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Abstract: We studied topological and metric properties of the so-called interval translation maps
(ITMs). For these maps, we introduced the maximal invariant measure and demonstrated that an
ITM, endowed with such a measure, is metrically conjugated to an interval exchange map (IEM).
This allowed us to extend some properties of IEMs (e.g., an estimate of the number of ergodic
measures and the minimality of the symbolic model) to ITMs. Further, we proved a version of the
closing lemma and studied how the invariant measures depend on the parameters of the system.
These results were illustrated by a simple example or a risk management model where interval
translation maps appear naturally.

Keywords: interval translation maps; ergodic measures; symbolic model; closing lemma; robustness;
risk management
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1. Introduction

Studying piecewise continuous maps, we can hardly rely on the classical numerical
methods of approximating individual trajectories since the solutions are extremely sensitive
to the variations of the initial conditions and the parameters of the system.

By contrast, invariant measures are more robust objects. As such, they provide a better
language for representing the results of numerical models. In other words, if we model
a discontinuous map, the picture on the computer screen represents invariant measures
rather than topological attractors.

The paper consists of two parts. We start with a brief survey of some existing results of
the ITM theory. Then, we describe the set of invariant measures for an interval translation
map and discuss how they affect the topological properties of solutions. We introduce
the so-called maximal invariant measure and demonstrate that an ITM with the maximal
invariant measure is conjugated to an IEM. Another new result of this part of the paper is a
theorem on the continuity of the set of invariant measures with respect to the residual set
of parameters. This part of the paper extends and completes the results of [1].

In the second part of the paper, we consider a specific example—a model of a stock
trader’s behavior. We show that the associated map, for some generic set of its parameters,
can be represented as an interval translation map. Finally, we study the parameter values
for which the map is a rotation or a double rotation.
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2. Interval Translation Maps: A Survey

Consider the unit segment [0, 1) endowed with the probability Lebesgue measure. Fix
finite sets {tk, k = 0, . . . , n} and {ck, k = 1, . . . , n} such that:

0 = t0 < t1 < . . . < tn = 1, 0 ≤ tk−1 + ck < tk + ck ≤ 1.

Let a piecewise continuous map S : [0, 1)→ [0, 1) be defined by the formula S(t) =
t + ck if t ∈ Ik := [tk−1, tk). Then, S is called an interval translation map (ITM). Such maps
were first introduced by M. Boshernitzan and I. Kornfeld [2]. Replacing the segment [0, 1)
with the circle T1, one obtains a circle translation map (CTM).

To specify the number of segments, we also use the notation n-ITM and n-CTM for
the interval and circle translation maps with n segments, respectively.

If the images of the segments Ik do not overlap, an ITM or a CTM is called an interval
exchange map (IEM). Maps with flips, which include local maps of the form S(t) = −t + ck,
were also considered. However, in this paper, flips were by default excluded.

The basic properties of interval exchange maps were discussed and proven in [3],
Section 14.5 (see also the surveys in [4,5]). However, the case of ITMs and CTMs seems to
be more complicated.

Definition 1. We say that an ITM S is finite if there exists a number m ∈ N such that Sm([0, 1)) =
Sk([0, 1)) for any k > m. Otherwise, the map S is called infinite.

In [2], the authors demonstrated that many ITMs are finite. As such, they can be
reduced to interval exchange maps. However, there are examples with ergodic measures
supported on Cantor sets. J. Schmeling and S. Troubetzkoy [6] provided estimates of the
number of minimal subsets for such ITMs.

H. Bruin and S. Troubetzkoy [7,8] studied ITMs with three segments and demon-
strated that in this case, a typical 3-ITM is finite. In the general case, they estimated the
Hausdorff dimension of attractors and obtained sufficient conditions for the existence of
a unique ergodic invariant measure. These results were generalized in [9] for ITMs with
any number of segments. There is an uncountable set of parameters leading to infinite
ITMs. However, the Lebesgue measure of these parameters is zero. Furthermore, some
conditions ensuring the existence of multiple ergodic invariant measures were provided.
H. Bruin and G. Clark [9] studied the so-called double rotations (2-CTMs); see also [10–12].
Almost all double rotations are finite. The parameters that correspond to infinite 2-CTMs
form a set whose Hausdorff dimension is strictly between two and three.

