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Alle Rechte, insbesondere das der Übersetzung in fremde Sprachen, vorbehalten. Ohne
Genehmigung des Autors ist es nicht gestattet, dieses Heft ganz oder teilweise auf fo-
tomechanischem Wege (Fotokopie, Mikrokopie) zu vervielfältigen.
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akademische Atmosphäre, in der es keine

”
falschen“ Fragen gibt. In bester Erinnerung

werde ich immer Prof. Dr.-Ing. Christian Miehe behalten, meinen ersten Doktorvater
(April - August 2016), der durch seine Vorlesungen früh mein Interesse für die Kontin-
uumsmechanik weckte und mir meine weitere akademische Laufbahn ebnete. Danken
möchte ich auch meinen beiden Mitberichtern Prof. Dr.-Ing. Dennis Kochmann und
Prof. Dr.-Ing. Stephan Wulfinghoff. Da beide einen prägenden Einfluss auf mich hatten,
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Forschungsergebnisse in Bad-Herrenalb und damit außerhalb des Lehrstuhls in meiner
Tätigkeit und meinen Fähigkeiten.
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Steffen Mauthe für ihre jeweilige Unterstützung während meiner Bachelor- bzw. Master-
arbeit bedanken. Auch die folgenden ehemaligen und aktuellen Mitarbeiter und Mitarbei-
terinnen machten meine Zeit am Institut zu etwas Besonderem: Nadine Steinecke, Leonie
Fischer, Jan Lukas Eurich, Nadine Kijanski, David Krach, Andreas Krischok, Siddharth
Nirupama Sriram, Matthias Ruf, Arndt Wagner, Linda Werneck, Basavesh Yaraguntappa
und viele mehr.

Ein riesiges Dankeschön geht an meine (Schwieger-)Familie für die Bestärkung meines
akademischen Lebensabschnitts und an meine Freunde für die von Zeit zu Zeit durchaus
notwendige und willkommene Ablenkung und Zerstreuung vom verkopften Tagesgeschäft.
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Glossary of most important quantities

symbol description unit

F force vector N

ǫ0 vacuum permittivity F/m

q/Q electric point charge/overall charge in a specific volume C

e/E electric field in current/reference configuration V/m

λ volume charge density C/m3

φ scalar electric potential V

ψ elastic energy density function describing the energy per unit reference
volume

J/m3

p electric dipole moment Cm

p/P polarization or electric dipole moment density in current/reference con-
figuration

Cm/m3

d/D electric displacement in current/reference configuration C/m2

χ electric susceptibility of dielectric matter -

g/G metric tensor in current/reference configuration -

S/B embedded current/reference body -

ϕ deformation map that maps from reference configuration B to current
configuration S

-

v/V velocity vector parameterized in current/reference coordinates m/s

TXS/TXB current/referential tangent space or space of current/referential con-
travariant vectors

-

F deformation gradient ∇Xϕ that maps referential contravariant vectors
onto current contravariant vectors TXB → TXS

-

T ∗
XS/T ∗

XB current/referential normal space or space of current/referential covari-
ant vectors

-

cof[F ] cofactor det[F ]F−T of the deformation gradient that maps referential
covariant vectors onto current covariant vectors A 7→ a = cof[F ]A

-

J determinant det[F ] of the deformation gradient that maps referential
volume elements onto current volume elements V 7→ v = JV

-

ρ/ρ0 mass density in the current/reference configuration kg/m3

C right Cauchy-Green tensor, which is the referential representation of the
current metric g

-

c inverse left Cauchy-Green tensor, which is the current representation of
the referential metric G

-



symbol description unit

t current traction vector, which is force over the current deformed area of
a body

N/m2

σ Cauchy stress tensor that relates a current unit normal of a surface to
the current traction vector n 7→ t = σn

N/m2

t0 current traction vector, which is force per reference unit area of a body N/m2

T̃ first Piola-Kirchhoff stress tensor that relates a reference unit normal of
a surface to the current traction vector N 7→ t0 = T̃N

N/m2

Π energetic potential J

γ volume body forces such as gravitational forces N/m3

t#/q# prescribed surface tractions/charges within a boundary value problem;
quantities can be parametrized in reference or current configuration de-
pending on the integral they are used in

N/m2|C/m2

F#/E# deformation gradient/electric field in physical equilibrium, either macro-
scopic or microscopic, i.e., fields that emerge from solving equilibrium
equations such as the balance of linear momentum or Maxwell’s equa-
tions

- |V/m

T first Piola-Kirchhoff stress tensor that emerges from ∂ψ/∂F with one

contra- and one covariant basis and that relates to T̃ through the metric
T = gT̃

N/m2

P power performed by mechanical and electrical fields J/s

D dissipation rate for a mechanical or electrical process with D ≥ 0 J/s

⋄ generic contraction operator that contracts the tensor corresponding to
their degree, i.e., single, double, triple, ... contraction

-

d dissipation potential describing the dissipative power per volume J/sm3

Π∆t time-discrete incremental variational potential obtained from the time
integration of a rate-type variational potential Π(ϕ̇, φ̇)

J

G generalized strain field incorporating all primary fields such as
G = [F ;E] for example

-

S generalized stress field incorporating all primary dual fields such as
S = [T ;D] for example

-

∂
G
G̃ generalized fluctuation sensitivities; equivalent to the expression ∂G̃

∂G
-

C
algo

homogenized generalized macroscopic tangent operator emerging from
microscopic boundary value problem

-

(̂•) a quantity in Fourier space; in the discrete form, it might emerge from a

discrete or fast Fourier transform of a real-space quantity (̂•) = fft{(•)}
-

ω discrete Fourier transform matrix as defined for the one-dimensional
transform in Equation (5.4)

-

k/K n-dimensional vector of wave numbers reflecting the frequency of the
approximative sine and cosine functions in the current/reference config-
uration

1/m



symbol description unit

Γ0/Γ̂
0

Green operator in real/Fourier space that that can be used to solve
boundary value problems

-

τ polarization tensor, which is the difference of the generalized stresses
and the geberalized stresses of a linear reference material

-

F assembled generalized fluctuation sensitivities -

a electric vector potential C/m

d fracture phase-field parameter, where d = 0 indicates the unbroken and
d = 1 the broken state

-

lc length scale parameter for the regularization of the fracture interface m

gc Griffith constant determining fracture toughness; energy per area that
is released when a crack occurs

J/m2

z crack surface density 1/m

H local crack-driving-force, which is calculated as the local maximum of
energy density over all time-steps including the current one

J/m2

r vector of all weights and biases of an artificial neural network -

N(x, r) artificial neural network output that takes x as input and has weights
and biases r

-
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Abstract

The goal of numerics based science is the replication of our tangible reality within computer-
aided simulations with as little deviation from relevant experiments as possible. Although
the vision of a ’fully simulated world’ might still lie in the distant future, simulation meth-
ods have still undergone an amazing development in the recent decades and found entry
into a wide variety of research areas in engineering and other scientific disciplines. An
ever-growing hardware capability have led to an ever-growing resolution of simulations.
This increase starts to enable the simulation of material behavior on several length scales
and their interaction in computational solid mechanics. From a material physics point of
view, the analysis of several lengths scales is of high interest, as many macroscopically
observable effects are of microscopic origin. One example is the material class of elec-
troactive polymers: Electrodes that are strapped on a soft polymer attract each other
due to electrostatic forces between them and lead to a polymer’s deformation. One can
now observe that one can manipulate the type and strength of said deformation by mix-
ing in high-electric-permittivity particles. In such scenario, the amount, the size and the
distribution of the particles play a crucial role. However, these particles’ size is usually of
much lower length scale compared with the overall component. A further example is given
by microcracks which localize at grain boundaries or preexisting microscopic voids. In the
presence of such localization points, the macroscopic component might break under much
lower loads than one would expect from a purely macroscopically continuous description.
Ideally, one would refine a solution up to the degree that all microscopic effects are consid-
ered. However, despite the massive increase in computational power, full-field simulations
across several scales are still uneconomic and time-consuming, preventing them from be-
ing applied to a wide range of realistic engineering problems. To relieve said problem,
researchers developed homogenization methods and the concept of representative volume
elements. In doing so, one chooses a statistically representative volume of the material
at hand and determines either analytically or numerically effective material properties
of said volume. These effective properties should be computed to describe as accurately
as possible a macroscopically homogeneous body that acts under load the same way the
inhomogeneous material with microstructure would. The present work deals with such
numerical homogenization approaches and applies them to several material effects. We
put emphasis on the computation of effective properties as well as their embedding into
multiscale simulations.
As this work mainly deals with the homogenization of the already mentioned electroactive
polymers, the electrostatics theory will be discussed a little deeper. The basic governing
differential equations of electric fields in vacuum are motivated by using Coulomb’s law for
the attractive and repulsive forces between charges. The theory is then extended to fields
in the presence of solid dielectric matter. Although the differential equations emerging for
electrostatics appear to be similar to the mechanical ones in their structure, there are still
massive differences in the underlying physics they represent. These differences one needs
to consider when interpreting stresses and applying boundary conditions. Next, we intro-
duce the fundamental theory of continuum mechanics. In the framework of large strains,
we put a particular focus on the mapping of tangents, area, and volume elements between
the undeformed and the deformed configuration of the solid body under a given load.
Additionally, different stress measures are considered. The introduced mappings are then
applied to the electric quantities, whose relation between the undeformed reference con-

v
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figuration and the deformed current configuration are of relevance for the construction of
coupled energy potentials. The representation of electro-mechanically coupled differential
equations as a minimization of a coupled energy potential belongs to the field of variational
methods. This variational structure allows for an elegant formulation of the scale transi-
tion in the form of the famous Hill-Mandel macrohomogeneity conditions. We, therefore,
condense the representative volume element to a point problem on the macroscopic scale.
In doing so, the information on the boundary conditions for the representative volume el-
ement is lost. The Hill-Mandel conditions fill this emerging gap by postulating an integral
average rule between the macroscopically observable energy density and the microscopic
one. From this integral relation, appropriate boundary conditions can be recovered. As
this work is mainly concerned with fast Fourier transform-based solution schemes, we will
be exclusively using periodic boundary conditions.
fast Fourier transform-based solution schemes have found increased application over the
past years in the field of homogenization of continuum mechanics related boundary value
problems. They are based on the trigonometric approximation of solution fields and Green
operators’ construction in Fourier space. Amongst others, this approach leads to the fa-
mous Lippmann-Schwinger equation for solving the mechanical equilibrium equation. It
is an equation formally already known from the field of quantum scattering theory.
The scale transition and the computation of adjacent macroscopic tangent operators are
of special interest to this work. We, therefore, present a novel approach by calculating so-
called fluctuation derivatives from the Lippmann-Schwinger equation. Similar approaches
are already known from finite element-based approaches but have, to the best knowledge
of the author, not been carried over to the field of fast Fourier transform-based methods.
In doing so, a new Lippmann-Schwinger-type equation emerges for the fluctuation sensi-
tivities.
This approach is then extended to the field of electro-mechanically coupled systems and
numerically tested. Numerical experiments are performed to investigate the coupled Green
operator’s preconditioning properties, and the convergence behavior is tested for a multi-
scale problem. The multiscale boundary value problem is an electroactive gripper made
of soft polymer in which stiff particles of high electric permittivity are embedded.
One further application on the field of phase-field-based fracture mechanics is investigated.
Therefore, a time-discrete incremental variational potential is used that incorporates the
evolution of a fracture phase-field. Said incremental variational potential in combination
with an operator split for the displacement and phase-field variables grant a fast and
robust computation of fracture processes on the microscale and their homogenization.
The last part of the present work deals with the, in continuum mechanics, rather new field
of machine learning. More specifically, a new discretization method based on artificial neu-
ral networks is motivated and tested. The artificial neural networks are constrained in a
way that they automatically always fulfill the periodic boundary conditions prescribed by
the Hill-Mandel conditions. An electrostatic potential serves as a minimization functional.
This method’s goal is to reduce memory storage by reducing the number of unknowns to
solve for. This is done by solving for the neural network’s weight parameters instead of
the nodal degrees of freedom.



Zusammenfassung

Ziel der numerischen Wissenschaft ist die Replikation unserer erfahrbaren Realität inner-
halb computergestützter Simulationen unter möglichst geringer Abweichung relevanter
Experimente. Auch wenn sich die Vision der ’simulierten Welt’ vermutlich noch in wei-
ter Ferne befindet, so haben Simulationsmethoden in den letzten Jahrzehnten dennoch
eine rasante Entwicklung durchlaufen und Einzug in verschiedenste Teilgebiete der Phy-
sik und des Ingenieurwesens gehalten. Immer leistungsfähigere Computerkomponenten
führen hierbei zu immer hochauflösenderen Simulationen. Auf dem Gebiet der nume-
rischen Festkörpermechanik ermöglicht dieser Anstieg an Rechenkraft zunehmends die
Simulation von Materialverhalten auf mehreren Längenskalen und deren Interaktion. Ma-
terialtheoretisch ist die Betrachtung mehrerer Skalen hochinteressant, da viele makro-
skopisch beobachtbare Effekte mikroskopischen Ursprung oder Einfluss haben. Ein Bei-
spiel sind elektroaktive Polymere: Elektroden, die an weiche Polymere angebracht werden,
führen über elektrostatische Anziehungen zu Deformationen des Polymers. Es zeigt sich
nun, dass man die Art und Stärke der Deformation durch das Beifügen von Partikeln
hoher elektrischer Durchlässigkeit beeinflussen kann. Hierbei spielt sowohl die Menge, als
auch die Form und Verteilung der Partikel eine entscheidende Rolle. Die Partikel sind
jedoch meistens deutlich kleiner als das Gesamtbauteil. Ein weiteres Beispiel sind Mikro-
risse, die an Korngrenzen kristalliner Materialien lokalisieren oder an bereits bestehenden
Mikroeinschlüssen. Sind solche Lokalisationspunkte vorhanden, bricht das makrosopische
Bauteil unter Umständen unter deutlich niedrigeren Lasten, als es von einer makrosko-
pisch rein kontinuierlichen Betrachtung aus zu erwarten sei. Idealerweise würde man eine
Simulation so stark verfeinern, dass sie solche Effekte abdeckt. Doch trotz der gestiege-
nen Rechenleistung sind Vollfeldsimulationen über mehrere Skalen hinweg noch immer
unökonomisch und zeitintensiv, um sie in der Breite auf realistische, ingenieurstechnische
Problemstellungen anzuwenden. Um dieses Problem zu umgehen wurden die Homoge-
nisierungsmethoden und das Konzept der repräsentativen Volumenelemente entwickelt.
Hierbei sucht man sich einen statistisch repräsentativen Bereich des zu simulierenden
Materials aus und bestimmt entweder analytisch oder numerisch effektive Materialeigen-
schaften für diesen Bereich. Diese effektiven Eigenschaften sollten so beschaffen sein, dass
sie möglichst akkurat ein makroskopisch homogenes Material beschreiben, dass aber auf
Belastungen dieselbe Materialantwort wie das tatsächliche mit Mikrostrukturen versehene
Material zeigt. Die vorliegende Arbeit beschäftigt sich mit dieser numerischen Homoge-
nisierung und wendet sie auf verschiedene Materialeffekte an. Ein besonderer Fokus liegt
hierbei auf der Berechnung effektiver Eigenschaften sowie deren Einbettung in Multiska-
lensimulationen.
Da sich diese Arbeit in großen Teilen mit der Homogenisierung von den bereits oben
erwähnten elektroaktiven Polymeren befasst, wird zunächst etwas ausführlicher auf die
Theorie der Elektrostatik eingegangen. Hierbei werden die Grundgleichungen der Elek-
trostatik im Vakuum aus Coulombs Kraftgesetz für Ladungen motiviert und dann auf
Felder in dielektrischer fester Materie erweitert. Obgleich die Differentialgleichungen, die
hieraus hervorgehen, den mechanischen Grundgleichungen sehr ähneln, so unterscheidet
sich die zugrundelegende Physik doch massiv. Dies gilt es vor allem bei der Interpretation
von Spannungen und dem Aufbringen von Randbedingungen zu beachten. Weiters wird
die grundlegende Theorie der Kontinuumsmechanik eingeführt. Im Rahmen der Theorie
großer Verzerrungen werden wir hier besondere Aufmerksamkeit auf die Abbildungen von

vii
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Tangentenvektoren, Flächen- und Volumenelementen zwischen der undeformierten und
der deformierten Lage eines festen Körpers unter Last legen, sowie verschiedene Span-
nungsmaße besprochen. Die Abbildungseigenschaften werden dann auf elektrische Felder
übertragen, deren Beziehungen zwischen der undeformierten Referenzlage und der aktu-
ellen Lage von Bedeutung für die Konstruktion von gekoppelten Energiepotentialen sind.
Die Darstellung elektro-mechanisch gekoppelter Differentialgleichungen als Minimierung
eines gekoppelten Energiepotentials gehört zu den Methoden der Variationsrechnung. Die-
se variationelle Struktur erlaubt dann eine elegante Formulierung des Skalenübergangs
in Form der berühmten Hill-Mandel-Homogenitätsbedingungen. Hierbei wird das reprä-
sentative Volumenelement der Mikroskale zu einem Punkt auf der Makroskale kondensiert.
Durch die Kondenstation auf einen Punkt gehen zwangsläufig die Randbedingungsinfor-
mationen für das repräsentative Volumenelement verloren. Die Hill-Mandel-Bedingungen
füllen diese entstandene Lücke, indem sie eine integrale Mittelungsbeziehung zwischen
der makroskopisch beobachtbaren Energiedichte und der mikroskopischen Energiedichte
postulieren. Aus ihr lassen sich verschiedene Randbedingungen gewinnen. Da sich diese
Arbeit hauptsächlich mit Fourier-basierten Lösungsmethoden befasst, werden hier aus-
schließlich periodische Randbedingungen verwendet.
Fourier-Transformation-basierte Lösungsmethoden haben in den letzten Jahren vermehrt
Anwendung in der Homogenisierung von kontinuumsmechanischen Randwertproblemen
gefunden. Sie basieren auf der trigonometrischen Approximation von Lösungsfeldern und
der Konstruktion Greenscher Operatoren im Fourierraum. Dieser Ansatz führt unter ande-
rem zur berühmten Lippmann-Schwinger Gleichung zur Lösung des mechanischen Gleich-
gewichts. Hierbei handelt es sich um eine Gleichung, die bereits aus der Quantenmechanik
bekannt ist.
In dieser Arbeit liegt ein besonderes Augenmerk auf demMultiskalenübergang und der Be-
rechnung der dafür notwendigen makroskopischen Tangentenoperatoren. Hierbei wird ein
neuartiger Ansatz gewählt, indem sogenannte Fluktuationsableitungen aus den Lippmann-
Schwinger-Gleichungen gewonnen werden. Ähnliche Vorgehensweisen sind bereits aus
Finite-Elemente-basierten Multiskalensimulationen bekannt, wurden nach dem besten
Wissen des Autors bisher jedoch noch nicht auf Foueriermethoden erweitert. Hierbei er-
gibt sich eine neue Lippmann-Schwinger-artige Gleichung für die Lösung der Fluktuati-
onsableitungen.
Die oben genannte Theorie wird dann auf elektromechanisch gekoppelte Systeme erweitert
und numerisch getestet. Hierbei werden numerische Experimente zu Vorkonditionierungs-
eigenschaften des gekoppelten Greenschen Operators durchgeführt und das Konvergenz-
verhalten anhand folgendes Multiskalenproblems getestet: Ein elektroaktiver Greifer aus
weichem Plastik mit eingebetten starren, elektrisch permittiven Partikeln öffnet sich unter
Anlegen eines elektrischen Feldes und der daraus resultierenden Deformation.
Eine weitere Anwendung wird im Bereich der phasenfeldbasierten Rissmodellierung un-
tersucht. Hierbei wird ein inkrementelles energetisches Ratenpotential, dass die Evolution
eines Rissphasenfeldes beinhaltet, verwendet. Dieses Ratenpotential in Kombination mit
einem sogenannten Operatorsplit zwischen den Verschiebungs- und der Phasenfeldvaria-
ble erlaubt die schnelle und robuste Berechnung von Bruchvorgängen auf der Mikroskale
sowie deren Homogenisierung.
Im letzten Teil der Arbeit wird das im Bereich der Kontinuumsmechanik vergleichsweise
neue Feld des maschinellen Lernens behandelt. Im Detail wird eine neuartige Diskretisie-
rungsmethode basierend auf künstlichen neuronalen Netzen motiviert und getestet. Die
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künstlichen neuronalen Netze werden hierbei auf eine Art eingeschränkt, sodass sie die
durch die Hill-Mandel-Bedingungen vorgegebenen periodischen Randbedingungen a priori
erfüllen. Als Minimierungsfunktional dient ein elektrostatisches variationelles Potential.
Ziel der Methode ist die Reduktion des Speicherbedarfs durch Reduktion der unbekannten
Variablen, indem nach den Netzgewichten anstelle der Knotenfreiheitsgrade gelöst wird.





Chapter 1

Introduction and motivation

This work deals with the computational homogenization of materials that have a distinct
microstructure and the embedding of the computational homogenization into a multiscale
framework. Homogenization allows for the prediction of effective material properties of
such materials and, thus, a smart design of microstructures. These so-called metamaterials
are mainly known from electromagnetism [13, 88, 112], where they can be used to obtain
negative refractive indices and invisibility cloaking. However, they are recently finding
their way into classical mechanics [8], where they can be used for applications such as
unfeelability cloaks [18] or ultralight materials [170]. To understand the interaction of
such structures in multi-component machines such as an airplane or car at much larger
scales, embedding computational homogenization schemes into a multiscale framework is
of great use. This work will present the homogenization and multiscale framework for
different material models at small and large strains, such as viscoelasticity and electro-
mechanical coupling. This framework is numerically tested within fast Fourier transform-
(FFT) and artificial neural network (ANN)-based schemes.

1.1. Homogenization of composites

Homogenization in physics deals with the description of properties based on physical
effects appearing on far smaller length scales. First thoughts on this sort of problem
have been conducted by Maxwell [121]: How could one describe the electric field in the
matter, while it is build of atoms that are assembled in heterogeneous lattices and are
moving chaotically? Describing such behavior on scales far larger than the atomic lattice
demands accurate averaging methods, which are not always trivial [157].

Similar problems arise when predicting the mechanical behavior of matter. The ideas
of analytical homogenization in solid mechanics trace back to only a few years later, when
Voigt thought of the possibilities of expressing partially heterogeneous microscopic mod-
uli through effective macroscopic moduli. His work led to the so-called Voigt-bound [198].
Much later, Reuss proposed an averaging of Hooke’s law in the inverse form, giving the
so-called Reuss-bound [159]. While these two models were widely used for composites,
Taylor [187] and Sachs [167] derived the corresponding models for polycrystals under
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plastic deformation, assuming constant stress or constant strain in the microstructure
respectively, see also Geers et al. [53] for a more detailed discussion. It was Hill

who proved that under the assumption of uncorrelated stress and strain fields, those two
bounds form the most general upper and lower bounds of a given composite [75]. In
the following years, the theory of bounds was massively improved, inter alia, by Hashin

& Shtrikman [70] and Willis [204]. For statistical approaches, see Kröner [102].
Even though the continous and the statistical approach follow different variational prin-
ciples, they share the same underlying Euler equation. It is the form of the celebrated
Lippmann-Schwinger equation, which is already known from quantum mechanical scat-
tering theory [113]. Therefore, solution strategies such as Fourier-transform-based ap-
proaches were already available. Further contributions for analytically predicting the ef-
fective properties of heterogeneous materials are, among others, the self-consistent method
(Budiansky [19], Hill [77]), the Mori-Tanaka method (Mori & Tanaka [135]), and
the differential method (Norris [142]). For a more general and deeper background on
analytical methods for homogenization, the reader is referred to Hill [78], Suquet [185],
Ponte Castañeda [151] and Milton [133].

1.2. Physical homogenization problems

The present work is concerned with physical problems of material nonlinearity such as
viscoelasticity and phase-field-induced fracture, geometrical nonlinearity within the frame-
work of large strains, and coupled problems for electroactive polymers (EAP). A short
overview of these frameworks will be given in the following subsections.

1.2.1. Materially and geometrically non-linear problems

Many materials in engineering and natural processes exhibit non-linear behavior. The
reasons of this non-linearity can be manifold. In general, we distinguish between ge-
ometrical non-linearity and material non-linearity. Geometrical non-linearity concerns
deformation processes that are so large that the simplifications made in the linear theory
are not valid anymore. These large deformations happen quite often in soft materials
such as polymers but are also observed in the failure of stiffer materials such as steel.
The theoretical foundation of large-strains’ fundamental framework can be found among
others in Ciarlet [27] and Marsden & Hughes [117]. In the present work, the ge-
ometrical non-linearity is necessary to model large deformation in electro-mechanically
coupled polymers, as described in the next section.
Material non-linearity, on the other hand, includes a large variety of material effects such
as viscoelasticity, plasticity, and fracture. Quite often, these non-linear effects are time-
dependent, which calls for distinct mathematical treatments. In this work, we will use the
concept of incremental variational potentials to model time-dependent material behavior
where we refer to existing works of Hackl & Fischer [68], Ortiz & Repetto [143],
Maugin [119], Miehe [125] and Lahellec & Suquet [105]. These variational formu-
lations will then allow for an elegant way of formulating physical problems and their scale
transition.
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a) b)

electrodes

weight

natural rubber

surface charges

Figure 1.1: Experiment suggested by Röntgen [162] to demonstrate electrically driven de-
formation of a polymer. The natural rubber strip is clamped on top and elongated, utilizing
a weight attached to the strip’s bottom. In a second step, the positive electrode of a Holtz
electrostatic generator is rubbed to one side, and the negative electrode is rubbed to the other
side, see a). One then observes a further elongation of the rubber strip, which grows as the area
grows, which was in contact with the electrodes. The electrostatic attractive Coulomb forces
between the surface charges lead to a contraction in the strip’s horizontal direction and thus due
to the incompressibility of rubber to elongation in the vertical direction.

1.2.2. Electro-mechanical coupling phenomena

One main focus of this work is the computational homogenization of a specific type of
electro-mechanically coupled materials: electroactive polymers (EAPs). These kinds of
polymers exhibit possibly large deformations when being subjected to an electric field.
The first experiments on that field were already conducted in 1880 by Röntgen [162]. In
his work, he proposes an experimental set-up in which a rubber band is strapped on top
and is loaded with weights at its bottom end as shown in Figure 1.1. After deformation
due to gravitational forces, an assistant is supposed to electrify the rubber on both sides
using a Holtz electrostatic generator’s positive and negative electrodes. One then observes
a further elongation of the rubber band, which grows as the electrified area grows1.
EAPs can be roughly categorized into two subgroups, electronic and ionic EAPs. Elec-
tronic EAPs are polymers that react mainly due to the Coulomb attractive or repulsive
forces generated between opposite or same sign charges. The rubber experiment of Rönt-

gen falls into this category, as the charges of different sign on the surface of the natural
rubber follow Coulomb’s law and attract each other. Due to the incompressibility of the
natural rubber, it extends into the perpendicular direction. Electronic EAPs demand for
a high voltage for deformation, but have low response times [209]. This drawbacks has
recently been overcome by the molecular design of the polymers and special geometric
architectures, see Figure 1.2. The second kind is ionic EAPs. In contrast to the first
kind, ionic EAPs do not only deform due to the attraction of electrodes but due to the
movement of the electrically induced diffusion of ionic liquids within the polymer.
This work focuses on electronic EAPs. The theoretical foundations of electro-mechanically

1In this work, Röntgen also vigorously attacks the idea of another scientist who carried out similar
experiments but came to the conclusion that the electric field must change the elastic properties of the
material.
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Figure 1.2: A Polydimethylsiloxan bottlebrush elastomer film of height h0 is subjected to a volt-
age of up to 3.5 kV. The film then shows an increase in the surface area of up to four times the un-
deformed area before electrical breakdown. Image courtesy of Vatankhah-Varnoosfaderani
et al. [197] c©2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

coupled material response were built by Toupin [192], Eringen [42] as well as Tier-

sten [191], see also Maugin [120] and Kovetz [100] for more recent fundamental works.
In this work, we will mainly use constitutive continuum approaches of finite elasticity to
model electronic EAPs. The framework for these implementations at finite strains can be
found among others in Dorfmann & Ogden [39] and McMeeking & Landis [123],
see also Vu et al. [202] for a non-dissipative and Miehe et al. [128] for a dissipa-
tive variational framework. Amongst recent analytical homogenization schemes for EAP
composites, we mention the references [21, 34, 110, 152, 164, 178, 179].

1.2.3. Micromechanically induced fracture

Fracture mechanics and the prediction of materials’ failure have been a vivid field of
continuum mechanics for decades. Naturally, many engineering tasks are concerned with
how long a component or building lasts under given loads and under which condition
failure occurs. Simultaneously, it is a challenging field as it touches many fields such as
stability analysis or singularity treatment in numerical methods. Early works lead back
to the seminal works of Griffith [66], Irwin [84], and Rice [160] who derived critical
parameters which characterize when a material locally fails. There are several methods
to implement such failure behavior. In this work, we will employ a phase-field-based
approach to fracture, which has become quite popular in the mechanics’ community in
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the past few years. The idea for phase separations using said phase-field models origi-
nate from the field of image segmentation [139] and was carried over to computational
mechanics by Francfort & Marigo [50], who reformulated the fracture process into
an energetic minimization framework. The numerical treatment was further specified
by Bourdin [14]. Later, Miehe et al. [126, 132] formulated a variational potential
together with an irreversibility constraint for the crack evolution to avoid nonphysical
crack-healing processes. The said formulation comes along with the introduction of a
history field of maximum energy and a pass-forward scheme, which is the backbone of the
formulation used in this work.

1.3. Numerical solvers for homogenization problems

Analytic solution schemes provide fast and accurate solutions to physical boundary value
problems. However, they are usually limited to strict restrictions on the microstructure
topology or material law. In cases where the complexity of the microstructure signifi-
cantly exceeds those restriction, computational homogenization methods can numerically
compute effective responses based on discretized microscopic boundary value problems.
There are different numerical methods to carry out these computations. In the field of
continuum mechanics, most of these numerical computations are performed through the
finite element method (FEM). However, more recently, the use of alternative solution
schemes has risen in popularity. This work will focus on two relatively new methods in
the field of computational mechanics: Fast Fourier transform-based solvers and artificial
neural network-based solvers. The characteristics and development of these solvers will
be briefly introduced below, where the introduction to the fast Fourier transform-based
solvers is partially taken from [64].

1.3.1. Fast Fourier transform-based solvers

In 1994, Moulinec & Suquet presented an iterative algorithm to numerically com-
pute the effective response of periodic representative volume elements (RVEs) based on
discrete Fourier transforms (DFTs), including the analysis of the plastic behavior. They
implemented a fixed-point method as the main solver, often referred to as the basic scheme
[136, 137]. This method is fastly converging for small phase contrasts and can be efficiently
implemented by using fast Fourier transforms2 (FFTs), but shows only slow convergence
rates when the phase contrast is high. Recently, many modifications to this scheme have
been investigated. Eyre & Milton [45] developed a faster version of the fixed-point
version, often referred to as the accelerated scheme. Later, Brisard & Dormieux [15]
and Zeman et al. [211] simultaneously suggested the use of conjugate gradient meth-
ods as the primary solver, see also Vondřejc [199] for recent applications. Conjugate
gradient methods usually compare favorably with the fixed-point method regarding con-
vergence rates [54, 86]. However, for nonlinear material models, the conjugate gradient
method demands a linearization of the Lippmann-Schwinger equation, and thus a higher

2The fast Fourier transform is a highly efficient implementation of the discrete Fourier transform that
traces back to Gauss’s seminal work [72]. The Cooley-Tukey algorithm is the most common one used
[29]. A very powerful code for computing the FFT exists in the form of the FFTW-library [51], which is
also used in the present paper.
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amount of Fourier transforms. More recently, the use of FFT-based approaches for pre-
conditioning an FEM-solution has been researched [111, 172]. On the side of material
modeling, FFT-based homogenization methods for a variety of phenomenon such as vis-
coplasticity [41, 55, 109, 124], fracture [108, 182] including phase-field models [26, 115],
and microstructure evolution [25, 177, 203] have been implemented.

1.3.2. Artificial neural network-based solvers

Artificial neural networks (ANNs) were first introduced as a mathematical concept to
mimic the learning processes in real human neural networks [71, 122]. They attracted
great attention when it was shown that they indeed reproduce some aspects of human
learning, such as wrong grammatical conjugation in language learning. With the rise in
computational power and GPU parallelization, artificial neural networks are nowadays
used for a broad range of applications such as image and speech recognition [101, 183],
and predictive modeling of user behavior on social and media websites. These tasks are
usually defined by a vast amount of accessible data in combination with complex under-
lying interactions and relations of said data. The use of statistical approaches such as
ANNs or additional machine learning algorithms such as support vector machines [184]
or anomaly detection [37] enable the fitting of machine-learning-based models to such
complex behavior in the data without having to explicitly formulate complex mathemat-
ical laws. Recently, advances in machine learning point to a combination of well-known
mathematical laws and statistic machine learning approaches by physically constraining
the output of ANNs, see Raissi et al. [154], for example.
The aforementioned properties and strengths of machine learning algorithms paved the
way for continuum mechanics and material modeling applications. First research ap-
proaches in this area were concerned with predicting a material response based on machine
learning through experimental stress-strain data [56, 83, 107]. In the field of homogeniza-
tion, the prediction of effective properties based on RVE information is a task that might
be realized through machine learning concepts, as demonstrated, for example, in Le et

al.[107] and Yan et al. [207], see also Bock et al. [11] for a recent review. In such
approaches, the training process’s data is usually generated numerically, employing a dis-
crete solver such as FEM- or FFT-based schemes. This kind of homogenization procedure,
where machine learning predictions replace computationally costly microscopic boundary
value problems, have the possibility to speed up multiscale simulations [32, 52]. In the
field of microstructure pattern recognition, we want to highlight the works of Liu et

al. [114], Bessa et al. [9], and Cavaliere et al. [24]. In these works, areas of con-
stant stress are detected by means of cluster analysis and the mechanical response is then
approximated by Hashin-Shtrikman-bounds.
In this thesis, we analyze a method to numerically solve boundary value problems through
artificial neural networks. We now focus on the work of Lagaris et al. [103], which sug-
gested the construction of ANNs that fulfill some given boundary value problems a priori
and use them as trial functions for the differential equation at hand. The constraining is
performed utilizing constraining functions that are multiplied with the original ANN. The
optimization is then performed using the squared error of the differential equation as the
objective function. The construction of such constraining functions might be challenging,
so Berg & Nyström [7] suggested a generalization of constraining functions to com-
plex geometries using additional trained ANNs. For our purpose, we adopt the method
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effective properties

micro-equilibrium

macro-equilibrium
macroscopic load

Figure 1.3: Schematic layout of a multiscale simulation. A macroscopic problem is discretized
employing finite elements, for example. At the integration points, the macroscopic load, i.e.,
the deformation gradient, is passed to a microscale simulation. A volume element with a dis-
tinct microstructure represents the microscale. Effective properties such as macroscopic stress
and stiffness are computed on the microscale under appropriate boundary conditions and are
passed back to the macroscale. In contrast, a one-scale solution would simply evaluate a given
constitutive law using the macroscopic deformation gradient instead of calling a microscopic
simulation.

to solve homogenization problems with periodic boundary conditions. For such boundary
conditions, the ANN can be explicitly constructed so that periodicity is always fulfilled.
Additionally, the method is performed within an integral variational framework or weak
form to easily treat the inhomogeneities that appear in homogenization problems. See
also Nabian & Meidani [140] for a recent application using the differential equation’s
strong form.

1.4. Multiscale approach for first-order homogenization

Multiscale simulations aim for the consequent usage of homogenization results within a
macroscopic boundary value problem. Namely, the effective properties obtained from
the homogenization procedure are used as a material law. In doing so, one can assume
isotropic materials on the microscale and still observe anisotropy on the macroscale due
to geometrically anisotropic effects as it is the case for laminates, for example. The
extraction of the effective properties and their embedding into a macroscopic computation
is called scale transition and is the major task of multiscale homogenization. Depending
on the microstructure’s size and structure, there are different approaches for realizing
this scale transition. In this work, we will follow the first-order homogenization ideas,
which assumes a strict scale separation between the macro- and the microscale. An
asymptotic expansion of the microscopic kinematic fields is performed [6, 168], and an
energetic criterion, the Hill-Mandel conditions [76] is employed as a macro-micro-energy
transition rule. One is then able to derive microscopically compatible boundary conditions
and perform a microscopic simulation for a discretized RVE, whose effective response is
upscaled to a macroscopically discretized boundary value problem, see Figure 1.3 for a
conceptual sketch. According to the reviews on multiscale simulations [89, 144], the idea
of numerically implementing such a multiscale procedure by means of a finite element
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discretized microstructure goes back to Renard & Marmonier [158]. The method
was then further generalized, refined, and extended among others by Smit et al. [181],
Feyel & Chaboche [47], Terada et al. [189], Terada & Kikuchi [190] Miehe

et al. [129], Kouznetsova [98], see also Schröder [175] for a review. Recently,
the extension of the homogenization and multiscale framework to coupled problems such
as thermo-elasticity [145, 146], magneto-elasticity [33, 85, 90, 91], and similarly in the
area of electro-elasticity [92, 138, 174, 176] has drawn the attention of researchers. The
embedding of the latter homogenization schemes within an FE-FFT multiscale framework
was performed inter alia by Spahn et al.[182], Kochmann et al. [95, 96], Göküzüm

et al. [62, 64], and Rambausek et al. [155].
The research conducted in this work is built on the results mentioned above and focuses
on four major points:

1. An FE-FFTmultiscale framework, including a consistent scale-bridging technique, is
presented, where a particular focus lies on the derivation of the effective properties of
a RVE [62]. It serves as an alternative to finite difference-based approaches [182, 95]
and is tested for materially and geometrically nonlinear problems.

2. Motivated by recent research efforts and new fields of application for electroactive
polymers (EAPs) [4, 22, 93, 99, 149], the FE-FFT multiscale framework derived
in the previous part is extended for the computational homogenization of electroe-
lastic effects in heterogeneous composites [64]. Recently, it could be shown that
for elastomers a smart design of composite structure allows for the enhancement of
electromechanical coupling. The overall electroactivity can be enhanced by enrich-
ing the elastomeric matrix with particles of high electric permittivity [23, 82, 212].
In doing so, the strength of the electric field that needs to be applied to achieve a
certain deformation can be reduced.

3. Fracture within materials plays a huge role in their material response, where crack
initiations and paths are often highly dependent on the material’s underlying mi-
crostructure [69]. Therefore, we establish an incremental variational framework for
phase-field fracture on the microscale [139, 50, 14, 126]. The variational structure
then allows for the identification of macroscopic material properties in the presence
of a microscopic fracture phase-field. The FFT-based implementation is first tested
for three-dimensional RVEs. An FE-FFT multiscale simulation is carried out to
demonstrate microstructurally induced anisotropic crack behavior in a second step.
Codes are provided in open repositories [60, 61].

4. Driven by recent breakthrough developments in the field of machine learning, an
artificial neural network-based solution scheme [103] for periodic homogenization
problems is presented [63]. It is numerically tested for electrostatic problems for
different microstructure realizations with a focus on the training behavior of the
ANN. Furthermore, a Tensorflow code [1] used to generate some of the results is
provided.
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Chapter 2

Foundations of electrostatics and continuum

mechanics

This chapter lays out the basic concepts of electrostatics and continuum mechanics at large
strains. The electrostatic theory section is mainly motivated using basic experimental
observations on the attractive and repulsive forces of charges. In general, the theory of
electrostatics is well developed, and there are several works an author can draw inspiration
from when incorporating the theory in his work. In the case of the present work, the
derivations mainly follow the way the theory is outlined by Rebhan [157]( c©Elsevier
B.V.). When outlining the concepts of continuum mechanics, a particular focus is set on
the mapping properties of tensors as well as on stress relations [130].

2.1. Fundamentals of electrostatics

In this section, the fundamental governing equations of electrostatics are motivated. His-
torically, the effect of electricity was first observed in amber (ancient greek. electron =
amber). Much later, the research on electro- and magnetostatic forces accelerated in the
18th century, leading to the discovery of two different charges - positive and negative - and
Coulomb’s law. In the 19th century, Faraday discovered electric fields’ induction through
the magnetic field changing in time. It was Maxwell who integrated those intermediate
results into its final form, which we nowadays call the Maxwell equations. To motivate
the Maxwell equations, we will recapitulate Coulomb’s law and the superposition princi-
ple to derive the static version of the Maxwell equations in vacuum. The equations are
then considered in an energetic context and are appended for the presence of polarizing
material. Both the historical and mathematical elaborations are kept relatively short, for
a more detailed discussion on the fundamental theory of electrostatics and -dynamics, the
reader is referred to Rebhan [157], see also Feynman [48].
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q1 q2

r1 − r2

F12 F21

Figure 2.1: Coulomb’s law: Two charges causing an equal force acting on both charges in
opposite directions. The axis of the forces lies on the connecting line between the two charges.

2.1.1. Maxwell equations of electrostatics

Given one charge q1 at location r1 and a second charge q2 at location r2, it can be observed
that for charges of the same sign, a repelling force is acting on the charges, while charges
of different signs attract each other. As shown in Figure 2.1, the forces on the charges
point in opposite directions. The axis of forces lies on the connecting line between the
two charges. Coulomb’s law gives the forces’ strength and direction

F12 =
1

4πǫ0
q1q2

r1 − r2

|r1 − r2|3
= −F21, (2.1)

where ǫ0 ≈ 8.854187 · 10−12 [As/Vm] is the free space permittivity. Interestingly, the
inner structure of electrons and protons, the carriers of negative and positive charges,
does not affect the electric field they induce. Otherwise, it would not be possible to
describe the charges with a scalar value. The fact that the forces then lie on a connecting
line between the charges is a consequence of the isotropy of space. Furthermore, it can be
experimentally observed that a superposition principle governs the interaction of several
charges

F(ri) =
qi

4πǫ0

∑

k 6=i

qk
ri − rk

|ri − rk|3
. (2.2)

Dividing the force by the charge qi gives the total electric field, emerging from all other
charges at location ri

e(ri) =
1

4πǫ0

∑

k 6=i

qk
ri − rk

|ri − rk|3
. (2.3)

The definition of electric field and force allows us to measure the charge’s value. We
combine Equation (2.2) with (2.3) and write

F(ri) = qie(ri). (2.4)

Taking into account that the point charge qi can take any location in space, the latter
equation can be formulated as

F(r) = qe(r). (2.5)

Due to the superposition principle, we can now measure the force acting on a test charge
in order to determine the strength of the electric field as shown in Figure 2.2. Next, we
move to a continuous description of the electric field as visualizied in Figure 2.3. We,
therefore, introduce a volume charge density

ql = λ(rl)v
∆
l . (2.6)
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Absolute electric field Measured electric field

q

Figure 2.2: The absolute electric field emerges from the test charge q and the reference electric
field. The force acting on the test charge allows for the measurement of the reference field.

|r − r′| |r − r′|

r

r

rl

rl

ql

∆vl dv′

λ(r′)

Figure 2.3: Transition from a point charge based description on the left to a charge density
based desription visualized on the right: A volume charge density λ(rl) is introduced that
fulfills the relation ql = λ(rl)∆vl. Localization to the infinitesimal volume dv′ then allows for
the computation of the electric field using an integral according to Equation (2.7).

Inserting the latter equation into the definition of the electric field (2.3) and localizing
gives the integral form

e(r) =
1

4πǫ0

N∑

l=1

λ(rl)(r − rl)

|r − rl|3
v∆l → 1

4πǫ0

∫

R3

λ(r′)(r − r′)

|r − r′|3 dv′. (2.7)

Having the identity ∇ 1
|r−r′|

= − r−r′

|r−r′|3
at hand, the latter equation can be further simpli-

fied

e(r) = − 1

4πǫ0
∇
∫

R3

λ(r′)

|r − r′|dv
′, (2.8)

where we could pull the gradient operator out of the integral, as it acts on r and not on
r′. We now define the scalar electric potential φ as follows

φ(r) =
1

4πǫ0

∫

R3

λ(r′)

|r − r′|dv
′ (2.9)
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q1 q2

F21

Figure 2.4: Measuring the work done between two charges. One charge is kept fixed while the
other charge pulls a spring [157].

and see that the electric field is the gradient of the latter scalar-valued function

e = −∇φ. (2.10)

It thus always fulfills the condition

curl e = 0 , (2.11)

which is also known as the static Faraday’s law. We can now further use the property of
the Dirac delta function

δ(r − r′) = −∆
1

4π

1

|r − r′| = − 1

4π
∆

1

|r − r′| (2.12)

in order to reformulate Equation (2.8). Applying the divergence operation on both sides
then leads to

div ǫ0e =

∫

R3

λ(r′)δ(r − r′)dv′ = λ(r). (2.13)

We see that an electric field caused by an arbitrary volume charge density λ(r) is governed
by the two equations

curl e = 0 and div ǫ0e = λ(r), (2.14)

which in combination are called the Maxwell equations of electrostatics. These can be
transformed into a useful integral form

∮

c

e · ds = 0 and

∫

a

ǫ0e · da =

∫

g

λ dv = Q, (2.15)

where c and a are closed curves and areas respectively, and Q is the integration of the
charge density over a volume g being enclosed by the area a. Localization of the latter
equation would recover the differential equations again.

