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Abstract
A common practice in the field of differential lift and drag controlled satellite formation flight is to analytically design 
maneuver trajectories using linearized relative motion models and the constant density assumption. However, the state-of-
the-art algorithms inevitably fail if the initial condition of the final control phase exceeds an orbit and spacecraft-dependent 
range, the so-called feasibility range. This article presents enhanced maneuver algorithms for the third (and final) control 
phase which ensure the overall maneuver success independent of the initial conditions. Thereby, all maneuvers which have 
previously been categorized as infeasible due to algorithm limitations are rendered feasible. An individual algorithm is 
presented for both possible control options of the final phase, namely differential lift or drag. In addition, a methodology to 
precisely determine the feasibility range without the need of computational expensive Monte Carlo simulations is presented. 
This allows fast and precise assessments of possible influences of boundary conditions, such as the orbital inclination or the 
maneuver altitude, on the feasibility range.

Keywords Satellite aerodynamic · Differential lift · Differential drag · Formation flight · Rendezvous maneuver

1 Introduction

The rising deployment of multiple small satellites flying in 
formation rather than one large satellite offers benefits such 
as increased flexibility, reliability and efficiency of future 
satellite missions. This concept follows the ongoing change 
in the space industry, resulting in increased launch cycles 
and decreasing transport prices, giving it the potential to 
become a state-of-the-art technology. However, one diffi-
culty is the use of complex chemical or electrical propul-
sion systems for the individual satellites, which due to their 
sophisticated design account for a significant proportion of 
the weight and manufacturing costs. A promising alternative 
to this system is the exploitation of the residual atmosphere 
to create and maintain the satellite formation via differential 
aerodynamic forces (see Fig. 1 for a conceptual visualiza-
tion). This methodology offers the unique possibility to take 
advantage of the benefits of both, distributed satellite sys-
tems [1] and very low earth orbits (VLEO) [2], without the 

need of a dedicated thrusting device and is consequently 
of highest interest to the CubeSat community. Notably, dif-
ferential drag has already been successfully applied in-orbit 
(e.g., by the Planet Lab constellation [3], the ORBCOMM 
constellation [4], the AeroCube-4 CubeSats [5] or the 
S-NET formation [6]).

At the Institute of Space Systems (IRS) of the University 
of Stuttgart, this methodology is investigated since 2018. A 
comprehensive and state-of the art literature and gap analy-
sis can be found in [7] as well as an overview of the progress 
achieved so far in [8]. A major goal is the development and 
enhancement of simplified rendezvous maneuver algorithms, 
which are fast and computationally inexpensive and thus can 
be applied in Monte Carlo simulations.

1.1  Historic algorithm developments

The foundation for the development of these algorithms 
was laid by Leonard, who proposed using differential drag 
for the in-plane relative motion control in her master thesis 
published in 1986 [9, 10]. The accuracy of the algorithm 
was increased by Bevilacqua and Romano in 2008 [11], who 
replaced the Clohessy–Wiltshire (CW) equations [12] by the 
J2 inclusive Schweighardt-Sedwick (SS) equations [13]. In 
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2011, Horsley et al. [14] extended the algorithm to enable to 
control all translational degrees of freedom using differen-
tial lift for the out-of-plane control using the CW equations. 
Then, in 2015, Shao et al. refined the accuracy of Horsley 
et al.’s algorithm again by replacing the CW equations by 
the SS equations [15]. In 2017, Smith et al. [16] investigated 
the extent to which the simple trajectories are applicable to 
spacecraft formations under changing initial conditions and 
addressed impracticalities and collision risks associated with 
the differential lift-based trajectories. The latter necessitated 
to switch the order of the three-phased rendezvous maneuver 
as proposed by Horsley et al. [14], which resulted in the fol-
lowing updated sequence which is used and referred to as 
throughout the rest of this article:

• Phase 1 zeroes out the average in-plane position;
• Phase 2 zeroes out the out-of-plane motion;
• Phase 3 zeroes out the oscillating in-plane states.

By applying Monte Carlo methods, Smith et al. [16] dis-
covered that the third phase is successful if and only if the 
norm of the initial oscillating state vector 

�
�P3,0,

�P3,0√
2cA

�
 , 

introduced in Eqs. (6) and (7), is within a certain range, the 
so-called feasibility range. If the initial conditions exceed 
this range, the algorithm is not able to design a successful 
rendezvous maneuver and since the overall maneuver suc-
cess is dependent on the third phase, this renders the full 
maneuver unsuccessful. Options to enlarge the size of the 
range and therefore to increase the maneuver success were 
proposed in a CEAS Space Journal contribution in 2020 [7] 
and shown to be successful in a follow-up article published 
in the same journal later that year [17].

This article builds upon the two preceding articles and 
presents enhanced phase 3 algorithms which are not sub-
jected to any limiting size and thus render all maneuvers suc-
cessful which previously had to be denoted as unsuccessful 
due to algorithm limitations. In addition, a fast and precise 
option to determine the size of the feasibility range, which 

previously could only be determined using time consuming 
Monte Carlo simulations, is presented.

The article is structured as follows: First, the theoreti-
cal background and the underlying equations of motion are 
described in Sect. 2. Then, in Sect.  3, a method to deter-
mine the maximum possible reduction of eccentricity Δemax 
is proposed and verified. In Sect. 4, the enhanced phase 3 
algorithms for differential lift or drag are presented. In the 
end, the developments are critically discussed and conclu-
sions are drawn.

2  Background

2.1  Equations of motion

The equations of motion to describe the motion of the dep-
uty spacecraft (also referred to as chaser) to the chief space-
craft (also referred to as target) utilized in this article are an 
intermediate set of the Schweighart-Sedwick (SS) equations 
[13], which take the J2 perturbation caused by the Earth’s 
oblateness into account. The local-vertical/local-horizontal 
(LVLH) coordinate system, in which the SS equations are 
expressed, is centered at the chief’s center of mass. The x̂
-axis runs from the Earth’s center through the chief’s center 
of mass. The ŷ-axis points in the direction of motion and 
is orthogonal to the x̂-axis. The ẑ-axis is orthogonal to the 
x̂ - and ŷ-axis and complements the right-handed system. 
The LVLH coordinate system is displayed in Figs. 1 and 2.

Leonard et al. proposed to decompose the deputy’s rela-
tive in-plane movement (x, y) into an average component 
(
−
x,

−
y) as well as an oscillating component (�, �) , which is 

applied throughout this article. The decomposed compo-
nents of the deputy’s motion are displayed in Fig. 3. Nota-
bly, in the linearized form the in-plane relative motion is 
completely decoupled from the out-of-plane relative motion 
so that both can be controlled individually.

