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Abstract: This paper presents the CRBeDaSet—a new benchmark dataset designed for evaluating
close range, image-based 3D modeling and reconstruction techniques, and the first empirical experi-
ences of its use. The test object is a medium-sized building. Diverse textures characterize the surface
of elevations. The dataset contains: the geodetic spatial control network (12 stabilized ground points
determined using iterative multi-observation parametric adjustment) and the photogrammetric
network (32 artificial signalized and 18 defined natural control points), measured using Leica TS30
total station and 36 terrestrial, mainly convergent photos, acquired from elevated camera standpoints
with non-metric digital single-lens reflex Nikon D5100 camera (ground sample distance approx.
3 mm), the complex results of the bundle block adjustment with simultaneous camera calibration
performed in the Pictran software package, and the colored point clouds (ca. 250 million points)
from terrestrial laser scanning acquired using the Leica ScanStation C10 and post-processed in the
Leica Cyclone™ SCAN software (ver. 2022.1.1) which were denoized, filtered, and classified using
LoD3 standard (ca. 62 million points). The existing datasets and benchmarks were also described
and evaluated in the paper. The proposed photogrammetric dataset was experimentally tested
in the open-source application GRAPHOS and the commercial suites ContextCapture, Metashape,
PhotoScan, Pix4Dmapper, and RealityCapture. As the first experience in its evaluation, the difficulties
and errors that occurred in the software used during dataset digital processing were shown and
discussed. The proposed CRBeDaSet benchmark dataset allows obtaining high accuracy (“mm”
range) of the photogrammetric 3D object reconstruction in close range, based on a multi-image view
uncalibrated imagery, dense image matching techniques, and generated dense point clouds.

Keywords: close range; 3D reconstruction; dataset; high accuracy; point cloud semantic segmentation;
evaluation

1. Introduction

The photogrammetric reconstruction of 3D objects in a wide spectrum of applica-
tions in close range is currently performed based on point clouds generated by dense
image-matching techniques. Some of the most commonly implemented methods are the
commercial structure from motion (SfM), the scalable multi-view stereo (MVS) approach,
and semi-global matching (SGM).

Photogrammetric approaches enable a highly redundant bundle block adjustment
(BBA), simultaneous digital camera self-calibration, and automatic scene geometry recon-
struction using image matching. The dense point clouds and advanced data processing
allow recognition and complete reconstruction of 3D objects and then measuring and
extracting geometric and semantic information [1]. In recent years, a large number of
fully automated photogrammetric software for georeferenced digital 3D reconstruction
have been developed [2–7] These applications allow even non-expert users to generate
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3D models for various purposes [8]. with just a few mouse clicks. Despite remarkable
progress in the “black-box” image-based processing pipeline, image preprocessing [9],
key points detection [10–14] and description [10–17], matching [18,19], bundle adjustment
(BA) [20–22], and dense point clouds generation [23–25], the accuracy of computation
results still remains challenging.

In this connection, an important research objective concerns the evaluation of the quality
and accuracy of image-based dense point cloud generation and processing aimed at 3D
object reconstruction in close range. The applicability of image-based point clouds for the
geometrical measuring of various objects is also very significant. Due to the properties of
software and their hidden computing algorithms, researchers have been using many datasets
for application evaluation [4–6,26] with regard to the merits and demerits of different case
studies [27–29]. Over the years, different datasets have been published [30–39].

The benchmark datasets used up to now have the following errors and deficiencies:

• The omission of precise geodetic hardware and measuring and adjustment methods
for the reference control network (control points and check points) determination.

• Shortages in ground truth information in a range of use terrestrial laser scanning (TLS)
point clouds without the description of the root mean square error (RMSE) of merging
multiple scans.

• Insufficient accuracy of 2D and 3D data information of the existing publicly avail-
able datasets.

• The use of simplified descriptions in terms of processing and computation accuracy;
in spite of the fact that the standard terms and metrics do exist [40–42], they are not
always correctly employed by all software packages, and researchers have been using
them in benchmarks, what was highlighted by Remondino et al. [5].

According to the authors’ knowledge, a publicly available close range dataset that
allows a comprehensive and advanced software evaluation does not exist at present.

The proposed photogrammetric Close Range Benchmark DataSet, named CRBeDaSet,
was thus designed to investigate the radiometric quality and geometric accuracy of a
photogrammetric 3D reconstruction of a medium-size spatial object in close range, using
dense point clouds generated from terrestrial multi-images.

The main contributions of this paper are as follows:

• We provide an extensive review of the state-of-the-art datasets for 3D object reconstruc-
tion, ranging from datasets dedicated to algorithm evaluation to recently published
special case studies.

• We construct a new CRBeDaSet benchmark dataset, which consists of the geodetic,
photogrammetric, and terrestrial laser scanning real measurement data; the CRBeDaSet
(see Data Availability Statement) is publicly available and advanced in terms of high
accuracy of measurement of data and adjustment, with a higher possibility of its use
in evaluation than the currently existing and shared datasets.

• We evaluate some applications for 3D modeling, reconstruction, and mapping on the
CRBeDaSet under consistent experimental conditions for showing the assets of this
dataset in software evaluation; this provides the literature with extensive baseline
results for future research on digital processing in close range tasks.

• We provide a comprehensive analysis of image matching of outdoor objects (4 eleva-
tions) with weak texture using multiple detectors and descriptors.

• We prepared the real TLS point cloud, which is denoized, filtered, and classified using
the level of detail 3 (LoD3) standard. It represents the extension of publicly available
datasets (e.g., Semantic3D) used for machine and deep learning purposes related to
point cloud classification and segmentation.

• Furthermore, because of extended metadata about the acquired point cloud, the
provided data may be used in TLS registration algorithms evaluations.
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2. Existing Datasets and Benchmarks

Vision Middlebury (vision.middlebury.edu, accessed on 30 November 2022) [33]
should be acknowledged at the beginning of the publicly available data set analyses for
algorithms and application evaluation. These data allowed researchers to perform the
first attempts to evaluate MVS on equal grounds. The data sets are based on two small
objects, each below 0.15 m in height. Both are covered by more than 300 low-resolution
(640 × 480 pixels) images acquired by a controlled robotic arm. The interior and exterior
orientations are included. The ground truth models were performed using a laser stripe
scanner with a resolution of 0.25 mm. The relative accuracy, which is understood as the
quotient of measurement error and the object diameter, obtained in the laboratory test was
ca. 1/1000 for the temple object and ca. 1/600 for the dino object. The main problems with
these data were unrealistic scenes and low image geometric resolution.

To eliminate these shortages, the CVLAB published three samples of building
façades [35,43,44]. The photos were taken outside the lab using Canon D60 digital cam-
era with a higher resolution (3072 × 2028 pixels) than Middlebury. The images were
supplemented by TLS (Zoller + Fröhlich IMAGER 5003 scanner) colored point cloud as
ground truth data. This benchmark supported the development and validation of advanced
reconstruction algorithms [37,38], but the small number of 3D scenes and variability of
endeavors limit their scope of analysis and the conclusions that can be investigated from
them. Furthermore, these datasets do not provide information that would allow calculating
the relative adjustment accuracy.

To support further development within the MVS method, Aanæs et al. [45] cover a
data set with a wide range of indoor and outdoor scene types. All of the objects were
captured with a tabletop and under controlled lighting. Eighty different objects with se-
quences of different luminous conditions, acquired from 119 positions, have been delivered
with ground truth camera poses (controlled by the precise robotic arm) and TLS ground
truth. The obtained relative accuracy was ca. 1/3300. Due to the limitations in the total
number of objects, objects per scene, and the total number of scenes, the DTU Robot Image
Data Sets were improved two times in 2014 [30] and 2016 [34]. Because the datasets are
laboratory prepared, they provide mostly geometrically-ideal objects with a large number
of simple details and are captured with still low resolution (1200 × 1600 pixels) and relative
accuracy ca. 1/2000. In terms of application for 3D reconstruction evaluation, datasets
are insufficient.

