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Abstract: Abdominal sepsis triggers the transition of microorganisms from the gut to the peritoneum
and bloodstream. Unfortunately, there is a limitation of methods and biomarkers to reliably study
the emergence of pathobiomes and to monitor their respective dynamics. Three-month-old CD-1
female mice underwent cecal ligation and puncture (CLP) to induce abdominal sepsis. Serial and
terminal endpoint specimens were collected for fecal, peritoneal lavage, and blood samples within
72 h. Microbial species compositions were determined by NGS of (cell-free) DNA and confirmed
by microbiological cultivation. As a result, CLP induced rapid and early changes of gut microbial
communities, with a transition of pathogenic species into the peritoneum and blood detected at
24 h post-CLP. NGS was able to identify pathogenic species in a time course-dependent manner in
individual mice using cfDNA from as few as 30 microliters of blood. Absolute levels of cfDNA from
pathogens changed rapidly during acute sepsis, demonstrating its short half-life. Pathogenic species
and genera in CLP mice significantly overlapped with pathobiomes from septic patients. The study
demonstrated that pathobiomes serve as reservoirs following CLP for the transition of pathogens
into the bloodstream. Due to its short half-life, cfDNA can serve as a precise biomarker for pathogen
identification in blood.

Keywords: cecal ligation puncture; CLP; gut microbiome; cell-free DNA; pathogen liquid biopsy;
sepsis; pathobiome; next-generation sequencing; NGS

1. Introduction

A life-threatening organ dysfunction caused by a dysregulated host response to in-
fection defined as sepsis [1] is caused by the influx of microbes into the bloodstream. The
successful treatment of systemic infections critically depends on the time of diagnosis
that in turn is contingent upon a most specific and sensitive microbiological analysis of
the patient’s blood sample. A more precise diagnosis and early pathogen identification
is lifesaving for septic patients [2]. However, microbial culture is still conceived as the
gold standard for the confirmation of systemic bacteremia, yet it is lengthy and frequently
burdened by false-negative results [3–5].

Apart from the sheer detection of live pathogen(s) in the blood at admission and/or
time of concern, the protracted dynamic of the pathogen fluctuations in the septic patient’s
systemic circulation remains poorly understood. The delay of the blood culture, hetero-
geneity of sepsis presentation, and unsatisfactory performance of various scoring systems
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in the identification of bacteremia [6] leave a large knowledge gap. This limitation equally
pertains to sepsis-causing mono- as well as poly-bacterial infections. A monobacterial
infection induces massive rearrangements of the existing microbiome and host’s immunity
that frequently trigger the opportunistic and/or gut microbiota to complicate the initially
single-pathogen invasion [7,8]. Any polymicrobial infection is not static but instead un-
dergoes rapid fluctuations regarding both its qualitative and quantitative characteristics.
Thus, a detailed qualitative/quantitative characterization of the time course, sequence,
and spread of the pathobiome in an individual septic subject is desired, as it would likely
enhance the efficacy of antimicrobial treatment.

Abdominal sepsis is the most common example of a polymicrobial infection, typically
originating from the gastrointestinal compartment of the host upon its damage (e.g., per-
forated appendicitis, diverticulitis, postsurgical leakage). Polymicrobial infections from
the abdominal compartment are typically the second most frequent (after the pulmonary
compartment) cause of sepsis [9]. On the experimental level, the cecal ligation and punc-
ture (CLP) mouse model closely replicates the clinical characteristics of human abdominal
sepsis and constitutes the most frequently used model of sepsis in laboratory rodents [10].
Approximately 90% of the gut microbiota genera (e.g., Bacteroides, Clostridium) are shared
by both humans and mice [11,12]. Additionally, there are distinct interspecies similarities
between dominant gut microbial communities (i.e., enterotypes) [13–15] indicative of simi-
lar patterns of genera and/or abundance shifts in the gut of mice and humans challenged
by the same condition [12,13].

To address the above-defined knowledge gap, we devised a tailor-made analytical
workflow for the mouse CLP model to characterize individualized microbial dynamics
before and during the acute phase of polymicrobial sepsis. Specifically, we monitored
individual septic mice to elucidate qualitative/quantitative fluctuations of their pathobiome
across the blood, gut, and abdominal compartments. Finally, we compared for the first
time the blood pathobiome between the mouse CLP and human patients with abdominal
sepsis. We also present a workflow for cfDNA as a sensitive biomarker for individualized
pathogen diagnostics and potential clinical application.