J. Buzzi and P. Hubert [13] studied piecewise monotonous maps of zero entropy and
no periodic points. In particular, they demonstrated that orientation-preserving ITMs
without periodic points can have at most n ergodic invariant probability measures where n
is the number of intervals.

D. Volk [14] demonstrated that almost every (w.r.t. the Lebesgue measure on the
parameter set) 3-ITM is conjugated to either a rotation or a double rotation and is finite.

B. Pires in his preprint [15] proved that almost any ITM admits a non-atomic invariant
measure (he assumed that the map does not have any connections or periodic points). This
result was generalized by one of the co-authors in [1].

J. Buzzi [16] demonstrated that piecewise isometries defined on a finite union of
polytopes have zero topological entropy in any dimension. In particular, this is true for
interval translation maps.

A partition of the phase space induces a naturally defined symbolic dynamics. A. Goetz [17,18]
demonstrated that for the case of the so-called regular partitions, the symbolic dynamics of an
isometry cannot embed subshifts with positive entropy. He further obtained a condition for the
polynomial growth of symbolic words. Under the assumptions of this paper, the partitions were
also regular.
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3. Invariant Measures

The following result was proven in [1] (see also [15]).

Theorem 1. Any interval translation map S admits a Borel probability non-mixing invariant
measure µ, and there exits an interval exchange map E of [0, 1) with the Lebesgue measure such
that S and E are metrically conjugated.

Moreover, it was noted in [19] (see also [20]) that all invariant measures of S are
non-mixing. This implies the absence of chaotic dynamics in any classical sense.

Now, let us observe that for any ITM or CTM, the set of corresponding invariant
measures is closed in the space of all probability measures endowed with the ∗-weak
topology. Indeed, a measure µ is invariant if and only if:

∫ 1

0
ϕ(t) dµ(t) =

n−1

∑
k=0

∫ tk+1

tk

ϕ(t + ck) dµ(t)

for any continuous function ϕ : [0, 1) → [0, 1). This equality holds true if we pass to the
∗-weak limit in the space of invariant measures. Therefore, similarly to [3], we can claim the
existence of ergodic measures for ITMs. It was proven in [13] that any integral translation
map admits at most n non-atomic ergodic invariant measures.

Definition 2. A non-empty segment (or interval) J is called rigid with respect to an ITM T if the
restriction Tm|J is continuous for all m ∈ N.

It is well known that all points of a rigid segment are periodic.
Let {µ1, . . . , µk : k ≤ n} be the set of all ergodic probability non-atomic measures of the

considered map (if any) and µper be the probability Lebesgue measure defined on the union of
the rigid segments (if any); we call µper the periodic measure. We set either of these measures
to zero if the corresponding set is empty. Let us define the maximal non-atomic measure:

µna :=
1
k

k

∑
j=1

µj

and the maximal measure:
µ∗ :=

µna + µper

2
if the set of periodic points is non-empty. Otherwise, we define µ∗ = µna.

Here, the wording “maximal” is justified by the following statement.

Lemma 1. The support of any invariant measure is a subset of the support of the maximal measure.
A similar statement is true for non-atomic measures.

Proof. All non-atomic ergodic invariant measures are pairwise singular and, also, mutually
singular with any periodic measure. Hence, any invariant measure of the studied map
is a convex combination of a finite number of ergodic measures and a periodic measure,
defined on the set of periodic points. Therefore, its support is a subset of the union of
supports of the above measures.

Given a point x0, define its positive semi-trajectory as:

O+(x0) = {Sk(x0) : k ∈ Z+}.

S. Troubetzkoy [19] proved the following statement (Lemma 6 of the quoted paper);
see also [1].
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Lemma 2. Let S : [0, 1) → [0, 1) be a piecewise monotone map on n intervals and µ be a non-
atomic T-invariant ergodic Borel probability measure that is almost surely invertible. Then, there
exists an interval exchange transformation with flips T : [0, 1) 7→ [0, 1) on r intervals, with
2 ≤ r ≤ n, such that S : ([0, 1)], µ) 7→ ([0, 1), µ) is metrically isomorphic to T : ([0, 1), Leb) 7→
([0, 1), Leb) where Leb is the Lebesgue measure. The flip set of S is a subset of the flip set of T;
in particular, if S has no flips, then T has no flips either. Moreover, the isomorphism is affected by a
monotone continuous surjective function R : [0, 1) 7→ [0, 1); thus, T is a topological factor of the
restriction S.

