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ISBN 978-3-937399-59-1 (D 93 Stuttgart)



für Annika, Leonor und Ava





Danksagung

Die wissenschaftliche Arbeit an meiner Promotion habe ich im Dezember 2015 am Institut
für Mechanik bei Prof. Dr.-Ing. Christian Miehe begonnen. Seine fachliche Begeisterung
sowie Kompetenzen habe mich dazu bewogen, diesen Schritt zu gehen. Dafür möchte ich
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Zeit möchte ich allen Beteiligten danken. Hervorzuheben hierbei ist Steffen Mauthe, der
mich schon bei der Bachelor- und Masterarbeit unterstützt hat. Des Weiteren möchte
ich mich bei Stephan Teichtmeister und Matthias Rambausek für die tollen fachlichen
und linux-bezogen Diskussionen bedanken. Mit meinem Studien- sowie Bürokollegen Felix
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Abstract

Over the last decades the initiation and growth of fracture in materials was subject of
intensive research in the field of continuum mechanics. Thereby the focus was to under-
stand the ongoing processes and predict the initiation as well as the growth of fracture.
To do so mathematical formulations in form of partial differential equations have been
proposed. The research started with the investigation of fracture in linear elastic mate-
rials. Here the material behaviour before the fracture initiation is well known and does
not need any special treatment when it comes to modeling. One of the reasons for the
difficulty in modeling of fracture stems from the non–smooth nature of the cracked ar-
eas, since the mathematical description of a continuum is based on smooth functions. In
literature several techniques are applied to overcome this issue, such as extended finite
element method (XFEM), discrete fracture model or phase-field approach.

The know-how gained from the modeling of fracture in elastic materials was soon
applied to multi-field problems such as in elastic-plastic, electro-mechanical, magneto-
mechanical, chemo-mechanical or hydro-mechanical solids. In these materials a coupling
between the deformation and the additionally introduced physical aspect takes place. This
causes the initiation and propagation of fracture. The multi-field problems demand an
efficient numerical analysis due to the increase of unknowns which have to be determined.

The overall goal of the described research is the reduction or replacement of physical
experiments in the production or development process of new parts, materials or tech-
niques. For example modeling of chemo-electro-mechanical fracturing might be used to
make electric cars more crash resistant and even cheaper. Another example could be the
application of a hydro-mechanical fracture model in the development of hydraulic frac-
turing techniques. Thereby it could help to weigh the risks and the potential of this new
method.

In order to propose and design new model formulations which incorporate the desired
phenomena the basic concepts of continuum mechanics and thermodynamics are used as
a methodical basis. These concepts incorporate the mathematical description of motion
and deformation of a body, as well as the definition of mechanical stress and thermal flux
and the derivation of physical balance laws. Although this general framework is sketched
in this work for pure thermo-mechanical two-component systems it can be extended to-
wards additional physical effects in a straightforward manner. The behaviour of a specific
material type is then specified by constitutive functions which are constructed in such a
way that they obey certain modeling principles. In a second step the designed mathemat-
ical description of the problem can be transferred into a variational formulation which
then can be used for the derivation of a numerical treatment. Thereby the geometry of
the desired domain together with the fields of the unknowns (displacement, etc.) are
discretized by the means of the finite-element method. This finally yields to a range of
systems of linear equations which then can be solved by an appropriate solution scheme.

In the presented work the above mentioned process of model conception and numerical
treatment is used for ductile fracture in porous metals, fracturing in frictional ductile
materials and frictional ductile materials at hydraulic fracture. The obtained research
results are given in terms of three attached scientific articles. In the first article the
phase-field modeling of fracture in isotropic porous solids is formulated in a variational
framework. The porous solid can thereby undergo large elastic-plastic deformations. The

i



ii Abstract

crack is described by the phase-field approach to fracture which regularizes sharp crack
surfaces in a pure continuum setting. It originates both from gradient damage modeling
and fracture mechanics. The plastic deformations are characterized by a model for porous
plasticity which incorporates the evolution of the void fraction by means of a simple growth
law. It is linked to a gradient plasticity formulation. The fracture phase field is driven by
the local elastic-plastic work density on which the failure criterion is based on.

With this formulation it is possible to model classical ductile failure problems such as
cup-cone failure surfaces. Therefor two material parameters are sufficient to describe the
failure behaviour. These parameters are the critical work density and the shape parameter.
While the first one specifies the onset of damage the second one controls the growth of
the postcritical damage until the final rupture. In order to model damage zones to be
inside of plastic zones or vice versa, two length scales are introduced. One controls the
regularization of the plastic response and the other the regularization of the damage zone.

The second article presents a model for ductile fracture in frictional materials. It
is based on the already mentioned phase-field approach to fracture. Combining a non-
associative Drucker-Prager-type elastic-plastic constitutive formulation with the evolution
equation for the crack phase-field yields a failure criterion in terms of an elastic-plastic
energy density. Due to the non-associative formulation of the Drucker-Prager-type yield
function for frictional materials, the model is not formulated within the variational frame-
work. However it still follows similar concepts. The model accounts for large elastic-plastic
deformations of the material. The hardening behaviour of the frictional material such as
soil is characterized by an isotropic hardening mechanism. It is capable to capture both
friction and cohesion hardening. A modified enhanced element formulation is used for the
numerical treatment. Hereby it guarantees a locking- and hourglass-free response.

In the last scientific article a model for hydraulically induced fracturing of elastic-
plastic solids is proposed. It is formulated within a variational framework yielding a global
minimization structure. Again the phase-field approach to fracture is deployed here. It
is combined with an associative Drucker–Prager-type yield-criterion function. Thereby
this yield-criterion function characterizes the plastic deformations of the full fluid-solid
mixture. The elastic fluid storage and the fluid transport within the porous medium are
governed by a Darcy–Biot–type material description. The flow within the fractures is
characterized by an increase of the permeability in crack direction yielding a Poiseuille–
type flow. Similarly to the mechanical strain the fluid storage decomposes into an elastic
and plastic part. The elasto-plastic deformations are limited to the infinitesimal strain
regime. Due to the global minimization structure a H(div)-conforming finite-element
formulation is chosen. Locking phenomena originating from the plastic evolution are
eliminated by using a enhanced-assumed-strain formulation additionally.



Zusammenfassung

In den letzten Jahrzehnten war die Entstehung und das Wachstum von Brüchen in
Materialien Gegenstand intensiver Forschung in der Kontinuumsmechanik. Der Schwer-
punkt lag dabei auf dem Verständnis der zugrundeliegenden Prozesse und der Vorhersa-
ge des Bruchanfangs sowie des Bruchwachstums. Zu diesem Zweck wurden mathemati-
sche Formulierungen in Form von partiellen Differentialgleichungen entwickelt. Es wurden
zunächst Brüche in linear elastischen Materialien untersucht. Bei diesen Materialien ist
das Materialverhalten vor der Bruchinitiierung bekannt und bedarf keiner besonderen
Behandlung bei der Modellierung. Einer der Gründe für die Schwierigkeiten bei der Mo-
dellierung des Bruchs liegt in der nicht glatten Beschaffenheit der gerissenen Bereiche,
da die mathematische Beschreibung eines Kontinuums auf glatten Funktionen beruht. In
der Literatur werden verschiedene Techniken angewandt, um dieses Problem zu lösen, wie
z.B. die erweiterte Finite-Elemente-Methode (XFEM), das diskrete Bruchmodell oder der
Phasenfeldansatz.

Das aus der Modellierung des Bruchs in elastischen Materialien gewonnene Know-how
wurde bald auf Mehrfeldprobleme wie z.B. in elastisch-plastischen, elektro-mechanischen,
magneto-mechanischen, chemo-mechanischen oder hydro-mechanischen Festkörpern an-
gewandt. In diesen Materialien findet eine Kopplung zwischen der Verformung und dem
zusätzlich eingebrachten physikalischen Aspekt statt. Dies bewirkt die Initiierung und
Ausbreitung des Bruchs. Die Mehrfeldprobleme erfordern aufgrund der Zunahme der zu
bestimmenden Unbekannten eine effiziente numerische Analyse.

Das Ziel der beschriebenen Forschung ist die Reduzierung oder der Ersatz von phy-
sikalischen Experimenten im Produktions- oder Entwicklungsprozess von neuen Kompo-
nenten, Materialien oder Techniken. Beispielsweise könnte die Modellierung von chemo-
elektro-mechanischen Rissen genutzt werden, um Elektroautos unfallsicherer und sogar
günstiger zu machen. Ein weiteres Beispiel könnte die Anwendung eines hydro-mechani-
schen Bruchmodells bei der Entwicklung hydraulischer Bruchtechniken (Hydraulic Frac-
turing) sein. Dabei könnte das hydro-mechanischen Bruchmodell helfen, die Risiken und
das Potenzial dieser neuen hydraulischen Bruchtechniken abzuwägen.

Um neue Modellformulierungen zu entwerfen, welche die gewünschten Phänomene ein-
beziehen, werden die Grundkonzepte der Kontinuumsmechanik und Thermodynamik als
methodische Grundlage verwendet. Diese Konzepte beinhalten die mathematische Be-
schreibung von Bewegung und Verformung eines Körpers sowie die Definition von mecha-
nischer Spannung und Wärmefluss und die Herleitung von physikalischen Gesetzen für das
mechanische Gleichgewicht. Obwohl dieser allgemeine Rahmen in dieser Arbeit für rein
thermo-mechanische Zweikomponentensysteme skizziert wird, kann er auf einfache Weise
auf zusätzliche physikalische Effekte erweitert werden. Das Verhalten eines bestimmten
Materialtyps wird dann durch konstitutive Funktionen spezifiziert, die so konstruiert sind,
dass sie bestimmten Modellierungsprinzipien gehorchen. In einem zweiten Schritt kann
die entworfene mathematische Beschreibung des Problems in eine Variationsformulierung
überführt werden, die dann zur Ableitung einer numerischen Implementierung verwen-
det werden kann. Dabei wird die Geometrie der gewünschten Probe zusammen mit den
Feldern der Unbekannten (Verschiebung, etc.) mit Hilfe der Finite-Elemente-Methode dis-
kretisiert. Daraus ergibt sich schließlich eine Reihe von linearen Gleichungssystemen, die
dann durch ein geeignetes numerisches Lösungsverfahren gelöst werden können.

iii



iv Zusammenfassung

In der vorliegenden Arbeit wird der oben erwähnte Prozess der Modellkonzeption und
numerischen Implementierung für duktilen Bruch in porösen Metallen, Duktilbruch in gra-
nularen Materialien und granulare Materialien mit hydraulischem Duktilbruch verwendet.
Die erzielten Forschungsergebnisse werden in Form von drei beigefügten wissenschaftlichen
Artikeln dargestellt. Im ersten Artikel wird die Phasenfeldmodellierung des Bruchs in iso-
tropen porösen Festkörpern im variationellen Kontext formuliert. Der poröse Festkörper
kann dabei große elastisch-plastische Verformungen erfahren. Der Riss wird durch den
Phasenfeldansatz für Bruch beschrieben, wobei scharfe Rissflächen für eine Kontiuums-
darstellung regularisiert werden. Die Phasenfeldformulierung hat ihre Wurzeln sowohl bei
der Gradientenschädigungsmodellierung als auch in der Bruchmechanik. Die plastischen
Verformungen werden durch ein Modell für poröse Plastizität charakterisiert, das die
Entwicklung des Hohlraumanteils mittels eines einfachen Wachstumsgesetzes einbezieht.
Es ist mit einer Gradientenplastizitätsformulierung verknüpft. Das Bruchphasenfeld wird
durch die lokale elastisch-plastische Arbeitsdichte getrieben, auf welcher das Versagens-
kriterium beruht.

Mit dieser Formulierung ist es möglich, klassische duktile Versagensprobleme zu mo-
dellieren, wie z.B. sogennate Cup-Cone-Brüche. Hierfür werde zwei Materialparameter
eingeführt, welche das Versagensverhalten beschreiben. Diese Parameter sind die kritische
Arbeitsdichte und der Formparameter. Während der erste den Schädigungsbeginn spezifi-
ziert, steuert der zweite das Wachstum der postkritischen Schädigung bis zum endgültigen
Bruch. Um Schadenszonen so zu modellieren, dass sie innerhalb von plastischen Zonen
liegen und umgekehrt, werden zwei Längenskalen eingeführt. Eine steuert die Regularisie-
rung der plastischen Verformung und die andere die Regularisierung der Schädigungszone.

Der zweite Artikel stellt ein Modell für duktilen Bruch in granularen Materialien vor.
Es basiert auf dem bereits erwähnten Phasenfeldansatz für den Bruch. Die Kombina-
tion einer nicht-assoziativen elastisch-plastischen konstitutiven Formulierung basierend
auf dem Drucker-Prager-Modell mit der Evolutionsgleichung für das Riss-Phasenfeld er-
gibt ein Versagenskriterium in Form einer elastisch-plastischen Energiedichte. Aufgrund
der nicht-assoziativen Formulierung der Fließfunktion vom Typ Drucker-Prager für gra-
nulare Materialien wird das Modell nicht im variationellen Rahmen formuliert. Es folgt
jedoch ähnlichen Konzepten. Das Modell berücksichtigt große elastisch-plastische Ver-
formungen des Materials. Das Verfestigungsverhalten des granularen Materials, wie z.B.
Boden, ist durch einen isotropen Verfestigungsmechanismus gekennzeichnet. Er ist in der
Lage, sowohl Reibungs- als auch Kohäsionsverfestigung zu erfassen. Für die numerische
Behandlung wird eine modifizierte verbesserte Elementformulierung (enhanced element)
verwendet. Dies garantiert ein

”
locking“- und

”
hourglass“-freies Verhalten.

Im letzten wissenschaftlichen Artikel wird ein Modell für die hydraulisch induzierte
Rissbildung von elastisch-plastischen Festkörpern entwickelt. Es wird im variationellen
Rahmen formuliert, wodurch sich eine globale Minimierungsstruktur ergibt. Auch hier
wird wieder der Phasenfeldansatz für Risse eingesetzt. Er wird mit einer assoziativen
Fließkriteriumsfunktion vom Typ Drucker-Prager kombiniert. Dabei charakterisiert diese
Fließkriteriumsfunktion die plastischen Verformungen des vollständigen Fluid-Feststoff-
Gemisches. Die elastische Flüssigkeitsspeicherung und der Flüssigkeitstransport inner-
halb des porösen Mediums werden durch eine Darcy–Biot-artige Materialbeschreibung
bestimmt. Die Strömung innerhalb der Risse ist durch eine Erhöhung der Permeabi-
lität in Rissrichtung gekennzeichnet, wodurch eine Poiseuille-artige Strömung entsteht.



Zusammenfassung v

Ähnlich wie bei der mechanischen Verzerrung zerfällt die Flüssigkeitsspeicherung in einen
elastischen und plastischen Teil. Die elasto-plastischen Verformungen sind auf das infi-
nitesimale Dehnungsregime begrenzt. Aufgrund der globalen Minimierungsstruktur wird
eine H(div)-konforme Finite-Elemente-Formulierung gewählt.

”
Locking“-phänomene, die

von der plastischen Evolution herrühren, werden durch die zusätzliche Verwendung einer

”
enhanced-assumed-strain“-Formulierung eliminiert.





Chapter 1

Introduction

The main objective of computational mechanics is to reduce physical experiments in
the production and development process of new parts, materials and techniques. The
basic idea is to apply the principles of continuum mechanics and thermodynamics to
describe physical phenomena of interest. The mathematical description developed then
enables numerical implementations. Knowledge of mechanics, applied mathematics, and
computer science is required to achieve a robust implementation of the desired model that
provides physically sound simulation results.

This reduction in physical experiments results from the desire to save time and money
in the development process. In order to validate the models underlying the numerical
simulation, benchmark tests are performed on the basis of the experimentally obtained
data. But there is another reason for the growing interest in simulations. This interest
in simulations is fueled by today’s dramatic increase in computing power, which enables
very fast and efficient simulations. As a result, interest in simulations has long ceased to
be just a part of academic research. This is also reflected in the visions of Industry 4.0
and digital twins, which require robust and physically sound simulation models.

Examples of these models, which are part of intensive research, are multi-field problems
characterized by elastic-plastic deformation, fracture mechanics and poro-hydro-elasticity.
Models describing such applications can be used for the simulation of, for example, tension
tests, deformations appearing within crash tests or deep drawing. Another usage can be
found in the simulation of the initiation and growth of fracture patterns. A real world
example for a model of poro-hydro-plasticity can be found in footsteps in the sand. An
illustration of the mentioned examples is given in Figure 1.1.

From a technical point of view, the models in the framework of computational me-
chanics are derived from physical equilibrium laws that yield partial differential equations.
This mathematical description of the problem is solved by a suitable numerical solution
procedure. Here, a distinction can be made between numerical solution methods, finite

1
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[1] [2] [3]

Figure 1.1: Visualization of real world examples for models in the field of continuum mechanics.
On the left a tension test of a metal rod is shown. In the middle an example of fracture growth
is depicted. The right most picture shows footsteps in sand as a real world example of poro-
hydro-plasticity.

element solvers (in context of the finite element method) or finite element design.

This work is embedded in the field of continuum mechanics. Its central theme is the
modeling of fracture initiation and growth in different types of materials such as elastic-
plastic material and elastic-plastic porous media. Fracture itself is described based on a
phase field approach. This is one of the modeling techniques used in fracture mechanics.
It has gained great popularity in the last decade due to its robustness and the possibility
of extending it to other physical phenomena, e.g. elastic-plastic material or hydraulic
coupling. A general overview of the underlying theory of damage and fracture mechanics
can be found in Section 1.1.1.

Furthermore the main focus of this work is the extension of phase-field fracture to-
wards multiphysics problems. Thereby following multiphysics problems are considered:
i) fracture driven by elastic-plastic deformations and ii) hydraulically induced fracture in
porous-elastic-plastic materials.

An overview about the underlying theory of these problems is given in Section 1.1.2
and Section 1.1.3. In the next section the research results presented in this work are
embedded into the state of the art.

1.1. Motivation and State of the Art

The occurrence and growth of fractures happens in everyday life. Often people don’t
take much notice of it, but in some situations it really is a matter of life and death
(e.g. in the failure of large structures, buildings, ships, or airplanes). At first glance, the
fracture process does not seem particularly complicated - a object simply breaks into two
or more pieces. However, if one describes the fracture initiation and even the fracture
growth mathematically, things get more complicated. In the context of the finite element
method, the complication arises from the desire to describe a discontinuous process with
a continuous formulation.

[1]g2mtlabs.com/metallurgical-consulting/mechanical-testing-mechanical-properties-assessment
[2]metallurgyfordummies.com/fracture-mechanics-concepts.html
[3]comsol.com/blogs/poroelasticity-in-sand
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Modeling of fracture in continuum mechanics is driven by the aim to know under which
loading a mechanical part or construction will fail. The field of fracture mechanics was
established by Griffith 1920. This work was published during World War I and the goal
was to understand the failure of metallic machine parts.[4] In the beginning the fracturing
of brittle materials was investigated. Due to various modifications and extensions the field
of fracture mechanics has grown considering the size of the scientific community working
on that field.

In the last decades the modeling of fracture was applied on coupled problems such
as elastic-plastic deformations yielding a ductile fracture propagation or the extension
towards hydraulically induced fractures. But not only the constitutive material modeling
of fracture was further improved but also the numerical treatment of the differential
equations describing the deformation and fracturing process have been investigated.

There are various fracture modeling techniques and formulations, such as stress in-
tensity factor, J-integral, extended finite element method, discrete fracture model and
phase-field approach. As already mentioned before, this work considers the modeling of
fracture based on a phase-field approach with the focus on the extension towards multi-
physics problems. In what follows an overview about fracture mechanics, elastic-plastic
deformations coupled with fracture mechanics and hydraulically induced fractures is given.

1.1.1. Damage and Fracture Mechanics

At the beginning of the 20th century people experienced failure of large structures such as
ships or aircrafts. These failures often arose by cracks in the metallic structure. This ob-
servation fueled the interest in the research of damage and fracture mechanics. Figure 1.2
shows three different historical disasters initiated by cracks.

In the context of continuum mechanics the modeling of failure can be achieved by
different approaches. Two approaches are shortly discussed here. While in damage me-
chanics a strain softening behavior arising from damage processes on the micro level of
the material is considered, the geometric discontinuity on the macro level originating from
the fracture development is taken into account in fracture mechanics.

[5] [6] [7]

Figure 1.2: Three different historical disasters initiated by cracks. On the left the Boston
Molasses Disaster from 1919 where a large tank burst is shown. In the middle a picture of the
hull fracture of the SS Schenectady from 1943 is given. On the right a crack in the hull of a de
Havilland Comet aircraft is shown. This failure led to several plane crashes in the 1950s.

[4]doi.org/10.1093/oso/9780198851875.003.0012
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For fundamental works on damage mechanics see for example Chaboche 1981, 1988,
Lemaitre 1984, Kachanov 1986, Belytschko et al. 1988, and Simo and Ju 1987a,b. Hereby
a variable defined as the fraction of the broken and the total surface in the body is used
to describe the damage process. This yields a local theory with problems with respect
to the numerical implementation. By additionally using also the gradient of the damage
variable one arrives at the gradient damage models as for example done by Peerlings et al.
1996, Frémond and Nedjar 1996 and Comi 1999. The additionally introduced gradient
of the damage variable comes along with a damage length scale. This supplementary
material parameter controls the size of the localization zone of the damage area and can
be obtained from macroscopic experiments.

On the other hand fracture mechanics considers the macroscopic crack with its ge-
ometrical discontinuity. The field of fracture mechanics was initiated by Griffith 1920,
1924. It was extended towards ductile materials based on the introduction of a plastic
dissipation due to crack growth by Irwin 1957, 1958. Furthermore the latter contributions
introduced the stress intensity factor. A variational formulation of brittle fracture was
introduced by Francfort and Marigo 1998. This formulation is based on Griffith’s ener-
getic approach and introduces the crack surface itself as unknown. Hereby the solution
of the problem can be found based on operations adapted from image segmentation by
Mumford and Shah 1989.

The above-mentioned variational formulation was further made feasible in terms of the
numerical treatment by Bourdin et al. 2008, where a regularization of the crack surface was
introduced. This is based on a so-called phase-field variable which also can be considered
as a damage variable. Similar considerations of the regularization can be also found in
Ambrosio and Tortorelli 1990. An approach of a viscous regularization of the Ginzburg-
Landau evolution equation leads to a similar formulation. It can be found in Hakim and
Karma 2009 and Kuhn and Müller 2010. Furthermore, the works Miehe et al. 2010 and
Pham et al. 2011 use gradient damage models to regularize the description of Griffith-type
brittle fracture.

Such models that use a phase-field variable to regularize the sharp crack discontinuity
are considered as phase-field approach to fracture. The underlying mathematical structure
of these formulations is similar to the structure of gradient damage models. However
the starting point of the derivation of the phase-field approach to fracture is on the
macroscopic level. Therefore its physical interpretation differs from the gradient damage
models, see de Borst and Verhoosel 2016.

1.1.2. Elastic-Plastic Deformations and Ductile Fracture

The field of plasticity, or elastic-plastic deformations of metals, goes back to Tresca 1864
who conducted experiments on metals and introduced the yield criterion named after
him.[8] The main idea of plastic or non-recoverable deformations is to limit the mechanical

[5]en.wikipedia.org/wiki/Great Molasses Flood
[6]en.wikipedia.org/wiki/SS Schenectady
[7]extremetech.com/extreme/129764-tech-wrecks-lessons-from-some-of-the-biggest-hardware-screw-ups/3
[8]doi.org/10.1007/978-3-662-53605-6 281-1
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stress in the body by an elastic domain. This domain is characterized by a yield criterion
function. Various yield criteria have been introduced. A smooth version of Tresca’s yield
criterion was introduced by von Mises 1913. The Tresca and von-Mises yield criterion are
the classical yield criteria used in metal plasticity. The plastic deformations of frictional
materials, e.g. soil, can be described by the yield criterion of Coulomb 1776, where the
model introduced by Drucker and Prager 1952 is a smooth approximation of it. A general
framework combing the many fundamental considerations of the theory of plasticity can
be found in Hill 1950.

More advanced plasticity models for metals incorporate micro-mechanical mechanisms
based on micro voids. They are derived by analytical homogenization techniques yielding
a macroscopic constitutive formulation, see for example Rice and Tracey 1969 and Gurson
1975. A further enhancement of these models can be found in Needleman and Tvergaard
1984 and Rousselier 1987. Other models for porous plasticity in metals including the effect
of micro voids can be found for example in Suquet 1992, Ponte Castañeda and Zaidman
1994 and Leblond et al. 1994.

Another group of formulations for plastic deformations is related to frictional or granu-
lar materials. Some examples of these types of material are sand, soil, coal, grains, cereal,
pharmaceutical powders, etc. Here the mechanical properties of the conglomeration are
governed by the friction between the particles which is strongly effected by the moisture.
Models for plastic deformations of such frictional materials can be found in Drucker and
Prager 1952, Zienkiewicz et al. 1975, Vermeer and de Borst 1984, de Boer 1988, Simo and
Meschke 1993 and Ehlers 1995. The numerical robustness of formulations based on the
model of Drucker and Prager 1952 is not always guaranteed. This arises from a singularity
of the formulation under tensile stress conditions. One way to overcome this issue is to
smooth out this singularity based on a constant perturbation-type parameter, see Abbo
and Sloan 1995 or Lambrecht and Miehe 1999, 2001.

Combining the plastic deformations and the process of damage or fracture yields to
the phenomenon of ductile fracture. Hereby the macroscopic fracturing process is driven
by extensive plastic deformations. The elastic-plastic deformation mechanism yields to a
growth of micro-cracks, which ends up as macro-cracks. These finally degrade the global
stiffness of the structure. The fracturing process goes on until the critical state where
rupture occurs.

Pure phenomenological models for ductile fracture based on a micro-mechanical ap-
proach can be found for example in Johnson and Cook 1985, Lemaitre 1985, Lemaitre
and Chaboche 1990, Besson 2010 and Li et al. 2011. The latter works combine models
for local plasticity and local damage. Regarding the numerical implementation using the
finite element method, this yields a strongly mesh dependent formulation both in the
plastic response in case of softening as well as in the damage response.

A first step towards a mesh independent formulation is the coupling of local plasticity
with gradient-damage models, see for example de Borst et al. 1999, Nedjar 2001 and
Reusch et al. 2003. Other works combine gradient-damage-type phase-field models of
fracture with a local plasticity model, such as Duda et al. 2015, who proposed a model
where the initiation and propagation of fracture is formulated in the sense of brittle
fracture in elastic-plastic materials. In addition Alessi et al. 2015 and Miehe et al. 2015a
use the sum of the elastic and plastic energy in the fracture driving force and therefore
account for a transition from brittle to ductile fracture. Furthermore the latter two models
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are based on variational principles. By incorporating a characteristic degradation function
in terms of the amount of plastic deformation ductile fracture is modeled by Ambati et al.
2015. An experimental verification can found in Ambati et al. 2016.

In order to have mesh independent formulation in both the plastic as well as in the
damage response, a non-local concept has to be used also for the plasticity model. The
non-local concept can be found in a gradient-plasticity formulation, see for example Aslan
et al. 2011, Dimitrijevic and Hackl 2011, Saanouni and Hamed 2013 and Miehe et al. 2015a.
Despite the mesh independence the introduction of a length scale for both the plastic as
well as the damage zone has another advantage. It can be ensured that the fracture zone
is inside the plastic zone yielding a physically more sound overall behavior.

[9] [10]

Figure 1.3: The so-called cup-cone failure occurs in ductile metals under uniaxial loading. The
failure mode is named after the shape of the fracture surface. It originates from growth of micro
voids in the metal. On the left a cup-cone failure from a tension test is shown. The right shows
the numerical simulation results of such a tension test, see Chapter 4 or Miehe et al. 2016. Here
the red color indicates the fracture surface.

Within the above-mentioned context two publications are attached in this work. They
are directly related to the modeling of ductile fracture based on the phase-field approach.
In Chapter 4 a scientific article about porous plasticity at fracture is given. It considers:

• A plasticity formulation in the context of the finite strain theory. Here a multiplica-
tive decomposition of the deformation into an elastic and a plastic part is used.

• A micromorphic regularization of gradient plasticity using an additional material
parameter as an internal length scale. It controls the size of the plastic zone.

• A Gurson-type yield function for porous plasticity in metals considering the growth
of micro voids. The growth law is formulated in terms of the total volume change.

• A global variational minimization principle combined with a general return mapping
scheme for plasticity. The latter is formulated in the spectral space.

With this formulation at hand it is possible to simulate the formation of a so-called
cup-cone failure. This failure is characterized by the shape of the fracture surface. It

[9]usna.edu/NAOE/ files/documents/Courses/EN380/Course Notes/Ch11 Fracture.pdf
[10]doi.org/10.1016/j.cma.2016.09.028



Chapter 1. Introduction 7

typically appears during uniaxial loading of metal rods. An experimental as well as a
numerical result of such a test can be found in Figure 1.3. The detailed discussion of the
underlying model and the simulation is given in Chapter 4.

The publication given in Chapter 5 combines a plasticity formulation for frictional
materials with the phase-field approach to fracture. Thereby it considers frictional ductile
materials at fracture with the focus on:

• A plasticity formulation in the context of the finite strain theory. Here a multiplica-
tive decomposition of the deformation into an elastic and a plastic part is used.

• A non-associativeDrucker–Prager-type yield criterion describing frictional materials
with a regularization to overcome the singularity under tensile stress conditions.

• An incorporation of an isotropic hardening mechanism. This mechanism can distin-
guish between cohesive dominated hardening and frictional dominated hardening.

• A suitable and robust finite element formulation. The formulation is proven to
guarantee a locking- as well as an hourglass-free response.

Scenarios such as compression of a clay column leading to a shear band formation can
be simulated by such a model. The experimental as well as the numerical result of such
a scenario is shown in Figure 1.4. The underlying model, the numerical simulation and
other scenarios are discussed in Chapter 5.

[11] [12]

Figure 1.4: Not only metals undergo elastic-plastic deformations, but also the deformation
of frictional or granular materials such as soil or clay can be considered to be elastic-plastic.
The left picture shows a compression test of a clay column. On the right the simulation results
corresponding to such a test can be seen. The model for the simulation is discussed in Chapter 5
or in Kienle et al. 2019. Here the colors indicate the level of the fracture phase-field variable.
Areas where the fracture occurs are colored in white.

1.1.3. Fracture with Hydro–Mechanical Coupling

In order to model hydraulic fracturing in elastic or plastic media it is necessary to de-
scribe the mechanical deformation of the underlying porous medium. Furthermore the

[11]doi.org/10.1016/S0020-7683(02)00177-4
[12]doi.org/10.1016/j.ijsolstr.2019.02.006
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interaction between the fluid and the solid matrix has to be characterized. There are
two main approaches to do so. On the one hand there is the so-called Theory of Porous
Media (TPM) with individual balance laws for each phase within the porous medium,
see for example Bluhm and de Boer 1997, de Boer 2000 and Ehlers 2002. On the other
hand there is the framework considered as Biot’s theory of consolidation, see Terzaghi
1925, Biot 1941, Bear 1972 and Detournay and Cheng 1993. Within the latter framework
combined balance laws characterizing the fluid-solid mixture of the porous medium are
considered.

Next to the mechanical deformations the fluid flow has to be described. The fluid
flow within a porous medium can be modeled by the law of Darcy 1856. It was derived
based on experimental observations but can also be obtained via homogenization of the
Navier–Stokes equations, see Whitaker 1986. Darcy’s law gives the relation of the fluid
flux and the pressure differences in terms of the permeability of the porous medium.

The modeling of fracturing in porous media can be achieved by the coupling of the
mechanical description of the porous medium and the phase-field approach to fracture. In
Ehlers and Luo 2017, Heider and Markert 2017 and Ehlers and Luo 2018 the phase-field
approach to fracture is embedded in the TPM. On the other hand in Mikelić et al. 2015a,
Mikelić et al. 2015b, Mikelić et al. 2015c, Miehe et al. 2015b, Wilson and Landis 2016,
Wu and Lorenzis 2016, Mauthe and Miehe 2017 and Cajuhi et al. 2018, Biot’s theory
of consolidation is combined with the phase-field approach to fracture. A comparison
of the phase-field models for hydraulic fracturing with analytical solutions obtained by
Sneddon and Lowengrub 1969 can be found in Bourdin et al. 2012, Wilson and Landis
2016, Mauthe 2017, Santillán et al. 2017 and Chukwudozie et al. 2019 .

Besides the description of hydraulic fracturing based on the phase-field approach to
fracture there exists a number of alternative formulations. In Adachi et al. 2007 a review of
so-called planar hydraulic fracturing models is given. These reviewed models are rooted in
linear elastic fracture mechanics. A treatment based on the formulation of the boundary
element method is considered in Castonguay et al. 2013. Furthermore, the model in
Damjanac et al. 2010 is based on the discrete element method. Additionally, the extended
or generalized finite element method is another established method for the description of
cracks. For applications to porous media, see Dahi-Taleghani and Olson 2011, Gupta and
Duarte 2014, Gordeliy and Peirce 2013a,b and Shauer and Duarte 2019.

Special care has to be taken for the fluid flow in porous media at fracture, since the
flow in the fractured areas is higher than in the surrounding porous medium. This can be
achieved by introducing terms in the governing equations for the fluid phase which depend
on the phase-field variable. It allows then an interpolation between the flow described by
Darcy’s law within the porous medium and the flow characterized by the Navier–Stokes
equations within fractures, see for example Ehlers and Luo 2017; Ehlers and Luo 2018.
Another approach to model the flow is an interpolation of the permeability in Darcy’s
law between the intact porous medium and the fracture. Hereby the permeability in the
fracture is obtained by averaging the fluid volume flux described by the Navier–Stokes
equations over the fracture width. This procedure is often referred to as parallel plate
concept or cubic law and yields a Poiseuille–type flow within the cracks. The resulting
permeability inside the fracture is then a function of the fracture width, see for example
Miehe et al. 2015b.

Furthermore, special treatment is related to the numerical treatment of pours media
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characterized by a porous-elastic constitutive material law. A common approach is to
introduce the displacement field and the fluid pressure as unknown fields. This leads to
a global saddle-point problem. In a finite-element context the so called Babuška-Brezzi-
Ladyzhenskaya condition (BBL or inf-sup condition) has to be fulfilled, see Babuška 1973;
Brezzi 1974. In Miehe et al. 2015b a formulation in terms of the displacement field and
the fluid flux as unknown fields is proposed. This yields a global minimization problem
which is a priori stable and not related by the BBL condition. However a conforming finite
element formulation demands a special finite element design such as H(div)-conforming
Raviart-Thomas elements, see Raviart and Thomas 1977. A general overview of the nu-
merical treatment of poro-elasticity in the finite-element context is given by Teichtmeister
et al. 2019.

The above-mentioned works on fracturing in porous media are all considering a solid
matrix undergoing pure elastic deformations. Johnson and Cleary 1991 concluded from
experimental observations that a formulation only accounting for elastic deformations is
not sufficient to describe the associated processes. In order to overcome this insufficiency a
coupled model of elastic and plastic deformations combined with the phase-field approach
to fracture can be considered. Such models have been suggested by Pise et al. 2019 and
Aldakheel et al. 2020, while the latter one is based on Biot’s theory and the former one
on TPM. However both miss an underlying variational structure. They incorporate a
Drucker–Prager-type yield criterion function, see Drucker and Prager 1952, formulated
in terms of the effective stress acting on the solid matrix in contrast to a formulation in
terms of the total stress.

Embedded in this aforementioned context the scientific article in Chapter 6 combines
a description of an elastic-plastic porous medium with the phase-field approach to frac-
ture. Thus it describes frictional ductile materials at hydraulically induced fracture and
considers:

• A variational framework for porous-elastic-plastic solids at fracture yielding a global
minimization structure with a general return mapping scheme for plasticity.

• A Darcy–Biot-type formulation describing the solid deformation and the fluid trans-
port in the porous medium. Hereby a Poiseuille–type flow within the cracks is used.

• A decomposition of the fluid content into a contribution due to elastic as well as
plastic deformations. Here the change of plastic fluid content is irreversible.

• A Drucker–Prager-type yield criterion function for the full fluid-solid mixture in
terms of the fluid pressure and the total stress acting on the mixture.

The model discussed in Chapter 6 is capable of describing fracking processes in a
solid matrix undergoing elastic and plastic deformations. Thereby a formulation of poro-
hydro-elasticity is combined with a model for plasticity in frictional materials. A graphical
visualization of these effects as well as of a fracking process can be found in Figure 1.5

[13]motherearthnews.com/nature-and-environment/environmental-policy/
fracking-hydraulic-fracturing-zmgz12fmzrog
[14]irmca.org/image/23/400
[15]doi.org/10.1016/S0020-7683(02)00177-4
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fracking process poro-hydro-elasticity plasticity

[13] [14] [15]

Figure 1.5: The model in Chapter 6 describes fracking processes by combing different descrip-
tions of the deformation of a porous medium. The left shows a graphical visualization of such a
fracking process. In the middle an illustration of poro-hydro-elasticity is given. On the right a
plastic deformation in frictional material is shown.

1.2. Objectives and Overview

In Part I, the underlying methodology of this work is described briefly. The methodology
is thereby thematically decomposed into two chapters. Chapter 2 discusses the basic
concepts of continuum thermo-mechanics in combination with mass transport. In here
the mathematical description of the motion and the deformation is introduced. It is
followed by the definition of the mechanical stress, thermal flux and mass flow. In the
end of Chapter 2 physical balance laws that characterize the deformation and mass flow
of a multicomponent system in context of the large strain theory are postulated.

These physical balance laws are the starting point of Chapter 3 where a general mod-
eling framework for continuum mechanics is outlined. In here the initial boundary value
problem is defined leading to the conclusion that constitutive functions have to be in-
troduced. The constitutive functions close the system of equations. Their construction
underlies certain principles and they define the specific material behavior.

After the discussion of the principles, the general mathematical description of the
deformation and the flow within a two-component system is transferred to a variational
framework. This serves as a basis for the numerical treatment in the last part of Chapter 2.
The discussion of the numerical treatment in the context of the finite element formulation
closes Part I.

The introduced framework is the basis of the corresponding publications for this cumu-
lative dissertation. The three developed publications are given in Part II. At the beginning
of this part all authors, the title, the publishing journal as well as the current status of
the particular article are listed. It is structured as follows:
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• Chapter 4 includes a publication about porous plasticity at fracture entitled

”Phase Field Modeling of Fracture in Porous Plasticity: A Variational
Gradient-Extended Eulerian Framework”.

Miehe, C. , D. Kienle, F. Aldakheel and S. Teichtmeister (2016). In: Computer
Methods in Applied Mechanics and Engineering 312, pp. 3–50.

• Chapter 5 gives a scientific article related to frictional ductile materials at fracture
entitled

”A Finite-Strain Phase-Field Approach to Ductile Failure of Frictional
Materials”.

Kienle, D., F. Aldakheel and M.-A. Keip (2019). In: International Journal of
Solids and Structures 172, pp. 147–162.

• Chapter 6 provides a paper on frictional ductile materials at hydraulic fracture
entitled

”A Variational Minimization Formulation for Hydraulically induced
Fracturing in Elastic-Plastic Solids”.

Kienle, D. and M.-A. Keip (2021). In: International Journal of Fracture, pp. 1–25.





— Part I —

Continuum Mechanics and Modeling
Framework





Chapter 2

Concepts of Continuum Thermo-Mechanics

The present work is embedded in the field of continuum mechanics and thermodynamics.
The basic concepts of this field are presented in this chapter. The framework is motivated
within the finite strain theory and follows the notation of the lectures Miehe 2005, 2006
on advanced mechanics from the Institute of Applied Mechanics at the University of
Stuttgart. In what follows a brief introduction will be given.

Hereby the description of the motion of a body is introduced in Section 2.1. Based
on this description further mappings for geometric quantities can be specified. These
mappings describe how the quantities change under deformation and are considered as
kinematic mappings. With the kinematic mappings at hand deformation tensors can be
defined. After the basic mathematical description of the motion and deformation, stress
measures, thermal flux and mass transport are discussed in Section 2.2. This is then
the basis for the formulation of the physical balance equations in Section 2.3 and 2.4.
They characterize the deformation and flux in a multicomponent system in a mechanical
and thermodynamical way. For more details, see the classical textbooks of Truesdell and
Noll 1965, Biot 1965a, Malvern 1969, Bear 1972, Marsden and Hughes 1983, Bear and
Bachmat 1991, Holzapfel 2000, Coussy 2004 or Gurtin et al. 2010.

2.1. Motion and Kinematics

The starting point of the mechanical and thermodynamical description of the deformation
of a body in a multicomponent system is the definition of the motion and the kinematic
quantities. This is done in the setting of the finite strain theory. The corresponding
considerations for the infinitesimal strain theory can be obtained by a linearization of the
general finite strain theory.

2.1.1. Description of motion

Mathematically, the motion is described on the basis of a material body B as a set of
material points P ∈ B in a region Bt ⊂ R3 in the Euclidean space R3 at the time t ∈ R+.

15
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The configuration Bt of the body B is described by the mapping χt

χt(P ) =

{
B → Bt ⊂ R3

P 7→ x = χt(P ),
(2.1)

which assigns each point P ⊂ B to a place x ⊂ Bt in the Euclidean space R3. For large
strain deformations the motion of the body is described by a set of configurations which
are characterized by the time, see Figure 2.1.

B
P

B0

Bt

χ0 χt

ϕ(X, t)

X ∈ B0
x ∈ Bt

R3

Figure 2.1: The motion of a material body B in Euclidean spaceR3 described by the mappings
χt. The reference configuration B0 ∈ R3 and the current configuration Bt ∈ R3 are considered
as differentiable manifolds. The spatial (Eulerian) coordinates x are linked to the material
(Lagrangian) coordinates X by the deformation map ϕ(X , t). The interested reader is referred
to Marsden and Hughes 1983.

2.1.2. Description of deformations

The non–linear deformations are described by the deformation map ϕ(X, t). It is defined
as

ϕ =

{
B0 × T → R3

(X, t) 7→ x = ϕ(X, t) = χt ◦ χ−1
0 .

(2.2)

The deformation map is a mapping between the Lagrangian B0 and the Eulerian Bt config-
uration. The deformation map is visualized in Figure 2.1. The Lagrangian configuration
is also considered as reference or material configuration while the Eulerian configuration
is also considered as current or spatial configuration.

2.1.3. Velocity and acceleration

Based on the definition of deformation map ϕ(X, t) in (2.2), the material velocity V is
obtained as its first time derivative

V (X, t) :=
d

dt
ϕ(X, t) =

∂

∂t
ϕ(X, t), (2.3)
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and the acceleration A is obtained as its second time derivative

A(X, t) :=
d

dt
V (X, t) =

∂2

∂t2
ϕ(X, t) . (2.4)

Note that the material velocity and acceleration are expressed here in terms of the material
coordinatesX. Despite this dependence, they are vector fields of the spatial configuration,
hence V ∈ Bt and A ∈ Bt. By inserting the inverse of the deformation map ϕ into (2.3)
the spatial velocity is obtained as

v(x, t) := V (ϕ−1(x, t), t) = V ◦ϕ−1(x) =
∂

∂t
x(t) . (2.5)

The spatial acceleration is gained by the time-derivative and the application of the chain
rule. This yields

a(x, t) :=
d

dt
v(x, t) =

∂

∂t
v(x, t) +

∂

∂x
v(x, t) · ∂

∂t
x(t)

=
∂

∂t
v(x, t) +∇xv(x, t) · v(x, t) .