In case of accuracy assessment, the photogrammetric products obtained using remotely
piloted aircraft systems (RPAS) should be noted. Most of the current studies related to
this topic are realized in incomparable technical project conditions and using various
statistical parameters for results evaluation [46,47] relating to the particular stages of the
processing [48–51]. The most commonly used statistical information accuracy was the
RMSE on ground control and check points (GCPs, ChPs), which characterized the BBA
results. Mostafa, in his research [52], states that changing the side overlap in the image
block from q% = 80% to q% = 40% resulted in the same accuracy within the measurement
noise. Furthermore, he indicated that ground object positioning accuracy is about 2 ÷ 3
ground sample distance (GSD) value, and height accuracy is about 4 ÷ 5 GSD value [52].
Oniga et al. [53] compared results with TLS data. Wierzbicki and Nienaltowski [51] created
the triangulated irregular network (TIN) model based on points measured using the Global
Navigation Satellite System (GNSS) and real-time kinematic (RTK) technique, and they
compared the results by looking for height differences.

For describing the accuracy of orthomosaics, the BBA results [49,54] are used mainly
by researchers. Hung et al. [55] and James et al. [48] also analyzed the directions and
length of deviation vectors for GCPs and ChPs from the BBA. In their study, Gabara and
Sawicki [56] present the procedure for the complex accuracy assessment, which includes all
computation stages (feature descriptor extraction and matching, the bundle block adjust-
ment with camera self-calibration supported by SfM, densification using MVS, meshing,
and orthorectification).



Remote Sens. 2023, 15, 1116 4 of 36

Traditionally, photogrammetry has always focused on the evaluation of the accuracy
and precision of the mapping. For this purpose, researchers created test fields, which allow
comparing different measurement techniques. One of them is the test field created by the
Institute for Photogrammetry of the University of Stuttgart [57,58] under the auspices of
the German Society of Photogrammetry, Remote Sensing, and Geoinformation (DGPF). The
objective of this test was to evaluate the sensor’s technical attributes and their relevance to
the specific applications and investigate the software processing chain in the preparation
process of photogrammetric products. Depending on the unmanned aerial vehicle (UAV)
imagery target processing type and purpose, different types and configurations of test
fields have been used to study.

A thorough calibration of the camera system mounted onboard RPAS platforms is
significant and is performed most often in the laboratory using a small volumetric test
field and planar pattern [59] or the 3D test field [60], which consists of spatially distributed,
coded, and non-coded targets [61]. In the data collection or mapping case, the test fields
are mainly characterized by a small area and homogeneous surface [62] or differentiated
topographical terrain [61,63] with evenly located GCPs and ChPs. Due to the limited
scope of field surveys, the used approaches usually had a small number of GCPs and
ChPs [46,63,64]. The test fields with an area of several square kilometers and varying
terrain elevation and topography, as well as dense GCPs network requiring a large number
of surveys, are, in practice, very rarely realized. A phenomenon is the test area presented
in the work of Haala et al. [65].

Inspired by these activities, the International Society for Photogrammetry and Remote
Sensing (ISPRS), in collaboration with European Spatial Data Research (EuroSDR), provides
cofounding for developing and managing a new image dataset, which was presented
by Nex et al. [66] at the ISPRS conference. The dataset is in three large test areas. It
contains terrestrial and UAV imagery, nadir and oblique aerial photos, TLS, airborne laser
scanning (ALS), and ground control network information. Since the aim of the datasets
was not to compare the software or algorithms but to assess the accuracy and reliability
of different measuring methods, the number of check points and theoretical precision of
bundle adjustment does not allow for 3D reconstruction with high accuracy in the “mm”
range. Additionally, the clear and unambiguously recognizable structure is not difficult
to match by software dedicated to 3D reconstruction. The dataset was used and extended
by Haala and Cavegn [67] with an additional building scenario. They concluded that it is
possible to derive point clouds at accuracy and resolution corresponding to the GSD of the
original images (GSD ∼= 0.05 m).

Furthermore, for deep learning purposes (which is one of the main topics in case
of accuracy), the main issue was also related to the specificity of high-resolution aerial
images and the size of photographed objects, thus limiting data augmentation. The usage
of image resizing, reshaping, blurring, and increasing noise is not allowed. Moreover,
Mittal et al. [68] have also pointed out the high number of occlusions, large-scale variations,
and class imbalance.

At the Conference on Computer Vision and Pattern Recognition in 2017, Schöps et al. [32]
released the ETH3D Benchmark Dataset (www.eth3d.net, accessed on 27 July 2022). It
contains high and low-resolution training data (13 real indoor and outdoor scenes), test
data (12 real indoor and outdoor scenes) taken by a digital single-lens reflex (DSLR)
camera, and ground truth information acquired with TLS. The ETH3D covers general
solutions that prevent overfitting of algorithms and give the first benchmark for hand-held
MVS with consumer-grade cameras, but does not provide a ground control network for
analysis of adjustment accuracy. At the same time as ETH3D, Knapitsch et al. [69] were
working with the Tanks and Temples Dataset (www.tanksandtemples.org, accessed on
10 July 2022) and evaluating 15 reconstruction pipelines. For this purpose, the authors
provide training (7 scenarios) and testing data (intermediate—8 scenarios, advanced—
6 scenarios) of sculptures, large vehicles, house-scale buildings with outside-looking-in
camera trajectories, large indoor scenes imaged from within and large outdoor scenes with

www.eth3d.net
www.tanksandtemples.org
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complex geometric layouts, and camera trajectories. The included scenes are intended
to stimulate the development of new approaches to 3D reconstruction and robust broad-
competence systems.

In terms of surveying and photogrammetry, the dataset’s lack of accuracy, adjustment,
and reliable information is evident. Besides, there is also a lack of datasets for machine
and deep learning purposes. The researchers tried to get around this issue by using
Google Earth images to feed artificial neural networks (ANN). However, because of the
GSD and previous preprocessing stages of images, they cannot replace authentic images.
Due to this, Gabara and Sawicki [70] have recently prepared the test field Kortowo. The
test area of about 2 square km was designed for an accuracy assessment on low-altitude-
based photogrammetric data collection, with particular emphasis on evaluating respective
stages of digital image processing and computation. Additionally, in 2021, the Institute
for Photogrammetry (IfP) research team from Stuttgart University, in cooperation with
international scientists [71], published the first stage of a new benchmark (Hessigheim
3D—H3D) which is designed for 3D data analysis and evaluation, and ranks existing and
emerging approaches for semantic segmentation. It provides a fully annotated dataset of a
part of Hessigheim village in Germany acquired using an unmanned aerial system (UAS).
The online repository contains low-altitude oblique images acquired simultaneously with
LiDAR data and nadir images acquired with a couple-hour time shift.

There are more datasets focused on machine learning and deep learning purposes.
However, in these cases, the dataset accuracy is not described, and their main aim is to
provide the annotated, classified point clouds and meshes to scientists. The most known
and used dataset is Semantic3D, proposed by Hackel et al. [72]. The dataset contains over a
billion points in 15 training and 15 testing sets, where one set is a real single scan station.
The point clouds are classified using eight general classes. The main issues related to this
kind of data are deficiency in denoizing (e.g., cars in a move) multiple single scans from
different locations, and the representation of the objects is jagged. It is related to obstacles
and moving objects. Furthermore, the density of points depends on the distance between
the object and the sensor.

The Paris-Lille-3D dataset [73] is acquired using mobile laser scanning, and it is
focused on urban 3D point clouds. It contains three sections (Lille 1, Lille 2, Paris) with
a total of about 143.1 million points and 2479 objects, divided into 50 (manualy labeled).
Some classes are very similar, e.g., parked car and stopped car, scooter and motorbike,
and some classes present the same object but in motion, e.g., mobile car and stopped car.
Some of the classes are underrepresented (they occur only once) or have a low number of
representations (fewer than 10). It should be pointed out that there is a description of how
point clouds were processed, but the preprocessing results (accuracies) are not available.

