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Abstract

Lidar has been used in the wind energy field for decades. Most of the time, it was mainly used
for wind resource assessments of potential wind farms. In recent years, the cost of lidar systems
has decreased significantly, and the applications of lidar have become increasingly diverse. In
some cases where it is more expensive to erect meteorological mast towers, such as offshore
wind farm development, lidar has become the preferred resource assessment choice. In addition
to resource assessment, lidar has attracted extensive research interest in wind turbine control,
power performance characterization, wind power prediction, and wind farm control. In terms
of lidar-assisted control, this technology has been proven to reduce wind turbine loads, rotor
speed variations, and power fluctuations. In recent years, lidar-assisted wind turbine control
has been applied to commercial projects.
Wind turbines operate mainly in atmospheric turbulence, where wind speeds are highly random
and fluctuating. The wind rotates the turbine to generate electricity while also imposing fatigue
loads. Traditional wind turbine control only relies on feedback control, which adjusts the blade
pitch angles and the generator torque by measuring changes in the rotational speed of the
turbine. This control effect is achieved after the turbulent wind disturbance has already acted
on the wind turbine and it is lagging. Differently, lidar-assisted control uses the wind preview
provided by nacelle- or spinner-lidars to achieve feedforward control. For example, when the
wind speed changes, the lidar can sense that and inform the pitch control system to achieve an
earlier pitch adjustment.
Some key features of nacelle lidar measurements make it necessary to process the lidar mea-
surement before it can be used for turbine control. For instance, the lidar measurement is the
projection of the three-dimensional wind velocity vector onto the lidar beam direction, but the
turbine rotor is mainly interacting with the axial component in the velocity vector. In addition,
the lidar system provides only limited measurements of the upstream position while the turbine
rotor interacts with the downstream turbulence through its three blades. Usually, differences in
turbulence at upstream and rotor positions are described as wind evolution. Further, the lidar
measurement can be unavailable due to blade blockage or special weather patterns. Therefore,
a lidar preview quality study needs to be performed to determine the usable part of the wind
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preview provided by the lidar. A filter design is necessary to filter out uncorrelated information
in the lidar wind preview. In actual operation, wind turbines suffer from different atmospheric
stability conditions. In different atmospheric stability conditions, the spectrum and coherence
of the turbulent wind can vary. Because of the limited measurement at upstream positions,
lidar preview is highly linked to the spatial coherence of turbulence. Thus far, it is still unclear
whether the variation of the turbulence characteristics will have an impact on the lidar preview
quality and the benefits of lidar-assisted control.
Although there are already commercial use cases for lidar-assisted control, the existing lidar-
assisted control simulation environment does not fully cover the characteristics of lidar measure-
ments discussed above. Therefore, the main objective of this thesis is to improve the lidar wind
preview modeling and assess the benefits of lidar-assisted control using the improved modeling.
First, the improvement is achieved by incorporating the wind evolution phenomenon into con-
ventional three-dimensional turbulence models: the Mann and Kaimal models, resulting in
four-dimensional turbulence models. The performances of these two extended models in pre-
dicting turbulence spectra and spatial coherences are evaluated using measurements from a
pulsed lidar and a meteorology mast.
Furthermore, the analytical models which represent the correlation between the lidar-previewed
rotor effective wind speed and the rotor effective wind speed at the rotor position, are derived
based on the extended turbulence models. Spectra and coherences of turbulence in different
atmospheric stabilities are summarized, and their impacts on lidar preview qualities are in-
vestigated. A preliminary study on whether the upstream wind turbine wake affects the lidar
preview of a downwind wind turbine is also conducted.
Moreover, a realistic lidar module is updated in the aeroelastic simulation tool, which allows
for studying the impact of unavailable lidar data on lidar wind preview quality. Through
simulations using realistic data availability, this study indicates that the blade blockage and
low data availability event have negligible impacts on the lidar preview quality.
Finally, this thesis evaluates the benefits of lidar-assisted control under various turbulence
characteristics representative of different atmospheric stabilities using the updated aeroelastic
simulation tool. This study exhibits that the benefits of lidar-assisted control are related to
the mean wind speed, turbulence spectrum, turbulence spatial coherence, and used turbulence
models. For the NREL 5.0 MW turbine and a four-beam lidar, the benefits of lidar-assisted
control are primarily reductions in rotor speed variation, power fluctuation, and tower-base
bending load. The benefits are observed in all three investigated stabilities: unstable, neutral,
and stable.



Kurzfassung

Lidar wird seit Jahrzehnten im Bereich der Windenergie eingesetzt. Die meiste Zeit wurde Li-
dar hauptsächlich zur Bewertung der Windressourcen potenzieller Windparks eingesetzt. In den
letzten Jahren sind die Preise für Lidar gesunken, und die Einsatzmöglichkeiten werden immer
vielfältiger. In einigen Fällen, in denen es teurer ist, meteorologische Masten zu errichten, wie
z.B. bei der Entwicklung von Offshore-Windparks, ist Lidar die bevorzugte Wahl für die Res-
sourcenbewertung geworden. Neben der Ressourcenbewertung hat Lidar ein großes Forschungs-
interesse bei der Regelung von Windturbinen, der Charakterisierung der Leistungsmerkmale,
der Vorhersage der Windleistung und der Regelung von Windparks geweckt. Was die Lidar-
gestützte Regelung betrifft, so hat sich diese Technologie als geeignet erwiesen, die Belastung
der Windkraftanlagen, die Schwankungen der Rotordrehzahl und die Leistungsschwankungen
zu reduzieren. In den letzten Jahren wurde sie auch bei kommerziellen Projekten eingesetzt.
Windturbinen arbeiten hauptsächlich in atmosphärischen Turbulenzen, wo die Windgesch-
windigkeiten sehr zufällig und schwankend sind. Turbulente Winde ermöglichen die Stromer-
zeugung durch Windenergie, stellen aber auch eine Ermüdungsbelastung dar. Die herkömmliche
Regelung von Windkraftanlagen beruht auf einer Rückkopplungsregelung, bei der die Blattan-
stellwinkel und das Drehmoment des Generators durch Messung von Änderungen der Rotor-
drehzahl der Anlage angepasst werden. Dieser Regeleffekt wird erzielt, nachdem die turbulente
Windstörung bereits auf die Windturbine eingewirkt hat und regiert dadurch immer mit einem
Zeitversatz. Die Lidar-gestützte Regelung hingegen nutzt die Windvorhersage durch Gondel-
oder Spinner-Lidar-Systeme, um eine Vorsteuerung zu erreichen. Wenn sich beispielsweise die
Windgeschwindigkeit ändert, kann das Lidar dies erkennen und dem Pitch-Steuerungssystem
mitteilen, um eine frühere Pitch-Anpassung zu erreichen.
Einige Hauptmerkmale der Gondel-Lidarmessungen machen es notwendig, die Lidarmessung
zu verarbeiten, bevor sie für die Turbinensteuerung verwendet werden kann. Zum Beispiel
ist die Lidar-Messung die Projektion des dreidimensionalen Windgeschwindigkeitsvektors auf
die Lidar-Strahlrichtung, aber der Turbinenrotor interagiert hauptsächlich mit der Windkom-
ponente in Strömungsrichtung. Darüber hinaus liefert das Lidar-System nur begrenzte Mes-
sungen an stromaufwärts gelegenen Positionen, während der Turbinenrotor durch seine drei
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Flügel mit der stromabwärts gelegenen Turbulenz interagiert. Normalerweise werden die Un-
terschiede in der Turbulenz an der Anström- und Rotorposition als Windevolution beschrie-
ben. Darüber hinaus kann die Lidar-Messung durch die Abschattung von Rotorblättern oder
durch spezielle Wettermuster nicht verfügbar sein. Daher muss eine Studie zur Qualität der
Lidar-Windvorhersage durchgeführt werden, um den nutzbaren Teil der vom Lidar gelieferten
Windvorhersage zu bestimmen. Ein Filterdesign ist notwendig, um unkorrelierte Informationen
in der Lidar-Windvorhersage herauszufiltern. Im Betrieb sind Windkraftanlagen unterschied-
lichen atmosphärischen Stabilitätsbedingungen ausgesetzt. Bei unterschiedlichen atmosphäri-
schen Stabilitätsbedingungen können das Spektrum und die Kohärenz des turbulenten Windes
variieren. Aufgrund der begrenzten Messmöglichkeiten an stromaufwärts gelegenen Positionen
ist die Lidar-Windvorhersage stark von der räumlichen Kohärenz der Turbulenz abhängig.
Bisher ist noch unklar, ob die Variation der Turbulenzcharakteristika einen Einfluss auf die
Qualität der Lidar-Windvorhersage und die Vorteile der Lidar-gestützten Regelung hat.
Obwohl es bereits kommerzielle Anwendungsfälle für die Lidar-gestützte Regelung gibt, deckt
die bestehende Simulationsumgebung für die Lidar-gestützte Regelung die oben beschriebenen
Eigenschaften der Lidar-Messungen nicht vollständig ab. Daher ist das Hauptziel dieser Arbeit
die Verbesserung der Lidar-Windvorhersagemodellierung und die Bewertung der Vorteile der
Lidar-gestützten Regelung unter Verwendung dieser verbesserten Modellierung.
Zunächst wird die Verbesserung dadurch erreicht, dass das Phänomen der Windevolution in
konventionelle dreidimensionale Turbulenzmodelle integriert wird: in das Mann- und in das
Kaimal-Modell. Dies führt zu vierdimensionalen Turbulenzmodellen. Die Genauigkeit dieser
beiden erweiterten Modelle bei der Vorhersage von Turbulenzspektren und räumlichen Kohä-
renzen wird anhand von Messungen mit einem gepulsten Lidar und einem meteorologischen
Meßmast bewertet.
Darüber hinaus werden - auf der Grundlage der erweiterten Turbulenzmodelle - analytische Mo-
delle abgeleitet, die die Korrelation zwischen der mit den Lidarmessungen geschätzen rotoreffek-
tivenWindgeschwindigkeit und der rotoreffektivenWindgeschwindigkeit selbst darstellen. Spek-
tren und Kohärenzen von Turbulenzen in verschiedenen atmosphärischen Stabilitätszuständen
werden zusammengefasst und ihre Auswirkungen auf die Qualität der Lidar-Windvorhersage
werden untersucht. Ebenfalls wird eine vorläufige Studie zur Frage durchgeführt, ob der Nach-
lauf einer Windkraftanlage die Lidar-Windvorhersage einer windabwärts gelegenen Windener-
gieanlage beeinflusst.
Auch wurde in dieser Arbeit ein realistisches Lidar-Modul in ein aeroelastisches Simulationspro-
gramm integriert, mit dem die Auswirkungen nicht verfügbarer Lidar-Daten auf die Qualität
der Lidar-Windvorhersage untersucht werden können. Durch Simulationen mit realistischer Da-
tenverfügbarkeit zeigt diese Studie, dass die Abschattung durch die Rotorblätter und die geringe
Datenverfügbarkeit vernachlässigbare Auswirkungen auf die Qualität der Lidar-Windvorhersage
haben.
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Schließlich werden in dieser Arbeit mit Hilfe des aktualisierten aeroelastischen Simulationspro-
gramm die Vorteile der Lidar-gestützten Regelung unter verschiedenen Turbulenzcharakteristi-
ken bewertet, die für unterschiedliche atmosphärische Stabilitätszuständen repräsentativ sind.
Diese Studie zeigt, dass die Verbesserungen durch die Lidar-gestützten Regelung mit der mitt-
leren Windgeschwindigkeit, dem Turbulenzspektrum, der räumlichen Kohärenz der Turbulenz
und den verwendeten Turbulenzmodellen zusammenhängen. Für die NREL 5.0 MW Referenz-
windenergieanlage und ein Vierstrahl-Lidar liegen die Vorteile der Lidar-gestützten Regelung
vor allem in der Verringerung der Rotordrehzahlschwankungen, der Leistungsfluktuation und
der Biegebelastung am Turmfuß. Die Vorteile sind in allen drei untersuchten atmosphärischen
Stabilitätszuständen zu beobachten: instabil, neutral und stabil.
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Introduction

1.1 Motivation
Light detection and ranging (lidar) technology has been adopted in the wind energy industry
for decades. In the past, the prominent role of lidar systems in wind energy applications was
wind resource and site assessment. However, the reduced cost of lidar systems in recent years
has resulted in more interest from the wind energy community in more research topics. As
a result, many studies have focused on the use of lidar for wind turbine control, turbulence
characterization, power performance assessment, wind farm control, wake measurement, and
power prediction.
Conventionally, wind turbines are controlled through feedback control. The rotor rotational
speed is typically measured and fed into a feedback controller. The feedback controller then
determines the blade pitch angle and generator torque. With a feedback control algorithm, the
turbine reacts to the turbulent disturbance after the aerodynamic effects of turbulence have
happened to the turbine. Nacelle- or spinner-based lidar can provide a preview of the incoming
turbulence; therefore, it enables the turbine to react to the incoming disturbance prior to its
impact on the turbine rotor. This has been reported to be beneficial for turbine load reductions.
At the end of 2019, lidar technology was first deployed by the turbine manufacturer Goldwind to
assist the control system, meaning it was the first commercial application of lidar-assisted wind
turbine control. By 2020, 1000 wind turbines from Goldwind were equipped with lidar-assisted
control (LAC) systems [1].
Although LAC systems have been used in industrial applications, the existing open-source LAC
simulation environment still relies on some assumptions and cannot reflect certain phenomena
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that occur in practice. The avoidance of these assumptions in simulations and whether these
assumptions have an impact on LAC are still unexplored. This thesis focuses on improving
lidar wind preview modeling and assessing the benefits of LAC using an improved lidar wind
preview modeling approach.

1.2 Related Studies
Thus far, several studies have investigated lidar wind preview for turbine control and the
benefits of lidar-assisted turbine control. Additionally, turbulence evolution, which is a critical
phenomenon in lidar wind preview modeling, has been studied by several researchers. The
highlights of these studies are summarized in this section.

1.2.1 Turbulence Evolution

Turbulence evolution is defined as the physical phenomenon that the turbulent wind field evolves
as it propagates from upstream to downstream. Because lidar systems measure turbulence at
upstream positions while the turbine rotor is interacting with turbulence at the downstream
rotor position, the evolution of turbulence is an inherent phenomenon in LAC. In practice,
turbulence evolution is often quantified by the coherence between the velocity fluctuations at
two longitudinally separated positions. Moreover, the longitudinal direction is the direction
of turbulence propagation. On the other hand, Taylor’s frozen theory [2] assumes that the
turbulence field propagates without any change, meaning that turbulence evolution is ignored,
and the longitudinal coherence is always 1. When turbulence evolution is considered, a 4-
dimensional (4-D) turbulence field is required to describe the temporal velocity fluctuations
over a 3-dimensional (3-D) spatial field. With Taylor’s frozen theory, a 3-D turbulence field
is sufficient because we can simply convert between the longitudinal direction and the time
dimension.
The early research on turbulence evolution can be traced to the study by Pielke and Panofsky [3].
They suggested using the exponential coherence model by Davenport [4], originally proposed to
describe coherence with vertical separations, to describe the longitudinal coherence. Moreover,
Kristensen [5] proposed another expression for longitudinal coherence, which differs from that
of Pielke and Panofsky.
More recently, the concept of LAC [6] has spurred research interest in turbulence evolution.
Simley and Pao used large eddy simulation (LES), which solves the large-scale fluid motion
described by the Navier-Stokes (N-S) equations, to study the longitudinal coherence. Through
LES data, Simley and Pao [7] observed that neither Pielke and Panofsky’s nor Kristensen’s ex-
pressions can always correctly represent the longitudinal coherence. However, by incorporating
additional parameters to Pielke and Panofsky’s expression, they observed that the modified
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exponential coherence model has better agreement with the coherence calculated from LES
data. Davoust and von Terzi [8] further validate Simley and Pao’s model. Through lidar mea-
surements from a beam staring into the longitudinal direction, they found good agreements
between the data-based coherence and that based on Simley and Pao’s model. After that,
Chen et al. [9] parameterized Simley and Pao’s model using Gaussian process regression. The
parameterized model can provide parameters for the longitudinal coherence based on other
observed variables [9]. Except for the empirical exponential coherence-based models, De Maré
and Mann [10] extended the 3-D Mann spectral tensor [11] to four dimensions by incorporating
Kristensen’s model [5]. De Maré and Mann’s model has more physical considerations and has
thus far been validated using LES simulations.

1.2.2 Lidar Wind Preview for Turbine Control

Currently, the most promising and industrially applied LAC algorithm is the collective pitch
feedforward control proposed by [6], which is also the focus of this thesis. With this control
strategy, a filter must be designed based on the correlation between the lidar-estimated rotor
effective wind speed (REWS) and turbine REWS. A correlation study determines the lidar
wind preview quality and can be performed using an analytical turbulence spectral model or
by field testing.
Several studies have analyzed the coherence between the lidar- and turbine-based REWSs,
using the two turbulence models provided by the International Electrotechnical Commission
(IEC) 61400-1 standard [12]. The two turbulence spectral models are the Mann uniform shear
model [11], hereafter referred to as the Mann model, and the Kaimal spectra [13] with an
exponential coherence model, hereafter referred to as the Kaimal model. The studies on lidar-
rotor coherence using the Kaimal model include [14, 6, 15, 16, 17]. These studies considered
turbulence evolution using exponential longitudinal coherence models. Held and Mann [18]
compared the performance of the two IEC turbulence spectral models in predicting lidar-turbine
coherence using measurements from a field experiment that used two commercial lidars and
a small-size wind turbine. Liang et al. [19] compared the lidar-rotor coherence, considering
both turbulence models and different rotor sizes. Taylor’s frozen theory was applied in [18, 19].
Before [20], which was published during this Ph.D. project, no study had analyzed lidar wind
preview using the Mann model and considering turbulence evolution.
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1.2.3 Evaluation of Lidar-assisted Pitch Feedforward Control

Several studies have evaluated the benefits of lidar-assisted pitch feedforward control using
aeroelastic simulations. Early research on lidar-assisted pitch feedforward control includes stud-
ies in [21, 22], using the aeroelastic design tool Bladed. In [6], FAST (Fatigue, Aerodynamics,
Structures, and Turbulence) was used for the evaluation of LAC. In these studies, the Kaimal
model was used. More recent studies by [23, 24] use HAWC2 (Horizontal Axis Wind turbine
simulation Code 2nd generation) and the Mann model to assess the LAC benefits. All these
studies used the turbulence parameters suggested by the IEC 61400-1 standard [12]. Therefore,
the variation in turbulence parameters owing to changes in external atmospheric conditions
was not considered.

1.3 Research Objectives and Methodology

The main objective of this thesis is to improve lidar systems’ wind preview modeling and
evaluate lidar-assisted wind turbine control using improved lidar preview modeling. The im-
provement is achieved by investigating the following topics:

(a) The turbulence evolution phenomenon is included in the Mann model and the Kaimal
model. For both models, 4-D turbulence field generation methods are explored to en-
able simulating lidar measurements with turbulence evolution. The performance of the
evolution-included models in predicting the spatial coherence of turbulence is then vali-
dated using site measurements from a pulsed lidar.

(b) The variations in turbulence spectra and spatial coherence (including longitudinal coher-
ence) by different atmospheric stability conditions are investigated using measurements
from a meteorological mast and a pulsed lidar.

(c) The lidar wind preview quality in different atmospheric stability conditions is investi-
gated using the improved turbulence models. Here, both free-stream and wake-included
turbulent wind fields are investigated. The free-stream turbulence is represented by the
spectral turbulence models, and the wake-included turbulence is generated using the dy-
namic wake meandering (DWM) model.

(d) The impact of lidar measurement unavailability owing to blade blockage and the low
carrier-to-noise ratio (CNR) is investigated using the updated lidar module in an aeroe-
lastic simulation tool. A stochastic analysis of the lidar CNR signals is performed using
measurements from a pulsed lidar, and the method of generating stochastic CNR time
series is studied.
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(e) With the updated lidar module in the aeroelastic code OpenFAST, the benefits of lidar-
assisted pitch feedforward control are evaluated using both Mann and Kaimal turbulence
models, considering different atmospheric stability conditions.

1.4 Thesis Structure
After this introduction (Chapter 1), Chapter 2 provides the background on wind, wind turbines,
and wind lidars. Chapter 3, describes details about current 3-D turbulence generation methods
for both free-stream and wake-included scenarios, providing some fundamentals for Chapters 4
and 5.
Subsequently, Chapter 4 presents the first primary research outcomes of this thesis. This chap-
ter discusses the methods that extend the Kaimal and Mann models to include turbulence
evolution (longitudinal coherence). For the Kaimal model, the exponential longitudinal co-
herence is considered. A method that uses a two-step Cholesky decomposition is introduced,
which can efficiently generate 4-D turbulence fields at multiple parallel lateral-vertical planes.
In terms of the Mann model, the turbulence evolution is included using the “eddy lifetime”
approach. A novel mathematical expression of eddy lifetime, which can be flexibly adjusted
and provides a good estimation of turbulence spectral properties, is presented. Based on both
turbulence models, the spectral properties of lidar measurements are derived. With the derived
lidar spectral properties, the performances of the two models in predicting turbulence spectra
and spatial coherence under various atmosphere stability conditions are evaluated.
For lidar-assisted feedforward control, the lidar preview quality is defined by how correctly
the lidar predicts the rotor-effective disturbance or, in other words, the REWS. The control-
oriented nacelle- or spinner- lidar system is typically designed to measure several upstream
positions. A wind turbine interacts with turbulence through its three blades. Therefore, the
spatial coherence of any two points is not sufficient to reflect the preview quality of a lidar
system. Instead, the turbine- and lidar-based REWSs should be defined and derived from the
turbulence models. Moreover, the correlation between these two REWSs must be investigated.
The lidar preview quality is related to the filter design of the feedforward pitch controller. It
defines the amount of frequency-domain content in the lidar-estimated REWS that can be used
for control. These contents are analyzed in Chapter 5. The turbulence spectral characteristics
representative of different atmospheric stability classes are summarized, and the lidar preview
quality is analyzed by considering and not considering the upstream turbine wake. A four-beam
pulsed lidar system, whose measurement trajectories are optimized for assisting the control
system of the 5.0 MW reference wind turbine by the National Renewable Energy Laboratory
(NREL), is considered in the preview quality analysis.
To further assess the benefits of LAC in aeroelastic simulations, Chapter 6, describes the up-
dating of the lidar simulation module in OpenFAST. Three new features are integrated to make
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the coupled simulation more realistic: turbulence evolution, blade blockage, and adjustable li-
dar measurement availability. The statistical properties of lidar CNR signals are analyzed with
the measurement from a pulsed lidar. The methods that can generate CNR time series, which
provide data availability similar to measured data, are proposed. The impact of these three
new features on the lidar preview quality is also analyzed.
In Chapter 7, the benefits of LAC are evaluated using the new lidar-integrated OpenFAST. The
evaluation is performed considering a typical four-beam pulsed lidar and the NREL 5.0 MW
turbine. Three atmospheric stability conditions are considered: unstable, neutral, and stable.
The evaluation is performed using both the Kaimal model and the Mann model for the above-
rated wind speed operations.
Chapter 8 concludes the thesis and presents recommendations for further research.

1.5 Notations and Conventions
This section explains the notations and conventions used in this thesis to facilitate the reader’s
understanding of the formulas and derivations.

1.5.1 Font Types

In this thesis, scalars are denoted in standard fonts. Vectors or matrices are represented by
bold fonts. For example, the wind velocity vector described by three scalars u,v, and w is
simply denoted as u = (u, v, w) and the two-dimensional matrix is expressed as

R =

R11 R12 R13

R21 R22 R23

R31 R32 R33

 . (1.1)

1.5.2 Subscripts

The subscripts, written as specific index letters or numbers in standard font, are used to indicate
the elements in a vector or matrix. For instance, Rij, with i and j being the indexes, is used to
point at an unspecified element in the matrix R. R11 is the element in the first row and first
column. The letters i, j, l, m, and n are used exclusively as subscript index-letters.
Frequently, when the subscripts are written as non-numeric standard fonts or letters not in-
cluded in the subscript index-letters, they are used to indicate the information related to the
variable. For example, Ωr is the rotor rotational speed, where “r” is used to indicate “rotor”,
and ax is a parameter indicating the longitudinal (x direction) coherence decay.
If a subscript is required to indicate both the element position in a matrix and the information
related to the variable, the subscript is separated by a comma; for example, Cu,x,ij is an element
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with indexes i and j in the two-dimensional matrix Cu,x. Moreover, the subscripts u and x

indicate that the matrix is related to the u velocity component and the x direction, respectively.

1.5.3 Einstein Summation Convention

The Einstein summation convention (ESC) [25] is convenient to avoid lengthy equations. It
dictates that when a sub-index (e.g., i or j) is repeated in the same equation twice or more, one
sum is used across all the dimensions. Using the incompressible N-S equations as an example,
the continuity equation of fluid is expressed as

∂ũi
∂xi

= 0 (ESC), (1.2)

which is equivalent to
∂ũ1

∂x1
+ ∂ũ2

∂x2
+ ∂ũ3

∂x3
= 0. (1.3)

Moreover, the conservation of momentum

∂ũi
∂t

+ ũj
∂ũi
∂xj

= −1
ρ

∂p

∂xi
+ νkv

∂2ũi
∂x2

j

+ fi (ESC), (1.4)

is equivalent to

∂ũ1

∂t
+ ũ1

∂ũ1

∂x1
+ ũ2

∂ũ1

∂x2
+ ũ3

∂ũ1

∂x3
= −1

ρ

∂p

∂x1
+ νkv

(
∂2ũ1

∂x2
1

+ ∂2ũ1

∂x2
2

+ ∂2ũ1

∂x2
3

)
+ f1, (1.5)

∂ũ2

∂t
+ ũ1

∂ũ2

∂x1
+ ũ2

∂ũ2

∂x2
+ ũ3

∂ũ2

∂x3
= −1

ρ

∂p

∂x2
+ νkv

(
∂2ũ2

∂x2
1

+ ∂2ũ2

∂x2
2

+ ∂2ũ2

∂x2
3

)
+ f2, (1.6)

∂ũ3

∂t
+ ũ1

∂ũ3

∂x1
+ ũ2

∂ũ3

∂x2
+ ũ3

∂ũ3

∂x3
= −1

ρ

∂p

∂x3
+ νkv

(
∂2ũ3

∂x2
1

+ ∂2ũ3

∂x2
2

+ ∂2ũ3

∂x2
3

)
+ f3. (1.7)

In the context of N-S equations, because there are three spatial dimensions, i and j are repeated
three times. The momentum equations are simply expressed as three lines, and each line
corresponds to one i. For the equations in which the ESC applies, “(ESC)” is placed at the end
of the equations.
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Background on Wind, Wind Lidars, and Wind

Turbines

This section gives some background knowledge about wind, wind lidars, and wind turbines.
This background knowledge will set the stage for the subsequent chapters and guide the reader
through the relevant literature.

2.1 Wind
Wind turbines generate renewable electricity by extracting the kinetic energy of wind flow. At
the same time, turbulent wind results in turbine structure loads. Therefore, we must understand
wind before defining the role of wind lidar in wind energy. This section begins with a general
introduction to wind and then outlines the characteristics of turbulence.

2.1.1 Origin of Wind

On a global scale, the wind is a product of the redistribution of heat in the atmosphere. Owing
to the curvature of our planet, regions near the equator absorb more solar heat than regions at
the poles. Because only one side of the earth is heated by the sun and the distribution of land
and ocean is unequal, the unbalanced heating becomes even more complicated. Because of the
heat imbalance, the warmer air tends to ascend, whereas the cooler air tends to sink, resulting
in different pressure zones. In addition to the pressure system, the earth’s rotation causes the
Coriolis effect, by which the prevailing wind direction can be observed at a specific place on the



10 2 Background on Wind, Wind Lidars, and Wind Turbines

0 50 100

[km h-1]

Figure 2.1: An snapshot of the global wind flow on Jan 1, 2021 at the height associated with an
atmosphere pressure of 1000 hPa. Source: https://earth.nullschool.net/.

planet. All these phenomena can be summarized as the global atmospheric circulation [26]. A
snapshot of the semi-global wind flow is shown in Figure 2.1. Close to the equator, the wind in
the Atlantic Ocean (west of Africa) tends to converge and flow towards the west. This specific
trend is caused by the global atmospheric circulation.
On a smaller scale, winds can result from monsoon circulations caused by thermal low circu-
lations over terrains or high plateaus; they can be produced by sea or land breeze cycles in
coastal areas and may occur in the form of canyon winds in highly variable terrains.

2.1.2 Variations in Wind

Winds occur over a wide range across the globe and vary over different spatial and temporal
scales. Therefore, we must understand the wind variability at a given site for wind turbine
operation.
Frequently, anemometers are mounted on meteorology masts to record the wind time series. The
horizontal wind speed over a small volume is recorded using a cup anemometer. An example of
an actual horizontal wind speed measurement from a measurement campaign in Bremerhaven,
Germany, over the winter of 2009 is shown in Figure 2.2 (see [27] for more details). The total
wind speed is the raw measurement recorded by a cup anemometer at a height of 44 m. The
10 min mean value is the average horizontal wind speed over each 10 min interval, and the

https://earth.nullschool.net/
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fluctuation part is the total wind speed extracted using the 10 min mean. We can observe that
the variation in the 10 min mean value is slower and diurnal, whereas each 10 min interval has
high-frequency fluctuations.

Figure 2.2: The Horizontal wind speed time series from Bremerhaven measurement campaign mea-
sured by a cup anemometer at a height of 44m.

Figure 2.3: The Horizontal wind speed spectrum from Bremerhaven measured by a cup anemometer
at the height of 44 m, redrawn based on [6].

To better present the energy of the variations in the frequency (f) domain, Figure 2.3 shows the
horizontal wind speed spectrum. Large-scale weather patterns primarily influence the synoptic
peak. The diurnal peaks are related to the day-night cycle and the imbalanced heat over land
and sea. From 10 min to 1 h, the wind variation is frequently weaker under normal conditions;
therefore, this range is often labeled as the spectral gap. Above the frequency associated with
the minute scale, another peak is associated with turbulence.
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For modern wind turbines, the higher frequency part of wind fluctuation is more important
because most of the structure’s natural frequencies are in this range in which fatigue loads are
excited. The lower frequency part of the spectrum is more important for the power production
variation and grid balancing [28]. Owing to the existence of the spectral gap, for wind turbine
design, the turbulent and the mean parts of the wind are often characterized by 10 to 30 min
intervals. If we characterize them by a longer time interval, we might include some variations
contributed by diurnal peaks, which do not have an essential role in the turbine load.

2.1.3 Statistical Representation of Wind

As discussed earlier, the wind variation is typically characterized in 10 min intervals. For wind
resource assessment and turbine lifetime load calculation, the probability distribution of the
10 min is important. Moreover, the probability distribution of turbulent fluctuation is vital for
turbine load simulation.

Weibull Distribution

Usually, the 10 min mean horizontal wind speed is equivalent to the mean stream-wise wind
speed, and the mean cross-wind (lateral) wind speeds are zero. The mean stream-wise wind
speed U is observed to follow the Weibull distribution:

fwb(U) = kwb

cwb

(
U

cwb

)kwb−1

exp
(
−
(
U

cwb

)kwb
)
, (2.1)

where kwb and cwb are the shape and scale parameters, respectively. These parameters can vary
by site, and they are important for estimating the annual energy production of the turbines.
For the same site, they can also vary by height above ground; typically, the parameters fitted
from hub-height measurements are used as the reference for resource assessment.

Gaussian Distribution

The fluctuation part of horizontal wind speed can be projected onto the stream-wise (longi-
tudinal) and cross-wind (lateral) directions using the 10 min mean wind direction. Both the
stream-wise and cross-wind fluctuations with higher frequencies (denoted as u), namely, the
turbulence, are often characterized by the Gaussian distribution (also called the normal distri-
bution):

fg(u) = 1
σ
√

2π
exp

(
−(u− µ)2

2σ2

)
, (2.2)

where µ is the mean value equivalent to zero because the mean value U is extracted in our spe-
cific application, and σ is the standard deviation. When analyzing the probability distribution
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Figure 2.4: Left: probability distribution of the 10 min mean stream-wise wind speed and the fitted
Weibull distribution with kwb = 2.60 and cwb = 6.23. Right: probability distribution of the normalized
10 min stream-wise wind speed fluctuation and the fitted Gaussian distribution with µ = 0 and σ = 1.
Both datasets are based on the Bremerhaven measurement campaign using a cup anemometer at a

height of 44 m.

of turbulence, the fluctuation u is frequently normalized by its standard deviation σu, resulting
in a unit standard deviation. This Gaussian distribution of turbulence is an important charac-
teristic as it enables us to generate a stochastic turbulence field using a simple and well-known
stochastic process. More details are provided in Chapter 3.
The probability densities of the mean and turbulent winds calculated from the mast anemometer
data are compared with the mathematical distribution in Figure 2.4, which shows that the data
are in good agreement with the theoretical distributions.



14 2 Background on Wind, Wind Lidars, and Wind Turbines

Covariances, Autocorrelations, and Spectra

…

…

Figure 2.5: Illustrations of the data pairs for covariance calculation. Left: one-dimensional time-
dependent data. Right: 3-D spatially distributed data.