(2.6)

Here the spatial gradient operator∇x(·) := ∂x(·) was introduced. The spatial acceleration
is the sum of a local part and a convective part due to the time dependency of x.

2.1.4. Kinematic mappings

Based on the geometric quantities given by tangent, area and volume, three different
kinematic mappings can be derived. Therefore a curve that is parameterized in the
Lagrangian and Eulerian space is considered.

Deformation gradient. In order to describe the local deformation at a material point
in a body, the most fundamental kinematic quantity, the deformation gradient is intro-
duced. It is given as the gradient of the deformation map with respect to the Lagrangian
coordinate X

F (X, t) := ∇ϕ(X, t) . (2.7)

To avoid interpenetration of matter, the following condition must hold

J := det[F ] > 0 . (2.8)

Under a geometrical view point the deformation gradient can be interpreted as a mapping
for tangent vectors. Consider a curve that is parameterized in the Lagrangian and Eulerian
configuration. The Lagrangian representation of this curve is given by C(θ) ∈ B0 and the
Eulerian representation by c(θ) = ϕ(C(θ), t) ∈ Bt. The argument of that curve is the
variable θ ∈ R. The material and spatial tangents to the curve are T = ∂θC ∈ TXB0 and
t = ∂θc ∈ TxBt. Here TXB0 is the Lagrangian covariant space and TxBt is the Eulerian
covariant space. Deriving the deformation map now with respect to the variable θ yields
a relation between the material and spatial tangent vectors

t =
dc(θ)

dθ
=

dϕ(C(θ))

dθ
= ∇ϕ · dC(θ)

dθ
= FT . (2.9)
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Here the deformation gradient can be identified as mapping of a tangent vector between
the Lagrangian and Eulerian configuration. It can be written as

F :

{
TXB0 → TxBt,
T 7→ t = FT .

(2.10)

B0

B0

B0

Bt

Bt

Bt

FT t

cof[F ]dA da

J
dV dv

X

X

X

x

x

x

Figure 2.2: The kinematic mappings of continuum mechanics map geometric quantities from
the reference B0 into the current configuration Bt. The deformation gradient F is used as
tangent map t = FT . Areas are mapped by the Jacobian and the deformation gradient da =
JF−TdA = cof[F ]dA. Volumes are mapped by the Jacobian dv = JdV .

Normal and area map. To define a normal map and area map, two curves (C1, C2

and c1, c2) are introduced in the Lagrangian and Eulerian configuration. An area element
(dA and da) in the Lagrangian and Eulerian configuration can now be expressed in terms
of the tangents onto the two introduced curves. This yields

da = t1 × t2 = FT 1 × FT 2 = JF−T (T 1 × T 2) = cof[F ]dA , (2.11)

where the cofactor of the deformation gradient is identified as area map. Note that the
areas in here are expressed as vectors. The scalar areas are defined as dA = NdA and
da = nda, where the Lagrangian and Eulerian normalsN ∈ T ∗

XB0 and n ∈ T ∗
xBt onto the

areas are considered. For mapping the normal vectors the determinant of the deformation
map in (2.11) can be neglected since its only preserves the change of the deforming area.
The normal map is given by:

F−T :

{
T ∗
XB0 → T ∗

xBt,
N 7→ n = F−TN .

(2.12)
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Volume map. The volume map is derived by considering three curves and three tangents
in the Lagrangian and Eulerian configuration. Defining a volume element (dV , dv) based
on these tangents yields

dv = t1 · (t2 × t3) = FT 1 · (FT 2 × FT 3) = JdV . (2.13)

Here the determinant of the deformation gradient serves as volume map and is defined by

J :

{
R+ → R+,

dV 7→ dv = detF dV = JdV ,
(2.14)

where dV is a Lagrangian volume element and dv is its Eulerian counterpart. The above
introduced kinematic mappings are illustrated in Figure 2.2.

2.1.5. Deformation and metric tensors

In order to measure the deformation of a body a quantity without any physical units is
used. The starting point for the derivation of such a quantity in the finite strain theory is
the length of a vector T in the Lagrangian covariant space and its Eulerian counterpart
t = FT . The length is considered as the distance of two points.

To determine the length, metric tensors have to be defined. The metric tensors G and
g represent the mapping from the covariant to contravariant space in the Lagrangian and
Eulerian configuration respectively. They are defined as

G :

{
TXB0 → T ∗

XB0,
T 7→N = GT

and g :

{
TxBt → T ∗

xBt,
t 7→ n = gt.

(2.15)

A visualization of these mappings can be found in Figure 2.3.

The length of the covariant vectors T and t is now expressed in terms of the norm
with respect to the corresponding metric tensor:

|T |G =
√
T · (GT ) and |t|g =

√
t · (gt). (2.16)

With the definition of the length of the covariant vectors at hand two different measures
of the deformation can be derived. Setting the length of the Lagrangian covariant vector
to unit length |T |G = 1 the stretch in the direction of T is then obtained as

λ := |t|g =
√

t · (gt) =
√
(FT ) · g(FT ) =

√
TCT = |T |C , (2.17)

where the definition (2.12) was used. Here the right Cauchy-Green deformation tensor C
was introduced as

C := F TgF . (2.18)

It is a rotation-independent deformation tensor which excludes rigid-body rotations and
translations. The procedure of measuring the stretch can be done vice versa by setting
the length of the Eulerian covariant vector to unit length |t|g = 1. Now the inverse stretch
in the direction of t is obtained as

1

λ
:= |T |G =

√
T · (GT ) =

√
(F−1t) ·G(F−1t) =

√
tct = |t|c , (2.19)
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where c is the left Cauchy-Green deformation tensor. It is defined as

c := F−TGF−1 =: b−1. (2.20)

The inverse of the left Cauchy-Green deformation tensor b is considered as Finger tensor.
The left Cauchy-Green deformation is also a rotation-independent deformation tensor
which excludes rigid-body rotations and translations. The right and left Cauchy-Green
deformation tensor represent the Lagrangian and Eulerian counterpart of the Eulerian
and Lagrangian metric. A visualized of this representation is given in Figure 2.3.

F F

F−T F−T

G b = c−1C g

TXB0 TXB0

TxBt TxBt

T ∗
XB0 T ∗

XB0

T ∗
xBt T ∗

xBt

Figure 2.3: Visualization of right Cauchy-Green tensor C, the Eulerian metric g, the La-
grangian metric G, the Finger tensor b . Given are the covariant spaces for the Lagrangian
(TXB0) and Eulerian (TxBt) configuration and the contravariant spaces for the Lagrangian
(T ∗

XB0) and Eulerian (T ∗
xBt) configuration. This representation is adapted from the lecture

note Miehe 2006.

2.2. Fundamental Stress Measures, Thermal Flux and Mass trans-

port

Up to this point, the definition of the motion and the kinematic quantities of a body in
a multicomponent system have been discussed. In order to describe a multicomponent
system in a thermodynamic way one has to introduce the absolute temperature θ(x, t),
its gradient ∇xθ(x, t) and the chemical potential µ(X, t) of a component. Note that the
temperature and its gradient are parameterized by the Eulerian coordinates x. They can
be reparameterized by inserting x = ϕ(X).

For a thermodynamic description of a body the energy which is stored within the body
has to be considered. This stored energy is described by conjugated variables. These
conjugated variables are the deformation and the mechanical stress, the temperature and
the entropy, the temperature gradient and the thermal flux vector, as well as the mass
flow and the chemical potential. In this chapter the definition of the mechanical stress,
the thermal flux vector and the mass flow vector are discussed briefly. Chapter 2.3 then
combines the conjugated variables by formulating physical balance equations.

Applying the method of sections developed by euler yields the mechanical surface
traction t(x, t), the thermal flux q(x, t) and the mass flux h(x, t). They act on the surface
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of a part PBt ⊂ Bt and represent the mechanical, the thermal and the mass transport
effects acting from the part Bt \ PBt onto it. The material representation of the part
PBt is given by PB0 = ϕ−1(PBt) ⊂ B0. The method of sections and the corresponding
quantities are visualized in Figure 2.4. In what follows a relation between the mechanical
traction and mechanical stress, between the thermal flux and thermal flux vector as well
as between the mass flux and the mass flow vector is given.

PB0
PBt

B0
Bt

T̃

N dA

Q, H
tn

q, h

da

ϕ(X, t)

F (X, t)X ∈ B0
x ∈ Bt

Figure 2.4: The method of sections applied in the Lagrangian and the Eulerian configuration.
The mechanical and thermal interactions from the individual parts are represented by the trac-
tion vectors (T̃ , t), the heat flux (Q, q) and the mass flux (H , h). They act on the boundary of
parts PB0 and PBt .

2.2.1. Cauchy’s stress theorem

The mechanical surface traction t(x, t) is given as a linear function of the spatial surface
normal n. This relation is expressed in terms of a second-order tensor field σ(x, t). The
existence of such a tensor field, namely the Cauchy stress, is given by Cauchy’s stress
theorem

t(x, t;n) := σ(x, t)n . (2.21)

The ratio of current force and the current (deformed) area is the physical interpretation
of the Cauchy stress. Since in most numerical applications integrals over the volume and
the area are expressed in the reference configuration, it is convenient to introduce a more
suitable stress measure. Therefore the stress σ is multiplied with the volume map J

τ (x, t) := Jσ(x, t) , (2.22)

where τ is the Kirchhoff stress. Note that σ and τ are symmetric tensors expressed in
the Eulerian configuration giving the following mappings

σ :

{
T ∗
xBt → TxBt,

n 7→ t = σn
and τ :

{
T ∗
xBt → TxBt,

n 7→ Jt = τn .
(2.23)

The stress measure which is used in experimental analyses is often given by the 1st Piola-
Kirchhoff stress P̃ . It relates the current force to the reference area. Hence a Cauchy-like
relation reads

T (X, t;N) := P̃ (X, t)N . (2.24)

Here N is a material normal and T is a traction vector defined as current force over
reference area. Using the area map and the relation tda = TdA yields the 1st Piola-
Kirchhoff stress in terms of the Cauchy stress

P̃ = JσF−T . (2.25)
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An often used modification of the 1st Piola-Kirchhoff stress is obtained by multiplying it
with the Eulerian metric tensor g, e.g. P = gP̃ . Note that in a Cartesian setting g = 1
and therefore P = P̃ . These two stress measures are non-symmetric and map from the
reference to the current configuration

P̃ :

{
T ∗
XB0 → TxBt,

N 7→ T = P̃N
and P :

{
T ∗
XB0 → T ∗

xBt,
N 7→ t̃ = PN .

(2.26)

The last stress measure, namely the 2nd Piola-Kirchhoff stress, relates the reference force
to the reference area

S :

{
T ∗
XB0 → TxB0,

N 7→ T̃ = SN .
(2.27)

The 2nd Piola-Kirchhoff stress can be related to the 1st Piola-Kirchhoff stress by

S = F−1P . (2.28)

A Cauchy-like relation for the 2nd Piola-Kirchhoff stress is obtained as

T̃ (X, t;N) = S(X, t)N . (2.29)

The 2nd Piola-Kirchhoff stress is again symmetric. A commutative visualization of the
stress tensors is given in Figure 2.5.

T̃ Q,H

N N

t

t̃

T q,h

n n

P̃

P

F F

F−T F−T

C gS σ, τ

TXB0 TXB0

TxBt TxBt

T ∗
XB0 T ∗

XB0

T ∗
xBt T ∗

xBt

Figure 2.5: Commutative visualization of different stress measures, heat flux vectors and mass
flow vectors. Given are the covariant spaces for the Lagrangian (TXB0) and Eulerian (TxBt)
configuration and the contravariant spaces for the Lagrangian (T ∗

XB0) and Eulerian (T ∗
xBt)

configuration. This representation is adapted from the lecture note Miehe 2006.

2.2.2. Heat flux

Similar to Cauchy’s stress theorem its thermal counterpart gives the heat flux q as a the
linear function of the spatial normal n. Furthermore it is expressed in terms of the spatial
heat flux vector q(x, t)

q(x, t;n) := q(x, t) · n . (2.30)
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Like the Cauchy stress the spatial heat flux vector q is expressed in the Eulerian config-
uration. Following the ideas of different stress measures a Lagrangian heat flux vector Q
can be introduced as

Q := JF−1q . (2.31)

The relation for the Lagrangian heat flux vector is given by

Q(X, t;N) := Q(X, t) ·N , (2.32)

where the relationship QdA = qda was used. A commutative visualization of the heat
flux vector is given in Figure 2.5.

2.2.3. Mass transport

Applying the above used procedure to mass transport in a multicomponent system (e.g.
fluid-saturated porous medium) yields a linear relation of the spatial normal n and the
Eulerian relative mass flux h

h(x, t;n) := h(x, t) · n . (2.33)

Here h is the Eulerian mass flow vector. In analogy to different stress measures a La-
grangian mass flow vector H can be expressed as

H := JF−1
h and H(X, t;N) := H(X, t) ·N (2.34)

with H as the Lagrangian relative mass flux.

2.3. Physical Balance Laws

With the deformation, the stress, the heat flux and the mass flow at hand almost all
quantities are introduced which are needed for the formulation of the physical balance
laws. The missing quantities are the temperature, the entropy, the temperature gradient
and the chemical potential as already mentioned. Before formulating the balance laws for
the specific quantities, a general form of the balance law for a global and local statement is
introduced. The general global and local statements can be formulated in the Lagrangian
as well in the Eulerian configuration. Since the actual physics happen in the Eulerian
configuration this setting will be the starting point. After the introduction of the general
forms the specific local forms in Eulerian configuration as well as in the Lagrangian form
are given for a pure thermo-mechanical framework without considerations of the mass
transport. In the last subsection the specific local forms in the Lagrangian form are given
for a multicomponent system taking account for the mass transport.

2.3.1. General global form

To balance global quantities like mass, linear momentum, angular momentum, energy and
entropy, we make use of the general form of a balance law of a global quantity XBt in Bt

ẊBt =
d

dt
XBt =

d

dt

∫

Bt

ξXt dv =

∫

Bt

sXt dv +

∫

Bt

pXt dv +

∫

∂Bt

fX
a · nda. (2.35)
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This represents the general global form in the Eulerian configuration. It is expressed in
terms of the field density ξXt of the global quantity XBt with respect to the current unit
volume, its supply sXt , its production p

X
t and its flux over the boundary fX

a ·n. Note that
the Eulerian form of the general balance law (2.35) can be recast in the Lagrangian form
by using the corresponding mapping of volume and area. Hereby a Lagrangian volume
and surface quantity a is obtain by a0 = Jat and aA = JaaF

−T . This yields

ẊBt =

∫

B0

sX0 dV +

∫

B0

pX0 dV +

∫

∂B0

fX
A ·NdA . (2.36)

2.3.2. General local form

Recasting and using the divergence theorem as well as localization theorem, the global
forms of the balance law (2.35) and (2.36) yield the local forms of the balance law

ξ̇X0 = sX0 + pX0 +Div(fX
A) and ξ̇X∗

t = sXt + pXt + div(fX
a ) . (2.37)

Here (2.37)1 is the Lagrangian and (2.37)2 is the Eulerian form.

Note that the Eulerian rate of a field density a is obtained by ȧ∗t = ȧoJ
−1 = ȧt+atJ̇J

−1.
Using the Eulerian velocity v(x, t) = d

dt
ϕ[ϕ(x, t)−1, t], the Eulerian rate of a field density

can be written as ȧ∗t = ȧt + at div v.

2.3.3. Specific local forms in a one-component system

The balances of interest are the balance of mass, linear momentum, angular momentum,
energy and entropy. The general form of a local balance law (2.37) yields the Eulerian
local forms of the balance of:

mass: ρ̇∗t = ρ̇t + ρt div v = 0 (2.38)

linear momentum: div(σ) + ρtb = ρtv̇ (2.39)

angular momentum: σT = σ (2.40)

energy: σ : d+ ρtr − div(q) = ė∗t (2.41)

entropy: ρtr + δt − div(q) + q
∇xθ

θ
= θη̇∗t (2.42)

Here ρt is the current density of mass, b is the body force, r is the specific heat source,
et is the current internal energy density, δt is the dissipation density with respect to
the current volume, θ is the absolute temperature and ηt is the entropy density with
respect to the current volume. Furthermore the rate of deformation tensor is given as
d := 1

2
F T ĊF−1 = 1

2
£vg = sym(g∇xv).

Note that from (2.41) and (2.42) one can see that the energy which is stored in the
body is described by the conjugated variables {σ,d}, {θ, ηt}, and {q,∇xθ}.

Similar to Eulerian local forms the Lagrangian local forms are obtained as the balance
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of:

mass: ρ0 = Jρt (2.43)

linear momentum: Div(P ) + ρ0b = ρ0V̇ (2.44)

angular momentum: (FP T )T = FP T (2.45)

energy: P : Ḟ + ρ0r − Div(Q) = ė0 (2.46)

entropy: ρ0r + δ0 − Div(Q) +Q
∇θ
θ

= θη̇0. (2.47)

Where the density of mass per unit reference volume is given as ρ0. The internal energy
density per unit reference volume is depicted as e0. The reference dissipation density has
the symbol δ0 while η0 is the entropy density per unit reference volume. The material
velocity is given as V (X, t) := d

dt
ϕ(X, t). The conjugated variables for the description

of the energy in the Lagrangian setting are {P ,F }, {θ, η0} and {Q,∇θ}.

2.3.4. Specific local forms in a multicomponent system

In analogy to a pure thermo-mechanical setting the Lagrangian local forms of a mul-
ticomponent system can be derived. Thereby the mass balance is formulated for each
component. Under the assumption of a two-component system with the components
solid and fluid, the local forms are obtained as the balance of:

mass of solid: ̺s0 = J̺st (2.48)

mass of fluid: −Div(H) = ˙̺f (2.49)

linear momentum: Div(P ) + ̺0b−Div(H) = d
dt
V (2.50)

angular momentum: (FP T )T = FP T (2.51)

energy: P : Ḟ + ̺0r − Div(Q) + (b− af ) · FH− Div(hfH) = ė0 (2.52)

entropy: ̺0r + δ0 −Div(Q) +Q
∇θ
θ
− θDiv(ηfH) = θη̇0. (2.53)

Here V = (̺0+̺
f )V +FH is the momentum per unit reference volume. The term Div(H)

withH = [V +FH/(̺f0+̺
f )]⊗H represents the rate of momentum due to convection of the

fluid. The reference density is given by ̺0 = ̺s0 + ̺f0 , where ̺
s
0 is reference partial density

of the solid and ̺f0 the reference partial density of the fluid. Furthermore the relative
change of fluid mass is given as ρf . For the derivation, in particular, of the balance of
linear momentum for a multicomponent system, the interested reader is referred to Biot
1977, Coussy 2004 or Gajo and Denzer 2011.

The quantities af , ηf , hf represent the acceleration, the entropy and the enthalpy
of the fluid. In the next section the the entropy and the enthalpy of the fluid yield a
definition of the chemical potential of the fluid. The conjugated variables for this setting
are given as {P ,F }, {θ, η0}, {Q,∇θ} and {hf , ηf ;H}.
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2.4. Dissipation Postulate

In this section the second law of thermodynamics is introduced and the evaluated. Similar
to the above section, this section is split into one-component systems and two-components
systems. The latter systems take mass transport into account.

2.4.1. Dissipation Postulate for one-component systems

According to the second law of thermodynamics, the entropy production should always
be positive, hence

δ0 ≥ 0 and δt ≥ 0. (2.54)

To derive now the Clausius-Planck inequality three steps are performed. First the equa-
tions in the Eulerian configuration (2.41), (2.42), (2.54)2 are combined. This is also done
for their Lagrangian counterpart (2.46), (2.47), (2.54)1. Then the obtained equations are
rearranged under the assumption of isothermal conditions (θ̇ = 0, ∇θ = 0 ). As a third
step the Helmholtz free energy density ψ0 := e0 − θη0 per unit reference volume and per
unit current volume ψt := et−θηt are inserted which yields the Clausius-Planck inequality
for the Eulerian configuration

δt = σ : d− ψ̇∗
t = σ : d− ψ̇0J

−1 ≥ 0, (2.55)

as well as for the Lagrangian configuration

δ0 = P : Ḟ − ψ̇0 ≥ 0. (2.56)

The global entropy production D, i.e. the global dissipation, is obtained by transferring
the statement (2.54)1 into a global form by integrating over the reference volume B0

D =

∫

B0

δ0 dV =

∫

B0

P : Ḟ − ψ̇0 dV ≥ 0 . (2.57)

It can also be obtained by integrating over the current volume Bt

D =

∫

Bt

δt dv =

∫

Bt

σ : d− ψ̇0J
−1 dv ≥ 0 (2.58)

By using the definition of the Kirchhoff stress in (2.22) this can be formulated in terms
of an integral over the reference volume

D =

∫

B0

τ : d− ψ̇0 dV ≥ 0 (2.59)

Comparing (2.57) and (2.59) the identity of stress powers can be identified

P = P : Ḟ = τ : d . (2.60)

In the subsequent treatment only integrals over the reference volume will be used. There-
fore only the Helmholtz free energy density ψ0 per unit reference volume has to be for-
mulated. For convenience the index (·)0 will be dropped in what follows, hence ψ = ψ0.
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2.4.2. Dissipation Postulate for two-component systems

In the same manner as for one-component systems the second law of thermodynamics is
evaluated for a two-component system. The equations (2.52), (2.53), (2.54)1 are combined
and the Helmholtz free energy density ψ0 is used. This yields

δ0 = P : Ḟ − ψ̇0 + µ ˙̺f +
[
−∇µ+ F T (b− af)

]
·H ≥ 0. (2.61)

Here µ := hf − θηf is the Gibbs free energy density of the fluid. For a two-component
system (solid and fluid) this is equal to chemical potential of the fluid.

The entropy production can be split into a local and convective part δ0 = δloc0 + δcon0 .
The corresponding parts are given as

δloc0 = P : Ḟ − ψ̇0 + µ ˙̺f ≥ 0 and δcon0 = B ·H ≥ 0. (2.62)

Here B = −∇µ + F T (b − af) is the thermodynamic driving force for the fluid flow
and therefore its conjugated variable. Finally the global dissipation in the Lagrangian
configuration can be given as

D =

∫

B0

δ0 dV =

∫

B0

P : Ḟ − ψ̇0 + µ ˙̺f + B ·H dV ≥ 0. (2.63)





Chapter 3

Modeling Framework

Up to now the kinematics and physical balance laws which are needed for the description of
a two-component system in a continuum mechanical and thermodynamical way have been
introduced. In this chapter the initial boundary value problem of continuum mechanics is
recalled. In order to close the system of equations additional constitutive relations have to
be introduced. This is achieved by the construction of a (Helmholtz) free energy density ψ
on the one hand. Thereby it has to satisfied the basic principles for constitutive functions
in continuum mechanics. These principles will be discussed shortly in the following. On
the other hand a dissipation potential destiny φ is introduced in order to describe the
constitutive response of the body. In this chapter only the reference configuration is
considered and isothermal conditions are assumed.

3.1. Initial Boundary Value Problem

B0

∂B0ϕ

∂B0H

∂B0T̃ ∪ ∂Btµ
Bt

∂BtT ∪ ∂Btµ

∂Btϕ∂BtH
H

h

ϕ(X, t)

X ∈ B0
x ∈ Bt

T = PN

µ

Figure 3.1: The physical balance laws, the inital values as well as the boundary conditions
form the intial boundary value problem. The boundary of the domain is decomposed into a
Dirchlet (B0ϕ,B0H ,Btϕ,BtH) and Neumann boundary (B0T̃ ,B0µ,BtT ,Btµ) in the reference as
well as in the current configuration.

The goal of initial boundary value problem in continuum mechanics is the determina-
tion of the unknown fields for given initial values and given boundary values. In basic
continuum mechanics the unknown field is the deformation map ϕ(X, t), for coupled

29
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problems additional unknowns can be introduced in a straightforward manner. For a
two-component system the unknown fields are the deformation map ϕ(X, t) and the fluid
mass flow H(X, t). Considering the domain B0 with the given initial conditions

ϕ(X, t0) = ϕ0(X) in B0, (3.1)

V (X, t0) = V 0(X) in B0, (3.2)

̺f (X, t0) = 0 in B0, (3.3)

H(X, t0) = H0(X) in B0, (3.4)

where the initial values of the deformation map, the material velocity, the relative change
of fluid mass and the fluid mass flow vector are given at time t0 as ϕ0, V 0, 0 and H0.

Next, the boundary ∂B0 of the body B0 is decomposed into the Dirichlet boundaries
∂B0ϕ = ∂B0 \ B0T and ∂B0H = ∂B0 \ B0µ, as well as the Neumann boundaries ∂B0t =
∂B0 \B0ϕ and ∂B0µ = ∂B0 \B0H . At the Dirichlet boundaries the given deformation map
ϕ̄(X, t) and the given fluid mass flow vector H̄(X, t) are prescribed while at the Neumann
boundaries the given mechanical traction T̄ (X, t) and the given chemical potential µ̄(X, t)
are prescribed,

ϕ(X, t) = ϕ̄(X , t) on ∂B0ϕ, (3.5)

T (X, t) = T̄ (X, t) on ∂B0T , (3.6)

H(X, t) = H̄(X, t) on ∂B0H , (3.7)

µ(X, t) = µ̄(X, t) on ∂B0µ. (3.8)

The goal is now to determine the deformation map ϕ(X, t) and the fluid mass flow
vector H(X, t) such that they satisfy the physical balance laws in (2.48) - (2.51), the
Clausius-Planck inequality with fluid flow in (2.61), the initial conditions in (3.1) - (3.4)
as well as the boundary conditions in (3.5) - (3.8). Up to this point no specific material
behavior is taken into account yet. In order to account for the specific material behavior
constitutive functions will be constructed. This is discussed in what follows.

3.2. Closure Problem of the System of Equations

In order to determine the deformation map and the mass flow vector a system of equations
is solved. In the sense of its solutions, the behavior of such a system is governed by the
ratio of the number of equations and the number of unknowns. A closer look at this ratio
is now taken. The system of equations is given as

(2.48): ̺s0 = J̺st (3.9)

(2.49): −Div(H) = ˙̺f (3.10)

(2.50): Div(P ) + ̺0b− Div(H) = d
dt
V (3.11)

(2.51): (FP T )T = FP T (3.12)

(2.61): P : Ḟ − ψ̇0 + µ ˙̺f + B ·H ≥ 0. (3.13)
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It sums up to 1 + 1 + 3 + 3 + 1 = 9 scalar equations. On the other hand there are the
unknowns

• mass density of solid ̺st , (3.14)

• relative change of fluid mass ̺f , (3.15)

• 1st Piola-Kirchhoff stress P , (3.16)

• deformation map ϕ, (3.17)

• fluid mass flow vector H, (3.18)

• free energy density ψ, (3.19)

• chemical potential µ, (3.20)

which sum up to 1+1+9+3+3+1+1 = 19 scalar unknowns. This yields the conclusion
that 19−9 = 10 additional equations are needed in order to close the system of equations.

These additional equations are given in terms of constitutive functions and specify
the material behavior. Clearly, they give a relationship between the deformation and
the stress tensor, the relative change of fluid mass and the chemical potential as well as
between the fluid mass flow vector and the chemical potential.

3.3. Constitutive Relations

In this section the formulation of constitutive relations is discussed in a general way.
Thereby certain principles and concepts have to be taken into account. These principles
are exemplified for the construction of the free energy density ψ. At the end of this sub-
chapter the constitutive relations which close the system of equations will be obtained.

3.3.1. Principle of Determinism

This principle states that the energy density ψ(X, t) at the material point X for the
current time t is determined by the full history of the deformation and flux process of
all material points. This yields the energy density as a function of the deformation map
ϕ(Y , τ) and the relative change of fluid mass ̺f (Y , τ) at all material points Y ∈ B0 at
any previous time τ ∈ [0, t)

ψ(X, t) = f
(
ϕ(Y , τ), ̺f (Y , τ)

)
∀Y ∈ B0 and ∀τ ∈ [0, t). (3.21)

This principle rules out any stochastic or random behavior in the material modeling.

3.3.2. Concept of Internal Variables

Since it is not practicable to account for the full history, the statement (3.21) is reduced
by introducing the field of the internal variables I(x, t), which stores the necessary history
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parameters of the deformation and flux process. With this the energy density does not
depend on any previous time τ but only on the current time

ψ(X, t) = f
(
ϕ(Y , t), ̺f (Y , t), I(Y , t)

)
∀Y ∈ B0. (3.22)

As the internal variables appear as additional unknowns their initial conditions have to
be given

I(X, t0) = I0(X) in B0. (3.23)

Furthermore the evolution of the internal variables is governed by an additional constitu-
tive function İ(X, t)

İ(X, t) = g
(
ϕ(Y , t), ̺f (Y , t), I(Y , t)

)
∀Y ∈ B0. (3.24)

3.3.3. Principle of Local Actions

The dependence of the constitutive response on Y ∈ B0 is now relaxed by the assumption
that the constitutive response at a material point X ∈ B0 is only governed by the material
points Y ∈ NX . Here NX is a neighborhood of the point X. Using a first-order Taylor
polynomial of the deformation map, the internal variables and the relative change of fluid
mass yields the a theory of grade one. As a result the free energy density is expressed in
term of the deformation map, the internal variables and their gradients

ψ(X, t) = f
(
ϕ(X, t),F (X, t), ̺f (X, t),∇̺f(X, t), I(X, t),∇I(X, t)

)
. (3.25)

The same argument also holds for the evolution of the internal variables

İ(X, t) = g
(
ϕ(X, t),F (X, t), ̺f (X, t),∇̺f(X, t), I(X, t),∇I(X, t)

)
. (3.26)

For better readability the arguments X and t will be dropped in the following.

3.3.4. Principle of Material Objectivity

This principle (PMO) has to be fulfilled at all times. It is fundamental in terms of
geometrically nonlinear continuum mechanics. It was introduced in the work of Truesdell
and Noll 1965. It states two invariances of the constitutive response: (i) frame invariance
and (ii) invariance with respect to rigid body motions. The first statement is considered
as passive version of PMO and requires the material equations to be independent of
the observer. The second statement is referred to as active version.[16] It demands the
constitutive response to be independent of a rigid-body motion superimposed onto the
current configuration. Mathematically speaking, both yield the following transformation

x+(t) = Qx(t) + s(t)
x(t)=ϕ(X,t)⇒ ϕ+(X, t) = Qϕ(X, t) + s(t), (3.27)

where Q ∈ SO(3) is an arbitrary rotation tensor. SO(3) is the 3D rotation group includ-
ing all rotations in R3 and s(t) is an arbitrary translation vector. A scalar function is

[16]doi.org/10.1007/978-3-662-04109-3
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considered as invariant with respect to the transformation (3.27) if it satisfies (·)+ = (·).
This yields the condition for the constitutive energy response

ψ+
(
ϕ+,F+, I, ̺f ,∇̺f , I,∇I

) !
= ψ

(
ϕ,F , ̺f ,∇̺f , I,∇I

)
, (3.28)

and the condition for the constitutive evolution of the internal variables

İ+
(
ϕ+,F+, I, ̺f ,∇̺f , I,∇I

) !
= İ

(
ϕ,F , ̺f ,∇̺f , I,∇I

)
. (3.29)

In the two equations the transformation F + = QF was used. These equations have to
hold for arbitrary Q and s. In order to satisfy this, the constitutive response must be
constructed in terms of quantities that are invariant with respect to the superimposed
rotation and translation.

Consider now a constitutive response which is formulated in terms of the invariance of
the arguments given in (3.29). The invariance of a vector field, such as the deformation
map ϕ, is its norm, i.e. the length. Since the norm is not invariant with respect to
the superimposed translation s(t), the constitutive response can not be a function of the
deformation map ϕ. On the other hand the dependence of the constitutive response on
the deformation gradient F can be kept. This tensorial argument must only be invariant
with respect to a superimposed rotation. This can be achieved using invariances of a
tensor. The interested reader is refereed to Spencer 2004 or Schröder and Neff 2010.
Finally, the constitutive free energy density can be written as

ψ(X, t) = f
(
F , ̺f ,∇̺f , I,∇I

)
= f+

(
QF , ̺f ,∇̺f , I,∇I

)
(3.30)

and similarly the constitutive evolution of the internal variables reads

İ(X , t) = g
(
F , ̺f ,∇̺f , I,∇I

)
= g+

(
QF , ̺f ,∇̺f , I,∇I

)
(3.31)

Note that for the constitutive response expressed in terms of the Cauchy-Green deforma-
tion tensor C the PMO is a priori satisfied. For the constitutive response expressed in

terms of F it must be ensured especially by fulfilling the condition (·)(F )
!
= (·)+(QF ).

3.3.5. Principle of Material Symmetry

Some materials have an anisotropic material behavior due to their microstructure. An
anisotropic microstructure subject to a certain symmetry is considered a material sym-
metry. This symmetry can then be described by the rotations QG ∈ G ⊂ SO(3), where
G is the symmetry group of the material. The principle of material symmetry (PMS)
states that the constitutive response should be invariant with respect to the rotations QG
superimposed onto the reference configuration. This leads to

ψ(X, t) = f
(
F , ̺f ,∇̺f , I,∇I

)
= f ∗(FQG , ̺

f ,∇̺f , I,∇I
)

(3.32)

for the free energy density. The same argument holds also for the constitutive evolution
of the internal variables

İ(X, t) = g
(
F , ̺f ,∇̺f , I,∇I

)
= g∗

(
FQG , ̺

f ,∇̺f , I,∇I
)
. (3.33)

Similar to the PMO the PMS is a priori satisfied for the constitutive response expressed

in terms of C. Otherwise (·)(F )
!
= (·)∗(FQG) must be guaranteed especially.
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3.3.6. Evaluation of the Dissipation Postulate

The constitutive response is thermodynamically consistent if it satisfies the dissipation
postulate (2.63). To evaluate the dissipation postulate the time derivative of the free
energy density in terms of the aforementioned arguments is needed. It reads

ψ̇(F , ̺f ,∇̺f , I,∇I) = d

dt
ψ(F , ̺f ,∇̺f , I,∇I)

= ∂Fψ : Ḟ + ∂̺fψ ˙̺f + ∂∇̺fψ · ∇ ˙̺f + ∂Iψ İ+ ∂∇Iψ · ∇İ.
(3.34)

Inserting this into (2.63) and making use of the divergence and the localization theorem
yields

(P − ∂Fψ) : Ḟ + [µ− ∂̺fψ +Div(∂∇̺fψ)] ˙̺
f

−[∂Iψ − Div(∂∇Iψ)]İ ≥ 0 in B0,
B ·H ≥ 0 in B0,

(∂∇Iψ ·N) İ ≥ 0 on ∂B0k
(∂∇̺fψ ·N) ˙̺f ≥ 0 on ∂B0µ.

(3.35)

Here (3.35)3 and (3.35)4 are constraints for the Neumann boundary conditions for the
internal variables on the boundary B0k ⊂ B and for the mass flow on the boundary
B0µ ⊂ B.

In order to fulfill the dissipation postulate the condition in (3.35)1 and (3.35)2 has to
hold in the whole body B0. (3.35)1 can be decomposed into two statements. The first
statement gives the definition of the 1st Piola-Kirchhoff stress and the relation between
the relative change of fluid mass and the chemical potential

P − ∂Fψ = 0 and µ− ∂̺fψ +Div(∂∇̺fψ) = 0, (3.36)

and the second statement represents a condition for the evolution of the internal variables

− [∂Iψ −Div(∂∇I ψ)] İ ≥ 0. (3.37)

The relations in (3.36) are derived by the Coleman-Noll procedure due to Coleman and
Noll 1959 and solve the initial closure problem in Section 3.2. They give a constitutive
expression of the 1st Piola-Kirchhoff stress P in terms of the free energy density ψ and
the deformation gradient F as well as a constitutive expression of the chemical potential
in terms of the free energy density ψ and the relative change of fluid mass ̺f .

In order to satisfy the inequality (3.35)2 and (3.37) a dissipation potential density is
introduced. This is discussed in what follows.

Dissipation Potential Density. By introducing the functional derivative with respect
to the quantity a as δa(·) = ∂a(·)− Div[∂∇a (·)] the inequality (3.37) can be recast as

− δIψ İ ≥ 0. (3.38)

Considering now a dissipation potential density φ(İ) an implicit definition of the evolution
equation for I can be given by

− δIψ(F , ̺f ,∇̺f , I,∇I) ∈ ∂İφ. (3.39)
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This equation is referred to as Biot’s equation. For a more detailed explanation of the
concept of a dissipation potential see Biot 1965b, Ziegler and Wehrli 1987 and Miehe
2002. In the case of a non-smooth dissipation potential density the functional derivative
−δIψ has to be part of the sub-differential of the dissipation potential density, see e.g.
Frémond 2002.

If the potential density φ(İ) is convex, positive and normalized, is can be show that
the condition (3.37) and therefore the thermodynamical consistency is a priori satisfied.

In order to satisfy the inequality (3.35)2 the same idea as for the evolution of the
internal variables can be used. Hence to fulfill the condition

B ·H ≥ 0, (3.40)

an implicit definition of the fluid mass flow vector H is introduced by

B(F , ̺f ,∇̺f , I,∇I) ∈ ∂
H

φ. (3.41)

For a convex, positive and normalized potential density φ(H) the condition (3.35)2 is a
priori satisfied yielding thermodynamical consistency.

3.4. Governing Field Equations

In the subsequent treatment quasi-static conditions (|ϕ̈| ≈ 0, |V̇ | ≈ 0, |ȧf | ≈ 0) are
assumed. Furthermore the body force is related to the gravitational force (b = ḡ) and a
local response with respect to the relative change of fluid mass is adopted.

Hence with the aforementioned considerations at hand a free energy density ψ(F , ̺f , I,∇I)
as well as a dissipation potential density φ(H, İ) can be constructed. Thereby the free
energy density has to satisfy the balance of angular momentum (2.51) where the relation
P = ∂Fψ is used. The governing field equations are given as

balance of solid mass ̺s0 = J̺st (3.42)

balance of fluid mass −Div(H) = ˙̺f (3.43)

balance of linear momentum Div(∂Fψ) + ̺0b = 0 (3.44)

fluid mass flow vector B ∈ ∂
H

φ (3.45)

evolution of internal variables −δIψ ∈ ∂İφ. (3.46)

The unknowns in these equations are

current mass density of solid ̺st (3.47)

relative change of fluid mass ̺f (3.48)

deformation map ϕ (3.49)

fluid mass flow vector H (3.50)

internal variables I. (3.51)

With nint as the number of scalar internal variables there are 1+1+3+3+nint = 8+nint

scalar equations and 1 + 1 + 3 + 3 + nint = 8 + nint scalar unknowns yielding a unique
solution for the system of equations.
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3.5. Variational Formulation

The governing equations (3.42)-(3.46) represent the closed form of the system of equations
for the initial boundary value problem in Section 3.1. The balance of solid mass and
therefore the current mass density of solid can be neglected for the representation of the
problem in the reference configuration. The remaining governing equations (3.43)-(3.46)
can be considered in an variational framework for the boundary value problem of two-
component systems. The interested reader is referred to Miehe 2002, or Svendsen 2004.
Basis of the variational formulation is the definition of the rate–type potential at a given
state {ϕ, ̺f , I}

ΠB0(ϕ̇,H, İ;ϕ, ̺
f , I) =

d

dt
EB0(ϕ, ̺

f , I) +DB0(H, İ)− P ext
B0

(ϕ̇,H, İ), (3.52)

where d
dt
EB0 is the rate of energy, DB0 the dissipation potential and P ext

B0
the external load

potential. The rate of energy is given in terms of the free energy density ψ

d

dt
EB0(ϕ, ̺

f , I) =
d

dt

∫

B0

ψ(F , ̺f , I,∇I) dV. (3.53)

Applying the chain rule yields

d

dt
EB0(ϕ, ̺

f , I) =

∫

B0

∂Fψ : ∇ϕ̇+ ∂f̺ψ ˙̺f + ∂Iψ İ+ ∂∇Iψ · ∇İ dV

=

∫

B0

∂Fψ : ∇ϕ̇− ∂f̺ψ Div(H) + ∂Iψ İ+ ∂∇Iψ · ∇İ dV,

(3.54)

where the balance of fluid mass (3.43) was inserted. The dissipation potential DB0 is
formulated in terms of the constitutive dissipation potential density φ(H, İ)

DB0(H, İ) =

∫

B0

φ(H, İ) dV. (3.55)

The external load potential P ext
B0

is expressed in terms of the prescribed gravitational force
ḡ, the prescribed mechanical traction T̄ , the prescribed traction like quantity k̄ and the
prescribed fluid potential µ̄. It reads

P ext
B0

(ϕ̇, İ) =

∫

B0

̺0ḡ · ϕ̇ dV +

∫

B0T

T̄ · ϕ̇ dA +

∫

B0k

k̄ İ dA

+

∫

B0

ḡ · (FH) dV +

∫

B0µ

µ̄ H ·N dA.
(3.56)

Based on the rate potential ΠB0 (3.52) and the definition of the rate of energy, the dis-
sipation potential and the external loading potential, the variational principle for a two-
component system is given as

{ϕ̇∗,H∗, İ∗} = arg
{

inf
ϕ̇∈Wϕ̇

inf
H∈W

H

inf
İ∈Wİ

ΠB0(ϕ̇,H, İ;ϕ, ̺
f , I)

}
. (3.57)

Note that in here a minimization with respect to the evolution of the deformation map,
the fluid mass flow and the evolution of the internal variables is used. This is considered
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as minimization principle. However depending on the specific definition of the model
problem, i.e. constitutive functions and internal variables, mixed variational principles
can also be derived.

In (3.57) the admissible function space Wϕ̇, WH

and Wİ for the unknown rates are
given as

Wϕ̇ = {ϕ̇ ∈ H1(B0)|ϕ̇ = ˙̄ϕ on ∂B0ϕ̇}
W
H

= {H ∈ H(Div,B0)|H ·N = H̄ on ∂B0H}
Wİ = {İ ∈ H1(B0)}.

(3.58)

Here it is assumed that the function space H1(B0) satisfies the demands originating form
the constitutive model formulation, clearly the construction of ψ and φ and the definition
of the unknown fields.

Performing the variation of ΠB0 at a fixed state {ϕ, ̺f , I} and applying the funda-
mental lemma of the calculus of variations yields the Euler equations of (3.57)

Div(∂Fψ) + ̺0ḡ = 0 in B0, (3.59)

∇[∂̺fψ − ḡ ·ϕ] + ∂
H

φ ∋ 0 in B0, (3.60)

∂Iψ − Div(∂∇Iψ) + ∂İφ ∋ 0 in B0, (3.61)

∂FψN − T̄ = 0 on ∂B0T , (3.62)

∂̺fψ − µ̄ = 0 on ∂B0µ, (3.63)

∂∇I
ψN − k̄ = 0 on ∂B0k. (3.64)

Note that the Euler equations of the variational principle are the governing field equations
(3.43)-(3.46) and the Neumann boundary conditions (3.6), (3.8) and (3.35)2. This allows
for the conclusion that the variational principle in (3.57) fully characterizes the initial
boundary value problem of continuum mechanics of solid-fluid systems.