This statement can be reformulated for the considered maximal invariant measure
that is, generally speaking, non-ergodic.

Lemma 3. Let S : [0, 1) → [0, 1) be a translation map on n intervals and µ∗ be its maximal
invariant measure. Then, there exists an interval exchange transformation without flips T : [0, 1) 7→
[0, 1) on r intervals, with r ≤ n, such that S : ([0, 1)], µ∗) 7→ (I, µ∗) is metrically isomorphic to
T : ([0, 1), Leb) 7→ ([0, 1), Leb).

The proof repeats that of Lemma 3 of [19], given by S. Troubetzkoy. The only difference
is that we did not assume that the measure µ∗ is ergodic, and consequently, we did not
claim that r ≥ 2.

A similar statement is true for circle translation maps.
Lemma 3 implies various corollaries; we consider two of them in this section.

Corollary 1. Any interval translation map of n intervals has at most [n/2] non-atomic ergodic
invariant measures.

Proof. A similar statement was proven by W. Veech [21] for interval exchange maps. Here,
let us suppose that an ITM S has m > [n/2] non-atomic ergodic invariant measures.
All these measures are absolutely continuous with respect to the maximal measure and
mutually singular. Now, take an interval exchange map, isomorphic to S, that exists
due to Lemma 3. Clearly, S admits at least m mutually singular invariant measures.
This contradicts the theorem of Veech cited above.

Taking non-periodic double rotations of segments [ k
m , k+1

m ), k = 0, . . . , m− 1 for even
n (in this case, m = [n/2]) and making the dynamics trivial on the last segment for odd n,
we obtain an example of ITM having exactly [n/2] non-atomic ergodic invariant measures.
Hence, the estimate given by Corollary 1 is exact.

The following simple corollary seems to be unknown for ITMs.

Corollary 2. Any interval translation map of two or three intervals with no periodic points is
uniquely ergodic.

The latter statement is known for double rotations [9].

4. Minimal Points

First, we recall some basic definitions from topological dynamics.

Definition 3. Let f : K 7→ K be a continuous map of a compact set K. A point x0 ∈ K is minimal
if for any y ∈ O+

(x0), we have O+(y0) = O+(x0). A dynamical system is minimal if any point
of the phase space is minimal.

Definition 4. A set A ⊂ N is called syndetic if there exists an N ∈ N such that every block of N
consecutive positive integers intersects A.
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Given a dynamical system (K, f ), a point x ∈ X is said to be syndetically recurrent if for
every open neighborhood U of x, the set of return times N (x, U) = {n ∈ N : f n(x) ∈ U}
is syndetic.

The following lemma demonstrates a connection between syndetic recurrence and
minimal systems for continuous dynamical systems.

Lemma 4. Let (X, f ) be a continuous dynamical system on a compact metric space X.

1. If (X, f ) is minimal, then every point x ∈ X is syndetically recurrent.
2. Conversely, if x ∈ X is syndetically recurrent, then the closure of the orbit O+(x) is a

minimal set.

Although the above statement (as the vast majority of topological dynamics) is wrong
for discontinuous systems, we can demonstrate that the points of the support of a maximal
measure are “almost minimal”.

Lemma 5. Let S be an interval translation map and µ∗ be the maximal measure for this map. Then,
for µ∗—almost any point x0 ∈ T1 and any open neighborhood x0 ∈ U—the limit:

F(U) := lim
n→∞

#{0 ≤ k ≤ n− 1 : f k(x0) ∈ U}
n

is well defined and positive.

Proof. If a point x0 is periodic, the above statement is evident. Otherwise, x0 is a point of
the support of one of the non-atomic ergodic invariant measures, call it µ1. By Birkhoff’s
ergodic theorem, the limit F(U) exists for µ1—almost all points—and equals µ1(U).

Given an interval translation map S, let M(S) be the support of its maximal measure.

Conjecture 1. Almost all points of the set M(S) are syndetically recurrent.

In order to be able to discuss the topological minimality of the points of the set M(S),
we introduce a symbolic model for our dynamics.