Some datasets were performed using UAV imagery. The Campus3D dataset provided
by Li et al. [74] should be mentioned, as it is focused on the outdoor scene’s hierarchical
understanding. The dataset contains a dense classified point cloud of 1.58 km2 localized
over the National University of Singapore campus. The 937.1 million points are divided
into 14 classes using hierarchical and instance-based annotations. However, the accuracies
of the image processing are also not available. A similar approach in data acquisition
is presented in the SensatUrban Dataset [75] where point clouds from three UK cities
(about 7.6 square km of city landscapes) were computed using UAV imagery. The part of
the dataset (4.4 square km, related to Birmingham and Cambridge cities) was manually
labeled using 13 semantic classes. The labeled point clouds contain about 0.570 billion
(Birmingham) and 2.279 billion (Cambridge) 3D points. The authors concluded that the BBA
was made using direct georeferencing by RTK GNSS measurements, and ground control
points validated the resulting coordinates acquired by surveyors using high-precision
GNSS equipment. As the dataset aims to prepare possibilities of urban-scale 3D semantic
segmentation, the accuracy of the photogrammetric processing of the data is not available.

Recently, Gao et al. [76] developed a benchmark dataset of semantic urban meshes.
The 3D reconstruction of about 12 square km based on oblique aerial images with a GSD
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of about 7.5 cm was processed using ContextCapture commercial off-the-shelf (COTS)
software. The presented dataset contains over 19 million triangle faces labeled into seven
classes. While the main description of the dataset is focused on semantic labeling purposes
and automatic classification accuracy, the information about BBA is not presented.

The issue related to large-scale heritage point cloud semantic segmentation is covered
by the ArCH benchmark dataset prepared by Matrone et al. [77]. In the case of the detail
representation, it is the most extensive and deep semantic segmentation described as LoD
3/4 in CityGML, which means an indoor and outdoor representation of cultural heritage
buildings. The data were acquired using an integration of TLS and terrestrial and UAV
imagery. They were labeled using historic building information modeling (HBIM) class
topology (10 classes related to the historic buildings). Due to further processing by users,
the ArCH benchmark dataset was subsampled (1 ÷ 1.5 cm distance between points), and
shared data contains 103 million points (15 objects) for training and validation purposes and
32 million points (2 objects) for testing purposes. However, the data acquisition accuracy
also is not mentioned in the study.

Special case study datasets for evaluating simultaneous localization and mapping
(SLAM) systems, road detecting, and remote sensing image retrieval have also been devel-
oped. The accuracy estimation in SLAM is realized by two approaches: open-loop tests,
which check the system’s performance in isolation, and closed-loop tests, used for the
evaluation of the overall performance of the system. Both approaches are complementary
for evaluating the accuracy of SLAM systems. Zhao et al. [78] compared both SLAM tests
considering their accuracy, robustness, and computational efficiency. The benchmarking
of different types of SLAM algorithms [79] using the measurements of the error of the
corrected trajectory was proposed by Kümmerle et al. [80]. The datasets with the most
significant influence on research works are TUM RGB-D SLAM [36], KITTI-ROAD [31],
and PatternNet [39]. The freeware applications, commercial, and open-source multi-view
software solutions were compared and evaluated for different aspects, but only for small
artifacts and objects [6,26,33,81–84].

In the case of medium and large sized objects, the efficiency of the matching tech-
niques that detect and conform to structural regularities while simultaneously recover-
ing 3D geometry was researched by Ceylan et al. [85] and Grussenmeyer and Khalil [3].
The accuracy and effectiveness of the 3D reconstruction of large objects using the pho-
togrammetric approach were realized and evaluated using TLS data by Gagliolo et al. [28],
Koutsoudis et al. [86], and Strecha et al. [87]. The application purposes for monitoring
in the context of geomorphological research were described using UAV by Gabara and
Sawicki [88] and Jaud et al. [4].

The evaluation of the accuracy of multifaceted 3D building reconstruction with a focus
on the level of detail and error sources that occurred during the modeling process was
described using different validation datasets in publication [89].

Depending on the authors’ aim, datasets focus on different sensors, a larger number
of evaluated applications, a combination of different measurement techniques, and differ-
ent reconstruction pipelines. In some dedicated scenarios, however, authors have drawn
attention to the accuracy [28,56,90] and inconvenient conditions [27]. All the mentioned
benchmarks showed the strengths and weaknesses of applications depending on the sce-
nario and tools used for measurements. Due to this research, the computation pipelines
implemented in photogrammetric software have been constantly upgraded. Simultane-
ously, the knowledge in a range of photogrammetry of non-expert users is increasing.

In the reviewed benchmarks, there are certainly deficits in terms of publicly available
datasets and information about the theoretical precision of object coordinates and TLS
station merging errors. The ISPRS Benchmark Dataset [66], research of Gagliolo et al. [28],
Hessigheim 3D [71], and Kortowo test area [70] are perhaps closest to our CRBeDaSet
in motivation: they focus on high-quality geometric data acquired in real conditions,
and in the case of scale representation (LoD), the ArCH [77] dataset is the closest to the
presented dataset.
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3. CRBeDaSet Data Acquisition

For the study of digital processing and 3D reconstruction process on the test object
CRBeDaSet, the following assumptions were consciously and deliberately used:

• Only one sensor, a non-metric medium-resolution DSLR camera, is used for photo
block acquisition.

• Similar geometric conditions and external lighting for photogrammetric imagery
are preferred.

• The minimum necessary number of digital images to perform a complete successful
image matching under challenging conditions (lack of redundancy photos).

• The localization of the optimal number of control and check points regarding the
texture and spatial object shape was planned.

• However, UAV and strong elevated camera station imagery were not used to check
the performance of detectors and descriptors on inclined structural roof planes.

3.1. Test Object and Digital Image Acquisition

The test object is a medium size (16 m × 10 m × 6 m) building (Figure 1) in Olsztyn
(B = 53.755434, L = 20.466847), Kortowo district. Diverse textures characterize the surface
of elevations. The elevations of the building have large surfaces with a microporous
texture. 32 artificial signalized (targeted) control points and additionally defined 18 natural
control points are uniformly located on the building elevations (see CRBeDaSet_Signalized
Points.pdf file of the CRBeDaSet online repository).
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Figure 1. The test object in the defined coordinate system.

In all possible combinations, the multiple measurements of the geodetic and photogram-
metric network points were performed using Leica TS30 total station (angle horizontal
Hz/vertical V measurement accuracy 0.5′′, pinpoint EDM precise accuracy 0.6 mm + 1 ppm
to a prism) in the global object coordinate system. The spatial geodetic control network
of 12 stabilized ground points by iterative multi-observation parametric adjustment was
carried out. In practice, the task was realized with the model of observation equations:

Ki + Vi = AiP − Zi (1)
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where K is the direction to the unknown point, V is the residual, Az is the azimuth, and Z is
the station orientation constant. Equation (1) is linearized by Taylor series expansion:

Ki + Vi = (AziPo − Zi) +

(
∂AziP
∂XP

)
·∆XP +

(
∂AziP
∂YP

)
·∆YP (2)

and bearing coefficients:

ai =
∂AziP
∂XP

·ρ =
YP −Yi

d2
iP
·ρ, bi =

∂AziP
∂YP

·ρ =
XP − Xi

d2
iP
·ρ, ρ = 636620cc; i = (1, 2, 3, n)

Variation function ϕ based on Equation (2) is derived using a direct approach and is
obtained by the least squares criterion: vT Pv = min, and is given as:

ϕ = XT AT PAX + XT AT PL + LT PAX + LT PL = min (3)

where (P) is the weight matrix
(

pi =
n

n−1
)
, A is the matrix of the partial derivatives of the

parametric equations, L is the misclosure vector, X—unknown. The resulting equation after
finding the partial derivatives of the variation function is:

∂ϕ

∂X
= 2XT AT PA + 2LT PA = 0 (4)

Using basic matrix algebra, the least squares normal equation system is given:(
AT PA

)
X + AT PL = 0 (5)

The solution from the normal equation system is solved as follows:

X = −
(

AT PA
)−1

AT PL (6)

The solution of the elevation network is realized by the parametric model f
(

x̂, l̂
)
= 0

where
(

l̂
)

are the adjusted observations
[
HI, HT, sij, zij

]
and (x̂) are the unknown

parameters
[
dhij

]
. The parametric equations are formulated as follows:

dĥij = HÎ − HT̂ + ŝijcos(ẑij) (7)

where HI is the measured distance between a horizontal line of sight of the total station
instrument and point i, HT is the distance between the target and point j, sij is the slope
distance between points ij, zij is the measured zenith angle, and dĥij is the height difference
between points ij.

