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Abstract: Mass transport in textiles is crucial. Knowledge of effective mass transport properties of
textiles can be used to improve processes and applications where textiles are used. Mass transfer in
knitted and woven fabrics strongly depends on the yarn used. In particular, the permeability and
effective diffusion coefficient of yarns are of interest. Correlations are often used to estimate the mass
transfer properties of yarns. These correlations commonly assume an ordered distribution, but here
we demonstrate that an ordered distribution leads to an overestimation of mass transfer properties.
We therefore address the impact of random ordering on the effective diffusivity and permeability
of yarns and show that it is important to account for the random arrangement of fibers in order
to predict mass transfer. To do this, Representative Volume Elements are randomly generated to
represent the structure of yarns made from continuous filaments of synthetic materials. Furthermore,
parallel, randomly arranged fibers with a circular cross-section are assumed. By solving the so-called
cell problems on the Representative Volume Elements, transport coefficients can be calculated for
given porosities. These transport coefficients, which are based on a digital reconstruction of the yarn
and asymptotic homogenization, are then used to derive an improved correlation for the effective
diffusivity and permeability as a function of porosity and fiber diameter. At porosities below 0.7, the
predicted transport is significantly lower under the assumption of random ordering. The approach is
not limited to circular fibers and may be extended to arbitrary fiber geometries.

Keywords: homogenization; textiles; yarns; random fibers; permeability; effective diffusion

1. Introduction

Textiles are omnipresent in industrial and everyday applications, such as clothing,
composite materials and construction materials. Textiles are an important class of technical
materials due to their great flexibility in shape and inexpensive production processes. The
performance and area of application of a particular textile often depend on its permeability.
Current examples of the importance of mass transport in textiles are sportswear [1] and
woven gas diffusion layers in fuel cells [2]. In sportswear, the wearing comfort is strongly
influenced by air permeability and water vapor diffusion through the textile [3]; in fuels
cells, the water transport in the gas diffusion layer influences the fuel cell performance [4].
Continuous filament synthetic yarns such as polyester and carbon are often used in the
above applications. To adapt and optimize a given textile according to the required specifi-
cations of its application, a basic knowledge of the transport within the textile is necessary.
Today, the mass transport is usually determined in experiments. However, it is not possible
to distinguish between the influence of the yarn and the structure of the knitted or woven
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fabric on mass transfer. To improve the mass transport properties of yarns, it is desirable to
study the individual influence of yarn and fabric structure separately.

Therefore, correlations based on the assumption of a regular arrangement of fibers
(hexagonal and square lattice) are often used to predict the permeability of yarns [5–7].
However, this leads to an overestimation of the mass transfer properties [8]. In this
contribution, we present new correlations for estimating the effective diffusivity and
permeability of yarns as a function of porosity and fiber diameter, which take random
ordering into account. To this end, we consider yarns made from continuous filaments of
synthetic material. Here, the term porous or fibrous media will only refer to the yarn.

The convective and diffusive mass transport in the fibrous (porous) media can be
predicted in a pore-scale simulation where the transport equations are solved on a represen-
tative cutout from µCT-images or FIB-Sem images [9]. However, pore-scale simulations are
computationally very expensive and, hence are not suitable to simulate large areas of yarn
material. Therefore, porous media are considered to be an effective media and transport is
lumped into effective transport properties. In the context of textiles, the yarn can also be
treated as an effective medium and only the weave or knit geometry is resolved in detail to
simulate the mass transport in textile materials [5,10].

To model the effective convective transport in a fibrous material and in general porous
media, the well-known Darcy equation is commonly applied [11]:

v = − K
η
· ∇p, (1)

where v, K, ∇p and η are the volume-averaged flow velocity, permeability tensor, pressure
gradient and the dynamic viscosity of the fluid, respectively. The permeability K reflects
the microstructure of the porous media, since all the convective microscale transport
phenomena are mapped in the permeability K. Therefore, it is of high interest to determine
the permeability K based on the structural information of the fibrous (porous) media. This
relationship is valid in the creeping-flow regime (Reynolds Number� 1).

One of the key structural parameters determining the permeability of fibrous materials—
indeed, all porous materials—is the porosity φ = Vpore/Vmedia, where Vmedia is the total vol-
ume of the fibrous media and Vpore is the volume not occupied by the fibers [12]. Obtained
by gravimetrical measurement or imaging analysis, it is also the easiest structural parameter
to identify [13]. Thus, it is of great interest to determine a constitutive permeability–porosity
correlation of yarns or tows. Several researchers have published relationships of the per-
meability of fibrous materials as a function of their porosity for ordered fibrous media in
two-dimensions or randomly oriented fiber networks in three-dimensions [8,14–20].