3.6. Numerical Treatment

Up to this point the initial boundary value problem of continuum mechanics of solid-fluid
systems was closed by introducing the constitutive free energy density and the consti-
tutive dissipation potential density. It is derived based on the physical balances laws.
Furthermore the initial boundary value problem can be formulated in terms of a varia-
tional principle. The variational principle for dissipative solid-fluid systems is expressed
as a rate–type formulation.

In order to arrive at a numerical implementation of the material model and the initial
boundary value problem two additional steps have to be considered. Since the rate–type
variational principle is continuous in time and space (i) a time-discretization has to be
performed and then (ii) a space-discretization has to be applied. The time-discretization
is based on an algorithmic time integration of the rate–type potential and yields an
incremental variational formulation. Based on a finite-element discretization in space
the incremental variational formulation can be formulated in terms of discrete values
of the unknown fields (deformation map, fluid mass flow and internal variables). This
finally leads to a set of linear systems of equations which can be solved by an appropriate
algebraic solution scheme.
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3.6.1. Incremental Variational Formulation

An algorithmic time integration scheme over a given time step τ = [tn, tn+1), e.g. back-
ward Euler method, is applied on the rate-type potential in (3.52). This yields the incre-
mental potential Πτ

B0
. For a pure Dirichlet problem (P ext

B0
= 0) it reads

Πτ
B0
(ϕ,H, I; In) = Algo

{∫ tn+1

tn

ΠB0(ϕ̇,H, İ;ϕ, In) dt
}
. (3.65)

The incremental potential can be expressed in terms of an incremental potential density
πτ

Πτ
B0
(ϕ,H, I; In) =

∫

B0

πτ
B0
(F ,H, I,∇I; In) dV. (3.66)

Furthermore the incremental potential density is given in terms of the constitutive free
energy density ψ and the incremental version of the constitutive dissipation potential
density φτ

∫

B0

πτ
B0
(F ,H, I,∇I; In) = ψ(F , ̺f , I,∇I) + φτ (H, I; In). (3.67)

The time-discrete variational principle yields the deformation map, the fluid mass flow
and the internal variables as solution of the initial boundary value problem

{ϕ∗,H∗, I∗} = arg
{

inf
ϕ∈Wϕ

inf
H∈W

H

inf
I∈WI

Πτ
B0
(ϕ, I; In)

}
. (3.68)

Here the admissible function space for the deformation map, the fluid mass flow vector
and the internal variables are given as

Wϕ = {ϕ ∈ H1(B0)|ϕ = ϕ̄ on ∂B0ϕ}
W
H

= {H ∈ H(Div,B0)|H · N = H̄ on ∂B0H}
WI = {I ∈ H1(B0)}.

(3.69)

Note that it is assumed that these spaces fulfill the requirements stemming from the
constitutive model formulation. This means that the admissible function space in (3.69)3
in particular strongly depends on the definition of the internal variable.

The Euler equations of (3.68) are obtained by applying the calculus of variations for
a given In

Div(∂Fψ) = 0 in B0, (3.70)

τ∇∂f̺ψ + ∂
H

φ ∋ 0 in B0, (3.71)

∂Iψ − Div(∂∇Iψ) + ∂Iφ
τ ∋ 0 in B0. (3.72)

These three equations are identified as the balance of linear momentum under quasi-static
conditions and zero body force, the fluid flow equation under quasi-static conditions and
zero body force as well as the evolution equation for the internal variables.
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3.6.2. Space-Time-Discrete Finite-Element Formulation

Based on the triangulation T h(B0) of the domain B0 a set of non-overlapping finite ele-
ments Be

0 are introduced. With this at hand the domain B0 can be approximated by Bh
0

in terms of the union of the ne finite elements

B0 ≈ Bh
0 =

ne⋃

e=1

Be
0. (3.73)

Within the finite-element method an ansatz for the continuous fields ϕ(X), H(X) and
I(X) is made. This yields to an approximation of these fields based on discrete values at
given interpolation points and corresponding basis/shape functions

ϕ(X) ≈ ϕh(X) =

nϕ∑

i=1

N i
ϕ(X)ϕi,

H(X) ≈ Hh(X) =

n
H∑

i=1

N i
H

(X)H i,

I(X) ≈ Ih(X) =

nI∑

i=1

N i
I(X)Ii,

(3.74)

where nϕ is number of interpolation points of the deformation map within one element.
The basis function for the i-th interpolation point of the deformation map is denoted as
N i

ϕ(X). The discrete value of the deformation map at the i-th interpolation point is given
as ϕi. Similarly the number of interpolation points, basis function and the discrete values
of the fluid mass flow as well as the internal variables are denoted as n

H

, N i
H

(X) and H i

and nI, N
i
I(X) and Ii.

Note that the basis functions of the fluid mass flow are vectors while the discrete
values are scalars, representing the flux over the element edges. This arises from the
definition of the admissible function space for the fluid mass flow in (3.69) yielding a
Raviart–Thomas–type finite element formulation.

The basis functions can be represented as a matrix. For a quantity a of the dimension
sa and with na interpolation points this matrix representation reads

Na(X) =



N1(X) 0 0 Nna(X) 0 0

0
. . .

... . . . 0
. . .

...
0 · · · N1(X) 0 · · · Nna(X)


 (3.75)

The corresponding vector of the discrete values for a quantity a reads

da =
[
a11 a12 . . . ana

sa

]T
. (3.76)

The definition of the matrix representation of the basis functions and the vector repre-
sentation of the discrete values allows for a compact notation for the interpolation of the
discrete values of the deformation map and the internal variables. Hence, the approxi-
mated fields in (3.74) can be represented as




ϕh(X)
H

h(X)
Ih(X)


 = Nd with N =




Nϕ(X)
N
H

(X)
NI(X)


 and d =




dϕ

d
H

dI


 . (3.77)
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Here the global interpolation matrix N and the global discrete values vector d was intro-
duced. Inserting the latter definition of the interpolation into the incremental potential
(3.66) yields the space-time-discrete potential Πτh

Πτh
B0
(d) =

∫

B0

πτh
B0
(Ch) dV with Ch = Bd (3.78)

It is expressed in terms of the space-time-discrete potential density πτh
B0

and the generalized
interpolation matrix B. The latter is given as

B =




∂XNϕ(X)
N

H

(X)
Div

(
N

H

(X)
)

NI(X)
∂XNI(X)




and Ch =




F h

H

h

Div(Hh)
Ih

∇Ih



= Bd (3.79)

It is used to obtain also the gradients of the unknown fields based on the derivative of
the basis functions. Note that the definition and shape of the generalized interpolation
matrix B is strongly dependent on the definition of the constitutive free energy density
and the constitutive dissipation potential density.

Based on the definition of space-time-discrete potential the variational principle for
the space-time-discrete problem can be stated as

d∗ = arg
{
inf
d

Πτh
B0
(d)

}
. (3.80)

Solving the latter algebraic minimization principle yields the discrete values d∗. Applying
the calculus of variations on (3.80) leads to the following condition

R := Πτh
B0,d =

∫

B0

BTS dV = 0 , (3.81)

where the array S contains the partial derivatives of the space-time-discrete potential
density πτh

B0
. Under the assumption of a smooth dissipation potential density it is derived

as

S := ∂Chπτh
B0

=




ψ,F h

τ∇ψ,Div(Hh)

φτ
,Hh

ψ,Ih + φτ
,Ih

ψ,∇Ih




(3.82)

Since the system of equations (3.81) is in general a non–linear system a linearization is
applied on (3.81) yielding

Lin(R) = R(di) + ∂dR(di) · (di+1 − di) = 0 . (3.83)

where the index i is the iteration counter. The linearized problem is solved by a Newton–
Raphson-type iteration

d← d−K−1R with K := ∂dR = Πτh
B0,dd =

∫

B
BTCB dV. (3.84)
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The array C contains the second derivatives of the space-time-discrete potential density.
These are identical to the first derivatives of S. Under the assumption of a smooth
dissipation potential density it is given as

C : = ∂2Chπ
τh
B0

= ∂ChS

=




ψ,F hF h τψ,F Div(Hh) 0 ψ,F hIh ψ,F h∇Ih

τψ,Div(Hh)F h τψ,Div(Hh)Div(Hh) 0 0 0

0 0 ψ,Hh
H

h 0 0
ψ,IhF h 0 0 ψ,IhIh + φτ

,IhIh ψ,Ih,∇Ih

ψ,∇IhF h 0 0 ψ,∇IhIh ψ,∇Ih∇Ih



.

(3.85)

Note that for the general case of a non–smooth dissipation potential density an additional
algorithmic treatment (such as return mapping schemes, active-set methods, etc.) has to
be applied, see Simo and Taylor 1986, Hintermüller et al. 2002 or Heister et al. 2015.

The matrix K has a sparse nature. In order to solve the system for one iteration
step, direct spares solvers can be used. However by increasing the problem size by a
fine discretization in space it might become insufficient to use such solvers. Then other
techniques such as iterative solvers or matrix-free methods can be used, see e.g. Axelsson
1976, Wriggers 2008 or Arndt et al. 2020.
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Schröder, J. and P. Neff (2010). Poly-, quasi-and rank-one convexity in applied mechanics.
Vol. 516. Springer Science & Business Media.

Shauer, N. and C. A. Duarte (2019). “Improved algorithms for generalized finite element
simulations of three-dimensional hydraulic fracture propagation”. In: International
Journal for Numerical and Analytical Methods in Geomechanics 43.18, pp. 2707–2742.

Simo, J. C. and J. W. Ju (1987a). “Strain– and Stress–Based Continuum Damage Models–
I. Formulation”. In: International Journal of Solids and Structures 23, pp. 821–840.



Bibliography 49

Simo, J. C. and J. W. Ju (1987b). “Strain– and Stress–Based Continuum Damage Models–
II. Computational Aspects”. In: International Journal of Solids and Structures 23,
pp. 841–869.

Simo, J. C. and G. Meschke (1993). “A new class of algorithms for classical plasticity
extended to finite strains. Application to geomaterials”. In: Computational Mechanics
11.4, pp. 253–278.

Simo, J. C. and R. L. Taylor (1986). “A return mapping algorithm for plane stress
elastoplasticity”. In: International Journal for Numerical Methods in Engineering 22.3,
pp. 649–670.

Sneddon, I. N. and M. Lowengrub (1969). Crack problems in the classical theory of elas-
ticity. John Wiley & Sons, Inc., New York.

Spencer, A. J. M. (2004). Continuum mechanics. Courier Corporation.
Suquet, P. (1992). “On Bounds for the Overall Potential of Power Law Materials Con-

taining Voids with an Arbitrary Shape”. In: Mechanics Research Communications 19,
pp. 51–58.

Svendsen, B. (2004). “On thermodynamic- and variational-based formulations of models
for inelastic continua with internal lengthscales”. In: Computer Methods in Applied
Mechanics and Engineering 193.48–51, pp. 5429–5452.

Teichtmeister, S., S. Mauthe, and C. Miehe (2019). “Aspects of finite element formulations
for the coupled problem of poroelasticity based on a canonical minimization principle”.
In: Computational Mechanics 64.3, pp. 685–716.

Terzaghi, K. (1925). Erdbaumechanik auf bodenphysikalischer Grundlage. F. Deuticke.
Tresca, H. E. (1864). Sur l’ecoulement des corps solides soumis a de fortes pressions.

Imprimerie de Gauthier-Villars, successeur de Mallet-Bachelier, rue de Seine-Saint-
Germain.

Truesdell, C. and W. Noll (1965). “Handbuch der Physik Bd. III/3”. In: ed. by S. Flügge.
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Chapter 4

Phase Field Modeling of Fracture in Porous

Plasticity: A Variational Gradient-Extended Eulerian

Framework For the Macroscopic Analysis of Ductile

Failure
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Abstract This work outlines a rigorous variational-based framework for the phase field
modeling of fracture in isotropic porous solids undergoing large elastic-plastic strains. It
extends the recent works Miehe et al. 2015a, 2016b to a particular formulation of isotropic
porous plasticity. The phase field approach regularizes sharp crack surfaces within a pure
continuum setting by a specific gradient damage modeling with geometric features rooted
in fracture mechanics. A gradient plasticity model for porous plasticity with a simple
growth law for the evolution of the void fraction is developed, and linked to a failure
criterion in terms of the local elastic-plastic work density that drives the fracture phase
field. It is shown that this approach is able to model basic phenomena of ductile failure
such as cup-cone failure surfaces in terms of only two material parameters on the side of
damage mechanics: a critical work density that triggers the onset of damage and a shape
parameter that governs the postcritical damage up to fracture. The formulation includes
two independent length scales which regularize both the plastic response as well as the
crack discontinuities. This allows to design damage zones of ductile fracture to be inside
of plastic zones or vice versa, and guarantees on the computational side a mesh objectivity
in post-critical ranges. The key aspect that allows to construct a variational theory for
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porous plasticity at fracture is the use of an Eulerian constitutive setting, where the yield
function is formulated in terms of the Kirchhoff stress. Here, we exploit the fact that this
stress approximates an effective stress that drives the plasticity in the matrix of the porous
solid. The coupling of gradient plasticity to gradient damage is realized by a constitutive
work density function that includes the stored elastic energy and the dissipated work due
to plasticity and fracture. The latter represents a coupled resistance to plasticity and
damage, depending on the gradient-extended internal variables which enter the plastic
yield function and the fracture threshold function. The canonical theory proposed is
shown to be governed by a rate-type minimization principle, which fully determines the
coupled multi-field evolution problem, and provides inherent symmetries with regard to
a finite element implementation. The robust computational setting proposed includes (i)
a general return scheme of plasticity in the spectral space of logarithmic principal strains
and dual Kirchhoff stresses, (ii) the micromorphic regularization of the gradient plastic
evolution and (iii) a history-field-driven update of the linear phase field equation.

Keywords: Porous plasticity, Ductile fracture, Phase-field modeling, Strain gradient
plasticity, Gradient damage mechanics, Variational principles.

4.1. Introduction

Fracture in the form of evolving crack surfaces in ductile solid materials is preceded by
significant plastic distortion. The prediction of failure mechanisms due to crack initiation
and growth coupled with elastic-plastic deformations is an intriguingly challenging task,
and plays an extremely important role in various engineering applications. This covers
machining, cutting and forming of ductile metals and polymers, i.e. applications at the
core of automobile, aerospace or heavy industries which significantly benefit from precisely
predictive computational tools to model ductile fracture in the design phase of products.
To this end, a rigorous variational-based framework is presented for an innovative phase
field modeling of ductile fracture in porous elastic-plastic solids at large strains.

4.1.1. Plasticity, Damage and Fracture in Ductile Materials

Ductile fracture is a phenomenon that couples at the macroscopic level plastic deforma-
tions with the accumulation of damage and crack propagation. The process of damage
that follows extensive plastic deformations covers the macroscopic effects of degrading
stiffness, strength and ductility up to a critical state where rupture occurs. Damage
is caused by deformation mechanisms at the microscopic level, such as void nucleation,
growth and coalescence, the formation of micro-shear-bands and micro-cracks. A great
number of pure phenomenological and micro-mechanically motivated approaches exists for
the continuum modeling of ductile fracture, see for example Besson 2010 and Li et al. 2011
for overviews. The simplest approaches provide estimates for the local initiation of frac-
ture uncoupled from the plastic deformation, for example by introducing a damage field
variable that counts towards the local initiation of fracture, see Johnson and Cook 1985.
In contrast, coupled formulations link the evolution of damage to the evolution of plastic
deformation. This covers on the one side the pure phenomenological macro-models of con-
tinuum damage mechanics, see for example Lemaitre 1985 and Lemaitre and Chaboche
1990. On the other side, models of porous plasticity describe micro-mechanical mecha-
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nisms such as void growth, and obtain macroscopic constitutive expressions by analytical
homogenization techniques. This includes early investigations such as Rice and Tracey
1969 on exponential growth of voids in an ideal plastic matrix under remote strain ac-
tion. Gurson 1975 obtained a macroscopic yield surface by homogenization of a porous
RVE with assumed rigid plastic flow, that degrades with increasing void fraction. It was
enhanced by Needleman and Tvergaard 1984 and many follow-up works to include effects
of void nucleation and coalescence. A conceptual similar model for porous plasticity is
suggested by Rousselier 1987 with numerical implementation discussed in Lorentz et al.
2008. Alternative homogenization-based models for porous plasticity are suggested for
example in Ponte Castañeda and Zaidman 1994 and Leblond et al. 1994. There is a con-
stantly evolving vast literature on improved damage models for porous materials, see for
example Nahshon and Hutchinson 2008 and Danas and Ponte Castañeda 2012 for recent
contributions.

However, in these local models of plasticity coupled with damage, the strong softening
behavior induces localization of plastic and damage zones. The accompanying loss of
ellipticity or hyperbolicity in quasi-static or dynamic cases results in the pathological
mesh dependence of finite element implementations, where localized zones are determined
by the element size of spatial discretizations. A way to overcome this problem is the
construction of gradient plasticity and gradient damage models which limit the width of
localized plastic and damage zones due to their inherent length scales and size effects of
the dissipative response. Pure phenomenologically-based theories of gradient plasticity
often use plastic length scales as limiters of localized zones determined by macroscopic
experiments, see for example Mühlhaus and Aifantis 1991, Geers 2004 and Reddy et
al. 2008. Recently Miehe 2011, 2014 proposed a unified framework of strain-gradient
plasticity based on multi-field variational principles for both geometrically linear and
non-linear setting. On the side of damage mechanics, formulations of gradient-enhanced
models are mostly applied to the modeling of degradation effects in brittle or quasi-brittle
materials, see for example Peerlings et al. 1996, Frémond and Nedjar 1996 and Comi
1999. Here, a damage length scale that limits localized zones is introduced, determined
by macroscopic experiments. The recent works Miehe et al. 2010b and Pham et al.
2011 apply gradient damage models to the regularized description of Griffith-type brittle
fracture. The coupling of local plasticity with gradient-damage models have already been
used extensively to model ductile fracture, see for example de Borst et al. 1999, Nedjar
2001, Reusch et al. 2003, Alessi et al. 2015 and Ambati et al. 2015a. As noted by Alessi
et al. 2015, a model of gradient damage coupled with plasticity allows the nucleation
of cohesive cracks, i.e. the existence of a surface of discontinuity of displacements with
non-vanishing stress. By defining length scales and limiters for both the plastic as well as
the damage zones one can ensure that the damage zone evolves inside of a plastic zone
and vice versa. Recent works in this direction are Aslan et al. 2011, Dimitrijevic and
Hackl 2011, Saanouni and Hamed 2013 and Miehe et al. 2015a. In this work, we develop
a rigorous variational foundation for the coupling of porous gradient plasticity to gradient
damage models at finite strains.

4.1.2. Variational Phase Field Modeling of Ductile Fracture

Recently developed phase field approaches to fracture regularize sharp crack disconti-
nuities within a pure continuum formulation. This diffusive crack modeling allows the



58 4.1. Introduction

resolution of complex failure topologies, such as crack branching phenomena in dynamic
fracture of brittle solids, see Hofacker and Miehe 2012 and references cited therein. In
contrast to computational models which model sharp cracks, see e.g. Simo et al. 1993,
Belytschko and Black 1999, Linder and Raina 2013, Miehe and Gürses 2007 and many oth-
ers, the phase field approach is a spatially smooth continuum formulation that avoids the
modeling of discontinuities and can be implemented in a straightforward manner by cou-
pled multi-field finite element solvers. Three basic approaches to the regularized modeling
of Griffith-type brittle fracture in elastic solids may be distinguished: (i) The phase field
approach by Karma et al. 2001 and Hakim and Karma 2009 apply a Ginzburg-Landau-
type evolution of an unconstrained crack phase field, using a non-convex degradation
function that separates unbroken and broken states. It lacks explicit definitions of irre-
versibility constraints for the crack evolution. (ii) The approach of Francfort and Marigo
1998, Bourdin et al. 2000, 2008, adopts the variational structure and Γ-convergent reg-
ularization of image segmentation developed by Mumford and Shah 1989 and Ambrosio
and Tortorelli 1990 for the analysis of finite increments in quasi-static crack evolution.
The irreversibility of the fracture process is modeled by evolving Dirichlet-type boundary
conditions, while the scalar auxiliary field used for the regularization is un-constrained.
This needs the implementation of non-standard code structures in typical finite element
solvers. (iii) The phase field approach by Miehe et al. 2010a,b is a gradient damage the-
ory with a local irreversibility constraint on the crack phase field, however, equipped with
constitutive structures rooted in fracture mechanics. It incorporates regularized crack sur-
face density functions as central constitutive objects, which is motivated in a descriptive
format based on geometric considerations. Such a formulation can easily be implemented
by a multi-field finite element solver with monolithic or staggered solution of the coupled
problem. Recent works on brittle fracture along this third line are Amor et al. 2009,
Pham et al. 2011, Borden et al. 2012 and Verhoosel and de Borst 2013.

Extensions to the phase field modeling of ductile fracture are exclusively related to
the third line, representing conceptually a coupling of gradient damage mechanics with
models of elasto-plasticity. Duda et al. 2015 investigate a setting of brittle fracture in
elastic-plastic solids. Variational-based approaches to combined brittle-ductile fracture
are outlined in Ulmer et al. 2013 and Alessi et al. 2015. The model suggested in Ambati
et al. 2015a uses a characteristic degradation function that couples damage to plasticity
in a multiplicative format. However, these settings combine local models of plasticity to
the gradient-damage-type phase field modeling of fracture and do not meet the demands
mentioned above, i.e. related plastic and damage length scales. Furthermore, settings
outlined in Ambati et al. 2015a do not provide a canonical structure based on variational
principles. This is achieved in the recent work Miehe et al. 2015a that couples gradient
plasticity to gradient damage at finite strains.

This paper presents a consistent variational-based framework for the phase field mod-
eling of ductile fracture in elastic-plastic porous solids undergoing large strains. It links
a formulation of variational gradient plasticity, as recently outlined in Miehe 2011, 2014,
to a specific setting of variational gradient damage, rooted in the phase field approach
of fracture suggested by Miehe et al. 2010a,b. Such a formulation has conceptually been
outlined in Miehe et al. 2015a and was recast in Miehe et al. 2016a,b into a canonical
variational formulation. It is extended in this work to a particular formulation of porous
plasticity in an Eulerian geometric setting. The basic structural ingredients of the formu-
lation proposed here are:
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• A phase field model for ductile fracture that combines ingredients of porous gradient
plasticity and gradient damage, offering a scaling of plastic to damage length scales.

• A thermodynamic framework that is fully variational in nature, based on a split
of a work density function into energetic and dissipative parts, and a dissipation
function with separate thresholds for plasticity and damage.

The approach is embedded in the theory of gradient-extended continuum modeling, as
outlined in the general context by Maugin 1990, Capriz 1989, Mariano 2001 and Frémond
2002. The gradient plasticity-damage coupling is conceptually based on a work den-
sity function that governs the rate-independent part of a solid undergoing elastic-plastic
deformations at fracture. It assumes a phase transition of the elastic-plastic work den-
sity towards a given critical value, that provides locally a threshold for brittle or ductile
fracture. The constitutive structure of the work density function includes in a modular
format separate constitutive functions with a clear physical meaning. On the side of the
elastic-plastic bulk response, this covers the elastic work density function and the plastic
work density function of an undamaged material. On the side of regularized fracture
mechanics, a crack surface density function is introduced that can be geometrically mo-
tivated by a regularization of a sharp crack. Finally, the elastic-plastic-damage coupling
is governed by a degradation function, that is assumed to be convex as used previously in
damage mechanics. For this canonically simple model, the coupling of gradient plasticity
and gradient damage is realized by only two material parameters: a critical elastic-plastic
work density wc that governs the onset of fracture and a parameter ζ that controls the
shape of the post-critical range of damage.

Here, we propose a canonically simple model of porous plasticity in an Eulerian geo-
metric setting relative to the current configuration. The elastic energy is formulated by
the elastic Finger tensor and the dual Kirchhoff stress tensor, which automatically induces
an isotropic representation. The formulation focuses on a combination of ingredients ob-
tained from microscopic porous plasticity with purely macroscopic criteria for the onset
of fracture. To this end, a standard growth of voids is considered, that is assumed to be
driven by the total volumetric deformation. This is a simple micro-mechanically motivated
assumption reasonable for small elastic strains combined with large plastic strains. A key
observation related to this assumption is that the Kirchhoff stress can be considered as
an effective stress acting on the matrix material. This provides the key assumption for
formulating a consistent formulation of isotropic porous plasticity based on a variational
principle, where the above mentioned work density is not a function of the void volume
fraction.

A further split of the work density function into an energetic part that is stored
and a dissipative part provides the thermodynamic foundation of the model. Here, the
energetic part is defined to be exclusively elastic in nature, representing a degraded elastic
free energy density. Besides the constitutive expression for the stresses, it provides locally
energetic driving forces of plasticity as well as regularized fracture. The dissipative part
governs plastic and fracture resistances, each equipped with length scales lp and lf , which
includes the coupling between gradient plasticity and gradient damage. This viewpoint
settles the general framework of gradient extended modeling. The variables responsible
for the length scale effects are the equivalent plastic strain and the fracture phase field.
They are considered to be passive in nature, i.e. governed by Dirichlet and Neumann-
type boundary conditions which do not allow an independent load-type driving. Hence,
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micro-balance-type theories such as considered in full generality by Gurtin 1996, 2003
or Forest 2009 are avoided in this setting. Due to the specific split of the work density
function into energetic and dissipative part, the dissipation is defined fully local in nature.
This allows a decomposition into plastic and fracture parts, defining separate energetic
driving forces for the evolution of plastic deformation and the accumulation of fracture. A
numerical integration of these separate plastic and fracture contributions to the dissipation
then allows a decomposition of the dissipative part of the work density function into
contributions due to plasticity and fracture.

This decomposition of the dissipation into plastic and fracture parts offers a clear
structure for the constitutive modeling of the evolution equations. Here, a formulation
is constructed based on two separate threshold functions for plasticity and fracture, each
driven by the driving forces which govern the dissipation due to plasticity and fracture.
The associated resistances are defined by variational derivatives of the dissipative part of
the work density function. On the side of plasticity, we develop a modified Gurson-type
yield criterion in the Eulerian Kirchhoff stress space that governs the evolution of the
macroscopic plastic flow. Furthermore, the void fraction is considered in the modified
yield function as a state variable, i.e. the yield function is evaluated at a given state of
the void fraction. These two ingredients allow to construct a minimization principle for
the problem of isotropic porous plasticity at finite strains coupled to the phase field mod-
eling of fracture. It allows by coupling ingredients of micromechanical porous plasticity
to the gradient-damage response of fracture the analysis of basic phenomena in ductile
plasticity, such as the cup-cone response. With these two additional threshold functions
at hand, a dissipation potential function is constructed that additively splits into plastic
and regularized fracture parts. It is shown that the coupled plasticity-damage model is
thermodynamically consistent. A detailed analysis comments on the role of the material
parameters and points out for a one-dimensional problem the characteristics of the model-
ing concept. The approach models both brittle as well as ductile fracture. The occurrence
and sequence of these phenomena depends on the choice of the material parameters.

A further important aspect is the micromorphic regularization of the model with a
structure such as outlined in Forest 2009. This is achieved by considering an extended
set of plastic and damage variables which are linked by penalty terms in a modified
work density function. The advantage of such a formulation lies on the computational
side, in particular on the side of gradient plasticity. It allows a straightforward finite
element formulation of gradient plasticity that does not need to account of sharp plastic
boundaries. The structure of the evolution equations for the two scalar internal variables,
the equivalent plastic strain and the fracture phase field, is analyzed for both the canonical
gradient formulation as well as for its micromorphic regularization, and shown to have a
formally similar structure. In particular, we consider possible modifications of the phase
field equation that accounts for fracture in tension. Finally, the modeling performance of
the formulation is underlined by characteristic benchmark problems. Here, the need of the
coupling of gradient plasticity–damage is highlighted in order to obtain a mesh-objective
post-critical response as well as physically reasonable results with regard to the diffuse
distribution of localized plastic strains and damage.

In summary, the following sections outline aspects and details with regard to the
development of a variational based theory of phase field fracture coupled with gradient
plasticity in porous solids, as well as its numerical implementation. The work contains:
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Figure 4.1: Finite deformation of a solid with a regularized crack inside of a plastic zone. The
deformation map ϕ maps at time t the reference configuration B0 onto the current configuration
Bt. a) The crack phase field d ∈ [0, 1) defines a regularized crack surface functional Γl(d) that
converges in the limit l→ 0 to the sharp crack surface Γ. b) The level set Γc = {X | d = c}
defines for a constant c ≈ 1 the crack faces in the regularized setting. Parts of the continuum
with d > c are considered to be free space and are not displayed.

• An Eulerian formulation of multiplicative porous plasticity linked to the phase field
modeling of fracture.

• Amodified Gurson-type yield function, formulated in terms of the Kirchhoff stresses,
combined with a growth law in terms of the total Jacobian.

• A minimization principle for the coupled problem of isotropic porous gradient plas-
ticity coupled to phase field fracture.

• An algorithmic setting of the minimization problem in the spectral space of Eulerian
Hencky strains and Kirchhoff stresses.

• Efficient spatial discretization based on a micromorphic regularization of gradient
plasticity and a history-variable-driven linear update of the linear fracture phase
field equation.

4.2. Introduction of Primary Field Variables

This section introduces all state variables used in the subsequent treatment. This covers
the specific representation of isotropic multiplicative plasticity in the Eulerian geomet-
ric setting proposed by Simo and Miehe 1992 and Simo 1992, its extension to porous
microstructures and the coupling to a phase field modeling of fracture.

4.2.1. Isotropic Multiplicative Finite Plasticity with Plastic Metric

Finite Deformations. Let ϕ(X, t) with initial condition ϕ(X, t0) = X be the defor-
mation map at time t that maps material positions X ∈ B0 of the reference configuration
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B0 ∈ R3 onto points x = ϕt(X) ∈ Bt of the current configuration Bt ∈ R3 as visual-
ized in Figure 4.1. The material deformation gradient is defined by F := ∇ϕt(X) with
J := det[F ] > 0. The solid is loaded by prescribed deformations and external traction on
the boundary, defined by time-dependent (”active”) Dirichlet- and Neumann conditions

ϕ = ϕ̄(X, t) on ∂Bϕ
0 and Pn0 = t̄0(X, t) on ∂Bt

0 (4.1)

on the surface ∂B0 = ∂Bϕ
0 ∪ ∂Bt

0 of the undeformed configuration. The first Piola stress
tensor P is the thermodynamic dual to F .

Macroscopic Plastic Metric and Elastic Deformation. We introduce a co-variant
Lagrangian plastic metric Gp ∈ Sym+(3 ) as an internal variable that evolves in time.
It is considered as a purely phenomenological object for the description of the plastic
deformation. The plastic metric can be motivated by a multiplicative split F = F eF p

of the deformation gradient into plastic and elastic parts, as introduced by Kröner 1958,
Lee, E. H. 1969 and Mandel J. 1972. Then, an elastic deformation measure is the contra-
variant Eulerian elastic Finger tensor be = F eF eT that provides the definition

be := FGp−1F T with Gp(X, t0) = 1 , (4.2)

when the Lagrangian plastic metric is identified by Gp = F pTF p. As underlined in Miehe
1998, the a priori use of Gp ∈ Sym+(3 ) instead of F p ∈ GL(3)+ restricts the subsequent
setting to a theory of finite plasticity that excludes the influence of plastic rotations.
Accompanied by the elastic deformation measure is the multiplicative split

Je := JJp−1 with Jp :=
√

det[Gp] , (4.3)

of the volumetric deformation into plastic and elastic parts. The evolution of the plastic
metric in time is described by the Eulerian plastic rate of deformation tensor

dp := − 1
2
(£vb

e)be−1 = FDpF−1 with Dp = − 1
2
Ġp−1Gp (4.4)

first introduced in Simo and Miehe 1992, where £vb
e := FĠp−1F T is the Lie derivative

or Oldroyd rate of be. Note that dp corresponds to the evolution Ġp of the Lagrangian
plastic metric. From the perspective of multiplicative plasticity, this definition follows
from the push-forward dp = F esym[Lp]F e−1 of the symmetric part of the plastic evolution
operator Lp = Ḟ pF p−1 from a fictitious plastic intermediate configuration to the current
configuration. This underlines the fact that the theory of multiplicative plasticity under
consideration uses a zero plastic spin skew[Lp] = 0 . For the isotropic elastic response
under consideration, the symmetry of the Eulerian rate of deformation tensor dpT = dp,
where £vb

e commutes with be, is realized by a normality rule for the plastic flow in terms
of the symmetric Kirchhoff stress τ considered below. The evolution of the volumetric
plastic deformation takes the form

J̇p = Jp tr[dp] with tr[dp] = tr[Dp] . (4.5)

Note that all kinematic quantities introduced above are functions of the Lagrangian plastic
metric Gp and its rate, which describe the macroscopic plastic state and its evolution.
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4.2.2. Evolution of an Isotropic Porous Microstructure

Volume Fraction of Voids. The subsequent modeling accounts for a microstructure
with an isotropic distribution of voids embedded into a matrix, that is restricted to iso-
choric plastic flow. The porosity is described by the void volume fraction

f ∈ [f0, 1) with f(X, t0) = f0 > 0 (4.6)

that evolves due to the plastic deformation of the matrix from a given initial value f0.
When restricting to scenarios of metal or polymer plasticity with small elastic strains, we
estimate

Jp ≈ J and J̇p ≈ J̇ = J tr[L] , (4.7)

where L = Ḟ F−1 is the spatial velocity gradient. As a consequence, the void volume
fraction f is assumed to be in a one-to-one relationship to the total volumetric macro-
deformation. Its evolution is obtained from the mass balance of the matrix material, that
approximately reads

d

dt

∫

Bt

ρM(1− f)dv = 0 (4.8)

with constant density ρM and the volume element dv = JdV of deformed configuration
Bt. This global statement results into the growth-type evolution equation

ḟ = (1− f) J̇
J

= (1− f) tr[L] (4.9)

for void fractions above the lower bound f0 > 0. Its integration results into the closed-form
relationship

f = f̂(J) = max[ f0, 1−
1− f0
J

] (4.10)

between the void fraction and the Jacobian of the deformation gradient. Hence, the void
fraction f is assumed to be a function of the Jacobian J of the deformation gradient.

∗

An Effective Cauchy Stress. Let σ ∈ Sym+(3 ) be the macroscopic true Cauchy stress
tensor defined on the deformed manifold Bt. In order to define an effective stress tensor
σ̃ that drives the plastic deformation of the matrix, an estimate for the Jacobian J is
introduced obtained form the inverse representation of (4.10)

J ≈ 1− f0
1− f ≈

1

1− f , (4.11)

that holds for small initial void fractions f0 << 1. This approximation is then used to
estimate the effective Cauchy stress

σ̃ :=
σ

1− f ≈ τ := Jσ (4.12)

∗
The assumption (4.8) is consistent with a classical growth law already considered in Gurson 1975.

We view it here as a particular constitutive definition of an effective void fraction. In this sense, it is
open for a modification conceptually for considering void coalescence such as conceptually outlined in
Tvergaard 1982.
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by the Kirchhoff stress τ . Hence, for the growth-type porosity evolution (4.9) suitable for
a matrix material undergoing small elastic and large isochoric plastic strains, the Kirchhoff
tensor τ defined in (4.12)2 can be considered as an effective Cauchy stress acting on the
matrix material. This observation is a key ingredient of the subsequent work. It provides
a clear physical motivation for the use of the Eulerian Kirchhoff stress τ in yield functions
of isotropic porous plasticity, and characterizes τ as the driving force for the plasticity
of the matrix material consistent with the void growth assumption (4.9). This result is
crucial for the setting up of the subsequent variational framework for porous plasticity at
fracture in a consistent geometric setting with respect to the current configuration.

Strain-Gradient Hardening of Matrix. In order to set up a length scale for the
plastic response, we consider a formulation of isotropic gradient plasticity. To this end, a
scalar microstructural hardening variable

α ∈ [0,∞) with α(X, t0) = 0 (4.13)

is introduced that defines an equivalent plastic strain in the matrix material. Its evolution
is derived by postulating the equivalence of the microscopic plastic hardening power of
the matrix and the macroscopic plastic power per unit of the reference volume

∫

Bt

rpα̇(1− f)dv =
∫

Bt

σ : dpdv , (4.14)

where rp(α,∇α) is a given isotropic hardening function of the matrix material. σ : dp

is the macroscopic plastic power with respect to the volume of the current configuration,
where σ is the Cauchy stress and dp the plastic evolution operator defined in (4.4). Taking
the local form of (4.14), dividing it by the factor 1−f and integrating it over the reference
volume B0 gives the alternative form

∫

B0

rpα̇dV =

∫

B0

τ : dpdV , (4.15)

when the approximation (4.12) of the effective Cauchy stress by the Kirchhoff stress
is inserted. Note carefully that the void fraction f does not explicitly appear in this
statement, because it is covered by the Kirchhoff stress τ . This provides the foundation
of the subsequent development of a variational formulation of porous plasticity. Here, we
formulate yield functions in terms of the Kirchhoff stress such that the variational-based
evolution of the microstructural hardening variable takes the form

α̇ =
1

rp
τ : dp ≥ 0 . (4.16)

In the subsequent treatment, we introduce the plastic length scale lp that accounts for
size effects to overcome the non-physical mesh sensitivity in ductile fracture. To this end,
we focus on a first order setting of gradient plasticity where the gradient ∇α(X, t) enters
the constitutive functions. The generalized internal variable field α is considered to be
passive in the sense that an external driving is not allowed. This is consistent with the
time-independent (”passive”) Dirichlet- and Neumann conditions

α = 0 on ∂Bα
0 and ∇α · n0 = 0 on ∂B∇α

0 (4.17)

on the surface ∂B0 = ∂Bα
0 ∪ ∂B∇α

0 of the undeformed configuration, defining ”micro-
clamped” and ”free” constraints for the evolution of the plastic deformation.
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x

d(x)
1

lf lf

Figure 4.2: Diffusive crack modeling at x = 0 modeled with the length scale lf ≤ lp. Regular-
ized curves obtained from minimization principle of diffusive crack topology

∫
B0
γldV → Min!

with crack surface density function γl. Thick line: γl = d2/2lf + lf |∇d|2/2 with regularization
profile exp[−|x|/lf ] satisfying d(0) = 1, dotted line: γl = d2/2lf + lf |∇d|2/4 + l3f (∆d)

2/32 with
regularization profile exp[−2|x|/lf ](1 + 2|x|/lf) satisfying d(0) = 1 and d′(0) = 0.

4.2.3. The Phase Field Approximation of Sharp Macro-Cracks

Following previous treatments of Miehe et al. 2010b, we consider the phase field approach
to fracture as a specific formulation of gradient damage mechanics. It is based on a
geometric regularization of sharp crack discontinuities that is governed by a crack phase
field

d ∈ [0, 1] with ḋ ≥ 0 and d(X, t0) = 0 (4.18)

as indicated in Figure 4.2. It characterizes locally for the initial condition d(X, t) = 0
the unbroken and for d(X, t) = 1 the fully broken state of the material. In contrast to
traditional approaches to gradient damage mechanics, the crack phase field d is considered
to have a purely geometric meaning. It governs the regularized crack surface

Γl(d) =

∫

B0

γ̂(d,∇d) dV with γ̂(d,∇d) = 1

2lf
d2 +

lf
2
|∇d|2 (4.19)

that is formulated in terms of an isotropic crack surface density function per unit volume
of the solid. The regularization is governed by a fracture length scale

lf ≤ lp or lf ≥ lp (4.20)

such that the regularized crack zone lies inside of the plastic zone or vice versa. The
function γ̂ in (4.15) already appears in the approximation by Ambrosio and Tortorelli
1990 of the Mumford and Shah 1989 functional of image segmentation. The functional
Γl(d) converges to a sharp-crack topology for vanishing fracture length scale lf → 0 as
schematically visualized in Figure 4.2, which depicts in addition a possible higher order
approximation suggested by Borden et al. 2014. When assuming a given sharp crack
surface topology by prescribing the Dirichlet condition d = 1 on Γ ⊂ B0, the regularized
crack phase field d in the full domain B0 is obtained by aminimization principle of diffusive
crack topology with the limit

lim
lf→0

{
inf
d

Γl(d)
}
= Γ(t) , (4.21)

see Miehe et al. 2010b for more details. Figure 4.3 depicts numerical solutions of this
variational problem in a two-dimensional setting, which demonstrate the influence of the
fracture length scale lf . Note that the limit for vanishing fracture length scale lf → 0
gives the sharp crack surface Γ. The crack phase field d is passive in the sense that
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a) b) c)

B0

Figure 4.3: Continuum approximation of crack discontinuities. Solutions of the variational
problem (4.8) of diffusive crack topology for a circular specimen with a given sharp crack Γ,
prescribed by the Dirichlet condition d = 1. Crack phase field d ∈ [0, 1] for different length
scales laf > lbf > lcf . The sequence of plots visualizes the limit Γl → Γ of the regularized crack
surface functional (4.8) towards the sharp crack surface.

an external driving is not allowed. Only time-independent (”passive”) Dirichlet- and
Neumann conditions

d = 1 on Γ ⊂ B0 and ∇d · n0 = 0 on ∂B0 (4.22)

are allowed, defining a sharp ”initial crack” and ”free” evolution of the crack phase field
on the full boundary.

4.2.4. Global Primary Fields and Constitutive State Variables

The above introduced variables will characterize a multi-field setting of gradient plasticity
at fracture based on three global primary fields

U := {ϕ, α, d} , (4.23)

the finite deformation map ϕ, the strain-hardening variable α and the crack phase field d.
In addition, the Lagrangian plastic metric field Gp−1 serves as an additional local primary
field. The subsequent constitutive approach to the phase field modeling of ductile fracture
focuses on the set

C := {∇ϕ,Gp−1, α,∇α, d,∇d} , (4.24)

reflecting a combination of first-order gradient plasticity with a first-order gradient dam-
age modeling. The subsequent theory of gradient plasticity at fracture uses this set of
constitutive state variables.

4.3. Variational Phase Field Approches to Brittle Fracture

The section provides an overview of different approaches to the phase field modeling of
brittle fracture found in the literature, which provide the starting point for the subsequent
extension to ductile fracture. The differences between approaches are best understood by
considering an incremental setting. To this end, consider the interval [tn, t] of a process
parameter t (time or load parameter), and assume all variables at tn to be given. The
process is driven by the Dirichlet conditions on the current deformation field ϕ defined
in (4.2)1. Important differences appear in the formulation the irreversibility constraints,
which have a strong influence to the characterization on the fracture phase field variable.
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4.3.1. The Fundamental Variational Theory of Brittle Fracture

Fundamental Variational Theory of Brittle Fracture. In Griffith-type fracture, the
current deformation ϕ and sharp crack surface Γ in a brittle elastic solid are determined
by the incremental minimization problem

E1(ϕ,Γ) =

∫

B0\Γ

ψ̂(∇ϕ) dV + gcH(Γ)→ Min! for Γ ⊃ Γn (4.25)

developed by Francfort and Marigo 1998. The functional E1 represents the total work
needed for the deformation and cracking of the solid, consisting of the stored elastic strain
energy and the energy release due to fracture. H(Γ) is the Hausdorff surface measure of
the crack set Γ, and gc the critical surface energy release. The functional E1 has a structure
identical to that for image segmentation developed by Mumford and Shah 1989. Note
that the variable for the description of the crack evolution is the current crack surface
Γ itself, that is constraint to include the sharp crack surface Γn obtained in the previous
step at time tn. This irreversibility condition can be viewed as a Dirichlet condition for
the current sharp crack surface Γ, that advances in the incremental loading process.

