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Deutsche Zusammenfassung

Strömungs- und Transportprozesse in porösen Medien sind für eine Vielzahl technischer,
geologischer und biologischer Systeme von großer Bedeutung. Die Modellierung und Sim-
ulation dieser Prozesse stellt eine große Herausforderung für die Forschung im Bereich der
Ingenieurwissenschaften, Mathematik und Informatik dar. Ein Grund dafür ist die Tat-
sache, dass Strömungs- und Transportprozesse in porösen Medien in der Regel miteinan-
der gekoppelte Prozesse sind. Die daraus resultierenden Interaktionen zwischen dem
strömendem Fluid (oder den strömenden Fluiden) und dem porösen Medium führen zu
hochgradig gekoppelten Problemen, die die Simulation solch gekoppelter Systeme äußerst
herausfordernd machen. Ein anderer Grund sind die inhärent großen Skalenunterschiede
dieser Probleme und innerhalb des porösen Mediums. Die Kopplungen und Interaktionen
auf einer Längenskala können sich von den Kopplungen und Interaktionen auf einer an-
deren Längenskala stark unterscheiden. Deshalb ist es unumgänglich zu verstehen, welche
Prozesse auf der für eine Anwendung relevanten Skala von Bedeutung sind, wenn man
sich mit der Modellierung und Simulation von Transportprozessen in porösen Medien
beschäftigt.
Die beschriebenen Eigenschaften motivieren die Verwendung von mehrskaligen Ansätzen

für die Modellierung und Simulation dieser Transportprozesse. In dieser Habilitationsschrift
werden verschiedene Mehrskalenmethoden und -ansätze angewandt, um das Verhalten in-
nerhalb poröser Medien zu analysieren und um die Interaktionen zwischen den verschiede-
nen Skalen des porösen Mediums zu verstehen. Die Mehrskalenansätze, die in dieser Arbeit
betrachtet werden, können in vier Kategorien unterteilt werden:

• Transversale Mittelung, die verwendet wird, wenn man mit langen aber dünnen Ge-
bieten arbeitet, um ein dimensionsreduziertes Modell für das wirksame Verhalten
herzuleiten.

• Grenzschichtmethoden, die verwendet werden, um das wirksame Verhalten nahe und
weit entfernt von Singularitäten oder Diskontinuitäten zu adressieren.

• Homogenisierung, die bei lokal-periodischen Problemen verwendet wird, um das wirk-
same Verhalten auf einer größeren Skala zu bestimmen.

• Heterogene Mehrskalenmethoden, die verwendet werden, um numerische
Lösungsverfahren für Modelle, die über zwei (oder mehr) Skalen miteinander
gekoppelt sind, zu entwerfen.

Um die Anwendungen dieser Mehrskalenansätze im Kontext von Transportprozessen in
porösen Medien zu demonstrieren, betrachten wir drei typische Arten von Transportver-
halten, die alle eine wichtige Rolle in den Umweltwissenschaften, der Energieerzeugung
und den Materialwissenschaften spielen. Dabei handelt es sich um mehrskalige parabolis-
che Probleme (Diffusions- bzw. Wärmeleitungsprozesse), Zweiphasenströmungen in porösen
Medien und reaktive Transportprozesse mit heterogenen Reaktionen. Diese drei Arten von

vii



Deutsche Zusammenfassung

Strömung und Transport repräsentieren verschiedene physikalische Prozesse und Interak-
tionen innerhalb des porösen Mediums und sie treten, abhängig von der betrachteten Skala,
auf verschiedene Art und Weise auf. Wenn wir die mehrskaligen parabolischen Probleme
betrachten, dann interessieren wir uns hauptsächlich für die Bestimmung des wirksamen
Diffusions-/Wärmeleitungskoeffizienten auf der großen Skala. Dies erlaubt es, großskalige
Anwendungen zu modellieren und zu simulieren, ohne den Einfluss feinskaliger Prozesse zu
vernachlässigen. Die Modellgleichungen, die die Zweiphasenströmung beschreiben, unter-
schieden sich gravierend, abhängig davon ob die fein- oder großskaligen (bzw. wirksamen)
Prozesse berücksichtigt werden. Im Allgemeinen ist der Zusammenhang dieser zwei Skalen
unbekannt. Im Fall der reaktiven Transportprozesse mit heterogenen Reaktionen inter-
agieren die Strömung und der Transportprozess des gelösten Stoffs mit dem Festkörper des
porösen Mediums. Dies resultiert in einem sich (zeitlich) verändernden porösen Medium.
Wie diese Veränderung auf der Porenskala und deren Einfluss auf die große Skala modelliert
werden, sind große Herausforderungen.
Die Unterschiede zwischen den Prozessen und die damit verbundenen Herausforderungen

motivieren die Betrachtung der folgenden vier Themen in jeweils eigenen Teilen in dieser
Arbeit:

A Mehrskalige parabolische Probleme

B Zweiphasenströmung in porösen Medien

C Reaktiver Transport mit heterogenen Reaktionen

D Verdunstung aus porösen Medien

Die ersten drei Teile bestehen aus jeweils drei Publikationen, die jeweils verschiedene
mehrskalige Aspekte des betreffenden Prozesses betrachten. Der vierte Teil ist insofern
besonders, dass er auf einer einzigen Publikation basiert, bei der die mehrskaligen Aspekte
nicht explizit betrachtet werden. Stattdessen werden Prozesse betrachtet, die in den ersten
drei Teilen behandelt werden, und motiviert so die Verwendung von Mehrskalenansätzen
im Kontext der Verdunstung aus porösen Medien, um den Verdunstungsprozess besser zu
verstehen. Dies wird in der Zusammenfassung und Ausblick weiter diskutiert, s. Kapitel 12.
Alle Publikationen, die in dieser Arbeit inkludiert sind, sind Originalpublikationen. Die jew-
eils veröffentlichenden Fachzeitschriften haben der Wiederverwendung der veröffentlichten
Publikationen in der vorliegenden Arbeit zugestimmt.
Der Teil A beschäftigt sich mit dem wirksamen Verhalten von parabolischen Problemen,

die die Druckverteilung, Diffusion oder Wärmeleitung in porösen Medien beschreiben und
basiert auf den folgenden Publikationen:

• M. Bastidas, C. Bringedal, I. S. Pop, and F. A. Radu. Numerical homogenization of
non-linear parabolic problems on adaptive meshes. Journal of Computational Physics
425 (2021), p. 109903. doi: 10.1016/j.jcp.2020.109903.

• L. Scholz and C. Bringedal. A Three-Dimensional Homogenization Approach for
Effective Heat Transport in Thin Porous Media. Transport in Porous Media 141.3
(2022), pp. 737–769. doi: 10.1007/s11242-022-01746-y.

• C. Bringedal and K. Kumar. Effective Behavior Near Clogging in Upscaled Equations
for Non-isothermal Reactive Porous Media Flow. Transport in Porous Media 120.3
(2017), pp. 553–577. doi: 10.1007/s11242-017-0940-y.
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Deutsche Zusammenfassung

In der ersten Publikation, s. Kapitel 2, betrachten wir eine nichtlineare parabolische
Gleichung. Diese Gleichung könnte den Druck eines ungesättigten Fluids bei Model-
lierung von Strömungen mittels der Richards-Gleichung nach Anwendung der Kirchhoff-
Transformation beschreiben. Andererseits könnte die Gleichung, insbesondere im lin-
earisierten Fall, ebenfalls ein typisches Diffusions- oder Wärmeleitungsproblem beschreiben.
Das Hauptziel dieses Kapitels ist es, ein effizientes und genaues numerisches Verfahren zu
entwickeln, indem adaptive Gitter verwendet werden. Die Gitteradaptivität wird durch
einen lokalen Fehlerschätzer gesteuert. Allerdings ist es durch die Verwendung von feinen
und groben Gittern notwendig, den wirksamen Diffusionskoeffizienten (bzw. die Perme-
abilität im Kontext der Richards-Gleichung) auf den Längenskalen dieser Gitter zu bes-
timmen. Der Startpunkt sind bekannte Informationen auf der feinen Skala und Ho-
mogenisierung zusammen mit einem Algorithmus, der auf heterogenen Mehrskalenmetho-
den basiert, um das numerische Lösungsverfahren zu konstruieren. Eine erwähnenswerter
Punkt ist die Tatsache, dass Homogenisierung im Allgemeinen lokale Periodizität voraus-
setzt, aber die Anwendung der Homogenisierung auf Probleme ohne diese Eigenschaft den-
noch sinnvolle Ergebnisse liefert, wenn man sie mit lokalen Fehlerschätzen und adaptiver
Gitterverfeinerung kombiniert.
In der zweiten Publikation, s. Kapitel 3, betrachten wir Wärmeleitung in einem

dünnen porösen Medium. Der Startpunkt ist ein Modell auf der Porenskala bei dem
Wärmeleitung im sättigenden Fluid mit Wärmetransport durch die festen Körner gekoppelt
wird. Eine solch detaillierte Geometrie numerisch darzustellen, würde sehr feine Rechen-
gitter benötigen, während es unser Ziel ist, Gleichungen herzuleiten, die das wirksame
Verhalten auf der Darcy-Skala beschreiben. Da das poröse Medium dünn ist, wird eine
Homogenisierungsstrategie mit transversaler Mittelung kombiniert, um das Modell auf
der Darcy-Skala herzuleiten. Dies führt zu einem dimensionsreduzierten Modell auf der
Darcy-Skala. Diese angepasste Homogenisierungsprozedur resultiert in Zellproblemen, die
gelöst werden können, um den wirksamen Wärmeleitungskoeffizienten des porösen Medi-
ums zu bestimmen. Die Randbedingungen auf der Ober- und Unterseite des dünnen
porösen Mediums treten auch in den Zellproblemen auf und beeinflussen so den wirksamen
Wärmeleitungskoeffizienten. In diesem Kapitel wird mittels eines numerischen Beispiels
ebenfalls demonstriert, wie gut die Ergebnisse des Modells, das das wirksame Verhalten
beschreibt, den Mittelwert der Ergebnisse auf der Porenskala repräsentieren.
Die dritte Publikation in diesem Teil, s. Kapitel 4, beschäftigt sich mit dem wirk-

samen Verhalten innerhalb eines porösen Mediums, das sich durch heterogene chemis-
che Reaktionen verändern. Somit kombiniert dieses Kapitel Aspekte aus Teil A und
Teil C. Da das Hauptaugenmerk dieses Kapitels auf den wirksamen Parametern Perme-
abilität, Wärmeleitungskoeffizient und Diffusionskoeffizient liegt, ist dieses Kapitel dennoch
Teil von Teil A. Das Kapitel baut auf einem bereits hergeleiteten Zweiskalenmodell auf,
das durch Homogenisierung hergeleitet wurde. Das Zweiskalenmodell koppelt Strömung,
Wärmetransport und den Transport gelöster Stoffe auf der Darcy-Skala mit Zellproble-
men auf der Porenskala, die die zeitliche Veränderung der Porengeometrie durch Min-
eralausfällung und -auflösung berücksichtigen. Dadurch können die Veränderungen der
Permeabilität, des wirksamen Wärmeleitungskoeffizienten und des wirksamen Diffusion-
skoeffizienten auf der Darcy-Skala berücksichtigt werde. Das Ziel diese Kapitels ist die
Untersuchung dieser wirksamen Parameter unter besonderer Berücksichtigung von porösen
Medien die aufgrund der Mineralausfällung nahe dem Zustand der Selbstdichtung sind.
Für simple Kornformen, wie kreisförmige Körner, können die wirksamen Parameter in
Form eines parametrisierten Ausdrucks bestimmt werden. Dies vereinfacht Simulationen
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Deutsche Zusammenfassung

auf der Darcy-Skala signifikant. Wenn solche parametrisierten Ausdrücke anwendbar sind,
kann auf die Verwendung einer heterogenen Mehrskalenmethode verzichtet werden.
Teil B fokussiert sich auf die Bestimmung wirksamer Parameter für Zweiphasen-

strömungen in porösen Medien bei der die Interaktion zwischen den zwei Fluiden auf der
Porenskala berücksichtigt wird. Dieser Teil basiert auf den folgenden Publikationen

• S. Sharmin, C. Bringedal, and I. S. Pop. On upscaling pore-scale models for two-phase
flow with evolving interfaces. Advances in Water Resources 142 (2020), p. 103646.
doi: 10.1016/j.advwatres.2020.103646.

• S. B. Lunowa, C. Bringedal, and I. S. Pop. On an averaged model for immiscible two-
phase flow with surface tension and dynamic contact angle in a thin strip. Studies in
Applied Mathematics 147.1 (2021), pp. 84–126. doi: 10.1111/sapm.12376.

• S. Sharmin, M. Bastidas, C. Bringedal, and I. S. Pop. Upscaling a Navier-Stokes-
Cahn-Hilliard model for two-phase porous-media flow with solute-dependent surface
tension effects. Applicable Analysis (2022), doi: 10.1080/00036811.2022.2052858.

Die erste Publikation dieses Teils, s. Kapitel 5, beschäftigt sich mit Zweiphasenströmung
in einem dünnen Streifen. Solch ein dünner Streifen kann eine einzelne Pore eines porösen
Mediums repräsentieren, aber ist ebenfalls für die Strömung durch Rohre relevant oder
als Grenzfläche zwischen zwei Gebieten. Die zwei Fluide haben eine geschichtete Struk-
tur, d.h. es wird angenommen, dass sich die Grenzfläche zwischen den zwei Fluiden über
die gesamte Länge des Streifens erstreckt. Die Fluid-Fluid-Grenzfläche darf sich durch
die Strömung und die Oberflächenspannung zwischen den zwei Fluiden verändern. Auf-
grund der langen aber dünnen Struktur des betrachteten Gebiets wird das wirksame Ver-
halten mittels transversaler Mittelung entlang des Streifens bestimmt. Die hergeleiteten
wirksamen Modelle sind dementsprechend dimensionsreduziert, da nur die Veränderungen
entlang des Streifen explizit aufgelöst werden müssen. Das Ziel dieses Kapitels ist die Her-
leitung verschiedener Modelle für das wirksame Verhalten, bei der die Größenordnung der
betrachteten Kapillarzahl und das Verhältnis der Viskositäten der Fluide berücksichtigt
werden. Durch die Berücksichtigung der veränderlichen Fluid-Fluid-Grenzfläche sind die
hergeleiteten wirksamen Modelle ähnlich zum erweiterten Darcy-Gesetz, die allerdings von
der Standardform des Darcy-Gesetzes abweichen. Numerische Experimente, die das ur-
sprüngliche zweidimensionale Gebiet auflösen, zeigen, dass das hergeleitete Modell das
transversal gemittelte Verhalten wiedergibt, wenn der Streifen länger und dünner wird.
In der zweiten Publikation, s. Kapitel 6, werden ebenfalls Zweiphasenströmungen in

einem dünnen Streifen betrachtet. In diesem Fall kann eines der Fluide das andere
verdrängen, was dem Fall einer Fluid-Fluid-Grenzfläche quer zum Streifen entspricht. Um
den Fluid-Fluid-Festkörper-Kontaktpunkt zu modellieren, wird ein dynamischer Kontak-
twinkel verwendet. Das wirksame Verhalten kann mittels transversaler Mittelung auss-
chließlich in ausreichender Entfernung von der Fluid-Fluid-Grenzfläche bestimmt wer-
den. Da die Grenzfläche in diesem Kapitel eine Diskontinuität darstellt und das Verhal-
ten dort stark abweicht, verwenden wir Grenzschichtmethoden um diese Interaktionen zu
berücksichtigen. Das Ziel dieses Kapitels ist die Herleitung eines geschlossenen dimension-
sreduzierten Modells für die Strömung durch den dünnen Streifen, das die Wechselwirkun-
gen zwischen den Fluiden bei der Verdrängung des einen durch das andere berücksichtigt.
Dies wird durch die Kombination der transversalen Mittelung und der Grenzschichtmethode
erreicht. Wie in Kapitel 5 finden wir ein wirksames Modell das ähnlich zu dem erweiterten
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Deutsche Zusammenfassung

Darcy-Gesetz ist, aber von der Standardform abweicht. Mit Hilfe des daraus resultieren-
den wirksamen Modells werden wirksame wohlbekannte Eigenschaften wie der dynamische
Kapillardruck oder Hystereseeffekte untersucht.
Die dritte Publikation dieses Teils, s. Kapitel 7, berücksichtigt Zweiphasenströmungen in

einem periodischen porösen Medium. Da keine besonderen Anforderungen an das Auftreten
der Fluid-Fluid-Grenzfläche gestellt werden, wird die Grenzfläche mittels eines Phasenfeld-
modells auf der Porenskala modelliert. Die Periodizität auf der Porenskala ermöglicht
die Herleitung eines Modells für das wirksame Verhalten auf der Darcy-Skala mittels Ho-
mogenisierung. Ziel dieses Kapitels ist die Herleitung eines Zweiskalenmodells, bei dem das
Modell für die Zweiphasenströmung auf der Darcy-Skala von den Zellproblemen auf der
Porenskala zur Bestimmung der wirksamen Parameter abhängt. Wir sind insbesondere an
dem Fall interessiert, bei dem die sich verändernde Fluid-Fluid-Grenzfläche von einer vari-
ierenden Oberflächenspannung zwischen den zwei Fluiden beeinflusst wird. Das hergeleitete
Modell auf der Darcy-Skala hat Ähnlichkeiten mit dem Standardmodell für Zweiphasen-
strömungen in porösen Medien ohne Kapillardruck. Allerdings unterscheidet es sich von
dem Standardmodell durch die Berechnung der wirksamen Parameter durch die Zellprob-
leme auf der Porenskala. Die veränderliche Fluid-Fluid-Grenzfläche wird in diesen Zellprob-
lemen aufgelöst und berücksichtigt so den Einfluss der variierenden Oberflächenspannung.
Ein von den Ideen der heterogenen Mehrskalenmethoden inspiriertes explizites numerisches
Lösungsverfahren für das Zweiskalenmodell wird verwendet, um den Effekt der variierenden
Oberflächenspannung auf der Darcy-Skala zu zeigen.
Teil C befasst sich mit der Modellierung auf der Porenskala, dem Finden des wirksamen

Verhaltens und Zweiskalensimulationen von reaktiven Transportprozessen in porösen Me-
dien. Dabei wird die Veränderung der Porengeometrie aufgrund von Mineralausfällung und
-auflösung berücksichtigt. Der Teil basiert auf den folgenden Publikationen:

• C. Bringedal, L. von Wolff, and I. S. Pop. Phase Field Modeling of Precipita-
tion and Dissolution Processes in Porous Media: Upscaling and Numerical Ex-
periments. Multiscale Modeling & Simulation 18.2 (2020), pp. 1076–1112. doi:
10.1137/19M1239003.

• M. Bastidas Olivares, C. Bringedal, and I. S. Pop. A two-scale iterative scheme for
a phase-field model for precipitation and dissolution in porous media. Applied Math-
ematics and Computation 396 (2021), p. 125933. doi: 10.1016/j.amc.2020.125933.

• M. Kelm, S. Gärttner, C. Bringedal, B. Flemisch, P. Knabner, N. Ray. Compari-
son study of phase-field and level-set method for three-phase systems including two
minerals. Computational Geosciences (2022). doi: 10.1007/s10596-022-10142-w

Die erste Publikation dieses Teils, s. Kapitel 8, beschäftigt sich mit reaktiven Trans-
portprozessen bei denen das gelöste Mineral das Fluid verlassen und so zu einem Feststoff
ausfällen kann. Gleichzeitig ist das feste Mineral in dem Fluid löslich und kann so gelöstes
Mineral an das Fluid abgeben. Die veränderliche Fluid-Festkörper-Grenzfläche wird mittels
eines Phasenfeldmodell auf der Porenskala modelliert. Es wird ein neues Phasenfeldmod-
ell, das die Fluidströmung in Kombination mit Mineralausfällung und -auflösung erlaubt,
formuliert. Die Verifikation erfolgt mittels numerischer Experimente und dem Vergleich
mit dem Grenzzustand mit infinitesimaler Grenzflächendicke des Phasenfeldmodell. Durch
die Verwendung von Grenzschichtmethoden wird gezeigt, dass sich das hergeleitete Mod-
ell für den Grenzzustand größtenteils zu dem erwarteten physikalische Modell vereinfacht.
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Deutsche Zusammenfassung

Es bleibt nur die zusätzliche induzierte Bewegung durch die Krümmung des Phasenfeld-
modells erhalten, die ein inhärenter Bestandteil von Phasenfeldmodellen ist. Anschließend
wird das Phasenfeldmodell für ein periodisches Gebiet auf der Porenskala formuliert, um
Homogenisierung anwenden zu können. Das Ziel dieses Kapitels ist nicht nur die For-
mulierung und Untersuchung des neuen Phasenfeldmodells für reaktive Transportprozesse,
sondern ebenfalls die Herleitung eines Zweiskalenmodells bei dem das wirksame Modell
für den reaktiven Transportprozess auf der Darcy-Skala die geometrischen Veränderungen
durch Mineralausfällung und -auflösung auf der Porenskala berücksichtigen kann. Das re-
sultierende Modell hat die gewünschte zweiskalige Struktur, bei der die Zellprobleme auf
der Porenskala die sich verändernde Porengeometrie auflösen, so dass damit die wirksamen
Parameter für das Modell auf der Darcy-Skala bestimmt werden können.
In der zweiten Publikation, s. Kapitel 9, wird das Zweiskalenmodell aus Kapitel 8 mit-

tels einer heterogenen Mehrskalenmethode implementiert. Das Ziel ist die Konstruktion
eines effizienten, robusten und genauen numerischen Lösungsverfahrens, welches das Ver-
halten auf der Darcy-Skala auflöst und dabei die Informationen von der Porenskala über
die Lösung der in Kapitel 8 hergeleiteten Zellprobleme berücksichtigt. Dies wird durch die
Verwendung eines iterativen Verfahrens mit zwei Arten von Adaptivität sichergestellt. Die
Zellprobleme auf der Porenskala und das Problem auf der Darcy-Skala hängen voneinan-
der ab, aber werden mittels eines partitionierten iterativen Ansatzes gelöst. Der Konver-
genzbeweis des Verfahrens zeigt, dass die Konvergenz ausschließlich milde Bedingungen
an die verwendete Zeitschrittweite und die verwendeten Parameter des Phasenfeldmod-
ells hat. Zur Effizienzsteigerung wird Gitteradaptivität auf der Porenskala verwendet und
gleichzeitig wird adaptiv entschieden, welche der Zellprobleme in einem Zeitschritt gelöst
werden müssen. Die zweite Art der Adaptivität führt zu großen Einsparungen bezogen auf
die benötigte Rechenzeit bei nur geringer Abnahme der Simulationsgenauigkeit.
Die dritte Publikation dieses Teils, s. Kapitel 10, berücksichtigt die Modellierung und

Simulation von reaktiven Transportprozessen bei dem sich zwei verschiedene Mineralien
auflösen und ausfällen können. Dies entspricht einem Dreiphasenproblem bei dem die nu-
merische Simulation sehr anspruchsvoll ist. Das Ziel dieses Kapitels ist der Vergleich von
zwei verschiedenen Ansätzen zum Lösen dieses anspruchsvollen Problems: Level-Sets und
Phasenfelder. Beide Ansätze müssen an das Problem angepasst werden, um dreiphasige
Probleme behandeln zu können. Um die drei Phasen und die zugehörigen Grenzflächen
unterscheiden zu können, wird die Level-Set Gleichung mit Indikatorfunktionen gekoppelt.
Das Phasenfeldmodell verwendet einen ternären Phasenfeldansatz bei dem drei Phasen-
feldgleichungen (je eine für jede Phase) miteinander gekoppelt werden. Durch die Ver-
wendung von Grenzschichtmethoden wird gezeigt, dass sich das Phasenfeldmodells für den
Grenzzustand mit infinitesimaler Grenzflächendicke zu dem erwarteten physikalischen Mod-
ell vereinfacht. Es bleibt nur die zusätzliche induzierte Bewegung durch die Krümmung
des Phasenfelds. Obwohl das Phasenfeldmodell eine höhere Effizienz bezogen auf den
Rechenaufwand hat und masseerhaltend ist, leidet die Qualität der Approximation der
korrekten zeitlichen Veränderung der drei Phasen aufgrund der durch die Krümmung in-
duzierten Bewegung. Insbesondere die korrekte Repräsentation von Kanten ist schwierig.
Die Berechnung von wirksamen Koeffizienten wie den Diffusionskoeffizienten oder der Per-
meabilität auf der Darcy-Skala mittels Homogenisierung zeigen, dass die effektiven Param-
eter für beide Ansätze gut miteinander übereinstimmen.
Teil D beschäftigt sich mit der Verdunstung von salzhaltigem Wasser aus einem porösen

Medium, bei dem der Gradient der Salzkonzentration durch die Verdunstung zu Dichtein-
stabilitäten führt. Dieser Teil basiert auf der folgenden Publikation:
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Deutsche Zusammenfassung

• C. Bringedal, T. Schollenberger, G. J. M. Pieters, C. J. van Duijn, R. Helmig.
Evaporation-Driven Density Instabilities in Saturated Porous Media. Transport in
Porous Media (2022). doi: 10.1007/s11242-022-01772-w.

Diese Publikation, s. Kapitel 11, ist durch Versalzung und deren potentiell großen Umwel-
teinfluss motiviert. Bei Böden, die mit salzhaltigem Wasser gesättigt sind, induziert die
Verdunstung von Wasser eine Ansammlung von Salz in den oberen Erdschichten, da das
Salz bei der Verdunstung im Boden verbleibt. Wenn der Salzgehalt in diesen Schichten
wächst, dann wird die Löslichkeitsgrenze von Salz in Wasser unvermeidlich erreicht und es
bildet sich eine Salzkruste an der Oberfläche und der Boden versalzt. Allerdings ist der
Zustand mit salzhaltigerem Wasser an der Oberfläche gravitationsbedingt instabil, da das
salzhaltigere Wasser eine höhere Dichte hat als das restliche Wasser. Dies kann wiederum zu
Dichteinstabilitäten führen. Diese Dichteinstabilitäten können zu einem Transport von Salz
weg von der Oberfläche in tiefere Erdschichten verursachen, wodurch die Salzkonzentration
an der Oberfläche insgesamt abnimmt und somit die Salzausfällung an der Oberfläche ver-
hindert wird. Das Ziel dieses Kapitels ist die Untersuchung der Anfangszeiten zu denen
die Dichteinstabilitäten beginnen aufzutreten und zu analysieren, ob diese Instabilitäten
die Salzausfällung verhindern. Dies wird mittels einer linearen Stabilitätsanalyse und nu-
merischen Simulationen erreicht. Die Anfangszeiten liegen bei realistischer Wahl der Pa-
rameter je nach Permeabilität im Bereich von Stunden bis Tagen, während das Salz auch
bei Instabilitäten noch ausfallen kann, da sich die Instabilitäten nur langsam entwickeln,
was deren Stärke betrifft. Es wird in diesem Kapitel eine vereinfachte Analyse auf der
Darcy-Skala durchgeführt. Nichtsdestotrotz sind die Prozesse auf der Porenskala für die
Interaktion zwischen Wasser (flüssig) und Luft (gasförmig) auf der Porenskala des porösen
Mediums und für die Veränderung der Porengeometrie durch die Salzausfällung auf der
Porenskala relevant. Wie man die Analyse durch die Integration von Mehrskalenansätzen
weiter verbessern kann, wird in Kapitel 12 vorgestellt.
Im abschließenden Kapitel dieser Arbeit, s. Kapitel 12, werden die wichtigsten Erkennt-

nisse zusammengefasst und weitere Ideen für weiterführende Forschung für alle Problem-
typen und Mehrskalenansätze, die in dieser Arbeit diskutiert werden, vorgestellt.
Bevor die jeweiligen Publikationen in den folgenden Kapiteln im Detail vorgestellt wer-

den, wird zunächst in Kapitel 1 ein Überblick über die verschiedenen Anwendungen, die
verschiedenen Skalen und die zugehörigen Modelle dieser Arbeit gegeben. Außerdem wer-
den die verwendeten Mehrskalenansätze erläutert und die Verbindungen zwischen den ver-
schiedenen Kapiteln im Bezug auf den Inhalt und die Bedeutung der dort verwendeten
Mehrskalenansätzen erläutert.
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Summary

Flow and transport processes in porous media are important for several technical, geological
and biological systems. Modeling and simulation of such processes pose many challenges
for research in the fields of engineering, mathematics and computer science. One reason for
this is that flow and transport processes in porous media are generally coupled processes,
where the interactions between the flowing fluid (or fluids) and the porous medium give
rise to highly coupled problems. Another reason is the large difference in scales inherent in
these processes and in the porous medium itself. Couplings and interactions at one scale
can be different than at another scale. Hence, understanding which processes are relevant
at the scale of interest is a vital question when dealing with modeling and simulation of
transport processes in porous media.
These aspects motivate the use of multiscale approaches for modeling and simulating

these transport processes. In this habilitation thesis, several types of multiscale methods
and approaches are applied to analyze behavior within the porous medium and to un-
derstand the interaction between different scales of the porous medium. The multiscale
approaches considered in this thesis can be divided into four categories:

• Transversal averaging, which is applied when dealing with long and thin domains to
find a dimensionally reduced model for effective behavior.

• Boundary-layer methods, which are applied to address effective behavior close to and
far away from a singularity or discontinuity.

• Homogenization, which is applied to locally periodic problems to find the effective
behavior at a larger scale.

• Heterogeneous multiscale methods, which are applied to design numerical schemes
for models coupled over two (or more) scales.

To be able to demonstrate the application of these method in the context of transport
processes in porous media, we consider three main types of transport behavior, that all play
an important role in environmental sciences, energy supply and material sciences. These are
multiscale parabolic problems (diffusion/conduction processes), two-phase porous-media
flow, and reactive transport with heterogeneous reactions. These three forms of flow and
transport represent different physics and interactions within the porous medium, and they
manifests themselves differently depending on the scale in question. For the multiscale
parabolic problems, we are mainly concerned with finding effective diffusion/conduction
coefficients that are valid at larger scales in order to be able to model and simulate large-
scale applications, while still accounting for the influence from small-scale processes. Two-
phase flow problems rely on completely different model equations depending on whether
the smaller pore scale or a larger, effective scale is considered, and the connection between
these scales is generally not clear nor well understood. In the case of reactive transport
with heterogeneous reactions, the fluid flow and transport of solute interact with the solid
part of the porous medium, resulting in an evolving porous medium. How to model this
evolution at the pore scale and its influence on the larger scale are challenging tasks.
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These differences in processes and connected challenges motivate the consideration of the
following parts of the thesis:

A Multiscale parabolic problems

B Two-phase porous-media flow

C Reactive transport with heterogeneous reactions

D Evaporation from porous media

The first three parts consist of three publications each, all addressing various multiscale
aspects of the process in question. The fourth part stands out as only containing one
publication and by not considering any multiscale aspects explicitly. However, this last
part addresses processes treated in all the three first parts, which motivates the use of
multiscale approaches also for this context for increased understanding. These aspects are
further discussed in the Conclusion and outlook of this thesis, which is found in Chapter 12.
All publications included in this thesis are the original publications, where the respective
journals have granted permission to re-use the published work in this thesis.
Part A focuses on effective behavior of parabolic problems, representing pressure distri-

bution, diffusion or heat conduction in porous media. This part is based on the publications

• M. Bastidas, C. Bringedal, I. S. Pop, and F. A. Radu. Numerical homogenization of
non-linear parabolic problems on adaptive meshes. Journal of Computational Physics
425 (2021), p. 109903. doi: 10.1016/j.jcp.2020.109903.

• L. Scholz and C. Bringedal. A Three-Dimensional Homogenization Approach for
Effective Heat Transport in Thin Porous Media. Transport in Porous Media 141.3
(2022), pp. 737–769. doi: 10.1007/s11242-022-01746-y.

• C. Bringedal and K. Kumar. Effective Behavior Near Clogging in Upscaled Equations
for Non-isothermal Reactive Porous Media Flow. Transport in Porous Media 120.3
(2017), pp. 553–577. doi: 10.1007/s11242-017-0940-y.

In the first publication, corresponding to Chapter 2 of this thesis, we consider a non-
linear parabolic equation. This equation could represent the fluid pressure in the context
of modeling unsaturated flow with Richards equation, after applying the Kirchhoff trans-
formation. However, the equation can, in particular in the linearized case, also represent a
standard diffusion or heat conduction problem. The main goal of this chapter is to design
an efficient and accurate numerical scheme by using adaptive meshes. The mesh adaptivity
is based on a local error estimate. However, the use of coarse and fine meshes raises the
need to find the effective diffusion coefficient (or permeability, in the context of Richards
equation) on the scales represented by these meshes. The starting point is known fine-scale
information, and homogenization together with an algorithm based on heterogeneous mul-
tiscale methods are used to design the numerical algorithm. An interesting point is that,
although homogenization generally relies on local periodicity, applying it to problems not
having this property is still found to give reasonable results when combined with local error
estimates and mesh adaptivity.
In the second publication, corresponding to Chapter 3 of this thesis, we consider heat

transport through a thin porous medium. The starting point is a pore-scale model, where
heat transport in the saturating fluid is coupled with heat transport through the solid
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grains. To discretize such a detailed geometry to perform numerical simulations, would
require very fine meshes. The goal of this chapter is to instead derive effective equations
allowing a description of the heat transport on the Darcy scale. Since the porous medium
is thin, a homogenization strategy combined with transversal averaging is applied to derive
the Darcy-scale model. Hence, a dimensionally reduced Darcy-scale model is found. This
adapted homogenization procedure results in cell problems that can be solved to find the
effective heat conductivity of the porous medium. The boundary conditions of the top
and bottom boundary of the thin porous medium appear in the cell problems, and hence
influence the effective heat conductivity. This chapter also shows how well the results of
the effective model represents the average of the results from the original pore-scale model
through a numerical example.
The third publication in this part, found in Chapter 4, concerns effective behavior in

a porous medium that is evolving due to heterogeneous chemical reactions, and hence
combines aspects found in Part A and in Part C. Since the main focus of this chapter is on
the behavior of the effective parameters permeability, solute diffusion and heat conductivity,
the chapter is still placed in Part A. The chapter builds on a previously derived two-scale
model which has been found by homogenization. The two-scale model couples Darcy-
scale flow, solute transport and heat transport, with pore-scale cell problems accounting
for the evolution of the pore-scale geometry due to mineral precipitation and dissolution,
which results in changes of the permeability, effective diffusion coefficient and effective
heat conductivity at Darcy scale. The goal of this chapter is to investigate the behavior
of these effective parameters, in particular in the case when the porous medium is close
to clogging due to mineral precipitation. For simple grain shapes, for example circular,
the effective parameters can be found in terms of parametrized expressions, which highly
simplifies numerical simulations at the Darcy scale. When such parametrized expressions
are applicable, a heterogeneous multiscale scheme is not needed.
Part B focuses on finding effective behavior of two-phase flow, where the interaction

between the two fluids at the pore scale is accounted for. This part is based on the
publications

• S. Sharmin, C. Bringedal, and I. S. Pop. On upscaling pore-scale models for two-phase
flow with evolving interfaces. Advances in Water Resources 142 (2020), p. 103646.
doi: 10.1016/j.advwatres.2020.103646.

• S. B. Lunowa, C. Bringedal, and I. S. Pop. On an averaged model for immiscible two-
phase flow with surface tension and dynamic contact angle in a thin strip. Studies in
Applied Mathematics 147.1 (2021), pp. 84–126. doi: 10.1111/sapm.12376.

• S. Sharmin, M. Bastidas, C. Bringedal, and I. S. Pop. Upscaling a Navier-Stokes-
Cahn-Hilliard model for two-phase porous-media flow with solute-dependent surface
tension effects. Applicable Analysis (2022), doi: 10.1080/00036811.2022.2052858.

The first publication of this part, corresponding to Chapter 5, addresses two-phase flow
in a thin strip. Such a thin strip can represent a single pore in a porous medium, but is also
relevant for flow through pipes or as an interface layer between two compartments. The
two fluids have a layered structure, which means that interface between the two fluids is
assumed to be stretching along the strip. The fluid-fluid interface is still allowed to evolve
due to the flow and surface tension between the two fluids. The goal of this chapter is to
derive different effective models depending on which regime in terms of capillary number
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and viscosity ratio between the fluids is considered. Since the domain is a long, thin
structure, transversal averaging across the strip is used to find the effective behavior. The
derived effective models are hence dimensionally reduced as only variability along the strip
has to be explicitly resolved. Due to the incorporation of the evolving fluid-fluid interface,
the derived effective models are similar to extended Darcy’s law for two-phase flow, but
with a non-standard form. Numerical experiments resolving the original two-dimensional
geometry show that the effective models can capture the transversally averaged behavior
as the strip becomes thinner and longer.

In the second publication, corresponding to Chapter 6, two-phase flow in a thin strip is
again considered. In this case, one fluid phase displaces the other, which corresponds to
the fluid-fluid interface is stretching across the strip. As before, the fluid-fluid interface
can evolve due to the flow and surface tension. A dynamic contact angle is used to model
the fluid-fluid-solid contact point. Transversal averaging can only be applied to derive
the effective behavior in regions away from the fluid-fluid interface. Since the interface
here represents a discontinuity in the system and quite different behavior is found near
the interface, boundary-layer methods are applied to handle these interactions. The goal
of this chapter is to find a closed, dimensionally reduced model for the flow through the
thin strip, accounting for the interactions between the fluids as one displaces the other.
This is achieved by combining transversal averaging with boundary-layer methods. As in
Chapter 5, an effective model similar to an extended Darcy’s law is found, but with a
non-standard form. The resulting effective model is used to investigate effective properties
that are well-known for two-phase porous-media flow, like dynamic capillary pressure and
hysteretic effects.

The third publication of this part, corresponding to Chapter 7, considers two-phase flow
in a periodic porous medium. Here, no special restrictions are placed on the appearance
of the fluid-fluid interface and is therefore modeled with a phase-field equation on the
pore scale. The periodicity of the pore-scale structure allows to use homogenization to
derive a model for the effective behavior at Darcy scale. The goal of this chapter is to
derive a two-scale model, where the Darcy-scale model equations for the two-phase porous-
medium flow rely on local pore-scale cell problems to calculate effective parameters. In
particular, we are here interested in the case when the evolving fluid-fluid interface is
influenced by a varying surface tension between the two fluids. The derived Darcy-scale
equations show similarities with standard two-phase porous-medium flow models without
capillary pressure, but separates by calculating effective parameters via pore-scale cell
problems. In these cell problems, the evolving fluid-fluid interface is resolved, capturing
the influence of the varying surface tension. An explicit numerical scheme of the two-scale
model, inspired by the ideas of heterogeneous multiscale methods, is applied to show the
effect of the varying surface tension at the Darcy scale.

Part C focuses on pore-scale modeling, finding effective behavior, and two-scale simula-
tions of reactive transport in porous media, where the pore-scale geometry evolves due to
mineral precipitation and dissolution. This part is based on the publications

• C. Bringedal, L. von Wolff, and I. S. Pop. Phase Field Modeling of Precipita-
tion and Dissolution Processes in Porous Media: Upscaling and Numerical Ex-
periments. Multiscale Modeling & Simulation 18.2 (2020), pp. 1076–1112. doi:
10.1137/19M1239003.

• M. Bastidas Olivares, C. Bringedal, and I. S. Pop. A two-scale iterative scheme for
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a phase-field model for precipitation and dissolution in porous media. Applied Math-
ematics and Computation 396 (2021), p. 125933. doi: 10.1016/j.amc.2020.125933.

• M. Kelm, S. Gärttner, C. Bringedal, B. Flemisch, P. Knabner, N. Ray. Compari-
son study of phase-field and level-set method for three-phase systems including two
minerals. Computational Geosciences (2022). doi: 10.1007/s10596-022-10142-w

The first publication in this part, corresponding to Chapter 8, addresses reactive trans-
port, where solute transported in the fluid can leave the fluid and precipitate as solid
mineral, and mineral can dissolve and hence release solute to the fluid. The evolving fluid-
solid interface is modeled with a phase-field equation at the pore scale. A new phase-field
model allowing for fluid flow in combination with mineral precipitation and dissolution
is formulated. The model is verified against its sharp-interface limit, and numerically by
comparing with available benchmarks. By applying boundary-layer methods, the sharp-
interface limit is found to reduce to the expected sharp-interface physics, with the exception
of curvature-driven motion. The presence of such curvature-driven motion is an inherent
part of phase-field models. The phase-field model is then formulated in a pore-scale do-
main, which is periodic. Then, homogenization can be applied. The goal of this chapter
is not only to formulate and investigate a new phase-field model for reactive transport,
but also to find a two-scale model where the effective Darcy-scale model for reactive trans-
port can incorporate the pore-scale geometrical changes due to the mineral precipitation
and dissolution. The resulting model derived by homogenization has this desired two-scale
structure, where pore-scale cell problems resolve the evolving pore-scale geometry and pro-
vide effective parameters to the Darcy-scale model equations.
In the second publication, corresponding to Chapter 9, the two-scale model from Chap-

ter 8 is implemented using a heterogeneous multiscale method. The goal is to obtain an
efficient, robust and accurate numerical algorithm that resolves the Darcy-scale behavior
by incorporating information from the pore scale through the solutions of the derived cell
problems from Chapter 8. This is achieved by applying an iterative scheme with two forms
of adaptivity. The pore-scale cell problems and Darcy-scale model equations depend on
each other, but are solved using a partitioned, iterative approach. The convergence of the
scheme is proved with only mild restrictions on the time-step size and on the phase-field
parameters. For increased efficiency, mesh adaptivity at the pore scale is applied, and also
adaptivity in terms of which cell problems are to be solved. The latter adaptivity offers
a large gain in terms of reduced computational costs, with only relatively minor loss of
accuracy.
The third publication of this part, corresponding to Chapter 10, considers modeling and

simulation of reactive transport where two different minerals can dissolve and precipitate.
This corresponds to a three-phase problem, which is challenging to simulate. The goal of
this chapter is to compare two possible approaches for this challenging setting, namely level
sets and phase fields. Both approaches need adaptions to handle such a three-phase setting.
To be able to separate the different phases and interfaces, the level-set equation is coupled
with indicator functions. The phase-field model is using a ternary phase-field approach,
where three phase-field equations (one for each phase) are coupled to each other. Using
boundary layer methods, the sharp-interface limit of the phase-field model reduces to the
expected sharp-interface physics, but with additional curvature-driven motion. Although
the phase-field model is computationally more efficient and is also mass conservative, it
struggles to capture the correct evolution of the phases due to this curvature-driven motion.
Especially corners are difficult to represent properly. By applying homogenization, effective
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properties as Darcy-scale diffusion and permeability, are found to still compare well between
the two approaches.
Part D concerns evaporation of saline waters from porous media, where density instabili-

ties develop due to the gradient in solute concentration, which is caused by the evaporation.
This part is based on the publication

• C. Bringedal, T. Schollenberger, G. J. M. Pieters, C. J. van Duijn, R. Helmig.
Evaporation-Driven Density Instabilities in Saturated Porous Media. Transport in
Porous Media (2022). doi: 10.1007/s11242-022-01772-w.

This publication, which corresponds to Chapter 11, is motivated by soil salinization,
which has a potentially large environmental impact. For soils saturated with saline water,
evaporation of the water induces accumulation of salt near the upper parts of the soil as
salts stay behind during the evaporation. If the salt concentration continues to build up,
the solubility limit will eventually be reached, causing a salt crust and soil salinization.
However, as this setting is also gravitationally unstable with saltier, denser waters on top
of less dense water, density instabilities can develop. These density instabilities have the
potential to give a net downwards transport of salt, avoiding salt to precipitate. The goal
of this chapter is to investigate the onset times for when density instabilities can start
to develop, and whether they can hinder salt precipitation. This is achieved by applying
linear stability analysis and numerical simulations. Onset times are for realistic parameter
choices found to be in the range of hours to days depending on the permeability, while salt
is found to still potentially precipitate even if instabilities occur, as the instabilities develop
slowly in terms of strength. In this chapter, a simplified Darcy-scale analysis is performed.
However, pore-scale processes are relevant - both in terms of the interaction between water
and air phases on the pore scale of the porous medium, and in terms of the evolution of
the pore-scale geometry due to salt precipitation. How to further improve this analysis by
integrating multiscale approaches is discussed in Chapter 12.
In the final chapter of this thesis, Chapter 12, we summarize the main findings and

discuss directions of further research for all the types of problems and multiscale approaches
addressed in this thesis.
Before we present the different publications to more detail in the following chapters, we

first give in Chapter 1 an overview of the applications addressed by this thesis, as well as the
considered scales and model equations. Furthermore, we explain the multiscale approaches
that are applied in the respective chapters, and it is shown how the different parts and
chapters are connected in terms of content and the role of the multiscale approaches.
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1 Introduction

Porous media appear inside fuel cells, in the subsurface and in the human body. Flow and
transport processes in porous media therefore play a role for several technical, biological,
environmental and everyday applications - from medical treatment to enhanced oil recovery
and development of renewable energies. Especially in the subsurface, transport processes
through porous media are important, see Figure 1.1. In this figure, several applications
are highlighted, where transport of heat, solutes and fluids through the subsurface plays a
role. Some of these applications will be addressed to greater detail in this thesis. We will
especially focus on geothermal energy (point 6 in Figure 1.1) and soil salinization, which is
related to groundwater flow (point 7 in Figure 1.1).

Figure 1.1: Sketch of subsurface applications, where transport processes in porous media
are relevant. The following applications are highlighted: 1. Oil and gas produc-
tion. 2. CO2 storage. 3. CO2 utilization and storage. 4. Wastewater disposal.
5. Hydrogen, methane and energy storage. 6. Geothermal energy production.
7. Groundwater flow. 8. Supercritical geothermal energy. Figure by Center for
Modeling of Coupled Subsurface Dynamics (CSD).
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1 Introduction

In the following, we highlight challenges and possibilities for three different applications
all depending on transport through porous media: geothermal energy, soil salinization, and
fuel cells.

Geothermal energy Geothermal energy is an environmentally friendly energy which uti-
lizes the thermal energy stored in the earth’s crust. The subsurface becomes gradually
warmer with depth, which is quantified through the geothermal gradient. There are sev-
eral ways to utilize this thermal energy, and we highlight here energy production by using
two wells: one injection well where cold water is injected, and one production well where
warm water is produced, as highlighted in point 6 in Figure 1.1. The temperature differ-
ence between the injected and produced water corresponds to an energy gain, which can
be converted to electricity or used directly for heating purposes. Geothermal energy can be
produced independent of weather conditions and is associated with low emissions per pro-
duced kWh compared to natural gas, oil and coal [39]. According to [14], the total installed
capacity of geothermal used for electricity in 2015 was 12.7 GW, with a forecasted capacity
of 21.4 GW for 2020 (numbers from 2016). The reported long-term targets add up to 140
GW in 2050, which is estimated to be 8.3% of the total world electricity production [14].
The main part of the production is located in hotspots, with Philippines, New Zealand,
USA, Mexico, Italy, Iceland and Kenya being the largest producers. Although much of the
production occurs near continental rift zones where the geothermal gradient is larger than
average, geothermal energy can also be utilized in other regions by drilling deeper or by
enhanced geothermal systems [97].

In order to quantify the potential heat production of a geothermal reservoir, understand-
ing the fluid flow and heat transport processes in the subsurface porous medium is vital.
Mathematical and numerical modeling of the interaction between flow and heat transport
are therefore important in geothermal energy research. In particular, when cold fluid is
injected into the subsurface, and is gradually heated as it flows through the porous domain
towards the production well, chemical reactions play a role. Precipitation and dissolution
of minerals as anhydrite, calcite, silica and quartz are known to cause the porosity and
permeability of the geothermal reservoir to change [74, 96, 109, 113, 117]. See Figure 1.2
for an illustration. The mineral precipitation and dissolution are to a large extent caused
by the solubility of these minerals being temperature-dependent [81]. Hence, there is an
interaction between the fluid flow, heat transfer and chemical reactions within geother-
mal reservoirs. Understanding these processes and especially their large-scale influence on
the flow and transport through geothermal reservoirs is essential within geothermal energy
research.

Soil salinization Groundwater in the subsurface is usually located near the upper parts
of the underground, see point 7 in Figure 1.1. The groundwater can be saline, which can
be due to marine influence in coastal regions, or due to natural or anthropogenic terrestrial
reasons [106]. The latter types are typical in regions with climatic conditions supporting
large evaporation rates, but low amount of groundwater flushing (e.g. low amount of rain
and horizontal groundwater flow) that could transport salts dissolved in the groundwater
away [118]. As water evaporates to the atmosphere, salts accumulate near the top of the
porous medium as they stay behind during evaporation. See Figure 1.3 for an illustration
of involved processes that can influence soil salinization and salt precipitation. In soils,
soil salinization has a large environmental impact as it hampers plant growth and affects
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Figure 1.2: Illustration of flow (arrows) through a geothermal field from the cold injection
well (blue line) to the warmer production well (red line). The injected fluid
gradually heats up as it flows, but replaces fluid that was initially warmer. The
inlets at the right show a zoomed-in view of how mineral (in green) can change
the pore-scale porous geometry as it precipitates or dissolves.

biological activities [29]. High salinity in the water can also affect the photosynthesis of
plants as the salinity causes stress for the plants [25].

Figure 1.3: Illustration of involved processes for evaporation causing soil salinization and
salt precipitation in the upper part of soil. Figure from [54]. Reprinted with
permission from Springer.

In arid regions, soil salinization has a major impact on agricultural activities [68, 92].
According to [106], 24 030 million km2 around the globe have a significant likelihood of
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1 Introduction

groundwater salinity at shallow and intermediate depths, where evaporation of shallow
groundwater is a cause for around 20% of these. To analyze such processes in the sub-
surface, one has to model the interplay between the groundwater flow and connected salt
transport by the groundwater. Due to the evaporation, also air (and vapor) flows through
the upper parts of the porous medium, influencing the groundwater flow. In this case,
the flow is unsaturated [95]. Also, as the water evaporates and causes the salt concentra-
tion to increase, the salt can eventually reach its solubility limit and precipitate. The salt
precipitation can create a salt crust at the top of the soil, creating a barrier to the atmo-
sphere as the soil is clogged [54], see Figure 1.4. However, the setting with saltier water
located above water that is less salty, is gravitational unstable. Hence, density instabilities
in the form of fingers can be triggered and potentially cause a net downwards transport
of salt [114, 115]. Hence, behind the process of soil salinization, there are several coupled
porous-media transport processes that influence each other.

Figure 1.4: Illustration of how salt (green) precipitates at the top of the soil due to evapo-
ration. Figure from [54]. Reprinted with permission from Springer.

Fuel cells A significant amount of glocal CO2 emissions come from traffic. Hence, finding
alternative power technologies with less emissions can have a large, positive impact. One
possibility is the use of fuel cells. Fuel cells operating on hydrogen do not generate any
CO2 emissions as the only exhaust products are air and water. Hydrogen still needs to be
produced, which comes with some emissions [10]. However, the overall CO2 emissions from
hydrogen fuel cells compared to traditionally fueled cars and trucks are very low [53]. There
are different types of fuel cell technologies. They all rely on letting hydrogen react with
oxygen to create electricity (and water), but operate under different conditions, affecting
their efficiency but also applicability. We here focus on Proton Exchange Membrane (PEM)
fuel cells, which operate at temperatures of 60-100◦C, are less efficient than other fuel cell
technologies, but they can vary the generated power quickly and are hence amendable for
transportation purposes [88]. Inside a PEM fuel cell, hydrogen and oxygen from air react in
a two-step reaction. In the anode, hydrogen (H2) splits into two H+ cations, which are also
known as protons, and two electrons. The protons can go through the membrane, while the
electrons have to go around, generating a current. On the cathode side, oxygen (O2) reacts
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Figure 1.5: PEM fuel cells. Left: example of larger fuel cell stack, consisting of several
towers of fuel cells on top of each other (middle). Right: one single PEM fuel
cell, where oxygen (via air) and hydrogen are supplied via gas channels (blue
and red horizontal arrows). On the anode side, H+ cations can to through the
membrane (blue layer), while electrons go around. On the cathode side, they
react with oxygen to create water, which then has to be transported away in
the air gas channel. Figure from Bosch, with support from C. Michalkowski.

with four H+ cations and four electrons, to create water (H2O), which is in liquid form. See
Figure 1.5. On the cathode side, oxygen (typically in the form of air) has to be supplied,
while liquid water has to be removed. This takes places in the same gas channel, which is
connected to the cathode through a porous medium, known as the gas diffusion layer. See
Figure 1.6 for a sketch. Water has to be removed fast enough to not flood the fuel cell and
cut off air supply. Hence, we have a two-phase flow problem both in the porous medium,
and in the gas channel [8]. The water management of PEM fuel cells is quite essential for
their performance and much effort is placed in the design of the porous medium and the
gas channel for optimal water management [66, 78]. However, especially inside the porous
medium, the behavior of this two-phase flow is sensitive to the description of wettability

channel

liquid
water

gas

Figure 1.6: Two-phase flow processes in the gas channel on the cathode side. Left: water
droplets emerging in the gas channel from the gas diffusion layer (GDL), which
is connected to the cathode (green). Figure adapted from [71] with support
from C. Michalkowski. Right: two possible two-phase flow scenarios in the
connected gas channel, where an increased amount of water (blue) appears in
the form of droplets, alternatively as a layer. Figure from [3].
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and capillary pressure [4, 71]. In the gas channel, one has two-phase flow in a long, narrow
domain, which is also challenging to model [3, 70].

These applications motivate the study of transport processes in porous media. The focus
of this thesis is mainly on multiscale aspects of such processes. This introductory chapter
presents an overview of the modeling and multiscale concepts used in this thesis. We
first discuss why multiscale models and simulations are beneficial when addressing porous-
media transport processes in Section 1.1. Then, an overview of the model equations at
the considered scales are presented in Section 1.2. Afterwards we present the multiscale
approaches that are applied in this thesis to bridge the gap between the various scales in a
porous medium in Section 1.3. Finally, in Section 1.4 a detailed overview of the structure
of the thesis is given. Here, we describe the main motivation, approach and contribution
of the publications included in the thesis.

1.1 Why use multiscale models and simulations for
transport processes in porous media?

We are in this thesis concerned with the flow of one or several fluids filling a porous
medium, and the transport of chemical components and heat through the porous medium.
This thesis addresses the following three main forms of flow and transport through porous
media:

• Diffusive/conductive transport, which can be modeled by a parabolic problem.

• Two-phase flow, where two immiscible fluids interact with each other.

• Reactive transport, where a fluid transports one or more chemically reactive solutes
which can cause the structure of the porous medium to change.

These different types of transport processes come with different challenges, and we are here
mainly concerned with multiscale aspects to model and simulate such processes. Before
going further into detail of these three transport processes, we first discuss some general
aspects of scales in porous media.
A porous medium is inherently scale dependent. A porous medium can, in the simple

case, be characterized as a medium consisting of solid space and void space, where the void
space in our case will be filled with one or more fluids. However, the behavior of these
processes differ depending on which scale one considers. We will mainly address the pore
scale and the so-called Darcy scale, and we will in the following explain what is meant with
these two scales. The pore scale considers a detailed view of the porous medium, meaning
that one considers and models the detailed geometric structure where the solid and fluid-
filled void space can be separated and hence be seen as separate domains. Transport
processes occurring in each domain (e.g. within fluid and solid, or within each of the fluids
for two-phase flow) can be formulated using partial differential equations defined on the
different domains. The pore scale hence allows for highly detailed models, and therefore
highly detailed simulations of the relevant processes. Typical length scales at the pore scale
are in the order of magnitude 10−6 − 10−3 m, see Figure 1.7 for an overview. However,
this also means that a very fine grid is needed to resolve the detailed processes at the pore
scale. The inlets at the right part of Figure 1.2 and of Figure 1.3, and the illustration in
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Field scale REV scale Pore scale Molecular scale

[m - km] [mm - m] [�m - mm] [nm]

Figure 1.7: Overview of scales and related length scales. The field and REV scale will
be commonly called Darcy scale. In this thesis we are mainly concerned with
Darcy and pore scale. Figure inspired by [50].

Figure 1.4 are both examples of pore-scale domains, since the fluid and solid domains are
explicitly separated. Also the gas channels in Figure 1.6 can be seen as a form of pore scale
in the sense that void and solid space are explicitly separated.

Unfortunately, for most practical applications, simulating a pore-scale model for the
entire domain of interest is not feasible due to the large computational costs. In stead
one can use models that rather take an averaged approach. The idea is that behavior
at the pore scale can be averaged over an representative elementary volume (REV). This
gives rise to the name REV scale, which is the scale where such averages can be defined
in a meaningful manner. Since only averages are used, detailed behavior from the pore
scale is no longer available. The porous medium at REV scale can hence not be separated
into solid and void space explicitly, but can only be described through averaged quantities
such as the void fraction within an REV; the porosity. Variables are also only available as
averaged quantities, e.g. the average fluid velocity through the REV. Hence, at REV scale
one deals with one averaged domain representing both fluid(s) and solid space within the
REV. Processes at REV scale are formulated using partial differential equations for the
averaged variables using averaged parameters. How large an REV is, and hence what a
typical length scale on the REV scale is, depends on the structure of the porous medium
and the considered process. Typical length scale are around 10−3 m to 1 m, as highlighted
in Figure 1.7. This means that for a simulation at the REV scale, a much coarser grid
compared to the pore scale can be applied. However, this comes with the cost of not being
able to resolve detailed information anymore as only averaged behavior can be found. If
averaging over the inlets of Figure 1.2 or Figure 1.3, or over each of the three columns in
Figure 1.4, an REV is obtained. That means, in a REV-scale simulation, each of these
REVs are represented as one grid cell, where one porosity and one averaged velocity are
used to represent the behavior within it.

Although the REV scale can be up to meters, one would in certain applications - typically
for subsurface applications like geothermal energy and groundwater flow - be interested in
domains ranging for several kilometers. In this case, averaged approaches for even larger
scales are to be considered. This larger scale is called field scale when stretching beyond
meters, as highlighted in Figure 1.7. In Figure 1.1, Figure 1.2 and Figure 1.3, a field-scale
view is taken as the domains in question typically range several kilometers. The field scale

7



1 Introduction

is similar to the REV scale in the sense that averaged behavior is sought. But where
the REV scale typically addresses the smallest possible scale where an averaged behavior
can be defined, the focus of the field scale is to use a scale amendable for simulations of
large-scale applications. However, the model equations at the REV and field scales would
generally be the same, but with different values for averaged parameters to model the
averaged behavior at their scale. For single-phase fluid flow, both would apply Darcy’s law
for the average flow rate through the porous medium. In Darcy’s law, the average flow
rate is proportional to the average pressure gradient, where the proportionality constant is
equal to the porous medium’s permeability divided by the fluid viscosity. The permeability
is a measure of the porous medium’s ability to transmit fluid. Hence, the value of the
permeability would typically vary between the REV scale and the field scale. At the field
scale, averaged permeabilities at a coarser grid are used. However, since Darcy’s law can
be applied at both scales, the REV and field scales are often commonly called the Darcy
scale. In this thesis, we will generally use the phrase Darcy scale when we refer to a porous
domain where an averaged view is taken and Darcy’s law can be applied to describe the
flow. Hence, Darcy scale can refer to either the REV scale or the field scale depending on
the considered length scale.

The Darcy scale is much more amendable for modeling and simulating practical appli-
cations compared to the pore scale, due to its efficiency by considering averaged quantities
and variables. However, detailed information about the pore-scale processes is potentially
lost when considering a pure Darcy-scale model. This can lead to inaccurate or wrong
models and simulation results when pore-scale processes affect the Darcy-scale behavior.
How that can happen for the above-mentioned transport processes, we will highlight in the
following.

Parabolic problems Diffusive or conductive transport processes are relevant in a wide
range of applications in porous media [12]. Such processes can describe the diffusive re-
distribution of temperature or a solute concentration as described by the traditional heat
equation [48], but can also model the pressure distribution at the Darcy scale in the case of
single-phase and multi-phase flow [46]. The common factor between these different appli-
cations and processes is that they can be described with a (linear or non-linear) parabolic
equation. The overarching question is what a suitable value for the effective diffusion (or,
equivalently, conduction) coefficient is.

The case of Darcy-scale single-phase or multi-phase fluid flow can be modeled through a
parabolic equation with the (averaged) fluid pressure as variable. In this parabolic equation,
the diffusion coefficient is the permeability tensor. The permeability itself depends on
the local pore-scale geometry, where wider, well-connected pore channels typically lead
to larger permeabilities than narrow channels. When considering subsurface flow, we can
use a permeability field to model the flow at Darcy scale. Due to heterogeneities in the
subsurface, the resulting permeability fields are typically highly varying, see Figure 1.8 for
an example.

Due to the fine-scale information in the permeability field, a very fine grid is needed
to resolve it. However, to consider larger Darcy-scale domains, one would want to find
permeabilities of larger batches of the porous medium and rather use a coarser grid. This
corresponds to taking the step from REV to field scale, and is relevant for understanding the
large-scale flow in e.g. geothermal and groundwater applications (cf. Figure 1.1). Finding
a suitable averaged permeability at a larger scale or grid becomes the problem that we
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Figure 1.8: The subsurface (left) can be represented by a highly varying permeability field
(center and right). The permeability fields shown here are from the SPE tenth
comparative solution project [26].

here wish to address. Hence, which permeability represents the averaged flow well, when
considering larger domains and coarser grids? This problem of upscaling permeabilities is a
common problem for many reservoir simulators and has hence resulted in many approaches
for estimating these [112]. A typical benchmark for upscaling permeabilities is found in
the SPE tenth comparative solution project [26], which is the permeability field shown in
Figure 1.8.

These types of questions for finding parameters at larger scales are not only relevant
in the context of highly varying permeability fields, but also for heterogeneous materials
where the diffusion coefficient is highly varying. The role of both the permeability and
the diffusion coefficient is that they appear in a diffusive term of parabolic equations, and
therefore similar strategies can be used to find their averaged counterparts at a larger
scale. In both cases, the goal of the averaging is to find an averaged diffusion parameter
that allows simulation on a coarser grid.

In the case of heat conduction at the pore scale, one typically has a given heat conduc-
tivity of the saturating fluid, and a given heat conductivity of the solid grains. At the
interfaces between fluid and grain, there is a discontinuity in the heat conductivity, but
continuity of the heat flux and also typically of temperature. The temperature gradient is
hence discontinuous at the pore scale, leading to an overall complex behavior of the tem-
perature inside the porous medium. To simulate such a system, a very fine grid resolving
all fluid-solid interfaces would be necessary, e.g. as shown in the inlets at the right part
of Figure 1.2. If one is mainly interested in the overall heat conductivity of a larger part
of the porous medium, it is more beneficial to rather consider an averaged approach and
hence rely on coarser grids. In this case, one would consider an effective heat conductivity
of the porous medium, and correspondingly an averaged temperature as variable. Hence,
for an inlet in Figure 1.2, only one temperature and one effective heat conductivity would
be used to model the heat transport for that batch of domain. Ideally, the average of the
complexly varying pore-scale temperature corresponds to the one found through an aver-
aged approach using an effective heat conductivity. This however depends on how well the
effective heat conductivity represents the averaged behavior of the pore-scale conductive
processes. If a good choice of effective heat conductivity can be found, this allows for fast
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Figure 1.9: Two-phase flow in a pore-scale geometry. Solid glass beads are shown in white,
while one fluid is red and the other fluid is transparent. Note that these two
snapshots are from the same location in the porous medium but due to the
flow, the fluid-fluid interfaces move locations.

simulations of larger domains as a much coarser grid can be considered, see e.g. discussion
in [75, Chapter 2].

Two-phase flow Two-phase porous-media flow is relevant for applications as enhanced oil
recovery (water or gas displaces oil), CO2 storage (CO2 injected into brine), and fuel cells
(water and air on the cathode side) [4, 48]. Here, a clear difference in the behavior at pore
and Darcy scale can be found. At the pore scale, one can identify and explicitly describe
the fluid-fluid interface separating the two fluids, as seen in Figure 1.9. Also in Figure 1.4,
two-phase flow at the pore scale is seen, as air penetrates the porous medium while water
evaporates. In Figure 1.6, two-phase flow at the pore scale of the porous GDL is found,
and there is two-phase flow in the gas channel. As the fluids flow, the fluid-fluid interface
deforms due to the flow itself and due to the surface tension between the fluids. This results
in a highly coupled process where the flow of the two fluids interacts not only with the
solid pore walls, but also with each other. These processes are generally well understood
at the pore scale, and can be modeled with well-known partial differential equations in
evolving domains, with coupling conditions on the evolving fluid-fluid interface. However,
simulations of such models are extremely expensive, especially due to the need of resolving
the evolving fluid-fluid interface.
At the Darcy scale, one has no information about the location or behavior of the fluid-

fluid interface and hence has no means to describe it nor its influence on the flow. Instead,
one has to rely on averaged quantities and variables, which in the case of two-phase flow
is mainly the saturation; the volume fraction of one of the fluids inside the REV or within
the field-scale grid cell. Typically, one relies on models describing the relative permeability
and the capillary pressure as functions of the saturation. The relative permeability and
capillary pressure are averaged quantities that should represent the averaged behavior as
the fluids flow through the porous medium. However, finding these averaged quantities is
not straightforward, and it is not clear whether they are suitable to describe the averaged
behavior [11]. However, when a suitable Darcy-scale model can be found, it is possible to
perform simulations on much coarser grids, hence one is able to cover much larger domains.
That means, for e.g. field-scale CO2 storage (cf. Figure 1.1) and evaporation of groundwater
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Figure 1.10: Sketch of flow through pore-scale geometries, where precipitated mineral (in
green, right) changes the possible flow paths.

where air penetrates the soil (cf. Figure 1.3), large-scale simulations can be made when a
Darcy-scale approach can be applied.

Reactive transport The transport of solutes through porous media appears in many
applications, for example within contaminant transport and groundwater management,
geothermal energy and CO2 storage [48]. We are here particularly interested in settings
where the solutes can react with each other and precipitate in form of solid minerals [32],
which in turn can also dissolve to release solutes back to the fluid. Reactive transport
with mineral precipitation and dissolution is common where large concentrations of solute
in the saturating liquid are present (e.g. due to evaporation from porous media as high-
lighted in Figure 1.4), or where temperature variability affects the solubility of the minerals
(e.g. during geothermal energy production as highlighted in Figure 1.2).

As in the case of two-phase flow, one has a clear difference in the behavior at pore and
Darcy scale, although this time due to an evolving fluid-solid interface. At the pore scale,
the mineral precipitation or dissolution causes the location and amount of solid grains and
fluid-filled void space to change with time. Hence, the interface between fluid and solid
evolves as the mineral precipitates or dissolves. This corresponds to the available space
for fluid to flow through changes with time. Flow paths can also clog or new can open,
as illustrated in Figure 1.10. Such models are relatively well understood at the pore scale,
although less straightforward due to the need to describe the mass transfer across the fluid-
solid interface. Simulations can again be very expensive due to the need to resolve this
evolving interface.

At the Darcy scale, the location or behavior of the evolving fluid-solid interface is not
available, and one must again rely on averaged quantities and variables; in this case the
porosity and absolute permeability of the porous medium. However, the porosity and
permeability of the porous medium change with time as minerals precipitate and dissolve,
in an a-priori unknown manner. As the porosity is mainly a volume balance, this one can
easier be estimated through reaction rates. The permeability on the other hand depends
also on the local pore-scale geometry. Empirical models to estimate the permeability from
the porosity exist; see [50] for an overview, with the most popular one being the Kozeny-
Carman relation [24, 57]. However, if not fitted based on measurements [94], this relation
generally gives bad estimates of the actual permeability [108]. When a suitable Darcy-
scale model can be found, simulations of larger porous domains are possible. That means,
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simulations of geothermal reservoirs, incorporating the permeability changes (cf. Figure 1.2)
and of salt crust formation in a larger groundwater reservoir (cf. Figure 1.3) are possible
when a Darcy-scale approach can be applied.

As highlighted above, pore-scale processes can have a significant influence on the averaged
Darcy-scale transport. Although the relevant processes can be described accurately at the
pore scale, the use of pore-scale simulations for larger domains quickly becomes unfeasible.
Although a Darcy-scale simulation is in this case to be preferred, there are two potential
problems: (i) It is often not known what a suitable Darcy-scale model would be; (ii) It is
simply not possible to use a Darcy-scale model only as pore-scale quantities and variables
would still need to be resolved to capture the averaged behavior correctly. Both these
aspects can be resolved through the use of multiscale approaches. For the first problem,
an averaged description can be derived from the (known) pore-scale model equations by
using averaging approaches such as transversal averaging, boundary-layer methods and
homogenization. These methods have the ability to derive what the averaged or effective
behavior is, and how the pore-scale processes influence this behavior. For the second
problem, a model addressing both the Darcy and the pore scale needs to be considered.
Such a model can be found through homogenization, and can be simulated by applying
a heterogeneous multiscale method. By applying a heterogeneous multiscale method to
simulate such a model, one gets both the benefit of having a fast simulation of the averaged
behavior at the Darcy scale, but also the ability to incorporate relevant influence from the
processes at the pore scale. These methods will be further explained in Section 1.3. First
we give an overview of the mathematical background of the pore and Darcy scales, and the
model equations describing the considered transport processes.

1.2 Overview of model equations at pore and Darcy scale

As discussed in the previous section and highlighted in Figure 1.7, there are several scales
with different types of dominant behavior in a porous medium. In this thesis we are
concerned with the pore and the Darcy scale, which are sketched in Figure 1.11. In the
following, we mainly focus on describing the processes at the pore scale, which are generally
well understood since the processes in the fluid and solid spaces can be described as separate
domains. We also present standard Darcy-scale models and focus on their limitations in
the context of single-phase and two-phase flow, reactive transport and heat transport.

1.2.1 Pore scale

In this section, we give an overview of pore-scale model equations to describe the transport
processes considered in this theses. The model equations are organized in the categories
fluid flow, reactive transport and heat transport, and approaches to model evolving fluid-
fluid and fluid-solid interfaces. These model equations represent the starting point for
multiscale approaches and will throughout this thesis be used to derive Darcy-scale or
multiscale models that represent the averaged behavior. Since we are interested in processes
that typically have low flow rates, assumptions to simplify the model equations will be made
where relevant. For simplicity, we will neglect the presence of gravity in the presentation of
the governing equations, but including the influence of gravity is generally straightforward.
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Figure 1.11: Sketch of porous medium. Left: Darcy scale, where an averaged view is taken
and only averaged information can be obtained (here represented by stripes).
Right: Pore scale, where a more detailed approach is possible, and solid and
fluid phases can be separated and modeled explicitly.

With pore scale we mean the zoomed-in view of the porous medium, where fluid-filled
void space and solid grain space can be explicitly separated and hence be considered as
separate domains of the porous medium, as highlighted in the right part of Figure 1.11. Note
that we still deal with a continuum scale, hence length scales should be significantly longer
than those at molecular scale, as highlighted in Figure 1.7. Hence, we can use a continuum
approach to describe processes within one fluid (or within several fluids in the case of
two-phase flow) and within the solid grain separately, and also interactions between these
phases in terms of boundary conditions between the various domains. We will throughout
this section denote the fluid-filled void space Ωf and the solid grain space Ωs. In the
case of reactive transport with mineral precipitation and dissolution, the locations of these
domains will change with time and are hence time-dependent. The interface between void
space and solid will be denoted Γ. In the case of two-phase flow, Ωf is divided into two

disjoint subdomains denoted Ω
(1)
f and Ω

(2)
f , corresponding to each of the two fluid phases.

In this case, the fluid-fluid interface between Ω
(1)
f and Ω

(2)
f is denoted Γf . See Figure 1.12

for an overview of these domains at the pore scale.

In the following we present the governing model equations to describe fluid flow, reactive
transport and heat transport in the void space (and for heat transport also in the grain
space). In the end, we discuss models for how to describe evolving fluid-fluid and fluid-solid
interfaces.

Fluid flow

The flow of a Newtonian fluid is modeled by the Navier-Stokes equations, which describe
the conservation of mass and momentum of the fluid:

∂tρf +∇ · (ρfv) = 0 in Ωf ,

∂t(ρfv) +∇ · (ρfv ⊗ v) +∇ · (pI) = ∇ ·
(
µ(∇v +∇vT )

)
− 2

3
∇ ·

(
µ(∇ ·v)I

)
in Ωf .

Here, v is the fluid velocity, ρf and µ are the density and viscosity of the fluid, respectively,
and p is the fluid pressure. We use I to denote the identity matrix. Note that in the case
of constant fluid density and viscosity, these equations can be simplified. Also, since one
generally considers creeping flow, corresponding to low Reynolds numbers (Re < 1), the
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Figure 1.12: Notation used for domains at the pore scale. Left: Fluid-filled void space Ωf

in white, while solid space Ωs is gray and green. Right: Fluid-filled void space
is divided into two subdomains Ω

(1)
f in dark blue, and Ω

(2)
f in light blue, while

solid space Ωs is in gray.

momentum equation could be replaced with the Stokes equation. In this case,

∇ ·v = 0 in Ωf ,

∇ · (pI) = µ∇ · (∇v) in Ωf .

Typically one uses no-slip boundary conditions at the fluid-solid interface. This corresponds
to the tangential component of the fluid velocity being zero on Γ, but is often written as
both tangential and normal components of the fluid velocity being zero. However, the latter
corresponds to a no-penetration boundary condition. In the case of the fluid-solid interface
moving (due to mineral precipitation and dissolution), the normal component of the fluid
velocity is generally non-zero on Γ but depends on the normal velocity of the fluid-solid
interface vΓn and the difference in fluid and mineral densities [103]. Hence, for the fluid
velocity we apply

v · tΓ = 0 on Γ,

v ·nΓ = 0 or v ·nΓ = vΓn
ρf − (n1 + n2)ρm

ρf
on Γ,

where tΓ and nΓ represent the unit tangential and normal vectors of Γ, respectively, with
nΓ pointing into the solid. Further, ρm is the mineral density, and n1, n2 are the number of
cations and anions in one mineral molecule. This latter condition is a Rankine-Hugoniot
jump condition and hence conserves the amount of mass as solutes leave the fluid phase to
rather become part of the solid phase, or the other direction. However, if fluid velocities
are larger than the normal velocity of the interface, this condition is often simplified to
v ·nΓ = 0. This corresponds to not accounting for the volume changes caused by the
reaction [103].

In the case of two-phase flow, each of the two fluids can be modeled by the Navier-Stokes
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equation in their respective domain. Using (i) with i = 1, 2 as superscript to denote the
two fluids, and considering for simplicity incompressible flow and constant viscosities, we
have:

∇ ·v(i) = 0 in Ω
(i)
f ,

ρ
(i)
f (∂tv

(i) + v(i) ·∇v(i)) +∇ · (p(i)I) = µ(i)∇ · (∇v(i)) in Ω
(i)
f .

For two-phase flow, the no-slip condition at the fluid-solid interface will lead to a singularity
at the fluid-fluid-solid contact point. Hence, it is necessary to use a slip condition [52]:

(
v(i) + λL(∇v(i) +∇v(i)T )nΓ

)
· tΓ = 0 on Γ(i), (1.1)

v(i) ·nΓ = 0 on Γ(i),

in the case of no mineral precipitation and dissolution. Here Γ(i) denotes the part of Γ facing
Ω

(i)
f , and λL is a slip length. On the fluid-fluid interface, additional boundary conditions are

needed. When not allowing any mass transfer between the two fluids (e.g. no evaporation),
there is continuity of the velocity and of tangential stress, while the normal stress has a
jump due to surface tension:

v(1) = v(2) on Γf , (1.2)

−(p(1) − p(2))nf +
(
µ(1)(∇v(1) +∇v(1)T )− µ(2)(∇v(2) +∇v(2)T )

)
nf = σκnf on Γf , (1.3)

where nf refers to the unit normal vector on the fluid-fluid interface, σ is the surface tension
between the two fluids and κ is the local mean curvature of the interface. Note that the first
condition implicitly means that the normal velocity of the fluid-fluid interface vfn coincides
with the velocity of both fluids on this interface. Secondly, note that from the second
condition one generally has that there is a pressure jump between the two fluids on the
fluid-fluid interface, which is related to the curvature of the interface and the jump of the
viscous stress. Such a pressure jump is sometimes referred to as a local/pore-scale capillary
pressure. Additionally, a contact angle law is needed for the fluid-fluid-solid contact point,
see Figure 1.13. A linear model arising from molecular kinetics theory relates the dynamic
contact angle θ with a static dynamic contact angle θs [15]:

cos(θ(vfn)) = cos(θs)− ηCa vfn, (1.4)

where vfn is the normal velocity of the fluid-fluid interface at the contact point to the solid,
η is a dynamic parameter and Ca the capillary number. How to enforce the contact angle θ
depends on the description of the evolving fluid-fluid interface and is therefore not specified
here.

Reactive transport

The concentration of a solute cj dissolved in a fluid is transported through advection and
diffusion within the fluid:

∂tcj +∇ · (cjv) = ∇ · (Dj∇cj) +Rj in Ωf ,
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Figure 1.13: Illustration of contact angle θ at the fluid-fluid-solid contact point.

or correspondingly in Ω
(i)
f and using v(i) in the case of two-phase flow and the solute is

solvable in fluid phase i. Here, Dj is the diffusion coefficient of the solute, and Rj is a
reaction rate for homogeneous reactions appearing within the fluid phase, which depends
on the concentration of the other solutes appearing in the fluid. One needs to consider
one of these advection-diffusion equation for each solute appearing in the fluid. We are
here mainly concerned with reactions occurring on the interface between fluid and solid,
which are called heterogeneous reactions as they concern two different phases. For these
heterogeneous reactions, we focus on the case of single-phase flow only. In particular,
we want to model mineral precipitation and dissolution, where solutes in the fluid are
then either disappearing or released. For example, in the case of calcite precipitation and
dissolution we have the reaction

Ca2+(aq) + CO2−
3 (aq) ⇋ CaCO3(s),

where (ag) and (s) indicate dissolved in aqueous phase or as solid phase. In this reaction, one
cation and one anion (n1 = n2 = 1) leave the liquid to form one solid mineral molecule, or
the other direction. The mineral itself can be modeled by a constant mineral concentration:

ρm = constant in Ωs.

Note that the amount of mineral is hence measured by the size of Ωs, which changes with
time. However, the concentration of the mineral itself is considered a constant as it is seen
as an incompressible solid phase. Note that another approach to account for the amount
of mineral is through surface concentrations, which then vary with the amount of mineral
[99]. In this case, the fluid and solid spaces do not vary with time. Such models are suitable
as long as the amount of mineral volume does not change significantly. Here we do account
for the fluid and solid spaces varying with time, and we therefore account for the transfer
of ions across the fluid-solid interface using a Rankine-Hugoniot boundary condition:

(cjv −Dj∇cj) ·nΓ = (cj − ρm)v
Γ
n on Γ. (1.5)
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The normal velocity of the interface can be connected to the reaction rate of the mineral
precipitation and dissolution reaction:

vΓn = − 1

ρm
f(cj) on Γ, (1.6)

where f(cj) is the net mineral precipitation rate and is hence negative if dissolution takes
place. This reaction rate is connected to the solubility of the considered mineral; solute
concentrations larger than the solubility limit lead to net precipitation, and concentrations
below the solubility limit lead to net dissolution.

Heat transport

For the heat transport we here consider a simplified approach where temperature of the
phase is sufficient to express the heat of the phase, through the density and specific heat
capacity. This is valid when considering single-phase flow with low velocities and neglecting
melting/freezing and evaporation/condensation [62]. In the fluid phase, the heat is then
transported through advection and conduction:

∂t(ρfcp,fTf ) +∇ · (ρfcp,fTfv) = ∇ · (kf∇Tf ) in Ωf .

Here, cp,f and kf are the specific heat capacity and heat conductivity of the fluid, respec-
tively, while Tf denotes the temperature of the fluid phase. The specific heat capacity and
heat conductivity are considered to be material constants. The solid phase can transport
heat through heat conduction, hence

∂t(ρscp,sTs) = ∇ · (ks∇Ts) in Ωs.

Here, cp,s and ks are the specific heat capacity and heat conductivity of the solid, respec-
tively, while Ts denotes the temperature of the solid phase. We here use ρs to express the
density of the solid phase, which is for simplicity considered to be the same as the mineral
density ρm in the case of mineral precipitation and dissolution models. At the interface
between fluid and solid, we consider continuity of the heat flux and local thermal equilib-
rium. The latter corresponds to temperatures Tf and Ts being the same on the interface
Γ and is sometimes referred to as pore-scale thermal equilibrium. However, the continu-
ity of heat flux must be expressed by a Rankine-Hugoniot boundary condition in the case
of the fluid-solid interface moving due to mineral precipitation and dissolution. The two
conditions are expressed as

(ρfcp,fTfv − kf∇Tf + ks∇Ts) ·nΓ = vΓn(ρfcp,fTf − ρscp,sTs) on Γ,

Tf = Ts on Γ.

Note that the first condition reduces to the usual continuity of the heat flux when vΓn = 0,
which corresponds to no mineral precipitation and dissolution. In either case, this condition
ensures the conservation of heat as heat is transferred between the fluid and solid phases.

Evolving interfaces

To describe evolving fluid-fluid or fluid-solid interfaces there are two main approaches that
are applied in this thesis: either the interfaces can be considered as sharp interfaces or as
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diffuse transition zones. The model equations considered so far have implicitly assumed
the evolving fluid-solid or fluid-fluid interfaces to be sharp; that is, there is an identifiable
surface (in 3D) or line (in 2D) where interface conditions between the two domains are
formulated. One typically has discontinuities at each side of the interface, e.g. in terms of
material properties like heat conductivities or densities. In the case of diffuse interfaces,
one has instead a smooth transition between the parameters and processes occurring at
each side of the transition zone. Hence, discontinuities are smoothed out, and boundary
conditions are incorporated into the model equations themselves. Hence, in the case of
diffuse transition zones, one does not consider separate model equations for what happens at
each side of the (diffuse) interface, but consider common model equations for the combined
domain. In the case of two-phase flow, that means only one equation is used to described
the conservation of momentum for the mixture of the two fluids, defined in the combined
domain Ωf = Ω

(1)
f ∪ Ω

(2)
f ∪ Γf , which is then not changing with time. Hence, the interface

conditions on the evolving interface are also incorporated into the single model equation.

Although diffuse interfaces are physically meaningful at a molecular level, where one
typically sees that the molecules of two phases mix in a transition zone, the diffuse in-
terfaces considered in this thesis are only to be seen as a mathematical approximation.
That is, the diffuse-interface width is too large to have a physical meaning. Such diffuse-
interface models are approximations of the “real” sharp-interface physics. One typically
requires that as the width of the diffuse transition zone approaches zero, one should be
able to recover the corresponding sharp-interface model formulation. This can be done us-
ing matched asymptotic expansions, which are discussed in Section 1.3.2. The benefits of
using a diffuse-interface model are twofold: First of all, by having a smooth interface, one
avoids discontinuities which can be challenging to handle both in analysis and numerically.
Secondly, by using model equations that are defined in domains that are not evolving in
time, numerical implementation as well as homogenization (cf. Section 1.3.3) are simpli-
fied. However, by using a diffuse-interface model, one should keep in mind that the model
equations are then approximations. Diffuse interfaces introduce curvature-driven motion
of the evolving interface, which is not necessarily physical, as will be visible in particular
in Chapters 8 and 10 of this thesis.

If formulating a sharp-interface model, one needs an equation for modeling the evolution
of the interface. In the general case, this can be done with a level set LS [77]. Then the
interface is implicitly defined as the points where LS(t,x) = 0. Hence, in the case of the
evolving fluid-fluid interface, one has

LS(t,x) =





< 0 if x ∈ Ω
(1)
f (t),

0 if x ∈ Γf (t),

> 0 if x ∈ Ω
(2)
f (t).

The level set itself is defined in the entire domain and evolves according to the level-set
equation

∂tLS + vfn∥∇LS∥ = 0 in Ωf .

The fluid-fluid interface velocity vfn corresponds to the fluid velocities at Γf and the level-set
equation is hence coupled to the Navier-Stokes equations for the two fluids through equation
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1.2 Overview of model equations at pore and Darcy scale

(1.2). A contact angle boundary condition at the solid wall can be included through [64]

nΓ ·
∇LS

∥∇LS∥
= − cos θ on Γ.

Correspondingly, for an evolving fluid-solid interface, the level set is

LS(t,x) =





< 0 if x ∈ Ωf (t),

0 if x ∈ Γ(t),

> 0 if x ∈ Ωs(t).

The evolution of the level set follows the same level-set equation as above, but this time
defined in Ω = Ωf ∪ Ωs ∪ Γ, which is fixed in time, and now using the fluid-solid interface
normal velocity vΓn . Here, v

Γ
n is connected to the reaction rate through equation (1.6) and

is through this reaction rate coupled to the advection-diffusion equations of the solutes.

The level-set approach can in general model complex shapes, but can be challenging to
implement and to incorporate in upscaling procedures. If one knows that the evolving inter-
face follows a simpler evolution, special cases of the level set can instead be used to simplify
the approach. For example, if the evolving interface is always circular, corresponding to
having e.g. a mineral of a certain radius, one has (in 2D)

LS(t,x) = (R(t))2 − x21 − x22.

Here, x = (x1, x2) and R(t) is the radius. For a layer of a certain width d(t, x1), a level set
corresponding to

LS(t,x) = d(t, x1)− x2 (1.7)

can be used. In these cases, R(t) or d(t, x1) is instead used as the unknown variable, and
the level-set equation can be rewritten into an equation for this unknown.

For diffuse interfaces, we will consider two different types of phase-field equations: Allen-
Cahn and Cahn-Hilliard. In both cases, the phase-field variable ϕ approaches a certain
equilibrium value in one phase, and another in the other phase, but has a smooth transition
between them, see Figure 1.14. The Allen-Cahn equation [7] is a second-order diffusion
equation with a non-linear source term, which can be written

∂tϕ = − γ

λ2
P ′(ϕ) + γ∇2ϕ.

Here, P (ϕ) = 8ϕ2(1 − ϕ)2 is the double-well potential, ensuring that ϕ approaches the
stable equilibria 0 and 1. The diffusion term ensures a smooth transition between these
two. Further, λ and γ are phase-field parameters, where λ controls the width of the diffuse
interface, and γ the equilibration time of the phase-field evolution. Note that the phase-
field equation is defined in both domains it represents, and on the interface between them.
In the case of a phase field representing fluid and solid, and chemical reactions influence
the evolution of the fluid-solid interface, an additional source term is added:

∂tϕ = − γ

λ2
P ′(ϕ) + γ∇2ϕ− 4

λ
ϕ(1− ϕ)

f(cj)

ρm
in Ω. (1.8)

In this formulation, ϕ → 1 corresponds to fluid, and ϕ → 0 to mineral, while the reaction
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Figure 1.14: Illustration of phase-field variability (green line) as it crosses an interface be-
tween two phases (white and blue) along the black, dotted line.

rate either increases or decreases the amount of fluid/mineral depending on the sign of the
reaction rate. Note that the factor 4

λ
ϕ(1− ϕ) ensures that the reaction rate is only active

in the transition zone for ϕ between 0 and 1, and is scaled such that the correct surface
area is estimated.

The Cahn-Hilliard equation [23] is a fourth-order non-linear diffusion equation, which
can be written

∂tϕ = mλ∇2ψ, ψ = σ̂
(1
λ
P ′(ϕ)− λ∇2ϕ

)
.

Here, ψ is known as the chemical potential, m as the mobility of the phase field, and σ̂
is connected to the interfacial tension between the two phases. As before, λ controls the
diffuse-interface width, and P (ϕ) is the double-well potential. If P (ϕ) = 1

4
(1 − ϕ2)2 is

applied, this corresponds to stable equilibria of −1 and +1. When using Cahn-Hilliard to
model a fluid-fluid interface where the fluids can flow, the phase field should evolve with
the velocity of the fluids. Hence, an advective term is added:

∂tϕ+∇ · (ϕv) = mλ∇2ψ, ψ = σ̂
(1
λ
P ′(ϕ)− λ∇2ϕ

)
in Ωf . (1.9)

Note that v here represents the combined velocity of the mixture of the fluids. For phase
fields, contact angle boundary conditions can be incorporated using

nΓ ·∇ϕ = −g′(ϕ) cos θ on Γ,

where g(ϕ) is connected to the wall energy of the phase field [38].

Remark 1.1 Note that a large range of different versions of the Allen-Cahn and Cahn-
Hilliard equations exist. These versions differ in how scalings, double-well potentials and
source terms are incorporated, and which equilibrium values are approached. Only versions
close to the ones applied in the later chapters are presented here.
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1.2 Overview of model equations at pore and Darcy scale

1.2.2 Darcy scale

In this section, we give an overview of commonly used Darcy-scale models. These models
are not necessarily applied in this thesis, but represents the “standard” approaches to model
Darcy-scale fluid flow, reactive transport and heat transport in porous media. Since we
are interested in settings with low flow rates, we focus on model equations covering this
setting. Also here we will for simplicity neglect the influence of gravity when presenting
the model equations.

With Darcy scale we mean the zoomed-out, averaged view of the porous medium, where
void space and solid grain space cannot be explicitly separated anymore, as sketched in
the left part of Figure 1.11. As mentioned in Section 1.1, the Darcy scale represents either
the REV scale or the field scale, which both have in common that Darcy’s law can be
applied to describe the average flow rate through the porous medium. At the Darcy scale,
meaningful averages over REVs or of even larger batches of the porous domain can be
defined for quantities like porosity and permeability. Since an averaged view is used, one
always deals with only one domain which we here denote Ω, representing both the void and
solid space. However, any local information about the pore-scale geometry is not accounted
for and is generally not available. Instead only averaged quantities as saturation, porosity
and permeability can be addressed in a meaningful way.

In the following we present the commonly used model equations to describe fluid flow,
reactive transport and heat transport through a porous medium, and we discuss some
limitations of these existing models.

Fluid flow

At the Darcy scale, single-phase flow is modeled using the volume-averaged flow rate v,
which is called the Darcy velocity. The average is made over an REV or over an even larger
part of the porous domain. Mass conservation can be formulated in terms of the Darcy
velocity,

∂t(Φρf ) +∇ · (ρfv) = 0 in Ω,

where Φ is the porosity of the porous medium. The porosity represents the amount of
(fluid-filled) void space per volume that is averaged over, and hence takes values between
0 and 1. In case of an incompressible fluid and porosity that is constant in time, this mass
conservation equation reduces to a divergence-free Darcy velocity. When flow rates are low,
so that flow within the porous medium can be considered as creeping flow (corresponding
to low Reynolds number, Re < 1, as also considered in Section 1.2.1) the Darcy velocity is
modeled through Darcy’s law [31]:

v = −K

µ
∇p in Ω.

Note that the pressure p is to be understood as the fluid pressure averaged over the void
space of the reference volume that is averaged over. Further, K is the permeability matrix,
which quantifies the ability of the porous medium to transmit fluid. This permeability can
be found for samples of porous media through measurements or by numerical simulations.
In both cases one applies a known pressure drop across each direction of the sample, and
either measures the transmitted flow, or one numerically calculates the pore-scale velocities
which are then averaged over the porous domain [108]. The permeability can be defined
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for single REVs, but can also be defined for larger volumes of the porous domain. In the
latter case, one has then an averaged permeability representing the medium’s ability to
transmit fluid at a larger scale. In general, the permeability can vary with location and
flow direction. When the permeability is direction-independent (that is, isotropic), a scalar
K (K = KI) can be used to model it.

For two-phase flow, the saturations S(i) of the two fluid phases are used as variables.
A saturation S(i) is the fraction of the pore space occupied by the phase i within the
considered reference volume, and hence lies between 0 and 1. For two-phase flow, we hence
always have

S(1) + S(2) = 1 in Ω.

Due to this simple connection between the saturations, one can consider only one of the
saturations as a variable, as the other one is immediately given by the first saturation.
We consider in the following incompressible fluids and constant porosities only. The mass
conservation of each phase is

Φ∂tS
(i) +∇ ·v(i) = 0 in Ω, (1.10)

where v(i) is the Darcy velocity of fluid i. These Darcy velocities are typically given by
extended Darcy’s laws [48]

v(i) = −k
(i)
r

µ(i)
K∇p(i) in Ω, (1.11)

where k
(i)
r is known as the relative permeability of phase i. Here, the pressure p(i) is to be

understood as the pressure of phase i averaged intrinsically over the phase in the reference
volume that is averaged over. Additional relations are needed to close the model equations.
One typically assumes that the relative permeabilities can be expressed as functions of one
of the saturations. Further, the pressure difference between the phases, usually called the
(Darcy-scale) capillary pressure, is either assumed zero or to depend on a saturation [48].
In the case of high capillary number, the capillary pressure can be assumed zero, which
corresponds to using the same pressure in both phases. When capillary effects have an in-
fluence, a capillary pressure-saturation relation is needed. Commonly used models for such
relations are van Genuchten [101] and Brooks-Corey [21]. However, many experimental
results show that such relations are not sufficient to describe the observed Darcy-scale be-
havior of two-phase flow [33]. Although extended models incorporating dynamic effects and
hysteresis have been suggested and investigated [49], it still remains an open question what
suitable model equations for Darcy-scale two-phase flow are, and whether parametrized
expressions through saturation are sufficient to model the observed behavior.

The two-phase flow equations (1.10) and (1.11) can be simplified if one fluid phase is air
and the other liquid. Due to the difference in viscosity, the dynamic influence of air on
the liquid phase is negligible. Hence, the flow of air can be neglected, and its pressure can
be considered constant. In this case one has unsaturated flow. Unsaturated flow at Darcy
scale can be modeled with Richards equation [48, 87]

Φ∂tS
(l) +∇ ·

(k(l)r

µ(l)
K∇pc

)
= 0 in Ω, (1.12)

where we use superscript l to denote the liquid phase. Note that the gradient of the capillary
pressure pc is related to the liquid pressure by ∇pc = −∇p(l). The capillary pressure pc is
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still assumed to be a given relation of liquid saturation. When this is a monotone relation,
it is also invertible and we can write S(l) = S(l)(pc). By using the Kirchhoff transformation

Ψ(pc) =

∫ pc

0

k̃(l)r (ξ)dξ, (1.13)

where k̃
(l)
r (pc) = k

(l)
r (S(l)(pc)), Richards equation (1.12) can be transformed to an equation

in terms of Ψ:

Φ∂tf(Ψ) +∇ ·
( K

µ(l)
∇Ψ

)
= 0 in Ω, (1.14)

where f(Ψ) = S(l)(pc(Ψ)). Note that we here use pc(Ψ), namely the inverse of (1.13),
which exists since the relative permeability is always positive. The transformed Richards
equation is a non-linear parabolic equation. Both the original and the transformed versions
of the Richards equation are considered challenging equations to solve numerically due to
the non-linearities [37].

Reactive transport

The Darcy-scale concentration of a solute cj dissolved in a fluid is considered the average
concentration over the void space in the reference volume that is averaged over, and is
modeled by [12]

∂t(Φcj) +∇ · (cjv) = ∇ · (Dj∇cj) +Rj in Ω.

We only consider single-phase flow. Here, Dj is the effective diffusion matrix of the solute.
Since we consider generally low flow rates, dispersive effects are not accounted for. In the
case of isotropic diffusion at Darcy scale, the diffusion matrix can be represented by a scalar
Dj, such that Dj = DjI. The reaction rate Rj is now accounting for both heterogeneous
and homogeneous reactions involving solute cj inside the REV or larger volume that is
averaged over. In the case of mineral precipitation and dissolution, the porosity Φ will
change with time, and also the permeability K and effective diffusion Dj will be affected.
The porosity changes can be connected to a volume balance of the precipitated mineral(s)

∂tΦ = −νmRm in Ω,

where νm is the molar volume of the mineral, and Rm is the reaction rate for mineral
precipitation/dissolution inside the volume that is averaged over, and is positive for net
precipitation. The permeability K and effective diffusion Dj generally depend on the
local pore-scale geometry. However, this information is not available at the Darcy scale.
To express how permeability and effective diffusion changes as mineral precipitates and
dissolves, parametrized expressions in terms of porosity are typically used [12]. A very
common approach for permeability is to use the isotropic Kozeny-Carman relation [24, 57]

K(Φ) =
Φ3

τ(1− Φ)2s2
, (1.15)

where τ is the tortuosity and s the specific surface area of the porous medium. For a review
of other (isotropic) K(Φ) relations, see [50]. The effective diffusion is usually considered to
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be isotropic and scale linearly with porosity [12]

Dj(Φ) = ΦDj, (1.16)

where Dj is the pore-scale diffusion coefficient. Although providing simple and closed
model equations for reactive transport where mineral precipitates and dissolves, these
parametrized expressions cannot account for any anisotropic effects. Typically, the tor-
tuosity and specific surface area in the Kozeny-Carman relation (1.15) are not known,
which means that the relation would need to be fitted to experimental or simulation data.
The lacking feature of both expressions (1.15) and (1.16) is that they cannot properly ac-
count for any pore-scale information. However, at Darcy scale, pore-scale information is
generally not available.

Heat transport

When still considering single-phase flow, low flow rates and limited temperature ranges,
temperature can also at Darcy scale be used as variable to model heat transport. The
Darcy-scale heat equations can be modeled as [48, 75]

∂t(Φρfcp,fT f ) +∇ · (ρfcp,fT fv) = ∇ · (Φkf∇T f ) + α(T s − T f ) in Ω,

∂t((1− Φ)ρscp,sT s) = ∇ · ((1− Φ)ks∇T s) + α(T f − T s) in Ω,

where T f and T s are to be understood as the temperatures averaged over the respective
phase within the REV or larger volume that is averaged over, and α is a (constant) coeffi-
cient accounting for the transfer between the fluid and solid phase. Especially in the case
of low fluid velocities, it is usually assumed that one has (Darcy-scale) thermal equilibrium,
which corresponds to T s = T f = T , and we can use a single equation for the transport of
heat [75]:

∂t((ρcp)mT +∇ · (ρfcp,fTv) = ∇ · (km∇T ) in Ω.

Here, (ρcp)m = Φρfcp,f + (1 − Φ)ρscp,s and km = Φkf + (1 − Φ)ks represent the effec-
tive specific heat and effective heat conductivity of the porous medium, respectively. The
effective heat conductivity is here a porosity-weighted arithmetic average of the heat con-
ductivities found in the fluid and solid. However, this is found to not always represent
well the actual effective heat conductivity of the porous medium. In [75] it is discussed
whether porosity-weighted harmonic or geometric averages would be more suitable for the
effective heat conductivity, depending on the pore-scale geometry. These would still give
isotropic effective heat conductivites, but effective heat conductivities in anisotropic porous
media would be better represented by a heat conductivity matrix [63]. Both in the case
of scalar- and matrix-valued effective heat conductivities, it is not clear how the effective
heat conductivity would change when the porosity (and pore-scale geometry) changes, for
example due to mineral precipitation or dissolution.

1.3 Multiscale approaches

To bridge the scale gap between the known and generally well understood pore scale, and
the (generally unknown or unclear) effective behavior at a larger scale, we will in this
thesis apply several types of multiscale approaches. They can roughly be divided into four
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categories:

• Transversal averaging: This technique is used when dealing with long and thin
domains, for example a single pore which can be described as a thin strip (in 2D)
or as a thin tube (in 3D). Here, the goal is to dimensionally reduce the model to
find the effective behavior along the thin structure. This is done by determining the
dominating behavior and averaging across the domain.

• Boundary-layer methods: These methods are used to address the behavior close
to and away from some singularity or discontinuity that appears in the system, for
example the fluid-fluid interface. This way one can find a (hopefully) simpler model
describing the effective behavior away from the discontinuity, coupled to another
model describing the effective behavior close to it. We will focus on the use of
matched asymptotic expansions in this context.

• Homogenization: With homogenization we here mean the application of two-scale
asymptotic expansions, which is sometimes also called periodic homogenization. This
is used when finding the effective behavior at a larger scale by taking advantage
of local periodicity. The influence of the smaller scale appears through local cell
problems. Homogenization will in this thesis be used for finding Darcy-scale models
based on pore-scale models, or finding effective parameters at a larger Darcy scale
(e.g. from REV to field scale).

• Heterogeneous multiscale methods: This method is better described as an ab-
stract framework for designing multiscale implementations. This framework will be
applied to construct schemes to numerically simulate models where model equations
at two different scales are coupled to each other (e.g. Darcy scale coupled to pore
scale).

The first three approaches all have in common that they aim to derive new models for
effective behavior. All of them depend on the appearance of a small number ε, which
represents the scale separation in each of the three cases: For transversal averaging ε is
the ratio between the width and the length of the domain, for boundary-layer methods
ε describes the width of the region where an influence of the singularity can be found
compared to the size of the full domain, while for homogenization ε is the length scale ratio
between the smaller and larger scale - e.g. the pore and Darcy scale. All three methods
let at some point ε → 0 during the derivation of the effective behavior. In practice, ε is a
fixed number given by the domain or physics in question, and letting ε → 0 is hence only
a mathematical exercise. However, how small or how large the physically given ε really is,
can have an influence on how well the derived effective models describe the true effective
behavior. A heterogeneous multiscale method (HMM) does not derive effective models, but
relies on the presence of a given two-scale (or multiscale) description, which in our case is
derived by homogenization. Here the focus is on constructing a numerical scheme honoring
the coupling between the two scales. The difference in scales is taken advantage of as it
is assumed that the model equations at the two scales can be discretized in a separated
manner. In the following we go through the background and general ideas for these four
multiscale approaches and explain how they can handle the type of multiscale problems
discussed in Section 1.1.
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Figure 1.15: Domain depicting a thin strip, where ℓ≪ L. Here, the domain corresponds to
a channel, where there is flow along the channel, shown as a parabolic velocity
profile.

1.3.1 Transversal averaging

We here consider a domain which is long and thin, for example a tube, channel or a layer
located between parallel plates. This domain could represent a single pore in a porous
medium, or a long channel as found for example in a fuel cell (cf. Figure 1.6). When
considering a domain that is located between parallel plates, this domain can be seen as a
two-dimensional domain, and is then denoted a thin strip. For simplicity, we use the thin
strip in the following to exemplify and explain the idea of transversal averaging. This thin
strip could correspond to the gas channel in Figure 1.6 if the channel is wide enough that
the transport processes inside the channel are not affected by the sidewalls. If considering a
two-dimensional porous medium, the thin strip can represent a single pore. Our considered
thin strip is rectangular with length L and width ℓ, such that ℓ ≪ L. Hence, the scale
separation ε = ℓ

L
≪ 1 can be identified. See Figure 1.15 for an illustration.

When applying transversal averaging, the goal is to obtain a dimensionally reduced
model. For the thin strip, this means we obtain a one-dimensional model where only
variability in the horizontal x1-direction is accounted for. Any variability in the transversal
direction x2 is incorporated through averages. The dimensionally reduced model is hence
an effective model, and should generally be simpler than the original model. To easier
isolate dominating behavior, model equations are cast to dimensionless form. We here use
an example of single-phase Stokes flow through a channel (hence, flow along the thin strip)
to illustrate the idea. We are hence searching for an effective model for

µ∇2vε = ∇pε (x1, x2) ∈ (0, L)× (0, ℓ),
∇ ·vε = 0 (x1, x2) ∈ (0, L)× (0, ℓ),
vε = 0 on x2 = 0, ℓ,
pε(x1 = 0) = pin pε(x1 = L) = pout.





(P ε)

We here used a superscript ε to indicate that the variables depend on the scale separation
ε. We non-dimensionalize the variables and spatial coordinates by

v̂ε =
vε

vref
, p̂ε =

pε − pout
pref

, x̂1 =
x1
L
, x̂2 =

x2
ℓ
,

where vref is some reference velocity and pref = pin − pout. Note that we use different length
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scales for the horizontal and transversal direction. The non-dimensional version of (P ε) is

µvref
Lpref

∇̂2v̂ε = ∇̂p̂ε (x̂1, x̂2) ∈ (0, 1)2,

∇̂ · v̂ε = 0 (x̂1, x̂2) ∈ (0, 1)2,
v̂ε = 0 on x̂2 = 0, 1,
p̂ε(x̂1 = 0) = 1 p̂ε(x̂1 = 1) = 0.





(P̂ ε)

Here, the non-dimensional nabla operator is

∇̂ =
∂

∂x̂1
e1 +

1

ε

∂

∂x̂2
e2

due to the difference in length scales in horizontal and transversal directions. We assume
that the non-dimensional fraction µvref

Lpref
is a small number, which corresponds to a low

viscosity compared to the pressure drop. This is necessary to ensure non-trivial solutions
of the flow and corresponds to the flow regime which is associated with the validity range
of Darcy’s law. More specifically, we assume

µvref
Lpref

= ε2.

We then assume that the velocity and pressure have asymptotic expansions in terms of ε.
That is,

p̂ε = p̂0 + εp̂1 + ε2p̂2 + . . . ,

and similar for each of the components of the velocity. This is used to find the dominating
behavior as ε→ 0. In practice, we want to find new model equations in terms of the dom-
inating terms p̂0 and v̂0 only, but higher order approximations by incorporating first order
(or even higher order) terms can be found correspondingly. These asymptotic expansions
are then inserted into the model equations of (P̂ ε) and sorted with respect to the order of
ε. The Stokes equation becomes

∂2

∂x̂22
v̂0 + ε

∂2

∂x̂22
v̂1 =

1

ε
e2
∂p̂0
∂x̂2

+
(
e2
∂p̂1
∂x̂2

+ e1
∂p̂0
∂x̂1

)
+O(ε).

The dominating term here is of order 1
ε
. Hence, when ε→ 0, the only possibility is that

∂p̂0
∂x̂2

= 0 =⇒ p̂0 = p̂0(x̂1).

This also means that the now dominating terms from the Stokes equation are of O(ε0).
The mass conservation equation becomes

1

ε

∂v̂0,(2)

∂x̂2
+
∂v̂1,(2)

∂x̂2
+
∂v̂0,(1)

∂x̂1
+O(ε) = 0,

where subscript (i) denotes velocity components. The boundary conditions at top and
bottom can be written

v̂0 + εv̂1 + ε2v̂2 +O(ε3) = 0 on x̂2 = 0, 1.
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The dominating terms of the mass conservation equation together with the boundary con-
dition at top and bottom give

v̂0,(2) = 0.

Hence, the dominating velocity is only in the horizontal direction. The horizontal compo-
nent of the O(ε0) terms from the Stokes equation is

∂2v̂0,(1)

∂x̂22
=
∂p̂0
∂x̂1

.

Using that p̂0 = p̂0(x̂1) and again the boundary condition for velocity at top and bottom,
we arrive at

v̂0,(1)(x̂1, x̂2) =
(1
2
(x̂22 − x̂2)

)∂p̂0
∂x̂1

(x̂1)

for the dominating, horizontal velocity. This is a parabolic velocity profile, as illustrated
in Figure 1.15. Now, we finally transversally average this velocity in the x̂2 direction:

v̂0,(1)(x̂1) =
1

1

∫ 1

0

v̂0,(1)(x̂1, x̂2)dx̂2 = − 1

12

∂p̂0
∂x̂1

(x̂1)

A second equation is obtained by averaging the O(ε0)-terms from the mass conservation in
x̂2:

0 =
1

1

∫ 1

0

(∂v̂1,(2)

∂x̂2
+
∂v̂0,(1)

∂x̂1

)
dx̂2 =

∂v̂0,(1)

∂x̂1
(x̂1)

as v̂1,(2) = 0 at x̂2 = 0, 1. We hence arrive at a one-dimensional, effective problem for v̂0,(1)

and p̂0:

v̂0,(1)(x̂1) = − 1
12

∂p̂0
∂x̂1

(x̂1) for x̂1 ∈ (0, 1)
∂v̂0,(1)

∂x̂1
= 0 for x̂1 ∈ (0, 1)

p̂0(x̂1 = 0) = 1, p̂0(x̂1 = 1) = 0.





(P̂0)

Hence, the averaged, horizontal velocity is proportional to the pressure drop, and is
divergence-free (which in this one-dimensional setting corresponds to being constant). Note
that the boundary conditions at the inlet and outlet never played a role, while the bound-
ary conditions at the top and bottom boundaries influenced the derivation. If we re-
dimensionalize the equations, we arrive at

v0,(1)(x1) = − 1
µ
ℓ2

12
∂p0
∂x

(x1) for x1 ∈ (0, L)
∂v0,(1)

∂x1
= 0 for x1 ∈ (0, L)

p0(x1 = 0) = pin, p0(x1 = L) = pout.





(P0)

We can identify the factor ℓ2

12
as the well-used permeability factor applied for fractures of

aperture ℓ.

The concept of non-dimensionalizing, inserting asymptotic expansions and transversally
averaging to find effective, dimensionally reduced equations can be applied also to much
more complicated flow and transport processes than the one presented here. Especially
when processes are changing along or across the domain, transversal averaging can be
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useful. For example, in [103] single-phase flow with reactive transport in a thin strip was
considered. Here, a mineral layer could precipitate or dissolve along the top and bottom
boundaries. This corresponds to a free-boundary problem, but can be modeled using a layer
width as variable. Since the layer width is a variable, Reynolds transport theorem (i.e. the
Leibniz integral rule) has to be applied when doing the transversal averaging step. In this
case, the resulting permeability and effective diffusion for the solute depend on the size of
the mineral layer. Such settings have also been extended to be coupled to heat transport
[17], incorporate biofilm growth [60, 105] and oscillating top and bottom boundaries [58]
in thin strips. Transversal averaging can also be used to find the effective behavior in thin
compartments between domains [3].
One important point when applying transversal averaging is that the non-

dimensionalizing of the original model problem has an influence. When non-
dimensionalizing and choosing the size of the appearing non-dimensional numbers (like
µvref
Lpref

= ε2), one chooses the regime the effective model is valid for. Different choices, cor-
responding to different regimes, will lead to different forms of the effective, dimensionally
reduced models. For example, solute transport or heat transport with moderate Péclet
numbers, lead to effective models having solute and heat transport due to both advection
and diffusion in the effective model [17, 102]. However, a large Péclet number will lead to an
effective hyperbolic model without diffusion when considering only the dominating terms,
or a model with Taylor dispersion when including also next order terms [19, 59]. Hence,
choosing the scaling of non-dimensional numbers and hence which regime is considered, is
essential for deriving effective models using transversal averaging. However, it is not always
possible to find a dimensionally reduced model for the effective behavior. There are regimes
where the coupled behavior in the transversal direction is such that transversal averaging
cannot be performed, or will not yield a closed effective model. This is for example the
case if flow in turbulent regimes are considered. Note that we in this section derived a
Darcy-like flow equation by starting with the Stokes equation. However, the same result
would have been found if using the Navier-Stokes equations and assuming a sufficiently
small Reynolds number.
In this thesis, effective models are derived by transversal averaging in Chapter 5 and in

Chapter 6. In both these chapters, two-phase flow in a thin strip is considered, but with
different assumptions on the flow morphology and on regimes. Both settings correspond to
flow through a single pore in a porous medium and hence give dimensionally reduced models
for the flow inside a small part of a porous medium. The settings could also represent the
flow through a (wide) gas channel, as illustrated in Figure 1.6. In Chapter 3, ideas from
transversal averaging are combined with homogenization to treat heat transport in a thin
(and long) porous medium. This thin porous medium could represent the gas diffusion
layer in a fuel cell (cf. Figure 1.6).

1.3.2 Boundary-layer methods

We are here concerned with models containing a region affected by a singularity or discon-
tinuity - a boundary layer [90]. This boundary layer could occur due to the presence of an
evolving fluid-fluid interface between two fluids in a two-phase flow setting, where surface
tension between the two fluids give a different type of flow near the fluid-fluid interface
compared to how the fluids are behaving further away from this interface. The fluid-fluid
interface itself represents a discontinuity in the system since e.g. the densities, viscosities
and the fluid pressures are typically discontinuous across the interface. Also an evolving
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Figure 1.16: Exact solution (1.18) of (1.17), together with the outer (1.20) and inner (1.21)
solutions.

fluid-solid interface in the case of mineral precipitation and dissolution can be seen as a
discontinuity in the model, where also very different behavior is found at each side of the
interface (i.e. flow in the fluid, stationary behavior in the solid mineral). Hence, different
types of behavior can be found close to and far away from the singularity and can therefore
be represented with different effective models. However, these different effective models
should also be coupled to each other. We here consider the method of matched asymptotic
expansions to find the dominating behavior in these two regions and to couple them. The
idea is simple: We use outer expansions valid away from the singularity to find an outer
solution, and inner expansions valid near the singularity to find an inner solution. These
are then coupled together through matching conditions. These boundary-layer methods are
relevant for understanding two-phase flow behavior and settings where single-phase flow
interact with a solid through mineral precipitation and dissolution. Hence, boundary-layer
methods are useful for understanding such processes at pore scale in a porous medium,
e.g. for fuel cells and geothermal energy. However, these methods are relevant not only for
processes in porous media, but are useful to understand and analyze effective behavior in
many settings where a singularity or discontinuity occur.

We here use an example from [100] to illustrate the method of matched asymptotic
expansions. The starting point is a one-dimensional two-point boundary-value problem,
which includes a second-order, linear ODE:

εd
2f

dx2 +
df
dx

= a,
f(0) = 0,
f(1) = 1.



 (1.17)

Here, ε > 0 is a small number, f(x; ε) is the unknown and a is a parameter. The analytical
solution can then be found as

f(x; ε) = (1− a)
1− e−x/ε

1− e−1/ε
+ ax. (1.18)
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In Figure 1.16, the exact solution is plotted as a solid line. Note that a smaller value for
ε corresponds to a narrower region near x = 0 where the curve is steeper. If ε → 0, the
original ODE reduces to a first order ODE

df

dx
= a, (1.19)

which can only fulfill one of the boundary conditions (unless a = 1). From the exact
solution only f(1) = 1 is fulfilled when ε → 0, while f(0) = 0 acts as a singularity. Here,
ε represents the width of the region influenced by the singularity. If one lets ε → 0 in the
exact solution (1.18), this leads to the approximate solution

f(x; ε→ 0) = (1− a) + ax (1.20)

which is valid for small ε, but only away from x = 0. This is denoted as the outer solution
(see dashed line in Figure 1.16) and can be seen as a good approximation away from the
singularity. The outer solution (1.20) could also have been found by solving (1.19) together
with f(1) = 1. This would hence correspond to the outer problem. Near the singularity
x = 0, x is small. Hence, x = O(ε). A scaled (magnified) inner coordinate X can be used
to account for the behavior near the singularity. Therefore, the expression

f(x; ε) = F (X; ε) where X =
x

ε
.

is used to find the inner problem. By applying the chain rule to the ODE in (1.17), the
inner problem can then be written as

d2F
dX2 +

dF
dX

= aε,
F (0) = 0,
F
(
1
ε

)
= 1.





Here, the second boundary condition does not really make sense to use, as one is interested
in the behavior of small x. Letting ε → 0 and giving up the second boundary condition,
the inner problem is fulfilled for any solution on the form

F (X; 0) = c
(
1− e−X

)
c ∈ R, (1.21)

which is the inner solution (see dotted line in Figure 1.16). The constant c is then deter-
mined by a matching condition between the inner and outer solutions:

lim
X→∞

F (X; 0) = lim
x→0

f(x; 0) (1.22)

⇓
c = 1− a.

This matching condition can also be seen in Figure 1.16 with

lim
X→∞

F (X; 0) = 0.6 = lim
x→0

f(x; 0).

Hence, by solving two simpler problems, the approximate solutions away from and near
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the singularity for ε→ 0 can be found as

f(x; ε) ≈
{
(1− a) + ax for ε→ 0 and x > 0 ,

(1− a)(1− e−X) for ε→ 0 and X = x
ε
.

In this example, the outer and inner problems could be found directly by letting ε→ 0 in
the original model equations and using the scaled inner coordinates. For more complicated
problems, one instead applies inner and outer asymptotic expansions and searches for outer
and inner problems for the dominating terms as ε→ 0, similar as was done in Section 1.3.1
before averaging. In general, we would assume

f(x; ε) = f0(x) + εf1(x) + ε2f2(x) + . . . ,

F (X; ε) = F0(X) + εF1(X) + ε2F2(X) + . . . ,

where
f(x; ε) = F (X; ε),

with the stretched inner variable

X =
x− α

ε
,

when there is a singularity in x = α. We hence search for outer and inner problems in terms
of the dominating terms f0 and F0, respectively. For the general case, one still relies on
being able to identify the small number ε describing the relative width of the inner region,
in order to be able to apply matched asymptotic expansions.
One typically cannot solve the outer and inner problems exactly, like here. However, one

is normally only interested in finding the limit problems for f0 and F0, and not the limit
solutions themselves. The matching conditions hence give the connection between the two
limit problems. The applied matching condition (1.22) can generally be read as

The outer limit of the inner limit solution
= The inner limit of the outer limit solution

This matching condition can hence also apply to higher order terms of the inner and outer
expansions (when needed).
Matched asymptotic expansions is used for a large variety of flow problems, see [90, 100]

for an overview. One can for example apply them to the setting of turbulent flow interacting
with a wall. Such flows could be described by the Navier-Stokes equations in the entire
domain, but can be simplified through matched asymptotic expansions. Near the wall,
friction dominates and one would have a layer of creeping flow which can be described with
a parabolic flow profile. Away from the wall, the viscous-free Euler equations could be used
to describe the flow. These two problems are then coupled via matching conditions [90].
For phase fields, matched asymptotic expansions can be used to investigate the sharp-

interface limit of the phase-field model. In this case, the ratio between the diffuse-interface
width and a longer length scale (e.g. size of domain) can be identified as ε. Then, the outer
expansions are applied far away from the diffuse transition zone, and the inner expansions
close to the it. Hence, the outer expansions should recover the model equations inside
each of the phases, while the inner expansions should recover the boundary conditions at
the (now) sharp interface as ε → 0. The matching conditions ensure that these boundary
conditions are indeed for the interface between the two phases [22]. This way, one can
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ensure that the phase-field model indeed represents the expected sharp-interface model
as the diffuse-interface width approaches zero. For phase-field models for two-phase flow,
matched asymptotic expansions are applied to find the sharp-interface limit in [2], and
extended to two-phase flow with varying surface tension effects in [43]. Sharp-interface
limits for reactive transport phase-field models (without flow) have been considered in
[86, 104]. Although matched asymptotic expansions can be used to validate a phase-
field model towards its sharp-interface limit, there is still no guarantee that the phase-
field model still behaves as expected when a non-zero diffuse-interface width is used in a
numerical simulation. However, the results from the phase-field model is however expected
to approach the results from the corresponding sharp-interface model when using a smaller
value for the diffuse-interface width.
To be able to apply matched asymptotic expansions, one relies on being able to find a

suitable value for ε, which describes the (relative) size of the region where the discontinuity
influences the behavior of the system. In the above example, we then used ε to scale the
inner coordinate, but depending on the behavior of the problem in questions, other types of
scaling with respect to ε, e.g. ε1/2, could be necessary. Which scaling is needed to be able to
find and isolate the effective behavior away from and near the singularity or discontinuity,
and to couple these, is not obvious in advance. It is also not always possible to isolate the
behavior away from and near the discontinuity. See [100] for a discussion on this matter.
In this thesis, however, standard scalings with respect to the identified ε could be applied
to find the effective behavior away from and near the discontinuity, and to couple them.
In this thesis, boundary-layer methods in the form of matched asymptotic expansions

will be applied in Chapter 6, 8 and 10. In Chapter 6, matched asymptotic expansions
are combined with transversal averaging to a two-phase flow problem in a thin strip to
investigate the effective behavior away from and near the fluid-fluid interface. Due to the
influence of the fluid-fluid interface, the matched asymptotic expansions are needed to find
the effective behavior of the two-phase flow as the thin strip becomes longer and thinner.
In Chapter 8 and Chapter 10, matched asymptotic expansions are applied to derive the
sharp-interface limit for phase-field models for reactive transport. Hence, they help us in
validating the phase-field models, which are then used to model reactive transport at the
pore scale of a porous medium, relevant for geothermal energy (cf. Figure 1.2) and salt
precipitation (cf. Figure 1.4).

1.3.3 Homogenization

Homogenization (also known as periodic homogenization) will be used to derive effective
equations at a larger scale, in the case that the equations or considered domain at the
smaller scale has some local periodicity. This can for example be applied on periodic
pore-scale geometries to find effective equations at the Darcy scale. Performing this ho-
mogenization step is vital when having a known pore-scale model and one wishes to find
the effective behavior at the larger Darcy scale. Homogenization is hence an essential mul-
tiscale method for bridging scale gaps in porous media, cf. Figure 1.7. Making this step is
relevant for e.g. geothermal energy, where the pore-scale geometry changes due to mineral
precipitation and dissolution, as highlighted in Figure 1.2, and for soil salinization where
salts can precipitate due to the evaporation, as highlighted in Figures 1.3 and 1.4. How-
ever, performing this step is also important when one wants to find effective parameters
at a larger scale, e.g. when finding permeabilities at field scale from given REV-scale per-
meabilities, as discussed in Section 1.1. Homogenization relies on the assumption that the
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Figure 1.17: Porous medium with periodic pore-scale geometry. For the left part, a long
length scale L can be identified for the averaged Darcy scale. For the rightmost
part, a small length scale ℓ is found at the pore scale.

micro-scale (e.g. pore-scale) behavior can be described as locally periodic, and that there
is a clear scale separation between the smaller and the larger scale. In a porous medium
when going from pore to Darcy scale, this can be done by finding a typical pore-scale length
scale ℓ, and a larger length scale L at the Darcy scale. See Figure 1.17 for an illustration.
Hence, scale separation means that ε = ℓ

L
≪ 1.

When performing homogenization, one applies two-scale asymptotic expansions to the
pore-scale model equations, and isolates dominating order terms at each scale, in order
to arrive at Darcy-scale equations which are connected to local pore-scale problems giving
effective parameters. These two-scale asymptotic expansions rely on the introduction of an
extra coordinate system. One separates between macro-scale coordinates x characterizing
“slow” variability, and a local coordinate y describing “fast” variability. These two coor-
dinate systems are also sketched in Figure 1.17. Then, ε corresponds to the scaling factor
between the two coordinate systems. Note that y is to be understood as a local coordinate
system: For every macro-scale point x, one zooms in, and sees a local domain with its own
local coordinate system through y. Hence, x itself will no longer be used to describe any
small-scale variability, but only tell us where to zoom in, while the local variability is then
resolved through y. The local periodicity is hence required in the y-coordinates.

Also here we need to cast the model equations to dimensionless form in order to apply
homogenization. Similarly as in Section 1.3.1, we use ℓ to non-dimensionalize y, and L for x.
Hence, the non-dimensional ŷ will therefore live in a unit square (or cube), ŷ ∈ Y = [0, 1]d,
which will be called the unit cell. The periodicity in non-dimensional variables is then, for
a variable â(ŷ)

â(ŷ) = â(ŷ + ej), j = 1, . . . , d.

This is called Y -periodicity. After non-dimensionalizing, we apply the Homogenization
Ansatz to all variables, which is the assumption that all variables having both slow and
fast variability can be described in terms of variability in the two coordinate systems x̂ and
ŷ through two-scale asymptotic expansions:

âε(x̂) = â0(x̂, ŷ) + εâ1(x̂, ŷ) + ε2â2(x̂, ŷ) + . . .

where each âj is Y -periodic. Due to the introduction of the extra coordinate system and
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Figure 1.18: Highly oscillatory diffusion coefficient D̂ applied in equation (1.23).

the scaling difference between x̂ and ŷ, gradients need to be rewritten according to

∇̂âε (x̂) =
(
∇̂x̂ +

1

ε
∇̂ŷ

)(
â0 (x̂, ŷ) + ε â1 (x̂, ŷ) + ε2 â2 (x̂, ŷ) + . . .

)
.

Then, by inserting the two-scale asymptotic expansions and rewriting accordingly, one
isolates the dominating terms as ε→ 0. To illustrate the method, we consider a stationary
diffusion problem with a highly oscillatory diffusion coefficient.

We here consider the non-dimensional diffusion problem

−∇̂ · (D̂∇̂ûε) = f̂ , in Ω, (1.23)

where D̂ is a given, but highly oscillatory, diffusion coefficient seen in Figure 1.18, f̂ is a
given force, which is assumed to not be highly oscillatory, and ûε is the unknown. Assuming
that the behavior of D̂ can be decomposed into slow and (locally periodic) fast variability,
it can be written as

D̂ = D̂(x̂, ŷ). (1.24)

Inserting the two-scale asymptotic expansions for ûε in (1.23) and sorting the terms after
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increasing order with respect to ε, gives

− 1

ε2
∇̂ŷ ·

(
D̂(x̂, ŷ)∇̂ŷû0(x̂, ŷ)

)

−1

ε

{
∇̂x̂ ·

(
D̂(x̂, ŷ)∇̂ŷû0(x̂, ŷ)

)

+ ∇̂ŷ ·
(
D̂(x̂, ŷ)

(
∇̂x̂û0(x̂, ŷ) + ∇̂ŷû1(x̂, ŷ)

))}

−
{
∇̂x̂ ·

(
D̂(x̂, ŷ)

(
∇̂x̂û0(x̂, ŷ) + ∇̂ŷû1(x̂, ŷ)

))

+ ∇̂ŷ ·
(
D̂(x̂, ŷ)

(
∇̂x̂û1(x̂, ŷ) + ∇̂ŷû2(x̂, ŷ)

))}
= f̂(x̂) +O(ε) .

The dominating term as ε→ 0 is the O(ε−2)-term. This leads to the following problem,
for all x̂ ∈ Ω:

∇̂ŷ ·
(
D̂(x̂, ŷ)∇̂ŷû0(x̂, ŷ)

)
= 0 ŷ ∈ Y,

û0(x̂, ŷ) is Y -periodic.

}
(P−2)

The only possible solution of the (P−2)-problem is

û0 = û0(x̂). (1.25)

Therefore, û0 is constant with respect to ŷ and only contains “slow” variability.

Turning to terms of O(ε−1), the following problem can be obtained for û1, if û0 would
be known, as

∇̂ŷ ·
(
D̂(x̂, ŷ)

(
∇̂x̂û0(x̂) + ∇̂ŷû1(x̂, ŷ)

))
= 0 x̂ ∈ Ω, ŷ ∈ Y

û1(x̂, ŷ) is Y -periodic.

}
(P−1)

To deal with (P−1), first observe that

∇̂x̂û0 =
d∑

j=1

ej ∂x̂j
û0. (1.26)

From the linearity of (P−1), a linear response in û1 is expected if ∂x̂j
û0 changes. We hence

expect

û1(x̂, ŷ) = ũ1(x̂) +
d∑

j=1

wj(x̂, ŷ) ∂x̂j
û0(x̂) (1.27)

for some weights wj. By inserting (1.27) and (1.26) in (P−1), the weights wj are found to
solve

∇̂ŷ ·
(
D̂(x̂, ŷ)

(
ej + ∇̂ŷwj(x̂, ŷ)

))
= 0 ŷ ∈ Y

wj(x̂, ŷ) is Y -periodic,∫
Y
wj(x̂, ŷ) dŷ = 0 j = 1, . . . , d .





(P−1
j )

The third equation is added to ensure uniqueness as the weights wj would otherwise only
be known up to a constant (with respect to ŷ). With wj known, also û1 is known (up to a
constant).
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Continuing with the O(ε0)-terms, we arrive at the following problem:

−∇̂x̂ ·
(
D̂(x̂, ŷ)

(
∇̂x̂û0(x̂) + ∇̂ŷû1(x̂, ŷ)

))

−∇̂ŷ ·
(
D̂(x̂, ŷ)

(
∇̂x̂û1(x̂, ŷ) + ∇̂ŷû2(x̂, ŷ)

))
= f̂(x̂) x̂ ∈ Ω, ŷ ∈ Y

û2(x̂, ŷ) is Y -periodic .





(P 0)

Averaging the equation over Y by integrating with respect to ŷ and using Gauss’ theorem
on the ∇̂ŷ ·−term, leads to

− 1

|Y |

∫

Y

∇̂x̂ ·
(
D̂(x̂, ŷ)

(
∇̂x̂û0(x̂) + ∇̂ŷû1(x̂, ŷ)

))
dŷ

− 1

|Y |

∫

∂Y

(
D̂(x̂, ŷ)

(
∇̂x̂û1(x̂, ŷ) + ∇̂ŷû2(x̂, ŷ)

))
·n ds = f̂(x̂) .

Due to the Y -periodicity applied to û1 and û2, the contributions from the various sides of
the unit cell cancel each other. Hence, the net contribution from the integral along ∂Y is
zero. Inserting (1.27), the above equation reformulates to

−∇̂x̂ ·

[∫

Y

D̂(x̂, ŷ)
(
∇̂x̂û0(x̂) +

d∑

j=1

∇̂ŷwj(x̂, ŷ) ∂x̂j
û0(x̂)

)
dŷ

]
= f̂(x̂) .

Using matrix notation, this can be rewritten as

−∇̂x̂ ·
(
D̂(x̂)∇̂x̂û0(x̂)

)
= f̂(x̂), (1.28)

where the matrix D̂ has elements

D̂ij(x̂) =

∫

Y

D̂(x̂, ŷ) (δij + ∂ŷiwj(x̂, ŷ)) dŷ, (1.29)

and where the wj are uniquely determined through the cell problems

∇̂ŷ ·
(
D̂(x̂, ŷ)

(
ej + ∇̂ŷwj(x̂, ŷ)

))
= 0 ŷ ∈ Y

wj(x̂, ŷ) is Y -periodic,∫
Y
wj(x̂, ŷ)dŷ = 0 j = 1, . . . , d.





(P−1
j )

Note that (1.28) is an equation in x̂ only, and is hence the searched, effective equation.
The parameter D̂ from (1.29) is called the effective diffusion matrix and includes local
information through the cell problems (P−1

j ). The cell problems (P−1
j ) are equations that

are only to be solved with respect to ŷ, while x̂ only appears as a parameter. Variability
in x̂ and ŷ are hence decoupled, as for each macroscale point x̂ the local cell problem in
ŷ can be solved to determine D̂(x̂) in that point. Also note that it is not a problem that
the weights wj could only be determined up to a constant with respect to ŷ, as only their
derivatives with respect to ŷi are needed to calculate the effective diffusion matrix.

In Figure 1.19 the original, highly oscillatory diffusion coefficient D̂ can be seen together
with the first component of the derived effective diffusion matrix D̂. The highly oscillary
diffusion coefficient is plotted on a 200 × 200 grid and contain oscillations with ε = 1

20
.
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Figure 1.19: Diffusion coefficients. Left: original, highly oscillatory diffusion coefficient.
Right: first component of derived effective diffusion matrix.

The element D̂11 of the effective diffusion matrix was obtained by solving each local cell
problem on a 20 × 20 grid. The component D̂11 is in this example representative for the
effective diffusion matrix, as D̂11 ≈ D̂22 and the off-diagonal components are almost zero.
Hence, the effective diffusion matrix can be well represented by

D̂ = D̂11I

in this case.

Solving the steady-state diffusion problem above with f̂(x̂) ≡ 1 and using zero Dirichlet
conditions on the boundary, the solutions of the original and of the effective model are
obtained as seen in Figure 1.20. Here, the microscale solution û (top left of Figure 1.20)
was obtained by solving the original problem (1.23) with the highly oscillatory diffusion
coefficient D̂ on a 200 × 200 grid. When averaging this solution on a 20 × 20 grid, the
Figure 1.20 on the top right is obtained. This can then be compared to the effective
solution û0 (bottom Figure 1.20), which was obtained by solving the effective model (1.28)
on the coarser 20 × 20 grid. The relative L2-error between the averaged and effective
solutions is 0.0451 = 4.51%. There is a clear gain in terms of computational costs, as
solving many small problems on a coarser grid is cheaper than solving one huge problem
on a fine grid. The loss in accuracy is however moderate.