Gebart et al. [8] present an analytical, experimental and numerical investigation of the
permeability of hexagonal and squared-lattice-ordered two-dimensional arrays of fibers.
They derive the following correlation for K(φ):

K
r2 = C

(√
1− φper

1− φ
− 1

) 5
2

, (2)

where r is the fiber radius, φper is the critical value of porosity below which there is no

permeating flow (the percolation threshold) and C is a geometric factor C = 16/
(

9π
√

2
)

and

φper = 1− π/4 for a squared arrangement, and C = 16/
(

9π
√

6
)

and φper = 1− π/2
√

3
for the hexagonal-arranged fibers. The obtained correlation shows an excellent agreement
to the numerical results. Since the analytical consideration assumes that the permeability is
controlled by the narrow slots between the fibers, the correlation is only valid for a maximal
porosity φ = 0.65, according to Gebart et al. [8].

To study creeping flow through three-dimensional random fiber packings such as
non-woven fabrics or paper-like materials, Koponen et al. [19] used the lattice Boltzmann



Materials 2023, 16, 2014 3 of 17

method (LBM). Clague et al. [18] and Nabovati et al. [14] also studied the permeability of
three-dimensional ordered and disordered fibrous media. They used the LBM to simulate
creeping flow through fully three-dimensional random fiber networks, in which overlap-
ping of the fibers was allowed. Based on the LBM simulations, a permeability correlation
was proposed. Nabovati et al. fitted the numerical results to the constitutive permeability
correlation proposed by Gebart et al. [14]. Based on asymptotic homogenization, Schulz
et al. [20] studied the permeability for squared-lattice-ordered two-dimensional porous
media with different geometries, such as ellipses, squares and rectangles. With these results
they proposed new permeability correlations that expand the famous Kozeny–Carman
equation to different geometries, since the original correlation assumes spherical parti-
cles. However, to the best knowledge of the authors, there is no constitutive permeability
correlation for yarns or tows, which considers random parallel-arranged fibers.

To model the diffusive transport of a species in a fibrous media, the Ficks–Diffusion
law is widely applied [21]

J = DeffD∇c, (3)

where J, Deff, D and ∇c are the diffusive flux, effective diffusion coefficient, bulk diffusion
coefficient and volume averaged concentration gradient, respectively. The bulk diffusion
coefficient might be concentration-dependent, or dependent on the pore size in the case
of Knudsen diffusion [22,23]. The effective diffusion coefficient is a structural parameter
that considers the transport hinderance induced by the pore structure. For yarns and
tows, it is of interest to determine a constitutive effective diffusivity–porosity correlation.
Several previously published articles describe the relationships of the effective diffusion
coefficient of fibrous materials as a function of their porosity for ordered fibrous media in
two dimensions [24–31].

Perrins et al. [28] derived an analytical correlation for Deff(φ) for hexagonal and
squared-lattice-ordered two-dimensional arrays of fibers, by applying the method of Lord
Rayleigh [32]:

Deff =
1
φ

(
1− 2(1− φ)

2− φ− C1(1− φ)C2

)
(4)

where φ is the porosity and C1 and C2 are geometric factors, where C1 = 0.3058 and C2 = 4
for a square array, and C1 = 0.07542 and C2 = 6 for a hexagonal lattice. The correlation
was validated numerically with different methods, such Monte Carlo simulations, asymp-
totic homogenization, the Voronoi tessellation method with mixing rules and by several
researchers [24,25,29].

In actual yarns or tows, the fibers are not arranged in a square or hexagonal lattice,
which is a basic assumption for correlations (2) and (4). In this contribution, we want to
adapt the presented correlations to a randomly placed fiber setting. To do so, we apply a
mathematical upscaling method.

Mathematical upscaling methods can be used to compute effective transport coeffi-
cients [33]. Helmig et al. and Battiato et al. provide a comprehensive overview of upscaling
techniques [34,35]. These techniques derive macroscopic transport equations from first
principles. The methods have been developed by different academic communities, such
as mathematicians and engineers, and by using different methodologies. However, all
methods lead to the same result for standard transport phenomena, such as diffusion and
creeping single-phase flow in porous media considered here.

Asymptotic homogenization is a well-known upscaling technique based on asymptotic
expansions and can be used to determine effective transport parameters for porous media.
The local transport processes occurring within the porous material, as well as structural
data such as porosity, influence the effective transport coefficients derived by this method.
Here, we compute by asymptotic homogenization effective transport coefficients for a set of
randomly generated unit cells. Curve fitting of our numerical results revealed a constitutive
relationship for the permeability and the effective diffusion coefficient as a function of
porosity. A similar approach has been used by Kamiński et al. and Jeulin et al. in the
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context of continuum mechanics and acoustics to estimate the effective material properties
of composites [36,37].

