates increased identification. Specific values are found in Chapter 

8.8 of the Appendix. 

When looking at the coverage of the two bacteria in the selected areas, they agree well with 

each other. Highest differences appear for sample 10 with 13.42% incorrect identification and 

as low as 0.35% in sample 8. On average, the difference of classification between morphology 

and Raman analysis for A.denticolens was 4.75% and for S.oralis 5.93% (average difference 

derives from unidentified areas that were also identified by Raman analysis). There is no trend 

whether A.denticolens or S.oralis were over-identified in Raman samples compared to 

morphological analysis. Eleven samples showed an over-identification of A.denticolens while 

four samples showed an over-identification of S.oralis when compared to morphology analysis 

(Kriem et al., 2021).  

Blue areas of the layover images range between 17.66% (sample 12) and 31.54% (sample 4) 

with an averaged area of 26.71% (see Figure 33). Blue areas are equivalent to the results that 

are indicated in Chapter 8.8 (Appendix) as different classification of morphology vs. Raman. 

While Figure 34 shows the overall total relative quantities of the two species from the evaluated 

area, it lacks the evaluation how well the areas from optical microscopy and CRM agree with 
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each other. Thus, Figure 35 looks at the agreement of identified areas as seen in the layover 

maps in Figure 33 over two dimensions. As a result, areas that were identified differently and 

labeled in blue color, to show the differences between the two mapping methods related to the 

2D dimension, were quantified (for details how the evaluation was done, see Chapter 3.3.3). 

 
Figure 35: Specific Coverage distribution based on the blue areas in Figure 33 that were calculated 

based on the specific differences at each location using ImageJ. The red line indicates the average 

difference of the 15 samples with 26.71 %. 

This shows that while overall relative total distributions of bacteria in biofilms using Raman 

mapping are comparable to morphology mapping (Figure 34), the dimensional differences of 

the two mapping methods related to the 2D dimensions are larger in distribution as seen in 

Figure 35. Here, sample 4 shows the highest dimensional differences of 31.55 % while sample 

12 shows the lowest dimensional differences with 17.66%. The average dimensional difference 

for all 15 analyzed samples was 26.71 %. 

4.3.5 Comparison of different mapping technologies to CRM 

After successfully demonstrating that subgingival dual-species biofilms can be differentiated 

using CRM, the method was compared to other mapping technologies that are commonly used 

for the analysis of biofilm architecture and are summarized in Table 17. This analysis showed 

that: 1. compared to the other methods, CRM mapping allows the continuous analysis of biofilm 

mapping of one specific spot and 2. analysis is possible when the biofilm sample is in a hydrated 

state. Particularly the non-destructive nature of the methods is a key advantage. Conversely, 

low resolution doesn’t allow for a detailed analysis, especially when only small areas are of 

interest. Additionally, because the method relies on the chemometric profile of bacteria, 

changes in the profile due to changing environmental conditions may result in failure of correct 

classification. Because the other methods are not dependent on the chemometric information of 
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a biofilm this has not proven to be problematic for the other mapping techniques. The 

comparison of methods to CRM are further discussed in Chapter 5.3. 
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Table 17: Comparison of relevant imaging techniques that consider the mapping of multi-species biofilms. Results from this work are compared to data that have 

been previously published. 

Technology Confocal Raman Microscopy 

Confocal Laser Scanning 

Microscopy and Fluorescent 

in-situ hybridization 

Scanning Electron Microscopy Atomic Force Microscopy 

Acronym CRM CLSM/FISH SEM AFM 

Reference This work (Guggenheim et al., 2004) (Kommerein et al., 2017) (James et al., 2016) 

Organisms A.denticolens, S.oralis F.nucleatum, S.oralis 
S.oralis, A.naeslundii, 

V.dispar, P.gingivalis 
Unknown species 

Images from the named 

references 

    

Image size 18 µm x 18 µm 100 µm x 100 µm 16 µm x 20 µm 10 µm2 

Advantages 

Continuous study of sample, 

measurement in hydrated 

state  

Reconstruction of 3-D 

images, high specificity, 

differentiation of species with 

same morphology 

High resolution imaging, 

good morphological 

differentiation 

Continuous study of sample, 

reconstruction of 3-D images 

Limitation 

Low resolution, time 

consuming, chemometric 

profile dependent 

Low axial resolution, limited 

laser penetration, complex 

sample preparation, no 

continuous study 

Complex sample preparation, 

dehydrated samples only, 

prone to artefacts due to 

sample preparation 

Small scanning area, sample 

damage, fragile probe, time 

consuming, visual 

differentiation difficult 

Sample preparation and 

environment 

No sample preparation Cell lysis, fluorescence label Destructive, conductive or 

gold/platinum coating of 

sample 

No sample preparation 
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4.4 Application of the used model for other biofilms 

Chapter 4.3 successfully demonstrated the use of acquired chemometric profiles by CRM for 

differentiation of bacteria in a dual-species biofilm. The developed workflow of 1. data 

acquisition 2. data processing and 3. spatial mapping coupled with multivariate analysis can be 

used as an alternative to other mapping technologies like FISH/CLSM. This method was 

implemented using oral biofilms. This workflow was transferred to another biofilm relevant for 

medical applications. In-vitro biofilm models consisting of P.aeruginosa and C.albicans also 

show pathogenicity in medical settings and in the oral cavity. With P.aeruginosa being a 

prokaryote and C.albicans being a eukaryote, this expands the analysis using CRM to biofilms 

with organisms of different kingdoms. The selected biofilm furthermore allows fast 

morphological differentiation (typical P.aeruginosa size: 2-4 µm, typical C.albicans size: 4-10 

µm). Cultivation methods were used based on techniques developed at Fraunhofer IGB and 

have been described in Purschke (2012). 

4.4.1 Formation of calibration datasets for C.albicans and P.aeruginosa 

In a first step, spectra from C.albicans and P.aeruginosa had to be collected for calibration 

datasets. A total of 300 mono-species biofilm spectra were acquired for each, P.aeruginosa and 

C.albicans. Both mono-species biofilms were cultivated under identical conditions. Averaged 

spectra are shown in Figure 36. Specific peak assignments for biochemical compounds are 

found in Chapter 8.5.3 in the Appendix.  

 
Figure 36: Averaged processed Raman signal (300 spectra total) for P.aeruginosa and C.albicans 

mono-species biofilms after processing without differentiation. 
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When visually evaluating the biochemical assignments almost all peaks present for 

P.aeruginosa are also present for C.albicans. Specifically, Thymine peaks (749 cm-1), protein 

stretches (1128 cm-1), COO- symmetric/CH2 asymmetric deformations (1397 cm-1) or Amide II 

peaks (1585 cm-1) are present at almost the same height. Nevertheless, there are many peaks 

that are present in both species where the heights or signal counts of the peaks are significantly 

different under the conditions used. In comparison, these height differences are more frequent 

and more prominent than the height differences seen between different oral bacterial species. 

Examples of these peaks can be seen for Cytosine ring breathing (~782    cm-1), proteins (~850 

cm-1), polysaccharides (986 cm-1), tryptophane C-H2 twist or Amide I peaks (1659 cm-1). 

Overall, visual inspection of the chemometric profiles of the two organisms showed that peak 

differences present should allow for differentiation of these species based on Raman spectra. 

As shown for oral dual-species biofilms, CA was used for the mapping of the two species in a 

dual-species biofilm model (see Chapter 4.3.4). Multivariate analysis was performed using 

PCA as it was already used for the analysis of oral biofilms. 

4.4.2 Multivariate analysis of biofilm calibration datasets 

PCA analysis was used to demonstrate that processed mono-species biofilm Raman spectra of 

both species show significant spectral variances to be used for biofilm mapping (Figure 37). 

 
Figure 37: PCA Analysis in the form of a score plot of two selected medically relevant bacteria show 

the distribution of the 2nd order derivative of spectra from mono-species biofilms (300 spectral 

samples for each strain) in a score plot. C.albicans is marked in pink while P.aeruginosa is marked in 

blue. 95 % confidence ellipses are shown for both species. 
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Figure 37 shows the score plots of the first two principal components (PC1 and PC2). From the 

visual inspection of the score plots, it is evident that the chemometric profiles of C.albicans and 

P.aeruginosa show enough variance in the spectra to be clearly differentiated. The two PCs 

were able to explain 28.8% of the overall variance present in the dataset. When comparing the 

observed variance to the analysis of oral biofilms (Figure 31), this model was able to include 

slightly more variance whereas the difference of 1.6% between the two explained variances are 

minor. This means that for the evaluation of C.albicans and P.aeruginosa slightly more data 

point were used than for A.denticolens and S.oralis. The small differences indicate that similar 

amounts of the spectral areas were considered for PCA analysis, therefore additionally 

indicating that the areas with differing spectral features (A.denticolens vs. S.oralis and 

C.albicans vs. P.aeruginosa) are also comparable. However, it was not possible to determine, 

whether the same areas and peaks were used in the PCA model. The comparable variance of 

the two models confirms, that PCA can be used to evaluate whether selected species can be 

used for differentiation. For C.albicans and P.aeruginosa, the PCA analysis in Figure 37 shows 

two clearly separated clusters, providing a good basis for cluster analysis for the distribution 

analysis of multi-species biofilms, confirming the variance of peaks in spectra observed in 

Figure 36. 