2. Materials and Methods

Animals: Twelve-week-old female CD-1 mice were purchased from Charles River
Laboratories (Sulzfeld, Germany). Groups of 5 animals were housed in type III cages
under standardized conditions (i.e., 12 h light–dark diurnal cycle, controlled temperature
of 22–24 ◦C). A standard rodent diet and fresh water were provided ad libitum throughout
the study. Cages were enriched with items for gnawing to facilitate natural rodent behavior.

Sepsis model: Mice underwent cecal ligation and puncture (CLP)-inducing polymi-
crobial abdominal sepsis. Mice were anesthetized under inhalation of isoflurane (2–3%,
Forane®, Baxter, Vienna, Austria) and received buprenorphine (Bupaq 0.1 mg/kg; Richter
Pharma, Austria) as analgesic control before undergoing midline laparotomy. CLP was per-
formed according to the original protocol [16] with modifications described elsewhere [17].
In brief, a ligature was placed under the ileocecal valve to induce a medium-severity sepsis.
The cecum was punctured twice using a 17-gauge needle, and a small amount of fecal
content was extruded to ensure patency of the puncture. The abdominal cavity was closed
with sutures, and the skin was closed with a wound glue. The CLP group was subdivided
into an antibiotic group and a nonantibiotic group, with the former being treated with
Imipenem (25 mg/kg with Cilastatin) subcutaneously 2 h after surgery and in 12 h intervals
thereafter for 3 days together with buprenorphine [18]. Most of the mice appearing in the
main text did not receive antibiotic treatment to enable following the infection with subse-
quent transition of microbial species without interfering antibiotics. Mice with treatment
were not analyzed separately. The control group underwent a sham surgery consisting of a
midline laparotomy without ligation and puncture with a brief exteriorization of the cecum.
In this study, a total of 43 mice were used for experiments. Thereof, 4 mice underwent
sham surgery, 2 being sacrificed at 0 h and 72 h, respectively. Twenty-two CLP mice were
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sacrificed at 24 h time point, 13 at 48 h time point, and 4 at 72 h time point. All animal
experiments were performed in the Ludwig-Boltzmann Institute for Traumatology, Vienna,
Austria, under the approval of the local legislative ethical committee (Animal Use Proposal
Permission No. 271308/2014/13 and 343130/2013/14) and conducted observing National
Institutes of Health guidelines.

Monitoring: All mice were monitored for clinical signs of illness, and their status was
evaluated using our custom-developed modified mouse clinical assessment scoring system
(M-CASS) based on, for example, fur, posture, mobility, alertness, startle, and righting
reflex [19] starting 12 h post-CLP. Simultaneously, rectal temperature was monitored (Fluke
Series II thermometer, Fluke, Everett, USA) at least twice daily (or more often whenever a
mouse deteriorated) to ensure a maximally precise monitoring of humane endpoints as
performed in our previous studies [19–21]. Mice were deemed moribund whenever the
righting reflex was absent, M-CASS score was ≥8, and/or body temperature (BT) was
<28 ◦C (recorded in at least two sequential measurements) and immediately euthanized
under deep-inhalation anesthesia with isoflurane followed by cervical dislocation. BTs can
be seen in Supplementary Figure S1B. Body weight was measured daily. All mice in the
septic group (24.2–41.5 g) were comparable to sham mice (26.1–35 g).

Study design: Mice were sacrificed at different time points (0–72 h) after surgery to
enable a longitudinal follow-up (Figure 1). According to FELASA regulations, each animal
was subjected to an individualized sampling pattern (e.g., −24 h, 0 h, 24 h, 48 h, 72 h) to
not exceed a critical blood volume threshold per mouse. Hence, an individual mouse was
subjected to a serial blood sampling at most 5 times during the study with at least 12 h
between sampling time points. Unique mouse IDs and a description of excluded samples
can be found in Supplementary Table S1. The study was designed to maximally comply
with the Minimum Quality Threshold in Preclinical Sepsis Studies (MQTiPSS) consensus
guidelines [22].

