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Abstract: Frequency response analysis (FRA) is a well-known method to assess the mechanical
integrity of the active parts of the power transformer. The measurement procedures of FRA are
standardized as described in the IEEE and IEC standards. However, the interpretation of FRA results
is far from reaching an accepted and definitive methodology as there is no reliable code available in
the standard. As a contribution to this necessity, this paper presents an intelligent fault detection
and classification algorithm using FRA results. The algorithm is based on a multilayer, feedforward,
backpropagation artificial neural network (ANN). First, the adaptive frequency division algorithm is
developed and various numerical indicators are used to quantify the differences between FRA traces
and obtain feature sets for ANN. Finally, the classification model of ANN is developed to detect and
classify different transformer conditions, i.e., healthy windings, healthy windings with saturated core,
mechanical deformations, electrical faults, and reproducibility issues due to different test conditions.
The database used in this study consists of FRA measurements from 80 power transformers of
different designs, ratings, and different manufacturers. The results obtained give evidence of the
effectiveness of the proposed classification model for power transformer fault diagnosis using FRA.

Keywords: artificial neural network (ANN); condition assessment; feature generation; frequency
response analysis (FRA); numerical indices; power transformer

1. Introduction

Power transformers are one of the most vital components in today’s transmission and
distribution infrastructure. Growing demand for electricity requires power transformers
to operate at higher loading levels. Operating at higher demands can cause deterioration
of transformer integrity due to mechanical, thermal, and electrical stresses. According
to the transformer’s reliability survey based on 964 major failures, winding failure is the
dominant failure location in power transformers (38%) [1]. Therefore, it is necessary to
assess the integrity of the transformer windings.

Frequency response analysis (FRA) has drawn attention as a powerful diagnostic
method for detecting faults in the active part of power transformers [2–4]. FRA is a com-
parative diagnostic method in which a reference FRA signature is compared to the present
FRA signature and based on the deviations between the two signatures the condition of the
transformer is evaluated. At present, the assessment of FRA results demands skill-full per-
sonnel as there is no reliable standard code available in IEC and IEEE standards [5,6]. Thus,
interpretation of FRA results is a significant challenge towards its practical application [7].

Many recent studies have been focused on FRA interpretation to detect the extent and
the type of mechanical fault. Different algorithms have been proposed for this purpose
that can be categorized into three main groups: simulation models (circuit models/FEM
models) [8–10], numerical indices [11–13], and artificial intelligence (AI) techniques [14,15].
However, these methods have some drawbacks and limitations. Simulation techniques are
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useful to study and investigate the effect of various winding faults on FRA traces. However,
the diagnosis of transformer faults using these simulation techniques is limited by the
high accuracy requirements to reproduce the FRA fingerprints [16]. Numerical indices
are the most widely used method for transformer frequency response assessment that
quantifies the differences in a pair of FRA traces. The final target is a decision about the
condition of a transformer based on the quantified values of the indices. Some drawbacks
are also associated with numerical indices. Firstly, the results are only numbers, and further
interpretations are not possible. Secondly, the definition of the threshold has not been
established yet [11,12]. Moreover, these numerical indices are calculated in fixed frequency
sub-bands, whereas standards [5,6] declare that the ranges of frequency sub-bands depend
on transformer ratings and cannot be fixed. Artificial intelligence (AI) and machine learning
(ML) methods have been of great interest lately for diagnosing transformer faults using
FRA results and are gaining popularity due to their effectiveness and high accuracy. Using
AI methods, it is possible to classify the changes in the FRA traces and connect them
to different fault types and even fault locations [14,15]. These methods are based on
techniques such as genetic algorithms, fuzzy logic, support vector machines, and neural
networks. The major dilemma of using AI methods is the need for a database from real
power transformers, and such a database usually is not available. Some studies propose to
use the outputs of model experiments and circuit models as a database [14,15]. However,
the applicability of these models for large-scale power transformers is itself an issue.

This paper presents an intelligent fault detection and classification algorithm using
FRA results. The algorithm is based on a multilayer, feedforward, backpropagation artificial
neural network (ANN). Five numerical indices are employed using an adaptive frequency
band division algorithm. Indices are then complemented with ANNs to detect and classify
transformer winding faults.

2. Application of Machine Learning in FRA

In literature, many efforts have been made where ML methods are implemented for
the detection and identification of transformers winding faults using FRA. Zhijian et al.
(2000) [17] used the correlation coefficient (CC) calculated in three fixed frequency sub-
bands that serve as features for ANN. However, only 26 cases were used in total for training
and testing, and only two classes, healthy and deformed, were identified. Bigdeli et al.
(2012) [18] used the absolute ratio in the deformed and healthy state FRA to extract features.
A support vector machine (SVM) was used to identify four types of winding faults. In
this work, only two groups of setups are used. Gandhi et al. (2014) [15] used 9 indices
and 90 cases for three-layer ANN. The major drawback of this work is that all faults
are applied to a single transformer model. Ghanizadeh et al. (2014) [14] employed an
ANN classifier to detect electrical and mechanical faults of the transformer winding. The
limitation of this work is that all faults are implemented on a single 1.2 MVA transformer
circuit model. Liu et al. (2019) [19] employed an SVM classifier to classify different
mechanical faults. In this work, only a single transformer model is employed. Mao et al.
(2019) [20] employed SVM to identify the winding type using FRA. In this study, a group
of 400/275 kV transformers are tested. The main objective of this study was to provide an
automatic approach for transformer asset management. The results of these reports show
the potential of ML algorithms for fault diagnosis and classification. However, in all these
studies, the used data sets are very small. Secondly, faults are applied to a small number
of transformers, which reduces the diversity of fault patterns. Hence, a diverse dataset of
different faults from the field is required to settle the criteria of using ML methods.

In contrast, the database used in this study consists of 139 FRA measurements from
80 real power transformers of different designs, ratings, and manufacturers. Moreover,
six conditions of the transformer windings are identified, i.e., healthy windings, healthy
windings with saturated core, mechanical deformations, shorted turn faults, open circuit
faults, and reproducibility issues due to different test conditions.
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3. Methodology

The necessary steps for building the intelligent fault detection algorithm (IFDA) for
a given data set are described in Figure 1. The process includes seven major steps, i.e.,
data preparation, adaptive frequency band division, feature generation, training of ANN,
testing and validation with unknown data, performance analysis, and validation with case
studies. If the performance of the model is not satisfactory, it can be attributed to erroneous
data preparation, poor feature generation, or simply due to less diversity among deviation
patterns of different classes. In all of these cases, the IFDA recommends improving the
performance by redefining the process steps.