As illustrated in this example, homogenization can be used not only for the transition
from pore to Darcy scale, but also to find averaged coefficients of an oscillating parameter,
e.g. for a diffusion problem. Finding averaged coefficients is relevant for porous media,
where the permeability and (Darcy-scale) diffusion coefficients might be needed at larger
scales (e.g. field scale). When applying homogenization to a pore-scale geometry, there
are usually more steps needed for applying Gauss’ theorem in (P 0) since there are internal
boundaries, but the general idea and steps remain the same as presented above. The main
challenge lies in finding relations like (1.27), which are needed to handle the appearance
of the second-order terms. As also seen in the presented example, the assumption of local
periodicity is essential. The periodicity both provides boundary conditions for the local
cell problems, and also removes contributions along local boundary integrals when applying
Gauss’ theorem. The local periodicity ensures that each cell problem for effective quantities
can be found independently of other cell problems (i.e. corresponding to other locations),
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Figure 1.20: Various solutions of the diffusion problem. Top left: The solution û of the
original problem (1.23). Top right: The average of û, û, on a coarser grid.
Bottom: The solution û0 of the effective diffusion problem (1.28) on the same
grid as for the averaged û.

39



1 Introduction

since they do not rely on each other.
Homogenization has been applied to a wide range of porous-media problems, and we

refer to [9, 27, 51] for books both explaining the method thoroughly and showing a wide
range of applications. The challenges in applying homogenization come in particularly if
considering evolving interfaces and/or coupled and non-linear processes. For the case of
evolving, sharp interfaces (e.g. modeled by a level set), the separation of processes for each
phase as well as the averaging over evolving domains are more technical and needs extra
care since Reynold’s transport theorem must be applied. In particular, boundary conditions
at the evolving interface need to be incorporated in the homogenization steps. A procedure
for applying homogenization to a reactive transport model with a level set was developed in
[102], and this approached was later further adjusted and developed for more applications
involving level sets, as coupled heat transport [18], colloid dynamics [83], drug release [84],
and biofilm growth [93]. Applying homogenization to a phase-field model can be easier,
as there is no need to separate processes at each side of the interface nor to incorporate
boundary conditions at the evolving interface during homogenization. However, a phase-
field model consists of tightly coupled equations, which can also cause difficulties. Also,
the diffuse-interface width represents another length scale, and its size in relation to the
pore-scale length scale must be clarified. Homogenization has been successfully applied to
phase-field models for two-phase flow under various assumptions on the evolution dynamics
of the phase field [30, 69, 91], for binary mixtures [35] and for reactive transport without
flow [86].
Note that, as in the case of transversal averaging, homogenization is regime-dependent.

Hence, the micro-scale model equations need to be cast in dimensionless form, and the size
of appearing non-dimensional numbers need to be chosen large or small in comparison to
the scale separator ε. These choices determine which regime the derived effective model
will be valid for, and different choices will lead to different effective models. The validity
of the derived effective model relies on several aspects. This validity could be addressed
by comparing with pore-scale simulations, see e.g. [108]. Using two-scale convergence, the
validity of the homogenization approach can be proven for simple, linear problems [5]. These
proofs, however, can in general not be extended to more coupled and non-linear problems, as
considered in this thesis. The assumption of local periodicity to apply homogenization can
also be quite restrictive, as neither real pore-scale structures nor REV-scale permeabilities
are usually periodic. However, as will be seen in Chapter 2, homogenization can still be
applied also in a non-periodic case, but will generally have larger errors in regions where
the actual behavior is not periodic. Hence, homogenization has the ability to provide useful
information about the large-scale behavior also for more general settings, but at the cost
of larger model errors.
In this thesis, homogenization is applied or plays a role in Chapters 2, 3, 4, 7, 8, 9 and

10. In Chapter 2, homogenization is combined with adaptive mesh refinement for a non-
linear parabolic problem. Here, permeabilities at a larger scale are sought, as discussed
in Section 1.1. In Chapter 3, homogenization and ideas from transversal averaging are
applied to heat transport in a thin pore-scale domain, to find the effective Darcy-scale
behavior. Chapter 3 as well as Chapter 4 investigate the behavior of the resulting effective
parameters, in particular of heat conductivity, by solving cell problems arising from homog-
enization. Such investigations are useful to understand the Darcy-scale behavior for such
effective parameters, which is relevant for especially geothermal energy (cf. Figure 1.2).
In Chapter 7, homogenization is applied to a phase-field model for two-phase flow at the
pore scale. Hence, a Darcy-scale model for the effective two-phase flow through the porous
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medium is found, with effective parameters through local cell problems instead of relying
on parametrized saturation expressions, as discussed in Section 1.2.2. A Darcy-scale model
for reactive transport coupled to pore-scale cell problems is derived by homogenization in
Chapter 8. The resulting two-scale model is implemented in Chapter 9, allowing effective
simulations of porous-media problems where the pore-scale geometry changes due to min-
eral precipitation and dissolution, e.g. for geothermal energy (cf. Figure 1.2) or salt precip-
itation (cf. Figure 1.4). Effective properties from cell problems derived by homogenization
for a level-set and a phase-field model for reactive transport are compared in Chapter 10.
Hence, the influence of the interface description on Darcy-scale effective properties is in
this way addressed.

1.3.4 Heterogeneous multiscale methods

The heterogeneous multiscale method (HMM) is not a discretization scheme that specifies
how a discretized system of equations could be formulated, but is an abstract framework
to design multiscale schemes. Some discretization scheme(s) still need to be applied to
discretize the governing equations at the involved scales. HMM can be applied when model
equations at two (or more) scales depend on each other. This is the case in porous media,
e.g. as the field-scale permeability depends on the REV-scale permeability as discussed in
Section 1.1, or that Darcy-scale model equations depend on effective parameters through
pore-scale cell problems, as just discussed in Section 1.3.3. Hence, HMM are relevant for a
large range of porous-media problems due to the dependence across scales (cf. Figure 1.7).
We here present the main ideas of heterogeneous multiscale methods, based on the review
[111] and book [110].

The starting point is a macroscale problem of the form

F (vM , dM) = 0,

which should be solved for the macroscale variable vM , but where macroscale data dM are
missing. However, there is a connected microscale model

F(vm, dm) = 0

for a microscale variable vm that depends on (known) microscale data dm. These microscale
data might depend on vM (dm = dm(vM)). Both the macroscale and microscale model will
typically be a PDE or a system of PDEs. After solving for vm, a procedure to estimate
the missing data dM (dM = dM(vm)) is applied. Hence, the two models and their data
are coupled. The main idea of HMM is using a macroscopic solver to solve the macroscale
problem, and designing procedures for estimating the missing data from the microscale
model. That means, HMM keeps track of where and which macroscale data is needed,
solves the microscale model under the necessary constraints, and processes the outcome to
estimate the needed macroscale data.

Schematically, HMM can be depicted as seen in Figure 1.21. The macroscale variable vM
and microscale variable vm could be connected to each other via compression and recon-
struction operators. Concerning the models, the macroscale model F affects the miscroscale
model F through constraints, as the macroscale variable defines how the microscale model
should be solved. This can for example be via initial or boundary conditions, or by influ-
encing how some parameters dm should be chosen. This ensures that the corresponding
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Figure 1.21: Schematics of HMM

or correct microscale model is solved. Once the microscale model is solved, the missing
macroscale data can be estimated.

The design of the multiscale scheme depends on the coupling between the models and
variables, and how time plays a role in the two scales. If both scales are time-dependent,
with variability on the same time scale, a time-stepping procedure with same time-step size
for the two models can be made. The microscale model is then updated first, using vM from
the previous time step to constrain the microscale data dm. Using the updated microscale
model solution found under this constraint, the macroscale variable can be time-stepped
to the next time step. Such a procedure corresponds to an explicit approach, but can also
be made iteratively. If the microscale model evolves much slower in time compared to the
macroscale, the microscale model only has to be solved once in a while. Hence, one can
reuse the estimated data for several time steps. If the microscale model evolves much faster
in time than the macroscale model, a shorter time-step size for the microscale is needed
and should ideally be time-stepped until a quasi-equilibrium is met. This is typical if the
microscale model involves molecular dynamics. A last option is that the microscale data
does not depend on the macroscale (dm ̸= dm(vM)). In this case, the microscale model
can be solved a-priori and all needed data from the microscale model can be found before
solving the macroscale model.

Applying HMM to the model derived in Section 1.3.3 would lead to a rather simple scheme
as the microscale data does not depend on the macroscale variable and both problems are
independent of time. Hence, only three steps are needed: first solve the microscale model,
estimate the macroscale data, then solve the macroscale model. Although rather simple,
we still use this example to illustrate the somewhat abstract concepts of HMM: Hence, the
macroscale model corresponds to

−∇̂x̂ ·
(
D̂(x̂)∇̂x̂û0(x̂)

)
= f̂(x̂) x̂ ∈ Ω

û0(x̂) = 0 on ∂Ω.

}
(F )

The macroscale variable is û0, while the missing macroscale data is the effective diffusion
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matrix D̂. To find this matrix, we have for every x̂ ∈ Ω the microscale model

∇̂ŷ ·
(
D̂(x̂, ŷ)

(
ej + ∇̂ŷwj(x̂, ŷ)

))
= 0 ŷ ∈ Y

wj(x̂, ŷ) is Y -periodic,∫
Y
wj(x̂, ŷ)dŷ = 0 j = 1, . . . , d.





(F)

Hence, the microscale variables are the weights wj. This problem depends on the highly

oscillatory diffusion coefficient D̂(x̂, ŷ), but is considered to be unconstrained as it does
not depend on û0. We then have the data estimation through

D̂ij(x̂) =

∫

Y

D̂(x̂, ŷ) (δij + ∂ŷiwj(x̂, ŷ)) dŷ.

Note that we do have a form of reconstruction and compression coming from the homoge-
nization approach. We started with the Homogenization Ansatz, saying that

ûε(x̂) = û0(x̂, ŷ) + εû1(x̂, ŷ) +O(ε),

and during the derivation in Section 1.3.3 we used that

û1(x̂, ŷ) = ũ1(x̂) +
d∑

j=1

wj(x̂, ŷ) ∂x̂j
û0(x̂).

Hence, finding wj (and hence û1) could be seen as a reconstruction step (although only
up to a constant), but is not needed in this HMM approach. The reconstruction and
compression is normally only needed in the case of constrained approaches.

The strength of HMM appears in the case when the microscale model is constrained by
the macroscale variable. This happens for example when the pore-scale geometry evolves
due to mineral precipitation and dissolution [102]: Here, the microscale model is constrained
by the macroscale solute concentration, which determines the reaction rate and therefore
dictates how much mineral will precipitate or dissolve inside the local cell. Or, for two-phase
flow where the microscale model for the fluid distribution is constrained by the macroscale
saturation [69]. In these two cases, a HMM scheme would need a reconstruction step (to
reconstruct the pore-scale geometry and fluid distribution) in order to solve the microscale
model and estimate the needed macroscale data.

A HMM scheme is rather simple when the microscale model is not constrained by the
macroscale variables as the needed data can be found a-priori. Also, if there is a very simple
constraint coming from the macroscale variable, that could be parametrized, it would also
be possible to solve the microscale model a-priori for an expected range of the constraint
and parametrize the estimated data. For example, if one has mineral precipitation and
dissolution, and the mineral is known to be circular, the needed permeability and effective
diffusion coefficients could be found in terms of the radius, as done in [102]. Then, the
macroscale model would solve for the mineral radii, and be coupled to the parametrized
expression for permeability and effective diffusion. Parametrizations of permeability for
more types of shapes are considered in [94]. In the case that simple parametrizations
cannot be found, machine learning could also be applied to the microscale model in order
to estimate the needed data a-priori [44].

Although applying a HMM scheme is useful for multiscale models, which occur frequently
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in porous media, much information is still needed from the user in order to apply such a
scheme. For example, HMM would only tell that a constraint is needed, but not what
the constraint is. This, the user needs to know from the multiscale problem at hand.
When applying HMM to a model coming from homogenization, the needed information is
available as long the homogenization procedure led to a closed model. Applying HMM does
not guarantee that the correct effective behavior is simulated, but the HMM framework
comes with an error analysis to quantify the origin of the errors; see [110].
In this thesis, two-scale schemes resting on the framework of HMM will be applied in

Chapters 2, 7 and 9. In Chapter 2, a scheme combining mesh adaptivity and ideas of HMM
is applied to a multiscale parabolic problem for addressing the behavior of permeabilities
at different scales (cf. Figure 1.7). In Chapter 7, an explicit two-scale scheme for two-phase
porous-medium flow is implemented, coupling the Darcy-scale two-phase flow with pore-
scale cell problems for effective Darcy-scale parameters. Hence, the interaction between
the two fluids at the pore scale (cf. Figure 1.9) is incorporated in the simulation. Chapter 9
implements an iterative and adaptive two-scale scheme for reactive transport, and analyzes
this scheme with respect to convergence. Here, pore-scale geometry changes are accounted
for in the Darcy-scale flow, which is relevant for e.g. geothermal energy (cf. Figure 1.2).
In Chapter 4, parametrized expressions for permeability and effective heat conductivity
using simple solid shapes are found - so that one can avoid the computational effort of
simulating a coupled multiscale scheme, but still incorporate the influence of pore-scale
geometry changes at the Darcy scale as mineral precipitates or dissolves.

1.4 Structure of thesis

In the last part of the introduction, we turn to the different publications presented in this
thesis. In particular, we outline the novel aspects concerning mathematical modeling, use of
multiscale approaches, and numerical schemes. The thesis is divided into four parts, where
the three first consider various multiscale aspects of parabolic problems, two-phase flow and
reactive transport, respectively. The fourth part considers evaporation from porous media
and stands out as being the only one addressing a pure Darcy-scale approach, but creates
a starting point for further research as multiscale aspects from the first three parts can
improve the approach of the fourth part. Note that the following chapters use similar, but
not identical notation for parameters and variables as applied in this introductory chapter.
However, each chapter defines its own notation which is used consistently throughout that
chapter.

1.4.1 Part A: Multiscale parabolic problems

The first part of this thesis comprises three chapters, corresponding to three publications,
which all deal with different aspects of multiscale parabolic problems, with a focus on
finding and analyzing effective behavior at a larger scale. All three publications use or rely
on homogenization, such that the larger-scale model equations depend on cell problems
from the smaller scale for calculating effective parameters. The first publication, found
in Chapter 2, considers a non-linear parabolic problem, where part of the challenge is
to find the effective diffusion coefficients of this parabolic problem at larger scales. The
main application of the non-linear parabolic problem is unsaturated flow, and in this case
the diffusion coefficient is the permeability. The second publication, found in Chapter 3,
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addresses heat transport through a thin porous medium. Heat transport both in the form
of advection and conduction is included, but the main focus lies in investigating the role
of the effective heat conductivity and how it is influenced by the pore-scale interactions.
The third publication, found in Chapter 4, builds on the two-scale non-isothermal model
for reactive transport derived through homogenization in [18], and analyzes the behavior
of the effective parameters permeability, solute diffusivity and heat conductivity. Special
attention is given to the case when the pore-scale geometry is about to clog. Although
the model includes reactive transport, this publication is still included in Part A as the
focus on finding effective parameters in parabolic equations aligns better with the type of
challenges investigated in this part.
In Chapter 2, a non-linear parabolic problem is investigated. This problem could rep-

resent the transformed Richards equation (1.14) for unsaturated Darcy-scale flow, but can
also be used to model other non-linear diffusion processes. This chapter hence focuses on
the Darcy scale, where detailed information about the permeability is available. The per-
meability is here playing the role of the diffusion coefficient in the parabolic equation. The
goal of this paper is to design an efficient numerical algorithm for the non-linear parabolic
problem, by using a combination of coarse and fine meshes. This is to allow for large-
scale simulations, where a larger domain has to be considered. The fine to coarse meshes
hence represent the REV to field scale length scales (cf. Figure 1.7), respectively. Since
the considered non-linear parabolic problem could be used to model unsaturated flow, this
type of problem is relevant when considering groundwater flows, where the presence of air
influences the flow of the groundwater. For large-scale groundwater applications, one can-
not use a fine mesh everywhere as the computational costs would be too large. By using
coarser meshes, larger domains can be considered, but with the potential loss of accuracy.
Therefore, a strategy with combining fine and coarse meshes adaptively is sought.
In this chapter, an adaptive mesh refinement and coarsening strategy based on an er-

ror indicator is constructed. Using this error indicator, the mesh is either refined (where
larger errors are indicated), coarsened (where lower errors are indicated) or left as is. The
thresholds for refining and coarsening can easily be adjusted. The finest meshes that can
be used is limited by the mesh of the given fine-scale permeability. However, when using
coarser meshes, a permeability representing the effective permeability for the coarser mesh
is needed. This is found through homogenization, similar as for the diffusion problem in
Section 1.3.3. The strategy for incorporating permeability values coming from the solution
of local cell problems at a smaller scale is inspired by the ideas in HMM (cf. Section 1.3.4).
As discussed in Section 1.3.3, local periodicity is needed to apply homogenization, but the
fine-scale permeabilities considered in Chapter 2 are generally not periodic. Permeabilities
at the larger scale can still be found through homogenization by assuming periodicity, but
these effective permeabilities are at best an approximation of the actual effective perme-
ability. However, the applied error indicator is found to trigger mesh refinement in regions
where non-periodic transitions happen, reducing the negative influence of the approximate
permeabilities. The solutions found using adaptive meshes are compared to full fine-scale
solutions to address the accuracy. Overall, the adaptive strategy is found to generally give
low errors although much fewer grid cells are used.
The non-linear parabolic problem in Chapter 2 is discretized using mixed finite element

methods (MFEM), ensuring a mass conservative scheme - also on the adaptive meshes.
A challenging part of solving the discretized equations is the non-linearities, which is a
well-known issue in particular for the Richards equation [37]. We here use backward Euler
for discretizing time, which means that a non-linear system of equations needs to be solved
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for every time step. Newton’s method would offer second order convergence, but fails to
converge unless a very small time-step size is chosen [65]. Another possible approach is the
L-scheme, which formulates the non-linear iterations into contracting fixed-point iterations
that are guaranteed to converge - but only linearly [65]. Therefore, a combination of these
two methods is applied: First, L-scheme iterations are applied until a good starting point
for Newton iterations is reached. Then, Newton iterations are performed until wanted
accuracy is achieved. In this case, the non-linear solving steps are still fast, and without a
severe restriction on the time-step size. Overall, this chapter provides a robust, accurate
and efficient scheme for solving non-linear parabolic problems numerically - by applying
homogenization in a mesh adaptivity strategy and by designing a robust solving strategy
for the non-linearities.
In Chapter 3, heat transport in thin porous media is investigated. Thin porous media

are important in many technical applications, for example in fuel cells, where a thin porous
layer (the gas diffusion layer) is used to connect the gas channel with the anode and cathode.
However, thin porous media are also relevant in the design of filters and composite mate-
rials used as membranes. The starting point of this chapter is a pore-scale model, where
the heat transport in and between the fluid-filled void space and solid space are coupled,
as described in Section 1.2.1. The goal of this paper is to derive a Darcy-scale model for
the effective heat transport through the porous medium. Since the porous medium is thin,
the homogenization strategy (cf. Section 1.3.3) borrows ideas from transversal averaging
(cf. Section 1.3.1) to derive a Darcy-scale model. Hence, the derived Darcy-scale model is
dimensionally reduced (from 3D to 2D), and relies at the same time on local cell problems
for effective parameters. These cell problems still need to be solved in three-dimensional
domains. As seen in Section 1.3.1, the boundary conditions at the top and bottom bound-
aries influence the transversal averaging, which is also found to be the case for the thin
porous medium considered in Chapter 3. The cell problems derived by homogenization
incorporate the boundary conditions applied at the top and bottom boundaries of the thin
porous medium.
In this chapter, heat transport in the fluid by both advection and conduction is included.

Upscaling flow in thin porous media has already been thoroughly investigated (see e.g. [36,
108]), hence the main focus of this chapter is on the effective heat conductivity. Since the
boundary conditions at the top and bottom boundaries of the porous medium appear in
the cell problems for the effective heat conductivity, different effective heat conductivities
are found depending on which type of boundary conditions are applied. We here focus on
the top and bottom boundaries being either perfectly conducting (i.e. Dirichlet boundary
conditions) or transmitting a given heat flux (i.e. Neumann boundary conditions). The
resulting cell problems are elliptic problems and solved by applying finite element methods
(FEM). By solving the resulting cell problems in these two cases, it is found that the
case of perfectly conducting top and bottom boundaries result in generally larger effective
heat conductivities of the thin porous medium. However, the shape of the solid also has
an influence on the effective heat conductivity. Hence, parametrizations of the effective
heat conductivity in terms of e.g. porosity, would still need to be adapted to the actual
pore-scale solid shape. This coincides with results for flow around different solid shapes for
permeability [94].
The derived Darcy-scale model in this chapter is dimensionally reduced (2D instead of

3D), which already represents a potential large saving in terms of computational costs since
only a two-dimensional domain has to be discretized. A rather coarse mesh can be used
since the domain is at Darcy scale, and effective properties are found through the local cell
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problems. These cell problems still need to be solved for three-dimensional domains, but
can generally be solved on smaller batches of the original, thin porous medium. Hence,
there is also a computational gain in rather solving many small problems instead of one
very large problem. By comparing with the solution of conductive heat transport on the
original, pore-scale domain, the derived Darcy-scale model is found to provide good results
of the average behavior. One should however note that the derived Darcy-scale model can
only resolve the average behavior - hence any detailed information concerning pore-scale
variability is not available. However, the influence of the pore-scale geometry and processes
at the pore scale are accounted for.
In Chapter 4, heat transport in a porous medium is investigated. The third spatial

dimension is not included, which corresponds to this direction not having any influence
(e.g. the porous medium stretches infinitely in the vertical direction and does not include
any vertical variability). The investigated model was derived in [18] using homogenization.
There, the starting point was a pore-scale model for coupled heat transport and reactive
transport where a mineral could precipitate and dissolve. The motivation for this model
comes from geothermal energy production, where the induced temperature variations can
cause minerals to dissolve or precipitate depending on their solubility, which is generally
temperature-dependent (cf. Figure 1.2). As the minerals dissolve or precipitate, the pore-
scale geometry changes, influencing effective behavior at Darcy scale. In [18], a Darcy-scale
model was derived using homogenization, such that effective parameters for permeability,
solute diffusivity and heat conductivity could be found via local cell problems. These cell
problems incorporate the local pore-scale geometry changes via a level-set equation. In this
chapter, we investigate the properties of these resulting effective parameters, in particular
for the case when the porous medium is about to clog; i.e., flow paths are about to close
due to mineral precipitation.
Although Chapter 4 could fit into Part C since it considers reactive transport, it is placed

in Part A since the main focus is on investigating the behavior of the effective permeability,
solute diffusivity and heat conductivity. The derived two-scale model from [18] could be
implemented with a heterogeneous multiscale method (cf. Section 1.3.4), where the Darcy-
scale model equations are coupled to the pore-scale cell problems. Instead, a more efficient
approach is sought by solving the cell problems a-priori for expected solid shapes and
investigating the cell problem solutions. Such a strategy was already sought for reactive
transport (without temperature dependence) in [102], by considering circular solids. In this
chapter, we consider both circular and elliptic shapes and focus especially on the behavior
close to clogging for the permeability. Close to clogging, the permeability changes several
orders of magnitude for a very small addition of deposited mineral volume. To capture
this behavior accurately, extra care is needed when finding a suitable parametrization. The
effective heat conductivity depends on the solid shape (as also observed in Chapter 3).
Further, comparing the cell problem solutions with the typical porosity-weighted means
(arithmetic, geometric and harmonic [75]), shows that these means can generally not cap-
ture the overall behavior of the effective heat conductivity as the porosity changes. Similar
results are found for the effective solute diffusion.
The found parametrizations for effective permeability, solute diffusion and heat con-

ductivity make Darcy-scale simulations much easier, while still allowing to incorporate a
dependence on the pore scale. If using for example the radius of the precipitated/dissolved
mineral as variable, the reaction rate for mineral precipitation and dissolution will hence
affect this radius. From the radius, the porosity can easily be calculated, and the effective
permeability, solute diffusion and heat conductivity are found from the parametrizations in
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terms of this radius. However, the parametrizations are found a-priori, hence the numerical
scheme is only at the Darcy scale and active coupling to any pore-scale model equations
is not needed during the simulation. Such a scheme is also demonstrated in this chapter
for a case where mineral dissolves in one part of the domain and precipitates in a different
part, where clogging therefore gradually occurs.

1.4.2 Part B: Two-phase porous-media flow

The second part of this thesis comprises three chapters, corresponding to three publications,
which all deal with different aspects of finding effective behavior of two-phase flow. Two
of the publications consider a thin strip and therefore rely on transversal averaging, while
the third publication considers two-phase flow in a periodic porous medium and applies
homogenization to derive the effective behavior. In the first publication, found in Chapter 5,
it is assumed that the two fluid phases have a layered structure, such that a layer width
can be used to describe the evolution of the fluid-fluid interface. In the second publication,
found in Chapter 6, it is assumed that the fluid-fluid interface stretches across the thin
strip and can hence be identified through its along-strip coordinate. Both of these models
hence consider rather restrictive forms of the fluid-fluid interface, but still incorporate
dynamically evolving interfaces due to flow and surface tension. Due to the simplicity of
the models, it is possible to derive explicit expressions for the effective behavior through
transversal averaging. The third publication, found in Chapter 7, considers a phase-field
model in a periodic pore-scale geometry. Here, homogenization is applied to find the
effective Darcy-scale model equations, which rely on pore-scale cell problems that need
to be solved numerically to find effective parameters. These three publications all give
valuable information about the effective behavior of two-phase flow through pores and
porous media, which is relevant for e.g. water management in fuel cells.
In Chapter 5, two-phase flow in a thin strip is considered. The two fluids flow through

the thin strip and interact with each other at the evolving fluid-fluid interface, as described
in Section 1.2.1. The location of the fluid-fluid interface is assumed to be described with a
layer width corresponding to (1.7), which means that the two fluids have a layered structure
with one fluid on top of the other. The fluid-fluid interface still evolves due to the fluid flow,
and due to the stresses of the fluids interacting through the surface tension, as described
by (1.2) and (1.3). Hence, the layer width will dynamically evolve due to the interactions
between the two fluids. The motivation for this setting is to consider the flow of two fluids
through a single pore or channel, where one fluid is wetting and hence attaches to the walls.
This can be the case of for example fuel cells, where the connected gas channel is hydrophilic
(i.e., water-wetting) [71], as partly highlighted in Figure 1.6. The goal of this chapter is
to find the effective behavior of this setting, which can be found by transversal averaging
(cf. Section 1.3.1). The derived models are hence dimensionally reduced (from 2D to 1D),
where only variability along the strip is explicitly solved for. Using a layer width to describe
the evolution of the fluid-fluid interface strongly simplifies the transversal averaging steps
compared to using a general level set. This setting also allows to find explicit expressions
for the effective parameters, which are then easier to analyze. A similar setting was also
considered in [3] where a thin layer was dimensionally reduced (from 3D to 2D), resulting
in relative permeabilities for the two-phase flow in the thin layer.
Several different two-phase flow regimes are investigated in this chapter. The flow rates

are always assumed low such that one is in the regime of Darcy’s law (cf. the single-phase
channel flow in Section 1.3.1), but different sizes of the capillary number and the viscosity
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ratio between the two fluids are considered. These choices influence the interaction be-
tween the two fluids. In particular, if considering a large or moderate capillary number,
corresponding to a weak to moderate surface tension between the fluids, the surface ten-
sion is found to not influence the effective behavior of the flow. In this case, there is no
pressure jump between the fluids in the transversally averaged models. This corresponds
to zero (Darcy-scale) capillary pressure. Only when the capillary number is very small,
corresponding to a very large surface tension between the fluids, a pressure jump between
the two fluids in the effective model equations can be found. Unlike typical Darcy-scale
models, where the capillary pressure depends on the saturation of one fluid (cf. discussion
in Section 1.2.2), the capillary pressure is here found to be connected to the second-order
derivative (along the strip) of the layer width variable. The layer width could be inter-
preted as a measure of the saturation of one fluid, but is here relevant as it represents
the curvature of the fluid-fluid interface along the strip. A similar setting is analyzed by
volume averaging in [79], but differs from the effective models found in Chapter 5 as [79]
only considered steady-state flow. In Chapter 5, the influence of Marangoni effects and
large viscosity ratio between the fluids on the effective behavior is also investigated. In
particular, by considering a large viscosity ratio between the two fluids, effective equations
resembling unsaturated flow are derived through the transversal averaging. In this case,
the derived model resembles the thin-film lubrication approximation [76].
The validity of the derived effective models in Chapter 5 is investigated by numerical ex-

periments. Simulation results of the original thin strip with resolving the evolving interface
through a level-set approach, are averaged and compared to numerical results of the effec-
tive models for the corresponding regime. It is found that the average of the original model
results approach the results of the effective models as ε → 0 (i.e., as the ratio between
the width and length of the strip approaches zero). These results show that transversal
averaging offers good approximations of the average behavior as the thin strip becomes
longer and thinner.
Chapter 6 also considers two-phase flow in a thin strip, but investigates a different setup

than Chapter 5. The main difference is that in Chapter 6, the fluid-fluid interface stretches
across the thin strip instead of along it. The fluid-fluid interface can still evolve due to
the flow itself and interactions between the two fluids as in Chapter 5. Hence, the starting
point is the same model equations for two-phase flow as in Chapter 5 (cf. Section 1.2.1),
except that now a contact angle model (1.4) is also needed, and slip conditions (1.1) at the
solid wall are applied to avoid the singularity on the fluid-fluid-solid contact point. The
location of the fluid-fluid interface is parametrized through its along-strip location, which
is therefore used as an unknown in the model. The motivation for this setting is to consider
the flow of two fluids through a single pore or channel, where one fluid displaces the other.
This is a common setting in many two-phase flow problems, e.g. capillary rise [119], and
also a common assumption in many pore-network models [28].
Due to the fluid-fluid interface stretching across the thin strip, transversal averaging as

done in Section 1.3.1 cannot be applied in a straightforward manner to derive a model
for the effective behavior in this case. The fluid-fluid interface represents a discontinuity
in the model, and transversal averaging can only be applied in regions far away from the
interface. To derive an effective model, transversal averaging is therefore combined with
boundary-layer methods (cf. Section 1.3.2). By combining matched asymptotic expansions
with transversal averaging, effective models valid away from the fluid-fluid interface as well
as a model for the behavior near the fluid-fluid interface can be found. These models
are connected by matching conditions. However, the resulting effective model is still a
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dimensionally reduced model, where only variability along the strip is explicitly solved for.
Only the regime of moderately small capillary numbers is investigated in this chapter,

as larger or even smaller capillary numbers would have lead to either trivial behavior or
settings where an effective behavior cannot be derived. Instead, the focus of this chapter
is to investigate the influence of a dynamic or hysteretic contact angle, slip length and
viscosity ratio between the fluids. Especially the influence of dynamic or hysteretic contact
angle is much discussed in the context of two-phase porous-media flow [49]. Due to the
simplicity of the model, (semi-)explicit expressions for the dynamic capillarity can be found,
allowing to quantify its influence. Numerical experiments of the effective model highlights
the influence of a dynamic or hysteretic contact angle model. The results of this chapter
have later been extended to cover the case of capillary rise by considering a tube and
incorporating gravity. By comparing with experiments of capillary rise, the derived model
shows that dynamic effects have an influence also in this setting [67].
In Chapter 7, two-phase flow in a periodic porous medium is investigated. The starting

point is pore-scale model equations for two-phase flow as discussed in Section 1.2.1. Since
no restrictions on the shape of the fluid-fluid interface are imposed (except periodicity), a
phase-field model is applied to model the two-phase flow at the pore scale. In particular,
the presence of a surfactant in one of the fluids is included, whose concentration influences
the surface tension and hence the interaction between the two fluids. The motivation for
including such surface-tension effects is that these surfactants play a role in many biological
applications, and also in industrial applications such as enhanced oil recovery to re-mobilize
oil [61]. In this chapter, an existing phase-field model based on the Cahn-Hilliard equation
(1.9) incorporating soluble surfactants is considered [43]. The goal of this chapter is to
find a Darcy-scale model including effective parameters through cell problems, by applying
homogenization (cf. Section 1.3.3) to the phase-field model at the pore scale.
To perform homogenization on the phase-field model, special care is needed for in par-

ticular the parameters of the phase-field equation (1.9). Depending on which choices are
made, one ends up with different behaviors for the phase-field equation in the derived cell
problems. In both [30, 69], a faster time scale is introduced to resolve the phase field
at the pore scale. In this chapter, we do not introduce a faster time scale. Instead, by
choosing the arising non-dimensional parameters arising from the Cahn-Hilliard equation
wisely, a steady-state form of the Cahn-Hilliard equation is arrived at as cell problem for
the fluid-fluid interface evolution. This is in contrast to e.g. [69], which time-steps the
faster time scale until a quasi-steady state is reached for the phase field. The steady-state
cell problems for the phase field in Chapter 7 are instead solved under the constraint that a
certain saturation (which can be related to an integral of the phase field over the local cell)
should be fulfilled. This gives a distribution of the fluids that minimizes surface area and
where one fluid is wetting. This fluid distribution is then used in the other cell problems,
giving effective parameters corresponding to relative permeability and the influence of the
surface tension in the Darcy-scale equations.
The two-scale model is implemented using an approach inspired by heterogenenous multi-

scale methods, cf. Section 1.3.4. In this context, the applied constraint for the saturation is
the reconstruction step needed for the microscale simulation, as explained in Section 1.3.4.
The applied HMM scheme is explicit; that is, iterations between the scales are not per-
formed. Both the Darcy-scale and the pore-scale equations are implemented using MFEM.
Using Darcy-scale solute concentration and pore-scale phase field from the previous time
step, the pore-scale flow through local cell problems is found first. Then, from the aver-
aged flow (the Darcy velocities), saturation and solute concentration at the Darcy scale
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are updated. Finally, the local pore-scale phase fields are updated. This scheme allows to
decouple the various pore-scale cell problems and Darcy-scale equations. Numerical exper-
iments with constant and varying solute concentration show the influence of the varying
surface tension on the effective Darcy-scale behavior. In particular, the fluid distribution
on the pore scale (i.e. the solution of the phase field) is affected by the surface tension,
which influences all the effective parameters.

1.4.3 Part C: Reactive transport with heterogeneous reactions

The third part of this thesis comprises three chapters, corresponding to three publications,
which all deal with different aspects of modeling and simulating reactive transport at the
pore and Darcy scale, where mineral precipitation and dissolution change the pore-scale ge-
ometry. All three publications use or rely on homogenization. The first publication, found
in Chapter 8, develops a phase-field model that combines single-phase fluid flow with a
solid structure evolving due to mineral precipitation and dissolution. This model is then
formulated in a periodic pore-scale geometry, and its Darcy-scale counterpart is found by
homogenization, such that effective parameters can be calculated through pore-scale cell
problems. The second publication, found in Chapter 9, constructs an efficient and accurate
two-scale scheme for the resulting model in the first publication, by using ideas from het-
erogeneous multiscale methods. The third publication, found in Chapter 10, considers a
three-phase problem, where single-phase flow is combined with the precipitation and disso-
lution of two different minerals. Here, the numerical behavior and effective parameters for
a level-set and a phase-field model are compared. These three publications all give valuable
information for modeling and simulating reactive transport with heterogeneous reactions
in a porous medium, relevant for geothermal energy (cf. Figure 1.2) and salt precipitation
(cf. Figures 1.3 and 1.4), in particular when using diffuse interfaces to model the evolving
fluid-solid interface.
In Chapter 8, a phase-field model for reactive transport with heterogeneous reactions

is developed and investigated. The model combines single-phase flow and solute trans-
port with mineral precipitation and dissolution, and hence builds on the sharp-interface
equations presented in Section 1.2.1. An Allen-Cahn equation (1.8) is used to model the
evolving fluid-solid interface. Compared to earlier phase-field models for reactive transport
[86, 104, 116], flow of the fluid is now accounted for. The motivation for such a model is to
be able to model the interaction between fluid flow and solute transport, where the available
space for fluid to flow in dynamically changes due to the heterogeneous chemical reactions.
Such processes are important in a large range in geological applications (e.g. geothermal
energy, CO2 storage, soil salinization) and technical applications (e.g. mineral deposits in
pipes, corrosion). The goal of this paper is both to provide a phase-field model combining
fluid flow with mineral precipitation and dissolution, and to find a model for the Darcy-scale
behavior when these processes occur in a porous medium.
To formulate a phase-field model for the combined fluid flow, solute transport and min-

eral precipitation and dissolution, special care is needed to handle the flow equations. The
phase-field model is defined in the combined domain of fluid, solid mineral and the inter-
face between them. That means, the phase-field flow equations are also defined in the solid
domain. To ensure that there is no flow inside the mineral, a penalizing term inspired by
a phase-field model for shape optimization [42] is incorporated in the flow equations. The
sharp-interface limit of the phase-field model is found by matched asymptotic expansion
(cf. Section 1.3.2). The sharp-interface limit corresponds to the expected sharp-interface
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model equations for fluid flow and reactive transport with a mass transfer across the in-
terface following the Rankine-Hugonio jump condition (1.5). However, the sharp-interface
limit includes also an additional curvature-driven motion for the normal velocity of the
fluid-solid interface. This curvature-driven motion is an inherent part of Allen-Cahn phase-
field models [7]. The phase-field model is implemented using finite volumes on a staggered
grid. Comparisons to available benchmarks [72, 73] show that the curvature-driven motion
causes an initially circular mineral to dissolve faster than expected.
By formulating the derived phase-field model in a periodic pore-scale geometry, homoge-

nization is applied to derive a Darcy-scale model for the effective behavior, cf. Section 1.3.3.
As in Chapter 7, special care is needed for the chosen size of non-dimensional phase-field
parameters to perform the homogenization. However, for the Allen-Cahn phase-field equa-
tion in Chapter 8, a time-dependent phase-field evolution is obtained in the derived cell
problem. The time scale for the phase-field evolution is the same as for the Darcy-scale
time evolution. The derived Darcy-scale model couples Darcy-scale flow with solute trans-
port, where the effective permeability and solute diffusion are found through pore-scale
cell problems. These local cell problems incorporate the local evolution of the phase field,
which depends on the Darcy-scale reaction rate. The effective permeability and solute dif-
fusion hence also depend on the diffuse interface of the phase field. By comparing with
the corresponding sharp-interface cell problems of [102], the diffuse interface is found to
influence the value of the effective parameters slightly, but less when a smaller value for
the diffuse-interface width is chosen. This shows that although phase-field models offer an
easier approach to modeling and simulating reactive transport, there is an influence com-
ing from the fact that phase-field models are indeed approximations of the sharp-interface
physics.
In Chapter 9, the resulting two-scale model from Chapter 8 is implemented in an adap-

tive, iterative manner using a HMM-scheme, cf. Section 1.3.4. The goal of this chapter is
to formulate and implement an efficient, robust and accurate scheme for the Darcy-scale
behavior of reactive transport, while incorporating information from the pore scale. The
scheme is also analyzed, in particular the convergence of the two-scale iterations is proven.
Such an implementation allows to consider the influence of pore-scale geometric changes
due to mineral precipitation and dissolution on the effective Darcy-scale behavior for larger
domains, and hence for larger applications.
The starting point of this chapter is the derived two-scale model from Chapter 8. Both

the Darcy-scale model for fluid flow and solute transport, and the local cell problems
for resolving the phase field and calculating effective permeability and solute diffusion
are implemented using MFEM in space, and implicit Euler in time. The two scales are
coupled through the reaction rate and effective parameters, and an iterative HMM-scheme
is formulated. That is, the pore-scale and Darcy-scale equations are solved in an iterative
manner within each time step, until a sufficiently small change in the porosity (i.e., the
integral of the phase field) is obtained. Here, the Darcy-scale reaction rate appears as
a constraint for the pore-scale cell problem to reconstruct the local pore-scale geometry
through the pore-scale phase-field equation. Since the two scales are solved separately,
only one non-linear equation is to be solved: the Allen-Cahn equation (1.8). This non-
linear equation is solved via L-scheme iterations, which converge for any initial guess.
The resulting two-scale iterative scheme is proven to converge for a simplified case where
flow is neglected. Restrictions on the time-step size and on the values of the phase-field
parameters are needed in order to prove the convergence. The proof is done by introducing
a regularization and showing that the resulting fixed-point iterations are a contraction.
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This strategy is inspired by [55]. Hence, we have a robust scheme which is guaranteed to
converge under relatively mild restrictions.
The efficiency of the two-scale scheme is improved by introducing two forms of adaptiv-

ity: Firstly, mesh adaptivity is applied for resolving the diffuse interface on the pore scale
efficiently, using a predictor-corrector strategy from [47]. The motivation for the mesh
adaptivity is that a fine grid is needed to resolve the diffuse transition zone, but a coarser
grid can be applied further away. Secondly, adaptivity in terms of which Darcy-scale effec-
tive parameters should be calculated is applied. Here, a strategy from [85] is extended to
account for heterogeneous pore-scale geometries. Only cell problems which are sufficiently
different from other cell problems in terms of reaction rate and shape of the phase field are
updated. The other cell problems instead copy the needed effective parameters from the
most similar cell problem that was solved. The numerical examples highlight the influence
of this Darcy-scale adaptivity. It is found that relatively small errors occur when only
solving a smaller set of the cell problems, compared to solving all. Hence, the numerical
scheme is therefore not only robust, but also efficient and accurate.
In Chapter 10, a three-phase problem for fluid flow and reactive transport is investigated.

Here, single-phase fluid flow with solute transport is coupled to the precipitation and dis-
solution of two different minerals. One of the solutes is part of both minerals, hence the
precipitation and dissolution of the minerals depend on each other. Such a setting is rather
common, e.g. for geothermal energy, where the dissolution of one mineral can trigger pre-
cipitation of another, due to differences in solubility [120]. The starting point to formulate
such a model is the single-phase fluid flow and solute transport equations in Section 1.2.1,
but extended since two minerals and three solutes are considered. To model and simulate
such a problem require extra care since three evolving and interacting phases are involved.
The goal of this chapter is to formulate and implement both a sharp-interface model based
on level sets, and a diffuse-interface model based on phase fields, and analyze and compare
their behavior.
Both the level-set and phase-field models are formulated such that they allow solute

diffusion and flow in the fluid phase. The phase-field model uses Allen-Cahn phase fields
(1.8) as starting point, and the model is similar to the one in Chapter 8 when it comes to
incorporating fluid flow. However, the model in Chapter 10 differs from the one in Chapter 8
by considering three phases. Three phases can be modeled by using a ternary phase-field
model, and an approach similar as [86] is applied. The sharp-interface limit is found by
matched asymptotic expansions (cf. Section 1.3.2) for each of the three phases/interfaces.
The sharp-interface limit corresponds to the expected sharp-interface physics except for
additional curvature-driven motion. The resulting phase-field model can be implemented by
standard schemes, and is here implemented using a staggered finite volume scheme, which
is conservative. The level-set model requires extra care when implementing. A Voronoi
Implicit Interface Method is applied to handle the three interacting phases [89]. The level-
set evolution is combined with indicator functions to separate the three phases. Instead
of relying on the sign of the level-set function, a shifted version of an unsigned distance
function for each interface is used. Finite differences are used to discretize the evolution of
the interfaces. The resulting implementation is, unlike the phase-field implementation, not
conservative.
The level-set and phase-field implementations are compared through a series of increas-

ingly coupled problems. In all considered problems, the dissolution of one mineral triggers
the precipitation of the other. The two approaches are found to differ in several ways:
Firstly, the level-set implementation is not conservative and up to 2% of mass is lost dur-
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ing the simulations, while the phase-field implementation is conservative up to machine
precision. Secondly, the level-set implementation requires overall more unknowns than the
phase-field implementation on the same grid, and also more Newton-iterations to solve the
resulting non-linear system of equations. Thirdly, the level-set implementation can resolve
the evolution of the fluid-solid-solid triple point, while the phase-field implementation strug-
gles due to curvature-driven motion. Despite the differences between the two approaches,
the evolution of the mineral volumes and surface areas are comparable. In particular, by
calculating the effective permeability and diffusion coefficient using the corresponding cell
problem formulations (cf. Section 1.3.3) for the two approaches, comparable evolutions of
these effective parameters are found. Hence, both approaches are able to resolve geomet-
rical changes in a three-phase system, and both can predict effective parameters if used as
pore-scale model in a two-scale approach.

1.4.4 Part D: Evaporation from porous media

The last part of this thesis consists of one publication as well as the Conclusion and outlook.
The publication, found in Chapter 11, analyzes evaporation from a porous medium. The
motivation for this analysis is soil salinization [106], see Figure 1.3. This chapter addresses
evaporation of water from the top of a porous medium, which is saturated with saline
water. As the water evaporates, the salt stays behind. Due to the upwards fluid flow
induced by the evaporation, salts will gradually accumulate near the top of the porous
medium, causing increased salt concentrations. If the solubility limit of the salt is reached,
salt will precipitate and create a salt crust [54], as highlighted in Figure 1.4. However, this
setting is also gravitationally unstable as the water near the top of the porous medium will
be heavier than the water found deeper down, due to the differences in salt concentration.
Hence, density instabilities in the form of fingers can be triggered. These fingers can give
a net downwards transport of salt. The goal of this chapter is to analyze these density
instabilities to determine when or whether they occur, and whether they can hinder salt
precipitation.
The starting point for the analysis is Darcy-scale model equations for single-phase fluid

flow and solute transport, cf. Section 1.2.2. The evaporation rate is imposed as a boundary
condition at the top boundary. Two approaches are used to analyze the onset of density
instabilities in Chapter 11: linear stability analysis and numerical simulations. The linear
stability analysis is applied to a simplified model setup by using a Boussinesq approxima-
tion. That means, the density variations of the fluid are neglected except when they occur
together with gravity. In the linear stability analysis, the (instability-free) ground state is
perturbed, in order to find criteria for when the perturbations can grow in strength. This
results in an eigenvalue problem, which gives criteria for the onset of instabilities in the form
of a critical Rayleigh number as a function of time. Hence, from this analysis, onset times
for a given setting (e.g. given evaporation rate, permeability, initial salt concentration) can
be found. Although considering a simplified model, the advantage of the linear stability
analysis is that onset times can be found for a large range of parameter choices for very low
computational costs. The linear stability analysis performed in Chapter 11 follows a rather
standard procedure [75], but differs from other analyses in how the non-dimensionalization
and incorporation of rather untypical boundary conditions are done.
The numerical simulations resolve the full Darcy-scale model equations using a finite-

volume discretization, and are rather expensive to perform. However, where the linear
stability analysis can only provide onset times, numerical simulations can also give infor-
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mation about the further fate and development of the instabilities. The linear stability
analysis also considers a more simplified setup, and the onset times between the two ap-
proaches are compared. In the numerical simulations, instabilities have to be triggered by
adding a perturbation, and the two approaches compare well when the added perturbation
resembles the perturbation from the linear stability analysis. After the instabilities are
initiated, the numerical simulations show that the instabilities develop rather slowly with
respect to strength. Hence, there is a longer time period where the instabilities gradually
increase in strength before they cause a net downwards transport of salt. This means that
salt could still precipitate despite instabilities being present. These findings provide vital
information for understanding the interplay between flow, salt transport and salt precipi-
tation in a saturated porous medium subject to evaporation.
The investigation performed in Chapter 11 differs from the publications in the other chap-

ters of this thesis by not considering a multiscale approach. The linear stability analysis
and numerical simulations are performed using Darcy-scale models only. However, ques-
tions regarding evaporation from porous media and soil salinization would benefit from an
analysis incorporating pore-scale information, as visible in Figure 1.4. First of all, when
salt precipitation occurs, the subsequent decrease of porosity and permeability depends on
the changes of the pore-scale geometry. Secondly, as water evaporates from the top of the
porous domain, air can also penetrate into the porous domain, which should be modeled
as a two-phase or unsaturated flow. Hence, the evolving fluid-fluid interface at the pore
scale influences the Darcy-scale flow of water.
The main findings of the research in this thesis are summarized in the Conclusion and

outlook found in Chapter 12. Here, directions for further research, for both Chapter 11
and for the other chapters, are also discussed.
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Multiscale parabolic problems
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The first part of this thesis consists of three chapters that are based on three journal pub-
lications. Each publication addresses how to find effective parameters at a larger scale, in
particular parameters appearing in the role as a diffusion coefficient in parabolic problems.
Different applications and settings are targeted in the three chapters, but all approaches
rely to some degree on homogenization. Homogenization is in particular useful for finding
effective parameters, as the homogenization steps result in local cell problems for calculat-
ing such effective parameters.

Chapter 2: Numerical homogenization of parabolic problems In this chapter, a robust,
accurate and efficient numerical strategy for a non-linear parabolic problem is developed.
The main application of the considered parabolic problem is the Richards equation for
Darcy-scale unsaturated flow in porous media. Given a fine-scale permeability, which in
the non-linear parabolic problem appears as a diffusion coefficient, we develop a numerical
scheme based on homogenization and heterogeneous multiscale methods. Based on an
error indicator, the computational mesh is refined or coarsened. Homogenization together
with ideas from heterogeneous multiscale methods are applied to estimate the effective
permeability on the coarser meshes. The effective permeability on the coarser meshes
are calculated by solving local cell problems, which are derived under the assumption of
local periodic behavior, as explained in Section 1.3.3. The procedure is here applied to non-
periodic permeabilities, which lead to inaccurate estimates of the true effective permeability.
However, it is shown that by combining the procedure with the error indicator and local
mesh refinement, profitable results are still obtained. This way, an accurate and efficient
scheme is obtained. To solve the resulting non-linear discretized system of equations, we
apply a combination of L-scheme iterations followed by Newton iterations. The L-scheme
iterations, which are unconditionally - but only linear - convergent, are used to create a
good starting point for the Newton iterations, which are second-order convergent. Hence,
the resulting non-linear solving strategy is robust.

Chapter 3: Effective heat transport in thin porous media In this chapter, a dimen-
sionally reduced Darcy-scale model for the effective heat transport through a thin porous
medium is derived. Thin porous media appear in many technical applications as fuel cells
and filters. Here, the starting point is a detailed pore-scale model for the heat transport
through fluid and solid. Using a homogenization strategy with ideas from transversal av-
eraging, an effective model for the Darcy-scale heat transport is obtained. This effective
model is dimensionally reduced, and get effective parameters through local pore-scale cell
problems. We are here in particular interested in the behavior of the effective heat con-
ductivities. Due to the porous medium being thin, the boundary conditions at the top
and bottom boundary of the porous medium appear in the local cell problems. Hence,
the effective heat conductivity of the porous medium is influenced by which boundary con-
ditions are applied. The shape of the solid is also found to influence the effective heat
conductivity. It is demonstrated by numerical experiments of a steady-state heat conduc-
tion problem that the solution of the original pore-scale model is similar to the solution



of the derived effective model. However, the effective model cannot capture any detailed
behavior. The computational costs for solving the original model are much larger than
those of the effective model.

Chapter 4: Effective heat transport near clogging In the final chapter of Part A, we
investigate the behavior of the effective parameters permeability, effective solute diffusivity
and effective heat conductivity. These effective parameters are found through solving cell
problems, which have been derived in an earlier publication [18] using homogenization.
The model itself is motivated from coupled heat transport and heterogeneous reactions
in geothermal reservoirs, where the temperature-dependent mineral solubilities cause the
minerals to precipitate and dissolve due to the temperature variations. In this chapter, the
behavior of these effective parameters are analyzed for different mineral shapes, in partic-
ular in the case when the porous medium is about to clog. Especially permeability can
change several orders of magnitude close to clogging, and we find a suitable parametriza-
tion honoring this behavior. Also parametrizations for effective heat conductivity and
solute diffusivity are found, and they are compared to porosity-dependent averages that
are commonly used in literature. It is found that these porosity-dependent averages cannot
accurately capture the overall behavior as the porosity changes due to mineral precipitation
and dissolution.
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The content of this chapter is based on the following original article:
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non-linear parabolic problems on adaptive meshes. Journal of Computational Physics 425
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We propose an efficient numerical strategy for solving non-linear parabolic problems 
defined in a heterogeneous porous medium. This scheme is based on the classical 
homogenization theory and uses a locally mass-conservative formulation at different scales. 
In addition, we discuss some properties of the proposed non-linear solvers and use an error 
indicator to perform a local mesh refinement. The main idea is to compute the effective 
parameters in such a way that the computational complexity is reduced but preserving the 
accuracy. We illustrate the behavior of the homogenization scheme and of the non-linear 
solvers by performing two numerical tests. We consider both a quasi-periodic example and 
a problem involving strong heterogeneities in a non-periodic medium.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Non-linear parabolic problems are encountered as mathematical models for several real-life applications. Examples in 
this sense are partially saturated flow in porous media, non-steady filtration, and reaction-diffusion systems. Realistic appli-
cations often involve heterogeneous domains, which translate into rapidly oscillating properties.

Letting �ε be a bounded, possibly perforated domain in Rd (d = 2, 3) with Lipschitz boundary ∂�ε and T > 0 be a 
maximal time, we consider the non-linear parabolic equation

∂tbε(x, pε(x, t)) − div
(
Kε(x)∇pε(x, t)

) = f ε(x, t), in �ε × (0,T] , (1)

with suitable initial and boundary conditions. In this setting, ε is a positive small parameter and denotes the scale separa-
tion between the micro-scale (e.g., the scale of pores in a porous medium) and the macro-scale (e.g., the Darcy scale, the 
scale of simulation in case of heterogeneous media). With the superscript 0 < ε � 1 we indicate that the medium is con-
sidered highly heterogeneous, which induces rapid oscillations in the parameters, in the non-linearities and consequently in 
the solution. Inspired by unsaturated fluid flow in a porous medium (1) can, for example, represent the non-dimensional 
Richards equation after applying the Kirchhoff transformation, without taking into account gravity effects (see [1]). In this 
case, the primary unknown pε(x, t) is the transformation of the fluid pressure. For simplicity pε(x, t) will be called pres-
sure in what follows. The given data include the source f ε , the absolute permeability matrix Kε and the volumetric fluid 
saturation bε , which is a given function of pε .

* Corresponding author.
E-mail address: manuela.bastidas@uhasselt.be (M. Bastidas).

https://doi.org/10.1016/j.jcp.2020.109903
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The key issue in developing numerical methods capturing the interaction between scales is to avoid the high com-
putational cost. The use of classical schemes over fine-scale meshes has often unreachable requirements. To capture the 
heterogeneities in the medium the required mesh size is smaller than ε. In this sense, standard numerical methods will 
either fail or become inefficient.

There are numerous numerical simulation techniques for processes that involve two or more scales in space and time. 
During the last years, approaches like the multi-scale finite-volume (MSFV), the algebraic dynamic multilevel (ADM), the het-
erogeneous multi-scale (HMM) and the multi-scale finite element (MsFEM) methods are becoming more and more relevant. 
Concretely, the MSFV and ADM methods proposed in [2,3] aim to solve problems involving different scales by incorporating 
the fine-scale variation into the coarse-scale operators. The multi-scale finite volume method (MSFV) in [3] includes a dy-
namic local grid refinement method to provide accurate and efficient simulations employing fine grids only where needed. 
A preliminary study comparing approaches based on ADM and numerical homogenization can be found in [4]. There the 
homogenization method is used to construct effective properties using a dynamic multilevel mesh.

On the other hand, the HMM (see [5,6]) relies on coupled macro and micro-scale solvers using homogenization (see [7]). 
This method takes advantage of the scale separation and is based on the numerical approximation of the macro-scale data. 
In [6,8,9] ideas on how to manage different scales in an efficient computational way are developed, using the standard finite 
element method (FEM). Further, the numerical computations using finite difference and discontinuous Galerkin method also 
demonstrate the potential of this framework in [5,10].

Improved multi-scale methods to simulate non-linear single-phase and multi-phase flow have been proposed in [11–15]. 
Specifically, the ideas of adaptive homogenization were applied in [15] for two-phase flow problems. An Enhanced Velocity 
Mixed Finite Element method is proposed in [13] to deal with non-matching, multi-block grids and couple micro and 
macro-scale domains. In the same line of research, [12] gives a computational strategy for the multi-scale dynamics over 
non-matching grids using mesh refinement and enriched multi-scale basis functions. In [11], the homogenization theory is 
combined with domain decomposition to obtain effective parameters and solve macro-scale problems. Further, the multi-
scale finite element (MsFEM) method presented in [16–18] constructs a multi-scale mixed finite element space. This change 
of the discrete spaces allows the formal derivation of a-posteriori estimates to control the micro-scale error and its influence 
on the macro-scale.

In this paper, we develop a locally mass-conservative scheme that computes the homogenized permeability field of (1)
over coarse meshes. In contrast with the papers mentioned before, we use an error indicator on the macro-scale solvers 
to localize the error and subsequently refine or coarsen the mesh accordingly. We propose a combination of techniques 
supported in the theoretical framework of the homogenization (see [7]) for non-linear parabolic equations. Our adaptive 
homogenization strategy builds on the ideas of the HMM method in [6,8,9] by using an efficient and robust non-linear 
solver and by considering important aspects as the conservation properties in multiple scales. We use the solution of 
certain micro-scale problems to calculate averaged parameters that are used in a macro-scale solver. The computation 
of the effective parameters can be parallelized and it is cheap to perform. The error induced by the calculation of the 
effective parameters can be dismissed when one applies a sufficiently accurate micro-scale solver. It is important to remark 
that, although periodicity is assumed in the classical homogenization theory, in the numerical examples we show that this 
upscaling technique can be also applied to problems involving non-periodic media.

We apply the backward Euler (BE) method for the time discretization and the mixed finite element method (MFEM) 
for the spatial discretization. We highlight that this strategy is not relying on a particular choice of basis functions or 
discretization method, and that the micro and macro-scale solvers are completely independent. In order to solve the fully 
discrete formulation of (1), non-linear solvers are required. We discuss the applicability of classical iterative solvers like 
Newton or Picard (see [19,20]) and we detail the formulation of a robust fixed-point method called L-scheme proposed 
in [21]. This linearization procedure has the advantage of being convergent independently of the initial guess, the spatial 
discretization and the mesh size. Nevertheless, the convergence rate of the L-scheme is only linear and therefore slower 
compared to the Newton scheme (see [22]). We mention the paper [23] for an approach combining the L and the Newton 
schemes in an optimized way. There, the L-scheme is applied to provide a suitable initial point for the Newton scheme. We 
use this strategy to improve the convergence of the scheme up to the quadratic convergence.

For time-dependent problems the idea of adaptive meshes is very useful to localize the changes in the solution between 
different time steps. On the other hand, reaching finer meshes becomes computationally expensive because it requires extra 
calculations of the macro-scale parameters. The finer the mesh for the upscaled model, the higher the computational effort 
as the effective parameters need to be computed in more points, thus more cell problems need to be solved. For this 
reason, we present an error indicator that specifies when the numerical solution and the effective parameters should be 
re-computed. With this strategy we aim to control the convergence rate of the numerical scheme and to avoid unnecessary 
computations of the local problems.

The paper is organized as follows. In Section 2 the details of the model, the geometry and the discrete formulation are 
given and the necessary assumptions are stated. Section 3 gives a summary of the standard procedure of the homogenization 
for a parabolic case in a periodic porous media. In Section 4 the mesh refinement and the coarsening strategy is stated and 
in Section 5 the linearization scheme is described. We discuss the numerical tests in Section 6, where the quasi-periodic 
and non-periodic cases are considered.
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2. The model formulation and the spatial discretization

To construct a robust and locally conservative scheme we consider the mixed formulation of (1). Letting uε(x, t) be the 
Darcy velocity, the unknowns (pε, uε) satisfy

∂tbε(x, pε(x, t)) + div
(
uε(x, t)

) = f ε(x, t), in �ε
T,

uε(x, t) = −Kε(x)∇pε(x, t), in �ε
T,

pε(x, t) = 0, on ∂�ε
T,

pε(x,0) = pI , in �ε.

(2)

Here �ε
T := �ε × (0, T] and ∂�ε

T := ∂�ε × (0, T]. As mentioned before, by using the superscript ε > 0 we emphasize 
that rapidly oscillating characteristics are involved. For example, the domain either involves characteristics changing within 
ε-sized regions, or it may include perforations.

We refer to [24] for the existence and uniqueness of a weak solution of (1) under the following assumptions:

(A1) The function bε(x, ·) is non-decreasing, bε(·, 0) = 0 and locally Lipschitz continuous. There exists Lb > 0 such that

|bε(x, p1) − bε(x, p2)| ≤ Lb|p1 − p2|,
for all x ∈ �ε and p1, p2 ∈R.

(A2) The permeability function Kε : �ε →Rd×d is symmetric for all x ∈ �ε and continuous. There exist β, λ > 0 such that

β‖ψ‖2 ≤ ψT Kε(x)ψ ≤ λ‖ψ‖2 for all ψ ∈ Rd and x ∈ �ε.

(A3) The initial data pI and the source term f ε are essentially bounded uniformly w.r.t. ε.

In [25] the equivalence between the mixed and conformal weak formulations is proved in both continuous and semi-discrete 
cases.

2.1. The non-linear fully discrete problem

To define the discrete problem we let Thε be a triangular partition of the domain �ε with elements T of diameter hε
T

and hε := max
T ∈Thε

hε
T such that hε � ε.

Further, 0 = t0 ≤ t1 ≤ t1 ≤ · · · ≤ tN = T, N ∈ N is a partition of the time interval [0, T] with constant step size �t =
ti+1 − ti , i ≥ 0. For the discretization of the flux uε we consider the lowest-order Raviart-Thomas space Vhε := RT0(Thε )

and for the pressure pε we use the discrete subspace of piecewise constant functions Whε (see [26])

Whε :=
{

q ∈ L2(�ε) |q is constant on each element T ∈ Thε

}
,

Vhε :=
{

v ∈ H(div,�ε) |v|T = a + bx for all T ∈ Thε , a ∈Rd, b ∈R
}

,

with L2(�ε) being the space of the square-integrable functions with the usual norm and H(div, �ε) := {
v ∈ [L2(�ε)]d |

div(v) ∈ L2(�ε)
}

. We let 〈·, ·〉 represent the inner product on L2(�ε).

Problem PMε
n. Let n ≥ 1. Given (

(
pε

)n−1
hε , 

(
uε

)n−1
hε ) ∈ Whε × Vhε , find 

(
pε

)n
hε ∈ Whε and 

(
uε

)n
hε ∈ Vhε such that for any 

q ∈ Whε and v ∈ Vhε there holds

〈
bε

(
·, (pε

)n
hε

)
− bε

(
·, (pε

)n−1
hε

)
,q

〉
+ �t

〈
div

((
uε

)n
hε

)
,q

〉
= �t

〈
f ε,q

〉
,〈[

Kε
]−1 (

uε
)n

hε ,v
〉
−

〈(
pε

)n
hε ,div (v)

〉
= 0.

We denote by 
(

pε
)0

hε the L2-projection of the initial condition pI over the mesh Thε . For simplicity, we omit writing the 
x argument in bε(x, pε), which becomes now bε(pε).

For details about the existence and uniqueness of the solution to problem PMε
n we refer to [25]. Note that the problem 

PMε
n is non-linear. Therefore a non-linear solver is needed. This is detailed in Section 5.
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Fig. 1. The two-scale structure in R2: the macro-scale domain (left), the complex structure (center) and the micro-scale (right). Note the typical length 
sizes L and �.

3. The two-scale approach

We start the presentation for the case of a periodic medium. Building on this, we extend these ideas for non-periodic 
situations. The concept of coupling the scales through the calculation of effective parameters is used, among others, in 
[6,9,11]. Here we follow the ideas therein and enhance the strategy with adaptive mesh refinement and robust non-linear 
solvers.

We assume that the domain �ε can be written as the finite union of micro-scale regions, namely Y , where the parameters 
change rapidly. In other words, the parameters and non-linearities take different values inside of Y (see Fig. 1). In the 
extreme case, the micro-scale Y can be viewed as a perforated region with a pore space and a solid grain (see, e.g., [7]). 
Here we give the ideas for non-perforated domains but this can be adapted straightforwardly to perforated ones.

At the micro-scale Y and the macro-scale �ε we assume characteristic lengths � and L respectively. The factor ε :=
�
L denotes the scale separation between the two scales. To identify the variations at the micro-scale we define a fast 
variable y := x

ε . To each macro-scale point x ∈ �ε corresponds one micro-scale cell Y that captures the fast changes in the 
parameters.

In the non-dimensional setting, the local cells are Y := [0, 1]d and we let �i ∈Zd and �ε = ∪ 
{
ε(�i + Y ) |�i ∈ Iε

}
for some 

set of vector indices Iε .
To formulate the homogenized problem, we make the following assumptions:

(B1) There exists a function b : �ε ×Rd ×R →R such that bε(x, pε) := b(x, xε , pε) and b(x, ·, pε) is Y -periodic.
(B2) There exists a function K : �ε ×Rd →Rd×d such that Kε(x) := K(x, xε ) where K(x, y) is symmetric and continuous for 

all (x, y) ∈ �ε × Y and K(x, ·) is Y -periodic.

3.1. The homogenization approach

A direct numerical approximation of the problem PMε
n requires the usage of an extremely fine mesh to capture all the 

changes in the characteristics of the medium. We consider a homogenization-based approach and compute an effective 
model involving only the essential variations of the permeability matrix.

We restrict the presentation to the minimum needed for explaining the approach. We make use of the homogenization 
ansatz and refer to [7,27] for a detailed presentation of the method.

First, we assume that pε can be formally expanded as

pε(x, t) = p(x, t) + εp1(x,y, t) + ε2 p2(x,y, t) + ... , (3)

where y = x
ε stands for the fast variable, x is the slow variable and each function pi : �ε × Y × (0, T ] → R is Y -periodic 

w.r.t. y. The function p(x, t) does not depend on y and is in fact the macro-scale approximation of the pressure pε(x, t).
Additionally, the two-scale gradient and divergence operators become

∇ = ∇x + 1

ε
∇y and div = divx + 1

ε
divy . (4)

Using (3) and (4) in (2) and applying the Taylor expansion of b(·, ·, p) we obtain

∂tb −
(

divx + 1

ε
divy

)(
K

(
∇x + 1

ε
∇y

)(
p + εp1 + ε2 p2

))
+ O (ε) = f .

To determine p1 as a function of p, for the terms of order O(ε−1) we can write p1(x, y, t) = p̂1(x, t) +∑d
j=1

∂ p(x,t)
∂x j

ω j(x, y) where the function p̂1 is an arbitrary function of x, and ω j are the solutions of the following mixed 
micro-cell problems

4
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divyξ
j = divy

(
K(x, ·)e j

)
, in Y ,

ξ j = −K(x, ·)∇yω
j, in Y ,

ω j is Y − periodic.

(5)

Here {e j}d
j=1 is the canonical basis of Rd . To guarantee the uniqueness of the solution we assume that ω j has the average 

0 over the micro cells, that is, 
∫

Y ω j(x, y)dy = 0 for all x ∈ �ε .
To highlight that the homogenized domain does not contain heterogeneities, we use � instead of �ε for the macro-scale 

domain and ∂� for its outer boundary. Following the homogenization, � does not contain any oscillatory behavior. Recalling 
the periodic boundary conditions and averaging over Y , one obtains the homogenized mixed formulation.

Letting u(x, t) denote the upscaled Darcy velocity, the upscaled unknowns (p, u) satisfy

∂tb
(x, p(x, t)) + div (u(x, t)) = f 
(x, t), in �T

u(x, t) = −K
(x)∇p(x, t), in �T,

p(x, t) = 0, on ∂�T,

p(x,0) = pI , in �.

(6)

Here �T := � × (0, T] and ∂�T := ∂� × (0, T]. The effective permeability K
 : � →Rd×d has the elements

K

i, j(x) =

∫
Y

(
K(x,y)

(
e j + ∇yω

j(x,y)
))

· ei dy, (i, j = 1, . . . ,d). (7)

The upscaled saturation and source terms are

b
(x, p) :=
∫
Y

b(x,y, p)dy and f 
(x, t) :=
∫
Y

f (x,y, t)dy.

The difference between the solution of (2) and the solution of (6) is subtle. In the original problem, the main charac-
teristics are present at all scales in a strongly coupled manner. Notice that a very fine mesh is needed to resolve all the 
variabilities in (2), leading to expensive numerical methods and oscillatory solutions. The homogenized model instead in-
volves only essential variations at the macro-scale. The solution of (6) represents the average behavior of the solution of (2)
and can be solved on much coarser meshes. However, to determine the value of the permeability tensor at a macro point 
x ∈ �, one has to solve d micro-cell problems (5) associated with that macro point. Note that these problems reflect the 
rapidly oscillating characteristics and are decoupled from the macro-scale variations. From a computational point of view, 
the importance of this decoupling becomes obvious. Instead of solving the full problem on a very fine mesh, one solves 
a collection of simpler problems. In general, analytic solutions are not available to compute the homogenized parameters. 
Then K
 , b
 and f 
 must usually be computed numerically and can therefore only be obtained at discrete points of the 
domain �.

If the original permeability Kε satisfies (A2) and (B2) then the effective tensor in (7) is also symmetric and positive 
definite. Nevertheless, even when the fine scale permeability is isotropic, the numerical approximation to the effective 
tensor can contain non-zero non-diagonal components or different diagonal components.

The non-linear discrete problem associated with the homogenized formulation (6) is defined in the following sections.

3.2. The non-linear fully discrete homogenized problem

Let TH be a coarse, triangular partition of the domain � with coarse elements T of diameter HT and H := max
T ∈TH

HT . 

For the discretization of the flux u we consider the lowest-order Raviart-Thomas space V H := RT0(TH ) and for the pressure 
p we use the discrete subspace of piecewise constant functions W H (see [26]).

Problem PHn. For a given pn−1
H ∈ W H and n ≥ 1, find pn

H ∈ W H and un
H ∈ V H such that for any qH ∈ W H and vH ∈ V H there 

holds 〈
b


(·, pn
H

) − b

(
·, pn−1

H

)
,qH

〉
+ �t

〈
div

(
un

H

)
,qH

〉 = �t
〈
f 
,qH

〉
,〈[

K

]−1 un

H ,vH

〉
− 〈

pn
H ,div (vH )

〉 = 0.

Again p0
H is the L2-projection of the initial pI over the coarse mesh TH . For simplicity, we omit writing the x argument in 

b
(x, p), which becomes now b
(p).
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3.3. The micro-cell problems and the micro-scale discretization

As mentioned before, the effective parameters must be computed at each integration point on the coarse triangulation 
TH . The effective tensor K
 depends on the solution of the micro-cell problems (5). To solve (5) we use MFEM.

To approximate the solution of (5) we use a triangular decomposition Th of the micro-scale domain Y with micro-
scale mesh size h. For the discretization of the micro-scale unknowns we consider the lowest-order Raviart-Thomas space 
Vh := RT0(Th) and the discrete subspace of piecewise constant functions Wh . At each integration point x ∈ T with T ∈ TH , 
the discrete micro-cell problem is

Problem Phj. Find (ω j
h, ξ j

h) ∈ Wh × Vh satisfying〈
divξ

j
h,qh

〉
= 〈∇ · (K(x, ·)e j

)
,qh

〉
,〈

[K(x, ·)]−1 ξ
j
h,vh

〉
−

〈
ω

j
h,div (vh)

〉
= 0,

ω
j
h is Y − periodic,∫

Y

ω
j
h(x,y)dy = 0,

for all qh ∈ Wh , vh ∈ Vh and j = 1, . . . , d. After solving the problems Phj , we use (7) to compute the discrete effective 
permeability and solve the discrete problem PHn . The cell problems Phj are linear problems that only need to be solved 
initially, or when the mesh changes. The numerical cost of solving the micro-scale problems is minor compared to solving 
the original problem.

3.4. Non-periodic case

Until now the two-scale approach has been referenced by assuming periodicity of the permeability Kε . Nevertheless, we 
claim that the same strategy can be applied to non-periodic structures. When the permeability field Kε is non-periodic, 
the periodic boundary conditions in the problems Phj are artificially imposed. However, the problems Phj are well defined 
and will yield to one upscaled tensor K
 . In other words, when one solves the micro-cell problems the resulting effective 
permeability field can systematically be considered an upscaled quantity obtained from the original data. The main issue 
is whether this upscaled permeability reflects the effective behavior at the macro-scale. Hence, we combine the numerical 
homogenization with mesh adaptivity to capture the local variability. In the numerical examples we show that the adaptive 
numerical homogenization applied to the non-periodic cases produces profitable results.

4. The two-scale discretization

In practical cases, one does not necessarily have any structure in the oscillations of the data. Nevertheless, the computa-
tion of macro-scale parameters remains a suitable idea. We propose to solve the micro-cell problems Phj and compute the 
macro-scale parameters over a coarse mesh defined beforehand. This procedure consists of two steps:

• The macro-scale partition: Define a macro-scale division of the domain � with elements Q k , (k = 1, 2, . . . , M), where M
is the total number of coarse cells.

• The micro-scale domains: Solve the micro-cell problems Phj and compute the constant effective permeability (7) over 
each coarse cell Q k . Note that Q k determines a micro-scale domain and there we define a micro-scale mesh size h. 
Moreover, at each micro-scale domain we impose periodic boundary conditions.

Based on this, one can first construct a coarse mesh for the macro-scale domain and inside each macro-scale element 
the effective parameters are obtained by solving the corresponding micro-scale cell problems. Subsequently, one can solve 
the homogenized problem PHn . It is important to highlight that over the coarse-scale partition we construct a uniform 
triangular mesh such that a constant effective permeability is assigned to each triangle. In Fig. 2, we show the configuration 
of the macro and micro-scale partition and the procedure described previously.

4.1. The error indicator

We propose a three-step strategy to adapt the macro-scale mesh to the evolution of the numerical solution of the 
homogenized problem. Our strategy is based on the idea of error control based on averaging technique introduced in [28,29]. 
The indicator of error uses a smoother approximation to the discrete solution un

H . We define an average operator Az

Aun
H (z) = Az(un

H ) := 1

|wz|
∫

wz

un
H dx

6
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Fig. 2. The sketch of the macro-scale partition and the correspondent micro-scale discretization in a domain � ⊂R2. Different intensities represent different 
values of the permeability.

Fig. 3. The outline of the mesh refinement in R2. (Left to right) Initial effective permeability. Initial triangulation and selected triangles to refine (☆). 
Refinement of the permeability field. Refinement of the triangular mesh such that each element corresponds to one and only one (effective) permeability.

where wz := int
(∪{

K ∈ THn : K ∩ T �= ∅, z ∈ T
})

is the patch corresponding to the point z ∈ �.
With this choice of the error indicator we estimate the regions were the flux is changing substantially. Other indicators 

are possible and can be incorporated straightforwardly. For example, one could use estimators based on the changes in 
pressure, front capturing or aim to minimize the residual of the numerical solution (aposteriori estimators, e.g., [30]). We 
remark that by changing the error indicator one would not change the steps below, although different macro-scale meshes 
would be obtained by the procedure.

4.2. The macro-scale mesh refinement and coarsening

Our approach consists of the sequence: Solve - select the cells/triangles - refine/coarse the mesh. The mesh refining 
generates a sequence of triangular meshes (one mesh per time step).

(S1) Solve: The starting point is an initial coarse mesh TH0 and the approximation of the pressure and velocity (p0
H , u0

H )

that satisfy the discrete problem PHn in the first time step.
(S2) Select the cells/triangles: Let the solution (pn

H , un
H ) over THn be given. Calculate the error indicator

ηn
T := ‖un

H − Aun
H‖L2(T ) (8)

for all T ∈ THn . The elements marked to be refined are T ∈ THn such that (see [31])

ηn
T ≥ �r

(
max

K∈THn

ηn
K

)
with �r ∈ (0,1).

On the other hand, we select a set of triangles to be coarsened, i.e. T ∈ THn such that

ηn
T ≤ �c

(
min

K∈THn

ηn
K

)
with �c ≥ 1.

(S3) Adapt the mesh: The last step of the adaptive procedure consists of including new elements, deleting the elements to 
be coarsened and re-meshing. Our strategy avoids nonconforming meshes. We refine each selected cell into four new 
cells to compute four new effective permeabilities, and the reverse process when coarsening is necessary. Inside of the 
new finer cells we re-mesh with the necessary triangles.

The outline of the steps (S1) to (S3) is presented in Figs. 3 and 4 for the 2D case. In Fig. 3 we sketch the situation 
when only refinement is encountered and in Fig. 4 we sketch the coarsening process. We will only consider 2D numerical 
examples, but in 3D the mesh refinement can be done as described in [32]. In Figs. 3 and 4 we highlight that at every 
time step it is necessary to ensure that in the new mesh each element corresponds only to one permeability value. That 
restriction forces us to also refine/coarsen neighboring elements. This is also evident in Fig. 5 in which we show three 
different steps of the mesh adaptivity.
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Fig. 4. The outline of the mesh coarsening in R2. (Left to right) Refined effective permeability. Refined triangulation and selected triangles to coarsen (☆). 
Coarsened permeability field. Coarsened triangulation such that each element corresponds to one and only one (effective) permeability.

Fig. 5. The outline of the mesh adaptivity. (Left) Three different levels of the effective permeability refinement (bottom to top) or coarsening (top to bottom) 
and (right) three different levels of the mesh refinement (bottom to top) or coarsening (top to bottom).

With this strategy, we allow more than one level of refinement. However, the homogenization theory presented earlier 
is restricted to only two levels. In Fig. 5 we sketch the mesh adaptivity process when different levels are involved at one 
step. Note that the thresholds for the refinement can be chosen depending on the problem. Higher values of �r and �c
lead to coarser meshes and less error control. We remark that the adaptive homogenization strategy does not depend on 
which error indicator is applied and can be changed without modifying the steps presented here.

5. The linearization scheme and the final algorithm

Since the time discrete problem PHn is non-linear, solving it then requires a linear iterative scheme. A popular choice is 
the Newton method (see [19]), which converges quadratically. However, we remark that the quadratic convergence is only 
achieved under certain restrictions. Specifically, the initial guess for the iterations must be close enough to the solution. 
For evolution equations, the solution computed at the previous time step is a natural choice for the initial guess. Therefore, 
the time step should be small enough and depending on the spatial discretization and the mesh size this often leads to 
impractical values (see [33,34]). We refer to [35–41] for several modifications of the Newton scheme leading to an improved 
convergence behavior. We remark that in these papers either the equation to solve involves a convex-concave first order 
term or a particular type of discretization is considered. None of these aspects are relevant for our setting. To avoid a time 
step restriction we apply the L-scheme, which is a contraction-based approach. Although it is only linearly convergent, the 
convergence is guaranteed regardless of the initial guess and on the spatial discretization. It does not involve any derivatives 
(see [21,23,42]).

Let L ≥ Lb (see (A1)) be fixed and assume pn−1
H given. With i ∈N , i ≥ 1 being the iteration index, the next iteration in 

the L-scheme is the solution of the following linear problem.

Problem PHi
n. Find pn,(i)

H ∈ W H and un,(i)
H ∈ V H such that for any qH ∈ W H and vH ∈ V H there holds〈

L
(

pn,(i)
H − pn,(i−1)

H

)
+ b


(
·, pn,(i−1)

H

)
,qH

〉
+�t

〈
div

(
un,(i)

H

)
,qH

〉
= �t

〈
f 
,qH

〉 + 〈
b
(·, pn−1

H ),qH

〉
,〈

un,(i)
H ,vH

〉
−

〈
K
 pn,(i)

H ,div (vH )
〉
= 0.

As discussed, the natural choice for the initial iteration pn,(0)
H is pn−1

H but the convergence of the scheme does not depend 
on this choice. In the non-linear solver the iterations take place until one reaches a prescribed threshold for the L2-norm of 
the difference between iterations, namely δ(pn,(i)

H ) := pn,(i)
H − pn,(i−1)

H .
For the L-scheme the convergence rate is α = L−m

L+C�t for some C > 0 and m < L (see [21]). Moreover, when using the 
L-scheme with L = Lb the discrete maximum principle is preserved if the spatial discretization also has this property. In 
particular, we use MFEM and the maximum principle is guaranteed for this method.

Finally, we combine the non-linear solver, the mesh adaptivity and the homogenization ideas in a simple algorithm 
presented below. For a better understanding of the stages in the proposed method, a flow chart is given in Fig. 6, presenting 
the steps in the algorithm.

8
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Fig. 6. The sketch of the adaptive numerical homogenization strategy.

Algorithm 1 Adaptive numerical homogenization.
Result: Pressure pH N and velocity uH N over a refined mesh TH N

Choose an initial coarse-mesh TH0 and compute the coarse effective permeability K
 (7).
for time step tn do

Estimate the error indicator (8) of the solution uHn−1

Refine/coarsen the mesh THn−1

if new/deleted elements then
Solve the micro-cell problems Phj
Re-compute the effective parameter K
 (7)

end

while ‖δ(pn,(i)
H )‖ > tol do

Compute the solutions pn,(i)
Hn

and un,(i)
Hn

by solving problem PHi
n over the new mesh THn

end

end

6. Numerical results

We present two numerical examples in R2 to illustrate the behavior of the proposed adaptive homogenization proce-
dure. We first verify our numerical homogenization approach using a manufactured periodic and quasi-periodic media and 
subsequently use a non-periodic test case. Note that all parameters specified in the following examples are non-dimensional. 
The pressures are also shifted to lie between 0 and 1.

6.1. The periodic and quasi-periodic cases

Consider the macro-scale domain �ε = (0, 1) × (0, 12 ) with initial condition p0 = 0. We impose the pressure to be 1
and 0 in the upper-right and the lower-left corners respectively, and we use no-flow boundary conditions elsewhere. The 
volumetric concentration is bε(x, pε) = R · (pε)3. Here R is a non-dimensional constant and it is chosen to be R = 0.5E-1. 

9
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Table 1
The error E p for three values of ε and three macro-scale coarse meshes. No adaptivity is included.

Mesh 1 Mesh 2 Mesh 3
H #Elements H #Elements H #Elements
0.1768 64 0.0884 256 0.0442 1024

ε = 1/8 8.145E-2 2.549E-2 1.415E-2
ε = 1/16 6.616E-2 2.497E-2 1.349E-2
ε = 1/32 5.594E-2 1.721E-2 1.128E-2

Fig. 7. The fine scale permeability field (Kε
1,1) (left) ε = 1

8 and (right) ε = 1
16 (Log10 scale).

This choice of R is such that the dynamic behavior extends up to the reference time T = 1. Finally, we take �t = 0.1 and 
the isotropic periodic permeability field is defined by Kε(x) = κε(x)I2×2 with

κε(x) =
(

10x2
1x2 + 1

2 + 1.8 cos(2π x1
ε ) cos(2π x2

ε )

)
. (9)

To solve the problem PMε
n with the necessary resolution to capture the oscillations over �ε the mesh size is restricted to 

be hε � ε. We use a uniform mesh with 65536 elements and hε = 5E-3 to compute the fine-scale solutions (phε , uhε ) when 
ε = 1

8 , 1
16 and 1

32 . The reference solutions are computed using the same MFEM, backward Euler scheme and the L-scheme 
with L = 3R ≥ max

(
3R · (pε)2

)
.

Table 1 shows the history of convergence of the error for different values of ε and three fixed and uniform coarse meshes 
TH (without refinement) and H � hε . In other words, in Table 1 we evidence the behavior of the method on three different 
static coarse meshes for different values of ε. The L2-error of the upscaled pressure pH is calculated as

E p = ‖�hε (pH ) − phε‖L2([0,T];L2(Thε )), (10)

where �hε (pH ) is the L2-projection of the upscaled solution in the fine mesh Thε . With this result we show how the 
homogenized solution tends to the solution of the original problem when H → 0 (rows) and also when ε → 0 (columns).

As follows from Table 1, a finer mesh reduces the errors. However, the errors are not necessarily distributed uniformly. 
The domain can include regions where the errors are significantly larger than in other regions, and these regions may also 
change in time. Whit this example we motivate the use of an adaptive mesh refinement, combined with an error indicator 
to identify the regions where the errors are high.

6.1.1. The isotropic case
We use a modified permeability field to indicate that the assumption of periodicity is not essential. We include in the 

same domain �ε a high permeability region �1 and a low permeability region �2 where the scalar permeability is 1E-2
and 1E-7 respectively.

�1 := [0.21,0.41] × [0.11,0.41] and �2 :=
{

x ∈ �ε | ‖x − [0.75,0.26]‖2 ≤ 0.12
}

.

In Fig. 7 the normalized (quasi-periodic) permeability field is shown for two values of the scale parameter ε. The bound-
ary conditions, the volumetric concentration, the source term and the time discretization remain the same as before.

Fig. 8 shows four levels of the first component of the effective permeability tensor (K

1,1) with ε = 1

16 starting with a 
coarse grid of 16 × 8 cells. Referring to the different levels of the effective permeabilities, it is important to remark that 
the coarse-scale permeabilities are computed in zones that not always match with the initial resolution or periodicity. Here 
one can notice the influence of neighbouring macro-cells in the numerical solution of the micro problems Phj . This effect 
is evident at the boundary of the low permeability zone �2. To point out this behavior in the Fig. 8 we highlight with a 
dashed lines the original location of the low and high permeability areas.

To quantify the anisotropic deviation of K
 we compute the following quantities

τ1 =
(∫

�
||K


D(x) − K
(x)||22dx∫
�

||K

D(x)||22dx

) 1
2

and τ2 =
⎛
⎝∫

�
|K


1,1(x) − K

2,2(x)|2dx∫

�

K

1,1(x)2

2 + K

2,2(x)2

2 dx

⎞
⎠

1
2

,
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Fig. 8. The coarse-scale permeability distribution (K

1,1) (Log10 scale) starting with a coarse grid of 16 × 8 cells. The red lines indicate the original location 

of the low permeability zone (Kε = 1E-7I2×2) and high permeability zone (Kε = 1E-2I2×2).

Fig. 9. The refined permeability field (K

1,1) at t = 1 (Log10 scale) by using �r = 0.3 (left) and �r = 0.5 (right).

Table 2
The adaptivity results for �c = 1 and a varying refining parameter �r . #Elements corresponds to 
the average number of elements during the simulation.

�r

0.2 0.3 0.5 0.7 0.8

#Elements 2755 1295 692 392 331
E p 1.581E-2 1.664E-2 1.727E-2 1.8422E-2 1.901E-2

where K

D is the diagonal matrix that contains the diagonal elements of K
 .

The anisotropic deviation of the effective permeability tensor in the quasi-periodic case (see Fig. 8) corresponds to 
9.65E-5 ≤ τ1 ≤ 3.18E-4 and 3.57E-5 ≤ τ2 ≤ 8.06E-4. With this we conclude that the non-diagonal components of K
 can be 
neglected and due to the similarity between K


1,1 and K

2,2 in Figs. 8 and 9 we only show the first component (K


1,1) of the 
effective parameter.

In Table 2 we present the results of the adaptive homogenization process when using different values of �r . Given the 
parabolic nature of the problem the coarsening process is expected to be less relevant during the simulation. In Table 2
the upscaled solution is computed employing the mesh refinement described in Section 4 by using �c = 1, i.e., without 
coarsening the mesh. This allows studying the influence of the refinement parameter �r only.

Furthermore, after the adaptivity process we obtain a refined version of the permeability field and Fig. 9 shows the 
result of the refined permeability at t = 1 for two different values of the refinement parameter. The numerical solution of 
the upscaled problem PHn when using �r = 0.5 is showed in Fig. 10. Notice that the results in Fig. 10 use only 1.06% of 
the original degrees of freedom used in the computation of the reference solution.

Concerning the behavior of the non-linear solver, our test case is an example where the convergence of the Newton 
method highly depends on the initial guess. To compute the homogenized solution using only the linear solver (L-scheme) 
an average of 50 iterations are needed until the threshold ‖δ(pn,(i)

H )‖2 decays below 1E-8. To improve the linear solver a 
mixed strategy is adopted (see [23]). The target is to construct an initial solution that suits a non-problematic starting point 
for the Newton method. In this case we use the L-scheme until ‖δ(pn,(i)

H )‖2 < 1E-2 and then the classical Newton method 
until one reaches ‖δ(pn,(i)

H )‖2 < 1E-8. In Fig. 11 we show the convergence of the non-linear solver for five time steps using 
the L-scheme and the Newton method afterwards. An average of 3 iterations are needed for the L-scheme to reach the 
threshold ‖δ(pn,(i)

H )‖2 < 1E-2.

11
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Fig. 10. The results when using adaptive homogenization at t = 0.2 (top), 0.5 (middle), 1 (bottom). The pressure pHn (left) and the magnitude of the 
velocity field ‖uHn ‖2 (right) are computed for �t = 0.1 and by using �r = 0.5 and �c = 1.

Fig. 11. The convergence of the non-linear solver. The results for five different times using the L-scheme until ‖δ(pn,(i)
H )‖2 < 1E-2 and the Newton method 

afterwards.

6.1.2. The anisotropic case
One can also apply the adaptive homogenization strategy to anisotropic media. Consider the same macro-scale domain, 

the volumetric concentration, the initial and the boundary conditions as before. The anisotropic quasi-periodic permeability 
field is defined by

Kε(x) = κε(x)

(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)(
1 0
0 1E-3

)(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)−1

with κε(x) as in equation (9). Moreover κε(x) = 1E-2 in the sub-domain �1 and κε(x) = 1E-7 in the sub-domain �2. We 
take the rotation angle θ = 30◦ .

In Fig. 12 we show the resulting permeability field when using �c = 1 and �r = 0.3. Fig. 13 shows the numerical 
solution of the upscaled problem PHn for the anisotropic test case.
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Fig. 12. The anisotropic permeability field (left) and the refined permeability (right) K

1,1, K


2,2 and K

1,2 = K


2,1 (top to bottom) at t = 1 (Log10 scale) by 
using �r = 0.3 and �c = 1.

Fig. 13. The results when using adaptive homogenization at t = 1. The pressure pHn (left) and the magnitude of the velocity field ‖uHn ‖2 (right) by using 
�r = 0.3 and �c = 1.

Fig. 14. The fine scale permeability distribution (Kε
1,1) for the SPE10th-TopLayer (left) and SPE10th-38thLayer (right) of the SPE10th (Log10 scale).

The L2-error of the upscaled pressure pH , calculated as in (10), is E p = 5.96E-2 for the anisotropic case. Finally, we 
remark that the convergence of the non-linear solver is not affected by the anisotropy of the medium and remains as in 
Fig. 11.

6.2. The non-periodic case

Here we consider a highly heterogeneous and non-periodic medium. We utilize the data of the SPE Comparative Solution 
Projects [43]. This provides a vehicle for an independent comparison of methods and a recognized suite of test datasets for 
specific problems. We show simultaneously the results when using the isotropic permeability field Kε defined by the top 
layer and the 38th-layer of the SPE10th data set (see Fig. 14).
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Fig. 15. The fine scale pressure pε
h (left) and (right) magnitude of the velocity field ‖uhε ‖2 for the SPE10th-TopLayer (top) and SPE10th-38thLayer (bottom).

Fig. 16. The coarse-scale permeability distribution (K

1,1) (Log10 scale) for the SPE10th-TopLayer (left) and SPE10th-38thLayer (right).

Fig. 17. The normalized difference between the coarse-scale effective permeabilities using homogenization vs harmonic average for the SPE10th-TopLayer 
(left) and SPE10th-38thLayer (right).

The macro-scale domain is a two-dimensional rectangle (see Fig. 14). We impose the pressure to be 1 and 0 in the 
upper-right and the lower-left corners, respectively and we use no-flow boundary conditions elsewhere. The volumetric 
concentration is bε(x, pε) = R · (pε)3. Here R is a non-dimensional constant and it is chosen to be R = 1E-4 such that 
the dynamic behavior extends up to T = 1 and we choose �t = 0.1. The parameter for the non-linear solver is L = 3R ≥
max

(
3R · (pε)2

)
.

To solve the problem (2) with the resolution of Fig. 14 we construct a grid with 26400 elements in a homogeneous 
triangular mesh Thε . In Fig. 15 we show the reference solution (phε , uhε ) at the last time step.

Using a coarse grid of 55 ×15 squares we compute the first effective permeability field. This coarse grid corresponds to a 
macro-scale mesh with 1650 triangular elements, which is 6.25% of the number of elements used to compute the reference 
solution. In Fig. 16 we show the first component (K


1,1) of the coarse-scale permeability fields.
When computing the solution of the problem PHn using the coarse-scale permeabilities displayed in Fig. 16 and without 

mesh adaptivity, the L2-error of the solution is E p = 5.956E-2 for the top layer and E p = 6.227E-2 for the 38th layer.
In Fig. 17 we show the difference between the effective permeabilities computed with homogenization and using the 

harmonic average. Such a strategy is used to calculate upscaled parameters, among others, in [44,45]. The difference between 
these strategies is higher in zones with high permeability. One can point out that the harmonic average underestimates the 
permeability. This is problematic because the high permeability regions are regions where one should increase the accuracy 
of the effective parameter in order to have better numerical solutions. When we compute the solution of the problem 
PHn using the coarse-scale permeabilities obtained by harmonic average and without mesh adaptivity the L2-error of the 
solution are E p = 7.542E-2 and E p = 2.283E-1 when using the SPE10th top layer and 38th layer, respectively.

In Table 3 and 4 we study the error when using different values of the parameters �c and �r for the dynamic mesh 
refinement. We remark that regardless of the choice of the coarsening parameter �c the L2-error E p (computed as in (10)) 
tends to decrease for smaller values of �r . Nevertheless, due to the interplay of the parameters �c and �r one sees that for 
high values of the coarsening parameter the average number of elements does not change significantly and the difference 
in the errors is negligible. For these test cases and due to the choice of bε(x, pε), the refinement of the mesh plays a larger 
role in the error control compared to the coarsening process.

Using the adaptivity process we obtain a refined version of the permeability field. Fig. 18 shows the permeability fields 
after the mesh adaptivity when using �r = 0.3 and �c = 5.

Fig. 19 and 20 show the numerical solution of the upscaled problem PHn using the mesh adaptivity strategy described 
in Section 4.
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Table 3
The adaptivity results for the SPE10th-TopLayer and different values of parameters �c and �r . #Elements 
indicates the average number of elements during the simulation.

�c

�r
0.3 0.5 0.7

1
#Elements 2176 1873 1779

E p 5.006E-2 5.146E-2 5.292E-2

5
#Elements 2110 1799 1723

E p 5.092E-2 5.393E-2 5.431E-2

10
#Elements 2051 1709 1716

E p 5.098E-2 5.460E-2 5.468E-2

Table 4
The adaptivity results for the SPE10th-38thLayer and different values of parameters �c and �r . #Elements 
indicates the average number of elements during the simulation.

�c

�r
0.3 0.5 0.7

1
#Elements 4088 2305 1949

E p 3.691E-2 4.398E-2 4.684E-2

5
#Elements 3586 2162 1873

E p 3.875E-2 4.549E-2 4.772E-2

10
#Elements 3603 2102 1793

E p 3.955E-2 4.821E-2 5.127E-2

Fig. 18. The refined permeability field (K

1,1) at t = 1 (Log10 scale) for the SPE10th-TopLayer (left) and SPE10th-38thLayer (right) by using �r = 0.3 and 

�c = 5.

Notice that the results in Fig. 19 and 20 use respectively the 7.99% and 13.58% of the original degrees of freedom used 
in the reference solutions.

Finally, in Fig. 21 we show the convergence of the norm δ(pn,(i)
H ) when one uses a combination of the L-scheme and 

Newton method. Here we use a mixed strategy (see [23]) to construct an initial solution that suits a non-problematic 
starting point for the Newton method. As in the previous example we use the L-scheme until ‖δ(pn,(i)

H )‖2 < 1E-2 (typically 
3 iterations) and then the classical Newton method until one reaches ‖δ(pn,(i)

H )‖2 < 1E-8.

7. Conclusions

We have presented a numerical scheme based on homogenization to solve a non-linear parabolic equation defined in 
a heterogeneous porous medium. The discrete non-linear system is obtained by a backward Euler and the lowest order 
Raviart-Thomas mixed finite element discretization. Our approach proposes a local mesh adaptivity that leads to the com-
putation of the effective parameters locally through decoupled cell problems. The mesh adaptivity is based on the idea that 
the upscaled parameters are updated only when necessary. Moreover, to illustrate the performance we have presented two 
general examples. First we considered a periodic case to show the history of convergence of the error when the scale sep-
aration tends to zero. Here we included an anisotropic case and also studied the effect of the anisotropic deviation caused 
by homogenization. Further we considered a non-periodic case based on a benchmark from the SPE10th project and we 
showed that the homogenization can be used also in more general non-periodic cases.

An advantage of this strategy is its flexibility. We showed in the numerical examples that the calculation of the effective 
parameters based on the solution of micro-cell problems is suitable also for non-periodic media. In all cases, the macro-
scale problems are non-linear and to find the numerical solution we used a combined approach, in which a number of 
L-scheme iterations are used to provide a good starting point for the Newton scheme. This leads to a robust and efficient 
non-linear solver. Moreover, the convergence of the L-scheme is independent of the mesh and the discretization method. 
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Fig. 19. The results of the adaptive homogenization for the SPE10th-TopLayer at t = 0.2 (top), 0.5 (middle), 1 (bottom). Pressure pHn (left) and magnitude 
of the velocity field ‖uHn ‖2 (right) are computed for �t = 0.1 and by using �r = 0.3 and �c = 5.

Fig. 20. The results of the adaptive homogenization for the SPE10th-38thLayer at t = 0.2 (top), 0.5 (middle), 1 (bottom). Pressure pHn (left) and magnitude 
of the velocity field ‖uHn ‖2 (right) are computed for �t = 0.1 and by using �r = 0.3 and �c = 5.

Fig. 21. The convergence of the non-linear solver for the SPE10th-TopLayer (left) and SPE10th-38thLayer (right). Results for five different times steps using 
the L-scheme until ‖δ(pn,(i)

H )‖2 < 1E-2 and the Newton method afterwards.
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Since the mesh adaptivity plays an important role in the multi-scale strategy, it is desirable that the changes in the mesh 
do not affect the converge of the non-linear solver.

We have studied the application of this adaptive homogenization technique to single-phase flow but the extension to 
other problems should be further investigated, e.g., the case of non-linear dependencies of the permeability tensor, or 
fractured media. By adapting the error indicator and the linearization scheme, we believe that this strategy can be applied to 
other models. This includes two-phase flow with or without capillary forces and complex micro-scale models, e.g., reactive 
transport with moving interfaces affecting the structure of the pore-scale geometry.
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Abstract
Heat transport through a porous medium depends on the local pore geometry and on the 
heat conductivities of the solid and the saturating fluid. Through upscaling using formal 
homogenization, the local pore geometry can be accounted for to derive effective heat con-
ductivities to be used at the Darcy scale. We here consider thin porous media, where not 
only the local pore geometry plays a role for determining the effective heat conductivity, 
but also the boundary conditions applied at the top and the bottom of the porous medium. 
Assuming scale separation and using two-scale asymptotic expansions, we derive cell 
problems determining the effective heat conductivity, which incorporates also the effect of 
the boundary conditions. Through solving the cell problems, we show how the local grain 
shape, and in particular its surface area at the top and bottom boundary, affects the effective 
heat conductivity through the thin porous medium.

Keywords Upscaling · Heat transport · Thin porous media

1 Introduction

Heat conduction in porous media is a relevant process in applications ranging from geo-
thermal engineering to various technical applications. Especially in the latter field, many 
porous components have a thin shape (see, e.g., Belgacem et  al. 2016, Michaud 2016), 
where filters, fuel cells and membranes count among typical examples. A thin porous layer 
is often part of composite materials (see, e.g., Asbik et  al. 2006). For a porous medium 
where grains and the saturating fluid are under local thermal equilibrium, the effective heat 
conductivity of the porous medium characterizes the medium’s ability to transport heat 
via conduction. A better understanding of the heat transport in porous media, in particu-
lar finding the medium’s effective heat conductivity, can help to not only predict the heat 
transport in a certain setup, but also to design porous materials according to the needs 
of industrial applications. In this context, the detailed properties of the considered porous 
medium are necessary to investigate (see, e.g., Ranut and Nobile 2014).

 * Carina Bringedal 
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When investigating heat transport in porous media, completely pore-scale resolved 
models (see, e.g., Koch et al. 2021) are often not feasible for large domains due to their 
computational complexity. Because of that, we will determine the effective heat conduc-
tivity of the porous medium at the Darcy scale. While simple approaches like a porosity-
weighted averaging are suitable to approximate the effective heat conductivity of layered 
media, as shown in Bringedal and Kumar (2017), they are not applicable to more com-
plex pore structures as also the pore and grain shapes themselves, for example through sur-
face area, affect the effective heat conductivity. We aim at capturing pore-scale effects by 
incorporating them into a model at the Darcy scale. This is done by deriving the effective 
heat conductivity. Two of the most common approaches are the method of volume averag-
ing, and the theory of homogenization. When using volume averaging, effective quantities 
are obtained based on closure relations (Whitaker 1999). Applications to heat transport in 
porous media can be found in Hsu (1999) and Quintard et al. (1997). However, in the pre-
sent work we consider the approach of formal homogenization to obtain effective heat con-
ductivities (Auriault et al. 2009; Hornung 1997). Formal homogenization allows to derive 
upscaled equations and corresponding effective quantities following suitable assumptions. 
Within this framework, the effective properties of the porous medium are obtained by solv-
ing so-called cell problems at the pore scale. If a porous medium exhibits local periodicity 
in its structure, we can obtain accurate results for general grain shapes using the theory of 
homogenization (Auriault 1983). Then, representative sections of the porous medium need 
to be considered at the pore scale and are the basis for deriving upscaled equations with 
corresponding effective quantities.

In the following, thin porous media are considered. With a thin porous medium, we 
mean a porous medium where the thickness of the porous medium is of the same order of 
magnitude as the length of a representative elementary volume at the pore scale. This cor-
responds to the proportionally thin porous medium (PTPM) considered in Fabricius et al. 
(2016). Note that different types of thin porous media are also discussed in that paper, in 
the context of fluid flow. For thin porous media, the boundary conditions applied at the top 
and bottom boundaries will have an influence on the overall effective behavior and hence 
on the effective quantities of the porous medium.

The presence of thin layers embedded in a surrounding porous medium and their effect 
on effective quantities have been analyzed by homogenization in the context of diffu-
sion–reaction systems (Bhattacharya et al. 2020; Gahn et al. 2021, 2017, 2018; Neuss-Radu 
and Jäger 2007) and for unsaturated flow (Kumar et  al. 2020; List et  al. 2020). In these 
works, the focus has been in particular on transmission conditions across the thin layer and 
the interaction with the surrounding porous medium as the width of the layer approaches 
zero. Homogenization techniques can also be applied to free-standing thin structures. By 
considering a thin strip as a simplified representation of a porous medium, effective equa-
tions have been found by combining asymptotic expansions and transversal averaging 
for reactive transport (van Noorden 2009), heat transport (Bringedal et al. 2015), biofilm 
growth (van Noorden et al. 2010) and two-phase flow (Lunowa et al. 2021; Sharmin et al. 
2020). However, in these works the thin strip is in practice a channel and does not contain 
a porous structure. On the other hand, when considering a thin porous medium, both the 
porous structure as well as the boundary conditions at top and bottom boundaries influence 
the effective behavior.

Much work has been done considering flow in thin porous media. Laminar as well as tur-
bulent single-phase flow in thin porous media have been investigated for example in Chen 
and Papathanasiou (2008), Fabricius et al. (2016), Hellström et al. (2010), Koch and Ladd 
(1997) and Wagner et  al. (2021). A benchmark comparison for a homogenization-based 



A Three‑Dimensional Homogenization Approach for Effective…

1 3

approach applied to flow through thin porous media in Wagner et  al. (2021) shows a 
good agreement between the results of three-dimensional homogenization and pore-scale 
resolved models as well as experimental findings. In this paper, we extend the formal 
homogenization approach applied to fluid flow in thin porous media in Fabricius et  al. 
(2016) by incorporating heat transport and focus in particular on the role of the arising 
effective heat conductivity.

This work is also related to Bringedal and Kumar (2017), which takes a similar approach 
to investigate the influence of chemical reactions on effective heat conductivities in two-
dimensional periodic porous media. In Bringedal and Kumar (2017), the focus is, how-
ever, on the impact of the evolving pore structure on the effective quantities. Here, we will 
not explicitly account for reactive transport and subsequent evolving pore geometries, but 
we will investigate the effect of different grain shapes and sizes. Moreover, we consider a 
fully three-dimensional approach. As a consequence, since the porous medium is thin, the 
type of boundary conditions applied in the third spatial dimension will impact the results. 
Although we will not explicitly account for any evolution of the grains in this paper, the 
resulting models for effective heat conductivity found in this paper would under suitable 
assumptions be the same if allowing the grains to evolve, and complementing the model 
by an appropriate evolution equation. As shown in Bringedal et al. (2016), the influence of 
the evolving grains appears in the derived Darcy-scale model, while the effective quanti-
ties only depend on the grain shape at a given time (Bringedal et al. 2016; Bringedal and 
Kumar 2017). Hence, extensions to porous media evolving due to mineral precipitation and 
dissolution reactions can be formulated and included in the upscaling procedure by consid-
ering, e.g., a level-set formulation as in Bringedal et al. (2016).

In the following, we first introduce the model formulation for a thin, periodic porous 
medium in Sect.  2. The two-scale asymptotic expansions of the formal homogenization 
approach are introduced in Sect. 3. In Sect. 4, we obtain the respective cell problems at the 
pore scale. Upscaled equations valid at the Darcy scale are derived in Sect. 5. The Darcy-
scale equations rely on effective quantities, which are found through solving the corre-
sponding cell problem. We continue with a discussion on the impact of different boundary 
conditions and grain shapes on the derived effective heat conductivity as well as the impact 
of the upscaling procedure itself in Sect. 6, before we end with some concluding remarks.

2  Model Formulation

2.1  Structure of Porous Medium

The modeled porous medium �� consists of void space ��
f
 that is occupied by fluid, and 

grain space ��
g
 such that �� = ��

f ∪��
g ∪ S�

�
 , where S�

� denotes the internal boundaries 
between void and grain space. The porous medium �� is characterized by a coordinate sys-
tem (x1, x2, z) , and we assume that x1, x2 ∈ [0, L] and z ∈ [0,H] , with H ≪ L since we are 
dealing with a proportionally thin porous medium. We introduce the parameter

to separate Darcy and pore scale. The quantity l describes the horizontal extent of the cho-
sen pore-scale reference domain and defines the length size of the pore scale. Hence, we 

𝜀 =
l

L
≪ 1
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can model the periodically oscillating domain at the pore scale by introducing the local 
variable

For a given point (x, z) ∈ �� , we then have (y, z) ∈ Q∶ = [0, l]2 × [0,H] . We use the super-
script � to stress that the domain �� contains highly oscillatory structures.

A so-called cell Q, as shown in Fig. 1, consists of void space Qf , which is occupied by 
fluid, and grain space Qg . The internal surface between Qf and Qg is denoted with SQ . Fur-
thermore, we introduce �Q for the internal sidewalls as well as �Q for top and bottom of 
the cell as visualized in Fig. 2. We have that �Q = �Qf ∪ �Qg , where �Qf

 and �Qg
 are the 

fluid and grain part of the top and bottom surfaces, respectively. Hence, we define the 
boundary of the void space as �Qf = �Qf

∪ SQf
∪�Q and of the grain space as 

�Qg = �Qg
∪ SQg

 . For simplicity, we here assume that the internal sidewalls �Q are occu-
pied by fluid, but allowing grains to touch these sidewalls represents no practical difference 
for the presented model as long the void space remains connected. Note that SQf

 and SQg
 

indicate the same surface but with opposite orientation. Altogether, we have the surface of 
the whole cell to be given as �Q = �Q ∪�Q . We consider Q to be a zoomed-in view for a 
given x and in Sect. 3 we assume that functions defined on Q are periodic in y . Hence, �� 
is built up through several cells Q. Note that these cells do not need to be identical as, 
e.g., grain shape could vary, but all cells follow the structure as described above. Different 
grain shapes correspond to the pore-scale geometry varying with x . However, since we will 
rely on local periodicity in y , two nearby-lying cells Q should not be too different from 
each other.

y =
1

�
x.

Fig. 1  Darcy and pore scale with cell Q. Note that we consider the z-direction as the vertical direction, but 
is for simplicity depicted as pointing out of the paper in figure

(a) SQ (b)ΠQ (c) ΓQf
(d) ΓQg

Fig. 2  Surfaces of the pore-scale cell Q 
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The whole porous medium �� is defined as the union of all pore-scale cells Q, meaning 
�� =

⋃
Q . Accordingly, we obtain ��

f
=
⋃

Qf and ��
g
=
⋃

Qg . Similarly, the union of all 
boundaries is defined by � �

�f
=
⋃

�Qf
 , � �

�g
=
⋃

�Qg
 and S�� =

⋃
SQ.

2.2  Equation Set and Boundary Conditions

To model fluid flow and heat transport on the pore scale of the porous medium, we for-
mulate corresponding conservation equations and boundary conditions. We consider the 
conservation of mass and the conservation of momentum by using the Stokes equations

where �f(Tf) denotes the density of the fluid, u the velocity, p the pressure and �(Tf) the vis-
cosity of the fluid. The fluid density and viscosity are assumed to depend smoothly on fluid 
temperature. We use here the Stokes equations instead of the more general Navier–Stokes 
equations as we in the upscaling only consider the creeping flow regime to be in the range 
of Darcy’s law. However, with suitable assumptions on the Reynolds number, Darcy’s law 
can also be derived from the Navier–Stokes equations (see, e.g., Bringedal et al. 2016).

To describe the conservation of energy in the system, we consider a simplified system. 
Since we are considering creeping flow in a porous medium, fluid velocities will generally 
be low. Further, we consider temperature ranges such that no phase change occurs. In this 
case, energy conservation can be formulated in terms of temperature (Landau and Lifshitz 
1987). We introduce the two temperatures Tf defined in the void space ��

f
 , and Tg defined 

in the grain space ��
g
 . In the fluid, heat transport is due to advection and conduction, while 

any internal heat production due to friction is neglected. The heat transport in the grain 
space only occurs through conduction:

The quantities kf and kg denote the heat conductivities of the fluid and the grain, whereas cf 
and cg are the specific heats. They are all assumed to be material constants. Finally, �g(Tg) 
is the density of the grain, which is assumed to depend smoothly on the grain tempera-
ture. Note that the equations (1–4) are strongly coupled as the fluid flow and temperatures 
jointly affect each other through the advective term, and since the densities and viscosity 
are temperature dependent.

Note that although we here consider relatively simple energy equations (3), (4), extend-
ing the model by including, e.g., temperature-dependent specific heats in the upscaling is 
straightforward as long as they depend smoothly on temperature. However, due to the spe-
cial role of heat conduction, allowing the heat conductivities to depend on temperature 
would affect the upscaling procedure as higher-order effects for this process play a role. 
Hence, we are limited to consider moderate temperature ranges and fluids and solids such 
that the assumptions behind (3), (4) remain valid.

To close the model, boundary conditions at all boundaries as well as initial conditions for 
the variables are needed. Since the upscaling only depends on boundary conditions on � �

�
 

and S�� , only these will be specified in the following. Regarding the flow, we assume no-slip 

(1)�t�f + ∇ ⋅ (�fu) = 0 in ��

f
,

(2)∇p = ∇ ⋅ (�∇u) in ��

f
,

(3)�t(�fcfTf) = ∇ ⋅ (kf∇Tf − �fcfuTf) in ��

f
,

(4)�t(�gcgTg) = ∇ ⋅ (kg∇Tg) in ��

g
.
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boundary conditions on the grain surface and on the top and bottom boundaries of the porous 
medium:

No-slip conditions are commonly used for porous-media flows and ensure that the fluid 
flow remains in the creeping regime. For completeness, we mention that extensions with 
slip also exist (Lasseux and Valdés-Parada 2017; Lunowa et al. 2021). The impact of Neu-
mann as well as Dirichlet boundary conditions on the top and bottom boundaries of the 
domain for the energy conservation will be considered: 

 Hence, we will use either (6a) and (7a), or (6b) and (7b). Here, ez denotes the basis vector 
in z-direction. Further, we have introduced the heat flux � and the temperature � that are 
specified on top and bottom boundaries of the cell Q. The Neumann boundary conditions 
correspond to an applied heat flux � at the top and bottom boundaries. Applying Dirichlet 
boundary conditions corresponds to assuming that the top and bottom boundaries are per-
fectly heat conducting and hence adopts the applied temperature � imposed here. These 
two types of boundary conditions represent the two complementary cases of the top and 
bottom boundaries either transmitting a given heat flux or being perfectly heat conduct-
ing. Combinations of these two cases can be formulated through Robin boundary condi-
tions, but are outside the scope of this work. Note that the heat flux � or the temperature 
� could themselves come from a heat transport model for an adjacent medium, which is 
why they could in the general case vary with time and space. We are interested in how the 
two different types of coupling to the thin porous medium affect the heat transport. Note 
that the boundary conditions are for consistency assumed to be the same on the top and 
bottom boundaries. Furthermore, they are assumed to not depend on the local variable y , 
meaning that they cannot be highly oscillating in space. We also assume that they are not 
highly oscillating with time. The latter two assumptions are needed to enable a separation 
of scales when upscaling the model.

On the interface between fluid and grain, we assume local thermodynamic equilibrium:

which is a reasonable assumption in the creeping flow regime. Alternatively one can apply 
a contact conductivity model, and we refer to Auriault et al. (2009)[Chapter 4.3] for the 
influence of such boundary conditions. To conserve the energy, the heat flux from fluid to 
grain is the same as from grain to fluid:

where n denotes the normal vector on S�
�

.

(5)u = 0 on � �

�f
∪ S�

�
.

(6a)kf∇Tf ⋅ ez = �(x, t) on � �

�f

(6b)or Tf = �(x, t) on � �

�f
,

(7a)kg∇Tg ⋅ ez = �(x, t) on � �

�g

(7b)or Tg = �(x, t) on � �

�g
.

(8)Tf = Tg on S�
�
,

(9)n ⋅ (kf∇Tf) = n ⋅ (kg∇Tg) on S�
�
,
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2.3  Non‑Dimensionalization

The equations and boundary conditions (1) - (9) are non-dimensionalized by introducing 
the following reference quantities to define non-dimensional variables and quantities:

Since we consider thin porous media, we assume that H, which is the length of the 
domain in z-direction, is of the same order as the length l of the previously defined cell. 
This leads to H̃∶=H∕l = O(𝜀0) , where the non-dimensional height H̃ does not depend on 
� . We use the horizontal length scale l to non-dimensionalize the vertical direction to 
emphasize their same order in size. Our assumption corresponds to the case ’Proportion-
ally Thin Porous Medium’ introduced in Fabricius et al. (2016). The non-dimensionaliza-
tion of the spatial variables in (10) allows us to introduce the non-dimensional domains 
Q̃ = {(ỹ1, ỹ2, z̃) ∶ ỹ ∈ [0, 1]2, z̃ ∈ [0, H̃]} and �̃�𝜀 ⊂ {(x̃1, x̃2, z̃) ∶ x̃ ∈ [0, 1]2, z̃ ∈ [0, H̃]} . 
Due to the different scalings used for x̃ and ỹ , both pore-scale and Darcy-scale domains 
appear as unit sized domains. Note that ∇̃ denotes the non-dimensionalized nabla operator 
in the following.

By inserting the non-dimensionalized definitions (10), all model equations and bound-
ary conditions can be rewritten in terms of non-dimensional variables and characteristic 
non-dimensional numbers. From dimensional analysis, we expect 5 independent non-
dimensional numbers in addition to the length scale ratio � . These 5 non-dimensional num-
bers are described and chosen below. The conservation of mass (1) and momentum (2) 
result in

where we have introduced the Euler number Eu = pref∕u2
ref
�ref and the Reynolds number 

Re = �refurefL∕�ref . Note that for the mass conservation equation we have assumed that the 
reference time tref is equal to the advective time scale; tref = L∕uref , which corresponds to 
choosing one non-dimensional number ( trefuref∕L = 1 ). Since we use Stokes equations, it is 
implicitly assumed that the Reynolds number is small. In order to ensure that we are in the 
creeping flow regime where Darcy’s law is valid, we assume ReEu = O(�−2) . Hence, we 
write ReEu = kflow�

−2 , where kflow is a non-dimensional constant not depending on �.
The equations describing the heat transport in the void (3) as well as the grain space (4) 

are rewritten in the following way

(10)

x̃ =
x

L
,

ỹ =
y

l
,

z̃ =
z

l
,

t̃ =
t

tref
,

�̃�f =
𝜌f

𝜌ref
,

�̃�g =
𝜌g

𝜌ref
,

ũ =
u

uref
,

p̃ =
p

pref
,

�̃� =
𝜈

𝜈ref
,

T̃f =
Tf

Tref
,

T̃g =
Tg

Tref
.

(11)𝜕t̃�̃�f + ∇̃ ⋅ (ũ�̃�f) = 0 in �̃�𝜀

f
,

(12)ReEu∇̃p̃ = ∇̃ ⋅ (�̃�∇̃ũ) in �̃�𝜀

f
,

(13)𝜕t̃(�̃�fT̃f) = ∇̃ ⋅ (𝜅f∇̃T̃f − �̃�fũTf) in �̃�𝜀

f
,



 L. Scholz, C. Bringedal 

1 3

with �f = kf∕Luref�refcf = 1∕Pef and �g = kg∕Luref�refcg = 1∕Peg . Here, Pef and Peg are the thermal 
Péclet numbers for fluid and grain, and hence, our last two independent non-dimensional 
numbers. We assume Pef, Peg = O(�0) , which means that the time scales for heat conduc-
tion and heat advection are the same. Our assumption implies that heat transport by con-
duction and advection are equally important at the macroscopic scale, and both will appear 
in the resulting upscaled model. Different assumptions on the Péclet number would lead 
to either only conduction (low Péclet number) or only advection (high Péclet number) 
to be dominating at the macro-scale. Note that our assumption also implies that the ratio 
between kf and cf has to be the same order of magnitude as the ratio between kg and cg . For 
the influence of large differences between the heat conductivities, we refer to Auriault et al. 
(2009)[Chapter 4.2]. In the following, we denote with �f and �g the non-dimensional heat 
conductivities of fluid and grain, respectively.

The non-dimensionalized boundary conditions are:

 Note that we have introduced �̃� = 𝜓∕uref𝜌refcfTref and 𝜃 = 𝜃∕Tref . Since we will only consider 
the non-dimensional variables in the following, we skip the tilde.

3  Two‑Scale Asymptotic Expansions

To incorporate the dependence on the local variable y , we introduce two-scale asymptotic 
expansions for the velocity, the pressure as well as the temperatures in the fluid and the grain. 
For � ∈ {u, p,Tf, Tg} we assume

We hence have that these functions �i are periodic in y , meaning that

(14)𝜕t̃(�̃�gT̃g) = ∇̃ ⋅ (𝜅g∇̃T̃g) in �̃�𝜀

g
,

(15)ũ = � on 𝛤 𝜀

𝛺f
∪ S̃𝜀

𝛺
,

(16)T̃f = T̃g on S̃𝜀
𝛺
,

(17)𝜅f∇̃T̃f = 𝜅g∇̃T̃g on S̃𝜀
𝛺
,

(18a)𝜅f∇̃T̃f ⋅ ez̃ = �̃� on 𝛤 𝜀

𝛺f
,

(18b)or T̃f = 𝜃 on 𝛤 𝜀

𝛺f
,

(19a)𝜅g∇̃T̃g ⋅ ez̃ = �̃� on 𝛤 𝜀

𝛺g
,

(19b)or T̃g = 𝜃 on 𝛤 𝜀

𝛺g
.

�(x, z, t) = �0(x, y, z, t) + ��1(x, y, z, t) + �2�2(x, y, z, t) +⋯ .

�i(x, (y1, y2), z, t) = �i(x, (y1 + 1, y2), z, t) = �i(x, (y1, y2 + 1), z, t)
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for all (y1, y2, z) ∈ Q . Due to the difference in scaling for x , y and z, the non-dimensional 
nabla operator is

where

For the non-dimensional Laplace operator �[⋅] = ∇ ⋅ ∇[⋅] , we introduce

Furthermore, we introduce for convenience the short-hand notation

Recall that the densities and the viscosity are assumed to depend smoothly on the tempera-
ture. By inserting the asymptotic expansions for the temperatures and applying the Taylor 
expansion, we get

where we have introduced the short-hand notations �f0 , �f1 , �g0 , �g1 , �0 and �1 to describe 
the temperature-dependence as indicated in (20)-(22). We are interested in the limit as 
� → 0 and analyze which terms of the model equations are then dominating. By inserting 
the asymptotic expansions into the model equations and sorting the terms after increasing 
order in terms of � , we can isolate those terms.

When the asymptotic expansions of the velocity and fluid temperature are inserted into the 
conservation of mass (11), the terms for the two lowest orders in � are:

∇[⋅] = ∇x[⋅] +
1

�
∇y[⋅] +

1

�
∇z[⋅]

∇x =
(
�x1 , �x2 , 0

)T
,

∇y =
(
�y1 , �y2 , 0

)T
,

∇z =
(
0, 0, �z

)T
.

�x = �2
x1
+ �2

x2
,

�y = �2
y1
+ �2

y2
,

�z = �2
z
.

∇y+z∶ = ∇y + ∇z,

�y+z∶ = �y + �z.

(20)

�f(Tf) = �f(Tf0 + �Tf1 +…)

= �f(Tf0) +
(
�Tf1 + O

(
�2
))
��
f
(Tf0) + O

(
�2
)

= �f(Tf0)
⏟⏟⏟
=∶�f0

+� Tf1�
�
f
(Tf0)

⏟⏞⏞⏟⏞⏞⏟
=∶�f1

+O
(
�2
)
,

(21)�g(Tg) = �g(Tg0) + �Tg1�
�
g
(Tg0) + O(�2) = ∶�g0 + ��g1 + O

(
�2
)
,

(22)�(Tf) = �(Tf) + �Tf1�
�(Tf0) + O(�2) = ∶�0 + ��1 + O

(
�2
)
,
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Similarly, the conservation of momentum (12) results in

For the conservation of energy within the void space (13), we insert asymptotic expansions 
for the velocity as well as the fluid temperature and get

Using the respective asymptotic expansions in the non-dimensionalized conservation of 
energy in the grain space (14), yields

The two lowest orders of the velocity’s no-slip boundary are obtained by inserting the 
asymptotic expansions of the velocity into the non-dimensionalized boundary condition 
(15):

Analogously, the Neumann and Dirichlet boundary conditions for the temperature on the 
top and bottom boundary of the void and grain space (18) and (19) result in 

(23)�0 ∶ 0 =∇y+z ⋅ (u0�f0) in ��

f
,

(24)�1 ∶ 0 =�t�f0 + ∇x ⋅ (u0�f0) + ∇y+z ⋅ (u0�f1 + u1�f0) in ��

f
.

(25)�−1 ∶ 0 = − ∇y+zp0 in ��

f
,

(26)�0 ∶ 0 = − kflow(∇xp0 + ∇y+zp1) + ∇y+z ⋅ (�0∇y+zu0) in ��

f
.

(27)�−2 ∶ 0 =∇y+z ⋅ (�f∇y+zTf0) in ��

f
,

(28)
�−1 ∶ 0 = ∇x ⋅ (�f(∇y+zTf0))

+ ∇y+z ⋅ (�f(∇xTf0 + ∇y+zTf1) − �f0u0Tf0) in ��

f
,

(29)

�0 ∶ �t(�f0Tf0) =∇x ⋅ (�f(∇xTf0 + ∇y+zTf1) − �f0u0Tf0)

+ ∇y+z ⋅ (�f(∇xTf1 + ∇y+zTf2)

− �f0(u0Tf1 + u1Tf0) − �f1u0Tf0) in ��

f
.

(30)�−2 ∶ 0 =∇y+z ⋅ (�g∇y+zTg0) in ��

g
,

(31)
�−1 ∶ 0 = ∇x ⋅ (�g∇y+zTg0)

+ ∇y+z ⋅ (�g(∇xTg0 + ∇y+zTg1)) in ��

g
,

(32)
�0 ∶ �t(�g0Tg0) = ∇x ⋅ (�g(∇xTg0 + ∇y+zTg1))

+ ∇y+z ⋅ (�g(∇xTg1 + ∇y+zTg2)) in ��

g
.

(33)�0 ∶ u0 = 0 on � �

�f
∪ S�

�
,

(34)�1 ∶ u1 = 0 on � �

�f
∪ S�

�
.
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 where we for convenience have multiplied the Dirichlet conditions (18b) and (19b) with 
�−1.

The internal boundary condition for the temperature in void and grain space (16) holds in a 
similar way for the different orders as well:

By inserting the asymptotic expansions for the temperatures into the internal flux boundary 
(17), we get

(35a)�−1 ∶ �zTf0 = 0 on � �

�f
,

(35b)or Tf0 = � on � �

�f
,

(36a)�zTg0 = 0 on � �

�g
,

(36b)or Tg0 = � on � �

�g
,

(37a)�0 ∶ �f�zTf1 = � on � �

�f
,

(37b)or Tf1 = 0 on � �

�f
,

(38a)�g�zTg1 = � on � �

�g
,

(38b)or Tg1 = 0 on � �

�g
,

(39a)�1 ∶ �zTf2 = 0 on � �

�f
,

(39b)or Tf2 = 0 on � �

�f
,

(40a)�zTg2 = 0 on � �

�g
,

(40b)or Tg2 = 0 on � �

�g
,

(41)�0 ∶ Tf0 = Tg0 on S�
�
,

(42)�1 ∶ Tf1 = Tg1 on S�
�
.

(43)�−1 ∶ n ⋅ (�f∇yTf0) = n ⋅ (�g∇yTg0) on S�
�
,

(44)�0 ∶ n ⋅ (�f(∇xTf0 + ∇yTf1)) = n ⋅ (�g(∇xTg0 + ∇yTg1)) on S�
�
,
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3.1  Dominating Order Behavior

Based on the dominating term in the momentum equation (25), we can conclude that

which means that p0 does not depend on y and z. Equivalent results for Tf0 and Tg0 follow 
from the dominating terms in the conservation of energy (27) and (30), and the respective 
top and bottom boundaries (35a) - (36b) as well as the interface condition (43). Hence, Tf0 
and Tg0 are constant within a cell and fulfill

because of the continuity condition on the interface (41). Moreover, since �0 , �f0 and �g0 
only depend on Tf0 and Tg0 , respectively, this leads to

Hence, these variables remain constant within the respective cell for a given x at the Darcy 
scale.

4  Cell Problems

The equations corresponding to a fixed order with respect to � from the previous section are 
now used to derive so-called cell problems which describe the variations at the pore scale. 
We first consider the conservation of mass and momentum which results in a cell problem 
for the flow. The corresponding derivation for the upscaled flow in a porous medium can be 
found, e.g., in section 1.4 of Hornung (1997) or for the proportionally thin porous medium 
in Fabricius et al. (2016), and is only included for completeness here. Our main focus is on 
the conservation of energy and the corresponding cell problems for heat transport which 
are discussed afterwards.

4.1  Conservation of Mass and Momentum

Due to the linearity of the terms of order �0 in the conservation of momentum (26), we can 
rewrite p1 = p1(x, y, z, t) and u0 = u0(x, y, z, t) as linear combinations of �xjp0

(45)�1 ∶ n ⋅ (�f(∇xTf1 + ∇yTf2)) = n ⋅ (�g(∇xTg1 + ∇yTg2)) on S�
�
.

(46)p0 = p0(x, t),

(47)Tf0(x, t) = Tg0(x, t) = ∶T0(x, t)

(48)�f0(Tf0) = �f0(x, t), �g0(Tg0) = �g0(x, t), �0(Tf0) = �0(x, t).

(49)p1(x, y, z, t) =

2∑
j=1

rj(x, y, z)�xjp0(x, t),

(50)u0(x, y, z, t) = −
kflow

�0

2∑
j=1

sj(x, y, z)�xjp0(x, t)
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for some unknown weights rj and sj . In order to ensure the periodicity of p1 and u0 , we 
require periodicity of rj and sj in y.

We insert the linear combinations (49) and (50) into the second lowest order terms of 
the conservation of momentum (26) as well as the lowest order terms of mass conservation 
(23) and the second lowest order terms of the no-slip boundaries (34). By making use of 
the dependencies of density and viscosity in (48), we obtain the following cell problems to 
determine rj and sj for j = 1, 2:

where ej denotes the unit vector in xj-direction. As mentioned before, sj and rj are periodic 
on �Q . We add the constraint

to ensure the uniqueness of the solution. One should note that this cell problem only needs 
to be solved in y and z. The effect of x comes in as a parameter accounting for the chosen 
pore geometry at a position x at the Darcy scale. Hence, the cell problem accounts for the 
local flow at the pore scale and will later be used to define the permeability of the porous 
medium. By solving for rj and sj in ( Pflow(x) ), we can obtain p1 and u0 as functions of ∇xp0 
through (49) and (50).

4.2  Conservation of Energy

Next, we apply a similar approach to the conservation of energy: The linearity of the terms 
(28) and (31) of order �−1 indicates that Tf1 and Tg1 can be represented as linear combina-
tions of �xjT0 , factorizing the dependencies on x and y . Since the following steps depend on 
which boundary conditions are used on the top and bottom boundary �Q , we divide our 
approach into two cases: We first consider Neumann boundary conditions, and then, the 
results for Dirichlet boundary conditions are presented. For a clear distinction between the 
two cases, we use the superscript ’N’ or ’D’, respectively, to indicate the considered bound-
ary conditions.

4.2.1  Neumann Boundary Conditions on Top and Bottom Boundary �Q

Due to the linearity of the problem, we choose the following expressions in order to satisfy 
the boundary conditions at the top and bottom boundaries: 

0 = ej + ∇y+zrj + �y+zsj in Qf,

0 = ∇y+z ⋅ sj in Qf,

0 = sj on �Qf
∪ SQ,

sj, rj are periodic in y,

⎫
⎪⎪⎬⎪⎪⎭

(Pflow(x))

∫
Qf

rj d(y, z) = constant

(51a)Tf1(x, y, z, t) =

2∑
j=1

vN
j
(x, y, z)�xjT0(x, t) +

�(x, t)

�f
z,
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 where vN
j
 and wN

j
 ( j = 1, 2 ) are weights that are to be determined. Note that the last term 

in (51a) and (51b) ensures that the Neumann boundary conditions (37a) and (38a) are ful-
filled. In the case of homogeneous Neumann boundary conditions, the last term is zero. 
By inserting the linear combination (51a) into the second lowest order terms of the energy 
conservation (28) and using the dependencies of Tf0 in (47) as well as the lowest order 
terms of the mass conservation (23), we get

For the grain space, a similar expression can be derived when the linear combination (51b) 
and the respective equation for energy conservation (31) are used:

Suitable boundary conditions result from inserting the linear combinations into the second 
lowest order terms of the existing boundary conditions (37a), (38a), (41) and (44):

By combining the derived equations (52) - (57), we get two coupled cell problems, for 
j = 1, 2:

The weights vN
j
 and wN

j
 are required to be periodic in y due to the periodicity of Tf1 and Tg1 . 

We add the uniqueness constraint

(51b)Tg1(x, y, z, t) =

2∑
j=1

wN
j
(x, y, z)�xjT0(x, t) +

�(x, t)

�g
z,

(52)0 = �y+zv
N
j

for j = 1, 2 in Qf.

(53)0 =�y+zw
N
j

for j = 1, 2 in Qg.

(54)0 = �zv
N
j

for j = 1, 2 on �Qf
,

(55)0 = �zw
N
j

for j = 1, 2 on �Qg
,

(56)vN
j
= wN

j
for j = 1, 2 on SQ,

(57)n ⋅ (�f(ej + ∇y+zv
N
j
)) = n ⋅ (�g(ej + ∇y+zw

N
j
)) for j = 1, 2 on SQ.

0 = �y+zv
N
j

in Qf,

0 = �y+zw
N
j

in Qg,

0 = �zv
N
j

on �Qf
,

0 = �zw
N
j

on �Qg
,

vN
j
= wN

j
on SQ,

n ⋅ (�f(ej + ∇y+zv
N
j
)) = n ⋅ (�g(ej + ∇y+zw

N
j
)) on SQ,

vN
j
,wN

j
are periodic in y.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

(Pheat, N(x))

(58)∫
Qf

vN
j
d(y, z) + ∫

Qg

wN
j
d(y, z) = constant for j = 1, 2
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with an arbitrary constant. Note that since we added the inhomogeneous Neumann bound-
ary condition as part of the series expansions (51), we obtain a cell problem which is inde-
pendent of the heat flux applied at the top and bottom boundaries. Hence, ( Pheat, N(x) ) is 
used both for homogeneous and inhomogeneous Neumann boundary conditions.

