Using URANS CFD to Optimize the Pitching
Motion and Path of the Cycloidal Rotor Blades

Master Thesis
by
Dipl.-Ing. (FH) cand. aer. Korbinian Kasper

conducted at the
Institute of Aerodynamics and Gas Dynamics
at the University of Stuttgart

Stuttgart, August 2022

INSTITUT FUR AERODYNAMIK
UND GASDYNAMIK ﬁ A @

Universit at Stuttgart

DIREKTOR: PROF. DR.-ING. EWALD KRAMER

Pfaffenwaldring 21, 70550 Stuttgart, Tel (0711) 685-3401, Fax 3402, email:kraemer@iag.uni-stuttgart.de

Master Thesis for Korbinian Kasper

Using URANS CFD to Optimize the Pitching Motion and Path of the
Cycloidal Rotor Blades

Cycloidal rotors have the advantages of providing 360° thrust forces and having constant flow
velocities on their blades. However, they generate and operate in a downflow that makes it
impossible to avoid considerable parasitic drag generation while maintaining a circular blade
path. An overset mesh method for cyclorotor simulations which allows any motion function was
developed at TAG.

The theme of the thesis is thus to investigate novel blade pitch and motion paths and
then study their effect on rotor energy efficiency. The objective is to obtain a better quali-
tative evaluation of the influence of the cyclorotor patch on the energy efficiency of these
rotors.

Milestones:

e use the current OpenFOAM-based cyclorotor methodology and build an easily adaptable
2D rotor mesh by merging a structured blade to an unstructured cartesian background

e implement a two-dimensional spline-based blade motion control for both path and pitch
where spline parameters are adjusted to ensure continuity of the second derivative

e rely on numerical eucharistic algorithms to optimize both path and pitch leading to the
maximal figure of merit (FoM)

e evaluate the impact of the number of blades on the optimal path and pitch functions

Date Issued: Januar 25, 2022 Date Submitted: August 12", 2022

Student: Korbinian Kasper Advisor: Louis Gagnon

Examiner 1: Manuel Kefller Examiner 2: Ewald Kramer

Statement of Originality

This thesis has been performed independently with support of my supervisor. It contains no material
that has been accepted for the award of a degree at this or any other university. To the best of
my knowledge and belief, this thesis contains no material previously published or written by another
person except where due reference is made in the text.

I further declare that I have performed this thesis according to the existing copyright policy and
the rules of good scientific practice. In case this work contains contributions of someone else (eg.
pictures, drawings, text passages etc.), I have clearly identified the source of these contributions, and,
if necessary, have obtained approval from the originator for making use of them in this thesis. I am
aware that I have to bear the consequences in case I have contravened these duties.

Date, Signature

Erklarung

Hiermit versichere ich, dass ich diese Bachelorarbeit selbststéndig mit Unterstiitzung des Betreuers
angefertigt und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe. Die Arbeit
oder wesentliche Bestandteile davon sind weder an dieser noch an einer anderen Bildungseinrichtung
bereits zur Erlangung eines Abschlusses eingereicht worden.

Ich erkléare weiterhin, bei der Erstellung der Arbeit die einschldgigen Bestimmungen zum Urheberschutz
fremder Beitrage entsprechend den Regeln guter wissenschaftlicher Praxis eingehalten zu haben. Soweit
meine Arbeit fremde Beitrage (z.B. Bilder, Zeichnungen, Textpassagen etc.) enthilt, habe ich diese
Beitrige als solche gekennzeichnet (Zitat, Quellenangabe) und eventuell erforderlich gewordene Zus-
timmungen der Urheber zur Nutzung dieser Beitrége in meiner Arbeit eingeholt. Mir ist bekannt, dass
ich im Falle einer schuldhaften Verletzung dieser Pflichten die daraus entstehenden Konsequenzen zu
tragen habe.

Abstract

This master thesis describes the procedure for optimisation of the pitching and the trajectory for
cyclorotor blades to increase the efficiency based on 2D CFD calculations. The open-source software
OPENFOAM with URANS is used for these CFD analyses. Considering various numbers of blades
(one to four), the use of the chimera technique is necessary using the built-in OPENFOAM solver
overPimple DyMFoam. B-splines describe the arbitrary pitching and trajectory implemented in separate
OPENFOAM motion classes. Two possible modes of drive are investigated for the cycloidal system;
‘constant velocity’ and ’constant angular velocity’. The DAKOTA toolkit performs the parametric
optimisation with an evolutionary algorithm. A PYTHON script initialises, monitors and evaluates
each CFD case.

Fourteen optimisation setups are carried out. An increase in the efficiency for each run is achieved.
The main reason for the improvement is the better alignment of the blade forces to the global thrust.
Another reason is that the optimised motion induces force peaks, which leads to an increase in
thrust. The best result is captured for a four-blade case with a circular motion and a pitching path
optimisation. The figure of merit is 0.758. Two further optimisation runs with higher Reynolds
numbers are carried out for the two-blade case with a circular motion. Despite the pitching paths’
similarity, the figure of merit can be significantly increased (+8.8% for double Reynolds number
and +17.7% for fourfold Reynolds number). Due to a false precalculation of the trajectory, the
optimisation results for the 'constant angular velocity’ drive are invalid.

Abstract

Die vorliegende Masterarbeit beschreibt das Vorgehen zur Optimierung des Anstellwinkels sowie der
Bahnbewegung von Rotorblattern von Cyclorotoren in Hinblick auf eine Effizienzsteigerung auf Ba-
sis von 2D numerischen Stromungsberechnungen. Fiir diese CFD Analysen wird das quellenoffene
Softwareprogramm OPENFOAM verwendet. Aufgrund der Anzahl der untersuchten Blatter (1 bis
4) wurde die Chimera-Technik eingesetzt, welche durch den OPENFOAM Solver overPimpleDyM-
Foam zur Verfiigung steht. Zur mathematischen Beschreibung der Anstellwinkels und der Trajektorie
werden B-Splines verwendet, welche in separate OPENFOAM Klassen implementiert werden. Zwei un-
terschiedliche Antriebe des Cyclorotors werden untersucht; ’konstante Geschwindigkeit’ und ’konstante
Drehzahl’. Die Parameteroptimierung wird mit der Software DAKOTA durchgefiihrt, wobei ein evolu-
tiondrer Algorithmus zur Anwendung kommt. Mit Hilfe einens PYTHON Skripts werden die einzelnen
CFD Berechnung intialisiert, iiberwacht und ausgewertet.

Insgesamt werden 14 unterschiedliche Optimierungléufe durchgefiihrt, wobei fiir alle eine Steigerung
der Effizienz erreicht wird. Der Hauptgrund fiir die Verbesserung liegt zum einen an der giinstigeren
Ausrichtung der einzelnen Blattkrifte in Richtung des resultierenden Schubs. Des weiteren fithren
die optimierten Blattbewegungen zu Kraftspitzen, wodurch der Schub deutlich gesteigert wird. Die
grofite Steigerung wird bei einem 4-Blatt Rotor mit Kreisbahn und einer Anstellwinkeloptimierung
erreicht. Die entsprechend Leistungsgiitezahl betragt 0.758. Fiir den 2-Blatt Zyklorotor werden zustéat-
zliche Optimierung mit hoheren Reynoldszahlen durchgefiihrt. Trotz der Ahnlichkeit der optimierten
Anstellwinkelverldufe zueinander ist eine nennenswerte Verbesserung der Leistungsgiite zu verzeich-
nen (+8.8% fiir doppelte Reynoldszahl and +17.7% bei vierfacher Reynoldszahl). Aufgrund einer
fehlerhaften Vorabberechnung der Trajektorie sind die Ergebnisse fiir die Optimierung fiir den Antrieb
"konstante Drehzahl’ nicht verwertbar.

vil

Contents

Topic

Statement of Originality

Abstract
Nomeclature
Abbreviati
1 Introduction

2 Theory

2.1 Computational Fluid Dynamics
2.2 OpenFOAM solver,
2.3 Turbulence

24 Chimera method
2.5 Optimisation

3 Finite Vol Model

3.1 Geometry
3.2 Finite Volume Mesh
3.2.1 Single blademesh,
322 OQversetmesh
323 Dualoversetmesh
4 Input data
4.1 General propertieso
1.2 I&[g!sls: S!i !1Ii¥§: -----------------------------
4.2.1 Constant velocity drive
4.2.2 Constant rotation speed drive
4.3 Turbulence properties
44 CFDinput
5 NURBS
5.1 B-Splines
5.2 Derivatives
5.3 Arclength
54 Curve Fitting
DS Curvature e

6 Arbitrary movement

6.1 Pitching o o

1X

vii

Xii

xiii

0 O U= W W

10
10
13
14
16
17

19
19
20
20
21
21
22

25
26
27
27
28
28

29

6.2 Trajectory L

6.2.2 Counter angle e
6.2.3 Velocity e

7 Implementation
7.1 Codesnippets e

7.2 Pitching
7.3 Trajectory

8 Optimisation

81 Evaluation
8.1.1 Ideal power e
8.1.2 Real power e
8.1.3 Translation power
8.1.4 Rotation power

8.2 Setup e

8.3 Procedures e e
8.3.1 Pitching e
8.3.2 Trajectory L

84 Dakota e

9 Amendment
10 Results

10.1 Reference cases

102 OVErVIEW o v o e

l!).;i (:Q“S:ll]{ii(z“ ...

10.4 Single blade
10.4.1 Opti-1P
10.4.2 Opti-1TV . . . e
10.4.3 Opti-1BV

105 Two blades e
10.5.1 Opti-2P e
10.5.2 Opti-2TV . . . o e
10.5.3 Opti-2BV

10.6 Three blades
10.6.1 Opti-3P e
10.6.2 Opti-3TV
10.6.3 Opti-3BV e

0.7 Four blades e
10.7.1 Opti-4P e
10.7.2 Opti-dTV . . . e
10.7.3 Opti-4BV e

10.8 Constant angular velocity

11 Summary

12 Acknowledgements

Bibliography

48
48
49
o1

59
99
59
60
61
62
63
65
65
67
72

76

78
80
81
83
87
87
90
93
96
96
100
103
107
107
110
113
116
116
119
122
126

128

130

131

Appendix 137

A Input Data e 137
B Dakota 138
C Python Script o 140
C.1 operateDict.py L 140
C.2 Control.py e 142
D OpenFOAM dicionaries 0 i 154
D.1 initialConditions 154
D.2 fvSchemes e 156
D.3 fvSchefvSolutionmes 157
D.4 dynamicMeshDict 161
E OpenFOAM motion classes 164
E.1 bSplinePitching 164
E.2 bSplineMotion 167
E.3 delayRotatingMotion 173
] Control variables e 175

X1

Nomenclature

Symbol

Latin Symbols
c

CPower,rot
CPower,tra

WR
X,Y

Greek Symbols

(SIS QETE%QQ(SDD

Wdiss

Wrot
Superscript
P

t

/

Subscript
len
pit

tra

Unit

B

5,2 E

)|

Definition

chord length

coefficient for rotation power
coefficient for translation power
depth of mesh domain

force

turbulence kinetic energy
element of knot vector
control variable for splines
basis function of spline
number of blades

radius

Reynolds number

period

simulation time

free stream velocity

velocity

rotor width

coordinates of spline

Angle between the tangent of trajectory and mean line of the airfoil
Angle between the horizontal and the global thrus vector
coordinate vector of spline

Angle between the tangent of trajectory and the vertical

knot vector

kinematic viscosity

fluid density

curvature of trajectory

Counter angle, between the mean line of the airfoil and the vertical
Azimuth angle, in x-y plane

specific turbulence dissipation

angular velocity

corresponds to pitching spline
corresponds to trajectory spline
derivative of function

corresponds to lenght spline
corresponds to pitching spline
corresponds to trajectory spline

xil

Abbreviations

Symbol

CFD
CFL

cs

DP

EA
FOM
FVM
TAG
NACA
NURBS
OF
PISO
SIMPLE
SST

Definition

Computational Fluid Dynamics
Courant-Friedrichs-Lewy

Coordinate System

Design Point

Evolutionary Algorithm

Figure of Merit

Finite Volume Mesh

Institute of Aerodynamics and Gas Dynamics
National Authority Comitee for Aerodynamic
Non-Uniform Rational B-Splines

Objective Function

Pressure-Implicit with Splitting of Operators
Semi-Implicit Method for Pressure Linked Equations

Shear Stress Transport

xiii

1 Introduction

In contrast to common helicopters, a cyclorotor produces the thrust by rotating the blades parallel to
the rotation axis. To achieve a resulting force acting in one direction, the angle of attack of each blade
must be adjusted during the rotation. This is mainly done with a push/pull rod system supported
excentric to the rotation axis (see Figure 1.1).

Trajectory

/ Pitching rod

Pivot rot

ot Rotor blade

— Rotor pivot point

AR N
/s

Pitching rod
support

Joint

Eccentricity

Figure 1.1: Functional principle of a cyclogyro.

A suitable thrust direction is needed for different manoeuvres like ascending and forward flight. By
changing the position of the rod support, the pitching progression can be modified and the thrust di-
rection, all without tilting the aircraft, which is one advantage of cyclorgyros over helicopters. Another
benefit of the cyclorotor system is that the dynamic pressure remains constant along the whole blade
length. This leads to better utilisation of the blade compared to a helicopter blade, where aerodynamic

force varies.

However, there are also disadvantages. First and foremost, the vertical movement of the blades mainly
produces parasitic drag. This movement occurs twice during a rotation and is an intrinsic property of
cyclorotors

In the past, different approaches have been taken to determine the characteristics and behaviour of

cyclogyros. So did the NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS (NACA) in the early
thirties of the last century. They published two reports dealing with the cyclogyro, where the first

document TN 467 [1], contains an analytical attempt to calculate the characteristic parameters like
thrust and required power. A prototype of a cyclogyro and the concerned measurements in a wind
tunnel are the content of the report TN 528 [2]. A comparison to the former analytical calculation was
carried out for different Reynolds numbers and free stream velocities.

Due to technological progress, the computational fluid dynamics and enhanced materials like fibre-
reinforced plastics gave the cyclorotor a possibility for a comeback. Whereas enthusiastic amateurs
build radio-controlled toys, serious companies are designing prototypes for commercial usage like Cy-
cloTech GmbH [3].

Over the past few years, scientists at the Institute of Aerodynamics and Gas Dynamics have researched
the cyclorotor in hover flight. The objective of the investigations is to obtain a better knowledge of the
cyglogyro’s flow conditions and to reduce the power consumption or increase the efficiency, respectively.
The primary tool for the research is computational fluid dynamic (CFD), but a prototype of a cyclogyro
also came into use. One idea to improve the efficiency is to use an alternative pitching path or even a
non-circular movement of the blades. The advantage of this new movement could lead to a reduction
of the parasitic drag and avoid a stall. The pitching and trajectory for maximum efficiency shall be
found by optimisation.

Based on this intent, this thesis came up, where a procedure shall be designed to optimise the pitching
path as well as the trajectory of the blades. Adapted from existing calculations of cyclogyros, a CFD
setup has to be built, which enables an arbitrary pitching path and trajectory. The movement is to
be implemented using splines, where the corresponding parameters shall guarantee a continuity of the
paths. The computational fluid dynamic is carried out by the open-source software OPENFOAM. The
tool kit DAKOTA 1is used for optimisation.

2 Theory

This chapter gives a short overview of the basic theory.

2.1 Computational Fluid Dynamics

There are many numerical approaches to solving differential equations (DE), like the Finite Difference
Method for ordinary DEs. The Finite Element Method is used to solve a structural problem, which is
the means of choice for partial DEs. For the computational investigation of flow processes of fluids and
gasses, the Finite Volume Method (FVM) has been established, as this method can handle (hyperbolic)
conservation equations well, see Munz [4].

To obtain the physical quantity of a flow field, density p, velocity vector v, pressure p, and energy e,
the following equations need to be solved in each volume cell.

Mass conservation:

pe+V-(pv)=0.

Momentum conservation:

(pv)e+V((pv)ov)+Vp=V . -T+g.

Energy conservation:
ee+V-(v-(e+p)=V-(tv)-V-q+Q .
The subscript ¢ marks the derivative with respect to time, i.e. % = p;. The symbol "o" represents

the dyadic product; the 7 is the friction tensor, the g vector contains the external forces, q is the heat
flux through the boundaries, and Q is the amount of heat supplied from outside [4].

These three conservation equations together form the Navier-Stokes equations for Newtonian fluids.
Depending on the state of the problem, steady or transient flow, compressible or incompressible, the
equations can be simplified. Many numerical solvers for different flow problems are mostly embedded
in commercial software products such as ANSYS FLUENT or STAR-CCM+. Nevertheless, there is
also free, open-source software like OPENFOAM, released in 2004, which provides only the numerical
solvers and simple mesh generators but no post-processing. This tool is used for this thesis with the
release OpenFOAM-v2112.

2.2 OpenFOAM solver

To obtain a stable CFD calculation, the most explicit solvers must meet particular criteria, the so-
called CFL condition, invented by Courant-Friedrichs-Lewy. This stability criterion depends on the
velocity with which information is transported through the mesh, the time step At and the minimum
cell length Az, [4].

At
CFL=la|-— <1
lal - o
If the CFL value is less than one, it is ensured that the information is transported from one cell to
another without skipping a cell. With this equation, the time step can be estimated.

_Aa:

o

At

A safety factor ¢ was introduced to counteract numerical inaccuracies. With this value, the Courant
number o shall be less than one, [4].

One of the used OpenFOAM solvers is the pimpleFfoam, which is applicable for Newtonian fluid’s
incompressible, turbulent flow. This algorithm combines two further solvers, a steady-state solver
simpleFoam and the transient solver pisoFoam.

The general steps of the SIMPLE algorithm are as follows:

1. Based on an initial guess of the pressure field p;ns, the momentum equation provides an initial
velocity field vint.

2. The Poisson equation calculates a pressure correction Ap, which represents the difference between
the correct pressure field peo.- and the initial pressure field p;.¢.

Peorr = Pinit + AP
3. The pressure field and the velocity are updated to obtain peor and veop.

4. Further transport equations like turbulence and temperature can be solved.

5. A residual checks the quality of the results. If the quality is suitable, the calculation will proceed
with the next time step. If not, the algorithm starts the loop over again, where the current
results are used as the initial parameters.

In contrast, the P1so algorithm has an inner loop, which calculates the steps 2, 3 and 4 multiple times
until the solution converges. However, the computational expensive and slow momentum equation
(step 1) is calculated only once. This approach requires a CFL number smaller than one, which entails
a very small time step.

The PIMPLE algorithm consists of two loops. The inner loop, which is the P1so algorithm, and the
outer loop. The number of performed loops Nipner and noyter can be defined. This adjustment enables
the user to get a stable calculation with a CFL value or a Courant number much higher than one, see
Holzmann |[5].

Start of time step
initial value: Pinit

Start of time step
initial value: Pinit

‘ 1. Momentum equation ‘ | 1. Momentum equation |
Vinit ! Vinit
‘ 2. Pressure correction ‘4— | 2. Pressure correction |<7
Ap Ap
' Y
NSimple ‘ 3. Update pressure & velocity ‘ N Piso Nouter | 3. Update pressure & velocity | Ninner
pCOT‘T‘> UCOT‘T‘ pCOTT, UCOTT
' 4
‘ 4. Further transport equation ‘ | 4. Further transport equation |
' Y
5. Residual 5. Residual
4 y

No No

wme? —_— Suitable?
Yes Yes
4 Y
Next tir‘ne step Next time step
(a) simpleFoam / pisoFoam (b) pimpleFoam

Figure 2.1: The procedure of different OPENFOAM solver algorithm in accordance with Jiyuan, [6].

Another OpenFOAM solver is the overPimpleDyMFoam, which is based on the pimple algorithm with
the extension for chimera interpolation between multiple meshes [7].

The user can control the solvers with different parameters and flags to get reasonable results. Extensive
knowledge is necessary to correctly adjust the solver, particularly for overset use. The CFD cases for
this thesis are based on customised input templates, which are applicable for investigating cyclorotors
(see section 4.4).

2.3 Turbulence

Flow processes are almost subject to turbulence, which can be seen in the form of eddies in the
water or smoke. The flickering over the asphalt on a hot day is also the result of turbulent air. The
Navier-Stokes equation implemented in CFD simulations can determine this stochastic movement of
fluids. This equation is implemented in direct numerical simulation (DNS) and requires a very fine
grid with tiny time steps. However, the tremendous computational effort required for these analyses is
disproportionate mainly to the results, which are also rarely needed at this resolution. The introduction
of specific turbulence models circumvented this problem.

One of the models is the unsteady Renolds averaged Navier Stokes (URANS) equation, adding a stress
tensor to the momentum equation [8]. The k —w SST-Model, is a sub-group of RANS and is used for
this thesis.

2.4 Chimera method

The chimera method, or overset method, as it is also called in OpenFOAM, is a method to interpolate
between two or more finite volume meshes (FVM). In this approach, non-matching meshes can be used,
necessary for complex geometries, i.e. landing gears, and relative body motion can be implemented,
i.e. to consider flaps deflection and propeller rotation. The procedure will be explained on the basis
of the current task, a moving blade.

A background mesh covers the whole domain flow field and the component mesh containing the airfoil.
Figure 2.2 shows an example of an overset setup. For the calculation, OPENFOAM adjusts the
behaviour of specific cells [9]. The calculated cells are normal FVM cells, marked blue in Figure 2.3.
The field information will be transferred between the meshes at the interpolation cells, marked grey.
Furthermore, there are the blocked cells in which the moving body lays. These cells will be neglected
for one specific time step, marked red in 2.3(a). Based on the pimple algorithm, the solver handling
the overset method is the overPimpleDyMFoam.

With all the benefits that the Overset offers, numerical difficulties are possible. The most apparent
problem is the non-physical pressure fluctuation, a well-known phenomenon [10]. Many runs with
various solver options were tested, and even a different mesh approach, according to [11], was carried
out (see Subsection 3.2.3), but the pressure oscillation remained.

This phenomenon also has an impact on the resulting forces and moments. A comparison of the thrust
for one blade cyclogyro is shown in Figure 2.4, once with an entire mesh motion and once with overset.
There is a considerable deviation between these thrust curves. However, the deviation between the
mean thrust of the single case Tsingle = 0.537 N and the overset case T ppeser = 0.543 N is about 1%,
which is acceptable. The noise of the overset curve is a result of the chosen relaxation factor.

a) Background mesh for flow field. b) Component mesh of airfoil.

(c) Merged mesh.

Figure 2.2: Example for a overset mesh setup.

(a) Cell types of the background mesh. (b) Component mesh of airfoil.

Cell types:
B calculated cells

[interpolation cells
W blocked cells

(c) Merged mesh.

Figure 2.3: Various cell types for overset calculation.

3.0

—— Single blade

25l Overset

2.0

1.5

1.0

Thrust in [N]

0.51

0.0 | ‘ - ! - - - - ! | !
0 30 60 90 120 150 180 210 240 270 300 330 360
Yin[°]

Figure 2.4: Comparison of the thrust over azimuth angle for a single blade mesh and an overset mesh.

2.5 Optimisation

The tool kit used for the optimisation is DAKOTA, which was initiated in 1994. The software offers
different algorithms for optimisation and uncertainty investigations, parameter estimation, design of
experiments and sensitivity analysis. Independent of the research subject, the main procedure is that
DAKOTA sends a set of variable values to a user’s simulation code. On the basis of the received objective
functions (OF), DAKOTA determines a new set of values, see Figure 2.5. DAKOTA determines a new
set of values based on the received objective functions (OF) (see Figure 2.5).

This loop is performed until the minimum of the objective functions has been found for a given
convergence tolerance. Different constraints concerning the variable and the method can be defined.

DAKOTA

DAKOTA
Parameters File

DAKOTA
Results File

| Data Data

| Pre-processing Post-processing |

Simulation Simulation
Simulation
Code

Figure 2.5: Flow chart of the DAKOTA procedure according to the User’s Manual, [Dakota 1]|. The dotted
lines represent the data transfer, which has to be implemented by the user.

DAKOTA provides many methods for local as well as global optimisation. For optimising the pitching
path and trajectory, a global method with EVOLUTIONARY ALGORITHMS (EA) is chosen. As the
name suggests, this algorithm is inspired by biological evolution with the ’survival of the fittest’. The
procedure is as follows:

e The algorithm generates design points (DP), which consist of randomly chosen values within the
boundaries. This set of unique design points forms the first population, a string like a DNA.

e The resulting objective functions, provided by the simulation code, are assessed, and the ’fittest’
or best OFs are selected.

e A crossover technique exchanges the variables of the best OFs (parents) and generates new design
points (children).

e The 'mutation’ is implemented by changing some variables of a design point with new random
values.

e Parents and children form the second population, which are sent to the simulation code.
Figure 2.6 shows an example of an evolutionary algorithm for two populations.

The user can choose how the selection, crossover and mutation are performed. autoref shows the
principle of a genetic optimisation.

First population

Vi
V2
V3

|

Second population @ ® @

Vi
V2

V3

—_—

V4
V5
Ve

X

vr
Vs
Vg

|

V10
Vi1
V12

Vi
V8
V3

v
Vs
V9

X

v
Vi3
Vi4

Figure 2.6: Example for the evolutionary algorithm.

——

Mutation

3 Finite Volume Model

This section describes the basic geometry and the necessary mesh derived from them.

3.1 Geometry

The airfoil of the rotor blades is always the symmetric NACA0012 [12]| with a chord length of 1 m. For
the multi-blade calculation, the airfoils’ trailing edge is shortened by about two percent of the total
length to obtain a better mesh in this region. Both airfoil trailing edges are closed with an arc, which
enables a good boundary layer extrusion growth. The ratio of chord length to the radius of rotation is
given to be Rc = 1.5 as this value offers good efficiency for cycloidal rotors.

chord length ¢ 1 2 (3.1)

¢= radius "R 3

Therefore, the resulting radius is 1.5 m. The depth of the 2D domain is set to 1 meter. The arc length
of the circular trajectory is

Lyre =27 R =31 (3.2)

This length is maintained constant for all optimisation runs, independent of the trajectory’s shape.

The rotor is turning in the counter-clockwise direction, starting at the right-hand side with an azimuth
angle of ¥ = 0°, see Figure 3.1. The aerodynamic centre of the blade lays at 25% of the chord length,
which is also the pivot point for pitching. As a result of the rotation, there exists no upper or lower
side of the blade. Therefore the blades are divided into an inner and an outer side.

Figure 3.2 shows the used coordinate systems necessary for the calculation and the postprocessing.
There is a global Cartesian x-y system and three local systems with their origin in the blades’ aerody-
namic centre:

e a local Cartesian x-y system CSj,., remains parallel to the global system.

e a tangential coordinate system CSi.,, where the x-axis stays tangential to the trajectory and
points against the movement; the y-axis points outwards, see Figure 3.2(a)).

e an aerodynamic coordinate system C'Sger0, Where the x-axis lies on the blades’ chord line pointing
toward the trailing edge - direction of drag. The y-axis is pointing outwards, as shown in Figure

3.2(b).

Relevant angles are defined as follows:

G azimuth angle
Qg pitching angle, between the tangent of trajectory and chord line
10} counter angle, between the tangent of trajectory and the vertical

0 = ¢ — oy difference angle

10

4 Yglobal

II A Ylocal

> Xlocal

/ Outer side

Inner side

> Xglobal

I11 IV

Figure 3.1: Basic geometrical definitions.

(a) Coordinate system tangential at the (b) Aerodynamic coordinate system, C'Sqero-
trajectory, CSian.-

Figure 3.2: Geometrical definition and coordinate systems.

During the optimisation, the number of blades varies from one to a maximum of four, ngjge = [1...4].
The initial position of the blades is on the circular trajectory with no pitching angle (see Figure 3.3).
All geometrical dimensions are summarised in Table 3.1.

11

blade 0

dh

(a) Single blade.

blade 120

blade 0

/N

blade 240

(c) Three blades.

blade 180 blade 0

(b) Two blades.

blade 90

blade 180 blade 0

blade 270

(d) Four blades.

Figure 3.3: Initial positions of the blades for all considered combinations.

Table 3.1: Listing of all geometric dimensions used over all cases.

Name Symbol Value Unit Source

Type of airfoil NACA0012 [-] project definition

Chord lenth, single blade ¢sp 1.0011 [m] calculated

Chord lenth, multi blade cyp 0.9922 [m)] calculated

Chord-Radius ratio R, 2 -] project definition

Radius of rotation R 1.5 [m] calculated du to given ratio
Number of blades Nplade 1,2, 3,4 -] project definition

Depth of domain d, 1.0 [m] unit value

12

3.2 Finite Volume Mesh

Depending on the number of blades, different approaches for generating finite volume meshes (FVM)
are performed.

Due to the expected high number of single CFD cases necessary within the optimisation run, the
main focus relies on low computational intensive meshes with a small number of volume cells. This
approach is especially true for the overset method, where a substantial amount of field data must be
interpolated between the blade and the background mesh. However, such coarse FVMs could neglect
significant effects like separation or stall. The y™ parameter, which should be equal to or less than
one for a correct boundary layer calculation, reached values about two and highly depends on the
blades’ motion: the pitching angle and position at the arbitrary trajectory. The value exceeds only
in a narrow range, which is acceptable. Figure 3.4 and Figure 3.5 shows the y* parameter for two
optimisations. A detailed mesh convergence study was not carried out because satisfying accuracy was
already determined for such parameters by Huang, [13], and Gagnon/Zimmer [14].

The distance between the farfield boundary to the blade remains constant and was defined to be 70
times the chord length.

1.5e+00

1.2

1

0.8
—0.6
—04
—0.2
— 0.0e+00

yPlus

2.0
1.51

1.0 “7 ~ \/ Y

0.5+

yt -]

—— Inner
—— Outer

0.0 - ; , ; : :
0 45 90 135 180 225 270 315 360
Win [°]

Figure 3.4: y© parameter for one blade optimisation (Opt-1BV).

13

1.5e+00

1.2
1
0.8
— 0.6
—04
—0.2
— 0.0e+00
—— Inner

== 1N
NEEA
v

0 45 920 135 180 225 270 315 360
Yin[°]

yPlus

y* [

0.0

Figure 3.5: y* parameter for two blade optimisation (Opt-2BV).

3.2.1 Single blade mesh

For the single blade case, the whole mesh is moved in translation and in rotation, and so a simple mesh
extrusion from the blade contour to the farfield is done with the software POINTWISE (see Figure 3.6

and Figure 3.7). Table 3.2 lists the mesh generation properties for the single mesh. The single blade
mesh consists of 23 920 volume cells.

Table 3.2: Listing of the mesh generation properties.

Initial As Growth rate Number of steps Method
2.107*m 1.05 10 hyperbolic
- 1.1 105 hyperbolic

14

) Farfield of single blade mesh. (b) Closer look at NACA0012 blade mesh.

q1

Figure 3.6: Mesh for single blade CFD.

al

) Mesh at the leading edge. (b) Mesh at the trailing edge.

Figure 3.7: Closeup view of the single blade mesh.

3.2.2 Overset mesh

The overset method enables an arbitrary movement for more than one blade (for theory description,
see section 2.4). The local blade mesh is generated by POINTWISE with 6 344 volume cells (see 3.8(b)).
The blade for the overset has a finer boundary layer mesh than the single blade mesh. This approach
is necessary to reduce the influence of pressure oscillation. The mesh generation properties are in

[able 3.3.

The background mesh is generated within two steps. At first, a quadratic background mesh is built
with an edge length of 140 m and a cell length of 2.4 m in x- and y-direction (one cell in depth). The
split hex, mesh generator SNAPPYHEXMESH came is used for the refinement of the mesh, controlled
by an OPENFOAM dictionary. Five concentric regions ensure an adequate mesh propagation starting
from a coarse block mesh (see Table 3.4 for properties). For the CFD analysis with a non-circular
trajectory, the last refinement step is defined by an individual geometry with a refinement level of 6.
A python script generates an STL geometry representing the outline created by the blades’ movement
over one rotation. A closer look into the algorithm is given in subsection 8.3.2. As a result of the
unique meshing for each case, the number of volume cells varies. One can estimate the extent of the
meshes based on the values given in Table 3.5.

70m Jy

(a) Standard background mesh of flow domain, 19 500 cells. (b) Component mesh of blade, 6 344 cells.

Figure 3.8: Mesh parts for overset method.

Table 3.3: Listing of the mesh generation properties.
Initial A s Growth rate Number of steps Method

1-1074 1.05 10 hyperbolic
- 1.1 12 hyperbolic
- 1.15 28 hyperbolic
- 1.175 5 hyperbolic
- 1.05 6 algebraic

16

Table 3.4: Listing of the mesh generation properties.

Radius Refinement level
1 6 m)
2 10 m 4
3 18 m 3
4 30 m 2
5 45 m 1

Table 3.5: Number of volume cells for different number of blades; for the pitching optimisation.

Number of blades 1 2 3 4
Number of volume cells: 23920 32188 38532 44 876

3.2.3 Dual overset mesh

As mentioned in Section 2.4, there are small pressure fluctuations all over the flow field, see Figure 3.10.
These oscillations are most substantial near the rotor blades but extend into the farfield. During
an online training, held by wolf dynamics, [11], they presented a dual overset to eliminate pressure
problems and increase accuracy. The approach is to add another mesh between the blade mesh and
the background. The advantage for the cyclogyro is seen in the uncoupling of the rotation and the
translation. A circular mesh is generated in which the blade is embedded (see Figure 3.9). Contrary
to expectations, the fluctuation still occurrs, with the execution time increasing simultaneously due to
the higher mesh interpolation effort. Since it was not possible to suppress the pressure fluctuations
with this approach, the idea of the dual overset mesh was discarded.

Background mesh Cell types:

B calculated cells
O interpolation cells
B blocked cells

Circluar mesh

<
n
Q
=
)
e
i
M

(a) Merged mesh. (b) Cell types.

Figure 3.9: Dual mesh.

17

Figure 3.10: Pressure fluctuations as a result of the overset method. The black wireframes represent the
interpolation cells.

18

4 Input data

All essential input values and properties for the CFD solvers are described in this section.

4.1 General properties

With few exceptions, the Reynolds number is set to 50 000 and remains constant for most investigations.
The upstream flow for the blades is then

Re -
°Y o075, (4.1)

UBlade = c s

with the kinematic viscosity for 22°C of v = 15.5- 1076 %2 [15].

The angular velocity for a circular movement with a radius of 1.5 m is

Wrot = UBlade * 1 = 0.5166 % . (42)

The duration of one revolution is the period

p
Tp =" =12.1608 s . (4.3)
Wrot

The shape of the trajectory is adjusted during the optimisation. However, the arc length and thus
period is constrained to remain constant.

For the air density, a standard value of p = 1.225% is chosen.
For a few number of optimisation runs, higher Reynolds numbers are carried out, see Table 4.1.

The optimisation is carried out for the hovering flight. Therefore the free stream velocity Uy, of the
farfield is zero.

Table 4.1: Considered Reynolds numbers, rotational speed and period.

Reynolds number Rotational speed Period

50 000 0.5167 1 12.1608 s
100 000 1.0334 Z 6.0804 s
200 000 2.0667 % 3.0402 s

19

Table 4.2: Listing of all constant boundary conditions used over all cases.

Value Unit

Reynolds number Re 50 000 -]
Air density p 1.225 [%}
Kinematic viscosity v 15.5-107° [m;}
Chord lenth ¢ 1.0 [m]
Free stream velocity U 0 (2]

4.2 Mode of drive

To obtain an arbitrary trajectory for a cyclogyro, the whole design and the mode of drive must to be
different from a usual one. This thesis considers two possible ways to realise a non-circular trajectory,
which influences the blades’ velocity. That is why the designs are subdivided into a ’constant velocity’
drive and a ’'constant angular velocity’ drive.

4.2.1 Constant velocity drive

A rail in the shape of the desired trajectory can be used to achieve a constant velocity of the blades.
A slider with a joint connects the blade with the rail. Separate actuators can realise the pitching of
each blade. A chain connects the slider and ensures a constant distance between them. The chain can
be driven by any reasonable power unit (electric motor, combustion engine or jet turbine). Figure 4.1
shows a sketch of the constant velocity drive. According to the three different Reynolds numbers
considered for the optimisation, there are three different velocities.

VRe=50 000 = 0.775 3, URe=100 000 = 1.55 URe=200 000 = 3.1 .

v = const. .
— Chain

Slider

Figure 4.1: Sketch for a contant velocity drive.

4.2.2 Constant rotation speed drive

This drive mode has a separate rotor arm with a mounted blade, which is similar to the ideas of Bogrash,
[16]. Each rotor arm has an actuator to change the arms’ length or the blades’ radius, respectively

(see Figure 4.2). With a constant angular velocity, each blade has a different speed depending on the
current radius.

v, = Ry - Wrot

The advantage of this drive mode is that the actuators can adapt the trajectory during the operation.
So, the most efficient trajectory can be applied for different rotor RPMs.

Actuator

w = const.

(a) Basic drive design. (b) Adjusted actuators to obtain trajectory.

Figure 4.2: Sketch for a constant rotation speed drive.

4.3 Turbulence properties

The turbulence model & —w — SST is used for the CFD, which requires the turbulence kinetic energy
ke and specific turbulence dissipation wg;ss as input values. In general, the farfield and consequently
the inflow is not disturbed. However, a turbulence intensity for the input values is needed, estimated
to be 1% of the upstream flow. According to the OPENFOAM user guide, [17], the turbulence kinetic
energy is

2

ke == (Tu-vplage)® =9.01-1077 & (4.4)

[\CR V]

Then, the specific turbulence dissipation rate can be calculated [17].

