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Abstract

Heating and cooling buildings is one of the most energy-intensive aspects of
modern life. To minimize the impact on global warming and decelerate climate
change, more efficient and carbon emission-mitigating technologies such as open-
loop groundwater heat pumps (GWHP) for heating and cooling buildings are
being used and quickly adopted. Nowadays, in order to guarantee their optimal
use and prevent negative interactions, city planners need to optimize their place-
ment in the urban landscape. This optimization process requires fast models that
simulate the effect of a GWHP on the groundwater temperature.
Considering a large domain with multiple GWHPs, this work introduces a

framework for the groundwater temperature prediction. While using a learned
local surrogate model, a convolutional neural network, to predict the local tem-
perature field around every single GWHP, a physics-informed neural network
(PINN) is employed afterwards to correct the global initial solution of stitched
together local predictions.
As the violations of the physical laws described by the underlying partial dif-

ferential equation(s) are spatially unevenly distributed, two different methods for
drawing sampling points, on the basis of which the training of the PINN to correct
the global initial solution takes place, are investigated and compared.
This work shows that it is possible for a PINN to correct the global initial so-

lution of stitched together local predictions in a domain with multiple GWHPs.
However, there are still opportunities to improve the quality and decrease the
computational time of the presented framework. The best method for draw-
ing sampling points depends on the scenario and the placement of the GWHPs.
Thus, no general statement can be made, which of the two methods is more suit-
able. This work provides a good basis for further investigation of the presented
framework.
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Zusammenfassung

Das Heizen und Kühlen von Gebäuden ist einer der energieintensivsten Aspek-
te des modernen Lebens. Um die Auswirkungen auf die Erderwärmung zu mi-
nimieren und den Klimawandel zu verlangsamen, werden effizientere und den
Kohlenstoffdioxidausstoß mindernde Technologien wie Grundwasserwärmepum-
pen (GWHP) zum Heizen und Kühlen von Gebäuden eingesetzt und zunehmend
installiert. Um deren optimale Nutzung zu gewährleisten und gegenseitige Störun-
gen zu vermeiden, müssen Stadtplaner ihre Positionierung in der Stadtlandschaft
optimieren. Dieser Optimierungsprozess erfordert schnelle Simulationsmodelle,
die die Auswirkungen einer GWHP auf die Grundwassertemperatur simulieren.
Bei Betrachtung eines großen Gebiets mit mehreren GWHPs stellt diese Ar-

beit eine Methode für die Vorhersage der Grundwassertemperatur vor. Mithilfe
eines bereits gelernten lokalen Ersatzmodells, einem Convolutional Neural Net-
work, wird das lokale Temperaturfeld um jede einzelne GWHP vorhergesagt. An-
schließend wird ein Physics-Informed Neural Network (PINN) verwendet, um die
globale Anfangslösung der zusammengefügten lokalen Vorhersagen zu korrigieren.
Da die Verstöße gegen die physikalischen Gesetze, die durch die zugrunde lie-

gende(n) partielle(n) Differentialgleichung(en) beschrieben werden, räumlich un-
gleichmäßig verteilt sind, werden zwei verschiedene Methoden für die Auswahl
der Samplingpunkte, auf deren Grundlage das Training des PINNs zur Korrektur
der globalen Anfangslösung stattfindet, untersucht und verglichen.
Diese Arbeit zeigt, dass es mithilfe eines PINNs möglich ist die globale An-

fangslösung von zusammengesetzten lokalen Vorhersagen auf einem Gebiet mit
mehreren GWHPs zu korrigieren. Es gibt jedoch noch Möglichkeiten, die Quali-
tät der vorgestellten Methode zu verbessern und die Laufzeit zu reduzieren. Die
beste Methode für die Auswahl der Samplingpunkte hängt vom Szenario und
der Positionen der GWHPs ab. Dadurch kann keine allgemeine Aussage getroffen
werden, welche der beiden Methoden besser geeignet ist. Diese Arbeit bietet eine
gute Grundlage für die weitere Untersuchung der vorgestellten Methode.
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1 Introduction

In the context of the anthropogenic climate change, the employment of renew-
able energies for energy-intensive processes became inevitable. One of the most
energy-intensive tasks is the heating and cooling of residential and non-residential
buildings. Within the last years, open-loop groundwater heat pumps (GWHP),
also known as open-loop shallow geothermal systems, have attracted attention
since they use the thermal energy of the groundwater, which is considered a
renewable energy source [Halilovic et al. 2022]. A great advantage of GWHPs
is that the temperature of the groundwater is relatively stable throughout the
year. Therefore, the energy can be used for both heating and cooling buildings
[Leiteritz et al. 2022]. In general, a GWHP extracts groundwater from the subsur-
face at the extraction well. With the aid of heat exchangers, the heat/cold from
the groundwater is transferred and the cooled/heated groundwater is re-injected
to the subsurface. When heating the building, the re-injected groundwater is
colder than the extracted groundwater; when cooling the building, the re-injected
groundwater is warmer.
As the water is re-injected into the subsurface, the temperature around the

injection well changes and diffusion and advection of the water create a thermal
plume. This thermal plume might spread downstream and in the worst case in-
teracts with other GWHPs or even with itself, if the water is circulating. Both
cases might cause interference. As more and more GWHPs are installed, these
scenarios become more likely. Therefore, careful planning, i.e. optimizing the
installation of GWHPs becomes necessary in order to avoid negative interaction
[García-Gil et al. 2019]. For this purpose, an accurate prediction of the devel-
oped groundwater temperature field, when using multiple GWHPs, needs to be
provided. This can be achieved with the aid of high-fidelity subsurface flow sim-
ulations [Meng et al. 2019]. Optimizing the installation of GWHPs in a next step
requires a lot of high-fidelity simulation runs, which is not feasible for a large sce-
nario with multiple GWHPs, as quasi-real time prediction is not possible using
this type of simulation.
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One solution to this problem is the employment of surrogate models for the op-
timization problem, which serve as low-fidelity simulations of low computational
cost. Deep learning methods are a suitable way to build such models. Leiteritz
et al. [2022] developed a surrogate model using a convolutional neural network
(CNN) to predict the thermal plume of a single GWHP in a domain of fixed
size, i.e. a local prediction model. This work aims to include this local prediction
model in a framework for predicting the temperature field of a large domain with
multiple GWHPs. The idea is to extract the GWHP locations, run the local
model on each of them, and finally stitch the results back together to obtain a
global solution. As this global solution might be incorrect due to overlapping
local areas and discontinuities at the seams, some correction needs to take place.
The idea for this correction step is employing a physics-informed neural network
(PINN) [Raissi et al. 2019]. PINNs are a class of neural networks for approxi-
mating physical processes by leveraging available data and expertise. By using
penalty expressions, they are able to restrict the solution space to a region where
physically sound predictions can be made. These predictions can help to make a
reliable statement about whether a particular configuration of GWHPs is free of
interference. The developed PINN hereby is used to improve the given stitched
together, local-only surrogate predictions to satisfy the given global subsurface
PDEs and thus, yields a more accurate solution.
The overall goal of this work is to find a global, physically sound prediction of

the developed temperature field in quasi-real time for a large domain with multiple
GWHPs and known spatially varying permeability field and pressure boundary
conditions in order to enable a fast solution of the optimization problem.
After giving an overview of the basics in Section 2, the processes to create

training and high-fidelity data for quality assessment are explained in Section 3.
The methods used are presented in Section 4. The developed framework is applied
to different large-scale scenarios in Section 5, where the results are analyzed and
visualized, too. Section 6 summarizes the results and gives an outlook for further
investigation.
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2 Basics

2.1 Neural Networks
A feedforward dense neural network of depth L+ 1 is defined as a concatenation
of functions

û(x) = (ûL+1 ◦ ûL ◦ ... ◦ û1)(x) (2.1)

with input x ∈ Rn, where each so-called layer ûi is defined as

ûi(x) = φi(W T
i x + bi), 1 ≤ i ≤ L+ 1. (2.2)

The weight matrix W i ∈ Rn×m and the bias vector bi ∈ Rm are variable param-
eters and φi(·) the element-wise activation function of layer i [Goodfellow et al.
2016]. Figuratively speaking, a neural network is an accumulation of intercon-
nected computational nodes, so-called neurons. These neurons are organized in
layers, while the neurons between the layers are connected to each other by the
weight matrices and the bias vectors. A neural network consists of an input layer,
L hidden layers and one output layer. In case of many hidden layers the network is
referred to as deep neural network. The basic structure of a dense neural network
is outlined in Fig. 2.1. The aim of a neural network is to optimize its parameters
{W , b} = {W i, bi | 1 ≤ i ≤ L + 1}, such that the output of the network û(x)
is an approximation of a target function u(x). The ability of a neural network
to approximate any continuous function u(x) on compact input sets to arbitrary
accuracy is stated in the universal approximation theorem. Required for this
property is a neural network with L ≥ 1 and a nonlinear activation function in
the hidden layer [Hornik 1991]. The potential approximation accuracy increases
with the amount of neurons [Hornik et al. 1989]. The ability of a neural network
û(x) to optimize its parameters {W , b} in order to approximate a function u(x)
is given by its structure. With the aid of automatic differentiation it is possible
to obtain the derivatives of the output û(x) with respect to the weight matrices
and the bias vectors {W , b}, which are required for the subsequent optimization
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Figure 2.1: Basic feedforward neural network with an input layer of size 4, one
hidden layer (i.e. L = 1) of size 3 and one output layer of size 1.

step. The calculation of the gradients is carried out by back propagating the
gradients through the layers of the network. Thus, this step is also referred to as
back propagation.
The optimization of {W , b}, the training of the neural network, is based on

a dataset {xj, yj = u(xj) | 1 ≤ j ≤ Nû} of size Nû. In regression tasks, the
deviation of a function û(x) from a target function u(x) is usually given as the
mean squared error (MSE), also referred to as loss Lû in the context of machine
learning:

Lû

(
{xj}Nû

j=1

)
= 1
Nû

Nû∑
j=1

(û(xj)− u(xj))2

= 1
Nû

Nû∑
j=1

(û(xj)− yj)2. (2.3)

Approximation of the target function u(x) by û(x) corresponds to the minimiza-
tion of the loss Lû