The paper is structured as follows. Section 2 introduces the methodology of asymptotic
homogenization and summarizes the convective and diffusive mass transport equations
at the pore and continuum scale based on the homogenization theory. Additionally, the
methodology of deriving a constitutive permeability–porosity correlation is presented.
In Section 3, the numerical results and constitutive correlations are presented. Section 4
summarizes the results and gives an outlook on work in progress.

2. Methodology

The asymptotic homogenization is a mathematical averaging method that can be used to
derive macroscopic transport equations, stating from a microscale description [38–40]. To use
this method, a periodic representation on a microscopic scale must exist to represent the
heterogenous media [41]. As explained in the next section in more detail, the prerequisite
of periodicity can be relaxed in practical application. In this contribution, the periodic
representation is denoted as Representative Volume Element Y. A cornerstone of the ho-
mogenization is the scale separation between the macroscale and the microscale. This
is expressed by the size difference between the microscopic scale lc and the macroscopic
scale Lc:

ε =
lc
Lc
� 1. (5)

when ε is small, the asymptotic expansion with respect to ε can be applied to the microscale
description of the transport phenomena. The asymptotic expansion is

a(x)ε = a0(x, y) + εa1(x, y) + ε2a2(x, y) + · · · . (6)

a(x)ε is spatially varying on the microscale y. a(x)ε is substituted into the equation
describing the transport phenomenon on the microscale and can represent, e.g., a concen-
tration or a velocity. The lower index here indicates the hierarchy of the scale; a0 refers to
the macroscale, a1 to the next smaller scale, and so on. Equation (6) states that the scale
becomes smaller and smaller as the index rises. In two scale asymptotic homogenization,
order terms higher than ε2 are neglected.

The limit of homogeneity is reached when ε goes to zero, at which point the hetero-
geneity becomes infinitely fine, as shown in Figure 1. Since there are no more structural
changes in the microscopic variable and the domain is homogeneous at ε→ 0 , the equation
no longer depends on the microscopic variable y. By determining the limit ε→ 0 , the
effective transport equation of a physical process in heterogeneous media is derived by
asymptotic analysis.
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In the following section, we apply the asymptotic homogenization to convection and
diffusion in fibrous media.
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2.1. Representative Volume Element

In addition to a clear scale separation, the second prerequisite for the application of
asymptotic homogenization is the existence of a spatially periodic domain that is repre-
sentative of the porous or fibrous media. In the context of volume averaging—another
upscaling method—this representative domain is also referred to as a Representative Vol-
ume Element (RVE). For more information on the concept of RVE, we refer to the classical
literature [11,12,42]. As shown by several researchers, the periodicity is not a strict re-
quirement in the sense that the structure must be strictly periodic. They have shown
that a slow variation of the structural parameters over the macroscopic length still allows
the application of asymptotic homogenization to derive transport parameters for porous
media [22,23,43]. It has been shown also that it is possible to represent the real porous
structure, and thus non-strictly spatially periodic material by artificially generated RVEs,
which solely represented the characteristic structural parameters such as porosity, pore-size
and width of the pore throat of the real porous media, without representing the porous
structure in detail [22,43–45].

Based on this concept, we propose a schematic representation as shown in Figure 2.
The RVE is a square domain that contains randomly periodically arranged circles. In three
dimensions this can be considered as parallel fibers. By choosing a fiber diameter and fiber
number, the porosity can be set. We limit the investigation to uniform nonoverlapping
circular fibers, as they are most commonly found in technical textiles or composites manu-
factured from endless filaments from synthetic materials. Moreover, we only consider the
transport perpendicular to the fibers, since for sportswear and clothing the air permeability
and the water vapor transmission is usually determined perpendicular to the fibers. Our
geometrical simplification is underpinned by microscopic visualization and research works
of modelling water transport in yarns [13,46,47]. For yarns with twist, a three-dimensional
RVE may be necessary since the transport along the fibers is influenced by the twist angle.
However, we want to emphasize that the approach can be easily extended to different
geometries by choosing different fiber cross-sections such as ellipses, squares or fiber-size
distributions, and even a three-dimensional RVE is possible.
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Figure 2. (a) Image of a melt spun multifiber polyester yarn and visualization of a cross-section of
yarn by embedding in resin. (b) Schematic representation of yarn cross-section with corresponding
RVE Y.
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The RVE Y is generated using Matlab®, according to the workflow presented in
Figure 3.
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Figure 3. (a) Schematic process diagram of the generation of RVEs. (b) Exemplary RVEs with different
porosities and fiber numbers.