P.aeruginosa showed a larger variance in the dataset, resulting in a broader spreading of data 

points within the cluster, while spectra clusters for C.albicans were narrower. Increased 

variance within the individual datasets can additionally be seen in the size of the CE. The size 

of the CE for P.aeruginosa, indicates that variance is increased within the dataset compared to 

C.albicans. 

4.4.3 Mapping of dual-species biofilms 

A total of five biofilms were cultivated according to the procedure described in Chapter 3.2.2.  

The map acquisition of dual-species was done according to procedures described in Chapter 

3.1.1 with the difference that for C.albicans and P.aeruginosa biofilms an area of 35 µm x 35 

µm was evaluated. 1.5 µm scanning steps were chosen due to the large size differences between 

C.albicans (4-10 µm) and P.aeruginosa (2-4 µm). Figure 38 shows an exemplary image of the 

analyzed samples. To compare generated maps from Raman spectra coupled with CA, 

morphology differentiation was also analyzed using MorphoLibJ. The spatial distribution of 

C.albicans and P.aeruginosa in dual-species biofilms was demonstrated in Figure 38B for the 

morphological analysis and Figure 38D for the analysis based on Raman spectra. Due to the 

large size differences between the considered species, the analysis of bacteria based on their 
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morphology shows very detailed information and is able to detect and differentiate individual 

organisms within the cultured biofilm.  

In order to determine the bacteria and fungi assignment from the two clusters generated by CA, 

centroid spectra of the clusters were compared to the calibration spectra created previously 

(Figure 36). Depending on the assignment, clusters were then colored in either pink (for 

C.albicans) or blue (for P.aeruginosa) according to their cluster belonging. Figure 38 visualizes 

that some C.albicans cells were detected and, to some extent, were also represented as spherical 

shapes using CRM. 

 
Figure 38: Distribution of C.albicans and P.aeruginosa in a biofilm. Image window is 35 µm x 35 µm. 

(A) Shows the microscopic image of the analyzed area. (B) Morphological and (D) Raman analysis 

was performed using the identical random area in a sample. Morphological analysis was done using 

ImageJ. Raman analysis was performed using PCA based cluster analysis with WiRE 5.4. Morphology 

and Raman images were layered (C) to show areas that were not classified as the same species and 

were labeled cyan. 

After Raman spectra based mapping, the map was compared to morphology analysis. The maps 

were generated over the same area and a layover image was created (Figure 38C). Areas that 

were classified with the same species in Raman and morphology mapping remained in their 

specific color (pink for C.albicans and blue for P.aeruginosa). Areas that were classified as 

C.albicans by morphology and P.aeruginosa by Raman spectra and vice versa were labeled in 

a cyan color in the layover image. 
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The overlay image shows that many C.albicans cells were detected and mapped by CRM, 

however, not all. Because Raman spectra were only taken every 1.5 µm, it was also not possible 

to determine the complete shape of C.albicans from CRM spectra acquisition and CA due to 

the use of the area and scanning steps. This was already observed in the Raman mapping for 

oral dual-species biofilms (see Figure 33). Additionally, while all C.albicans structures were 

successfully identified on the right side of the image, most C.albicans organisms were not 

detected on the left side. These areas were instead identified as P.aeruginosa, thus resulting in 

misclassification. Morphological analysis determined these structures as C.albicans. 

To further compare coverage distributions of bacteria and fungi, coverage ratios for 

morphology and Raman spectra analysis were compared with each other (Table 18). 

Additionally, areas of same as well as differing classifications between morphology and CRM 

were shown. When looking at the coverage of the two methods it can be seen that the results 

quantitatively agree with the visual analysis thus demonstrating that C.albicans coverage was 

lower in CRM than in morphology while coverage of P.aeruginosa was higher. In addition to 

the direct comparison of the two methods, the layered image (Figure 38C) shows 17.22 % of 

the same classification (for Raman and morphology analysis) for C.albicans and 58.24 % of 

P.aeruginosa. 24.54 % of the image was classified differently. 

Table 18: Quantitative results of bacterial and fungal coverage for the sample analyzed in Figure 38 

(letter in brackets behind method technology indicates which image it is referred to in Figure 38). 

Values for the layered image shows the areas that were identified as the same organism by both 

methods and quantifies the cyan area of Figure 38 of differently classified species. 

Mapping Method 
Classification of organism in % Area of different 

classification Morphology 

vs. Raman in % C.albicans P.aeruginosa 

Morphology (B) 37.79 62.21 - 

Raman (D) 22.73 77.27 - 

Layover Image (C) 17.22 58.24 24.54 

 

Looking at the left side of the microscopic image in Figure 38A, the area is out of focus. 

Because of this, the focal point of the laser is not focused on the sample anymore, exciting 

surrounding areas of the identification point. The consequences of this out of focus acquisition 

may result in misclassification.
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5 Discussion 

Microbiological studies nowadays focus more and more on the research of biofilms. However, 

methods to study biofilms are scarce. Natural biofilms typically don’t exist as single species 

biofilms, but are rather an assortment of different microbial species. Oral biofilms, specifically 

subgingival biofilms, represent a typical example of such biofilms consisting of multiple 

species. Because of their impact on oral health, oral biofilms have been studied intensively and 

vast progress has been made in understanding the metabolics and architecture of such biofilms, 

as outlined in Chapter 1. Nevertheless, there is little knowledge on the architecture analysis of 

biofilms over time using non-destructive techniques. In this thesis, CRM methods that lay the 

groundwork for the use of this technique for future biofilm growth studies were developed and 

were also applied to other medically relevant biofilms outside of the field of oral research. 

Throughout the progression of this project, it became apparent that in order to have a 

reproducible in-vitro biofilm model that allows the acquisition of consistent results, certain 

growth conditions and multivariate methods had to be optimized to be able to ensure analysis 

results.  

5.1 CRM method development 

The key element of this thesis was the development of Raman methods for mapping biofilms 

using CRM by first establishing a proof-of-concept approach using oral biofilms and then 

demonstrate the applicability of the approach on other medically relevant biofilms. In a first 

step, it was necessary to enable the differentiation of oral bacteria based on their spectral 

fingerprint peaks. Overall, the collected spectral data for the five species of interest all showed 

similar peaks in the fingerprint region and agree with the peak assignment shown in previous 

publications (Kumar et al., 2016; Sil et al., 2017; Tewes, 2019). The Raman spectra information 

for oral bacteria (Beier et al., 2012, 2011) showed strong agreement between Streptococci 

bacteria analyzed in this thesis and Beier (2011). This confirms that the used data collection 

procedures and resulting calibration datasets are reproducible between laboratories and able to 

identify species-specific peaks for oral bacteria. The same conclusion can be drawn when 

comparing P.aeruginosa and C.albicans to Jung et al. (2014) (for P.aeruginosa) and Maquelin 

et al. (2002) (for C.albicans). 

As part of the evaluation process, the maturation and state of bacteria and biofilms were 

evaluated as well. Strola et al. (2014) demonstrated previously that chemical changes could be 
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observed overtime. However, their analysis only considered growth spectra over a 10 h time 

window of planktonic bacteria (E.coli and B.subtilis), whereas this thesis looked at 96 h and 

oral bacteria as well as C.albicans and P.aeruginosa. Strola et al. (2014) were able to 

demonstrate that Raman spectra in the exponential growth phase of bacteria show some 

differences during growth. However, within the stationary growth phase the Raman spectra 

don’t change anymore. Consequently, oral bacteria spectra recorded after 24h only show minor 

changes in the following recorded time steps, because the bacteria had already reached the 

stationary phase. However, in the PCA analysis, the differences between the exponential and 

static growth phases of oral bacteria weren’t significant enough to generate separate clusters. 

This allows for the use of both data from exponentially growing cells as well as stationary 

growing cells as one calibration dataset. This additionally increases the robustness of the data 

because more time points were included in the dataset. For the matured biofilms that were 

analyzed in this work, the timely evaluation of change in Raman spectra in the initial biofilm 

growth phase within the first 24h (similar to Strola et al. (2014)) is not critical for this work. 

The differentiation on growth phases should, however, be evaluated in future research. 

While the presence of water in a sample analyzed by CRM is not problematic for spectra 

interpretation (in contrast to FT-IR), chemical changes between a hydrated and dehydrated 

sample may still appear. For example, DNA conformation changes in Lactobacillus rhamnosus 

depending on their hydration stage were demonstrated previously by Myintzu Hlaing et al. 

(2017) and for that reason had to be considered in this thesis. Changes in the DNA backbone 

(especially the areas 1243–1223 cm-1 and 1093–1084 cm-1) can also be seen in all oral bacterial 

species similar to Myintzu Hlaing et al. (2017), but because the whole spectrum is used in this 

thesis these changes don’t impact the overall analysis of the spectrum and thus did not result in 

a clear differentiation between hydrated and dehydrated samples in the PCA analysis. 

In this work, it was demonstrated that statistically there are not sufficient differences between 

the growths phases and hydrated vs. dehydrated state of bacteria in terms of chemometric 

profile changes. Therefore, they were used as one uniform dataset. In fact, because minor 

changes in the chemometric profile are now included in the calibration dataset, they result in 

broader data clusters in multivariate analysis models and also increase the robustness of the 

dataset with regard to minor differences in the mapping data.  