(
{xj}Nû

j=1

)
over û(x), i.e. over {W , b}. In order to obtain the

optimal values for {W , b}, the loss can be minimized using a gradient descent
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method. In this case the values of the parameters are iteratively adjusted:

W it+1
i = W it

i − α ·
∂Lû

(
{xj}Nû

j=1

)
∂W it

i

bit+1
i = bit

i − α ·
∂Lû

(
{xj}Nû

j=1

)
∂bit

i

, 1 ≤ i ≤ L+ 1, 1 ≤ it ≤ Ne, α ∈ R+. (2.4)

The so-called learning rate α is the step size when approaching the minimum of
the loss. One step or one iteration it is referred to as an epoch, where Ne is the
total number of epochs. In each epoch the whole input dataset passes through the
neural network, the loss is evaluated and subsequently the parameters {W , b} are
adjusted accordingly. In case of a large training dataset, it is common to divide
it into so-called batches. This means that the loss is not only evaluated and
the parameters adjusted after one epoch, i.e. after the entire dataset has passed
through the neural network, but only a subset of the dataset of a certain size,
a batch. This means that the parameters {W , b} are adapted more frequently
compared to when not using batches. After each epoch it is recommended to
reshuffle or regenerate the batches to obtain different ones in order to improve
the robustness and quality of the neural network. Since the datasets considered in
this work are rather small, a more detailed explanation of training with multiple
batches is omitted.
At the beginning of the training of a neural network, all its parameters {W , b}

need to be initialized. In this case the Glorot initialization scheme was used
[Glorot and Bengio 2010]. It is known for its ability to maintain the variance
of the weight and bias gradients across all layers, which counteracts the prob-
lem that occurs when the gradients approach zero in the first layers while back
propagating, so-called vanishing gradients. According to Eq. (2.4), if the gradient
vanishes, i.e. approaches zero, the weights in the earlier layers are not updated
anymore. Overall, the use of Glorot initialization, which counteracts this problem
of vanishing gradients, leads to a faster convergence [Glorot and Bengio 2010].
After training is complete, the quality of the neural network is assessed by

evaluating it on yet “unseen” data, i.e. data that has not been used for training,
a so-called validation dataset. The validation error is usually computed in the
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same way as the loss function.

2.2 Convolutional Neural Networks
The so far described type of dense neural networks is well suited for regression
tasks, but reaches its limits in e.g. local feature learning in images. Using a dense
neural network might lead to a loss of information, as a group of close pixels in an
image could form a local pattern that should be identified. However, this is not
possible if this potential relation of the pixels is neglected, as this would be the
case for a dense neural network, where all pixels are just concatenated vertically
in order to form the input layer. Also, when using a dense neural network, the full
connectivity of the neurons increases the size of the network immensely, which
yields two problems. First, a larger network implies that more parameters need
to be optimized, thus a higher computational power is needed, which however is
limited. The second problem occurring is overfitting. The more parameters that
are to be trained, the higher the feasibility that the network learns the features
of the training dataset precisely, but at the same time loses its ability to process
yet unseen data. Therefore, parameter reduction is necessary [O’Shea and Nash
2015].
One subtype of neural networks are so-called convolutional neural networks

(CNN). CNNs consist mainly of so-called convolutional layers which are based
on a convolution. A d-dimensional discrete convolution is an operation on two
functions, e.g. f and g, which results in a new function f ∗g. Basically, the shape
of one function is changed by the other one. A discrete convolution is of the form

(f ∗ g)(x) =
∑
z∈Z

f(x) · g(x− z), x ∈ Zd, Z ⊆ Zd, (2.5)

following the definition of Damelin and Miller Jr [2012]. The advantage of a
convolution is that g or the support of g can be chosen, such that the output (f∗g)
only depends on the values of f at a small region around x. This corresponds
to the goal formulated for local feature learning, as only a local region around
a certain point x is considered. The aspect of the mathematical definition of
a convolution corresponds to the fact that in a convolutional layer in a CNN,

– 6 –
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the neurons are only connected to a small area of neurons from the previous
layer, in contrast to a fully connected layer [O’Shea and Nash 2015]. Basically,
a convolution is performed on the output of the previous layer to obtain the
output of the convolutional layer. This is done with the aid of weight matrices.
Remembering Eq. (2.5), the output of the previous layer can be seen as function f
and the weight matrix as function g, also referred to as kernel. A kernel performs
a sliding window (convolution) over the output of the previous layer. Kernels
are also learnable parameters. Connecting the information of different adjacent
pixels via convolution allows the integration of specific local features regarding
the images to be learned. Typical kernel sizes ki× ki are 3× 3 or 5× 5 for d = 2,
which means their spatial dimension is rather small. Remembering Eq. (2.5)
again, this corresponds to the set Z.
For a three-dimensional input x ∈ Rw×h×c, e.g. a colored image, where w

is the width, h the height of the image in pixels and c the number of input
channels (e.g. c = 3 for an RGB image), typically two-dimensional convolutions
are applied. A convolutional layer ûi receives an input xi−1 ∈ RMi−1×Ni−1×Oi−1

with width Mi−1, height Ni−1 and Oi−1 channels, whereby for the example of the
colored image, M0 = w, N0 = h and O0 = c. For each component or pixel of the
input, layer ûi performs a two-dimensional convolution

[ûi(xi−1)]m,n,o = φi

 ki∑
p=1

ki∑
q=1

Oi−1∑
r=1

[W i]p,q,r,o · [xi−1]m+p−1,n+q−1,r + [bi]o


= [xi]m,n,o (2.6)

with kernel size ki and Oi−1 input channels. The output of the layer is xi =
ûi(xi−1) ∈ RMi×Ni×Oi with Mi = Mi−1 − ki + 1, Ni = Ni−1 − ki + 1 and Oi of
free choice. What should be noted at this point is that the size of the learnable
parameters W i and bi does not depend on the size of the input xi−1.
Figuratively speaking, when the output of the previous layer, the new input

xi−1, hits a convolutional layer, the kernel slides over it, calculates the scalar
product of the captured section and the kernel, adds a learnable bias bi, and
places the scalar output with an element-wise activation function φi(·) applied to
the target pixel. A schematic illustration of the sliding window procedure for an
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example layer with O = 1 channels, kernel size k = 3 and M = N = 6 is shown
in Fig. 2.2, an exemplary calculation is given in Fig. 2.3.

Figure 2.2: Schematic illustration of a two-dimensional convolutional layer with
kernel size k = 3, O = 1 channels and size M = N = 6. The blue
and red squares in the first and second picture show the position of
the sliding window (kernel) for the first and the second step. The
corresponding squares on the right show the positions of the resulting
values.

0 1 0 1 3 1
1 2 2 2 4 0
2 0 1 1 0 0
0 3 3 2 3 0
0 2 0 3 5 1
1 1 1 2 4 0

0 1 0
1 2 2
2 0 1

1 1 0
1 0 0
0 0 0

< • , • >

Input Section

Kernel

Target pixel

+ b, !(•)

2

Figure 2.3: Exemplary calculation for the first output pixel of a two-dimensional
convolutional layer with kernel size k = 3, O = 1 channels and size
M = N = 6. The blue area marks the considered area determined
by the kernel size, the blue square on the right shows the position
and the value of the result. The missing values are calculated in the
subsequent steps by sliding the window.
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Additionally, there are different possibilities of how to create a kernel and how
to move it over the layer. The stride S ∈ N decides by how many positions the
kernel is moved each time. The larger the stride, the less overlap there is in the
sections. With an increasing stride, the output width and height are decreasing
asMi = bMi−1−ki

S
c+1 and Ni = bNi−1−ki

S
c+1. An illustration of a sliding window

with stride S = 2 and the resulting output is given in Fig. 2.4.

Figure 2.4: Exemplary illustration of stride S = 2, kernel size k = 3, O = 1
channels and size M = N = 6. The blue and red squares in the first
and second picture show the position of the sliding window (kernel)
for the first and the second step. The corresponding squares on the
right show the positions of the resulting values.

The dilation distance D ∈ N defines the space between the pixels in the kernel.
By having a dilation distance larger than one, again the output sizes decrease,
as Mi = bMi−1−(ki−1)·D−1

S
c + 1 and Ni = bNi−1−(ki−1)·D−1

S
c + 1. The advantage

of a dilation distance larger than one is that it allows for an enlarged field to
be viewed at in the image, the so-called receptive field, without increasing the
computational cost. An example of a kernel with dilation distance D = 2 is given
in Fig. 2.5.
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Figure 2.5: Exemplary illustration of a dilated convolution with dilation distance
D = 2, kernel size k = 3, O = 1 channels and size M = N = 6. The
blue and red squares in the first and second picture show the position
of the sliding window (kernel) for the first and the second step. The
corresponding squares on the right show the positions of the resulting
values.

It is also possible to employ zero padding up front moving the kernel, where
P ∈ N zeros are put around each side of the input in order to obtain an increased
output size compared to when no zero padding is applied. The output size evolves
to Mi = bMi−1−(ki−1)·D−1+2P

S
c+ 1 and Ni = bNi−1−(ki−1)·D−1+2P

S
c+ 1.

Figure 2.6: Exemplary illustration of zero padding with P = 1, kernel size k = 3,
O = 1 channels and size M = N = 6. The blue and red squares in
the first and second picture show the position of the sliding window
(kernel) for the first and the second step. The dotted squares represent
the added zero valued pixels. The corresponding squares on the right
show the positions of the resulting values.
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One option to reduce the layer size is applying a pooling layer, where only the
maximum, mean or a similar operation of a section hit by the sliding window is
processed in the next layer. Reducing the layer size and reducing the computa-
tional complexity of the CNN is important for feature extraction, to also learn
features that spread over a larger area than covered by the kernel [O’Shea and
Nash 2015]. However, in order to not lose too much information, the amount of
channels of the layers increases meanwhile.
Typically, the size of the layers is reduced after applying convolutions to make

the neural network learn features. If the output is expected to have the size of the
input x, e.g. in image segmentation tasks, the output of the last convolutional
layer needs to be “upsampled” again. This is done by adding deconvolutional
layers to the network. Several possibilities such as zero insertion, where zeros are
inserted around adjacent pixels or unpooling, where one pixel is turned into more
with the same value, i.e. is “inflated”, are given.
In other cases, e.g. classification, the layer type needs to be changed from

convolutional to dense layers. This can be simply performed by so-called flatten
layers which turn the output of the convolutional layer into one dimension by
concatenating the corresponding entries. Another possibility is global average
pooling (GAP) layers, which reduce the dimension of the layer to one by averaging
over the other dimensions. Further “classical” computations with dense layers can
be performed. Since this is not needed in this work, it will not be discussed in
detail.
One last important feature of CNNs is skip connections. As already described,

vanishing gradients are a problem for layers at the beginning of the neural net-
work. A skip connection provides an alternative path for the forward propagation
(evaluation of the neural network) and back propagation and is a common mod-
ule used in CNNs. The output of an early layer skips several layers and is added
or concatenated to the input of a deeper layer, and not only used as the input
for the next layer. Thus, the gradients of the parameters in the early layer are
also calculated directly with the gradients of the ones in the deeper layer, which
counteracts the problem of vanishing gradients.