Fig. 1  Conceptual visualiza-
tion of two satellites flying in 
formation using their satellite’s 
solar panel as dedicated drag/lift 
plates [7]
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In this article, the solutions to the SS equations includ-
ing differential accelerations as suggested by Smith et al. 
[16] are employed. A slight correction to these equations 
was made in [7] and the corrected version is used in the 
following:

with x , y , � and � being defined as:

(1)x = x + �

(2)y = y + �

(3)z =
(
z0 −

az

D2𝜔2

)
cos (D𝜔t) +

ż0

D𝜔
sin (D𝜔t) +

az

D2𝜔2

(4)x = x0 +
A

�
ayt

(5)y = y0 + B�x0t −
A

�
axt +

AB

2
ayt

2

The so-called SS coefficient c which takes the J2 influ-
ence into account, the auxiliary variables A , B and D and 
ω, which is the angular velocity of the chief, are defined as 
follows:

Here RE is the Earth’s mean radius, �E is its gravitational 
parameter, ic is the chief’s orbital inclination and rc its orbital 
scalar radius. The parameters x0 , y0 , z0 , 

ż0

D𝜔
 , �0 and �0√

2cA
 are the 

initial conditions at the time t = 0 . ax , ay and az are the accelera-
tions of the deputy relative to the chief in the respective LVLH 
coordinate directions. These are induced by the differences in 
the aerodynamic drag and lift forces experienced by the two 
spacecraft which are created using dedicated drag and lift plates 
(Fig. 1). The influence of constant differential lift and drag on 
the phase planes is displayed in Fig. 4.

2.2  Original phase 3 algorithms

The original algorithm is divided up into three phases, in 
each of which a part of the relative motion is zeroed out 

(6)

� =

�
�0 −

Aax

2c�2

�
⋅ cos

��
2c

A
�t

�
+

Aax

2c�2

+

�
�0√
2cA

−
A2ay

2�2

�
⋅ sin

��
2c

A
�t

�
,

(7)

�√
2cA

=

�
�0√
2cA

−
A2ay

2�2

�
⋅ cos

��
2c

A
�t

�
+

A2ay

2�2

+

�
Aax

2c�2
− �0

�
⋅ sin

��
2c

A
�t

�
.

(8)c =

√
1 +

3J2R
2
E

8r2
c

(
1 + 3 cos

(
2ic

))
,

(9)A =
2c

2 − c2

(10)B =
2 − 5c2

2c

(11)D =
√
3c2 − 2

(12)� =

√
�E

r3
c

.

Fig. 2  Definition of the LVLH coordinate system

Fig. 3  Reference target coordinate system
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(see Sect. 1). The terminology ‘original algorithm’ as used 
throughout this article refers to the algorithm developed 
by Smith et al. which is based on the work of Shao et al. 
[15], Horsley et al. [14] and Leonard et al. [9, 10]. Notably, 
initially (in the publication by Shao et al. [15] as well as 
Horsley et al. [14]), the order of phase 2 and 3 was reversed. 

However, Smith et al. [16] changed this order as thereby 
inevitably occurring collisions could be avoided. The focus 
of this article is phase 3 and the interested reader is referred 
to references [15, 17] for detailed information on phase 1 
and 2. For phase 3, either differential drag or differential 
lift can be exploited. Consequently, two different algorithms 

Fig. 4  Phase plane for constant 
differential accelerations in a 
the x direction, b the y direction 
and c the z direction. A positive 
(negative) acceleration causes 
the state to move along the solid 
(dashed) trajectories [7]
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are available. As an understanding of the original phase 3 
algorithms for differential drag and lift is necessary to follow 
the developments presented hereinafter, these are shortly 
described in the following.

In case of a successful phase 3, the initial in-plane eccen-
tricity of phase 3, eP3,0 , defined as the vector norm of the 
initial oscillating state vector 

�
�P3,0,

�P3,0√
2cA

�
:

is fully zeroed out during the maneuver. As any in-plane 
control input inevitably also influences the already nulli-
fied position in the ( ̄x, ȳ)–plane, it additionally has to be 
ensured that the final ( f  ) average in-plane states after phase 
3 are zero again ( ̄xf = ȳf = 0 ). To achieve this, the overall 
duration during which a positive differential acceleration is 
commanded needs to match the duration during which a 
negative acceleration ( t− ) is commanded:

Before the original algorithms are discussed, the polar 
coordinate system depicted in Fig. 5, which will be used 
throughout this article, is introduced.

Here, the oscillating in-plane position of the deputy rela-
tive to the chief is expressed via the in-plane eccentricity e , 
which is the norm of the oscillating in-plane state vector, 
defined as e =

√
�2 +

�2

2cA
 , and a phase angle � ( ∈ [0;2�[ ), 

which is in the first quadrant defined as:

Notably, � is defined in a mathematically negative sense 
to follow the coasting direction of the deputy around the 
chief. Therefore, it needs to be calculated to match the defi-
nition shown in Fig. 5 for all other quadrants.

2.2.1  Original drag‑based algorithm

The drag-based phase 3 control algorithm consists of an ini-
tial coasting period followed by three successive controlled 
segments during which differential drag accelerations 

(
ay
)
 

are applied. The respective times of the three controlled seg-
ments are in the following referred to as t1,d , t2,d and t3,d 
whereas the coasting period is refered to as tc,d . Dependent 
on the initial conditions, either a t+∕t−∕t+ (in the follow-
ing referred to as pnp) or a t−∕t+∕t− (referred to as npn) 
sequence leads to the shorter maneuver time and is therefore 
chosen. Since any control input in the y-direction ( ay ) causes 
the ( ̄x, ȳ)-states to move on a parabola in the phase plane (see 

(13)eP3,0 =

������2
P3,0

+

�
�P3,0√
2cA

�2

(14)
∑

t+ =
∑

t−

(15)� = atan

�
�

�
⋅

√
2cA

�

Fig. 4), the following conditions for the time periods must 
hold to fulfill the condition stated in Eq. 14:

As a consequence, it is sufficient to determine one of the 
three time periods as the two others can be calculated from 
Eq. (16) and (17). Before the control sequence is initiated, a 
coasting period in which no control input is commanded, is 
required in order for the deputy to reach the desired initial 
position.

The four required time periods tc,d , t1,d , t2,d and t3,d are 
determined by applying a backwards sequence ( −t3,d/−t2,d
/−t1,d/−tc,d ) starting from the origin ( 0,0 ) of the 

�
�,

�√
2cA

�
-

phase plane and enforcing the final eccentricity after the 
controlled sequence to match the initial eccentricity of phase 
3 ( eP3,0 ). The resulting backwards sequence is as follows:

1. Starting at the origin ( 0,0 ) and applying an acceleration 
for −t3,d results in �3,d , �3,d.

2. Starting at �3,d, �3,d and applying an acceleration 
(switched sign) for −t2,d  results in �2,d, �2,d.

3. Starting at �2,d, �2,d and applying acceleration (switched 
sign) for −t1,d results in �1,d, �1,d . These are the states 
after the coasting period tc,d and the respective eccentric-
ity is required to match eP3,0.