Comparisons of two multivariate analysis models that were used in combination with Raman 

spectra from oral bacteria showed good applicability in this thesis. In this work, PCA was used 

to answer questions that usually involved two different Raman datasets, while O2PLS-DA was 
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used to answer questions that involved multiple datasets, requiring a more complex statistical 

model. CA, as a third multivariate analysis tool, was used for the multivariate dimensional 

mapping of dual-species biofilms because it is able to include the location where the spectra 

was taken, while the other two multivariate methods lack the ability to consider the location 

within a sample. Due to their similar genetic and metabolic characteristics, the chemical 

composition in a bacterial cell between the evaluated subgingival oral bacteria showed limited, 

but unique differences in their Raman spectra. 

PCA as one multivariate analysis option was inconclusive when used for the differentiation of 

five species because of significant overlaps of the species clusters (Figure 25A, first row). When 

analyzing a three species model using spectra from A.naeslundii, S.mutans and V.dispar 

separation was achieved (Figure 25A, second row). For A.naeslundii, F.nucleatum and 

P.nigrescens a clear differentiation was not achieved using PCA even if only the three species 

are analyzed. P.nigrescens and F.nucleatum can be found within the same Socransky complex, 

indicating a close relationship. Consequently, they show substantial overlap in Raman spectra 

in the PCA analysis. Thus, PCA is unable to differentiate these three species (Figure 25A, third 

row). 

By using O2PLS-DA, it was possible to distinguish several species. Similar results were 

obtained for Uncaria species in a different application as described in Feng et al. (2019) when 

O2PLS-DA was applied. Furthermore, it was possible to distinguish and predict S.mutans and 

V.dispar and A.naeslundii grown in suspension (Figure 26) and in mono-species biofilms 

(Figure 27) after establishing a calibration set of spectra generated from planktonically grown 

cells (Figure 25B, second row). As already observed for PCA analysis, the three species 

examined (A.naeslundii, S.mutans and V.dispar) were found to coincide within the different 

complex groups described by Socransky, indicating significant chemotypic differences between 

these species. When performing O2PLS-DA with three selected species from three different 

Socransky complexes, it was possible to reliably identify spectral differences enabling species 

differentiation (Figure 25B). Additionally, A.naeslundii, S.mutans and V.dispar could already 

be distinguished within the pool of five species (Figure 25A, first row). Thus, these three species 

were chosen for prediction of planktonic and mono-species biofilm cells. Unlike PCA, 

O2PLS-DA is further able to differentiate A.naeslundii, P.nigrescens and F.nucleatum when 

considered in a three species model (Figure 25A, third row) but was unable to do it in a five 

species model also including S.oralis and V.dispar. 
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Both types of cells grown as planktonic cells and as biofilms cells (Socransky et al., 1998) could 

be identified and differentiated successfully using O2PLS-DA analysis. Comparing the 

prediction score plots for both, planktonic and biofilm spectra, it could be observed that the 

clusters generated from planktonic cells are more spread out while the clusters for biofilm 

spectra remain compact with little distribution in the plot. This could be the result of bigger 

variance in the planktonic cells, resulting in a higher variance in signals between spectra,. This 

explains the broadening of the cluster. Biofilm spectra, on the other hand, show less variance, 

indicating that the collected mono-species biofilm cells have a more uniform appearance in 

Raman spectra which can be beneficial for the application as calibration datasets. This allows 

the use of calibration datasets from planktonic cells for the mapping analysis of DBIA samples 

(where planktonic cells were used for establishing an ‘artificial’ biofilm) and the use of 

calibration datasets from mono-species biofilm cells for the mapping analysis of dual-species 

biofilms. 

A.naeslundii, S.mutans and V.dispar were able to be predicted with an accuracy of 100%, if 

grown planktonically using O2PLS-DA. For biofilm cells, an accuracy of 90% was achieved. 

As mentioned above, biofilm cells show changes in spectra if compared to planktonic cells. 

Thus, prediction of biofilm cells using data from planktonic cells for calibration might generate 

incorrect assignments due to these differences. The spectral changes between planktonic and 

mono-species biofilm spectra are demonstrated for A.denticolens and S.oralis. These species 

were used for the evaluation of mapping. Changing spectral profiles and peaks can also be 

expected for A.naeslundii, S.mutans and V.dispar. The reason for increased misclassification of 

biofilm cells might be the use of planktonic bacteria as the calibration dataset for the prediction 

of mono-species biofilms spectra. This indicates the need for a biofilm based dataset for 

calibration, in addition to the databases generated from planktonic cells, despite their high 

similarity. This was later considered for the mapping of dual-species biofilms. The change in 

Raman signal for biofilm cells is likely the result of a change in metabolism when transitioning 

from a planktonic to a biofilm growth state (Huang et al., 2011). 

Specifically, S.mutans showed low predictions accuracy (76.7%) compared to A.naeslundii 

(100%) and V.dispar (93.3%) which performed much better. S.mutans is known to be a key 

contributor in the production of EPS while A.naeslundii and V.dispar lack the ability to form 

EPS when grown as mono-species biofilms. Hence, low prediction accuracy could be the result 

of spectral interferences from EPS in the data acquisition of S.mutans mono-species biofilm 

spectra (Koo et al., 2010; McCabe and Donkersloot, 1977; Vacca-Smith and Bowen, 1998). 
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One of the most significant changes in the spectra was the difference of the 1525 cm-1 peak in 

S.mutans. Due to the large difference of this specific peak, differences between V.dispar and 

S.mutans became much smaller and led to several misclassifications of these biofilm spectra. 

As a result, new calibration datasets derived from biofilm grown cell were generated for the 

mapping of dual-species biofilms using the Renishaw inVia™ Qontor to prevent the 

misclassifications based on the setup of the calibration dataset from planktonically grown cells. 

5.2 Use of CRM for mapping of dual-species biofilms 

With confidence in the acquired biofilm based datasets and the statistical analysis of the spectra, 

the last step was the study of mixed biofilms (specifically dual-species biofilms) to determine 

the applicability of the developed workflow. In oral biofilm research, CLSM is seen as the state-

of-the-art technique to analyze the architecture of multi-species biofilms (Abdullah et al., 2019). 

As seen in previous chapters, CRM can serve as an alternative technique with specific and 

unique advantages, making it possible to analyze the composition of biofilms. In this thesis, 

CRM methods were developed that were able to visualize the distribution of two bacterial 

species in a dual-species biofilm model. CRM has established the spatial discrimination 

between species in cultivated multi-species biofilms without sample preparation to keep the 

biofilm structure unaltered. CA as the multivariate statistical tool was able to use chemometric 

information from Raman spectra to distinguish A.denticolens and S.oralis in a dual-species 

biofilm. Mapping biofilms by CRM was confirmed through a morphology analysis of the same 

area and FISH/CLSM. PCA and O2PLS-DA were not used as mapping techniques as the 

methods don’t allow for a direct correlation of Raman spectra to the acquisition location. 

By comparing information of planktonic and biofilm spectra of one species (for A.denticolens 

and S.oralis), it could be seen that both show similar chemometric profiles (see Figure 30C and 

F). The biggest differences appear in the height and thus signal counts of individual peaks. 

These differences can be explained by metabolic changes and up or down regulation of 

processes when bacteria are forming a biofilm (Marsh, 2004; Svensäter et al., 2001; Wan et al., 

2018). Additionally, the formation of EPS in the cultivation of biofilms may explain the change 

in the chemometric signals in the spectra (Sandt et al., 2007), especially the peak at ~982 cm-1 

associated to polysaccharides and is increased in A.denticolens and S.oralis mono-species 

biofilm spectra. This may also explain the reduced number of correct predictions for mono-

species biofilm spectra of S.mutans in Chapter 4.1.5. 
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Nevertheless, it was possible to demonstrate that PCA is able to differentiate the selected two 

species in a planktonic and biofilm setup although, PCA for planktonic species showed an 

overlap of the two clusters. While A.denticolens showed a dense clustering of the spectra, 

S.oralis was spread broader suggesting an increased variance within the dataset, causing the 

overlap of clusters. 

Even though sample preparation for analysis remained consistent throughout the experiments, 

bacteria that were analyzed at random spots may be in different metabolic phases. While the 

phases may not have a detectable influence on the chemometric profile for A.denticolens, they 

may be significant enough for S.oralis to show variance of the analysis (Strola et al., 2014), 

resulting in a broader range in the score plot (Figure 31A). Here, PCA analysis shows a larger 

distribution of spectra, especially for planktonic S.oralis samples, suggesting larger variance, 

which also explains the increased standard deviations of every spectral point for S.oralis. 

Using the averaged planktonic and mono-species biofilm Raman spectra of A.denticolens and 

S.oralis, as well as the resulting PCA analysis of this data, the analysis indicates that S.oralis 

has a lot of differing peaks compared to A.denticolens (Figure 30 and Figure 31). Additionally, 

the amount of peak differences for planktonic and mono-species biofilms for A.denticolens 

appear to be only minor except for a few peaks as described in Chapter 4.3.1 (Figure 30C). The 

same observation can be made for mono-species biofilms samples for A.denticolens and S.oralis 

(Figure 30H). However, peak differences appear to be increased when planktonic and mono-

species biofilms of S.oralis were compared (Figure 30F), as well as planktonic spectra for 

A.denticolens and S.oralis (Figure 30G). Because counts are generally increased for planktonic 

S.oralis except for two areas, this suggests that the data collection of planktonic S.oralis 

samples may have had insufficient baseline correction (Guo et al., 2016) for some spectral 

samples resulting in larger variance within the dataset that can also be seen in the PCA analysis 

Figure 31. In detail, the spectral counts in the region of 1200-1400 cm-1 and the peak at 1525 

cm-1 are increased for planktonic S.oralis samples. Spectral peaks in this area are however also 

present in the other collected datasets (planktonic and mono-species biofilm spectra for 

A.denticolens and S.oralis). Thus, the increased count for planktonic S.oralis underlines a 

possible issue in the data processing of the planktonic bacteria dataset of S.oralis. 