– 11 –



– Physics-Informed Neural Networks –

2.3 Physics-Informed Neural Networks
Physics-informed neural networks (PINN) are also a subtype of neural networks,
primarily introduced by Raissi et al. [2019]. PINNs are used to solve partial
differential equations (PDE) by extending the loss with a physical component,
constructed to satisfy the physical laws given by a PDE. This additional physical
component, referred to as the physical loss, calculates and penalizes the deviation
from the PDE, i.e. the physical laws, additional to the deviation from available
data.
According to Raissi et al. [2019] a PDE considered for solving it via a PINN is

generally of the form

f(t,x) = ∂

∂t
u(t,x) +N [u] != 0, x ∈ Ω ⊆ Rd, t ∈ [0, T ] (2.7)

u(0,x) = u0(x)

u(t, x̃) = u∂Ω(t), x̃ ∈ ∂Ω. (2.8)

u(t,x) denotes the solution of the PDE, which is to be approximated by û(t,x),
the neural network, t the temporal and x the spatial coordinates. N [·] is a
differential operator and u0(x) and u∂Ω(t) describe the initial and boundary con-
dition(s). Using automatic differentiation on the output of the neural network
û(t,x) yields the derivatives with respect to the input parameters (t,x) needed
for the calculation of f(t,x), since û(t,x) and f(t,x) share the same parameters
with exception to different activation functions due to N [·] [Raissi et al. 2019]. In
order to optimize these shared parameters, i.e. find an approximation for u(x),
the physical loss is defined as the MSE of f(t,x), namely

Lf

(
{tfj ,x

f
j }

Nf

j=1

)
= 1
Nf

Nf∑
j=1
|f(tfj ,x

f
j )|2, (2.9)

where {tfj ,x
f
j }

Nf

j=1 ⊂ [0, T ] × Ω corresponds to sampling points, on which the
physical loss is evaluated. It ensures that û(t,x) satisfies the structure given by
the PDE (2.7) and its boundary conditions (2.8).
This physical loss is only one component of the loss. The total loss Lû,f consists
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of the physical loss and the empirical loss

Lû,f

(
{tûj ,xû

j }
Nû
j=1, {t

f
j ,x

f
j }

Nf

j=1

)
= Lû

(
{tûj ,xû

j }
Nû
j=1

)
+ Lf

(
{tfj ,x

f
j }

Nf

j=1

)
. (2.10)

As already introduced in Section 2.1, the empirical loss is defined as

Lû

(
{tûj ,x

f
j }

Nf

j=1

)
= 1
Nû

Nû∑
j=1

(û(xj)− u(xj))2 (2.11)

and corresponds to the deviation of the neural network from the training data,
in this case the initial and boundary data {tûj ,xû

j }
Nû
j=1 of the PDE. It ensures that

û(t,x) satisfies the initial and boundary condition(s).
With exception to the loss function Lû,f and its evaluation, the procedure of

training and, in this case, solving the given PDE, is identical to the one already
described in Section 2.1. According to Raissi et al. [2019], even a small amount
of data points is sufficient to obtain a satisfying approximation û(t,x) for the
solution u(t,x) of the PDE.

2.4 General Problem Definition
This work aims to predict the stationary groundwater temperature field T for
a bounded area with multiple groundwater heat pumps (GWHP) depending on
the stationary, spatially varying groundwater velocity field. It is assumed that
the temperature is dominated by the advection term in the Darcy flow equations
(mass and energy balance):

Qm = ∇ · (ρq)

= ∇ · (ρK∇P ), (2.12)

Qe = ∇ · (ρc Tq)− κ∆T

= ∇ · (ρc TK∇P )− κ∆T, (2.13)

with the water density ρ = 997 kg
m3 , the Darcy flow q, determined by the perme-

ability field and the pressure gradient of the subsurface K and ∇P , the specific
thermal capacity of water c = 4190 J

kg·K , the thermal conductivity of the sub-
surface κ = 0.5 W

m·K and the mass and energy source terms Qm = 0.0 kg
m3·s and
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Qe = 0.0 W
m3 everywhere, except for the GWHP locations, where Qe = 12.5 W

m3 , as
the power of one GWHP with a volume of 16m3 is estimated to be 200W .
Thus, the energy balance (2.13) is the governing PDE to describe the addressed

problem. This PDE is to be solved by a PINN and therefore needs to be put into
the form of Eq. (2.7), introduced in Section 2.3. The solution of the PDE is
the temperature field T (x) with the spatial coordinates x ∈ R2. This is the
temperature field that needs to be approximated by the neural network T̂ (x).
As this problem describes a stationary groundwater flow and temperature field,
it is only dependent on two spatial parameters, not on time. This leads to the
following setting:

f(x) = N [T (x)] != 0, x ∈ Ω ⊆ R2

N [T (x)] = ∇ · (ρc Tq)− κ∆T −Qe

= ρc
(
T (q(x1)

x1 + q(x2)
x2 ) + Tx1q

(x1) + Tx2q
(x2)

)
(2.14)

− κ (Tx1x1 + Tx2x2)−Qe

T (x ∈ ∂Ω) = 10. (2.15)

The reason why the solution T (x) to this PDE is approximable by a neural
network T̂ (x) is given by the universal approximation theorem. In theory, there
exists a weak solution to a weak formulation of the given problem that can be
approximated by a continuous function [Masud and Hughes 2002]. Restricting
the input x on a compact area and remembering that a neural network with at
least one hidden layer and a nonlinear activation function in it can approximate
any continuous function on compact input sets leads to the fact that a neural
network T̂ (x) with given loss functions is able to approximate the solution T (x)
of the PDE (2.13).
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3 Data Generation

The datasets necessary to train and to assess the quality of the neural networks
were created using PFLOTRAN [Hammond et al. 2014]. PFLOTRAN is a re-
active flow and transport model for the description of subsurface processes that
provides high-fidelity simulations.
PFLOTRAN solves a boundary value problem with a finite volume subsurface

solver. It identifies the pressure, velocity and temperature field depending on
given pressure boundary conditions and a permeability field. In general, the
simulations are performed on a 2D structured grid with directions x1 and x2.
One cell of the grid represents an area of size 2m × 2m × 1m, neglecting depth
from now on. A groundwater heat pump (GWHP) is modeled by injecting 0.05kg

s

of a fluid at 15°C on 2× 2 cells. In order to achieve a pseudo stationary solution,
the simulated time is 720 days in total, where the initial temperature of the
domain is set to 10°C. The edges are modeled as Dirichlet boundary conditions
of 10°C.

3.1 Permeability Field and Pressure Boundary
Conditions

The simulation with PFLOTRAN takes a permeability field and pressure bound-
ary conditions as an input. In order to generate various velocity and temperature
fields, different permeability fields and pressure boundary conditions were created.
A permeability field is generated by assigning values of the uniform distribu-

tion on [2.1 · 10−9, 4.1 · 10−8] randomly at different points on a regular square
grid (4 × 4, 6 × 6, and 8 × 8) across the domain. Via the radial basis function
(RBF) interpolation method with global thin-plate splines basis functions the
permeability values are then mapped to the grid of PFLOTRAN [Leiteritz et al.
2022].
The pressure boundary conditions are applied by assigning two values for the
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pressure gradient, one in each direction x1 and x2.
An exemplary permeability and pressure field with the resulting temperature

field are given in Fig. 3.1.

Figure 3.1: Exemplary (a) permeability field, (b) pressure field and (c) tempera-
ture field.

3.2 Heat Pump Field
In a large-scale scenario with multiple GWHPs, the GWHPs must be positioned
in the area prior to running the simulation. Certain rules need to be established
for this to ensure a smooth running of the framework. First, the GWHPs are not
allowed to overlap. More precisely, the distance between two different GWHPs
must be at least one cell. Additionally, in order to run the local surrogate model,
an area of 64×64 cells needs to be cut out around every single GWHP. Therefore,
a spatial buffer around each GWHP must be provided to allow this excision. Since
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the size of the GWHP is 2 × 2 cells, the distance between the GWHP and the
corresponding boundary must be at least 31 cells. Figure 3.2 illustrates the rules
for positioning the GWHPs for an example of three GWHPs on an area of 100×
100 cells. The light blue area corresponds to the forbidden zone at the boundaries
of the whole domain to allow the excision of an area around each GWHP. This
means that the first GWHP (dark blue) can be placed everywhere within the
white square. The second GWHP can be placed everywhere within the white
square with exception for the middle blue cells around the first GWHP (and the
cells of the first GWHP itself), which mark the forbidden cells to avoid overlapping
GWHPs. Accordingly, each new GWHP can be positioned everywhere in the
remaining white area. The boundaries of the excision areas around each GWHP
are additionally marked in dark blue in Fig. 3.2(b) to outline the size of the
excision area and to illustrate why the light blue zone needs to be of such large
size.