Sampling: A serial low-volume blood sampling (30 µL, no sacrifice) was performed
according to the previously published method [23]. Serial blood sampling enables a
repeated sampling in the same mouse, facilitating individual protracted monitoring and
reducing the number of mice in the study (3R tenet; reduction). Briefly, an approximate
volume of 25–30 µL of blood (depending on the body weight of an individual mouse) was
collected with a pipette from the facial vein (vena facialis) punctured with a 23-G needle.
Samples were then immediately diluted 1:10 in PBS with ethylenediaminetetraacetic acid
(EDTA). After centrifugation (1000× g, 5 min, 22 ◦C), approximately 270 µL of plasma was
removed and stored at −80 ◦C for analysis. Terminal blood samples (0.35–1.0 mL) were
collected at sacrifice from vena cava into K3-EDTA tubes. Peritoneal lavage was collected
at the sacrificing time point only as described previously [19] based on the original protocol
of Ray and Dittel [24]. The pellet of centrifuged lavage was stored at −80 ◦C. Sampling of
feces took place (i) during CLP surgery and (ii) at the time point of sacrifice for each mouse.
At CLP, a small amount of fecal content from the puncture sites was extruded by carefully
applying pressure to the cecum. At sacrifice, feces were typically collected from the colon
in the proximity of the cecum, given the developing necrosis in the ligated cecum. Fecal
samples were collected with the needle and subsequently stored at −80 ◦C.

Human patients and controls: Data from 48 patients with septic shock were taken
from a previously published study [25]. The primary septic focus of the 48 patients also
shown in this study was the abdomen (n = 43; 90%), followed by the lungs (n = 4; 8%) and
the genitourinary tract (n = 1; 2%). The ethics agreement of the Ethics Committee of the
Medical Faculty of Heidelberg (Trial Code No. S-097/2013) allowed data collection in the
abovementioned study. In this study, we reanalyzed the data already generated.

DNA isolation: Plasma preparation and nucleic acid isolation were performed as
described previously [25,26]. Blood plasma was used for automated DNA isolation using
the QIAsymphony® SP DNA Preparation System. The QIAsymphony DSP Circulating
DNA Kit was used according to the manufacturer’s protocol.
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Figure 1. Schematic illustration of the study design (A) and of the analytical workflow (B).
(A): Three-month-old female mice (n = 45) were subjected to polymicrobial cecal ligation and punc-
ture (CLP) sepsis (lower axis) or served as sham controls (upper axis) and were sampled in defined
intervals for blood, feces, and abdominal lavage until 72 h post-CLP. Small blood drop indicates a
serial small-volume sampling; large blood drop indicates terminal blood sampling. Short-interval
serial blood sampling was performed maximally three times per individual mouse (i.e., serial blood
sampling time points varied among mice to cover intervals smaller than 24 h) followed by terminal
large-volume sampling. In each mouse, feces were collected at CLP and at the sacrifice time point.
In each mouse, abdominal lavage was performed at the sacrifice time point. Body weight and
temperature were taken daily. (B): NGS workflow was performed for all sample types. DNA was
isolated, and all libraries were used for whole genome shotgun sequencing; nonmurine reads were
classified and used for identification of species. Abdominal lavage and terminal blood were used for
microbiological culturing in parallel. Growing cultures were used for species identification by means
of MALDI TOF.

Lavage pellets were thawed on ice and resuspended in 400 µL of yeast-lysis buffer
(100 mM NaCl, 10 mM Tris-HCl, 1 mM EDTA, 2% v/v Triton X-100, 1% w/v SDS). The
resulting suspension was transferred into a reaction tube containing 400 µL of glass beads
with a diameter of 0.5 mm. Then, 400 µL phenol/chloroform/isoamyl alcohol in a ratio
of 25:24:1 was added, and 3 cycles of 5 min vortexing and a subsequent 5 min incubation
on ice were performed. Afterward, samples were centrifuged for 10 min at 17,000× g at
4 ◦C, and the aqueous phase was transferred into a new reaction tube. Next, 1 mL ice-cold
100% ethanol was added to the reaction tube, vortexed thoroughly, and then incubated
at −20 ◦C for 2 h. The sample was again centrifuged for 10 min at 17,000× g at 4 ◦C,
and the supernatant was discarded. Subsequently, the pellet was air-dried for 5 min and
resuspended in 60 µL of nuclease-free water. Isolated genomic DNA (gDNA) was purified
using Agencourt AMPure XP Magnetic Bead purification, applying a ratio of 1.8:1 bead to
sample volume.
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The Quick-DNA Fecal/Soil Microbe Microprep Kit (Zymo Research; Freiburg, Ger-
many) was used for DNA isolation from fecal samples according to the instruction manual.
Isolated gDNA underwent the same bead-based purification step as DNA isolated from
lavage samples.

Isolated DNA samples underwent concentration measurements and quality control by
the Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA) and by the
High Sensitivity Genomic DNA Analysis Kit using a fragment analyzer (Agilent, Santa Clara,
CA, USA) or an ultrasensitivity NGS analysis kit using Femto Pulse (AGILENT). cfDNA
concentrations of terminal blood samples can be seen in Supplementary Figure S1A.

