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Abstract—This work gives an overview of a general ap-
proach for modeling the electromagnets of a magnetic lev-
itation (Maglev) vehicle based on electromagnetic suspen-
sion. The method intends to map the magnets’ static and 
dynamic behavior in a frequency range relevant for use in 
mechatronic simulation models and Maglev control or ob-
server design. The methodology starts with setting up the 
equivalent magnetic circuit considering magnetic reluc-
tances, fringing and leakage flux, magnetic saturation, and 
eddy currents. Then, the resulting equations are coupled 
with the magnet’s electric circuits using Ampère’s law and 
Faraday’s law of induction. Further, a numerical model re-
duction technique is sketched, which yields a simplified 
version of the previously derived magnet model with nearly 
the same input-output structure and input-output behavior, 
suitable for large simulation models and control design. 
The approach’s capabilities and strengths are shown by the 
agreement to measurements and by implementing the re-
sulting models in large mechatronic vehicle models of the 
Transrapid. 

 
Index Terms—Electromagnet Modeling, Maglev Vehicle, 

Magnetic Saturation, Eddy Currents, Multibody Systems, 
Maglev Control. 

I. INTRODUCTION 

LECTROMAGNETS realize the contactless electromag-

netic suspension (EMS) of magnetic levitation (Maglev) 

vehicles. One representative of such EMS-based Maglev vehi-

cles is the high-speed vehicle Transrapid [1], which operates 

successfully with speeds up to 430 km/h in daily operation in 

Shanghai between Pudong International Airport and Longyang 

Road Station since 2003 [2]. Meanwhile, China’s Ministry of 

Science and Technology (MOST) drives and promotes the de-

velopment and research of Maglev vehicle technology, intend-

ing to reach a maximum speed of 600 km/h [2]. The Chinese 

rolling stock manufacturer CRRC Qingdao Sifang Co., Ltd. re-

cently presented the prototype of such a new Maglev vehicle to 

the public. The first test runs have been successfully completed. 

However, an improved understanding of and insight into the 

electromagnets’ static and dynamic behavior are necessary to 

drive at higher speeds than hitherto traveled. To predict ride 

comfort, to study different scenarios, or to improve control 

laws, numerical simulation models are essential and powerful 

tools during the development process. However, the reliable us-

age of numerical simulation to forecast the system’s behavior 

requires validated simulation models which map the relevant 

physical effects. 

Different modeling techniques exist to describe an electro-

magnet’s static and dynamic behavior. The methods differ in 

terms of the level of detail, the underlying mathematical equa-

tions, the computational load, or in the assumptions and limita-

tions. Models based on the finite element method (FEM) dis-

cretize the underlying Maxwell equations and result in a possi-

bly nonlinear system of equations. The method is the tool of 

choice for the initial magnet design and analysis process [3, 4] 

because it provides detailed static force characteristics and flux 

distributions. However, FEM models are unusable for a co-sim-

ulation with large mechatronic vehicle models, because of their 

huge computational effort, especially for transient simulations, 

and the challenge of describing the time-varying air gap and 

moving magnet. In addition, the parameterization of such mod-

els is usually non-trivial. The equivalent magnetic circuit 

method (EMC) is another concept to map an electromagnet’s 

static characteristics [5, 6]. A surrogate network maps the mag-

netic flux path and contains different network elements to 

model various physical effects. However, such models often 

disregard the electromagnet’s dynamics and neglect the effect 

of magnetic saturation, which becomes relevant for higher loads 

occurring, e.g., in failure scenarios. For these reasons, over-

simplified analytical magnet models are usually used in large 

mechatronic vehicle models to approximate the electromag-

nets’ static and dynamic behavior [7-9]. In addition, such ana-

lytical models often build a questionable basis for Maglev con-

trol and observer design. Except for [10], these simple analyti-

cal models usually neglect effects resulting from magnetic sat-

uration, or eddy currents anyway, and parameterization of the 

surrogate parameters is often challenging. Consequently, there 

is a need for a general modeling approach to derive magnet 

models which contain the relevant physical effects to reliably 

map the statics and dynamics in a frequency range appropriate 

for use in large mechatronic simulation models. 
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Simultaneously, their usage for Maglev control and observer 

design or validation purpose would be beneficial. Furthermore, 

the computational effort of the derived models should be man-

ageable. 