The peak at 1525 cm-1 has been identified the first time in the analysis of oral bacteria. This 

specific peak doesn’t only appear for planktonic S.oralis bacteria but is also present in 

A.denticolens samples and S.oralis biofilm spectra (Figure 39). S.oralis mono-species biofilm 

spectra show a reduction of 63.38% (see Figure 30F) compared to planktonic spectra while the 
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reduction in count is lower with 40.29% for A.denticolens mono-species biofilms (see Figure 

30C) when compared to planktonic bacteria. Component assignments based on other bacterial 

species (Dhankhar et al., 2021; Kumar et al., 2015; Scholtes-Timmerman et al., 2009) assigned 

this specific peak as a C=C symmetric stretching coming from carotenoids within a bacterial 

cell. The metabolic pathways of oral bacteria however don’t allow the synthesis of carotenoids. 

Because Amide II, Adenine and Cytosine are also showing spectral peaks in this area (Cepeda-

Pérez et al., 2016; Gieroba et al., 2020; Seredin et al., 2019), it is possible that they could be 

the reason for the peak height in the analyzed samples and could be shifted due to the 

complexity of the samples composed of various chemical components. However, further 

investigation of the assignment of this peak is necessary and how this peak influences 

multivariate models. 

 
Figure 39: Peak intensity at 1525 cm-1 using CRM with standard deviation. 

Conversely, the spectral peak at 982 cm-1 is increased in biofilms for both, A.denticolens and 

S.oralis (Figure 40). While both bacteria show a similar signal for planktonic bacteria, Raman 

counts are increased by 304% for S.oralis mono-species biofilm samples and increased by 

373% for A.denticolens mono-species biofilm samples. This peak is specifically interesting, 

because very little literature identified this peak. Beier et al. (2010) showed spectra that flagged 

the 982 cm-1 peak by linear regression. While that peak was identified, they did not assign it to 

a specific compound. Assignments from different spectra were made previously though. For 

instance, Paret et al. (2010) identified the peak around 982 cm-1 as a C-C stretch of proteins and 

=CH bending of lipids in different Gram-positive and Gram-negative plant bacteria. On the 

other hand, Kahraman et al. (2009) assigned the same peak (present as a weak peak) as a C-N 

stretch in E.coli bacteria samples using SERS. 
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Figure 40: Peak intensity at 982 cm-1 using CRM with standard deviation. 

The more likely explanation of this peak increase could be the increase in polysaccharide 

concentration due to EPS formation. This increase has been shown by Ramirez-Mora et al. 

(2019) where peaks observed at 880-980 cm-1, 1055 cm-1 and 1075 cm-1 were tentatively 

assigned to rhamnose, galactose and glucose which were further associated to Actinomyces spp. 

by Rosan and Hammond (1974). Since C-C stretches are also present in saccharides, this could 

explain the increase of signal for mono-species biofilm spectra. However, further investigation 

of this peak is necessary to make a clear determination. 

Because a robust dataset is essential for the success of CA and biofilm mapping, calibration 

dataset differentiation may improve by increasing the number of spectra in the dataset to better 

represent the complete data distribution, which then leads to more accurate predictability of 

species (Guo, 2018) and reduces the variance within the datasets. For this thesis, the statistical 

analysis of biofilm spectra showed two defined clusters with only minor outliers, which 

suggests less variance within the cluster and thus allows for a more specific analysis model 

compared to planktonic species (Figure 31). The analysis using PCA demonstrated sufficient 

evidence of differentiation of the two species and allows to be used for species classification 

when performing Raman mapping using CA. 

It needs to be noted that the implemented amounts of variants for the individual PCs of all PCA 

analyses are not a representation of the quality of collected data. For PCA analysis, a total of 

706 spectral points were used. Not all of these spectral points show enough differences to be 

considered for differentiation by PCA. Instead, it can be said that reduced variance is the result 

of similar datasets and only small amounts of peaks that can be differentiated from each other. 

A.denticolens S.oralis
0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

R
a

m
a
n

 i
n
te

n
s
it
y
 a

t 
9

8
2

 c
m

-1
 [

rf
u

]

Microorganism

 Planktonic

 Biofilm



DISCUSSION 
 

- 96 - 

 

For planktonic bacteria spectra calibration of A.denticolens and S.oralis, the two PCs explained 

41.7% of the overall variance present in the dataset (Figure 31A), while for mono-species 

biofilms, 26.2% of variance was explained (Figure 31B). Especially when looking at the total 

variances, this indicates that in order to achieve two distinct clusters using PCA, less variance 

was necessary to differentiate mono-species biofilm spectra. This indicates that the data points 

used were distinct enough, resulting in low variance (Figure 31), while more data points were 

used for planktonic bacteria spectra differentiation. The same conclusions can be made for the 

analysis of C.albicans and P.aeruginosa mono-species biofilm spectra where 28.8% of the 

variance was explained (Figure 37). 

The analysis of DBIA samples confirmed the use of CA for the analysis of multi-species 

biofilms. It was shown that cluster mapping based on Raman spectra was comparable with the 

morphology analysis and it was able to determine two areas of predominantly one species. 

While morphology showed only two distinct areas, CA also classified a few areas with the other 

species not detected by morphology. The more likely explanation, however, is that due to the 

overlap of statistical clusters in the PCA analysis, the CA model was not as species-specific, 

thus causing misclassification (Ben-Hur and Guyon, 2003). Overall, CA coupled with Raman 

analysis confirmed that CA could be used as a method to differentiate species in a DBIA biofilm 

with only minor differences between morphology and Raman analysis. 

For dual-species biofilm models, CA was able to successfully map species of a focused layer. 

Additionally, determination of coverages between morphology and Raman mapping was 

comparable indicating that similar amounts of S.oralis and A.denticolens were detected in 

selected areas. This confirms that the differences in the chemometric profile is significant 

enough to allow the mapping of the two species in a multi-species biofilm model. Nevertheless, 

the Raman analysis showed some limitations mostly visible in the transition areas of clusters 

where bacteria were classified differently when compared to morphology. An explanation of 

different classifications could be that signals from layers below the focused layer were not the 

same species (Gieroba et al., 2020; Ramirez-Mora et al., 2019). This effect causes the detection 

of both species and generates a mixed chemometric profile of both species. When comparing 

these areas to the FISH/CLSM image (Figure 28), yellow/orange areas in the transition areas 

confirmed both species to be present. This suggests that indeed the Raman spectra in the 

transition areas carry chemometric information from both species that may result in the 

difference in classifications. 
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Quantifications of the misclassified areas (blue areas in Figure 33) are summarized in Chapter 

8.8 in the Appendix as ‘Different classification morphology vs. Raman’ and are shown in Figure 

35. The differences can be compared to the overall quantifications of the individual methods 

(difference in % in Chapter 8.8 (Appendix)). Here, the numbers are lower compared to the blue 

areas (Figure 35). The reduced numbers indicate that the amounts of over- and under-

representation of A.denticolens and S.oralis from CRM within the blue areas are similar (see 

description of method in Chapter 3.3.3), therefore confirming that there is no trend that one 

species is over- or under-represented. Only the direct comparison of the two methods 

(‘Difference in %’ in Figure 34) showed samples in which species are over- and/or under-

represented within the biofilms as a result of relative quantification. However, it was not 

possible to specifically indicate the areas within the biofilm where A.denticolens and S.oralis 

were over- and under-represented compared to light microscopic determination. 

Being able to improve the resolution of the laser (below the measureable 1 µm) may further 

reduce the differences between light microscopy and CRM and thus the discrepancy of bacteria 

as seen in Figure 35. Especially, the transition areas of two clusters (where misclassification 

appears a lot) may then be assigned, more precisely small clusters may also be identified more 

accurately. Furthermore, because a high laser power was used for the spectra acquisition, the 

surrounding area of the sample point was also excited. Especially in the transition areas of two 

clusters it may then be possible that compounds of both microorganisms are excited and emit 

photons that are then detected. The same accounts for the excitation of layers below the focus. 

If the layers below the focused area are different than the focused species, this may also result 

in excitation of unwanted areas and misclassification. These conditions need to be considered 

for future experiments by optimizing the resolution of sample acquisition as well as sampling 

laser power.  

The application of the generated workflow to dual-species biofilms consisting of fungi and 

bacteria was also successful. In agreement with the results from oral biofilm mapping, it was 

possible to differentiate these microorganisms and the area of coverage. A requirement for 

identification is, that the areas observed are in focus for the differentiation of spectra. The area 

in the top left corner of the shown image (Figure 38A) is out of focus and coincides with the 

area that is misclassified as P.aeruginosa, as shown in Table 18. Everall (2008) was already 

able to demonstrate the effect of out-of-focus acquisitions on Raman spectra. Therefore, to have 

a successful differentiation of species, it is essential that areas are in focus (Figure 38). 
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Biofilms consisting of more than two different species were not analyzed in this work. 

