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Abstract—Simulations of the coupled vehicle/guideway 

dynamics are an essential part in the development of high-

speed magnetic levitation (maglev) systems with higher 

speed than traveled so far. In this contribution, a two-

dimensional rigid multibody model mapping the heave -

pitch motion of the vehicle is presented and used for 

dynamics simulations of the vehicle traveling along an 

infinite elastic guideway. The concept of moving system 

boundaries is applied for the guideway model to efficiently 

implement an infinite series of elastic Euler-Bernoulli 

beams while keeping the number of system states small. 

Guideway deflection interpolation and computation of 

equivalent nodal forces and torques are realized using 

Hermite polynomials. Together w ith a physically advanced 

magnet model and a model predictive control scheme, the 

coupled system is applied for vehicle and guideway 
dynamics analysis for different vehicle speeds and 

guideway elasticities. 

 
Index Terms—Flexible Multibody System, High-Speed 

Maglev, Infinite Elastic Guideway, Transrapid. 

I. INTRODUCTION 

he worldwide only commercial high-speed maglev train 

based on electromagnetic suspension technology is 

implemented at the Shanghai Maglev Transportation line 

between Pudong International Airport and Longyang Road 

Station with a maximum speed of 430 km/h. Currently, a new 

high-speed maglev train with a maximum speed of 600 km/h is 

under development at the Chinese rolling stock manufacturer 

CRRC Qingdao Sifang Co., Ltd. A prototype of the future 

vehicle has been presented to the public in May 2019 and it 

traveled along a short test track with low speed in July 2021. 

The new high-speed maglev train will close the gap between 

current high-speed railway technology with top speeds of 300 

to 350 km/h and aircraft traveling with speeds around 900 km/h, 

and, therefore, offers a notable alternative for short to medium-

haul flights with respect to economic and ecologic aspects. 

One main cost factor of a high-speed maglev system is the 

track consisting of hundreds of kilometers of guideway. The 

dynamic behavior of this guideway has a significant impact on 

the requirements of the vehicle control system. The deflection 

 
 

of the guideway girders in relation to their length and the 

vehicle speed needs to be small in order to prevent strong 

coupling with the vehicle dynamics. To verify this  requirement, 

the system analysis has to consider the dynamical behavior of 

the coupled system consisting of the guideway and vehicle 

mechanics as well as the magnet and controller dynamics. 

The coupled dynamics of vehicle and guideway is modeled 

and investigated in several previous publications with various 

approaches. In early approaches, when guideway elasticity is 

considered, the vehicle models cover a range from a single 

concentrated mass to a few distributed constant forces [1,2,3]. 

For more detailed rigid multibody vehicle models, the 

guideway is considered either stiff [4,5] or as one single elastic 

guideway element [6]. 

Simulations of a multibody maglev vehicle crossing a single 

flexible beam with high velocity show that the elastic 

deformation of the beam causes a disturbance that influences 

the vehicle dynamics for several seconds after the vehicle has 

left the elastic guideway element [6]. Thus, to investigate the 

interaction of disturbances for a traveling vehicle caused by 

multiple elastic guideway elements in a row, as it is the case for 

elevated guideways supported on rigid pillars, several flexible 

beam elements are required in the simulation model as well. In 

the past, for such detailed guideway models with several 

girders, quite simple vehicle models were used. In the 

contribution at hand, a more detailed two-dimensional 

multibody vehicle traveling on a pillared flexible guideway of 

infinite length is modeled, simulated, and analyzed. Thereby, 

different aspects of guideway modeling are examined. First, a 

model for a single elastic guideway element is set up and 

coupled with a passing vehicle as published in [6]. Each elastic 

guideway element is modeled as single-span Euler-Bernoulli 

beam. Forces applied at arbitrary positions on the discretized 

beam are replaced by equivalent nodal forces and torques acting 

at its nodes. Second, some of these guideway elements are 

combined systematically to obtain an infinite series of elastic 

guideway elements as published in [7]. For computational 

efficiency, only the guideway elements occupied by the vehicle 

are considered to keep the dimension of the equations of motion 

as small as possible. Thus, the boundaries of the simulated 

system are shifted along the guideway with the moving vehicle. 
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The equations of motion for the mechanical parts are obtained 

in symbolic form from the Matlab-based multibody simulation 

toolbox Neweul-M2 [8] and are coupled in Simulink with the 

dynamic equations of the electromagnets and the magnet 

controllers. The resulting vehicle and guideway dynamics are 

analyzed with respect to control behavior and ride comfort 

aspects. 