First, 2 · n f ibers random numbers are chosen in a range from 0 to lRVE + 2r, where
n f ibers is the number of fibers, lRVE is the sidelength of the RVE and r is the fiber radius. The
random numbers are generated using the Mersenne–Twister algorithm and are uniformly
distributed between 0 to lRVE + 2r [48]. We have chosen lRVE = 1. The radius of the fibers
is calculated to match the desired porosity φ for a given number of fibers. Each number
duple is a Cartesian coordinate of the center of a fiber. If the fibers did not overlap, periodic
boundaries were created, in order to apply periodic boundaries in the simulation. This
was performed by checking whether the fibers violated the boundaries of the domain. If
the vertical boundaries were crossed by a fiber, the fiber was mirrored by adding (for the
left boundary) or subtracting (for the right boundary) lRVE to the x-value of the Cartesian
coordinate. The same algorithm was applied to the horizontal boundaries. The Euclidean
distance between the fibers was calculated subsequently. If an overlap between the fibers
was observed, the procedure was started again. Due to the relatively small number of fibers
in the RVE, the creation of the RVE is not very time-consuming. With this rather simple
algorithm, a statistically random arrangement of the fibers in the RVE can be realized.
The RVE was generated using COMSOL Multiphysics®’s built-in CAD functionality and
meshed in COMSOL Multiphysics® based on the fiber-position data generated in Matlab®.
In Figure 3, examples of RVEs with different numbers of fibers and porosities are shown.

In the next sections, we summarize the formal asymptotic homogenization of convec-
tive and diffusive transport in porous media.

2.2. Homogenization of Convective Transport

The convective mass transport on the pore-scale is covered by the Navier–Stokes
equations. Due to the small pores of the fibrous media and the low velocity, creeping flow
(Reynolds Number� 1) is a reasonable assumption, i.e., inertia can be neglected.
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Figure 4. Fibrous media that is composed of spatially periodic RVE. The RVE consists of randomly
arranged circles representing the fibers in two dimensions.

For a fibrous (porous) medium with impermeable walls (see Figure 4), this gives the
Stokes problem the following form:

ε2η∆yvε− ∇y pε = 0, in YF
∇yvε = 0, in YF

vε = 0, on Γ.
(7)

where vε, pε, η, YF, ε are the velocity, pressure, viscosity, pore space and the order parameter
of scale separation, respectively. Slip on the wall Γ of the fibers and additional body forces
are neglected. In order to perform an asymptotic expansion, the viscosity is scaled by
ε2. Without scaling, frictional forces would dominate for ε→ 0 . This means the pressure
gradient would have no effect on the velocity profile. Physically, this is reflected by
standstill [49]. The scaling postulates that the shear forces are in equilibrium with the
frictional forces. This results in a physically reasonable solution to the problem for ε→ 0 .

In the next step, an asymptotic expansion for the quantities vε and pε is performed.
For this, the ansatz (6) and (7) are applied to the pore-scale transport Equation (8). This
leads to the following cell problems in Y for convective mass transfer:

∆y
→
χj −∇yΠj +

→
ej = 0, y ∈ YF

∇y
→
χj = 0, y ∈ Γ
→
χj = 0, y ∈ Γ

Πj and
→
χj are Y− periodic,

(8)

where the base functions
→
χj and Πj are the local variation of the velocity and pressure,

the lower index j denotes the spatial directions, e.g., in two-dimensions j = [1, 2]. Thus,
two cell problems are solved to determine the permeability tensor in two dimensions. In
addition, we assume that the porous media Ωε is composed of a spatially periodic RVE Y.
The detailed derivation of the cell problem (9) can be found in [49].

The result of the two-scale asymptotic expansion is the Darcy equation:

v = − K
η
· ∇p, (9)

where v, K, ∇p and η are the volume-averaged flow velocity, permeability tensor, pressure
gradient and the dynamic viscosity of the fluid, respectively. The permeability can be
calculated by solving the cell problems (8) on Y (see Figure 3). By volumetric averaging of
the base functions

→
χj:

kij =
1
|Y|

∫
YF

χijdy, (10)
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where YF is the void space, the permeability tensor in, e.g., two dimensions is given by:

K =

(
k11 k12
k21 k22

)
. (11)

To transform the permeability K in a dimensionless form, K is scaled by the square
of the characteristic microscopic length K/l2

c . We choose as the microscopic characteristic
length lc = r, where r is the fiber radius. To determine the permeability tensor K, the cell
problem (8) in the RVE Y must be solved first.
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An example of the base functions is shown in Figure 5. The simulation of the cell prob-
lem was performed with the finite-element simulation software COMSOL Multiphysics®.
On the boundaries of the domain, we applied periodic conditions. For discretization, a
triangular mesh was applied, where the

→
χj variable was discretized with second order

elements, while Πj was discretized with first order elements. The direct solver PARADISO
was used to solve the cell problem [50]. The permeability tensor was calculated by surface
integration. Numerical accuracy was ensured by a mesh study not shown here.