Given an n-ITM S, we define the set P(S) as the closure of all periodic points of S
or, in other words, the closure of all rigid segments. Now, we introduce the set Ω of all
one-sided sequences of n symbols 1, . . . , n, endowed with the standard topology.

Let [0, 1] = I1
⋃

. . .
⋃

In be the partition that corresponds to the map S.
Consider:

ΩS := {ω = {ωm, m ∈ Z+} : ∃x ∈ [0, 1] : Sm(x) ∈ Jωm}}.

Definition 5. An orbit of a discontinuity point ti is called a separatrix if there exist k ∈ N and
j ∈ {0, . . . , n} such that Sk(ti) = tj or Sk(ti − 0) = tj.

Lemma 6. Given an ITM S let the IEM T that exists due to Lemma 3 have no separatrices. Then
the symbolic model ΩS endowed with the shift map is minimal.

Proof. The statement of the lemma is true for interval exchange maps; see [3], Corollary
14.5.12 and Exercise 14.5.2. Then, we can apply our Lemma 3 and thus prove the lemma.

As the numerical results show (see Section 9), the set M(S) appears to coincide with
the set:

Ξ =
∞⋃

N=1

Sn(T1).

Conjecture 2. Ξ = M(S).
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Since all points of Ξ are non-wandering, the validity of the above conjecture would
imply that all non-wandering points of an interval translation map are minimal (the
converse statement is trivial).

Finally, we prove a simple version of the closing lemma.

Theorem 2. Given an interval translation map S of n intervals with parameters {tj} and {cj},
for any point x0 ∈ M(S) and any ε > 0, there is an n-ITM S′ with parameters {t′j} and {c′j} such
that |t′j − tj| < ε and |c′j − cj| < ε for all j, and the point x0 is periodic for S′.

Proof. This statement is trivial for interval exchange maps (we can approximate all the
values ti by rational numbers). For an ITM S, we select a monotone map R : [0, 1]→ [0, 1]
that provides a semi-conjugacy between S and an interval exchange map T. In particular,
R(M(S)) = [0, 1]. The inverse map R−1 is defined for almost all points of the segment [0, 1]
with respect to the Lebesgue measure. Hence, we have S = R−1 ◦ T ◦ R. We perturb the
interval exchange map T so that all the points become periodic. Let T′ be the perturbed
map. Finally, S′ = R−1 ◦ T′ ◦ R is the desired ITM on the set M(S).

5. Convergence of Invariant Measures

In this section, we provide a result that justifies numerical modeling. Any numerical
methods can give us a set of periodic measures distributed on rigid segments for ITMs
with rational parameters. It is interesting if these measures provide a good approximation
to an invariant measure of a non-periodic ITM.

This can be illustrated by the following theorem.

Theorem 3. Let Sm (m ∈ N) and S∗ be ITMs of n intervals, and let the parameters of Sm converge
to those of S∗. Let µm be an invariant probability measure for Sm, and suppose that the measures
µm converge ∗-weakly to a measure µ∗. Then, µ∗ is an invariant measure for S∗ provided that
µ∗{t∗k} = 0 for any k, where t∗k are discontinuity points of the map S∗.

Proof. Let tm
k and cm

k be the parameters of maps Sm and t∗k , c∗k be those of the map S∗. Given
a continuous map ϕ : [0, 1]→ [0, 1], we have:

∫ 1

0
ϕ(t) dµm(t) =

n−1

∑
k=0

∫ tm
k+1

tm
k

ϕ(t + cm
k ) dµm(t) (1)

for all m ∈ N. The principal question is whether or not we can pass to the ∗-weak limit in
Equation (1).