Figure 3.2: (a) Rules for positioning GWHPs. GWHPs are marked in dark blue,
the middle blue cells around each GWHP mark the forbidden cells to
avoid overlapping GWHPs. The light blue area corresponds to the
forbidden zone at the boundaries of the whole domain. (b) Excision
boundaries are additionally marked in dark blue.
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3.3 Resulting Datasets
As already mentioned, the generation of the datasets is necessary to train the
local surrogate model and to assess the quality of both neural networks. This
framework includes the use of two models - a CNN as a local surrogate model
and a PINN to solve the governing PDE afterwards in order to correct the stitched
together local predictions.
Thus, the first dataset, the “local dataset” is used to train and assess the quality

of the local surrogate model, which requires only one GWHP at the center of a
grid with 64 × 64 cells. The second dataset, the “global dataset” is needed to
determine the framework’s ability to predict the temperature across a large area
with multiple GWHPs and to assess the quality of the prediction. Both datasets
consist of two velocity fields, the two components

(
q(x1), q(x2)

)T
of the Darcy flow

q, and the corresponding temperature field T . An example for both datasets
is shown in Fig. 3.3. The size of a sample in the local dataset (example in
Fig. 3.3(a)) is fixed to 64 × 64 cells, as the local area around a single GWHP is
fixed to 64× 64 cells. Additionally, there is always only one centered GWHP in
each sample. The size of a sample in the global dataset depends on the domain
size chosen for investigation. In this case, an arbitrary amount of GWHPs can
be positioned. Figure 3.3(b) shows an example with 10 GWHPs for a size of
250× 250 cells, which corresponds to 500m× 500m.
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Figure 3.3: Temperature prediction by PFLOTRAN for an example of the (a)
local (used for training the surrogate model) and (b) global dataset
(used as ground truth). Arrows mark the velocity field.
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4 Methods

4.1 CNN Based Surrogate Modeling of Local Ground-
water Heat Pump Temperature Approxima-
tion

The first step for a large-scale groundwater heat pump (GWHP) temperature
prediction is the local temperature prediction around a single GWHP. For this
purpose, Leiteritz et al. [2022] developed a surrogate model, which takes the
stationary, spatially varying velocity field of 64×64 cells as an input and predicts
the developed temperature field when a single GWHP is added to the center of
the domain.

4.1.1 Model

For the structure of the surrogate model a CNN was chosen, more precisely, a
modification of the “TurbNet” by Thuerey et al. [2020], a variation of the “U-Net”
by Ronneberger et al. [2015].
The neural network has two input channels corresponding to the two compo-

nents
(
q(x1), q(x2)

)T
of the Darcy flow q, both with a size of 64 × 64 cells. The

output of the network is a single channel, also of size 64 × 64 cells, for the pre-
dicted temperature field. The network architecture itself is similar to a “U-Net”.
The input passes through increasingly convolving convolutional layers with an
increasing number of channels up to a bottleneck convolution. From this point
on, the channels are de-convolved in reverse order and a symmetrical manner us-
ing deconvolutional layers. Furthermore, the network possesses skip connections,
connecting the layers in the convolving part to the ones of the same shape in
the de-convolving part. In this case, the outputs of the convolutional layers are
added feature-wise to the ones of the deconvolutional layers. Each layer contains
a rectified linear unit (ReLU) activation function. The dilation distance is D = 1
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for all layers, the stride for the convolutional layers is S = 2 and for the decon-
volutional layers S = 1. Zero padding is P = 1 for all layers, except for the
bottleneck convolutions where P = 0. The difference to the “TurbNet”-structure
by Thuerey et al. [2020] is the increased size of the bottleneck. Leiteritz et al.
[2022] assumed that a single pixel value in the bottleneck no longer contains much
relevant information, and therefore some model complexity can be saved. Addi-
tional model complexity was saved by lowering the number of channels in each
layer. A schematic illustration of the TurbNet architecture is given in Fig. 4.1.
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Figure 4.1: Schematic illustration of the TurbNet architecture. Each layer has a
ReLU activation function.

4.1.2 Data

The dataset necessary to train the surrogate model was created using PFLO-
TRAN, as already mentioned in Section 3. In this case, the data was generated
on a 2D structured grid of 64 × 64 cells with a total of 4,096 cells. As one cell
covers an area of 2m × 2m, the whole domain is of size 128m × 128m. Since
the surrogate model predicts the local temperature around a single GWHP, no
placement of different GWHPs is necessary, which implies that a single GWHP
of size 2 × 2 cells is positioned in the center of the domain. The output of each
PFLOTRAN simulation is, as already stated in Section 3, the developed pseudo
stationary velocity field and the corresponding temperature prediction.
After the generation of the data, some preprocessing took place in order to
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support the training of the surrogate model. First, the temperature field data
T is centered. This means, as the domain temperature is set to 10°C and the
temperature at every location is intuitively at maximum 15°C, since the injected
water is 15°C, a total of 12.5°C is subtracted of each value of the temperature field
T . Afterwards, the values of the temperature field T are normalized to a range
of [−1, 1], as well as the velocity fields qx1 , qx2 separately. According to previous
studies [e.g. LeCun et al. 2012, Santurkar et al. 2018], centering often supports the
training process. The training dataset was also augmented by randomly rotating
the input and target images in order to improve the robustness of the resulting
CNN.

4.1.3 Performance

The model was trained on a dataset of 239 samples, which was enriched by 720
samples rotating the velocity and temperature fields, resulting in a total of 959
training samples. 192 samples of this dataset were used for validation. Addi-
tional training details are given in Appendix A. A surrogate model that achieved
a high level of compliance between the surrogate predictions and the correspond-
ing PFLOTRAN simulation, taken as ground truth was developed by Leiteritz
et al. [2022]. The prediction results, the target ground truths (corresponding
PFLOTRAN simulations) and the point-wise error fields between both (in °C)
for four different test samples are shown in Fig. 4.2. As the first three examples
in Fig. 4.2 show typical results, one can see that the surrogate predictions quali-
tatively match the target thermal plumes in direction and shape. Also, the first
two examples match very well in magnitude. The last example shows that there
are still scenarios for which the surrogate does not perform too well. The error
ranges in [−2°C, 2°C], however, typically the greatest quantitative error is at the
position of the GWHP and the error of the thermal plume is significantly lower.
One important advantage is that the inference time of the model with≤ 50ms is

very low. Therefore, it yields a good basis for a large-scale scenario with multiple
GWHPs with the goal of a quasi-real time prediction.
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Figure 4.2: Prediction results, target ground truths (corresponding PFLOTRAN
simulation) and point-wise error fields between both for four different
test samples (three typical results and one outlier), all in °C.
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4.2 Building a Global Initial Solution Using Lo-
cal Surrogates

The next step for a large-scale GWHP temperature prediction is to embed the
surrogate model into the framework. The pipeline takes the velocity field, the two
components

(
q(x1), q(x2)

)T
of the Darcy flow q, and the locations of the GWHPs

as an input. In order to run the local surrogate model, the local velocity domain
of 64× 64 cells around each GWHP is extracted. An exemplary illustration for a
constant velocity field is given in Fig. 4.3.

Figure 4.3: Illustration of the cutout velocity domains around each GWHP in a
domain of 100× 100 cells for a constant velocity field in order to run
the local surrogate model, here for three GWHPs in total.

Next, the local temperature predictions are created by evaluating the surrogate
model for each GWHP on a cutout domain of 64×64 cells separately. Exemplary
local temperature predictions for each GWHP and a constant velocity field are
shown in Fig. 4.4. Already here it becomes apparent that the local surrogate
model does not yet make ideal predictions, since at a constant velocity in x1-
direction the thermal plume deviates from this direction contrary to expectations.
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Figure 4.4: Exemplary local temperature predictions for each GWHP on a cutout
domain of 64× 64 cells for a constant velocity field.

Afterwards, the results need to be stitched together to create a global initial
solution T̃ (x). Two questions arise: (1) What happens to the cells, where no local
prediction is determined (as not all cells lie within the local area of a GWHP)?
(2) What happens if there is more than one local prediction for the same cell
(i.e. local areas of two or more GWHPs overlap)?
The first question can be answered easily. If no local temperature prediction is

available for a cell, it means that so far no GWHP has an influence on the temper-
ature of this cell. Therefore, the temperature is set to the standard groundwater
temperature of this setup, 10°C.
For the second problem, different approaches are to be investigated. The first

one is to take the maximum out of all temperature predictions made for the
corresponding cell, the second one to take the mean. The third one considers
the direction of the flow. Here, the local prediction of the GWHP is taken,
which is encountered first when the groundwater flow is traced upstream. Further
computational details of the last option are given in Appendix B.
Figure 4.5 shows an example of the different stitching methods for the already
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given scenario with a constant velocity field.

0 50 100
0

50

100
Max

0 50 100
0

50

100
Mean

0 50 100
0

50

100
Flow Direction

10

11

12

13

14

CNN Predictions
(Sample No. 0)

Figure 4.5: Illustration of the three different approaches of stitching local predic-
tions together, maximum, mean and flow direction to obtain a global
initial solution.

4.3 Correction of Initial Solution Using a PINN
After stitching the local predictions together, a global initial solution T̃ is known
for each cell, i.e. for each discrete position x within the domain Ω. Mathematically
speaking, the global initial solution is a function

T̃ : Ω̃ ⊂ N2 → R, (4.1)

where Ω̃ is the integer discretization of Ω.
However, this global initial solution does not obey any physical laws or bound-

ary conditions. The idea is to train a physics-informed neural network (PINN) in
order to obtain a global solution which obeys physical laws and boundary condi-
tions, i.e. approximates the function T (x) that solves the PDE given in Eq. (2.14)
with boundary condition (2.15). Accordingly, the PINN T̂ (x) predicts the tem-
perature T at any given position x in the domain Ω. A convenient side effect
of this step is that it is a mesh-free method. This implies that the temperature,
after training, can be predicted at any given position x within the domain Ω and
is no longer restricted on integer values for x, which means

T̂ : Ω ⊂ R2 → R. (4.2)
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In order to not start from scratch, but use the global initial solution for the
PINN, training is split into two parts, a pre-fit and a “real” physics-informed
training. In the first part, the neural network is trained to learn the global
initial solution. For this purpose, a pre-fit training dataset is extracted from the
global initial solution. NP F continuous-valued positions within the domain Ω are
selected and the corresponding training dataset results in {xT̃

j , T̃ (bxjc)}NP F
j=1 . The

values of the positions need to be rounded off as the global initial solution T̃ (x)
is a function of only integer values. The positions {xT̃

j }
NP F
j=1 are selected in such a

manner that half of the preselected amount of points NP F are sampled uniformly
randomly around the positions of the GWHPs. It can happen that these areas
overlap and that the density of the sampling points is higher in these parts than
in others. 1

4NP F points are sampled equidistantly on the whole domain Ω. The
other 1

4NP F points left are sampled at the boundary of the domain. However, the
target value T̂ here is directly set to the wanted boundary values for T̂ instead
of the values of the global initial solution T̃ (x) in order to accelerate the training
process and not “train points twice”, where the exact value is already known. An
illustration of the sampling of NP F pre-fit points is shown in Fig. 4.6.