4. Starting at 
�
�1,d,

�1,d√
2cA

�
 an coasting without any control 

input for −tc,d to the desired initial states 
�
�P3,0,

�P3,0√
2cA

�
.

(16)t1,d − t3,d = 0

(17)t2,d − 2 ⋅ t1,d = 0

Fig. 5  Polar coordinate system and definition of the phase angle �
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This technique of applying a backwards sequence to solve 
for the maneuver time and/or position has already been 
described by Smith [18]. However, as the resulting equa-
tion which has to be solved for t1,d has never appeared in the 
literature, it is stated here for the sake of completeness. For 
a pnp sequence, applying a backwards sequence of phase 3 
maneuvers sequence results in Eq. (18) which needs to be 
solved for t1,d:

with k being defined as k = A2ay

2�2

To determine the required coasting time tc,d , the so coast-
ing angle �c,d needs to be calculated first. It is defined as:

Here, �P3,0 refers to the initial phase 3 position and �P3,1,d 
to the initial position of the pnp/npn sequence 

�
�1,d,

�1,d√
2cA

�
 

according to the coordinate system depicted in Fig. 5. Since 
the coasting time for a full orbital revolution ( � = 2� ) is 
Tc,2� = 2�

�√
2cA−1�

�−1

 (see Eq. (6)), the respective coast-
ing time tc,d for a coasting angle of �c,d is:

Here, since � ∈ [0,2�[ but d�∕dt ≥ 0 , �P3,1,d = �P3,1,d + � 
if 𝜃P3,1,d < 𝜃

P3,0
.

2.2.2  Original lift‑based algorithm

The lift-based phase 3 algorithm also consists of three seg-
ments (pnp or npn) in which differential accelerations are 
commanded, this time, however, in the x-direction (ax) . The 
respective times of the controlled segments are in the fol-
lowing referred to as t1,l , t2,l and t3,l . After the first segment 
t1,l , the sign of the acceleration is switched and applied for 
a duration t2,l . Then the sign of the acceleration is switched 
again for t3,l after which the origin has been reached a com-
plete rendezvous has been achieved. To fulfill Eq. (14), the 
individual durations must fulfill the following condition:

(18)

eP3,0 =
��
2ksin

�
t1,d

�
− 2ksin

�
3t1,d

�
+ kcos

�
2t1,d

�
sin

�
2t1,d

�

+ksin
�
2t1,d

��
cos

�
t1,d

�2
− sin

�
t1,d

�2��2

+4k2

�
sin

�
2t1,d

�2
2

+ cos
�
3t1,d

�
− cos

�
t1,d

�

−
cos

�
2t1,d

��
cos

�
t1,d

�2
− sin

�
t1,d

�2�

2
+

1

2

⎞⎟⎟⎟⎠

2⎞⎟⎟⎟⎠

1

2

= Δed
�
t1,d

�

(19)�c,d = �P3,1,d − �P3,0

(20)tc,d =
�c,d

� ⋅

√
2c

A

(21)t1,l − t2,l + t3,l = 0

The times are again determined by applying a backwards 
sequence ( −t3,l/−t2,l/−t1,l ) from the origin ( 0,0 ). Due to 
the less restrictive condition stated in Eq. (21) compared 
to Eq. (16) and (17), two time periods have to be deter-
mined as t1,l is allowed to differ from t3,l . For a pnp maneu-
ver sequence, applying the backwards maneuver sequence 
results in the following system of equation:

Due to the much weaker symmetry constraints, no coast-
ing segment is required so that the maneuver can be executed 
immediately.

2.2.3  Verification

Prior to adding any changes, the implementation of the origi-
nal algorithms has been verified by Walther et al. [17].

3  Feasibility range determination

As stated by Smith et al. [16], the critical phase for the over-
all maneuver success is phase 3, in which the algorithms 
inevitably fail if the initial eccentricity eP3,0 exceeds a certain 
range. Consequently, the terminology feasibility range, as it 
is used throughout this publication, refers to the maximum 
value of the initial eccentricity of phase 3 Δemax for which 
the original algorithm leads to a successful rendezvous. As 
phase 3 can be controlled either via differential lift or drag, 
two different feasibility ranges need to be distinguished for 
each maneuver.

The aim of this article is to develop enhanced phase 3 
algorithms which are of open-loop type and i.e. for which 
the maneuver trajectories can be planned prior to the maneu-
ver. As for the original algorithm there exists a maximum 
value by which the eccentricity can be reduced (the fea-
sibility range Δemax ), the general idea of both algorithms 
is to iteratively reduce the eccentricity e by the maximum 

(22)

�P3,0√
2 ⋅ c ⋅ A

=

�
2 ⋅ sin

��
2 ⋅ c

A
⋅ � ⋅ t3,l + 2 ⋅

�
2 ⋅ c

A
⋅ � ⋅ t1,l

�

−sin

�
2 ⋅

�
2 ⋅ c

A
⋅ � ⋅ t3,l + 2 ⋅

�
2 ⋅ c

A
⋅ � ⋅ t1,l

�

−2 ⋅ sin

��
2 ⋅ c

A
⋅ � ⋅ t1,l

��
⋅

A ⋅ ax

2 ⋅ c ⋅ �2
=

Δ�l√
2cA

(t1,l, t3,l)

(23)

�P3,0 =

(
2 ⋅ cos

(√
2 ⋅ c

A
⋅ � ⋅ t3,l + 2 ⋅

√
2 ⋅ c

A
⋅ � ⋅ t1,l

)

−cos

(
2 ⋅

√
2 ⋅ c

A
⋅ � ⋅ t3,l + 2 ⋅

√
2 ⋅ c

A
⋅ � ⋅ t1,l

)

−2 ⋅ cos

(√
2 ⋅ c

A
⋅ � ⋅ t1,l

)
+ 1

)
⋅

A ⋅ ax

2 ⋅ c ⋅ �2
= Δ�l(t1,l, t3,l)
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eccentricity reduction per iteration Δemax until e < Δemax 
holds. Then, the conventional algorithm is applied to reach 
the origin. To fulfill the requirement of being of open-loop 
type, the number of iterations required to achieve a success-
ful rendezvous needs to be determinable beforehand. Con-
sequently, a method to determine Δemax , which so far can 
only be determined using Monte Carlo methods, in advance 
is required.

In this section, the method developed to determine the 
size of the feasibility range Δemax for differential drag and 
for differential lift without the need to perform time consum-
ing Monte Carlo simulations is presented and discussed in 
detail. Since for the subsequent algorithms also the location 
�Δemax

 at which the maximum eccentricity reduction Δemax 
can be achieved needs to be known, a method to determine 
these location is presented in this section as well.