The paper addresses the need for magnet models mentioned 

above. It gives an overview of a general approach for electro-

magnet modeling [11], including the effects of magnetic reluc-

tance, fringing and leakage flux, magnetic saturation, and eddy 

currents. The modeling follows a systematic approach. At first, 

the equivalent magnetic network and its equations are set up. In 

the next step, the equations for the electric circuits are derived 

using Kirchhoff’s circuit laws. By exploiting Ampère’s cir-

cuital law and Faraday’s law of induction, the equations of the 

magnetic and electric circuits are coupled. From a mathematical 

point of view, the entire dynamics of the electromagnet results 

in a high-dimensional system of differential-algebraic equa-

tions in the flux, which can be transformed into a system of dif-

ferential-algebraic equations formulated in an auxiliary vector 

of variables of a smaller dimension. The magnetic force at each 

pole is derived from an energy balance and expressed in terms 

of the fluxes. Since this model’s computational effort is signif-

icant, a simplified version is derived for control and observer 

design investigations or for use in mechatronic simulation mod-

els of the vehicle. For this, a numerical procedure is developed 

by which a more simplified current-based model is derived, 

which possesses the same input-output behavior as the previ-

ously derived flux-based model. Its dynamics is described by 

just one ordinary differential equation per underlying control 

loop, which depends, as well as the statics, on numerically de-

rived characteristic diagrams. The proposed modeling approach 

can be applied to any levitation or guidance magnet. The 

model’s structure allows simple integration into sizeable mech-

atronic simulation models. 

The paper’s contribution is two-part. The first part gives an 

overview and summary of the above-sketched electromagnet’s 

modeling technique [11]. In contrast to the rather technical 

work presented in [11], it guides the reader to the main concepts 

and ideas without discussing technical particularities or equa-

tions in detail, respectively. The second part outlines how the 

previously derived magnet models can be integrated into and 

applied in large mechatronic vehicle models. Such models usu-

ally comprise multibody systems for the mechanics and detailed 

control algorithms. Further, an overview of already existing 

works using such derived magnet models is given. 

The article is structured as follows. Section II presents the 

general modeling technique followed by an exemplary valida-

tion of the method through a Transrapid’s levitation magnet in 

Sec. III. The derivation of the simplified magnet models is dis-

cussed in Sec. IV. Finally, the derived magnet models are cou-

pled with large mechatronic simulation models in Sec. V. Sec-

tion VI provides conclusions of the article. 

II. MODELING 

The high-speed EMS-based Transrapid-type Maglev vehicle 

uses an electromagnetically decoupled levitation and guidance 

system to account for higher loads. Figure 1 illustrates the ar-

rangement of the separated guidance and levitation electromag-

nets. A schematic sketch for both magnet types is shown in 

Fig. 2. For a guidance magnet, the aluminum coils surround the 

yokes, which are connected to the pole bars by legs. For levita-

tion magnets, aluminum coils surround the pole cores, which in 

turn are connected by so-called pole backs. The flux paths are 

closed by either the stator for the levitation magnets or the guid-

ance rail for the guidance magnets, respectively. The poles’ 

electrical linking differs for each magnet type, e.g., a standard 

levitation magnet has two electric circuits, see Fig. 2, and three 

electric circuits feed the poles of a levitation bow magnet in-

stalled at the front and rear of the vehicle. 

Several physical effects influence the electromagnet’s static 

and dynamic behavior, e.g., the air gap 𝑠 between the magnet’s 

pole surface and stator packs for levitation or between the mag-

net’s pole bar and reaction rail for guidance. Moreover, the ge-

ometry and material properties of the involved iron parts cause 

effects like, e.g., magnetic saturation, eddy currents, or hystere-

sis. In addition, fringing and leakage fluxes stem from the dif-

fusion of flux lines. As it is common practice in literature, how-

ever, it is reasonable to neglect the effect of magnetic hysteresis 

 
Fig. 2.  Schematic cross-sectional cut of a guidance magnet and longi-
tudinal cut of a standard levitation magnet. 
 

 
Fig. 1.  Magnet module of Transrapid TR08 containing a levitation and 
guidance magnet. Image: thyssenkrupp Transrapid. 
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and the influence of eddy currents caused by the long-stator 

synchronous motor. In a system-theoretical view, the electro-

magnets of a Maglev vehicle constitute an input-output system. 