The covariance, by definition, is the second-order moment of any two time series ui and uj

shifted by a time lag τ [28]:
Rij(τ) = 〈ui(t)uj(t+ τ)〉, (2.3)

where 〈 〉 denotes the ensemble average. Depending on the time axis, we have many pairs of
data that are shifted by τ (Figure 2.5). The ensemble average is applied to these pairs to
obtain Rij(τ). In particular, when the two time series are identical, the covariance becomes an
autocorrelation function:

Rii(τ) = 〈ui(t)ui(t+ τ)〉. (2.4)

Assuming the fluctuation part of the turbulence at a certain position is periodic and integrable,
by applying the Fourier transform to the covariance, we obtain the cross-spectrum of the two
time series:

Sij(f) =
∫ ∞
−∞

Rij(τ) exp(−2πifτ)dτ, (2.5)

where i is the imaginary unit. When the two time series are equal, we obtain the auto-spectrum
Sii. The correlation of two signals in the frequency domain is frequently defined using the
magnitude squared coherence:

γ2
ij(f) = |Sij(f)|2

Sii(f)Sjj(f) . (2.6)

A turbulent wind field has significantly more points than two positions. At each position, using
the Cartesian coordinate, we can describe the speed vector using three velocity components:
the longitudinal u (stream-wise), lateral v (cross-wind), and vertical w components. We take a
snapshot of the 3-D velocity field at a particular time and may express the fluctuating part of
the velocity field as

u(x) = [u(x) v(x)w(x)] = [u1(x)u2(x)u3(x)], (2.7)
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where x = (x, y, z) are the spatial position vectors defined using the Cartesian coordinate
system. Similar to the time shift introduced earlier, the covariance of any two turbulence
fluctuations in the space can be expressed as

Rij(r) = 〈ui(x)uj(x+ r)〉, (2.8)

where the indexes i, j = 1, 2, 3 now represent the velocity components, and r = (r1, r2, r3) are
the separation vectors. Figure 2.5 shows the pairs of turbulence fluctuations with a separation
of r in the Cartesian coordinate system. Theoretically, if the field size is infinite, we have an
endless number of pairs to obtain the ensemble average for Rij(r). A 3-D Fourier transform of
the covariance tensor Rij yields the spectral velocity tensor (or spectral tensor in brief) [11]:

Φij(k) = 1
(2π)3

∫
Rij exp(−ik · r)dr, (2.9)

where k = (k1, k2, k3) are the wavenumber vectors, and
∫

dr ≡
∫∞
−∞

∫∞
−∞

∫∞
−∞ dr1dr2dr3. Sub-

sequently, the one-dimensional (along the longitudinal wavenumber) cross-spectra of any two
velocity components with separations ∆y and ∆z in the y-z plane can be obtained using

Fij(k1,∆y,∆z) =
∫ ∞
−∞

∫ ∞
−∞

Φij(k) exp(i(k2∆y + k3∆z))dk2dk3. (2.10)

In particular, the auto-spectrum of one velocity component at one point, usually expressed
as Fii(k1), is obtained by considering i = j and ∆y = ∆z = 0. The magnitude squared
coherence between two velocity components in the same y-z plane is also interested, which can
be calculated using [11]

coh2
ij(k1,∆y,∆z) = |Fij(k1,∆y,∆z)|2

Fii(k1)Fjj(k1) . (2.11)

Here, we use cohij for the wavenumber coherence to distinguish it from the frequency coherence
γij.
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2.1.4 Concept of Eddies in Turbulence

This section clarifies the definition of “eddy” in this thesis to explain the terminology “eddy”
that appears several times later. In fluid dynamics, an eddy may be explained as a violent
swirling motion caused by the position and direction of turbulent flow [29]. In atmospheric
turbulence studies, “eddy” does not refer to any specific local distribution of velocity but to
an arbitrary local flow pattern that is characterized only by its length scale [30, 31]. The
energies of eddies of different sizes are described by a spectrum. The turbulent motion can be
superimposed by sinusoidal waves of different wavelengths [30].
To better illustrate this concept, Figure 2.6 shows an example of two-dimensional turbulent
flow superimposed by sinusoidal waves. The first velocity field ue1 is composed of two waves
that both have a wavelength of 4π but propagate in two perpendicular directions. The velocity
field has four half-swirling motions that merge in the center of the field, resulting in a near-zero
flow in the center.
The second velocity field ue2 is represented by waves that both have a length scale of

√
2π.

The waves of the two velocity components propagate in the same direction but have a phase
shift of π/2. Swirling motions are not very clearly observable in the velocity field.
The last velocity field ue3 has perpendicular waves with a size of π, and they are phase-shifted
by π. We can observe that the velocity field has many swirling motions, and each of them has
a size of π.
Finally, the turbulent flow uturb is superimposed by the three velocity fields mentioned earlier,
for which we can still observe some swirling motions but not as much as in ue3 . This example
shows that the “eddies” defined as swirling motions in some fluid dynamic literature can be
superimposed from sinusoidal waves. In turbulence studies, the term “eddy” is not limited to
swirling motion but is generally recognized as waves of different lengths.
However, the turbulent flow in the atmosphere is much more complicated than the example
here. Here, the identical amplitude is assumed for all waves. In practice, the amplitudes follow
an energy spectrum (e.g., the von Kámán energy spectrum), and their energies are determined
by the wavelengths, which are discussed further in the next section.
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Figure 2.6: An example of eddy superimposition for the turbulent flow uturb. The field is superim-
posed by eddies with different wavelengths.
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2.1.5 Standard Turbulence Spectral Models

In the wind turbine design phase, the turbine performance and load are evaluated using aeroe-
lastic simulations (more details in Section 2.3.2). The function of the turbulence spectral model
is to represent the statistical characteristic of the wind variation at a higher frequency for its
lifetime (20 to 25 years). Additionally, the turbine blades interact with wind flow over the rotor-
swept area; therefore, the turbulence field that covers the rotor area is required for aeroelastic
simulation. This section provides an introductory description of the two turbulence models
provided by the IEC 61400-1 standard [12].

Kaimal Spectra and Exponential Coherence Model

The Kaimal spectral model [12, 13] is an empirical model that describes the spectra of wind
velocity components as

Sii(f) =
4σ2

i
Li

Uref

(1 + 6f Li

Uref
)5/3 (2.12)

where Li is the integral length scale, σi is the standard deviation, and Uref is the reference wind
speed equivalent to hub-height mean wind speed Vhub. The indexes i=1,2 ,and 3 represent the
u, v, and w components, respectively. The standard deviation is defined from the reference
turbulence intensity (TI) Iref as

σ1 = σu = Iref(0.75Uref + 5.6), σ2 = 0.8σ1, σ3 = 0.5σ1. (2.13)

The reference TI is an indicator for the turbulence class or turbine class with values of 18%,
16% 14%, and 12%, corresponding to Classes A+, A, B, and C, respectively [12]. The integral
length Li suggested by the IEC 61400-1 standard is

L1 = 8.1Λ1, L2 = 2.7Λ1, L3 = 0.66Λ1, (2.14)

where Λ1 is a turbulence scale parameter defined as the wavelength where fS11(f)/σ2
1 = 0.05.

Note that the Kaimal spectra parameters suggested by the IEC 61400-1 standard are represen-
tative of neutral atmospheric stability only. Section 5.1 describes how these parameters can vary
by atmospheric stability class. Additionally, the Kaimal spectra expressed by Equation 2.12
are one-sided, such that the variance becomes

σ2
i =

∫ ∞
0

Sii(f)df. (2.15)

In addition to the Kaimal spectra, the exponential coherence model (extended from the model
proposed by Davenport [4]) is provided to describe the correlation of longitudinal component
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fluctuation, i.e.

γ2
yz(∆yz, f) = exp

−2ayz∆yz

√(
f

Uref

)2

+ b2
yz

 , with byz = 0.12
Lc

, (2.16)

where ∆yz =
√

∆y2 + ∆z2 is the separation distance in the lateral-vertical plane separated by
∆y in the lateral direction and ∆z in the vertical direction, ayz is the coherence decay constant,
and Lc is the coherence scale parameter. Note that the coherence without a square is used in the
IEC standard [12]. However, the y-z plane coherence of v and w components are not provided
by the IEC 61400-1 standard. For simplicity, the Kaimal spectra and exponential coherence
model are collectively referred to as the Kaimal model in the remainder of this thesis.

Mann Uniform Shear Model

Unlike the empirical Kaimal model, the Mann uniform shear model [11] (hereinafter referred
to as the Mann model) is derived from linearized N-S equations and therefore includes more
physical aspects. A more detailed derivation of the Mann model is provided in Appendix A.2.
Overall, Mann [11, 32] derived the uniform shear model based on the rapid distortion theory
and assumed that the turbulence is stretched from the initial isotropic condition by a linear
shear profile. Subsequently, an eddy lifetime solution was applied to model the second-order
spatial statistics (variance) of the turbulence affected by the shear stretching [11]. For isotropic
turbulence, the turbulence statistics are unchanged under rotations and reflections, and the
spectra of different velocity components are identical [33, 34].
The von Kámán isotropic spectral tensor is used for the initial non-sheared condition and is
expressed as

Φiso,ij(k0) = E(k0)
4πk4

0
(δijk2

0 − kikj), (2.17)

where k0 = (k1, k2, k30) is the initial and non-sheared wavenumber vector that has a magnitude
of |k0| = k0, and the indexes i, j = 1, 2, and 30. E(k0) is the von Kámán energy spectrum:

E(k0) = αε
2
3L

5
3

(Lk0)4

(1 + (Lk0)2) 17
6
, (2.18)

where ε is the rate of viscous dissipation of specific turbulent kinetic energy [11], L is the
turbulence length scale related to the size of the eddies containing the most energy [18], and
α is the spectral Kolmogorov constant. αε2/3 formulates an energy level constant valid in the
inertial subrange, functioning as a proportional gain to the spectral tensor, and is often adjusted
to obtain a specific TI level.
The final shear distorted wavenumber vector is denoted as k = (k1, k2, k3), in which the third
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scalar k3 is related to k30 by k30 = k3 + βk1. Here, β = dU
dz τs is a non-dimensional distortion

factor that depends on the “eddy lifetime":

τs(k) = Γ
(

dU
dz

)−1

(|k|L)− 2
3

[
2F1

(
1
3 ,

17
6 ; 4

3;−(|k|L)−2
)]− 1

2

, (2.19)

where 2F1() is a hypergeometric function, and dU
dz is the mean vertical shear profile. The

subscript “s” in τs means shear. Except for the wavenumber vector, energy level constant αε2/3

and length scale L, Γ is the last parameter describing the Mann model, which is often described
as the anisotropy caused by the shear effect in a near-surface boundary layer [18]. When Γ = 0,
k3 = k30, the turbulence is isotropic [35]. The impact of Γ on the wavenumber magnitude is
shown in Figure 2.7. For isotropic turbulence, the wavenumber magnitude is simply a ball.
In the distorted scenario (Γ=3.4), the distorted wavenumber magnitude becomes an ellipsoid
tilting towards the positive k1 direction.

Figure 2.7: Illustrations of the shear distortion effect on the wave number magnitude. (a) to (c):
The isotropic scenario with Γ=0. (d) to (f): The shear-included scenario with Γ=3.4. All the views

are sliced at k1 = 0, k2 = 0 or k30 = 0.
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Figure 2.8 shows the impact of shear distortion on the magnitude of the turbulent velocity field.
The turbulence fields are generated using the Mann method, which is discussed in more detail
in Section 3.1.2. In (a) to (c), the field does not appear very different from the three views
because the turbulence is homogeneous and isotropic. In the sheared condition indicated by
(f), the turbulence is no longer homogeneous, and the shear effect distorts the large coherent
structure to arrive first at a higher height z and later at a lower height. In the top view (d), the
coherent structure is compressed in the x direction. In the front view (e), the impact caused
by the shear effect is not observable. Moreover, Γ impacts the spectra of different velocity
components and the spatial coherence of the turbulence field [36].

Figure 2.8: Comparisons of the turbulent flow fields in isotropic and shear distorted conditions.
Simulated using L = 49 m and αε2/3 = 0.18 m4/3s−2. (a) to (c): The isotropic scenario with Γ=0. (d)

to (f): The shear-included scenario with Γ=3.4.

With k, L, αε2/3, and Γ, the components of the sheared spectral tensor (the Mann model) are
then calculated using

Φ11(k) = E(k0)
4πk4

0
(k2

0 − k2
1 − 2k1k30ζ1 + (k2

1 + k2
2)ζ2

1 ), (2.20)

Φ22(k) = E(k0)
4πk4

0
(k2

0 − k2
2 − 2k2k30ζ2 + (k2

1 + k2
2)ζ2

2 ), (2.21)
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Φ33(k) = E(k0)
4πk4 (k2

1 + k2
2), (2.22)

Φ12(k) = E(k0)
4πk4

0
(−k1k2 − k1k30ζ2 − k2k30ζ1 + (k2

1 + k2
2)ζ1ζ2), (2.23)

Φ13(k) = E(k0)
4πk2

0k
2 (−k1k30 + (k2

1 + k2
2)ζ1), (2.24)

Φ23(k) = E(k0)
4πk2

0k
2 (−k2k30 + (k2

1 + k2
2)ζ2), (2.25)

where
ζ1 = Q1 −

k2

k1
Q2, ζ2 = k2

k1
Q1 +Q2, (2.26)

with
Q1 = βk2

1(k2
0 − 2k2

30 + βk1k30)
k2(k2

1 + k2
2) (2.27)

and

Q2 = k2k
2
0

(k2
1 + k2

2) 3
2

arctan
(
βk1(k2

1 + k2
2) 1

2 )
k2

0 − k30k1β

)
. (2.28)

The detailed derivation for the spectral tensor components is provided in Appendix A.2. Af-
ter calculating the spectral tensor, the spectra and coherence can be further calculated using
Equations 2.10 and 2.11. The Mann model normally provides a two-sided spectrum such that
the variance

σ2
i =

∫ ∞
−∞

Fii(k1)dk1. (2.29)

In practice, the wavenumber spectra are converted to the frequency spectra assuming Taylor’s
frozen hypothesis, which enables us to replace the longitudinal wavenumber with the frequency
using k1 = 2πf/Uref .

2.2 Wind Lidar
A wind lidar is an optical remote sensing device for capturing wind information in the atmo-
sphere. Typical commercial wind lidars can measure the wind from dozens of meters to several
kilometers. Lidar systems sense the wind using emitted laser beams. They can perform mea-
surements over a large space by adjusting the beam directions and the measurement position
along the laser beam. Compared with conventional meteorology mast towers, ground-based
wind lidar can be more flexibly deployed and does not require additional robust supporting
structures. In offshore wind energy applications, for which erecting a meteorological mast is
more expensive, the lidar is becoming a preferred wind measurement device.
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2.2.1 Applications of Wind Lidar

A wind lidar has various applications outside the wind energy section, for example, (a) tur-
bulence measurement around buildings or bridges1 [37], (b) real-time monitoring of unusual
atmospheric flow patterns over airports to improve air safety1, and (c) wind measurement from
space using satellite lidar for weather forecast and resource assessment1.
For wind energy, wind lidar has various types and is applied from different perspectives.
Ground-based lidars are frequently used for site resource assessment, and they are more at-
tractive than conventional meteorology mast towers if the measurement site is less accessible
or a wind profile at a very high height is required [38]. Nacelle-mounted lidars can be used for
wind turbine control, inflow turbulence characterization, power performance characterization,
and turbine wake tracking. Long-range scanning lidars can measure up to several kilometers
and are therefore often used in wind farm wake observations or power production forecasts.

2.2.2 Measurement Principles of Wind Lidar

Lidar emits lights with 

a known frequency

Aerosol in the air

Wind overall 

blows towards 

the lidar

Aerosol reflects a light, 

whose frequency is higher

Aerosol reflects a light, 

whose frequency is lower

Wind overall

blows away from 

the lidar

lidar

Wind velocity vector

Wind velocity projected to LOS direction

LOS direction

Figure 2.9: Illustration of the heterodyne detection-based lidar measurement principle [39].

Wind lidars rely on the Doppler effect (technically called “laser Doppler anemometry”). Fig-
ure 2.9 shows the basic principle of lidar measurement that uses heterodyne detection. The

1These research topics were investigated by other Early Stage Researchers within the Lidar Knowledge Europe
(LIKE) project, see https://www.msca-like.eu/esr-projects.

https://www.msca-like.eu/esr-projects
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principle of heterodyne detection is that a local oscillator (laser source) is shifted by a certain
frequency, which facilitates the detection of whether the reflected frequency is higher or lower
than the source frequency [39]. Wind flow causes the movement of aerosols suspended in our
atmosphere. Lidar emits laser light into the atmosphere, which is then back-scattered by the
aerosols. The detector then receives the back-scattered light. Based on the Doppler effect, a
frequency shift (or Doppler shift) proportional to the aerosol speed will be imparted to the re-
ceived light. By comparing the frequency of the emitted light (fe) with that of the received light
(fr), the aerosol speed can be determined. The wind speed is then assumed to be equivalent
to the aerosol speed. Because the lidar can only observe the Doppler effect in the line-of-sight
(LOS) direction, lidar devices only measure the wind speed projected onto the LOS direction
(Figure 2.9), which is often called LOS speed (vlos) or radial wind speed. The LOS speed can
be determined by the frequency shift using

vlos = λL(fr − fe)
2 , (2.30)

where λL is the laser wavelength.
Lidar does not measure a single point but a probe volume because the laser beam interacts with
aerosols within a volume in the atmosphere. In other words, the lidar does not directly measure
a unique Doppler frequency shift but a spectrum contributed by all LOS speed fluctuations
of aerosols inside the probe volume. Therefore, depending on the emitted laser types, wind
lidars can be classified as continuous wave (CW) or pulsed lidars. The volume measurement
characteristics depending on the lidar types are explained further.

Continuous Wave Lidar

The CW lidar focuses on a continuously transmitted laser beam at a certain position and detects
the back-scattered signals continuously to determine the Doppler shift [38]. By adjusting the
telescope, the CW lidar can shift to the next measurement position. The volume of aerosols
contributing to the Doppler shift depends on the focus distance from the lidar origin, laser
wavelength, and aperture surface. The laser wavelength can be considered constant, but the
volume increases quadratically with focus distance [39]. Thus, the volume averaging effect
is more significant when the CW lidar focuses on far-away positions. Figure 2.10 shows the
typical signal processing chain for CW lidar systems. First, the detector records a time series
split into many blocks. The Fast Fourier Transform (FFT) is applied to each block to estimate
the power spectrum. Thereafter, all spectra from all blocks are averaged, and then the LOS
speed is obtained from the averaged spectrum using Equation 2.30. Several methods can be
used to determine the LOS speed from the averaged spectrum, such as the centroid, median,
or maximum value [40]. The centroid method is more widely used.
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Split data into blocks

Apply FFT and estimate the spectra

…

…

Take the average spectra from different blocks

Figure 2.10: A typical signal processing flowchart for the CW lidar systems.

Pulsed Lidar

The pulsed lidar does not emit light continuously but intermittently as pulses. The volume
averaging effect for pulsed lidar does not result from focusing the light. When a pulse light
is emitted, it travels toward the atmosphere and is back-scattered continuously. The photons
back-scattered at larger distances travel farther than those back-scattered at smaller distances.
Assuming that the speed of light is constant, the time recorded by the detector is proportional to
the distance that the photons have traveled, thus representing the back-scatters from different
spatial positions along the laser beam. Figure 2.11 shows the typical signal processing flowchart
for pulsed lidar systems. The detector time series is first split into different blocks that represent
various measurement range gates (denoted as distance in the bracket). The size of each block
determines the volume averaging effect. The FFT is applied to each range gate to estimate the
power spectrum. The next pulse is then emitted, and a similar procedure is used to obtain the
spectrum for each block. When the spectra from thousands of pulses are obtained, the spectra
for each measurement gate are averaged to obtain the averaged Doppler spectrum. The LOS
speed at each range gate is eventually determined from the averaged spectrum.
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…

…

Thousands of pulses are sent within each sampling period. Take the average spectra from different pulses

Gate 1 Gate 2

Split the spectrum by one pulse into different segments. 

Gate …

Apply FFT and estimate the spectra  

Gate 1, pulse 1 Gate 2, pulse 1

Figure 2.11: A typical signal processing flowchart for pulsed lidar systems. Note that the light travels
twice the measurement distance because of the round trip.

2.3 Wind Turbines
This section provides general background on the development of modern wind turbines. The
role of aeroelastic simulation in turbine design and load assessment is discussed. An open-
source research-oriented reference turbine controller is introduced; it is selected as the baseline
controller and modified to integrate LAC algorithms. Finally, the general properties of wind
turbine wakes are presented.
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2.3.1 Overview of Wind Turbine Development

Today, wind turbines already have an important role in the energy system and will continue
to as we move toward net-zero greenhouse gas emissions [41]. By 2020, 15% (on average) of
electricity consumption was generated from wind turbines in the European Union. The wind
power penetration was 56% in Denmark, 36% in Lithuania, 35% in Ireland, 23% in Portugal,
24% in the UK, 23% in Germany, 20% in Spain, 18% in Greece, and 16% in Sweden. Outside
Europe, Uruguay achieved a penetration rate of 40%, the United States 8%, and China 6%2.
In 2021, 93.6 GW of new wind capacity was installed, for which China contributed 50.9%. The
Global Wind Energy Council expects that the global wind power capacity will continue to grow
at a rate of 6.6% over the next five years, meaning that 557 GW will be newly installed over
the next five years [41].
Compared with the first generation of wind turbines, modern wind turbines now have signif-
icantly larger rotors and can produce much more electricity. The prototype of the modern
three-bladed upwind wind turbine dates back to 1957, when Johannes Juul designed a wind
turbine with a rotor diameter of 24 m and a power of 200 kW at Gedser, Denmark. This is
why the three-bladed upwind wind turbine is often referred to as the “Danish design.” In April
2022, Vestas released the V172-7.2MW turbine, which has the highest rated power of 7.2 MW
and a rotor diameter of 172 m. In June 2022, Goldwind began the onsite testing of the GWH
191-4.0MW turbine, which has a rotor diameter of 191 m. Up to the time of writing this thesis,
these are the largest onshore turbines in terms of rated power and rotor size. For offshore tur-
bines, the currently largest commercially deployed turbine is the SG 11.0-200 DD by Siemens
Gamesa, which has a diameter of 191 m and rated power of 11 MW. The largest offshore being
tested onsite is the SG 14-222 DD again by Siemens Gamesa with a diameter of 222 m and rated
power of 14 MW. Another 14 MW machine, Haliade-X by GE Wind Energy, is under testing
and has a rotor diameter of 220 m. In addition, the V236 15 MW turbine by Vestas with a
diameter of 236 m is being installed for testing. Among the turbines in the conceptual design
stage, Mingyang Smart Energy announced that they are developing a 16 MW turbine prototype
that has a diameter of 242 m. As the turbine rotor becomes larger, the blades interact with
turbulence covering a larger spatial area. To investigate the wind flow in front of the large rotor
turbine, in June 2022, Siemens Gamesa installed the ZX TM (by ZX Lidars) on the nacelle of
the SG 14-222 DD turbine.

2The official documentation can be accessed via https://en.wikipedia.org/wiki/Wind_power_by_country,
last access 30 September 2022

https://en.wikipedia.org/wiki/Wind_power_by_country
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Figure 2.12: An overview of the OpenFAST (v3.0) modules used in this study. The “LidarSim”
module was updated within this study. The arrows indicate the direct interaction between the two

modules. Redrawn based on [46].

2.3.2 Aeroelastic Simulation: OpenFAST

The response of a wind turbine to an incoming wind flow is frequently assessed using aeroelastic
simulation. It couples effects such as aerodynamic, structural dynamic, hydrodynamic, control,
and electrical system (servo dynamic) [42]. In the wind turbine design stage, aeroelastic simu-
lation is a reliable tool to validate the design solution. Because of its accuracy at the system
level, aeroelastic tools are also used for turbine design certification [43, 44, 6].
In this study, the open-source aeroelastic code OpenFAST was used. OpenFAST is based on
FAST version 8 [45] but is transited to a modular framework that better supports open source
development3. Figure 2.12 shows an overview of the modules included in the OpenFAST tool
used in this research. Each module will be described as follows.

InflowWind

The InflowWind module provides the external undisturbed wind flow for the simulation. The
undisturbed wind flow is provided to the AeroDyn module as a 3-D (y,z,t) wind field. Because
the rotor structural motion is in reality 3-D (x,y,z), Taylor’s frozen hypothesis [2] is applied to
obtain the wind flow in a 3-D space for each time step.

3The official documentation can be accessed via https://openfast.readthedocs.io/en/main/index.html,
last access 30 September 2022

https://openfast.readthedocs.io/en/main/index.html
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LidarSim

The LidarSim module is a novel module that has not been merged into the OpenFAST official
release thus far. It was initially developed by Stuttgart Wind Energy (SWE) of the University of
Stuttgart based on FAST (version 8.16 sFunction). After that, it was updated to the OpenFAST
executable version 2.44 by SOWENTO GmbH. In this study, the LidarSim module was updated
(in OpenFAST version 3.0) to include several new features to make the coupled simulation
more realistic. The LidarSim module primarily aims to simulate realistic lidar LOS speed
measurements that can be further processed for turbine control. To simulate the LOS speed
measurement without Taylor’s frozen theory, one must provide the upstream 4-D turbulence
fields. Moreover, the upstream turbulence is correlated with but not equal to the rotor plane 3-
D turbulent field. In addition, for a nacelle-mounted lidar, the nacelle motion, which drives the
movement of the lidar, must be considered because the movement of the lidar itself influences
the LOS speed measurement. In addition, interaction with rotor dynamics should be considered
for nacelle-based lidar. The laser beam of the forward-looking lidar might be blocked by the
turbine blade, at which point the LOS speed measurement cannot be retrieved. Further details
of the new LidarSim module are provided in Chapter 6.

Aerodynamic

The aerodynamic module (AeroDyn version 15) calculates the aerodynamic loads on both the
blades and tower [47]. At each time step, AeroDyn reads the undisturbed wind flow and
structural motions and then uses blade elemental momentum (BEM) theory to calculate the
aerodynamic loads. The structural motion of the turbine is provided by the ElastoDyn module.

ElastoDyn

For an onshore turbine, the structural dynamics are fully simulated by the ElastoDyn module.
Currently, the dynamic of the foundation is not yet included [46]. The turbine structural
dynamics are simulated by combining multibody simulation and modal analysis. The blades
and tower dynamics are simulated using modal analysis (modal approach) covering the most
important degrees of freedom (DOFs): (a) first and second-order blade flap-wise modes, (b)
first edgewise blade mode, (c) first and second fore-aft tower bending modes and (d) first
and second side-to-side tower bending modes. For the other components (nacelle, generator,
shaft, and hub), the multibody simulation is applied to obtain the dynamics. Except for the
above-mentioned DOFs, the drivetrain rotational, the generator azimuth, and the yaw DOFs
are implemented in ElastoDyn.

4commit 829511a on 13 March 2020,https://github.com/sowentoDavidSchlipf/openfast/tree/f/
lidarsim

https://github.com/sowentoDavidSchlipf/openfast/tree/f/lidarsim
https://github.com/sowentoDavidSchlipf/openfast/tree/f/lidarsim
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SubDyn and HydroDyn

The SubDyn and HydroDyn modules are specific for offshore wind turbine simulations. Sub-
Dyn solves the structural dynamics for multimember fixed-bottom substructures. It supports
substructure types such as monopiles, tripods, jackets, and other lattice types [48]. Hydro-
Dyn is the hydrodynamics module that is applicable to both fixed-bottom and floating offshore
substructures. It can generate waves internally and calculate the hydrodynamic loads using a
potential-flow theory solution, a strip-theory solution, or a hybrid combination of these two.
In this thesis study, the SubDyn and HydroDyn modules were not activated because only the
onshore scenario was considered in the aeroelastic simulations.

ServoDyn

The ServoDyn module primarily contains the turbine controller and electrical generator. Inputs
to ServoDyn include the turbine structure motions such as rotor speed, tower top acceleration,
and blade tip clearance (which can be measured by remote sensing), or reaction loads such
as bending moments at the blade roots. The outputs include the turbine blade pitch angles,
generator torques, and shaft breaking torque. ServoDyn supports the bladed style interface
dynamic link library (DLL), which enables users to program the controllers and actuators
dynamics [49].

2.3.3 Wind Turbine Control

The wind turbine control system includes the supervisory controller, real-time closed-loop con-
troller, and safety control system [6]. For regular operation, the closed-loop controller has a
prominent role. The control system receives input signals such as generator speed (Ωg), tower
top acceleration, and wind measurements from nacelle anemometers and generates output sig-
nals. The output signals can include blade pitch angles (θ), generator torque (Mg), yawing
degrees, and brake activation commands [50]. The main focus of this thesis is lidar-assisted
pitch feedforward control, which is activated for wind speeds above the rated value. For better
code accessibility, the recently developed Reference Open-source Controller: (ROSCO, ver-
sion 2.6.0) by NREL [51] was used as the reference feedback-only (FB-only) controller for the
simulations in this thesis. In the following, the feedback controller of ROSCO and modified
feedforward+feedback (FFFB) pitch controllers are introduced. Details about other control
blocks are available in [51].
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Feedback Only Controller

A typical variable-speed wind turbine is controlled by the blade pitch and generator torque con-
trollers. ROSCO uses a proportional-integral (PI) controller for the pitch control in operations
above rated wind speed, which can be expressed as

θFB = kp(Ωgf − Ωg,ref) + kp

TI

∫ t

0
(Ωgf − Ωg,ref)dτ (2.31)

where θFB is the FB pitch command value, Ωgf is the measured and low-pass filtered generator
speed, Ωg,ref is the generator speed control command, kp is the proportional gain, and TI is the
integrator time constant. The pitch controller is only active above the rated wind speed, and
kp and TI are scheduled to have a constant closed-loop behavior through gain scheduling [51].
For the NREL 5.0 MW wind turbine used in the remainder of this thesis, the desired damping
and angular frequency were tuned to be 0.7 and 0.5 rads−1, respectively.
In terms of generator torque control in the above-rated operation, the option of constant power
mode was selected in the simulations of later chapters. With the constant power mode, the
generator torque command (Mg) is set according to the low-pass-filtered generator speed, the
rated electrical power (Prated), and the generator efficiency (η) by Mg = Prated/ηΩgf . This con-
stant power mode ensures that the lower-frequency fluctuation of electrical power is attenuated.
See [51] for a more detailed description of the reference controller.

Feedforward + feedback Controller

Based on the lidar wind preview, a REWS can be derived and used to provide a feedforward
pitch signal. The forward pitch signal can be simply added to the conventional FB control
[6], which is often referred to as lidar-assisted collective pitch feedforward control(CPFF). In
addition to CPFF, other LAC concepts have been presented in the literature [52, 6, 53]. How-
ever, CPFF is currently the most promising technology, and it has been deployed in commercial
projects [54]. Thus, CPFF is considered when evaluating the benefits of LAC in this study.
In CPFF, the feedforward pitch reference value is obtained by

θFF = θss(uLLf), (2.32)

where uLLf is the filtered REWS estimated from lidar measurements and θss is the steady-state
pitch angle as a function of steady and uniform wind speed uss [6]. The steady-state pitch curve
is often determined by running aeroelastic simulations using uniform and constant wind speeds
with FB-only control. The lidar-estimated REWS is defined in detail in Section 5.2. Figure 2.13
shows the general control diagram with the lidar-assisted pitch feedforward control, where only
the pitch feedforward signal θFF is added compared with the conventional control diagram. In
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practice, the time derivative of the pitch feedforward signal θ̇FF is fed into the integral block of
the feedback PI controller. This yields the overall collective pitch control reference as

θref = θFB +
∫ t

0
θ̇FFdτ. (2.33)

Simulation Environment—Control Diagram

Block diagram of feedforward+feedback control

WT
FBC

GTC

Ωg,ref

uRRFFCfilteruLL

Mg

Ωg−

θFB

θFF
θref

uLLf

CPC: collective pitch control (feedback)
ISC: indirect speed control (feedback)
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Figure 2.13: The overall control diagram of a Feedforward + feedback Controller. FFC: feedforward
pitch controller, FBC: collective feedback pitch controller, GTC: generator torque controller.

To filter the lidar estimated REWS uLL, a first-order low-pass filter with the following transfer
function:

GLPF(s) = 2πfcutoff

s+ 2πfcutoff
, (2.34)

is applied to filter the uLL signal. Here, s = 2πf i is the complex frequency. The cutoff
frequency fcutoff is selected based on the frequency-domain correlation between the lidar and
turbine, which is presented in Section 5.2.
Because lidar provides the estimated REWS in the future, the buffer time of lidar-estimated
REWS should be carefully designed to ensure the pitch feedforward signal is activated not too
late or too early. To achieve this target, the pitch feedforward signal is recorded in a time data
buffer, and the signal that has a time close to the buffer time is activated. The buffer time can
be determined using

Tbuffer = Tlead − Tfilter − Tpitch −
1
2Tlidar, (2.35)

where Tlead is the leading time of a specific lidar range gate measuring in front of the turbine,
Tfilter is the pitch actuator delay, Twindow is the half of the lidar full scan time, and Tfilter is the
time delay introduced by filtering the lidar-estimated REWS.
The leading time can be calculated using the mean wind speed and the longitudinal separation
of the lidar range gate, i.e., Tlead = ∆x/Uref , assuming the turbulence propagates by the mean
wind speed.
Half of the lidar full scan time is used because a moving average time window is applied to the
LOS speed measurements from one full scan. The phase delay property of the time averaging
filter indicates that the time delay is simply the half of averaging time [55].
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The time delays of the pitch actuator and filter can be both calculated using the frequency
responses of their transfer functions as

Tfilter(f) = θfilter(f)/(360f), and Tpitch(f) = θpitch(f)/(360f). (2.36)

where θfilter and θpitch are the phase responses (lagging) of the filter and pitch actuator transfer
functions in degrees, respectively. Both Tfilter and Tpitch are functions of frequency. For the
NREL 5.0 MW wind turbine, their values at 0.08 Hz are selected for the feedforward controller
because the turbine rotor speed has more fluctuations at this frequency (see Chapter 7). The
pitch actuator model is included in the ROSCO (version 2.6.0) controller, and it is modeled as
a second-order system with a natural frequency of 1 Hz and a damping ratio of 0.7 [56].
In addition, a threshold is applied to the feedforward pitch command to ensure that it is only
activated when the lidar-estimated REWS is above 14 ms−1. The reason for this consideration
is that the pitch curve has a much higher gradient with respect to wind speed in the wind speed
range between 12 ms−1 and 14 ms−1 [6], where the turbine thrust force is the highest. If the
feedforward pitch is activated only depending on the lidar-estimated REWS, a short interval
of wind increase or decrease in this range can cause a large pitch rate, followed by a significant
change in rotor thrust force. The change in thrust can impose additional loads; therefore, the
benefits of LAC are offset by the additional load caused by these pitch actions.