0.5

Waiss = W =173-107% 1 (4.5)

with €, = 0.09 and ¢ = 1 m.

21

4.4 CFD input

The incompressible, transient OPENFOAM solver pimpleFoam and overPimpleDyMFoam are used for
the CFD calculations. A short overview of the main properties and input values for both solvers are
given in the following. The generic dictionaries for initial values, solver input and numerical schemes
can be found in Appendix D.

One essential input value is the time step At, which significantly impacts the accuracy of the results
and the execution time of the CFD runs. Different test cases are carried out with varying time steps
for the single blade and overset mesh. A suitable time step is At = 16.89 ms, for which the figure of
merit remains approximately constant with a reasonable execution time (see section 8.1 for figure of
merit). This time step corresponds to an azimuth angle of AW = 0.5° and is set for all optimisation
cases.

To determine the necessary number of rotations and thus the end time, four cases with 100 rotations
each are carried out. These differ in the mesh setup (single blade <+ overset) and the implementation
of rotation (rotating moation <> spline motion); see the following paragraph.

Figure Figure 4.3 shows the figure of merit over the rotations for the single blade case, where a
constant FoM is reached after 14 revolutions. The increase of the FoM for revolutions greater than 22
is presumably due to the farfield size. No further investigations are conducted on this issue. For the
single-blade optimisation, 14 revolutions are carried out.

The FoM curve for the overset case shows different behaviour, see Figure Figure 4.4. Even for a high
number of rotations (>50), there are small discontinuities of the FoM. A reasonable value is reached
at about 90 rotations. The execution time for an overset case is three times higher than a single mesh
case. Thus a high number of rotations for the calculation is unacceptable for the optimisations.

The following values are defined, which represent a suitable compromise between he accuracy of the
results and the execution time.

Case Revolution End time
Single blade 14 170.2512 s
Overset 10 121.608 s
0.5 1
0.4 1 ///
[}
S 0.3
Y
o
p
5 0.24
o
&
0.1
—s— Rotating motion
—— Spline motion
20 40 60 80 100 6 8 10 12 14 16 18 20
Number of rotation Number of rotation

Figure 4.3: Figure of merit over 100 rotations for single-blade case.

22

0.5 1

0.4+
5
o]
S 03 i i e T, b O e]
Y
o
g
5 0.2
ey
ic
0'1- N .
—— Rotating motion
—s— Spline motion
0.0 : T T T T T T T T T T T
20 40 60 80 100 6 8 10 12 14 16 18 20
Number of rotation Number of rotation

Figure 4.4: Figure of merit over 100 rotations for two-blade case.

Mesh motion

According to the number of blades, the following motion class are defined in the dynamiMeshDict.

Case Motion class
Single mesh dynamicFvMesh dynamicMotionSolverFvMesh;
Overset dynamicFvMesh dynamicOversetFvMesh;

For a circular motion, the OPENFOAM class rotatingMotion is used. For the arbitrary trajectory,
the customised motion class bSplineMotion is used, see section 7.3.

The customised class bSplinePitching defines the pitching path of the blades, see section 7.2.

Solver input and numerical schemes

The solver inputs and numerical schemes are taken from previous CFD calculations of cycloidal rotor
performed by Gagnon/Zimmer [14].

For overset cases, the following code is added to the fvSchemes. A higher value for nPushFront than
one enables less disturbance of the blades’ boundary layer due to the overset interpolation. However,
a higher push front can lead to large CFL numbers and crash the CFD case. Therefore the push front
of one is set.

oversetInterpolation

{
method inverseDistancePushFront;
searchBox (-3.4 -3.4 -1)(3.4 3.4 1);
voxelSize 0.008;
nPushFront ilg
layerRelax 0,58

¥

oversetInterpolationSuppressed

{3

23

The chosen relaxation factors for the pressure fields depend on the mesh motion, single mesh or overset.
The factors for the overset lead to noisy blade forces, see Figure 2.4. However, the execution time is
reduced by about 10%.

Case Relaxation
p pfinal

Single blade 0.3 1.0

Overset 0.3 0.7

24

5 NURBS

The task is to optimise the pitching of the airfoils and their trajectory with the DAKOTA toolkit. As
the optimiser only provides discrete values, the pitching and translation path shall be defined by only
a few parameters. Additionally, the paths should not contain peaks or discontinuities to obtain good
CFD results.

The first idea to generate the trajectory by assembling segments of circles with different radii was
discarded. The reason is that discontinuities appear at the connection between each circle. Therefore
both pitching and trajectory are defined as NON-UNIFORM RATIONAL B-SpLINES (NURBS).

These NURBS are a mathematically exact representation of curves, surfaces or even volumes. The
NURBS and their derivatives are continuous depening on the NURBS’s order. With a few sets of
parameters, NURBS can be highly adjusted at any will, making them valuable for many topics in
computer-aided design. They can also be used for interpolation for a given set of data.

According to [18], NURBS are "the projection of a nonrational (polynomial) B-spline curve defined in
four-dimensional (4D) homogenous coordinate space back into three-dimensional (3D) physical space. .
The equation for NURBS is

P(t) = Z B;R; i(t).

With B; as the control vertices, k is the order of the spline and p is the number of vertices. The
possible maximum order k4, of the b-spline is equal to the number of the control vertices.

kmax =p

One can choose an order less than the maximum. The terms R;;(t) are the rational basis function,
which can be determined as follows.

hi - N; 1 (t)

Rl,k’(t) = P
> hi - N; ()
i=1

The resulting polynomial of the recursive equation has the degree m = k — 1. The parameter ¢ is a
control variable that defines the spline’s position.

25

5.1 B-Splines

B-splines are a specific case of NURBS, where the parameter h; is set to one.

p
hi=1, foralli = Y hi Nig(ny)=1
=1

As a result of this simplification, the b-spline offers less adjustments, which are still enough and lead
to shorter equations.
Deviating from the definitions made in [18], the 2D b-spline is defined as

Xs(nr)

(nr) = = > Nik(nr)-V; (5.1)
y\nr Ya(nr) ; k\nr

where v(nr) represents the splines coordinates, V; contains the control vertices. The index i represents
the number of the control vertex and ranges from one to the maximum vertex number p.

The parameter ny is the control variable of the spline and defines the current position on the spline
curve. The spline starts at nr = n7 i, and ends at ny = n7mqe. The range of the control variable
depends on the knot vector; see below.

The Nj i (n7) are the basic functions, which can be calculated by the following recursive equation.

ny — K; Ki+k —nr
N; = —— N _ — N _ 5.2
l»k(nT) Ki+k:71 . Kz i,k 1(7’LT) + Ki+k _ Ki+1 i+1,k 1(nT) <)
B 1 ifKi§t<Ki+1
Nl’l(nT) - { 0 otherwise (5.3)

The equation results are polynomials with the degree m = k — 1, where k is the splines’ order. The
polynomials can be interpreted as weighting coefficients and determine the influence of each control
vertex depending on np. The K; are elements of the knot vector k and has a great influence on the
shape of the spline. They can assume any values with only one restriction: each element has to be
equal to or greater than the previous element.

K, < Ki—H (54)

With k as the order of the b-spline and p the number of control vertices, the knots’ elements can be
determined.

K;=0 for 1<i<k (5.5)
Ki=i—k for k+1<i<p (5.6)
Ki=p—k+1 for p+1<i<p+k (5.7)
(5.8)

The knot vector also defines the range of the control variable np.

K1 S nr § Kp (59)

26

5.2 Derivatives

The derivatives of the b-spline are essential to calculating the tangent angle or the curvature of the

b-spline. The equations are taken from [18].
The first derivative of b-spline is
Xg(nr)

d p
- =7(nr) = =Y Nix(nr) - Vi
nr Yé(nr) i=1

The first derivative of basis function is

Nix(nr) + (nr — K;) - Nj i (nr)
Kitg1— K;

z'/,k(nT) =

(Kivk —nr) - Niq g1 (1) = Nig1k-1(nr)
Kivr — Kipa '

The second derivative of b-spline is

"
Tz =~"(nr) = = N/y(ng)- Vi,
T Y¢(nr) i=1

with its second derivative of basis function

2 Nig-1(nr) + (nr — K;) - N[} (nr) n
Kiyp1—K;

z'/,/k:(nT) =

(Kitk —nr) Ny g1 (nr) = 2 Niga g—1(nr)

Kiyp — Kip

5.3 Arc length
To determine the arc length of a function analytically, the equation

Ly) = / ()| dng

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

is given by Papula [19]. The term gets too complex for an analytical integration. So the b-spline
was integrated numerically. For small steps of the control variable Any = nr ;11 — nr; = const., the

distances between two neighbouring points on the trajectory are determined and summed.

L*(v) = Z V(@ivr —)% + (yir1 — 9:)?
=0

27

(5.15)

5.4 Curve Fitting

Instead of determining a spline by given control vertices, the reverse procedure can be performed. For
a given set of points, which lay on a curve, the control vertices shall be calculated so that the resulting
spline fits the curve best. For this purpose, the equation for a b-spline can alternatively be written in
a matrix formulation,

p
y(ng) =D =Y Nip(nr)- Vi =N-V (5.16)
=1

with the vector D for the points on the arc length curve, the matrix N containing the basis values and
the vector V for the control vertices. After calculating the inverse basis value matrix N~!, the control
vertices are calculated via ordinary matrix multiplication.

V-N1.D (5.17)
Figure 5.1 shows an example spline with its points and control vertices.
New spline o
® Given points ot o
% Control vertices o*
»®
o
*
’:;2 ®
Z o "
]
L
»
- 4
»
P°L J
20
«®
nr

Figure 5.1: Example for a spline matching the given points.

5.5 Curvature

The curvature o will be used to evaluate the splines’ shape. It is the inverse value of the local spline
radius. The following equation gives the curvature of a function (Papula [19]).

- ‘Xs(nT) Ys(nr) — Ys(nr) - XS(”T)‘ 1

3 =
2 Rl ocal

(5.18)

g

(Xg(nT) n Yg(nT)>

28

6 Arbitrary movement

This chapter describes the concrete application of the spline equations to obtain a pitching path and
trajectory.

6.1 Pitching

Sixteen control vertices define the pitching spline with a degree of three (degree my; = 3, order
kpit = 4), enabling reasonable path control. To obtain a periodic spline without any discontinuities,
two more vertices are inserted into the control vector V p;;, one at each spline end. The concerning
equation for the pitching spline is

19
Vpit (NT pit) = Z Nia(nrpit) - Vipit (6.1)
i=1

with its control vector

Vi = [Po, P, P2, P3, P3, Py, Py, Ps, Ps, Pr, IR, P, 62)
Py, P11, Pi2, P13, Pia, P15, Pig ,Pi7, Pig) , .

and the multiple control vertices

Py=Pg, Pir=P, Ps=D.
The vertices contain only one scalar value. The distance between the vertices depends on the knot
vector. This vector with its evenly spaced elements K; is

kpit =10,1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 | .

Figure 6.1 shows a resulting pitching spline. The control vertices are adjusted to get a sinusoidal form
with an amplitude of 45°, see Figure 6.2. For the comparison, a sinus curve is also plotted in the figure.

Only a part of the spline will be used, marked with vertical lines. This is obtained by an adapted range
of the control variable nr pi

3 < nr pit < 19.

Within this range, the spline is subdivided into 16 sections.

The difference between both curves is shown in Figure 6.3. The highest deviation occurs at the end of
the spline, which is -0.16°.

29

o in [°]

ap in[°]

Section number

12 8 4 5 6 7 8 9 10 11 12 18 14 15 16

451

= Spline -
=== Sinus 7
304 4t
///
151 Z-
/s
~
0 Y =
—151 //
_30- ///
—a5]
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
nT,pit
Figure 6.1: Complete curve of the pitching spline.
60
Ps 5 P
40 P3 Py
P P
20- ’ 8 .
P
P, Py 18
0 & &
P
Py 17
i []
20 P10 P16
—40/ P11 P1s
P P
12 P13 14
—60 | : : : : : : : : : ‘ :
-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
nT,pit
Figure 6.2: Complete curve of the pitching spline.
0.20
o 0.15 1
£ 0.0
4]
5 0.05
c
T 0.00
O] /
g -0.051
]
_
o -0.101
£
O -0.151
-0.20 T T T T T T T T T T T
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
nr, pit

Figure 6.3: Difference between the sinus curve and the spline.

30

Figure 6.4 shows all basis functions N1 4(n7 pit) to Nig a(n7 pir) necessary for the pitching spline. They
all have the same shape and are only shifted in relation to each other.

Section number 1 2 8 4 5 6 7 8 9 10 11 12 18 14 15 16

T T
— N1 T™— N3 — Ns N7 Ng — Nig —— Niz —— Nis —— Ny Nio

0.81 — N — Ny — N¢ —— Ng —— Ny —— Nip —— Ny —— Nig —— Nig

0.61

0.4

0.2 1

0.6 | / | XM X N I MY I XY I IX I X I XX X L\ |

0 1 2 10 11 12 13 14 15 16 17 18 19 20 21 22

nr, pit

Figure 6.4: Basis functions for the pitching spline.

The following equation shows the carried out recurrence scheme of the first basis function Ny 4(nr),
based on Equation (5.2). The subscript p; has been omitted for better readability.

For the first spline section 1, between P; and Py and with 3 < ng i < 4, Equation (5.3) gives the last
basis coefficients (the rightmost N of the scheme).

Nyi(nr) =1, Nii(np) =0 for i#4

The resulting polynomial of Nj 4(nr) is

Ks—nr Ks—np Ks—nr

Ny 4 = . .
MKy Ky Ks— K3 Ks— Ky
4 —n 4 —n
Nig = 3T'2T(*%ﬂ
1 32
‘MA:—64%+24%—8%T+33

Analog the polynomial of Ny 4(nr) is

N :nT*KQ'KS*nT'KS*nT Kﬁ*nT_ nT*KS'KS*nT_'_Kﬁ*nT'nT*KAL
T Ks—Ky Ks—Ks Ks— K4 Ke—Ks \Ks— K3 Ks— Ky Ko—Kq Ks— Ky
npr—1 4—n 5—mn ny — 2 5—n
1 11 39 131
Noy==-n3— = .n2 4+ 22 pp— =22
24= 5 T 5Nt

These polynomials are valid for the first spline section (3 < np i < 4).

31

(43

Nia(nr) =

nr — Ki
Ky — Ky
+

Ks—t

K5 — Ky

- N13(nr), Nig(ng) =

- Noz(nr), Nas(nr) =

’I’LT—Kl
K3 — K,
+

Ky—1t
Ky — Ky

nr — Ko
Ky — K5
|

Ks—t
K5 — K3

-Nia(nr), Nig(ng) =

- Nojg(nr), Nao(nr) =

- Noja(nr), Nao(nr) =

- N3a(nr), Naa(ng) =

nr — K

Ky — K3
+

Ks—t
K3 — Ky
ny — Ko
K3 — Ko
I

Ky—t
Ki— Ks
nr — Ko
K3 — Ko
l’

Ky—t
Ky — K3
nr — K3
Ky — K3
+

Ks—t
K5 — Ky

- N11(nr),

’ N271(nT)7

- Na1(nr),

- N3 1(n1),

- Naa1(n7),

- N3 1(n7),

- N3 1(n7),

- Ny 1(nr),

Nii(nr)

No1(nr)

Na1(nr)

N3 1(nr)

Ny i(nr)

N3 i(nr)

N3 1(nr)

Nyi(nr)

— = =

— = N

[an)

—_

if K1 <t< Ky
otherwise

if Ko <t< Ky
otherwise

if Ko <t< K3
otherwise

if K3 <t< Ky
otherwise

if Ko <t< Ky
otherwise

if K3<t< K4
otherwise

ifK3§t<K4

otherwise

if K4 <t< Kj
otherwise

The polynomials for the other spline sections have the form
Nig = api - 07 +bpi - 0 + cpi - nr + dpy

with 4 as the counter for the corresponding control vertex. The coefficients of the polynomials ay ;,
bp,i, cp; and dy,; change with every spline section, although the shape of the basis curves remains the
same.

A closer look at the basis function curves in Figure 6.4 shows that each spline section between
3 < nrpie <19 consist of four different but repeating curves. Instead of calculating the basis func-
tions for each spline section 1 to 16, the pitching curve can be determined with only four polynomials
Nf to Njf . These four curves are extracted and transformed into the range 0 < nrp; < 1, see

Figure 6.5.

The corresponding polynomials for these basis functions are

1 1 1 1
2
N;D:f-ng}—l-n%%—g, (6.4)
1 1 1 1
4_6 T '
0.8
Y A —

Figure 6.5: Transferred basis function curve.

33

The new equation for the pitching spline is now
Yit(nr) = Ni(nr) - Py + N3 (nr) - Pjya + N5 (nr) - Piwa + Ni(n7) - Pjys (6.7)

with the section counter j between I and 16. Only the vertices have to be changed according to the
section.

Section| P; Pjy1 Pji2 Pjgs

1 |Ppp P P P
2 P 1 P 2 P 3 P, 4
3 P Ps Py P

16 P15 P16 P17 P18

The scalar values of the basis functions in Equation (6.7) can be interpreted as a weighting factor for
each control vertex.

The advantage of the adjusted Equation (6.7) is that only a matrix of the coefficients of the four
polynomials has to be saved in the code. The basic polynomial is

Ni = apj - 07 + by 07 + Cppe -1 + dpie (6.8)

where k for the four basis fuctions, k = [1,2,3,4]. The corresponding coefficients for the pitching spline
are

r_1 1 1 17 ap1 bp1 cp1 dpi
6 2 2 6 p’ p’ p7 p7
% -1 0 % ap2 bp2 Cp2 dppo
Npi = _ (6.9)
_1 1 11 ap3 bp3 cp3 dp3
2 2 2 6 p7 p7 p7 p7
L0 00 apa bpa Cpa dpa

Please note, that there are two different control variables:

e The outer control variable nr ,;;, which ranges between 0 and 16 to define the position on the
pitching spline.

e The inner control variable ny, which ranges between 0 and 1 to calculate the current basis
functions for each spline section.

Figure 6.6 shows the evolution for both control variables over two rotaion.

16

— N7, outer

124

n T, inner

Figure 6.6: Inner and outer control variables for the pitching spline.

34

Figure 6.7 shows an example of an arbitrary pitching spline.

80

60

40+

)

Ps

P, Ps

Pz

Pg

20+

ao in [°]

Py

0 * -

Pq

—20+ P

P12 .
_40,

10 11 12
nr, pit

Figure 6.7: Example for an arbitrary pitching spline.

6.2 Trajectory

6.2.1 Path

The spline for the trajectory path consists of eight control vertices. In contrast to the pitching, the
degree of the trajectory spline is four (degree my., = 4, order ki, = 5). This high order is necessary
to obtain continuous first and second derivatives of the spline and thus a continuous movement of the
blade. By all means, the trajectory must be a closed spline. Therefore, five more multiple control

vertices were added. The following equation gives the trajectory path.

13
/ytra(nT,tra) = Z Ni,5 (nT,tra) : V;,tra
i=1

with its control vector

Viea = [T7, Tz, T1, Tp, T3, Ty, T, Tg, Tr, T, Ty, T, T3] .

(6.10)

(6.11)

The elements 77 to T3 of the vector V,,., contain the cartesian coordinates of the control vertices.

The knot vector is periodic with evenly spaced elements.

kwa=10,1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17 |

To obtain a closed trajectory, the range of the spline’s control variable is adjusted to

45 < nrga < 125

The spline would end as a spiral at the origin for a control variable less than 4.5 or greater than 12.5.

Figure 6.8 shows an example of a circular spline.

35

2.0

15

1.0

0.5

Ts

Trajectory
Control vertex

T3

Ty T,

T

0.0

Y-Coordinate

-1.0

-15

Te Ts

T7

-2.0

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
X-Coordinate

Figure 6.8: Closed circular b-spline.

A brief comment on the procedure for the CFD cases. Before a CFD case starts, there is a previous
determination of the trajectory to get characteristic values (i.e. the length) and perform quality checks
(i.e. intersection, curvature). For this procedure, a number of the trajectory coordinates are calculated.
The number of these points influences the quality of the generated trajectory. The spline in Figure 6.8
consists of 1 000 points and looks like a circle. However, the resulting radius is slightly undulated, as
shown in Figure 6.9. Therefore, the precalculation for the later optimisation run uses 100 000 points

for high accuracy.

1.500
£
£ —— Exact Radius
9B 1.4991 — Radius of spline
=
©
Q: \/—\/\-/\-/\-/_\/\/—\/
1.498 - - : . : . .
0 45 90 135 180 225 270 315 360
Win [°]

Figure 6.9: Radius of the spline trajectory, which consists of 1 000 points.

Figure 6.10 shows the curves of the basis function. Analog to the pitching spline, they all have the
same shape and are only shifted in relation to each other.

36

Section number = 1 2 8 5 6 7 8 9

T T
— N, — N3 — Ns N7 Ny — Niz —— N3
— N, —— Ny —— N¢ —— Ng —— Nip —— N
0.6 1
0.4 1
0.21
0.0 ! | - | !
0 1 2 3 4 5 6 13 14 15 16 17

NT,tra

Figure 6.10: Basis functions for the trajectory spline.

Each spline section consits of five different basis curves, which are shown in Figure 6.11. The polyno-
mials of these curves, now with a degree of five, are

1 1 1 1 1

t_ic 4——' 3 _— 2——. —_—
Nf =gy np—g mp+ k=g nrt o (6.12)

1 1 11

1 1 1 1 11

1 1 1 1 1
Ni= ot (6.16)

bTg T '

The inner control variable for the trajectory basis function ranges from 0 to 1. The coefficients of the
polynomials are stored in the matrix

Fo1 1 1 1 1T
24 6 4 6 24
_1 1 _1 _1 1
6 2 4 2 24
_ 1 _1 11
Nypa = o111 (6.17)
_1 1 1 11
6 6 4 6 24
1
4 0 0 0 0 |

37

0.8
— Nf — N{ — N — N — N
0.6

0.44

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0
nr

Figure 6.11: Transferred basis functions for trajectory spline.

With the five essential basis functions, the equation for the trajectory spline is simplified.
Yra(nr) = Ni(nt) - Tj + Ny(nr) - Tjt1 + Ni(nr) - Tjta + Ni(nr) - Tjrs + Ny(nr) - Tjva (6.18)

with the section counter j between 7 and 9.

Only the control vertices have to be changed according to the section.

Section | T; Tjp1 Tjya Tjrs Tiya
1 T T3 Ty T T3
2 Tg Tl T2 T3 T4
3 M T T3 Ty T

9 T7 Tg T1 T2 T3

157 Trajectory T
® Control vertex ? '3
T
1.0 T4o ° 2
9 o5
©
£
g Ts T:
o 0.0 ® =
(@)
N
-0.5 T
° 8
Te
-1.0 ®
T7
-2 -1 0 1 2 3

X-Coordinate

Figure 6.12: Example for an arbitrary trajectory.

6.2.2 Counter angle

In the simulation, the blades’ motion is a superposition of the trajectory path and the pitching. The
coordinates from Equation (6.18) induce the blade to perform a translation but would remain in its
initial alignment, i.e. vertically for airfoilO (see Figure 3.3). To force the blade into a tangential
trajectory, the slope of the trajectory must be determined. The first derivative of the spline gives the
tangent vector.

, thra (nT)
Vira (nT) = ,
Ytra(nT) (619)

= Nis(n7) - Ti + Nos(nr) - Tip1 + N3 s(nr) - Tiya + Ny s(nr) - Tixs + Ny 5(nr) - Tiga
The basic derivation of the function polynomials is

Ni75 =4-nn. - na+3- NN 2 - na+ 2. NN 3 - N7 + N - (6.20)

The resulting basis functions are:

1 1 1 1
r_ =53 o2 .
1 1 1 11
/ f— _— 3 —_— . 2 _— . —
1 1 1 11
/ = — — . 3 —_— . 2 _— —
N3 = 5 ny 1 ny + 5 nr + 51’ (6.23)
1 1 1 1
/ f— _— 3 _— 2 _— R
Ny = o (6.25)

Figure 6.13 shows the first derivatives of the basis functions.

0.8

— N — N — N N; Ny
0.6

0.4 \
0.2 \

o0 //‘
-0.2
-0.4
—09% 0.2 0.4 0.6 0.8 1.0

Control variable nt

Figure 6.13: First derivatives of basis functions.

39

The matrix N4, contains the coefficient of the derivative functions.

-1 1 L1 7
6 2 2 6
_4 3 1 1
6 2 2 2
N'ira = 1 -3 -3 3 (6.26)
_4 1 1 1
6 2 2 6
1
L 5 0 0 0]
The necessary angle of the slope or the counter angle ¢ is
Y;flra (nT) >
© = tan < . (6.27)
Xt/ra(nT)

6.2.3 Velocity

Depending on the shape of the spline, the distance between two neighbouring points is not constant
despite a linearly increasing control variable ny. Figure 6.14 shows an example trajectory with unequal
distances, depending on the splines’ curvature.

1.5

—e— Trajectory

® Control vertex T3

1.0

0.5

0.0

T5

T2

Tl

Y-Coordinate

05

—-1.5 . : :
—4 -3 =2 -1 0 1
X-Coordinate

Figure 6.14: Example for a possible trajectory with unequal distance between the trajectory points.
Linear coupling between the simulation time tg;,, and the control variable np would result in a varying
velocity during the rotation. For the given example, this coupling means a higher velocity between the

vertices T3 and T compared to the velocity between Ty and T5. Figure 6.15 shows the velocity over
one rotation, which is not acceptable.

40

1.2
Ei‘n
£ 0.8/
>
=t
]
o
< 0.4
—— Demanded velocity
—— Current velocity
0-0 T T T T T T
0 2 4 6 8 10 12
Time in [s]

Figure 6.15: Velocity of the blade over time.

Therefore, the control variable must be calculated so that a constant velocity results. A constant
velocity requires a linear increase of the trajectory’s length. Figure 6.16 shows the length over time
for the example trajectory above, which is visibly not linear.

10
8,
£
c
c
)
o 41
C
Q
-
2,
0 . | ‘ . ‘ |
0 2 4 6 8 10 12

Time in [s]

Figure 6.16: Length of the trajectory over time.

A blade moving with a constant velocity covers a certain length within a specific time.
The required length is given by

tsim 75sz'm
Lre tsim) = L ra "’ - . 5 2
olteim) = Lira - S = 3. 2 (6.25)

with L., as the total length of the trajectory, which must always be 37 and period time Tp, which
depends on the Reynolds number (see section 4.1). For a given length L,.q, the corresponding control
variable can be taken from the plot in Figure 6.17.

41

10 10

E 8 8
£ .g
= 61 = 6l
o c
c]
2 £
O 44 o 4]
2 5
35 -
o
g 24 2
0 : : 0l= : : : : - - :
0 2 4 6 8 10 12 1 2 3 4 5 6 7 8
) . tsi o (te
Time in [s] sum ny T (tsim)

Figure 6.17: Procedure to determine ny ;yq-

However, a mathematical expression for the length like Ly.q(n7) is unavailable (see Section 5.3). There-
fore, yet another spline shall represent the length curve. To obtain the control variable ny, the New-
ton-Raphson method is used to find the solution Figure 6.17. This method will converge as the length
is strictly monotonic increasing. Because the Newton—Raphson method is a search for zero, the length
curve needs to be shifted about the required length L,.,, see 6.18(a). The zero of the length then
corresponds to the sought variable nr, as shown in 6.18(b).

2

1.2
0
—_ 0.8
€ R _
c 2] £
£ Py —_ 0.41
= g £
= B n
> 4 = 5 L
Q g 2@ o0
- <
- g %
—61 n nr.o
—oal T,2
T2 3 i 5 6 71 s -0.8
6.0 6.2 6.4 6.6 6.8 7.0
nr nr
(a) Shift of the length. (b) Newton-Raphson method.

Figure 6.18: G.

The numerical procedure is as follows (Papula [19]).

Lt nrt.
NTj41 = NTj — L,ar()

tar (nT,j) ‘ (629)

The Liqr(nr) is the length curve within a specific section, where Lj,,.(nr ;) is the corresponding first
derivative. A tolerance criterion checks the control variables’ accuracy. If the criterion reaches a limit,
the approach aborts.

Ant = ‘nT,j-i-l - TLTJ" <107 (6.30)

42

The Newton-Raphson method needs a starting point nr . Linear coupling between the simulation
time tg;,, and the control variable np is chosen for the first guess.

According to Section 5.4, the curve fitting procedure provides the essential length spline ~;,. The
following equation is carried out with the selected set of data points and the basis function of the curve
fitting.

Klen = N_l

len

’ Qlen (631)

Where V.., is the control vector, Nl_all the inverse coeflicient matrix and Dy,,, the data vector. The
control vector will be calculated in a preliminary step before the CFD calculation and is a further
input for the OPENFOAM function (see next chapter).

The degree of the length spline 7;e, is set to four (mye, = 4, order kj.,, = 5) to ensure an adequate
representation of the length curve. The number of data points shall be at least sixteen (twice as much
as the control vertices for the trajectory). Additional data points are needed to ensure a periodic
spline. An open knot vector is chosen for the curve fitting.

As a result of these requirements, the range of the control variable nr ., lays no longer between 0.5
and 8.5. The range depends on the knot vector k., of the new length spline. An alternative approach
could have been to transform the knot vector to map the trajectory’s knot vector k. However, this
would lead to knot elements with fractions, and the range of the spline sections would not be integers.
Therefore, a knot vector, which consists only of integers according to the Equation (5.5), is used to
avoid these numerical uncertainties.

Due to the changing range of the control variable, a transformation from nr e, into ny e is required.

8
NTtra = 0.5 4+ (N7 1en — Nmin) -) (6.32)

Nmazx

with n,,,;, as the starting point and 7,4, as the ending point of the corresponding length spline, see

Figure 6.19.

1.75 19.25
, | | .
NTilen 0 1 (2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19‘ 20 21

NTtra 05 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.5

Figure 6.19: Transformation of the control variable.

The preliminary calculation of the trajectory is carried out with 100 000 steps, which corresponds to
Angirq = 8-107°. Tt follows that the data points for the curve fitting are only available for a finite
control variable. It must be ensured that n,,;,, as well as 1,4, are rational numbers. Indeed, this
simple problem depends on the number of data points influencing the knot vector. Nevertheless, the
distribution of the data points must also be taken into account to avoid oscillation of the length spline.
A sufficient setup is 25 data points with n,,;, = 1.75 and 1,4, = 19.25. This leads to the following
knot vector :

Kien =[0,0,0,0,0,1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 21, 21, 21, 21 | .
The range of the control variable is

175 < npgen < 19.25. (6.33)

43

The transformation between these two variables is

8
N1 tra = 0.5+ (N7 1en — 1.75) - T - (6.34)

As a result of the open knot vector, the basis functions have a different shape compared to the previous
splines (trajectory or pitching). But the functions can be reduced to five basic forms, coloured in
Figure 6.18. The basic functions Niep 20 to Nig, 25 are symmetrical with respect to the origin. The
basic functions Niey, 5 t0 Njep 21 are mirror-symmetrical.

1.0

— Nlen,l — NIen,Z — Nlen,3 —_— Nlen,4 e N/en,S

0.8

= Nien,21 = Nien,22 = Nien,23 * Nien,2a = Nien, 25

0.6+

0.4-'

0.2+

0.0

0 ' ' ' : : ' ' 1'9
Control variable nr

Figure 6.20: Basis functions for the length spline v;e.,.

Analog to the previous approach, the basis functions are polynomial and valid in the range 0 <
nrien < 1. The basic form of the function polynomial is

4 3 2
Nofo = Nofsst - VT jen, + Mbfax2 * Wjen T Mbfx3 * N jen, T Mbfsrd - NI len + M f a5 5 (6.35)

with nyf .1 as the element of the corresponding coefficient matrix Nyr 1. The first star * indicates
the number of the following matrices, and the second star indicates the corresponding row.

Nysji=[1 -4 6 -4 1], (6.36)

|
—
ot
EN |
|
©o
B
]

3
Nos,2 = T (6.37)
3§ -3 1 —7 %
85 11
5 U 3 0 0
23 19 11 5 37
Negs=| =% & -1 ~—18 = | (6.38)
12 1 _2 1
1 9 3 9 18

44

- 25 2 1
_B 2 g 0 0
23 _13 _1 11 2
72 T18 12 18
N — 6.39
biA 13 5 1 _4 4 | (6.39)
7 9 3 "9 9
1 _1 1 1 1
| 6 i 6 1 J
S
L 0 0 0 0
_1 1 1 1 1
6 6 1 6 24
_ 11 1 11
Noss = i T3 "1 3 % . (6.40)
_1 11 1 11
6 2 1 ~2
1 _1 1 1 1
L % 6 1 ~6 1 J

It must be noted that the coefficient matrix for the whole length spline is a combination of the matrices
Nys1 to Npss. The final matrix for the length spline Ny, has the dimension 25x25.

From now on, the Newton Raphson method can be applied. For each section, only a part of the length
spline is used.

’Ylen,sec(nT) = Nsec,l(nT)'LiJFNsec,Q (nT)'Li+1 +Nsec,3 (nT)'Li+2+Nsec,41 (nT)'Li+3+Nsec,5*(nT)'Li+4 s
(6.41)

The vector V;,,, stores the control vertices L;.

The coefficient matrix Ny, for each section is a combination of the matrices N1 to Nyrs5. For
example, the coefficient matrix Ny, 1 for the first spline section, 0 < ny <1, is

I 1 -4 6 —4 1 7 [Nopir=1 |
_18é 7T -9 4 0 Nypo r=2
Nien1 = g -4 3 00 =1 Npfzr=3 | ,
_% % 0 0 0 Nyfa r=4
N 0 0 0 0 | L Nbpsr=s |

with r as the column counter of the matrix.

The coefficient matrix for the spline section & is as follows

1 2 1 _2 1 7 - -
8 9 3 9 18 Ny r=3
_13 5 _1 _4 4
72 9 3 9 9 Nyga r=3
1 _1 111
Nlen,S = 4 2 4 2 24 = Nbf,5 r=3
_1 1 1 11
6 6 1 6 24 Nyf5 r=2
L 0 0 0 0
2 L Nofs =1 |

45

The coefficient matrix for spline sections 5 to 17 consists only of the Nys 5. From section 18 onwards,
it is necessary to mirror the basis function Niep 1 ... Nien3 to get Niep oz - .. Nien 25

A separate algorithm determines the essential sub matrix N «. For that, a tensor M., summarises
the matrices Njs1 to Npss (see Figure 6.21). The tensors’s dimension is 5x5x5. Rows that do not
exist in the Ny, are filled with a zero line.

Nyss
o 1 -
Nopa i 0 0 00
_ =T 1 1
-7 25 2 -7 6 54
Nbf,3 - -z 2 0 B 0.0 6 2]
- = 1 11
- . g 11 23 5 %
Npro £ -%¥ 3 00| ®m 7@ s
Nbf,l //,,' -3 7T -9 L. 4.0 18 72 X 1 _(_{ %
11| =2 k0 Ts 1 - .
1 -4 6 -4 1 3 8 -
0 0
0O 0 0 0 0 0 0
0 0| _—
o 0 0 0 0 0, 0
0O 0 0 0 0 0 0 7

0 0 0 0 0 T

Figure 6.21: Tensor M;.,.

An algorithm compounds the submatrix N, from the tensor M., according to a predefined specifi-
cation. The specification defines the order of the coefficient matrices Ny, listed in the order matrix
Io and the corresponding row number listed in the row matrix Ig. Each row of the two specification
matrices Ip and I corresponds to a specific section of the length spline ~ep, .

0 1 2 3 4 7 0 0 0 0 0 T
1 2 3 4 4 1 1 1 10
2 3 4 4 4 2 2 2 10
3 4 4 4 4 3 3 2 10
Ip = 4 4 4 4 4 Iz = 4 3 2 1 0 (6.42 a,b)
4 4 4 4 3 4 3 2 1 3
4 4 4 3 2 4 3 2 2 2
4 4 3 2 1 4 3 1 1 1
4321 0 | L4000 0 |
For example, the coefficient matrix for the spline section 8 can be written as follows
[%8 _% % _% %8 i B Mlen22] i Mlen[IO,seql][IRow,sec,l] i
7% g 7% 7% % Micn.32 Mien [IO,sec,Q] [IRow,sec,2]
Nlen,S = % _% _% % % = Mlen,4,2 = Mlen[IO,seC,?)] [IRow,sec,S]
_é % % % i Mlen 41 Mlen [IO,secA] [IRow,secA]
2714 0 0 0 0 Mlen 4.0 Mlen [IO,sec,5] [IRow,sec,5]

The sub-matricessubmatrix Nge. for the spline sections 5 to 17 are identical, represented by the fifth
row of Ip and Ig.

46

The mirroring of the basis function would lead to new coefficients of the polynomials. To avoid this
issue, the control variable nr ., was transformed for polynomials Njep 17 t0 Niep 25.

NT mirrow = 1- NT len (643)

At last, the basis functions for the first derivative are needed for the Newton-Raphson method. The
basic equation with the already known matrix elements ngy . is

Njjo =4 Mgt -+ 3 Mpfoana - N5 + 2 M fand - N + T fand - (6.44)
The polynomials are mirrored by multiplying them by minus one.