The air gaps and applied voltages are the model’s inputs, and 

the currents and magnet forces are the model’s outputs. 

In the first step, the general modeling approach demands set-

ting up the electromagnet’s magnetic network or equivalent 

magnetic circuit. For this, the path distribution of the magnetic 

flux is considered, which usually follows from models based on 

FEM. Figure 3 exemplarily illustrates an extract of the mag-

netic flux path for a levitation magnet. Then, the magnet’s 

equivalent magnetic circuit (EMC) is derived based on the ex-

isting flux paths by introducing branches and nodes at appro-

priate locations. Figure 4 shows an exemplary extract of a levi-

tation magnet’s equivalent magnetic circuit. It contains the net-

work’s magnetic fluxes summarized by the vector 𝝓 =
[𝜙1, 𝜙𝜎,1, 𝜙2, 𝜙𝜎,2, … ]T. The aluminum coils cause the magne-

tomotive forces, which are described by the vector 𝜽 =
[𝜃1, 𝜃2, … ]T. The several reluctances 𝑅 within the network fol-

low the fundamental law 

𝑅 =
𝑙

𝜇 𝐴
  , (1) 

where a homogeneous material of length 𝑙 with cross-section 

area 𝐴  and permeability 𝜇  is assumed. Individual geometric 

conditions and material properties define the air gap reluc-

tances 𝑅L, leakage reluctances 𝑅σ, and reluctances of the iron 

components 𝑅Fe within the network. By describing the iron’s 

permeability in terms of the flux, i.e., 𝜇 = 𝜇(𝜙), it is possible 

to include the effect of magnetic saturation within the model. 

The equivalent magnetic circuit is equipped with so-called 

magnetic inductances 𝐿ec  to consider the effect of eddy cur-

rents. Its impact on the magnetic network is analogous to an 

electric inductance in an electric network. The duality of mag-

netic and electric networks allows applying Kirchhoff’s circuit 

laws and Ohm’s law, i.e., 𝜃 = 𝑅 𝜙, for the equivalent magnetic 

circuits. Finally, a nonlinear system of equations results through 

a systematic application of the laws mentioned above. 

The electromagnet’s electric networks are coupled with the 

magnetic network in the next step, which creates the required 

input-output structure of the model compared to the actual sys-

tem. Formally, an electromagnet’s electric circuit comprises an 

Ohmic resistance 𝑅el and an electric inductance 𝐿 for each coil 

surrounding a pole core. Figure 5 exemplarily illustrates both 

electric circuits of a levitation magnet. Ampère’s law in the sim-

plified version 

𝜃 = 𝑛 𝐼 (2) 

states the relation between the electromagnet’s current 𝐼 and the 

magnetomotive force 𝜃 in dependence on the number of coil 

windings 𝑛. In addition, Faraday’s law of induction 

𝑈ind = 𝑛 �̇� (3) 

describes the impact of a changing flux on the electric network 

characterized by the induced voltage 𝑈ind . By establishing 

Kirchhoff’s laws for the electric networks and using Ampère’s 

law (2) and Faraday’s law of induction (3) in an appropriate 

way, the magnetic network described by the nonlinear system 

of equations is coupled with the electric networks. Rewriting 

and reordering yields a high-dimensional differential-algebraic 

equation (DAE) formulated in the flux variable 𝝓 of the form 

𝑴�̇� = −𝑨mag(𝒔, 𝝓) 𝝓 + 𝑩𝑼 , (4) 

which describes the electromagnet’s dynamics. The matrix 

𝑨mag contains the topology and parameters of the magnetic net-

work. The constant matrices 𝑴  and 𝑩  comprise information 

about the structure and parameterization of the magnetic and 

electric networks. Note that the matrix 𝑴 is singular such that 

Equation (4) implicitly contains algebraic equations. Now, the 

system’s inputs, i.e., the air gaps 𝒔 of each pole and the applied 

voltages 𝑼, are the DAE’s and thus the models inputs. 

 
Fig. 3.  Schematic path of magnetic flux for a levitation magnet consist-
ing of nominal (nom) flux, a flux running through the linear generator 
notches (LIG), notch (n), and leakage (𝜎) flux. 
 
  

 
Fig. 4.  Extract of a levitation magnet’s equivalent magnetic circuit. 
 