2.1.2. Energy of charges

One can define the work performed by two charges on each other by the thought exper-
iment shown in Figure 2.4: The charge q1 is kept at its place while the force F21 acting
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on charge q2 pulls an attached spring. In line with Equation (2.5), an extension from
location r2 to r′2 results in the overall work

A = q2

∫ r′2

r2

e1(r)ds = −q2
∫ r′2

r2

∇φ1(r)ds

= q2(φ1(r2)− φ1(r
′
2)) =

q1q2
4πǫ0

(
1

|r2 − r1|
− 1

|r′
2 − r1|

)
,

(2.16)

where we inserted Equation (2.9) for the scalar electric potential. As the spring is only
moving in x1-direction, we only used the x1-component of the electric field in the latter
equation, denoted as e1 = ∇φ1. The maximum work performed by this system appears
for r′

2 → ∞ and gives

Amax =
q1q2
4πǫ0

1

|r2 − r1|
= q2φ1(r2), (2.17)

which can be regarded as the potential energy stored in the system of charges before the
displacement. With this explanation, we can interpret the energy

We = q2φ1(r2) =
q1q2
4πǫ0

1

|r2 − r1|
= q1φ2(r1) =

1

2
(q1φ2(r1) + q2φ1(r2)) (2.18)

as the electric interaction energy of two charges. Having a system of N point charges,
the overall interaction energy of the system is

We =
1

4πǫ0

N−1∑

i=1

N∑

j>i

qiqj
|ri − rj |

=
1

2

1

4πǫ0

N∑

i,j=1
i 6=j

qiqj
|ri − rj|

. (2.19)

Analogously to the previous section, we perform a transition to a continuous description
in terms of charge densities. With relation (2.9) at hand, we arrive at

We =
1

8πǫ0

∫

R3

∫

R3

λ(r)λ(r′)

|r − r′| dvdv
′ =

1

2

∫

R3

λ(r)φ(r)dv. (2.20)

Using the Gauss equation λ = div ǫ0e = −ǫ0 div∇φ and integration by parts, the latter
equation can be recast into

We = −ǫ0
2

∫

R3

φ div∇φdv = −ǫ0
2

∮

R2

φ∇φ · nda+ ǫ0
2

∫

R3

∇φ · ∇φdv. (2.21)

For the thought experiment as visualized in Figure 2.4, the scalar electric potential is de-
scribed through Equation (2.9). From Equation (2.9), we obtain the following dependen-
cies of the scalar potential φ ∼ 1/r and its gradient |∇φ| ∼ 1/r2 and thus φ∇φ ∼ 1/r3.
As the area integral only scales quadratically in terms of the radius

∮
R2 nda ∼ r2, for

r → ∞, the boundary integral vanishes and we identify the energy

We =

∫

R3

ǫ0
2
e · edv, (2.22)

where the integrand is the well-known energy density function for the electric field in
vacuum

ψe =
ǫ0
2
e · e. (2.23)
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r′

rλ(r′)

p

Figure 2.5: Anisotropic charge density λ(r′) leading to an infinitesimal polarizing momentum,
which influences the outer electric field in r ≫ r′.

2.1.3. The electric field in matter

So far, the previous sections have covered the electric fields emerging from point charges
or charge density distributions in vacuum. Next, the electric field in matter is explored.
The matter is composed of atoms which compose molecules or crystal lattices. Despite
some of those material having zero average charge, the distribution of charges within the
latices might be highly anisotropic. This microscopic anisotropy can have a major impact
on an external macroscopic field, as shown for dielectrics in the subsequent sections. We
will therefore first perform a dipole expansion of the electric field. Next, the outer and the
inner electric field of a sphere with charge density distribution is investigated. Focus lies
in materials that are able to polarize, i.e. will change their charge distribution when being
exposed to an electric field. The Maxwell equations in matter will therefore be modified
compared to the ones in vacuum. Finally, an energy density function for dielectric matter
is derived.

Dipole expansion of the electric field. Recalling our definition of the scalar electric
potential

φ =
1

4πǫ0

∫

R3

λ(r′)

|r − r′|dv
′, (2.24)

we know from experiments that the volume charge density λ(r′) can have nonlinear distri-
butions as visualized in Figure 2.5. This nonlinearity results in effective fields in distances
far more extensive than the length scales of the individual molecules. We now want to
investigate this effect for the case of dielectrics by applying a dipole expansion to the
scalar electric potential (2.24). Introducing the definition of the unit direction vectors
er =

r
r
and e′r =

r′

r′
and the scale relation ǫ = r′

r
, we can rewrite the term

1

|r − r′| =
1√

r2 + r′2 − 2rr′er · e′r
=

1

r

1√
1 + ǫ2 − 2ǫer · e′r

. (2.25)

In distances far away from the charge density distribution r ≫ r′, ǫ becomes very small
in comparison. We thus can perform a Taylor series on x as

1√
1 + x

= 1− x

2
+

3

8
x2 −O(x3) (2.26)
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Along with x = ǫ2 − 2ǫer · er, we obtain

1

|r − r′| =
1

r
(1 + ǫer · e′r + ǫ2(

3

2
(er · e′r)2 −

1

2
+O(ǫ3)). (2.27)

In line with the previous argumentation, if r ≫ r′, ǫ becomes very small. We therefore
truncate the latter equation for order of ǫ ≥ 2. Reinserting the definition of ǫ then gives

1

|r − r′| =
1

r
+

1

r2
(er · r′). (2.28)

Inserting this expression into the scalar electric field (2.24) gives the dipole form

φ =
1

4πǫ0
(
Q

r
+

p · er
r2

) = φ(1) + φ(2), (2.29)

where Q is the overall charge computed from the charge distribution and p is the dipole
momentum defined as

Q =

∫

R3

λ(r′)dv′ and p =

∫

R3

λ(r′)r′dv′, (2.30)

and where we define the scalar electric potential emerging from the overall charge φ(1) =
1

4πǫ0

Q
r
and the scalar electric potential emerging from the dipole momentum φ(2) = 1

4πǫ0

p·er
r2

.

The outer electric field. According to the dipole expansion, the contribution of the
scalar potential related to the polarisation within matter of a molecule m that is able to
polarizeis

φp,m =
1

4πǫ0

(
Qm

|r − rm|
+

pm · (r − rm)

|r − rm|3
)
, (2.31)

where rm is the center of mass of the molecule at hand. A material that can polarize is
also often called an isolator, as the polarization field ep in the isolator is adjusting against
the external electric field eext. As a consequence of the superposition principle, the overall
electric field can be split as follows

e = eext + ep. (2.32)

Here, ep is the field that emerges from the superposition of all single fields of the molecules

ep =
∑

m

ep,m. (2.33)

The electric field that appears at the place of a particular molecule as the result of a
superposition of external fields and fields of all other molecules arises as to

em = eext +
∑

n

(ep,n)− ep,m. (2.34)

This electric field that acts on the molecule m, emerges from the superposition principle
as the addition of the external field plus the electric field created by all other molecules
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n. It can be seen as an overall external field that acts on the molecule n. Along with the
relations (2.32) and (2.33), we obtain

em = e− ep,m. (2.35)

For calculating the outer field we now take a closer look at the scalar electric potential
(2.31). We see that the integral term (2.30)2 accounting for the dipole momentum depends
on the choice of coordinate system. We thus first define a point of reference for each
molecule, where we choose its center of charge rm(t). We split this location into the
time-independent time average

rm = lim
t→∞

1

2t

∫ +t

−t

rm(t
′)dt′ (2.36)

and the time-dependent fluctuations r∆
m(t) around the average. In summation, the center

of mass is then described through

rm(t) = rm + r∆
m(t). (2.37)

To a certain extent, this split resembles the decomposition of the mechanical strains into
macroscopic constant and fluctuating contribution, which we will see in the subsequent
sections. Analogously to the location, the dipole momentum is decomposed

pm(t) = pm + p∆
m(t). (2.38)

By definition (2.36), the time average of the fluctuating contributions of rm(t) and pm(t)
must vanish

p∆
m(t) = 0 and r∆

m(t) = 0 . (2.39)

The time-dependent scalar electric potential differentiates from the static electric poten-
tial (2.31) only in a correction term that is negligibly small at speeds much slower than
light. For a detailed proof, the reader is referred to Rebhan [157]. We thus can write

φp,m(r, t) =
1

4πǫ0

(
Qm

|r − rm(t)|
+

pm(t) · (r − rm(t))

|r − rm(t)|3
)
. (2.40)

Using the decomposition of the molecule location (2.37) and performing the dipole ex-
pansion analogously to the previous section, we obtain

1

|r − rm(t)|
=

1

|r − rm − r∆
m(t)|

=
1

|r − rm|
+

(r − rm) · r∆
m(t)

|r − rm|3
+O

(
1

|r − rm|3
)
.

(2.41)

Using this relation and inserting it into the relation

r − rm(t)

|r − rm(t)|3
=

r − rm

|r − rm|3
+O

(
1

|r − rm|3
)

(2.42)

allows us to write the time-dependent scalar electric potential (2.40) as

φp,m(r, t) =
1

4πǫ0

(
Qm

|r − rm|
+

pm · (r − rm)

|r − rm|3

+
Qm(r − rm) · r∆

m(t)

|r − rm|3
+

p∆
m(t) · (r − rm)

|r − rm|3
)
+O

(
1

|r − rm|3
)
.

(2.43)
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Figure 2.6: The spatial average 〈px,m〉 of the fluctuating polarizations in a spatial neighborhood
of rm at time tm is equivalent to the time average px,m over ti, ..., tM for a specific molecule
at location rm. Consequently, the averaging of the fluctuations over time as visualized on the
top-bottom axis can be exchanged by the averaging over space on the left-right axis.

Next, we want to follow another homogenization concept, and by doing so, we will elimi-
nate the time-dependent terms in the latter equation. Therefore, we consider the neigh-
boring area of a molecule and the spatial distribution of the polarization pm. We assume
that the fluctuations in space and in time are independent of each other and purely sta-
tistical. This independence means the spatial distribution in the neighborhood of pm is
the same as the one in time t1, ..., tm for a single molecule m, see Figure 2.6. Assuming
so, for a given quantity fm, the average can be either taken in time or space

fm = lim
t→∞

1

2t

∫ t

−t

fm(t
′)dt′ =

1

M

M∑

m=1

fm = 〈fm〉 , (2.44)

where in this context fm denotes the time average of fm and 〈fm〉 its spatial average.
Here, we set t1 = −t, tM = t and equidistant time steps t∆i = ti+1 − ti =

2t
M

and used

fm =
M∑

i=1

fm(ti) =
1

2t

M∑

i=1

fm(ti)t
∆
i ≈ lim

t→∞

1

2t

∫ t

−t

fm(t
′)dt′. (2.45)

The independence of space and time regarding the fluctuations and the consequent equiv-
alence of space and time average been proved experimentally. We now make use of this
equivalence by taking the spatial average of the scalar electric potential without terms of
O (1/|r − rm|3)

φp =

M∑

i=1

φp,m =
1

4πǫ0

(
Qm

|r − rm|
+

pm · (r − rm)

|r − rm|3
)

+
M

4πǫ0

(
Qm(r − rm) · r∆

m(t)

|r − rm|3
+

p∆
m(t) · (r − rm)

|r − rm|3
)
,

(2.46)

where we used the equivalence of space and time average
∑M

m=1 fm =M 〈fm〉 =Mf only
for the last term. Here, only the quantities r∆

m(t) and p∆(t) are time-dependent. Conse-
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quently, the averaging operation that was shifted to time only applies to r∆
m(t) and p∆(t),

while the other variables are only scaling the average. According to definition (2.39), the
averages vanish, leaving the potential in the outer space of the isolater as

φp =
M∑

i=1

φp,m =
1

4πǫ0

(
Qm

|r − rm|
+

pm · (r − rm)

|r − rm|3
)
. (2.47)

Next, we assume that all molecules have the same charge Qm. It allows us to write down
the average of the charge density as

〈λ〉 =
∑M

m=1Qm

v
=
MQm

v
= λ, (2.48)

where v is the volume occupied by theM molecules. Further assuming that the molecules
are macroscopically not moving or rather saying that their only movement is the fluctu-
ating contribution, the charge of molecule m appears as

Qm = λv∆m, (2.49)

where v∆m = v/M is the average neighborhood volume of one molecule. As the fluctuations
of the dipole momentum are small compared to macroscopic fields, it is valid to assume
that the average dipole momentum pm in v is constant, leading to the simplification

p =
Mpm

v
=
M 〈pm〉

v
=

∑M
m=1 pm

v
= 〈p〉 , (2.50)

which corresponds to an average dipole density, from which we can state

pm = pv∆m. (2.51)

Using the averages (2.49) and (2.51) along with (2.47) gives us the potential of the outer
electric field

φp =
1

4πǫ0

∫
λ(r′)

|r − r′| +
p(r′) · (r − r′)

|r − r′|3 dv′. (2.52)

The electric field of a sphere. In order to have the overall field in the matter, we now
want to take a closer look at the inner field of a region with a charge density distribution.
As a simplification, we consider a sphere of radius R with a constant charge density λ0
inside the sphere and zero charge density outside of it

λ =





λ0 |r| ≤ R

0 |r| > R
(2.53)

Having the symmetry of the problem in mind, we can choose an ansatz as follows

e = E(r)
r

r
, (2.54)

which automatically satisfies curl e = 0 . Inserting this ansatz into the integral form of
the Maxwell equation (2.15)

∮

f

ǫ0e · df =

∫

A

ǫ0e · n da =

∫

g

λ dv, (2.55)
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and exploiting that n and r
r
for a spherical surface always point in the same direction

allows writing ∫

A

ǫ0E(r)
r

r
· n da =

∫

A

ǫ0E(r) da =

∫

G

λ dv. (2.56)

As the radius r is constant over the surface of the sphere and as λ0 is contant inside the
sphere, we can directly use the sphere surface A = 4πr2 and volume G = 4

3
πr3 for the

integration and obtain
ǫ04πr

2E = 4π
3
r3λ0 for r ≤ R

ǫ04πr
2E = Q for r ≥ R

(2.57)

where Q = 4
3
πR3λ0 satisfies the transition condition. The electric field then appears as

E(r) =





Q
4πǫ0R3 r r ≤ R

Q
4πǫ0r2

r ≥ R
. (2.58)

The mean value theorem for harmonic functions. Functions φ(r) that satisfy the
Laplace equation ∆φ(r) = 0 are called harmonic functions. For these functions, we can
derive the mean value theorem, which will be needed in subsequent calculations of average
values. We, therefore, start with Green’s theorem, which states

∫

g

U∆V − V∆U dv =

∫

F

U n · ∇V − V n · ∇Udf. (2.59)

Next, we set the terms in the Green’s theorem as

U(r′) =
1

|r − r′| and V (r′) = φ(r′). (2.60)

As we know that φ(r′) satisfies the Laplace equation, we see from the latter equation that
the same holds true for V (r′) and thus ∆′V (r′) = ∆′φ(r′) = 0, where ∆′ = div′ ∇′ is
the Laplace operator. Furthermore, we write ρ = |r − r′|, which becomes ρ = R on the
surface of the sphere fk, Green’s theorem gives

−
∫

k

φ(r′)∆′ 1

|r − r′| dv
′ =

∫

fk

1

ρ

∂φ

∂ρ
− φ(r′)

∂

∂ρ

1

ρ
df ′

=
1

R

∫

fk

∂φ(r′)

∂ρ
df ′ +

1

R2

∫

fk

φ(r′) df ′.

(2.61)

With the definition of the Dirac delta function (2.12) at hand

δ(r − r′) = − 1

4π
∆′ 1

|r − r′| , (2.62)

the left-hand side can now be written as
∫

k

4πφ(r′)δ(r − r′) dv = 4πφ(r). (2.63)
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Regarding the right-hand side of Equation (2.61), the first term must vanish as the har-
monic function must fulfill the Laplace equation ∆φ(r′) = 0 and thus

∫

fk

∂φ(r′)

∂ρ
df ′ =

∫

fk

∇′φ(r′) · n df ′ =

∫

k

div′∇′φ(r′) dv′ =

∫

k

∆′φ(r′) dv′ = 0, (2.64)

must be also fulfilled in its integral form. Comparing the left-hand side of Equation (2.61)
as reformulated in Equation (2.63) and the right-hand side of Equation (2.61) using Equa-
tion (2.64) finally yields the mean value theorem

φ(r) =
1

4πR2

∫

fk

φ(r′)df ′. (2.65)

It states that the value of a harmonic function φ(r) at location r is equal to the average
value over the surface fk of an arbitrary sphere of radius R at location r.

The average electric field of a sphere. We will now need these expressions to calcu-
late the average

〈e〉 = 1

v

∫

k

e(r) dv (2.66)

of the electric field over the sphere k of radius R at location r0. We further need to
distinguish two cases. One where there is no charge density distribution in the sphere and
one where there is a charge density distribution in the sphere.
Case 1: No charge density inside sphere
In the case of no charge density, we are allowed to apply the mean value theorem. As
e = −∇φ and div(ǫ0e) = −ǫ0∆φ = 0, we see that

div e = − div∇φ = −∆φ = 0 (2.67)

the electric field also satisfies the Laplace equation and thus is a harmonic function.
According to the mean value theorem (2.65), we can state

∫

fk

e(r) df = 4πρ2e(r0) (2.68)

where ρ = |r − r0| is the radius of the sphere. With the latter equation at hand, the
volume average can be split and appears as

∫

k

e(r) dv =

∫ R

0

dρ

∫

fk

e(r) df =
4πR3

3
e(r0). (2.69)

With v = 4πR3/3 as the volume of the sphere, the volume average can then be computed
as

〈e〉 = 1

v

∫

k

e(r) dv = e(r0) for λ = 0 in k (2.70)
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Case 2: Nonzero charge density inside sphere
For the case of nonzero charge density inside the sphere, expression (2.8) for the electric
field is averaged according to Equation (2.66)

〈e〉 = − 1

4πǫ0

1

v

∫

k

∫

k

∇ λ(r′)

|r − r′| dv
′ dv

= − 1

4πǫ0

1

v

∫

k

∫

k

λ(r′)∇ 1

|r − r′| dv
′ dv.

(2.71)

Using the latter equation along with the relation ∇ 1
|r−r′|

= −∇′ 1
|r−r′|

, the average can be
formulated as

〈e〉 = 1

4πǫ0

1

v

∫

k

λ(r′)∇′

∫

k

1

|r − r′| dv dv
′. (2.72)

We now want to evaluate the second integral of the latter equation. We therefore revisit
the result for the electric field in a sphere with zero charge density (2.58) with Q = 4πR3λ0

3

and insert it in the ansatz (2.54)

e =
λ0r

3ǫ0
. (2.73)

Comparison of this expression with the representation of the electric field through the
scalar potential according to Equation (2.8) yields

e(r) = − 1

4πǫ0
∇
∫

k

λ0
|r − r′| dv

′ =
λ0
3ǫ0

r. (2.74)

Omitting ǫ0 and λ0, we obtain the relation

− 1

4π
∇
∫

k

dv′

|r − r′| =
1

4π

∫

k

(r − r′)

|r − r′|3 dv
′ =

1

3
r. (2.75)

Renaming r into r′ and inserting this expression into Equation (2.72) gives

〈e〉 = − 1

ǫ0

1

v

∫

k

λ(r′)

3
r′ dv′. (2.76)

Using the definition of the polarization (2.30), the final result for the volume average
appears as

〈e〉 = − p

3ǫ0v
for λ 6= 0 in k. (2.77)

The inner electric field. Having the average electric field of spheres with charge density
distributions at hand, we are now able to compute the inner electric field ep of a sphere k

including far e
(fa)
p and close fields e

(cl)
p . Due to the superposition principle, the field can

be additively decomposed
ep = e(fa)

p + e(cl)
p . (2.78)

According to the potential (2.52) for the outer potential, the far-field of all other molecules
can be calculated as the integral over the outer volume of this potential

e(fa)
p = − 1

4πǫ0
∇
∫

v−k

(
λ(r′)

|r − r′| +
p(r′) · (r − r′)

|r − r′|3
)
dv′, (2.79)
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where v − k is the volume of the insulator outside of the sphere that we defined to be
microscopically large and macroscopically small. According to the assumptions made
in Section 2.1.3 and the resulting potential (2.52), the electric field is constant in time.
Furthermore, we consider the sphere to be macroscopically small. Hence, the field is
also constant in space. In contrast, observations on the molecule level are dominated
by movements of the molecules, and thus, the close field ecl

p changes in time rapidly.
However, for a continuous description, we assume that the average of the fields dominates
the macroscopic behavior

〈ep〉 = e(fa)
p + 〈e(cl)

p 〉. (2.80)

As mentioned, e
(fa)
p is considered to be constant on the microscopic scale of the molecules,

which is why we are focusing on the averaging of the close field e
(cl)
p . Using Faraday’s law

of electrostatics
curl e = 0 (2.81)

and having the Helmholtz decomposition in mind, the close electric field on the molecule
level can be written in accordance to Equations (2.9) and (2.10) as the gradient field

e(cl)
p = − 1

4πǫ0
∇
∫

k

λ′

|r − r′| dv
′. (2.82)

According to Equation (2.44), the time and the space average are identical, see also
Figure 2.6. Additionally, time-averaging the time average gives the time average. Thus,
the following expression holds

〈e(cl)
p 〉 = ecl

p = ecl
p = 〈e(cl)

p 〉. (2.83)

Let us now calculate 〈e(cl)
p 〉 through the relation (2.77) 〈e〉 = −p/(3ǫ0V ) and by using

the polarization (2.30), which gives

〈e(cl)
p 〉 = − 1

3ǫ0V

∫

k

λ(r′)r′ dv′. (2.84)

We now consider the contribution of an individual molecule occupying vm to the integral
of the right-hand side. Splitting the integral gives

∫

vm

λ
′
(r′ − rm) dv

′ +

∫

vm

λ
′
rm dv

′ = pm +Qmrm. (2.85)

In case of no free charges or no ionization of the molecule, the sum of all charges times
radius in the sphere vanishes

∑
mQmrm = 0 due to the symmetry of the sphere. This

allows us to write

〈e(cl)
p 〉 = − 1

3ǫ0

∑
m pm

V
= −Mpm

3ǫ0V
= −p(r0)

3ǫ0
, (2.86)

where we used Equation (2.50) for the polarization density. As the electric field

e(r0) = − 1

4πǫ0
∇
∫

k

λ(r0)

|r0 − r| dv
′ = 0 (2.87)

vanishes in r0, we can add it to the average electric field (2.86) without changing its value

〈e(cl)
p 〉 = −p(r0)

3ǫ0
− 1

4πǫ0
∇
∫

k

λ(r0)

|r0 − r′| dv
′. (2.88)
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Using the identity p(r0) = ∇(p(r0) ·r) and the definition of r from Equation (2.75) yields

p(r0) =
3

4π
∇
∫

k

p(r0) · (r − r′)

|r − r′|3 dv′, (2.89)

which can be further divided by − 1
3ǫ0

, giving

− p

3ǫ0
= − 1

4πǫ0
∇
∫

k

p(r0) · (r − r′)

|r − r′|3 dv′. (2.90)

As the macroscopic quantities p(r0) and λ(r0) are not changing in the microscopic sphere
k, we can also write them in terms of the variable r′ as p(r′) and λ(r′). The average
electric field (2.88) then appears as

〈e(cl)
p 〉 = − 1

4πǫ0
∇
∫

k

λ(r′)

|r − r′| +
p(r0) · (r − r′)

|r − r′|3 dv′. (2.91)

where r0 in the nominator of the average was renamed to r. We now see that averaging
the inner field leads to the same result as the far-field (2.79) in terms of the integrand.
Regarding the far-field, the integration region was the volume outside the sphere. For
the close field, however, the integration is performed over the volume of the sphere.
Consequently, the addition of both terms in (2.78) gives the integration over the whole
insulator

〈e(cl)
p 〉 = − 1

4πǫ0
∇
∫

v

λ(r′)

|r − r′| +
p(r0) · (r − r′)

|r − r′|3 dv′. (2.92)

With the chain rule at hand

p′ · (r − r′)

|r − r′|3 = p′ · ∇′ 1

|r − r′| = div′
p′

|r − r′| −
div′ p′

|r − r′| (2.93)

and application of the divergence theorem, we finally obtain the overall electric field in
dielectric matter

ep = − 1

4πǫ0
∇
(∫

v

λ′ − div′(p′)

|r − r′| dv′ +

∫

f

p′

|r − r′| da
′

)
, (2.94)

where - for convenience - we dropped the overlines indicating the time average.

The electrostatic Maxwell equations in matter. With the previous results at hand,
we are now able to formulate Maxwell’s equations for dielectrics. Using the decomposition
of the electric field

e = eext + ep, (2.95)

we see that the curl of the electric field must vanish

curl e = 0 , (2.96)

as we know that curl eext = 0 from the vacuum equations (2.14) and that curl ep = 0 ,
as ep according to (2.94) is a gradient field. For the second differential equation, we will
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use the result for the electric field (2.94) along with the Dirac delta function (2.12) and
apply the divergence on both sides

div ǫ0e = λext −
∫

(λ′ − div′p′)
1

4π
∆

1

|r − r′| dv
′ −
∫

p′ 1

4π
∆

1

|r − r′| da
′

= λext −
∫

(λ′ − div′p′)
1

4π
δ(r − r′) dv′ −

∫
p′ 1

4π
δ(r − r′) da′

= λext + λ− divp.

(2.97)

As λext only exists outside the dielectric matter and λ and p only inside the matter, in
vacuum we obtain the known equation div ǫ0e = λext In the dielectric matter, we then get

div ǫ0e = λ− div p. (2.98)

Introducing the definition of the electric displacement

d = ǫ0e+ p, (2.99)

we obtain the known set of differential equations for dielectric matter

curl e = 0 and div d = λ. (2.100)

In order to solve the differential equations, we need a proper description of p. As it emerges
from the charge density distribution of the matter, we can describe the polarization density
through a constitutive law. We now use a linear law

p = ǫ0χe, (2.101)

which is a good approximation for some dielectric materials, where the material parameter
χ is called the electric susceptibility. It is defined by means of the molecular polarization
α and the molecular density n as follows

χ = nα =
M

v∆
α, (2.102)

where M is the number of molecules in the volume v∆. In analogy to the vacuum equa-
tions, the differential equations (2.100) for dielectric matter can be recast into an integral
form ∮

c

e · ds = 0 and

∫

a

d · dA =

∫

g

λ dv = Q. (2.103)

The field energy in dielectric matter. We now want to know the energy of the
electric field in the dielectric matter. In analogy to the vacuum approach, we now assume
that there is a given scalar electric potential φ that is caused by a given charge density λ
and the resulting polarization. Next, we consider an additional charge density δλ(r),
that is brought to the location r. To do so, the electric field e = −∇φ of the dielectric
insulator needs to perform the work δ′A to move the additional charge computed from
the additional charge density as δλ(r) dv from an infinitely far position to the position r.
The work is computed as

δA′ = δλ dv

∫ r

∞

e · dr = −δλ dv
∫ ∞

r

e · dr = δλ dv

∫ ∞

r

∇φ · dr = δλ dvφ(r). (2.104)
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It is the energy that the electric field needs to perform, thus δA′ = −δWe. Using the
relations

λ = divd and δλ = div δd (2.105)

and integration over the whole insulator’s volume gives the variation of the field energy

δWe =

∫
φ div δd dv =

∫
div(φδd) dv −

∫
δd · ∇φ dv. (2.106)

The first integral can be converted into a surface integral

δWe =

∫
φδd · n da−

∫
δd · ∇φ dv. (2.107)

As we assumed that the additional charges are moved from an infite distance to the
location r, the surface integral is evaluated at r → ∞. From Equation (2.9), we know
that the scalar potential scales with the radius according to φ ∼ 1/r and thus, the surface
integral vanishes. Using e = −∇φ then gives

δWe =

∫
e · δd dv. (2.108)

In case of a linear relation between d and e as in Equation (2.101) for dielectric matter

d = ǫ0e+ p = ǫ0(1 + χ)e, (2.109)

the dot product between electric field and displacement in (2.108) can be recast

e · δd = ǫ0(1 + χ)e · δe =
1

2
ǫ0(1 + χ)(e · δe + δe · e)

=
1

2
δ(e · ǫ0(1 + χ)e) =

1

2
δ(e · d).

(2.110)

Insertion of the latter equation into the variation of the dielectric field energy (2.106)
allows us to identify the field energy as

We =

∫
1

2
e · d dv =

∫
ψe dv. (2.111)

Along with the dielectric relation for the electric displacement (2.109), the energy density
function ψe for linear dielectric matter is identified as

ψe =
1

2
ǫ0(1 + χ)e · e. (2.112)

2.2. Fundamentals of continuum mechanics

In this section, the most important parts of the framework of continuum mechanics at
finite deformations that were used in this work are revisited, see also Gurtin et al. [67]
and Miehe & Teichtmeister [130] for a deeper discussion on the topic. As a major
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concern of the theory of geometrical non-linearity at finite deformation are mappings be-
tween a non-deformed reference configuration and the deformed current configuration, we
will introduce a deformation map and develop the most important mappings such as tan-
gent, area, and volume map. Furthermore, the stress and strain measures relevant to this
work are discussed. In order to provide the above-mentioned mappings and mechanical
quantities, we first introduce the notion of scalars and tensors as well as the transforma-
tion laws they obey, which is in line with conventions of classical differential geometry
[157].

Scalar fields. Scalar fields or scalars φ are real functions of coordinates x′ and remain
constant when performing a change of coordinates to x

φ′(x′) = φ′(x′(x)) = φ(x). (2.113)

Contravariant vectors. We call a vector contravariant if under a given change in co-
ordinates, it transforms like the differential of the coordinates

dx′a =
∂x′a

∂xb
dxb, (2.114)

where we use an upper index to label contravariant vectors.

Covariant vectors. We call a vector covariant if it transforms like the gradient of a
scalar field

φ′
,a =

∂φ′

∂x′a
=

∂xb

∂x′a
∂φ

∂xb
=
∂xb

∂x′a
φ,b, (2.115)

where we used the chain rule and the definition of a scalar field φ′(x′) = φ(x) according
to Equation (2.113). We will label covariant vectors with a lower index.

Tensorial objects. Having the definition of co- and contravariant vectors given above, a
tensor field T a1,a2,...

b1,b2,...
transforms like the product of the vectors V a1

1 V a2
2 ...V 1

b1
V 2
b2
... as follows

T ′c1,c2,...
d1,d2,...

=
∂x′c1

∂xa1
∂x′c2

∂xa2
...
∂xb1

∂x′d1
∂xb2

∂x′d2
...T a1,a2,...

b1,b2,...
. (2.116)

We thus see that if a tensor vanishes in one coordinate system, it must vanish in all
coordinate systems [157]. This property is especially useful when formulating physical
laws that should be invariant with respect to the choice of coordinate systems.

2.2.1. The material body in space

A material body B consists of solid matter that we can physically interact with, such as
a book that we can touch or a building we can walk in. In order to describe the physical
processes that are undergone by this body and its interaction with other bodies, we need
to embed the body into a mathematical space where we can define and use fundamental
invariants of geometric properties. We, therefore, apply a one-to-one mapping of every
point of the material to a certain location X ∈ R3 as visualized in Figure 2.7. In our
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X(θ)
B

R3

Figure 2.7: A physically experienceable body B is embedded through a one-to-one map χt0

into the mathematical Euclidean Space R3, whose geometry is determined by the Euclidean
metric tensor G. The metric allows for the invariant computation of lengths of parametrized
curves such as X(θ) and thus the systematic construction of χt0 .

case, this space is the Euclidean space, and the invariant of the geometry, the Euclidean
metric, is in the Pythagorean equation. In Cartesian coordinates, it appears as

ds2 = (dX1)2 + (dX2)2 + (dX3)2, (2.117)

where ds2 is the constant line element of the Euclidean space and dXA are the differentials
of the coordinates. One can also express this invariant in terms of a metric tensor G in
index notation as follows

ds2 = GABdX
AdXB. (2.118)

Comparing the latter equation with Equation (2.117), we see that the entries of the
Euclidean metric tensor G in Cartesian coordinates are the ones of the identity. Here, we
introduced the up-down index notation, where we state that upper indices can only be
contracted with lower indices and the metric serves as a pull-down operation for indices

dXA = GABdX
B, (2.119)

where we denote lower indices as covariant indices and upper indices contravariant in-
dices. As the Euclidean metric on Cartesian coordinates takes the values of the identity,
the components of co- and contravariant vectors such as dXA and dXA have the same
value, leading again to Equation (2.117).
However, one can also obtain other representations of the Euclidean metric (2.117).
Parametrizing X for example in terms of a radius and two angles gives the metric in
spherical coordinates, which does not have the identity component values anymore. In
such cases, the up-down notation is useful to avoid tensors’ contraction without applying
the metric appropriately.1

With the geometry in terms of the metric at hand, we can now systematically describe the
material body in terms of the coordinate system-dependent coordinates X while using in-
variant quantities such as the scope of a body or some parametrized material lines X(Θ)

1The theory of differential geometry is a vast field and one could have much deeper discussions on
what space and time are, on relativistic metrics, what it means to have matter in space and in general
on ”what holds the world together at the core” [201]. However, in the continuum mechanics theory
applied here, we are concerned with the approximative modeling of material behavior at medium relative
velocities, which is why we stick to the Euclidean space.
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T
t

ϕ(X, t)

F

TXB TXS

SB

X(θ)
x(θ)

Figure 2.8: The deformation map is a one-to-one map of Lagrangian coordinates X of a
manifold B onto Eulerian coordinates x of the deformed manifold S at given time t. The
deformation gradient F = ∇ϕ(X , t) is a tensor and maps Lagrangian tangent vectors T of
given curves onto their Eulerian representation t = FT at the deformed curve. The tangent
vectors are defined within their respective tangent spaces TXB in the reference state and TXS
in the deformed state.

in terms of the free parameter θ. The length of the line, which is obtained through
integration of the metric (2.117),

ds =
√
∂θ(GABdXA(θ)dXB(θ)) dθ, (2.120)

should remain constant for a coordinate system change.

2.2.2. Deformation and movement of a material body

Having the embedded body B in the Euclidean space, we now seek to describe its physical
behavior over time in this section, namely its motion and deformation. We, therefore,
introduce the deformation map

ϕ(X, t) :

{
B × T → S ⊂ R

3,

X 7→ x = ϕ(X, t),
(2.121)

which maps a given mathematical point X ∈ B of the reference or Lagrangian configura-
tion at a given time t ∈ T to its current or Eulerian placement x ∈ S, see also Figure 2.8.
Picking one reference point and evaluating the deformation map over time ϕX(t) gives
the curve of said reference point through space and time. The metric associated with the
Eulerian configuration is denoted as g. As we are assuming mechnical behavior in the
non-relativistic range, the metric is chosen to be the Euclidean metric.
Having the description of the curve of a material point, we can also define the velocity
and acceleration of said point by differentiating the deformation map for time as follows

V (X, t) =
d

dt
ϕX(t) =

∂

∂t
ϕ(X, t) and A(X, t) =

d2

dt2
ϕX(t) =

∂2

∂t2
ϕ(X, t). (2.122)

These definitions of the velocity and acceleration are current quantities parametrized in
reference coordinates. The corresponding spatial parametrization can be obtained using
the inverse deformation map (2.121) as follows

v(x, t) = V (ϕ−1(x, t), t) and a(x, t) = v̇(x, t) =
∂

∂t
v(x, t) +∇xv(x, t) · v. (2.123)
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In the latter equation, the first term ∂
∂t
v(x, t) contributing to the accelration is the local

change of velocity over time, while the second term ∇xv(x, t) · v accounts for spatial
changes in velocity as the velocity field may spatially change. This spatial contribution
is also known as convective acceleration.

2.2.3. The deformation gradient in tangent, area and volume mapping

To formulate accurate physical laws in the Lagrangian and the Eulerian configuration,
one needs to know how quantities such as tangential vector, area, and volume transform
in between the deformed and the undeformed state. We thus revisit Figure 2.8, where
a representative curve in current coordinates is given as x(θ) ∈ S. A referential tangent
vector T ∈ TXB of the said curve defined in the referential tangent space TXB and a
current tangent vector t ∈ TXS defined in the current tangent space TXS can be computed
as

T =
d

dθ
X(θ) and t =

d

dθ
x(θ, t). (2.124)

As mentioned previously, in this work, the body of interest will always be embedded in
the Euclidean space at both configurations, and thus the tangent space at some point
will be the Euclidean space itself. Analyzing the current tangent vector and using the
deformation map (2.121) gives

t =
d

dθ
x(θ, t) =

d

dθ
ϕ(X(θ), t) = ∇Xϕ(X(θ), t)

d

dθ
X(θ) = FT, (2.125)

where we see that tangential vectors of the referential configuration are mapped to the
current configuration by the deformation gradient

F :

{
TXB → TXS,
T 7→ t = FT

with F (X) = ∇Xϕ(X, t), (2.126)

as visualized in Figure 2.8. It is one of the most important tensors for mapping purposes,
as we will see in the following. In index notation, the tangent map (2.125) can be written
as

ta = ∇XBϕ(X, t)TB = F a
B TB. (2.127)

Note that even though the deformation map itself maps referential coordinates to current
coordinates and is not a tensor as it is not transforming according to Equation (2.116), its
gradient is a tensor according to the definitions of the co- and contravariant vectors and
the tensorial objects made above. Here, we adopted the notation that small indices are
connected to spaces in the Eulerian setting, and capital indices are connected to spaces in
the Lagrangian setting. From the latter equation, one immediately sees in line with the
definition (2.114) that the deformation gradient maps contravariant tangent tensors T of
the reference configuration to contravariant tangent tensors t of the current configuration.
One also sees that the deformation gradient tensor itself has one covariant component in
the reference configuration and one contravariant component in the current configuration.
Next, consider the reference area of a parallelogram which can be characterized by the

cross product of two referential tangent vectors T and
⋄

T as follows

A = T×
⋄

T with A = ||A||, (2.128)
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T

⋄

T t
⋄
tcof[F ]

S
B

Figure 2.9: A referential area A characterized by the cross product of the referential tangent

vectors A = T×
⋄

T is transformed into the current area a characterized by the cross product of

the current tangent vectors a = t×
⋄
t through the mapping cof[F ] = det[F ]F−T .

where A is the surface vector, and A is the area of said surface. What we now want to
obtain is a relation between the referential surface vector A and the current surface vector
a defined by

a = t×
⋄
t with a = ||a||, (2.129)

where a is the area of the deformed surface. Using the tangent map property (2.126) of
the deformation gradient, we can write

a = t×
⋄
t = (FT)× (F

⋄

T) = MA(T×
⋄

T), (2.130)

where we now seek to find the area map MA. We start with the relation which is valid
for second-order tensors and thus for the deformation gradient. It is given as

Fc1 · (Fc2 × Fc3) = det[F ]c1 · (c2 × c3), (2.131)

in terms of the determinant det[F ] and where ci are any arbitrary non-zero vectors in
Cartesian coordinates. As the latter equation must hold true for all c1 6= 0 , we can
rearrange as follows

Fc2 × Fc3 = det[F ]F −T (c2 × c3). (2.132)

Comparison of the latter equation with relation (2.130) allows us to identify the area map
as

MA = det[F ]F−T . (2.133)

As the area map is defined through the inverse of the deformation gradient, we can state
that it maps covariant vectors of the referential normal space T ∗

XB onto covariant vectors
of the current normal space T ∗

XS as follows

cof[F ] :

{
T ∗
XB → T ∗

XS,
A 7→ a = cof[F ]A

with cof[F ] = det[F ]F−T . (2.134)

In index notation, this relation can be written as

aa = (cof[F ]) B
a AB = det[F ](F−1)BaAB. (2.135)
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Figure 2.10: A referential volume V characterized by the triple scalar product of the referential

tangent vectors V = T · (
⋄

T ×
⋄⋄

T) is transformed into the current volume v characterized by

the triple scalar product of the current tangent vectors v = t · (
⋄
t ×

⋄⋄
t ) through the mapping

J = det[F ].

This mapping property is especially important for numerical methods where the inte-
gration of weak forms of differential equations needs to be performed. In line with the
previous argumentation, we finally want to motivate the mapping for referential volume
elements V . Let us therefore consider the scalar triple product between three tangential

vectors T,
⋄

T,
⋄⋄

T of the referential configuration and the scalar triple product between

three tangential vectors t,
⋄
t,

⋄⋄
t of the current configuration defined as

V = T · (
⋄

T×
⋄⋄

T) and v = t · (
⋄
t×

⋄⋄
t ), (2.136)

where V and v are the volumes of the parallelepiped spanned by the corresponding tangent
vectors. We now seek for a mapping between the reference and the current volume of the
form

v =MV V. (2.137)

Using the definition of the volume v from Equation (2.136)2 along with the mapping of
tangential vectors (2.126) and the the determinant’s property introduced in (2.131), we
obtain

FT · (
⋄

FT×
⋄⋄

FT) = det[F ]T · (
⋄

T×
⋄⋄

T). (2.138)

Comparing the latter equation with the general mapping form (2.137), we are able to
identify the mapping according to

MV = det[F ]. (2.139)

Formally, the volume map is thus defined as

J :

{
R

+ → R
+,

V 7→ v = JV
with J = det[F ]. (2.140)

In the latter equation, one important constraint on the deformation gradient F becomes
visible, namely that det[F ] > 0. This constraint results from the physical argumentation
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that volumes should always be positive values R+, i.e., V, v > 0. Otherwise, the conserva-
tion of mass and thus of energy would be violated, i.e. the current and reference volume
need to be of same sign.

Remark: On the density mapping
We can use the volume map to define a projection of the reference mass density ρ0 onto
the current mass density ρ. We therefore consider a conservation of mass

∫

B

ρ0 dV =

∫

S

ρ dv (2.141)

and apply the volume map (2.140)
∫

B

ρ0 dV =

∫

B

Jρ dV. (2.142)

We are now able to identify the well-known relation for the mass density mapping

ρ =
ρ0
J
. (2.143)

2.2.4. The right and inverse left Cauchy-Green tensor

Having the definition of the deformation gradient (2.126) as a mapping of tangent vectors
at hand, we now want to motivate two additional strain measures that play a central role
in continuum mechanics. The deformation of a material can be described by the change
in length of some referential contravariant tangent vector T(X) = Ta as it undergoes
deformation. Let us say, the referential tangent vector would be of some given length. Its
length in the reference frame can be determined using the metric as defined in Equation
(2.118) as follows

|T|G =
√

TAGABTB. (2.144)

According to the tangent map (2.126) and (2.127), the corresponding Eulerian or current
tangent vector is obtained as t = F ·T = F a

B TB. Its norm is obtained using the current
metric g as follows

|t|g =
√
tagabtb =

√
F a

B TBgabF b
C TC =

√
T · (F TgF )T = Λ|T|G, (2.145)

where Λ is the stretch, i.e. the change in length of a vector undergoing a deformation
process. Note that we introduced an additional metric g for the current configuration in
the latter equation. In all applications considered here, we assume that both, the current,
and the reference configuration are described accurately enough by an Euclidean space.
G and g are thus both the Euclidean metric. However, we still distinguish them to have
more clarity in the denotation of reference and current configuration. Additionally, we
use the notation g or G to denote the metric that is set or chosen, respectively, while the
strain tensors we will derive now follow from the choice of said metric. The component’s
values of the metric chosen might change when changing the coordinate system.
Revisiting the norm of the current tangent vector (2.145), the tensor

C = F TgF =̂ F a
B gabF

b
C = CBC (2.146)
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Figure 2.11: a) The right Cauchy-Green tensorC is the referential representation of the current
metric g. It contracts the referential tangent vector T in such a way that it gives the norm of the
vectors as obtained after deformation in the current configuration |T|C =

√
T ·CT = λ|T|G

where λ is the stretch. b) The inverse left Cauchy-Green tensor c is the current representation
of the referential metric G. It contracts the current tangent vector t in such a way, that it gives
the norm of the vectors as obtained in the undeformed state in the referential configuration
|t|c =

√
t · ct = 1

λ
|t|g.

is called the right Cauchy-Green tensor. Comparing it to the norms (2.144) and (2.145),
we see that the right Cauchy-Green tensor is the reference representation of the current
metric

|T|C =
√
T ·CT =

√
TBCBCTC = Λ|T|G, (2.147)

which relates referential tangential vectors to their deformed lenght in the current config-
uration.
We can also perform this operation backward, assuming that there is some current tangent
vector some given length

|t|g =
√
tagabtb. (2.148)

Using the inverse tangent map in the definition of the length (2.144) gives

|T|G =
√

TAGABTB =
√

(F−1)Abt
bGAB(F−1)Bct

c =

√
t · (F−TGF−1)t. (2.149)

The tensor

c = F−TGF−1 =̂ (F−1)AbGAB(F
−1)Bc = cbc (2.150)

is called the inverse left Cauchy-Green tensor. Using the relation (2.145) along with the
current norm (2.148), we see that it relates the length of the current tangent vector to
the inverse stretch

|t|c =
√
t · ct =

√
tbcbctc =

1

Λ
|t|g. (2.151)

The inverse left Cauchy-Green tensor is thus the current representation of the referential
metric. It gives the norm of the current tangential vector as obtained before deformation.
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2.2.5. Stress measures and stress tensors

Having discussed the essential mapping properties of finite elasticity, we now want to
define the most important stress measures. We start with the physically most accessible
stress measure, namely the Cauchy stress tensor σ. It is a second-order tensor that relates
the unit normal n of the surface in the deformed state to a current traction vector t

according to
t = σn. (2.152)

It thus gives the force related to the deformed area, i.e. the area in the current configu-
ration. From the area mapping relation (2.134), we know that normal vectors n of areas
are covariant vectors of the normal space T ∗

XS, while t is defined as a contravariant vector
in the tangent space TXS. We thus can formulate Cauchy’s theorem as the mapping

σ :

{
T ∗
XS → TXS,

n 7→ t = σn
. (2.153)

In index notation, the latter equation appears as

ta = σabnb. (2.154)

The second stress tensor we want to discuss is experimentally more accessible than the
Cauchy tensor. It is given by first Piola-Kirchhoff stress tensor T̃ and relates a force to
an undeformed reference unit area defined by N according to

t0 = T̃N . (2.155)

Concerning the force, this would give the equality

t0dA = tda. (2.156)

Insertion of the Cauchy theorems (2.152) and (2.155) into the latter equation as well as
using the area map (2.134) gives

T̃ dA = σ cof[F ]dA, (2.157)

which allows for the relation of the first Piola Kirchhoff stress tensor and the Cauchy
stress to be written down as

T̃ = JσF−T . (2.158)

Using the index notation for the cofactor (2.135) and the Cauchy stress (2.154), we obtain
the index notation for the first Piola-Kirchhoff stress tensor

T̃ aA = Jσab(F−1)Ab, (2.159)

where we now see that it has two upper indices and thus maps a unit reference area N of
the covariant space onto a current tangent vector t0 of the contravariant space according
to

T̃ :

{
T ∗
XB → TXS,

N 7→ t0 = T̃N
. (2.160)

In index notation, the latter equation appears as

t0,a = T̃ aANA. (2.161)
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Figure 2.12: A homogeneous shear deformation described by the deformation map ϕ(X),
where X is given in Cartesian coordinates. The referential tangent vector T of the parametrized
curve X(θ) is mapped through the deformation gradient F onto the current tangent vector t.
The change in referential area A to the current area a is mapped by the cofactor cof[F ], while
the referential volume dV is mapped to the current volume dv by the Jacobian J .

