
Institute for Parallel and Distributed Systems - Scientific Computing
University of Stuttgart
Universitätsstraße 38

D-70569 Stuttgart

Bachelor Thesis

Parameter-dependent
self-learning optimization

Tareq Abu El Komboz

Course of Study: Informatik

Examiner: Prof. Dr. rer. nat. Dirk Pflüger

Supervisor: Peter Domanski, M.Sc.

Commenced: April 5, 2022

Completed: November 2, 2022

Abstract

Manually developing optimization algorithms is a time-consuming task requiring expert knowledge.
Therefore, it makes a lot of sense to automate the design process of such algorithms. Additionally,
learned optimization algorithms reduce the number of a priori assumptions made about the
characteristics of the underlying objective function. Numerous works discuss possibilities for
learning optimization algorithms. This field of study is called learn-to-optimize. In this bachelor’s
thesis, we concentrate on the reinforcement learning perspective. Consequently, optimization
algorithms are represented as policies. The comparison of learned algorithms to current state-of-
the-art algorithms for particular applications reveals that learned algorithms manage to perform
better concerning convergence speed and final objective function value. However, most existing
approaches only consider fixed sets of parameters to be optimized. Because of this, it is challenging
to adapt the learned optimization algorithm to other objective functions. More importantly, it is
impossible to optimize when explicit constraints on so-called “free” optimization parameters are
given. We investigated the learn-to-optimize approach under various optimization parameter sets
and conditions on “free” parameters to solve this problem. Furthermore, we studied the performance
of learned optimizers in high-dimensional setups.

3

Contents

1 Introduction 9
1.1 Research Contributions . 10
1.2 Outline . 10

2 Related Work 11

3 Fundamentals 13
3.1 Optimization . 13
3.2 Artificial Intelligence . 14
3.3 Neural Network . 16

4 Methodology 19
4.1 Problem Formulation . 19
4.2 Study Design . 21
4.3 Limitations . 31

5 Experiments & Discussion 33
5.1 Two Input Dimensions . 34
5.2 Higher Input Dimensions . 37
5.3 One Free Parameter . 40
5.4 D-1 Free Parameters . 43
5.5 Long Training . 46
5.6 REINFORCE and Proximal Policy Optimization 49
5.7 Neural Networks and Recurrent Neural Networks 49
5.8 Runtime . 52

6 Future Work 53
6.1 Further Experiments . 53
6.2 Modifications . 53

7 Conclusion 55

Bibliography 57

A Gradients of Objective Functions 61

B Complete Experimental Results 65

5

List of Figures

3.1 Reinforcement learning loop containing agent (left) and environment (right) interacting 15
3.2 Example of an NN with four input nodes, two hidden layers of different sizes, and

one output node . 16
3.3 From left to right: Compressed and unfolded versions of a simple RNN 17
3.4 Body of the internal structure of an LSTM architecture including input-, output-

and forget-gate . 18

4.1 Overview of our program structure . 21
4.2 Graphical illustration of the eight objective functions for two input parameters . . 25

5.1 2D performance and MSE with one free parameter on the eight objective functions 34
5.2 4D and 10D parameter-dependent performance on Ackley, Rastrigin, Sphere and

Styblinski-Tang . 38
5.3 4D and 10D parameter-dependent MSE on Ackley, Rastrigin, Sphere and Styblinski-

Tang . 39
5.4 One free parameter performance for input dimensions 2-10 on the eight objective

functions . 41
5.5 One free parameter MSE for input dimensions 2-10 on the eight objective functions 42
5.6 D-1 free parameters performance for input dimensions 2-10 on the eight objective

functions . 44
5.7 D-1 free parameters MSE for input dimensions 2-10 on the eight objective functions 45
5.8 Long training performance and MSE on the 4D Rastrigin function with one free

parameter . 46
5.9 REINFORCE and PPO performance on the eight objective functions in 2D 47
5.10 REINFORCE and PPO MSE on the eight objective functions in 2D 48
5.11 NN and RNN performance on Ackley, Griewank and Rastrigin in 10D with one

and nine free parameters . 50
5.12 NN and RNN MSE on Ackley, Griewank and Rastrigin in 10D with one and nine

free parameters . 51

B.1 Parameter-dependent performance for all input dimensions on the eight objective
functions . 69

B.2 Parameter-dependent MSE for all input dimensions on the eight objective functions 73

7

1 Introduction

Optimization problems find application in every essential scientific domain. [EKKP18] is a collection
of selected papers highlighting different fields in which solving optimization problems play an
important role including disciplines like data analysis, game theory, and economic applications.
Therefore, the importance of solving optimization problems is undeniable.