Regularized Variational Theory. For the numerical implementation of the incremen-
tal minimization problem (4.25), Bourdin et al. 2008 used the Γ-convergent approximation
of (4.25) developed in the field of image segmentation by Ambrosio and Tortorelli 1990.
It can be represented in the form

E2(ϕ, d) =

∫

B0

Ŵ (∇ϕ, d,∇d) dV → Min! for d ∈ Wd
n (4.26)

where d ∈ [0, 1] is an auxiliary field that we here denote as the fracture phase field. The
total work density function

Ŵ = ĝ(d)ψ̂(∇ϕ) + gcγ̂(d,∇d) (4.27)

contains a degraded elastic work density and the crack energy release per unit volume.
ĝ = (1 − d)2 + k is a degrading function and γ̂ the crack surface density function. The
irreversibility is achieved by evolving Dirichlet conditions on the auxiliary field d with

Wd
n := {d| d(X, t) = 1 in B0|dn(X.t)=1} . (4.28)

Note carefully that the auxiliary field d is not locally constrained, i.e. d can increase
as well as decrease as shown in Figure 4.4a. The irreversibility is incorporated by an
incremental evolution of Dirichlet conditions: Once the auxiliary field d reaches within
an incremental load step at a local point X ∈ B0 the value d = 1, that point carries in
the subsequent incremental steps the Dirichlet-type condition (4.28). For the 1D tension
test shown in Figure 4.4a, the phase field d increases in the full domain and remains
homogeneous until an imperfection-driven localization starts in the middle of the 1D bar
at X = 0. Subsequently, after localization, the phase field in the outer regions decreases
back again up to zero. A characteristic profile with a non-differentiable point at X = 0 is
obtained. As indicated in Figure 4.4a, the formulation by Bourdin et al. 2008 provides a
Γ-convergent regularization of a sharp crack at X = 0 for the limit lf → 0 of the length
scale in the crack density function γ̂.
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Figure 4.4: Evolution of the fracture phase field d in a 1d tension test for different approaches.
a) Regularized variational theory (4.26) by Bourdin et al. 2000 without local irreversibility.
b) Gradient damage formulation without threshold (4.30) by Amor et al. 2009 and Miehe et
al. 2010b with local irreversibility. c) Gradient damage formulation with threshold based on
(4.32) by Pham et al. 2011 and Miehe et al. 2015b with local irreversibility and elastic domain.
Formulations a) and c) are convergent to the a crack for the limit lf → 0.

4.3.2. Variational Gradient Damage Approaches to Brittle Fracture

Formulation without Threshold. A locally irreversible phase field evolution devel-
oped by Amor et al. 2009 and Miehe et al. 2010b considers the minimization of the
incremental energy functional

E3(ϕ, d) =

∫

B0

[ Ŵ (∇ϕ, d,∇d) +
∫ t

tn

V̂ (ḋ)dt ] dV → Min! (4.29)
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with the total work density Ŵ defined in (4.27) and the dissipation potential density

V̂ =
η

2
ḋ2 + Î(ḋ) with Î =

{
0 for ḋ ≥ 0
∞ otherwise

. (4.30)

Here, a local irreversibility constraint ḋ ≥ 0 and a viscous effect of crack propagation is
enforced by the dissipation function V̂ . The functional E3 is considered to be an algo-
rithmic expression that approximates the time integration by the closed-form incremental
expression

E3(ϕ, d) =

∫

B0

[ Ŵ (∇ϕ, d,∇d) + η

2τ
(d− dn)2 + Î(d− dn) ] dV → Min! (4.31)

In contrast to (4.26) with evolving boundary conditions on d, the irreversibility is realized

by the contribution of the indicator function Î to the local constitutive dissipation func-
tion. This is a classical ingredient of gradient damage theories, accounting for fracture
by locally irreversible damage of the material. Such a formulation with a non-smooth
evolution of the phase field can be implemented in a straightforward manner by finite
element multifield solvers. The difference to the formulation of Bourdin et al. 2008 is
depicted in Figure 4.4b for a one-dimensional tensile test. First, the phase field growths
and remains homogeneous up to the same level as in Figure 4.4a. However, due to the
local irreversibility constraint, the phase does subsequently not decrease in zones aside
from the crack localization. As a consequence, these zones remain partially damaged.
Such a formulation is not Γ-convergent to a sharp crack at X = 0 for the limit lf → 0 of
the length scale in the crack density function γ̂, as numerically investigated by May et al.
2015. However, very reasonable results are obtained for inhomogeneous multi-dimensional
problem, where the evolution of the crack phase field is a priori localized, see Miehe et al.
2010a,b.

Formulation with Threshold. The problem of missing convergence of the gradient
damage formulation to the sharp crack limit can be overcome by an inclusion of a frac-
ture threshold, i.e. an elastic domain in the space of the crack driving forces with zero
evolution related to zero evolution of the phase field d. This is a classical ingredient of
gradient damage theories, see for example Frémond and Nedjar 1996 and Miehe 2011.
Recent formulations outlined in Pham et al. 2011 and Miehe et al. 2015b combine it with
the functions ĝ and γ̂ related to the functional of Ambrosio and Tortorelli 1990. The
formulation considered in Miehe et al. 2015b again bases on the incremental minimization
principle (4.31) that accounts locally for irreversibility of the phase field d by the indicator

function Î. However, it uses a modification of the total energy density function (4.27)

Ŵ (∇ϕ, d,∇d) = ĝ(d)ψ̂(∇ϕ) + [1− ĝ(d)]wc + (2wclf )γ̂(d,∇d) (4.32)

where the material parameter wc plays the role of a fracture energy threshold.
∗
The effect

of this modification is demonstrated in Figure 4.4c for a one-dimensional test. In contrast

∗
The function (4.32) can be recast into the form

Ŵ (∇ϕ, d,∇d) = ĝ(d)ψ̂(∇ϕ) + 2wc[ d+
l2f
2
|∇d|2 ] (4.33)

that appears already in formulation of gradient damage by Frémond and Nedjar 1996.
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to the Figure 4.4b, the phase field d starts to develop at the same time as it localizes, and
is restricted to a damaged zone of width depending on the length scale lf . For ψ < wc,
the fracture phase field is equal to zero. The final distribution of the phase field over the
cracked bar is then similar to the distribution in Figure 4.4a obtained by the formulation
of Bourdin et al. 2008. Such a formulation with thresholds combines advantages of a
description that is convergent to the sharp crack limit with a simple implementation by
finite element solvers for multi-field problems. As a consequence, we subsequently extend
this gradient damage formulation with threshold to the modeling of ductile fracture in
elastic-plastic solids.

4.4. Variational Phase Field Approach to Ductile Fracture

This section outlines a theory for the coupling of gradient plasticity coupled with a phase
field modeling of fracture that is fully variational in nature. It is based on the definition of
constitutive work density and threshold functions, which define a minimization principle
for the coupled evolution system.

4.4.1. Coupling Gradient Plasticity to Gradient Damage Mechanics

Consider the stress power P := τ : d per unit volume of the reference configuration, acting
on a local material element that undergoes elastic-plastic deformation and fracture. It is
the inner product of the stress and a rate of deformation, the thermodynamic external
variables acting on the material element. We use the Eulerian rate of deformation d :=
sym[L], i.e. the symmetric part of the spatial velocity gradient L := Ḟ F−1, and its
dual stress tensor, the symmetric Eulerian Kirchhoff stress τ . Let W denote the time-
accumulated work per unit volume and W its accumulation in space

W :=

∫ T

0

P dt and W :=

∫

B0

W dV , (4.34)

i.e. the total work needed to deform and crack the solid B0 within the process time
[0, T ]. We base the subsequent development of a phase field approach on a constitutive
representation of this work

W =

∫

B0

[ Ŵ (C) +Dvis ]dV . (4.35)

It is governed by a constitutive work density function Ŵ that describes the rate-independent
part of the global work W. The a priori dissipative rate-dependent part Dvis due to vis-
cous resistance forces vanishes in the rate-independent limit. Equation (4.35) holds for
particular boundary conditions of the ”non-local” generalized internal variable fields α
and d. These must be ”passive” in the sense that an external driving of these fields is not
allowed, which is consistent with (i) constant Dirichlet data and (ii) zero Neumann data
of α and d on the surface ∂B0 of the solid, as defined in (4.5) and (4.9) above. The rate-

independent part Ŵ is assumed to depend on the array C of constitutive state variables
introduced in (4.11). We focus on the particular structure

Ŵ (C) = ĝ(d)ŵep
0 (be, α,∇α) + (1− ĝ(d))wc + 2

wc

ζ
lf γ̂(d,∇d) (4.36)
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as conceptually suggested already in Miehe et al. 2015a, which provides a particular
coupling of gradient plasticity with gradient damage mechanics. The function ŵep

0 splits
up into elastic and plastic contributions according to

ŵep
0 (be, α,∇α) = ŵe

0(b
e) + ŵp

0(α,∇α) . (4.37)

The derivatives of the potential density Ŵ determine the rate-independent parts of
stresses, the driving forces and the thresholds for the evolution of the plastic strains and
the fracture phase field. It is based on four constitutive functions with a clear physical
meaning:

F1 The effective elastic work density function ŵe
0 models the macroscopic stress response

of the undamaged material.

F2. The effective plastic work density function ŵp
0 models local and strain gradient plas-

tic hardening response of the undamaged matrix material.

F3. The degradation function ĝ describes the transition of the work density ŵep
0 towards

the constant crack threshold parameter wc.

F4. The crack surface density function γ̂ provides the geometric regularization of a sharp
crack topology as already discussed above.

The work-density function Ŵ models for d ∈ [0, 1] with the first two terms a phase
transition of the effective elastic-plastic work density ŵep

0 towards the constant threshold
value wc, and with the third term the accumulated fracture work density. Here, wc > 0
is a specific critical fracture energy per unit volume, that enters the formulation as the
key material parameter on the side of fracture mechanics. The second material parameter
ζ controls the post-critical range after crack initialization by scaling the work needed
for the generation of the regularized crack surface. Figure 4.12 below gives a visual
interpretation of the parameters wc and ζ for a local homogeneous response, where Dpf :=
(1+ 1/ζ)wc, defined in (4.49), is the maximum dissipated work density at fracture d = 1.

The constitutive representation for Ŵ in (4.36) provides the basis for the coupling of
a model of gradient plasticity (governed by ŵp

0) with a gradient damage formulation
(governed by γ̂), realized by the degradation function ĝ.

4.4.2. Choice of Effective Work Density and Degradation Functions

Effective Elastic Work Density. The effective elastic work density function ŵe
0 in

(4.37) models the stored elastic energy of the unbroken material. The dependence on the
Eulerian elastic Finger tensor be defined in (4.2) restricts the model to isotropy. This is
a consequence of the objectivity constraint ŵe

0(QbeQT ) = ŵe
0(b

e) for all Q ∈ SO(3). For
the subsequent model problems, the elastic work density is assumed to have the simple
quadratic form

ŵe
0(b

e) =
λ

2
tr2[he] + µ tr[(he)2] with he := 1

2
ln[be] (4.38)

of the Eulerian elastic Hencky tensor he. It characterizes an isotropic, linear stress re-
sponse in the logarithmic strain space. λ > 0 and µ > 0 are the Lame constants. The
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function provides a structure identical to the geometrical linear theory of elasticity at
small strains. Note that ŵe

0 is convex with respect to he, however, due to the nonlin-
ear relationship (4.2), not poly-convex with respect to F . This restricts the model of
elasto-plasticity under consideration to a range of small elastic strains ||he|| < ǫ, how-
ever, accompanied by large plastic strains. This is a typical scenario applicable to metal
plasticity.

Effective Plastic Work Density. The effective plastic work density function ŵp
0 in

(4.37) models the dissipated plastic work of the unbroken matrix material per unit vol-
ume of the reference configuration, consistent with the argumentation that led to (4.15).
For the modeling of length scale effects in isotropic gradient plasticity, we focus on the
equivalent plastic strain α and its gradient. It is assumed to have the form

ŵp
0(α,∇α) =

∫ α

0

ŷM(α̃)dα̃+ y0
l2p
2
|∇α|2 , (4.39)

where lp ≥ 0 is a plastic length scale related to a strain-gradient hardening effect. ŷM(α)
is an isotropic local hardening function obtained form homogeneous experiments of the
matrix material. We use in what follows the saturation-type function

ŷM(α) = y0 + (y∞ − y0)( 1− exp[−ηα] ) + hα (4.40)

in terms of the four material parameters y0 > 0, y∞ ≥ y0, η > 0 and h ≥ 0, where the
initial yield stress y0 determines the threshold of the effective elastic response.

Degradation Function. The degradation function ĝ(d) in (4.36) models the degra-
dation of the elastic-plastic work density due to fracture. It interpolates between the
unbroken response for d = 0 and the fully broken state at d = 1 by satisfying the con-
straints ĝ(0 ) = 1, ĝ(1 ) = 0, ĝ′(d) ≤ 0 and ĝ′(1 ) = 0. In particular, the last constraint
ensures that the local driving force dual to d ensures an upper bound of the phase field
d ∈ [0, 1]. A function that satisfies this constraint is

ĝ(d) = (1− d)2 . (4.41)

The quadratic nature of this function is an important ingredient for the construction
of a linear equation for the evolution of the phase field d. Note that the total work
density Ŵ introduced in (4.36) applies the same degradation function ĝ(d) on the three
functions ŵe

0, ŵ
p
0 and ŵ

f
0 , respectively. This is an important assumption with regard to the

subsequent construction of a gradient plasticity model related to the effective quantities of
the undamaged material, where the effective plastic work density ŵp

0 serves as a ductile
contribution to the crack driving force.

∗

∗
The functions ĝ defined in (4.41) appears in the Γ-convergent regularization by Ambrosio and Tor-

torelli 1990 of the Mumford-Shah functional in image segmentation, see Mumford and Shah 1989. Sub-
sequently, it has been used by Bourdin et al. 2000 in the incremental approximation of their variational
theory of brittle fracture, Francfort and Marigo 1998, see also Comi 1999 for an early application in
gradient damage mechanics. Note that the function (4.35) is convex with ĝ′′ > 0. This is in contrast to
the non-convex function ĝ(d) = 4(1− d)3 − 3(1− d)4 used in the phase field model of Hakim and Karma
2009 in brittle fracture mechanics.
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4.4.3. Stored Energy, Dissipation and Thermodynamic Consistency

Energetic-Dissipative Split. In order to quantify both the energy stored in the mate-
rial and the dissipation, a further assumption is needed that postulates a split of the work
density function Ŵ into energetic and dissipative parts. To this end, (4.36) is decomposed

Ŵ (C) = ψ̂e(be, d) + D̂pf(α,∇α, d,∇d) (4.42)

into a stored energy density ψ̂e and the accumulated dissipative part D̂pf due to plasticity
and fracture. This split assumes that the macroscopic elastic strain energy is the only
part of the total work density that is stored in the material. The constitutive expression
for this part obtained from (4.36) is

ψ̂e(be, d) = ĝ(d)ŵe
0(b

e) (4.43)

governed by the degrading function ĝ and the elastic strain energy function ŵe
0 of the

unbroken material.
∗
Consequently, the remaining part of the work density function (4.36)

D̂pf(α,∇α, d,∇d) = ĝ(d)ŵp
0(α,∇α) + (1− ĝ(d))wc + 2

wc

ζ
lf γ̂(d,∇d) (4.44)

models the accumulated dissipation in terms of the plastic work density function ŵp
0 of

the unbroken material and the crack surface density function γ̂.

Plasticity-Fracture Split. Note that D̂pf provides a constitutive expression for the
accumulated dissipation due to plasticity and fracture. It does not allow to separate both
contributions. In order to investigate this, define the dissipation locally as the difference
of the external stress power and the evolution of the energy storage, by the standard
Clausius-Planck inequality

Dpf := τ : d− d

dt
ψ̂e ≥ 0 . (4.45)

The evolution of the elastic stored energy ψ̂e can be expressed in terms of the material
time derivative ḃe = lbe + belT +£vb

e. Exploiting the fact that be and ∂beψ̂
e commute

as a consequence of the elastic isotropy, a standard argument identifies the constitutive
equation for the Kirchhoff stress

τ = ĝ(d)τ 0 with τ 0 = 2be∂beŵ
e
0 = ∂heŵe

0 . (4.46)

The remaining reduced dissipation expression splits up into plastic and fracture parts

Dpf := Dp +Df ≥ 0 with Dp := fp : dp ≥ 0 and Df := ff ḋ ≥ 0 (4.47)

where dp is the Eulerian plastic rate of deformation tensor introduced in (4.4). The
energetic plastic and fracture driving forces are

fp := τ and ff := −ĝ′(d)ŵe
0 (4.48)

∗
This assumption does not specify the stored energy due to cold (plastic) work, that is difficult to

quantify by caloric experiments. In that sense, (4.43) provides a convenient mathematical definition
suitable for pure mechanical analyses.
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obtained from the energy storage function ψ̂e in (4.43). The plastic driving force fp is the
Kirchhoff stress τ . The fracture driving force ff is related to the effective elastic energy
ŵe

0. When introducing the time- and space-accumulated dissipative work

Dpf :=

∫ T

0

Dpf dt and Dpf :=

∫

B0

Dpf dV , (4.49)

in analogy to (4.34), insertion of (4.47) allows a separate identification of the contributions
due to plasticity and fracture. In particular, we have

Dpf := Dp +Df (4.50)

with the definitions

Dp :=

∫ T

0

Dp dt and Df :=

∫ T

0

Df dt . (4.51)

These expressions can numerically be evaluated and provide for a rate-independent model
with Dvis = 0 in (4.35) under homogeneous conditions with ∇α = ∇d = 0 the closed form

D̂pf in (4.44). The split (4.50) is visualized in Figure 4.12 below for a one-dimensional
model problem of non-hardening ideal plasticity.

4.4.4. Driving, Resistance and Thresholds for Plasticity and Fracture

The evolutions of the plastic strains and fracture phase field are constructed in a normal-
dissipative format related to threshold functions. These functions are formulated in terms
of energetic driving forces fp and ff defined in (4.48) and dissipative resistance forces

obtained from the dissipative part D̂pf of the work density function Ŵ .

Threshold for Plasticity. The rate independent part of the dissipative resistance dual
to the hardening variable α is defined

rp := δαD̂
pf = ∂αD̂

pf − Div[∂∇αD̂
pf ] (4.52)

in terms of the variational derivative of D̂pf by α, reflecting the characteristics of the
gradient-extended plasticity model under consideration. An elastic domain associated
with the plastic deformation in the space of the plastic driving force fp ≡ τ is defined by

Eplas := { (fp, rp) | φ̂p(fp, rp; f) ≤ 0 } (4.53)

in terms of the plastic yield function φ̂p. It depends on the current microstructural void
fraction f , which was in (4.10) assumed to be a function of the current deformation state.
We focus on a specific class of yield functions for porous materials formulated in terms of
the Kirchhoff stresses

φ̂p(fp, rp; f) = χ̂p(fp; f)−
√

2
3
rp (4.54)

with the generalized norm of the plastic driving force fp ≡ τ , which is positively homoge-
neous of the degree one. This provides the property

fp : ∂fpχ̂
p = χ̂p (4.55)
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for the normal to the yield function, that is subsequently exploited. A function that
satisfies these properties is the modified Gurson function

χ̂p(fp; f) =
√

(|| dev[fp]||)2 + 1
3
f (tr[fp])2 (4.56)

in the Kirchhoff stress space derived in Section 4.4.7 below, which degenerates for f = 0
to the classical von Mises function.

∗

Threshold for Fracture. The rate-independent part of the dissipative resistance dual
to the fracture phase field d is defined by

rf := δdD̂
pf = ∂dD̂

pf −Div[∂∇dD̂
pf ] . (4.60)

in terms of the variational derivative of D̂pf by d, characterizes the phase field model of
fracture as a gradient-extended damage formulation. A crack threshold domain in the
space of the crack driving force ff is defined by

Efrac := { (ff − rf) | φ̂f(ff − rf) ≤ 0 } (4.61)

in terms of the crack threshold function φ̂f . We focus on the constitutive representation

φ̂f (ff − rf) = ff − rf . (4.62)

where the energetic driving force ff is bounded by the crack resistance rf .

4.4.5. Evolution Equations for the Generalized Internal Variables

Introduction of a Dissipation Potential Function. With the above introduced
threshold and resistance functions at hand, a dissipation potential function can be con-
structed based on the standard concept of maximum dissipation. For a rate-independent
evolution of the inelastic state, this defines the potential function

V̂ ( ˙C; f) = sup
(fp,rp)∈Eplas

sup
(ff−rf )∈Efrac

[ fp : dp − rpα̇ + (ff − rf)ḋ ] (4.63)

∗
When using the constitutive structure for Ŵ in (4.36), note that the above yield function (4.54) can

be recast into the form

φ̂p(fp, rp; f) = ĝ(d) φ̂p
0(f

p
0, r

p
0; f) with φ̂p

0 = χ̂p(fp0; f)−
√

2
3 r

p
0 (4.57)

with the degradation function ĝ(d) defined in (4.41) and the effective plastic yield function φ̂p0 formulated
in terms of the effective stress-like variables

fp0 :=
1

ĝ(d)
fp and rp0 :=

1

ĝ(d)
rp . (4.58)

This constitutive structure characterizes a formulation of gradient plasticity related to the effective state
variables of the undamaged material. Hence, Eplas in (4.53) can be interpreted to bound the domain

E0
plas := { (fp0, rp0) | φ̂p

0(f
p
0, r

p
0; f) ≤ 0 } (4.59)

in the effective stress space.



76 4.4. Variational Phase Field Approach to Ductile Fracture

related to the two elastic domains Eplas and Efrac defined in (4.53) and (4.61), respec-
tively. Note that this normal-dissipative evolution response is governed by only two scalar
functions.

F5. The plastic yield function φ̂p(fp, rp; f) that determines the elastic domain in terms
of the plastic driving force fp ≡ τ .

F6. The fracture threshold function φ̂f(ff −rf ) that determines the initiation of fracture
in terms of the fracture driving force ff .

These two functions, defined for the model problem under consideration in (4.54) and
(4.62), supplement the four constitutive functions ŵe

0, ŵ
p
0, ĝ and γ̂ in the total work

density function (4.34) and complete the proposed phase field model of fracture.

Rate-Independent Evolution. For the rate-independent evolution, the constrained
optimization problem (4.63) is solved via an extended Lagrange functional

V̂ (Ċ; f) = sup
fp,rp,ff−rf

sup
λp,λf

[ fp : dp−rpα̇+(ff−rf)ḋ−λpφ̂p(fp, rp; f)−λf φ̂f(ff−rf) ] , (4.64)

where the Lagrange parameters λp and λf control the non-smooth evolution of the plas-
ticity and the fracture, respectively. The necessary conditions of the local optimization
problem (4.64) determine the plastic flow rules

dp = λp ∂fp φ̂
p and α̇ = −λp ∂rp φ̂p (4.65)

and the normal-dissipative evolution equation for the crack phase field

ḋ = λf ∂ff−rf φ̂
f . (4.66)

along with the two loading-unloading conditions

λp ≥ 0 , φ̂p ≤ 0 , λpφ̂p = 0 and λf ≥ 0 , φ̂f ≤ 0 , λf φ̂f = 0 . (4.67)

of the plastic and fracture response, respectively.

Viscous Regularized Evolution. In this work, we consider viscous regularizations for
both dissipation mechanisms. This allows the definition of a dissipation potential function
in a non-constrained manner

V̂ (Ċ; f) = sup
fp,rp,ff−rf

[ fp : dp − rpα̇ + (ff − rf )ḋ− V̂ ∗(fp, rp, ff − rf ; f) ] , (4.68)

in terms of the dual dissipation potential function

V̂ ∗(fp, rp, ff − rf ; f) = 3

4ηp

〈
φ̂p(fp, rp; f)

〉2

+
1

2ηf

〈
φ̂f (ff − rf)

〉2

(4.69)

where 〈x〉 := (x+|x|)/2 is the Macaulay bracket. ηp and ηf are additional material param-
eters which characterize viscosity of the plastic deformation and the crack propagation.
Note that the dual dissipation potential V̂ ∗ in (4.68) can mathematically be interpreted
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as a quadratic penalty term, that enforces approximately the threshold conditions (4.53)
and (4.61). The necessary conditions of the local optimization problem (4.68) yield the
plastic flow rules (4.65) and the evolution equation for the crack phase field (4.66), where
the loading-unloading conditions (4.67) are replaced by the viscous constitutive functions

λp :=
3

2ηp

〈
φ̂p
〉
≥ 0 and λf :=

1

ηf

〈
φ̂f

〉
≥ 0 . (4.70)

Furthermore, note that the positiveness of the parameters λp and λf imply via (4.65) and
(4.66) a monotonic growth

α̇ ≥ 0 and ḋ ≥ 0 (4.71)

of the equivalent plastic strain and the fracture phase field.

4.4.6. Proof of Thermodynamic Consistency and its Consequences

The above evolution equations (4.65) and (4.66) satisfy the thermodynamic constraints
(4.47). In particular, we have

Dp = χ̂p(fp; f) λp ≥ 0 and Df = ffλf ≥ 0 . (4.72)

This is obvious due to the a priori positive parameters λp and λf and the positive driving
terms, caused by the convexity of the threshold functions φ̂p and φ̂f in (4.54) and (4.62),

respectively. For the case of both plastic as well as fracture loading with φ̂p ≥ 0 and
φ̂f ≥ 0, the driving forces can be expressed in terms of the rate-independent and rate-
dependent resistances

χ̂p(fp; f) =
√

2
3
(rp + ηpα̇) and ff = rf + ηf ḋ , (4.73)

yielding the representation of the dissipation

Dp = rpα̇ + ηpα̇
2 ≥ 0 and Df = rf ḋ+ ηf ḋ

2 ≥ 0 . (4.74)

Hence, the total dissipation splits into rate-independent and rate-dependent parts

D := Dpf +Dvis ≥ 0 with Dpf = rpα̇ + rf ḋ and Dvis := ηpα̇
2 + ηf ḋ

2 . (4.75)

The viscous part is positive for positive material parameters ηp > 0 and ηf > 0. Using
the definitions of rp and rf in (4.52) and (4.60) in terms of variational derivatives of the

function D̂pf , the integration over the volume of the solid gives
∫

B0

DdV =

∫

B0

[
d

dt
D̂pf +Dvis ]dV −

∫

∂B0

[ ∂∇αD̂
pf ·n0α̇+ ∂∇dD̂

pf ·n0ḋ ]dA ≥ 0 . (4.76)

Here, the surface term vanishes as a consequence of the restriction to ”passive” boundary
conditions, representing (i) constant Dirichlet data and (ii) zero Neumann data of α and
d on the surface ∂B0 of the solid, see below for further details. When integrating over
the process time [0, T ], we end up with the representation of the space-time-accumulated
total dissipative work needed for the generation of plastic deformation and fracture

D :=

∫

B0

[ D̂pf(α,∇α, d,∇d) +Dvis ]dV ≥ 0 (4.77)
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Figure 4.5: Yield surfaces for isotropic porous plasticity, visualized for non-hardening matrix
response rp = y0 = const. in 2d hydrostatic-deviatoric-stress plot. The void fraction is assumed
to be governed by the growth condition (4.10), i.e.f = 1− (1− f0)/J . a) Modified Gurson yield
surface (4.80) in Cauchy stress space σ. b) Modified Gurson yield surface (4.82) in Kirchhoff
stress space τ , where the Kirchhoff stress plays for f0 << 1 according to (4.12) the role of an
effective Cauchy stress, i.e. τ ≈ σ/(1− f).

with the definition

Dvis :=

∫ T

0

Dvisdt ≥ 0 . (4.78)

This identifies the dissipative part of the work density function Ŵ introduced in (4.36)
with decomposition (4.42) as the time-space-accumulated dissipative work done to the
solid.

4.4.7. A Yield Function for Porous Plasticity in Kirchhoff Stress Space

This subsection comments on the choice of the yield functions for porous plasticity for-
mulated in terms of the Kirchhoff stress τ . Recall that under the void growth assumption
(4.10), the Kirchhoff stress plays the role of an effective Cauchy stress acting on the matrix
material. Let us start form the classical Gurson yield hypersurface for a porous material

φ̂p
G(σ, r

p; f) =
σ2
eq

rp2
+ 2f cosh

[
3

2

σm
rp

]
− (1 + f 2) = 0 (4.79)

in the space of the true Cauchy stress σ, where σeq :=
√
3/2|| dev[σ]|| and σm := tr[σ]/3.

Making the approximation cosh(x) ≈ x2/2 + 1 and using some algebraic manipulations
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yields the quadratic hypersurface

(|| dev[σ]||)2 + 1

6
f(tr[σ])2 − (1− f)22

3
rp2 = 0 . (4.80)

Dividing by the factor (1− f)2 gives a surface

(|| dev[σ̃]||)2 + 1

6
f(tr[σ̃])2 − 2

3
rp2 = 0 (4.81)

in terms of the effective Cauchy stress σ̃ := σ/(1 − f). Finally, approximation of the
effective Cauchy stress σ̃ ≈ τ by the Kirchhoff stress τ according to the result (4.12)
gives the new surface

φ̂p(τ , rp; f) = χ̂p(τ ; f)−
√

2

3
rp = 0 (4.82)

of the desired form (4.54) with the generalized norm of the Kirchhoff stress

χ̂p(τ ; f) =

√
(|| dev[τ ]||)2 + 1

6
f (tr[τ ])2 (4.83)

that satisfies the condition (4.56) of the homogeneity of the degree one. Note the simple
dependence on the void fraction f that is due to the fact that the Kirchhoff stress τ already
includes a dependence on f through (4.12). This influence is highlighted in Figure 4.5
and 4.6 that compares the yield hypersurface in the Cauchy stress space with that in the
Kirchhoff stress space. The plastic evolution equations (4.65) take for the function (4.82)
the explicit form

dp = λp
dev[τ ] + 1

6
f tr[τ ]1√

(|| dev[τ ]||)2 + 1
6
f (tr[τ ])2

and α̇ = λp
√

2

3
. (4.84)

The function (4.83) recovers for f = 0 the classical von Mises function for isochoric plastic
flow. In this sense, (4.83) in combination with the simple void growth law (4.10) is consid-
ered as the simplest extension of the J2-flow towards a volumetric plastic flow response in
metallic or polymer materials. Note that this function is used here as a plasticity model in
combination with a macroscopic fracture condition based on the phase field description.
This justifies the simple form when compared with more complex functions describing
both plastic deformation as well as ductile fracture.

4.4.8. Role of Material Parameters for Brittle and Ductile Fracture

The onset of fracture and plasticity is governed by the critical work density wc in (4.36)
and the initial yield stress y0 in (4.40), respectively. The relationship of these two key
material parameters on dissipative side to the elastic moduli κ and µ in (4.38) makes the
difference between brittle or ductile fracture as indicated in Figure 4.7.

Brittle Fracture. Brittle fracture is initiated by a crack evolution that is followed by a
plastic deformation. In other words, the elastic initial deformation reaches a critical state
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Figure 4.6: Yield surfaces for isotropic porous plasticity, visualized for non-hardening matrix
response rp = y0 = const. and different void fractions f1 < f2 < f3 in 3d principal stress space.
a) Modified Gurson yield surface (4.80) in Cauchy stress space σ. b) Modified Gurson yield
surface (4.82) in Kirchhoff stress space τ , where the Kirchhoff stress plays according to (4.12)
the role of an effective Cauchy stress, i.e. τ ≈ σ/(1− f).

that triggers a brittle crack before plasticity starts. This scenario comes for the condition
at the onset of fracture

φ̂f (2ŵe
0(h)− 2wc) = 0 and φ̂p(∂hŵ

e
0(h), y0; f̂(J)) < 0 (4.85)

of the threshold functions introduced above. The combination of these two conditions
gives a constraint on the the material parameters

Brittle E-F-P Response: wc <
1

3

y20
2µ

+
κ

2

(
1− 3f̂(J)

κ

2µ

)
(ln[J ])2 (4.86)

that depends on the volumetric deformation J := det[F ], with ln[J ] = tr [h] and the
elastic bulk modulus κ = λ+2µ/3. It states that a critical energy for fracture is less than
the energy that triggers plasticity. The onsets of fracture and subsequent plasticity are
then defined by the criteria

Onset F: ŵe
0(h) = wc and Onset P: χ̂p(∂hŵ

e
0(h); f̂(J)) =

√
2/3y0 . (4.87)

The fracture starts when the elastic energy reaches the critical value wc. A further increase
of logarithmic strain h results in an evolving fracture phase field d. The subsequent onset
of plasticity then occurs if the effective strain energy reaches the critical energy for plastic
yielding.

Ductile Fracture. Ductile fracture is characterized by a plastic yielding before fracture.
This scenario is associated with the condition at the onset of plasticity

φ̂p(∂hŵ
e
0(h), y0; f̂(J)) = 0 and φ̂f(2ŵe

0(h)− 2wc) < 0 (4.88)

of the two threshold functions. The combination of these two conditions gives the con-
straint on the material parameters

Ductile E-P-F Response: wc >
1

3

y20
2µ

+
κ

2

(
1− 3f̂(J)

κ

2µ

)
(ln[J ])2 . (4.89)
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Figure 4.7: Plastic yield function φ̂p = const. in (4.54) and fracture threshold surface φ̂f =
const in (4.62) visualized as hypersurfaces for non-hardening matrix response rp = y0 = const.
in the 3d logarithmic principal strain space. a) Brittle E-F-P response according to (4.86) with

active fracture surface φ̂f = 0 at onset of fracture. b) Ductile E-P-F response according to (4.89)

with active yield surface φ̂p = 0 at onset of plasticity.

Here, the critical energy that triggers fracture exceeds the energy at the onset of plasticity.
The onsets of plasticity and subsequent fracture are then defined by

Onset P: χ̂p(∂hŵ
e
0(h); f̂(J)) =

√
2/3y0 and Onset F: ŵe

0(h
e) + ŵp

0(α,∇α) = wc .
(4.90)

Plasticity starts if the elastic energy reaches the critical value for yielding. A further
increase of logarithmic strain h results in evolving plastic deformation, characterized by
the plastic metricGp and the equivalent plastic strain α. The subsequent onset of fracture
then occurs if the sum of effective elastic energy and effective plastic work density reaches
the critical value for ductile fracture. For a highly ductile material with ŵe

0 << ŵp
0 we

may estimate for a given local hardening function ŷ(α) a critical value αc of the equivalent
plastic strain in the matrix material by

ŵp
0(αc,0 ) =

∫ αc

0

ŷ(α̃)dα̃ ≈ wc . (4.91)

The choice (4.41) of the degradation function ĝ allows a further interpretation of the
material parameters wc and ζ introduced in (4.36). A bound of the effective elastic-
plastic work function ŵep

0 due to plasticity and fracture is per definition the work density

function Ŵ evaluated at d = 1. Hence,

D̂pf(α,0 , 1,0 ) = (1 +
1

ζ
)wc (4.92)

is the maximum value of the dissipated work density for a homogeneous rate-independent
process, see Figure 4.12 below. For a given fracture threshold parameter wc, the parameter
ζ ≤ 1 scales the dissipative work, providing for ζ < 1 an increase of the dissipation due
to fracture.
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4.5. Minimization Principle for the Evolution Problem

4.5.1. Minimization Principle for the Multi-Field Evolution Problem

Minimization Problem. With the above introduced functions at hand, the boundary
value problem is fully governed by a rate-type minimization principle for the quasi-static
case, where inertia effects are neglected. In line with recent treatments on variational
principles of gradient-extended materials outlined in Miehe 2011, consider the constitutive
rate potential density

π(Ċ; f) =
d

dt
Ŵ (C) + V̂ (Ċ; f) (4.93)

in terms of the basic constitutive functions Ŵ and V̂ defined in (4.36) and (4.68), re-
spectively. The evolution of the boundary-problem of gradient plasticity coupled with
gradient damage mechanics is then governed by the global rate potential

Π(ϕ̇, α̇, ḋ,dp) =

∫

B0

π(Ċ; f) dV − Pext(ϕ̇) (4.94)

where Pext(ϕ̇) :=
∫
B0

γ0 · ϕ̇ dV +
∫
∂B0

t0 · ϕ̇ dA is an external load functional. γ0 is a given

body force per unit volume of the reference configuration, t0 a given traction field on the
surface of the reference configuration. The evolution of all primary fields introduced in
Section 4.2 at a given state is determined by the minimization principle

{ϕ̇, α̇, ḋ,dp} = Arg{ inf
ϕ̇,α̇,ḋ,dp

Π(ϕ̇, α̇, ḋ,dp) } . (4.95)

Here, the evolutions {ϕ̇, α̇, ḋ} of the global fields are constrained by Dirichlet-type bound-
ary conditions defined in (4.2), (4.5) and (4.9) above. Note that the minimization structure
of this variational principle is governed by the convexity of the dissipation potential func-
tion V̂ in (4.68), which states the thermodynamical consistency with the second axiom of
thermodynamics.

Extended Problem. The combination of the global minimization principle (4.95) with

the local maximum problem (4.68) for the definition of the dissipation potential V̂ pro-
vides a mixed variational principle, that defines all equations of the problem of gradient
plasticity at fracture. Setting for compactness of the subsequent notation the mixed vari-
ables

A := rp = δαŴ and D := ff − rf = δdŴ (4.96)

dual to the equivalent plastic strain α and the fracture phase field d and introducing the
mixed potential density

π∗ =
d

dt
Ŵ (C) + τ : dp −Aα̇ +Dḋ− V̂ ∗(τ , A,D; f) , (4.97)
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the Euler equations of the variational principle (4.95) appear in the form

1. Stress equilibrium δϕ̇π
∗≡ −Div [ ∂∇ϕŴ ] = γ0

2. Hardening force δα̇π
∗≡ ∂αŴ − Div [ ∂∇αŴ ]−A = 0

3. Fracture force δḋπ
∗≡ ∂dŴ − Div [ ∂∇dŴ ] +D = 0

4. Plastic force ∂dpπ∗≡ −∂heŴ + τ = 0

5. Plastic deformation ∂τπ
∗≡ dp − ∂τ V̂ ∗ = 0

6. Equivalent strain ∂Aπ
∗≡ −α̇ − ∂AV̂ ∗ = 0

7. Fracture phase field ∂Dπ
∗≡ ḋ− ∂DV̂ ∗ = 0

(4.98)

along with Neumann-type boundary conditions of the form defined in (4.2), (4.5) and
(4.9) above. Note that the above Euler equations are exclusively related to variational
derivatives of the potential density π∗ defined in (4.97). More details of the Euler equations
associated with the variational principle (4.95) are outlined in Section 4.5.3 below.

4.5.2. Isotropic Plasticity Formulated in the Principal Strain Space

The isotropic elastic energy ŵe
0(h

e) in (4.38) and the yield function φ̂p in (4.54) can be for-
mulated in terms of the elastic principal stretches and the principal stresses, respectively.
To this end, solve the eigenvalue problem for the elastic Finger tensor in (4.2)

[
be − λe21

]
ni = 0 , (4.99)

where {λei}i=1,3 are the elastic principal stretches and ni=1,3 the associated eigenvector
triad. The Eulerian logarithmic Hencky tensor then takes the spectral form

he := 1
2
ln[be] =

∑3
i=1ε

e
ini ⊗ ni (4.100)

in terms of the logarithmic elastic principle strains

εei := ln[λei ] . (4.101)

The spectral representation of the stored elastic energy functions ŵe
0 results in the specific

representation of the work density function (4.36)

Ŵ = ĝ(d)[ ŵe
0(ε

e
1, ε

e
2, ε

e
3) + ŵp

0(α,∇α) ] + (1− ĝ(d))wc + 2
wc

ζ
lf γ̂(d,∇d) . (4.102)

The straightforward exploitation of the hyperelastic stress function (4.46) then gives the
spectral representation of the Kirchhoff stresses

τ =
∑3

i=1τini ⊗ ni with τi = Ŵ,i := ∂Ŵ/∂εei (4.103)

in terms of the principal Kirchhoff stresses τi. Furthermore, the spectral representation of
the yield function φ̂p results in the specific representation of the dual dissipation potential
function (4.69)

V̂ ∗ =
3

4ηp

〈
φ̂p(τ1, τ2, τ3, A; f)

〉2

+
1

2ηf

〈
φ̂f(D)

〉2

(4.104)

where φ̂p is evaluated at a given microstructural void state f . Then it can be shown that
the Eulerian plastic flow rule (4.65) appears in the spectral form

dp =
∑3

i=1d
p
ini ⊗ ni with dpi = V̂ ∗

,i := ∂V̂ ∗/∂τi (4.105)

in terms of the objective evolutions dpi in the directions of the principal axes.
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4.5.3. Objective Exponential Integrator of the Plastic Metric

Consider a finite time increment [tn, tn+1], where τn+1 := tn+1 − tn > 0 denotes the step
length, and all fields at time tn are assumed to be known. An objective update algorithm
for the Eulerian flow rule is obtained by integrating the Lagrangian counterpart of the
rate equations (4.65) and transferring the result to the current configuration via a push-
forward with the discrete map F n+1. The Lagrangian counterpart of (4.65) reads when
using the transformation (4.4)

− 1
2
Ġp−1Gp = F−1∂τ V̂

∗F . (4.106)

A backward Euler integrator with an exponential shift then yields the Lagrangian update
algorithm

Gp−1
n+1 = exp[−2τn+1F

−1
n+1∂τ V̂

∗F n+1 ]G
p−1
n . (4.107)

In what follows, for convenience, all variables without subscript are understood to be
evaluated at time tn+1. Exploiting the algebraic result exp[F−1AF ] = F−1exp[A]F ,
the transformation of (4.107) to the spatial configuration yields the objective update
algorithm of the elastic Finger tensor

be = exp[−2τ∂τ V̂ ∗]be∗ with be∗ := FGp−1
n F T , (4.108)

where the trial value be∗ was introduced. Recall that for the isotropic elastic response τ
and be commute. As a consequence, observe from (4.108) that also be∗ commutes with
be. Exploiting this coaxiality of the incremental setting, the current logarithmic elastic
strains defined in (4.100) take the additive algorithmic form

he = he∗ − τ∂τ V̂ ∗ with he∗ := 1
2
ln[be∗] (4.109)

for the elastic Hecnky tensor, similar to the small-strain update of the geometric linear
theory. Hence, the integration of the flow rule (4.107) boils down to the update of the
logarithmic principal elastic strains

εei = εe∗i − τ V̂ ∗
,i (4.110)

in the eigenvalue space of the trial elastic Finger tensor be∗ defined in (4.108). This holds
in the current incremental step for known trail strains εe∗i = ln[λe∗i ] and known eigenvectors
n∗

i=1,3 obtained form the eigenvalue problem [be∗ − λe∗2i 1 ]n∗
i = 0 .