NGS library preparation and sequencing: NGS library preparation for human cfDNA
samples was performed as previously described [25,26] with 1 ng cfDNA input using the
transposase-based Nextera XT library preparation kit (Illumina, San Diego, CA, USA) with
a Biomek FXP liquid-handling robot (Beckman Coulter, Brea, CA, USA). The final elution
volume was 34 µL of resuspension buffer following the final bead cleanup.

Genomic DNA from murine lavage and fecal samples was prepared manually with
the Nextera XT library preparation kit following the manufacturer’s instructions (Illumina,
San Diego, CA, USA) and also with 1 ng input in a volume of 5 µL and a final elution
volume following the final bead cleanup of 38 µL.

Murine cfDNA from blood plasma samples was prepared by either a Biomek FXP

liquid-handling robot using the adapter ligation-based NEXTFLEX Cell Free DNA-Seq Kit
with 0.5 ng input and an elution volume of 32 µL or manually using the NEBNext Ultra
II DNA library preparation kit. NEXTFLEX was performed with 0.5 ng DNA input at a
volume of 32 µL. Adapters were used in a dilution of 1:30, and final elution was performed
in 14 µL of nuclease-free water. Libraries showing adapter peaks higher than the library
peak on fragment analyzer profiles underwent an additional bead-based purification step
in a bead-to-sample ratio of 0.6–0.8:1. The manual preparation of NEBNext Ultra II DNA
libraries was done according to the manufacturer’s protocol. DNA input of control mice
and sepsis mice was 0.5 ng and 5 ng, respectively. For 0.5 ng DNA input, 10 PCR cycles
were performed; for 5 ng DNA input, 8 cycles were performed. Final libraries were eluted
in 33 µL of nuclease-free water.

Sequencing of DNA libraries was performed by HiSeq2500 (Illumina), generating
15–25 million single-end reads for murine blood plasma samples and 10 million reads for
murine fecal and lavage samples.

Bioinformatic analyses: Bioinformatic analysis was performed as already published
with adaptions to murine samples [25,26]. In short, raw reads were separated from potential
adapter contamination, quality controlled, and, if necessary, trimmed using BBDuk [27].
Read quality needed to surpass a Phred score of 20 with a minimal length of 50 bp after
trimming of low-quality and adapter bases. Subsequently, NextGenMap [28] was used
to align quality controlled reads to the murine reference genome M. musculus_GRCm38,
requiring-minimum identity between reads and a reference genome of 65%. Reads mapping
to the murine reference genome and reads with low complexity (consecutive stretches
of di- and trinucleotides along the whole read sequence) were excluded from further
analysis using prinseq-lite [29]. Finally, Kraken [30] was used to assign reads to systematic
classification using the RefSeq database (release version 68).

To be able to compare microbial burdens of different blood samples irrespective of
their sampling time point and volume, a calculation was performed to receive an absolute
value for the number of DNA molecules of one single microbial species per milliliter
of blood:

molecules
ml

=
species reads
library size

∗ complexity ∗ cfDNA concentration
M(microbial cfDNA)

∗ AN

The formula for the calculation of molecules/mL includes “species reads” that are all
sequenced reads that were classified on the species level. The “library size” represents all
quality-trimmed reads that were assigned to one sample according to the barcode. The
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complexity factor is a measure of the degree of duplication. Another important factor is
cfDNA concentration in the blood given as g/mL calculated by blood sampling volume and
cfDNA yield after isolation measured by Femto Pulse (smear analysis 50–250 bp) in tripli-
cate. To determine the number of DNA molecules, the molar mass MM = 128,700 g/mol of
microbial cfDNA with a typical average length of 198 bp and the Avogadro constant
AN = 6.022 ∗ 1023 1/mol were considered. The average length of microbial cfDNA
was determined by analyzing a length distribution profile of microbial DNA of E. coli,
E. hirae, and B. vulgatus.

Microbiology: Serial dilutions of terminal blood and peritoneal lavage samples were
plated in duplicate on Columbia III agar, supplemented with 5% sheep blood (Beckton
Dickinson, Heidelberg, Germany). Samples were incubated in parallel aerobically and
anaerobically at 37 ◦C for 24 h. Five colonies per plate were picked and subcultivated on
tryptone soy agar plates under the same conditions. Identification of microbial species was
performed by matrix-assisted laser desorption and ionization time of flight (MALDI-TOF)
as described previously [31].

Cytokine measurements: Cytokines were measured by a highly sensitive automatized
Luminex bead-based technology (Bio-Plex Pro™ Mouse Cytokine Th17 Panel A 6-Plex
#M6000007NY, Bio-Rad) according to manufacturer’s insctructions.