Controller Implementation in Aeroelastic Simulations

The Bladed-style interface [49] is used to configure lidar-assisted control (LAC) in the Open-
FAST aeroelastic simulation. The interface is responsible for exchanging variables between the
OpenFAST executable and external controllers compiled as DLLs. A main open-source DLL
(written in FORTRAN) called “wrapper DLL” has been programmed to make each controller
module as modular as possible. The main function of the wrapper DLL is to call the sub-DLLs
in a specified sequence. Note that all the sub-DLLs operate based on the same variable ex-
change pattern specified by the Bladed-style interface. This means that each sub-DLL can also
be called independently and directly by OpenFAST. Alternatively, several sub-DLLs can be
called by the wrapper DLL sequentially. An overview of the LAC and OpenFAST interfaces is
shown in Figure 2.14. Three sub-DLLs are called by the wrapper DLL following the sequence
from top to bottom as shown in the figure.
The first DLL is responsible for lidar data processing (LDP), which processes the lidar LOS
speed measurement vlos and provides the lidar-estimated REWS. The second module feedfor-
ward pitch (FFP) filters and times the lidar-estimated REWS, and outputs the collective pitch
rate. In the final step, the pitch rate is fed into the integrator of the PI controller in ROSCO.
The ROSCO source code has been adjusted to enable it to accept the feedforward pitch rate



34 2 Background on Wind, Wind Lidars, and Wind TurbinesSimulation Environment—Control Diagram

OpenFAST-LidarSim

4-D Turbulence FieldLDP.dll

FFP.dll

ROSCO.dll

Wrapper DSICON.dll

vlos,Ωg,θ

Mg,θref

uLL

θ̇FF

vlos

Ωg,θ Mg,θref

Feng Guo, David Schlipf, Yiyin Chen, Po Wen Cheng | WETI&SWE
The impact of wind evolution and filter design on lidar-assisted wind turbine control

Introduction Methodology Simulation Results Conclusion 10/17

Figure 2.14: An overview of the interface between OpenFAST and the DLLs implemented for LAC.
LDP: lidar data processing. FFP: feedforward pitch. ROSCO: the reference FB controller.

signal.

2.3.4 Wind Turbine Wakes

Wind turbine wakes are generally defined as the flow structure behind a wind turbine. Because
of the energy extraction by the blade, the flow velocity is reduced after the turbine rotor. The
decrease in velocity is frequently called the wake deficit.
In addition to the deficit, the turbulence intensity increases in the wake because a) smaller-
scale eddies are generated by the interaction between the blade and wind flow; b) the velocity
gradient promotes the kinetic exchange between the wake and ambient atmospheric turbulence.
These additional turbulent fluctuations are often called wake-induced turbulence.
The wake deficit area is also perturbed by the ambient large-scale averaged lateral and vertical
velocities. Consequently, it moves downstream with oscillations in the lateral and vertical
directions. This phenomenon is often called wake meandering.
The properties of turbine wakes have been studied extensively, as reviewed by [57]. However,
the three characteristics listed above are of special interest because they are related to turbine
load and power performance.
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Background on Conventional Three-dimensional

Turbulence Generation

This chapter summarizes existing literature and aims to provide some theoretical knowledge
for Chapters 4 and 5. Details of turbulence generation methods currently used for aeroelastic
simulations are presented.

3.1 Stochastic Turbulent Wind Field Generation

As introduced in Section 2.3.2, a 3-D turbulence field is required to simulate the wind turbine
rotor and tower aerodynamics. This section introduces the typical methods used to generate
stochastic turbulence fields with spectral characteristics defined by the Kaimal or Mann model.

3.1.1 Veers Method

Frequently, the Veers method [58] is applied to generate the turbulent wind field described
by the Kaimal model. It relies on the generation of correlated random processes [59]. Each
random process is represented by Fourier coefficients in the frequency domain that has a specific
spectrum.
For simplicity, the simulation of the fluctuation part of the u components is considered as an
example to illustrate the algorithm. The turbulence fluctuations (hereinafter referred to as
signals) are assumed to be located at n different positions in the same y-z plane, which can be
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described by a set of frequency domain Fourier series (coefficients) as

ûyz(f) = [ûyz,1(f) ûyz,2(f) . . . ûyz,n(f)]>. (3.1)

Here, > denotes the matrix transpose. Each Fourier series may be expressed as

ûyz,i(f) = Au,i(f)Hu,yz,ij(f)Xu,yz,j(f) (ESC). (3.2)

A detailed derivation of Equation 3.2 is provided in Appendix A.1. The three terms on the
right-hand side of the equation are explained as follows.

(1) Au,i(f) is the amplitude of the Fourier series at a specific frequency, and can be calculated
using

Au,i(f) =
√

∆f · Su,i(f)
2 , (3.3)

where Su,i(f) is the one-sided power spectrum of the simulated signal at position i un-
der a certain frequency, and ∆f is the step length of the discrete frequency vector. If
homogeneous turbulence in the y-z plane is assumed, Au,i(f) is identical for all n sim-
ulated signals. Moreover, different Au,i(f) can be defined for simulating inhomogeneous
turbulence.

(2) Hu,yz is a matrix resulting from applying Cholesky factorization (denoted as “chol( )”)
[60] to the coherence matrix Cu,yz at each frequency step:

Hu,yz(f) = chol (Cu,yz(f)) , (3.4)

with

Cu,yz(f) =


γu,yz,11(f) . . . γu,yz,1n(f)

... . . . ...
γu,yz,n1(f) . . . γu,yz,nn(f)

 , (3.5)

where γu,yz,ij(f) is the co-coherence (real part of the coherence, no square) between any
two signals. For the IEC Kaimal model, the coherence can be calculated using Equa-
tion 2.16. If the simulated signals do not have any repetitive coherence in the coherence
matrix, the coherence matrix is Hermitian, and the classical Cholesky factorization can be
applied. If the matrix is not Hermitian, LDL decomposition (square-root-free Cholesky
decomposition) might be considered [61]. The matrix Hu,yz(f) is a lower triangular ma-
trix:

Hu,yz(f) =


hu,yz,11(f) 0

... . . .
hu,yz,n1(f) . . . hu,yz,nn(f)

 , (3.6)
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which satisfies
Cu,yz(f) = Hu,yzH

>
u,yz. (3.7)

(3) The last term Xu,yz is an n-by-1 vector of complex random numbers:

Xu,yz = [eiφ1 eiφ2 . . . eiφn ]>. (3.8)

The complex numbers have a constant magnitude of one, but the phase angles φ =
[φ1 φ2 . . . φn] are uniformly distributed between 0 to 2π. The distribution of phase
angles φ ensures that the simulated time series approach a Gaussian process when the
number of simulated stochastic wind components and frequency length increase [58].

When the Fourier coefficients are calculated, the time series can be simply obtained using the
one-dimensional discrete inverse fast Fourier transform (IFFT):

uyz,i(t) =
∑
f

exp(ift)ûyz,i(f), (3.9)

where
∑

f denotes the summation over the discrete frequency vector.

The Veers method can theoretically generate turbulent wind fields that include all velocity
components and cover multiple y-z planes. The critical point is to organize the signals into
a vector as shown by Equation 3.1. However, note that the computation effort of Cholesky
decomposition is theoretically proportional to the cube of the matrix size n, denoted as O(n3)
[59, 62]. Therefore, directly applying the Veers method to generate 4-D wind fields can be time-
consuming. Section 4.1.2 discusses a method that utilizes a two-step Cholesky decomposition,
significantly reducing the computational effort for generating 4-D wind fields. Another feature of
the Veers method is that the y-z plane for generating the turbulence field should not necessarily
be a discrete rectangle and can be a discrete circle or another irregular shape.

3.1.2 Mann Method

The numerical simulation of a 3-D Mann model-based turbulence field [35] can be achieved
using a discrete inverse Fourier transform [63] over three dimensions. At a certain time t0, a
random realization of the turbulence field with the size Lx × Ly × Lz can be calculated using

ui(x) =
∑
k

exp (ik · x)Cij(k)gj(k) (ESC), (3.10)
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where indexes i, j = 1, 2 and 3 and
∑

k denotes the triple sum [35]

∑
k

=
πNx/Lx∑

k1=−πNx/Lx

πNy/Ly∑
k2=−πNy/Ly

πNz/Lz∑
k3=−πNz/Lz

. (3.11)

Here Nx, Ny, and Nz are the discrete steps such that the spatial domain x is discretized with
step lengths ∆x = Lx/Nx, ∆y = Ly/Ny, and ∆z = Lz/Nz in the three spatial directions,
respectively. For each wavenumber vector, C(k) is a 3 by 3 matrix of coefficients, and g(k) is
a 3 by 1 vector of independent Gaussian stochastic complex variables with unit variance [35].
As derived by [35], for wavenumber vectors |k| ≥ 3/L (outside a sphere volume with radius
3/L), the matrix C can be approximated using

Cij(k) = (2π)3/2

(LxLyLz)1/2Aij(k), (3.12)

where the matrix A(k) is determined by

A =
(
E(k0)
4πk4

0

) 1
2

1 0 ζ1

0 1 ζ2

0 0 k2
0/k

2


 0 k30 −k2

−k30 0 k1

k2 −k1 0

 . (3.13)

The matrix A fulfills

AA∗ = E(k0)
4πk4

0

1 0 ζ1

0 1 ζ2

0 0 k2
0/k

2


k

2
0 − k2

1 −k1k2 −k1k3

−k2k1 k2
0 − k2

2 −k2k3

−k3k1 −k3k2 k2
0 − k2

3


1 0 ζ1

0 1 ζ2

0 0 k2
0/k

2


∗

= Φ. (3.14)

Here, the first term multiplied by the second matrix (in the middle) is the isotropic von Kámán
tensor: [34, 11, 32]

Φij,iso(k0) = E(k0)
4πk4

0
(δijk2

0 − kikj). (3.15)

The detailed calculation of Equation 3.14 is provided in Appendix A.2. Inside the sphere volume
(|k| < 3/L), matrix C needs to be calculated using numerical integration (Equation (47) in
[35]) to avoid loss of variance owing to discretization [33].

Because of the 3-D IFFT, the Mann method for generating 3-D turbulence fields is generally
faster than the Veers method [11]. The reliance on 3-D IFFT also indicates that the y-z
plane must be rectangular, and both Ny and Nz must be integer powers of 2. Therefore,
the computational effort is significantly lower, particularly for simulating a field with a larger
number of discrete points in the y-z plane. Compared with the Kaimal model, the Mann
model additionally includes the spatial coherence of v and w components (v or w at different
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spatial positions) and the coherence between u and w components at the same position. The
coherences of other components can also be derived from the spectral tensor, although they
are frequently small and therefore not emphasized. Because of the incompressible wind flow,
the spatial coherence of both the v and w components are physically realistic. The coherence
between u and w may not be important for the turbine aerodynamics because mainly the u
component is dominant. However, it is important for the lidar measurement properties, which
are discussed in more detail in Chapter 5.
In addition, the Mann uniform shear model assumes homogeneous turbulence in the y-z plane.
The inhomogeneous spectral tensor (uniform shear + blockage model) was introduced in [11,
32], but the corresponding turbulence generation method has not been revealed in the existing
literature.

3.2 Simulation of Wake-included Turbulence
The turbulence generation methods described in the previous sections are applicable to the
scenarios for which the statistical spectral properties of turbulence are known. However, because
of the wake deficit, wake meandering, and wake-induced turbulence introduced in Chapter 2,
the wake-included turbulence is not homogeneous in space, and the statistics depend on the
operational status of the upstream turbines. Therefore, the statistical spectral properties of the
wake-included turbulence can be highly site-specific; thus, obtaining a representative spectral
model is difficult.
The LES method or other computational fluid dynamics (CFD) methods can be used to partly
solve the N-S equations and provide higher fidelity results for the wake-included turbulence
[64]. However, LES is still very computationally intensive and not suitable for the aeroelastic
simulation in the wind turbine design stage. The IEC 61400-1 standard [12] recommends using
the DWM method to model the wake-included turbulence for turbine design. This section
explains the three sub-modules of the DWM model used in this study.

3.2.1 Wake Deficit

As recommended by IEC 61400-1 [12], the wake deficit is modeled using the thin layer approx-
imation of the N-S equations in their rotational symmetric form, neglecting the pressure term
[12, 11]. The eddy-viscosity formulation is used for turbulence closure [65]. The mean wake
velocities in longitudinal direction Ux and radial direction Vr are governed by the momentum
equation

Ux
∂Ux
∂x

+ Vr
∂Ux
∂r

= 1
r

∂

∂r

(
rνT

∂Ux
∂r

)
, (3.16)
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and the continuity equation

1
r

∂

∂r
(rVr) + ∂Ux

∂x
= 0. (3.17)

In the equations above, both Ux and Vr are functions of radial (r) and longitudinal (x) dis-
placements from the wake center. The IEC 61400-1 standard [12] suggests an expression for
the eddy viscosity νT that depends only on x. However, this thesis uses the eddy viscosity
formulation implemented within FAST.Farm [65], which depends on both r and x. Several
studies have been performed to validate the FAST.Farm either using LES or measurement data
[66, 67]. In the actual implementation, the wake velocity is calculated as follows: a) obtain the
steady-state axial induction factors and thrust coefficients of blade elements using the aeroelas-
tic tool OpenFAST; (b) deliver free-stream turbulence parameters (the mean wind speed and
turbulence intensity are required) and calculate the eddy viscosity; (c) solve Equations 3.16
and 3.17 using the finite-difference method discussed by [65].

3.2.2 Wake Meandering

The same method as suggested by the IEC 61400-1 standard is used to model the wake mean-
dering, which is modeled by considering it as a passive tracer [12]. The deficits are assumed to
transport downstream by the mean ambient longitudinal wind speed [68]. At a given moment,
the wake center coordinate (yc,zc) is assumed to be driven by the large-scale lateral and vertical
velocity fluctuations vc and wc [69, 70], which can be formulated as

ẏc(x, t) = vc(x, t) = 1
πR2

wake

∫∫
Awake

v(x, y, z, t)dydz, (3.18)

żc(x, t) = wc(x, t) = 1
πR2

wake

∫∫
Awake

w(x, y, z, t)dydz, (3.19)

where the integration area Awake is the wake cross-section area, and Rwake is the radius of the
wake. Because of this spatial average of the fluctuations, the wake center is driven by the large
eddies in the free-stream turbulence field. Although the spatial averaging already acts as a
low-pass filter [71], as suggested by [69, 12], a reference low-pass filter with a cutoff frequency
of Vhub/4Rw is further applied to filter vc and wc.
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3.2.3 Wake-induced Turbulence

The wake-induced turbulence primarily originates from the mechanical interaction between the
turbine blade and wind flow [12]. The recommended modeling procedure by the IEC 61400-
1 standard [12] is followed, in which the wake-induced turbulence meanders with the deficit
and is independent of the free-stream (ambient) turbulence. Additionally, the wake-induced
turbulence is approximated by scaling an isotropic turbulence field whose length scale is smaller
than or equal to the rotor diameter [12] and has a standard deviation of 1 ms−1. Following
[70, 68], the isotropic turbulence field is assumed to have a length scale equal to 25% of the
ambient turbulence length scale. The empirical scaling factor is calculated using [12]

kwt(x, r) = 0.6
∣∣∣1− Ux

Vhub

∣∣∣+ 0.35
Vhub

∣∣∣∂Ux
∂r

∣∣∣. (3.20)

The implementation of the DWM model is shown in Figure 3.1. Here, the free-stream (ambient)
turbulence is generated based on the Mann model [35]. The steady-state wake velocity Ux and
induced wake scaling factor kwt can be pre-calculated. In contrast, the wake meandering must
be calculated dynamically in the simulation. The wake center at a particular moment is shown
in the second panel. In each time step, the wake velocity field and wake-induced turbulence
field uind are calculated and added to the free-stream (ambient) turbulence field to obtain the
wake-included turbulence uwake.
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Figure 3.1: Side views of the wake characteristics and wake-included turbulent wind field with a hub
height mean wind speed of 16 ms−1. For wake-induced turbulence, the points outside the wake area

are not plotted. Note that the ambient mean wind speed is not included in the plots.



4
Modeling of Turbulence Evolution

The temporal evolution of the turbulence field is the phenomenon in which eddies reshape when
they propagate from upstream to downstream. Frequently, it is quantified by the longitudinal
coherence, i.e., the coherence between two turbulent fluctuations located at two longitudinally
separated locations. Because of the preview control, a nacelle lidar system measures the turbu-
lence at upstream positions and a certain time is required for the turbulence field to travel from
upstream to the downstream rotor position. Therefore, it is necessary to incorporate turbu-
lence evolution into the turbulence models currently used for aeroelastic simulations to assess
the impact of turbulence evolution on LAC. In this chapter, the methods that extend the IEC
61400-1 [12] Kaimal and Mann models to include longitudinal coherence are discussed, and the
methods are validated using measurements from a five-beam pulsed lidar and a meteorological
mast. This chapter is primarily based on [59] and [20].

4.1 Including Longitudinal Coherence in the Kaimal Model
This section first introduces a typical longitudinal coherence model similar to the lateral-vertical
coherence model provided by the IEC 61400 standard [12]. Subsequently, it discusses the
generation of a 4-D turbulent wind field containing longitudinal coherence using the Veers
method. Finally, an algorithm that uses a two-step Cholesky decomposition to efficiently
generate Kaimal model-based 4-D turbulence fields is discussed.
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4.1.1 Exponential Longitudinal Coherence Model

In previous research, the turbulence evolution was modeled as a simple exponential function
with a single decay parameter ax [3]. More recently, the exponential coherence model listed in
the IEC 61400-1 standard [12] was adjusted by [7] to represent the longitudinal coherence as
follows

γ2
x(∆x, f) = exp

−ax∆x
√(

f

Uref

)2

+ b2
x

 , (4.1)

where the transverse and vertical separation ∆yz in Equation 2.16 is replaced by the longitu-
dinal separation ∆x. The parameter bx determines the intercept (value at 0 frequency) [9] and
a zero bx value results in the model proposed by [3]. Equation 4.1 was validated by [7] using
LES simulations of different atmospheric stability classes. Moreover, the exponential coherence
model was verified by [8] and [9] using lidar measurements. Overall, the validation studies
from the previous research demonstrated that the model agrees well with the high-fidelity LES
simulations and measurements. As a result, the coherence decay parameter ax was observed in
the range 0 < ax < 6 and the intercept parameter bx was observed in the order of magnitude
≤ 10−3 [20].

4.1.2 Four-dimensional Turbulence Generation by Veers Method

In principle, the Veers method (Equation 3.2) is not limited by the dimension of the generated
random processes. One only needs to organize the stochastic processes into rows and provide a
coherence matrix describing the correlation of any two stochastic processes, which is not limited
by the dimensionality. For the assessment of LAC in aeroelastic simulations, several upstream
y-z planes that are parallel to the rotor y-z plane may be required. Therefore, we can rewrite
Equation 3.2 to represent spatial points distributed in 3-D space, resulting in a 4-D wind field
uxyz(t). Again, we consider the u components only and assume that they are distributed in
m identical y-z discrete planes. Each y-z plane is assumed to have n positions in total. The
Fourier coefficients of the field are then determined by

ûxyz,i(f) = Au,i(f)Hu,xyz,ij(f)Xu,xyz,j(f) (ESC). (4.2)

Now, Au and Xu,xyz become m× n by 1 vectors. Hu,xyz becomes an m× n by m× n matrix,
which can be calculated using

Hu,xyz(f) = chol (Cu,xyz(f)) . (4.3)
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For each frequency step, the Cholesky decomposition must be applied to a matrix with a size
of m×n. To simulate typical pulsed lidar systems, we require up to 10 upstream measurement
planes (the number of m). As mentioned in Section 3.1.1, the computation effort can be large
because it is proportional to O((mn)3) [59, 62]. To solve this problem, [59] proposed a two-step
Cholesky decomposition method relying on the assumption that the combined longitudinal,
lateral and vertical coherence can be obtained by simple multiplication:

γu,xyz(f) = γu,yz(f)γu,x(f). (4.4)

This assumption has been widely used in the literature [72, 14, 21, 7] but slightly underestimates
the combined coherence compared with the LES result [16]. However, because the exponential
coherence model only has two parameters that can be easily adjusted, the underestimation can
be alleviated by adjusting the model parameters empirically. A significant advantage introduced
by this assumption is that the coherence matrix can now be expressed as

Cu,xyz = Cu,x ⊗Cu,yz =


γu,x,11Cu,yz . . . γu,x,1mCu,yz

... . . . ...
γu,x,m1Cu,yz . . . γu,x,mmCu,yz

 , (4.5)

where

Cu,x =


γu,x,11 . . . γu,x,1m

... . . . ...
γu,x,m1 . . . γu,x,mm

 (4.6)

is a matrix containing the longitudinal coherence (co-coherence) of any two points with only
longitudinal separation. The operator “⊗” denotes the Kronecker product [73]. Subsequently,
the Cholesky decomposition can be expressed in two steps:

Hu,xyz = chol(Cu,xyz) = chol(Cu,x ⊗Cu,yz) = chol(Cu,x)⊗ chol(Cu,yz) = Hu,x ⊗Hu,yz. (4.7)

Refer to [59, 74] for the step-by-step derivations. Equation 4.7 indicates that the Cholesky
decomposition can be applied to two smaller matrices Cu,x and Cu,yz instead of the large
matrix Cu,xyz. Correspondingly, the computational effort is reduced to O(m3) + O(n3) [59].
Note that the Kronecker product is based on simple product operations; thus, its computational
effort is negligible.
Assuming that the turbulence is homogeneous in all directions (Au is the same for all signals),
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instead of Equation 4.2, we can rewrite the Fourier coefficient of a 4-D turbulence field as

ûxyz(f) = Au(Hu,x ⊗Hu,yz)Xu,xyz

= Au


hu,x,11Hu,yz 0

... . . .
hu,x,m1Hu,yz . . . hu,x,mmHu,yz

Xu,xyz.
(4.8)

Moreover, the complex random number matrix Xu,xyz can be expressed in a vector-in-vector
format:

Xu,xyz =


Xu,yz,1

...
Xu,yz,m

 , (4.9)

where Xu,yz,i is a n by 1 vector of complex random numbers. Substituting Equation 4.9 into
Equation 4.8 results in

ûxyz(f) =


∑1

i=1 hu,x,1iAuHu,yzXu,yz,i∑2
i=1 hu,x,1iAuHu,yzXu,yz,i

...∑m
i=1 hu,x,miAuHu,yzXu,yz,i

 . (4.10)

Because the term AuHu,yzXn,i is the Fourier coefficient of turbulence fluctuations at an ar-
bitrary y-z plane and different Xu,yz,i values are statistically independent, Equation 4.10 can
be interpreted as follows: the 4-D turbulence field with several correlated y-z planes can be
obtained by summing several independent y-z plane turbulences after multiplying it by the fac-
torization coefficients hu,x,mi. This implies that we may generate the 4-D turbulence field with
the aid of conventional 3-D turbulence generation codes and a longitudinal coherence model.
The open-source tool evoTurb1 (evolving turbulence) was developed by [59] to enable the gener-
ation of 4-D turbulence fields using conventional 3-D turbulence generation codes and a longi-
tudinal coherence model. It can be coupled with TurbSim [75], which is a turbulence generation
tool developed by NREL and supports the Veers method [58] to generate 3-D turbulence on a
y-z plane. Depending on the number of y-z planes required, evoTurb calls TurbSim to generate
several statistically independent 3-D turbulence fields. Statistical independence is achieved by
specifying independent and random number seeds. Subsequently, the y-z plane Fourier coeffi-
cients are obtained by simply applying the one-dimensional discrete Fourier transform (denoted
as F{}):

AuHu,yzXn,i = F{uyz,i(t, y, z)}. (4.11)

1Last accessed on 26 March 2022, https://github.com/SWE-UniStuttgart/evoTurb

https://github.com/SWE-UniStuttgart/evoTurb


4.1 Including Longitudinal Coherence in the Kaimal Model 47

Figure 4.1: The demonstration of a 4-D turbulence field composited by three independent 3-D
turbulence fields. (a–c): three independent realizations of 3-D turbulent wind fields generated using
TurbSim. (d–f): 4-D turbulence field at three longitudinal positions x = 0 m, x = 60 m, and x = 120 m,
that are composited using Equation 4.10. The 4-D turbulence is generated assuming the exponential
longitudinal coherence (Equation 4.1) with Uref = 16 ms−1, ax = 2 and bx = 0. Note that the temporal

shifts owing to the turbulence transport by the mean wind speed is not shown.

Thereafter, Cholesky decomposition is applied to the longitudinal coherence model to obtain
Hu,x and Equation 4.10 is applied to obtain the Fourier coefficients. In the final step, IFFT
is applied to obtain the time series of the 4-D turbulence field. An example of the generated
4-D turbulence field is shown in Figure 4.1. Sub-figures (a), (b), and (c) are the time series
of vertical turbulence profiles from three independent realizations of 3-D turbulent wind fields.
They are generated using TurbSim using different random seeds corresponding to the IEC
Kaimal turbulence class 1A. After applying Equation 4.10, the resulting 4-D turbulence field
sliced at x = 0 m, x = 60 m, and x = 120 m is shown in (d), (e), and (f), respectively. Because
the element in the first row and first column in the matrix Hu,x is always 1, the fields shown
by (d) and (a) are equal. Sub-figures (e) and (f) are correlated with (d) by the exponential
longitudinal coherence (Equation 4.1). Compared with (f), (e) is more correlated with (d)
because the longitudinal separation is smaller. Additionally, (e) and (f) are correlated.
Except for the reduction in computational effort when using the two-step Cholesky decompo-
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sition, evoTurb has other advantages. First, the design load cases in the IEC 61400-1 standard
[12] require performing aeroelastic simulation using wind fields generated with different random
seeds [76], and these wind fields differ only in the random seeds. Therefore, the pre-generated 3-
D wind fields can be used to generate 4-D wind fields. Additionally, manipulating the sequence
of the 3-D wind fields (the sequence of AuHu,yzXn,i in Equation 4.10) can produce independent
4-D wind fields. This enables the use of a pre-generated 3-D turbulence field multiple times,
thus further reducing the computational effort required to generate 4-D wind fields. Second,
the different amplitudes of Au can be assigned to different y-z planes or vertical positions to
easily generate an inhomogeneous turbulence field.

4.2 Including Longitudinal Coherence to the Mann Model
This section introduces a method that extends the Mann model (spatial tensor) to a space-
time tensor. The space-time tensor assumes a stationary process, which means that each 3-D
turbulence field has the statistical properties described by the Mann spectral tensor. Owing
to temporal evolution, these 3-D fields are not entirely correlated. Their correlations depend
on a newly introduced eddy life expression in which the wavenumbers with smaller magnitudes
(larger wavelengths in space) tend to survive longer and are therefore more correlated.

4.2.1 Derivation of the Space-time Tensor

At a certain time t0, we can perform the 3-D Fourier transform of the stochastic turbulence
fluctuation over a space, obtaining the Fourier coefficients

û(k, t0) = 1
(2π)3

∫
u(x, t0) exp(−ik · x)dx, (4.12)

where the integration
∫

dx ≡
∫∞
−∞

∫∞
−∞

∫∞
−∞ dxdydz. The ensemble average of the stochastic

Fourier coefficients is connected to the spectral tensor by [36]

Φij(k)δ(k − k′) = 〈û∗i (k, t0)ûj(k′, t0)〉, (4.13)

where ∗ denotes the complex conjugate, δ() is the Dirac delta function, and k (or k′) =
(k1, k2, k3) is the wavenumber vector. The Dirac delta function means that if k′ 6= k, then
the ensemble average is zero.
The turbulence evolution phenomenon was included in the Mann model using the eddy lifetime-
based solution [20]. The eddy lifetime-based concept was proposed by Ropelewski, Tennekes
and Panofsky [77, 33], and it assumes that the eddies decay exponentially according to the
passed time ∆t and lifetime of the eddy τe(k) (the subscript e means “evolution”). Note that
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τe should be distinguished from τs. τs was used by Mann [11] to model the effect of uniform
shear. For an eddy with wavenumber k, the probability that it maintains its original structure
after a period of time ∆t is [20, 5, 33]

P ∼ exp
(
− ∆t
τe(k)

)
. (4.14)

Subsequently, the space-time tensor Θ is defined as

Θij(k,∆t) = exp
(
− ∆t
τe(k)

)
Φij(k), (4.15)

which is related to the Fourier coefficient of two turbulence fields as

Θij(k,∆t)δ(k − k′) = 〈û∗i (k, t0)ûj(k′, t0 + ∆t)〉. (4.16)

Here, ûj(k′, t0) and ûj(k′, t0 + ∆t) are the Fourier coefficients of the turbulence fields at times
t0 and t0 + ∆t, respectively. In addition to the temporal decorrelation, the turbulence field is
assumed to be transported by the mean reference wind speed Uref . After time ∆t, the entire
field moves downstream in the positive x direction by Uref∆t (Figure 4.2). The spatial structure
of the downstream turbulence field is also assumed to be governed by the Mann spectral tensor
Φ [11], implying stationary turbulence.

Compared with the Mann spectral tensor Φ, the newly introduced component is the eddy
lifetime τe, which models the temporal evolution of the turbulence field. Several eddy lifetime
expressions were summarized by Mann [11], which have the following in common:

τ(k)

∝ |k|b1 , for |k| −→ ∞,
∝ |k|b2 , for |k| −→ 0,

(4.17)

where b1 and b2 are two constants standing for the slopes of τ(k) in the logarithmic scale. Based
on the dimensional analysis in the inertial subrange, Mann summarized that b1 = −2/3,−1,−2,
or −7/2, and b2 = −2/3. The hypergeometric function (Equation 2.19) was used by Mann to
model the shear effect on the turbulence, and the function forces the eddy lifetime to follow
the slopes corresponding to b1 = −1 and b2 = −2/3 [11]. Because the hypergeometric function
is not very straightforward to observe the slopes that they represent, within this thesis project,
[20] proposed another expression for the eddy lifetime that is more flexible to adjust the slopes,
i.e.,

τe(k) or τs(k) = γ

[
a (|k|L)b1

(
(|k|L)10 + 1

) b2−b1
10

]
, (4.18)

where γ is a constant (with a unit of second) related to the eddy lifetime, and a is a constant
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Figure 4.2: Illustration of turbulence evolution simulated using the space-time tensor Θ, with the
following parameters: ∆t = 5 s, Uref = 12 ms−1, αε2/3 = 0.184 m4/3s−2, L = 49.2 m, Γ = 3.38, b2 = −2,
γ = 270.4 s. The 3-D turbulence field is assumed to propagate downstream with the reference mean

wind speed Uref and the eddies decaying exponentially.
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that results in τe(k) or τs(k) ≈ a when |k|L = 1 and γ = 1 s. It can be simply determined
by a =

[
2F1

(1
3 ,

17
6 ; 4

3 ;−1
)]− 1

2 . As shown in Figure 4.3, Equation 4.18 forces τ(k) to follow the
slope governed by b1 when |k|L < 1 and the slope governed by b2 when |k|L > 1. The main
benefits of Equation 4.18 are that it is more flexible to adjust the slopes b1 and b2, and it is
computationally less demanding than the hypergeometric function. A good approximation to
the original Mann model eddy lifetime (Equation 2.19) can be obtained using Equation 4.18
by setting b1 = −1 and b2 = −2/3.
It would be more natural to have only one eddy lifetime, representing both the shear effect
and the temporal evolution. Through comparisons with lidar measurements, [20] observed
that adjusting the eddy lifetime from the original expression for τe is necessary to achieve
good agreements with the coherence from lidar measurements. More details are provided in
Section 4.3. Because Equation 4.18 is flexible, both τs(k) and τe(k) can be calculated using its
expression.

Figure 4.3: Eddy lifetimes using the original Mann model expression (ΓdU
dz = 1 s) and the new

adjustable slope function Equation 4.18 (γ = 1 s, denoted as New Eq.).

When the space-time tensor is calculated, the cross-spectra containing the turbulence evolution
can be obtained using

Fij(k1,∆t,∆y,∆z) =
∫ ∞
−∞

∫ ∞
−∞

Θij(k,∆t) exp(i(k2∆y + k3∆z))dk2dk3, (4.19)

and the coherence can be calculated using

coh2
ij(k1,∆t,∆y,∆z) = |Fij(k1,∆t,∆y,∆z)|2

Fii(k1)Fjj(k1) . (4.20)

In actual applications, time series can often be measured with instruments on a mast or using
a lidar. To derive a spatially distributed time series, we shall rely on Taylor’s hypothesis [2] to
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convert the wavenumber (k1) spectra to frequency spectra, i.e., k1 = 2πf/Uref [35]. Additionally,
we can determine the longitudinal coherence between two positions with a separation of ∆x
using ∆t = ∆x/Uref . Here, we assumed that the Mann spectral tensor [35] accurately represents
the frequency spectra, which was proven by [36, 78].

4.2.2 Four-dimensional Turbulence Generation by Space-time Tensor

As discussed in Section 3.1.2, the Fourier coefficients of the turbulence field at time t0 can be
determined using

ui(x, t0) =
∑
k

exp (ik · x)Cij(k)gj(k, t0) (ESC), (4.21)

where, although mentioned earlier, for each wavenumber vector and time, C(k) is a 3 × 3
matrix of coefficients and g(k, t0) is a 3× 1 vector of independent Gaussian stochastic complex
variables with unit variance [35]. For a concise derivation later, we express the relation between
the matrix C(k) and the spectral tensor as

Cim(k)C∗jm(k) ∝ Φij(k), (4.22)

where the index m = 1, 2, 3, and ∝ denotes “proportional to.” The ensemble average of the
Fourier coefficients at t0 is

〈Cim(k)gm(k, t0)[Cjn(k)gn(k, t0)]∗〉
=Cim(k)〈gm(k, t0)g∗n(k, t0)〉C∗jn(k),

(4.23)

where the index n = 1, 2, 3. Because 〈gm(k, t0)g∗n(k, t0)〉 = 2δmn is the 3×3 covariance matrix of
the independent complex Gaussian variables that have unit variance in the real and imaginary
parts. It is not zero only when m = n; therefore, we can write

〈Cim(k)gm(k, t0)[Cjn(k)gn(k, t0)]∗〉
=2Cim(k)C∗jm(k) ∝ Φij(k).