Dimensionality of the Cell Problem If we consider a pore geometry that is constant with 
respect to z, we find that

which means that we can reduce the three-dimensional cell problem to two spatial dimen-
sions and still obtain the same results. To see this, we start by rewriting

where we have omitted writing the dependence on x to simplify the notation. Conse-
quently, we can rewrite the cell problem, namely the Laplace equation in Qf (52) as well as 
the Neumann boundary condition (54), based on the separation of the variables y and z, as

Hence, we have derived two equations that involve either only y or z:

There exist only two types of solutions for oj
f
(z) that fulfill the z-dependent equation (63) as 

well as the Neumann boundary condition in (62):

Note that since (65) leads to a constant solution in case of c = 0 , we only consider c ≠ 0 
here. Using same arguments for Qg and �Qg

 , we find that ojg(z) has a form corresponding to 
(64) or (65). In case of a constant solution (64), it is trivial that this solution does not 

(59)�zv
N
j
(x, y, z) = 0 in Qf,

(60)�zw
N
j
(x, y, z) = 0 in Qg,

vN
j
(y, z) = m

j

f
(y) ⋅ o

j

f
(z),

wN
j
(y, z) = mj

g
(y) ⋅ oj

g
(z),

(61)
�y+zv

N
j
= o

j

f
�ym

j

f
+ m

j

f
�zo

j

f

!
= 0 in Qf

⇒
1

m
j

f

�ym
j

f
= −

1

o
j

f

�zo
j

f
= � = constant in Qf,

(62)
�zv

N
j
(y, z) = m

j

f
(y) ⋅ �zo

j

f
(z)

!
= 0 on �Qf

⇒ �zo
j

f
(z) = 0 on �Qf

.

�ym
j

f
(y) = m

j

f
(y)�,

(63)�zo
j

f
(z) = −o

j

f
(z)�.

(64)o
j

f
(z) = constant in [0,H], or

(65)o
j

f
(z) = d ⋅ cos

(
�c

H
z

)
in [0,H], for c ∈ ℕ, d ∈ ℝ.
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depend on z and satisfies (62). Hence, we now show that (65) cannot be a solution of our 
problem.

As mentioned above, vN
j
 and wN

j
 need to satisfy a uniqueness condition as given in (58) 

for an arbitrary constant. In the following, we set the constant to one. If we incorporate the 
separation approach (61), we get

However, the first term can be rewritten into

where Qf,2D is a two-dimensional cross section of the fluid domain in the cell. Note that this 
separation can only be done since the geometry does not vary with z. Similarly, we rewrite 
the integral of wN

j
 . The uniqueness condition is calculated as

which is a contradiction. Hence, oj
f
(z) as well as ojg(z) have to be constant functions as stated 

in (64). The three-dimensional cell problem can therefore be reduced to a two-dimensional 
problem if the geometry does not depend on z. Note that we still obtain three-dimensional 
solutions for the cell problem that cannot be reduced to two-dimensional cell problems, if 
the grain shape changes along the z-axis.

4.2.2  Dirichlet Boundary Conditions on Top and Bottom Boundary �Q

To satisfy the Dirichlet boundary conditions on �Q , we can use a similar linear combina-
tion as for zero-Neumann boundary conditions: 

 where vD
j
 and wD

j
 ( j = 1, 2 ) are weights that are to be determined. We insert the linear 

combinations in the respective equations following similar steps as before and obtain the 
following coupled cell problem for j = 1, 2:

∫
Qf

m
j

f
(y) ⋅ o

j

f
(z) d(y, z) + ∫

Qg

mj
g
(y) ⋅ oj

g
(z) d(y, z) = 1.

∫
Qf

m
j

f
(y) ⋅ o

j

f
(z) d(y, z) = ∫

Qf,2D

m
j

f
(y) dy∫

H

0

o
j

f
(z) dz

= ∫
Qf,2D

m
j

f
(y) dy

[
dH

�c
(sin(�c) − sin(0))

]
= 0,

(66)�
Qf

m
j

f
(y) ⋅ o

j

f
(z) d(y, z) + �

Qg

mj
g
(y) ⋅ oj

g
(z) d(y, z) = 0 + 0 ≠ 1

(67a)Tf1(x, y, z, t) =

2∑
j=1

vD
j
(x, y, z)�xjT0(x, t),

(67b)Tg1(x, y, z, t) =

2∑
j=1

wD
j
(x, y, z)�xjT0(x, t),
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This cell problem differs from the previous case of Neumann boundary conditions in the 
boundary conditions on �Qf

 and �Qg
 . Note that due to the Dirichlet boundary conditions, 

these cell problems cannot be reduced to two-dimensional even if the geometry is not 
depending on z.

5  Darcy‑Scale Equations

In the following, we integrate the flow equation (50) over its domain Qf . Further, the next 
order terms with respect to � from the mass (24) and energy conservation (29) and (32) are 
integrated over the respective domains within Q. This is done in order to obtain equations 
at the Darcy scale, while including effects from the pore scale through effective quantities.

5.1  Effective Flow

The derivation of the effective flow, meaning Darcy’s law, can be found in the literature 
(e.g., in Sect.  1.4 of Hornung (1997) in the case of constant viscosity and density, and 
Bringedal et al. (2016) with temperature-dependent viscosity and density) and is again only 
shown for completeness. For the effective flow ū0 in the porous medium, the definition of 
u0 as stated in (50) is integrated

where the components of K are

and the viscosity follows the dependency in (48). The components sj,i follow from solving 
the local, three-dimensional cell problem ( Pflow(x) ). The averaged equation (68) is Darcy’s 
law, where K is the permeability of the porous medium. The matrix K is symmetric and 
positive definite and we refer to Lemma 4.2 in Sect. 1.4 in Hornung (1997) for a detailed 
proof. Note that the permeability in our case is a 2 × 2 matrix, although the cell problem is 
solved in a three-dimensional domain. In Fabricius et al. (2016) and Wagner et al. (2021), 
the authors discuss the applicability of approximate, two-dimensional forms of the cell 
problem, accounting for the porous medium being thin. Hence, under suitable assumptions, 
the resulting permeability for thin porous media can be found more cheaply.

0 = �y+zv
D
j

in Qf,

0 = �y+zw
D
j

in Qg,

0 = vD
j

on �Qf
,

0 = wD
j

on �Qg
,

vD
j
= wD

j
on SQ,

n ⋅ (�f(ej + ∇y+zv
D
j
)) = n ⋅ (�g(ej + ∇y+zw

D
j
)) on SQ,

vD
j
,wD

j
are periodic in y.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

(Pheat, D(x))

(68)ū0 =
1

|Q| ∫Qf

u0(x, y, z, t) d(y, z) = −
1

𝜈0
K∇xp0

(69)Kij(x) =
kflow

|Q| ∫
Qf

sj,i(x, y, z) d(y, z) i, j = 1, 2
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By integrating the second lowest order terms of the mass conservation (24) over the 
volume and using Gauss’ theorem, the following equation is derived:

Note that the boundary of the void space was previously defined as �Qf = �Qf
∪ SQf

∪�Q . 
The integral over �Q is zero due to the periodicity of u0 and u1 . In addition to that, the 
integral over �Qf

 and SQf
 disappears because we assumed no-slip boundaries in (34). The 

upscaled equation (70) can be rewritten based on the definition of ū0 in (68) as

where �∶=|Qf|∕|Q| is the porosity.

5.2  Effective Energy Conservation

To describe the conservation of energy in the void as well as the grain space at the 
Darcy scale, the third lowest order terms in void and grain space (29) and (32) are used. 
If we integrate them over their respective domains, add them up, divide by |Q| and apply 
Gauss’ theorem as well as the definition of the effective flow (68), we obtain

Considering the composition of �Qf = �Qf
∪ SQf

∪�Q and �Qg = �Qg
∪ SQg

 , we first show 
that term C vanishes: For the integrals over �Qf

∪ SQf
 , we make use of the no-slip boundary 

conditions (33) and (34) again. Since all functions within the integral are periodic in y , the 
contributions of the different parts of �Q cancel each other.

Note that �Qf ∩ �Qg = SQ , while the respective normal vectors on this domain point 
in opposite directions for the fluid ( SQf

 ) and the grain component ( SQg
 ). Due to the con-

tinuity condition (45), the contributions from SQ in term B cancel each other. The inte-
gral over �Q is zero due to periodicity. Hence, term B results in

(70)0 = |Qf|�t�f0 + ∫
Qf

∇x ⋅ (u0�f0) d(y, z) + ∫
�Qf

(u0�f1 + u1�f0) ⋅ n d�.

(71)𝜙𝜕t𝜌f0 + ∇x ⋅ (ū0𝜌f0) = 0

(72)

𝜙𝜕t(𝜌f0T0) + (1 − 𝜙)𝜕t(𝜌g0T0) =
1

|Q| ∫Qf

∇x ⋅ (𝜅f(∇xT0 + ∇y+zTf1)) d(y, z)

�������������������������������������������������������������
=∶A1

+
1

|Q| ∫Qg

∇x ⋅ (𝜅g(∇xT0 + ∇y+zTg1)) d(y, z)

���������������������������������������������������������������
=∶A2

+
1

|Q|

(
∫
𝜕Qf

𝜅f(∇xTf1 + ∇y+zTf2) ⋅ n d𝜎 + ∫
𝜕Qg

𝜅g(∇xTg1 + ∇y+zTg2) ⋅ n d𝜎

)

�������������������������������������������������������������������������������������������������������������������������
=∶B

−
1

|Q| ∫𝜕Qf

(𝜌f1(u0Tf1 + u1T0)) ⋅ n d𝜎

���������������������������������������������������
=∶C

−∇x ⋅ (𝜌f0T0ū0).
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where we have introduced n3 = ±1 to denote the third component of the normal vector on 
�Qf

 and �Qg
 , respectively. The following steps depend on the top and bottom boundary of 

the domain. Hence, we consider the case of Neumann boundary conditions first before 
moving on to Dirichlet boundary conditions.

5.2.1  Neumann Boundary Conditions on Top and Bottom Boundary �Q

In this case, the contributions of the integrals over �Qf
 and �Qg

 in term B as given in (73) 
disappear according to the Neumann boundary conditions (39a) and (40a). Therefore, term 
B is zero.

To simplify the terms A1 and A2 , we insert the linear combinations (51a) for Tf1 and 
(51b) for Tg1 and use that Tf0 as well as Tg0 do not depend on y and z:

with components

We can further simplify these expressions by using the following relation:

This relation is obtained by rewriting the left-hand side of the equation and applying the 
Gauss’ theorem:

The integral over �Q vanishes due to periodicity of vN
j
 , and on �Qf

 the normal component 
ni is zero since the respective normal vector is parallel to the z-axis. If we use the continu-
ity condition (56) of the cell problem, we get

(73)

B =∫
�Qf

�f

|Q| (∇xTf1 + ∇y+zTf2) ⋅ n d� + ∫
�Qg

�g

|Q| (∇xTg1 + ∇y+zTg2) ⋅ n d�

=∫
�Qf

�f

|Q|�zTf2n3 d� + ∫
�Qg

�g

|Q|�zTg2n3 d�,

A1 + A2 = �f∇x ⋅

(
V

N∇xT0 +
�f

�f
ez

)
+ �g∇x ⋅

(
W

N∇xT0 +
�g

�g
ez

)

= �f∇x ⋅

(
V

N∇xT0
)
+ �g∇x ⋅

(
W

N∇xT0
)
,

(74)VN
ij
= �ij� +

1

|Q| ∫Qf

�yi v
N
j
d(y, z) i, j = 1, 2,

(75)WN
ij
= �ij(1 − �) +

1

|Q| ∫Qg

�yiw
N
j
d(y, z) i, j = 1, 2.

(76)∫
Qf

�yi v
N
j
d(y, z) = −∫

Qg

�yiw
N
j
d(y, z) i, j = 1, 2.

∫
Qf

�yi v
N
j
d(y, z) = ∫

Qf

∇y+z ⋅ (v
N
j
ei) d(y, z) = ∫

�Qf

(vN
j
ei) ⋅ n d�

= ∫
�Qf

∪SQf
∪�Q

vN
j
ni d�.
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because SQf
 and SQg

 denote the same surface but with opposite orientation. When applying 
the previous steps in inverse order, we end up with

Hence, we have (76).
Making use of the relation between the integrals (76) and the quantities VN and WN in 

(74) and (75), the upscaled effective heat conductivity is given as

with components i, j = 1, 2

Note that the first term represents the volume-weighted average of the heat conductivities 
in fluid and grain. The second term accounts for the internal structure of the heat transport 
within the cell problem and the interaction with the top and bottom boundaries, which are 
not accounted for by the volume-weighted averages.

If we insert all derived expressions above into (72), we obtain the upscaled form of con-
servation of energy:

5.2.2  Dirichlet Boundary Conditions on Top and Bottom Boundary �Q

We first consider the simplified form of term B as stated in (73): If we assume that Tf2 and 
Tg2 are symmetric with respect to z, term B is zero since the remaining integrals sum up to 
zero. This assumption is reasonable due to the symmetric boundary conditions and since 
the setup of the discussed problem yields a symmetric behavior.

As done for the case of Neumann boundary conditions, we also insert the respective lin-
ear combinations (67a) and (67b) into the terms A1 and A2 . This results in:

The components of VD and WD are given by:

Note that the integrals of �yi v
D
j
 over Qf and of �yiw

D
j
 over Qg satisfy

∫
SQf

vN
j
ni d� = ∫

SQf

wN
j
ni d� = −∫

SQg

wN
j
ni d�,

−∫
SQg

wN
j
ni d� = −∫

Qg

∇y+z ⋅

(
wN
j
ei

)
d(y, z) = −∫

Qg

�yiw
N
j
d(y, z).

S
N = �fV

N + �gW
N

(77)SN
ij
= �ij(�f� + �g(1 − �)) +

�f − �g

|Q| ∫
Qf

�yi v
N
j
d(y, z).

(78)𝜕t(𝜙𝜌f0T0 + (1 − 𝜙)𝜌g0T0) = ∇x ⋅ (S
N∇xT0 − 𝜌f0T0ū0).

A1 + A2 = �f∇x ⋅ (V
D∇xT0) + �g∇x ⋅ (W

D∇xT0).

VD
ij
= �ij� +

1

|Q| ∫Qf

�yi v
D
j
d(y, z) i, j = 1, 2,

WD
ij
= �ij(1 − �) +

1

|Q| ∫Qg

�yiw
D
j
d(y, z) i, j = 1, 2.
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The relation can be derived analogously to the case of Neumann boundary conditions (see 
(76)). By using this relation as well as the definitions of VD and WD , we define the effective 
heat conductivity

with components i, j = 1, 2

As in (77), we see that the effective heat conductivity can be written as the sum of the vol-
ume-weighted average of the heat conductivities, and of a part accounting for the internal 
structure of the heat transport and interactions with top and bottom boundaries. Hence, we 
obtain the following Darcy-scale equation for the heat transport:

5.2.3  Remarks Regarding the Effective Heat Conductivities

If we compare the effective heat conductivities SN in (77) for Neumann boundary condi-
tions and SD in (79) for Dirichlet boundary conditions on the top and bottom boundary, 
one finds that they have the same structure. However, they depend on the solution of the 
respective cell problems ( Pheat, N(x) ) and ( Pheat, D(x) ), which are not the same. Hence, we 
obtain different effective heat conductivities depending on the type of boundary conditions.

The effective heat conductivities SN in (77) and SD in (79) are both symmetric and posi-
tive definite, as one also finds for two- or three-dimensional porous media where the top 
and bottom boundary conditions do not have an influence Auriault (1983). To see this, 
one considers the weak form of the cell problems ( Pheat, N(x) ) and ( Pheat, D(x) ). Using 
test functions that also fulfill the top and bottom boundary conditions, the weak form for 
( Pheat, N(x) ) is

for all sufficiently smooth � that are periodic in y and fulfilling �z� = 0 on �Q . Choosing � 
equal to vN

j
 in Qf and to wN

j
 in Qg , and using (76) together with Gauss’ theorem, we obtain

This identity can be used to rewrite the components SN
ij

 to

∫
Qf

�yi v
D
j
d(y, z) = −∫

Qg

�yiw
D
j
d(y, z) i, j = 1, 2.

S
D = �fV

D + �gW
D

(79)SD
ij
= �ij(�f� + �g(1 − �)) +

�f − �g

|Q| ∫
Qf

�yi v
D
j
d(y, z).

(80)𝜕t(𝜙𝜌f0T0 + (1 − 𝜙)𝜌g0T0) = ∇x ⋅ (S
D∇xT0 − 𝜌f0T0ū0).

∫
Qf

�f∇y+zv
N
j
⋅ ∇y+z�d(y, z) + ∫

Qg

�g∇y+zw
N
j
⋅ ∇y+z�d(y, z)

= ∫
SQ

�(�g − �f)�j ⋅ �d�

∫
Qf

�f∇y+zv
N
i
⋅ (∇y+zv

N
j
+ �j)d(y, z) +∫

Qg

�g∇y+zw
N
i
⋅ (∇y+zw

N
j
+ �j)d(y, z) = 0.
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which is obviously symmetric, and can be seen to be positive definite by considering the 
sum 

∑2

i,j=1
�iS

N
ij
�j for real numbers �i (see also Proposition 3.2 for a diffusion problem in 

Hornung 1997). For the cell problem with Dirichlet boundary conditions ( Pheat, D(x) ), the 
argument follows similar steps, but using test functions � fulfilling � = 0 on �Q . The cor-
responding weak form and components of SD

ij
 can be written the same way as for the Neu-

mann boundary conditions case, using vD
j
,wD

j
 instead of vN

j
,wN

j
.

Note that although the cell problems ( Pheat, N(x) ) and ( Pheat, D(x) ) generally need to be 
solved in three-dimensional domains, the resulting effective matrices SN(x) and SD(x) only 
vary in the horizontal directions, meaning along x = (x1, x2) . A z-dependence of the effec-
tive heat conductivity would appear if higher order terms from the conservation of energy 
in (13) and (14) would be included, which would correspond to a better approximation 
of the original problem. The presented effective model is based on terms up to the order 
O(�0) . In the expressions for A1 + A2 , the divergence with respect to x is zero in the third 
component. Therefore, the third row and column of the effective heat conductivity are zero 
and we only need to consider S ∈ ℝ

2×2.
Hence, in a thin porous medium, the resulting effective heat conductivity for the hori-

zontal heat transfer depends on the three-dimensional structure of the pore scale and on the 
boundary conditions applied to the top and bottom boundaries of the thin porous medium.

5.3  Summary of Upscaled Model

The derived upscaled model consists of Darcy’s law (68) and upscaled mass conserva-
tion (71), together with an upscaled equation for the effective heat transport (78) or (80) 
depending on the choice of boundary conditions on the top and bottom boundary:

where S = S
N in the case of Neumann boundary conditions on the top and bottom bounda-

ries, and S = S
D in the case of Dirichlet boundary conditions. Equations of state describing 

how the fluid and grain densities and fluid viscosity depend on temperature must also be 
included to close the system. Note that these equations are all defined on two-dimensional 
domains, as the vertical (thin) direction does not need to be resolved. Hence, the effective 
matrices K, S are 2 × 2 matrices. The components of the permeability matrix K are deter-
mined by (69), where the solution of the corresponding cell problems is given through 
( Pflow(x) ). The components of the effective heat conductivity SN and SD are given by (77) 
and (79), which depend on the corresponding cell problems ( Pheat, N(x) ) and ( Pheat, D(x) ), 
respectively. Note that the cell problems are defined on three-dimensional domains, which 
are small portions of the original domain. Despite the strong coupling between the original 
model equations, the cell problems can be solved independently of each other.

SN
ij
= ∫

Qf

�f(∇y+zv
N
j
+ �j) ⋅ (∇y+zv

N
i
+ �i)d(y, z)

+ ∫
Qg

�f(∇y+zw
N
j
+ �j) ⋅ (∇y+zw

N
i
+ �i)d(y, z)

ū0 = −
1

𝜈0
K∇xp0

𝜙𝜕t𝜌f0 + ∇x ⋅ (ū0𝜌f0) = 0

𝜕t(𝜙𝜌f0T0 + (1 − 𝜙)𝜌g0T0) = ∇x ⋅ (S∇xT0 − 𝜌f0T0ū0),
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The upscaled model is valid under the assumptions on the original pore-scale model 
equations stated in Sect. 2.2, and under the assumption of the non-dimensional numbers as 
explained in Sect. 2.3. Note that the (scaled) non-dimensional numbers still appear in the 
resulting upscaled model through the effective quantities K, S and through the cell prob-
lems ( Pheat, N(x) ) and ( Pheat, D(x)).

6  Effective Heat Conductivity Behavior Based on Cell Problems

In the following, we analyze the effective heat conductivities that are calculated based on 
the solutions of the cell problems ( Pheat, N(x) ) and ( Pheat, D(x) ). For the numerical results 
below, we have used Netgen for mesh generation and the finite element software NGSolve 
to solve the weak form of the cell problems (see Schöberl 2014). Note that the cell prob-
lems ( Pheat, N(x) ) and ( Pheat, D(x) ) are elliptic. To generate the mesh in Netgen, we specify 
the domain and location of the inner boundary and give the maximum mesh size hmax . 
However, Netgen generally employs smaller grid cells near inner boundaries. To discre-
tize the cell problems on these meshes, we use subspaces of H1 , using polynomials up to 
third order as basis functions. The remaining computations to obtain the effective heat con-
ductivities according to (77) and (79) have been performed using NGSolve, as the needed 
solution derivatives are directly available through NGSolve. As mentioned above, the cell 
problem can be reduced to two dimensions whenever we apply Neumann boundary con-
ditions on the top and bottom boundary �Q and consider a setup where the grain shape 
does not change along the z-axis. By reducing hmax , larger accuracy is obtained. We found 
that four significant digits in the cell problem solution and in the effective quantity was 
obtained already by hmax = 0.1 . The number of used grid cells was in this case for the cell 
problems in Sect. 6.1–6.3 in the range 180–400 for two-dimensional cell problems, and 6 
000–144 000 for three-dimensional cell problems. The largest amount of grid cell were 
needed for ellipsoid-shaped grains.

The provided code Scholz and Bringedal (2021) calculates all components of the effec-
tive heat conductivities SN and SD . We will limit our attention to isotropic grain shapes. In 
this case, the off-diagonal components SN

ij
 and SD

ij
 ( i ≠ j ) are close to zero and SN

11
= SN

22
 as 

well as SD
11

= SD
22

 . Therefore, we only present and discuss the first diagonal component in 
the following.

We are interested in which way the use of Neumann or Dirichlet boundary conditions on 
the top and bottom boundary �Q as well as different grain shapes affect the effective heat 
conductivity. Besides that, different ratios of the heat conductivity of the grain �g and the 
fluid �f count among the parameters of interest. To simplify the comparison, we set �f = 1 
and consider different values for k = �g∕�f = �g . Note that if follows from assumptions on 
Pef and Peg that �f and �g are the same order of magnitude. Hence, with �f = 1 , �g have to 
be close to 1 as well. In the following, we consider k between 0.2 and 5.

6.1  Effect of Boundary Conditions on Top and Bottom Boundary �Q

As shown in Sections 4.3 - 4.4, the cell problems for effective heat conductivities in case 
of Neumann and Dirichlet boundary conditions on �Q differ. Despite the similar structure 
of the equations as given in (77) and (79), the respective cell problems ( Pheat, N(x) ) and 
( Pheat, D(x) ) apply different boundary conditions. In the following, we consider circular 



 L. Scholz, C. Bringedal 

1 3

cylinder-shaped grains of different radii and compare the results for the two boundary con-
dition types on �Q . The resulting effective heat conductivities are shown in Fig. 3a.

The results for Neumann boundary conditions are consistent with the ones presented 
and discussed in Bringedal and Kumar (2017), where two-dimensional cell problems with-
out the effect of boundary conditions were considered. However, this is due to fact that 
the grain shapes do not vary along the vertical axis in this case. For Dirichlet boundary 
conditions, we obtain a similar behavior with respect to varying the size of the grain, but 
overall larger effective heat conductivities. In the trivial case of k = 1 , fluid and grain have 
the same heat conductivity and we obtain the same constant effective heat conductivity 
for Neumann and Dirichlet boundary conditions. However, for k ≠ 1 the effective heat 

(a) Results for Neumann (dark-colored) and Dirichlet
(ligt-colored) boundary conditions in case of a cylinder-
shaped grain

(b)Difference SD
11−SN

11 for a cylinder-shaped
grain and a cuboid-shaped grain (dotted line)
for comparison. Upper lines are based on k =
5.0, bottom lines on k = 0.2. Note that the
minimum porosity for cylinder-shaped grains
is 0.2, while cuboid-shaped grains can ap-
proach 0

(c) Results for k = 5 (top curves) and k =
0.2 (bottom curves) together with porosity-
weighted averages for cylinder-shaped grains
as a function of porosity

Fig. 3  Comparison of the effective heat conductivities ( SD
11

= SD
22

 and SN
11

= SN
22

 ) for Neumann and Dirichlet 
boundary conditions on the top and bottom boundary �Q
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conductivity is always larger in case of Dirichlet boundary conditions than for Neumann 
boundary conditions on �Q . This positive impact of Dirichlet boundary conditions is due to 
them representing perfect heat conduction on �Q . If we consider the respective difference 
in detail for a cylinder and a cuboid, as shown in Fig. 3b, we observe that for � → 0 and 
� → 1 , meaning the grain fills almost all of the void space or its size is negligible, this dif-
ference goes down to zero. This is the case because the local domain is almost homogene-
ous and therefore equally heat conductive, independently of the boundary conditions. For 
porosities that are neither close to zero nor close to one the choice of Dirichlet boundary 
conditions has a strong, positive effect on the effective heat conductivity.

Note that the surface area between fluid and grain is proportional to the radius when 
considering cylinder-shaped grain. Hence, Fig. 3a can be read as effective heat conductiv-
ity as a function of fluid-grain surface area when scaling the horizontal axis with a factor 
2�H = 2� for this setup. Hence, when one knows that the grains are cylinder-shaped, the 
effective heat conductivity can be determined by the cylinder radius, correspondingly the 
fluid-grain surface area.

Since effective heat conductivities for porous media are often calculated in terms of 
porosity-weighted averages of the individual heat conductivities found in fluid and grain 
(see, e.g., Nield and Bejan 2017), we compare in Fig. 3c the effective heat conductivities 
found through the cell problems with such averages. The averages are calculated through

As seen in Fig.  3c, and as pointed out earlier in Bringedal and Kumar (2017) for two-
dimensional porous media without the influence of top and bottom boundary conditions, 
these porosity-weighted averages offer approximate values for the effective heat conductiv-
ity, but cannot predict the detailed behavior as the porosity varies.

6.2  Effect of Different Grain Shapes

We are interested in understanding to which extent the effective heat conductivity is 
affected by changes within the cross-sectional shape of the grain along the z-axis. The 
resulting equations for the effective heat conductivities (77) and (79) directly indicate the 
impact of the porosity on the effective heat conductivity. Therefore, we compare different 
grain shapes but always using the same grain volume |Qref

g
| in order to account for effects 

of the detailed shape. Since we consider the same porosity, any porosity-weighted average 
would always give the same value (for fixed �f and �g ) independent of the shape. All con-
sidered shapes are rotationally symmetric with respect to the z-axis. Hence, we can intro-
duce r(z) ∶ [0, 1] → [0, 0.5] to describe the grain radius perpendicular to the axis for differ-
ent values of z. Further, the minimum and maximum radius of a grain are given by

As grain reference volume |Qref
g
| , we use a cylinder with radius rcyl(z) = 0.25 . In addition to 

the cylinder, we construct a cone-shaped as well as an ellipsoid-shaped grain which have 
the same volume as our reference grain. They are defined by

Sarithmetic = �f� + �g(1 − �),

Sgeometric = �
�

f
+ �1−�

g
,

Sharmonic =
1

�

�f
+

1−�

�g

.

rmin = min
z∈[0,1]

r(z), rmax = max
z∈[0,1]

r(z).
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In order to ensure that all grains are of the same volume |Qref
g
| , we obtain the follow-

ing restrictions on the minimum and maximum radii of the cone and the ellipsoid for 
rmin∕rmax → 0:

In case of the limit rmin∕rmax → 1 , the shapes of ellipsoid and cone approach the shape of the 
reference cylinder. The detailed setup is sketched in Fig. 4. The minimum and maximum 
radius of the different shapes satisfy rcon

min
≤ rell

min
≤ rcyl and rcyl ≤ rell

max
≤ rcon

max
 for any given 

ratio of the radii.
In the following, we compare the effective heat conductivities for different conductiv-

ity ratios k and Neumann as well as Dirichlet boundary conditions on the top and bottom 
boundary �Q . In Fig. 5, we show how the results vary with the ratio rmin∕rmax , the fluid-grain 
interfacial area and the contact area between top and bottom boundary and the more con-
ductive phase. We do not show how the results vary with porosity as in Fig. 3, since the 
porosity is kept constant. Note that since only one cylinder is considered here, the results 
for the cylinder are included either as a reference line or as a reference point.

Neumann Boundary Conditions on Top and Bottom Boundary  �Q The dependence of 
the effective heat conductivity on the grain shape and the corresponding maximum and 
minimum radius is clearly visible: A variation of the grain shape causes larger effective 
heat conductivities. For k < 1 (Fig. 5a), the grain is less conductive than the fluid and there-
fore hinders the overall conduction of heat. Hence, decreasing the minimum radius of the 
grain causes a better connectivity of the fluid which increases the effective heat conductiv-
ity. Recall that in case of an ellipsoid- or cone-shaped grain, the minimum radius is smaller 
than for the reference cylinder. That is why we observe significant changes in the effective 
heat conductivity for the ellipsoid and the cone compared to the effective heat conductiv-
ity of the reference cylinder for small ratios, especially in the case of a cone-shaped grain, 
where the smaller minimum radius is found.
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(a) Cylinder (b) Ellipsoid (c) Cone

Fig. 4  Setup of the different grain shapes. All are rotationally symmetric with respect to the z-axis. The 
ratio rmin∕rmax for ellipsoid and cone in these figures is approximately 0.3
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For k > 1 (Fig. 5b), the grain is more conductive than the fluid. Consequently, having 
better connected grains, meaning a smaller distance between neighboring grains, increases 
the effective heat conductivity. This is obtained when the maximum radius of the grains 

(a) Results for k = 0.2 as a function of the
ratio rmin/rmax

(b) Results for k = 5.0 as a function of the
ratio rmin/rmax

(c) Results for k = 0.2 as a function of the
fluid-grain surface area

(d) Results for k = 5.0 as a function of the
fluid-grain surface area

(e) Results for k = 0.2 as a function of
the fluid contact area with top and bottom
boundary

(f) Results for k = 5.0 as a function of
the grain contact area with top and bottom
boundary

Fig. 5  Comparison of the effective heat conductivities for grains with a volume of |Qref
g
| = � ⋅ (0.25)2 and 

different shapes based on the ratio rmin∕rmax . The curves represent the results for Neumann (dark-colored) and 
Dirichlet (light-colored) boundary conditions on the top and bottom boundary �Q . Results for the respective 
cylinder are given as reference
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is increased. As mentioned above, the cone and the ellipsoid are characterized by a larger 
maximum radius compared to the cylinder, which indicates a better connection between the 
grains in neighboring cells. Therefore, we obtain larger effective heat conductivities also in 
this case when varying the grain shape, in particular for the cone where a larger maximum 
radius is found.

The increasing eccentricity of the cone- and ellipsoid-shaped grains corresponds to 
larger interfacial area between fluid and grain. Hence, for the Neumann boundary condi-
tions, the effective heat conductivities generally increase with increasing surface area 
between fluid and grain, as seen in Fig. 5c and 5d. However, the interfacial area and value 
of k alone are not sufficient to determine the effective heat conductivity, and knowledge 
about the shape (cone or ellipsoid in this case) is also necessary. As seen from Fig. 5e and 
5f, although the effective heat conductivity varies with the contact area between top and 
bottom and the more conductive phase, no specific trend can be determined when using 
Neumann boundary conditions.

Dirichlet Boundary Conditions on Top and Bottom Boundary �Q By changing the 
boundary conditions on �Q , we expect the effective heat conductivities to increase due to 
the positive impact of Dirichlet boundary conditions as discussed in the previous Sect. 6.1. 
However, the magnitude and overall importance of the positive impact of Dirichlet bound-
ary conditions depends on the surface area of the fluid (for k < 1 ) or the grain (for k > 1 ), 
respectively, toward �Q . In case of k < 1 , the grain hinders the conduction of heat. Hence, 
the impact of Dirichlet boundary conditions is expected to be larger if the fluid has a larger 
surface area toward �Q . This corresponds to r(z) being smaller on �Q . For k > 1 , the oppo-
site holds: A larger surface area of the grains toward �Q increases the effective conductivi-
ties under Dirichlet boundary conditions. That is achieved by a larger radius r(z).

We observe the same behavior for k < 1 (Fig. 5a) as in the corresponding case of Neu-
mann boundary conditions but with the mentioned general increase based on the different 
boundary conditions. However, the interplay between increased fluid-grain interface area 
and the contact area between fluid and top and bottom is not straightforward. In Fig. 5c and 
5e, we see how the ellipsoid generally shows an increasing trend with both interfacial area 
and contact area to top and bottom, while the cone is dominated by the increased interfacial 
area.

For k > 1 (Fig. 5b), the effective heat conductivities are still always larger than in the 
corresponding case of Neumann boundary conditions on �Q . However, the values for an 
ellipsoid-shaped grain are now significantly smaller than for the reference cylinder. An 
ellipsoid-shaped grain has less surface area toward �Q , especially for small ratios and there-
fore small rell

min
 . In case of a cylinder, the grains exhibit a larger surface area toward �Q since 

rcyl ≥ rell
min

 . The results for a cone-shaped grain remain above the ones for the cylinder since 
the cone-shaped grain has a large surface area to the bottom boundary. This is visible in 
Fig. 5d and 5f. The effective heat conductivities for the cone- and ellipsoid-shaped grains 
are dominated by the increased contact area between grain and top and bottom boundaries. 
Here, the ellipsoid’s effective heat conductivity therefore decreases with increased fluid-
grain interfacial area.

Summary and Implications for Effective Heat Conductivities Both in the case of Dirichlet 
and Neumann boundary conditions at the top and bottom boundaries, information about the 
fluid-grain surface area and/or contact area to the top and bottom boundaries and porosity 
are not sufficient to determine the effective heat conductivitiy. Knowledge of the grain shape 
is also needed. Depending on the shape, different trends or dependencies on these surface 
areas are expected. As observed in Sect. 6.1 for circular cylinders, common porosity-weighted 
averages of the fluid and grain give at best an approximation of the overall effective heat 
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conductivity and cannot account for different shapes nor boundary conditions. Hence, if accu-
rate knowledge of the effective heat conductivity is required, solutions of the cell problems 
( Pheat, N(x) ) and ( Pheat, D(x) ) are necessary.

6.3  Comparison Between the Original and Upscaled Model

We here address the influence of the upscaling procedure by comparing the results from 
the original pore-scale model on an oscillating three-dimensional domain with the upscaled 
model on an effective two-dimensional domain using the estimated effective heat conductiv-
ity. Since we want to focus on the effective heat conductivity, we design a simplified setup 
employing heat conduction only. Comparison between pore-scale and upscaled approaches for 
flow can be found, e.g., in Wagner et al. (2021). The domains for the original pore-scale and 
upscaled models are shown in Fig. 6. The full pore-scale domain consists of 14 × 10 cylinders, 
with radius 0.2 and 0.4 in the left and right half of the domain, respectively. This domain cor-
responds to � = 0.1.

We consider steady-state heat conduction, hence we solve

on the three-dimensional pore-scale domain (Fig. 6a), and

on the two-dimensional upscaled domain (Fig. 6b). The temperatures Tf and Tg from the 
pore-scale model will give the full variability, including any local oscillations, while the 
effective temperature T from the upscaled model can only account for the average behavior. 
For the left and right boundaries, we apply Dirichlet boundary conditions, using T1 = 0 and 

∇ ⋅ (�f∇Tf) = 0 in ��

f
,

∇ ⋅ (�g∇Tg) = 0 in ��

g
,

�f∇Tf = �g∇Tg on S�
�
,

Tf = Tg on S�
�
,

∇x ⋅ (�∇xT) = 0

(a) Three-dimensional pore-scale domain.
The planes A and B indicate where solutions
will be plotted along later

(b) Two-dimensional upscaled domain

Fig. 6  Computational domains for the pore-scale (left) and upscaled (right) models. The pore-scale domain 
consists of 14 × 10 cylinders, with two different radii. The upscaled domain hence has two different effec-
tive heat conductivities, denoted S(1)

11
 and S(2)

11
 . The left and right boundaries have Dirichlet boundary condi-

tions, using T1 = 0 and T2 = 1 . The other boundaries have homogeneous Neumann boundary conditions
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T2 = 1 (see Fig. 6), while the long-sides boundaries have homogeneous Neumann boundary 
conditions. For the pore-scale domain, the top and bottom boundaries fulfill homogeneous 
Neumann boundary conditions. We set �f = 1 and �g = 5 , which is also used to find the 
effective heat conductivity in the two halves of the upscaled domain through ( Pheat, N(x) ) 
and (77). Since the upscaled heat conductivites are isotropic tensors, we only need the first 
component and we have that S(1)

11
= 1.183 and S(2)

11
= 2.021 for the left and right halves of 

the upscaled domain, respectively. Both domains are meshed using Netgen and solved with 
finite elements through third order subspaces of H1 using NGSolve. Since hmax = 0.1 was 
found to be sufficient for the accuracy of the cell problems, we employ that here for the full 
pore-scale domain. This leads to a total of 782 201 grid cells as many internal boundaries 
need to be resolved by the mesh. The upscaled domain is two-dimensional and meshed 
with 318 grid cells. By comparing with (upscaled) solutions on finer meshes, we estimate 
the accuracy of the upscaled model to be five significant digits on this coarse mesh.

Since the temperatures in the pore-scale domain do not vary with the vertical direction 
(but with both horizontal directions), we can plot the solution along the planes A and B 
(marked in Fig. 6a) as lines. The effective temperature in the upscaled model does not vary 
in the x2-direction. The full solutions along the planes A and B and the effective solution 
from the upscaled model along the x1-direction are shown in Fig. 7. The temperatures are 
found to match very well, although small-scale oscillations are found in the full solution 
which are not captured by the upscaled model. This is expected since we use a nonzero 
value of � . From the difference plot in Fig. 7b, the changes are found to be larger when 
considering a plane crossing through both fluid and grains in the pore-scale domain (plane 
B). However, the average of the deviations for each unit cell is close to zero, showing that 
the upscaled model captures the average behavior almost perfectly. Increased deviations 
near the external boundaries and near the transition at x1 = 7 are not observed. Compar-
ing the heat flux in the x1-direction (not shown) gives a similar deviation between the full 
pore-scale solution and the effective solution as shown in Fig. 7b, with maximum deviation 
around 0.08.

Note in particular that for the same estimated accuracy, the full pore-scale domain 
needed over 780 000 grid cells, while the upscaled domain was discretized using only 318 
grid cells. To find the effective heat conductivities, we have to solve local cell problems as 
well. For this setup, the cell problems were discretized using 218 and 184 grid cells. Here, 

(a) Temperature across respective domains
from the upscaled model and along two
planes in the full pore-scale model

(b)Difference between the full pore-scale so-
lution and the effective solution from the up-
scaled model

Fig. 7  Effective solution from upscaled model and full solution from pore-scale model



A Three‑Dimensional Homogenization Approach for Effective…

1 3

only two different pore-scale geometries had to be accounted for, but even if more types of 
different (three-dimensional) geometries are used, the computational gain of rather solving 
several small, local problems followed by the upscaled problem is significant compared to 
solving the full pore-scale problem.

7  Conclusion

In this paper, effective heat transport through thin porous media has been considered. Start-
ing with a pore-scale description, upscaled equations at the Darcy scale have been derived 
using formal homogenization, while accounting for the porous medium being thin. The 
Darcy-scale equations rely on the effective permeability as well as the effective heat con-
ductivity of the porous medium which are found through solving local cell problems at the 
pore scale. These quantities account for the pore geometry as well as the boundary condi-
tions on the top and bottom boundaries of the porous domain.

As a consequence, the effective heat conductivity can be used as an assessment tool for 
a material’s local heat conduction properties without requiring to solve the whole model 
at the Darcy scale nor at the pore scale. Instead, only small local cell problems need to 
be solved. Since the cell problems are generally solved on smaller portions of the original 
domain, they are cheap to solve compared to discretizing and solving the full pore-scale 
domain. Also, the original pore-scale model is highly coupled, while the cell problems can 
be solved independently of each other. For homogeneous media, the cell problem solutions 
and hence effective parameters can be reused, while for heterogeneous media, many cell 
problems need to be solved. However, solving many small problems is generally cheaper 
than solving one larger problem from a computational perspective. Furthermore, the cell 
problems can be straightforwardly solved in parallel. The corresponding upscaled problem 
is two-dimensional and can be solved on a much coarser grid than the original pore-scale 
domain. In addition, we have shown that under certain assumptions, the three-dimensional 
cell problems can be reduced to two-dimensional ones. Hence, the computational costs of 
solving the cell problems can be further decreased in those cases.

The derived formulation emphasizes the dependence of the effective heat conductivity 
on the individual heat conductivities of fluid and grain, on the detailed pore geometry as 
well as on the boundary conditions on the top and bottom boundary. If the grains in a porous 
medium have a higher heat conductivity than the fluid occupying the void space, we can 
increase the effective heat conductivity either by decreasing the porosity or, for a constant 
porosity, by decreasing the minimum distance between the grains, i.e., establishing a better 
connection of the grains. Furthermore, the application of Dirichlet boundary conditions on 
the top and bottom boundary has a positive impact on the effective heat conductivities com-
pared to Neumann boundary conditions. This positive impact is in particular strong when 
the surface area of the more conductive grains toward the top and bottom boundary remains 
large. However, the effective heat conductivity also depends on the grain shapes and cannot 
be quantified exclusively by simple parameters such as surface area and porosity.

Hence, to assess the effective heat conductivity of thin porous materials based on their 
properties at the pore scale, the derived strategy offers equations for determining such 
effective heat conductivities. These equations are cheap to solve and provide the effective 
heat conductivity locally, while incorporating the effect from the top and bottom boundary 
conditions and the pore-scale geometry.
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Abstract For a non-isothermal reactive flow process, effective properties such as perme-
ability and heat conductivity change as the underlying pore structure evolves. We investigate
changes of the effective properties for a two-dimensional periodic porousmedium as the grain
geometry changes. We consider specific grain shapes and study the evolution by solving the
cell problems numerically for an upscaled model derived in Bringedal et al. (Transp Porous
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the limit behavior near clogging. The effective heat conductivities are compared to common
porosity-weighted volume averaging approximations, and we find that geometric averages
perform better than arithmetic and harmonic for isotropic media, while the optimal choice
for anisotropic media depends on the degree and direction of the anisotropy. An approximate
analytical expression is found to perform well for the isotropic effective heat conductivity.
The permeability is compared to some commonly used approaches focusing on the limiting
behavior near clogging, where a fitted power law is found to behave reasonably well. The
resulting macroscale equations are tested on a case where the geochemical reactions cause
pore clogging and a corresponding change in the flow and transport behavior at Darcy scale.
As pores clog the flow paths shift away, while heat conduction increases in regions with
lower porosity.
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1 Introduction

Geothermal reservoirs may encounter porosity changes induced by geochemical reactions in
the pores. The injected water and the in situ brine have different temperatures and chemical
composition, triggering mineral precipitation and/or dissolution. These chemical reactions
cause reservoir rock properties to develop dynamically with time due to the porosity changes.
When porosity is altered, the flow conditions are affected and the permeability of the medium
will change. Also, as the volume contribution of fluid and rock change, effective properties
such as heat conductivity are affected. For a geothermal reservoir, where subsurface heat
transport and fluid flow are of high importance for the heat production performance, changes
in such properties are important to model accurately to account for their possible impacts on
operating conditions.

As reported from field studies and simulations, porosity and permeability changes due to
precipitation and dissolution of minerals as silica, quartz, anhydrite, gypsum and calcite can
occur when exploiting geothermal reservoirs (Libbey and Williams-Jones 2016; McNamara
et al. 2016; Mielke et al. 2015; Mroczek et al. 2000; Pape et al. 2005; Sonnenthal et al. 2005;
Taron and Elsworth 2009; Wagner et al. 2005; White and Mroczek 1998; Xu et al. 2009).
These fluid–rock interactions can alter and possibly clog flow paths, potentially affecting
the performance of the geothermal plant significantly. Modeling of the mineral precipitation
and dissolution is important to understand the processes and to better estimate to which
extent the chemical reactions can affect the permeability and other effective properties of the
porous medium. However, reactive transport affecting flow properties and heat transport can
be particularly challenging to model due to the processes jointly affecting each other.

When investigating porosity and permeability changes, understanding the underlying pro-
cesses at the pore scale is essential for highly coupled problems. The pore geometry affects
the reaction rates as the reactive surface develops, while the permeability depends on how
the geometry changes. Also, ion diffusivity and heat conductivity can be affected by the
grain shape and can be anisotropic. Hence, using a Darcy scale model based on an upscaled
pore-scale model can give a better representation of the effective properties than common
porosity-weighted average approaches. Pore-scale models incorporating mineral precipita-
tion and dissolution have been studied earlier in van Duijn and Pop (2004) and van Noorden
et al. (2007), and the corresponding Darcy scale models have been investigated both ana-
lytically and numerically further in van Duijn and Knabner (1997), Knabner et al. (1995),
Kumar et al. (2013a, 2014). The rigorous derivation of upscaled model starting from the
pore-scale model in van Duijn and Pop (2004) has been performed in Kumar et al. (2016)
using two-scale convergence framework. These papers assume the pore geometry to be fixed,
which is a valid assumption if the mineral layer is not changed much compared to the pore
aperture. Upscaled pore-scale models honoring porosity changes are found in Kumar et al.
(2011, 2013b), van Noorden (2009a, b). In these papers, the position of the interface between
grain and void space is tracked, giving a problem with a free boundary. Similar models can
also be obtained for biofilm growth (van Noorden 2010), for drug release from collagen
matrices (Ray et al. 2013), and on an evolving microstructure (Peter 2009). These models do
not include any temperature dependence in the reaction rates nor any heat transfer.

The present work builds on the pore-scale model for coupled heat transport and reactive
transport in a thin strip first formulated by Bringedal et al. (2015). Later, this model was
formulated for a periodic porous medium and upscaled to Darcy scale by Bringedal et al.
(2016). The freely moving interface between the mineral layer and the void space is modeled
through a level set function at the pore scale. The authors derive two-dimensional effective
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equations honoring the pore-scale dependence through cell problems. The geometry is the
same as considered by van Noorden (2009a), where Bringedal et al. (2016) also include
heat transport as well as temperature effects in the fluid flow and in the chemical reactions.
Including heat transport introduced a coupled cell problem at the pore scale with energy
conservation in the void space and in the grain space, allowing for a more realistic transport
of the conductive heat transfer through the pore. For geothermal systems, modeling the
temperature dependences and heat transport correctly is crucial. We will build upon the
upscaledmodel derived in Bringedal et al. (2016) by solving the cell problems and investigate
the behavior of the resulting effective properties. Further, to test the model we consider an
idealized case study where clogging occurs. The model by Bringedal et al. (2016) does not
allow phase change, but we mention that (Duval et al. 2004) upscaled decoupled two-phase
flow with phase change using volume averaging.

The effective model in Bringedal et al. (2016) is derived for a two-dimensional domain,
but Schulz et al. (2016) recently derived an effective three-dimensional model for an isother-
mal reactive model without flow. The extension from two to three spatial dimensions could
be performed by defining a tangent plane for the fluid–grain interface in the upscaling proce-
dure, while the resulting effective model has the same appearance as in the two-dimensional
case. The present paper deals only with the two-dimensional case, but a three-dimensional
interpretation of the results is possible.

Our interest in this work stems from developing efficient computational techniques for
deformable porous medium, in particular, in the limit case of clogging. As the upscaled
equations in Bringedal et al. (2016) (see Sect. 2) show, the Darcy scale model is coupled to
cell problems (pore-scale processes) via their coefficients depending upon the grain geometry.
The latter is described by a level set and is in turn impacted by the Darcy scale variables
such as pressure and temperature. In terms of discretization, in the upscaled two-scale model,
there is a cell problem at each spatial mesh point. To obtain the effective parameters at the
Darcy scale, the grain geometry at the cell problem needs to be updated at each time step
and the corresponding problems need to be solved. Therefore, solving the upscaled model
implies that at each time step and at each spatial mesh point, we need to solve as many cell
problems as there are spatial mesh points to obtain the corresponding effective parameters.
Assuming the Darcy scale domain to be a 2D domain, the upscaled model is a 4-dimensional
model (2-dimensional for the cell problem and 2-dimensional for the Darcy scale domain).
Even if these cell problems can be solved in parallel, the computational efforts involved are
quite huge. Our approach here can be seen as a simplification of this full fledged approach.
We assume that the geometry at the pore scale can be characterized by a single parameter
and hence, the level set equation becomes an ordinary differential equation. Next, instead of
solving the cell problems at each time step, we develop relationships (e.g., polynomial law)
of the effective parameters based on the geometry parameter. As a result, solving the upscaled
model requires simply using these fitted polynomials for the parameters drastically reducing
the computational costs. Our approach should be contrasted with the prevalent approaches of
treating porosity as an unknown, defining an ordinary differential equation for its evolution
and using engineering correlations for the effective parameters such as permeability, heat
conductivity, and diffusion coefficient (see, e.g., Chadam et al. 1986, 1991; Zhao 2014). In
contrast to using the heuristic correlations, we use the homogenization approach to provide
the polynomial fit.Moreover, even thoughwe simplify the situation here by characterizing the
geometry by only one unknown, this approach can be extended to include more parameters
for characterizing the geometry and higher-order fits for the effective parameters.

Our contributions in thiswork are in studying the evolution of effective quantities, specially
near the critical porosity limit, by solving the cell problems for certain grain geometries.
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This work may also be interpreted as an extension of similar studies as (van Noorden 2009a)
to a non-isothermal case and a focus on the near-clogging scenario. Additionally, we also
provide an approximate closed form analytical solution for the cell problem and show its
accuracy by comparing it to the detailed numerical simulations. In practice, there are several
correlations used in engineering literature coupling porosity and effective quantities (see,
e.g., Verma and Pruess 1988, Eq. 6 below). We enrich this study by comparing some of
these correlations to homogenization approach for evolving geometry. The cell problem, as
obtained from the homogenization theory, is solved to provide the effective parameters for the
different geometries providing us plots for the effective parameters versus the geometry. We
can interpret our approach as a derivation of these correlation-type relationships. Moreover,
the changes in the geometry at the pore scale may not always be symmetric. Our approach
allows the flexibility of characterizing the geometry in more than one variable and then
studying this variation. Naturally, the more variables we take for characterizing the geometry
at the pore scale, we get the flexibility of describing more complex geometries, but the
offline computational costs increase. We also report a numerical study showing the impact
of pore-scale geometry changes on the Darcy scale flow and transport.

The structure of this paper is as follows. In Sect. 2, we present the effective equations
with corresponding cell problems, while in Sect. 3 we solve the cell problems numerically.
Section 4 compares the numerical solution of the cell problems with analytical solution of
approximate cell problems, before considering a macroscale case study with clogging in
Sect. 5. The paper ends with a summary with some comments on applications together with
some concluding remarks.

2 Effective Equations and Cell Problems

The non-dimensional upscaled model by Bringedal et al. (2016) considers coupled reactive
flow with heat transport and varying porosity. We state here the resulting upscaled model and
refer to Bringedal et al. (2016) for the derivation and underlying assumptions, and references
therein for justification of model choices. In the general formulation, still using a level set
function to describe the pore structure, the model consists of the five (non-dimensional)
unknowns S(x, y, t), u(x, t), T (x, t), q̄(x, t) and p(x, t), which are the level set function,
macroscopic ion concentration, temperature, flow rate and pressure, respectively. All but the
first depend only on time t and spatial variable x , which is defined for all x = (x1, x2) ∈ Ω ,
Ω being the macroscopic, i.e., the Darcy scale, domain. The level set function S(x, y, t) also
depends on the microscopic variable y = (y1, y2) ∈ [− 1

2 ,
1
2 ]2, where y is as a zoomed-

in variable resolving the pore structure at a specific macroscopic point x ∈ Ω . The five
non-dimensional upscaled equations are (x ∈ Ω, t > 0)

∂t

(
ρS(x, y, t)

)
= f (T, u, y)|∇y S(x, y, t)|,

∂t

(
|Y0(x, t)|u(x, t) + |G0(x, t)|ρ

)
+ ∇x ·

(
q̄(x, t)u(x, t)

)

= ∇x ·
(
DAu(x, t)∇xu(x, t)

)
,

∂t

(
|Y0(x, t)|ρ f (T )T (x, t) + |G0(x, t)|ςρT (x, t)

)
+ ∇x ·

(
ρ f (T )q̄(x, t)T (x, t)

)

= ∇x ·
(
κ f A f (x, t)∇x T (x, t) + κgAg(x, t)∇x T (x, t)

)
,
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∂t

(
|Y0(x, t)|ρ f (T ) + |G0(x, t)|2ρ

)
+ ∇x ·

(
ρ f (T )q̄(x, t)

)
= 0,

q̄(x, t) = − 1

μ f (T )
K(x, t)∇x p(x, t).

In the above equations, ρ is the constant molecular density of the mineral, while ρ f and μ f

are the molecular density and viscosity of the fluid and are allowed to depend on temperature.
Further, D is the molecular diffusivity of the fluid, while κ f and κg are the heat conductivities
of fluid and grain, respectively. These are considered properties of the fluid/grain and are
constant. The reaction rate f describes the mineral precipitation and dissolution and is given
by

f (T, u, y) = ke−α/T
(

u2

Km(T )
− w(dist(y, B), T, u)

)
,

where k is the Damköhler number, and α = E/RTref where E is the activation energy, R the
gas constant and Tref a reference temperature. Further, Km(T ) is the solubility of the mineral
in question, and the function w(dist(y, B), T, u) is defined by

w(d, T, u) =

⎧
⎪⎪⎨
⎪⎪⎩

0 if d < 0,

min
(

u2
Km(T )

, 1
)

if d = 0,

1 if d > 0,

(1)

where the distance corresponds to thewidth of themineral layer. The spacesG0(x, t),Y0(x, t)
and Γ0(x, t) refer to the microscopic grain space, void space and the interface between them,
inside the unit cell y ∈ [− 1

2 ,
1
2 ]2, see Fig. 1. These spaces are defined implicitly as where the

level set function is positive, negative and zero, respectively. The notation | · | refers to the
area (volume) of the space. The effective coefficientsAu ,A f ,Ag , andK represent the porous
medium’s ability to transmit ions through diffusion, heat through conduction in fluid/grain,
and fluid through fluid flow. The effective coefficients are tensors with components

aui j (x, t) =
∫

Y0(x,t)
(δi j + ∂yi v

j (y))dy, (2a)

a f
i j (x, t) =

∫

Y0(x,t)
(δi j + ∂yi 


j
f (y))dy, (2b)

agi j (x, t) =
∫

G0(x,t)
(δi j + ∂yi 


j
g(y))dy, (2c)

ki j (x, t) =
∫

Y0(x,t)
ω

j
i (y)dy, (2d)

respectively, for i, j = 1, 2. The functions v j (y), 
 j
f (y), 


j
g(y) and ω j (y) are solutions of

the cell problems (x ∈ Ω, y ∈ [− 1
2 ,

1
2 ]2, t > 0)

∇2
yv

j (y) = 0 in Y0(x, t) and n · (e j + ∇yv
j (y)) = 0 at Γ0(x, t), (3a)

∇2
y


j
f (y) = 0 in Y0(x, t) and ∇2

y

j
g(y) = 0 in G0(x, t) where

κ f n0 · (e j + ∇y

j
f (y)) = κgn0 · (e j + ∇y


j
g(y))

and 

j
f (y) = 


j
g(y) at Γ0(x, t), (3b)

e j + ∇y�
j (y) = − ∇2

yω
j (y) and ∇y · ω j (y) = 0 in Y0(x, t)
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Fig. 1 Model of microscopic
pore, with fluid space Y0(x, t),
grain space G0(x, t) and the
interface between them Γ0(x, t),
which has unit normal n pointing
into the grain. Note that the grain
consists of both a reactive mineral
layer (dark gray) surrounding a
non-reactive part B (light gray)

and ω j (y) = 0 at Γ0(x, t), (3c)

together with the periodicity in y for v j (y), 

j
f (y), � j (y) and ω j (y), j = 1, 2. The

periodicity assumption comes from the macroscopic domain being filled with microscopic
cells, as the one seen in Fig. 1, lying adjacent to each other. Hence, the periodic boundary
condition is due to the proximity of the neighboring cells. However, the neighboring cells do
not have to be equal; hence, inhomogeneities are allowed.

We will consider a simplified version of this formulation by imposing constraints on the
pore space geometry. By assuming the grains to have a specific shape described through a
single variable, the level set equation can be replaced by an equation for that variable.Here,we
show how the model equations change when using circular grains, but the approach is more
general and can be used as long the grain shape can be described through one free parameter.
For circular grains, we introduce the level set function S(x, y, t) = R2(x, t) − y21 − y22 ,
where R(x, t) is the radius of the grains. Note that the grain radius is a function of position
(and time) as the grain radius can vary between unit cells, allowing non-homogeneous media.
The upscaled equations will depend on grain radius R(x, t) instead of the level set function.
This simplification was also made by van Noorden (2009a), but places severe constraints on
the pore structure and should be interpreted as a choice made for visualization purposes. We
mention that Frank et al. (2011) and Frank (2013) implemented other choices of the level
set function for a Stokes–Nernst–Planck–Poisson system, and in the following section, we
also solve the cell problems for elliptic grains to indicate the effect of anisotropy. Using the
circular geometry, the Darcy scale model equations now become, for (x ∈ Ω, t > 0)

∂t

(
ρR(x, t)

)
= f (T, u, R), (4a)

∂t

(
(1 − πR2(x, t))u(x, t) + πR2(x, t)ρ

)
+ ∇x ·

(
q̄(x, t)u(x, t)

)

= ∇x ·
(
DAu(R)∇xu(x, t)

)
, (4b)

∂t

(
(1 − πR2(x, t))ρ f (T )T (x, t) + πR2(x, t)ςρT (x, t)

)
+ ∇x ·

(
ρ f (T )q̄(x, t)T (x, t)

)

= ∇x ·
(
κ f A f (R)∇x T (x, t) + κgAg(R)∇x T (x, t)

)
, (4c)
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∂t

(
(1 − πR2(x, t))ρ f (T ) + πR2(x, t)2ρ

)
+ ∇x ·

(
ρ f (T )q̄(x, t)

)
= 0, (4d)

q̄(x, t) = − 1

μ f (T )
K(R)∇x p(x, t). (4e)

The reaction rate f uses the distance between R and Rmin, where Rmin is the radius of the
non-reactive solid, to calculate thewidth of themineral layer. ThematricesAu ,A f ,Ag andK
depend only on grain radius R(x, t) as the integration area is determined by the radius alone.
The cell problems are defined as before, but where the unit cell spaces are now defined using
the grain radius. Hence, the pore space is Y0(x, t) = {y ∈ [− 1

2 ,
1
2 ]2 | y21 + y22 > R2(x, t)},

grain space is G0(x, t) = {y ∈ [− 1
2 ,

1
2 ]2 | y21 + y22 < R2(x, t)} and the interface between

them is Γ0(x, t) = {y ∈ [− 1
2 ,

1
2 ]2 | y21 + y22 = R2(x, t)}. The tensors Au , A f , Ag and K

defined in Eq. (2) will now be cheaper to compute, and are due to the symmetric grain shape
scalars.

3 Numerical Solution of Cell Problems

The cell problems are decoupled from the macroscale equations and solved beforehand. For
various fixed values of grain radius R, the cell problems (3) can be solved, hence providing
effective quantitiesAu ,A f ,Ag andK that are functions of R. Note that the cell problems are
second-order linear elliptic problems. The permeability and diffusion tensors cell problems
are defined in the pore space with appropriate boundary conditions on the grain geometry,
whereas the thermal problem is defined in the whole cell geometry together with interface
conditions across the grain-pore space boundary. To solve these elliptic problems, we adopt
standard approaches. We write down a weak formulation for these cell problems and use
standard finite element techniques as implemented in the Finite Element package COMSOL
multiphysics (COMSOL Inc. 2011). The coupled cell problems for effective heat conductivity
coefficients A f and Ag have not been considered earlier. We will in this paper focus on
circular grains, which represents an isotropic medium. However, in this section we also
solve the cell problems for elliptic grains to sketch the effect of anisotropy on the effective
quantities. For solving these cell problems, we use Finite Element Method with triangular
elements using P1-basis functions. Since we consider a sequence of pore-scale geometry, the
corresponding mesh also changes. For example, as shown in Fig. 2, for the case of thermal
conductivity computations, elliptic grain shape, with major axis diameter 0.4 and minor
axis diameter of 0.1 (contrast of 4), the number of triangular elements is 1602. We use the
automatic meshing and solution approach as implemented in COMSOL Inc. (2011). The
post-processing of the solution to obtain the effective quantities is also performed using the
available tools there. Note that the effective quantities are all non-dimensional according to
the non-dimensionalization in Bringedal et al. (2016).

3.1 Circular Grains

As the resulting effective quantities Au , A f , Ag and K are known to be scalars when the
grains are circular due to isotropy, it is only necessary to solve Eqs. (2, 3) for i = j = 1. The
resulting effective diffusion coefficient Au is identical as the one considered by van Noorden
(2009a), and the results are not presented here.

The heat conductivity coefficients can be interpreted as a weighting of the relative impor-
tance of the void space and grain space, as a more accurate alternative to the usual porosity
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Fig. 2 Mesh of a microscopic
pore geometry with elliptic grain
space with major axis 0.4 and
minor axis of 0.1 (contrast of 4).
Also, see Fig. 1 showing a
representative unit cell geometry
and Fig. 7 showing an elliptic
grain geometry

R

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Af

κ  = 0.1
κ  = 0.2
κ  = 0.5
κ  = 1
κ  = 2
κ  = 5
κ  = 10

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.2 0.25 0.3 0.35 0.4 0.45 0.5
R

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Ag

κ  = 0.1
κ  = 0.2
κ  = 0.5
κ  = 1
κ  = 2
κ  = 5
κ  = 10

Fig. 3 Effective heat conductivity coefficients for fluid (left) and grain (right). Increasing grain radius R
corresponds to less void space. When κ is larger than 1, the grain heat conductivity is larger than in the fluid

weighting since the actual heat transfer within and between fluid and grain is taken into
account. The sum of A f and Ag is always 1. Figure 3 shows the effective heat conductivity
coefficients as a function of grain radius R, for various values of κ = κg/κ f . The case κ = 1
corresponds to when the heat conductivities in fluid and grain are equal. In this case, the cell
problem is trivial and A f = φ = 1 − πR2 and Ag = 1 − φ = πR2, which corresponds
to the usual porosity weighting. The figures only display values for radii between 0.2 and
0.5. A radius of 0.5 corresponds to the porous medium being clogged (although there is still
void space caught between the circular grains), while we have not considered radii less than
Rmin = 0.2 even though the cell problems are well defined for radii down to 0.

Figure 4 shows the effective heat conductivity of the medium that is defined as

κeff = κ f A f + κgAg.

In Fig. 4 κ f = 1, hence the value of κ = κg/κ f corresponds to the value of κg . Hence, all
lines approach 1 if extending the plot to R = 0. Figure 5 compares two of the effective heat
conductivities with the usual volume averaged heat conductivities
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Fig. 4 Effective heat
conductivities for the porous
medium. In all cases, κ f = 1,
hence κ reflects the value of the
heat conductivity in the grain κg
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κeff,ar = κ f (1 − πR2) + κgπR2, (5a)

κeff,geo = κ
(1−πR2)
f κ(πR2)

g , (5b)

κeff,har = 1
1−πR2

κ f
+ πR2

κg

, (5c)

which are the arithmetic, geometric and harmonic averages, respectively. As seen in the
figure, the effective heat conductivities calculated from the cell problems always give a
smaller value than the arithmetic averaged value, which is the one usually employed for
porous media (Nield and Bejan 2013). The overestimation of the effective heat conductivity
by the arithmetic averaging can be understood as follows: Consider a case where the heat
conductivity is much larger in grain than in fluid, corresponding to an extreme case of κ = 2
shown in Fig. 5. The unit cell would still experience a relatively low heat conductivity for low
grain radii, as the grains are isolated from each other by the low-conductive fluid. However,
when the grain radius is so high that the medium almost clogs and the distance between the
highly conductive grains is smaller, the heat conductivity will increase substantially. This
behavior is captured by the cell problem solutions, as illustrated by the line for κ = 10
in Fig. 4, while an arithmetic averaging based on porosity will not be able to capture such
behavior and instead overestimates the importance of the highly conductive phase. The cell
problem solution is best approximated by the geometric mean, which is the known as the
more suitable solution for random porous media (Woodside and Messmer 1961). Also for
such an extreme case of κ = 10, the geometric mean is the best choice (not shown). The case
with κ f = κg is trivial and gives equal results for all methods.

The permeabilityK is identical as the one found by van Noorden (2009a), and is displayed
in Fig. 6. As grain radii close to 0.5 correspond to being close to clogging, the permeability
quickly approaches zero for growing grain radius. From the logarithmic plot of the perme-
ability, we can estimate that the permeability approaches zero as the grain radius approaches
0.5 with an inclination number corresponding to approximately O

(
(R − 0.5)5/2

)
.
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Fig. 5 Effective heat
conductivities for the porous
medium. The solid curves arise
from the cell problem
formulation, the dotted are the
arithmetic means, the dashed are
the geometric means, and the
dashed-dotted are the harmonic
means. The four top curves are
for κ = 2, while the four lower
are for κ = 0.2
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Fig. 6 Permeability of the porous medium. The right plot shows a log–log plot for the permeability as a
function of (0.5 − R), as the permeability approaches zero when the grain radius approaches 0.5. Note that
the permeability values are non-dimensional, but dimensional (m2) values can be obtained by scaling with l2,
where l is the typical pore size, i.e., the scaling such that the cell in Fig. 1 has side lengths 1

3.2 Elliptic Grains

The level set formulation can also be applied to investigate other grain shapes than the
isotropic circular shape, and we mention here the differences when going into an anisotropic
regime using elliptic grains. We assume the grain in each unit cell being elliptic with a fixed
ratio between the semi-major and semi-minor axis. When the grain grows and shrinks due to
mineral precipitation and dissolution, the grain would not preserve its elliptic shape due to the
underlying assumption of even growth/dissolution arising from the upscaling and derivation
of the cell problem (Bringedal et al. 2016). However, making physical arguments through
the grain shape itself locally allowing for higher or lower reaction rates, we could argue that
the elliptic shape should be maintained, and hence the shape of the grain can at all times be
explained through the parameter M , the length of the semi-major axis. See Fig. 7 for a sketch
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Fig. 7 Model of microscopic pore with elliptic shape with ratio of 2 between the semi-major and semi-minor
axis. The unit cell has fluid space Y0(x, t), grain space G0(x, t) and the interface between them Γ0(x, t),
which has unit normal n pointing into the grain

of the unit cell, where the ratio between the semi-major and semi-minor axis of the grain is
2.

The formulation of the upscaled equations would be similar as in Eq. (4), replacing the
radius R(x, t) with the semi-major axis M(x, t), and taking into account the fluid volumes
and grain volumes changing. Now, |Y0(x, t)| = 1− πM2/2 and |G0(x, t)| = πM2/2 when
the ratio between semi-major and semi-minor axis is 2. As earlier, we assume there is some
part of the grain that will not dissolve and choose this to be for Mmin = 0.2. This minimum
choice of M corresponds to a different porosity than Rmin = 0.2. The maximum semi-major
axis is M = 0.5, corresponding to clogging. Note, however, that M = 0.5 resembles a
layered medium with no flow in the y2-direction, but still allowing flow in the y1-direction.
The porosity is significantly higher than in the circular case with R = 0.5.

Due to the anisotropy of the grain shape, the resulting effective permeability, diffusivity
and heat conductivities in Eq. (2) will no longer be scalars, but 2 × 2 matrices. The cell
problems (3) are solved using elliptic grain shape with M ∈ [0.2, 0.5) using COMSOL
multiphysics (COMSOL Inc. 2011). For the heat conductivities, we only consider the two
cases κ = 0.2 and κ = 2 as our goal is only to sketch the effect of anisotropy arising from the
cell problem geometry. Although the cell problems provide 2× 2 matrices, the off-diagonal
terms are effectively zero due to the orientation of the grain shape; the anisotropy is aligned
with the grid. Hence, we only focus on the diagonal terms. These diagonal values are also the
eigenvalues of the matrices, which are important for characterizing the anisotropic medium.

Figure 8 shows the heat conductivity coefficients for the fluid and grain as a function of
semi-major axis M , using κ = κg/κ f either equal to 0.2 or 2, and ratio between the semi-
major and semi-minor axis being either 2 or 4. These plots should be compared to Fig. 3 for
circular grains. There are several interesting findings for the anisotropic heat conductivities.
Firstly, the differences between the y1- and y2-coefficients are significantly different already
for a relatively small ratio between the semi-major and semi-minor axis, which becomes
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Fig. 8 Comparison of the effective heat conductivity coefficients for fluid (left) and grain (right). Increasing
M corresponds to more grain space, while ‘ratio’ refers to the ratio between semi-major and semi-minor axis
of the elliptic grain. When κ is larger than 1 (black lines), the grain heat conductivity is larger than in the fluid.
Oppositely for κ smaller than 1 (green lines)

more visible when the grain is larger (corresponding to the anisotropic feature becoming
more relevant), and these differences are important both for when heat conductivity is largest
in the fluid and in the grain. Whether the heat conductivity coefficient is largest in the y1- or
y2-direction depends on the value of κ , and phase: When κ = 2, the horizontally elongated
shape of the grain makes the grain heat conductivity coefficient larger in the y1-direction
than in the y2-direction, and oppositely for the fluid. Hence, the contribution from grain on
heat conduction is more important for the y1-direction than in y2 in this case, contributing to
a larger medium heat conductivity in the y1-direction as the grain heat conductivity is larger
than in the fluid. From Fig. 8, we see how the grain heat conductivity coefficient is larger in
the y2-direction than in the y1-direction when κ = 0.2. Hence, the grain heat conductivity
gives a larger to contribution to the effective heat conductivity in the y2-direction than in
the y1-direction. However, this contribution is a “negative” one as the heat conductivity in
the grain is smaller than in fluid when κ = 0.2. Hence, the grain conductivity hampers the
mediumheat conductivity to a larger extent across the layers. The effective heat conductivities
seen in Fig. 9 show how the heat conductivity is always larger in y1-direction for both values
of κ . Hence, heat conductivity of the medium is always more efficient along the layers than
across, independently of whether the fluid or grain has the largest conductivity.

Comparing the effective heat conductivities with corresponding arithmetic, geometric and
harmonic averages based on (5) reveals some different behavior for the elliptic case as seen
for the circular grains in Fig. 5. Figure 9 shows how the different effective behaviors in the y1-
and y2-directions are approximated by the arithmetic, geometric and harmonic averages for
the two choices of κ . While the circular grain effective heat conductivities were always closer
to the geometric mean, the effective heat conductivity in the y1-direction (along layering)
is best approximated by the arithmetic mean (low κ) or by the geometric mean (high κ

and low M), and the effective heat conductivity in the y2-direction (across layering) is best
approximated by the harmonic mean (high κ) or by the geometric mean (low κ and low
M). These findings were to some extent expected as harmonic mean is known to be more
suitable for series distributions and arithmetic mean for parallel distributions (Woodside and
Messmer 1961). However, as seen from Fig. 9, the geometric averages can still be the best
alternative for lower values of M and especially for small ratio between the semi-major and
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Fig. 9 Comparison of the effective heat conductivities for the porous medium for when the ratio between
semi-major and semi-minor axis is 2 (left) and 4 (right). The five top curves are for κ = 2, while the five lower
are for κ = 0.2

Fig. 10 Comparison of the
effective ion diffusivity
coefficients for circular and
elliptic grains, as a function of
either grain radius R or the
semi-major axis M . Increasing R
or M corresponds to more grain
space, while ‘ratio’ refers to the
ratio between semi-major and
semi-minor axis of the elliptic
grain
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semi-minor axis, corresponding to when the anisotropic effect is not so strong. Hence, using
arithmetic mean along the layering and harmonic mean across the layering is important when
there are strong anisotropic effects in the porous medium.

For the ion diffusivity, the question of which type of averaging is not so relevant as the
ion diffusivity in the grain is zero, and hence only the arithmetic mean would be applicable.
In practice, the resulting diffusivity coefficient is then the porosity, which is often used when
modeling diffusivities with varying porosity. However, as Fig. 10 shows, the porosity is a
poor approximation for the effective diffusivity coefficient, even for circular geometries. The
porosity approximates the diffusivity in the y1-direction (along layers) quite well, especially
when anisotropic effects are strong, but gives a poor approximation for the y2-direction
(across layers), which is zero when M is 0.5 due to clogging in the y2-direction, while the
porosity is still large.

The permeability is also a tensor when considering elliptic grain shapes. The off-diagonal
terms are effectively zero due to the orientation of the grain, and hence we only need to
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Fig. 11 Comparison of the permeabilities for the porous medium for circular and elliptic grains, as a function
of either grain radius R or the semi-major axis M . The right plot shows a log–log plot of the permeabilities as
a function of (0.5− R) or (0.5−M), as clogging occurs when R or M approaches 0.5. A ratio of 4 means that
the grain is more elongated. The red stars in the right plot indicate the estimated permeability values based on
an upscaled thin strip model (Bringedal et al. 2015)

consider the two diagonal terms. Here, the y2-term will approach zero when M approaches
0.5 due to clogging, while the y1-term will still have a large permeability when M is 0.5.
Figure 11 shows the diagonal components of the permeability tensor for the elliptic grain as
a function of the semi-major axis M . For comparison, the circular grain permeability is also
included.

As seen from Fig. 11, the permeabilities in the y1-direction do not approach zero when M
approaches 0.5. Due to the elliptic grain shape, the medium is not blocked in the y1-direction
but forms channels. For channels, it is shown earlier (Bringedal et al. 2015) that the non-
dimensional permeability should behave as K = d3/12 where d is the aperture. If we use
the minimum distance between two adjacent grains as a measure of the aperture in the y1-
direction of the channel-like medium, the cubic relationship estimates a (non-dimensional)
permeability of K = 0.0105 and K = 0.0352 for when the ratio between the semi-major
and semi-minor axis are 2 and 4, respectively. These two values are marked with red stars in
the right part of Fig. 11. The k11 permeability values calculated from the cell problems when
M is close to 0.5 are k11 = 0.0145 and k11 = 0.0406 for these two ratios. Hence, the cubic
relationship slightly underestimates the calculated along-channel permeabilities, which is
possibly due to the channel not being straight but is generally wider than the minimum value
used here. Also, the cell problems are not solved for M = 0.5, as the flow cell problem is
undefined in this case, and hence the comparison is made for M = 0.499.

The circular grain permeability and elliptic grain k22-permeabilities all approach 0when R
or M approach 0.5, although at slightly different speeds. Due to the anisotropy, the clogging
happens at different critical porosities. The critical porosity is defined as the remaining
porosity when clogging (in the y2-direction) occurs and will be φcrit = 1 − π0.52 for the
circular grain, and φcrit = 1 − π0.52/2 and φcrit = 1 − π0.52/4 for the elliptic grain for
ratio equal to 2 and 4, respectively. TOUGHREACT (Xu et al. 2012) incorporates a power
law for the permeability based on Verma and Pruess (1988) when there is a known critical
porosity, namely

K = K0

(
φ − φcrit

φ0 − φcrit

)n

, (6)
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Fig. 12 Comparison of the
permeability, or permeability in
the y2-direction when the
porosity approaches the critical
porosity. The green lines are the
least-square fitted versions of
Eq. (6) based on Verma and
Pruess (1988)
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where K (φ0) = K0 at some other porosity φ0 > φcrit. The power n is, as the critical porosity,
medium dependent and needs to be estimated. Using the permeabilities at Rmin, Mmin = 0.2
and the known critical porosities, we can estimate n through a least-square approach.We find
n = 2.82 for the circular grain, while n = 2.68 and n = 2.53 are the powers best estimating
the elliptic grain cases for when the ratio between semi-major and semi-minor axis is 2 and
4, respectively. See Fig. 12 for illustration of these three cases. Due to fitting of the entire
interval, the resulting approximated permeabilities are slightly too steep when approaching
the critical porosities, but do a fairly good job in capturing the behavior of the permeability
near clogging.

4 Comparison with Approximate Solutions

The cell problems (3) can be solved numerically for discrete values of grain radius R, but
when implementing the macroscale Eq. (4), it is more efficient if the effective quantities can
be known through analytical expressions instead of solving the cell problems for each time
step as the radius will vary with both time and space. Oneway to get around this is to solve the
cell problems beforehand for a large number of discrete R values and create a lookup-table,
but we here investigate the possibility of approximating the cell problem solutions with either
solving a related cell problem analytically, or by solving the cell problems numerically for
discrete values of R and use polynomial interpolation.

4.1 Approximate Heat Conductive Cell Problems

The cell problem (3b) used to calculate the heat conductivity coefficients A f and Ag can
be approximated by solving a related cell problem analytically. The cell problem is formu-
lated through the unknown functions 
 f (y1, y1) and 
g(y1, y2), that should fulfill Eq. (3b)
together with periodicity across the external cell boundaries:


 f (y1 = −1/2) = 
 f (y1 = 1/2), 
 f (y2 = −1/2) = 
 f (y2 = 1/2).

Our approach involves using polar coordinates and separation of variables; hence, we assume
the solutions can be written on the form
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Fig. 13 Comparison of the
effective heat conductivities. The
three lower curves are for
κ f = 1, κg = 0.2, while the
three upper curves are for
κ f = 1, κg = 2
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 f (r, θ) = Fr (r)Fθ (θ), 
g(r, θ) = Gr (r)Gθ (θ).

However, as shown in the “Appendix”, our assumption of separation of variables together
with the resulting solution form in the azimuthal direction will lead to the periodicity require-
ment on the external boundary not being fulfilled. Instead, we search an approximate solution
through alternative boundary conditions for the external boundary. We consider two alter-
natives: Either dropping the external boundary, allowing 
 f to be defined for all r > R;
or, keeping the boundary, but use other means to obtain a unique solution. Redefining the
cell problem, makes it more similar to the conductive single-inclusion solutions handled
by Torquato (2013). Torquato (2013) also shows how to expand these solutions to effective
medium approximations of multiphase media. However, the two approaches lead to the same
solution, namely:

A f = (1 − πR2)
1 + κ

1 + κ + πR2(1 − κ)
, (7a)

Ag = πR2 2

1 + κ + πR2(1 − κ)
. (7b)

The full derivation of the solution using the two approaches are found in the “Appendix”.
Figure 13 compares the approximate effective heat conductivity from Eq. (7) with the exact
solution found from the cell problem (3b) and the volume weighted geometric average (5b).
The approximate cell problem does a better job than the volume averaging except for large
values of R.

4.2 Approximate Polynomials for the Cell Problem Solutions

Wehere try to estimate the effective quantitiesAu(R),A f (R),Ag(R) andK(R)with approx-
imate polynomials based on numerically found solutions of the cell problems (3), which have
been obtained for discrete values of R within our interval of interest: R ∈ [0.2, 0.5]. As van
Noorden (2009a), we use a polynomial with powers of R0, R1/2, R1, R3/2 and R2 for the
ion diffusivity coefficient and the heat conductivity coefficients. While van Noorden (2009a)
could use that the polynomial forAu was 1 when R = 0 and 0 when R = 0.5, the latter is not
the case for A f as there is still a large amount of conductive heat transfer in the fluid when
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the porous medium is clogged. However, the polynomial for Ag would be 0 for R = 0, and
the polynomials approximating A f and Ag should still fulfill that their sum is 1 for all R.

The polynomial found to approximate Au best in the least-square sense is

Au(R) ≈ 0.7232(0.5− R)1/2 −0.2166(0.5− R)+4.8785(0.5− R)3/2 −3.9439(0.5− R)2.

The coefficients of this polynomial are quite different than the ones found by van Noorden
(2009a), despite fitting within the same interval. The curves provide similar values. The
maximal error in the fitting points was 10−3 for van Noorden (2009a), which is also the case
here.

We approximate A f and Ag with polynomials only for κ = 2 and κ = 0.2, to indicate
the different behaviors for when κ is larger/smaller than 1. For κ = 2, the polynomials found
to approximate A f and Ag best in the least-square sense are

A f (R) ≈ 3.3481R1/2 − 19.5551R + 38.2452R3/2 − 27.33065R2 + 1.

Ag(R) ≈ −3.3433R1/2 + 19.5274R − 38.1923R3/2 + 27.2974R2.

For κ = 0.2, the polynomials found to approximateA f andAg best in the least-square sense
are

A f (R) ≈ 1.0282R1/2 − 4.3256R + 3.8254R3/2 − 3.2395R2 + 1.

Ag(R) ≈ −1.0317R1/2 + 4.3455R − 3.8638R3/2 + 3.2639R2.

The polynomials forA f are assumed to have a constant factor of 1 asA f (0) = 1 andAg(0) =
0, but are otherwise only fitted within the interval of interest. Due to numerical roundoff
error and as the least-square fitting have been done independently for the polynomials, the
approximating polynomials do not sum up exactly to 1 for all R, but deviate from 1with up to
10−4. The maximum error for the fitting points is 10−3 for the effective heat conductivities in
both cases. Plotting the effective heat conductivity calculated from the cell problems together
with the approximate effective heat conductivity from the above polynomials, reveals the two
curves being virtually equal. The two cases of high and low κ result in polynomials of similar
structure, but the higher-order coefficients are of relative higher importance for R-values close
to 0.5 when κ = 2, while the linear terms dominate for κ = 0.2. This behavior is due to the
more curved shapes of the high κ curves near R = 0.5 seen in Fig. 3.

The behavior of the permeability close to clogging is important to capture when modeling
precipitation and clogging as the flow pattern can change significantly as pores close (and
possibly reopen) and the relative permeability variations can vary within several orders of
magnitude close to clogging. In van Noorden (2009a), the permeability was fitted with a sum
of first-, second- and third-order powers of (0.5− R). Van Noorden did not focus on clogging
and fitted with the factors that would capture the behavior over his whole region of interest.
However, the sum of these three terms implies that the permeability should approach zero
as O(0.5 − R) as the first-order term will dominate the two others when R approaches 0.5.
Investigating the permeability values when R is close to 0.5, as seen in the right part of Fig. 6,
reveals that the permeability does not approach zero linearly when close to clogging. The
logarithmic plot indicates an inclination number of approximately 5/2 for R close to 0.5. This
means that to capture the behavior close to clogging, the approximating polynomial should
not contain termswith (0.5−R)-factors of power less than 5/2. The polynomial can, however,
contain higher-order terms as these will not dominate close to clogging. A polynomial that
is found to approximate the permeability values satisfactory, both away from clogging and
close to clogging, is
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K(R) ≈ 0.6191(0.5 − R)5/2 − 0.4892(0.5 − R)3 + 1.0441(0.5 − R)7/2.

The maximum error in the fitting points is 10−4 and is found for low values of R. The
maximum relative error is 0.08 and occurs when the radius is close to clogging. Approximate
polynomialswith terms containingfirst-order (0.5−R)-terms are found to have a relative error
larger than 1. An alternative approach to the above polynomial would be to approximate the
behavior of the permeabilitywith twopolynomials: one valid for lowvalues of R and one valid
for R close to 0.5, and tie these two polynomials together with continuity constraints in some
breaking point. This approach could, however, cause issues in a numerical implementation.
As the logarithmic plot in Fig. 6 does not indicate any obvious breaking points, using the
same polynomial for the whole fitting interval [0.2, 0.5) should be feasible in this case.

5 Case Study: Clogging

To investigate the behavior of the upscaled effective Eq. (4) in a numerical implementation,
we create a case study with initial and boundary conditions, mineral solubilities and rock
properties such that clogging will occur at some distance away from the well. The Darcy
scale domain is assumed to be filled with microscopic pores as Fig. 1 next to each other,
in line with the periodic assumption in deriving the upscaled model in Bringedal et al.
(2016). The microscopic cells are not explicitly visible in the Darcy scale domain, as they in
the homogenization limit are assumed infinitesimally small, but contribute through the cell
problem solution for effective quantities, e.g., permeability, at each macroscopic point in the
domain. The goal of this case study is to see how the upscaled model equations behave close
to clogging and how the heat transport is affected by the clogging.

5.1 Case Study Formulation and Implementation

Note that all parameters and numbers specified in the following are non-dimensional accord-
ing to the non-dimensionalization given in Bringedal et al. (2016). Temperatures are also
shifted to lie between 0 and 1. Themacroscale domain is a two-dimensional square x ∈ [0, 1]2
with injection and production wells operating at constant pressure. The injection well is
located in (x1, x2) = (0.2, 0.2), and the production well in (x1, x2) = (0.8, 0.8). External
boundaries are impermeable and insulated. The domain is initialized with a temperature of
1 and with an ion concentration such that the fluid is fully saturated with ions, in this case a
concentration of

√
0.75. We mimic a reservoir with two types of rock that are such that the

temperature drop due to injecting fluid of temperature 0 triggers mineral dissolution near the
injection well and mineral precipitation further away. The two types of rocks meet along the
line x1 = 0.5. The injected fluid has the same ion concentration as the initial to resemble
reinjection of produced fluid, but mineral dissolution will occur near the injection well due to
the temperature drop. As fluid flows toward the production well, minerals start precipitating
when crossing x1 = 0.5, both due to the incoming fluid having a larger ion concentration
from the upstream mineral dissolution, but also caused by the gradual temperature decrease.

The Darcy scale model Eq. (4) is modeled fully coupled with Euler forward in time and
the control volume method on a square grid with two point flux approximation in space.
The injection wells are handled through a mass conservative implementation as described in
Bringedal et al. (2014). As clogging is a difficult process tomodel due to the degenerate nature
of the transport equations, we use a time step constraint when one or more cells are close to
clogging. Also, we consider a cell clogged when the grain radius exceeds R = 0.4997.When

123



Effective Behavior Near Clogging in Upscaled Equations for. . . 571

a cell clogs, pressure is undefined in this cell and is no longer solved for. Heat conduction and
chemical reactions are still solved for in the clogged cells, the latter to allow for any reopening
at a later time. The dissolution rate, which has a discontinuity from (1), is regularized.
We mention there are more sophisticated ways of dealing with both mineral dissolution
(containing a discontinuous reaction term) and precipitation possibly leading to clogging,
and refer to Agosti et al. (2015a, b) for details on event-driven implementation of this aspect.
Despite using Euler forward for time stepping, the resulting system of equations is nonlinear
due to the nonlinearities in the time derivatives. The nonlinear system of equations is solved
with Newton iterations, using the solution from the previous time step as initial guess.

The effective quantities Au(R), A f (R), Ag(R) and K(R) arising from the cell problems
are implemented with their approximating polynomials found in Sect. 4.2. Hence, the cell
problems do not need to be solved at each mesh point at each time step, but pore-scale
effects are included through the approximate polynomials of the effective quantities arising
from cell problem solutions. We have used κ f = 1 and κg = 2, which is a representative
correspondence between heat conductivity in fluid and grain formany soils/rocks. The porous
medium is initializedwith R = 0.3, and the amount ofminerals that cannot dissolve is chosen
to correspond to Rmin = 0.2. Note that this choice of homogeneous initial condition (and
minimum radius) for the rock is not a necessity for the model formulation and only chosen
for convenience. Other parameters appearing in the model Eq. (4) are given by

D = 1, ς = 1, k = 1, α = 1, ρ = 1,

βρ = 0.01, βμ = 0.01, ρ0 = 2, μ0 = 1,

where the fluid density is ρ f (T ) = ρ0 − βρT and viscosity is μ(T ) = μ0 − βμT . The
injection pressure is 100, and production pressure is 0.5, which induces a pressure difference
in the domain giving flow rates around 1 initially, and hence advective and diffusive processes
occur at about the same time scale, which is one of the assumptions in the derivation of the
upscaled model by Bringedal et al. (2016).

5.2 Numerical Results

When injection starts, the fluid flows toward the production well and brings along lower
temperatures and larger ion concentrations as theminerals close to the injectionwell dissolves.
Upon reaching the other rock type at x1 = 0.5 minerals precipitate, resulting in gradually
lower porosities and permeabilities behind this line. Also, as the minerals dissolves close
to the injection well, the effective heat conductivity decreases due to κ f being lower than
κg . Although one would expect clogging to first occur in (x1, x2) = (0.5, 0.2), this being
the point closest to the injection well where clogging can occur; the clogging first occurs
at (x1, x2) = (0.5, 0). This is caused by the point (x1, x2) = (0.5, 0) being cooled faster
than (x1, x2) = (0.5, 0.2), despite being further away from the injection point, triggering
larger precipitation rates. The differences in cooling (and initiating of clogging) are small,
but this faster cooling in (0.5, 0) is a result of the heat conductivity being larger in regions
where lessminerals have dissolved. The convective cooling is (initially) focusedmainly along
the band between injection and production well, and hence conductive cooling dominates
between the injection well and the line x1 = 0.5 for low x2-values. As the dissolving occurs
slower, along x2 = 0 the heat conduction is faster than for x2 = 0.2. The fact that clogging
occurs first at (x1, x2) = (0.5, 0) instead of in (0.5, 0.2) is a nice example of the effect of
the interplay between heat transfer and reactive transport. Clogging gradually occurs along
increased values of x2 as these cells are being cooled, and at the same time the flow is forced
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Fig. 14 Pressure distribution (colors) 1 time unit after injection starts. Clogged cells are marked as white as
the pressure is undefined. Black lines are (instantaneous) stream lines. The flow trajectories are not smooth
across x1 = 0.5 as the grain radius R and hence also permeability K are discontinuous here

Fig. 15 Effective heat conductivity distribution (left) and temperature distribution (right) 1 time unit after
injection starts. Temperature is still well defined in the clogged cellwhere the highest effective heat conductivity
values are found. The increased heat conductivity is the reason for the relatively smooth temperature field
despite flow paths being clogged

to follow trajectories further away from the clogged region. Due to heat conduction still
playing a role in the blocked region, clogging still occurs behind the line x1 = 0.5. Figure 14
shows the pressure distribution, and some flow trajectories some time after clogging have
started near (x1, x2) = (0.5, 0).

There is still heat conduction in the clogged cells. In fact, the clogged cells encounter an
increased effective heat conductivity as the grain heat conductivity is larger than fluid heat
conductivity. Hence, the temperature distribution is not strongly affected by the clogged flow
paths in this case study. Figure 15 shows how the effective heat conductivity and temperature
distributions are at the same time as the pressure distribution in Fig. 14.
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6 Summary and Conclusion

In this paper, we have shown how the effective behavior of heat conductivity and perme-
ability performs in a porous medium where porosity changes due to mineral precipitation
and dissolution. The heat conductivity coefficients and permeability is calculated through
cell problems derived from a pore-scale formulation based on Bringedal et al. (2016), using
circular and elliptic grains as illustrative examples. We have shown how the effective behav-
ior for the heat conductivity differs from the usually applied porosity-weighted averaging
between fluid and grain, where the geometric averaging performs better in the isotropic case
and harmonic, geometric or arithmetic averaging is the better approximation depending on
degree of and direction of anisotropy.

We have solved the heat conductivity cell problems numerically, but approximate versions
can be solved analytically. The resulting solutions for circular grains capture the effective
behavior well and generally better than the geometric averaging. Hence, for practical use
in simulators, one can either apply the approximate analytical solutions, or approximate
polynomials based on least-square fitting of discretely solved cell problems. When doing
least-square fitting for the cell problems, one has to decide which order terms to include in the
polynomial, and this can potentially alter the behavior of the resulting effective parameters,
especially near critical points as clogging represents. As the permeability can vary with
several orders of magnitude near clogging, approximating with suitable terms and factors is
especially important in this case.

As we are particularly interested in the behavior of the effective model near clogging, a
case study where clogging would occur was designed. The case study mimics a geothermal
reservoir where cold fluid is injected, and where composition of different rock types leads
to mineral precipitation at some distance away from the well. The reduced permeability and
gradual clogging of the medium lead to the injected water being forced through new flow
paths further away from the production well, and at the same time increasing the effective
heat conductivity through the medium.
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Appendix

Section 4.1 deals with analytical solutions of an approximate heat conductive cell problem,
andwe here give the derivation of these solutions.We seek the unknown functions
 f (y1, y1)
and 
g(y1, y2) that should fulfill Eq. (3b) together with periodicity across the external cell
boundary:


 f (y1 = −1/2) = 
 f (y1 = 1/2), 
 f (y2 = −1/2) = 
 f (y2 = 1/2).

We use polar coordinates and assume separation of variables; hence, the solutions can be
written


 f (r, θ) = Fr (r)Fθ (θ), 
g(r, θ) = Gr (r)Gθ (θ).

Then, the model equations from (3b) are
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dθ2
Gr = 0, y ∈ G0(x, t),

while the interior boundary conditions can be written as

cos θ + F ′
r (R)Fθ = κ cos θ + κG ′

r (R)Gθ at r = R, (8a)

Fr (R)Fθ = Gr (R)Gθ at r = R, (8b)

and for all θ . The model equations for Fθ and Gθ reduce to F ′′
θ = −λFθ for some number

λ, which, together with the interior boundary condition (8a), suggest that

Fθ (θ) = Gθ (θ) = cos θ.

The model equations for Fr and Gr are then reduced to r2F ′′
r + r F ′

r − Fr = 0, which have
the general solutions

Fr (r) = b1r + b2
1

r
, Gr (r) = b3r + b4

1

r
,

where b1, b2, b3, b4 are integration constants. However, our assumption of separation of
variables together with the solution in θ leads to the periodicity requirement on the exter-
nal boundary not being fulfilled. There is periodicity across the horizontal boundaries, but
periodicity across the vertical boundaries is not met. We instead search an approximate solu-
tion through alternative boundary conditions for the external boundary and consider two
approaches: either dropping the external boundary and allowing 
 f to be well defined for
all r > R; or, keeping the boundary, but neglecting the boundary conditions and using other
means to determine the constants b1, b2, b3, b4.

Alternative I: Infinite Domain

We allow 
 f to be defined for all r > R; hence, we require it to be finite as r → ∞. Also,
as 
g must be well defined as r → 0, the general solutions in r are

Fr (r) = b2
1

r
, Gr (r) = b3r.

Applying the internal boundary conditions (8) results in b2 = R2(1 − κ)/(1 + κ) and
b3 = (1 − κ)/(1 + κ). Hence, the solutions of the approximate cell problem are


 f (r, θ) = R2 1 − κ

1 + κ

1

r
cos θ,


g(r, θ) = 1 − κ

1 + κ
r cos θ.

The approximate heat conductivity coefficients are then

A f =
∫

Y0(x,t)
(1 + ∂x
 f )dy = 1 − πR2,

Ag =
∫

G0(x,t)
(1 + ∂x
g)dy = πR2 2

1 + κ
.
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Although 
 f is now defined for all r > R, the original integration area for A f is used. As
we made an error by allowing
 f to exist as r → ∞, and as we know the sum of A f and Ag

should be 1 when in the finite pore space domain, our above approximation can be improved
by scaling the above coefficients with the same number such that their sum is 1. Hence,

A f = (1 − πR2)
1 + κ

(1 + κ)(1 − πR2) + 2πR2 , (9a)

Ag = πR2 2

(1 + κ)(1 − πR2) + 2πR2 . (9b)

Alternative II: No Periodic Boundary Condition

In this approach, we keep the external boundary but do not require periodicity across it. We
still require 
g to be well defined as r → 0, and hence b4 = 0 and the three remaining
constants must be such that they fulfill the two internal boundary conditions (8):

1 + b1 − b2
R2 = κ + κb3,

1 + b1R + b2
R

= b3R.

Expressing b2, b3 as functions of b1 leads to

b2 = R2 1 − κ

1 + κ
(1 + b1),

b3 = 1 − κ

1 + κ
+ 2b1

1 + κ
.

The solutions of the (approximate) cell problem are then


 f (r, θ) =
(
b1 + R2

r2
1 − κ

1 + κ
(1 + b1)

)
r cos θ,


g(r, θ) =
(
1 − κ

1 + κ
+ 2b1

1 + κ

)
r cos θ,

where the constant b1 is to be determined later. The heat conductivities are then

A f =
∫

Y0(x,t)
(1 + ∂x
 f )dy = (1 − πR2)(1 + b1),

Ag =
∫

G0(x,t)
(1 + ∂x
g)dy = πR2 2(1 + b1)

1 + κ
.

We now require the sum A f + Ag to be 1 and use this to determine b1. This way,

A f = (1 − πR2)
1 + κ

1 + κ + πR2(1 − κ)
, (10a)

Ag = πR2 2

1 + κ + πR2(1 − κ)
. (10b)

Although this derivation uses different assumptions than Alternative I, the resulting approx-
imate heat conductivity coefficients A f and Ag found in (9) and (10) are identical.
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Two-phase porous-media flow
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The second part of this thesis consists of three chapters that are based on three journal
publications. Each publication addresses derivation of effective behavior of two-phase flow
from a pore-scale model. Different assumptions on domains and appearance of the evolving
fluid-fluid interface are applied in the three chapters. Either homogenization or transversal
averaging are used to derive the effective models. In all cases, the goal is to keep the
influence of the evolving fluid-fluid interface in the derived model for the effective two-
phase flow behavior.

Chapter 5: Layered two-phase flow in a thin strip In this chapter, a model for two-phase
flow through a thin strip is the starting point. The fluid-fluid interface is assumed to be
located along the strip, but can evolve due to the flow of the fluids and the surface tension
between the fluids. The motivation behind such a setting is the flow of two fluids through
a pore, channel or interface layer, where one fluid is wetting and therefore attaches to the
walls. In this case, a layer width can be applied to model the location of the evolving
fluid-fluid interface. Transversal averaging is applied to derive a dimensionally reduced
(from 2D to 1D) model for the effective behavior of the two-phase flow. For different
regimes with respect to the capillary number and viscosity ratio, different effective models
are found. These effective models show some similarities with existing models for two-
phase flow, but differ in how effective parameters for e.g. (Darcy-scale) capillary pressure
behave. Numerical experiments of both the original, two-dimensional model using a level-
set to describe the fluid-fluid interface, and of the derived effective models, show that the
effective models approximate the transversal averaged behavior of the original model well
as the thin strip becomes longer and thinner.

Chapter 6: Dynamic contact angle in a thin strip Also in the second chapter of Part B,
two-phase flow in a thin strip is considered. The main difference from the setup in Chapter 5
is that now the fluid-fluid interface stretches across the strip. The same model equations for
two-phase flow are however used as a starting point, except that also a contact angle and a
slip condition now are incorporated, and a different approach to describe the evolving fluid-
fluid interface is used. Transversal averaging is applied to derive a dimensionally reduced
model for the effective behavior away from the fluid-fluid interface. The fluid-fluid interface
itself appears as a discontinuity, hence the region near the interface must be handled in a
different way. To couple the regions away from and near the fluid-fluid interface, matched
asymptotic expansions are applied. The derived effective model for the entire thin strip
is still a dimensionally reduced model, where the influence of a dynamic and hysteretic
contact angle model is incorporated. In particular, the derived effective model is used to
highlight the influence of such contact angles on the effective behavior.

Chapter 7: Two-phase flow in a periodic porous medium In the last chapter of this
part, two-phase flow in a periodic porous medium is investigated. Here, a phase-field model
for two-phase flow is used on the pore scale. In this chapter we are especially interested in
the influence of a surfactant soluble in one of the fluid phases, which can alter the surface



tension between the two fluids. This is modeled by adopting a special case of a phase-field
model from [43]. By assuming that the pore-scale geometry is periodic, homogenization is
applied to derive a Darcy-scale model for the effective behavior. The Darcy-scale model
depends on local pore-scale cell problems for effective parameters, which are derived through
the homogenization steps. The resulting two-scale model is implemented using a scheme
inspired by heterogeneous multiscale methods. Numerical experiments with constant and
varying surfactant concentration show the influence of the varying surface tension on the
effective Darcy-scale behavior.

144



5 Layered two-phase flow in a thin strip

The content of this chapter is based on the following original article:
S. Sharmin, C. Bringedal, and I. S. Pop. On upscaling pore-scale models for two-phase
flow with evolving interfaces. Advances in Water Resources 142 (2020), p. 103646. doi:
10.1016/j.advwatres.2020.103646.
With courtesy of Elsevier.
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a b s t r a c t 

The modelling and simulation of the unsaturated flow or the flow of two immiscible fluid phases in a porous 

medium is challenging as this flow takes place through the pores of the medium, which form a highly complex 

domain. Next to the complexity of the domain, a major challenge is to account for the interface separating the 

fluids, or the unsaturated fluid from the inert filling part, as the location of this interface is not known a-priori. 

The evolution of this interface depends on the flow of both fluids and of the surface tension. Moreover, the surface 

tension may depend on the concentration of a surfactant dissolved in one fluid phase. In this work, such aspects 

are taken into account, and effective, Darcy-scale models are derived based on the known physics at the pore 

scale. In this sense a thin strip is used as the representation of a single pore in the porous medium. The Darcy-scale 

models are derived for various regimes, accounting for different pore-scale processes. Numerical examples show 

that the upscaled models are a good approximation of the transversal average of the solution to the pore-scale 

models, as the ratio of the width and the length of the pore approaches zero. 

1. Introduction 

Two-phase flow in porous media is relevant for many industrial and 

environmental applications such as geological CO 2 sequestration, or oil 

recovery. Common for all these applications is the need to describe the 

flow at the Darcy scale (from now on the macro scale), the preferred 

scale for numerical simulations, where the grain and void space and the 

two (or more) fluid phases cannot be explicitly separated, but modelled 

through average quantities such as porosity and saturation. At the 

Darcy scale, the flow of each fluid phase is described with the help of 

Darcy-scale quantities like the absolute permeability, which depends 

strictly on the medium, and the fluid-specific relative permeability, 

which is a function of the fluid saturation. 

The two-phase or, more general, the multi-phase and multi- 

component flow through a porous medium is inherently a process occur- 

ring at multiple scales, in which the processes at the pore scale do affect 

the overall flow on the Darcy scale. When considering the process at the 

scale of pores (here and below the micro scale), the fluids are assumed 

immiscible and they are separated by a fluid-fluid interface. The location 

of this interface gives directly the volume occupied by each of the two 

fluids within one pore, so it can be related directly to the saturation of 

the two fluids. The interface is evolving in an a-priori unknown manner, 

depending on the velocities of the two fluids and on the surface tension. 

This evolution has a high impact on the overall flow behaviour. Simply 

knowing the saturation of the two fluids is not sufficient for describing 

∗ Corresponding author. 

E-mail address: sohely.sharmin@uhasselt.be (S. Sharmin). 

the overall flow behaviour. We need to understand the processes affect- 

ing the fluid-fluid interface to be able to describe the flow. 

One of the first mathematical models for the Darcy-scale flow 

in a porous medium was formulated by Henry Darcy Darcy (1856) , 

based on experiments. In these experiments only one fluid phase was 

considered, occupying the entire pore space so the porous medium was 

fully saturated. The experiments showed a proportionality between the 

pressure gradient and the flow rate. Subsequent extensions, still based 

on experimental observations, have considered unsaturated media 

Richards (1931) , two-phase flow Morrow and Harris (1965) , or reactive 

transport Schechter and Gidley (1969) in porous media. Traditionally, 

the flow models involve the mass balance for each phase, the Darcy 

law with a saturation-dependent (relative) permeability, and that 

the phase-pressure difference (the capillary pressure) is a nonlinear, 

monotone function of the saturation of the (say) wetting fluid. The 

relative permeability functions, and the one for the capillary pressure, 

are determined experimentally. 

Although extensively used such models need improvements, as 

also motivated by experimental results. As shown in Morrow and 

Harris (1965) , the capillary pressure - saturation function also depends 

on the process (infiltration or drainage). Also, the break-through curves 

determined in Bottero et al. (2011) for the phase-pressure difference, 

respectively for the saturation, reveal that the dependency of the former 

quantity on the latter is not necessarily monotone. Next to this, there 

is indirect evidence of the limited validity of assuming a nonlinear 
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relationship dependency of the capillary pressure and the saturation. 

In this respect we mention that effects like saturation overshoot or 

finger formation, clearly evidenced in experiments reported e.g. in 

DiCarlo (2004) ; Poulovassilis (1970) ; Shiozawa and Fujimaki (2004) ; 

Zhuang et al. (2019) and Glass et al. (1989) ; Rezanezhad et al. (2006) , 

are ruled out by the mathematical models used traditionally. 

To overcome these drawbacks, extensions of Darcy’s law for 

unsaturated or two-phase flow in porous media have been pro- 

posed. In this sense we start by mentioning Abreu et al. (2019) ; 

Beliaev and Schotting (2001) ; Beliaev and Hassanizadeh (2001) ; 

van Duijn and Mitra (2018) ; Plohr et al. (2001) , where different 

play-type hysteresis models are being proposed (an overview is pro- 

vided in Schweizer (2017) ), and Beliaev and Hassanizadeh (2001) ; 

Hassanizadeh and Gray (1993) for models incorporating dynamic ef- 

fects in the capillary pressure - saturation dependency. Inspired by 

the thin film model proposed in Huppert (1982) , a phase-field model 

involving the second-order spatial derivative of the saturation in the 

capillary pressure is proposed in Cueto-Felgueroso and Juanes (2008, 

2009) for unsaturated flow in porous media (also see Armiti-Juber and 

Rohde (2020) ). Finally, in Doster and Hilfer (2011) a model account- 

ing for the differences between percolating and non-percolating parts 

of a fluid is discussed, whereas the interfacial area concept is incorpo- 

rated in the porous media flow models discussed in Niessner and Has- 

sanizadeh (2008) ; Hassanizadeh and Gray (1990) ; Pop et al. (2009) . 

The effectiveness of such extensions in capturing phenomena like 

saturation overshoot and fingering is evidenced in Zhuang et al. (2019) ; 

Cueto-Felgueroso and Juanes (2009) ; Chapwanya and Stockie (2010) ; 

van Duijn et al. (2013, 2018) ; Hilfer et al. (2012) ; Lamacz et al. (2011) ; 

Rätz and Schweizer (2014) ; Schneider et al. (2018) ; Zhang and 

Zegeling (2017) . Two different major strategies can be observed in these 

papers. The first is to present numerical simulations for the extended 

models, aiming to reproduce the experimental results quantitatively. 

The second relies on mathematical analysis, and in particular on travel- 

ling waves, the focus being mainly on the qualitative behaviour of the 

solution, and in particular the dependence on the parameters appearing 

in the extended models. 

The extended models discussed above are stated at the Darcy scale, 

where no distinction is being made between the pore space, where fluid 

flow takes place. These models are describing the averaged behaviour 

of the system by considering so-called representative elementary vol- 

umes, and without focussing on the detailed description of the pro- 

cesses inside each pore. Alternatively, one can consider the mathemat- 

ical models valid at the scale of pores, which leads to models posed 

in an extremely complex domain consisting of the entire pore space of 

the porous medium. Such an approach allows to incorporate detailed 

pore-scale physics, which is generally better understood. There are var- 

ious possibilities in this direction, like the smoothed particle hydrody- 

namics based simulations in Tartakovsky and Meakin (2006) , the pore- 

network modelling in Joekar-Niasar and Hassanizadeh (2012) and we 

refer to Golparvar et al. (2018) for a review of such approaches. Closer 

to the present work are Mehmani and Tchelepi (2019) and Mehmani and 

Tchelepi (2018) , where direct numerical simulations tools are developed 

to understand the flow and the interface dynamics at the scale of pores, 

and these tools are then incorporated in a multi-scale simulator. How- 

ever, a numerical simulation at such detailed level and for the entire do- 

main of interest remains simply infeasible for practical applications due 

to the computational complexity. To overcome the difficulties related to 

the complexity of the domain, one can apply upscaling techniques to de- 

rive Darcy-scale models. Such an approach is adopted in Mikeli ć (2003) ; 

Mikelic and Paoli (2000) , by considering a simple pore geometry con- 

sisting of a long and thin pore, and for which transversal averaging is 

applied to derive a Darcy scale model. In this way, various model compo- 

nents and features can be included in a quite straightforward manner, 

and the corresponding Darcy-scale models can be derived in a ratio- 

nal manner. Recently Picchi and Battiato (2018) proposed an upscaling 

technique where they considered different flow distributions and de- 

rived regime-specific upscaled model. To derive the upscaled models 

they assumed that the location of the fluid-fluid interface is known and 

stationary. 

Here we follow the same approach as in Mikeli ć (2003) ; Mikelic and 

Paoli (2000) for deriving Darcy-scale models for two-phase or unsat- 

urated, one-phase flow in porous media. In the former case a wetting 

and a non-wetting fluid are present, in the latter only a wetting fluid is 

present together with a fluid that has constant pressure (say, zero) and 

infinite mobility. The fluids are assumed incompressible and immisci- 

ble. The derived models also take into account the possibility that one 

fluid is transporting a solute, which has an impact on the surface tension 

coefficient. We start with formulating the relevant models at the pore 

scale and then derive upscaled (Darcy-scale) models based on reason- 

able assumptions on the underlying physics. 

At the pore scale we assume that the flow of each fluid phase is 

modelled by the Navier-Stokes equations. When referring to two fluid 

phases (the unsaturated, one-phase case being similar), a peculiar as- 

pect in this approach is in the fact that, since the fluids are assumed 

immiscible, at the pore scale they are separated by an interface having 

a location that is not known a-priori. This interface moves depending 

on the fluid velocities, and, if applicable, on the concentration of the 

solute at this interface. In mathematical terms, this interface represents 

a free boundary in the model. Jump conditions ensuring conservation 

of the involved quantities are used at the evolving interface, as well as 

kinematic conditions to model its evolution. 

We consider here a single pore as a representative for the porous 

medium. The pore is long and thin, specifically a thin strip. Although 

this is a very simple geometry, upscaling thin-strip models in other con- 

texts (e.g. biofilm growth van Noorden et al. (2010) and mineral pre- 

cipitation van Noorden (2009b) ) has shown that the upscaled models 

have the same structure as commonly accepted Darcy-scale models in 

general porous media (see van Noorden (2009a) and Schulz and Kn- 

abner (2017) ). The advantage of using a single pore is that analytical 

expressions for the upscaled quantities are obtained. Inside the thin strip 

we assume that the two fluids have a layered structure. Hence, the loca- 

tion of the interface separating the two fluid phases can also uniquely de- 

scribe the thickness of the wetting phase and hence the saturation. Such 

a fluid distribution is the same as the core-annular flow in Picchi and 

Battiato (2018) and the thin-film flow in Mikelic and Paoli (2000) . In 

Picchi and Battiato (2018) , upscaled models for core-annular flow and 

other fluid distributions are derived, but under steady-state conditions. 

Here we explicitly account for the evolving fluid-fluid interface by treat- 

ing the width of the wetting phase as a variable. For more compli- 

cated situations, one can use e.g. a level-set approach Osher and Fed- 

kiw (2001) to track the location of the interface. Alternatively, a diffuse- 

interface approach can be considered, using e.g. the phase-field model 

in Abels et al. (2012) . 

In any of these approaches, the resulting models can be used for 

deriving the upscaled, Darcy scale counterparts, which are more suited 

for numerical simulations. For the simplified situation here, we apply 

asymptotic expansion techniques and transversal averaging to derive 

the upscaled mathematical models. In doing so, we also include a solute- 

dependent surface tension, leading to so-called Marangoni effects in the 

upscaled equations. 

An alternative to homogenization is the method of volume averag- 

ing, which has been successfully applied to upscaling two-phase flow 

in porous media in Whitaker (1986) ; Quintard and Whitaker (1988) . 

The upscaled model in Quintard and Whitaker (1988) was explored nu- 

merically in Quintard and Whitaker (1990b) for stratified flows and 

compared to the dynamic setting in Quintard and Whitaker (1990a) . 

The work from Quintard and Whitaker (1988) has been extended in 

Lasseux et al. (1996) to further investigate the resulting permeability 

tensors derived by the volume averaging. 

This work is builds on Mikeli ć (2003) ; Mikelic and Paoli (2000) , 

where mathematically rigorous upscaling results are obtained for two- 

phase flow in a single pore. Compared to Mikeli ć (2003) ; Mikelic and 
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Paoli (2000) , here we consider more regimes with respect to the capil- 

lary number, and also include solute effects in the surface tension de- 

pendency. We also mention that, although not considering the flow in a 

porous medium, in Bresch (2009) a similar approach is used for deriving 

the shallow-water equations. 

In this context, we mention that asymptotic homogenization meth- 

ods in either a thin strip or in a periodic porous medium have been 

widely applied for many application in which evolving interfaces 

are encountered at the pore scale. Examples in this sense are the 

evolving fluid-solid interface due to mineral precipitation and disso- 

lution van Noorden (2009b,a) ; Bringedal et al. (2015, 2016b, 2016a) ; 

Kumar et al. (2011) ; Schulz (2019b) , or to biofilm growth or other bio- 

logical processes van Noorden et al. (2010) ; Schulz and Knabner (2017) ; 

Landa-Marbán et al. (2020) ; Peszynska et al. (2016) ; Ray et al. (2013, 

2012) ; Schulz (2019a) . In all these cases, the derived Darcy-scale models 

were resembling well many of the models that are commonly accepted 

in the literature, but allow integrating additional effects in a rational 

manner. 

The paper is organized as follows. In the next section the physical 

processes at the pore-scale and the corresponding mathematical mod- 

els are introduced. With 𝜖 being a small parameter representing the 

ratio of the pore width and length, in Section 3 , the pore-scale mod- 

els are non-dimensionalized and their dependence on 𝜖 is derived. In 

Section 4 asymptotic expansion methods are applied to the pore-scale 

models and for various scaling regimes, and the corresponding upscaled 

are derived. In this sense, the cases in which the Marangoni effects do 

play a role at the Darcy scale are evidenced. Also, cases where the two 

upscaled fluid pressures are equal, or where the capillary pressure de- 

pends on the saturation in a non-standard way, resembling the models 

in Cueto-Felgueroso and Juanes (2008, 2009) ; Mikelic and Paoli (2000) ; 

Mikeli ć (2003) . The results are summarized and discussed more closely 

in Section 5 . In Section 6 provides some numerical examples that con- 

firm the validity of the approach. Specifically, the numerical solutions 

to the original, pore-scale models are computed for different situations, 

and then their transversal averages are compared to the solutions to the 

upscaled models. These results support that, as 𝜖 approaches zero, the 

upscaled models are describing well the averaged behaviour of the con- 

sidered pore-scale models. Finally, in Section 7 the different upscaled 

models are compared, highlighting the upscaled behaviour of the con- 

sidered physical phenomena. 

2. Mathematical model 

A pore-scale model is considered for two-phase or unsaturated flow 

through a porous medium. For simplicity, we considered a thin two- 

dimensional strip to represent the local pore geometry. Two incompress- 

ible and immiscible fluids, where one is wetting and the other is non- 

wetting, are flowing through the strip. Densities and viscosities of the 

fluids are constant. The wetting phase is attached to the pore wall and 

the wetting layer has a thickness that changes with time and varies with 

the location of the wall. The two fluids are separated by a sharp inter- 

face with zero thickness which is changing with time. The movement is 

not known a-priori, hence we have a moving boundary at the fluid-fluid 

interface. The interface that separates the fluids moves because of the 

surface tension and of the flow/movement of the two fluids. There is a 

solute present only in the wetting fluid and the concentration of the so- 

lute will change subject to diffusion and transport. The surface tension 

is considered as a function of the solute concentration, which results in 

a tangential stress at the moving interface which is called the Marangoni 

stress. The gravity effects are neglected. 

2.1. Geometric settings 

The width and length of the thin strip are respectively 2 l and L with 

L > > l . For simplicity, we assume a symmetric case with respect to 

(w.r.t.) the x-axis. The lower half of the strip is shown in Fig. 1 . Let 

Fig. 1. Schematic representation of the lower half of a single pore. 

t > 0 be the time variable. The thickness of the wetting fluid layer is 

denoted by d ( x, t ), where 0 ≤ d ( x, t ) ≤ l . The void space consists of two 

domains. The domain occupied by the non-wetting fluid (fluid-I) and by 

the wetting (fluid-II) fluid are denoted by respectively 

Ω𝐼 ( 𝑡 ) ∶= {( 𝑥, 𝑦 ) ∈ ℝ 

2 |0 < 𝑥 < 𝐿, − 𝑙 + 𝑑( 𝑥, 𝑡 ) < 𝑦 < 0} , 

Ω𝐼𝐼 ( 𝑡 ) ∶= {( 𝑥, 𝑦 ) ∈ ℝ 

2 |0 < 𝑥 < 𝐿, − 𝑙 < 𝑦 < − 𝑙 + 𝑑( 𝑥, 𝑡 )} . 

The fluid-fluid interface and the fluid-solid interface are respectively 

Γ𝑓𝑓 ( 𝑡 ) ∶= { ( 𝑥, 𝑦 ) ∈ ℝ 

2 |0 < 𝑥 < 𝐿, 𝑦 = − 𝑙 + 𝑑 ( 𝑥, 𝑡 ) } , 

Γ𝑓𝑠 ∶= {( 𝑥, 𝑦 ) ∈ ℝ 

2 |0 < 𝑥 < 𝐿, 𝑦 = − 𝑙} . 

The velocity vectors are denoted by 𝐪 𝛼 = 

(
𝑞 (1) 𝛼 , 𝑞 

(2) 
𝛼

)
, where the in- 

dex 𝛼 = 𝐼 , 𝐼 𝐼 is distinguishing between the non-wetting and the wetting 

fluid, respectively. 

Since d ( x, t ) gives the location of the fluid-fluid interface, the unit 

normal vector on the fluid-fluid interface pointing into fluid-I and the 

unit tangent vector are 

𝐧 ∶= (− 𝜕 𝑥 𝑑, 1) 𝑇 ∕ 
√ 

1 + ( 𝜕 𝑥 𝑑) 2 , and 𝐭 ∶= (1 , 𝜕 𝑥 𝑑) 𝑇 ∕ 
√ 

1 + ( 𝜕 𝑥 𝑑) 2 . 

Given a point ( 𝑥, − 𝑙 + 𝑑( 𝑥, 𝑡 )) on Γff( t ), its normal velocity is 

𝑣 𝑛 ∶= 𝜕 𝑡 𝑑∕ 
√ 

1 + ( 𝜕 𝑥 𝑑) 2 . (1) 

2.2. Equations in the pore domain 

We refer to Patankar (1980) and assume that the flow of the two 

fluids is governed by the Navier-Stokes equations 

𝜌𝛼 𝜕 𝑡 𝐪 𝛼 + 𝜌𝛼
(
𝐪 𝛼 ⋅ 𝛁 

)
𝐪 𝛼 = − 𝛁 𝑝 𝛼 + 𝜇𝛼 ∇ 

2 𝐪 𝛼, in Ω𝛼( 𝑡 ) ( 𝛼 = 𝐼 , 𝐼 𝐼 ) , 
𝛁 ⋅ 𝐪 𝛼 = 0 , in Ω𝛼( 𝑡 ) ( 𝛼 = 𝐼 , 𝐼 𝐼 ) . 

where 𝜌𝛼 and 𝜇𝛼 are respectively the constant viscosities and densities, 

and the pressures are p 𝛼 . For simplicity gravity effects are neglected. 

We assume that one chemical species (solute) is present in fluid-II, 

its molar concentration being c . Additionally, there is no mass transfer 

of the solute form fluid-II to fluid-I, hence, the molar concentration of 

the solute in fluid-I is zero. The solute concentration changes both by 

diffusion and convection, resulting in 

𝜕 𝑡 𝑐 + ∇ ⋅
(
− 𝐷∇ 𝑐 + 𝐪 𝐼𝐼 𝑐 

)
= 0 , in Ω𝐼𝐼 ( 𝑡 ) , 

where D is the constant diffusion coefficient. 

To complete the model above appropriate initial conditions, inflow 

and outflow boundary conditions can be added. However, as the up- 

scaling procedure is independent of the choice of initial and external 

boundary conditions, these will not be specified here. 
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2.3. Boundary conditions at the fluid-fluid interface Γff( t ) 

Here, we specify the boundary conditions at Γff( t ). This means that 

all equations in this section are valid only at points at Γff( t ). Firstly, we 

assume that the velocities of the two fluids are equal at Γff( t ), 

𝐪 𝐼 = 𝐪 𝐼𝐼 . 

Secondly, we assume that the normal velocity of Γff( t ) as given in (1) , 

equals the normal velocities of the two fluids, 

𝐪 𝛼 ⋅ 𝐧 = 𝑣 𝑛 ( 𝛼 = 𝐼 , 𝐼 𝐼 ) . 

Further conditions at Γff( t ) are involving the stress tensors 

𝐓 𝛼 ∶= − 𝑝 𝛼𝐈 + 𝜇𝛼
((
𝛁𝐪 𝛼

)
+ 

(
𝛁𝐪 𝛼

)𝑇 ) ( 𝛼 = 𝐼 , 𝐼 𝐼 ) , 

the curvature of Γff( t ) 

∇ ⋅ 𝐧 ∶= − 𝜕 𝑥 

( 

𝜕 𝑥 𝑑 √
1 + ( 𝜕 𝑥 𝑑) 2 

) 

, 

and the surface tension 𝛾. If 𝛾 is affected by the presence of the so- 

lute present in fluid-II, one has 𝛾 = 𝛾( 𝑐) . For example, in Smith and Gill- 

ham (1999) the following law is proposed 

𝛾( 𝑐) = 𝛾𝑟𝑒𝑓 

( 

1 − 𝑏 ln 
( 𝑐 
𝑎 𝑐 𝑟𝑒𝑓 

+ 1 
)) 

, (2) 

where a, b are constants and 𝛾ref is the surface tension at reference con- 

centration c ref . Its tangential stress gradients is 

∇ 𝑠 𝛾( 𝑐) ∶= ∇ 𝛾( 𝑐) − 𝐧 ( 𝐧 ⋅ ∇ 𝛾( 𝑐) ) . 

With this, the third boundary condition at Γff( t ) reads (see Leal (2007) ) 

(
𝐓 𝐼 − 𝐓 𝐼𝐼 

)
⋅ 𝐧 = 𝛾( 𝑐) ( ∇ ⋅ 𝐧 ) 𝐧 − ∇ 𝑠 𝛾( 𝑐) . 

This jump can be written in terms of the normal and the tangential com- 

ponents. At Γff( t ), for the normal component, one has 

((
𝐓 𝐼 − 𝐓 𝐼𝐼 

)
⋅ 𝐧 

)
⋅ 𝐧 = 𝛾( 𝑐) ( ∇ ⋅ 𝐧 ) , 

while for the tangential component, also known as Marangoni stress, 

one gets 
((

𝐓 𝐼 − 𝐓 𝐼𝐼 
)
⋅ 𝐧 

)
⋅ 𝐭 = − 𝐭 ⋅ ∇ 𝛾( 𝑐) . 

Finally, the mass balance for the solute at Γff( t ) reads 

(
− 𝐷∇ 𝑐 + 𝐪 𝐼𝐼 𝑐 

)
⋅ 𝐧 = 𝑣 𝑛 𝑐. 

2.4. Boundary conditions at the fluid-solid interface Γfs 

As before, the equations hold only at the fluid-solid interface Γfs , 

where first no-slip is assumed, 

𝐪 𝐼𝐼 = 𝟎 . 

For the solute concentration, the normal flux into the solid matrix is 

zero, 
(
− 𝐷∇ 𝑐 + 𝐪 𝐼𝐼 𝑐 

)
⋅ 𝐧 = 0 . 

2.5. Pore-scale model for the two-phase flow with solute-dependent surface 

tension 

Recall that the sub-domain occupied by fluid 𝛼 is time dependent, 

Ω𝛼( t ), and that the freely moving fluid-fluid interface is Γff( t ) and con- 

sidering the discussion above, one has 

𝜌𝛼𝜕 𝑡 𝐪 𝛼 + 𝜌𝛼
(
𝐪 𝛼 ⋅ 𝛁 

)
𝐪 𝛼 = − 𝛁 𝑝 𝛼 + 𝜇𝛼∇ 

2 𝐪 𝛼, in Ω𝛼( 𝑡 ) ( 𝛼 = 𝐼 , 𝐼 𝐼 ) , (3) 

𝛁 ⋅ 𝐪 𝛼 = 0 , in Ω𝛼( 𝑡 ) ( 𝛼 = 𝐼 , 𝐼 𝐼 ) , (4) 

𝜕 𝑡 𝑐 + ∇ ⋅
(
− 𝐷∇ 𝑐 + 𝐪 𝐼𝐼 𝑐 

)
= 0 , in Ω𝐼𝐼 ( 𝑡 ) , (5) 

𝐪 𝐼 = 𝐪 𝐼𝐼 , at Γ𝑓𝑓 ( 𝑡 ) , (6) 

𝐪 𝛼 ⋅ 𝐧 = 𝑣 𝑛 , at Γ𝑓𝑓 ( 𝑡 ) ( 𝛼 = 𝐼 , 𝐼 𝐼 ) , (7) 

((
𝐓 𝐼 − 𝐓 𝐼𝐼 

)
⋅ 𝐧 

)
⋅ 𝐧 = 𝛾( 𝑐) ( ∇ ⋅ 𝐧 ) , at Γ𝑓𝑓 ( 𝑡 ) , (8) 

((
𝐓 𝐼 − 𝐓 𝐼𝐼 

)
⋅ 𝐧 

)
⋅ 𝐭 = − 𝐭 ⋅ ∇ 𝛾( 𝑐) , at Γ𝑓𝑓 ( 𝑡 ) , (9) 

(
− 𝐷∇ 𝑐 + 𝐪 𝐼𝐼 𝑐 

)
⋅ 𝐧 = 𝑣 𝑛 𝑐, at Γ𝑓𝑓 ( 𝑡 ) , (10) 

𝐪 𝐼𝐼 = 𝟎 , at Γ𝑓𝑠 , (11) 

(
− 𝐷∇ 𝑐 + 𝐪 𝐼𝐼 𝑐 

)
⋅ 𝐧 = 0 , at Γ𝑓𝑠 . (12) 

2.6. Pore-scale model for the two-phase flow with constant surface tension 

Whenever the surface tension is constant, as happening e.g. in the 

absence of a solute in fluid-II or with a constant solute concentration, 

the tangential components of the normal stresses are equal at Γff( t ). In 

this case, the pore-scale model is simpler, as (5), (10) and (12) become 

superfluous, while 𝛾( 𝑐) = 𝛾 in (8) and (9) reduces to 
((

𝐓 𝐼 − 𝐓 𝐼𝐼 
)
⋅ 𝐧 

)
⋅ 𝐧 = 𝛾 ( ∇ ⋅ 𝐧 ) , at Γ𝑓𝑓 ( 𝑡 ) , 

((
𝐓 𝐼 − 𝐓 𝐼𝐼 

)
⋅ 𝐧 

)
⋅ 𝐭 = 0 , at Γ𝑓𝑓 ( 𝑡 ) . 

The remaining equations are the same as in Section 2.5 . 

2.7. Pore-scale model for the unsaturated flow with constant surface 

tension 

A further simplification is to assume that the pressure in the fluid-I 

is constant and that its mobility is infinite. Essentially, this means that 

fluid-I plays no role for the flow of fluid-II. This situation appears e.g. 

if fluid-I is air and is connected to the atmosphere. Alternatively, this 

pore-scale model can be interpreted as a thin-film flow with an open 

surface where a liquid is attached to the wall of the pore and the middle 

domain is occupied by air. Then the number of variables reduces to those 

corresponding to fluid-II. Moreover, we assume the solute is absent in 

fluid-II, and the surface tension is constant. In this case, (5), (10) and 

(12) are excessive. Moreover, the model equations in Section 2.5 are 

further simplified by giving up the equations for 𝛼 = 𝐼, reducing to the 

Navier-Stokes equations in ΩII ( t ). At Γff( t ), (7) is valid for 𝛼 = 𝐼 𝐼 , and 

(8), (9) shortens to 

(
𝐓 𝐼𝐼 ⋅ 𝐧 

)
⋅ 𝐧 = − 𝛾 ( ∇ ⋅ 𝐧 ) , at Γ𝑓𝑓 ( 𝑡 ) , (

𝐓 𝐼𝐼 ⋅ 𝐧 
)
⋅ 𝐭 = 0 , at Γ𝑓𝑓 ( 𝑡 ) . 

3. The non-dimensional model equations 

To identify the model components that have a larger or smaller im- 

pact than others, we first bring the model to a non-dimensional form. To 

this aim, we use reference quantities and rescale the dimensional ones 

as specified in Table 1 . In particular, 𝜇II and 𝜌II are taken as reference 

viscosity, respectively density. Table 1 introduces two length scales, L 

and l . In a general porous medium, L would reflect the length scale of 

the entire medium, where l is the one of a pore. As we let a single 

pore represent the porous medium, we use the width and the length 

of the pore as described in Section 2.1 . In the same spirit, here we 

define the non-dimensional number 𝜖 ∶= 

𝑙 
𝐿 > 0 , and assume that 𝜖 is 

small. Observe now that the x and y coordinates are scaled differently, 
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Table 1 

Reference and non-dimensional quantities. 

Variables Reference values Non-dimensional variables 

time t ref 𝑡 = 𝑡 ∕ 𝑡 𝑟𝑒𝑓 
space 𝑥 𝑟𝑒𝑓 = 𝐿, 𝑦 𝑟𝑒𝑓 = 𝑙 �̂� = 𝑥 ∕ 𝐿, �̂� = 𝑦 ∕ 𝑙 = 𝑦 ∕ ( 𝜖 𝐿 ) 
depth of the wetting fluid 𝑑 𝜖 = 𝑑∕ 𝑙 = 𝑑∕ ( 𝜖 𝐿 ) 
velocities 𝑞 𝑟𝑒𝑓 = 𝐿 ∕ 𝑡 𝑟𝑒𝑓 �̂� 𝜖𝐼 = 𝐪 𝐼 ∕ 𝑞 𝑟𝑒𝑓 , �̂� 

𝜖
𝐼𝐼 = 𝐪 𝐼𝐼 ∕ 𝑞 𝑟𝑒𝑓 

densities 𝜌𝑟𝑒𝑓 = 𝜌𝐼𝐼 �̂�𝐼 = 𝜌𝐼 ∕ 𝜌𝐼𝐼 = 1∕ 𝑁, �̂�𝐼𝐼 = 1 
pressures 𝑝 𝑟𝑒𝑓 = 

(
𝐿 4 𝜌𝑟𝑒𝑓 

)
∕ 
(
𝑡 2 𝑟𝑒𝑓 𝑙 

2 
)

�̂� 𝜖𝐼 = 𝑝 𝐼 ∕ 𝑝 𝑟𝑒𝑓 , �̂� 
𝜖
𝐼𝐼 = 𝑝 𝐼𝐼 ∕ 𝑝 𝑟𝑒𝑓 

kinematic viscosities 𝜇𝑟𝑒𝑓 = 
(
𝑙 2 𝑝 𝑟𝑒𝑓 

)
∕ 
(
𝐿 𝑞 𝑟𝑒𝑓 

)
= 𝜇𝐼𝐼 �̂�𝐼 = 𝜇𝐼 ∕ 𝜇𝐼𝐼 = 1∕ 𝑀, �̂�𝐼𝐼 = 1 

surface tension 𝛾 ref �̂�( ̂𝑐 𝜖 ) = 𝛾( 𝑐)∕ 𝛾𝑟𝑒𝑓 , 
�̂� = 𝛾∕ 𝛾𝑟𝑒𝑓 = 1 , if 𝛾 is constant 

diffusion coefficient 𝐷 𝑟𝑒𝑓 = 𝐿 2 ∕ 𝑡 𝑟𝑒𝑓 �̂� = 𝐷∕ 𝐷 𝑟𝑒𝑓 
molar concentration c ref 𝑐 𝜖 = 𝑐∕ 𝑐 𝑟𝑒𝑓 
capillary number Ca = 

(
𝜇𝑟𝑒𝑓 𝑞 𝑟𝑒𝑓 

)
∕ 𝛾𝑟𝑒𝑓 

so that they become both of order 1,  (1) . Based on this, the deriva- 

tives change into 𝜕 𝜕 ̂𝑥 = 𝐿 𝜕 𝜕𝑥 , 
𝜕 
𝜕 ̂𝑦 = 𝜖 𝐿 𝜕 𝜕𝑦 . The non-dimensional gradient 

is ∇̂ ∶= 

(
𝜕 �̂� , 

1 
𝜖 𝜕 �̂� 

)
due to the different scaling in x and y -direction. 