It goes without saying that the left-hand side of (1) converges to
∫ 1

0 ϕ(t) dµ∗(t); we
need to check whether the right-hand side converges to:

n−1

∑
k=0

∫ t∗k+1

t∗k
ϕ(t + c∗k ) dµ∗(t)

Let M = maxt∈[0,1] ϕ(t). Given a ε > 0, we take an m ∈ N so large that |tm
k − t∗k | < ε,∣∣∣∣∣∣∣

t∗k+1−ε∫
t∗k+ε

ϕ(t + c∗k ) dµm −
t∗k+1−ε∫
t∗k+ε

ϕ(t + c∗k ) dµ∗

∣∣∣∣∣∣∣ < ε,

and:
|ϕ(t + cm

k )− ϕ(t + c∗k )| < ε
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for all k ∈ {0, . . . , n− 1} and all t ∈ [0, 1] for which the latter inequality is well defined.
Then, for any k ∈ {0, . . . , n− 1}, we have:∣∣∣∣∣∣

t∗k+1∫
t∗k

ϕ(t + c∗k ) dµ∗(t)−
tm
k+1∫
tm
k

ϕ(t + c∗k ) dµ∗(t)

∣∣∣∣∣∣
≤

 t∗k+ε∫
t∗k−ε

+
t∗k+1+ε∫

t∗k+1−ε

M dµ∗(t) +

∣∣∣∣∣∣
t∗k+1−ε∫
t∗k+ε

ϕ(t + c∗k ) dµm −
t∗k+1−ε∫
t∗k+ε

ϕ(t + c∗k ) dµ∗

∣∣∣∣∣∣
+

t∗k+1−ε∫
t∗k+ε

|ϕ(t + c∗k )− ϕ(t + cm
k )| dµm(t) ≤ Mµ∗ + 2ε.

This proves the theorem.

6. A Model of a Trader’s Behavior

The rest of the paper is devoted to an example of interval translation maps that appears
in modeling real-life problems, namely in a simple risk management model.

The main ingredient of this model is the so-called stop operator, first introduced
in [22]; see also [23–25] for surveys on the problem.

Various models of real-life problems were modeled using the stop operator techniques,
and we mention those related to economics: [26–28].

Going back to our model, we considered a trader with a strategy that depends on
some economic parameters. At every step (for instance, once a month), the trader varies
the strategy based on the current values of the parameters. In reality, it is often more
convenient to disregard small changes of parameters taking into account the cost of actions
(for instance, the forced loss of money in currency exchange). However, as soon as the risk
reaches the critical value, the parameters of the strategy are suddenly changed so that the
strategy becomes optimal.

A very similar model was developed in [29]. However, in [29], the parameters were
kept at the critical level. Although the corresponding strategy results in continuous dy-
namics, the discontinuous optimization approach considered below looks more relevant
in many real-life situations. As we will see, this difference in assumptions changes the
dynamics dramatically. In particular, the so-called saw map considered in [29,30] demon-
strates a chaotic behavior conjugated to complete symbolic dynamics (Bernoulli shift),
while the discontinuous model described below does not. On the other hand, the dynamics
we obtained has a significant similarity with the sociological model of opinion dynamics
studied by Pilyugin and Sabirova [31].

7. Model Equations

Let s0 ∈ [−1, 1], and let {xn}, n ∈ N0, be a real-valued sequence. The operator Σ maps
a pair (s0, {xn, n ∈ N0}) to the sequence defined by the formula:

sn+1 = Ψ(sn + xn+1 − xn), n ∈ N0,

where the function Ψ is the cut-off function for the interval [−1, 1]:

Ψ(τ) =

{
0 if |τ| > 1,
τ if |τ| ≤ 1.

Below, we call the operator Σ the risk operator. Denote:

L = {(x, s) : x ∈ R, s ∈ [−1, 1]}.



Axioms 2021, 10, 80 8 of 15

We fix (x0, s0) ∈ L and consider the dynamical system:{
xn+1 = λxn + αsn,
sn+1 = Ψ(sn + xn+1 − xn),

(2)

with λ ∈ (−1, 1), α ∈ R, n ∈ N0. It is easy to see that (xn, sn) ∈ L, n ∈ N0. Thus, the strip
L is the phase space for System (2). For the sake of convenience, we write System (2)
as follows: (

xn+1
sn+1

)
= f

(
xn
sn

)
.

Our objective is to understand the dynamics of System (2) for various values of
parameters λ and β = λ + α. First, let us observe two simple properties of the map f .

Lemma 7. All trajectories of the system (2) are bounded. Fixed points of System (2) form
the segment:

EF =

{
(x, s) : x =

αs
1− λ

, −1 ≤ s ≤ 1
}

with the end points:

E =

(
α

1− λ
, 1
)

, F =

(
− α

1− λ
,−1

)
.