(4.24)

Because the turbulence field is assumed to be stationary, the turbulence field at time t0 + ∆t
has the same spectral properties as that at t0, and the identical matrix C(k) can be applied
to calculate the Fourier coefficients. However, because of temporal evolution, another group
of independent complex Gaussian variables g(k, t0 + ∆t) is used, and they should be able to
result in the correlations defined by the space-time tensor. Thus, the field at t0 + ∆t is

ui(x, t0 + ∆t) =
∑
k

exp (ik · x)Cij(k)gj(k, t0 + ∆t). (4.25)
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in which g(k, t0 + ∆t) fulfills〈Cim(k)gm(k, t0 + ∆t)[Cjn(k)gn(k, t0 + ∆t)]∗〉 ∝ Φij(k), for stationarity,

〈Cim(k)gm(k, t0)[Cjn(k)gn(k, t0 + ∆t)]∗〉 ∝ exp
(
−∆t

τe

)
Φij(k), for temporal evolution.

(4.26)
The equation for stationarity can be extended as

〈Cim(k)gm(k, t0 + ∆t)[Cjn(k)gn(k, t0 + ∆t)]∗〉
= Cim(k)〈gm(k, t0 + ∆t)g∗n(k, t0 + ∆t)〉C∗jn(k)

∝ Φij(k),

(4.27)

and the equation to satisfy the temporal evolution correlation decay can be expanded as

〈Cim(k)gm(k, t0)[Cjn(k)gn(k, t0 + ∆t)]∗〉
= Cim(k)〈gm(k, t0)g∗n(k, t0 + ∆t)〉C∗jn(k)

∝ exp
(
−∆t
τe

)
Φij(k).

(4.28)

Following Equations 4.23 and 4.24, the ensemble average of the Gaussian variables should
satisfy 〈gm(k, t0 + ∆t)g∗n(k, t0 + ∆t)〉 = 2δmn,

〈gm(k, t0)g∗n(k, t0 + ∆t)〉 = 2 exp
(
−∆t

τe

)
δmn.

(4.29)

Equation 4.29 can be achieved using the complex Ornstein-Uhlenbeck process [79, 20], in which
the mth element in the vector g(k, t) should obey

gm(k, t0 + ∆t) = gm(k, t0) exp
(
−∆t
τe

)
+ gm(k)

√
1− exp

(
−2∆t

τe

)
, (4.30)

where gm(k) are complex Gaussian variables independent of gm(k, t0). The independence be-
tween gm(k) and gm(k, t0) implies that the ensemble mean of their products will be zero. We
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can easily prove that

〈gm(k, t0 + ∆t)g∗n(k, t0 + ∆t)〉

=
〈
gm(k, t0)g∗n(k, t0) exp

(
−2∆t

τe

)
+ gm(k, t0)g∗n(k) exp

(
−∆t
τe

)√
1− exp

(
−2∆t

τe

)〉

+
〈
g∗n(k, t0)gm(k) exp

(
−∆t
τe

)√
1− exp

(
−2∆t

τe

)
+ gm(k)g∗n(k)

[
1− exp

(
−2∆t

τe

)]〉
=
〈
gm(k, t0)g∗n(k, t0) exp

(
−2∆t

τe

)〉
+
〈
gm(k)g∗n(k)

[
1− exp

(
−2∆t

τe

)]〉
=2δmn,

(4.31)

and

〈gm(k, t0)g∗n(k, t0 + ∆t)〉

=
〈
gm(k, t0)g∗n(k, t0) exp

(
−∆t
τe

)
+ gm(k, t0)g∗n(k)

√
1− exp

(
−2∆t

τe

)〉
=2 exp

(
−∆t
τe

)
δmn.

(4.32)

The derivation above shows that the statistical representation of turbulence evolution from
one moment to the next can be achieved using the Ornstein-Uhlenbeck process. Furthermore,
turbulence evolution can be extended at different moments in time using the complex Gaussian
variables, which are calculated as

gm(k, ti) = gm(k, ti−1) exp
(
−ti − ti−1

τe

)
+ gm(k)

√
1− exp

(
−2(ti − ti−1)

τe

)
. (4.33)

With a given eddy lifetime model τe, for any two fields with a time difference of ti − ti−1, their
correlations purely depend on the time difference.
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A 4-D Mann Turbulence Generator was programmed in C++ language, and made available
online, using this simulation method discussed above. Independent random seeds are used
to generate 12 samples of 4-D turbulence fields to validate the simulation tool. The spectra
and coherence are calculated from the generated 4-D turbulence fields (estimated using Welch’s
method [80]) and compared with the theoretical results using the space-time tensor (Figures 4.4
to 4.7). In each 4-D field, three moments in time (t = 0, 5, and 12 s) are considered, and the
same parameters as in Figure 4.2 are used. The good agreements between the theoretical and
estimated curves verified the correctness of the simulation tool.

Figure 4.4: Comparisons spectra of three moments in time. Solid lines: estimated. Dashed lines:
theoretical.

Figure 4.5: Comparisons of coherence with time differences. Solid lines: estimated. Dashed lines:
theoretical.
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Figure 4.6: Comparisons of coherence with lateral separations. Solid lines: estimated. Dashed lines:
theoretical.

Figure 4.7: Comparisons of coherence with vertical separations. Solid lines: estimated. Dashed lines:
theoretical.

4.3 Evaluation of Four-dimensional Turbulence Models
To validate the two 4-D turbulence modeling approaches introduced previously, we use the
measurement data collected from a pulsed lidar and a meteorology mast. The model-based
spectra and coherence are compared with those estimated from measurement data. Because
lidar only provides LOS speed measurements, this section begins by deriving the spectral prop-
erties of lidar measurement from the 4-D turbulence models, introduces the measurement side
and measurement devices, and finally compares the model-based spectra and coherence with
those estimated from measurement data.
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4.3.1 Spectral Properties of the Lidar Measurements

A pulsed lidar by Avent Lidar Technology was used to validate the 4-D turbulence models. The
pulsed lidar can measure turbulence at different spatially distributed locations, thus providing
turbulence coherence with different spatial separations. In particular, the lidar has a beam
pointing in the longitudinal direction, which better quantifies the longitudinal coherence of the
u component compared with other beams that have certain opening angles. Because lidar can
only measure along the LOS direction, the lidar LOS auto-spectra and coherence are derived
in this section for both models introduced earlier in this chapter. To be as consistent as
possible with the equations in the literature, for Kaimal model-based spectra and coherence,
the equations are primarily expressed in discrete format. For the Mann model-based space-time
tensor, the equations are frequently expressed as being continuous.

For a lidar beam that measures at position x = (x, y, z), the fluctuation part of the lidar LOS
speed measurement can be approximated using [81]

vlos(x, t) =
∫ ∞
−∞

ϕ(s)n · u(sn+ x, t)ds, (4.34)

where n = (cos θL cosφL, cos θL sinφL, sin θL) = (xn, yn, zn) is a unit vector in the direction of
a lidar beam that depends on the azimuth φL and elevation θL angles ( Figure 4.8), s is the
displacement along the lidar beam direction from the measured position x = (x, y, z), and
ϕ(s) is the weighting function owing to the lidar volume averaging. u(sn + x, t) is the vector
of the turbulent wind components at position (sn + x) and time t. The discrete format of
Equation 4.34 may be expressed as

vlos(x, t) =
Nrw∑
i=1

frw,i · vlosP,i(sin+ x, t), (4.35)

where Nrw is the number of discrete points, si is the ith discrete displacement point within the
probe volume, frw,i is the weighting factor, and vlosP,i(si, t) is the single point LOS speed at
position (sin + x) and time t. Because the weighting function is symmetric about the axis at
s = 0, Nrw is frequently an odd number to ensure that the point at si = 0 is included. The
weighting factors are normalized by the weighting function using

frw,i = ϕ(si)∑Nrw
i=1 ϕ(si)

, (4.36)

to ensure that their summation equals one. The point-based LOS can be further expressed as

vlosP,i(sin+ x, t) = uixn + viyn + wizn, (4.37)
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where ui, vi, and wi are the wind velocity components. For the pulsed lidar used for model
validation, the weighting function can be approximated as a triangular function [81]:

ϕ(s) =


hp−|s|
h2

p
, if |s| < hp

0, otherwise
, (4.38)

whose geometry is determined by half the length of a rectangular pulse hp.

Kaimal Model-based Spectral Properties of Lidar Measurement

The spectral properties of lidar measurements based on the Kaimal model are first derived.
Following the derivation by [6], the cross-spectrum of two LOS speed measurements is calculated
using the Fourier transform of time:

Slos,los′(f) = F{vlos}F∗{v′los}, (4.39)

where F∗{ } denotes the conjugate of the Fourier transform and the symbol “ ′ ” refers to
another LOS speed measurement position. The discrete approximation of the two LOS speed
measurements vlos and v′los are obtained using Equation 4.35. Thus, Equation 4.39 can be
extended as

Slos,los′ = F{
Nrw∑
i=1

frw,i · vlosP,i}F∗{
Nrw∑
j=1

frw,j · v′losP,j}

=
Nrw∑
i=1

Nrw∑
j=1

frw,ifrw,jF{vlosP,i}F∗{v′losP,j}

=
Nrw∑
i=1

Nrw∑
j=1

frw,ifrw,jSlosP,losP′,ij,

(4.40)

where SlosP,losP′,ij is simply the cross-spectrum of two LOS wind speeds at the points i and j
that belong to two beams. Here, the identical weighting factors are used for two LOS speed
measurements because they are equivalent for the analyzed pulsed lidar. Using Equation 4.37,
the cross-spectrum SlosP,losP′,ij can be further extended as

SlosP,losP′,ij = F{xnui + ynvi + znwi}F∗{x′nuj + y′nvj + z′nwj}
= xnx

′
nSu,ij + xny

′
nSuv,ij + xnz

′
nSuw,i,j

+ x′nynSvu,ij + yny
′
nSv,ij + ynz

′
nSvw,ij

+ x′nznSwu,ij + y′nznSwv,ij + znz
′
nSw,ij,

(4.41)
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by which the LOS cross-spectrum is decoupled as a series summation of the cross-spectrum
between different velocity components.
In the Kaimal model, only the auto-spectra of the velocity components and the cross-spectra
between the spatially separated u components are modeled, whereas other cross-spectra are
assumed to be zero (because the coherence is not defined). Therefore, Equation (4.41) can be
simplified as

SlosP,losP′,ij = xnx
′
nSu,ij. (4.42)

where Su,ij is the cross-spectrum of u components at points i and j. In a special scenario,
the two LOS speed measurements are assumed to be identical, which means that the LOS
cross-spectrum now becomes the LOS auto-spectrum. Subsequently, Equation 4.41 should be
simplified differently as

SlosP,ij =

x2
nSuu + y2

nSvv + z2
nSww if i = j,

x2
nSu,ij if i 6= j,

(4.43)

where Suu, Svv, and Suu are the auto-spectra of the velocity components (Equation 2.12).
In practice, v or w components at different locations should be correlated because an incom-
pressible wind flow is assumed and the continuity equation must be fulfilled [82]. If the v and
w components are uncorrelated in space, the weighted average of LOS wind speeds within the
lidar probe volume can result in unrealistically low contributions from v and w components
because they are averaged out. This means that the contamination of non-longitudinal com-
ponents is underestimated, which is discussed later in Section 4.3.4.
In a 4-D wind field, the exponential longitudinal coherence using Equation 4.1 accounts only for
the coherence without a temporal shift. The turbulent wind field is assumed to be transported
by the reference mean wind speed Uref . If a longitudinal separation ∆xij exists between point
i and j, then the cross-spectrum Su,ij can be calculated using

Su,i,j = F{ui(t−∆tij)}F∗{uj(t)}
= e−j2πf∆tijF{ui(t)}F∗{uj(t)}.

(4.44)

where the time-shifting property of the Fourier transform is applied. The time shift is de-
termined by ∆tij = Uref/∆xij. This temporal shift introduces an additional sinusoidal-shape
“coherence” into the cross-spectrum, and it should be differentiated from the longitudinal co-
herence γu caused by wind evolution. By definition, the 3-D coherence γxyz,i,j is related to the
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cross-spectrum F{ui(t)}F∗{uj(t)} term by

γxyz,ij =

√
|F{ui(t)}F∗{uj(t)}|2

F{ui(t)}F∗{ui(t)}F{uj(t)}F∗{uj(t)}

= |F{ui(t)}F
∗{uj(t)}|

Su

≈ F{ui(t)}F
∗{uj(t)}

Su
.

(4.45)

Here, the absolute operator is removed because the imaginary part (quad-spectrum) in F{ui(t)}F∗{uj(t)}
is frequently negligible. Using the equation above, the two-point cross-spectrum is eventually
obtained by

Su,ij = e−j2πf∆tijγxyz,ijSuu. (4.46)

Overall, the Kaimal model-based LOS speed measurement cross-spectrum can be determined
using the linear property of the Fourier transform. The main point is to loop over all the
cross-spectra between any two involved velocity components. Using the solution for the LOS
cross-spectrum, we can easily consider two identical LOS speed measurements to obtain the
LOS auto-spectrum and further calculate the LOS speed coherence using

γ2
los,los′(f) =

|Slos,los′(f)|2
Slos(f)Slos′(f) . (4.47)

Mann Model-based Spectral Properties of Lidar Measurement

The derivation of Mann model-based spectral properties of lidar measurement is primarily
inspired by [83, 18]. The Fourier pair of Equation 4.12 can be expressed as

u(x, t) =
∫
û(k, t) exp(ik · x)dk, (4.48)

where the integration
∫

dk ≡
∫∞
−∞

∫∞
−∞

∫∞
−∞ dk1dk2dk3. The Fourier representation of the ve-

locity field is further used to substitute u(x, t) in Equation 4.34, yielding

vlos(x, t) =
∫ ∞
−∞

ϕ(s)n ·
∫
û(k, t) exp(ik · (sn+ x))dkds. (4.49)

Expanding the exponential term and adjusting the integration order results in

vlos(x, t) =
∫
n · û(k, t) exp(ik · x)

∫ ∞
−∞

ϕ(s) exp(ik · ns)dsdk

=
∫
n · û(k, t) exp(ik · x)ϕ̂(k · n)dk,

(4.50)
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where ϕ̂() is the Fourier transform of the range weighting function

ϕ̂(ν) =
∫ ∞
−∞

ϕ(s) exp(−iνs)ds. (4.51)

For the Avent lidar whose range weighting function is represented by the triangular function
(Equation 4.38), the Fourier transform is simply

ϕ̂(ν) = sinc2
(
ν
hp

2

)
. (4.52)

Further, the Fourier transform (non-unitary convention) of the LOS speed measurement in the
x direction is

v̂los(k1, t) =
∫ ∞
−∞

vlos(x, t) exp(−ik1x)dx

=
∫ ∞
−∞

∫
n · û(k, t) exp(ik · x)ϕ̂(k · n)dk exp(−ik1x)dx

=
∫ ∞
−∞

∫ ∞
−∞
n · û(k, t) exp(i(k2y + k3z))ϕ̂(k · n)dk2dk3.

(4.53)

Similar to the derivation for the Kaimal model before, we consider another measurement po-
sition at x′ = (x′, y′, z′) with a unit vector n′. The cross-spectrum of the two LOS speed
measurements is then obtained using the following products:

Flos,los′(k1) = v̂los(k1, t)[v̂′los(k1, t)]∗

=
∫ ∞
−∞

∫ ∞
−∞
n · û(k, t) exp(i(k2y + k3z))ϕ̂(k · n)dk2dk3∫ ∞

−∞

∫ ∞
−∞
û∗(k′, t) · n′ exp(i(−k′2y′ − k′3z′))ϕ̂(k′ · n′)dk2dk3,

(4.54)

Again, the weighting function of a pulsed lidar does not change with the focused position;
thus, the two identical ϕ̂() functions appear in the equation. Note that the product of Fourier
coefficients with k 6= k′ is zero. Moreover, because the dot product n · û(k) or û∗(k′, t) · n′

applies to three elements in the unit vector and three velocity components, there are nine
elements to be summed. It is more convenient to express the equation using ESC [25], i.e.,

Flos,los′(k1) = nin
′
j

∫ ∞
−∞

∫ ∞
−∞

Φij(k) exp(ik2 ·(y−y′)+ik3 ·(z−z′))ϕ̂(k ·n)ϕ̂(k ·n′)dk2dk3 (ESC).

(4.55)
Additionally, the two LOS speed measurements might have a longitudinal separation; therefore,
a shift by exp(ik1(x − x′)) must be considered, and it is more general to express the cross-
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spectrum as

Flos,los′(k1) = nin
′
j

∫ ∞
−∞

∫ ∞
−∞

Φij(k) exp(ik · (x′ − x))ϕ̂(k · n)ϕ̂(k · n′)dk2dk3 (ESC). (4.56)

In the above derivation, a snapshot of the turbulence field is considered, and the lidar is assumed
to measure along the x direction. In practice, lidar measures time series; thus, Taylor’s frozen
theory [2] should be assumed to convert the wavenumber spectrum to a frequency spectrum.
However, the temporal evolution of the field can be considered by introducing the time delay
of the lidar measurements, with which the space-time tensor replaces the spectral tensor and
yields

Flos,los′(k1) = v̂los(k1, t)[v̂′los(k1, t+ ∆t)]∗

= nin
′
j

∫ ∞
−∞

∫ ∞
−∞

Θij(k,∆t) exp(ik · (x′ − x))ϕ̂(k · n)ϕ̂(k · n′)dk2dk3 (ESC),

(4.57)

where the time difference is approximated as ∆t = |x− x′|/Uref , with |x− x′| being the longi-
tudinal separation of two measurement positions (see Section 4.2.1).
For the LOS auto-spectrum, it can be simply obtained by considering identical measurement
positions in Equation 4.57, as follows:

Flos(k1) = ninj

∫ ∞
−∞

∫ ∞
−∞

Φij(k)ϕ̂2(k · n)dk2dk3 (ESC), (4.58)

which is identical to the result derived by [81]. The auto-spectrum was investigated by [36]
to characterize the turbulence measured using nacelle lidars. Here, the cross-spectrum is also
important as it determines the spatial coherence. After obtaining the cross-spectrum and
auto-spectrum, the wavenumber-based magnitude squared coherence between LOS speed mea-
surements is calculated using

coh2
los,los′(k1) =

|Flos,los′(k1)|2
Flos(k1)Flos′(k1) . (4.59)
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4.3.2 Model Validation Against Simulation

In this section, numerical simulations are performed to cross-validate the derivations of lidar
spectral properties presented in Section 4.3.1.

Simulation Setup

For the validation using real lidar measurements described later in this chapter, a pulsed lidar
manufactured by Avent is considered for the numerical simulation. It has five beams pointing
in different directions (Figure 4.8). The elevation and azimuth angles of the beams are sum-
marized in Table 4.1. Specifically, beam 0 is pointing in the negative longitudinal direction
(x axis). For each beam, the lidar can provide measurements from 10 range gates that are
defined by the longitudinal separations (∆x) relative to the lidar position. In the analysis later,
only three measurement gates (72 , 121 and 235 m) are used as examples. Using these three
gates, longitudinal separations of 49 , 114 , and 163 m are obtained, which are representative of
quantifying the longitudinal coherence. Additionally, the lateral and vertical separations from
these gates are within the blade span of the medium-sized NREL 5.0 MW wind turbine (used
in the remainder of this thesis). Therefore, it is also interesting to analyze the lateral-vertical
coherence represented by these gates.

Beam 0

Beam 2

Beam 1

Beam 3

Beam 4

Figure 4.8: A sketch of the five-beam Avent lidar measurement characteristics. Only three measure-
ment gates are shown as examples.

To simulate the lidar LOS speed measurements, the 4-D turbulence fields are generated using
the 4-D Mann Turbulence Generator and the evoTurb introduced previously. For the Mann
model-based turbulence field, each field has a size of 3×4096×64×64 grid points, corresponding
to the time, and the x, y, and z directions, respectively. The lengths in the x, y, and z directions
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Table 4.1: Scan configuration of the Avent lidar system.

Number of beams 5
Beam azimuth-angles [◦] 0, -169.2, 169.2, 169.2,-169.2
Beam elevation-angles [◦] 0, 10.6, 10.6, -10.6,-10.6
Measurement distance 49 to 281 m (10 gates in total)
Full scan time 5.0s
Pulse half length 24.75 m

are 24576 , 320 , and 320 m, respectively. The defined domain size in y and z directions are
significantly larger than the required size for the LOS simulation for the Avent lidar because
the periodicity of the Mann model-based turbulence should be avoided [35]. The three moments
in time of the fields are 6.00, 10.08, and 19.58 s. A reference mean wind speed Uref = 12 ms−1 is
assumed, which resulted in the longitudinal separations of 49 , 114 , and 163 m between the three
3-D spatial turbulence fields. In the actual application, Taylor’s frozen hypothesis is applied
to convert the x axis to time and conversely convert the moments in time to the longitudinal
positions. For the Kaimal-model-based turbulence field, each field has a size of 3×4096×31×31
grid points, corresponding to the x positions, time t, y, and z directions, respectively. The
lengths in the y and z directions are 150 and 150 m, respectively. For both turbulence models,
each 3-D turbulence field (y, z, t) at one longitudinal position is used to simulate the LOS
speed measurement at one range gate. When calculating the LOS time series, Equation 4.34 is
discretized in the LOS direction with s varying from −15 to +15 m with steps of 15 m. Taylor’s
frozen hypothesis is also applied within the probe volume, which is demonstrated by [59] not
to affect the spectral properties of the simulated LOS speed. The turbulence parameters are
listed in the next section corresponding to those derived from stability class 1 (See Table 4.3
and 4.4).
To obtain the ensemble-averaged spectra, we generate 12 independent 4-D turbulence fields with
the same properties as discussed above but with different random number seeds. The LOS speed
measurements are simulated using the same sampling frequency (2 Hz) as the turbulence fields.

Comparisons between Models and Simulations

Figure 4.9 (a) shows the auto-spectra of LOS speed measurements using the Mann model and
lidar measurement simulations. Owing to symmetry, the results of beam 2 are identical to those
of beam 1, and the results of beam 3 are identical to those of beam 4. Thus, only the results
from beams 1 and 3 are shown. Additionally, because the auto-spectrum is independent of
the measurement gate (because of the assumed homogeneity and stationarity), only the results
from gate 2 are shown. It is clear that the downwards-looking beam 3 has a much lower variance
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Figure 4.9: Lidar LOS speed measurement spectra (a), longitudinal coherence (b), and vertical-
lateral coherence (c) from the numerical simulation (solid lines) and theory using the Mann model

(dashed lines). The Mann model parameters used are listed in Table 4.3 (stability 1).

Figure 4.10: Lidar LOS speed measurement spectra (a), longitudinal coherence (b), and vertical-
lateral coherence (c) from the numerical simulation (solid lines) and theory using the Kaimal model

(dashed lines). The Kaimal model parameters used are listed in Table 4.3 (stability 1)

(area below the spectra) compared with that of the other beams. Figure 4.9 (b) compares the
model and simulated coherence decay between different gates of beam 0. Beam 0 points in the
longitudinal direction (x axis); thus, it reflected the coherence decay owing to the longitudinal
separation or temporal delay. The separation between gates 1 and 3 is the largest, and over
this distance, the eddies evolved for a longer time, which results in the lowest coherence. The
largest coherence is between gates 1 and 2 because of the smallest separation. In Figure 4.9
(c), beams 1, 2, and 4 are shown as examples of the decorrelation caused by lateral or vertical
separations in both the model and simulations. Although the separation distances for the beam
pairs 1-2 and 1-4 are the same, the coherence for the first pair is much smaller than that of the
latter pair. This is because beams 1 and 2 are separated vertically, and the spatially correlated
v component acts oppositely on beams 1 and 2. Similarly, the spatially correlated w component
acts oppositely on beams 1 and 4. However, the larger energy of the v component compared
with that of the w component causes a larger decorrelation for beams 1 and 2 than that for
beams 1 and 4.
Figure 4.10 (a) shows the auto-spectra of LOS speed measurements from the Kaimal model and
lidar measurement simulations. Owing to symmetry, the results of beams 1 to 4 are identical;
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thus, only the results from beam 1 are shown. Again, the auto-spectrum is independent of the
measurement gate (because of the assumed homogeneity and stationarity). Therefore, only the
results from gate 2 are shown. For the Kaimal model, no difference is observed between the
downward-looking and upward-looking beams because the uw co-spectrum is not modeled (a
more detailed analysis is presented in Section 4.3.4). Figure 4.10 (b) compares the model and
simulated coherence decay between different gates of beam 0, from which a larger separation
results in a faster coherence decay, as expected. Figure 4.10 (c) shows the LOS speed coherence
decay owing to lateral-vertical separations in both the model and simulations. In the Kaimal
model, the coherence only depended on the absolute separation distance in the y-z plane. Only
beam pairs 1-2 and 2-4 are shown because other pairs are the same as these pairs.
Overall, the numerical simulations (solid lines) match the theoretical values (dashed lines) for
both the Mann and Kaimal models. Some small discrepancies can be attributed to the nature
of the simulations, as we use discrete turbulence fields, discrete lidar LOS simulations, and
limited random seed numbers.

4.3.3 Measurement Site

Figure 4.11: The top view of the measurement site. The color map shows the digital elevation of
the terrain above mean sea level (AMSL). Wind turbines are marked by circles. Turbine 4 with the
lidar is shown by a red circle. The red triangle is the meteorological mast. Red lines in the zoomed-in

view of the dashed rectangle indicate the lidar beams. Figure source [20].

To further evaluate the 4-D turbulence models, the data from the measurement campaign at
the Nørrekær Enge wind farm was collected. The Nørrekær Enge wind farm (Figure 4.11)
locates in northern Jutland, Denmark. It has 13 Siemens 2.3 MW-93 wind turbines installed
in a row. The wind turbine row aligns approximately 73.9◦ from the north. The turbines
have a hub height of 81.8 m and a rotor diameter of 92.6 m and are numbered sequentially
from west to east. An Avent pulsed lidar was installed on the nacelle of turbine 4 (red dot).
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A meteorological mast (red triangle) was located 232 m away from turbine 4, at 101.2◦ from
the north. The nearby wind turbines of turbine 4 are located 75◦ and 255◦ from the north,
respectively. More details of the site are available in [36].

Instruments

Pulsed lidar : The five-beam Avent pulsed lidar (hereafter known as Avent) was mounted on the
nacelle of turbine 4, staring upstream [36]. The beam trajectory is provided in Table 4.1 and is
depicted in Figure 4.8. In total, the lidar has 10 different range gates (49, 72, 95, 109, 121, 142,
165, 188, 235, and 281 m) and the measurements from these range gates could be considered
as simultaneous (see Section 2.2.2 for the measurement principle). For each beam direction, 1 s
was required to record the LOS speeds of the 10 range gates. Thus, each beam was sampling
at 0.2 Hz.
Meteorological mast: The height of the meteorological mast was 80 m. Cup anemometers
(P2546A) were mounted at heights of 80, 78, 57, and 33 m. A 3-D sonic anemometer (CSAT3)
was deployed at a height of 76 m. Moreover, two temperature sensors (Pt500 Sensor) were
installed at heights of 78 and 2 m. Wind vanes (Vector W200P) were installed at heights of 78,
57, and 33 m.
Turbine data: Because the lidar was mounted on the nacelle roof, the yawing direction signal
from the supervisory control and data acquisition system of turbine 4 was collected as the lidar
yaw direction. The yaw misalignment of the lidar relative to the mean wind direction was
further used to select the wake-free sectors, as discussed in the following section.

Data Selection

Overall, the measurement data were recorded from October 27, 2015 to January 7, 2016. Similar
to [36], the data are analyzed using the typical 10 min intervals. For each 10 min interval, the
following criteria are applied to select the data for model evaluation:

(a) Because the turbine wake can deteriorate the assumption of homogeneous turbulence in
the turbulence models [36, 70], to avoid the wake effects from other turbines, we select
the data only when the turbine yawing direction was within the wake-free directions [36]
(89◦ to 239◦ in Figure 4.11).

(b) Data in which the yaw error was larger than 10◦ are not selected based on the direction
of the vane at a height of 78 m and the turbine yaw direction.

(c) We select hub-height mean wind speeds within the range of 11–13 ms−1 because wind
speeds above the rated wind speed of turbines are the focus of lidar-assisted pitch feed-
forward control. The upper wind speed limit is also selected to ensure a larger number of
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10 min samples because the number of samples with higher mean wind speeds decreases
in the collected data.

(d) Because of lidar beam blockage from the turbine blades, the data availability of beam 3
was significantly lower than that of other beams. Therefore, this beam is not considered
in the analysis.

Data Processing

Similar to [36], for each 10 min time series, the lidar LOS speed time series of each measured
position is de-trended linearly. Subsequently, the spikes of the time series are removed when the
values exceeds ±3 times the standard deviation of the LOS speed within the 10 min. Finally,
the linear interpolation is applied to fill the missing data. Additionally, the same de-trending
and de-spiking methods described in [36] are used to process the 1 Hz sonic and cup anemometer
data. Thereafter, the sonic measurements are projected to ensure the u component is aligned
with the mean wind direction.
With the sonic anemometer measurements, the friction velocity uf is firstly computed as

uf =
(
uw2 + vw2)1/4

, (4.60)

where the velocity components are the fluctuation part. Subsequently, the Obukhov length [84]
is calculated as

LO = − uf
3T

κgwθv
, (4.61)

where κ is the von Kármán constant (≈0.40), g is the gravitational acceleration, T is the mean
reference temperature, and θv is the fluctuation part of the virtual potential temperature. The
Obukhov length is used later to classify our measurements into different atmospheric stability
classes. Atmospheric stability indicates the buoyancy effects on turbulence generation, and it
is frequently related to the temperature gradient by height. Studies of [36, 33, 78] have shown
that the turbulence spectral parameters are related to atmospheric stability.
It would be interesting to evaluate how effectively the original Mann model eddy lifetime
expression (Equation 2.19) presents the longitudinal coherence. For the evaluation, the mean
shear wind profile is required. The second-order polynomial fit by [85] was used to approximate
the vertical mean wind profile as

U(z) = U0 + Ab ln(z) +Ba ln2(z), (4.62)

where U0, Ab, and Ba are three constants to be solved via least-square fitting using U(z) from
the cup anemometers at the heights of 33, 57, and 80 m. The mean vertical shear is then
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estimated using [86]

dU(z)
dz = Ab + 2Baln(z)

z
. (4.63)

Based on the collected data, the shear profile dU/dz is estimated at z = 80 m.
The 10 min periods are classified into five atmospheric stability classes based on the dimension-
less atmospheric stability parameter z/LO, as shown in Table 4.2, and the classification criteria
are similarly considered by [36]. z = 67 m is the height considered for the atmospheric stability
estimates. The stability is close to neutral under stability class 1, and it became more stable
in classes with larger numbers. However, the samples under unstable stability conditions were
insufficient; therefore, this condition is not analyzed. For each stability class, the spectra of the
Avent LOS speed and sonic anemometer velocity components are calculated. Subsequently, an
anti-aliasing method developed by Kirchner [87] is applied to filter the LOS spectra from the
Avent lidar owing to noise above the sampling frequency of 0.2 Hz [36]. After the noise caused
by aliasing is filtered, the ensemble-averaged LOS spectra and coherence are computed by av-
eraging the samples within each stability class. Table 4.2 summarizes the processed variables
under each stability class.

Table 4.2: Atmospheric flow parameters calculated using the measurement data. “No.” indicates the
number of 10 min samples

Class z/LO No. 〈z/LO〉 〈U80 m〉[ms−1] 〈dU/dz〉 [s−1] Description
Stability 1 [−0.1, 0.1) 93 0.0244 12.01 0.0195 Neutral
Stability 2 [0.1, 0.2) 220 0.1514 12.26 0.0333 Near stable
Stability 3 [0.2, 0.3) 133 0.2434 12.08 0.0359 Near stable
Stability 4 [0.3, 0.4) 79 0.3460 12.08 0.0370 Stable
Stability 5 [0.4, 0.5) 43 0.4471 11.97 0.0383 Stable



70 4 Modeling of Turbulence Evolution

4.3.4 Model Evaluation

This section compares the model-based lidar spectra and coherence against the lidar measure-
ments from the Nørrekær Enge wind farm to evaluate the models. Both the Kaimal and Mann
models are evaluated.

Model Parameters

First, the ensemble-averaged auto-spectra of the u, v, and w velocity components and the cross-
spectrum between u and w components from the sonic measurements are used to determine
the model parameters.
For the Mann model, only three parameters αε2/3, L, and Γ should be determined. This is
achieved through least-square fitting the Mann model spectra and co-spectra to the measured
sonic spectra. Note that the original formulation of the eddy lifetime (Equation 2.19) is used
for the fitting process. The fitting can be expressed as the optimization problem below

min
αε2/3,L,Γ

∑N
n=1

[(∑3
i=1 (Sso,ii(fn) · fn − 2Fii(k1,n) · k1,n) + Sso,13(fn) · fn − 2F13(k1,n) · k1,n

)2] ,

s.t. k1,n = 2πfn

Uref
, fn > 0.

(4.64)
Here, n is the index of the discrete frequency vector fn and wavenumber vector k1,n and N

is the total number of discrete vectors. Sso,ii is the spectra estimated from the sonic data.
Note that the Mann model spectra Fii(k1,n) are multiplied by 2 because they are two-sided
spectra, whereas the sonic spectra estimated from data are single-sided. In addition to the
three parameters, other parameters b1, b2, and γ determined the coherence. These parameters
were determined by [20] and are listed in Table 4.3.

Table 4.3: Observed turbulence parameters for the space-time tensor. The fourth column onward cor-
responds to the adjusted parameters of the temporal-evolving τe. Here, “*" means that the parameters

approximate the original Mann eddy lifetime expression.