Some assumptions are made in Table 1 by choosing the scaling 

for 𝜇ref , D ref and p ref . The ratio of the time scales for the diffusion 

and the convective transport, referred to as the Péclet number, 𝑃 𝑒 = 

𝑞 𝑟𝑒𝑓 𝑥 𝑟𝑒𝑓 
𝐷 𝑟𝑒𝑓 

is chosen moderate w.r.t 𝜖. For simplicity, the Péclet number is 

taken equal to 1. However, in van Noorden et al. (2010) ; van Noorden 

(2009b,a) ; Schulz and Knabner (2017) ; Bringedal et al. (2015, 2016a) ; 

Schulz (2019b) ; Landa-Marbán et al. (2020) ; Peszynska et al. (2016) ; 

Ray et al. (2013, 2012) the case of moderate Péclet number (when 

diffusion dominates or is in balance with the transport) and in 

Bringedal et al. (2016b) ; Kumar et al. (2011) ; van Duijn et al. (2008) ; 

Mauri (2003) the case of high Péclet number (when the convective trans- 

port dominates the diffusion) are considered. Additionally, the scal- 

ing of the p ref and 𝜇ref are chosen such that the Reynolds number, 

𝑅𝑒 = 

𝜌𝑟𝑒𝑓 𝑞 𝑟𝑒𝑓 𝑥 𝑟𝑒𝑓 
𝜇𝑟𝑒𝑓 

is moderate, namely equal to 1 and the Euler number, 

𝐸𝑢 = 

𝑝 𝑟𝑒𝑓 
𝑞 2 𝑟𝑒𝑓 𝜌𝑟𝑒𝑓 

, is equal to 𝜖−2 . These choices ensure laminar flow and 

that the pressure drop dominates the flow, which are needed to ensure 

validity of Darcy’s law on the macro scale. 

Note that the dimensionless parameters M, N appearing in Table 1 , 

𝑀 ∶= 𝜇𝐼𝐼 ∕ 𝜇𝐼 , 𝑁 ∶= 𝜌𝐼𝐼 ∕ 𝜌𝐼 , 

may also depend on 𝜖. In this respect, here we restrict to the case 𝑁 = 1 , 
while M is assumed first  (1) , and later the limit M →∞ is considered to 

show that the two-phase model reduces to the unsaturated, single-phase 

one. 

In the non-dimensional setting, the pore space occupied by the two 

fluids is 

Ω̂𝜖𝐼 ( ̂𝑡 ) ∶= {( ̂𝑥 , ̂𝑦 ) ∈ ℝ 

2 |0 < �̂� < 1 , −1 + 𝑑 𝜖( ̂𝑥 , ̂𝑡 ) < �̂� < 0} , (13) 

Ω̂𝜖𝐼𝐼 ( ̂𝑡 ) ∶= {( ̂𝑥 , ̂𝑦 ) ∈ ℝ 

2 |0 < �̂� < 1 , −1 < �̂� < −1 + 𝑑 𝜖( ̂𝑥 , ̂𝑡 ) . (14) 

The fluid-fluid and fluid-solid interfaces become 

Γ̂𝜖𝑓𝑓 ( ̂𝑡 ) ∶= {( ̂𝑥 , ̂𝑦 ) ∈ ℝ 

2 |0 < �̂� < 1 , ̂𝑦 = −1 + 𝑑 𝜖( ̂𝑥 , ̂𝑡 )} , 

Γ̂𝑓𝑠 ∶= {( ̂𝑥 , ̂𝑦 ) ∈ ℝ 

2 |0 < �̂� < 1 , ̂𝑦 = −1} . 

The normal and tangent unit vectors are, respectively 

�̂� 𝜖 ∶= 

(
− 𝜖 𝜕 �̂� 𝑑 𝜖 , 1 

)
√ 

1 + 

(
𝜖 𝜕 �̂� 𝑑 𝜖

)
2 
, and ̂𝐭 𝜖 ∶= 

(
1 , 𝜖 𝜕 �̂� 𝑑 𝜖

)
√ 

1 + 

(
𝜖 𝜕 �̂� 𝑑 𝜖

)
2 
. 

The normal velocity becomes 

�̂� 𝜖𝑛 ∶= 

𝜖 𝜕 𝑡 𝑑 𝜖√ 

1 + 

(
𝜖 𝜕 �̂� 𝑑 𝜖

)
2 
. 

The non-dimensional stress tensors are 

�̂� 

𝜖
𝐈 ∶= − ̂𝑝 𝜖𝐼 𝐈 + 

𝜖2 

𝑀 

{(
∇̂ ̂𝐪 𝜖𝐼 

)
+ 

(
∇̂ ̂𝐪 𝜖𝐼 

)𝑇 }, �̂� 

𝜖
𝐈𝐈 ∶= − ̂𝑝 𝜖𝐼𝐼 𝐈 + 𝜖2 

{(
∇̂ ̂𝐪 𝜖𝐼𝐼 

)
+ 

(
∇̂ ̂𝐪 𝜖𝐼𝐼 

)𝑇 }. 

3.1. Non-dimensional model for the two-phase flow with solute-dependent 

surface tension 

Substituting the non-dimensional variables into the pore-scale model 

in Section 2.5 , for every ̂𝑡 > 0 the non-dimensional model equations for 

the two-phase flow model with solute-dependent surface tension be- 

come 

𝜖2 
(
𝜕 𝑡 ̂𝐪 𝜖𝐼 + 

(
�̂� 𝜖𝐼 ⋅ �̂� 

)
�̂� 𝜖𝐼 

)
+ �̂� ̂𝑝 𝜖𝐼 − 

𝜖2 

𝑀 

∇̂ 

2 �̂� 𝜖𝐼 = 0 , in Ω̂𝜖𝐼 ( ̂𝑡 ) , (15) 

𝜖2 
(
𝜕 𝑡 ̂𝐪 𝜖𝐼𝐼 + 

(
�̂� 𝜖𝐼𝐼 ⋅ �̂� 

)
�̂� 𝜖𝐼𝐼 

)
+ �̂� ̂𝑝 𝜖𝐼𝐼 − 𝜖2 ∇̂ 

2 �̂� 𝜖𝐼𝐼 = 0 , in Ω̂𝜖𝐼𝐼 ( ̂𝑡 ) , (16) 

�̂� ⋅ �̂� 𝜖𝛼 = 0 , in Ω̂𝜖𝛼( ̂𝑡 ) ( 𝛼 = 𝐼 , 𝐼 𝐼 ) , (17) 

𝜕 𝑡 ̂𝑐 
𝜖 − ∇̂ ⋅

(
�̂� ̂∇ ( ̂𝑐 𝜖) − ̂𝐪 𝜖𝐼𝐼 ̂𝑐 

𝜖) = 0 , in Ω̂𝜖𝐼𝐼 ( ̂𝑡 ) . (18) 

The boundary conditions at the fluid-fluid interface are 

�̂� 𝜖𝐼 = �̂� 𝜖𝐼𝐼 , at Γ̂𝜖𝑓𝑓 ( ̂𝑡 ) , (19) 

�̂� 𝜖𝛼 ⋅ �̂� 
𝜖 = �̂� 𝜖𝑛 , at Γ̂𝜖𝑓𝑓 ( ̂𝑡 ) ( 𝛼 = 𝐼 , 𝐼 𝐼 ) , (20) 

(
− ̂𝐷 ̂∇ ̂𝑐 𝜖 + ̂𝐪 𝜖𝐼𝐼 ̂𝑐 

𝜖) ⋅ �̂� 𝜖 = 𝑐 𝜖 �̂� 𝜖𝑛 , at Γ̂𝜖𝑓𝑓 
(
𝑡 
)
, (21) 

((
�̂� 

𝜖
𝐈 − �̂� 

𝜖
𝐈𝐈 
)
⋅ �̂� 𝜖

)
⋅ �̂� 𝜖 = 

𝜖2 

Ca 
�̂� ( ̂𝑐 𝜖) 

(
∇̂ ⋅ �̂� 𝜖

)
, at Γ̂𝜖𝑓𝑓 

(
𝑡 
)
, (22) 

((
�̂� 

𝜖
𝐈 − �̂� 

𝜖
𝐈𝐈 
)
⋅ �̂� 𝜖

)
⋅ 𝐭 𝜖 = − 

𝜖2 

Ca 

(
𝐭 𝜖 ⋅ ∇̂ ̂𝛾( ̂𝑐 𝜖) 

)
, at Γ̂𝜖𝑓𝑓 

(
𝑡 
)
. (23) 

At the fluid-solid interface, the boundary conditions are 

�̂� 𝜖𝐼𝐼 = 𝟎 , at Γ̂𝑓𝑠 , (24) 

(
− ̂𝐷 ̂∇ ̂𝑐 𝜖 + ̂𝐪 𝜖𝐼𝐼 ̂𝑐 

𝜖) ⋅ �̂� 𝜖 = 0 , at Γ̂𝑓𝑠 . (25) 

At �̂� = 0 we apply symmetry conditions for all variables. 

3.2. Non-dimensional model for the two-phase flow with constant surface 

tension 

Similar to Section 2.6 , we consider the case without solute and 𝛾
being constant. With 𝛾𝑟𝑒𝑓 = 𝛾, one gets �̂� = 1 and (22) and (23) become 

((
�̂� 

𝜖
𝐈 − �̂� 

𝜖
𝐈𝐈 
)
⋅ �̂� 𝜖

)
⋅ �̂� 𝜖 = 

𝜖2 

Ca 
∇̂ ⋅ �̂� 𝜖 , at Γ̂𝜖𝑓𝑓 

(
𝑡 
)
, (26) 

((
�̂� 

𝜖
𝐈 − �̂� 

𝜖
𝐈𝐈 
)
⋅ �̂� 𝜖

)
⋅ 𝐭 𝜖 = 0 , at Γ̂𝜖𝑓𝑓 

(
𝑡 
)
. (27) 

Further, (18), (21) and (25) are not needed anymore and the remaining 

equations are the same as in the above section. 
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3.3. Non-dimensional model for unsaturated flow with constant surface 

tension 

Continuing as in Section 2.7 , assuming that fluid-I does not influence 

the flow of fluid-II and in the absence of solute one ends up with (16), 

(17), (20) (for 𝛼 = 𝐼 𝐼 ), (24) and 

(
�̂� 

𝜖
𝐼𝐼 ⋅ �̂� 

𝜖) ⋅ �̂� 𝜖 = − 

𝜖2 

Ca 
∇̂ ⋅ �̂� 𝜖 , at Γ̂𝜖𝑓𝑓 

(
𝑡 
)
, (28) 

(
�̂� 

𝜖
𝐼𝐼 ⋅ �̂� 

𝜖) ⋅ 𝐭 𝜖 = 0 , at Γ̂𝜖𝑓𝑓 
(
𝑡 
)
. (29) 

4. Asymptotic expansion 

We use an asymptotic expansion w.r.t. 𝜖 to derive transversally aver- 

aged upscaled (effective) models at the Darcy scale. Since in this section 

only the non-dimensional variables are used, for the ease of presenta- 

tion the hats are suppressed. We use the homogenization ansatz, namely 

that all variables can be expanded regularly w.r.t. 𝜖. We assume that 

𝑝 𝜖𝛼( 𝑥, 𝑦, 𝑡 ) = 𝑝 𝛼, 0 ( 𝑥, 𝑦, 𝑡 ) + 𝜖𝑝 𝛼, 1 ( 𝑥, 𝑦, 𝑡 ) +  ( 𝜖2 ) ( 𝛼 = 𝐼 , 𝐼 𝐼 ) , 

𝑞 𝜖, ( 𝑘 ) 𝛼 ( 𝑥, 𝑦, 𝑡 ) = 𝑞 ( 𝑘 ) 𝛼, 0 ( 𝑥, 𝑦, 𝑡 ) + 𝜖𝑞 ( 𝑘 ) 𝛼, 1 ( 𝑥, 𝑦, 𝑡 ) +  ( 𝜖2 ) ( 𝛼 = 𝐼 , 𝐼 𝐼 , 𝑘 = 1 , 2) , 

𝑐 𝜖( 𝑥, 𝑦, 𝑡 ) = 𝑐 0 ( 𝑥, 𝑦, 𝑡 ) + 𝜖𝑐 1 ( 𝑥, 𝑦, 𝑡 ) +  ( 𝜖2 ) , 

𝑑 𝜖( 𝑥, 𝑡 ) = 𝑑 0 ( 𝑥, 𝑡 ) + 𝜖𝑑 1 ( 𝑥, 𝑡 ) +  ( 𝜖2 ) . 

(30) 

where 𝑝 𝛼,𝑗 ( 𝑥, 𝑦, 𝑡 ) , 𝑞 
( 𝑘 ) 
𝛼,𝑗 ( 𝑥, 𝑦, 𝑡 ) , 𝑐 𝑗 ( 𝑥, 𝑦, 𝑡 ) , 𝑑 𝑗 ( 𝑥, 𝑡 ) are functions describing 

the  ( 𝜖𝑗 ) order approximation ( for 𝑗 = 1 , 2 , ⋯ ) of the corresponding vari- 

ables. We will now insert these expansions in the model equations and 

equate terms of the same order in 𝜖 to find the transversally averaged 

equations. We do this for different regimes, and end up with different 

upscaled models. 

4.1. Two-phase flow with solute-dependent surface tension 

We start with the model for two-phase flow with solute-dependent 

surface tension (15) - (25) . At this point we assume that M is  (1) w.r.t. 

𝜖. 

4.1.1. Mass conservation 

To derive an effective equation for the mass conservation, we 

follow the ideas in van Noorden (2009b) ; Bringedal et al. (2015) ; 

Kumar et al. (2011) . Substituting the asymptotic expansion (30) in the 

mass conservation equation (17) and restricting the writing up to the 

 ( 𝜖0 ) terms gives 

1 
𝜖
𝜕 𝑦 𝑞 

(2) 
𝛼, 0 + 

(
𝜕 𝑥 𝑞 

(1) 
𝛼, 0 + 𝜕 𝑦 𝑞 

(2) 
𝛼, 1 

)
+  ( 𝜖) = 0 , in Ω𝜖𝛼( 𝑡 ) . (31) 

To show that 𝑞 (2) 𝛼, 0 = 0 in Ω𝜖𝛼( 𝑡 ) , we use (30) in the kinematic conditions 

(20) and obtain 

𝑞 (2) 𝛼, 0 + 𝜖
(
𝑞 (2) 𝛼, 1 − 𝑞 (1) 𝛼, 0 𝜕 𝑥 𝑑 0 − 𝜕 𝑡 𝑑 0 

)
+  ( 𝜖2 ) = 0 , at Γ𝜖𝑓𝑓 ( 𝑡 ) . (32) 

The lowest order terms in (31) - (32) give 

𝜕 𝑦 𝑞 
(2) 
𝛼, 0 = 0 , in Ω𝜖𝛼( 𝑡 ) , and 𝑞 (2) 𝛼, 0 = 0 , at Γ𝜖𝑓𝑓 ( 𝑡 ) , 

while (24) and the symmetry condition at 𝑦 = 0 lead to 

𝑞 (2) 𝛼, 0 = 0 , in Ω𝜖𝛼( 𝑡 ) . (33) 

To upscale the mass balance for the fluids, we consider a thin 

segment of the pore space, as sketched in Fig. 2 . Let 𝑌 𝐼 ∶= {
( 𝑥, 𝑦 ) |𝑥 1 < 𝑥 < 𝑥 1 + 𝛿𝑥, 0 < 𝑦 < −1 + 𝑑 𝜖

}
be the region in this segment 

that is occupied by fluid-I. By integrating (17) over Y I , one obtains 

∫𝑌 𝐼 ∇ ⋅ 𝐪 𝜖𝐼 𝑑𝑉 𝐼 = 0 . 

Fig. 2. Thin section of the pore space. 

In the above equation, we apply the theorem of Gauss and divide all 

terms by 𝛿x , then using (20) and the asymptotic expansions (30) to get 

1 
𝛿𝑥 ∫

0 

−1+ 𝑑 0 
𝑞 (1) 𝐼, 0 𝑑𝑦 |𝑥 = 𝑥 1 + 𝛿𝑥 − 

1 
𝛿𝑥 ∫

0 

−1+ 𝑑 0 
𝑞 (1) 𝐼, 0 

𝑑 𝑦 |𝑥 = 𝑥 1 + 

1 
𝛿𝑥 ∫

𝑥 1 + 𝛿𝑥 

𝑥 1 
𝑞 (2) 𝐼, 1 𝑑 𝑥 |𝑦 =0 − 

1 
𝛿𝑥 ∫

𝑥 1 + 𝛿𝑥 

𝑥 1 
𝜕 𝑡 𝑑 0 𝑑 𝑥 +  ( 𝜖) = 0 . 

Using the symmetry condition at 𝑦 = 0 and equating the lowest order 

terms in the above gives 

1 
𝛿𝑥 ∫

0 

−1+ 𝑑 0 

(
𝑞 (1) 𝐼, 0 |𝑥 = 𝑥 1 + 𝛿𝑥 − 𝑞 (1) 𝐼, 0 |𝑥 = 𝑥 1 

)
𝑑 𝑦 − 

1 
𝛿𝑥 ∫

𝑥 1 + 𝛿𝑥 

𝑥 1 
𝜕 𝑡 𝑑 0 𝑑 𝑥 = 0 . 

Defining the total flux of fluid-I as 

𝑞 (1) 𝐼, 0 ( 𝑥, 𝑡 ) ∶= ∫
0 

−1+ 𝑑 0 
𝑞 (1) 𝐼, 0 ( 𝑥, 𝑦, 𝑡 ) 𝑑𝑦, (34) 

and letting 𝛿x → 0, one obtains 

𝜕 𝑥 ̄𝑞 
(1) 
𝐼, 0 − 𝜕 𝑡 𝑑 0 = 0 , for all 0 < 𝑥 < 1 and 𝑡 > 0 . (35) 

Similarly using the fluid-II region 𝑌 𝐼𝐼 ∶= {
( 𝑥, 𝑦 ) |𝑥 1 < 𝑥 < 𝑥 1 + 𝛿𝑥, −1 + 𝑑 𝜖 < 𝑦 < −1 

}
, for 

𝑞 (1) 𝐼 𝐼 , 0 ( 𝑥, 𝑡 ) ∶= ∫
−1+ 𝑑 0 

−1 
𝑞 (1) 𝐼 𝐼 , 0 ( 𝑥, 𝑦, 𝑡 ) 𝑑𝑦, (36) 

one obtains 

𝜕 𝑥 ̄𝑞 
(1) 
𝐼 𝐼 , 0 + 𝜕 𝑡 𝑑 0 = 0 , for all 0 < 𝑥 < 1 and 𝑡 > 0 . (37) 

Remark 1. Recalling that the fluids are incompressible, observe that, 

since d 0 is the thickness of the wetting phase layer in the half-pore, it can 

be regarded as the saturation of the wetting fluid. In this sense (35) and 

(37) are the effective mass balance equations for the two fluid phases. 

4.1.2. Solute transport 

To upscale the solute transport, which is needed when considering 

the Marangoni effect, one uses the asymptotic expansion (30) in (18) to 

get 

𝜕 𝑡 𝑐 0 − 

(
𝜕 𝑥 , 

1 
𝜖 𝜕 𝑦 

)
⋅𝐷 

(
𝜕 𝑥 , 

1 
𝜖 𝜕 𝑦 

)(
𝑐 0 + 𝜖𝑐 1 + 𝜖2 𝑐 2 

)

+ 

(
𝜕 𝑥 , 

1 
𝜖 𝜕 𝑦 

)
⋅
(
𝑞 (1) 𝐼 𝐼 , 0 , 𝑞 

(2) 
𝐼 𝐼 , 0 + 𝜖𝑞 (2) 𝐼 𝐼 , 1 

)(
𝑐 0 + 𝜖𝑐 1 

)
+  ( 𝜖) = 0 , in Ω𝜖𝐼𝐼 ( 𝑡 ) . 

(38) 

First, we show that c 0 and c 1 do not depend on y . The 𝜖−2 order Term 

in (38) is leading to 

𝜕 𝑦𝑦 𝑐 0 = 0 , in Ω𝜖𝐼𝐼 ( 𝑡 ) . 
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From the 𝜖−1 order term in the boundary conditions (21) and (25) , one 

obtains 

𝜕 𝑦 𝑐 0 = 0 , at Γ𝜖𝑓𝑓 ( 𝑡 ) and Γ𝑓𝑠 . 

This implies that c 0 does not depend on y , 

𝑐 0 = 𝑐 0 ( 𝑥, 𝑡 ) , in Ω𝜖𝐼𝐼 ( 𝑡 ) . 

In a similar fashion, using this, (33) , the 𝜖−1 order term in (38) and 𝜖0 

order term in (21), (25) , one obtains 

𝑐 1 = 𝑐 1 ( 𝑥, 𝑡 ) , in Ω𝜖𝐼𝐼 ( 𝑡 ) . 

The non-dimensional equation describing the solute concentra- 

tion (18) can be written as 

1 
𝜖2 
𝜕 𝑦 
(
𝐷 𝜕 𝑦 𝑐 

𝜖) − 

1 
𝜖
𝜕 𝑦 
(
𝑞 𝜖

(2) 
𝐼𝐼 𝑐 

𝜖
)
− 𝜕 𝑡 𝑐 

𝜖 + 𝜕 𝑥 
(
𝐷 𝜕 𝑥 𝑐 

𝜖 − 𝑞 𝜖
(1) 
𝐼𝐼 𝑐 

𝜖
)
= 0 . 

We integrate the above equation w.r.t. y from 𝑦 = −1 to 𝑦 = −1 + 𝑑 𝜖 . 
Applying the Leibniz rule in the last two terms and taking into account 

that d 𝜖 depends on x and t , one gets 

[ 
1 
𝜖2 
𝐷𝜕 𝑦 𝑐 

𝜖 − 

1 
𝜖
𝑞 𝜖

(2) 
𝐼𝐼 𝑐 

𝜖
] 𝑦 =−1+ 𝑑 𝜖

𝑦 =−1 
− 𝜕 𝑡 

( 

∫
−1+ 𝑑 𝜖

−1 
𝑐 𝜖𝑑𝑦 

) 

+ 𝜕 𝑡 𝑑 
𝜖𝑐 𝜖|𝑦 =−1+ 𝑑 𝜖

+ 𝜕 𝑥 

( 

∫
−1+ 𝑑 𝜖

−1 

(
𝐷𝜕 𝑥 𝑐 

𝜖 − 𝑞 𝜖
(1) 
𝐼𝐼 𝑐 

𝜖
)
𝑑𝑦 

) 

− 𝜕 𝑥 𝑑 
𝜖
(
𝐷𝜕 𝑥 𝑐 

𝜖 − 𝑞 𝜖
(1) 
𝐼𝐼 𝑐 

𝜖
)
|𝑦 =−1+ 𝑑 𝜖 = 0 . 

We insert the asymptotic expansion (30) in the above equation, recalling 

that c 0 and c 1 do not depend on y and that 𝜕 𝑦 𝑐 2 = 0 and 𝑞 (2) 𝐼 𝐼 , 1 = 0 at 

𝑦 = −1 , since 𝑞 (2) 𝐼 𝐼 , 0 = 0 in Ω𝜖𝐼𝐼 ( 𝑡 ) , one obtains 

(
𝐷𝜕 𝑦 𝑐 2 − 𝑞 (2) 𝐼 𝐼 , 1 𝑐 0 

)
|𝑦 =−1+ 𝑑 0 − 𝜕 𝑡 

( 

𝑐 0 ∫
−1+ 𝑑 0 

−1 
1 𝑑𝑦 

) 

+ 𝜕 𝑡 𝑑 0 𝑐 0 |𝑦 =−1+ 𝑑 0 

+ 𝜕 𝑥 

( 

𝐷 𝜕 𝑥 𝑐 0 

( 

∫
−1+ 𝑑 0 

−1 
1 𝑑𝑦 

) 

− 𝑐 0 

( 

∫
−1+ 𝑑 0 

−1 
𝑞 (1) 𝐼 𝐼 , 0 𝑑𝑦 

) ) 

− 𝜕 𝑥 𝑑 0 
(
𝐷𝜕 𝑥 𝑐 0 − 𝑐 0 𝑞 

(1) 
𝐼 𝐼 , 0 

)
|𝑦 =−1+ 𝑑 0 +  ( 𝜖) = 0 . 

Using (36) and the 𝜖 order terms from the boundary condition (21) at 

𝑦 = −1 + 𝑑 0 , one obtains the effective equation for the solute transport 

𝜕 𝑡 
(
𝑐 0 𝑑 0 

)
+ 𝜕 𝑥 

(
𝑐 0 𝑞 

(1) 
𝐼 𝐼 , 0 

)
− 𝜕 𝑥 ( 𝐷 𝑑 0 𝜕 𝑥 𝑐 0 ) = 0 , for all 0 < 𝑥 < 1 and 𝑡 > 0 . 

(39) 

4.1.3. Momentum conservation 

We apply the asymptotic expansion (30) in the horizontal and ver- 

tical component of the momentum equation for fluid-II (16) . Recalling 

that 𝑞 (2) 𝐼 𝐼 , 0 = 0 , in Ω𝜖𝐼𝐼 ( 𝑡 ) , for all t > 0 one has 

− 𝜕 𝑦𝑦 𝑞 
(1) 
𝐼 𝐼 , 0 + 𝜕 𝑥 𝑝 𝐼 𝐼 , 0 − 𝜖 𝜕 𝑦𝑦 𝑞 

(1) 
𝐼 𝐼 , 1 + 𝜖 𝜕 𝑥 𝑝 𝐼 𝐼 , 1 +  ( 𝜖2 ) = 0 , (40) 

1 
𝜖
𝜕 𝑦 𝑝 𝐼 𝐼 , 0 + 𝜕 𝑦 𝑝 𝐼 𝐼 , 1 + 𝜖 𝜕 𝑦 𝑝 𝐼 𝐼 , 2 − 𝜖 𝜕 𝑦𝑦 𝑞 

(2) 
𝐼 𝐼 , 1 +  ( 𝜖2 ) = 0 . (41) 

Restricting to 𝜖−1 order term in (41) , for all 0 < x < 1 and t > 0, one 

gets 

𝑝 𝐼 𝐼 , 0 = 𝑝 𝐼 𝐼 , 0 ( 𝑥, 𝑡 ) . 

For all t > 0, the dominant terms in (40) give 

𝜕 𝑦𝑦 𝑞 
(1) 
𝐼 𝐼 , 0 = 𝜕 𝑥 𝑝 𝐼 𝐼 , 0 , in Ω𝜖𝐼𝐼 ( 𝑡 ) . (42) 

Integrating the above equation in y and taking into account that p II ,0 is 

independent of y , we obtain 

𝜕 𝑦 𝑞 
(1) 
𝐼 𝐼 , 0 = 𝜕 𝑥 𝑝 𝐼 𝐼 , 0 𝑦 + 𝐴 1 ( 𝑥, 𝑡 ) , in Ω𝜖𝐼𝐼 ( 𝑡 ) , (43) 

where A 1 ( x, t ) is an integrating constant that will be fixed using bound- 

ary condition for 𝑞 (1) 𝐼 𝐼 , 0 . We now assume that the surface tension 𝛾 = 𝛾( 𝑐 𝜖) 
depends smoothly on the solute concentration. Using (30) and expand- 

ing 𝛾( c 𝜖) around c 0 gives 

𝛾( 𝑐 𝜖) = 𝛾
(
𝑐 0 
)
+ 𝜖 𝑐 1 𝛾

′(𝑐 0 
)
+  ( 𝜖2 ) . 

We apply the asymptotic expansion (30) in the boundary condition (23) . 

Using the above equation and recalling that 𝑞 (2) 𝛼, 0 = 0 at Γ𝜖𝑓𝑓 ( 𝑡 ) and that 

c 0 is independent of y , we get 

1 
𝜖

(
1 
𝑀 

𝜕 𝑦 𝑞 
(1) 
𝐼, 0 − 𝜕 𝑦 𝑞 

(1) 
𝐼 𝐼 , 0 

)
+ 

(
1 
𝑀 

𝜕 𝑦 𝑞 
(1) 
𝐼, 1 − 𝜕 𝑦 𝑞 

(1) 
𝐼 𝐼 , 1 

)
+ 𝜖

(
1 
𝑀 

𝜕 𝑦 𝑞 
(1) 
𝐼, 2 − 𝜕 𝑦 𝑞 

(1) 
𝐼 𝐼 , 2 

)

+ 𝜖
(

1 
𝑀 

𝜕 𝑥 𝑞 
(2) 
𝐼, 1 − 𝜕 𝑥 𝑞 

(2) 
𝐼 𝐼 , 1 

)
+ 2 𝜖𝜕 𝑥 𝑑 0 

(
1 
𝑀 

𝜕 𝑦 𝑞 
(2) 
𝐼, 1 − 𝜕 𝑦 𝑞 

(2) 
𝐼 𝐼 , 1 

)

−2 𝜖𝜕 𝑥 𝑑 0 
(

1 
𝑀 

𝜕 𝑥 𝑞 
(1) 
𝐼, 0 − 𝜕 𝑥 𝑞 

(1) 
𝐼 𝐼 , 0 

)
− 𝜖

(
𝜕 𝑥 𝑑 0 

)2 ( 1 
𝑀 

𝜕 𝑦 𝑞 
(1) 
𝐼, 0 − 𝜕 𝑦 𝑞 

(1) 
𝐼 𝐼 , 0 

)
+ 

1 
Ca 
𝜕 𝑥 𝛾( 𝑐 0 ) 

+ 

𝜖
Ca 
𝜕 𝑥 
(
𝑐 1 𝛾 ′( 𝑐 0 ) 

)
+  ( 𝜖2 ) = 0 , at Γ𝜖𝑓𝑓 ( 𝑡 ) . 

(44) 

At this point, the upscaling depends on the capillary number Ca. We 

will discuss the cases with Ca = 𝜖𝛽 Ca , for 0 ≤ 𝛽 ≤ 3 , where Ca =  (1) . 
We start by assuming Ca =  (1) thus 𝛽 = 0 . From (44) , one gets the tan- 

gential stress boundary condition 

𝜕 𝑦 𝑞 
(1) 
𝐼 𝐼 , 0 = 

1 
𝑀 

𝜕 𝑦 𝑞 
(1) 
𝐼, 0 , at Γ𝜖𝑓𝑓 ( 𝑡 ) . (45) 

Using the above in (43) leads to 

1 
𝑀 

𝜕 𝑦 𝑞 
(1) 
𝐼, 0 |𝑦 =−1+ 𝑑 0 = (−1 + 𝑑 0 ) 𝜕 𝑥 𝑝 𝐼 𝐼 , 0 + 𝐴 1 ( 𝑥, 𝑡 ) , in Ω𝜖𝐼𝐼 ( 𝑡 ) . (46) 

Applying the asymptotic expansion (30) into (15) and using (33) , for all 

t > 0 one has 

− 

1 
𝑀 

𝜕 𝑦𝑦 𝑞 
(1) 
𝐼, 0 + 𝜕 𝑥 𝑝 𝐼, 0 − 

𝜖
𝑀 

𝜕 𝑦𝑦 𝑞 
(1) 
𝐼, 1 + 𝜖 𝜕 𝑥 𝑝 𝐼, 1 +  ( 𝜖2 ) = 0 , in Ω𝜖𝐼 ( 𝑡 ) , (47) 

1 
𝜖
𝜕 𝑦 𝑝 𝐼, 0 + 𝜕 𝑦 𝑝 𝐼, 1 + 𝜖 𝜕 𝑦 𝑝 𝐼, 2 − 

𝜖
𝑀 

𝜕 𝑦𝑦 𝑞 
(2) 
𝐼, 1 +  ( 𝜖2 ) = 0 , in Ω𝜖𝐼 ( 𝑡 ) . (48) 

The lowest order term in (48) gives 

𝑝 𝐼, 0 = 𝑝 𝐼, 0 ( 𝑥, 𝑡 ) , for all 0 < 𝑥 < 1 . (49) 

For all t > 0, the dominating terms in (47) satisfy 

𝜕 𝑦𝑦 𝑞 
(1) 
𝐼, 0 = 𝑀 𝜕 𝑥 𝑝 𝐼, 0 , in Ω𝜖𝐼 ( 𝑡 ) . (50) 

We integrate the above equation w.r.t. y . We use (49) and the symmetry 

condition 𝜕 𝑦 𝑞 
(1) 
𝐼, 0 ( 𝑥, 𝑦, 𝑡 ) = 0 at 𝑦 = 0 , which leads to 

𝜕 𝑦 𝑞 
(1) 
𝐼, 0 = 𝑀 𝜕 𝑥 𝑝 𝐼, 0 𝑦, in Ω𝜖𝐼 ( 𝑡 ) . (51) 

We determine A 1 ( x, t ) from (46) , by using (51) at 𝑦 = −1 + 𝑑 0 , one gets 

for all t > 0 

𝜕 𝑦 𝑞 
(1) 
𝐼 𝐼 , 0 = 𝜕 𝑥 𝑝 𝐼 𝐼 , 0 𝑦 + (−1 + 𝑑 0 ) 

(
𝜕 𝑥 𝑝 𝐼, 0 − 𝜕 𝑥 𝑝 𝐼 𝐼 , 0 

)
, in Ω𝜖𝐼𝐼 ( 𝑡 ) . (52) 

The lowest order terms in (24) imply that 𝑞 (1) 𝐼 𝐼 , 0 = 0 at 𝑦 = −1 . Hence, 

integrating the above equation in y , one obtains 

𝑞 (1) 𝐼 𝐼 , 0 = 

𝜕 𝑥 𝑝 𝐼 𝐼 , 0 ( 𝑦 2 − 1) 
2 

+ (−1 + 𝑑 0 ) 
(
𝜕 𝑥 𝑝 𝐼, 0 − 𝜕 𝑥 𝑝 𝐼 𝐼 , 0 

)
( 𝑦 + 1) , in Ω𝜖𝐼𝐼 ( 𝑡 ) . 

(53) 

Integrating the above in y from 𝑦 = −1 + 𝑑 0 to 𝑦 = −1 and using (36) , 

yields 

𝑞 (1) 𝐼 𝐼 , 0 ( 𝑥, 𝑡 ) = − 

𝑑 3 0 
3 
𝜕 𝑥 𝑝 𝐼 𝐼 , 0 − 

(1 − 𝑑 0 ) 𝑑 2 0 
2 

𝜕 𝑥 𝑝 𝐼, 0 , for all 0 < 𝑥 < 1 and 𝑡 > 0 . 

(54) 

To derive an effective equation for the velocity of fluid-I, we integrate 

(51) twice w.r.t. y . To determine the integration constants we use the 

continuity of the velocity at the fluid-fluid interface. The lowest order 

terms in (19) imply 𝑞 (1) 𝐼, 0 = 𝑞 (1) 𝐼 𝐼 , 0 and hence 

𝑞 (1) 𝐼, 0 = − 

[ 
𝑀 (1 − 𝑑 0 ) 3 

3 
+ 𝑑 0 (1 − 𝑑 0 ) 2 

] 
𝜕 𝑥 𝑝 𝐼, 0 

− 

(1 − 𝑑 0 ) 𝑑 2 0 
2 

𝜕 𝑥 𝑝 𝐼 𝐼 , 0 , for all 0 < 𝑥 < 1 and 𝑡 > 0 . (55) 
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4.1.4. Effect of Ca 

We recall that the boundary conditions coming from the normal 

(22) and the tangential (23) components of the jump in the normal stress 

depends on the capillary number, Ca. To complete the upscaled model 

representing the effective behaviour for two-phase flow, we still have to 

find a relationship between the pressure difference of the fluids (capil- 

lary pressure) and the saturation in the porous medium. To this aim, we 

rewrite (22) as 

− 

1 
𝜖2 
(
𝑝 𝜖𝐼 − 𝑝 𝜖𝐼𝐼 

)
+ 

2 
𝜖

(
𝜕 𝑦 𝑞 

𝜖, ( 2 ) 
𝐼 − 𝑀 𝜕 𝑦 𝑞 

𝜖, ( 2 ) 
𝐼𝐼 

)
− ( 𝜕 𝑥 𝑑 𝜖) 2 

(
𝑝 𝜖𝐼 − 𝑝 𝜖𝐼𝐼 

)

+2 𝜕 𝑥 𝑑 𝜖
(
𝜕 𝑦 𝑞 

𝜖, ( 1 ) 
𝐼 − 𝑀 𝜕 𝑦 𝑞 

𝜖, ( 1 ) 
𝐼𝐼 

)
− 2 𝜖 𝜕 𝑥 𝑑 𝜖

(
𝜕 𝑥 𝑞 

𝜖, ( 2 ) 
𝐼 − 𝑀 𝜕 𝑥 𝑞 

𝜖, ( 2 ) 
𝐼𝐼 

)

+ 

𝜖 𝛾( 𝑐 𝜖 ) 𝜕 𝑥𝑥 𝑑 𝜖

Ca 
+  ( 𝜖2 ) = 0 , at Γ𝜖𝑓𝑓 ( 𝑡 ) . 

(56) 

Whenever Ca =  (1) thus 𝛽 = 0 , applying the asymptotic expansion 

(30) in the above equation and recalling (33) gives 

𝑝 𝐼, 0 − 𝑝 𝐼 𝐼 , 0 = 0 , for all 0 < 𝑥 < 1 and 𝑡 > 0 . (57) 

This means that in the upscaled model the pressures in both phases are 

equal. Since 𝑝 𝐼, 0 = 𝑝 𝐼 𝐼 , 0 in the pressure relation (57) , for simplicity, we 

set 𝑝 0 = 𝑝 𝛼, 0 and the effective velocities (54) and (55) become, for all 

0 < x < 1 and t > 0 

𝑞 (1) 𝐼 𝐼 , 0 = − 

𝑑 2 0 (3 − 𝑑 0 ) 
6 

𝜕 𝑥 𝑝 0 , (58) 

𝑞 (1) 𝐼, 0 = − 

( 

𝑀(1 − 𝑑 0 ) 3 

3 
+ 

𝑑 0 (1 − 𝑑 0 ) (2 − 𝑑 0 ) 
2 

) 

𝜕 𝑥 𝑝 0 . (59) 

Thus, the upscaled model with Ca =  (1) is represented by the mass 

conservation equations (35) , (37) , the effective velocities (58), (59) and 

the solute transport (39) . This can be expressed in terms of three pri- 

mary variables, the saturation of the wetting fluid d 0 , the pressure p 0 
(recall that the two fluid pressures are equal) and the concentration c 0 . 

Specifically, for all 0 < x < 1 and t > 0 one has 

𝜕 𝑡 𝑑 0 + 𝜕 𝑥 

[ ( 

𝑀(1 − 𝑑 0 ) 3 

3 
+ 

𝑑 0 (1 − 𝑑 0 ) (2 − 𝑑 0 ) 
2 

) 

𝜕 𝑥 𝑝 0 

] 
= 0 , 

𝜕 𝑡 𝑑 0 − 𝜕 𝑥 

[ 

𝑑 2 0 (3 − 𝑑 0 ) 
6 

𝜕 𝑥 𝑝 0 

] 

= 0 , 

𝜕 𝑡 
(
𝑐 0 𝑑 0 

)
+ 𝜕 𝑥 

[ 

𝑐 0 

( 

𝑑 2 0 (3 − 𝑑 0 ) 
6 

) 

𝜕 𝑥 𝑝 0 

] 

− 𝜕 𝑥 ( 𝐷 𝑑 0 𝜕 𝑥 𝑐 0 ) = 0 . 

(60) 

This means that the surface tension 𝛾 plays no role in the effective equa- 

tions, and therefore the Marangoni effect is lost. 

For regimes, where Ca =  ( 𝜖𝛽 ) Ca with 𝛽 > 0, the Marangoni effect 

will play a role in the upscaled models. For example, if Ca = 𝜖 Ca with 

Ca =  (1) , from (44) , one gets the Marangoni stress boundary condi- 

tion, 

𝜕 𝑦 𝑞 
(1) 
𝐼 𝐼 , 0 = 

𝜕 𝑦 𝑞 
(1) 
𝐼, 0 

𝑀 

+ 

𝜕 𝑥 𝛾( 𝑐 0 ) 

Ca 
, at Γ𝜖𝑓𝑓 ( 𝑡 ) . (61) 

Using this instead of (45) and repeating the same steps in Section 4.1.3 , 

one gets for 0 < x < 1 and t > 0, 

𝑞 (1) 𝐼, 0 = − 

( 

𝑀(1 − 𝑑 0 ) 3 

3 
+ 

𝑑 0 (1 − 𝑑 0 ) (2 − 𝑑 0 ) 
2 

) 

𝜕 𝑥 𝑝 0 + 

(1 − 𝑑 0 ) 𝑑 0 
Ca 

𝜕 𝑥 𝛾( 𝑐 0 ) , 

(62) 

𝑞 (1) 𝐼 𝐼 , 0 = − 

𝑑 2 0 (3 − 𝑑 0 ) 
6 

𝜕 𝑥 𝑝 0 + 

𝑑 2 0 
2 Ca 

𝜕 𝑥 𝛾( 𝑐 0 ) . (63) 

The upscaled model consists of the mass conservation equations (35) , 

(37) , effective velocities (62) , (63) and the solute transport (39) . The 

model can be expressed in terms of three primary variables, the water 

saturation d 0 , the pressure p 0 (recalling that the two fluid pressures are 

equal) and the concentration c 0 . Specifically, for 0 < x < 1 and t > 0 one 

has 

𝜕 𝑡 𝑑 0 + 𝜕 𝑥 

[ ( 

𝑀(1 − 𝑑 0 ) 3 

3 
+ 

𝑑 0 (1 − 𝑑 0 ) (2 − 𝑑 0 ) 
2 

) 

𝜕 𝑥 𝑝 0 − 

(1 − 𝑑 0 ) 𝑑 0 
Ca 

𝜕 𝑥 𝛾( 𝑐 0 ) 
] 
= 0 , 

𝜕 𝑡 𝑑 0 − 𝜕 𝑥 

[ ( 

𝑑 2 0 (3 − 𝑑 0 ) 
6 

) 

𝜕 𝑥 𝑝 0 − 

𝑑 2 0 
2 Ca 

𝜕 𝑥 𝛾( 𝑐 0 ) 

] 

= 0 , 

𝜕 𝑡 
(
𝑐 0 𝑑 0 

)
+ 𝜕 𝑥 

[ 

𝑐 0 

( 

𝑑 2 0 (3 − 𝑑 0 ) 
6 

) 

𝜕 𝑥 𝑝 0 

] 

− 𝜕 𝑥 ( 𝐷 𝑑 0 𝜕 𝑥 𝑐 0 ) = 0 . 

(64) 

Assuming Ca = 𝜖𝛽 Ca , with 𝛽 = 2 or 3 , will lead to different Marangoni 

stress condition than (61) , involving the unknowns c 1 , c 2 etc. In this 

case one needs to find an effective solute transport equation involving 

c 1 , c 2 etc. This is beyond the scope of this paper. 

4.2. Two-phase flow with constant surface tension 

Now, we consider the pore-scale model in Section 3.2 . We begin with 

the assumption that 𝑀 =  (1) . We recall that for a constant surface ten- 

sion, the dynamic boundary conditions are now (26), (27) . 

4.2.1. Mass conservation 

The derivation of the mass conservation equation in this section is 

identical to the one in Section 4.1.1 . The mass conservation equation 

for the two-phase flow model with constant surface tension is the same 

as (35) and (37) . 

4.2.2. Momentum conservation 

To derive the effective velocities for fluid-I and fluid-II we can follow 

the same steps discussed in Section 4.1.3 . Since the surface tension 𝛾
is constant, we use the continuity in the tangential component of the 

normal stress (27) . It is worth to mention that the capillary number Ca is 

absent in the tangential stress boundary condition. Applying asymptotic 

expansion (30) in the boundary condition (27) , we get 

1 
𝜖

( 1 
𝑀 

𝜕 𝑦 𝑞 
(1) 
𝐼, 0 − 𝜕 𝑦 𝑞 

(1) 
𝐼 𝐼 , 0 

)
+ 

( 1 
𝑀 

𝜕 𝑦 𝑞 
(1) 
𝐼, 1 − 𝜕 𝑦 𝑞 

(1) 
𝐼 𝐼 , 1 

)
+  ( 𝜖) = 0 , at Γ𝜖𝑓𝑓 ( 𝑡 ) . 

The lowest order terms imply 

𝜕 𝑦 𝑞 
(1) 
𝐼 𝐼 , 0 = 

1 
𝑀 

𝜕 𝑦 𝑞 
(1) 
𝐼, 0 , at Γ𝜖𝑓𝑓 ( 𝑡 ) , 

which is same as (45) . Further as in Section 4.1.3 , one obtains the same 

effective velocities, (54) and (55) . 

4.2.3. Effect of Ca 

Assuming Ca = 𝜖𝛽 Ca with 𝛽 < 3 and applying asymptotic expansion 

(30) in (56) (recalling that here 𝛾( 𝑐 𝜖) = 1 ), the lowest order term implies 

the same pressure relation as in (57) . The upscaled model for the two- 

phase flow with constant surface tension, large or moderate capillary 

number can be represented by the mass conservation equations (35) , 

(37) , by the effective velocities (59), (58) and the pressure relation (57) . 

This can be expressed in terms of two primary variables, the water sat- 

uration d 0 and the pressure p 0 (recall that the two fluid pressures are 

equal). Specifically, for 0 < x < 1 and t > 0 one has 

𝜕 𝑡 𝑑 0 + 𝜕 𝑥 

[ ( 

𝑀(1 − 𝑑 0 ) 3 

3 
+ 

𝑑 0 (1 − 𝑑 0 ) (2 − 𝑑 0 ) 
2 

) 

𝜕 𝑥 𝑝 0 

] 
= 0 , 

𝜕 𝑡 𝑑 0 − 𝜕 𝑥 

[ 

𝑑 2 0 (3 − 𝑑 0 ) 
6 

𝜕 𝑥 𝑝 0 

] 

= 0 
(65) 

If the capillary number is Ca = 𝜖3 Ca , applying (30) in (56) , we obtain 

𝑝 𝐼, 0 − 𝑝 𝐼 𝐼 , 0 = 

𝜕 𝑥𝑥 𝑑 0 
Ca 

. (66) 

In this case, the upscaled model for the two-phase flow with constant 

surface tension is given by the mass conservation equations (35) , (37) , 

the effective velocities (55), (54) and the capillary pressure relationship 

(66) . 
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4.2.4. Effect of large viscosity ratio between the fluids 

By now we assumed 𝑀 =  (1) , here we consider 𝑀 = 𝜖−1 𝑀 , where 

𝑀 =  (1) , which means that the viscosity of fluid-I is much smaller than 

that of fluid-II. We show that the first order terms when M → ∞, up- 

scaling the equations in Section 4.2 will only include the fluid-II flow 

whereas the fluid-I flow component is vanishing, reducing the model to 

the unsaturated flow in Section 4.3 . In this respect we first show that the 

pressure becomes constant (and set as reference value to 0) for fluid-I. 

Now, considering 𝑀 = 𝜖−1 𝑀 with 𝑀 =  (1) in (47) and (48) , for all 

t > 0 one has 

𝜕 𝑥 𝑝 𝐼, 0 + 𝜖 𝜕 𝑥 𝑝 𝐼, 1 − 

𝜖
𝑀 

𝜕 𝑦𝑦 𝑞 
(1) 
𝐼, 0 +  ( 𝜖2 ) = 0 , in Ω𝜖𝐼 ( 𝑡 ) , (67) 

1 
𝜖
𝜕 𝑦 𝑝 𝐼, 0 + 𝜕 𝑦 𝑝 𝐼, 1 +  ( 𝜖) = 0 , in Ω𝜖𝐼 ( 𝑡 ) . (68) 

The lowest order terms in (67) and (68) give 

𝜕 𝑥 𝑝 𝐼, 0 = 0 , and 𝜕 𝑦 𝑝 𝐼, 0 = 0 , in Ω𝜖𝐼 ( 𝑡 ) . 

Hence p I ,0 is constant in space. We assume it constant in time as well 

and set this value as a reference zero pressure, implying 

𝑝 𝐼, 0 = 0 , in Ω𝜖𝐼 ( 𝑡 ) . 

Considering the surface tension constant in (44) and 𝑀 = 𝜖−1 𝑀 , where 

𝑀 =  (1) , give 

− 

1 
𝜖
𝜕 𝑦 𝑞 

(1) 
𝐼 𝐼 , 0 − 𝜕 𝑦 𝑞 

(1) 
𝐼 𝐼 , 1 + 

1 
𝑀 

𝜕 𝑦 𝑞 
(1) 
𝐼, 0 +  ( 𝜖) = 0 , at Γ𝜖𝑓𝑓 ( 𝑡 ) . 

The 𝜖−1 order term in the above equation gives 

𝜕 𝑦 𝑞 
(1) 
𝐼 𝐼 , 0 = 0 , at Γ𝜖𝑓𝑓 ( 𝑡 ) . (69) 

To find the effective velocity for fluid-II we use (69) instead of (45) when 

integrating (42) in y . Recalling that 𝛾 is constant and p I ,0 is zero for fluid- 

I, we follow the same steps as in Section 4.1.3 , which results in 

𝑞 (1) 𝐼 𝐼 , 0 = 𝜕 𝑥 𝑝 𝐼, 0 

( 

𝑦 2 

2 
+ (1 − 𝑑 0 ) 𝑦 + 

( 1 
2 
− 𝑑 0 

)) 

, in Ω𝜖𝐼𝐼 ( 𝑡 ) . (70) 

Integrating (70) and using (36) gives the Darcy law 

𝑞 (1) 𝐼 𝐼 , 0 = − 

𝑑 3 0 
3 
𝜕 𝑥 𝑝 𝐼 𝐼 , 0 , for all 0 < 𝑥 < 1 and 𝑡 > 0 . (71) 

To find the pressure equation for fluid-II, we take 𝑀 = 𝜖−1 𝑀 in 

Section 4.1.4 and we use the fact that the pressure for fluid-I is zero. 

Then the capillary pressure relation in (57) (for 𝛽 < 3) changes into 

𝑝 𝐼 𝐼 , 0 = 0 , for all 0 < 𝑥 < 1 and 𝑡 > 0 . (72) 

Remark 2. Since 𝑝 𝐼 𝐼 , 0 = 0 in (72) , the same holds for 𝑞 (1) 𝐼 𝐼 , 0 in (71) and 

therefore the saturation is constant in space and time. This is a trivial 

situation corresponding to steady state. 

Similarly, if 𝛽 = 3 , (66) becomes 

𝑝 𝐼 𝐼 , 0 = − 

𝜕 𝑥𝑥 𝑑 0 
Ca 

, for all 0 < 𝑥 < 1 and 𝑡 > 0 . (73) 

Note that fluid-I plays no role in the upscaled equations, which now re- 

duces to the equations for fluid-II. Specially, the upscaled model consists 

of the mass conservation equation (37) , the effective velocity (71) and 

the pressure equation (72) (for 𝛽 < 3), respectively by (73) (for 𝛽 = 3 ). 
Hence, in the limit when M → ∞, only the flow of one phase is ac- 

counted for the lowest order and the upscaled model for two-phase flow 

reduces to the upscaled model for the unsaturated flow, as derived in 

Section 4.3 . 

4.3. Unsaturated flow with constant surface tension 

We here now turn our attention to the model in Section 3.3 . 

4.3.1. Mass conservation 

The derivation of the mass conservation equation in this section is 

identical to the one in Section 4.1.1 . The mass conservation equation for 

the unsaturated flow model with constant surface tension is the same as 

(37) . 

4.3.2. Momentum conservation 

We apply the asymptotic expansion (30) in the boundary condition 

(29) and recall that 𝑞 (2) 𝐼 𝐼 , 0 = 0 at Γ𝜖𝑓𝑓 ( 𝑡 ) , instead of (44) , the boundary 

condition for unsaturated flow at Γ𝜖𝑓𝑓 ( 𝑡 ) reduces to 

− 

1 
𝜖
𝜕 𝑦 𝑞 

(1) 
𝐼 𝐼 , 0 − 𝜕 𝑦 𝑞 

(1) 
𝐼 𝐼 , 1 +  ( 𝜖) = 0 . (74) 

The 𝜖−1 order gives 

𝜕 𝑦 𝑞 
(1) 
𝐼 𝐼 , 0 = 0 , at Γ𝜖𝑓𝑓 ( 𝑡 ) , 

which is same as in (69) . To find the effective velocity for fluid-II, we 

follow then the same steps as in Section 4.2.4 , which results in (71) , the 

same effective law for fluid-II as in Section 4.2.4 . 

4.3.3. Effects of Ca 

In the unsaturated flow case, we disregard fluid-I in (56) , which leads 

to 

− 

1 
𝜖2 
𝑝 𝜖𝐼𝐼 + 

2 
𝜖
𝜕 𝑦 𝑞 

𝜖( 2 ) 
𝐼𝐼 − ( 𝜕 𝑥 𝑑 𝜖) 2 𝑝 𝜖𝐼𝐼 + 2 𝜕 𝑥 𝑑 𝜖 𝜕 𝑦 𝑞 𝜖

( 1 ) 
𝐼𝐼 − 2 𝜖 𝜕 𝑥 𝑑 𝜖 𝜕 𝑥 𝑞 𝜖

( 2 ) 
𝐼𝐼 

− 

𝜖 𝛾( 𝑐 𝜖) 𝜕 𝑥𝑥 𝑑 𝜖

Ca 
+  ( 𝜖3 ) = 0 , at Γ𝜖𝑓𝑓 ( 𝑡 ) . 

Applying (30) in the above equation and recalling 𝑞 (1) 𝐼 𝐼 , 0 = 0 at Γ𝜖𝑓𝑓 ( 𝑡 ) , we 

find the same capillary pressure relations as in Section 4.2.4 . In partic- 

ular, for 𝛽 < 3, we get (72) and in this case the upscaled model is trivial 

(see Remark 2 ). The case Ca = 𝜖3 Ca is more interesting as it gives the 

pressure relation (73) . The upscaled model in this case is then repre- 

sented by (35), (71) and (73) . 

5. Summary and discussion of upscaled models 

We recall that in the upscaled models the width of the wetting fluid 

(fluid-II) d 0 can be seen as its saturation and therefore the saturation of 

the non-wetting fluid (fluid-I) is (1 − 𝑑 0 ) . The effective equations on the 

Darcy scale are now summarized and discussed in the sections below. 

These models are obtained in the limit situation when 𝜖→ 0. Practically, 

one has 𝜖 small but not zero. Therefore the upscaled models should be 

seen as an approximation of the pore-scale models, having a much sim- 

pler structure. 

Assuming Ca = 𝜖𝛽 Ca , we have considered several regimes identified 

by the value of 𝛽, and derived different upscaled models. Table 2 is 

summarising these results, for 𝛽 = 1 the Marangoni effects are relevant, 

and for 𝛽 < 3 the phase pressures are equal but for 𝛽 = 3 the difference 

of the phase pressures depends on the second order derivative of the 

saturation. 

Table 2 

Summary of the upscaled models obtained for 

different values of 𝛽 in the capillary number 

Ca = 𝜖𝛽 Ca . 

𝛽 Marangoni effect 𝑝 𝐼, 0 − 𝑝 𝐼 𝐼 , 0 

0 not present constant 

1 present constant 

2 – constant 

3 – curvature dependent 
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5.1. Two-phase flow with solute-dependent surface tension 

If Ca =  (1) , then for all 0 < x < 1 and t > 0, the upscaled model for 

the pore-scale model (15) - (25) becomes 

𝜕 𝑡 𝑑 0 = 𝜕 𝑥 ̄𝑞 
(1) 
𝐼, 0 , 

𝜕 𝑡 𝑑 0 = − 𝜕 𝑥 ̄𝑞 
(1) 
𝐼 𝐼 , 0 , 

𝑞 (1) 𝐼, 0 = − 

( 

𝑀(1 − 𝑑 0 ) 3 

3 
+ 

𝑑 0 (1 − 𝑑 0 ) (2 − 𝑑 0 ) 
2 

) 

𝜕 𝑥 𝑝 0 , 

𝑞 (1) 𝐼 𝐼 , 0 = − 

𝑑 2 0 (3 − 𝑑 0 ) 
6 

𝜕 𝑥 𝑝 0 , 

𝜕 𝑡 
(
𝑐 0 𝑑 0 

)
= − 𝜕 𝑥 

(
𝑐 0 𝑞 

(1) 
𝐼 𝐼 , 0 

)
+ 𝜕 𝑥 ( 𝐷 𝑑 0 𝜕 𝑥 𝑐 0 ) . 

(75) 

If Ca = 𝜖 Ca , then for all 0 < x < 1 and t > 0, the upscaled counterpart 

of the pore-scale model in Section 2.5 becomes 

𝜕 𝑡 𝑑 0 = 𝜕 𝑥 ̄𝑞 
(1) 
𝐼, 0 , 

𝜕 𝑡 𝑑 0 = − 𝜕 𝑥 ̄𝑞 
(1) 
𝐼 𝐼 , 0 , 

𝑞 (1) 𝐼, 0 = − 

( 

𝑀(1 − 𝑑 0 ) 3 

3 
+ 

𝑑 0 (1 − 𝑑 0 ) (2 − 𝑑 0 ) 
2 

) 

𝜕 𝑥 𝑝 0 + 

(1 − 𝑑 0 ) 𝑑 0 
Ca 

𝜕 𝑥 𝛾( 𝑐 0 ) , 

𝑞 (1) 𝐼 𝐼 , 0 = − 

𝑑 2 0 (3 − 𝑑 0 ) 
6 

𝜕 𝑥 𝑝 0 + 

𝑑 2 0 
2 Ca 

𝜕 𝑥 𝛾( 𝑐 0 ) , 

𝜕 𝑡 
(
𝑐 0 𝑑 0 

)
= − 𝜕 𝑥 

(
𝑐 0 𝑞 

(1) 
𝐼 𝐼 , 0 

)
+ 𝜕 𝑥 ( 𝐷 𝑑 0 𝜕 𝑥 𝑐 0 ) . 

(76) 

The upscaled models in (75) and (76) have a common structure. They 

include the mass balance for both fluid phases and the Darcy laws for 

the two fluid velocities. Finally, the last equation gives the mass balance 

for the solute. 

One can recognize the effective velocities in (75) and (76) as Darcy- 

type laws for the two fluid phases. Since d 0 , respectively (1 − 𝑑 0 ) are 

the saturation of the two fluids, the factors multiplying the pressure 

gradients in these equations can be viewed as relative permeabilities of 

the two fluids. Compared to the effective velocities in (75) , the influence 

of the surface tension gradient, namely the Marangoni effect, is visible 

in the effective velocities in (76) . 

The upscaled models in (75) and (76) are valid for the regimes where 

the capillary number is either moderate or large, which corresponds to 

very small surface tension. Hence the two phase pressures are equal, 

or, equivalently the capillary pressure is zero, as commonly assumed in 

petroleum reservoir simulation models Aziz and Settari (1979) . 

5.2. Two-phase flow with constant surface tension 

If solute is not present in the fluid-II phase, the surface tension co- 

efficient is constant. In this case the mass balance for solute is left out. 

Also, no Marangoni effect is encountered, which simplifies the models. 

Specifically, assuming Ca = 𝜖𝛽 Ca for Ca =  (1) and 𝛽 < 3, the upscaled 

counterpart of the pore-scale model in Section 2.6 is 

𝜕 𝑡 𝑑 0 = 𝜕 𝑥 ̄𝑞 
(1) 
𝐼, 0 , 

𝜕 𝑡 𝑑 0 = − 𝜕 𝑥 ̄𝑞 
(1) 
𝐼 𝐼 , 0 , 

𝑞 (1) 𝐼, 0 = − 

( 

𝑀(1 − 𝑑 0 ) 3 

3 
+ 

𝑑 0 (1 − 𝑑 0 ) (2 − 𝑑 0 ) 
2 

) 

𝜕 𝑥 𝑝 0 , 

𝑞 (1) 𝐼 𝐼 , 0 = − 

𝑑 2 0 (3 − 𝑑 0 ) 
6 

𝜕 𝑥 𝑝 0 , 

(77) 

for all 0 < x < 1 and t > 0. Here the upscaled model is valid in the flow 

regimes where the capillary number is moderate or large, which again 

implies that the pressures for the two fluid phases are same. Assuming, 

Ca = 𝜖3 Ca with Ca =  (1) , the upscaled model becomes 

𝜕 𝑡 𝑑 0 = 𝜕 𝑥 ̄𝑞 
(1) 
𝐼, 0 , 

𝜕 𝑡 𝑑 0 = − 𝜕 𝑥 ̄𝑞 
(1) 
𝐼 𝐼 , 0 , 

𝑞 (1) 𝐼, 0 = − 

[ 
𝑀 (1 − 𝑑 0 ) 3 

3 
+ 𝑑 0 (1 − 𝑑 0 ) 2 

] 
𝜕 𝑥 𝑝 𝐼, 0 − 

(1 − 𝑑 0 ) 𝑑 2 0 
2 

𝜕 𝑥 𝑝 𝐼 𝐼 , 0 , 

𝑞 (1) 𝐼 𝐼 , 0 = − 

𝑑 3 0 
3 
𝜕 𝑥 𝑝 𝐼 𝐼 , 0 − 

(1 − 𝑑 0 ) 𝑑 2 0 
2 

𝜕 𝑥 𝑝 𝐼, 0 , 

𝑝 𝐼, 0 − 𝑝 𝐼 𝐼 , 0 = 

𝜕 𝑥𝑥 𝑑 0 
Ca 

, 

(78) 

for all 0 < x < 1 and t > 0. One can recognize the effective velocities 

in (77) and (78) as Darcy-type laws for the two fluid phases. Note that 

the effective velocities are depending on both pressure gradients from 

the two fluid phase. A similar case as considered here was also upscaled 

in Picchi and Battiato (2018) . As Picchi and Battiato (2018) considered 

steady-state flow, the phase pressure difference there is different from 

what we obtained here. 

Observe that compared to traditional two-phase flow models, in 

which the capillary pressure is a function of the saturation, here this 

involves second order derivative of the saturation. Here we emphasize 

the differences between the regimes 𝛽 < 3 and 𝛽 = 3 in the capillary 

pressure relation in (77) and (78) . In the former, the pressures for both 

fluids are equal, which is similar to saying that the capillary pressure is 

zero. In the later case, one gets a model in which the commonly used 

pressure-saturation relation is replaced by a differential equation. Such a 

model is also derived in Mikeli ć (2003) and Mikelic and Paoli (2000) by 

homogenization techniques. Also, if the upscaled model derived here 

is reduced to a system of two equations, the capillary pressure rela- 

tion in (78) would lead to a fourth order derivative term which is sim- 

ilar to the ones accounting for surface tension effects, as proposed in 

Huppert (1982) for the case of a thin fluid film flowing down a plane, 

and in Cueto-Felgueroso and Juanes (2008, 2009) for unsaturated, one- 

phase flow. However, when compared to Cueto-Felgueroso and Juanes 

(2008, 2009) , here a nonlinear, algebraic function of the saturation is 

absent in the equation for the capillary pressure. This is due to the 

simple setting adopted here. On the other hand, as in Mikeli ć (2003) ; 

Mikelic and Paoli (2000) the models are derived by upscaling, whereas 

in Cueto-Felgueroso and Juanes (2008, 2009) they are formulated di- 

rectly as upscaled models. One can explain the different results in the 

two ( 𝛽 depending) regimes starting by observing that 𝛾 is the reciprocal 

of Ca. Hence, in the first regime 𝛾 is much smaller than in the second 

one. As in the Young-Laplace equation, the pressure difference is pro- 

portional to 𝛾. Whenever this is small, in the upscaled limit one obtains 

that the two pressure are equal. 

5.3. Unsaturated flow with constant surface tension 

Continuing in the same spirit as before, for the unsaturated case with 

constant surface tension in Section 2.7 , the upscaled models are sim- 

plified. More precisely, assuming Ca = 𝜖𝛽 Ca with Ca =  (1) , for 𝛽 < 3 
the upscaled fluid-II pressure becomes zero (as the one for fluid-I) and 

therefore the flow is vanishing as well. In this case, the saturation be- 

comes constant in both space and time, which is actually steady state. 

In this case the upscaled model is trivial. For 𝛽 = 3 , the upscaled model 

becomes 

𝜕 𝑡 𝑑 0 + 𝜕 𝑥 ̄𝑞 
(1) 
𝐼 𝐼 , 0 = 0 , 

𝑞 (1) 𝐼 𝐼 , 0 + 

𝑑 3 0 
3 
𝜕 𝑥 𝑝 𝐼 𝐼 , 0 = 0 , 

𝑝 𝐼 𝐼 , 0 = − 

𝜕 𝑥𝑥 𝑑 0 
Ca 

(79) 

for all 0 < x < 1 and t > 0. This can be expressed in terms of one primary 

variable, the water saturation d 0 . Specifically, for all 0 < x < 1 and t > 0, 

one has 

𝜕 𝑡 𝑑 0 + 𝜕 𝑥 

( 

𝑑 3 0 
3 
𝜕 𝑥𝑥𝑥 𝑑 0 

Ca 

) 

= 0 , (80) 
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This equation resembles the thin-film lubrication approximation 

Oron et al. (1997) . 

Similar to (78) , the upscaled model in (79) is a non-standard model 

in the sense that the capillary pressure relation is given by the second 

derivative of the effective saturation. Also, for a large viscosity ratio, the 

pore-scale model for the two-phase flow in Section 3.2 reduces to the 

upscaled models in (79) . 

Remark 3. The Marangoni effect is only visible for the upscaled model 

(76) . For (75) , the Marangoni effect is lost and one immediately sees 

that (76) is equivalent to (75) for a constant surface tension. Addition- 

ally (76) is equivalent to (77) for a constant concentration and surface 

tension. Hence, for the numerical validation in Section 6 , we will only 

consider the three upscaled models (76), (78) and (79) , as these three 

models represent the different effective behaviours we have considered. 

6. Model validation 

In this section the upscaled models are validated by numerical ex- 

periments. Specifically, the full solutions (e.g. 𝑝 𝜖𝛼 , 𝐪 
𝜖
𝛼 , 𝑐 

𝜖 , 𝑑 𝜖) of the two- 

dimensional pore-scale models, computed for pores having different 

width/length ratios (e.g. 𝜖 = 0 . 1 , 0 . 07 , 0 . 05 , 0 . 01 ), and for different cap- 

illary numbers (Ca = 𝜖𝛽 Ca with Ca =  (1) , for 𝛽 = 1 , 3 ), are averaged in 

the transversal direction and compared to the approximate upscaled so- 

lutions (e.g. p 𝛼,0 , q 𝛼,0 , c 0 , d 0 ). 

To compute the full solutions of the pore-scale models, we use COM- 

SOL Multiphysics COM . For the simulations of the upscaled models, 

we use a simple finite difference scheme on an equidistant mesh, im- 

plemented in MATLAB. First and second order central differences are 

used for the space discretization. For the time discretization, an explicit 

method with fixed time-step size is used for (76) , while for (78) and (79) , 

an implicit method with fixed time-step size is used. We use harmonic 

averages for the relative permeabilities in the effective flow equations. 

For the advective flux in (76) we use an upwind approximation. We 

employ Newton’s method for solving the resulting non-linear system of 

equations. 

We specify the pore geometry as in 13 and 14 . For 13 , we define the 

inflow and outflow boundaries as 

Γ𝜖𝐼,𝑖𝑛 ( 𝑡 ) ∶= {( 𝑥, 𝑦 ) ∈ ℝ 

2 |𝑥 = 0 , −1 + 𝑑 𝜖(0 , 𝑡 ) < 𝑦 < 0} , 

Γ𝜖𝐼,𝑜𝑢𝑡 ( 𝑡 ) ∶= {( 𝑥, 𝑦 ) ∈ ℝ 

2 |𝑥 = 1 , −1 + 𝑑 𝜖(1 , 𝑡 ) < 𝑦 < 0} . 

For 14 , the inflow and outflow boundaries are given by 

Γ𝜖𝐼 𝐼 ,𝑖𝑛 ( 𝑡 ) ∶= {( 𝑥, 𝑦 ) ∈ ℝ 

2 |𝑥 = 0 , −1 < 𝑦 < − 𝑙 + 𝑑 𝜖(0 , 𝑡 )} , 

Γ𝜖𝐼 𝐼 ,𝑜𝑢𝑡 ( 𝑡 ) ∶= {( 𝑥, 𝑦 ) ∈ ℝ 

2 |𝑥 = 1 , −1 < 𝑦 < −1 + 𝑑 𝜖(1 , 𝑡 ))} . 

In the following, all the presented numerical results are non- 

dimensional. 

6.1. Two-phase flow with solute-dependent surface tension 

Here we consider a numerical example of the pore-scale model in 

Section 3.1 where the regime is Ca = 𝜖 Ca with Ca = 1 . At the fluid-fluid 

interface, the surface tension coefficient is chosen as (2) with 𝑎 = 1 and 

𝑏 = 1 , to include the Marangoni effect. The diffusion coefficient is chosen 

as 𝐷 = 1 and the viscosity ratio as 𝑀 = 1 . The initial conditions are 

𝑑 𝜖( 𝑥, 𝑡 = 0) = 0 . 5 , at Γ𝜖𝑓𝑓 ( 𝑡 = 0) , 𝑐 𝜖( 𝑥, 𝑦, 𝑡 = 0) = 0 . 25 , in Ω𝜖𝐼𝐼 ( 𝑡 = 0) , 

𝐪 𝜖𝛼( 𝑥, 𝑦, 𝑡 = 0) = 𝟎 , in Ω𝜖𝛼( 𝑡 = 0) , 𝑝 𝜖𝛼( 𝑥, 𝑦, 𝑡 = 0) = 0 , in Ω𝜖𝛼( 𝑡 = 0) . 

The inflow and outflow boundary conditions are 

𝑝 𝜖𝛼 = 0 . 023 at Γ𝜖𝛼,𝑖𝑛 ( 𝑡 ) , and 𝑝 𝜖𝛼 = 0 at Γ𝜖𝛼,𝑜𝑢𝑡 ( 𝑡 ) , 

𝑐 𝜖 = 1 at Γ𝜖𝐼 𝐼 ,𝑖𝑛 ( 𝑡 ) , and 𝑐 𝜖 = 0 . 25 at Γ𝜖𝐼 𝐼 ,𝑜𝑢𝑡 ( 𝑡 ) . 

Compatible initial and boundary conditions are chosen by recalling the 

capillary pressure relation (57) . To solve the upscaled model (76) , the 

same initial and boundary conditions are chosen. We use homogeneous 

Neumann boundary conditions for d 0 at 𝑥 = 0 and 𝑥 = 1 . The models are 

solved for a total time of 𝑡 = 0 . 1 . 
In Fig. 3 , 4 , Fig. 5 , we have plotted the upscaled solutions of 

(76) together with the transversally averaged pore-scale solutions in 

Section 3.1 for four different 𝜖. For decreasing 𝜖, the averaged pore- 

scale solutions are converging to the upscaled solutions, which we also 

observe by calculating the 𝐿 2 − norm of the difference between the solu- 

tions in Table 3 . 

6.2. Two-phase flow with constant surface tension 

Here we consider a numerical example of the pore-scale model in 

Section 3.2 where the regime is Ca = 𝜖3 Ca with Ca = 1 . The viscosity 

ratio is chosen as 𝑀 = 1 . The initial conditions are 

𝑑 𝜖( 𝑥, 𝑡 = 0 ) = 0 . 5 − 1 . 2 𝑥 + 1 . 2 𝑥 2 , at Γ𝜖
ff
( 𝑡 = 0 ) , 

𝐪 𝜖𝛼( 𝑥, 𝑦, 𝑡 = 0 ) = 𝟎 , in Ω𝜖𝛼( 𝑡 = 0 ) , 𝑝 𝜖𝛼( 𝑥, 𝑦, 𝑡 = 0 ) = 0 , in Ω𝜖𝛼( 𝑡 = 0 ) . 

The inflow and outflow boundary conditions are 

𝑝 𝜖𝐼 = 0 . 023 , at Γ𝜖𝐼,𝑖𝑛 ( 𝑡 ) , and 𝑝 𝜖𝐼 = 0 at Γ𝜖𝐼,𝑜𝑢𝑡 ( 𝑡 ) , 

𝑝 𝜖𝐼𝐼 = −2 . 377 , at Γ𝜖𝐼 𝐼 ,𝑖𝑛 ( 𝑡 ) , and 𝑝 𝜖𝐼𝐼 = −2 . 4 , at Γ𝜖𝐼 𝐼 ,𝑜𝑢𝑡 ( 𝑡 ) . 

To avoid a non-smooth behaviour of the fluids, the values chosen above 

ensures that the initial and the boundary conditions are compatible. 

Moreover, the capillary pressure relation (66) is also satisfied for 𝑡 = 0 . 
To solve the upscaled model (78) , the same initial and boundary condi- 

tions are chosen. We use homogeneous Neumann boundary conditions 

for d 0 at 𝑥 = 0 and 𝑥 = 1 . The models are solved for a total time of 𝑡 = 1 . 
In Fig. 6 , 7 , Fig. 8 , we have plotted the upscaled solutions of (78) to- 

gether with the averaged pore-scale solutions in Section 3.2 for various 

Fig. 3. Comparison of the saturation (left) and the concentration (right) of the upscaled model with the transversally averaged solutions of the pore-scale model for 

different 𝜖 at 𝑡 = 0 . 1 . 
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Fig. 4. Comparison of the pressures of the wetting (left) and the non-wetting fluid (right) of the upscaled model with the transversally averaged solutions of the 

pore-scale model for different 𝜖 at 𝑡 = 0 . 1 . 

Fig. 5. Comparison of the fluxes of the wetting (left) and the non-wetting fluid (right) of the upscaled model with transversally averaged solutions of the pore-scale 

model for different 𝜖 at 𝑡 = 0 . 1 . 
Table 3 

𝐿 2 − norm of the difference between the upscaled quantities and the corresponding 

transversally averaged solutions of the pore-scale model for different 𝜖 at 𝑡 = 0 . 1 . 

𝜖 = 0 . 5 𝜖 = 0 . 3 𝜖 = 0 . 1 𝜖 = 0 . 01 

||𝑑 0 − 𝑑 𝜖 ||𝐿 2 (0 , 1) 6 . 7 ⋅ 10 −4 4 . 6 ⋅ 10 −4 2 . 3 ⋅ 10 −4 1 . 5 ⋅ 10 −4 
||𝑐 0 − 𝑐 𝜖 ||𝐿 2 (0 , 1) 2 . 5 ⋅ 10 −3 1 . 1 ⋅ 10 −3 7 . 8 ⋅ 10 −5 1 . 3 ⋅ 10 −4 
||𝑝 𝐼 𝐼 , 0 − 𝑝 𝜖𝐼𝐼 ||𝐿 2 (0 , 1) 4 . 2 ⋅ 10 −3 1 . 7 ⋅ 10 −3 1 . 7 ⋅ 10 −4 8 . 0 ⋅ 10 −5 
||𝑝 𝐼, 0 − 𝑝 𝜖𝐼 ||𝐿 2 (0 , 1) 4 . 8 ⋅ 10 −4 1 . 5 ⋅ 10 −4 1 . 1 ⋅ 10 −4 8 . 1 ⋅ 10 −5 

||𝑞 (1) 𝐼 𝐼 , 0 − 𝑞 
𝜖
𝐼𝐼 ||𝐿 2 (0 , 1) 2 . 0 ⋅ 10 −2 3 . 4 ⋅ 10 −3 4 . 5 ⋅ 10 −5 3 . 2 ⋅ 10 −5 

||𝑞 (1) 𝐼, 0 − 𝑞 
𝜖
𝐼 ||𝐿 2 (0 , 1) 4 . 7 ⋅ 10 −2 8 . 1 ⋅ 10 −3 4 . 5 ⋅ 10 −5 2 . 8 ⋅ 10 −5 

Table 4 

𝐿 2 − norm of the difference between the upscaled quantities and the corresponding 

transversally averaged solutions of the pore-scale model for different 𝜖 at 𝑡 = 1 . 

𝜖 = 0 . 5 𝜖 = 0 . 3 𝜖 = 0 . 1 𝜖 = 0 . 01 

||𝑑 0 − 𝑑 𝜖 ||𝐿 2 (0 , 1) 1 . 7 ⋅ 10 −2 2 . 2 ⋅ 10 −2 5 . 9 ⋅ 10 −3 2 . 2 ⋅ 10 −4 
||𝑝 𝐼 𝐼 , 0 − 𝑝 𝜖𝐼𝐼 ||𝐿 2 (0 , 1) 3 . 3 ⋅ 10 −1 3 . 3 ⋅ 10 −1 4 . 5 ⋅ 10 −2 9 . 2 ⋅ 10 −4 
||𝑝 𝐼, 0 − 𝑝 𝜖𝐼 ||𝐿 2 (0 , 1) 1 . 2 ⋅ 10 −1 1 . 9 ⋅ 10 −1 2 . 8 ⋅ 10 −2 1 . 6 ⋅ 10 −3 

||𝑞 (1) 𝐼 𝐼 , 0 − 𝑞 
𝜖
𝐼𝐼 ||𝐿 2 (0 , 1) 3 . 2 ⋅ 10 −2 2 . 7 ⋅ 10 −2 6 . 9 ⋅ 10 −3 6 . 4 ⋅ 10 −4 

||𝑞 (1) 𝐼, 0 − 𝑞 
𝜖
𝐼 ||𝐿 2 (0 , 1) 5 . 3 ⋅ 10 −2 4 . 0 ⋅ 10 −2 1 . 5 ⋅ 10 −2 4 . 0 ⋅ 10 −4 

𝜖 at 𝑡 = 1 . For decreasing 𝜖, the averaged pore-scale solutions are con- 

verging to the upscaled solutions, which we also see by calculating the 

𝐿 2 − norm of the difference between the solutions in Table 4 . 

6.3. Unsaturated flow with constant surface tension 

The numerical computations of the pore-scale model in 

Section 3.3 are considered for the regime in Ca = 𝜖3 Ca with Ca =  (1) . 

The initial conditions are 

𝑑 𝜖( 𝑥, 𝑡 = 0 ) = 0 . 5 at Γ𝜖
ff
( 𝑡 = 0 ) , 

𝐪 𝜖
II 
( 𝑥, 𝑦, 𝑡 = 0 ) = 𝟎 in Ω𝜖

II 
( 𝑡 = 0 ) , 𝑝 𝜖

II 
( 𝑥, 𝑦, 𝑡 = 0 ) = 0 in Ω𝜖

II 
( 𝑡 = 0 ) . 

The inflow and outflow boundary conditions are 

𝑝 𝜖𝐼𝐼 = 0 . 023 at Γ𝜖𝐼 𝐼 ,𝑖𝑛 ( 𝑡 ) and 𝑝 𝜖𝐼𝐼 = 0 at Γ𝜖𝐼 𝐼 ,𝑜𝑢𝑡 ( 𝑡 ) . 
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Table 5 

𝐿 2 − norm of the difference between the upscaled quantities and the corresponding 

transversally averaged solutions of the pore-scale model for different 𝜖 at 𝑡 = 1 . 

𝜖 = 0 . 5 𝜖 = 0 . 3 𝜖 = 0 . 1 𝜖 = 0 . 01 

||𝑑 0 − 𝑑 𝜖 ||𝐿 2 (0 , 1) 4 . 7 ⋅ 10 −3 3 . 4 ⋅ 10 −3 4 . 9 ⋅ 10 −4 4 . 1 ⋅ 10 −6 
||𝑝 𝐼 𝐼 , 0 − 𝑝 𝜖𝐼𝐼 ||𝐿 2 (0 , 1) 9 . 1 ⋅ 10 −3 6 . 1 ⋅ 10 −3 7 . 3 ⋅ 10 −4 1 . 9 ⋅ 10 −6 

||𝑞 (1) 𝐼 𝐼 , 0 − 𝑞 
𝜖
𝐼𝐼 ||𝐿 2 (0 , 1) 1 . 4 ⋅ 10 −3 1 . 0 ⋅ 10 −3 1 . 4 ⋅ 10 −4 4 . 4 ⋅ 10 −6 

Fig. 6. Comparison of the saturation of the wetting fluid of the upscaled model 

with transversally averaged solutions of the pore-scale model for different 𝜖 at 

𝑡 = 1 . 

The initial conditions and the boundary conditions are same as for the 

pore-scale model. We use homogeneous Neumann boundary conditions 

for d 0 at 𝑥 = 0 and 𝑥 = 1 . The models are solved for a total time of 𝑡 = 1 . 
In Fig. 9 and Fig. 10 , we have plotted the upscaled solutions of 

(79) together with the averaged pore-scale solutions in Section 3.3 for 

various 𝜖 at 𝑡 = 1 . For decreasing 𝜖, the averaged pore-scale solutions are 

converging to the upscaled solutions, which we also see by calculating 

the 𝐿 2 − norm of the difference between the solutions in Table 5 . 

7. Model comparison 

In Section 5 , we have summarized all the upscaled models derived 

for different capillary regimes. The goal of this section is to numerically 

compare the upscaled models valid in the same capillary regime. The 

upscaled model (76) includes the Marangoni effect which reduces to 

the upscaled model (77) of the two-phase flow model when the surface 

tension is constant or when the concentration of the solute is equally 

distributed. On the other hand when M → ∞ the upscaled model (78) of 

the two-phase flow reduces to the unsaturated flow upscaled model (79) . 

For this comparison we solve (78) for increasing values of M and then 

compare with (79) . 

7.1. Comparison of Marangoni flow and two-phase flow 

Here we compare between the upscaled models in (76) and 

(77) where the regime is Ca = 𝜖 Ca with Ca = 1 . The initial conditions 

are, for 0 < x < 1, 

𝑑 0 ( 𝑥, 0) = 0 . 5 , 𝑐 0 ( 𝑥, 0) = 0 . 50 , 

𝑞 (1) 𝛼, 0 ( 𝑥, 0) = 0 , 𝑝 𝛼, 0 ( 𝑥, 0) = 𝑝 0 ( 𝑥, 0) = 0 . 

The inflow and outflow boundary conditions for the pressures are 

𝑝 𝛼, 0 (0 , 𝑡 ) = 0 . 023 , and 𝑝 𝛼, 0 (1 , 𝑡 ) = 0 . 

Depending on the inflow boundary conditions for the concentration, we 

have tested three different cases to observe the Marangoni flow. Here 

the outflow boundary condition is set to the same value as the initial 

concentration. The three different cases are 

case(i): 𝑐 0 (0 , 𝑡 ) = 0 . 25 , and 𝑐 0 (1 , 𝑡 ) = 0 . 50 , 
case(ii): 𝑐 0 (0 , 𝑡 ) = 0 . 50 , and 𝑐 0 (1 , 𝑡 ) = 0 . 50 , 
case(iii): 𝑐 0 (0 , 𝑡 ) = 1 . 00 , and 𝑐 0 (1 , 𝑡 ) = 0 . 50 . 

At the fluid-fluid interface, the surface tension coefficient is chosen 

as (2) with 𝑎 = 1 and 𝑏 = 1 to include the Marangoni effect. The diffu- 

sion coefficient is chosen as 𝐷 = 1 and the viscosity ratio as 𝑀 = 1 . The 

models are solved for a total time of 𝑡 = 0 . 1 . 
We see in Fig. 11 that case(ii) corresponds to a constant concentra- 

tion and thus 𝜕 𝑥 𝛾( 𝑐 0 ) = 0 . We want to emphasize that this is equivalent to 

the case of solving the upscaled model (77) for the two-phase flow with 

constant surface tension. This case will hence not include Marangoni 

Fig. 7. Comparison of the pressures of the wetting (left) and the non-wetting fluid (right) of the upscaled model with transversally averaged solutions of the pore-scale 

model for different 𝜖 at 𝑡 = 1 . 
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Fig. 8. Comparison of the fluxes of the wetting (left) and the non-wetting fluid (right) of the upscaled model with transversally averaged solutions of the pore-scale 

model for different 𝜖 at 𝑡 = 1 . 

Fig. 9. Comparison of the saturation of the wetting fluid of the upscaled model 

with the transversally averaged solutions of the pore-scale model for different 𝜖
at time 𝑡 = 1 . 

effect. Due to the difference in inlet and outlet pressure, both fluid ve- 

locities are small but positive through the domain, accompanied by a 

linear pressure drop and a constant saturation as seen in Fig. 12 and 

Fig. 13 . 

For case(i) we see in Fig. 11 that this corresponds to 𝜕 x c 0 > 0, which 

implies 𝜕 x 𝛾( c 0 ) < 0. Oppositely, case(iii) corresponds to 𝜕 x 𝛾( c 0 ) > 0. The 

effect on the fluid velocities, pressures and saturations in Fig. 12 and 

Fig. 11. Comparison of the concentration of the upscaled model (76) for the 

Marangoni flow for different test cases at 𝑡 = 0 . 1 . 

Fig. 13 is evident. For case(i) we see how the negative surface tension 

gradient along the strip results in overall negative velocities of both flu- 

ids through the strip. This is as expected from the Darcy-type laws in 

(76) , and can be interpreted as the flow going towards the lower con- 

centration of solute and hence towards the region of larger surface ten- 

sion. In particular we see how the pressure distribution through the strip 

adjusts and hence is a convex function in case(i). Also, the saturation be- 

comes slightly decreased near the inlet, which is due to the difference in 

Fig. 10. Comparison of the pressure (left) and the flux (right) of the wetting fluid of the upscaled model with the transversally averaged solutions of the pore-scale 

model for different 𝜖 at time 𝑡 = 1 . 
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Fig. 12. Comparison of the fluxes of the non-wetting (left) and the wetting fluid (right) of the upscaled model (76) for the Marangoni flow for different test cases at 

𝑡 = 0 . 1 . 

Fig. 13. Comparison of the pressure (left) and the saturation (right) of the upscaled model (76) for the Marangoni flow for different test cases at 𝑡 = 0 . 1 . 

response of the two fluid velocities. The opposite behaviour is seen for 

case(iii). Here the negative solute concentration gradient, correspond- 

ing to a positive surface tension gradient, gives an increased flow in 

the positive direction through the strip. The pressure becomes concave, 

while the saturation near the inlet is seen to increase slightly due to the 

difference in fluid velocity. 

This simple test case shows how the Marangoni effect can alter the 

flow and mass transfer through a pore due to processes at the fluid-fluid 

interface. We see how the flow is adjusted to be towards the region of 

larger surface tension, as is expected for Marangoni flow. 

7.2. Comparison of two-phase flow and unsaturated flow 

Here we compare between the upscaled models in (78) and 

(79) where the regime is Ca = 𝜖3 Ca with Ca = 1 . The viscosity ratio 

is chosen as 𝑀 = 1 , 𝑀 = 5 , 𝑀 = 10 and 𝑀 = 15 in (78) and compared 

to (79) which corresponds to letting M → ∞. The initial conditions are, 

for 0 < x < 1 

𝑑 0 ( 𝑥, 0) = 0 . 5 − 1 . 2 𝑥 + 1 . 2 𝑥 2 , 𝑞 (1) 𝛼, 0 ( 𝑥, 0) = 0 , 𝑝 𝛼, 0 ( 𝑥, 0) = 0 . 

The inflow and outflow boundary conditions are 

𝑝 𝐼, 0 (0 , 𝑡 ) = 0 . 023 , and 𝑝 𝐼, 0 (1 , 𝑡 ) = 0 , 
𝑝 𝐼 𝐼 , 0 (0 , 𝑡 ) = −2 . 377 , and 𝑝 𝐼 𝐼 , 0 (1 , 𝑡 ) = −2 . 4 . 

The models are solved for a total time of 𝑡 = 1 . 
Fig. 14 and Fig. 15 show that the upscaled wetting phase quantities 

in the two-phase flow model are approaching the corresponding one in 

the unsaturated flow model as the viscosity ratio is increasing. This is 

confirmed in Table 6 , presenting the 𝐿 2 − norm of the difference between 

Fig. 14. Comparison of the saturation of the wetting fluid of the upscaled mod- 

els at 𝑡 = 1 . 

the wetting phase quantities in the two-phase flow model and the cor- 

responding ones for the unsaturated flow, for different values of M at 

𝑡 = 1 . Observe that the differences become smaller for larger viscosity 

ratios. We see that the behaviour of the wetting fluid is well approxi- 

mated by the simpler unsaturated-flow model when the viscosity ratio 

increases. Hence, if the velocity and saturation of the wetting fluid is of 

main interest, one could use the unsaturated-flow model instead of the 

two-phase flow model already for relatively moderate viscosity ratios. 
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Fig. 15. Comparison of the pressure (left) and the flux (right) of the wetting fluid of the upscaled models at 𝑡 = 1 . 

Table 6 

𝐿 2 − norm of the difference between the wetting phase quantities in the two-phase flow 

model and the corresponding ones for the unsaturated flow, for different values of M at 

𝑡 = 1 . 

𝑀 = 1 𝑀 = 5 𝑀 = 10 𝑀 = 15 

||𝑑 𝑈 0 − 𝑑 𝑀 0 ||𝐿 2 (0 , 1) 1 . 8 ⋅ 10 −2 5 . 1 ⋅ 10 −3 2 . 7 ⋅ 10 −3 1 . 8 ⋅ 10 −3 
||𝑝 𝑈 𝐼 𝐼 , 0 − 𝑝 𝑀 𝐼 𝐼 , 0 ||𝐿 2 (0 , 1) 9 . 7 ⋅ 10 −2 1 . 7 ⋅ 10 −2 5 . 2 ⋅ 10 −3 4 . 6 ⋅ 10 −3 

||𝑞 (1) ,𝑈 𝐼 𝐼 , 0 − ̄𝑞 
(1) ,𝑀 
𝐼 𝐼 , 0 ||𝐿 2 (0 , 1) 1 . 3 ⋅ 10 −3 4 . 5 ⋅ 10 −4 4 . 3 ⋅ 10 −4 4 . 2 ⋅ 10 −4 

8. Conclusion 

We consider the flow of two immiscible and incompressible phases, 

respectively the unsaturated flow in a thin strip representing a porous 

medium. We account for the possible dependence of the surface tension 

on the solute transported by the wetting fluid. For the two-phase flow 

(the unsaturated, one-phase flow being similar) the starting point is the 

model at the pore scale, where the two fluids are separated by an in- 

terface having an a-priori unknown location but depending on the fluid 

velocities. The flow is described by the Navier-Stokes equations and the 

solute transport by the advection-diffusion equation. At the interface 

separating the two fluids, relevant interface conditions are imposed. In 

particular, the difference in the normal stress tensors depend on the sur- 

face tension, which may change depending on the solute. Considering a 

simplified situation, namely a thin strip representing a single pore, we 

have derived upscaled one-dimensional models describing the averaged 

behaviour of the system for different capillary regimes. We have vali- 

dated our theoretical results with numerical experiments and we then 

compared the behaviour of the upscaled models. In doing so, different 

situations are considered, in which the capillary number and the vis- 

cosity ratio have a certain behaviour w.r.t. the ratio of the pore width 

and length. In particular, we see that the solute-dependent surface ten- 

sion (the Marangoni effect) is relevant for the upscaled models only if 

the capillary number is small enough. In the case when the viscosity 

ratio becomes large, the two-phase flow model reduces to the unsatu- 

rated, one-phase model. One main conclusion is that for small capillary 

numbers instead of capillary pressure - saturation curve, we obtain capil- 

lary pressure - saturation dependency involving the second order deriva- 

tive of the saturation, as also proposed in Cueto-Felgueroso and Juanes 

(2008, 2009) ; Mikeli ć (2003) ; Mikelic and Paoli (2000) . Based on the 

numerical results, we emphasize that the presence of solute-dependent 

surface tension can strongly influence the flow. 

Although considering a simple geometry, combining asymptotic ex- 

pansions with various scaling of the non-dimensional parameters show 

which processes are important at the larger scale and which can be ne- 

glected. The upscaling procedure also shows how the capillary pressure 

depends on the saturation when the capillary pressure should be ac- 

counted for. Allowing for other types of fluid displacement, such as a 

fluid-fluid-solid contact point, and more general geometries open for 

also other types of upscaled models. 
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Abstract
We consider a model for the flow of two immiscible flu-
ids in a two-dimensional thin strip of varying width.
This represents an idealization of a pore in a porous
medium. The interface separating the fluids forms a
freely moving interface in contact with the wall and
is driven by the fluid flow and surface tension. The
contact-line model incorporates Navier-slip boundary
conditions and a dynamic and possibly hysteretic con-
tact angle law. We assume a scale separation between
the typical width and the length of the thin strip. Based
on asymptotic expansions, we derive effectivemodels for
the two-phase flow. These models form a system of dif-
ferential algebraic equations for the interface position
and the total flux. The result is Darcy-type equations for
the flow, combined with a capillary pressure–saturation
relationship involving dynamic effects. Finally, we pro-
vide some numerical examples to show the effect of
a varying wall width, of the viscosity ratio, of the slip
boundary condition as well as of having a dynamic con-
tact angle law.
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1 INTRODUCTION

Many industrial and environmental processes, such as oil recovery, geological CO2 sequestration,
or groundwater pollution, strongly depend on the flow in the respective porous medium. In all
these applications, it is necessary to describe the flow of all involved fluid phases at a macroscopic
scale to allow for efficient simulations in large domains. In particular, the complex pore structure
and the exact distribution of fluids are simplified into a representation by averaged quantities
such as the porosity and saturation. The relations between these macroscopic quantities must
be expressed with the help of effective parameters, which should combine all pore-scale effects.
However, in many state-of-the-art models these parameters are postulated and not derived from
a pore-scale model.
One of the earliest models for themacroscale flow in a porousmediumwas proposed by Darcy.1

Based on column experiments for fully saturated, single-phase flow in a porous medium, a pro-
portionality between the pressure gradient and the velocity was observed, involving themedium’s
permeability as proportionality factor. Subsequently, further experiments by Richards2 and by
Morrow and Harris3 extended the theory to unsaturated and two-phase flow in porous media,
respectively. The resulting flowmodels still includeDarcy’s law, with a then saturation-dependent
permeability. However, they additionally involved the phase-pressure difference, also known as
the capillary pressure, which appears due to surface tension between the phases.
Based on experiments at equilibrium conditions, nonlinear, but monotonic capillary pressure–

saturation functions have been used for decades. However, already Morrow and Harris3 showed
that this relation also depends on the process—imbibition or drainage. Besides this hysteresis, fur-
ther dynamic effects were reported in many experiments,4–8 leading to a variety of nonmonotonic
curves which cannot be combined into a simple capillary pressure–saturation function.
To overcome the mismatch between the experimental results and the mathematical models,

several extensions of the capillary pressure–saturation relation have been proposed. Typically,
dynamic effects and hysteresis are directly expressed in terms of spatial or temporal derivatives
of the saturation leading to different capillary pressure models, for example, Refs. 9–12; for an
overview, see Ref. 13. Alternatively, the interfacial area was introduced as an additional state vari-
able leading to a capillary pressure–saturation-interfacial area relationship that implicitly models
the dynamic and hysteretic effects via the change in interfacial area.14,15 Other hysteresis mod-
els are based on the concept of percolating/nonpercolating phases.16–18 These extended models
are able to reproduce nonmonotonic phenomena such as saturation overshoot and fingering as
shown in Refs. 19–21 by qualitative analysis using a traveling wave approach and in Refs. 22–27 by
numerical simulations.
However, all models discussed above are considering the so-called Darcy scale, and thus

describe the average behavior of the liquid phases disregarding the detailed pore structure and
processes at the pore scale. It is crucial to understand the dependence of the effective parameters
on the underlying pore structure. At the pore scale, the mathematical model can incorporate the
detailed physical processes, but it is posed in the entire pore space, which is extremely complex,
and needs to account for all interfaces between phases. Resolving the whole complicated pore
space of realistic scenarios in direct numerical simulations is infeasible, so that further simplifi-
cations are necessary to link the properties of the different scales.
To approach this task, there exist a large variety of analytical upscaling techniques, see Ref. 28

for an overview. The volume averaging method has been used to derive effective equations for
quantities at the level of a representative elementary volume, while restricting the form of con-
stitutive equations using the second law of thermodynamics at the Darcy scale. This method has
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been successfully applied to single-phase and two-phase flow in porousmedia inRefs. 29–31.How-
ever, the technique does only provide explicit expressions for the effective parameters in the con-
stitutive equations via closure problems, when additional assumptions are made. Alternatively,
the homogenization method is a (matched) asymptotic expansion approach for typically periodic
systems, where there is a clear scale separation. The idea is to approximate the problem involving
a small parameter 𝜀 (e.g., the ratio of an average pore diameter to a Darcy-scale length) by the limit
problem and its solution as 𝜀 → 0. For an introduction to this method, wemention Ref. 32 and the
references therein.Many results for flow in porousmedia have been obtained by homogenization,
see, for example, Refs. 33–39 leading either to explicit expressions or to so-called cell problems for
the effective parameters. In both cases, knowledge of the underlying pore structure allows for the
explicit computation of the effective parameters. Therefore, we apply the homogenizationmethod
to explicitly derive effective relations.
Here we consider a simplified geometry, namely, the flow through a single, long, and thin pore

as a representative for the porous medium. Despite the very simplistic representation, the upscal-
ing of thin-strip models typically leads to Darcy-scale models with the same structure as well-
recognized Darcy-scale models in general porous media (see, e.g., Refs. 37–40). In addition, using
a single pore allows for the explicit derivation of closed-form expressions for the upscaled quan-
tities. We assume that the pore is filled by two incompressible and immiscible fluid phases. The
interface separating the two fluids is traversal to the flow direction. Themathematical model con-
sists of conservation laws for mass and momentum in time-dependent domains representing the
fluids. Assuming a horizontal setting, we disregard gravity effects. The evolution of the interface
separating the domains is not known a priori, but depends on the velocities of the fluids and on
the surface tension between the fluids. Hence, the development of the boundary of the domains
must be accounted for, and we have a free boundary problem.
While the fluid domains are assumed to be layered in Refs. 37–40, such that the fluid–fluid

interface does not come into contact with the solid wall, we here consider the case when the
interface is in contact with the pore walls. This requires a contact angle model, which is allowed
to be dynamic or even hysteretic. In particular, this also implies that each fluid is only present
either at the inlet or at the outlet. Note that the plug flow scenario considered in Ref. 40 has a
similar fluid distribution, but the authors assume a fixed interface shape and a residual thin film,
which yields dynamics that are very different from those generated by a variable interface with
moving contact line. Furthermore, we allow for a slowly varying solid wall instead of a constant-
width strip or tube used in Refs. 37–40.
Based on the discussed pore-scale model, we derive upscaled (Darcy-scale) models for two-

phase or unsaturated single-phase flow in a porous medium under reasonable assumptions on
the underlying physics. We follow the ideas in Refs. 37–39, where asymmetric expansions and
transversal averaging is applied to obtain a macroscale model based on the simple, layered pore.
We complement this with volume averages to account for the different geometry and fluid dis-
tribution. A similar strategy has been used to show that the upscaled models significantly differ
for different flow regimes assuming stationary fluid–fluid interface shapes in Ref. 40, and in Ref.
39 when assuming a layered, parallel flow regime. In general, the thin-strip approach allows the
derivation of explicit relations between the averaged quantities, while various additional features
and processes can be easily incorporated (see, e.g., Refs. 39, 41–43).
This paper is organized as follows. In Section 2, we formulate the mathematical model for two-

phase flow with evolving interface in a thin strip, which is then rescaled to obtain a nondimen-
sional formulation. Next, we formally derive in Section 3 the effectivemodels in the bulk domains
and close to the interfacewhen the ratio between thewidth and length of the thin strip approaches
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F IGURE 1 Sketch of the half thin strip Ω̂ filled by two fluids with interface Γ̂(𝑡) at time 𝑡
zero. These models form a system of differential algebraic equations for the interface position and
the total flux. Based on the derived models, we discuss averaged and effective quantities and their
relations in Section 4. In particular, there holds a Darcy-type equation for the flow and a capil-
lary pressure–saturation relationship involving dynamic effects. Finally, Section 5 provides some
numerical examples showing the behavior of the effective models for a constant as well as a vary-
ing wall width. The effect of the viscosity ratio, of the slip length, and of having a dynamic contact
angle law is discussed in detail.

2 MATHEMATICALMODEL

We consider a two-dimensional thin strip of length 𝐿 > 0, which is axisymmetric at Γ̂sym ∶=[0, 𝐿] × {0}. Let �̂� ∶ [0, 𝐿] → (0,∞) be a given smooth function (which is bounded away from
zero), that describes the wall Γ̂w ∶= {�̂� ∈ (0, 𝐿) × (0,∞) | �̂�2 = �̂�(�̂�1)}. Here and in the following,
the subscripts ⋅1 and ⋅2 denote the components of a vector. Then the domain of interest is Ω̂ ∶={�̂� ∈ (0, 𝐿) × (0,∞) | �̂�2 < �̂�(�̂�1)}. At each time 𝑡 ∈ [0,∞), the domain is partitioned into two sub-
domains Ω̂I(𝑡) and Ω̂II(𝑡), which represent the parts occupied by the two fluids; one at the inlet
boundary Γ̂in ∶= {0} × [0, �̂�(0)] and the other at the outflow boundary Γ̂out ∶= {𝐿} × [0, �̂�(𝐿)].
Figure 1 illustrates the geometry.
We consider the particular case when the two fluids are separated by an axisymmetric fluid–

fluid interface Γ̂(𝑡) ∶= 𝜕Ω̂I(𝑡) ∩ 𝜕Ω̂II(𝑡), which is in contact with the solid wall Γ̂w. This interface
has an a priori unknown location and shape, and therefore appears as a free boundary in the
mathematical model. It is parameterized by �̂� ∶ [0,∞) × [0, 1] → Ω̂, such that Γ̂(𝑡) = {�̂�(𝑡, 𝑠) | 𝑠 ∈[0, 1]}. The parameterization starts at the symmetry boundary and ends at the wall, that is,�̂�2(𝑡, 0) = 0, �̂�2(𝑡, 1) = �̂�(�̂�1(𝑡, 1)). (1)

The point �̂�∗(𝑡) ∶= �̂�(𝑡, 1) is the so-called contact point.
At all boundaries of Ω̂, the outward normal and tangential unit vectors are denoted 𝒏 and 𝒕

with an index specifying the part of the boundary, for example, 𝒏sym for the normal vector at the
symmetry boundary Γ̂sym. At the fluid–fluid interface Γ̂(𝑡), the normal unit vector pointing fromΩ̂I(𝑡) into Ω̂II(𝑡) is denoted by 𝒏Γ, while the tangential unit vector is 𝒕Γ. Therefore, these vectors
are given by

𝒕Γ = 𝜕𝑠�̂�
|𝜕𝑠�̂�| = 1√(𝜕𝑠�̂�1)2 + (𝜕𝑠�̂�2)2 𝜕𝑠�̂� 𝒏Γ = 𝜕𝑠𝒕Γ

|𝜕𝑠𝒕Γ| = 1√(𝜕𝑠�̂�1)2 + (𝜕𝑠�̂�2)2( 𝜕𝑠�̂�2−𝜕𝑠�̂�1),
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TABLE 1 Summary of all parameters (top), dimensionless numbers (center), and dimensional and
dimensionless quantities and their respective scaling (bottom)
Parameter Symbol Dim.-less Number Symbol Value
Length of the thin strip 𝐿 Scale ratio 𝜀 �̂�(0)∕𝐿
Characteristic velocity 𝑈 Density ratio R 𝜌II∕𝜌I
Density of fluid𝑚 𝜌𝑚 Viscosity ratio M 𝜇II∕𝜇I
Viscosity of fluid𝑚 𝜇𝑚 Reynolds number Re 𝜌I𝑈𝐿∕𝜇I
Surface tension coefficient 𝜎 Capillary number Ca 𝜇I𝑈∕𝜎

Eff. capillary number Ca Ca∕𝜀
Quantity Dimensional Dim.-less Scaling

Inner
expan-
sion Scaling

Position �̂� 𝒙 [𝐿, 𝜀𝐿] 𝑿 [𝜀𝐿, 𝜀𝐿]
Time 𝑡 𝑡 [𝐿∕𝑈] 𝑡 [𝐿∕𝑈]
Velocity of fluid𝑚 �̂�𝑚 𝒖𝑚 [𝑈] 𝑼𝑚 [𝑈]
Pressure of fluid𝑚 �̂�𝑚 𝑝𝑚 [𝜇I𝑈∕(𝜀2𝐿)] 𝑃𝑚 [𝜇I𝑈∕(𝜀2𝐿)]
Interface parameterization �̂� 𝜸 [𝐿, 𝜀𝐿] 𝒀 [𝜀𝐿, 𝜀𝐿]
Interface curvature �̂� 𝜅 [1∕𝐿] 𝐾 [1∕𝐿]
Slip length �̂� 𝜆 [𝜀𝐿] 𝜆 [𝜀𝐿]
Wall function (width) �̂� 𝑤 [𝜀𝐿] 𝑤 [𝜀𝐿]
Contact angle law 𝜃 𝜃 [1] 𝜃 [1]

𝒕w = − 1√1 + (𝜕�̂�1�̂�)2
( 1𝜕�̂�1�̂�) 𝒏w = 1√1 + (𝜕�̂�1�̂�)2

(−𝜕�̂�1�̂�1 ),
𝒕sym = (10) 𝒏sym = ( 0−1),
𝒕in = ( 0−1) 𝒏in = (−10 ),
𝒕out = (01) 𝒏out = (10).

In each subdomain Ω̂𝑚(𝑡),𝑚 ∈ {I, II}, we assume that the flow ismodeled by the incompressible
Navier–Stokes equations, which are written in dimensional form𝜌𝑚(𝜕𝑡�̂�𝑚 + (�̂�𝑚 ⋅ ∇̂)�̂�𝑚) + ∇̂�̂�𝑚 = 𝜇𝑚Δ̂�̂�𝑚 in Ω̂𝑚(𝑡), (2)

∇̂ ⋅ �̂�𝑚 = 0 in Ω̂𝑚(𝑡), (3)

where �̂�𝑚(𝑡, �̂�) and �̂�𝑚(𝑡, �̂�) are the velocity and pressure of fluid 𝑚. The parameters 𝜌𝑚 and 𝜇𝑚
denote the density and the dynamic viscosity of the fluid (Table 1 provides an overview of all
parameters and quantities).
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The symmetry conditions at Γ̂sym,𝑚(̂𝑡) ∶= Γ̂sym ∩ 𝜕Ω̂𝑚(̂𝑡) are
�̂�𝑚 ⋅ 𝒏sym = 0, 𝒕sym ⋅ (∇̂�̂�𝑚𝒏sym) = 0 on Γ̂sym,𝑚(̂𝑡), (4)

∇̂𝑝𝑚 ⋅ 𝒏sym = 0 on Γ̂sym,𝑚(̂𝑡), (5)

𝒏Γ ⋅ 𝒏sym = 0 at 𝑠 = 0. (6)

The walls Γ̂w,𝑚(̂𝑡) ∶= Γ̂w ∩ 𝜕Ω̂𝑚(̂𝑡) in contact with fluid 𝑚 ∈ {I, II} are assumed impermeable,
such that there is no fluid flow in normal direction, that is,�̂�𝑚 ⋅ 𝒏w = 0 on Γ̂w,𝑚(̂𝑡). (7)

Traditionally, this is complemented with the no-slip condition �̂�𝑚 ⋅ 𝒕w = 0 under the assumption
that the fluid adheres to the wall. However, the no-slip condition leads to a singularity in the pres-
sure and in the shear stress at the contact point �̂�∗(𝑡) between wall Γ̂w and interface Γ̂(𝑡).44–46 To
overcome this issue, several alternative boundary conditions have been proposed for use close to
the contact point (or contact line in three dimensions), see Refs. 47–49 and the references therein.
Here, we consider the Navier-slip condition

𝒕w ⋅ (�̂�𝑚 + 2𝜆�̂�(�̂�𝑚)𝒏w) = 0 on Γ̂w,𝑚(̂𝑡), (8)

where �̂�(�̂�) ∶= (∇̂�̂� + (∇̂�̂�)𝑇)∕2 denotes the symmetric strain and �̂� is the slip length. This con-
dition has been proposed originally byHuh and Scriven44 to resolve the contact-line problem, and
has been frequently used.50–55 Often, the Navier-slip condition is only applied close to the contact
point. In this case, a variable slip length �̂�(�̂�1) is adopted, decaying rapidly to zero away from the
contact point �̂�∗(𝑡) (see, e.g., Refs. 53, 56–58). This seems justified by molecular dynamics simula-
tions showing that the no-slip boundary condition is only violated in a small region (up to some
nm) around the contact point.59–63 In addition, surface wettability and roughness strongly affect
the slip behavior (see, e.g., Refs. 64–67 for a mathematical analysis).

Remark 1. To be general, we will consider two cases here: a constant slip length �̂� on the whole
wall Γ̂w, or a varying slip length �̂�(𝑡, �̂�1) = �̂�𝑒 exp(−𝑐|�̂�1 − �̂�∗1(𝑡)|) which decreases exponentially
away from the contact point �̂�∗(𝑡). Note that the overall dynamics of the two-phase system will
be independent of the latter, local slip condition, and especially of the exact form used; only the
flow field close to the interface will be affected (see Section 3). This is in accordance with the
results in Refs. 46, 54. Furthermore, note that we consider for simplicity the same slip length �̂� for
both fluids, although they could in principle differ. It is possible to extend the analysis below to
incorporate fluid-dependent slip lengths.

At the contact point �̂�∗(𝑡), the contact angle 𝜃 between thewall Γ̂w(𝑡) and the fluid interface Γ̂(𝑡)
must be prescribed. Minimization of the total surface energy yields the well-known Young’s rela-
tion 𝜎I − 𝜎II = 𝜎 cos 𝜃𝑠, where 𝜎I and 𝜎II denote the surface tension coefficients between the solid
and the two fluids, and 𝜎 the interfacial tension between the two fluids. The angle 𝜃𝑠 is called the
static contact angle andmeasured from the side of fluid II, as shown in Figure 1. Experiments per-
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formedunder dynamic conditions showa dynamic behavior of the contact angle. This is expressed
as an apparent contact angle 𝜃, and has a major influence on the overall flow dynamics.68 In gen-
eral, observations show increasing advancing angles, but decreasing receding angles, when the
contact-line velocity 𝑈 increases.46,69 The 𝜃–𝑈 relation is essentially monotonic.
There are mainly two models to describe this phenomenon: the hydrodynamic theory and the

molecular kinetic theory (for detailed reviews, see Refs. 48, 68, 70). The hydrodynamic theory
emphasizes on dissipation due to viscous flowwithin the wedge of liquid near themoving contact
line. The region close to the contact point is analyzed based on asymptotic expansions.46,50,52,57,71,72
For two-phase flow, this yields the well-known Cox law 𝑔(𝜃) = 𝑔(𝜃𝑠) + 𝐶𝜇𝑈∕𝜎 for the dynamic
contact angle 𝜃, where𝑈 denotes the contact-line velocity, the constant 𝐶 depends on the specific
slip model, and 𝑔 is an analytically derived function, which can be approximated by 𝑔(𝜃) ≈ 𝜃3
for small angles.57 The other approach is the molecular kinetic theory, where the dissipation is
described due to the dynamic friction associated with the moving contact line. This yields the
relation 𝑈 = 𝐶1 sinh(𝐶2𝜎(cos 𝜃𝑠 − cos 𝜃)) with the constants 𝐶1 and 𝐶2 depending on molec-
ular properties.69,73,74 After linearization for small differences in the angles, one obtains 𝑈 =𝐶𝜎(cos 𝜃𝑠 − cos 𝜃) for some constant 𝐶.68
As for the slip length, the contact angle is strongly affected by surfacewettability and roughness.

In Refs. 68, 70, the resulting effects are made responsible for contact angle hysteresis, that is,
that static contact angles can be achieved in the whole range 𝜃𝑟 < 𝜃𝑠 < 𝜃𝑎, where 𝜃𝑎, 𝜃𝑟 denote
the advancing and receding contact angles, respectively. Summarizing all the above results, we
assume the contact angle 𝜃 to depend on the velocity −𝜕𝑡�̂�∗(𝑡) ⋅ 𝒕w of the contact point parallel to
the wall. Recall that �̂�∗ = �̂�|𝑠=1, so this contact angle condition is expressed ascos(𝜃(−𝜕𝑡�̂� ⋅ 𝒕w|�̂�1=�̂�1 )) = 𝒕Γ ⋅ 𝒕w||�̂�1=�̂�1 at 𝑠 = 1, (9)

where 𝜃 ∶ ℝ → (0, 𝜋) is a given dynamic contact angle model. Note that any dynamic contact
angle model that satisfies assumption (A5) can be used. Specific relations for hysteretic 𝜃 and
their effect on the behavior will be discussed in Subsection 3.4. Furthermore, to account for het-
erogeneities, the following analysis can be straightforwardly extended to the casewhen the contact
angle also depends on the position �̂�∗1 (𝑡) of the contact point.
At the interface Γ̂(𝑡), there holds continuity of the velocity and of the tangential stress, while

the jump in the normal stress is caused by the surface tension�̂�I = �̂�II on Γ̂(𝑡), (10)

− (�̂�I − �̂�II)𝒏Γ + 2(𝜇ID̂(�̂�I) − 𝜇IID̂(�̂�II))𝒏Γ = 𝜎�̂�𝒏Γ on Γ̂(𝑡), (11)

where 𝜅 = det(𝜕𝑠𝜸, 𝜕2𝑠 𝜸)∕|𝜕𝑠𝜸|3 is the local mean curvature of the interface. Note that this curva-
ture generalizes to ∇̂ ⋅ 𝒏Γ for three-dimensional domains. The interface moves according to the
normal velocity of the fluids, 𝜕�̂�𝜸 ⋅ 𝒏Γ = �̂�I ⋅ 𝒏Γ on Γ̂(̂𝑡). (12)

At the inlet boundary Γ̂in, either the pressure �̂�in or the velocity �̂� in is given, namely, either�̂�I = �̂�in, �̂�I ⋅ 𝒕in = 0 or �̂�I = �̂�in on Γ̂in, (13)
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while an outflow boundary condition is applied at Γ̂out (corresponding to �̂�out = 0)�̂�II = 0, �̂�II ⋅ 𝒕out = 0 on Γ̂out. (14)

The problem is closed by the initial conditions �̂�|𝑡=0 = �̂�0 for the position of the interface Γ̂(0)
and �̂�𝑚|𝑡=0 = �̂�𝑚,0 for the velocity in Ω̂𝑚(0). In the following, we will omit the initial conditions
and implicitly require them tomatch the asymptotic solutions in Section 3 to avoid possible initial
layer solutions for small times.

2.1 Dimensionless formulation

To quantify the importance of the different terms of the model, we rewrite the equations in a
dimensionless form. As we consider a single, thin pore, we introduce the small parameter 𝜀 =�̂�(0)∕𝐿 ≪ 1which characterizes the ratio of the typical width to the length of the thin strip. Note
that in a general porous medium, 𝜀 would reflect the ratio of the size of a pore to the length scale
of a representative elementary volume. With this, we rescale the governing equations using the
dimensionless quantities(Table 1)

𝑥1 ∶= �̂�1𝐿 , 𝑥2 ∶= �̂�2�̂�(0) = �̂�2𝜀𝐿 , 𝑡 ∶= 𝑡𝑈𝐿 , 𝜆𝜀 ∶= �̂��̂�(0) = �̂�𝜀𝐿 ,
𝛾𝜀1(𝑡, 𝑠) ∶= �̂�1(𝑡, 𝑠)𝐿 , 𝛾𝜀2(𝑡, 𝑠) ∶= �̂�2(𝑡, 𝑠)�̂�(0) = �̂�2(𝑡, 𝑠)𝜀𝐿 , 𝑤𝜀(𝑥1) ∶= �̂�(�̂�1)�̂�(0) = �̂�(�̂�1)𝜀𝐿 ,
𝜃𝜀(𝑢) ∶= 𝜃(𝑢𝑈), 𝒖𝜀𝑚(𝑡, 𝒙) ∶= �̂�𝑚(𝑡, �̂�)𝑈 , 𝑝𝜀𝑚(𝑡, 𝒙) ∶= �̂�𝑚(𝑡, �̂�)𝜀2𝐿𝜇I𝑈 ,

where 𝑈 > 0 denotes a characteristic velocity. In particular, the pressure reference 𝜇I𝑈∕(𝜀2𝐿) is
chosen such that pressure and viscous stress terms in Equation (2) are balanced. For moderate
Reynolds number, this choice ensures laminar flow driven by the pressure gradients, which is
crucial for the validity of Darcy’s law on the Darcy scale. Note that the coordinates 𝑥1 and 𝑥2 are
scaled differently to obtain a domain of order 1, (𝜀0). Hence, the nondimensional differential
operators are

∇𝜀 = ( 𝜕𝑥1𝜀−1𝜕𝑥2), Δ𝜀 = 𝜕2𝑥1 + 𝜀−2𝜕2𝑥2 ,
and the divergence changes accordingly. The nondimensional domains and boundaries becomeΓ𝜀(𝑡) = {𝜸𝜀(𝑡, 𝑠) | 𝑠 ∈ [0, 1]}, Ω𝜀 = {𝒙 ∈ (0, 1) × (0,∞) | 𝑥2 < 𝑤𝜀(𝑥1)},Γ𝜀in = {0} × [0, 1],  ∶= {𝑂 ⊂ Ω𝜀 ⧵ Γ𝜀(𝑡) | 𝑂 ∪ Γ𝜀in is connected},Ω𝜀I(𝑡) = ⋃

𝑂∈𝑂, Ω𝜀II(𝑡) = Ω𝜀 ⧵ (Γ𝜀(𝑡) ∪ Ω𝜀I(𝑡)), Γ𝜀out = {1} × [0, 𝑤𝜀(1)],
Γ𝜀sym,𝑚(𝑡) = {𝒙 ∈ 𝜕Ω𝜀𝑚(𝑡) | 𝑥2 = 0}, Γ𝜀w,𝑚(𝑡) = {𝒙 ∈ 𝜕Ω𝜀𝑚(𝑡) | 𝑥2 = 𝑤𝜀(𝑥1)}.
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After the rescaling of Equations (1–14), the dimensionless equations read𝜀2Re(𝜕𝑡𝒖𝜀I + (𝒖𝜀I ⋅ ∇𝜀)𝒖𝜀I) + ∇𝜀𝑝𝜀I = 𝜀2Δ𝜀𝒖𝜀I in Ω𝜀I(𝑡), (15)

𝜀2RRe(𝜕𝑡𝒖𝜀II + (𝒖𝜀II ⋅ ∇𝜀)𝒖𝜀II) + ∇𝜀𝑝𝜀II = M𝜀2Δ𝜀𝒖𝜀II in Ω𝜀II(𝑡), (16)

∇𝜀 ⋅ 𝒖𝜀𝑚 = 0 in Ω𝜀𝑚(𝑡), (17)

𝒖𝜀𝑚 ⋅ 𝒏sym = 0, 𝒕sym ⋅ (∇𝜀𝒖𝜀𝑚𝒏sym) = 0 on Γ𝜀sym,𝑚(𝑡), (18)

∇𝜀𝑝𝜀𝑚 ⋅ 𝒏sym = 0, on Γ𝜀sym,𝑚(𝑡), (19)

either 𝑝𝜀I = 𝑝𝜀in, 𝒖𝜀I ⋅ 𝒕in = 0, or 𝒖𝜀I = 𝒖𝜀in on Γ𝜀in, (20)

𝑝𝜀II = 0, 𝒖𝜀II ⋅ 𝒕out = 0 on Γ𝜀out, (21)

𝒕𝜀w ⋅ (𝒖𝜀𝑚 + 2𝜀𝜆𝜀D𝜀(𝒖𝜀𝑚)𝒏𝜀w) = 0, 𝒖𝜀𝑚 ⋅ 𝒏𝜀w = 0 on Γ𝜀w,𝑚(𝑡), (22)

𝜕𝑡( 𝛾𝜀1𝜀𝛾𝜀2) ⋅ 𝒏𝜀Γ = 𝒖𝜀I ⋅ 𝒏𝜀Γ, 𝒖𝜀I = 𝒖𝜀II on Γ𝜀(𝑡), (23)

−(𝑝𝜀I − 𝑝𝜀II)𝒏𝜀Γ + 2𝜀2(D𝜀(𝒖𝜀I) −MD𝜀(𝒖𝜀II))𝒏𝜀Γ = 𝜀2
Ca𝜅𝜀𝒏𝜀Γ on Γ𝜀(𝑡), (24)

𝒏𝜀Γ ⋅ 𝒏sym = 0 at 𝑠 = 0, (25)

cos(𝜃𝜀(−𝜕𝑡𝜸𝜀 ⋅ 𝒕𝜀w|𝑥1=𝛾𝜀1)) = 𝒕𝜀Γ ⋅ 𝒕𝜀w||𝑥1=𝛾𝜀1 at 𝑠 = 1, (26)

for𝑚 ∈ {I, II}, where the dimensionless numbers R,M, Re, and Ca are given in Table 1. The nondi-
mensional strain is given by𝐃𝜀(𝒖𝜀) = (∇𝜀𝒖𝜀+ (∇𝜀𝒖𝜀)𝑇)∕2 and the transformed normal and tangen-
tial vectors are

𝒕𝜀w = − 1√1 + 𝜀2(𝜕𝑥1𝑤𝜀)2
( 1𝜀𝜕𝑥1𝑤𝜀), 𝒏𝜀w = 1√1 + 𝜀2(𝜕𝑥1𝑤𝜀)2

(−𝜀𝜕𝑥1𝑤𝜀1 ),
𝒕𝜀Γ = 1√(𝜕𝑠𝛾𝜀1)2 + 𝜀2(𝜕𝑠𝛾𝜀2)2

( 𝜕𝑠𝛾𝜀1𝜀𝜕𝑠𝛾𝜀2), 𝒏𝜀Γ = 1√(𝜕𝑠𝛾𝜀1)2 + 𝜀2(𝜕𝑠𝛾𝜀2)2
( 𝜀𝜕𝑠𝛾𝜀2−𝜕𝑠𝛾𝜀1).
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Furthermore, the nondimensional curvature is given by

𝜅𝜀 = 𝜀 det(𝜕𝑠𝜸𝜀, 𝜕2𝑠 𝜸𝜀)((𝜕𝑠𝛾𝜀1)2 + 𝜀2(𝜕𝑠𝛾𝜀2)2)3∕2 = 𝜀(𝜕𝑠𝛾𝜀1𝜕2𝑠 𝛾𝜀2 − 𝜕𝑠𝛾𝜀2𝜕2𝑠 𝛾𝜀1)((𝜕𝑠𝛾𝜀1)2 + 𝜀2(𝜕𝑠𝛾𝜀2)2)3∕2 .
Remark 2. Integrating Equation (17) for 𝑚 = I over 𝑉𝑎 = {𝒙 ∈ Ω𝜀I(𝑡) | 𝑥1 < 𝑎} for any 𝑎 <min𝑠∈[0,1] 𝛾𝜀1(𝑡, 𝑠) yields by the Gauss theorem and the boundary conditions Equations (18–22)

0 = ∫𝑉𝑎 ∇𝜀 ⋅ 𝒖𝜀I𝑑𝒙 = ∫𝜕𝑉𝑎 𝒖𝜀I ⋅ 𝒏𝑑𝑠 = ∫
𝑤𝜀(𝑎)

0 𝑢𝜀I,1||𝑥1=𝑎𝑑𝑥2 − ∫
1

0 𝑢𝜀I,1||𝑥1=0𝑑𝑥2.
Denoting the total flux into the half strip by 𝑞𝜀(𝑡, 0) ∶= ∫ 10 𝑢𝜀I,1(𝑡, 𝒙)|𝑥1=0𝑑𝑥2, we obtain that for
all 𝑎 < min𝑠∈[0,1] 𝛾𝜀1(𝑡, 𝑠) the total flux 𝑞𝜀(𝑡, 𝑎) ∶= ∫ 𝑤𝜀(𝑎)0 𝑢𝜀I,1|𝑥1=𝑎𝑑𝑥2 = 𝑞𝜀(𝑡, 0). Analogously, inte-
grating Equation (17) for 𝑚 = I over Ω𝜀I(𝑡) and for 𝑚 = II over 𝑉𝑎 = {𝒙 ∈ Ω𝜀II | 𝑥1 < 𝑎} for any𝑎 > max𝑠∈[0,1] 𝛾𝜀1(𝑡, 𝑠) yields by the Gauss theorem, the boundary conditions, Equations (18–22),
and the continuity of velocity at the interface, Equation (23), that

0 = ∫Ω𝜀I ∇𝜀 ⋅ 𝒖𝜀I𝑑𝒙 + ∫𝑉𝑎 ∇𝜀 ⋅ 𝒖𝜀II𝑑𝒙 = −𝑞𝜀(𝑡, 0) + ∫
𝑤𝜀(𝑎)

0 𝑢𝜀II,1||𝑥1=𝑎𝑑𝑥2,
that is, the total flux 𝑞(𝑡, 𝑎) ∶= ∫ 𝑤𝜀(𝑎)0 𝑢𝜀II,1|𝑥1=𝑎𝑑𝑥2 = 𝑞𝜀(𝑡, 0) for all 𝑎 > max𝑠∈[0,1] 𝛾𝜀1(𝑡, 𝑠). Within
the interval [min𝑠∈[0,1] 𝛾𝜀1(𝑡, 𝑠),max𝑠∈[0,1] 𝛾𝜀1(𝑡, 𝑠)], the same calculation shows that the sum of the
two fluxes over the respective parts of the domain equals the total flux 𝑞𝜀(𝑡, 0). This means that the
total flux is independent of 𝑥1, so wewill simply use 𝑞𝜀(𝑡) in this result for the subsequent analysis.
3 ASYMPTOTIC EXPANSIONS

In this section, we derive the formal solution for the two-phase flow system Equations (15-26)
in the asymptotic limit as 𝜀 → 0, that is, the behavior in the limit when the thin strip becomes
infinitely thin. We start with the solution in the bulk domains Ω𝜀𝑚(𝑡), 𝑚 ∈ {I, II}, away from the
interface Γ𝜀(𝑡), where either fluid I or II is present, respectively. In the subsequent section, we
show that these bulk solutions are connected via a boundary layer solution in the vicinity of Γ𝜀(𝑡).
Altogether, the solution is of Hagen–Poiseuille type in the bulk coupled by a dynamic Young–
Laplace law at the interface, such that the interface position and the total flux are given by differ-
ential algebraic equations. Furthermore, we show that the solution for vanishing viscosity ratio
M→ 0matches the asymptotic limit for unsaturated one-phase flow. Finally, a reformulation for
hysteretic contact angle models is discussed.
For the following analysis, we use an asymptotic expansion techniquewith respect to 𝜀 to derive

effectivemodels. All variables are assumed to be smooth and to depend regularly on 𝜀 startingwith
the leading order (𝜀0). We apply the homogenization ansatz𝒖𝜀𝑚(𝑡, 𝒙) = 𝒖0𝑚(𝑡, 𝒙) + 𝜀𝒖1𝑚(𝑡, 𝒙) + (𝜀2),



LUNOWA et al. 11𝑝𝜀𝑚(𝑡, 𝒙) = 𝑝0𝑚(𝑡, 𝒙) + 𝜀𝑝1𝑚(𝑡, 𝒙) + (𝜀2),
𝜸𝜀(𝑡, 𝑠) = 𝜸0(𝑡, 𝑠) + 𝜀𝜸1(𝑡, 𝑠) + (𝜀2)

for 𝑚 ∈ {I, II}. Inserting the asymptotic expansions into the two-phase flow equations Equations
(15–26) and equating terms of the same order in 𝜀, we will obtain the asymptotic equations and
solutions in the limit as 𝜀 → 0. To this end, we need some assumptions on the parameters of the
model.

(A1) The Reynolds number Re and its product with the density ratio R are uniformly bounded
for all 0 < 𝜀 ≪ 1, that is, there exists𝐶 ∈ (0,∞) such that Re ≤ 𝐶 and RRe ≤ 𝐶 independent
of 𝜀. In other words, Re = (𝜀0) or Re = o(𝜀0), and RRe = (𝜀0) or RRe = o(𝜀0).

(A2) The viscosity ratio M of the fluids is of order 1, M = (𝜀0).
(A3) According to Remark 1, the slip length 𝜆𝜀 has the form

𝜆𝜀(𝑡, 𝑥1) = 𝜆0 + 𝜆𝑒 exp(− |𝑥1 − 𝑥∗1(𝑡)|𝜀 )

for given constants 𝜆0, 𝜆𝑒 ≥ 0 that are independent of 𝜀. Moreover, there holds either 𝜆𝑒 = 0,
or 𝜆0 = 0. Note that the latter represents the case of rapidly decaying slip away from the
interface, so that 𝜆𝜀 has the expansion 𝜆𝜀(𝑡, 𝑥1) = (𝜀𝑁) for arbitrary 𝑁 ∈ ℕ as long as 𝑥1 −𝑥∗1(𝑡) ≫ 𝜀.

(A4) The wall function 𝑤𝜀 has a uniform expansion𝑤𝜀(𝑥1) = 𝑤0(𝑥1) + 𝜀𝑤1(𝑥1) + (𝜀2),
where 𝑤𝜀, 𝑤0 ∶ [0, 1] → (0,∞) are continuously differentiable (and thus bounded away
from zero). Moreover, there holds 𝑤0(0) = 1 and 𝜕𝑥1𝑤0(0) = 𝜕𝑥1𝑤0(1) = 0.

(A5) The contact angle relation 𝜃𝜀 has a uniform expansion𝜃𝜀(𝑢) = 𝜃0(𝑢) + 𝜀𝜃1(𝑢) + (𝜀2),
where 𝜃0 ∶ ℝ → (0, 𝜋) is Lipschitz-continuous.