4.5.4. Numerical Implementation of the Minimization Problem

Incremental Potential Density. Next, a mixed incremental potential density per unit
volume is defined by the algorithmic approximation

π∗τ = Algo{
∫ tn+1

tn

π∗ dt } (4.111)

in terms of the the continuous rate-type potential π∗ introduced in (4.97). A fully implicit
Euler scheme consistent with the above exponential update (4.108) gives

π∗τ = Ŵ +
∑3

i=1τi [ ε
e∗
i − εei ]− A(α− αn) +D(d− dn)− τ V̂ ∗ (4.112)
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Here, the work density function Ŵ and the dual dissipation function V̂ ∗ are understood to
be formulated in terms of principal strains and stresses according to (4.102) and (4.104),
respectively. The second term in (4.112) expresses the plastic dissipation by the difference
between the current elastic principal strains strains and its trial values. In order to obtain
an incremental potential consistent with the continuous setting, the incremental potential
must be evaluated for a microstructural void state fn at time tn.

Condensation of Local Variables. The first part of the incremental solution procedure
consists of the condensation of the incremental potential density π∗τ in (4.112) by the set
of local variables {εei , σi}, defining condensed incremental work density

(L∗) : π∗τ
red = inf

εei

sup
τi

π∗τ . (4.113)

The necessary conditions of this local problem

∂{εei ,τi}π
∗τ =

[
Ŵ,i − τi

εe∗i − εei − τ V̂ ∗
,i

]
= 0 , (4.114)

recovers the constitutive definition (4.103) of the principal plastic driving forces and the
algorithmic update (4.110) of the logarithmic elastic principal strains. With known prin-
cipal stresses σi, the stress tensor is defined by the algorithmic expression (4.103) for
n = n∗

i .

Reduced Global Problem. With the condensed incremental work potential π∗τ
red in

(4.113) at hand, define the reduced potential function

Π∗τ
red =

∫

B0

π∗τ
red dV (4.115)

for pure Dirichlet problems with Pext = 0 in (4.94). The second part of the incremental
solution procedure consists of the solution of the mixed saddle point principle

(G∗) : {ϕ, α, d, A,D} = Arg{ inf
ϕ,α,d

sup
A,D

Π∗τ
red(ϕ, α, d, A,D) } (4.116)

that determines the global fields and the associated driving forces. A straightforward
finite element discretization of this problem based on interpolations

CG∗(X, t) := {∇ϕ, α,∇α, d,∇d, A,D} = B∗(X)d∗(t) (4.117)

with d∗ := {ϕ, α, d, A,D}Nnode
I=1 results in the necessary condition of the FE-discretized

mixed variational principle (4.116), yielding the nonlinear algebraic system

∂d∗Π∗τh
red =

∫

B0

B∗TS∗ dV = 0 . (4.118)
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Here, S∗ may be viewed as a ’generalized stress array’ dual to the global part CG∗ of the
state variables, defined by

S∗ := ∂CG∗π
∗τ
red =




∂∇ϕŴ

∂αŴ − A
∂∇αŴ

∂dŴ +D

∂∇dŴ

−(α− αn)− τ∂AV̂ ∗

(d− dn)− τ∂DV̂ ∗




. (4.119)

A difficulty of the numerical solution of the mixed variational principle (4.116) is the
appropriate interpolation of the dual-primal problem that includes the driving forces A
and D associated with the gradient plastic and the gradient damage effects. For the phase
field model of brittle fracture, such an implementation is outlined in Miehe et al. 2010b.
For gradient plasticity, the recent sequence of works Miehe et al. 2013, 2015a discussed
details of the mixed finite element formulations.

4.5.5. Micromorphic Regularization and Introduction of Crack History

The above outlined mixed implementation of coupled gradient plasticity-damage by finite
element methods is demanding. A more convenient numerical implementation is achieved
by two extensions of the above setting: (i) a micromorphic regularization on the side of
gradient plasticity as recently suggested by Miehe et al. 2016b and (ii) the introduction of
a crack driving history field on the side of gradient damage mechanics in line with Miehe
et al. 2010b. These two modifications allow to defined a further reduced global system,
where the mixed variables A and D in (4.116) are eliminated.

Micromorphic Regularization of Gradient Plasticity. The micromorphic setting,
applied here in the generalized sense of Forest 2009 to the microstructural hardening
variable, is based on an extension of the set (4.11) of state variables

C := {∇ϕ,Gp−1, ᾱ, α,∇α, d,∇d} (4.120)

by the local equivalent plastic strain ᾱ. The dual global field α is then denoted as the
micromorphic variable. The micromorphic regularization of the work density function Ŵ
in (4.102) affects only the microstructural work density ŵp

0(α,∇α), which is now extended
towards a micromorphic regularization

ŵp
0(ᾱ, α,∇α) =

∫ ᾱ

0

ŷ(˜̄α)d˜̄α+ y0
l2p
2
|∇α|2 + ǫp

2
(ᾱ− α)2 . (4.121)

Here, the local slot α in (4.39) is replaced by the additional local variable ᾱ introduced
above. This variable is then linked to the global micromorphic field variable α by the
quadratic penalty term, where ǫp is an additional material parameter. Note the for ǫp →
∞ the above micromorphic extension (4.121) recovers the original setting (4.39) of the
gradient-extended theory in Section 4.3. The modification (4.121) by ᾱ inserted into
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(4.102) results in an extended work density function Ŵm. A further modification concerns
the incremental potential in (4.112)

π∗τ
m = Ŵm +

∑3
i=1τi [ ε

e∗
i − εei ]− A(ᾱ− ᾱn) +D(d− dn)− τ V̂ ∗ (4.122)

where the variable A is now considered to be dual to the local hardening variable ᾱ. These
modifications relax the above mentioned problem of restricting the gradient variable to
the plastic domain. Furthermore, the setting allows the use of local return algorithms for
the update of the plastic state variables.

Condensation of Local Variables. With the micromorphic extension (4.121), an ex-
tension of the condensed incremental work density (4.113) is achieved

(L∗
m) : π∗τ

m,red = inf
εei ,ᾱ

sup
τi,A

π∗τ
m . (4.123)

which now determines in addition to (4.113) the local hardening variable ᾱ and its dual
driving force A. The necessary conditions of this extended problem are

∂{εei ,ᾱ,τi,A}π
∗τ
m =




Ŵm,i − τi
Ŵm,ᾱ − A

εe∗i − εei − τ V̂ ∗
,i

−(ᾱ− ᾱn)− τ V̂ ∗
,A


 = 0 . (4.124)

The big advantage of this setting, when compared to (4.114), is that these equations char-
acterize a setting of local plasticity in the principal strain space with isotropic hardening at
frozen global micromorphic hardening variable α and fracture phase field variable d. Such
a system can be solved by a local return algorithm. This local solution procedure is sum-
marized in the two Boxes 4.1 and 4.2 below. Box 4.1 covers a pre- and post-processing,
that first defines the trial state and finally determines the current stress state by a spec-
tral representation. The core of the algorithm is summarized in Box 4.1, that concerns
the solution in the eigenvalue space. It is a Newton-type solver of the system (4.124)
with a particular structure providing closed forms of the current principal stresses and
the elastic-plastic moduli. Note carefully that it is formulated such that the algorithm
can be applied in the rate-independent limit ηp = 0.

Elimination of the Crack Driving Force. On the side of the phase field evolution,
the mixed variable D can be eliminated as follows. From (4.98)7 and (4.98)3 one finds

ḋ =
1

ηf
〈 D 〉 with D = −δdŴm . (4.132)

The combination of of these equations characterizes a generalized Ginzburg-Landau- or
Allen-Cahn-type equation for the evolution of the crack phase field d. It gives

ηf ḋ =

〈
2(1− d)[ ŵep

0 − wc ]− 2
wc

ζ
d+Div[2

wc

ζ
l2f∇d]

〉
. (4.133)
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Box 4.1: Stress Update Algorithm for Isotropic Visco-Elasto-Plasticity.

1. Preprocessing. F and {Gp−1
n , ᾱn} are given. Get trial value of Eulerian elas-

tic Finger tensor be∗ := FGp−1
n F T , perform spectral decomposition be∗ =∑3

i=1λ
e∗2
i n∗

i ⊗n∗
i and compute trial logarithmic principal strains εe∗i := ln[λe∗i ].

2. Constitutive Box. Compute elastic strains εei , principal stresses τi and algorith-
mic moduli Eep

ij in eigenvalue space from the constitutive Box 4.2.

3. Postprocessing. Compute current elastic principal stretches λei = exp[εei ], up-
date Lagrangian plastic metricGp−1 = F−1[

∑3
i=1λ

e2
i n∗

i⊗n∗
i ]F

−T , get Kirchhoff
stresses and algorithmic tangent moduli

τ =
∑3

i=1τin
∗
i ⊗ n∗

i

E =
∑3

i

∑3
j [E

ep
ij − 2τiδij ]n

∗
i ⊗ n∗

i ⊗ n∗
j ⊗ n∗

j

+
∑3

i

∑3
j 6=i

τiλ
e∗2
j −τjλ

e∗2
i

λe∗2
i −λe∗2

j
n∗

i ⊗ n∗
j ⊗ n∗

i ⊗ n∗
j

(4.125)

and compute nominal stresses and elastic-plastic tangent moduli

P = {τ} 2◦ F−T and A = { E+ 1 ⊙ τ } 2◦F−T 4◦F−T (4.126)

In this equation, the effective work density ŵep
0 plays the role of the driving force. Crucial

observation now is that ŵep
0 does not depend of the phase field d. As a consequence, we

may recast the above equation into the form

ηf ḋ = 2(1− d)H0 − 2
wc

ζ
d+Div[2

wc

ζ
l2f∇d] , (4.134)

where we introduced the crack driving history field

H0 = max
s∈[0,t]

〈 ŵep
0 − wc 〉 (4.135)

It is the maximum value of the work density ŵep
0 due to elastic, plastic and microstructural

fracture effects above the threshold wc, obtained in the history of the deformation pro-
cess. This field describes intrinsically the local irreversibility of the fracture process. Its
introduction is very convenient for the numerical implementation, which is subsequently
performed by considering the reduced equation (4.134) as the key governing equation for
the fracture phase field evolution.

Reduced Global Problem. As a consequence of the micromorphic regularization on
the side of gradient plasticity, and the above elimination of the variable D, the reduced
global problem (4.116) takes the pure minimization form structure

(G∗
m) : {ϕ, α, d} = Arg{ inf

ϕ,α,d
Πτ

m,red(ϕ, α, d) } . (4.136)
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Box 4.2: Return Algorithm and Tangent Moduli in Eigenvalue Space.

1. Set initial values εei = εe∗i for i = 1...3, ᾱ = ᾱn and γp = 0.

2. Compute derivatives of work function Ŵm and plastic yield function φ̂p

Ŵm(ε
e
1, ε

e
2, ε

e
3, ᾱ, α,∇α, d,∇d; fn)[

τi
A

]
=

[
Ŵm,i

Ŵm,ᾱ

]

Ee :=

[
Ŵm,ij Ŵm,iᾱ

Ŵm,ᾱj Ŵm,ᾱᾱ

]

φ̂p(τ1, τ2, τ3, A; fn)

np :=

[
φ̂p,i
φ̂,A

]

Fp :=

[
φ̂p
,ij φ̂p

,iA

φ̂p
,Aj χ̂p

,AA

] (4.127)

3. For elastic step (φ̂p < 0): Set stresses τi = Ŵm,i, moduli Eep
ij = Ŵm,ij and exit.

4. Compute residuals and check tolerance

rp :=

[
εei − εe∗i
ᾱ− ᾱ∗

]
+ γp np . If [

√
rpTrp + [ φ̂p − 2ηp

3τ
γp ]2 < tol ] go to 6.

(4.128)

5. Set Xp := [ Ee−1 + γpFp ]−1, compute incremental plastic parameter

∆γp =
1

Dp
[ φ̂p − npTXp rp ] with Dp := npTXpnp , (4.129)

incremental strains
[
∆εei
∆ᾱ

]
= −Ee−1Xp [ rp +∆γp np ] , (4.130)

perform the updates εei ⇐ εei +∆εei , ᾱ⇐ ᾱ+∆ᾱ, γp ⇐ γp +∆γp and go to 2.

6. Obtain stresses and consistent moduli in eigenvalue space

τi = Ŵm,i and Eep
ij = Xp

ij −
1

Dp
[Xp

ikφ̂
p
,k+Xp

iAφ̂
p
,A ]⊗[ φ̂p

,lX
p
lj+φ̂

p
,AX

p
Aj ] (4.131)
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A finite element discretization of this problem based on interpolations

CG∗
m
(X, t) := {∇ϕ, α,∇α, d,∇d} = B(X)d(t) (4.137)

with d := {ϕ, α, d}Nnode
I=1 . This results in the reduction of the algebraic finite element

problem (4.118) that reads

∂dΠ
τh
m,red =

∫

B0

BTS dV = 0 . (4.138)

in terms of the reduced ’generalized stress operator’

S := ∂CG∗
m
πτ
m.red =




P
ǫp(ᾱ− α)
y0 l

2
p ∇α

ηf
τ
(d− dn)− [ (2(1− d)H0 − 2wc

ζ
d ]

2 wc

ζ
l2f ∇d



. (4.139)

The fist Piola nominal stress P is provided by the local return algorithm in Box 4.1. It
is a convenient reduction of the original operator of the mixed setting defined in (4.119),
where the mixed variables A and D are eliminated based on (i) the micromorphic gradient
plastic setting in (4.121) and (ii) the introduction of the history field in (4.135). Note that
the last two entries in (4.139) are obtained as the weak form of equation (4.134). Observe
furthermore that the formulation can be applied in the rate-independent limit ηf = 0 of
the crack evolution.

4.5.6. The Three Governing PDEs of the Multi-Field Problem

In order to make the three governing equations (4.98)1−3 more transparent, we comment
in what follows on their detailed structure and possible modifications.

The Stress Equilibrium Equation. The first Euler equation (4.98)1 of the variational
principle (4.95) is the quasi-static form of the balance of momentum, which follows by
taking the variation of the potential Π in (4.94) with respect to ϕ̇, yielding

Div [(1− d)2τ 0F
−T ] + γ0 = 0 . (4.140)

The argument of material divergence operator is the first Piola nominal stress P , obtained
from the potential Ŵ in (4.36) by

P = ∂F Ŵ = τF−T with τ = ∂heŴ , (4.141)

for the isotropic case under consideration, where the Eulerian Kirchhoff stress τ follows
from the general return algorithm in Box 4.1. It is related by

τ = (1− d)2τ 0 with τ 0 := κ tr[he]1 + 2µ dev[he] (4.142)

to the effective Kirchhoff stress τ 0 dual to the elastic Eulerian Hencky strain he.
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Figure 4.8: Canonical versus micromorphic formulation of gradient plasticity. Standard one-
dimensional finite element solutions of gradient plasticity for a) canonical setting in equation
(4.146) results in nonphysical oscillations at the elastic-plastic boundary, which are relaxed in
b) by the micromorphic approach according to equations (4.148) and (4.149).

Gradient Plastic Evolution. The second Euler equation (4.98)2 of the variational prin-
ciple (4.95) determines the PDE for the strain gradient plastic evolution of the equivalent
plastic strain. It defines the microstructural plastic hardening force

A = δαŴ = (1− d)2A0 with A0 := ŷ(α)− y0l2p∆α (4.143)

in terms of the given local hardening function ŷ and the strain gradient term, governed
by the Laplacian ∆α of the equivalent plastic strain. It characterizes a combination of
nonlinear local hardening with linear gradient hardening consistent with approaches by
Aifantis 1987 and Mühlhaus and Aifantis 1991. The above PDE is accompanied by the
Euler equations (4.98)4,5,6 for the evolution equations of the plastic state, which give for
particular model of porous plasticity

α̇ = λp
√

2
3

with λp :=
3

2ηp

〈
χ̂p(τ ; f)−

√
2
3
A

〉
(4.144)

as already stated in (4.84). Note that the degradation function (1− d)2 acts on both the
stresses (4.142) and as well as hardening variable (4.143), i.e. χ̂p(τ ; f) = (1−d)2χ̂p(τ 0; f)
and A = (1 − d)2A0. As a consequence, the formulation models a plastic response in the
effective stress space related to τ 0 and A0. This response is completely independent of
the fracture phase field for a state-dependent choice

ηp = (1− d)2ηp0 . (4.145)

of the plastic viscosity. The combination of (4.144)2 with (4.145) and (4.143) results in
the PDE for the strain gradient evolution of the hardening variable

α̇ =
1

ηp0

〈 √
3
2
χ̂p(τ 0; f)− [ ŷ(α)− y0l2p∆α ]

〉
(4.146)



92 4.5. Minimization Principle for the Evolution Problem

where the Macaulay bracket ensures the irreversibility of the isotropic hardening variable.
Clearly, the plastic hardening variable is driven by an equivalent effective stress, and has
the typical gradient-type regularization. For the micromorphic regularization discussed
above, the microstructural plastic hardening force appears in in the local equation

A = ∂ᾱŴ = (1− d)2A0 with A0 := ŷ(ᾱ) + ǫp(ᾱ− α) (4.147)

in terms of the additional local variable ᾱ. It recasts (4.143) into a local equation. The
evolution equation (4.144)2 now holds for the variable ᾱ and modifies (4.146) towards the
local equation

˙̄α =
1

ηp0

〈 √
3
2
χ̂p(τ 0; f)− [ ŷ(ᾱ) + ǫp(ᾱ− α) ]

〉
. (4.148)

The micromorphic variable α in the above equation is determined by a separate PDE
obtained form the equilibrium condition δαŴ = 0 which gives

α− l̄ 2p ∆α = ᾱ with l̄p = lp
√
y0/ǫp , (4.149)

where l̄p is the plastic length scale of the micromorphic theory. The above two equations
provide a modification of (4.146) based on an extended set of variables. As already
mentioned, this has several advantages. It allows the application of the local stress return
scheme in Box 4.1 at frozen micromorphic variable α, which is of particular convenience
for a staggered local-global update of the hardening variable. Furthermore, note carefully
that the evolution of the micromorphic variable in (4.149) is not restricted to the plastic
domain as the original evolution in (4.146). This allows a straightforward finite element
implementation without tracking of elastic-plastic boundaries.

The Fracture Phase Field Equation. The third Euler equation (4.98)3 of the varia-
tional principle (4.95) determines the PDE for fracture phase field evolution equation. It
has already considered in (4.133). Setting for convenience

ηf = 2
wc

ζ
ηf0 , (4.150)

(4.133) may be recast into the dimensionless evolution equation for the evolution of the
crack phase field d

ḋ =
1

ηf0

〈
(1− d) ζ [ ŵ

epf
0

wc
− 1 ]− [ d− l2f∆d ]

〉
(4.151)

Note the formal analogy to (4.146). The fracture phase field is driven by the effective
elastic-plastic work function ŵepf

0 that is independent of d. Following the notation of the
recent work Miehe et al. 2015a, we may recast (4.151) into

ηf0 ḋ︸︷︷︸
evolution

= (1− d)H̃0︸ ︷︷ ︸
crack force

− [ d− l2f∆d ]︸ ︷︷ ︸
crack resistance

(4.152)

with the dimensionless modification H̃0 = ζH0/wc of the history field H0 introduced in
(4.135).
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Figure 4.9: Modification of fracture threshold surface in (4.62) accounting for brittle fracture

in tension, visualized in 2 d elastic principal strain space for different Poisson ratios ν. φ̂f =
2ŵe+

0 (εe)− 2wc = 0 for brittle crack driving in (4.157) for a) decomposition (4.155) of only the
volumeteric term considered in Amor et al. 2009 and b) decomposition (4.154) of both Lame
terms considered in Miehe et al. 2010b.

4.5.7. Modified Phase Field Equation for Brittle Fracture in Tension

Note that the above definition of the crack driving state function does not differentiate
between tension and compression. In order to enforce a brittle crack evolution only in
tension, we consider modifications of the crack driving forces as follows. A first varia-
tionally consistent approach is based on a modified representation of the work density
function introduced in (4.36)

Ŵ = ĝ [ ŵe+
0 + ŵp

0 ] + ŵe−
0 + (1− ĝ)wc + 2

wc

ζ
lf γ̂ (4.153)

where only a tensile part of the stored elastic energy ŵe+
0 degrades due to fracture and the

compression part ŵe−
0 remains. As considered in Miehe et al. 2010b, the decomposition of

the elastic work density function (4.38) into these contributions can be defined by

ŵe
0 = ŵe+

0 + ŵe−
0 with ŵe+

0 (he) :=
λ

2
〈tr[he]〉2 + µ tr[(he+)2] (4.154)

Here, he+ :=
∑3

a=1 〈εea〉 na⊗na is the positive elastic Hencky tensor defined by a spectral
decomposition.

∗
Note that the definition (4.154) contains separate positive volumetric

and isochoric contributions. As a consequence, the Kirchhoff stresses in (4.142) takes the
modified form

τ = (1− d)2τ+
0 + τ−

0 with τ+
0 := λ 〈tr[he]〉1 + 2µhe+ (4.156)

∗
A simplification of the function (4.154)2 is considered in Amor et al. 2009

ŵe+
0 (he) :=

κ

2
〈tr[he]〉2 + µ tr(dev[(he)2]) , (4.155)

where only the volumetric contribution to the elastic strain energy accounts for a decomposition.
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where only the tensile part degrades. Following the same steps as outlined above, we end
up with the modification of the crack driving history field (4.135)

H0 = max
s∈[0,t]

〈
ŵe+

0 (he) + ŵp
0(α,∇α)− wc

〉
(4.157)

where the brittle contribution accounts only for the positive elastic energy ŵe+
0 . The brittle

contributions to the driving state functions defined in (4.154) and (4.155) are visualized
in Figure 4.9.

4.6. Model Investigations I: Local Coaxial Response

As a first model investigation, features of the proposed framework for coupling porous
plasticity to phase field fracture is demonstrated for a local setting with coaxial total and
plastic deformation F and Gp, where the elastic Hencky strain he = h− hp decomposes
additively into total and plastic parts h := 1

2
ln[F TF ] and hp := 1

2
ln[Gp], respectively.

The subsequent treatment provides a conceptual view on the material parameters used.

4.6.1. Constitutive Functions for Isochoric and Volumetric Response

Isochoric Case. Consider a reformulation of the above constitutive model for an iso-
choric coaxial process, that results in a one dimensional setting. To this end, introduce
the amounts ε and εp of total and plastic logarithmic strains deviators by setting h = εa
and hp = εpa with ||a|| = 1 and tr[a] = 0. This pure isochoric deformation is shown in
Figure 4.10a. The work density function for a homogeneous ideal plastic state is

Ŵ (ε− εp, α, d) = (1− d)2 [ µ(ε− εp)2 + y0α− wc] + wc +
wc

ζ
d2 (4.158)

in the rate-independent setting. In the co-axial loading process, this function determines
the constitutive expressions for the amount of the deviatoric stress dev[τ ] = τa and the
driving forces A and D for plasticity and fracture

τ = ∂εŴ = (1− d)2 2µ(ε− εp) ,
A := ∂αŴ = (1− d)2 y0 ,

D := −∂dŴ = 2(1− d)[ µ(ε− εp)2 + y0α− wc ]− 2wcd/ζ .

(4.159)

The evolution of the plastic strains and the fracture phase field is governed by the two
threshold functions

φ̂p(τ, A; f0) = ||τ || −
√

2
3
A and φ̂f(D) = D (4.160)

for a constant initial void volume fraction f0. The response of this one-dimensional sce-
nario is visualized in Figure 4.11a for a monotonous increasing loading process.

Volumetric Case. Now let ε and εp be the amounts of volumetric total and plastic
strains by setting h = εa and hp = εpa with a = 1 . This deformation is depicted in
Figure 4.10b. The work density function for an ideal plastic homogeneous state is

Ŵ (ε− εp, α, d) = (1− d)2 [ κ
2
(ε− εp)2 + y0α− wc ] + wc +

wc

ζ
d2 . (4.161)
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no shape change

no volume change

trh = 0 devh = 0

a) b)

Figure 4.10: Homogeneous isochoric and volumetric deformations with coaxial total and plastic
logarithmic strains h := 1

2 ln[F
TF ] = εa and hp := 1

2 ln[G
p] = εpa, respectively. a) Isochoric

case for ||a|| = 1 and tr[a] = 0. b) Volumetric case for a = 1 .

This function determines the volumetric stress 1
3
tr[τ ]1 = τa and the driving forces A

and D for plasticity and fracture

τ = ∂εŴ = (1− d)2 κ (ε− εp) ,
A := ∂αŴ = (1− d)2 y0 ,

D := −∂dŴ = 2(1− d) [ κ(ε− εp)2/2 + y0α− wc ]− 2wcd/ζ .

(4.162)

The two threshold functions for plasticity and fracture

φ̂p(τ, A; f) =
√

3
2
f ||τ || −

√
2
3
A and φ̂f (D) = D (4.163)

now depend on the current state of void fraction

f = f̂(ε) = max[ f0, 1− (1− f0) exp[−ε] ] , (4.164)

which was assumed in (4.10) to be a function of total volumetric deformation, i.e. the
macroscopic logarithmic strain ε. The response for a monotonous loading process is
depicted in Figure 4.11b.

4.6.2. Role of Material Parameters at the Onset of Ductile Fracture

The onset of plasticity and fracture for the pure isochoric and volumetric responses is
governed by the initial yield stress y0 and the critical work density wc, respectively. Ductile
fracture is characterized by a plastic yielding before fracture. This scenario is associated
with the condition at the onset of plasticity

φ̂p(τ, y0; f̂(ε)) = 0 and φ̂f(D) < 0 (4.165)

of the two threshold functions at εp = α = d = 0.

Isochoric Case. The combination of the two conditions (4.165) gives for the isochoric
functions (4.159) the constraint on the material parameters

Ductile Isochoric E-P-F Response: wc > µε2y =
1

6

y20
µ

(4.166)



96 4.6. Model Investigations I: Local Coaxial Response

ττ

εε

κ2µ

wc wc

P

P

PF

PF

τy τy

εy εyεc εc

ζ < 1.0

ζ < 1.0

ζ = 1.0

ζ = 1.0

ζ > 1.0

ζ > 1.0

a) b)

Figure 4.11: Local response for ideal plasticity coupled with fracture. Kirchhoff stress versus
logarithmic strain: a) For purely isochoric response with onsets εy and εc = εy + εpy of plasticity
and damage obtained from (4.166)–(4.167) and yield stress τy = 2µεy. b) For purely volumetric
response with onsets εy–εc of plasticity and damage obtained from (4.168)–(4.169) and yield
stress τy = κεy. The stress softening is due to the void growth for the non-hardening matrix
response under consideration. The threshold parameter wc determines the onset of fracture and
the parameter ζ the shape of the softening due to fracture.

at the onset of plasticity (P) and the condition

1

6

y20
µ

+ y0αc = wc with αc =
√

2
3
εpc . (4.167)

for the subsequent onset of fracture (F). These conditions determine a strain ε = εy,
where plasticity starts, and a critical plastic strain εp = εpc , where the ductile fracture
is initiated. Figure 4.11a shows the ductile response for pure isochoric response, where
the fracture threshold parameter wc bounds the total work density after a considerable
amount of plastic deformation.

Volumetric Case. The combination of the two conditions (4.165) gives for the volu-
metric functions (4.162) the constraint on the material parameters

Ductile Volumetric E-P-F Response: wc >
κ

2
ε2y =

1

9

1

f̂(εy)

y20
κ

(4.168)

at the onset of plasticity (P) and the condition

1

9

1

f̂(εc)

y20
κ

+ y0αc = wc with αc =

√
2

3

1√
3f̂(εc)

εpc . (4.169)

for the subsequent onset of fracture (F). These conditions can iteratively be solved for a
strain ε = εy, where plasticity starts, and a strain ε = εc, where the ductile fracture is
initiated. Figure 4.11b shows the ductile response with the strain-softening effect due to
void growth, where the fracture threshold parameter wc bounds total work density after
a considerable amount of plastic deformation. Again the shape parameter ζ determines
the slope of the post-critical range of fracture.

4.6.3. Plastic and Damage Dissipation in Brittle and Ductile Fracture

Figure 4.12 investigates the split of the dissipation into plastic and damage contribution
for the case of brittle and ductile fracture. The investigation is performed for an isochoric
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Figure 4.12: Dissipated work density for brittle and ductile isochoric response. Kirchhoff
stress τ and dissipated work Dpf for homogeneous test with a-b) brittle E-F-P response and
for c-d) ductile E-P-F response. The plastic yield stress τy = 2µεy bounds the effective stress.
The fracture threshold parameter wc determines the onset of fracture and the parameter ζ the
shape of the softening due to fracture with the critical stress τc =

√
2Ewc. The dissipated work

Dpf = Dp +Df contains contributions due to plasticity and fracture and converges to the value
wc + wc/ζ at the fully broken state.

homogeneous test with constitutive functions summarized in (4.159) and (4.160). Figure

4.12a depicts the brittle stress response for wc <
1
6

y20
µ

according to (4.166). Observe that
the fracture threshold parameter wc bounds the elastic response and determines the onset
of fracture. The shape parameters ζ controls the shape of the post-critical range. It
reduces the stress softening due to fracture ζ < 1, where the resistance function D̂pf in
(4.44) is convex, and provides more pronounced stress softening due to fracture for ζ > 1,

where D̂pf is non-convex. Figure 4.12b reports on the evolution of the dissipated work
density Dpf evaluated by numerical integration of the integral expressions (4.51). Note
that Dpf converges to the maximum value wc+wc/ζ , which gives an additional meaning to
the two material parameters wc and ζ . Furthermore, observe that the dissipated work Df

due to fracture dominates in this case of brittle fracture, while the subsequently evolving
dissipative work Dp due to plasticity is small. Figure 4.12c shows the ductile response

for wc >
1
6

y20
µ

in (4.166), where the fracture threshold parameter wc bounds total work
density after a considerable amount of plastic deformation. Again the shape parameter
ζ determines the slope of the post-critical range of fracture, with ζ < 1 for a convex and
ζ > 1 for a non-convex resistance function D̂pf : Figure 4.12d shows the evolution of the
dissipated work density Dpf up to the limit wc+wc/ζ , where now the plastic contribution
Dp dominates, successively raising the fracture contribution Df .

4.7. Model Investigations II: Inhomogeneous IBV-Problems

Next, the performance of the proposed framework of phase field ductile fracture coupled
with porous plastic solids is demonstrated by means of representative boundary-value
problems. Section 4.7.1 demonstrates the influence of the plastic length scale lp and the
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Table 4.3: Material parameters used for the length scales study.

No. Parameter Name Value Unit
1. κ bulk modulus 164.2 GPa
2. µ shear modulus 80.2 GPa
3. y0 initial yield stress 0.2 GPa
4. wc critical work density 0.005 GPa
5. ǫp penalty parameter 2.6 GPa
6. lf fracture length scale 0.3/0.0 mm
7. lp plastic length scale 0.0/0.3 mm
8. ζ fracture parameter 1.0 –

fracture length scale lf on the final failure response. In Section 4.7.2, the formation of
cup–cone fracture in 2D axisymmetric tensile specimen and extension to 3D setting are
analyzed. Finally, a three dimensional tension test of a double notched bar is investigated
in Section 4.7.3

4.7.1. Investigation of the Plastic and the Fracture Length Scales Influence

The first example shows a inhomogeneous tensile test that demonstrates the influence
of the plastic and damage length scales lp and lf , respectively. To this end, we restrict
conceptually the material response to the isochoric von Mises plasticity by setting the void
volume fraction f = f0 = 0. Furthermore, we focus on a non-hardening matrix response
of ideal plasticity.

The geometry of the specimen is depicted in Figure 4.13a. It has a hyperbolic axis-
symmetric shape, where plastic deformation and ductile fracture are initiated in the center
of the specimen. The size of the specimen is chosen to be : W = 3 mm, l = 1.5 mm and

a) b)
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Figure 4.13: Inhomogeneous tensile test. a) Geometry and boundary conditions and b) load-
deflection curves for the cases lp > lf and lp < lf in combination with two different fracture
onset parameters wc.
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Figure 4.14: Inhomogeneous tensile test. Contour plots of the hardening variable α and the
crack phase field variable d for two different deformation stages up to final rapture for the two
cases lp > lf and lp < lf , corresponding to the load-deflection curves plotted in Figure 4.13b.

H = 7.75 mm. We fixed the bottom edge of the specimen vertically and applied tension
loading to the top edge as plotted in Figure 4.13a. The material parameters used are
given in Table 4.3. The specimen is discretized with a mesh size of he = 0.03 mm in the
expected fracture zone.

Figure 4.13b shows different load deflection curves for the cases lp > lf and lp < lf ,
where an emphasize is put on the influence of the fracture onset parameter wc. Herein,
by increasing the critical fracture energy wc a delayed onset of fracture is observed. The
evolution of the crack phase field d compared with the evolution of the equivalent plastic
strain α is reported in Figure 4.14 for the cases lp > lf and lp < lf . Figure 4.14 ➀-➁
demonstrates the contour plots for two different stages of the deformation up to final
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Figure 4.15: Inhomogeneous tensile test. a) A zoom out at the center of the specimen for
visualization of the cross section of the plastified fracture zone. b) and d) Evolution of the
fracture zone inside the plastic zone for lp > lf , whereas in c) and e) the fracture zone evolves
outside the plastic zone for lp < lf .

rapture, where lp > lf . We observe that α and d start initially from the center and
propagate outwards forming the sharp fracture zone which lies inside the plastic zone
corresponding to the load-deflection dashed-curves plotted in Figure 4.13b. However,
for the other case lp < lf , the sharp plastic shear band lies inside the fracture zone as
demonstrated in Figure 4.14 ➂-➃ which corresponds to the load-deflection solid-curves
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Table 4.4: Material parameters used for the axisymmetric tension test.

No. Parameter Name Value Unit
1. κ bulk modulus 164.2 GPa
2. µ shear modulus 80.2 GPa
3. y0 initial yield stress 0.45 GPa
4. y∞ infinite yield stress 0.715 GPa
5. η saturation parameter 16.93 –
6. h hardening parameter 0.13 GPa
7. ǫp penalty parameter 2.6 GPa
8. f0 initial void fraction 0.004 –
9. lf fracture length scale 0.22 mm
10. wc critical work density 0.32/0.42/0.52 GPa
11. ζ fracture parameter 1.0/3.0/7.0 –

plotted in Figure 4.13b. In this case, one notices a delayed failure response combined with
huge plastic deformation compared with the cases lp > lf .

For visualization of plastic and fracture zones, a zoom out at the center of the specimen
in the range between [ −∆y,+∆y ] is illustrated in Figure 4.15a. We plot the normalized
equivalent plastic strain α/αmax versus the normalized crack phase field d/dmax for two
cases at the onset of fracture in Figure 4.15b-c and final failure in Figure 4.15d-e. Herein,
for lp > lf the fracture zone lies inside the plastic zone as shown in Figure 4.15d. Whereas
for the case lp < lf , we observe an evolution of the fracture zone out side the plastic zone
as plotted in Figure 4.15e. This shows conceptually the ability of controlling length scales
in the proposed test.

4.7.2. Analysis of the Cup–Cone Fracture in Axisymmetric Tension Test

The second benchmark test is concerned with the simulation of a cup–cone failure mech-
anism in a cylindrical bar under tension. This is a classical failure mechanism of ductile
metals, such as experimentally observed e.g. in the recent works of Li et al. 2011 and
Kamat et al. 2011. The modeling and simulation of this phenomenon has a long history.
We refer to the representative works of Tvergaard and Needleman 1984, Besson et al.
2001, Benzerga and Leblond 2010 and the recent comprehensive work by Huespe et al.
2012. The problem provides a very demanding example that shows the development of
large plastic zone in a neck, followed by the initiation of a ductile crack zone with onset
in the center of the specimen, that successively develops a cup–cone fracture surface.

The above mentioned modeling and simulation approaches use the Gurson-Tvergaard-
Needelman (GTN) framework, that models void nucleation, growth and coalescence.
Hence the ductile crack is locally triggered by a critical void fraction, that may be consid-
ered as a micromechanical criterion. We demonstrate in this example, that our proposed
model based on the simplified Gurson yield surface with the canonical void growth condi-
tion provides an excellent fit to the experimentally observed cup–cone failure mechanism,
when combined with the macroscopic fracture criterion characterized by the two fracture
material parameters wc and ζ .

We analyse this example for a relationship between the plastic and fracture length
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a) b)

ū
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Figure 4.16: Axisymmetric tension test. a) Geometry and boundary conditions. b) Evolution
of crack phase field d for four different states of the deformation up to final rapture: ➀ ū = 6 mm,
➁ ū = 8.3 mm, ➂ ū = 8.5 mm and ➃ ū = 9 mm, corresponding to the load-deflection curves
plotted in Figure 4.18.

scales lp << lf with lp → 0, yielding a pronounced and sharp crack surface geometry as
observed in experiments. The geometric setup and the loading conditions of the specimen
are depicted in Figure 4.16. The length of the specimen is chosen to be H = 26 mm
and the radius is R = 7.5 mm, adopted from the benchmark in Huespe et al. 2012. The
bottom edge of the specimen is fixed vertically and applied tension loading to the top
edge. Due to the underlying symmetry, only one half of the specimen is discretized using
enhanced assumed strain type finite elements. The mesh size of the specimen is chosen
to be he = 0.1 mm in the expected fracture zone. To trigger localization in the center
of the specimen, a geometrical imperfection is introduced in the central zone of the bar.
Here, a reduction of the specimen net section at the central zone of height H/7 is applied,
in which the radius at the center is chosen to be rc = 0.993R. The material parameters
used are given in Table 4.4.

The evolution of the crack phase field d in comparison to the evolution of the equiva-
lent plastic strain α and the void volume fraction f for four different deformation states
up to final rapture are depicted in Figures 4.16b–4.17. Here, we observe a huge plastic
deformation as a necking zone at the center of the specimen as shown in Figure 4.16 ➀

and Figure 4.17a. Thereafter the void volume fraction starts to evolve from the center
of the specimen as plotted in Figure 4.17e resulting in a crack initiation at the center
zone as demonstrated in Figure 4.16b. The crack phase field d then propagates horizon-
tally from the center outward following the equivalent plastic strain α evolution path in
Figure 4.17b-d and the void volume fraction evolution path in Figure 4.17f-h, forming the
cup–cone fracture surface as demonstrated in Figure 4.16b and Figure 4.17l. Note that,
the void volume fraction starts to evolve from the initial value f0 up to the maximum
value fc = 0.15 where the fracture starts. The evolution of the crack phase field d corre-
sponding to the load-deflection curves plotted in Figure 4.18, is plotted for different stages
of deformation up to final failure as in Figure 4.16b as follows: at ➀ the displacement is
ū = 6 mm where large plastic deformation occurs, subsequently fracture starts at ➁ with
ū = 8.3 mm. Observe that the crack phase field increases horizontally up to ➂ where
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Figure 4.17: Axisymmetric tension test. Contour plots of the hardening variable α in (a)-(d);
the void volume fraction f in (e)-(h) and the fracture phase field d in (i)-(l) for four different
deformation states up to final rapture.

ū = 8.5 mm. Thereafter the crack propagates about 135◦ from the loading direction to
follow the equivalent plastic strain and the void fraction path as shown in ➃ corresponds
to ū = 9 mm. For visualization of the crack surface, deformed regions with a crack phase
field d ≈ 1 are not plotted.

Each of the parameters f0, wc and ζ have a pronounced influence on the crack initiation
and propagation as shown in the load-deflection curves in Figure 4.18. For higher initial
void volume fraction f0, an overall softening response is observed resulting in a faster
failure behavior as shown in Figure 4.18a. The critical fracture energy wc characterizes
in the load-deflection diagram Figure 4.18b the onset of fracture, corresponding to its
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Figure 4.18: Load–displacement responses for axisymmetric tension test. Effects of a) three
different initial void volume fractions f0, b) three different critical work densities wc and c) three
different fracture parameters ζ on the crack initiation and load-displacement response.

local criterion as demonstrated in the homogeneous test in Figure 4.11. By increasing
the value of wc, one observes the expected delayed on-set of fracture. The fracture slope
parameter ζ influences the post-critical range after the onset of fracture, by controlling
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a) b) c) d)

Figure 4.19: Three dimensional necking of a cylindrical bar. Evolution of the cup–cone failure
mechanism in (a)-(d).

the dissipation of the fracture process. For larger values of ζ , a faster failure response is
noticed as illustrated in Figure 4.18c.

To illustrate the evolution of the cup–cone failure mechanism in the cylindrical bar
under tension loading, we extend the two dimensional BVP introduced in Figure 4.16 to
three dimensional setting. Figure 4.19 demonstrates the crack phase field d evolution for
four different stages of deformation up to final rupture. As documented in the 2D case,
the fracture starts to initiate from the center of bar, see Figure 4.19a and propagates
outward to form the cup–cone fracture surface, as shown in Figure 4.19b-d, where we used
transparency effect and separation at the center of the bar to show the failure surface for
d ≥ c ≈ 1.

The analysis shows that the proposed new model is competitive with Gurson-Needelman-
Tvergaard (GTN) model, when focus is put on the macroscopic failure response. Let us
emphasize at this stage that the proposed model is much simpler in structure than the
GTN model, and based on a rigorous variational principle.

4.7.3. Three Dimensional Tension Test of a Double Notched Bar

The last model problem is concerned with analyzing the fracture phenomena of a double
notched bar under tensile loading made of Al-alloy (Al-5005) as reported in the experi-
ments of Li et al. 2011 and Ambati et al. 2015b. Similar to the necking example 4.7.2,
we also use the following relationship between the plastic and the fracture length scales
lp << lf with lp → 0, yielding a pronounced and sharp crack surface geometry as ob-
served in experiments. The geometric setup and the loading conditions of the specimen
are depicted in Figure 4.20a. The size of the specimen is chosen to be : H = 110 mm,
W = 22 mm, l1 = 25 mm, l2 = 25 mm, l3 = 10 mm, r1 = 3.625 mm and the radius of
the two notches is r2 = 2.5 mm, adopted from the benchmark in Ambati et al. 2015b.
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Figure 4.20: Tension test of a double notched bar. a) Geometry and boundary conditions.
b) Evolution of the crack phase field d for three different states of the deformation up to final
rapture: ➀ ū = 3.0 mm, ➁ ū = 3.6 mm, ➂ ū = 4.0 mm, corresponding to the load-deflection
curves plotted in Figure 4.22.

The same material parameters are used as in Li et al. 2011 and listed in Table 4.5. The
mesh size of the specimen is chosen to be he = 0.5 mm in the expected fracture zone.
The computation is performed by fixing the bottom edge of the specimen and applying
the displacement ū on the top vertical boundary as shown in Figure 4.20a.

The contour plots of the equivalent plastic strain α, the void volume fraction f and
the fracture phase field d for different deformation stages up to final failure is depicted
in Figure 4.21 on the undeformed configuration using the transparency effects to illus-
trate the evolution of the crack phase field at a zoom out in the specimen as plotted in
Figure 4.20b. The crack phase field d initiates at the two notch tips, see Figure 4.21i
where the maximum equivalent plastic strain and void fraction develops as shown in
Figure 4.21a, and Figure 4.21e, respectively. Thereafter, they propagate from the notches

Table 4.5: Material parameters used for the notched specimen: Al-5005.