Class αε2/3 L Γ b1 of τs b2 of τs b1 of τe b2 of τe γ of τs γ of τe
[m4/3s−2] [m] [-] [-] [-] [-] [-] [s] [s]

stability 1 0.184 49 3.4 -1∗ -2/3∗ -1 -7/3 Γ 432
stability 2 0.205 38 2.9 -0.8 -2/3 -1 -7/3 Γ 349
stability 3 0.158 34 2.7 -0.75 -2/3 -1 -7/3 Γ 340
stability 4 0.161 31 2.7 -0.75 -2/3 -1 -7/3 Γ 239
stability 5 0.142 30 2.4 -0.70 -2/3 -1 -7/3 Γ 207
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Similarly, the Kaimal spectra are fitted using

min
Li,σi

∑N
n=1
[
(Sso,ii(fn) · fn − Sii(fn) · fn)2] ,

with i = 1, 2, or 3.
(4.65)

The main difference to the Mann model is that each velocity component in the Kaimal model
requires two parameters Li and σi. Because the Kaimal model is used with the exponential co-
herence model, for each stability class, the coherence parameters are obtained by least-squares-
fitting the model-based LOS speed coherence with that estimated from the Avent lidar. The
longitudinal coherence parameters are fitted using the measurement positions at range gates 2
and 3 of beam 0 as

min
ax,bx

∑N
n=1

[
1
fn

(
coh2

los,los′(fn)− coh2
avent,los,los′(fn)

)2
]
,

s.t. ∆y = ∆z = 0m, ∆x = 114 m, and ax, bx ≥= 0,
(4.66)

which only has a longitudinal separation of 114 m. Moreover, the lateral-vertical coherence
parameters are fitted using the measurements of beams 0 and 1 at range gate 1:

min
ayz

∑N
n=1

[
1
fn

(
coh2

los,los′(fn)− coh2
avent,los,los′(fn)

)2
]
,

s.t. ∆y = ∆z = 13.7m, ∆x = 0 m, and ayz ≥= 0.
(4.67)

Note that the interception parameter byz is not fitted, and the default value is used because
fitting this parameter introduces an additional gradient and deteriorates the optimization al-
gorithm. The squared errors are divided by fn to ensure equal weightings in the frequency bins
[88]. The fitted parameters for the Kaimal spectra and exponential coherence model are listed
in Table 4.4.

Table 4.4: Fitted turbulence parameters for the Kaimal spectra and exponential coherence model
under the observed stability classes. Here, “*” means that the optimization algorithm reached the

constraint value.

Class σ1 σ2 σ3 L1 L2 L3 ax bx ayz
[ms−1] [ms−1] [ms−1] [m] [m] [m] [-] [m−1] [-]

stability 1 2.286 1.705 1.339 355.8 149.8 88.2 2.05 0∗ 9.94
stability 2 1.967 1.665 1.243 176.5 108.9 70.0 1.92 3.05×10−4 11.4
stability 3 1.717 1.486 1.107 139.2 98.5 61.7 1.88 3.93×10−4 13.53
stability 4 1.546 1.363 1.018 125.7 86.6 52.3 1.74 7.11×10−4 16.84
stability 5 1.349 1.273 0.919 102.1 77.0 46.7 1.70 9.60×10−4 20.23
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Spectra of Velocity Components

Figure 4.12 shows the results using the original and adjusted formulations of τs (Equation 4.18)
in the Mann model. These adjusted τs parameters are presented in Table 4.3. In stability
class 1 (neutral), the expression of τs is not adjusted so that the lines overlap in the figure.
Because the coherence between the LOS speeds of different beams at the same range gate are
overestimated with the original formulation of τs in a more stable atmosphere, [20] suggested
adjusting the expressions for τs in a more stable atmosphere. For neutral conditions, the
Mann model fits the measurements well, because it was originally formulated for the neutral
atmospheric condition. Overall, good agreements between the sonic-based and Mann model-
based spectra and co-spectra for all stability conditions are observed. The largest differences are
observed in the stable side (classes 3 to 5) for the v spectrum and the uw cross-spectrum. For
stability classes 2 to 5, adjusting the τs’s slope b1 mainly reduced the energy of the u spectrum
at low frequencies/wavenumbers, which is in agreement with the sonic measurements. The
turbulence length scale L decreased as the atmosphere became more stable, similar to the
results of [36, 78].
Figure 4.13 compares the sonic spectra with the fitted Kaimal spectra. Better agreements are
observed for the u component. The model-based spectra tended to overestimate the energy of
other components (particularly the v components) in the lower frequencies/wavenumbers range.
Additionally, the uv co-spectra is not included in the IEC Kaimal model; thus, no model-based
curves are shown. The fitted Kaimal spectra parameters are provided in Table 4.4.
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Figure 4.12: Comparisons of turbulence spectra between the Mann model and sonic measurements.
“Model adjusted τ” refers to adjusted slopes of τs. “Model original τ” refers to the original τs expression

(Equation 2.19).

Figure 4.13: Comparisons of turbulence spectra between the Kaimal model and sonic measurements.
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LOS Speed Spectra

To compare the auto-spectra of LOS speed, Equations 4.39 and 4.58 are used to calculate the
model-based LOS auto-spectra. Here, measurement gate 2 is considered for comparison.
The comparison between the Mann model-based and Avent data-derived spectra is shown in
Figure 4.14. The best agreements are observed in stability classes 2 and 3, which have more
10 min samples (220 and 130, respectively) than the other stability classes. The data-based
spectra exhibited more scatters in stability 5, which could have been caused by the smallest
number of samples (43 samples). For stability class 1, the model-based spectra are overall
higher than those of the Avent measurements, but the spectral shapes are similar [20]. Because
the u component spectra determined by the model and sonic data also have disagreements in
lower frequency ranges, the overestimation of the LOS spectra might have been caused by the
uncertainties resulting from the fitting using sonic data. Additionally, better agreements are
observed using the adjusted τe expressions. Within the low wavenumber range, the LOS speed
spectrum has large contributions from the u component. Reducing the τ ’s slope b1 primarily
reduced the model-based u spectrum within the same low wavenumber range, which resulted
in a better agreement with the measurements [20].
For all the Mann model-based spectra, the spectra of beams 2 and 3 are equal because of the
symmetry. However, beam 4 looking downward differs from beam 1 looking upward because of
the negative covariance between the u and w components. This covariance induces additional
variance in the beams looking upward but reduces the variances looking downward. This
phenomenon is also exhibited by the Avent data, where the green and orange scatters are
generally higher than the blue scatters, and the purple scatters are the lowest.
Figure 4.15 compares the Kaimal model-based spectra and Avent data-derived spectra. Because
the covariance between u and w components is not considered, the Kaimal model-based LOS
spectra are symmetrical on the top and bottom and on both sides. Therefore, only the orange
line is shown, representing the model-based spectra for beams 1, 2, and 4. We observe that
the overall agreements exhibit more discrepancies compared with those of the Mann model.
For stability classes 2 to 5, the beam 0 spectra exhibit better agreements, but the spectra of
beams 1 and 2 are underestimated. Thus, when estimating turbulence intensity using nacelle
lidar and the Kaimal model, the impacts of underestimation on the upward-looking beams and
overestimation on the downward-looking beams should be assessed.
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Figure 4.14: Comparisons of lidar LOS speed spectra derived by the Mann model and those calculated
from Avent measurements. “Model adjusted τ” refers to adjusted slopes of τs and τe. “Model original

τ” refers to the original τs expression (Equation 2.19) and τs = τe.

Figure 4.15: Comparisons of lidar LOS speed spectra derived by the Kaimal model and those calcu-
lated from Avent measurements.
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LOS Speed Coherence with Only Longitudinal Separation

The Avent lidar data from beam 0 has only longitudinal separations between different range
gates, neglecting the small yaw misalignment. It is selected to assess the longitudinal coherence
represented by the space-time tensor Θ and the exponential coherence model. As shown by
Figure 4.8, three range gates (1 to 3), are considered for the comparison.
Figure 4.16 compares the Mann model-based coherence with that estimated from the Avent
data. The dotted lines show the coherence derived using the original eddy lifetime expression
(Equation 2.19) for τe, which decays significantly slower than that calculated from the measure-
ments. Therefore, [20] suggested adjusting the slopes of the eddy lifetime expression and using
Equation 4.18 for τe. The slope of τe determines the rate of coherence decay with increasing
wavenumber. For example, by adjusting the slope parameter b2 to b2 = −7/3, good agreements
between the coherence calculated from the space-time tensor and that calculated from the lidar
measurements are obtained, as shown by the dashed lines in Figure 4.16. For the three possible
longitudinal separations, the space-time tensor could reflect the coherence from data correctly.
In addition to b2, the parameter γ also needs to be adjusted. In the original eddy lifetime of
the Mann model [11], γ is equivalent to the product Γ

(dU
dz
)−1. The adjusted parameters for

different stability classes are listed in Table 4.3.
Figure 4.17 compares the Kaimal model-based coherence with that estimated from the Avent
data. The coherence decay parameters ax and bx are fitted using the data between range gates
2 and 3 (as listed in Table 4.4); therefore, good agreements are observed for this separation.
The coherence between range gates 1 and 3 is also reasonably predicted. However, the expo-
nential coherence model overestimates the coherence between range gates 1 and 2, which have
the smallest distance. A possible solution to this problem might be to fit the other coherence
decay parameters ax and bx and make them dependent on the separation distances or to fit all
the coherence collected from data simultaneously, using a method similar to that used by [17]
to fit the correlation coefficient.
By comparing panels (a) to (e), no considerable differences in longitudinal coherence are ob-
served between the investigated stability classes. The coherence decays only slightly faster in
stable conditions compared with the neutral condition. Within the low wavenumber range, the
coherence is lower and more sensitive to longitudinal separations for stable conditions compared
with near-neutral conditions, which may have been caused by the smaller turbulence length
scales inherent in stable atmosphere conditions [20].
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Figure 4.16: Comparisons of the LOS speed coherence (with longitudinal separation only) derived
using the space-time tensor model and Avent measurements of beam 0. “Model adjusted τ” refers to
adjusted slopes of τs and τe. “Model original τ” refers to the original τs expression (Equation 2.19)

and τs = τe.

Figure 4.17: Comparisons of the LOS speed coherence (with longitudinal separation only) derived
using the Kaimal model and Avent measurements of beam 0.
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Coherence with Lateral and Vertical Separations

Next, the coherence with lateral and vertical separations are analyzed using measurements of
the LOS speeds from different lidar beam directions at the same range gate. Note that the
temporal delays also occurred between these LOS speeds because the lidar did not measure at
different beam directions simultaneously. However, for the used lidar system, the delays are
only within 1 s to a few seconds, and the coherence decay caused by the temporal delays is
expected to be weaker compared with that caused by the spatial separations. By using the four
beams (beam 3 is not used owing to low data availability), there are six possible combinations
of beams to evaluate. Figures 4.18 and 4.19 show the coherence between beam 0 and the other
beams. In each panel, the coherence from both range gates 1 and 2 are shown.
Based on the Avent data, the coherence of the three pairs are more similar at range gate 1 and
in the more neutral stability conditions. At range gate 2 and in the more stable stability classes
4 and 5, the coherence between beams 0 and 1 is higher than that between beams 0 and 2 and
is followed by that between beams 0 and 4.
For the Mann model-based space-time tensor, the coherence between beams 0 and 1 and between
beams 0 and 2 are equal because of the symmetry and homogeneity. Their coherence differs
slightly from the one between beams 0 and 4, which is caused by the opposite contributions
from the uw coherence to the upward and downward-looking beams. However, the difference
is slight because the contribution from the w component to the LOS speed is small. Generally,
the LOS speed coherence are accurately predicted at gate 1 for all stability conditions, and the
model prediction is better the closer to the neutral stability class. For gate 2, for which the
spatial separations are larger, the model matched the measurement for stability classes 1 to 3,
whereas some disagreements are observed under the two most stable stability classes. For the
original τs expression and in the stable condition, the model overestimated the coherence at low
wavenumber range. By adjusting the parameters in τs using the same method as for τe (i.e.,
Equation 4.18), the overestimation is alleviated. However, for the most stable stability class 5,
a certain overestimation of the coherence is still observed between beams 0 and 4.
The model prediction using the Kaimal model is similar to that using the Mann model-based
space-time tensor. Because of complete symmetry and neglected uw coherence, the coherences
of any one of the three pairs are equal. For range gate 1, the coherence is well predicted,
particularly in a more neutral condition. However, at range gate 2 and in the stable classes
4 and 5, an overestimation is also observed, and it is more overestimated than that by the
space-time tensor.
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Figure 4.18: Comparisons of the LOS speed coherence (with lateral and vertical separations) derived
using the space-time tensor model and Avent measurements. The coherences between beam 0 and the
other beams are shown. “Model adjusted τ” refers to adjusted slopes of τs and τe. “Model original τ”

refers to the original τs expression (Equation 2.19) and τs = τe.

Figure 4.19: Comparisons of the LOS speed coherence (with lateral and vertical separations) derived
using the Kaimal model and Avent measurements. The coherences between beam 0 and the other

beams are shown.
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In the comparisons above, the coherence is primarily contributed by the u component because
beam 0 is frequently aligned (or with a small misalignment) in the longitudinal direction. An
interesting aspect to investigate is the coherence between beams that are both contaminated
by the non-longitudinal components.
Figures 4.20 and 4.21 show the coherence between all beams except beam 0. Similarly, for
each frame, both the coherence from gates 1 and 2 are shown. Because of the symmetry of the
beams, the separation distance between beams 1 and 2 and that between beams 1 and 4 are
equal. The largest spatial distance is between beams 2 and 4.
Figure 4.20 shows the comparisons of the coherences using the Mann model-based space-time
tensor. Overall, the agreement between the space-time tensor model and measurements is
much better for neutral stability class 1 than for the other stability classes, although the
measured coherence between beams 1 and 2 is underestimated by the model. The model
predicts the coherence between beams 1 and 2 to be slightly lower than that between beams 2
and 4. However, the lidar measurements indicated that the coherence between beams 1 and 2
is significantly higher than that between beams 2 and 4. As discussed in Section 4.3.2, this is
due to the opposite signs of the beams’ unit vector. The correlated v components on beams 1
and 2 resulted in decorrelation on LOS speed measurements between beams 1 and 2. Because
the v component auto-spectrum is accurately predicted by the model (when we examined the
sonic spectra), the spatial coherence of the v component is more likely overestimated by the
model. For stability classes 2 to 5, larger discrepancies between the model and measured data
are observed as the atmosphere becomes more stable. The original eddy lifetime of the Mann
model is modified to reduce these discrepancies. After applying the adjusted τs values, the
overestimation of the coherence in the stability classes 2 to 4 decreases slightly. However,
relatively large biases are still present in the last two stability classes (4 and 5) for gate 2. We
can conclude that the LOS speed coherence decays much faster than predicted by the model
when the separation becomes more prominent than the turbulence length scale L.
For the Kaimal model, as shown in Figure 4.21, only two curves of the coherence are predicted
by the model because the ones between beams 1 and 2 and that between beams 1 and 4 are
equivalent. Generally, the coherence exhibited more discrepancies than the space-time tensor
model estimates. Primarily, the coherence between beams 1 and 2 in stability classes 1 to 3 are
predicted more correctly. In the other comparisons, the Kaimal model tended to overestimate
the LOS speed coherence, particularly in a more stable condition.
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Figure 4.20: Comparisons of the LOS speed coherence (with lateral and vertical separations) derived
using the space-time tensor model and Avent measurements. The coherence between the beams except
for beam 0 are shown. “Model adjusted τ” refers to adjusted slopes of τs and τe. “Model original τ”

refers to the original τs expression (Equation 2.19) and τs = τe.

Figure 4.21: Comparisons of the LOS speed coherence (with lateral and vertical separations) derived
using the Kaimal model and Avent measurements. The coherence between the beams except for beam

0 are shown.
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Coherence with Separation in all Directions

Additionally, we evaluated the models’ abilities to predict the coherence between LOS speeds
with all longitudinal, lateral, and vertical separations. Except for beam 0, the measurements
along different gates and from different beams could be used for such a purpose, and the results
are shown in Figures 4.22 and 4.23. Generally, both the Mann and Kaimal models match the
lidar data. However, similar to the previous coherence comparisons, the agreements between
the model and measurements deteriorate the more stable the atmosphere is.
For the Mann model, the model-based coherence between range gates 1 and 2 at beam 1
is the same as that between gates 1 and 2 at beam 2, owing to symmetry. In all stability
classes, the results using the adjusted τs do not significantly differ from those using the original
τ , because the vertical and lateral separations do not exceed the range in which the results
are sensitive to the temporal evolution-related eddy lifetime τe. By comparing Figures 4.22
and 4.16, we observe that the overall coherence is not very sensitive to the eddy lifetime τe

because the coherence decay due to lateral and vertical separations is more dominant than that
due to longitudinal separations for these compared lidar beam pairs. However, the longitudinal
coherence is overestimated when using the original τs expression as τe.
For the Kaimal model, the model-based coherence is equal for all compared LOS pairs because
of symmetry. The model predicts the first two stability classes accurately, but the coherence
is slightly underestimated in a more stable class. The reason could be that the direct product
(Equation 4.4) is used when combining longitudinal coherence with lateral-vertical coherence.
A similar overestimation was also observed by [16] using LES simulations.

4.4 Chapter Summary and Outlook
Under the demand for modeling turbulence evolution for the assessment of lidar-assisted tur-
bine control, this chapter presents the methods that can add turbulence evolution to existing
turbulence models for turbine load simulations.
For the Kaimal model, previous studies revealed that longitudinal coherence can be accurately
expressed by an exponential coherence model. The 4-D (space-time) stochastic turbulence field
can be generated using the traditional Veers method [58], which is currently widely used to
generate 3-D turbulent wind fields. However, the main limitation of directly applying the Veers
method is the massively increased computational effort required to perform Cholesky decom-
position on a very large matrix. With the assumption that the aggregated coherence can be
obtained by combining the coherence using a “direct product” approach, a two-step Cholesky
decomposition approach is proposed. This method can avoid performing the Cholesky de-
composition on a single large matrix. Instead, the Cholesky decomposition is applied to two
smaller matrices, and the total coherence matrix is obtained using the Kronecker product.
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Figure 4.22: Comparisons of the LOS speed coherence derived from the space-time tensor model
and Avent measurements. The coherence between the LOS speed measurements at gates 1 and 2 on
different beams is shown. “Model adjusted τ” refers to adjusted slopes of τs and τe. “Model original

τ” refers to the original τs expression (Equation 2.19) and τs = τe.

Figure 4.23: Comparisons of the LOS speed coherence derived from the Kaimal model and Avent
lidar measurements. The coherence between the LOS speed measurements at gates 1 and 2 on different

beams are shown.
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Therefore, the two-step Cholesky decomposition approach significantly increases the compu-
tational efficiency of the Kaimal model-based 4-D turbulence generation. In addition, the
two-step Cholesky decomposition approach results in the concept that a 4-D wind field can be
obtained by combining multiple statistically independent 3-D turbulent wind fields. Based on
this concept, an open-access 4-D wind field generator called evoTurb is developed [59], which
is coupled with TurbSim.
In terms of the Mann model extension, a space-time tensor based on the Mann model and an
eddy lifetime model are proposed. The space-time tensor assumes stationary turbulence fields,
describes the correlation decay of turbulence due to temporal evolution, and can represent both
the temporal and spatial structure of turbulence [20]. A practical eddy lifetime expression is
proposed to make the eddy lifetime model more flexible to use. The proposed expression has
several parameters that can be adjusted to change the slopes of the eddy lifetime. It can be
adjusted to match the turbulence spectral characteristics under neutral stability (the original
Mann model) or modified to represent a more stable atmosphere. A numerical turbulence
simulation method using the Ornstein-Uhlenbeck process is presented that can produce the
4-D turbulence field with statistical characteristics governed by the space-time tensor. An
open-source software called 4-D Mann Turbulence Generator was programmed based on this
numerical simulation method. In the aeroelastic simulation, the x axis of the generated tur-
bulence field can be converted to time using Taylor’s frozen theory (assuming the wavenumber
and frequency spectra have the same variance). The time slots of the turbulence fields can be
converted to several distances along the main wind direction as the turbulence propagates by
a mean reference wind speed. The correlation between all 3D fields is governed by the eddy
lifetime model in the space-time tensor. In the generated 4-D turbulence field, the one at the
rotor location can then be used for standard aeroelastic simulations, and the upstream ones
can be used for lidar measurement simulations.
The lidar LOS speed spectral properties are first derived analytically to evaluate the extended
Kaimal and Mann models. Subsequently, the derivations are validated by simulating the lidar
measurement numerically. Thereafter, the models are evaluated using measurements from a
pulsed lidar and a sonic anemometer. The measurement data are first split into 10 min intervals
and then classified into different atmospheric stability conditions. The select periods for the
model evaluation are those with a hub-height mean wind speed close to 12 ms−1, i.e., periods
above the rated wind speed of typical turbines, because lidar-assisted pitch feedforward con-
trol becomes beneficial under such conditions. We observed that the model agreed quite well
with the measured spectra and coherence from the lidar measurements when the atmospheric
stability was close to the neutral condition, and the spatial separation was small. However, the
coherence are overestimated by both models for the most stable class, and the Kaimal model
generally exhibited more discrepancies with the data than the Mann model. The discrepancy
occurs primarily in scenarios in which the spatial separations of LOS speed measurements are
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larger than the turbulence length scale. The eddy lifetime expression in the Mann model is
adjusted, which improves the agreements with the measurements.
The model evaluation indicates that both the Mann and Kaimal models tend to overestimate
the coherence when the separation distance surpasses the turbulence length scale. With the
current trend that the turbine rotor is designed to be larger and larger, the turbulence models
may be unable to provide a good representation of the coherence between blade sections with
a large spatial separation. In the future, the impact of this incorrect coherence on the turbine
loads should be further studied, preferably through field testing. Additionally, the nacelle lidar
measurement may also be used to provide a good reference for spatial coherence and therefore
be used to improve turbulence models.





5
Lidar Wind Preview Quality under Various

Turbulence Conditions

Based on the previous chapter, the conventional 3-D turbulence models are improved to in-
clude the turbulence evolution phenomenon. Additionally, it demonstrates that the spectral
characteristics of the freestream turbulence (without turbine wakes) can be represented by the
turbulence spectral model. The parameters of both the Mann and Kaimal turbulence models
under neutral and stable atmospheric stability conditions are studied using meteorological mast
and lidar measurements.
For lidar-assisted feedforward control, the quality of lidar wind preview is defined by how ac-
curately the lidar predicts the rotor-effective disturbance, or in other words, the REWS. The
control-oriented nacelle- or spinner- lidar system is typically designed to measure several up-
stream positions. A wind turbine interacts with turbulence through its three blades. Therefore,
a single-point longitudinal coherence is not sufficient to reflect the preview quality of a lidar
system. Instead, the turbine- and lidar-based REWSs must be defined and derived from the
turbulence models, and the correlation between these two REWSs must be investigated.
The lidar wind preview quality is related to the filter design of the feedforward pitch controller.
It defines the amount of frequency-domain content of the lidar estimated REWS that can be
used for control. If a filter is designed to filter out usable frequency content, the feedforward
control performance can be diminished. Oppositely, the uncorrelated pitch action can be acti-
vated, causing additional loads if the uncorrelated REWS estimation is not filtered out.
This chapter discusses the lidar wind preview quality under different turbulence spectral char-
acteristics that are representative of different atmospheric stability classes. The preview quality
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with turbine wake-included conditions is also studied using the DWM model. The measurement
trajectory of a four-beam pulsed lidar is optimized with the aim of providing a better quality
of wind preview for the NREL 5.0 MW reference wind turbine.
This chapter is extended from the following publications: [20, 71].

5.1 Turbulence Parameters of Different Atmospheric Stability Classes
As introduced in Section 4.3.3, atmospheric stability indicates the buoyancy effects on turbu-
lence generation and is related to the turbulence spectral characteristics. Its impact on lidar
wind preview quality for LAC is an interesting area to investigate as the turbine experiences
different atmospheric stability conditions during operation. In this section, the typical tur-
bulence parameters for unstable, neutral, and stable atmosphere conditions are summarized,
and these parameters are used in the remainder of this thesis to assess the lidar wind preview
quality and the benefits of LAC.
Based on the studies by [89] and [78], the turbulence spectral parameters at a given site can vary
significantly with atmospheric stability. Using the measurement data from the Østerild wind
turbine test station in northern Denmark, [78] found that the length scale L varies significantly
by different atmospheric stability classes. The length scale L is found to be the largest in
unstable stability, medium in neutral stability, and smallest in stable stability. To visualize
the impact of turbulence length scale on the eddy structure, Figure 5.1 shows three turbulence
fields generated using the 4-D Mann Turbulence Generator [20]. The corresponding turbulence
length scales are described in the caption. It is clear that larger coherent eddy structures are
more frequently observed in the unstable stability. In contrast, the eddy structure is much
smaller under the stable stability. In the neutral scenario, the eddy structure is between the
two scenarios. In the rest of this thesis, we use Mann turbulence parameter sets representative
of neutral and stable conditions based on Section 4.3.4. For the unstable atmosphere, the
turbulence parameters are selected based on [78]. These parameters are listed in Table 5.1.
Note that the αε2/3 parameter is scaled such that the turbulence intensity corresponds to the
IEC 61400-1 [12] class 1A definition. In practice, the TI value is also related to the atmospheric
conditions. Frequently, TI is generally high in an unstable atmosphere, moderate in a neutral
atmosphere, and low in a stable atmosphere [36]. In this study, our focus is on the effect of
turbulence length scales on turbine loads and LAC benefits; therefore, the same TI level was
assumed for the three stability classes. Although this assumption often contradicts the actual
measurements, it ensures a certain engineering design envelope for wind turbines. Also, it
helps to identify the impact of the turbulence length scale on turbine load, as later presented
in Chapter 7.
For the Kaimal model parameters, the parameters listed by the IEC 61400-1 standard [12] are
selected for the neutral stability because these parameters have already been observed to provide
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Figure 5.1: Top views of three turbulence fields with different turbulence length scales, which show
the eddy structures under different atmospheric stabilities. The turbulence fields are simulated using
the 4-D Mann Turbulence Generator with parameters listed in Table 5.1 and using the identical
random seed number. The lidar-measured positions are plotted based on a typical four-beam pulsed
lidar. Moreover, the rotor swept-area is drawn based on the NREL 5.0 MW reference wind turbine

with a rotor diameter of 126 m.

similar spectra and coherence compared with the Mann model in neutral stability parameters.
Additionally, maintaining these parameters enables us to compare the results with that from
existing literature, e.g., [6, 90, 19]. For unstable and stable stability classes, the Kaimal spectra
are fitted using Mann model-based spectra using the following optimization process:

min
Li,σi

∑N
n=1 [Sii(fn) · fn − 2Fii(k1,n) · k1,n]2 ,

s.t. k1,n = 2πfn

Uref
and i = 1, 2, or 3.

(5.1)

Here, n is the index of the discrete frequency vector fn and wavenumber vector k1,n and N is
the total number of discrete vectors. Note that the Mann model spectra Fii(k1,n) are multiplied
by 2 as they are two-sided spectra, whereas the Kaimal spectra are single-sided. Similarly, we
fit the y-z plane exponential coherence for the Kaimal model by the Mann model using

min
ayz ,Lc

∑N
n=1

[
1

k1,n
(γyz(fn)−<(coh11(k1,n)))2

]
,

s.t. k1,n = 2πfn

Uref
and ∆y = ∆z = 20m,

(5.2)

where < denotes the real number operator. The real number operator means that we only fit the
co-coherence and ignore the imaginary part introduced by the cross-spectrum in Equation 2.11.
The medium separation ∆y=∆z=20m has been selected for the optimization problem. For the
coherence optimization equations, the squared error in each discrete vector is divided by k1,n to
ensure equivalent weighting of the optimization function at different frequency or wavenumber
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ranges. The fitted spectra and y-z plane coherence are shown in Figures 5.2(a) and (b), and the
turbulence parameters are summarized in Table 5.1. We can observe that the turbulence length
scale L in the Mann model [11] generally increases from very stable to unstable conditions,
whereas the variation in the anisotropy parameter Γ does not exhibit a clear trend toward the
atmosphere stability. Accordingly, the larger length scale L also results in a smaller coherence
decay constant ayz.
Except for the spectra and y-z plane coherence, [20] demonstrated that the turbulence evolution
(or longitudinal coherence) is related to the atmospheric stability conditions. In [20], a smaller
intercept was observed for a more stable class. Additionally, [7] studied the turbulence evolution
under different stability classes using LES, and the smaller intercept was also observed in a
stable atmosphere. To compare the longitudinal coherence under different atmospheric stability
conditions, we use three sets of γ = 200, 400, and 600 s to calculate the longitudinal coherence
based on the space-time tensor Θ introduced earlier. Thereafter, the exponential coherence
(Equation 4.1) is fitted using the following optimization process:

min
ax,bx

∑N
n=1

[
1
fn

(γx(fn)−<(coh11(k1,n)))2
]
,

s.t. k1,n = 2πfn

Uref
and ∆x = 100m.

(5.3)

Here, the separation at ∆x = 100m is selected for the fitting, which is the medium separation
for a typical nacelle lidar measuring in front of the turbine [90, 91]. The fitted coherence is
shown in Figure 5.2(c). The fitted exponential coherence parameters ax and bx are summarized
in Table 5.2, and they exhibit a similar trend as the observation by [7] using LES. For an
unstable atmosphere, ax is generally larger, and bx is in a very small order close to 0. In the
neutral condition, ax lies at a medium value, and bx is also a small order close to 0. For the
stable scenario, the ax is the smallest, indicating a weaker coherence decay, whereas the bx is
larger and results in a smaller intercept in the coherence at low frequency ranges.
Based on Section 4.3.4, γ is observed to be 430 and 207 s for neutral and stable stability classes,
respectively, whereas the eddy lifetime parameter τe in the unstable scenario is not derived owing
to a lack of samples from the measurement. As studied by [9] using lidar measurement, the peak
probability of ax was observed to appear at values between 1 and 2. In addition, according to
the analysis by [7], ax tended to be the largest in an unstable condition compared with that in
a neutral or stable condition. Because γ = 200 or 400 s gives large values of ax in the unstable
atmosphere that are less possible to happen [9], we decided to choose γ = 600 s for the unstable
condition, which results in ax = 4.1. Moreover, γ = 400 and γ = 200 s are used for neutral and
stable stability classes.
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Figure 5.2: (a) Auto-spectra of the u component under different stability classes. (b) Lateral-
vertical coherence of the u component calculated using the Mann spectral tensor and fitted using the
exponential coherence model. Note that the co-coherence is shown for the Mann spectral tensor. (c)
Longitudinal coherence of the u component calculated using the space-time tensor and fitted using

the exponential coherence model.

Table 5.1: Mann model parameters under different atmospheric stabilities (based on [78]) and the
fitted Kaimal model parameters. U: unstable, N: neutral, S: stable.

Mann Kaimal
αε2/3 L Γ L1 L2 L3 σ1 σ2 σ3 ayz Lc

[m4/3s−2] [m] [-] [m] [m] [m] [ms−1] [ms−1] [ms−1] [-] [m]
U 0.184 140 2.6 744.8 181.9 126.4 2.82 2.34 1.98 6.5 1502.0
N 0.311 49 3.1 340.2 113.4 27.72 2.82 2.25 1.41 12.0 340.2
S 0.652 30 2.4 101.1 33.3 27.0 2.82 2.26 1.83 13.1 101.1

Table 5.2: Fitted parameters for the exponential longitudinal coherence model. ax is unitless and bx
has a unit of m−1.

Stability γ = 200 s γ = 400 s γ = 600 s

Unstable ax 8.2 5.1 4.1
bx 8.52 ×10−5 8.02 ×10−5 7.67 ×10−5

Neutral ax 2.9 1.8 1.4
bx 1.59 ×10−4 1.49 ×10−4 1.42 ×10−4

Stable ax 1.6 1.0 0.8
bx 9.18 ×10−4 8.59 ×10−4 8.27 ×10−4
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5.2 Correlations between Lidar and Turbine
In this section, the typical definition of REWS is first discussed. Subsequently, the auto-spectra
of the turbine- and lidar-based REWSs and the cross-spectrum between them are discussed.

5.2.1 Rotor Effective Wind Speed

For lidar-assisted collective pitch feedforward control, as discussed by [6, 90], a typical definition
of turbine REWS is the rotor disc averaged longitudinal component:

uRR(x) = 1
πR2

∫∫
Dxy

u(x)dydz, (5.4)

where the integration area Dxy is the rotor-swept area with a radius of R. When the Mann
model is considered, as derived by [18], the auto-spectrum of uRR can be calculated using the
spectral tensor as

FRR(k1) =
∫ ∞
−∞

∫ ∞
−∞

Φ11(k)4J2
1 (κR)
κ2R2 dk2dk3, (5.5)

where κ =
√
k2

2 + k2
3, and J1 is the Bessel function of the first kind. Refer to [18, 83] for the

detailed derivations.
For the Kaimal model, the spectrum was derived by [72, 6] and can be calculated using the
following discrete summation:

SRR(f) = S11(f)
n2

R

nR∑
i=1

nR∑
j=1

γyz(∆yzij, f), (5.6)

where ∆yzij is the separation distance between points i and j in the same y-z plane, and nR

is the total number of discrete points within the rotor area. The detailed derivation of the
auto-spectrum is available in [6].