2.3. Homogenization of Diffusive Transport

In this section, we outline the homogenization of diffusive transport. Diffusion in the
pores Ωε

F of the periodic porous media Ωε, illustrated in Figure 4, can be modelled by the
pore-scale transport equation:

−∇ · (D∇c(x) ) = 0 inΩε
F. (12)

D is the molecular diffusion coefficient and c(x) is the concentration that is de-
pended on the macroscopic spatial variable x. To use the asymptotic homogenization
to derive an effective diffusion equation, we scale the variables by characteristic quantities:
D∗ = D/Dc, c∗ = c/cc, y∗ = y/lc and x∗ = x/Lc. The parameters with subscript c are the
characteristic parameters, respectively. Here, we choose the molecular diffusion coefficient
D as characteristic diffusion coefficient Dc. Dropping the asterisks, the scaling results in
the dimensionless equations are as follows:

−∇ · (Dε∇cε) = 0, in Ωε
F

−→n · (Dε∇cε) = 0, on Γε

cε = cD, on ∂Ωε,

(13)
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where
→
n is the normal vector on the pore wall Γε and Dε is the dimensionless diffusion

tensor. The index ε indicates the dependence on the microscopic variable y.
By applying the expansion (6) to the pore-scale transport Equation (13), the base

functions wj(y) are the self-similar local changes in concentration and the so-called cell
problem. For a more detailed derivation, we refer to [49,51–53].

−∆ywj = 0, y ∈ YF
→
n ·
(
∇ywj

)
= −→n ·→ej , y ∈ Γ

wjis Y− periodic.
(14)

The result of the homogenization after redimensioning is an effective diffusion equation

−∇ ·
(

De f f D∇c
)
= 0 in Ω (15)

Deff is the effective dimensionless diffusion tensor, with

dki =
1
|Y|

∫
YF

(
δki +

∂

∂yk
wj(y)

)
dy, (16)

where wj is the solution to the cell-problem (14). Since wj is integrated via YF, the integral
refers to the averaged concentration in the void space ci. To relate the diffusion coefficients
to the volume-averaged concentration, the coefficient must be scaled by 1

φ , since ci = φ · ci.
The effective diffusion tensor then reads:

De f f =
1
φ
·
(

d11 d12
d21 d22

)
(17)

with the averaged concentration ci of the species i in the porous media Ω.
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The computed basis functions wj are shown in Figure 6. As for the cell problem of
convective transport, we implemented the cell problem (15) in the commercial simulation
program COMSOL Multiphysics® to solve the set of equations, and the same solver and
boundary conditions were applied. For discretization, a triangular mesh was applied,
where the wj base functions were discretized with second order elements. By numerical
surface integration, the diffusion tensor was derived.

2.4. Deriving Constitutive Transport Relationships Based on Asymptotic Homogenization

In the following, we outline the approach to derive constitutive transport relationships.
A schematic flow chart of the methodology is shown in Figure 7.

In the first step, the virtual RVEs are created in order to represent the characteristic
microstructure of the considered material. For a fixed porosity, a representative number of
RVEs are created to represent the average geometrical configuration. In the next step, the
cell problems (8) and (15) are solved on a set of RVEs, which are randomly generated taking
porosity and fiber diameter as a constraint. Finally, the transport properties obtained by
the simulations are fitted to correlations (2) and (4). This averages the transport coefficients
over all random geometries at a given porosity φ.
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3. Results and Discussion

In this section, we present the simulation results and improved constitutive correla-
tions for mass transport in fibrous media. To demonstrate the impact of random ordering,
we compare our proposed correlations to correlations by Gebart [8].

3.1. Number of Fibers in the Representative Volume Element

To determine a representative and generally valid correlation, it is of great importance
that the numerical results must be invariant to the number of fibers in the RVE. To verify
this, 300-RVEs were generated for different porosities φ = 0.45 to φ = 0.95 with different
number of fibers (n f iber = [5, 6, 7, 8]), giving in total 1500-RVE. Next, the data were
averaged for the respective porosity at a fiber number. As pointed out by King et al. [54],
transport coefficients for random porous media have been geometrically averaged. As can
be seen in Figure 8, even five fibers are sufficient to obtain numerical results, which are
independent of the number of fibers and therefore the size of the RVE.
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In all calculations, we set the number of fibers in the RVE to be n f iber = 5 to minimize
the computational cost.
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3.2. Constitutive Permeability–Porosity Relationship for Random Arranged Parallel Fibers