Nyjir = —1-Nypy

To perform the Newton-Raphson method, it is necessary to know in which section of the length spline
the current blade is located (see Figure 6.12). Thus, a different vector is defined, containing each
section’s length.

ﬁle‘n :[Ltra‘nT:h Ltra’nT:% Ltra’nT:Ziv Ltra’nT:QO] (6-45)

In summary, the Newton-Raphson method needs the following input data.
Seven matrices, which remain constant:

e the basis function coefficient matrix Nyp1 ... Ny

e the order matrix Ip,

e the row matrix Ig.
And for each unique trajectory

e the control vector V.,

e the section vector S,,,.

As mentioned in the previous section 4.2, there are two modes of drive. The blades’ velocity is no
longer constant for a constant rotational speed drive. The previous procedure is still applicable with
a few changes to obtain a constant angular velocity. Instead of the length, the azimuth angle ¥ over
time is used and shall increase linearly.

The required azimuth angle according to the simulation time is

t .
Wyeq(tsim) = 2 - % : (6.46)
P

The azimuth angle over time is calculated with the values of the trajectory,

Wyro(nr) = tan <m> . (6.47)

47

89
90
91
92
93
94

7 Implementation

The spline functions described in the previous chapter are implemented in the OPENFOAM functions.
The basis for the implementation is the rotatingMotion class provided by the software.

Generally, these functions are written in C++ and consist of two files. The header file with the ending
* . H contains the declaration. The other file has ending *.C and contains the actual function codes.
All files can be found in the Appendix E.

First, a few code snippets will be explained, which are used by both motion functions. After that, the
implementation of the splines is explained in detail. Finially The naming of the variables or parameters
in the code differs from those used for the derivation in Chapter 6. To keep the context, both names
are mentioned in the text, where the code names are written in typewriter font.

7.1 Code snippets

The initial position of the blades does not necessarily have to match the specified pitching angle or
trajectory position in Figure 7.4. The software moves the blade in the first step to its calculated
position. However, this significant movement within a single time step would lead to a disturbed flow
field and numerical artefacts, which can influence the results. A factor is applied to the motion to
avoid such jumps, ensuring a smooth transition from the initial position to the final movement. The
user sets a delay, a fraction of a rotation, to determine how long the lag lasts.

Duration = Delay - Period (7.1)

The factor, called lag, increases from zero to one within the duration (see Figure 7.2)

Lagzl- <1—cos <T1me7r>> . (7.2)
2 Duration
scalar lag_ = 1;
scalar duration_ = delay_ * period_;
if (time_.value() < duration_)
{
lag_ = (1 - cos(time_.value() / duration_ * pi)) / 2;
}

This function is implemented in the standard OPENFOAM class rotatingMotion to achieve delayed
circular motion. The new class delayRotatingMotion.C can be found in Chapter 6.

The motion of the blade, pitching as well as trajectory, is determined by the simulation time tg;,,. For
multi-blade cases, an internal time ¢;,,; is defined to consider the varying blade positions (see Figure 3.3).
The simulation time receives an offset, which is the fraction of lead azimuth angle, Aggse; = 0.25 for
90° blade lead, Aqfset = % for 120° blade lead and so on.

tint = tsim + Aoffset : TP . (73)

48

1.04
to t1
0.8
Au
0106-
©
—0.44
0.2 Delay = 0.25
—— Delay = 0.5
0.01 !]]]] . :
0 1 2 3 4 5 6 7 8
Time in [s]
Figure 7.1: Movement between initial position Figure 7.2: Two lags with different delay values.
t, and final position on the trajec-
tory to.

This time then determines the control variable, which, in turn, defines the motion.

96 scalar t_ = time_.value() + offset_ * period_;

The simulations will be carried out with plenty of rotations. However, the range of the spline is limited
to the range of the control variable. A counter for the number of rotations ngy is defined to enable
multiple revolutions.

tin
nrot = floor <Tpt> (7.4)

97 scalar nRot_ = floor(t_ / period_);

7.2 Pitching

The code bSplinePitching.C enables arbitrary pitching and will be explained in the following.

The pitching spline consists of 16 sections. The counter for the current section is

tint —1Ip-n
k = floor <’””R"t : 16> . (7.5)
Tp
98 int k = floor((t_ - period_ * nRot_) / period_ * 16);

The control variable n ,; is directed by the simulation time; however, it must range from zero to one
in each section.

t.
N pit = 16 - r_;’;’* —k — npgor - 16 (7.6)

49

99

100
101
102
103
104
105
106

scalar nT_= 16 * t_ / period_ - k - nRot_ * 16;

Figure 7.3 shows the behaviour of the variables over one and a half rotation.

451

254

ap in [°]

—25+4

—45 4

0 45 90 135 180 225 270 315 360 405 450 495

NRot

0 45 90 135 180 225 270 315 360 405 450 495

16 A
144
124
104

O N B O

0 45 90 135 180 225 270 315 360 405 450 495

0.8+
0.6 1

nr, pit

0.4+
0.2

0.0

0 45 90 135 180 225 270 315 360 405 450 495
Azimuth angle W in [°]

Figure 7.3: Path for different variable over one and a half rotation.

The next step is to calculate the basis functions. The matrix of Equation (6.9) with its coefficients is
predefined in the bSplinePitching.H as the array bFactor_.

double bFactor_[4] [4]

{
{-1.0/6, 1.0/2, -1.0/2, 1.0/6}, // N1
{1.0/2, -1, 0, 2.0/3}, // N2
{-1.0/2, 1.0/2, 1.0/2, 1.0/6}, // N3
{t1.0/6, 0, 0, O} // W4

};

50

101
102
103
104

106

81

83
84
85
86
87
88
89
90
91
92
93
94

Equation (6.3) to Equation (6.6) are then implemented, where R1_ corresponds to NY.

scalar R1_ = (bFactor_[0] [0]*pow(nT_,3)+bFactor_[0] [1]*pow(nT_,2)+bFactor_[0] [2]*nT_+bFactor_[0][3]);
scalar R2_ = (bFactor_[1] [0]*pow(nT_,3)+bFactor_[1] [1]*pow(nT_,2)+bFactor_[1] [2]*nT_+bFactor_[1][3]1);
scalar R3_ = (bFactor_[2] [0]*pow(nT_,3)+bFactor_[2] [1]*pow(nT_,2)+bFactor_[2] [2]*nT_+bFactor_[2][3]);
scalar R4_ = (bFactor_[3] [0]*pow(nT_,3)+bFactor_[3] [1]*pow(nT_,2)+bFactor_[3] [2]*nT_+bFactor_[3][3]);

The last calculation is the pitching angle with the lag and conversion from degree to radian.

scalar angle_ = - (R1_x*Polygon_[k]+R2_*Polygon_[k+1]+R3_*Polygon_[k+2]+R4_*Polygon_[k+3]) * pi / 180.0 *

— lag_;

The Polygon_[] contains the control variables according to Equation (6.2).

This value is given to the two OPENFOAM classes quaternion() and septernion(), which perform
translations and rotations in 3D space. Finally, the code passes the results to the solver.

7.3 Trajectory

The code bSplineMotion.C enables arbitrary trajectory and will be explained in the following.
The required length, according to Equation (6.28) is

tint — TP * NRot
Lreq(tsim) — mT—Po

The value Lepg is an input value, which depends on the drive mode; L,q = 37 for the constant velocity
and Lg,q = 27 for constant angular velocity.

“ Lend- (77)

scalar Lreq = (t_ - period_ * nRot_) / period_ * endValue_;

Newton—Raphson method

For the Newton—-Raphson method, the corresponding section number sec (m) of the length spline e,
has to be determined by comparing the current length with the length for each section.

int m = 13
bool flagSec = false;
while (flagSec == false)

{
if (Lreq < sectionL_[m])
{
flagSec = true;
}
else
{
m++;
}
}

o1

The for loop in row 120 - 123 combines the basic coefficients Ny ., which are stored in the tensor
M.y, (Length_[1[1[]) to obtain the sub-matrix Nge. . (matR_).

The index indB_ defines the page of the multidimensional array, which corresponds to the predefined
order of the Ny . given by the matrix Ip. The index indC_ defines the row of the multidimensional
array, which corresponds to the matrix Iz. Both specification matrices Ip and Ir are stored in the
array Index_[][][]. The correct row of the specification matrices is determined by the index indA_,
which corresponds to the section. The basis function for the section between 5 and 17 are equal.
Therefore section counter indA_ remains 4.

Figure 7.4 shows the assignment of arrays and their indices.

Noss. _
If’» Ty 0 0 0 T
o 00 0 00 Nbf,fl//’ L
012 3 4/ 10 Nys o | % 5 0 008
bf.3. — 1 1
123 4 4/ 10 Nyo o | B % 3 o0 BIL D
29 3 4 4 4/ 10 e S a4 o BF s R
344 44 L0 Nopd i b g E T
indA_||4 4 4 4 4] 1 3 o olo ol
4 4 4 4 3 2 92 0 0 0 0 0
4443211 indC_{| O 0 0 0 0
4 4 3 2 1 0 0 0 0 0 0 0
432 10| 0 0 0 0 0
i J
(a) Index_[101([] (b) Length_[1[1[]
Figure 7.4: Assignment for the matrices.
97 double matR_[5][5];
98 int indA_ = 0;
99 int indB_ = 0;
100 int indC_ = 0;
101
102 if (m < 4)
103 {
104 indA_ = m;
105 }
106 else if (m < 17)
107 {
108 indA_ = 4;
109 }
110 else
111 {
112 indA_ = m - 12;
113 }
114
115 for (int i = 0; i < 5; i++)
116 {
117 indB_ = Index_[0] [indA_][i];
118 indC_ = Index_[1][indA_]1[i]l;

119

52

120 for (int j = 0; j < 5; j++)

121 {

122 matR_[i] [j1=Length_[indB_] [indC_][j];
123 }

124 }

The starting value nro (nL_) for the Newton-Raphson method is derived from the internal time,
transferred into the length spline range and then truncated into the final range of 0 < np e, < 1.

126 scalar nL_ = 1.75 + (t_ - period_ * nRot_) / period_ * 17.5;
127 nl_ = nL_ - floor(nL_);

A while loop carries out the numerical solution for np ., until the difference diffT between the two
steps is equal o or less than 107°.

Within the loop, the basis functions LR* and their first derivative LdR* of the length spline are calculated
for each of the five control vertices. The control variable is transformed depending on the spline section
m, and a negative sign is set to consider the mirrored basis functions and their derivatives, respectively,
according to Equation (6.43) (code line 142, 146, 150). A reverse transformation for the control
variable nL_ has to be done before the actual numerical scheme is carried out (code line 157).

134 while (diffT > 1le-5)

135 {

136 scalar LR1 = matR_[0] [0]*pow(nL_,4) + matR_[0] [1]*pow(nL_,3) + matR_[0] [2]*pow(nL_,2) + matR_[0] [3]*nL_
< + matR_[0][4];

137 scalar LdR1 = 4% matR_[0] [0]*pow(nL_,3) + 3* matR_[0] [1]*pow(nL_,2) + 2% matR_[0] [2]*nL_ + matR_[0][3];

138

139 scalar LR2 = matR_[1] [0]*pow(nL_,4) + matR_[1][1]*pow(nL_,3) + matR_[1][2]*pow(nL_,2) + matR_[1][3]*nL_
— + matR_[1] [4];

140 scalar LdR2 = 4* matR_[1] [0]*pow(nL_,3) + 3* matR_[1] [1]*pow(nL_,2) + 2% matR_[1] [2]*nL_ + matR_[1] [3];

141

142 if (m >= 19) { nL_ = 1 - tNew; sign = -1; }

143 scalar LR3 = matR_[2] [0]*pow(nL_,4) + matR_[2][1]*pow(nL_,3) + matR_[2][2]*pow(nL_,2) + matR_[2] [3]*nL_
< + matR_[2][4];

144 scalar LdR3 = sign * (4% matR_[2] [0]*pow(nL_,3) + 3% matR_[2] [1]*pow(nL_,2) + 2% matR_[2] [2]*nL_ +
— matR_[2][3]);

145

146 if (m >= 18) { nL_ = 1 - tNew; sign = -1; }

147 scalar LR4 = matR_[3] [0]*pow(nL_,4) + matR_[3][1]*pow(nL_,3) + matR_[3][2]*pow(nl_,2) + matR_[3][3]*nL_
< + matR_[3][4];

148 scalar LdR4 = sign * (4x matR_[3][0]*pow(nL_,3) + 3% matR_[3] [1]*pow(nL_,2) + 2% matR_[3][2]*nL_ +
— matR_[3][3]);

149

150 if (m >= 17) { nL_ = 1 - tNew; sign = -1; }

151 scalar LR5 = matR_[4] [0]*pow(nL_,4) + matR_[4][1]*pow(nL_,3) + matR_[4][2]*pow(nL_,2) + matR_[4] [3]*nL_
< + matR_[4][4];

152 scalar LdR6 = sign * (4% matR_[4] [0]*pow(nL_,3) + 3% matR_[4] [1]*pow(nL_,2) + 2% matR_[4] [2]*nL_ +
— matR_[4]1[3]);

153

154 L = LR1*vectorL_[m]+LR2*vectorL_[m+1]+LR3*vectorL_[m+2]+LR4*vectorL_[m+3]+LR6*vectorL_[m+4] - Lreq; //
< function for Length-over-nT minus Lreq, vertical transformation

155 dL = LdRix*vectorL_[m]+LdR2*vectorL_[m+1]+LdR3*vectorL_[m+2]+LdR4*vectorL_[m+3]+LdR5*vectorL_[m+4];

53

156
157
158
159

161
162

164

166
167

169
170
171
172
173

175
176

188

189

if (m >= 17) { nL_ = tNew; sign = 1; }

tNew = nL_ - L / dL;
diffT = fabs(tNew - nL_);
nlL_ = tNew;

Coordinates

According to the Equation (6.32), the resulting ny (nL_) must be transformed into the valid range of
the trajectory (0.5 < np < 8.5).

nL_ = 0.5+ (m + nL_ - 1.75) * 8.0 / 17.5;

As a result of numerical uncertainties, the control variable could lay neglectable below 0.5 or above
8.5. This aberration would lead to a false calculation of the blades’ position. The np (nL_) is limited
to avoid this issue.

if (nL_ < 0.5)

{
nl_ = 0.5;
}
else if (nL_ > 8.5)
{
nl._ = 8.5;
}

With the section counter k for the trajectory, the np (nL_) is transformed in the range between zero
and one.

int k = floor(aL_);
scalar nT_ = nL_ - k;

Then, the five basis functions N15 ... Nss5 (R1_ ... R5_) of the trajectory are determined. The
vector displacement stores the resulting coordinates.

Due to the implementation of the septernion in OPENFOAM, the coordinates have to be given relative
to the blades’ initial position. Thus, the corresponding blade’s initial coordinates origin_.x() and
origin_.y() have to be subtracted.

scalar R1_ = bFactor_[0] [0]*pow(nT_,4) + bFactor_[0][1]*pow(nT_,3) + bFactor_[0][2]*pow(nT_,2) +
< DbFactor_[0] [3]*nT_ + bFactor_[0][4]; // N_1.5
scalar R2_ = bFactor_[1] [0]*pow(nT_,4) + bFactor_[1] [1]*pow(nT_,3) + bFactor_[1][2]*pow(nT_,2) +
<s bFactor_[1][3]1*nT_ + bFactor_[1]1[4]; // N_2.5

o4

190

191

192

193
194

195

197

198

200

201

202
203

204

205
206

scalar R3_ = bFactor_[2] [0]*pow(nT_,4) + bFactor_[2] [1]*pow(nT_,3) + bFactor_[2] [2]*pow(nT_,2) +
< DbFactor_[2][3]#nT_ + bFactor_[21[4]; // N_3.5
scalar R4_ = bFactor_[3] [0]*pow(nT_,4) + bFactor_[3][1]*pow(nT_,3) + bFactor_[3][2]*pow(nT_,2) +
< DbFactor_[3] [3]*nT_ + bFactor_[3]1[4]; // N_/.5
scalar R5_ = bFactor_[4] [0]*pow(nT_,4) + bFactor_[4] [1]*pow(nT_,3) + bFactor_[4] [2]*pow(nT_,2) +
< DbFactor_[4] [3]#nT_ + bFactor_[4]1[4]; // N_5.5

displacement.x() = ((R1_*Polygon_[k][0] + R2_*Polygon_[k+1][0] + R3_*Polygon_[k+2][0] +
< R4_*Polygon_[k+3] [0] + R5_*Polygon_[k+4][0]) - origin_.x()) * lag_;
displacement.y() = ((R1_*Polygon_[k][1] + R2_*Polygon_[k+1][1] + R3_*Polygon_[k+2][1] +
— R4_*Polygon_[k+3] [1] + R5_*Polygon_[k+4][1]) - origin_.y()) * lag_;

Counter angle
During the simulation, the blades’ motion is a superposition of the trajectory path and the pitching.

The first derivatives of the basis functions Ny, to Nj5 (dRi_ ... dR5_) are calculated along with
the components of the slope vector (tangentX_ and tangentY_). Based on the slope vector, the counter
angle ¢ (phi) is determined.

scalar dR1_ = dFactor_[0] [0]*pow(nT_,3) + dFactor_[0][1]*pow(nT_,2) + dFactor_[0][2]*nT_ + dFactor_[0][3];
— /J/ N'_1.
scalar dR2_
- /J/ N'_2.
scalar dR3_ = dFactor_[2] [0]*pow(nT_,3) + dFactor_[2][1]*pow(nT_,2) + dFactor_[2][2]*nT_ + dFactor_[2][3];
- J/ N'_3.
scalar dR4_
— [/ N'_4.
scalar dR5

- J/ N'_5.

o

dFactor_[1] [0]*pow(nT_,3) + dFactor_[1][1]*pow(nT_,2) + dFactor_[1][2]*nT_ + dFactor_[1][3];

w«

(5,1

dFactor_[3] [0]*pow(nT_,3) + dFactor_[3][1]*pow(nT_,2) + dFactor_[3][2]*nT_ + dFactor_[3][3];

w

dFactor_[4] [0]*pow(nT_,3) + dFactor_[4] [1]*pow(nT_,2) + dFactor_[4][2]*nT_ + dFactor_[4][3];

w«

scalar tangentX_ = (dR1_*Polygon_[k][0] + dR2_#Polygon_[k+1][0] + dR3_#Polygon_[k+2][0] +
— dR4_*Polygon_[k+3] [0] + dR5_*Polygon_[k+4][0]);
scalar tangentY_ = (dR1_#Polygon_[k][1] + dR2_*Polygon_[k+1][1] + dR3_*Polygon_[k+2][1] +
— dR4_*Polygon_[k+3] [1] + dR6_*Polygon_[k+4][1]);

scalar phi = - atan2(tangentX_, tangentY_);

The output range of the arc tangent 2 lies between -7 and 7. For a blade transition from the second
to the third quadrant, there is a jump of 27 for the counter angle. In addition, after each completed
rotation, the counter angle starts from 0° all over again. These discontinuities lead to a blade flip and
generate numerical artefacts or crash the case.

There are two functions to ensure a steady increase of the counter angle. The first one shifts the
negative part of ¢ up to the positive section by adding a value of 2w. The range of the counter angle
isnow: 0 < ¢ < 27 A particular condition occurs for the blade blade0. Due to the slope of the
trajectory, the counter angle may be negative at the initial position, which shall not be interpreted as
a discontinuity. The 27 shift is skipped for the first half rotation and concerns only the bladeO.

95

208
209
210
211
212
213
214
215
216
217

219
220
221
222
223
224
225
226
227
228
229

231
232
233
234
235

scalar multiplier_ = 1;
if (time_.value() < 0.25*period_ && t_ < 0.25%period_)

{
multiplier_ = 0;
}
if (phi < 0)
{
phi = phi + 2.0%pi *multiplier_ ;
}

The second function also adds a value of 27 at a particular time to obtain a continuous increase of
the counter angle. The necessary offset is 27 multiplied by the number of rotation ngr, (nRot_).
Nevertheless, there are two different conditions which need to be considered.

The initial position of every blade mesh is tangential to the circle (see Figure 3.3). However, the slope
of the actual trajectory may differ from the circle’s slope, which could result in a lead or a lag angle.

If there is a lead, the counter angle reaches 27, although a complete rotation has not yet been accom-
plished. This circumstance occurs when the counter angle is positive (phi > 0) and the control variable
N7 jen (DL_) is greater than 7.0 (as a reminder: one full rotation results for ny e, = 8.5). Therefore,
an extra shift of 27 has to be added before the rotation counter ng,; (nRot_) gets incremented by one.

In contrast, the counter angle does not reach 2x in the case of a lag, even though the rotation is not
yet completed. As a result, a shift must not be added. This circumstance occurs when the counter
angle is negative (phi < 0) and the control variable nr e, (nL_) is smaller than 2.0 (as a reminder:
every rotation starts from ng e, = 0.5).

Figure 7.5 shows the behaviour of the counter angle for a lead and a lag angle.

scalar Revolution = 0;
if (phi > 0 && nL_ > 7.0)
{

Revolution = (nRot_ + 1) * 2%pi;

else if (nRot_ > 0)

{
if (phi < 0 && nL_ < 2.0)
{
Revolution = (nRot_ -1) * 2xpi;
}
else
{
Revolution = nRot_ * 2#pi;
}
}

o6

L9

(a) Lead angle.

o
£ 0
o
S
o 1 2 3
— 2n
o
£ n
M
S
0
0 1 2 3
3
I 2
o
< 1
0 1 2 3

Revolution
N
=}

p2in[°]

Number of rotation

(c) Counter angle with lead blade.

Figure 7.5: g: primary counter angle calculated by the arc tangent 2 function.

NRot: Nnumber of completed rotation.

(2: final counter angle, including the delay.

NRot p1in[°] @oin[°]

Revolution

@2 in [°]

(b) Lag angle.

n
0
o 1 2 3
2n
n
0
0 1 2 3
3
2
1
00 1 2 3
6
4n
2n
00 1 2 3
6m
an
2n
0
0 1 2 3

Number of rotation

(d) Counter angle with lag blade.

1: couner angle shifted about 27 to get only positive angle.

Revolution = 27 - ng,: offset, to obtain a continuous counter angle.

238

240
241
242

A further offset angle has to be considered for blades, which do not have a vertical inial alignment.
This concerns all but blade0.

scalar AngleOffset_ = 2.0*pi *offset_;

The final counter angle is the summation multiplied by the lag.

rotation.z() = (phi - AngleOffset_ + Revolution) xlag_;

Final procedure

The two vectors displacement and rotation are merged in the final motion vector TR. This vector is
given to the two OPENFOAM classes quaternion and septernion, which perform translations and
rotations in 3D space.

Vector2D<vector> TRV(displacement,rotation);
quaternion R(quaternion::XYZ, TRV[1]);
septernion TR(septernion(-origin_ + -TRV[0])*R+*septernion(origin_));

Finally, the code passes the results to the solver.

o8

8 Optimisation

Before starting the optimisation, a characteristic value or an objective function has to be defined for
which the minimum or maximum shall be reached. This value will be derived in the Section 8.1. The
following sections describe the chosen setup and the process loop for the optimisation cases. The last
Section 8.4 contains the input data for the DAKOTA optimisation.

8.1 Evaluation

For conventional helicopters, the efficiency of a rotor is given by the figure of merit. It’s defined as the
ratio of the ideal induced power to the real power needed for hovering.

P
Preal

& =FoM = (8.1)

The ideal rotor has a figure of merit equal to one. Typical values for FoM lay between 0.6 and 0.7,
modern rotors reach FoM = 0.8 according to van der Wall, [20].

This figure of merit is the characteristic value for optimisation, which DAKOTA maximises. The mean
values of the last rotation are used for the FoM calculation. Only the aerodynamic forces and moments
are taken into account; inertial loads are not.

8.1.1 Ideal power

The ideal induced power as a result of the momentum theory is given by

Pigeas = v; - T = . (82)

This equation was derived from actuator disk theory and is technically speaking only valid for rotor
blades that lie in the disk’s plane with a constant induced velocity v;. In contrast to helicopters, the
blades of cycloidal rotors are subjected to different flow velocities due to their movement. The blades
also cross their downwash, which influences flow velocity. However, Equation (8.2) is used to determine
the ideal power.

As defined in the Section 4.1, the air density is p = 1.225%.

The reference surface S represents the disc surface through which the flow passes. For the cycloidal
rotor, the cross-section is used, as shown in Figure 8.1. It is assumed that the fluid mainly flows in the
negative y-direction.

S =wg-dg, (8.3)

with the rotor width wgr and the rotor depth dg, see Figure 8.1. The width can vary depending on
the optimisation subject; the depth is always 1m.

99

©y

y
’ \/
RotorWidth N
S %

Figure 8.1: Reference surface for cycloidal rotors.

The thrust can be calculated by the force components given for each blade

T=\/F}+F?.

Later on, a function calculates the mean values of the components for one rotation (F, Fy). This
leads to the mean thrust 7" as well as the mean ideal power P;q.

8.1.2 Real power
The blades’ motion was linearised between two time steps ¢; and ¢;1, and all values were interpolated
between the steps. This approach is necessary to calculate the blades’ angular velocity.

There is a translation and a rotation of the blade, which can be considered separately for one revolution,
see Figure 8.3. Therefore, the real power is the sum of translation and rotation power. Again, the
mean values over one rotation are calculated.

ﬁreal = Ftra + ?rot (84)

Figure 8.2: Blade movement from time step t; to ¢;y1.

60

tit1

(a) Linearised translation of blade. (b) Rotation of blade.

Figure 8.3: Splitting of the blade movement.

8.1.3 Translation power

The translation power is the tangential force F; multiplied by the current velocity

Ptrath‘v-

tiv1

The global forces F, and F), are translated into the second local coordinate system C'S,y, and summed

up to obtain the tangential force (see Figure 8.4).

Fy = F, -sin(p) — F, - cos(y)

The fact that the tangential forces for two time steps ¢; and ¢;41 are not colinear is neglected. This is

valid because of the small time steps. The interpolated tangential force between two steps is

Fir=1%(Fi+ Fn) .

CStan

“ Sy

(a) Forces in the local cartesian system. (b) Transferred forces in the tangential co-
ordinate system CSian,.

Figure 8.4: Tangential force for the translation power calculation.

Due to the two different modes of drive (see Section 4.2), there are two different velocities.

1. Constant velocity: VUBlade = const. depending on the Reynolds number.

2. Constant rotation velocity: wpyive = const. with vBade = WDrive * Fi.

61

For the constant rotation velocity, the blade’s velocity is interpolated.

;= % “(Ri + Rix1) - WDrive » (8:8)

where the current radius is given by
Ri=\/X?+Y?. (8.9)

8.1.4 Rotation power

The rotation power is the local moment Mpjqq4. as a result of the aerodynamic pressure on the airfoil
surface multiplied by the angular velocity w;q¢.

Prot = MBiade - Wrot

In OPENFOAM, the rotation centre for the output moments is fixed and cannot be adjusted during
the calculation. The necessary local moment of the blade, which refers to the moving pivot point, is
unavailable.

Therefore, the output moment with its rotation centre in the global origin is taken. This moment is
the sum of the local moment and a correction moment (see Figure 8.5).

Mglobal = MBiade + Mcorr (810)

.
~~
~
.o
~
~
-

N o
o
~

Mglobal (\/ >

Figure 8.5: Compounding the global moment.

The correction moment is the corrector force F,. multiplied by the current lever to the blades’ pivot
point.

Meorr = Feorr - R
The correction force is perpendicular to the lever, which leads to

Feorr = —Fy - sin(¥) + F, - cos(V) . (8.11)

The local blade moment is then

Mpiade = Mglobal — Feorr - R . (812)

62

Again, the values were interpolated

M Biade = 3 - (MBiade,i + MBlade,it1) - (8.13)

The rotating motion is a superposition of two different rotations. The first part of the rotation is the
tilting angle ¢ due to the blades’ movement. The change of the pitching angle g is the second part.
The resulting rotation angle of the blade is

0=¢p+a. (8.14)

The angular velocity is the change of the rotating angle from one time step to another.
A0 O — 0
w. = —_— = ——-
Tt A tiv1 —t;

The pitching and tilting angles (g, #) are determined by OPENFOAM functions and are written in
the log file.

8.2 Setup

There are different possible combinations to generate runs for optimisation. The following parameters
can be varied.

e The number of blades: 1, 2, 3, 4.

e The subject of optimisation, which is subdivided into three parts "Pitching", "Trajectory", and
"Both".

— "Pitching": for a circular blade motion, the blade pitching is optimised.

— "Trajectory": for sinusoidal pitching with a fixed amplitude &g, the blades’ trajectory is
optimised.

— "Both": the combination of the pitching and the trajectory is optimised.
e Type of drive mode: constant velocity and constant rotational speed.

e For the latter mode drive, three different values were considered: wyor, 2 - Wrot, 4 - Wrot. These
values were only considered for the two-blade case.

Table 8.1 shows all optimisation runs which are carried out for this thesis.

63

Table 8.1: Considered optimisation runs and corresponding parameters.

Uprive = 0.7752, wpyive = 0.5172

Name Blades Variable Mode of drive Value
Opti_ 1PV 1 Pitching const. velocity VUDrive
Opti 1TV 1 Trajectory const. velocity VUDrive
Opti 1BV 1 Both const. velocity VU Drive
Opti_1TO 1 Pitching const. angular velocity VDrive
Opti_ 1BO 1 Both const. angular velocity VU Drive
Opti_ 2PV 2 Pitching const. velocity VUDrive
Opti_ 2PVx2 2 Pitching const. velocity - UDrive
Opti_ 2PVx4 2 Pitching const. velocity - UDrive
Opti_2TO 2 Trajectory const. angular velocity WDrive
Opti_2TOx2 2 Trajectory const. angular velocity - WDrive
Opti_ 2TOx4 2 Trajectory const. angular velocity - WDrive
Opti_2BO 2 Both const. angular velocity WDrive
Opti_ 2BOx2 2 Both const. angular velocity - WDrive
Opti_2BOx4 2 Both const. angular velocity - WDrive
Opti_ 3PV 3 Pitching const. velocity UDrive
Opti_ 3TV 3 Trajectory const. velocity VUDrive
Opti_3BV 3 Both const. velocity UDrive
Opti_3TO 3 Pitching const. angular velocity VDrive
Opti_3BO 3 Both const. angular velocity UDrive
Opti_ 4PV 4 Pitching const. velocity VDrive
Opti_ 4TV 4 Trajectory const. velocity VUDrive
Opti_ 4BV 4 Both const. velocity VU Drive
Opti_4TO 4 Pitching const. angular velocity VDrive
Opti_ 4BO 4 Both const. angular velocity VU Drive

64

8.3 Procedures

The following two sections describe the procedure of the optimisation runs. The general workflow is that
the user initialises an optimisation run, which automatically starts a series of CFD cases. Due to the
different optimisation subjects ("Pitching" or "Trajectory"), there are two separate procedures, which
will be explained in the following sections. The procedure for pitching and trajectory optimisation
("Both") is a combination of them.

Please note that a run is one DAKOTA optimisation with a unique setup, listed in Table 8.1, whereas
a case is a single CFD calculation within a run.

In Appendix C is the procedure scripts operateDict.py and the code for its functions Control.py.
Theses scripts are used for the pithcing and trajectory optimisation with constant velocity.

8.3.1 Pitching

Figure 8.6 shows the flowchart for the pitching procedure.

1. DAKOTA sends a set of 16 variables and an ID to the PYTHON script operateDict.py. These
variables are the control vertices for the pitching spline.

2. A new case is generated by copying and renaming the initial case (Run_ + ID).

3. The script updates the dynamicMeshDict by overwriting the control vertices for the spline pitch-
ing with the new one.

4. The OPENFOAM case is started via the Run.sh file.
5. During the calculation, the log file is read to check the state. There are four possible states:
e Still running: The function will sleep for a while, and after that, it will reread the log file.

e TimeOut error: The case will be aborted if the log file’s content does not change over 20
minutes due to an internal failure.

e OpenFOAM error: As a result of a high CFL number or other numerical issues, the case
will be aborted by OpenFOAM itself.

e End: The case has ended successfully; the next step can be executed.

If one of the errors occurs, a penalty value is assigned by setting the figure of merit to 1075, and
the case dictionary is deleted.

6. If the case ended successfully, a function calculates the figure of merit assessed on the output
forces and moment.

7. A Runlog.txt stores the essential input and output values. It also notes errors during the case.
8. The case dictionary is deleted.

9. The PYTHON script sends the inverse value of the FoM back to DAKOTA.

65

dacotaDict.in [«

‘ 1. Control vertices ‘

l

‘ operateDict.py ‘

u 2. Generate case Run_***

Y

‘ 3. Update dictionaries ‘

5. Live Timing

‘ OpenFOAM error? }—

0 = Penalty

‘ 6. Evaluate FOM ‘

Y

‘ 7. Write RunLog.txt ‘

8. Delete case
9. 1/FOM

Yes

Figure 8.6: Flowchart of the pitching optimisation procedure.

66

8.3.2 Trajectory

A different procedure is shown in Figure 8.7 for the trajectory procedure.

1. DAKOTA sends a set of 14 variables and an ID to the PYTHON script operateDict.py. These
variables are the control vertices for the trajectory spline.

2. At first, the control vertices are assessed if they would generate a trajectory with an intersection,
which would lead to a distorted or senseless path, as shown in Figure 8.8
If yes, a penalty value is assigned by setting the figure of merit to 1076, The case then is aborted.

3. If the assessment is successful, the trajectory is calculated based on the given control vertices.
The coordinates of the vertices are transformed to ensure that the spline’s arc length is exactly
3.

3
Ltr‘a (7)

TF =T,

(2

(8.15)

4. The resulting trajectory is assessed in terms of three criteria.

e Maximum curvature: the trajectory’s curvature is determined according to Chapter 5.5 and
may not exceed the limit of oy, = 4 % Figure 8.9(a) shows a trajectory with a just
acceptable curvature, whereas the curvature of Figure 8.9(b) is too high.

e Minimum distance, only necessary for the mode drive with a constant angular velocity. For
this drive, a minimum distance between the trajectory and the rotation origin must be met,
as the actuators have a minimum retraction length. Therefore, the distance of each control
vertices to the origin has to be greater than 1 meter, see Figure Figure 8.10. If not, a penalty
value is assigned by setting the figure of merit to 107, The case then is aborted.

e Maximum AR, only necessary for the mode drive with a constant angular velocity. The
change of the radius or the radial velocity has to be limited. A high motion would lead
to numerical issues (high CLF number), which could interrupt the case. From a technical
point of view, actuators have a limited positioning speed, which should be considered. The
radial velocity may not exceed +£0.65 7, see Figure Figure 8.11.

AR Riy1—R;

< 0.65 = (8.16)
(¥ = = — . — .
rad At tz’+1 — ti S

5. If the assessment is successful, a new case is generated by copying and renaming the initial case
(Run_+ID).

6. To obtain a low computationally intensive mesh, a customised STL volume gives the shape for
the last refinement level of the background mesh. The pitching path and the trajectory are used
to calculate the border of this geometry.

e Figure 8.12(a) shows the bounding box, representing the outside of the blade mesh, which
is placed multiple times along the trajectory, considering the associated pitching angle, see
Figure 8.12(b). The resulting coordinates of the bounding boxes are stored in an array. The
next step is to collect all points which form the envelope.

e A triangle with an interior angle of 4.5° and an edge length of 10 m is constructed. It rotates
around the origin in 4.5° steps until a complete rotation is reached. For every triangle’s
position, a function collects the points, which lay inside the shape, and determines its
distance to the origin. The point with the farthest distance defines this section’s geometry
border, see Figure 8.12(c) and 8.12(d).

67

10.

11.

12.
13.
14.

e Based on the remaining points, a function generates a STL volume, see Figure 8.12(e).
8.12(f) shows the resulting refinment mesh.

TThe script updates the dynamicMeshDict by overwriting the input values. This concerns the
control vertices for the spline pitching as well as the corresponding length and section vectors.
The fvSchemes is also updated. The coordinates for the searchBox are adjusted, where the
dimension of the previous STL volume are taken.

A script builds the necessary mesh within the following steps:
e Generating a block mesh.
e Refinement with snappyHexMesh and STL volume.
e Merging of the required blade meshes with the background mesh.
e Extrude mehs to obtain a mesh with one single cell in the z-direction.
The OPENFOAM case is started via the Run.sh file.
During the calculation, the log file is read to check the state. There are four possible states:
e Still running: The function will sleep for a while, and after that, it will reread the log file.

e TimeOut error: The case will be aborted if the log file’s content does not change over 20
minutes due to an internal failure.

e OPENFOAM error: As a result of a high CFL number or other numerical issues, the case
will be aborted by OPENFOAM itself.

e End: The case has ended successfully; the next step can be executed.

If one of the errors occurs, a penalty value is assigned by setting the figure of merit to 107¢, and
the case dictionary is deleted.

If the case ended successfully, a function calculates the figure of merit based on the output forces
and moment.

The essential input and output values are stored in a RunLog.txt.
The case folder is deleted.

The PYTHON script sends the inverse value of the FoM back to DAKOTA.

68

dacotaDict.in

| 1. Control vertices |

operateDict.py ‘
= 2. Intersection? ‘
S

3. Calculate trajectory
— |

4. Evaluate trajectory ‘
Max. curvature? }—

Min. distance? }—

o a7
il

5. Generate case ‘

]
6. Update dictionaries ‘
L

7. Generate Refine.stl
L |

8. Meshing ‘
L
o.Runcase |
L

10. Live Timing ‘
OpenFOAM error? | —
e our ——

— Complete? }7

|
12. Evaluate FOM
— |

13. Write RunLog.txt ‘

5 v R 1|
14 Dottecse |
14, 0otecase |
15 o |

Figure 8.7: Flowchart of the trajectory optimisation procedure.