2.2.6. Illustrative Example: Tangent, area and volume map for a homogeneous
deformation state

The tangent, area, and volume map properties are now demonstrated based on the exam-
ple of a homogeneous deformation state. Here, we assume that all coordinates are given in
the Eucildean space using a Cartesian coordinate system. Consequently, all quantities in
the following equations have Cartesian basis and we assume that the calculation rules for
tensor contractions as defined in the Cartesian coordinate system apply. We now consider
the following given deformation map and gradient

ϕ(X) =



X1 +

X2

L
h

X2 +
X1

L
h

X3


 and F = ∇ϕ =



1 h

L
0

h
L

1 0

0 0 1


 , (2.162)

where L and h are some given length parameters. As visualized in Figure 2.12, this
corresponds to a homogeneous shear deformation in the X1-X2-plane. Next, consider the
following parametrized referential curve

X(θ) =




0

θL

θ2L


 , θ ∈ [0; 1], (2.163)

giving the curve visualized in Figure 2.12. The tangent vector T of this referential curve
evaluated at θ = 0.5 appears as

T(θ = 0.5) =
∂X

∂θ
(θ = 0.5) =



0

L

L


 . (2.164)
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We can now evaluate the tangent vector in the current configuration t in two ways. For
the first approach, we use the deformation map ϕ(X(θ)) to map the curve X(θ) onto the
current configuration and then evaluate the derivative with respect to the parameter θ as
follows

t =
∂ϕ(X(θ))

∂θ
=



h

L

2θL


 → t(θ = 0.5) =



h

L

L


 . (2.165)

For the second approach, we can exploit that the deformation gradient F is mapping
referential tangent vectors onto current tangent vectors. Applying the multiplication

t = FT =



1 h

L
0

h
L

1 0

0 0 1


·



0

L

L


 =



h

L

L


 (2.166)

gives the identical result as the previous approach. Next, we want to investigate the
transformation of a referential area. Note that the deformation state in this example is
homogeneous, i.e., the deformation gradient is constant everywhere. Thus, the example
can be performed for finite areas and volumes. As for the change of the area A denoted by
the dashed line in Figure 2.12, we can calculate the new side length of the edge

√
L2 + h2

of the cube by using the dashed triangle. We can see from the deformation map that the
height of the cube stays constant and thus, we can multiply the side length by the height
of the cube, giving the current area

a = L
√
L2 + h2. (2.167)

In analogy to the tangent vector transformation, we will now use the cofactor to map the
referential area to the current one. We, therefore, need the inverse and the Jacobian of
the deformation gradient

F−1 =




L2

L2−h2
hL

h2−L2 0

hL
h2−L2

L2

L2−h2 0

0 0 1


 and J = det[F ] = 1− h2

L2
, (2.168)

which allows us to compute the cofactor

cof[F ] = det[F ]F −T =




1 − h
L

0

− h
L

1 0

0 0 1


 . (2.169)

Having the area A = L2 in the referential setting, the area vector A appears as

A =



0

L2

0


 with A = ||A|| = L2. (2.170)
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Applying the cofactor to the area vector A gives

a = cof[F ]A =




1 − h
L

0

− h
L

1 0

0 0 1


·



0

L2

0


 =



−Lh
L2

0


 with a = ||a|| = L

√
L2 + h2,

(2.171)
which is in line with the previous result (2.167).
Next, the transform of the referential volume V = L3 is carried out. We first calculate
the current volume v of the cube by multiplying the area of the parallelogram formed in
the X1-X2-plane with the height L of the cube

v = L(L2 − h2), (2.172)

which is also obtained by mapping the referential volume V by the Jacobian (2.168)

v = det[F ]V = L(L2 − h2). (2.173)

We finally want to demonstrate the properties of the right Cauchy-Green tensor C. Ac-
cording to Equation (2.146) in our example, it is computed as follows

C = F TF =



1 h

L
0

h
L

1 0

0 0 1


·



1 h

L
0

h
L

1 0

0 0 1


 =




1 + h2

L2 2 h
L

0

2 h
L

1 + h2

L2 0

0 0 1


 . (2.174)

If we now want to obtain the deformed lengths of a reference object, we can compute it
according to Equations (2.145) and (2.147)

|t|g = h2 + 2L2 = |T|C = T · (CT)



0

L

L


·







1 + h2

L2 2 h
L

0

2 h
L

1 + h2

L2 0

0 0 1


·



0

L

L





 = h2 + 2L2,

(2.175)
where we see that using the Cartesian metric on the current deformed vector t yields the
same result as applying the right Cauchy-Green tensor on the reference vector T.





Chapter 3

Foundations of electro-mechano-statics and

variational principles

In this section, the previously considered electrostatic and mechanical considerations are
combined into an electro-mechanically coupled framework. Therefore, we first present
the electric field’s mappings and the electric displacement from the reference undeformed
configuration onto the current deformed configuration. We then introduce a coupled vari-
ational framework that we will show is identical to the classical differential equilibrium
equations for electrostatics (2.100) and the balance of linear momentum for mechanics
under given kinematic constraints. We will then prove the variational framework’s con-
sistency regarding the second law of thermodynamics by setting up the mechano-electric
power expression and evaluating the dissipation postulate. Finally, the concept of dissipa-
tion potentials, internal variables, and incremental variational potential for the treatment
of rate-dependent problems are discussed.

3.1. The electric field and energy density in a deformable body

As a consequence of Coulomb’s law, we saw from Equations (2.8) and (2.9) that the
current electric field e is the spatial gradient of the scalar electric potential φ. Following
definition (2.115), it thus is a covariant vector and its coordinates transform accordingly

ea = −φ,a = − ∂φ

∂xa
= − ∂φ

∂XB
(
∂ϕa

∂XB
)−1, (3.1)

where we used that according to Equation (2.113), the scalar φ is not changing for any
transformation. Recalling the definition of the deformation gradient (2.126) and intro-
ducing the electric field of the reference body

EB = − ∂φ

∂XB
, (3.2)

the transform of the current electric field (3.1) can be written in index notation as follows

ea = EB(F
−1)Ba (3.3)

41
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or in symbolic notation as
e = EF−1 = F−TE. (3.4)

The electric energy (2.111) along with the energy density expression (2.112) is conse-
quently transformed as follows

We =

∫

S

ψe dv =

∫

S

1

2
ǫ0(1 + χ)e · e dv =

∫

S

1

2
ǫ0(1 + χ)(F−TE) · (F−TE) dv. (3.5)

Note that in line with the considerations done in Section 2.2 concerning the metric as
defined in (2.118), we would need to compute the magnitude of the electric field using the
metric |e|2g = e · (ge). Here, we, however, assume the current metric to be Euclidean in
Cartesian coordinates gab = δab, which gives the simplified form above. We now need to
integrate over the referential body B and thus use the volume map (2.140) to obtain

We =

∫

B

1

2
ǫ0(1 + χ)JC−1 : (E ⊗E) dV, (3.6)

where we used the definition of the right Cauchy-Green tensor C = F T · F according to
Equation (2.146). Finally, the definition of the electric susceptibility (2.102) is dependent
on the current volume ∆v through the molecule density. It is thus convenient to use the
volume map (2.140) to give the energy in terms of the modified susceptibility χ0

χ = nα =
M

∆v
α =

M

J∆V
α = χ0/J, (3.7)

as the number of moleculesM , the reference volume ∆V and the molecular polarization α
are not changing during the deformation process, and thus χ0 is assumed to be constant.
The electric energy of dielectric matter then appears as

We =

∫

B

1

2
ǫ0(1 +

χ0

J
)JC−1 : (E ⊗E) dV. (3.8)

3.1.1. Geometrical mapping of the electric displacement

The covariant nature of the electric displacement follows from the integral form of the
Maxwell equation (2.103)2. Here, we can exploit that the amount of electric charges is
conserved during deformation, and thus we can use (2.103)2 in the reference and current
configuration to state ∫

∂S

d · da = Q =

∫

∂B

D · dA. (3.9)

We now use the area map (2.134) to express the current area in terms of the referential
area as follows ∫

∂B

d · JF−TdA =

∫

∂B

D · dA. (3.10)

From the latter equation, one can see that the electric displacement transforms according
to the area map, which is a map of covariant vectors of the referential normal space onto
covariant vectors of the current normal space

D = JF−1d. (3.11)
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∂St
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∂Sϕ ∂Sφ

Figure 3.1: A body being exposed to boundary conditions. On Dirichlet boundaries ∂Bϕ and
∂Bφ, the primary variables ϕ and φ are prescribed. On the Neumann boundaries ∂Bt and ∂Bq,
the tractions and surface charges are prescribed. The same holds for the deformed configuration
S. The overall energetic potential is calculated based on these boundary conditions and the
internal energy storage behavior of the solid body.

This relation can also nicely be seen in index notation using Equation (2.135)

DB = J(F−1)Bad
a, (3.12)

which is a typical pull-pack operation.

3.2. Variational framework for non-dissipative electro-mechanically
coupled materials

In Chapter 2.1 regarding the fundamentals of electrostatics, one could see from Equa-
tion (2.112) that the energy We of an electric field within dielectric matter could be
described through the integration of an energy density function ψe. We now want to
discuss briefly the mathematical framework for electro-mechanically coupled problems
within a variational approach, see also [128, 150, 202] for a more detailed discussion. We,
therefore, introduce a coupled energy density function

ψ = ψ(F ,E), (3.13)

which is dependent on both the deformation gradient and the electric field. It is not always
trivial to formulate such energy densities for complex material behaviors or prove their
existence. However, if there exists such an energy density, it can be shown that the results
emerging from the resulting variational potential are thermodynamically consistent, as
demonstrated in the later Section 3.3. The total stationary energetic potential of a body
as presented in Figure 3.1 can then be formulated in terms of said coupled energy density
function

Π(ϕ, φ) =

∫

B

ψ(F ,E) dV − Πext (3.14)

and the work performed by the external boundary conditions and the external volume
contributions as follows

Πext =

∫

B

(gγ) · ϕ dV +

∫

∂Bt

(gt#) ·ϕ dA−
∫

B

λφ dV −
∫

∂Bq

q#φ dA, (3.15)
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where we have one work term due to the displacement of volume forces γ, one work term
due to the displacement of applied tractions t# on the surface, one work term due to
volume charges λ within an electric potential and one work term due to surface charges
q# within an electric potential. In index notation, the global potential appears as

Π =

∫

B

ψ dV −
∫

B

gabγ
bϕa dV −

∫

∂Bt

gabt
#bϕa dA+

∫

B

λφ dV +

∫

∂Bq

q#φ dA, (3.16)

where for the sake of readability, we dropped the notation of dependencies of ψ on F and
E. From the index notation and comparison with the definition of the traction vector as
well as the stress (2.161), it becomes visible why we need the contraction of the metric
with the traction and body force for a geometrically consistent setting. From now on,
we will, however, assume the Euclidean space and consequently drop the metric in this
derivation.
The equilibrium state for a given set of boundary conditions is reached, when the primary
variables satisfy the following variational principle

{ϕ, φ} = arg
{
inf
ϕ

sup
φ

Π(ϕ, φ)
}
, (3.17)

i.e., the deformation map ϕ and scalar potential φ that minimize the work potential.

3.2.1. Balance of linear momentum

We will now demonstrate that the minimization of the work potential with respect to
the primary variables recovers the balance of linear momentum and the Maxwell equa-
tion (2.100)2. It can thus be shown that the integral and the differential form are just
different representations of the same boundary value problem. The minimization of the
work potential can be found performing the variation

δΠ =

∫

B

∂ψ

∂F
: δF +

∂ψ

∂E
· δE dV −

∫

B

γ · δϕ dV −
∫

∂Bt

t# · δϕ dA

+

∫

B

λδφ dV +

∫

∂Bq

q#δφ dA = 0.
(3.18)

Using the gradient relations for the deformation gradient δF = δ∇ϕ and the electric field
δE = −δ∇φ along with the expressions

Div(
∂ψ

∂F
· δϕ) =

∂ψ

∂F
: δ∇ϕ+Div(

∂ψ

∂F
) · δϕ =

∂ψ

∂F
: δF +Div(

∂ψ

∂F
) · δϕ,

Div(− ∂ψ

∂E
· δφ) = − ∂ψ

∂E
· δ∇φ+Div(− ∂ψ

∂E
)δφ =

∂ψ

∂E
· δE +Div(− ∂ψ

∂E
)δφ,

(3.19)

the variation of the global potential (3.18) can be brought into the following form

δΠ =

∫

B

Div(
∂ψ

∂F
· δϕ)−Div(

∂ψ

∂F
) · δϕ dV −

∫

B

γ · δϕ dV −
∫

∂Bt

t# · δϕ dA

+

∫

B

Div(− ∂ψ

∂E
δφ)− Div(− ∂ψ

∂E
)δφ dV +

∫

B

λδφ dV +

∫

∂Bq

q#δφ dA = 0.
(3.20)
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Using the Gauss-theorem to transform volume integrals into surface integrals gives

δΠ =

∫

B

(−γ − Div(
∂ψ

∂F
)) · δϕ dV +

∫

B

(λ− Div(− ∂ψ

∂E
))δφ dV

+

∫

∂Bt

(
∂ψ

∂F
N − t#) · δϕ dA+

∫

∂Bq

(− ∂ψ

∂E
·N + q#)δφ dA = 0.

(3.21)

According to the fundamental theorem of variational calculus, the variation of the latter
potential vanishes if the expression vanishes for any admissible variation of the primary
fields δϕ and δφ. Consequently, the individual terms in the integrals need to, vanish
and we see that when equilibrium is reached, then the following Euler equations must be
fulfilled

Div(T ) + γ = 0 in B
TN = t# on ∂Bt

Div(D)− λ = 0 in B
D ·N = −q# on ∂Bq.

(3.22)

Here we used the relation T = ∂ψ/∂F and D = −∂ψ/∂E, which we will show in the next
section to be a thermodynamically consistent approach. In the latter equation, we see
that the classical equilibrium equation for electrostatic problems as provided in Chapter 2
as well as the well-known strong form of mechanical equilibrium equations are recovered.
We thus are able to conclude that the variational principle governs the same physical
laws as the differential form or in other words: If we found the solution for u and φ to
the optimization principle (3.17) under some given boundary conditions, the solution also
satisfies the strong form (3.22).

Remark 1: On the Piola-Kirchhoff stress tensors T and T̃

Note that strictly speaking, the Piola-Kirchhoff stress tensor T introduced here is not
identical to the one T̃ introduced in the Subsection 2.2.5 in Equation (2.155). One can
see this through evaluating the differentiation using index notation

T =̂
∂ψ

∂F a
B

= T B
a , (3.23)

where we see that in contrast to the stress tensor T̃ from Equation (2.159), T has one
contra- and one covariant basis. These co- and contravariant bases are also the reason
why the traction vector t# appearing in the potential (3.15) must be multiplied with the
metric tensor. The stresses can be transformed into each other by use of the metric

T = gT̃ =̂ gabT̃
bB = T B

a . (3.24)

As in our simulations, we assume a Euclidean space in a Cartesian system. The entries
of both stress tensors are thus identical.

Remark 2: On the electric stress contribution
The Piola-Kirchhoff stress tensor T introduced here is a total stress, i.e., it includes
mechanical and electrical stress contributions Tmech and T elec

T = Tmech + T elec. (3.25)
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For the case of dielectric matter, the electric stress can be obtained from the energy
density in the reference configuration from Equation (3.8)

ψelec =
1

2
ǫ0(1 +

χ0

J
)JC−1 : (E ⊗E) (3.26)

through differentiation

T elec =
∂ψelec

∂F
. (3.27)

Physically, one can interpret this stress as the additional contribution due to the at-
tractive force of charges, expressed in terms of the electric field. Insertion of the stress
decomposition (3.25) into the balance of linear momentum (3.22)1

Div(Tmech) = −γ −Div(T elec) = −γ − γelec (3.28)

reveals this relation as an additional body-force term [43, 147, 209].

Remark 3: On the volume- and mass-specific energy density
The energy density ψ used here is defined in terms of energy per reference volume. In
order to obtain a mass-specific energy density, one would need to divide by the reference
density (2.143) accordingly

ψmass =
1

ρ0
ψ. (3.29)

3.2.2. Balance of angular momentum

The angular momentum is an additional quantity of a material body that is conserved dur-
ing deformation. The variational formulation thus needs to contain the balance of angular
momentum. The balance law postulates a relation between the time differentiation of the
angular momentum L0 =

∫
B
ϕ× ρ0ϕ̇ dV and the torque T 0 =

∫
B
ϕ×γ dV +

∫
∂Bt

ϕ×t# dA
as follows

d

dt

∫

B

ϕ× ρ0ϕ̇ dV = T 0 =

∫

B

ϕ× γ dV +

∫

∂Bt

ϕ× t# dA, (3.30)

where the operator × indicates the cross product of two vectors. Performing the time
differentiation and using the relation (3.22)2 between the surface traction and the Piola-
Kirchhoff stress tensor as well as the Gauss theorem yields

∫

B

ϕ̇× ρ0ϕ̇+ϕ× ρ0ϕ̈ dV =

∫

B

ϕ× γ +Div(ϕ× T ) dV, (3.31)

where we used that the reference mass density ρ0 is constant and thus its time differen-
tiation vanishes ρ̇0 = 0. Considering an infinitesimally small domain dV → 0, we obtain
the local form

ϕ̇× ρ0ϕ̇+ϕ× ρ0ϕ̈ = ϕ× γ +Div(ϕ× T ). (3.32)

Next, we rewrite the divergence term Div(ϕ × T ) by using the chain rule. In index
notation, the term can be written as (ǫa c

b ϕ
bT D

c ),D = ǫa c
b ϕ

b
,DT

D
c + ǫa c

b ϕ
bT D

c ,D , where
ǫacd indicates the Levi-Civita symbol. In symbolic notation, the expression appears as

Div(ϕ× T ) = ǫ : (FT T ) +ϕ×Div(T ). (3.33)
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Insertion of the latter expression into the local form of the balance of angular momentum
(3.32) yields

ϕ̇× ρ0ϕ̇+ϕ× [ρ0ϕ̈− γ − Div(T )]− ǫ : (FT T ) = 0 . (3.34)

The latter equation can be further simplified. The first term ϕ̇×ρ0ϕ̇ vanishes as the cross-
product of a vector with itself is zero. Additionally, we assume quasi-static conditions,
which allows us to neglect the acceleration ϕ̈ = 0 and allows us to exploit the static form
of the balance of linear momentum Div(T ) + γ = 0 from Equation (3.22)1. We are thus
left with

ǫ : (FT T ) = 0 (3.35)

and due to the antisymmetry of ǫ, we arrive at the final result

FT T = TF T , (3.36)

which is the well-known balance of angular momentum [74, 180].

Remark: Material modelling and angular momentum
Using the balance of angular momentum (3.36) and inserting the relation T = ∂ψ/∂F
from Chapter 3.2.1, we obtain

F (
∂ψ

∂F
)T =

∂ψ

∂F
F T . (3.37)

As we compute the stress from the energy density function ψ, the balance of angular
momentum constrains the way we are allowed to construct the energy density function.
It must fulfill the latter equation. Without further proof, this can be done by modelling
the energy density function in terms of the right Cauchy-Green tensor C. In doing so,
the principle of material objectivity is also automatically fulfilled. It states that the
elastic response must be invariant under any rigid body rotations imposed on the current
configuration. As the Cauchy-Green tensor C is apurely referential object, it is not
affected by these rotations imposed on the current configuration and ee thus see the
equivalence of the modelling approach for fulfilling the balance of angular momentum
and the principle of material objectivity. For a more detailed discussion, the interested
reader is referred to Miehe & Teichtmeister [130] and Gurtin et al. [67]

3.3. Thermodynamical consistency of the variational formulation

In the previous section, it was shown that the classical equilibrium equations of electro-
mechano-statics can be recovered from the variational potential. We now want to demon-
strate that a formulation in terms of the energy density ψ(F ,E) with the relation
T = ∂ψ/∂F and D = −∂ψ/∂E also satisfies the second law of thermodynamics, which
states that entropy can only grow.

3.3.1. Internal mechanical and electrical power expressions

To look at the work being done within a deforming body with a changing scalar electric
potential and to compute the following dissipation of energy, we first develop an expression
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for the internal power for said deformation processes, including electric dissipation. We,
therefore, start from the spatial velocity v according to (2.123) and the rate of scalar
potential φ̇ = dφ/dt and express the power P in an integral form

P =

∫

S

γ · (gv) dv +
∫

∂St

t# · (gv) da−
∫

S

λφ̇ dv +

∫

∂Sq

q#φ̇ da, (3.38)

where we have a contribution due to the body force, one due to external tractions, one
due to the volumetric electric charge, and one due to electric surface charges. These terms
are corresponding to the external potential contribution (3.15). From now on, we assume
the metric to be the Eucildean metric in Cartesian coordinates and thus drop it in the
following derivations as well as the up-down-indices. Using the Cauchy relation for the
tractions (2.153) and (2.154), the surface term can be recast into

∫

∂St

t# · v da =

∫

∂St

(σn) · v da =

∫

∂St

σabnbva da. (3.39)

Using Gauss theorem, the latter surface integral can be transformed into the following
volume integral

∫

∂S

σabnbvc da =

∫

S

σab,bva + σabva,b dv =

∫

∂S

div(σ) · v + σ : ∇xv dv. (3.40)

We now take a closer look at the spatial gradient of the spatial velocity ∇xv to obtain
an explicit expression in terms of the deformation gradient. First, we consider a stretch
vector λ, which is according to the tangent map (2.126) obtained by multiplication of a
reference vector M by the deformation gradient as follows

λ = FM . (3.41)

The reference vector is chosen to be of unit-length. It has no time-dependency, which is
why we can take the time-differentiation as follows

λ̇ = ḞM . (3.42)

Setting up the inverse relation for the stretch vector (3.41)

M = F−1λ (3.43)

allows for the insertion into the time-derivative (3.42)

λ̇ = Ḟ F−1λ, (3.44)

which gives the rate of the stretch vector in terms of the deformation gradient. Ana-
lyzing the multiplication of the rate of the deformation gradient with the inverse of the
deformation gradient allows for the following reformulation

l = Ḟ F−1 = (
∂

∂t

∂ϕ

∂X
)(
∂ϕ

∂X
)−1 = (

∂

∂X

∂ϕ

∂t
)(
∂ϕ

∂X
)−1 = (

∂

∂X
V )(

∂ϕ

∂X
)−1, (3.45)

where we used the definition of the material velocity (2.122) and the rule of Schwarz to
swap the space and time derivative. Reparametrization according to (2.123) and using
the relation of the deformation map x = ϕ(X, t) from (2.121) gives

∇xv = l = Ḟ F−1. (3.46)
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Insertion of the latter equation into the intermediate result (3.40) and further insertion
into the power expression (3.38) allows us to write

P =

∫

S

(div(σ) + γ) · v dv +
∫

S

σ : l dv −
∫

S

λφ̇ dv +

∫

∂Sq

q#φ̇ da. (3.47)

As the first bracket in the first integral term represents the balance of linear momentum
in the current configuration, its term vanishes in equilibrium and thus we are left with

P =

∫

S

σ : l dv −
∫

S

λφ̇ dv +

∫

∂Sq

q#φ̇ da. (3.48)

We now follow a similar procedure for the electric contributions for the power expression.
From the integral relations for the Maxwell equation (2.103), one can obtain the material
relation q# = −d · n, see also (3.22)4 for the spatial setting from the variation potential.
We can thus reformulate the electric surface integral term in (3.38) according to

∫

∂S

q#φ̇ da =

∫

Sq

d · nφ̇ da =

∫

Sq

danaφ̇ da. (3.49)

In analogy with the mechanical approach, we now use the Gauss theorem to transform
the surface integral into a volume integral

danaφ̇ da =

∫

S

da,aφ̇+ daφ̇,a dv =

∫

S

div(d)φ̇+ d · ∇xφ̇ dv. (3.50)

Insertion into the intermediate result for the power expression yields

P =

∫

S

σ : l dv +

∫

S

(div(d)− λ)φ̇+ d · ∇xφ̇ dv. (3.51)

From Maxwell’s equations (2.100) for electrostatic problems we know that the bracket
term in the second integral vanishes, and we are thus left with the power expression

P =

∫

S

σ : l dv +

∫

S

d · ∇xφ̇ dv. (3.52)

The spatial gradient of the spatial rate of the scalar potential ∇xφ̇ appears in analogy to
the spatial velocity gradient. We now reformulate said tensor according to

∇xφ̇ = (
∂

∂X

∂φ

∂t
)(
∂ϕ

∂X
)−1 = (

∂

∂t

∂φ

∂X
)F−1 (3.53)

Recalling the definition of the referential electric field (3.2) allows us to write

∇xφ̇ = −F−T Ė. (3.54)

In order to arrive at an Eulerian description of the internal power, we finally apply the
pull-back operation for the electric field (3.4) and arrive at

∇xφ̇ = −F−T ∂

∂t
(F Te) = −£ve, (3.55)
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which is the negative Lie derivative of e, i.e. a pull-back of e to the reference configura-
tion, differentiation with respect to time followed by a push-forward back to the current
configuration. The power expression (3.52) in terms of current quantities then finally
appears as

P =

∫

S

σ : l dv −
∫

S

d ·£ve dv. (3.56)

We now want to express the latter equation in terms of mechanical two-point tensors
and electrical referential tensors within a referential volume integral. We start with the
mechanical contribution by using the volume map (2.140) and the definition for l from
(3.45) ∫

S

σ : l dv =

∫

B

σ : (Ḟ F−1)J dV. (3.57)

Further insertion of the relation between the first Piola-Kirchhoff stress tensor T̃ and the
current stress σ from (2.158) gives

∫

S

σ : l dv =

∫

B

1

J
F T T̃ : (Ḟ F−1)J dV =

∫

B

T̃ : Ḟ dV =

∫

B

T : Ḟ dV, (3.58)

where we used that T̃ = T in Cartesian coordinates as computed from Equation (3.24).
For the electric contribution, we use the volume map (2.140) along with the pull-back of
∇xφ̇ defined by (3.54) and (3.55) and the pull-back of the current electric displacement
d defined by (3.11) and obtain

∫

S

d ·£ve dv =

∫

B

1

J
(FD) · (ĖF−1)J dV =

∫

B

D · Ė dV. (3.59)

Insertion of the mechanical relation (3.58) and the electric relation (3.59) into the power
expression (3.56) finally gives the form

P =

∫

B

T : Ḟ dV −
∫

B

D · Ė dV. (3.60)

Remark: Variational approach to power expression. In line with the balance of
angular momentum from Chapter 3.2.2, the power expression (3.60) can also be obtained
from the variational potential (3.16). We therefore assume a homogeneity of time [106],
i.e. the potential should be invariant under translations in time. This assumption is
reasonable, as experience shows us that the outcome of an experiment under a given
setup is not dependent on the explicit point in time the experiment has been carried out.
Consequently the variation of the potential in time must vanish

δtΠ =
[∫

B

∂ψ

∂F
: Ḟ +

∂ψ

∂E
: Ė +

∂ψ

∂t
dV

−
∫

B

γ · ϕ̇ dV −
∫

∂Bt

t# · ϕ̇ dA+

∫

B

λφ̇ dV −
∫

∂Bq

q#φ̇ dA
]
δt = 0,

(3.61)
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where we assumed constant surface and volume loads. In line with the assumption of
homogeneity of time, the partial derivative of the energy density function in the latter
equation must vanish, as the energy density itself should not depend on time explicitly

∂ψ

∂t
= 0, (3.62)

which is a reasonable constraint for the construction of energy density functions. As
stated above, the energy of a body should not depend on the specific point in time itself
but only on the state of variables {F ,E}. We are thus left with

δtΠ =
[∫

B

∂ψ

∂F
: Ḟ +

∂ψ

∂E
: Ė dV

−
∫

B

γ · ϕ̇ dV −
∫

∂Bt

t# · ϕ̇ dA+

∫

B

λφ̇ dV −
∫

∂Bq

q#φ̇ dA
]
δt = 0.

(3.63)

Using the definition of the stress T = ∂ψ/∂F and the electric displacementD = −∂ψ/∂E,
the internal power appears in accordance to (3.60)

P =

∫

B

T : Ḟ dV −
∫

B

D · Ė dV (3.64)

and is equilibrated with the external power

Pext = −
∫

B

γ · ϕ̇ dV −
∫

∂Bt

t# · ϕ̇ dA+

∫

B

λφ̇ dV −
∫

∂Bq

q#φ̇ dA. (3.65)

Additionally, we can pull the partial differentiation and the time variation out of the
integral and obtain

∂

∂t

[ ∫

B

T : F dV −
∫

B

D ·E dV

−
∫

B

γ · ϕ dV −
∫

∂Bt

t# ·ϕ dA+

∫

B

λφ dV −
∫

∂Bq

q#φ dA
]
δt = 0.

(3.66)

In the latter equation, we see that the time derivative of sum of the integrals must van-
ish and thus the sum of integrals must stay constant in time. We identify this as the
conservation of energy and the integral as the energy

E =

∫

B

T : F dV −
∫

B

D ·E dV

−
∫

B

γ · ϕ dV −
∫

∂Bt

t# · ϕ dA+

∫

B

λφ dV −
∫

∂Bq

q#φ dA = constant,
(3.67)

which is in line with Noether’s theorem [97, 141].

3.3.2. Dissipation postulate for electro-mechano-statics

In the previous section, the overall internal stress power P of a body being subject to
mechanical and electrical loads was derived. In order to obtain the dissipative contribution
of the power, we need to substract its elastic contribution. This elastic contribution can
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be expressed in terms of change in non-dissipative energy storage through deformation
and within the electric field

Pe =

∫

B

d

dt
ψ(F ,E) dV. (3.68)

The second law of thermodynamics states that the dissipation rate, which is the overall
internal power substracted by the elastic contribution, must always be positive

DP = P − Pe =

∫

B

T : Ḟ −D · Ė − d

dt
ψ dV ≥ 0, (3.69)

which corresponds to the statement that entropy can only stay the same or grow in a
closed system1. Applying the chain rule in the latter equation and considering a purely
elastic case with DP = 0, we obtain

∫

B

(T − ∂ψ

∂F
) : Ḟ − (D +

∂ψ

∂E
) · Ė dV = 0 (3.70)

We now see that the latter equation indeed is always fulfilled for the relation

T =
∂ψ

∂F
and D = − ∂ψ

∂E
, (3.71)

which proves the thermodynamical consistency of the relations used in Section 3.2.

3.3.3. Concept of dissipation potentials and internal variables

A large set of material models exhibits dissipative material behavior due to internal fric-
tion. Such effects include for example viscoelasticity. To consistently model such behavior,
we now consider rate-dependent problems and further introduce the concept of internal
variables. Internal variables q might be viscous or plastic strains. In an experiment, they
cannot be prescribed directly via boundary conditions, but rather evolve due to bound-
ary conditions applied for the primary variables such as displacement and scalar electric
potential. In such a scenario, where the energy density function ψ(F ,E, q) is dependent
on internal variables, the dissipation postulate (3.69) can be brought in the form

DP =

∫

B

(T − ∂ψ

∂F
) : Ḟ + (−D − ∂ψ

∂E
) · Ė − ∂qψ · q̇ dV ≥ 0. (3.72)

We now decompose the stress and electric displacement into an elastic and a dissipative
contribution

T = T e + T d and D = De +Dd, (3.73)

and introduce the definition

T e = ∂Fψ(F ,E, q)

De =− ∂Eψ(F ,E, q)

h =− ∂qψ(F ,E, q).

(3.74)

1This is an extremely condensed description of the second law of thermodynamics and entropy in
continua. At this point, we make do with the statement that the second law is motivated by the observa-
tion that there cannot be a Perpetuum mobile of the second kind, i.e., a periodic machine that extracts
heat from a reservoir and transforms it into work without leaving other changes in the environment. For
further considerations, the interested reader is referred to Gurtin et al. [67]



Chapter 3. Foundations of electro-mechano-statics and variational principles 53

Insertion of the latter equation into the dissipation postulate (3.72) gives the reduced
form

DP = T d : Ḟ −Dd · Ė + h · q̇, (3.75)

which can also be written in the general form

DP =




T d

−Dd

h


 ⋄



Ḟ

Ė

q̇


 = F ⋄ Q̇ ≥ 0. (3.76)

Here, we introduce the generalized fluxes Q̇ and the generalized driving force F. Addi-
tionally, the diamond operator ⋄ represents a generic contraction operator that contracts
the tensors corresponding to their order, i.e. single or double contraction in the context of
the upper equation. To obtain an evolution for the fluxes, we need to constitutively model
the driving force under the restrictions of thermodynamical consistency as prescribed by
the latter equation. We, therefore, introduce a dissipation potential d from which the
driving force can be obtained through differentiation

F = ∂Q̇d(Q, Q̇). (3.77)

Insertion of the latter equation into the dissipation postulate (3.76) yields the form

DP = ∂Q̇d(Q, Q̇) ⋄ Q̇ ≥ 0. (3.78)

Usually, one chooses the dissipation potential to be convex in Q̇ [130], in order to always
fulfill the dissipation inequality independent of the deformation or electrical state. How-
ever, strictly speaking, it is not a necessary constraint: As long as the latter equation is
fulfilled, the second law of thermodynamics is fulfilled, no matter the form of the dissi-
pation potential. However, it is convenient to model it so that it always fulfills (3.78) to
rule out any unphysical processes without further checking during computations.
Comparison of the dissipation postulate (3.76) with the definition of the driving force
(3.77) allows us to identify the dissipative stress and electric displacement

T d = ∂Ḟ d(Q, Q̇) and Dd = −∂Ėd(Q, Q̇). (3.79)

Further using the definition of the elastic stress and electric displacement (3.74) gives the
absolute stress and electric displacement (3.73)

T = ∂Fψ(Q) + ∂Ḟ d(Q, Q̇) and D = −∂Eψ(Q)− ∂Ėd(Q, Q̇) (3.80)

as computed from the constitutive energy density and dissipation potential. The evolution
equation for the internal variables can be obtained from the comparison of the definition
of the driving force (3.77) with the definition (3.74) as follows

−∂qψ(Q) = ∂q̇d(Q, Q̇), (3.81)

which is called Biot’s equation [10].
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3.3.4. Time-discrete incremental variational potentials for rate-dependent prob-
lems

In order to describe rate-dependent problems that are time-dependent, we introduce the
concept of a rate-type variational potential. At a given state, say {ϕ, φ} as an example
for the electromechanical case, it is given in terms of the rates of the primary variables

Π(ϕ̇, φ̇) =

∫

B

d

dt
ψ(Q) + d(Q, Q̇) dV −Πext(ϕ̇, φ̇), (3.82)

where the dissipation potential, as introduced in the last section, is used to constitutively
model the rate-dependent material behavior at hand. In analogy to the static potential
introduced in Equations (3.14) and (3.15), we now have an external rate potential due to
the boundary conditions and volume forces

Πext(ϕ̇, φ̇) =

∫

B

(gγ) · ϕ̇ dV +

∫

∂Bt

(gt#) · ϕ̇ dA−
∫

B

λφ̇ dV +

∫

∂Bq

q#φ̇ dA. (3.83)

In order to numerically solve the rate-type potential, we now consider a discrete finite
time interval

∆t = t− tn > 0 (3.84)

in between a previous time tn and the current time t. We then obtain the time-discrete
incremental potential by means of a discrete time-integration algorithm

Π∆t = ALGO

{∫ t

tn

Π dt

}
. (3.85)

This time-integration can be performed, for example, with a right Riemann sum, where
the functional is evaluated at the current and last time step and multiplied with the
time-increment ∆t as follows

Π∆t =

∫

B

[
ψ(Q)− ψ(Qn)

∆t
+ d(Q,

Q−Qn

∆t
)

]
dV∆t +Π∆t

ext, (3.86)

where we used a finite difference approximation, i.e. a backward Euler scheme, for the
time derivatives appearing in the potential. Consequently, the external contribution using
the Riemann sum and the backward Euler scheme takes the explicit form

Π∆t
ext =

[ ∫

B

(gγ) · ϕ− ϕn

∆t
dV +

∫

∂Bt

(gt#) · ϕ− ϕn

∆t
dA

−
∫

B

λ
φ− φn

∆t
dV +

∫

∂Bq

q#
φ− φn

∆t
dA
]
∆t.

(3.87)

In line with the variational approach for the rate-independent case (3.17), physical equi-
librium is achieved for the primary variable fields {ϕ, φ} that optimize the incremental
potential

{ϕ, φ} = arg
{
inf
ϕ

sup
φ

Π∆t(ϕ, φ)
}
. (3.88)

The solution to such a problem can again be found using a variation

δΠ∆t = 0, (3.89)

which needs to vanish for all admissible {δϕ, δφ}.



Chapter 4

The Concept of micro-to-macro transition

B

Figure 4.1: A macroscopically homogeneous appearing body B reveals a heterogeneous mi-
crostructure at a much lower length scale. Voids, cracks, or grains may influence the macroscop-
ically observed properties, such as stiffness or viscosity.

Many materials for industrial applications have a distinct microstructure: when zoom-
ing into small length scales, one can observe voids, cracks, or grains, as shown in Figure 4.1.
Properties of the macroscopic component may be largely influenced by effects appearing
on the microstructure and lead to a large deviation of the properties of the pure homo-
geneous material’s theoretical values. However, as the length scales of the macroscopic
component and the microscale can differ by several magnitudes, a computer-based com-
putation of the component at the full resolution of the microstructure is uneconomical.
Instead, we will theoretically separate the length scales and condense the microstruc-
ture to a point problem on the macroscale. However, this reduction leads to a loss of the
boundary information on the microscale, as a point possesses no information on boundary
values. In order to close this gap, we have to formulate physically reasonable assumptions.
One is the equivalence of macroscopic and averaged microscopic energy density

ψ(F ,E) =
1

|B| inf
u∈Wu(F )

sup
φ∈Wφ(E)

∫

B

ψ(F ,E) dV. (4.1)

55
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It states that the macroscopic energy density ψ in terms of the macroscopic deformation
gradient F and the electric field E is the average of the equilibrated microscopic energy
density ψ in terms of the microscopic deformation gradient F and electric field E under
some given macroscopic deformation gradient F and electric field E. The optimization
for the microscopic displacement u and electric potential φ is carried out in the admissible
space of given constant macroscopic deformation gradient and electric field Wu(F ) and
Wφ(E).
The second assumption is the assumption of scale separation. We, therefore, consider
problems in which the fields on the microscopic scale can be decomposed into two contri-
butions, namely the microscopically constant macroscopic fields {F ,E} and the micro-

scopically fluctuating microscopic fields {F̃ , Ẽ}. In order to meet such scale separation
assumption, the fields on the microscale need to have wave-lengths much smaller than the
macroscopic fields. As a consequence, the RVE needs to be chosen large enough to reflect
those modes. In general, it might not be possible to find a suitable RVE. We will, how-
ever, always assume the existence of such an RVE in this work. The latter assumption
resorts to a first-order homogenization. These two postulates, namely the Hill-Mandel
averaging rule (4.1) and the scale-separation assumption allow us to derive variationally
consistent microscopic boundary conditions which themselves induce relations between
the macroscopic primary fields {F ,E} and the microscopic fields {F ,E}.

4.1. Microscopic equilibrium equations

To derive the restrictions of the microscopic boundary value problem, we will first present
the equations that need to be fulfilled in microscopic equilibrium. We, therefore, start
with the microscopic global energy potential, which we recall from Equation (3.14) to be

Π(ϕ, φ) =

∫

B

ψ(F ,E) dV − Πext, (4.2)

with the external coupled potential contribution (3.15)

Πext =

∫

B

(gγ) · ϕ dV +

∫

∂Bt

(gt#) · ϕ dA−
∫

B

λφ dV +

∫

∂Bq

q#φ dA. (4.3)

We further recall the gradient relations for the electric field (2.10) and the deformation
gradient (2.126)

F = ∇Xϕ and E = −∇Xφ. (4.4)

In line with the assumption of scale separation, we assume the macroscopic driving con-
tribution to be constant and perform an additive split of the primary fields into some
constant contribution {CF ,CE} and a non-constant fluctuating part {F̃ , Ẽ}

F = CF + F̃ (X) and E = CE + Ẽ(X). (4.5)

Using the gradient relation (4.4), the deformation map and scalar potential then appear
as

ϕ = CFX + ϕ̃(X) and φ = −C(E) ·X + φ̃(X). (4.6)

Later, we will connect the constants {CF ,CE} to the physical macroscopic fields {F ,E},
but as for now, we treat them as any arbitrary constants that drive the microscopic
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fields {F ,E}. Having the equation of the primary variables (4.6), the variation of the
potential (4.2) can be recalled from Equation (3.21) to be

δΠ =

∫

B

(−γ − Div(
∂ψ

∂F
)) · δϕ dV +

∫

B

(λ− Div(− ∂ψ

∂E
))δφ dV

+

∫

∂Bt

(
∂ψ

∂F
N − t#) · δϕ dA+

∫

∂Bq

(− ∂ψ

∂E
·N − q#)δφ dA = 0,

(4.7)

where we can extract the following individual volume and surface integral relations that
need to hold for all variations of the primary fields

∫

B

div[∂Fψ] · δϕ̃ dV = −
∫

B

γ · δϕ̃ dV (4.8a)
∫

∂Bt

(∂FψN) · δϕ̃ dA =

∫

∂Bt

t# · δϕ̃ dA (4.8b)

∫

B

div[∂Eψ]δφ̃ dV =

∫

B

λδφ̃ dV (4.8c)
∫

∂Bq

∂Eψ ·Nδφ̃ dA =

∫

∂Bq

q#δφ̃ dA, (4.8d)

where we used the decomposition (4.6) to write {δϕ, δφ} = {δϕ̃, δφ̃}. From the latter
equation we see, that we need to fulfill integral equations to reach equilibrium or vice versa,
the integral relations (4.8) are fulfilled when we have reached equilibrium. This will be an
important insight for the following derivations of consistent boundary conditions. We will
therefore denote electric fields and deformation gradients that fulfill the equations (4.8),
i.e. the ones obtained in microscopic equilibrium, with a hash {F#,E#}.

4.2. The Hill-Mandel macrohomogeneity conditions

Now that we know the equations that need to be fulfilled in equilibrium (4.8), we take a
closer look at the energy density assumption (4.1) between the micro- and the macroscale.
We now assume that the macroscopic boundary value problem can also be governed by a
variational form in analogy to the microscopic potential (4.2) as follows

Π(ϕ, φ) =

∫

B

ψ(F ,E) dV − Πext, (4.9)

where the external load contribution appears in analogy

Πext =

∫

B

(g γ) · ϕ dV +

∫

∂B
t

(gt
#
) · ϕ dA−

∫

B

λφ dV +

∫

∂Bq

q#φ dA. (4.10)

To find macroscopic equilibrium, we perform the variation of the macroscopic poten-
tial (4.9)

δΠ(ϕ, φ) =

∫

B

δψ(F ,E) dV − δΠext, (4.11)

where the variation of the macroscopic energy density δψ is now connected to a mi-
croscopic boundary value problem through the Hill-Mandel-condition (4.1). Using said
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postulate, we perform the variation on both sides of the equation and use the splits (4.5)

δψ = ∂Fψ : δF + ∂Eψ · δE =
1

|B|

∫

B

∂Fψ(F
#,E#) : (∂FCF : δF ) dV

+
1

|B|

∫

B

∂Fψ(F
#,E#) : δF̃ dV

+
1

|B|

∫

B

∂Eψ(F
#,E#) · (∂ECE δE) dV

+
1

|B|

∫

B

∂Eψ(F
#,E#) · δẼ dV.