II. GUIDEWAY MODEL 

The guideway is modeled as an infinite series of identical 

elastic Euler-Bernoulli beams supported on rigid pillars at their 

ends. In the following subsections, first the model of a single 

guideway element is described, before a small number of 

identical guideway elements is combined systematically to 

obtain an infinite series of elastic guideway elements. 

Each beam representing a guideway element is 

parameterized according to the first generation of concrete 

guideway at the former Transrapid test facility in Northern 

Germany (TVE) as provided by [9]. The beams are 24.768 m 

long and discretized by 24 finite beam elements. To allow 

asymmetric shapes of the beams, they are reduced to their first 

three eigenmodes, which is  a sufficiently accurate 

approximation as stated in [3]. Rotational inertia and shear 

deformations of the beam can be neglected in this case 

according to [10], which justifies applying the Euler-Bernoulli 

beam theory. The deflection at mid span caused by the beams 

own weight is 8.6 mm which matches the analytical solution. 

Its first natural frequency is 6 Hz. The Euler-Bernoulli beams 

are created and reduced using the Matlab-based model order 

reduction toolbox MatMorembs, developed at the Institute of 

Engineering and Computational Mechanics, and then included 

as flexible body in Neweul-M2. 

A. Single Elastic Guideway Element 

The partial differential equation describing an Euler-

Bernoulli beam as given in [10], for example, reads as 

𝐸𝐼 𝑤 ′′′′(𝑥,𝑡) + 𝜌𝐴 𝑤̈(𝑥, 𝑡) = ∑ 𝐹𝜇(𝑡) 𝛿(𝑥− 𝑥𝜇)𝜇  . (1) 

The vertical deflection 𝑤 depends on time 𝑡 and position 𝑥 

with 0 ≤ 𝑥 ≤ 𝐿, where 𝐿 denotes the beam length. The beam 

deflection’s fourth derivative in space is denoted as 

𝑤 ′′′′(𝑥,𝑡) ≡ 𝜕4𝑤/𝜕𝑥4 and the second derivative in time as 

𝑤̈(𝑥,𝑡) ≡ 𝜕2𝑤/𝜕𝑡2, respectively. The homogeneous beam has 

a constant bending stiffness 𝐸𝐼, density 𝜌, and cross-sectional 

area 𝐴. The moving forces 𝐹𝜇(𝑡), 𝜇 = 1(1)𝑚, where 𝑚 is the 

number of magnet forces acting on the beam, act in vertical 

direction at positions 𝑥𝜇, which is considered by means of the 

Dirac function 𝛿( ). 
1) Deflection Interpolation 

Since the magnetic force 𝐹𝜇 depends on the air gap between 

the magnet and the guideway, the deflection 𝑤𝜇  of the 

guideway is required right at the position where the magnet 

force applies. However, the continuous beam is implemented as 

a discretized finite element Euler-Bernoulli beam model with 

24 beam elements, 25 nodes, and cubic shape functions for the 

beam deflection. Therefore, beam deflections are only 

computed at the nodes of the finite elements. To obtain the 

deflection 𝑤𝜇 at an arbitrary position of a beam element 𝑖, 

which is in general between two nodes, the deflections 𝑤{𝑖,𝑖+1} 

and rotations 𝜑{𝑖,𝑖+1}  of the adjacent nodes 𝑖  and 𝑖 + 1  are 

interpolated, see Fig. 1. The interpolation is implemented by 

means of the third-order Hermite polynomials  

𝒈H = [
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𝑔4

]=
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 , (2) 

𝜉𝜇,𝑖 =
𝑥𝜇,𝑖

𝐿𝑖

 , 0 ≤ 𝑥𝜇,𝑖 ≤ 𝐿𝑖 ,  

plotted in Fig. 2, resulting from a third-order polynomial ansatz 

function and the boundary conditions at the nodes [11]. 

Therefore, the beam deflection at an arbitrary position reads 

𝑤𝜇 = [𝑤𝑖 ,−𝐿𝑖𝜑𝑖 ,𝑤𝑖+1 ,−𝐿𝑖𝜑𝑖+1] 𝒈H .  (3) 

 
Fig. 2.  Third-order Hermite polynomials 𝒈H = [𝑔1,𝑔2, 𝑔3, 𝑔4]

T plotted 

for 0 ≤ 𝜉𝜇,𝑖 ≤ 1. 