The proof of this statement is trivial.
Below, we use the standard notion of stability and instability for equilibria. We also say

that an equilibrium point (x∗, s∗) of System (1) is semi-stable if there are open sets U1, U2 ⊂
{(x, s) : |s| < 1} such that (x∗, s∗) belongs to their boundaries and, simultaneously:

• for every ε > 0, there is a δ > 0 such that any trajectory starting from the δ-neighborhood
of the equilibrium point (x∗, s∗) in the set U1 belongs to the ε-neighborhood of (x∗, s∗)
for all positive n;

• there is an ε0 > 0 such that any trajectory starting in U2 leaves the ε0-neighborhood of
the equilibrium (x∗, s∗) after a finite number of iterations.

Lemma 8. For any β ∈ (−1, 1), all equilibrium points except E and F are stable, while points E
and F are semi-stable.

The proof of this statement is also trivial, and we leave it to the reader.
Throughout the proofs of the following statements, we denote by Ax and As the x and

s coordinates of a point A ∈ L, respectively; a similar notation is used for other points. We
also use the variable p = x− s. Due to the symmetry f (−x,−s) = − f (x, s), it suffices to
present the proofs for the right half space.

Lemma 9. For any point A to the left of the segment EF, one has [ f (A)]x > Ax. For any
point B to the right of the segment EF, one has [ f (B)]x < Bx.

Proof. Since A lies to the left of the segment EF, one has (1− λ)Ax < αAs. Hence,

[ f (A)]x = λAx + αAs > λAx + (1− λ)Ax = Ax.

A similar argument applies to the point B.

Denote by Π ⊂ L the parallelogram with the diagonal EF, two sides on the lines
s = ±1, and two sides with slope one(see Figure 1):

Π =

{
(x, s) : |x− s| ≤

∣∣∣∣ α

1− λ
− 1
∣∣∣∣, |s| ≤ 1

}
.
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Lemma 10. Let (x0, s0) ∈ Π and p0 = x0− s0. If either−1 < β < 0 and |βx0− (α+ 1)p0| ≤ 1
or 0 ≤ β < 1, then the trajectory with the initial point (x0, s0) satisfies pn = xn − sn = p0 for all
n ≥ 0 and (xn, sn)→ (x∗, s∗) as n→ ∞, where:

(x∗, s∗) =
(
− αp0

1− β
,− (1− λ)p0

1− β

)
(3)

is a fixed point of f with x∗ − s∗ = p0.

Figure 1. Parallelogram Π.

Proof. Consider the sequence (xn, sn) defined by:

xn+1 = βxn + α(sn − xn), sn+1 = xn+1 − xn + sn (4)

and suppose that |sn| ≤ 1 for all n. Then, this sequence is a trajectory of (1). Equation (4)
is equivalent to the relations xn − sn = p0, xn+1 = βxn − αp0, which result in the
explicit formulas:

xn − x∗ = sn − s∗ = βn(x0 − x∗) = βn(s0 − s∗), (5)

where we use the notation (3). Since s0, s∗ ∈ [−1, 1], Equation (5) implies |sn| ≤ 1 for all
n if 0 ≤ β < 1. This means that the trajectory converges to the equilibria (x∗, s∗) along
the slanting segment p = x − s = p0 and never leaves the parallelogram Π. Similarly,
if −1 < β < 0 and, in addition, |s∗ + β(s0 − s∗)| ≤ 1, then Equation (6) also implies
|sn| ≤ 1 for all n. By definition of s∗, we have s∗ + β(s0 − s∗) = βx0 − (α + 1)p0; hence
under the assumptions of the lemma, the sequence sn satisfies |sn| ≤ 1, and therefore,
the formulas explicitly define a trajectory of (2). This trajectory also converges to the
equilibrium (x∗, s∗) “jumping” over it along the slanting segment p = p0 and never leaving
the parallelogram Π.

Lemma 10 does not describe the destiny of those trajectories that either start from
outside of the parallelogram Π or have an initial point (x0, s0) ∈ Π such that:

|βx0 − (α + 1)p0| > 1, −1 < β < 0.

Note that for all of those trajectories, there exists k ∈ N such that |sk + xk+1 − xk| > 1 (i.e.,
these trajectories “feel” the discontinuity of System (2)). Below, we show how in this case,
we can reduce System (2) to a one-dimensional Poincaré map.