The design matrix A is given as partial derivatives of parametric equations A = ∂l
∂x .

The formed misclosure vector L was realized by substituting the approximate values of
point elevation and original observations l:

L = f
(

x0
)
− l (8)

The weight matrix (P) of elevation differences is given:

P =


p11 0 · · · 0
0 p22 · · · 0
· · · · · · · · · · · ·
0 0 · · · pnm

 (9)
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where pii =
1
s2

ii
( f or i = 1, 2, 3, . . . , n) and s is the standard deviation. The solution of vector

X is described in Equation (6). The parameters used and obtained during adjustment are
presented in Table 1.

Table 1. Control network adjustment parameters.

Type of Adjustment Parameters Value

2D (X,Y) adjustment

No. of points (np) 12
No. of reference points (nr) 1
No. of computed points (nc) 11

No. of bearing observations (after averaging)
(nb) 73

No. of reference Azimuths (nAz) 1
No. of distances (after averaging) (nd) 73

No. of unknowns (n) 22
Sum of observation (m) 135
Redundancy (r = m − n) 113

Average point position error for Mo = 1.0000

amp = ∑ mp
n , where mp =

√
m2

X + m2
Y

0.0008 m

Max point position error mp max 0.0009 m

1D (H) adjustment

No. of points (np) 12
No. of reference points (nr) 1
No. of computed points (nc) 11

No. of unknows (n) 11
Sum of observation (m) 73
Redundancy (r = m − n) 62

Average elevation error for Mo = 1.0000 (mH) 0.0009 m
Max elevation error mp max 0.0010 m

3D (XYH) Average 3D point position error 0.0012 m

The coordinates of the photogrammetric control network (targets) were computed
using the multiple spatial angular–linear intersections (see Figure 2).
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For image acquisition, the DSLR Nikon D5100 camera, equipped with the CMOS
sensor (23.6 × 15.6 mm size, resolution 4928 × 3264, the pixel size p’xy = 4.78 µm) and the
lens with optical stabilization (the zoom lens f = 18 ÷ 55 mm), focused (focal f = 18 mm) on
the imaging distance approx. YI = 10.0 m (GSD ∼= 3 mm) was used. A total of 104 terrestrial,
mainly convergent photos were taken from elevated camera standpoints. The maximum
enhancement of the base/distance ratio υ and the longitudinal overlap enhanced the
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geometry of the photos block. Depending on the local imaging scale, the diameter of
targeted control and check points on the images varied between 5÷15 pixels.

In the datasets adopted for digital processing and 3D reconstruction, only 36 images
(see CRBeDaSet_Images.pdf file of the CRBeDaSet online repository) were included, the
best ones in geometric and radiometric quality aspects from a photogrammetric point of
view. The block of 28 photos for analytical bundle adjustment was applied.

3.2. Bundle Adjustment and Camera Calibration

In order to determine the additional check points for the study of the geometric accu-
racy of the 3D models and to create the benchmark data set, the digital image measurements
and combined bundle block adjustment with simultaneous camera calibration in the Pictran
software package were performed. The simultaneous on-the-job calibration method most
accurately corresponds to the real conditions of image acquisition and provides the optimal
functional model of the solution by bundle method.

The initial camera calibration model was included. It contains basic elements of the
interior orientation cK, x’0, y’0, and additional parameters modeling the systematic lens
errors: radial symmetric distortion A1 and A2, tangential (decentering) distortion B1 and
B2, and affinity C1 and shear error C2 of the digital sensor array (Table 2).

Table 2. Calibration parameters of the DSLR Nikon D5100 camera.

Calibration Parameters Value St. Deviation

cK [mm] 18.2321 0.0022
x’0 [mm] 0.0969 0.0025
y’0 [mm] −0.1089 0.0058

A1 −0.519037 × 10−4 0.2133 × 10−5

A2 0.106682 × 10−6 0.1406 × 10−7

B1 −0.424955 × 10−4 0.5631 × 10−5

C1 0.116176 × 10−2 0.6315 × 10−4

r’0 [mm] 0.943000 × 10 –

The control points were applied to the adjustment as observations with errors (weighted).
The a priori estimated accuracy of signalized points was SXYZ = 1 mm, whereas natural
points of SXYZ = 3 mm. The elements of spatial orientation of all photos were unavailable
(not observed) and were not added as estimated observations to the adjustment. The
bundle block adjustment conditions were: number of observations—1995 and number of
unknowns—1039. In the automatic elimination of errors, the parameters were: normalized
residual termination—0.4000 × 10, and the maximum number of data-snooping—5.

The spatial coordinates of the 24 photogrammetrically-computed new points (photogram-
metric new check points) were obtained with mean standard deviations of SX = 0.84 mm,
SY = 0.83 mm, and SZ = 0.61 mm, respectively. The configuration of convergent photos has
ensured the homogeneous accuracy of the calculated point coordinates. The results of the
optimal variant of the adjustment were used for further digital processing and analyses.

3.3. Terrestrial Laser Scanning

For the acquisition of ground truth information and accuracy comparison purposes,
the test object CRBeDaSet was scanned using the Leica ScanStation C10. It is a compact,
pulsed, dual-axis compensated, high-speed laser scanner. The accuracy parameters of a
single measurement at 1 ÷ 50 m range (one sigma) are: position—6 mm, distance—4 mm,
angle Hz/V—12′′, modeled surface precision/noise—2 m, and target acquisition—2 mm
standard deviation.

The four scan stations were located in the distance YS ≈ 10.0 m from each elevation.
A single scan was performed in the local coordinates system with a maximal resolution
of 1 mm (Figure 3 shows the density of the TLS point cloud). For scan fusion, 8 HDS scan
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targets were applied. Figure 4a shows the scanned test object CRBeDaSet with the position
of 4 scan stations and 8 HDS scan targets.
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The point clouds merging fusion and data processing were carried out in the Leica
Cyclone™ SCAN software. The global filtered point cloud for the test object CRBeDaSet
consisted of ca. 250 million points (17.2 GB saved in *.pts file). The Leica ScanStation C10
is equipped with an auto-adjusting, integrated digital camera with a zoom video. In the
project, each point was matched with the pixel color of a digital image. The visualization of
the point cloud is presented in Figure 4a,b.

Then, the point cloud was manually denoised. All points which were acquired on
humans, cars, and other objects in the move were removed. Additionally, points that
represent the interior of the building (measured through the holes, windows, or glass) were
removed. After that, to change the density of the points, the point cloud was filtered using
the minimum space between points. The raw space between points (0.0001 m) was changed
to 0.003 m, as it is enough to recognize even small objects, and the point cloud is not too
large for machine and deep learning purposes. In the last step, the point cloud of the main
object (building) and its surroundings were manually classified using the LoD3 standard,
and 18 classes were specified. Semantic segmentation was performed in the pointly.ai
web app. Due to this and the numbers of the classes being related to the ASPRS *.las
format (http://www.asprs.org/wp-content/uploads/2019/03/LAS_1_4_r14.pdf, accessed

http://www.asprs.org/wp-content/uploads/2019/03/LAS_1_4_r14.pdf
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on 22 April 2022) which also contains classes reserved for ASPRS definitions, the respective
classes were used in this study:

• 0—unclassified (this class is empty, but in many machines and deep learning models,
it is defined as not used),