Figure 1. Flowchart for intelligent fault detection algorithm.

3.1. Database

The database used in this study consists of 139 FRA results from 80 power transform-
ers of different designs, ratings, and different manufacturers. The database comprises
different types of transformers: generator step-up unit, transmission, distribution, shunt
reactor, GIS connector, dry type, etc. In the database, each FRA measurement belongs to a
predefined state of the transformer. Mainly six conditions of the transformer are considered
in this research: healthy windings, healthy windings with saturated core, mechanical
deformations, shorted turn faults, open circuit faults, and reproducibility issues due to
different test conditions. These conditions are also called ‘labels’ or ‘classes’ for IFDA. The
distribution of classes in the database is shown in Figure 2.

3.2. Data Preparation

Data preparation involves two main tasks: data labeling and noise removal. In
data labeling, each FRA measurement is assigned a class (A–F). The FRA measurements
performed in substation environments comprise a variety of noise which can influence the
FRA signatures. Mainly, there are two types of sources: narrowband noise and broadband
noise. Narrowband noise is due to the power frequency noise and its harmonics, whereas
the broadband noise is caused by the noise bed of the connected FRA measurement
equipment. The dynamic range defines the noise bed of an FRA instrument. IEC 60076-18
standard defines the minimum dynamic range for a device: −90 dB to +10 dB [5]. For
denoising the FRA measurements, the moving average with Gaussian function is used in
this work. The process of data de-noising is shown in the Figure 3. The identification of
the noise frequency range and the number of main anti-resonances in the low-frequency
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range should be determined first. Typically, the effect of both types of noise appears
at low frequency (before the first resonance point in the end-to-end open circuit FRA
signature), causing several small peaks and valleys as shown in Figure 4. The number of
anti-resonances depends upon the type and configuration of the transformer. The Gaussian
filter is applied with a moving window of variable size to remove small peaks and valleys
due to noise until the number of valleys in this range is equal to the defined anti-resonance
points. After this process, data are considered clean.

Figure 2. Breakdown of the entire database into six transformer conditions.

Figure 3. Workflow of data-denoising process.
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Figure 4. Comparison of the transfer functions (TFs) before (up) and after noise removal (down).

3.3. Adaptive Frequency Division

The frequency response of a transformer has a fundamental relationship with the
physical parts of the transformer. These physical parts dominate the frequency response
in different frequency regions. Hence, by identifying these regions, different faults in
power transformers can be classified. However, the ranges of these frequency regions or
sub-bands depend upon many factors such as rating, size, and core and winding structure,
and a general range cannot be concluded [5,6].

In the literature, a few efforts have been made to divide the FRA spectrum into several
sub-bands. Gonzales et al. [21] proposed a frequency-slicing algorithm based on phase zero-
crossing points. However, this algorithm is not validated for FRA traces of different vector
groups and windings. Hence, it fails to identify frequency limits for transformers having
vector groups Dd0, Dyn0, and autotransformers. Similarly, identification of winding region
in the frequency response of transformers having helical or ordinary disk-type winding
structure is not feasible with this algorithm. Due to the low series capacitance of these
windings, multiple resonances and anti-resonance appear in the high-frequency region;
thus, the frequency region influenced by winding structure is hard to identify.

Lin et al. [22] proposed five frequency sub-bands structure using binary morphology.
However, this method is based on deviation patterns between FRA pairs, and frequency
ranges cannot be determined for healthy transformers. Likewise, this algorithm can
misinterpret frequency regions for different faults on the same transformer because different
faults lead to different deviation patterns. Velásquez et al. [23] also introduced an algorithm
to divide the frequency spectrum into five sub-bands based on locations of poles and
zeros. In this method, the low-frequency region is identified using the linear regression
function. However, the characteristics of this linear regression function can vary for
different frequency resolutions in the low-frequency region. Additionally, the identification
of frequency ranges is not consistent for transformers having vector groups Dd0 and
Dyn0. Hence, these automatic frequency division algorithms demand revision for proper
fault classification. The adaptive frequency division algorithm presented in this work is
based on different features appearing in FRA, which are characterized by the locations
of resonances, anti-resonances points, and phase zero-crossings to ensure robustness for
different FRA patterns.

The first approach for the development of an automatic frequency division algorithm
is the identification and classification of different FRA patterns. In this work, the FRA
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data from 80 power transformers of different sizes, ratings, and winding types are studied.
Mainly, twelve features of FRA traces are recognized in different frequency sub-bands
based on different transformer vector groups, winding structures, ratings of the winding,
etc. The classification of FRA traces based on different features in different frequency
sub-bands is illustrated in Figure 5.

Figure 5. Classification of transformer FRA traces based on different features in the low, medium, and high-frequency range.

Although there are at least 12 features of FRA traces, this does not imply that for
identification of each feature independent algorithms have to be developed. Instead, after
analyzing all possible features it was concluded that it is possible to group them into
fewer classes, thus, the 12 features are further classified into three classes. The type of
the transformer vector group and winding structure, etc., which are mainly responsi-
ble for the generation of different features, are also mentioned in the vertical column of
Figure 5. Class 1 consists of FRA patterns belonging to star-connected windings with ac-
cessible neutral, autotransformers, and high-voltage windings with high series capacitance
disk windings. The FRA patterns of star-connected winding without neutral accessible
transformers, medium- and low-voltage windings, and secondary windings of generator
transformers belong to class 2, whereas FRA patterns of delta connected primary and
secondary windings, ordinary-disk or layer-type windings, and low-impedance windings
are grouped in class 3.

Based on these features, an automatic frequency division algorithm is proposed that
subdivides the entire frequency spectrum into four sub-bands, i.e., two low-frequency
bands (LFB1 and LFB2), medium frequency (MFB), and high-frequency band (HFB). These
frequency sub-bands are linked to different physical components of the transformer. For
example, two low-frequency sub-bands (LFB1 and LFB2) are related to the core where
magnetizing inductance (Lm) and equivalent network capacitance (Cnet) dominate the
response. Medium frequency sub-band (MFB) is dictated by the mutual inductances
between windings (Mu) and inter-winding capacitances (Ciw), while the high-frequency
region is controlled by the winding structure where a group of resonances caused by
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the winding inductance and series and ground capacitances. The algorithms for the
identification of LFB1, LFB2, MFB, and HFB are described in the following sections.