(A6) If the velocity boundary condition 𝒖𝜀I = 𝒖𝜀in is used at the inlet Γ𝜀in, the velocity is given by
𝒖𝜀in(𝑡, 𝒙) = (3𝑞(𝑡) (1+2𝜆0)−𝑥226𝜆0+2 + (𝜀)

(𝜀2)
) ,

where 𝑞 ∶ [0,∞) → ℝ is a continuous function independent of 𝜀.
As will be seen below, (A1) ensures that the flow remains laminar. Furthermore, (A2) restricts

the discussion tomoderately viscous liquids.WhileM≫ 1would result in a highly viscous second
fluid which gets immobile as 𝜀 → 0, we will discuss the case M≪ 1 of a extremely mobile fluid
such as air (compared to water or oil) separately in Subsection 3.3. The asymptotic expansions
stated in (A4) and (A5) are crucial for the derivation. As discussed in Section 2, slip is necessary to
allow the movement of the contact point. Hence, (A3) requires a simple expression of the slip at
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the pore walls close to the interface to avoid technical complexity, while allowing for the typical
no-slip condition at the pore walls away from the interface (𝜆0 = 0). The case of global slip con-
ditions (𝜆0 > 0) generalizes this to applications where the slip length is of the same order as the
diameter, for example, in nanofluidic devices or for fluids with low viscosity. The assumption of a
horizontal wall at the inlet and at the outlet (𝜕𝑥1𝑤0(0) = 𝜕𝑥1𝑤0(1) = 0) in (A4) is used to exclude
possible boundary-layer effects caused by nonmatching boundary conditions. The inlet velocity
in (A6) is then the Hagen–Poiseuille profile incorporating the Navier-slip condition. Assumptions
(A4) and (A6) can be relaxed if the boundary conditions at Γ𝜀in and Γ𝜀out, Equations (20–21), are
replaced appropriately, or if the resulting boundary layer matches the asymptotic solution of the
following analysis. We observe that (A4) rules out the possibility that the pore has walls with
rapidly oscillatory characteristics (so-called “rough walls”). Such walls can be characterized by
a function 𝑤𝜀(𝑥1) = 𝑤0(𝑥1) + 𝜀𝑤1(𝑥1∕𝜀) + (𝜀). Clearly, this would strongly affect the shape and
position of the interface. A naive extension of the following results would yield unphysical oscil-
lations of the interface, so that we restrict the discussion to slowly varying walls.
Note that the normal and tangential vectors𝒏𝜀Γ, 𝒕𝜀Γ,𝒏𝜀w, and 𝒕𝜀w depend on 𝜸𝜀and𝑤𝜀, respectively,

such that these can be expanded, for example,

𝒏𝜀w = (01) − 𝜀(𝜕𝑥1𝑤00 ) + (𝜀2), (27)

𝒏𝜀Γ =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

( 0−sign(𝜕𝑠𝛾01)
) + 𝜀 1

|𝜕𝑠𝛾01|
( 𝜕𝑠𝛾02−𝜕𝑠𝛾11

) + (𝜀2) for 𝜕𝑠𝛾01 ≠ 0,
1√(𝜕𝑠𝛾11)2+(𝜕𝑠𝛾02)2

( 𝜕𝑠𝛾02−𝜕𝑠𝛾11
) + 𝜀 1√(𝜕𝑠𝛾11)2+(𝜕𝑠𝛾02)2

( 𝜕𝑠𝛾12−𝜕𝑠𝛾21
)

+𝜀 𝜕𝑠𝛾11𝜕𝑠𝛾21+𝜕𝑠𝛾02𝜕𝑠𝛾12((𝜕𝑠𝛾11)2+(𝜕𝑠𝛾02)2)3∕2
(−𝜕𝑠𝛾02𝜕𝑠𝛾11

) + (𝜀2) otherwise.
(28)

In particular, the direction of the normal vector 𝒏𝜀Γ depends on 𝜕𝑠𝛾01 . If 𝜕𝑠𝛾01 ≠ 0 for some𝑠 ∈ [0, 1], the interface Γ𝜀(𝑡) is largely deformed over a region that has a width (𝜀0), namely,𝐼 = [min𝑠∈[0,1] 𝛾𝜀1,max𝑠∈[0,1] 𝛾𝜀1] with |𝐼| = (𝜀0). Therefore, there are both fluids present along a
transversal segment at any 𝑥1 ∈ 𝐼, and complicated interface dynamics occur in the limit 𝜀 → 0.
On the other hand, if 𝜕𝑠𝛾01 ≡ 0, only small deformationswith |𝐼| = (𝜀) are possible, andwe obtain
asymptotically a sharp transition from fluid I to fluid II at 𝛾01 .
3.1 Flow in the bulk domains

First, we consider the flow in the bulk domains Ω𝜀𝑚,𝑚 ∈ {I, II}, and solve the resulting equations
away from the interface. Inserting the homogenization ansatz into Equations (15–22) using (A1)–
(A6) and a Taylor expansion around 𝑥2 = 𝑤0(𝑥1) for Equation (22), one obtains

(𝜀) = 𝜕𝑥1𝑝0I − 𝜕2𝑥2𝑢0I,1 in Ω𝜀I(𝑡), (29)
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(𝜀0) = 𝜀−1𝜕𝑥2𝑝0I in Ω𝜀I(𝑡), (30)

(𝜀) = 𝜕𝑥1𝑝0II −M𝜕2𝑥2𝑢0II,1 in Ω𝜀II(𝑡), (31)

(𝜀0) = 𝜀−1𝜕𝑥2𝑝0II in Ω𝜀II(𝑡), (32)

(𝜀) = 𝜀−1𝜕𝑥2𝑢0𝑚,2 + (𝜕𝑥1𝑢0𝑚,1 + 𝜕𝑥2𝑢1𝑚,2) in Ω𝜀𝑚(𝑡), (33)

(𝜀2) = 𝑢0𝑚,2 + 𝜀𝑢1𝑚,2, (𝜀) = 𝜕𝑥2𝑢0𝑚,1 at 𝑥2 = 0, (34)

(𝜀) = 𝜕𝑥2𝑝0𝑚 at 𝑥2 = 0, (35)

(𝜀) = 𝑝0I − 𝑝0in, (𝜀2) = 𝑢0I,2 + 𝜀𝑢1I,2 or (36)

(𝜀2) = 𝒖0I − 𝒖0in + 𝜀(𝒖1I − 𝒖1in) at 𝑥1 = 0, (37)

(𝜀) = 𝑝0II, (𝜀2) = 𝑢0II,2 + 𝜀𝑢1II,2 at 𝑥1 = 1, (38)

(𝜀) = 𝑢0𝑚,1 + 𝜆0𝜕𝑥2𝑢0𝑚,1 at 𝑥2 = 𝑤0(𝑥1), (39)

(𝜀2) = 𝑢0𝑚,2 + 𝜀(𝑢1𝑚,2 + 𝑤1𝜕𝑥2𝑢0𝑚,2 − 𝑢0𝑚,1𝜕𝑥1𝑤0) at 𝑥2 = 𝑤0(𝑥1). (40)

Note that either Equation (36) or Equation (37) holds, depending on the choice of the boundary
condition at the inlet Γ𝜀in.
Since we are interested in the flow behavior away from the interface Γ𝜀(𝑡), we define𝐺I(𝑡) ∶= min𝑠∈[0,1] 𝛾01(𝑠, 𝑡), 𝐺II(𝑡) ∶= max𝑠∈[0,1] 𝛾01(𝑠, 𝑡),

and investigate the problem for 𝑥1 < 𝐺I(𝑡) in fluid I and for 𝑥1 > 𝐺II(𝑡) in fluid II, respectively.
In leading order, one obtains 𝜕𝑥2𝑢0𝑚,2 = 0 in Ω𝜀𝑚(𝑡) for both 𝑚 ∈ {I, II} by the mass conservation
Equation (33). The symmetry and wall boundary conditions, Equations (34,40), lead to𝑢0𝑚,2 = 0for𝑚 = I, 𝑥1 < 𝐺I(𝑡), and for𝑚 = II, 𝑥1 > 𝐺II(𝑡),
which agrees with Equations (36-38), the in- and outflow boundary conditions. The second com-
ponent of themomentum equation (30) of fluid I yields in leading order 𝜕𝑥2𝑝0I = 0 inΩ𝜀I(𝑡), which
is in agreement with the symmetry condition, Equation (35). We conclude𝑝0I = 𝑝0I (𝑡, 𝑥1) for 𝑥1 < 𝐺I(𝑡).
Analogously, the second component of the momentum equation (32) of fluid II leads to 𝜕𝑥2𝑝0II = 0
in Ω𝜀II(𝑡) (in agreement with the symmetry condition, Equation (35)), and thus𝑝0II = 𝑝0II(𝑡, 𝑥1) for 𝑥1 > 𝐺II(𝑡).
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From the first component of the momentum equation (29) of fluid I one obtains𝜕𝑥1𝑝0I = 𝜕2𝑥2𝑢0I,1 in Ω𝜀I(𝑡).
Integrating twice over 𝑥2 using the symmetry and wall boundary conditions, Equations (34,39),
this leads to

𝑢0I,1(𝑡, 𝒙) = 𝑥22 − 𝑤0(𝑥1)(2𝜆0 + 𝑤0(𝑥1))2 𝜕𝑥1𝑝0I (𝑡, 𝑥1) for 𝑥1 < 𝐺I(𝑡). (41)

In a similar fashion, one obtains for fluid II by Equations (31,34,39)

𝑢0II,1(𝑡, 𝒙) = 𝑥22 − 𝑤0(𝑥1)(2𝜆0 + 𝑤0(𝑥1))2M 𝜕𝑥1𝑝0II(𝑡, 𝑥1) for 𝑥1>𝐺II(𝑡). (42)

Integrating Equations (41–42) over 𝑥2 ∈ [0, 𝑤0(𝑥1)] for any 𝑥1 < 𝐺I and 𝑥1 > 𝐺II, respectively, and
using Remark 2 yields

𝑞(𝑡) = ∫
𝑤0(𝑎)

0 𝑢0I,1(𝑡, 𝒙)|𝑥1=𝑎𝑑𝑥2 = −(𝑤0(𝑥1))2(3𝜆0 + 𝑤0(𝑥1))3 𝜕𝑥1𝑝0I (𝑡, 𝑥1), (43)

𝑞(𝑡) = ∫
𝑤0(𝑎)

0 𝑢0II,1(𝑡, 𝒙)|𝑥1=𝑎𝑑𝑥2 = −(𝑤0(𝑥1))2(3𝜆0 + 𝑤0(𝑥1))3M 𝜕𝑥1𝑝0II(𝑡, 𝑥1), (44)

where 𝑞(𝑡) ∶= ∫ 10 𝑢0I,1(𝑡, 𝒙)𝑑𝑥2. Note that 𝑞 is independent of 𝑥1, and it is equivalent to the one in
(A6) if Equation (37) is given. Otherwise, 𝑞 is unknown andmust be found in the further solution
process. Solving the above equations for 𝑝0𝑚, with the outflow boundary condition, Equation (38),
we obtain

𝑝0I (𝑡, 𝒙) = 𝑝0in(𝑡) − 𝑞(𝑡)∫ 𝑥1
0 3(𝑤0(𝜉))2(3𝜆0 + 𝑤0(𝜉))𝑑𝜉 for 𝑥1 < 𝐺I(𝑡), (45)

𝑝0II(𝑡, 𝒙) = 𝑞(𝑡)∫ 1
𝑥1 3M(𝑤0(𝜉))2(3𝜆0 + 𝑤0(𝜉))𝑑𝜉 for 𝑥1>𝐺II(𝑡). (46)

Here, the inlet pressure 𝑝0in(𝑡) is either given by the inlet boundary condition, Equation (36), or
has to be found in the further solution process. Note that since the inlet boundary condition is
either Equation (36) or Equation (37), this means that either 𝑞 or 𝑝0in is given, while the other still
must be determined. Inserting Equations (45–46) into Equations (41–42) yields

𝑢0I,1(𝑡, 𝒙) = 3𝑞(𝑡)𝑤0(𝑥1)(2𝜆0 + 𝑤0(𝑥1)) − 𝑥222(𝑤0(𝑥1))2(3𝜆0 + 𝑤0(𝑥1)) for 𝑥1 < 𝐺I(𝑡), (47)
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𝑢0II,1(𝑡, 𝒙) = 3𝑞(𝑡)𝑤0(𝑥1)(2𝜆0 + 𝑤0(𝑥1)) − 𝑥222(𝑤0(𝑥1))2(3𝜆0 + 𝑤0(𝑥1)) for 𝑥1>𝐺II(𝑡). (48)

Using Equations (47–48) in themass conservation Equation (33), the first-order equations become

𝜕𝑥2𝑢1𝑚,2 = 𝑞(𝑡)( 12(3𝜆0+𝑤0(𝑥1))2 + 1(𝑤0(𝑥1))2 − 9(2𝜆0+𝑤0(𝑥1))𝑥222(𝑤0(𝑥1))3(3𝜆0+𝑤0(𝑥1))2
) 𝜕𝑥1𝑤0(𝑥1),

for𝑚 ∈ {I, II}. Integration over 𝑥2 using the symmetry condition, Equation (34), yields
𝑢1I,2(𝑡, 𝒙) = 𝑞(𝑡)( 𝑥22(3𝜆0 + 𝑤0(𝑥1))2 + 𝑥2(𝑤0(𝑥1))2 − 3(2𝜆0 + 𝑤0(𝑥1))𝑥322(𝑤0(𝑥1))3(3𝜆0 + 𝑤0(𝑥1))2

) 𝜕𝑥1𝑤0(𝑥1) for 𝑥1 < 𝐺I(𝑡),
𝑢1II,2(𝑡, 𝒙) = 𝑞(𝑡)( 𝑥22(3𝜆0 + 𝑤0(𝑥1))2 + 𝑥2(𝑤0(𝑥1))2 − 3(2𝜆0 + 𝑤0(𝑥1))𝑥322(𝑤0(𝑥1))3(3𝜆0 + 𝑤0(𝑥1))2

) 𝜕𝑥1𝑤0(𝑥1) for 𝑥1 > 𝐺II(𝑡),
which is in agreement with the boundary conditions, Equations (36-38,40).
Summarizing, we obtain the following solution in the bulk domains. There holds

𝒖𝜀I(𝑡, 𝒙) = 𝑞(𝑡) ⎛⎜⎜⎜⎜⎝
3 𝑤0(𝑥1)(2𝜆0+𝑤0(𝑥1))−𝑥222(𝑤0(𝑥1))2(3𝜆0+𝑤0(𝑥1)) + (𝜀)

𝜀( 𝑥22(3𝜆0+𝑤0(𝑥1))2 + 𝑥2(𝑤0(𝑥1))2 − 3(2𝜆0+𝑤0(𝑥1))𝑥322(𝑤0(𝑥1))3(3𝜆0+𝑤0(𝑥1))2
) 𝜕𝑥1𝑤0(𝑥1) + (𝜀2)

⎞⎟⎟⎟⎟⎠
, (49)

𝑝𝜀I(𝑡, 𝒙) = 𝑝0in(𝑡) − 𝑞(𝑡)∫ 𝑥1
0 3(𝑤0(𝜉))2(3𝜆0 + 𝑤0(𝜉))𝑑𝜉 + (𝜀) (50)

for 𝑥1 < 𝐺I(𝑡), while for 𝑥1 > 𝐺II(𝑡) one gets
𝒖𝜀II(𝑡, 𝒙) = 𝑞(𝑡) ⎛⎜⎜⎜⎜⎝

3 𝑤0(𝑥1)(2𝜆0+𝑤0(𝑥1))−𝑥222(𝑤0(𝑥1))2(3𝜆0+𝑤0(𝑥1)) + (𝜀)
𝜀( 𝑥22(3𝜆0+𝑤0(𝑥1))2 + 𝑥2(𝑤0(𝑥1))2 − 3(2𝜆0+𝑤0(𝑥1))𝑥322(𝑤0(𝑥1))3(3𝜆0+𝑤0(𝑥1))2

) 𝜕𝑥1𝑤0(𝑥1) + (𝜀2)
⎞
⎟⎟⎟⎟⎠
, (51)

𝑝𝜀II(𝑡, 𝒙) = 𝑞(𝑡)∫ 1
𝑥1 3M(𝑤0(𝜉))2(3𝜆0 + 𝑤0(𝜉))𝑑𝜉 + (𝜀). (52)

This means that the solution in the bulk domains is of Hagen–Poiseuille type. Depending on the
chosen inlet boundary condition, Equation (36) or Equation (37), either the inlet pressure 𝑝0in or
the total flux 𝑞 is given. The other coefficient will be determined in the following subsection via
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the coupling at the interface Γ𝜀(𝑡). For upscaled models, we emphasize that the total flux 𝑞 is
independent of the position 𝑥1 and that the pressures 𝑝0𝑚,𝑚 ∈ {I, II}, depend linearly on 𝑞 with a
coefficient that only depends on the geometry (𝑤0), the viscosity ratio M, and the slip length 𝜆0.
3.2 Interface with small deformations

We continue the analysis for the interface region around Γ𝜀(𝑡). We first show that the bulk solu-
tions are not compatible with the interface conditions Equations (23–26). However, introduction
of a suitable scaling allows to find the asymptotic solution in the boundary layer around the inter-
face Γ𝜀(𝑡), which connects the bulk domain solutions. In addition to (A1)–(A6), we make the fol-
lowing assumptions:

(A7) The leading order interface position in 𝑥1 is constant, that is, 𝜕𝑠𝛾01 ≡ 0.
(A8) The capillary number is given by Ca = 𝜀𝛼Ca for some 𝛼 ∈ ℕ0. Here, Ca denotes the effective

capillary number and is independent of 𝜀.
Note that (A7) means that the fluid–fluid interface Γ𝜀 has only small deformations, such that𝐺I(𝑡) = 𝛾01(𝑡) = 𝐺II(𝑡). Furthermore, (A8) is used to distinguish whether interfacial tension is rel-

evant or even dominating the interface movement (see also Remark 3). In the alternative case of
a largely deformed interface (𝜕𝑠𝛾01 ≢ 0), both fluids are present along a transversal segment since
the interface is partly horizontal (cf. Equation (28)). This leads to complicated interface dynamics
and requires a detailed analysis of further boundary layers due to the symmetry and boundary
conditions Equations (25– 26), which yield 𝜕𝑠𝛾01(𝑡, 𝑠) = 0 for 𝑠 ∈ {0, 1}. However, this lies outside
the scope of this paper.
Inserting the homogenization ansatz into the kinematic interface condition, Equation (23),

gives (𝜕𝑡𝛾01 − 𝑢0I,1)𝜕𝑠𝛾02 + 𝑢0I,2𝜕𝑠𝛾11 = (𝜀).
Since 𝛾01 is constant in the parameter 𝑠, a nonsingular parameterization requires 𝜕𝑠𝛾02 > 0. Insert-
ing the bulk solution Equation (49), where 𝑢0I,2 = 0, yields in leading order

𝜕𝑡𝛾01 = 3𝑞𝑤0(𝛾01)(2𝜆0 + 𝑤0(𝛾01)) − (𝛾02)22(𝑤0(𝛾01))2(3𝜆0 + 𝑤0(𝛾01)) ,
which contradicts the assumption that 𝛾01 does not depend on 𝑠, except for the trivial case 𝑞(𝑡) = 0.
Therefore, we expect the existence of a boundary layer around the interface Γ𝜀(𝑡). Here, the idea
of the matched asymptotic expansion method is to find an asymptotic solution of the problem
in rescaled, so-called inner coordinates close to the interface (the boundary layer). This solution
must satisfy the interface conditions and match the previously derived, so-called outer solution
in the bulk regions given by Equations (49–52). The combination of inner and outer solutions
then solves the problem in the whole domain. For a detailed introduction to matched asymptotic
expansion method, we refer to Ref. 75.
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To resolve the boundary layer, we apply the inner scaling𝑋1(𝑡, 𝑥1) ∶= (𝑥1 − 𝛾01(𝑡))∕𝜀, 𝑋2 ∶= 𝑥2
and use the rescaled variables and domains (see also Table 1)

𝒀𝜀 ∶= ((𝛾𝜀1 − 𝛾01)∕𝜀𝛾𝜀2 ) , 𝑈𝜀𝑚(𝑡, 𝑿) ∶= 𝒖𝜀𝑚(𝑡, 𝒙), 𝑃𝜀𝑚(𝑡, 𝑿) ∶= 𝑝𝜀𝑚(𝑡, 𝒙),Ω𝜀𝑿(𝑡) ∶= {𝑿 ∈ ℝ2 | 0 < 𝑋2 < 𝑤𝜀(𝛾01(𝑡) + 𝜀𝑋1)}, Γ𝜀𝑿(𝑡) ∶= {𝒀𝜀(𝑡, 𝑠) | 𝑠 ∈ [0, 1]},Ω𝜀𝑿,I(𝑡) ∶= {𝑿(𝑡, 𝒙) | 𝒙 ∈ Ω𝜀I}, Ω𝜀𝑿,II(𝑡) ∶= {𝑿(𝑡, 𝒙) | 𝒙 ∈ Ω𝜀II},Γ𝜀𝑿,w,𝑚(𝑡) ∶= {𝑿 ∈ 𝜕Ω𝜀𝑿,𝑚(𝑡) | 𝑋2 = 𝑤𝜀(𝛾01(𝑡) + 𝜀𝑋1)}.
The matching conditions between inner expansion in terms of 𝑿 and outer expansion in terms of𝒙 require the equivalence in the limit, that is, for any outer quantity 𝑎𝜀𝑚(𝑡, 𝒙)with inner expansion𝐴𝜀𝑚(𝑡, 𝑿) there must hold lim𝑥1→𝛾01 𝑎𝜀𝑚(𝑡, 𝒙) = lim𝑋1→(−1)𝑚∞ 𝐴𝜀𝑚(𝑡, 𝑿)|𝑋2=𝑥2 . With the rescaled
coordinates, Equations (15-19) and Equations (22–26) become𝜀2Re (𝜀𝜕𝑡𝑈𝜀I − 𝜕𝑋1𝑈𝜀I𝜕𝑡𝛾01 + (𝑈𝜀I ⋅ ∇𝑿)𝑈𝜀I) + ∇𝑿𝑃𝜀I = 𝜀Δ𝑿𝑈𝜀I in Ω𝜀𝑿,I(𝑡), (53)

𝜀2RRe (𝜀𝜕𝑡𝑈𝜀II − 𝜕𝑋1𝑈𝜀II𝜕𝑡𝛾01 + (𝑈𝜀II ⋅ ∇𝑿)𝑈𝜀II) + ∇𝑿𝑃𝜀II = M𝜀Δ𝑿𝑈𝜀II in Ω𝜀𝑿,II(𝑡), (54)

∇𝑿 ⋅ 𝑈𝜀𝑚 = 0 in Ω𝜀𝑿,𝑚(𝑡), (55)

𝑈𝜀𝑚 ⋅ 𝒏sym = 0, 𝒕sym ⋅ ∇𝑿𝑈𝜀𝑚𝒏sym = 0 at 𝑋2 = 0, (56)

∇𝑿𝑃𝜀𝑚 ⋅ 𝒏sym = 0, at 𝑋2 = 0, (57)

𝑻𝜀w ⋅ (𝑈𝜀𝑚 + 2𝜆𝜀D𝑿(𝑈𝜀𝑚)𝑵𝜀
w) = 0, 𝑈𝜀𝑚 ⋅ 𝑵𝜀

w = 0 on Γ𝜀𝑿,w,𝑚(𝑡), (58)

𝜕𝑡𝛾01𝑁𝜀Γ,1 + 𝜀𝜕𝑡𝒀𝜀 ⋅ 𝑵𝜀Γ = 𝑈𝜀
I ⋅ 𝑵𝜀Γ, 𝑈𝜀

I = 𝑈𝜀
II on Γ𝜀𝑿(𝑡), (59)

−(𝑃𝜀I − 𝑃𝜀II)𝑵𝜀Γ + 2𝜀(D𝑿(𝑈𝜀
I) −MD𝑿(𝑈𝜀

II))𝑵𝜀Γ = 𝜀2
Ca𝐾𝜀𝑵𝜀Γ on Γ𝜀𝑿(𝑡), (60)

𝑵𝜀Γ ⋅ 𝒏sym = 0 at 𝑠 = 0, (61)

cos(𝜃𝜀(−𝜕𝑡(𝛾01𝑇𝜀w,1 + 𝜀𝒀𝜀 ⋅ 𝑻𝜀w)|𝑋1=𝑌𝜀1)) = 𝑻𝜀Γ ⋅ 𝑻𝜀w|𝑋1=𝑌𝜀1 at 𝑠 = 1. (62)

The transformed normal and tangential vectors are given by𝑻𝜀w = 𝒕𝜀w|𝑥1=𝛾01+𝜀𝑋1 ,𝑵𝜀w = 𝒏𝜀w|𝑥1=𝛾01+𝜀𝑋1 ,
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𝑻𝜀Γ = 1√(𝜕𝑠𝑌𝜀1)2 + (𝜕𝑠𝑌𝜀2)2 𝜕𝑠𝒀𝜀,𝑵𝜀Γ = 1√(𝜕𝑠𝑌𝜀1)2 + (𝜕𝑠𝑌𝜀2)2
( 𝜕𝑠𝑌𝜀2−𝜕𝑠𝑌𝜀1) ,

and the rescaled curvature 𝐾𝜀 is
𝐾𝜀 = 𝜕𝑠𝑌𝜀1𝜕2𝑠 𝑌𝜀2 − 𝜕𝑠𝑌𝜀2𝜕2𝑠 𝑌𝜀1𝜀((𝜕𝑠𝑌𝜀1)2 + (𝜕𝑠𝑌𝜀2)2)3∕2 .

Inserting the homogenization ansatz into Equations (53–62) using (A1)–(A5), (A7), (A8), and a
Taylor expansion around 𝑋2 = 𝑤0(𝛾01(𝑡)) for Equation (58), one obtains

(𝜀2) = ∇𝑿𝑃0I + 𝜀 (∇𝑿𝑃1I − Δ𝑿𝑼0I ) in Ω𝜀𝑿,I(𝑡), (63)

(𝜀2) = ∇𝑿𝑃0II + 𝜀 (∇𝑿𝑃1II − MΔ𝑿𝑼0II) in Ω𝜀𝑿,II(𝑡), (64)

(𝜀) = ∇𝑿 ⋅ 𝑼0𝑚 in Ω𝜀𝑿,𝑚(𝑡), (65)

(𝜀) = 𝑈0𝑚,2, (𝜀) = 𝜕𝑋2𝑈0𝑚,1 at 𝑋2 = 0, (66)

(𝜀2) = 𝜕𝑋2𝑃0𝑚 + 𝜀𝜕𝑋2𝑃1𝑚 at 𝑋2 = 0, (67)

(𝜀) = 𝑈0𝑚,1 + (𝜆0 + 𝜆𝑒 exp(−|𝑋1|)) (𝜕𝑋2𝑈0𝑚,1 + 𝜕𝑋1𝑈0𝑚,2) at 𝑋2 = 𝑤0(𝛾01(𝑡)), (68)

(𝜀) = 𝑈0𝑚,2 at 𝑋2 = 𝑤0(𝛾01(𝑡)), (69)

(𝜀) = (𝜕𝑡𝛾01 − 𝑈0
I,1)𝜕𝑠𝑌02 + 𝑈0

I,2𝜕𝑠𝑌01 on Γ𝜀𝑿(𝑡), (70)

(𝜀) = 𝑼0
I −𝑼0

II on Γ𝜀𝑿(𝑡), (71)

(𝜀min(1,2−𝛼)) = (𝑃0I − 𝑃0II) + 𝜀1−𝛼
Ca

𝜕𝑠𝑌01𝜕2𝑠 𝑌02 − 𝜕𝑠𝑌02𝜕2𝑠 𝑌01((𝜕𝑠𝑌01)2 + (𝜕𝑠𝑌02)2)3∕2 on Γ𝜀𝑿(𝑡), (72)

(𝜀) = 𝜕𝑠𝒀0 ⋅ (D𝑿(𝑼0
I ) −MD𝑿(𝑼0

II))( 𝜕𝑠𝑌02−𝜕𝑠𝑌01) on Γ𝜀𝑿(𝑡), (73)

(𝜀) = 𝜕𝑠𝑌01 at 𝑠 = 0, (74)

(𝜀) = 𝜕𝑠𝑌01√(𝜕𝑠𝑌01)2 + (𝜕𝑠𝑌02)2 + cos(𝜃0(𝜕𝑡𝛾01)) at 𝑠 = 1. (75)

The leading order terms in the momentum equations (63–64) yield ∇𝑿𝑃0𝑚 = 𝟎 in Ω𝜀𝑿,𝑚(𝑡) for𝑚 ∈ {I, II}. This is in agreement with the symmetry condition, Equation (67). By matching with
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the outer solution we obtain𝑃0𝑚(𝑡, 𝑿) = 𝑝0𝑚(𝑡, 𝛾01(𝑡)) for all 𝑿 ∈ Ω𝜀𝑿,𝑚(𝑡). (76)

Remark 3. Recall that we assume Ca = 𝜀𝛼Ca for some 𝛼 ∈ ℕ0. Considering Equation (72), one
must distinguish the cases 𝛼 < 1, 𝛼 = 1, and 𝛼 > 1. For 𝛼 < 1, the interface tension force is negli-
gible in leading order, such that the pressures 𝑃0I and 𝑃0II are equal. Formally, this allows to deter-
mine the leading order solution of the outer bulk-flow problem. However, this also means that
the interface Γ𝜀𝑿(𝑡) is not stabilized by surface tension, but part of the first-order solution, such
that we cannot guarantee solvability. Furthermore, one might expect the occurrence of topolog-
ical changes due to, for example, formation of bubbles, thin films, and so forth, which are not
part of this model. In the case 𝛼 > 1, the interfacial tension force is dominating Equation (72),
so that the leading order curvature 𝐾0 of the interface is zero. Due to the boundary conditions,
Equations (74–75), this can only happen if the leading order contact angle 𝜃0(𝜕𝑡𝛾01) is 𝜋∕2 for any𝛾01(𝑡), that is, for a constant contact angle model for perfectly mixed-wet materials. Even worse,
due to Equation (76), the leading order solution of the outer bulk-flow problem then depends on
the first-order solution, such that we cannot assure the solvability in this case either. We there-
fore consider in what follows only the case 𝛼 = 1. Then the pressure difference is balanced by the
surface tension force in Equation (72). This leads to a solution for the outer bulk-flow problem as
well as for the interface shape.

In the regime 𝛼 = 1, plugging the constant pressures from Equation (76) into the interfacial
force balance equation (72) yields a constant leading-order curvature 𝐾0 given by

𝐾0 = 𝜕𝑠𝑌02𝜕2𝑠 𝑌01 − 𝜕𝑠𝑌01𝜕2𝑠 𝑌02((𝜕𝑠𝑌01)2 + (𝜕𝑠𝑌02)2)3∕2 = Ca(𝑝0II − 𝑝0I )|𝑥1=𝛾01 . (77)

Therefore, the interface is a circular arc. By the contact-angle equation (75), one obtains

𝐾0 = −cos(𝜃0(𝜕𝑡𝛾01))𝑤0(𝛾01) . (78)

Combining Equations (77) and (78) and plugging the result into the bulk pressure solutions given
in Equations (50, 52) leads to

𝑝0in − 𝑞(∫
𝛾010 3(𝑤0(𝑥1))2(3𝜆0 + 𝑤0(𝑥1))𝑑𝑥1 + ∫

1
𝛾01 3M(𝑤0(𝑥1))2(3𝜆0 + 𝑤0(𝑥1))𝑑𝑥1

)
(79)

= cos(𝜃0(𝜕𝑡𝛾01))
Ca𝑤0(𝛾01) .
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Due to the constant curvature in Equation (78) and the symmetry condition, Equation (74), the
leading order interface Γ0𝑿(𝑡) ∶= {𝒀0(𝑡, 𝑠) | 𝑠 ∈ [0, 1]} is given (up to a reparameterization) by

𝒀0(𝑡, 𝑠) = ⎧⎪⎪⎨⎪⎪⎩

𝑤0(𝛾01)cos(𝜃0(𝜕𝑡𝛾01))
⎛⎜⎜⎝
cos((𝜋2 − 𝜃0(𝜕𝑡𝛾01))𝑠) − sin (𝜃0(𝜕𝑡𝛾01))sin((𝜋2 − 𝜃0(𝜕𝑡𝛾01))𝑠)

⎞⎟⎟⎠
for 𝜃0 ≠ 𝜋∕2,

𝑤0(𝛾01(𝑡))(0𝑠) for 𝜃0 = 𝜋∕2.
Analogously to Remark 2, by the mass conservation Equation (17), the interface velocity Equa-

tion (59), and the outer velocity solution given in Equation (49), we obtain

0 = ∫Ω𝜀I ∇𝜀 ⋅ 𝒖𝜀I𝑑𝒙 = ∫Γ𝜀 𝒖𝜀I ⋅ 𝒏𝜀Γ𝑑𝑙 − ∫
1

0 𝑢𝜀I,1||𝑥1=0𝑑𝑥1
= ∫Γ𝜀 𝜕𝑡𝛾01𝑁𝜀Γ,1 + 𝜀𝜕𝑡𝒀𝜀 ⋅ 𝑵𝜀Γ𝑑𝑙 − 𝑞 + (𝜀) = ∫

1
0 𝜕𝑡𝛾01𝜕𝑠𝑌𝜀w2𝑑𝑠 − 𝑞 + (𝜀)

= 𝜕𝑡𝛾01𝑤0(𝛾01) − 𝑞 + (𝜀).
Therefore, the leading order position 𝛾01 of the interface fulfils

𝜕𝑡𝛾01(𝑡) = 𝑞(𝑡)𝑤0(𝛾01(𝑡)) . (80)

To find the solution for 𝒖0𝑚, 𝑝0𝑚 (𝑚 ∈ {I, II}), which is given by Equations (49–52), one has to
determine 𝛾01, 𝑞, and 𝑝0in. The derivation depends on the chosen inlet boundary condition. For a
given inlet velocity 𝒖𝜀I = 𝒖𝜀in at Γ𝜀in, the value of 𝑞 is known. Plugging 𝑞 into Equation (80) and
solving for 𝛾01 yields

𝛾01(𝑡) =−1((𝛾01|𝑡=0) + ∫
𝑡

0 𝑞(𝜏)𝑑𝜏),
where (𝜉) ∶= ∫ 𝜉0 𝑤0(𝑥1)𝑑𝑥1. Note that  ′ = 𝑤0 > 0 by (A4), such that the inverse function
−1 is well-defined. Finally, 𝑝0in can be found by Equation (79).
For a given inlet pressure 𝑝𝜀I = 𝑝𝜀in at Γ𝜀in, the value of 𝑝0in is known. Then, the differential alge-

braic system of Equations (79–80) has index 1 and can be solved for 𝑞 and 𝛾01 . Inserting Equation
(80) into Equation (79) and applying the implicit function theorem to find 𝑞 depending on 𝛾01 , a
sufficient condition for solvability is

sin(𝜃0( 𝑞𝑤0(𝛾01)
)) (𝜃0)′( 𝑞𝑤0(𝛾01)

)
≠ Ca(𝑤0(𝛾01))2(∫

𝛾01
0 3(𝑤0(𝑥1))2(3𝜆0 + 𝑤0(𝑥1)) 𝑑𝑥1+∫ 1

𝛾01
3M(𝑤0(𝑥1))2(3𝜆0 + 𝑤0(𝑥1)) 𝑑𝑥1

) ,
where (𝜃0)′ denotes the derivative of 𝜃0. Note that the right-hand side is always positive, so that
any contact angle model which fulfils (𝜃0)′ ≤ 0 yields solvable differential algebraic equations.
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Furthermore, from Equations (63-71,73), the velocity close to the interface is given by two cou-
pled Stokes problems. More precisely, these problems are defined in the domainsΩ0𝑿,I(𝑡) = {𝑿 ∈ ℝ × (0, 𝑤0(𝛾01(𝑡))) | ∃𝑠 ∈ [0, 1] ∶ 𝑋1 < 𝑌01(𝑡, 𝑠) ∧ 𝑋2 = 𝑌02(𝑡, 𝑠)},Ω0𝑿,II(𝑡) = {𝑿 ∈ ℝ × (0, 𝑤0(𝛾01(𝑡))) | ∃𝑠 ∈ [0, 1] ∶ 𝑋1 > 𝑌01(𝑡, 𝑠) ∧ 𝑋2 = 𝑌02(𝑡, 𝑠)}.
With this, the two problems are (𝑚 ∈ {I, II})0 = ∇𝑿𝑃1I − Δ𝑿𝑼0I in Ω0𝑿,I(𝑡), (81)

0 = ∇𝑿𝑃1II − MΔ𝑿𝑼0II in Ω0𝑿,II(𝑡), (82)

0 = ∇𝑿 ⋅ 𝑼0𝑚 in Ω0𝑿,𝑚(𝑡), (83)

0 = 𝑈0𝑚,2, 0 = 𝜕𝑋2𝑈0𝑚,1, 0 = 𝜕𝑋2𝑃1𝑚 at 𝑋2 = 0, (84)

0 = 𝑈0𝑚,1 + (𝜆0 + 𝜆𝑒 exp(−|𝑋1|))𝜕𝑋2𝑈0𝑚,1, 0 = 𝑈0𝑚,2 at 𝑋2 = 𝑤0(𝛾01(𝑡)), (85)

0 = (𝜕𝑡𝛾01 − 𝑈0
I,1)𝜕𝑠𝑌02 + 𝑈0

I,2𝜕𝑠𝑌01 on Γ0𝑿(𝑡), (86)

0 = 𝑼0
I −𝑼0

II on Γ0𝑿(𝑡), (87)

0 = 𝜕𝑠𝒀0 ⋅ (D𝑿(𝑼0
I ) −MD𝑿(𝑼0

II))( 𝜕𝑠𝑌02−𝜕𝑠𝑌01) on Γ0𝑿(𝑡), (88)

𝟎 = lim𝑋1→−∞𝑼0
I − 𝒖0I |𝑥1=𝛾01,𝑥2=𝑋2 , (89)

𝟎 = lim𝑋1→∞𝑼0
II − 𝒖0II|𝑥1=𝛾01,𝑥2=𝑋2 . (90)

3.3 Unsaturated flow limit

In (A2), we assumed the viscosity ratioM = (𝜀0). Here,we investigate the casewhen the viscosity
of fluid II is much smaller than that of fluid I, like in a system consisting of water and air. Hence,
we replace (A2) by:

(A9) The viscosity ratio satisfies𝑀 = (𝜀𝛽) for some 𝛽 ≥ 1.
Following the same steps as in the previous subsections, we obtain amodel which only includes

the flow of fluid I, while the flow of fluid II can be omitted. In other words, the upscaled model is
an unsaturated flow in the thin strip. Furthermore, the effective solution for fluid I will coincide
with the one obtained when letting𝑀 → 0 in Equations (49, 50, 79, 80) derived previously.
To this end, we use the same asymptotic expansions and (A1), (A3)–(A8), and (A9) instead of

(A2). For fluid I, we obtain again Equations (29,30,33-35,39,40) and work with either Equation
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(36) or Equation (37) as inlet condition. Therefore, the solution for fluid I is again given by Equa-
tions (49, 50), where 𝑝0in and 𝑞 are given by the interface region and the inlet condition.
For fluid II, the leading order mass balance equations become

(𝜀) = 𝜕𝑥1𝑝0II in Ω𝜀II(𝑡), (91)

(𝜀0) = 𝜀−1𝜕𝑥2𝑝0II in Ω𝜀II(𝑡). (92)

Together with the leading order outflow condition (𝜀) = 𝑝0II at 𝑥1 = 1, we conclude that𝑝0II(𝑡, 𝒙) = 0 inΩ𝜀II(𝑡). Rescaling the interface region as in Subsection 3.2 and taking (A7) and (A8)
into account, the leading order equations for fluid I are again Equations (63,65-69). Since 𝑝0II ≡ 0,
the interface conditions are Equations (68-70,74), as well as

(𝜀min(1,2−𝛼)) = 𝑃0I + 𝜀1−𝛼
Ca

𝜕𝑠𝑌01𝜕2𝑠 𝑌02 − 𝜕𝑠𝑌02𝜕2𝑠 𝑌01((𝜕𝑠𝑌01)2 + (𝜕𝑠𝑌02)2)3∕2 on Γ𝜀𝑿(𝑡), (93)

(𝜀) = 𝜕𝑠𝒀0 ⋅D𝑿(𝑼0
I )( 𝜕𝑠𝑌02−𝜕𝑠𝑌01) on Γ𝜀𝑿(𝑡). (94)

In the regime 𝛼 = 1, this yields a constant leading-order curvature, implying
𝑝0in − 𝑞 ∫ 𝛾010 3(𝑤0(𝑥1))2(3𝜆0 + 𝑤0(𝑥1))𝑑𝑥1 = cos(𝜃0(𝜕𝑡𝛾01))

Ca𝑤0(𝛾01) , (95)

𝜕𝑡𝛾01(𝑡) = 𝑞(𝑡)𝑤0(𝛾01(𝑡)) . (96)

3.4 Hysteretic contact angle model

The previous analysis requires that the dynamic contact angle relation is continuous, as expressed
in (A5). However, experiments suggest the occurrence of contact angle hysteresis. For example,
the reviews68,70 discuss this as a result of surface wettability and roughness. This means that static
contact angles are not unique, but can vary due to pinning. Here, we allow that the contact angle
relation 𝜃𝜀 involves a multivalued graph if the velocity of the contact line is zero. To still obtain
a well-defined contact angle law, we reformulate the respective condition under the following
assumption, which replaces (A5).

(A10) Restricted to ℝ ⧵ {0}, 𝜃𝜀 is a Lipschitz-continuous and strictly monotonic function into(0, 𝜋). For a zero velocity, it can take any values as follow:
𝜃𝜀(0)∈{[ lim𝑢↗0 𝜃𝜀(𝑢), lim𝑢↘0 𝜃𝜀(𝑢)] if 𝜃𝜀is increasing,[ lim𝑢↘0 𝜃𝜀(𝑢), lim𝑢↗0 𝜃𝜀(𝑢)] otherwise.
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Using the monotonicity of 𝜃𝜀, one can invert the relation with respect to the velocity. For this,
let 𝜁𝜀 ∶= (cos(𝜃𝜀))−1 be the inverse of cos 𝜃𝜀. By (A10), 𝜁𝜀 is well-defined and Lipschitz-continuous.
As before, we assume that 𝜁𝜀 depends regularly on 𝜀.
(A11) 𝜁𝜀 has a uniform expansion 𝜁𝜀(𝑎) = 𝜁0(𝑎) + 𝜀𝜁1(𝑎) + (𝜀2),

where 𝜁0 ∶ (−1, 1) → ℝ is Lipschitz-continuous.

With this, we study the Navier–Stokes system for two-phase flow Equations (15–25), but replace
Equation (26) by the following, inverted contact angle condition:

𝜁𝜀(𝒕𝜀Γ||𝑠=1 ⋅ 𝒕𝜀w||𝑥1=𝛾𝜀1) = 𝜕𝑡𝛾𝜀1. (97)

Since the analysis in Subsection 3.1 is independent of the interface region, and in particular does
not use (A5) or the nonhysteretic contact angle equation (26), the derived bulk solutions given by
Equations (49–52) remain unchanged.
Using (A1)–(A4), (A6)–(A8), and (A11) instead of (A5), we repeat the analysis close to the inter-

face Γ𝜀(𝑡) from Subsection 3.2. Following the same steps, we obtain a circular interface with con-
stant curvature 𝐾0, which is then implicitly given by𝜕𝑡𝛾01 = 𝜁0(𝑤0(𝛾01)𝐾0).
Combining this, the pressure Equation (77), and the outer pressure solution Equations (50, 52),
one obtains 𝜕𝑡𝛾01 = 𝜁0 (𝑤0(𝛾01)Ca (𝑝0in − qJ(𝛾01))) , (98)

where

𝐽(𝛾01) ∶= ∫
𝛾010 3(𝑤0(𝑥1))2(3𝜆0 + 𝑤0(𝑥1))𝑑𝑥1 + ∫

1
𝛾01 3M(𝑤0(𝑥1))2(3𝜆0 + 𝑤0(𝑥1))𝑑𝑥1.

Together with Equation (80), this forms a differential algebraic system of two equations for the
two unknowns 𝛾01 and either 𝑝0in or 𝑞. Furthermore, the Stokes problem for finding the velocity
close to the interface remains unchanged as well.
The solution process depends again on the chosen inlet boundary condition, analogously to

the discussion in Subsection 3.2. As before, it is sufficient to obtain 𝛾01 , 𝑝0in, and 𝑞, since these
are the unknown coefficients for the bulk solutions 𝒖0𝑚 and 𝑝0𝑚 (𝑚 ∈ {I, II}) given by Equations
(49–52). For an inlet velocity boundary condition 𝒖𝜀I = 𝒖𝜀in (at Γ𝜀in), the value of 𝑞 is given. Hence,
plugging this into Equation (80) yields 𝛾01 , and thus one can solve Equation (98) for 𝑝0in. However,
the solution of the inlet pressure 𝑝0in is not unique if the contact angle relation 𝜃𝜀 is multivalued
at velocity 𝑢 = 0. On the other hand, for an inlet pressure condition 𝑝𝜀I = 𝑝𝜀in, the value of 𝑝0in
is known. Then, the differential algebraic system of Equations (80,98) has index 1 and can be
solved for 𝑞 and 𝛾01 . Inserting Equation (80) into Equation (98) and applying the implicit function
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theorem to find 𝑞 depending on 𝛾01, a sufficient condition for solvability is
(𝜁0)′ (𝑤0(𝛾01)Ca (𝑝in0 − qJ(𝛾01))) ≠ 1

Ca(𝑤0(𝛾01))2𝐽(𝛾01) .
4 AVERAGEDMODELS AND EFFECTIVE QUANTITIES

Based on the asymptotic solution for pressures and velocities, we continue with the study of
averaged models and effective quantities. First, we show that a local, one-dimensional version
of Darcy’s law holds for the transversally averaged pressures and velocities. In the second part,
we derive effective quantities based on volume averages. The main result is a capillary pressure–
saturation relationship involving dynamic effects.
In the following, we are only interested in the leading order relations. To simplify the notation,

we therefore drop the indices (⋅)𝜀 and (⋅)0, and neglect higher-order terms. Hence, all following
equations should be understood as up to terms of order 𝜀.
4.1 Transversal average: Darcy’s law

In the following, we derive the transversal average of the quantities to demonstrate that the one-
dimensional description of the thin strip yields a local version of Darcy’s law. To this end, recall
that the total flux (in the half strip) 𝑞(𝑡) is independent of 𝑥1 as discussed in Remark 2. The
transversally averaged velocity in 𝑥1-direction is therefore given by

𝑢(𝑡, 𝑥1) ∶={(𝑤(𝑥1))−1 ∫ 𝑤(𝑥1)0 𝑢1,I(𝑡, 𝒙)𝑑𝑥2 for 𝑥1 < 𝛾1(𝑡),(𝑤(𝑥1))−1 ∫ 𝑤(𝑥1)0 𝑢1,II(𝑡, 𝒙)𝑑𝑥2 for 𝑥1 > 𝛾1(𝑡),= 𝑞(𝑡)𝑤(𝑥1) .
Since the pressures 𝑝I and 𝑝II are independent of 𝑥2, we obtain for the transversally averaged
pressures

𝑝I(𝑡, 𝑥1) ∶= (𝑤(𝑥1))−1 ∫ 𝑤(𝑥1)
0 𝑝I(𝑡, 𝒙)𝑑𝑥2

= 𝑝in(𝑡) − 𝑞(𝑡)∫ 𝑥1
0 3(𝑤(𝜉))2(3𝜆 + 𝑤(𝜉))𝑑𝜉 for 𝑥1 < 𝛾1(𝑡),

𝑝II(𝑡, 𝑥1) ∶= (𝑤(𝑥1))−1 ∫ 𝑤(𝑥1)
0 𝑝II(𝑡, 𝒙)𝑑𝑥2

= 𝑞(𝑡)∫ 1
𝑥1 3M(𝑤(𝜉))2(3𝜆 + 𝑤(𝜉))𝑑𝜉 for 𝑥1 > 𝛾1(𝑡).
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F IGURE 2 The local permeability 𝐾I has a quadratic dependence on the width 𝑤 and increases for
increasing slip length 𝜆
This means that the transversally averaged pressures satisfy a Darcy-type law𝑢(𝑡, 𝑥1) = −𝐾𝑚(𝑥1)𝜕𝑥1𝑝𝑚(𝑡, 𝑥1)
for𝑚 ∈ {I, II}, where the local permeabilities are given by

𝐾I(𝑥1) ∶= 13𝑤(𝑥1)(3𝜆 + 𝑤(𝑥1)),𝐾II(𝑥1) ∶= 13M𝑤(𝑥1)(3𝜆 + 𝑤(𝑥1)).
These permeabilities depend only on the local width 𝑤 of the thin strip, on the slip length 𝜆, and
on the viscosity ratio M of the fluids (Figure 2). Note that this resembles the typical relation 𝑢 =𝑑212 𝜕𝑥1𝑝 for single-phase flow in a thin strip of diameter 𝑑 = 2𝑤. Also note that the permeabilities
are nondimensional due to the chosen scaling of the 𝑥2 coordinate by �̂�(0) and the reference
viscosity 𝜇I.
4.2 Effective quantities: Dynamic capillary pressure

To obtain effective quantities such as the saturation and the intrinsically averaged pressures, we
use volume averages.With these, we obtain a capillary pressure–saturation relationship involving
dynamic effects. In line with classical volume averaging theory,30,31 we define the volume average
⟨𝑎𝑚⟩ of a quantity 𝑎𝑚 defined in Ω𝑚,𝑚 ∈ {I, II}, to be

⟨𝑎𝑚⟩ ∶= ∫Ω𝑚 𝑎𝑚𝑑𝒙∫Ω 𝑑𝒙 ,
while the intrinsic average is

⟨𝑎𝑚⟩𝑚 ∶= ∫Ω𝑚 𝑎𝑚𝑑𝒙∫Ω𝑚 𝑑𝒙 .
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The volume of the domain ΩI is given by

∫ΩI 𝑑𝒙 = ∫
𝛾1

0 𝑤(𝑥1)𝑑𝑥1 =(𝛾1).
Analogously, we have ∫Ω 𝑑𝒙 =(1) and ∫ΩII 𝑑𝒙 =(1) −(𝛾1). Therefore, the saturation of
fluid I is in leading order given by

𝑆(𝑡) ∶= ⟨1ΩI(𝑡)⟩ = ∫ΩI(𝑡) 𝑑𝒙∫Ω 𝑑𝒙 = (𝛾1(𝑡))(1) . (99)

Note that we only consider the case when both phases are present, so that 𝛾1(𝑡) ∈ (0, 1) and 𝑆 ∈(0, 1). For simplicity, we define the function
Ψ(𝑆) ∶= 1𝑤(−1((1)𝑆)) , (100)

which represents the reciprocal of the local width depending on the saturation 𝑆 and on the geom-
etry of the thin strip. Note that the system of Equations (79–80) can be rewritten in terms of the
saturation as

𝑝in − 𝑞(1)(∫
𝑆

0 3(Ψ(𝜉))33𝜆 + (Ψ(𝜉))−1 𝑑𝜉 + ∫
1

𝑆 3M(Ψ(𝜉))33𝜆 + (Ψ(𝜉))−1 𝑑𝜉)
= cos(𝜃((1)Ψ(𝑆)𝜕𝑡𝑆))

Ca
Ψ(𝑆),

𝜕𝑡𝑆 = 𝑞
(1) .

However, this reformulation is less practical, since the function Ψ typically is not a closed-
form expression.
Using Equation (50), the intrinsically averaged pressure of fluid I is

⟨𝑝I⟩I = 1
(𝛾1) ∫ 𝛾1

0 𝑤(𝑥1)(𝑝in − 𝑞 ∫ 𝑥1
0 3(𝑤(𝜉))2(3𝜆 + 𝑤(𝜉))𝑑𝜉) 𝑑𝑥1,

which can be rewritten after integration by parts as

⟨𝑝I⟩I = 𝑝I|𝑥1=𝛾1 + 3𝑞
(𝛾1) ∫ 𝛾1

0 (𝑥1)(𝑤(𝑥1))2(3𝜆 + 𝑤(𝑥1))𝑑𝑥1. (101)

Analogously, Equation (52) yields the intrinsically averaged pressure of fluid II to be

⟨𝑝II⟩II = 𝑝II|𝑥1=𝛾1 − 3M𝑞
(1) −(𝛾1) ∫ 1

𝛾1 (1) −(𝑥1)(𝑤(𝑥1))2(3𝜆 + 𝑤(𝑥1))𝑑𝑥1. (102)
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Using Equation (79), the difference of the intrinsically averaged pressures, in the following called
phase-pressure difference, is given by

⟨𝑝I⟩I − ⟨𝑝II⟩II = cos(𝜃(𝜕𝑡𝛾1))
Ca𝑤(𝛾1) + 3𝑞( 1

(𝛾1) ∫ 𝛾1
0 (𝑥1)(𝑤(𝑥1))2(3𝜆 + 𝑤(𝑥1)) 𝑑𝑥1 + M

(1) −(𝛾1) ∫ 1
𝛾1 (1) −(𝑥1)(𝑤(𝑥1))2(3𝜆 + 𝑤(𝑥1)) 𝑑𝑥1

) .
(103)

Using Equations (80,99,100), this difference can be expressed in the form

⟨𝑝I⟩I − ⟨𝑝II⟩II = 𝑝𝑐,loc(𝑆, 𝜕𝑡𝑆) + 𝜏(𝑆)𝜕𝑡𝑆. (104)

The first term on the right denotes the local capillary pressure 𝑝𝑐,loc ∶= (𝑝I − 𝑝II)|𝑥1=𝛾1 given by
𝑝𝑐,loc(𝑆, 𝜕𝑡𝑆) = cos(𝜃((1)Ψ(𝑆)𝜕𝑡𝑆))

Ca
Ψ(𝑆). (105)

The second term in Equation (104) can be interpreted as a dynamic capillarity due to the viscous
drag. In particular, its coefficient is

𝜏(𝑆) = 3((1))2𝑆 ∫
𝑆

0 𝜉(Ψ(𝜉))33𝜆 + (Ψ(𝜉))−1 𝑑𝜉 + 3((1))2M1 − 𝑆 ∫
1

𝑆 (1 − 𝜉)(Ψ(𝜉))33𝜆 + (Ψ(𝜉))−1 𝑑𝜉, (106)

which depends on the slip length 𝜆, the viscosity ratioM, and thewall function𝑤. Note that under
static conditions, when 𝑞 ≪ 1, we have 𝑝in ≈ ⟨𝑝I⟩I − ⟨𝑝II⟩II = 𝑝𝑐,loc, such that the measurement
of the inlet pressure yields (static) capillary pressure–saturation relation, but under the dynamic
conditions studied here, these quantities can considerably differ. This one must be aware of when
performing experiments.
The local capillary pressure 𝑝𝑐,loc depends reciprocally on the effective capillary number Ca

and on the local width 𝑤(−1((1)𝑆)) = 1∕Ψ(𝑆) of the thin strip. In case of a dynamic contact
angle model of the form cos(𝜃(𝑢)) = cos(𝜃𝑠) + 𝜂Ca𝑢, the molecular kinetic theory in Refs. 68, 69,
Equation (105) yields

𝑝MKT𝑐,loc (𝑆, 𝜕𝑡𝑆) = cos(𝜃𝑠)
Ca

Ψ(𝑆) + 𝜂(1)(Ψ(𝑆))2𝜕𝑡𝑆. (107)

The static and dynamic effects are decoupled in this case. The first term models the static (local)
capillary pressure, while the second term is a dynamic contribution.
In case of a constant contact angle 𝜃 ≡ 𝜃𝑠 ∈ (0, 𝜋), Equation (105) yields the local capillary pres-

sure

𝑝const𝑐,loc (𝑆) = cos(𝜃𝑠)
Ca

Ψ(𝑆).
With 𝑙(𝑡) ∶= ∫Γ𝑿(𝑡) 𝑑𝑠 being the length of the circular interface Γ𝑿(𝑡) at time 𝑡, the local capillary
pressure becomes

𝑝const𝑐,loc (𝑙) = 𝜋2 − 𝜃𝑠
Ca 𝑙 .
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TABLE 2 Standard parameters for the thin strip of constant width
Parameter Symbol Value
Capillary number Ca 1/2
Contact angle 𝜃 𝜋/3
Slip length 𝜆 1/6
Viscosity ratio M 1
Initial interface position 𝛾1|𝑡=0 0
Inlet pressure 𝑝in 3

Observe that 𝑙(𝑡) can be assimilated to the interfacial area concept considered in Refs. 14, 15. Note
that for a dynamic contact angle, there is no simple closed-form expression of the local capillary
pressure as a function of the interface length (nor of its derivatives).

5 NUMERICAL EXPERIMENTS

To illustrate the theoretical findings, we depict some numerical examples in this section. We start
with a thin strip of constantwidth, and afterward consider a constricted “pore throat”with varying
width. After a short discussion of the boundary conditions, we consider the resulting effective
quantities. In particular, we study the effect of the slip length and the viscosity ratio and discuss
the effect of a dynamic and a hysteretic contact angle model for both geometries.
We have implemented the numerical solutions using MATLAB R© R2020a.76 The source

code is openly available under the CC-BY license in GitHub at https://github.com/s-lunowa/
AsymptoticThinStripMCLSolver.77

5.1 Thin strip of constant width

First we consider a simple case, which is a thin strip of constant width𝑤𝜀 ≡ 1, and study the veloc-
ity and pressure distribution of the two phases as well as the movement of the interface. After a
short discussion of the effect of different inlet boundary conditions, we will consider the effect of
different parameter choices in the following subsections—the slip length in Subsection 5.1.1, the
viscosity ratio in Subsection 5.1.2, and dynamic and hysteretic contact angle models in Subsec-
tions 5.1.3 and 5.1.4, respectively. Except for the varying parameter mentioned in each subsection,
all the other ones are fixed, as given in Table 2. In particular, the contact angle model considered
when discussing the other parameters is constant, that is, the contact angle is static and fluid I
is nonwetting.
For this geometry, the solution given in Equations (49–52) for the bulk domains becomes

𝒖I(𝑡, 𝒙) = (3𝑞(𝑡) 2𝜆+1−𝑥226𝜆+20
), 𝑝I(𝑡, 𝒙) = 𝑝in(𝑡) − 𝑞(𝑡) 3𝑥13𝜆 + 1, for 𝑥1 < 𝛾1(𝑡), (108)

𝒖II(𝑡, 𝒙) = (3𝑞(𝑡) 2𝜆+1−𝑥226𝜆+20
), 𝑝II(𝑡, 𝒙) = 𝑞(𝑡)3M(1 − 𝑥1)3𝜆 + 1 , for 𝑥1 > 𝛾1(𝑡). (109)
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F IGURE 3 Velocity profile in the thin strip with constant width (𝜆 = 1∕6)
F IGURE 4 Pressure
distribution over length 𝑥1 at
various times in the thin strip of
constant width for viscosity ratio
M = 0.5. The solution depends on
the inlet boundary condition and
shows a more dynamic behavior
in case (b) than in case (a)

This means that the velocity profiles are of Hagen–Poiseuille type (Figure 3). The pressures
decrease linearly inside the bulk phases due to the viscous forces. Furthermore, the interface sys-
tem of Equations (79,80) simplifies into

𝑝in(𝑡) − 𝑞(𝑡)3𝛾1(𝑡) + 3M(1 − 𝛾1(𝑡))3𝜆 + 1 = cos(𝜃(𝑞(𝑡)))
Ca

, 𝜕𝑡𝛾1(𝑡) = 𝑞(𝑡). (110)

The actual size of the quantities and the movement of the interface depend on the inlet bound-
ary conditions, on the effective capillary number, on the slip length, on the viscosity ratio, and
on the contact angle model. Here, we shortly discuss the qualitatively different cases with respect
to the inlet boundary conditions and the viscosity ratio, when all other parameters are given by
Table 2 for simplicity.

(a) When the inlet velocity is fixed, for example, 𝑢in,1 = 4∕3 − 𝑥22 , one obtains 𝑞(𝑡) = 1 and thus
the constant (in time) velocities 𝑢𝑚,1 = 4∕3 − 𝑥22 for 𝑚 ∈ {I, II}, so that the interface moves
linearly, 𝛾1(𝑡) = 𝑡. The pressures are then given by𝑝I(𝑡, 𝒙) = 1 + 2M + 2(1 −M)𝑡 − 2𝑥1, 𝑝II(𝑡, 𝒙) = 2M(1 − 𝑥1).
For M ≠ 1, the pressure of fluid I is time-dependent, as depicted in Figure 4, while both pres-
sures are constant in time for M = 1.

(b) When the inlet pressure is fixed, for example, 𝑝in = 3, the flow of both fluids is time-
dependent. For a viscosity ratio M < 1, one obtains the solution

𝑝I(𝑡, 𝒙) = 3 − 2(1 −M)𝑥1√
M2 + 2(1 −M)𝑡 , 𝑝II(𝑡, 𝒙) = 2M(1 −M)(1 − 𝑥1)√

M2 + 2(1 −M)𝑡 ,
𝑢𝑚,1(𝑡, 𝒙) = (1 −M)( 43 − 𝑥22)√

M2 + 2(1 −M)𝑡 , 𝛾1(𝑡) = √
M2 + 2(1 −M)𝑡 −M1 −M ,
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for𝑚 ∈ {I, II}, shown in Figure 4. Analogous behavior can be observed when M > 1. Only for
M = 1, both pressures are constant in time, like in (a).

From these examples, we observe a more dynamic behavior when the inlet pressure is given,
which corresponds also to the typical setting for capillary pressure experiments. Thus, we restrict
the following discussion to the case of given pressure boundary condition at the inlet.
Due to the constant width, the effective quantities have rather simple algebraic expressions.

The saturation 𝑆 coincides with the interface position, that is, 𝑆 = 𝛾1. The local permeabilities are
constant and given by

𝐾I ≡ 1 + 3𝜆3 , 𝐾II ≡ 1 + 3𝜆3M . (111)

The local capillary pressure, the dynamic coefficient and the phase-pressure difference are

𝑝𝑐,loc(𝑆, 𝜕𝑡𝑆) = cos 𝜃(𝜕𝑡𝑆)
Ca

, (112)

𝜏(𝑆) = 3𝑆 +M(1 − 𝑆)6𝜆 + 2 , (113)

⟨𝑝I⟩I − ⟨𝑝II⟩II = 𝑝in + 𝑝𝑐,loc(𝑆, 𝜕𝑡𝑆)2 . (114)

As direct consequence of the constant contact angle in Table 2, we obtain a constant local capil-
lary pressure 𝑝𝑐,loc ≡ 1 by Equation (112) and a constant phase-pressure difference ⟨𝑝I⟩I − ⟨𝑝II⟩II ≡2 by Equation (114). Changing the static contact angle 𝜃 ≡ 𝜃𝑠 ∈ (0, 𝜋) or the capillary number Ca
influences the size of the local capillary pressure and the size of the phase-pressure difference in
a straightforward way, while the behavior of the other quantities remains qualitatively the same.
For simplicity, we do not discuss their detailed effects. Note that 𝑝𝑐,loc and ⟨𝑝I⟩I − ⟨𝑝II⟩II do not
depend on the slip length nor on the viscosity ratio. Hence, we only consider their behavior for
dynamic and hysteretic contact angle models. Meanwhile, the dynamic coefficient depends on
the slip length and the viscosity ratio, which is relevant in case of a inlet velocity condition.

5.1.1 Effect of the slip length

First, we consider the effect of the slip length 𝜆 while using all other parameters as above. The
velocity at the wall is given by

𝑢𝑚,1||𝑥2=1 = 𝑞 3𝜆3𝜆 + 1 for𝑚 ∈ {I, II}.
It is zero for 𝜆 = 0, increases for an increasing slip length, and approaches 𝑞 for 𝜆 → ∞, which
corresponds to a total slip (Figure 5). This is a result of the decreased friction of the fluid at the
wall for an increased slip length. In addition, this leads to a smaller dynamic coefficient 𝜏, com-
pare Equation (113) and Figure 5. For constant inlet pressure, the decrease of the pressure gradi-
ents in Equations (108,109) for an increased slip length 𝜆 are compensated by a larger total flux𝑞, and thus a faster movement of the interface position 𝛾1 (Figure 5). The local permeabilities 𝐾I,
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F IGURE 5 For an increasing slip length 𝜆, the velocity ratio 𝑢rel = 𝑢𝑚,1|𝑥2=1∕𝑞 at the wall increases (left),
while the dynamic parameter 𝜏 decreases (center). The interface position 𝛾1 moves faster for an increasing slip
length 𝜆 (right)

F IGURE 6 For increasing viscosity ratio M, the dynamic parameter 𝜏 increases (left), while the interface
position 𝛾1 moves slower (right)𝐾II show a similar behavior. Observe that since 𝑤 ≡ 1, these only depend on the slip length. As
follows from Equation (111) (cf. Figure 2), they increase linearly with 𝜆.
5.1.2 Effect of the viscosity ratio

Next, we continue the investigation for various viscosity ratios M. Since the viscous force
in fluid II is proportional to the viscosity ratio M, the total flux 𝑞 decreases when the vis-
cosity ratio M increases (cf. Equation (110)). In particular, the interface position 𝛾1 moves
faster when the thin strip is mainly filled by the less viscous fluid (Figure 6). Further-
more, we observe that the solutions converge for M→ 0 toward solution of the simplified,
unsaturated flow model as discussed in Subsection 3.3. Note that we use 𝛾1|𝑡=0 = 10−3 when
M = 0 to avoid the degeneration of the interface system in Equation (110).
The dynamic coefficient 𝜏 becomes larger for small saturations 𝑆, if the viscosity ratio is large

(M > 1), and vice versa for M < 1 due to Equation (113), and shown in Figure 6. Note that one
can observe even in this extremely simplified setting that the dynamic coefficient is saturation-
dependent, except for fluids with the same viscosity (M = 1). In addition, the dynamic coefficient
is monotonic in the saturation 𝑆 for any viscosity ratio.
5.1.3 Effect of a dynamic contact angle

Now,we consider the effect of a dynamic contact anglemodel. Aswe expect the similar qualitative
behavior for different dynamic contact angle models, we restrict the discussion to the model𝜃(𝑢) = arccos(max(min(cos(𝜃𝑠) + 𝜂Ca𝑢, 1), −1)), (115)
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F IGURE 7 The local capillary pressure 𝑝𝑐,loc increases for increasing dynamic contact angle coefficient 𝜂
(left). Hence, the movement of the interface position 𝛾1 slows down (right)
which is the linearized molecular kinetic theory model (for small velocities) from Refs. 47,55
68,69,73,74 restricted to the possible range [0, 𝜋]. Here, the parameter 𝜂 ≥ 0 models the effective
friction at the contact point leading to a dynamic contact angle. For comparability, we fix the
static contact angle 𝜃𝑠 = 𝜋∕3 and all the other parameters as in Table 2. Note that for any 𝜂 ≥ 0,
the differential algebraic system inEquation (110) has a unique solution, since cosine ismonotonic
decreasing on [0, 𝜋].
In contrast to the previous examples, the dynamic contact angle model does not affect the

dynamic coefficient 𝜏, but has an impact on the local capillary pressure 𝑝𝑐,loc and the phase-
pressure difference ⟨𝑝I⟩I − ⟨𝑝II⟩II. Recall that the local capillary pressure is given in this case by
Equation (107). In particular, its dynamic part is proportional to the parameter 𝜂. Hence, the inter-
face position 𝛾1 moves slower when the parameter 𝜂 increases (Figure 7). Note that the total flux𝑞 is constant, so that 𝛾1 is linear in time. Since M = 1, the local capillary pressure and the phase-
pressure difference are constant over 𝑆, so that we only show the dependence on 𝜂 in Figure 7.
5.1.4 Effect of a hysteretic contact angle

Finally, we consider the effect of a hysteretic contact angle model and compare it to the static
and dynamic ones. As before we use the dynamic contact angle model in Equation (115) with
static contact angle 𝜃𝑠 = 𝜋∕3. For the hysteretic contact angle model, the advancing and receding
contact angles (with respect to fluid I) are chosen 𝜃𝑎 = 𝜋∕4 and 𝜃𝑟 = 5𝜋∕12, respectively. Together
with the same dynamic contact angle model away from 𝑢 = 0, this yields

𝜁(𝑎) = ⎧⎪⎪⎨⎪⎪⎩

𝑎−cos(𝜃𝑟)𝜂Ca if 𝑎 < cos(𝜃𝑟),𝑎−cos(𝜃𝑎)𝜂Ca if 𝑎 > cos(𝜃𝑎),0 otherwise. (116)

Recall that 𝜁 is the inverse of cos 𝜃. We consider a drainage and imbibition cycle by choosing the
time-dependent inlet pressure𝑝in(𝑡) = 3 − 𝑡, and stop the simulationswhen the interface position
returns to the inlet. The other parameters are taken from Table 2.
As in the dynamic case, we observe that the movement of the interface position 𝛾1 is slower

when the parameter 𝜂 is increased (Figure 8 (top)). While the total flux 𝑞 is linear for the static
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F IGURE 8 The total flux 𝑞 (top-left) is linear for the static and dynamic contact angle model, while being
zero for some time for the hysteretic model. The interface position 𝛾1 moves accordingly (top-right). In case of the
hysteretic model, it is at rest, when the local capillary pressure 𝑝𝑐,loc (bottom-left) lies in between the (static)
capillary pressures for drainage and imbibition, that is, 𝑝𝑐,loc is multivalued at the maximal reached saturation.
For the dynamic models, 𝑝𝑐,loc at the maximal saturation is exactly the static capillary pressure. The
phase-pressure difference ⟨𝑝I⟩I − ⟨𝑝II⟩II (bottom-right) shows the same qualitative behavior
and dynamic contact angle model, so that 𝛾1 is quadratic in time, the hysteretic model leads to a
constant interface positionwhen 𝜃𝑎 ≤ 𝜃 ≤ 𝜃𝑟. Therefore, the local capillary pressure 𝑝𝑐,loc and the
phase-pressure difference ⟨𝑝I⟩I − ⟨𝑝II⟩II at the maximal reached saturation is multivalued taking
all values between the (static) drainage and imbibition capillary pressures (Figure 8 (bottom)).
On the other hand, for the dynamic contact angle model, 𝑝𝑐,loc and ⟨𝑝I⟩I − ⟨𝑝II⟩II at the maximal
saturation are given by the static capillary pressure, since 𝜕𝑡𝑆 = 0. Furthermore, the hysteresis
leads to higher deviations from the static capillary pressure and thus a smallermaximal saturation.
Finally, note that 𝑝in is linear and reaches 𝑝const𝑐,loc at 𝑡 = 2 such that all curves with the dynamic
contact angle model are symmetric. Since 𝜃𝑎 and 𝜃𝑟 have the same distance from 𝜃𝑠, the same
holds in the hysteretic cases.

5.2 Constricted “pore throat”

Next, we consider a strip with varying width𝑤(𝑥1) = 2∕3 + cos(2𝜋𝑥1)∕3,
which represents a constricted “pore throat.” As before, we shortly discuss the velocity and pres-
sure distribution of the two phases as well as the movement of the interface, before proceeding
with the detailed discussion of the effect of the slip length, of the viscosity ratio, and of a dynamic
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TABLE 3 Standard parameters for the case of varying width
Parameter Symbol Value
Capillary number Ca 1/2
Contact angle 𝜃 𝜋/3
Slip length 𝜆 1/6
Viscosity ratio M 1
Initial interface position 𝛾1|𝑡=0 0
Inlet pressure 𝑝in 12

F IGURE 9 Velocity profile in the
thin strip of varying width (𝜆 = 1∕6)

and a hysteretic contact angle model, varying each individually, while fixing all other parameters
as given in Table 3. Note that we choose a static contact angle such that fluid I is nonwetting.
While the overall trend is similar to the previous case with constant width, we additionally

observe here a strong impact of the geometry on the flow behavior and thus on the effective
quantities. In contrast to the constant-width case, the local capillary pressure 𝑝𝑐,loc now depends
on the saturation due to the constriction (Figure 11). Analogously, the phase-pressure difference
⟨𝑝I⟩I − ⟨𝑝II⟩II varies in the saturation.
The solution in the bulk domains given by Equations (49–52) for this geometry then reads

𝑢𝑚,1(𝑡, 𝒙) = 9𝑞(𝑡) (𝑐(𝑥1))2 + 5𝑐(𝑥1) + 6 − 𝑥22(𝑐(𝑥1) + 2)2(2𝑐(𝑥1) + 7) ,
𝑢𝑚,2(𝑡, 𝒙) = 𝜀18𝜋𝑞(𝑡) sin(2𝜋𝑥1)( 18(𝑐(𝑥1) + 3)𝑥32(𝑐(𝑥1) + 2)3(2𝑐(𝑥1) + 7)2 − (2(𝑐(𝑥1))2 + 12𝑐(𝑥1) + 19)𝑥2(𝑐(𝑥1) + 2)2(2𝑐(𝑥1) + 7)2

)

for𝑚 ∈ {I, II}, where 𝑐(𝑥1) ∶= cos(2𝜋𝑥1), shown in Figure 9, while
𝑝I(𝑡, 𝒙) = 32 + 𝑐(𝛾1(𝑡)) + 9𝑞(𝑡) sin(2𝜋𝑥1)𝜋(𝑐(𝑥1) + 2) + 24𝑞(𝑡)(𝜋𝐻(0.5 − 𝑥1) − arctan(√53 tan(𝜋𝑥1)))𝜋√5 ,

for 𝑥1 < 𝛾1(𝑡), and
𝑝II(𝑡, 𝒙) = 9𝑞(𝑡) sin(2𝜋𝑥1)𝜋(𝑐(𝑥1) + 2) + 24𝑞(𝑡)(𝜋𝐻(0.5 − 𝑥1) − arctan(√53 tan(𝜋𝑥1)))

𝜋√5



LUNOWA et al. 35

F IGURE 10 Pressure distribution over length 𝑥1 at various times (left) for fixed inlet velocity𝑢in,1 = 4∕3 − 𝑥21 and interface position 𝛾1 over time 𝑡 (right) for fixed inlet velocity 𝑢in,1 = 4∕3 − 𝑥21 and fixed
pressure condition 𝑝in = 12 in the thin strip of varying width
for 𝑥1 > 𝛾1(𝑡), where 𝐻 denotes the Heaviside graph (Figure 10). The first velocity component is
higher where the width is reduced, while the second component adjusts to the changes in width
tomaintain the incompressibility (Figure 9). Note that the second velocity component is of order 𝜀
due to the different scaling. Accordingly, the pressure gradients depend on the local width and are
steeper around the constriction in the middle. This leads to the s-shaped pressure profiles instead
of the linear ones in the constant-width case.
For fixed inlet velocity 𝑢in,1 = 4∕3 − 𝑥22 , that is, for 𝑞 ≡ 1, the pressure solutions at several times

are depicted in Figure 10 together with the evolution of the interface position 𝛾1(𝑡), which is given
implicitly by 𝑡 = 2𝛾1(𝑡)∕3 + sin(2𝜋𝛾1(𝑡))∕(6𝜋). Note that the interface position 𝛾1 moves faster in
the vicinity of the constriction, since the average velocity 𝑢 = 𝑞∕𝑤 is higher around the constric-
tion (cf. Figure 9). Furthermore, the movement is very similar to the one obtained with constant
inlet pressure𝑝in ≡ 12. Hence,we restrict the following discussion to this inlet pressure condition.
Note that this larger inlet pressure is necessary to obtain a similar total flux as in the constant-
width case, since the width is reduced.
For this geometry, we still can derive relations for the effective quantities obtained in Subsec-

tion 4.2. We obtain for the saturation

𝑆 = 𝛾1 + 14𝜋 sin(2𝜋𝛾1), 𝜕𝑡𝑆 = 32𝑞.
Since this function 𝑆(𝛾1) has no analytical inverse, there is no closed-form expression for the local
capillary pressure 𝑝𝑐,loc Equation (105) nor for the dynamic coefficient 𝜏 Equation (106). Their
numeric approximations are depicted in Figure 11. Both have a peak at 𝑆 = 0.5, where the inter-
face passes the position 𝑥1 = 0.5 with the smallest width. For the local capillary pressure, this
results from the reciprocal dependence on the local width, while the dynamic coefficient is sym-
metric due to the symmetric wall and the viscosity ratio M = 1. Note that the dynamic effects are
much stronger than in the constant-width setting due to the reduced width, which requires larger
pressure gradients to maintain the flow. Hence, we conclude that the wall shape has a significant
impact, especially on the dynamic effects.

5.2.1 Effect of the slip length

We begin the investigation for various slip lengths 𝜆. As in the previous, constant-width case, the
movement of the interface position 𝛾1 is faster when the slip length is increased. However, the



36 LUNOWA et al.

F IGURE 11 The local capillarity pressure 𝑝𝑐,loc increases for saturations below 𝑆 = 0.5, and decreases
thereafter (left). The dynamic coefficient 𝜏 shows an analogous behavior (right). This is a result of the symmetric
constriction of the thin strip

F IGURE 1 2 The total flux 𝑞 is drastically reduced while the interface passes through the constriction due to
the larger capillary pressure (left). It increases when the slip length 𝜆 is increased, so that the movement of the
interface position 𝛾1 is faster (right)
total flux 𝑞 is drastically reduced while the interface passes through the constriction due to the
higher capillary pressure (Figure 12).
The dynamic coefficient 𝜏 is lower when the slip length increases as shown in Figure 13. In

contrast to the constant-width case, it is nonmonotonic in the saturation, and maximal around𝑆 = 0.5, that is, when the interface passes through the constriction around 𝑥1 = 0.5. Note that the
combination of higher velocity with lower dynamic coefficient leads to almost no changes in the
phase-pressure difference ⟨𝑝I⟩I − ⟨𝑝II⟩II for all slip lengths (Figure 13).
5.2.2 Effect of the viscosity ratio

Next, we consider the effect of the viscosity ratio M. As in the previous, constant-wall case, the
total flux 𝑞 is smaller when the viscosity ratio M increases (Figure 14). Especially at early times𝑡, one can observe large total fluxes 𝑞, when the viscosity ratio is very small (M ≤ 0.1), since the
strip is filled with the extremely mobile fluid II. On the other hand, the total flux is reduced while
the interface passes through the constriction, but this effect is very small compared to the effect
of viscosity for M < 1. As before, the solutions converge for M→ 0 toward the simplified, unsat-
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F IGURE 13 The dynamic coefficient 𝜏 decreases for increasing slip length 𝜆 (left). It is nonmonotonic in
the saturation. The resulting phase-pressure difference ⟨𝑝I⟩I − ⟨𝑝II⟩II is also nonmonotonic, but almost the same
for all slip lengths (right)

F IGURE 14 The total flux 𝑞 is high when the thin strip is mainly filled with the less viscous fluid (left). It is
smaller while the interface passes through the constriction. When the viscosity ratio M is increased, the interface
position 𝛾1 moves generally slower (right)
urated flow model as discussed in Subsection 3.3 (cf. Figure 14). Note that we use 𝛾1|𝑡=0 = 10−3
when M = 0 to avoid the degeneration of the interface system of Equations (79,80).
The dynamic coefficient 𝜏 becomes larger for small saturations 𝑆, if the viscosity ratio is larger

(M > 1), and vice versa for M < 1, as shown in Figure 15. The rapid change close to 𝑆 = 0.5 is due
to the strong influence of the region around 𝑥1 = 0.5, where the thin strip has its minimal width.
Note that for small viscosity ratio M ≤ 0.1 and saturation below 0.4, the dynamic coefficient is
almost zero. Furthermore, we observe here nonmonotonic behavior of the dynamic coefficient𝜏 for every viscosity ratio, while it is monotonic in the constant-width case. This is due to the
interplay between the constricted geometry and the nonlinear dynamic effect given by Equation
(106). Finally, note that the combination of higher velocity with lower dynamic coefficient leads to
almost no changes in the phase-pressure difference ⟨𝑝I⟩I − ⟨𝑝II⟩II for all moderate viscosity ratios
(Figure 15). Only for a very small viscosity ratio M ≤ 0.1, the phase-pressure difference is slightly
lower for saturations between 0 and 0.5.

5.2.3 Effect of a dynamic contact angle

We consider the effect of a dynamic contact angle model. As for the constant-width case, we use
Equation (115) with 𝜃𝑠 = 𝜋∕3. The total flux 𝑞 is smaller when 𝜂 is increased (Figure 16). This
effect is amplified while the interface passes through the constriction.
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F IGURE 15 The dynamic parameter 𝜏 increases for increasing viscosity ratio M (left). It is nonmonotonic
in the saturation. The resulting phase-pressure difference ⟨𝑝I⟩I − ⟨𝑝II⟩II is also nonmonotonic, but almost the
same for all moderate viscosity ratios (right)

F IGURE 16 The total flux 𝑞 decreases for higher values of 𝜂, since the (dynamic) local capillary pressure
increases (left). Accordingly, the interface position 𝛾1 moves slower (right). Due to the constriction, the effect is
maximal for 𝛾1 = 0.5
Although the total flux is smaller, the local capillary pressure 𝑝𝑐,loc and the phase-pressure

difference ⟨𝑝I⟩I − ⟨𝑝II⟩II increase for increasing 𝜂 (Figure 17). Themaximum is attained at 𝑆 = 0.5,
when the interface passes the minimal width. There, the dynamic effect is also the highest. Note
that the curves for 𝜂 = 0.75 and 𝜂 = 1 partly coincide because the dynamic contact angle reaches𝜋 in both cases. In a laboratory experiment, this could lead to instabilities and the formation of
bubbles or a thin residual film. However, that such behavior is beyond the scope of the model
presented here.

5.2.4 Effect of a hysteretic contact angle

Finally, we consider the effect of a hysteretic contact angle model and compare it to the static and
dynamic ones. As in the constant-width case, we use the dynamic contact anglemodel in Equation
(115) with 𝜃𝑠 = 𝜋∕3 and the hysteretic contact angle model in Equation (116) with 𝜃𝑎 = 𝜋∕4 and𝜃𝑟 = 5𝜋∕12. We consider a drainage and imbibition cycle by choosing the time-dependent inlet
pressure 𝑝in(𝑡) = 9 − 4𝑡, and stop the simulations when the interface position returns to the inlet.
The other parameters are taken from Table 3.
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F IGURE 17 The local capillary pressure 𝑝𝑐,loc increases for increasing dynamic contact angle coefficient 𝜂
(left). It attains its maximum at 𝑆 = 0.5, when the interface passes the minimal width. The resulting
phase-pressure difference ⟨𝑝I⟩I − ⟨𝑝II⟩II shows the same behavior (right)

F IGURE 18 The total flux 𝑞 (top-left) decreases faster when the interface passes through the constriction.
In case of the hysteretic contact angle model, the interface position 𝛾1 (top-right) stops in the constriction when
the local capillary pressure 𝑝𝑐,loc (bottom-left) lies in between the (static) capillary pressures for drainage and
imbibition, whereas 𝑝𝑐,loc at the maximal saturation is exactly the static capillary pressure for the dynamic
models. The phase-pressure difference ⟨𝑝I⟩I − ⟨𝑝II⟩II (bottom-right) shows the same qualitative behavior
As before, the total flux 𝑞 decreases faster, when the interface passes through the constriction

(Figure 18 (top)). Note that the higher capillary pressure when passing the constriction counter-
acts the drainage, while it increases the imbibition speed. This results in a more negative velocity.
In case of the hysteretic contact angle model, the interface position 𝛾1 stops in the constriction,
while the pressure lies in between the (static) capillary pressures for drainage and imbibition, so
that the local capillary pressure𝑝𝑐,loc and the phase-pressure difference ⟨𝑝I⟩I − ⟨𝑝II⟩II aremultival-
ued at the maximal saturation. In contrast, the dynamic model yields a direct switching between
drainage and imbibition, when 𝑝𝑐,loc is exactly the static capillary pressure (at the maximal
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saturation) (Figure 18 (bottom)). Hence, hysteresis also leads to higher deviations from the static
capillary pressure and thus a smaller maximal saturation.

6 CONCLUSION

We have formally derived the asymptotic solution for the flow of two immiscible fluids in a
two-dimensional thin strip of varying width, where the fluid–fluid interface is treated as a free
boundary. The obtained effective models form a system of differential algebraic equations for the
interface position and the total flux, and are applicable to a wide range of viscosity ratiosM, of slip
lengths 𝜆, as well as contact angle models. The resulting effective relations are a Darcy-type equa-
tion for the local flow, and a capillary pressure–saturation relationship involving dynamic effects.
We have discussed the effects of a varying pore width, of the viscosity ratio, of the slip length as

well as of having a dynamic and a hysteretic contact angle law through numerical experiments.
In particular, the results for a varying pore width show that the geometry has a large influence on
the effective quantities and their behavior. While dynamic effects occur even for a static contact
angle model, hysteresis in the capillary pressure is only present when a hysteretic contact model
is used.
The presented models and effective relations can be generalized to asymmetric as well as tube-

like three-dimensional domains with heterogeneities in the contact angle. Furthermore, rough
walls of type 𝑤𝜀(𝑥1) = 𝑤(𝑥1) + 𝜀𝑤1(𝑥1∕𝜀) + (𝜀) would strongly affect the shape and position of
the interface. This needs to be investigated in the future. In addition, it remains to validate the
effective models by a direct comparison with numerical simulations of the full model or with
experiments in single pores. Our future work will focus on the radial-symmetric case in three
dimensions including the effect of outer forces such as gravity. Such three-dimensional models
can be further used in pore-network models or for upscaling in a bundle-of-tubes model.
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ABSTRACT
We consider a model for the flow of two immiscible and incompressible
fluid phases in a porousmedium. A surfactant is dissolved in one of the fluid
phases, and its concentration at the interface separating the two fluids can
change the surface tension. At the scale of pores, we assume that the flow is
governed by the Navier-Stokes equations, while for the phase separation, a
Cahn-Hilliard phase-field model is adopted. Using formal homogenization,
we derive a two-scale model describing the averaged behaviour of the sys-
tem at the larger Darcy scale, where effective quantities are found through
local (cell) problems at the smaller pore scale. For this two-scale model, we
formulate a numerical scheme and present numerical results highlighting
the influence of the solute-dependent surface tension.
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1. Introduction

Many real-life applications of societal and technological relevance involve two-phase flow in porous
media. Examples in this sense are groundwater remediation or oil recovery from reservoirs. In such
situations, the flow and transport processes take place at the scale of pores, which is here considered
the micro-scale. Moreover, in enhanced oil recovery [1,2], or applications involving, e.g. microflu-
idics [3,4], or thin-film flows [5,6], the surface tension between the two fluid phases is influenced by
a solute present in one or both fluids.

Since the porous medium consists of many pores and its geometry is highly complex, numerical
simulations using mathematical models defined at the pore scale would not be feasible for practical
purposes. Moreover, in most cases, the primary interest is in the averaged behaviour of the system
at a much larger scale, namely, the scale of the application. This scale will be named from now on
the Darcy scale and can be viewed as a macro scale in contrast to the pore scale. From this prospect,
it would be sufficient to use Darcy-scale models in the numerical simulation. However, when doing
so, it becomes difficult to account properly for the processes at the pore scale. The main challenges
are finding the appropriate equations, parameters at the Darcy scale and incorporating the pore-scale
effects.

The starting point here is a pore-scale model, where two fluids occupy two disjoint subdomains
of the pore space. The fluids are assumed incompressible and immiscible and are separated by an
interface that moves with the fluids, thus in an a priori unknown manner. Furthermore, a (soluble)

CONTACT S. Sharmin sohely.sharmin@uhasselt.be

© 2022 Informa UK Limited, trading as Taylor & Francis Group



2 S. SHARMIN ET AL.

surfactant species is present in one of the fluid phases. Its concentration affects the surface tension
and, consequently, it influences the evolution of the fluid–fluid interface. As follows from the above,
the pore-scale model involves a free boundary and is defined in a complex domain, namely, the pore
space of a porous medium. It includes two major components: the flow of the two separate phases,
and the diffusion and transport of the soluble surfactant.

When dealing with free-boundary problems, one can consider several mathematical modelling
strategies. The simplest situation is when the domain is either one dimensional, or has a simple, rect-
angular or cylindrical structure, and the free boundary is along the symmetry axis. In this case, one
can identify the free boundary through the distance to the domain boundary parts that are along the
symmetry axis. Such a strategy is adopted, e.g. in [7,8]. In a similar context, but with a free bound-
ary that is transversal to the symmetry axis, parametric curves or surfaces have been used to model
two-phase flow in a pore [9,10].

More realistic situations can be considered when assuming periodically distributed grains. In this
case, the simplest approach is to assume a radial symmetry for the grain, as well as for the free bound-
ary. Then, the free boundary can be identified through the radius of the curve/surface, as done,
e.g. in [11,12], where a model for water diffusion into absorbent particles is proposed. If the radial
symmetry cannot be assumed, level sets can be used to identify the free boundary (see, e.g. [13–16]).

In the approaches mentioned above, the main difficulty in the analysis and numerical simulation
of suchmathematical models is related to the free boundary. To avoid using free boundaries and, con-
sequently, working with time-dependent domains, the phase-field approach offers a good alternative.
In this case, the free boundary is approximated by a diffuse interface region, and the model is hence
defined in a fixed domain [17,18]. The phase-field indicator is a smooth approximation of, say, the
characteristic function of the domain occupied by one of the fluid phases. Then, a critical aspect is
to guarantee that, whenever the diffuse interface parameter approaches 0, the model reduces to the
original one, involving free boundaries. Phase-field models can capture topological changes such as
merging and splitting and have thus been used successfully for direct numerical simulation of multi-
phase flows [19,20]. For different applications, we refer to [21,22], where a (pore-scale) phase-field
model is developed for a precipitation-dissolution model involving one fluid phase, to [23,24] for
two fluid phases, to [25] for two-phase flow including temperature-dependent surface tension, and
to [26,27] for fracture propagation in poroelastic media.

In this paper, we derive a two-scale model for the two-phase flow in a porous medium, in which
surfactant-dependent surface-tension effects are taken into account. More specifically, at the pore
scale, the surface tension depends on the concentration of the surfactant, which is soluble in one of the
fluid phases. The starting point is aCahn-Hilliard [28] approximation of the phase separation together
with the Navier-Stokes equations for the flow of the two fluids. Such models have been considered
in [29–31]. Alternatively, in [32–34], the pore-scale flow is described by the Stokes model. We prefer
to use the Navier-stokes equation for capturing fully the physics of the two-phase fluid flow at the
pore scale. We highlight that a thermodynamically consistent phase-field model for two-phase flow
was first derived in [29], and later, two-phase flow models with surfactants were considered in [30].
Our model builds upon the model B derived in [30], where two-phase flow with variable surface
tension is considered and the phase-field approach within a free energy framework is used to model
the phase separation.We consider the instantaneous adsorption regime in [30] and simplify themodel
by assuming that the surfactant is only present in one of the fluid phases. Concerning numerical
methods for similar types of models as discussed here, we refer to [35], where energy-stable schemes
are proposed for a Cahn-Hilliard model for two-phase flow and surfactant transport, and to [36,37],
where energy-stable methods based on discontinuous Galerkin discretization are analysed.

Referring strictly to two-phase flow in porous media, various upscaling techniques can be consid-
ered to derive Darcy-scale models. In this sense, we mention simple transversal averaging, volume
averaging, and homogenization techniques. The former can be applied when a simple geometry
is assumed, as done, e.g. in [7–10,38]. For volume averaging, we refer to [39,40]. For rigorous
homogenization, we refer to [41–43], where the convergence of the upscaling process is proved.
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Here we employ homogenization techniques for the formal derivation of the two-scale two-phase
flow model, accounting for the surface-tension effects, as depending on the surfactant dissolved in
one fluid phase. More precisely, we use formal asymptotic expansion methods and assume local peri-
odicity at the pore scale. For similar results, we refer to [33,34,44,45] where no surfactant is present
in the model, and to [32], where a solute transport component is included in the model, but without
affecting the surface tension.

This paper is organized as follows. In Section 2, we present the Cahn-Hilliard-Navier-Stokes two-
phase flow model with solute-dependent surface tension and give the sharp-interface limit of the
phase-field model. In Section 3, we derive the upscaled model from the non-dimensional pore-scale
phase-field model using the asymptotic expansion method. In Section 4, we present the numerical
scheme for solving the two-scale model and then solve this model for some test cases in Section 5.
Finally, in Section 6, we draw our conclusions and give some remarks for future research.

2. The pore-scale model

Here we discuss the pore-scale model for the two-phase flow in a porous medium. The fluids are
assumed incompressible and immiscible. For each fluid phase, the flow is governed by the Navier-
Stokes model, defined in the corresponding sub-domain, and with fluid-specific parameters. The
model accounts for a concentration-dependent surface tension. The surfactant is assumed soluble
in one of the two fluid phases, and its concentration solves a convection-diffusion equation defined
in the sub-domain of the solvent.

The fluid–fluid interface appears as free boundaries at the pore scale. To describe its movement,
one considers the force balance of stress connected to the surface tension and the tangential stress
force. The surface tension varies with the surfactant concentration at the separating interface.

As mentioned before, to overcome the difficulties related to the free boundaries, we use the phase-
field approximation developed in [30], in which one works with a mixture of both fluids. However,
by excepting a thin, diffuse interface region, one can identify sub-domains in which one or another
fluid is predominant. The evolution of the phase field is given by the Cahn-Hilliard equation.

In what follows, we let �P be the domain that can be occupied by the two fluids and denote its
boundary by ∂�P .

2.1. The sharp-interfacemodel

In the sharp-interface model, one has two different fluid phases, indexed by i(i = 1, 2). We let
ρ(i),μ(i), v(i), p(i)(i = 1, 2) stand for the (constant) mass density, (constant) viscosity, velocity and
pressure of fluidi. Moreover, these quantities are defined in the time-dependent subdomains�(i)P (t),
which correspond to the parts of�P occupied by fluid i. More precisely, the flow equations for fluid
i read

∂t

(
ρ(i)v(i)

)
+ ∇ ·

(
ρ(i)v(i) ⊗ v(i)

)
− ∇ ·

(
−p(i)I + 2μ(i)E(v(i))

)
= 0, (1a)

∇ · v(i) = 0, (1b)

for t> 0 and x ∈ �(i)P (t). Here E(v(i)) := 1
2 ((∇v(i))+ (∇v(i))T) is the symmetric stress tensor and

I is the identity matrix.
For the surfactant concentration c, soluble only in fluid 1, we have

∂tc + ∇ ·
(
v(1)c

)
= ∇ · (D∇c), in�(1)P (t), for t > 0, (1c)

where D> 0 denotes the diffusion coefficient.
The fluid–fluid interface�(t) is a free boundary, whose evolution is determined by the fluid veloci-

ties and the solute-dependent surface tension γ (c). Several adsorption isotherms are proposed in [30],
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stating the relationship between surface tension and the surface concentration of the solute. To relate
the volume and surface concentrations, we follow the ideas in [30] and define the isotherm in terms of
the product βc, where β is a length and c a volume concentration. In this way, βc is to be understood
as the surface concentration. We assume that γ (c) is linearly decreasing, namely, the Henry isotherm
(see [30])

γ (c) = γ0 − Bβc. (1d)

Here γ0 is the surface tension of a clean interface and B is the sensitivity of the surface tension to the
surfactant. For any t> 0, at �(t), one has[

v(i)
]

= 0, (1e)

v(i) · n = vn, (1f)[
−p(i)I + 2μ(i) E(v(i))

]
n = γ (c)κn − ∇tγ (c), (1g)(

−D∇c + v(1)c
)

· n = vn c. (1h)

Here [.] stands for the jump of the quantities from �
(1)
P (t) to �(2)P (t), κ is the mean curvature of

�(t) and vn its normal velocity. Moreover, ∇tγ (c) := ∇γ (c)− n(n · ∇γ (c)) is the tangential stress
gradient, where n is the unit normal vector on �(t) pointing into�(1)P (t) from�

(2)
P (t).

Note that the jump condition in (1g) has two components. In the direction normal to �(t), the
jump in the normal stress equal to γ (c)κ . In the tangential direction, the normal stress is given
by the tangential component of ∇γ (c), multiplied by (−1). In the case of constant surface tension,
the tangential component vanishes. Finally, since no solute is present in fluid 2, (1h) expreses the
conservation of solute across �(t).

2.2. The phase-fieldmodel

In the phase-field model, the interface separating the two immiscible fluids is approximated by a dif-
fuse interface. We consider the time interval [0,∞), and let Q = (0,∞)×�P . A phase indicator
φ : Q → R accounts for the presence of the two fluids, taking values either close to 1 in points occu-
pied mainly by fluid 1 or close to −1 in points occupied mainly by fluid 2. Following [29,30], the
energy of the fluid–fluid interface is approximated by the Ginzburg-Landau energy functional

efree(φ,∇φ) = C
(
1
λ
P(φ)+ λ

2
|∇φ|2

)
, (2)

where λ > 0 is the thickness of the diffuse interfacial region, C = 3
2
√
2
is a calibration constant, while

P : R → R is the double-well potential defined as

P(φ) = 1
4
(1 − φ2)2. (3)

2.2.1. The Cahn-Hilliard equations
To describe the evolution of the phase field, we use the Cahn-Hilliard equation, written inmixed form
as two coupled second-order equations. First,

∂tφ + ∇ · (vφ) = m λ�ψ , in Q, (4a)

where v is the velocity of the mixture and ψ is the potential. The Cahn-Hilliard mobility m> 0 is
assumed here constant. Alternative choices for m are discussed in [29], leading to various sharp-
interface models in the limit λ → 0. Second, following Model B in [30], which corresponds to
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instantaneous adsorption, and using (1d), one obtains

ψ = −∇ · (Cλγ (c)∇φ)+ C
λ
γ (c)P′(φ)+ 1

β
γ (c)I′(φ), in Q, (4b)

where I : R → R is defined as

I(φ) = 1
2
(1 + φ). (4c)

As shown in [30], when λ → 0, the phase field φ approaches the sign graph and, therefore, I(φ)
approaches the characteristic function of fluid 1. Note the last term in (4b), which is added to include
the effect of the varying surface tension.

For simplicity, we assume homogeneous Neumann boundary conditions for the phase field φ, as
well as for the chemical potential ψ

∇φ · n = 0, and ∇ψ · n = 0, on ∂�P , for t > 0, (4d)

where n is the unit normal to ∂�P pointing out of�P . The first boundary condition corresponds to
a 90◦ contact angle, and the second is needed for conserving the mass of the phase field.

The Cahn-Hilliard Equations (4a) and (4b) are completed by the initial condition

φ(0, ·) = φinit, in�P , (4e)

where φinit : �P → R is a given function approximating the initial distribution of the two fluids in
�P .

2.2.2. The flow equations
Since the mixture velocity is volume averaged, and since we assume there is no excess volume after
mixing, v is divergence free (see [29]),

∇ · v = 0, in Q. (4f)

Here, the density and viscosity of themixture are defined as ρ(φ) = ρ(1)·(1+φ)
2 + ρ(2)·(1−φ)

2 , μ(φ) =
μ(1)·(1+φ)

2 + μ(2)·(1−φ)
2 .

The momentum conservation law is a modified Navier-Stokes equation

∂t (ρ(φ)v)+ ∇ · (ρ(φ)v ⊗ v)− ∇ · (−pI + 2μ(φ)E(v)+ v ⊗ ρ′(φ)λ m ∇ψ)
= ∇ · (γ (c) (efree(φ,∇φ)I − Cλ∇φ ⊗ ∇φ)) , in Q, (4g)

where p is a rescaled pressure. Here the flux term (v ⊗ ρ′(φ)λ m ∇ψ) ensures thermodynamic
consistency (see [29] and [30] for details) and the last two terms in (4g) account for the surface tension
between the fluids. While such effects can be included in various ways (see [46]), here we adopt the
approach in [30], based on the energy term efree(φ,∇φ)I appearing in (4g). For convenience, from
now on, we use the following equivalent formulation of the momentum equation (4g)

∂t (ρ(φ)v)+ ∇ · (ρ(φ)v ⊗ v)− ∇ · (−pI + 2μ(φ)E(v)+ v ⊗ ρ′(φ)λ m ∇ψ)
=
(C
λ
γ (c)P′(φ)− ∇ · (Cλγ (c)∇φ)

)
∇φ +

(Cλ
2

|∇φ|2 + C
λ
P(φ)

)
∇γ (c), in Q. (4h)

The solute transport model reads

∂t(I(φ)c)+ ∇ · (I(φ)vc) = ∇ · (D I(φ)∇c) , in Q. (4i)

Note that as φ approaches −1 , I(φ) vanishes, which is in line with the assumption that the solute is
only present in fluid 1.
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We assume that the velocity and solute flux are zero on the boundary

v = 0 and I(φ)∇c · n = 0 on ∂�P , for t > 0. (4j)

Furthermore, the initial velocity and concentration are assumed to be known, v|t=0 = vinit and in.in.

Remark 2.1: Employingmatched asymptotic expansions, in [30], it is shown that in the limit λ → 0,
the phase-field model discussed above reduces to the sharp-interface model in Section 2.1.

3. Upscaling the pore-scale model to the Darcy scale

As stated in the introduction, we assume that, at the pore scale, the porous medium � consists of
small but many periodically distributed impermeable grains, surrounded by a void space (the pore
space).We are interested in the averaged behaviour of the system, observed at the larger (Darcy) scale.
At the same time, smaller (pore) scale information should not be disregarded. The pore scale and the
Darcy scale are assumedwell separated.With  and L being the characteristic lengths of the pore scale
and of the Darcy scale, we use ε = 

L 
 1 as the scale separation parameter.
To define the pore-scale domain, we write Y = [0, ]d, (d = 2, 3) as the union of the grain G, its

boundary ∂G and the surrounding pore space P ,

Y = P ∪ G ∪ ∂G.
The entire porous medium occupies the domain

� = ∪w∈W�
{w + Y} ,

whereW� ⊂ Zd is a set of multi-indices. We assume thatW� is such that� is a connected set.
The phase-field model is defined in the entire pore space,

�εP = ∪w∈W�
{w + P} ,

which is also assumed to be connected.
The boundary of �εP consists of the outer part, ∂�, and the inner part, which is the union of the

grain boundaries,

�εG = ∪w∈W�
{w + ∂G} .

Note that the grains are not part of�εP . We refer to Figure 1 for a sketch of the domain.

Figure 1. Schematic representation of the porous medium �. The figure in the middle presents periodically repeating grains
(coloured gray) surrounded by void space (the pores) occupied by two immiscible fluids (blue, closer to the grains, and red, the
outermost region). A surfactant soluble in fluid 1 is present (white particles). The right figure is a typical representation of a pore.
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Table 1. Reference values and non-dimensional quantities.

Variables
and
parameters

Reference
values Units

Non-
dimensional
quantities

Time tref [s] t̂ = t/tref
Space (Darcy scale) xref = L [m] x̂ = x/xref
Space (pore scale) yref =  [m] ŷ = y/yref
Velocity vref = xref/tref [ ms ] v̂ = v/vref
Pressure pref [ kg

m s2
] p̂ = p/pref

Molar concentration cref [ mol
m3 ] ĉ = c/cref

Density ρref [ kg
m3 ] ρ̂ = ρ/ρref

Viscosity μref [ kg
m s ] μ̂ = μ/μref

Surface tension γref [ kg
s2
] γ̂ (ĉ) = γ (cref ĉ)/γref

Diffuse interface thickness λref = yref =  [m] λ̂ = λ/yref
βref = yref =  [m] β̂ = β/yref

Free energy efree,ref = 1
xref

[ 1m ] êfree = efree xref
Cahn-Hilliard chemical potential ψref [ kg

m s2
] ψ̂ = ψ/ψref

Diffusion coefficient D [ m
2

s ]

Cahn-Hilliard mobility m [ m
2 s
kg ]

3.1. Non-dimensionalmodel equations

For deriving the Darcy-scale model, we first bring the pore-scale model to a dimensionless form.
To do so, we use the reference values and the non-dimensional quantities in Table 1, and the non-
dimensional numbers

Eu = pref
ρrefv2ref

, Re = ρrefvrefxref
μref

, Ca = μrefvref
γref

,

Pec = vrefxref
D

, Aφ = mψref

vref
, Aψ = γref

xrefψref
.

(5)

Observe that the diffuse interface parameters λ and β are assumed to have the order of the pore-
scale length . This corresponds to λ,β being of orderO(ε), as defined in Table 1. Here λ̂, β̂ ≤ 1, but
these factors are independent of ε. Using the reference values and non-dimensional quantities from
Table 1, and the non-dimensional numbers in (5), we obtain the dimensionless model

∂t̂
(
ρ̂(φ)v̂

)+ ∇̂ · (ρ̂(φ)v̂ ⊗ v̂
) = ∇̂ ·

(
−Eu p̂I + 1

Re
2μ̂(φ)E(v̂)

)

+ ∇̂ ·
(
εAφλ̂ρ̂′(φ)v̂ ⊗ ∇̂ψ̂

)
+ 1

Re Ca

( C
ελ̂
γ̂ (ĉ)P′(φ)− ∇̂ ·

(
ε Cλ̂γ̂ (ĉ)∇̂φ

))
∇̂φ

+ 1
Re Ca

(
ε Cλ̂
2

|∇̂φ|2 + C
ελ̂

P(φ)

)
∇̂γ̂ (ĉ), (6a)

∇̂ · v̂ = 0, (6b)

∂t̂(I(φ)ĉ)+ ∇̂ · (I(φ)v̂ĉ) = 1
Pec

∇̂ ·
(
I(φ)∇̂ ĉ

)
, (6c)

∂t̂φ + ∇̂ · (v̂φ) = εAφλ̂�̂ψ̂ , (6d)

ψ̂ = Aψ
( C
ελ̂
γ̂ (ĉ)P′(φ)+ 1

εβ̂
γ̂ (ĉ)I′(φ)− ∇̂ ·

(
ε Cλ̂γ̂ (ĉ)∇̂φ

))
, (6e)
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for all x ∈ �̂εP and t> 0. At the inner boundary �̂εG and for t> 0, one has

v̂ = 0, (6f)

I(φ)∇̂ ĉ · n = 0, (6g)

∇̂φ · n = 0, (6h)

∇̂ψ̂ · n = 0. (6i)

For the ease of presentation, since from now on, only the non-dimensional quantities are considered,
the hat is ommited in all notations.

3.2. Derivation of the two-scalemodel

We derive the upscaled counterpart of the phase-field model in Section 2.2. To do so, we employ
formal asymptotic expansions w.r.t. ε. More precisely, we assume that all variables can be expanded
regularly in terms of ε. For example, for φ, one has

φ(t, x) = φ0

(
t, x,

x
ε

)
+ εφ1

(
t, x,

x
ε

)
+ O(ε2), (7)

where the functions φi are Y-periodic w.r.t. the last argument. In other words, for j = 1, . . . ,d and
with ej being the unit vector in thej-th direction, one hasφi(t, x, y + ej) = φi(t, x, y). Similar expan-
sions are used for p, v, c. Note that the spatial variable x is doubled into the slow one, x, accounting for
the changes at the Darcy scale, and the fast variable y = x

ε
, where the rapid oscillations occur. With

this the j-th spatial derivative ∂xj becomes ∂xj + 1
ε
∂yj and

∇ = 1
ε
∇y + ∇x. (8)

Observe that, unlike [45], we do not consider an additional fast time scale and do not disregard
the O(ε) terms in the expansion of the phase field and of the velocity. At this point, we assume the
following scaling of the dimensionless numbers (5),

Eu = ε−2 Eu, Re = Re, Ca = Ca,

Pec = Pec, Aφ = Aφ , Aψ = εAψ ,
(9)

where Eu, Re, Ca, Pec, Aφ andAψ do not depend on ε. By choosing this scaling of the Euler number
Eu and of the Reynolds number Re, we make sure that we are in the regime where Darcy’s law is
applicable, which corresponds to a laminar flow driven by the pressure gradient. The scaling of the
capillary number Ca is chosenmoderate w.r.t. ε. This choice results in equal pressures in both phases.
Further, the Péclet number Pec is of order 1, which corresponds to the time scales of solute transport
by advection and diffusion being of the same order. For simplicity, here Ca = Pec = 1. The scaling of
Aφ and Aψ is needed for the phase-field interface dynamics to be active at the pore scale.

For the ease of presentation, the dependency of t, x and y will in the following only be written
whenever needed. Also, recall that all model variables are Y-periodic.

3.2.1. The flow equations
Inserting the asymptotic expansions in the reformulated momentum and mass conservation Equa-
tions (6a) and (6b), and in the no-slip boundary condition (6f), and applying (8), one obtains for all
t> 0

− 1
ε3

Eu∇yp0 − 1
ε2

Eu
(∇xp0 + ∇yp1

)+ 1
ε2

1
Re

∇y · (2μ(φ0)Ey(v0))
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+ 1
Re Ca

1
ε2

{(C
λ
γ (c0)P′(φ0)− Cλ∇y · (γ (c0)∇yφ0

))∇yφ0

+C
(
λ

2
|∇yφ0|2 + 1

λ
P(φ0)

)
∇yγ (c0)

}
+ O(ε−1) = 0, in�× P , (10a)

1
ε
∇y · v0 + ∇x · v0 + ∇y · v1 + O(ε) = 0, in�× P , (10b)

v0 + εv1 + O(ε2) = 0, on�× ∂G. (10c)

Here Ey is the counterpart of E , but involving derivatives in the fast variable y. Since |Y| = 1, for all
t> 0 and x ∈ � we define the averaged velocity as

v̄(t, x) :=
∫
P
v0(t, x, y) dy. (11)

The lowest order term in (10b) provides

∇y · v0 = 0, (12)

for all y ∈ P . Next, the ε0-order terms give

∇x · v0 + ∇y · v1 = 0, (13)

for all y ∈ P . Integrating the above w.r.t y, applying the Gauss theorem, and using the periodicity of
v1 and the boundary condition v1 = 0 on ∂G, one gets

∇x · v̄ = 0, (14)

for all t> 0 and x ∈ �. Equating the dominating O(ε−3) term in (10a) gives

∇yp0 = 0,

for all y ∈ P , so p0 = p0(t, x). Further, in Section 3.2.3 we also show that c0 = c0(t, x) is independent
of y, and, therefore, the last O(ε−2) terms in (10a) are vanishing. Hence, the O(ε−2) terms in (10a)
yield

Eu∇yp1 − 1
Re

∇y · (2μ(φ0)Ey(v0)) = −Eu∇xp0

+ 1
ReCa

γ (c0)
(C
λ
P′(φ0)− Cλ�yφ0

)
∇yφ0, (15)

for all t> 0, x ∈ � and y ∈ P . Observe that (15) and (12) form a Stokes system in terms of the
unknowns p1 and v0, depending on p0,φ0 and c0. This dependence can bemademore precise through
the cell problems, defined for all x ∈ � and t> 0,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Eu
(
ej + ∇y�j

) = − 1
Re

∇y · (2μ(φ0)Ey(wj)) , in P ,

∇y · wj = 0, in P ,
wj = 0, on ∂G,
�j,wj are Y−periodic and

∫
P �j dy = 0,

(16)
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for j = 1, . . . ,d, and

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Eu∇y�0 = − 1
Re

∇y · (2μ(φ0)Ey(w0)
)

+ 1
Re Ca

(C
λ
P′(φ0)− Cλ�yφ0

)
∇yφ0, in P ,

∇y · w0 = 0, in P ,
w0 = 0, on ∂G,
�0,w0 are Y−periodic and

∫
P �0 dy = 0.

(17)

By linearity, having solved the cell problems above, one immediately gets v0 and p1 as functions of p0,
c0 and, implicitly, of φ0

v0(t, x, y) = −
d∑

j=1

wj(t, x, y) ∂xjp0(t, x)− w0(t, x, y) γ (c0(t, x)), (18)

p1(t, x, y) = p̃1(t, x)+
d∑

j=1

�j(t, x, y) ∂xjp0(t, x)+�0(t, x, y)γ (c0(t, x)). (19)

Here p̃1 = p̃1(t, x) is an arbitrary function not depending on y. Integrating (19) w.r.t. y over P and
using (11) yields

v̄ = −K∇xp0 − Mγ (c0), (20)

for all x ∈ � and t> 0. The elements of the effectivematrixK(t, x) and the components of the effective
vectorM(t, x) are obtained using the solutions of the cell problems (16) and (17),

Ki,j =
∫
P
wi,j dy and Mi =

∫
P
wi,0 dy, with i,j = 1, . . . ,d, (21)

where wi,α is the i-th component of wα (α ∈ {0, . . . ,d}).

3.2.2. The Cahn-Hilliard equations
By Taylor expansions about φ0 and c0, we can write

P(φ) = P(φ0)+ εφ1P′(φ0)+ O(ε2), γ (c) = γ (c0)+ εc1γ ′(c0)+ O(ε2). (22)

Using this and the homogenization ansatz (7) in Equation (6d), (6e), (6h) and (6i), one gets for all
t> 0

O(ε) = 1
ε
∇y · (v0φ0)− 1

ε
Aφλ�yψ0 + ∂tφ0 + ∇x · (v0φ0)

− Aφλ
(∇x · (∇yψ0

)+ ∇y · (∇xψ0)+�yψ1
)
, in�× P , (23a)

O(ε) = ψ0 − γ (c0)Aψ
(CP′(φ0)

λ
+ I′(φ0)

β
− Cλ�yφ0

)
, in�× P , (23b)

O(ε) = 1
ε
∇yφ0 · n + ∇xφ0 · n + ∇yφ1 · n, on�× ∂G, (23c)

O(ε) = 1
ε
∇yψ0 · n + ∇xψ0 · n + ∇yψ1 · n, on�× ∂G. (23d)
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Since |Y| = 1, the porosity of the medium is defined as

� := |P|. (24)

We also define

φ̄(t, x) := 1
�

∫
P
φ0(t, x, y) dy. (25)

Since φ0 approaches 1 inside fluid 1, we use (4c) to define the fluid 1 saturation as

S := 1
�

∫
P
I(φ0) dy = 1

2
(
1 + φ̄

)
, (26)

for all t> 0 and x ∈ �. Equating the lowest order terms in (23a)–(23d), and using (26), one gets the
local cell problem for the phase field and the potential,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇y · (v0φ0) = Aφλ�yψ0, in P ,

ψ0 = γ (c0)Aψ
(CP′(φ0)

λ
+ I′(φ0)

β
− Cλ�yφ0

)
, in P ,

∇yφ0 · n = 0, on ∂G,
∇yψ0 · n = 0, on ∂G,
φ0,ψ0 are Y−periodic, and

1
�

∫
P
φ0 dy = 2 S − 1,

(27)

for all t> 0 and x ∈ �, where v0 is defined in (19). Observe that in the above equations only spatial
derivatives w.r.t. y are present. The constraint 1

�

∫
P φ0 dy = 2 S − 1 follows from (26) and ensures

the uniqueness of a solution.
The ε0-order terms in (23a) equate to

∂tφ0 + ∇x · (v0φ0) = Aφλ
{∇x · (∇yψ0

)+ ∇y · (∇xψ0)+�yψ1
}
, (28)

for all t> 0, x ∈ � and y ∈ P . Integrating the above equation overP w.r.t y and using the periodicity
of ψ0 and ψ1 yields

∂t

∫
P
φ0 dy + ∇x ·

∫
P
(v0φ0) dy = 0, (29)

for all t> 0 and x ∈ �. Using (26), this becomes

�∂tS + 1
2
∇x · v̄φ = 0, (30)

for all t> 0 and x ∈ �, where v̄φ is the φ-dependent velocity given by

v̄φ(t, x) :=
∫
P
v0(t, x, y)φ0(t, x, y) dy. (31)

Using (19) in the above equation, one finds

v̄φ = −Kφ ∇xp0 − Mφ γ (c0), (32)

for all t> 0 and x ∈ �, where the elements of the effective matrixKφ(t, x) and the components of the
effective vectorMφ(t, x) are defined by

Kφ
i,j :=

∫
P
wi,j φ0 dy and Mφ

i :=
∫
P
wi,0 φ0 dy, for i,j = 1, . . . ,d. (33)

Again, wj and w0 are the solutions of the cell problems (16) and (17).
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3.2.3. Solute conservation equation
Using the homogenization ansatz in (6c) and (6g) provides

− 1
ε2

1
Pec

∇y · (I(φ0)∇yc0
)+ 1

ε
∇y · (I(φ0)v0c0)− 1

ε

1
Pec

∇x · (I(φ0)∇yc0
)

− 1
ε

1
Pec

∇y ·
(
I(φ0)

(∇xc0 + ∇yc1
)+ φ1

1
2
∇yc0

)
+ ∂t(I(φ0)c0)+ ∇x · (I(φ0)v0c0)

+ ∇y ·
(
I(φ0) (v0c1 + v1c0)+ φ1

1
2
v0c0

)

− 1
Pec

∇y ·
(
I(φ0)

(∇xc1 + ∇yc2
)+ φ1

1
2
(∇xc0 + ∇yc1

))

− 1
Pec

∇x ·
(
I(φ0)

(∇xc0 + ∇yc1
)+ φ1

1
2
∇yc0

)
+ O(ε) = 0, in�× P , (34a)

1
ε
I(φ0)∇yc0 · n + I(φ0)

(∇xc0 + ∇yc1
) · n + εI(φ0)

(∇xc1 + ∇yc2
) · n

+ εφ1
1
2
∇yc0 · n + O(ε2) = 0, on�× ∂G. (34b)

The lowest order term from the above equations gives, for all t> 0 and x ∈ �,
∇y · (I(φ0)∇yc0

) = 0, in P , and

I(φ0)∇yc0 · n = 0, on ∂G.
Using the Y-periodicity of c0, one immediately gets that c0 = c0(t, x) is independent of y. Further,
the ε−1-order terms in (34a) equate to

1
Pec

∇y · (I(φ0)∇yc1
) = − 1

Pec
∇y · (I(φ0)∇xc0)+ c0

(∇y · (I(φ0)v0)
)
, (35)

for all t> 0, x ∈ � and y ∈ P . This, together with the boundary condition (34a), allows obtaining c1
in terms of φ0, c0 and v0, by solving the cell problems⎧⎪⎪⎨

⎪⎪⎩
∇y · [I(φ0) (∇yχj + ej

)] = 0, in P ,
I(φ0)

(∇yχj + ej
) · n = 0, on ∂G,

χj is Y−periodic and
∫
P
χj dy = 0,

(36)

for j = 1, . . . ,d, and ⎧⎪⎪⎨
⎪⎪⎩

∇y · [I(φ0)∇yχ0
] = ∇y · (I(φ0)v0) , in P ,

I(φ0)∇yχ0 · n = 0, on ∂G,
χ0 is Y−periodic and

∫
P
χ0 dy = 0.

(37)

With (36) and (37), one has for all t> 0, x ∈ � and y ∈ P

c1(t, x, y) = c̃1(t, x)+
d∑

j=1

χj(t, x, y) ∂xjc0(t, x)+ χ0(t, x, y)c0(t, x), (38)

where c̃1 = c̃1(t, x) is arbitrary. Finally, the ε0-order terms in (34a) equate to

∂t(I(φ0)c0)+ ∇x · (I(φ0)v0c0)− 1
Pec

∇x · (I(φ0) (∇xc0 + ∇yc1
))
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= −∇y ·
(
I(φ0) (v0c1 + v1c0)+ φ1

1
2
v0c0

)
+ 1

Pec
∇y · (I(φ0) (∇xc1 + ∇yc2

))

+ 1
Pec

∇y ·
(
φ1

1
2
(∇xc0 + ∇yc1

))
, (39)

for all t> 0, x ∈ � and y ∈ P . Integrating the above w.r.t y over P , using the definitions of the aver-
aged velocity and φ-dependent velocity in (11) and (31), together with the periodicity, one gets the
macroscopic law for the solute conservation

� ∂t (S c0)+ 1
2
∇x · (c0 (v̄ + v̄φ

)) = 1
Pec

∇x · (B∇xc0 + Hc0), (40)

for all t> 0 and x ∈ �. Here the elements of the effective matrix B(t, x) and the components of the
effective vector H(t, x) are determined by

Bi,j =
∫
P
I(φ0)

(
δij + ∂yiχj

)
dy, Hi =

∫
P
I(φ0)∂yiχ0 dy, (41)

for i,j = 1, . . . ,d, and where χj and χ0 solve the cell problems (36) and (37).

3.3. Summary of upscaledmodel

To simplify the notation, from here we give up the indices 0 in v0,φ0,ψ0, p0, and c0. With this, the
Darcy-type laws in (20) and (32) for the velocities, and the mass conservation laws for the two fluids
and for the solute in (14), (30), and (40) can be written as follows:

v̄ = −K ∇p − M γ (c), (42a)

∇ · v̄ = 0, (42b)

� ∂tS + 1
2
∇ · v̄φ = 0, (42c)

v̄φ = −Kφ ∇p − Mφ γ (c), (42d)

� ∂t(S c)+ 1
2
∇ · (c (v̄ + v̄φ

)) = 1
Pec

∇ · (B ∇c + H c), (42e)

defined for all t> 0 and x ∈ �. The Darcy-scale unknowns are v̄(t, x), S(t, x), v̄φ(t, x), p(t, x), and
c(t, x). This system is completedwith boundary conditions on ∂�, and the initial solute concentration
cinit. Moreover, an initial (pore-scale) phase field φinit is prescribed at eachDarcy-scale point, yielding
an initial saturation Sinit satisfying (26). The effective parametersK,Kφ ,M,Mφ ,B andH are obtained
by solving cell problems, as given in Table 2.

To calculate the effective quantities, one needs the phase field φ(t, x, y). This is obtained by solving
for all t> 0 and x ∈ � the problem⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∇y · (vφ) = Aφλ�yψ , in P ,

ψ = Aψγ (c)
(CP′(φ)

λ
+ I′(φ)

β
− Cλ�yφ

)
, in P ,

∇yφ · n = 0,∇yψ · n = 0 on ∂G,
φ and ψ are Y−periodic and

1
�

∫
P
φ dy = 2 S − 1.

(43)

Here v is nothing but the pore-scale velocity v0 in (19), namely,

v(t, x, y) = −
d∑

j=1

wj(t, x, y) ∂xjp(t, x)− w0(t, x, y) γ (c(t, x)). (44)
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Table 2. Parameters for the upscaled model (42a).

Effective parameters Cell problems

Ki,j = ∫
P wi,j dy, Eu(ej + ∇y�j) = − 1

Re
∇y · (2μ(φ)Ey(wj)), inP ,

Kφ
i,j = ∫

P wi,j φ dy. ∇y · wj = 0, inP ,
wj = 0, on ∂G,
�j ,wj are Y-periodic and

∫
P �j dy = 0, for j = 1, . . .d.

Mi = ∫
P wi,0 dy, Eu∇y�0 = − 1

Re
∇y · (2μ(φ)Ey(w0))+ 1

Re Ca
(C
λ
P′(φ)− Cλ�yφ)∇yφ, inP ,

Mφi = ∫
P wi,0 φ dy. ∇y · w0 = 0, inP ,

w0 = 0, on ∂G,
�0,w0 are Y-periodic and

∫
P �0 dy = 0.

Bi,j = ∫
P I(φ)(δij + ∂yiχj) dy. ∇y · [I(φ)(∇yχj + ej)] = 0, inP ,

I(φ)(∇yχj + ej) · n = 0, on ∂G,
χj is Y-periodic and

∫
P χj dy = 0, for j = 1, . . .d.

Hi = ∫
P I(φ)∂yiχ0 dy. ∇y · [I(φ)∇yχ0] = ∇y · (I(φ0)v), inP ,

I(φ)∇yχ0 · n = 0, on ∂G,
χ0 is Y-periodic and

∫
P χ0 dy = 0.

Remark 3.1: Inspired by the definition of the fluid 1 saturation S in (26), and since 1
2 (v̄ + v̄φ) =

1
2
∫
P v0(1 + φ) dy and 1

2 (v̄ − v̄φ) = 1
2
∫
P v0(1 − φ) dy, one can identify the quantities corresponding

to fluid i and reformulate the Darcy-scale equations accordingly. More precisely, we consider the
(Darcy-scale) fluid-specific quantities

S(1) = S, v̄(1) = 1
2
(
v̄ + v̄φ

)
, K(1) = (K + Kφ)

2
, M(1) = (M + Mφ)

2
,

S(2) = 1 − S, v̄(2) = 1
2
(
v̄ − v̄φ

)
, K(2) = (K − Kφ)

2
, M(2) = (M − Mφ)

2
.

Then, for all t> 0 and x ∈ �, the Darcy-scale Equations (42a)–(42d) become

v̄(i) = −K(i) ∇p − M(i) γ (c), (45a)

�∂tS(i) + ∇ · v̄(i) = 0, (45b)

Note that (45a) is an enriched Darcy law, where the last term accounts for the surfactant effects,
leading to a variable surface-tension. Additionally, K(i) is the relative permeability of fluid i mul-
tiplied by the absolute permeability of the medium, and M(i) is connected to the effective variable
surface-tension effect of the fluid phases. Finally, since v̄(1) + v̄(2) = v̄, (42b) implies that the total
flow is divergence-free. Moreover, even if the surface tension is constant, (45a) is still an enriched
Darcy law because K(i) andM(i) both depend on φ, which is determined from (43).

Observe that (45a) and (45b) are similar to the standard effective model for two-phase flow when
assuming a zero capillary pressure, respectively, that the phase pressures are equal. In simplified
geometries, such models are derived by transversal averaging, but assuming that the capillary num-
ber is moderate compared to ε, namely, O(1) (see [8,10]). Additionally, a nonlinear fourth-order
parabolic equation is obtained in [9] for constant surface tension with capillary pressure, whereas
in [7], the Buckley–Leverett equations are derived in the absence of surface tension.

Models disregarding the capillary pressure effects are quite popular in the numerical simulation
of two-phase porous-media flows. Compared to these, even if the presence of a soluble surfactant is
disregarded, one aspect is much different in the Darcy-scale model derived here. Commonly used
models build on a relationship between the relative permeability of a fluid phase and its saturation.
Here, no such relationship is assumed, as the permeability is obtained from the pore scale, by solving
the corresponding cell problems.
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4. An explicit numerical scheme

For solving the two-scale model summarized in Section 3.3, we consider a simple, explicit numeri-
cal scheme. Given N ∈ N, we define the time step �t := T/N and let tn = n�t. The time-discrete
functions are denoted by

φn := φ(tn, ·, ·), νn := ν(tn, ·) and ηnj := ηj(tn, ·),
where ν ∈ {Kφ ,K,Mφ ,M,B,H, p, v̄, v̄φ , S, c}, and ηj ∈ {�j,wj,χj} with j=0, 1, . . .d. We denote
the given initial data c0, φ0 and S0, where S0 satisfies (26). At each time step n ≥ 0, the following steps
are carried out.

Step 1. For each x ∈ �, compute the solution of the time-discrete counterpart of (16) and (17), i.e.
obtain (�n

j,w
n
j) with j = 0, 1, . . .d.

Step 2. Compute the time-discrete effective parameters Kφ,n, Kn,Mφ,n andMn.
Step 3. Compute the solution of the time-discrete counterpart of (42a) and (42b). Specifically,

obtain pn and v̄n by solving

v̄n = −Kn∇pn − Mnγ (cn),

∇ · v̄n = 0.
(46)

Step 4. Use the explicit, time-discrete counterpart of (42c) and (42d) to compute

v̄φ,n = −Kφ,n ∇pn − Mφ,n γ (cn),

Sn+1 = Sn − �t
2�

∇ · v̄φ,n.
(47)

Step 5. For each x ∈ �, compute the pore-scale velocity vn as in (19). Solve the time-discrete
counterpart of (36) and (37), i.e. obtain χj,n with j = 0, 1, . . .d.

Step 6. Compute the second set of time-discrete effective parameters Bn and Hn.
Step 7. Compute the solution of the time-discrete counterpart of (42e). Specifically, obtain cn+1 by

solving the following time-discrete problem

Sn+1cn+1 = Sncn + �t
Pec �

∇·(Bn∇cn+1)− �t
2 �

∇·
[(

v̄n+v̄φ,n− 1
Pec

�Hn
)
cn
]
. (48)

Step 8. For each x ∈ �, compute φn+1, the solution of (43) at t = tn+1.

Remark 4.1: Observe that the problem (43) is nonlinear. For solving it, we have adopted a linear
iterative approach. More precisely, at each Darcy-scale mesh point x ∈ � and time tn, with L> 0
large enough and letting i ∈ N be the iteration index, assuming φn+1,i−1 known and Y-periodic, one
solves the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇y · (vnφn+1,i) = Aφλ�yψ
n+1,i, in P ,

ψn+1,i = Aψγ (cn+1)

(CP′(φn+1,i−1)

λ
+ I′(φn+1,i−1)

β

+ L(φn+1,i − φn+1,i−1)− Cλ�yφ
n+1,i) , in P ,

∇yφ
n+1,i · n = 0, ∇yψ

n+1,i · n = 0, on ∂G,
φn+1,i and ψn+1,iare Y−periodic and

1
�

∫
P
φn+1,i dy = 2Sn+1 − 1.

(49)

The velocity vn is given in (44), computed for t = tn. As a starting guess, we choose the phase field at
the previous time, φn+1,0 = φn. However, the numerical experiments showed that the iterations are
convergent regardless of the initial guess.
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Figure 2. The two-scale scheme.

The two-scale scheme is presented in Figure 2. Observe that the time stepping in (47) is explicit.
For the spatial discretization, we considerTH , a Darcy-scale triangular partition of the domain�. An
element T ∈ TH has diameter HT . For each Darcy-scale element T, the effective quantities are com-
puted by solving the cell problems defined in a pore-scale domain P . The triangular partition Th of
P consists of elements Tμ of diameter hTμ . We letH := max

T∈TH
HT and h := max

Tμ∈Th
hTμ . The numerical

solutions of the pore- and Darcy-scale problems (17), (37), (43), (46) and (48) are computed using
the lowest order Raviart-Thomas elements (see [47]). For the pore-scale problems (16) and (36) we
use the Crouzeix-Raviart elements (see [48, Section 8.6.2]).

To compute the evolution of the phase field accurately and, implicitly, of the effective parameters,
one needs a fine pore-scale mesh for each cell problem. This mesh needs to be fine enough to resolve
the diffuse interface zone of the phase-field. More details on the mesh construction can be found
in [49–51].

5. Numerical results

In this section, we present two numerical experiments, carried out in the 2D case. We consider the
(Darcy-scale) domain � = (0, 1)× (0, 12 ) and take T = 1 as final time. In both tests, a zero initial
concentration is considered, c0 ≡ 0, while the initial phase field φ0 does not change with the vertical
Darcy-scale variable x2 (see below). Therefore, the saturation S0, obtained from (26), depends only on
the horizontal variable, S0(x) = f (x1). The function f is within the range [0.66, 0.86] (see Figure 3).

Every pore-scale domain Y has a centred inner grain G = (0.4, 0.6)× (0.4, 0.6). This gives a con-
stant porosity, � = 0.96. For each x ∈ �, the initial phase field φ0(x, ·) is radially symmetric up to
not being defined on G. Its value changes from −1 (fluid 2, around G) to 1 (fluid 1, the outer part of
P) in a thin, diffuse region around a circle. The radius of it changes in the x1-direction but not in the
x2-direction.

Homogeneous Neumann boundary conditions are imposed for c and p at the upper and lower
boundaries of �. The same applies for c at the right boundary. The pressure and concentration are
prescribed at the left boundary, p = pin = 2 and c = cin. In the two tests, the only varying data is cin.
At the right boundary, a lower pressure is imposed, p = pout = 0, causing a horizontal flow to the
right. Therefore, the left and right boundaries are called in- and outflow boundaries. This is sketched
in Figure 3.
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Figure 3. A sketch of the Darcy-scale boundary conditions and of the initial phase field at various locations (left), and the
corresponding initial saturation (right).

We use the following non-dimensional parameters

λ = 0.02, μ1 = 1, μ2 = 0.9, β = Ca = Eu = Re = Pec = Aφ = Aψ = 1,

and the given constant C = 3
2
√
2
. To illustrate the effect of the solute-dependent surface tension, we

let γ (c) = −(100c + 1) and consider the following situations.

Test case 1. First we let c = cin = 0. Then, the concentration remains 0 during the whole simulation.
Test case 2. With c = cin = 1, the concentration is increasing in time for every x but remains

decreasing in the x1-direction for any t.

For the numerical simulation, we use�t = 0.04, thus carry out 25 time steps. For the spatial dis-
cretization, we construct a uniform Darcy-scale (coarse) mesh with mesh diameter H = 0.1767. At
the pore scale, we consider a uniform (fine) mesh with mesh diameter h = 0.0283.

In both test cases, theDarcy-scale solution components do not change with the vertical variable x2.
Therefore, these solutions are presented as a 1D projection/cut in the x1-direction. Also, to illustrate
the evolution in time of various Darcy-scale quantities, we choose xref = (0.9167, 0.2917) as a refer-
enceDarcy-scale point. The behaviour in other points is similar. Also, to compare the results obtained
in the two test cases, we present the evolution in time of the difference in the variables, calculated at
xref . E.g. for the saturation S, we compute

δS(t, xref ) := S(t, xref )
∣∣
(TestCase2) − S(t, xref )

∣∣
(TestCase1),

for t ∈ [0, 1], and similarly for other Darcy-scale variables or effective matrix components and vector
elements.

The left plots in Figure 4 present the numerical approximation of the concentration c for the two
test cases. Observe that, as expected, c remains 0 everywhere in the first test case. The right plot in
Figure 4 shows the evolution of the concentration at theDarcy-scale reference point xref for the second
test case.