In this paper, we analyzed the case β > 1, λ < 0 only. Other cases could be consid-
ered similarly.

Theorem 4. Let λ ∈ (−1, 0), β > 1. Then:
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1. For any point (x0, s0) /∈ EF, there is a number k ∈ N such that:

f k(x0, s0) ∈ {(x, 0)}.

2. There exists a non-atomic invariant measure µ of the map f such that suppµ
⋂

EF = ∅.
3. The set of non-wandering points of the map f that do not belong to the equilibrium set EF

is uncountable.

8. Proof of Theorem 4
8.1. Reduction to a One-Dimensional Map

For β > 1, all equilibrium points are unstable. Hence, if (x0, s0) /∈ EF, then there exists
a minimal i = i(x0, s0) ∈ N such that si = 0. Here, (xi, si) is the i-th iteration of the point
(x0, s0). Without loss of generality, we assume that s0 = 0 and denote i(x0) = i(x0, 0).

Consider the Poincaré map T̂ : R → R defined as T̂(x) = xi(x), T̂(0) = 0. Since the
map f is odd, so is the map T̂. From λ < 0, it follows that x1 = λx0 < 0 for x0 > 0,
and hence, T̂(x) < 0, x > 0. Define T(x) : [0,+∞) 7→ [0,+∞) as T(x) = |T̂(x)|, x ≥ 0.
By definition,

T̂(x) = −T(x), x ≥ 0,
T̂(x) = T(−x), x < 0,
T̂2(x) = T2(x), x ≥ 0.

(6)

It is easy to see that the dynamics of f and T are closely connected. In particular, each
periodic point x of the map T corresponds to the periodic point (x, 0) of the map f . The
equalities (6) allow us to restrict the analysis to positive values of x only.

8.2. Structure of the Map T

First of all, note that as long as |sn + xn+1 − xn| ≤ 1, System (2) can be rewritten in
the following way: (

xn+1
sn+1

)
= A

(
xn
sn

)
,

where A is the 2× 2 matrix defined by:

A =

(
λ α

λ− 1 α + 1

)
. (7)

Let us show that for any k ∈ N, there exists a unique point Qk = (qk, 0), qk > 0 such
that first k− 1 iterations of the point (qk, 0) under the map f belong to the interior of L,
and the k-th iteration is (qk − 1,−1). Indeed, it follows from (7) that:

An =
1

β− 1

(
α− (1− λ)βn αβn − α
(λ− 1)(βn − 1) αβn − 1 + λ

)
(8)

and by the definition of qk, we have:

Ak
(

qk
0

)
=

(
qk − 1
−1

)
. (9)

From (8) and (9), we obtain the explicit formula for qk:

qk =
β− 1

(1− λ)(βk − 1)
.

It is also easy to obtain the following statements (see Figure 2):

• T is discontinuous at the points qk, k ∈ N;
• T is continuous on the sets (q1,+∞) and (qk+1, qk], k ∈ N;
• limk 7→∞ qk = 0;
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• T(qk) = −(λ(qk − 1)− α) = β− λqk, k ∈ N;
• T(qk) > T(qk+1), k ∈ N;
• limk 7→∞ T(qk) = β;
• limx 7→qk+0 T(x) = 1− qk, k ∈ N;
• limx 7→qk+0 T(x) < limx 7→qk+1+0 T(x), k ∈ N;
• limk 7→+∞ limx 7→qk+0 T(x) = 1;
• on the segment (qk+1, qk], k ∈ N, the map T(x) is given by the equation:

T(x) = χkx,

where:

χk :=
T(qk)

qk
> 0;

• on the segment (q1,+∞), the map T(x) is given by the equation T(x) = −λx.

Figure 2. A sample form of the map T.

Denote:
µ = lim

x 7→q1+0
T(x) = − λ

1− λ
,

ν = T(q1) = β− λ

1− λ
.

Taking into account the above statements, the following lemmas are straightforward.

Lemma 11. The segment [µ, ν] is positively invariant under the map T.

Lemma 12. The Lyapunov exponents:

lim
n→+∞

1
n

ln |DTn(x)|
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exist and are equal to zero for almost all x ∈ R.