3.3.1. Determination of LFB1 and LFB2

The first low-frequency band (LFB1) starts at the start frequency of the sweep. To find
the end of LFB1 and LFB2, two arbitrary frequencies f1 and f2 are used. The flow chart for
the algorithm is shown in Figure 6. The algorithm starts with the search of frequency of
the peak (fPhLC) at which the first transition of phase from inductive to capacitive takes
place. If the peak at this frequency is a minimum peak, its frequency is assigned to f1
(f1 = fPhLC). In this case, if the number of maximum peaks below f1 is less than 2, the
algorithm corresponds to class 1, if not, it adapts to class 2.

Figure 6. Workflow of the algorithms for identification of the low-frequency sub-bands.

The performance of this frequency division algorithm for class 1 is illustrated in
Figure 7. In order to check if there is a single (for middle phase) or double minimum
peak (for lateral phases) in the FRA trace, minimum peaks are searched between f1 and
f1 + 3 kHz. If a mini-mum peak is found between f1 and f1 + 3 kHz, the frequency of this
minimum peak is assigned to f1 (f1 = fPhLC1), otherwise f1 remains unchanged. After
fixing f1 for class 1, a maximum peak with phase transition from capacitive to inductive is
searched in the range f1 and 100 kHz. If such a peak is found, the frequency of this crest
is assigned to f2 (f2 = fMaxP-PhCL). After determining f2, if f1 is less than 500 Hz and
the difference of f2 and f1 is greater than 300 Hz or the difference of f2 and f1 is greater
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than 1 kHz, the algorithm for class 1 is complete. Hence, the LFB1end is determined as a
medium frequency between LFB1start and f1, whereas LFB2end is determined as a medium
frequency between f1 and f2. Otherwise, a new maximum peak with phase transition from
capacitive to inductive is searched in the range f1 and 100 kHz and the process repeats. If
for any reason f2 cannot be determined, LFB2end is set to 3 kHz.

Figure 7. An example of class 1 FRA plot for identification of the LFB1end and LFB2end.

The algorithm corresponds to class 2 if fPhLC is a minimum peak and there are two
maximum peaks below f1. Another scenario for class 2 is that fPhLC is a crest. In this case,
the algorithm searches for the next minimum peak in the range f1 and 10 kHz, for which
phase crosses zero line from inductive to capacitive. If such a peak is found, f1 becomes
the frequency of this point. After finding f1, a maximum peak with phase transition from
capacitive to inductive is searched between f1 and 100 kHz as illustrated in Figure 8. If this
crest is found, the LFB1end is determined as a medium frequency between LFB1start and
f1, whereas LFB2end is determined as a medium frequency between f1 and f2. If f2 is not
found, the algorithm checks the number of phase zero-crossings below f1. LFB2end is fixed
at 8 kHz if phase zero-crossings below f1 are greater than or equal to 1; otherwise, LFB2end
becomes 15 kHz.

Figure 8. An example of class 2 FRA plot for identification of the LFB1end and LFB2end.
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The algorithm adapts to class 3 if fPhLC is a maximum peak and no minimum peak
with phase transition from capacitive to inductive exist in range f1 to 10 kHz, as appreciated
in Figure 9. In this case, the algorithm searches for a maximum peak with phase zero-
crossing from positive to negative in range f1 and 100 kHz. If this peak is found, f2 becomes
the frequency of this peak (f2 = fmaxP-PhCL). After finding f1 and f2, the algorithm checks
if there is a single minimum peak between f1 and f2. If such a peak exists, the frequency
of this minimum peak is assigned to f1 (f1 = f12 min), otherwise f1 remains unchanged
(f1 = fPhLC). Afterward, the LFB1end is determined as a medium frequency between
LFB1start and f1, whereas LFB2end is determined as a medium frequency between f1 and f2.
If no such peaks are found, LFB2end is set to 15 kHz.

Figure 9. An example of class 3 FRA plot for identification of the LFB1end and LFB2end.

3.3.2. Determination of MFB

For the beginning of the medium frequency sub-band (MFB), MFBstart is set to the
end of LFB2end. The algorithm is adapted to three classes similar to LFB1 and LFB2.
The workflow of the algorithms for the identification of the medium frequency sub-band
(MFBend) is demonstrated in Figure 10. At the start, a minimum peak with phase zero-
crossing from inductive to capacitive is searched between MFBstart and 400 kHz. If such
a peak is found, the frequency of this peak is noted as fMinP-PhLC1 and the algorithm
corresponds to class 1, as illustrated in Figure 11.

Next, another minimum peak with phase transition from inductive to capacitive
is searched between fMinP-PhLC1 and 400 kHz, whose next maximum and minimum
are kinks. If this peak is found, the frequency of this peak is assigned to fMinP-PhLC2.
After finding this point, it is confirmed that the MaxK and MinK have lower attenuation
than MinP-PhLC2. If this condition is true, such that MagMaxK > MagMinP-PhLC2 and
MagMinK > MagMinP-PhLC2, MFBend becomes fMinP-PhLC2. Otherwise, a new peak
will be searched between fMinP-PhLC1 and 400 kHz, and the whole process repeats.
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Figure 10. Workflow of the algorithms for identification of the medium frequency sub-band (MFBend).

Figure 11. An example of class 1 FRA plot for identification of the MFBend.

The algorithm adapts to class 2 if no minimum peak is found in the range MFBstart to
400 kHz for which phase changes from inductive to capacitive (MinP-PhLC1). In this class,
a maximum peak is searched between 30 kHz and 400 kHz, which fulfills the condition of
phase zero-crossing from inductive to capacitive, as shown in Figure 12. If such a peak is
found, MFBend becomes the frequency of this point, MFBend = fMaxP-PhLC; otherwise, a
new maximum peak is searched between 30 kHz and 400 kHz, and process repeats.
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Figure 12. An example of class 2 FRA plot for identification of the MFBend.

If no maximum or minimum peak with phase zero-crossing from inductive to capaci-
tive is found, the algorithm corresponding to class 3 is to be followed. For this class, the
algorithm searches for a minimum peak in the range of 30 kHz to 400 kHz. The phase
of this minimum peak must be inductive (fMinP-PhL), as shown in Figure 13. If such a
peak is found, MFBend becomes the frequency of this point. If none peak fulfilling these
conditions is found, MFBend is fixed at 200 kHz.

Figure 13. An example of class 3 FRA plot for identification of the MFBend.