3.1  Feasibility range using differential drag

3.1.1  The size of the feasibility range 1emax,d

As described in Sect.  2.2.1, the required time period t1,d 
is calculated via Eq. (18) in which the time period t1,d is 
adjusted so that the resulting eccentricity reduction Δed(t1,d) 
exactly matches the initial eccentricity eP3,0 . If this is the 
case, the current eccentricity eP3,0 is completely zeroed out 
and the maneuver is therefore successful. An example of a 

successful maneuver can be found in Fig. 6, in which the 
initial eccentricity eP3,0 is plotted in orange and the time 
dependent part of Eq. (18), namely Δed(t1,d) , is plotted over 
t1,d in blue. The respective boundary conditions used in the 
example case are listed in Table 1.

All intersections between the two curves represent solu-
tions to Eq. (18) and lead to a successful maneuver. How-
ever, as the shortest overall maneuver time is desired, the 
intersection marked with a black star is chosen. This occurs 
at t1,d = 1534s . However, Fig. 6 also shows that the time-
dependent part of Eq. (18), Δed(t1,d) , varies periodically with 
t1,d and has a distinct maximum value Δemax,d of 326,1 m for 
t1,Δemax,d

= 1902s . This value, which is the maximum pos-
sible reduction of the eccentricity for the given boundary 
conditions, exactly represents the size of the feasibility range 
for differential drag. Thus, the desired value for Δemax,d can 
be calculated by determining the maximum of Eq. (24).

Notably, the size is dependent on the available differential 
acceleration ay , the SS coefficient c and the angular veloc-
ity of the chief � . Throughout this article, the maximum is 
found using MATLAB’s fminsearch function. A comparison 
of calculated values and values extracted from Monte Carlo 
simulations can be found in 0. In addition, thereby not only 
the maximum value Δemax,d can be determined but also the 
respective time t1,Δemax,d

 . This value is required to determine 
the respective position from which the maximum reduction 
can be achieved, which is discussed in the next section.

3.1.2  Required positions �1emax,0,d
 to reach 1emax,d

The required position to reach Δemax,d can simply be calcu-
lated by applying the pnp-sequence backwards: −t3,Δemax,d

/−t2,Δemax,d
/−t1,Δemax,d

 . The value for t1,Δemax,d
 has been deter-

mined in the previous section and t2,Δemax,d
 and t3,Δemax,d

 can be 
calculated using Eqs. (16) and (17), respectively. By defini-
tion, this results in a state with an eccentricity of emax,d and 
at the desired position �Δemax,d,pnp

 . Due to the symmetry of 
the two different sequences (pnp/npn), the following relation 
between the two possible positions holds:

(24)

Δe
d
(t1,d) =

��
2ksin

�
t1,d

�
− 2ksin

�
3t1,d

�
+ kcos

�
2t1,d

�
sin

�
2t1,d

�

+ksin
�
2t1,d

��
cos

�
t1,d

�2
− sin

�
t1,d

�2��2

+4k2

�
sin

�
2t1,d

�2
2

+ cos
�
3t1,d

�
− cos

�
t1,d

�

−
cos

�
2t1,d

��
cos

�
t1,d

�2
− sin

�
t1,d

�2�

2
+

1

2

⎞⎟⎟⎟⎠

2⎞⎟⎟⎟⎠

1

2

(25)�Δemax,0,d,npn
= �Δemax,0,d,pnp

+ �

Fig. 6  Δed over td,1 (blue) and initial eccen. eP3,0,d (orange)

Table 1  Boundary conditions 
used in the example case taken 
from [15]

Parameter Unit Value

ic
◦ 10

hC km 400

ax m∕s2 0.9 ⋅ 10
−5

ay m∕s2 4 ⋅ 10
−5
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3.2  Feasibility range using differential lift

3.2.1  The size of the feasibility range 1emax,l

In Fig.  7, for an exemplary (successful) maneuver the 
regions in which Eq. (22) are fulfilled are displayed in red, 
and the regions in which Eq. (23) are fulfilled in blue (equa-
tions solved using MATLAB’s fminsearch function).

For the sake of comparability, the boundary conditions 
noted in Table 1 were employed again. As both equations 
need to be fulfilled at the same time, all intersections of 
both curves represent a solution to the system of equations. 
To reduce the maneuver time, the solution with the shortest 
overall phase duration is used as the final solution. This is 
marked as a black cross.

If the maneuver is unsuccessful, Eqs. (22) and (23) can-
not be fulfilled at the same time. However, in this case, the 
required time periods t1,Δemax,l

 and t3,Δemax,l
 to achieve a maxi-

mum possible reduction in the eccentricity Δemax,l can be 
determined. Similar to the drag-based algorithms, this is 
achieved by only considering the time varying parts of the 
equations, namely Δ�l(t1,l, t3,l) and Δ�l(t1,l, t3,l) , respectively. 
For a pnp maneuver sequence, these can be calculated via 
the following equations:

(26)

Δ�
l

(
t1,l, t3,l

)
=

(
2 ⋅ cos

(
2 ⋅ � ⋅ t1,l ⋅

√
2c

A
+ � ⋅ t3,l ⋅

√
2 ⋅ c

A

)

− cos

(
2 ⋅ � ⋅ t1,l ⋅

√
2 ⋅ c

A
+ 2 ⋅ � ⋅ t3,l ⋅

√
2 ⋅ c

A

)

−2 ⋅ cos

(
� ⋅ t1,l ⋅

√
2 ⋅ c

A

)
+ 1

)
⋅

a
x
⋅ A

2 ⋅ c ⋅ �2

To calculate a value for Δel as a function of t1,l and t3,l , 
the expressions for Δ�l(t1,l, t3,l) and Δ�l(t1,l, t3,l) need to be 
inserted in the equation of the eccentricity, Eq. (28).

In Fig. 8, the Δel is plotted as a function of t1,l and t3,l . 
The global optimum Δemax,l , which represents the size of the 
feasibility range for differential lift, is plotted as a pink star. 
For the respective boundary conditions, Δemax,l = 36.54m 
for t1,Δemax,l

= 1852s and t3,Δemax,l
= 1852s.

Notably, the value of Δemax,l is again dependent on the 
available differential acceleration ax , the SS coefficient c and 
the angular velocity of the chief � . Again, in addition to the 
value of Δemax,l , also the respective times t1,Δemax,l

 and t3,Δemax,l
 

can be determined.