No. Parameter Name Value Unit
1. κ bulk modulus 73.854 GPa
2. µ shear modulus 26.455 GPa
3. y0 initial yield stress 0.113 GPa
4. y∞ infinite yield stress 0.135 GPa
5. η saturation parameter 24.5 –
6. h hardening parameter 0.1 GPa
7. ǫp penalty parameter 2.0 GPa
8. f0 initial void fraction 0.01 –
9. lf fracture length scale 1.0 mm
10. wc critical work density 0.06/0.08/0.1 GPa
11. ζ fracture parameter 1.0/50.0/100 –
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Figure 4.21: Three dimensional tension test of a double notched bar Tensile test on a double
notched specimen. Contour plots of the hardening variable α in (a)-(d); the void volume fraction
f in (e)-(h) and the fracture phase field d in (i)-(l) plotted on the undeformed configuration for
four different deformation states up to final rapture.

inwards at an angle about 45◦ from the loading direction to follow the equivalent plastic
strain and the void fraction path till the complete failure as shown in Figure 4.21j-l
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Figure 4.22: Load–displacement responses for tension test on a double notched specimen.
Effects of four different fracture parameters ζ in a) and four different critical work densities wc

in b) on the crack initiation and propagation.

The evolution of the crack phase field d in the deformed configuration corresponding to
the load-deflection curves in Figure 4.22, is plotted for three different stages of deformation
up to final rupture in Figure 4.20 ➀-➂. For visualization of crack surface, deformed regions
with a crack phase field d ≈ 1 are not shown.

To illustrate the influence of the fracture parameter ζ and the critical fracture energy wc

on the crack initiation and propagation, Figure 4.22 plots the load-displacement response
for four different values of ζ and wc. One observes the expected delayed failure behavior
by decreasing the value of ζ as in Figure 4.22b and by increasing the value of wc as
demonstrated in Figure 4.22a.

4.8. Conclusion

A variational-based framework for the phase field modeling of fracture in isotropic porous
solids was proposed. The phase field approach regularizes sharp crack surfaces within a
pure continuum setting by a specific gradient damage modeling with constitutive terms
rooted in fracture mechanics. It was linked to a formulation of porous gradient plasticity
at finite strains. As a consequence, the formulation includes two independent length
scales which regularize both the plastic response as well as the crack discontinuities. This
ensures that the damage zones of ductile fracture are inside of plastic zones or vice versa,
and guarantees on the computational side a mesh objectivity in post-critical ranges. The
proposed gradient plasticity model for porous plasticity was based on a simple growth
law for the evolution of the void fraction, and linked to a failure criterion in terms of the
local elastic-plastic work density that drives the fracture phase field. It was shown that
this approach is able to model basic phenomena of ductile failure such as cup-cone failure
surfaces in terms of only two material parameters on the side of damage mechanics: a
critical work density that triggers the onset of damage and a shape parameter that governs
the postcritical damage up to fracture. An important aspect was a precise representation
of the framework within a canonical minimization principle. The key point that allows
to construct such a principle was the use of an Eulerian constitutive setting, where the
yield function was formulated in terms of the Kirchhoff stress. Here, we exploited the fact
that this stress approximates an effective stress that drives the plasticity in the matrix
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of the porous solid. The coupling of gradient plasticity to gradient damage was realized
by a constitutive work density function that includes the stored elastic energy and the
dissipated work due to plasticity and fracture. The latter represents a coupled resistance to
plasticity and damage, depending on the gradient-extended internal variables which enter
the plastic yield function and the fracture threshold function. The robust computational
setting proposed included (i) a general return scheme of plasticity in the spectral space of
logarithmic strains and dual Kirchhoff stresses, (ii) the micromorphic regularization of the
gradient plastic evolution and (iii) a history-field-driven update of the linear phase field
equation. The performance of the formulation was underlined by means of representative
examples, which demonstrated the ability to model typical macroscopic failure phenomena
of ductile fracture.
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Mühlhaus, H.-B. and E. C. Aifantis (1991). “A variational principle for gradient plastic-
ity”. In: International Journal of Solids and Structures 28, pp. 845–857.

Mumford, D. and J. Shah (1989). “Optimal approximations by piecewise smooth func-
tions and associated variational problems”. In: Communications on Pure and Applied
Mathematics 42, pp. 577–685.

Nahshon, K. and J. Hutchinson (2008). “Modification of the Gurson Model for shear
failure”. In: European Journal of Mechanics A/Solids 27, pp. 1–17.

Nedjar, B. (2001). “Elastoplastic-damage modelling including the gradient of damage:
formulation and computational aspects”. In: Inernational Journal of Solids and Struc-
tures 38, pp. 5421–5451.

Needleman, A. and V. Tvergaard (1984). “An analysis of ductile rupture in notched bars”.
In: Journal of the Mechanics and Physics of Solids 32.6, pp. 461–490.

Peerlings, R. H. J., R. de Borst, W. A. M. Brekelmans, and J. H. P. de Vree (1996).
“Gradient Enhanced Damage for Quasi–Brittle Materials”. In: International Journal
for Numerical Methods in Engineering 39, pp. 3391–3403.

Pham, K., H. Amor, J.-J. Marigo, and C. Maurini (2011). “Gradient damage models
and their use to approximate brittle fracture”. In: International Journal of Damage
Mechanics 20.4, pp. 618–652.



Bibliography 115
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Abstract This work presents a modeling framework for the ductile failure of frictional
materials undergoing large deformations with a focus on soil mechanics. Crack formation
and propagation in soil can be modeled in a convenient way by the recently developed
continuum phase-field approach to fracture. Within this approach sharp crack discon-
tinuities are regularized. It allows the use of standard discretization methods for crack
discontinuities and is able to account for complex crack paths. In the present contribution,
we develop a computational modeling framework for the phase-field approach to ductile
fracture in frictional materials. It combines a non-associative Drucker-Prager-type elastic-
plastic constitutive model with an evolution equation for the crack phase field in terms of
an elastic-plastic energy density. An important aspect of this work is the development of
an isotropic hardening mechanism that accounts for both friction and cohesion hardening.
In order to guarantee a locking- and hourglass-free response, a modified enhanced element
formulation, namely the consistent gradient formulation, is proposed as a key feature of
the finite-element implementation. The performance of the formulation is demonstrated
by means of representative numerical examples that describe soil crack formation rooted
in elastic-plastic fracture mechanics.
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5.1. Introduction

Understanding and predicting the initiation and propagation of fracture in materials has
been a topic of intensive research over the last decades. This also covers failure of frictional
materials like soils and rocks, which are applications at the core of geo-technical and civil
engineering. Concepts for describing the classical theory of brittle fracture are outlined in
Griffith 1921 and Irwin 1958. Different approaches to the regularized modeling of Griffith-
type brittle fracture in elastic solids have been introduced by, for example, Francfort and
Marigo 1998, Bourdin et al. 2000, Bourdin et al. 2008, Amor et al. 2009, Kuhn and Müller
2010, Miehe et al. 2010b, Pham et al. 2011 and Borden et al. 2012. The mentioned
works rely on Griffith-type theories for predicting crack initiation and propagation by a
diffuse phase field that represents fracture. Recent extensions of these general approaches
to brittle fracture are devoted, for example, towards the incorporation of cohesive-zone
models Verhoosel and de Borst 2013, the fracturing of soft materials Miehe and Schänzel
2014, shells Reinoso et al. 2017 and anisotropic solids Teichtmeister et al. 2017 as well as
towards fatigue fracture Alessi et al. 2018b, just to name a few. Thanks to its universal
structure and numerical robustness the phase-field approach to fracture has proven a
versatile and powerful tool for the description of failure of materials. Applications cover
a wide range of scenarios and materials, for example, given by rupturing of arterial walls
Gültekin et al. 2016; Raina and Miehe 2016 or hydraulically driven fracturing Ehlers and
Luo 2017; Heider and Markert 2017; Miehe et al. 2015b; Mikelić et al. 2015; Wilson and
Landis 2016. We refer to Pham et al. 2017 for experimental validations of the phase-field
approach to brittle fracture.

By coupling gradient-damage mechanics with models of elasto-plasticity, the phase-
field modeling can be extended towards ductile fracture. Associated formulations are
able to account for plastic deformations coupled with crack evolution. In that respect,
we refer to Duda et al. 2015, who propose a framework of ductile fracture based on the
classical theory of continua with microstructure in the sense of Gurtin-type microforce
balances. In their formulation, crack initiation and propagation are modeled in the sense
of brittle fracture in elastic-plastic materials. In contrast to that, the modeling framework
provided by Miehe et al. 2015a, takes into account the full elastic-plastic energy in the
fracture driving force and allows for a transition from brittle to ductile fracture. Along
similar lines, Ambati et al. 2015 developed an elastic-plastic phase-field formulation of
ductile fracture by postulating a characteristic degradation function that incorporates
the amount of plastic deformation. We refer to Ambati et al. 2016 for experimental
verification. The important aspect of stress triaxiality has been incorporated by Borden
et al. 2016, in the sense of a modified expression for the effective plastic work. For
variationally consistent formulations we refer to the works of Miehe et al. 2016a,c that
couple gradient plasticity with gradient damage at finite strains. We further highlight
the recent variational approach of Alessi et al. 2018a which combines brittle, cohesive
and ductile fracture in an illustrative one-dimensional setting. We emphasize that above
models rely on von-Mises-type plasticity formulations coupled with fracture. Thus, they
are not suitable for describing plastic deformations driven by volumetric stresses. This has
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motivated Miehe et al. 2016b to extend the phase-field modeling of fracture towards porous
finite plasticity accounting for growth of micro-voids. For associated augmentations with
respect to void nucleation and coalescence see Aldakheel et al. 2017. The effects of
nucleation, growth and coalescence of micro-voids play a crucial role in metal plasticity.

To describe the plastic deformation of frictional or granular materials a plasticity model
is required, in which the yield criterion is a function of both the deviatoric and the volu-
metric stress. Such kinds of plasticity models have been proposed, for example, by Drucker
and Prager 1952, Zienkiewicz et al. 1975, Vermeer and de Borst 1984, de Boer 1988, Simo
and Meschke 1993, and Ehlers 1995. Among the plasticity formulations for frictional mate-
rials, the Drucker–Prager plasticity model shows good agreement with experimental obser-
vations for various applications in computational geo-mechanics, see Drucker and Prager
1952, Loret and Prevost 1986, Hjiaj et al. 2003, and
Zreid and Kaliske 2016. In the numerical setting of these models the problem of sin-
gularity arises for tensile stress conditions. Therefore, the return-mapping scheme often
fails to converge. In many works a tension cut-off is introduced to get rid of the singularity
at the peak of the cone. However, this results in a non-differential formulation of the cone
and could still cause convergence issues. This has encouraged Abbo and Sloan 1995 and
Lambrecht and Miehe 1999, 2001 to introduce an additional term in the Drucker–Prager-
type yield criterion and plastic-potential function based on a constant perturbation-type
parameter that causes a smoothing-out of the peak of the classic cone. With regard to
the failure description of geological materials we refer to the recent work of Choo and
Sun 2018 who proposed a modeling framework based on a pressure-sensitive plasticity
employing a modified Drucker–Prager yield surface.

The goal of the present contribution is to derive a theoretical and a computationally
efficient framework for ductile fracture in soil mechanics at finite strains. To this end, we
couple the phase-field approach to fracture with a non-associative Drucker–Prager-type
elastic-plastic constitutive model, suitable for a wide range of applications in computa-
tional geo-mechanics. The soil is assumed to be an idealized material which behaves
elastically up to some state of stress at which yielding occurs. An important aspect of our
investigation is the development of two types of isotropic hardening mechanisms, namely
the cohesion and friction hardening mechanism. A further key feature is the introduction
of a phase-field driving force as function of an elastic-plastic energy density.

The outline of the paper is as follows. Section 5.2 summarizes the variational formu-
lation of the fracture phase field in the context of a gradient-damage model incorporating
a local irreversibility constraint preventing crack healing. In Section 5.3 we introduce the
global unknowns and the kinematic fields of ductile fracture in frictional materials. We
also show the key aspects of the multiplicative split of the deformation in an Eulerian set-
ting. Hereby the Eulerian elastic Finger tensor is used as an elastic deformation measure.
Based on this split the elastic-plastic energy contribution, the yield function and the plas-
tic potential are introduced as constitutive functions. The algorithmic treatment of these
equations is also shown in Section 5.3, followed by the formulation of the failure criterion
which is used to drive the fracture phase field. Section 5.4 documents a well suited finite-
element formulation for the proposed model that overcomes typical locking phenomena
as well as zero-energy (hourglass) modes. Numerical examples showing the capabilities
of the proposed model are presented in Section 5.5, considering a shear-band formation
under compressive loading and the pullout behavior of an anchor plate. Section 5.6 closes
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the contribution with a short summary.

5.2. Regularized crack surface topology

Following Miehe et al. 2010a this section discusses the basic ingredients of a purely ge-
ometric approach to the phase-field modeling of fracture. Consider a material body
B0 ⊂ Rδ with the dimension δ ∈ [2, 3] in space and its surface ∂B0 ⊂ Rδ−1, see Fig-
ure 5.1. Let X ∈ B0 be a point in this body at time t ∈ T . Then, the crack phase field
d : B0 × T → [0, 1] denotes with d(X, t) = 0 the intact and with d(X, t) = 1 the broken
material. Based on that, a sharp crack surface Γ can be approximated by the regularized
crack surface Γl

Γl(d) =

∫

B0

γl(d,∇d) dV with γl(d,∇d) =
1

2l
d2 +

l

2
|∇d|2 , (5.1)

in terms of the crack-surface density γl per unit volume. This regularization is controlled
by the length-scale parameter l. The sharp crack surface is gained from a crack-surface
functional for vanishing length scale l → 0. With prescribed Dirichlet condition d = 1 on
Γ ⊂ B0 the regularized phase field d can then be obtained by a variational principle of
diffuse crack topology d = Arg{infd Γl(d)}. The minimization yields the Euler equation
d − l2∆d = 0 in B0. The profile of the phase field d is governed by the solution of this
partial differential equation, which is an exponential function. A more detailed illustration
can be found in Miehe et al. 2010b for a second-order phase field and in Borden et al.
2014 for a fourth-order phase field. Taking the derivative w.r.t. time of the regularized
crack surface yields

d

dt
Γl(d) =

∫

B0

δdγl(d,∇d) ḋdV , (5.2)

where δdγl := ∂dγl − Div(∂∇dγl) is the variational derivative of the crack-surface density.
The evolution of the regularized crack surface (5.2) is governed by a constitutive function.
By postulating this constitutive function we can write

d

dt
Γl(d) =

1

l

∫

B0

[(1− d)H− ηḋ]ḋ dV ≥ 0 , (5.3)

where the viscosity of crack propagation is denoted as η ≥ 0. According to Miehe et al.
2010a the crack driving force H is given by

H = max
s∈[0,t]

D(state(X, s)) ≥ 0 , (5.4)

where the crack driving state function D represents a constitutive function, which will be
specified for the presented model in Section 5.3. The maximum over time of this function
guarantees the irreversibility of the fracture phase field. The expression “state” stands
for additional variables determined by the model for the elastic-plastic response in soil
mechanics undergoing large strains considered in Section 5.3 below.

Combining the evolution equations (5.2, 5.3) and applying the localization theorem
yields the local evolution of the crack phase field

ηḋ = (1− d)H− (d− l2∆d) with ∇d · n0 = 0 on ∂B0 , (5.5)

and the homogeneous Neumann condition with n0 as the outward unit normal on ∂B0.
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Figure 5.1: Primary variables of the model (ϕ, Gp, α, d): The crack phase-field d for different
lengths scales l in a). Γl(d) converges in the limit l→0 to the sharp crack surface Γ. In b) parts
of the continuum with d > c with c ≈ 1 are considered to be free space and are not displayed.
Γc = {X | d = c} defines the crack faces in the regularized setting.

5.3. Non-associative elastic-plastic hardening model coupled with
a phase-field model of fracturing

This section combines the aforementioned phase-field approach to fracturing with a non-
associative Drucker-Prager-type elastic-plastic constitutive model. When postulating the
constitutive functions, the phase field d is considered as a generalized internal variable.

5.3.1. Introduction of kinematic and state variables

Deformation map. The deformation map at time t is denoted as ϕ(X, t) and maps
material positions X ∈ B0 of the reference configuration B0 ∈ Rδ onto points x =
ϕt(X) ∈ Bt of the current configuration Bt ∈ Rδ, see Figure 5.1. The initial condition is
given by ϕ(X, t0) = X. The deformation gradient is F := ∇ϕt(X) with its determinant
J := det F > 0. Prescribed deformations and external tractions on the boundary are
defined by the time-dependent Dirichlet- and Neumann conditions

ϕ = ϕ̄(X, t) on ∂Bϕ
0 and Pn0 = t̄0(X, t) on ∂Bt

0 , (5.6)

where ∂B0 = ∂Bϕ
0 ∪ ∂Bt

0 is the surface of the undeformed configuration and P is the first
Piola stress tensor defined as thermodynamic dual to F .

Elastic Finger tensor. To describe the plastic deformation, the plastic metric Gp ∈
Sym+(3 ) in the Lagrangian configuration is introduced as an internal variable, that
evolves in time with Gp(X, t0) = 1 as the initial state. Here Sym+(3 ) := {A ∈
K3×3 | A = AT | detA > 0} denotes the set of symmetric, real 3 × 3 matrices with
a positive determinant. It can be constituted by a multiplicative split F = F eF p of the
deformation gradient into plastic and elastic parts suggested by Kröner 1958, Lee, E. H.
1969 and Mandel J. 1972. Hence, an elastic deformation measure is the Eulerian elastic
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Finger tensor defined as

be = F e(F e)T := F (Gp)−1F T with Gp = (F p)TF p . (5.7)

Note that the use of Gp ∈ Sym+(3 ) instead of F p ∈ GL+(3) neglects plastic rotations
(Miehe 1998a). Here GL+(3) := {A ∈ K3×3 | detA > 0} denotes the set of real 3 × 3
matrices with a positive determinant. The evolution of the Lagrangian plastic metric is
governed by the Eulerian plastic rate-of-deformation tensor (Simo and Miehe 1992)

dp := − 1
2
(£vb

e)(be)−1 = FDpF−1 with £vb
e := F

˙
(Gp)−1F T and Dp := − 1

2

˙
(Gp)−1Gp ,

(5.8)
where £vb

e denotes the Lie derivative of be. The mapping properties of used tensors GP ,
be, dp and DP are show in Figure 5.2.

F

F p F e

F−T

(F p)−T (F e)−T

Gp beḠ := 1

Dp dp

TXB0

TxBt

T ∗
XB0

T ∗
xBt

T ∗
XBp

t

T ∗
XBp

t

Figure 5.2: Visualization of the plastic metric Gp, the elastic Finger tensor be and the Eulerian
and Lagrangian plastic rate-of-deformation tensor dp and Dp. Given are the three covariant
spaces for the Lagrangian (TXB0), intermediate plastic (TXBp

t ) and Eulerian (TxBt) configura-
tion and the three contravariant spaces for the Lagrangian (T ∗

XB0), intermediate plastic (T ∗
XBp

t )
and Eulerian (T ∗

xBt) configuration.

Constitutive state variables. The non-associative elastic-plastic hardening model at
finite strains is described by the deformation map ϕ as a global primary field. In addition,
we introduce the equivalent plastic strain α as a local internal variable, which is associated
with the plastic evolution and the plastic hardening mechanism. The Lagrangian plastic
metric Gp serves as an additional local primary field. Consequently, the constitutive state
is defined by

state := {∇ϕ,Gp, α} . (5.9)

5.3.2. Energetic storage function

The energy-storage function Ψ̂ is decomposed into an elastic and a plastic contribution.
It is defined as

Ψ̂(state; d) = g(d)
[
ψe(be) + ψp(α)

]
with g(d) := (1− d)2 + k , (5.10)
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which depends on the introduced state variables in (5.9) and the phase field d. Note
that in case of fracture, the whole energetic response gets degraded by the degradation
function g(d). The residual stiffness that keeps the problem well posed is denoted as k
with k ∈ R+.

Elastic contribution. The isotropic stored elastic energy of the solid is assumed to
have the simple quadratic form

ψe(he) :=
λ

2
(trhe)2 + µ tr[(he)2] , (5.11)

in terms of the Eulerian elastic Hencky strain tensor he := 1
2
ln be and the Lamé constants

λ > −2
3
µ and µ > 0. The above energy function defines an isotropic and linear stress-

strain response in the logarithmic strain space.

In the present work a spectral representation of isotropic non-associative elasto-plasticity
is considered. It provides a compact setting of the model problem formulated in terms
of principal strains and principal stresses. We consider the eigenvalue problem for the
elastic Finger tensor in (5.7)

[be − (λei )
21 ] ni = 0 , (5.12)

in terms of the elastic principal stretches {λei}i=1,2,3 and the corresponding eigenvectors
{ni}i=1,2,3. Hence, the spectral form of the Eulerian logarithmic Hencky tensor reads

he = 1
2
ln be =

∑3
i=1 ε

e
i ni ⊗ ni with εei := ln λei , (5.13)

where εei are the logarithmic elastic principle strains. This results in a spectral repre-
sentation of the stored elastic energy function ψe(εe1, ε

e
2, ε

e
3). Following the Coleman-Noll

procedure we obtain the Kirchhoff stresses τ in the spectral representation τi as the first
derivative of the energy function (5.10) with respect to the principle elastic strains

τ =
∑3

i=1 τi ni ⊗ ni with τi = g(d) τ̃i and τ̃i = ψe
,i := ∂ψe/∂εei . (5.14)

Here τ̃i denotes the effective principal Kirchhoff stresses.

Plastic contribution. Focusing on an isotropic local plastic hardening mechanism, the
plastic part of the energy function reads

ψp(α) = 1
2
hα2 + τy

[
α + 1

ω
exp(−ωα)− 1

ω

]
, (5.15)

where h ≥ 0 is the hardening modulus, τy is the saturated yield shift and w is the
saturation parameter which controls the saturation of the hardening mechanism. The
derivative of the plastic energy with respect to the equivalent plastic strain α yields the
hardening function β̂ := β(α, d) which takes the form of a saturation-type function

β(α, d) := g(d)∂αψ
p(α) with ∂αψ

p(α) = hα + τy
[
1− exp(−ωα)

]
. (5.16)

A graphical representation of this function is given in Figure 5.3.
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h

τy

α∗

ω

α

β(α)

Figure 5.3: Hardening function β(α; d = 0) with linear hardening h 6= 0 (solid line) and without
linear hardening h = 0 (dashed line), where α∗ = ( h

τy
+ ω)−1.

5.3.3. Yield function in Kirchhoff-stress space

Within the present work the classical Drucker-Prager yield criterion with an additional
regularization of the non-smooth peak as introduced by Lambrecht and Miehe 1999, 2001
is considered. In addition, we propose an isotropic hardening mechanism that accounts
for both friction and cohesion hardening. More details on the physical motivation of these
hardening mechanisms can be found in the work of Vermeer and de Borst 1984.The yield
criterion employed in the present work is an open-surface model which excludes plastic
yielding under pure hydrostatic loading conditions. Furthermore, the cross section of the
yield surface along the deviatoric plane is a circle which limits the model to isotropic
response for different deviatoric stress states. More advances models of the elasto-plastic
behavior of geomaterials have been proposed, for example, by Desai 1980; Ehlers 1995;
Lade and Kim 1988, 1995.

The yield criterion function is formulated in terms of the Kirchhoff stresses τ and
reads

Φ̂(τ , β̂) =
√

3
2

√
|| dev[τ ]||2 +M2

φq
2
1 −Mφ(pmax − 1

3
tr τ )− β̂Mh(τ ) . (5.17)

In the subsequent part a spectral representation of the yield function (5.17) is considered.
It is represented in terms of the principal stresses τi with τ =

∑3
i=1 τi ni ⊗ ni

Φ̂(τ1, τ2, τ3, β̂) =
√

3
2

√
τ ′iτ

′
i +M2

φq
2
1 −Mφ(pmax+p)− β̂Mh(τi) , (5.18)

where p := −1
3

∑3
i=1 τi is the hydrostatic pressure and τ ′i := τi + p are the deviatoric

principle stresses. The yield function represents for β̂ = q1 = 0 the classical Drucker-
Prager cone, see Figure 5.4.

It is expressed in terms of the material parameters Mφ, pmax, q1, controlling the ideal

plastic behavior, and the two material functions β̂ := β(α, d), Mh(τ ) accounting for the
hardening response. Thereby Mφ is the slope of the Drucker-Prager cone in the view of
the hydrostatic-deviatoric stress plot and pmax gives the position of the peak of the cone.
Both can be expressed in terms of the friction angle φ and the cohesion c referring to the
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elastic domain
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Figure 5.4: Yield surface (solid) and regularized yield surface (dashed) in two-dimensional
hydrostatic-deviatoric stress plot. The position of the peak is given by p∗max =

√
3/2q1.

a) friction hardening

q2 = exp(
√
3/2q1q3)

b) cohesion/mixed-type hardening

q2 = 0/q2 = 0.5 exp(
√
3/2q1q3)

Φ̂ = 0 Φ̂ = 0

q3
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1
3 tr τ

1
3 tr τ

√
2
3 ||dev[τ ]||

√
2
3 ||dev[τ ]||

Figure 5.5: Yield surface in two-dimensional hydrostatic-deviatoric stress plot with and without
regularization (dashed/solid lines). In a) with friction hardening for q3 = 10q̄3 in yellow, for
q3 = q̄3 in green and no hardening in purple. In b) with cohesion hardening in orange, mixed-type
hardening in blue and no hardening in purple.

Mohr-Coulomb criterion as

Mφ =
6 sinφ

3± sinφ
and pmax = c cotφ , (5.19)

where ± is used for the different matching (compressive or tensile meridian) of the
Drucker-Prager model with the Mohr-Coulomb model. In addition, q1 controls the smoothing-
out of the peak as a perturbation parameter Lambrecht and Miehe 1999, see Figure 5.4.
This regularization is crucial for a robust numerical implementation.

The material function Mh(τ ) introduced in (5.17) is chosen as

Mh(τ ) = 1− q2 exp[q3(13 tr τ − pmax)] with q2 ∈ [0, exp(
√

3
2
q1q3)]. (5.20)

Here, q3 controls the transition zone of the hardening, see Figure 5.5a. The influence
of this parameter is not further investigated in this work. For simplicity, it is chosen
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as 1
2
κ−1 in what follows, where κ is the bulk modulus given by κ = (3λ + 2µ)/3. The

parameter q2 is related to the different types of material hardening as follows: For i)
q2 = exp(

√
3/2 q1q3) a friction hardening behavior is obtained, where the position of

peak pmax of the cone does not change due to hardening. With ii) q2 = 0 it results in
cohesion hardening and iii) 0 < q2 < exp(

√
3/2 q1q3) yields mixed-type hardening. In the

latter two cases the peak moves due to hardening.

i) For the case of friction hardening the position p∗max of the regularized peak is obtained
by

p∗max = pmax −
√

3
2
q1 with q1 ∈

[
0,
√

2
3
pmax

]
. (5.21)

Note that the regularization parameter q1 is bounded to guarantee a physically admissible
behavior by satisfying p∗max ≥ 0.

ii) In the case of cohesion hardening the position of the peak p∗∗max is given by

p∗∗max(β̂) = pmax −
√

3
2
q1 +

1
Mφ
β̂

= p∗max +
1

Mφ
β̂. (5.22)

iii) In the case of mixed-type hardening the position of the peak p∗∗∗max can be computed
according to

p∗∗∗max(β̂) = p∗∗max(β̂)− 1
q3
W (z) with z = β̂q2q3

Mφ
exp

[
q3
(
p∗∗max(β̂)− pmax

)]
, (5.23)

where W (x) is the inverse of the function f(x) = x exp(x), also called the Lambert-W
function.

A graphical representation of the yield surface for the cohesion, friction and mixed-type
hardening is illustrated in Figure 5.5.

5.3.4. Plastic potential function

To define the flow direction of the non-associative elastic-plastic hardening model for
frictional materials, we introduce the plastic potential function in its spectral form as

χ̂(τ1, τ2, τ3, β̂) =
√

3
2

√
τ ′iτ

′
i +M2

χq
2
1 −Mχ(pmax+p)− β̂Mh(τi) . (5.24)

It is plotted in the two-dimensional hydrostatic-deviatoric stress plot in Figure 5.6. Note
that its shape is analogous to the yield function in (5.17) and it incorporates the same
hardening mechanism. The difference is the material parameter Mχ as the constant slope
of the cone which characterizes the plastic potential hyper-surface. Mχ has to satisfy the
condition Mχ ≤Mφ and can be represented by

Mχ =
6 sinθ

3± sinθ
. (5.25)

Here θ denotes the angle of dilatancy representing the ratio of plastic volume change over
the plastic shear strain. Note carefully that the slope of the plastic potential has to be
smaller or equal than the slope of the yield function to be consistent with experimental
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Figure 5.6: Plastic potential in two-dimensional hydrostatic-deviatoric stress plot with and
without regularization (dashed/solid line) and the initial yield surface Φ̂(τ ; β̂ = 0) in black.

results and to ensure, in case of cohesionless material (c = 0→ pmax = 0), the dissipative
nature of plasticity as outlined by Vermeer and de Borst 1984.

With the plastic potential function at hand, we can define the Eulerian plastic flow
rule in the spectral form as

dp := λ̇ ∂τ χ̂ = λ̇
∑3

i=1d
p
i ni ⊗ ni with dpi := ∂χ̂/∂τi = χ̂,i. (5.26)

Here, the Eulerian plastic rate of deformation tensor is given in terms of the plastic rate
λ̇ and the direction of plastic flow dpi . The evolution of the equivalent plastic strain α as
an internal variable is considered in the same manner as in metal plasticity

α̇ :=
√

2
3
||dp|| = −λ̇ dβ̃ with dβ̃ := −

√
2
3

√
(χ̂2

,1 + χ̂2
,2 + χ̂2

,3). (5.27)

5.3.5. Algorithmic treatment in the spectral space

For compactness the implementation is performed in the spectral space. Therefore, the
evolution equation (5.26) must be recast. To this end a backward Euler time integration
is used such that the total time is split into finite time increments [tn, tn+1], where τ :=
tn+1 − tn > 0 is the time step size. All fields at time tn are assumed to be known. With
the rate equation (5.26) and its Lagrangian counterpart (5.8) at hand we can write

− 1
2

˙
(Gp)−1Gp = F−1λ̇∂τ χ̂F . (5.28)

A backward Euler integrator with an exponential shift Miehe 1995; Miehe and Stein 1992;
Simo 1992; Weber and Anand 1990 is taken as an approximated solution of (5.28), yielding
the Lagrangian update

(Gp
n+1)

−1 = exp[−2γn+1F
−1
n+1∂τ χ̂F n+1 ](G

p
n)

−1 with γn+1 = τ λ̇ (5.29)

in terms of the incremental plastic parameter γn+1. In what follows the subscript n + 1
will be dropped, so that all quantities without subscript are evaluated at time tn+1.

Using the property exp[F −1AF ] = F−1exp[A]F of the matrix exponential the La-
grangian update (5.29) can be recast into an Eulerian update of the elastic Finger tensor

be = exp[−2γ∂τ χ̂]be,tr with be,tr := F (Gp
n)

−1F T , (5.30)
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where be,tr is the elastic trial Finger tensor. Since τ and be commute for the underlying
isotropic elastic material law and ∂τ χ̂ commutes with be for the underlying isotropic
plastic material law, be,tr also commutes with be, see (5.30). Taking then the logarithm of
(5.30) yields the additive update of the elastic Eulerian logarithmic Hencky tensor defined
in (5.13)

he = he,tr − γ∂τ χ̂ with he,tr := 1
2
ln[be,tr] . (5.31)

Note that this update is similar to a small-strain update of the geometric linear theory.
Transforming the update into the spectral space of the trial elastic Finger tensor be,tr, the
Lagrangian flow rule (5.29) is reduced to the update of the logarithmic principal elastic
strains

εei = εe,tri − γχ̂,i with ∂τ χ̂ =
∑3

i=1χ̂,ini ⊗ ni . (5.32)

Here we assume that the trial strains εe,tri = ln[λe,tri ] and the eigenvectors {ntr
i }i=1,2,3 can

be obtained from the eigenvalue problem [be,tr − (λe,tri )21 ]ntr
i = 0 and are thus known.

The flow rule (5.27) can be integrated in a straightforward way. We define a generalized
residual vector for updating the local internal variables of the plastic strain and the
equivalent plastic strain as

ri := εei − εe,tri + γχ̂,i(τ1, τ2, τ3, β̂) = 0,

rβ̂ := α− αtr + γdβ̃(τ1, τ2, τ3, β̂) = 0,

rΦ̂ := Φ̂(τ1, τ2, τ3, β̂)− 2η̃
3τ
γ = 0,

where we introduced in (5.33)3 the plastic viscosity η̃ in order to arrive at a better nu-
merical performance.

Equations (5.33) are solved by a local return mapping scheme, in line with the recent
work Miehe et al. 2016b. The two Boxes 5.1 and 5.2 summarize this local solution scheme.
Box 5.1 defines the trial state and the final stress state by a spectral representation. The
actual return mapping scheme with the update of stress and tangent moduli are shown
in Box 5.2. Note carefully that the use of a non associative plasticity formulation leads
to non-symmetric consistent moduli, see Box 5.2, point 4.

5.3.6. Balance and evolution equations of the multi-field problem

In this section the local form of the balance and evolution equations for the multi-field
approach to phase-field modeling of ductile fracture of soils is given.

Mechanical equilibrium. The balance of linear momentum in quasi-static form reads

Div P + γ̄0 = 0 , (5.33)

where γ̄0 denotes a given body force per unit volume of the reference configuration. The
argument of the referential divergence operator “Div” is the first Piola-Kirchhoff stress
P , obtained from the energy storage function (5.10) by

P = ∂F Ψ̂ = τF−T with τ = ∂heΨ̂. (5.34)
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1. Get trial states. F and {Gp
n, αn} are given. Get trial value of Eulerian

elastic Finger tensor be,tr := F (Gp
n)

−1F T , do spectral decomposition be,tr =∑3
i=1(λ

e,tr
i )2ntr

i ⊗ntr
i , compute trial logarithmic principal strains εe,tri := ln[λe,tri ].

2. Constitutive material response. Compute elastic strains εei , principal stresses τi
and algorithmic moduli Eep

ij in spectral space, see Box 5.2.

3. Get strain, stress and tangent. Get current elastic principal stretches λei =
exp[εei ], update Lagrangian plastic metricGp = (F−1[

∑3
i=1(λ

e
i )

2ntr
i ⊗ntr

i ]F
−T )−1,

get Kirchhoff stresses and algorithmic tangent moduli

τ =
∑3

i=1τin
tr
i ⊗ ntr

i

E =
∑3

i=1

∑3
j=1 [E

ep
ij − 2τiδij ]n

tr
i ⊗ ntr

i ⊗ ntr
j ⊗ ntr

j

+
∑3

i=1

∑3
j 6=i

τi(λ
e,tr
j )2−τj(λ

e,tr
i )2

(λe,tr
i )2−(λe,tr

j )2
ntr

i ⊗ ntr
j ⊗ ntr

i ⊗ ntr
j

and compute nominal stresses and elastic-plastic tangent moduli

P = τF−T and A = { E+ 1 ⊙ τ } 2◦ F−T 4◦ F−T

A⊙B →∑3
i,j,k,l=1 AikBjlei⊗ej⊗ek⊗el A 2◦ B →∑3

i,j,k,l,m=1AimklBmjei⊗ej⊗ek⊗el

A 4◦ B →∑3
i,j,k,l,m=1AijkmBmlei ⊗ ej ⊗ ek ⊗ el

Box 5.1: Stress update scheme for plasticity. For more details see Miehe 1998b.
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1. Set initial values εei = εe,tri for i = 1...3, α = αn and γ = 0.

2. Get derivatives of energy-storage function, yield function and plastic potential

Ψ̂(εe1, ε
e
2, ε

e
3, α; d) s =

[
Ψ̂,i

Ψ̂,α

]
E =

[
Ψ̂,ij Ψ̂,iα

Ψ̂,αj Ψ̂,αα

]

Φ̂(τ1, τ2, τ3, β̂) n =

[
Φ̂,i

Φ̂,β̂

]

χ̂(τ1, τ2, τ3, β̂) v =

[
χ̂,i

dβ̃

]
F =

[
χ̂,ij χ̂,iβ̂

dβ̃,j dβ̃,β̂

]

3. Check for yielding. If yielding do a local Newton iteration

if Φ̂ < 0 then // elastic step

set τi = Ψ̂,i and Eep
ij = Ψ̂,ij

return
else // plastic step

compute residual vector

r :=
[
(εei − εe,tri ); (α− αtr)

]T
+ γ v

check if local Newton is converged

if [
√
rTr + [ Φ̂− 2η̃

3τ
γ ]2 < tol ] go to 4.

compute incremental plastic parameter

∆γ = 1
C
[ Φ̂− nTX r ] with C := nTX v and X := [ E−1 + γF ]−1

compute incremental strains and hardening variable

[ ∆εei ; ∆α]T = −E−1X [ r + ∆γ n ]

update elastic/plastic quantities
εei ⇐ εei + ∆εei ; α⇐ α+ ∆α, γ ⇐ γ + ∆γ

go to 2.

4. For plastic step: Obtain stresses and consistent moduli in eigenvalue space

τi = Ψ̂,i and Eep
ij = Xij −

1

C
[Xikχ̂,k + Xiβ̂dβ̃ ]⊗ [ Φ̂,lXlj + Φ̂,β̂Xβ̂j ]

Box 5.2: Return mapping and tangent moduli in spectral space. For more
details see Miehe 1998b.
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The Eulerian Kirchhoff stress τ follows from the general return algorithm in Box 5.2. It
is related to the effective Kirchhoff stress τ̃ dual to the elastic Eulerian Hencky strain he

by
τ = g(d) τ̃ with τ̃ := λ trhe 1 + 2µ he. (5.35)

Evolution of the fracture phase field. Recalling the definition of the crack driving
force (5.4), the phase-field evolution (5.5) and the constitutive state (5.9), we can define
the crack driving state function D(state(X), s) for ductile failure in frictional material as

ηḋ = (1− d)H− (d− l2∆d) with H = max
s∈[0,t]

ζ

〈
ψe + ψp

ψc
− 1

〉

+︸ ︷︷ ︸
:=D(state(X,s))

, (5.36)

in terms of the critical fracture energy per unit volume ψc, a fracture parameter ζ con-
trolling the post-critical range after crack initialization and the ramp function 〈x〉+ :=
(x+ |x|)/2. For the rate-independent case (η → 0) the evolution equation reads

0 = (1− d)H− (d− l2∆d) . (5.37)

The representation of the evolution equation (5.36)1 is obtained from a generalized Ginzburg–
Landau- or Allen–Cahn-type equation, see Miehe et al. 2010a and its extension to ductile
fracture Miehe et al. 2015a. From (5.36)2 it can be seen that the crack is driven by the
effective elastic and plastic energy densities. These functions do not depend on d.

The crack driving state function D in (5.36)2 does not differentiate between tension
and compression. In order to enforce crack evolution only under tension, we modify the
crack driving state function according to Miehe et al. 2010b as

D = ζ

〈
ψe
+ + ψp

ψc

− 1

〉

+

with ψe
+(h

e) :=
λ

2
〈tr[he]〉2+ + µ tr[(he

+)
2] (5.38)

where the brittle contribution accounts only for the tensile elastic energy ψe
+. Here,

he
+ :=

∑3
i=1 〈εei 〉+ ni ⊗ ni is the positive elastic Hencky tensor defined by a spectral

decomposition. For more details on the split of the elastic energy density we refer to
Miehe et al. 2016b, 2010b.

Due to the biconvexity of the above governing equations a “one-pass” staggered scheme
based on incrementally decoupled updates of the phase field d and the deformation map
ϕ is used in order to solve the equations, see Miehe et al. 2015a, 2010a.

5.4. Choice of finite element formulation

This section discusses the finite-element formulation employed for the numerical dis-
cretization of the above governing equations. Our goal is to arrive at a stable and robust
implementation free of locking. Associated phenomena are well-known in computational
plasticity and lead in general to stiffing of the material response, for example when employ-
ing bilinear quadrilateral (Q1) elements as most native conforming element formulation.
As a remedy, a Taylor–Hood or a Mini element formulation with displacement and pres-
sure as degree of freedoms are an often chosen option. However, these formulations are
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not well suited due to the degradation of both the volumetric and the deviatoric stresses.
A further attractive element formulation is given by the classical enhanced assumed strain
element (EAS) Simo and Armero 1992; Simo and Rifai 1990; Wilson et al. 1973. Such
formulation however shows hourglass modes under compressive loading and is thus not
well-suited for the scenarios to be analyzed in the present context. We therefore imple-
ment a modified enhanced assumed strain element formulation given by the consistent
gradient (CG) formulation advocated by Glaser and Armero 1997; Korelc et al. 2010; Ko-
relc and Wriggers 1996. This very convenient element formulation overcomes hourglass
modes and will be sketched briefly in this section.

5.4.1. Basic considerations of an enhanced strain formulation

A starting point to derive the governing equations of a modified EAS element is a three-
field Hu–Washizu-type potential of an arbitrary non-linear elasticity model with a given
constitutive free-energy function Ψ̂(F ). Without external loading the potential reads

Π(u,H ,P ) =

∫

B0

[Ψ̂(F ) + P · (∇u−H)] dV with F := 1 +H . (5.39)

The variation of Π(u,H ,P ) with respect to the independent variables yields the Euler
equations

DivP = 0 in B0,
∇u−H = 0 in B0,
−P + ∂F Ψ̂ = 0 in B0,

where boundary terms are ignored. Accordingly, we identify H as the displacement
gradient ∇u and P as the first Piola-Kirchhoff stress. Using a reparameterization of the
displacement gradient H yields the enhanced deformation gradient F

F := 1 +H = 1 +∇u+ H̃ with H = ∇u+ H̃ , (5.40)

where H̃ is the enhanced displacement gradient. The variation of a modified three-field
potential Π̃(u,∇u+ H̃ ,P ) then yields the Euler equations

DivP = 0 in B0,
H̃ = 0 in B0,

−P + ∂F Ψ̂ = 0 in B0,
where again boundary terms are ignored. From (5.41)2 we observe that in a continuous

setting the enhanced displacement gradient H̃ vanishes in B0. This is also referred to as
orthogonality condition. However, in a discrete setting this will lead to an improved repre-
sentation of the deformation gradient as defined in (5.40). Based on these considerations,

a spatial discretization with an approximation of the enhanced displacement gradient H̃
by an interpolation of local parameters is performed. Furthermore, static condensation of
the local parameters is employed, which leads to the final representation of the residual
vector and the stiffness matrix.