69

~
N

Tl
T8
(a) Intersection inducing in a loop. (b) Intersection causing a peak.
Figure 8.8: Example of trajectory with an intersection.
T2
T4 ‘
F T4
TS L |
% . - % , .
T7 T7
(a) Curvature o = 4, just acceptable. (b) Curvature o = 26.6, too high.
Figure 8.9: Example of trajectory with different curvatures.
0.8
A T3 —— Radial velocity
° 0.61 — Upper boundary
T4 .Tz —— Lower boundary
. _ 04
Elw
= 0.2
£ \ —
> 0.0
i~
Ts T S 02
>
Te -0.4
-0.6
os N4
%0 45 90 135 180 225 270 315 360
Te, T7 Win [°]

Figure 8.10: Trajectory within the forbid-
den area, radius = 1 m.

70

Figure 8.11: Radial speed over azimuth angle.

Y-Coordinate

Y-Coordinate

—— Trajectory
15 —e— Bounding box
1.0 -
0.5
0.0
-0.5
-1.0
0
-1.5
-1 0 1 2 3
X-Coordinate
(a) Bounding box of the blade.
Trajectory
2{ « Bounding box .-
© Matching points. oq-82% “ & &"
Lyt
1
0
wis. e
—_ N e . T
! -‘-'. .0.-...-.’ I
Sy R EREIIRY &
Ll e
R 2 !
— 0 cese sy oo
2 bpr1t?
-4 -3 0 1

X-Coordinate

(c) Selecting the farthest points for every triangle.

Y-Coordinate

Y-Coordinate

—— Trajectory
2| —— Chord line
—e— Bounding box /_\\\
1
o J
-1
-2
-4 -3 -2 -1 0 1 2
X-Coordinate
(b) Bounding box placed along the trajectory.
—— Trajectory
2| —— Outline
1 K’m
0 J
-1
-2
-4 -3 -2 -1 0 1

X-Coordinate

(d) Oultine of all bounding boxes.

(e) Resulting STL geometry.

(f) Resulting refinement mesh.

Figure 8.12: Approach for individual refinement mesh.

71

8.4 Dakota

A standard DAKOTA input file with a genetic solver method is adapted for the current optimisation. The
Hawk of the HIGH-PERFORMANCE COMPUTING CENTER STUTTGART is available for the optimisation
calculation. As one node provides 128 cores, the population size for each run is set to 128.

DAKOTA stops the optimisation run if it reaches one of the three criteria, 'maximum iteration’, 'maxi-
mum evaluations’ or ‘convergence tolerance’. The maximum iteration is eightfold the population size;
the maximum evaluation is 256 times the maximum iteration. This value guaranteed a sufficient num-
ber of cases to obtain an optimum. The convergence tolerance is changed during the runs between
1072 and 1073. It turned out that these criteria were still too strict. Therefore, two additional criteria
are introduced. For this, the figure of merit is sorted in ascending order. First, the difference between
the two best FoMs should be less than 0.5 percent. Secondly, the difference between the best and the
five hundredth value should be less than one percent. An example of a suitable convergence is shown

in Figure 8.13(a).
FoMsootn

FoMay,g A ,)
— 29%%md 1« 0.005 20.5 Crity = —02800th 1 = (.01 21% . 8.17
FoMyy = %, Crity FoMyy = % (8.17)

In some circumstances, the optimisation run is aborted due to a lacking convergence, see Figure 8.13(b).
As a result of the high execution time of CFD cases some runs are aborted due to a lack of time. The
following rable summarises the stop criteria.

Table 8.2: Considered optimisation cases and corresponding parameters.

Name Maximum Maximum Convergence FoM FoM Lack of Lack of
iteration evaluations tolerance criteria 1 criteria 2 convergence time
maxlIter maxEval conv'Tol Crity Crito lackConv lackTime

Value 1024 262 144 1073 0.5% 1% - -

Further essential inputs are variables and their boundaries, which have to be declared in the DAKOTA
file. The variables generated by the optimiser correspond to the control vertices of the pitching as well
as the trajectory path.

For the boundaries of the pitching vertices, two sinusoidal envelopes limit the values (see Figure 8.14).

72

0.7

0.6 1
0.5
0.4+

0.34

0.27 Initial

FoM
0.11 e Maximum
sorted FoM
0.0+ y y . - ; ,] T
0 2000 4000 6000 8000 10000 12000 14000
Case ID
(a) Run: Opti-1BV, max. FoM = 0.632, at Index 15 714, Crit; = -0.14%, Crit2=-0.97%.
SrtYrtY—— Y T
0.6 1
0.5
0.4+
0.3-. : : ‘ | S Initial
0.2 ~ badbI S : AR S SUm Ty FoM

Maximum

0.14
sorted FoM

0.0-

2000 4000 6000 8000 10000 12000 14000
Case ID
(b) Run: Opti-4TV, max. FoM = 0.667, at Index 14 384, Crit; = -1.76%, Crito=-13.0%.

Figure 8.13: Examples for the development of the figure of merit.

0 2 4 6 8 10 12 14 16
nr, pit

Figure 8.14: Boundary for the pitching control vertices.

73

Y-Coordinate

Y-Coordinate

T3

Ts

T

X-Coordinate

0

Ts

T

Te

Tg

0

X-Coordinate

Figure 8.15: Boundary for the trajectory control vertices.

74

Listing 1 shows the adjusted input file, where the symbol ***" marks run dependent entities. It is

essential to mention that the optimiser searches for a minimum. Therefore, the inverse of the figure of
merit has been sent to the optimisation solver.

environment

top_method_pointer = 'SOGA'

© 0 N O ke W N

AR R A R R W W W W W W W W W W N N NN NN NN NN R e R R e e e
Gk W N H O O NN O U R W RO © DU R W E O © N U e W N = O

method
id_method = 'SOGA'
model_pointer = 'Mi
soga

fitness_type merit_function

population_size =

max_iterations =

128

1024

max_function_evaluations

convergence_tolerance =

scaling
seed = 123456

model
id_model = 'M1'
single
variables_pointer = 'V1'
interface_pointer = 'I1'
responses_pointer = 'R1'
variables
id_variables = 'V1'
continuous_design = **x*
initial_point *okok
lower_bounds *kk
upper_bounds *okok
descriptors *okok
scale_types 'auto'

interface
id_interface = 'I1'

analysis_driver = #**x*

fork asynchronous evaluation_concurrency = 128

parameters_file =
results_file =

file_tag

responses
id_responses = 'R1'
objective_functions
no_gradients

no_hessians

'parameters.in'

'results.out’

=1

Listing 1: DAKOTA input file, "*** marks run dependent entities.

75

9 Amendment

As defined in section 3.1, the rotation starts at an azimuth angle of ¥ = 0°. This does not necessarily
apply to an arbitrary trajectory, where the starting point could lay above the x-axis. The trajectory’s
resulting vertical shift does not influence the result for the drive mode ’constant velocity’.

However, for the constant angular velocity the trajectory has to be adjusted so that the starting point
lays on the x-axis. Thus the rotating origin lies in the global origin, see Figure 9.1. The adjustment
is necessary to carry out the correct evaluation. Unfortunately, this essential shift was not entirely
implemented in the operateDict.py. The lack of shift leads to a false calculation of the splines’
radius due to the false origin, see Figure 9.1 (radius is the distance between the global origin and the
trajectory). The maximum deviation of the radius for this example is -24.7%, which is too large to be
accepted. This results in a varying angular velocity over the rotation, as shown in Figure 9.3. Also, the
calculation of the blade moment is false (see Section 8.1.4 for definition). As a result the determined,
translation and rotation power and thus the figure of merit is not correct. Therefore, the captured
optimation results are not valid.

Original trajectory Shifted trajectory

—— Trajectory

20 ® Starting point

Rotation origin
1.5 1.57
1.0 & R1 7§ R2 1.0

Q‘\ <= Q;’.\z
4

[0}]
© 05 © 0.5

g < g

2 7 2

8 8
& oo = § o

> >
-0.5 -0.51
-1.0 -1.0]
-15 =15

=15 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 =1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
X-Coordinate X-Coordinate

Figure 9.1: Comparison of original and shifted trajectory, Opti-2TO.

76

2.01

1.5-/\/—\

£
£
S 1.0
©
©
“ 051
) Ri: radius of original trajectory (false)
—— Ry: radius of shifted trajectory (correct)
0.0 T T T T T T
0 45 90 135 180 225 270 315 360
Yin[°]

Figure 9.2: Comparison of the two radii Ry and Ry, Opti-2TO. The maximum deviation is -24.7%.

0.8
.—En
Foy —
8
o 0.4
>
—
o
2 0.21 — Unshifted trajectory
<Ct —— Wprive = 0.5166 % = const.
0.0 T T T - : :
0 45 90 135 180 225 270 315 360

Win[°]

Figure 9.3: Angular velocity for a trajectory without vertical shift, Opti-2TO. The maximum deviation is
33.2%.

The error can be corrected during the precalculation by shifting the control variables in a vertical
direction about the value Aysnir, as shown in the following code.

yShift = vecTY[0] # get the y value of the starting point

for i in range(0,13):
Polygon[i] [1] = Polygon[i]l [1] - yShift

7

10 Results

This chapter first presents the initial cases to get the necessary reference values. An overview presents
essential results of the optimisation runs. The conclusion gives a résumé about the optimisation runs
and their results, which are discussed in detail in the following. Please not, that the pressure field
given by OPENFOAM is in relation to the density p.

First, some definitions are made, which will be used to evaluate the results.

Dimensionless coefficients for the lift, drag and power are defined to enable a reasonable comparison
of the results with each other. The direction of the lift is defined to be perpendicular to the flow
direction of the air; the drag is again perpendicular to the lift. As a result of the blade’s movement
and the downwash, the free stream direction is hard to determine. Thus the lift and drag coefficients
are neglected. A distinction is made between translation and rotation power for the corresponding
coefficient. In contrast to the calculation of the figure of merit, the sign of the power is taken into
account in this coefficient.

Ptra
CPower,tra = 3 S (101)
* Vplade * P Blade

[Slpst

Prot
CPower,rot = 3 (102)
“Vpjade * O Blade

[\Slpst

To better understand the pitching and the trajectory, a specific type of plot is used. In addition to
plotting the pitch angle oy over the azimuth angle WU there is a plot of the pitch angle along the
trajectory. This helps for a better comprehension of the blade’s motion. The colour of the shaded area
gives information about the pitching angle’s sign:

e red for potitive angle ag (leading edge ’outside’ the trajectory),
e blue for a negtiv angle o (leading edge ’inside’ the trajectory).

Figure 10.1, 10.2 shows the two different plots for a sinusoidal pitching path.

Another different type of plot will be used to assess the direction of the blade thrust. For this visual-
ization, the forces acting on the blade are plotted along the trajectory, as shown in Figure Figure 10.4
exemplary. This qualitative illustration helps to understand the force distribution, especially for com-
parison. The length of the vectors indicates the normalized force magnitude. Figure Figure 10.5 shows
the definition of the colour scheme for the vectors. The classification into the three colour parts always
corresponds to the resulting global thrust vector, which is represented by the black arrow:

e red: £85°,
e gray: between 85° and 95°,
e blue: greater than 95°.

78

50

T

0 45 90 135 180 225 270 315 360
Win[°]

ap in [°]
o

Figure 10.1: Conventional plot of pitching angle over azimuth angle.

+45°
—— Trajectory 0°
—— Pitch angle ag 00
N
Figure 10.2: Pitching angle over trajectory. Figure 10.3: Corresponding alignment of the blade.

Figure 10.4: Force vectors over trajectory, case 1-Rot. Figure 10.5: Definition for the color scheme.
2.0

1.57

1.0
05—~/
0.0

0 45 90 135 180 225 270 315 360
Win [°]

Thrust in [N]

Figure 10.6: Thrust over azimuth angle V.

79

10.1 Reference cases

An initial case with a sinusoidal pitching (£45°) and circular trajectory is carried out for each optimi-
sation case. These cases are the basis for the upcoming evaluation of the optimisation results.

There are four cases with a different number of blades. As a result of the different rotating motions,
there are two further cases for each blade. Additionally, two different Reynolds numbers are considered
for the two-blade case.

Table 10.1 gives an overview of the reference cases and their resulting figure of merit. The execution
time is valid for a single-core calculation on the IAG’s Prandtl cluster.

There is a deviation between the two motion classes for the multi-blade cases. The highest FoM
deviation of 15% occurs for the three-blade cases. For the two- and four-blade cases, the FoM deviation
is 4%. The reason for the discrepancy could be the uncertainties due to the overset or discontinuities
of the splines (see Section 10.3).

Table 10.1: Considered optimisation cases and corresponding parameters.

Name Blades Motion FoM Thrust Real power Re Execution
[l IN] (W] [l ls]
1-Rot 1 solidBody 0.350 0.537 0.414 50 000 3 433
1-Spline 1 bSpline 0.350 0.542 0.420 50 000 3 446
2-Rot 2 solidBody 0.309 0.615 0.576 50 000 7275
2-Rotx2 2 solidBody 0.336 2.41 4.10 100 000 7 292
2-Rotx4 2 solidBody 0.378 11.4 37.3 200 000 7 313
2-Spline 2 bSpline 0.320 0.703 0.680 50 000 7 283
3-Rot 3 solidBody 0.284 0.733 0.816 50 000 9 968
3-Spline 3 bSpline 0.327 0.751 0.734 50 000 10 003
4-Rot 4 solidBody 0.222 0.857 1.32 50 000 13 884
4-Spline 4 bSpline 0.230 0.928 1.43 50 000 14 103

80

10.2 Overview

The absolute maximum figure of merit of 0.758 is reached with four blades and optimisation of pitching
only, Opti-4P. This case is also the one with the best improvement of +241%.

The overall results are listed in Table 10.2 and shown in Figure 10.7.

The control vertices for the optimal cases are listed in Section F.

Table 10.2: Overall results of optimisation and corresponding parameters. For criterion see Table 8.2.

Name FoM Improve- Thrust Real power Valid runs Criterion
-] ment [N] [W]
Opti-1P 0.646 +85% 0.312 0.119 14 638 Crits
Opti-1TV ~ 0.490 +40% 0.776 0.471 13 953 Critg
Opti-1BV 0.632 +81% 0.368 0.130 13 576 Critg
Opti-2P 0.690 +123% 0.802 0.383 9 330 Crito
Opti-2Px2 0.731 +118% 3.18 2.86 11 339 Crito
Opti-2Px4 0.753 +99% 13.8 25.2 11 293 Crito
Opti-2TV ~ 0.421 +32% 1.08 1.00 15 298 Crito
Opti-2BV 0.754 +169% 1.65 1.04 14 802 conv'Tol
Opti-3P 0.708 +149% 1.06 0.568 9 458 conv'Tol
Opti-3TV ~ 0.602 +84% 1.69 1.45 15 296 lackConv
Opti-3BV 0.743 +127% 1.72 1.15 15 877 lackTime
Opti-4P 0.758 +241% 2.78 2.25 11 201 lackTime
Opti-4TV ~ 0.667 +190% 1.58 1.34 11 900 lackConv
Opti-4BV ~ 0.400 +48% 1.73 2.45 10 639 lackConv

81

¢8

Thrust in [N] FoM [-]

Real power in [W]

1.0

0.8+

0.6

0.4

0.2

0.0

3.0

2.5
2.01
1.51
1.0+
0.51

0.0

2.5
2.0
1.51
1.0+
0.5

0.0

3\ AN Y 3\ 3\
R X X R X X R X X R X X
¢ (* o——o—9o 9 —°
—o— Initial case —"
—8— Optimisation
—o— Initial case
—- Optimisation
-/ o
-/I/.
¢ o—9o —° ————o—° ¢
—8— Initial case
Optimisation
—
-
o~ —9
——— —o
: 2 P e Ry Q 2
R X R R X R X R X

Thrust in [N] FoM [-]

Real power in [W]

1.0

0.8 1

0.61

0.44

0.2

0.0

15.0

12.54
10.01
7.5
5.0
2.5

0.0

40

301

20

104

Figure 10.7: Overall results of optimisation. The results of Opti-3TV, Opti-4TV and Opti-4BV are shaded due to a lack of convergence.

10.3 Conclusion

The following conclusions can be drawn from the optimisation runs and their results.

For the three runs, Opti-3TV, Opti-4TV, and Opti-4BV, no apparent convergence has been
reached even for many cases (see Figure 10.8). The optimiser could not consider the previous
cases with a suitable FoM.

At the beginning of each trajectory optimisation run, many variable sets lead to ill trajectories
(intersection, curvature etc.), which results in inefficient utilisation of the Hawk node. This
could be solved by redefining the boundaries for DAKOTA. Instead of a square boundary space,
as previously shown in Figure 8.15, each control variable could lay in non-overlapping segments
of a circle, see Figure 10.11. In this manner, intersections can be avoided, and the minimum
radius can always be met.

The boundaries for the pitching path are never reached (o pound = £80°). The maximum pitch
is a mag = 51.6° (Opti-3BV), and the minimum pitch is ag min = —70.7° (OptidP).

For each blade category [1 ... 4], the 'only trajectory’ optimisation run captures the least figure
of merit (Opti-4BV has not converged and therefore is not considered).

It was expected that the optimiser would prefer a horizontally stretched trajectory to generate
lift. The opposite is true, as shown for Opti-2BV, Opti-3TV and Opti-4TV, where the trajectories
are stretched in the vertical direction.

There is a considerable increase in the thrust for the multi-blade cases. The optimiser avoids
generating a low-pressure area inside the cyclogyro, as shown in Figure 10.9. This reduces the
lift of the upper blades. See Figure 10.10 for the comparison of the force distribution for a
single-blade and a three-blade case.

There are two main reasons for the increase of cyclogyros’ effectiveness, which are valid for almost
all optimal cases.

1. The blade forces are better aligned in direction to the global thrust.
2. A rapid change of the pitch and/or a narrow trajectory induce a force peak.

It is also noticeable that the main blade forces are predominantly generated in the lower half of
the trajectory. The optimiser tries to reduce the required power for the remaining trajectory by
decreasing the blade forces.

Two optimisation runs with different Reynolds numbers are carried out for the two-blade case
with ’only pitching’ (Rezo = 100 000 and Rezq 200 000). Although the pitching paths of the
three cases are similar, there is an optimum for each Reynolds number. While the figure of merit
decreases for the initial case and higher Reynolds numbers, it increases for the two optimisation
runs by 8.8% (Reg2) and 17.7% (Reyq). For a commercial cyclogyro in hover flight, the pitching
trajectory can be adapted to achieve the best efficiency for the current cargo.

The reference surface to calculate the figure of merit is not valid for every case (see definiton in
Section 8.1.1). The movement of the blades inclines the direction of the downwash, and thus
the surface changes through which the flow passes. The correct surface is approximated based

on the velocity field. The FoM is recalculated by FoM¢o,r = FoMcage - w/g:ﬁ. This approach is
imprecise as the velocity field is transient, and an exact threshold is hard to define.

There are discontinuities in the force path, as shown in Figure 10.12(a). The kinks seem to occur

83

at each pitching spline section. The jump at the beginning of each rotation, which lasts only for
a short time, seems to be caused by the trajectory spline. This artefacts are accepted and may
cause the differen results of initial cases (see Table 10.1). A reason for the discontinuities could
not be found by the end of the thesis.

LIRS
Initial

FoM
Maximum
| L . | . LRI | sorted FoM
0.0+ - T T T - ! . ! 1
0 2500 5000 7500 10000 12500 15000 17500
Case ID
(a) Run: Opti-3TV, max. FoM = 0.602, at Index 19 107, Crit; = 0%, Crit2=-9.5%.
0.7

Maximum
sorted FoM

i . ° L] 1
2000 4000 6000 8000 10000 12000 14000

Case ID

(b) Run: Opti-4TV, max. FoM = 0.667, at Index 14 384, Crit; = -1.76%, Crito=-13.0%.

i Maximum
i sorted FoM

10000 12000

Case ID

(¢) Run: Opti-4BV, max. FoM = 0.341, at Index 9 604, Crit; = -0.76%, Crit2=-15.2%.

Figure 10.8: Figure of merit over cases.

84

2.0e+00
1.5

1

0.5

-0 Q
-0.5

-1

-1.5
-2.0e+00

Figure 10.9: Pressure field of three-blade initial case.

.
o

(a) Single-blade case (b) Three-blade case

Figure 10.10: Comparison of the blade forces.

85

2
T3
1
8
©
£
2 o0
o
o)
(@]
N
-1
T7
3 -2 -1 0

X-Coordinate

Figure 10.11: Example for a convenient boundary definition for the trajectory control vertices.

Thrust in [N]

Thrust in [N]

1.4

1.2
1.0
0.8 1
0.6
0.4 1
0.21

0.0

—— Opti-1P

0 45 90 135 180 225 270 315 360

Win[°]

(a) Kinks at almost each end of the pitching spline section.

— Opti-2TV

45 90 135 180 225 270 315 360
Win[°]
(b) Jump at the beginning of the trajectory spline.

Figure 10.12: Dicontinuities in the force path as a result of the spline motion.

86

10.4 Single blade

10.4.1 Opti-1P

The rotation begins with a substantial lead angle of ajeqq = 22°, see Figure 10.13. Between (1) and
(2), the pitch remains nearly constant and reaches its maximum. Further on, the pitch plateau leads
to a closer vortex at the leading edge, and the required rotation power is reduced significantly, see
Cprot in Figure 10.17. However, the blade forces are reduced in the revolution’s first half, as shown

Figure 10.14.

The second half rotation begins with a short-lasting lowering of the pitch angle (A5°) at (3). After the
pitch reaches its minimum at (4), it increases almost linearly. At (5), the pitch already turns positive,
whereas the initial case has a pitch of g inis = —30°. As a result, the shedding of the leading edge
vortex is avoided, which occurs in the initial case and requires a lot of power, see Cp 1 in Figure 10.17.
In addition, the pitching path during the second half rotation straightens the blade forces compared
to the initial case, see Figure 10.14.

The blade force vectors of the initial case in the lower half contain a sizeable horizontal component
and point in the opposite direction. This circumstance cancels a part of the produced lift, which does
not contribute to the resulting thrust and requires power. The pitching path of this optimisation leads
to a considerably smaller thrust compared to the initial case (-42%), but the figure of merit increase
is twice as much, FoMp = 0.65.

Table 10.3 lists characteristic values of the optimisation compared to its initial case.

@ ® ® @ ®

o - |
20] i i i i i Pos.| ¥
- R - S ow
C 0 T T T T
._o ! : \ : : : @ 1060
s — Initial ! . ! ! o
—201 — opti-1p : : : | ®3) | 200
0 ® Qo max = 35.9° ! ! ,\—/ @ | 250°
—401 e aomn=-30.4° i i i i 0
1 I 1 : 1 1 1 . ' 1 322
0 45 90 135 180 225 270 315 360 ®
Win[°]

Figure 10.13: Pitching angle ag over azimuth angle .

Table 10.3: Mean values for Opti-1P.

Type | Thrust Py Pra Pot P FoM §
Initial 0.537 N 0.145 W 0343 W 0.071 W 0414 W 0.350 94°
1P 0.312 N 0.077 W 0.085 W 0.034 W 0.119 W 0.646 64°
A -42% -47% -75% -52% -711% +85%

87

Thrust in [N]

2.0 1

1.5

1.0

0.5

0.0

(a) Initial case

(b) Opti-1P

Figure 10.14: Resulting blade force over trajectory, black arrow represents the thrust.

® ©

®

® @

—— |Initial i i E i i

— Opti-1P ! i i i :

/_/if-—-ﬂ—‘**i ! i maaamnne SR

0 45 90 135 180 225 270 315
Yin[°]

Figure 10.15: Thrust over azimuth angle W.

88

360

Initial case Opti-1P

CPower, tra [-]

CPower, rot [']

—— Trajectory
—— Pitch angle ag

Opti-1P

I 1.0e+01

5

i -5
-1.0e+01

Initial case

o
vorticity Z

Figure 10.16: Pitching path over trajectory and vorticity, Opti-1P.

@ © ® @ ®

21 —— Opti-1P

1.
/_\;_/'\\ Pos. | U
0 : .
0 45 90 135 180 225 270 315 360 @ | 50
0.51 ! @ | 110
i @ | 200°
i i 250°
0.0 M @
G | 322°

— Initial
—0.57 — opti-1P

0 45 90 135 180 225 270 315 360
Win [°]

Figure 10.17: Translation and rotation power coefficients, Opti-1P.

89

10.4.2 Opti-1TV

The trajectory for the 1-blade case is shown in Figure 10.18. The rotation begins at (1) with an almost
flat ascending to (2), where the blade reaches its maximum pitch, and a large vortex occurs at the
trailing edge. However, this vortex remains at the outer blade side and vanishes at (3). The coefficients
are similar to the initial case during the first half of rotation, see Figure 10.22. The benefit of the first
half trajectory is a better alignment of the blade forces, see Figure 10.19.

Due to the small trajectory radius and the pitching at (3) and (4), the blade performs a rapid rotation
resulting in a force peak, which requires a lot of rotation power. The last part of the rotation is a
circular movement, generating an almost constant blade force.

Although the force peaks require a lot of power (more than the initial case), the figure of merit is
increased to FoMry = 0.49 (+40%).

Table 10.4 lists characteristic values of the optimisation compared to its initial case.

15 ®
1.0
0.5
% Pos. | W
2 0s.
5 00 @ ;
: ®© © | 0
NS @ | 110°
-0.5 ® | 178°
@ | 224°
-1.0
-1.5 |
-2.0 -15 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
X-Coordinate
Figure 10.18: Trajectory of Opti-1TV, rotor width wg = 3.57 m.
Table 10.4: Mean values for Opti-1TV.
Type ‘ Thrust Piq Py Prot Preal FoM 5
Initial 0.542 N 0.147 W 0.346 W 0.074 W 0.420 W 0.350 93°
Opit-1TV 0.776 N 0.231 W 0374 W 0.098 W 0471 W 0.490 &87°
A +43 % +57 % +8 % +32 % +12 % +40 %

90

Thrust in [N]

@ © ®

\

(a) Initial case (b) Opti-1TV

Figure 10.19: Resulting blade force over trajectory, black arrow represents the thrust.

®

| =— Opti-1TV

— Initial

>

(

270 315 360

N
[\ Sy, S
w

45 90 135 180
Yin[°]

Figure 10.20: Thrust over azimuth angle W.

91

-

A}

@

—— Trajectory
@ I —— Pitch angle ag

2.0e+00 ~ @ —
1.5 T
1

- 05
-0 Q

T

Ui

-1.5
-2.0e+00

Figure 10.21: Pitching path over trajectory, Opti-1TV.

@ ©) ® O

T T
1

34 — Initial E E
—_ — opti-1Tv ; i / k
[: | —
; /
IR g
O ’é 1 q I ¥
0 RSN : Pos. | W
0 45 90 135 180 225 270 315 360 @ 0°
? 5 i ® | 110°
0 ™\ 1///\\ : N\ ; @ 1780

@ | 224°

— Initial
— Opti-1TV

0 45 90 135 180 225 270 315 360
Win [°]

CPower rot [']
\
/
P
L
(

Figure 10.22: Translation and rotation power coefficients, Opti-1TV.

92

10.4.3 Opti-1BV

The trajectory’s shape for this optimisation is quite close to a circle and has a small protrusion at (4),
as shown in Figure 10.23. There is a clear waviness in the optimised pitching path, see Figure 10.24.
As with Opti-1P, temporary lowering of the pitch also appears this time at (I), 2) and (3). The result
is that the leading edge vortex during the first half rotation is generated later. The vortex during the
second half rotation does not occur at all. This leads, on the one hand, to a lower power consumption,
see Figure 10.28. On the other hand, the lift is considerably reduced. After the second pitch reduction
at (2), a force peak in the vertical direction occurs. As a result of the protrusion at (4), the blade forces
are upturned compared to the initial case (see Figure 10.25).

The figure of merit for this optimisation is FoM; gy = 0.63 (+81%).

Table 10.5 lists characteristic values of the optimisation compared to its initial case.

15
1.0
0.5
V]
§ Pos.‘ v
% 0.0 @ 700
N @ | 221°
e @ |273°
@ | 315°
-1.0
-1.5

-15 -1.0 -0.5 0.0 0.5 1.0 1.5
X-Coordinate

Figure 10.23: Trajectory of Opti-1BV, rotor width wr = 3.00 m.

@

®
©
®

1 1 1 1

401 . :] :

1 1 1 1

: i i i

204 H 1 1 1
'°_| i E i i POS. ‘ \II
£ 0 : : : :/ @ | 7
§ —— Initial I i i : @ 221°
=207 — opti-1Bv)] | B3 | 273°

® Qo, max = 37.7¢ : 1 1
—401 o g mn=-33.1° :_},/l: @ | 315°

2| 'l

w
=4
(6]

0 45 90 135 180
Win[°]

N
w

270 360

Figure 10.24: Pitching angle ag over azimuth angle V.

93

Thrust in [N]

Table 10.5: Mean values for Opti-1BV.

Type ‘ Thrust Piq Py Prot Preal FoM B
Initial 0.542 N 0.147 W 0346 W 0.074 W 0420 W 0.350 93°
Opit-1BV 0.368 N 0.082 W 0.097 W 0.033 W 0.130 W 0.632 91°
A -32 % -44 % -2 % -55 % -69 % +81 %
W ;
; @
®
(a) Initial case (b) Opti-1BV
Figure 10.25: Resulting blade force over trajectory, black arrow represents the thrust.
2.0 — Initial : : : ;
— Opti-1BV ; ! i /_\
5] s /— e |
1.0 i i if"_/i
A VA S
N) i |
225 0 315

90 135 180
Yin[°]

Figure 10.26: Thrust over azimuth angle .

94

N
~

360

3.0e+01 Initial case Opti-1BV
[20
~N
— 10 o)
o
) =
L
00 %
>
-20
-3.0e+01
,
®
—— Trajectory
—— Pitch angle ao
Opti-1BV
1.0e+00 4
-
[05 @
-0 Q
-0.5
-1.0e+00
Figure 10.27: Pitching path over trajectory, Opti-1BV.
— |Initial i
—- 2| — opti-1Bv
g
o} /
Q 1
2
$ = / \\
© — \
0 — — AN Pos. | N
0 45 90 135 180 225 270 315 360 @ 730
0.5 — mitial | N\ : : o
- — Opti-1BV / @ 221
= P @ | 273°
E_ 0.0 \- fAVA — \Jk\/ o
g —\ \\ N N @ | 315
o
G -0.5
0 45 90 135 180 225 270 315 360

Win [°]

Figure 10.28: Translation and rotation power coefficients, Opti-1BV.

95

10.5 Two blades

10.5.1 Opti-2P

The pitching path for this two-blade optimisation is similar to the one-blade case, both shown in
Figure 10.29. The curve now has a distinct plateau between (1) and (2). This movement avoids a
leading edge vortex but with a loss of lift. But more essential, this movement avoids the detachment
of a vortex, which in turn induces a vortex on the following blade in the initial case, see Figure 10.33.
The small pitch up to its maximum produces a small lift, (3). The following section, between (3) and
(), is characterised by a steep reduction of the pitching angle leading to an adverse force directed
aginst the global thrust.

The second half rotation starts with a short constant pitch followed by a second steep pitching to its
minimum at (5). During this movement, the blade induces a great force peak, see Figure 10.31. In
contrast, the force distribution of the initial case shows a loss of lift near position (5). The pitch after
(5) increases nearly linear like the one-blade case. As a result, the leading edge vortex is smaller, and
thus there is less influence on the following blade, which leads to a considerably less required power,
see Figure 10.34. The linear increasing pitching path also leads to an alignment of the blade forces
closer to the global thrust.

Two further optimisations for the two-blade pitching case are carried out; one with a Reynolds number
Re = 100 000 and one with Re = 200 000. Figure 10.35 shows the resulting pitching paths, which are
pretty similar. A slight shift of the maximum pitch to higher azimuth angles can be identified.

Figure 10.35 shows the figure of merit for the optimisation with three different Reynolds numbers,
where each run has a distinct optimum for a particular flow velocity. The increase of the maximum
FoM is moderate; 6% and 3%. However, the figure of merit decreases substantially if another Reynolds
number is defined than the assigned one.

Table 10.6 lists characteristic values of the optimisation compared to its initial case.

@ ® 6 @ ®

60 1] 1
1) 1 | 1
1 | 1
40+ | | : :
! ! : ! Pos.‘)\
— 207 i | | | T | ano
o [¢]
e o a | i G| 2
S | | | @ | 90°
—204 — Initial ! 1 o
— optizp | | © | 116
401 ® Qoma=422° | . @ | 180°
o aomn=-473° ! o
—60 — | | | | | | | G | 233
0 45 90 135 180 225 270 315 360
Win[°]

Figure 10.29: Pitching angle oy over azimuth angle .

96

40+

£ R p— Opti-2P
S —20] — opti-2Px2
Opti-2Px4
—401 ® Max. pitch
Min. pitch
-60 T T T T T i
0 45 90 135 180 225 270 315 360

Win [°]

Figure 10.30: Pitching angle ag over azimuth angle ¥ for multiple Reynolds numbers.
Opti-2P: Re = 50 000, Opti-2Px2: Re = 100 000, Opti-2Px4: Re = 200 000

.
@--- N
o
—

S

(a) Initial case (b) Opti-2P

7,

Figure 10.31: Resulting blade force over trajectory, black arrow represents the thrust.

@ @ © @ ®
2.0/ — Initial | |

1.51

1.01

Thrust in [N]

0.5 1

0.0 TSl

0 45 90 135 180 225 270 315 360
Win[°]

Figure 10.32: Thrust over azimuth angle W.

97

CPower, tra [‘]

CPower, rot [']

1.0e+01
.
—0
[{,
-1.0e+01

vorticityField Z

Vortex form
advancing blade

@

Opti-2P

—— Trajectory
—— Pitch angle ag

Opti-2P Initial case

¥ = 300°

/|Initial case|

T e

‘

Figure 10.33: Pitching path «g over trajectory and vorticity in z-direction.

©

@ 6

@ ®

4+ — Iniéial /'\\
_ Opti—ZP‘ /\ W/ \
-
o~ N\
(e}
0 45 90 135 180 225 270 315 30 @O |30
@ | 90°
c_—_; l/-\ k —_— @ 1160
M @ | 180°
® |233°
— Initial ‘ /
| = Opti-2P i ; ; \/
0 45 90 135 180 225 270 315 360
Win [°]

Figure 10.34: Translation and rotation power coefficients, Opti-2P.

98

0.80

0751 L _cmmm—==
0701 gm=—===="" —,
— 0.65] E— |
% 0.601 e Initial Figure 10.36: iigureldof merg)t for various
g e~ Opti-2p eynolds number. \
w0551 —e— Opti-2Px2 Reynolds number -10
Q 450, Opti-2Px4 Run 50 100 200
5 0
2 Initial 0.309 0.336 0.378
0.45
Opti-2P 0.690 0.672 0.640
0.401 Opti-2Px2 | 0.668 0.731 0.690
0.351 // Opti-2Px4 | 0.606 0.660 0.753
0.30 - - -
50 000 100 000 200 000

Reynolds number [-]

Figure 10.35: Figure of merit over Reynolds number.

Table 10.6: Mean values for the pitching optimisation with two blades. The deviations refer in each case to
the initial case.

Type Thrust Piq Pirq Prot Preal FoM B
Initial 0.615 N 0.178 W 0.462 W 0.114 W 0.576 W 0.309 101°
Opit-2P 0.802 N 0.265 W 0.273 W 0.109 W 0.383 W 0.690 85°
A +30 % +49 % -41 % -4 % -34 % +123 %
Initialx2 241 N 1.38 W 332 W 0779 W 410 W 0.336 105 °
Opit-2PVx2 3.18 N 209 W 213 W 0727 W 286 W 0.731 77 °
A +32 % +51 % -36 % -7 % -30 % +118 %

Initial 114 N 141 W 307 W 667 W 373 W 0.378 99 °
Opit-2PVx4 134 N 189 W 185 W 670 W 252 W 0.753 98 °
A +66 % +34 % -40 % +0 % -33 % +99 %

99

10.5.2 Opti-2TV

The shape of the trajectory is similar to a triangle with its vertices at (1), 2) and (3), see Figure 10.37.
The blade produces mostly adverse lift during the first edge, as shown in Figure 10.38. Towards
position (3), the blade performs a nearly vertical movement, and again only adverse lift is generated.
The interaction of a small trajectory radius and the minimum pitch angle at (3) results in a fast blade
rotation, and a huge force peak occurs. The last section of the rotation is an approximately linear
movement, where the blade forces are aligned in the direction of the thrust.

The figure of merit is increased to FoMary = 0.42 (+32%).

Table 10.7 lists characteristic values of the optimisation compared to its initial case.

1.5

Y
.
by

1.0

ot
U

Pos. ‘)\
® | o0°
@ 123°
@ 236°

Y-Coordinate
o
o

-0.5

-1.0

-1.5

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
X-Coordinate

Figure 10.37: Trajectory of Opti-2TV, rotor width wgr = 2.90 m.

Table 10.7: Mean values for Opti-2TV.