 

 
Fig. 1.  Beam deflection 𝑤𝜇  is obtained by interpolating the 

deflections and rotations at the adjacent nodes. 
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2) Equivalent Nodal Forces and Torques 
On the other hand, forces can be transmitted to the discretized 

beam only at its nodes. Therefore, a vertical force 𝐹𝜇, acting on 

beam element 𝑖  with length 𝐿𝑖  between nodes 𝑖  and 𝑖 + 1, 

needs to be replaced by equivalent forces and torques acting at 

the neighboring nodes, see Fig. 3. According to [11], the 

principle of conservation of virtual work must be observed for 

the derivation of the vector of equivalent nodal forces and 

torques 𝒑equ,𝑖 = [𝐹𝑧,𝑖 ,𝑀𝑦,𝑖 ,𝐹𝑧,𝑖+1,𝑀𝑦,𝑖+1]
T

. That means, 𝐹𝜇 

with its virtual deflection 𝛿𝑤𝜇 has to do the same virtual work 

𝛿𝑊 as the equivalent nodal forces and torques 𝒑equ,𝑖 with their 

respective virtual deflections and rotations 𝛿𝒘nod,𝑖, leading to 

the equation 

𝛿𝑊 = 𝛿𝑤𝜇  𝐹𝜇 =
!

𝛿𝒘nod,𝑖
T  𝒑equ,𝑖 , (4) 

resulting in the vector of equivalent nodal forces and torques 

𝒑equ,𝑖 =

[
 
 
 

𝐹𝑧,𝑖

𝑀𝑦,𝑖

𝐹𝑧,𝑖+1

𝑀𝑦,𝑖+1]
 
 
 
=

[
 
 
 
 
𝐹𝜇 0 0 0
0 −𝐹𝜇𝐿𝑖 0 0

0 0 𝐹𝜇 0

0 0 0 −𝐹𝜇𝐿𝑖]
 
 
 
 

 𝒈H . (5) 

B. Infinite Series of Elastic Guideway Elements 

In order to run simulations of a maglev vehicle on a regularly 

pillared elastic track, a small number of identical beams as 

described above are used repeatedly by applying the concept of 

moving system boundaries as described in [10] and illustrated 

in Fig. 4. The basic idea is to take a beam from behind the 

vehicle after the vehicle left it and it is no longer needed there, 

reset its states so that it is plane and in rest, and put it in front 

of the vehicle to be entered by the vehicle again. Thereby, the 

number of system states is  kept small and an infinite series of 

elastic guideway elements can be implemented efficiently. 

The number of beams required for the model is at least the 

number of guideway elements covered by the vehicle 

𝑛covered = ⌈𝑙vehicle/𝑙beam⌉+ 1 (6) 

with the overall vehicle length 𝑙vehicle , single beam length 

𝑙beam, and the ceiling function ⌈𝑥⌉, mapping 𝑥  to the least 

integer greater than or equal to 𝑥. Guideway elements ahead of 

or behind the vehicle do not have to be considered since the 

guideway elements are supported by the rigid pillars in such a 

way that they are decoupled from each other. Therefore, no 

guideway dynamics occurs for the beams ahead of the vehicle, 

like traveling waves, for example, and the decaying oscillations 

of the beams behind the vehicle do not have any influence on 

the vehicle dynamics. Nevertheless, two additional beams are 

required for the implementation due to technical reasons. For 

further explanations see [7]. Thus, the minimum number of 

beams required for the guideway model is 

 
Fig. 3.  Force 𝐹𝜇 acting on a beam element is replaced by equivalent 

nodal forces and torques acting on the neighboring nodes. 

 

 

Fig. 4.  Concept of moving system boundaries: A small number of guideway elements is used repeatedly to realize an infinitely long elastic 
guideway and keep the number of system states small at the same time. 
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𝑛required = 𝑛covered+ 2 . (7) 

However, an arbitrary number of additional beams may be 

added to the model, for example to observe and analyze the 

decaying guideway vibrations for some time after the vehicle 

left a beam. For a vehicle dynamics analysis, no additional 

guideway elements behind the vehicle are necessary. 

III.  VEHICLE MODEL 

The vehicle is modeled as a two-dimensional rigid multibody 

system representing a longitudinal cut through the system in the 

𝑥-𝑧-plane mapping the heave-pitch motion, see Fig. 5. The 

modeled vehicle comprises three sections, that is, two end 

sections and one mid section. Each section consists of rigid 

bodies, namely a car body, four levitation chassis and several 

levitation magnets. Each of these bodies has two degrees of 

freedom, a translational one in vertical direction, allowing 

heave motion, and a rotational one about the 𝑦-axis, allowing 

pitching. Thus, the vehicle model has 76 mechanical degrees of 

freedom in total.  