Based on the above framework, the crucial steps to arrive at a consistent gradient
formulation according to Glaser and Armero 1997; Korelc et al. 2010; Korelc and Wriggers
1996 are i) the spatial discretization and ii) the interpolation of the local parameters.
Therefore, we focus on these two steps in the subsequent sections.
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5.4.2. Spatial discretization and interpolation

Based on above considerations and the introduction of the triangulation of the domain
B0 into nnel elements Be

0 such that

B0 ≈
nel⋃

e=1

Be
0, (5.41)

the deformation gradient at X ∈ Be
0 can be approximated by

F (X) ≈ F h(ξ) = 1 +

nnode∑

I=1

dI ⊗∇XN
I(ξ)

︸ ︷︷ ︸
Hh (compatible)

+

nenh∑

I=1

αI ⊗GI(ξ)

︸ ︷︷ ︸
H̃h (enhanced)

. (5.42)

Here we introduced ξ ∈ � as the coordinates in the isoparametric space and dI as the
vector of the nodal degrees of freedom at the node I. Second order Lagrange shape
functions are chosen as nodal basis functions N I(ξ). Note that the computation of Hh

involves the inverse of the Jacobian matrix J of the mapping ξ ∈ � → X ∈ Be
0. The

vectors of the local parameters αi
I are denoted as αI with αI = [α1

I , ..., α
ndim
I ]T and the

vector of the interpolation functions for the enhanced modes is indicated as GI(ξ). For
the choice of nenh = ndim, this results in the classical EAS element with four enhanced
modes in the two-dimensional case and nine enhanced modes in the three-dimensional
case (Wilson et al. 1973). We will address the interpolation of the enhanced displacement

gradient H̃ in more detail in the next subsection.

Interpolation of the enhanced part of the deformation gradient. For a simpler
representation we introduce some abbreviations associated with the Jacobian J as

j(ξ) := detJ(ξ), j0 := detJ0 with J0 := J(ξ = 0 ). (5.43)

Based on that, the interpolation functions in GI are defined in terms of the derivatives
of the basis functions Ñ I of the enhanced modes

[G1, ...,Gnenh ] :=
j0
j(ξ)

J−T
0 E(ξ) with E(ξ) = [∂ξÑ

1, ..., ∂ξÑ
nenh ]. (5.44)

The formulation of the original EAS element uses the basis function of the incompatible
mode element by Wilson et al. 1973, i.e. Ñ I = 1

2
(ξ2I − 1). With equation (5.44) the term

of the enhanced displacement gradient H̃ in (5.42) can be recast in a tensor product form
as

H̃
h
(ξ) =

nenh∑

I=1

αI ⊗GI(ξ) =
j0
j(ξ)

E(ξ)α̃︸ ︷︷ ︸
=:M(ξ)

J−1
0 with α̃ := [αI , ...,αnenh

]. (5.45)

Modified interpolation for hourglass stabilization. In the consistent gradient for-
mulation according to Glaser and Armero 1997; Korelc et al. 2010; Korelc and Wriggers
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1996 the tensor M(ξ) is modified in order to overcome hourglass modes. The modified
tensor is given as

MCG(ξ) := M (ξ)T = α̃TE(ξ)T . (5.46)

We note that the representation of the interpolation of local parameters in (5.44) and
(5.45) are based on an objective tensor transformation assuming a one-to-one relation
of M(ξ) and E(ξ) with the gradient of the basis functions of the incompatible modes

∂ξÑ
I . This is the case when using the enhanced modes and interpolation from Wilson

et al. 1973. However, since in the consistent gradient formulation the matrix M(ξ) of
interpolation is modified, a full tensor transformation has to be used as follows

H̃
h
(ξ) =

j0
j(ξ)

[J(ξ)]−TM(ξ)[J(ξ)]−1. (5.47)

5.5. Representative numerical examples

We now demonstrate the features of the proposed framework by means of some represen-
tative numerical examples. The first example considers an element benchmark problem
and shows the performance of the presented consistent-gradient (CG) element. In the
second example a soil specimen under compressive loading is considered. Thereby the
consequences of the non-associative plasticity are investigated by a parameter study of
the angle of dilatancy θ. The third example deals with the pullout behavior of an anchor
plate and shows the influence of the presented different hardening mechanisms and the
friction angle φ.

5.5.1. Performance of the CG element

In the following benchmark test, we will show that the CG element is a convenient choice
for the targeted applications in the present work. The geometry of the problem is given by
a two-dimensional square-shaped column with dimensions W = 0.1 m and H = 0.3 m as
depicted in Figure 5.7a. At its bottom edge, the column is completely fixed and at its top
edge an increasing displacement ū in negative vertical direction is prescribed such that the
column is compressed. Here a load increment of ∆ū = 5 · 10−3 mm is taken. In the center
of the column the parameter defining the slope of the yield surface Mφ is reduced by 5%
as an initial imperfection to induce the formation of a plastic shear band. The amplitude
of this imperfection is sufficiently small so that it does not affect the overall structural
response. The geometric setup and boundary conditions are shown in Figure 5.7a. The
simulation is performed under plain-strain conditions.

Lamé parameter λ = 117.0 MN/m2 friction, dilatancy Mφ;χ = 0.98 –

Lamé parameter µ = 80.0 MN/m2 position of peak pmax = 0.2 MN/m2

hardening modulus h = 0.0 MN/m2 perturbation q1 = 1.0 N/m2

saturated yield shift τy = 37.0 MN/m2 hardening switch q2 = exp(
√
3/8 q1

κ ) –

saturation ω = 2.0 – transition zone q3 = 0.5κ−1 m2/MN

Table 5.3: Parameters for the benchmark problem of the CG element.
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In the numerical analysis, we are focusing on locking phenomena induced by the plastic
deformation. No fracturing will take place yet. The material parameters are given in
Table 5.3. The simulations are performed with bilinear quadrilateral (Q1), quadratic
triangular (P2), EAS and CG elements. For the test with the Q1, EAS and CG element
formulations the domain was discretized by 893 elements, while 1110 elements were used
for the P2 formulation. In Figure 5.7b the distribution of the hydrostatic pressure in
the domain and the corresponding load-deflection curves are shown for the four tested
element formulations.

From the load-deflection curves it can be seen that the Q1 formulation results in an
overstiff response. This is also reflected by the deformation of the domain, where no buck-
ling is observed. The P2 formulation yields a softer response but the hydrostatic pressure
is oscillating within the domain. The EAS formulation also shows a softer response than
the Q1 element but hourglass modes are observed as illustrated in the zoom of the bottom
edge in Figure 5.7b. As can be seen from Figure 5.7b, the CG formulation gives a rea-
sonable load deflection response and also a convenient hydrostatic pressure distribution.
Based on these observations, we conclude that the CG formulation satisfies the demands
of the presented model. It will be used in the following simulations.
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ū

W

H

ū/mm
0

0
2 4 6 8 12 14

F
/
N
/
m
m

10

10

20

30

40

50

60

70

Q1 P2 EAS CG

0.5 p [MPa] 1.5

Figure 5.7: Results of the benchmark test: Geometry and boundary conditions in a). The area
with the reduced material parameter Mφ is shown in dark gray. b) The load-deflection curves
and the distributions of the hydrostatic pressure within the domain for the four tested element
formulations.

5.5.2. Shear band formation in soil specimen

In the present test, we consider a similar geometry and loading as in the previous bench-
mark test. The dimensions of the specimen are again given as W = 0.1 m, H = 0.3 m,
see Figure 5.8a. The specimen is discretized with 19,844 quadrilateral elements with an
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effective element size of he = 1.25 mm. Due to the used “one-pass” staggered solu-
tion scheme, the solution during the fracture process may depend on the load increment
∆ū. Therefore, the load increment is chosen based on a convergence study. The chosen
load increment (∆ū = 5 · 10−3 mm) seems to be small enough to capture the fracture
behavior correctly. The corresponding load deflection curves for this study are shown in
Figure 5.8b.

Lamé parameter λ = 117.0 MN/m2 friction Mφ = 0.98 –

Lamé parameter µ = 80.0 MN/m2 dilatancy I M I
χ = 0.97 –

hardening modulus h = 0.035 MN/m2 dilatancy II M II
χ = 0.8 –

saturated yield shift τy = 0.5 MN/m2 dilatancy III M III
χ = 0.7 –

saturation ω = 0.1 – position of peak pmax = 0.2 MN/m2

length scale l = 2.5 mm perturbation q1 = 1.0 N/m2

crit. fracture energy ψc = 0.07 MN/m2 hardening switch q2 = exp(
√
3/8q1

κ ) –

fracture parameter ζ = 1.0 – transition zone q3 = 0.5κ−1 m2/MN

Table 5.4: Parameters employed in the simulation of the shear-band formation
in a soil specimen.

The simulation is run with three different angles of dilatancy θ relating to the material
parameter Mχ = 6 sin θ/(3 ± sin θ). The remaining material parameters are given in
Table 5.4. Figure 5.9 shows the corresponding load-deflection curves. In Figure 5.10 the
fracture phase field is visualized for two different deflection states and the three different
Mχ. Figure 5.11 shows the evolution of the equivalent plastic strain α depending on Mχ.
In the first test we deal with an almost associative plasticity formulation (M I

χ = 0.97 ≈
Mφ). In the remaining two tests (M II

χ = 0.8, M III
χ = 0.7) the angle of dilatancy θ differs

more from the angle of friction φ, hence corresponding to more pronounced non-associative
formulations.

The consequence of the non-associative character of the plasticity formulation is now
investigated by examining the load-deflection curves in Figure 5.9. Comparing the force
at a displacement of about 2 mm, where plastic yielding occurs, we observe that the
maximum force sustained by the specimen decreases with Mχ. This means that non-
associative plasticity goes along with a softer response of the material. By increasing the
load the plastic deformation grows until the onset of fracture at a total top displacement
of about 19 mm. This finally leads to a complete rupture of the solid.

Taking a closer look at the developed fracture phase field in Figure 5.10a-c for a top
displacement of ū = ū1 = 19.24 mm one observes the most pronounced crack for M I

χ.
Under the same applied displacement M II

χ shows the smallest crack. At a displacement
ū = ū2 = 20.88 mm the state of final rupture is reached for all samples, see 5.10d–f. Note
that the final crack path is influenced by Mχ.

We now take a closer look at the evolution of the equivalent plastic strain α and the
fracture phase field d for the three different Mχ. Figure 5.11 shows four states of de-
formation identified as “localization of plasticity” (Figures 5.11a,e,i), “onset of fracture”
(Figures 5.11b,f,j), “fracture propagation” (Figure 5.11c,g,k) and “final rupture” (Fig-
ure 5.11d,h,l). All four states are plotted for the three given Mχ. In Figure 5.11a–d one
can see the evolution of plastic strain α and the fracture phase field d for M I

χ = 0.97, in
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Figure 5.11e–h for M II
χ = 0.8 and in Figure 5.11i–l for M III

χ = 0.7.

The distribution of the equivalent plastic strain α at the localization of plasticity (Fig-
ure 5.11a,e,i) is similar for M I

χ and M II
χ , but for M III

χ the plasticity is more concentrated
in the center of the specimen.

At the onset of fracture (Figures 5.11b,f,j) a more diffuse distribution of the equivalent
plastic strain α with M I

χ is present. For M II
χ the upper part of the specimen tends to

slide to the left side (Figure 5.11f). This effect becomes even more clear at the next state
shown in Figures 5.11c,g,k. There we notice that for M I

χ the specimen buckles over the
full height, for M II

χ the upper part slides to the left, and for M III
χ the specimen buckles

at about 2/3 of the height. These deformation modes can also be observed in the last
state showing the final rupture (Figure 5.11d,h,l). Note that a lower Mχ goes along with
a sharper shear band and also a sharper crack interface.

5.5.3. Pullout behaviour of anchor plate in soil

As final numerical example, we consider the pullout behavior of an anchor plate in a soil
specimen. The specimen is given in terms of a rectangular domain with dimensions of
H = 1 m L = 1.75 m that contains a prescribed notch in its center. The left and right edge
of the specimen are fixed in the horizontal direction. The bottom edge of the specimen is
fixed completely. The anchor plate is loaded by a prescribed Dirichlet boundary condition
ū pointing in upward direction. Due to the used “one-pass” staggered solution scheme,
the solution may depend on the load increment ∆ū. Therefore, the load increment is
chosen based on a convergence study. The chosen load increment (∆ū = 6.25 · 10−5 mm)
seems to be small enough to capture the fracture behavior correctly. The corresponding
load deflection curves for this study are shown in Figure 5.12b.

a) b)

ū
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Figure 5.8: Shear band formation in soil specimen: Geometry and boundary condition in a).
The area with the reduced material parameter Mφ is shown in dark gray. Corresponding load
deflection curves for different load increments ∆ū are shown in b).
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ū2

Figure 5.9: Shear band formation in soil specimen: Corresponding load deflection curves for
different Mχ.
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Figure 5.10: Shear band formation in soil specimen: Fracture phase-field for the three tested
Mχ at two different displacements ū1 and ū2 (compare Figure 5.9). Areas with d ≈ 1 are colored
in red.

In order to allow for a straightforward detachment of the anchor plate from the below
solid, we prescribe Dirichlet boundary conditions of the fracture phase field d = 1 for
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0.68
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Figure 5.11: Shear band formation in soil specimen: Evolution of the equivalent plastic strain
α where regions with a crack phase field d ≈ 1 are not plotted for three different angles of
dilatancy θ, respectively Mχ. From the localization of plasticity until final rupture in (a–d) for
M I

χ, in (e–h) for M II
χ and in (i–l) for M III

χ .

all nodes within some notched region directly below the plate. This guarantees that the
anchor plate does not adhere to the soil matrix underneath it. The prescribed notch
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Lamé parameter λ = 86.0 MN/m2 friction I/II M I;II
φ = 0.98;1.2 –

Lamé parameter µ = 58.0 MN/m2 dilatancy Mχ = 0.7 –

hardening modulus h = 0.0 MN/m2 position of peak pmax = 1.6 kN/m2

saturated yield shift τy = 6.0 MN/m2 perturbation q1 = 1.0 kN/m2

saturation ω = 1.0 – hardening switch I qI2 = 0.0 –

length scale l = 2.4 cm hardening switch II qII2 = exp(
√

3/8q1
κ ) –

crit. fracture energy ψc = 10.0 N/m2 hardening switch III qIII2 = 0.5qII2 –

fracture parameter ζ = 30.0 – transition zone q3 = 0.5κ−1 m2/MN

Table 5.5: Material parameters for pullout behaviour of an anchor plate in soil.
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Figure 5.12: Pullout behavior of an anchor plate: a) Geometry and boundary conditions. The
dark area indicates the prescribed notch. Corresponding load deflection curves for different load
increments ∆ū are shown in b).

has the width W = 0.4 m and the height of one element he = 1.2 cm. Geometry and
boundary conditions of the complete setting are visualized in Figure 5.12a. Due to the
symmetry of both loading and geometry we discretize only one half of the specimen with
22,474 quadrilateral elements.

Our goal in the present simulation is to analyze the influence of the different hardening
mechanisms (cohesion, friction and mixed-type hardening) in combination with the friction
angle φ relating to the material parameter Mφ = 6 sinφ/(3 ± sin φ). We consider three
different parameters q2 defining either cohesion, friction or mixed-type hardening together
with two different parameters Mφ defining the slope of the Drucker-Prager cone. The
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Figure 5.13: Pullout behavior of an anchor plate: The corresponding load deflection curves
for the test with three different parameters q2 and two different slopes M I

φ in a) and M II
φ b).

material parameters are given in Table 5.5.

Starting point of our investigations on the influence of different hardening mechanisms
are the load-deflection curves, see Figure 5.13a and b. Here we took the load and the dis-
placement of the nodes that represent the anchor plate. There, it can be observed that co-
hesion hardening (qI2 = 0) leads to the stiffest material response for a given parameterMφ.

The softest response is associated with pure friction hardening (qII2 = exp(
√
3/8q1κ

−1).
The mixed-type hardening (qIII2 = 0.5 qII2 ) leads to an intermediate response. In the areas
of the domain with a positive hydrostatic pressure the stress state is close to the peak
of the yield surface, hence making it a big difference for the plastic yielding whether the
peak moves due to hardening or not. Finally, this gives with cohesion hardening (peak
moves, see (5.22)) the stiffest response.

The evolution of the hydrostatic pressure p and the equivalent plastic strain α are
pictured in Figure 5.14. Taking a look at the evolution of hydrostatic pressure p shown in
Figures 5.14a–c, we notice tensile stresses near the corners of the anchor at the beginning
of the deformation (Figure 5.14a). The crack starts to initiate in that area. Furthermore,
zones with compressive stresses are observed above the anchor, see Figure 5.14b. The
crack propagates from the corners of the anchor plate to the boundaries of the domain
with an angle of about 16◦ directed towards the upper edge. After a certain crack length,
the crack kinks and develops a more direct path to the upper edge, as can be seen in
Figure 5.14c. In the fully ruptured state, the compressive zones almost vanish. The
evolution of the equivalent plastic strain α in Figures 5.14d–f indicates that the fracture
follows the plastic deformation. Here the arrows show the direction of the displacement.

In Figure 5.15 the crack path and the distribution of the equivalent plastic strain α for
the tested hardening mechanisms are depicted. As can be seen, the hardening mechanism
has an influence on the crack path. Although the angle of the crack path stays the same,
the kink of the crack path occurs closer to the anchor plate in case of friction hardening.
As a result the point where the crack reaches the upper edge differs for the tested cases.

Finally, Figure 5.16 shows the crack path and the distribution of the equivalent plastic
strain α for the tested slopesMφ of the Drucker-Prager cone. Considering the influence of
the slope of the Drucker-Prager coneMφ, a higher slope results in a higher maximum force
and a delayed final rupture, see Figure 5.13a and b. By comparing the crack paths for a
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Figure 5.14: Pullout behavior of an anchor plate with M I
φ and qI2 (cohesion hardening):

Evolution of the hydrostatic pressure p = − 1
3 tr τ in (a–c) and the evolution of the equivalent

plastic strain α in (d–f) where the arrows indicate the direction of the displacement. Regions
with a crack phase field d ≈ 1 are not plotted.

chosen parameter q2 and the tested slopes Mφ of the Drucker-Prager cone, an increasing
slope Mφ yields a horizontally moved kinking point (Figure 5.16). This behavior is quite
similar to the influence of the parameter q2 on the crack path. The tested Mφ = 1.2 leads
to a crack path that ends almost at the top left and right corner of the specimen.
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Figure 5.15: Pullout behavior of an anchor plate: Distribution of the equivalent plastic strain
α at the final ruptured state with cohesion hardening in a), friction hardening in b) and mixed-
type hardening in c). The black dot indicates the fracture tip. Regions with a crack phase field
d ≈ 1 are not plotted.

5.6. Conclusion

A phase-field model of ductile fracture in frictional materials based on the Drucker–
Prager plasticity formulation was introduced within the present work. The proposed
framework was formulated in a finite-strain setting where the material functions were
formulated in the Eulerian space. The presented Drucker–Prager-type yield criterion has
two key features. The first key feature is the regularization of the peak of the Drucker–
Prager cone yielding a smooth and differentiable formulation which was implemented in a
robust numerical procedure. The second key feature is the formulated isotropic hardening
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Figure 5.16: Pullout behavior of an anchor plate: Distribution of the equivalent plastic strain
α at the final ruptured state with cohesion hardening and two different parametersMφ in a)-b).
The black dot indicates the fracture tip. Regions with a crack phase field d ≈ 1 are not plotted.

mechanism representing both cohesion and friction hardening. The elastic-plastic material
model was linked to a phase-field model for fracture by a failure criterion based on the
elastic-plastic energy density to describe crack initiation and propagation in frictional
materials undergoing large elastic-plastic deformations. The numerical treatment was
formulated in the principal stress-strain space using a general return algorithm for the
plastic flow. Furthermore, a consistent-gradient finite-element formulation was used to
guarantee locking- and hourglassing-free material response. Finally, the capabilities of
the proposed framework and the consequences of the incorporated hardening mechanisms
were shown by means of representative numerical examples considering the shear band
formation in a soil column and the pullout behavior of an anchor plate in a soil specimen.
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We further note that the formulation proposed in the present work was numerically
implemented into existing code structures designed by Christian Miehe. These code struc-
tures are available to the authors from earlier joint works on large-strain elasto-plasticity
and fracture (e.g. Miehe et al. 2016b). This applies in particular to the long-standing and
tested algorithms summarized in Box 1 and 2 originating from the contribution Miehe
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1998b. These algorithms served as algorithmic basis for the numerical implementation of
the constitutive model documented in the present work.
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Mikelić, A., M. F. Wheeler, and T. Wick (2015). “A Phase-Field Method for Propagating
Fluid-Filled Fractures Coupled to a Surrounding Porous Medium”. In: SIAM Multi-
scale Modeling Simulation 13.1, pp. 367–398.

Pham, K., H. Amor, J.-J. Marigo, and C. Maurini (2011). “Gradient damage models
and their use to approximate brittle fracture”. In: International Journal of Damage
Mechanics 20.4, pp. 618–652.

Pham, K., K. Ravi-Chandar, and C. Landis (2017). “Experimental validation of a phase-
field model for fracture”. In: International Journal of Fracture 205.1, pp. 83–101.

Raina, A. and C. Miehe (2016). “A phase-field model for fracture in biological tissues”.
In: Biomechanics and Modeling in Mechanobiology 15, pp. 479–496.

Reinoso, J., M. Paggi, and C. Linder (2017). “Phase field modeling of brittle fracture for
enhanced assumed strain shells at large deformations: formulation and finite element
implementation”. In: Computational Mechanics 59.6, pp. 981–1001.

Simo, J. C. (1992). “Algorithms for static and dynamic multiplicative plasticity that pre-
serve the classical return mapping schemes of the infinitesimal theory”. In: Computer
Methods in Applied Mechanics and Engineering 99.

Simo, J. C. and F. Armero (1992). “Geometrically nonlinear enhanced strain mixed meth-
ods and the method of incompatible modes”. In: International Journal for Numerical
Methods in Engineering 33, pp. 1413–1449.

Simo, J. C. and G. Meschke (1993). “A new class of algorithms for classical plasticity
extended to finite strains. Application to geomaterials”. In: Computational Mechanics
11.4, pp. 253–278.

Simo, J. C. and M. S. Rifai (1990). “A class of mixed assumed strain methods and the
method of incompatible modes”. In: International Journal for Numerical Methods in
Engineering 29, pp. 1595–1638.

Simo, J. and C. Miehe (1992). “Associative coupled thermoplasticity at finite strains: for-
mulation, numerical analysis and implementation”. In: Computer Methods in Applied
Mechanics and Engineering 98.1, pp. 41–104.

Teichtmeister, S., D. Kienle, F. Aldakheel, and M.-A. Keip (2017). “Phase field model-
ing of fracture in anisotropic brittle solids”. In: International Journal of Non-Linear
Mechanics 97, pp. 1–21.

Verhoosel, C. V. and R. de Borst (2013). “A phase-field model for cohesive fracture”.
In: International Journal for Numerical Methods in Engineering 96, pp. 43–62. issn:
1097-0207.

Vermeer, P. and R. de Borst (1984). “Non-associated plasticity for soils, concrete and
rock”. In: Heron 29.3, pp. 1–64.



Bibliography 151

Weber, G. and L. Anand (1990). “Finite deformation constitutive equations and a time in-
tegration procedure for isotropic, hyperelastic-viscoplastic solids”. In: Computer Meth-
ods in Applied Mechanics and Engineering 79, pp. 173–202.

Wilson, E. L., R. L. Taylor, W. P. Doherty, and J. Ghaboussi (1973). “Incompatible
displacement models”. In: Numerical and Computer Methods in Structural Mechanics.
Ed. by S. J. Fenves. Academic Press, New York, pp. 43–57.

Wilson, Z. A. and C. M. Landis (2016). “Phase-Field Modeling of Hydraulic Fracture”.
In: ICES Report 16-10.

Zienkiewicz, O. C., C. Humpheson, and R. W. Lewis (1975). “Associated and non-
associated visco-plasticity and plasticity in soil mechanics”. In: Geotechnique 25.4,
pp. 671–689.

Zreid, I. and M. Kaliske (2016). “An implicit gradient formulation for microplane Drucker-
Prager plasticity”. In: International Journal of Plasticity 83, pp. 252–272.





Chapter 6

A variational minimization formulation for

hydraulically induced fracturing in elastic-plastic

solids

Daniel Kienle
∗
& Marc-André Keip
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A variational modeling framework for hydraulically induced fracturing of elastic-plastic
solids is developed in the present work. The developed variational structure provides a
global minimization problem. While fracture propagation is modeled by means of a phase-
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type yield-criterion function. This yield-criterion function governs the plastic evolution
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6.1. Introduction

One of the main applications for a model of hydraulically induced fractures can be found in
the recently utilized oil-production technique called fracking. During this process a highly
pressurized fluid is injected into a perforated bore hole. The goal is to induce fractures
in layers of the earth’s crust that store large amounts of oil and gas. The fractures are
created to increase the fluid permeability of the present soil or rock, therewith leading to
a higher flow of gas and oil into the bore hole where it is collected. The main criticisms of
this technique are related to the inducement of fractures that could lead to environmental
issues such as seismic activities or contamination of drinking water. Therefore, in recent
years various attempts have been made to better capture and understand the underlying
physical processes, for example the development of models that can be used in numerical
simulations. The idea is that an accurate and robust model can help in forecasting both
risks and the potential of such a technique. To be successful, such a model has to capture
three distinct mechanisms: first, it has to describe the mechanical deformation of the
present porous medium (which could be soil or rock); second, it has to describe the fluid
transport throughout the intact and fractured porous medium; third, the model needs to
be capable of describing fracture initiation and propagation, for example being driven by
fluid pressure.

To embed the present work into the literature, we comment on recent development
in the field. For the modeling of hydraulic fracturing, it is of substantial importance to
describe the mechanical deformation of the underlying porous media. Powerful techniques
in this direction are given on the one hand by model formulations within the context of
the so-called Theory of Porous Media, see de Boer 2000, Ehlers 2002 and Bluhm and de
Boer 1997. An alternative approach that is suitable for the description of fully saturated
porous media with one fluid phase is formulated in the seminal works of Terzaghi 1925
and Biot 1941. Associated models reside in the area of the Biot theory of consolidation,
see Detournay and Cheng 1993 and Bear 1972 for a general overview.

When it comes to the modeling of fluid flow within a porous medium, it is often made
use of the law of Darcy 1856. Darcy’s law provides a phenomenological approach to the
modeling of fluid flux that is driven by gradients of fluid pressure or, more precisely, by
gradients of the chemical potential. Darcy’s law is often referred to as a macroscopic
approach since it describes the fluid flow through the porous medium’s pore scale in an
averaged or homogenized sense. Fluid flow within fractures, i.e. regions without solid
content, could directly be modeled based on the Navier–Stokes-equation. Associated
simplifications can be based on the lubrication theory and lead to so-called Poiseuille-type
flow models. While the first approach is often used in combination with models related
to the Theory of Porous Media, the latter one can nicely be embedded in formulations
that relate to Biot’s theory of consolidation.

Since the present work aims at the description of fracturing processes in porous media,
we briefly refer to some related literature. Fundamental concepts for the description of
fracture were proposed by Griffith 1921 and Irwin 1958. These works provide energy-
based fracture criteria for brittle materials and build the theoretical basis for the recently
developed phase-field models of fracturing. With regard to the latter we highlight the
contributions of Francfort and Marigo 1998, Bourdin et al. 2000, 2008, Amor et al. 2009,
Kuhn and Müller 2010, Miehe et al. 2010a and Pham et al. 2011b. The phase-field
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approach to fracture is extremely versatile and has been extended to the modeling of
ductile fracture (Miehe et al. 2016a, 2015a, 2016b,c, Ambati et al. 2015, Borden et al.
2016, Alessi et al. 2018a, Steinke et al. 2020, Yin and Kaliske 2020 ), anisotropic fracturing
(Li et al. 2015, Teichtmeister et al. 2017, Storm et al. 2020 ) and fatigue fracture (Alessi
et al. 2018b, Lo et al. 2019, Schreiber et al. 2020, Carrara et al. 2020), just to name a few.

Next to the above mentioned extensions, the phase-field approach to fracture has also
seen pronounced activity in the field of porous media. Here we highlight the contributions
of Bourdin et al. 2012, Mikelić et al. 2019, 2015a,b; Mikelić et al. 2015c, Miehe et al. 2015b,
Wilson and Landis 2016, Wu and Lorenzis 2016, Mauthe and Miehe 2017, and Cajuhi
et al. 2018 that are embedded into Biot’s theory of consolidation. We further highlight the
recent work Wheeler et al. 2020 on the adaptive and parallel simulation of hydraulically
induced fracture propagation as well as the contribution of Teichtmeister et al. 2019 on the
numerical treatment of poro-elastic problems with an emphasis on suitable finite-element
formulations. Combinations of the Theory of Porous Media with the phase-field approach
to fracture have been provided by Ehlers and Luo 2017; Ehlers and Luo 2018; Heider and
Markert 2017. Within the phase-field models for hydraulic fracturing Bourdin et al. 2012,
Wilson and Landis 2016, Santillán et al. 2017 and Chukwudozie et al. 2019 compared their
numerical solutions with analytical solutions obtained by Sneddon and Lowengrub 1969.
For a recent monograph on the multiphysics of the phase-field modeling of fracturing we
refer to Wick 2020.

Next to phase-field models for facturing of porous media there exist a number of al-
ternative approaches to hydraulic fracturing. Here we explicitly mention the contribution
of Adachi et al. 2007 giving a wide overview and discussion of so-called planar hydraulic
fracturing models with its root in linear elastic fracture mechanics. Furthermore, Cas-
tonguay et al. 2013 treated fracturing in the framework of the boundary element method.
The hydraulic fracture model by Damjanac et al. 2010 makes use of the discrete element
method. Another established method for the modeling of cracks is given by the extended
or generalized finite element method, see Dahi-Taleghani and Olson 2011, Gupta and
Duarte 2014, Gordeliy and Peirce 2013a,b and Shauer and Duarte 2019 for applications
to porous media.

We note that the above mentioned models all relate to elastic deformations of the
material. However, there is experimental evidence that elastic material response alone
cannot capture all relevant effects Johnson and Cleary 1991. This serves as a motivation
to the develop models that incorporate elastic-plastic deformations. Here we would like
to refer to the recent developments of Pise et al. 2019 and Aldakheel et al. 2020. In the
given works, the plastic response is incorporated by introducing a Drucker–Prager-type
yield criterion function Drucker and Prager 1952. We note that the works Pise et al. 2019,
Aldakheel et al. 2020 are not variational and consider a yield-criterion function in terms
of the effective stresses. The present work provides an alternative formulation of elastic-
plastic hydraulic fracturing in a rigorously variational setting motivated by the ideas of
Armero 1999. In the latter work, an additive split of the fluid content into an elastic and
a plastic part is suggested, which leads to a constitutive fluid pressure as a function of
only elastic quantities. This concept is perfectly suitable for a variational framework that
combines the elastic-plastic deformation of the porous medium with the fluid transport
on the one hand and the fracture initiation and evolution on the other.

The present work is structured as follows. In Section 6.2 the unknown fields and
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associated kinematic relations are introduced. Thereafter, in 6.3, we provide the varia-
tional framework and the constitutive functions. Here, we make use of a Darcy–Biot-type
formulation for the fluid transport in the porous medium and a Drucker–Prager-type
yield-criterion function for plastic flow. This then leads to the set of Euler equations that
describe the behavior of a fracturing porous-elastic-plastic solid. The numerical treatment
of the problem is based on a time-discrete incremental variational formulation combined
with a local return-mapping scheme and discussed in Section 6.4. We showcase the ca-
pabilities of the presented numerical framework for hydraulically induced fracturing of
porous-elastic-plastic solids by means of some numerical examples to be discussed in Sec-
tion 6.5. We consider a rigid-footing test as well as two fluid-injection tests in detail. A
summary and an outlook will be provided in Section 6.6.

6.2. Independent and primary fields

In the present section we introduce the independent and primary fields of the porous-
elastic-plastic fracture model. They account for the elastic-plastic deformation of a body
B, for the fluid flux and storage in B as well as for the fracture initiation and evolution
in B. The surface of the body will in the following be denotes as ∂B.
Small-strain kinematics.. The model presented in this work is formulated in the context
of the infinitesimal-strain theory. Hence, we consider the displacement field u(x, t) at the
material point x ∈ B and time t

u :

{
B × T → R3

(x, t) 7→ u(x, t)
(6.1)

as independent field. Based on that, we introduce the infinitesimal strain tensor as a
primary variable. It cam be computed from the displacement gradient by

ε := 1
2
(∇u+∇uT ). (6.2)

Plastic deformations.. Since we are interested in modeling ductile response of the mate-
rial, we additively decompose the strain tensor (6.2) into elastic and plastic contributions

ε = εe + εp, (6.3)

wherein the plastic strain εp will be treated as a local internal variable. Further, to
describe local isotropic hardening, we introduce a local hardening field α formally by

α :

{
B × T → R
(x, t) 7→ α(x, t).

(6.4)

Fluid mass and fluid flux.. The initial density (mass per unit volume) of the fluid-solid
mixture is denoted by m0. It can be computed from the densities of the fluid ρf and the
solid ρs through the given porosity of the mixture ϕ as

m0 = ρfϕ+ ρs(1− ϕ) with ϕ = Vpore

Vpore+Vsolid
. (6.5)

In the above equation, the porosity ϕ has been obtained from the given pore and solid
volume Vpore and Vsolid, respectively. The sum of solid and fluid volume is often denoted
as bulk volume Vbulk.
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Following Biot’s approach to thermodynamically open systems, the mass balance in
its global and local representation reads (Biot 1984)

d

dt

∫

B
m0 +m dV = −

∫

∂B
h · n dA ⇔ ṁ = − div h in B. (6.6)

Here, m denotes the change in the bulk’s density, which is caused by fluid flux through
the body’s surface. Thus, the vector h given on the right-hand side of (6.6) denotes a
fluid-flux vector. Formally, the latter two quantities can be introduced as

m :

{
B × T → R
(x, t) 7→ m(x, t)

and h :

{
B × T → R3

(x, t) 7→ h(x, t).
(6.7)

In what follows we denote m as the change of fluid content. Analogous to the strain
tensor, we decompose m into an elastic and a plastic part

m = me +mp. (6.8)

Here, the plastic contribution mp describes a change in bulk density that is caused by
plastic deformations. It is associated with fluid that is irreversibly squeezed out or soaked
in due to plastic deformations.

x ∈ B

x ∈ Bx ∈ Bx ∈ B x ∈ B

x ∈ Bx ∈ B

u

u = ū

n

n n

σn = t̄

displacement field

mp

plastic fluid content

h

h · n = h̄

µ = µ̄

fluid flux

d

d = d̄

c∇d · n = 0

fracture phase-field

εp

plastic strain

α

hardening

m

fluid content

Figure 6.1: The unknown fields for porous-elastic-plastic solids at fracture. The boundary ∂B
is decomposed into Dirichlet and Neumann parts for the displacement ∂Bu ∪ ∂Bt, the fluid flux
∂B

h

∪ ∂Bµ and the fracture phase-field ∂Bd ∪ ∂Bk. For the fracture phase-field, zero Neuman
boundary conditions are assumed. Here c is a constant depending on the model formulation.

Fracture phase field.. As mentioned above, we will model cracks and their evolution
based on the phase-field approach to fracture. The fracture phase field d is thus formally
introduced as

d :

{
B × T → [0, 1]
(x, t) 7→ d(x, t).

(6.9)

It denotes with d = 0 an intact state and with d = 1 a broken state of the material. The
phase field is used to approximate a sharp crack interface Γ in a diffuse manner. This
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results in the definition of a regularized crack surface Γl in terms of a crack-surface density
γ and a corresponding length-scale parameter l given by

Γ ≈ Γl(d) :=

∫

B
γ(d,∇d) dV with γ(d,∇d) := 1

2l
d2 + l

2
|∇d|2, (6.10)

Note that the sharp crack surface is recovered for vanishing length-scale parameter (l →
0⇒ Γl → Γ). Here we follow the notation of Miehe et al. 2010b.

To sum up, the primary fields for porous-elastic-plastic solids at fracture and the
corresponding Dirichlet and Neumann boundary are depicted in Figure 6.1

6.3. Variational formulation of fracturing porous-elastic-plastic
solids

Based on the previous section, we are able to introduce the primary fields for the descrip-
tion of fracturing porous-elastic-plastic solids as

U := {u,h, d, εp, α,mp}. (6.11)

In order to formulate a rate-type variational principle we define the rate of the primary
fields as

U̇ := {u̇,h, ḋ, ε̇p, α̇, ṁp}. (6.12)

Furthermore, we identify the constitutive state of the model and its evolution as

C := {ε, m,h, d,∇d, εp, α,mp} and Ċ := {ε̇,h, divh, ḋ, ∇̇d, ε̇p, α̇, ṁp}, (6.13)

respectively.

6.3.1. Formulation of the rate-type potential

The general form of the rate-type potential is given by

Π(U̇;U) :=
d

dt
E(Ċ;C) +D(Ċ)− Pext(U̇), (6.14)

where d
dt
E(Ċ;C) is the rate of the energy, D(Ċ) is the dissipation potential and Pext(U̇)

is the potential of the external loading. The rate of the energy is described in terms of
the energy density ψ(C)

d

dt
E(Ċ;C) =

d

dt

∫

B
ψ(C) dV, (6.15)

which, by application of the chain rule yields

d

dt
E(Ċ;C) =

∫

B
(∂εψ : ε̇− ∂mψ div h+ ∂dψ ḋ+ ∂εpψ : ε̇p+ ∂αψ α̇+ ∂mpψ ṁp) dV. (6.16)

In the latter equation, we made use of the fluid mass balance (6.6)2. Similarly to the rate
of energy, the dissipation potential can be expressed in terms of a dissipation potential
density φ(Ċ)

D(Ċ) =

∫

B
φ(Ċ) dV. (6.17)
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Combing the right-hand sides of equations (6.16) and (6.17) yields the internal rate-
potential density per unit volume

π(Ċ;C) = ∂εψ : ε̇− ∂mψ div h+ ∂dψ ḋ+ ∂εpψ : ε̇p + ∂mpψ ṁp + ∂αψ α̇ + φ(Ċ). (6.18)

so that

Π(U̇;U) :=

∫

B
π(Ċ;C) dV − Pext(U̇). (6.19)

The particular forms of the energy density ψ(C), the dissipation-potential density φ(Ċ)
and the potential of the external loading Pext(U̇) will be discussed in the following sections.

Constitutive energy density. The energy density has two contributions, one from the
solid ψsolid and one from the fluid ψfluid

ψ(C) = ψsolid(ε− εp, α, d) + ψfluid(ε− εp, m−mp). (6.20)

Energy density of the solid phase. The energy density of the solid phase ψsolid can be
decomposed into an effective elastic and a plastic part

ψsolid(ε
e, α, d) = ψeff(ε

e, d) + ψplast(α, d). (6.21)

Both parts depend on the fracture phase field d by means of a degradation function g(d).
The degraded effective elastic energy reads

ψeff(ε
e, d) = [g(d) + k]ψ0+

eff (ε
e) + ψ0−

eff (ε
e), (6.22)

where the superscript “0” indicates the energy density of the undamaged solid matrix.
In the latter equation, we have decomposed the undamaged energy into tensile and com-
pressive parts (indicated by the superscripts “+” and “-”, respectively), from which only
the tensile part is assumed to contribute to fracture propagation. The parameter k ≪ 1
ensures the well posedness of the problem. In what follows, we assume that g(d) = (1−d)2.

The undamaged effective energies ψ0±
eff represent the behavior of the elastic matrix and

take the simple quadratic forms

ψ0±
eff (ε

e) = λ
2

〈
tr (εe)

〉2
± +G εe± : εe± with εe± =

∑
i=1,3〈λei 〉±ni ⊗ ni (6.23)

in terms of the elastic strain εe and the Lamé constants λ ≥ −2
3
G and G ≥ 0. The tensile

and compressive strains εe± are given in terms of the eigenvalues of the strain tensor λei
and the ramp function 〈x〉± = (x± |x|)/2.

The plastic energy density considers isotropic saturation-type hardening and takes the
form

ψplast(α, d) = [g(d)+k]ψ0
plast(α) with ψ0

plast(α) =
h
2
α2+σy

[
α+ 1

ω
exp(−ωα)− 1

ω

]
. (6.24)

Here, h ≥ 0 is the hardening modulus, σy is the saturated yield shift and ω is a sat-
uration parameter, see Kienle et al. 2019. The resulting hardening function β(α, d) =
∂αψplast(α, d) is shown in Figure 6.4.
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Energy density of the fluid phase. Based on Biot’s theory of consolidation Biot 1941 the
fluid energy density is chosen as

ψfluid(ε
e, me) = M

2

[
b tr(εe)− me

ρf

]2
, (6.25)

where M is Biot’s modulus, b is Biot’s coefficient and ρf is the fluid density. It satisfies
the following conditions in terms of the fluid pressure p

p := −1
b
∂tr εψfluid = ρf∂mψfluid. (6.26)

We refer to Miehe et al. 2015b for a more detailed discussion on the construction of ψfluid.
Note that according to (6.25) and (6.26) the fluid pressure depends only on the elastic
quantities εe and me.

Dissipation-potential density. Similar to the energy density the dissipation potential
density can be additively decomposed into individual contributions, here associated with
dissipative effects arising from fluid flow, fracture evolution and plastic deformations. The
dissipation potential density is formally given by

φ(Ċ) = φfluid(h) + φfrac(ḋ, ∇̇d) + φplast(ε̇
p, α̇, ṁp). (6.27)

Dissipation-potential density for fluid flow. We follow Miehe et al. 2015b and employ a
dissipation-potential density in terms of the fluid flux h given by

φfluid(h) =
1
2
K−1 : (h⊗ h) (6.28)

The permeability tensor K at a given state {ε, d,∇d} is defined as
∗

K(ε, d,∇d) =
{

[1− f(d)]K0 + f(d)Kfrac(ε,∇d) for d ≥ 0.8
K0 otherwise,

(6.29)

where K0 is the permeability tensor of the undamaged bulk and K frac is the permeability
tensor within a crack. Clearly, the function f(d) acts as an interpolation function between
intact and fully damaged states of the material. In what follows, we select f(d) = dǫ,
where ǫ is an interpolation parameter.

While the permeability tensor of the undamaged bulk can be formulated in an isotropic
manner based on the spatial permeability K as K0 = ρ2fK1 , the permeability tensor
within a crack can be expressed in terms of the fracture-opening function w(ε,∇d)

K frac(ε,∇d) = ρ2f
w2(ε,∇d)

12ηf

(
1 − n⊗ n

)
with n := ∇d

|∇d| , (6.30)

which is anisotropic in nature. In the above definition, ηf is the fluid’s dynamic viscos-
ity. Note that the representation of the permeability in (6.30) is derived based on the
lubrication theory and relates to Poiseuille-type flow within the fractures. A schematic
representation of the interpolation between Darcy’s flow and the Poiseuille-type flow can
be seen in Figure 6.2.

∗
We note that other approaches for the delineation of cracks from the bulk have been proposed. Here,

we would like to refer, e.g., to Lee et al. 2017 for an approach using level-set functions, to Santillán et al.
2017, who introduce cracks as lower-dimensional entities whenever a certain damage threshold is met,
and to Chukwudozie et al. 2019 for an approach using line integrals along the streamlines of phase-field
gradients across fractured cells.
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w

a) b)

Figure 6.2: Schematic representation of a) fluid flow in porous medium according to Dracy’s
law and b) within developing fractures according to Poiseuille–type law with fracture opening
w.