3.3.3. Determination of HFB

The HFB starts at the end of MFB. The determination of HFBend depends upon the
rating of the transformer winding. According to Ref [5], the FRA interpretation range is
2 MHz for windings with voltage less than 72.5 kV, whereas it is 1 MHz for windings with
voltage greater than 72.5 kV. Hence, HFBend is user-defined and depends upon the voltage
rating of the winding. The decision algorithm for the identification of the high-frequency
sub-band (HFBend) is shown in Figure 14.

Figure 14. Decision workflow of the algorithm for identification of the high-frequency sub-
band (HFBend).
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3.4. Feature Generation

After dividing the FRA plot into four frequency sub-bands, five numerical indices
(CCF, LCC, SD, CSD, and SE) are employed as given in Equations (1)–(5). These numerical
indices are calculated in four sub-bands using reference and current TFs as shown in
Figure 15. These indices quantify the deviation patterns for different fault types. This
process is called feature generation. Each index gives four features from the FRA magnitude
plot that serve as features for the classification models.

LCC =
2SXY

(Y− X)
2
+ S2

Y + S2
X

(1)

CCF =
∑N

i = 1 (X(i)− X)(Y(i)−Y)√
∑N

i = 1
[
X(i)− X

]2
∑N

i = 1
[
Y(i)−Y

]2 (2)

SD =

√
∑N

i = 1(Y(i)− X(i))2

N − 1
(3)

CSD =

√√√√√ N
∑

i = 1
[(Y(i)−Y)− (X(i)− X)]

2

N − 1
(4)

SE =
∑N

i = 1(Y(i)− X(i))
N

(5)

Figure 15. An example of feature generation from four frequency sub-bands of magnitude plot
of FRA.

4. Training of ANN
4.1. Structure of ANN

To select the optimum structure of ANN, a sensitivity study is performed. For this
purpose, overall accuracy is compared using a different number of hidden layers and
five commonly used activation functions are tested in these hidden layers. Each hidden
layer consists of eight neurons. Increasing the number of neurons in the hidden layer
increases the power of the network but requires more computation and is more likely to
produce overfitting. The neurons of the hidden layer are chosen through trial and error.
Hidden neurons are increased if the training performance is poor, while they are decreased
if training performance shows overfitting of the data sets. In this work, the hidden layer
with eight neurons gives a better training performance. The results of the sensitivity study
are presented in Table 1. Here, the overall accuracy of SE feature set is compared. It is
clear that tansig and logsig outperformed the other activation functions. The logsig in
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five hidden layers and tansig in one hidden layer show the highest overall accuracy. It is
important to note that accuracy has minimal impact on increasing the number of hidden
layers. However, the computation cost and complexity increase with the increase of hidden
layers. This may lead to overfitting. To avoid these issues, a simple one hidden layer
feedforward network with a tansig activation function for the hidden layer and a linear
activation function for the output layer is used in this work, as shown in Figure 16. The
figure demonstrates an associative ANN that consists of an input layer with ‘r’ nodes, a
hidden layer with ‘m’ nodes, and an output layer with ‘n’ nodes. The neurons of the input
layer receive four features as inputs from different indicators (139 × 4 matrix). The output
vector is a column matrix with six rows that correspond to six classes (6 × 1 matrix). The
signal from the input layer is transmitted to the output layer through the hidden layer. The
relationship between input vector Fi, hidden layer vector hj, and the output vector yk can
be represented by Equations (6) and (7):

hj = f

(
r

∑
i = 1

WijFi + bj

)
(6)

yk = f

(
m

∑
j = 1

Wjkhj + bk

)
(7)

i = 1, 2, . . . r, j = 1, 2, . . . m, k = 1, 2, . . . n

where Fi is the input vector, Wij is the weight vector or connection strength between the
input and hidden layer neurons, bj is the bias of the hidden layer neuron, Wjk is the weight
vector or connection strength of hidden and output layer neurons, and bk is the bias of
output layer neuron.

Table 1. Percentage overall accuracy for different activation functions and number of hidden layers.

Activation Function Abbreviation
Number of Hidden Layers

1 2 3 4 5

Linear purelin 60.1 60.9 60.9 60.9 60.9
Triangular basis tribas 92 94.2 94.2 95.7 94.8

Radial basis radbas 94.2 96.4 94.9 91.3 94.9
Hyperbolic tangent sigmoid tansig 97.1 96.6 97.1 96.6 96.6

Log-sigmoid logsig 95.3 95.8 96.3 94.8 97.6

Figure 16. Three-layer structure of feedforward backpropagation ANN.
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4.2. Training Process

For a feed-forward network, the training algorithm Levenberg-Marquardt (LM) was
applied in this work due to its fastest computing speed for a small network [16]. It updates
the weights and biases in the direction in which the performance increases with a decreased
gradient. The process for training the network has the following four steps.

4.2.1. Data Preprocessing

As the first step, the input data of the value for indices (CCF, LCC, SD, CSD, and
SE) need to be normalized before training the network since the training process will be
very slow if the input is very large. For instance, the sigmoid transfer function becomes
essentially saturated when the net input is greater than three (exp (−3) = 0.05), thus, the
gradients are very small which slow down the training process. The default function for
preprocessing of the feed-forward network (mapminmax) was applied to normalize the
data in the range [−1, 1].

4.2.2. Data Division

Before training the network, the data should be divided into three data sets: training
data set, validation data set, and test dataset. The training set is used for computing the
gradient and updating the network weights and biases, while the validation set is used to
validate that the network is generalizing and to stop training before overfitting. The test
set is not used during training, but it is useful to test the generalization of the network. In
this work, the data sets were divided into a training set of 70%, validation set of 10%, and
test set of 20%, respectively. It is worth noting that the dividing ratio of each sub-set needs
to be identical for every class due to a small amount of data set.

4.2.3. Training of Network

The process of training a neural network involves tuning the values of the weights
and biases of the network to optimize network performance, as defined by the network
performance function (F). For training multilayer feedforward networks, the optimization
algorithms (the gradient and the Jacobian) are calculated using a technique called the
backpropagation algorithm, which involves performing computations backward through
the network.