Software: GraphPad Prism 9.0.0 and BioRender (BioRender.com, accessed on 9 January 2023)
were used to create figures.

3. Results
3.1. Gut Microbiomes during Acute Murine Sepsis

To study sepsis progression in individual animals, mice either underwent cecal ligation
and puncture (CLP) or served as sham controls (Figure 1A). Mice with CLP were subjected
to a consecutive low-volume blood sampling (i.e., serial blood sample) and were sacrificed
at preset time points (i.e., 24 h, 48 h, 72 h). Subsequently, genomic DNA of feces and
peritoneal lavage as well as cfDNA were sequenced by NGS for taxonomic identification
(Figure 1B). Additionally, standard microbiology was applied for species identification in
terminal blood draws and peritoneal lavages (Figure 1B).

To characterize the dynamics of the mouse gut microbiome, we analyzed the gut
species composition over 48 h during CLP progression. As a start, gut samples were ana-
lyzed by the whole genome shotgun sequencing at 0 h to determine the basic composition
of a healthy microbiome (Figure 2A). Most mice showed Lactobacillus reuteri followed by
Lactobacillus johnsonii as the most abundant species, whereas Ruminococcus bromii, Bacteroides
xylanisolvens, and Bacteroides vulgatus typically constituted smaller but significant fractions
of the microbiome. In addition, the presence of Parabacteroides distasonis, Enterococcus faecalis,
Enterococcus faecium, Bacteroides fragilis, and Candidatus Arthromitus sp. completed obliga-
tory fecal repertoires in all mice at 0 h. Strikingly, CLP induced significant changes in the
composition of the gut microbiome at both 24 and 48 h (Figure 2B). In contrast to healthy
microbiomes, species including E. coli, B. vulgatus, E. hirae, and Clostridium perfringens
became predominant (for simplicity, henceforth collectively referred to as pathobiome) and
outcompeted healthy gut commensals. Surprisingly, we did not observe any consistently
defined post-CLP pathobiome signature during acute sepsis. In contrast, the pathobiome
underwent species shifts that occurred in a highly individual manner at different time
scales in each mouse (Figure 2B), which was also demonstrated by PCA analyses (Figure 2C;
Supplementary Figure S2). While 0 h microbiome samples formed a relatively homogenous
cluster, septic samples showed a heterogeneous distribution evidenced by multidirectional
variance. In addition, co-occurrence network analyses (compare [32]) did not reveal species
with significant co-occurrence for a comparison of feces at 0 h with feces at 24 h.

BioRender.com
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Figure 2. Healthy and post-CLP gut microbiome. (A): Healthy gut microbiome (0 h), percentage
share of total normalized sequencing reads of top species shown for different mice. (B): Septic gut
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of top species shown for different mice. (C): PCA of microbiomes at 0 h, 24 h, and 48 h post-CLP.
Time points are indicated by color and shape of the symbols; bold symbols are centroids of the
corresponding group.

3.2. Transition of the Gut Microbiome to Different Compartments

Next, we analyzed microbial colonization of the peritoneum and blood by (i) whole
genome shotgun sequencing and (ii) classical microbiological culture to characterize the
transition of species from the gut to systemic circulation (Figure 3). In sham mice, no
pathogens were detected by culture-based methods in the peritoneal lavage and blood,
while NGS identified only minor species with lowest read numbers indicative of micro-
bial contaminants. However, pathogens in CLP mice including Enterococcus casseliflavus,
E. hirae, E. coli, and E. faecalis were already found as dominant species in the blood and
lavage samples by microbiological culture after 24 h (Figure 3A,B). Notably, pathogenic
species colonization could differ significantly between mice and compartments, whereby
NGS analysis typically revealed the same pathogens as classical culture-based microbial
diagnostics (Figure 3C,D). However, additional species, including B. fragilis, B. vulgatus,
Citrobacter rodentium, and C. perfringens, were exclusively identified by metagenomics
sequencing. Sporadically, NGS analyses also detected species with lowest abundance
(<10 normalized reads) in lavage and blood of sham mice, but those were considered to be
background noise derived from contamination.