However, the statistical analysis of the five oral bacterial species suggest that biofilms 

consisting of more than two species can be differentiated. This complicates the differentiation 

of species based on their morphology, because the majority of oral bacteria species are either 

cocci or rod shaped. In order to be able to compare results from CRM it is necessary to establish 

a different method for mapping comparisons. One option is FISH/CLSM. A method needs to 

be established that allows the analysis of the same area with CRM and CLSM. After CRM 

measurements, staining of biofilms needs to be achieved without a dislocation of the sample to 

be able to locate the identical area to analyze. Alternatively, staining can be done before Raman 

analysis. Because fluorescence signals of stained cells are high, coherent anti-Raman Stokes 

(CARS) measurements are required as they do not detect fluorescent signals. Nevertheless, this 

method is very complex and requires substantial knowledge of the instrument as well as signals 

may not be comparable to CRM measurements anymore. Thus, in order to be able to measure 

multi-species biofilms consisting of three species or more, these challenges need to be 

overcome. 

5.3 Comparison of Raman mapping to other methods 

There are multiple techniques that enable the mapping of biofilms and each of these techniques 

have their own unique advantages and disadvantages in comparison to CRM used in this work. 

These differences are discussed within the next chapters, focusing on the differences to CRM.  

Overall, there is no superior technique that allows the optimal structural mapping and 

differentiation of biofilms yet - not even CRM. For that reason, strategies to combine the 

discussed techniques may show the greatest success. The discussed techniques below showcase 

only a selection of methods suitable for the architectural analysis of biofilms based on their 

underlying analysis principles and are not intended to be complete.  

5.3.1 Fluorescent and morphological mapping techniques 

A first comparison of different methods to spatially map biofilms was displayed in Chapter 

4.3.5 and can also be seen in Table 17, where CRM mapping was compared to mapping methods 

such as CLSM coupled with FISH, SEM and AFM. These methods have previously been 

established as alternatives to CRM (Huang et al., 2020). This analysis showed as advantages 

for CRM that 1. CRM mapping allows the continuous consideration of biofilm mapping of one 

specific spot and 2. analysis is possible when the biofilm sample is in a hydrated state without 
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sample destruction. One key disadvantage of using CRM for mapping, however, is the low 

resolution of the analysis methods. As previously addressed, specific advancements in CRM 

with regard to laser techniques may allow improved resolution of this method in the future. 

CLSM coupled with FISH remains to be the primary technique to reconstruct the structure of 

biofilms due to its good resolution, reliable results and relatively high throughput of samples. 

However, the technique cannot be applied to in-vivo studies. In contrast, in-vivo studies are 

possible using CRM (Malik et al., 2017). Additionally, FISH/CLSM relies on the need to know 

about the compounds of the biofilm to be analyzed in order to select correct primer stains for 

FISH. Because CRM uses chemometric information, this method remains unbiased as long as 

calibration datasets are established and allow the differentiation of species. This remains an 

important task for CRM measurements. 

Classic AFM sample measurements require the coating of the sample with conductive or gold 

materials. As a result, this led to the use of another technique commonly known as ESEM, 

where no special sample treatment is needed and as such retains the natural state of the sample 

while it reduces the resolution compared to classical SEM (Alhede et al., 2012). ESEM allows 

the observation of hydrated biofilms under low pressure (Fernández-Delgado et al., 2015). In 

theory, ESEM can be applied for in-vivo biofilm analysis but has not been done yet. Thus, 

ESEM remains a technique that only allows differentiation of cells based on morphology and 

is limiting for that reason. The same issues apply for AFM measurements, which is based on 

morphological differentiation as well. Due to the complexity of the required instrument, only 

in-vitro measurements of biofilms have been demonstrated successfully (James et al., 2016) 

and it is unlikely that it will be used as an in-vivo biofilms analysis tool in the future. 

5.3.2 Laser-induced vibrational mapping technique 

Another emerging method that utilizes the biochemical composition of a biofilm by measuring 

the vibrational changes from sample excitation, similar to CRM, is IR spectroscopy. In IR 

spectroscopy, an infrared beam is directed onto the sample similar to CRM, but here, the 

radiation that is absorbed by the sample at different frequencies is measured. It therefore relies 

on the absorbance, transmittance or reflectance of infrared light where the different amounts of 

absorbed light are being acquired. The most common technique is FTIR, a technique which 

adheres to the described principles above. The two major disadvantages of FTIR are the 

detection OH stretching in water, limiting the success of analyzing hydrated samples, as well 

as its constraints on sample thickness and uniformity. On the contrary, FTIR measurement 
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doesn’t show interference that comes from sample fluorescence, a factor that can be beneficial 

when compared to CRM. Because the technique is based on the same key fundamental of laser-

induced vibrational measurements, the technique needs to be discussed in detail. Especially so 

as only a few publications have compared FT-IR and Raman Spectroscopies in biofilm research 

before (Gieroba et al., 2020; Sharma and Prakash, 2014). 

The existing research demonstrated that both techniques are able to be used successfully in a 

biological context. Sharma and Prakash (2014) concluded that FTIR showed higher intensities 

for polysaccharides, amide I, amide II vibrational mode of ester and carboxylate group, while 

higher intensities were found for Raman peaks assigned to tyrosine, amide III, carbohydrates, 

carotenoids, DNA and lipids (analysis was done on Cronobacter sakazakii biofilms). 

Additionally, Gieroba et al. (2020) concluded that based on the measurements of different 

cariogenic streptococci spp., the two spectroscopies should be seen complementary because 

they can offer a more comprehensive approach for the analysis of biofilm samples on account 

of different sensitivities detecting particular chemical groups. 

To the best of my knowledge, only a few publications looked at FTIR for mapping (Cheeseman 

et al., 2021; Gieroba et al., 2020; Holman et al., 2009; Probst et al., 2013). These publications, 

however, focused on the localization of specific chemical compounds in mono-species biofilms 

and not the use of the complete spectra to predict species in a multi-species biofilm. It was 

rather shown in this research, that spatial areas that show an increased amount of certain 

chemical components can be identified. 

Interestingly, Cheeseman et al. (2021) used a very similar experimental designs as the ones 

exhibited in this work. For the analysis of pathogenic bacterial and yeast biofilms, he used a 

combination of Synchotron macro attenuated total reflectance-Fourier transform infrared 

(ATR-FTIR) Microspectroscopy, which is a specific modification of FTIR. Similar to this work 

here, Cheeseman et al. demonstrated the presence of biofilms using CLSM and SEM imaging. 

P.aeruginosa and C.albicans (and S.aureus) were also used for the experiments. Further, 

Cheeseman et al. performed CA for the localization of a specific Amide I peak, which was then 

used to differentiate the species by cluster formation using PCA. Due to similarities in 

experimental setup and analysis, a good comparison to this work is allowed. 

Cheeseman et al. (2021) successfully showed that ATR-FTIR can be used for the differentiation 

of microbial species. He also demonstrated the use of CA for mapping. While they only used a 

specific Amide I peak for mapping, this work considered the full chemometric profile for the 
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mapping of bacteria. Additionally, they also used PCA analysis to demonstrate differentiation 

based on chemometric information. Their experiments came to similar conclusions as in this 

work. Since it was shown that ATR-FTIR is able to differentiate biofilms based on their spectra, 

it will be interesting to see whether the spatial mapping of multi-species biofilm models is also 

possible. This possibility would further help to compare CRM with other techniques and 

establish vibrational spectroscopy as a complementary technique to established methods. 

The application of ATR-FTIR for in-vivo biofilm studies, to the best of my knowledge, has not 

yet been demonstrated. The analyzed samples by Cheeseman et al. (2021) were fixed using 

formaldehyde/glutaraldehyde and were not in a living and hydrated state.  

5.3.3 Mapping techniques based on chemometric profiles 

Another technique that acquires chemometric profiles is MALDI-TOF, a type of mass 

spectrometry that allows the measurement of biomolecules like peptides, lipids, saccharides or 

other organic macromolecules through laser ionization. Because bacteria have unique 

molecular compositions, specific bacterial assignments can be achieved based on the chemical 

profiles. In theory, these assignments can be used for the differentiation of bacteria in biofilms. 

Indeed, MALDI-TOF has been used in the past to analyze biofilms (Caputo et al., 2018; Pereira 

et al., 2015; Stîngu et al., 2008). 

Known as mass spectrometry imaging, the spatial analysis of samples was demonstrated when 

coupled with MALDI, mostly on tissue samples (Aichler and Walch, 2015; Smith et al., 2018) 

and biofilms (“Re-discovering Bacterial Biofilm Heterogeneity with MALDI Mass 

Spectrometry Imaging,” n.d.). However, low spatial resolution similar to CRM do not allow 

sufficient differentiation. While it is now possible to achieve a resolution below 1.5 µm or lower 

in some cases (Kompauer et al., 2017), the ion yields are very low and require the development 

of more sensitive detectors and increased computing power (McDonnell and Heeren, 2007; 

Ščupáková et al., 2020). 

Besides the currently insufficient resolution of MALDI mass spectrometry imaging, the 

analysis also requires destructive sample preparation, a process entailing different chemical 

steps. This destructive sample preparation makes the method insufficient for the analysis of in-

vivo and continuous analysis of in-vitro biofilms. With that being said, however, the use of 

MALDI-TOF as a mapping tool was successfully demonstrated, although it is not as developed 

as CRM to determine the architecture of biofilms yet. 
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5.3.4 Combination of techniques for mapping with CRM 

As demonstrated in this work, the combination of microscopy methods and chemometric 

methods will allow a good understanding of dual-species biofilms. This specific combination 

may be improved by using a higher resolution camera, as well as laser improvements. To 

improve the use of CRM as a competitive method for biofilm architecture research, it may need 

to be considered complementary to other techniques. Several methods have showed good 

success when multiple techniques were used for the analysis of biofilms including CRM. 