Type | Thrust Pyq Pira Prot Preal FoM B
Initial 0.703 N 0.217 W 0.555 W 0.125 W 0.680 W 0.320 104 °
Opit-2TV 1.08 N 0421 W 0.740 W 0260 W 1.00 W 0.421 117°
A +54 % +94 % +33% +108 % +47 % +32 %

100

Thrust in [N]

/;‘l

(a) Initial case (b) Opti-2TV

Figure 10.38: Resulting blade force over trajectory, black arrow represents the thrust.

@ © ®

4 1 1
— |nitial H
— Opti-2TV i
31 :
2 a
1 |
0+ T T o™, T T T
0 45 90 135 180 225 270 315 360

Vin [°]

Figure 10.39: Thrust over azimuth angle W.

101

CPower, tra [‘]

CPower, rot [‘]

—0 Q
B
-2
-3.0e+00
Figure 10.40: Pitching path over trajectory, Opti-2TV.
— initial N
1 — opti-2Tv / \/_\
/l - \\
_;.7—.%%\ = :
i i Pos. | U
45 90 135 180 225 270 315 360 ——M
: : ® | o°
— -b'<\ ! @ 123°
\ @ 236°
— Initial
1 = opti-2Tv i
45 90 135 180 225 270 315 360
Yin[°]

—— Trajectory
—— Pitch angle ao

3.0e+00
I

Figure 10.41: Translation and rotation power coefficients, Opti-2TV.

102

10.5.3 Opti-2BV

Figure 10.42 shows the optimisation trajector, which tends to be a quad shape. Although the maximum
pitch angle is reached during the first quarter rotation, from (1) to (2), the blade generates nearly no
lift, see Figure 10.46. Between (2) and (3), the blade generates a small amount of lift. After that, the
blade performs an almost vertical movement downwards with no lift. At (4), a force peak is generated
due to a narrow trajectory and an immediate increase of the pitching. The blade forces remain at a
high level until a second force peak occurs at (5). The pitching path increases rapidly, ending in an
overshoot at (6), see Figure 10.44. This movement also generates an elemental blade force, mostly
aligned with the global thrust.

The blade motion inclines the downwash by about 20° to the y-axis. As a result, the width changes,
and so does the reference surface through which the flow passes changes. The correct width is estimated
based on the downwash as shown in the velocity field in Figure 10.43. A value of wg corr = 3.0 m is
assumed. The corrected figure of merit is FoMapy,corr= 0.75 (+136%).

Table 10.8 lists characteristic values of the optimisation compared to its initial case.

2.0

1.5

1.0

0.5

Y-Coordinate
o
o

|
o
wn

-1.0

2.0e+00

-1.5 .

@ . 1.5

wr = 2.30 m

-2.0

U Magnitude

-i5 -10 -05 00 05 10 15 0.5

X-Coordinate

— 0.0e+00

Figure 10.42: Trajectory of Opti-2BV; rotor width
wr = 2.30 m. Figure 10.43: Magnitude of velocity.

103

ap in[°]

60

1 1] 1 1
—— I
/ : \“,‘\\ : | : Pos. | v
: IRNS : L ® | o
: : : VAR @ | 90°
1 1 1 1 1
— nitial i i \\L)/ A (®) | 150°
1 — Opti-2BV i i T i o
W . as,,l,ax=48.5° i i \L ,7? : @ | 238
e =621 | ! T ! ! ® | 293°
0 a5 90 135 180 225 270 315 360 © | 327
Yin[°]
Figure 10.44: Pitching angle ag over azimuth angle ¥, Opti-2BV.
4.0e+00

—— Trajectory
—— Pitchangle ap

104

E

—1
-0

Figure 10.45: Pitching path over trajectory, Opti-2BV.

B -1

-2

I
-4.0e+00

Thrust in [N]

(a) Initial case

(b) Opti-2BV

Figure 10.46: Resulting blade force over trajectory, black arrow represents the thrust.

105

4 1 1 1 1 1

—— Initial : i i i i

— Opti-2BV | : i : :
31 : : : : !
: | s : AR
3 | i s .
O m : 4—4-—i I : | : ! : ! :

0 45 90 135 180 225 270 315
Win [°]
Figure 10.47: Thrust over azimuth angle .
Table 10.8: Mean values for Opti-2BV.

Type ‘ Thrust Piq Pira Pot Prear FoM B
Initial 0.703 N 0.217 W 0.555 W 0.125 W 0.680 W 0.320 104 °
Opit-2BV 1.65 N 0.895 W 0.836 W 0.204 W 104 W 0.754 132 °
A +135 % +312 % +51 % +63 % +53 % +136 %

360

v
OO

90°

150°
238°
293°
327°

315

270

225

Pos
@
©)

360

315

270

225

—— Initial
= Opti-2BV

135

4

o~ o

T“_ e :m\sch

180

45

—— Initial
= Opti-2BV

”lu 04 Cm\SOlU

135

180
Win [°]

45

Figure 10.48: Translation and rotation power coefficients, Opti-2BV.

106

10.6 Three blades

10.6.1 Opti-3P

Figure 10.49 shows the pitching path for the three-blade optimisation. A comparison of the pitching
paths for 1P, 2P and 3P is shown in Figure 10.50. The maximum pitch is shifted to higher azimuth
angles for the three-blade optimisation.

The optimised pitching path considerably improves the blade force distribution compared to the initial
three-blade case, as shown in Figure 10.51. The lead angle avoids the adverse blade forces at the
beginning of the rotation at (1). Like the previous optimisations 1P and 2P, the pitch plateau and
the maximum pitch at (2) generate small blade forces. But more importantly, the maximum pitch,
in combination with its delayed decrease, prevents the generation of another adverse blade force.
Figure 10.53 shows the pressure distribution for the initial case and the optimisation at (3). During the
second half rotation, the fast pitch decrease produces a force peak at (4). The minimum pitch angle
and the following linearly increase lead to a second force peak at (5). In contrast to the optimisation
Opti-2P, the advancing vortex has no distinct influence on the following blade in the last quadrant.

As a result of the better force alignment, the figure of merit is 0.71 (+149%).

Table 10.9 lists characteristic values of the optimisation compared to its initial case.

@ ©) ® @ ®

60 I 1 1
1 1 1
1 1 1
40 | T :

; : : : Pos. | W
= 2 | T : —
o (¢}
T o : \ : : / @0
- — L T T T o
: l a ~ B ® |13

—204 — Initia o
— Opti-3P i i\i i @ 206
—404 ® Qo,max = 48.8° : : 1 1 @ 2350
® g min= -47.0° ! ! ! !
“60 - | | s - ® | 299°
0 45 90 135 180 225 270 315 360
Win[°]
Figure 10.49: Pitching angle oy over azimuth angle .
40
20 \
E 0
o — Opti-2P
S -201 _ opti-zpx2
Opti-2Px4
—407 e Max. pitch
Min. pitch
—60] | ‘ . . .
0 45 90 135 180 225 270 315 360

Vin[°]

Figure 10.50: Comparison of the pitching path for different blade numbers.

107

Thrust in [N]

(a) Initial case (b) Opti-3P

Figure 10.51: Resulting blade force over trajectory, black arrow represents the thrust.

2.0 i i i i

— Initial i i i i

—— Opti-3P i i i i
15 e NG i
; AV |
05 ; win ;
0.0 ! | i : - I ! I

0 45 90 135 180 225 270 315
Vin[°]
Figure 10.52: Thrust over azimuth angle .
Table 10.9: Mean values for Opti-3P.

Type ‘ Thrust F)id Ptra P'rot Preal FoM /8
Initial 0.733 N 0.232 W 0.614 W 0.202 W 0816 W 0.284 110 °
Opit-3PV 1.06 N 0.402 W 0421 W 0.147 W 0.568 W 0.708 109 °
A +44 % +73 % -31 % 27 % -30 % +149 %

108

360

@ ©) ®

— Initial
- = Opti-3P M \
g 1 /v\-w / N
2
N e~ - e A N
(@) I \ SS~——]
__/
0 45 90 135 180 225 270 315 360
8 I N\
= =05 /
“
S “HY = l /
— Opti-3P
-1.5 -
0 45 90 135 180 225 270 315 360

Win [°]

Figure 10.53: Translation and rotation power coefficients, Opti-3P.

Opti-3P

1.5e+00 't)

—0.5 - —— Trajectory

_o N —— Pitch angle ap @ L
05 \
-1
1.56+00 @

Initial case Opti-3P

Figure 10.54: Pitching path over trajectory, Opti-3P.

109

Pos. | g

0°
134°
206°
235°
299°

CICICICIC,

Initial case

10.6.2 Opti-3TV

The trajectory of this optimisation is considerably stretched in the vertical direction, as shown in
Figure 10.55, where the upper radius is slightly larger than the lower radius.

During the upper circular motion, beneficial blade forces are only produced between (1) and (2). After an
almost vertical decent, the blade performs a narrow circular movement. Combined with the minimum
pitch angle, a force peak occurs at (3) and a second at (4). The blade forces during the movement from
@ to (1) are mostly aligned horizontally.

As a result of the stretched trajectory, the downwash is inclined to the y axis by about 56°. As with the
Opti-2BV, the same approach is chosen and a correct width is estimated, as shown in the velocity field
in Figure 10.58. With a value of wg corr = 2.6 m, the figure of merit is FoMsry, corr = 0.60 (+84%).

Table 10.10 lists characteristic values of the optimisation compared to its initial case.

wr = 1.88 m

g
o Pos. ‘ v
T T
S @ | 100
g @) | 150°
(3) | 255°
@ | 281°
-1
- @' @
-15 -1.0 =05 0.0 0.5 1.0 1.5
X-Coordinate
Figure 10.55: Trajectory of Opti-3TV, rotor width wgr = 1.88 m.
Table 10.10: Mean values for Opti-3TV, figure of merit with corrected width.
Type Thrust Pid Ptra Prot Preal FoM /8
Initial 0.751 N 0.240 W 0.568 W 0.166 W 0.734 W 0.327 121 °
Opit-3TV 1.69 N 1.02 W 0993 W 0455 W 145 W 0.602 146 °
A +125 % +327 % +75 % +174 % +97 % +84 %

110

Thrust in [N]

(a) Initial case (b) Opti-3TV

Figure 10.56: Resulting blade force over trajectory, black arrow represents the thrust.

® © ® @

0 45 90 135 180 225 270 315 360
Win[°]

Figure 10.57: Thrust over azimuth angle .

111

U Magnitude

—— Trajectory

— Pitch angle ao

Figure 10.59: Pitching path
Figure 10.58: Magnitude of the velocity. The flow direction (orange over trajectory,
line) is parallel to the global thrust (black line). Opti-3TV.

© O ® @

4#— Initial | /
- —— Opti-3TV
: \/
§ 2 //‘\
o
Q
U -l o ——
0 —— :\ St Pos. | ¥
0 45 90 135 180 225 270 315 360 @ | 100°
o0 = —— —— @ | 150°
= [‘“ ® | 255°
o
§ -2 \ / @ | 281°
o
Q L
O —41 — nitial
(. \

0 45 90 135 180 225 270 315 360
Win [°]

Figure 10.60: Translation and rotation power coefficients, Opti-3TV.

112

10.6.3 Opti-3BV

The trajectory has a triangle shape with an almost horizontal edge between (1) and (3), see Figure 10.61.
Within this straight movement, the pitch decreases about Ay = 16° at (2), leading to a slight increase
in the blade forces, Figure 10.63. The maximum pitch angle is reached at the second ’corner’ of the
trajectory, (3). However, this pitch also produces small blade forces. As shown in Figure 10.62, the
pitch decreases rapidly after the maximum. In combination with the trajectory shape, the adverse
blade forces are reduced compared to the initial case. A force peak occurs at (4) before the minimum
pitch angle is reached at (5). The following trajectory with a large radius generates blade forces, which
are aligned reasonably to the global thrust, and thus no adverse forces occur, see Figure 10.65.

The main advantage of this optimisation is the reduction of adverse blade forces. And as a result, the
figure of merit is increased to FoMspy = 0.743 (+127%).

Table 10.11 lists characteristic values of the optimisation compared to its initial case.

2.0

1.5

1.0

o
&

% Pos. ‘ v
c \ |
g oo @® | 65°
8 ® | s
* o5 ® |122°
@ | 233°
_1.0 () | 258°
-15
2%0 -i5 -i0 -05 00 05 1.0 15 2.0
X-Coordinate
Figure 10.61: Trajectory of Opti-3BV; rotor width wr = 2.82 m.
60 1 1 1 1 1
1 1 1
40 T~ : T
1 1 1 1 1
20- — ; P Pos. | ¥
o ! ! ! P
'E' 0 1 1 1 \ 1] @ 65°
— 1 1 1 1 1 °
o —20 E | 1 @ | 88
s — Initial ! ! Lo o
—401 — Opti-3BV : : -~ ® | 122
ol § e nEE L N @ |23
80 e | L L 1 . ® | 258°
0 45 90 135 180 225 270 315 360

Vin[°]

Figure 10.62: Pitching angle o over azimuth angle ¥, Opti-3BV.

113

Thrust in [N]

Q

(a) Initial case (b) Opti-3BV

Figure 10.63: Resulting blade force over trajectory, black arrow represents the thrust.

2'0 1 1 1 1

— Initial

— Opti-3BV
1.51
1.0
0.5 1
0.0 T y T T . ,

0 45 90 135 180 225 270 315
Vin[°]
Figure 10.64: Thrust over azimuth angle W.
Table 10.11: Mean values for Opti-3BV.

Type Thrust Piq Py Prot Preal FoM B
Initial 0.751 N 0.240 W 0.568 W 0.166 W 0.734 W 0.327 121 °
Opit-3BV 1.72 N 0.856 W 0.895 W 0.258 W 1.15 W 0.743 112 °
A +129 % +257 % 458 % +55 % +57 % +127 %

114

CPower, tra [-]

CPower, rot [']

2.0e+00
1.5
1

-0.5

-1

-1.5
-2.0e+00

—05
—0 Q

—— Trajectory
—— Pitch angle ao

Opti-3BV Initial case

Figure 10.65: Pitching path over trajectory, Opti-3BV.

e 6

@ G

e AP
VAN
N\ / // N
i s / \ r”ﬂLN\“/ \—'_ Pos.| v
N ™ \M/ -
0 4 90 135 180 225 270 315 360 @ | 65°
@ | 88
< [_>/\ -~ ® | 1220
\/\ \/ w?:qfﬂ“’f/ @ 238°
\ ® | 257
=) Vi
0 45 90 135 180 225 270 315 360
Win [°]

Figure 10.66: Translation and rotation power coefficients, Opti-3BV.

115

10.7 Four blades

10.7.1 Opti-4P

Despite the interaction between the four blades, the pitching path is again similar to the previous one
as shown in Figure 10.68.

The pitching path starts with a lead angle of about ag = 20° and increases rapidly up to ag = 47°.
However, until (1) no blade forces are generated. The movement between (1) and (2) generates small
blade forces, although the maximum pitch occurs. During the steep decrease of the pitch towards the
minimum, a considerable force peak occurs at (3). After that, the forces reduce and reach a second
maximum at (4).

During the initial case, the blade motion in the last quadrant leads to a shedding vortex. The following
blade hits this vortex and, in turn, induces a vortex, which is also shed, see Figure 10.71. The
optimisation avoids the vortex at the advancing blade by rapidly increasing the pitch from (3) to the
end of the rotation. Although the required power remains similar between the two cases, the pressure
distribution is improved to generate more and better-aligned blade forces towards the end.

The figure of merit is increased to FoMyp = 0.76 (+241%), which is the absolute maximum over all
optimisation runs.

Table 10.12 lists characteristic values of the optimisation compared to its initial case.

@ ©) ® @

60 1 1 1 1
1 1 1 1
401 | | i i
1 1 1 1
201 i i i i
1 1 1 1 / Pos. ‘ v
>0 ! } H ; S —
£ i E E | @® | 100°
o —20
9 4o [T it i E i 1 @ | 175°
=401 — oOpti-4p i i 1 o
_go] © come=509" || E ! ® | 238
® Qo min=-70.7° : : : @ 3230
_80 I 1 1 ! 1 ! ! 1
0 45 90 135 180 225 270 315 360
Win[°]
Figure 10.67: Pitching angle ay over azimuth angle V.
60
40-/ \'j\?
207 \ ///
= 0
= ‘\Q\\
o —20
g —— Opti-4P
—407 — opti-3p
Opti-1P
-80 I | } | ! !
0 45 90 135 180 225 270 315 360

Win[°]

Figure 10.68: Comparison of the pitching path for pitch optimisations with different blade numbers.

116

Thrust in [N]

(a) Initial case (b) Opti-4P

Figure 10.69: Resulting blade force over trajectory, black arrow represents the thrust.

= |nitial
| == Opti-4P

@ © ® @

45 90 135 180 225 270 315
Win [°]

Figure 10.70: Thrust over azimuth angle .

Table 10.12: Mean values for Opti-4P.

Type Thrust Py Pira Prot Preal FoM

B

Initial 0.857 N 0293 W 102 W 0300 W 132 W 0.222 107 °
Opit-4PV 2.78 N 171 W 161 W 0642 W 225 W 0.758 131°

A

+224 % +483 % +59 % +114% +71 % +241 %

117

360

Opti-4P

—— Trajectory
—— Pitch angle ao

¥ = 330° /

~

LO)
s U = 295°
®
W = 265°
Opti-4P Initial Case
Opti-4P Initial Case 1.5e+01
10
/ [o
-5]
&
-0 g
LQ
s %
Vortex form 10 -
advancing blade
-1.5e+01
Figure 10.71: Pitching path over trajectory, Opti-4P.
— Initial
4| optiep /\ ~™\
—_— A\
: AN
= —~
o
G o _/—_/-/\ /-/
__— Pos. | v
0 45 90 135 180 225 270 315 360 @ 100°
— 0'——%7 N @ 175°
= \ [® | 238°
8 2 \ .
& \ l @ 323
§ -4
O — Initial l \
—6{ — Opti-4p
0 45 90 135 180 225 270 315 360
Yin[°]

Figure 10.72: Translation and rotation power coefficients, Opti-4P.

118

10.7.2 Opti-4TV

This trajectory is quite similar to the three-blade optimisation, which is also highly stretched in the

vertical direction, see Figure 10.73.

Only one section produces beneficial blade forces, starting with a peak force at (1). After that, the
forces decrease and remain constant for a while and vanish at (2). The blade performs a nearly vertical

movement in this section, which leads to a global thrust with a high inclination of § = 69°.

mentioned at the Opti-2BV, he downwash is estimated based on the velocity field, see Figure 10.76.

With a value of wg corr = 2.2m, the corrected figure of merit FoMyry,corr = 0.641 (+177%).

Although this optimisation run has not converged, the result is quite good.

Table 10.13 lists characteristic values of the optimisation compared to its initial case.

wg = 2.03 m

2.0

1.5

1.0

0.5

0.0

Y-Coordinate

-0.5

-1.0

-1.5

—2.0 -1.5 -1.0 -05 0.0 0.5 1.0 1.5

X-Coordinate

Figure 10.73: Trajectory of Opti-4TV, rotor width wg = 2.03 m.

Pos. ‘

LG

@ |292°

@ | s55°

Table 10.13: Mean values for Opti-4TV, figure of merit with corrected width.

Type | Thrust Py Pira Prot Preal FoM B8
Initial 0.928 N 0330 W 111 W 0317 W 143 W 0.230 116 °
Opit-4TV 1.58 N 0.800 W 0872 W 0463 W 134 W 0.641 159 °
A +70 % +170 % -22 % +46 % -T% +177 %

119

Thrust in [N]

(a) Initial case (b) Opti-4TV

Figure 10.74: Resulting blade force over trajectory, black arrow represents the thrust.

©

— |nitial
— Opti-4TV

45

90 135 180 225 270 315 360
Win [°]

Figure 10.75: Thrust over azimuth angle W.

120

2.0e+00

1.5

U Magnitude

—— Trajectory
— Pitch

angle ag

A}
A}

®

Figure 10.76: Magnitude of the velocity. The flow direction (orange Figure 10.77: Pitching path over
line) is parallel to the global thrust (black line). trajectory, Opti-4TV.

© @

4 ——
— Initial
= — 0pti-4T\L /X‘
g 2 \
3
G [e———— N— N — —
_/—/
0 45 90 135 180 225 270 315 360
. /\ N
g
s -1
) — Initial | V
— Opti-4TV.
0 4I5 90 135 180 225 270 315 360

Win [°]

Figure 10.78: Translation and rotation power coefficients, Opti-4TV.

121

Pos. | \\
@D |292°
® 55 °

10.7.3 Opti-4BV

This trajectory is shaped like a triangle, see Figure 10.79. The trajectory can be divided into four
sections, with conducive and adverse blade forces alternating, as shown in Figure 10.81.

(D—(@) The section begins with a fast pitch increase, remaining nearly constant. With the stretched
trajectory, the blade generates adverse forces.

(2— () In this section, the pitch reaches its maximum and decreases linearly. The blade performs an
almost circular movement and generates conducive forces.

(3)—(@ The linear pitch decrease continues in this section, leading to adverse force.

(®)—(@) The last section begins with a sharp pitch drop to its minimum. Shortly after the minimum, the
pitch increases rapidly. During this section, the blade performs a short-lasting circular movement
followed by an almost vertical ascent. As a result, a vast force peak is generated, and a second
occurs just before the sections’ end.

However, the direction of the first peak has a considerable inclination of about 67° compared to the
global thrust, and thus the peak is less effective.

Therefore the figure of merit FoM,py = 0.34 is moderat, which may is a result of the poor convergence,
see Figrue 10.8(c). In contrast to previous optimisations the width of this downwash is smaller than
the width of the trajectory as shown in Figure 10.83. With the corrected value the figure of merit is
now FoMypyeorr = 0.4 (+74%).

Table 10.14 lists characteristic values of the optimisation compared to its initial case.

Table 10.14: Mean values for Opti-4BV.

Type | Thrust Pi Pira Prot Preal FoM j3
Initial 0928 N 0330 W 1.11 W 0317 W 143 W 0.230 116°
Opit-4BV | 1.723 N 0.834 W 181 W 0.637 W 245 W 0.400 139°
A +86 % +153 % +63% +101 % 471 % +74 %

122

1.5
1.0
0.5
V]
© Pos.‘ LG
-§ 0.0 @ 21°
NS @ | 110°
03 ® |182°
@ | 262°
-1.0
-1.5

-15 -1.0 -0.5 0.0 0.5 1.0 1.5
X-Coordinate

Figure 10.79: Trajectory of Opti-4BV; rotor width wgr = 3.02 m.

@ @ ® @

60 1 1 1 1
1 1 1 1
40{ 1 i i
1 1 U 1
1 1 1
201 | ?\\~\\\\\\\\\\> i Pos. | W
o . 1 1 I 1
< i : = @ | 2
o 1
S =201 — nitial i i i @ | 110°
_a1nl — Opti-4BV ! H ! 1892°
0 ° Ao, max = 45.9° i i : @ 8
—601+ ® Qo min=-59.9° ! 1 ' @ 262°
1 1 Il 1 1

0 45 90 135 180 225 270 315 360
Yin[°]

Figure 10.80: Pitching angle o over azimuth angle ¥, Opti-4BV.

123

Thrust in [N]

(a) Initial case

(b) Opti-4BV

Figure 10.81: Resulting blade force over trajectory, black arrow represents the thrust.

@

©) ®

@

4 ; 1 7 i
—— Initial | 1 1
— Opti-4BV i i i
31 : | | :
24— i i s
o\ | | |
0 , . , : | . |
0 45 90 135 180 225 270 315 360
Yin[°]

Figure 10.82: Thrust over azimuth angle W.

124

U Magnitude

—— Trajectory
= Pitch angle ao

~-®

®-.

Figure 10.83: Magnitude of the velocity. Direction of flow (orange Figure 10.84: Pitching path over trajec-
line) not parallel to the global thrust (black line). tory of Opti-4BV.

@ © ® @

61 — nitial
- —‘— 0pti-4BV‘ f \
I_‘.E 4
. i | | /J \\
L ~ AN
6 O_JL——-/—\——J __/\S/______/'-
T T Pos.| g
0 45 90 135 180 225 270 315 360 @ 210
IS | ! : @ | 110°
:'“ 0 \/ q i /\\“ i '3(/ @ 1820
N
o
(3' —2 J— Initial ‘ \/
_3l —IOpti-4By I l l
0 4|5 90 135 180 225 270 315 360

Figure 10.85: Translation and rotation power coefficients, Opti-4BV.

125

10.8 Constant angular velocity

As mentioned in Chapter 9, the optimisation results with a constant angular velocity are invalid due
to a code error. Nonetheless, the resulting trajectories are shown the following figures.

The optimiser again tries to induce a certain force peak by forming a narrow trajectory. As in previous
cases, the blade generates small forces during the upper movement.

1.5

¢ Starting point
1.0 » Rotation origin

o
%

Y-Coordinate
o
o

-0.5

-1.0

-1.5 ——
-1.5 -1.0 -05 0.0 05 1.0 1.5
X-Coordinate
Figure 10.86: Trajectory and resulting forces for Opti-1TO.
2.0
1.5
e Starting point
1.0 o Rotation origin
3
5 0.5
£
S
—
8
8 oo ‘
>)
-0.5
-1.0
-15

-15 -1.0 -05 0.0 0.5 1.0 1.5 2.0
X-Coordinate

Figure 10.87: Trajectory and resulting forces for Opti-2TO.

126

Y-Coordinate

1.5
e Starting point
1.0 » Rotation origin
05
/
\
0.5
N
-1.0
-15 —
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
X-Coordinate
(a) Trajectory and resulting forces.
40
204
(2
£ 0
o /
s — Initial
=207 —— opti-1B0 /
® Qo max = 45.9°
—401 o agmin=-36.4°
0 45 90 135 180 225 270 315 360
Win [°]

(b) Pitching angle o over azimuth angle .

Figure 10.88: Results for Opti-1BO.

127

11 Summary

The subject of this master thesis is to develop a procedure to optimise the pitching path and the
trajectory for the blades of cycloidal rotors on the basis of CFD calculations. These 2D unsteady,
incompressible URANS analyses are carried out with OPENFOAM. The number of investigated blades
ranges from one to four Thereofore, the overset method is used to interpolate between the finite
volume meshes. The overset method causes fluctuation of the pressure field and discontinuities at
the interpolating cells, which leads to noisy force, which can be accepted. Although the y* parameter
exceeds one over a small range, the coarse blade meshes enable a short execution time, which is essential
due to the high number of CFD calculations.

For the implementation of arbitrary pitching and trajectory, B-splines are used. A four-order spline
with 16 control vertices is used for the pitching path, which enables a suitable adjustment. For the
trajectory, a fith-order spline is used to ensure continuity of the motion. Eight control vertices form the
shape of the trajectory. Another spline is invented, representing the length over the control variable.
With this spline and the Newton-Raphson method, the control variable is estimated to achieve a
constant velocity along the trajectory.

Two motion classes are written in C++, which enables an arbitrary mesh motion in OPENFOAM.
The bSplinePitching.C determines the blade’s pitching angle based on the given control vertices,
where as the class bSplineMotion.C determines the position of the trajectory. The latter contains the
Newton-Raphson procedure and several handling exceptions, enabling a continuous blade motion.

The tool kit for the optimisation is DAKOTA with an evolutionary algorithm and a population size
of 128 due to the Hawk node. The number of cases within an optimisation run lies between 10 000
and 15 000. Some cases are aborted due to a lack of convergence or time. For the interface between
DakoTA and OPENFOAM, the PYTHON script operateDict.py is written. It asses the trajectory,
generates the cases with its essential input files and builds a unique mesh for every CFD calculation.
The script also watches the running case and evaluates the results. Due to a failure in the procedure,
the optimisation results with a constant angular velocity are invalid.

The optimiser captured unexpected and unconventional pitching paths and trajectories. The absolute
maximum figure of merit of 0.758 is reached with four blades and with only pitching optimisation,
Opti-4P.

Two types of plots are invented for the detailed evaluation of the optimal cases. The pitch-over-
trajectory plot helps to understand the blade motion. And the more essential plot of the blade forces
over the trajectory to figure out the optimiser’s attempt. With these plots, two main reasons are
investigated, which lead to a better figure of merit although, the optimisation runs differ from each
other (number of blades, subject of optimisation).

e The optimiser adjusted the blade motion to better align the resulting blade forces to the global
thrust.

e In almost every optimal case, there is a more or less distinct force peak generated by a fast
blade motion. This movement is often a combination of rapid pitching and a narrow trajectory
curvature.

However, this motion and the force peaks can lead to high structural loads and vibration, which in

128

turn can cause fatigue fracture.

It is also noticeable that the main blade forces are predominantly generated in the lower half of the
trajectory. The optimiser tries to reduce the required power for the remaining trajectory by decreasing
the blade forces.

For the two-blade run with the ’'pitching only’ optimisation, two more Reynolds numbers are investi-
gated; 100 000 and 200 000. The figure of merit is increased compared to the pitching path with a
Re = 50 000 (+8.8% for Re=100 000, and +17.7% or Re=200 000). For a commercial cyclogyro, the
efficiency of the hover flight can be adapted for different loads, which results in different RPMs.

It turned out that the reference surface for the FoM calculation does not fit well for the trajectory
optimisation. The movement of the blades inclines the direction of the downwash, and thus the surface
changes through which the flow passes. The correct rotor width is assumed by downwash, which is
just a defective estimation.

A closer look at the thrust plots shows discontinuities of the force paths. There are kinks at each
end of a pitching spline section. The corresponding spline motion causes jumps at the beginning of a
trajectory. Despite great effort, this circumstance could not be solved until the end of this thesis.

For further research, some suggestions can be made.

e The current value of the chord-radius ratio is %, with which the optimiser captures motions,
inducing force peaks. Lowering this ratio could lead to more uniform force distribution over the
trajectory.

e More efficient use of computing capacity is possible by a convenient definition of the boundary
space for the control vertices.

e The order of the pitching spline could be increased to five, which might help to reduce the kinks
in the force plots.

e Using the figure of merit for the evaluation is weak due to the surface calculation. However,
the ratio thrust to real power seems unfavourable, as this method neglects the shape of the
trajectory. An algorithm could asses the velocity field close to the trajectory to determine the
reference surface.

e Secondary evaluation factors like the uniformity of the force distribution, the aerodynamic effi-
ciency g—; or the vorticity could be implemented and sent to the optimiser to achieve more even
results.

e The blade’s inertia is neglected for optimisation. The resulting figure of merit could be too high
in the cases, where the blades perform a rapid motion. Therefore the evaluation should contain
the calculation of the blade’s inertia and thus the required power.

e The number of calculated revolutions shall be increased as the current number of 14 (single case)
and 10 (overset mesh) might not be sufficient to achieve a converged flow field. In turn, the
boundary space of the control variable could be chosen more narrowly.

e Averaging the results over more than one revolution for the evaluation could help to get rid of
numerical uncertainties.

129

12 Acknowledgements

First and foremost, I would like to thank my advisor Louis Gagnon for this interesting theme and
his lasting support during the thesis. There were some intense debates, which gave me helpful input
and helped. Also, his comprehensive knowledge not only about OpenFOAM and great readiness was
constructive for this work.

I also would like to thank my colleagues for their lively exchange and help.

A special thank goes to the I'T administration of the IAG and the High-Performance-Computing-Cente
Stuttgart, who ensured a reliable run of the Clusters Prandtl and Hawk.

Lastly, I would like to thank my family for their encouragement during stressful periods and for
everlasting support.

130

Bibliography

1]
2]
13]
4]
[5]

[6]

7]
18]
19]

[10]

[11]
[12]

[13]

[14]
[15]

[16]
[17]

[18]
[19]

[20]

John B Wheatley. Simplified aerodynamic analysis of the cyclogiro rotating wing system.
John B Wheatley. Wind-tunnel test of a cyclogrio rotor.
CycloTech GmbH. Accessed: 04.08.2022. URL: https://www.cyclotech.at/.

Thomas Westermann Claus-Dieter Munz. Numerische Differentialgleichungen. Springer Vieweg
Berlin, 2019. 1SBN: 978-3-662-55886-7. DOI: https://doi.org/10.1007/978-3-662-55886-7.
Tobias Holzmann. Mathematics, Numerics, Derivations and OpenFOAM(R). po1: 10 . 13140/
RG.2.2.27193.36960. URL: https://Holzmann-cfd.de.

Jiyuan Tu, Guan Heng Yeoh, and Chaoqun Liu. Computational Fluid Dynamics: A Practical Approach.
Third Edition. USA: Butterworth-Heinemann, 2018. 1SBN: 978-0-08-098243-4. DOI: https :
//doi .org/10.1016/C2015-0-06135-4.

OpenFOAM wiki. OverPimpleDyMFoam. Accessed: 13.06.2022. URL: https://openfoamwiki .
net/index.php/0verPimpleDyMFoam.

IdealSimulations. Turbulence Models In CFD. Accessed: 15.02.2022. URL: https : / / www .
idealsimulations.com/resources/turbulence-models-in-cfd/.

OpenCFEFD Ltd. OpenFOAM: User Guide v2112: Overset. Accessed: 04.03.2022. URL: https://
www . openfoam. com/documentation/guides/latest/doc/guide-overset.html.

Dominic D.J. Chandar and Jayanarayanan Sitaraman. “A flux correction approach for
the pressure equation in incompressible flows on overset meshes in OpenFOAM”. In:
Computer Physics Communications 273 (2022), p. 108279. 1sSN: 0010-4655. DOI: https://doi.

org/10.1016/j.cpc.2021.108279. URL: https://www.sciencedirect.com/science/article/
pii/S001046552100391X.

wolf dynamics. Dynamic meshes in OpenFOAM. Accessed: 19.05.2022. URL: http : / / wuw .
wolfdynamics.com/training/movingbodies/0F2021/dynamicmeshes_2021_0F8.pdf.

UIUC Applied Aerodynamic Group. UIUC Airfoil Coordinates Database. 2022. URL: https :
//m-selig.ae.illinois.edu/ads/coord_database.html#N.

Doudou Huang and Louis Gagnon. “Relying on Dynamically Morphing Blades to Increase the
Efficiency of a Cycloidal Rotor”. In: IOP Conference Series: Materials Science and Engineering
1226.1 (2022), p. 012014. po1: 10.1088/1757-899x/1226/1/012014. URL: https://doi.org/
10.1088/1757-899x/1226/1/012014.

Florian Zimmer and Louis Gagnon. “Investigation of the Reynolds Number on the Performance
of a Cycloidal Rotor”. In: under review in J. Fluids Eng. (2022).

VDI e. V., ed. VDI-Wirmeatlas.

Philip Borgash. “Cycloidal rotor with non-circular blade orbit”. Pat. US 2009/0226314 A1. 2009.
OpenCFD Ltd. OpenFOAM: User Guide v2112: k-omega Shear Stress Transport (SST). Ac-
cessed: 15.02.2022. URL: https://www.openfoam. com/documentation/guides/latest/doc/
guide-turbulence-ras-k-omega-sst.html.

David F. Rogers. “An Introduction to NURBS: With Historical Perspective”. In: (2000).

Lothar Papula. Mathematische Formelsammlung. 10. Auflage. Vieweg-+Teubner, 2009. ISBN: 978-
3-8348-0757-1. DOI: https://doi.org/10.1007/978-3-8348-9598-1.

Berend Gerdes van der Wall. Grundlagen der Hubschrauber-Aerodynamik. Braunschweig:
Springer-Verlag Berlin Heidelberg, 2015. 1SBN: 978-3-662-44399-6. DOI1: 10.1007/978-3-662-
44400-9.

131

https://www.cyclotech.at/
https://doi.org/https://doi.org/10.1007/978-3-662-55886-7
https://doi.org/10.13140/RG.2.2.27193.36960
https://doi.org/10.13140/RG.2.2.27193.36960
https://Holzmann-cfd.de
https://doi.org/https://doi.org/10.1016/C2015-0-06135-4
https://doi.org/https://doi.org/10.1016/C2015-0-06135-4
https://openfoamwiki.net/index.php/OverPimpleDyMFoam
https://openfoamwiki.net/index.php/OverPimpleDyMFoam
https://www.idealsimulations.com/resources/turbulence-models-in-cfd/
https://www.idealsimulations.com/resources/turbulence-models-in-cfd/
https://www.openfoam.com/documentation/guides/latest/doc/guide-overset.html
https://www.openfoam.com/documentation/guides/latest/doc/guide-overset.html
https://doi.org/https://doi.org/10.1016/j.cpc.2021.108279
https://doi.org/https://doi.org/10.1016/j.cpc.2021.108279
https://www.sciencedirect.com/science/article/pii/S001046552100391X
https://www.sciencedirect.com/science/article/pii/S001046552100391X
http://www.wolfdynamics.com/training/movingbodies/OF2021/dynamicmeshes_2021_OF8.pdf
http://www.wolfdynamics.com/training/movingbodies/OF2021/dynamicmeshes_2021_OF8.pdf
https://m-selig.ae.illinois.edu/ads/coord_database.html#N
https://m-selig.ae.illinois.edu/ads/coord_database.html#N
https://doi.org/10.1088/1757-899x/1226/1/012014
https://doi.org/10.1088/1757-899x/1226/1/012014
https://doi.org/10.1088/1757-899x/1226/1/012014
https://www.openfoam.com/documentation/guides/latest/doc/guide-turbulence-ras-k-omega-sst.html
https://www.openfoam.com/documentation/guides/latest/doc/guide-turbulence-ras-k-omega-sst.html
https://doi.org/https://doi.org/10.1007/978-3-8348-9598-1
https://doi.org/10.1007/978-3-662-44400-9
https://doi.org/10.1007/978-3-662-44400-9

List of Figures

1.1 Functional principle of a cyclogyro. 1
2.1 The procedure of different OPENFOAM solver algorithm in accordance with Jiyuan, [6]. 5
2.2 Example for a overset mesh setup. 6
2.3 Various cell types for overset calculation. 7
2.4 Comparison of the thrust over azimuth angle for a single blade mesh and an overset mesh. 7
2.5 Flow chart of the DAKOTA procedure according to the User’'s Manual, [Dakota 1|.