Overall, NGS significantly matched microbiological findings in septic mice for species
colonizing the bloodstream (Figure 4A) and the peritoneum (Figure 4C). Venn diagrams
in Figure 4B,D show that 7 out of 9 and 6 out of 9 major species detected by culture-
based methods were robustly detected by NGS in the terminal blood and peritoneal lavage,
respectively. Importantly, NGS allowed the detection of an additional 53 species in the blood
and 114 species in the peritoneal lavage compared to classical culture-based diagnostics.
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The most abundant species are shown for 0–72 h in sham and CLP mice. Heat maps (A,C) and Venn
diagrams (B,D) of the most abundant species in the blood (A,B) and abdominal lavage (C,D) over
0–72 h in sham and CLP mice. Light blue squares, species detected by NGS (with >10 normalized
reads); dark blue squares, species detected by NGS and either aerobic or anaerobic culture; gray
squares, species detected by aerobic and/or anaerobic culture only.
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Given that gut pathobiomes constitute reservoirs for the transition of microbes to the
bloodstream and/or peritoneum, we analyzed both compartments in more detail in three
randomly selected individual mice over time. Data demonstrated both an idiosyncratic
microbial composition for each mouse and some similar patterns across mice in the ana-
lyzed compartments (Figure 5). Feces at 0 h and 24 h post-CLP were similar for mouse 2
(Figure 5B), with only E. coli of significantly higher abundance. In contrast, feces at 24 h
from mice 1 (Figure 5A) and 3 (Figure 5C) already show dramatic changes in comparison
to the corresponding sample of the identical mice at 0 h. Additionally, the peritoneal lavage
and blood samples showed different compositions between mice and compared to the
corresponding fecal samples. Interestingly, both sample types (i.e., peritoneal lavage and
blood) typically contained pathogenic species (e.g., E. coli or E. hirae) also identified in the
fecal pathobiome at 24 h In addition, pathobiome communities in the respective samples
were analyzed regarding diversity and richness (Figure 5D; Supplementary Figure S3).
There was no striking difference between diversity and richness for feces at 0 h and 24 h.
However, lavage and terminal blood pathobiome communities were generally less rich
and diverse than feces at 24 h in all three mice, also reflected by the species abundance
(Figure 5A–C) where mostly one or two dominating species could be observed in each
sample. In this context, co-occurrence analyses revealed no significant networks of species.
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Figure 5. Transitions of species from the feces to bloodstream/peritoneum at 24 h post-CLP in three
mice. (A–C): Percentage of the most abundant species in feces at 0 h and 24 h, lavage at 24 h, and
terminal blood sample at 24 h after CLP. (D): Community diversity and richness shown for all sample
types of mouse 3 indicated by Shannon–Wiener diversity index and ACE richness index. Standard
errors are shown.

The blood pathogen identification from our CLP experiments was also retrospectively
juxtaposed to readouts obtained from human patients suffering from abdominal sepsis
(Figure 6; Supplementary Figure S4). A qualitative comparison reveals a high interspecies
similarity, given that the most prominent microbial genera detected in septic patients
were also identified in CLP mice. This significant overlap of genera indicates a good
correlation between human and murine pathobiome characteristics in abdominal sepsis.
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However, our comparison also indicated some differences in the relative occurrence of
species. While Escherichia, Bacteroides, Enterococcus, and Klebsiella species demonstrated a
similar occurrence, Enterobacter, Lactobacillus, and Candida species were more frequently
detected in the murine sepsis blood samples.
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Figure 6. Abundance of the most prominent genera in the blood. Blood samples collected from septic
humans (n = 239 samples of 48 individuals at different time points) and mice (n = 49 terminal blood
samples of 49 individuals). The seven most prominent genera found in humans and mice are shown;
their abundance is indicated by the percentage of blood samples showing >10 normalized sequencing
reads for the respective genus out of all available blood samples.

3.3. Pathobiome Dynamics in the Blood of Septic Mice

Upon entering the bloodstream, a pathobiome can dynamically change within a short
period of time (Figure 7). To qualitatively and quantitatively characterize the microbial
loads in individual mice over time, we devised a workflow for absolute quantification
of microbial burden in a minute amount of blood. First, we validated that pathogen
identification by NGS analyses of low-volume serial blood sampling matched results
from well-established, large-volume sampling (Supplementary Figure S5A). Subsequently,
consecutive small-volume blood samples were taken at 72 h post-CLP in individual mice
to characterize pathobiome dynamics during the progression of sepsis. Significantly more
species were found 24 h post-CLP compared to 24 h before CLP (+4 and +3 species in mouse
1 and 2, respectively), with a rapid increase in general abundance (Figure 7A). Additionally,
there was always a single species in each mouse that predominated the pathobiome:
E. hirae in mouse 1 and B. vulgatus in mouse 2. Interestingly, quantitative contributions
of individual species changed over time. After 48 h post-CLP, abundance of E. hirae and
B. vulgatus were significantly reduced in the blood compared to 24 h. Mouse 1 had a
recurring increase in pathogenic load up to 72 h and did not seem to control the infection
efficiently. In contrast, mouse 2 improved over time with a decreasing microbial burden.
Interestingly, the activation of the inflammatory system as well as the microbial burden
appears to peak at 24 h post-CLP, as indicated by pathobiome abundance as well as by
the dynamics of circulating cytokines such as IL-6 (a typical surrogate marker of systemic
inflammation) (Figure 7A; Supplementary Figure S6).
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Figure 7. (A): Concentration for top species shown in molecules/mL of serial blood samples for two
mice at different time points. The numbers above bars indicate the number of detected top species.
Crosses indicate a corresponding IL-6 concentration in the blood per time point. (B–D): Time course
of the most abundant species in molecules/mL of serial blood samples in two individuals.