• 2—ground (in this class, the bare ground is included),
• 3—low vegetation (this class contains grass and other vegetation which was mowed),
• 4—medium vegetation (this class is related to the bushes, shrubs, and plants which

are not trees),
• 5—high vegetation (this class contains the whole trees: trunks, branches, and leaves)
• 12—paved terrains (because of the same material, which was used to prepare the

sidewalks, roads, and parking lots, they were merged into one class),
• 19—building façades (the exterior walls of buildings—from ground to the roof, ex-

cluding windows, sills, doors, vents, drainpipes, and technical infrastructure localized
on building walls),

• 20—tiles (building roofs and elements above roofs were divided into three classes. The
tile class shows the material of the external cover (roofing),

• 21—roof construction (this is the second class of roof elements, which contains all roof
parts which cannot be bracketed together with tiles, e.g., wooden and steel eaves, steel
construction elements),

• 22—windows (the points which show the plane of the windows (window frames) are
included; both windowpane and glass bricks planes are contained in this class),

• 23—vehicles (parked vehicles are included in this class; the points which belong to
vehicles in the move were filtered out before classification),

• 24—drainpipe (this class contains all elements of rain infrastructure localized on
the buildings, including, e.g., drainpipes, rain gutters, downspouts, branches, and
socket bends),

• 25—sill (this class contains all points registered on window sills, including different
materials from which they were designed, e.g., steel, PVC, aluminum),

• 26—doors and vents (door and vents were accumulated into one class because the
main test object is an electric room building where some parts of doors are very similar
or even identical to steel vents, e.g., see Figure 1),

• 27—urban furniture (in this class, all points registered on infrastructure signs, e.g.,
safety, construction, and property signs; fence; snow fence for roof tiles; sidewalk
barriers, entrance gate, and carpet hanger are included),

• 28—technical infrastructure (this class contains all technical infrastructure that belongs
to the buildings and their environments, including street and external building lamps,
electric boxes, manholes, and other technical items),

• 29—surveying equipment (all points registered on surveying equipment like TLS
targets, surveying poles, and bipods),

• 30—chimney (this class contains chimney and chimney pot).

Due to the high number of points and the web app user interaction processing possi-
bilities, the semantic segmentation process was verified and corrected in Arena4D software
(ver. 9.5.0.13890). The final product has ca. 62 million points classified into 18 classes and is
presented in Figure 5. The point distribution in 18 classes is presented in Figure 6. Due to
the special case study of a low-rise building, class 20 (tiles) in the typical city scene might
be overrepresented. It is recommended that the proposed data should be adapted to the
semantic segmentation scenario by class weighting.
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of points are annotated as class 30 due to only having one chimney. Additionally, note that authors
do not divide the dataset into train and test parts. Because of that, users may decide which objects are
needed (delete not necessary objects) for the research and then cut parts of the object for validation
and test purposes.

4. CRBeDaSet—Test and Analysis

The presented experiment scenario was designed to prepare the assessment of quality
and geometric accuracy of a medium-size building 3D reconstruction based on photogram-
metric, multi-image view, uncalibrated imagery. The second aspect of this dataset was
to allow researchers to objectively compare the accuracy, functionality, and reliability of
photogrammetric applications for 3D object reconstruction. Our test and analysis were
divided into three stages:
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• The tests of the CRBeDaSet in applications dedicated to 3D object modeling
and reconstruction.

• The accuracy analysis of the image-based and TLS point clouds.
• The evaluation of detectors and descriptors on the object with a homogenous structure.

4.1. Dataset Processing

For verification of the dataset, we used one open-source application: inteGRAted
PHOtogrammetric Suite (GRAPHOS, ver. 1.0.35) and four well-known and very popular
commercial suites: ContextCapture (ver. 10.19.00.122), Metashape (ver. 1.8.4.14856 and
PhotoScan ver. 1.4.5.7354), Pix4Dmapper (ver. 4.7.5), and RealityCapture (ver. 1.2.1.116295).
Due to changes in the computation algorithms in Agisoft software (ver. 1.5.0), both versions
(Metashape and PhotoScan) were included in the tests. The workflow for this stage of
analysis is presented in Figure 7.
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Figure 7. The workflow for CRBeDaSet tests in different applications dedicated to 3D object modeling
and reconstruction.

The digital processing in the tested software was performed using preprepared batch
files to prepare a similar computation environment. These files contain image pixel coordi-
nates of all points measured automatically in the external Pictran DE software (ver. 4.3)
and photogrammetric control network (artificially signalized and natural points) ground
coordinates. All computations were performed with minimal user participation with sim-
ilar and possible-to-use computing parameters. The results of three computation stages
(image-matching, densification, and meshing) were compared using visualizations and
descriptions (in the form of tables) to show computation differences. The results of the
image matching stage and BBA of CRBeDaSet processing in five applications dedicated
to photogrammetric purposes are presented in Figure 8. While in the case of ContextCap-
ture and PhotoScan, most of the tie points are localized on the main object, in the case of
Pix4DMapper and RealityCapture, many tie points are background points (visible noise)
containing grass, shrubs, trees, cars, and steel-glass elevation of the second building, which
is also visible on GRAPHOS and Metashape results.
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Figure 9 shows the results of point cloud densification (based on the ContextCapture
example). The first image shows the general look of the reconstructed region. The next
images present detailed views on roof and façade geometry and point distribution.

The comparison of all software results is presented in Figure A1 (Appendix A). The
fulfillment of the points in the reconstructed region (presented in row 1) is different,
from dense point clouds with visible holes (GRAPHOS case) to fully covered objects
(ContextCapture case). Pix4DMapper results look unusual—all regions without visible
texture were not reconstructed in the densification step using high resolution (it is also
possible to obtain these regions by using the user’s dedicated parameters). The roof
reconstruction shows how the application can handle the sky registered on images and
how such points are filtered in the final product. Rows 3 and 4 show how applications
reconstruct places where the intersection of two planes occurs if the corners are rounded
or present a proper 90-degree shape and how much noise is generated. Row 5 deals with
the connection between different elevation objects and shows how not fully visible objects
are reconstructed (based on snow fences for roof tiles). The last row (6) presents what the
geometry of reconstructed walls is (including places without visible texture).

Figure 10 shows the results of mesh model generation (based on the ContextCapture
example). The detailed comparison of the results from used application is presented in
Figure A2 (Appendix A). Due to the fact that GRAPHOS does not have a built-in feature to
generate mesh geometry, it is not included in the collation. All generated mesh 3D models
filled up holes presented on dense point clouds. In the case of Metashape, PhotoScan, and
Pix4DMapper, some visible parts of the sky on the roof which were not filtered occurred.
On all models, the clinker tiles’ shape and wall texture are visible; however, in the case
of Metashape and PhotoScan, the microporous geometry of the mesh model is visible.
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The place where roof and wall planes meet is generating issues in every application,
from a slight rounding of the corner (ContextCapture, RealityCapture) through some
noise production (PhotoScan) and generation of extrapolated geometry (Metashape and
Pix4DMapper). The Pix4DMapper fulfilled holes in walls without the visible texture
of the mesh model; however, because of the variation of Poisson surface reconstruction
algorithm [91], they are not straight, but rounded. Avoiding such issues (using planar
constraints) is possible, but it requires the user’s manual interference. The geometry of
walls show that the ContextCapture issue related to the wrong reconstruction of bigger
parts of the wall without visible texture (extrapolating objects—cleating craters on walls
in the direction to inside the building) is not filtered out during mesh model computation.
Due to the good texture of the mesh model, the geometry imperfections appear to be hidden
in other visual presentations.
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reconstruction; (c) place where clinker tiles contact wall without visible texture; (d) vertical section of
elevation 1; (e) closer look at the corner of the building; (f) top view on the building without a roof.

The summary of the generated products is presented in Table 3. As the computations
were performed on two workstations (laptop MSI Titan GT77 12UHS and desktop described
in [56]), the computation time is not compared.

Table 3. Characteristics of generated products in used software.