We determine the permeability of 300 random RVEs in the x- and y-direction for each
given porosity. In all RVEs, the fibers have the same radius. The porosity of the RVE
varied from 0.35 to 0.99. Since the geometry is isotropic on average, 600 data points were
obtained for each porosity; hence, we received 38,400 data points in total. The results
are plotted in Figure 9. As expected, the permeability tends to infinity in the limit φ→
1 and drops towards zero at low porosity. The variation in the data is greatest at low
porosities, where the random arrangement of the fibers leads to large relative changes in
the predicted permeability. A modified version of the Gebart [8] relationship provided an
excellent fit over the range of porosities considered. We adapt Gebart’s original relationship
by adapting three constants:

K
r2 = C1

(√
1− φper

1− φ
− 1

)C2

, (18)

where φper is the value of porosity above which flow can occur, in fact the percolation
threshold. C1 and C2 relate to the RVE geometry. A similar approach was chosen by
Nabovati et al. [14]. The fitted correlation is shown in Figure 9.
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Figure 9. Constitutive permeability–porosity correlation and simulation data.

We used the lsqcurvefit function of Matlab®, with a Levenberg–Marquardt algorithm
for minimizing the Euclidean norm. The fit is performed in logarithmic space to avoid
biasing the fit towards large permeability values at high porosity. The parameters are given
in Table 1.

Table 1. Fit values of the permeability–porosity correlation.

Parameter Bestfit Value

C1 0.3468
C2 2.6193
φper 0.2306

The fitted φper is comparable in magnitude to the analytically determined percolation
threshold of the squared arrangement (φper = 0.21) by Gebart [8], but due to the random
arrangement in our geometrical consideration, the percolation threshold reached a higher
porosity, as expected. However, we emphasize our correlation is only valid in a porosity
range from 0.35 to 0.99. Further validation is required for porosities below 0.35. Never-
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theless, the covered porosity range is the relevant region for practical applications, since
porosities close to the percolation threshold rarely occur in textiles [55].

To verify the fitting and to ensure that the optimization algorithm did not reach a
local minimum when fitting the parameters, the fitted correlation was compared to the
geometrical mean of the simulation data. The comparison is shown in Figure 10.
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Figure 10. Constitutive permeability–porosity correlation with geometrical mean of simulation data.

The fitted correlation almost perfectly crosses the averaged data points, and R2 = 0.998
is obtained.

Direct comparison of the modified correlation with that by Gebart [8] for hexagonal
and squared lattices shows the impact of the random arrangement of fibers for the predicted
permeability. Figure 11 shows the comparison between the random, squared and hexagonal
arrangement of the fibers. Due to the logarithmic scaling of the y-axes, the differences are
quite large even though the curves are relatively close to each other.
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Figure 11. Comparison of the proposed correlations to correlations by Gebart [8] for a squared and a
hexagonal arrangement of the fibers, to estimate the permeability of fibrous media.

The correlations of the ordered-arranged fibers predict lower permeability than the corre-
lation for randomly ordered fibers below 0.8. This might explain why Gebart overestimated
the permeability when compared to experimental findings for a squared arrangement.
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3.3. Constitutive Diffusivity–Porosity Relationship for Randomly Arranged Parallel Fibers

Similar to permeability, we determined the effective diffusion coefficient of 300 random
RVEs in the x- and y-direction for each porosity. The porosity of the RVE was varied from
0.35 to 0.99. Again, 38,400 data points were calculated. The simulation results are plotted
in Figure 12. As expected, the effective diffusion coefficient tends towards 1 in the limit φ
→ 1 and drops towards zero at low porosity. As already observed for the permeability, the
variation in the data is greatest at low porosities, where the random arrangement of the
fibers leads to large relative changes in the predicted permeability. We found that a modified
version of the Perrins [28] relationship provided an excellent fit to the data across the entire
porosity range. We adapt Perrin’s original relationship by adapting two parameters.

De f f =
1
φ

(
1− 2(1− φ)

2− φ− C1(1− φ)C2

)
, (19)

where C1 and C2 are related to the geometry of the RVE.
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Figure 12. Constitutive diffusion–porosity correlation and simulation data.

Again, we used the lsqcurvefit function of Matlab®, with a Levenberg–Marquardt
algorithm for minimizing the Euclidean norm. The fitted parameters are listed in Table 2.

Table 2. Fit values of the diffusion–porosity correlation.

Parameter Best Fit Value

C1 0.1711
C2 0.7895

To validate the fit, we compared the correlation to the geometrical mean of the simula-
tion data in Figure 13. As it was observed for the permeability, the fitted correlation runs
almost perfectly through the averaged data, giving R2 = 0.999.