3.2.2  Required positions �1emax,0,l
 to reach 1emax,l

The required position �Δemax,0,l,pnp
 to reach Δemax,l can again 

be calculated by applying the pnp-sequence backwards: 
−t3,Δemax,l

/−t2,Δemax,l
/−t1,Δemax ,l . The values for t1,Δemax,l

 and 

(27)

Δ�
l

�
t1,l, t3,l

�
√
2cA

=

�
2 ⋅ sin

�
2 ⋅ � ⋅ t1,l ⋅

�
2c

A
+ � ⋅ t3,l ⋅

�
2 ⋅ c

A

�

− sin

�
2 ⋅ � ⋅ t1,l ⋅

�
2 ⋅ c

A
+ 2 ⋅ � ⋅ t3,l ⋅

�
2 ⋅ c

A

�

−2 ⋅ sin

�
� ⋅ t1,l ⋅

�
2 ⋅ c

A

��
⋅

a
x
⋅ A

2 ⋅ c ⋅ �2

(28)Δel
�
t1,l, t3,l

�
=

�����Δ�l
�
t1,l, t3,l

�2
+

�
Δ�l

�
t1,l, t3,l

�
√
2cA

�2

Fig. 7  �f ,l(t1,l, t3,l) = 0 (red) and �f ,l(t1,l, t3,l) = 0 (blue). 
Δel(t1,l, t3,l) = 0 at intersections between blue and red lines

Fig. 8  Plot of Δel(t1,l, t3,l) over t1,l and t3,l with Δemax,l indicated in 
pink
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t3,Δemax,l
 have been determined in the previous section and 

t2,Δemax,l
 can be calculated using Eq. (21). Due to the symme-

try of the two different sequences (pnp/npn), the following 
relation between the two possible positions holds:

3.2.2.1 Verification The proposed methodology to deter-
mine the value of Δemax is validated by comparing the cal-
culated values to values extracted from Monte Carlo results 
from literature [16, 17]. In addition, supplementary Monte 
Carlo simulations were performed. The boundary conditions 
applied in each verification test case are listed in Table 2.

3.2.2.2 Drag‑based algorithm In Table  3, the feasibility 
range for several differential drag based maneuvers deter-
mined using Monte Carlo simulations is compared with the 
values calculated with the presented approach for different 
boundary conditions. As in the case of Monte Carlo simula-
tions, the sizes had to be extracted from the plots presented 
in the literature, slight deviations are inevitable.

(29)�Δemax,0,l,npn
= �Δemax,0,l,pnp

+ �

3.2.2.3 Lift‑based algorithm In Table  4, the feasibility 
range for several differential lift-based maneuvers deter-
mined using Monte Carlo simulations are compared with 
the values calculated with the presented approach for differ-
ent boundary conditions. Again, some deviations are inevi-
table. Notably, to describe the feasibility range of differen-
tial lift for each Monte Carlo simulation Walther et al. [17] 
stated two values, a semi-major and a semi-minor axis. This 
is because the maximum possible eccentricity reduction 
( Δemax,l ) can only be reached from the respective locations 
�Δemax,0,l,pnp

 and �Δemax,0,l,npn
 . Thus, these angles determine 

the orientation of the semi-major axis. As a consequence, 
the possible eccentricity reduction is reduced for other 
starting positions. A minimum can be observed at an axis 
perpendicular to the semi-major axis (for �Δemax,0,l,pnp

+
�

2
 

and �Δemax,0,l,npn
+

�

2
 ), which is consequently denoted as 

semi-minor axis. This just described dependency as well as 
the relation between �Δemax,0,l,pnp

 and �Δemax,0,l,npn
 (stated in 

Eq. (29)) is clearly visible in Fig. 9, which shows the result 
of an exemplary Monte Carlo simulation. Here, the semi-
major and semi-minor axes are indicated as a and b , respec-
tively. Since the value calculated with the methodology pre-
sented in Sect. 3.2.1 represents the maximum extension of 
the feasibility range ( Δemax,l ), this consequently refers to the 
semi-major axis stated by Walther et al. [17].

4  Enhanced phase 3 algorithms

Now that the values of Δemax as well as the required initial 
positions to achieve this reduction �P3,0 for both available 
control options can be determined without the need to per-
form Monte Carlo simulations (see Sect. 3), all necessary 
components to design enhanced open-loop-type phase 3 

Table 2  Boundary conditions used in the verification test cases

Parameters Unit Walther et al. [17] Smith et al. [16] This article

ic ° 10 30 45

rC km 6778.137 6678.1363 6728.137

J2⋅10
−3 – 1.0826267 1.0826269 1.0826267

ay m∕s2 4.0 ⋅ 10
−5

5.0 ⋅ 10
−5

4.5 ⋅ 10
−5

ax m∕s2 See results 1.0 ⋅ 10
−5 0.9 ⋅10−5

Table 3  Feasibility range comparison for diff. drag

References Δemax,d Monte 
Carlo

Δemax,d calculated

Walther et al. [17] ≅ 326m 326.1m

Smith et al. [16] ≅ 396m 396.7m

This article ≅ 358m 357.7m

Table 4  Feasibility range comparison for diff. lift

References Δemax,l Monte 
Carlo (a × b)

Δemax,l calculated

Walther et al. [17] 
ax = 4.94 ⋅ 10

−6
m∕s2

≅ 20m × 18m 20.05m

Walther et al. [17] ax = 1.18 
⋅10

−5
m∕s2

≅ 48m × 45m 47.96m

Walther et al. [17] 
ax = 2.19 ⋅ 10

−5
m∕s2

≅ 86m × 81m 88.99m

Smith et al. [16] ≅ 40m 39.7m

This article ≅ 37 m 36.58m

Fig. 9  Monte Carlo simulation for determining the feasibility range of 
the original lift-based algorithm. For clarity,  �Δemax,0,l,pnp

 is referred to 
as �pnp and �Δemax,0,l,npn

 is referred to as �npn in this case
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algorithms are available. The general idea of both algo-
rithms is to iteratively reduce the eccentricity e by Δemax 
until e < Δemax holds. Then, the conventional algorithm is 
applied to reach the origin. In the following, the enhanced 
algorithms are presented and discussed in detail. Figure 10 
shows a flowchart indicating the general structure of the 
enhanced algorithms.

4.1  Enhanced drag‑based phase 3 algorithm

4.1.1  Determination of nreq,d

In a first step, the number of iterations nreq,d required to 
perform the maneuver is determined using the following 
equation:

Here, ceil() indicates that the number is rounded up to the 
next integer in any case. If the initial conditions are inside 
the feasible range ( nreq,d = 1 ), the original phase 3 algorithm, 
described in Sect. 2.2.1, is executed as it is sufficient to suc-
cessfully perform the maneuver. If the initial conditions are 
outside of the feasibility range ( nreq > 1 ), the enhanced algo-
rithm is required for a successful maneuver.

(30)nreq,d = ceil

(
eP3,0

Δemax,d

)
.