Figure 4.6: Illustration of the sampling of NP F = 2,000 pre-fit points, here for
three GWHPs.
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The loss function for this part is

LP F
T̂

(
{xT̃

j }
NP F
j=1

)
= 1
NP F

NP F∑
j=1

(T̂ (xj)− T̃ (bxjc))2. (4.3)

After training the neural network with this loss function, it is able to approximate
the global initial solution. However, one can clearly see that this neural network
is not yet a PINN as no physical laws and boundary conditions are considered.
Therefore, after either reaching a certain loss limit ε or a total of m epochs,
i.e. letting the neural network learn the global initial solution in the pre-fit phase,
the loss function is changed to

LT̂ ,f

(
{xT̂

j }
NBC
j=1 , {x

f
j }

Nf

j=1

)
= LT̂

(
{xT̂

j }
NBC
j=1

)
+ Lf

(
{xf

j }
Nf

j=1

)
(4.4)

with

LT̂

(
{xT̂

j }
NBC
j=1

)
= 1
NBC

NBC∑
j=1

(T̂ (xj)− T (xj))2 (4.5)

and Lf

(
{xf

j }
Nf

j=1

)
= 1
Nf

Nf∑
j=1
|f(tfj ,x

f
j )|2, (4.6)

an empirical and a physical component and thus, the learning phase switched to
“real” physics-informed training.
T̂ (x) denotes the predicted temperature, i.e. the output of the neural network

and T (x) the analytical solution. T (x) of course is unknown, but the empiri-
cal loss is only evaluated at the boundary, where the values for T are given by
the boundary condition in (2.15). f corresponds to the PDE residual, given in
Eq. (2.14). {xT̂

j , T (xj)}NBC
j=1 is the dataset where LT̂ is evaluated on NBC ran-

domly selected points at the boundaries, where boundary conditions are given.
The dataset {xf

j }
Nf

j=1 consists of Nf points within the domain Ω on which Lf

is evaluated. Different methods for drawing these sampling points, explained in
Section 4.3.2, are to be explored.
For the evaluation of the physical loss, derivates of the Darcy velocity q are

needed, q(x1)
x1 and q(x2)

x2 . As the velocities are only available for integer-valued
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positions, these derivatives are approximated by central difference quotients

q(x1)
x1 ≈

q(bx1c+1) − q(bx1c−1)

2 · 2m (4.7)

and q(x2)
x2 ≈

q(bx2c+1) − q(bx2c−1)

2 · 2m . (4.8)

If the integer-valued position corresponds to a boundary cell, one-sided difference
quotients are employed.
At this point it is important to mention that LP F

T̂
is completely replaced by

LT̂ ,f after m epochs and therefore does not influence further training in any
manner. Introducing LT̂ ,f makes the neural network a proper PINN as physical
laws (within f) and boundary conditions are learned to be obeyed. For simplicity,
the whole neural network is further referred to as PINN (independent of being in
the pre-fit or physics-informed, i.e. “correction” training phase) as it is the same
network.
After training the PINN for another n epochs, a final global solution T̂ (x)

obeying physical laws and boundary conditions is obtained. The number of “cor-
rection epochs” n is set at the beginning, the number of epochs for the pre-fit
phase is determined by reaching a limit ε for LP F

T̂
or a maximum of pre-fit epochs

mmax, depending on which case occurs earlier.

4.3.1 Model

The structure of the PINN is a basic dense neural network with five hidden
layers and 20 neurons each. Each layer contains a TanH activation function, the
activation function of the output layer is linear. The input layer consists of two
neurons, one for position x1 and one for position x2. A learning rate of 10−3 was
chosen. The output layer consists of one neuron, the predicted temperature T̂ at
position x = (x1, x2)T. A schematic illustration is given in Fig. 4.7.
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2
Input
(x1, x2)

20 20 20 20 20

1
Output
T̂ (x1, x2)

Figure 4.7: Schematic illustration of the PINN architecture. Each hidden layer
has a TanH activation function.

In a first round, the number of correction epochs was chosen to be n = 100
and in a second one n = 500 epochs to examine whether the additional training
time is worthwhile in terms of improving the prediction’s quality. The maximum
number of epochs in pre-fit phase was chosen to be mmax = 30,000, the limit for
the loss value LP F

T̂
is ε = 10−3. Additional training details are given in Appendix

C.
The loss function LT̂ ,f is the sum of two terms, LT̂ and Lf . An equal and fixed

weighting of these two terms is inconvenient from a numerical point of view, as
the gradients of the two losses might be of different sizes which leads to one being
completely disregarded in the learning process [Wang et al. 2021]. This has the
consequence that the global solution T̂ (x) either does not meet the boundary
conditions or solve the PDE within the domain Ω. An adaptive weighting γ of
the empirical loss LT̂ during the training process helps to overcome this issue.
The total loss is composed of

LT̂ ,f = γ · LT̂ + Lf . (4.9)

The Annealing Algorithm proposed by Wang et al. [2021] for the computation
of the weight γ was used, however, slightly adapted, as the given configuration
showed better results in application. It is shown in Alg. 1. The weight γ is
adjusted to the size of the gradients during training and thus, the gradients are
approximately balanced. The annealing rate αANN ∈ [0, 1] determines, whether
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Algorithm 1 Annealing Algorithm
Require: LT̂ , Lf , γ

γ̂ ← mean(|∇Lf |)
mean(|∇LT̂ |)

γ ← (1− αANN) · γ + αANN · γ̂
return γ · LT̂ + Lf , γ

the weights from previous epochs are taken into account (low αANN) or quasi
neglected (high αANN). For this application αANN = 0.8 was chosen. Using
this procedure, high values of γ were obtained, causing the loss LT̂ ,f to increase
immensely, which jeopardized stable training. To ensure stable training, the
composition of the total loss was adapted to

LT̂ ,f = LT̂ + 1
γ
· Lf . (4.10)

The weight γ was computed first at the beginning of the physics-informed cor-
rection training phase and afterwards re-evaluated every epoch.

4.3.2 Different Sampling Methods for Training of the PINN

For the evaluation of the physical loss Lf , Nf sampling points need to be drawn
from the domain Ω. Two different possibilities are to be examined in order to find
out whether a specific choice of sampling points improves the prediction quality.
For the first possibility Nf points are drawn equidistantly from the whole do-

main Ω. An illustration is shown in Fig. 4.8(a).
For the second investigated scenario, the amount of Nf sampling points is di-

vided into two subsets. 1
4Nf sampling points are also drawn equidistantly from the

whole domain Ω in order to capture “the overall picture”. The other 3
4Nf sampling

points are drawn uniformly randomly around the local, previously cutout, areas
of the GWHPs, since most of the correction of the global initial solution needs
to be done in these parts of the domain. The first sampling method is further
referred to as “equidistant sampling method”, the second one as “mixed sampling
method”. An illustration of both sampling methods is shown in Fig. 4.8(b).
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Figure 4.8: Illustration of sampling Nf = 2,000 “physical” points, using (a) the
equidistant sampling method and (b) the mixed sampling method,
here for one GWHP.

4.3.3 Data

To assess the quality of the prediction made, reference data needs to be created.
For this purpose, again PFLOTRAN was used. The data was generated on a
2D structured grid of size 100 × 100 with a total of 10,000 cells and in another
scenario of size 250 × 250 with a total of 62,500 cells. Again, one cell covers an
area of 2m×2m, which results in domain sizes of 200m×200m and 500m×500m.
In this case, scenarios with multiple GWHPs are investigated. Thus, N GWHPs
were placed randomly within the domain according to Section 3.2, where N is a
random natural number in [2, 4] for the small and [8, 12] for the large domain. In
total, 64 samples were created, 32 samples for each domain size. The output of
each simulation is, as already stated in Section 3, the developed pseudo stationary
velocity fields and the corresponding temperature prediction.
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4.4 Summary of the Framework
In summary, a global initial solution T̃ (x) for the PDE (2.14) with boundary
condition (2.15) is known for integer valued x after stitching together multiple
local predictions. The local predictions were made by (a) identifying the locations
of the GWHPs, (b) cutting out the velocity fields around each GWHP, (c) running
a local surrogate model (CNN) on each, which provides a temperature prediction
based on the velocity field, and (d) stitching the predictions on the temperature
field back together. In order to use this as an initial guess, (e) a physics-informed
neural network (PINN) T̂ (x) is trained to learn T̃ (x). As this function T̂ (x)
does not yet obey the physical laws, after m epochs the loss function is changed
to a sum of an empirical loss and a physical loss, which enforces T̂ (x) to follow
the given physical laws. After (f) another n − m epochs, T̂ (x) approximates a
function T (x) that solves the PDE (2.14) with boundary condition (2.15). An
overview of the whole framework is shown in Fig. 4.9.
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(a) identify locations of  
GWHPs

(c) evaluate local surrogate 
model (CNN) for each cutout 
velocity domain with centered 

GWHP

(b) cut out velocity domain 
around each GWHP

(d) stitch local surrogate 
prediction (choosing one of 

the given approaches) to 
obtain global initial prediction

(e) train PINN to predict given 
global initial prediction !𝑇

(x1,x2) (approximately) for m 
epochs

(f) continue training of PINN 
for another n-m epochs to find 
global prediction #𝑇(x1,x2) that 
approximates solution 𝑇(x1,x2) 
of PDE (choosing one of the 
given sampling methods for 

the training points)

change loss 
function

large-scale discretized 
velocity field and location of 

GWHPs

continuous function #𝑇(x1,x2) 
representing global 

prediction, obeying given 
physical laws and boundary 

conditions

discretized local 
velocity fields

discretized local 
temperature fields

discretized global 
temperature field

continuous function
!𝑇(x1,x2) representing 

global initial 
prediction

Figure 4.9: Overview of framework using a correction of stitched together local
surrogates to obtain a global solution.
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This section presents the results of the different approaches to be studied for
the introduced framework, divided into showcasing the performance of the global
initial solution in Section 5.1 and of the final global solution in Section 5.2. As
already mentioned, two domain sizes for realistic groundwater flow scenarios were
investigated, a small one of 100× 100 cells, resulting in a domain size of 200m×
200m and a large one of 250×250 cells, resulting in a domain size of 500m×500m.
For both domain sizes 32 samples were created with a number of GWHPs in [2, 4]
for the small and [8, 12] for the large domain.
For comparison, the relative error of one sample between its predicted temper-

ature T̂ (x) and the corresponding ground truth T (x) is computed as
∑
j
|T̂ (xj)− T (xj)|∑

j
|T (xj)|

, (5.1)

with T̂ (xj) or correspondingly T (xj) the prediction or ground truth value for one
cell xj.