F = mse =
1
N

N

∑
i = 1

(ei)
2 =

1
N

N

∑
i = 1

(ti − ai)
2 (8)

There are two different ways in which training can be implemented: incremental mode
and batch mode. For most problems, batch training is significantly faster and produces
smaller errors than incremental training; thus, batch training mode is used in this work. In
batch mode, all the inputs in the training set are applied to the network before the weights
are updated. A basic structure of the ANN needs to be firstly chosen at the beginning of
the training, which should be changed by analyzing the performance of the network. Then,
some parameters of the network (such as learning rate, epochs, and cost function) are set to
a fixed value to stop the training, after the weights and biases were initialized. The training
of the network begins at epoch = 1. At each epoch, the weight adjustments are applied
whose size can be determined by the learning rate, until the network is converged. If some
conditions are fulfilled, the training of the network can stop. In this way, there are generally
two methods to stop the training: early stopping and reaching the best performance. The
condition (reaching the maximum error goal) can be used to early stop the training if the
validation error increases for a predefined value of this parameter, but the weights and
biases at the minimum of the validation error and minimum gradient are returned. If
the maximum validation error is not reached, then the mean square error (mse) is able to
validate whether the feedforward network has the best performance. If the best goal is
reached, then the training will be stopped.
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5. Analysis of Training and Validation Performance of ANN

The performance of training and validation is analyzed by several variables during
the course of training, such as the value of the performance function and the magnitude of
the gradient. The performance function used in this work is mean square error (MSE), and
its threshold value is set to 0.01. After reaching a minimum if the MSE does not decrease
for the next six consecutive iterations (epochs), the training will stop. Hence, the number
of validation checks is set to 6.

5.1. Performance of ANN with CSD Feature Set

The confusion matrices of ANN trained with CSD feature set are presented in Figure 17.
The diagonal cells show the number of cases that are correctly classified, and the off-
diagonal cells show the misclassified cases. The blue cell in the bottom right shows the total
percentage of correctly classified cases (in green) and the total percentage of misclassified
cases (in red). The training confusion matrix shows the training performance of the ANN,
while validation and test confusion matrices show the performance of ANN with unseen
cases, whereas all confusion matrices show the overall performance. It can be seen that the
general training and validation performance is excellent, as 100% of the cases are correctly
classified. It can be appreciated that ANN shows very good test performance, as 96.3% of
the cases are correctly classified and only one case from class B is misclassified as class D.
Hence, ANN has correctly classified cases with an overall accuracy of 99.3%.

Figure 17. The confusion matrices of ANN trained with CSD feature set: (a) training confusion
matrix, (b) validation confusion matrix, (c) testing confusion matrix, and (d) overall confusion matrix.
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5.2. Performance of ANN with SD Feature Set

The confusion matrices for the SD feature set are shown in Figure 18. The training
performance of ANN is very good since 98% of the cases are correctly classified. However,
the training performance of the class B and F is slightly low, as one case of class B is
misclassified as class C, while one case of class F is misclassified as class B. The validation
performance is excellent, as 100% of the cases are correctly identified. The test performance
is very good since 96% of the cases are correctly classified. However, the classification
performance of class F is poor, as one case of class F is misclassified as class D. In summary,
the ANN has correctly classified faults with an overall accuracy of 97.8%.

Figure 18. The confusion matrices of ANN trained with SD feature set: (a) training confusion matrix,
(b) validation confusion matrix, (c) testing confusion matrix, and (d) overall confusion matrix.

5.3. Performance of ANN with SE feature Set

The confusion matrices of ANN for the SE feature set are shown in Figure 19. The
general training performance of ANN is very good, as 96.9% of the cases are correctly
classified. However, the training performance of class C is fairly low (88%) since two
cases are misclassified as class A. While the training performance of class F is also low
(88.9%), one case of class F is misclassified as class B. The general validation performance
is excellent since 100% of the cases are correctly identified. The general test performance
of ANN is very good since 96% of the cases are correctly classified; only one case of class
F is misclassified as class D. In summary, the ANN has correctly classified faults with an
overall accuracy of 97.1% with SE feature set.

5.4. Performance of ANN with LCC Feature Set

The performance matrices of ANN when supplied with Lin’s concordance coefficient
(LCC) as feature set are shown in Figure 20. In training, the ANN shows a very good
performance (96.9% accuracy) where it has correctly identified all cases from classes A, B,
D, and E with 100% accuracy, whereas two cases from class C and one case from class F
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are misclassified as class A and B, respectively. In validation, all classes are identified with
100% accuracy except class C, for which one case is misclassified as class A, reducing the
overall validation performance to 92.3%. When supplied with test data, the ANN correctly
classify 92.6% of cases. Only one case from each class B and F is wrongly identified as class
D and B, respectively. Thus, the overall accuracy of ANN is 95.7% as shown in all confusion
matrices. Classes A, D, and E are always correctly identified in training, validation, and
testing. Most errors are seen for class C, for which three cases are misclassified followed by
class F (2 misclassified cases) and class B (1 misclassified case).

Figure 19. The confusion matrices of ANN trained with SE feature set: (a) training confusion matrix,
(b) validation confusion matrix, (c) testing confusion matrix, and (d) overall confusion matrix.

Figure 20. Cont.
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Figure 20. The confusion matrices of ANN trained with LCC feature set: (a) training confusion
matrix, (b) validation confusion matrix, (c) testing confusion matrix, and (d) overall confusion matrix.

5.5. Performance of ANN with CCF Feature Set

The classification performance of ANN with CCF features is shown in Figure 21. It
can be seen that with CCF the general training accuracy of ANN is 92.3% as one case from
class B and five cases from class C are misclassified as class A. Furthermore, one case from
class F is classified as class B. In validation, the ANN shows very good performance where
only one case from class C is misclassified as class F. It should be noted that the ANN has
misclassified more cases with the CCF feature set than any other feature sets. The same
trend can be observed in the test confusion matrix. When supplied with test data, the
ANN gives an accuracy of 85.2%. In the test confusion matrix, two cases from class E are
wrongly identified as class F, and two cases from class D and F (one case from each class)
are misclassified as class D. Thus, the overall accuracy of ANN with CCF features is 91.3%.
Only classes A and D are identified with 100% accuracy. In class B and E, 90% of cases are
correctly classified, followed by class F, where 84.6% cases are correctly identified. For class
C, many cases are misclassified which reduces the ANN accuracy to 76% for this class. The
reason behind this is that the FRA traces of a slight mechanical change are similar to the
FRA traces of a normal transformer.