In the context of (6.30), the fracture-opening function is given as

w(ε,∇d) = (n · ε · n)L⊥, (6.31)

where L⊥ is the length of a line element that is perpendicular to the crack. In a finite-
element representation this can be identified as the element size he. Note that the ap-
proximation of the fracture opening (6.31) with L⊥ = he is associated with a uniform
rectangular finite-element mesh, where the crack is aligned with the element edges. Devi-
ations of the resulting fracture width might occur in case of regular finite-element meshes
with element edges that are inclined to the crack, see Appendix B.

We further note that according to (6.30) the crack normal n in (6.31) is defined in
terms of the gradient of the phase field d. In the numerical setting the gradient is recovered
by a lumped L2 projection. Such a procedure allows the definition of the crack normal in
fully broken finite-element cells (d = 1). The effect of the lumped L2 projection is show
schematically in Figure 6.3.

d = 1 d = 1

d = 1d = 1

d = 1 d = 1

d = 1d = 1

d

|∇d|

L
2
p
ro
je
ct
io
n

00

11

Figure 6.3: Projection and smoothing of the phase-field gradient ∇d shown schematically. A
representation of fine elements is shown on the top. A fully broken cell in the center is colored in
red. The green arrows indicate the gradient of the phase field at the quadrature points (top left)
and at the nodes (top right). In the middle the distribution of the phase field is shown along a
horizontal cut. The distribution of the gradient of the phase-field is shown at the bottom.

Dissipation-potential density for fracture evolution. The dissipation-potential density as-
sociated with fracturing accounts for the dissipation of an evolving crack surface. It pre-
serves thermodynamical consistency by ensuring a local irreversibility condition of the
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fracture phase field ḋ ≥ 0, which can be achieved by introducing the indicator function
I(ḋ).

For general Griffith-type fracturing the dissipation-potential density reads

φgc
frac(ḋ, ∇̇d) :=

d

dt

{
gcγ(d,∇d)

}
+ I(ḋ), (6.32)

where gc is Griffith’s critical energy-release rate. The indicator function I(ḋ) is given as

I(ḋ) :=

{
0 for ḋ ≥ 0,
∞ otherwise.

(6.33)

Note that the fracture evolution described by (6.32) does not include any threshold value
for the fracture evolution. In that case, damage occurs already at very small load levels.
Hence, to clearly separate the material response during loading in elastic and plastic
behavior as well as subsequent fracturing, the following dissipation-potential density will
be used

φfrac(ḋ, ∇̇d) :=
d

dt

{
[1− g(d)]ψc + 2ψclγ(d,∇d)

}
+ I(ḋ), (6.34)

where ψc is a threshold value.

Dissipation-potential density for plastic response. The dissipation-potential density ac-
counting for plastic behavior can be derived based on the principle of maximum dissipa-
tion. For that, the thermodynamical driving forces for the plastic strain, the hardening
and the change of plastic fluid content need to be specified. Using the second law of ther-
modynamics (Clausius–Planck inequality) yields the driving forces as thermodynamical
duals of εp, α and mp as

σ := −∂εpψ = −∂εpψeff − ∂εpψfluid = σeff − bρfµ1
β := −∂αψ = −∂αψplast

µ := −∂mpψ = −∂mpψfluid.

(6.35)

We denote the set of diving forces as F = {σ, β, µ}, wherein σ is the Cauchy stress,
β is the hardening function and µ is the fluid potential. Based on that, we construct
the dissipation-potential density φplast, which is formulated in terms of the constrained
optimization problem

φplast(ε̇
p, α̇, ṁp) := sup

F∈E
[σ : ε̇p + βα̇ + µṁp] . (6.36)

In the above definition, the plastic driving forces are constrained to lie within the elastic
domain E := {F|f p(F) ≤ 0}, which is characterized by the yield function f p. The
latter will be specified at a later stage. By introducing the Lagrange multiplier λp the
constrained optimization in (6.36) can be rewritten as

φplast(ε̇
p, α̇, ṁp) := sup

F

inf
λp≥0

[
σ : ε̇p + βα̇ + µṁp − λpf p(F)

]
, (6.37)

The latter representations are related to the rate-independent elastic-plastic material re-
sponse, which leads to non-smooth evolution of plastic deformations. The non-smoothness
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can be relaxed by introducing viscous regularization, which yields the modified dissipation-
potential density

φplast(ε̇
p, α̇, ṁp) := sup

F

[
σ : ε̇p + βα̇+ µṁp − 1

2ηp
〈f p(F)〉2+︸ ︷︷ ︸

Dplast

]
. (6.38)

From a mathematical point of view this density is obtained from an optimization proce-
dure with side condition, the latter of which is enforced by a quadratic penalty term. The
penalty parameter is given by the plastic viscosity ηp.

In the present work it is assumed that the yield function f p
solid describes the plastic

response of the drained solid matrix. It is thus expressed in terms of the effective stresses
σeff and the hardening function β. It should be equal to the yield function f p of the
undrained bulk, which can be expressed in terms of the total stress σ, the hardening
function β and the fluid potential µ

f p
solid(σeff, β) = f p(σ, β, µ). (6.39)

A similar assumption has been made in Armero 1999. The starting point for the derivation
of an appropriate yield function for the presented model is given by the yield function for
frictional materials presented in Kienle et al. 2019, see also Vermeer and de Borst 1984
and Lambrecht and Miehe 2001. Making use of equations (6.35)1 and (6.39) yields

f p(σ, β, µ) =
√

3
2

√
| dev[σ]|2 +M2

φq
2
1 −Mφ(smax − 1

3
trσ − bρfµ) + βMh(σ, µ), (6.40)

where Mφ is related to the friction angle, q1 is a parameter related to the regularization
of the tip of the yield surface and smax is related to the cohesion of the material. The
hardening response is limited to friction hardening by choosing the material function
Mh(σ, µ) as

Mh(σ, µ) = 1−
√

3
2
q1 exp

[
1
3
trσ + bρfµ− smax

]
. (6.41)

By inserting equation (6.35)1 in equation (6.40) the yield function f p
solid(σeff, β) can be

recovered. The yield function in terms of the effective stress σeff is visualized in Figure 6.4.

Potential of external loading. The external loading in form of mechanical tractions
and fluid potential is formulated as

Pext(U̇) =

∫

∂Bt

t̄ · u̇ dA−
∫

∂Bµ

µ̄h · n dA, (6.42)

where t̄ is the mechanical traction vector applied on the traction boundary ∂Bt of the
domain B. The fluid contribution is due to the fluid transport over the boundary ∂Bµ of
the domain B, where the fluid potential µ̄ is applied.

6.3.2. Minimization principle and mixed variational principle

Based on the above introduced functions we can introduce a rate-type minimization prin-
ciple that governs the boundary-value problems of porous-elastic-plastic solids at fracture

U̇∗ = arg
{
inf
U̇∈W

Π(U̇;U)
}

(6.43)
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Figure 6.4: Hardening function β(α; d = 0) with linear hardening h 6= 0 (solid line) and without
linear hardening h = 0 (dashed line), where α∗ = ( h

σy
+ ω)−1 in a). In b) the yield function

in two-dimensional hydrostatic-deviatoric plane with and without regularization (dashed/solid

lines) where s∗max = smax −
√

2
3q1. In green with hardening and no hardening in purple.

where W = {Wu̇,Wh

,Wḋ,Wε̇p,Wα̇,Wṁp} is the set of admissible spaces corresponding
to the set of the rate of unknowns U̇. The admissible spaces are given as

Wu̇ := {u̇ ∈ H1(B)|u̇ = ˙̄u on ∂Bu}, Wh

:= {h ∈ H(div,B)|h · n = h̄ on ∂B
h

}
Wḋ := {ḋ ∈ H1(B)}, Wε̇p := {εp ∈ L2} (6.44)

Wα̇ := {α̇ ∈ L2}, Wṁp := {ṁp ∈ L2}.

Combining the global minimization principle (6.43) with the local maximization prin-
ciple in (6.38) yields the mixed variational principle

{U̇∗,F∗} = arg

{
inf
U̇∈W

sup
F∈L2

∫

B
π⋆(Ċ,F;C) dV − Pext(U̇)

}
(6.45)

where π⋆(Ċ,F;C) is the mixed potential density. It reads

π⋆(Ċ,F;C) = d
dt
ψ(C) +Dplast(ε̇

p, α̇, ṁp,F) + φfluid(h) + φfrac(ḋ, ∇̇d). (6.46)

Performing the variation of (6.46) at a fixed state C, we obtain the Euler equations of
the mixed variational principle (6.45) for the global unknowns as

div[∂εψ] = 0 in B
∇[∂mψ] + ∂

h

φ = 0 in B
∂dψ + ∂ḋφ− div[∂∇̇dφ] ∋ 0 in B

−∂mψ + µ̄ = 0 on ∂Bµ
∂εψ · n− t̄ = 0 on ∂Bt
∂∇̇dφ · n = 0 on ∂Bk

(6.47)
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and the local unknowns with the corresponding thermodynamic duals as

∂εpψ + σ = 0 in B
∂αψ + β = 0 in B
∂mpψ + µ = 0 in B

ε̇p − λpv ∂σf p = 0 in B
α̇− λpv ∂βf p = 0 in B
ṁp − λpv ∂µf p = 0 in B

(6.48)

The equations in (6.47) represent the global balance laws and the corresponding Neumann
boundary conditions. In (6.48) the definition of the thermodynamic duals of the local fields
as well as their evolution equations are given. In the latter, we introduced the visco-plastic
multiplier λpv :=

1
ηp
〈f p〉+.

Condensation of local variables. The set of the rate of the primary fields can be split
into a local and global part. The former is given as U̇l = {ε̇p, α̇, ṁp} and the latter arises
as U̇g = U̇ \ U̇l = {u̇, ḋ,h}. The set of the rate of the local fields U̇l is governed by the
mixed variational principle

{U̇∗
l ,F

∗} = arg
{

inf
U̇l

sup
F

π⋆(Ċ,F;C)
}

(6.49)

In order to obtain a solution for U̇g the reduced potential density is introduced as

π⋆
red(Ċred;Cred) = inf

U̇l

sup
F

π⋆(Ċ,F;C), (6.50)

where the reduced constitutive state Cred = {ε, m, d,∇d} and its evolution Ċred =
{ε̇,h, divh, ḋ, ∇̇d} are introduced. The set of the rate of the global fields is given by
the following minimization principle

U̇∗
g = {u̇∗, ḋ∗,h∗} = arg

{
inf

u̇∈Wu̇

inf
ḋ∈Wḋ

inf
h∈W

h

∫

B
π⋆
red(Ċred;Cred) dV − Pext(U̇)

}
(6.51)

6.3.3. Modification of the fracture driving force

In this section a closer look at equation (6.47)3 is taken. Inserting the definitions of the
energy density and the dissipation potential density yields

− 2(1− d)[ψ0+
eff + ψ0

plast − ψc] + 2ψc(d− l2∆d) + ∂ḋI ∋ 0. (6.52)

By introducing the crack driving history field H this is modified to

− 2(1− d)H + 2ψc(d− l2∆d) = 0 with H := max
s∈[0,t]

〈ψ0+
eff + ψ0

plast − ψc〉+. (6.53)

This follows the notation for brittle fracture in Miehe et al. 2010a and for ductile fracture
in Miehe et al. 2016a, 2015a.
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For plasticity models with a yield limit that is independent of the stress state it is
possible to formulate a plastic energy density ψ̃0

plast(α), which contains not only the work
of the hardening for the solid matrix but also the work of the ideal plastic deformation
of the solid matrix. One such example is given by von-Mises plasticity, for which we can
write

ψ̃0
plast(α)

von Mises
= wplast with wplast

(6.49)
=

∫
σ0

eff : ε̇p dt (6.54)

Note that the undamaged effective stress σ0
eff acting on the solid matrix is used here. The

plastic work wplast can alternatively be expressed in terms of the undamaged total stress
σ0 and the fluid potential µ as

wplast =

∫
σ0

eff : ε̇p dt =

∫
σ0 : ε̇p + µṁp dt. (6.55)

Since the construction of an energy density ψ̃0
plast like (6.54)1 is not possible for more

complicated plasticity models such as the Drucker–Prager model, the crack driving history
field in (6.53)2 is modified to

H = max
s∈[0,t]
〈ψ0+

eff + wplast − ψc〉+. (6.56)

With the representation of the crack driving history field in (6.56) it is possible to model
ductile fracture evolution that is driven by the elastic and the ideal plastic deformation as
well as the hardening. With the representation in (6.53)2 and the definition of the plastic
energy in (6.24)2 it is only possible to model a ductile fracture evolution which is driven
by the elastic deformation and the hardening.

A visualization of the different energy contributions to the crack driving history is
shown in Figure 6.5.

a) b) c)
ψ0
eff ψ0

effψ0
eff

ψ0
plast = 0 ψ0

plast
wplast

ε εε

σ0
eff σ0

effσ0
eff

Figure 6.5: Visualization of the different energy contributions to the crack driving history field
H. For the representation of H in (6.53)2 only the elastic energy and the energy arising from
the hardening, as show in a) and b), will drive the crack. For ideal plasticity the plastic energy
vanishes (ψ0

plast = 0) leading to pure brittle fracture, see a). By using (6.56) the crack is driven
by the elastic energy and the full plastic work, see c).

Relation between plastic strain and change of fluid content. Based on the con-
struction of the yield function, see (6.39), the evolution of the plastic strain (6.48)4 can
be reformulated as

ε̇p = λpv ∂σf
p = λpv ∂σeff

f p
solid. (6.57)
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Furthermore, reformulation of the evolution of the change of plastic fluid content (6.48)6
yields

ṁp = λpv ∂µf
p = λpv ρfb tr(∂σeff

f p
solid). (6.58)

Combining the above two equations gives a relation between the evolution of the plastic
strain and the evolution of the change of the plastic fluid content

ṁp = ρfb tr ε̇
p. (6.59)

We observe that the change of the plastic fluid content depends exclusively on volumetric
plastic deformation.

6.4. Numerical Treatment

6.4.1. Incremental variational formulation

The incremental version of the rate-type potential introduced in Section 6.3 is obtained
by algorithmic time integration over a given time step τ = [tn, tn+1). For a pure Dirichlet
problem (Pext = 0) we arrive at

Πτ (U,F) = Algo
{∫ tn+1

tn

Π(U̇,F;C) dt
}
=

∫

B
π⋆τ (C,F;Cn) dV, (6.60)

where π⋆τ (C,F;Cn) is the incremental potential density. It is given in terms of the energy
density ψ, the incremental fluid and fracture dissipation-potential density φτ

fluid and φτ
frac,

respectively, as well as the incremental dissipation density related to the visco-plastic
behavior Dτ

plast as

π⋆τ (C,F;Cn) = ψ(C)+Dτ
plast(ε

p, α,mp,F; εpn, αn, m
p
n)+φ

τ
fluid(h)+φ

τ
frac(d,∇d, dn). (6.61)

The individual dissipative contributions read

φτ
fluid = τφfluid(h)

φτ
frac = [1− g(d)]ψc + 2ψclγ(d,∇d) + Iτ (d, dn)

Dτ
plast = σ : (εp − εpn) + β(α− αn) + µ(mp −mp

n) +
τ

2ηp
〈f p(F)〉2+.

(6.62)

Furthermore the fluid mass balance (6.6)2 is satisfied by the implicit update

m = mn − τ div h. (6.63)

Condensation of local variables.. Similar as in the continuous problem, the set of primary
fields can be decomposed into a local and global part. Again, the local fields are identified
as Ul = {εp, α,mp} and the global fields as Ug = U \Ul = {u, d,h}. The local fields are
governed by the mixed variational principle

U∗
l = arg{ inf

Ul

sup
F

π⋆τ (C,F;Cn)} (6.64)
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Using the representation (6.38) the mixed variational principle (6.64) leads to the following
condition

∂Ul,Fπ
⋆ =




∂εpψ + σ
∂αψ + β
∂mpψ + µ

εp − εpn − γpv ∂σf p

α− αn − γpv ∂βf p

mp −mp
n − γpv ∂µf p



= 0 . (6.65)

Here, γpv := τλpv =
τ
ηp
〈f p〉+ is the incremental visco-plastic multiplier. The local system of

equations in (6.65) is solved via a general return mapping scheme summarized in Box 6.1.

Reduced global problem.. In order to obtain a solution for Ug the reduced potential
density is introduced

π⋆τ
red(Cred) = inf

Ul

sup
F

π⋆τ (C,F;Cn), (6.67)

where the reduced constitutive state Cred = {ε,h, divh, d,∇d} is introduced. The global
fields are then given by the minimization principle

U∗
g = {u∗, d∗,h∗} = arg

{
inf

u∈Wu

inf
d∈Wd

inf
h∈W

h

∫

B
π⋆τ
red(Cred) dV

}
, (6.68)

with the admissible spaces

Wu := {u ∈ H1(B)|u = ū on ∂Bu}, W
h

:= {h ∈ H(div,B)|h · n = h̄ on ∂B
h

},
Wd := {d ∈ H1(B)}. (6.69)

6.4.2. Space-time-discrete finite-element formulation

Considering a finite-element discretization T h(B), the discrete state vector d containing
the discrete values of {u,h, d} and the interpolation of the constitutive state Ch

red = Bd
the global minimization principle (6.68) can be written as

d∗ = arg{inf
d

Πτh(d)} with Πτh(d) =

∫

B
π⋆τh
red (Bd) dV. (6.70)

Here, we employ the shape functions from Raviart and Thomas 1977 for the interpolation
of the fluid flux, see also Teichtmeister et al. 2019. The nodal displacement is interpolated
by the shape functions of the enhanced-assumed-strain formulation, see Simo and Rifai
1990. The interpolation of the nodal phase-field values is done by the standard Q1-type
shape functions.

The global algebraic minimization principle (6.70) leads to the following condition

R := Πτh
,d =

∫

B
BTS dV = 0 (6.71)
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0. Get trial values [εe,tr; me,tr; αtr]T = [(ε− εpn); (m−mp
n); αn]

T

1. Set initial values [εe; me; α]T = [εe,tr; me,tr; αtr] and γpv = 0.

2. Compute derivatives of energy density and yield function

ψ(εe, me, α; d) s =



ψ,εe

ψ,me

ψ,α


 E =



ψ,εeεe ψ,εeme ψ,εeα

ψ,meεe ψ,meme ψ,meα

ψ,αεe ψ,αme ψ,αα




f p(σ, µ, β) n =



f p

,σ

f p
,µ

f p
,β


 F =



f p

,σσ f p
,σµ f p

,σβ

f p
,µσ f p

,µµ f p
,µβ

f p
,βσ f p

,βµ f p
,ββ




3. Check for yielding. If yielding do a local Newton iteration

if f p < 0 then // elastic step

set [σ; ψ,m]
T = [ψ,εe ; ψ,me ]T and Eep = E

return
else // plastic step

compute residual vector

r := [(εpn − εp); (mp
n −mp); (αn − α)]T + γpv n

check if local Newton is converged

if [
√

rTr + [ f p − ηp
τ
γpv ]2 < tol ] go to 4.

compute incremental plastic parameter

∆γpv = 1
C
[ f p − nTX r ] with C := nTXn+ ηp

τ
and X := [ E−1 + γpvF ]−1

compute incremental strains, plastic fluid content and hardening variable

[ ∆εp; ∆mp; ∆α]T = −E−1X [ r + ∆γpv n ]

update plastic quantities
[εp; mp ;α; γpv ]

T ⇐ [εp; mp; α; γpv ]
T + [ ∆εp; ∆mp; ∆α; ∆γpv ]

T

update elastic quantities

[εe; me]T = [(ε− εp); (m−mp)]T

go to 2.

4. For plastic step: Obtain stresses and consistent moduli

[σ; ψ,m]
T = [ψ,εe; ψ,me ]T and Eep = X − 1

C
[X · n ]⊗ [n ·X ] (6.66)

Box 6.1: Return mapping and tangent moduli for poro-elasto-plasticity. It is
based on the algorithm for elasto-plasticity in Miehe 1998.
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where the generalized array S is introduced. This array is defined as follows

S :=




ψ,εh

−τψ,mh

τφ,hh

−2(1− d)H + φτ ′
,dh

φτ
,∇dh




(6.72)

Note that this array is not obtained by straightforward differentiation of (6.70)2, i.e. we
have in general S 6= ∂Ch

red
π⋆τh
red . This is due to the consideration of the history field H in

(6.53). Above, we have introduced the φτ ′ = φτ − Iτ (d, dn), where Iτ (d, dn) is the time
discrete version of the indicator function (6.33). The system of equations (6.71) is solved
by a Newton–Raphson-type iteration yielding

d← d−K−1R with K := Πτh
,dd =

∫

B
BTCB dV. (6.73)

The generalized tangent array C is given as

C := ∂Ch
red
S =




E

ep
εε −τEep

εm 0 · ·
−τEep

mε τ 2Eep
mm 0 · ·

0 0 τφ,hhhh 0 0

· · 0 2H + φτ ′
,dhdh 0

· · 0 0 φτ
,∇dh∇dh



. (6.74)

Here ”0” indicates that the corresponding derivative does not exists. The derivatives at
the slots labeled with ”.” indeed exist but are not needed due to the modification of the
fracture driving force (6.53) as consequence of an operator split. The latter leads to a
decoupling of the related fields so that the two boxed sub-blocks in (6.74) can be treated
in separate solution steps. The so called one-pass solution strategy is utilized here Miehe
et al. 2015a, 2010a. This means that the displacement and flux is updated first and then
the fracture phase-field is updated. This might underestimate the speed of the fracture
evolution but can be controlled by the choice of an appropriated time step size τ Kienle
et al. 2019.

6.5. Numerical Examples

In the following we present a sequence of numerical examples that demonstrate the capa-
bilities of the model formulation. The examples start with a test of a porous-elastic-plastic
medium that is surcharged with a rigid footing leading to the creation of shear bands.
Furthermore, we analyze the effect of different driving forces on porous-elastic-plastic frac-
ture evolution. The latter analysis is extended to the comparison of porous-elastic and
porous-elastic-plastic materials response leading to the evolution of Hydraulically induced
fractures.
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Lamé parameter λ = 180.0 GN/m2 slope yield function Mφ = 0.6 –

Lamé parameter G = 31.0 GN/m2 position of peak smax = 4.0 MN/m2

hardening modulus h = 0.035 MN/m2 Biot’s modulus M = 25.0 GN/m2

saturated yield shift σy = 0.1 MN/m2 Biot’s coefficient b = 0.5 –

saturation parameter ω = 2.0 – fluids dyn. viscosity ηf = 1.0 · 10−3 Ns/m2

plastic viscosity ηp = 5.0 · 10−6 s permeability K = 9.8 · 10−12 m3s/kg

perturbation parameter q1 = 0.04 MN/m2 fluid density ρf = 1000.0 kg/m3

Table 6.2: Material parameters for rigid footing test.

6.5.1. Rigid-footing test on porous-elastic-plastic medium

In the first example we consider a rigid footing test without fracture evolution. Our goal is
to analyze the effect of plasticity as well as fluid flux and storage on the system’s response.
We thus take into account three different material types:

i) drained elastic-plastic material,
ii) undrained porous-elastic material,
iii) undrained porous-elastic-plastic material with different permeabilities.

The drained elastic-plastic material is recovered by setting Biot’s modulus and coefficient
to zero (M = 0, b = 0). In order to model the undrained porous-elastic material, the
yield limit is increased to a very high value by setting smax = 1 · 104 MN/m2. For
the undrained porous-elastic-plastic material all contributions of the model are active,
hence no artificial choice of any material parameter is necessary. In order to analyze the
effect of the permeability on the overall model response, we consider different magnitudes
of permeabilities given by an original value K as well as a reduced and an increased
permeability (K/5 and 5K, respectively). The chosen material parameters are listed in
Table 6.2.

ūū

a a/2

HH

W W/2

Figure 6.6: Rigid footing test: Geometry and boundary conditions. Bottom is mechanically
fixed, left and right edge is mechanically fixed in horizontal direction. Bottom, left and right is
impermeable.

The geometry and boundary conditions are shown in Figure 6.6. Due to the symmetry
of loading and geometry only one half of the specimen is discretized by 2, 376 quadri-
lateral Raviart–Thomas-type enhanced-assumed-strain elements. The dimensions are
H = 4.758 m, W = 23.088 m and a = 4.587 m. The loading increment is ∆̄u = 5 ·10−6 m.
The loading is linearly increased until a total displacement of ū = 0.0023 m is reached.

In Figure 6.7 the distribution of the hardening variable α for the drained elastic-plastic
material and undrained porous-elastic-plastic material is shown. It can be seen that the
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plastic deformation is more pronounced in the case of the drained material. This leads to
the conclusion that the fluid within the material leads to an additional hardening effect.
The load-displacement curve in Figure 6.8 also shows this behaviour. Furthermore, a
lower permeability leads to more pronounced hardening. This can be explained by the
fact that the transport of the fluid is hindered and thus requires more work, see Figure 6.8.

a)

b)

9.4 · 10−3

α

0

Figure 6.7: Rigid footing test: Distribution of the hardening variable α in drained elastic-
plastic material in a) and undrained porous-elastic-plastic material in b).

Next, the distribution of the change of elastic fluid content me in the domain for the
undrained porous-elastic material is compared with one of the undrained porous-elastic-
plastic material, see Figure 6.9.

Note that for the elastic material the fluid is squeezed out right underneath the area
where the loading is applied (see the negative change of the elastic fluid content at the
boundary of the applied footing depicted in Figure 6.9a). Opposed to that, in the case of
the elastic-plastic material, the highest (negative) change of elastic fluid content occurs in
a more diffuse region that also extends to the bulk (see Figure 6.9b). This is precisely the
area where most of the plastic deformation is happening, as can be observed in Figure 6.7
b). This phenomenon can be explained by the fact that the plastic deformation leads to
a positive change of the plastic fluid content. Due to the additive decomposition of the
change of the fluid content and the fact that no fluid is injected, the change of the elastic
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undrained poro-elastic
undrained poro-elastic-plastic K
undrained poro-elastic-plastic 1

5
K

undrained poro-elastic-plastic 5K

Figure 6.8: Rigid footing: Load displacement curve for the different tested material types. The
load and displacement is taken from the area were the displacement is prescribed, see Figure 6.6.
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fluid content becomes negative in the plastifying areas.

a)

b)

1.2 · 10−1

me/(kg/m3)

−5.6 · 10−1

Figure 6.9: Rigid footing test. Change of the elastic fluid content me for undrained porous-
elastic material in a) and in b) for undrained porous-elastic-plastic material.

We depict the distribution of the change of the elastic me, the plastic mp and total
fluid content m for the undrained porous-elastic-plastic material in Figure 6.10. One can
observe that the change of the total fluid content m is strongly dominated by the change
of the plastic fluid content mp.

a)

b)

c)

1.2 · 10−1

me/(kg/m3)

−5.6 · 10−1

2.8

mp/(kg/m3)

0

2.5

m/(kg/m3)

−1.4 · 10−1

Figure 6.10: Rigid footing test: Change of fluid content for undrained porous-elastic-plastic
material. Change of elastic fluid content me in a), change of plastic fluid content mp in b) and
change of total fluid content m in c).

6.5.2. Comparison of different fracture driving forces for porous-elastic-plastic
fracturing

In the present example, we investigate the influence of the presented fracture driving forces
defined in (6.53) and (6.56). For that purpose, a squared domain with the dimensions of
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Lamé parameter λ = 180.0 GN/m2 Biot’s modulus M = 25.0 GN/m2

Lamé parameter G = 31.0 GN/m2 Biot’s coefficient b = 0.5 –

hardening modulus h = 5.0 MN/m2 fluids dyn. viscosity ηf = 1.0 · 10−3 Ns/m2

saturated yield shift σy = 0.1 MN/m2 permeability K = 9.8 · 10−12 m3s/kg

saturation ω = 2.0 – fluid density ρf = 1000.0 kg/m3

plastic viscosity ηp = 5.0 · 10−6 s crit. fracture energy ψc = 5.0 · 10−8 MN/m2

perturbation parameter q1 = 2.0 · 10−5 MN/m2 length scale l = 0.5 m

slope yield function Mφ = 1.8 – residual stiffness k = 1 · 10−5 –

position of peak smax = 2 · 10−3 MN/m2 interpolation parameter ǫ = 50 –

Table 6.3: Material parameters for hydraulically induced fracture.

80 m × 80 m and a notch of the length a = 8 m in its center is considered, see Figure 6.11.
The fracture evolution is triggered by fluid injection into the notch.

Due to the symmetry of loading and geometry only one half of the domain is discretized
with 12, 060 quadrilateral Raviart–Thomas-type enhanced-assumed-strain elements. The
mesh is uniform and the elment edged are aligned with the crack. The elements in the
area surrounding the anticipated crack are refined yielding an element size of he = 0.25 m
in that region ([0 m, 40 m] × [31.875 m, 48.125 m] around the notch).

a a/2

˙̄m

L/2

LL

L

x
y

h̄

Figure 6.11: Comparison of different fracture driving forces: Geometry and boundary con-
ditions. Due to the symmetry of both only one half of the specimen is discretized. Here the
prescribed flux is h̄ = ˙̄m = 0.01 kg/s. All edges are mechanically fixed and permeable.

The fluid injection is modeled by a prescribed fluid flux of h̄ = 0.01 kg3

s
. The time step

is set to τ = 1 · 10−3 s and the material parameters are listed in Table 6.3.

The test was performed for the following two undrained settings with different choices
of fracture driving forces:

i) porous-elastic-plastic material with H = f(ψ0
eff, ψ

0
plast) according to (6.53)

ii) porous-elastic-plastic material with H = f(ψ0
eff, wplast) according to (6.56)

We now compare the hydraulically induced fracture lengths for the two porous-elastic-
plastic settings. As can be observed in Figure 6.12, both driving forces lead to the
evolution of cracks. The fracture evolution in consideration of the fracture driving force
H = f(ψ0

eff, ψ
0
plast) is however less prominent. Note that in that setting, only the elastic

and hardening energies contribute to the fracture driving force. Thus, we would not obtain
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ductile fracture evolution in case of ideal plasticity with (h = 0, σy = 0; not investigated
here). In particular the latter observation justifies the presented modification of the
fracture driving force in (6.56).

a) b)

H(ψ0
eff, ψ

0
plast)

H(ψ0
eff, wplast)

1

d

0

Figure 6.12: Comparison of different fracture driving forces: Distribution of the fracture phase-
field for a porous-elastic-plastic with H = f(ψ0

eff, ψ
0
plast) and a porous-elastic-plastic material

with H = f(ψ0
eff, wplast) at two time steps: a) t = 0 s and b) t = 90 s.

6.5.3. Detailed analysis of hydraulically induced porous-elastic-plastic fracture

Finally, we investigate the ductile fracture evolution driven by an injected fluid, where
we also analyze the influence of the fluid-injection rate. The setup of the geometry and
boundary conditions as well as the material parameters are taken from the previous ex-
ample (please refer to Figure 6.11 and Table 6.3).

The test was performed for two kinds of undrained materials:

i) porous-elastic material

ii) porous-elastic-plastic material with H = f(ψ0
eff, wplast).

a) b)

1

d

0

Figure 6.13: Hydraulically induced ductile fracture: Distribution of the fracture phase-field in
a) porous-elastic material in b) porous-elastic-plastic material at t = 90 s.
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As can be seen in Figure 6.13, the length of the finally induced crack for the porous-
elastic material is much more pronounced that in case of the porous-elastic-plastic mate-
rial. This goes along with the observation of a higher fluid pressure inside the crack, see
Figure 6.14. We conclude that in case of an elastic-plastic material more fluid needs to
be injected into the crack to drive fracturing.

For the elastic material we can observe a characteristic drop of the pressure within
the fracture at the onset of fracture propagation (injected fluid volume V ≈ 4 · 10−5 m3).
In the elastic-plastic material this drop cannot be observed (Figure 6.14). Furthermore,
it can be observed that the fluid pressure is not constant over the fracture length. Since
the fluid pressure is influenced by the fluid injection rate, we conclude that the frac-
ture propagates under a viscosity dominated regime in this study. This means that the
fracture propagation is characterized more by the fluids dynamic viscosity than by the
critical fracture energy. For the porous-elastic-plastic material this effect becomes less
pronounced. However, for the porous-elastic material the critical pressure (injected fluid
volume V ≈ 4 ·10−5 m3) at the fracture tip at x = 4.0 m, y = 39.875 m is almost identical
for the different injection rates, see Figure 6.14b.
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Figure 6.14: Hydraulically induced fracture: Fluid pressure within fractures over injected
volume for porous-elastic and porous-elastic-plastic material. The pressure value is detected at
x = 1.0 m, y = 39.875 m in a) and x = 4.0 m, y = 39.875 m in b), the latter being associated
with the crack tip. The solid lines refer to an injection rate of 0.01 kg/s, the dashed lines to an
injection rate of 0.004 kg/s and the dashed-dotted lines refer to an injection rate of 0.025 kg/s.

We note that there exists a closed-form solution for the critical pressure pc and the
crack opening width w for a boundary value problem similar to the one considered above
(Sneddon and Lowengrub 1969). Here, the critical pressure is defined as the magnitude
of pressure that is needed to propagate the crack. The closed-form solution is valid for
a porous-elastic material with a static crack under spatially constant pressure loading
and without leak-off to the surrounding bulk. Please refer to the Appendix A, in which
we provide a comparison of the numerical solution with the closed-form solution for the
porous-elastic case.

In Figure 6.15 the distribution of the change of the elastic fluid content is shown for the
final equilibrium state. The individual lengths of the cracks are clearly visible. Due to the
short crack length in the elastic-plastic case, the injected fluid is distributed over a smaller
region. This then gives rise to a higher change of the elastic fluid content, in particular
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close to the fracture center. Note carefully that the change of the elastic fluid content in
front of the fracture tips is negative for the elastic-plastic material. This phenomenon is
investigated in a more detailed way in Figure 6.16, where the contributions of the change
of the fluid content in the elastic-plastic material are shown.

a) b)

4.2 · 10−2

me/(kg/m3)

−3.2 · 10−4

Figure 6.15: Hydraulically induced ductile fracture: Change of elastic fluid content me for
porous-elastic material in a) and porous-elastic-plastic material in b).

By taking a look at Figure 6.16c, it can be seen that most of the volumetric plastic
deformation occurs at the fracture tips (ṁp = ρfb tr ε̇

p). This leads to a positive change
of the plastic fluid content. Since the permeability in the bulk is comparably low, very
little amount of fluid diffuses from the fracture into the bulk. In other words, the change
of the fluid content at the fracture tips is almost zero. Due to the definition m = me+mp

the positive change of the plastic fluid content leads to a negative change of elastic fluid
content. Hence the fluid in the fully saturated medium, which is initially stored elastically,
is now stored plastically due to the plastic deformation of the solid matrix.

a) b) c)

4.2 · 10−2

m,me/(kg/m3)

−3.2 · 10−4

1.3 · 10−3

mp/(kg/m3)

0.0

Figure 6.16: Hydraulically induced ductile fracture: Change of total fluid content m in a),
change of elastic fluid content me in b) and change of plastic fluid content mp in c) for porous-
elastic-plastic material.

In Figure 6.17 we show the distribution of the change of fluid content as well as the
pressure and the fracture-opening width along x at y = 40 m. These distributions refer
to the final equilibrium state for both the porous-elastic and the porous-elastic-plastic
material. The difference in the crack length for the two different materials and the positive
change of the plastic fluid content as well as the negative change of the elastic fluid content
in front of the fracture tip in the elastic-plastic material can again be observed.

Finally, we depict a sequence of three snapshots in the course of the fracture evolution
of the porous-elastic-plastic material in Figure 6.18. To be specific, we show the fracture
phase field across the whole domain together with the change of fluid content, the pressure
and the fracture-opening width at three different time steps along x at y = 40 m. The first
time step is at t = 0 s, the second time step is at t = 45 s and the third time step is at the
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Figure 6.17: Hydraulically induced ductile fracture: Change of fluid content m and mp, fluid
pressure p and fracture opening w for porous-elastic and porous-elastic-plastic material over x
at y = 40 m.

final state (t = 90 s). As can be seen, all considered quantities are mainly concentrated
in the center of the fracture. Such a concentration is less prominent in case of an elastic
material, see Figure 6.17.

6.6. Conclusion

A model for hydraulically induced fracturing in porous-elastic-plastic solids was developed
in the present work. It incorporates a phase-field approach to fracture that is combined
with a Drucker–Prager-type plasticity formulation and a Darcy–Biot-type fluid model.
The model exploits a variational structure leading to a global minimization formulation.
For this variational formulation it is crucial to introduce a plastic fluid content as an
additional unknown yielding a constitutive fluid pressure in terms of only the elastic
quantities. The global minimization structure demands the use of an H(div)-conforming
finite-element formulation, which has been implemented by means of Raviart–Thomas-
type shape functions. The locking phenomenon of the plasticity formulation is overcome
by using an enhanced-assumed-strain formulation for the deformation.

In the first numerical example a comparison of an undrained porous-elastic, an undrained
porous-elastic-plastic and a drained elastic-plastic formulation was performed. Here, the
different physical effects were investigated. It could be shown that the permeability of
porous media can be considered an additional hardening parameter. The second example
shows the effect of the proposed modification of the fracture driving force. In the third
example, a hydraulically induced crack in a porous-elastic and a porous-elastic-plastic
medium was investigated. There it could be shown that neglecting the plastic effects
underestimates the pressure inside the fracture and overestimates the fracture length.

Acknowledgments. This work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – Project Number 327154368 – SFB 1313. This
funding is gratefully acknowledged.

Appendix A: Comparison of porous-elastic material with closed form solution.

In what follows, we compare numerical results obtained with the model of the present
contribution with the closed-form solution of Sneddon and Lowengrub 1969. The latter
constitutes an analytical solution for the critical pressure pc and of the crack-opening
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Figure 6.18: Hydraulically induced ductile fracture: Distribution of the fracture phase field
and change of fluid contentm andmp, fluid pressure p and fracture opening w over x at y = 40 m
for three different time steps: a) t = 0 s, b) t = 45 s and c) t = 90 s.
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width w. The analytical solution is valid for porous-elastic materials with static cracks,
the latter of which have a spatially constant pressure distribution and do not allow leak
off to the surrounding medium.

The critical pressure pc can be expressed as

pc =

√
2Egc

(1− ν2)πa , (6.75)

see Wilson and Landis 2016. Here E = G(3λ + 2G)/(λ + G) is Young’s modulus, ν =
λ/[2(λ+G)] is Poisson’s ratio and gc = 8

√
2lψc/3 is Griffith’s critical energy-release. The

latter has been obtained from the critical fracture energy ψc by considering an optimal
damage profile, see Pham et al. 2011a. The analytical solution for the profile of the
crack-opening width w is given by (Sneddon and Lowengrub 1969)

w(x) =
pa(1− ν2)

E

√
1− x2

l2
. (6.76)

Based on the above solutions, we obtain for the given parameters (Table 6.3) the
critical pressure pclosedc ≈ 0.028 MPa and the profile of the crack-opening width as shown
in Figure 6.19. In that figure, we have also plotted the numerical solutions of the critical
pressure and the crack profile for a porous-elastic material in consideration of different
injection rates of the fluid (cf. Section 4.5.3).
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Figure 6.19: Comparison of porous-elastic material with closed form solution: Fluid pressure
within the fracture at x = 4.0 m, y = 39.875 m over inject volume for porous-elastic material in
a). The solid lines are for the injection rate 0.01 kg/s, the dashed lines are for the injection rate
0.004 kg/s and the dash-dotted are for the injection rate 0.025 kg/s. Crack opening w over x at
y = 39.875 m at fracture initiation in b).

We observe a mismatch between the analytical and numerical solutions for both the
critical pressure and the crack-width profile. The reasons for this mismatch could be
related to the different assumptions of the closed-form and the numerial model (static
vs. transient crack; constant vs. non-constant pressure; leak off vs. no leak off). This
conclusion is substantiated by the comparison performed by Mauthe 2017, who has taken
into account the porous-elastic model proposed by Mauthe and Miehe 2017 and bound-
ary consitions in accordance with the ones considered by Sneddon and Lowengrub 1969.
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Mauthe 2017 could show that the numerical solution for such a model is able to perfectly
reproduce the analytical solution. For an in-depth discussion of related effects we further
refer to Wilson and Landis 2016.

Appendix B: Mesh-dependence of hydraulically induced crack propagation

As shown by Wilson and Landis 2016, the hydro-mechanically induced crack evolution
associated with models of the type (6.31) shows mesh-dependent response. We demonstate
this effect by repeating the finite-element simulations documented in Section 6.5.3 with
a rotated finite-element mesh, see Fig. 6.20. In that figure, the first row of pictures
shows crack patterns for a mesh whose element edges are aligned with the direction of
the resulting crack (cf. Section 6.5.3); the second row shows results for a mesh that is
rotated by an angle of 45° w.r.t. the aligned mesh. In both cases, the left column relates
to a porous-elastic material and the right column to porous-elastic-plastic material. The
injection rate of the fluid is in both the cases set to 0.01 kg/s.

a) b)

c) d)

1

d

0

Figure 6.20: Hydraulically induced ductile fracture: Distribution of the fracture phase-field
at t = 35 s. Porous-elastic material in a) with aligned mesh and in b) with rotated mesh.
Porous-elastic-plastic material in c) with aligned mesh and in d) with rotated mesh.

The plots shown in Fig. 6.20 clearly demonstrate the mesh-dependence of the presented
formulation. In case of the rotated mesh, the crack is generally shorter and wider than in
case of the unrotated mesh. This observation is in line with the findings of Wilson and
Landis 2016 and shall be taken into account in numerical simulations involving models
of the type (6.31). Such investigations are however beyond the scope of the present
contribution and serve as motivation for future work.

The fluid pressure within the crack for both meshes and both cases is shown in
Fig. 6.21. In that figure it can be seen that the pressure within the crack is higher
in case of the rotated mesh. This observation goes along with the above observations of
the crack length and width.

We summarize that both the fluid pressure and the crack geometry are mesh depen-
dent, which confirms the observations of Wilson and Landis 2016. While this provides
important pointers for future research, associated improvements are beyond the scope of
the present work.
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Figure 6.21: Hydraulically induced ductile fracture: Fluid pressure within the fracture over
injected volume for porous-elastic and porous-elastic-plastic material at x = 1.0 m, y = 39.875 m.
The solid lines refer to the case where the mesh and the crack are aligned, the dashed lines refer
to a rotated mesh by 45◦.
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The modeling of fracture, i.e. fracture initiation and fracture
growth, has been the subject of intensive research in the field of
continuum mechanics over the last decades. The overall goal is
to use simulations to make the production or development pro-
cess of new parts, materials or techniques cheaper and faster.
These simulations are based on material models which are de-
rived using fundamental concepts of continuum mechanics and
thermodynamics. This includes the mathematical description of
the motion and deformation of a body as well as the definition
of mechanical stresses, heat and mass flows.

In the present work, the above process of model conceptualiza-
tion and numerical implementation is applied to ductile fracture
in porous metals, fracture in ductile frictional materials, and duc-
tile frictional materials at hydraulic fracture. With these three
models, it is possible to treat ductile failure problems such as
cup-cone failure surfaces, ductile fractures in soil materials, and
hydraulically induced fractures in ductile soil materials. The lat-
ter aims at describing the ongoing processes in hydraulic fractur-
ing. The models are mathematically derived and implemented
based on an appropriate finite element description.
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