Software ContextCapture GRAPHOS Metashape PhotoScan Pix4DMapper RealityCapture

No. of tie points 1928 122,942 38,230 2175 92,228 43,813
No. of points [mil] 188.241 18.953 68.512 50.242 25.920 12.265

No. of faces [K] 789.737 - 1 13,702.453 10,048.300 5000.000 24,697.804
Area of interest [m2] 386

No. of points in interest area [mil] 121.621 18.949 57.615 47.803 24.505 12.131
Average point density [K] 315.079 49.091 149.261 123.842 63.484 31.428

1 GRAPHOS software does not have 3D mesh model generation functionality.
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Figure 10. ContextCapture 3D mesh model: (a) general look on generated mesh 3D model; (b) roof
geometry reconstruction; (c) façade with clinker tiles and wall without visible texture; (d) corners of
the building roof and wall without visible texture; (e) vertical section of elevation 1; (f) top view on
the building without a roof.

4.2. Accuracy Analysis of CRBeDaSet Digital Processing

The analytical study on the geometric accuracy of the generated image-based point
clouds includes the analysis of deviations (coordinates differences) between the control
point coordinates of the photogrammetric network, measured directly by means of the
Leica TS30 total station (the input dataset) and the results (the final software log files) of
digital processing and bundle adjustment using the tested software. The geometric analysis
workflow is presented in Figure 11.

The summary of bundle block adjustment computed in tested software is performed
by the comparison of the RMS values on GCPs (presented in Table 4) and ChPs (presented
in Table 5), considering targeted and natural points separately and together.

The tested COTS software allowed point matching on all control points with the
subpixel accuracy—the mean standard deviation sx’y’ < 0.50 pixel was obtained. The
average root mean square errors on control points RMSE (XYZ) GCPs = 3 mm and check
points RMSE (XYZ) ChPs < 3 mm were determined, which is equivalent to a relative
accuracy of ca. 1/6600 in object space. Considering the applied functional model of digital
processing, the obtained results can be accepted as sufficient. In the case of the GRAPHOS
suite, the obtained results were higher. It is related to the computation chain because the
coordinates of GCPs and ChPs are used in BBA after matching and camera calibration
procedures to scale the model. While in the COTS software it is possible to compute the
whole model based on provided GCPs and ChPs, in the GRAPHOS suite, their influence
on the model is less, and correct automatic tie points must be computed.
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Figure 11. The workflow for image-based and TLS point clouds accuracy analysis.

Table 4. The RMSE values on GCPs obtained in tested software after BBA.

Software ContextCapture GRAPHOS Metashape PhotoScan Pix4DMapper RealityCapture

RMSE (X) sGCPs 1 1.4 4.6 1.2 1.2 1.2 0.9
RMSE (Y) sGCPs 1 1.7 8.1 1.4 1.4 1.9 0.9
RMSE (Z) sGCPs 1 1.1 4.3 0.9 1.0 1.6 0.3
RMSE (X) nGCPs 1 5.4 2.7 5.4 5.2 7.0 1.8
RMSE (Y) nGCPs 1 5.2 6.0 5.0 4.7 4.6 1.0
RMSE (Z) nGCPs 1 8.0 13.4 4.4 4.2 9.7 0.7
RMSE (X) GCPs 1 3.3 4.0 3.3 3.2 4.1 1.3
RMSE (Y) GCPs 1 3.3 7.5 3.1 2.9 3.1 0.9
RMSE (Z) GCPs 1 4.7 8.5 2.7 2.6 5.8 0.5

RMSE (XYZ) sGCPs 1 1.4 5.9 1.2 1.2 1.6 0.7
RMSE (XYZ) nGCPs 1 6.3 8.6 5.0 4.7 7.4 1.3
RMSE (XYZ) GCPs 1 3.8 6.9 3.0 2.9 4.5 1.0

1 RMSE values in mm.

Table 5. The ChPs RMS values obtained in tested software after BBA.

Software ContextCapture GRAPHOS Metashape PhotoScan Pix4DMapper RealityCapture

RMSE (X) sChPs 1 1.9 3.2 1.0 1.1 1.6 2.7
RMSE (Y) sChPs 1 1.8 3.8 1.0 0.8 2.2 2.8
RMSE (Z) sChPs 1 1.1 14.1 0.8 1.0 2.3 1.6
RMSE (X) nChPs 1 1.9 4.9 1.5 1.6 5.4 2.8
RMSE (Y) nChPs 1 1.8 4.5 1.2 1.2 5.5 3.0
RMSE (Z) nChPs 1 1.8 4.1 1.2 1.1 3.2 1.8
RMSE (X) ChPs 1 1.9 4.5 1.4 1.5 4.5 2.8
RMSE (Y) ChPs 1 1.8 4.3 1.1 1.1 4.7 3.0
RMSE (Z) ChPs 1 1.6 8.5 1.0 1.1 2.9 1.7

RMSE (XYZ) sChPs 1 1.7 8.6 0.9 1.0 2.1 2.4
RMSE (XYZ) nChPs 1 1.8 4.5 1.3 1.3 4.8 2.6
RMSE (XYZ) ChPs 1 1.8 6.1 1.2 1.2 4.1 2.5

1 RMSE values in mm.

In the second part of the geometric analysis, TLS point cloud was used. The root mean
square errors obtained in the Leica Cyclone application during the registration using targeted
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points localized on the geodetic control network were the following: RMSE(X) = 2.0 mm,
RMSE(Y) = 3.8 mm, and RMSE(Z) = 1.8 mm. The accuracy of the TLS point cloud was also
evaluated using manual measurements of signalized photogrammetric control network
points centers and natural ChPs localized in the corners of ventilation niches and doorways
(measured using elevation planes cut from the point cloud, see Figure 12a). Figure 12b
shows how the signalized targets were registered in TLS point cloud, and Table 6 contains
the RMSE values for measured points.
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Figure 12. The measurements of sCPs and nChPs on TLS point cloud: (a) elevation plane cut from
the model for nChPs measurements; (b) sCPs visualization on TLS point cloud.

Table 6. The analysis of manual measurements of sCPs and nChPs on TLS point cloud.

RMSE X RMSE Y RMSE Z

sCPs 1 6.7 6.0 3.5
sCPs 2 1.9 2.6 3.5
nChP 1 7.4 5.9 4.2
nChP 2 2.1 3.3 4.4

1 RMSE values in mm computed using sCPs and nChPs localized on four elevations. 2 RMSE values in mm
computed using sCPs and nChPs localized on three elevations (without E2).

While TLS scan stations were registered with high density, which was very time-
consuming, it may be observed that one target used for merging scans moved and influ-
enced the elevation 2. The target was eliminated from registration; however, the merged
point cloud had bigger registration errors on the elevation 2 (E2) scan. Due to that, the target
measurements were divided into two groups with elevation two and without. Considering
the manual measurement error and TLS point cloud density, the obtained RMSE values on
sCPs and nChPs (excluding E2) are acceptable for geometric analysis purposes.

Then, the obtained image-based point clouds were compared to the TLS point cloud
using the cloud-to-cloud distance algorithm [47,92,93]. Figure 13 shows the obtained
differences for ContextCapture, and the comparison of tested software outputs is included
in Figures A3–A7 (Appendix A).

Because additional structures with signalized ground control points were used for
image acquisition, on all comparisons with the TLS point cloud, these objects (localized
near the building) are signalized as a gross error. Elevation 2 shows distances between
point clouds which are similar to the TLS registration error. Because of the shape and size,
the snow fence for roof tiles is reconstructed with errors in all applications. Additionally,
the shape of the roof tiles creates different issues in reconstruction. In all applications,
the drainpipes’ correct shape is an issue; however, the errors in the areas near vertical
drainpipes are mainly caused by laser-beam slipping. In the case of ContextCapture, the
results showed large deformations in bigger parts of the façade where no visible structure
is localized. The places where walls stitch with the roof (90-degree corners) look rounded.
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The repeated shape of the ventilation grate showed reconstruction errors below 25 mm.
The GRAPHOS case shows issues related to the side parts of the façades. While in the
center parts, distances to TLS are below 5 mm, on the sides, they rise to more than 50 mm
in the case of elevation 3 and 25 mm for elevation 4. Analyzing Metashape and PhotoScan,
the noise filtering should be pointed out. It is visible that some efforts were made to cut off
the points, which are reconstructed using images where clouds are registered near the roof.
Still, there are some issues with rounding corners, which are mainly visible on elevation
4. The Pix4DMapper case shows that the neighborhood of the building is more deformed
than in other applications, but it is below 25 mm. Due to the reconstruction being limited
to the visible features and shapes of the façade, the deformation of glass brick windows
has not occurred. Some changes are visible on ventilation grates, i.e., elevation 1 (errors
below 25 mm) and 3 (errors rise to more than 100 mm). The roof of the building consists of
slightly higher deformations than in other applications. The RealityCapture case shows
good performance on walls without visible features and roof structure; however, ventilation
grates and glass brick windows showed deformations below 50 mm (elevation 4).