As stated above, the map T is piecewise linear, and T(x) = χkx on every seg-
ment (qk+1, qk] with χk > 0. Let us apply the transformation of the variable y = ln x,
x ∈ (0, ∞). In terms of the variable y, the map T defined on [µ, ν] transforms to the map
S(y) = y + bk := y + ln χk defined on the segment [ln µ, ln ν]. Maps T and S are obviously
topologically conjugated. We see that S is a classic interval translation map with no flips.

8.3. Interval Translations of Two and Three Intervals

Note that if µ > q2, then the point q1 is the only discontinuity point of the map T inside
[µ, ν]. Furthermore, the inequality µ > q2 is equivalent to the inequality −λ(β + 1) > 1.

Assume that µ > q2, after identifying the points ln µ and ln ν. In this case, the map S
becomes a rigid rotation by the angle ϑ = ln(χ2/µ) of the circle T1, which has the length
θ = ln(ν/µ). As such, if the rotation number ϑ/θ is rational, then each trajectory is periodic;
on the other hand, if the rotation number ϑ/θ is irrational, then each trajectory is dense
in T1.

In the case −λ(β + 1) ≤ 1 < −λ(β2 + β + 1), the same procedure can be used to
identify S with a double rotation (see Section 2). In general, S is equivalent to an n-CTM if:

−λ(βn − 1)
β− 1

≤ 1 <
−λ(βn+1 − 1)

β− 1
.

9. Numerical Simulations

Figure 3a presents the results of numerical simulations of System (2) for the fixed value
β = 1.5 with α varying from one to 1.42. Note that in contrast to our previous assumptions,
the parameter λ is positive.

Overall, for the most parameter values, the considered ITM appears finite, and the sup-
port of the maximal measure consists of a finite number of intervals. However, these
intervals can shrink to points under parameter variation. The dependence on α appears to
be continuous for almost all values of the parameter. On the other hand, there are many
(probably, infinitely many) discontinuity points.

The boundaries of the intervals constituting the set M(S) depend linearly on α. This
can be explained by the fact that the boundaries of these intervals are given by the images
of the limiting values of T(qk). It can easily be shown that the set M(S) is just one interval
for α ≥ α∗ with α∗ = β+2

β+1 . Indeed, in this case, the map on its absorbing interval has a
single discontinuity q1, and the condition α = α∗ corresponds to the case T(q1 + 0) = q2,
i.e., the discontinuity q2 located at the boundary on the absorbing interval.

The organizing principles of the presented bifurcation structure are still to be investi-
gated in detail; however, it is worth noticing a striking similarity between this structure
and the band count adding structure known for multi-band chaotic attractors. In the
latter case, as initially reported in [32] (for more details, we refer to [33]), between two
parameter intervals associated with the K1-band and K2-band chaotic attractors, there is a
parameter interval associated with the (K1 +K2 − 1)-band chaotic attractors. The same
regularity can be observed in System (2). For example, in Figure 3b, one can see parameter
intervals where the sets M(S) consist of three and four bands (connected components), a
parameter interval corresponding to sets M(S) consisting of six bands in between, and so
on. However, there is a major difference in the case described in the literature, as the band
count adding structure has been so far reported for chaotic attractors only, while the sets
M(S) in System (2) are not chaotic. To the best of our knowledge, a band count adding
structure formed by non-chaotic attractors has never been reported before. To which extent
the bifurcation scenario observed in System (2) follows the regularities of the band count
adding structure is still to be investigated.
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(a)

(b)

Figure 3. (a) The set M(S) for various values of parameters α and β = 1.5. (b) The number of bands
(connected components) of sets M(S) for parameter values indicated by the rectangle marked in (a).

10. Discussion

Based on the principal idea of [1], we demonstrated that there is a significant similarity
between interval translations and interval exchange maps. We illustrated this similarity
with a number of statements that are novel for interval and circle translations. In particular,
a canonical metric equivalence can be introduced. We showed the continuity of invariant
measures with respect to the parameters of the system and proved a “toy version” of the
closing lemma.

As an example, we discussed the dynamics of a simple risk management model,
studied the properties of this map, and simulated it numerically. These simulations were
in complete agreement with the theoretical predictions, including those of this paper.
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