 
Fig. 5.  Exemplary electric circuits of a levitation magnet. 
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Since the DAE (4) is difficult to solve from a numerical point 

of view due to its structure and dimension, it is mapped in a 

further step onto a reduced set of coordinates. For this purpose, 

the substitute flux variable 𝜼 is introduced, which describes the 

sum of the pole fluxes for each electric circuit. Based on further 

transformation steps and assumptions, the original high-dimen-

sional DAE (4) can be expressed by a low-dimensional DAE 

formulated in the variables 𝜼 and 𝝓 in semi-explicit form 

�̇� = −�̃�mag(𝒔, 𝝓)𝜼 + �̃�𝑼 , 

 𝟎 = 𝒈(𝒔, 𝝓, 𝜼) 
(5) 

with adapted system matrices �̃�mag and �̃�. Since the depend-

ence of the flux in �̃�mag can not be expressed explicitly in terms 

of 𝜼, the algebraic constraint 𝟎 = 𝒈(𝒔, 𝝓, 𝜼) exists. 

It remains to describe the system’s outputs, i.e., the magnet 

force and current, based on the variables 𝜼 and 𝝓 of DAE (5). 

The magnet force 𝐹mag for each pole results from considering 

the principle of virtual work in combination with an energy bal-

ance. It holds that 

𝐹mag =
𝜇r − 1

2 𝜇r 𝜇0 𝐴
𝜙F

2 , (6) 

where 𝜇r is the iron’s permeability, 𝜇0 the permeability of free 

space, and 𝜙F the flux contributing to the magnet force, which 

can be derived from the knowledge of 𝝓. In addition, it is pos-

sible to derive an explicit expression for the electromagnet’s 

current 𝑰𝐿 in the form 

 𝑰𝐿 =  �̃�(𝒔, 𝝓)𝜼 , (7) 

where the output matrix �̃� depends on the air gaps 𝒔 and the 

flux variable 𝝓. In summary, Equations (5)-(7) represent the 

electromagnet’s model and include the effects of magnetic re-

luctances, fringing and leakage flux, magnetic saturation, and 

eddy currents. 

III. MODEL ANALYSIS AND VALIDATION 

A standard levitation magnet of the latest Transrapid vehicle 

TR09 is modeled to justify the proposed modeling technique. 

The parameters are chosen accordingly, compare also [11]. The 

underlying equations of the model are implemented and solved 

in MATLAB/Simulink. The simulation results are validated 

with measurements from a test bed of thyssenkrupp Transrapid. 

The static behavior of the model is validated by employing 

the measured force-current-gap characteristics, see Fig. 6. The 

model’s static behavior results from solving (5) for �̇� = 𝟎, as-

suming a constant air gap for all poles and choosing the voltages 

consonant with the currents following Ohm’s law. The charac-

teristics are also shown for a model for which the effect of mag-

netic saturation is neglected, as it is usually practiced in litera-

ture. The model’s static behavior matches the measurements 

over the entire current and gap range. For 𝐼 < 𝐼0, one can rec-

ognize the well-known quadratic relation. As the current in-

creases, the gradient of the magnetic force decreases for 𝐼 > 𝐼0 

because of magnetic saturation. For this case, the simplified 

model without saturation clearly fails. 

The inductance �̃� is used to validate the model’s dynamics. 

Generally, the inductance measures how fast the electromag-

net’s current follows an applied voltage step. Figure 7 illustrates 

the measured inductance, the model’s inductance, and the in-

ductance of a model for which the effect of saturation and eddy 

currents is neglected. The model’s inductance corresponds to 

the measurements for 𝑠 = 9.5mm. The model accurately maps 

the inductance’s decrease for increasing currents mainly result-

ing from magnetic saturation. When neglecting saturation and 

eddy currents, the inductance is generally smaller and does not 

depend on the current. Therefore, the analysis reveals that it is 

essential to model the effects caused by saturation and eddy cur-

rents if the dynamic behavior is of interest. 

 
Fig. 6.  Normalized force-gap-characteristics of a TR09 standard levi-
tation magnet comparing the model obtained from the proposed mod-
eling approach, the measurements, and a further model without con-
sidering magnetic saturation for comparison purpose. 
 