The left plot in Figure 5 shows the numerical approximation of the saturation S for the test case
1. The saturation increases with time but remains decreasing in the x1-direction. The evolution in
time of S(·, xref ) is presented in the upper right plot. The lower right plot shows the difference in the
saturation between the two test cases. Note that the saturation S is lower in the second test case as
it increases less with time compared to the first test case. This is indirectly caused by the difference
in the surface tension, leading to, as we will see below, a difference in the φ-weighted Darcy-scale
velocity v̄φ .

Due to the setup, the horizontal component of the Darcy-scale velocity v̄will remain constant over
the domain. However, the velocity v̄φ can still vary, and, as follows from (42c), this causes changes
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Figure 4. The concentration c(t, ·) at five time steps for test case 1 (left-top) and test case 2 (left-bottom). The evolution of c(·, xref)
for test case 2 (right).

Figure 5. The saturation S(t, ·) at five time steps, for the test case 1 (left). The evolution of S(·, xref) for the test case 1 (right-top)
and of the difference δS(·, xref) between the two test cases (right-bottom).

in the saturation. Moreover, this change becomes more natural when considering (45a), in which the
phase velocity depends on the (here, constant) v̄ and the variable v̄φ . We note that the vertical com-
ponent of v̄φ is zero, hence only the horizontal component is shown in Figure 6. As we see from the
left plot in Figure 6, the horizontal component has a negative derivative with respect to x1 throughout
the domain, yielding an increasing saturation. However, from the difference shown in the lower right
plot of Figure 6, the horizontal component of v̄φ is higher in the test case 2 than in the test case 1.
Hence, its derivative, though negative, is closer to 0, yielding a smaller increase in the saturation. Note
that the reference point xref is at the right part of the domain and that saturation and velocity changes
in points further left are less than in xref .

Figures 7 and 8 are displaying the evolution of the effective parameters from (42d), which are
influencing v̄φ1 . The left plot in Figure 7 displays Kφ

1,1, while the time evolution of Mφ
1 is shown in

Figure 8. Comparing the sizes, and accounting for the fact that the horizontal pressure drop is around
−2, and γ (c) is in the range [−101,−1], it becomes clear that the horizontal pressure drop and the
evolution ofKφ

1,1 dominate the changes in v̄φ1 in both test cases considered here.Observe that, similarly
to v̄φ1 ,K

φ
1,1 increases with time in the right part of the domain, and stronger for the test case 2, causing

a decreased divergence of v̄φ .
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Figure 6. The horizontal component of the (Darcy-scale) velocity v̄φ(t, ·), computed at five time steps, for the test case 1 (left). The
evolution of v̄φ1 (·, xref) for the test case 1 (right-top) and of the difference δv̄φ1 (·, xref) between the two test cases (right-bottom).

Figure 7. The first component of Kφ(t, ·), computed at five time steps, for test case 1 (left). The evolution of Kφ
1,1(·, xref) for the

test case 1 (right-top) and of the difference δKφ
1,1(·, xref) between the two test cases, at xref (right-bottom).

Figure 8. The evolution of the first element ofMφ(·, xref) for the two test cases.
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Figure 9. The evolution of the pore-scale phase field in the test case 1 (left) and the difference of the phase field δφ between the
two test cases (right) corresponding to the Darcy-scale location xref at time t = 1.

The changes of Kφ is depending on how the pore-scale phase-field evolves, which again depends
on the surface tension. In Figure 9, we display the pore-scale phase-field obtained at the final time
t = 1, at the reference point xref . The left plot in Figure 9 shows the numerical approximation of the
phase field φ(1, xref , y) and the pore-scale velocity v(1, xref , y) (with y ∈ P), obtained in the first test
case. Note that the pore-scale flow field is oriented mainly towards right. This immediately implies
that the Darcy-scale velocity v̄ has the same orientation. The difference in the phase fields between
the two test cases is displayed in the right plot. This difference is calculated for t = 1 and at xref , using

δφ(1, xref , y) = φ(1, xref , y)
∣∣
(TestCase2) − φ(1, xref , y)

∣∣
(TestCase1).

As follows from the right plot, the phase-field profile in the second case corresponds to fluid 2 being
shifted slightly to the left compared to the test case 1.

6. Conclusion

We have derived a two-scale model for the two-phase flow in a porous medium. Themodel takes into
account the variations in the surface tension caused by a surfactant soluble in one fluid phase. The
starting point is the pore-scale model proposed in [30]. This is a Navier-Stokes-Cahn-Hilliard model
for the flow, coupled with an advection-diffusion equation for solute concentration. In this way, the
free boundaries separating the two fluid phases at the pore scale are approximated by thin diffuse
interface regions, which allows formulating the problem in a fixed domain.

Using formal homogenization methods, we have derived a two-scale model consisting of mass
conservation laws for the two phases and for the solute concentration, and of Darcy-type laws for
the effective velocities. The latter include terms accounting for the concentration-dependent surface
tension. These Darcy-scale laws involve effective parameters, which are obtained by solving local cell
problems. These cell problems depend on the evolution of the phase field at the pore scale.

We have proposed a numerical algorithm building on the Euler explicit time discretization and
on the lowest order Raviart-Thomas approximation in space. The explicit scheme requires solving
seven pore-scale cell problems, defined for each Darcy-scale point. These cell problems depend on
Darcy-scale variables concentration, pressure and saturation. At the same time, for solving theDarcy-
scale equations, one requires accurate calculations of the effective parameters, based on pore-scale
quantities. These cell problems are generally small and parallelizable, allowing for efficient numerical
strategies. In particular, for the phase-field cell problem, which is nonlinear and elliptic, we propose
a simple, linear iterative scheme having a robust convergence, regardless of the initial guess.

Two test cases are presented, where the surface tension either remains constant, or where the
changes in the concentration induce a varying surface tension. The fluids have different viscosities,
but the viscosity ratio is small. The profiles of the Darcy-scale quantities display a similar behaviour
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in time and space in both test cases. Though small, differences in the results can be observed. In par-
ticular, the surfactant leads to decreased values of the saturation, as it affects the effective quantities,
which depend on the pore-scale phase-field distribution.

Open issues are related to mesh refinement strategies at both the pore scale and the Darcy scale,
as mentioned in [51]. Furthermore, adaptive strategies allowing to identify Darcy-scale points where
the effective parameters need to be recalculated, and those where these values can be copied from
points with a similar behaviour, could also improve the efficiency of the algorithm. Finally, implicit
or semi-implicit higher-order numerical schemes for the two-scale model derived here need to be
developed, as well as the rigorous analysis of the model and of the numerical approximation.
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The third part of this thesis consists of three chapters that are based on three journal
publications. Each publication concerns modeling and simulation of reactive transport in
porous media, where mineral precipitation and dissolution alter the pore-scale geometry.
All three publications rely on or use homogenization, but focus on different aspects of the
arising challenges for understanding the interplay between pore-scale geometry changes and
Darcy-scale effective behavior.

Chapter 8: Pore-scale and two-scale model for mineral precipitation and dissolution
In this chapter, a new phase-field model for coupled fluid flow and solute transport, where
the solute participates in a mineral dissolution/precipitation reaction, is developed. Unlike
earlier phase-field models, the flow of the fluid and interactions between the flow and the
solid mineral are incorporated. The sharp-interface limit of the phase-field model is found
using matched asymptotic expansions. The phase-field model is shown to reduce to the
expected sharp-interface model, but with an additional curvature-driven motion of the
fluid-solid interface. This curvature-driven motion causes a circular mineral to dissolve too
quickly, which is shown by comparing to available benchmarks numerically. By formulating
the phase-field model in a periodic pore-scale geometry, homogenization is applied to derive
an effective Darcy-scale model. The Darcy-scale equations depend on local pore-scale
cell problems for the evolution of the pore-scale geometry through solving the phase-field
equation, and for effective permeability and effective diffusion coefficient. By comparing
the effective parameters found by the derived cell problems to effective parameters found by
sharp-interface cell problems for effective permeability and effective diffusivity, the diffuse
interface is found to influence the value of the effective parameters, but less when the
diffuse-interface width is smaller.

Chapter 9: Two-scale simulation of mineral precipitation and dissolution In this
chapter, the resulting two-scale model from Chapter 8 is implemented using heterogeneous
multiscale methods. The focus is especially on measures to ensure that a robust, efficient
and accurate scheme is obtained. Since the Darcy-scale model equations and pore-scale
cell problems depend on each other through the reaction rate and effective parameters,
an iterative approach is taken to solve the two scales. By introducing a regularization,
convergence for a simplified case of the two-scale scheme is proven by showing that the
iterations form contracting fixed-point iterations. The proof relies on relatively mild re-
strictions on the time-step size and on the phase-field parameters. Adaptivity is applied
to ensure efficiency of the scheme without loosing accuracy. A strategy inspired by [85] is
applied to only update a smaller portion of the cell problems for effective parameters. By
comparing to simulations where all cell problems are solved, we show that this causes a
large gain through less computational effort, with only a small loss in accuracy.

Chapter 10: Comparison of level-set and phase-field models for three-phase systems
In the last chapter of Part C, a system with one fluid phase and two solid minerals is
investigated. Three solutes are transported through advection and diffusion in the fluid,



and participate in mineral precipitation/dissolution reactions of the two minerals. This
is hence a three-phase system, which requires modification of the common approaches
for modeling evolving interfaces. Adapted level-set and phase-field models are formulated
and implemented, and the goal of this chapter is to compare their behavior. For the
phase-field model this means that a ternary phase-field approach is needed. Except from
that, the phase-field model shows similarities to the model in Chapter 8. The sharp-
interface limit of the phase-field model is found by matched asymptotic expansions, and
reduces to the expected sharp-interface equations but with additional curvature-driven
motion. Numerically, the phase-field model implementation is conservative (in contrast to
the level-set model implementation), and needs less unknowns and Newton-iterations on the
same grid compared to the level-set model implementation. However, the curvature-driven
motion of the phase-field model is found to have a negative influence on the behavior,
especially near the fluid-solid-solid triple points. By homogenization, cell problems for
effective solute diffusivity and permeability can be found. Here, the level-set model and
the phase-field model are found to provide comparable results as the minerals dissolve and
precipitate.
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8 Pore-scale and two-scale model for mineral
precipitation and dissolution

The content of this chapter is based on the following original article:
C. Bringedal, L. von Wolff, and I. S. Pop. Phase Field Modeling of Precipitation and
Dissolution Processes in Porous Media: Upscaling and Numerical Experiments. Multiscale
Modeling & Simulation 18.2 (2020), pp. 1076–1112. doi: 10.1137/19M1239003.
With courtesy of SIAM.
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Abstract. We consider a model for precipitation and dissolution in a porous medium, where
ions transported by a fluid through the pores can precipitate at the pore walls and form mineral.
Also, the mineral can dissolve and become part of the fluid as ions. These processes lead to changes in
the flow domain, which are not known a priori but depend on the concentration of the ions dissolved
in the fluid. Such a system can be formulated through conservation equations for mass, momentum,
and solute in a domain that evolves in time. In this case the fluid and mineral phases are separated
by a sharp interface, which also evolves. We consider an alternative approach by introducing a phase
field variable, which has a smooth, diffuse transition of nonzero width between the fluid and mineral
phases. The evolution of the phase field variable is determined through the Allen--Cahn equation. We
show that as the width of the diffuse transition zone approaches zero, the sharp-interface formulation
is recovered. When we consider a periodically perforated domain mimicking a porous medium, the
phase field formulation is upscaled to Darcy scale by homogenization. Then, the average of the phase
field variable represents the porosity. Through cell problems, the effective diffusion and permeability
matrices are dependent on the phase field variable. We consider numerical examples to show the
behavior of the phase field formulation. We show the effect of flow on the mineral dissolution, and
we address the effect of the width of the diffuse interface in the cell problems for both a perforated
porous medium and a thin strip.

Key words. porous media, phase field model, reactive transport, homogenization
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1. Introduction. Understanding mineral dissolution and precipitation processes
in porous media is important, as these processes appear in many applications of high-
est societal relevance. Examples in this sense are soil salinization, geological CO2

sequestration, copper leaching, and harnessing geothermal energy. In many of these
situations, experiments are unfeasible or even impossible, and hence creating simula-
tions based on reliable and accurate mathematical modeling is a key strategy. The
most challenging aspect of mathematical modeling appears when the flow domain is
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PHASE FIELD MODELING OF PRECIPITATION/DISSOLUTION 1077

altered due to dissolution and precipitation. More precisely, the dissolved ions can
form a mineral, and hence they can leave the fluid domain and become part of the
stationary mineral domain. Due to this, the space available for flow (the fluid domain)
is reduced, whereas the mineral domain is increasing. In contrast, the mineral domain
shrinks as minerals dissolve into ions and become part of the fluid. To mathematically
model such processes one needs conservation laws for mass, momentum, and solute
in two time-dependent domains, where the evolution of the interface separating these
domains is not known a priori. Hence, we have a free boundary problem, where the
development of the boundary---and hence also the domains---must be accounted for.

When encountered in a porous medium, mineral precipitation and dissolution can
significantly alter the pore structure and hence affect the porosity and the large-scale
flow through the medium as the permeability evolves. For porous media flow, we
distinguish between two spatial scales. The detailed behavior is found at the pore
scale (the microscale), and the average behavior of the system is considered to be at
the Darcy scale (the macroscale). Mineral precipitation and dissolution at the Darcy
scale have been considered from a theoretical point of view by [25], where consistent
reaction rates are formulated for the dissolution and precipitation processes, and
traveling wave solutions are found. The existence and uniqueness of such solutions
are further analyzed in [44]. At the pore scale, the existence of weak solutions is proved
in [46], while uniqueness is obtained in [51]. Paper [46] also analyzes the occurrence
of dissolution fronts in a thin strip, introducing a free boundary separating regions
where mineral is present from those which are mineral-free. In [26], homogenization
techniques are employed to prove rigorously that the Darcy-scale model in [25, 44] is
the upscaled counterpart of the pore-scale model in [46].

In all of the cases mentioned above, the mineral layer is assumed to have a negli-
gible thickness even when compared to the microscale (the pores), and therefore the
presence of a mineral is accounted for in the form of a concentration. A different ap-
proach is adopted in [50], where the mineral layer is assumed to have a nonnegligible
thickness, and therefore precipitation and dissolution can alter the flow domain at
the microscale. The existence and uniqueness of a weak solution for this free bound-
ary model is proved, however, in the simplified case of a one-dimensional domain.
This situation has extended to the higher dimensional case. In [48] the pore-scale
model is defined in a two-dimensional thin strip, where a free boundary model for
precipitation and dissolution is included. The Darcy-scale model is derived by trans-
versal averaging. Paper [47] extends this by considering a general porous medium
with periodic grains, and a level-set formulation is used to account for the presence
of the free boundary at the pore scale. These models were later extended to include
temperature dependence for a thin strip [10] and for a periodic porous medium [11],
and the effective properties of the latter model were considered further in [13]. Also,
the upscaling in advection-dominated regimes, leading to models that are similar to
Taylor dispersion, is performed in [12, 28]. A similar model is considered in [43] but
restricted to pore-scale diffusion processes in evolving domains. There a Darcy-scale
model is derived, for which the existence of strong solutions is proved up to clogging.

Different approaches are possible when considering free boundary models. One
can formulate an explicit equation for the location of the free boundary through, e.g.,
the width of the mineral phase in a thin strip as in [12, 10, 28, 48, 50]. For more
general geometries, a level-set formulation has been widely used, as in [11, 43, 47].
Upscaling using asymptotic expansions of level-set formulations can be tedious due
to the strong coupling between the level-set equation and the other model equations,
as the asymptotic expansion has to be applied also for the level set and hence for the
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1078 C. BRINGEDAL, L. VON WOLFF, AND I. S. POP

location of the interface, as done in [11, 43, 47]. However, the upscaled model still
relies on solving the pore-scale level-set equation, which is quite challenging for the
numerical implementation.

To obtain mathematical models valid at the Darcy scale, asymptotic expansion
and homogenization techniques (see, e.g., [23]) are employed in the above-mentioned
papers. This is the strategy adopted in the current paper as well. Alternatively, one
can consider volume averaging techniques [36, 37, 52, 53, 54]. We refer the reader
to [19] for a comparison between the two methods. We mention that the results are
obtained under the assumption that diffusion is the result of a standard random walk
process at the molecular scale. Alternatively, one can start with a continuous time
random walk (CTRW) approach [29] and end up with other diffuse regimes, expressed,
e.g., through fractional time derivatives. Considering such models, including the
upscaling from the pore to the Darcy scale (see [20]) is certainly interesting but is
beyond the scope of the current work.

Darcy-scale models are derived through assuming a certain relation between the
time scales of the different processes (diffusion, advection, reaction) at the pore scale,
where different relations lead to different upscaled models. These time scales are
assumed either to be in balance or to differ in a certain way. This can be ex-
pressed through the order of magnitude of dimensionless numbers, such as P\'eclet
and Damk\"ohler numbers, in terms of the ratio of the typical length scales of the
pores, respectively, of the porous medium (the Darcy scale). In this work we will
assume these time scales to be in balance. The resulting Darcy-scale model reflects
nonequilibrium chemical kinetics. Certainly, equilibrium kinetics may appear at the
scale of pores, in which case one needs to adapt the mathematical models at the
pore scale, with impact on the upscaled ones (see, e.g., [7]). Homogenization tech-
niques can still be employed in other regimes, including high P\'eclet and Damk\"ohler
numbers, but, in particular, the former needs to remain within a regime that avoids
turbulent flows and allows diffusion to dominate at the scale of pores. We mention
[4, 6, 12, 17, 28, 32, 36, 45, 53, 54] for the derivation of Darcy-scale models by either
homogenization or volume averaging, and under dominating advection or for fast re-
action kinetics. A comprehensive discussion can be found in [7], addressing models
with mixing-controlled heterogeneous reactions at different scales and under various
regimes for the P\'eclet and Damk\"ohler numbers.

To model the evolving fluid-mineral interface, an alternative approach to the
level-set method is through phase fields. A phase field is an approximation of the
characteristic function and hence attains the value 1 in one domain, and 0 in the
other, but has a smooth, diffuse transition zone of nonzero width across the interface
[14, 30]. The evolution of the phase field is through a phase field equation, which can
be derived from a minimization of the free energy. Most commonly used are the Allen--
Cahn [5] and Cahn--Hilliard [15] equations for evolution of the phase field. While the
Cahn--Hilliard equation has the advantage of conserving the phase field parameter,
it introduces fourth-order spatial derivatives which can lead to numerical difficulties.
For the Allen--Cahn formulation, one can prove that the phase field remains bounded
by 0 and 1 and thus in the physical regime, as it involves only second-order derivatives.
On the other hand, it is generally not conservative, although conservative reformula-
tions for two-phase flow [24] and multicomponent systems [35] exist. However, these
formulations are globally rather than locally conservative. The Allen--Cahn equation
allows the interface to evolve due to curvature effects (the Gibbs--Thomson effect),
which may or may not be desirable from a chemical point of view [40]. We will use an
Allen--Cahn equation for our phase field formulation, although curvature effects are
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PHASE FIELD MODELING OF PRECIPITATION/DISSOLUTION 1079

not our primary point of interest. We mention that [55] formulated an Allen--Cahn
equation for a solid-liquid interface evolving due to solute precipitation and disso-
lution, where surface curvature effects were removed. However, the model does not
include fluid flow.

To introduce a diffuse transition zone, the model equations (i.e., the conservation
of mass, momentum, and solute) need to be reformulated in the combined domain of
fluid and mineral in a consistent manner. The combined domain is then stationary.
This reformulated model has to incorporate the boundary conditions of the original
model at the evolving interface as part of the model equations. An essential property
of a phase field formulation is that the corresponding sharp-interface formulation
(i.e., the original model equations and boundary conditions at the evolving interface)
is recovered when the width of the diffuse interface approaches zero [21, 30]. This
limit can be investigated using matched asymptotic expansions [14].

Considering mineral precipitation and dissolution, [49] proposed a phase field
formulation based on the Allen--Cahn equation for the movement of the solid-liquid
interface but without flow in the fluid phase. Later [38] extended an equivalent for-
mulation of [49] to include two fluid phases---with curvature effects between them---
but still without flow. There, the interfaces are moving due to curvature effects.
An Allen--Cahn formulation for two-phase Stokes flow with curvature effects on the
evolving fluid-fluid interface, but without chemical reactions, was formulated in [1].
A Cahn--Hilliard model for two fluid phases and a solid phase, including mineral pre-
cipitation, is proposed in [39]. Using matched asymptotic expansion techniques, in
each of these four papers it is shown that the phase field models reduce to the corre-
sponding sharp-interface models. The aim in this paper is to formulate a phase field
model for mineral precipitation and dissolution, in which the flow of a fluid phase
transporting the precipitating solute is also taken into account. The model builds
on the ones in [38, 49]. Compared to [1], where the moving interface separates two
mobile fluid phases, the current moving interface separates a mobile phase (the fluid)
and an immobile (mineral) phase. Therefore, the formulation in [1] cannot be applied
here. In this respect, the present situation is more similar to the melt convection
model considered in [8], where the interface between stationary solid and flowing fluid
is evolving due to melting. However, [8] did not consider the sharp-interface limit for
their phase field formulation.

This paper is organized as follows. In section 2 the phase field formulation is
introduced, based on the sharp interface formulation. Next, in section 3 we show
that the phase field formulation reduces to the sharp-interface formulation when the
width of the diffuse interface approaches zero. Two numerical examples showing the
behavior of the phase field formulation are included in section 4. In particular, we
show how the flow affects the dissolution process. Then homogenization techniques
are applied in section 5 to derive a Darcy-scale counterpart for a specific setting of
the phase field model. Finally, section 6 provides some further numerical examples:
First, we study the behavior of the upscaled model parameters in terms of the diffuse
interface parameter, and then the convergence of the homogenization process for a
simplified situation, where the model is defined in a thin strip.

2. Formulation of the reactive transport problem. Before introducing the
phase field formulation, first we formulate the corresponding sharp-interface model
including a free boundary. Both models are restricted to the case where only one
fluid phase is present, which, in the case of a porous medium, can be seen as a
single-phase, fully saturated flow. Moreover, the density and viscosity of the fluid are
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assumed constant. Furthermore, we only consider a simplified electrochemical system,
where the precipitate is formed at the boundaries of the flow domain (the pore walls)
and is the product of the reaction between two ions diffusing into and transported
by the flowing fluid. If the diffusion coefficients of the two ions are the same, and if
the system is electroneutral, one can simplify the chemistry by only considering one
equation for the solute concentration, as knowing the concentration of one solute and
using the electroneutrality of the system enables us to obtain the other concentration
straightforwardly (see [25, 46, 50]).

The models below are given in a dimensional framework. The nondimensional-
ization is discussed later in subsection 5.2.

2.1. Sharp-interface formulation. We start with the sharp-interface formu-
lation, which later motivates the phase field model. In this case, we let \Omega denote the
entire domain (the porous medium), which is divided into two disjoint subdomains:
one occupied by the fluid, and the other occupied by the mineral. The mineral layer
is the result of precipitation and dissolution and therefore has a variable thickness
that is not known a priori. Hence, the domains occupied by the fluid and the mineral
are both time dependent. Letting t \geq 0 stand for the time variable and denoting by
\Omega f (t) the (time-dependent) fluid domain, the conservation laws for the fluid and its
momentum and for the solute are

\nabla \cdot q = 0 in \Omega f (t),(2.1a)

\rho f\partial tq+ \rho f\nabla \cdot (q\otimes q) +\nabla p = \mu f\nabla 2q in \Omega f (t),(2.1b)

\partial tu+\nabla \cdot (qu) = D\nabla 2u in \Omega f (t).(2.1c)

Here q is velocity and p is pressure in the fluid, and \rho f and \mu f are the constant density
and viscosity of the fluid. Finally, u is solute concentration and D its diffusivity.

In the mineral domain \Omega m(t), the mineral is immobile and has a constant con-
centration u\ast , which reduces (2.1a)--(2.1c) to

q = 0 in \Omega m(t).

In what follows, we assume that the concentration in the mineral is always larger than
the one in the fluid, namely u\ast > u(x, t) for all t \geq 0 and x \in \Omega f (t).

We let \Gamma (t) stand for the free boundary separating \Omega f (t) and \Omega m(t). Observe
that for any time t, one has

\Omega = \Omega f (t) \cup \Omega m(t) \cup \Gamma (t) and \Omega f (t) \cap \Omega m(t) = \emptyset .
At \Gamma (t), to guarantee the mass balance we adopt the Rankine--Hugoniot boundary
conditions for the fluid and the solute. We assume that the chemistry does not lead
to any volume change, which means that one mineral mole takes exactly the same
volume as the one occupied in the fluid by the ion moles forming the mineral (see
[11, 47]). With this, the conditions at the moving interface are

vn + \gamma \kappa =  - 1

u\ast f(u) on \Gamma (t),(2.2a)

q = 0 on \Gamma (t),(2.2b)

vn(u
\ast  - u) = n \cdot D\nabla u on \Gamma (t),(2.2c)

where vn is the speed of the moving interface in the normal direction n pointing into
the mineral, \gamma is the diffusivity of the interface, and \kappa is the curvature of the moving
interface.
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PHASE FIELD MODELING OF PRECIPITATION/DISSOLUTION 1081

Observe that (2.2a) is describing the movement of the free boundary due to pre-
cipitation and dissolution. More precisely, the function f is the difference between the
precipitation rate and the dissolution rate. Without being restricted to this choice,
we use a simple reaction rate inspired by the mass action kinetics, namely,

(2.3) f(u) = fp(u) - fd = k

\biggl( 
u2

u2
eq

 - 1

\biggr) 
,

where ueq is the (known) equilibrium concentration for which u\ast > ueq, and k is a
reaction constant of dimension mol

m2 s . This choice of reaction rate corresponds to a pre-
cipitation rate increasing with ion concentration and a constant dissolution rate. Note
that to avoid dissolution whenever no mineral is present, in [25, 46] the dissolution
rate is given as a multivalued rate involving the Heaviside graph.

As follows from (2.2a), next to the precipitation and dissolution, the free boundary
is also moving due to surface curvature. The latter effect is more common for two-
phase flow but can also occur for interfaces separating a fluid from a solid phase. This
assumption is natural when minimizing the free energy of the surface [2, 40]. In our
case, \gamma will be very small.

The last two conditions at \Gamma (t) ensure the mass balance for the fluid and the
solute. Since we assume no volume change in connection with the chemistry, the
normal component of the fluid velocity is zero at the moving boundary. Combined
with the no-slip condition, it follows that the fluid velocity q is zero at the moving
boundary. Finally, (2.2c) is the Rankine--Hugoniot condition for the ions. The flux
on the right-hand side is due to diffusion as the convective flux is zero, following from
(2.2b). Also, the mineral is immobile, so the flux in the mineral subdomain is 0,
whereas the concentration u\ast is fixed.

For completeness we mention that the location of the moving interface \Gamma (t) can
be determined as the 0 level set of a function S : \Omega \times [0,\infty ) \rightarrow \BbbR satisfying

S(x, t) =

\left\{ 
  
  

< 0 if x \in \Omega f (t),

0 if x \in \Gamma (t),

> 0 if x \in \Omega m(t).

Then, S satisfies the equation

\partial tS + vn| \nabla S| = 0 for x \in \Omega .

The level-set approach is adopted in [11, 13, 43, 47].

2.2. Phase field formulation. An alternative to the sharp-interface formula-
tion given above is to consider a phase field formulation. In this case, one uses a phase
field, which is an approximation of the characteristic function. The nondimensional
phase field \phi is close to and approaches 1 in the fluid phase, is close to and approaches
0 in the mineral, and has a smooth transition of (dimensional) width O(\lambda ) > 0 sep-
arating the phases. In other words, \lambda > 0 is a phase field parameter related to the
thickness of the diffusive transition region. It is to be expected that when passing
\lambda to 0, one obtains in the limit the original sharp-interface model. In consequence,
the phase field approach replaces the interface between the two phases by a smooth
transition region where diffusive effects are included. The advantage is that the model
equations can now be defined on a stationary domain (here \Omega ) instead of on time-
evolving domains. This approach, however, requires the flow and transport equations
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1082 C. BRINGEDAL, L. VON WOLFF, AND I. S. POP

to also be defined in the mineral phase. Here we extend the phase field models in
[38, 49] as follows to include flow:

\lambda 2\partial t\phi + \gamma P \prime (\phi ) = \gamma \lambda 2\nabla 2\phi  - 4\lambda \phi (1 - \phi )
1

u\ast f(u),(2.4a)

\nabla \cdot (\phi q) = 0,(2.4b)

\rho f\partial t(\phi q) + \rho f\nabla \cdot (\phi q\otimes q) =  - \phi \nabla p+ \mu f\phi \nabla 2(\phi q) - g(\phi , \lambda )q+
1

2
\rho fq\partial t\phi ,(2.4c)

\partial t
\bigl( 
\phi (u - u\ast )

\bigr) 
+\nabla \cdot (\phi qu) = D\nabla \cdot (\phi \nabla u).(2.4d)

The model is explained in detail below.

2.2.1. Comments on the phase field equation (2.4a). The parameter \lambda > 0
appearing in the phase field equation is assumed small and is related to the width
of the diffuse interface. Further, P (\phi ) = 8\phi 2(1  - \phi )2 is the double-well potential,
which ensures that the phase field mainly attains values (close to) 0 and 1 for small
values of \lambda . Formally, this follows from the observation that if \lambda is small, the term
P \prime (\phi ) dominates in (2.4a), implying that \phi approaches one of the three equilibrium
values 0, 1/2, 1. Later we show that 1/2 is an unstable equilibrium, from which the
conclusion follows.

The reaction rate f(u) and diffusion parameter \gamma are the same as those in the
sharp-interface formulation. Note that due to the 4\phi (1 - \phi ) factor, the reaction term
is nonzero only in the diffuse transition zone between the two phases, and this factor
ensures that \phi stays between 0 and 1. Note that in sharp-interface models, further
dissolution after all mineral is dissolved is usually avoided by using a multivalued
dissolution rate based on a Heaviside graph (see [25, 46]), which complicates the
analysis and the development of numerical schemes (see [3, 27]). This is superfluous
for the phase field formulation proposed here because in the absence of mineral, only
the water phase is present, implying \phi \equiv 1, and therefore no dissolution can take
place.

2.2.2. Comments on the flow equations (2.4b) and (2.4c). The flow equa-
tions are now also defined in the mineral phase. To ensure that flow only occurs in
the fluid and not in the mineral, some modifications have been made. First, the flow
velocity q and pressure gradient \nabla p have become \phi q and \phi \nabla p. This leaves the flow
equations unchanged in the fluid phase when \phi = 1, whereas these quantities are
vanishing in the mineral phase where \phi = 0.

Second, the term g(\phi , \lambda )q is added. Here, g(\phi , \lambda ) is decreasing in the first ar-
gument, surjective, and twice differentiable and fulfills g(1, \lambda ) = 0 and g(0, \lambda ) > 0.
This way, q = 0 is the only possible solution when \phi = 0 (also see assumption A.4 in
[22]). Moreover, this term must also ensure that the velocities in the diffuse transition
zone between \phi = 0 and \phi = 1 are low, and therefore it works as an interpolation
function for velocities in this zone. In [8], dealing with a similar model for melting and
solidification, an artificial friction term is introduced to ensure the desired behavior
for \phi q inside the diffuse interface. Using the current notation, their friction term

would correspond to g(\phi , \lambda ) = K(1 - \phi )2\phi 
\lambda 2 for some constant K [8]. However, as will be

explained in Remark 3.1, a term of O(\lambda  - 2) would restrict the phase field model from
approaching the sharp-interface model when \lambda \searrow 0, and therefore it is not adopted
here.

A similar idea is adopted in [22], focusing on shape optimization, where the term

g(\phi , \lambda ) = K\surd 
\lambda 

(1 - \phi )n
\phi +n is applied. The constant n > 0 determines the shape of the

D
ow

nl
oa

de
d 

06
/1

2/
20

 to
 1

41
.5

8.
92

.8
8.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PHASE FIELD MODELING OF PRECIPITATION/DISSOLUTION 1083

function g. More precisely, a larger value of n leads to a function that is close to an
affine one, behaving as (1  - \phi ). In [22], n = 10 was found to work better regarding

numerical results. Inspired by [22], here we let g(\phi , \lambda ) = K
\lambda 

(1 - \phi )n
\phi +n with n = 10. Later

we will see that this gives good numerical results for the present model too. However,
any function g fulfilling the requirements listed previously can be adopted, the specific
choice being based on the impact on the numerical behavior.

Finally, the term 1
2\rho fq\partial t\phi added to (2.4c) accounts for the combined flow with

accumulation of the phase field variable to ensure conservation of kinetic energy when
there is precipitation. Note that the two time derivatives can be combined and rewrit-
ten as \rho f

\surd 
\phi \partial t(

\surd 
\phi q), a formulation used in, e.g., [9].

2.2.3. Comments on the ion transport equation (2.4d). Compared to [38],
the only difference appearing in the ion transport equation (2.4d) is in the presence
of the convective term. Note that the time derivative can be rewritten as \partial t(\phi u +
(1  - \phi )u\ast ). This is nothing but the derivative of the phase field weighted convex
combination of ion concentrations u (in the fluid phase) and the mineral concentration
u\ast (in the mineral phase). Recalling that in the mineral phase there is no diffusive
or convective transport, we see that (2.4d) represents the total mass balance of the
species.

2.2.4. Decreasing energy of the phase field formulation. The energy as-
sociated with the model (2.4) is given by

E =
1

2
\rho f\phi q

2 + \gamma \lambda  - 1P (\phi ) +
1

2
\gamma \lambda | \nabla \phi | 2 + \phi F (u)

and is the sum of the kinetic energy, the free energy of the phase field, and the energy
of the ions. The function F (u) is defined implicitly as a solution to the equation

1

u\ast f(u) = F (u) - F \prime (u)u+ F \prime (u)u\ast .

As f(u) is increasing with u, F (u) is convex for u < u\ast . Differentiating the above, we
get that

\partial t(\phi F (u)) = F \prime (u)\partial t
\bigl( 
\phi (u - u\ast )

\bigr) 
+

1

u\ast f(u)\partial t\phi .

When considering (2.4) on a bounded domain \Omega with no-slip boundary conditions for
q and zero Neumann boundary conditions for \phi and u at the boundary \partial \Omega , one gets

d

dt

\int 

\Omega 

Edx =

\int 

\Omega 

\Bigl[ 
 - \mu f\nabla (\phi q) : \nabla (\phi q) - g(\phi , \lambda )q2  - D\phi F \prime \prime (u)| \nabla u| 2

 - \lambda  - 1
\Bigl( 
\nu  - 1

u\ast f(u)
\Bigr) \Bigl( 

\nu  - 4\phi (1 - \phi )
1

u\ast f(u)
\Bigr) \Bigr] 

dx,

where \nu = \gamma \lambda \nabla 2\phi  - \gamma \lambda  - 1P \prime (\phi ). The first three terms on the right-hand side describe
energy dissipation due to viscosity, friction close to the mineral, and diffusion of ions.
The fourth term might be positive and thus lead to an increasing energy. This will
be the case if curvature effects (see (2.2a)) counteract the ion reaction. However,
for fixed \lambda , we get a bounded energy growth as in [38]. Note that the increasing
energy is possible due to the factor 4\phi (1 - \phi ) in the reactive term in (2.4a). Using a
multivalued Heaviside graph for the dissolution rate instead of the 4\phi (1  - \phi ) factor,
as commented on in subsection 2.2.1, would result in a model with decreasing energy,
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1084 C. BRINGEDAL, L. VON WOLFF, AND I. S. POP

while a regularized Heaviside graph would not. To limit the values of \phi between 0
and 1 and to ease the following analysis and numerical implementation, we choose to
keep the 4\phi (1 - \phi ) factor and not use a Heaviside graph.

2.3. Regularized phase field formulation. The model (2.4) is formulated in
the full domain \Omega . In doing so, we include the term g(\phi , \lambda )q to ensure that q = 0 in
the mineral phase. Observe that the ion concentration u and the fluid pressure p are
also defined in the region occupied by the mineral in the sharp-interface formulation.
For u, a possible extension in the mineral domain is u\ast , but this may lead to difficulties
related to the regularity of u in the transition from the phase field model to the sharp-
interface one, when \lambda \rightarrow 0. Moreover, there is no indication about how to extend p
in the mineral domain. At the same time, the model in (2.4) does not provide any
information about what values u and p should attain in the mineral domain. Although
the structure of the phase field equation (2.4a) ensures that \phi will never reach 0 (or 1),
unless initialized or if appearing on the boundary \partial \Omega , \phi can become arbitrarily close
to 0 (and 1). From a numerical point of view, this can lead to a badly conditioned
discretization, as the last two equations in (2.4) are close to degenerate whenever
\phi \searrow 0 and cannot be used to determine u and p in the mineral. To avoid this, we
regularize the model by adding a small, nondimensional \delta > 0 to the phase field \phi 
in the mass, momentum, and solute conservation equations. The regularized model
becomes

\lambda 2\partial t\phi + \gamma P \prime (\phi ) = \gamma \lambda 2\nabla 2\phi  - 4\lambda \phi (1 - \phi )
1

u\ast f(u),(2.5a)

\nabla \cdot 
\bigl( 
(\phi + \delta )q

\bigr) 
= 0,(2.5b)

\rho f\partial t
\bigl( 
(\phi + \delta )q

\bigr) 
+ \rho f\nabla \cdot 

\bigl( 
(\phi + \delta )q\otimes q

\bigr) 
=  - (\phi + \delta )\nabla p

+\mu f (\phi + \delta )\nabla 2
\bigl( 
(\phi + \delta )q

\bigr) 
 - g(\phi , \lambda )q+

1

2
\rho fq\partial t\phi ,(2.5c)

\partial t
\bigl( 
(\phi + \delta )(u - u\ast )

\bigr) 
+\nabla \cdot 

\bigl( 
(\phi + \delta )qu

\bigr) 
= D\nabla \cdot 

\bigl( 
(\phi + \delta )\nabla u

\bigr) 
.(2.5d)

Note that this regularization is only needed to facilitate the numerical discretization.
For completeness, we use it also in the analysis given below.

Remark 2.1. The results for decreasing and limited growth of the free energy
discussed in subsection 2.2.4 are also valid for the regularized formulation. To see
this, one only needs to replace \phi by \phi + \delta in the terms associated with the kinetic
energy and the energy of the ions.

3. The sharp-interface limit of the phase field formulation. As stated
before, the phase field model can be seen as an approximation of the sharp-interface
model, defined in the entire domain and where the free boundary is replaced by a
diffuse interface region. To justify this, we investigate the limit of the phase field
model in (2.5) as \lambda , the width of the diffuse transition zone, approaches zero and
show that this limit is exactly the model in subsection 2.1. We follow the ideas
of [14] and distinguish between the behaviors of the solution close to the interface
and far away from it. To this aim we first let L be a typical length in the model and
introduce the new, dimensionless parameter \xi = \lambda /L related to thickness of the diffuse
interface region. We investigate the behavior of the solution as \xi \searrow 0 by expanding
the unknowns in terms of \xi and equating terms of similar order. This is done in two
different ways, close to the diffuse interface (the inner expansions) and away from it
(the outer expansions), which are connected by applying matching conditions in the
transition region where both expansions are valid.
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PHASE FIELD MODELING OF PRECIPITATION/DISSOLUTION 1085

Before proceeding we mention that for the phase field equation, the steps are
the same as in [38] and therefore are only shown briefly. Throughout this matched
asymptotic analysis we take the regularization parameter as \delta = \xi . This choice is
made for convenience as \delta is not needed in the sharp-interface model. In subsequent
sections, \delta and \xi (or \lambda ) can be chosen independently.

3.1. The two expansions and matching conditions. Away from the inter-
face, we consider the outer expansion of \phi , u, p, and q. For \phi this reads as

(3.1) \phi out(t,x) = \phi out
0 (t,x) + \xi \phi out

1 (t,x) + \xi 2\phi out
2 (t,x) + \cdot \cdot \cdot 

and similarly for the other unknowns.
For the inner expansion, valid near the diffuse interface, we switch to local co-

ordinates. More precisely, we let \Gamma (t) denote the set of points y\xi \in \Omega along which
\phi (y\xi , t) = 1/2. Observe that these points depend on t, and on \xi as the model depends
on \lambda = L\xi . With s being the parameterization along \Gamma \xi (t) (s being a scalar in the
two-dimensional case) and n\xi the normal vector at \Gamma \xi (t) pointing into the mineral,
one can define r, the signed distance from a point x near \Gamma \xi (t) to this interface.
Clearly, r depends on x and t and is positive in the mineral region. One gets

(3.2) x = y\xi (t, s) + rn\xi (t, s),

as presented in Figure 1. It can be shown (see [14]) that

| \nabla r| = 1, \nabla r \cdot \nabla si = 0, \partial tr =  - vn, \nabla 2r =
\kappa + 2\Pi r

1 + \kappa r +\Pi r2
,

where \kappa and \Pi are the mean and Gaussian curvatures of the interface. Further, the
point y\xi has the expansion y\xi = y0 + \xi y1 + \cdot \cdot \cdot , where y0 is a point on the interface
\Gamma out
0 (t) defined through \phi out

0 = 1/2, and similarly n\xi = n0 + \xi \gamma 1n1 +O(\xi 2), where n0

is the normal vector of \Gamma out
0 (t).

With z = r/\xi and in terms of z and s, we consider the inner expansions

(3.3) \phi in(t,x) = \phi in
0 (t, z, s) + \xi \phi in

1 (t, z, s) + \xi 2\phi in
2 (t, z, s) + \cdot \cdot \cdot 

and similarly for the other unknowns. In the curvilinear coordinates (3.2), by the
scaling of the z variable, the derivatives are rewritten as follows. For a generic variable
v or v, we obtain [14]

\partial tv =  - \xi  - 1vn,0\partial zv
in + (\partial t + \partial ts \cdot \nabla \bfs )v

in +O(\xi ),

\nabla xv = \xi  - 1\partial zv
inn0 +\nabla \Gamma v

in +O(\xi ),

\nabla x \cdot v = \xi  - 1\partial zv
in \cdot n0 +\nabla \Gamma \cdot vin +O(\xi ),

\nabla 2
xv = \xi  - 2\partial zzv + \xi  - 1\kappa 0\partial zv +O(1),

where we have used \nabla 2
xr = \kappa 0 + O(\xi ) as the lowest order mean curvature and vn =

vn,0 +O(\xi ). Here, \kappa 0 and vn,0 are the curvature and normal velocity of the interface
\Gamma out
0 (t). Further, in the last equality the properties | \nabla r| = 1 and \nabla r \cdot \nabla si = 0 have

been used.
For the outer expansion and a fixed t and s, we let y1/2\pm denote the limit r \searrow 0

(i.e., from the mineral side), respectively r \nearrow 0 (from the fluid side), of x rewritten in
terms of the local coordinates in (3.2). We associate the corresponding limit values of
the outer expansion with the ones for the inner expansion, obtained when z \rightarrow \pm \infty .
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1086 C. BRINGEDAL, L. VON WOLFF, AND I. S. POP

y\xi (t, s)

y\xi + rn\xi (t, s)n\xi 

Fig. 1. Local coordinates near the interface.

More precisely, we assume that the two expansions of the phase field \phi fulfill the
following matching conditions [14]:

lim
z\rightarrow \pm \infty 

\phi in
0 (t, z, s) = \phi out

0 (t,y1/2\pm ),(3.4a)

lim
z\rightarrow \pm \infty 

\partial z\phi 
in
0 (t, z, s) = 0,(3.4b)

lim
z\rightarrow \pm \infty 

\bigl( 
\phi in
1 (t, z, s) - (z + y1)\nabla \phi out

0 (t,y1/2\pm ) \cdot n0

\bigr) 
= \phi out

1 (t,y1/2\pm ),(3.4c)

lim
z\rightarrow \pm \infty 

\partial z\phi 
in
1 (t, z, s) = \nabla \phi out

0 (t,y1/2\pm ) \cdot n0,(3.4d)

and similarly for the other unknowns.

3.2. Outer expansions. Following the steps in [38], we substitute the outer
expansion (3.1) for \phi into the phase field equation (2.5a). For the O(1) term, which
is the leading order, one obtains

P \prime (\phi out
0 ) = 0.

This equation has three solutions: \phi out
0 = 0, 1/2, and 1. Using the formal argument in

[49], the first and last solutions are stable since P \prime \prime (0) and P \prime \prime (1) are positive, whereas
\phi out
0 = 1/2 is unstable since P \prime \prime (1/2) < 0. In view of this, we see that in the limit

\xi \rightarrow 0, one obtains the solutions \phi out
0 = 0 and \phi out

0 = 1, and we let \Omega f
0 (t) and \Omega m

0 (t)
be the (time-dependent) subdomains of \Omega where \phi out

0 is 1 and 0, respectively.
Using the outer expansions in the flow equations (2.5b) and (2.5c) and the ion

conservation (2.5d), it is straightforward to show that the original sharp-interface

model equations (2.1) are recovered for the points in \Omega f
0 (t). Moreover, for the flow

equations, one also obtains qout
0 = 0 in \Omega m

0 (t).

3.3. Inner expansions. We now apply the inner expansions and the matching
conditions to the phase field model to recover the boundary conditions at the evolving
interface.

3.3.1. Phase field equation. For the phase field equation (2.5a) we follow the
steps in [38] and obtain that the dominating O(1) terms satisfy

(3.5) P \prime (\phi in
0 ) = L2\partial 2

z\phi 
in
0 .
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PHASE FIELD MODELING OF PRECIPITATION/DISSOLUTION 1087

Due to (3.4), one has limz\rightarrow  - \infty = \phi in
0 (t, z, s) = 1 and limz\rightarrow \infty \phi in

0 (t, z, s) = 0. Further,
\phi in
0 (t, 0, s) = 0.5, as this should define the moving interface when \xi \rightarrow 0. Hence, mul-

tiplying (3.5) by \partial 2
z\phi 

in
0 , integrating the result in z, and using the matching conditions

fulfilled by \phi in
0 and the specific form of P (\phi ), one gets

(3.6) \partial z\phi 
in
0 =  - 4

L
\phi in
0 (1 - \phi in

0 ).

Since \phi in
0 (t, 0, s) = 1/2, the solution is

(3.7) \phi in
0 (t, z, s) = \phi in

0 (z) =
1

1 + e4z/L
=

1

2

\Bigl( 
1 + tanh

\Bigl( 2z
L

\Bigr) \Bigr) 
.

For the O(\xi ) terms, one obtains

\bigl( 
P \prime \prime (\phi in

0 ) - L2\partial 2
z

\bigr) 
\phi in
1 = (L2vn,0 + L2\gamma \kappa 0)\partial z\phi 

in
0  - 4L\phi in

0 (1 - \phi in
0 )

1

u\ast f(u
in
0 ).

We view the left-hand side as an operator \scrL depending on \phi in
0 and applied to \phi in

1 . As
\scrL is a Fredholm operator of index zero, the above equation has a solution if and only
if the right-hand side, denoted by A(\phi in

0 ), is orthogonal to the kernel of \scrL . As follows
from (3.5), \partial z\phi 

in
0 lies in the kernel of \scrL . Since vn,0, \kappa 0, and uin

0 are independent of z
(the latter will be shown in the following section), the solvability condition implies

0 =

\int \infty 

 - \infty 
A(\phi in

0 )\partial z\phi 
in
0 dz

= L2(vn,0 + \gamma \kappa 0)

\int \infty 

 - \infty 
(\partial z\phi 

in
0 )2dz  - 4L

1

u\ast f(u
in
0 )

\int \infty 

 - \infty 
\phi in
0 (1 - \phi in

0 )\partial z\phi 
in
0 dz

=
2

3
L
\Bigl( 
vn,0 + \gamma \kappa 0 +

1

u\ast f(u
in
0 )

\Bigr) 
.

From this, by applying matching conditions for u at the moving interface, we obtain
the condition

vn,0 =  - \gamma \kappa 0  - 
1

u\ast f(u
out
0 (t,y1/2 - )),

which is the first boundary condition (2.2a) at the moving interface.

3.3.2. Mass conservation equation. The dominating O(\xi  - 1) term arising
from inserting the inner expansions into (2.5b) is

(3.8) \partial z(\phi 
in
0 qin

0 ) \cdot n0 = 0.

By integrating with respect to z and using matching conditions, we obtain

qout
0 (t,y1/2 - ) \cdot n0 = 0.

In other words, the normal component of the velocity is zero at the moving inter-
face. To conclude the same for the tangential component, we consider the momentum
conservation equation.

3.3.3. Momentum conservation equation. The dominating O(\xi  - 2) term in
the momentum equation (2.5c) is

\mu f\phi 
in
0 \partial 2

z (\phi 
in
0 qin

0 ) = 0.
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1088 C. BRINGEDAL, L. VON WOLFF, AND I. S. POP

Integrating with respect to z and using matching conditions results in

qout
0 (t,y1/2 - ) = 0,

which is the second boundary condition (2.2b) at the moving interface.

Remark 3.1. Note that choosing g(\phi , \lambda ) = K\phi (1 - \phi )2

\lambda 2 as in [8] would lead to the
dominating O(\xi  - 2) terms being

\mu f\phi 
in
0 \partial 2

z (\phi 
in
0 qin

0 ) = K\phi in
0 (1 - \phi in

0 )2qin
0 .

Although \mu f and K are constants, and \phi in
0 is known through (3.7), solving this equa-

tion for qin
0 is not straightforward, and therefore it is unclear whether qout

0 (t,y1/2 - ) =
0 is recovered in this case.

3.3.4. Ion conservation equation. The dominating O(\xi  - 2) term obtained by
inserting the inner expansions into (2.5d) is

\partial z(\phi 
in
0 \partial zu

in
0 ) = 0.

Integrating with respect to z and using matching conditions and the fact that \phi in
0 > 0,

we obtain
\partial zu

in
0 = 0,

and hence uin
0 = uin

0 (t, s) as mentioned in the previous section.
Taking advantage of \partial zu

in
0 = 0 and (3.8), the O(\xi  - 1) terms satisfy

 - vn,0(u
in
0  - u\ast )\partial z\phi 

in
0 = D\partial z(\phi 

in
0 \partial zu

in
1 ).

Integrating with respect to z from  - \infty to +\infty and applying matching conditions lead
to

vn,0(u
out
0 (t,y1/2 - ) - u\ast ) =  - D\nabla uout

0 (t,y1/2 - ) \cdot n0,

which is the third boundary condition (2.2c) at the moving interface.

4. Numerical behavior of the phase field model. We consider two nu-
merical examples showing the applicability and the potential of the model (2.5) by
studying the dissolution of a mineral crystal located in a channel and subject to a
flow field. The first example is from the benchmark study [33], and we assess how
the phase field model (2.5) behaves for a specific case compared to the results in the
benchmark study. In the second example, we make a qualitative assessment of how
the mineral dissolution process is affected by the strength of the flow field, inspired
by the sharp-interface simulations in [34].

4.1. Dissolution of a calcite crystal. We consider the benchmark problem II
from [33]. Here, calcite dissolves through the chemical reaction

CaCO3(s) + H+(l) \rightarrow Ca2+(l) + HCO - 
3 (l).

Since H+ is needed for calcite to dissolve, we model this as a one-way reaction, where
(2.5d) is replaced by

(4.1) \partial t
\bigl( 
(\phi + \delta )(uH+ + u\ast )

\bigr) 
+\nabla \cdot 

\bigl( 
(\phi + \delta )quH+

\bigr) 
= D\nabla \cdot 

\bigl( 
(\phi + \delta )\nabla uH+

\bigr) 
,

and use the simple, linear reaction rate

(4.2) f(uH+) =  - kuH+
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PHASE FIELD MODELING OF PRECIPITATION/DISSOLUTION 1089

in (2.5a). This means there is no precipitation, and the dissolution rate increases with
larger access to H+. Note the change in sign in the time derivative in (4.1) compared
to (2.5d). This occurs because H+ is consumed, not produced, for calcite to dissolve.
Writing the time derivative as \partial t

\bigl( 
\phi uH+  - (1  - \phi )u\ast \bigr) as in subsection 2.2.3 shows

that we are conserving the difference between H+ and the mineral, reflecting that
as one calcite molecule dissolves, one H+ atom is consumed. We do not model the
concentrations of the solutes Ca2+ and HCO - 

3 as they do not affect the reaction rate.
We follow the same setup as in [33] by considering a two-dimensional channel of

length 1 mm and width 0.5 mm, where a circular calcite crystal of initial radius 0.1
mm is centered in (0.5, 0.25) mm. A uniform flow field of given velocity qin = 0.0012
m/s is applied at x = 0 mm. Initially and at the inlet a concentration of uH+ = 10
mol/m3 is applied. The top and bottom of the channel are no-slip boundaries, while
fluid can leave through the outlet at x = 1 mm. We refer the reader to Table 1 for all
specified parameters for model (2.5a)--(2.5c) and (4.1). All parameters not related to
the phase field are taken from [33].

Table 1
Parameters corresponding to benchmark II in [33] and phase field parameters.

Parameter Symbol Value Units
Fluid density \rho f 103 kg m - 3

Fluid viscosity \mu f 10 - 3 kg m - 1s - 1

Diffusion coefficient D 10 - 9 m2s - 1

Inlet velocity qin 0.0012 m s - 1

Reaction rate constant in (4.2) k 8.9\times 10 - 3 mol m - 2s - 1

Inlet and initial concentration uH+ 10 mol m - 3

Calcite molar density u\ast 27100 mol m - 3

Phase field diffuse interface width \lambda 2.5\times 10 - 5 m
Phase field interface diffusivity \gamma 2.8\times 10 - 14 m2 s - 1

Phase field regularization \delta 10 - 6 -

Phase field flow interpolation; g(\phi , \lambda ) =
10K(1 - \phi )
\lambda (\phi +10)

K 25 kg m - 2 s - 1

The model equations are discretized using a control volume method on a uniform,
rectangular staggered grid of 200\times 200 grid cells. The phase field, pressure, and solute
are defined in the centers of the control volumes, while the velocity is defined at the
center of the edges. Convective fluxes are approximated by an upstream approxima-
tion, and diffusive fluxes are discretized using a two-point approximation. The model
is discretized in time using the backward Euler scheme with a constant time-step size
\Delta t = 1.35 s until the end time t = 2700 s = 45 min. The resulting nonlinear systems
of equations are solved using Newton iterations in each time step, with the previous
time step as an initial guess.

Figure 2 shows the shape of the calcite crystal initially and after 15, 30, and 45
minutes. The shapes are shown by plotting the \phi = 0.5 isolines of the phase field.
The initially circular calcite crystal dissolves unevenly due to the accessibility of H+

varying with the flow around the crystal. Since the flow takes place from left to right,
the dissolution is strongest at the left part of the calcite crystal and reduces while
moving to the right part of the crystal. Comparing this to the corresponding Figure
8 in [33], we see the same qualitative change in shape. The crystal dissolves slightly
faster in our approach compared to [33], which could be due to the nonconservative
property of the Allen--Cahn equation.

4.2. Effect of flow field strength on dissolution. We consider a qualita-
tive comparison with respect to how mineral dissolves when located in flow fields of
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1090 C. BRINGEDAL, L. VON WOLFF, AND I. S. POP

0.4 0.45 0.5 0.55 0.6
0.15

0.2

0.25

0.3

0.35

Fig. 2. The mineral shape while dissolving (zoomed-in view of the channel where the calcite is
present initially). The evolution of the calcite boundary at t = 0, 15 min, 30 min, and 45 min (from
the outermost curve to the innermost one). The axis scales are in mm.

different strengths, inspired by the setup in [34, sect. 3.1]. As in the previous test,
we consider a channel of length 1 mm and width 0.5 mm, with an initially circular
mineral located in (0.5, 0.25) mm having radius 0.1 mm. At x = 0, a uniform flow
field of a given velocity is applied and the fluid can flow out at x = 1, while the top
and bottom are no-slip boundaries. We now use the original model (2.5) and reaction
rate (2.3). To trigger dissolution of the mineral, we apply an equilibrium concen-
tration ueq = 0.5 mol/m3, and for the solute we use an initial concentration of ueq

and a Dirichlet boundary condition at the inlet of ueq/2. The P\'eclet and Damk\"ohler
numbers are defined as

Pe =
Lqin
D

, Da =
k

ueqqin
,

where D = 5 \times 10 - 9 is the diffusivity of the solute, k = 1.9 \times 10 - 5 is the reaction
constant, and L is the length of the channel. By varying qin among (a) 1.2\times 10 - 5 m/s,
(b) 1.2\times 10 - 4 m/s, (c) 1.2\times 10 - 3 m/s, and (d) 0.012 m/s, we consider the four P\'eclet
and Damk\"ohler numbers given in Table 2, which are the same cases applied in [34].
We use a mineral concentration of u\ast = 1 mol/m3. This is an artificially low value of
a mineral density but causes the mineral to change shape faster as it dissolves. For
the phase field, we use the same parameters as in Table 1.

Table 2
Nondimensional numbers in the four simulations.

Simulation (a) (b) (c) (d)
P\'eclet number 2.4 24 240 2400
Damk\"ohler number 3.173 0.317 0.032 0.003
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PHASE FIELD MODELING OF PRECIPITATION/DISSOLUTION 1091

The model (2.5) is discretized using the same control volume method as before using a
uniform, rectangular staggered grid of 200\times 200 grid cells. The model is time stepped
using backward Euler with a constant time-step size \Delta t = \Delta y/qin, and the nonlinear
systems of equations are solved using Newton iterations in each time step, with the
previous time step as an initial guess.

The four simulations are carried out until the mineral is dissolved completely.
Figure 3 shows the isolines \phi = 0.5 at different time steps to indicate the shape of the
mineral as it dissolves. Although we consider a different chemical system from that
in [34], we see how the later isolines go from being circular for low velocities to more
elongated at larger velocities as in [34, Figure 2]. For low velocities, the reaction rate
is quite similar for the entire mineral surface, although with an increase at the front
where lower solute concentrations are first met. At larger velocity, dissolution is faster
on the sides as dissolved solute is more efficiently transported away, triggering further
dissolution. The mineral generally dissolves faster when the P\'eclet number increases,
although the same reaction rate has been used. This is caused by the dissolving
mineral creating a local increase in the solute concentration, which is transported
away more quickly when the flow velocity is large. We see how the interplay between
velocity and diffusion gives the different shapes of the mineral as it dissolves, and also
different effective reaction rates [20].

5. Upscaling using periodic homogenization. We now consider the phase
field model (2.5) to be defined in a periodic porous medium. The pore scale, where
grain, mineral, and fluid-filled void space are explicitly separated, will be the
microscale, and in the following we will derive a macroscale model describing the
effective behavior of the system. More precisely, we consider a domain \scrD containing
small, periodically distributed grains, as sketched in Figure 4. In a porous medium,
\scrD represents the union of the void space, mineral space, and grain space, where the
grains will be considered as perforations. We will refer to the union of the void space
and mineral space as the pore space. The grains are impermeable to fluid, and no
reactions take place there. Hence, the phase field model (2.5) is not defined in the
grain space but only in the pore space of \scrD . The grains do not change with time,
while the moving boundary between mineral and fluid, located in the pore space of
\scrD , is still handled by the phase field equation as a diffuse interface. We assume that
the mineral precipitates on the boundary of the perforations or at already existing
minerals and not inside the void space. Two important assumptions are that the void
space in \scrD is connected and that the mineral never grows in such a way that the pore
space is clogged.

The porous medium \scrD contains many periodically repeating grains. This means
that the phase field model (2.5) is defined on a domain of high complexity. In such
cases, the averaged behavior of the system is of primary interest. In consequence
we apply periodic homogenization techniques to find effective equations valid at a
larger scale, where the microscale oscillations are no longer visible, but their effect is
still taken into account. This is done by identifying a scale separation and applying
asymptotic expansions on nondimensional versions of the model equations.

When nondimensionalizing the model (2.5), one must address the size of the ap-
pearing nondimensional numbers (e.g., Reynolds, P\'eclet, Cahn, and Damk\"ohler), in
particular, their internal ordering. The size of these nondimensional numbers de-
scribes which regime we consider, and in the following we will consider a regime in
the range of Darcy's law [23] and where time scales for macroscale solute diffusion,
advection, and reaction are approximately the same size [6]. As we will see in the
following, this leads to diffusion dominating at the pore scale. Finally, we want the
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(a)

0.4 0.45 0.5 0.55 0.6
0.15

0.2

0.25

0.3

0.35
(b)

0.4 0.45 0.5 0.55 0.6
0.15

0.2

0.25

0.3

0.35

(c)

0.4 0.45 0.5 0.55 0.6
0.15

0.2

0.25

0.3

0.35
(d)

0.4 0.45 0.5 0.55 0.6
0.15

0.2

0.25

0.3

0.35

Fig. 3. The mineral shapes while dissolving (zoomed-in view of the channel where the calcite is
present initially). Black line shows initial shape, while increasingly brighter green shows the shape
at later time steps. Cases (a)--(d) correspond to the cases in Table 2. The last isolines are at times
(a) t = 3.4 s, (b) t = 1.6 s, (c) t = 1.1 s, (d) t = 0.79 s. The axis scales are in mm. (See online
version for color.)

Fig. 4. Structure of porous medium. Fluid-filled void space is marked with white, mineral is
dark grey, and nonreactive grain is light grey. The pore space is the union of the void space and
mineral space.
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PHASE FIELD MODELING OF PRECIPITATION/DISSOLUTION 1093

phase field to appear as a local, microscale variable, and we will address the choices
necessary to achieve this. Note that other choices for the nondimensional numbers
are possible but will result in different upscaled models.

5.1. The scale separation. In the dimensional setting, we let \ell be a typical
length scale at the microscale (that is, the pore scale), e.g., the width of the rightmost
box in Figure 4, and let L be a typical length scale at the macroscale, e.g., the width
of the domain \scrD or of the Darcy scale, as commonly made for homogenization [19, 23].
With this we define \varepsilon = \ell /L, reflecting the ratio between the micro- and macroscales
and hence giving us the scale separation. We assume that \ell is much smaller than L,
and hence \varepsilon is a small number. We mention that [46, Remark 1.2] discusses a different
definition of the scale separation and shows how this leads to the same nondimensional
model.

In what follows we rewrite the model in nondimensional form. In doing so we
introduce a local unit cell Y = [0, 1]dim, as seen in Figure 5, where dim is 2 or 3,
depending on spatial dimension, and we let the local variable y \in (0, 1)dim describe
points within Y . The local cell consists of the fluid part F and mineral part M , and
the grain part G is as sketched in Figure 5. Hence, locally the phase field model is
defined in the pore space P = F \cup M , while G defines the perforation. The boundary
\Gamma P defines the (stationary) internal boundary between the perforation and the domain
for the phase field model. The boundary \partial Y denotes the outer boundary of the unit
cell Y . At this boundary we will later apply periodic boundary conditions, allowing
us to decouple the unit cells from one another. However, when referring to internal
boundaries, the boundary \Gamma P is meant.

nP

F

M

G

Fig. 5. Local pore Y = [0, 1]d. The fluid part (white) is F , mineral part (dark grey) is M, and
grain part (light grey) is G, along with a normal vector nP at the internal boundary \Gamma P . The outer
boundary of the local pore, \partial Y , is marked with black.

To distinguish between the two scales in the model, we use x as the variable at
the macroscale, which is then connected to the local, microscale variable y through
y = \varepsilon  - 1x. This can be interpreted as x only seeing the macroscale behavior, while
the zoomed-in y sees the microscale rapid changes in a single cell. Hence for each
macroscale point x, we can identify a unit cell, with its own local variable y.

With this we have that the perforated domain of the phase field model is the
union of all local pores P , scaled by \varepsilon . This means that the domain depends on \varepsilon and
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1094 C. BRINGEDAL, L. VON WOLFF, AND I. S. POP

can be written as
\Omega \varepsilon = \cup w\in W\scrD \{ \varepsilon (w + P )\} ,

where W\scrD is a subset of \BbbZ dim satisfying \scrD = \cup w\in W\scrD \{ \varepsilon (w+Y )\} , which is the complete
(nonperforated) medium domain seen to the left in Figure 4. We use \varepsilon as a superscript
to indicate dependence on \varepsilon . The union of all internal boundaries \Gamma P is denoted by

\Gamma \varepsilon = \cup w\in W\scrD \{ \varepsilon (w + \Gamma P )\} .

5.2. Nondimensional model equations. To identify which terms are domi-
nating in the model and hence are important for the upscaling, we first nondimen-
sionalize the model equations (2.5). The assumptions made below on the typical flow
rate, viscosity, and pressure difference ensure that we are in the range of Darcy's law,
which means that at the macroscale the conservation of momentum equation (2.5c)
becomes a Darcy-like law. Also, we ensure that the diffuse interface (that is, the tran-
sition between mineral and fluid) stays within a local pore. Nondimensional variables
and quantities are denoted with a hat and are defined as

\^t = t/tref, \^x = x/L, \^y = y/\ell , \^\lambda = \lambda /\lambda ref,

\^q\varepsilon = q/qref, \^u\varepsilon = u/uref, \^p\varepsilon = p/pref, \^u\ast = u\ast /uref,

\^D = D/Dref, \^\mu f = \mu f/\mu ref, \^\rho f = \rho f/\rho ref, \^k = k/kref,

\^\gamma = \gamma /\gamma ref, \^K = K/Kref.

Note the superscript \varepsilon for the variables having a highly oscillatory behavior. The
relations between the reference quantities are given through several nondimensional
numbers. The size of these nondimensional numbers describes which regime we con-
sider. As already mentioned, here we are interested in the regime where Darcy's law
is valid and where solute advection, diffusion, and reaction time scales are about the
same order of magnitude. Darcy's law is valid when fluid flow is laminar and when
the pressure drop dominates the flow behavior. This corresponds to the Reynolds and
Euler numbers being

Re = \rho refqrefL/\mu ref = O(\varepsilon 0), Eu = pref/q
2
ref\rho ref = O(\varepsilon  - 2),

respectively. Different choices can, e.g., lead to the Forchheimer law [16]. Solute
advection, diffusion, and reaction time scales are identified as tadv = L/qref, tdiff =
L2/Dref, and treact = uref\ell /kref, respectively. These time scales are assumed to be
about the same, that is, that advection, diffusion, and reaction are equally important,
which corresponds to the P\'eclet and Damk\"ohler numbers being

Pe = tdiff/tadv = O(\varepsilon 0), Da = tadv/treact = O(\varepsilon 0),

respectively. Upscaled models have also been derived for other regimes with respect
to the P\'eclet and Damk\"ohler numbers by employing either homogenization [4, 12, 17,
28, 32, 45] or volume averaging techniques [53, 54]. The observation time scale tref is
set to be equal to tadv.

For reference quantities and parameters affecting the phase field variable, we
assume that the diffuse interface width is proportional to, but still smaller than, the
pore size \ell . This corresponds to the Cahn number being

Ca = \lambda ref/L = O(\varepsilon ).
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PHASE FIELD MODELING OF PRECIPITATION/DISSOLUTION 1095

Hence, \^\lambda is a small number but independent of \varepsilon . This way, the interface width is small
relative to the pore size but remains a microscale quantity without approaching its
sharp-interface limit as \varepsilon approaches zero. Similar choices are made in the upscaling
of the phase field models found in [18, 31, 38], while an interface width that is large
compared to the pore size is upscaled in [41, 42]. In the latter two papers, the phase
field appears as a macroscale variable in the upscaled model. The microscale diffusive
time scale of the phase field, that is, tdiff,\gamma = \ell 2/\gamma ref, is chosen to be comparable to
the reactive time scale, but where \^\gamma is still allowed to be small but independent of \varepsilon 
(that is, O(\varepsilon 0)). Hence, the diffusive Damk\"ohler number of the phase field is

Da\phi = tdiff,\gamma /treact = O(\varepsilon 0).

This choice supports the phase field variable as a microscale variable, without affecting
the sharp-interface limit as \varepsilon approaches zero. Finally, the reference value Kref is
chosen in relation to the other flow-related reference values to ensure low velocities in
the diffuse transition zone as \varepsilon approaches zero. Interpreting Kref as viscosity divided
by a slip length, this corresponds to the Navier number being

Na = \ell s/L = O(\varepsilon ),

where \ell s = \mu ref/Kref is the associated slip length.
For readability, in the following we let the nondimensional numbers that are equal

to O(\varepsilon k) be exactly equal to \varepsilon k, but other choices for the proportionality constants are
straightforward. Hence, we now have that Re = 1, Eu = \varepsilon  - 2, etc. This corresponds
to letting \mu ref = \rho refLqref and pref = q2ref\rho refL

2/\ell 2. From the P\'eclet and Damk\"ohler
numbers, we get kref = uref\ell /tref and Dref = L2/tref. With this choice of kref, the

nondimensional reaction rate can be defined as \^f(\^u) = \^k(\^u2/\^u2
eq  - 1). Ca = \varepsilon corre-

sponds to letting \lambda ref = \ell , and Da\phi = 1 corresponds to \gamma ref = \ell 2/tref. Finally, Na = \varepsilon 
means that Kref = \rho refqrefL/\ell .

Table 3 summarizes the choices made in the nondimensionalization.

Table 3
Nondimensional quantities and their relation to the upscaling parameter \varepsilon .

Dimensionless number Definition Size w.r.t. \varepsilon 
Scale separation \varepsilon = \ell /L \varepsilon 
Reynolds number Re = \rho refqrefL/\mu ref \varepsilon 0

Euler number Eu = pref/q
2
ref\rho ref \varepsilon  - 2

P\'eclet number Pe = Lqref/Dref \varepsilon 0

Damk\"ohler number Da = krefL/urefqref\ell \varepsilon 0

Cahn number Ca = \lambda ref/L \varepsilon 
Phase field Damk\"ohler number Da\phi = kref\ell /\gamma refuref \varepsilon 0

Navier number Na = \mu ref/KrefL \varepsilon 

Remark 5.1. The (nondimensional) diffuse interface width \^\lambda , phase field diffu-
sivity \^\gamma , and regularization parameter \delta are all small, positive numbers that are
independent of \varepsilon . That means they remain fixed as \varepsilon \rightarrow 0 in the following section.
These three numbers affect the behavior of the phase field model. In particular, \^\lambda is
the microscale diffuse interface width, and \^\gamma dictates the equilibration speed of the
diffuse interface, while \delta assures the model is not degenerate. These numbers will be
set to small numbers in the numerical examples, but they neither rely on any internal
ordering nor depend on one another.

D
ow

nl
oa

de
d 

06
/1

2/
20

 to
 1

41
.5

8.
92

.8
8.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1096 C. BRINGEDAL, L. VON WOLFF, AND I. S. POP

Since from now on we will only use nondimensional variables, we omit the hat on
all variables. With this, the dimensionless model reads as

\lambda 2\partial t\phi 
\varepsilon + \gamma P \prime (\phi \varepsilon ) = \varepsilon 2\gamma \lambda 2\nabla 2\phi \varepsilon  - 4\lambda \phi \varepsilon (1 - \phi \varepsilon )

1

u\ast f(u
\varepsilon ) in \Omega \varepsilon ,(5.1a)

\nabla \cdot 
\bigl( 
(\phi \varepsilon + \delta )q\varepsilon 

\bigr) 
= 0 in \Omega \varepsilon ,(5.1b)

\varepsilon 2\rho f

\Bigl( 
\partial t
\bigl( 
(\phi \varepsilon + \delta )q\varepsilon 

\bigr) 
 - 1

2
q\varepsilon \partial t\phi 

\varepsilon +\nabla \cdot 
\bigl( 
(\phi \varepsilon + \delta )q\varepsilon \otimes q\varepsilon 

\bigr) \Bigr) 
+ (\phi \varepsilon + \delta )\nabla p\varepsilon 

= \varepsilon 2\mu f (\phi 
\varepsilon + \delta )\nabla 2

\bigl( 
(\phi \varepsilon + \delta )q\varepsilon 

\bigr) 
 - K

\lambda 

(1 - \phi \varepsilon )n

\phi \varepsilon + n
q\varepsilon in \Omega \varepsilon ,(5.1c)

\partial t
\bigl( 
(\phi \varepsilon + \delta )(u\varepsilon  - u\ast )

\bigr) 
+\nabla \cdot 

\bigl( 
(\phi \varepsilon + \delta )q\varepsilon u\varepsilon 

\bigr) 
= D\nabla \cdot 

\bigl( 
(\phi \varepsilon + \delta )\nabla u\varepsilon 

\bigr) 
in \Omega \varepsilon ,(5.1d)

\nabla \phi \varepsilon \cdot n\varepsilon = 0 on \Gamma \varepsilon ,(5.1e)

(\phi \varepsilon + \delta )\nabla u\varepsilon \cdot n\varepsilon = 0 on \Gamma \varepsilon ,(5.1f)

q\varepsilon = 0 on \Gamma \varepsilon .(5.1g)

Remark 5.2. Note that the analysis below remains unchanged if \delta = 0, when
clogging is not considered. In other words, including an \varepsilon -independent regularization
parameter \delta does not affect the upscaling. The presence of \delta > 0 ensures that the
resulting model is not degenerate, which is important for the numerical examples.

5.3. The formal asymptotic expansions. We apply the homogenization ansatz,
namely we assume that the unknowns can be written as a series expansion in terms
of \varepsilon with explicit dependence on the micro- and macroscale variables. For the phase
field \phi \varepsilon this reads as

(5.2) \phi \varepsilon (t,x) = \phi 0(t,x,y) + \varepsilon \phi 1(t,x,y) + \varepsilon 2\phi 2(t,x,y) + \cdot \cdot \cdot ,
where the functions \phi i(t,x,y) are Y -periodic in y. Similar expansions are assumed for
all dependent variables. The introduction of the microscale variable y is an important
aspect: While the \phi \varepsilon needs to resolve both the microscale and macroscale behaviors,
we assume that the functions in the series expansion can distinguish between slow
variability through x and fast variability through y. Further, the series expansion
allows us to capture the dominating behavior in \phi 0, while lower order behavior is
captured through the subsequent terms. Also note that macroscale x is defined in the
entire (nonperforated) domain \scrD , while y is defined locally in a pore P .

As y is a local variable behaving like y = \varepsilon  - 1x, the spatial derivatives need to be
rewritten accordingly. Hence, for a generic variable v, one has

(5.3) \nabla v(x,y) = \nabla \bfx v(x,y) +
1

\varepsilon 
\nabla \bfy v(x,y),

where \nabla \bfx and \nabla \bfy are the gradients with respect to x, respectively, y. We insert
the asymptotic expansions (5.2) and the rescaled derivatives (5.3) into the model
equations (5.1), and equate terms of the same order with respect to \varepsilon to isolate the
behavior of the system on different scales. In the regularized equations, the term
\phi 0 + \delta will appear frequently, and we will use the notation \phi \delta 

0 = \phi 0 + \delta in this case.
Note that \phi \delta 

0 > 0.

5.3.1. Phase field equation. Equating the dominating O(1) terms in the phase
field equation (5.1a) gives

\lambda 2\partial t\phi 0 + \gamma P \prime (\phi 0) = \gamma \lambda 2\nabla 2
\bfy \phi 0  - 4\lambda \phi 0(1 - \phi 0)

1

u\ast f(u0).
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PHASE FIELD MODELING OF PRECIPITATION/DISSOLUTION 1097

The dominating term of the corresponding boundary condition (5.1e) gives \nabla \bfy \phi 0 \cdot 
nP = 0. Observe that the above equation is similar to the original (5.1a) but involves
only spatial derivatives with respect to y. Although \phi 0 still depends on x, x only
appears as a parameter, as no derivatives with respect to x are involved. Recalling
the Y -periodicity in y, \phi 0 solves the following cell problem for the phase field:

\lambda 2\partial t\phi 0 + \gamma P \prime (\phi 0) = \gamma \lambda 2\nabla 2
\bfy \phi 0  - 4\lambda \phi 0(1 - \phi 0)

1

u\ast f(u0) in P,

\nabla \bfy \phi 0 \cdot nP = 0 on \Gamma P ,(5.4)

periodicity in y across \partial Y.

These cell problems are defined for each macroscale x, which corresponds to each pore
as in Figure 5. However, the cell problems are decoupled locally due to the periodicity
requirement.

5.3.2. Mass conservation equation. The dominating O(\varepsilon  - 1) term in (5.1b)
gives

(5.5) \nabla \bfy \cdot 
\bigl( 
\phi \delta 
0q0

\bigr) 
= 0 in P,

which will be needed in the derivation for the momentum and ion conservation equa-
tions. Next, the O(1) terms provide

\nabla \bfx \cdot 
\bigl( 
\phi \delta 
0q0

\bigr) 
+\nabla \bfy \cdot 

\bigl( 
\phi \delta 
0q1 + \phi 1q0

\bigr) 
= 0.

Integrating with respect to y over P and applying the Gauss theorem and the bound-
ary conditions q0 = q1 = 0 on \Gamma P , together with periodicity, one gets

(5.6) \nabla \bfx \cdot 
\bigl( 
\phi \delta 
0q0

\bigr) 
= 0 in \scrD .

The overline notation indicates a quantity averaged over the microscale. Formally,
one can extend the quantities defined in the pore space P by 0 inside the perforations
G, allowing for an average over the entire cell Y . For a scalar variable v(t,x,y), we
define v(t,x) = 1

| Y | 
\int 
Y
v(t,x,y)dy =

\int 
P
v(t,x,y)dy. Note that | Y | , the volume of Y ,

is 1. In this way, the average of the highest order term of the phase field, \phi 0(t,x),
will correspond to the porosity at time t at the macroscale location x.

5.3.3. Momentum conservation equation. The dominating O(\varepsilon  - 1) term in
(5.1c) yields

\phi \delta 
0\nabla \bfy p0 = 0,

meaning that p0 = p0(t,x) is independent of y. The O(1) terms give

(5.7) \phi \delta 
0(\nabla \bfx p0 +\nabla \bfy p1) = \mu f\phi 

\delta 
0\nabla 2

\bfy 

\bigl( 
\phi \delta 
0q0

\bigr) 
 - K

\lambda 

(1 - \phi 0)n

\phi 0 + n
q0.

We use the linearity of the equation and determine p1 and q0 in terms of (the gradient
of) p0. With \Pi j(t,x,y) and wj(t,x,y) solving the cell problems

\phi \delta 
0(ej +\nabla \bfy \Pi 

j) + \mu f\phi 
\delta 
0\nabla 2

\bfy 

\bigl( 
\phi \delta 
0w

j
\bigr) 
=

K

\lambda 

(1 - \phi 0)n

\phi 0 + n
wj in P,

\nabla \bfy \cdot 
\bigl( 
\phi \delta 
0w

j
\bigr) 
= 0 in P,(5.8)

wj = 0 on \Gamma P ,

periodicity in y across \partial Y, j \in \{ 1, . . . ,dim\} ,
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1098 C. BRINGEDAL, L. VON WOLFF, AND I. S. POP

we observe that

p1(t,x,y) =
dim\sum 

j=1

\Pi j(t,x,y)\partial xj
p0(t,x),

q0(t,x,y) =  - 
dim\sum 

j=1

wj(t,x,y)\partial xjp0(t,x)

now fulfill (5.5) and (5.7). The boundary condition for wj on \Gamma P follows from q0 = 0
on \Gamma P . Note that the cell problems are solved in y for a fixed x. Hence, as with the
phase field cell problem, one can solve for single pores independently.

Multiplying by \phi \delta 
0 in the last equality and averaging over Y gives

(5.9) \phi \delta 
0q0 =  - \scrK \nabla \bfx p0 in \scrD ,

where the components of the permeability tensor \scrK (t,x) are given by

kij(t,x) =

\int 

P

\phi \delta 
0w

j
i dy with i, j \in \{ 1, . . . ,dim\} .

Here, wj
i are the components of wj , which are the solutions of the cell problems (5.8)

with the continuous extension wj = 0 inside the grain.

5.3.4. Ion conservation equation. The dominating O(\varepsilon  - 2) term from the ion
conservation equation (5.1d) and dominating O(\varepsilon  - 1) term from the corresponding
boundary condition (5.1f) give

\nabla \bfy \cdot 
\bigl( 
\phi \delta 
0\nabla \bfy u0

\bigr) 
= 0 in P,

\phi \delta 
0\nabla \bfy u0 \cdot nP = 0 on \Gamma P ,

along with periodicity in y. This implies that u0 = u0(t,x) is independent of y.
Further, the O(\varepsilon  - 1) terms from (5.1d) and O(1) terms from (5.1f) give

\nabla \bfy \cdot 
\bigl( 
\phi \delta 
0(\nabla \bfx u0 +\nabla \bfy u1)

\bigr) 
= 0 in P,

\phi \delta 
0(\nabla \bfx u0 +\nabla \bfy u1) \cdot nP = 0 on \Gamma P ,

where we used (5.5) for the convective term. We exploit again the linearity of the
problem and formulate u1(t,x,y) in terms of (the derivatives of) u0(t,x). We let the
weight functions \omega j(t,x,y) solve the cell problems

\nabla \bfy \cdot 
\bigl( 
\phi \delta 
0(\nabla \bfy \omega 

j + ej)
\bigr) 
= 0 in P,

\phi \delta 
0(\nabla \bfy \omega 

j + ej) \cdot nP = 0 on \Gamma P ,(5.10)

periodicity in y across \partial Y, j \in \{ 1, . . . ,dim\} ,

As earlier, the cell problems are solved in y for a fixed x. Then, for an arbitrary
\~u1 = \~u1(t,x), we obtain that

u1(t,x,y) = \~u1(t,x) +
dim\sum 

j=1

\omega j(t,x,y)\partial xju0(t,x).
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PHASE FIELD MODELING OF PRECIPITATION/DISSOLUTION 1099

As will follow from below, only \nabla \bfy u1 will be needed for obtaining the upscaled model;
therefore the function \~u1 plays no role in the upscaling, and it is not necessary to
specify it.

The O(1) terms from (5.1d) and O(\varepsilon ) terms from (5.1f) give

\partial t
\bigl( 
\phi \delta 
0(u0  - u\ast )

\bigr) 
+\nabla \bfx \cdot 

\bigl( 
\phi \delta 
0q0u0

\bigr) 
+\nabla \bfy \cdot A

= D
\bigl( 
\nabla \bfy \cdot B+\nabla \bfx \cdot 

\bigl( 
\phi \delta 
0(\nabla \bfx u0 +\nabla \bfy u1)

\bigr) 
in \scrD \times P,

B \cdot nP = 0 on \Gamma P .

whereA = \phi 1q0u0+\phi \delta 
0q1u0+\phi \delta 

0q0u1 and B = \phi \delta 
0\nabla \bfx u1+\phi \delta 

0\nabla \bfy u2+\phi 1\nabla \bfx u0+\phi 1\nabla \bfy u1.
The above equation contains derivates in both x and y. To find the upscaled model, we
integrate in y over the domain P , apply Gauss's theorem in y, and use the boundary
condition on \Gamma P and the periodicity requirement to remove the\nabla \bfy \cdot A and\nabla \bfy \cdot B terms.
For the velocity terms in A, we also apply the boundary condition (5.1g), which gives
q0 = q1 = 0 on \Gamma P . This leads to the upscaled reaction-advection-diffusion equation

(5.11) \partial t
\bigl( 
\phi \delta 
0(u0  - u\ast )

\bigr) 
+\nabla \bfx \cdot 

\bigl( 
\phi \delta 
0q0u0

\bigr) 
= D\nabla \bfx \cdot (\scrA \nabla \bfx u0) in \scrD .

The components of the matrix \scrA (t,x) are

aij(t,x) =

\int 

P

\phi \delta 
0(\delta ij + \partial yi

\omega j)dy with i, j \in \{ 1, . . . ,dim\} ,

where \omega j is the solution of the cell problem (5.10). Hence, the upscaled ion conserva-
tion equation (5.11) is to be solved for x \in \scrD only but receives information from the
microscale y through the effective diffusion matrix and the effective velocity.

5.4. Summary of upscaled equations. To summarize, the upscaled system
of equations consists of the three equations (5.6), (5.9), and (5.11) on the macroscale
for the unknowns \phi q0(t,x), p0(t,x) and u0(t,x). The upscaled system is completed
by three supplementary cell problems (5.4), (5.8), and (5.10) to be solved locally in
each single pore, providing effective properties for the upscaled system.

The regularization \delta was kept throughout the upscaling procedure for consistency.
We introduced this regularization for avoiding a degeneracy in the system, which
would create difficulties in the numerical implementations. For the upscaled model,
these difficulties are encountered in the cell problems. Hence, we only consider \phi \delta 

0 in
the effective properties and set \delta = 0 in (5.6), (5.9), and (5.11). Then, for macroscale
x \in \scrD and for t > 0,

\nabla \bfx \cdot (\phi 0q0) = 0 in \scrD ,

\phi 0q0 =  - \scrK \nabla \bfx p0 in \scrD ,

\partial t
\bigl( 
\phi 0(u0  - u\ast )

\bigr) 
+\nabla \bfx \cdot (\phi 0q0u0) = D\nabla \bfx \cdot (\scrA \nabla \bfx u0) in \scrD ,

where the phase field \phi 0(t,x,y) is updated locally in each pore by solving

\lambda 2\partial t\phi 0 + \gamma P \prime (\phi 0) = \gamma \lambda 2\nabla 2
\bfy \phi 0  - 4\lambda \phi 0(1 - \phi 0)

1

u\ast f(u0) in P,

\nabla \bfy \phi 0 \cdot nP = 0 on \Gamma P
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1100 C. BRINGEDAL, L. VON WOLFF, AND I. S. POP

for all x \in \scrD and t > 0. The effective matrices \scrK (t,x) and \scrA (t,x) are found through

kij(t,x) =

\int 

P

\phi \delta 
0w

j
i dy, where

\phi \delta 
0(ej +\nabla \bfy \Pi 

j) + \mu f\phi 
\delta 
0\nabla 2

\bfy 

\bigl( 
\phi \delta 
0w

j
\bigr) 
=

K

\lambda 

(1 - \phi 0)n

\phi 0 + n
wj in P,

\nabla \bfy \cdot 
\bigl( 
\phi \delta 
0w

j
\bigr) 
= 0 in P,

wj = 0 on \Gamma P ,

and

aij(t,x) =

\int 

P

\phi \delta 
0(\delta ij + \partial yi

\omega j)dy, where

\nabla \bfy \cdot 
\bigl( 
\phi \delta 
0(\nabla \bfy \omega 

j + ej)
\bigr) 
= 0 in P,

\phi \delta 
0(\nabla \bfy \omega 

j + ej) \cdot nP = 0 on \Gamma P

for i, j \in \{ 1, . . . ,dim\} . The unknowns wj(t,x,y), \Pi j(t,x,y), and \omega j(t,x,y) fulfill
periodicity requirements in y across \partial Y .

6. Numerical experiments for the upscaled model. To illustrate the be-
havior of the phase field model and its dependence on the diffuse interface width
and on the upscaling parameter, we consider two examples. First, we will solve the
cell problems for various choices of \lambda and compare our solution to the corresponding
sharp-interface solution, showing how the effective ion diffusivity and the flow perme-
ability depend on the width of the diffuse interface. Second, to illustrate the behavior
of the full system of equations, while at the same time addressing the effect of the
upscaling, we consider a thin strip. The thin strip allows for an upscaled model where
the effective quantities are known explicitly, allowing us to easily address the influ-
ence of \varepsilon . Note that in all examples, we solve using the corresponding nondimensional
model and that all specified parameters are also nondimensional.

6.1. Solutions to cell problems. For sharp-interface models, cell problems for
flow and diffusion for moving-boundary problems using a level-set formulation have
been derived in [11, 47]. Note that in both formulations, the local reaction rate is uni-
form inside each pore as the local ion concentration is constant (cf. subsection 5.3.4).
Hence, if the minerals are initially shaped as circles (or cylinders), the mineral layer
will evolve in a radially symmetric manner, and the mineral remains a circle (or cylin-
der); see [47]. Hence, the level-set formulation can be rewritten into an equation for
the radius R(t,x) of the solid (grain and mineral), where the cell problems depend on
R(t,x) [13, 47]. In the radially symmetric case, the effective ion diffusivity and the
permeability will be scalar quantities.

We adopt a similar approach here by solving the cell problems (5.8) and (5.10) to
determine the effective permeability and ion diffusivity by assuming that the phase
field has a smooth transition (of O(\lambda )) at some distance R from the center of the cell.
We do not attempt to determine permeability and diffusivity curves as functions of
R as in [13, 47] (see, e.g., Figure 3 in [47]), but instead we choose some values of R
and investigate the behavior as we let the diffuse interface width \lambda vary.

The cell problems (5.8) and (5.10) are discretized using a control volume method
on a staggered cartesian grid as in section 4, where the cell problem unknowns \omega j
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PHASE FIELD MODELING OF PRECIPITATION/DISSOLUTION 1101

and \Pi j are defined in the centers of the control volumes, and the vectors wj are at
the edges. The grid is uniform and quadratical with 800 grid cells in each direction,
so that we have at least eight grid cells through the diffuse transition zone for the
smallest \lambda . Note that the size of the nonreactive part G does not affect the resulting
values of the effective variables as long G is well within the mineral phase. For all cell
problems, we use a regularization of \delta = 10 - 8.

Remark 6.1. Specifying a phase field corresponding to a circular mineral with
radius R is not straightforward as no analytical expression exists. An approximate
phase field can be found by assuming radial symmetry and considering the reaction-
free version of (5.4) in polar coordinates. That is, we seek \phi (t, r) solving

(6.1) \lambda 2\partial t\phi + \gamma P \prime (\phi ) = \gamma \lambda 2 1

r
\partial r(r\partial r\phi ).

Because of the nonconservative property of the Allen--Cahn equation, a radially sym-
metric phase field drop will always shrink towards the center due to curvature effects.
Using this, we consider the initial condition

(6.2) \phi (t = 0, r) =
1

1 + exp( - 4(r  - R0)/\lambda )
,

where R0 is larger than the radius R, which is the mineral radius for which we seek
a phase field. Following from the curvature-driven movement, the mineral will shrink
according to the radial Allen--Cahn equation (6.1). The simulation is stopped when
the radius of the transition region reaches R, that is, when \phi = 0.5 at r = R.
Hence, this resulting phase field is used when solving the cell problems. As boundary
conditions, we apply \phi = 0 at r = 0 and \phi = 1 at r = 1. It could be tempting to
directly specify (6.2) with R0 = R as the phase field, but this would not fulfill the
steady-state version of (6.1). Although (6.2) has a structure similar to (3.7), which is
the solution of the one-dimensional steady-state version of the Allen--Cahn equation,
this finding cannot be extended to the radially symmetric case due to the structure of
the Laplace operator in polar coordinates. This also means that the initial condition
(6.2) is only an approximate initial condition.

6.1.1. Permeability. For the cell problem (5.8) providing the permeability, we
consider mineral radii of R = 0.2, 0.3, 0.4. The corresponding permeability values for
these mineral radii are \scrK = 3.3\times 10 - 2, 1.1\times 10 - 2, 1.8\times 10 - 3, respectively [13]. The
applied values of \lambda in (6.2) will be \lambda = 0.05, 0.04, 0.03, 0.02, 0.01, 0.0075, 0.005. In
Figure 6, the phase field permeability values are compared to the permeability values
resulting from the corresponding sharp-interface models. It becomes clear that the
phase field permeability values are approaching those for the sharp-interface models as
the values of \lambda are decreasing. However, the relative errors are large and for \lambda = 0.01
are equal to 5\%, 7\%, and 15\% for R = 0.2, 0.3, 0.4, respectively. These deviations
can be explained by the fact that flow takes place in the diffuse transition zone, which
enhances the flow through the entire cell and hence overestimates the permeability.
This effect is diminished when the parameter K in the phase field cell problem (5.8)
is increased, but larger values of K could also lead to an underestimation of the
permeability if \lambda is large. For the results in Figure 6, K = 25 was used. Hence,
finding a good choice for the interpolation function g(\phi , \lambda ) in (2.5c) is essential in the
numerical implementation.
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Fig. 6. Permeability values for R = 0.2 (top), R = 0.3 (middle), and R = 0.4 (bottom) for
various values of \lambda . The sharp-interface values are plotted at \lambda = 0.

6.1.2. Effective ion diffusivity. For the effective diffusivity cell problem (5.10),
we consider the same values for R and \lambda . The effective diffusivities for the sharp-
interface model are, for these three values of R, \scrA = 0.78, 0.56, 0.32, respectively.
These values have been found by solving the corresponding sharp-interface cell prob-
lems for the diffusion tensor, whose formulation can be found, e.g., in [47], using the
PDE toolbox in MATLAB on recursively finer grids until four digits of accuracy are
obtained. The phase field effective diffusion values are compared to the correspond-
ing sharp-interface effective diffusion values in Figure 7. Although the phase field
values seemingly converge towards a slightly different value than the value provided
by the sharp-interface model, it is worth noting that the relative errors are rather
small (< 0.3\% in all cases), and hence the effective diffusion tensors are well approxi-
mated even for large values of \lambda . Note that when defining the transition zone as being
where \phi = 0.5 leads to a slightly overestimated size of the grain as the transition zone
spreads out radially, which can explain why the diffusion values approaches a value
that is slightly too low. For example, for R = 0.3 the relative difference between the
true porosity and that found through Remark 6.1 using \lambda = 0.01 is 0.03\%. Other
potential sources of error would be the difference in numerical solvers between the
diffuse and sharp-interface discretizations.

6.2. Flow through a thin strip. A simple but instructive test case is when the
general model (5.1) is formulated in a two-dimensional thin strip, mimicking the flow
through a long pore. In this case, the scale separation is defined through the ratio
\varepsilon = \ell /L between the width \ell and the length L of the strip. In the nondimensional
case, the domain of the thin strip is (x, y) \in (0, 1)2 due to different scaling of the
transversal coordinate y. Note that y now plays the role of the transversal variable,
rather than a local one, but is still scaled as y = \varepsilon  - 1x and represents the direction
where rapid changes are occurring.

The model equations for the original two-dimensional strip are (5.1). The re-
sulting effective model for the thin strip is one-dimensional and is found through
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Fig. 7. Effective diffusion values for R = 0.2 (top), R = 0.3 (middle), and R = 0.4 (bottom)
for various values of \lambda . The sharp-interface values are plotted at \lambda = 0.

asymptotic expansions and transversal averaging of the model equations. Sharp inter-
face formulations for models in a thin strip and that consider reactive transport leading
to changes in the pore geometry have been formulated and upscaled in [10, 12, 28, 48].

When transversally averaging the model equations, we use a slight reformulation
for the phase field equation. Assuming that the mineral is only present as a layer on
the upper and lower walls of the strip, and using symmetry across the middle of the
strip, we approximate the phase field for the lower half of the strip by

(6.3) \phi (t, x, y) =
1

1 + e - 4(y - d)/\lambda 
,

where d(t, x) is the mineral layer width. This form of the phase field is similar to that
used in the matched asymptotic expansions (3.7); however, it remains an approxima-
tion because zero Neumann conditions at the bottom wall y = 0 and symmetry at
y = 1/2 are not fulfilled. With the unknowns d(t, x), \phi (t, x), u0(t, x), and \phi qx0 (t, x),
the upscaled equations obtained by transversal averaging are

\partial td = f(u0),(6.4a)

\phi = 1 +
\lambda 

2
log

\bigl( 
1 + e - 4(0.5 - d)/\lambda 

\bigr) 
 - \lambda 

2
log

\bigl( 
1 + e4d/\lambda 

\bigr) 
,(6.4b)

\phi qx0 = 1,(6.4c)

\partial t(\phi (u0  - u\ast )) =  - \partial x(\phi qx0 (u0  - u\ast )) +D\partial x(\phi \partial x(u0  - u\ast ))(6.4d)

for x \in (0, 1) and t > 0. The derivation of these equations can be found in Appen-
dix A. Note the absence of a momentum conservation equation; hence the pressure
is not obtained here. Further, we assume that clogging of the pore due to mineral
precipitation does not occur, which means that no degeneracy occurs. This allows
taking \delta = 0, but performing the upscaling for \delta > 0 is straightforward.

The original equations (5.1) are formulated on the scaled strip (x, y) \in [0, 1]2 but
using symmetry at y = 0.5. Therefore, only half of the strip needs to be considered.
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For both the original system (5.1) and the transversally averaged system (6.4), we
design an example including dissolution. We let u0(t = 0) = u\varepsilon (t = 0) = 0.5 in the
entire domain initially and inject an ion concentration of u0 = u\varepsilon = 0.25 at x = 0.
At the outlet x = 1 we assume zero Neumann condition for the ion concentration.
The reaction rate is chosen to be f(u) = u2/0.52 - 1, corresponding to an equilibrium
concentration of ueq = 0.5. Hence, net dissolution will occur when injecting a lower
ion concentration. Initially, the strip is assumed to be halfway filled with a mineral
layer at the top and the bottom, that is, d(t = 0) = 0.25. The phase field in the
original equations is initialized with (6.3) using d = 0.25. Also, we apply a zero
Neumann condition for the phase field at both the inlet and the outlet. The original
model (5.1) is initiated with constant pressure and zero velocity. In the upscaled
system (6.4), the inlet condition \phi qx0 = 1 also gives the flow through the strip. For
the original equations (5.1), the inlet condition for the horizontal component of the
flow rate q\varepsilon , q\varepsilon ,x, is formulated using a time-dependent parabolic profile such that
q\varepsilon x = 0 at y = d(t, 0), \partial yq

\varepsilon ,x = 0 at the symmetry line y = 0.5, and \phi \varepsilon q\varepsilon ,x = 1 is
fulfilled. The outlet condition for pressure is a zero Neumann condition.

The following (nondimensional) constants have been used in the simulations:

D = 1, u\ast = 1, \gamma = 0.0075, K = 25, \rho f = 1, \mu f = 1.

The value of \gamma is chosen small to ensure low surface curvature effects, while the value
of K is chosen large to avoid too much flow in the diffuse transition zone. Also
note that the mineral concentration is chosen artificially low so that large changes
in the mineral width occur [48]. We let \delta = 10 - 6 in the original model (5.1) for all
simulations.

Similarly as in subsection 6.1 and section 4, both the original equations (5.1) and
the averaged system (6.4) are discretized using a control volume method on a staggered
cartesian grid where ion concentration, pressure, and phase field are defined in the
centers of the control volumes, and the velocities are defined in the centers of the
edges. For the original equations, rectangular grids are used, where the resolution in
the transversal direction is fine enough to resolve the diffuse transition zone properly.

6.2.1. Comparison to sharp-interface formulation. For the upscaled sys-
tem of equations (6.4), we can compare the obtained solution to similar upscaled
models based on a sharp-interface formulation, such as those found in [10, 48]. Dis-
cretizing the sharp-interface model with the same method, and choosing the same
initial and boundary conditions, we can investigate the effect of the diffuse interface
\lambda on the model variables.

The are some minor differences in ion concentration u0 and, accordingly, in the
value of mineral width d as the reaction rate depends on u0. Figure 8 shows the ion
concentrations in the sharp-interface model and in the phase field model for various
values of \lambda at t = 0.5. For smaller values of \lambda , the ion concentration approaches
the values found through the sharp-interface model. The differences in values for the
mineral width are small (the largest absolute difference for \lambda = 0.05 is 0.003).

6.2.2. Comparison to original two-dimensional formulation. We can also
check the quality of the upscaling procedure, namely whether the transversal av-
erages of the output from the original equations (5.1) approach the model output
found by the upscaled model (6.4) as \varepsilon approaches zero. For this comparison we
fix a value of \lambda and let \varepsilon vary. For simplicity we consider \lambda = 0.05, 0.01, and
\varepsilon = 0.1, 0.05, 0.025, 0.01, 0.005, where \varepsilon = 0.005 corresponds to a strip that is 200
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0.25

0.3

0.35

0.4

0.45

0.5
u, t = 0.5

 = 0.05

 = 0.025

 = 0.01

 = 0.005

Sharp interface

0.46 0.465 0.47 0.475 0.48 0.485 0.49 0.495 0.5
0.37

0.371

0.372

0.373

0.374

0.375

0.376

0.377

0.378

0.379

0.38
u, t = 0.5

 = 0.05

 = 0.025

 = 0.01

 = 0.005

Sharp interface

Fig. 8. Ion concentration inside thin strip at t = 0.5. Right figure shows zoomed-in view near
the middle of the strip, where the largest differences between the model runs are found.

times longer than its width. A typical snapshot from a simulation, with \lambda = 0.05
and \varepsilon = 0.1, is shown in Figure 9. Even for such a ``large"" value of \varepsilon , the deriva-
tives with respect to y of, e.g., ion concentration, is practically zero. The flow field
is found through solving Navier--Stokes equations, and the along-strip component
shows a parabola-like profile as expected for this regime. Some flow inside the diffuse
interface can be seen.
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Fig. 9. Phase field (left) and ion concentration (right) in a thin strip at t = 0.5. Note that
the y-axis is scaled to fit between 0 and 0.5 but should be between 0 and 0.5\varepsilon . Velocity field is given
as vector overlay and is mainly along the strip. The transversal component of the velocity field has
been scaled with 1/\varepsilon . For this simulation, \varepsilon = 0.1 and \lambda = 0.05. The domain was discretized with
50 control volumes in the x-direction and 150 control volumes in the y-direction.

By vertically averaging the results from the original equations (5.1) and compar-
ing them to the results from the already upscaled model (6.4), we find in general good
correspondence. There is little variability in the transversal direction for ion concen-
tration already for relatively large values of \varepsilon , as illustrated in Figure 9 for \varepsilon = 0.1.
Hence, the averaged ion concentration does not deviate much when decreasing \varepsilon .
However, some differences are found in the dissolution of the mineral between the
two-dimensional model (5.1) and the upscaled model (6.4). These differences do not
change with smaller \varepsilon . The upscaled system of equations uses directly \partial td = f(u)/u\ast ,
which is equivalent to the reaction rate found in a sharp-interface model, while the
original phase field equation still experiences an effect from the interface width \lambda in
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Fig. 10. Width of mineral layer d(t, x) inside (the lower half of) the thin strip at t = 0.5 for
\lambda = 0.05 (left) and \lambda = 0.01 (right). Note that the colored lines, corresponding to averaged results
from the original equations (5.1), are (almost) on top of each other. The mineral width is found
through the phase field by (0.5 - 0.5\phi 

\varepsilon 
). (See online version for color.)
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Fig. 11. Transversally averaged ion concentration inside a thin strip at t = 0.5 for \lambda = 0.05
(left) and \lambda = 0.01 (right). Note that the colored lines, corresponding to averaged results from the
original equations (5.1), are (almost) on top of each other. (See online version for color.)

the reaction rate. Also, the upscaled model uses an approximated phase field which
does not fulfill the boundary conditions at the top and bottom boundaries. However,
as seen from Figures 10 and 11, the differences in d and u are very small already for
\lambda = 0.05.

7. Conclusions. We have derived a phase field model for reactive transport
with mineral precipitation and dissolution. Compared to other modeling approaches
involving free boundaries moving due to precipitation and dissolution, the phase field
model has the advantage of being formulated in a fixed domain. The free boundary
is then replaced by a diffuse interface region.

The model proposed here extends the one in [38] by incorporating fluid flow. The
extension provides mass and momentum conservation by modifying the Navier--Stokes
equations, where the phase field variable is incorporated. The momentum conserva-
tion equation is further modified by adding a source term to ensure no flow in the
pure mineral phase. Using matched asymptotic expansions, we have shown that the
phase field model reduces to the expected sharp-interface model when the width of
the diffuse interface approaches zero. Hence, the phase field model captures fluid
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flow and solute transport in the fluid phase and, as anticipated, no-slip and Rankine--
Hugoniot jump conditions at the evolving fluid-mineral interface. The behavior of
the phase field model has been illustrated by considering two numerical experiments
where a mineral dissolves when located in flow fields of various strengths. Compar-
ing to a benchmark [33], we find the phase field model to behave qualitatively and
quantitatively as expected, although with a slight overestimation of the dissolution
rate.

When considering a porous medium, the model proposed here can be seen as a
pore scale model. By considering the medium as periodically perforated, an upscaled
counterpart of the phase field model is obtained by means of homogenization tech-
niques. The resulting effective equations are valid at the Darcy scale. We obtain the
cell problems that provide the effective ion diffusion as in [38]. Here we also obtain cell
problems for obtaining the effective permeability and porosity. In particular, since the
porosity in a cell is the average of the phase field over that cell, the model also pro-
vides an equation describing the evolution of the porosity in time, depending on the
macroscale location. Numerical experiments show the behavior of the cell problems
with respect to the width of the diffuse interface, where the diffusive cell problems
provide accurate results for relatively large values of the width of the diffuse interface,
while the permeability is prone to being overestimated.

The use of a phase field model instead of a sharp-interface formulation avoids
some potential numerical pitfalls, as there is no need to, e.g., solve the level-set equa-
tion. Using a diffuse interface as a replacement for a sharp-interface simplifies the
development of numerical simulation tools but also introduces a relaxation which can
lead to inaccurate numerical results. As seen from the numerical experiments, the
mineral dissolved a bit faster than expected due to the nonconservative property of
the Allen--Cahn equation, and the permeability could easily be overestimated or un-
derestimated due to artificial flow in the diffuse transition zone. Hence, using small
values for the interface diffusivity and of diffuse interface width are important for
obtaining a good representation of the flow at the pore scale or in the cell problems,
which in turn puts constraints on how fine the grid has to be near the diffuse interface.

Appendix A. Thin strip model. Here we derive the averaged thin strip
model using a phase field formulation, as given in (6.4). The starting point is the
original phase field model for a porous medium (5.1), but formulated in a thin strip
having width \ell and length L, such that \varepsilon = \ell /L defines the scale separation. Hence,
in the nondimensional setting, the strip has width and length 1 but where derivatives
in the y-direction (across the strip) are scaled with 1/\varepsilon . Hence, for a dummy variable
v(x, y) one gets

\nabla v(x, y) = \partial xvi+
1

\varepsilon 
\partial yvj,

where i and j are unit vectors in the along-strip and transversal direction. Due to
symmetry we consider only the lower half of the strip. As explained earlier, the phase
field approaching value 1 in the fluid part and 0 in the mineral part is given by

(A.1) \phi (t, x, y) =
1

1 + e - 4(y - d)/\lambda 
,

where y = d(t, x) defines the transition between fluid and mineral where \phi = 0.5.
This formulation uses d(t, x) as an unknown as in sharp-interface models but still
incorporates a phase field variable that affects the model formulation. However, as \phi 
in (A.1) does not fulfill the zero Neumann and symmetry boundary conditions, we are
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1108 C. BRINGEDAL, L. VON WOLFF, AND I. S. POP

making a small error by using this phase field. Here we derive the upscaled (transver-
sally averaged) model for the current formulation. As there will be no problems with
degeneracy in the equations for the resulting thin strip model, we let \delta = 0. It is,
of course, possible to do the transversal averaging also with \delta > 0, and would only
require the phase field \phi being replaced with \phi + \delta in the ion and mass conservation
equations.

A.1. Equation for \bfitd (\bfitt , \bfitx ). The equation for d(t, x) is obtained by inserting
(A.1) into the phase field equation (5.1a) and collecting the lowest order terms in \varepsilon ,
O(\varepsilon 0). This gives

\lambda 2\partial t\phi 0 + \gamma P \prime (\phi 0) = \gamma \lambda 2\partial 2
y\phi 0  - 4\lambda \phi 0(1 - \phi 0)

1

u\ast f(u0).

Inserting (A.1) for \phi , using the equalities

\partial t\phi =  - 4

\lambda 
\phi (1 - \phi )\partial td,

\partial 2
y\phi =

42

\lambda 2
\phi (1 - \phi )(1 - 2\phi ),

and cancelling equal terms and common factors results in

(A.2) \partial td =
1

u\ast f(u).

Hence, the phase field \phi (t, x, y) is given by (A.1), where the mineral width d(t, x)
follows from (A.2).

Note that the resulting equation for d(t, x) is the same model equation as used
in the sharp-interface thin strip formulations of [10, 48]. However, the phase field
\phi (t, x, y) will still appear in the upscaled solute transport and flow equations. This
allows us to illustrate the behavior of the phase field model with respect to \lambda and \varepsilon 
in a simple setting.

A.2. Equation for the averaged phase field. The transversally averaged
phase field will be needed in the upscaled thin strip model. In view of the symmetry,
the transversal average of (A.1) is

\phi = 2

\int 1/2

0

1

1 + e - 4(y - d)/\lambda 
dy = 1 +

\lambda 

2
log

\bigl( 
1 + e - 

4
\lambda (0.5 - d)

\bigr) 
 - \lambda 

2
log

\bigl( 
1 + e

4
\lambda d

\bigr) 
.

A.3. Equation for mass conservation. The lowest order term arising from
the mass conservation equation (5.1b) yields

\partial y(\phi q
y
0 ) = 0,

which, together with the boundary condition (5.1g), gives that the lowest order trans-
versal velocity component qy0 is independent of y. The next order provides

\partial x(\phi q
x
0 ) + \partial y(\phi q

y
1 ) = 0,

where qx0 is the lowest order along-strip velocity component, and qy1 is the first-order
transversal velocity component. This equation is integrated in y from 0 to 1/2, which,
together with boundary condition (5.1g) at y = 0 and symmetry at y = 1/2, gives

\partial x(\phi qx0 ) = 0.
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A.4. Equation for average flow rate. Inserting asymptotic expansions into
(5.1c), from the lowest order term, one gets

\phi \partial yp0 = 0,

implying that p0 = p0(t, x) is independent of y. The horizontal (along the strip)
component of the O(1) terms provides

0 =  - \phi \partial xp0 + \mu f\phi \partial 
2
y(\phi q

x
0 ) - 

K

\lambda 

(1 - \phi )n

\phi + n
qx0 .

We let v = \phi qx0 represent the unknown and insert the expression for \phi , (A.1), when
necessary. Then,

(A.3) \mu fv
\prime \prime  - K

\lambda 

ne - 4(y - d)/\lambda (1 + e - 4(y - d)/\lambda )2

1 + n(1 + e - 4(y - d)/\lambda )
v = \partial xp0,

where \prime indicates derivative with respect to y. The variables t and x appearing in d
and p are considered parameters. Hence, we have an inhomogeneous, second-order,
linear ODE with nonconstant coefficients. Finding simple analytical expressions for
the solution of v is not straightforward. Instead, the boundary condition \phi qx0 = 1 can
be used to resolve the flow through the strip together with mass conservation. This
means that we will not be able to solve the pressure inside the thin strip.

A.5. Equation for ion concentration. Inserting (A.1) for \phi and asymptotic
expansion for u\varepsilon into (5.1d) and equating the lowest order terms yields

\partial y(\phi \partial yu0) = 0.

Together with the lowest order boundary condition \phi \partial yu0 = 0 at y = 0, 1 and the
fact that \phi > 0, it follows that

u0 = u0(t, x).

Hence, u0 is independent of the transversal variable y. Integrating (5.1d) in y from
0 to 1/2, and applying boundary conditions (5.1f) and (5.1g) on the lower boundary
and symmetry conditions on y = 1/2, results in

\int 1/2

0

\partial t(\phi (u
\varepsilon  - u\ast ))dy +

\int 1/2

0

\partial x(\phi q
\varepsilon ,x(u\varepsilon  - u\ast ))dy = D

\int 1/2

0

\partial x(\phi \partial x(u
\varepsilon  - u\ast ))dy,

where q\varepsilon ,x is the along-strip component of the q\varepsilon . Using the asymptotic expansions
and the fact that u0 is independent of y leads to

\partial t(\phi (u0  - u\ast )) + \partial x(\phi qx0 (u0  - u\ast )) = D\partial x(\phi \partial x(u0  - u\ast )).

Acknowledgments. We would like to thank Profs. Christian Rohde (Stuttgart)
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9 Two-scale simulation of mineral precipitation
and dissolution

The content of this chapter is based on the following original article:
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phase-field model for precipitation and dissolution in porous media. Applied Mathematics
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With courtesy of Elsevier.
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a b s t r a c t 

Mineral precipitation and dissolution processes in a porous medium can alter the structure 

of the medium at the scale of pores. Such changes make numerical simulations a chal- 

lenging task as the geometry of the pores changes in time in an apriori unknown manner. 

To deal with such aspects, we here adopt a two-scale phase-field model, and propose a 

robust scheme for the numerical approximation of the solution. The scheme takes into ac- 

count both the scale separation in the model, as well as the non-linear character of the 

model. After proving the convergence of the scheme, an adaptive two-scale strategy is 

incorporated, which improves the efficiency of the simulations. Numerical tests are pre- 

sented, showing the efficiency and accuracy of the scheme in the presence of anisotropies 

and heterogeneities. 

© 2021 Elsevier Inc. All rights reserved. 

1. Introduction 

Processes involving precipitation and dissolution in porous media are encountered in many real-life applications. Notable 

examples in this sense appear in environmental engineering (the management of freshwater in the subsurface), geothermal 

energy, and agriculture (soil salinization). Particularly challenging for the mathematical modeling and numerical simulations 

are the situations when the chemistry is affecting the microstructure of the medium, in the sense that the pore geometry 

and even morphology is altered by dissolution or precipitation. At the scale of pores (from now on the micro scale), the 

geometry changes due to chemistry, which also impacts the averaged model behavior at the Darcy-scale (from now on the 

macro scale). 

Mathematical models for dissolution and precipitation in porous media have been extensively discussed in the past 

decades. In this sense, we mention the model proposed in Knabner et al. [1] , in which the possibility of having an under- or 

oversaturated regime is expressed in rigorous mathematical terms. Various mathematical aspects for such models, like the 

existence and uniqueness of a (weak) solution, the rigorous derivation of the macro-scale model from a micro-scale one, the 

∗ Corresponding author. 

E-mail addresses: manuela.bastidas@uhasselt.be (M. Bastidas Olivares), carina.bringedal@iws.uni-stuttgart.de (C. Bringedal), sorin.pop@uhasselt.be (I.S. 

Pop). 

https://doi.org/10.1016/j.amc.2020.125933 

0 096-30 03/© 2021 Elsevier Inc. All rights reserved. 



M. Bastidas Olivares, C. Bringedal and I.S. Pop Applied Mathematics and Computation 396 (2021) 125933 

numerical approximation, or qualitative properties like traveling waves are studied in Knabner et al. [1] , Moszkowicz et al. 

[2] , Bouillard et al. [3] , Kumar et al. [4] , Agosti et al. [5] , Kumar et al. [6] , Hoffmann et al. [7] . The models discussed there do 

not take explicitly into account any evolution of the micro-scale geometry. In those cases one can work with the mineral as 

a surface concentration and the micro-scale volumetric changes in the mineral phase are neglected (see [8,9] ). At the macro 

scale, this implies that the porosity does not depend on the solute concentration. An exception is the macro-scale model 

proposed in Agosti et al. [5] , including an equation relating the changes in the porosity to the (macro-scale) concentration 

of the mineral. 

Whenever the changes in the mineral layer thickness are large compared to the typical micro-scale length (the size of 

pores), the micro-scale changes in porosity and morphology cannot be neglected. This impacts the flow at the micro scale, 

and implicitly the averaged macro-scale quantities of primary interest for real-life applications. In this context, upscaling is 

a natural way to derive macro-scale models incorporating the micro-scale processes accurately. We recall that, due to the 

chemical processes mentioned above, the structure of the pores (the micro structure) changes in time, depending on the 

concentration of the dissolved components, which is a model unknown. In other words, one deals with free boundaries 

appearing at the micro scale. The challenges related to such models are two-fold; on the one hand, related to the free 

boundaries, and on the other hand, to the fact that these appear at the micro scale. 

The evolution of the pore-scale geometry can be described in various ways; in one spatial dimension, a free boundary 

model for dissolution and precipitation in porous media is proposed in van Noorden and Pop [10] . There, the existence and 

uniqueness of a solution are proved. For closely related results, we mention [11,12] , where the existence of solutions for sim- 

ilar, one-dimensional free-boundary problems is proved. For the multi-dimensional case, we mention [13–15] where mathe- 

matical models for reactive transport models in moving domains are proposed. Similarly, in Mabuza et al. [16] the existence 

of a solution for a model describing reactive solute transport in deformable two-dimensional channels with adsorption- 

desorption at the walls is proved, relying on the techniques in Muha and Čani ́c [17] . 

Though more complicated than the one-dimensional case, there are various ways to deal with the (freely) moving bound- 

aries in multiple spatial dimensions. For instance, when dealing with a strip or a radially symmetric channel, a layer thick- 

ness function can be defined to locate the free boundary. This approach is adopted in van Noorden [8] , Kumar et al. [9] , 

Bringedal et al. [18] . A level set approach can be considered in more general porous domains, as done in van Noorden [19] , 

Schulz et al. [20] , 21 ], Bringedal et al. [22] . Under certain conditions on the evolution of the free boundary and on the geom- 

etry, e.g., assuming local periodicity and that the scales are well separated, upscaled models can be derived using transversal 

averaging or homogenization techniques. In the first case, one arrives at upscaled models where the layer thickness is re- 

lated to the changes in porosity and permeability. In the other case, the homogenization leads to upscaled models where 

the effective parameters are determined by solving local cell problems involving level sets. 

A third option, which inspired the present work, is the phase-field approach. In this case, a thin, diffuse interface layer 

approximates the freely moving interfaces separating the fluid from the mineral (the precipitate). Building on the idea of 

minimizing the free energy (see, e.g., [23] ) the phase-field indicator φ is an approximation of the characteristic function 

that approaches 1 in the fluid phase and 0 in the mineral phase. In between, a smooth transition zone of width λ > 0 is 

encountered (see e.g. [24] ). This approach was considered in van Noorden and Eck [25] for describing the dissolution and 

precipitation processes as encountered at the micro scale. There, two phases are encountered (the mineral and the solvent), 

both being immobile; the solute concentration changes due to chemistry (precipitation and dissolution) and diffusion. An 

extension to two fluid phases and the mineral is proposed in Redeker et al. [26] . There, the Darcy-scale counterpart is 

derived by homogenization techniques but still for the case without fluid motion. The model in van Noorden and Eck [25] is 

further extended in Bringedal et al. [27] to incorporate fluid flow at the micro scale, and where a Darcy-scale counterpart is 

derived. In this context, we also mention [28] where model order reduction techniques are employed to build an efficient 

multi-scale algorithm applicable to the phase-field model proposed in Redeker et al. [26] . 

Here we focus on the two-scale model in Bringedal et al. [27] , in which the so-called cell problems defined at the micro 

scale are solved for determining the effective parameters appearing in the macro-scale equations modeling the flow and 

the chemical processes. In other words, we compute effective parameters such as the effective diffusion and the effective 

permeability tensors to resolve the homogenized problem. These macro-scale quantities are found through local micro- 

scale problems that depend on the evolution of the phase field at the micro scale. This paper is proposing a two-scale 

iterative scheme for approximating the solution of the two-scale model in Bringedal et al. [27] . The scheme deals with the 

non-linearities in the model and at the same time with the scale separation. Though being motivated by the mathematical 

model mentioned above, the approach proposed here can be applied to other two-scale models obtained by homogenization. 

Unlike classical multi-scale schemes, e.g., [29] , where one has the same type of equations at both the macro and micro 

scales, the scheme proposed here allows for different equations at the micro and the macro scale. This approach is hence in 

line with the heterogeneous multi-scale methods in Engquist et al. [30] . In the present context, we mention the similarities 

with [31,32] , where a multi-scale scheme is developed for reactive flow and transport in porous media where a level-set is 

employed to track the evolution of the solid-fluid interface at the micro scale. 

The scheme proposed here is a two-scale iterative one and relies on the backward Euler method for the time discretiza- 

tion. Here, we extend the general ideas of the multi-scale iterative method presented in Bastidas et al. [33] . Inspired by Brun 

et al. [34] , an artificial term is included in the (micro-scale) phase-field equation. This parameter stabilizes the coupling with 

the (macro-scale) flow and reactive transport equations. We mention that, compared to [34] , this coupling is bridging here 
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two different scales. In a simplified setting, we give the rigorous convergence proof of the scheme. This result is obtained 

without specifying any particular spatial discretization. 

To guarantee mass conservation, the mixed finite element method (MFEM) is employed for the spatial discretization at 

both scales. Since effective quantities are needed for each macro-scale element, the finer the macro-scale mesh is, the more 

micro-scale problems have to be solved numerically. This increases the computational effort significantly. To deal with this 

aspect, a macro-scale adaptive strategy is included, inspired by Redeker and Eck [35] . The main idea is to select at each 

time step a representative fraction of the macro-scale points (so-called active nodes), for which the cell problems are solved 

and the effective quantities updated. The results are then transferred to the remaining (inactive) nodes, which are assigned 

to an active node based on a similarity criterion. A similar approach was also applied in Redeker et al. [26] , Gärttner et al. 

[31] . 

Adaptivity is further applied at the micro scale, where it is crucial to have an accurate description of the diffuse transition 

zone. In such regions, a fine mesh is necessary to capture the phase-field changes at every time step. On the other hand, 

away from such transition zones, the phase field is barely varying in both the mineral and the fluid phases. There a coarser 

mesh is sufficient to obtain an accurate numerical solution. Therefore we use an adaptive mesh that follows the movement 

of the phase-field transition zone. We start with a coarse micro-scale mesh and apply a prediction-correction strategy as 

described in Heister et al. [36] for a phase-field model for fracture propagation. Finally, since the cell problems for the phase 

field are non-linear, we use a fixed-point iterative scheme called L-scheme, as described in Pop et al. [37] , List and Radu 

[38] . Incorporating this linearization scheme in the two-scale iterative one mentioned above can be made with no effort, 

as they both involve similar stabilization terms. Moreover, this scheme has the advantage of being convergent regardless 

of the starting point and the spatial discretization (the method itself, and the mesh size). Finally, as much as the spatial 

discretization allows it, the iterative scheme guarantees the lower and upper bounds for the phase field. 

The remainder of this paper is structured as follows. In Section 2 , the geometry and the details of the model are pre- 

sented. In Section 3 , we formulate the iterative scheme and in Section 4 , we introduce the non-linear solver used on the 

micro-scale problems. In Section 5 , we prove the convergence of the two-scale iterative scheme. The micro- and macro-scale 

adaptive strategies are described in Section 6 . Finally, in Section 7 , two numerical test cases are applied in which we study 

in detail the effect of different choices of parameters. 

1.1. Notations 

In this paper we use common notations from the functional analysis. For a general domain D ⊂ R 

d with d = 2 , 3 , we 

denote by L p (D ) the space of the p−integrable real-valued functions equipped with the usual norm and by H 

1 (D ) the 

Sobolev space of L 2 (D ) functions having weak derivatives in the same space. 

We let 〈 ·, ·〉 D 

represent the inner product on L 2 (D ) and norm ‖ v ‖ 2 
L 2 (D ) 

= ‖ v ‖ 2 D 

:= 〈 v , v 〉 D 

. Take Y = (−0 . 5 , 0 . 5) d , for 

defining a solution in a weak sense we use the space H 

1 
# 
(Y ) = { p ∈ H 

1 (Y ) | p is Y -periodic } with H 

−1 
# 

(Y ) being its dual space. 

With D 1 , D 2 ⊂ R 

d being two domains, we use the Bochner spaces L p (D 1 ; L q (D 2 )) for p, q ∈ [1 , ∞ ) , equipped with the usual 

norm. In the case p = q = 2 we denote the corresponding norm ‖ v ‖ D 1 ×D 2 
:= ‖ v ‖ 2 

L 2 (D 1 ;L 2 (D 2 )) 
. 

We use the positive and negative cut of a real number v , defined as [ v ] + := max (v , 0) and [ v ] − := min (v , 0) . 

2. The two-scale model 

The two-scale model considered here describes the single-phase flow and reactive transport through a porous medium, 

where the solid interface evolves due to mineral precipitation and dissolution. Here � ⊂ R 

d is a bounded macro-scale do- 

main with Lipschitz continuous boundary ∂� and T ∈ (0 , ∞ ) is the final time. The macro-scale domain should be inter- 

preted as a homogenized porous medium in which the micro-scale complexities (e.g., the alternating solid and void parts) 

are averaged out. Following the homogenization procedure, to each macro-scale point x ∈ �, a micro-scale domain Y ⊂ R 

d 

is assigned, representing an idealization of the complex structure at the micro scale. These micro-scale domains are used to 

define the cell problems, yielding the effective parameters and functions required at the macro scale. 

Following [27] , the model considered here has been derived by homogenization techniques. At the micro scale the geom- 

etry consists of solid grains surrounded by void space (pores). The precipitation and dissolution processes are encountered 

on the boundary of already existing mineral (grains) and not in the interior of the void space. We assume that the mineral 

never dissolves entirely and that the void space is always connected; thus the porosity is never vanishing. 

We write the model in non-dimensional form by following the non-dimensionalization in Bringedal et al. [27] . In doing 

so, we use a local unit cell Y defined before and to identify the variations at the micro scale we define a fast variable y . We 

associate one micro-scale cell Y to every macro-scale location x ∈ � (see Fig. 1 ). 

The macro-scale parameters φ, A and K appearing below are obtained from the micro scale by following the homoge- 

nization procedure. At the macro scale, the unknowns q , p denote the (macro-scale) velocity and pressure in the fluid and 

3 



M. Bastidas Olivares, C. Bringedal and I.S. Pop Applied Mathematics and Computation 396 (2021) 125933 

Fig. 1. The two-scale domain: the macro scale, homogenized porous medium � (left) and the micro-scale domain Y (right) corresponding to a point x ∈ �. 

u is the upscaled solute concentration. All of them are functions of x ∈ � and t > 0 . The macro-scale flow is given by ⎧ ⎪ ⎨ 

⎪ ⎩ 

∇ · q = 0 , in �, 

q = −K ∇p, in �, 

∇p · n = 0 , on ∂�, ∫ 
� p dx = 0 . 

P 

M 

p 

Observe that the time t entry in ( P 

M 

p ) implicitly, through K . The solute concentration is given by { 

∂ t ( φ(u − u 

� )) + ∇ · (q u ) = D ∇ · (A ∇u ) , in � × (0 , T] , 
∇u · n = 0 , on ∂� × (0 , T] , 
u = u I , in � and t = 0 , 

P 

M 

u 

where all the spatial derivatives are taken with respect to the macro-scale variable x . Here D denotes the pore-scale diffu- 

sivity of the solute and n denotes the outward unit normal to the boundary ∂�. The mineral has a constant concentration 

u � . To derive the macro-scale parameters φ, A and K , the phase field φ(x , ·, ·) is determined for all x ∈ � by solving the 

following micro-scale problem { 

λ2 ∂ t φ + γ P ′ (φ) = γ λ2 �φ − λM(φ) 1 
u � 

f (u ) , in Y × (0 , T] , 
φ is Y -periodic , 
φ = φI , in Y for t = 0 , 

P 

μφ

where all the spatial derivatives are taken with respect to the micro-scale variable y . The function f (u ) is the reaction 

rate, λ > 0 is related to the width of the fluid-mineral transition zone, and γ is the diffusion coefficient controlling the 

diffusive time scale of the transition zone. Additionally, P is the double-well potential and its local minima are the values 

corresponding to the two phases (fluid or mineral) and M is a function that ensures that the reactions only take place in 

the transition zone between the fluid and the mineral. The particular form of P and M used here will be specified below. 

More details about the model parameters can be found in Bringedal et al. [27] , Bastidas et al. [33] . For improving the local 

conservation of the phase field φ, one may follow [39,40] and include an additional Y -averaged term in the phase-field 

equation. 

While φ enters in the micro-scale problems through the effective parameters defined below, the reverse coupling with 

the micro scale is given through the reaction rate f (u ) , with u being constant w.r.t the variable y ∈ Y . The macro-scale 

porosity in ( P 

M 

u ) is defined for each x ∈ � and t > 0 by averaging the phase field 

φ(x , t) = 

∫ 
Y 

φ(x , y , t) dy . 

To determine the effective matrices A and K one has to solve two types of cell problems. We use a regularized phase 

field φδ := φ + δ with δ > 0 , ensuring that the cell problems are well defined. Notice that the regularization only plays a 

role in the calculation of the effective parameters and does not appear explicitly in ( P 

μφ ),( P 

M 

p ) and ( P 

M 

u ). For each x ∈ � and 

t > 0 , the functions ω 

s , �s and z s = [ z s 
1 
, . . . , z s d ] 

t with s ∈ { 1 , . . . , d } are the solutions of the following cell problems {∇ · (φδ(∇ω 

s + e s )) = 0 , in Y, 

ω 

s is Y -periodic and 

∫ 
Y ω 

s dy = 0 , 
P 

μ
A 

⎧ ⎨ 

⎩ 

∇�s + e s + μ f �(φδz s ) = 

g(φ,λ) 
φδ

z s , in Y, 

∇ · (φδz s ) = 0 , in Y, 

�s is Y -periodic and 

∫ 
Y �

s dy = 0 . 

P 

μ
K 

Here e s is the s -th canonical vector and μ f is the constant fluid viscosity. The role of the function g(φ, λ) is to guarantee 

that there is no flow in the mineral phase. As motivated by [41] we take g(φ, λ) := 

250(1 −φ) 
λ(φ+10) 

. 
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The elements of the effective matrices A and K are defined for each x ∈ � and t > 0 by 

A r s (x , t) = 

∫ 
Y φδ(x , y , t) ( δr s + ∂ r ω 

s (x , y , t) ) dy , 
K r s (x , t) = 

∫ 
Y φδ(x , y , t) z s r (x , y , t) dy , 

(1) 

for r , s ∈ { 1 , . . . , d } and where δr s denotes the Kronecker delta. We highlight that even though we denote the micro-scale 

problems ( P 

μφ ), ( P 

μ
A ) and ( P 

μ
K 

), each of these problems depend on the macro scale and on time. 

Finally, the initial conditions in ( P 

M 

u ) and ( P 

μφ ) satisfy the following assumptions 

(A1) The function u I ∈ L ∞ (�) and it is such that 0 ≤ u I ≤ u � a.e. in �. 

(A2) The function φI ∈ L ∞ (� × Y ) and it is such that 0 ≤ φI ≤ 1 a.e. in � × Y . 

2.1. Preliminaries 

For a fixed micro-scale domain Y corresponding to one macro-scale point x ∈ �, we write the non-linear part of ( P 

μφ ), 

namely F : R × R → R , as follows 

F (φ, u ) := −γ P ′ (φ) − λM(φ) 
1 

u 

� 
f (u ) . (2) 

Further, we choose the reaction rate f (u ) , the double-well potential P (φ) and the function M(φ) to be 

f (u ) := 

⎧ ⎨ 

⎩ 

k 

(
[ u ] 2 + 
u 2 eq 

− 1 

)
, for u ≤ u 

� , 

k 

(
u � 

u 2 eq 
− 1 

)
, for u > u 

� , 

P (φ) := 

{
8 φ2 (1 − φ) 2 , for φ ∈ [0 , 1] , 

0 , otherwise , 
and M(φ) := 

{
4 φ(1 − φ) , for φ ∈ [0 , 1] , 

0 , otherwise , 

where u eq is the equilibrium concentration and k is a reaction constant. 

With this choice the function F is Lipschitz continuous with respect to both arguments and we denote by ∂ � F the partial 

derivative of F with respect to the � -th argument. Specifically, there exist two constants M F 1 
, M F 2 

≥ 0 such that | ∂ � F | ≤ M F � 

a.e. in R 

2 with � = 1 , 2 . 

For each u ∈ R , the function F (·, u ) is continuous and can be decomposed as F (·, u ) := F + (·, u ) + F −(·, u ) with F + (·, u ) 
denoting the increasing part of F (·, u ) and F −(·, u ) the decreasing part of F (·, u ) , namely 

F + (α, u ) = 

∫ α

0 

[ ∂ 1 F (z, u )] + dz, and F −(α, u ) = 

∫ α

0 

[ ∂ 1 F (z, u )] − dz. 

In Section (4) we propose a micro-scale non-linear solver and there the splitting of the non-linear term F (·, u ) guarantees 

the convergence. In the following sections we treat F − implicitly and F + explicitly. A similar strategy splitting of the non- 

linearities into their convex and concave components can be found in Frank et al. [42] . 

3. The two-scale iterative scheme 

We propose an iterative scheme to simulate the two-scale behavior of the phase-field model presented in Section 2 . Here 

we use an artificial coupling parameter between the two scales, namely L coup . In [34,43] similar approaches about handling 

the coupling between scales and non-linear systems of equations can be found. 