5.2.2 Lidar-estimated Rotor Effective Wind Speed

Because lidar only provides the wind speed measurement in the LOS direction, the u compo-
nent must be reconstructed from the LOS speed. A simple algorithm assumes zero v and w

components because they frequently contribute much less than the u component on the LOS
speed. However, this is true if the misalignment of the lidar beam to the longitudinal direction
is small. Based on this assumption, the lidar-estimated REWS is often obtained using [6]

uLL(t) =
nL∑
i=1

1
nL cos θL,i cosφL,i

vlos,i(t), (5.7)



5.2 Correlations between Lidar and Turbine 93

where nL is total number of lidar measurement positions, φL,i is the azimuth angle of the ith
measured position, θL,i is the elevation angle of the ith measured position, and vlos,i(x) denotes
the lidar measurement at ith position. The auto-spectrum of the REWS estimated by the lidar
can be computed from the Mann spectral tensor [11] using

FLL(k1) =
nL∑
i,j=1

3∑
l,m=1

1
n2

L cos θL,i cosφL,i cos θL,j cosφL,j

∫ ∞
−∞

∫ ∞
−∞

nilnjmΦlm(k)

exp(ik · (xi − xj))ϕ̂(k · ni)ϕ̂(k · nj)dk2dk3,

(5.8)

where xi and ni denote the focus position and unit vectors of the ith lidar measurement,
respectively, and nil is the lth element in the unit vector ni. Details of the derivation of
Equation 5.8 are available in [18, 83], where all lidar LOS cross-spectra are looped over (see
Equation 4.57) and summed. When the temporal evolution of the turbulence field is considered,
we simply need to replace Φlm by the space-time tensor Θlm(k,∆t) in Equation 5.8. This is
necessary when the lidar has a relatively large time delay or longitudinal separation between
measurement positions [105].
In terms of the Kaimal model, the auto-spectrum can be calculated using the Fourier transform:

SLL(f) = F{uLL}F∗{uLL}

=
nL∑
i,j=1

1
n2

L cos θL,i cosφL,i cos θL,j cosφL,j
F{vlos,i}F∗{vlos,j},

(5.9)

where the cross-spectrum between the ith and jth LOS speeds can be calculated using Equa-
tion 4.40.
To evaluate how effectively the turbulence models predict the lidar estimated REWS (uLL), the
model parameters (Tables 4.3 and 4.4) are used to calculate the theoretical auto-spectrum of
the lidar-estimated REWS. The theoretical results are then compared with the ones derived
from the Avent measurements (Figure 5.3). The data selection criteria and stability classifi-
cation have been discussed in Chapter 4. The lidar-estimated REWS is computed using the
measurements from beams 0, 1, 2, and 4 at range gates 1 and 2. Before calculating the auto-
spectrum from the lidar data, the time delays according to the longitudinal separations and the
mean wind speed are applied to shift the measurements from gate 2 to have the same timing
as gate 1. For the beam trajectories considered here, we observe that the lidar-based REWS is
accurately predicted by both the Kaimal and Mann models.
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Figure 5.3: Comparisons of the lidar-estimated REWSs using the Avent lidar data and the turbulence
models.

5.2.3 Cross-spectrum between Turbine and Lidar

When turbulence evolution is considered with the Mann model, the cross-spectrum between
REWS uRR and the lidar-estimated one uLL can be calculated using the space-time tensor as
follows [20, 105]:

FRL(k1) =
nL∑
i=1

3∑
j=1

1
nL cos θL,i cosφL,i

∫ ∞
−∞

∫ ∞
−∞

nijΘj1(k,∆ti)

ϕ̂(k · ni) exp(ik · xi − ik1∆xi)
2J1(κR)
κR

dk2dk3,

(5.10)

where, ∆xi is the longitudinal separation between the rotor plane and ith lidar measurement
position. The rotor plane is often defined at xR = 0 m; therefore, ∆xi = xi − xR = xi. ∆ti is
the time required for the turbulence field to move from the ith lidar measurement position to
the rotor plane, which can be approximated using ∆ti = |∆xi|/Uref .

In terms of the Kaimal model, following [6], the cross-spectrum is determined using the discrete
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summation:

SRL(f) = F{uRR}F∗{uLL}

=
nR∑
i=1

nL∑
j=1

1
nRnL cos θL,i cosφL,i

F{ui}F∗{vlos,j},
(5.11)

where ui is the ith longitudinal wind component in the rotor-swept area. Refer to [6] for detailed
calculation of the cross-spectrum between ui and vlos,j, where the main algorithm loops over
all the cross-spectrum between spatially distributed u components. The cross-spectra between
the non-longitudinal components in the IEC Kaimal model are not modeled.

5.2.4 Lidar Wind Preview Quality

To evaluate the wind preview quality of lidar measurement, the coherence between lidar esti-
mated REWS and the turbine-based REWS, i.e.,

γ2
RL(f) = |SRL(f)|2

SRR(f)SLL(f) and coh2
RL(k1) = |FRL(k1)|2

FRR(k1)FLL(k1) , (5.12)

are often reported [6, 90, 18]. Note that the frequency and wavenumber coherence (γ2
RL and

coh2
RL) can be interchanged using the relationship k1 = 2πf/Uref . The measurement coherence

bandwidth (MCB), denoted as k0.5, is defined to be the wavenumber at which the magnitude
squared coherence coh2

RL(k1) decreases to 50% [6, 92]. The MCB is related to the “smallest
detectable eddy size deddy” by deddy = 2π/k0.5. A potentially good reduction in the turbine
fatigue load can be expected if deddy is close to 1D (diameter) of a specific turbine [92].
Furthermore, in LAC applications, another useful indication of how effectively the lidar predicts
the REWS is the following transfer function [6, 93]

|GRL(f)| = |SRL(f)|
SLL(f) . (5.13)

As derived by Simley and Pao [93], by definition, a filter that has the gain GRL(f) is an optimal
Wiener filter [94]. The Wiener filter aids in filtering out the uncorrelated information from
a stochastic process (in our application, the uLL) and minimizes the mean square deviation
between the filtered uLL and desired signal (uRR). A large gain at a certain frequency indicates
that less information needs to be damped out before the signal is used. Thus, the gain indicates
how much information measured by the lidar is usable for the feedforward control of wind
turbines; therefore, a larger area below the transfer function gain results in a better preview
quality. In practice, the Wiener filter design is more complicated and requires a higher-order
filter. In contrast, a first-order linear filter that has similar damping as the Wiener filter can also
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provide a similar filtering effect [95]. In this thesis, the first-order linear filter is considered to
evaluate the benefits of LAC. The linear filter is frequently designed to have a cutoff frequency
(fcutoff) at which the gain of the Wiener filter drops to -3 dB [6, 93].

5.3 Lidar Wind Preview Quality under Freestream Turbulence
In this section, the lidar wind preview quality under freestream turbulence is analyzed using
both the Mann and Kaimal turbulence models. Trajectory optimization is performed for a
typical multi-range gate pulsed lidar and the NREL 5.0 MW reference turbine.

5.3.1 Lidar Trajectory Optimization

Based on previous derivations, the lidar wind preview quality has been shown to be dependent
on turbulence parameters, turbine rotor size, and lidar measurement trajectory. For lidar
manufacturing, the lidar trajectory affects the performance of LAC and is also linked to the
cost of the lidar. Currently, the commercially available pulsed lidars used for turbine control
are frequently designed to have four beams and up to ten measurement gates. The beam
directions of these types of lidar are fixed and not adjustable. Some research-oriented pulsed
lidars have the capability to adjust the beam directions following a certain pattern, such as the
SWE scanning lidar [6]. For continuous wave lidars, the beam directions are usually adjustable
to ensure a wide range of measurements, e.g., the and the DTU SpinnerLidar [96].
In the rest of this section, the optimization is based on a typical pulsed lidar configuration that
has a full width at half maximum (FWHM) of 30 m. The considered optimization variables are

(a) xend: the distance from the lidar position to the furthest focused position in the x axis;

(b) αL: the opening angle of the lidar beam, which is the angle between the lidar beam and
the x axis.

The number of beams is assumed to be 4. Each lidar beam has 10 range gates. These 10 range
gates are eventually distributed from the nearest measurement position to the last position at
xend. The sampling frequency for each beam is assumed to be 1 Hz, and the measurements are
performed sequentially from one beam to another.
Following [6], the brute force optimization is used to calculate k0.5 and fcutoff . The neutral
turbulence parameters in Table 5.1 are considered for optimization because neutral stability is
more often reported at above-rated wind speed conditions [78, 33]. However, the sensitivity
of the preview quality to the turbulence parameters will be analyzed later. A mean wind
speed of 16 ms−1 is considered for all the preview quality assessments in this section. Note
that the optimization results are not dependent on the mean wind speed, which is discussed in
Section 5.3.2.
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The first measurement position is assumed to be at x = 50 m for the four-beam lidar. The
optimization result for the NREL 5.0 MW reference turbine and four-beam lidar using the
Mann model is shown in Figure 5.4. We can observe that the peak MCB does not provide
the peak cutoff frequency. Increasing the distance of the last measurement gates provides a
higher cutoff frequency but also results in a lower MCB. In panel (c), the maximum value in
the transfer function gain |GRL| is plotted. The maximum value is also important. When this
value is larger than 1, the lidar-estimated REWS must be augmented at some frequency ranges,
which is not easy to achieve with a simple linear filter design. A typical first or second-order
filter cannot enhance the signal only in a small frequency range but in a large frequency range
below the cutoff frequency. A max |GRL| greater than one frequently appears in the case if the
lidar beams are outside the rotor-swept area when projected to the rotor plane. Therefore, the

Figure 5.4: Preview quality indicators under several lidar trajectories, calculated using the extended
Mann model-based space-time tensor.

optimal trajectory is selected based on the following criteria:

(a) The MCB and cutoff frequency are as large as possible,

(b) The maximum |GRL| is less than 1.

Based on these criteria, for the Mann model-based optimal four-beam trajectory, the opening
angle is selected to be 20◦, and the last measurement distance of xend = 170 m is selected.
The optimization result for the NREL 5.0 MW reference turbine and four-beam lidar using the
Kaimal model is shown in Figure 5.5. The MCB and cutoff frequency are generally smaller than
the results from the Mann model, which can be caused by the underestimated combined co-
herence using the direct product method (see Section 4.3.4). The results indicate that a better
MCB is obtained when the opening angle is large and the last focused distance is small. This
trend is opposite to the results using the Mann model. This can be due to the contamination
of v and w components not being considered because their spatial coherence and the coherence
between u and w components are ignored. A larger opening angle results in more contributions
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to LOS speed by the v and w components. Because the contamination is not modeled, the
optimization results prompt the use of larger opening angles. To observe the impact of the lon-
gitudinal coherence decay ax on the trajectory optimization, we perform another optimization
using the Kaimal model, and it is shown in Figure 5.6. Here, the only difference from Figure 5.5
is that a smaller ax = 0.6 is used. In this scenario, the optimization results are more similar to
those of the Mann model, where the larger MCB is obtained using a smaller opening angle. In
this scenario, the longitudinal coherence with a smaller ax is less dominant in the lidar-rotor
coherence; thus, the results suggest focusing at a longer distance with a smaller opening angle.
Because of the overall better agreements of spectra and coherence with the measurement data
in Chapter 4, the optimal trajectory derived from the Mann model is used in the remainder
of this thesis. This optimal measurement trajectory is summarized in Table 5.3 and plotted in
Figure 5.7.

Figure 5.5: Preview quality indicators under several lidar trajectories, calculated using the Kaimal
model. The longitudinal coherence decay ax=1.9 is considered.

Figure 5.6: Preview quality indicators under several lidar trajectories, calculated using the Kaimal
model. The longitudinal coherence decay ax=0.6 is considered.
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Table 5.3: Parameters of the optimal four-beam pulsed lidar system, which are optimized using the
Mann model-based space-time tensor. Note that the azimuth and elevation angles are based on the
local coordinate system of the lidar, where the positive x direction is the forward-looking direction of

the lidar and the right-hand rule applies to other directions.

Parameters Values Units
Number of beams 4 [-]
Beam azimuth angles 14.4, 14.4, -14.4, -14.4 [◦]
Beam elevation angles 14.0, -14.0, -14.0, 14.0 [◦]
Range gates in x 50 to 170 [m]
Range gates step in x 13.3 [m]
Sampling frequency 1.0 (each beam) [Hz]
FWHM 30 [m]

Figure 5.7: A front view of the NREL 5.0 MW turbine and the optimized four-beam lidar measure-
ment trajectory.

5.3.2 Sensitivity of Lidar Wind Preview to Turbulence Parameters

Sensitivity to Atmospheric Stability

With the four-beam lidar trajectory optimized based on neutral stability, it is necessary to
study the sensitivity of the lidar wind preview quality with respect to other stability classes
represented by different turbulence parameters. Using the parameters listed in Table 5.1, the
coherence γ2

RL under different stability classes are shown in Figure 5.8 (a). We can observe
that the coherence using the Mann model-based space-time tensor is generally better than that
using the Kaimal model. For both models, the coherence in the neutral and stable stability
classes is higher than that in unstable stability, which can be caused by the stronger turbulence
evolution in the unstable scenario. The coherence in the unstable scenario is particularly low
when using the Kaimal model, which can again be caused by the direct product method for
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coherence combination.
The transfer functions under the three investigated stability classes are shown in Figure 5.8
(b). The transfer function gains are similar in the three stability classes for the space-time
tensor-derived results. For the results using the Kaimal model, the transfer function gain is
lower in the unstable stability class but similar in the neutral and stable stability classes.

Figure 5.8: (a) Coherence γ2
RL between lidar-estimated and the turbine REWSs. (b) Optimal transfer

function gain. The black dot line corresponds to the MCB at 0.5 and the magnitude at -3dB.

Using the spectral turbulence model, which represents the mean spectral properties, we can
obtain the expected Wiener transfer function gain, which is then used to fit a first-order linear
filter with a cutoff frequency at -3 dB of the Wiener filter gain [6, 93]. A list of the cutoff
frequencies obtained by fitting the GRL in Figure 5.8 (b) is provided in Table 5.4. The cutoff
frequencies obtained by the Mann model-based space-time tensor are generally larger than
those using the Kaimal model. For the same turbulence model, the resulting cutoff frequency
does not change significantly according to the analyzed turbulence stability conditions. We
can observe that the turbulence parameters of different atmospheric stability classes do not
significantly influence the cutoff frequency, and the difference is generally smaller than 0.01 Hz.
This also indicates that the filter design is not sensitive to the change in turbulence parameters
related to atmospheric stability, and a constant filter design is robust. In the remainder of this
thesis, we use the constant cutoff frequency based on neutral stability for the assessment of
LAC.



5.3 Lidar Wind Preview Quality under Freestream Turbulence 101

Table 5.4: Cutoff frequencies in Hz corresponding tp −3 dB at the GRL magnitude, calculated using
the NREL 5.0 MW turbine and the four beam optimized lidar trajectory with a mean wind speed of

16 ms−1.

Mann Kaimal
Unstable 0.0544 0.0347
Neutral 0.0490 0.0449
Stable 0.0455 0.0439

Sensitivity to Mean Wind Speed

Because the turbine will operate at different above-rated wind speeds, it would be interesting
to determine the lidar wind preview quality indicators for different mean wind speeds.
Figure 5.9 shows the lidar-rotor coherence and optimal transfer function for four different mean
wind speeds. With a higher mean wind speed, the upstream wind field propagates faster to
the rotor plane, and the turbulence field will have less time to evolve. Based on the theory
discussed in Chapter 4, a smaller time difference results in a higher longitudinal coherence;
therefore, the lidar wind preview quality is also better.

Figure 5.9: (a) and (b): Coherence γ2
RL between lidar estimated RWES and the turbine-based REWS

under different mean wind speeds. (c) and (d): The optimal transfer function gain under different
mean wind speeds. The black dot line corresponds to the MCB at 0.5 and the gain at −3 dB.
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Figure 5.10 shows the MCB and cutoff frequency at different mean wind speeds. We can observe
that the MCB is not dependent on the mean wind speed, and the relationship between the cutoff
frequency and mean wind speed is approximately linear. Based on this linear relationship, the
cutoff frequency for the linear filter of LAC can be scheduled.

Figure 5.10: MCBs and cutoff frequencies under different mean wind speeds.

In addition to the cutoff frequency, the buffer time introduced in Chapter 2 is also important
for the feedforward control. Figure 5.11 shows the leading time Tlead as a function of mean wind
speed by the first two measurement gates (nearest to the turbine rotor) of the optimized lidar
from Section 5.3.1. The required leading time (Tfilter + Tpitch + 1

2Twindow) is also plotted. The
leading time must be larger than the required leading time to avoid the feedforward pitch signal
being activated too late. For LAC implementation in Chapter 7, we use the lidar measurement
range gates from 2 to 10 for estimating the REWS when the mean wind speed is above 20 ms−1.
The leading time of gate 2 is sufficient to provide enough leading time for wind speeds above
20 ms−1. For mean wind speed below 20 ms−1, all 10 range gates are used to estimate the
REWS.

Figure 5.11: The leading time and required leading time for pitch feedforward command.
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5.4 Lidar Wind Preview Quality under Wake Conditions
This section assesses the impact of turbine wakes on the lidar wind preview quality of a down-
stream turbine.

5.4.1 Potential Impact of Turbine Wake

The existing literature primarily concentrates on the lidar wind preview for control in the
freestream turbulence scenario [6, 90, 18]. In this context, the turbulence is assumed to be
homogeneous and Gaussian, which can be modeled using spectral models.
As introduced earlier, three main characteristics are presented in the turbine wakes [12, 70],
i.e.,

(a) the reduced wind speed region (wake deficit);

(b) the meandering (wake deficit moves in the lateral and vertical directions);

(c) the smaller-scale added turbulence caused by the interaction between the rotor and the
flow.

Based on these phenomena, we can conceive the possible impacts of turbine wakes on lidar
wind preview quality. For example, the wake is measured by lidar in an upstream y-z plane
(Figure 5.12). Subsequently, it propagates (in the x-direction) to the turbine with meandering
such that the sectional overlap of the wake at the rotor disk changes in time. When the wake
reaches the rotor plane, it might be partially overlapped with the rotor, miss the rotor entirely,
or become less important owing to the wake recovery. These might cause other errors between
the lidar-estimated REWS and that experienced by the rotor.
Because the lidar wind preview quality under wake conditions has not been fully explored in
the literature, this section contributes by studying the impact of wake on lidar wind preview
quality in the frequency domain. The Mann model [11] is combined with the DWM model, both
suggested by the IEC 61400-1 standard [12], to model wake-included turbulence. The analysis
is performed using different turbulence parameters representing three atmospheric stability
classes (see Table 4.2) and considering several wind direction scenarios. The Kaimal model
is not considered because the spatial correlation of the v and w components is not defined.
The spatially uncorrelated v and w components will lead to unrealistically low fluctuations of
large-scale lateral and vertical motions, which results in unreasonable wake meandering.
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Figure 5.12: A sketch of the meandering wake deficit for a downstream turbine and a lidar system.
Vx denotes the mean longitudinal wind speed deficit in the wake, and Vhub is the freestream hub height

mean wind speed.

5.4.2 Simulation Configurations

Before the development of the Mann model-based space-time tensor and the corresponding 4-D
turbulence generation tool, the DWM model and Taylor’s frozen theory were used by [71] to
study the lidar wind preview quality under wake conditions. This section adopts the space-
time tensor-based turbulence when applying the DWM model. The 4-D turbulence field is
generated at the y-z planes, including the upstream turbine rotor plane, the range gates of the
lidar mounted on the downstream turbine, and the rotor plane of the downstream turbine. The
wake center is calculated using Equation 3.19 and using the y-z plane turbulence at the upstream
turbine plane. Taylor’s frozen theory is used when calculating the wake center because the large-
scale lateral and vertical velocity components represented by the eddies with larger sizes are
supposed to evolve weakly. After the wake center at each downstream plane that the lidar
measures are obtained, the wake deficit and wake-induced turbulence are added to the ambient
turbulence generated using the 4-D Mann Turbulence Generator. Additionally, the smaller scale
wake-induced turbulence is also generated using the 4-D Mann Turbulence Generator with the
same eddy lifetime parameters defined for the ambient free stream turbulence.
For the turbine layouts, the layouts in which two turbines align in a row with the typical 5D
and 7D (diameter) spacing are considered. Three wind directions are considered to simulate
partial and full wake scenarios for the downstream turbine. As shown in Figure 5.13, three wind
directions based on the 7D separation are defined. The full wake scenario corresponds to the
7D downstream turbine being aligned with the upstream turbine and the wind direction. The
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half-aligned scenario means that half of the turbine rotor at 7D is in the mean wake boundary.
The critical-unaligned condition means that the turbine is critically outside the wake boundary.
For the 5D scenario, the downstream turbine is moved toward the upstream turbine by twice
the rotor diameter along the line between the 7D position and the upstream turbine. The
Mann parameters listed in Table 5.1 are used to simulate various atmospheric stability classes.
For each simulation configuration, 12 different random seeds are used to generate the turbulence
fields. For each seed, a wake-included turbulence field with the dimensions of 4096×11×64×64
and resolutions of 0.5 s, and 8 m× 6.25 m× 6.25 m in the t, x, y, and z directions, respectively,
is simulated. Each field has a total simulation time of 2048 s. For comparison, the same
turbulence field but without wake is used to simulate the lidar- and turbine-based REWS for
the wake-free scenario. The mean hub height reference wind speed is assumed to be 16 ms−1

and the parameter αε2/3 is adjusted to satisfy the turbulence intensity corresponding to class
1A, as specified by the IEC 61400-1 standard [12]. The simulated time series are collected and
detrended by the mean value. Subsequently, the spectra are calculated using Welch’s method
[80] with hamming windows.

Figure 5.13: A top view of the considered turbine layout. For both 7D and 5D separations, three
different aligning conditions corresponding to different wind directions are considered.
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5.4.3 Simulation Results

The simulation results of the REWS time series from one of the turbulence fields with the “5D
aligned” configuration in an unstable atmosphere are shown in Figure 5.14. The time series
are shifted according to the lidar measured upstream positions and assuming the turbulence
propagates through the mean wind speed. By comparing panels (a) with (b), we observe
that the wake deficit causes lower mean values in (b) than in (a). The mean uLL is slightly
lower than the mean uRR in (b) because of the wake recovering. However, the difference is
relatively small, which may be due to the upstream wind turbine operating with smaller thrust
coefficients under the mean wind speed of 16 ms−1. Panel (c) compares the difference of RWESs
in the wake-included and in the freestream scenarios. The fluctuation in the difference is much
smaller than the ambient turbulence fluctuation. Overall, the lidar wind preview exhibits good
agreement with the turbine-based REWS in both wake-included and freestream scenarios. We
can also observe that the additional fluctuations caused by wakes in (c) are coherent. The lidar
measures the additional fluctuations, and they reach the rotor with a slight change. Therefore,
the correlation between uLL and uRR in the wake condition is overall not affected significantly,
although the mean values are different owing to the wake recovery.
The REWS time series from one of the turbulence fields with the “5D aligned” configuration in
a stable atmosphere is shown in Figure 5.15. Note that the same random number seed used for
Figure 5.14 is used for the stable scenario here. Thus, the time series exhibits a similar overall
trend as that in Figure 5.14. However, owing to the significantly smaller turbulence length scale,
the fluctuation in the stable atmosphere exhibits more high-frequency components. Again,
because of the small length scale, the spatial filtering effect of the turbulence is more obvious,
and the wake center that meanders following the large-scale lateral and vertical components
tends to have smaller magnitudes. This can be observed in panel (c) in Figure 5.15. Compared
with that in Figure 5.14 (c), the additional fluctuations caused by turbine wake in the stable
condition have noticeably smaller magnitudes.
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Figure 5.14: The time series of the simulated REWSs, simulated using the DWM model and Mann
model-based space-time tensor under an unstable atmosphere.

Figure 5.15: The time series of the simulated REWSs, simulated using the DWM model and Mann
model-based space-time tensor under a stable atmosphere.
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The comparisons of coherence γ2
RL are shown in Figure 5.16. In all the stability classes, the

simulated freestream coherence (green solid lines) has good agreement with the theoretical
coherence (black dashed lines), which validates the simulation results. In the neutral and stable
stability conditions and in all the spatial alignments, the difference between the freestream
coherence and wake-included coherence is considerably small. Comparing the green lines with
the orange, blue, and purple lines, we observe that the lidar-rotor coherence increases slightly
because of the additional coherent fluctuations caused by the wake. However, because the
additional fluctuations caused by a wake in the neutral and stable scenarios have a much smaller
magnitude and are much weaker than the ambient turbulent fluctuations, the differences are
overall smaller. Because of the smaller length scale, the differences are even smaller in the stable
scenarios. In the unstable atmosphere and in all the spatial alignments, the coherence even
increases owing to the additional coherent wake meandering that is measured by the lidar and
experienced by the downstream turbine rotor. In the 5D scenario, the wake-included coherence
is similar for all the alignments. In the 7D separation, the critical-unaligned scenario has a
slightly smaller coherence compared with the other two alignments because the wake has a
lower possibility of hitting both the lidar and turbine with this alignment.

Figure 5.16: Comparisons of lidar-rotor coherence γ2
RL under the wake-included and the freestream

turbulences.

The comparisons of the optimal filter gain are shown in Figure 5.17. Similar to the coherence
comparisons performed earlier, the transfer functions are not considerably influenced by the
wakes in the neutral and stable scenarios. In the unstable scenario, we observe that the transfer
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function gain is slightly better than that of the freestream scenario, which is caused by the
additional coherent turbulence structure added by the wake effect. With the current wake
modeling approach, this also indicates that the filter design is not sensitive to the turbine wakes.
The filter gain at −3 dB increases slightly by 0.02 Hz in the unstable situation. Designing a
filter using the freestream turbulence models will ensure a conservative design for the filter.

Figure 5.17: Comparisons of the optimal transfer function gains under the wake-included and
freestream turbulences.

5.5 Chapter Summary and Outlook
In this section, the variation in the turbulence spectrum and spatial coherence via atmospheric
stability are summarized based on the literature. Three atmospheric stability classes are con-
sidered: unstable, neutral, and stable. For each atmospheric stability class, the Mann model
parameters are collected, and then the Kaimal model parameters are fitted to have similar
spectra and coherence as compared with the Mann model. We observe that a more unstable
atmosphere results in a larger turbulence length scale. A larger length scale results in greater
lateral-vertical coherence. Moreover, we observe that longitudinal coherence, or in other words,
turbulence evolution, is linked to atmospheric stability. By comparing with observations from
the previous chapter and those from LES-based literature, the longitudinal coherence decay is
observed to be faster in a more unstable atmosphere.
Based on evolution-integrated turbulence models discussed in Chapter 4, the lidar wind preview
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quality is derived using the turbulence spectral models. The derivations are performed for both
the Mann model-based space-time tensor [11, 20] and the Kaimal model [13] in incorporating
the longitudinal coherence.
A four-beam lidar measurement trajectory is optimized considering the optimal preview for
the NREL 5.0 MW reference turbine under neutral turbulence parameters. The trajectory
optimization is performed using both the Mann and Kaimal models. The results optimized using
the Kaimal model exhibit high sensitivity to the longitudinal coherence parameters owing to the
direct product approach of combining spatial coherence. The Mann model-based optimization
results are selected for the remainder of the analysis, where the best option is to have opening
angles of 20◦, the first measurement gate at x = 50 m, and the last measurement distance at
xend = 170 m.
With the optimized four-beam trajectory, the preview quality under the freestream scenario is
analyzed using different turbulence parameters representing the three investigated atmosphere
stability classes. The conclusion is that the preview quality of the four-beam lidar and NREL
5.0 MW turbine is not very sensitive to atmospheric stability. A simple filter design based on
the neutral turbulence condition is robust to other stability classes.
In addition to the freestream turbulence analysis, the preview quality under wake conditions
is investigated. The DWM model is combined with the space-time tensor to simulate wake-
included turbulent wind fields. The wake-included wind field is generated by combining the
freestream 4-D Mann turbulence [20] and the wake characteristics described by the DWM
model. The DWM model is combined by the wake deficit, wake meandering, and wake-induced
turbulence. The lidar wind preview quality under various wake conditions is assessed us-
ing simulated lidar measurements and turbine-based REWSs calculated from the simulated
turbulence fields. Turbulence parameters representing different atmospheric stability classes,
different spacing between downstream and upstream turbines, and different wind directions
corresponding to different wake exposure scenarios are considered.
Overall, the simulation result shows that the wake described by the DWMmodel has a negligible
impact on the lidar wind preview quality. For neutral and stable stability classes, the preview
quality under different turbine separations and directions in wake conditions is similar to that
in the freestream. In the unstable scenario, the preview quality is slightly increased by the wake
because of the coherent turbulence structure introduced primarily by the wake meandering.
However, the DWM model does not solve the turbulent flow using the N-S equation physically.
In future research, higher fidelity wake solutions, such as the LES-based approach, can be
applied to verify the DWM model on lidar wind preview quality estimation. In addition, the
temporal delay effect caused by the wake, which is not addressed in this thesis, can be further
studied. Finally, field investigations are necessary to further validate the results.



6
Improving Lidar Module in Aeroelastic

Simulations

In the previous chapters, lidar measurement simulation was performed by projecting the velocity
components onto the LOS direction and then applying the probe volume weighting function.
This approach assumes that the lidar is static. In practice, the nacelle lidar interacts with
the turbine tower and rotor dynamics. The nacelle motion causes undesired contributions to
the LOS speed measurement, and the passing blade can block the lidar beams and make the
measurements invalid. To further assess the benefits of LAC in aeroelastic simulations, a lidar
simulation module should be integrated into the aeroelastic codes.
Before this thesis research, a lidar simulation module was integrated into OpenFAST, covering
some lidar measurement characteristics such as the different scan patterns, the volume averag-
ing along the beam, and the coupling with the nacelle motion owing to turbine tower dynamics1.
This chapter focuses on the integration of three new features into the OpenFAST lidar simula-
tion module to make the coupled simulation more realistic. This chapter is primarily based on
the research outcomes published in [91].

1commit 829511a on 13 March 2020,https://github.com/sowentoDavidSchlipf/openfast/tree/f/
lidarsim

https://github.com/sowentoDavidSchlipf/openfast/tree/f/lidarsim
https://github.com/sowentoDavidSchlipf/openfast/tree/f/lidarsim
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6.1 Overview of the Updated Features
An overview of the three new features is shown in Figure 6.1.
The first feature is the ability to read a 4-D turbulent wind field with the turbulence evolu-
tion phenomenon. In the previous version, the lidar system scanned the exact same wind field,
which was also used for the aeroelastic simulation of the wind turbine, assuming Taylor’s frozen
turbulence theory [2]. As a result, only a shift in time occurs between the lidar-measured and
turbine-experienced winds. Specifically, when assessing the benefits of lidar-assisted turbine
control, this assumption may overestimate the benefit brought by lidar. In practice, the tur-
bulence is evolving as it propagates towards the turbine, as modeled in Chapter 4; thus, the
turbine will not be exposed to the identical disturbances as that measured by the lidar in ad-
vance [9]. Therefore, wind evolution should be included in the aeroelastic simulation to provide
a more accurate and realistic simulation of a lidar system.

The second new feature is the blade blockage effect. A forward-looking nacelle lidar is fre-
quently installed behind the rotor. The lidar beam can be blocked by the turbine blades during
operation, and the blades induce additional peaks in the Doppler spectrum for the lidar, result-
ing in wrong LOS speed measurements [97]. For high wind speeds, the spectral peaks caused by
the blades can be distinguished from that caused by the wind because they appear in different
frequency ranges. Additionally, the CNR values at the measurement positions are usually low
when the lidar beam is blocked by the blade. For turbines with thick root blades or a low value
of rated rotational speed, the blade blockage can affect the quality of the derived signals be-
cause some of the desired measurements cannot be obtained. For assessing LAC performance, in
particular, this blockage effect should be included to verify the lidar data processing algorithms.

The third updated feature is adjustable data availability. Wind lidars are based on the Doppler
effect, and they are designed to provide LOS speed measurements for all the specified measuring
range gates [98]. The availability defines the percentage of usable data retrieved by lidar over all
the measurement attempts [99]. In the previous version of the lidar simulator, full availability
was assumed. However, the availability can decrease when the back-scattered power cannot
form a distinguishable Doppler spectrum [99]. The availability of LOS speed measurements
is often quantified by the CNR of the laser signal, which depends on aerosol back-scatter,
humidity, and precipitation in the atmosphere [100]. Measurements with CNR values below
a certain threshold will be considered invalid. When the data availability decreases, special
treatment must be conducted to interpolate the missing lidar data to avoid interference with
important turbine structural modes [101]. The changeable data availability should be taken
into consideration for simulating lidar because the lidar is subjected to various atmospheric
conditions in an actual application.
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Figure 1. A sketch of the new features that are updated in the OpenFAST lidar simulation
module. Note that the frozen turbulence remains unchanged from upstream to downstream.
A typical four beam lidar is shown, the right chart shows a situation where one beam (dashed
lines) is blocked by a blade.

The second new feature is the blade blockage effect. A forward-looking nacelle lidar is usually
installed behind the rotor. The lidar beam can be blocked by the turbine blades during operation
and the blades draw additional peaks in the Doppler spectrum for the lidar, resulting in wrong
LOS measurements [4]. For high wind speeds, the spectral peaks caused by the blade can be
distinguished by the lidar system because they appear in different frequency ranges compared
to the peaks drawn by wind. Also, the carrier-to-noise ratio(CNR) values are usually low when
the lidar beam is blocked by the blade. The blade blockage has an impact on the quality of the
derived signals, because some of the desired measurements can not be obtained. Especially for
assessing lidar-assisted control performance, this blockage effect should be included to verify the
lidar data processing algorithms.

The third updated feature is the adjustable data availability. Wind lidars are based on
the Doppler effect and they are designed to provide line-of-sight (LOS) measurements for all
the specified measuring range gates [8]. The availability defines the percentage of usable data
retrieved by a lidar over the total measurement attempts [3]. In the previous version of the
lidar simulator, full availability was assumed. However, the availability can drop when the back-
scattered power is not able to form a distinguishable Doppler spectrum [3]. The availability of
LOS measurements is usually quantified by the CNR of the laser signal, which depends on aerosol
back-scatter, humidity and precipitation in the atmosphere [1]. Measurements with CNR values
below a certain threshold will be treated as invalid. When the data availability drops, special
treatment needs to be carried out to interpolate the missing lidar data to avoid interference with
important turbine structural modes [20]. The changeable data availability should be taken into
consideration for simulating lidar since the lidar is subjected to various atmospheric conditions
in a real application.

The rest of this paper first introduces the methods to simulate the three features mentioned
above sequentially. Then the wind preview quality using the updated realistic simulator is
assessed and the conclusions are drawn.

2. Integrating the Evolving Turbulence
This section introduces the evolving turbulence generation tool evoTurb and explains the
integration of the tool into the OpenFAST lidar simulation.

Figure 6.1: A sketch of the new features that are updated in the OpenFAST lidar simulation module.
Note that the frozen turbulence remains unchanged from upstream to downstream. The right-hand

side shows the scenario in which one lidar beam (dashed lines) is blocked by a blade [91].