4.1.2  Initial coasting period tc,init,d

Since the maximum eccentricity reduction Δemax,d for the drag-
based phase 3 algorithm can only be reached from �P3,0,d,pnp or 
�P3,0,d,npn , the deputy is required to coast from initial position 
�Δemax,0,d

  to the next possible starting position. Whether the 
initial iteration is of pnp- or npn-type depends on �Δemax,0,d

 , 
which is the position at the beginning of phase 3:

The information with which type of maneuver sequence 
the maneuver is initiated is referred to as ii in the following. 
If the initial maneuver sequence is of pnp-type, the respec-
tive coasting time tc,init,d can be calculated as:

Vice versa, if the first maneuver sequence is of npn-type, 
the respective coasting time is:

In both cases, since � ∈ [0, 2�[ but d�∕dt ≥ 0 , 
�Δemax,0,d

= �Δemax,0,d
+ 2� if 𝜃Δemax,0,d

< 𝜃P3,0.

4.1.3  Final positions �1emax,f ,d
 after a 1emax,d reduction

In a next step, the final position after an iteration �Δemax,f ,d
 for 

both sequence types (pnp/npn) is determined. Therefore, the 
final state after a sequence is pre-calculated and from it the 
respective final position �Δemax,f ,d

 determined. Due to the sym-
metry of the two different sequences (pnp/npn), the comple-
mentary angle can be calculated via the following equation:

4.1.4  Successive 1emax,d reduction

Once one of the required starting angles �Δemax,0,d,pnp
 or 

�Δemax,0,d,npn
 is reached, the Δemax,d-reduction with the pre-

calculated acceleration times t1,Δemax,d
 , t2,Δemax,d

 , and t3,Δemax,d
 

is initiated.

4.1.5  Connecting coasting periods tc,d

To reach the position from which the next iteration can be 
initiated, the deputy is required to perform a connecting 

initial iteration (ii) =

{
�Δemax,0,d,pnp

≤ �P3,0 ≤ �Δemax,0,d,npn
∶ npn

else ∶ pnp
.

(31)tc,init,d,pnp =
�Δemax,0,d,pnp

− �P3,0

� ⋅

√
2c

A

.

(32)tc,init,d,npn =
�Δemax,0,d,npn

− �P3,0

� ⋅

√
2c

A

.

(33)�Δemax,f ,d,npn
= �Δemax,f ,d,pnp

+ �.

Fig. 10  Flowchart of the enhanced phase 3 algorithms
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coasting phase for tc,d . Notably, due to the symmetry of the 
two sequences, a pnp-type sequence is followed by an npn-
type sequence to minimize the required coasting time. Vice 
versa, a pnp-type sequence follows an npn-type sequence.

Following a pnp-type sequence, the required coasting 
duration tc,d,pnp is:

Vice versa, following an npn-type sequence, the required 
coasting duration tc,d,npn is:

4.1.6  Final approach

The time periods t1,d , t2,d and t3,d for the final approach 
( e < Δemax,d ) are calculated using the original drag-based 
algorithm from Shao et al. [15] presented in Chapter 2. As 

(34)tc,d,pnp =
�Δemax,0,d,npn

− �Δemax,0,d,pnp

� ⋅

√
2c

A

(35)tc,d,npn =
�Δemax,0,d,pnp

− �Δemax,0,d,npn

� ⋅

√
2c

A

described in Sect. 4.1.3, two final positions after an Δemax,d 
reduction sequence are possible, namely �Δemax,f ,d,pnp

 or 
�Δemax,f ,d,npn

 . Therefore, by determining the value of the 
remaining eccentricity ef ,d and whether a pnp or npn-type 
maneuver sequence was performed prior to the final 
approach, the initial state 

�
�f ,d,

�f ,d√
2cA

�
 can be determined.

To do so, ef ,d needs to be calculated by subtracting the 
sum of all Δemax,d maneuvers from the initial eccentricity 
eP3,0 first:

Whether the last Δemax,d maneuver is of pnp- or npn-type 
depends on the parity of nreq,d and the initial iteration. The 
parity of nreq,d refers to the following expression:

Using the case distinction listed in Table 5, the initial 
position of the final approach 

�
�f ,d,

�f ,d√
2cA

�
 can be 

determined.

(36)ef ,d = eP3,0 − Δemax,d ⋅

(
nreq,d − 1

)

even =
{
2nreq,d ∶ nreq,d ∈ ℤ

}

odd =
{
2nreq,d + 1 ∶ nreq,d ∈ ℤ

}

Table 5  Case distinction for determining the position of the deputy before the final (drag-based) approach

nreq,d = even nreq,d = odd

ii = pnp �f ,d = sin
(
� − �Δemax,f ,d,pnp

)
⋅ ef ,d ,

�f ,d√
2cA

= − cos
�
� − �Δemax,f ,d,pnp

�
⋅ ef ,d

�f ,d = − sin
(
� − �Δemax,f ,d,pnp

)
⋅ ef ,d ,

�f ,d√
2cA

= cos
�
� − �Δemax,f ,d,pnp

�
⋅ ef ,d

ii = npn �f ,d = − sin
(
2� − �Δemax,f ,d,npn

)
⋅ ef ,d ,

�f ,d√
2cA

= cos
�
2� − �Δemax,f ,d,npn

�
⋅ ef ,d

�f ,d = sin
(
2� − �Δemax,f ,d,npn

)
⋅ ef ,d ,

�f ,d√
2cA

= − cos
�
2� − �Δemax,f ,d,npn

�
⋅ ef ,d

Fig. 11  Exemplary enhanced drag-based phase 3 maneuver trajectory (left) and respective control profile (right) for which one Δemax,d reduction 
is required before the final approach can be initiated
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4.1.7  Example maneuver sequence

Figure 11 shows the 
�
a,

�√
2cA

�
-phase plane (left) and the 

corresponding control pattern ( ay , right) of an exemplary 
drag-based phase 3 maneuver performed with the enhanced 
algorithm for which one Δemax,d reduction step is required 
before the final approach can be initiated. For the sake of 
comparability, the boundary conditions from Table 1 were 
used again. The initial values initial oscillating state vector �
�P3,0,

�P3,0√
2cA

�
 were (384,−228) so that the initial in-plane 

eccentricity eP3,0 was 446.6 m . The overall required maneu-
ver time for phase 3 is tP3 = 4.26h . The remaining in-plane 
eccentricity after the maneuver, which serves as a measure 
of the fidelity of the algorithm, is ef = 1.78 ⋅ 10−3 m.

The maneuver proceeds as follows:

1. Initial coasting for tc,init,d until the deputy reaches 
�Δemax,0,d

 (orange cross).
2. Npn-type sequence with Δemax,d (purple/green/light-blue 

cross).
3. Final approach (pnp) via the original drag-based algo-

rithm (including an initial coasting phase) (blue/red/yel-
low cross).