The levitation magnets and the levitation chassis are 

connected by quite stiff elastomer elements, also called primary 

suspension. The levitation chassis are coupled to their 

respective car body by relatively soft air springs, the so-called 

secondary suspension, which to a great extent decouples the 

passenger cabin in the car body from the higher frequency 

vibrations of the magnets and levitation chassis . Both 

connections are modeled as  linear spring-damper force 

elements. 

The vehicle and guideway are coupled by attractive 

electromagnetic forces acting between the levitation magnets 

on vehicle side and stator packs installed on the bottom side of 

the guideway pulling the vehicle towards the guideway from 

below. As described in the subsequent section, the magnet 

model provides one concentrated magnetic force per half 

magnet, which is used as input to the mechanical model. 

Therefore, two force elements are implemented for each 

standard levitation magnet in the mechanical vehicle model. For 

the bow levitation magnets, which are longer and simplified by 

three half magnets, thus three magnetic forces are applied. 

IV. MAGNET MODEL AND CONTROLLER 

The magnet model used here is described in detail in [12]. It 

is an advanced model including the physical effects of magnetic 

reluctances, fringing and leakage flux, magnetic saturation, and 

eddy currents. Two different magnet model variants are 

available regarding the magnet force discretization. The first 

variant provides a fine discretization with one magnetic force at 

each of the twelve poles of a standard levitation magnet. For 

this variant, the electromagnet dynamics is described by a set of 

differential-algebraic equations (DAEs), which is time-

consuming to solve and thus unsuitable for application in 

vehicle dynamics simulations with multiple magnets involved. 

The second variant provides a coarse discretization with one 

concentrated substitute magnetic force per half magnet. Here, 

the electromagnet dynamics is described by an ordinary 

differential equation (ODE), or two ODEs for a complete 

standard levitation magnet, respectively. Solving them takes 

significantly less time and, therefore, makes this magnet model 

variant suitable to be used for vehicle dynamics simulations 

with large vehicle models. The simplified model variant with 

the coarse discretization and the detailed one with the fine 

discretization have nearly the same input-output structure and 

an almost identical static and dynamic behavior. They are 

validated for the operational range of a Transrapid’s levitation 

magnet in [12]. Furthermore, in [13] both magnet model 

variants are applied to the same mechanical models and with 

the same MPC scheme as in the contribution at hand. It is shown 

that the simulation results with the simplified magnet model 

with the coarse discretization are in excellent accordance with 

the results obtained with the detailed magnet model with the 

fine discretization. At the same time, the simulation time for the 

complete vehicle model is about 100 times faster with the 

coarse model. 

The system based on electromagnetic suspension 

technology, that means, attractive magnetic forces, is inherently 

unstable. The levitating vehicle needs to be stabilized by 

actively controlling the electromagnetic forces to keep the air 

gap in a safe range and avoid contact of vehicle and guideway. 

For this purpose, each half magnet is controlled by its own 

magnet control unit. For the contribution at hand, an offset-free 

model predictive control (MPC) scheme from [14] is used, 

which is found suitable for controlling a Transrapid vehicle. 

 
Fig. 5.  Components of the complete vehicle model consisting of three sections on the guideway.  
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V. COUPLED SYSTEM 

All subsystems making up the model are coupled in 

Simulink. Figure 6 shows the schematic block diagram. The 

equations of motion for the mechanical vehicle and guideway 

models are derived in an automated manner by the in-house 

multibody modeling and simulation toolbox Neweul-M2 using 

the Newton-Euler formalism. They are exported as C code and 

compiled as mex files that are included as S-functions in 

Simulink in the yellow blocks. The blue and green blocks 

contain the controller and magnet dynamics, respectively. 

Numerous input and output signals  described in Fig. 6 connect 

the subsystems forming the complete coupled system. For 

further explanations regarding the coupled system see [7]. 

VI. SIMULATION RESULTS 

This section summarizes the simulation results obtained with 

the model described above that are published in [7]. The vehicle 

model is parameterized to represent the Transrapid TR08, while 

the guideway parameters are taken from the first generation of 

concrete guideway at the TVE. The beams are plane when they 

are unloaded and in rest, that is, when the only force acting on 

them is their own weight. In the investigated scenario, the 

vehicle travels with different constant velocities along the 

regularly pillared infinite elastic guideway. 