(4.12)

In line with the Hill-Mandel equation (4.1) and as mentioned previously, we use the hash
{F#,E#} to denote that the primary fields are obtained from a microscopic equilibrium.
When varying the macroscopic fields {F ,E}, we need to vary both macroscopic fields

and microscopic fluctuations {F̃ , Ẽ} on the microscale, as a difference in the macroscopic
fields can induce differences in the fluctuations. Additionally, the microscopically constant
quantities {CF ,CE} might be dependent on the macroscopic primary fields as we will see
later. Using the same variational procedure that led to the microvariation (4.7) and the
fact that {CF ,CE} as well as {F ,E} are not dependent on X, we can reformulate the
latter equation into

∂Fψ : δF + ∂Eψ · δE =
1

|B|

∫

B

∂Fψ(F
#,E#) dV : ∂FCF : δF

+
1

|B|

∫

B

div[∂Fψ(F
#,E#)] · δϕ̃ dV

︸ ︷︷ ︸
(A)

+
1

|B|

∫

∂Bt

(∂Fψ(F
#,E#)N) · δϕ̃ dA

︸ ︷︷ ︸
(B)

+
1

|B|

∫

B

∂Eψ(F
#,E#) dV · ∂ECE δE

+
1

|B|

∫

B

div[∂Eψ(F
#,E#)]δφ̃ dV

︸ ︷︷ ︸
(C)

+
1

|B|

∫

∂Bσ

∂Eψ(F
#,E#) ·N δφ̃ dA

︸ ︷︷ ︸
(D)

,

(4.13)
which are the Hill-Mandel macrohomogeneity conditions. Comparing coefficients on the
left and on the right side, we see that the volume average rules

∂Fψ =
1

|B|

∫

B

∂Fψ(F
#,E#) dV : ∂FCF and ∂Eψ =

1

|B|

∫

B

∂Eψ(F
#,E#) dV · ∂ECE

(4.14)
only hold for vanishing terms (A), (B), (C) and (D) in Equation (4.13). Comparing term
(A) with (4.8a), term (B) with (4.8b), term (C) with (4.8c) and term (D) with (4.8d), i.e.
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E

ǫ→ ∞

ǫ→ ∞

ǫ0

φ

Figure 4.2: A metal RVE with a line defect. The permittivity ǫ in the metal tends to infinity,
while the permittivity in the line defect is some finite value (of air, for example). This leads to
a localization of the whole electric field inside the defect, as shown on the left side.

the integral equilibrium conditions, it follows that this is a priori always fulfilled for

−
∫

B

γ · δϕ̃ dV = 0 (4.15a)
∫

∂Bt

t# · δϕ̃ dA = 0 (4.15b)

∫

B

λδφ̃ dV = 0 (4.15c)
∫

∂Bq

q#δφ̃ dA = 0. (4.15d)

For fulfilling the Equations (4.15a) and (4.15c), we usually simply assume that there is
no volume body force and charge on the microscale γ = 0 and λ = 0. Regarding the
surface integrals, there are several techniques for making sure that they vanish. One is
to consider representative volume elements that have no prescribed surface tractions or
charge boundaries, i.e., prescribing {ϕ̃, φ̃} on the boundary which makes the variations

vanish on the boundary {δϕ̃, δφ̃} = {0 , 0}. The Hill-Mandel conditions give restrictions
on the boundary conditions, but they do not grant a unique solution for effective proper-
ties. There are many ways of prescribing boundary conditions that satisfy the Hill-Mandel
condition, and they lead to different values for the macroscopic quantities {∂Fψ, ∂Eψ} on
the macroscale. We want to now take a closer look at the definition of the macroscopic
fields {F ,E}, and two associated ways of imposing it on the microscale.

4.3. Macroscopic averaging and boundary conditions

Now that we know the restrictions on the boundary conditions, we know how we are
allowed to prescribe the primary variables {ϕ, φ} on the boundary in terms of an energy
consideration. However, we still have not answered yet how some given macroscopic
deformation gradient and electric field is imposed and measured on the microscale. One
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could think of defining the macroscopic deformation gradient and electric field {F ,E} as
the volume average of the microscopic deformation gradient and electric field. However,
this is not always the best choice as shown for the example shown in Figure 4.2: A
macroscopic electric field is imposed on an RVE of high permittivity ǫ → ∞. The RVE
has a line defect, a crack, for example, in which the permittivity is some finite number ǫ0.
This line defect leads to a scalar potential, as shown on the left of Figure 4.2. The electric
field fully localizes in the line defect while the electric field right above and below the
defect is zero. Measuring the macroscopic electric field’s volume average would now give
zero, which is not in line with the imposed macroscopic electric field. This is due to the line
having no physical extent in the vertical direction. Analogous mechanical considerations
for the displacement field for a cracked body lead to analogous consequences for the
macroscopic deformation gradient definition. A more accurate definition which captures
the described effects can be found by integrating the primary variables over the surface

F =
1

|B|

∫

∂B

ϕ⊗N dA and E = − 1

|B|

∫

∂B

φN dA. (4.16)

We will now have a look at two different types of boundary value problems, namely zero
fluctuation Dirichlet and periodic Dirichlet boundary conditions, and show that they fulfill
the Hill-Mandel restriction (4.15). For an elegant proof including zero traction boundaries,
the reader is referred to Maugin [119]. We then further investigate the implication of the
definition of the macroscopic fields (4.16) on the general constants {CF ,CE} introduced
in the additive split of the microscopic fields (4.5).

4.3.1. Zero fluctuation Dirichlet boundary conditions

In this case, we prescribe zero body force γ = 0 and volume charge λ = 0 inside the RVE
in order to fulfill (4.15a) and (4.15c) and zero fluctuations {ϕ̃ = 0 , φ̃ = 0} on the whole
boundary ∂B of the RVE in order to automatically fulfill (4.15b) and (4.15d). According
to the definition of the deformation map and scalar electric field (4.6), we have the simple
form on the boundary

ϕ = CFX and φ = −CE ·X on ∂B. (4.17)

Insertion of the latter relation into the definition of the macroscopic fields (4.16) then
yields the form

F = CF

1

|B|

∫

∂B

X ⊗N dA and E = CE

1

|B|

∫

∂B

X ⊗N dA, (4.18)

where we pulled the constants out of the integral. Assuming there are no jumps in the
location vector X, we can use the divergence theorem to transform the surface integral
into a volume integral

F = CF

1

|B|

∫

B

∇XX dV = CF

1

|B|

∫

B

1 dV = CF and E = CE

1

|B|

∫

B

∇XX dV = CE ,

(4.19)
where we see that for these particular boundary conditions, the constants themselves are
the macroscopic imposed fields. One further interpretation can be found when we assume
that there are no jumps of the deformation map and the scalar electric field {ϕ, φ} in



Chapter 4. The Concept of micro-to-macro transition 61

B. We then can reformulate the definition of the macroscopic fields (4.16) using the
divergence theorem in terms of a volume integral

F =
1

|B|

∫

B

∇Xϕ dV =
1

|B|

∫

B

F dV and E =
1

|B|

∫

B

−∇Xφ dV =
1

|B|

∫

B

E dV.

(4.20)
We thus can alternatively compute the macroscopic electric field in terms of the volume
average in this case. Comparing the latter result with the result obtained for the constants
{CF ,CE} from Equation (4.19), we identify the constants {CF ,CE} as the volume average
of the microscopic fields

CF = F =
1

|B|

∫

B

F dV and CE = E =
1

|B|

∫

B

E dV. (4.21)

The calculation of the macroscopic derivatives {∂Fψ, ∂Eψ} from Equation (4.14) then
simply becomes

∂Fψ =
1

|B|

∫

B

∂Fψ(F
#) dV and ∂Eψ =

1

|B|

∫

B

∂Eψ(E
#) dV, (4.22)

or in terms of the mechanical stress and electric displacement according to (3.71)

T =
1

|B|

∫

B

T (F#) dV and D =
1

|B|

∫

B

D(E#) dV. (4.23)

4.3.2. Periodic fluctuation Dirichlet boundary conditions

For this type of boundary value problem, we also prescribe zero body force γ = 0 and
volume charge λ = 0 inside the RVE fulfilling (4.15a) and (4.15c). We are not applying
free surface charges which again fulfills (4.15b) and (4.15d). However, in this case we
restrict the fluctuative contribution of the deformation map and the scalar potential to
be periodic on the boundaries

ϕ̃(X+) = ϕ̃(X−) and φ̃(X+) = φ̃(X−) on ∂B, (4.24)

where X+ and X− are points on opposite faces of the periodic RVE. Having this special
type of boundary condition, we can further evaluate the boundary terms of the equilibrium
equation (4.8b) and (4.8d), however on the whole boundary without surface tractions and

charges but with the periodic restriction in {δϕ̃, δφ̃} as
∫

∂B

(∂FψN) · δϕ̃ dA =

∫

∂B

∂Fψ
+N(X+) · δϕ̃(X+) + ∂Fψ

−N(X−) · δϕ̃(X−) dA

=

∫

∂B

[∂Fψ
+N(X+) + ∂Fψ

−N(X−)] · δϕ̃ dA = 0
∫

∂B

∂Eψ ·Nδφ̃ dA =

∫

∂B

∂Eψ
+ ·N(X+)δφ̃(X+) + ∂Eψ

− ·N(X−)δφ̃(X−) dA

=

∫

∂B

[∂Eψ
+ ·N(X+) + ∂Eψ

− ·N(X−)]δφ̃ dA = 0.

(4.25)
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In order for the latter equation to hold true for all periodic {δϕ̃ 6= 0 , δφ̃ 6= 0}, the
well-known antiperiodic boundaries for the tractions and surface charges

∂Fψ
+N(X+) = −∂Fψ−N(X−) and ∂Eψ

+ ·N(X+) = −∂Eψ− ·N (X−) (4.26)

are recovered. As a last step, we now want to again identify the constants {CF ,CE}.
Inserting the split of the deformation map and the scalar potential (4.6) into the definition
of the macroscopic deformation gradient and electric field (4.16) yields

F =
1

|B|

∫

∂B

(CFX + ϕ̃)⊗N dA

=
1

|B|

∫

∂B

(CFX)⊗N dA+
1

|B|

∫

∂B

ϕ̃(X+)⊗N(X+) + ϕ̃(X−)⊗N(X−) dA

E = − 1

|B|

∫

∂B

(−CE ·X + φ̃)N dA

=
1

|B|

∫

∂B

(CE ·X)N dA− 1

|B|

∫

∂B

φ̃(X+)N(X+) + φ̃(X−)N(X−) dA.

(4.27)

Using the periodicity of {ϕ̃, φ̃} on the boundary and further assuming a shape of the RVE
such that N(X+) = −N(X−) such as a cube, a sphere or any periodic structure, the last
integral vanishes. Further, in analogy to the zero fluctuation boundary conditions. we
use the divergence theorem in absence of jump discontinuities and end up with

CF = F =
1

|B|

∫

B

F dV and CE = E =
1

|B|

∫

B

E dV. (4.28)

We thus conclude that the macroscopic constants in both, the zero fluctuation and the
periodic fluctuation boundary value problem are the volume averages of the macroscopi-
cally applied fields {F ,E}. In analogy to the zero fluctuation boundaries, the calculation
of the macroscopic derivative {∂Fψ, ∂Eψ} from Equation (4.14) becomes

∂Fψ =
1

|B|

∫

B

∂Fψ(F
#) dV and ∂Eψ =

1

|B|

∫

B

∂Eψ(E
#) dV, (4.29)

or in terms of the mechanical stress and electric displacement according to (3.71)

T =
1

|B|

∫

B

T (F#) dV and D =
1

|B|

∫

B

D(E#) dV. (4.30)

4.3.3. Averaging of the macroscopic tangent operator

We have shown that in both cases, the zero and periodic fluctuation boundary conditions,
the averaging, i.e., the scale transition, of the microscopic quantities {∂Fψ(F#), ∂Eψ(E

#)}
is performed through the same volume averaging procedure (4.22) and (4.29). To solve
material and geometrical nonlinear problems, we usually need a linearized form of these
macroscopic quantities

Lin ∂Fψ = ∂F ψ
∣∣
F i,Ei

+ ∂2
F
ψ
∣∣
F i,Ei

: ∆F + ∂F∂E ψ
∣∣
F i,Ei

·∆E

Lin ∂Eψ = ∂E ψ
∣∣
F i,Ei

+ ∂E∂F ψ
∣∣
F i,Ei

: ∆F + ∂2
E
ψ
∣∣
F i,Ei

·∆E,
(4.31)



Chapter 4. The Concept of micro-to-macro transition 63

where {F i,Ei} are the macroscopic deformation gradient and electric field at the lin-
earization point. To arrive at a more compact notation, in line with the thermodynamic
considerations done in Section 3.3.2 in Equation (3.71) we now introduce the generalized
strains G and stresses S as follows

G =

[
F

E

]
and Si =

[
T i

−Di

]
=

[
∂F ψ

∣∣
F i,Ei

∂E ψ
∣∣
F i,Ei

]
=

[
∂F ψ

∣∣
Gi

∂E ψ
∣∣
Gi

]
. (4.32)

as well as the generalized increment between the linearization point and the next iterative
generalized strain state {∆F ,∆E} as follows

∆G =

[
∆F

∆E

]
=

[
F − F i

E −Ei

]
. (4.33)

Further introducing the material moduli

Ai = ∂F T
∣∣
F i,Ei

, qi = ∂E T
∣∣
F i,Ei

= −
[
∂FD

∣∣
F i,Ei

]T
and Ki = − ∂ED

∣∣
F i,Ei

.

(4.34)
we can set up the macroscopic generalized tangent operator

C
algo

= ∂
G
S
∣∣
Gi

=

[
Ai qi

qT
i Ki

]
, (4.35)

which allows us to write the linearized macroscopic form (4.31) as follows

Lin S = Si + C
algo ⋄∆G. (4.36)

Again, we use the generic operator ⋄ denoting the appropriate contractions according
to Equation (4.31). We now want to derive an explicit expression for the macroscopic
moduli appearing in Equations (4.34) and (4.35). From the two previous subsections, we
know from Equations (4.30) and (4.30) that in a homogenization context, the generalized
macroscopic stresses are themselves dependent on the generalized microscopic stresses in
the sense of a volume average. We thus need to apply the chain rule when evaluating the
derivatives in (4.35)

C
algo

= ∂
G

1

|B|

∫

B

S dV =
1

|B|

∫

B

∂GS ⋄ ∂
G
G dV =

1

|B|

∫

B

C ⋄ ∂
G
G dV, (4.37)

where in analogy to the macro-quantities (4.33), we introduced themicroscopic generalized
stress and strain

S =

[
T i

−Di

]
=

[
∂F ψ|F i,Ei

∂E ψ|F i,Ei

]
, G =

[
F

E

]
and C = ∂G S|

Gi
=

[
Ai qi

qT
i Ki

]
.

(4.38)
We now take a closer look at the partial derivative of the microscopic generalized strains
with respect to the macroscopic generalized strains ∂

G
G. We utilize the strain decompo-

sition (4.6) and the relation (4.28) to obtain

C
algo

=
1

|B|

∫

B

C ⋄ (∂
G
G+ ∂

G
G̃) dV, (4.39)
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which gives the explicit expression for the macroscopic tangent operator

C
algo

=
1

|B|

∫

B

C+ C ⋄ ∂
G
G̃ dV (4.40)

in terms of the fluctuation derivatives ∂
G
G̃. We thus see that in contrast to the averaging

of the macroscopic stresses (4.30), the averaging of the macroscopic tangent operator is not
just the volume average of the microscopic moduli, but an additional term in dependence
of said fluctuation derivatives ∂

G
G̃ must be taken into account. This additional term

is often referred to as a softening term. The determination of these derivatives will be
subject of Chapter 6.
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Chapter 5

Approximation of field variables and their gradients

through trigonometric functions

The Fourier transform is the representation of a function in terms of an infinite harmonic
series. With this, a function is represented or approximated by trigonometric base func-
tions, namely the sine and cosine function. The truncation of the integral or infinite sum
of Fourier transform leads to the discrete Fourier transform. It can be applied to given
discrete data points to obtain a trigonometric approximation of the underlying function
and thus the possibility to evaluate derivatives and gradients. According to Heideman

et al. [73], the first reported discrete cosine transform goes back to Clairaut [28] in
1754, the first sine transform to Lagrange [104] in 1762. In 1822, Fourier [49] pub-
lished his seminal work on the representation of functions through harmonic series. The
nowadays most popular and efficient implementation for such a transformation is called
the fast Fourier transform. Interestingly, Gauss already proposed such an algorithm at
the beginning of the 18th century [73]. Nowadays, the Cooley-Tukey implementation [29]
of the said algorithm is well established in various computational fields. This chapter will
briefly discuss the most important quantities of the discrete Fourier transform in our con-
text with a special focus on approximating derivatives and solving differential equations.
Some small numerical examples are included for better understanding.

5.1. The discrete Fourier transform

The discrete Fourier transform results from a truncation of the continuous Fourier trans-
form in terms of the wave numbers k [193, 206]. Having a complex vector yj ∈ CN ; j =
0, ..., N − 1 of one-dimensional values belonging to the gridpoints xj = j/N , the forward
discrete Fourier transform (DFT) appears as

ŷk =
N−1∑

j=0

e−2πikxjyj for k =
−N + 1

2
, ...,

N − 1

2
, (5.1)

67
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Figure 5.1: To the left, a plot of the fundamental trigonometric function for the grid point
j = 3 is shown. One can see that the approximation satisfies the partition-of-unity. To the
right, the complete trigonometric approximation of the N = 21 given value pairs using 21 wave
numbers is depicted.

where i =
√
−1 is the complex root and ŷ are the so-called discrete Fourier coefficients.

The inverse discrete Fourier transform is then performed according to

yj =
1

N

N−1∑

k=0

e2πikxj ŷk for j = 0, ..., N − 1. (5.2)

For the special case that the input vector only consists of real numbers yj ∈ RN ; j =
0, ..., N − 1, the Fourier coefficients satisfy the symmetry

ŷN−k = ŷk for k 6= 0, (5.3)

where the overline in this context denotes the complex conjugate of the complex number.1

A more convenient way of writing the discrete Fourier transform can be obtained by
defining the transformation matrices

ωkj = e−2πikxj and ω−1
jk = e2πikxj (5.4)

and rewriting the sums in the transforms (5.1) and (5.2) as matrix-vector multiplications

ŷk = ωkjyj and yj =
1

N
ω−1
jk ŷk. (5.5)

One sees that performing the DFT and then the inverse discrete Fourier transform (IDFT)
gives back the original input vector. In Fourier space, the approximation has local support
as ŷk = 0 for all wave numbers k 6= (−N + 1)/2, ..., (N − 1)/2. In real space, the
interpolation is not locally supported [210]. One can see the interpolation behavior better
when evaluating the IDFT (5.2) on a finer grid, i.e. j′ = 0, ..., N ′ − 1 with N ′ > N .
Figure 5.1 shows an example for a Fourier approximation using N = 21 value pairs

1Note that the arrangement of the wave numbers k might change from implementation to implemen-
tation, and thus the details in the indexing of k change.
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Grid Points
Trig. Interp.Fu. Tr. Fct. (k = [5, 5])
Value Pairs

Figure 5.2: To the left, a plot of the two-dimensional fundamental trigonometric function for
the grid point k = [5, 5] is shown. One can see that the approximation satisfies the partition-of-
unity. To the right, the complete trigonometric approximation of the N = 11 given value pairs
using 11 wave numbers is depicted.

(xN , yN) and 21 wave numbers. The approximation is evaluated at N ′ = 1001 grid
points, which can be written down compactly according to Equation (5.5) as

yj′ =
1

N
ω−1
j′kωkjyj. (5.6)

The approximation satisfies the partition-of-unity as

1

N
ω−1
j′kωkj = δj′j , (5.7)

which is shown for j = 3 on the left-hand side of Figure 5.1. One can see the fundamental
trigonometric function for the third value pair at j = 3, i.e. the contribution ω−1

j′kωk 3

becomes 1 at j = j′ and is zero at the other grid points of the original value pairs. The
right-hand side of Figure 5.1 shows the full approximation (5.6). One can see that the
interpolation function approximates the original value pairs exactly.
Furthermore, the DFT can easily be extended to a higher dimension. In two dimensions,
for example, it takes the form

ŷkl =

M−1∑

h=0

N−1∑

j=0

e−2πikx1,he−2πilx2,jyhj for k =
−M + 1

2
, ...,

M − 1

2
; l =

−N + 1

2
, ...,

N − 1

2
,

(5.8)
for a given complex vector yhj ∈ C

M×N on a grid x = [x1, x2] = [h/M, j/N ] with wave
number k = [k, l]. The IDFT in two dimensions then appears as

yhj =
1

MN

M−1∑

k=0

N−1∑

l=0

e2πikx1,he2πilx2,j ŷkl for h = 0, ...,M − 1; j = 0, ..., N − 1. (5.9)

Figure 5.2 shows the corresponding fundamental trigonometric function and the function
interpolation on the grid [M,N ] = [11, 11], see also [210] for more details.

5.2. Derivative approximation through the discrete Fourier trans-

form

In order to solve differential equations by means of Fourier-based methods, it is neces-
sary to evaluate the derivatives of the trigonometric interpolation function at the grid
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Figure 5.3: Fourier approximation of the derivatives of some given data points. N = 21 data
points as indicated by the circles are drawn from the sample function y(x) = 1 + x sin(2πx).
A DFT is used to obtain the Fourier coefficients of the data points. In the case of unit length
of the periodic cell, the coefficients are then multiplied with 2πik. The IDFT then gives the
approximation of the data points as indicated on the bottom left graph.

points xj . Having a look at the inverse discrete Fourier transform (5.2), we see that
only the exponential term depends on xj , as we summed over all xj when calculating the
Fourier coefficients ŷk in the forward discrete Fourier transform (5.1). Consequently, the
approximated derivative at point xj for a one-dimensional problem appears as

∂y

∂x
(xj) ≈

1

N

N−1∑

k=0

e2πikxj2πikŷk for j = 0, ..., N − 1. (5.10)

Comparing the latter equation with Equation (5.2), we see that it is in fact again an inverse
DFT using modified Fourier coefficients ŷ′k = 2πikŷk. Figure 5.3 gives an example on the
approximation of the derivatives computed from given value pairs (xj , yj). In our specific
example, we draw N = 21 value pairs from the sample function y(x) = 1 + x sin(2πx),
where the distance between the two neighboring value pairs xj and xj−1 is equidistant.
The function is periodic on x ∈ [0, 1], its derivative however is not. In a first step, we
apply the DFT using 21 wave numbers to the value pairs and obtain the complex Fourier
coefficients ŷk. Here, one can see an additional feature of the DFT. As the value pairs
are all real numbers, the Fourier coefficients are of a certain symmetry: The Fourier
coefficient at wave number ki is the complex conjugate of the Fourier coefficient at k−i,
see Equation 5.3. Numerical algorithms exploit this in order to gain a speedup. The next
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Figure 5.4: A solution of the Cahn-Hilliard equation for a binary fluid mixture starting from
a random initial contribution at t = 0 where the average of c is approximately 0.5. One can see
phase segregation, as the fluids try to minimize their surface. The domains merge and grow.

step is to multiply the Fourier coefficients according to Equation (5.10) with the factor
2πik. Finally, the IDFT is applied to the modified Fourier coefficients, and we obtain the
trigonometric approximation of the value pairs’ derivative.
The results directly carry over to higher dimensions. For convenience, we then define the
modified wave-vector k∗ = 2πk of dimension n and write the gradient or the Laplacian
of the approximated function as

∇y ≈ IDFT(ik∗ŷ) and ∇2y ≈ IDFT(−|k∗|2ŷ), (5.11)

where the IDFT is carried out in analogy to Equation (5.10). The latter equation must
be interpreted as a multiplication per grid point, i.e. at each grid point the corresponding
wave vector k∗ = [2πk, 2πl] or its magnitude |k∗|2 = (2πk)2 + (2πl)2 is multiplied with
the scalar ŷkl and the whole array is then inversely transformed to obtain the gradient or
the Laplacian. This convention will be used in the following chapters as well.
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5.3. Numerical example: Solving the Cahn-Hilliard equation

Having the trigonometric approximation at hand along with the computation of the gradi-
ents (5.11), we now want to demonstrate its validity by solving the Cahn-Hilliard equation

∂c

∂t
= D∇2(∂cf(c)− γ∇2c). (5.12)

It describes the process of phase separation of a mixture of two fluids in terms of the
concentration c, e.g., c = 0.6 would correspond to 60% of fluid one, and 40% of fluid two.
The parameter D is a diffusion coefficient and γ is a length scale parameter accounting for
the transition between the two phases. Finally, the function f(c) is modeled to represent
a double-well potential with respect to the concentration c. In this example, we closely
follow [46], where the double-well potential takes the form

f(c) = c2(c− 1)2. (5.13)

The Cahn-Hilliard equation in (5.12) in discrete Fourier space then appears as

∂ĉ

∂t
= −D|k∗|2(∂̂cf(c) + γ|k∗|2 ĉ ), (5.14)

where the wide hat denotes the Fourier transformed quantities. Following [46], we now
use a semi-implicit time discretization

ĉn+1 − ĉn
∆t

= −D|k∗|2(∂̂cf(cn) + γ|k∗|2 ĉn+1 ). (5.15)

Rearranging then gives the semi-implicit update rule

ĉn+1 =
ĉn −D|k∗|2∂̂cf(cn)∆t

1 + γ|k∗|4D∆t
. (5.16)

For our unitless numerical example, the time step size is set to ∆t = 5 · 10−6. The square
domain is of unit length L1 = L2 = 1 and is discretized by 201 × 201 equidistant grid
points. The diffusion coefficient is set to D = 1. As length scale parameter, we choose
γ = 0.0001. The Matlab [118] code that generated this example is attached. Figure 5.4
shows the results for the concentration c at the initial step, at 103 iterations, 104 iterations
and 105 iterations. At time t = 0, the concentration is initialized as c0 = 0.5+U(−1, 1) at
every grid point, where U(−1, 1) denotes a uniform random distribution between −1 and
1. As a consequence, the average concentration is approximately 0.5. At t = 0.005, one
can see that the phases already start to separate. At t = 0.05 one can see the formation
of larger domains of fluid one where c ≈ 1 and fluid two where c ≈ 0. At t = 0.5, the
domains merge further.

Listing 5.1: Cahn-Hilliard Matlab implementation

1 c l o s e a l l
2 c l e a r a l l
3

4 % Mater ia l Parameters and time step
5 gamma = 0 . 0 001 ;
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6 D = 1 . 0 ;
7 dt = 0 .000005 ;
8

9 % Build g r id in r e a l space and wave numbers
10 N = 201 ;
11 x = 0:1/N:1−(1/N) ;
12 k = (−N+1) / 2 : 1 : (N−1) /2 ;
13

14 [ k1 , k2 ] = meshgrid (k , k ) ;
15 [ x1 , x2 ] = meshgrid (x , x ) ;
16

17 % Randomly i n i t i a l i z e the concent ra t i on
18 c0 = 0 .5 + (1.0−2.0∗ rand ( s i z e ( x1 ) ) ) ∗10ˆ(−3) ;
19 cc n = c0 ;
20

21 % Calcu la t e magnitude o f wave numbers on g r id ( i n c l ud i ng (2∗ pi )
ˆ2)

22 kabs = 4 .0∗ pi ˆ(2) ∗( k1 . ˆ ( 2 ) + k2 . ˆ ( 2 ) ) ;
23

24

25 f o r t = 1:100000
26 % Four ier transform o f concent ra t i on and s h i f t o f

f r e qu en c i e s
27 ccF n = f f t 2 ( cc n ) ;
28 ccF n = f f t s h i f t ( ccF n ) ;
29

30 % Compute d e r i v a t i v e o f double−we l l p o t e n t i a l o f l a s t time
step

31 % ( semi−imp l i c i t scheme )
32 g = 4.0∗ cc n . ˆ 3 . 0 − 6 .0∗ cc n . ˆ 2 . 0 + 2 .0∗ cc n ;
33

34 % Four ier transform o f double−we l l d e r i v a t i v e and s h i f t
35 gF = f f t 2 ( g ) ;
36 gF = f f t s h i f t ( gF) ;
37

38 % Second Laplac ian in Four i e r space us ing magnitude o f k
39 ccF = ( ccF n − D∗kabs .∗ gF∗dt ) .∗ (1 .0+gamma∗D∗dt∗kabs .∗ kabs )

.ˆ( −1.0) ;
40

41 % Inver se Four i e r transform o f second Laplac ian
42 ccF = i f f t s h i f t ( ccF ) ;
43 cc = i f f t 2 ( ccF ) ;
44

45 % Update h i s t o r y va r i ab l e
46 cc n = cc ;
47 end
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5.4. Numerical example: Solving a one-dimensional Ginzburg-

Landau type equation

We now want to show that the solution of a differential equation under periodic boundary
conditions can be solved by setting up the system matrix and right-hand side explicitly
and inversion of the system matrix. We, therefore, consider a one-dimensional Ginzburg-
Landau type differential equation defined as

d− l2∆d− 2(1− d)H(x)
l

gc
= 0, (5.17)

where d is now our phase-field variable at hand (analogously to c in the previous example),
H(x) is an arbitrary real-valued field, l is a length scale parameter accounting for the
diffuse interface between two phases and gc is some material parameter. Using the gradient
relations in Fourier space (5.10) and (5.11)2 in combination with the matrix representation
of the inverse Fourier transform (5.4), we can define the Laplacian transformation matrices

ω−1
jk = −(4π2k2)e2πikxj . (5.18)

With this definition at hand, the Ginzburg-Landau type differential equation can be
discretized on a grid with N grid points where all indices run from 0 to N − 1 as follows

(δij −
l2

N
ω−1
ix ωxj +

2l

gc
δijHj)dj =

2l

gc
Hi. (5.19)

The latter equation is a system of linear equations in dj from which we can directly
identify the stiffness matrix K and right-hand side b as

Kij = δij −
l2

N
ω−1
ix ωxj +

2l

gc
δijHj and bi =

2l

gc
Hi. (5.20)

The solution vector d∗j is then obtained by inversion of the stiffness matrix

d∗j = K−1
ji bi. (5.21)

As a one-dimensional, unit-less example, we choose a domain x ∈ [0, 1] which is dis-
cretized by 201 equidistant grid points. The material parameters are set to l = 0.05 and
gc = 0.0027. The applied H-field as shown on the left side of Figure 5.5 is governed by
the function

H =
1

a
√
π
e

−(x−0.5)2

a2 , (5.22)

which is an approximation to the Dirac delta function. The MATLAB [118] code that
generated this example can be found in the following subsection. Figure 5.5 shows the
result d of the phase field for the discretized problem. One can see that the gradient of the
phase field is regularized. A property of the differential equation that can be tuned by the
parameter l. One can also see that the solution field is always d ≤ 1. As by construction
of the Ginzburg-Landau type equation (5.17), d degrades the driving H-field.
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Figure 5.5: To the left, the applied H-field governed by the function 1/(a
√
π)exp(−(x −

0.5)2/a2) is shown. To the left, the solution d∗ of the phase-field obtained from the Fourier
discretized boundary value problem using N = 201 grid points and material parameters l = 0.05,
gc = 0.0027 is shown.

Listing 5.2: Ginzburg-Landau Matlab Implementation

1 c l o s e a l l
2 c l e a r a l l
3

4 % Build g r id in r e a l space and wave numbers
5 N = 201 ;
6 x = 0:1/N:1−(1/N) ;
7 k = (−N+1) / 2 : 1 : (N−1) /2 ;
8

9 % Applied d r i v i ng f o r c e approximated by the de l t a d i s t r i b u t i o n
10 a = 0 . 0 1 ;
11 H = 1/( sq r t ( p i ) ∗a ) ∗exp(−(x−0.5) .ˆ2/ a ˆ2) ;
12

13 % Mater ia l parameters o f the d i f f e r e n t i a l equat ion
14 l = 0 . 0 5 ;
15 gc = 0 . 0 027 ;
16

17 % I n i t i a l i z e DFT matr i ces
18 W = zero s (N,N) ;
19 Winv = zero s (N,N) ;
20 ddWinv = zero s (N,N) ;
21

22 % Build DFT matr i ces
23 f o r i = 1 :N
24 f o r j = 1 :N
25 % Forward Four i e r transform matrix
26 W( i , j ) = exp(−2∗pi ∗1 i ∗k ( i ) ∗x ( j ) ) ;
27 % Inver se Four i e r transform matrix
28 Winv( i , j ) = exp (2∗ pi ∗1 i ∗k ( j ) ∗x ( i ) ) ;
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29 % Laplacian i nve r s e Four i e r transform matrix
30 ddWinv ( i , j ) = (2∗ pi ∗1 i ∗k ( j ) ) ˆ (2) ∗exp (2∗ pi ∗1 i ∗k( j ) ∗x ( i ) ) ;
31 end
32 end
33

34 % System Matrix o f Four i e r d i s c r e t i z e d boundary value problem
35 S t i f f n e s s = r e a l ( eye (N,N) − ( l ˆ (2 ) /N) ∗(ddWinv∗W) . . .
36 + (2∗ l / gc )∗diag (H) ) ;
37 % Right hand s i d e o f Four i e r d i s c r e t i z e d boundary value problem
38 RightHandSide = r e a l ( (2∗ l /( gc ) )∗H’ ) ;
39

40 % So lut i on o f phase f i e l d : d = b\A
41 d = S t i f f n e s s \RightHandSide ;



Chapter 6

Fast Fourier transform-based computational

homogenization of composites

We now want to use the previously presented Fourier methods to efficiently solve ho-
mogenization problems. One could now think of setting up a global stiffness matrix for
the equilibrium equations (3.22), see also Equation (4.8) for the variational microscopic
form, employing the trigonometric Fourier transform matrices (5.4) as presented in Sec-
tion 5.1. However, the explicit calculation of stiffness matrices demands much memory for
larger problems. We therefore focus now on an approach presented by Moulinec & Su-

quet [136]. It relies on the construction of a periodic Green operator Γ0 in Fourier space
and allows for an efficient iterative solution of the physical problem, see also Moulinec

& Suquet [137]. The procedure finally results in the solution of a Lippmann-Schwinger
equation [113] known from quantum scattering theory

f = f + Γ0 ∗ τ(f), (6.1)

which states that the solution f of some associated suitable differential equation can be
decomposed into a constant contribution f and a contribution obtained by the convolution
of a Green operator Γ0 with a perturbation field τ(f) over the solution domain B as follows

(Γ0 ∗ τ(f))(X) =

∫

B

Γ0(X − Y ) · τ(f, Y )dY, (6.2)

see also Duffy [40] for a more detailed discussion on Green operators. An early variant
of this equation where there is no fixed-point iteration involved was already used by Max

Born [12] on the field of quantum scattering, also known as Born approximation. In
this chapter, it is shown how to obtain the Lippmann-Schwinger equation for mechanical
boundary value problems and the explicit periodic Green operators in Fourier space will
be derived. As a second objective, the computation of the macroscopic tangent operators
as defined in Equation (4.40) is dealt with. It is shown that the Lippmann-Schwinger
equation can be exploited to directly compute the fluctuation sensitivities through a set
of linear equations. Regarding the electro-mechanically coupled boundary value problems,
a special focus lies on the incorporation of reference moduli within the Green operator as
well as on coupled and decoupled computations of the macroscopic tangent operators.

77
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6.1. Lippmann-Schwinger equation of mechanical boundary value

problems

We now want to transform the previously defined mechanical boundary value problem
(3.22)1 and (3.22)2

DivT = 0 in B and [[T ]]N = 0 on ∂B, (6.3)

into a form that resembles the Lippmann-Schwinger equation (6.1). In the latter equation,
[[(•)]] denotes the jump of some quantity (•) across the surface of two adjacent RVEs. As
for the first Piola-Kirchoff stress T , it is defined as

(T+ − T −)N = 0 on ∂B0, (6.4)

where T+ = T (X+) and T − = T (X−) are the stresses evaluated at opposing points of
on the RVE’s boundary. As demonstrated in Hashin & Shtrikman [70],Willis [204]
and Moulinec & Suquet [136, 137], we perform a zero-addition to the stress T by a
constant reference material A0 contracted with the strain field F

T = T + A
0 : F − A

0 : F . (6.5)

Here, A0 can be any fourth-order tensor and will later act as a preconditioner. By defining
a perturbation field

τm = T − A
0 : F , (6.6)

the first Piola-Kirchhoff stress can be written in the form

T = A
0 : F + τm(F ). (6.7)

Insertion of the latter definition into the equilibrium equation (6.3) yields the representa-
tion

Div[A0 : F ] = −Div[τm(F )]. (6.8)

Interpreting the right-hand side as some general driving term, the solution of the dif-
ferential equation can be written down in terms of a fourth-order Green operator Γ0 as
follows

F = F + Γ0 ∗ τm(F ), (6.9)

where we recall from Equations (4.5) and (4.28) that for the special case of periodic
homogenization, F denotes the macroscopic constant deformation and Γ0 is calculated
based on boundary conditions compatible with the Hill-Mandel conditions (4.1). In the
latter equation, we use the symbol ∗ to denote the convolution defined by

Γ0 ∗ τ (F ) = (Γ0 ∗ τ (F ))(X) =

∫

B

Γ0(X) : τ (F (X − Y )) dV (Y ), (6.10)

with X being the spatial variable and Y being the spatial integration variable. The illus-
trative example 6.6 on page 94 shows how to derive and use a Green function for a simple
one-dimensional boundary value problem. For higher-dimensional problems and more
complex geometries, a Green operator’s construction in real space might be a challenging
task. However, due to the way derivatives can be evaluated in Fourier space as described
in Section 5.2, it is possible to construct explicit expressions for the Green operator under
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periodic boundary conditions in Fourier space [16, 136, 173, 182, 205].
In order to use advanced solvers such as the conjugate gradient and Newton-Raphson
methods, we need a linearized form of the Lippmann-Schwinger equation (6.9). Following
Gélébart & Mondon-Cancel [54] and Kabel et al. [86] and using the incremental
update F i+1 = F i +∆F , consistent linearization yields

F i − F − Γ0 ∗
[
T i − A

0 : F i
]
+ I : ∆F − Γ0 ∗

[
(Ai − A

0) : ∆F
]
= 0 . (6.11)

The latter linear equation can now be solved for ∆F employing some iterative solver such
as conjugate gradient or GMRES. Note that not only the choice of the solver influences
the convergence speed of the iterative process, but also the choice of reference medium as
discussed in Schneider [171].

6.2. Lippmann-Schwinger-based analytic macroscopic tangent op-
erator

We now want to demonstrate an explicit procedure for computing the macroscopic tangent
operator as presented in Göküzüm & Keip [62]. Revisiting the expression (4.40) for the
purely mechanical macroscopic tangent operator

A =
1

|B|

[∫

B

A dV +

∫

B

A :
∂F̃

∂F
dV

]
, (6.12)

we see that in equilibrium, the microscopic moduli A can be obtained from the material
law, whereas we need to still find a way to compute the fluctuation sensitivities ∂F̃ /∂F .
Comparison of the Lippmann-Schwinger equation (6.9) with the micro-macro decompo-
sition of the deformation gradient (4.5) and (4.28) reveals the explicit expression of the
fluctuative deformation gradient in terms of the Green operator

F̃ = Γ0 ∗ τm(F ) = Γ0 ∗
[
T − A

0 : F
]
, (6.13)

where we used the definition of the perturbation field (6.6). With this expression at hand,
differentiation with respect to the macroscopic deformation gradient F is performed

∂F̃

∂F
= Γ0 ∗

[
∂T

∂F
:
∂F

∂F
− A

0 :
∂F

∂F

]
, (6.14)

where we used the chain rule. Insertion of the decomposition of the deformation gradient
(4.5) and (4.28) yields

∂F̃

∂F
= Γ0 ∗

[
∂T

∂F
:
∂(F + F̃ )

∂F
− A

0 :
∂(F + F̃ )

∂F

]
. (6.15)

Evaluating the derivatives finally gives a linear equation in terms of the fluctuation sen-
sitivities

−Γ0 ∗
[
A− A

0
]
= Γ0 ∗

[
(A− A

0) :
∂F̃

∂F

]
− ∂F̃

∂F
, (6.16)
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where we used the abbreviation A = ∂T /∂F . When using periodic boundary conditions,
according to the procedure in Section 4.3.2, the volume integral of the periodic fluctuative
deformation gradient F̃ vanishes. Consequently, the latter equation is solved under the
constraint

1

|B|

∫

B

∂F̃

∂F
dV = 0 . (6.17)

Equation (6.16) is an equation which needs to be solved for the ndim ×ndim ×ndim ×ndim

unknowns of the fourth-order tensor ∂F̃ /∂F , with ndim being the spatial dimension. As
the moduli A are the ones obtained at equilibrium, it can be easily computed in a post-
processing step after the solution of the Lippmann-Schwinger equation (6.9) is found.
Solving for the fluctuation derivatives is usually done utilizing a fixed-point or conjugate
gradient method.

Memory efficient implementation. As demonstrated in [62], the problem (6.16)
can be reduced to ndim × ndim problems of size ndim × ndim, allowing to reuse the solver
routines that were used for the equilibrium problem, see also Ma & Truster [116]. We
therefore multiply Equation (6.16) with independent tensors I of size ndim × ndim. For
the two-dimensional case, these tensors appear as

I1 =

[
1 0
0 0

]
, I2 =

[
0 1
0 0

]
, I3 =

[
0 0
1 0

]
and I4 =

[
0 0
0 1

]
. (6.18)

Multiplication of these independent tensors with Equation (6.16) yields four modified
equations of the form

Ξi − Γ0 ∗ [(A− A
0) : Ξi] = −Γ0 ∗ [(A− A

0) : I i] with i = 1, ..., ndim (6.19)

which can be solved individually for the ndim×ndim entries of Ξi. The components of the
fourth-order fluctuation sensitivities can then be obtained from the relation

Ξi =
∂F̃

∂F
: I i. (6.20)

Lippmann-Schwinger-type implementation. The linear Equation (6.16) can be
brought in a more familiar Lippmann-Schwinger-type form, allowing for a basic scheme in
the sense of a fixed-point iteration. We therefore define a sensitivity polarization tensor
as follows

T = (A− A
0) :

∂F̃

∂F
. (6.21)

Insertion of the latter equation into Equation (6.16) and rearrangement gives the Lippmann-
Schwinger-type equation.

∂F̃

∂F
= Γ0 ∗ [(A− A

0) + T]. (6.22)
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6.3. Fourier discretization and solution approach

In the previous sections, we derived a theoretical framework for the solution of the de-
formation F in equilibrium equation through the linearized Lippmann-Schwinger equa-
tion (6.11) and the solution to the fluctuation sensitivities ∂F̃ /∂F through the linear
Lippmann-Schwinger-type equation (6.16). We now want to numerically find the solution
to these fields employing the Fourier discretization introduced in Chapter 5. Accordingly,
in the two-dimensional case, we discretize the real reference space by means of the discrete
spatial coordinates

Xαβ =
{
(α− 1)

L1

N1
, (β − 1)

L2

N2

}
with α, β = 1, ..., N1,2, (6.23)

where α is the grid point index of a total of N1 grid points in X1-direction. Analogously, β
is the grid point index of a total ofN2 grid points inX2-direction. L1 and L2 are the spatial
physical lengths in X1- and X2-direction of the problem domain. The corresponding
quantity in Fourier space to the spatial coordinates are the truncated discrete referential
Fourier wave numbers or referential frequencies

Kαβ =
{
(N1 − α)

1

L1
, (N2 − β)

1

L2

}
with α, β = 1, ..., N1,2. (6.24)

This is a further modification of the wave vector introduced in Chapter 5 and applies
for domains that do not have unit lengths. Depending on the implementation of the fast
Fourier transform, one has to additionally multiply the wave vector with 2π, as described
in Chapter 5.