Figure 13. The comparison between TLS and image-based point cloud (ContextCapture): (a) elevation
1; (b) elevation 2; (c) elevation 3; (d) elevation 4; (e) top view on the study area.

4.3. Evaluation of Detectors and Descriptors on CRBeDaSet

While the microporous texture could be recognized in the terrain, the image regis-
tration shows that it should be treated as a surface without visible texture for matching
purposes. Due to that, the third part of the evaluation is related to different detectors and
descriptors. Tests were performed for four elevations (two more extended and two shorter)
which contain different characteristics. The selection of images on which the tests were
carried out was related to the simulation of real measurement conditions in which 100%
longitudinal overlap does not occur. The workflow for this part of the study is presented in
Figure 14.

In case 1, the surface of the wall of elevation 1 (E1) without visible texture is limited
by four big rectangular ventilation grates with repeated shapes, a door with a small
information board, drain pipes, and some small objects (technical infrastructure) with
visible shapes. The down part of the façade is covered by clinker tiles. Besides, on the
images are registered ceramic roof tiles (repeated shape), snow fences for roof tiles, paved
terrain, trees, and technical infrastructure. The second elevation (E2) contains less wall
surface without texture than E1 and includes more doors with information boards, more
small technical infrastructure, and two glass brick windows. The third elevation (E3) has
many objects with visible shapes, i.e., three double doors with information boards and
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rectangular ventilation grates (down and central part of doors), a big rectangular ventilation
grate near doors, and technical infrastructure. The wall surface without visible texture
is very limited. The fourth elevation (E4) includes four glass block windows and two
windows with closed built-in roller shutters and more technical infrastructure, as well as
more surface without visible texture. The tests were performed using 12 detectors and 14
descriptors (all to all method) using the GRAPHOS suite [7], PhotoMatch software [19],
and our own implementation of Python.
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The results of different detectors are presented in Figure A8 and Tables S1–S4 of supple-
mentary files (for four elevations), while a short description is presented in Tables A1–A4. The
images in high resolution are included in the CRBeDaSet_tests online repository.

The outcome of the different detectors and descriptors was divided into three groups
based on the number of errors during the matching. The groups were defined as follows
(Equation (10)):

mr =
ne

nm


err : ne ≥ 1

2 nm
H : 1

2 nm > ne ≥ 19
20 nm

ok : 19
20 nm > ne

(10)

where nm is number of matched points, ne is number of wrongly matched points, and
mr is a matching result. The results of matching tests are presented in Table S5 of the
supplementary file in the form of images with marked points and in the form of tables
(Tables A1–A4 of Appendix B) using the description from Equation (10). Furthermore, the
detection and description time, number of keypoints, and number of matched points for
short (E3) and long (E4) elevations are presented in Tables S6–S7 of the supplementary
file. Based on the division of matching results from four elevations (Tables A1–A4 of
Appendix B), the analysis showed which descriptors and detectors might be used in the
case of buildings with large parts of walls with no visible features (Table 7).
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Table 7. The results of matching performed for four elevations. The description is performed
according to Equation (10), and the “*” symbol means a descriptor not available, and the places
where the “xxxx” symbol appears mean different results for different elevations. The abbreviations of
detectors and descriptors are used as they were proposed by authors of these algorithms.

Descriptors
Detectors Matching Results

AGAST AKAZE BRISK FAST GFTT KAZE MSD MSER ORB SIFT STAR SURF
AKAZE * OK * * * OK * * * * * *
BOOST xxxx xxxx xxxx OK xxxx xxxx xxxx xxxx xxxx xxxx xxxx OK
BRIEF OK OK xxxx OK OK OK xxxx xxxx xxxx xxxx xxxx OK
BRISK OK OK OK OK OK OK xxxx OK xxxx xxxx xxxx OK
DAISY OK OK OK OK xxxx OK H xxxx OK OK OK OK
FREAK OK OK OK OK OK OK xxxx OK OK xxxx xxxx OK
HOG xxxx xxxx * xxxx ERR xxxx xxxx xxxx xxxx ERR ERR OK
KAZE * xxxx * * * OK * * * * * *

LATCH OK OK xxxx OK OK OK xxxx xxxx OK OK OK OK
LSS OK OK xxxx OK xxxx OK xxxx xxxx xxxx xxxx xxxx OK
ORB OK OK xxxx OK OK OK ERR xxxx OK * OK OK
VGG OK OK OK OK OK OK OK xxxx OK OK OK OK
SIFT OK OK OK OK xxxx OK OK xxxx OK OK OK OK
SURF xxxx xxxx OK xxxx ERR xxxx xxxx xxxx OK xxxx xxxx OK

Furthermore, based on the number of matches, the detectors (including all used de-
scriptors for which the matching result is positive) might be classified into three main groups:

1. Below 20 matched points (GFTT, MSD, ORB, SIFT, STAR).
2. Between 20 and 100 matched points (BRISK, KAZE).
3. Under 100 matched points (AGAST, SURF).

In the case of FAST, AKAZE, the results depend on the object features registered on
images and due to that, both are between groups 2 and 3. The MSER detector is classified
between groups 1 and 2. While for group 3, most of the points are localized on clinker
bricks, for group 1, points are mainly localized on information boards, corners of ventilation,
and window and door niches. An interesting case is the MSD detector with VGG and SIFT
descriptors, which show matched points mainly near artificially signalized ground control
points. Considering descriptors, the case of BOOST shows a visible smaller number of
matched points, and usage of the LSS is the most time-consuming.

5. Discussion

A new CRBeDaSet benchmark dataset is presented for evaluating image-based 3D
modeling and reconstruction techniques. The high-accuracy survey measurement instru-
ments, as well as geodetic and photogrammetric professional software, were used to pre-
pare the analytical data of the CRBeDaSet because only high-quality and accurately-input
data provides a reliable evaluation of the algorithms and applications’ quality.

The first practical experiences of using the CRBeDaSet to assess the accuracy and
reliability of tested applications (ContextCapture, GRAPHOS, Metashape, PhotoScan,
Pix4Dmapper, and RealityCapture) confirmed the usefulness of the prepared real data.
The CRBeDaSet has a number of characteristics that can support the development of new
approaches to the high-accuracy 3D reconstruction of medium sized objects (object shape
with a volume ca 1000 m3) in close range. The development of applications dedicated to
photogrammetric reconstruction is still in high demand. Based on the presented results and
previous works [26], it can be seen that developers in recent years put some effort into noise
filtering, smoothing of the reconstructed surfaces, and computation time. Still, some compu-
tation errors might occur during the matching part, which could be caused by imperfections
of software, e.g., the ineffectiveness of algorithms or their incorrect timplementation.

Due to the presented test object in CRBeDaSet being composed of paving, walls
covered partially with bricks, multiplicated objects with sharp shapes (ventilation grates),
and homogenous texture of a wall and roofing tiles, there should be enough features to
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process the data. However, during the processing of the presented dataset, the following
difficulties occurred:

• Faulty matching of tie points is related to a brute force approach where all possible
image pairs are evaluated (Figure 15a).

• Problems with the optimal selection of tie points and weight assignment in the adjust-
ment process (Figure 15b–d).

• Matching problems related to repeated regular shapes and colors of roofing tiles
and bricks (Figure 15e), windows, and vent holes’ localization near the homogenous
texture of the wall (Figure 15f).