Figure 22 shows the accuracy comparison of ANNs trained with different feature
sets (CSD, SD, SE, LCC, and CCF). ANN trained with CSD feature set shows the best
performance, as average overall accuracy is 99%. SD, SE, and LCC also show reasonable
performance in classifying different faults since the average overall accuracy is above 95%.
However, the performance of ANN trained with CCF is relatively low since only 90% of
the cases are correctly classified. Moreover, it possesses the lowest accuracy for unseen
data sets provided during the test. It should be noted that the ANN has misclassified more
cases with the CCF feature set than any other feature sets. These results confirm the ability
of different indices in detecting and classifying different transformer winding faults. In
summary, provided with the feature set of CSD, all the classes are effectively learned by the
network, indicating the best feature set for detection and classification of winding faults
using FRA results.



Energies 2021, 14, 3227 19 of 25

Figure 21. The confusion matrices of ANN trained with CCF feature set: (a) training confusion
matrix, (b) validation confusion matrix, (c) testing confusion matrix, and (d) overall confusion matrix.

Figure 22. Performance comparison of ANN trained with different numerical indices (CSD, SD, SE,
LCC, and CCF).

6. Case Studies
6.1. Case 1: Axial Collapse after Clamping Failure

In case 1, the unit is a three-phase, 240 MVA, 400/132 kV autotransformer. The unit
was switched out of service for investigation after a Buchholz alarm. FRA measurements on
common winding before and after the fault are shown in Figure 23 [24]. The visual analysis



Energies 2021, 14, 3227 20 of 25

of the FRA results shows some deviations and shifts of resonances in the high-frequency
sub-bands, but these deviations yet need to be identified as normal or investigable? After
strip-down, irreparable damage such as axial collapse and twisting to A-phase LV winding
were found as shown in Figure 24. In order to verify the performance of the ANN in
diagnosing this case, the case was further tested with the proposed ANNs. The ANNs
trained with different feature sets (CSD, SD, CCF, LCC, and SE) were employed. The
performance metrics are shown in Table 2. It can be seen that ANN has successfully
diagnosed this case as a mechanical fault. Moreover, all the feature sets have diagnosed the
same class.

Figure 23. TF of LV winding before and after axial collapse [24].

Figure 24. Axial collapse of LV winding due to clamping failure [24].

Table 2. Performance matrices of ANN for different indicators in assessing case 1.

Indices Actual Class Predicted Class Comment

SD C C Pass
CSD C C Pass
SE C C Pass

CCF C C Pass
LCC C C Pass

SD-LFB1 = 0, SD-LFB2 = 0, SD-MFB = 0.3942, SD-HFB = 2.3219,
CSD-LFB1 = 0, CSD-LFB2 = 0, CSD-MFB = 0.3915, CSD-HFB = 2.3184,

SE-LFB1 = 0, SE-LFB2 = 0, SE-MFB = 0.1834, SE-HFB = 1.1839,
CCF-LFB1= 1, CCF-LFB2 = 1, CCF-MFB = 0.9983, CCF-HFB = 0.9372,

LCC-LFB1= 1, CC-LFB2 = 1, LCC-MFB = 0.998, LCC-HFB = 0.9370



Energies 2021, 14, 3227 21 of 25

6.2. Case 2: Shorted Turn Failure

In case 2, the unit is a three-phase, 60 MVA, 105/6.6/22 kV transformer. Figure 25
shows the HV open-circuit measurements. The response of the short-circuited winding is
deviated in the low and medium frequency bands. After dismantling of the transformer, it
was found phase-U turns shorted due to lightning surge. This case was further tested with
the proposed ANNs. Again, the ANNs trained with different feature sets (CSD, SD, CCF,
LCC, and SE) were employed for fault investigation. The performance metrics are shown
in Table 3. It can be appreciated that ANN has diagnosed this case as shorted-turn failure
(class D). Moreover, all the feature sets have diagnosed the same class.

Figure 25. Frequency response of HV winding before and after the fault.

Table 3. Performance matrices of ANN for different indicators in assessing case 2.

Indices Actual Class Predicted Class Comment

SD D D Pass
CSD D D Pass
SE D D Pass

CCF D D Pass
LCC D D Pass

SD-LFB1 = 18.63, SD-LFB2 = 24.39, SD-MFB = 5.32, SD-HFB = 2.53
CSD-LFB1= 0.447, CSD-LFB2 = 5.160, CSD-MFB = 5.135, CSD-HFB = 2.535

SE-LFB1= 18.59, SE-LFB2 = 23.74, SE-MFB = 3.54, SE-HFB = 1.266
CCF-LFB1= 0.997, CCF-LFB2 = 0.55, CCF-MFB = 0.846, CCF-HFB = 0.972
LCC-LFB1= 0.170, CC-LFB2 = 0.039, LCC-MFB = 0.826, LCC-HFB = 0.972

D: Shorted turn fault

6.3. Case 3: Marginal Mechanical Faults (Axial Displacement) in HV Winding

In case 3, the FRA traces of a 27 MVA, 154 kV/10.5 kV transformer are employed.
In this case, axial displacement fault is applied on U-phase HV winding as described
in [25], where HV winding of U-phase is axially displaced up to 15 mm (0.6% of height) by
inserting spacers as shown in Figure 26. The open-circuit FRA traces are measured before
and after the fault are also shown in Figure 26. From the FRA comparison, it can be seen
that marginal faults are difficult to interpret manually since the deviations between FRA
curves are very small. However, with the application of the proposed ANNs, it is possible
to detect such slight deviations between FRA curves. The performance metrics are shown
in Table 4. It can be appreciated that ANN has diagnosed this case as a mechanical failure
mode. However, ANN trained with CCF failed to detect the AD fault, indicating class A.



Energies 2021, 14, 3227 22 of 25

Figure 26. Frequency response of U-phase HV winding before and after the fault (left) and axial displacement of U-phase
HV winding (right) [25].

Table 4. Performance metrics of ANN for different indicators in assessing case 3.