6.3.1. Construction of the discrete Green operator

With the Fourier discretization at hand, we now want to construct the discrete Green
operator introduced in (6.9) in Fourier space, see also Moulinec & Suquet [136]. Let
us, therefore, revisit the intermediate result (6.8) in index notation

[A0 B D
a c F c

D ],B = −τm(F ) B
a ,B, (6.25)

where the up-down indices follow the logic introduced in Chapter 2.2. Here, we assume
to be at one specific grid point α, β = α′, β ′ for the evaluation of the divergence, which
is why we dropped the grid indices α, β here and remained with the spatial dimensional
indices a, B, c,D. Using the global Fourier approximation of Chapter 5, we can compute
the derivatives according to Section 5.2 as follows

A
0 B D
a c F̂ c

D iKB = −τ̂m(F ) B
a iKB for K 6= 0

F̂ c
D = F

c

D for K = 0 .
(6.26)

As in Fourier space, the Fourier coefficient of the zeroth frequency is associated with
the average. We can see from the decomposition (4.5) and (4.28) that all other Fourier
coefficients are associated with the fluctuative contribution. We thus can state that the
relation in real space

F c
D = ϕ̃(X)c,D (6.27)
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can be transformed into the Fourier representation

F̂ c
D = ϕ̂(X)c,D = ϕ̂(X)c iKD for K 6= 0 . (6.28)

Insertion of the latter equation into the equilibrium equation (6.26)1 and relabeling sum-
mation indices allows for the representation

ϕ̂(X)c = (Â−1)caiKB τ̂
m(F ) B

a with Âca = A
0 X Y
c a KXKY , (6.29)

Where Â is often called the acoustic tensor. Finally, we can reinsert the latter equation
into the deformation gradient in Fourier space (6.28), which along with (6.26)2 gives the
set of equations

F̂ c
D = ϕ̂(X)c,D = −(Â−1)caKBKD τ̂

m(F ) B
a for K 6= 0

F̂ c
D = F

c

D for K = 0 .
(6.30)

According to the convolution theorem, convolutions in real space become contractions in
Fourier space. We thus see that the latter equation is the discrete Fourier counterpart
to the Lippmann-Schwinger equation in real space (6.9). The Green operator in Fourier
space can then be identified as

Γ̂0ca
BD = −(Â−1)caKBKD for K 6= 0

Γ̂
0
= 0 for K = 0 .

(6.31)

The same Green operator can then be used in the solution of the linearized form (6.11)
when using conjugate gradient solvers, for example. However, the constraint is then
∆F̂ = 0 for K = 0 , as strictly speaking, we are solving for the incremental fluctua-
tions ∆F̃ , which are zero on average according to the periodic boundary conditions and
considerations made in Section 4.3.2.

6.3.2. Discrete solution scheme for primary variabels and fluctuation sensitiv-
ities

Having the Fourier discretization and the Green operator at hand, we want to solve the
deformation gradient at equilibrium. We, therefore, assemble all deformation gradients
at the grid points in a global matrix

F =

Nα,β

A
α, β = 1

F αβ , (6.32)

which in two dimensions gives a global matrix of size N1 × N2 × 4. In analogy to the
deformation, we assemble all quantities occurring in the fixed point scheme (6.9), i.e.

T =

Nα,β

A
α, β = 1

T αβ , A
0 =

Nα,β

A
α, β = 1

A
0
αβ and Γ̂0 =

Nα,β

A
α, β = 1

Γ̂0
αβ. (6.33)

As the Fourier method presented here is a collocation method with no difference between
nodal and integration points, the assembly procedure is different from the assembly per-
formed within a finite element method. Here, the assembly simply denotes the gathering
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of the individual nodal real and Fourier space quantities within one global array. With
those assemblations at hand, updating the deformation gradient in terms of the fixed
point iteration can be carried out in Fourier space according to

F̂ i+1 = Γ̂
0
: τ̂ (F̂ ) for K 6= 0

F̂ i+1 = F i+1 for K = 0 ,
(6.34)

where for the evaluation of τ according to (6.6), an inverse Fourier transform on F̂ i+1 has
to be performed for each iteration.
When using conjugate gradient-based solvers, one further has to assemble the additional
quantities occurring in the linearized Lippmann-Schwinger form (6.11)

∆F =

Nα,β

A
α, β = 1

∆F αβ and A =

Nα,β

A
α, β = 1

Aαβ . (6.35)

Having the assembled quantities, one can then apply a conjugate gradient method along
with the constraint

∆F i+1 = cg{A · x, b}
∆F̂ i+1 = 0 for K = 0 ,

(6.36)

where the matrix-vector multiplication A · x and the right-hand side b are obtained from
the Lippmann-Schwinger form (6.11) as

A · x = I : ∆F + fft−1{−Γ̂
0
: fft{(Ai − A

0) : ∆F }}
b = −fft−1{F i − F − Γ̂

0
: fft{T i − A

0 : F i}}.
(6.37)

Note that it is sufficient to initializize ∆F̂ = 0 at K = 0 once at the beginning of the
solution scheme. The constraint ∆F̂ i+1 = 0 at K = 0 is then automatically satisfied

through the definition of the Green operator Γ̂
0
= 0 at zeroth frequency at K = 0 ,

see Equation (6.31)2. Thus, the zeroth-frequency entry of the incremental deformation

gradient ∆F̂ i+1 is not updated at all.
Having converged to an equilibrium state, one can proceed to use the solution of F to
compute the fluctuation sensitivities, which we will pool at each grid point α, β in the
tensor Fαβ as follows

Fαβ =
∂F̃ αβ

∂F αβ

. (6.38)

In two dimensions, the tensor has 2× 2× 2× 2 independent entries, which can be written
in Voigt notation as follows

Fαβ =




F 1 1
αβ 11 F 1 2

αβ 12 F 1 2
αβ 11 F 1 1

αβ 12

F 2 1
αβ 21 F 2 2

αβ 22 F 2 2
αβ 21 F 2 1

αβ 22

F 1 1
αβ 21 F 1 2

αβ 22 F 1 2
αβ 21 F 1 1

αβ 22

F 2 1
αβ 11 F 2 2

αβ 12 F 2 2
αβ 11 F 2 1

αβ 12


 . (6.39)

In analogy to the previous assembling for the fields used in the solution of the equilibrium,
we assemble a global F from the individual grid points

F =

Nα,β

A
α, β = 1

Fαβ. (6.40)
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Having the assembled quantities at equlibrium at hand, we now can solve for the fluctua-
tion sensitivities F using the Lippmann-Schwinger-type fixed point form (6.22) as follows

F̂i+1 = Γ̂
0
: fft{(A− A

0) + T(F)} for K 6= 0

F̂i+1 = 0 for K = 0 .
(6.41)

After each iterative update, an inverse Fourier transform has to be carried out in order
to evaluate T(F) in real space.
In line with the solution scheme for the equilibrium equation, conjugate gradient methods
might give a speedup in solving for the fluctuation sensitivities

Fi+1 = cg{A′ · x′, b′}. (6.42)

In contrast to the equilibrium equation, no linearization is needed and we are able to
directly identify the matrix-vector multiplication A

′ · x′ and the right hand side b
′ from

Equation (6.16) as follows

A
′ · x′ = fft−1{Γ̂0 · fft{[A− A

0] · F}} and b
′ = fft−1{Γ̂0 · fft{[A− A

0]}}. (6.43)

It is again sufficient, to initialize F̂i+1 = 0 forK = 0 once at the beginning of the solution

scheme due to the way Γ̂
0
was defined in Equation (6.31)2.

Having obtained the solution for F by one of the methods described above, we can finally
compute the consistent macroscopic tangent operator or effective stiffness according to

A
algo =

1

V

[∫

B

A dV +

∫

B

A · F dV
]
=

1

V

∫

B

A · (I+ F) dV. (6.44)

In the following numerical examples, we will test the validity and robustness of the pro-
posed method through various material models and multiscale simulations. We further
compare the algorithmically consistent tangent and a tangent computed based on a finite
difference approximation. For the latter, the macroscopic deformation gradient occurring
in the non-linear Lippmann-Schwinger equation is perturbed by four independent ten-
sors ǫI i. We then solve the Lippmann-Schwinger equation for the perturbed deformation
gradient F ′

i according to

F ′
i − Γ0 ∗ [T (F ′

i)− A
0 : F ′

i] = F + ǫ I i, (6.45)

where I i can be taken from Equation (6.18) and ǫ is the perturbation magnitude, usually
chosen to be in between 10−6 and 10−8. The individual entries of the finite difference-
based macroscopic stiffness matrix A

fd
can then be computed from the difference to the

perturbed macroscopic stress according to the following equation

∆T i =
1

V

∫

B

[T (F ′
i)− T (F )]dV = A

fd : ǫ Ii. (6.46)

Here, F is the deformation gradient field of the non-perturbed equilibrium state and thus
T (F ) remains constant for all perturbations.
The major differences of using Equation (6.16) compared to finite difference-based ap-
proaches are as follows:
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1. The consistent analytic approach always leads to a set of linear equations. This is
of great advantage, especially for material or geometrical non-linear models, where
a finite difference-based approach demands the solution of a perturbed non-linear
state.

2. As the consistent analytic approach from Equation (6.16) is linear, it can be solved
up to machine accuracy, whereas a finite difference-based approach for non-linear
models contains an additional error due to the derivative approximation.

3. When storing the fluctuation sensitivities of the last load step, one can use them in
the next load step as initial values for the computation of the current fluctuation
sensitivities. In specific load cases where there is no change in the tangent, this
approach saves time, as the finite difference approximation is always associated
with a certain amount of computational effort.

4. Compared with a finite difference-based approach, the values for the moduli need
to be stored, resulting in a higher memory storage demand.

6.4. FE-FFT driver for macroscopically homogeneous point prob-
lems

In a classical multiscale simulation, one usually considers an FE-discretized boundary
value problem on the macroscale and an FE- or Fourier-discretized periodic boundary
value problem on the microscale. The macroscopic boundary value problem’s conver-
gence is guaranteed through the variationally consistent computation of macroscopically
effective properties on the microscale, as outlined in Chapter 4. However, it is sufficient
to consider one homogeneous macroscopic point for testing such convergence properties,
where prescribed macroscopic stresses and strains drive the microscopic problem at said
point. In this chapter, we outline the construction of a driver routine which allows for the
convergence analysis of such problems as described in Zäh [209].
The framework presented in this work so far covers the prescription of macroscopic strains.
If we want to prescribe macroscopic stresses however, we need to either apply mixed
boundary conditions as presented in Moulinec & Suquet [137], see also Kabel et

al. [87], or use a macroscopic Newton iteration. For the latter case, we imagine that we

would like to prescribe the macroscopic stretches F
1

1 and F
2

1 and the macroscopic equi-

librated stress components T
# 2

1 and T
# 2

2 . Then, the macroscopic vector of unknowns at
a homogenized macroscopic point for a two-dimensional problem would appear as

U = [T
1

1 F
2

2F
1

2T
1

2 ]T , (6.47)

i.e., if we prescribe a macroscopic strain component, the unknown quantity is the macro-
scopic stress component and vice versa. Let us now denote the macroscopic stress at
equilibrium as

T
#
= [T

# 1

1 T
# 2

2 T
# 2

1 T
# 1

2 ]. (6.48)

If we now want to drive macroscopic stresses, which should, in general, be equilibrated,

then the difference between the equilibrated stress T
#
we want to prescribe and the actual
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homogenized stress at some applied macroscopic deformation state F (U) is given as

R(U) = T (F (U))− T
#
(U) = 0 (6.49)

and should vanish when we reach a macroscopic deformation state that generates our
desired equilibrium stress (6.48). The latter expression thus serves as our macroscopic
homogenized residuum. To use a Newton-Raphson scheme for the solution of the macro-
scopic deformation state, we linearize said residuum according to

LinR = Ri +
dR

dU

∣∣∣∣
i

∆U i+1 = 0 , (6.50)

where the differentiation of the residuum with respect to the vector of unknowns is denoted
as driver’s macroscopic tangent and can be expressed as follows

A
driver

=
dR

dU
=

d

dU

[
T (F (U ))− T

#
(U)

]
= ∂FT ∂UF − ∂UT

#
. (6.51)

Here we identfiy the macroscopic effective stiffness A
algo

= ∂FT as defined in Equations
(4.35) and (4.40), which allows for the more compact notation of the driver’s macroscopic
tangent

A
driver

= A
algo

∂UF − ∂UT
#
. (6.52)

The partial derivatives remaining in the latter equation would form diagonal matrices

∂UF = diag[α1, α2, ..., αn] and ∂UT
#
= diag[β1, β2, ..., βn] (6.53)

where there are zeros or ones on the diagonal entries depending on whether F or T
#

is prescribed. In our example with the vector of unknowns according to (6.47), these
diagonal matrices would have the following entries

∂UF = diag[0, 1, 1, 0] and ∂UT
#
= diag[1, 0, 0, 1]. (6.54)

Insertion of the latter equation into the driver’s macroscopic tangent (6.52) gives the
explicit expression in Voigt notation

A
driver

=




−1 A
algo 1 2

1 2 A
algo 1 2

1 1 0

0 A
algo 2 2

2 2 A
algo 2 2

2 1 0

0 A
algo 2 2

1 2 A
algo 2 2

1 1 0

0 A
algo 1 2

2 2 A
algo 1 2

2 1 −1




(6.55)

in terms of the components of the homogenized macroscopic tangent operator A. The
update of the vector of unknowns can then be updated according to

∆U i+1 = −(A
driver

)−1
i Ri, (6.56)

where the final macroscopic strains for the prescribed stresses are obtained, when the
residual norm reaches an appropriate tolerance. From the structure of the driver’s macro-
scopic tangent (6.55), we see that the stretches which are actively prescribed are not



Chapter 6. FFT-based computational homogenization of composites 87

updated, such as F
1

1 and F
2

1 in our example, whereas the stretches F
1

2 and F
2

2 which

are prescribed for finding the desired macroscopic equilibrium stresses T
# 2

1 and T
# 2

2

are updated until convergence. The norm of the residuum can be taken as an indicator
for macroscopic convergence and thus for the validity of the homogenized macroscopic

tangent operator A
algo

used for computing A
driver

, as done in the following Numerical
Examples 6.5.

6.5. Numerical examples

In the following, we will investigate the performance of the presented method for com-
puting the macroscopic tangent operator. This is done for different material models and
multiscale simulations, where the macroscopic problem is either a plate with a hole or a
macroscopic point problem with prescribed stretches or stresses as computed through the
driver routine as described in chapter 6.4, see also Zäh [209] and Vallicotti [194]. The
microscopic boundary value problem is modeled through a periodic RVE. The material
models used are a small-strain viscoelastic model and a geometrically non-linear Neo-
Hookean hyperelastic model. Note that in this section, we always compute results based
on a Cartesian coordinate system in Euclidean space and thus the up-down indexing is
dropped in this section.

6.5.1. Homogenization approach for small-strain viscoelastic material behavior

In this example, we demonstrate the method’s validity based on the non-linear material
behavior of small-strain viscoelasticity. We, therefore, consider the viscoelastic energy-
density function

ψ(ε,α) =
1

2
κ(tr ε)2 + µ tr[(ε′ −α)2] + µ0 tr[(ε

′)2], (6.57)

where κ is the bulk modulus, µ the shear modulus and µ0 the ground shear modulus.
Here, ε′ = dev ε is the deviatoric part of the symmetric elastic strain tensor ε = ∇su and
the internal variable α is the viscous strain. The dissipation potential governs the time
dependence of the material response

d =
1

2
η̂ ||α̇||2, (6.58)

where η̂ is a viscosity parameter. The stresses can then be computed as according to
(3.71)

σ = ∂εψ = κ tr ε1+ 2µ(ε′ −α) + 2µ0ε
′, (6.59)

In line with Biot’s equation (3.81), the evolution equation for the viscous strain can be
computed from the energy density and the dissipation potential in the following form

α̇ =
2µ

η̂
(ε′ −α). (6.60)

For the evaluation of the derivatives, we use a time-discrete implicit backward Euler
scheme

αn+1 = αn +∆t α̇n+1. (6.61)
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Figure 6.1: Boundary problem at macro- and microscale. To the left, the macroscopic boundary
is a square plate of side length 1m with a hole of diameter d =0.2m. It is vertically stretched
by u2 =0.05m and then held constant to see the material’s relaxation behavior. To the left, the
microstructure is modeled through a square RVE of side length 1mm. It consists of soft matrix
material and a stiff circular inclusion of diameter d =0.5mm.

Insertion of the evolution equation (6.60) into the latter time discrete form gives

αn+1 =
αn +∆t/τε′

n+1

1 + ∆t/τ
, (6.62)

where we used the abbreviation τ = η/2µ. Plugging the latter equation into the expression
for the viscous stresses (6.59) yields the discrete form

σn+1 = κ tr εn+1 1+ 2µ(ε′n+1 −
αn +∆t/τε′

n+1

1 + ∆t/τ
) + 2µ0ε

′
n+1. (6.63)

Finally, we need an expression for the viscous moduli in order to solve Equation (6.16) for
the fluctuation derivatives. Differentiating the latter equation with respect to the current
strains εn+1, we obtain the explicit expression for the moduli

An+1 =
∂σn+1

∂εn+1

= κ1 ⊗ 1 +

[
2µ

1 + ∆t/τ
+ 2µ0

]
P, (6.64)

which gives us everything at hand to perform our numerical computations.

Two-scale FE-FFT simulation for small-strain viscoelastic material behavior.
We now consider a multiscale boundary value problem as depicted in Figure 6.1. On the
macroscopic scale, a square plate of overall length 1m with a hole of diameter d =0.2m
is stretched by u2 =0.05m into the vertical direction. The plate can move freely in the
horizontal direction and is only fixed at one point in the vertical direction to avoid rota-
tions. Due to the symmetry of the problem, only one quarter of the plate is discretized
by 176 quadrilateral finite elements with four Gauss points each. At each Gauss point,
the material response is computed using the RVE shown to the right of Figure 6.1. The
RVE of side length 1mm consists of soft matrix material and a stiff circular inclusion of
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Figure 6.2: To the left, the increase and relaxation of the macroscopic stress component
σ11 at the Gauss point during the loading process is depicted. To the right, one can see one
quarter of the macroscopic plate with a hole and the macroscopic stress distribution σ11. The
microscopic RVE has stress concentrations σ11 at the interfaces, where the absolute of the
maximum compressing stress in the RVE is more than two times higher than the macroscopically
observable stress.

diameter d =0.5mm. The microstructure is discretized by 101×101 grid points and will
be solved by means of an FFT method.
The material parameters in the constitutive model (6.59) are chosen as λmatr = 2GPa,
λincl = 10GPa, µmatr = 1GPa, µincl = 5GPa, η̂matr = 1GPas and η̂incl = 0.5GPas. It thus

follows that κmatr = λmatr +
2

3
µmatr = 2.66GPa and κincl = λincl +

2

3
µincl = 13.33GPa.

The macroscopic displacement u2 = 0.05m is applied in one load step over 0.1 seconds
and held constant. Figure 6.2 shows the loading and relaxation of one Gauss point at
the macroscale as computed from the microscopic homogenization procedure. One can
see that the stresses are decreasing asymptotically over time as the material is viscously
deforming. To the right, the macroscopic stress σ11 in GPa for a quarter of the plate is
shown, and for one Gauss point, the microscopic stress σ11. Stronger compressing stresses
are occurring at the Gauss point due to the boundary value problem’s macroscopic ge-
ometry. Averaging over the full-field solution of the microscopic stresses in the RVE gives
the macroscopic stresses. However, note how the magnitude of the maximum compressive
stress in the RVE is more than two times higher than the macroscopically observable
stress due to the microstructure’s geometry. This is often observed in multiscale simula-
tions and needs to be considered, especially if it comes to the choice between small- and
large-strain formulations.

Algorithmic tangent computation in comparison to finite difference-based ap-
proach. We now want to compare the performance of the algorithmic tangent compu-
tation (6.16) compared with a finite difference-based approach (7.46). We will compare
the computational time as well as the error

ζ =
||Afd − Aalgo||

||Aalgo||
, (6.65)
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Figure 6.3: To the left, one can see a runtime comparison between the finite difference-based
and the algorithmic tangent computation. One can see that the algorithmic tangent is much
faster, especially for high phase contrasts in this model. To the right, the error ζ between the
two tangent computations is shown. One can see that the error is of low order 10−11, and thus,
both tangents provide accurate macroscopic convergence.

and we will shortly discuss memory storage demands. In the RVE, we consider the same
microstructure as depicted in the right of Figure 6.1 whereas we only take one point on the
macroscale to drive stresses and strains. The RVE is discretized by 101×101 grid points.
For both, the linearized equilibrium equation (6.11) and the Lippmann-Schwinger type
equation for the fluctuation derivatives (6.16), we use a conjugate gradient solver with
a tolerance of tolcg = 10−12. For the Newton-Raphson method, we follow Gélébart

& Mondon-Cancel [54], Kabel et al. [86] and Eisenlohr et al. [41] and set
tolnr = 10−7. In order to investigate micro-macro convergence, we use the FE-FFT driver
as described in Section 6.4, see also [209]. Here, we prescribe macroscopic shear stresses
σ12 and σ21 which are increased to 0.1GPa within one load step. The normal stresses are
kept zero σ11 = σ22 = 0. The stresses are then held constant and the RVE relaxes within
t = 3 seconds, where we used the time increment ∆t =0.1 seconds for our computation.
The material parameters appearing in the viscoelastic material model (6.59) are chosen
as λmatr = 1GPa, λincl = 1GPa, µmatr = 1GPa, µincl = 0.5GPa, η̂matr = 1GPas and
η̂incl = 0.5GPas. The phase contrast is then gradually increased by increasing the values
for λincl up to 100GPa.
Figure 6.3 shows the comparison of computational time for the algorithmic computation
and the finite difference-based approach for the whole loading procedure as well as the
difference of the two tangents as defined by (6.65). Here, the error ζ is computed as
the average of the errors of tangents at each of the 30 time steps. One can see that the
computational speed of the algorithmic approach is superior to the finite difference-based
approach. One possible reason for the large difference between the two methods might
be, that the viscous strains are asymptotically approaching zero during the relaxation
process, and thus the macroscopic tangent is hardly changing at the end of the loading
process. As we load the fluctuation sensitivities of the last load step as initial values
for solving the equilibrium of the next load step, the initial guess is already close to
the solution and thus little iterations are needed. In contrast, the finite difference-based
approach always demands a minimum amount of computational effort according to the
perturbation magnitude. Additionally, for the finite difference-based approach, a nonlin-
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ear viscoelastic perturbed state needs to be solved in order to find the correct tangent,
whereas the algorithmic approach only needs the solution of a linear equation. In contrast
to a finite difference-based approach, the memory demand of the algorithmic computation
is increased as the moduli at equilibrium must be stored for the solution of (6.16).
Analyzing the difference between the finite difference-based and the algorithmic tangent
on the right of Figure 6.3, we see that the maximum error is of the order 10−11. The
convergence at the macroscale is thus for both methods assured.

6.5.2. Homogenization approach at finite strains

As shown in Numerical Example 6.5.1, strains occurring on the microscale might be much
larger compared with strains applied on the macroscale. The framework is therefore
tested for geometrical non-linearity. We will consider a large strain elastic energy density,
namely the Neo-Hookean material model

ψ(F ) =
µ

2
[tr(F T · F )− 3] +

µ

β
[(detF )−β − 1], (6.66)

in terms of the deformation gradient and where the material parameter β can be computed
from Poisson’s ratio ν as follows

β =
2ν

1− 2ν
. (6.67)

For the FE method as well as for the FFT-based solution scheme, the stress can be derived
from the energy density function according to

T = ∂Fψ = µF − µ(detF )−βF−T , (6.68)

while the mechanical stiffness in index notation is obtained from the second differentiation

Aijkl = ∂2F ijF kl
ψ = µδikδjl + µβ(detF )−βF−1

lk F
−1
ji + µ(detF )−βF−1

jk F
−1
li . (6.69)

As we assume a Euclidean space and Cartesian coordinates, the up-down index notation
is dropped.

Two-dimensional multiscale simulation at finite strains. The boundary value
problem for the large strain simulation at hand is identical to the previous one shown in
Figure 6.1. However, the plate is now stretched vertically in both directions by u = 0.5m
within 10 load steps and the material parameters for the Neo-Hookean (6.66) material
model are chosen as µmatr = 2GPa, βmatr = 1, µincl = 4GPa and βincl = 2.
Figure 6.4 shows the results for the macroscopic first Piola-Kirchhoff stress component
T 11 in the plate with hole and the results for the macroscopic first Piola-Kirchhoff stress
component T11 in the RVE. One can see a large deformation of the plate with hole. Peaks
in compressive and tensile stresses are occurring at the boundaries of the hole. The mi-
croscopic RVE is deforming according to the macroscale. However, we again see stresses
on the microscale exceeding the macroscopic stresses by far. There are oscillations on the
microscale at the interface of the stiff inclusion. This might be caused by the circular
inclusion’s voxel discretization, which leads to many edges along the interface.
To validate the consistency of the macroscopic tangent computation, we further ana-
lyze the convergence properties of the macroscopic Newton-Raphson scheme. Figure 6.5
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Figure 6.4: A macroscopic disk with a hole at applied load of a) 0.2m, b) 0.3m, c) 0.4m, and
d) 0.5m. The macroscopic stress component T 11 has its peaks at the boundary of the circular
hole. On the bottom, the microscopic RVE of one Gauss point at the corresponding loads are
visualized. Again, we see that the microscopic stresses T11 are much larger than the macroscopic
ones.

shows the macroscopic residuals of the Newton-Raphson method as computed by the finite
element program FEAP [188]. In the vicinity of the solution, the macroscopic Newton-
Raphson scheme exhibits quadratic convergence even at large loads. We thus see that the
algorithmic tangent complies with the macroscopic variational principle and thus can be
used for geometrical and material nonlinearities.

Three-dimensional microstructure with random spheres. We now want to demon-
strate that the framework can be easily carried over to three-dimensional problems. We,
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Figure 6.5: Macroscopic relative residual at 40%, 60%, 80%, and 100% load as calculated
by the finite element program FEAP [188]. One sees that in the vicinity of the solution, the
macroscopic solver shows quadratic convergence, validating the correctness of the algorithmic
tangent approach even at large strains.

Figure 6.6: An RVE of side length l = 1mm is considered. It consists of soft matrix material
and randomly distributed stiff spherical inclusions of different sizes.

therefore, consider a microstructure consisting of soft matrix material and randomly dis-
tributed stiff spherical inclusions of different size as depicted in Figure 6.6. The RVE is
discretized by 51×51×51 equidistant grid points. The tolerance for the conjugate gradi-
ent solver for the linearized problem is tolcg=10−12 while the tolerance for the Newton-
Raphson solver is tolnr=10−8. We now compute the equilibrium state for a strain driven
shear deformation of the RVE. We, therefore, increase all shear stretches Fij with i 6= j
up to 20% within 10 load steps while the normal strains are kept zero. The material
parameters of the Neo-Hookean material models for the matrix are chosen as µmatr=2
GPa and βmatr=2 and for the inclusion as µmatr=60 GPa and βmatr=3.
Figure 6.7 shows the shear deformation of the RVE and the contour plots of the first
Piola-Kirchhoff stress component T12. The top contour plots show the stresses at the
periodic boundary surfaces of the RVE at 12%, 16%, and 20% load. The bottom plots
show a cut into the RVE where stress concentrations at the phase interfaces become vis-
ible. Finally, we want to compare the consistent tangent computation’s runtimes against
a finite difference-based approach for the three-dimensional case. We therefore equally
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0.0 3.0T12

a) b) c)

Figure 6.7: Contour plot for first Piola-Kirchhoff stress component T12 at a) 12%, b) 16%, and
c) 20% load. A cut into the RVE, as shown on the bottom line, reveals stress concentrations at
the phase interfaces.

set the material parameter βincl = βmatr in both the matrix and inclusion. The phase
contrast µincl/µmatr is then increased in a stepwise manner. For each phase contrast, a
macroscopic load of F 12 = F 12 = 0.2 is applied over the course of 10 load steps while the
other components are kept unchaged.
Figure 6.8 is showing the proportion tfd/talgo between the computational time needed for
the finite difference-based scheme compared to the algorithmically consistent approach.
The consistent approach used here needs more memory than a finite difference-based ap-
proach, as the fluctuation sensitivities ∂F̃ /∂F of the last load step are stored as initial
values for the next load step computation. However, one can see that the consistent
approach gives speed-ups up to 85%.

6.6. Illustrative example: Green operator for a one-dimensional

ordinary differential equation

This example as presented in the lecture notes of Peacock [148] serves to illustrate the
mathematical functionality of the Green operator Γ0. Having the ordinary differential
equation

∂2u

∂x2
+ u = x (6.70)
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Figure 6.8: Runtime comparison between a finite difference-based approach and the algorith-
mically consistent-based computation for different phase contrasts µincl/µmatr and constant β.
One can see speed-ups up to 85% for the algorithmically consistent approach.

we set the boundary conditions to u(0) = 0 and u(π
2
) = 0. The Green operator can then

be found using those boundary conditions and solving the modified differential equa-
tion (6.70) as follows

∂2Γ0

∂x2
+ Γ0 = δ(x− z) (6.71)

where we exchanged u by the Green operator Γ0 and the right-hand side x by the Dirac
delta function δ(x − z). Here, z can take any value in between the solution domain 0
and π

2
. The solution of the Green operator must fulfill the same boundary conditions as

u. As the Dirac delta function is zero for z < x and for x > z, we can split our solution
domain in two parts. We then have to solve the differential equation

∂2Γ0

∂x2
+ Γ0 = 0 (6.72)

on both sub-domains using transition conditions to find the solution. The fundamental
solution to the latter equation in both sub-domains appears as

Γ0 =





A(z) sin(x) +B(z) cos(x) x < z

C(z) sin(x) +D(z) cos(x) x > z
, (6.73)

where the constants A, B, C and D with respect to x can be found using boundary
conditions. The first two boundary conditions are the ones assumed in the beginning
u(0) = 0 and u(π

2
) = 0, which gives B(z) = 0 and C(z) = 0. We further assume

continuity of Γ0 which implies

A(z) sin(z) = D(z) cos(z). (6.74)

We need one last boundary or transition condition in order to solve for all constants. As
described in [148], see also [161], we therefore integrate the differential equation (6.71) in
an infinitesimal region around z from z − ǫ and z + ǫ as follows

∫ z+ǫ

z−ǫ

∂2Γ0

∂x2
dx+

∫ z+ǫ

z−ǫ

Γ0dx =

∫ z+ǫ

z−ǫ

δ(x− z)dx, (6.75)
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where we let ǫ → 0. In doing so, the right side becomes 1 due to the properties of the
Dirac delta function. The second term on the left side vanishes due to the finite nature
of Γ0, leaving the terms

∂Γ0

∂x

∣∣∣∣
z+ǫ

− ∂Γ0

∂x

∣∣∣∣
z−ǫ

= 1; (6.76)

which for ǫ → 0 implies a discontinuity of der derivative of the Green operator ∂Γ0/∂x
by 1. Carrying out the differentiation ∂Γ0/∂x using the expression for Γ0 (6.73), we thus
obtain the equation

−D(z) sin(z)− A(z) cos(z) = 1. (6.77)

The latter equation, along with Equation (6.74), allows us to solve for the 2 remaining
constants, yielding A(z) = − cos(z) and D(z) = − sin(z). The result for the Green
operator then finally appears as

Γ0 =





− cos(z) sin(x) x < z

− sin(z) cos(x) x > z
. (6.78)

Having the right-hand side x in (6.70), we obtain the integral form of the solution

u(x) = − cos(x)

∫ x

0

z sin(z)dz − sin(x)

∫ π/2

x

z cos(z)dz. (6.79)

Evaluating the integrals at the boundaries using integration by parts yields the final result

u(x) = x− π

2
sin(x). (6.80)



Chapter 7

FFT-based computational homogenization of

electroactive polymers

In analogy to Chapter 6, we now want to use Fourier-based methods to solve differential
equations that govern the mechanical as well as the electric response of materials. That the
two fields will interact and influence each other can be seen from the following example:
Imagine two deformable electrodes glued onto a soft polymer. When applying some
voltage to the electrodes, they will attract each other and thus deform the polymer.
However, as the electrodes are attached to the polymer, they will deform accordingly which
influences the electric field. In our case, such electro-mechanically coupled behavior will be
modeled through coupled constitutive laws. As a consequence, the Lippmann-Schwinger
equation will be coupled as well. In this chapter, we will focus on the derivation of the
coupled Lippmann-Schwinger equation and the incidental coupled fluctuation sensitivities
needed in the computation of the coupled macroscopic tangent. Numerical studies will
be conducted on the impact of the coupled reference moduli in the Lippmann-Schwinger
equation as well as on the influence of the coupled sensitivity terms on the macroscopic
convergence behavior and speed. The framework’s robustness is tested for different two-
and three-dimensional microstructures as well as for multiscale simulations.

7.1. Lippmann-Schwinger approach to electro-mechano-statics

In order to arrive at a Lippmann-Schwinger set of equations as defined in Chapter 6 in
Equation (6.1), we first reconsider the mechanical and electrical boundary value prob-
lems 3.22

Div[T ] = 0 in B0 and T ·N(X+) = −T ·N(X−) on ∂B0,

Curl[E] = 0 in B0 and E ×N(X+) = −E ×N(X−) on ∂B0.
(7.1)

However, here we choose a vector potential-based approach where we solve Faraday’s law
(2.100)1 and satisfy Gauss’ law (2.100)2 automatically by describing the electric displace-
ment as the curl of a vector potential a as follows

D = Curl(a). (7.2)

97
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Having said relation, the equilibrium equations (7.1) in terms of the electric field can also
be cast into a variational form, where the energy density is obtained from a Legendre-
transformation. In line with the previous Chapter 6, we again follow the ideas formulated
in Hashin & Shtrikman [70], see also Willis [204] Moulinec & Suquet [136, 137],
and augment the differential equations by a linear comparison material. We now, how-
ever, have the choice between augmenting the purely mechanical stiffness A and electric
permittivity K0 or additionally augmenting the coupled stiffnesses q0 and g0. Here, we
choose the latter approach as follows

T = A
0 : F + q0 ·D + T − A

0 : F − q0 ·D,

E = g0 : F +K
0 ·D +E − g0 : F −K

0 ·D,
(7.3)

and will later qualitatively analyze the impact of the coupled medium. We will now call
the mechanical and electric perturbation fields

τm = T − A
0 : F − q0 ·D

τ e = E − g0 : F −K
0 ·D,

(7.4)

which allows us to rewrite the augmented stress and electric field (7.3) according to

T = A
0 : F + q0 ·D + τm(F ,D)

E = g0 : F +K
0 ·D + τ e(F ,D).

(7.5)

Insertion of the latter stress and electric field into the differential equations and rearrang-
ing gives the following form

Div[A0 : F + q0 ·D] = −Div[τm(F ,D)]

Curl[g0 : F +K
0 ·D] = −Curl[τ e(F ,D)].

(7.6)

The latter equation can now be solved in terms of a coupled Lippmann-Schwinger equation

[
F

D

]
=

[
F

D

]
+

[
Γm Γm,e

Γe,m Γe

]
∗
[
τm

τ e

]
, (7.7)

where the off-diagonal terms Γm,e and Γe,m in the summarized Green operator occur due
to the coupled preconditioning. Choosing the coupled stiffnesses q0 = g0 = 0 to be zero
gives a Green operator with off-diagonals being zero

[
F

D

]
=

[
F

D

]
+

[
Γm

0

0 Γe

]
∗
[
τm

τ e

]
. (7.8)

As the Lippmann-Schwinger equation is usually solved utilizing iterative solvers, one can
imagine that the Green operator’s structure determines the rate of convergence. The
explicit form for the Green operators is given in the Appendix 7.5.2.

7.2. Lippmann-Schwinger-based coupled macroscopic tangent com-

putation

For non-linear material behavior, the effective macroscopic properties are state-dependent.
Having found the equilibrated state for an electromechanically coupled material by solving
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the coupled Lippmann-Schwinger equation (7.7), we now provide the computation of these
effective properties by means of the macroscopic coupled effective tangent operator. In
analogy to Section 6.2 for the purely mechanical problem, we now extend the framework
for coupled materials as outlined in Göküzüm et al. [64], see also [47, 129, 181] for
finite element-based implementations. The extension is done for a vector potential-based
implementation of the electric problem but can be recast to the scalar potential-based
formulation. We start from the linearization of the increment of macroscopic stress and
electric field

[
∆T

∆E

]
=




∂T

∂F

∂T

∂D

∂E

∂F

∂E

∂D


 ·
[

∆F

∆D

]
, (7.9)

where we need to take into account that the mechanical stresses can be dependent on the
electric displacement and the electric field on the deformation gradient. To simplify the
equations to come, we will express the partial derivatives of the stress and electric field
in terms of the following symbols

∂T

∂F
=: A,

∂T

∂D
=

[
∂E

∂F

]T
=: q and

∂E

∂D
=: K. (7.10)

We further condense the stress and electric field, their dual variables as well as the moduli
into generalized tensors

S =

[
T

E

]
, G =

[
F

D

]
and C

algo
=

[
A q

qT
K

]
, (7.11)

where we call S the generalized stress, G generalized strain and C
algo

the generalized
moduli. With such notation at hand, the linearized macroscopic increments (7.9) can be
written down in the short form

∆S = C
algo ⋄∆G, (7.12)

where the ⋄ is a generic operator denoting the appropriate contractions of the moduli with
their corresponding generalized strains. In analogy to (7.11), we introduce the generalized
notation for the microscopic generalized stress, strain, and moduli

S =

[
T

E

]
, G =

[
F

D

]
and C =

[
A q

qT K

]
. (7.13)

Here, the moduli appearing are the partial derivatives of the microscopic stress and electric
field with respect to the microscopic strain and electric displacement

A =
∂T

∂F
, q =

∂T

∂D
=

[
∂E

∂F

]T
and K =

∂E

∂D
. (7.14)

As outlined in Chapter 4, the macroscopic tangent operator can now be obtained using
the integral relation (4.30). When differentiating the macroscopic generalized stresses S
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with respect to the macroscopic generalized strains G, we can use the decomposition of
G and the chain rule to arrive at

∆S =
1

V

∫

B0

(
C+ C ⋄ ∂G̃

∂G

)
dV ⋄∆G. (7.15)

Comparison of the latter equation with the general form (7.12) allows identifying the
variationally consistent macroscopic tangent operator as

C
algo

=
1

V

∫

B0

(
C+ C ⋄ ∂G̃

∂G

)
dV, (7.16)

which is the coupled counterpart of (6.12). We now need to determine the fluctuation

sensitivities ∂G̃/∂G, where for the case of electro-mechanically coupled materials, we
obtain the form

∂G̃

∂G
=




∂F̃

∂F

∂F̃

∂D
∂D̃

∂F

∂D̃

∂D


 , (7.17)

including coupled sensitivities between the fluctuative deformation gradient and the macro-
scopically applied electric displacement and vice versa between the fluctuative displace-
ment and the macroscopically applied deformation gradient. A more detailed expression
for the effective coupled tangent is given in Appendix 7.5.1.
Having the Lippmann-Schwinger equation solution at hand, it is possible to formulate an
explicit expression for the coupled sensitivities. Comparison of the Lippmann-Schwinger
equation (7.7) with the decomposition of the generalized strains (4.5) and (4.28), we can
identify the fluctuative fields in terms of the Green operator and the perturbation fields
as follows

G̃ =

[
F̃

D̃

]
=

[
Γm Γm,e

Γe,m Γe

]
∗
[
τm

τ e

]
. (7.18)

With the explicit expression for the fluctuative fields at hand, we can now perform the
differentiation with respect to the macroscopic fields

∂G̃

∂G
=

[
Γm Γm,e

Γe,m Γe

]
∗



∂τm

∂F

∂τm

∂D
∂τ e

∂F

∂τ e

∂D


 , (7.19)

where the perturbation fields in equilibrium are dependent on the macroscopic fields.
Using the definition of the perturbation fields (7.4) along with the abbreviation

C
∆ = C− C

0 =

[
A− A0 q − q0

qT − qT
0 K−K0

]
and Γ =

[
Γm Γm,e

Γe,m Γe

]
, (7.20)

we can apply the chain rule ∂(•)/∂G = ∂(•)/∂G ⋄ ∂G/∂G to the differentiation in Equa-
tion (7.19) and use the decompostion (4.5) and (4.28) to arrive at the linear Lippmann-
Schwinger-type equation for the fluctuation sensitivities

−Γ ∗ C∆ = Γ ∗
(
C

∆ ⋄ ∂G̃
∂G

)
− ∂G̃

∂G
, (7.21)
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which needs to be solved with zero-average constraint for the fluctuation sensitivities

∫

B0

∂G̃

∂G
dV = 0 . (7.22)

For a more detailed derivation of the fluctuation sensitivities, the reader is referred to Ap-
pendix 7.5.3. We now want to further reformulate the Lippmann-Schwinger-type (7.21).
Following the arguments outlined in Moulinec & Suquet [137], there exists the relation

G = Γ ∗
(
C

0 ⋄G
)

(7.23)

in terms of the convolution of the Green operator with the microscopic fields. Differen-
tiation of the latter equation with respect to the macroscopic fields yields the relation in
terms of the fluctuation sensitivities

∂G

∂G
=
∂G̃

∂G
+ I = Γ ∗

(
C

0 ⋄ ∂G̃
∂G

+ C
0

)
, (7.24)

with I being the fourth-order identity. Rearranging the latter equation for convolution
between the Green operator and the contraction of the linear reference material and the
fluctuation sensitivities gives

Γ ∗
(
C

0 ⋄ ∂G̃
∂G

)
=
∂G̃

∂G
+ I− Γ ∗ C0. (7.25)

Insertion of the latter equation into the linear equation for the fluctuation sensitivities
(7.21) leads to the intermediate form

− Γ ∗ C∆ = Γ ∗
(
C ⋄ ∂G̃

∂G

)
+ I− Γ ∗ C0. (7.26)

Finally, we state that the constant contributions such as I and Γ∗C0 in the latter equation
do not influence the solution, as we prescribe a zero average of the fluctuation sensitivities
according to (7.22). In Fourier space, when constructing the Green operator, this property
becomes more evident, as described in the next section. The neglection of the constant
contributions allows for the simplification of Equation (7.26) according to

−Γ ∗ C = Γ ∗
(
C ⋄ ∂G̃

∂G

)
. (7.27)

We can now perform one last reformulation of Equation (7.21) to arrive at a form that
resembles the original Lippmann-Schwinger equation. Following the concept of pertur-
bation fields outlined in Equation (7.4), we now introduce the perturbation field of the
fluctuation sensitivities with respect to the linear reference material as follows

T = C
∆ ⋄ ∂G̃

∂G
. (7.28)
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Using the upper definition, Equation (7.21) can be recast into

∂G̃

∂G
= Γ ∗ [C∆ + T]. (7.29)

The latter equation allows for the classical fixed-point iteration which was initially used
by Moulinec & Suquet [136] for the equilibrium equation and is nowadays called the
basic scheme.