6.2 Integrating the Evolving Turbulence

To calculate the LOS speed at upstream positions, the 4-D wind field, including several up-
stream 3-D wind fields, is imported into the LidarSim module of OpenFAST. In the previous
version, the same wind field at the rotor plane, which was used to simulate the wind turbine
aerodynamics, was also used for simulating the lidar measurements assuming Taylor’s frozen
theory.
The updated lidar simulator supports only the Bladed-style wind field (with an extension of
“.wnd”). One must write a 3-D turbulent wind field in the “.wnd” format to be used for the
simulation of the aeroelastic response of the turbine at the position of the rotor, and other 3-D
upstream wind fields (at several upstream y-z planes) in the “.evo” format to be used for the
simulation of lidar measurements. The “.evo” file must provide the x positions of the upstream
planes, which are frequently the x positions of the lidar measurement. The main benefit of
writing the wind fields in separate files is that the simulation results at the rotor position with-
out LAC can be performed independently. If another lidar upstream measurement distance is
specified or another longitudinal coherence model or parameter is used, only the “.evo” format
file needs to be updated. In addition to the wind field data, a “.sum” file must also be written,
which includes some additional information about the wind field, e.g., the hub-height mean
wind speed and the turbulence intensity.
After importing the turbulent wind field, the identical algorithm developed by the previous
simulator version is used to simulate the lidar measurement. First, the wind velocity compo-
nents u, v, and w are projected onto the beam direction to determine the single-point LOS
wind speed. Subsequently, within the probe volume, Taylor’s frozen theory [2] is applied to
obtain the velocity distribution along the probe volume. Thereafter, a weighted sum of several
single-point LOS speeds along a beam is calculated to approximate the weighting effect caused
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by the lidar probe volume. This method of assuming Taylor’s frozen theory within the probe
volume was called the “semi-frozen” method by [59] and has been shown to not affect the wind
preview quality of a pulsed lidar with a typical probe volume size (FWHM=30 m).

6.3 Simulating the Blade Blockage Effect
This section presents the algorithm used for detecting the blade blockage status during the
OpenFAST simulation. The code implementation in the OpenFAST framework is also pre-
sented.

6.3.1 Blade Blockage Detection

Generally, forward-looking nacelle lidar systems are installed behind the turbine rotor. In prac-
tice, because nacelle lidar systems frequently have small opening angles, the measurements are
affected by the blade sections close to the root, where the blade geometry is mostly transi-
tioning from a circle to the thickest airfoils. The detailed geometry of these sections can be
derived if the airfoil coordinates, twist angles, and chord lengths are provided. In OpenFAST,
the above information is usually defined for several representative blade element nodes [102].
To detect the blockage caused by the blades, instead of using the detailed blade geometry,
the problem is approximated by simplifying the blade geometry as two triangles, whose 3-D
Cartesian coordinates can be derived from the information carried by the blade element nodes.
After the coordinates of the two triangles are obtained, the ray-triangle intersection algorithm
by Möller and Trumbore [103] is used to further detect the blockage status.
As shown in Figure 6.2, c1 and c2 denote the aerodynamic centers of the two airfoil cross-
sections, l1 and l2 correspond to the leading edges of the airfoils, and m1 and m2 are the
trailing edges. The lidar beam originates from d0 and measures at d2. The coordinates of the
two triangles (4m1l1m2 and 4l1l2m2) are the targets for blockage detection. To determine
the blade elements that may block the lidar beam, we first calculate the position of point d1,
which lies on both the lidar beam and rotational plane. Note that the rotational plane is the
one perpendicular to the rotational axis in Figure 6.2. The position coordinate of d1 can be
computed using

d1 = d0 +−−→d0d2

−→
d0o · nr
−−→
d0b2 · nr

, (6.1)

where d0 is the position vector of point d0, nr is the normal vector of the rotational plane, and
−−→
d0d2 and −→d0o are vectors defined by the specific start and end points. Thereafter, the radial
distance |−→od1| is compared with the radial distances (|−→oc1| and |−→oc2|) from the blade element
nodes to the rotor rotational center o. If |−→oc1| < |

−→
ob1| < |−→oc2|, then the two blade nodes are
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Figure 6.2: A geometrical sketch of the blade blockage detection algorithm. The lidar figure is
provided through the courtesy of Movelaser. The figure is redrawn based on [91].

selected to detect the blockage in the next step. Using this simple algorithm, the computational
effort is reduced because the calculation of blockage for all the blade element nodes is avoided.
In the next step, the leading edge coordinates for l1 and l2, and the trailing edge coordinates
for m1 and m2 are obtained using

li = ci − 0.25Lchord,inc and mi = ci + 0.75Lchord,inc, (6.2)

where Lchord,i is the chord length of the ith blade element node, ci is the coordinate of the
ith aerodynamic center, and nc is the orientation vector that aligns with the chord length
direction. Here, we assume that the aerodynamic center is located at 25% of the chord line.
After li and mi are calculated, the blockage status is finally determined by calculating the
geometric relationship of whether the lidar beam ray −−→d0d2 intersects with triangles 4m1l1m2

and 4l1l2m2. If the ray has an intersection that lies in one of the two triangles, the blade
blockage status is satisfied; otherwise, the lidar beam is not blocked. The details of the ray-
triangle intersection algorithm are available in [103].

6.3.2 Verification of Implementation

To verify the code implementation, we simulated the lidar system, whose trajectory is provided
in Table 5.3, together with the NREL 5.0 MW reference wind turbine [75]. The lidar system was
assumed to be installed on the top of the nacelle (3.5 m above the nacelle floor) and 3 m behind
the blade root. Figure 6.3 shows a polar scatter plot between the azimuth angle of the first
blade and the blockage status of lidar beam 1. We observed that the blade blockage occurred
at three ranges of azimuth angles, which is reasonable as these three ranges correspond to the
blocking by the three blades of the rotor.
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Figure 6.3: A polar scatter plot of the blade blockage status of the lidar beam based on OpenFAST
simulation. The polar coordinates indicate the azimuth angle of the first blade in the rotational
frame. Only the blockage status of beam 1 is plotted. The lidar measurement trajectory is provided

in Table 5.3.

6.4 Simulating the Lidar Measurement Availability
In this section, a statistical spectral analysis of the CNR measurement from a pulsed lidar
system is performed. Subsequently, the implementation of the adjustable data availability
function in OpenFAST is introduced.

6.4.1 Measurement Campaign for Lidar Data Availability Model

A measurement availability model was proposed by [99] to simulate the availability over the
measurement distance recorded for a certain period. The model provides a good reference for
selecting the measurement distance to provide higher availability. However, in the aeroelastic
simulation, the time series of availability status is required. Thus, we decided to derive a novel
spectral model for the CNR signal based on lidar measurements. The model aims to produce a
CNR time series that has similar auto-correlation and availability statistics as the measurement
data.
The measurement was performed at the campus of Flensburg University of Applied Sciences
in northern Germany, using the four-beam pulsed lidar (Molas NL200) produced by Movelaser
(Figure 6.4). The detailed beam trajectory is provided in Table 6.1. The data obtained from
May 10, 2021 to July 9, 2021 was used for our analysis, during which the lidar was positioned
towards the atmosphere and there were no obstacles in the LOS direction.
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Figure 6.4: An overview of the lidar measurement site for CNR data analysis.

Table 6.1: Scan configurations for the Molas lidar system. Note that the azimuth and elevation
angles are based on the local coordinate system of the lidar, where the positive x direction is the

forward-looking direction of the lidar and the right-hand rule applies to other directions.

Parameters Values Units
Number of beams 4 [-]
Beam azimuth angles 15.0, -15.0, 15.0, -15.0 [◦]
Beam elevation angles 12.1, 12.1, -12.1, -12.1 [◦]
Range gates in x 50 to 190 [m]
Sampling frequency 1.0 (each beam) [Hz]
FWHM 30 [m]

6.4.2 Spectral Analysis of CNR

The stationarity of the CNR time series is first investigated to observe the power spectral den-
sity of the CNR signals. The measurement data were divided into continuous 10 min samples,
because 10 min is a typical time interval used for atmospheric turbulence in wind energy appli-
cations [12]. As shown by Figure 6.5, the 10 min mean CNR had spikes on some days when the
mean CNR values were considerably high; thus, it could not be considered stationary in general
[104]. However, Figure 6.5 shows that the samples with a mean CNR below the threshold are
closer to being statistically stationary. Thus, only the CNR 10 min samples whose 10 min mean
value was below 0.79 dB are selected for the spectral estimation, and the spectrum is obtained
by calculating the sample mean spectrum from all the low CNR intervals. The rectangular
windows (size of 512 data points) are applied to each 10 min CNR sample. Before applying
the Fourier transform, the mean values are first removed from the signals, and outliers (five
times larger than the mean CNR) are removed and replaced using zero padding. As mentioned
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earlier, the lidar measurement is considered unavailable when the CNR value is below a certain
threshold (0.79 dB for the used lidar). The reason for analyzing the spectra using low CNR
samples is to emphasize scenarios with low CNRs because those with high mean CNRs are
unlikely to result in unavailable data.

Figure 6.5: 10min mean CNRs of beam 1 from the Molas NL200 lidar.

The spectra estimation results are shown by Figure 6.6, where the dashed lines show the spectra
estimated from the data from the four lidar beams (range gate at x = 190 m). Additionally,
an empirical model is proposed to fit the spectrum based on the measurement. The empirical
model is expressed as

SCNR(f) = ac(1− 10−dcf )−1 + ec (6.3)

with three empirical parameters: ac, dc and ec. The model is fitted to the estimated spectrum
using the least-squares fit. A detailed description of the CNR sources is provided by [38],
which implies that the higher frequency components of the CNR are related to the instrument,
whereas the lower frequency parts are related to the atmospheric conditions. As shown in
Figure 6.6, the spectra transited to the white noise spectrum (constant over frequencies) after
0.1 Hz. After 0.1 Hz, the spectra were more contributed by the noise caused by the physical
characteristics of optical and electrical instruments. The proposed spectral model shows good
agreement with the spectra estimated using the lidar CNR data.
The coherences of CNRs from the four beams are also compared, as plotted in Figure 6.7. The
other pairs exhibited weak correlations in the analyzed frequency range, except for beams 1
and 2 measured at the same higher height above the ground, which have some correlations in
the lower frequency range.
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Figure 6.6: CNR spectra estimated using measurements (range gate at x =190 m) and fitted using
the spectral models.

Figure 6.7: The CNR coherence of different beams (gate 190m) using low mean CNR samples.
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To verify the proposed spectral model, the CNR time series are generated by applying the
IFFT to the spectrum. After the fluctuation part of the time series is generated, the mean
value is added, and the same CNR threshold as the lidar manufacturer is used to distinguish
availability. Because the spectral model has a high degree of similarity with that of white noise,
a white noise spectrum with a constant value of 0.023 dB2Hz−1 is also used to simulate the CNR
time series for comparison. The scatter plots of the 10 min availability and the 10 min mean
CNR from beams 1 and 2 are shown in Figure 6.8. We can observe that the proposed spectral
model results in very good agreement compared with the measurement data. Additionally, the
CNR simulated using a white noise spectrum also has a good agreement with the data. Only
a small difference is observed between the results of the spectral model and the white noise
spectrum.

Figure 6.8: Comparisons of measurement availability simulated using spectral models and calculated
from measurement. The measurement data from the range gate at x =190 m are plotted.

6.4.3 Data Availability Implementation in OpenFAST

Because lidar data availability can be site- or lidar- specific, simulating the data availability
externally (not within OpenFAST) would be more flexible. Therefore, the data availability
module is implemented to read external files that contain the data availability time series. In
addition to the time series, the sampling time, total time, and number of lidar measurement
positions are required in the file. The information listed above is read into OpenFAST, and
a check for suitability with the lidar simulation configuration is performed, e.g., the LidarSim
module will check if the number of measurement positions is correct or if the time series have
the correct time length.
At each simulated lidar measurement, the availability of the specific measured position is
checked. If the availability is true, the normal LOS speed will be simulated. Otherwise, the
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LOS speed will be returned as an error value of -99, which is a distinguishable number for the
lidar data processing, and it does not require additional allocation of variables in OpenFAST.

6.5 Assessment of Lidar Preview Quality with the Updated Lidar Simu-
lator

This section introduces a lidar data processing algorithm responsible for processing LOS speed
simulation from the updated lidar simulator. Subsequently, different simulations, aiming to
assess the impact of the new features on the lidar wind preview quality, are presented.

6.5.1 Lidar Data Processing Algorithm

In Equation 5.7, the lidar-estimated REWS is calculated by averaging the LOS speed from
different positions that are measured simultaneously. In practice, both CW and pulsed lidar
systems are designed to perform measurements sequentially, so that the measurements are not
synchronized. In other words, they are not sampled at the same time. In addition, owing to the
blade blockage and availability related to low CNR values, the measurement at one position
is not always available. Thus, a lidar data processing algorithm is necessary to estimate the
lidar-based REWS in real time from the available measurements.
Owing to the multi-distance measurements of a pulsed lidar system, the measurements from
different range gates arrive at the rotor plane at different times. Similar to the study in [6],
data buffers are necessary for the lidar data processing algorithm to record the measurements.
First, a LOS speed data buffer is designed to be a two-dimensional data array. The first size
is equal to the number of measurement positions. The second size is related to time, and it
should be sufficiently large to store the maximum possible amount of data. The second size
can be determined based on the lidar beam sampling time, the furthest measurement position,
and the mean wind speed; for instance, a lidar that has the furthest measurement position at
200 m and the mean wind speed is 20 ms−1. The leading time of the furthest measurement
can be estimated as 10 s, assuming the turbulence field propagates by the mean wind speed.
Considering the sampling frequency to be 4 Hz, the second size must be at least 400 to store
the LOS speed data. In addition to the LOS speed data buffer for storing LOS speed, another
time data buffer with an identical size to the LOS speed data buffer is required to store the
time of the LOS speed measurements.
At a certain time, if successful new measurement data is available for one position, the LOS
speed measurement is recorded in the LOS speed data buffer. The leading time of the LOS
speed measurement is added to the current time and then recorded to the time data buffer.
Otherwise, when the data is not available owing to blade blockage or low CNR, the LOS speed
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and time data buffers are updated as an error value, such as the -99 mentioned earlier. For
each time, the processed uLL will be calculated only with suitable LOS speed data from the
LOS speed buffer. The LOS speed data is suitable only if

(a) the LOS speed is not recorded as an error value;

(b) the current leading time of the LOS speed measurement reaches the leading time of the
first measurement plane (the nearest range gate).

The second criterion ensures that the multi-distance LOS speed measurements are shifted to
the nearest measurement distance. Note that the sufficiency of leading time should be checked
for a certain mean wind speed, as illustrated in Figure 5.11.

6.5.2 Simulation Setup

The extended Mann turbulence model [91] is considered as the turbulent wind input. The
turbulence is assumed to have a reference wind speed of 16 ms−1 and a reference turbulence
intensity corresponding to the IEC class 1A [12]. The neutral turbulence parameters listed in
Table 5.1 are considered. The impact of turbulence evolution on the lidar preview quality of the
four-beam lidar is analyzed as follows. First, the turbulence evolution is considered, and the
4-D turbulence field is generated using the 4-D Mann Turbulence Generator [20]. Subsequently,
Taylor’s frozen theory [2] is considered, with which the rotor plane turbulence field is also used
to simulate the lidar LOS speed measurements, but with temporal shifts.
In all the simulations, the lidar is assumed to have the trajectory shown in Table 5.3 and be
installed on the nacelle of the NREL 5.0 MW reference turbine [75]. The 10 measurement
range gates are considered to estimate the lidar-based REWS. Because the mean wind speed of
16 ms−1 is considered in the simulations, the leading time of the nearest range gate 1 is larger
than the required leading time, so all the range gates can be utilized.
To study the impact of availability on lidar wind preview quality, we select a low CNR duration
based on the measurement campaign introduced in Section 6.4.1. The 10 min mean CNRs of all
the lidar measurement positions are shown in Figure 6.9. In the selected duration (the second
trough in Figure 6.5), the overall mean CNR values were much lower than most of the rest
periods. However, Figure 6.9 shows that the focus distances between 80 and 100 m had the
highest mean CNR, and the mean CNR decreases as the measurement distance increases.
To generate the data availability time series, we select the mean CNR values based on Figure 6.9.
For each lidar measured position, the CNR time series is generated using both the spectral model
and white noise spectrum (see Section 6.4.2 for the method); subsequently, the threshold of
0.79 dB is applied to obtain the availability time series. As discussed in Section 6.4.2, the CNR
values of different lidar measurement positions exhibit weak coherence. Thus, the simulated
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Figure 6.9: The 10min mean CNRs of all the lidar measurement positions from a low CNR duration.

CNR time series for different positions are assumed to be statically independent. In addition,
the CNR time series is assumed to be independent of the turbulence time series.
For each setup, 12 simulations with different random seed numbers for the turbulence and CNR
time series are performed.

6.5.3 Results and Discussions

Comparisons of coherence γ2
RL and optimal transfer function GRL under different simulation

scenarios are shown in Figure 6.10. In (a) and (c), the coherence and GRL values for the frozen
turbulence fields and evolving turbulence fields are compared. For the considered lidar, turbine,
and Mann turbulence model, the frozen turbulence only slightly overestimates the coherence
and GRL values with neutral turbulence parameters. Similar observations were found by [20].
The reason can be that the limited measuring positions are dominant in determining the wind
preview quality for the four-beam lidar configuration. In [20], a lidar that can scan the LOS
wind speed over a rotor plane in front of the turbine was analyzed. If the lidar can perform
such dense measurements, the overestimation of the lidar wind preview quality with frozen
turbulence becomes severe. As for the Kaimal model-based analysis performed by [91], the
coherence was observed to be overestimated using the Kaimal model and assuming the frozen
theory. Once the turbulence evolution is included using the direct product method, the lidar
wind preview quality clearly decreases according to the longitudinal coherence decay constant.
Figure 6.10 (b) and (e) show the impact of blade blockage on the lidar wind preview quality. By
comparing the coherence and GRL with and without the blade blockage effect, we observe that
the preview quality decreases only slightly. The decrement in the MCB and cutoff frequency
caused by the blade blockage effect were within 0.005 Hz .
Figure 6.10 (c) and (f) show the impact of low CNR events. Here, the measurement unavail-
ability owing to low CNR is simulated using both the spectral model and white noise spectrum.
The resulting coherence and GRL are similar using the two spectra. Moreover, including the low
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CNR events provides similar results compared with considering only the evolution and blade
blockage. This indicates that the considered low CNR event does not have a significant impact
on the wind preview quality of the selected lidar and turbine. From Figures 6.8 and 6.9, we can
conclude that only the range gates with x distance larger than 150 m are likely to have unavail-
able data. The nearer range gates have overall higher mean CNR values, therefore ensuring
that most of the LOS speed measurements are available. For the four-beam lidar and NREL
5.0 MW turbine, losing the LOS speed measurements at these far-range gates has a negligible
impact on the lidar wind preview quality.

Figure 6.10: Comparisons of lidar-rotor coherence γ2
RL and optimal transfer functions under different

simulation setups. “theo.” denotes the theoretical values and “sim.” denotes the estimated values from
simulations. “blade” means that the blade blockage phenomenon is considered.

6.6 Chapter Summary and Outlook
This chapter describes the incorporation of three new features, namely the evolving turbulence,
blade blockage effect, and adjustable data availability, into the existing OpenFAST lidar sim-
ulator to make it more realistic. These new features support the performance of simulations
when these phenomena are of special interest, for example, for the certification of lidar-assisted
wind turbine control.
The wind evolution module is updated in OpenFAST, which can be easily interacted with
an existing open-source 4-D turbulence generation tool, the evoTurb or 4-D Mann Turbulence
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Generator. An additional file with an extension of “.evo” is required to include the turbulence
evolution when simulating lidar measurements. The “.evo” file records the upstream turbulence
time series at different y-z planes.
For the blade blockage effect, an easy and robust algorithm relying on ray-triangle intersection
detection is deployed. The geometry of each blade section is approximated using two triangles,
and the blockage is determined by checking whether the lidar beam intersects with any of the
two triangles. The two triangles are composed of by two leading edge points and two trail edge
points of the blade section. The algorithm was tested and verified to be reasonable through
OpenFAST simulations.
A data availability module has been developed in OpenFAST to read in availability time series.
A statistical spectral analysis for lidar CNR values is conducted using actual lidar measure-
ments. Based on the investigation, we can conclude that the low data availability event can be
simulated using a white noise spectrum. The lidar-rotor coherence and optimal transfer func-
tion are analyzed using the updated lidar simulator. For the four-beam lidar and the NREL
5.0 MW wind turbine, we observe that the frozen turbulence only slightly overestimates the
lidar wind preview quality. The impact of the blade blockage is also considerably small because
the reductions in the MCB and the cutoff frequency are within 0.005 Hz. Using the observed
low CNR duration from the measurement campaign, we observe that only the measurements
at range gates further than x = 150 m tend to have unavailable data. Moreover, the low CNR
event does not additionally influence the lidar wind preview quality.
In this study, the lidar measurement campaign was conducted on the ground. In the future, the
statistical analysis of the CNR signals can be performed for a nacelle-mounted lidar. It would
also be interesting to investigate the preview quality for other lidar and turbine configurations
using a realistic lidar simulation environment. During the measurement campaign that lasted
for two months, no extreme abnormal weather, such as snowing, frog, and heavy rain occurred.
The CNR or lidar measurement availability during such extreme weather conditions can also
be further investigated.





7
Evaluation of Lidar-assisted Control

As described in the previous chapters, the lidar wind preview for turbine control is investigated.
A more realistic lidar simulation module is implemented in the aeroelastic simulation code
OpenFAST (version 3.0). In this chapter, the benefits of LAC are evaluated using the updated
lidar-integrated aeroelastic code.
When evaluating the benefits of LAC, reference [6] used the Kaimal model with the turbulence
spectral parameters provided by the IEC 61400-1 standard [6] through aeroelastic simulations
using FAST (the previous version of OpenFAST). With a circular scanning lidar and NREL
5.0 MW turbine, LAC was observed to cause an apparent reduction in the lifetime damage
equivalent load (DEL) in the tower base fore-aft bending moment, low-speed shaft torque, and
blade root out-of-plane bending moment. However, the variations in turbulence parameters
were not considered.
The variation in turbulence parameters from the standard value given in [12] can be interesting
for wind energy. Turbulence parameters under different atmospheric stability conditions are
investigated and summarized in Chapter 5. Larger coherent eddy structures are more likely
to be observed in an unstable atmosphere, whereas the eddy structure is much smaller under
a stable condition. In the neutral scenario, the eddy structure is between the two scenarios.
The length scale can have an impact on the power spectrum and turbulence spatial coherence.
Because the turbulence spectral peaks can be distributed at different frequency ranges, the
different frequencies can produce different excitations for the turbine’s structural motions. In
this chapter, three classes of atmospheric stability are considered to evaluate LAC benefits:
unstable, neutral, and stable. For each atmospheric stability class, both the Mann and Kaimal
models are used, and the corresponding 4-D stochastic turbulence fields are generated. The
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benefits of LAC are then assessed using a typical four-beam commercial lidar configuration and
the NREL 5.0 MW turbine. The simulation results using LAC are compared with those using
the traditional FB-only controller. ROSCO is considered the reference FB-only controller.
This chapter is based mainly on the publication [105].

7.1 Simulation Setups

This section describes the simulation configurations for evaluating LAC in the aeroelastic tool.

7.1.1 Lidar Simulation

Based on Chapter 6, OpenFAST (version 3.0) was modified to update the lidar simulation
module [91], and this new version of the lidar simulation module is used for the simulations
described in this chapter. The lidar probe volume, the turbulence evolution (lidar measures
at the upstream wind field), the LOS speed contributed by the nacelle motion, and the lidar
beam blockage by the turbine blade are all considered when simulating lidar LOS speed mea-
surements. A sample OpenFAST input file for the lidar module can be accessed using the
repositories provided in Appendix A.3. Additionally, if the lidar beams are not blocked, full
lidar measurement availability is assumed, meaning that the low CNR event is not considered
in the simulation. Based on the discussions in Chapter 6, a typical low CNR duration does not
have a significant impact on the wind preview quality for the NREL 5.0 MW turbine using a
four-beam pulsed lidar.

7.1.2 Turbulence Simulation

A 4-D stochastic turbulence field is required to include the turbulence evolution for the aeroe-
lastic simulation. The newly developed 4-D Mann Turbulence Generator [20] and evoTurb [59]
are used to generate the Mann model- and Kaimal model-based 4-D turbulence fields, respec-
tively. The turbulence parameters representative of the three atmospheric stability classes are
used (see Table 5.1 in Section 5.1).
For the 4-D Mann Turbulence Generator, because the generated turbulence contains only the
fluctuation part of the velocity components, the mean field is added (only for the u component)
considering a power law shear profile with a shear exponent of 0.2. Each 4-D turbulence field
has a size of 4096 × 11 × 64 × 64 grid points, corresponding to the time and the x, y, and z

directions. The lengths in the y and z directions are selected to be both 310 m, which are much
larger than the rotor size. The reason for choosing these sizes is to avoid the periodicity of the
turbulence field in the y and z directions [35], which causes incorrect spatial coherence.
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For the Kaimal model-based 4-D wind field, evoTurb is used, which calls TurbSim [75] to gen-
erate statistically independent 3-D turbulence fields and then composites 4-D turbulence with
the exponential longitudinal coherence model discussed in Section 4.1.2. Only the coherence of
the u component is considered. The other velocity components are assumed to be not corre-
lated (not realistic but widely used in engineering design). Each turbulence field has a size of
4096× 11× 31× 31 grid points, corresponding to the time and the x, y, and z directions. The
lengths in the y and z directions are both 150 m.
For both types of 4-D turbulence field, hub-height mean wind speeds ranging from 12 to 24 ms−1

are considered. The positions in the x direction contain both the rotor plane position and the
lidar range gate positions (see Table 5.3). Taylor’s [2] frozen theory is applied within the probe
volume, which has been shown to not influence the lidar measurement spectral properties [59].
For example, the lidar measurement gate at x = 50 m is calculated using the y-z plane wind
field at x = 50 m, which is further shifted using Taylor’s frozen theory to calculate the LOS
speed distribution within the probe volume. The time length of each field is 2048 s which is
close to a 30 min simulation. For each stability class and mean wind speed, 12 turbulence fields
were generated with 12 different random seed numbers. Each simulation is executed for 30 min.

7.1.3 Turbine Configurations

For each turbulent wind field, the OpenFAST simulation is executed with the following con-
figurations: (a) FB-only control using ROSCO, (b) FFFB control by activating LAC. Both
controllers are discussed in Section 2.3.3. All the DOFs for a fixed-bottom turbine except for
the yawing are activated. For each simulation result, the initial 50 s of the simulated time series
containing the initialization are ignored.
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7.2 Results and Discussions
This section presents and discusses the simulation results.

7.2.1 Time Series

Figure 7.1 takes one simulation using 4-D Mann turbulence with the neutral stability condition
as an example to show the time series.
Panel (a) compares the REWS estimated using the lidar data processing algorithm with that
estimated using the extended Kalman filter (EKF) [106] implemented in ROSCO. The lidar-
estimated REWS was shifted according to the time buffer by the FFP module to ensure that
it does not exhibit any time lag in the plot. The lidar-estimated REWS exhibits good agree-
ment with that estimated using the EKF. Some additional fluctuations with higher frequencies
appeared in the time series of the EKF-based REWS. This can be attributed to the EKF in
ROSCO using only one DOF model containing the rotor rotational motion to predict the ef-
fective wind. Therefore, all the other structural motions affecting the rotor speed, such as the
tower fore-aft motion, can be “mistakenly” estimated as wind speed.
Panel (b) shows that the rotor speed fluctuates significantly less using FFFB control compared
with using FB-only control. Additionally, the peak values with FFFB control were less severe.
The tower fore-aft bending moments are compared in panel (c), which shows that the tower
bending moment (MyT) generally fluctuates less through FFFB control. Furthermore, the
blade root out-of-plane bending moment (My,root) is shown in panel (d). We observe that the
FFFB slightly reduces the fluctuation compared with the FB-only control. The low-speed shaft
torques (MLSS) are compared in panel (e), which clearly shows that the fluctuation with FFFB
control is slightly lower than that with FB-only control.
Panel (f) depicts the pitch action between the two control strategies. The pitch angle in the
FFFB control generally leads the one by the FB-only control in time, as expected. The pitch
angle trajectory was overall similar between the FFFB and FB-only controls.
Finally, the generator power is shown in panel (g), where a much lower power fluctuation is
observed in FFFB control. Because the power fluctuation is highly coupled with the rotor speed
fluctuation, less fluctuating power can be expected from the lower rotor speed fluctuation in
FFFB control.
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Figure 7.1: Time series collected from the OpenFAST simulation. A scenario with Mann model and
neutral stability parameters is shown. Note that the same 3-D wind field (y, z, t) was applied to the
rotor when performing simulations with the FFFB and FB-only controls, simulated with a mean wind

speed of 16 ms−1. EKF: extended Kalman filter. Source: [105].
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7.2.2 Spectral Analysis

The spectra are estimated from the collected time series using Welch’s method [80]. The spectra
are averaged using different samples corresponding to the simulated results using different
random seed numbers.

Figure 7.2: Auto-spectra of REWS. “theo.”: theoretical spectra using the models discussed in Sec-
tion 5.2.1, i.e., Equations (5.5) and (5.6). “sim.”: spectra estimated from the time series of the
turbulent wind fields in OpenFAST simulations using Welch’s method [80]. (a) to (c): the results with
a mean wind speed of 16 ms−1. (d) to (f): the results with a mean wind speed of 22 ms−1. Source:

[105].

Before comparing the spectra of output variables from OpenFAST, the spectra of the REWS
from the input turbulent wind fields are first compared in Figure 7.2. Here, the simulated
REWS is calculated by averaging the u components within the rotor-swept area from the
discrete turbulent wind field. Figure 7.2 shows that the simulated spectra follow the theoretical
ones, which validate the turbulence simulation. Section 5.1 describes the fitting of the single-
point u component spectrum using the two models. Additionally, the y-z plane coherence is
fitted using a single separation. Here, the REWS spectra from two models exhibit a similar
trend in different atmospheric stability classes. In the unstable scenario, the RWES spectrum
does not decrease significantly compared with the single point u spectrum, and the spectrum
peak appears at a lower frequency because the turbulence field has more large-scale coherent
eddy structures (Figure 5.1). In the stable scenario, everything is opposite to the unstable
scenario, where the REWS spectrum is much lower than the single-point u spectrum because
of the low-level coherence and spatial filtering effect of the rotor. In addition, the neutral
stability exhibits a medium spatial filtering effect, and the spectrum peak is between that of
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unstable and stable conditions. By comparing the panels in Figure 7.2 vertically, where the only
difference is the mean wind speed, we observe that a higher mean wind speed results in higher
spectra, and the spectra are shifted to the right-hand high-frequency side. The shifting of the
spectral peaks is caused by the fact that turbulence fields transport faster by a higher mean
wind speed. For each stability class, the Kaimal model-derived REWS generally has a higher
spectrum compared to that derived by the Mann model. This can be caused by the fact that
the y-z plane coherence of the Mann model is more complicated than the exponential coherence
model used in the Kaimal model. Fitting the coherence using one separation is insufficient to
represent all possible separations.
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Figures 7.3 and 7.4 compare the auto-spectra of some of the most interesting output variables
using FB-only and FFFB controls. Figures 7.3 and 7.4 show the results using the Mann and
Kaimal models, respectively.
Panels (a), (b), and (c) compare the rotor speed spectra of FFFB control and FB-only control
under three stability classes. The FFFB control generally reduces the rotor speed spectrum in
the frequency range of 0.01 to 0.1 Hz. Additionally, the spectra using the Mann and Kaimal
models exhibit some differences, which can be summarized as higher spectra in the rotor motion
with the Kaimal model than the Mann model. The observation here agrees with the trends in
the REWS spectra (Figure 7.2). Generally, the spectra of the Mann and Kaimal models have
similar shapes.
Comparisons of tower fore-aft bending moments are shown in panels (d), (e), and (f). In neutral
and stable stability scenarios, the main benefit introduced by FFFB control is the decrement
in the frequency range from 0.01 to 0.2 Hz, which is expected because the lidar-rotor transfer
function reaches zero at 0.2 Hz. Below 0.01 Hz, the differences between FB-only and FFFB
controls are small because the tower fore-aft mode is naturally and effectively damped in this
frequency range.
Panels (g), (h), and (i) show the blade root out-of-plane moment of blade 1. The decrease
in the blade root out-of-plane moment is not very clear in the plots because the spectrum is
primarily composited by the excitation at 1p frequency.
The low-speed shaft torques are compared in panels (j), (k), and (l). The use of FFFB control
offers some benefits in the frequency range of 0.01 to 0.1 Hz, which is similar to the reduction
range of the rotor speed.
Overall, the relative reductions in the spectra from the use of LAC primarily lie in the frequency
range in which the lidar-rotor transfer function is above zero. For very low-frequency ranges,
the turbine motions are naturally damped; thus, no benefits are gained by adding the blade
pitch feedforward signal. Based on the spectral analysis, we observe reductions primarily in
rotor speed, part in the tower base fore-aft bending moment, and slightly in low-speed shaft
torque. Additionally, the reductions are observed for both turbulence models in three different
atmospheric stability classes.
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Figure 7.3: Spectra estimated from OpenFAST output time series, using the Mann model. The
results with a mean wind speed of 16 ms−1 are shown. Note that the y axis of the blade root bending

moment is set to a logarithmic scale for better readability. Source: [105].

Figure 7.4: Spectra estimated from OpenFAST output time series, using the Kaimal model. The
results with a mean wind speed of 16 ms−1 are shown. Note that the y axis of the blade root bending

moment is set to a logarithmic scale for better readability. Source: [105].
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7.2.3 Simulation Statistic

To further assess the benefits of LAC, we calculate the DEL using the rain flow counting
method [107] with 2 ×106 as a reference number of cycles and a lifetime of 20 years. A Wöhler
exponent of 4 is used for the tower base fore-aft bending moment and the low-speed shaft
torque. A Wöhler exponent of 10 is used for the blade root out-of-plane bending moment.
The averaged DEL is calculated from the results with different random seed numbers for the
turbulence fields. The overall statistics are shown in Figures 7.5 and 7.6. For rotor speed,
pitch rate, and electrical power (Pel) signals, the standard deviation (STD) obtained by each
simulation sample is calculated, and then the mean value is calculated from all samples. We use
the standard deviation of pitch rate (rotational speed) to evaluate the impact of FFFB control
on the pitch actuator because pitch rate causes damping torque in the pitch gear and is related
to the friction torque of the pitch bearing [108, 109]. The STD of pitch rate was also used by
other studies, e.g., references [110] and [111], to evaluate the damage to the pitch actuator, .