Indices Actual Class Predicted Class Comment

SD C C Pass
CSD C C Pass
SE C C Pass

CCF C A Fail
LCC C C Pass

SD-LFB1 = 0.171, SD-LFB2 = 0.672, SD-MFB = 1.398, SD-HFB = 0.857
CSD-LFB1= 0.0378, CSD-LFB2 = 0.66, CSD-MFB = 1.366, CSD-HFB = 0.799

SE-LFB1= 0.161, SE-LFB2 = 0.458, SE-MFB = 0.960, SE-HFB = 0.5711
CCF-LFB1= 1, CCF-LFB2 = 0.996, CCF-MFB = 0.992, CCF-HFB = 0.997

LCC-LFB1= 0.999, CC-LFB2 = 0.996, LCC-MFB = 0.991, LCC-HFB = 0.996

6.4. Case 4: Healthy Transformer

In case 4, the unit is a three-phase, 47 MVA, 120/26.4 kV transformer. This case belongs
to the class of normal transformers which have successfully passed the short-circuit test.
The FRA traces are measured before and after the short-circuit test event. After inspection,
no winding deformations were found in this transformer. The FRA curves of A-phase HV
winding are presented in Figure 27. It can be seen that the FRA curves perfectly lie on each
other, indicating no deviation except in the low-frequency regions (LFB1 and LFB2) where
the deviations are due to a different core magnetization. The case is further tested with the
proposed ANNs. The results are presented in Table 5. It can be appreciated that ANN has
diagnosed this case as healthy transformer with core saturation. Moreover, all the feature
sets have diagnosed the same class.

Figure 27. Frequency response of A-phase HV winding before and after the short circuit test [24].
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Table 5. Performance metrics of ANN for different indicators in assessing case 4.

Indices Actual Class Predicted Class Comment

SD B B Pass
CSD B B Pass
SE B B Pass

CCF B B Pass
LCC B B Pass

SD-LFB1 = 1.419, SD-LFB2 = 3.431, SD-MFB = 0.164, SD-HFB = 0.149
CSD-LFB1= 0.401, CSD-LFB2 = 3.36, CSD-MFB = 0.150, CSD-HFB = 0.117

SE-LFB1= 1.357, SE-LFB2 = 2.437, SE-MFB = 0.136, SE-HFB = 0.136
CCF-LFB1= 0.998, CCF-LFB2 = 0.909, CCF-MFB = 0.999, CCF-HFB = 0.999
LCC-LFB1= 0.938, CC-LFB2 = 0.905, LCC-MFB = 0.999, LCC-HFB = 0.999

7. Conclusions

In this work, an intelligent fault detection algorithm (IFDA) was proposed for au-
tomatic condition assessment of transformer windings. The algorithm was based on a
multilayer, feedforward, backpropagation artificial neural network (ANN). Mainly, six
conditions of transformers were identified, namely, A: healthy winding, B: healthy winding
with saturated core, C: mechanically deformed winding, D: short-circuited winding, E:
open-circuited winding, and F: healthy winding tested with different oil and temperature.
For classification and feature generation, an adaptive frequency slicing algorithm was
developed that could satisfactorily indicate low-, medium-, and high-frequency sub-bands
in FRA signatures of different transformers. The implementation and test of the adaptive
frequency slicing algorithm with real case studies confirmed their validity. The data from
different sub-bands were transformed into features by using five main statistical indicators:
CSD, SD, CCF, LCC, and SE. The classification abilities of all five indicators were studied
by performance metrics of ANNs trained with different indicators. It was found that ANN
trained with CSD feature sets showed the highest average accuracy since 99% of the cases
were correctly classified in the given database, while ANNs trained with CSD, SD, and
LCC showed acceptable performance since they could classify up to 95% of the unseen
data sets. However, the performance of ANN trained with CCF was relatively low, as only
90% of the cases were correctly classified. Moreover, it possessed the lowest accuracy for
unseen data sets provided during the test.

The performance of the algorithm was further illustrated from selected case studies of
real power transformers. Four case studies were selected from the database. Case studies
included cases with a variety of winding faults and one case where the transformer had
no-fault. Results showed that the proposed algorithm can detect and classify the variety of
windings faults. Results obtained provide evidence that the proposed machine learning
algorithm can precisely assess the transformer winding condition and identify the fault
type with good accuracy without much human intervention and thus solve the major
challenge of the FRA for industrial application, namely, the reliable automatic assessment
of FRA results.

Author Contributions: M.T. developed the intelligent fault detection algorithm (IFDA), conceptu-
alized the adaptive frequency division methods, performed the classification task, and drafted the
manuscript. S.T. acquired the funding, supervised the research, and edited the manuscript. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Deutsche Forschungsgemein-schaft (DFG, German
Research Foundation)—380135324.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.



Energies 2021, 14, 3227 24 of 25

Acknowledgments: The authors would like to thank Satoru Miyazaki from Central Research Institute
of Electric Power Industry (CRIEPI) Japan and Mohammad Hamed Samimi from University of
Tehran, Iran for their contribution in the database. The authors also appreciate the discussions within
Cigré Working Group A2.53 “Advances in the interpretation of transformer Frequency Response
Analysis (FRA)”.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. CIGRE WG A2.37. Transformer Reliability Survey; CIGRE Brochure 642; CIGRE: Paris, France, 2015; ISBN 978-2-85873-346-0.
2. Secue, J.R.; Mombello, E. Sweep frequency response analysis (SFRA) for the assessment of winding displacements and deformation

in power transformers. Electr. Power Syst. Res. 2008, 78, 1119–1128. [CrossRef]
3. Tenbohlen, S.; Coenen, S.; Djamali, M.; Müller, A.; Samimi, M.; Siegel, M. Diagnostic Measurements for Power Transformers.

Energies 2016, 9, 347. [CrossRef]
4. Rahimpour, E.; Christian, J.; Feser, K.; Mohseni, H. Transfer function method to diagnose axial displacement and radial

deformation of transformer windings. IEEE Trans. Power Deliv. 2003, 18, 493–505. [CrossRef]
5. IEC60076-18. Measurement of Frequency Response, ED. 1′, IEC Std. March 2012; International Electrotechnical Commission: Geneva,

Switzerland, 2012.
6. IEEE Std. C57.149-2012. IEEE Guide for the Application and Interpretation of Frequency Response Analysis for Oil-Immersed Transformers;

IEEE Standard Association: New York, NY, USA, 2013.
7. Picher, P.; Tenbohlen, S.; Lachman, M.; Scardazzi, A.; Patel, P. Current state of transformer FRA interpretation. Procedia Eng. 2017,

202, 3–12. [CrossRef]
8. Miyazaki, S.; Tahir, M.; Tenbohlen, S. Detection and quantitative diagnosis of axial displacement of transformer winding by

frequency response analysis. IET Gener. Transm. Distrib. 2019, 13, 3493–3500. [CrossRef]
9. Tahir, M.; Tenbohlen, S. A Comprehensive Analysis of Windings Electrical and Mechanical Faults Using a High-Frequency Model.

Energies 2019, 13, 105. [CrossRef]
10. FRA lookup charts for the quantitative determination of winding axial displacement fault in power transformers. IET Electr.