7.3. Discrete solution scheme for coupled multiscale problems

In analogy to the purely mechanical approach from Chapter 6.3, we now introduce the
nodal field variables and their dual variables. The spatial discretization in real and Fourier
space follows equations (6.23) and (6.24). Here, we assemble the mechanical and electrical
fields to generalized nodal tensors

Gαβ = [F αβ ,Dαβ] and Sαβ = [T αβ ,Eαβ ] . (7.30)

For the further computation of the coupled macroscopic tangent operator, we again need
the fluctuation sensitivities, i.e., the differentiation of the fluctuations with respect to the
macroscopic quantities

Fαβ =

(
G̃

G

)

αβ

=



(
∂F̃

∂F

)

αβ

,

(
∂D̃

∂D

)

αβ

,

(
∂F̃

∂D

)

αβ

,

(
∂D̃

∂F

)

αβ


 . (7.31)

As mentioned previously, for a consistent numerical framework and quadratic convergence,
it is important to account for the coupled sensitivities as well, because a macroscopic
deformation gradient F might affect fluctuative electric displacements D̃ and vice versa.
In line with the treatment in the previous Chapter 6.3, we assemble the nodal quantities
in global discretized tensors

G =

Nα,β

A
α, β = 1

Gαβ , S =

Nα,β

A
α, β = 1

Sαβ and F =

Nα,β

A
α, β = 1

Fαβ . (7.32)

We apply the same assembly procedure to the difference of generalized stiffness and linear
reference material C∆ and the Green operator in Fourier space Γ̂αβ as follows

C
∆ =

Nα,β

A
α, β = 1

C
∆
αβ, and Γ̂ =

Nα,β

A
α, β = 1

Γ̂αβ. (7.33)

The Green operator Γ̂αβ can again be given in an explicit form in Fourier space. Due
to the coupled nature of our problem, the expressions appearing in the Green operator,
however, become a little lengthy, which is why said expressions can be found in Appendix
7.5.2.
Having all discretized quantities at hand, we are now able to formulate a solution scheme
for the equilibrium equation. Using the generalized perturbation field

τ = S− C
∆ ⋄G, (7.34)
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the coupled Lippmann-Schwinger equation in real space appears as

Gi+1 = G+ Γ ∗ τ n. (7.35)

In Fourier space, the Lippmann-Schwinger equation appears as the volume constrained
update rule

Ĝi+1 = Γ̂ ⋄ τ̂ n for K 6= 0 ,

Ĝi+1 = Gi+1 for K = 0 ,
(7.36)

where the convolution turns into a simple contraction of the Fourier coefficients. After
having found the equilibrium using a suitable tolerance, the macroscopic generalized stress
can be found according to the volume average (4.30). What is left to compute for a mul-
tiscale update is the macroscopic tangent operator at equilibrium (7.16). From Equation
(7.29), we can see that this can be done as well by means of a fixed-point iteration when
setting

Fi+1 = Γ ∗ [C∆ + Tn], (7.37)

where Equation (7.28) defines Tn to be a function of Fn. In analogy to the equilibrium
equation, we write the update in Fourier space as follows

F̂i+1 = Γ̂ ⋄ [Ĉ∆ + T̂n] for K 6= 0 ,

F̂i+1 = 0 for K = 0 .
(7.38)

Again, the convolutions are turning to simple tensor contractions and the zero-average
constraint known from Equation (7.22) is satisfied through constraining the Fourier coef-
ficient at zeroth frequency.
Recalling the discussion after Equation (7.26) in the previous Section 7.2, it becomes now
clearer why the contribution Γ ∗ C

0 is not influencing the solution. As C
0 is a constant

field, its Fourier transform Ĉ
0
has only one non-zero Fourier coefficient at its zeroth fre-

quency K = 0 , namely the volume average C0 itself. The contribution of the term Γ̂⋄ Ĉ0

is thus only acting on the volume average of the solution. However, as we are constraining
the volume average of the fluctuation sensitivities, this contribution is omitted, and we are
allowed to neglect the term in the upper equation. Additionally, using Equation (7.23),
the fixed-point scheme can be recast into the following form

F̂i+1 = F̂n + Γ̂ ⋄ [Ĉ + T̂
∗
n] for K 6= 0 ,

F̂i+1 = 0 for K = 0 ,
(7.39)

where we introduced the modified perturbation tensor

T
∗ = C ⋄ F. (7.40)

Equation (7.39) resembles a fixed-point scheme for the equilibrium equation introduced
in Moulinec & Suquet [136].
As in purely mechanical problems, speedups in solving the Lippmann-Schwinger equation
can be obtained by using advanced iterative solvers such as the conjugate gradient method

Fi+1 = cg{A · x, b}. (7.41)

The standard conjugate gradient method demands for a linearized problem, where we need
to provide the solver with the system matrix multiplied with the vectors of unknowns A ·x
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and the right-hand side b. It is convenient to solve Equation (7.21) by means of the
conjugate gradient method as it is a linear equation by nature. We therefore can identify
the terms as from Equation (7.21) as follows

A · x = fft−1{Γ̂ ⋄ fft{C∆ ⋄ F}} − F and b = fft−1{−Γ̂ ⋄ fft{C∆}}. (7.42)

Following the same arguments given for the fixed-point iteration, the expression for the
matrix-vector multiplication and the right-hand side can be further simplified to

A
∗ · x = fft−1{Γ̂ ⋄ fft{C ⋄ F}} and b

∗ = fft−1{−Γ̂ ⋄ fft{C}}. (7.43)

In total, for the two-dimensional case, the number of unknowns to solve for is N1 ×N2 ×
n4
dof . Here, the degrees of freedom are related to the primary field variables and thus, in

the two-dimensional case, we have ndof = 6 as there are 4 independent strain components
and 2 independent electric displacement components.
With the converged fluctuation sensitivities at hand, we are able to compute the macro-
scopic tangent operator from Equation (7.15) as follows

C
algo =

1

V

[∫

B0

C dV +

∫

B0

C ⋄ F dV
]
=

1

V

∫

B0

C ⋄ (I+ F) dV. (7.44)

The overall algorithmic scheme for the multiscale simulation presented in this section
can be found in Box 7.1 taken from Göküzüm et al. [64]. In the following section,
the framework is numerically validated for one-, two-, and three-dimensional RVEs with
different microstructures. Furthermore, the performance is compared with a conventional
finite difference-based approach, where the tangent is obtained through applying small
perturbations ǫ I i to the equilibrated fields Gpert

i = G+ǫ I i where Ii are n
2
dof independent

tensors of size n2
dof . Next, the new perturbed equilibrium is computed from the perturbed

Lippmann-Schwinger equation

G
pert
i − Γ ∗ [S(Gpert

i )− C
0 : Gpert

i ] = G+ ǫ I i (7.45)

and the individual entries of the macroscopic tangent operator can be obtained from the
finite difference approximation

∆Si =
1

V

∫

B0

[S(G′
i)− S(G)] dV = C

fd ⋄ [ǫ I i]. (7.46)

7.4. Numerical examples

We now want to test the presented electro-mechanically coupled multiscale framework
for different numerical examples. First, we consider analytical one- and two-dimensional
homogenization problems to validate our model’s accuracy and correctness. Finally, an
electro-active gripper is computed on two scales.
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Box 7.1: Algorithm for the computation of material response and consistent
macroscopic tangent using the fast Fourier transform for electro-mechanically
coupled problems [64].

1. Equilibrium: Solve Lippmann-Schwinger equation for the equilibrium state

Gi+1 = G+ Γ ∗ τ n,

while choosing an appropriate reference medium C0 for better convergence.

2. Fluctuation sensitivities: Apply conjugate-gradient method for linear
integral system of equations

Fi+1 = cg{A · x, b},

where A · x and b are obtained from (7.21) via

A · x = fft−1{Γ̂ ⋄ fft{C∆ ⋄ F}} − F and b = fft−1{−Γ̂ ⋄ fft{C∆}},

or from the simplified equation (7.26) via

A
∗ · x = fft−1{Γ̂ ⋄ fft{C ⋄ F}} and b

∗ = fft−1{−Γ̂ ⋄ fft{C}}.

3. Integration: The consistent macroscopic tangent is computed as

C
algo =

1

N1N2

N1∑

α=1

N2∑

β=1

[
Cαβ + Cαβ ⋄ Fαβ

]
.

7.4.1. Constitutive material model

We are describing electro-mechanically coupled material behavior by a coupled constitu-
tive energy density function

ψ(F ,E) = ψmech(F ) + ψelec(F ,E), (7.47)

that takes into account mechanical effects through the contribution ψmech as well as elec-
trical ones through ψelec. In our model, the purely mechanical contribution is modeled
through the Neo-Hookean energy density (6.66) for hyperelasticity

ψmech(F ) =
µ

2
(trC − 3) +

µ

β
(J−β − 1). (7.48)

For the dielectric contribution, we use the energy density from Equation (3.8) given in
Section 3.1, see also McMeeking & Landis [123] and Miehe et al. [131],

ψelec(F ,E) = −ǫ0
2
(1 +

χ0

J
) JC−1 : (E ⊗E). (7.49)

where the vacuum permittivity ǫ0 ≈ 8.854 · 10−12 Fm−1 as defined in Coulomb’s law (2.1)
is appearing. The susceptibility χ0 is a material parameter emerging from the constitutive
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law for dielectric polarization (2.101) in Section 2.1. As the units of the elastic parameters
and the units for the vacuum permittivity differ in the order of several magnitudes, one
usually normalizes said parameters to obtain stable numerical simulations. We thus divide
the energy density function (7.49) by some µn and give the energy with respect to the

normalized electric field E′ =
√
µn/ǫ0

−1
E including the vacuum permittivity

ψ′(F ,E′) =
µ′

2
(trC − 3) +

µ′

β
(J−β − 1)− 1

2
(1 +

χ0

J
) JC−1 : (E′ ⊗E′). (7.50)

Here µ′ = µ/µn denotes the normalized shear modulus. Differentiation of the latter equa-
tion with respect to E′ would yield the normalized electric displacement D′ =

√
µnǫ0

−1D.
The formulation of the energy density in terms of F and E yields a saddle-point problem
for the stationarity of the global potential. In terms of iterative solvers, it might lead to
increased stability and convergence rates to use a minimization formulation in terms of
F and D as follows

ψ∗(F ,D) = ψmech(F ) + ψ∗
elec(F ,D). (7.51)

The electric energy density with respect to the electric displacement can be obtained
employing a Legendre transformation of Equation (7.49) [123]. The transformed energy
density then appears as

ψ∗
elec(F ,D) =

1

2ǫ0(J + χ0)
C : (D ⊗D). (7.52)

Normalization and summation with the elastic contribution finally yields

ψ∗′(F ,D′) =
µ′

2
(trC − 3) +

µ′

β
(J−β − 1) +

1

2(J + χ0)
C : (D′ ⊗D′). (7.53)

7.4.2. Coupled one-dimensional examples

This section explores the features of the presented coupled homogenization scheme for a
set of one-dimensional problems. First, a one-dimensional multiscale problem that allows
for a comparison to an analytic solution is considered. In a second example, the impact
of the reference medium on the convergence rate and stability of the basic scheme is nu-
merically tested, where special interest lies on the coupled nature of the problem.
In the one-dimensional setting, we will use the scalar potential-based formulation of the
physical problem, where we need to solve for the the electric field and deformation gra-
dient. Their one-dimensional reductions with respect to the scalar potential and the
displacement follow from Equations (2.10) and (2.126) as

F =
∂ϕ(X)

∂X
= 1 +

∂u(x)

∂X
and E = − ∂φ

∂X
, (7.54)

The one-dimensional reduction of the coupled energy density function (7.50) appears as

ψ(F,E ′) =
µ′

2
(F 2 − 1) +

µ′

β
(F−β − 1)− 1

2
(1 +

χ0

F
)
(E ′)2

F
, (7.55)

where the shear modulus for normalization is set to µn = 1 GPa. The dual fields can then
be computed from the energy density through differentiation

T =
∂ψ

∂F
and D = −∂ψ

∂E
. (7.56)
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Figure 7.1: a) A one-dimensional bar is exposed to axial electrical and mechanical volume load
according to Equation (7.58). b) The material properties follow the periodic function in space
µ′ = χ = 3/2 + sin(2πkX) with k ∈ N\{0} [64].

Second differentiation with respect to the electric field and the deformation gradient yield
the moduli

A =
∂2ψ

∂F 2
, q = − ∂2ψ

∂E∂F
and K = −∂2ψ

∂E2
. (7.57)

Analytical Example. We now consider a one-dimensional problem that admits an
analytic solution. This somewhat academic problem serves as an example of how the
homogenized response corresponds to a full-field solution with decreasing RVE size. As
visualized in Figure 7.1, the macroscopic problem is a bar that is exposed to a linear
volumetric electrical and mechanical load according to the differential equations

∂T

∂X
+X = 0 and

∂D

∂X
+X = 0, (7.58)

where we have Dirichlet boundary conditions u = φ = 0 to the left and traction-free
Neumann boundary conditions T = D = 0 to the right. For our computation, the
material parameters µ′ and χ0 are varying periodically in

µ′ = χ0 =
3

2
+ sin(2πkX), (7.59)

whereas we set the parameter β = 1 in the energy density (7.55). According to Figure
7.1b), the free parameter k in Equation (7.59) determines the periodically repeating ma-
terial domain size as 1/k. Consequently, l/k gives the ratio between the overall length
of the macroscopic problem and the size of a potential RVE. For example, when setting
the dimensionless length l = 1 and the parameter k = 2, the bar would consist of two
RVEs. The question then arises how the macroscopic response behaves in dependence of
the RVE’s size and if at some point, one can assume a scale separation.
Figure 7.2 shows the analytic solution of the boundary value problem defined above. One
can see the solutions for the dimensionless displacement u′ and scalar potential φ′ for two
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Figure 7.2: Analytic full-field solution to the boundary value problem presented in Figure 7.1
for different RVE sizes for a) the displacement u′ and b) the scalar electric potential φ′. The
dashed-dotted lines for k → ∞ indicate the homogenized solution when scale separation is
completely accomplished. One sees that the full-field solution for finite-sized RVEs converges to
the homogenized solution for decreasing RVE size.

different RVE sizes with k = 5 and k = 10 as well as the solution for a homogenized
approach using k → ∞. For the homogenized approach, the microstructure is condensed
to a point problem at the macroscale, and only the homogenized generalized stress and
stiffness obtained from one single RVE is used in the solution of the boundary value prob-
lem. This approach corresponds to the previously mentioned scale separation assumption.
In Figure 7.2, one can see that for a larger RVE size k = 5, the deviation of the full-field
solution in comparison to the homogenized approach in dotted black lines is still distinct.
Decreasing the RVE size by setting k = 20 gives a full-field solution much closer to the
homogenized solution. As k is continuously increased, the difference between the full-field
and the homogenized approach becomes small enough to justify the assumption of scale
separation1.
In this example, we see that the basic scheme successfully solves saddle point problems
as well. The choice of linear reference medium is crucial for the convergence of the solver,
which in this analysis was chosen to be

C0 = maxC, K0 = minK over B. (7.60)

Numerical stability analysis of the fixed-point scheme. In this example, the ref-
erence medium’s impact on the stability of the fixed-point scheme (7.37) is numerically
investigated. The generalized form of the fixed-point scheme appears as

Fn+1 = K ⋄ Fn + B, (7.61)

with the discretized system matrix K and the discrete constant vector B. The stability
of the fixed-point scheme is determined by the spectral radius ρ, which is the maximum
absolute eigenvalue λmax of the system matrix

ρ = λmax = max
i

|λi(K)|. (7.62)

1This example only serves as intuitive access to the concept of scale separation. The choice of RVE
size can be a challenging task and is the topic of recent research [58, 169, 208].
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For the case of non-linear problems such as solving the mechanical and electrical equi-
librium equations for non-linear material models, the system matrix is dependent on the
variables, and thus the eigenvalues are constantly changing while iterating. This makes
it difficult to make statements on the convergence stability. Independent of the material
models used, the computation of the fluctuation sensitivities is, however, always a lin-
ear equation, which leads to a constant system matrix K, see Equation (7.21). For such
scenarios, one can state that the fixed-point iteration converges to the solution of the
boundary value problem if the spectral radius of K is lower than one

ρ < 1. (7.63)

One can additionally find relations between the spectral radius and the fixed-point scheme’s
convergence rate, see, for example, Estep [44]. A low spectral radius corresponds to high
convergence rates, while a spectral radius close to one leads to a strong decrease in con-
vergence rate. The system matrix of the fixed-point scheme (7.61) can be identified from
Equations (7.38) and (7.28) as follows

K = ω−1(Γ̂ (ωC
∆)), (7.64)

where ω and ω−1 denote the discrete forward and inverse Fourier transform matrices as
defined for the one-dimensional case in Equation (5.4).
In the multiscale framework outlined previously, one would usually first solve the non-
linear equilibrium equation and then use the converged moduli to solve the linear equation
for the fluctuation sensitivities. As this example focuses on the convergence of the linear
solver, however, we will immediately prescribe the moduli with some given phase contrast
and skip the equilibrium equation. As we are now considering a one-dimensional laminate
with two layers of the same thickness, the stiffness within one layer must be constant.
In this example, the stiffness in phase one is A∗(1) = 1, K∗(1) = −1 and q∗(1) = 1. We
consider a phase contrast of five and set the stiffness in the second layer to A∗(2) = 5,
K

∗(2) = −5 and q∗(2) = 5. The RVE is coarsely discretized by 24 grid points. However,
this is sufficient as in the one-dimensional case, the stiffness is constant and thus the
maximum eigenvalue of K in dependence of the reference medium and the phase contrast
is independent of the mesh resolution. Using a coarse grid then saves time as the compu-
tation of the eigenvalues of the system matrix is a computationally costly operation.
With the mechanical boundary value problem at hand, we now investigate the impact of
the reference medium A0, K0 and q0 on the convergence rate through the spectral radius.
Figure 7.3 shows the boundary of stability with respect to the reference medium, which is
the isosurface of the spectral radius ρ = 1. For a spectral radius lower than one, conver-
gence is assured. For a spectral radius larger than one, physical solutions can be obtained,
but there is no guarantee for convergence. One can see that one does not necessarily need
to use a coupled preconditioning for stable convergence, i.e., q0 = 0. However, the range
of reference medium for A0 and K0 then narrows down. Having a look at the value for the
spectral radius ρ in the first contour plot of Figure 7.3 for the uncoupled preconditioning,
we also see that the lowest spectral radius is larger compared to the cases where there is
coupled preconditioning in B) and C). Using coupled preconditioning thus enables higher
convergence rates. It should be mentioned that the coupled preconditioning also needs a
higher amount of computations as the Green operator then has coupled blocks as well.
However, a coupled preconditioning grants more flexibility when choosing the reference
medium.



110 7.4. Numerical examples

A)

B)

C)

A) q0 = 0 B) q0 = 1.5 C) q0 = 2.8

C0 C0 C0

C0

K0 K0 K0

K0

q0

stable unstable

0
0

0
0

0
0

5 5 5

−5 −5 −5

ρ

> 1

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

Figure 7.3: On top, the isosurface for ρ = 1 in dependence of the linear reference medium is
depicted. Left of the isosurface is the stable region where ρ < 1. One can see that the stable
region widens up, applying a coupled preconditioning q0. On the bottom, one can see contour
plots for the value of ρ at different coupled reference medium A) q0 = 0, B) q0 = 1.5 and
C) q0 = 2.8 as indicated by the surfaces in the upper graph. Here, the grey region indicates the
instability of the solver due to ρ > 1. The contour plots show that using coupled preconditioning
allows for a larger stability region and potentially gives lower spectral radii.

7.4.3. Coupled two-dimensional examples

In this section, the framework is extended to two-dimensional problems. First, a simple
two-dimensional laminate problem that allows for an analytic solution is considered for
testing the code’s validity and convergence properties. Next, simulations using a more
complex random microstructure are carried out, where the focus lies on the convergence
of the homogenized macro-solver. Lastly, a full multiscale simulation is carried out for an
electroactive gripper.

Analytic and numeric homogenization for a two-dimensional laminate. As a
first two-dimensional example, we consider a simple two-dimensional laminate structure
as visualized in Figure 7.4. It consists of two phases where the volume fraction of material
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λll

Figure 7.4: A macroscopically homogeneously appearing body reveals a laminar microstructure
on a lower scale, where λ ≪ 1. As the microstructure is periodically repeating, we choose an
RVE of size λl where the volume fraction of the material one and two is 50%. In this example,
we do not consider a fully discretized macroscopic problem, but use a homogenized macro-solver
according to Section 6.4.

one and material two is 50%. In line with the Hill-Mandel condition, we assume peri-
odic boundary conditions for the primary variables. For such a boundary value problem
with laminate microstructure, it is possible to derive analytic solutions for some given
macroscopic load. In the following, we will derive said analytic solution to compare our
simulations to and to prove the validity of the underlying code. We, therefore, start with
the two-dimensional reduction of the differential equilibrium equations (2.100) and (3.22)1
in the absence of volume charges and body forces

T11,1 + T12,2 = 0, F12,1 − F11,2 = 0,

T21,1 + T22,2 = 0, F22,1 − F21,2 = 0,

E2,1 −E1,2 = 0, D1,1 +D2,2 = 0,

(7.65)

where we use index notation to indicate the differentiation with respect to X1 and X2.
Next, we take into account that the laminate microstructure is only changing when going
along the X1-direction. In such a case and for periodic boundary conditions, any point
within the laminate cannot be distinguished by any other point, which is shifted in the X2-
direction. The solution thus can be only dependent on the X1 coordinate. Consequently,
all derivatives with respect to X2 in the equilibrium equations (7.65) can be neglected,
and we obtain the reduced set

T11,1 = 0, F12,1 = 0,

T21,1 = 0, F22,1 = 0,

E2,1 = 0, D1,1 = 0.

(7.66)

Looking at the latter equation, we see that these components of the stress, strain, electric
displacement and the electric field are not dependent on X1. As they are also not de-
pendent on X2 as previously mentioned, they must be constant within the whole solution
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domain
T11 = constant, F12 = constant,

T21 = constant, F22 = constant,

E2 = constant, D1 = constant.

(7.67)

Additionally, as the stress and the electric displacement are constant within one phase
and are described through the material law with respect to the strain and electric field,
the strain and electric field must also be constant within one phase. In the following, we
will therefore use the notation (•)(1) for quantities associated with phase one and (•)(2)
for quantities associated with phase two.
Additional equations for the solution of the strain and electric displacement emerge from
the average relation between the macroscopic applied load F ij and Di and the microscopic

fields F
(1)
ij , F

(2)
ij , D

(1)
i and D

(2)
i . For a laminate with 50% volume fraction, said average

can be obtained as
1

2
(F

(1)
ij + F

(2)
ij ) = F ij and

1

2
(D

(1)
i +D

(2)
i ) = Di. (7.68)

Equations (7.67) and (7.68) give twelve equations for twelve unknowns. These equations
are summarized below

F
(1)
22 = F

(2)
22 = F 22,

1

2
(F

(1)
11 + F

(2)
11 ) = F 11,

∂ψ∗′(1)

∂F22

=
∂ψ∗′(2)

∂F22

,

F
(1)
12 = F

(2)
12 = F 12,

1

2
(F

(1)
21 + F

(2)
21 ) = F 21,

∂ψ∗′(1)

∂F21

=
∂ψ∗′(2)

∂F21

,

D
(1)
1 = D

(2)
1 = D1,

1

2
(D

(1)
2 +D

(2)
2 ) = D2,

∂ψ∗′(1)

∂D2
=
∂ψ∗′(2)

∂D2
,

(7.69)

where we use the constitutive relation that T =
∂ψ

∂F
and E = − ∂ψ

∂D
in the last column

of the boxed equations. Depending on the energy density function’s complexity, the last
column gives non-linear equations with respect to F and D. This non-linearity is the
case for the energy density (7.53) we are using. We thus use a numerical solver with high
accuracy to obtain the solution to the set of equations (7.69). Having the solution, the
macroscopic tangent can then be determined by a finite difference approximation of the
analytic solution, where we use the perturbation magnitude ǫ = 10−6.
We now want to investigate the mesh convergence of an FFT-based solution scheme
against the analytic solution. We therefore apply a macroscopic load of F 11 = 1.0,
F 12 = 0.5, F 21 = 0.0, F 22 = 1.5, D

′

1 = 0.45 and D
′

2 = 0.05. The material parameters
used in the simulation for the two phases can be found in Table 7.1. The simulation
is then carried out for an increasing mesh resolution in X1-direction, while the number
of grid points in X2-direction is kept constant with 5 grid points. The error between
the analytic and the numerically computed tangent using Equation (7.21) is measured
through the following error norm

Error = ||Calgo − C
anal||. (7.70)

The results for the mesh convergence study are visualized in Figure 7.5. Figure 7.5a) shows
the fluctuative deformation of the laminate and Figure 7.5b) shows the error norm (7.70)
against the grid resolution in a double logarithmic plot. As expected, one sees that the
error is decreasing for an increasing mesh resolution and that the convergence rate is
approximately 1.
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Table 7.1: Material parameters used for laminate simulation.

no. par. name unit value

1. µ(1) shear modulus phase 1 GPa 1.0
2. µ(2) shear modulus phase 2 GPa 2.0
3. β(1) compressibility parameter phase 1 – 10
4. β(2) compressibility parameter phase 2 – 10
5. χ(1) electric susceptibility phase 1 – 10
6. χ(2) electric susceptibility phase 2 – 20
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Figure 7.5: a) The laminate RVE is deformed due to the macroscopic load F 11 = 1.0, F 12 = 0.5,

F 21 = 0.0, F 22 = 1.5, D
′

1 = 0.45 and D
′

2 = 0.05. Only the fluctuative contribution of the
displacements are visualized. b) Increasing the mesh resolution decreases the error between
analytic and algorithmically consistent tangent, where a convergence rate of approximately 1 is
observed.

Figure 7.6: To the left, one can see the RVE with its periodic microstructure. The microstruc-
ture consists of two phases: A soft matrix material and ten randomly distributed spherical stiff
inclusions of radius r = 0.05. The volume fraction of the inclusions is approximately 8%. To
the right, one can see a zoom in on the voxel discretization of two spherical inclusions.

Homogenization for electro-mechanically coupled random microstructure. In
the previous section, we used a simple microstructure example to show that the computa-
tional framework satisfies mesh convergence and converges against the analytic solution.
Now, we want to demonstrate that the framework is stable and can be extended to the
more complex microstructure presented in Figure 7.6. The RVE at hand consists of a soft
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Table 7.2: Normalized material parameters used for laminate simulation.

no. par. name unit value

1. µ
′,matr shear modulus matrix – 1.0

2. µ
′,incl shear modulus inclusions – 100.0

3. β
′,matr compressibility parameter matrix – 10

4. β
′,incl compressibility parameter inclusions – 1

5. χmatr electric susceptibility matrix – 1
6. χincl electric susceptibility inclusions – 100

a) b) c)
||e′||

2.31

0.02

Figure 7.7: An RVE consisting of a soft polymer matrix and stiff, quasi-conducting particles
deforms under a macroscopically applied electric displacement D. The inclusions have a radius
of 0.05l and a volume fraction of 8%. The deformed RVE is visualized at load step a) D′

1 =
D′

2 = 0.6, b) D′
1 = D′

2 = 1.2 and c) D′
1 = D′

2 = 1.8. The contour shows the magnitude of the
normalized electric field ||e′|| in the current space.

polymer matrix and ten randomly distributed stiff spheres of high electric susceptibility.
The inclusions have a radius of r = 0.05l where l is the side length of the squared RVE.
The volume fraction of the spherical inclusions with respect to the RVE’s volume is ap-
proximately 8%. Here, we use 257× 257 equidistant grid points for the discretization of
the boundary value problem.
We now apply a macroscopic homogenized electric displacement of D

′

1 = D
′

2 = 1.8 within

18 loadsteps. The loading process is performed under zero shear stress T
′

12 = T
′

21 = 0,
which is assured by using a homogenized driver as described in Section 6.4. Additionally,
the macroscopic normal strain components F

′

11 = F
′

22 = 0 are kept zero to avoid rotations
of the RVE, which would lead to instabilities in the solution scheme. The material pa-
rameters for the matrix material and the inclusions can be found in Table 7.2. The choice
of parameters is supposed to reflect a soft but rather incompressible polymer matrix that
envelopes stiff, quasi-conducting particles. Figure 7.8 shows the contour plot for the mag-
nitude of the current electric field ||e′|| as obtained through the push-forward defined in
Equation (3.4). One can see characteristic peaks in the magnitude at the interface of
matrix and inclusion as well as regions of high electric fields in between particles which
are close to each other. These concentrations in the electric field might lead to material
instabilities and, consequently, to a loss of the iterative solver’s convergence. For a quan-
titative investigation of such instabilities, the reader is referred to Miehe et al. [131].
Additionally, as we are using a non-linear model, the phase contrast is load-dependent,
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Figure 7.8: Macroscopic convergence at loads a) D′
1 = D′

2 = 0.6, b) D′
1 = D′

2 = 1.2 and
c) D′

1 = D′
2 = 1.8. The driver’s residual over the Netwon iterations is displayed for the algorith-

mic tangent computation, the reduced algorithmic tangent computation with ∂F

∂D
= ∂D

∂F
= 0 and

a finite difference-based approach. One can see that the algorithmic and the finite difference-
based approach gives almost identical results, but the finite difference-based approach fails to
give any results in the last load step. The higher the load, the more macroscopic iterations
are needed for the reduced approach, as the error in the reduced tangent due to the neglected
coupling becomes larger.

and thus the convergence rate deteriorates for large loads.
We now want to take a closer look at the macroscopic convergence of the homogenized
driver, where we use the algorithmic tangent to update the macroscopic strains until we
reach the prescribed macroscopic stress, which are in our case T

′

12 = T
′

21 = 0. For our
study, we have a look at the residual (6.49) of the Newton update for three different
macroscopic tangent computations:

(i) a tangent computation based on Equation (7.21) taking full coupling into account,
(ii) a tangent computation based on Equation (7.21) but neglecting coupling terms

∂F
∂D

= ∂D
∂F

= 0 and

(iii) a finite difference-based approach according to Equation (7.46).

In Figure 7.8, the residual of the homogenized driver at each Netwon iteration is displayed
at loads a) D′

1 = D′
2 = 0.6, b) D′

1 = D′
2 = 1.2 and c) D′

1 = D′
2 = 1.8. The macroscopic

driver stops at a given load state when the residual takes a value below R < 10−10. As
expected, the algorithmic solution and the finite difference-based approach give almost
identical convergence rates for load step one and two, as both take full coupling into ac-
count. Both show quadratic convergence in the vicinity of the solution. However, in our
example, the finite difference-based approach failed to converge in the last load step. The
reduced approach without coupling terms shows rather a linear convergence rate, where
the convergence is faster for low loading. This is due to increasing coupling effects with
larger loads. The reduced tangent needs less computational effort compared to the other
two approaches. It thus might be viable to use the reduced approach when loading is still
low to moderate.
Figure 7.9 compares the computational time of the algorithmic tangent and the finite
difference-based approach with respect to the reduced approach. One can see that the
finite difference-based computation is the slowest of the three approaches. Its compu-
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Figure 7.9: Time comparison between finite difference-based, algorithmic and reduced tangent
at loads D′

1 = D′
2 = 0.6, D′

1 = D′
2 = 1.2 and D′

1 = D′
2 = 1.8. One can see that the reduced

and the algorithmic tangent both need less computational time. At the higher loads, the full
algorithmic tangent’s overall computation time is the lowest, indicating that the coupling terms
become relatively important for the overall macroscopic convergence.

tational times is increased by a factor of approximately 2.5 compared to the reduced
approach. At load D

′
= 0.6, the computational time of the algorithmic approach and

the reduced one is almost equal, which indicates that in this examples this is the load
state where the advantage of the computational reduction in the tangent and its lower
accuracy within the Netwon iteration equal out compared to the fully coupled approach.
At load D

′
= 1.2, the fully coupled one is then faster than the other two. The advantage

in computational time becomes more distinct at the highest load D
′
= 1.8.

Multiscale simulation of electroactive gripper. Finally, we want to test the frame-
work for a full FE-FFT multiscale example, as shown in Figure 7.10. It is inspired by
experimental research on similar electroactive grippers [2, 5]. The macroscopic gripper
consists of two arms, which are clamped to the left and right. A vector potential of up to
A′ = ±7.2 is applied left and right, which corresponds to an applied electric field in the
vertical direction. These electric boundary conditions are supposed to mimic electrodes
that are attached to the solid on top and on bottom of each arm. Note that it might be
difficult for more complicated geometries to apply physically reasonable boundary con-
ditions through a vector potential. In such cases, mixed formulations might be a viable
option. On the microscale, these problems are not arising as we assume periodicity in the
electric potential, and the boundary geometry of the RVE is relatively simple. The mi-
crostructure in our example consists of a soft polymer matrix and a stiff quasi-conducting
spherical inclusion of unit-less diameter d = 0.5. The material parameters are the same
as in the previous example and can be found in Table 7.2. The macroscale is discretized
by 80 rectangular bilinear finite elements, where we use 4 Gauss quadrature points for
the integration. The software FEAP [188] is used for the FEM-simulation of the macro-
scale. The microscale is discretized by 51 × 51 equidistant grid points, where we use a
self-written FFT-based solver for the periodic microscale simulation.
Figure 7.11 shows the solution for the multiscale simulation at load a) A′ = ±0.6,
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Figure 7.10: Boundary value problem for an electro-active gripper. The two arms are clamped
on the left and right, restricting any horizontal movement. The unit-less lengths of the gripper
are lh = 10 and lh = 1. A vector potential of up to A′ = ±7.2 is applied at the left and right,
which corresponds to a vertical gradient in scalar potential, i.e., a vertically applied electric field.
On the microscale, the RVE of side-length l = 1/1000 consists of a soft polymer matrix and a
stiff quasi-conducting spherical inclusion of unit-less diameter d = 0.5l.

a) b) c)
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Figure 7.11: Solution for the multiscale gripper simulation at load a) A′ = ±0.6, b) A′ = ±3.6
and c) A′ = ±7.2. On the macroscale, one sees that the gripper is buckling. On the outer
sides of the arms, one observes tension, while the inner sides are compressed. This behavior can
also be observed on a microscale. Here, we see low electric fields in the quasi-conducting stiff
inclusion.

b) A′ = ±3.6 and c) A′ = ±7.2. One can see that the gripper opens up as the elec-
tric load is increased. The macroscopic effect can be explained by the attraction of the
electrodes on the top and the bottom of each arm. As the electric field strength is in-
creased, which corresponds to the increase of vector potential as depicted in Figure 7.10,
the electrodes attract each other and compress the material in between them. Due to
the high Poisson ratio of the material, it tries to elongate in perpendicular direction of
the compression, i.e., to the sides. However, its movement in this direction is restricted
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by the walls to the left and right, which leads to buckling. On the microscale, we see
that the RVE is compressed as well, where the electric field is low in the quasi-conducting
inclusion. Theoretically, such a set-up would work without any underlying microstruc-
ture. However, the inclusion of quasi-conducting particles into a soft polymer matrix
might favorably influence the contraction behavior and lowers the electric field required
for opening the gripper, see Vallicotti et al. [195], for example.

7.5. Appendices

7.5.1. Macroscopic tangent computation

We now want to outline the explicit expression of the coupled softening term appearing
in the computation of the algorithmic tangent (4.40), see also (7.16). We, therefore, start
with the linearized increment of the macroscopic stresses (7.9) in terms of the macroscopic
tangent

[
∆T

∆E

]
= C

algo ⋄
[
∆F

∆D

]
=



∂T

∂F

∂T

∂D

∂E

∂F

∂E

∂D


 ⋄

[
∆F

∆D

]
. (7.71)

As outlined in Chapter 4, the macroscopic stresses are volume averages of the micro-
scopic stresses. As a consequence, the macroscopic dual variables S are dependent on the
microscopic primary fields G, which themselves are dependent on the macroscopic load
states G. We thus need to apply the chain rule, which gives

[
∆T

∆E

]
=




1

V

∫

B0

(
∂T

∂F
:
∂F

∂F
+

∂T

∂D
· ∂D
∂F

)
dV

1

V

∫

B0

(
∂T

∂D
· ∂D
∂D

+
∂T

∂F
:
∂F

∂D

)
dV

1

V
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B0

(
∂E

∂F
:
∂F

∂F
+

∂E

∂D
· ∂D
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)
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+
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∂F
:
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 ⋄

[
∆F

∆D

]
.

(7.72)
Insertion of the decomposition of the primary variables (4.5) and (4.28) then yields

[
∆T

∆E

]
=




1

V

∫

B0

A+ A :
∂F̃

∂F
+ q · ∂D̃

∂F
dV

1

V

∫

B0

q + q · ∂D̃
∂D

+ A :
∂F̃

∂D
dV

1

V

∫

B0

qT + qT :
∂F̃

∂F
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1
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∂D

+ qT :
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 ·
[
∆F

∆D

]
,

(7.73)
where we used the abbreviations introduced in Equation (7.14). Comparing the latter
equation with the stress increment (7.15) and the general form (7.16) allows us to identify
the softening contribution

C ⋄ ∂G̃
∂G

=




A :
∂F̃

∂F
+ q · ∂D̃

∂F
q · ∂D̃

∂D
+ A :

∂F̃

∂D

qT :
∂F̃

∂F
+K · ∂D̃

∂F
K · ∂D̃

∂D
+ qT :

∂F̃

∂D


 , (7.74)

in terms of the fluctuation sensitivities.
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7.5.2. Electro-mechanically coupled Green operator

We now want to demonstrate the computation of the coupled Green operator as needed
in the Lippmann-Schwinger and Lippmann-Schwinger-type equations (7.7) and (7.27).
We will now use index notation for the following computation, where we assume that
the metric is described by the Euclidean metric in Cartesian coordinates. Consequently,
there is no difference in the co- and contravariant space entries. No up-down-indication
is needed. Therefore, all indices are lowered. The governing differential equations (7.6)
then appear in index notation as follows

(A0
ijkl Fkl + q0ijkDk),j = −τmij,j,

ǫijk(g
0
klm Flm +K

0
klDl),j = −ǫijkτ ek,j,

(7.75)

where ǫijk indicates the Levi-Civita symbol. Key idea is to evaluate the derivatives ap-
pearing in the latter equations by means of Fourier transforms. The explicit expression
for derivatives in the discrete Fourier space (5.11) can be written in a generic index-form
at each node

(•),j = fft−1{fft(•) iKj} with i2 = −1, (7.76)

where Kj, j = 1, ..., ndim is now the wave vector at some given node of spatial dimen-
sion ndim and is obtained at each node from the global wave vector K. Applying said
derivatives, the explicit form of the Lippmann-Schwinger equation given in (7.7) can be
recovered in Fourier space, where the Green operators appear as

Γ̂m
ijkl = −KjKl(κ

−1
ik − κ−1

ir ̺rnωnpςpsκ
−1
sk ), Γ̂m,e

ijk = −KjKrκ
−1
is ̺snωnpǫprk,

Γ̂e,m
ijk = −KkKlǫilnω

−1
nmςmrκ

−1
rj , Γ̂e

ij = KlKrǫilnǫmrjω
−1
nm,

(7.77)

and where the following abbreviations were used

κik = A
0
ijklKlKj, ̺in = q0ijkǫkmnKmKj,

ςik = ǫijlg
0
lkmKmKj, ηin = ǫijkǫlmnK

0
klKmKj ,

ωin = ςikκ
−1
kr ̺rn − ηin.

(7.78)

Note that in the three-dimensional case, there is no uniqueness of the solution vector
potential due to the identity D = Curl(A+∇θ) = Curl(A). One can thus add arbitrary
gradient fields to the solution vector A, which causes problems when solving the equi-
librium equations. One therefore usually applies a gauge restriction on the divergence of
the vector potential employing a penalty parameter Λ. Forcing the divergence of A to be
zero, this gauge restriction appears in the differential equation (7.75) as follows

(A0
ijkl Fkl + q0ijkDk),j = −τmij,j ,

ǫijk(g
0
klm Flm +K

0
klDl),j = −ǫijkτ ek,j − ΛAk,ki.

(7.79)

The modified Green operator can be found in the same fashion as presented before, where
only one term in (7.78) changes due to the gauge restriction

ηgaugein = ǫijkǫlmnK
0
klKmKj − ΛKiKn, (7.80)

while all other terms remain the same. The Green operators can then again be computed
according to (7.77).
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7.5.3. Fluctuation sensitivities

We now want to provide an explicit expression for the fluctuation sensitivities occur-
ring in the Lippmann-Schwinger-type equation (7.21). We, therefore, recall the explicit
expression for the fluctuations (7.18)

F̃ = Γm ∗ τm + Γm,e ∗ τ e,

D̃ = Γe,m ∗ τm + Γe ∗ τ e.
(7.81)

The fluctuation sensitivities can now be obtained by differentiation with respect to the
macroscopic deformation gradient F and electric displacement D. The coupled pertur-
bations τm and τ e (7.4) are linked to the generalized stresses, which are computed based
on the microscopic deformation gradient and electric field. The microscopic deformation
gradient and electric field are themselves linked to their respective macroscopic quan-
tities by means of the decomposition (4.5) and (4.28), which allows us to perform the
differentiation according to
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(7.82)

Insertion of the aforementioned decomposition F = F + F̃ and D = D+ D̃ finally gives
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(7.83)
where (•)∆ denotes the difference between the actual moduli and the constant linear
reference material according to Equation (7.20). The single and double contractions
appearing in Equation (7.83) correspond to the generic operator ⋄ introduced in the
Lippmann-Schwinger-type equation

− Γ ∗ C∆ = Γ ∗
(
C

∆ ⋄ ∂G̃
∂G

)
− ∂G̃

∂G
. (7.84)
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Using the explicit expression for the fluctuation sensitivities (7.83), the latter equation can
now be solved by means of a direct or iterative scheme. Neglecting the coupled fluctuation
sensitivities ∂F̃ /∂D = ∂D̃/∂F = 0 yields the reduced system for the reduced tangent
computation approach.





Chapter 8

Homogenization and multiscale simulation of

phase-field-based fracture

In this chapter, a numerical scheme for multiscale phase-field-based fracture processes
is presented. As fracture and damage are locally initializing, the microstructure of a
material plays a major role in when and where said initialization takes place [69]. One
example is given by geometrically sharp interfaces between two material phases, which lead
to a much earlier crack initiation on the microscale compared with a purely macroscopic
problem. We will, therefore, first establish a variational framework for phase-field-fracture
[14, 50, 139]. The rate-type-incremental variational potential will then be used to evaluate
the Hill-Mandel-macrohomogeneity conditions to obtain appropriate boundary conditions
and effective material properties in the presence of a fracture phase-field. Further using
the operator split introduced by Miehe et al. [126] then allows for the decoupling of the
phase-field variable and the strains within one time step and consequently, the decoupled
computation of the effective tangent operator. Finally, some numerical experiments are
carried out to proof the robustness and viability of the scheme as well as to demonstrate
the effect of microscopic cracks on the macroscopic response of materials.

8.1. Variational approach to phase-field fracture mechanics

We now want to use the methods for rate-type incremental variational potentials presented
in Section 3.3.4 to construct a small-strain rate-type variational potential that governs
brittle fracture effects as follows

Π(u̇, ḋ) =

∫

B

d

dt
ψ(u, d) + d(ḋ) dV −

∫

B

γ · u̇ dV −
∫

∂B

t# · u̇ dA, (8.1)

where a phase-field variable d indicating fracture is coupled to the displacements u. In line
with Section 3.3.4, d(ḋ) is a dissipation potential accounting for the dissipative process of
fracture. Accounting for the mechanical external contributions, γ is an exterior volume
force and t# are externally applied tractions. Now the question arises on how to model
ψ and d to describe fracture phenomena realistically. We therefore first consider a one-
dimensional crack indicated by d = 1, whereas d = 0 denotes no fracture. In order

123
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Figure 8.1: To the left, one can see the sharp crack interface as it would appear in reality. To

the left, one can see the regularized crack interface d = exp(−|x|
lc

), where lc controls the strength
of regularization, see also [126].

to describe gradient-driven phase-field fracture, we need to regularize the crack interface.
One can see that this function is the solution to the following boundary value problem [126]

d− l2c
∂2d

∂x2
= 0 with d(±∞) = 0 and

∂d

∂x
(±∞) = 0. (8.2)

In accordance with Figure 8.1, the length scale parameter lc controls the strength of
the regularization. Carrying the concept to two- and three-dimensional problems, the
differential equation becomes

d− l2c∆d = 0, (8.3)

where ∆d is the Laplacian operator applied to the phase-field variable d. It is possible to
retrieve the weak form of the latter differential equation from a variational formulation.
We therefore first introduce the integral form

I(d,∇d) =
∫

B

d2

2
+
l2c
2
|∇d|2 dV. (8.4)

Normalization of the latter equation by lc yields a description of the crack surface density

Z(d,∇d) = 1

lc
I(d,∇d) =

∫

B

d2

2l
+
lc
2
|∇d|2 dV. (8.5)

With the description of the crack surface at hand, we can construct the rate-type varia-
tional potential as follows

Π(u̇, ḋ) =
d

dt

∫

B

(1− d)2ψ(ε) + gc(
d2

2lc
+
lc
2
|∇d|2) dV +

∫

B

In(ḋ) dV

−
∫

B

γ · u̇ dV −
∫

∂B

t# · u̇ dA,
(8.6)

where (1−d)2 is a degradation function leading to a decrease of the elastic energy density
as the fracture is evolving, gc is the Griffith constant determining the crack toughness and
In(ḋ) is the indicator function defined as

In(ḋ < 0) = ∞ and In(ḋ ≥ 0) = 0. (8.7)
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In line withMiehe et al. [132], the indicator function assures that ḋ ≥ 0 is always greater
or equal to zero, which is necessary to avoid thermodynamically inconsistent effects such
as crack healing. To arrive at a more compact notation, we will denote the crack surface
density

z =
d2

2lc
+
lc
2
|∇d|2. (8.8)

We now want to find equilibrium in a time-incremental context. Therefore, the total
energy potential is obtained through a discrete time integration

Π∆t(u, d) = ALGO

{∫ t

tn

Π(u̇, ḋ)dt

}
, (8.9)

where quantities with index (•)n denote their value at the previous time step and quanti-
ties without index (•) their values at the current time step. In this case, the algorithmic
treatment of the time integration is performed employing an implicit Euler scheme. Ap-
plying this procedure to the global potential (8.6) gives

Π∆t =

∫

B

(1− d)2ψ(ε)− (1− dn)
2ψn(εn)

∆t
+ gc

z(d)− zn(dn)

∆t
dV ∆t

+

∫

B

In(
d− dn
∆t

) dV∆t−
∫

B

γ · u− un

∆t
dV −

∫

∂B

t# · u− un

∆t
dA∆t

(8.10)

for the incremental time step ∆t. We first cancel ∆t where possible and then carry out
the variation with respect to the current variables to determine the equilibrium state

δΠ∆t =

∫

B

(1− d)2
∂ψ

∂ε
: δε− 2(1− d)ψ(ε)δd+

gcd

lc
δd+ gclc∇d∇δd dV

+

∫

B

∂In

∂d
δd dV −

∫

B

γ · δu dV −
∫

∂B

t# · δu dA.
(8.11)

Applying the divergence theorem, we obtain

δΠ∆t =

∫

B

(
− div

[
(1− d)2

∂ψ

∂ε

]
− γ

)
· δu− 2(1− d)ψ(ε)δd+

gcd

lc
δd+ gclc∇d∇δd dV

+

∫

B

∂In

∂d
δd dV −

∫

B

γ · δu dV −
∫

∂B

t# · δu dA.
(8.12)

As previously stated, the indicator serves to fulfill the condition ḋ ≥ 0. We, therefore,
follow the procedure suggested in Miehe et al. [132] and introduce a local crack-driving-
force

H = max
t∗∈[t0,t)

ψ(ε). (8.13)

as the local maximum of energy density of some point in time t∗ out of all past times
starting from the initial time t0 to the current time t. In doing so, we make sure that
the fracture phase field d can only grow. Applying the divergence theorem and using the
local crack-driving-force gives

δΠ∆t =

∫

B

(
− div

[
(1− d)2

∂ψ

∂ε

]
− γ

)
· δu−

(
gc
lc
d− gclc∆d − 2(1− d)H

)
δd dV

+

∫

∂B

(
(1− d)2

∂ψ

∂ε
· n− t#

)
· δu dA−

∫

∂B

(gclc∇d · n) δd dA,
(8.14)
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where n is a normal vector pointing outwards of the surface of the body ∂B. For the
latter equation to hold for all displacement variations δu and phase-field variations δd,
the following Euler-equations must be fulfilled

− div

[
(1− d)2

∂ψ

∂ε

]
− γ = 0 in B

gc
lc
d− gclc∆d− 2(1− d)H = 0 in B

(1− d)2
∂ψ

∂ε
n− t# = 0 on ∂B

gclc∇d · n = 0 on ∂B.