As already introduced in this work, the combination of Raman techniques with CLSM could 

improve the application greatly and can help to establish CRM as an alternative technique to 

the state-of-the-art CLSM. One option could be bacterial staining without any dislocation of 

the sample. The other option for performing the simultaneous measurement is the switch to use 

CARS as the Raman spectroscopy technique in order to prevent signals from the fluorescent 

staining process. While this could serve as the improved proof for the use of Raman 

spectroscopy for biofilm mapping compared to the evidence displayed in this work, this method 

can also serve as a complementary technique to analyze the chemical composition of bacteria, 

depending on the research topic. 

One other combination would be the use of Raman technologies with infrared methods because 

they both exploit laser-induced vibrations. Specifically, coupling CRM and ATR-FTIR to 

perform cluster analysis may improve the success of the clustering or may open the door to new 

multivariate statistical models. However, this would require the spectral analysis of the same 

spot to enable comparison. Because biofilms require a resolution of at least 1 µm or below to 

perform biofilm mapping, this could be difficult. Additionally, ATR-FTIR can also be used as 

a comparative method to evaluate CRM mapping. Because spectra are expected to be similar, 

processing methods and statistical analysis, as introduced in this work, can be applied. 

However, analyzing the same spots and location is required in order to perform this comparison. 

The analysis of hydrated samples will remain challenging for ATR-FTIR analysis. 

Lastly, the combination of Raman spectroscopy with AFM represents a great opportunity to 

improve biofilm mapping using Raman. As introduced in Chapter 1.3.4, TERS is a modification 

of Raman spectroscopy that uses a tip of a conductive metal such as gold or silver particles for 

spectral acquisition. This method results in a theoretical Raman signal enhancement of up to 

108 counts (Kurouski, 2017) and thus improves the spectral peak counts and reduces 

background noise. The same tip can be used for TERS and AFM analysis giving the opportunity 
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to measure morphology and chemical composition on a nanoscale level simultaneously. To the 

best of my knowledge, the use of TERS for mapping in a biological context has only been used 

twice (Böhme et al., 2010; Rusciano et al., 2014). Using TERS as a mapping technique of 

biofilms, though, has not yet been demonstrated. As much as the measurements on a nanoscale 

level improve the resolution, it also reduces the fast mapping ability over a bigger area. 

This thesis has laid the groundwork in demonstrating that mapping and differentiation of 

bacteria in biofilms is possible. Using TERS with AFM may be a next step in demonstrating 

the applicability of this work’s developed workflow in differentiating bacterial species. If 

proven successful, TERS would be able to improve differentiation due to increased resolution, 

therefore allowing the mapping of multi-species biofilm of more than two species and 

comparing the results to CRM mapping from this work. Additionally, the combination will 

allow high resolution morphology imaging.  

It needs to be noted however, that the biggest disadvantage of the method is the difficulty of 

fabricating the required tips, as they have a poor reliability and lifetime. Being able to overcome 

the low quality of tips and improving the reliability of the method will greatly improve the 

research of biofilm mapping using Raman spectroscopy in the future. Furthermore, the 

application of in-vitro research is questionable. For that reason, it can be concluded that the 

application of TERS for multi-species biofilm mapping needs to be evaluated in future 

experiments, but it shows promising advantages over the CRM used in this work. 
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6 Conclusion and Outlook 

In this thesis, the potential of using CRM for mapping of microbial biofilms was evaluated on 

in-vitro subgingival oral biofilms and was further assessed analyzing biofilms often found on 

catheters or other medical devices. Figure 33 and Figure 38 illustrate the final results of the 

workflow development for the analysis of the selected biofilms. 

The purpose of this thesis was to lay the groundwork for whether differentiation of subgingival 

bacteria was possible using CRM and to determine if this technique can be applied for mapping 

biofilm models. CRM coupled with two-way orthogonal Partial Least Square with Discriminant 

Analysis was applied to 1. discriminate three oral bacterial species in score plots and 2. develop 

a prediction model to successfully identify microbial species both from planktonic cells and 

cells in a mono-species biofilm model. Here, it was possible to correctly identify 100 % of 

planktonic spectra and 90 % of mono-species biofilm spectra belonging to three different 

Socransky clusters. Additionally, PCA also demonstrated species discrimination when only two 

species were analyzed and could be used as a valuable analysis tool for different inquiries 

instead of O2PLS-DA. O2PLS-DA in general is more prone to overfitting of data because the 

analysis is done with lesser variables than for PCA. This overfitting can be problematic because 

the model then doesn’t perform an unbiased analysis anymore. For that reason, PCA is an 

alternative for future biofilm analysis due to easier applicability and unbiased evaluations. 

However, PCA should not be used for two-species models per se but should rather be evaluated 

for every biofilm analysis especially for biofilms consisting of more than two species as 

described before (Chapter 3.3.2). 

The experiments showed the discrimination of planktonic bacteria and the prediction of mono-

species biofilms, therefore, the presented method can also be used to build a spectral Raman 

library for bacteria discrimination. This can make it easier to assess and determine spatial 

distribution of multi-species biofilm models in the future. For the analysis of mono-species 

biofilm models, the established method was successfully able to predict species, indicating the 

applicability of the method for inquiries asked in a biofilm setting. Due to the nature of Raman 

spectroscopy in-vivo and ex-vivo, studies can be directed and have a wide range of applications 

(Paraskevaidi et al., 2021). Specifically, in-vivo studies showing the evaluation and mapping of 

oral cancerous tissue using Raman spectroscopy have been conducted (Malik et al., 2017). 

Using the information from this study it can be concluded that it may be possible to differentiate 

biofilms from periodontal healthy patients and patients with periodontitis in-vivo because 
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differentiation is possible using a similar instrumental setup as described by Malik et al. (2017) 

for clinical application.  

It was furthermore possible to show that it is feasible to differentiate two species in a multi-

species biofilm model of a two-dimensional area using CRM by comparing the results to 

morphology of the biofilms and FISH/CLSM as the state-of-the- art technique. Specifically the 

comparison between morphology and CRM analysis showed the potential of using CRM for 

biofilm mapping, because the major bacterial clusters were spatially correctly identified for two 

different species in biofilms. This is the first time that the use of CRM in a dimensional mapping 

setting has been used. Future steps may include the transfer of the findings to a clinical 

application ex-vivo (through the collection of samples) and in-vivo (directly in a patient’s 

mouth). While the ex-vivo studies can be conducted already with the equipment (such as mobile 

Raman probes or micro-Raman setups) and statistical results already available, in-vivo studies 

would require the reduction of acquisition times to a few minutes or seconds. 

A key finding of this thesis was foremost that in order to perform spatial predictions (in two or 

three dimensions) it is necessary to combine batch spectra processing with the developed 

multivariate analysis technique in a workflow to use multivariate analysis for multi-species 

biofilm imaging. Additionally, it was demonstrated that oral species can be differentiated based 

on their chemometric profile without specific sample preparation. Because oral bacteria inhabit 

similar environments, spectral differences are only minor but significant enough to allow 

differentiation. Biofilms composed of substantially different organisms may allow an easier 

differentiation as seen with the analysis of a biofilm from C.albicans and P.aeruginosa. Lastly, 

it is possible to apply CRM for bacterial differentiation based on their chemometric profiles and 

for that reason confirms the hypothesis that this technology is able to map biofilms when 

combined with statistical models. 

This thesis indicates the possibility of bacterial cluster differentiation with different prevalence 

in oral diseases like periodontitis and gingivitis because they both have high concentrations of 

A.denticolens and S.oralis (Ximenez-Fyvie et al., 2000). In future research, it will be pivotal to 

apply this model not only to mono-species and dual-species biofilm models, but to also extend 

the analysis to multi-species biofilm models. Consequently, next steps of establishing CRM for 

biofilm mapping should be 1. extending the database to more oral species as well as determine 

and show statistical differentiation 2. the analysis of more than two species in a biofilm and 3. 

Evaluating the potential for three-dimensional views of biofilms. Even though CRM was 

successfully used, questions remain unanswered in order to make it a competitive technique to 
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FISH/CLSM. Nevertheless, with the results of this study, it is possible to consider and establish 

Raman mapping as a complementary technique to CLSM, because it is able to give information 

on the chemometrics of species in biofilms. With the advancements of the technique in the 

future, it may be possible to use Raman as an alternative and competitive method for biofilm 

mapping. 

In a multi-species setup it will be necessary to validate and evaluate results from CRM with 

other methods like qPCR or CLSM. The morphology differentiation used in this thesis may not 

be sufficient to achieve differentiation of cells of similar shape. Due to the nature of sample 

preparation for CLSM and the fluorescent signal, it will be essential to use CARS to omit the 

signal from FISH in the spectral analysis. As part of this development, it will be necessary to 

evaluate the limitations of the technique. While it may not be possible to differentiate all species 

present, species with higher abundances may be differentiated in a 3D structure successfully. 

For applications, it will be pivotal to determine the limits of this analysis technique. One major 

downfall of this technique is the technical limitation of only receiving spectral information in 1 

µm steps. With advancements in laser technology, it may be possible to reduce the resolution 

limitation and move towards the possibility of implementing nanoRaman Scattering 

Microscopy (allowing a spatial resolution of 65 – 114 nm) (Kawata et al., 2017) in 

microbiological settings such as biofilm mapping. 