The dotted lines represent the data transfer, which has to be implemented by the user. 8
2.6 Example for the evolutionary algorithm. 9
3.1 Basic geometrical definitions. 11
3.2 Geometrical definition and coordinate systems. 11
3.3 Initial positions of the blades for all considered combinations. 12
3.4 y* parameter for one blade optimisation (Opt-1BV). 13
3.5 ' parameter for two blade optimisation (Opt-2BV). 14
3.6 Mesh for single blade CFD. 15
3.7 Closeup view of the single blade mesh. 15
3.8 Mesh parts for overset method. L L 16
39 Dualmesh. 17
3.10 Pressure fluctuations as a result of the overset method. The black wireframes represent

the interpolation cells. 18
4.1 Sketch for a contant velocity drive. 20
4.2 Sketch for a constant rotation speed drive. 21
4.3 Figure of merit over 100 rotations for single-blade case. 22
4.4 Figure of merit over 100 rotations for two-blade case. 23
5.1 Example for a spline matching the given points. 28
6.1 Complete curve of the pitching spline. 30
6.2 Complete curve of the pitching spline. 30
6.3 Difference between the sinus curve and the spline. 30
6.4 Basis functions for the pitching spline. 31
6.5 Transferred basis function curve. 33
6.6 Inner and outer control variables for the pitching spline. 34
6.7 Example for an arbitrary pitching spline. 35
6.8 Closed circular b-spline. 36
6.9 Radius of the spline trajectory, which consists of 1 000 points. 36
6.10 Basis functions for the trajectory spline., 37
6.11 Transferred basis functions for trajectory spline. 38
6.12 Example for an arbitrary trajectory. 38
6.13 First derivatives of basis functions. 39
6.14 Example for a possible trajectory with unequal distance between the trajectory points. 40
6.15 Velocity of the blade over time. 41

132

6.16 Length of the trajectory over time. L. 41

6.17 Procedure to determine ngo 42
.18 G. o o o 42
6.19 Transformation of the control variable. 43
6.20 Basis functions for the length spline vje,. Lo 44
6.21 Tensor My.,,. 46
7.1 Movement between initial position ¢; and final position on the trajectory to. 49
7.2 Two lags with different delay values. 49
7.3 Path for different variable over one and a half rotation. 50
7.4 Assignment for the matrices. 52
7.5 g: primary counter angle calculated by the arc tangent 2 function. (p1: couner angle

shifted about 27 to get only positive angle. [0.25em| n gy: number of completed rotation.

Revolution = 27 - npy: offset, to obtain a continuous counter angle. [0.25em]| p9: final

counter angle, including the delay. Y
8.1 Reference surface for cycloidal rotors. 60
8.2 Blade movement from time step ¢; to ;1.o 60
8.3 Splitting of the blade movement. 61
8.4 Tangential force for the translation power calculation. 61
8.5 Compounding the global moment. 62
8.6 Flowchart of the pitching optimisation procedure. 66
8.7 Flowchart of the trajectory optimisation procedure. 69
8.8 Example of trajectory with an intersection. 70
8.9 Example of trajectory with different curvatures. 70
8.10 Trajectory within the forbidden area, radius =1m.. 70
8.11 Radial speed over azimuth angle. 70
8.12 Approach for individual refinement mesh. L. 71
8.13 Examples for the development of the figure of merit. 73
8.14 Boundary for the pitching control vertices. 73
8.15 Boundary for the trajectory control vertices. 74
9.1 Comparison of original and shifted trajectory, Opti-2TO. 76

9.2 Comparison of the two radii R; and Ry, Opti-2T0O. The maximum deviation is -24.7%. 77
9.3 Angular velocity for a trajectory without vertical shift, Opti-2TO. The maximum devi-

ation is 33.2%. 77
10.1 Conventional plot of pitching angle over azimuth angle. 79
10.2 Pitching angle over trajectory. 79
10.3 Corresponding alignment of the blade. 79
10.4 Force vectors over trajectory, case 1-Rot. 79
10.5 Definition for the color scheme. 79
10.6 Thrust over azimuth angle W. 79
10.7 Overall results of optimisation. The results of Opti-3TV, Opti-4TV and Opti-4BV are

shaded due to a lack of convergence. 82
10.8 Figure of merit over cases. 84
10.9 Pressure field of three-blade initial case. 85
10.10Comparison of the blade forces. 85
10.11Example for a convenient boundary definition for the trajectory control vertices. . .. 86
10.12Dicontinuities in the force path as a result of the spline motion. 86
10.13Pitching angle o over azimuth angle W. 87

133

10.14Resulting blade force over trajectory, black arrow represents the thrust. 88

10.15Thrust over azimuth angle W. 88
10.16Pitching path over trajectory and vorticity, Opti-1P. 89
10.17Translation and rotation power coefficients, Opti-1P. 89
10.18Trajectory of Opti-1TV, rotor width wg =3.57m. 90
10.19Resulting blade force over trajectory, black arrow represents the thrust. 91
10.20Thrust over azimuth angle W. 91
10.21Pitching path over trajectory, Opti-1TV. 92
10.22Translation and rotation power coefficients, Opti-1'TV. 92
10.23Trajectory of Opti-1BV, rotor width wp =3.00m. 93
10.24Pitching angle ag over azimuth angle W. 93
10.25Resulting blade force over trajectory, black arrow represents the thrust. 94
10.26Thrust over azimuth angle W. 94
10.27Pitching path over trajectory, Opti-1BV. 95
10.28 Translation and rotation power coefficients, Opti-1BV. 95
10.29Pitching angle o over azimuth angle W. 96
10.30Pitching angle o over azimuth angle ¥ for multiple Reynolds numbers. Opti-2P: Re =

50 000, Opti-2Px2: Re = 100 000, Opti-2Px4: Re =200000 97
10.31Resulting blade force over trajectory, black arrow represents the thrust. 97
10.32Thrust over azimuth angle W. 97
10.33Pitching path «ag over trajectory and vorticity in z-direction. 98
10.34Translation and rotation power coefficients, Opti-2P. 98
10.35Figure of merit over Reynolds number. o000 99
10.36Figure of merit for various Reynolds number. 99
10.37Trajectory of Opti-2TV, rotor width wgp =2.90m. 100
10.38Resulting blade force over trajectory, black arrow represents the thrust. 101
10.39Thrust over azimuth angle W. 101
10.40Pitching path over trajectory, Opti-2TV. 102
10.41Translation and rotation power coefficients, Opti-2TV. 102
10.42Trajectory of Opti-2BV; rotor width wp =2.30m. 103
10.43Magnitude of velocity. L 103
10.44Pitching angle g over azimuth angle ¥, Opti-2BV. 104
10.45Pitching path over trajectory, Opti-2BV. 104
10.46Resulting blade force over trajectory, black arrow represents the thrust. 105
10.47Thrust over azimuth angle W. 105
10.48Translation and rotation power coefficients, Opti-2BV. 106
10.49Pitching angle ag over azimuth angle &. 107
10.50Comparison of the pitching path for different blade numbers. 107
10.51Resulting blade force over trajectory, black arrow represents the thrust. 108
10.52Thrust over azimuth angle W. 108
10.53Translation and rotation power coefficients, Opti-3P. 109
10.54Pitching path over trajectory, Opti-3P. 109
10.55Trajectory of Opti-3TV, rotor width wg =188 m. 110
10.56Resulting blade force over trajectory, black arrow represents the thrust. 111
10.57Thrust over azimuth angle W. 111
10.58 Magnitude of the velocity. The flow direction (orange line) is parallel to the global

thrust (black line). 112
10.59Pitching path over trajectory, Opti-3TV. 112
10.60Translation and rotation power coefficients, Opti-3TV. 112
10.61Trajectory of Opti-3BV; rotor width wp =2.82m. 113

134

10.62Pitching angle g over azimuth angle ¥, Opti-3BV. 113

10.63Resulting blade force over trajectory, black arrow represents the thrust. 114
10.64Thrust over azimuth angle W. 114
10.65Pitching path over trajectory, Opti-3BV. 115
10.66Translation and rotation power coefficients, Opti-3BV. 115
10.67Pitching angle ag over azimuth angle &. 116
10.68 Comparison of the pitching path for pitch optimisations with different blade numbers. 116
10.69Resulting blade force over trajectory, black arrow represents the thrust. 117
10.70Thrust over azimuth angle W. 117
10.71Pitching path over trajectory, Opti-4P., 118
10.72Translation and rotation power coefficients, Opti-4P. 118
10.73Trajectory of Opti-4TV, rotor width wg =2.03m. 119
10.74Resulting blade force over trajectory, black arrow represents the thrust. 120
10.75Thrust over azimuth angle W. 120
10.76Magnitude of the velocity. The flow direction (orange line) is parallel to the global
thrust (black line). 121
10.77Pitching path over trajectory, Opti-4TV. 121
10.78Translation and rotation power coefficients, Opti-4TV. 121
10.79Trajectory of Opti-4BV; rotor width wp =3.02m. 123
10.80Pitching angle ag over azimuth angle ¥, Opti-4BV. 123
10.81Resulting blade force over trajectory, black arrow represents the thrust. 124
10.82Thrust over azimuth angle W. 124
10.83Magnitude of the velocity. Direction of flow (orange line) not parallel to the global
thrust (black line). 125
10.84Pitching path over trajectory of Opti-4BV.. 125
10.85Translation and rotation power coefficients, Opti-4BV. 125
10.86Trajectory and resulting forces for Opti-1TO. 126
10.87Trajectory and resulting forces for Opti-2TO. 126
10.88Results for Opti-1BO. 127

135

List of Tables

3.1 Listing of all geometric dimensions used over all cases. 12
3.2 Listing of the mesh generation properties. 14
3.3 Listing of the mesh generation properties. 16
3.4 Listing of the mesh generation properties. 17
3.5 Number of volume cells for different number of blades; for the pitching optimisation. . 17
4.1 Considered Reynolds numbers, rotational speed and period. 19
4.2 Listing of all constant boundary conditions used over all cases. 20

8.1 Considered optimisation runs and corresponding parameters. [0.5em| vppiye = 0.775%,

Wprive = 0.517< L 64
8.2 Considered optimisation cases and corresponding parameters. 72
10.1 Considered optimisation cases and corresponding parameters. 80
10.2 Overall results of optimisation and corresponding parameters. For criterion see Table 8.2. 81
10.3 Mean values for Opti-1P. 87
10.4 Mean values for Opti-1TV. 90
10.5 Mean values for Opti-1BV. e 94
10.6 Mean values for the pitching optimisation with two blades. The deviations refer in each

case to the initial case. 99
10.7 Mean values for Opti-2TV. 100
10.8 Mean values for Opti-2BV. 105
10.9 Mean values for Opti-3P. 108
10.10Mean values for Opti-3TV, figure of merit with corrected width. 110
10.11Mean values for Opti-3BV. 114
10.12Mean values for Opti-4P. 117
10.13Mean values for Opti-4TV, figure of merit with corrected width. 119
10.14Mean values for Opti-4BV. 122
A.1 Listing of all geometric dimensions used over all cases. 137
A.2 Considered Reynolds numbers, rotational speed and period. 137
A.3 Listing of all constant boundary conditions used over all cases. 137

136

Appendix

A Input Data

Table A.1: Listing of all geometric dimensions used over all cases.

Name Symbol Value Unit Source

Type of airfoil NACA0012 [-] project definition

Chord lenth, single blade cgp 1.0011 [m] calculated

Chord lenth, multi blade CMB 0.9922 [m] calculated

Chord-Radius ratio R, 2 [—] project definition

Radius of rotation R 1.5 [m] calculated du to given ratio
Number of blades Nlade 1,2, 3,4 [—] project definition

Depth of domain d, 1.0 [m] unit value

Table A.2: Considered Reynolds numbers, rotational speed and period.

Reynolds number Factor Rotational speed Period
50 000 0.5167 12.1608
100 000 1.0334 6.0804
200 000 2.0667 3.0402

Table A.3: Listing of all constant boundary conditions used over all cases.

Value Unit
Reynolds number Re 50 000 [—]
Air density p 1.225 [%}
Kinematic viscosity v 15.5-1076 [%2}
Chord lenth c 1.0 [m]
Free stream velocity Uy 0 [%]

137

© 0 N O U e W N

R e
=W N = O

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

B Dakota

The basic Dacota input file is shown below, where the code passages marked with *** were adjusted

according to the optimisation, see following comments.

environment
top_method_pointer = 'SOGA'

method

id_method = 'SOGA'

model_pointer = 'M1'

soga
fitness_type merit_function
population_size = 128
max_iterations = 1024
max_function_evaluations = 262144

convergence_tolerance = LD

scaling
seed = 123456

model
id_model = 'M1'
single
variables_pointer = 'V1'
interface_pointer = 'I1'
responses_pointer = 'R1'
variables
id_variables = 'V1'

continuous_design = **x*

initial_point *okok
lower_bounds kK
upper_bounds *okok
descriptors *okok
scale_types 'auto'
interface
id_interface = 'I1'

analysis_driver = #**x

fork asynchronous evaluation_concurrency = 128

parameters_file = 'parameters.in'
results_file = 'results.out'
file_tag
responses
id_responses = 'R1'

objective_functions = 1
no_gradients

no_hessians

138

Code passage for 'pitching only’ optimisation.

continuous_design = 16

initial_point 0 17.7 32.7 42.7 46.2 42.7 32.7 17.7 0 -17.7 -32.7 -42.7 -46.2
— -42.7 -32.7 -17.7

lower_bounds -45 -31.6 -20.3 -12.7 -10 -12.7 -20.3 -31.6 -45 -68.4 -69.8 -77.3 -80
— -77.3 -69.8 -58.4

upper_bounds 45 58.4 69.8 77.4 80 77.4 69.8 58.4 45 31.6 20.3 12.7 10
— 12.7 20.3 31.6

descriptors 'P10"' 'P11' 'P20' 'P21' 'P30' 'P31' 'P40' 'P41' 'P50' 'P51' 'P60' 'P61' 'P70'
— 'P71' 'P80' 'pP81!’

Code passage for ’trajectory only’ optimisation.

continuous_design = 14

initial_point 1.7 1.2 1.2 0.0 1.7 -1.2 1.2 -1.7 -1.2 -1.2 0.0 -1.
— 1.2 -1.2

lower_bounds 0.2 0.2 0.2 -2.0 0.2 -3.0 0.2 -3.0 -3.0 -3.0 -2.0 -3.0
— 0.2 -3.0

upper_bounds 3.0 3.0 3.0 2.0 3.0 -0.2 3.0 -0.2 -0.2 -0.2 2.0 -0.2
— 3.0 -0.2

descriptors 'T1X' 'T2X' 'T2Y"' 'T3X"' 'T3Y' 'T4X! 'T4Y! 'T5X! 'T6X! '"T6Y"' 'T7X!

— 'T7Y' 'T8X' 'T8Y!

Code passage for 'both’, pitching and trajectory optimisation.

continuous_design = 30

initial_point 0 17.7 32.7 42.7 46.2 42.7 32.7 17.7 0 -17.7 -32.7 -42.7 -46.2
— -42.7 -32.7 -17.7 1.7 1.2 1.2 0.0 1.7 -1.2 1.2 -1.7 -1.2 -1.2
— 0.0 -1.7 1.2 -1.2

lower_bounds -45 -31.6 -20.3 -12.7 -10 -12.7 -20.3 -31.6 -45 -68.4 -69.8 -77.3 -80

— -77.3 -69.8 -58.4 1.0 0.5 0.5 -2.0 0.5 -3.0 0.5 -3.0 -3.0 -3.0
— -2.0 -3.0 0.5 -3.0

upper_bounds 45 58.4 69.8 7.4 80 7.4 69.8 58.4 45 31.6 20.3 12.7 10

— 12.7 20.3 31.6 3.0 3.0 3.0 2.0 3.0 -0.5 3.0 -1.0 -0.5 -0.5
— 2.0 -0.5 3.0 -0.5

descriptors 'P10' 'P11' 'P20' 'P21' 'P30' 'P31' 'P40' 'P41' 'P50' 'P51' 'P60' 'P61' 'P70'
— 'P71' 'P80' 'P81' 'T1X! 'T2X! 'T2Y! 'T3X! 'T3Y! 'T4X" 'T4Y! 'T5X' 'T6X"' 'T6Y!'
— T7TX' 'T7Y! 'T8X!' 'T8Y!

139

C Python Script

The scripts depend on the number of the blade and the optimisation subject. The shown code is valid
for pitching, trajectory optimisation, and constant velocity.

C.1 operateDict.py

#!/usr/bin/env python

import sys
import os

from shapely.geometry.polygon import LinearRing

© 0 N O U W N

=R e
No= O

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

import shutil

from subprocess import Popen

import time

import Control_x***

from dakota import interfacing as di

sys.path.append('/zhome/academic/HLRS/iag/iagdonne/dakota-6.15.0-public-rhel7.Linux.x86_64-cli/

—

share/dakota/Python')

inputFileFromDak = sys.argv[i]

outputFileForDak = sys.argv[2]

parameters, results = di.read_parameters_file(inputFileFromDak, outputFileForDak)

P10 = round(parameters['P10'],4)
P11 = round(parameters['P11'],4)
P20 = round(parameters['P20'],4)
P21 = round(parameters['P21'],4)
P30 = round(parameters['P30'],4)
P31 = round(parameters['P31'],4)
P40 = round(parameters['P40'],4)
P41 = round(parameters['P41'],4)
P50 = round(parameters['P50'],4)
P51 = round(parameters['P51'],4)
P60 = round(parameters['P60'],4)
P61 = round(parameters['P61'],4)
P70 = round(parameters['P70'],4)
P71 = round(parameters['P71'],4)
P80 = round(parameters['P80'],4)
P81 = round(parameters['P81'],4)
T1X = round(parameters['T1X'],6)
T2X = round(parameters['T2X'],6)
T2Y = round(parameters['T2Y'],6)
T3X = round(parameters['T3X'],6)
T3Y = round(parameters['T3Y'],6)
T4X = round(parameters['T4X'],6)
T4Y = round(parameters['T4Y'],6)
T5X = round(parameters['T5X'],6)
T6X = round(parameters['T6X'],6)
T6Y = round(parameters['T6Y'],6)
T7X = round(parameters['T7X'],6)
T7Y = round(parameters['T7Y'],6)
T8X = round(parameters['T8X'],6)

140

49
50
51
52
53
54
55
56
57
58
59

60
61
62
63
64
65
66
67
68

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

T8Y = round(parameters['T8Y'],6)

#--- Definition ------------o-mmmmmo oo

eval_id = int(parameters.eval_id)

cwd = os.getcwd() .replace('/0OverHead', '')
src = cwd + '/IdleRunx*x*'

dst = cwd + '/Run_' + str(eval_id).zfill(5)

WriteLineNew = []

#--- Check Trajectory for intersections ---------
Ring = LinearRing([(T1X, 0), (T2X, T2Y), (T3X, T3Y), (T4X, T4Y), (T56X, 0), (T6X, TeY), (T7X, T7Y), (T8X, T8Y),

— (T1X, 0), 1)
flagInter = Ring.is_valid

if flagInter == True:

#--- Generate Case -----------------~—~—~—~-—-~-~---

shutil.copytree(src, dst)

#--- Manipulate dynamicMeshDict AND initialConditions

Control_s*.Pitching(dst, P10, P11, P20, P21, P30, P31, P40, P41, P50, P51, P60, P61, P70, P71, P80, P81)
OutPut = Control_##*.Trajectory(dst, TiX, T2X, T2Y, T3X, T3Y, T4X, T4Y, T5X, T6X, T6Y, T7X, T7Y, T8X, T8Y,
< P10, P11, P20, P21, P30, P31, P40, P41, P50, P51, P60, P61, P70, P71, P80, P81)

Polygon = OutPut [0]
maxKappa = OutPut[1]

if maxKappa < 4:

#--- Run Case ------------—-—~—~—~—~—~—~—~—~—~—~—~—~—-

os.chdir(dst)
Popen(['sh', dst + '/Run.sh'])
time.sleep(240)

#--- Livelicker for Case ----------------

flagRun = True
flagState = False
TimeOut = False

RunTime = 0O

counter = 0

while flagRun == True:
time.sleep(300)

LiveTiming = Control_x#**.LiveTiming(dst)

flagRun = LiveTiming[0]
flagState = LiveTiming[1]

if RunTime == LiveTiming[3]:
counter +=1

else:
counter = 0

if counter == 40:
flagRun = False
flagState = False

TimeOut = True

RunTime = LiveTiming[3]

#--- get FOM if Case succsessful --------

if flagState == True:

Eval = Control_*#**.EvaluateCase(dst)

if Eval[7] > 0 and Eval[7] < 1:

141

106
107

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

0w N O U e W N =

FOM = Evall[7]

WriteLineNew.append('\n'+str(eval_id) .zfill(5)+'%3d' /LiveTiming[2]+'+.4E"' JEval[0] +'J+.4E'
%Eval[1] +'%.4E' %Eval[2] +'%.4E' JEvall3] +'},.4E' %Eval[4] +'},.4E' %Eval[5] +'}.4E'
%Eval[6] +'%.4E' YEval[7] +'%.3E' JEvall[8] +'},.4f' %Eval[9] +'}/+.6E' %P10 +'}+.6E' %P11
+'%+.6E' %P20 +'+.6E' %P21 +'J+.6E' %P30 +'/+.6E' %P31 +'}+.6E')P40 +'}/+.6E' P41 +'J+.6E'
%P50 +'}+.6E' YP51 +'}+.6E' P60 +'}+.6E' P61 +'}+.6E' P70 +'}+.6E' P71 +'}+.6E' %P80
+'+.6E" %P81 +'J+.6E"' YPolygon[2] [0] +'/+.6E' %Polygon[3][0] +'}/+.6E' %Polygon[3][1]
+'%+.6E" JPolygon[4] [0] +'/+.6E' ’Polygon[4][1] +'}+.6E' Polygon[5][0] +'/+.6E"
/%Polygon[5] [1] +'/+.6E' Y%Polygon[6][0] +'}+.6E' JPolygon[7][0] +'/+.6E' JPolygon[7][1]
+'%+.6E" %Polygon[8] [0] +'/+.6E' %Polygon[8][1] +'}/+.6E' %Polygon[9][0] +'/+.6E"
%Polygon[9] [1])

!

O I

else:
FOM = le-4
WriteLineNew.append('\n'+str(eval_id).zfill(5)+ '--> FalseFOM /+.4E' 7Eval[0] +...)
elif TimeOut == True:
FOM = le-4
WriteLineNew.append('\n'+str(eval_id) .zfill(5)+'--> TimeOut! 75d' %RunTime+ 'J+.6E' P10 +...)
else:
FOM = le-4
WriteLineNew.append('\n'+str(eval_id) .zfill(5)+'--> OpenFOAM error! 7+.6E' P10 +...)
else:
FOM = le-5
WriteLineNew.append('\n'+str(eval_id) .zfill(5)+'--> max. Kappa =J,.3E'/maxKappa+'too high!/+.6E'/P10+...)
#--- Clean Case -------------—~-—~—~—~—~—~—~—~—~—~-~--

Control_x*#**.CleanCase(cwd, eval_id)

else:
FOM = le-6
WriteLineNew.append('\n' + str(eval_id).zfill(5) + '--> Intersection! %+.6E' %P10 +...+ 'J+.6E' 7T8Y)

with open(cwd + '/OverHead/RunLog.txt', 'at') as meanValue:
WriteLine= ''.join(WriteLineNew)
meanValue.write(WriteLine)

results['obj_fn'].function = 1 / FOM

os.chdir(cwd + '/OverHead')

results.write()

C.2 Control.py

The control script contains the essential function, is shown separately, and is valid for optimisation
subject 'both’.

import numpy as np

import re

import os

import math

from shapely.geometry import Point

from shapely.geometry.polygon import Polygon
from stl import mesh

import shutil

142

10 def Pitching(dst, P10, P11, P20, P21, P30, P31, P40, P41, P50, P51, P60, P61, P70, P71, P80, P81):

11 with open(dst + '/constant/dynamicMeshDict', 'rt') as DMC:

12 DMClines = DMC.readlines()

13 for ilLine in range(len(DMClines)):

14 if re.search(r'vertexP_10', DMClines[iLine]):

15 DMClines[iLine]l='vertexP_10 ' + str(P10) +';\n'

16 DMClines[iLine+1]='vertexP_11 ' + str(P11) +';\n'
17 DMClines[iLine+2]='vertexP_20 ' + str(P20) +';\n'
18 DMClines[iLine+3]='vertexP_21 ' + str(P21) +';\n'
19 DMClines[iLine+4]='vertexP_30 ' + str(P30) +';\n'
20 DMClines[iLine+5]='vertexP_31 ' + str(P31) +';\n'
21 DMClines[iLine+6]='vertexP_40 ' + str(P40) +';\n'
22 DMClines[iLine+7]='vertexP_41 ' + str(P41) +';\n'
23 DMClines[iLine+8]='vertexP_50 ' + str(P50) +';\n'
24 DMClines[iLine+9]='vertexP_51 ' + str(P51) +';\n'
25 DMClines[iLine+10]="'vertexP_60 ' + str(P60) +';\n'
26 DMClines[iLine+11]='vertexP_61 ' + str(P61) +';\n'
27 DMClines[iLine+12]='vertexP_70 ' + str(P70) +';\n'
28 DMClines[iLine+13]='vertexP_71 ' + str(P71) +';\n'
29 DMClines[iLine+14]='vertexP_80 ' + str(P80) +';\n'
30 DMClines[iLine+15]='vertexP_81 ' + str(P81) +';\n'
31 with open(dst +'/constant/dynamicMeshDict', 'wt') as DMC:

32 DMClinesNew = ''.join(DMClines)

33 DMC.write (DMClinesNew)

143

37 def Trajectory(dst, T1X, T2X, T2Y, T3X, T3Y, T4X, T4Y, T5X, T6X, T6Y, T7X, T7Y, T8X, T8Y, P10, P11, P20, P21,
< P30, P31, P40, P41, P50, P51, P60, P61, P70, P71, P80, P81):

38 #--- Input Data ----------m oo oo oo

39 flaglen = False

40 Ratio = 1

41 TPolygon = np.array([[T7X, T7Y], [T8X, T8Y],[TiX, 0], [T2X, T2Y], [T3X, T3Y], [T4X, T4Y]l, [T5X, 0],
— [T6x, TeYl, [T7X, T7Yl, [T8X, T8Y], [TiX, 0], [T2X, T2Y], [T3X, T3Y], 1D)

42 deltaT = le-4

43 Period = 10

44 counter = 0

45 lengthR = 3*math.pi

46

47 fTra = np.array([

48 [1/24, -1/6, 1/4, -1/6, 1/24],

49 [-1/6, 1/2, -1/4, -1/2, 11/24],

50 [1/4, -1/2, -1/4, 1/2, 11/24],

51 [-1/6, 1/6, 1/4, 1/6, 1/24],

52 [1/24, 0, 0, 0, 0] 1,)

53 dfTra = np.array([

54 [1/6, -1/2, 1/2, -1/61,

55 [-4/6, 3/2, -1/2, -1/2],

56 [1, -3/2, -1/2, 1/2]1,

57 [-4/6, 1/2, 1/2, 1/61,

58 [1/6, 0, 0, 01,1,)

59 ddfTra = np.array([

60 [1/2, -1, 1/21,

61 [-2, 3, -1/2],

62 [3, -3, -1/21,

63 [-2, 1, 1/21,

64 [1/2, 0, 01,1,)

65 flLen = np.array([

66 [[1, -4, 6, -4, 11,1,

67 [[-15/8, 7, -9, 4, 0],

68 [1/8, -1/2, 3/4, -1/2, 1/8]1,1,

69 [[8s/72, -11/3, 3, 0, 01,

70 [-23/72, 19/18, -11/12, -5/18, 37/72],

71 [1/18, -2/9, 1/3, -2/9, 1/18]1,1,

72 [[-25/72, 2/3, 0, 0, 0],

73 [23/72, -13/18, -1/12, 11/18, 23/72],

74 [-13/72, 5/9, -1/3, -4/9, 4/9],

75 [1/24, -1/6, 1/4, -1/6, 1/24]1,],

76 [[1/24, 0, 0, O, 0,1,

77 [-1/6, 1/6, 1/4, 1/6, 1/24],

78 [1/4, -1/2, -1/4, 1/2, 11/24],

79 [-1/6, 1/2, -1/4, -1/2, 11/24],

80 [1/24, -1/6, 1/4, -1/6, 1/241,1, 1, dtype = 'object')

81

82 fIndex = np.array([

83 [[o, 1, 2, 3, 4],

84 [1, 2, 3, 4, 4],

85 [2, 3, 4, 4, 4],

86 [3, 4, 4, 4, 4],

87 [4, 4, 4, 4, 4],

88 [4, 4, 4, 4, 3],

89 [4, 4, 4, 3, 2],

90 [4, 4, 3, 2, 11,

91 [4, 3, 2, 1, 01, 1,

92

93

144

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

134

136
137
138

140
141
142
143
144
145
146
147
148
149

[(o, 0, 0, O, O],
[1, 1, 1, 1, 0],
[2, 2, 2, 1, 0],
[3, 3, 2, 1, 0],
[4, 3, 2, 1, 0],
[4, 3, 2, 1, 3],
[4, 3, 2, 2, 2],
[4, 3, 1, 1, 11,
[4, 0, 0, 0, 0], 1,], dtype = 'object')

fPit = np.array([
[-1/6, 1/2, -1/2, 1/61,
[1/2, -1, 0, 2/31,
[-1/2, 1/2, 1/2, 1/6]1,
[1/6, 0, 0, 01 1,

P00 = P81
P90 = P10
P91 = P11

Pitching = np.array([P0OO, P10, P11, P20, P21, P30, P31, P40, P41, P50, P51, P60, P61, P70, P71, P80, P81,
— P90, P91])
#--- end: Input Data --------cc-o-m oo

#--- Calculate TTrajectory ----------ommmmo oo -
while flaglen == False:

time = 0

vecTX, vecTY, vecTTime, vecTLen = [1, [1, [1, [I

for i in range(0,13):
TPolygon[i,0] = TPolygon[i,0] / Ratio
TPolygon[i,1] = TPolygon[i,1] / Ratio

while time < Period + deltaT:
k = math.floor(time / Period * 8 + 0.5)
TnT = 0.5 + 8 * time / Period - k
vecTTime.append (round(TnT+k,6))
TR1 = £Tral[0] [0]*TnT+**4+fTra[0] [1]*TnT**3+£Tra[0] [2] *TnT**2+£Tra[0] [3]*TnT+£fTra[0] [4]
TR2 = fTra[1] [0]*TnT**4+fTra[1] [1]*TnT**3+fTra[1] [2]*TnT**2+fTra[1] [3]1*TnT+fTral[1] [4]
TR3 = fTra[2] [0]*TnT**4+fTra[2] [1]*TnT**3+fTra[2] [2] *TnT**2+fTra[2] [3]*TnT+fTra[2] [4]
TR4 = £Tral[3] [0]*TnT+**4+fTra[3] [1]*TnT**3+fTra[3] [2] *TnT**2+fTra[3] [3]*TnT+£fTra[3] [4]
TRS = fTra[4] [0]*TnT**4+fTra[4] [1]*TnT**3+fTra[4] [2]*TnT**2+fTra[4] [3]*TnT+fTra[4] [4]
vecTX.append (TR1*TPolygon [k, 0] +TR2*TPolygon [k+1,0]+TR3*TPolygon [k+2,0] +TR4*TPolygon [k+3,0]
— +TR5*TPolygon [k+4,0])
vecTY.append (TR1*TPolygon [k, 1] +TR2*TPolygon [k+1, 11+TR3*TPolygon [k+2,1]+TR4*TPolygon [k+3, 1]
— +TR6*TPolygon[k+4,1])
time = time + deltaT

lengthT = 0

for k in range(0, len(vecTX)-1):
deltaTX = vecTX[k+1] - vecTX[k]
deltaTY = vecTY[k+1] - vecTY[k]
deltal = math.sqrt(deltaTX**2+deltaTY**2)
lengthT = lengthT + deltal
vecTLen. append (lengthT)

Ratio = (lengthT/lengthR)

counter +=1

if abs(1-Ratio) < le-6:
flaglen = True

if counter > 20:
flaglen = True

#--- end: Calculate Trajectory ------------- oo oo

145

150 #--- Calculate CUPrUALUTE - - - - - - oo oo oo oo oo e oo oo

151 time = 0

152 vecTCA, vecTdX, vecTdY, vecTddX, vecTddY, kappa = [1, [1, [1, [, [1, [I

153

154 while time < Period + deltaT:

155 k = math.floor(time / Period * 8 + 0.5)

156 TnT = 0.5 + 8 * time / Period - k

157

158 TdR1 = dfTra[0] [0]*TnT*#*3+dfTra[0] [1]*TnT**2+dfTra[0] [2] *TnT+dfTra[0] [3]

159 TdR2 = dfTral[1] [0]*TnT**3+dfTra[1] [1]*TnT**2+dfTral[1] [2]*TnT+dfTral[1] [3]

160 TdR3 = dfTra[2] [0]*TnT**3+dfTra[2] [1]*TnT**2+dfTra[2] [2] *TnT+dfTra[2] [3]

161 TdR4 = dfTra[3] [0]*TnT**3+dfTra[3] [1]*TnT**2+dfTra[3] [2] *TnT+dfTra[3] [3]

162 TdR5 = dfTra[4] [0]*TnT**3+dfTra[4] [1]*TnT**2+dfTra[4] [2] *TnT+dfTra[4] [3]

163

164 vecTdX.append (TdR1*TPolygon [k, 0] +TdR2+TPolygon [k+1,0]+TdR3*TPolygon [k+2,0]+TdR4*TPolygon [k+3,0]
— +TdR5*TPolygon[k+4,0])

165 vecTdY . append (TdR1*TPolygon [k, 1]+TdR2+TPolygon [k+1,1]+TdR3*TPolygon [k+2, 1]1+TdR4*TPolygon [k+3,1]
— +TdR5*TPolygon[k+4,1])

166 vecTCA.append (-math.atan2(vecTdX[-1],vecTdY[-1]))

167

168 TddR1 = ddfTral[0] [0]*TnT**2+ddfTra[0] [1]*TnT+ddfTra[0] [2]

169 TddR2 = ddfTral[1] [0]*TnT**2+ddfTra[1] [1]*TnT+ddfTra[1] [2]

170 TddR3 = ddfTral2] [0]*TnT**2+ddfTra[2] [1]*TnT+ddfTra[2] [2]

171 TddR4 = ddfTral[3] [0]*TnT**2+ddfTra[3] [1]*TnT+ddfTra[3] [2]

172 TddR5 = ddfTral4] [0]*TnT**2+ddfTra[4] [1]*TnT+ddfTra[4] [2]

173

174 vecTddX . append (TddR1*TPolygon [k, 0] +TddR2*TPolygon [k+1,0] +TddR3*TPolygon [k+2,0]+TddR4*TPolygon [k+3,0]
— +TddR5*TPolygon[k+4,0])

175 vecTddY . append (TddR1*TPolygon [k, 1]+TddR2*TPolygon [k+1, 1] +TddR3*TPolygon [k+2, 1] +TddR4*TPolygon [k+3, 1]
< +TddR5*TPolygon[k+4,1])

176 kappa.append(abs(vecTdX[-1] * vecTddY[-1] - vecTdY[-1] * vecTddX[-1]) / (vecTdX[-1]#x*2 +
s vecTdY[-1]*%2)*%(3/2))

177

178 time = time + deltaT

179

180 maxKappa = max(kappa)

181 #--- end: Calculate CUPUALUTE ----- - - - - oo oo oo oo oo

182

183 if maxKappa < 4:

184 #--- Calculate vectorl & sectionLl --------- - - oo

185 vectorL, sectionL = [], []

186

187 vecLnT = [0, 0.525, 1.225, 1.75, 2.8, 3.675, 4.725, 5.6, 6.65, 7.525, 8.575, 9.45, 10.5, 11.375, 12.425,
< 13.475, 14.35, 15.225, 16.275, 17.325, 18.2, 19.25, 19.775, 20.475, 21]

188 vecPD = [vecTLen[vecTTime.index(7.7)]-lengthR, vecTLen[vecTTime.index(7.94)]-lengthR,
— vecTLen[vecTTime.index(8.26)]-lengthR, vecTLen[vecTTime.index(0.5)], vecTLen[vecTTime.index(0.98)],
< vecTLen[vecTTime.index(1.38)], vecTLen[vecTTime.index(1.86)], vecTLen[vecTTime.index(2.26)],
«» vecTLen[vecTTime.index(2.74)], vecTLen[vecTTime.index(3.14)], vecTLen[vecTTime.index(3.62)],
— vecTLen[vecTTime.index(4.02)], vecTLen[vecTTime.index(4.5)], vecTLen[vecTTime.index(4.9)],
—» vecTLen[vecTTime.index(5.38)], vecTLen[vecTTime.index(5.86)], vecTLen[vecTTime.index(6.26)],
< vecTLen[vecTTime.index(6.66)], vecTLen[vecTTime.index(7.14)], vecTLen[vecTTime.index(7.62)],
— vecTLen[vecTTime.index(8.02)], vecTLen[vecTTime.index(8.5)], vecTLen[vecTTime.index(0.74)]+lengthR,
— vecTLen[vecTTime.index(1.06)]+lengthR, vecTLen[vecTTime.index(1.3)]+lengthR]