The goal of solving an optimization problem is to compute the optimal parameter combinations for a
possibly complex system such that a given cost function is optimized. In our work, the cost function
is given by an analytically known objective function which we aim to minimize or maximize
respectively. In real-world applications, the algebraic representation of the objective function is
usually unknown. Thus, one can only evaluate the objective function for specific inputs to get the
corresponding function value. Usually, this type of optimization is called black-box optimization
because the objective function is not given and therefore is a black-box itself. Under these
circumstances, the classical optimization approaches, e.g. using first- or higher-order derivatives to
solve the optimization task are very expensive or even unfeasible.

Another method for solving black-box optimization problems without using derivatives is random
search. One chooses a large set of random input parameter combinations 𝑥 and calls the function 𝑓

with those inputs to get the corresponding set of outputs. Thereafter, one would iterate over the
set of outputs and pick the largest or smallest among these values. Typically, one must assume
that evaluating a black-box function might be very costly and time intensive due to its unknown
nature. According to this, random search is computationally very complex and especially in
higher-dimensional setups, it is not feasible due to the curse of dimensionality. There are many more
zero-order optimization algorithms like random search that do not rely on derivatives, however,
these algorithms are not always well suited for specific tasks they were not designed for. This makes
it necessary to pick a more sophisticated search approach. The manual development of sophisticated
optimization algorithms is a challenging and tedious process.

This makes the learning-to-optimize approach appealing because it allows us to automatically learn
a task-specific optimization strategy that can handle higher-dimensional setups. For example, the
authors of the papers [LM16], [SC16] and [ADG+16] automate the development of an optimization
algorithm by using reinforcement learning. In this matter, they describe an optimization problem as
a Markov decision process and the learned optimization algorithm is represented by a policy. We
use a similar approach in our work.

To avoid ambiguity we will refer to the resulting learned optimization algorithm as the “learned
algorithm” or “policy”. We will refer to the reinforcement learning algorithm that learns a policy as
the “learner” or “(reinforcement) learning algorithm”.

The scientific works [LM16], [SC16] and [ADG+16] show that learned algorithms can outperform
hand-crafted optimization algorithms in terms of convergence speed and final objective function
value.

9

1 Introduction

However, state-of-the-art optimization algorithms have limitations concerning constraints on
input parameters. With current optimization algorithms, we would have to perform the entire
reinforcement learning process again for every possible constraint combination on input parameters.
This is infeasible, because of the enormous memory and time consumption this would imply (see
[DPRL21]).

In this work, we explore the possibility of introducing additional constraints on a specific set of input
parameters we call “free parameters”. The constraints define possible values of “free parameters”.
We refer to all other inputs without constraints as “optimization parameters”. Essentially, we want
to learn the function that maps possible values of “free parameters” to the corresponding optimal
input which in turn maximizes or minimizes the objective function with respect to the values of our
“free parameters”. Moreover, we analyze the scalability to high-dimensional setups to explore the
limitations of such approaches.

We give an explanation for the concept of “free” parameters with a real-world example in post-silicon
validation:
Suppose a semiconductor has three operating modes. We might be interested in the optimal
operating mode, given a specific temperature in a room. Here, the parameter representing the
temperature is part of the set of “free parameters” and the parameter representing the operating
mode is part of the “optimization parameters”. Running our reinforcement learning algorithm
results in outputting an optimization algorithm telling us which of the three operating modes is
optimal for a given temperature. If we take this semiconductor to another room with a different
temperature we would not want to be forced to run our reinforcement learning algorithm again
but rather that our learned optimization algorithm optimizes the operation mode depending on the
temperature.

1.1 Research Contributions

We implemented a reinforcement learning approach to learn optimization algorithms for black-box
objective functions. Further, we implemented evaluation metrics and visualization methods to
analyze the performance of our policies. Additionally, we selected and implemented common
objective functions for testing optimization algorithms and their gradients. For our purpose, only
objective functions which are scalable in dimension are suitable. We evaluated and compared the
performance of our learned algorithms with different sets of optimization and free parameters.
Subsequently, we analyzed the behavior of our learned algorithms in a high-dimensional setup.

1.2 Outline

In the following Chapter 2, we present related work that has been conducted on the topic of
learn-to-optimize and data-driven algorithm design. Chapter 3 builds the foundation for this work
and introduces important concepts, terms, and technologies. We specify our problem formulation,
present our study design and include implementation details in Chapter 4. In Chapter 5 we describe
the experiments we conducted including the results we obtained. Further, we interpret and discuss
them in this chapter. Afterward, we point out the limitations of this work and propose suggestions for
improvement and follow-up work in Chapter 6. This thesis ends with the conclusion in Chapter 7.