• Shortages in point clouds (Figure 15g) and mesh discontinuities on projection distorted
regular parts of the roof.

• Some of the tested software has difficulty with the correct automatic filtering of dense
point clouds during the mesh generation (Figure 15h).

The first three errors could be resolved by using different matching algorithms, and
due to that, we have prepared a comparison of the detectors and descriptors. Based on the
tables (Tables A1–A4 and S6) and images (Tables S1–S5), it is possible to choose algorithms
that cover developers’ assumptions. The process deals with a large number of tie points
which might result in errors, as presented in Figure 15b–d), or a limited number of tie points
to acquire shorter computation time with a smaller number of matches. In our study, to
perform tests without manual tuning of detectors’ and descriptors’ parameters (i.e., feature
number, octave layers, thresholds), the standard values were used. By tuning these factors,
different results might be obtained.

The second part of the dataset is related to TLS point cloud registration and semantic
segmentation of point clouds. The presented CRBeDaset contains a complex photogrammet-
ric control network, which might also be used for scan station registration. In recent years,
the topic of TLS point clouds registration has been explored, and according to Li et al. [94],
there are three ways to increase the accuracy of the computation. Firstly, by improving
filtering algorithms; secondly, by developing or enhancing feature descriptors; and thirdly,
by making progress in 3D surface matching. Our CRBeDaSet allows scientists to work
with the first two mentioned ways, and already-performed computations might be used as
a reference. Based on our proposed dataset, other researchers might train their machine
learning algorithms (i.e., self-organizing maps or K-means) to filter noisy point clouds and
reach better accuracy of the final 3D model [95], which is very important, especially in
cultural heritage studies.

Furthermore, in the second part of our dataset, the LoD3 classification topology of the
3D outdoor point cloud was used. It is important for future development of the semantic
segmentation algorithms because the indoor scenes in LoD3 class topology are available;
however, there is a deficit of outdoor scene availability.

The dataset can be accessed via the DOI repository website, CRBeDaSet: http://dx.doi.
org/10.17632/9nvn27yw62.2 (images, coordinates, and raw merged TLS point cloud) and
CRBeDaSet_tests: http://dx.doi.org/10.5281/zenodo.7496481 (raw scan stations, filtered
point cloud in control network coordinate systems, annotated point clouds, high-resolution
images, analyses of point clouds obtained using COTS software, TLS to image-based point
cloud distance results, and matching parts).

Future investigations will be focused on developing and increasing the CRBeDaSet
by dedicating scenarios for the highest geometric accuracy 3D object reconstruction using
precise geodesy surveying for control networks and direct georeferencing, multi-view
terrestrial and UAV imagery, corridor mapping on GPS-denied areas, and, additionally,
more TLS scan stations.
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windows and vent holes near homogenous texture of wall; (g) shortages in point clouds; (h) difficulty
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Figure A1. Comparison of the dense point clouds generated in used software: (a) ContextCapture; (b) GRAPHOS; (c) Metashape; (d) PhotoScan; (e) Pix4DMapper;
(f) RealityCapture.
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Table A1. The results of matching performed for elevation 1. The description is performed according
to Equation (10), and the “*” symbol means descriptor not available.

Descriptors
Detectors E1

AGAST AKAZE BRISK FAST GFTT KAZE MSD MSER ORB SIFT STAR SURF
AKAZE * OK * * * OK * * * * * *
BOOST OK H ERR OK ERR ERR ERR H ERR ERR OK OK
BRIEF OK OK OK OK OK OK ERR OK H ERR H OK
BRISK OK OK OK OK OK OK ERR OK OK H H OK
DAISY OK OK OK OK OK OK H OK OK OK OK OK
FREAK OK OK OK OK OK OK ERR OK OK ERR ERR OK
HOG ERR ERR * ERR ERR ERR H OK OK ERR ERR OK
KAZE * H * * * OK * * * * * *

LATCH OK OK OK OK OK OK H H OK OK OK OK
LSS OK OK H OK OK OK H OK ERR ERR OK OK
ORB OK OK OK OK OK OK ERR OK OK * OK OK
VGG OK OK OK OK OK OK OK OK OK OK OK OK
SIFT OK OK OK OK OK OK OK OK OK OK OK OK
SURF OK H OK OK ERR OK ERR OK OK ERR ERR OK

Table A2. The results of matching performed for elevation 2. The description is performed according
to Equation (10), and the “*” symbol means descriptor not available.

Descriptors
Detectors E2

AGAST AKAZE BRISK FAST GFTT KAZE MSD MSER ORB SIFT STAR SURF
AKAZE * OK * * * OK * * * * * *
BOOST H H H OK ERR H ERR OK ERR ERR OK OK
BRIEF OK OK ERR OK OK OK H ERR OK OK OK OK
BRISK OK OK OK OK OK OK ERR OK H ERR OK OK
DAISY OK OK OK OK OK OK H ERR OK OK OK OK
FREAK OK OK OK OK OK OK ERR OK OK ERR ERR OK
HOG ERR ERR * ERR ERR H ERR ERR OK ERR ERR OK
KAZE * OK * * * OK * * * * * *

LATCH OK OK ERR OK OK OK ERR ERR OK OK OK OK
LSS OK OK ERR OK ERR OK ERR ERR ERR ERR H OK
ORB OK OK H OK OK OK ERR ERR OK * OK OK
VGG OK OK OK OK OK OK OK OK OK OK OK OK
SIFT OK OK OK OK OK OK OK ERR OK OK OK OK
SURF OK OK OK ERR ERR OK ERR OK OK ERR ERR OK

Table A3. The results of matching performed for elevation 3. The description is performed according
to Equation (10), and the “*” symbol means descriptor not available.

Descriptors
Detectors E3

AGAST AKAZE BRISK FAST GFTT KAZE MSD MSER ORB SIFT STAR SURF
AKAZE * OK * * * OK * * * * * *
BOOST ERR H OK OK OK ERR ERR ERR OK ERR ERR OK
BRIEF OK OK OK OK OK OK ERR H OK OK OK OK
BRISK OK OK OK OK OK OK ERR OK OK OK H OK
DAISY OK OK OK OK OK OK H ERR OK OK OK OK
FREAK OK OK OK OK OK OK ERR OK OK OK ERR OK
HOG ERR ERR * ERR ERR ERR ERR ERR H ERR ERR OK
KAZE * OK * * * OK * * * * * *

LATCH OK OK OK OK OK OK ERR ERR OK OK OK OK
LSS OK OK ERR OK H OK ERR ERR ERR OK H OK
ORB OK OK OK OK OK OK ERR OK OK * OK OK
VGG OK OK OK OK OK OK OK H OK OK OK OK
SIFT OK OK OK OK OK OK OK ERR OK OK OK OK
SURF ERR OK OK OK ERR H H ERR OK ERR ERR OK
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Table A4. The results of matching performed for elevation 4. The description is performed according
to Equation (10), and the “*” symbol means descriptor not available.

Descriptors
Detectors E4

AGAST AKAZE BRISK FAST GFTT KAZE MSD MSER ORB SIFT STAR SURF
AKAZE * OK * * * OK * * * * * *
BOOST OK OK OK OK ERR OK H OK OK OK OK OK
BRIEF OK OK OK OK OK OK ERR OK OK H OK OK
BRISK OK OK OK OK OK OK H OK OK OK OK OK
DAISY OK OK OK OK H OK H OK OK OK OK OK
FREAK OK OK OK OK OK OK H OK OK H H OK
HOG OK OK * OK ERR OK ERR OK OK ERR ERR OK
KAZE * OK * * * OK * * * * * *

LATCH OK OK OK OK OK OK H OK OK OK OK OK
LSS OK OK OK OK H OK OK OK H OK OK OK
ORB OK OK OK OK OK OK ERR OK OK * OK OK
VGG OK OK OK OK OK OK OK OK OK OK OK OK
SIFT OK OK OK OK ERR OK OK OK OK OK OK OK
SURF OK OK OK OK ERR OK ERR OK OK H H OK
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