Figure 14 shows a comparison of our proposed correlation to the correlations by
Perrins [28] for fibers in a squared and a hexagonal arrangement.

The difference between the correlations is obvious. Especially for a porosity below 0.8,
the difference becomes significant. Effective diffusion coefficients calculated from ordered
arrangements of fibers are much larger compared to random arrangements.
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4. Conclusions

In this work, we present improved constitutive transport correlations for diffusive
and convective mass transport in yarns. The proposed correlations were determined by
a new approach using digital reconstruction of the yarn and asymptotic homogenization
to work out the transport parameters. We propose to generate a large number of RVEs to
statistically represent the microstructure of the porous material under consideration. The
cell problems arising from the asymptotic expansion are then solved on the RVEs. The
constitutive transport correlations are obtained by curve fitting to calculate the transport
parameters. The proposed method for deriving constitutive transport correlations can be
applied in future studies to other manufactured porous materials for industrial applications,
e.g., battery electrodes, catalysts and filters. The prerequisites are a clear scale separation
and a porous structure that can be represented in an RVE and modified by varying the
characteristic structural properties, e.g., particle-size distribution or porosity.

The newly derived correlations for yarns facilitate a more accurate prediction of the
transport across the fiber banks in the yarns and tows and give a more detailed description
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of the transport phenomena within the structures. We adapted the correlations proposed by
Gebart and Perrins to a more realistic geometric representation of real textile structures [8,28].
We compared the proposed correlations with those in the literature, where fibers are
arranged in a squared or hexagonal pattern. The comparison showed that the random
arrangement significantly affects transport across the fibrous media, which is in agreement
with experimental results in resin transfer moulding [8]. However, the proposed correlations
are only applicable to yarns with parallel oriented fibers with a circular cross-section and in a
porosity range from 0.35 to 0.99. Additionally, the permeability correlation is only applicable
when the flow in the yarn is in the Stokes regime (Reynolds Number� 1).

In the future, we will compare the proposed correlations with experimental fabric
transport measurements to investigate the influence of the yarn structure on the transport
properties of the fabric.
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10. Puszkarz, A.K.; Krucińska, I. Modeling of Air Permeability of Knitted Fabric Using the Computational Fluid Dynamics. Autex

Res. J. 2018, 18, 364–376. [CrossRef]
11. Whitaker, S. Flow in porous media I: A theoretical derivation of Darcy’s law. Transp. Porous Media 1986, 1, 3–25. [CrossRef]
12. Bear, J. Theory and Applications of Transport in Porous Media Modeling Phenomena of Flow and Transport in Porous Media.

Available online: http://www.springer.com/series/6612 (accessed on 1 March 2022).
13. Turan, R.B.; Okur, A.; Deveci, R.; Açikel, M. Predicting the intra-yarn porosity by image analysis method. Text. Res. J. 2012,

82, 1720–1728. [CrossRef]
14. Nabovati, A.; Llewellin, E.W.; Sousa, A.C.M. A general model for the permeability of fibrous porous media based on fluid flow

simulations using the lattice Boltzmann method. Compos. Part A Appl. Sci. Manuf. 2009, 40, 860–869. [CrossRef]
15. Sangani, A.S.; Acrivos, A. International Journal of Multiphase Flow 1982. Slow Flow Past Periodic Arrays of Cylinders with

Application to Heat Transfer, Elsevier. Available online: https://www.sciencedirect.com/science/article/pii/0301932282900295
(accessed on 18 July 2022).

http://doi.org/10.1533/9781845690885.3.177
http://doi.org/10.1016/j.jpowsour.2018.09.076
http://doi.org/10.1080/00405167.2021.1955524
http://doi.org/10.1039/D1EE03246A
http://doi.org/10.1137/09077059X
http://doi.org/10.1002/pc.10682
http://doi.org/10.1002/pc.10474
http://doi.org/10.1177/002199839202600802
http://doi.org/10.1115/1.2821600
http://doi.org/10.1515/aut-2018-0007
http://doi.org/10.1007/BF01036523
http://www.springer.com/series/6612
http://doi.org/10.1177/0040517511427971
http://doi.org/10.1016/j.compositesa.2009.04.009
https://www.sciencedirect.com/science/article/pii/0301932282900295


Materials 2023, 16, 2014 16 of 17

16. Drummond, J.E.; Tahir, M. International Journal of Multiphase Flow 1984, Laminar Viscous Flow through Regular Arrays of
Parallel Solid Cylinders, Elsevier. Available online: https://www.sciencedirect.com/science/article/pii/030193228490079X
(accessed on 18 July 2022).