189

190 matN = [1, 0, 0, 0, 0, 0, 0, 0, 0, O, O, 0, 0, 0, 0, 0, 0, O, O, 0O, O, 0, 0, 0, 0]

191 sec = 0

192

193

194

146

195 for j in range(1,24):

196 vecN = []

197 k = math.floor(vecLnT[j])

198 matR = []

199 if k < 4:

200 sec = k

201 elif k < 17:

202 sec = 4

203 else:

204 sec = k - 12

205

206 for i in range(0,5):

207 matR.append (fLen[fIndex [0] [sec] [i]] [fIndex[1] [sec] [i]11)

208 for m in range(0,k):

209 vecN.append (0)

210

211 LnT = vecLnT[j]-k

212 for i in range(0,5):

213 if vecLnT[j] > 17:

214 if i == 21- k:

215 LnT = 1 - LnT

216 vecN. append (round (matR[i] [0] #*LnT#**4+matR[i] [1] *LnT**3+matR[i] [2] *LnT**2

— +matR[i] [3]*LnT+matR[i] [4],8))

217

218 for m in range(k+4,24):

219 vecN. append (0)

220

221 matN = np.vstack([matN,vecN])

222

223 vecN = [0, 0, 0, 0, 0, 0, 0O, 0, O, 0, O, 0O, 0, O, 0, O, 0, O, O, 0, O, 0, 0, 0, 1]

224 matN = np.vstack([matN,vecN])

225 matInvN = np.linalg.inv(matN)

226 vectorL=np.matmul (matInvN, vecPD)

227

228 #--- Calculate: sectionl

229 matR=[]

230 for j in range(0,21):

231 if j < 4:

232 sec = j

233 elif j < 17:

234 sec = 4

235 else:

236 sec = j - 12

237

238 for i in range(0,5):

239 matR.append(fLen[fIndex[0][sec][i] 1 [fIndex[1][secl[i]l 1)

240

241 for i in np.arange(1,21,1):

242 k = math.floor (i)

243 ILnT =i - k

244

245 LR1 = matR[0+k*5] [0] #*LnT**4+matR[0+k+*5] [1]*LnT**3+matR [0+k*5] [2] #*LnT**2+matR[0+k+*5] [3]*LnT
— +matR[0+k*5] [4]

246

247 if k >= 20:

248 LnT = 1 - (i - k)

249 LR2 = matR[1+k*5] [0]*LnT**4+matR[1+k+*5] [1]*LnT**3+matR [1+k*5] [2] #LnT**2+matR[1+k+*5] [3]*LnT
— +matR[1+k*5] [4]

250

147

251
252
253

254
255
256
257

258
259
260
261

262
263
264

266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282

284

285

287
288
289

291
292

294
295
296
297
298
299
300
301
302
303

if k >= 19:

ILnT = 1 - (i - k)
LR3 = matR[2+k*5] [0] #*LnT**4+matR[2+k*5] [1] *LnT**3+matR [2+k*5] [2] *LnT**2+matR [2+k*5] [3] *LnT
—s +matR[2+k*5] [4]

if k >= 18:

LnT = 1 - (i - k)
LR4 = matR[3+k*5] [0] #*LnT**4+matR[3+k*5] [1]*LnT**3+matR [3+k*5] [2] *LnT**2+matR [3+k*5] [3] *LnT
< +matR[3+k*5] [4]

if k >= 17:

LnT = 1 - (i - k)
LR5 = matR[4+k*5] [0] #LnT**4+matR[4+k+5] [1]*LnT**3+matR [4+k*5] [2] #+LnT**2+matR [4+k+*5] [3]*LnT
< +matR[4+k*5] [4]

sectionL.append (LR1*vectorL [k]+LR2*vectorL [k+1]+LR3*vectorL [k+2] +LR4*vectorL [k+3] +LR5*vectorL [k+4])

#--- end: Calculate vectorl & sectionLl ------o oo oo oo oo

#--- Calculate PItching -------c--ommmmmmmm oo
time = 0
vecPnT, vecPit = [1, []
while time < Period:
k = math.floor(time / Period * 16)
PnT = 16 * time / Period - k
vecPnT. append (round (16 * time / Period,4))

PR1 = fPit[0] [0]*PnT#**3+fPit [0] [1]*PnT**2+fPit[0] [2]*PnT+£fPit [0] [3]

PR2 = fPit[1] [0]*PnT**3+fPit[1] [1]1*PnT**2+fPit[1] [2]*PnT+fPit[1][3]
PR3 = fPit[2] [0] *PnT**3+fPit [2] [1]*PnT**2+fPit[2] [2]*PnT+£fPit [2] [3]
PR4 = fPit[3] [0]*PnT+*3+fPit [3] [1]*PnT**2+fPit [3] [2]*PnT+£fPit [3] [3]

vecPit.append (PR1*#Pitching[k]+PR2*Pitching[k+1]+PR3*Pitching[k+2]+PR4*Pitching[k+3])
time = round(time + deltaT,10)
#--- end: Calculation Pitching ---------------------- oo

#--- Gemearte STL —--- oo oo oo oo oo

BBox = np.array([[0.25, 0.95], [0.65, 0.75], [0.85, 0.5], [1, 0.25], [1, O], [1, -0.25], [1, -0.5], [1,
— -0.75], [0.85, -1], [0.65, -1.25], [0.25, -1.4] 1)

QiX, QiY, Q2X, Q2Y, Q3X, Q3Y, Q4X, @4y, =101, 00, 00, 00, 00, [0, [0, [0 # list for each Quadrant

for i in range(0, len(vecTX)-2,10): # calculate scatter points
for j in range(0,len(BBox)):
scatterX = (vecTX[i] + BBox[j] [0]*math.cos(-vecTCA[i]+math.radians(vecPit[i])) +
— BBox[jl[1]*math.sin(-vecTCA[i]+math.radians(vecPit[il)))
scatterY = (vecTY[i] - BBox[j] [0]*math.sin(-vecTCA[i]+math.radians(vecPit[i])) +
— BBox[jl[1]*math.cos(-vecTCA[i]+math.radians(vecPit[il)))

if scatterX > O and scatterY > 0:
Q1X.append(scatterX)
Q1Y.append(scatterY)

elif scatterX < O and scatterY > 0:
Q2X.append(scatterX)
Q2Y.append(scatterY)

elif scatterX < O and scatterY < 0:
Q3X.append (scatterX)
Q3Y.append(scatterY)

else:

Q4X.append(scatterX)
Q4Y . append (scatterY)

148

304 allX, allYy = [1, []

305 allX.append(Q1X)

306 allX.append(Q2X)

307 allX.append(Q3X)

308 allX.append (Q4X)

309 allY.append(Q1Y)

310 allY.append(Q2Y)

311 allY.append(Q3Y)

312 allY.append(Q4Y)

313

314 trilen = 10

315 Dividor = 20

316 triAngle = math.pi / (2% Dividor)

317 refineX, refineY = [], []

318

319 for i in range(0,4):

320 for j in range(0, Dividor):

321 matchX, matchY, matchR = [1, [1, []

322 rotAngle = - (j * triAngle + i * math.pi/2)

323 addAngle = rotAngle - triAngle

324 triPoly = Polygon([(0, 0), (triLen*math.cos(rotAngle), -trilen*math.sin(rotAngle)),
— (triLen*math.cos(addAngle), -trilen*math.sin(addAngle))])

325

326 for k in range(0, len(allX[il)):

327 point = Point(allX[i] [k], allY[i][k])

328 flagIN = triPoly.contains(point)

329

330 if flagIN == True:

331 matchX.append(allX[i] [k])

332 matchY.append(allY[i] [k])

333 matchR.append(math.sqrt(allX[i] [k]1**2 + allY[i] [k]**2))

334 refineX.append(matchX [matchR.index (max (matchR))])

335 refineY.append(matchY [matchR.index (max(matchR))1)

336

337 lenR = len(refineX)

338 nVer = len(refineX) *2 +2

339 vertMeshl = np.zeros((nVer,3))

340

341 for i in range(0,lenR):

342 vertMesh1[i,:] = [refineX[i], refineY[i], 2]

343 vertMeshl[i+lenR,:] = [refineX[i], refineY[i], -2]

344

345 vertMesh1[-2,:]1 = [0, 0, 2]

346 vertMesh1[-1,:] = [0, 0, -2]

347 nFace = lenR *2 *2

348 facMesh = np.zeros((nFace,3))

349 lenV = len(vertMesh1)

350

351 for i in range(0,lenR):

352 sub = 0

353 if i == lenR -1:

354 sub = lenR

355

356 facMesh[i*2,:] = [i, it+lenR, i+1 - sub]

357 facMesh[i*2+1,:] = [i+1 -sub, it+lenR, i+1+lenR - sub]

358 facMesh[i+2*lenR,:] = [lenV-2, i , i+l -sub]

359 facMesh[i+3#*lenR,:] = [lenV-1, i+lenR, i+1+lenR -sub]

360

361 Refine = mesh.Mesh(np.zeros(facMesh.shape[0], dtype=mesh.Mesh.dtype))

149

362 for i, £ in enumerate(facMesh):

363 for j in range(3):

364 Refine.vectors[i] [j] = vertMeshil[int(£f[jl),:]

365 Refine.save(dst +'/constant/triSurface/Refine.stl')

366 #--- end: Genearte STL ---------ooo oo

367

368 #--- Update: fuSoluttom -------cmoom oo

369 BoxXmin = str(round(min(refineX) - 0.1,2))

370 BoxXmax = str(round(max(refineX) + 0.1,2))

371 BoxYmin = str(round(min(refineY) - 0.1,2))

372 BoxYmax = str(round(max(refineY) + 0.1,2))

373

374 with open(dst + '/system/fvSchemes', 'rt') as fvSchemes:

375 fvLines = fvSchemes.readlines()

376

377 for iline in range(len(fvLines)):

378 if re.search(r'searchBox', fvLines[iLine]):

379 fvLines[iLine]='searchBox (' + BoxXmin + ' ' + BoxYmin + ' -1)(' + BoxXmax + ' ' + BoxYmax +
— ' 1);\n'

380

381 with open(dst + '/system/fvSchemes', 'wt') as FVS:

382 fvLinesNew = ''.join(fvLines)

383 FVS.write(fvLinesNew)

384

385 #--- Update: initialConditions ----------mooo oo

386 RotorWidth = max(vecTX) - min(vecTX)

387 with open(dst + '/system/initialConditions', 'rt') as initCond:

388 ICLines = initCond.readlines()

389 for iLine in range(len(ICLines)):

390 if re.search(r'RotorWidth', ICLines[iLine]):

391 ICLines[iLine]='RotorWidth ' + str(round(RotorWidth,6)) +';\n'

392

393 with open(dst + '/system/initialConditions', 'wt') as DMC:

394 ICLinesNew = ''.join(ICLines)

395 DMC.write(ICLinesNew)

396

397 #--- Write dynamicMeshDict --------ooommmm oo

398 wrVec, wrSec = '', ''

399 for i in range(0, len(vectorL)):

400 wrVec= wrVec + (str(round(vectorL[i],6))) + ' '

401

402 for i in range(0, len(sectionL)):

403 wrSec= wrSec + (str(round(sectionL[i],6))) + ' '

404

405 with open(dst + '/constant/dynamicMeshDict', 'rt') as DMD:

406 DMDlines = DMD.readlines()

407 for iline in range(len(DMDlines)):

408 if re.search(r'vertexT_1', DMDlines[iLine]):

409 DMDlines[iLine]='vertexT_1 (' + str(round(TPolygon[2][0],6)) +' O 0);\n'

410 DMDlines[iLine+1]='vertexT_2 (' + str(round(TPolygon[3][0],6)) + ' ' +
— str(round(TPolygon[3]1[1],6)) + ' 0);\n'

411 DMDlines[iLine+2]='vertexT_3 (' + str(round(TPolygon[4][0],6)) + ' ' +
— str(round(TPolygon[4]1[1],6)) + ' 0);\n'

412 DMDlines[iLine+3]='vertexT_4 (' + str(round(TPolygon[5][0],6)) + ' ' +
« str(round(TPolygon[5][1],6)) + ' 0);\n'

413 DMDlines[iLine+4]='vertexT_5 (' + str(round(TPolygon[6]1[0],6)) +' O 0);\n'

414 DMDlines[iLine+5]='vertexT_6 (' + str(round(TPolygon[7][0],6)) + ' ' +
— str(round(TPolygon[7]1[1]1,6)) + ' 0);\n'

415

150

416 DMDlines[iLine+6]='vertexT_7 (' + str(round(TPolygon[8][0],6)) + ' ' +
— str(round(TPolygon[8]1[1],6)) + ' 0);\n'

417 DMDlines[iLine+7]='vertexT_8 (' + str(round(TPolygon[9][0],6)) + ' ' +
— str(round(TPolygon[9][1],6)) + ' 0);\n'

418

419 if re.search(r'vectorL', DMDlines[iLine]):

420 DMDlines[iLine]="'vectorL (' + wrVec + ');\n'

421

422 if re.search(r'sectionL', DMDlines[iLine]):

423 DMDlines[iLine]l="'sectionL (' + wrSec + ');\n'

424

425 with open(dst +'/constant/dynamicMeshDict', 'wt') as DMC:

426 DMDlinesNew = ''.join(DMDlines)

427 DMC.write(DMDlinesNew)

428 return TPolygon, maxKappa

431 def LiveTiming(dst):

432 flagRun = True

433 flagState = False

434 execTime = 0

435 RunTime = [0]

436 if os.path.exists(dst + '/log.overPimpleDyMFoam'):

437 with open(dst + '/log.overPimpleDyMFoam', 'rt') as reconFile:

438 reconlLines = reconFile.readlines() [-300:]

439 for lines in reconLines:

440 if re.search(r'End', lines):

441 for lines in reconLines:

442 if re.search(r'"ExecutionTime', lines):

443 execTime = (float(re.split(r'\s', lines)[2]))

444 flagRun = False

445 flagState = True

446 elif re.search(r'Foam::error', lines) or re.search(r'\?:\?', lines) or re.search(r'exiting', lines):

447 flagRun = False

448 flagState = False

449 execTime = 0

450 elif re.search(r'~"Time =', lines):

451 RunTime.append(float(re.split(r'\s', lines)[-2]))

452 return flagRun, flagState, execTime, RunTime[-1]

151

455 def EvaluateCase(dst):

456 #--- Read intt2alConditions -------c-ooooo oo
457 with open(dst + "/system/initialConditions", "r") as initialCond:

458 initLines = initialCond.readlines() [8:]

459

460 for iline in range(0,len(initLines)):

461 if re.search(r'~Period', initLines[iLine]):

462 Period = float(re.split(r'\s', initLines[iLine]) [-2].replace(';', ''))
463 if re.search(r'~DeltaDeg', initLines[iLine]):

464 DeltaDeg = float(re.split(r'\s', initLines[iLine])[-2].replace(';', ''))
465 if re.search(r'~0Origin000', initLines[iLine]):

466 xShift = float(re.split(r'\s', initLines[iLine]) [-4].replace('(', ''))
467 if re.search(r'"Rho', initLines[iLine]):

468 rho = float(re.split(r'\s', initLines[iLine]) [-2].replace(';', ''))

469 if re.search(r'~Blades', initLines[iLine]):

470 nBlades = int(re.split(r'\s', initLines[iLine]) [-2].replace(';', ''))
471 if re.search(r'~RotorWidth', initLines([iLine]):

472 RotorWidth = float(re.split(r'\s', initLines[iLine])[-2].replace(';', ''))
473 DeltaT = Period / 360 * DeltaDeg

474 Depth = 1

475 Velocity = 3*math.pi / Period

476 Surface = RotorWidth * Depth

477

478 #--- Read Log-File -----ccmommmm oo oo oo
479 with open(dst + '/log.overPimpleDyMFoam', 'rt') as logFile:

480 LogLines = logFile.readlines()[:]

481

482 Time, TX, TY, phi, AlphaO = [1, [1, [0, [0, [

483 for iLine in range(0,len(LogLines)):

484 if re.search(r'~Time =', LogLines[iLine]):

485 Time.append(float(re.split(r'\s', LogLines[iLine])[-2]))

486 if re.search(r'~Trajectory_0', LogLines[iLine]):

487 TX.append(float(re.split(r'\s', LogLines[iLine]) [1].replace('((', '')))
488 TY.append (float(re.split(r'\s', LogLines[iLinel) [2]))

489 phi.append(float(re.split(r'\s', LogLines[iLine])[-2].replace('))', '')))
490 if re.search(r'~Alpha0_0', LogLines[iLine]):

491 AlphaO.append(float(re.split(r'\s', LogLines[iLine]) [11))

492

493 #--- Exztract Data from postProCeSSEMg ---------- - cmmoo oo oo oo
494 with open(dst + '/postProcessing/airfoillnner0/0/force.dat', 'rt') as forceFile:
495 FLines = forceFile.readlines() [4:]

496

497 time = [float(line.split()[0]) for line in FLines]

498 LastTime = round(time[-1],8)

499 nRot = math.floor(LastTime/Period)

500 StartI = time.index(round(Period * (nRot - 1),8)) +4

501 EndI = time.index(round(Period * nRot,8)) +5

502

503 Fx, Fy, Mglobal = [1, [1, [I

504 for sides in ['Outer', 'Inner']:

505 with open(dst + '/postProcessing/airfoil'+sides+'0/0/force.dat', 'rt') as forceFile:
506 lines = forceFile.readlines() [StartI:EndI]

507 Fx_tmp = [float(line.split() [1].replace('(','')) for line in lines]

508 Fy_tmp = [float(line.split()[2]) for line in lines]

509 if not Fy:

510 Fx = Fx_tmp

511 Fy = Fy_tmp

512

513

152

514
515
516
517

527

568
569
570

else:
Fx
Fy
with open(dst+'/postProcessing/airfoil'+sides+'0/0/moment.dat', 'rt') as momentFile:
lines = momentFile.readlines() [StartI:EndI]
Mglobal_tmp = [float(line.split()[3].replace(')','')) for line in lines]
if not Mglobal:
Mglobal = Mglobal_tmp

else:

[x+y for x,y in zip(Fx_tmp,Fx)]

[x+ty for x,y in zip(Fy_tmp,Fy)]

Mglobal = [x+y for x,y in zip(Mglobal_tmp,Mglobal)]

#--- Truncate: Log-Data -------------mo oo
Time = Time[StartI-4:EndI-4]

TX = TX[StartI-4:EndI-4]

TY = TY[StartI-4:EndI-4]

phi = phil[StartI-4:EndI-4]

AlphaO = AlphaO[StartI-4:EndI-4]

#--- Calculation -------oo oo
Ft, Psi, Fcorr, R, Mcorr, MAirfoil, theta = [1, [1, [0, [0, 0O, [0, [
for i in range(0,len(TX)):
Ft.append(Fx[i]*math.sin(phi[i])-Fy[il*math.cos(phi[il))
Psi.append(math.atan2(TY[i],xShift+TX[i]))
Fcorr.append(-Fx[i]*math.sin(Psi[-1])+Fy[i]*math.cos(Psi[-1]))
R.append(math.sqrt ((TX[i]+xShift)**2+TY[1i]**2))
Mcorr . append (Fcorr [-1]1*R[-1])
MAirfoil.append(Mglobal [i] -Mcorr[-1])
theta.append(phil[i] + AlphaO[il)

OmegaAirfoil, PowerRot, PowerTra = [1, [1, []
for i in range(1,len(Fx)):
PowerTra.append(abs(0.5%(Ft[1]+Ft[i-1])*Velocity))
DeltaTheta = thetal[i]-thetal[i-1]
if DeltaTheta < - math.pi:
DeltaTheta = DeltaTheta + 2*math.pi
OmegaAirfoil .append(DeltaTheta/DeltaT)
PowerRot .append(abs (0.5 (MAirfoil [i]+MAirfoil[i-1])+*0OmegaAirfoil[-1]))

#--- Mean Values ---------- oo mmmm oo
tFixed = np.linspace(Time[0], Time[-1], num=3600, endpoint=False)
MeanFx = (nBlades*np.mean(np.interp(tFixed, Time, Fx)))

MeanFy = (nBlades*np.mean(np.interp(tFixed, Time, Fy)))

MeanThrust = math.sqrt(MeanFx*+*2+MeanFy**2)

MeanPIdeal = math.sqrt(MeanThrust*#*3/(2*rho*Surface))

tFixed = np.linspace(Time[0], Time[-2], num=3600, endpoint=False)
MeanPTra= (nBlades*np.mean(np.interp(tFixed, Time[:-1], PowerTra)))
MeanProt = (nBlades*np.mean(np.interp(tFixed, Time[:-1], PowerRot)))
MeanPReal = MeanPTra + MeanProt

MeanFOM = MeanPIdeal / MeanPReal

MeanA = math.degrees(math.atan2(MeanFy, MeanFx))

return MeanFx, MeanFy, MeanThrust, MeanPIdeal, MeanPTra, MeanProt, MeanPReal, MeanFOM, MeanA, RotorWidth

def

CleanCase(cwd, eval_id):
dst = cwd + '/Run_' + str(eval_id).zfill(5)

shutil.rmtree(dst, ignore_errors=True)

153

© 00 N O ke W N =

WowWw oW W oW NN NN NN NN NN R R R e e e
A DR R O VO 0 N O 0K W N RO © N O W N~ O

D OpenFOAM dicionaries

D.1 initialConditions

Global parameters and values for the OPENFOAM calculation are stored in an initialConditions
file. There are different versions depending on the number of blade and the optimisation subject. The

code shows an idle version, where ther stars "***’

these entities are given for Opti-3TV and Opti-4P.

marks the run dependent entities. FExamples for

// ./system/controlDict

Period 12.1608;

DeltaDeg 0.5;

DeltaT #eval{ $Period / 360.0 * $Deltaleg };
EndTime #eval{ *** * $Period + 4 * $Deltal };
WriteInterval KoKk ;

PurgeWrite ig

// ./constant/dynamicMeshDict

Origin*** *okok

Axis (00 1);

EndValue #teval{ *x+ *pi() };
rotOmega #eval{ 2+*pi() / $Period };
Delay o

// ./constant/transportProperties

Nu 1.55e-05;

// Function Objects

RhoInf 1.225;

freeVelocity #eval{ 1.5 * $rotlmega };
lengthAF Kok 5

// Geometric Data

Blades *kkok

Offset**x KKk

RotorWidth dokok §

// ./0

flowVelocity (0 00);

pressure 0;

turbulentKE #eval{ 3.0/2% pow((0.001 * $freeVelocity),2) };

turbulentOmega #eval{ pow($turbulentKE,0.5) / (pow(0.09,0.25) * $lengthdF) };
turbulentVisco 0;

154

© 0 N O U s W N

e e
gl W N = O

17
18
19
20
21
22
23
24
25
26
27
28

Opti-3TV

Origin000 (1.5 0 0);

X120 #eval{ 1.5%cos(120.0/360 *2%3.141592653589793) };
Y120 #eval{ 1.5%sin(120.0/360 *2+*3.141592653589793) };
Origin120 ($X120 $Y120 0);

X240 #eval{ 1.5%co0s(240.0/360 *2+%3.141592653589793) };
Y240 #eval{ 1.5%sin(240.0/360 *2+3.141592653589793) };
Origin240 ($X240 $Y240 0);

Blades SH

0ffsetO OF

0ffset120 #eval{ 1/3.0 };

0ffset240 #eval{ 2/3.0 };

Opti-4P

Opti-4PV:

rotOrigin (0 00);

pitOrigin0 (1.5 0 0);

pitOrigin090 (0 1.5 0);

pitOrigini80 (-1.5 0 0);

pitOrigin270 (0 -1.5 0);

Blades 43

0ffsetO OF

0ffset090 0.25;

0ffset180 0.5;

Offset270 0.75;

155

© 00 N O O ke W N =

GUoor on s A A R R R A A R R W W W W W W oW W oW W NN NNNNNNNND SRR e e e e e
D = O © ® N O A W R O © XN R ® LR~ O O 0N AWN RO © KON O U A W N = O

D.2 fvSchemes

Single-blade case

ddtSchemes

{
default

}

gradSchemes

{
default
grad (U)
grad (yPsi)
limitedGrad

}

divSchemes

{
default
div(phi,U)
div(phi,k)

div(phi,omega)

div((nuEff*dev2(T(grad(U)))))

}

laplacianSchemes

{
default Gauss linear limited corrected 0.5;
laplacian(yPsi) Gauss linear corrected;

}

interpolationSchemes

backward;

cellLimited leastSquares
cellLimited leastSquares
celllLimited Gauss linear

cellLimited leastSquares

none;
Gauss limitedLinearV
Gauss upwind;

Gauss upwind;

{
default linear;
}
snGradSchemes
{
default limited corrected 0.5;
}
fluxRequired
{
default no;
pcorr H
p 5
yPsi 8
}
wallDist
{
method Poisson;
correctWalls true;
}

O

Gauss linear;

156

© 0w N U e W N

O I S R Y R R N N T o S v S o T e S o S ~ S S S ST
® N O AR W N R O © 0N U A W N RO

Overset method

The fvSchemes for the overset method is similar to the single blade case. Only the following code

snipped has to be added.

oversetInterpolation

{
method
searchBox
voxelSize 0.008;
nPushFront 1;
layerRelax 0.3

}

inverseDistancePushFront;
ek otk —1) ook sk 1) 5

oversetInterpolationSuppressed

{

D.3 fvSchefvSolutionmes

Single-blade case

solvers
{
cellDisplacement
{
solver
preconditioner
tolerance
relTol
maxIter
¥
P
{
solver
preconditioner
tolerance
relTol
minIter
maxIter
}
pFinal
{
$p;
tolerance
¥

PBiCGStab;
DIC;
le-4;
0.001;
g

2000;

le-5;

157

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

52
53

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87

pcorr
{
$p
preconditioner FDIC;
minTter ilg
relTol 0.1;
maxIlter 100;
}
pcorrFinal
{
$pcorr
tolerance le-4;
minTter ilg
maxIlter 100;
¥
yPsi
{
solver PBiCGStab;
preconditioner DIC;
tolerance 1le-10;
relTol 0.0;
}
"(U|omegalk)"
{
solver smoothSolver;
smoother symGaussSeidel;
tolerance le-12;
relTol 0.1;
minIter ig
}
"(U|omegalk)Final"
{
$U;
tolerance le-12;
relTol 0;
}
}
PIMPLE
{
ddtCorr true;
correctPhi false;
checkMeshCourantNo yes;
momentumPredictor false;
nOuterCorrectors 50;
nCorrectors 23
nNonOrthogonalCorrectors 2
turbOnFinalIterOnly true;
residualControl
{
U
{
relTol 0;

158

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

106
107
108
109
110
111
112
113
114
115

tolerance le-7;
}
P
{
relTol 0;
tolerance le-3;
}
}
}
relaxationFactors
{
fields
{
P 0.3;
pFinal .0;
}
equations
{
U 0.95;
pcorr 0.95;
"yWall|yPsi" 1.0;
" (k|omega)" 0.95;
"(k|omega|U|pcorr)Final" 0.95;
"(yWall|yPsi)Final" 1.0;
}
}
Overset method
solvers
{
cellDisplacement
{
solver PCG;
preconditioner DIC;
tolerance 1e-06;
relTol 0;
maxIter 100;
}
P
{
solver PBiCGStab;
preconditioner DILU;
tolerance le-4;
relTol 0.001;
minIlter isg
maxIter 2000;
¥
pFinal
{

159

25
26
27
28
29
30
31
32
33
34

36
37
38
39
40
41
42
43
44
45
46
47
48
49

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

72
73
74
75
76
77
78
79
80
81
82
83

$p;

tolerance le-5;

¥

pcorr

{
$p
preconditioner FDIC;
minlter ig
relTol 0.1;
maxIter 100;

}

pcorrFinal

{
$pcorr
tolerance le-4;
minIter ilg
maxIlter 100;

¥

yPsi

{
solver PBiCGStab;
preconditioner DILU;
tolerance le-10;
relTol 0.0;

¥

"(Ulomega |k)"

{
solver smoothSolver;
smoother symGaussSeidel;
tolerance le-12;

relTol 0.1;

minTter ig

Iy

"(U|omega|k)Final"

{
$U;
tolerance le-12;
relTol 0;
¥
}
PIMPLE
{
ddtCorr true;
correctPhi false;
oversetAdjustPhi true;
checkMeshCourantNo yes;
momentumPredictor false;
nOuterCorrectors 50;
nCorrectors 28
nNonOrthogonalCorrectors 2;
turbOnFinalIterOnly true;

160

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

© 0w N O U s W N

T T S S = S
D U W N = O

residualControl

{
U
{
relTol OH
tolerance le-7;
}
P
{
relTol OH
tolerance le-3;
}
}
}
relaxationFactors
{
fields
{
P 0.05;
pFinal 0.05;
}
equations
{
1)
pcorr
"yWall|yPsi"
"(k|omega)"
" (k|omega|U|pcorr)Final"
"(yWall|yPsi)Final"
¥
}

, O O B O O

.95;
.95;

.95;
.95;

D.4 dynamicMeshDict

Code passage for only pitching optimisation.

#include "../system/initialConditions"
dynamicFvMesh dynamicOversetFvMesh;
motionSolverLibs ("libdynamicMesh.so");
solver multiSolidBodyMotionSolver;
movingZonex**x
{

solidBodyMotionFunction

rotatingMotion

{

solidBodyMotionFunction

delayRotatingMotionCoeffs

{
origin

axis

$rotOrigin;
$Axis;

multiMotion;

delayRotatingMotion;

161

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

T W N =

© 0w N O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

omega $rotOmega;

delay $Delay;
}
}
pitchingMotion
{
solidBodyMotionFunction
bSplinePitchingCoeffs
{
origin $pitOrigink*x;
axis $Axis;
period $Period;
offset $O0ffset***;
delay $Delay;
vertexP_kxx* *kk
}
}

bSplinePitching;

Code passage for trajectory and both optimisation (bSplineMotion).

#include "../system/initialConditions”
dynamicFvMesh dynamicOversetFvMesh;
motionSolverLibs ("libdynamicMesh.so") ;
solver multiSolidBodyMotionSolver;
movingZone**xx
{
solidBodyMotionFunction multiMotion;
rotatingMotion
{
solidBodyMotionFunction bSplineMotion;
bSplineMotionCoeffs
{
origin $0riginksk*;
period $Period;
endValue $EndValue;
offset $0ffset*xx*;
delay $Delay;

vertexT_**x (k*x);

vectorL (*xk) ;5
sectionL (kkx) 5
}
}
pitchingMotion
{
solidBodyMotionFunction bSplinePitching;
bSplinePitchingCoeffs
{
origin $0rigin000;
axis $Axis;

162

35
36
37
38
39
40
41
42

period
offset
delay

vertexP_*xx*

$Period;
$0ffset0;
$Delay;

163

E OpenFOAM motion classes

E.1 bSplinePitching

bSplinePitching.H

#ifndef bSplinePitching_ H
#define bSplinePitching_H

#include
#include
#include
#include

#include

namespac

{

namespace solidBodyMotionFunctions

{

// Class bSplinePitching Declaration

"solidBodyMotionFunction.H"

"primitiveFields.H"

"point.H"
"Functionl.H"

"outoPtr.H"

e Foam

class bSplinePitching

public solidBodyMotionFunction

const vector origin_;

const vector axis_;

scalar
scalar
scalar

scalar
scalar
scalar
scalar
scalar
scalar
scalar
scalar
scalar
scalar
scalar
scalar
scalar
scalar
scalar

scalar

double bFactor_[4][4] {
{-1.0/6, 1.0/2, -1.0/2, 1.0/6},
{1.0/2, -1, 0, 2.0/3},
{-1.0/2, 1.0/2, 1.0/2, 1.0/6%},
{1.0/6, 0, 0, 0} 1};

bSplinePitching(const bSplinePitching&)

period_;
offset_;
delay_;

vertexP_10_;
vertexP_11_;
vertexP_20_;
vertexP_21_;
vertexP_30_;
vertexP_31_;
vertexP_40_;
vertexP_41_;
vertexP_50_;
vertexP_b1_;
vertexP_60_;
vertexP_61_;
vertexP_70_;
vertexP_71_;
vertexP_80_;

vertexP_81_;

delete;

void operator=(const bSplinePitching&) = delete;

164

67
68
69
70
71

© 00 N O O ke W N =

Wow W W W W NN NN NN NN NN R R s e s e
AR X N R O O ® NG A ® N R, O O N U AW N = O

public:

18

TypeName ("bSplinePitching");
bSplinePitching
(const dictionary& SBMFCoeffs,
const Time& runTime

)8

virtual autoPtr<solidBodyMotionFunction> clone() const

{ return autoPtr<solidBodyMotionFunction>

(new bSplinePitching
(SBMFCoeffs_,
time_

)3
X
virtual “bSplinePitching() = default;

virtual septernion transformation() const;

virtual bool read(const dictionary& SBMFCoeffs);

3

#endif

bSplinePitching.C

#include "bSplinePitching.H"
#include "addToRunTimeSelectionTable.H"

#include "unitConversion.H"

#include "mathematicalConstants.H"

// % % % % % % % * % % % % *x *x Static Data Members * * * * % * % % % % *x x *x //

namespace Foam

{

namespace solidBodyMotionFunctions

{

defineTypeNameAndDebug (bSplinePitching, 0);
addToRunTimeSelectionTable
(solidBodyMotionFunction,
bSplinePitching,
dictionary DRSS

// % % % % x % % % % % % % *x % *x x Constructors

* % k % %k % k% % % % x *x x x //

Foam: :solidBodyMotionFunctions: :bSplinePitching: :bSplinePitching

(

const dictionary& SBMFCoeffs,

const Time& runTime

solidBodyMotionFunction(SBMFCoeffs, runTime),

origin_(SBMFCoeffs_.get<vector>("origin")),
axis_(SBMFCoeffs_.get<vector>("axis")),
period_(SBMFCoeffs_.get<scalar>("period")),
offset_(SBMFCoeffs_.get<scalar>("offset")),
delay_(SBMFCoeffs_.get<scalar>("delay")),

vertexP_10_(SBMFCoeffs_.get<scalar>("vertexP_10")),
vertexP_11_(SBMFCoeffs_.get<scalar>("vertexP_11")),
vertexP_20_(SBMFCoeffs_.get<scalar>("vertexP_20")),
vertexP_21_(SBMFCoeffs_.get<scalar>("vertexP_21")),
vertexP_30_(SBMFCoeffs_.get<scalar>("vertexP_30")),
vertexP_31_(SBMFCoeffs_.get<scalar>("vertexP_31")),
vertexP_40_(SBMFCoeffs_.get<scalar>("vertexP_40")),

165

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90

91
92
93

{3

// % % % % % % % * % % % % *x * Member Functions

vertexP_41_(SBMFCoeffs_.get<scalar>("vertexP_41"))
vertexP_50_(SBMFCoeffs_.get<scalar>("vertexP_50"))
vertexP_51_(SBMFCoeffs_.get<scalar>("vertexP_51"))
vertexP_60_(SBMFCoeffs_.get<scalar>("vertexP_60"))
vertexP_61_(SBMFCoeffs_.get<scalar>("vertexP_61"))
vertexP_70_(SBMFCoeffs_.get<scalar>("vertexP_70"))
vertexP_71_(SBMFCoeffs_.get<scalar>("vertexP_71"))
vertexP_80_(SBMFCoeffs_.get<scalar>("vertexP_80"))
vertexP_81_(SBMFCoeffs_.get<scalar>("vertexP_81"))

Foam: :septernion

Foam: :solidBodyMotionFunctions: :bSplinePitching: :transformation() const

{

scalar vertexP_00_={vertexP_81_};

scalar vertexP_90_={vertexP_10_};

scalar vertexP_91_={vertexP_11_};

scalar Polygon_[19]

{

vertexP_00_,
vertexP_10_,
vertexP_11_,
vertexP_20_,
vertexP_21_,
vertexP_30_,
vertexP_31_,
vertexP_40_,
vertexP_41_,
vertexP_50_,
vertexP_b1_,
vertexP_60_,
vertexP_61_,
vertexP_70_,
vertexP_71_,
vertexP_80_,
vertexP_81_,
vertexP_90_,

vertexP_91_,

78

scalar pi = Foam::constant::mathematical::pi;

scalar lag_ = 1;

scalar duration_ = delay_ * period_;

if (time_.value()

scalar t_ = time

.value() + offset * period_;

scalar nRot_ = floor(t_ / period_);
int k = floor((t_ - period_ * nRot_) / period_ * 16);

scalar nT_= 16

scalar R1_

scalar R2_ =
scalar R3_ = (bFactor_[2] [0]*pow(nT_,3)+bFactor_[2] [1]*pow(nT_,2)+bFactor_[2] [2]*nT_+bFactor_[2] [3]);
scalar R4_ = (bFactor_[3] [0]*pow(nT_,3)+bFactor_[3] [1]*pow(nT_,2)+bFactor_[3] [2]*nT_+bFactor_[3][3]);

scalar angle_ =

— lag_;