5.1 Different Approaches for Assembling Local
Predictions

In a first step, the three introduced approaches for handling overlaps when stitch-
ing the local surrogate predictions together are investigated in terms of the relative
error between the prediction and the ground truth. The three approaches have
been introduced in Section 4.2, taking the maximum value or the mean value
of the corresponding cells, or considering the flow direction of the groundwater,
where the local prediction of the GWHP is taken that is encountered first, when
the groundwater flow is traced upstream.
For the small domain size, i.e. 100 × 100 cells, the average achieved relative

error of all test samples is 3.27% with an overall range of [1.80%, 5.35%] for
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the approach when taking the maximum value, 3.57% with an overall range of
[1.84%, 5.91%] for the approach when taking the mean value and 3.48% with and
overall range of [1.79%, 5.95%] when considering the flow direction. Figure 5.1
shows the given target ground truth temperature fields and the three different
stitched together solutions for two samples with relative errors close to the av-
erages. Both samples are typical results for the stitched together global initial
solutions.
The exact relative errors according to Eq. (5.1) are given in Table 5.1.

Maximum Mean Flow Direction

1st Sample 2.96% 3.41% 3.63%

2nd Sample 3.26% 3.49% 3.43%

Table 5.1: Relative errors according to Eq. (5.1) for the different stitched together
global initial solutions for the first and the second sample in Fig. 5.1.

First, Fig. 5.1 shows that taking the mean value of all available predictions for
one cell leads to a huge loss of information. The temperature of the overlapping
cells is a lot lower compared to the ground truth. This is also reasonable, since a
local prediction is made in all directions around the GWHP, although a GWHP
has no effect on the temperature of the upstream groundwater. However, if
another GWHP is located upstream, the temperature of the groundwater in the
cells between the two GWHPs is only affected by the upstream GWHP. Whereas,
if the mean of the two predictions is taken, the temperature will be lowered by the
second GWHP, although in reality it does not affect the temperature of the cell.
This problem is exacerbated when more than one GWHP is located downstream,
as visible in the second sample in Fig. 5.1.
One idea to counteract this problem was to take the temperature prediction

made by the GWHP that is met when going upstream, i.e. considering the flow
direction. Figure 5.1 shows that the loss of information is reduced compared to
taking the mean value of multiple predictions. However, one can see that this
method leads to unphysical discontinuities as soon as a new GWHP appears when
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Figure 5.1: Given target ground truth temperature fields with underlying ground-
water velocity and three different approaches for stitching local pre-
dictions together, taking the maximum and the mean value and con-
sidering the flow direction for two samples of the small domain size
of 100× 100 cells.
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following the groundwater downstream. An additional disadvantage of the flow
direction approach is that its computation per sample for this domain size and
amount of GWHPs takes up to 24 times longer, averaging 0.96s on the given
machine, than the two approaches that take the maximum or mean value.
The problems described so far for both approaches do not occur when taking

the maximum value for overlapping predictions. The higher temperatures are not
averaged out as they are when taking the mean, which is a more realistic solution
especially when only one of two GWHPs is located upstream. Not choosing the
prediction of only one GWHP allows for a relatively smooth global initial solution.
Of course, there are still discontinuities at the seams where no other prediction is
connected. However, this problem is present in all three approaches and should
be addressed in the correction part of the framework. This confirms the results of
the average relative errors, according to which the maximum approach provides
the best initial solution and the closest to a physically sound global solution.
To get a general idea where the largest errors come from in the global initial

solution, Fig. 5.2 shows the maximum approach for both samples together with
the target ground truth temperature fields from Fig. 5.1 and the point-wise error
fields (in °C) between the two temperature fields. The error for the first sample
in Fig. 5.2 shows two key points. First, as already expected from the performance
analysis of the local surrogate model in Section 4.1.3, the global initial solution
matches the target thermal plumes quite well in direction and shape, i.e. quali-
tatively. The largest error is at the position of the GWHPs and the error of the
thermal plume is significantly lower. This is clear, since these are the predictions
of the local surrogate model and this issue was already identified in the analysis
of its performance in Section 4.1.3. Second, the temperature prediction for cells
located downstream of a GWHP is too low if no local prediction is made, since the
cell is outside the local domain of any GWHP. This problem is to be addressed
in the PINN correction part of the framework. Both of these findings are con-
firmed by the second sample in Fig. 5.2, however, the temperature of one thermal
plume is significantly overestimated by the local prediction. This is due to the
fact that in this part of the framework, the laws of physics and, in particular, the
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Figure 5.2: Global initial solution applying the maximum approach (CNN Pre-
diction), target ground truth temperature fields and corresponding
point-wise error fields (all in °C) for two samples of size 100 × 100
cells. The upper sample corresponds to the first sample in Fig. 5.1,
the lower one to the second one in Fig. 5.1.
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conservation of energy are yet completely disregarded. Additionally, one can see
why the relative error for the maximum approach in Table 5.1 is larger for the
second sample, as the outlets of the thermal plumes are of a higher temperature.
However, this region of the domain is not captured by the local predictions, since
the local domain is fixed, which thus causes a larger error.

For the large domain size, i.e. 250 × 250 cells, the average achieved relative
error of all test samples was 3.60% with an overall range of [1.34%, 8.02%] for
the approach when taking the maximum value, 3.68% with an overall range of
[1.33%, 8.42%] for the approach when taking the mean value and 3.67% with and
overall range of [1.38%, 8.19%] when considering the flow direction. Figure 5.3
shows two different target ground truth temperature fields and the three differ-
ent stitched together solutions for two samples with relative errors close to the
averages. Both samples are typical results for the stitched together global initial
solutions.
The exact relative errors according to Eq. (5.1) are given in Table 5.2.

Maximum Mean Flow Direction

1st Sample 2.86% 2.79% 2.93%

2nd Sample 4.12% 4.39% 4.22%

Table 5.2: Relative errors according to Eq. (5.1) for the different stitched together
global initial solutions in Fig. 5.3.

Again, it can be seen for both samples that taking the mean value leads to an
“averaged out solution”, if there is an overlap between two local predictions. As
the relative error, according to Table 5.2, is smaller for the mean than the maxi-
mum approach for the first sample, it is shown that taking the mean value could
also be beneficial, if the local predictions overestimate the temperature. However,
this case does not occur so often and rather unpredictably, thus it is not worth
choosing this approach. Additionally, the results for the flow direction approach
show again unphysical discontinuities for thermal plumes when they encounter a
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Figure 5.3: Given target ground truth temperature fields with underlying ground-
water velocity and three different approaches for stitching local pre-
dictions together, taking the maximum and the mean value and con-
sidering the flow direction for two samples of the large domain size of
250× 250 cells.
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new GWHP downstream. For this domain size the computational time is about
2.16s for one sample on the given machine, i.e. around 25 times higher than for
the other two approaches. Thus, in general, the maximum approach gives most
likely the best global initial solution.
To get again a general idea where the largest errors come from in the global

initial solution, Fig. 5.4 shows the maximum approach for both samples together
with the ground truth temperature fields from Fig. 5.3 and the point-wise error
fields (in °C) between the two temperature fields.

Figure 5.4: Global initial solution applying the maximum approach (CNN Pre-
diction), target ground truth temperature fields and corresponding
point-wise error fields (all in °C) for two samples of size 250 × 250
cells. The upper sample corresponds to the first sample in Fig. 5.3,
the lower one to the second sample in Fig. 5.3.

Figure 5.4 shows that the local predictions match the target quite well in di-
rection and shape. Of course, there are some thermal plumes that have a slight
deviation in direction, especially in the first sample. This can happen, since there
are many GWHPs in this sample, thus making the scenario of inaccurate predic-
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tions more likely, as the local surrogate model is not a perfect estimator. Again,
the largest errors are in the regions downstream of a thermal plume, since there
is no local prediction made, as these regions are outside the local domain of one
GWHP.
In conclusion, the maximum approach provides the best or most reliable global

initial solution independent of the domain size.

5.2 Global Temperature Prediction Using PINNs
Before applying the second part of the framework to a scenario with a realistic
groundwater flow and multiple GWHPs, it was tested for the same domain size
as used for the local surrogate model, i.e. 64× 64 cells with one centered GWHP.
For this purpose, the cropping and stitching together parts were redundant, thus
the correction of the initial solution was performed directly on the local surrogate
prediction. This scenario was examined in order to check whether a subsequent
correction with a PINN is able to actually improve the prediction made by the
local surrogate model.
For this purpose, Fig. 5.5 shows two samples, their local surrogate prediction,

the corresponding ground truth temperature fields and the point-wise error fields
(in °C) between the two temperature fields. The corresponding relative error for
the first sample’s local surrogate prediction is 2.25% and for the second one 3.16%.
Applying the mixed sampling method yielded better results than the equidistant
sampling method during the PINN training. This is why the PINN correction of
the local surrogate predictions for the samples in Fig. 5.5 given in Fig. 5.6 were
created using the mixed sampling method.
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Figure 5.5: Local surrogate predictions (CNN Prediction), given target ground
truth temperature fields and corresponding point-wise error fields (all
in °C) for two samples of size 64× 64 cells.
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Figure 5.6: PINN predictions, given target ground truth temperature fields and
corresponding point-wise error fields (all in °C) for two samples of size
64× 64 cells.