Power Appl. 2020. [CrossRef]
11. Tahir, M.; Tenbohlen, S.; Miyazaki, S. Analysis of Statistical Methods for Assessment of Power Transformer Frequency Response

Measurements. IEEE Trans. Power Deliv. 2020. [CrossRef]
12. Tahir, M.; Tenbohlen, S.; Samimi, M.H. Evaluation of Numerical Indices for Objective Interpretation of Frequency Response to

Detect Mechanical Faults in Power Transformers. In Proceedings of the 21st International Symposium on High Voltage Engineering,
Budapest, Hungary, 26–30 August 2019; Németh, B., Ed.; Springer International Publishing: Cham, Switzerland, 2020; Volume 598,
pp. 811–824. ISBN 978-3-030-31675-4.

13. Nirgude, P.M.; Ashokraju, D.; Rajkumar, A.D.; Singh, B.P. Application of numerical evaluation techniques for interpreting
frequency response measurements in power transformers. IET Sci. Meas. Technol. 2008, 2, 275. [CrossRef]

14. Ghanizadeh, A.J.; Gharehpetian, G.B. ANN and cross-correlation based features for discrimination between electrical and
mechanical defects and their localization in transformer winding. IEEE Trans. Dielect. Electr. Insul. 2014, 21, 2374–2382. [CrossRef]

15. Gandhi, K.R.; Badgujar, K.P. Artificial neural network based identification of deviation in frequency response of power transformer
windings. In Proceedings of the 2014 Annual International Conference on Emerging Research Areas: Magnetics, Machines and
Drives (AICERA/iCMMD), Kottayam, India, 24–26 July 2014; pp. 1–8.

16. Tenbohlen, S.; Tahir, M.; Rahimpour, E.; Poulin, B.; Miyazaki, S. A New Approach for High Frequency Modelling of Disc Windings;
CIGRE: Paris, France, 2018; pp. A2–A214.

17. Jin, Z.; Li, J.; Zhu, Z. Diagnosis of transformer winding deformation on the basis of artificial neural network. In Proceedings of
the 6th International Conference on Properties and Applications of Dielectric Materials (Cat. No.00CH36347), Xi’an, China, 21–26
June 2000; Volume 1, pp. 173–176.

18. Bigdeli, M.; Vakilian, M.; Rahimpour, E. Transformer winding faults classification based on transfer function analysis by support
vector machine. IET Electr. Power Appl. 2012, 6, 268. [CrossRef]

19. Liu, J.; Zhao, Z.; Tang, C.; Yao, C.; Li, C.; Islam, S. Classifying Transformer Winding Deformation Fault Types and Degrees Using
FRA Based on Support Vector Machine. IEEE Access 2019, 7, 11. [CrossRef]

20. Mao, X.; Wang, Z.; Jarman, P.; Fieldsend-Roxborough, A. Winding Type Recognition through Supervised Machine Learning using
Frequency Response Analysis (FRA) Data. In Proceedings of the 2019 2nd International Conference on Electrical Materials and
Power Equipment (ICEMPE), Guangzhou, China, 7–10 April 2019; pp. 588–591.

21. Gonzales, J.C.; Mombello, E.E. Automatic detection of frequency ranges of power transformer transfer functions for evaluation by
mathematical indicators. In Proceedings of the 2012 Sixth IEEE/PES Transmission and Distribution: Latin America Conference
and Exposition (T&D-LA), Montevideo, Uruguay, 3–5 September 2012; pp. 1–8.

22. Lin, H.; Zhang, Z.; Tang, W.; Wu, Q.; Yan, J. Equivalent gradient area based fault interpretation for transformer winding using
binary morphology. IEEE Trans. Dielect. Electr. Insul. 2017, 24, 1947–1956. [CrossRef]

http://doi.org/10.1016/j.epsr.2007.08.005
http://doi.org/10.3390/en9050347
http://doi.org/10.1109/TPWRD.2003.809692
http://doi.org/10.1016/j.proeng.2017.09.689
http://doi.org/10.1049/iet-gtd.2018.6032
http://doi.org/10.3390/en13010105
http://doi.org/10.1049/iet-epa.2020.0273
http://doi.org/10.1109/TPWRD.2020.2987205
http://doi.org/10.1049/iet-smt:20070072
http://doi.org/10.1109/TDEI.2014.004364
http://doi.org/10.1049/iet-epa.2011.0232
http://doi.org/10.1109/ACCESS.2019.2932497
http://doi.org/10.1109/TDEI.2017.006237


Energies 2021, 14, 3227 25 of 25

23. Velasquez-Contreras, J.L.; Kolb, D.; Sanz-Bobi, M.A.; Koltunowicz, W. Identification of transformer-specific frequency sub-bands
as basis for a reliable and automatic assessment of FRA results. In Proceedings of the Conference on Condition Monitoring and
Diagnosis 2010 (CMD2010), Tokyo, Japan, 6–11 September 2010.

24. CIGRE WG A2.53. Advances in the Interpretation of Transformer Frequency Response Analysis (FRA); CIGRE Brochure 812; CIGRE:
Paris, France, 2020.

25. Miyazaki, S.; Mizutani, Y.; Taguchi, A.; Murakami, J.; Tsuji, N.; Takashima, M.; Kato, O. Diagnosis Criterion of Abnormality of
Transformer Winding by Frequency Response Analysis (FRA). Electr. Eng. Jpn. 2017, 201, 25–34. [CrossRef]

http://doi.org/10.1002/eej.23012

	Introduction 
	Application of Machine Learning in FRA 
	Methodology 
	Database 
	Data Preparation 
	Adaptive Frequency Division 
	Determination of LFB1 and LFB2 
	Determination of MFB 
	Determination of HFB 

	Feature Generation 

	Training of ANN 
	Structure of ANN 
	Training Process 
	Data Preprocessing 
	Data Division 
	Training of Network 


	Analysis of Training and Validation Performance of ANN 
	Performance of ANN with CSD Feature Set 
	Performance of ANN with SD Feature Set 
	Performance of ANN with SE feature Set 
	Performance of ANN with LCC Feature Set 
	Performance of ANN with CCF Feature Set 

	Case Studies 
	Case 1: Axial Collapse after Clamping Failure 
	Case 2: Shorted Turn Failure 
	Case 3: Marginal Mechanical Faults (Axial Displacement) in HV Winding 
	Case 4: Healthy Transformer 

	Conclusions 
	References