Three aspects are examined, namely 1) the guideway 

dynamics below a passing vehicle, 2) the air gap control 

accuracy and the magnet motion at different positions along the 

vehicle, and 3) the influence of guideway stiffness on the 

mechanical magnet dynamics. 

A. Guideway Dynamics 

The deflection 𝑤mid  of a single guideway element at mid 

span is plotted in Fig. 7 over the position 𝑥MF,front  of the 

foremost magnet force for the vehicle traveling along the 

guideway with different velocities from 18 km/h (considered as 

quasi-static) to 600 km/h. The foremost magnetic force enters 

the beam at 𝑥MF,front = 0 and leaves it again at the first dashed 

vertical line. Then the beam is completely covered by the 

vehicle until the second dashed line, where the rearmost 

magnetic force enters the beam. At the last dashed line, the 

rearmost magnetic force leaves the beam so that the beam then 

is uncovered and can oscillate freely. 

In the quasi-static case, the deflection increases while the 

vehicle enters the beam up to a value of approximately 6 mm 

when the beam is covered completely, and decreases again to 

zero when the vehicle leaves. The higher the velocity of the 

passing vehicle, the more severe overshoots and oscillations are 

visible, meaning more challenging disturbances for the 

controllers at the mid and rear vehicle sections to deal with. The 

reason for the overshoots due to loading and unloading of the 

beam is a more and more step-like shape of the load acting on 

the beam over time with increasing vehicle speed. Since the 

bending of an Euler-Bernoulli is described by a partial 

differential equation of second order in time, see (1), the 

 

Fig. 6.  Schematic setup of the coupled model in Simulink. (1) Nodal coordinates and velocities of beams, (2) 𝑥-positions of magnet forces, 

(3) magnet 𝑧-positions and velocities at magnet force application points (FAPs), 𝑥-positions of gap measurement units (GMUs), magnet 𝑧-positions 
at GMUs, (4) magnet 𝑧-accelerations at GMUs, (5) air gaps and air gap velocities at magnet FAPs, (6) air gaps at GMUs, (7) magnet voltages, 

(8) magnet currents, (9) magnet forces, (10) nodal forces and torques, (11) 𝑥-position of front end car body. For more details see [7]. 
 

 

Fig. 7.  Deflection of a single guideway element at mid span versus 

position of the foremost magnetic force for various velocities. 
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overshoots and oscillations approximately represent a step 

response of the system. That means, higher vehicle speeds 

result in stronger overshoots and oscillations of the beam 

inducing vibrations to the vehicle. Therefore, higher guideway 

stiffness is recommended to simplify the control task for such 

high velocities. However, this increases the effort for guideway 

production, which emphasizes the necessity of a tradeoff 

between acceptable effort and acceptable guideway elasticity 

still manageable by the control scheme. 

B. Control Accuracy and Magnet Vibration 

The second aspect analyzed is the air gap control accuracy 

and the magnet motion at three different positions along the 

vehicle and for different velocities. Both quantities must be 

considered together, because the control task is a compromise 

between keeping the air gap in a safe range and at the same time 

reducing the magnet motion to improve the ride comfort. The 

first row of Fig. 8 shows the relative air gap control error 

∆𝑠/𝑠des = (𝑠meas− 𝑠des)/𝑠des at the rear end, in the middle, 

and at the front end of the vehicle, respectively, with the 

measured air gap 𝑠meas  and the desired air gap 𝑠des . In the 

second row, the normalized absolute magnet motion 𝑧/𝑧nom is 

plotted with the nominal magnet 𝑧-position 𝑧nom being at 𝑠des 

below the undeformed beam. 

Both the air gap control error and the phase shift of the 

magnet motion with respect to the guideway deflection grow 

with increasing vehicle speed at all three considered positions. 

One reason for this is more severe oscillations of the beam as 

observed in Fig. 7. Another effect to be observed is that the 

largest air gap control errors occur at the vehicle’s rear end, 

while the best control accuracy is reached at the front. A similar 

image is drawn by the magnet motion, which is smallest at the 

vehicle front. This effect can be explained by looking at the 

guideway deflection at the respective positions along the 

vehicle. While the vehicle front always enters an undeflected, 

resting beam, the magnets in the middle and at the rear end enter 

a deformed and oscillating beam. Thus, the difference of the 

slopes of adjacent beams is smaller at the vehicle front meaning 

a more severe kink for the controller to deal with at the middle 

and at the rear end. Besides, the absolute guideway deflection 

is smaller at the vehicle front, since it still increases while the 

vehicle front passes the beam. Therefore, the vehicle rear end 

seems to be the most critical part regarding potential contact of 

vehicle and guideway, because there the biggest deviations 

from the desired air gap occur. Nevertheless, the air gaps are 

still in a safe range even for the simulations with high velocity, 

which confirms the good performance of the MPC control 

scheme used here. 