To indicate the capability of the new method, an exem-
plary maneuver sequence for an increased initial eccentricity 
eP3,0 of 1414.2 m in which four successive Δemax,d reductions 
(iterations) are required is shown, too (see Fig. 12). In this 
case, the overall phase time is tP3 = 11.51 h . In this case, the 
remaining in-plane eccentricity after the maneuver, which 
again serves as a measure of the fidelity of the algorithm, is 
ef = 1.59 ⋅ 10−2 m.

4.2  Enhanced lift‑based phase 3 algorithm

The general idea is similar to the drag-based algorithm and 
so is consequently its structure. Differences are a result of 
the different characteristic of the Δemax,l reduction sequence 
(see Sect. 3.2.1) and discussed in the following.

4.2.1  Determination of nreq,l

As with the drag-based algorithm, in a first step the number 
of iterations nreq,l required to perform the maneuver is deter-
mined using the following equations:

Again, ceil() indicates that the number is rounded up. If 
the initial conditions are inside the feasible range ( nreq,l = 1 ), 
the original phase 3 algorithm, described in 0, is executed 
as it is sufficient to successfully perform the maneuver. If 
the initial conditions are outside of the feasibility range 
( nreq,l > 1 ), the enhanced algorithm is required for a suc-
cessful maneuver.

4.2.2  Initial coasting period tc,init,l

Since the maximum eccentricity reduction Δemax,l for the 
lift-based phase 3 algorithm can only be reached from 
�Δemax,0,l,pnp

 or �Δemax,0,l,npn
 , the deputy is required to coast 

from initial position �P3,0 to the next possible starting posi-
tion. Whether a pnp- or npn-type sequence must be per-
formed at the initial phase 3 iteration depends on the angle 
at the beginning of phase 3 �P3,0:

(37)nreq,l = ceil

(
eP3,0

Δemax,l

)
.

Fig. 12  Exemplary enhanced drag-based phase 3 maneuver trajectory (left) and respective control profile (right) for an increased initial eccen-
tricity eP3,0 of 1414.2 m in which four Δemax,d reductions are required
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If the first maneuver sequence is of pnp type, the respec-
tive coasting time tc,init,l,pnp can be calculated as:

Vice versa, if the first maneuver sequence is of npn type, 
the respective coasting time tc,init,l,npn can be calculated as:

Again, in both cases �Δemax,0,l
= �Δemax,0,l

+ 2�  if 
𝜃Δemax,0,l

< 𝜃P3,0.

4.2.3  Final positions �1emax,f ,l
 after a 1emax,l reduction

In a next step, the final position after an iteration �Δemax,f ,l
 is 

determined for both sequence types (pnp/npn). Therefore, 
the final state after a sequence is pre-calculated and from it 
the respective value determined. Due to the symmetry of the 
two different sequences (pnp/npn), the complementary angle 
can be calculated via Eq. (40).

4.2.4  Successive 1emax,l reduction

Once one of the required starting angles �Δemax,0,l,pnp
 or 

�Δemax,0,l,npn
 is reached, the Δemax,l-iteration starts with the 

pre-calculated acceleration times t1,Δemax
 , t2,Δemax

 , and t3,Δemax
.

4.2.5  Connecting coasting periods tc,l

As with the drag-based algorithm, to reach the subsequent 
position for which the next iteration can be started, the 
deputy is required to perform a connecting coasting phase 
for tc,l . Again, due to the symmetry of the two sequences, a 
pnp-type sequence is followed by an npn-type sequence to 
minimize the required coasting time.

Following a pnp sequence, the required coasting duration 
tc,l,pnp is:

Vice versa, following an npn sequence, the required 
coasting duration tc,l,npn is:

initial iteration(ii) =

{
�Δemax,0,l,pnp

≤ �P3,0 ≤ �Δemax,0,l,npn
∶ npn

else ∶ pnp
.

(38)tc,init,l,pnp =
�Δemax,0,l,pnp

− �P3,0

� ⋅

√
2c

A

.

(39)tc,init,l,npn =
�Δemax,0,l,npn

− �P3,0

� ⋅

√
2c

A

.

(40)�Δemax,f ,l,npn
= �Δemax,f ,l,pnp

+ �.

(41)tc,l,pnp =
�Δemax,0,l,npn

− �Δemax,f ,l,pnp

� ⋅

√
2c

A

.

4.2.6  Final approach

In contrast to the enhanced drag-based algorithm, a coasting 
phase tc,l to reach either �Δemax,0,l,pnp

 or �Δemax,0,l,npn
 is added 

prior the final approach as thereby a successful maneuver can 
be ensured. Otherwise, it would be possible that, even though 
e < Δemax,l holds, the maximum achievable eccentricity reduc-
tion from the current location would be too little due to the 
angular dependency of Δemax,l (see Fig. 9). In the drag-based 
case, a coasting period to the respective location is included in 
the original algorithm anyways and is therefore not required.

The time periods t1,l , t2,l and t3,l for the final approach 
( e < Δemax,l ) are calculated with the original lift-based algo-
rithm presented in 0. As listed in 0, there are two possible 
end positions of the Δemax,l maneuver, either �Δemax,f ,l,pnp

 or 
�Δemax,f ,l,npn

 . Therefore, by determining how large the remain-
ing eccentricity ef ,l is and whether a pnp- or npn-type 
maneuver is performed before the final approach, its initial 
state 

�
�f ,l,

�f ,l√
2cA

�
 can be calculated.

To do so, ef ,l needs to calculate by subtracting the sum of 
all Δemax,l maneuvers from eP3,0 first:

Again, whether the last Δemax,l maneuver is of pnp or npn 
type depends on the parity of nreq,l and the initial iteration. 
The parity of nreq,l refers to the following expression:

With the following case distinction, the initial position �
�f ,l,

�f ,l√
2cA

�
 of the final approach can be determined as dis-

played in Table 6.
As described in 0, �f ,l,

�f ,l√
2cA

 and ef ,l are utilized to calculate 
and simulate the final approach that will lead the deputy to 
the origin.

4.2.7  Example maneuver sequences

Figure 13 shows the maneuver trajectory in the 
�
a,

�√
2cA

�
-

phase plane (left) and the corresponding control pattern ( ax , 
right) of an exemplary lift-based phase 3 maneuver per-
formed with the enhanced algorithm for which one Δemax,l 
reduction step is required before the final approach can be 
initiated. For the sake of comparability, the boundary condi-
tions from Table 1 were used again. The initial values initial 

(42)tc,l,npn =
�Δemax,0,l,pnp

− �Δemax,f ,l,npn

� ⋅

√
2c

A

.