We first discretize the equations in time. With N ∈ N we let �t = T /N be the time step size and define t n = n �t . We 

use a backward Euler scheme for the time discretization and denote the time-discrete solutions by φn := φ(·, ·, t n ) and 

νn := ν(·, t n ) for ν ∈ { A , K , p, q , u } . Accordingly, at each time t n one has to determine a six-tuple { φn , A 

n , K 

n , p n , q 

n , u n } 
depending on the solution of the previous time step. The time stepping starts with φ0 = φI and u 0 = u I . 

In order to approximate the discrete solutions { φn , A 

n , K 

n , p n , q 

n , u n } we consider an iterative algorithm. With i > 0 be- 

ing the iteration index, the two-scale iterative scheme defines a sequence 
{
φn 

i 
, A 

n 
i 
, K 

n 
i 
, p n 

i 
, q 

n 
i 
, u n 

i 

}
. The initial guess for the 

iterations φn 
0 

and u n 
0 

are the solution at the previous time step, i.e. φn 
0 

= φn −1 and u n 
0 

= u n −1 . 

The iterative scheme is defined as follows. First, for n > 0 , i > 0 and L coup > 0 with given u n−1 , u n 
i −1 

, φ
n−1 

and φn 
i −1 

, for 

each x ∈ � one solves the micro-scale phase-field problem ⎧ ⎨ 

⎩ 

φn 
i 

− �tγ�φn 
i 

− �t 
λ2 F −(φ

n 
i 
, u 

n 
i−1 

) + L coup 

(
φn 

i 
− φn 

i−1 

)
= φn−1 + 

�t 
λ2 F + (φ

n−1 , u 

n 
i−1 

) , in Y, 

φn 
i 

is Y -periodic . 

P 

μ,i 

φ

By using the solution φn 
i 

in (1) , ( P 

μ
A ) and ( P 

μ
K 

) we calculate the iterative effective parameters A 

n 
i 

and K 

n 
i 
. Then, one continues 

with the macro-scale problems ⎧ ⎪ ⎨ 

⎪ ⎩ 

∇ · q 

n 
i 

= 0 , in �, 

q 

n 
i 

= −K 

n 
i 
∇p n 

i 
, in �, 

∇p n 
i 
· n = 0 , on ∂�, ∫ 

� p n 
i 

dx = 0 . 

P 

M ,i 
p 
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⎧ ⎨ 

⎩ 

φ
n 

i (u 

n 
i 

− u 

� ) +�t∇ · (q 

n 
i 
u 

n 
i 
) 

= �tD ∇ · (A 

n 
i 
∇u 

n 
i 
) + φ

n−1 
(u 

n−1 −u 

� ) , in �, 

∇u 

n 
i 

· n = 0 , on ∂�, 

P 

M ,i 
u 

The two-scale iteration steps For n > 0 and i > 0 with given u n−1 , u n 
i −1 

, φ
n−1 

and φn 
i −1 

, to compute the next iteration one 

performs the following steps 

(S1) For each x ∈ �, find φn 
i 

by solving the phase-field problem P 

μ, i 

φ
. 

(S2) Given φn 
i 
, find the effective matrices A 

n 
i 

and K 

n 
i 

in (1) by solving the cell problems ( P 

μ
A ) and ( P 

μ
K 

). 

(S3) Given φ
n 

i , K 

n 
i 

and A 

n 
i 
, find p n 

i 
, q 

n 
i 

and u n 
i 

by solving the macro-scale problems ( P 

M ,i 
p ) and ( P 

M ,i 
u ). 

The two-scale iteration steps (S1) - (S3) take place until the L 2 -norm of the difference of two iterations drops below a 

prescribed threshold tol M 

> 0 , i.e. 

εn,i 
M 

:= ‖ φ
n 

i − φ
n 

i−1 ‖ � ≤ tol M 

. 

We highlight that this stopping criterion is chosen according to the results in Theorem 2 in Section 5 . There we show 

that the convergence of the porosity φ
n 

i guarantees the convergence of the macro-scale concentration u n 
i 
, so the stopping 

criterion above is sufficient. However, different stopping criteria can also be used, including, e.g., the residuals of the macro- 

scale concentration and velocity. 

Proving the existence and uniqueness of a solution to the coupled system ( P 

M 

p ), ( P 

M 

u ), ( P 

μφ ), ( P 

μ
A ) and ( P 

μ
K 

) is beyond 

the scope of this paper. Such results are known if each model component is considered apart. For example, when taken 

individually the problems ( P 

M 

p ), ( P 

M 

u ), ( P 

μ
A ) and ( P 

μ
K 

) are linear and elliptic, while the non-linearity in ( P 

μφ ) is monotone 

and Lipschitz continuous. For such problems the existence and uniqueness of a weak solution are guaranteed by standard 

arguments. The same holds for ( P 

M ,i 
p ) and ( P 

M ,i 
u ). For the parabolic counterparts, before applying the time discretization, we 

refer to [26,44–46] . There the existence and uniqueness of solutions to similar problems related to phase-field modeling or 

the interaction between scales are addressed. 

4. The micro-scale non-linear solver 

At each time step and for each x ∈ �, the step (S1) of the two-scale iterative scheme involve a non-linear problem 

( P 

μ, i 

φ
) at the micro-scale. For this we construct an iterative non-linear solver based on the L-scheme [37,38] , which is a 

contraction-based approach. The main advantages of the L-scheme are that, unlike the Newton method, it does not involve 

the calculation of derivatives and its convergence is guaranteed regardless of the initial approximation, the spatial discretiza- 

tion and the mesh size. 

To be specific, let n > 0 and x ∈ � be fixed and φn−1 (x , ·) ∈ L 2 (Y ) , u n (x ) ∈ R be given. The weak solution of the time 

discrete counterpart of P 

μφ ) is defined as follows 

Definition 1. A weak solution to the time discrete counterpart of ( P 

μφ ) is a function φn (x , ·) ∈ H 

1 
# 
(Y ) satisfying 

〈 φn , ψ〉 Y + �tγ 〈∇φn , ∇ψ〉 Y − �t 
λ2 〈 F −(φn , u 

n ) , ψ〉 Y 
= 〈 φn−1 + 

�t 
λ2 F + (φ

n−1 , u 

n ) , ψ〉 Y , (3) 

for all ψ ∈ H 

1 
# 
(Y ) . 

Further, let i > 0 be the two-scale iteration index and φn 
i−1 

(x , ·) ∈ L 2 (Y ) , u n 
i −1 

(x ) ∈ R be given. The weak solution of ( P 

μ, i 

φ
) 

is defined as follows 

Definition 2. A weak solution to ( P 

μ, i 

φ
) is a function φn 

i 
(x , ·) ∈ H 

1 
# 
(Y ) satisfying 

〈 φn 
i 
, ψ〉 Y + �tγ 〈∇φn 

i 
, ∇ψ〉 Y − �t 

λ2 〈 F −(φn 
i 
, u 

n 
i−1 

) , ψ〉 Y + 

〈
L coup 

(
φn 

i 
−φn 

i−1 

)
, ψ 

〉
Y 

= 〈 φn−1 + 

�t 
λ2 F + (φ

n−1 , u 

n 
i−1 

) ,ψ〉 Y , (4) 

for all ψ ∈ H 

1 
# 
(Y ) . 

Observe that ( P 

μ, i 

φ
) is a non-linear problem and to approximate its solution a linearization scheme is needed. To this aim 

we take L lin ∈ R 

+ such that L lin ≥ M F 1 
. Let j ∈ N , j ≥ 1 be the micro-scale iteration index and φn 

i, j−1 
(x , ·) ∈ L 2 (Y ) be given. 

The weak solution of the linear problem associated to ( P 

μ, i 

φ
) is defined as follows 

Definition 3 (Micro-scale linear iteration) . A weak solution to the linearized version of ( P 

μ, i 

φ
) is a function φn 

i, j 
(x , ·) ∈ H 

1 
# 
(Y ) 

satisfying 〈
(1 + L coup ) φn 

i, j 
, ψ 

〉
Y 

+ �tγ 〈∇ φn 
i, j 

, ∇ ψ 〉 Y − �t 
λ2 〈 F −(φn 

i, j−1 
, u 

n 
i−1 

) , ψ〉 Y 
+ 

�t 
λ2 〈L lin (φ

n 
i, j 

− φn 
i, j−1 

) , ψ〉 Y = 〈 φn−1 + 

�t 
λ2 F + (φ

n−1 , u 

n 
i−1 

) + L coup φn 
i−1 

, ψ〉 Y , (5) 
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for all ψ ∈ H 

1 
# (Y ) . 

The natural choice for the initial micro-scale iteration φn 
i, 0 

is φn 
i−1 

, that is the phase field from the previous two-scale 

iteration. Nevertheless, this choice is not compulsory for the convergence of the micro-scale linear solver as the convergence 

is independent of the initial guess. The iterations (5) are performed until one reaches a prescribed threshold tol μ � tol M 

for 

the L 2 -norm of the difference of two successive iterations, e.i. 

εn,i, j 
μ := ‖ φn 

i, j (x , ·) − φn 
i, j−1 (x , ·) ‖ Y ≤ tol μ, (6) 

where i > 0 is the two-scale iteration index of the two-scale scheme and j > 0 indicates the micro-scale iterations index of 

the non-linear solver. 

We highlight that in this specific case and due to the strong coupling between the flow, chemistry and the phase field 

over two scales, an accurate solution of the micro-scale problems is crucial to achieve convergence of the iterations. For this 

reason we solve the micro-scale non-linear problem at every iteration and take tol μ � tol M 

. 

We show that the solution of the phase-field problem P 

μ, i 

φ
at every x ∈ � remains bounded. 

Lemma 1 (Maximum principle for the phase-field) . For a fixed x ∈ � and for each n > 0 and i > 0 , with φn−1 (x , ·) , φn 
i−1 

(x , ·) 
and φn 

i, j−1 
(x , ·) ∈ L ∞ (Y ) given and essentially bounded by 0 and 1. Then φn 

i, j 
(x , ·) ∈ H 

1 
# 
(Y ) in Definition 3 satisfies the same 

essential bounds. 

Proof. First, we test in (5) with ψ := [ φn 
i, j 

(x , ·)] −, then (
1 + L coup + 

�t 
λ2 L lin 

)‖ [ φn 
i, j 

] −‖ 

2 
Y + �tγ ‖∇[ φn 

i, j 
] −‖ 

2 
Y 

= 〈 φn−1 + 

�t 
λ2 F + (φ

n−1 , u 

n 
i−1 

) + L coup φn 
j−1 

, [ φn 
i, j 

] −〉 Y 
+ 

�t 
λ2 〈 F −(φn 

i, j−1 
, u 

n 
i−1 

) + L lin φ
n 
i, j−1 

, [ φn 
i, j 

] −〉 Y . 
(7) 

Using the mean value theorem on the right hand side of (7) one obtains 

〈 φn−1 + 

�t 
λ2 F + (φ

n−1 , u 

n 
i−1 

) + L coup φn 
j−1 

, [ φn 
i, j 

] −〉 Y 
= 〈 (1 + 

�t 
λ2 ∂ 1 F + (ξ , u 

n 
i−1 

)) φn−1 + L coup φn 
j−1 

, [ φn 
i, j 

] −〉 Y , (8) 

and 

�t 
λ2 〈 F −(φn 

i, j−1 
, u 

n 
i−1 

) + L lin φ
n 
i, j−1 

, [ φn 
i, j 

] −〉 Y 
= 

�t 
λ2 〈 

(
∂ 1 F −(η, u 

n 
i−1 

) + L lin 

)
φn 

i, j−1 
, [ φn 

i, j 
] −〉 Y , (9) 

where ξ : Y → R and η : Y → R are two functions such that ξ (y ) ∈ (0 , φn−1 (x , y )) and η(y ) ∈ (0 , φn 
i, j−1 

(x , y )) for all y ∈ Y . 

Knowing that L coup , ∂ 1 F + ≥ 0 and L lin ≥ M F 1 
, we get that the right-hand sides of (8) and (9) are negative. Consequently, (

1 + L coup + 

�t 

λ2 
L lin 

)
‖ [ φn 

i, j ] −‖ 

2 
Y + �tγ ‖∇[ φn 

i, j ] −‖ 

2 
Y ≤ 0 , 

which implies 
(
1 + L coup + 

�t 
λ2 L lin 

)‖ [ φn 
i, j 

] −‖ 2 Y 
= 0 . In conclusion [ φn 

i, j 
(x , ·)] − = 0 a.e. in Y, and with this we obtain the lower 

bound of φn 
i, j 

(x , ·) . 
The upper bound follows by testing (5) with [ φn 

i, j 
(x , ·) −1] + and following the same steps. We obtain φn 

i, j 
(x , ·) ≤ 1 a.e. in 

Y . �

Solving the non-linear problem accurately is crucial to guarantee the convergence of the two-scale iterative scheme. The 

following theorem ensures the convergence of the micro-scale non-linear iterations under mild restrictions on �t, L lin and 

L coup . 

Theorem 1 (Convergence of the non-linear solver) . For a fixed x ∈ � and for each n > 0 and i > 0 ; with M F 1 
as above and 

L coup ≥ 0 . If L lin ≥ M F 1 
and �t ≤ λ2 (1+ L coup ) 

M F 1 

, the micro-scale linear iteration introduced in Definition 3 is convergent in H 

1 
# 
(Y ) . 

The proof of Theorem 1 follows the same steps as the proof in [4, Lemma 4.1] . We omit the details here. 

Remark. For a fixed x ∈ � and given the initial condition φ0 (x , ·) ∈ L ∞ (Y ) as explained before, the choice of the initial 

two-scale iterations is φ1 
0 = φ0 and the choice of the initial micro-scale iterations is φ1 

1 , 0 = φ1 
0 . Therefore, Lemma 1 implies 

that for all j ≥ 1 the solution φ1 
1 , j 

(x , ·) in Definition 3 is essentially bounded by 0 and 1. Moreover, the convergence of the 

non-linear solver (see Theorem 1 ) implies the same boundedness of φ1 
1 (x , ·) . Additionally, the convergence of the two-scale 

iterative scheme (proved in Section 5 ) implies the boundedness of φ1 (x , ·) . Likewise, by induction, we conclude that for all 

n ≥ 1 , i ≥ 0 , j ≥ 0 the solutions φn (x , ·) , φn 
i 
(x , ·) and φn 

i, j 
(x , ·) are all essentially bounded by 0 and 1. 

7 
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5. Analysis of the two-scale iterative scheme 

In this section we show the convergence of the two-scale iterative scheme in steps (S1) - (S3). We verify a relation 

between the effective diffusivity and the porosity and prove the convergence of the scheme. The main difficulty in the 

convergence proof is due to the two-scale characteristics of the scheme and the presence of the non-linear terms. 

Assumptions Next to (A1) and (A2), to prove the convergence of the two-scale iterative scheme we consider a simplified 

setting. Specifically, 

(A3) The flow component is disregarded. 

(A4) For n > 0 , the porosity φ
n 

is bounded away from 0 and 1. That is, there exists two constants φm 

and φM 

such that 

0 < φm 

≤ φ
n ≤ φM 

< 1 a.e. in �. 

(A5) For n > 0 , the concentration is such that ‖∇u n ‖ L ∞ (�) ≤ C u for some constant C u > 0 . 

(A6) For every time step n > 0 , iteration i > 0 and macro-scale location x ∈ �, the solution of the cell problems ( P 

μ
A ) is 

such that ‖∇ω 

s (x , ·, t n ) ‖ L ∞ (Y ) ≤ C w 

for some constant C w 

> 0 and for all s ∈ { 1 , . . . , d } . 
We remark that (A3) and (A4) are assumptions related to the physical context of the numerical analysis below. Specif- 

ically, in (A4) we assume the porosity to be bounded away from zero to avoid clogging, which would lead to no solute 

diffusion. Further, we assume the porosity to be bound away from one to ensure that we still have a solid part in the 

porous medium. We refer to [47,48] for the analysis of models including a vanishing porosity and to [49] for a compari- 

son of different approaches used in the context near clogging. Assuming (A5) and (A6), the essential boundedness of the 

gradients of u n and ω 

s , is justified under certain conditions. For example, since u n 
i −1 

is constant in Y, the solutions to the 

micro-scale elliptic problems are bounded uniformly w.r.t. i in H 

1 (Y ) , and have a better regularity than H 

1 . Assuming that 

∇φn −1 is essentially bounded, one obtains bounds for ∇φn 
i 

by deriving the problem P 

μ, i 

φ
in space. Furthermore, with a 

fixed δ > 0 and recalling the essential bounds proved in Lemma 1 , the problem P 

μ
A solved by ω 

s is linear, elliptic, and the 

coercivity constant is uniformly bounded. In view of the regularity and boundedness of φn 
i 
, one obtains that ∇ω 

s is essen- 

tially bounded as well. Finally, for the macro-scale problem P 

M ,i 
u , assuming the domain � and the initial data are sufficiently 

smooth, the essential boundedness of the gradient of u n can be obtained e.g. as in [50, Chapter 3.15] . Nevertheless, the 

rigorous proofs of (A5) and (A6) are beyond the scope of this manuscript. 

For n > 0 , let u n−1 ∈ L 2 (�) and φ
n 
, φ

n−1 ∈ L ∞ (�) be given. In the absence of flow, the weak solution of the time discrete 

counterpart of ( P 

M 

u ) is defined as follows 

Definition 4. A weak solution to the time discrete counterpart of ( P 

M 

u ) is a function u n ∈ H 

1 (�) satisfying 〈 
φ

n 
(u 

n − u 

� ) , v 
〉 
�

+ �tD 〈 A 

n ∇u 

n , ∇v 〉 � = 

〈 
φ

n−1 
(u 

n−1 − u 

� ) , v 
〉 
�

, (10) 

for all v ∈ H 

1 (�) . 

We let i ∈ N denote the two-scale iteration index. The iterated porosity φ
n 

i (x ) := 

∫ 
Y φ

n 
i 
(x , y ) dy is given for all x ∈ � and 

the diffusivity tensor A 

n 
i 

depends on φn 
i 

as explained in (1) . In the absence of flow, the weak solution of ( P 

M ,i 
u ) is defined as 

follows 

Definition 5. A weak solution to ( P 

M ,i 
u ) is a function u n 

i 
∈ H 

1 (�) satisfying 〈 
φ

n 

i (u 

n 
i − u 

� ) , v 
〉 
�

+ �tD 

〈
A 

n 
i ∇u 

n 
i , ∇v 

〉
�

= 

〈 
φ

n−1 
(u 

n−1 − u 

� ) , v 
〉 
�

, (11) 

for all v ∈ H 

1 (�) . 

For proving the convergence of the two-scale iterative scheme we start by showing that the changes in the phase field are 

bounding the variations in the diffusion tensor. We refer to [21,49,51] for numerical studies revealing the relation between 

diffusivity (and permeability) and porosity. 

Proposition 1. For each n > 0 and i > 0 , the effective diffusion tensors A 

n and A 

n 
i 

are symmetric, continuous and positive defi- 

nite. In other words, the constants a m 

, a M 

> 0 exist such that for all ψ ∈ R 

d and x ∈ �

a m 

‖ ψ ‖ 

2 ≤ ψ 

T A 

n (x ) ψ ≤ a M 

‖ ψ ‖ 

2 , and a m 

‖ ψ ‖ 

2 ≤ ψ 

T A 

n 
i (x ) ψ ≤ a M 

‖ ψ ‖ 

2 . 

We refer to [52, Proposition 6.12] for the proof of the symmetry and positive definiteness of the effective diffusion tensor. 

Lemma 2. For each n > 0 and i > 0 , there exists a constant C A > 0 such that 

‖ A 

n 
i − A 

n ‖ � ≤ C A ‖ φn 
i − φn ‖ �×Y . (12) 

Proof. For each x ∈ � we denote ω 

s 
i,n 

and ω 

s 
n the s -component of the solution of the cell problems ( P 

μ
A ) that correspond to 

φn 
i 

and φn . By subtracting those two cell problems we get formally that 

∇ · ((φn 
i + δ)(∇(ω 

s 
i,n − ω 

s 
n ))) = −∇ · ((φn 

i − φn )(e s + ∇ω 

s 
n )) . 

8 
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From this one immediately obtains that 

| 〈(φn 
i + δ) ∇(ω 

s 
i,n − ω 

s 
n ) , ∇ψ 

〉
Y 
| = | 〈(φn − φn 

i )(e s + ∇ ω 

s 
n ) , ∇ ψ 

〉
Y 
| (13) 

for all ψ ∈ H 

1 
# (Y ) . Since | Y | = 1 and 0 ≤ φn 

i 
, by taking ψ = ω 

s 
i,n 

− ω 

s 
n in (13) , applying Cauchy–Schwartz and due to Assump- 

tion (A6) we obtain 

‖∇ (ω 

s 
i,n − ω 

s 
n ) ‖ L 1 (Y ) ≤ ‖∇ (ω 

s 
i,n − ω 

s 
n ) ‖ L 2 (Y ) ≤

1 + C w 

δ
‖ φn 

i − φn ‖ Y . (14) 

On the other hand, for each component r s of A 

n 
i 
(x ) − A 

n (x ) it is easy to show that 

| [ A 

n 
i (x )] r s − [ A 

n (x )] r s | ≤
∫ 

Y 

| φn 
i − φn | dy + 

∫ 
Y 

| (φn 
i + δ) ∂ r ω 

s 
i,n − (φn + δ) ∂ r ω 

s 
n | dy 

≤
∫ 

Y 

| φn 
i − φn | dy 

+ 

∫ 
Y 

| (φn 
i + δ) 

(
∂ r ω 

s 
i,n − ∂ r ω 

s 
n 

)| + | ( φn 
i − φn ) ∂ r ω 

s 
n | dy 

≤ (1 + C w 

) ‖ φn 
i − φn ‖ Y + 

∫ 
Y 

| (φn 
i + δ)(∂ r ω 

s 
i,n − ∂ r ω 

s 
n ) | dy . 

By using (14) and the equivalence of norms in R 

d ×d one gets 

C f ‖ [ A 

n 
i (x )] − [ A 

n (x )] ‖ 2 , R 

d ×d ≤ ‖ [ A 

n 
i (x )] − [ A 

n (x )] ‖ 1 , R 

d ×d ≤ d (1 + C w 

)(1 + δ) 

δ
‖ φn 

i − φn ‖ Y , 

where ‖ · ‖ p, R 

d ×d denotes the matrix p-norm induced by the p-norm for vectors with either p = 1 or p = 2 . The constant 

C f > 0 is coming from the equivalence between the induced norms. By integrating over �, we conclude that 

‖ A 

n 
i − A 

n ‖ � ≤ d (1 + C w 

)(1 + δ) 

C f δ
‖ φn 

i − φn ‖ �×Y , 

�

Now we show the maximum principle for the concentration under mild restrictions on the phase-field parameters. 

Lemma 3 (Maximum principle for the concentration) . For each n > 0 , given u n−1 ∈ H 

1 (�) essentially bounded by 0 and u � . If 

4 γ ≤ λk 
u � then u n ∈ H 

1 (�) solving (10) satisfies the same essential bounds. 

Proof. We test (10) with the cut function [ u n − u � ] + to obtain 〈 
φ

n 
(u 

n −u 

� ) , [ u 

n −u 

� ] + 

〉 
�

+ �tD 〈 A 

n ∇u 

n , ∇[ u 

n −u 

� ] + 〉 � = 

〈 
φ

n−1 
(u 

n−1 −u 

� ) , [ u 

n −u 

� ] + 

〉 
�
. 

Since the diffusion tensor A 

n is positive definite and by using Assumption (A4), it follows that ‖ [ u n − u � ] + ‖ 2 � ≤ 0 , implying 

[ u n − u � ] + = 0 a.e in �. For proving the lower bound of the concentration u n we test (10) with the cut function [ u n ] − to 

obtain 〈 
φ

n 
u 

n , [ u 

n ] −

〉 
�

+ �tD 〈 A 

n ∇u 

n , ∇[ u 

n ] −〉 � = 

〈 
φ

n−1 
u 

n−1 , [ u 

n ] −

〉 
�

+ 

〈 
( φ

n − φ
n−1 

) u 

� , [ u 

n ] −

〉 
�

. 

Since φ
n −1 

, u n −1 and φ
n 

are all positive and A 

n is positive definite, there exists a constant C > 0 such that 

C‖ [ u 

n ] −‖ 

2 
� ≤

〈 
( φ

n − φ
n−1 

) u 

� , [ u 

n ] −

〉 
�

. (15) 

It is sufficient to show that φ
n − φ

n−1 ≥ 0 a.e. in � in the case of u n ≤ 0 . From the definition of the non linear 

term (2) we have that F (·, u n ) = F (·, 0) for all u n ≤ 0 and if 4 γ ≤ λk 
u � one can show that ∂ 1 F (·, 0) = 0 only at z � = 

1 
2 + 

1 
24 γ

(√ 

48 γ 2 + ζ 2 − ζ
)

with ζ = 

λk 
u � . Clearly z � ∈ (0 , 1) and knowing this we rewrite F + and F − as follows 

F −(φn , 0) = 

{
0 , for φn ∈ [0 , z � ] , 

F (φn , 0) − F (z � , 0) , φn ∈ (z � , 1] , 

F + (φn −1 , 0) = 

{
F (φn −1 , 0) , for φn −1 ∈ [0 , z � ] , 

F (z � , 0) , φn −1 ∈ (z � , 1] . 

Consider the partition of Y = ∪ 

3 
i =0 

Y i , where the subsets Y i are defined as 

Y 0 := 

{
y ∈ Y | 0 ≤ φn −1 (y ) ≤ φn (y ) ≤ 1 

}
, 

Y 1 := 

{
y ∈ Y | 0 ≤ φn (y ) ≤ φn −1 (y ) ≤ z � 

}
, 

Y 2 := 

{
y ∈ Y | 0 ≤ φn (y ) ≤ z � ≤ φn −1 (y ) ≤ 1 

}
, 

Y 3 := 

{
y ∈ Y | z � ≤ φn (y ) ≤ φn −1 (y ) ≤ 1 

}
. 

9 
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We test (3) with ψ = 1 to obtain 

φ
n − φ

n−1 = 

(∑ 3 
i =0 

∫ 
Y i 
φn − φn−1 dy 

)
= 

�t 
λ2 

∫ 
Y F −(φ

n , 0) + F + (φn −1 , 0) dy . 

In Y 1 we get that F −(φn , 0) + F + (φn −1 , 0) = F (φn −1 , 0) . Analogously, in Y 2 and Y 3 one obtains F −(φn , 0) + F + (φn −1 , 0) = F (z � , 0) 

and F −(φn , 0) + F + (φn −1 , 0) = F (φn , 0) respectively. Therefore, 

φ
n − φ

n−1 = 

∫ 
Y 0 

φn − φn−1 dy + 

�t 
λ2 

(∑ 3 
i =1 

∫ 
Y i 

F −(φn , 0) + F + (φn −1 , 0) dy 
)

≥ �t 
λ2 

(∫ 
Y 1 

F (φn −1 , 0) dy + 

∫ 
Y 2 

F (z � , 0) dy + 

∫ 
Y 3 

F (φn , 0) dy 
)
. 

(16) 

Finally, we observe that F (φn , 0) is positive if and only if 

min φn ∈ [0 , 1] M(φn ) 
(
4 γ (2 φn − 1) + 

λk 
u � 

)
≥ 0 . 

For φn ∈ [0 , 1] , this is achieved if 

min φn ∈ [0 , 1] 

(
4 γ (2 φn − 1) + 

λk 
u � 

)
≥ 0 . 

Consequently, F (φn , 0) ≥ 0 in the case of 4 γ ≤ λk 
u � . Following the same argument one has that F (φn −1 , 0) ≥ 0 and F (z � , 0) ≥

0 . Using this in (16) we conclude that φ
n − φ

n−1 ≥ 0 when u n ≤ 0 . Hence (15) implies that ‖ [ u n ] −‖ 2 � ≤ 0 and the lower bound 

for the concentration is proven. �

Remark. Note that, given the choice of u 0 ∈ L ∞ (�) as explained before, Lemma 3 implies by induction that for each n > 0 , 

the weak solution u n in Definition 4 is such that 0 ≤ u n ≤ u � a.e. in �. 

To prove the convergence of the two-scale iterative scheme we introduce some notation: for a fixed n > 0 and the two- 

scale iteration index i > 0 , we define e 
φ
i 

:= φn 
i 

− φn , e u 
i 

:= u n 
i 

− u n and e 
φ
i 

:= φ
n 

i − φ
n 
. Subtracting (4) from (3) and (11) from 

(10) the following equations are satisfied by the errors e 
φ
i 
, e u 

i 
and e 

φ
i 

〈 e φ
i 
, ψ〉 

Y 
+ �tγ 〈∇ e 

φ
i 
, ∇ ψ〉 

Y 
+ L coup 

〈(
e 
φ
i 

− e 
φ
i−1 

)
, ψ 

〉
Y 

= 

�t 
λ2 〈 F −

(
φn 

i 
, u 

n 
i−1 

)
− F −( φn , u 

n ) , ψ〉 
Y 

+ 

�t 
λ2 〈 F + 

(
φn−1 , u 

n 
i−1 

)
− F + 

(
φn−1 , u 

n 
)
, ψ〉 

Y 
, 

(17) 

〈 
φ

n 

i e 
u 
i , v 

〉 
�

+ �tD 

(〈
A 

n 
i ∇u 

n 
i , ∇v 

〉
�

− 〈 A 

n ∇u 

n , ∇v 〉 �
)

= 

〈 
(u 

� − u 

n ) e φ
i 
, v 

〉 
�

, (18) 

for all ψ ∈ H 

1 
# 
(Y ) and v ∈ H 

1 (�) . Note that (17) is defined for every x ∈ �. 

Theorem 2 (Convergence of the two-scale iterative scheme) . For each n > 0 , under the Assumptions (A1)–(A6), with M := 

max 
(
M F 1 

, M F 2 

)
, 4 γ ≤ λk 

u � and L coup > 12 M . If the time step is small enough (i.e. satisfying (22) below), the two-scale iterative 

scheme in steps (S1)–(S3) is convergent. 

Proof. For a fixed macro-scale point x ∈ � and the two-scale iteration index i > 0 , we consider the error Eq. (17) and take 

the test function ψ = e 
φ
i 

. By the mean value theorem, one gets 

‖ e 
φ
i 
‖ 

2 
Y + �tγ ‖∇e 

φ
i 
‖ 

2 
Y + L coup ‖ e 

φ
i 
‖ 

2 
Y ≤ L coup 〈 e φi−1 

, e 
φ
i 
〉 

Y 

+ 

�t 
λ2 〈 2 M e u 

i−1 
, e 

φ
i 
〉 

Y 
+ 

�t 
λ2 〈 M e 

φ
i 
, e 

φ
i 
〉 

Y 
. 

Using Young’s inequality on the first two terms on the right hand side, with δ1 , δ2 > 0 one obtains (
1 + L coup − �t 

λ2 
M 

)
‖ e 

φ
i 
‖ 

2 
Y + �tγ ‖∇e 

φ
i 
‖ 

2 
Y 

≤ L coup 
δ1 

2 

‖ e 
φ
i−1 

‖ 

2 
Y + L coup 

1 

2 δ1 

‖ e 
φ
i 
‖ 

2 
Y + M 

�tδ2 

λ2 
‖ e u i−1 ‖ 

2 
Y + M 

�t 

λ2 

1 

δ2 

‖ e 
φ
i 
‖ 

2 
Y . 

By taking δ1 = 1 and δ2 = 

1 
2 , we get (

1 + 

L coup 

2 

− 3�t 

λ2 
M 

)
‖ e 

φ
i 
‖ 

2 
Y ≤

L coup 

2 

‖ e 
φ
i−1 

‖ 

2 
Y + M 

�t 

2 λ2 
‖ e u i−1 ‖ 

2 

Y 
. 

Integrating over the macro-scale domain � and since e u 
i−1 

is constant w.r.t y , we obtain (
1 + 

L coup 

2 

− 3�t 

λ2 
M 

)
‖ e 

φ
i 
‖ 

2 
�×Y ≤

L coup 

2 

‖ e 
φ
i−1 

‖ 

2 
�×Y + M 

�t 

2 λ2 
‖ e u i−1 ‖ 

2 
�. (19) 

On the other hand, taking the test function v = e u 
i 

on the macro-scale error Eq. (18) and using the Assumption (A4) and the 

Proposition 1 , we have 

φm 

‖ e u i ‖ 

2 
� + �tDa m 

‖∇e u i ‖ 

2 
� ≤ �tD 〈 (A 

n 
i − A 

n ) ∇u 

n , ∇e u i 〉 � + 〈 (u 

� − u 

n ) e φ
i 
, e u i 〉 �. 

10 
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When using Young’s inequality twice with δ3 , δ4 > 0 , we obtain 

φm 

‖ e u 
i 
‖ 

2 
� + �tDa m 

‖∇e u 
i 
‖ 

2 
� ≤ �tD 

(
δ3 

2 
‖ (A 

n 
i 

− A 

n ) ∇u 

n ‖ 

2 
� + 

1 
2 δ3 

‖∇e u 
i 
‖ 

2 
�

)
+ 

δ4 

2 
‖ (u 

� − u 

n ) e φ
i 
‖ 

2 
� + 

1 
2 δ4 

‖ e u 
i 
‖ 

2 
�. 

We take δ3 = 

1 
a m 

and δ4 = 

1 

φm 

and due to Lemmas 2 and 3 we obtain 

φm 

2 

‖ e u i ‖ 

2 
� + 

�tDa m 

2 

‖∇e u i ‖ 

2 
� ≤ �tD 

2 a m 

C 2 u C 
2 
A ‖ e 

φ
i 
‖ 

2 
�×Y + 

1 

2 φm 

u 

� 2 ‖ e 
φ
i 
‖ 

2 
�, 

Moreover, one can easily show that ‖ e φ
i 
‖ � ≤ ‖ e φ

i 
‖ �×Y , implying 

‖ e u i ‖ 

2 
� ≤

( 

�tD 

a m 

φm 

C 2 u C 
2 
A + 

u 

� 2 

φ
2 

m 

) 

‖ e 
φ
i 
‖ 

2 
�×Y . (20) 

Observe that the constants in (20) do not depend on the two-scale iteration index, i.e. (20) can be written for the index 

i − 1 as well. Using this in (19) we obtain (
1 + 

L coup 

2 

− 3�t 

λ2 
M 

)
‖ e 

φ
i 
‖ 

2 
�×Y 

≤
( 

L coup 

2 

+ M 

�t 

2 λ2 

( 

�tD 

a m 

φm 

C 2 u C 
2 
A + 

u 

� 2 

φ
2 

m 

) ) 

‖ e 
φ
i−1 

‖ 

2 
�×Y . (21) 

Clearly, (21) can be rewritten to ‖ e φ
i 
‖ 2 

�×Y 
≤ C‖ e φ

i −1 
‖ 2 

�×Y 
. By taking the time step �t sufficiently small, one obtains C < 1 , 

so the error is contractive. Specifically, if �t > 0 satisfies the inequality (
M DC 2 u C 

2 
A 

2 λ2 a m 

φm 

)
�t 2 + 

M 

λ2 

( 

u 

� 2 

2 φ
2 

m 

+ 3 

) 

�t < 1 , (22) 

then (21) is a contraction. By the Banach theorem we conclude that ‖ e φ
i 
‖ �×Y → 0 as i → ∞ . This, together with (20) implies 

that ‖ e u 
i 
‖ � → 0 as i → ∞ , which proves the convergence of the two-scale iterative scheme. 

�

Remark. To summarize, we highlight that the convergence of the two-scale iterative scheme is guaranteed under (A1)–(A6) 

and the following conditions 

• The motion of the diffuse interface and the width of the transition zone are related such that 4 γ ≤ λk 
u � . 

• The coupling parameter L coup is such that L coup > 12 max (M F 1 
, M F 2 

) . 
• The time step �t is such that (22) is fulfilled. Note that (22) can clearly be fulfilled for some real �t > 0 . This restriction 

does not depend on the spatial discretization. Also note that the convergence is achieved for any starting point. Neverthe- 

less, finding specific bounds for �t from (22) is not obvious because it depends on unknown constants. In Section 7 we 

choose �t based on numerical experiments inspired by Storvik et al. [53] , where a coarse spatial discretization is used 

to estimate a suitable time step size. 

6. The adaptive strategy 

We design an adaptive strategy to localize and reduce the error and to optimize the computational cost of the simula- 

tions. 

Let T H be a triangular partition of the macro-scale domain � with elements T of diameter H T and H := max 
T ∈ T H 

H T . We 

assign one micro-scale domain Y to the barycentre (or integration point) of each macro-scale element T . At each micro- 

scale domain Y we define another triangular partition T h with elements T μ of diameter h T μ and h := max 
T μ∈ T h 

h T μ . In Fig. 2 , the 

structure and the notation of the meshes are shown. We first present the mesh refinement strategy used in the micro scale 

and thereafter we turn to the macro-scale adaptive strategy used to optimize the computations. 

6.1. The micro-scale mesh adaptivity 

The accuracy in the solution of the phase field is influenced by the mesh size of the micro-scale discretization. It is 

necessary to create a fine mesh such that h � λ to capture the diffuse transition zone. Nevertheless, such a fine uniform 

mesh would make the computation of the phase field and the effective parameters very expensive. Here we propose an 

adaptive micro-scale mesh with fine elements only in the diffuse transition zone of the phase field. 
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Fig. 2. Sketch of the macro-scale and micro-scale meshes. For each T ∈ T H there is one corresponding micro-scale domain Y with a micro-scale mesh T h . 

The mesh refinement strategy relies on an estimation of the evolution of the phase field. Here we use the fact that φ is 

essentially bounded by 0 and 1 a.e. in Y and that the large changes in the gradient of φ are encountered in the transition 

zone. Nevertheless, other methods or refinement criteria can be used without modifying the whole strategy. 

Here the local mesh adaptivity is divided into three main steps: prediction - projection - correction. This strategy is 

an extension of the predictor-corrector algorithm proposed in Heister et al. [36] and by construction, our strategy avoids 

nonconforming meshes. 

For a fixed time n > 0 , consider a micro-scale domain Y and let φn−1 be given over a mesh T 

n−1 
h 

. The mesh T 

n−1 
h 

is 

”optimal” in the sense that it is fine only in the diffuse transition zone of φn−1 . Take also an auxiliary coarse mesh T c , 

which is uniform with mesh size h max � λ. 

Prediction. Given the mesh T 

n−1 
h 

compute a first approximation to the solution of problem (P 
μ, 1 

φ
) . We call this approxi- 

mation the auxiliary solution φn ∗
1 

. Project the solution φn ∗
1 

on the coarse mesh T c . The elements marked to be refined 

are T μ ∈ T c such that 

θr λ ≤ φn ∗
1 | T μ ≤ 1 − θr λ

for some constant 0 < θr < 

1 
2 λ

. After marking the triangles, we refine the mesh in the selected zone. The refinement 

process is repeated until the smallest element is such that h T μ ≤ h min � λ. The result is a refined mesh T 

n ∗
h 

that is 

fine enough at the predicted transition zone of the phase field φn ∗
1 

. 

Projection Create a projection mesh T r that is the union of the previous mesh and the predicted mesh. The mesh T r = 

T 

n−1 
h 

∪ T 

n ∗
h 

is fine enough at the transition zone of φn−1 and φn ∗
1 

. To properly describe the interface of both φn−1 and 

φn ∗
1 

we project the previous solution φn−1 over T r . 

Correction Given the mesh T r and the projection of φn−1 compute once more the solution of problem (P 
μ, 1 

φ
) . The projec- 

tion of this result over the mesh T 

n 
h 

corresponds to the solution φn 
1 

. 

This process is necessary at every time step and every micro-scale domain but we perform the mesh refinement only 

in the first iteration of the coupled scheme. However, this procedure could be extended for further iterations. Notice that 

higher values of the parameter θr lead to coarser meshes and less error control. We will illustrate the role of θr in Section 7 . 

In Fig. 3 we sketch the prediction-projection-correction strategy by zooming in on the transition zone of a phase field. 

There the mineral is shrinking from the time n −1 to n . In Fig. 3 (a) and (d) we mark the center of the transition zone of 

the auxiliary solution φn ∗
1 

and the corrected solution φn 
1 
, and we see how the mesh follows the transition zone of the phase 

field. 

6.2. The macro-scale adaptivity 

The computations on the micro scale can be optimized by the mesh adaptivity discussed before and the cell problems 

can be computed in parallel. Nevertheless, it is demanding to compute the micro-scale quantities at every element (or 

integration point) of the macro-scale mesh. Here, the scale separation allows us to solve the model adaptively in the sense of 

the strategy introduced in Redeker and Eck [35] and further studied in Redeker et al. [26] . There the macro-scale adaptivity 

uses only the solute concentration to locate where the micro-scale features need to be recalculated. Here we implement a 

modified adaptive strategy on the micro scale that depends on the solute concentration and the phase-field evolution. With 

this, we extend the method in Redeker and Eck [35] to more general settings, including heterogeneous macro-scale domains. 

To be more precise, we define the metric d E such that it measures the distance of two macro-scale points x 1 , x 2 ∈ � in 

terms of the solute concentration and the phase-field evolution, i.e. 

d E (x 1 , x 2 ; t;�) := 

∫ t 

0 

e −�(t−s ) 
(

d u (x 1 , x 2 ; s ) + 

∫ 
Y 

d φ(x 1 , x 2 , y ; s ) dy 

)
ds. 
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Fig. 3. Prediction- projection - correction strategy. (a) The auxiliary solution φn ∗
1 over the mesh T 

n−1 
h 

and the (green) line marks where φn ∗
1 = 0 . 5 indicating 

the center location of the predicted transition zone. (b) The auxiliary mesh T r and the triangles that belong to the transition zone of φn−1 ( ×) and φn ∗
1 ( ◦). 

(c) The solution of problem (P 
μ, 1 

φ
) over T r and the elements outside of the transition zone ( ×). (d) The solution φn 

1 over the optimal mesh T 

n 
h 

and the 

(green) line marks where φn 
1 = 0 . 5 indicating the center location of the transition zone. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

Here d u and d φ are defined as follows 

d u (x 1 , x 2 ; s ) := | u (x 1 , s ) − u (x 2 , s ) | and d φ(x 1 , x 2 , y ; s ) := | φ(x 1 , y , s ) − φ(x 2 , y , s ) | , 
and � ≥ 0 is a history parameter. In the discrete setting we calculate the distance d E recursively, i.e. 

d E (x 1 , x 2 ; n �t;�) ≈ e −��t d E (x 1 , x 2 ; (n −1)�t;�) 

+ �t 

(
d u (x 1 , x 2 ; n �t) + 

∫ 
Y 

d φ(x 1 , x 2 , y ; n �t) dy 

)
. 

The spatial integrals are also calculated numerically depending on the spatial discretization. 

At each time n ≥ 0 we divide the set of macro-scale points (elements) into a set of active points ( N A (n ) ) and a set of 

inactive points ( N I (n ) ). Specifically, N Total = N A (n ) ∪ N I (n ) and N A (n ) ∩ N I (n ) = ∅ for all n ≥ 0 . 

The cell problems will only be solved for points that are active. In this way, the effective parameters and the porosity 

are updated only in such points. For the inactive point, the effective parameters and the porosity are updated by using the 

Copy method described in Redeker et al. [26] and explained below. 

Let 0 ≤ C r , C c < 1 be given and define the refinement and coarsening tolerances as follows 

tol r (t) := C r · max 
x 1 , x 2 ∈ �

{ d E (x 1 , x 2 ; t;�) } and tol c ( t) := C c · tol r ( t) . 

For n > 0 and on the first iteration, i.e. before the iterative process, the solutions u n −1 (x ) and φn −1 (x , y ) for all x ∈ �

and y ∈ Y are given. The adaptive process consists of the following steps 

• Initially, for n = 0 all the points are inactive, i.e. N A (0) = ∅ and N I (0) = N Total . 
• Update the set of active points N A (n ) and N I (n ) . 

• Set N A (n ) = N A (n −1) and N I (n ) = N I (n −1) . For each active point x A ∈ N A (n ) repeat the following: if there exists an- 

other active node x B ∈ N A (n ) such that d E (x A , x B ; (n −1)�t;�) < tol c , then x A is deactivated, i.e. x A ∈ N I (n ) . Other- 

wise, x A ∈ N A (n ) . 
• For each inactive point x I ∈ N I (n ) repeat the following: if N A (n ) = ∅ the point x I is activated. Otherwise, calculate the 

distance to all the active nodes. If min 

x A ∈ N A (n ) 
{ d E (x I , x A ; (n −1)�t;�) } > tol r then the point x I is activated, i.e., x I ∈ N A (n ) . 

• Associate all the inactive points to the most similar active point. In other words, an inactive point x I ∈ N I (n ) is associated 

with x A ∈ N A (n ) if x A = argmin 

x ∈ N A (n ) 
{ d E (x I , x ; (n −1)�t;�) } . 

After updating the sets of active and inactive points we use the two-scale iterations to solve the micro- and macro-scale 

problems. At each iteration ( i > 0 ) we solve ( P 

μ, i 

φ
), ( P 

μ
A ) (and ( P 

μ
K 

)) and transfer the solutions φn 
i 
, A 

n 
i 

(and K 

n 
i 
) from the active 

points to their associated inactive ones. We then solve ( P 

M ,i 
u ) (and ( P 

M ,i 
p )) and continue the iterations until convergence. 

The two tolerances tol r and tol c are controlled through the values of C r and C c . For a fixed value of C r the role of C c is to 

control the upper bound for the distance between active points. In other words, higher values of C c imply that more active 

points in N A (n −1) remain active in N A (n ) . On the other hand, for a fixed value of C c the role of C r is to control the upper 

bound for the distance between active and inactive points. Namely, higher values of C r imply that less inactive points in 

N I (n ) become active. In accordance with [35] and to avoid a complete update of the set of active nodes, it is wise to use 

smaller values for tol c than for tol r . Therefore, in Section 7.1 we analyze the role of C r in the macro-scale error control when 

C c is fixed and is chosen to be small. 
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Algorithm 1. The two-scale iterative scheme using adaptive strategies on both scales. 

6.3. The adaptive algorithm 

We combine the two-scale iterative scheme and the adaptive strategies in a simple algorithm, see Algorithm 1 . Even 

though we showed the convergence of the two-scale iterative scheme in a simplified setting disregarding the flow, we 

mention the solution of the effective permeability K 

n 
i 

and the flow problem P 

M ,i 
p in Algorithm 1 . The reason for this is that 

in the numerical tests, specifically in Section 7.2 , we evidence that the iterative scheme also converges in the complete 

scenario. 

7. The numerical results 

In this section, we present two numerical tests for the two-scale iterative scheme. We restrict our implementa- 

tions to the 2D case and all parameters specified in the following examples are non-dimensional according to the non- 

dimensionalization in Bringedal et al. [27] . 

For the first test, in Section 7.1 we use a simple setting where the performance of the adaptive techniques are inves- 

tigated. In Section 7.2 we analyze an anisotropic and heterogeneous case where different shapes of the initial phase field 

are used. The numerical solutions of macro- and micro-scale problems ( P 

M 

p ), ( P 

M 

u ), ( P 

μφ ) and ( P 

μ
A ) are computed using the 

lowest order Raviart-Thomas elements (see [54] ). For the micro-scale problems ( P 

μ
K 

) we use the Crouzeix-Raviart elements 

(see [55, Section 8.6.2] ). The following (non-dimensional) constants have been used in all the simulations 

D = 1 ; μ f = 1 ; u 

� = 1 ; u eq = 0 . 5 ;
γ = 0 . 01 ; λ = 0 . 08 ; δ = 1 E-4 ; k = 1 . 

(23) 

Note that for these choices of u � , k, λ and γ , the restriction 4 γ ≤ λk 
u � in Lemma 3 is fulfilled. 

7.1. Test case 1. Circular shaped phase field 

Consider the macro-scale domain � = ( 0 , 1 ) ×
(
0 , 1 2 

)
and take T = 0 . 25 . The system is initially in equilibrium, i.e. the 

initial concentration is u (x , 0) = u eq and p(x , 0) = 0 for all x ∈ �. We impose a Dirichlet boundary condition u = 0 in a por- 

tion of the lower-left corner of the domain �, i.e., from (0,0) to (0 , H) and (H, 0) . Further, we take homogeneous Neumann 

boundary conditions everywhere else for both the solute concentration and pressure problems. This choice of the bound- 

ary conditions initiates a dissolution process. At every micro-scale domain Y the initial phase field φI has a circular shape 

with initial porosity φ0 = 0 . 5 . This configuration is displayed in Fig. 4 . We allow the mineral to dissolve until a maximum 

porosity φM 

= 0 . 9686 is reached. 

For the time discretization, even though Theorem 2 gives a theoretical restriction on �t, the estimation of an accurate 

bound is not evident. Here we choose �t experimentally by choosing an initial value of �t which is sufficiently small to 

ensure convergence of the micro-scale non-linear solver (see Theorem 1 ). If the multi-scale iterations converge in the first 
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Fig. 4. The configuration of the macro scale (left) and phase-field initial condition (right) - Test case 1. 

Table 1 

The micro-scale adaptive results for a varying refining parameter θr . The column %#Elements corresponds to the percentage of the original 

number of elements used in each mesh and % E φ is the relative error compared to the reference solution . 

θr #Elements %#Elements E φ % E φ

0.5 1 200 16.72% 9.69E −3 2.27% 

1 1 040 14.51% 1.01E −2 2.37% 

2 864 12.00% 1.19E −2 2.79% 

5 560 7.77% 1.99E −2 4.68% 

Fig. 5. The phase field φn (x ) corresponding to the macro-scale location x = (0 , 0) at the time t n = 0 . 10 . Refinement parameters θr = 1 , 2 , and 5 (left to 

right). 

time step, this value of �t is used in the whole simulation. Otherwise, smaller values of �t are tested. Here the time step 

is chosen to be �t = 0 . 01 , and was found to always ensure convergence in these tests. 

7.1.1. The micro-scale non-linear solver and adaptivity 

To study the features of the micro-scale non-linear solver and the micro-scale refinement strategy, we look closer at the 

micro-scale domain Y corresponding to the macro-scale location x = (0 , 0) with an initial phase field as shown in Fig. 4 and 

a constant concentration u = 0 . 

Concerning the behavior of the micro-scale non-linear solver, we take dynamically the value of the linearization pa- 

rameter L lin = max ( | 2 λ f (u ) + 8 γ | , | 2 λ f (u ) − 8 γ | ) , which changes at every two-scale iteration if the solute concentration u 

changes. This choice of L lin gives convergence of the micro-scale iterations, as shown in Pop et al. [37] . We use this choice 

of L lin in all the simulations below as well as the micro-scale stopping criterion tol μ = 1 E −8 . We choose tol μ so small to 

ensure sufficient accuracy of the micro-scale problems and to not influence the convergence. For all the micro-scale meshes 

used in Table 1 the average number of micro-scale iterations is 13 in the prediction stage and 6 in the correction stage. Here 

we do not iterate between scales and we choose L coup = 0 having no effect on the convergence of the non-linear solver. 

In Fig. 5 we show the phase field at time t n = 0 . 10 . On each micro-scale domain Y we use an initial uniform mesh with 

200 elements and apply three different values for the mesh refinement parameter, namely θr = 1 , 2 , and 5. 

It is clear that the micro-scale refinement parameter slightly changes the representation of the phase-field transition 

zone. This result is also evident in Table 1 . There we show a comparison between the micro-scale solutions when using 

different values of θr and the reference solution φref . We use a fixed uniform mesh with 7 200 elements and mesh size 

h re f = 2 . 36 E- 2 � λ to compute the reference solution φref . In Table 1 we report the average number of elements for each 

micro-scale mesh (#Elements) and there the accuracy of the numerical solution is provided through the L 2 -error, namely 

E φ := ‖ φref − P h (φ) ‖ L 2 ([0 , T] ;L 2 (Y )) with P h (φ) being the projection of the solution φ over the reference mesh. 
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Fig. 6. The number of two-scale iterations ( log) at time t = 0 . 01 for different values of L coup . Zoom in of the plot for small values of L coup . 

Fig. 7. The results of the macro-scale adaptive strategy for different values of the refinement parameter C r = 0 . 5 , 0 . 2 , 0 . 05 , and 0.01. Different intensities 

and sizes indicate the percentage of times that each macro-scale element was active. 

All the meshes in Fig. 5 and Table 1 are constructed such that the minimum diameter in the mesh is h T μ ≤ h min = 

λ
3 . In 

Fig. 5 , the length of the smallest edge in the meshes is min 

T μ∈ T h 
h T μ = 2 . 50 E-2 and the length of the largest edge (located far 

from the transition zone) is h max = 1 . 41 E-1. We remark that the uniform reference mesh size h re f is only slightly smaller 

than h min . In Fig. 5 and Table 1 we have used the same h min for all θr , while h re f ≈ h min to ensure a fair comparison between 

and to adress the effect of θr . 

Smaller values of θr lead to better error control, but those values also imply more degrees of freedom and therefore 

increase the computational effort. In the following numerical experiments, we choose θr = 2 to control the error on the 

micro scale and, at the same time, limit the number of elements at each micro-scale domain. 

7.1.2. The two-scale coupling and the macro-scale adaptivity 

We study the convergence of the two-scale iterative scheme for different values of the parameter L coup . In Theorem 2 the 

value of L coup is restricted to be L coup > 12 M . Using the parameters in (23) we obtain that M ≥ 1 . 12 . In Fig. 6 we compare 

the convergence of the two-scale iterative scheme when using different values of L coup . Specifically, in Fig. 6 we show the 

number of iterations used at the first time step for eleven different values of L coup . It is evident that the conditions in 

Theorem 2 are rather restrictive and in practice, one can achieve convergence using smaller values of L coup ≥ 0 . For very 

small values of L coup , the iterations needed in the two-scale iterative scheme remain constant, which we highlight in Fig. 6 . 

Here we choose tol M 

= 1 E-6 for the stopping criterion and we do not use the macro-scale adaptive strategy, i.e., we solve 

all the micro-scale problems. After this study, we choose L coup = 1 E −4 in all the simulations below. 

In Fig. 7 and Table 2 the results of the macro-scale adaptivity are shown. We choose the history parameter � = 0 . 1 and 

the coarsening parameter C c = 0 . 2 based on the sensitivity analysis presented in Redeker and Eck [35] and used in Redeker 

et al. [26] . Fig. 7 illustrates the effect of the refinement parameter C r on the proportion of active nodes. There, the different 
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Table 2 

The adaptive results for � = 0 . 1 , C c = 0 . 2 and a varying refining parameter C r . The columns %#Active, % E u and % E φ correspond to the average 

percentage of the original number of active elements used in each case and the relative errors with respect to the reference solution. 

C r #Active %#Active E u % E u E φ % E φ

0.50 82 5.13% 8.26E −3 5.23% 2.00E −2 10.16% 

0.20 134 8.38% 7.11E −3 4.50% 1.26E −2 6.41% 

0.05 257 16.06% 2.05E −3 1.30% 4.92E −3 2.51% 

0.01 512 32.00% 7.14E −4 0.45% 1.81E −3 0.92% 

Fig. 8. The evolution of the phase fields corresponding the macro-scale locations x = (0 . 1 , 0 . 1) , x = (0 . 5 , 0 . 25) , x = (0 . 9 , 0 . 4) (left to right) at two times 

t n = 0 . 05 (top) and t n = 0 . 25 (bottom). 

intensities and sizes represent the percentage of the total number of times that each element was active during the whole 

simulation. 

In Table 2 we analyze the effect of the macro-scale adaptive strategy on the L 2 -error of the concentration and porosity. 

We call u ref and φref the solutions that corresponds to C r = 0 , i.e., the solutions of the test case without using the macro- 

scale adaptive strategy. The number of active nodes in the reference case is 1 600 . Table 2 compares the following L 2 -errors 

with the number of macro-scale active elements during the whole simulation 

E u := ‖ u ref − u ‖ L 2 ([0 , T] ;L 2 (�)) and E φ := ‖ φref − φ‖ L 2 ([0 , T] ;L 2 (�)) . 

As expected and coinciding with [35] , larger values of C r imply less error control. Nevertheless, when C r increases the com- 

putational cost of the simulations decreases and the convergence of the two-scale iterative scheme is not affected. 

Finally, we show the results of the complete algorithm when using L coup = 1 E-4 and C r = 0 . 05 . Fig. 8 shows the evolution 

of the phase field corresponding to three different macro-scale locations. There we also show the corresponding micro-scale 

mesh that captures the movement of the phase-field transition zone. 

The macro-scale solute concentration and porosity are displayed in Fig. 9 . The effective parameters are shown in Fig. 10 . 

The boundary conditions trigger the decrease of the solute concentration and its effect is the dissolution of the mineral. This 

translates into higher porosity and effective diffusivity. Moreover in Fig. 10 we show that the effective permeability can be 

calculated although we do not consider flow in this test case. 

Due to the symmetry of the phase field at the micro scale, the expected results are isotropic effective tensors. The non- 

diagonal components of A and K are close to zero and can be neglected. Moreover, due to the similarity between K 1 , 1 and 

K 2 , 2 and between A 1 , 1 and A 2 , 2 we only show one of the components of the effective parameters in Fig. 10 . 

In this test case the average number of degrees of freedom in both scales is 52 , 216 per time step. At the macro scale we 

have 64 elements and for each active element we solve the phase-field problem and update the porosity and the effective 

parameters at each iteration. All the micro-scale problems have been solved in parallel. 
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Fig. 9. The numerical solution of the concentration u n (left) and porosity φ (right) at two times t n = 0 . 05 (top) and 0.25 (bottom). 

Fig. 10. The first components of the effective difussivity tensor (left) and the effective permeability tensor ( Log 10 ) (right) at two times t n = 0 . 05 (top) and 

0.25 (bottom). 

Finally, in Fig. 11 we show the convergence of εn,i 
M 

at different times. The linear convergence of the two-scale iterative 

scheme is evident in Fig. 11 . We highlight that the total number of iterations in the two-scale iterative scheme does not 

increase in time. By comparing Fig. 11 and Fig. 6 we evidence that the convergence of the two-scale iterative scheme is not 

being affected by the macro-scale adaptivity. 

7.2. Test case 2. Anisotropic case 

Consider the macro-scale domain � = ( 0 , 1 ) ×
(
0 , 1 2 

)
where the system is initially in equilibrium, i.e. the initial concen- 

tration is u (x , 0) = u eq and p(x , 0) = 0 for all x ∈ �. We take u = 0 and p = 0 on the right boundary of �; p = 0 . 25 on the 

left boundary of � and homogeneous Neumann boundary conditions everywhere else for both the solute concentration and 

pressure problems. On the micro scale, we consider an initially inhomogeneous distribution of the mineral. We define two 

sub-domains of �; the left half is �l := ( 0 , 0 . 5 ) × ( 0 , 0 . 5 ) and the right half �r := ( 0 . 5 , 1 ) × ( 0 , 0 . 5 ) . The initial phase field 

is chosen to be 

φI (x , y ) = 

{
φ0 

l 
(y ) , if x ∈ �l , 

φ0 
r (y ) , otherwise , 

18 



M. Bastidas Olivares, C. Bringedal and I.S. Pop Applied Mathematics and Computation 396 (2021) 125933 

Fig. 11. The convergence of the two-scale iterative scheme for five different times. 

Fig. 12. The configuration of the macro scale (top) and the phase-field initial conditions (bottom) - Test case 2. 

where the micro-scale functions φ0 
l 

and φ0 
r are taken as follows 

φ0 
l (y ) = 

{
0 , if y ∈ [ −0 . 4 , 0 . 4] × [ −0 . 3 , 0 . 3] , 
1 , otherwise , 

φ0 
r (y ) = 

{
0 , if y ∈ [ −0 . 3 , 0 . 3] × [ −0 . 4 , 0 . 4] , 
1 , otherwise . 

The configuration of the test case 2 is displayed in Fig. 12 . With this example we show the potential of the model and 

the numerical strategy in a heterogeneous scenario. Here we add the flow that was dismissed during the proofs in Section 5 . 

The following parameters have been used in the simulation 

L coup = 1 E- 4 ; θr = 2 ; C r = 0 ; φM 

= 0 . 9686 . 

For the simulation time we take T = 0 . 25 and the time step is chosen to be �t = 0 . 01 as explained before. 

Due to the structure of this example and the chosen boundary and initial conditions, the macro-scale solution does not 

depend on the vertical component. Therefore the 1D projection of the macro-scale solutions in the horizontal direction is 

sufficient to understand the behavior of the whole system. The macro-scale adaptive strategy is unnecessary as the natural 

choice is to fix the nodes located at the lowest part of the macro-scale domain to be active. 

In Figs. 13 and 14 we show the evolution of the phase field corresponding to different macro-scale locations. On each 

micro-scale domain Y we use an initial uniform mesh with 800 elements and the minimum diameter h T μ in the refined 

mesh is h T μ = 0 . 025 . Moreover, for the micro-scale non-linear solver we choose L lin = max ( | 2 λ f (u ) + 8 γ | , | 2 λ f (u ) − 8 γ | ) 
and tol μ = 1 E −8 . 

The 1D projection of the macro-scale solute concentration, pressure and porosity is displayed in Fig. 15 . As expected, 

where the concentration decreases, the dissolution of the mineral is induced, which then increases the porosity. This effect 

is also evident in Fig. 16 , where the 1D projection of the effective parameters is displayed. 

In this test case, the phase fields φ0 
l 

and φ0 
r are both asymmetric and for this reason, the expected results are anisotropic 

effective tensors. The non-diagonal components of A and K are however close to zero and can be neglected. In Fig. 16 we 
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Fig. 13. The evolution of the phase fields φl corresponding to the macro-scale locations x = (0 . 1 , 0 . 1) (top) and x = (0 . 4 , 0 . 25) (bottom) at three times 

t n = 0 . 05 , 0 . 10 and 0.25 (left to right). 

Fig. 14. The evolution of the phase fields φr corresponding to the macro-scale locations x = (0 . 6 , 0 . 25) (top) and x = (0 . 9 , 0 . 4) (bottom) at three times 

t n = 0 . 05 , 0 . 10 and 0.25 (left to right). 
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Fig. 15. The 1D projection of the concentration u n (x ) , pressure p(x ) and porosity φ(x ) for five different times. 

Fig. 16. The 1D projection of the diagonal components of effective diffusion tensor (top) and the effective permeability tensor ( Log 10 ) (bottom) for five 

different times. 

Fig. 17. The convergence of the two-scale iterative scheme for five different times. 
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display the diagonal components of both effective tensors. Notice the discontinuous behavior of the effective parameters as 

a result of the macro-scale heterogeneous distribution. 

In the 2D macro-scale domain we have 256 elements. The porosity and the effective parameters must be updated only 

on the 32 elements located at the lowest part of the domain (1D projection) and copied (transferred in a sense explained in 

Section 6 ) over the whole 2D macro-scale domain. Following this, we obtain that the average number of degrees of freedom 

in both scales is 213 031 per time step. 

Finally, in Fig. 17 , we show the convergence of εn,i 
M 

at different times when the stopping criterion is tol M 

= 1 E-6. Notice 

that in this test case the total number of iterations remains constant in time and the convergence is shown to be linear. 

8. Conclusions 

We have presented a two-scale iterative strategy that can be applied to models involving coupling of scales. In particular, 

we used this two-scale iterative scheme to solve the two-scale phase-field model proposed in Bringedal et al. [27] . In the 

numerical examples we show how the changes within the micro-scale geometry are influencing the macro-scale parameters 

and the macro-scale solution. 

We calculate macro-scale quantities that are valid at the Darcy scale. Besides the macro-scale concentration and pres- 

sure, we calculate effective permeability, diffusivity, and porosity, which depend on the evolution of the phase field at the 

micro scale. We have proven the convergence of the two-scale iterative scheme and combined it with a robust micro-scale 

linearization strategy and adaptive strategies on both scales. We use mesh refinement to reduce the numerical error in the 

solution of the phase-field evolution on the micro scale. For the macro scale, our adaptive strategy aims to localize where 

the effective parameters need to be recalculated. The two-scale iterative scheme is shown to be convergent under a certain 

choice on the coupling parameter L coup and for sufficiently small time steps. However, the numerical examples show that 

the scheme converges under even milder restrictions on the coupling parameter L coup and the linearization parameter L lin . 

Moreover, our numerical scheme can be parallelized. The local cell problems related to the micro scale are decoupled 

and can straightforwardly be solved in parallel. 

It is relevant to mention that besides the theory considered in this paper, the applicability of this strategy is vast. Ex- 

tensions of our adaptive algorithm, including more complex micro-scale models, are possible. Also, in a further step the 

convergence proof of the two-scale numerical scheme including the flow will be considered. Moreover, we pursue the rigor- 

ous proofs of the essential boundedness of the gradients of the macro-scale solution and the solution of the cell problems. 
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[14] S. Mabuza, D. Kuzmin, S. Čani ́c, M. Buka ̌c, A conservative, positivity preserving scheme for reactive solute transport problems in moving domains, J. 
Comput. Phys. 276 (2014) 563–595, doi: 10.1016/j.jcp.2014.07.049 . 

22 



M. Bastidas Olivares, C. Bringedal and I.S. Pop Applied Mathematics and Computation 396 (2021) 125933 

[15] S. Mabuza, D. Kuzmin, A nonlinear ALE-FCT scheme for non-equilibrium reactive solute transport in moving domains, Int. J. Numer. Methods Fluids 
76 (11) (2014) 875–908, doi: 10.1002/fld.3961 . 
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Mathis Kelm1 · Stephan Gärttner2 · Carina Bringedal1 · Bernd Flemisch1 · Peter Knabner2,3 ·Nadja Ray2

Received: 22 July 2021 / Accepted: 11 March 2022
© The Author(s) 2022

Abstract
We investigate reactive flow and transport in evolving porous media. Solute species that are transported within the fluid
phase are taking part in mineral precipitation and dissolution reactions for two competing mineral phases. The evolution
of the three phases is not known a-priori but depends on the concentration of the dissolved solute species. To model the
coupled behavior, phase-field and level-set models are formulated. These formulations are compared in three increasingly
challenging setups including significant mineral overgrowth. Simulation outcomes are examined with respect to mineral
volumes and surface areas as well as derived effective quantities such as diffusion and permeability tensors. In doing so,
we extend the results of current benchmarks for mineral dissolution/precipitation at the pore-scale to the multiphasic solid
case. Both approaches are found to be able to simulate the evolution of the three-phase system, but the phase-field model is
influenced by curvature-driven motion.

Keywords Pore-scale · Moving boundary · Reactive transport · Phase-field method · Level-set method · Multiphase solid

1 Introduction

Porous media research is conducted from different spatial
perspectives such as the pore-scale or the macro-scale. At
the pore-scale different fluid and solid phases can be distin-
guished and their respective interfaces are directly accessi-
ble. Macro-scale models, on the contrary, contain parame-
ters such as permeability, effective diffusivity, and reactive
surface area. These are obtained by fitting experimental
data, applying heuristic laws, or conducting supplementary
pore-scale simulations. In the latter case, an accurate knowl-
edge and correct representation of the spatial distribution
of the fluid and solid phases and their interfaces are again
essential, in particular if they evolve with time. This can
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typically be caused by minerals dissolving or precipitating,
in case the alteration of the mineral layer is non-negligible.
When the evolution of the fluid-solid interface depends on
a solute concentration transported in the fluid, the evolution
is not known a-priori and we have a free-boundary prob-
lem. To capture such evolving pore-scale geometries, most
commonly level-set or phase-field methods are applied. The
level-set method captures interfaces separating different
phases as lower dimensional submanifolds within the com-
putational domain, while the phase-field approach utilizes
smoothed indicator functions for phase separation.

A comparison of level-set and phase-field methods in
the context of precipitation/dissolution of a solute is found
in [34]. Likewise, various approaches including level-
set and phase-field methods were recently investigated in
benchmark scenarios for mineral dissolution in [20]. Fur-
thermore, both geometry evolution methods were compared
regarding their respective strengths and weaknesses for the
simulation of multi-phase flow problems on fixed domains
in [2]. In contrast to these considerations, we apply the two
approaches and compare them in the situation of a three-
phase system. Extending a phase-field model to the ternary
case is feasible through generalizing the usual double-
well potential to a triple-well. Applications to three-phase
flow [4, 5] and two-phase flow together with one evolving
solid phase [25, 26] have earlier been derived and analyzed,
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and we here extend these approaches to the case of one fluid
phase and two competing minerals. In this setting, we com-
pare the level-set and phase-field approaches by means of si-
mulation scenarios, but also in terms of sharp-interface limits.
For modeling issues related to the case of one fluid phase and
two mineral phases we refer to [13] in the context of level-
set and to [15] in the context of phase-field approaches.

Contrary to the two-phase system, in which only one
fluid phase and one mineral phase are present, interfaces are
likely to develop high local curvature in three-phase sys-
tems even for regular initial conditions. Thus, their numer-
ical treatment poses additional challenges in particular in
the proximity of possible triple points. For the level-set
approach, we apply the Voronoi Implicit Interface Method
(VIIM) as presented in [10, 13, 29]. This method has been
successfully applied to several physical problems such as
curvature flow, multi-phase fluid flow and foam dynam-
ics [29]. The phase-field equations do not need any partic-
ular tracking of interfaces and triple points, but the Allen-
Cahn phase fields, which are considered here, include implic-
itly curvature-driven motion of the diffuse interfaces [3],
which can lead to unwanted effects [30].

Inspired by [9, 20], three scenarios with increasing com-
plexity are studied. First, the ordinary differential equations
(ODEs) related to a dissolution-precipitation reaction sys-
tem are examined together with the corresponding evolving
pore-scale geometry. Thereafter, the model is extended to
additionally cover diffusive transport processes. Finally,
single-phase fluid flow and advective transport are included
into the model.

For all three scenarios, characteristic quantities such as
the volume occupied by the individual mineral phases, the
mass of the mobile species and the mineral’s surface area are
investigated and compared. Moreover, the time-dependence
of the corresponding effective diffusion and permeability
tensors is additionally evaluated.

The paper is outlined as follows: In Section 2, we intro-
duce the chemical reaction system under investigation as
well as the transport and flow model in their level-set and
phase-field formulation. Additionally, the sharp-interface
limits are discussed briefly. This is followed by a descrip-
tion of the numerical methods used for both approaches in
Section 3. In Section 4, we compare and discuss the simu-
lation results of all three scenarios including characteristic
quantities and the evaluation of the effective diffusion and
permeability tensors. Finally, in Section 5, we point out
directions for further research.

2Mathematical modeling

For an overview of quantities used in this paper, see Table 1.
We consider a three-phase system in the two-dimensional,

Table 1 Overview of quantities used. Units are abbreviated as follows:
L - length, M - mass, N - number (of particles), T - time

Symbol Quantity Unit

A,B,C solute species –

χ indicator function –

c concentration NL−3

D,P mineral species –

Dm (molecular) diffusion coefficient L2T−1

ε level-set parameter –

fD, fP reaction rates LT−1

g velocity interpolation ML−3T−1

γij interface indicator L

Γint,D, Γint,P fluid-mineral interfaces –

Γint,M mineral-mineral interface –

kD, kP reaction constants LT−1

KD, KP equilibrium constants -, L6N−2

κ interface curvature L−1

μ fluid viscosity ML−1T−1

Ω total domain –

Ωf fluid domain –

Ωs solid domain –

ω phase-field diffusivity L2T−1

p Stokes pressure ML−1T−2

φi phase-field function –

Φ level-set function –

q advective velocity LT−1

ρD, ρP mineral densities NL−3

σ specific surface area L−1

V volume L3

vn normal interface velocity LT−1

W well potential –

ξ diffuse-interface width L

rectangular domain Ω = (0, 1)×(0, 1) with exterior bound-
ary ∂Ω . More precisely, the domain Ω is time-dependently
decomposed into the fluid domain Ωf (t) and the solid part
Ωs(t) for all times t in the time interval (0, T ). At initial
time t = 0, the solid Ωs(0) comprises two different min-
eral phases denoted D and P, cf. Figure 1. The fluid-solid
interface (interior boundary of Ωf (t)) is disjointed into
Γint,D(t) and Γint,P(t) accordingly. Furthermore, we denote
the interface separating the two minerals by Γint,M(t).

The fluid-solid interfaces and mineral phases individu-
ally evolve with time according to heterogeneous reactions
which are specific to the two minerals, cf. Section 2.1 below.
The mobile reaction partners may potentially be transported
within the fluid domain Ωf (t) by molecular diffusion and
advection.

In this paper, we investigate the following three situations
of increasing complexity:
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Fig. 1 Geometrical set up: The unit square Ω is time-dependently
decomposed into the fluid domain Ωf (t) and the solid part Ωs(t)

consisting of two different minerals P (gray) and D (black). Different
parts of the phase-separating interior interfaces are denoted as Γint,·.
The figure reflects the geometrical initial conditions used in our
simulations, see Section 4

First, the reaction system for precipitation and disso-
lution of the mineral phases is investigated. Disregarding
diffusive and advective transport, the temporal evolution of
the mobile species’ concentrations within the fluid domain
is described using ordinary differential equations (ODEs).
Accordingly, the interface parts Γint,D and Γint,P each move
with spatially uniform but time-dependent velocity. Since
this approach does not resolve the potential spatial dis-
tribution of the concentration fields, it is only a valid
approximation for regimes featuring strong diffusion and
slow reactions. In the single-mineral case, such a simple
setting with uniform interface velocity would not require a
level-set nor a phase-field formulation, as an ODE for the
mineral radius would be sufficient to describe the evolv-
ing geometry. Such a simplified approach was for instance
first investigated in [21]. However, due to the interactions
between the two competing minerals, level sets or phase
fields are needed to resolve the geometry in the more
complex two-mineral setting.

Secondly, we additionally resolve the spatial distribution
of the concentrations. To this end, we consider a transport
equation for the mobile chemical species including molecu-
lar diffusion and describe the chemical reactions as surface
reactions on the two distinct fluid-solid interfaces (level-set
approach) or highly localized volume reactions neighboring
phase boundaries (phase-field approach). As the resulting
chemical reactions are no longer uniform with respect to
space, the geometry evolution becomes more challenging

and results in the formation of complex mineral shapes.
This again requires the usage of sophisticated methods in
terms of modeling and numerics, also for the single-mineral
case, as provided by means of a level-set or phase-field
approach [21, 22].

In our final simulation scenario, we additionally include
the transport of the mobile species by advection. The related
division of the interfaces into upwind and downwind parts
with respect to the flow direction further increases the
complexity of the solid-solute interaction and the evolution
of the mineral shapes. Along these lines, we underline the
capability of the level-set and phase-field methods.

Finally, the time dependence of the effective diffusion
and permeability tensors is evaluated for all three scenarios.
Based on upscaling theory, auxiliary cell problems are
solved and their (flux) solutions are averaged as described
in Section 4.2.2 for the level-set and phase-field approach.

In all settings, the chemical reactions drive the evolu-
tion of the pore-space geometry into an equilibrium state. In
order to capture this evolution, level-set and phase-field
methods are applied and compared. For a detailed descrip-
tion of the modeling and implementation details see Sec-
tions 2.2 and 3.1 for the level-set approach and Sections 2.3
and 3.2 for the phase-field approach, respectively.

2.1 Chemical reactions

In this section, we present the chemical setup of concern.
We consider a reaction system describing dissolution/precipi-
tation, e.g. the carbonation of silicates, as introduced in [9].
This involves the dissolving mineral D and the precipitating
mineral P as well as mobile species A, B, C with reaction
paths

A(aq) + D(s) � B(aq), (1a)

B(aq) + C(aq) � P(s). (1b)

The reaction kinetics are chosen according to the classical
law of mass action for a one-sided chemical reaction by
including the back reaction via an equilibrium condition,
cf. (2), [9]. Since the chemical system in our simulations
will be deflected in such a manner that both reaction paths
in (1) effectively proceed in one direction from left to right,
it is meaningful to refer to D as the dissolving mineral which
will either dissolve or reach an equilibrium state when the
net reaction rate is zero, while P denotes the precipitating
mineral which will either precipitate or encounter zero
net reaction rate. As this paper is mainly focused on
the geometry evolution, we refrain from incorporating
textbook data for a specific chemical system and formulate
the equations without units. Nevertheless, dimensions are
provided in order to clarify the physical meaning of the
presented quantities, such as length L, mass M, number of
particles N and time T. We use the following volumetric
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reaction rates [LT−1] for the concentrations of the mobile
species c = (cA, cB, cC)T , [NL−3] as introduced in [9]

fD(c) = kD

(
1 − KD

cB

cA

)
, (2a)

fP(c) = kP (1 − KPcBcC) , (2b)

with reaction constants kD, kP [LT−1] and equilibrium
constants KD [-], KP [L6N−2]. Throughout this paper,
precipitation of a mineral is assumed to occur on the surface
of that mineral only. Hence, we do not consider nucleation.

Within the following sections, we introduce the three
different modelling scenarios of increasing complexity each
presented using a level-set and phase-field formulation.

2.2 Level-set formulation

In the level-set framework, we represent the geometry
contained within the domain Ω using a real-valued function
Φ : R2 �→ R, the level-set function [23, 29, 32]. For further
details we refer to Section 3.

Accordingly, the time evolution induced by a space and
time dependent normal velocity vn is implemented by solv-
ing the following advection equation for the level-set func-
tion Φ

∂Φ

∂t
+ vn|∇Φ| = 0, in Ω × (0, T ), (3)

where the parameter vn : R2 �→ R, [LT−1] prescribes the
normal velocity with which level sets are transported. For
our application, we define:

vn(t, x)=
{

vn,D(t, x) = −fD(c(t, x)), x ∈ Γint,D(t),

vn,P(t, x) =−fP(c(t, x)), x ∈ Γint,P(t).
(4)

Note that the normal velocities are defined only at the inter-
faces themselves and require to be suitably extended to the
whole domain Ω , see Section 3.1 for details. Level-set mod-
els as derived here are well suited for formal upscaling into
a two-scale model using periodic homogenization [13, 21].

2.2.1 ODEmodel

In the ODE case, the chemical reactions presented in
Section 2.1 are modeled by a system of three coupled ODEs,
one for each solute concentration. This approximation is
suitable if negligible spatial variation in the concentrations
is expected.

In order to obtain molar reaction rates from the vol-
umetric quantities fD, fP [L3(L2T)−1], we multiply by
the molar density ρD, ρP [NL−3] of the reacting miner-
als. Assuming a closed system, concentrations additionally
evolve driven by displacement as a secondary effect. That

is, precipitation leads to a shrinking fluid domain Ωf and
therefore an increasing concentration of all solute species
while dissolution decreases concentrations. Summarizing,
the total change of the species’ concentrations is then given
by the two volumetric reaction rates on the different mineral
interfaces multiplied by the difference in particle density
between solid and fluid, each scaled by the respective
specific reactive surface area

σi(t) = |Γint,i (t)|/|Ωf (t)| [L−1]

for i ∈ {D, P}. Note that this quantity is ‘specific’ with
respect to the time-dependent fluid volume. These consider-
ations lead to the following ODE system for the concentra-
tions of the mobile species A,B,C:

∂c
∂t

(t) = σD(t)fD(c(t))

⎛
⎝−ρD − cA(t)

ρD − cB(t)

−cC(t).

⎞
⎠ (5)

+σP(t)fP(c(t))

⎛
⎝ −cA(t)

ρP − cB(t)

ρP − cC(t)

⎞
⎠ .

The prescription of normal velocities according to (4) ensures
the conservation of mass within our model. Furthermore, the
level-set framework allows to conveniently obtain a piecewise-
linear approximation of the phase-separating interfaces. As
such, characteristic geometrical quantities such as phase
volumes or interface lengths σi(t) are simple to derive from
the level-set function Φ at any time t , cf. Section 3.1.

2.2.2 Diffusion model

In contrast to the ODE case, we now include diffusive trans-
port into our model, i.e. the vector of concentrations c com-
prising the three mobile species A, B, C solves the following
diffusion equation within the fluid domain Ωf (t):

∂c
∂t

= ∇ · (Dm∇c), (6)

using a scalar and uniform molecular diffusion Dm > 0,
[L2T−1]. For convenience only, we suppose that the same
diffusion coefficient applies for all mobile species.

In order to model the insertion or extraction of solute
particles to or from the fluid domain due to the hetero-
geneous chemical reactions described in Section 2.1, we
impose the following flux conditions at the two distinct
parts Γint,D(t), Γint,P(t) of the interior boundary:

Dm

∂c
∂ν

(t, x) = −vn,D(t, x)

⎛
⎝ −ρD − cA(t, x)

ρD − cB(t, x)

−cC(t, x).

⎞
⎠ , (7)

x ∈ Γint,D(t),
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Dm

∂c
∂ν

(t, x) = −vn,P(t, x)

⎛
⎝ −cA(t, x)

ρP − cB(t, x)

ρP − cC(t, x)

⎞
⎠ , (8)

x ∈ Γint,P(t),

using the normal interface velocities vn,i , i ∈ {D,P}
from (4). As such, the solute species concentrations are
coupled to the geometry via time-dependent interior bound-
aries. The back coupling from the concentrations to the
geometry is again realized by equations (4).

2.2.3 Flowmodel

In order to additionally account for an advective flux, we
consider

∂c
∂t

= ∇ · (Dm∇c) − ∇ · (q ⊗ c) (9)

in Ωf (t) with advective velocity field q [LT−1] in our
final example. For a matrix in column representation
A = (

a(1), . . . , a(n)
)

we define ∇ · A = (∇ · a(i)
)
i

as the column-wise divergence. The boundary conditions
supplementing (9) are again (7)–(8) as no advective flux is
considered traversing the interior boundary, cf. (11). The
velocity field is given by the solution of the stationary,
incompressible Stokes problem

− μ�q + ∇p = 0 in Ωf (t), (10)

∇ · q = 0 in Ωf (t),

with viscosity μ > 0, [ML−1T−1] and the related pressure
field p, [ML−1T−2]. In this example, boundary conditions
are chosen as follows:

q(t, x) = 0, x ∈ Γint(t) (11)

using Γint(t) = Γint,D(t) ∪ Γint,P(t). Note that using
the above no-slip condition at the solid-fluid interface,
potential non-zero fluid velocity in the normal direction
at the boundary is disregarded. Depending on the density
differences between solute and minerals, some small non-
zero velocity could appear in the normal direction [21].
Neglecting this non-zero normal component is justified in
most applications since the solid-fluid interface velocity is
small compared to the fluid flow as discussed in [18].

2.3 Phase-field formulation

The phase-field formulation does not consider sharp inter-
faces between the different physical phases but instead mod-
els them using regularised characteristic functions. These
so-called phase-field variables φi [-] (for i = 1, 2, 3) are
evolved such that they always sum to 1. With these phase

fields, we aim to approximate the equations of the level-set
formulation in order to describe the same physical system as
presented in Section 2.2. In our setup, φ1 corresponds to the
fluid phase, φ2 to the mineral phase D, and φ3 to the mineral
phase P. Within each bulk phase the corresponding phase
field is equal to (or close to) 1, with all other phase-field
functions being equal to (or close to) 0.

Near the interface of two phases the respective phase
fields transition smoothly between 0 and 1. The width of
this diffuse-interface regions is regulated by the phase-field
parameter ξ > 0 [L] and a limit process for ξ → 0 in
Section 2.3.4 is able to recover a sharp-interface formulation
corresponding to the one used in the level-set model above
but with an additional term corresponding to curvature-
driven interface evolution. The position of the interface
can be approximated by the contour line of φi = 0.5 or
be recovered using a Voronoi method as for the level-set
formulation. However, the simulation itself does not require
such a reconstruction. Instead, the diffuse-interface region is
captured by indicator functions γij and in these regions the
chemical reactions impact the evolution of the phase-field
variables. The variables for the dissolved concentrations
are defined on the entire domain Ω and the boundary
flux conditions (7), (8) are integrated into the conservation
equations.

Thus the interfaces need not be tracked and no special
consideration is necessary for the description of contact
lines and triple points. The phase-field model is well
suited for upscaling into a two-scale model using periodic
homogenization [6, 25].

We here use a phase-field model that is an extended
version of the two models presented in [6, 25]. In [25]
a ternary phase-field model (two fluids and one mineral)
is considered, and our phase-field evolution equations
resemble the model there. The model in [6] considers only
two phases (one fluid and one mineral), but also allows
flow in the fluid phase. Hence, our extension to flow in
Section 2.3.3 builds on this model.

The phase-field variables are evolved using the Allen-
Cahn formulation [3]. In addition to a diffusive term this
includes derivatives of a fourth order polynomial called the
triple-well potential:

W(φ) = 2
3∑

i=1

φ2
i (1 − φi)

2. (12)

Derivatives of this potential enforce the phase fields towards
the values 0 and 1, while the diffusive term ensures a
smooth, but steep transition between these values. The
interface locations are captured using the indicator functions

γij (t, x) = 4ξφi(t, x)φj (t, x), (13)
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which attain their maximum for φi = φj = 0.5. These
introduce a dependence of the phase fields on the chemical
reactions by adding source terms

f̂1(t, x) = −f̂2 − f̂3,

f̂2(t, x) = γ12(t, x)fD(c(t, x)),

f̂3(t, x) = γ13(t, x)fP(c(t, x)). (14)

Here, fD and fP are the respective reaction rates (2).
With diffuse interface width ξ and diffusivity parameter
ω [L2T−1] the evolution equations are (i = 1, 2, 3)

ξ2 ∂φi

∂t
− ωξ2∇2φi = −8

3
ω

∑
j �=i

(∂φi
− ∂φj

)W(φ) + f̂i . (15)

2.3.1 ODEmodel

As for the sharp-interface description with the level-set
framework, the dissolved concentrations and thus the vol-
umetric reaction rates and their contributions to the evolu-
tion of the geometry are first assumed to be independent
of the spatial variable x. These concentrations could be
evolved using the same system of ODEs (5), altering only
the method of determining the specific surface area. In the
phase-field model the interfaces are not tracked directly so
the interfacial areas and the fluid volume would be com-
puted as

Vf =
∫

Ω

φ1 dx,

VD =
∫

Ω

φ2 dx, VP =
∫

Ω

φ3 dx,

SD =
∫

Ω

4ξφ1φ2 dx, SP =
∫

Ω

4ξφ1φ3 dx,

σD = SD/Vf , σP = SP/Vf . (16)

However, in the phase-field model the shift of the interfaces
is not solely driven by the chemical reaction, but also by
curvature of the interface. This would only impact the above
system of ODEs by changing the fluid volume, altering
the change to dissolved concentrations slightly. The loss of
mineral volume and the corresponding change in dissolved
species would not be directly captured in this case.

Instead of additionally approximating the geometric
changes due to this curvature effect, we prescribe conser-
vation of species in the entire domain rather than only
within the fluid volume. Hence, our system of ODEs for the
evolution of the solute concentrations is
∂

∂t
(Vf c + VDbD + VPbP) = 0, (17)

where

bD = ρD(−1, 1, 0)	 , bP = ρP(0, 1, 1)	 (18)

capture the stoichiometric coefficients of the chemical reac-
tions and molar densities ρD, ρP of the respective minerals.

When ∂
∂t

VD = σDVf fD and ∂
∂t

VP = σPVf fP, this setup
is equivalent to the system of ODEs used in the level-set
formulation.

2.3.2 Diffusion model

With spatially resolved concentrations transported by
diffusion, we adapt (6) to account for the phase distribution.
Since the phase-field model is defined in the entire domain,
we add terms accounting for the species bound in the
minerals instead of using a boundary flux condition for the
fluid-solid interfaces. The equations are given as

∂(φ1c)
∂t

+ ∂φ2

∂t
bD + ∂φ3

∂t
bP = ∇ · (φ1Dm∇c). (19)

2.3.3 Flowmodel

To include fluid flow and advection of dissolved species in
the phase-field model the (Navier-)Stokes (10) are modified
to account for the distribution of phases, similar as done
in [6]. The existing terms receive factors of the phase-
field φ1 while two new terms are added to account for
moving interfaces and ensure vanishing velocity q inside the
mineral phases:

− μφ1�(φ1q) + φ1∇p = 1

2

∂φ1

∂t
− g(φ1, ξ)q, (20)

∇ · (φ1q) = 0. (21)

The function g(φ1, ξ) enforces q = 0 in the sharp-interface
limit and is chosen as

g(φ1, ξ) = K

ξ

(1 − φ1)n

φ1 + n
. (22)

The main properties of this function are g(1, ξ) = 0 and
g(0, ξ) = Kξ−1 > 0, such that for φ1 = 1 the station-
ary Stokes (10) is obtained, while for φ1 = 0 only q = 0
remains. As the term g(φ1, ξ)q serves to enforce a dis-
appearing velocity inside the solid phases, the parameter
K controls how strongly this is enforced in the phase-
field simulation, since φ1 can be slightly positive inside the
minerals.

In addition to diffusive transport the dissolved species
c(t, x) are now advected by the velocity q:

∂(φ1c)
∂t

+ ∂φ2

∂t
bD + ∂φ3

∂t
bP = ∇ · [φ1Dm∇c− q⊗ c]. (23)

2.3.4 Sharp-interface limit

For the limit of ξ → 0 a sharp-interface model can be
recovered from the phase-field formulation. The steps recov-
ering the sharp-interface limit build upon the ideas in [8]
and are analogous to the limits derived for the corresponding
models in [6, 25], and are therefore only shown briefly.
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The Allen-Cahn model used in this comparison intro-
duces an additional curvature effect to the interface veloc-
ities, but aside from that the corresponding sharp-interface
model is obtained. To show this, the main idea is using
matched asymptotic expansions; outer expansions are used
to recover the bulk phases, and inner expansions for behav-
ior near the diffuse interface. These are then matched
through matching conditions [8].

Assuming outer asymptotic expansions

φout
i =

∞∑
k=0

ξkφout
i,k , (24)

inserting them into the phase-field evolution (15) and
gathering coefficients of powers of ξ , one obtains the
leading order equation∑
j �=i

(∂φi
− ∂φj

)W(φout) = 0. (25)

The stable minimizers of the potential W(φ) are the unit
vectors e1, e2, e3 ∈ R3, corresponding to the three bulk
phases.

Inside the fluid domain the constant value φ1 = 1 is
obtained. Considering this value for the phase field and
inserting expansions for φout, c out and q out into the flow
and transport equations (20), (19) and (23), the limit process
of letting ξ → 0 recovers the sharp-interface versions (10),
(6) and (9), respectively. Inside the solid phases φ1 = 0
and the equations simplify to 0 = g(0, ξ)q, recovering the
desired no-flow condition.

The boundary conditions are recovered from the same
equations using so-called inner expansions. Between the
bulk phases designated by the stable solutions φ ∈
{e1, e2, e3} there are transition zones where two or all
three phase-field functions are positive. At such transitions
between two phases we can define an interface Γ d as
the 1/2-level-set of the involved phase fields. Along this
interface we define our unknowns in curvilinear coordinates
(r, s), where s describes the position along the interface,
and r indicates the signed distance from the interface in the
direction of the outer normal νξ , x = yξ (t, s) + rνξ (t, s).
Introducing the scaled variable z = r/ξ , we consider the
asymptotic expansions in ξ :

φin
i (t, z, s) =

∞∑
k=0

ξkφin
i,k(t, z, s), (26)

with corresponding expansions for c and q. These are com-
bined with rewritten derivatives and matching conditions.
For outer expansions such as φout

0 and fixed t, s, z the limit
for ξ → 0 for z > 0 respectively z < 0 are written
as φout

0 (t, y1/2±). The matching conditions relate limits of

inner expansions for z → ±∞ to the outer expansions at
the interface, e.g.

lim
z→±∞ φin

0 (t, z, s) = φout
0 (t, y1/2±). (27)

Together this allows recovery of the interface conditions [8].
The leading order terms of the phase-field equations at

the transition zone between φ1 and φ2, which corresponds
to the interface Γint,D(t), are

∂2

∂z2
φin

1,0 = 8P ′(φin
1,0), (28)

vn,0
∂

∂z
φin

1,0 + ωφin
1,18P ′′(φin

1,0) + 4
√

P(φin
1,0)fD(c in

0 )

= ω
∂2

∂z2
φin

1,1 + ωκ0
∂

∂z
φin

1,0, (29)

where vn,0 is the local normal velocity of the interface, κ0

the curvature of the interface, and

P(φin
1 ) = (φin

1 )2(1 − φin
1 )2. (30)

From (28) one arrives at an equation describing the shape of
φin

1,0, while (29) yields the boundary condition

vn,0 = −ωκ0 − fD(c out
0 ), x ∈ Γint,D(t). (31)

Analogously, one obtains the boundary conditions for the
other two interior interfaces

vn,0 = −ωκ0 − fP(c out
0 ), x ∈ Γint,P(t),

vn,0 = −ωκ0, x ∈ Γint,M(t),

where Γint,M(t) denotes the interface separating both
mineral phases, cf. Figure 1. These boundary conditions
differ from the sharp-interface velocities given in (4) and
introduce a curvature-driven movement. The strength of this
effect is limited by the diffusivity parameter ω but it cannot
be chosen arbitrarily small. This parameter controls how
quickly a reasonably sharp interface is enforced, hence a
small value of ω allows the reactions to cause an overly
diffusive transition zone.

Remark 1 Note that in the recent publication [1], a different
scaling of the Allen-Cahn equation is suggested to avoid
curvature-driven motion in the sharp-interface limit. Instead
of (15), a form corresponding to

ξ2 ∂φi

∂t
− ωξ3∇2φi = −8

3
ωξ

∑
j �=i

(∂φi
− ∂φj

)W(φ) + f̂i

is analyzed. As shown in [1], the curvature-driven motion
of the interface disappears at the dominating order of ξ .
However, the analysis in [1] is performed for a case without
chemical reactions. When the reaction rates f̂i are included,
the outer expansions can no longer recover stable solutions
corresponding to the three phases. Hence, such an approach
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would either require no chemical reactions, or a further
reformulation of the reaction rates such that the sharp-
interface limit can be recovered.

Remark 2 For a system with two phases, [35] presents a
modified Allen-Cahn equation, where an extra term is added
so that the curvature contribution in the limit ξ → 0 is
cancelled. A naive application to this three-phase problem
has the desired effect at the interfaces between two phases,
but also affects the evolution of the triple point. Without
an analytical consideration such as done for the unmodified
equations in [7], the precise effect on the limit behavior is
unclear. However, for the phase-field equations with ξ > 0,
the introduced term violates the conservation of φ1 + φ2 +
φ3 = 1 near triple points.

Inserting the inner expansions into the remaining model
equations yields the desired boundary conditions (11) for
flow as well as (7) and (8) for transport. The leading order
term of the continuity equation,

0 = ∂

∂z
(φin

1,0q
in

0 ) · ν0, (32)

is integrated over R with respect to z and applying the
matching condition (27) yields, at the fluid-solid interfaces,

0 = q out
0 (t, y1/2−) · ν0, (33)

where y1/2− corresponds to a point x on the interface (φ1(x)

= 0.5). Here ν0 denotes the first order term of the interface
normal. From the leading order term of the momentum
equation,

0 = μφin
1,0

∂2

∂z2
(φin

1,0q
in

0 ), (34)

one can then obtain the desired boundary condition q out
0 =

0. Evaluating the transport equations near the interface
yields the following equations. The leading term is

0 = ∂

∂z

(
φin

1,0
∂

∂z
c in

0

)
. (35)

After integration with respect to z and using φin
1,0 > 0 as

well as the matching condition (27) one arrives at

0 = ∂

∂z
c in

0 , (36)

namely that c in
0 does not depend on z. Considering the

next order terms O(ξ−1), along the interface Γint,P(t) where
φ2 = 0 and applying (32) and (36) yields the equation

0=−vn,0
∂

∂z
(φin

1,0(c
in

0 −bP))− ∂

∂z

(
φin

1,0Dm

∂

∂z
c in

1

)
. (37)

Finally, integration with respect to z and application of the
matching conditions yields the boundary condition on the
interface Γint,P(t)

vn,0(c out
0 − bP) = Dm∇c out

0 · ν0. (38)

Analogously, the corresponding condition with bD instead
of bP is derived at the interface Γint,D. While this recovers
the sharp-interface conditions (7) and (8), the interface veloc-
ity vn differs between the two models in accordance to (31).

2.4 Discussion of level-set and phase-field
formulation

In contrast to the phase-field model, in which the chemical
reactions occur as right hand sides, cf. Section 2.3, the
chemical reaction enter the level-set model as boundary
conditions. This is due to the fact that the boundary region
of phase fields has a positive volume while the level-set
interfaces are of codimension one. As a remark, note that
using the level-set method, the specific surface areas σi(t)

must be constructed from the level-set function at each
time-step (for more details see Section 3.1), whereas in
the phase-field model this quantity is given by a simple
integral of phase-field functions, cf. (16). Furthermore, the
level-set approach requires a complex numerical scheme
(see Section 3) due to the need of reconstructing the actual
interfaces at every time-step. The phase-field equations,
however, can be solved using standard schemes, and the
phase-field variables can be directly incorporated into the
equations describing chemistry and transport.

We note that both modeling approaches require the choice
of artificial parameters influencing the solution quality. For
the level-set approach, only two adjustable parameters are
present. ε > 0 is used in order to control the size of the area
where a Vonoroi reconstruction of the interfaces is applied
while the frequency of reinitialization poses the other degree
of freedom. Details on the effect and practical choice of
these parameters are given in Section 3.1. The phase-field
model introduces several parameters to deal with the diffuse-
interface behavior. As seen in Section 2.3.4, the expected
sharp-interface model is captured as ξ → 0, except for an
additional curvature-driven motion. The role of the param-
eters ξ, ω and K , which the phase-field model relies on,
and the used numerical values are discussed in Section 3.2.
For the level-set as well as the phase-field approach, param-
eters will be chosen specifically to minimize approximation
errors in interface position and the influence of curvature
terms on a given mesh.

3 Numerical methods

In this section we provide detailed information on the numer-
ical methods used for geometry evolution, fluid flow and
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solute transport. A list of spatial discretizations and time-
integration schemes used for the three different simulation
cases is provided in Table 2 summarizing the different
numerical approaches for level-set and phase-field models.
In order to ensure comparability of the simulation results
between both geometry-capturing methods, solution algo-
rithms are chosen carefully in conjunction with robust and
well-established low-order discretizations.

3.1 Level-set implementation

In order to capture the geometry using sharp interfaces, we
make use of generalized level-set methods. More precisely,
the Voronoi Implicit Interface Method [29] (VIIM) is
applied as three interacting phases need to be treated. As
such, the interfaces are encoded in the level sets of a real
valued function Φ. In conjunction with an indicator function
χ : R2 �→ {0, 1, 2} the total of three phases (0: fluid, 1:
mineral D, 2: mineral P) are distinguished in our setting [29,
32]. While the indicators serve the purpose of identifying
the bulk of the different phases, the interfaces separating
them are captured within level sets of Φ.

The Voronoi Implicit Interface Method constitutes a
generalization of classical level-set methods in the sense
that it does not rely on the neighboring phases to be
distinguishable by the sign of the level-set function. Clearly,
this restriction would not allow for the formation of triple
points.

Instead, VIIM uses an ε-shifted version of an unsigned
distance function dV with respect to the interfaces to encode
their position. Accordingly, at the initial time we set Φ =
ε − dV for a small positive parameter ε � 1. As proposed
in [29], we use the doubled mesh size ε = 2h. This
choice corresponds to the smallest possible ε to ensure
finite-difference stencils at points neighboring the 0-level
sets of Φ to completely stay within a single phase and
not cross interfaces. Therefore, a stable evolution via the

level-set equation (3) including a correct assignment of
each computational node to its phase is ensured. Also note
that the 0-level set of Φ corresponds to the ε-level set of
dV . As Φ has the signed distance function property in a
neighbourhood of its 0-level set, application of equation (3)
transports the 0-level set in a numerically stable manner.
In order to recover the position of the actual interfaces
(corresponding to

{
dV = 0

}
), a Voronoi reconstruction step

is performed. By having chosen the minimal reasonable ε,
approximation errors within the reconstruction procedure
are minimized.

We note that VIIM, like many other level-set methods,
is unable to precisely conserve the mass of each single
phase as we will discuss in more detail in Section 4. In the
recent literature, several approaches are available to coun-
teract this phenomenon beyond application of higher-order
discretizations or mesh-refinement. In [28], a volume-reini-
tialization scheme is introduced actively correcting the mass
error introduced by the level-set evolution. Alternatively,
adjusted level-set equations are available using normal inter-
face velocity corrections to improve mass conservation,
cf. [33]. However, such approaches are typically developed
to simulate incompressible multi-phase fluid flow where
additional regularizing curvature-terms are present. These
terms are not only nonphysical in our specific application
but also require at least second-order spatial discretizations
to evaluate properly. Since errors in mass are found to be
reasonable low throughout our simulations in Section 4, we
use plain VIIM as presented in [29] as a robust first-order
accurate scheme. Despite the large number of available
discretization options such as finite element or finite vol-
ume approaches, we further adhere to finite differences
schemes as employed in [29] due to their straight-forward
implementation on regular grids.

In our application, a movement of the interfaces in
normal direction is induced by dissolution and precipitation
reactions at the two different mineral-fluid boundaries,

Table 2 Spatial discretizations
and time-integration schemes
used in the sub-problems of the
three different cases ODE,
diffusive PDE (diff) and
diffusive-advective PDE (flow)
for both level-set and
phase-field approach, cf.
Section 2. Note that in the
phase-field simulation, flow
equations are assembled
together with the solute and
geometry equations into a
common non-linear system

Case Problem Level-set Phase-field

ODE geometry explicit Euler, first-order finite differ-
ences (FD) + full upwinding

implicit Euler, finite volumes (FV) +
two point flux approximation (tpfa)

solute implicit Euler implicit Euler

Diff geometry explicit Euler, first-order FD + full
upwinding

implicit Euler, FV + tpfa

solute implicit Euler, RT0/P0 implicit Euler, FV + tpfa

Flow geometry explicit Euler, first-order FD + full
upwinding

implicit Euler, FV + tpfa

solute implicit Euler, RT0/P0 + exponential
upwinding

implicit Euler, FV + tpfa

Stokes P2/P1 implicit Euler, staggered FV + tpfa +
full upwinding
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cf. (4). For this research, the numerical algorithm presented
in [10] is therefore supplemented with the derivation of
normal velocity field from the chemical concentrations
according to (4).

Denoting the connected components of the 0-level set of
Φ by Γ i

ε , i = 1, 2, 3 our geometry evolution algorithm
consists of the following steps, cf. [10].

1. Initialize geometry via Φ, χ

2. Calculate signed distance functions di = di(x) to the
interfaces Γ i

ε by solving the Eikonal equation using the
Fast Marching Method [31].

|∇di(x)| = 1 , x ∈ Ω , di(γ ) = 0 , γ ∈ Γ i
ε .

3. Voronoi reconstruction step: Retrieve approximation
Γ V of original interface Γ

Γ V = {x ∈ Ω : 0 < dp(x) = dq(x) ≤ dr(x)}
for p, q, r ∈ {1, 2, 3} distinct and update the indicator
χ accordingly.

4. Calculate signed distance function dV wrt. Γ V via

|∇dV (x)| = 1 , x ∈ D , dV (γ ) = 0 , γ ∈ Γ V .

5. Initialize velocity values vV
n (γ ) in a neighborhood

of the interfaces, calculated from concentration fields
according to (4).

6. Calculate velocity extension vn by solving

∇dV (x) · ∇vn(x) = 0 , x ∈ Ω ,

vn(γ ) = vV
n (γ ) , γ ∈ Γ V .

7. Evolve Φ for a small time-increment using the level-
set equation (3) applying a suitable upwind scheme,
e.g. [31].

Steps 2 through 7 are iterated until the final simulation time
is reached. In order to improve stability and accuracy of the
algorithm, periodic reinitializations of the level-set function
by setting Φ = ε − dV are applied [29]. In particular,
the implementation of step 5 poses several difficulties. For
the initialization of the normal velocity field, nodes on
both sides of the interface must be labelled according to
the local concentrations. Furthermore, a change in sign
is needed when crossing the interface as gradients of dV

switch orientation. In order to meet these requirements the
following strategy is applied:

First, information from the level-set function and the
indicators is used to identify all nodes neighboring a node
which belongs to a different phase. This constitutes the set
of all nodes that require an initialization value. Each node is
then given a label from 1, . . . , 6 according to the following
scheme: Initially, we assign each element to one of the three
phase separating interfaces Γint,M, Γint,D, Γint,P. Then, we
further discriminate with respect to the side of interfaces the
points are located.

Second, we identify all finite elements belonging to
the fluid phase which at least feature one solid edge. We
will further call them boundary elements. These contain
the concentration values from which normal interface
velocities are calculated. Matching initialization nodes and
boundary elements by distance minimization, velocity data
are prescribed according to the labels given before.

The implementation is performed within the MATLAB
[19] compatible framework of RTSPHEM [11]. Besides
finite differences Eikonal- and level-set solvers using the
well-known first-order upwinding scheme by Rouy and
Tourin [27], it includes mixed finite element solvers for
transport equation (6) on irregular triangular meshes using
a mass-conserving lowest-order Raviart-Thomas RT0/P0

discretization. An exponential upwinding scheme is imple-
mented to stabilize advection dominated transport. Addi-
tionally, our code allows for adaptive alignment of boundary
elements’ edges to a piecewise linear approximation of the
interior boundary. More precisely, we track intersections of
the interfaces with the edges of a fixed underlying mesh.
Adding the intersection points to the set of nodes, an aligned
mesh is generated by applying a Delaunay triangulation
algorithm. Rewriting the inhomogeneous flux conditions (7)
equivalently as source terms on the boundary triangles, the
nonlinearities are resolved using Newton’s method, cf. [12].
As the arising source term is highly localized, we iterate
until the residual is decreased by at least six orders of mag-
nitude. Moreover, time-stepping for the reaction PDEs is
adaptively coupled to the CFL condition of the level set
evolution.

In the advective PDE case, Stokes equations (10) are
solved on the well-established and stable lowest-order Taylor-
Hood elements P2/P1. In order to cope with the inherent
saddle-point structure of the problem, we employ the iter-
ative Uzawa algorithm [17]. Choosing a low relative toler-
ance of 10−7 as the stopping criterion, high solution accu-
racy is ensured. Within each time-step of the overall solution
algorithm, the Stokes flow field q is computed on the cur-
rent geometry and subsequently passed to the transport
equation (9) as a coefficient.

3.2 Phase-field implementation

The phase-field model is implemented in DuMux [16] using
a cell-centered finite volume discretization with two-point
flux approximation for both the phase-field equations as
well as the transport equations for the dissolved chemical
species. In the flow scenario also the continuity equation
is discretized using these control volumes and the pressure
degrees of freedom are placed at their centers. Without
fluid flow, the model equations are not very complex, with
simple storage, flux and source terms. The system is solved
using an implicit Newton solver with adaptive time-stepping
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according to the number of needed Newton iterations as
indicator. The Jacobians are assembled using numerical
differentiation.

To include tightly coupled fluid flow and advection,
additional care should be taken. We solve for the velocity
components on staggered grids with control volumes and
degrees of freedom shifted by half a cell in the respective
spatial coordinates. The degrees of freedom are placed at the
centers of these new control volumes, which corresponds
to the normal velocities at the centers of the faces of the
original cells. In DuMux this is implemented using multiple
domains which are linked via a coupling manager [16].
The coupling manager shares the data between the so-
called momentum and mass sub-problems and approximates
values where there is no adequate degree of freedom
available. The two sub-problems are not solved individually
but assembled into a single matrix. With the fluid flow
depending on the phase-field variables and their derivatives,
the existing manager is extended to expose and approximate
values at the desired points of the mesh.

As mentioned in Section 2.4, the phase-field model relies
on several parameters that affect its numerical behavior.
The parameter K controls how strongly a zero-velocity
is enforced inside the solid phases and how the velocity
develops within the transition zone. Investigating the flow
inside the minerals and the velocity profiles near φ1 = 1/2
for expected velocities can give a reasonable choice for this
parameter. For the presented simulations in Section 4.5, K

was chosen K = 10000, and n = 10. While a high value of
K is required to prevent significant nonphysical velocities
inside the solid phases, this term also suppresses flow in
the diffuse interface, which can lead to an underestimation
of permeability [6]. The choice of K should scale with the
fluid velocities expected near the minerals. In Section 4.5
relatively high inlet velocities are used, which leads to quite
high velocities along the mineral grain. When calculating
the permeability in the cell problems in Section 4.2.2, much
lower velocities are used and thus a value of K = 200 is
applied here.

The phase-field parameters ξ and ω control the profile
of the phase-field functions and the shape of the bulk
phases. The diffuse-interface width ξ affects the steepness
of φi in the transition zones. Meanwhile ω balances the
diffusive and potential-driven effects on the phase-fields
against reaction and storage terms in (15), and also controls
the impact of the curvature effect. A small value of ξ enables
a better approximation of the interfaces but the choice of ξ

is limited by the spatial resolution. This means, ξ should
be large enough for the transition zone to be spread over
multiple degrees of freedom and we use a value of five times
the mesh size to resolve the interface. As such, ξ plays a
similar role as ε in VIIM, cf. Section 3.1, and its choice is

likewise constrained from below in terms of multiples of the
discretization lengths.

A smaller value of ω allows for a temporarily diffuse
transition zone and reduces the impact of interface cur-
vature, which can lead to more overgrowth of solids by
small mineral tendrils. This makes it a central parameter
affecting the simulation quality. However, if the changes
caused by the chemical reaction dominate the contribution
of the triple-well potential in the phase-field evolution (15),
the resulting variables φ are prone to attaining values in
between 0 and 1 in a larger transition zone and no longer
exhibit an interface character. These transition zones, how-
ever, stray significantly from a sharp-interface description
and can cause additional challenges for the numerical sim-
ulation. In the presented simulations the diffusivity param-
eter ω is chosen as 2.5 · 10−3. Varying this value allows for
finding a sufficiently small choice, which reduces curvature
effects without losing cohesion of the diffuse interface. A
small value of ω furthermore requires a sufficiently small
value of ξ and thus a fine spatial resolution and increased
computational effort.

In the equations for the conservation of dissolved spe-
cies (19) and (23) as well as the modified incompressible
Stokes (20) φ1 enters as a multiplicative factor. To avoid
degeneration of these equations, we instead use φδ = φ1+δ,
adding a small regularization parameter [25]. The exception
being the function g(φ1, ξ) which is unmodified. This regular-
ization slightly disrupts the conservation equations and the
momentum (20) no longer collapses fully to 0 = q. In the
presented simulations this value was chosen as 10−10 for the
ODE and PDE formulations and as 10−6 for the flow model.

4 Simulations

In this section, we specify all physical parameters, initial
and boundary conditions used in the simulation scenarios.
We moreover define characteristic quantities such as the
volume of the individual mineral phases, the mass of the
mobile species and the mineral’s surface area and recall
how they are specified using the level-set and phase-
field approach, cf. Section 4.1. Based on the characteristic
quantities, the three simulation scenarios as presented in
Section 2 are investigated. Moreover, based on upscaling
theory, time-dependent effective diffusion and permeability
tensors are additionally evaluated. We emphasize the
similarities, but also outline the differences resulting from
the two problem formulations by means of level-set and
phase-field description. Note that the following simulations
are performed in two spatial dimensions. In order to stress
the physical meaning of all appearing quantities, we still
refer to a mineral volume and a surface area.
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4.1 Simulation setup

All calculations are performed using a regular 200x200
mesh. This corresponds to the finest resolution used in sim-
ilar studies [20, 34] and is therefore considered practically
feasible in applications. Furthermore, grid convergence stud-
ies presented in the Appendix indicate a sufficient resolution
and discretization order for our setup. Due to the differ-
ent kinds of underlying discretizations used in this paper,
the mesh resolution specified above only refers to the num-
ber of nodes which is the same in both our simulation
approaches. The only exception is made in the discretiza-
tion of the transport equation using the level-set approach
and the framework provided by the RTSPHEM [11] tool-
box, where nodes are adaptively added to the triangular
mesh in order to align edges with the fluid-solid interface,
cf. Section 3.1. To provide insights into the complexity
of the different sub-problems arising in both level-set and
phase-field approaches, we compare the number of degrees
of freedom (DoFs) and computation steps in Table 3. Note
that the solutions to all sub-problems obtained by iterative
methods are computed to high accuracy (relative residuum
smaller than 10−6 or two subsequent residua with difference
smaller than 10−8) not to compromise the simulation results
by numerical artefacts.

As it is apparent from Table 3, the level-set approach
requires less DoFs for geometry description than the phase-
field method due to the ability of encoding the whole
information within a single function. However, flow and
transport equations involve a larger number of Dofs in the
level-set framework. This is essentially due to underlying
triangular mesh (instead of quadrilaterals) to simplify mesh
adaptivity, cf. Section 3.1. Moreover, we note that in the
diffusive and flow scenarios the number of time-steps is
lower in the phase-field simulations due to a fully implicit
scheme simultaneously solving all sub-problems, allow-
ing for larger time-steps. However, since the solute con-
centrations in the discretization of the ODE scenario are
updated after each time-step, sufficiently small time-steps
are required for both approaches. Finally, we note that the
number of Newton-steps is significantly larger in the level-
set approach in exchange for higher solution tolerances of
the linear solver (less Krylov steps). However, accuracy is
solely determined by the non-linear residuum.

At initial time t = 0, a circular solid inclusion is placed
in the unit square Ω with midpoint (0.5, 0.5) and radius
r = 0.2 for all three scenarios, see Fig. 1 for a to-scale
visualization. For simplicity, we assume the minerals D, P to
be arranged in two hemicycles of the circle. For the phase-
field model this corresponds to initializing φ such that
without contributions from reactions or curvature effects the

Table 3 Simulation statistics: Comparison of number of degrees of
freedom for the discretizations of the different sub-problems for
level-set (LS) and phase-field approach (PF) on a 200 × 200 mesh

Case Quantity Level-set Phase-field

# DoFs geometry 40,000 80,000

# DoFs Stokes 313,358 120,400

# DoFs solute 522,276 120,000

ODE # time-steps 190 201

# Newton-steps – 648

Diff # time-steps 175 85

# Newton-steps 1,278 351

Flow # time-steps 81 38

# Newton-steps 554 251

Numbers are itemized by geometry solver (level-set or phase-field
equation), Stokes-flow solver and transport equation for solute species.
Note that, since the computational domain changes in LS over time, the
numbers are presented with respect to the first time-step and deviate
by less than 3% from these values over simulation time. Furthermore,
number of time-steps and Newton-iterations are displayed for the
different scenarios ODE, diffusive PDE (diff) and diffusive-advective
PDE (flow). The numerical results of the given scenarios are compared
and discussed in Sections 4.3.2, 4.4 and 4.5 respectively

initial conditions are close to stationarity. This is achieved
by using the base kernel of

ϕ(s) = 1

1 + exp(−s/ξ)
(39)

with

φ1(0, x) = ϕ(10 · (‖x − (0.5, 0.5)	‖2
2 − 0.22)),

φ2(0, x) = (1 − φ1)ϕ(3.8 · (x1 − 0.5)),

φ3(0, x) = 1 − φ1(0, x) − φ2(0, x). (40)

For our simulations, we use the molar densities ρD = 20
[NL−3], ρP = 4 [NL−3], cf. (5). Therefore, changes in min-
eral volume are expected to be larger for the precipitating
phase facilitating mineral overgrowth. In addition, reaction
constants kD = kP = 1.0 [LT−1] and equilibrium constants
KD = 1.0 [-], KP = 1.0 [L6N−2] are set, cf. (2). For both
simulations involving diffusion driven transport, we set the
molecular diffusivity to Dm = 0.2 [L2T−1]. In the advection
case, we consider the Stokes equation with unit viscosity
μ = 1 [ML−1T−1], cf. (10), (20). Finally, we choose the
following initial conditions for the PDE cases

cA(0, x) = 2, x ∈ Ωf (0)

cB(0, x) = 1, x ∈ Ωf (0) (41)

cC(0, x) = 1, x ∈ Ωf (0)

as well as for the ODE model Section 2.2.1 disregarding the
spatial variable x. Note that for the phase-field model, these
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initial conditions are chosen for the entire domain Ω , but
correspond (in the sharp-interface limit) to (41) as φ1c is the
relevant quantity.

According to (41), solute species B and C are in chemical
equilibrium at the initial time. Due to the oversaturation
with respect to solute A, mineral D will immediately start
to dissolve according to reaction (1) and release B. The
resulting oversaturation with respect to species B will then
trigger the precipitation of mineral P. The final simulation
times T for each individual simulation are chosen in such a
way that the steady state is approximated to a good extent,
i.e. no further qualitative change of the system is expected
to occur beyond that time.

Finally, we specify details on the boundary conditions on
the exterior boundary ∂Ω for the different scenarios. For the
diffusive PDE system, we choose homogeneous Neumann
boundary conditions at the exterior boundary ∂Ω which
correspond to no-flux conditions:

Dm

∂ci

∂ν
(t, x) = 0, (t, x) ∈ (0, T ) × ∂Ω, (42)

i ∈ {A,B,C}
For the advective flow case, we implement the following
conditions at the outer boundary ∂Ω = Γinlet∪Γoutlet∪Γtop∪
Γbottom with Γinlet = {0} × (0, 1), Γoutlet = {1} × (0, 1),
Γtop = (0, 1) × {1} and Γbottom = (0, 1) × {0} in the Stokes
equation (10)

q(t, x) = 0, x ∈ Γtop ∪ Γbottom,

q(t, x) =
(

1 − 4(x2 − 0.5)2, 0
)T

, x ∈ Γinlet,

p(t, x) = 0, x ∈ Γoutlet, (43)

for t ∈ (0, T ) corresponding to an inflow boundary on the
left, no-slip at top/bottom and an outflow boundary at the
right hand side of the domain. Note that the flow at the left
boundary shows a parabolic profile as expected for a Stokes
flow within a long pipe. This results in a total volume flux of
2
3 [L3T−1] and a maximal fluid velocity of qmax = 1 [LT−1]
at the inlet.

In order to attain an equilibrium state over time, we adapt
the boundary conditions of the transport equations at the
inlet (42) in the following way:

Dm

∂ci

∂ν
(t, x) − q(t, x)ci(t, x) = −q(t, x)ci,eq , (44)

x ∈ Γinlet, i ∈ {A,B,C}
using the equilibrium concentrations calculated in Section 4.3.1.
Thus, the inflow will flush the over-saturated fluid domain
and push the system towards the equilibrium state. We note
that the resulting equilibrium volumes differ significantly
from the characteristics of the previous cases as the flux
boundary conditions dynamically change the total mass of
solute species contained in Ω .

4.2 Measures

In the following, we define the five characteristic measures
to quantitatively evaluate and compare the quality of the
performed simulations for the different approaches.

4.2.1 Direct measures

The first measure is the mineral volumes and their evolution
of over time as regarded in [20]. In the level-set approach,
this quantity is easily inferred from a linear interpolation of
the unsigned distance function dV on the underlying grid,
see Section 3.1. Using the phase-field method, the mineral
volume is given as the integral of the respective phase-field
function φi , see Section 2.3. Given the setup presented in
Section 4.1, the initial volumes of both minerals amount
to 0.22 π

2 ≈ 0.0628.
As a second measure, we compare the surface area of

both minerals, cf. [20]. That is, we compute the length [L]
of the interior interfaces Γint,D, Γint,P, cf. Figure 1, sepa-
rating the fluid domain and the respective mineral. In the
given context, the resulting quantity therefore equals the
reactive surface area. In the level-set framework, a linear
reconstruction of the interface is used to approximate its
length. Suitable interface indicators are used to obtain the
related quantity using phase fields, cf. (16). Given the setup
presented in Section 4.1, the initial surface areas of both
minerals amount to 0.2π ≈ 0.628.

The third measure is the conservation of mass with
respect to each chemical species. Although the formulation
of the reactive problem presented in Section 2 is analytically
mass conservative, the numerical schemes may not be
capable of preserving this property precisely. Furthermore,
as indicated in Section 4.3.1, orbits in the system’s phase
space regarding different total masses M have a positive
distance. Hence, the relative loss or gain in total mass is a
useful indicator to assess the simulators’ predictive power
as already used in [13].

Taking the fluxes ji = Dm∇ci − qci related to solute i,
i ∈ {A,B,C}, at the inlet and outlet (Γinlet, Γoutlet) for the
advective example into account, the total mass MB(t), MC

(t) of species B,C in the PDE cases is given by (cf. (51))

MB(t) =
∫

Ωf (t)

cB(t, x) dx + (VD(t)ρD + VP(t)ρP)

+
∫ t

0

∫
Γinlet∪Γoutlet

jB(t, x) · ν dσ ds, (45)

MC(t) =
∫

Ωf (t)

cC(t, x) dx + VP(t)ρP

+
∫ t

0

∫
Γinlet∪Γoutlet

jC(t, x) · ν dσ ds.

In this expression, the first term accounts for the amount of
species i being dissolved in the fluid whereas the second
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describes the amount ligated within the minerals. Last, the
third term is related to mass exchange across the domain’s
boundaries. In the context of the phase-field model the first
term is adjusted slightly, integrating instead over the entire
domain and including a factor of φ1 to account for the fluid
phase.

MB(t) =
∫

Ω

φ1(t, x)cB(t, x) dx + VD(t)ρD + VP(t)ρP

+
∫ t

0

∫
Γinlet∪Γoutlet

jB(t, x) · ν dσ ds, (46)

MC(t) =
∫

Ω

φ1(t, x)cC(t, x) dx + VP(t)ρP

+
∫ t

0

∫
Γinlet∪Γoutlet

jC(t, x) · ν dσ ds.

Note that the related quantity MA(t) is not considered in this
paper as the solid shares would need to be weighted with a
negative sign compromising physical interpretability. As the
fluxes are explicitly discretized in both numerical schemes
(Section 3), total in- and outflow are simple to determine by
integration in the level-set as well as phase-field framework.
Volumes and integrated concentrations in (45) and (46) are
derived similarly.

4.2.2 Effective measures

Finally, we consider two effective quantities derived from
the geometrical setup. Assuming the domain of interest Ω

to be a representative elementary volume of a larger scale
porous medium, we can ask for the effective diffusion and
permeability tensors of that respective medium. These quan-
tities are of high importance concerning flow and transport
properties on a macroscopic scale. Both tensors are derived
solving different auxiliary PDEs (cell problems) using peri-
odic boundary conditions on the exterior boundary. In the
context of periodic homogenization, the following sharp-
interface representation is derived, cf. [14] for the static case
and [21] for time-evolving domains:

The diffusion tensor is given as

Di,j (t) =
∫

Ωf (t)

(
∂xi

ζj + δij

)
dx

for i, j ∈ {1, 2} and Kronecker delta δij , where ζj are the
solutions of the elliptic problems

− ∇ · (∇ζj ) = 0 in Ωf (t),

∇ζj · ν = −ej · ν on Γint(t), (47)

ζj periodic in x,

∫
Ωf (t)

ζj dx = 0,

for j ∈ {1, 2} and outer unit normal ν, denoting again the
total interior boundary by Γint(t) = Γint,D(t) ∪ Γint,P(t).

The permeability tensor is given as

Ki,j (t) =
∫

Ωf (t)

ωi
j dx

for i, j ∈ {1, 2}, where (ωj , πj ) are the solutions to

− �ωj + ∇πj = ej in Ωf (t),

∇ · ωj = 0 in Ωf (t), (48)

ωj = 0 on Γint(t)

ωj , πj periodic in x,

∫
Ωf (t)

πj dx = 0.

In case of the phase-field framework, the above equations
change their form. To calculate effective diffusion and
permeability tensors we also solve auxiliary cell problems
incorporating the phase-field parameter, with periodic
boundary conditions on the exterior boundary. However, in
the phase-field formulation the domain is not split along an
interior interface, hence the cell problems are solved not
only in the fluid domain Ωf but in Ω . Boundary conditions
on the interior solid boundary are hence not needed, as they
are already incorporated in the phase-field formulation. The
effective tensors are then calculated with the regularization
factor φδ [6] and are defined as, for i, j ∈ {1, 2}

Di,j (t) =
∫

Ω

φδ

(
∂xi

ζj + δij

)
dx

and

Ki,j (t) =
∫

Ω

φδωj dx,

with ζj and (ωj , πj ) solutions to [6]

− ∇ · (
φδD(∇ζj + ej )

) = 0 in Ω, (49)

ζj periodic in x,

∫
Ω

ζjdx = 0,

and

− φδ�(φδωj ) + φδ(∇πj − ej ) = −g(φ1, ξ)

μ
ωj in Ω,

∇ · (φδωj ) = 0 in Ω, (50)

ωj , πj periodic in x,

∫
Ω

πjdx = 0,

for j ∈ {1, 2}.
As the off-diagonal components of the effective tensors

remained small and generally several orders of magnitude
smaller than the diagonal components, we will restrict to
reporting and discussing the evolution of the diagonal ele-
ments.

4.3 Comparison for ODE system

For the ODE case it is possible to theoretically deduce
the system’s long term behavior for several characteristic
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quantities. As such, we start by providing important analyt-
ical properties of the ODE system.

4.3.1 Theoretical considerations

In this section, we briefly discuss existence of solution to
the ODE problem (5) introduced in Section 2.2.1 as well as
stability and positivity of equilibrium points.

Assuming continuous dependence of fluid volume and
interface lengths on time, system (5) admits a unique
solution local in time by the Picard-Lindelöf theorem. In
case those quantities and the concentrations are bound-
ed from above and away from zero, the solution can be
extended globally.

Next, we are concerned with the stability of equilibria.
In the following, we approach stability by investigating the
equilibrium points as a function of the system’s invariants.
Let us denote the volume of minerals D and P being present
at time t by VD(t) and VP(t), respectively. Due to the
conservation of mass, the following quantities are conserved
over time, cf. (45), (46) in Section 4.2.1:

MA(t) = cA(t)|Ωf (t)| − VD(t)ρD,

MB(t) = cB(t)|Ωf (t)| + VD(t)ρD + VP(t)ρP, (51)

MC(t) = cC(t)|Ωf (t)| + VP(t)ρP,

using the apparent relation |Ωf (t)| = 1 − VD(t) − VP(t).
Accordingly, we have the following function mapping G
from the system’s state space to a set of invariants and
characteristics for an equilibrium state with M = (MA(0),

MB(0), MC(0)):

G(c, VD, VP) = (M, fD, fP). (52)

More precisely, G maps the current solute concentrations
and mineral volumes to the total masses and interface reac-
tion rates. Clearly, all equilibrium points for a given M are
characterized by the preimage G−1(M, 0, 0) assuming σi(t)

being bounded from below by a positive constant. As such,
a possibly continuous G−1 would lead to a curve of equi-
libria points in the phase space, rendering linearized theory
inconclusive due to a zero eigenvalue. Furthermore, all equi-
libria reachable from positive initial conditions are located
within the positive octant as easily seen by application
of the quasi-positivity theorem [24]. Evaluating the expres-
sion for the initial conditions given in (41) we find

cA,eq = cB,eq = 1.4056,

cC,eq = 0.7114, (53)

VP,eq = 0.1333,

VD,eq = 0.0339,

as an equilibrium state. Investigating the Jacobian ∇G at
that point shows local bijectivity of G. Accordingly, the
system is not asymptotically stable. This is expected as

disturbances changing M cannot be compensated by the
system due to conservation of mass. As such, discretization
errors with respect to the geometry evolution will add up.
This inherent property underlines the necessity for well-
designed numerical algorithms.

4.3.2 Comparison simulations

The simulation results for the ODE case as outlined in Sec-
tions 2.2.1, and 2.3.1 are depicted in Fig. 2 for different
time-steps and in Fig. 3 the evolution of quantitative mea-
sures is shown until the final simulated time of T = 2.
At final time of the level-set simulation, the concentrations
of all solute species deviated by less than one per mille
from their calculated equilibrium values (53). As such,
the system reaches equilibrium to high precision. In the
case of the phase-field model the solved system of equa-
tions corresponds to a modified sharp-interface formulation,
with additional curvature-driven interface motion. The sim-
ulation approaches an equilibrium with constant curvature
along each interface and dissolved concentrations slightly
perturbed relative to the calculated equilibrium such that the
curvature-driven motion and reactive effects cancel out. At
final time of the phase-field simulation the concentration cC

matches up to three per mille but cA is two percent lower
and cB two percent higher.

Figure 2 displays and compares the resulting geometrical
configuration of the three-phase system for different simula-
tions times and both approaches. More precisely, the miner-
als as obtained using the level-set method are shown in grey
(P) and black (D). In the surrounding fluid domain, the (spa-
tially independent, but time-dependent) concentration of
solute species A is displayed. Finally, the phase-separating
interfaces as obtained using the phase-field model are over-
laid in white.

Overall, we observe a good match between level-set
and phase-field simulation results. However, it is evident
that the level-set shows overgrowth of the minerals, while
the phase-field does not, see Fig. 2. Due to curvature
effects, the phase-field model cannot resolve the corners of
the dissolving mineral very well, and the initially straight
interface between the two minerals becomes curved.

Although the shapes evolve slightly differently, a good
match in characteristic measures as depicted for both level-
set and phase-field solution in Fig. 3 is observed. In par-
ticular, the volumes of the two minerals almost perfectly
coincide as seen in Fig. 3. Both predicted volumes of min-
eral P at final simulation time differ less than 0.3% from
the analytical equilibrium volume, for mineral D the rela-
tive deviation is less than 2.5%. These disagreements are
considered fairly small given that, starting from an ini-
tial volume of 0.0628, equilibrium volumes of 0.1333 and
0.0339, respectively, are targeted. As such, initial volumes
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Fig. 2 ODE case: Geometry of
both mineral phases surrounded
by concentration field of species
A at time
t = 0.25, t = 0.5, t = 1 and
t = 2. Black and gray shapes
refer to the level-set simulation,
white contours to the phase-field
approach

are approximately doubled (mineral P) or halved (mineral
D) in the course of the simulation. The evolution of the
surface area is, except from the initial period, also com-
parable. Due to the large increase of mineral volume, the
surface area of mineral P almost doubles within our sim-
ulation from 0.628 to 1.215 in the level-set simulation,
see Fig. 3. Simultaneously, originating from the same ini-
tial value, the surface area corresponding to mineral D
decreased by more than 35%. Approaching the equilibrium
state, both modelling methods concur well with relative
differences of 5% and 11% for minerals D and P, respec-
tively.

The initially peaking surface areas for the phase-field
simulation seen in Fig. 3 are caused by how they are
determined from the phase-field variables φ. Without
reactive contributions the phase-field variables develop a
specific profile and the surface area is calculated as the
integral of 4

ξ
φiφj . During the early evolution in the ODE

case, the reaction rates are high and the shape of the phase-
field variables fail to keep the expected shape. The transition
zones get drawn out and the changed profile across the
interfaces causes the above integral to overestimate the
interface length. As the phase-field ODE formulation does
not depend on this explicit evaluation of the surface area,
this does not have a strong effect on the further evolution of
geometry and concentrations.

We further note that the formulation used for the phase-
field approach is perfectly mass conservative (up to 10
significant digits), while small deviations within 0.5% are
seen for the level-set approach. As indicated by the grid
convergence studies performed in Fig. 8, mass errors in
the level-set framework decrease consistently with higher
spatial resolution.

Finally, Fig. 3 shows an almost perfect match of the
effective diffusion and permeability tensors for small times
t ≤ 0.3. Across both directions and tensors, relative
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Fig. 3 ODE case: Evolution of
mineral volume over time,
reactive surface area and relative
total mass calculated with level-
set method (LS, dashed lines)
and phase-field approach (PF,
dotted lines). The precalculated
exact values for the mineral
volumes in equilibrium (EQ) are
highlighted. The last two
pictures illustrate the evolution
of the diffusion and
permeability tensors along the
main axes over time

deviations are below 2% at t = 0.3. This agreement is
remarkable since the permeability in x direction has already
undergone a decrease of 33% (from 0.0329 to 0.0222) up

to that time according to the phase-field simulation. As
the chemical reactions come to a standstill, the level-set
data plateau whereas the phase field data further evolve
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due to curvature effects. For both effective quantities, the
phase-field simulation reduces the distance between the
measurements in x and y direction. Apparently, curvature
effects diminish anisotropy over time.