The corresponding relative error for the first sample is 1.60% after the PINN
correction and 1.89% for the second sample. Hereby it is shown that a local
prediction using a PINN can be corrected theoretically in terms of reducing the
relative error. Having a closer look at the point-wise error fields of the local sur-
rogate predictions in Fig. 5.5 and their corrections made by the PINN in Fig. 5.6,
it is striking that the shape of the thermal plume is already matched by the lo-
cal surrogate prediction for both samples. When comparing the point-wise error
fields it can be seen that the temperature of the thermal plume of the first sample
is overestimated by the local surrogate prediction, but underestimated after cor-
rection. However, the absolute values of the point-wise error field afterwards are
smaller than before the correction by the PINN. Regarding the second sample,
the thermal plume is clearly overestimated by the local surrogate prediction, but
matches the temperature of the target well, except for the temperature around
the GWHP. In summary, the relative errors and the absolute values of the point-
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wise error fields decrease after correction, hence the correction step by the PINN
is justified.

After this justification of the PINN correction, it now becomes interesting to
see how a correction behaves when seams of the stitched together local predic-
tions appear on the global initial solution that actually need to be smoothed to
obtain a physically sound prediction. To this end, there are at first six different
possibilities to obtain a PINN correction. For each possibility to build the global
initial solution (maximum, mean and flow direction approach) two different sam-
pling methods can be employed for the subsequent training of the PINN - the
equidistant and the mixed sampling method.
For the small domain size, i.e. 100×100 cells, the average relative errors over all

samples after the PINN correction are similar to the ones of their corresponding
global initial solution. Unfortunately, this is due to the fact that the PINN cor-
rection, despite having an initial solution, still tries to approach the zero solution
in some cases. This in turn leads to a high error, which increases the average
error. However, there are samples where the zero solution is not approached and
thus, the relative error reduced compared to the one of the global initial solution.
Figure 5.7 shows one sample’s given ground truth temperature, the three different
ways to build a global initial solution (max, mean and flow direction approach)
and the corresponding six mentioned possibilities to build a global solution af-
terwards (max, mean and flow direction combined with subsequent equidistant
and mixed sampling). The relative errors for this sample are given in Table 5.3.
Figure 5.7 and the corresponding relative errors in Table 5.3 show on the one
hand the problem already mentioned. In some cases, especially when starting
from a global initial solution obtained by the mean approach, the PINN tends to
“correct” the global initial solution to approach the zero solution. This can also
be observed for the “flow direction, equidistant” solution. Although the “flow
direction, mixed” solution does not exhibit this problem of approximating the
zero solution, it does not improve the corresponding global initial solution, which
is also visible in the relative error given in Table 5.3. However, starting from the
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Figure 5.7: One sample’s given target ground truth temperature field and un-
derlying groundwater velocity, the three approaches to build a global
initial solution and the six corresponding possibilities to build a global
solution for the small domain size of 100× 100 cells.
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Global Initial Solution Global Solution

Max, Equi 2.96% 2.94%

Max, Mixed 2.96% 2.94%

Mean, Equi 3.41% 4.57%

Mean, Mixed 3.41% 3.54%

Flow Dir, Equi 3.63% 5.07%

Flow Dir, Mixed 3.63% 3.62%

Table 5.3: Relative errors according to Eq. (5.1) for the different stitched together
global initial solutions and the corresponding global solutions after the
PINN corrections in Fig. 5.7 using different sampling methods.

global initial solution that uses the maximum approach shows for both sampling
methods, equidistant and mixed, after the PINN correction an improved relative
error for the given sample.
As the shown results are quite representative for almost all samples investi-

gated, the further analysis is aimed at finding out whether generally the mixed
or equidistant sampling method yields better results starting from the maximum
approach. To this end, Fig. 5.8 and 5.9 show the “maximum, equidistant” and
the “maximum, mixed” solutions for two samples with given target ground truth
temperature fields and the corresponding global initial solutions using the max-
imum approach. The relative errors for both samples and for both sampling
methods, as well as the corresponding error for the global initial solution using
the maximum approach, are given in Table 5.4.
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Figure 5.8: Given target ground truth temperature field with underlying ground-
water velocity, global initial solution using the maximum approach
and results using the equidistant and mixed sampling method for
PINN correction after applying the maximum approach for the first
sample of small domain size of 100× 100 cells.
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Figure 5.9: Given target ground truth temperature field with underlying ground-
water velocity, global initial solution using the maximum approach
and results using the equidistant and mixed sampling method for
PINN correction after applying the maximum approach for the sec-
ond sample of the small domain size of 100× 100 cells.
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Max, Equi Max, Mixed Max

1st Sample 3.81% 3.88% 3.92%

2nd Sample 2.77% 2.29% 3.17%

Table 5.4: Relative errors according to Eq. (5.1) for the “maximum, equidistant”
and “maximum, mixed” global solutions in Fig. 5.8 and 5.9 and the
corresponding error of the global initial solution using the maximum
approach (Max).

The relative errors in Table 5.4 show that for both samples the global initial
solution’s relative error is reduced for both sampling methods. For the first sample
the “maximum, equidistant” sampling method achieves a better PINN corrected
global solution in terms of the relative error than the use of the “maximum,
mixed” sampling method. For the second sample, however, it is the other way
around. This is also the case for other tested samples, thus no general statement
can be made as to which sampling method yields better results. One reason
to this might be the configuration or the amount of the GWHPs. In the first
sample, there are more GWHPs and they are slightly more distributed. As the
equidistant sampling method yields a better result in terms of the relative error, it
might be better to use equidistant sampling points for the training of the PINN
if the thermal plumes “cover a larger area” of the whole domain, which also
correlates with the amount of GWHPs. This suggests that for larger scenarios
with an increasing number of GWHPs, the equidistant sampling method is a
better choice, since it covers the area more evenly and gets the “overall picture”
better, which helps the PINN to solve the underlying PDE. However, this is only
an assumption that must be verified by further tests.
Two peculiarities appear for both samples when comparing the global initial

solution with the PINN corrected solutions. If there is a strong mismatch in the
shape or direction between the global initial solution and the target ground truth
temperature, the PINN does not manage to correct this. This is perhaps due to
the fact that the initial solution is already close to a local minimum of the PINN
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loss LT̂ ,f and therefore does not manage to leave it, i.e. to correct the shape or
direction. The same cause may also be responsible for the problem that thermal
plumes hardly lengthen as they should according to the ground truth. However,
the PINN manages to correct the strength of the thermal plume, which could be
the reason why the relative errors are reduced for both samples after the PINN
correction. These findings become clearer when looking at the point-wise error
fields (in °C), once for the global initial solutions in Fig. 5.10 and then for the
PINN corrected solutions in Fig. 5.11 for both samples previously examined.

Figure 5.10: Global initial solutions applying the maximum approach (CNN Pre-
diction), target ground truth temperature fields and corresponding
point-wise error fields (all in °C) for two samples of size 100 × 100
cells. The upper sample corresponds to the first sample in Fig. 5.8,
the lower one to the second sample in Fig. 5.9.
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Figure 5.11: Global solutions applying the maximum approach and the corre-
sponding best sampling method (PINN Prediction), target ground
truth temperature fields and corresponding point-wise error fields
(all in °C) for two samples of size 250 × 250 cells. The upper sam-
ple corresponds to the first sample in Fig. 5.8, the lower one to the
second sample in Fig. 5.9.

When comparing the point-wise error fields in Fig. 5.8 and 5.9, it can be seen
for both samples that the size of the error has decreased, but the shape remains
relatively the same - in the second sample better than in the first one, as there
is also a larger reduction of the relative error. Comparing the predicted temper-
ature, but also the point-wise error fields, one can also observe to some degree
that the seams created by the stitching part are slightly smoothed.

The results for the large domain size of 250 × 250 cells confirm the outcomes
and problems already encountered for the small domain size. To exemplify these
findings, Fig. 5.12 shows the “maximum, equidistant” and the “maximum, mixed”
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solutions for one sample with given target ground truth temperature field and the
corresponding global initial solution using the maximum approach for the large
domain size.

Figure 5.12: Given target ground truth temperature field with underlying ground-
water velocity, global initial solution using the maximum approach
and results using the equidistant and mixed sampling method for
PINN correction after applying the maximum approach for the large
domain size of 250× 250 cells.

It is clearly apparent that the thermal plumes are still not as long as they should
be according to the ground truth temperature field. Table 5.5 shows additionally
the relative errors for both sampling methods and the corresponding error for the
global initial solution using the maximum approach for the given sample.
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Max, Equi Max, Mixed Max

Sample 3.47% 3.11% 3.13%

Table 5.5: Relative errors according to Eq. (5.1) for the “maximum, equidistant”
and “maximum, mixed” global solutions in Fig. 5.12 and the corre-
sponding error of the global initial solution using the maximum ap-
proach (Max).

The relative error after using the equidistant sampling method in this case is
higher than after using the mixed sampling method and even higher than the
relative error of the global initial solution. This contradicts the assumption that
equidistant sampling enables a better prediction than mixed sampling during the
PINN training for an increasing number of GWHPs. However, since this is only
one example, no significant statement can be made here. For the other examples
examined, the number of cases in which the respective sampling method performs
better in terms of the relative error is relatively equal. Accordingly, no definite
statement can be made on the basis of the available results.
To compare the global initial solution applying the maximum approach and the

global solution using the mixed sampling method and their errors, Fig. 5.13 shows
the global initial solution with the target ground truth temperature field and the
corresponding point-wise error field (in °C) as well as the PINN corrected solu-
tion using the mixed sampling method, again with the corresponding point-wise
error field (in °C). The graphics in Fig. 5.13 confirm the results that are already
evident for the small domain size. The PINN does not manage to lengthen the
thermal plumes or to correct their shapes, if they are predicted incorrectly by
the local surrogate model. However, through the PINN correction the strength
of the thermal plume fractions, which were predicted, approaches the one of the
ground truth temperature field.