(43)ef ,l = eP3,0 − Δemax,l ⋅

(
nreq,l − 1

)
.

even =
{
2nreq,l ∶ nreq,l ∈ ℤ

}

odd =
{
2nreq,l + 1 ∶ nreq,l ∈ ℤ

}
.
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oscillating state vector 
�
�P3,0,

�P3,0√
2cA

�
 were (30, 30) so that the 

initial in-plane eccentricity eP3,0 was 42.43 m . The overall 
required maneuver time for phase 3 is tP3 = 3.38h . The 
remaining in-plane eccentricity after the maneuver, which 
serves as a measure of the fidelity of the algorithm, is 
ef = 9.47 ⋅ 10−5 m.

The maneuver proceeds as follows:

1. Initial coasting for tc,init,l until the deputy reaches 
�Δemax,0,l,pnp

 (red cross).
2. Pnp-type sequence with Δemax,l (yellow/purple/green 

cross).
3. Coasting for tc,l,pnp to reach �Δemax,0,l,pnp

 and to ensure a 
successful maneuver (light-blue cross).

4. Final approach (pnp) via the original lift-based algo-
rithm (red/blue cross).

Fig. 13  Exemplary enhanced lift-based phase 3 maneuver trajectory (left) and respective control profile (right) for which one Δemax,l reduction is 
required before the final approach can be initiated

Fig. 14  Exemplary enhanced lift-based phase 3 maneuver trajectory (left) and respective control profile (right) for an increased initial eccentric-
ity eP3,0 of 228m in which six Δemax,l reductions are required

Table 6  Case distinction for 
determining the position of the 
deputy before the final (lift-
based) approach

nreq,l = even nreq,l = odd

ii = pnp �f ,l = − sin
(
2� − �Δemax,f ,l,pnp

)
⋅ ef ,l,

�f ,l√
2cA

= − cos
�
2� − �Δemax,f ,l,pnp

�
⋅ ef ,l

�f ,l = sin
(
2� − �Δemax,f ,l,pnp

)
⋅ ef ,l

�f ,l√
2cA

= cos
�
2� − �Δemax,f ,l,pnp

�
⋅ ef ,l

ii = npn �f ,l = sin
(
�Δemax,f ,l,npn

)
⋅ ef ,l,

�f ,l√
2cA

= cos
�
�Δemax,f ,l,npn

�
⋅ ef ,l

�f ,l = − sin
(
�Δemax,f ,l,npn

)
⋅ ef ,l,

�f ,l√
2cA

= − cos
�
�Δemax,f ,l,npn

�
⋅ ef ,l
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To indicate the capability of the new method, an exemplary 
maneuver sequence for an increased initial eccentricity eP3,0 
of 228m in which six successive Δemax,l reductions (iterations) 
are required is shown, too (see Fig. 14). In this case, the over-
all phase time is tP3 = 14.82h . In this case, the remaining in-
plane eccentricity after the maneuver, which again serves as 
a measure of the fidelity of the algorithm, is ef = 3.5 ⋅ 10−3m.

4.3  Critical discussion and foreseen future work

In the following, foreseen future work is presented before 
the article content is critical discussed.

4.3.1  Magnitudes of the available differential drag and lift 
accelerations

For the sake of comparability, the values for the available dif-
ferential drag and lift accelerations used throughout this article 
are chosen following the values presented in the literature [15] 
where is generally assumed that the satellites are of low mass 
and equipped with dedicated large drag and lift plates (see, i.e., 
Fig. 1). This results in very optimistic values for the available 
drag and lift accelerations and consequently achievable maneu-
ver times. More realistic analysis based on a formation of two 
3U CubeSat’s orbiting at an altitude of 300 km at moderate solar 
activity with a mass of 3 kg each indicates significantly lower 
available control authorities of around ay = 6.54 ⋅ 10−6 m/s2 
( ∼ 16.4% ) for differential drag [19]. Thus, future analysis of 
real mission scenarios should be conducted with more realistic 
boundary conditions as it is currently being performed.

4.3.2  Practicability in a real mission scenario

Due to their underlying assumptions (i.e., the constant den-
sity assumption), the developed control sequences are highly 
simplified and their practicability in a real mission scenario 
is limited. Nevertheless, the algorithms are a fast and com-
putationally inexpensive option to design suitable reference 
trajectories or to estimate maneuver times and can thereby 
complement more sophisticated analysis, as e.g. shown in 
[8]. An additional assumption which can hardly be achieved 
in reality is a pure lift- or pure drag-based maneuver (as it is 
assumed in the control algorithms throughout this article) 
as this would assume perfectly matching drag or lift values.

4.3.3  Algorithm related future work

To further increase the understanding and the state-of-the-art 
of the presented algorithms, the following topics are fore-
seen to be addressed:

• Analytical determination of the respective times to 
achieve Δemax (zero search of the derivation of the func-

tions for Δed
(
t1,d

) and the Δel
(
t1,l, t3,l

)
 with respect to the 

respective times).
• In-depth assessment of the influence of relevant param-

eters on Δemax and �Δemax,0
.

• Extension of the algorithms for different formation flight 
scenarios, e.g., formation establishment or formation re-
configuration.

• Development of simultaneous lift and drag controlled 
maneuver sequences (see discussion in Sect. 4.3.2).

5  Conclusion

A common practice to design simple reference trajectories 
or to estimate maneuver times is to calculate the respective 
control patterns using linearized relative motion models and 
the constant density assumption. As the resulting algorithms 
are fast and computationally very inexpensive, powerful 
tools to gain deep insights and to derive general conclusions 
can be created by applying Monte Carlo methods. However, 
the state-of-the-art algorithms inevitably failed if the ini-
tial conditions of the third phase exceed a certain maximum 
range, the so-called feasibility range. Options to enlarge the 
size of the range and therefore to increase the maneuver suc-
cess were proposed in a CEAS Space Journal contribution 
in 2019 and shown to be successful in a follow-up article 
published in the same journal in 2020.

This article builds upon the two preceding articles and 
presents enhanced phase 3 algorithms for differential lift or 
drag, respectively. In an iterative manner, the proposed algo-
rithms reduce the current in-plane eccentricity by the maxi-
mum possible reduction per repetition Δemax until a success-
ful rendezvous is accomplished. As this value can only be 
accomplished from certain conditions in the 

�
�,

�√
2cA

�
-plane, 

coasting periods between the iterations are required. The 
respective control times can be calculated beforehand so that 
the enhanced algorithms are of open-loop nature and render 
all maneuver which previously had to be defined as unsuc-
cessful due to algorithm limitations successful. To realize the 
just described approach, a fast and precise method to deter-
mine a value for Δemax , which equals the size of the feasibil-
ity range and so far could only be determined via Monte-
Carlo simulations, had to be developed. In the future, this can 
be employed to efficiently and precisely assess the influence 
of relevant boundary conditions on the feasibility range.

In summary, the presented results enhance the current 
state-of-the-art of simplified trajectory design algorithms 
by proposing enhanced phase 3 algorithms which solve the 
problematic related to the feasibility range and ensure the 
success of the maneuver in any case.
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