This limitation results in the lack of detection of small sized clusters. This can be specifically 

difficult in multi-species biofilms when species are only present in small amounts. The second 

great downfall of CRM was that spectral acquisitions required around 60 min for an area of 

324 µm2, due to numbers of accumulations and long exposure times. It will be important to 

determine how far accumulations and exposure times can be reduced and optimized while still 

being able to receive differentiation of species in a multi-species biofilm and keeping the same 

resolution.  

For the applicability of this technique, especially in an industrial setting such as biofilm 

mapping in the food processing or potable and wastewater distribution system industry, results 

need to be delivered quickly. While CRM is still faster than CLSM when the whole sample 

preparation and analysis time is put into consideration, CLSM allows the sample preparation of 

multiple samples at the same time. CRM technique can be improved by reducing laser power 

in order to minimize the possible artifact from chemometric spectral information from layers 

below the focused layer, thereby improving the quality of spectra. 
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The implemented CRM technique used an approach that didn’t require sample preparation 

(such as staining or nanoparticles) or a specific surface (such as silver coated surfaces) for 

analysis. With the advancements in CRM related technologies such as resonance Raman, SERS, 

TERS or CARS, it could improve the quality of spectra as well as reduce the acquisition time 

when combined with the developed workflow from this thesis. TERS especially demonstrates 

a good opportunity for the use of CRM in the field of biofilm architecture mapping. As 

discussed, sufficient and exact differentiation is dependent on the quality of the calibration 

dataset as well as the acquisition of the spectra at a specified location. Using the above 

mentioned Raman-based methods may improve both aspects of making the prediction more 

robust. 

Future directions of research applying the developed workflow and taking into account the non-

destructive characteristic of CRM, are the study on topics that include the variations in biomass 

composition which depend on: 1. the microorganisms present and their metabolic activity 2. the 

available nutrients and the environmental conditions and 3. the development phase of the 

biofilm on a single sample over time. For a reliable analysis, these parameters must be taken 

into account. With this knowledge, a direct link to biofilm functions can be achieved, which in 

return leads to a better understanding of these very complex and challenging systems and allows 

the development of more effective treatment approaches to inhibit the growth of unwanted 

microorganisms within a biofilm. 

In conclusion, it can be said that CRM shows a high potential for the characterization of bacteria 

and mapping of biofilms in the field of oral and medical biofilm research. Specifically, the use 

of CA in combination with CRM shows a promising approach of differentiating microbial 

clusters within a biofilm and helps the understanding of the requirements for successful 

mapping. The applications of sample non-destructive biofilm mapping technologies based on 

metabolic and chemometric methods for the analysis of samples in-situ and in-vivo are fast 

growing topics in research, industry and medicine. To improve the method of biofilm mapping 

using CRM in the future, different challenges need to be overcome: 1. increase the 

understanding of obtained data 2. improvement of reproducibility of analysis 3. establishment, 

improvement and extension of databases for the analysis of microbial samples 4. increased 

detection strength from technical developments such as CCD cameras or above described 

Raman-based technologies 5. improvement of statistical analysis of spectra and 6. reduction of 

analysis time and thus higher sample throughput. Finally, in terms of biofilm research, it will 
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be pivotal to improve comparison with other established biofilm mapping technologies either 

as a competitive or complementary technology. 
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8 Appendix 

8.1 Outreach activities 
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dual-species biofilm model using Confocal Raman Microscopy. Front. Microbiol. doi: 
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Conferences 

Kriem, L.S., “The Use of Raman Technologies for Biofilm Mapping.”, EuroBiofilms2022 

Conference, Palma de Mallorca (2022)  
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Kriem, L.S., “The Skittles Project – Using Raman Technologies for Oral Bacteria 
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8.2 Raman spectra of different biological molecules 

Raman spectra of saturated linear fatty acids: (a) lauric acid, (b) myristic acid, (c) palmitic 

acid, (d) stearic acid and unsaturated fatty acids: (e) oleic acid, (f) cis-vaccenic acid, (g) 

glycerol and of the fats (h) triolein, (i) trilinolein, (j) trilinolenin (applied from De Gelder, 

2008): 

 
 

Raman spectra of different saccharides: (a) β-D-glucose, (b) lactose, (c) cellulose, (d) D(+)-

dextrose, (e) D(+)-trehalose, (f) amylose, (g) amylopectine (applied from De Gelder, 2008): 

 
Raman spectra of DNA and RNA bases: (a) adenine, (b) cytosine, (c) guanine, (d) thymine, 

(e) uracil (applied from De Gelder, 2008). 
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8.3 Media recipes 

8.3.1 Modified Fluid Universal Medium in Sörensen’s buffer (pH 7.2): 

MFUM SOLUTION MIXING RATIOS: 

Substance Mixing ratios 

SOLUTION A 8 

SOLUTION B 0.5 

RTF SOLUTION 1.5 

**stored at 4°C for up to 2 weeks** 

 

SOLUTION A: 

 

Substance 
Final 

Concentration 

Bacto Tryptone 10 g/L 

Yeast Extract 5 g/L 

KNO3 1 g/L 

NaCl 2 g/L 

Hemin stock 1 ug/L 

Sörensen’s 

buffer 
800 mL 

**autoclave at 120°C** 

 

SOLUTION B: 

 

Substance 
Final 

Concentration 

Glucose 0.3% (3 g/L) 

Cysteine*HCl*H2O 0.5 g/L 

Na2CO3 0.5 g/L 

Sörensen’s buffer 50 mL 

**mix with RTF Solution + sterile-filtered with 0.22 µm filter into solution A** 
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RTF SOLUTION: 

 

Substance Ratio/Concentration 

RTF stock 1 1 

RTF stock 2 1 

Menadione Stock 2 µg/mL 

**mixed with Solution B + sterile-filtered with 0.22 µm filter into solution A** 

 

Sörensen’s Buffer, pH 7,2 
 

Substance 1000mL 

KH2PO4 2.71 g 

Na2HPO4 7.11 g 

H2O dist.  

**pH check** 

**Stored at 4°C** 

 

RTF 1 Stock Solution 

 

Substance Concentration 

K2HPO4 6 g/L 

Sörensen’s buffer  

**Stored at 4°C** 

 

RTF 2 Stock Solution 

 

Substance Concentration 

KH2PO4 6 g/L 

MgSO4*7H2O 2.5 g/L 

NaCl 12 g/L 

(NH4)SO4 12 g/L 

H2O dist. 1000 mL 

**Stored at 4°C** 

 

Menadione Stock Solution (0,5 mg/mL) 

 

Substance 50mL 

Menadion 25 mg 

Ethanol 50 mL 

**Stored at 4°C** 

 



APPENDIX 
 

- 127 - 

 

Hemin Stock Solution (1 mg/mL) 

 

Substance 50mL 

KOH 0.1 N 25 mL 

Ethanol 12.5 mL 

H2O dist. 12.5 mL 

Hemin chloride 50 mg 

**Stored at 4°C** 

 

8.3.2 Saliva and artificial saliva preparation and evaluation 

Natural saliva was used as reference to evaluate the artificial saliva. Natural saliva was collected 

from one human donor. The donor was a masculine young adult without acute carious lesions 

or periodontal disease. Natural saliva was collected at the same daytime at least 1.5 hours after 

teeth brushing. Salivary flow was stimulated with Parafilm® M (Bemis Company Inc., Neenah, 

WI, USA). After collection natural saliva was centrifuged at 4000 ga and 4 °C for 30 min and 

the supernatant was filtrated (SartoriusTM MinisartTM NML Syringe Filter, 0.2 µm nonsterile). 

The solution was stored at 4 °C and used within a week.  

For 1 L of phosphate buffered saline (PBS), 0.29 g monobasic potassium phosphate, 1.19 g 

dibasic potassium phosphate and 4.93 g sodium chloride was dissolved in dd water and 

autoclaved. PBS contained 93.32 mM salt. 

Hahnel’s saliva was applied from (Hahnel, 2007): 

Substance Concentration (mg/L) 

Albumin 40.000 

Lysozyme (1400 U/mL) 10.000 

Α-Amylase (50 U/mL) 1.000 

Mucin 850 

**Stored at 4°C for up to two weeks** 
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DMM saliva was applied from (Wong and Sissions, 2001): 

Substance Concentration (mg/L) 

Calcium chloride dihydrate 147,02 

Magnesium chloride 50,57 

Potassium dihydrogen phosphate 476 

Di-potassium hydrogen phosphate 261 

Sodium chloride 584 

Potassium chloride 1118 

Ammonium chloride 107 

Mucin 2500 

Urea 60 

**Stored at 4°C for up to two weeks** 

 

In total, three artificial saliva substitutes (Hahnel, DMM and PBS) mixed with mFUM were 

compared to mimic natural saliva based on their subgingival bacterial adhesion properties and 

biofilm formation. Hahnel artificial saliva has first been described by Hahnel in 2007 with the 

recipe in Chapter 8.3.2 (Appendix). DMM as an artificial saliva was first described by Wong 

and Sissions in 2001 with the recipe in Chapter 8.3.2 (Appendix). Additionally, PBS was 

considered as an alternative that doesn’t contain additional proteins besides the amount present 

in the mFUM medium (see Chapter 8.3.2 in the Appendix). 

Artificial saliva were evaluated in comparison to natural saliva based on their total bacterial 

concentration in a biofilm (Figure 41) and their ratios of A.denticolens, S.oralis and V.dispar 

within the biofilms (Figure 42). Biofilms were quantified using RT-PCR with calibration curves 

found in Chapter 8.6 of the Appendix using gBlocks™ (described in Chapter 3.2.4).  