The last point to be included in the analysis is the inference time of the frame-
work. The computational time of the first part, the stitching of the global initial
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Figure 5.13: Global initial solution applying the maximum approach (CNN Pre-
diction), target ground truth temperature field and corresponding
point-wise error field and the global solution applying the maxi-
mum approach and the corresponding best (mixed) sampling method
(PINN Prediction) with point-wise error field (all in °C) for the given
sample for the large domain size of 250× 250 cells in Fig. 5.12.
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solution was already discussed in the previous section. The maximum and mean
approaches both require ∼ 65ms, while the flow direction approach takes up
to 24 and 25 times longer than the other two, respectively. However, this is
not of concern, since the maximum approach gives the best results anyway, and
therefore this very fast inference time is relevant for further analysis. What is
more problematic, on the other hand, is the computational time of the second
part, the training of the PINN network, illustrated in Fig. 4.7. This consists of
the pre-fit phase and the correction phase. The pre-fit phase consists of up to
mmax = 30,000 and takes about 150s. If the number of “correction epochs” is
chosen to be n = 100, this correction phase lasts about 780s, since the automatic
differentiation necessary for loss evaluation is very expensive. Unfortunately, this
can no longer be considered a quasi-real time procedure. Therefore, it was tested
whether the number of epochs could be reduced without loss of quality. After
reducing the amount of pre-fit epochs the global initial solution was insufficiently
accurate. This caused the problem that during the subsequent PINN training in
the correction phase, the zero solution was approached increasingly often, since
the global initial solution was still close to this local minimum.
Instead of the number of pre-fit epochs, the number of correction epochs can

also be reduced to achieve a shorter computational time. To see if this could be
done without sacrificing quality, Fig. 5.14 shows two typical evolutions of the loss
over the n = 100 correction epochs chosen so far for two samples, one of the small
domain and one of the large domain size on a logarithmic scale. As can be seen
in Fig. 5.14 the loss converges for all variants within 100 epochs, except for the
non-promising “flow direction, equidistant” approach, where the loss increases
after a certain amount of epochs. Especially the losses of the relevant variants,
which include the maximum approach for the global initial solution, converge
very quickly. Therefore, it can be considered to reduce the number of correction
epochs to get a faster inference time and still maintain the quality of the global
solution.
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Figure 5.14: Loss evolutions over n = 100 correction epochs of two samples, (a)
one for the small domain size of 100× 100 cells and (b) one for the
large domain size of 250× 250 cells on a logarithmic scale.

5.3 Possibilities for Quality Improvement
Since it was noted in the previous section that there is room for improvement in
the quality of the global solution in predicting the length and shape of the thermal
plumes, this will be addressed here. Some of these proposals have already been
partially tested, but may be subject to further quality improvement through more
extensive testing.
Classical methods to improve the quality of a neural network’s results are

optimizing the number of layers and neurons, the learning rate and the number
of epochs. The first three were tested, but the network with the configuration that
produced the best results has already been presented here. An increased number
of n = 500 correction epochs was tested to see if the loss would leave the local
minimum found after 100 epochs, as shown in Fig. 5.14. However, this was not
the case, and furthermore, the larger number of correction epochs extended the
computational time immensely. Additionally, the parameters of the Annealing
Algorithm 1 could be adjusted. To this end, different values for the weight γ and
the annealing rate αANN were tested, and also different methods to determine
a good balance of the gradients γ̂. Here, as well, the configurations that were
considered to be the best have already been used to produce the results presented.
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All this indicates that stronger actions are needed to achieve a satisfying quality
of the global solution in a reasonable computational time.
An option that could solve the problem of the insufficient lengths of the thermal

plumes could be to increase the domain size of the local surrogate model. If the
local surrogate model would not cut off the thermal plume due to its domain
size, but would be large enough to capture the entire thermal plume, it would be
possible to stitch these local predictions together as already done. However, the
PINN would avoid the problem of having to “generate” this thermal plume and
would be able to find a better and more realistic solution in the same time. In
addition, different sampling methods for PINN training could be developed and
tested. Another idea is to use a different network architecture. Baggenstos and
Salimova [2021] showed that so-called residual neural networks are able to solve
(Kolmogorov) PDEs. Cheng and Zhang [2021] obtained improved prediction
results with a residual neural network compared to a classical neural network
solving the Burger’s and the Navier-Stokes equations.
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In recent years, groundwater heat pumps (GWHPs) have become increasingly at-
tractive as an energy source for heating and cooling residential and non-residential
buildings, as interest in using sustainable forms of energy has grown. However,
with an increasing amount of GWHPs being planted, a conscious planning be-
comes more and more important to avoid negative interaction between GWHPs -
placement needs to be optimized by city planners [García-Gil et al. 2019]. To this
end, models with short inference times for the optimization procedure need to be
developed to simulate the effect of one or multiple GWHPs on the temperature
of the groundwater, depending on the underlying flow conditions. One solution
to this problem is using surrogate models, which can be created with the aid of
deep learning techniques.
For this purpose, Leiteritz et al. [2022] developed a local surrogate model on

the basis of a convolutional neural network (CNN) that predicts the groundwater
temperature depending on the flow conditions for one single GWHP, i.e. a local
surrogate model for a fixed domain size. The goal of this work was to build a
framework around the already existing developed local surrogate model to enable
the prediction of the groundwater temperature on a large scale, including multiple
GWHPs on a variable domain size, i.e. a global model. This framework should
provide a physically sound prediction as physical laws have been neglected in the
development of the local surrogate model.
The core idea of the framework is that it receives a domain of a certain size

with the underlying positions of the GWHPs and the flow conditions as input,
identifies the locations of the GWHPs, crops a local domain (of size determined
by the local surrogate model) around them, runs the local surrogate model on the
cropped domains and stitches the results back together to obtain a global initial
prediction. As this global prediction might show (unphysical) discontinuities
at the seams and physical laws have been neglected in the development of the
local surrogate model, a correction of the global initial solution is performed in
a second step. To this end, a physics-informed neural network (PINN) [Raissi
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et al. 2019] is employed, which approximates physical processes by penalizing
the approximated solution to a given PDE, if it does not obey certain physical
laws. The PINN in this case uses the stitched together solution as a global initial
solution to find a physically sound global solution to the PDE describing the
groundwater temperature, thus providing a more accurate prediction.
To assess the quality of the framework, different domain sizes of 200m× 200m

and 500m× 500m with varying numbers of GWHPs were investigated. In a first
step, three different stitching techniques were analyzed, since it must be decided
how to proceed when local domains overlap and thus, multiple predictions are
available for the same location - taking the maximum, the mean value or choosing
one depending on the flow direction of the groundwater. Results have shown that
regardless of the domain size and the amount of GWHPs, using the maximum
approach produced the best results in terms of the relative error compared to a
PFLOTRAN simulation taken as ground truth.
In a second step, the results of the PINN were investigated, including differ-

ent methods for drawing sampling points for the evaluation of the physical loss,
starting from the pre-described different global initial solutions (maximum, mean
or flow direction approach). The evaluation has shown that the PINN manages
to correct or improve the strength of the developed thermal plumes. However,
problems arise in correcting the shape of a thermal plume when it is not correctly
predicted by the local surrogate model. Similarly problematic is the truncation of
thermal plumes due to the small domain size of the local prediction. The PINN
does not manage to predict the actual length of the thermal plumes or rather
correct thermal plumes that are too short.
The computation of the first part, the construction of a global initial solution, is

carried out in quasi-real time. The correction part, however, not, but the analysis
has shown, that a reduction of the number of epochs should be possible without
loss of quality. Thus, the inference time can be further decreased.

In subsequent studies different opportunities should be explored to improve the
performance of the framework. Further hyper-parameter optimization could im-
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prove the quality of the prediction, such as optimizing the learning rate, amount
of layers and neurons. It might also be helpful to adjust the number of sampling
points for the different losses, or to test a completely different sampling method.
A reduction of the number of epochs needed for satisfactory quality, which in
turn reduces the computational time, could be also conceivable. However, this
might also be achieved by improving the local surrogate model or by investigat-
ing different architectures for the PINN, e.g. the architecture of residual neural
networks, as a proof of concept was given, or improved results were achieved in
similar tasks [e.g. Cheng and Zhang 2021, Baggenstos and Salimova 2021].
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Appendices

A Training Details of Local Surrogate Model
The surrogate model was trained for 60,000 epochs using an ADAM optimizer
[Kingma and Ba 2014] with default values, only specifying a fixed learning rate
α = 4 · 10−4. As a loss function an MSE function was applied. The structure of
the model led to a total of 480,000 trainable parameters. For implementing the
model, PyTorch [Paszke et al. 2019] and for training, an NVIDIA GeForce RTX
3080 GPU was used.

B Assembling Local Predictions Depending on
Flow Direction

Using the flow direction, when stitching the global initial temperature prediction
together needs some further calculations than just taking the maximum or mean.
Consider a cell with coordinates x = (x1, x2)T, where multiple temperature

predictions from local surrogate model runs are available. The corresponding
Darcy velocity vector for these coordinates is denoted by q(x) =

(
q(x1), q(x2)

)T
.

The coordinates of each GWHP i from which the corresponding surrogate model
predicted a temperature for the cell x are denoted by h(i) = (h(i)

1 , h
(i)
2 )T.

The vector from the cell x to each GWHP i, denoted by d(i) is calculated as

d(i) = h(i) − x. (B.1)

If the GWHP i from the point of view of the cell x is upstream, the scalar product
between d(i) and q(x) is smaller than zero. This means that the prediction of the
surrogate model of GWHP i is used, if the scalar product 〈d(i) , q(x)〉 < 0. If
there is more than one GWHP with a negative scalar product, the GWHP is
chosen which is closest to the cell x, i.e. argmin

i
||d(i)||. If the scalar product is

non-negative for all GWHPs, the prediction of the surrogate model of GWHP i
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is chosen, where i is closest to the cell x, i.e. again argmin
i
||d(i)||. The three cases

are visualized in Fig. B.1.

x

q(x)

⟨d (i), x⟩ < 0

⟨d (i), x⟩ > 0

i=1 i=2

d(1) d(2) x

q(x)

⟨d (i), x⟩ < 0

⟨d(i), x⟩ > 0

i=1 i=2

d(1) d(2)

i=3
d(3)

x

q(x)

⟨d (i), x⟩ < 0
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i=2

d(1)

d(2)

Figure B.1: Visualization of which GWHP to choose (red) depending on the
GWHP locations i relative to cell x.

C Training Details of PINN
The PINN was trained using an ADAM optimizer [Kingma and Ba 2014] with
default values, only specifying a fixed learning rate α = 10−3. The structure of
the model led to a total of 1,761 trainable parameters. For implementing the
model, PyTorch [Paszke et al. 2019] and for training, an NVIDIA GeForce RTX
3080 GPU was used.
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