 
Fig. 7.  Normalized inductance of a TR09 standard levitation magnet as 
a function of the current and air gap for the obtained model, and a model 
without saturation and eddy currents in comparison to measurements. 
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IV. DERIVATION OF SIMPLIFIED MAGNET MODEL 

The proposed modeling approach creates a flux-based model 

suitable for studying effects arising in the early magnet design 

process or for validation. Nevertheless, since its computational 

effort is significant, a simplified model with the same input-

output structure and a comparable static and dynamic behavior 

is desirable. Then, such a model fits well for usage in sizeable 

mechatronic simulation models or for Maglev control and ob-

server design. 

A. Equations of Simplified Magnet Model 

In general, the electric circuits of the electromagnets are cou-

pled to each other via the magnetic network. For example, the 

flux linkage over the stator and pole back in the mid of the 

standard levitation magnet couples both electric circuits. The 

analysis in [11] reveals that the transformational coupling be-

tween the electric circuits is small and can be neglected for sim-

plicity, i.e., if two electric circuits are supplied with their nom-

inal voltage, a disturbance of one of them can hardly be noted 

in the current of the other. In addition, a substitute gap 𝑠 and 

magnet force 𝐹mag for each electric circuit is assumed. Thus, 

each electric circuit can be described by the equivalent electric 

circuit shown in Fig. 8, which results from the duality of mag-

netic and electric circuits. Note that in comparison to Fig. 5, the 

Ohmic resistance 𝑅el is already summed up, and the former in-

ductance is separated in a so-called eddy current resistance 𝑅ec 

and electric inductance 𝐿(𝑠, 𝐼L). Here,  𝑅ec results from model-

ing the eddy currents by magnetic inductances in the magnetic 

network. Further, the joint inductance 𝐿 of the simplified model 

is implicitly defined by the magnetic network’s reluctances.  

The simplified model’s dynamics can be derived in terms of 

the current 𝐼L by applying Kirchhoff’s second circuit law and 

Faraday’s law of induction again. The resulting scalar ordinary 

differential equation (ODE) reads as 

𝐼L̇ = −
𝑅el

(
𝑅el
𝑅ec

+1)(
𝜕𝐿(𝑠,𝐼L)

𝜕𝐼L
𝐼L+𝐿(𝑠,𝐼L))

𝐼L − 
𝜕𝐿(𝑠,𝐼L)

𝜕𝑠
𝜕𝐿(𝑠,𝐼L)

𝜕𝐼L
𝐼L+𝐿(𝑠,𝐼L)

𝐼L�̇�                              

                                 +
1

(
𝑅el
𝑅ec

+1)(
𝜕𝐿(𝑠,𝐼L)

𝜕𝐼L
𝐼L+𝐿(𝑠,𝐼L))

𝑈 ,  
(8) 

compare [11]. The joint inductance 𝐿 represents two parts, one 

part 𝐿eff causes the magnetic force, and the other ingredient 𝐿σ 

maps the leakage flux. The equality of the magnetic energy 

stored in the effective inductance 𝐿eff and the work of the mag-

netic forces yields an expression for the magnetic force 

𝐹mag = 𝐹mag(𝑠, 𝐼𝐿) = − 𝜕

𝜕𝑠
∫ 𝐿eff(𝑠, 𝑖) 𝑖 𝑑𝑖

𝐼L

0
 ,  (9) 

where 𝑖  is the integration variable for the current, compare 

[7, 11]. 

For electromagnets with standard geometries, it is possible to 

describe 𝐿 analytically as a function of the air gap and current 

or to derive 𝐿 analytically by the equivalent magnetic circuit. 

However, this is impossible for the considered type of electro-

magnets whose magnetic network consists of several poles of 

different geometries, which are, moreover, coupled. As a result, 

it is necessary to derive the quantities 𝐹mag(𝑠, 𝐼𝐿), �̃�(𝑠, 𝐼L) =
𝜕𝐿(𝑠,𝐼L)

𝜕𝐼L
𝐼L + 𝐿(𝑠, 𝐼L) , and 𝜕𝐿(𝑠, 𝐼L)/𝜕𝑠  based on the detailed 

flux-based model (5)-(7) in a discrete fashion in the form of 

characteristic diagrams using a numerical procedure. 