Quantification of biofilms grown with natural saliva had a total mean concentration of 1.51 × 

108 (± 1.37 × 108) bacteria while artificial saliva showed concentrations of 2.71 × 108 (± 1.04 

× 108) bacteria for DMM:mFUM, 4.37 × 107 (± 2.66 × 107) bacteria for Hahnel:mFUM and 

1.20 × 108 (± 8.71 × 107) bacteria for PBS:mFUM (Figure 41). In comparison to the biofilms 

in natural saliva:mFUM, DMM:mFUM increases the bacterial concentration by 80.37%, while 

concentrations with the use of Hahnel:mFUM and PBS:mFUM artificial saliva were reduced 

by 71.02% and 20.60% respectively. In conclusion, out of the three selected artificial saliva, 

PBS in a 50:50 ratio with mFUM medium shows the closest bacterial concentration to natural 

saliva. 

In addition to total biofilm bacteria concentrations, biofilms grown with natural saliva showed 

a bacterial distribution of A.denticolens, S.oralis and V.dispar of 27.69% : 70.45% : 1.86%. 
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Biofilms cultivated in DMM:mFUM showed percentages of 18.73% : 79.86% : 1.42%, 

Hahnel:mFUM percentages of 38.99% : 55.11% : 5.90% and PBS:mFUM percentages of  

24.93% : 73.37% : 1.69%. Biofilms with DMM:mFUM showed an overpopulation of S.oralis 

and underpopulation of A.denticolens when compared to natural saliva, while Hahnel:mFUM 

saliva showed the opposite effect. Only PBS:mFUM showed representative ratios compared to 

natural saliva mixed with mFUM with population differences of only about 3% (Figure 42). 

 
Figure 41: Total concentration of bacteria in a multi-species biofilm consisting of A.denticolens, 

S.oralis and V.dispar. For every type of saliva a total of 10 samples were evaluated using RT-PCR. 

 
Figure 42: Ratio of bacterial species within a biofilm cultivated with different types of saliva (natural 

and artificial) and mFUM medium at a 50:50 ratio. Relative concentrations are based on RT-PCR 

data generated from 10 samples for each type of saliva. 
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Comparing the three selected artificial saliva to natural saliva in terms of biofilm growth and 

species distribution, only PBS:mFUM showed similar characteristics to natural saliva and 

mFUM. 

8.4 Fluorescent in-situ hybridization 

4% PFA (Paraformaldehyde)/ PBS 

o Heat 200 mL distilled water to 60°C 

o Add 10g PFA and 5 drops of 1 M NaOH (NO OVERHEATING) 

o Let PFA dissolve in 2min and add 5 mL 10X PBS 

o Adjust to pH 7.2 with HCl and fill up to 250 mL with DI water 

o Store at 4°C but not longer than 6 months 

 

Oligonucleotide 

Bacteria Probe Label Probe conc. (ug/mL of 

hybridization buffer) 

Formamide 

conc. (%) 

S.oralis MIT447 6-FAM 20 20-30 

A.denticolens ACT476 Cy3 20 25-35 

 

Hybridization Buffer for 200 µL: 

 

 Formamide concentration (units in µL) 
    

 20% 30% 40% 

 200uL 1mL 2mL 200uL 1mL 2mL 200uL 1mL 2mL 

5M NaCl 36 180 360 36 180 360 36 180 360 

1M Tris-HCl 4 20 40 4 20 40 4 20 40 

10% SDS 0.2 1 2 0.2 1 2 0.2 1 2 

Formamide 40 200 400 60 300 600 80 400 800 

ddH2O 114 570 1140 94 470 940 74 370 740 

Any FISH Probe 6 30 60 6 30 60 6 30 60 

 

Washing Buffer for 50 mL: 

 

 Formamide concentration (units in mL) 
       

 20% 30% 40% 

5M NaCl 2,15 0,43 1,02 0,204 0,46 0,092 

1M Tris-HCl 1 0,2 1 0,2 1 0,2 

0.5M EDTA 0,5 0,1 0,5 0,1 0,5 0,1 

ddH2O 46,35 9,27 47,35 9,496 48,1 9,608 

10% SDS 50 uL 10 uL 50 uL 10 uL 50 uL 10 uL 

TOTAL 50 10 50 10 50 10 
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Mowiol® 4-88: 

o Weigh 2.4 g Mowiol® 4-88 and add 6 g Glycerol and 6 mL DI water and mix 

o add 9.6 ml DI water and 2.4 ml Tris-HCl (1 M, pH 8.5) 

o Mix for 5h and then let it rest for 2h 

o incubate for 10 min at 50 °C 

o centrifuge for 15 min at 5000 xg 

o aliquot supernatant in Eppendorf vials and keep at -20°C 

8.5 Raman spectra 

8.5.1 Borosilicate glass spectrum 

 

8.5.2 Hydroxyapatite disc spectrum 
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8.5.3 Peak assignment of Raman spectra for medical microorganisms 

The table shows major peak assignments for the two species of interest for the differentiation 

of medical biofilms. (s) = small peak, (m) = medium peak, (l) = large peak. 

Band [cm-1] Peak assignments for biochemical 

compounds P.aeruginosa C.albicans 

607 (s) - Phenylalanine 

623 (s) 623 (s) Phenylalanine 

640 (s) 642 (s) Tyrosine 

722 (s) 722 (s) Adenine 

749 (l) 749 (l) Thymine (ring breathing) 

783 (s) 782 (m) Cytosine (ring breathing) 

848 (m) 853 (s) Proteins 

894 (s) 894 (s) γ(CN), γ(CON) symmetric, δ(CCH) aliphatic 

- 974 (s) Polysaccharide 

986 (m) - Polysaccharide 

1003 (s) 1003 (m) Phenylalanine (γ(CC) aromatic ring) 

1128 (l) 1128 (l) C-C, C-N stretch of proteins 

1157 (s) 1156 (s) Amide III 

1169 (s) 1173 (s) Phospholipids 

1207 (s) 1207 (s) Phenylalanine, Tyrosine 

1229 (s) 1229 (s) Amide III (CN in plane bend) 

1312 (m) 1312 (s) Amide III 

1340 (s) 1339 (m) Tryptophane (C-H2 twist) 

1397 (s) 1397 (s) COO- sym./CH2 asym. def. 

1455 (m) 1458 (l) 

C-H2 deformation (scissoring from Lipids, 

assym. Def. of amino acid side chains) 

1527 (s) 1527 (s) C=C stretch 

1585 (m) 1585 (m) Amide II 

1659 (m) 1659 (m) Amide I 

1746 (m) 1746 (s) CH2 bending 

 

8.6 RT-PCR calibration curves 

The used sequences for calibration is described in Chapter 3.2.4 where a gBlocks™ sequence 

was selected containing all three sequences for A.denticolens, S.oralis and V.dispar. 
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RT-qPCR calibration characteristics. The formula shows the slope and y-intercept with its 

standard errors: 

Species Formula Pearson’s r 

A.denticolens y = -3.61 ± 0.11 x + 40.70 ± 0.59 0.97 

S.oralis y = -3.84 ± 0.10 x + 40.92 ± 0.58 0.98 

V.dispar y = -3.73 ± 0.13 x + 39.22 ± 0.79 0.98 

8.7 Individual images of FISH staining 
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8.8 Bacteria coverage for different samples that were analyzed 

through morphology and Raman analysis 

Total quantitative results of bacteria coverage for the different samples analyzed in Figure 33. 

Negative values in total differences indicate under-identification of the species in Raman 

analysis compared to morphology analysis while a positive value indicates over-identification. 

Values in the column different area classification morphology vs. Raman indicate coverage of 

blue area from overlapped images of morphology and Raman in Figure 33 and indicates the 

different locational identification in comparison to total coverage. 

Sample 

Morphology area in % Raman area in % Difference in % 
Different 

classification 

Morphology vs. 
Raman in %  A.denticolens S.oralis A.denticolens S.oralis Unidentified A.denticolens S.oralis 

1 61.67 38.33 62.01 31.01 6.98 0.35 -7.33 27.47 

2 30.48 69.52 42.42 57.58 0.00 11.94 -11.94 24.33 

3 33.83 66.17 37.86 62.14 0.00 4.03 -4.03 27.28 

4 63.98 36.02 66.72 26.52 6.76 1.94 -9.44 31.54 

5 63.16 36.85 69.72 27.11 3.18 6.56 -9.74 27.06 

6 31.12 68.88 33.62 66.38 0.00 2.49 -2.49 30.09 

7 63.01 36.99 55.20 44.80 0.00 -7.81 7.81 24.45 

8 51.45 48.55 51.80 48.20 0.00 0.35 -0.35 28.57 

9 39.10 60.90 41.03 58.97 0.00 1.93 -1.93 29.78 

10 46.40 53.60 32.98 67.02 0.00 -13.42 13.42 21.82 

11 43.04 56.96 40.41 59.59 0.00 -2.63 2.63 26.71 

12 38.80 61.20 36.08 63.92 0.00 -2.72 2.72 17.66 

13 45.41 54.59 54.57 45.43 0.00 9.16 -9.16 30.68 

14 47.11 52.89 50.54 49.46 0.00 3.44 -3.44 26.24 

15 37.28 62.72 39.82 60.18 0.00 2.54 -2.54 27.00 
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