4.4 Comparison for diffusionmodel

The simulation results of the diffusive PDE case as outlined
in Sections 2.2.2, and 2.3.2 are depicted in Figs. 4 and 5 for
both approaches. The concentration of solute species A is
displayed according to the level-set simulation. Intermediate
and a close to equilibrium state of both mineral phases are
illustrated for the level-set method including also the phase-
field solution as an overlay, cf. Figure 4. As both simulation
agree on generating mineral overgrowth (in contrast to the
ODE case), the modeling approaches recover important
qualitative physical behavior of the underlying problem.
This is a direct consequence of the increased and contrast
rich interface velocities at the triple points. These again
result from focusing reactive activity to the neighborhood
of the triple points made possible by taking the spatial
distribution of the solute species into account. Therefore,
the difference in interface velocity between both fluid-solid

interfaces is significantly higher, facilitating overgrowth
behavior. As such, the system is naturally forced to develop
and maintain higher interface curvatures than in the ODE
case. However this increased curvature causes a stronger
deviation between the two models.

As earlier, the phase-field formulation cannot properly
resolve corners due to the curvature-driven movement of the
interfaces. Therefore, mineral D is increasingly displaced
by mineral P within the solid close to the interface. This
behavior is also visible in Fig. 5, wherein the concentration
fields of the mobile species as well as the area/volume
of the mineral species are investigated with respect to
time. Due to the no-flux exterior boundary conditions, the
system approaches an equilibrium state for large times
similar to the ODE case discussed in Section 4.3. In fact,
both systems’ equilibrium states are identical in terms
of mineral volumes and solute concentrations due to the
same total masses of species A, B and C. Yet, the rate of
convergence is much slower due to the time consuming
transport of solute species between the two different
mineral interfaces, see Fig. 4. As the transport speed is
governed by the concentration gradients, convergence to
equilibrium is additionally decelerated. At the final time

Fig. 4 Diffusion case:
Geometry of both mineral
phases surrounded by
concentration field of species A
at time t = 1, t = 2, t = 3 and
t = 4. Black and gray shapes
refer to the level-set simulation,
white contours to the phase-field
approach



Computational Geosciences

Fig. 5 Diffusion case: Evolution
of mineral volume over time,
reactive surface area and relative
total mass calculated with
level-set method (LS, dashed
lines) and phase-field approach
(PF, dotted lines). The last two
pictures illustrate the evolution
of diffusion and permeability
tensors along the main axes over
time

T = 4, the volume average concentration of solute A
is 1.56. Accordingly, the transition from initial chemical
disturbances to the equilibrium state is already completed

by 74%. Yet, within the final simulation time unit 3 ≤ t ≤ 4
(cf. Figure 4) an insignificant amount of geometry evolution
is identified.
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The overall mineral volumes in the two models evolve
qualitatively similarly, yet slightly differently. More pre-
cisely, the volume of mineral P is predicted progressively
higher by the phase-field than by the level-set method
(19% at final time) and vice versa for mineral D (22% at
final time). Given a total volume growth of mineral P of
72% (from 0.0628 to 0.1081) as predicted by the level-set
simulation, these deviations are not negligible yet reason-
ably small. A similar conclusion is drawn for mineral D,
which shrinks by 32% from 0.0628 to 0.0424 over sim-
ulation time. This effect is assumed to essentially result
from the artificial displacement at the mineral-separating
interface in the phase-field simulation. In conclusion, we
observe significantly higher deviations between the two
simulation approaches compared to the ODE case pre-
sented in Section 4.3.2, due to the more pronounced mineral
overgrowth and the resulting higher interface curvatures.

The surface area evolutions predicted by both approaches
are also quite similar. At final time, we observe a relative
deviation in mineral P’s surface area of 9%. This is compa-
rable to the deviation of 11% measured in the ODE case.
According to the level-set prediction, the mineral under-
went a growth of surface area by 111% from 0.628 to 1.325,

which is about 17 percent points more than in the ODE case.
Due to the significantly decreased surface of mineral D by
69% (from 0.628 to 0.197), relative differences appear to be
high. Yet, in absolute measure, they are comparable to the
deviations measured for the precipitating mineral.

Again, the phase-field model conserves mass up to 10
significant digits, while the level-set model experiences an
error of about 2%. As illustrated in Fig. 8, the error in mass
conservation consistently reduces with increased resolution
in the level-set simulations.

Since the precipitation of P is concentrated at the poles of
the initially circular geometry, both modelling approaches
agree that only a slight change of effective permeability and
diffusivity in y-direction takes place over time, cf. Figures 5
and 4. The associate values at final time differ by 12%
and 3% among both modeling approaches, respectively. Due
to the resulting increase in vertical extend, both quantities
decrease significantly with respect to the x direction by 44%
(from 0.0329 to 0.0185) and 13% (from 0.778 to 0.677),
respectively, according to the phase-field computations. At
final time, the results obtained by level-set and phase field
approach differ by less than 2% for both effective tensors in
y-direction.

Fig. 6 Equilibrium flow case:
Geometry of both mineral
phases surrounded by
concentration field of species A
at time t = 0.25, t = 0.5, t = 1
and t = 1.5. Black and gray
shapes refer to the level-set
simulation, white contours to the
phase-field approach
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Fig. 7 Equilibrium flow case:
Evolution of mineral volume
over time, reactive surface area
and relative total mass calculated
with level-set method (LS,
dashed lines) and phase-field
approach (PF, dotted lines). The
last two pictures illustrate the
evolution of diffusion and
permeability tensors along the
main axes over time

4.5 Comparison for flowmodel

For this final example, transport of solute species is sub-
jected to an additional advective flow field according to
models ontroduced in Sections 2.2.3, and 2.3.3.

Figure 6 displays and compares the resulting geometrical
configuration of the three-phase system for different
simulations times and both approaches. As in the previous
cases (Figs. 2 and 4), the minerals as obtained using the
level-set method are shown in grey (P) and black (D).
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In the surrounding fluid domain, the (spatially and time-
dependent) concentration of solute species A is displayed.
Interfaces as obtained using the phase-field model are
overlaid in white. Apparently, both the level-set and phase-
field approach nicely agree on geometry evolution. The
system has reached an equilibrium state at the final time
T = 1.5 to a reasonable extent. Throughout the domain
Ωf (1.5), a maximal deviation of 6.4% from the equilibrium
values is measured across all solute species. Similar to
our previous scenarios curvature effects are visible in the
phase-field simulation close to the triple points. Due to
the reduced amount of mineral overgrowth compared to
Section 4.4, the implications are less severe. Figure 7 proves
good agreement in mineral volume (relative deviations of
8% and 2% for minerals P and D) as well as surface
area prediction (relative deviations of 11% and 10% for
minerals P and D) among both simulation approaches. Still
this variance is reasonably small compared to the loss of
22% and 27% in volume and surface area for mineral D
and gain of 18% and 41% in volume and surface area for
mineral P over simulation time according to the level-set
approach. The phase-field method again achieved almost
perfect mass conservation, while the level-set method’s
error is below 1.5%.

Due to the reduced difference between initial and final
geometry in comparison to the diffusive PDE and ODE
case, also the evolution of the effective tensors is less pro-
nounced. As such, both permeability and diffusivity in y
direction remain nearly constant over time. Here, relative
deviations of 6% and 2% are observed at final time between
both modeling approaches for diffusion and permeability,
respectively. The evolution with respect to the x-direction
appeared again to be more significant. A decrease of 11%
(from 0.0329 to 0.0292) and 2% (from 0.778 to 0.759) are
measured according to the phase-field simulation, respec-
tively. At final time, both models agreed on the effective
quantities with a deviation less than 5% with respect to the
x direction.

5 Conclusion

As shown in Section 4, both the level-set model and phase-
field model are able to simulate geometrical changes in
a three-phase system involving two minerals and a fluid
including the solutes taking part in heterogeneous reactions.
Upscaled quantities like permeability and diffusivity pre-
dicted by the two approaches show a comparable evolution
as the mineral shapes evolve. However, each of the two
approaches inhibit strengths and weaknesses.

As it is apparent from the simulation results in Section 4,
the phase-field model is capable of conserving mass up to
10 significant digits. Using a finite volume discretization the

presented phase-field model can conserve mass almost per-
fectly, with minor losses due to the regularization of the con-
servation equations. In contrast, the level-set method used
does not generally guarantee conservation of mass. Yet,
with a maximal deviation of 2% throughout our experimen-
tal lineup, the loss/gain in mass in the level-set simulations
is relatively low. Furthermore, grid convergence tests con-
ducted in the appendix (Fig. 8) show a diminishing effect on
higher resolution. This is due to the fact that the changes in
mineral volumes Vi are determined by

V̇i(t) = vn,i(t)|Γint,i(t)|
for i ∈ D,P using an explicit first-order time discretization.
In theory, the error in mass is controlled linearly by the time-
step size. Assuming piece-wise smooth interfaces, the error
could be reduced in higher-order by applying a higher-order
discretization scheme or additionally taking local curvature
into account.

On the other hand, the results of Section 4 certify the
level-set method to properly handle high curvature within
the interfaces. Although the reconstruction procedure applied
within VIIM (see Section 3.1) loses accuracy in these sit-
uations, the errors remain highly localized and do not
propagate along the whole interface over time. As such,
high interface curvatures along the static interface separat-
ing both solid minerals are recovered very well. In contrast,
the phase-field model performs increasingly unsatisfactory
close to the equilibrium as interface velocity becomes cur-
vature dominated. In general, the curvature-driven motion
of the phase-field model affects the simulation results. As
remarked in Section 2.3.4, existing approaches for dimin-
ishing curvature-driven motion are not applicable for the
current setup. Although one can choose the relevant param-
eters controlling the curvature-driven motions small, they
cannot be chosen zero and are limited by the choice of the
grid. As a fine grid is needed to resolve the diffuse inter-
faces, a natural extension would be using adaptive grid
refinement for the diffuse transition zones since one can
generally accept a much coarser grid away from the inter-
faces. Furthermore, the phase-field model requires well
chosen parameters, in particular the phase-field diffusiv-
ity ω. As described in Section 3.2 the phase-field parameters
strongly influence the simulation quality, but for ω there is
no simple way to predict a good choice.

Overall, the two presented modeling approaches and
their implementations highlight the difficulty with capturing
evolving interfaces attaining high curvatures. As the numer-
ical experiments do not indicate any major difficulties for
the level-set approach except from some mass loss/gain, the
phase-field approach is influenced by the curvature-driven
motion. Further work is required to find a suitable strategy
to eliminate curvature-driven motion and determine suitable
parameters in the phase-field approach.
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Appendix

In order to justify the resolutions chosen in our simulations,
we provide a grid convergence analysis for the cases where

no analytical results are available for comparison. Note
that in both level-set and phase-field approach parameters
ε and ξ are used respectively to adjust the spatial extent
of the stripe in which the interfaces are treated. As

Fig. 8 Level-Set: Simulation
results for different spatial
resolution and choice of the
level-set parameter ε in case of
the diffusive case (top),
equilibrium flow case (bottom).
Volume and surface area of
mineral P as well as mass
conservation with respect to
solute B are presented
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Fig. 9 Phase-field: Simulation
results for different spatial
resolution and choice of the
phase-field parameter ξ in case
of the diffusive case (top),
equilibrium flow case (bottom).
Volume and surface area of
mineral P as well as mass
conservation with respect to
solute B are presented
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already mentioned, a smaller choice of parameters increases
precision of the geometry evolution. Yet, a lower bound is
given by some multiple of the discretization length. As such,
we investigate both the impact of mesh refinement as well as
parameter reduction ε, ξ on constant meshes. The results of
our convergence studies are presented in Fig. 8 for the level-
set model and in Fig. 9 for the phase-field approach. For
clarity, the data at final simulation time T are additionally
listed in Tables 4 and 5.

Table 4 Level-Set: Comparison of values in Fig. 8 at final simulation
time T

Diffusive case Volume Mrel Surface

h=0.01, ε=0.02 0.1026 0.9673 1.1825

h=0.005, ε=0.01 0.1086 0.9933 1.3025

h=0.0025, ε=0.01 0.1100 1.0008 1.3438

h=0.0025, ε=0.005 0.1088 1.0015 1.3742

Advective case Volume Mrel Surface

h=0.01, ε=0.02 0.0714 0.9647 0.7975

h=0.005, ε=0.01 0.0737 0.9891 0.8855

h=0.0025, ε=0.01 0.0751 0.9961 0.9205

h=0.0025, ε=0.005 0.0757 0.9976 0.9441

Table 5 Phase-Field: Comparison of values in Fig. 9 at final
simulation time T

Diffusive case Volume Mrel Surface

h=0.01, ξ=0.05 0.1336 1.0000 1.1150

h=0.005, ξ=0.025 0.1337 1.0000 1.1187

h=0.0025, ξ=0.025 0.1337 1.0000 1.1235

h=0.0025, ξ=0.0125 0.1337 1.0000 1.1195

Advective case Volume Mrel Surface

h=0.01, ξ=0.05 0.0812 1.0000 0.7946

h=0.005, ξ=0.025 0.0800 1.0000 0.7895

h=0.0025, ξ=0.025 0.0801 1.0000 0.7940

h=0.0025, ξ=0.0125 0.0794 1.0000 0.7864
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in porösen Medien mit zwei konkurrierenden Mineralen. Master’s
thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
(2020)
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The final part of this thesis consists of one chapter that is based on a journal publication,
and is followed by the Conclusion and outlook of this thesis.

Chapter 11: Stability analysis of evaporation-induced density instabilities This chap-
ter addresses evaporation from a porous medium. The analysis in this chapter is motivated
by the occurrence of soil salinization, which can happen when there is evaporation from
soils that are saturated with saline water. As the water evaporates, salts stay behind and
gradually accumulate near the upper part of the porous medium. Then, salt will precip-
itate and create a salt crust if the solubility limit of the salt is reached. However, since
this setting is also gravitationally unstable, density instabilities can develop. By applying
a linear stability analysis, onset times for the onset of instabilities are found as a func-
tion of model parameters such as permeability, evaporation rate and diffusion coefficient.
Numerical simulations are applied to also analyze the further fate of the instabilities. In
particular, it is found that the instabilities develop rather slowly in terms of strength, and
salts can therefore still precipitate after instabilities have occurred. This is because it takes
time before the instabilities cause a net downwards transport of salt.

Chapter 12: Conclusion and outlook In this last chapter of this thesis, we summarize
the main findings of this thesis and discuss some directions for further research within
multiscale approaches for transport processes in porous media. In particular, we discuss how
to improve the analysis in Chapter 11. This chapter does not apply any multiscale approach
to analyze the density instabilities and salt precipitation, but would have benefited from
such approaches.





11 Stability analysis of evaporation-induced
density instabilities

The content of this chapter is based on the following original article:
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Driven Density Instabilities in Saturated Porous Media. Transport in Porous Media (2022).
doi: 10.1007/s11242-022-01772-w
This publication is an open access article and distributed under the Creative Commons CC
BY license.

331



Vol.:(0123456789)

Transport in Porous Media
https://doi.org/10.1007/s11242-022-01772-w

1 3

Evaporation‑Driven Density Instabilities in Saturated Porous 
Media

Carina Bringedal1  · Theresa Schollenberger1 · G. J. M. Pieters2 · C. J. van Duijn3 · 
Rainer Helmig1

Received: 27 August 2021 / Accepted: 7 March 2022 
© The Author(s) 2022

Abstract
Soil salinization is a major cause of soil degradation and hampers plant growth. For soils 
saturated with saline water, the evaporation of water induces accumulation of salt near the 
top of the soil. The remaining liquid gets an increasingly larger density due to the accu-
mulation of salt, giving a gravitationally unstable situation, where instabilities in the form 
of fingers can form. These fingers can, hence, lead to a net downward transport of salt. 
We here investigate the appearance of these fingers through a linear stability analysis and 
through numerical simulations. The linear stability analysis gives criteria for onset of insta-
bilities for a large range of parameters. Simulations using a set of parameters give informa-
tion also about the development of the fingers after onset. With this knowledge, we can 
predict whether and when the instabilities occur, and their effect on the salt concentration 
development near the top boundary.

Keywords Evaporation · Density instabilities · Linear stability analysis

Mathematics Subject Classification 76S05 · 76E20 · 35P15 · 65L60 · 65M08

1 Introduction

Evaporation of saline water from soils can cause accumulation of salts in the upper part 
of the soil, which has a large environmental impact as it hampers plant growth and affects 
biological activities (Daliakopoulos et  al. 2016). As water evaporates, the salts accumu-
late near the top of the porous medium, which has a negative impact on root water uptake 
(Chaves et  al. 2008). If the solubility limit of the salt is exceeded, the salts precipitate. 
In this case, a salt crust at the top of the soil is formed, disconnecting the soil from the 
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atmosphere (Chen 1992; Jambhekar et al. 2015; Mejri et al. 2017). The appearance of the 
salt crust strongly affects the growth conditions for many agricultural plants (Pitman and 
Läuchli 2002; Singh 2016). In arid regions, for example in Tunisia, soil salinization and 
soil crust formation are already interfering with and disabling agricultural activities (Mejri 
et al. 2020). This is not a new problem, but is gradually causing a greater impact as larger 
areas are affected (Vereecken et al. 2009).

Different observations in natural systems show that evaporation processes from soils 
cause an accumulation of salts in the upper part of the soil (Allison and Barnes  1985). 
This can again lead to salt precipitation, creating salt lakes and/or density-driven cur-
rents due to varying salt concentrations (Duffy and Al-Hassan 1988; Geng and Boufadel 
2017). As salts accumulate at the top of the soil due to water evaporating, the density of the 
remaining liquid increases with increased salt concentrations (Geng and Boufadel 2015, 
2017). This may lead to a gravitationally unstable setting since the liquid near the top of 
the soil is the heaviest, due to the accumulated salts (Gilman and Bear 1996; Nield and 
Bejan 2017; Wooding et al. 1997). When the soil is permeable, density instabilities in the 
form of fingers can be triggered (Wooding et al. 1997), which is also relevant in the context 
of CO2 storage (Elenius et al. 2012; Riaz et al. 2006). The formation of density instabili-
ties in the form of fingers induces a downward transport of the accumulated salts from the 
upper part of the soil toward the lower part, where the salt concentration is lower. Hence, 
when the density instabilities develop, they can hinder the salt concentrations near the top 
of the soil to exceed its solubility limit. However, for soils of low permeability, these insta-
bilities will typically not develop, or they develop at a later time. Under these conditions, 
salts will continue to accumulate until salt precipitates, and a salt crust at the top of the soil 
is formed. This means that the occurrence of salt precipitation is tightly connected to the 
development of convective instabilities. Hence, understanding the process of soil saliniza-
tion and the interplay with density instabilities is key questions to prevent degradation of 
soil quality and to ensure food production (Shokri et al. 2010; Shokri-Kuehni et al. 2020).

It is well-known that the question of whether the density instabilities occur, can be 
addressed by a linear stability analysis. Such an analysis has been applied to a wide range 
of porous-media problems where the density difference creates a gravitationally unstable 
setting (Nield and Bejan 2017). The onset of instabilities where an increased salt concen-
tration at the top of the porous domain triggers the instabilities, is analyzed in Elenius et al. 
(2012); Riaz et al. (2006); van Duijn et al. (2019). Fingers are found to appear when the 
strength of the density difference overcomes the resistance of the porous medium. This is 
usually expressed and quantified through a critical threshold of the Rayleigh number, such 
that when the Rayleigh number is larger than this threshold, instabilities can occur. A den-
sity difference, and hence a change in salt concentration, is needed to induce instabilities. 
Hence, a strong diffusion would hinder the density difference to be strong enough, as the 
concentration profile is smoothed. A large resistance of the porous medium, which corre-
sponds to a small permeability, makes it more difficult for the density difference to trigger 
instabilities.

The above-mentioned works on salt-induced instabilities consider a prescribed salt 
concentration or a prescribed density on the top boundary (Elenius et al. 2012; Riaz et al. 
2006; van Duijn et al. 2019). When considering evaporation from a porous medium, the 
salt concentration at the top boundary develops with time as the water gradually evaporates 
and the dissolved salts remain. As we will see later, this can be modeled with a Robin-type 
boundary condition for the salt, which means that the value of the salt concentration is con-
nected to its gradient at the top boundary. Such boundary conditions have been considered 
in other linear stability problems, see e.g., Barletta et al. (2009); Hattori et al. (2015).
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In this work, we consider soils that remain fully saturated with water throughout the 
evaporation. This means that we consider a case where the modeled porous medium is con-
nected to a deeper groundwater aquifer, which is also fully saturated. The deeper ground-
water aquifer supplies the modeled soil with water during the evaporation. We also assume 
that the capillary pressure of the system remains below the entry pressure of the soil, such 
that the soil remains fully saturated. If conditions of partial saturation occur, it would be 
necessary to include also the flow of air through the unsaturated zone, or to use Richards 
equation. Evaporation would typically lead to an unsaturated zone in the upper part of 
the porous medium, which again has an impact on the evolution of the salt concentration 
(Shokri et al. 2010; Shokri-Kuehni et al. 2020).

Following the above assumptions, the evaporation of water induces a vertical, upward 
throughflow through the domain. The effect of upward throughflow with a given density 
difference between the top and bottom boundaries has been found to have a stabilizing 
effect on the onset of instabilities (Homsy and Sherwood 1976; van Duijn et al. 2002). That 
means, a stronger upward throughflow would increase the critical Rayleigh number, mak-
ing it more difficult for the density difference to trigger the formation of downward-flowing 
fingers. It is, hence, not obvious whether an increased evaporation flux of water would have 
a stabilizing or destabilizing effect: an increased evaporation leads to an increased upward 
throughflow, which stabilizes the system, but at the same time the accumulation of salts 
near the top boundary is increased, which destabilizes.

The method of linear stability gives estimates for the onset of gravitational instabili-
ties and for the time of their appearance, by considering a simplified system of equations. 
However, estimates for a large range of parameters can be found at low costs. After the 
instabilities have formed, one has to rely on numerical simulations of the governing model 
equations to address the further development of the salt concentration. Numerical simula-
tions can give information on the strength and shape of the appearing convection pattern, 
as well as their effect on the salt transport and salt precipitation. However, these numerical 
simulations are expensive and need to be performed on bounded domains. Although we 
consider a simplified setup by assuming fully saturated conditions, this proposed analysis 
gives valuable insight for this idealized case and creates a starting point for further analysis 
when incorporating an unsaturated zone in the future.

This paper is organized as follows. In Sect. 2, we formulate the general model equations 
together with initial and boundary condition to address evaporation from a porous medium 
saturated with saline water. In Sect. 3, we consider a simplified model, for which we per-
form a linear stability analysis, giving criteria for when instabilities can occur. Section 4 
explains the numerical framework used to simulate the general model. The results from 
the linear stability analysis and the numerical simulations are compared and discussed in 
Sect. 5, before final remarks are given in Sect. 6.

2  Mathematical Model

This section describes the physical assumptions, the domain, the partial differential equa-
tions and the boundary and initial conditions which form the mathematical model consid-
ered in this paper to describe evaporation from the top of a porous medium and the sub-
sequent changes within the medium. Figure 1 sketches the domain together with the most 
important model choices. All variables and parameters are summarized in Table 1.
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Table 1  Nomenclature

Variables Explanation Dimension

P Pressure kg m −1s−2

� = (U,V ,W) Darcy-velocity m s −1

X Salt mass fraction −
� Mole fraction −
t Time s
x, y, z Spatial coordinates m
p Non-dimensional perturbed pressure −
� = (u, v,w) Non-dimensional perturbed Darcy-velocity −
� Perturbed salt mass fraction −
r Reaction rate mol m −3 s −1

�(X) Liquid density kg m −3

�mol(X) Molar liquid density mol m −3

� , �,L Basis functions −

Parameters Explanation Dimension

a Wavenumber m−1

A Amplitude of perturbation −
d Depth of the numerical domain m
D Diffusion coefficient m2 s −1

� Vertical unit vector −
E Evaporation rate m s −1

Emol Molar evaporation rate mol m −2 s −1

� Salt expansion coefficient −
� Porosity −
g Gravity m s −2

K Permeability m2

� Wave length m
� Dynamic viscosity kg m −1 s −1

��NaCl Mean value of NaCl mole fraction −
m, n Integers −
M Molar mass kg mol−1

� Horizontal unit vector −
�,�W Domains −
� Exponential growth rate −
�
�
NaCl Standard deviation of NaCl mole fraction −

W Half width of domain or wavelength m

Non-dimensional quantities Explanation Definition

𝛽 Relative half width or wavelength WE∕D

k Proportionality constant QrefW∕D�

R Evaporative Rayleigh number ��0gKX0∕E�

Subscripts Explanation

0 Initial condition
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Dimensions are given for variables and parameters

Table 1  (continued)

Subscripts Explanation

max Solubility limit
mol Molar-based quantity
m, n Expansion indices
p Perturbation
ref Reference value
solid Solid salt phase
x, y, z Corresponding directions

Superscripts Explanation

0 Ground state solution
� Components
NaCl Salt component
top Top row of grid cells
w Water component

Accents Explanation

∧ Non-dimensional variable
∼ Fourier amplitude

x, y

z
Governing equations:

Conservation of water and salt

Darcy’s law

Initial conditions:

Constant salt concentration

Homogeneous and isotropic porous medium

Top boundary conditions:

Evaporation flux for water, no flux for salt

Fig. 1  Sketch of evaporation from porous medium and effect on salt concentration
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2.1  Domain and Model Equations

The considered domain is unbounded in the vertical direction and either bounded or 
unbounded in the horizontal directions. Specifically, we consider either

or

where W denotes the horizontal half width. Note that the positive vertical direction is 
pointing downward: hence, z = 0 indicates the top of the domain. Within our domain, we 
consider mass conservation of water and salt, along with Darcy’s law representing the 
momentum conservation. The porous medium is assumed to be fully saturated with liquid, 
and the liquid consists of water and dissolved salt. Exemplary, the salt sodium chloride 
NaCl is used. We formulate the conservation of each of these two components indepen-
dently. Both water and salt are advected with the liquid’s velocity, and both are subject to 
diffusion:

Here, � ∈ {w,NaCl} represents the two components of the liquid phase, and �� denotes 
the mole fraction of the component � . Hence, the sum of these two mole fractions is by 
definition 1, which is also reflected in (3). Further, � is porosity, �mol is the molar density of 
the liquid phase, and M is the molar mass of the liquid mixture. Finally, D is the effective 
diffusivity of the components in the mixture. Note that D represents the diffusion of water 
mixed with salt, which is why we use the same diffusion coefficient for both components. 
A large diffusivity D would lead to disturbances and gradients in the concentration fields 
being quickly smoothed away. The reaction term r� accounts for chemical reactions inside 
the domain and is only non-zero when salt precipitation takes place within the porous 
medium. This means, rw = 0 while

where �NaCl
max

 is the solubility limit of NaCl. Hence, we have a sink term for NaCl in (3) 
when �NaCl exceeds its solubility limit. The Darcy flux � is given by

where the permeability K is assumed to be a scalar, as the porous medium is assumed to be 
isotropic. The liquid viscosity � is assumed to be constant. Here we use the mass density 
� of the liquid phase. Finally, P is the pressure, and g is gravity. Note that the unit vector 
�z points downward. Also note that a larger density of the liquid supports a stronger down-
ward flow.

We assume that the liquid density varies with the salt mass fraction XNaCl through the 
linear dependence

(1)𝛺 = {(x, y, z) ∈ ℝ ∶ z > 0}.

(2)𝛺W = {(x, y, z) ∈ ℝ ∶ |x|, |y| < W, z > 0},

(3)�t(��mol�
�) = ∇ ⋅

(
−�mol�

�� + D�molM∇
(��
M

))
+ r� .

(4)rNaCl =

{
0 when �NaCl ≤ �NaCl

max
,

< 0 when �NaCl > �NaCl
max

,

(5)� = −
K

�
(∇P − �g�z),

(6)�(XNaCl) = �0(1 + �(XNaCl − XNaCl
0

)),
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where �0 and XNaCl
0

 are the initial liquid density and salt mass fraction, and � is a volumetric 
constant. Note that the initial salt mass fraction is a constant and hence corresponds to a 
uniform salt distribution in space. The conversion between molar density and mass density 
is through

where the molar mass M of the liquid mixture also depends on the salt content. Both molar 
and mass liquid density increase with the salt concentration. Note that if a different type of 
solute is considered, expression (6) still applies, although with a different value of �.

If the salt exceeds its solubility limit, salt precipitates and becomes part of the solid. 
In this case, the porosity � will change with time, and we apply a mole balance for the 
solid salt to describe this process:

Here, �mol,solid is the molar density of the solid salt phase and rsolid the reaction term. We 
have that rsolid = −rNaCl . When there is precipitation, the porosity of the porous medium 
and thus the permeability decreases. For the calculation of the permeability, a Kozeny-
Carman-type relationship based on the initial values �0 , K0 , is used:

Note that as long the salt remains below the solubility limit, there is no precipitation, and 
� , K remain equal to their initial values �0 , K0 . These initial values are constants, and 
hence correspond to an initially homogeneous porous medium.

(7)� = �mol ⋅M,

(8)�mol,solid �t� = −rsolid.

(9)K = K0

(
1 − �0

1 − �

)2(
�

�0

)3

.

porous medium surface

x1 = constant

x2 = constant
x1 > x 2

evaporation

convective flux

di�usive flux

gravitational force

pressure gradient 
force
fluid density

Fig. 2  Relevant forces and fluxes for the development of instabilities
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2.2  Discussion of Physical Processes

In Fig. 2, the relevant fluxes described by Eq. (3) and (5) are illustrated in the context of the 
development of instabilities. Darcy’s law describes the convective flux depending on a pres-
sure gradient force and a gravitational force. In the considered setup, the pressure gradient 
generates an upward force due to evaporation at the top, while the gravitational force, how-
ever, points downward. Hence, the resulting convective flux depends on the balance of the two 
counter-effective forces.

Considering a perturbation with increased salt concentration and liquid density, the 
increased density induces stronger gravitational forces. In case of a still dominating pressure 
gradient force, the convective flux is in upward direction but slowed down at the location of 
the perturbation. This leads to a compensation of the flux by the fluxes from the surrounding, 
which accumulates salt and thus enhances the perturbation. This means that the salt accumu-
lation increases the density and gravitational force even more, which can lead to a dominat-
ing gravitational force. In this case, a resulting convective downward flux is generated, which 
leads to a development of so-called fingers which transport the accumulated salt downward. In 
addition, diffusive fluxes are considered in Eq. (3). The development of instabilities is coun-
teracted by the diffusive transport, which tries to balance out the concentration differences. 
Hence, the balance of the counteracting convective and diffusive fluxes determines if and how 
fast instabilities develop.

Parameters like the permeability for the porous medium, the diffusion coefficient for the 
fluid mixture or the evaporation rate as boundary condition have also an important influence 
on the development of the instabilities. In case of higher permeabilities, for example the con-
vective flux is enhanced compared to the diffusive flux. This leads to a faster development of 
the instabilities.

2.3  Initial and Boundary Conditions

As initial conditions, we take, see (6) and (8),

At the top of the domain, we allow water to evaporate while salt remains behind. This cor-
responds to specifying a given molar flux Emol for the water component, while a zero flux is 
considered for NaCl:

Since the vertical unit vector �z points downward, the evaporation flux Emol > 0 corre-
sponds to an upward flux of water. In general, the Darcy flux � will be non-zero on the 
top boundary due to the presence of the evaporative flux. This also means that the no-flux 
boundary for salt (13) is a Robin boundary condition. Since water escapes through the top 
boundary while salt remains behind, we expect an accumulation of salt concentration near 
the top boundary. Increasing Emol > 0 yields the concentration of NaCl increasing faster 

(10)�
NaCl|t=0 = �

NaCl
0

,

(11)�|t=0 = �0.

(12)
(
�mol�

w� − D�mol∇�
w
)
⋅ �z|z=0 = −Emol,

(13)
(
�mol�

NaCl� − D�mol∇�
NaCl

)
⋅ �z|z=0 = 0.
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near the top boundary. We will here assume a prescribed evaporation flux that is constant 
with respect to both time and space. This is a simplification, especially when time periods 
of more than a few hours are considered (Heck et al 2020) and should in this case be inter-
preted as an averaged evaporation flux.

Since the domain is semi-infinite in the vertical direction, boundary conditions at the 
bottom boundary are not needed. There the values are inherited from the initial conditions.

For the horizontal extent of the domain, we separate between the bounded and 
unbounded case. In the unbounded case, we do not need any boundary conditions in the 
horizontal direction. For the bounded case, we apply no-flux boundary conditions at the 
vertical walls. This corresponds to

where � is the horizontal unit vector pointing out of the sidewalls of the bounded domain 
�W.

The general equations formulated here form the starting point for our further investiga-
tion of evaporation from the porous medium and subsequent onset of density instabilities. 
For the linear stability analysis in Sect. 3, we use a slightly simplified system of equations 
and cast the equations in non-dimensional form to keep the analysis as general as possible. 
The numerical setup described in Sect.  4 uses the model as described above, but using 
bounded domains. The comparison between the two approaches in Sect. 5 considers the 
dimensional case in order to connect back to the physical problem.

3  Linear Stability Analysis

To address when instabilities can occur and give a criterion for the onset of instabilities 
depending on the model parameters, we perform a linear stability analysis following rela-
tively standard steps, but giving a non-standard outcome due to the special setup following 
the evaporation from the top boundary.

To accommodate the linear stability analysis, we consider here slightly simplified model 
equations than the general presented in Sect. 2. These simplified equations are non-dimen-
sionalized to find ratio of parameters that characterize the overall behavior. The equations 
are non-dimensionalized using identified reference values characterizing the setup. As we 
have somewhat untypical boundary conditions due to the evaporation at the top boundary, 
the chosen reference values are non-standard. From the non-dimensional formulation, we 
derive a time-dependent stable solution ("the ground state"). Due to the gradually grow-
ing salt concentration following the evaporation, the salt ground state is unbounded and 
does not exhibit a steady state. For finite times, the time-dependent ground state is per-
turbed using the frozen-profile approach, in order to address its stability. Since the per-
turbed quantities are small, we linearize the equations for the perturbed quantities. The lin-
earized perturbation equations are then finally formulated as an eigenvalue problem, which 
is solved numerically. This will give information on the stability of the ground state as a 
function of time.

Note that the linear stability analysis is made general in the sense that it is also appli-
cable for salt types other than NaCl by adjusting the value of corresponding parameters, in 
particular of the volumetric constant �.

(14)� ⋅ �|x,y=±W = 0, ∇�� ⋅ �|x,y=±W = 0,
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3.1  Simplified Model Equations

We apply the method of linear stability for a simplified version of the model presented in 
Sect. 2. We assume that the salt is completely dissolved and that its mass fraction is small 
compared to the mass fraction of water. We take advantage of the fact that �w ≈ 1 and 
hence simplify the mass conservation equation for water. Then we invoke the Boussinesq 
approximation, meaning that the liquid density � can be considered constant except in the 
gravity term of Darcy’s law. Further, we disregard salt precipitation, which means that the 
simplified model is only valid up to the salt reaches its solubility limit. Porosity and perme-
ability will, hence, remain constant. With these simplifications, Eq. (3) reduce to

where X is the mass fraction of salt. Since only salt mass fraction is used as a variable in 
the following, we skip the superscript. Darcy’s law is kept as in (5), and the density of the 
liquid is still depending linearly on the salt concentration (6). Note that these model equa-
tions are simplified since varying water mass fraction is not accounted for, and since we 
apply the Boussinesq approximation. However, for relatively low variability in the salt con-
tent (i.e., below the solubility limit of salt), these assumptions are reasonable.

As initial condition for the salt, we use the corresponding version of (10), namely

where X0 is the initial mass fraction, and the boundary conditions (14) at the sidewalls are, 
hence, correspondingly formulated for X.

Due to the difference in addressing the mass of water and salt, the boundary conditions 
(12) and (13) are replaced with

where E is the evaporation rate in terms of a volume flux of water. The two evaporation 
fluxes Emol and E are related through

For convenience and to identify parameter dependencies, we will recast the equations in a 
dimensionless form.

3.2  Non‑dimensional Model

The corresponding non-dimensional variables are denoted by a hat:

(15)∇ ⋅� = 0,

(16)��tX = ∇ ⋅ (−�� + D∇X),

(17)X|t=0 = X0,

(18)�|z=0 = −E�z

(19)(X� − D∇X)|z=0 ⋅ �z = 0,

(20)Emol = E ⋅M ⋅ �.

(21)(x̂, ŷ, ẑ) =
(x, y, z)

�ref

, t̂ =
t

tref
P̂ =

P

Pref

,
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We choose reference quantities that are meaningful to address the effect of evaporation, 
taking into account that the domain is vertically unbounded and that no prescribed density 
difference is given.

As length reference, we choose an intrinsic length, namely the ratio between diffu-
sion and evaporation �ref = D∕E , which quantifies the length scale at which diffusion 
can smooth out concentration differences caused by the evaporation. As time refer-
ence, we use tref = ��ref∕E = �D∕E2 , which corresponds to the natural time scale for 
evaporative transport inside the porous medium. As reference concentration and den-
sity, we use the initial concentration and density; Xref = X0, �ref = �0�X0 . Note that the 
salt mass fraction is itself non-dimensional, hence the new variable X̂ is only a scaled 
version of X. For density-driven instability problems, there is usually a prescribed den-
sity difference, which is used as the reference density. However, this is not the case 
here due to the no-flux boundary condition used for salt. Since the salt concentration, 
and hence, the density could grow unbounded, this model problem does not exhibit a 
natural density difference. Hence, the initial density scaled with � and X0 is used as 
reference density. We have here chosen to include also � and X0 in the reference den-
sity for convenience. This choice is not essential for the non-dimensionalization and not 
including these two factors would essentially give the same results in the linear stability 
analysis, just accordingly scaled. The reference velocity is set as a gravitational velocity 
Qref = �refgK∕� , and the reference pressure is chosen to balance the velocity in Darcy’s 
law Pref = ��refQref∕K . To summarize all choices, we list them below:

We finally introduce the evaporative Rayleigh number R = Qref∕E . Hence, the Rayleigh 
number describes the ratio between the gravitational flow and the flow induced by the 
evaporative flux at the top boundary. Note that a larger evaporation rate corresponds to a 
smaller Rayleigh number. Summarizing, we have

Remark 1 In many density-driven instability problems, a typical density difference is used 
in the reference velocity Qref and hence in the Rayleigh number R (see e.g., Riaz et  al. 
2006). However, in our model setup no typical density difference appears as we do not 
prescribe a fixed density at the top of the domain. Instead, we propose a reference velocity 
that only involves the initial density �0 . The choice of reference velocity does not affect the 
linear stability analysis results.

Remark 2 Note that the definition of the Rayleigh number does not include the diffusion 
coefficient D. Here it appears in the reference length, and hence also in the reference time. 

(22)�̂ =
�

Qref

, �̂� =
𝜌

𝜌ref
X̂ =

X

Xref

.

(23)�ref =
D

E
, tref =

��ref

E
, Xref = X0,

(24)�ref =�0�X0, Qref =
�refgK

�
, Pref =

��refQref

K

(25)R =
Qref

E
where Qref =

��0gX0K

�
.
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As we will see later, the critical Rayleigh number will be a function of non-dimensional 
time and a non-dimensional length parameter, which indirectly gives the dependence of the 
onset of instabilities on the diffusion.

The non-dimensional model equations are then

where the non-dimensional density is given as

For the non-dimensional variables, we have the initial condition

and boundary conditions at the top boundary

In the bounded case, the no-flux boundary conditions are imposed on x̂, ŷ = ±𝛽  , where 
𝛽 = WE∕D . Hence

3.3  Ground State Solution

We will investigate the stability of a particular solution of the system of Eqs. (26)–(28) 
under the conditions (30)–(32). This solution depends on ẑ and t̂ . It is called the ground 
state and is denoted by {�̂0, X̂0, P̂0}.

For the ground state discharge �̂0(t̂, ẑ) , it is clear from (26) together with the boundary 
condition (31) that the only possible solution is

that is, a constant upward velocity according to the prescribed evaporation rate.
The ground state salt mass fraction X̂0(t̂, ẑ) fulfills the following problem:

(26)∇̂ ⋅ �̂ = 0,

(27)�̂ = −∇̂P̂ + �̂�(X̂)�z,

(28)𝜕t̂ X̂ = ∇̂ ⋅ (−R�̂X̂ + ∇̂X̂),

(29)�̂�(X̂) =
1

𝛾X0

+ X̂ − 1.

(30)X̂|t̂=0 = 1,

(31)�̂|ẑ=0 = −
1

R
�z,

(32)(X̂ + ∇̂X̂)|ẑ=0 ⋅ �z = 0.

(33)�̂ ⋅ �|x̂,ŷ=±𝛽 = 0, ∇̂X̂ ⋅ �|x̂,ŷ=±𝛽 = 0.

(34)�̂0(t̂, ẑ) = −
1

R
�z,

(35)𝜕t̂ X̂
0 = 𝜕ẑX̂

0 + 𝜕2
ẑ
X̂0 ẑ > 0, t̂ > 0,
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In Appendix A, we show that this problem has the explicit solution

where

Note in particular that

enabling a simple evaluation of the integral in (38). The solution is shown in Fig.  3. 
Clearly, the salt concentration at the top of the domain gradually increases with time and 
diffuses down through the domain.

Note that since (28) (and hence (35)) does not incorporate the precipitation rate in case the 
salt mass fraction exceeds the solubility limit, the solution (38) is only valid up to the point 
where the salt mass fraction at the top reaches the solubility limit. The (non-dimensional) sol-
ubility limit depends on the type of salt and the initial concentration. Note, however, that the 
ground state (38) does not depend on the type of salt. Our analysis can, hence, be straightfor-
wardly applied to any salt type, but only up to times where the corresponding solubility limit 
is reached.

The ground state pressure P̂0(t̂, ẑ) is such that

(36)X̂0 + 𝜕ẑX̂
0 = 0 ẑ = 0, t̂ > 0,

(37)X̂0 = 1 ẑ > 0, t̂ = 0.

(38)X̂0(t̂, ẑ) = 1 + ∫
t̂

0

𝜕ẑf (𝜃, ẑ) d𝜃,

(39)f (𝜃, ẑ) = 1 −
1

2
e−ẑerfc

�
ẑ − 𝜃

2
√
𝜃

�
−

1

2
erfc

�
ẑ + 𝜃

2
√
𝜃

�
.

(40)𝜕ẑf (𝜃, ẑ) =
1

2
e−ẑerfc

�
ẑ − 𝜃

2
√
𝜃

�
+

1√
𝜋𝜃

e
−(

ẑ+𝜃

2
√
𝜃
)2

,

(41)𝜕ẑP̂
0 =

1

R
+ �̂�(X̂0).

Fig. 3  Ground state salt mass 
fractions X̂0 (horizontal axis) 
varying with depth ẑ (vertical 
axis) for various times t̂
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As we only have boundary conditions for the value of the velocity, the pressure is only 
known up to a constant. Hence,

where the integration constant C(t̂) cannot be determined, but where a natural choice would 
be atmospheric pressure at the top boundary. This is, however, not necessary as the follow-
ing analysis does not depend on the value of the pressure.

3.4  Linear Perturbation and Eigenvalue Problem

Our purpose is to investigate the linear stability of the ground state {�̂0, X̂0, P̂0} . We pre-
sent the main steps in this section, while details and intermediate steps are given in Appen-
dix B. We write

where � = (u, v,w),� and p are small, perturbed quantities, which we will now study fur-
ther. Note that although these are all non-dimensional, we write them without the hat to 
simplify the notation. By inserting (43)–(45) into (26)–(28) and into (31)–(32) and line-
arizing the result, we obtain the linear perturbation equations with corresponding homoge-
neous boundary conditions for the perturbed quantities. These equations can be expressed 
using w, � and p only.

Since the perturbed quantities fulfill a linear initial-boundary value system, in which 
none of the coefficients depend on the spatial coordinates x̂ and ŷ , we consider solutions of 
the form

Here âx and ây are horizontal wavenumbers. Let â2 = â2
x
+ â2

y
 . When the domain is 

unbounded, i.e., the half space {ẑ > 0} , we allow any â > 0 . In case of the bounded domain 
{(x̂, ŷ, ẑ) ∶ |x̂|, |ŷ| < 𝛽, ẑ > 0} , we need to choose âx and ây so that the boundary conditions 
(33) are satisfied. This requires

Using (46) allows us to eliminate the amplitude p̃ as a dependentent variable, and only con-
sider amplitudes w̃ and 𝜒.

Assuming, in addition, that the coefficients of the initial-boundary value problem do not 
depend on time t̂ , we can further separate the variables according to

(42)P̂0(t̂, ẑ) = C(t̂) + (
1

R
+

1

𝛾X0

− 1)ẑ + ∫
ẑ

0

X̂0(t̂, 𝜍) d𝜍,

(43)�̂(t̂, x̂, ŷ, ẑ) = �̂0(t̂, ẑ) + �(t̂, x̂, ŷ, ẑ),

(44)X̂(t̂, x̂, ŷ, ẑ) = X̂0(t̂, ẑ) + 𝜒(t̂, x̂, ŷ, ẑ),

(45)P̂(t̂, x̂, ŷ, ẑ) = P̂0(t̂, ẑ) + p(t̂, x̂, ŷ, ẑ),

(46){w,𝜒 , p}(t̂, x̂, ŷ, ẑ) = {w̃,𝜒 , p̃}(t̂, ẑ) cos(âxx̂) cos(âyŷ).

(47)âx = nx
𝜋

𝛽
, ây = ny

𝜋

𝛽
, nx, ny = 1, 2,…

(48){w̃,𝜒}(t̂, ẑ) = {ŵ, �̂�}(ẑ)e𝜎 t̂,
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see e.g., Subrahmanyan  (1961); Nield and Bejan (2017). Here, � is the exponential growth 
rate in time, while ŵ and �̂� describe the variability of the perturbation with ẑ . For 𝜎 < 0 , 
small perturbations decay in time and the ground state is stable. For 𝜎 > 0 , perturbations 
grow in time, and the ground state is unstable.

Since X̂0 = X̂0(t̂, ẑ) , the separation of variables as proposed in (48) does not directly 
apply. This is circumvented by assuming that the rate of change of X̂0(t̂, ẑ) is small com-
pared to any exponentially growing instability. This is known as the quasi steady state 
approach (QSSA) or the "frozen profile" approach (Riaz et al. 2006; van Duijn et al. 2002). 
Hence, X̂0 is considered to be evaluated at a fixed time.

Thus, we arrive at an eigenvalue problem in terms of {ŵ,𝜒} and R, with independ-
ent parameters â , t̂ and � . The object is to determine the smallest positive eigenvalue 
R = R∗(â, t̂, 𝜎) . We verified numerically, see Appendix C and van Duijn et al. (2019), that 
there is exchange of stability; i.e., the ground state looses its stability, corresponding to 
perturbations start growing and 𝜎 > 0 , for R > R∗(â, t̂, 0) . Hence, it suffices to analyze the 
eigenvalue problem for the case of neutral stability; that is, � = 0 . Thus, we need to con-
sider the problem (skipping the asterisk in R∗):

Given â > 0 , t̂ > 0 , and X̂0 = X̂0(t̂, ẑ) by (38), find the smallest R = R(â, t̂) > 0 such that

has a non-trivial solution.
Note that ′ denotes the derivative with respect to ẑ.

Remark 3 In the work of Riaz et al. (2006), the ground state results from a diffusion pro-
cess and depends on 𝜉 =

ẑ√
t̂
 only. This allows them to perform the coordinate transforma-

tion (t̂, ẑ) → (t̂, 𝜉) and then apply the QSSA to the transformed linear problem. This yields a 
sharp stability bound. In our case, the ground state results from diffusion and upward con-
vection due to evaporation. Consequently, the ground state (38) does not have such a sim-
ple dependence. Therefore, we apply the QSSA directly to the original coordinates (t̂, ẑ).

3.5  Solution of the Eigenvalue Problem

The eigenvalue problem (49) is solved via a Laguerre-Galerkin method. Again, details are 
given in Appendix B. This results in a system of linear equations for the unknown weights, 
which can be expressed as a matrix multiplied with a vector containing the weights. 
Through the eigenvalues of the resulting matrix, we can find the corresponding minimal R 
as a function of â for given t̂ , i.e., R = R(â, t̂) . Results are shown in Fig. 4. From the figure, 
we observe that the system becomes gradually more unstable for increasing t̂ . With the 
Rayleigh number specified by model parameters Rs =

��0gKX0

E�
 , the system remains stable 

when Rs < R in Fig. 4. As the curves for R move downward with increasing time, we can 
for given parameters find a corresponding onset time, which is when Rs = R . For a fixed 
time t̂ , the minimum R always appears for â approaching 0. This corresponds to longer 
wavelengths being more unstable. The behavior of R for small wavenumbers â is detailed 

(49)

ŵ�� + â2�̂� − â2ŵ = 0 ẑ > 0,

�̂� � − Rŵ𝜕ẑX̂
0 + �̂� �� − â2�̂� = 0 ẑ > 0,

where ŵ and �̂� fulfill

ŵ = 0, �̂� + �̂� � = 0 ẑ = 0,

ŵ → 0, �̂� → 0 ẑ → ∞,

⎫⎪⎪⎬⎪⎪⎭
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in Appendix D. There we also derive an approximation (in fact a lower bound) for the 
value of R at â = 0 . We find

Hence, the evaporation problem is stable as long as

In Fig.  4, we treat â as a continuous variable. This is allowed when the domain is 
unbounded. For bounded domains, with zero-flux boundary conditions on the sidewalls, 
only values of â that are multiples of 𝜋∕𝛽  are allowed (see (47)). We observe in Fig. 4 that 

R(0, t̂) ≥ 2

X̂0(t̂, 0) − 1
for all t̂ > 0.

Rs <
2

X̂0(t̂, 0) − 1
.

Fig. 4  Resulting minimal 
eigenvalue R (vertical axis) as a 
function of â (horizontal axis) for 
various t̂
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Fig. 5  Critical Rayleigh number 
R (vertical axis) as a function of 
t̂  (horizontal axis) for various 𝛽
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for fixed t̂ , the minimum R always occurs for the lowest possible â . Hence in the bounded 
case, we would only need to solve the eigenvalue problem for â = 𝜋∕𝛽  . For a fixed 𝛽  (and 
hence a fixed â ), the system becomes generally more unstable for later times t̂ . In Fig. 5, 
we show the critical Rayleigh number for various choices of 𝛽  as a function of t̂ , which 
hence are the R-values from Fig. 4 corresponding to â = 𝜋∕𝛽  . Note that for larger values of 
𝛽  , the critical Rayleigh numbers tend to those for â → 0 , which corresponds to an infinitely 
wide domain or an infinitely long wavelength, where no effect of the imposed boundary 
conditions at the sidewalls are found. These results imply that we can find unique times 
for onset of instabilities for a given set of parameters, both in the bounded and unbounded 
case. For a given 𝛽  and model parameters Rs , the corresponding unique onset time can be 
found in Fig. 5 by finding the corresponding time where R = Rs for our choice of 𝛽  . Simi-
larly, for a given â and model parameters Rs , we can find the corresponding unique onset 
time in Fig. 4.

Note that although we show results for a large range of non-dimensional times in Figs. 4 
and 5, the results are only physically meaningful when the stable salt concentration does 
not reach its non-dimensional solubility limit. However, the eigenvalue problem (49) can 
be used for any salt.

3.6  Effect of Varying the Evaporation Rate

Although the solutions of the eigenvalue problem (49) can be used to discuss the effect 
of all model parameters, we discuss here in particular the effect of the evaporation rate E. 
The expected influence of E on the stability is a-priori not obvious as it affects the system 
in two different ways: firstly, a larger evaporation rate corresponds to a stronger vertical, 
upward throughflow, and secondly, a larger evaporation rate means that the accumulation 
of salts at the top of the domain is faster. As shown by Homsy and Sherwood (1976); van 
Duijn et al. (2002), an increased throughflow corresponds to the system being more stable. 
However, an increased accumulation of salts at the top of the domain is expected to desta-
bilize the system as the density difference is then larger.

To investigate the overall effect of increasing evaporation rate, we recall the definitions

where â is the lowest possible wavenumber in the bounded domain case and hence the most 
unstable mode. Eliminating E from (50) yields

Recall that W is the half width of the domain, Qref is the reference velocity, and D is the 
diffusivity of the salt. For a given setup, these numbers would remain constant, but differ-
ent setups result in different values of k. Returning to Fig. 4, this means that for a given k 
we look for the points where the curves for fixed times cross the curves R = kâ . As a given 
E corresponds to a given â (and also R), we can find a corresponding onset time t̂ for each 
E. Due to the shape of the curves from Fig. 4, there will be an evaporation rate for which 
a minimum non-dimensional onset time is found. In Fig. 6, we re-plot Fig. 4 together with 
the line corresponding to k = 1 , as well as the corresponding onset times as a function of R 

(50)R =
Qref

E
, 𝛽 =

WE

D
, â =

𝜋

𝛽
=

𝜋D

WE
,

(51)R = kâ with k =
QrefW

D𝜋
.
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for various choices of k. The minimum onset times seen in Fig. 6b correspond to the times 
where the line R = kâ is tangential to a line corresponding to a fixed time in Fig. 6a.

When the evaporation rate increases, R decreases. Hence, as E increases, we follow a 
specific curve (corresponding to the chosen value of k) in Fig. 6b, from right to left. We 
see that as evaporation increases, the corresponding non-dimensional onset time decreases 
until it reaches a minimum, but then increases as E increases even further. Hence, it appears 
that for large evaporation rates, increasing E further has a stabilizing effect since the onset 
time increases. However, Fig. 6b shows non-dimensional onset times. To re-dimensionalize 
the onset times, we multiply with t ref = �D∕E2 . Hence, for increased evaporation rates, 
the time scaling is smaller. Therefore, when considering the dimensional onset times, these 
are found to always decrease as the evaporation rate increases. This is independent of the 
choice of k. Hence, an increased evaporation rate always has a destabilizing effect on the 
system, since instabilities can appear earlier in dimensional time.

4  Numerical Simulation of the Original Model

We apply a numerical, REV-scale model to simulate the model equations described in 
Sect.  2. Inline with the formulation in Sect.  2, and due to the applied numerical model 
using dimensional variables, we now consider the dimensional model. Using dimensional 
variables also helps to connect back to the physical problem. The numerical model is 
able to give insights in the distribution and development of the salt concentration in the 
entire domain. This means that the onset as well as the development of instabilities can 
be observed in detail. However, it is computationally cost intensive as quite a fine spatial, 
and temporal discretization is necessary to reduce the influence of numerical diffusion and 
resolve the instabilities. The numerical model is implemented in the open-source simulator 
DuMux (Koch et al. 2020) for multi-phase, multi-component flow and transport in porous 
media. It is a research code written in C++ and based on Dune (Bastian et al. 2021), a sci-
entific numerical software framework.

The model considers the precipitation of salt if the solubility limit is exceeded. In 
this section, we, therefore, first define the reaction term. Additional boundary and initial 
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(a) Repetition of Figure 4 including the line
R = kâ for k = 1 as dashed line.
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(b) Non-dimensional onset time t̂ (vertical
axis) as a function of Rayleigh number R
(horizontal axis) for various k.

Fig. 6  Relation between onset time and critical Rayleigh number for varying evaporation rate
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conditions are specified as we here consider a vertically bounded domain and introduce ini-
tial perturbations for the salt mole fraction. Further the spatial and temporal discretizations 
are described. The domain is discretizied by a cell-centered finite volume scheme, and an 
implicit Euler method is used for the time discretization. In the end, the evaluation method 
of the simulation results is described, the numerical onset time is defined, and the influence 
of different initial perturbations is shown.

4.1  Salt Precipitation Reaction in the Numerical Model

In the numerical model, the precipitation of solid salt is considered if the solubility limit 
is exceeded. Therefore, the reaction term in the mole balance of the solute and solid salt 
(Eq. (3) and (8)) has to be specified. For the reaction terms of NaCl rsolid = −rNaCl , an 
equilibrium reaction is assumed. This is based on the assumption that the chemical reaction 
is so fast that every mol of NaCl above the solubility limit �NaCl

max
 can precipitate within one 

numerical time step �t.

4.2  Boundary and Initial Conditions

The numerical model uses additional boundary and initial conditions to the ones described 
in Sect. 2.3. As the domain is finite at the bottom for the numerical simulation, boundary 
conditions for the bottom are necessary. A Dirichlet boundary condition sets the pressure 
in the liquid phase corresponding to the hydro-static pressure at the domain depth, and the 
salt concentration is set equal to the initial mole fraction �NaCl

0
 . The depth d of the domain 

is chosen so that at the time of onset no increase in concentration is observable at the bot-
tom, and so, the influence of the bottom boundary is assumed to be negligible.

where Patm corresponds to atmospheric pressure.
As initial condition additionally a hydro-static pressure profile is used which leads to 

better convergence at the beginning of the simulations:

The numerical model uses also an initial perturbation for �NaCl , denoted �NaCl
0,p

 , to corre-
spond to the perturbations used in the analytical analysis. If no initial perturbations are 
applied, instabilities are triggered by tiny numerical errors in the order of machine preci-
sion. Instead, two different types of perturbations are used, a periodic and a random one, 
which can either be applied in the top row of cells or in the whole domain. The periodic 
perturbation is applied by using a cosine function along the x-coordinate:

(52)rsolid = −rNaCl = �mol�
�
NaCl − �

NaCl
max

�t
.

(53)P|z=d = Patm + �(�NaCl
0

)gd,

(54)�
NaCl|z=d = �

NaCl
0

,

(55)P|t=0 = Patm + �(�NaCl
0

)gz.
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with the wavelength � and the amplitude A. The wavelength and amplitude need to be pre-
scribed. Which amplitude to use will be discussed in Sect. 4.5, while the choice of wave-
length is discussed in Sect. 5.1. Alternatively, a random perturbation for �NaCl

0,p
 is used. In 

this case, values for �NaCl
0,p

 are randomly picked for every discrete cell from a normal distri-
bution N  using a mean value of �

�
NaCl = �

NaCl
0

 and a standard deviation �
�
NaCl:

The choice of standard deviation is discussed in Sect. 4.5.

4.3  Discretization

For the spatial discretization, a cell-centered finite volume scheme applying the two-
point flux approach is used, with a first order upwind scheme for the convective flux and 
a second order scheme for the diffusive fluxes (Helmig 1997). A first order, implicit Euler 
method is used for time discretization (Helmig 1997). A convergence study for the spatial 
and temporal discretization is conducted (see Appendix E), ensuring that there is a negli-
gible influence of numerical diffusion effects. For the spatial discretization, it is important 
to use finer grid cells than the expected wavelength in order to resolve the instabilities: 
𝛥x ≪ 𝜆 . Through preliminary testing we found that the expected wavelength depends on 
the permeability and the vertical density difference and is smaller for higher permeabilities. 
At least 10 cells are used per wavelength of the highest investigated permeability, as the 
convergence study shows tolerable errors for this discretization. For longer wavelengths, 
the error should be even less. Studies on the discretization of CO2-brine systems in the con-
text of CO2-storage were done by Elenius and Johannsen (2012). Elenius and Gasda (2021) 
state also that 10-20 cells per finger are sufficient to resolve the convective flow in the most 
cases.

As the instabilities are initiated at the top, a fine resolution in z-direction is important 
near the top boundary ( z = 0 ). Due to the steep gradient of the salt mole fraction near the 
top boundary, a smaller �z better represents these changes and gives also a lower influence 
of numerical diffusion. Based on the convergence study, a relatively fine �z is used near 
the top with �ztop = 3.3 ⋅ 10−4 m . To lower the computational costs in the lower parts of 
the domain, coarser cell sizes can be used. Hence, �z increases continuously toward the 
bottom.

A time step of �t = 50 s is used. This means that the grid velocity of the top cell in 
z-direction �ztop∕�t is higher than the evaporation rate E and thus is able to capture the 
evaporation process correctly.

4.4  Evaluation of Numerical Simulations

To estimate the numerical onset time, the mean value �top

�
NaCl

 and the standard devia-
tion �top

�
NaCl

 of the salt mole fraction �NaCl of the grid cells in the top row are calculated. 
The standard deviation is a measure for the variation of the salt mole fraction, where a 
standard deviation of zero would correspond to homogeneous salt mole fraction in the 
top row. Since the development of fingers gradually lead to variations in the salt mole 

(56)�
NaCl
0,p

(x) = �
NaCl
0

+ A ⋅ cos
(
2�

�
⋅ x
)
,

(57)�
NaCl
0,p

∼ N
(
�
�
NaCl , �

2

�
NaCl

)
.
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fraction, we expect an increasing standard deviation as the fingers develop. As we start 
out with a perturbed initial salt mole fraction, the standard deviation will first decrease 
before it later increases as density instabilities develop. Hence, as a measure for the 
onset time for the numerical simulations we use the time when the standard deviation is 
at its minimum. Physically, this corresponds to the case where the convective flux starts 
to dominate the diffusive fluxes in horizontal direction, which leads to the enhancement 
of the perturbations. The development of �top

�
NaCl

 and �top

�
NaCl

 and their physical interpretation 
will be discussed in detail in Sect. 5.4.

4.5  Influence of Initial Perturbation on Onset

Figure 7 shows the development of the standard deviation �top

�
NaCl

 and onset time for dif-
ferent parameters for the periodic initial perturbation (Fig.  7a) and the random initial 
perturbation (Fig. 7b). Also the case without perturbations is shown, where the pertur-
bations are triggered by tiny numerical errors. This figure shows that the amplitude and 
the standard deviation of the initial perturbation do not affect the onset time. If the ini-
tial perturbation is applied only to the top of the domain and not in the whole domain, 
the onset is later for both perturbation types. However, for the periodic perturbations the 
difference in onset is relatively small. For the periodic perturbations (56), it is of impor-
tance that the width of the domain is a multiple of the initial wavelength. Here, simula-
tions with � = 0.03 m are used, hence W = 0.30 m is a multiple of it, while W = 0.25 m is 
not. For the latter case, the onset time is earlier.

In the following investigations, we use a perturbation in the whole domain. This cor-
responds better to the manner perturbations are applied in the linear stability analysis 
and hence benefits the comparison of the onset times between the linear stability analy-
sis and the numerical simulations. An amplitude of A = 10−6 is used for the periodic 
perturbations and a standard deviation of �

�
NaCl = 10−6 for the random perturbations.

(a) Periodic initial pertubations (b) Random initial pertubations

Fig. 7  Influence of different initial perturbations for the numeric simulation on the onset time for periodic 
initial perturbations (a) and random initial perturbations (b). For the simulations, the parameters listed in 
Table 2 are used with a permeability of K = 10−11 m2 . The parameters amplitude A, half domain width W , 
standard deviation �

�
NaCl are as described in the legend as well as the application area (top or whole). The 

vertical lines indicate the time of onset for the respective cases. Note that the blue and green vertical lines 
are in both cases on top of each other
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5  Onset and Development of Density Instabilities

Here we compare results from linear stability analysis and numerical simulations with 
respect to predicted onset times for instabilities and with respect to the behavior of the 
salt concentration before onset of instabilities. The comparison is kept dimensional, 
hence results from the linear stability analysis are re-dimensionalized. Most parameters 
are for simplicity kept fixed and are as specified in Table 2. These parameters are chosen 
to realistically represent saline water in a porous domain, with evaporation correspond-
ing to 34.7 cm/year. The permeability K of the porous medium is varied. We consider 
the cases K = 10−10 m 2 , K = 10−11 m 2 , K = 10−12 m 2 and K = 10−13 m 2.

Note that the specified evaporation rate is used for the numerical simulations as an 
input parameter. For the linear stability analysis, the choice of evaporation rate trans-
lates into a Rayleigh number, which determines the onset time, as described in Sect. 3.5. 
We separate between the bounded case, where the domain has a fixed width, and the 
unbounded case, where we investigate the onset of a specific wavelength and use peri-
odic boundary conditions. For both cases, we can compare the onset times from the 
linear stability analysis and from the numerical simulations.

Table 2  Fixed parameter choices

Parameter Value Dimension

X0 or �0 0.035 or 0.011 –
�0 1025 kg m −3

� 1.1 ⋅ 10−3 kg m −1 s −1

�0 0.4 –
� 0.7 –
g 9.8 m s −2

E or Emol 1.08 ⋅ 10−8 or 6.165 ⋅ 10−4 m s −1 or mol m −2 s −1

D 4.42 ⋅ 10−10 m2 s −1

Additional numerical parameters

d 0.2 m
Patm 1.0 ⋅ 105 Pa
�
NaCl
max

0.0977 –

Table 3  Onset times from the 
linear stability analysis for a 
domain of fixed width. A width 
of 60 cm has been used for all 
cases

Permeability Analytic onset time Numeric onset time

K = 10−10 m 2 6.57 ⋅ 102 s 4.80 ⋅ 103 s
K = 10−11 m 2 1.16 ⋅ 104 s 3.06 ⋅ 104 s
K = 10−12 m 2 1.34 ⋅ 105 s 9.12 ⋅ 104 s
K = 10−13 m 2 2.11 ⋅ 106 s 1.04 ⋅ 105 s
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5.1  Onset Times for a Domain of Fixed Width

We here investigate the onset of instabilities in the bounded case. We use a domain with 
a fixed width of 60 cm. In the linear stability analysis, we assume that the most unstable 
wavelength will be dominating, and we find the corresponding onset time for this wave-
length, as described in Sect. 3.5. In the numerical simulations, we use an initial random 
perturbation, which is assumed to trigger the onset of the most unstable wavelength. The 
development of the standard deviation and the appearing (average) wavelength is shown in 
Fig. 8. The resulting onset times are in Table 3. Both the analytic and numerical approach 
show that lower permeabilities correspond to later onset times. Although the numbers are 
of the same order of magnitude, the deviation between onset times estimated by the linear 
analysis and numerical simulations is quite large.

This analysis reveals some fundamental differences in the underlying assumptions in the 
two approaches. The linear stability analysis indicates that the most unstable wavelength 
should be the longest one that will fit into the domain, as lower wavenumbers â are more 
unstable, as seen in Fig. 4. For this case that would correspond to a wavelength of 60 cm. 
In the simulations, we can observe that different wavelengths are dominating before and 
after the estimated onset time. Since we use a random perturbation, several wavelengths 
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(d) K = 10−13 m2

Fig. 8  Standard deviation and average wavelength (in m) over time for fixed width for K = 10-10 m2 (top 
left), K = 10-11 m2 (top right), K = 10-12 m2 (bottom left) and K = 10-13 m2 (bottom right). The dotted ver-
tical line indicates time of minimum standard deviation, which is used as the onset time
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are represented, and they can also interact with each other. The appearing wavelengths 
after onset are generally found to be shorter for increasing permeability, as seen in Fig. 8. 
For the lower permeabilities K = 10−13 m 2 and K = 10−12 m 2 , the early appearing domi-
nating wavelengths are 15 cm and 12 cm, respectively, which is close to the ones assumed 
by the linear stability analysis. For the larger permeabilities K = 10−11 m 2 and K = 10−10 
m 2 , the appearing dominating wavelengths are 4 cm and 1.5 cm, respectively. Although the 
linear stability analysis indicates that the wavelength of 60 cm should be more unstable and 
hence preferred, the initial random perturbation have triggered modes that are much shorter 
in wavelength. The wavelengths that do appear in the numerical simulations depend on the 
permeability, following a similar trend as observed in Riaz et al. (2006). This is remarkable 
since the setup is different. Also, using a random perturbation in the numerical simulations 
can give nonlinear effects as the different wavelengths interact with each other, possibly 
affecting the resulting onset mode and time. However, the linear stability analysis assumes 
that the perturbation is a specific wavelength and hence does not account for any interac-
tion between different wavelengths. This motivates to rather use a specific wavelength for 
the numerical perturbation and compare with the onset time of this wavelength from the 
linear stability analysis.

5.2  Onset Times of a Fixed Wavelength

We here investigate the onset of instabilities in the unbounded case. Although we use a 
domain of a width 60 cm for the numerical simulations, we apply periodic boundary con-
ditions on the sidewalls to mimic the domain being unbounded. By using an initial per-
turbation with a fixed wavelength in the numerical simulations, we investigate the onset 
of this particular wavelength. This means that the same type of perturbation is used for 
both numerical simulation and for the linear stability analysis. We use wavelengths based 
on those that appeared after onset in the numerical simulations in Sect. 5.1, but adjusted 
such that they fit within the domain. For the linear stability analysis, we then investigate 
the onset of this particular wavelength, as explained in Sect. 3.5. For the numerical sim-
ulations, a small amplitude of the cos-perturbation is used, and the development of the 
standard deviation and average appearing wavelength is seen in Fig.  9. The used wave-
lengths and resulting onset times are found in Table 4. For two of the lower permeabilities, 
no onset time could be found from the numerical simulations. For one case ( K = 10−12 

Table 4  Onset times from the linear stability analysis and the numerical simulations for specific wave-
lengths

Permeability Fixed wavelength Analytic onset time Numeric onset time

K = 10−10 m 2 0.01 m 1.78 ⋅ 104 s 9.60 ⋅ 103 s
K = 10−10 m 2 0.015 m 3.02 ⋅ 103 s 1.80 ⋅ 103 s
K = 10−11 m 2 0.03 m 9.72 ⋅ 104 s 9.84 ⋅ 104 s
K = 10−11 m 2 0.04 m 5.14 ⋅ 104 s 3.18 ⋅ 104 s
K = 10−12 m 2 0.06 m 1.59 ⋅ 106 s 1.75 ⋅ 106 s
K = 10−12 m 2 0.12 m 4.33 ⋅ 105 s 0.0 s
K = 10−13 m 2 0.15 m 8.16 ⋅ 106 s –
K = 10−13 m 2 0.3 m 3.63 ⋅ 106 s 3.65 ⋅ 106 s
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m 2 and wavelength 0.12 m), the standard deviation increases throughout the simulation, 
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(d) K = 10−11 m2 and wavelength 0.04 m
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(e) K = 10−12 m2 and wavelength 0.06 m
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(f) K = 10−12 m2 and wavelength 0.12 m

0 2 4 6 8 10

10 6

10-12

10-10

10-8

10-6

0

0.1

0.2

0.3

0.4

0.5
Standard deviation
Wavelength
Salt precipitation

(g) K = 10−13 m2 and wavelength 0.15 m
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(h) K = 10−13 m2 and wavelength 0.3 m

Fig. 9  Standard deviation and average wavelength (in m) over time for fixed wavelengths for K = 10-10 m2 
(top row), K = 10-11  m2 (second row), K = 10-12  m2 (third row) and K = 10-13  m2 (bottom row) for two 
chosen wavelengths (left and right). The dotted vertical line indicates time of minimum standard deviation, 
which is used as the onset time. For the case of K = 10−13 m 2 and wavelength 0.15 m (bottom right), time 
of initial salt precipitation is marked
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which means that no local minimum could be detected. For another case ( K = 10−13 m 2 
and wavelength 0.15 m), salt precipitation occurred before onset of instabilities.

For the cases where numeric onset times could be determined, the onset times generally 
agree well with the ones predicted by the linear stability analysis. For high permeabilities, 
the numeric onset times deviate from the analytical ones with less than 40% , whereas for 
low permeabilites, the deviations are less than 10 % . For the K = 10−10 m 2 simulations, we 
see that the onset of instabilities occurs shortly after the perturbation is applied, possibly 
because the size of the perturbation was too large, since only a small density increase is 
needed for fingers to develop (cf.  Fig.  11), and hence, triggered the development of the 
instabilities at an earlier time than expected. In general, we see that lower permeabilities 
correspond to larger onset times, as also observed by Riaz et al. (2006).

In the numerical simulations, the appearing wavelength at onset is the one used in the 
initial perturbation. For the permeability K = 10−12 m 2 and using a wavelength of 0.06 m, 
a slightly longer average wavelength appears shortly after onset as two waves merge. The 
merging of waves is a common development after onset of instabilities, although it usually 
appears some time after the instabilities are developed.

5.3  Behavior of Top Salt Concentration Before and Near Onset of Instabilities

Using the explicit solution (38) for the ground state salt concentration, we can address the 
expected development of the salt concentration over time before onset of instabilities. For 
convenience, the comparison is shown using salt mole fractions, but the numbers could 
also be converted to salt mass fractions. The largest salt concentration is always found at 
the top of the domain, hence we focus on this one in the following. Salt precipitates if 
exceeding �NaCl

max
= 0.0977 (corresponding to Xmax = 0.26 ). That means, if the ground state 

salt concentration (38) at the top exceeds this �NaCl
max

 before onset of instabilities is expected, 
then salt will instead precipitate. In this case, instabilities will not develop, as the salt mole 
fraction cannot extend beyond �NaCl

max
 , hence the corresponding density difference is not large 

enough to trigger instabilities. This occurred for the numerical simulation of K = 10−13 m 2 
and using a wavelength of 0.015 m, as seen in Fig. 9g. Note however, as seen from the 
numerical simulations, the salt concentration at the top of the domain can still increase 
after the onset of instabilities, before the instabilities are too strong. Hence, one could have 
salt precipitating after instabilities develop. The linear stability analysis can, however, only 
determine whether salt precipitation would occur before onset of instabilities.

We compare the salt mole fraction found from the explicit solution (38) with the one 
from the numerical simulations. For the numerical simulations, we take the average over 
all the cells in the top row. Since DuMux uses a cell-centered scheme, this means that we 
are not looking at the salt mass fraction at the top, but 1

2
�ztop away from the top. Hence, the 

explicit solution is, therefore, also evaluated at the height corresponding to the center of the 
top grid cells.

The time evolution of the salt mole fractions are found in Fig. 10 for the bounded cases 
from Sect. 5.1, and in Fig. 11 for the unbounded cases from Sect. 5.2. Since the develop-
ment of the salt mole fraction is not varying with the applied perturbation, we only show 
the cases corresponding to wavelengths 0.01 m, 0.03 m, 0.06 m and 0.3 m for the perme-
abilities K = 10−10 m 2 , K = 10−11 m 2 , K = 10−12 m 2 and K = 10−13 m 2 , respectively. The 
salt mole fractions coming from numerical simulations and explicit solutions are expected 
to coincide until onset of instabilities. The explicit solutions are plotted beyond the corre-
sponding onset time for comparison, but develop as if instabilities do not occur. Hence, the 
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numerical and explicit solutions should deviate after onset of instabilities. We see, however, 
that especially for low permeabilities, the explicit and numerical salt mole fractions deviate 
also slightly before onset of instabilities. For the low permeabilities, the salt mole fraction 
increases much more before onset of instabilities, compared to the high-permeability cases. 
This also causes a larger change in the density at the top of the domain, which disrupts 
the Bousinessq approximation used to derive the explicit solution. However, the overall fit 
between the explicit solution and the numerical solution is very good. The explicit solution 
deviate from the numeric one with less than 2% before the onset time, giving confidence 
that the simplifications used to derive the explicit ground state solution (i.e., neglecting the 
water mole fraction and applying the Boussinesq approximation) were applicable. We also 
see clearly that the simulated salt concentration at the top follows to a large extent the ana-
lytic solution also after onset of instabilities. This is due to the instabilities being so weak 
in the beginning, hence their capability to transport salt downward is not developed.

5.4  Development of the Salt Concentration After Onset of Instabilities

In this section, the development of instabilities before and after their onset is discussed, 
using the results of the numerical simulations. Here we also show the case of salt precipita-
tion which occurs for some parameter sets. Different phases of the development are defined 
with help of the mean value �top

�NaCl
 and the standard deviation �top

�NaCl
 of the salt mole fraction 

�NaCl of the grid cells in the top row. These phases can be explained and distinguished by 
the different dominant physical processes.

In Fig. 12, the evaluation of the numeric simulations is shown for the different perme-
abilities and initial perturbations. We here present only one wavelength (0.01 m, 0.03 m, 
0.06 m or 0.3 m) per permeability for the periodic initial perturbations as they show a simi-
lar general behavior. The development of �top

�NaCl
 and �top

�NaCl
 over time indicates the different 

phases of the formation of instabilities.
In the first phase, the initial standard deviation decreases due to the spreading of the 

initially applied perturbations by molecular diffusion. In Fig. 13a, the influence of the dif-
ferent fluxes on the resulting flux is shown for the first phase. As already mentioned in 
Sect. 2.2, the higher density at the location of the perturbation leads to an increased gravi-
tational force and a slowed down convective upward flux. As we apply a constant evapora-
tion rate a lower pressure develops at these locations. This horizontal pressure gradient 
induces a horizontal component to the convective flux toward the perturbation. However, in 
the first phase the diffusive flux dominates the convective flux in the horizontal direction, 
which leads to a degradation of the perturbation. In the vertical direction, the driving force 
of the pressure gradient outweighs the gravitational force. This results in an upward con-
vective flux which also dominates the diffusive flux in the vertical direction. This leads to 
an upward transportation and accumulation of salt at the top during this phase.

The second phase starts at the time of onset, when the standard deviation reaches 
its minimum and the perturbations start to increase. The reason for that can be seen in 
Fig.  13b. The increasing salt concentration and fluid density enhances the gravitational 
downward forces, which in the following enhances the horizontal component of the con-
vective flux toward the perturbation. In this phase, the convective flux dominates the diffu-
sive flux in horizontal direction. This leads to an increased transport of salt toward the per-
turbation and consequently to its enhancement. The vertical direction of the resulting flux 
is still upward, which increases the salt concentration at the top. This is also demonstrated 
by the continuous increase of �top

�
NaCl

 during this phase.
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For the higher permeabilities K = 10−10 − 10−12 m2 , the third phase is characterized by 
a resulting downward flow and starts at the maximum value of �top

�NaCl
 . Until the start of the 

third phase, the liquid density has increased so much at the top and especially at the loca-
tion of perturbations that the high gravitational force causes an convective and resulting 
flux downward; so-called fingers. With a lower permeability a higher density difference 
is needed to overcome the resistance of the porous medium, resulting in higher maximum 
values for �top

�NaCl
 . The resulting flux transports the accumulated salt at the top downward, 

which leads to a decrease of �top

�NaCl
 . Later in this phase, �top

�NaCl
 stabilizes as the upward trans-

ported salt equals the amount which is transported downward with the fingers. A larger 
value for this stabilized salt mole fraction is observed for lower permeabilities. To match 
the upward flow, determined by the constant evaporation rate, the downward flow needs 
larger density differences for lower permeabilities. In all these cases, the solubility limit of 
the salt is never reached, and thus, no salt precipitation is observed in these systems. For 
the lowest considered permeability K = 10−13 m2 , �top

�NaCl
 reaches the solubility limit before 

a convective downward flow develops. Here salt precipitates and �top

�NaCl
 stays constant at the 

solubility limit as we use an equilibrium approach to simulate the precipitation reaction 
(see Eq. (52)).

Note that in case of no precipitation, further phases for the instabilities can be defined. 
The fingers start to merge and form larger fingers with longer wavelengths. As we 

0 1 2 3

10 4

0.01

0.0105

0.011

0.0115

0.012

0.0125

0.013

Explicit solution
Numerical solution
Onset time analysis
Onset time numerical

(a) K = 10−10 m2

0 2 4 6 8 10

10 4

0.01

0.011

0.012

0.013

0.014

0.015

Explicit solution
Numerical solution
Onset time analysis
Onset time numerical

(b) K = 10−11 m2

0 1 2 3 4 5

10 5

0.01

0.012

0.014

0.016

0.018

0.02

0.022

Explicit solution
Numerical solution
Onset time analysis
Onset time numerical

(c) K = 10−12 m2

0 1 2 3 4

10 6

0.01

0.02

0.03

0.04

0.05

Explicit solution
Numerical solution
Onset time analysis
Onset time numerical

(d) K = 10−13 m2

Fig. 10  Salt mole fraction �NaCl at top of the domain as a function of time (in seconds), for K = 10−10 m 2 
(top left), K = 10−11 m 2 (top right), K = 10−12 m 2 (bottom left), K = 10−13 m 2 (bottom right), when a spe-
cific width is used. The estimated onset times are marked as vertical lines
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concentrate on the initial development of the instabilities, we refer to Slim (2014) for a 
detailed description of these merging regimes. Slim describes similar phases, although 
there the instabilities are not evaporation-driven.

6  Final Remarks

As water evaporates from a porous medium saturated with saline water, the accumulated 
salt near the top boundary will either trigger density instabilities, or precipitate in form 
of a salt crust, or both. In this work, we have addressed the onset of instabilities using 
two approaches: analytically by applying a linear stability analysis and numerically by 
performing simulations. The linear stability analysis simplifies the governing equations 
and formulates an eigenvalue problem giving conditions for whether and when insta-
bilities can develop. The advantage of the linear stability analysis is that results for a 
large range of parameters can be obtained at very low costs. The numerical simulations 
can address the original governing equations and can time-step these to address when 

0 1 2 3 4 5

10 4

0.01

0.011

0.012

0.013

0.014

Explicit solution
Numerical solution
Onset time analysis
Onset time numerical

(a) K = 10−10 m2

0 0.5 1 1.5 2

10 5

0.01

0.012

0.014

0.016

0.018

Explicit solution
Numerical solution
Onset time analysis
Onset time numerical

(b) K = 10−11 m2

0 0.5 1 1.5 2 2.5

10 6

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Explicit solution
Numerical solution
Onset time analysis
Onset time numerical

(c) K = 10−12 m2

0 2 4 6

10 6

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Explicit solution
Numerical solution
Onset time analysis
Onset time numerical

(d) K = 10−13 m2

Fig. 11  Salt mole fraction �NaCl at top of the domain as a function of time (in seconds), for K = 10−10 m 2 
(top left), K = 10−11 m 2 (top right), K = 10−12 m 2 (bottom left), K = 10−13 m 2 (bottom right), when a spe-
cific wavelength is analyzed. The estimated onset times are marked as vertical lines. For K = 10−11 m 2 and 
K = 10−13 m 2 , the vertical lines for onset are almost on top of each other
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instabilities develop. The computational costs are larger, but also information for the 
further development after the onset of instabilities can be obtained.

(a) Fixed width forK = 10−10 m2 (b) Fixed wavelength forK = 10−10 m2

(c) Fixed width forK = 10−11 m2 (d) Fixed wavelength forK = 10−11 m2

(e) Fixed width forK = 10−12 m2 (f) Fixed wavelength for K = 10−12 m2

(g) Fixed width forK = 10−13 m2 (h) Fixed wavelength forK = 10−13 m2

Fig. 12  Result from the numerical simulations for a domain of fixed width (left) and for fixed wavelengths 
(right) and the different permeabilities. For each case, the development of the mean value and standard 
deviation of the salt concentration is shown, as well as different phases of the development of instabilities
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x1

x2

evaporation

(a) Phase of degradating pertubations

x1

x2

evaporation

(b) Phase of increasing pertubations

x1

x2

evaporation

(c) Phase of convective downwards flow

convective flux
diffusive flux

gravitational force
pressure gradient force

fluid density
mole fraction constants 
with x 1 > x 2

resulting flux

Fig. 13  Important processes and forces in the different phases of instability development. Left the convec-
tive streamlines and velocity arrows as well as the salt mole fraction in the background are shown exem-
plary for one perturbation for K = 10−11 m 2 and periodic initial perturbations. Right a schematic overview 
of the fluxes and forces describes the formation of the resulting flux
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The onset times of instabilities depend not only on the physical parameters as the 
medium’s permeability and the strength of the evaporation rate, but also on which type 
of instability is considered. The boundary conditions on the sidewalls and which wave-
length develops, affect the development of the instabilities. We here considered two 
cases; either a bounded case with no-flux boundary conditions on the sidewalls, where 
we tried to trigger the most unstable wavelength, or an unbounded case using periodic 
boundary conditions, where we tried to trigger a specific wavelength. For the first case, 
the onset times predicted by the two approaches deviate as the applied perturbation is 
different, and the two methods predict the onset of different instability modes. For the 
second case, the onset times largely coincide. In both cases, the development of the salt 
concentration up to onset of instabilities match up to the difference arising from using 
the Boussinesq approximation in the analytic case. This gives confidence that the two 
methods can correctly predict the onset of instabilities, when a specific wavelength is 
expected.

The numerical experiments show the development of the salt concentration also after 
onset of instabilities. In particular, we see how the salt concentration at the top of the 
domain continues to increase for some time after onset, as the instabilities are in the 
beginning too weak to cause a net downward transport of salt. This means that salt can 
still precipitate even if instabilities have been triggered.

The linear stability analysis can quickly give criteria for onset of instabilities for a 
large range of parameters. The numerical simulations can further give detailed informa-
tion of the further development of instabilities, when applying given parameter choices. 
From the linear stability analysis, we see how the onset of instabilities depend strongly 
on parameters such the strength of the evaporation rate and of the permeability, where 
the latter was also investigated by the numerical simulations. The times for onset of 
instabilities are found to be in the range of hours to days for a realistic evaporation rate, 
depending on the permeability. This means that, in the lack of rainfall in that period, 
our findings give onset times that are realistic especially in arid regions. However, for 
specific implications, field-related analysis is necessary. This study shows that the cur-
rent framework is suitable as analysis strategy for onset times of evaporation-induced 
density instabilities.

Our analysis opens also for comparison with column experiments that consider evap-
oration from the top of a porous column saturated with saline water having different 
salts, e.g., Piotrowski et  al. (2020). However, the current analysis is performed under 
the assumption that the porous medium remains fully saturated. Hence, an extension 
to unsaturated porous media would give more accurate results, also in the context of 
relating to field observations. To accommodate such an extension, Richards equation for 
the evolution of the water saturation needs to be included—both in the linear stability 
analysis and in the numerical simulations. In this case, also capillary forces play a role 
for the evolution of the water saturation, giving potentially more interactions between 
evaporation and subsequent density instabilities. The current study remains valid for the 
case when the capillary pressure stays below the entry pressure, while further research 
is needed to address the case of varying water saturation.
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A Explicit Solution of the Salt Ground State

For the (non-dimensional) ground-state salt concentration X̂0 , which is needed in Sect. 3.3, we 
here derive the explicit solution of

We rewrite this problem in terms of the flux; f = X̂0 + 𝜕ẑX̂
0 . Since 𝜕t̂ X̂0 = 𝜕ẑf  , we have

Writing instead in terms of g = 1 − f  , we have

which has a known explicit solution (Bear 1972), namely

Hence,

Using again that 𝜕t̂ X̂0 = 𝜕ẑf  , we obtain

B Derivation of and Solution Strategy for the Eigenvalue Problem

We here go detailed through the steps for deriving the eigenvalue problem (49). To investi-
gate the stability of the ground state {�̂0, X̂0, P̂0} from Sect. 3.3, we write

𝜕t̂ X̂
0 = 𝜕ẑX̂

0 + 𝜕2
ẑ
X̂0 ẑ > 0, t̂ > 0,

X̂0 + 𝜕ẑX̂
0 = 0 ẑ = 0, t̂ > 0,

X̂0 = 1 ẑ > 0, t̂ = 0.

𝜕t̂ f = 𝜕t̂ X̂
0 + 𝜕t̂ẑX̂

0 = 𝜕ẑf + 𝜕2
ẑ
f ẑ > 0, t̂ > 0,

f = 0 ẑ = 0, t̂ > 0,

f = 1 ẑ > 0, t̂ = 0.

𝜕t̂g = 𝜕ẑg + 𝜕2
ẑ
g ẑ > 0, t̂ > 0,

g = 1 ẑ = 0, t̂ > 0,

g = 0 ẑ > 0, t̂ = 0,

g(t̂, ẑ) =
1

2
e−ẑerfc

�
ẑ − t̂

2
√
t̂

�
+

1

2
erfc

�
ẑ + t̂

2
√
t̂

�
.

f (t̂, ẑ) = 1 −
1

2
e−ẑerfc

�
ẑ − t̂

2
√
t̂

�
−

1

2
erfc

�
ẑ + t̂

2
√
t̂

�
.

X̂0(t̂, ẑ) = 1 + ∫
t̂

0

𝜕ẑf (𝜃, ẑ) d𝜃.

(58)�̂(t̂, x̂, ŷ, ẑ) = �̂0(t̂, ẑ) + �(t̂, x̂, ŷ, ẑ),

(59)X̂(t̂, x̂, ŷ, ẑ) = X̂0(t̂, ẑ) + 𝜒(t̂, x̂, ŷ, ẑ),

(60)P̂(t̂, x̂, ŷ, ẑ) = P̂0(t̂, ẑ) + p(t̂, x̂, ŷ, ẑ),
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where � = (u, v,w),� and p are small, perturbed quantities. Since �̂, X̂ and P̂ still need to 
solve the original equations and boundary conditions, we achieve equations and bound-
ary conditions for the perturbed quantities. Inserting (58)–(60) into (26)–(28) and into 
(31)–(32) and linearizing, we obtain the linear perturbation equations

with boundary conditions at the top

Equations (61)–(63) can be written in terms of {w,� , p} only, see e.g., van Duijn et  al. 
(2019). This results in

with boundary conditions

We seek solutions of this system satisfying

Since (66)–(71) is a linear initial-boundary problem with no coefficients depending on the 
spatial coordinates x̂ and ŷ , we consider solutions of the form

Here âx and ây are horizontal wavenumbers. Substituting (72) into (66)–(68) yields for the 
amplitudes {w̃,𝜒 , p̃}

(61)∇̂ ⋅ � = 0,

(62)� = −∇̂p + 𝜒�z,

(63)𝜕t̂𝜒 = 𝜕ẑ𝜒 − Rw𝜕ẑX̂
0 + ∇̂2𝜒 ,

(64)�|ẑ=0 = �,

(65)(𝜒 + 𝜕ẑ𝜒)|ẑ=0 = 0.

(66)∇̂2w = (𝜕2
x̂
+ 𝜕2

ŷ
)𝜒

(67)𝜕ẑw = (𝜕2
x̂
+ 𝜕2

ŷ
)p

(68)𝜕t̂𝜒 = 𝜕ẑ𝜒 − Rw𝜕ẑX̂
0 + ∇̂2𝜒 ,

(69)w|ẑ = 0 = 0,

(70)(𝜒 + 𝜕ẑ𝜒)|ẑ=0 = 0.

(71)w,𝜒 → 0 as ẑ → ∞.

(72){w,𝜒 , p}(t̂, x̂, ŷ, ẑ) = {w̃,𝜒 , p̃}(t̂, ẑ) cos(âxx̂) cos(âyŷ).

(73)𝜕2
ẑ
w̃ − â2w̃ = −â2𝜒 ,

(74)𝜕ẑw̃ = −â2p̃,
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where â2 = â2
x
+ â2

y
 . Expressions for the horizontal discharge components follow from Dar-

cy’s law:

When the domain is unbounded, i.e., the half space {ẑ > 0} , we consider (73)–(75), subject 
to (69)–(70) for any â > 0 . In case of the bounded domain {(x̂, ŷ, ẑ) ∶ |x̂|, |ŷ| < 𝛽, ẑ > 0} we 
need to choose âx and ây so that the boundary conditions (33) are satisfied. This requires

A sketch of a horizontal discharge field is given in Fig. 14. In this figure, we have used 
𝛽 = 1 as well as âx = ây = 𝜋 , corresponding to one full oscillation in both x̂ and ŷ direction.

It is clear that it suffices to consider only Eqs. (73) and (75), subject to boundary 
conditions (69)–(71). Once they are solved, the pressure results from (74) and the hori-
zontal discharge from (76) to (77).

Using the linearity of (73) and (75), and assuming that the coefficients do not depend 
on time t, we can further separate the variables according to

where � is the exponential growth rate in time, while ŵ and �̂� describe the variability of the 
perturbation with ẑ.

Since X̂0 = X̂0(t̂, ẑ) , the separation of variables as proposed in (79) does not directly 
apply. As already explained in Sect.  3.4, we circumvent this by applying the quasi 
steady state approach (QSSA) or the "frozen profile" approach: For any fixed t̂∗ > 0 , we 
consider 𝜏 = t̂ − t̂∗ as the new time variable. Then (75) becomes

(75)𝜕t̂𝜒 = 𝜕ẑ𝜒 − Rw̃𝜕ẑX̂
0 + 𝜕2

ẑ
𝜒 − â2𝜒 ,

(76)u(t̂, x̂, ŷ, ẑ) = −𝜕x̂p = −
âx

â2
𝜕ẑw̃ sin(âxx̂) cos(âyŷ),

(77)v(t̂, x̂, ŷ, ẑ) = −
ây

â2
𝜕ẑw̃ cos(âxx̂) sin(âyŷ).

(78)âx = nx
𝜋

𝛽
, ây = ny

𝜋

𝛽
, nx, ny = 1, 2,…

(79){w̃,𝜒}(t̂, ẑ) = {ŵ, �̂�}(ẑ)e𝜎 t̂,

Fig. 14  Horizontal discharge 
(u, v) seen from above for a cross 
section {(x̂, ŷ) ∶ |x̂|, |ŷ| < 𝛽} , 
here using 𝛽 = 1

-1 -0.5 0 0.5 1
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In this equation, we take 𝜏 small, 0 < ̂𝜏 ≪1 , and write X̂0(t̂∗ + 𝜏, ẑ) ≈ X̂0(t̂∗, ẑ) , i.e., the fro-
zen profile. Setting now

we obtain

for 0 < ẑ < ∞ subject to (69)–(71).
For given â > 0, t̂∗ > 0 and � ∈ ℝ , this is an eigenvalue problem in terms of {ŵ,𝜒} and 

R. The object is to determine the smallest positive eigenvalue R = R∗(â, t̂∗, 𝜎) . As shown in 
Appendix C, there is exchange of stability; i.e.,

This means that if the parameters of the problem are such that R > R∗(â, t̂∗, 0) , then at time 
t̂∗ a perturbation with wavenumber â will emerge, implying that the ground state looses its 
stability at time t̂∗.

Based on this observation, it suffices to analyze the eigenvalue problem for the case of 
neutral stability; that is, � = 0 . Thus, we need to consider the problem (dropping the aster-
isk in t̂∗ and R∗):

Given â > 0 , t̂ > 0 , and X̂0 = X̂0(t̂, ẑ) by (38), find the smallest R = R(â, t̂) > 0 such that

has a non-trivial solution. This is the same as (49).
The eigenvalue problem (85) is solved via a Laguerre-Galerkin method. We let

where the basis functions are given by

and where Ln is the Laguerre polynomial of degree n  (Temme 1996); i.e., 

(80)𝜕𝜏𝜒 = 𝜕ẑ𝜒 − Rw̃𝜕ẑX̂
0(t̂∗ + 𝜏, ẑ) + 𝜕2

ẑ
𝜒 − â2𝜒 .

(81){w̃,𝜒}(𝜏, ẑ) = {ŵ, �̂�}(ẑ)e𝜎𝜏 ,

(82)𝜕2
ẑ
w − â2ŵ = −â2�̂�

(83)𝜎�̂� = 𝜕ẑ�̂� − Rŵ𝜕ẑX̂
0(t̂∗, ẑ) + 𝜕2

ẑ
�̂� − â2�̂� ,

(84)R∗(t̂, t̂∗, 𝜎) ≷ R∗(â, t̂∗, 0) if and only if 𝜎 ≷ 0.

(85)

ŵ�� + â2�̂� − â2ŵ = 0 ẑ > 0,

�̂� � − Rŵ𝜕ẑX̂
0 + �̂� �� − â2�̂� = 0 ẑ > 0,

where ŵ and �̂� fulfill

ŵ = 0, �̂� + �̂� � = 0 ẑ = 0,

ŵ → 0, �̂� → 0 ẑ → ∞,

⎫⎪⎪⎬⎪⎪⎭

(86)�̂�(ẑ) =

∞∑
n=0

�̂�n𝜁n(ẑ), ŵ(ẑ) =

∞∑
n=0

ŵn𝜂n(ẑ),

(87)𝜁n(ẑ) = e
−

ẑ

2

(
Ln(ẑ) +

1 − 2n

1 + 2n
Ln+1(ẑ)

)
and 𝜂n(ẑ) = e

−
ẑ

2

(
Ln(ẑ) − Ln+1(ẑ)

)
,

(88)Ln(ẑ) =

n∑
�=0

(−1)�
(
n

�

)
ẑ�

�!
with Ln(0) = 1 and L�

n
(0) = −n.
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The special combinations in (87) are chosen so that that 𝜁n(ẑ) and 𝜂n(ẑ) satisfy the bound-
ary conditions for �̂� and ŵ in the fourth and fifth line of (85), respectively. Inserting (87) 
into the first two lines of (85), multiplying with �m and �m and integrating with respect to ẑ 
yields

We truncate this expression at a large number n = N . Inspecting the convergence of the 
terms, we found N = 32 to be sufficient. The integrals can be determined analytically using 
the properties of Laguerre polynomials. The only exception is the integral involving 𝜕ẑX̂0 , 
which is approximated using a Gauss-Laguerre quadrature rule. This results in a system 
of linear equations for the weights 𝜒n and ŵn , which can be expressed as a matrix multi-
plied with a vector containing the weights. The eigenvalues of this matrix correspond to 
the eigenvalues of (85).

C Investigation of Exponential Growth Rate

We here include the exponential growth rate � as a parameter in the eigenvalue problem, as 
considered in Sect. 3.4 and Appendix B. As introduced in (48) and (79), 𝜎 > 0 corresponds 
to perturbations growing in time, while for 𝜎 < 0 perturbations decay with time. When 
keeping � in the perturbed equations, we now obtain the following eigenvalue problem:

Given â > 0 , t̂ > 0 , � ∈ ℝ and X̂0 = X̂0(t̂, ẑ) by (38), find the smallest R = R(â, t̂, 𝜎) > 0 
such that

∞∑
n=0

ŵn ∫
∞

0

𝜂��
n
𝜂mdẑ + â2

∞∑
n=0

�̂�n ∫
∞

0

𝜁n𝜂mdẑ − â2
∞∑
n=0

ŵn ∫
∞

0

𝜂n𝜂mdẑ = 0,

∞∑
n=0

�̂�n ∫
∞

0

𝜁 �
n
𝜁mdẑ − R

∞∑
n=0

ŵn ∫
∞

0

𝜕ẑX̂
0𝜂n𝜁mdẑ

+

∞∑
n=0

�̂�n ∫
∞

0

𝜁 ��
n
𝜁mdẑ − â2

∞∑
n=0

�̂�n ∫
∞

0

𝜁n𝜁mdẑ = 0.

Fig. 15  Resulting eigenvalue 
R (vertical axis) as a function 
of wavenumber â (horizontal 
axis) for various t̂  and � . Solid 
lines correspond to � = 0 , 
while dashed lines correspond 
to � = ±0.01 , dotted lines to 
� = ±0.1 and dashed-dotted to 
� = ±1 . The curves lying below 
the corresponding solid curve are 
for negative � and the ones above 
the corresponding solid curve 
are for positive � . Note that the 
eigenvalue problem degenerates 
when (â2 + 𝜎) = 0 , which is why 
the lines for negative � do not 
extend beyond â =

√
−𝜎
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has a non-trivial solution.
For given â, t̂ > 0 and � ∈ ℝ , (89) is an eigenvalue problem where R is to be deter-

mined. We follow the same strategy as described in Sect. 3.5 to discretize and solve the 
eigenvalue problem. The corresponding version of Fig.  4 when including � is shown in 
Fig. 15.

From Fig. 15, we observe the following: For negative � (corresponding to perturba-
tions decaying with time; i.e., stability), we are always below the curves corresponding 
to � = 0 when looking at same t̂ and â . This means, when we are below a solid curve, 
which means that the Rayleigh number is lower than the one on the vertical axis, we 
have stability since a perturbation will decay with time. Similarly, for positive � (cor-
responding to perturbation growing with time), we are always above the curves corre-
sponding to � = 0 when looking at same t̂ and â . This means, when we are above a solid 
curve, which means that the Rayleigh number is larger than the one on the vertical axis, 
a perturbation will grow exponentially with time. From this, we can conclude that inves-
tigating � = 0 is the relevant case for the eigenvalue problem, as the eigenvalues found 
by using � = 0 correspond to the shift from perturbations growing or decaying.

Note that the eigenvalue problem (89) degenerates when â2 + 𝜎 = 0 , which is why 
the curves for negative � are not extended beyond â =

√
−𝜎 . If one would like to inves-

tigate very small wavenumbers â , one could overcome this by choosing a correspond-
ingly small � to avoid (or, more correctly, shift) the degeneracy.

(89)

ŵ�� + â2�̂� − â2ŵ = 0 ẑ > 0,

�̂� � − Rŵ𝜕ẑX̂
0 + �̂� �� − (â2 + 𝜎)�̂� = 0 ẑ > 0,

where ŵ and �̂� fulfill

ŵ = 0, �̂� + �̂� � = 0 ẑ = 0,

ŵ → 0, �̂� → 0 ẑ → ∞,

⎫⎪⎪⎬⎪⎪⎭

Fig. 16  Ground state solution for 
salt X̂0 using (38) (solid lines) 
and approximate solution Û0 
using (90) (dashed lines)

0 2 4 6 8 10 12

0

1

2

3

4

5

6



Evaporation‑Driven Density Instabilities in Saturated Porous…

1 3

D The Behavior for Small Wavenumbers â

Figure  4 shows that for each t̂ > 0 , the Rayleigh number R(â, t̂) has a finite value as 
â ↘ 0 . This behavior is different from other cases where R(â, t̂) → ∞ as â ↘ 0 and has 
a positive minimum at some critical wavenumber âL > 0 , e.g., Riaz et  al. (2006); van 
Duijn et al.( 2002). Here we provide an explanation for an approximate eigenvalue prob-
lem. We first observe that for each t̂ > 0 , the ground state solution X̂0(t̂, ẑ) from (38) has 
its maximum at ẑ = 0 and decreases in a convex way toward X̂0(t̂,∞) = 1 . The idea is to 
replace X̂0(t̂, ẑ) by the expression

Figure 16 shows the profiles of X̂0 and Û0 for various t̂ > 0 . Note that they have the same 
qualitative behavior and that the relative error becomes smaller as t̂ increases. We propose 
to use Û0(t̂, ẑ) as ground state in the eigenvalue problem (49). Setting

we obtain the neutral stability ( � = 0 ) eigenvalue problem:
Given â > 0 , find the smallest R∗ = R∗(â) > 0 such that

has a non-trivial solution.
The equations in (92) can be combined into the fourth-order equation

where Dẑ denotes differentiation with respect to ẑ , resulting in the eigenvalue problem:
Given â > 0 , find the smallest R∗ = R∗(â) such that

has a non-trivial solution.
Note that Eq. (93) also arises when studying the stability of the equilibrium state of the salt 

lake problem, see van Duijn et al. (2002) and references cited therein. In this study, the eigen-
value problem differs from (94) only through the second boundary condition of ŵ at ẑ = 0 . In 
the salt lake problem, the second condition is �̂�(0) = 0 , implying that D2

ẑ
ŵ(0) = 0.

Arguing as in van Duijn et al. (2002), we treat (94) by a semi-analytical technique based on 
a Frobenius expansion in terms of descending exponential functions:

(90)Û0(t̂, ẑ) = 1 + e−ẑ(X̂0(t̂, 0) − 1).

(91)R∗ = (X̂0(t̂, 0) − 1)R,

(92)

ŵ�� + â2�̂� − â2ŵ = 0 ẑ > 0,

�̂� � + R∗e−ẑŵ + �̂� �� − (â2 + 𝜎)�̂� = 0 ẑ > 0,

where ŵ and �̂� fulfill

ŵ = 0, �̂� + �̂� � = 0 ẑ = 0,

ŵ → 0, �̂� → 0 ẑ → ∞,

⎫⎪⎪⎬⎪⎪⎭

(93)L[w] ∶= (D2
ẑ
+ Dẑ − â2)(D2

ẑ
− â2)ŵ = â2R∗e−ẑ,

(94)

L[ŵ] = â2R∗e−ẑŵ ẑ > 0,

where ŵ fulfills

ŵ = 0, (D2
ẑ
− â2)(Dẑ + 1)ŵ = 0 ẑ = 0,

ŵ → 0 ẑ → ∞,

⎫⎪⎬⎪⎭

(95)ŵ(ẑ) =

∞∑
n=0

An(R
∗)ne(c−n)ẑ,
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where c < 0 . Substituting (95) into (93) gives the indicial equation

yielding the negative roots

and the recurrence relation

where

Hence, we obtain the power series solution

where

The boundary conditions at ẑ = 0 are satisfied if

and

where

Writing (96) and (97) as

we need to examine the characteristic equation det(M) = 0 to find the eigenvalues of (92). 
For n ≤ 2 , we have

(c2 + c − â2)(c2 − â2) = 0,

c1 = −â, c2 = −
1

2
−

√
1

4
+ â2,

{
A
(i)
n

A
(i)

n−1

=
â2

fi(n;â)
n ≥ 1,

A
(i)

0
= 1,

fi(n;â) = ((ci − n)2 + (ci − n) − â2)((ci − n)2 − â2), n ≥ 1.

ŵ(ẑ) = Aŵ1(ẑ) + Bŵ2(ẑ),

ŵi(ẑ) =

∞∑
n=0

A(i)
n
(R∗)ne−(ci−n)ẑ, i = 1, 2,…

(96)
( ∞∑
n=0

A(1)
n
(R∗)n

)
A +

( ∞∑
n=0

A(2)
n
(R∗)n

)
B = 0

(97)
( ∞∑
n=0

A(1)
n
g1(n;â)(R

∗)n
)
A +

( ∞∑
n=0

A(2)
n
g2(n, â)(R

∗)n
)
B = 0,

gi(n;â) = (ci − n)((ci − n)2 + (ci − n) − â2), n ≥ 0.

(
M
)(A

B

)
=

(
0

0

)
,
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For â ≪ 1 , we take, to leading order, n ≤ 1 and obtain

or

Evaluating the coefficients yields

Hence,

That means, in the limit as â approaches zero, we find

Using again (91), we find that

approximates the critical Rayleigh number for â approaching zero. The Rayleigh numbers 
using the strategy from Sect. 3.5 with â = 10−4 together with the approximate ones from 

det(M) =
(
1 +

â2R∗

f1(1)
+

(â2R∗)2

f1(2)f1(1)

)(g2(1)
f2(1)

â2R∗ +
g2(2)

f2(2)f1(1)
(âR∗)2

)

−
(
1 +

â2R∗

f2(1)
+

(â2R∗)2

f2(2)f2(1)

)(
â2 +

g1(1)

f1(1)
â2R∗ +

g1(2)

f1(2)f1(1)
(â2R∗)2

)
.

g2(1)

f2(1)
â2R∗ = â2 +

g1(1)

f1(1)
â2R∗,

R∗(
g2(1)

f2(1)
−

g1(1)

f1(1)
) = 1.

g2(1)

f2(1)
−

g1(1)

f1(1)
=

−4 + O(â2)

8 + O(â2)
−

−â(1 + â)

â(1 + 2â)
= −

1

2
+ O(â2) +

1 + â

1 + 2â
=

1

2(1 + 2â)
+ O(â2).

(98)R∗(â) = 2(1 + 2â) + O(â2) as â ↘ 0.

R∗ = 2.
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2
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Fig. 17  Critical Rayleigh number from Sect.  3.5 using â = 10−4 and approximate Rayleigh number from 
(99), and the relative error between them as a function of non-dimensional time t̂
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(99) are shown in Fig. 17. The relative error between the approximate Rayleigh number 
and the Rayleigh number from Sect. 3.5 is larger for early times, as expected from Fig. 16 
since the approximate ground state deviates more. However, the relative error is generally 
small, and decreases fast for later times. Hence, the approximate Rayleigh number (99) 
represents the behavior for low wavenumbers â well. We also see from (98) that R∗ (and 
hence R) decreases monotonously for low â as â approaches zero. This shows that â = 0 
corresponds to a (local) minimum for R(â, t̂) for given t̂ > 0.

E Grid and Time Step Convergence Study for the Numerical Simulations

A convergence study was performed to ensure that the spatial, and temporal discretiza-
tion are able to capture the physical processes in sufficient detail and that the numerical 
diffusion has a negligible influence. The study was carried out using the same setup as 
described in Sect. 5 exemplary for the case with a fixed wavelength of � = 0.01 m and a 
permeability of K = 10−10 m2 . As this case has the lowest used wavelength and hence the 
lowest resolution per perturbation, the influence of the discretization should be even less 
for longer wavelengths. The influence of the cell width in x-direction, the discretization 
in z-direction and the time step size was investigated. The onset time and the time of the 
maximal mean value �top

�
NaCl

 are used to evaluate the influence. A quadratic regression is used 

(a) Onset time (b) Time of maximal mean value µtop
xNaCl

Fig. 18  Influence of the grid cell size in x-direction on the onset time and the time of maximal mean value

(a) Onset time (b) Time of maximal mean value µtop
xNaCl

Fig. 19  Influence of the height of the top cell �ztop on the onset time and the time of maximal mean value
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to extrapolate the values for a theoretical infinitesimal small cell width, cell height and time 
step.

The influence of the cell widths in x-direction on the onset time and time of the maxi-
mal mean value is shown in Fig.  18. The discretization in z-direction equals the one of 
the selected grid as described below. The investigated cell widths 5 ⋅ 10−4 m, 1 ⋅ 10−3 m, 
2 ⋅ 10−3 m and 3.33 ⋅ 10−3 m correlate with 20, 10, 5 and 3 cells per initially applied pertur-
bation wavelength. The selected grid uses 10 cells per perturbation wavelength. For longer 
wavelengths using lower permeabilities, this results in more cells per perturbation wave-
length. The deviation of the selected grid from the extrapolated value is 6.3 % for the onset 
time and 1.6 % for the time of maximal mean value.

Figure  19 shows the investigation of the discretization in z-direction. In x-direction, 
the discretization equals the one of the selected grid as described above. In z-direction, 
a grading is used so that the top cell is the smallest, and the cell height increases toward 
the bottom of the domain. The same grading factor of 0.9 is used for the grids, but dif-
ferent numbers of cells. The different grids have 30, 35, 40 and 50 cells in z-direction, 
which correspond to a top cell height �ztop of 9.84 ⋅ 10−4 m, 5.71 ⋅ 10−4 m, 3.33 ⋅ 10−4 m 
and 1.15 ⋅ 10−4 m. Additionally, a grid with uniform grid heights of 1.0 ⋅ 10−3 m was simu-
lated. It has in total 200 cells in z-direction as it discretizes the lower parts of the domain 
finer, whereas �ztop nearly matches the coarsest graded grid. Nearly no influence could be 
observed from the finer discretization in the lower domain, on the time of onset and in 
maximal mean value. It is found that the height of the top cell has the main influence. We, 
therefore, look at the height of the top cell �ztop of the different grids. The selected grid 
uses grading and deviates 0.1 % for the onset time and 0.2 % for the time of maximal mean 
value from the respective theoretical extrapolated value. In comparison with the cell width, 
the cell height has less influence on the two evaluation times.

Further, an investigation of the time step size on the evaluation times was performed. It 
was found that for time steps from 25 to 150 s, the evaluation is independent of the time 
discretization. For all simulations, we use a time step of 50 s.
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12 Conclusion and outlook

In this habilitation thesis we have investigated how multiscale approaches can improve
modeling and simulation of transport processes in porous media. This has been exem-
plified mainly through three types of transport processes: diffusive/conductive transport
through parabolic problems, transport by two-phase flow where the two fluids interact with
each other, and reactive transport where the available domain for fluid flow changes due to
mineral precipitation and dissolution. These transport processes are relevant in a large va-
riety of technical, biological and environmental applications. Especially geothermal energy
production, soil salinization due to evaporation, and water management in fuel cells can be
highlighted as applications where such transport processes play a role. Different multiscale
approaches have been applied to address which types of models are appropriate to describe
these transport phenomena at the pore scale and at the Darcy scale of a porous medium,
and to construct efficient numerical schemes for these models. Through these multiscale
approaches, we have found suitable modeling approaches bridging the scale gaps in porous
media, and have highlighted the need to apply multiscale approaches for the considered
processes and applications. In the following, the main outcomes of each of the parts and
chapters are summarized, and we point to remaining open questions, in particular in terms
of further development and incorporation of multiscale approaches for transport processes
in porous media.

Part A focused on parabolic problems, in particular on finding effective coefficients at
a larger scale for such problems. The first chapter of this part, Chapter 2, considered a
non-linear parabolic problem which could represent the Richards equation for Darcy-scale
unsaturated flow. In this case, the diffusion coefficient is the permeability of the porous
medium. Here, an efficient numerical scheme based on mesh adaptivity and homogenization
techniques was designed. Due to the mesh adaptivity, the permeability is needed at the
various meshes. The permeabilities at the coarser meshes are found through solving local
cell problems, which have been derived by applying homogenization. Despite the fact that
homogenization relies on local periodicity, the scheme was found to work well also for non-
periodic permeabilities. By applying L-scheme iterations, the non-linear solving steps were
guaranteed to converge, which ensures a robust scheme. Overall, the numerical scheme
was found to work well for the considered non-linear parabolic problem. It remains to
apply similar approaches to problems where the non-linearities are more challenging. In
particular, the permeability in this setup was constant in time and did not depend on the
solution variable. Hence, the estimates of the permeability for the various meshes could
therefore be decoupled from the rest of the problem. In the case of Darcy-scale two-phase
flow, one has non-linear problems where the relative permeabilities depend on the saturation
(as discussed in Section 1.2.2). Such relative permeability-saturation relationships are
generally non-linear. It is possible to perform homogenization on such problems to find
the effective permeability-saturation relationship on a larger scale (e.g. the field scale), see
e.g. [45], but the adaptive algorithm from Chapter 2 would need to be adjusted to be able to
estimate relative permeabilities for the coarser meshes. However, such an extension would
allow for efficient and robust simulations also for Darcy-scale two-phase flow for large-scale
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12 Conclusion and outlook

applications.
In Chapter 3, effective heat conductivities of a thin porous medium were investigated.

Thin porous media appear in the setting of filters or can be part of a fuel cell. Here, the
starting point was coupled heat transport in fluid and solid at the pore scale. By combining
homogenization with ideas from transversal averaging, a dimensionally reduced Darcy-scale
model for heat transport was found. The resulting cell problems for effective parameters
were still three-dimensional, and depend on the boundary conditions from the top and
bottom boundary of the thin porous medium. We considered here Dirichlet and Neumann
boundary conditions, which represent two extremes of how the external boundaries behave.
Extensions to other types of boundary conditions such as Robin boundary conditions are
not straightforward as the homogenization steps depended on the type of conditions, due
to the porous medium being thin. If the thin porous medium represents an interface layer
between two domains, it would be beneficial to rather have an active coupling to those
domains instead of applying given boundary conditions. This would result in obtaining
effective transmission condition of the thin porous medium, similar as done for diffusion
through membranes in [40, 41].
In Chapter 4, the final chapter of Part A, the behavior of permeability, effective so-

lute diffusivity and effective heat conductivity was investigated. The starting point was a
model derived by homogenization in [18], where Darcy-scale fluid flow, solute transport and
heat transport are connected to local pore-scale cell problems for these effective parame-
ters. The motivation of the model is to describe the influence of mineral precipitation and
dissolution in a geothermal reservoir. In Chapter 4, the behavior of these effective param-
eters, in particular in the case when the porous medium is about to clog, was addressed.
Parametrizations of these effective parameters for circular solids were found, honoring the
observed changes close to clogging. These parametrizations are very useful when perform-
ing Darcy-scale simulations, as a coupled multiscale implementation is then not needed.
For permeability and effective diffusivity, such parametrizations have been found for a large
range of solid shapes [82, 94]. However, for heat transport, the solid is not just an obstacle,
but an active part of transporting heat. Hence, extending the approaches as those found
in [82, 94] to heat conductivities is possible by solving a range of cell problems, but is less
generalizable than permeability and effective diffusivity, as the ratio between the heat con-
ductivities of the fluid and solid influences the effective heat conductivity. However, this
opens also for the possibility to rather apply machine learning on a selected range of heat
conductivity ratios and solid shapes, and from there learn the general behavior of effective
heat conductivities in porous media.
Also note that, for both Chapter 3 and Chapter 4, the cell problems for effective heat

conductivity were derived under the assumptions that heat conductivities of the fluid and
solid should be the same order of magnitude, and that thermal equilibrium between the
fluid and solid at the pore scale applies. If the fluid and solid heat conductivities instead
differ significantly or if pore-scale thermal equilibrium cannot be assumed, other effective
models and other pore-scale cell problems for the effective heat transport are reached, see
[9, Chapter 4]. When heat is transported by both advection and conduction, the question
of which of these transport processes are dominating at the Darcy scale arises. In both
Chapter 3 and Chapter 4, it was assumed that heat transport by advection and conduction
were of equal importance at the Darcy scale. However, for advection-dominated processes,
effective dispersion needs to be accounted for on the larger scale [6, 19]. How effective
dispersion would manifest for thin porous media, remains an open question. Hence, there
are many open questions on finding effective heat conductivities and understanding effective
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heat transport in porous media, depending on the physical setting. However, these problems
can be tackled with applying homogenization for these settings.
The main focus of Part B was on finding and understanding the effective behavior of

two-phase flow. The main goal has been to incorporate the influence of the evolving fluid-
fluid interface on the effective behavior. The fluid-fluid interface could in all cases evolve
due to the flow itself and the interaction through surface tension between the two fluids.
Three different settings were investigated, resulting in very different effective models. In
Chapter 5, layered two-phase flow in a thin strip was analyzed. The thin strip represents
a very simple domain for two-phase flow and is relevant for two-phase flow in a single pore
or channel. By using a layer width to describe the evolution of the fluid-fluid interface and
applying transversal averaging, dimensionally reduced models for the effective behavior of
two-phase flow through the thin strip were derived. By considering different regimes in
terms of capillary number and viscosity ratio, different effective models could be found.
Such analyses highlight in particular the influence of e.g. capillary pressure and when the
pressure jump between the two fluids has an influence on the effective behavior and when
it does not have an impact. Since the domain is so simple, it is possible to find explicit
expressions for the behavior of effective parameters. In Chapter 5, it was found that when
the capillary pressure influences the effective behavior, the capillary pressure between the
fluids depends on the curvature of the fluid-fluid interface and not on the saturation of one
fluid, as usually assumed [48] (cf. discussion in Section 1.2.2). Numerical simulations of the
original pore-scale equations showed that the dimensionally reduced models were indeed
representing the average behavior well. What remains is to generalize these analyses to
even further regimes (in terms of capillary number, Reynolds number, incorporating slip)
to increase understanding of effective behavior for more two-phase flow settings.
Chapter 6 considered as Chapter 5 two-phase flow in a thin strip, but addressed the case

where one fluid displaces the other. Here, transversal averaging could only be applied away
from the fluid-fluid interface to derive a dimensionally reduced model. The region near the
fluid-fluid interface was instead incorporated by matched asymptotic expansions, which
hence connected the two regions at each side of the fluid-fluid interface. The resulting
effective model was dimensionally reduced and incorporated also the influence of dynamic
contact angle laws and slip length to the solid walls. Since the domain is rather simple,
(semi-)explicit expressions for dynamic effects on the capillary pressure could be found,
giving new insights to how dynamic effects influence the effective behavior. This model
was later extended to axisymmetric tubes, such that effective behavior along the tube could
be modeled [67]. Extending to such a domain allows the effective model to be incorporated
in (dynamic) pore-network models.
Another possible extension is to combine the two approaches of Chapter 5 and Chapter 6:

Instead of restricting to layered flow or one fluid displacing the other, one could consider
a setting which allows for large deformations of the fluid-fluid interface by combining the
modeling and averaging approaches of these two chapters. However, how to couple these
two approaches where the fluid-fluid interface behaves in an “in between” form, remains
an open question. An extra level of matched asymptotic expansions could allow to connect
model compartments in the necessary manner. A dimensionally reduced model for this
combined setting would allow for understanding the effective behavior for more general
two-phase flow in thin strips or tubes. Note that a similar setup was considered in [79]
(cf. plug flow in Figure 1 in [79]), but only for steady-state flow where deformation of the
fluid-fluid interface was neglected. By incorporating the dynamic behavior in the effective
models, a better understanding of the interactions between the two fluid phases can be
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obtained.
In the last chapter of Part B, Chapter 7, two-phase flow in a periodic porous medium

was investigated. By using a phase-field model for two-phase flow in a periodic pore-scale
geometry and applying homogenization, a Darcy-scale model could be derived. The Darcy-
scale model depends on effective parameters found through local pore-scale cell problems.
Here, the influence of a varying surface tension due to a soluble surfactant was investigated.
The cell problems for effective parameters depend on the phase field (which in this case cor-
responds to the distribution of the two fluid phases at the pore scale), which itself depends
on the surface tension. The resulting two-scale model was implemented using an approach
inspired by heterogeneous multiscale methods in an explicit manner. The numerical exper-
iments highlighted the influence of the varying surface tension on the effective Darcy-scale
behavior, which is relevant for example for enhanced oil recovery. For the numerical ex-
periments, all the cell problems were solved at every time step. A more efficient algorithm
could have been developed by incorporating an adaptivity criterion in terms of which cell
problems have to be updated when. However, what a suitable criterion for two-phase flow
would be, is not clear. The Darcy-scale model itself was derived under certain assumptions
on the non-dimensional parameters for the flow rates, strength of solute diffusion and be-
havior of the phase field. Extending the homogenization procedure to other regimes would
allow to have effective models also for more general settings of two-phase porous-medium
flow.
Part C addressed modeling and simulation of reactive transport in porous media, where

mineral precipitation and dissolution reactions could alter the pore-scale geometry. The
first chapter of this part, Chapter 8, formulated a new phase-field model for single-phase
fluid flow and solute transport, coupled with the evolving geometry due to mineral pre-
cipitation and dissolution. The motivation for formulating such a model is to describe
interactions between fluid flow and geometry changes, which is relevant for geothermal en-
ergy production and soil salinization. The availability of this phase-field model allows for
simpler analysis and numerical implementation of such processes, since the evolving fluid-
solid interface and its boundary conditions are incorporated into the phase-field model
in a smooth manner. Hence, discontinuities are avoided. The Allen-Cahn equation for
the evolution of the phases is a diffusion equation with a non-linear source term, which
can be implemented by most standard numerical schemes. However, as it is clear from
Chapter 8, the phase-field model always includes curvature-driven motion of the fluid-solid
interface, which is not necessarily physical. The curvature-driven motion became visible
already from the sharp-interface limit derived by matched asymptotic expansions, and also
from the numerical experiments where the model was compared to available benchmarks.
There are approaches to handle the curvature-driven motion for simpler phase-field models,
e.g. [1, 116], but it remains to investigate to which extent these approaches are applicable
to the phase-field model developed in Chapter 8. Unlike the Cahn-Hilliard equation, the
Allen-Cahn equation is not conservative. This can however be handled by including an
additional non-local term, but comes with the cost that non-linear solving steps are then
much more expensive [16].
By formulating the phase-field model of Chapter 8 in a periodic pore-scale geometry, an

effective Darcy-scale model was found by homogenization. The derived Darcy-scale model
relies on local pore-scale cell problems for effective parameters permeability and effective
diffusivity, which depend on the phase field (which in this case gives the distribution of fluid
and solid at the pore scale). The diffuse-interface width therefore affects the value of the
effective parameters, and by comparing with solutions of corresponding sharp-interface cell
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problems we found this influence to be relatively small - and decreasing when the sharp-
interface width decreased. The latter opens for the question of asymptotic consistency: If
one reaches the same model if first performing homogenization (ε → 0) and then taking
the sharp-interface limit (λ→ 0), as when one first takes the sharp-interface limit (λ→ 0)
and afterwards performs homogenization (ε → 0). Although the numerical solution of
the cell problems indicated that one has asymptotic consistency, further analysis of the
homogenized phase-field model is needed to answer this question. At least for a Cahn-
Hilliard model, asymptotic consistency has recently been found in the case of transversal
averaging [107].
The derived model in Chapter 8 consists of Darcy-scale and pore-scale equations, where

the two scales are coupled through the reaction rate and the effective parameters. In
Chapter 9, a robust and efficient scheme was constructed for this coupled two-scale model
by applying a scheme from heterogeneous multiscale methods. The constructed scheme uses
an iterative approach between the two scales. These two-scale iterations were in Chapter 9
proven to converge under mild restrictions on the time-step size and phase-field parameters.
However, the proof was only for the case where flow was neglected. The reason for neglecting
flow was the issue of bounding the variability of the permeability. This bounding could be
done for the effective diffusivity by analyzing its cell problem (cf. Lemma 2 in Chapter 9).
However, the cell problem for permeability has a different structure, which did not allow the
same strategy to be applied. In the numerical examples, the scheme was found to converge
also in the case with flow. However, a different strategy is needed to include the influence
of fluid flow in the convergence proof. One possibility would be to limit the possible solid
shapes in order to bound the resulting permeability variation. In this case the proof would
rely on a parametrized-like expression for how permeability depends on the varying solid
size, as done for a sharp-interface model in Chapter 4.
In Chapter 9, an adaptive strategy in terms of which cell problems should be updated

when is applied, by extending the ideas of [85]. This turned out to give a large gain in terms
of less computational effort, with only a minor loss of accuracy. The cell problems can also
be solved in parallel as they do not depend on each other, allowing further speedup of the
resulting numerical scheme. These strategies are relevant also for other types of applica-
tions where macro-scale equations depend on micro-scale problems for effective parameters;
e.g. two-phase flow in Chapter 7, heterogeneous materials [56] and biology [98]. However,
suitable adaptivity criteria are needed for each application in order to apply such a strategy.
In the last chapter of Part C, Chapter 10, modeling and numerical approaches for single-

phase fluid flow with two precipitating and dissolving minerals were investigated. Interac-
tions between the minerals were included in the sense that the dissolution of one mineral
could trigger the precipitation of the other due to differences in solubility, which is a rather
common setting especially for geothermal reservoirs. Such a three-phase setting is challeng-
ing to model and simulate, especially due to the movement of the fluid-solid-solid triple
points. A sharp-interface model based on a modified level-set approach and a diffuse-
interface model based on a ternary phase-field model were formulated, implemented, and
compared against each other. Overall, both approaches were found to be able to simulate
geometrical changes in a three-phase system. Numerically, the phase-field model conserved
mass, while the level-set model lost up to 2% due to the approximations made for the level-
set approach. In general, fewer unknowns on the same grid and fewer Newton iterations
were needed for the phase-field model, highlighting its simpler numerical approach due to
the diffuse nature of the model. However, the phase-field model struggled with resolving
the behavior of the triple points. This was assumed to be caused by the curvature-driven
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interface motion, whose presence was visible already in the sharp-interface limit. Known
approaches to handle such curvature-driven motion for simpler models [1, 116] were found
to not be applicable for this model. This means, further work is needed to find a suitable
strategy to eliminate curvature-driven motion for this type of phase-field model. How-
ever, solving the corresponding pore-scale cell problems for the level-set and phase-field
model, provided comparable values of permeability and effective diffusivity. Hence, both
approaches were found to be able to predict effective parameters satisfactory if used as
pore-scale models in a two-scale approach.
The last part of this thesis, Part D, addressed evaporation from a porous medium in

Chapter 11. The analysis made here is motivated by soil salinization. In the model setup,
water is allowed to evaporate from the top of the porous medium, while salt stays behind.
There is hence a gradual accumulation of salt near the top of the porous medium, which
can result in soil salinization and formation of a salt crust if the solubility of the salt
is reached. Since this setting is also gravitationally unstable, instabilities in the form of
fingers can develop. In this chapter, a linear stability analysis was applied to analyze the
onset of instabilities. Through finding and solving a connected eigenvalue problem, onset
times could be found as function of model parameters such as permeability and evaporation
rate. For realistic choices of parameters, the onset times were found to be in the range of
hours to days. Numerical simulations gave information about the further development of
the instabilities, and their influence on the salt concentration. In particular, it was found
that the instabilities gradually develop in strength and can therefore first after some time
cause a net downwards transport of salt. Hence, salt can still precipitate even if density
instabilities occur.
The analysis and simulations performed in Chapter 11 contributed to increased under-

standing of the development and importance of evaporation-induced density instabilities
in porous media. However, a simplified setup was considered, which could influence the
outcomes. In particular, it was assumed that the porous medium remains fully saturated
during evaporation. This is the case as long the lower part of the porous medium is con-
nected to a saturated reservoir and as long the capillary pressure remains below the entry
pressure of the porous medium. However, in other cases, air would penetrate into the porous
medium when there is evaporation [13]. To incorporate the possible presence of air would
have required to perform the linear stability analysis and simulations with Richards equa-
tion for unsaturated flow or with Darcy-scale two-phase flow models (see Section 1.2.2).
Using Richards equation introduces an additional non-linearity in the model, but linear
stability analyses for Richards equation have been successfully performed for other settings
[34]. In this case, potential interactions between the varying water saturation and density
instabilities could be captured.
Another aspect is that the linear stability analysis and simulations in Chapter 11 con-

sidered a pure Darcy-scale approach. However, processes at the pore scale are relevant for
this type of setting as well. First of all, if accounting for the presence of air in the upper
parts of the porous medium due to the evaporation, there would be interactions between
air and water at the pore scale. The interactions on the air-water interface are not only
due to flow and surface tension, as in the pore-scale models of Part B, but also due to the
mass transfer across this interface following the evaporation. In Chapter 11, the evapo-
ration rate was applied as a given boundary condition at the top of the porous medium,
while it would generally depend on temperature and vapor concentration of the air [13]. To
resolve the evolving air-water interface at the pore scale, a phase-field equation could be
applied. However, this phase-field equation must incorporate that the air-water interface
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evolves both due to flow, surface tension and the evaporation. Secondly, when or if salt
precipitates, there will be an evolving fluid-solid interface. The salt precipitation would
lower the permeability, and potentially form a crust at the top of the soil [80] (see also
Figure 1.4). In Chapter 11, a simple Kozeny-Carman relation was applied to model the
changes of the permeability, as accurately describing the evolution of the salt precipitation
was not the focus. To instead incorporate the evolving fluid-solid interface from the pore
scale, a phase-field model could be applied. However, since also the influence of air should
be accounted for, a ternary phase-field model for water, air and mineral would be needed.
To develop such a phase-field model, the sharp-interface limit using matched asymptotic
expansion could answer whether the model reduces to the expected sharp-interface physics,
similar as done in Chapter 8 and Chapter 10. However, an additional analysis of the triple
point would be necessary as well [20].
To incorporate the influence of the pore-scale processes on the effective behavior at the

Darcy scale, homogenization could be applied. This is expected to result in a two-scale
coupled model, where the Darcy-scale model equations and the pore-scale cell problems
jointly depend on each other, as seen for example in Chapter 7 and Chapter 8. Performing
a linear stability analysis on such a model is most likely beyond what is possible to do, due
to the strong couplings within such a two-scale model. However, numerical simulations of
such a model can still be performed. Then, a multiscale scheme inspired by heterogeneous
multiscale methods could be applied, as seen in Chapter 9, or as simplified versions in
Chapter 2 or Chapter 7. However, model development of the processes at the pore scale and
homogenization strategies for such a highly coupled model is first needed to be performed.
When performing the homogenization, much care must be done in choosing which regime
is to be considered.
In general, since homogenization (and transversal averaging) depend on which regime

is considered in terms of the size of the appearing non-dimensional numbers, the effective
models derived in this thesis can be extended by considering other regimes. This is however
generally not straightforward, as the coupling between the model equations can change
when considering other regimes. This can make it more difficult or even impossible to
derive an effective model. However, when effective models for further regimes can be found,
one can use this to investigate the effective behavior of the new regime. In particular it
can be useful to compare effective models for different regimes, as done in Chapter 5, as
this highlights for which settings certain effects (like capillary pressure) are important and
when they can be neglected at the larger scale.
To summarize, applying multiscale approaches offer great possibilities for modeling, ana-

lyzing and simulating transport processes across scales in porous media. As this thesis has
highlighted, multiscale aspects are relevant for a large range of applications, as especially
emphasized for subsurface applications in terms of geothermal energy production and soil
salinization, and for technical applications like water management in fuel cells. In particu-
lar, the presence of interfaces - e.g. evolving fluid-fluid interfaces or fluid-solid interfaces -
at the pore scale influences the effective behavior at the larger REV or field scale. For many
of these porous-media applications, especially for the ones in the subsurface, a Darcy-scale
model is needed in order to perform simulations efficiently. This thesis shows strategies
and methods for improving such Darcy-scale models and how to still incorporate the in-
fluence of smaller-scale processes on the effective behavior. From the applications point of
view, this means that we through multiscale approaches can obtain better understanding
of how e.g. mineral precipitation and dissolution influence the fluid flow and heat transport
through a geothermal reservoir, how the interaction between air, water and dissolved salt
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influences soil salinization due to evaporation, and how the interaction between air and
water inside a fuel cell affects the overall transport of water.
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