(8.15)

8.2. A Hill-Mandel macrohomogeneity condition for two-scale frac-
ture

We now want to employ a multiscale framework for brittle fracture by following the
multiscale procedure introduced in Chapter 4 and extending it to rate-type problems.
We therefore introduce the macroscopic strain ε. As for the strains, we assume periodic
boundary conditions which gives in line with the Hill-Mandel assumption (4.6) and (4.28)
the following decomposition on the microscale

ε = ε+ ε̃(x) = ε+∇sũ, (8.16)

where the macroscopic strain remains constant in the RVE while the fluctuative quantities

(̃•) are the variables we solve for on the microscale and where ∇s denotes the symmetric
gradient, which is the small strain simplification of the large strain theory. As for the
fracture phase-field d, such decomposition on the microscale is problematic as a) a crack
tip formed by the macroscopic d would be difficult to consistently incorporate into the RVE
as we assume a separation of length scales and b) the interpretation of the macroscopic d is
not straightforward as d is in contrast to ε not a gradient field and corresponding volume
integral cannot be transferred to a surface integral. We therefore choose a decoupled
approach for the phase-field and introduce a mixed variational macro-potential

Π
∆t
(u) =

∫

B

π∆t − π∆t
n

∆t
dV ∆t−

∫

B

γ · u− un

∆t
dV −

∫

∂B

t
# · u− un

∆t
dA∆t, (8.17)

where we followed the same theoretical thoughts that led to the micro-potential (8.10)
but replaced the elastic energy contribution by

π∆t =
1

|B| infu inf
d
ALGO

{∫ t

tn

∫

B

d

dt
ψ(u, d) + d(ḋ) dV dt

}
=

1

|B| infu inf
d
π∆t(u, d), (8.18)

which is the volume average of the incremental microscopic energy density and dissipation
potential at equilibrium [76]. It is thus the incremental time-discrete version of the Hill-
Mandel condition (4.1). The time-discrete incremental microscopic energy density and
dissipation potential are obtained from Equation (8.10) as follows

π∆t(u, d) =

∫

B

(1−d)2ψ(ε)− (1−dn)2ψn(εn)+ gc(z(d)− zn(dn)) dV +

∫

B

In(
d− dn
∆t

) dV∆t

(8.19)
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In analogy to (8.11), we now perform the variation of the macro-potential with respect
to the macro-variable

δΠ
∆t

=

∫

B

∂π∆t

∂ε
: δε dV −

∫

B

γ · δu dV −
∫

∂B

t
# · δu dA. (8.20)

To identify macroscopic quantities, we take a closer look at the variation of the potential
π∆t occurring in the latter equation. According to its definition from (8.18), we will
perform the variation on the microscale as follows

δεπ
∆t =

∂π∆t

∂ε
: δε =

1

|B|δεπ
∆t, (8.21)

where we keep in mind that Π∆t and thus π∆t according to Equation (8.18) is evaluated
at equilibrium. Using the results from the previous chapter for the microscopic variation
(8.11), we obtain

∂π∆t

∂ε
: δε =

1

|B|

[∫

B

(1− d)2
∂ψ

∂ε
: δε dV +

∫

B

(1− d)2
∂ψ

∂ε
: δε̃ dV

]
. (8.22)

As ε̃ = ∇sũ is a gradient field of the fluctuative displacements, we can again use the
divergence theorem for the second integral, leading to

∂π∆t

∂ε
: δε =

1

|B|

[∫

B

(1− d)2
∂ψ

∂ε
: δε dV +

∫

B

− div

[
(1− d)2

∂ψ

∂ε

]
· δũ dV

+

∫

∂B

(
(1− d)2

∂ψ

∂ε
n

)
· δũ dA

]
.

(8.23)

If we want to retrieve the macroscopic stress as the volume average over the microscopic
stresses as the macroscopic stress, the last two integrals have to vanish. Comparing
the second integral term with Euler equation (8.15)1, we see that in equilibrium, the
divergence becomes zero for γ = 0 , which is why we apply no volume force on the
microscale. Comparing the third integral term with (8.15)3 on the surface, we see that
there are several methods to let the term vanish [127], see also Chapter 4. One can
either prescribe Neumann boundaries with zero-tractions t# = 0 or Dirichlet boundary
conditions causing δũ = 0 . In the context of homogenization, the use of periodic Dirichlet
boundary conditions has proven to give the most accurate results in terms of effective
properties [189],[196]. We therefore set δũ(X+) = δũ(X−) where X+ and X− are
opposite points on the RVE’s boundary. In doing so, the boundary term

(
(1− d)2

∂ψ

∂ε
· n
)+

= −
(
(1− d)2

∂ψ

∂ε
· n
)−

on ∂B (8.24)

becomes anti-periodic on the boundary. According to the previous argumentation and
choice of boundary conditions, we are left with the well known averaging rule

∂π∆t

∂ε
: δε = σ : δε =

1

|B|

[∫

B

(1− d)2
∂ψ

∂ε
dV

]
: δε. (8.25)

We thus see that the variationally consistent macroscopic stress σ is degrading with the
microscopic fracture phase-field. Note that so far, the mechanical fields and the fracture
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phase-field are fully coupled. When computing a consistent tangent, we would need to
take this coupling between d and ε into account. In the next chapter, however, we will
algorithmically decouple these fields to achieve a simpler treatment of the overall problem,
including the tangent computation.

8.3. Algorithmic treatment of multiscale fracture

We now want to develop a robust algorithmic procedure for multiscale fracture. At
the same time, it needs to be computationally efficient, as microscopic boundary value
problems need to be fully resolved at each macroscopic iteration step. On the microscale,
we thus follow the procedure suggested in Miehe et al. [126] and employ an operator
split when solving the time-discretized system. Consequently, given some macroscopic
load ε, we will use the phase-field variable of the last time step dn for the solution of the
microscopic mechanical boundary value problem (8.15)1 and (8.15)3

− div

[
(1− dn)

2∂ψ

∂ε

]
= 0 in B

ũ(X+) = ũ(X−) on ∂B,
(8.26)

where in line with the Hill-Mandel condition, we set g = 0 and used periodic boundary
conditions in the fluctuative displacement field ũ. The macroscopic stress can then be
obtained from Equation (8.25) as follows

σ =
1

|B|

∫

B

(1− dn)
2∂ψ

∂ε
dV, (8.27)

and due to the decoupling procedure, the macroscopic tangent operator can be simply
computed in line with Equation (4.40) as

A
algo

=
1

|B|

∫

B

(1− dn)
2 [A+ A : ∂εε̃] dV. (8.28)

We then solve the phase-field equations in a staggered fashion

gc
l
d− gcl∆d − 2(1− d)H = 0 in B

d(X+) = d(X−) on ∂B,
(8.29)

where we use the current strain ε in the computation of the H-field according to equation
(8.13). After having found the equilibrium for the phase-field equation, we proceed with
the next macroscopic load step. This procedure is also known as one-pass scheme [126].

8.3.1. FFT-based solution scheme for the mechanical problem

The FFT-based discretization and solution scheme closely follows the procedures pre-
sented before for electro-active models, which is why we keep the explanation in this sub-
section quite compact. However, here we will use a reformulated version of the Lippmann-
Schwinger equation for the mechanical equilibrium. The aim is a compact implementation
of an iterative solver, such as the conjugate gradient method. According to Moulinec
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& Suquet [137] and Vondřejc et al. [200], see also Geus et al. [36], the boundary
value problem can be also formulated as follows

Γ0 ∗ σ = 0 . (8.30)

In discrete Fourier-space, the Green operator takes the same form as for the standard
Lippmann-Schwinger approach (6.31). Further using a quadratic small-strain material
law including the phase-field and using the decomposition (8.16) gives

σ = ((1− dn)
2 +K)A : ε = ((1− dn)

2 +K)A : (ε+ ε̃). (8.31)

In the latter equation, we added a residual stiffness K to the phase-field to obtain a
numerically more stable scheme. K is usually chosen small enough to accurately approx-
imate the zero-stiffness of a crack and large enough to have numeric stability. Equation
(8.30) can then be recast into the following form

Γ0 ∗
(
((1− dn)

2 +K)A : ε̃
)
= −Γ0 ∗

(
((1− dn)

2 +K)A : ε
)
, (8.32)

which allows us to identify the right-hand side and the matrix-vector multiplication needed
for iterative solvers

A · x = Γ0 ∗
(
((1− dn)

2 +K)A : ε̃
)

and b = −Γ0 ∗
(
((1− dn)

2 +K)A : ε
)
, (8.33)

or in terms of fast Fourier transforms

A · x = fft−1{Γ̂0
:
(
fft{((1− dn)

2 +K)A : ε̃}
)
} and

b = −fft−1{Γ̂0
:
(
fft{((1− dn)

2 +K)A : ε}
)
}.

(8.34)

The fluctuative strains are then solved employing a conjugate gradient solver

ε̃i+1 = cg{A · x, b}. (8.35)

8.3.2. FFT-based solution scheme for the phase-field problem

When having found mechanical equilibrium, the fracture phase-field needs to be updated
according to the new strain distribution, which gives an updated H-field in the differential
equation (8.29). Without the context of fracture mechanics, we already demonstrated
in Section 5.4 how to solve such a Ginzburg-Landau type equation by means of direct
methods. In two- and three spatial dimensions however, it might be costly to set up the
discrete stiffness matrix, especially as it is not sparse1. We thus want to utilize the fast-
Fourier-transform algorithm here as well within an iterative solver such as the conjugate
gradient method

di+1 = cg{Ad · x, bd}. (8.36)

Therefore, we do not set up the stiffness matrix explicitly, but only the matrix-vector mul-
tiplication. Using the Fourier-methods demonstrated in Section 5.3 and 5.4, the matrix-
vector multiplication and the right-hand side can be computed as

Ad · x =
gc
l
d− gcl fft

−1{|K∗|2fft{d}} and bd = 2(1− d)H. (8.37)

1The non-sparsity of the overall stiffness matrix stems from the global nature of the Fourier-
approximation. Naturally, nodes that are not directly connected have fewer interactions, and the further
away they are from each other, the smaller their coupled entries in the stiffness matrix become.
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8.3.3. FFT-based multiscale fracture scheme

We now give the algorithmic scheme for the one-pass multiscale fracture solution scheme
as it is implemented in the code provided on the open repository [61].

1. Macroscopic load: Pass macroscopic strain ε from macro- to micro-boundary
value problem

ε = ε+ ε̃.

2. Microscopic equilibrium and macroscopic stress: Solve for equilibrated strains

ε̃i+1 = cgs{A · x, b},

where A · x and b are obtained from Equation (8.34)

A · x = fft−1{Γ̂0
: fft{((1− dn)

2 +K)A : ε̃}} and

b = −fft−1{Γ̂0
: fft{((1− dn)

2 +K)A : ε}}.

3. Macroscopic stress: Use equilibrated strains ε# to compute macroscopic stress

σ =
1

|B|

∫

B

((1− dn)
2 +K)

∂ψ

∂ε
dV.

4. Macroscopic tangent operator: Use the modified Fourier-approach (6.16) to
solve for the fluctuation sensitivities

(
∂ε̃

∂ε
)i+1 = gmres{A∗ · x, b∗},

where A · x and b are obtained from Equation (6.16) as follows

A
∗ · x = fft−1{Γ̂0

: fft{
[
(((1− dn)

2 +K)A− A
0) :

∂ε̃

∂ε

]
}} − ∂ε̃

∂ε
and

b
∗ = −fft−1{Γ̂0

: fft{
[
((1− dn)

2 +K)A− A
0
]
}}.

Use fluctuation sensitivities to compute the macroscopic tangent operator

A
algo

=
1

|B|

∫

B

(1− dn)
2

[
A+ A :

∂ε̃

∂ε

]
dV.

5. Macroscopic equilibrium: Use the macroscopic stress σ and tangent operator

A
algo

to solve the macroscopic equilibrium

δΠ
∆t

= 0

for the equilibrated macroscopic strains ε#. If the material is non-linear, use up-
dated ε# and go to step 1, else, proceed with step 6.
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6. Crack driving force: Use equilibrated strains to compute microscopic energy
density

ψ =
1

2
ε# : A : ε#

and check if the H-field according to Equation (8.13) needs to be updated

H = max
t∗∈[t0,t)

ψ(ε#).

7. Microscopic crack evolution: Solve microscopic phase-field equation

di+1 = pcg{Ad · x, bd},

where Ad · x and bd are obtained from Equation (8.37) as follows

Ad · x =
gc
l
d− gcl fft

−1{|K∗|2fft{d}} and bd = 2(1− d)H.

Update history when tolerance of iterative solver is reached dn = d.

8. Proceed with next macroscopic load step and go to step 1.

Without further quantitative proof, the combination of the conjugate gradient square (cgs)
method for solving for the strains ε̃, the generalized minimum residual method (gmres)

for solving for the fluctuation sensitivities
∂ε̃

∂ε
and the preconditioned conjugate gradients

method (pcg) for solving for the phase-field d appeared to be the fastest and most robust
combination.

8.4. Numerical examples

In this chapter, the FFT-based phase-field implementation is tested for its robustness.
First, we consider several different three-dimensional microstructure realizations and their
impact on the initialization of fracture within an RVE as well as the fracture resistance. In
a second step, the two-scale scheme as provided in Section 8.3 is tested for a plane-strain
plate for two different microstructures.

8.4.1. Three-dimensional microscopic fracture evolution

In this first example, we want to study the numerical robustness and viability of the
Fourier-based solver on the microscale based on several three-dimensional microstructures
as presented in Figure 8.2. The code that produced these results is provided in a public
repository [60]. Namely, a) a spherical, b) a diamond-shaped and c) a microstructure
with five randomly distributed spheres are considered. The RVEs are square RVEs of
unit length l = 1. The spherical inclusion a) has a radius of r = 0.25l, the diamond
inclusion b) has side lengths r = 0.6l from top to top in each direction, the randomly
distributed spheres have a radius of r = 1/12l. The microstructure is discretized using
65 × 65× 65 grid points. In all cases, the inclusions are stiff, and the matrix material is
soft. The small-strain energy density function governs their material behavior

ψ(ε) =
1

2
λ(tr ε)2 + µ tr[ε2], (8.38)
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a) b) c)

Figure 8.2: Three different microstructure realizations for a three-dimensional fracture com-
putation. The square RVE is of unit side length l = 1. a) The stiff spherical inclusion has a
radius of r = 0.25l. b) The soft diamond inclusion has side lengths r = 0.6l from top to top in
each direction. c) The randomly distributed stiff spherical inclusions have a radius of r = 1/12l.

Table 8.1: Material parameters used for small strain three-dimensional fracture simulation for
different microstructures. For the diamond inclusion, the inclusion is soft and the matrix is stiff.

no. par. name unit value

1. µmatr shear modulus matrix GPa 8
2. µincl shear modulus inclusion GPa 80
3. λmatr Lamés first parameter matrix GPa 12
4. λincl Lamés first parameter inclusion GPa 120
5. gc fracture toughness GN/m 0.0017
6. lc length scale parameter m 5 · 10−5

7. K residual stiffness - 10−5

where λ is the first Lamé constant. Through differentiation, we obtain the stress tensor

σ =
∂ψ

∂ε
= λ tr[ε]1 + 2µε (8.39)

and the material moduli

A =
∂2ψ

∂ε2
= λ1 ⊗ 1 + 2µIsym, (8.40)

with Isym being the fourth-order symmetric identity, which appears in index notation as

I
sym
ijkl =

1

2
(δikδjl + δilδjk). (8.41)

The latter expressions are used within the algorithmic procedure presented in Section
8.3. The parameter for the matrix and the inclusion material are given in Table 8.1.
The RVEs are loaded with a macroscopic strain increment of ∆ε11 = 0.0001 per load
step while all other components of the macroscopic strain tensor are held zero. In this
example, a conjugate gradient squared (cgs) solver, as implemented in Matlab is used
for the solution of the discretized mechanical equilibrium equation (8.34). The tolerance
is set to tol = 10−10 and the maximum number of iterations to 2000. For the solution
of the discretized phase-field equation (8.37), a preconditioned conjugate gradient solver
is used. In line with the solver for the mechanical equilibrium, the tolerance is set to
tol = 10−10 and the maximum number of iterations to 2000.
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Table 8.2: Material parameters used for small strain multiscale fracture simulation. The value
for gc in brackets relates to the weakened RVE in Figure 8.4

no. par. name unit value

1. µmatr shear modulus matrix GPa 80
2. µincl shear modulus inclusion GPa 8
3. λmatr Lamés first parameter matrix GPa 120
4. λincl Lamés first parameter inclusion GPa 12
5. gc fracture toughness GN/m 0.0027(0.0017)
6. lc length scale parameter m 5 · 10−5

7. K residual stiffness - 10−5

Figure 8.3 shows the results for the different microstructures in terms of fracture surfaces
at different load levels. As expected, all three RVEs fracture perpendicular to the pulling
direction. However, the RVE with the soft diamond-shaped inclusion fails at a much
lower macroscopic load compared with the spherical inclusions. Considering the diamond
inclusion’s sharp edges and the resulting stress concentration at these edges, the lower
fracture toughness appears to be a likely result. One also nicely sees the symmetry of
the fracture surface for the single spherical inclusion. As for the randomly distributed
spherical inclusions, one can see that the crack localizes between the two spheres closest
to each other and then propagates in the area of high sphere density. Such simulations
might enable a controlled failure design of materials for longer durability. For example,
one could think of propagating cracks into directions where a failure of the macroscopic
specimen can be prevented. This procedure is also known as crack trapping. Brodnik

et al. [17] numerically showed that the fracture toughness of materials can be enhanced
by location and size of trapping inclusion.

8.4.2. Small-strain multiscale simulation

In this example, we want to demonstrate the microstructural effects on macroscopic failure
in a small strain setting (8.38). We, therefore, consider a squared plane-strain plate on the
macroscale that is pulled in the vertical direction as depicted in Figure 8.4. The macro-
scopic plate is of unit side-length l = 1m and is discretized by triangular finite elements
with linear shape functions and one Gauss point for the numeric integration. An RVE is
attached at each of the Gauss points to compute the microscopic material response. The
square RVEs are of side length l = 1mm = 10−3m. In the middle of the plate, there is
one weakened RVE to initiate fracture. As shown in Figure 8.4, the microstructure of the
RVEs is a stiff matrix material and a soft diamond inclusion. The weakened RVE in the
middle has a larger diamond inclusion and a lower fracture toughness gc. See also Table
8.2 for the material parameters. This kind of microstructure allows for a distinct crack
initialization at the notches of the soft diamond inclusion.
For the numerical experiment, the macroscopic plate is vertically pulled with u# along
the top edge. On the bottom edge, it is fixed in the vertical direction. The plate can
freely move in the horizontal direction and is only fixed at the bottom-left edge. Figure
8.5 shows the result for the full multiscale simulation at load steps u#2 = 0.872 · 10−2m,
u#2 = 0.962 · 10−2m, u#2 = 1.012 · 10−2m and u#2 = 1.072 · 10−2m. To the left, one sees the
contour plot of the macroscopic displacement component u2 in the plate. To the right,
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ε11 = 0.0315 ε11 = 0.0380 ε11 = 0.0460

ε11 = 0.0115 ε11 = 0.0125 ε11 = 0.0135

ε11 = 0.0400 ε11 = 0.0425 ε11 = 0.0445

Figure 8.3: Numerical results for the fracture surface d = 0.99 at different load steps for
different microstructures presented in Figure 8.2. Within the first RVE with a stiff spherical
solution, two fracture surfaces evolve around the spherical inclusion. As the problem is fully
symmetric, we also see a symmetry of the fracture phase-field. The second RVE with the soft
diamond-shaped inclusion fractures at lower load steps due to the sharp edges of the microstruc-
ture geometry. Within the third RVE, the crack is localizing between the two spherical inclusions
closest to each other. The fracture surface then evolves in the area of the highest sphere density.

the microscopic phase field d within the weakened element and one RVE at the plate’s
outer edge is visualized. As expected, one sees that fracture starts within the weakened
element at the diamond inclusion notches. The crack then propagates until the RVE is
completely broken, and only the resilient stiffness of the RVE is left. Macroscopically, one
observes the localization of displacements in the middle of the plate where the weakened
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Figure 8.4: Multiscale boundary value problem for the fracture of a plane-strain plate with
underlying diamond microstructure. The squared plate is of side-length l = 1m, whereas the
RVEs are of overall side-length l = 1mm = 10−3m. The lengths occurring in the description of
the diamond shape are l1 = 0.2l and l2 = 0.3l. In the middle of the macroscopic plate, the RVE
is geometrically and materially weakened to initiate crack propagation at that location.

RVE is placed. Further expansion of the plate leads to cracking of the standard RVEs
used in the rest of the plate. The macroscopic crack moves outward in line with RVEs
cracking on the microscale. Finally, the macroscopic crack reaches the outer edge, and
the outer RVE is cracking as well. One sees that the phase-field in the outer RVE is more
diffuse compared to the one on the middle. This might stem from shear deformations
arising at the crack tip when it reaches the outer edge. One usually then needs to use
smaller time steps and finer grids to allow a more localized response of the phase-field,
especially in the context of the staggered scheme used here. The results presented here
can be reproduced using the code provided in the open repository [61].
Next, we want to demonstrate the anisotropic crack path that can be induced by mi-
croscopic anisotropy. Again, the macroscopic problem is a plane strain plate, as shown
in Figure 8.5. In this example however, the microstructure are stiff ellipsoidal inclusions
that are shifted by an angle of π/4. The stiff matrix phase and the soft inclusion phase of
all RVEs are distributed according to the inequality ((x1 cos(π/4)+x2 sin(π/4))/0.35l)

2+
((x1 sin(π/4)− x2 cos(π/4))/0.15l)

2 < 1, i.e. a nodal point with coordinate {x1, x2} ful-
filling the later equation is assigned to the inclusion, all others are part of the matrix
material, see right RVE in Figure 8.7. The elastic and phase-field parameters are the
same as in the previous computation and can be found in Table 8.2. However, in this
example, the elliptic inclusion is stiff, i.e., has higher material paramaters, and the ma-
trix material is soft. Again, in the middle of the plate, a geometrically and materi-
ally weakened RVE is attached. Its phase distribution follows the modified inequality
((x1 cos(π/4) + x2 sin(π/4))/0.4l)

2 + ((x1 sin(π/4)− x2 cos(π/4))/0.05l)
2 < 1, which gives

a sharper, flatter ellipse as visualized on the left of Figure 8.7. Consequently, the fracture
is likely to localize in this RVE due to stress-peaking and lower fracture toughness.
In line with the previous simulation, the macroscopic plate is vertically pulled with u#

along the top edge and is vertically fixed on the bottom edge. The plate can freely move in
horizontal direction and is only fixed at the bottom-left edge. Figure 8.7 shows the result
for the full multiscale simulation at load steps u#2 = 5.802 · 10−2m, u#2 = 5.822 · 10−2m,
u#2 = 5.832·10−2m and u#2 = 5.840·10−2m. One sees that the crack initializes in the weak-
ened RVE at the edges of the sharp elliptic inclusion. In contrast to the diamond-shaped
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inclusion, however, the microscopic crack in the weakened RVE is evolving in diagonal
direction and merges due to the enforced periodicity of the boundary value problem.
Also macroscopically, one sees the crack’s initiation in the middle of the plate where the
weakened RVE is located. The crack then macroscopically proceeds diagonally, indicating
that the anisotropic microstructure of the underlying microstructure has an effect on the
macroscopic crack path. The regular RVE located on the plate’s right edge is not fully
cracking, as it does not lay in the macroscopic crack’s path. For future studies, the effect
of the periodic boundary conditions as well as the size of the RVE on the macroscopic
fracture process, needs to be investigated.



Chapter 8. Multiscale simulation of phase-field-based fracture 137

u
# 2
=

0
.8
7
2
·1
0
−
2
m

u
# 2
=

0
.9
6
2
·1
0
−
2
m

u
# 2
=

1
.0
1
2
·1
0
−
2
m

u
# 2
=

1
.0
7
2
·1
0
−
2
m

u2 [m] d
0.0 0.0 1.01.1 · 10−2

Figure 8.5: Multiscale simulation results of fracture occurring in a plane-strain plate with
underlying microstructure. To the left, the macroscopic displacement component u2 is displayed
at loads u#

2 = 0.872 · 10−2m, u#
2 = 0.962 · 10−2m, u#

2 = 1.012 · 10−2m and u#
2 = 1.072 · 10−2m.

To the left, the microscopic fracture phase-field at the corresponding macroscopic load steps are
depicted for the weakened RVE (left) in the middle of the plate and the regular RVE (right)
sitting at the right edge of the RVE. One can see that the macroscopic displacements grow
larger first in the area where the RVE is weakened, and the RVE is simultaneously cracking.
A macrocrack – visible through the sharp change in the macroscopic displacement field – then
progresses to the left and right till the whole specimen is broken.
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u#

ll

l l

Figure 8.6: Multiscale boundary value problem for fracture of a plane-strain plate with un-
derlying elliptic microstructure. The squared plate is of side-length l = 1m, whereas the
RVEs are of overall side-length l = 1mm = 10−3m. The RVEs’ microstructure obeys the
following elliptic inclusion rule: If the coordinates {x1, x2} of a grid point fulfill the inequal-
ity ((x1 cos(π/4) + x2 sin(π/4))/0.35l)

2 + ((x1 sin(π/4) − x2 cos(π/4))/0.15l)
2 < 1, the point

belongs to the stiff elliptic inclusion, where π/4 is the rotation angle of the ellipse, 0.15l
its minor and 0.35l its major axis. The microstructure is visualized on the right. In the
middle of the plate, a geometrically and materially weakened element is placed in the mid-
dle of the plate, see left RVE. The microstructure follows the modified elliptic inequality
((x1 cos(π/4) + x2 sin(π/4))/0.4l)

2 + ((x1 sin(π/4)− x2 cos(π/4))/0.05l)
2 < 1, where π/4 is the

rotation angle of the ellipse, 0.05l its minor and 0.4l its major axis. The elliptic stiff inclusion
is thus sharper and cracking is more likely to occur due to peaks in the stress.
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Figure 8.7: Multiscale simulation results of fracture occurring in a plane-strain plate with
underlying elliptic microstructure. To the left, the macroscopic displacement component u2 is
displayed at loads u#

2 = 5.802 · 10−2m, u#
2 = 5.822 · 10−2m, u#

2 = 5.832 · 10−2m and u#
2 =

5.840 ·10−2m. To the left, the microscopic fracture phase-field at the corresponding macroscopic
load steps are depicted for the weakened RVE (left) in the middle of the plate and the regular
RVE (right) sitting at the right edge of the RVE. In contrast to the previous example, we now
see an anisotropic failure of the macroscopic specimen due to the anisotropy of the underlying
microstructure. Additionally, the right RVE is not completely failing, as the macro-crack has a
different path now.
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Chapter 9

Approximation of field variables and their gradients

through artificial neural networks

Artificial Neural Networks (ANNs) are special kinds of approximation functions moti-
vated by the learning processes in the human brain [71, 122]. Due to their excellent
approximation of a priori unknown relations in a large amount of data, they are nowa-
days used in a broad range of applications [101, 183]. With the increase in applications,
the number of different artificial neural network variants, such as recurrent or convolu-
tional networks, grew. This chapter presents the neural network architecture used in this
work, namely feedforward neural networks with several hidden layers. We will focus on
the presentation of feedforward neural networks with one and two hidden layers to show
their construction’s underlying concept. The approximation properties of these ANNs are
then demonstrated for a simple example and are compared to the Fourier-approximation
presented in Chapter 5.

9.1. Artificial neural network variants

The basis for most of the artificial neural network variants used in recent machine learning
is the perceptron [163]. In its most basic form, a perceptron consists of just one neuron
with activation function σ(z) where the argument

z =
d∑

j=1

wjxj + b (9.1)

of the activation function is computed from the actual input xj ∈ Rd multiplied with ad-
justable weights wj and added by some adjustable bias b. In the beginning, the Heaviside
step function was used as an activation function, mimicking a certain threshold that needs
to be surpassed before the neuron is activated. However, nowadays, there are many more
activation functions in use. Figure 9.1 shows three of the more popular ones and which
were also used in this work. Use-case dependent choice of the activation function might
lead to improved training and prediction.
Regarding the overall architecture of ANNs, there has been a major increase in different
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Figure 9.1: Three possible activation functions that are popular in recent machine learning
from left to right: logistic sigmoid, hyperbolic tangent and softplus function (Figure taken from
[63]).

variants for different applications such as AlexNet [101] and GoogLeNet [186] for im-
age recognition for example. However, in this work, we restrict ourselves to the basic
architectures presented below.

9.1.1. Single layer perceptron (SLP)

A single layer perceptron (SLP) is an artificial neural network that processes the input
through only one neuron. The output then appears as

N(x, r) = σ(z) with z =
d∑

j=1

wjxj + b, (9.2)

where we denote the vector of all weights and biases as r. Figure 9.2 shows a visualization
of the SLP. Depending on the activation function, the SLP can fit linear and nonlinear
functions to a certain extent. However, the approximation capabilities of the SLP have
limitations. It were Minsky & Seymour [134] who proved that it is not possible to use
an SLP to represent a function that is capable of performing an either-or (XOR) logical
operation.

9.1.2. Multilayer perceptron

As stated above, there are some functions that SLPs are not capable of approximating.
However, this restriction can be overcome by adding additional hidden layers of neurons
in between the input and the output [134, 165]. It were Cybenko [31] and Hornik et

al. [81] who first showed that ANNs of such kind using nonlinear activation functions
are universal approximators, i.e., they are able to fit every function as long as they have
enough internal parameters, see also [80]. Figure 9.3 shows a visualization of a densely
connected multilayer perceptron. Each input xd is multiplied with different weights for
each neuron and is passed along with a bias to the individual neurons assembled in the
hidden layer. The output of the neurons of one layer is then treated analogously to the
input vector. They are multiplied with new weights, added by a bias, and passed to the
next hidden layer. The output layer then computes the neural network’s output.
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Figure 9.2: A single layer perceptron (SLP) with one input layer and an output neuron, where
the activation function σ(z) is applied.
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Figure 9.3: General structure of a multilayer perceptron with input x, L hidden layers denoted
by dotted boxes and output N . Each neuron processes its inputs through predefined activation
functions according to the weights and biases.

Perceptron with one hidden layer. Casting this concept into equations, the response
of a neural network with one hidden layer appears as

N(x, r) =
H∑

i=1

viσ(zi) + b with zi =
d∑

j=1

wijxj + ui, (9.3)

where there are the additional weights and biases vi and b appearing and H is the number
of neurons appearing in the hidden layer. Again, we assemble the weights and biases in the
vector r. To optimize a neural network through some predefined cost function, we need
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the derivatives of the ANN with respect to its weights and biases. This differentiation can
be done either through automatic differentiation methods [1] or analytically as follows

∂N

∂ui
= viσ

′(zi),
∂N,j

∂ui
= viwijσ

′′(zi),

∂N

∂wij
= vixjσ

′(zi),
∂N,j

∂wim
= xmviwijσ

′′(zi) + viσ
′(zi)δjm,

∂N

∂b
= 1,

∂N,j

∂b
= 0,

∂N

∂vi
= σ(zi),

∂N,j

∂vi
= wijσ

′(zi).

(9.4)

In the latter equation, the indices do not follow Einstein’s summation convention. Indices
occurring twice are multiplied pointwise.
Lastly, it will be useful for later applications to have the gradient of the ANN with respect
to its input xj . In analogy to the previous derivatives, they can be either computed by
the automatic differentiation or analytically as follows

N,j =
∂N

∂xj
=

H∑

i=1

viwijσ
′(zi), (9.5)

with σ′(zi) being the sigmoid function’s derivative with respect to its input argument. We
now see that the derivative of the ANN with respect to its input is itself an ANN with
modified weights and biases, see also [103]. However, the modified ANN now is a gradient
field and thus has the according properties such as a vanishing of the rotation.

Perceptron with two hidden layers. The concept of hidden layers in ANNs is now
explained for two hidden layers. Adding further layers from this point on can then be
performed in the same fashion. For two hidden layers, the ANN’s response is computed
according to

N(x, r) =

H2∑

k=1

vkσ(rk) + b, rk =

H1∑

i=1

θkiσ(zi) + ck with zi =

d∑

j=1

wijxj + ui, (9.6)

where there are the additional weights θki and biases ck associated with the second hidden
layer [63]. In analogy to the previous ANN, the derivatives with respect to the ANN’s
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weights and biases appear as

∂N

∂ui
=

H2∑

k=1

vkσ
′(rk)θkiσ

′(zi),
∂N,j

∂ui
=

H2∑

k=1

[
vkσ

′′(rk)θkiσ
′(zi)

H1∑

i=1

[wijθkiσ
′(zi)]

+ vkσ
′(rk)θkiσ

′′(zi)wij)
]
,

∂N

∂wij
=

H2∑

k=1

vkσ
′(rk)θkiσ

′(zi)xj ,
∂N,j

∂wim
=

H2∑

k=1

[
vkσ

′′(rk)θkiσ
′(zi)xm

H1∑

i=1

[wijθkiσ
′(zi)]

+ vkσ
′(rk)θkiσ

′′(zi)wijxm

+ vkσ
′(rk)θkiσ

′(zi)δim

]
,

∂N

∂ck
= vkσ

′(rk),
∂N,j

∂ck
= vkσ

′′(rk)

H1∑

i=1

[wijθkiσ
′(zi)],

∂N

∂θki
= vkσ

′(rk)σ(zi),
∂N,j

∂θki
= vkσ

′′(rk)σ
′(zi)

H1∑

i=1

[wijθkiσ(zi)]

+ vkσ
′(rk)σ

′(zi)wij,

∂N

∂b
= 1,

∂N,j

∂b
= 0,

∂N

∂vk
= σ(rk),

∂N,j

∂vk
= σ′(rk)

H1∑

i=1

[wijθkiσ
′(zi)].

(9.7)
Especially in the case of more complicated problems with a large data set, the use of deeper
networks potentially leads to improved training behavior and more accurate predictions
[65, 166]. Even though the derivatives can still be computed analytically, they can become
quite cumbersome. Especially for deeper networks, the use of automatic differentiation
decreases the risk of implementation errors in experimental code.
Lastly, the derivative of the two-layered ANN is given by the following equation

N,j =
∂N

∂xj
=

H2∑

k=1

H1∑

i=1

vkσ
′(rk)θkiσ

′(zi)wij. (9.8)

9.2. Illustrative Example: One-Dimensional Data Fitting

We now want to demonstrate the approximation properties of ANNs based on a simple
example. In analogy to the Fourier-based approximation in Chapter 5, we first generate
N = 21 value pairs (xN , yN) as visualized in Figure 9.4. In this example, ANNs with one
hidden layer are used. In order to optimize the response of the ANNs, a least-squares
error is defined

J =

N=21∑

i=1

(N(xi, r)− yi)
2, (9.9)

which is optimized with respect to the neural network’s weights r. A Quasi-Newton
method as implemented in [118] is used for the optimization of the objective function,
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where the derivatives with respect to the weights

∂J

∂r
=

N=21∑

i=1

2(N(xi, r)− yi)
∂N(xi, r)

∂r
(9.10)

can be computed by using Equation (9.4). The logistic sigmoid function, as described in
Figure 9.1 is chosen as an activation function for neurons in the hidden layer. All other
relevant parameters for the solution process, such as tolerance and weight initialization,
can be found in the Matlab [118] code given below. Figure 9.4 shows the result for
ANNs using 3, 4, 5 and 6 neurons in the hidden layer. In contrast to Fourier and finite
element approximations, the approximated curve does not exactly match the value yi at
xi. The last curve using 6 neurons shows some localization phenomenon, which is usually
referred to as overfitting. Even though the least square error was the smallest for this
ANN, the solution intuitively does not seem reasonable due to the massive peak between
two data points. We conclude that, it is not trivial to construct appropriate ANNs for
specific problems.
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Listing 9.1: Data Fitting Matlab Implementation

1 c l o s e a l l
2 c l e a r a l l
3 rng (135 , ’ tw i s t e r ’ )
4

5 % Number o f va lue pa i r s and g r id po in t s
6 N = 21 ;
7 x = 0:1/N:1−(1/N) ;
8

9 % Create data po in t s with random per tu rba t i on
10 y = (x−0.5) . ˆ2 + rand (1 ,N) ∗ 0 . 1 ;
11

12 % Number o f hidden neurons
13 nn = 3 ;
14

15 % I n i t i a l i z e weights and b i a s e s
16 wb0 = rand (3∗nn+1 ,1) ;
17

18 % Anonymous funct i on handle f o r f eed fo rward net and l o s s
func t i on

19 f = @(wb) neura lapprox (wb , x , y ,N, nn) ;
20

21 % Cal l minimizer
22 opts = opt imopt ions (@fminunc , ’ Algorithm ’ , ’ quasi−newton ’ , . . .
23 ’ StepTolerance ’ ,1 e−12, ’ Opt imal i tyTolerance ’ ,1 e −12 , . . .
24 ’ MaxFunctionEvaluations ’ , 1 0 0 0 0 , . . .
25 ’ Spec i f yObj ec t i veGrad i en t ’ , true , ’ CheckGradients ’ , true , . . .
26 ’ F in i t eD i f f e r enceType ’ , ’ c e n t r a l ’ , ’ MaxIterat ions ’ ,10000) ;
27 [wb , f ] = fminunc ( f ,wb0 , opts )
28

29 f unc t i on [ f , g ] = neura lapprox (wb , x , y ,N, nn)
30

31 % Restore weights and b i a s e s f o r ANN
32 u = wb( 1 : nn) ;
33 w = wb(nn+1:2∗nn) ;
34 b = wb(2∗nn+1) ;
35 v = wb(2∗nn+2:3∗nn+1) ;
36

37 % Input p r o c e s s i n g
38 z = w∗x + u ;
39 xmatr = x .∗ ones ( s i z e ( z ) ) ;
40

41 % Sigmoid a c t i v a t i o n funct i on in each neuron
42 s igmoid = (1 + exp(−z ) ) .ˆ(−1) ;
43 ANN = sum(v .∗ s igmoid ) + b ;
44

45 % ANN de r i v a t i v e s w. r . t . weights and b i a s e s
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46 d sigmoid = exp(−z ) .∗ ( 1 + exp(−z ) ) .ˆ(−2) ;
47 ANN du = v .∗ d sigmoid ;
48 ANN dw = v .∗ d sigmoid .∗ xmatr ;
49 ANN db = ones (1 , s i z e (x , 2 ) ) ;
50 ANN dv = sigmoid ;
51

52 % Least−squares l o s s func t i on
53 JJ = (ANN − y ) . ˆ 2 ;
54

55 % Der iva t i ve o f l e a s t−squares l o s s func t i on w. r . t . weights and
b i a s e s

56 JJ du = 2 .0∗ (ANN − y) .∗ANN du ;
57 JJ dw = 2 .0∗ (ANN − y) .∗ANN dw;
58 JJ db = 2 .0∗ (ANN − y) .∗ANN db ;
59 JJ dv = 2 .0∗ (ANN − y) .∗ANN dv ;
60

61 % Assemble and sum l ea s t−squares and l e a s t−squares ’ g r ad i en t s
over a l l data po in t s

62 g1 = [ JJ du ; JJ dw ; JJ db ; JJ dv ] ;
63 f = (1/N) ∗sum( JJ ) ;
64 g = (1/N) ∗sum( g1 ’ ) ’ ;
65

66 end



Chapter 10

Constrained artificial neural network-based solution

scheme for periodic boundary value problems

This chapter presents the idea of constrained artificial neural networks for the solution
of partial differential equations. The method used here traces back to Lagaris et

al. [103] who introduced test functions based on artificial neural networks multiplied
with constraining functions to always fulfill given boundary conditions and minimized the
square norm of the strong form of different partial differential equations. In this work,
the constraining functions are constructed to satisfy the periodic boundary conditions
of homogenization problems, see also Göküzüm et al. [63]. Additionally, we will not
minimize the square norm of the strong form of a partial differential equation, but the
energetic potential in integral form, which is usually used in variational formulations of
boundary value problems. The framework is then tested for electrostatic problems using
different training methods and microstructure realizations. Wherever possible, code is
provided within this chapter.

10.1. Artificial neural network-based solution scheme

In order to optimize energetic potentials such as (3.14), see also (3.16), one needs to
find appropriate approximation methods for the solution fields such as the Fourier ap-
proximation discussed in Chapter 5 or the finite element method. We will now discuss
a third approach tracing back to the idea of Lagaris et al. [103], who suggested the
multiplication of ANNs with constraining functions in order to meet given boundary con-
ditions. Therefore, we recall that we derived periodic Dirichlet boundary conditions as
one accessible solution of the Hill-Mandel equation in Section 4.3. Considering a purely
electrostatic problem at hand, the energy potential (3.16) then takes the form

Π(φ) =

∫

B

ψ(x,E) dV. (10.1)

In order to solve the latter potential under periodic boundary conditions, we now construct
the trial function

φ̃t(x, r) = A0(x) + A1(x)N1(x, r1) + A2(x)N2(x, r2) + ... + An(x)Nn(x, rn), (10.2)

151
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as a combination of arbitrary ANNs Ni(x, ri) multiplied with the constraining functions

Ai(x) in such a way that the trial function φ̃t(x, r) a priori fulfills the periodic boundary
conditions. The trial electric field according to Equations (4.5) and (4.28) can now be
computed as

Et = E −∇φ̃t, (10.3)

where the gradient of the trial function can either be obtained from Equations (9.5)
and (9.8) or from automated differentiation. Insertion of the trial electric field Et into
the global potential (10.1) gives the potential in dependence of the neural network’s
parameters

Π(r) =

∫

B

ψ(x,Et(x, r)) dV. (10.4)

We finally obtain our optimization objective from the Hill-Mandel condition (4.1), which
states that the macroscopic potential equals the microscopic potential at equilibrium

Π = sup
r

1

|B|Π(r), (10.5)

where the degrees of freedom are now the ANN’s weights and biases r. These can be
obtained from an unconstrained optimization as the trial function (10.2) already fulfills
the periodic boundary conditions by construction.

10.2. Representative numerical examples

In this section, the validity of the aforementioned method is tested for a variety of numer-
ical examples. First, a simple one-dimensional laminate is considered, where an analytic
solution is available for comparison. For this example, the Tensorflow [1] code is given to
show how the code can be set up. Second, a real microstructure is considered to show that
the method can work for more complicated geometries. Lastly, a three-dimensional com-
putation is carried out. The later examples are compared to a conventional FFT-based
solution. All computations in this section are carried out with normalized units. Parts of
these results can be found in Göküzüm et al. [63].

10.2.1. One-dimensional homogenization of a laminate

We now consider a one-dimensional laminate under a homogeneous macroscopic electric
loading of E = 1. The RVE of length l = 1 consists of two layers of electric permittivity
κ∗1 = 1 and κ∗2 = 2 for x > 0.5. In this example, we consider a simple quadratic global
potential for dielectrics of the form

Π(φ) =

∫

B

ψ(E, x) dx = −
∫

B

1

2
κ∗E2 dx. (10.6)

Comparing the latter equation with the energy density of a dielectric material (2.112),
the electric permittivity used in these examples can be identified as

κ∗ = ǫ0(1 + χ) (10.7)
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Using the micro-macro decomposition

E = E − ∂φ̃

∂x
(10.8)

and applying the boundary conditions φ̃(0) = 0 and φ̃(1) = 0, we obtain the analytic
solution for the electric field as

E =





2E

1 +
κ∗

1

κ∗

2

0 ≤ x < l/2

2E

1 +
κ∗

2

κ∗

1

l/2 < x ≤ l

(10.9)

as well as for the scalar electric potential

φ̃ =





(E − E)x 0 ≤ x ≤ l/2

(E − E)x− (E − E)l l/2 ≤ x ≤ l
. (10.10)

We now want to compare an ANN-based solution to the analytic one. In order to meet
the given boundary conditions, the trial function is constructed as follows

φ̃t = Ao + A1(x)N(x, r) = x(1− x)N(x, r), (10.11)

where N can be an arbitrary ANN, which takes the coordinate x as an input. In order to
compute the electric field, we differentiate the trial function

∂φ̃t

∂x
= (1− 2x)N(x, r) + x(1− x)

∂N(x, r)

∂x
. (10.12)

Insertion of the latter expression into Equation (10.8) and (10.6) gives the global potential

Π(r) = −
∫

B

1

2
κ∗(E − φ̃t

∂x
)2 dx (10.13)

with respect to the weight parameters of the ANN. We finally need to evaluate the in-
tegral appearing in the latter equation. We therefore discretize the coordinates x in the
interval [0, 1] by equidistant grid points xk of distance ∆x, giving the discrete coordinates
{∆x/2, 3∆x/2, . . . , 1 − ∆x/2}, and apply a quadrature rule at said coordinates. This
procedure gives the discrete objective

Π = sup
r

∑

0<xk<1.0

−1

2
κ∗1(E − φ̃t

∂x
)2∆x. (10.14)

The optimization of the objective can be carried out employing some gradient descent
method.
In this example, the Adam optimizer [94] with the default training hyper-parameters is
used. The ANN for the trial function has 5 hidden layers with 5 neurons each and one
linear output unit. The hyperbolic tangent and the softplus function serve as activation
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Figure 10.1: To the left, one can see a good agreement between the numerical solution to φ̃
using a modified ANN with 5 hidden layers and the analytic solution. The graph to the right for
the analytic and the numeric solution of the electric field reveals oscillations at the discontinuity
point.

functions in the neurons. Tensorflow’s automated differentiation carries out the ANN’s
differentiation with respect to its input x and its weights and biases r. The weights and
biases r of the ANN are initialized according to the algorithm proposed by Glorot &

Bengio [59]. Figure 10.1 shows the analytic and the numerical results for the fluctuative

scalar electric potential φ̃ and the electric field E. One can see that the ANN-based
solution for φ̃ is close to the analytic one. A look at the solution of the electric field reveals
oscillations at the location of the discontinuity. According to Cybenko [31] and Hornik

et al. [81], ANNs are able to approximate any function arbitrarily close. However, the
training must not necessarily lead to such accurate approximations, as shown in Chapter
9. The Tensorflow code that generated this example can be found below.