B. Derivation of System Parameters 

The Ohmic resistance 𝑅el  and eddy current resistance 𝑅ec 

can be derived by the detailed flux-based model analytically, 

compare [11]. For parameterizing the quantities 𝐹mag(𝑠, 𝐼𝐿) , 

�̃�(𝑠, 𝐼L), and 𝜕𝐿(𝑠, 𝐼L)/𝜕𝑠, the gap and current operation ranges 

are discretized by an equidistant regular grid. Here, it is advan-

tageous that both entities have lower and upper physical limits 

given by the Maglev vehicle’s operation. 

The characteristic diagram for 𝐹mag(𝑠, 𝐼𝐿) results from solv-

ing (5) and (6) for gap and current pairs spanned by the regular 

grid. The procedure is analogous to the study performed in 

Sec. III, i.e., determining the magnet’s force-current-gap char-

acteristics. 

The quantities �̃�(𝑠, 𝐼L) and 𝜕𝐿(𝑠, 𝐼L)/𝜕𝑠 can be derived from 

the detailed flux-based model by appropriately performing time 

integrations. For �̃�(𝑠, 𝐼L), it can be exploited that the �̃�(𝑠, 𝐼L) 

does not dependent on the impact of eddy currents and must 

hold as well for �̇� = 0. As a result, ODE (8) simplifies and can 

be solved analytically. Now, by performing time integrations of 

the detailed flux-based model under voltage steps, the time con-

stants defining �̃�(𝑠, 𝐼L) result for each gap and current pair. In a 

further step, the quantity 𝜕𝐿(𝑠, 𝐼L)/𝜕𝑠 can be obtained from the 

detailed model by applying a virtual control law 𝑈 = 𝑅el𝐼L. In 

doing so, the first and third terms of ODE (8) cancel out, and it 

is again possible to solve ODE (8) analytically. Then, the time 

constants defining 𝜕𝐿(𝑠, 𝐼L)/𝜕𝑠  follow from solving the de-

tailed flux-based model under linearly increasing gaps. Figure 9 

exemplarily illustrates the obtained characteristic diagrams for 

the quantities 𝐹mag(𝑠, 𝐼𝐿) , �̃�(𝑠, 𝐼L) , and 𝜕𝐿(𝑠, 𝐼L)/𝜕𝑠  for one 

half magnet of a standard TR09 levitation magnet. 

It is worth noting that the detailed flux-based and simplified 

current-based models have a comparable input-output structure. 

Moreover, simulations reveal that the input-output behavior of 

the models is similar when neglecting the coupling, com-

pare [11]. The simplified model achieves a speedup of about 

277 compared to the detailed flux-based model because it is 

much easier to solve the underlying ODE than the DAE. 

V. APPLICATION TO MECHATRONIC VEHICLE MODELS 

The magnet models derived by the modeling approach pre-

sented in Secs. II and IV are suitable for mapping the relevant 

static and dynamic behavior necessary for large mechatronic 

 
Fig. 8.  Equivalent electric circuit of simplified current-based electro-
magnet model representing an imaginary decoupled electric circuit. 
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vehicle models. The models can be easily incorporated into 

mechatronic simulation models of the vehicle because of their 

well-defined input-output structure. A mechanical system 

model, usually a (flexible) multibody system, provides the mag-

nets’ inputs gaps and gap derivatives. The controllers provide 

the magnets’ voltages and, in turn, use the magnets’ currents 

and further states of the mechanical system to compute the volt-

age. The second output of the magnet models, i.e., the magnet 

forces, serves again as input for the mechanical system. This 

general structure of mechatronic simulation models of Maglev 

vehicles is shown in Fig. 10(a). 

By the ongoing development process, the cross-section 

model of the Transrapid presented in [13, 14] is successfully 

equipped with guidance and levitation magnet models derived 

from the method introduced in Secs. II and IV. Now, the more 

detailed magnet models replace the former simplified models, 

neglecting the effects of magnetic saturation and eddy currents 

previously. The mechanical model describes one-eighth of a 

Transrapid’s cross-section and maps its lateral dynamics. Its 

mechanics is modeled by a rigid multibody system (MBS) using 

Neweul-M2 [15], an in-house developed Matlab-based MBS 

toolbox. The MBS includes, among others, two secondary air 

springs that couple the levitation chassis with the car body. The 

guidance and levitation magnets are attached to the levitation 

frame, see Fig. 10(b) for a graphical representation of the 

model. The overall simulation model, including the new and 

updated guidance and levitation magnet models, runs success-

fully under the reference guideway disturbances introduced 

in [14]. 