17. Mason, E.; Malinauskas, A. Gas Transport in Porous Media: The Dusty-Gas Model; Elsevier: Amsterdam, The Netherlands, 1983.
18. Clague, D.S.; Kandhai, B.D.; Zhang, R.; Sloot, P.M.A. Hydraulic permeability of (un)bounded fibrous media using the lattice

Boltzmann method. Phys. Rev. E 2000, 61, 616. [CrossRef]
19. Koponen, A.; Kandhai, D.; Hellen, E.; Alava, M.; Hoekstra, A.; Kataja, M.; Timonen, J. Permeability of Three-Dimensional Random

Fiber Webs. Phys. Rev. Lett. 1998, 80, 716. [CrossRef]
20. Schulz, R.; Ray, N.; Zech, S.; Rupp, A.; Knabner, P. Beyond Kozeny–Carman: Predicting the Permeability in Porous Media. Transp.

Porous Media 2019, 130, 487–512. [CrossRef]
21. Ingham, D.B.; Pop, I.I. Transport Phenomena in Porus Media II; Elsevier: Amsterdam, The Netherlands, 2002; p. 449.
22. Maier, L.; Scherle, M.; Hopp-Hirschler, M.; Nieken, U. Effective transport parameters of porous media from 2D microstructure

images. Int. J. Heat Mass Transf. 2021, 175, 121371. [CrossRef]
23. Šolcová, O.; Šnajdaufová, H.; Schneider, P. Multicomponent counter-current gas diffusion in porous solids: The Graham’s-law

diffusion cell. Chem. Eng. Sci. 2001, 56, 5231–5237. [CrossRef]
24. Jó, H.; Halle, B. Solvent Diffusion in Ordered Macrofluids: A Stochastic Simulation Study of the Obstruction Effect. 1996.

Available online: http://jcp.aip.org/jcp/copyright.jsp (accessed on 18 July 2022).
25. Bruna, M.; Chapman, S.J. Diffusion in spatially varying porous media. Source SIAM J. Appl. Math. 2015, 75, 1648–1674. [CrossRef]
26. Hales, J.D.; Tonks, M.R.; Chockalingam, K.; Perez, D.M.; Novascone, S.R.; Spencer, B.W.; Williamson, R.L. Asymptotic expansion

homogenization for multiscale nuclear fuel analysis. Comput. Mater. Sci. 2015, 99, 290–297. [CrossRef]
27. Transvalidou, F.; Sotirchos, S.V. Effective Diffusion Coefficients in Square Arrays of Filament Bundles. AIChE J. 1996, 42, 2426–2438.

[CrossRef]
28. Perrins, W.T.; McKenzie, D.R.; McPhedran, R.C. Transport properties of regular arrays of cylinders. Proc. R. Soc. London. A. Math.

Phys. Sci. 1979, 369, 207–225. [CrossRef]
29. Shou, D.; Fan, J.; Ding, F. Effective diffusivity of gas diffusion layer in proton exchange membrane fuel cells. J. Power Sources 2013,

225, 179–186. [CrossRef]
30. Koch, D.L.; Brady, J.F. The effective diffusivity of fibrous media. AIChE J. 1986, 32, 575–591. [CrossRef]
31. Nilsson, L.; Stenström, S. Gas diffusion through sheets of fibrous porous media. Chem. Eng. Sci. 1995, 50, 361–371. [CrossRef]
32. Rayleigh, L. LVI. On the influence of obstacles arranged in rectangular order upon the properties of a medium. Lond. Edinb.

Dublin Philos. Mag. J. Sci. 1892, 34, 481–502. [CrossRef]
33. Churakov, S.V.; Gimmi, T. Up-scaling of molecular diffusion coefficients in clays: A two-step approach. J. Phys. Chem. C 2011,

115, 6703–6714. [CrossRef]
34. Helmig, R.; Niessner, J.; Flemisch, B.; Wolff, M.; Fritz, J. Efficient Modeling of Flow and Transport in Porous Media Using Multiphysics

andMultiscale Approaches. In Handbook of Geomathematics; Springer: Berlin/Heidelberg, Germany, 2010; pp. 417–457. [CrossRef]
35. Battiato, I.; Ferrero, V.P.T.; O’Malley, D.; Miller, C.T.; Takhar, P.S.; Valdés-Parada, F.J.; Wood, B.D. Theory and Applications of

Macroscale Models in Porous Media. Transp. Porous Media 2019, 130, 5–76. [CrossRef]
36. Peyrega, C.; Jeulin, D. Estimation of acoustic properties and of the representative volume element of random fibrous media.

J. Appl. Phys. 2013, 113, 104901. [CrossRef]
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