Listing 10.1: One-dimensional Tensorflow Implementation

1 import t en so r f l ow as t f
2 t f . e nab l e e a g e r ex e cu t i on ( )
3

4 # Evaluat ion po in t s in area
5 dx = 0.0001
6 x = t f . range ( dx/ 2 , 1 . 0 , dx )
7 # Stack as t f v e r s i o n 1 . 1 2 . ANNs have a minimum input dimension

o f 2
8 xx = t f . s tack ( [ x , x ] , a x i s=1)
9 # E l e c t r i c p e rm i t t i v i t y in laminate ( stacked again )

10 kappa1 = t f . constant ( 1 . 0 , shape=[ ( 1 . 0 /dx ) / 2 , 2 ] )
11 kappa2 = t f . constant ( 2 . 0 , shape=[ ( 1 . 0 /dx ) / 2 , 2 ] )
12 kappa = t f . concat ( [ kappa1 , kappa2 ] , 0)
13

14 # Build the ANN−model
15 c l a s s ANN( t f . keras . Model ) :
16 def i n i t ( s e l f ) :
17 super (ANN, s e l f ) . i n i t ( )
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18 # Def ine the l aye r s , the neurons within the l aye r s , the
neuron ’ s a c t i v a t i o n f unc t i on s and i n i t i a l i z a t i o n

19 s e l f . dense1 = t f . keras . l a y e r s . Dense ( un i t s = 5 ,
a c t i v a t i o n=’ tanh ’ , k e r n e l i n i t i a l i z e r=’ g l o ro t un i f o rm ’
, )

20 s e l f . dense2 = t f . keras . l a y e r s . Dense ( un i t s = 5 ,
a c t i v a t i o n=’ tanh ’ , k e r n e l i n i t i a l i z e r=’ g l o ro t un i f o rm ’
, )

21 s e l f . dense3 = t f . keras . l a y e r s . Dense ( un i t s = 5 ,
a c t i v a t i o n=’ tanh ’ , k e r n e l i n i t i a l i z e r=’ g l o ro t un i f o rm ’
, )

22 s e l f . dense4 = t f . keras . l a y e r s . Dense ( un i t s = 5 ,
a c t i v a t i o n=’ s o f t p l u s ’ , k e r n e l i n i t i a l i z e r=’
g l o ro t un i f o rm ’ , )

23 s e l f . dense5 = t f . keras . l a y e r s . Dense ( un i t s = 5 ,
a c t i v a t i o n=’ s o f t p l u s ’ , k e r n e l i n i t i a l i z e r=’
g l o ro t un i f o rm ’ , )

24 s e l f . dense6 = t f . keras . l a y e r s . Dense ( un i t s = 1)
25 def c a l l ( s e l f , inputs ) :
26 # Pass the input s i g n a l ( x−coo rd ina t e s ) through the

l a y e r s o f the ANN
27 r e s u l t = s e l f . dense1 ( inputs )
28 r e s u l t = s e l f . dense2 ( r e s u l t )
29 r e s u l t = s e l f . dense3 ( r e s u l t )
30 r e s u l t = s e l f . dense4 ( r e s u l t )
31 r e s u l t = s e l f . dense5 ( r e s u l t )
32 r e s u l t = s e l f . dense6 ( r e s u l t )
33 # Mult ip ly the response o f the ANN with the con s t r a i n i ng

funct i on : ( x−1)∗x∗N
34 return ( inputs−1)∗ inputs ∗ r e s u l t
35

36 # Use the ADAM−opt imi ze r with the de f au l t l e a rn i ng parameters
37 opt imi ze r = t f . t r a i n . AdamOptimizer ( l e a r n i n g r a t e=0 .001 , beta1=

0 . 9 , beta2=0 .999 , e p s i l o n=1e−08 , u s e l o ck i ng=Fal se )
38

39 # Assign the ANN−model to a funct i on
40 phi = ANN( )
41

42 # Optimizat ion loop
43 for i in range (20000) :
44 with t f . GradientTape ( ) as tape :
45 with t f . GradientTape ( ) as tape2 :
46 tape2 . watch ( xx )
47 # Evaluate the f l u c t u a t i v e s c a l a r p o t e n t i a l
48 ph i t = phi ( xx )
49 # Evaluate the energy po t e n t i a l at quadrature po in t s

by us ing automated d i f f e r e n t i a t i o n
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Figure 10.2: An RVE of unit length l = 1 consists of a matrix material with low material
permittivity κ = 1 and a circular inclusion of radius r0 = 0.178 of high permittivity κ2 = 10. An
electric field E1 = 0 and E2 = 1 is applied under periodic boundary conditions. To the right,
one can see a FEM reference solution showing the distinct jumps at the interface.

50 # with r e sp e c t to the x−coo rd ina t e s to obta in the
e l e c t r i c f i e l d

51 EnergyPotent ia l = dx∗ t f . reduce sum (0 . 5 ∗kappa∗ ( 1 . 0 −
tape2 . g rad i en t ( ph i t , xx ) )∗∗ 2 . 0 )

52 # Compute g r ad i en t s with r e sp e c t to the weights and
b i a s e s through automated d i f f e r e n t i a t i o n

53 g r ad i en t s = tape . g rad i en t ( EnergyPotent ia l , phi . v a r i a b l e s
)

54 # Update weights and b i a s e s o f the ANN using the g r ad i en t s
55 opt imi ze r . app l y g r ad i en t s ( z ip ( grad ients , phi . v a r i a b l e s ) ,
56 g l o b a l s t e p=t f . t r a i n .

g e t o r c r e a t e g l o b a l s t e p ( ) )
57 p r i n t ( i , ”%.12 f ”%EnergyPotent ia l )

10.2.2. Periodic homogenization of RVE with two-dimensional spherical inclu-
sion

In this example, we explore a relatively simple two-dimensional problem that allows for
some numerical studies and intuitive considerations. We therefore consider an RVE of
unit length l = 1. It consists of the matrix material of low electric permittivity κ∗ = 1
and a circular inclusion of high electric permittivity κ∗2 = 10. The circular inclusion
occupies approximately 10% of the overall RVE area, corresponding to a circular radius
of r0 = 0.178, see also Figure 10.2. The RVE is the loaded with a vertical macroscopic
electric field E1 = 0 and E2 = 1 under periodic boundary conditions. The two-dimensional
constitutive law and global potential then takes the form

Π =

∫

B

ψ(E) dV = −
∫

B

1

2
κ∗E ·E dA, (10.15)
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Figure 10.2 shows a FEM solution that will serve as a reference for the ANN-based
solutions to come. The global macroscopic energy in equilibrium for the FEM simulation

was computed as Π
FEM

= 0.588652.
For an ANN-based approach, we now again need to construct a global trial function
that fulfills the given set of periodic boundary conditions. For the two-dimensional case,
we, therefore, need three ANNs: Nx1(X1) only taking the x1 coordinate as argument,
Nx2(X2) only taking the x2 coordinate as argument and Nx taking both coordinates as
input argument. Multiplication with the proper constraining functions yields the global
trial function

φ̃t(x, r) = A1(x1, x2)N1(x, r1) + A2(x1)Nx1(x1, rx1) + A3(x2)Nx2(x2, rx2)

= x1(1− x1)x2(1− x2)N1(x, r1)

+ x1(1− x1)Nx1(x1, rx1) + x2(1− x2)Nx2(x2, rx2),

(10.16)

where we see that periodicity is always maintained due to how Ai and Ni are defined.
Using the latter equation, the trial electric field can then be computed according to

Et = E −∇φ̃t. (10.17)

In analogy to the one-dimensional global potential (10.13), the two-dimensional extension
in terms of vectorial quantities can be obtained as

Π = sup
r

1

|B|Π(r) = sup
r

1

|B|

∫

B

−1

2
κ∗(x)Et ·Et dA. (10.18)

which needs to be optimized with respect to the ANNs’ weight and bias parameters
r. In this example, we use an MLP with two hidden layers for the neural network N1

acting in the volume and MLPs with one hidden layer for the neural networks Nx1 and
Nx2 . The hyperbolic σ(z) = tanh(z) serves as an activation function in all hidden layers.
The gradients with respect to the input x needed for Et as well as with respect to the
weight and bias parameters r needed for the optimization are now computed analytically
according to Subsection 9.1.2. The optimization of Π is carried out utilizing the L-BFGS-
B optimization algorithm [20, 213]. The integration is carried out through a regular mesh
of elements using nine Gauss points for the numerical integration. In order to demonstrate
the features of the method the same boundary value problem is now solved for a different
combination of mesh resolution and ANN size as follows: a) 51×51 elements, 15 neurons
in each of the two hidden layers of the MLP N1 and 5 neurons each in the layer of the
boundary MLPs Nxi

, b) 51×51 elements, 10 neurons in each of the two hidden layers of
the MLP and 5 neurons each in the layer of the boundary and c) 101×101 elements, 15
neurons in each of the two hidden layers of the MLP and 5 neurons each in the layer of
the boundary MLPs [63].
In classical machine learning approaches, the training behavior and response of ANNs

are dependent on the initialization [59]. To show that initialization is a crucial step in this
method, we will demonstrate the training result for two different initializations. First,
the weight vector is initialized according to a uniform random distribution

r(0) ∼ U(−1, 1). (10.19)

Figure 10.3 shows the contour plots of E2 for the uniform distribution for the ANN
and integration set-up a), b) and c) after 20 000 iterations. One can see in a) that an
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Figure 10.3: Contour plot of Et1 for a set of parameters: a) 51×51 elements, 15 neurons per
layer in N1 and 5 neurons each for Nx1

and Nx2
, b) 51×51 elements, 10 neurons per layer in N1

and 5 neurons each for Nx1
and Nx2

and c) 101×101 elements, 15 neurons per layer in N1 and
5 neurons each for Nx1

and Nx2
([63]).

ANN with many weight and bias parameters combined with a coarse integration leads
to an unphysical equilibrium state, where the energy Π(r) = 0.213522 is far below the
energy calculated through the FEM-simulation. We suppose that this phenomenon is
associated with overfitting. A further reason for the localization might be inaccuracies
while integrating. Interestingly, such localizations did not occur when using softplus-
activation functions, which might also hint to the convexity of the solution space being
an influencing factor. Using the same mesh but ANNs with fewer parameters in b) gives
physically more reasonable results and energy of Π(r) = 0.590266. Using a finer grid and
the larger ANN in c) also yields reasonable results with energy of c) Π(r) = 0.589887.
We now perform the same simulations but initialize the weights according to a normal
distribution

r(0),∗ ∼ N (µ, σ2). (10.20)

In Figure 10.3, the bottom pictures show the results for the normal distribution after
20 000 iterations. One can see that all three computations now yield reasonable results
where we obtain the energies a) Π(r) = 0.590054, b) Π(r) = 0.592981 and c) Π(r) =
0.590054.
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Figure 10.4: Convergence of |Π(r)| over the iterations for a global trial function with random
uniform initialization and random normal initialization for the ANN and integration set-up c)
from Figure 10.3. One can see that the energies are converging towards the FEM-solution,
indicated by the dashed line.

Finally, we have a look at the convergence rate of the scheme. Figure 10.4 shows the
convergence of the absolute macroscopic energy |Π(r)| for the uniform initialization using
set-up c) and the normal initialization using the set-up c). One can see that the energies
approach the FEM-solution, where the convergence rate slows down in the vicinity of the
solution. It does not seem to make a huge difference whether one chooses the uniform
or the normal initialization. The example only serves as a qualitative investigation of
the choice of initial weights and bias, it, however, shows the necessity of using more
sophisticated methods as presented in Glorot & Bengio [59] as well as preprocessing
steps such as pretraining [3].

10.2.3. Two-dimensional real microstructure example

We now extend the solution scheme presented above to two dimensions and apply it to
a more complex microstructure. We, therefore, consider the microstructure of meteorite
NWA 2993. A three-dimensional CT-image has been produced by Ghanbarzadeh &

Prodanovic [57] and can be openly accessed through the Digital Rocks Portal [153]. For
the two-dimensional computation, we use the middle slice of the CT-image. As the image
has a pixel count of 500×500, we remove the last row and column of pixels to end up with
an odd-sized grid of size 499× 499 for the FFT-based comparison. The two-dimensional
constitutive law and global potential then takes the form as presented in Equation (10.15)

above, where the vectorial electric field E = E −∇φ̃ can again be decomposed. We now
discretize the microstructure by an equidistant grid with quadrature points and apply
a macroscopic load of E1 = 1 and E2 = 0. In line with the Hill-Mandel condition, we
prescribe periodic boundary conditions. We now let the microstructure only consist of
two phases with a phase contrast of 10, where we set the electric permittivity in the
inclusion to κ∗1 = 10 and in the matrix to κ∗2 = 1. Figure 10.5 shows an image of the
meteorite as well as the result of the electric field E1 from the FFT-based solution. Here,
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Figure 10.5: To the left, one can see an image of the meteorite NWA 2993 with its distinct
microstructure (Ghanbarzadeh & Prodanovic [57]). To the right, the FFT-based solution
for E1 under horizontal macroscopic loading and phase contrast of ten can be seen. As for the
microstructure, the middle slice of the three-dimensional CT-image was taken. Characteristic
peaks in the electric field at the bottlenecks between two inclusions of high permittivity can be
seen.

we see the electric field’s characteristic peaks at the bottlenecks between two inclusions
of high permittivity. We now want to compare these results to an ANN-based solution.
In order to improve training behavior and prediction accuracy, we first want to apply a
method which is inspired by the idea of autoencoders [3]. Figure 10.6 shows an example
of the approach used here: In a preprocessing step, a certain amount of layers of the
neural network are connected to an output unit and are trained to predict the indicator
function of the material phases. Therefore, the output unit uses the hyperbolic tangent
to classify, if a certain location belongs to phase 1 or phase 2. The training of this network
is performed through optimizing a cross-entropy loss

J = −yln(N∗(x, r∗))− (1− y)ln(1−N∗(x, r∗)), (10.21)

where N∗ is the trainable ANN with weights and biases r∗. Here, y is the phase data
taking the value y = 1 at grid points that belong to phase 1 and y = −1 at ones which
belong to phase 2. When the cost function falls below a certain value, the pre-training
is stopped. According to Figure 10.6, the output node is then released, additional layers
are added to the existing ones and are connected to a new linear output unit, creating
the new ANN N1(x, r1). This ANN has now partially pre-trained weights and biases
in r1 that reflect some geometric information about the location of the inclusions. This
preknowledge might make it easier for the ANN to be trained for the physical problems,
as we expect jumps in physical fields to occur at phase interfaces. A similar approach has
been successfully tested in [7], where the ANN used in the trial function is pre-trained to
match the boundary conditions before multiplying it with a constraining function.
We now use the partially pre-trained neural network N1 to construct a two-dimensional
trial function that fulfills periodic boundary conditions

φ̃t(x, r) = A1(x1, x2)N1(x, r1) + A2(x1)Nx1(x1, rx1) + A3(x2)Nx2(x2, rx2)

= x1(1− x1)x2(1− x2)N1(x, r1)

+ x1(1− x1)Nx1(x1, rx1) + x2(1− x2)Nx2(x2, rx2),

(10.22)
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Figure 10.6: Example for the pre-training of an ANN for homogenization problems. First,
a smaller neural network N∗ with, for example, two hidden layers is pretrained to predict the
phase location of the microstructure. For the physical problem, the output node with its weights
and bias is removed and additional layers extend the ANN. As a consequence, parts of the ANN
already incorporate geometric information on the underlying microstructure problem.

where we added two more untrained ANNs Nx1 and Nx2. These two ANNs must only
be dependent on x1 and x2 respectively in order to satisfy periodicity at the boundaries.
We can then again compute the trial electric field according to decomposition (10.17).
Insertion into the global potential (10.15) finally gives the objective to optimize

Π = sup
r

1

|B|Π(r) = sup
r

1

|B|

∫

B

−1

2
κ∗(x)Et ·Et dA. (10.23)

For the computation, we choose an ANN N1 with three hidden layers with 100 neurons
each and the hyperbolic tangent as activation function and two hidden layers with 30
neurons each and the softplus function as activation function. According to the code
given below, the pre-training step is performed for the first three hidden layers before
extending the ANN by the second two. The other two ANNs Nx1 and Nx2 each consist of
three hidden layers with 50 neurons each. The neurons’ activation function is the softplus
function. This results in a total amount of 35094 trainable parameters.
Figure 10.7 shows the result for the pre-training step and for the physical equilibrium.
One can see that the phases are predicted quite accurately. For the equilibrium, the results
are qualitatively close to the FFT-based simulation shown in Figure 10.5, also showing
characteristic peaks in between inclusions of high permittivity. In contrast to the FFT-
based solution, there are still some larger oscillations appearing, and the solution seems to
be smeared out, especially at the boundaries. However, the ANN-based approach works
much more memory efficiently: The FFT-based scheme solves for two variables, namely
the electric field components E1 and E2 at each grid node. For a 499×499 grid as used
in this example, this results in a total amount of 499×499×2=498002 unknowns for the
FFT-based approach. The ANN-based approach however, integrates over the whole mesh,
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Figure 10.7: On the left one can see the segmented image of the microstructure of meteorite
NWA 2993 as provided by Ghanbarzadeh & Prodanovic [57]. The middle image shows
the ANN’s prediction of the microstructure after pre-training. The left image shows the ANN’s
prediction after extending the layers and training the physical equilibrium. Comparison with
the FFT-based solution shows qualitatively good results.

but only solves for the ANNs’ weights and bias. For the ANNs chosen here, these summed
up to a total amount of 35094 weights and biases.

Listing 10.2: Two-dimensional Tensorflow Implementation

1 import t enso r f l ow as t f
2 import numpy as np
3 t f . e nab l e e a g e r e x e cu t i o n ( )
4

5 # Load segmented mic r o s t ruc tur e data (500 x500x500 CT Image ) as provided by
the D i g i t a l Rocks database

6 fd = open ( ’ met bin ’ , ’ rb ’ )
7 p i x e l s = 500
8 f = np . f r om f i l e ( fd , dtype=np . uint8 , count=p i x e l s ∗∗ 3)
9 im = f . reshape ( ( p i x e l s , p i x e l s , p i x e l s ) ) #no t i c e row , column format

10 fd . c l o s e ( )
11

12 # Remove l a s t row and column o f image to have an odd−numbered g r id and
bu i ld two−dimens iona l g r id

13 N1 = p i x e l s−1
14 dx = 1/N1
15 xx = t f . range (dx/ 2 , 1 . 0 , dx )
16 x1 , x2 = t f . meshgrid (xx , xx )
17 xx1 = t f . reshape ( x1 , [ N1∗N1 , ] )
18 xx2 = t f . reshape ( x2 , [ N1∗N1 , ] )
19 x = t f . s tack ( [ xx1 , xx2 ] , a x i s=1)
20

21 # Extract the middle s l i c e o f the thr e e−dimens iona l CT−image f o r f u r th e r
two−dimens iona l computations

22 # Normalize the image data between 0 and 1
23 im1 = im [ 2 4 9 , : 4 9 9 , : 4 9 9 ] /255
24

25 # Cast the mate r i a l parameter from matrix in to vec to r and stack f o r fu tur e
energy c a l c u l a t i o n

26 kappaVec = t f . reshape ( im1 , [ N1∗N1 , 1 ] )
27 kappa = t f . concat ( [ kappaVec , kappaVec ] , a x i s=1)
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28 # Set mate r i a l parameters to be kappa = 10 in i n c l u s i o n and kappa = 10 in
i n c l u s i o n

29 kappa = t f . c a s t ( kappa , t f . f l o a t 3 2 )
30 kappa = ( kappa∗ (−1)+1)∗9+1
31

32 # Build an ANN−model that i s ab le to d i s t i n g u i s h between p r e t r a i n i ng and
phy s i c a l s imu la t i on

33 c l a s s ANN( t f . keras . Model ) :
34 def i n i t ( s e l f ) :
35 super (ANN, s e l f ) . i n i t ( )
36 # Build l a y e r s f o r p r e t r a i n i ng and phy s i c a l s imu la t i on
37 s e l f . dense1 = t f . keras . l a y e r s . Dense ( un i t s = 100 , a c t i v a t i o n=’ tanh ’ ,

k e r n e l i n i t i a l i z e r=’ g l o r o t un i f o rm ’ , )
38 s e l f . dense2 = t f . keras . l a y e r s . Dense ( un i t s = 100 , a c t i v a t i o n=’ tanh ’ ,

k e r n e l i n i t i a l i z e r=’ g l o r o t un i f o rm ’ , )
39 s e l f . dense3 = t f . keras . l a y e r s . Dense ( un i t s = 100 , a c t i v a t i o n=’ tanh ’ ,

k e r n e l i n i t i a l i z e r=’ g l o r o t un i f o rm ’ , )
40 s e l f . dense4 = t f . keras . l a y e r s . Dense ( un i t s = 1 , a c t i v a t i o n=’ tanh ’ , )
41 # Build add i t i o na l l a y e r s f o r phy s i c a l s imu la t i on
42 s e l f . d ens e i 1 = t f . keras . l a y e r s . Dense ( un i t s = 30 , a c t i v a t i o n=’

s o f t p l u s ’ , k e r n e l i n i t i a l i z e r=’ g l o r o t un i f o rm ’ , )
43 s e l f . d ens e i 2 = t f . keras . l a y e r s . Dense ( un i t s = 30 , a c t i v a t i o n=’

s o f t p l u s ’ , k e r n e l i n i t i a l i z e r=’ g l o r o t un i f o rm ’ , )
44 s e l f . d ens e i 3 = t f . keras . l a y e r s . Dense ( un i t s = 1 , )
45

46 # Build l a y e r s f o r one−dimens iona l ANN at x1−boundary
47 s e l f . densex1 1 = t f . keras . l a y e r s . Dense ( un i t s = 50 , a c t i v a t i o n=’

s o f t p l u s ’ , k e r n e l i n i t i a l i z e r=’ g l o r o t un i f o rm ’ , )
48 s e l f . densex1 2 = t f . keras . l a y e r s . Dense ( un i t s = 50 , a c t i v a t i o n=’

s o f t p l u s ’ , k e r n e l i n i t i a l i z e r=’ g l o r o t un i f o rm ’ , )
49 s e l f . densex1 3 = t f . keras . l a y e r s . Dense ( un i t s = 50 , a c t i v a t i o n=’

s o f t p l u s ’ , k e r n e l i n i t i a l i z e r=’ g l o r o t un i f o rm ’ , )
50 s e l f . densex1 4 = t f . keras . l a y e r s . Dense ( un i t s = 1 , )
51

52 # Build l a y e r s f o r one−dimens iona l ANN at x2−boundary
53 s e l f . densex2 1 = t f . keras . l a y e r s . Dense ( un i t s = 50 , a c t i v a t i o n=’

s o f t p l u s ’ , k e r n e l i n i t i a l i z e r=’ g l o r o t un i f o rm ’ , )
54 s e l f . densex2 2 = t f . keras . l a y e r s . Dense ( un i t s = 50 , a c t i v a t i o n=’

s o f t p l u s ’ , k e r n e l i n i t i a l i z e r=’ g l o r o t un i f o rm ’ , )
55 s e l f . densex2 3 = t f . keras . l a y e r s . Dense ( un i t s = 50 , a c t i v a t i o n=’

s o f t p l u s ’ , k e r n e l i n i t i a l i z e r=’ g l o r o t un i f o rm ’ , )
56 s e l f . densex2 4 = t f . keras . l a y e r s . Dense ( un i t s = 1 , )
57

58 def c a l l ( s e l f , inputs , t r a i n i ng=False ) :
59 i f t r a i n i ng :
60 # Pass input only through f i r s t l a y e r s and hype rbo l i c tangent

output neuron
61 r e s u l t = s e l f . dense1 ( inputs )
62 r e s u l t = s e l f . dense2 ( r e s u l t )
63 r e s u l t = s e l f . dense3 ( r e s u l t )
64 r e s u l t = s e l f . dense4 ( r e s u l t )
65

66 p h i f i e l d = r e s u l t
67 e l s e :
68 # Pass input whole volume ANNs
69 r e s u l t = s e l f . dense1 ( inputs )
70 r e s u l t = s e l f . dense2 ( r e s u l t )
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71 r e s u l t = s e l f . dense3 ( r e s u l t )
72 r e s u l t = s e l f . d ens e i 1 ( r e s u l t )
73 r e s u l t = s e l f . d ens e i 2 ( r e s u l t )
74 r e s u l t = s e l f . d ens e i 3 ( r e s u l t )
75

76 # Extract x1−coo rd ina te from input and pass through network
N x1

77 s i z e = in t ( inputs . get shape ( ) [ 0 ] )
78 inputx1 = t f . reshape ( inputs [ : , 0 ] , [ s i z e , 1 ] )
79 r e s u l t x 1 = s e l f . densex1 1 ( inputx1 )
80 r e s u l t x 1 = s e l f . densex1 2 ( r e s u l t x 1 )
81 r e s u l t x 1 = s e l f . densex1 3 ( r e s u l t x 1 )
82 r e s u l t x 1 = s e l f . densex1 4 ( r e s u l t x 1 )
83

84 # Extract x2−coo rd ina te from input and pass through network
N x2

85 inputx2 = t f . reshape ( inputs [ : , 1 ] , [ s i z e , 1 ] )
86 r e s u l t x 2 = s e l f . densex2 1 ( inputx2 )
87 r e s u l t x 2 = s e l f . densex2 2 ( r e s u l t x 2 )
88 r e s u l t x 2 = s e l f . densex2 3 ( r e s u l t x 2 )
89 r e s u l t x 2 = s e l f . densex2 4 ( r e s u l t x 2 )
90

91 # Multiply output by con s t r a i n i ng func t i o n s ( x1−1)∗x1∗ ( x2−1)∗x2
∗N 1 + ( x1−1)∗x1∗N x1 + ( x2−1)∗x2∗N x2

92 p h i f i e l d = ( inputx1−1)∗ inputx1∗ ( inputx2−1)∗ inputx2∗ r e s u l t + (
inputx1−1)∗ inputx1∗ r e s u l t x 1 + ( inputx2−1)∗ inputx2∗ r e s u l t x 2

93

94 return p h i f i e l d
95

96 # Assign the modi f i ed ANNs to the phi− f i e l d
97 phi = ANN()
98

99 # Renormalize image between −1 and 1 f o r the hype rbo l i c tangent output
c l a s s i f i c a t i o n

100 ind = ( t f . c a s t ( im1 , t f . f l o a t 3 2 ) ) ∗2−1
101

102 # Use the Adam−opt imi z e r with the d e f a u l t l e a r n i ng parameters
103 opt imizer0 = t f . t r a i n . AdamOptimizer( l e a r n i n g r a t e=0 .001 , beta1=0 . 9 , beta2=

0 .999 , e p s i l o n=1e−08 , u s e l o c k i ng=False )
104

105 # Restore the i n d i c a t o r as vec to r f o r mu l t i p l i c a t i o n in l o s s−func t i on
106 indVec = t f . reshape ( ind , [ N1∗N1 , 1 ] )
107

108 # Set the t r a i n i ng f l a g to TRUE in order to t e l l model that i t i s in the
p r e t r a i n i ng s tag e

109 t r a i n i ng = True
110 for i in range (100000) :
111 with t f . GradientTape ( ) as tape :
112 c r o s s e n t r o p y l o s s = t f . reduce mean (−( indVec+1)∗ 0 .5 ∗ t f . l o g ( ( phi (x ,

t r a i n i ng )+1 . 0 ) ∗ 0 .5+1e−12)−0 .5 ∗ (1−indVec ) ∗ t f . l o g ( (1−phi (x ,
t r a i n i ng ) ) ∗ 0 .5+1e−12) )

113 g rad i en t s0 = tape . g r ad i en t ( c r o s s e n t r o p y l o s s , phi . v a r i a b l e s )
114 opt imizer0 . app ly g rad i en t s ( z ip ( grad ients0 , phi . v a r i a b l e s ) ,
115 g l o b a l s t e p=t f . t r a i n .

g e t o r c r e a t e g l o b a l s t e p ( ) )
116

117 pr in t ( i , ”%.12 f ”%c r o s s e n t r o p y l o s s )



Chapter 10. Artificial neural network-based solution scheme 165

118

119 # Use the Adam−opt imi z e r with the d e f a u l t l e a r n i ng parameters
120 opt imi z e r = t f . t r a i n . AdamOptimizer( l e a r n i n g r a t e=0 .001 , beta1=0 . 9 , beta2=

0 .999 , e p s i l o n=1e−08 , u s e l o c k i ng=False )
121

122 # Assign macroscopic l oad ing
123 Ebar1 = t f . constant ( 1 . 0 , shape=[N1∗N1 , ] )
124 Ebar2 = t f . constant ( 0 . 0 , shape=[N1∗N1 , ] )
125 Ebar = t f . s tack ( [ Ebar1 , Ebar2 ] , a x i s=1)
126

127 # Set t r a i n i ng parameter to FALSE to t e l l phi that i t i s in the phy s i c a l
equ i l i b r ium s tage

128 t r a i n i ng = False
129 for i in range (50000) :
130 with t f . GradientTape ( ) as tape :
131 with t f . GradientTape ( ) as tape2 :
132 tape2 . watch (x )
133 ph i t = phi (x , t r a i n i ng )
134 # Compute energy as i n t e g r a t i o n over quadrature po in t s
135 # Use automated d i f f e r e n t i a t i o n f o r the computation the

f l u c t u a t i v e e l e c t r i c f i e l d
136 EnergyPotent ia l = dx∗dx∗ t f . reduce sum (0 . 5 ∗kappa∗ ( Ebar − tape2 .

g r ad i en t ( ph i t , x ) ) ∗∗ 2 . 0 )
137 g r ad i e n t s = tape . g r ad i en t ( EnergyPotentia l , phi . v a r i a b l e s )
138 opt imi z e r . app ly g rad i en t s ( z ip ( g r ad i en t s , phi . v a r i a b l e s ) ,
139 g l o b a l s t e p=t f . t r a i n .

g e t o r c r e a t e g l o b a l s t e p ( ) )
140 pr in t ( i , ”%.12 f ”%EnergyPotent ia l )
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Figure 10.8: The trial function φ̃t is constructed using a set of seven ANNs: Nx1
, Nx2

and
Nx3

are acting on the corresponding boundary edges, Nx12
, Nx13

and Nx23
are acting on the

boundary surfaces and N1 is acting in the volume. Finally, the seven ANNs are multiplied with
the corresponding constraining functions Ai.

10.2.4. Periodic homogenization of three-dimensional RVE with spherical in-
clusion

Finally, we want to demonstrate that the approach is extendable to three dimensions.
A cubic RVE of unit side lengths l = 1 is considered. The RVE consists of two phases.
Material 1 forms the matrix material in which spheres of radius r0 = 0.178 made of
material 2 are embedded. In order to construct a trial function that a priori fulfills
the periodic boundary conditions, a set of seven ANNs is needed: Nx1(x1) acting in
the x1-direction, Nx2(x2) acting in the x2-direction, Nx3(x3) acting in the x3-direction,
Nx12(x1, x2) acting in the x1x2-plane, Nx13(x1, x3) acting in the x1x3-plane, Nx23(x2, x3)
acting in the x1x2-plane and N1(x) acting in the RVE’s volume, see Figure 10.8 [63]. The
trial function then takes the form

φ̃t(x, r) = A1N1(x, r1) + A2Nx12(x1, x2, rx12) + A3Nx13(x1, x3, rx13)

+A4Nx23(x2, x3, rx23) + A5Nx1(x1, rx1)

+A6Nx2(x2, rx2) + A7Nx3(x3, rx3),

(10.24)

where the constraining functions appear as

A1 = x1(1− x1)x2(1− x2)x3(1− x3), A5 = x1(1− x1),

A2 = x1(1− x1)x2(1− x2), A6 = x2(1− x2),

A3 = x1(1− x1)x3(1− x3), A7 = x3(1− x3),

A4 = x2(1− x2)x3(1− x3).

(10.25)

From the three-dimensional trial function (10.24), the trial electric field Et can be com-
puted according to Equation (10.17). The trial electric field Et is then again used in the
computation of the global potential, which is optimized with respect to the weights and
biases of the neural network

Π = sup
r

1

|B|Π
∗(r) = sup

r

1

|B|

(
−
∫

Bmatr

1

2
κ∗1Et ·Et dV −

∫

Bincl

1

2
κ∗2Et ·Et dV

)
. (10.26)
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Figure 10.9: On the top, the electric field E1 as predicted by the ANN after 20000 iterations
is displayed for a microstructure consisting of a matrix with low electric permittivity κ1 = 1 and
a spherical inclusion with high permittivity κ2 = 10. The results show good agreement with an
FFT-based simulation shown below.

The RVE is now loaded by the homogeneous macroscopic electric field E1 = 1.0, E2 = 0.0
and E3 = 0.0. The matrix material has an electric permittivity of κ∗1 = 1, the spherical in-
clusion has an electric permittivity of κ∗2 = 10. The domain is discretized using 43×43×43
equidistant grid points. The ANNs covering the edges and boundary surfaces are MLPs
with 4 neurons each in the hidden layer of the ANN acting on the edge and 5 neurons
in the hidden layer of the ANN acting on the surface. The ANN covering the volume is
an MLP with two hidden layers and 8 neurons within each layer. Summing all weights
and biases gives a total of 256 optimization parameters. In this example, we use the soft-
plus activation function as experience showed that it provided the most stable solutions.
Using the hyperbolic tangent usually leads to higher convergence rates but increases the
risk of localization behavior described in Göküzüm et al. [63]. The example is run
on a Fortran 77 code using the L-BFGS-B optimization library [20, 213] for finding the
optimal ANN parameters. As the microstructure is rather simple in this example, no pre-
training is performed. Figure 10.9 shows the result of the ANN-based simulation after
20000 iterations next to an FFT-based simulation of the same boundary value problem.
One can see that the ANN is able to qualitatively describe areas of high and low electric
field as well as locations of discontinuity. However, those discontinuities are less distinct
compared with the FFT-based simulation. Quantitatively, the global energy potentials Π
of both simulations are close to each other in equilibrium, having Π(r) = 0.529926 for the

ANN-based approach and Π
FFT

= 0.52750 for the FFT-based simulation [63].





Chapter 11

Conclusion and outlook

Modern engineering applications and solutions push the boundaries for materials with
respect to properties such as durability and weight. A major technique that allows for
such progress is the smart design of the materials’ microstructural properties, which can
be achieved for example by means of additive manufacturing. To avoid excessive amounts
of experiments for all possible microstructural configurations, there is the demand to nu-
merically predict materials’ properties based on their microstructure. Though there has
been a significant increase in computational power in the past years, the difference in
length-scale between a component at hand and the microstructure of its material still
poses challenges with respect to computational time and efficiency.
This work provided a framework for FFT-based multiscale simulations with a special fo-
cus on the computation of effective properties, namely the macroscopic stress and tangent
operator. Starting point was the Lippmann-Schwinger equation, which is characteristic
for FFT-based methods and is used to solve equilibrium equations. For first-order homog-
enization, which allows for an additive split of field variables into a constant macroscopic
contribution and a fluctuating contribution, the connection of the Lippmann-Schwinger
equation and the aforementioned additive split was drawn. Having this connection at
hand, an explicit expression for the fluctuation sensitivities, i.e., the differentiation of the
fluctuating field variables with respect to the macrocopic field variables that is needed for
the computation of the macroscopic tangent operator, could be derived. In contrast to
finite difference-based approaches, the explicit expression for the fluctuation sensitivities,
called a Lippmann-Schwinger-type equation, is linear independent of the material model
used. It was shown that computing said properties utilizing the Lippmann-Schwinger-
type equation, outperforms finite difference-based approaches in computational speed.
Although there still needs progress to be made with respect to computational speed, the
tangent computation in line with a variationally consistent framework allows for robust
macroscopic convergence in multiscale simulations, including geometrical and material
nonlinearity.
This robustness was shown also for electro-mechanically coupled materials at large strains.
For these kind of materials, it is necessary to model and predict the interaction between
mechanical deformations and electrical fields within the material. Simulations thus need
to solve both the mechanical and the electrical equilibrium equation. Again, the mi-
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crostructure plays a crucial role for the overall material behavior: Deformation states of a
soft polymer matrix with enclosed eletrically permitive particles can be influenced by size
and shape of the inclusions. In this work, we showed that the computation of the coupled
macroscopic tangent operator based on the coupled Lippmann-Schwinger-type equation
is efficient and reliable for such kind of materials. For future research, the interaction
of microscopic particle shape, size, and distribution with the macroscopic deformation
might be further investigated. Methods that allow local topology optimization of the mi-
crostructure in terms of desired deformation modes and stiffness might enable the smart
design of macroscopic components [30, 35]. Such methods might enable improvement for
applications such as artificial muscles [4] based on electroactive polymers. Further field
of application might be the development of sensors, which take advantage of the coupling
between mechanical deformation and electrical fields. For such applications, extending
the model to include the interaction with magnetic fields as well could be beneficial [156].
Additionally, the framework was applied to phase-field-based multiscale simulation for
fracture. Such simulations are of special interest in all engineering areas where there is
the danger of intergranular corrosion or fracture, including pressure vessels under high
pressure, temperature, radiation or chemical corrosion. In this work, we restricted our-
selves to an elastic material behavior at small strains, but adding additional effects such
as temperature might be a path forward. The codes for the simulation presented in this
work are all made available in an open repository [60, 61]. For future investigations,
a particular focus might be set on the convergence behavior of effective properties for
cracked RVEs in terms of the RVEs’ size. In the current work, RVEs were attached at
every Gauss point of the macroscopically discretized problem. One could think of re-
ducing computational effort by using interface elements that are adaptively integrated
into the macroscopic problem and by only calculating RVE responses at those interface
elements [79]. Furthermore, the extension to higher-order homogenization schemes might
be necessary to include size-effects on the macroscale as well.
In the final part of this work, the use of ANNs for solving periodic boundary value prob-
lems in homogenization was explored. Hereby, the ANNs are multiplied with constraining
functions to satisfy the periodic boundary conditions a priori, and an energetic poten-
tial is minimized with respect to the ANNs’ weights and bias. It was shown that the
method converges to results close to FFT- and FEM-based solutions and needs little
memory. Recently, Dong & Ni [38] presented a way of enforcing periodicity in ANNs
employing trigonometric activation functions. Implementing said ANNs within the meth-
ods presented here and comparing the training behavior and accuracy to the conventional
approach might give further insights and improvements. Additionally, the influence of
activation functions on the convergence behavior and the quality of the solution might
be further investigated. In this work, convex activation functions such as the softplus
function appeared to result in a more robust convergence behavior with no localization
appearing, while activation functions such as the hyperbolic tangent appeared to converge
faster to the real solution but also tended to show localization effects leading to nonphys-
ical results. However, a mathematically rigorous explanation of this observation might
help choosing the appropriate activation function for a given problem.
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[63] Göküzüm, F. S.; Nguyen, L. T. K.; Keip, M.-A. [2019]: An Artificial Neu-

https://www.feynmanlectures.caltech.edu/
http://www.digitalrocksportal.org/projects/64
https://bit.ly/3cEwQBz
https://bit.ly/2ENW18k


Bibliography 175

ral Network Based Solution Scheme for Periodic Computational Homogenization of
Electrostatic Problems. Mathematical and Computational Applications, 24(2): 40.
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[159] Reuss, A. [1929]: Berechnung der Fließgrenze von Mischkristallen auf Grund der
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[200] Vondřejc, J.; Zeman, J.; Marek, I. [2014]: An FFT-based Galerkin method for
homogenization of periodic media. Computers & Mathematics with Applications,
68(3): 156 – 173.

[201] Von Goethe, J. W. [1879]: Faust: eine tragödie, Vol. 2. G. Hempel.
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[211] Zeman, J.; Vondřejc, J.; Novak, J.; Marek, I. [2010]: Accelerating a FFT-
based solver for numerical homogenization of periodic media by conjugate gradients.
Journal of Computational Physics, 229: 8065–8071.

[212] Zhang, Q. M.; Li, H.; Poh, M.; Xia, F.; Cheng, Z.-Y.; Xu, H.; Huang, C.

[2002]: An all-organic composite actuator material with a high dielectric constant.
Nature, 419(6904): 284–287.

[213] Zhu, C.; Byrd, R. H.; Lu, P.; Nocedal, J. [1997]: Algorithm 778: L-BFGS-B:
Fortran subroutines for large-scale bound-constrained optimization. ACM Transac-
tions on Mathematical Software (TOMS), 23(4): 550–560.





trigger another two white pages





trigger another white page




	Abstract
	Zusammenfassung
	Introduction and motivation
	Homogenization of composites
	Physical homogenization problems
	Materially and geometrically non-linear problems
	Electro-mechanical coupling phenomena
	Micromechanically induced fracture

	Numerical solvers for homogenization problems
	Fast Fourier transform-based solvers
	Artificial neural network-based solvers

	Multiscale approach for first-order homogenization

	I Fundamentals of Electro-Mechanics and Homogenization
	Foundations of electrostatics and continuum mechanics
	Fundamentals of electrostatics
	Maxwell equations of electrostatics
	Energy of charges
	The electric field in matter

	Fundamentals of continuum mechanics
	The material body in space
	Deformation and movement of a material body
	The deformation gradient in tangent, area and volume mapping
	The right and inverse left Cauchy-Green tensor
	Stress measures and stress tensors
	Illustrative example: Tangent, area and volume map


	Foundations of electro-mechano-statics and variational principles
	The electric field and energy density in a deformable body
	Geometrical mapping of the electric displacement

	Variational framework for non-dissipative electro-mechanical coupling
	Balance of linear momentum
	Balance of angular momentum

	Thermodynamical consistency of the variational formulation
	Internal mechanical and electrical power expressions
	Dissipation postulate for electro-mechano-statics
	Concept of dissipation potentials and internal variables
	Incremental variational potentials for dynamic problems


	The Concept of micro-to-macro transition
	Microscopic equilibrium equations
	The Hill-Mandel macrohomogeneity conditions
	Macroscopic averaging and boundary conditions
	Zero fluctuation Dirichlet boundary conditions
	Periodic fluctuation Dirichlet boundary conditions
	Averaging of the macroscopic tangent operator



	II Fourier Transform-based Solvers
	Trigonometric approximation of functions
	The discrete Fourier transform
	Derivative approximation through the discrete Fourier transform
	Numerical example: Solving the Cahn-Hilliard equation
	Numerical example: Solving a Ginzburg-Landau type equation

	FFT-based computational homogenization of composites
	Lippmann-Schwinger equation of mechanical boundary value problems
	Lippmann-Schwinger-based analytic macroscopic tangent operator
	Fourier discretization and solution approach
	Construction of the discrete Green operator
	Solution scheme for fluctuations and their sensitivities

	FE-FFT driver for macroscopically homogeneous point problems
	Numerical examples
	Homogenization for small-strain viscoelasticity
	Homogenization approach at finite strains

	Illustrative example: One-dimensional Green operator

	FFT-based computational homogenization of electroactive polymers
	Lippmann-Schwinger approach to electro-mechano-statics
	Lippmann-Schwinger-based coupled macroscopic tangent computation
	Discrete solution scheme for coupled multiscale problems
	Numerical examples
	Constitutive material model
	Coupled one-dimensional examples
	Coupled two-dimensional examples

	Appendices
	Macroscopic tangent computation
	Electro-mechanically coupled Green operator
	Fluctuation sensitivities


	Multiscale simulation of phase-field-based fracture
	Variational approach to phase-field fracture mechanics
	A Hill-Mandel macrohomogeneity condition for two-scale fracture
	Algorithmic treatment of multiscale fracture
	FFT-based solution scheme for the mechanical problem
	FFT-based solution scheme for the phase-field problem
	FFT-based multiscale fracture scheme

	Numerical examples
	Three-dimensional microscopic fracture evolution
	Small-strain multiscale simulation



	III Artificial Neural Network-based Solvers
	Artificial neural network-based approximation
	Artificial neural network variants
	Single layer perceptron (SLP)
	Multilayer perceptron

	Illustrative Example: One-Dimensional Data Fitting

	Artificial neural network-based solution scheme
	Artificial neural network-based solution scheme
	Representative numerical examples
	One-dimensional homogenization of a laminate
	Two-dimensional spherical inclusion
	Two-dimensional real microstructure example
	Three-dimensional spherical inclusion


	Conclusion and outlook
	Bibliography