Our workflow for limited blood volumes also enabled time-dependent monitoring
of microbial cfDNA levels from corresponding pathogenic species in single individuals
over time (Figure 7B–D; Supplementary Figure S5). Accordingly, we examined microbial
cfDNA dynamics for the three most abundant species including E. coli, B. vulgatus, and
E. hirae in two individual CLP mice for up to 72 h post-CLP. Compatible with previous
findings (Figure 5), a high level of idiosyncrasy in the CLP response was observed. Among
various patterns of dynamic changes, we also detected rapid declines for microbial cfDNAs
(E. coli and B. vulgatus in mouse 2 and E. hirae in mouse 1), indicating a very short half-life
of microbial cfDNA.

4. Discussion

In this study, we present a new workflow to investigate microbiomes and pathobiomes
in individual mice during acute sepsis based on NGS. We observed that such pathobiomes
rapidly arise at early time points (24 h) in different compartments in mice following CLP.
Possibly, pathogenic species from the gut and peritoneum serve as reservoirs for the
pathobiome in the blood. The transformation of a gut microbiome into a pathobiome
appears to be a prerequisite for the occurrence of pathogenic species in the blood and
lavage. Species frequently found in the lavage and blood at 24–48 h (i.e., E. hirae, E. coli,
B. vulgatus, and L. reuteri, or L. johnsonii, E. hirae, E. coli, and B. vulgatus, respectively)
were underrepresented at 0 h but were frequently detected in feces between 24 and 48 h
post-CLP. These findings indicate a significant invasiveness of those species, given that the
predominant overgrowth in the gut and transition into the blood and lavage takes place
within a few hours during CLP. In addition to next-generation sequencing, we characterized
the bacterial load in septic mice by a classical microbiological culturing. Compared to the
microbial culture, NGS identified significantly more species in a timely manner. However,
sequencing results must also be evaluated with respect to contaminations, as NGS is
a very sensitive approach. Laboratory reagents (e.g., library preparation reagents) are
not specified as pathogen-free, and minimal contamination may be detected in the final
sequencing results [33,34]. Moreover, handling of samples can result in contamination
by the skin microbiome species. To overcome these problems, it is mandatory to analyze
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negative controls and control samples of sham mice in parallel for detecting background
noise. In clinical studies, sophisticated relevance scores are already used to discriminate
between real signals and contamination [26].

While previous works provided some gut microbiome characteristics of CLP mice [35–37],
to the best of our knowledge there is no direct comparison of pathobiome abundance
between CLP mice and septic patients. Both mouse and human blood pathobiomes were
highly idiosyncratic, indicated by a wide range of abundance of the most prominent
microbial species (Supplementary Figure S4). However, they displayed a large overlap in
the most prominent genera. This new evidence reasserts high fidelity of the CLP model of
abdominal polymicrobial sepsis also regarding pathobiome composition and dynamics.
Mouse pathobiome levels in the blood have demonstrated significant dynamic changes
during sepsis progression. Importantly, consecutive measurements of cfDNA levels in the
blood revealed significant changes in the species-specific cfDNA abundance over time,
indicating a relatively short half-life of this biomarker. Existing data estimate the half-life
of human cfDNA in a range of minutes [38]. In contrast to human cfDNA, microbial
cfDNA is not protected from degradation by its association with histones [39,40]. Therefore,
it might be plausible that the half-life of the microbial cfDNA is even shorter than the
half-life of human cfDNA. Our results indicate that species-specific cfDNAs may serve as
a precise correlate of the actual microbial load in the blood, providing information about
the presence/status of an infection and the efficacy of bacterial clearance (e.g., due to an
antimicrobial treatment). By demonstrating successful microbiome monitoring in CLP
by NGS of cfDNA, we provide an effective approach to be utilized for individualized
follow-up and/or diagnostics in the clinics, as already suggested elsewhere [41].