Mann Model-based Results

Figure 7.5 compares the DEL, STD, and energy production (EP) results using the Mann model.
The difference between FB-only and FFFB controls is plotted by the gray lines. Here the
difference is indicated using the relative reduction defined in the figure caption. Overall, the
difference between FB-only and FFFB controls becomes apparent when the mean wind speed
is higher than 16 ms−1.
Significant overall reductions in the tower base fore-aft bending moment DEL are observed in
all the investigated atmospheric stability classes. The largest reduction is 16.7% at a mean
wind speed of 22 ms−1 and under an unstable atmosphere. In the unstable scenario, before a
mean wind speed of 22 ms−1, it can be seen that the reduction is clearer at higher wind speeds.
In contrast, the reduction is larger at 16 ms−1 and 18 ms−1 under the stable scenario (about 7.5
to 8.8%). For the neutral scenario, the benefit is the greatest at 18 ms−1 (13.4%). However,
with mean wind speeds below 14 ms−1 and in the unstable and neutral scenarios, the FFFB
benefits become marginal. This can be caused by the fact that there are higher possibilities for
the REWS to pass the wind speed range (below 14 ms−1) where the pitch feedforward control
is inactivated. The intention to deactivate feedforward pitch control is to avoid the thrust force
being changed significantly close to the rated wind speed, as discussed in Section 2.3.3.
For the low-speed shaft torque, the DEL decreases by approximately 4.0% under the unstable
scenario and at a higher wind speed (above 18 ms−1). In comparison, the reductions under
neutral and stable scenarios are approximately 1.5 to 3.3% and 1.4 to 2.3%, respectively.
The DEL of the blade root out-of-plane bending moment is reduced by introducing LAC. More
benefits (approximately 2.7 to 6.0%) are observed under the unstable stability class. In the
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neutral stability, the reduction is better at 20 ms−1, reaching 4.3%, and it drops to 2.5% at
higher wind speeds. As for the stable atmosphere, the reduction is more observable (around
3.0%) at wind speeds ranging from 16 ms−1 to 20 ms−1.
The STD of the rotor speed is observed to decrease significantly under FFFB control. The
reductions are more than 20% and up to 40%. Additionally, it can be seen that the reductions
are more significant under higher mean wind speeds, which is similar in all three atmosphere
stability classes.
The introduction of the FF pitch also generally reduces the pitch rate θ̇. The STD of pitch rate
decreases approximately by 2.0 to 6.1% from 14 to 20 ms−1 under the three stability scenarios.
The reduction stops at the mean wind speed of 24 ms−1 for unstable and neutral scenarios. In
a stable atmosphere, with a mean wind speed higher or equal to 22 ms−1, the FFFB control
has a higher STD of pitch rate than the FB-only control.
Through the use of FFFB control, the electrical power STD is obviously reduced by about
16.0% in unstable case for wind speeds above 18 ms−1, by about 17.0% in neutral scenario for
wind speeds above 16 ms−1, and by 13.0% in stable scenario for wind speeds above 14 ms−1.
In all stability scenarios and mean wind speeds, the electricity production is similar whether
LAC is used or not, as indicated by the small numbers of relative reduction.

Figure 7.5: Comparisons of DEL (MyT, MLSS, My,root), STD (Ωr, θ̇, Pel), and EP, simulated using
the Mann model. Note that the value of the relative reduction are reflected on the right right-hand
side of the y axis. Relative reduction: the results using FB-only are extracted by the results using

FFFB and then divided by the results of FB-only. Source: [105].
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Kaimal Model-based Results

The results using the Kaimal model are shown in Figure 7.6. Generally, under different stability
classes and mean wind speeds, the statistics exhibit a similar trend as the results obtained using
the Mann model. However, the values have some differences.
In terms of tower base fore-aft bending moment, the DEL decreases by approximately 10.4%
to 13.4% with a mean wind speed of 18 to 22 ms−1 under the unstable and neutral scenarios.
In the stable scenario, the reduction is close to 11.5% with a mean wind speed of 16 ms−1 and
it decreases with higher mean wind speeds.
The results of low-speed shaft DEL show similar trends to those of the Mann model. On
average, for wind speeds above 16 ms−1, the shaft load is reduced by around 2.3%, 1.9%, and
1.7%, under unstable, neutral, and stable stability classes, respectively.
Generally, the reduction in the blade root DEL simulated using the Kaimal model is similar to
that based on the Mann model. On average, the blade root DEL decreases by approximately
4.1%, 3.0%, and 3.0%, under the three investigated stability classes, respectively.
The STD of rotor speed is observed to decrease significantly under FFFB control. The reduc-
tions are more than 15% and are up to 30%. The trend is similar to the Mann model-based
result, but the decrement is lower.
The pitch actions are also observed to decrease when using FFFB control. At mean wind
speeds from 16 ms−1 to 20 ms−1, the reductions in pitch rate STD are about 3.0% to 3.5% under
unstable and neutral stability classes, respectively, and they become less at other mean wind
speeds. For the stable case, the reduction is higher at 16 ms−1, reaching 6.2%, but decreases
rapidly as the mean wind speed increases. For very high mean wind speeds above 22 ms−1, the
pitch rate STD is increased using LAC.
Because the variation in electrical power is highly linked to the rotor speed, the reductions in
the STD of power are approximately 10.0%, 13.0%, and 11.0%, under the three investigated
stability classes, respectively. These values are smaller than those observed using the Mann
model.
Again, the electricity productions are similar, whether LAC was used or not, in all stability
scenarios and mean wind speeds.
Generally, for the NREL 5.0 MW turbine, the benefits of LAC in load reduction by a four-beam
lidar are clear. However, we also demonstrate that some uncertainties and differences occur
when assessing LAC using different IEC turbulence models. Among the compared turbine
loads, LAC has the most significant load reduction effect in the tower base fore-aft bending
moment. Considerable reductions in speed and power variations also occur. Slight reductions
are observed for the blade and shaft loads. In addition, the reductions in blade pitch rate
are observed in most of the mean wind speed ranges, which have the potential to alleviate
damage to the pitch bearings and gears. The generation of electrical power is not affected by
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Figure 7.6: Comparisons of DEL (MyT, MLSS, My,root), STD (Ωr, θ̇, Pel), and EP, simulated using
the Kaimal model. Note that the value of the relative reduction are reflected by the right-hand side
of the y axis. Relative reduction: the results using FB-only are extracted by the results using FFFB

and then divided by the results of FB-only. Source: [105].

introducing LAC.
The load reductions also exhibit differences under different turbulence parameters, represented
by different atmosphere stability classes. For different stability conditions but the same mean
wind speed, we observe that the LAC benefits for the load reductions are overall highest in
unstable stability, medium in neutral stability, and lowest in stable stability. The reason could
be the differences in turbulence length scales. The turbulence length scale is lower under the
stable scenario, which means that the peak of the turbulence spectrum appears at a higher
wavenumber/frequency (based on the conversion f = k1Uref/2π, as shown by Figure 7.2). The
turbine’s structural loads are mainly excited by frequencies above 0.1 Hz, e.g., the tower natural
frequency, the shaft natural frequency (above 1.0 Hz), the 1p frequency, and the 3p frequency.
If the turbulence spectrum has a higher peak frequency, the loads will be more dominated by
the higher frequency parts due to the higher excitation of the turbine’s natural vibration modes.
Then, the LAC benefits become less significant because LAC mainly reduces the loads below
0.1 Hz (for the lidar and turbine we used). When different mean wind speeds are considered, a
higher mean wind speed shifts the spectral peak-frequency to a higher value (see Figure 7.2));
thus, the LAC benefits become less. For the stable condition, the spectral peak frequency is
naturally high due to the smaller turbulence length scale, so that the LAC benefits are more
sensitive to changes in the mean wind speed. For unstable and neutral cases, the spectral peak
frequency is naturally lower than that in the stable condition, thus the LAC benefits do not
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decrease as fast as those in the stable scenario.

7.3 Chapter Summary and Outlook
This chapter evaluates lidar-assisted wind turbine control under various turbulence character-
istics using a four-beam lidar and the NREL 5.0 MW reference turbine.
The benefits of LAC are evaluated using both the Mann model and Kaimal model-based 4D
turbulence. Simulations are performed for the mean wind speed level from 12 to 24 ms−1. The
results simulated using the Mann model-based turbulence indicate that using LAC significantly
reduces the variations in rotor speed and electrical power. Among the three investigated sta-
bility classes and above the mean wind speed of 16 ms−1, the load reductions for the tower base
fore-aft bending moment, blade root out-of-plane bending moment, and low-speed shaft torque
are observed to be approximately 3.0% to 16.7%, 1.5% to 6.0%, and 1.7% to 5.0%, respectively.
The greatest potential of LAC in load reduction is observed in the tower base fore-aft bending
load, and the benefits were observed to vary by turbulence spectral properties and mean wind
speeds. The results simulated using the Kaimal model-based turbulence also indicate that
LAC clearly reduces the variation in rotor speed and electrical power. The load reduction of
the tower base fore-aft bending moment is observed in all stability classes for wind speeds above
16 ms−1, and it varies from 3.6% to 13.4%. The load reduction for the blade root out-of-plane
bending moment is between 1.6% and 4.5%, and for the low-speed shaft torque, it is between
1.6% and 2.5%. In addition, with the use of LAC, for both turbulence models, the standard
deviation of pitch rate is observed to be reduced (up to 6%,) for most of the mean wind speed
ranges (below 20 ms−1) and for all stability classes. The pitch rate STD reduction can bring
potential load alleviation for the pitch bearing and gear. Overall, we observe that the LAC
benefits with the Kaimal model are slightly different from the results using the Mann model.
The LAC benefits simulated using the Kaimal model are generally less than those simulated
using the Mann model.
Overall, this chapter shows that the mean wind speed, turbulence spectrum, coherence, and
the used turbulence models all have certain impacts on the results of evaluating LAC. In
the future, it is recommended to assess the benefits of lidar-assisted control depending on
site-specific turbulence characteristics and statistics. Additionally, the uncertainties of using
different turbulence models should be considered when performing fatigue load analysis using
aeroelastic simulations. Furthermore, some improvements can be made to the lidar-assisted
pitch feedforward control. The activation algorithm of the feedforward pitch in the transition
range between the below-rated and above-rated operations should be further improved. The
weighting of feedforward and feedback is considered to be both 50%. The different weightings
can be considered, which might improve the overall LAC benefits [23].



8
Conclusions and Recommendations

This final chapter first concludes the research outcomes of this Ph.D. project in Section 8.1 and
discusses recommendations for further research in Section 8.2. Finally, the main contributions
of this project are listed in Section 8.3.

8.1 Conclusions
In this thesis, the main focus has been on (a) studying the turbulence evolution phenomenon,
(b) investigating lidar wind preview for turbine control under various external conditions, and
(c) evaluating lidar-assisted pitch feedforward control under various turbulence characteristics.
The following are the conclusions for these three objectives.

8.1.1 Turbulence Evolution Phenomenon

First, the turbulence evolution phenomenon is studied using an empirical exponential longitu-
dinal coherence model. Through a validation using a pulsed lidar measurement, we observed
that the exponential longitudinal coherence model can accurately predict the actual longitudi-
nal coherence for a single separation distance. Some discrepancies appear when one coherence
decay parameter is used for multiple separations in the longitudinal direction.
Second, the eddy lifetime approach is applied to the Mann spectral tensor to develop a space-
time tensor, which can reflect the spatial and temporal coherence for all the velocity compo-
nents. The performance of the space-time tensor is evaluated using lidar measurements. We
observed that the space-time tensor predicts the longitudinal coherence of multiple separations
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better than the exponential longitudinal coherence model.
The exponential longitudinal coherence is included in the Kaimal model to describe the four-
dimensional turbulence field. An assumption that coherence with longitudinal, lateral, and
vertical separations is obtained from the product of longitudinal, lateral, and vertical coherences
is made. This assumption is called the “direct product,” which has both advantages and
disadvantages. The positive aspect is that it allows using a two-step Cholesky method to
efficiently generate the Kaimal model-based four-dimensional turbulence field. In contrast, the
negative aspect is that it tends to underestimate the overall coherence and lidar wind preview
quality. In particular, when optimizing the lidar measurement trajectory for better lidar wind
preview quality, the optimization results are sensitive to the used coherence decay parameter.
Based on the space-time tensor, a method of generating a four-dimensional Mann turbulence
field is proposed. This method assumes a stationary process, meaning that three-dimensional
turbulence fields at different times have the same statistical prosperity governed by the three-
dimensional Mann spectral tensor.
The performance of both the extended Mann and Kaimal models in predicting the spectral
properties of the measurements are evaluated through site measurement. The two models
can reflect the actual auto-spectra of lidar measurements and the coherence between spatially
distributed lidar measurements. Overall, the extended Mann model (space-time tensor) exhibits
better agreement with the data.
The turbulence evolution parameters under different atmospheric stability conditions are also
summarized in this thesis. The longitudinal coherence decreases most significantly in the un-
stable atmosphere and least in the stable atmosphere. The longitudinal coherence in the stable
atmosphere also appears with an apparent intercept, meaning that the coherence does not tend
to 1 when the frequency is very small.

8.1.2 Lidar Wind Preview for Turbine Control

Using the extended Mann and Kaimal models, the lidar wind preview study is mathematically
derived and presented. Analysis shows that the control-oriented lidar wind preview quality
primarily depends on the lidar trajectory, turbulence spectra and coherence, and turbine rotor
size. These analytical models provide solutions to the coherence between the lidar- and turbine-
based rotor effective wind speed and optimal filter transfer function.
Based on a typical four-beam pulsed lidar and medium-sized NREL 5.0 MW wind turbine, the
lidar beam trajectory is optimized to obtain a better lidar-rotor correlation for control. The
optimizations are performed using both the extended Mann and Kaimal models. The results
using the Kaimal model are observed to be sensitive to the turbulence evolution parameters
because of the “direct product” assumption for combined coherence.
The sensitivity of lidar wind preview with respect to the atmosphere stability condition is
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investigated. The turbulence parameters representative of unstable, neutral, and stable atmo-
spheres are selected for the analysis. The resulting lidar-rotor coherence and optimal transfer
functions are observed to be nonsensitive to the three atmospheric stability conditions. This
indicates that the filter design of the lidar-assisted controller is not necessary to be adaptive to
the atmospheric conditions. The models indicate that lidar preview is more coherent with the
rotor-experienced effective wind speed when the mean wind speed increases. A higher cutoff
frequency of the filter can be used in scenarios with higher mean wind speeds.
The impact of upstream turbine wakes on the lidar preview quality of a downstream turbine is
investigated using the engineering model: dynamic wake meandering. The wake adds additional
coherent fluctuations in both the lidar- and turbine-based rotor effective wind speeds. The
upstream wake is observed to have a negligible impact on the lidar wind preview quality of a
downstream turbine under neutral and stable atmospheric conditions. In contrast, downstream
lidar preview quality increases in an unstable atmosphere because of the additional coherent
fluctuations caused by wake meandering.
A realistic lidar simulation module is updated in the aeroelastic code OpenFAST. The updated
lidar module can simulate the turbulence evolution, the blade blockage, and the adjustable lidar
measurement availability. Statistical spectral analysis for lidar carrier-to-noise ratio values is
conducted using actual lidar measurements. Based on the statistical spectral analysis using
lidar data, we can conclude that the low lidar data availability event with a low mean carrier-
to-noise ratio can be simulated using a white noise spectrum. The lidar-rotor coherence and
optimal transfer function are analyzed using the updated lidar simulator. For the four-beam
pulsed lidar and NREL 5.0 MW wind turbine, it is observed that the frozen turbulence only
slightly overestimates the lidar wind preview quality. The effect of blade blockage and low data
availability on the quality of the lidar wind preview is also quite small.

8.1.3 Evaluating of Lidar-assisted Pitch Feedforward Control

The benefits of lidar-assisted control are evaluated using both the Mann model and Kaimal
model-based 4D turbulence fields. The open-source aeroelastic tool OpenFAST integrated
with the updated lidar simulation module is used for the evaluations. The simulations are
performed for the mean wind speed level from 12 to 24 ms−1, using the NREL 5.0 MW reference
wind turbine and a four-beam lidar system. For both turbulence models, the use of lidar-
assisted control clearly reduces the variations in rotor speed and electrical power, and obviously
alleviates the damage equivalent load of the tower fore-aft bending moment. By introducing
pitch feedforward control, the reductions in pitch rate standard deviation are observed in most
of the mean wind speed ranges, which can potentially reduce the damage to the pitch bearing
and gear of the pitch actuator. Furthermore, lidar-assisted control results in slight reductions
in the blade root out-of-plane bending and low-speed shaft torsional loads.
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Overall, the unstable atmosphere has a much wider range of mean wind speeds, where the fore-
aft bending load reduction is significant for the tower base. This range is smaller in the neutral
condition and smallest in the stable condition. In terms of the results of different turbulence
models, we observe that the lidar-assisted control benefits with the Kaimal model are slightly
less than the results using the Mann model.

8.2 Recommendations
This section provides recommendations for future research based on the outcomes of this Ph.D.
project.

8.2.1 Observing Turbulence Spectral Characteristics using Lidar

In Chapter 4, the spectral properties of lidar measurements are derived and used to validate the
extended Mann and Kaimal models. Similar validation studies can be performed on other sites,
particularly for sites with frequently unstable atmosphere. The model evaluation shows that
both the Mann and Kaimal models tend to overestimate the coherence when the separation
distance surpasses the turbulence length scale. With the current trend in which the turbine
rotor is designed to be larger, the turbulence models may not provide a good representation
of the coherence between blade sections with a large spatial separation. In the future, lidar
measurements can be used to further analyze the turbulence coherence across a large turbine
rotor. Additionally, if the coherence is over-predicted by the models, the impact of this incorrect
coherence on the turbine loads should be further studied, preferably through field testing. If the
incorrect coherence has a significant impact on the turbine loads, the nacelle lidar measurement
can be further used to improve the turbulence coherence model.
The study on the coherence of lidar measurements can be further extended to obtain the
coherence between the lidar measurement and velocity components. This can be further used
for constraint turbulence simulation for fatigue or extreme load validation [70, 33]. For example,
one can observe the coherence between lidar line-of-sight speed measurements and sonic velocity
measurements.
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8.2.2 Lidar Wind Preview Quality Investigations

The wind preview quality under freestream turbulence is analyzed using turbulence spectral
models representing the three investigated atmosphere stability classes. We observe that the
lidar wind preview is not very sensitive to atmospheric conditions. In the future, this conclusion
can be further verified, preferably through field testing.
The analysis of wind preview quality under wake conditions can be improved by running higher-
fidelity turbulence modeling approaches such as large eddy simulation or through field testing.
In addition, the wake velocity has an overall lower mean wind speed than the ambient mean
wind speed, and the wake velocity recovers from upstream to downstream. The recovering
process means that the flow accelerates, which can potentially impact the temporal difference
between the lidar-estimated and the rotor-experienced effective wind speeds. The impact of the
induction zone, which causes a lower wind speed region in front of the turbine, is not addressed
in this thesis. Therefore, further research can emphasize studying the impact of wake recovery
and the induction zone.
The statistical analysis of the lidar carrier-to-noise ratio signals is performed using the lidar
measurements conducted on the ground. In the future, the analysis can be further performed
for a nacelle-mounted lidar. During the measurement campaign that lasted for two months, no
extreme abnormal weather, such as snowing, frog, and heavy rain, occurred. The carrier-to-
noise ratio or lidar measurement availability during such extreme weather conditions can also
be further investigated.
Furthermore, an interesting aspect to investigate would be the preview quality for other lidar
and turbine configurations using a realistic lidar simulation environment. For example, the
lidar preview quality can be assessed for turbines with larger rotors and smaller rated rotational
speeds and for lidars with more dense trajectories, e.g., scanning lidars.

8.2.3 Design and Evaluation of Lidar-assisted Control

This thesis shows that the mean wind speed, the turbulence spectrum, coherence, and the used
turbulence models all have certain impacts on the results of evaluating lidar-assisted control.
In the future, we recommend assessing the benefits of lidar-assisted control depending on site-
specific turbulence characteristics and statistics. In addition, the uncertainty of the turbulence
model should be considered when using aeroelastic simulations for load analysis, as we observed
some differences in the results using the Mann and Kaimal models. In the current evaluations,
the turbine yaw misalignment that appears during operation is not considered; this could be
considered in future research.
Moreover, lidar-assisted pitch feedforward control can be improved further. The activation
algorithm of the feedforward pitch in the transition range between the below-rated and above-
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rated operations could be further improved. The weighting of feedforward and feedback is
considered to be both 50%. The different weightings can be considered, which might improve
the overall lidar-assisted benefits [23].

8.3 Main Contributions
This thesis contributes by improving wind preview modeling of lidar systems and evaluating
lidar-assisted wind turbine control using the improved lidar preview modeling. The detailed
contributions are listed below:

(a) The incorporation of the turbulence evolution phenomenon into the two turbulence mod-
els provided by the IEC 61400-1 standard [12]. For the Kaimal model, the longitudinal
coherence is incorporated to have a four-dimensional description of the turbulence field.
An efficient algorithm is proposed to generate four-dimensional turbulence based on the
Kaimal model. For the Mann model, a space-time tensor is developed, which describes
the turbulence evolution through an eddy lifetime concept. For both four-dimensional
turbulence models, open-source turbulence generation methods are developed, which en-
able the simulation of turbulence evolution in aeroelastic simulations. In addition, the
spectral properties of lidar measurements are derived, based on which both models are
evaluated using actual lidar measurements.

(b) The development of a lidar preview quality model using four-dimensional turbulence
models. The preview quality model provides an analytical solution for the control-oriented
filter design for collective pitch feedforward control. This thesis also investigates the lidar
preview quality under various turbulence characteristics and wake conditions.

(c) Updates on a realistic lidar simulation module in the open-source aeroelastic simulation
tool OpenFAST, which considers the turbulence evolution, blade blockage, and adjustable
lidar measurement availability. This thesis presents the statistical properties of the lidar
carrier-to-noise ratio signal and presents methods to generate lidar carrier-to-noise ratio
time series.

(d) Assessing the benefits of lidar-assisted collective pitch feedforward control through aeroe-
lastic simulations considering different turbulence characteristics. These turbulence char-
acteristics are representative of different atmospheric stability classes.
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A.1 Derivation of Veers Method for Turbulence Generation

Consider simulating n stochastic time-domain u component fluctuations in the y-z plane, the
Fourier coefficients at one specific frequency are calculated using the matrix multiplications as

ûyz = AuHu,yzXu,yz, (A.1)

where

Au =


Au,1 0

Au,2
. . .

0 Au,n

 (A.2)

is a diagonal matrix with diagonal elements Au,i. For simplicity, the independent variable
frequency f is ignored in the following derivations. To have a better understanding of Equa-
tion A.1, the products of the Fourier coefficients are calculated by

ûyzû
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where ∗ denotes the complex conjugate or conjugate transpose (if applied to a matrix). On the
right side of Equation A.1, we have

ûyzû
∗
yz = AuHu,yzXu,yz (AuHu,yzXu,yz)∗ . (A.4)

Applying the ensemble average to both sides of Equation A.4 results in

〈ûyzû∗yz〉 = AuHu,yz〈Xu,yzX
∗
u,yz〉H∗u,yzA∗u = AuCu,yzAu, (A.5)

because the ensemble average 〈Xu,yzX
∗
u,yz〉 is an identity matrix and Cu,yz = Hu,yzH

∗
u,yz by

definition (the conjugate transpose is equivalent to transpose if the matrix elements are real
numbers). The right hand side of Equation A.5 is further expanded as

〈ûyzû∗yz〉 =


Au,1Au,1γu,yz,11 Au,1Au,2γu,yz,12 . . . Au,1Au,nγu,yz,1n

Au,2Au,1γu,yz,21 Au,2Au,2γu,yz,22
...

... . . .
Au,nAu,1γu,yz,n1 . . . Au,nAu,nγu,yz,nn

 , (A.6)

which can be simplified using the index notation as

〈uyz,iu∗yz,j〉 = Au,iAu,jγu,yz,ij = ∆f
2

√
Su,iSu,jγ2

u,yz,ij. (A.7)

Because of the definition of co-coherence, we can further write

〈uyz,iu∗yz,j〉 = ∆f
2 Su,ij, (A.8)

where Su,ij is the co-spectrum between fluctuations i and j. The derivations above show
that Equation A.1 can be applied to simulate stochastic processes that have certain ensemble
averaged auto-spectra and co-spectra.

A.2 Derivation of the Mann Uniform Shear Model

The derivation of Mann uniform shear model was conducted by [32]. I would like to provide a
derivation that covers some steps that have been skipped in existing literature. The derivation
is primarily based on [32] and [82].

The turbulent velocity field may be expressed as

ũ = U + u, (A.9)
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where U is the mean flow, and u is the fluctuation part. The mean flow U = (U, 0, 0) is
non-zero only in the longitudinal direction. Moreover, only the uniform vertical shear profile
∂U/∂z is non-zero. Ignoring external force, e.g., gravity and Coriolis force, and assuming the
atmosphere in turbine related height is incompressible, the N-S equation can then be expressed
as

∂ũi
∂t

+ ũj
∂ũi
∂xj

= −1
ρ

∂p

∂xi
+ ν

∂2ũi
∂xj∂xj

(ESC). (A.10)

Inserting Equation A.9 this into Equation A.10 yields

∂ui
∂t

+ Uj
∂Ui
∂xj

+ Uj
∂ui
∂xj

+ uj
∂Ui
∂xj

+ uj
∂ui
∂xj

= −1
ρ
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∂2ũi
∂xj∂xj

(ESC). (A.11)

Because only dU/dz and only U are non-zero, the terms Uj ∂Ui

∂xj
are always zero. Neglecting the

non-linear term uj
∂ui

∂xj
on the left-hand side and the viscosity related term on the right-hand

side (second term) [32], the equations are simplified to be

∂ui
∂t

+ Uj
∂ui
∂xj

+ uj
∂Ui
∂xj

= −1
ρ

∂p

∂xi
(ESC). (A.12)

As explained by Mann [32], we are more interested in a larger scale of the turbulence for turbine
structure load analysis, whereas the viscosity is primarily responsible for smaller scale turbulent
dissipation. To represent the pressure terms by velocities, taking the divergence on both side
of Equation A.12 and ignoring non-linear terms, we obtain

∂Uj
∂xi

∂ui
∂xj

+ ∂uj
∂xi

∂Ui
∂xj

= −1
ρ

∂2p

∂xi∂xi
(ESC), (A.13)

which is rearranged as

2∂uj
∂xi
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= 2∂ui
∂xj

∂Uj
∂xi

= −1
ρ

∂2p

∂xi∂xi
(ESC). (A.14)

The pressure field velocity fields may be expressed as the Fourier-Stieltjes integrals [32, 30]:

p(x) =
∫

eik·xdΠ(k) (A.15)

u(x, t) =
∫

eik·xdZ(k, t) (A.16)

Applying the Laplacian operator on both side of Equation A.15, we obtain

∇2p = −k2
∫

eik·xdΠ(k) = −k2p. (A.17)
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Replacing the pressure related term on the right-hand side of Equation A.14 by Equation A.17
and replacing the velocity field by the Fourier-Stieltjes integrals, we now obtain

2
∫

ikjeik·xdZi(k, t)
∂Uj
∂xi

= 1
ρ
k2p (ESC), (A.18)

whose gradient is
2
∫

klkj
k2 eik·xdZi(k, t)

∂Uj
∂xi

= −1
ρ

∂p

∂xl
(ESC). (A.19)

Again, the non-zero ∂Uj/∂xi is obtained only when j = 1 and i = 3. By setting j = 1 and
i = 3 in Equation A.19 and then replacing l by i, we can rewrite the pressure gradient as

2
∫

kik1

k2 eik·xdZ3(k, t)∂U
∂z

= −1
ρ

∂p

∂xi
(ESC). (A.20)

Note that l is replaced by i after setting j = 1 and i = 3 in Equation A.19.

The second term in Equation A.12 may be expressed as
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Subsequently, the term on the right-hand side ∂(xlui)
∂xj

is transformed following
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(ESC). (A.25)

Note that the rule of integration by part is applied to obtain the third line from the second
line.

The “average total derivative” of the velocity is defined as

Dui
Dt = ∂ui

∂t
+ Uj

∂ui
∂xj

(ESC), (A.26)

which can be further rewritten as
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The term −kj ∂Uj

∂xl
is interpreted as the rate of change of wavenumber owing to the shear effect

[11, 32], i.e.,
dkl
dt = −kj

∂Uj
∂xl

(ESC). (A.28)

This enables us to write
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Inserting Equations A.20 and A.29 into the linearized N-S Equation A.12, we obtain∫
eik·x

(
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which can be simplified as

DdZi(k, t)
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(
δi1 + 2kik1

k2
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dZ3(k, t) (ESC). (A.31)

Equation A.31 is the rapid distortion equation for sheared flow [32]. The wavenumber vector
k0 = (k1, k2, k30) is the initial and non-sheared vector and k = (k1, k2, k3) is the wavenumber
vector after shear effect, in which k3 = k30 − βk1, where β = ∂U

∂z
t. The time derivatives of the

wavenumbers are
dk1

dt = dk2

dt = 0, and dk3

dt = −∂U
∂z

k1. (A.32)

Equation A.31 can be solved by integrating from zero time [82]. For example, the third term
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k3k1
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is rearranged as
DdZ3(k, t)
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Integrating on both side yields

ln (dZ3(k, t)) = − ln
(
k2

1β
2 − 2k1k30β + k2

0
)

+ C = ln
(

exp (C)
k2

)
, (A.35)

where C is an arbitrary constant. This implies that dZ3(k, t) can be obtained from the initial
non-sheared state

dZ3(k, t) = k2
0
k2Z3(k0, 0). (A.36)

Townsend [82] and Mann [32] provided the solutions for the other two velocity components as

dZ1(k, t) = Z1(k0, 0) + ζ1Z3(k0, 0), (A.37)
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and
dZ2(k, t) = Z2(k0, 0) + ζ2Z3(k0, 0), (A.38)

where the definition of ζ1 and ζ2 has been provided in Section 2.1.5. Because the stochastic
process dZ (3 by 1 matrix) is related to the spectral tensor by

〈dZi(k, t)dZ∗j (k, t)〉
dk1dk2dk3

= Φij(k, t), (A.39)

where “∗” is the complex conjugate operator, the shear included spectral tensor is then expressed
as
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0 0 k2
0/k

2


∗

. (A.40)

The initial non-sheared process can be expressed as the isotropic von Kámán tensor: [34, 11, 32]

〈dZi(k0, 0)dZ∗j (k0, 0)〉
dk1dk2dk3

= Φiso,ij(k0) = E(k0)
4πk4

0
(δijk2

0 − kikj), (A.41)

in which i, j = 1, 2 and 30 (30 is for the initial non-sheared wavenumber). Replacing Equa-
tion A.41 in Equation A.40, the solutions for all elements in the sheared spectral tensor Φij(k, t)
can be obtained, which have been provided in Section 2.1.5.

A.3 Code Availability
(a) The OpenFAST version 3.0 with a lidar simulator integrated can be accessed via:

https://github.com/MSCA-LIKE/OpenFAST3.0_Lidarsim. Last access: Last access:
March 5, 2023.

(b) The 4-D Mann Turbulence Generator can be found by:
https://github.com/MSCA-LIKE/4D-Mann-Turbulence-Generator. Last access: March
5, 2023.

(c) The open-access tool evoTurb has been published on Github:
https://github.com/SWE-UniStuttgart/evoTurb. Last access: Last access: March 5,
2023.

(d) The source codes of the wrapper DLL, baseline lidar data processing DLL, pitch feedfor-
ward DLL, and the modified ROSCO DLL are all available from

https://github.com/MSCA-LIKE/OpenFAST3.0_Lidarsim
https://github.com/MSCA-LIKE/4D-Mann-Turbulence-Generator
https://github.com/SWE-UniStuttgart/evoTurb
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https://github.com/MSCA-LIKE/Baseline-Lidar-assisted-Controller. The DLL
used in this thesis are modified from the Commit: 458c57b. Last access: March 5, 2023

A.4 Publications not Included in This Thesis
The following research outcomes were completed during the Ph.D. project (Lidar Knowledge
Europe), but are not included in this thesis:

(a) F. Guo and D. Schlipf, “Lidar Wind Preview Quality Estimation for Wind Turbine Con-
trol”, 2021 American Control Conference (ACC), 2021, pp. 552-557,
doi: 10.23919/ACC50511.2021.9483442.

(b) F. Guo and D. Schlipf, “A Spectral Model of Grid Frequency for Assessing the Impact of
Inertia Response on Wind Turbine Dynamics”. Energies 2021, 14, 2492,
https://doi.org/10.3390/en14092492.

(c) D. Schlipf, F. Guo, and S. Raach. “Lidar-based estimation of turbulence intensity for
controller scheduling”. Journal of Physics: Conference Series. Vol. 1618. No. 3. IOP
Publishing, 2020. doi: 10.1088/1742-6596/1618/3/032053.

(d) Y.Y. Chen, W. Yu, F, Guo and P.W. Cheng. “Adaptive measuring trajectory for scanning
lidars: proof of concept”. Journal of Physics: Conference Series Vol. 2265, No. 2, p.
022099. IOP Publishing, 2022. doi: 10.1088/1742-6596/2265/2/022099.

(e) I. Miquelez-Madariaga, D. Schlipf, J. Elso, F. Guo and A. Díaz de Corcuera. “LIDAR
based multivariable H∞ feedforward control for load reduction in wind turbines”. Journal
of Physics: Conference Series Vol. 2265, No. 2, p. 022070. IOP Publishing, 2022. doi:
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