* t_ / period_ - k - nRot_ * 16;

- (R1_xPolygon_[k]+R2_*Polygon_[k+1]+R3_*Polygon_[k+2]+R4_*Polygon_[k+3]) * pi / 180.0 *

quaternion R(axis_, angle_);
scalar ADD = 360.0 * offset_;

>
>
>
>
>
>
>

>

* % k % %k % k % % % x *kx x x //

< duration_) { lag_ = (1 - cos(time_.value() / duration_ * pi)) / 2;

(bFactor_[0] [0]*pow (nT_,3)+bFactor_[0] [1]*pow (nT_,2)+bFactor_[0] [2]*nT_+bFactor_[0] [3]);
(bFactor_[1] [0] *pow (nT_,3)+bFactor_[1] [1]*pow (nT_,2)+bFactor_[1] [2]*nT_+bFactor_[1][3]);

166

94
95
96
97
98
99
100
101
102
103

septernion TR(septernion(-origin_)*R*septernion(origin_));

Debu,

retu

gInFunction << "Time = " << t_ << " transformation:

rn TR;

bool Foam::solidBodyMotionFunctions: :bSplinePitching: :read

(co
{ so

re

nst dictionary& SBMFCoeffs)
lidBodyMotionFunction: :read (SBMFCoeffs) ;

turn true; }

" << TR << endl;

E.2 bSplineMotion

bSplineMotion.H

#ifndef
#define

#include
#include
#include
#include
#include

#include

namespac
{
namespac
{
// Clas
class bS

publ

bSplineMotion_H
bSplineMotion_H

"solidBodyMotionFunction.H"
"primitiveFields.H"
"point.H"

"Functionl.H"

"autoPtr.H"

"List.H"

e Foam

e solidBodyMotionFunctions

s bSplineMotion Declaration
plineMotion

ic solidBodyMotionFunction

const vector origin_;
scalar period_;
scalar endValue_;
scalar offset_;

scalar delay_;

vector vertexT_1_;
vector vertexT_2_;
vector vertexT_3_;
vector vertexT_4_;
vector vertexT_5_;
vector vertexT_6_;
vector vertexT_7_;

vector vertexT_8_;

scalarList vectorL_;

scalarList sectionL_;

double bFactor_[5][5] {
{1.0/24, -1.0/6, 1.0/4, -1.0/6, 1.0/24%},

167

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

{-1.0/6, 1.0/2, -1.0/4, -1.0/2, 11.0/24},
{1.0/4, -1.0/2, -1.0/4, 1.0/2, 11.0/24},
{-1.0/6, 1.0/6, 1.0/4, 1.0/6, 1.0/24},
{1.0/24, 0, 0, 0, 0} 1};

double dFactor_[5][4] {
{1.0/6, -1.0/2, 1.0/2, -1.0/6},
{-4.0/6, 3.0/2, -1.0/2, -1.0/2},
{1, -3.0/2, -1.0/2, 1.0/2},
{-4.0/6, 1.0/2, 1.0/2, 1.0/6%},
{1.0/6, 0, 0, 0} 1I;

double Length_[5] [5] [6]{

{

{1: _49 6: _4: 1}9

{0, 0, 0, 0, 0,3},
{0, 0, 0, 0, 0,3},
{0, 0, 0, 0, 0,3,
{0, 0, 0, 0, 0,}, I,

{-15.0/8, 7, -9, 4, 0},

{i1.0/8, -1.0/2, 3.0/4, -1.0/2, 1.0/8},
{0, 0, 0, 0, 0,3},

{0, 0, 0, 0, 0,3,

{0, 0, 0, 0, 0,}, I,

{85.0/72, -11.0/3, 3, 0, 0},

{-23.0/72, 19.0/18, -11.0/12, -5.0/18, 37.0/72},
{1.0/18, -2.0/9, 1.0/3, -2.0/9, 1.0/18},

{0, 0, 0, 0, 0,3},

{0, 0, 0, 0, 0,}, 1,

{-25.0/72, 2.0/3, 0, 0, O},

{ 23.0/72, -13.0/18, -1.0/12, 11.0/18, 23.0/72},
{-13.0/72, 5.0/9, -1.0/3, -4.0/9, 4.0/9},
{1.0/24, -1.0/6, 1.0/4, -1.0/6, 1.0/24},

{0, 0, 0, 0, 0,}, 1,

{1.0/24, 0, 0, 0, 0,},

{-1.0/6, 1.0/6, 1.0/4, 1.0/6, 1.0/24},

{1.0/4, -1.0/2, -1.0/4, 1.0/2, 11.0/24},
{-1.0/6, 1.0/2, -1.0/4, -1.0/2, 11.0/24},
{1.0/24, -1.0/6, 1.0/4, -1.0/6, 1.0/24}, }, I};

double Index_[2][9][5]{

{

{0, 1, 2, 3, 4},
{1, 2, 3, 4, 4},
{2, 3, 4, 4, 4},
{3, 4, 4, 4, 4},
{4, 4, 4, 4, 4},
{4, 4, 4, 4, 3},
{4, 4, 4, 3, 2},
{4, 4, 3, 2, 1},
{4, 3, 2, 1, 0}, 13,
{0, 0, 0, 0, O},
{1, 1, 1, 1, 0},
{2, 2, 2, 1, 0},
{3, 3, 2, 1, 0},
{4, 3, 2, 1, 0},

168

99 {4,°3, 2, 1, 3k,

100 {4, 3, 2, 2, 2},

101 Wy 8y iy iy il

102 {4, 0, 0, 0, 0}, 2}, };

103

104 bSplineMotion(const bSplineMotion&) = delete;
105 void operator=(const bSplineMotion&) = delete;
106 public:

107 TypeName ("bSplineMotion") ;

108 bSplineMotion

109 (const dictionary& SBMFCoeffs,

110 const Time& runTime

111)3

112 virtual autoPtr<solidBodyMotionFunction> clone() const
113 { return autoPtr<solidBodyMotionFunction>
114 (new bSplineMotion

115 (SBMFCoeffs_,

116 time_

117)

118)3

119 }

120 virtual “bSplineMotion() = default;

121 virtual septernion transformation() const;

122 virtual bool read(const dictionary& SBMFCoeffs);

123 s 0+ 0}
124 #endi f

bSplineMotion.C

1 #include "bSplineMotion.H"

2 #include "addToRunTimeSelectionTable.H"

3 #include "unitConversion.H"

4 #include "mathematicalConstants.H"

5

6 // % % % % % % % * % % % % % % Static Data Members * * * * % * % % % % * x *x //
7 namespace Foam

8 {

9 namespace solidBodyMotionFunctions

10 { defineTypeNameAndDebug(bSplineMotion, 0);

11 addToRunTimeSelectionTable

12 (solidBodyMotionFunction,

13 bSplineMotion,

14 dictionary); }

15

16 // % % % % % % % * % * % % % x % x Constructors * * * % * % * % % % % *x x *x //
17 Foam: :solidBodyMotionFunctions: :bSplineMotion: :bSplineMotion
18 (const dictionary& SBMFCoeffs,

19 const Time& runTime)

20

21 solidBodyMotionFunction(SBMFCoeffs, runTime),

22 origin_(SBMFCoeffs_.get<vector>("origin")),

23 period_(SBMFCoeffs_.get<scalar>("period")),

24 endValue_(SBMFCoeffs_.get<scalar>("endValue")),

25 offset_(SBMFCoeffs_.get<scalar>("offset")),

26 delay_(SBMFCoeffs_.get<scalar>("delay")),

27

28 vertexT_1_(SBMFCoeffs_.get<vector>("vertexT_1")),

169

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87

vertexT_2_(SBMFCoeffs_.get<vector>("vertexT_2")),
vertexT_3_(SBMFCoeffs_.get<vector>("vertexT_3")),
vertexT_4_(SBMFCoeffs_.get<vector>("vertexT_4")),
vertexT_5_(SBMFCoeffs_.get<vector>("vertexT_5")),
vertexT_6_(SBMFCoeffs_.get<vector>("vertexT_6")),
vertexT_7_(SBMFCoeffs_.get<vector>("vertexT_7")),
vertexT_8_(SBMFCoeffs_.get<vector>("vertexT_8")),

vectorL_(SBMFCoeffs_.get<scalarList>("vectorL")),
sectionl_(SBMFCoeffs_.get<scalarList>("sectionL"))
{3

// % % % % % % % % % % % % % *x Member Functions * * * % % % % % % % % % x x //

Foam: :septernion
Foam: :solidBodyMotionFunctions: :bSplineMotion: :transformation() const
{

scalar t_ = time_.value() + offset_ * period_;

scalar pi = Foam::constant::mathematical::pi;

scalar lag_ = 1;

scalar duration_ = delay_ * period_;

if (time_.value() < duration_){

lag_ = (1 - cos(time_.value() / duration_ * pi)) / 2;

vector Polygon_[13]{
vertexT_7_,
vertexT_8_,
vertexT_1_,
vertexT_2_,
vertexT_3_,
vertexT_4_,
vertexT_b_,
vertexT_6_,
vertexT_7_,
vertexT_8_,
vertexT_1_,
vertexT_2_,
vertexT_3_ 78

scalar nRot_ = floor(t_ / period_);
scalar Lreq = (t_ - period_ * nRot_) / period_ * endValue_;

int m = 1;

bool flagSec = false;

while (flagSec == false) {
if (Lreq < sectionL_[m]) { flagSec = true; }
else{ mt++; } %

double matR_[5] [5];

int indA_ = 0;
int indB_ = 0;
int indC_ = 0;

if (m < 4) { dindA_ = m; }
else if (m < 17) { ndA_ = 4; }
else{ indA_ =m - 12; }

for (int i = 0; i < 5; i++) {

indB_ = Index_[0] [indA_][i];
indC_ = Index_[1] [indA_][i];

170

}

88
89
90
91
92
93
94
95
96
97
98
99

101
102

104
105
106

107

108
109
110

111

112
113
114

115

116
117

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

137

for (int j = 0; j < 5; j++) { matR_[i][jl=Length_[indB_] [indC_][jl; } }

scalar nL_ = 1.756 + (t_ - period_ * nRot_) / period_ * 17.5;
nl_ = nL_ - floor(nL_);

scalar tNew = nL_;

scalar L = 0;

scalar dL = 0;

scalar diffT = 1;

int sign = 1;

while (diffT > le-5) {

scalar LR1 = matR_[0] [0]*pow(nL_,4) + matR_[0] [1]*pow(nL_,3) + matR_[0] [2]*pow(nL_,2) + matR_[0] [3]*nL_

— + matR_[0] [4];

scalar LdR1 = 4* matR_[0] [0]*pow(nL_,3) + 3% matR_[0] [1]*pow(nL_,2) + 2% matR_[0] [2]*nL_ + matR_[0] [3];

scalar LR2 = matR_[1] [0]*pow(nL_,4) + matR_[1] [1]*pow(nL_,3) + matR_[1][2]*pow(nL_,2) + matR_[1] [3]*nL_

«— + matR_[1][4];

scalar LdR2 = 4* matR_[1] [0]*pow(nL_,3) + 3% matR_[1] [1]*pow(nL_,2) + 2% matR_[1] [2]*nL_ + matR_[1][3];

if (m >= 19) { nL_ = 1 - tNew; sign = -1; }

scalar LR3 = matR_[2] [0]*pow(nL_,4) + matR_[2] [1]*pow(nL_,3) + matR_[2] [2]*pow(nL_,2) + matR_[2] [3]*nL_

— + matR_[2] [4];
scalar LdR3 = sign * (4% matR_[2] [0]*pow(nL_,3) + 3% matR_[2] [1]*pow(nL_,2) + 2% matR_[2] [2]*nL_ +
— matR_[2][3]);

if (m >= 18) { nL_ = 1 - tNew; sign = -1; }

scalar LR4 = matR_[3] [0]*pow(nL_,4) + matR_[3] [1]*pow(nL_,3) + matR_[3][2]*pow(nL_,2) + matR_[3][3]*nL_

— + matR_[3][4];
scalar LdR4 = sign * (4% matR_[3] [0]*pow(nL_,3) + 3% matR_[3][1]*pow(nL_,2) + 2% matR_[3] [2]*nL_ +
— matR_[3][3]);

if (m >= 17) { nL_ = 1 - tNew; sign = -1; }

scalar LR5 = matR_[4] [0]*pow(nL_,4) + matR_[4] [1]*pow(nL_,3) + matR_[4] [2]*pow(nL_,2) + matR_[4] [3]*nL_

— + matR_[4][4];
scalar LdR6 = sign * (4% matR_[4] [0]*pow(nL_,3) + 3% matR_[4] [1]*pow(nL_,2) + 2% matR_[4] [2]*nL_ +
— matR_[4][3]);

L = LRi*vectorL_[m]+LR2*vectorL_[m+1]+LR3*vectorL_[m+2]+LR4*vectorL_[m+3]+LR5*vectorL_[m+4] - Lreq; //

— function for Length-over-nT minus Lreq, vertical transformation
dL = LdR1*vectorL_[m]+LdR2*vectorL_[m+1]+LdR3*vectorL_[m+2]+LdR4*vectorL_[m+3]+LdR5*vectorL_[m+4];

if (m >= 17) { nL_ = tNew; sign = 1; }

tNew = nL_ - L / dL;
diffT = fabs(tNew - nL_);
nl_ = tNew; 1}

nL_ = 0.5 + (m + nl._ - 1.75) * 8.0 / 17.5;

if (nL_ < 0.5) { nL_ = 0.5; 1}
else if (nL_ > 8.5) { nL_ = 8.5; }

int k = floor(nL_);
scalar nT_ = nL_ - k;

vector displacement;
displacement.x() = 0;
displacement.y() = 0;
03

displacement.z()

171

138
139
140
141
142
143
144

145

146

147

148

149

151

152
153

154

156

157

158
159

160

161
162
163
164
165
166
167
168
169

171
172
173
174
175
176
177
178

180
181
182

vector rotation;
rotation.x() = 0;
rotation.y() = 0;
rotation.z() = 0;

scalar R1_ = bFactor_[0] [0]*pow(nT_,4) + bFactor_[0] [1]*pow(nT_,3) + bFactor_[0] [2]*pow(nT_,2)

< DbFactor_[0] [3]*nT_ + bFactor_[0][4]; // N_1.5

+

scalar R2_ = bFactor_[1] [0]*pow(nT_,4) + bFactor_[1][1]*pow(nT_,3) + bFactor_[1][2]*pow(nT_,2) +

< DbFactor_[1][3]*nT_ + bFactor_[1][4]; // N_2.5

scalar R3_ = bFactor_[2] [0]*pow(nT_,4) + bFactor_[2] [1]*pow(nT_,3) + bFactor_[2] [2]*pow(nT_,2)

<s DbFactor_[2] [3]*nT_ + bFactor_[2][4]; // N_3.5

+

scalar R4_ = bFactor_[3] [0]*pow(nT_,4) + bFactor_[3][1]*pow(nT_,3) + bFactor_[3] [2]*pow(nT_,2) +

< DbFactor_[3] [3]*nT_ + bFactor_[3][4]; // N_4.5

scalar R6_ = bFactor_[4] [0]*pow(nT_,4) + bFactor_[4][1]*pow(nT_,3) + bFactor_[4][2]*pow(nT_,2) +

< DbFactor_[4] [3]*nT_ + bFactor_[4][4]; // N_5.5

displacement.x() = ((R1_*Polygon_[k][0] + R2_*Polygon_[k+1] [0] + R3_*Polygon_[k+2][0] +
< R4_*Polygon_[k+3] [0] + R5_*Polygon_[k+4][0]) - origin_.x()) * lag_;
displacement.y() = ((Ri_*Polygon_[k] [1] + R2_*Polygon_[k+1][1] + R3_*Polygon_[k+2] [1] +
— R4_xPolygon_[k+3] [1] + R5_*Polygon_[k+4][1]) - origin_.y()) * lag_;

scalar dR1_ = dFactor_[0] [0]*pow(nT_,3) + dFactor_[0] [1]*pow(nT_,2) + dFactor_[0] [2]*nT_
— // N'_1.5

scalar dR2_ = dFactor_[1] [0]*pow(nT_,3) + dFactor_[1][1]*pow(nT_,2) + dFactor_[1][2]*nT_
// N'_2.5

scalar dR3_ = dFactor_[2] [0]*pow(nT_,3) + dFactor_[2] [1]*pow(nT_,2) + dFactor_[2] [2]*nT_
— // N'_3.5

scalar dR4_ = dFactor_[3] [0]*pow(nT_,3) + dFactor_[3][1]*pow(nT_,2) + dFactor_[3][2]*nT_
// N'_4.5

scalar dR6_ = dFactor_[4] [0]*pow(nT_,3) + dFactor_[4][1]*pow(nT_,2) + dFactor_[4] [2]*nT_
- // NH_S.

(é)]

scalar tangentX_ = (dR1_*Polygon_[k] [0] + dR2_*Polygon_[k+1][0] + dR3_*Polygon_[k+2] [0] +
— dR4_x*Polygon_[k+3] [0] + dR5_*Polygon_[k+4] [0]);
scalar tangentY_ = (dR1_#*Polygon_[k][1] + dR2_*Polygon_[k+1][1] + dR3_*Polygon_[k+2][1] +
— dR4_#*Polygon_[k+3] [1] + dR5_*Polygon_[k+4][1]);

scalar phi = - atan2(tangentX_, tangentY_);

scalar multiplier_ = 1;
if (time_.value() < 0.26%period_ && t_ < 0.26%period_) { multiplier_ = 0; }

if (phi < 0) { phi = phi + 2.0*pi *multiplier_ ; 1}

scalar Revolution = 0;
if (phi > 0 && nL_ > 7.0) { Revolution = (nRot_ + 1) * 2%pi; }

else if (mRot_ > 0) {
if (phi < 0 &% nL_ < 2.0) { Revolution = (nRot_ -1) * 2*pi; }
else{ Revolution = nRot_ * 2*pi; }

scalar AngleOffset_ = 2.0%pi *offset_;
rotation.z() = (phi - AngleOffset_ + Revolution) x*lag_;

Vector2D<vector> TRV(displacement,rotation) ;

quaternion R(quaternion::XYZ, TRV[1]);

septernion TR(septernion(-origin_ + -TRV[0])*R#*septernion(origin_));

172

+

s

b

+

+

dFactor_[0] [3];

dFactor_[1][3];

dFactor_[2][3];

dFactor_[3][3];

dFactor_[4][3];

183
184
185
186
187
188
189
190
191
192
193
194
195

© 0 N Uk W N

WoWw W W oW W W NN NN NN NN NN R R e e
S AR @R RO OO 0RWN R, O © XN O W N R O

scalar ADD = 360.0 * offset_;
Info << "\n\nTrajectory_" << ADD;
Info << ": " << TRV;

Info << "\n";

DebugInFunction << "Time = " << t_ << " transformation: " << TR << endl;

return TR;

}
bool Foam::solidBodyMotionFunctions: :bSplineMotion: :read
(const dictionary& SBMFCoeffs)
{ solidBodyMotionFunction: :read (SBMFCoeffs) ;
return true; }

E.3 delayRotatingMotion

delayRotatingMotion.C

#include "delayRotatingMotion.H"
#include "addToRunTimeSelectionTable.H"
#include "mathematicalConstants.H"
using namespace Foam::constant::mathematical;
// * % % % % % % % % % % % % x Static Data Members * * * * * * % % % % x x x //
namespace Foam
{
namespace solidBodyMotionFunctions
{ defineTypeNameAndDebug(delayRotatingMotion, 0);
addToRunTimeSelectionTable
(solidBodyMotionFunction,
delayRotatingMotion,
dictionary
)5
}
}
// % % % % % % % * % % % % % % * x Constructors * * * % % % % % % % x *x x *x //
Foam: :solidBodyMotionFunctions: :delayRotatingMotion: :delayRotatingMotion
(const dictionary& SBMFCoeffs,

const Time& runTime

solidBodyMotionFunction(SBMFCoeffs, runTime),
origin_(SBMFCoeffs_.lookup("origin")),
axis_(SBMFCoeffs_.lookup("axis")),
omega_(SBMFCoeffs_.get<scalar>("omega")),
delay_(SBMFCoeffs_.get<scalar>("delay"))

{3

// % % % % % % % * % % % % % % * x Destructor * * * * *x % % * % % % % *x x *x //

Foam: :solidBodyMotionFunctions: :delayRotatingMotion: : “delayRotatingMotion ()

{3

// * % % % x % % * % * * % % *x Member Functions * * * % * % % % * % % % x x //

Foam: : septernion

Foam: :solidBodyMotionFunctions: :delayRotatingMotion: :transformation() const

{

scalar t = time_.value();

173

37
38
39
40
41
42
43
44
45
46
47
48
49

51
52
53
54

}

bool Foam::solidBodyMotionFunctions::delayRotatingMotion: :read

(
{

scalar pi = Foam::constant::mathematical::pi;

scalar period_ = abs(2.0%pi / omega_);

scalar lag_ = 1;

scalar duration_ = delay_ * period_;

if (time_.value() < duration_) { lag_ = (1 - cos(time_.value() / duration_ * pi)) / 2;

scalar angle = omega_ * t * lag_;

quaternion R(axis_, angle);

septernion TR(septernion(-origin_)*R*septernion(origin_));

DebugInFunction << "Time = " << t << " transformation:

return TR;

const dictionary& SBMFCoeffs)
solidBodyMotionFunction: :read (SBMFCoeffs) ;

return true;

" << TR << endl;

}

174

© 0 N U ke W N

e e e e e e
Ut W N = O

© 0 N U e W N

un
o

11

N O O W N

F Control variables

Opti-1P

vertexP_10 24.9701;

vertexP_11 25.0398;

vertexP_20 35.0201;

vertexP_21 34.4016;

vertexP_30 32.6997;

vertexP_31 38.9346;

vertexP_40 23.5338;

vertexP_41 8.6503;

vertexP_50 -15.0033;

vertexP_51 0.3251;

vertexP_60 -20.7334;

vertexP_61 -33.6056;

vertexP_70 -25.9749;

vertexP_71 -12.7083;

vertexP_80 -3.8079;

vertexP_81 7.0438;

Opti-1TV

vertexT_1 (2.04113 0 0);

vertexT_2 (1.411143 0.662868 0);
vertexT_3 (0.078492 1.564281 0);
vertexT_4 (-1.725601 1.509977 0);
vertexT_5 (-2.097415 0 0);
vertexT_6 (-0.827778 -0.29126 0);
vertexT_7 (-1.00433 -1.04355 0);
vertexT_8 (1.220882 -1.188577 0);
vectorL (-0.909913 -0.748294 -0.455527 -0.0785 0.287445 0.720053 1.299275 1.979206 2.705847

— 3.42104 4.021876 4.564918 5.017585 5.449909 5.881845 6.197045 6.519524 7.039939 7.829829 8.545227

— 9.113692 9.539089 9.81293 10.049961 10.174909);
(-0.340727 0.101552 0.512635 1.019969 1.645383 2.343996 3.058202 3.714285 4.287223

sectionL

— 4.786638 5.232883 5.660996 6.034884 6.366835 6.799207 7.443008 8.178302 8.817376 9.317918 9.725947

—)

Opti-1BV

vertexT_1 (1.64108 0 0);
vertexT_2 (1.164783 1.128253 0);
vertexT_3 (-0.258111 1.793746 0);
vertexT_4 (-1.267824 0.948777 0);
vertexT_5 (-1.607378 0 0);
vertexT_6 (-1.388869 -1.123224 0);
vertexT_7 (0.147749 -1.533886 0);

175

vertexT_8 (1.44739 -1.446416 0);

vectorL (-0.96455 -0.839488 -0.578656 -0.142281 0.431718 0.979933 1.566632 2.17377 2.711307

— 3.233466 3.751844 4.225202 4.685476 5.156814 5.625421 6.17141 6.821837 7.459305 7.991869 8.440703
< 8.985855 9.5748 9.991583 10.27026 10.41251);

sectionL (-0.429763 0.143318 0.706355 1.275738 1.868152 2.438998 2.971588 3.490622 3.986102

— 4.455254 4.921492 5.394228 5.905992 6.500435 7.13566 7.717727 8.216811 8.719117 9.280768 9.851373

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

© 0 N O ke W N

e e e e e e
D U s W N = O

1
2
3

=)3

vertexP_10 12.7028;
vertexP_11 18.8694;
vertexP_20 31.2397;
vertexP_21 24.3609;
vertexP_30 29.9015;
vertexP_31 40.4845;
vertexP_40 33.7019;
vertexP_41 37.1604;
vertexP_50 17.0702;
vertexP_51 -13.738;
vertexP_60 4.2969;
vertexP_61 -38.403;
vertexP_70 -24.2948;
vertexP_71 -40.6542;
vertexP_80 -6.3308;
vertexP_81 1.5062;
Opti-2P

vertexP_10 24.9701;
vertexP_11 35.1794;
vertexP_20 35.0201;
vertexP_21 36.1708;
vertexP_30 31.6316;
vertexP_31 45.493;
vertexP_40 38.1008;
vertexP_41 15.8147;
vertexP_50 -11.0191;
vertexP_5b1 4.6285;
vertexP_60 -54.9305;
vertexP_61 -42.408;
vertexP_70 -26.3058;
vertexP_71 -21.6285;
vertexP_80 2.342;
vertexP_81 4.3762;
Opti-2Px2
vertexP_10 24.9701;
vertexP_11 35.1921;
vertexP_20 35.0201;

176

© 0 N O U

11
12
13
14
15
16

© W N O U s W N e

T T S S~ S
D U s W N = O

vertexP_21 36.1708;
vertexP_30 31.9729;
vertexP_31 39.7395;
vertexP_40 43.5055;
vertexP_41 16.343;
vertexP_50 -13.2354;
vertexP_51 -3.8166;
vertexP_60 -53.2726;
vertexP_61 -39.2979;
vertexP_70 -23.405;
vertexP_71 -20.5116;
vertexP_80 1.2234;
vertexP_81 24.2237;
Opti-2Px4

vertexP_10 24.9701;
vertexP_11 35.2529;
vertexP_20 32.88;

vertexP_21 40.5244;
vertexP_30 36.0121;
vertexP_31 32.1839;
vertexP_40 43.0415;
vertexP_41 30.8545;
vertexP_50 8.5162;
vertexP_51 -10.0721;
vertexP_60 -4.4668;
vertexP_61 -55.1432;
vertexP_70 -40.0833;
vertexP_71 -31.4176;
vertexP_80 -14.3473;
vertexP_81 -7.9696;
Opti-2TV

vertexT_1 (1.379668 0 0);
vertexT_2 (1.149268 0.671372 0);
vertexT_3 (0.1951 1.542619 0);
vertexT_4 (-1.399039 1.648877 0);
vertexT_5 (-1.774082 0 0);

© 0 N O U W N

[
(=]

vertexT_6 (-1.382681 -1.725867 0);
vertexT_7 (-0.814265 -1.681543 0);
vertexT_8 (1.194757 -0.705831 0);

vectorL (-0.669399 -0.539374 -0.323204 -0.07584 0.233689 0.583943 1.030593 1.572218 2.177153

— 2.790469 3.31758 3.917298 4.656122 5.405536 6.020344 6.347853 6.685704 7.363254 8.165009 8.809018
— 9.192846 9.500941 9.745299 9.927955 10.028649);

sectionL (-0.248002 0.079776 0.414529 0.815241 1.308001 1.877673 2.480568 3.053458 3.626261

— 4.292947 5.025661 5.69536 6.172558 6.531363 7.043808 7.762734 8.4696 8.986936 9.344476 9.667053

=)3

177

© 0w N U e W N

un
o

Opti-2BV

vertexT_1 (1.420654 0 0);
vertexT_2 (1.400768 0.291499 0);
vertexT_3 (1.044336 1.698616 0);
vertexT_4 (-1.012331 1.527856 0);
vertexT_5 (-0.740926 0 0);
vertexT_6 (-1.086042 -1.781508 0);
vertexT_7 (0.42471 -1.732908 0);
vertexT_8 (1.499438 -1.966419 0);

vectorL (-1.006005 -0.875581 -0.580656 -0.090649 0.361451 0.660459 1.070181 1.593903 2.153323

— 2.838927 3.384183 3.923846 4.644766 5.397427 5.984452 6.391218 6.978169 7.556226 7.983592 8.359428
— 9.024225 9.587715 9.856189 10.014751 10.10762);

sectionL (-0.421737 0.120637 0.509189 0.874683 1.33828 1.880358 2.495535 3.105474 3.661334 4.293181
— b5.015518 5.676527 6.187832 6.69183 7.260548 7.761483 8.181403 8.699645 9.293185 9.755582);

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

© 0 N O Ok W N

N e e
= W N = O

vertexP_10 0.9254;
vertexP_11 27.3619;
vertexP_20 40.8156;
vertexP_21 49.3131;
vertexP_30 48.2269;
vertexP_31 40.4845;
vertexP_40 47.1376;
vertexP_41 34.0007;
vertexP_50 0.2285;
vertexP_b51 -23.4633;
vertexP_60 -51.3855;
vertexP_61 -64.6857;
vertexP_70 -59.4925;
vertexP_71 -49.0692;
vertexP_80 -6.3308;
vertexP_81 27.1419;
Opti-3P

vertexP_10 21.7546;
vertexP_11 35.1921;
vertexP_20 38.3487;
vertexP_21 44.8839;
vertexP_30 42.4487;
vertexP_31 42.6875;
vertexP_40 52.0479;
vertexP_41 41.8723;
vertexP_50 19.1539;
vertexP_b1 -2.6547;
vertexP_60 -0.63;
vertexP_61 -50.9719;
vertexP_70 -45.54;
vertexP_71 -33.3296;

178

15 vertexP_80 -22.4129;
16 vertexP_81 6.211;

Opti-3TV

vertexT_1 (1.01123 0 0);
vertexT_2 (1.364221 1.56872 0);
vertexT_3 (-0.237299 2.135153 0);
vertexT_4 (-1.058026 1.14231 0);
vertexT_b (-0.403801 0 0);
vertexT_6 (-0.771681 -2.208536 0);
vertexT_7 (0.657202 -2.017376 0);
vertexT_8 (0.788637 -0.885882 0);

© 0 N O U W N

vectorL (-0.886304 -0.769395 -0.532257 -0.160631 0.439791 1.032496 1.551331 2.137403 2.676154

— 3.149649 3.602139 4.144286 4.829633 5.6471 6.35806 6.737344 7.170279 7.608127 8.067062 8.540076

— 9.004454 9.5542 10.016889 10.303246 10.442499);

11 sectionL (-0.402683 0.14363 0.732744 1.291637 1.845197 2.402088 2.909307 3.378755 3.882915 4.498431
— 5.239434 5.984322 6.536117 6.956251 7.390286 7.83906 8.303796 8.775462 9.285683 9.862695);

o
o

Opti-3BV

vertexT_1 (1.379027 0 0);
vertexT_2 (1.28184 1.561356 0);
vertexT_3 (-0.479927 1.168758 0);
vertexT_4 (-1.409107 1.436631 0);
vertexT_5 (-1.762727 0 0);
vertexT_6 (-1.099568 -1.227981 0);
vertexT_7 (-0.356301 -1.765628 0);
vertexT_8 (0.651136 -1.748194 0);

© 0w N O U e W N

vectorL (-1.250868 -1.098322 -0.748601 -0.185399 0.566909 1.104601 1.553474 2.203879 2.831937

— 3.307407 3.649391 4.128831 4.722861 5.317601 5.879464 6.363501 6.781599 7.190536 7.604564 8.13421
— 8.856372 9.627753 10.12574 10.387632 10.512064);

11 sectionL (-0.557591 0.18187 0.823112 1.333734 1.886142 2.510619 3.057752 3.478564 3.899613 4.43065
— 5.018891 5.59392 6.115492 6.569421 6.985898 7.40258 7.882226 8.505363 9.239638 9.946507);

fun
(=]

12

13 vertexP_10 8.9957;
14 vertexP_11 18.0512;
15 vertexP_20 46.916;
16 vertexP_21 54.3312;
17 vertexP_30 25.4048;
18 vertexP_31 49.8925;
19 vertexP_40 49.7479;
20 vertexP_41 55.0296;
21 vertexP_50 17.4586;
22 vertexP_b1 -21.6402;
23 vertexP_60 -15.2348;
24 vertexP_61 -71.8715;
25 vertexP_70 -64.8478;

179

26 vertexP_71 -34.1564;
27 vertexP_80 -13.1204;
28 vertexP_81 -13.7782;

Opti-4P
1 vertexP_10 22.7788;
2 vertexP_11 43.8552;
3 vertexP_20 48.79;
4 vertexP_21 44 .8839;
5 vertexP_30 36.9395;
6 vertexP_31 il . 2558
7 vertexP_40 51.9625;
8 vertexP_41 30.8545;
9 vertexP_50 41.3201;
10 vertexP_51 4.123;
11 vertexP_60 11.3296;
12 vertexP_61 -76.4937;
13 vertexP_70 -68.8433;
14 vertexP_71 -54.9809;
15 vertexP_80 -27.2127;
16 vertexP_81 -24.3432;
Opti-4TV
1 vertexT_1 (0.977396 0 0);
2 vertexT_2 (0.926911 0.595098 0);
3 vertexT_3 (-0.092456 2.163341 0);
4 vertexT_4 (-1.587724 1.420676 0);
5 vertexT_5 (-0.610922 0 0);
6 vertexT_6 (-0.77071 -2.185893 0);
7 vertexT_7 (0.827756 -2.167554 0);
8 vertexT_8 (0.717327 -1.011291 0);
9

vectorL (-0.754808 -0.634615 -0.404945 -0.079267 0.27069 0.644631 1.201535 1.872656 2.436956

— 2.967008 3.401311 3.997061 4.788173 5.649904 6.391244 6.876934 7.352635 7.729882 8.179159 8.678481
— 9.137171 9.528697 9.783547 9.989324 10.106836);

11 sectionL (-0.301466 0.093199 0.466283 0.935465 1.537404 2.148928 2.696565 3.186897 3.714053 4.4037
— b5.216965 6.004906 6.623021 7.110266 7.540158 7.959607 8.429212 8.903334 9.32798 9.700926);

=
(=]

Opti-4BV

vertexT_1 (1.533621 0 0);

vertexT_2 (1.659796 0.554517 0);
vertexT_3 (-0.136571 1.587864 0);
vertexT_4 (-1.603568 0.991935 0);

N S

180

© 0w N O w

vertexT_5 (-1.469895 0 0);

vertexT_6 (-1.048337 -0.444792 0);
vertexT_7 (0.156036 -1.908189 0);
vertexT_8 (1.528573 -1.811072 0);

vectorL (-1.030235 -0.890947 -0.58648 -0.107557 0.388664 0.725946 1.25634 2.015074 2.755729

— 3.392056 3.879355 4.267987 4.634681 4.97275 5.40339 6.037202 6.762332 7.391485 7.882299 8.359993
— 9.006944 9.58936 9.891243 10.077471 10.190266);

sectionL (-0.430918 0.128 0.558729 1.008703 1.644468 2.380301 3.063336 3.625385 4.068646 4.449227
<> 4.80638 5.200393 5.732567 6.399573 7.067145 7.630581 8.127652 8.687832 9.287967 9.781241);

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

vertexP_10 -4.9421;
vertexP_11 -1.2233;
vertexP_20 46.916;

vertexP_21 35.0314;
vertexP_30 43.8581;
vertexP_31 32.4889;
vertexP_40 49.7479;
vertexP_41 41.6068;
vertexP_50 30.8738;
vertexP_51 17.9182;
vertexP_60 9.9336;
vertexP_61 -14.4528;
vertexP_70 -17.0571;
vertexP_71 -62.4231;
vertexP_80 -59.1712;
vertexP_81 -53.2851;

181

	Topic
	Statement of Originality
	Abstract
	Nomeclature
	Abbreviations
	Introduction
	Theory
	Computational Fluid Dynamics
	OpenFOAM solver
	Turbulence
	Chimera method
	Optimisation

	Finite Volume Model
	Geometry
	Finite Volume Mesh
	Single blade mesh
	Overset mesh
	Dual overset mesh

	Input data
	General properties
	Mode of drive
	Constant velocity drive
	Constant rotation speed drive

	Turbulence properties
	CFD input

	NURBS
	B-Splines
	Derivatives
	Arc length
	Curve Fitting
	Curvature

	Arbitrary movement
	Pitching
	Trajectory
	Path
	Counter angle
	Velocity

	Implementation
	Code snippets
	Pitching
	Trajectory

	Optimisation
	Evaluation
	Ideal power
	Real power
	Translation power
	Rotation power

	Setup
	Procedures
	Pitching
	Trajectory

	Dakota

	Amendment
	Results
	Reference cases
	Overview
	Conclusion
	Single blade
	Opti-1P
	Opti-1TV
	Opti-1BV

	Two blades
	Opti-2P
	Opti-2TV
	Opti-2BV

	Three blades
	Opti-3P
	Opti-3TV
	Opti-3BV

	Four blades
	Opti-4P
	Opti-4TV
	Opti-4BV

	Constant angular velocity

	Summary
	Acknowledgements
	Bibliography
	Appendix
	Input Data
	Dakota
	Python Script
	operateDict.py
	Control.py

	OpenFOAM dicionaries
	initialConditions
	fvSchemes
	fvSchefvSolutionmes
	dynamicMeshDict

	OpenFOAM motion classes
	bSplinePitching
	bSplineMotion
	delayRotatingMotion

	Control variables