Any individualized treatment in sepsis requires in-depth insight into its pathophys-
iology and comprehension of the pathobiome dynamics in an infected host. The CLP
model has been widely used in preclinical research, given its many translational advan-
tages [42,43]. We showed that even very small blood volumes are sufficient for reliable
cfDNA diagnostics, indicating its robust applicability. This new applicability extends
also to laboratory animal models of disease in which only small blood volumes can be
collected in repetitive (survival) fashion, making investigation of the pathobiome dynamics
in individual animals challenging but possible. Our findings therefore suggest that cfDNA
represents a precise biomarker for pathogen identification in septic individuals in order
to establish routine NGS-diagnostic workflows and to support clinical decision making in
the future.

Our study has several limitations. Young female mice are not an optimal represen-
tation of typically elderly patients of different sexes who frequent suffer from various
comorbidities [44] and often undergo various invasive procedures. In addition, the lon-
gitudinal follow-up is available in only a few mice (mostly 2–3 per group), and not each
time point was examined per mouse due to blood volume sampling restrictions and
the pioneering character of the study. This analytical work must be further expanded
in a separate study to provide more comprehensive insight into those protracted and
heterogeneous dynamics.

5. Conclusions

The abovementioned points indicate the need to investigate sepsis progression on
an individual level, especially with respect to future use in clinics. It is expected that
general species dominance or microbiome composition in one compartment does not allow
conclusions to be made about complex sepsis development in a patient. Hence, individual
and continuous monitoring must be undertaken to obtain diagnostic information that is
needed for correct treatment. However, further validation in human patients is needed to
overcome the limitations of the mouse model.
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Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/microorganisms11030627/s1. Table S1: Assignment of mouse numbers
used in figures to unique mouse IDs. Two sham mice (mouse 3602 for 0 h and mouse 3608 for 72 h)
are not shown in the main figures. Within the corresponding samples, Shigella (Shigella boydii and
Shigella flexneri) and Yersinia pestis DNA fragments contributed to those species marked as “others.”
As sterile conditions were not given during sampling and contaminations are more likely to arise
in control samples with low concentrations and complexities, these reads should be considered as
contaminants. Additionally, we excluded Cutibacterium acnes, Malssezia globosa, Aeribacillus pallidus,
Serratia liquefaciens, Staphylococcus epidermidis, and Debaryomyces fabryi as frequently observed (skin)
contaminants from our data and suggest excluding them also in further studies. Figure S1: Health
status parameters of mice. (A): cfDNA concentrations in terminal blood samples given in ng cfDNA
per milliliter blood of different mouse cohorts. (B): Body temperatures of different mouse cohorts.
For all groups, the mean with standard deviation is shown. AB: antibiotic treatment. Figure S2:
Principal component analysis of all feces samples at 0 h, 24 h, and 48 h. Time points are indicated
by the color and shape of the symbol, and bold symbols are centrosomes of corresponding group.
(A): PC1 vs. PC3. (B): PC2 vs. PC3. (C): Corresponding scree plot. Figure S3: Pathobiome diversities
in different mice and compartments over time. Pathobiome diversity and richness are indicated
by the Shannon–Wiener diversity index and the ACE richness index. (A) and (B): Mouse 1 and
2 corresponding to Figure 5 are shown. Error bars indicate standard error. (C)–(E): Pathobiome
diversity and richness are shown for feces at 0 h (n = 18), 24 h (n = 6), and 48 h (n = 4) and for
lavage and blood at 24 h, 48 h, and 72 h (for each sample type and time point n = 3). Mean and
standard error of the mean are shown. Figure S4: Range of molecules/mL of exemplary samples.
(A) Human patient samples (n = 40) and (B) murine samples (terminal blood, n = 23) for the most
prominent species; mean with standard deviation is shown. Figure S5: Characterization of blood
samples. (A): Comparison of pathobiome composition of serial and terminal blood samples in two
mice. The abundance of most prominent species is shown for both sample types in mouse 3865 and
mouse 3860 24 h after CLP intervention. (B): Range of molecules/mL of serial blood samples for the
most prominent species in 80 CLP mouse samples; mean with standard deviation shown. Figure S6:
Cytokine levels of two mice. Cytokine levels of IL1β, IL-2, IL-6, IL-10, IL-17, IFN-γ, KC, MCP-1, and
TNF-α are shown for mice 3876 and 3880 at different time points from −24 h to 72 h.
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