In addition, the such derived magnet models are used suc-

cessfully in a novel model mapping the Transrapid’s heave-

pitch motion, see [16] for details. The model consists of three 

sections modeled by a detailed rigid MBS and moves along an 

infinite and periodically pillared elastic guideway, see 

Fig. 10(c). A so-called moving system boundary realizes the in-

finite guideway for which the overrunning track segments, 

modeled by Euler-Bernoulli beams, are used in an intelligent 

repetitive manner. Again, the MBS is modeled using Neweul-

M2 [15]. The model allows for studying the dynamic vehicle-

guideway coupling in detail. The overall mechatronic 

simulation model includes individual models for the standard 

levitation magnets and the bow levitation magnets installed at 

the front and rear of the vehicle. Both magnet models are de-

rived from the modeling technique presented in Sec. II and IV. 

Due to the wide validity range of the magnet models, see Figs. 

6 and 7, it is possible to reliably simulate and predict various 

driving scenarios, e.g., magnet failures. 

As pointed out in Sec. IV, the simplified current-based mag-

net model obtained from the numerical procedure is highly ap-

plicable for its usage in sizeable mechatronic simulation models 

because its computational effort is much smaller. However, the 

simplified magnet models assume a concentrated magnet force 

per underlying electric circuit and neglect the magnet’s distri-

bution along the poles mapped in detail by the flux-based 

model. Both magnet model types are integrated within the novel 

vertical model introduced in [16] to study if the usage of the 

simplified magnet models can be justified. The study is de-

scribed in detail in [17]. Simulating the model with either the 

fine distribution with an individual magnet force per pole based 

on the detailed flux-based model or the coarse distribution with 

a concentrated force per underlying electric circuit reveals that 

the simplification is valid. The resulting vehicle dynamics co-

incide except for minor deviations, see [17] for details. The 

study outlines that it is sufficient to consider the simplified cur-

rent-based magnet models within large mechatronic vehicle 

models. However, it is even possible to integrate the detailed 

flux-based model versions into comprehensive vehicle modes, 

which allows, e.g., to study the magnet’s coupling during oper-

ation in detail, which is neglected for the simplified current-

based model. 

The vehicle models mentioned above use the offset-free 

model predictive control (MPC) concept presented in [18]. 

MPC is an advanced control technique which computes an op-

timal control input based on solving an underlying optimal con-

trol problem at each time step. The model’s dynamics and even 

constraints can be directly considered within the optimal con-

trol problem to forecast the system behavior. The simplified 

current-based magnet model is well suited for such a control 

design due to its structure in the form of an ODE and because 

of its simplicity. Here, the wide validity range of the magnet 

 

Fig. 9.  Characteristic diagrams parameterizing the quantities 𝐹mag(𝑠, 𝐼𝐿), �̃�(𝑠, 𝐼L), and 𝜕𝐿(𝑠, 𝐼L)/𝜕𝑠 of the simplified model for a half magnet of a 

standard TR09 levitation magnet. The solid blue lines and markers in the left and mid figure show the measurements from Figs. 6 and 7. 
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models resulting from the proposed modeling technique allows 

for computing the magnet’s control inputs reliably over the 

whole operating range. 

VI. CONCLUSION 

A general modeling technique for the electromagnets of 

EMS-based Maglev vehicles is presented. It includes effects of 

magnetic reluctances, fringing and leakage flux, magnetic satu-

ration, and eddy currents. The obtained models are intended for 

usage in large mechatronic simulation models or for control and 

observer design. The models allow to study effects occurring in 

the magnet design process, e.g., the impact of changing dimen-

sions, or different operating points, e.g., appearing in a failure 

scenario for which the extended validity range is needed. The 

method’s strength is shown by comparison with measurements, 

on the one hand, exemplified by a standard levitation magnet of 

the latest Transrapid vehicle TR09. On the other hand, the de-

rived magnet models are successfully incorporated into differ-

ent simulation models of the vehicle and used for Maglev con-

trol design. 
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Fig. 10.  General structure of mechatronic simulation models of a Transrapid Maglev vehicle (a), graphical representation of the cross-section 
model (b), and illustration of the vertical model (c). 
 