C. Influence of Guideway Stiffness 

Finally, the influence of the guideway stiffness on the air gap 

control error and the magnet motion is investigated. Therefore, 

Young’s modulus 𝐸  is varied from 75 % to 150 % of the 

reference value 𝐸0 , which represents the first generation of 

concrete guideway at the TVE as used for the simulations 

described previously. In the first row of Fig. 9, the maximum 

relative air gap control error max(|∆𝑠|)/𝑠des corresponding to 

the first row of Fig. 8 is plotted over different vehicle velocities 

at the rear end, middle, and front end of the vehicle. 

Analogously, the second row of Fig. 9 shows the amplitude of 

magnet motion ∆𝑧 = 𝑧max − 𝑧min  with 𝑧max  and 𝑧min  being 

the maximum and minimum, respectively, of the magnet 

𝑧-position as shown in the second row of Fig. 8. The values for 

the combination of 𝑣 = 600 km/h and 𝐸/𝐸0 = 75 % are not 

plotted because the simulation becomes unstable shortly after 

the beginning. 

Due to decreasing guideway deflections for higher stiffness 

values, the maximum air gap control error and the amplitude of 

magnet motion decrease as well with increasing guideway 

 

Fig. 8.  Relative air gap control error and normalized absolute magnet 𝑧-positions at GMUs of magnets at the very rear end, in the middle, and at 

the very front end of the vehicle, respectively. Vertical dashed lines mark the positions where one guideway element ends and the next one begins. 
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stiffness. At the rear end, the effect of elasticity variation on the 

magnet motion is the stronger the higher the vehicle speed is. 

A different behavior can be observed at the front end, where 

elasticity variation has an equal effect for all velocities except 

for 600 km/h, for which the effect is even smaller. The reason 

for this observation lies in the guideway oscillations. While the 

vehicle leaves the beam, the bending decreases and an 

overshoot occurs while the rear end is still on the beam, see 

Fig. 7. Thus, the guideway oscillations are more severe at the 

rear end than in the middle and at the front end.  

VII. CONCLUSIONS 

For high-speed maglev systems, dealing with the dynamic 

bending of the guideway girders of elevated tracks under the 

load of the vehicle is a challenging task for the magnet 

controller. The air gap between vehicle and guideway must be 

kept in a non-critical range to avoid contact. Therefore, stiff 

girders would be preferable to minimize the deflections. 

However, high guideway stiffness brings along increased 

production effort and material consumption. Dynamics 

simulations of traveling high-speed maglev vehicles can 

contribute to address this dilemma and find a tradeoff. 

In this contribution, the concept of moving system 

boundaries is applied and implemented to construct a regularly 

pillared elastic guideway of infinite length. The methods and 

results published in [6] and [7] are summarized here. Hermite 

polynomials are used to obtain guideway deflections at 

arbitrary positions of the girder by interpolating nodal 

coordinates. The same polynomials are used to distribute 

magnetic forces to adjacent nodes by calculating equivalent 

nodal forces and torques. The vehicle is modeled as a two-

dimensional rigid multibody system on the basis of a Transrapid 

vehicle with three sections and 76 mechanical degrees of 

freedom. Together with a physically advanced magnet model 

and a model predictive control scheme ensuring stable 

levitation, vehicle and guideway dynamics are analyzed for 

different vehicle speeds and guideway elasticities. 

In general, the intensity of overshoots and oscillations of the 

guideway girders increases with increasing vehicle velocity 

resulting in stronger air gap control errors and magnet 

vibrations. At the rear end of the vehicle, the largest deviations 

from the desired air gap occur, making it the most critical 

position along the vehicle concerning the control task, which is 

a remarkable result. However, the obtained results are uncritical 

for all simulated scenarios. Investigations regarding stiffness 

variations of the guideway girders show that higher stiffness 

would be advantageous for the dynamic situation all along the 

vehicle. However, its influence is smaller in the middle and at 

the front than at the rear end of the vehicle. 

Due to the modular setup of the presented simulation model, 

further investigations can be done with little effort like 

analyzing the influence of other magnet models, various control 

approaches, or differently parameterized guideway elements. 
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