10

2 Related Work

The key idea of related research areas is to formulate the design of an optimization algorithm as a
learning problem. Most commonly, reinforcement learning is used in the learning process. There are
three main goals of this data-driven approach called learn-to-optimize. The first goal is to improve
the performance of existing hand-crafted optimization algorithms like Adagrad [DHS11] and its
variations Adadelta [Zei12], Adam [KB14] and Nadam [Doz16]. Second, learn-to-optimize makes
it possible to adapt existing algorithms to specific optimization problems. Finally, learn-to-optimize
automatizes the design of optimization algorithms so that no human expertise on the topic of
optimization algorithms is needed to develop an optimization algorithm.

In the article [LM16], Li and Malik introduced the framework for describing the design of algorithms
as a learning task. The authors claim that no one before tried to automatically learn algorithms that
outperform existing optimization algorithms. In their work, they outline that every optimization
algorithm follows a similar structure. The crucial part differentiating two optimization algorithms
is the update formula which is used to determine the next parameter values in the domain to explore.
They model this update formula using a neural network (NN) as powerful function approximators
that work well in high-dimensional settings. NNs are parameterized models that can describe
arbitrary (non-linear) functions. Learning the update formula is done by adjusting the weights
of the neural network using reinforcement learning algorithms such as guided policy search. A
desirable or good optimizer converges as fast as possible and as accurately as possible to the
desired minimum or maximum. They use the sum of all obtained objective function values as
feedback to reward good optimizers and penalize bad ones. The higher this metric, the better the
performance of the optimizer, assuming the task is a maximization task. They demonstrate that
their resulting algorithm outperforms existing hand-developed algorithms for several classes of both
convex and non-convex objective functions when it comes to convergence speed and final objective
function value. Furthermore, Li and Malik state that learned algorithms are generally preferable to
hand-developed optimization algorithms since learned algorithms make no assumptions about the
underlying objective function beforehand. Moreover, automatically learned optimization algorithms
do not require hyperparameter-tuning after training.

In the paper [ADG+16] Andrychowicz et al. cast the design of optimization algorithms as a learning
problem following the approach in the article [LM16]. Long short-term memory neural nets
(LSTMs) are a special form of recurrent neural networks (RNNs). They were first introduced in the
scientific work [HS97]. The idea of LSTMs is to add the dimension of time and memory structure
to an RNN. The authors decided to implement the learned algorithms using LSTMs and found that
the resulting learned algorithms achieve better results than generic hand-developed alternatives.
They show performance improvements for the objective function on which the learned algorithms
were trained, but also for other objective functions which have similar structures to the original
objective function.

11

2 Related Work

In the study [SC16] the authors apply the learning-to-learn approach on optimizing black-box
functions. The field learning-to-learn can be seen as a special case of learning-to-optimize. One
speaks of learning-to-learn when learning-to-optimize is used on objective functions that describe
loss functions of other learning algorithms. The authors compare the learned optimization algorithms
to Bayesian optimization (BO) and focus on the duration of computation, the ability to generalize to
longer horizons, and the trade-off between exploration and exploitation. In addition to LSTMs, they
also utilize another type of RNN in their implementation, namely differentiable neural computers
(DNCs). These networks were first introduced by Graves et al. in the scientific work [GWR+16].
Their results show that up until a certain training horizon the resulting algorithms perform at least
as good as Spearmint, a commonly used BO package. Furthermore, they demonstrate that RNNs
are capable of producing results faster than BO. However, they point out that learned optimization
algorithms have disadvantages as well. In particular, they mention that learned optimizers do not
perform as well as BO when evaluating for training horizons that are longer compared to the training
horizon used at training time. The training horizon refers to the number of steps in one episode.
The same issue was covered by Duan et al. in the work [DSC+16].

In the paper [DPRL21], Domanski, Pflüger, Rivoir, and Latty managed to efficiently and robustly
solve complex tuning tasks in post-silicon validation using learn-to-optimize. In their last chapter,
the authors mention a difficulty they encountered while conducting their work. They noticed that it
becomes infeasible with state-of-the-art optimization algorithms to optimize parameters of functions
that depend on known conditions. We mentioned an example in 1 to illustrate what such a function
could look like. Hand-crafted algorithms are very slow and lead to unreasonably high runtime and
large memory consumption in many cases. The reason for this is the need to re-run the optimization
algorithm for every possible combination of values for the conditions. They motivate that it would
be of interest to tackle this difficulty.

This bachelor thesis aims to investigate and solve this issue. Another focus of this work is the
scalability of the proposed approach to higher dimensional settings and an increasing number of
conditions.

12

3 Fundamentals

This chapter builds the foundation of this work and introduces important concepts, terms, and
technologies.

3.1 Optimization

Mathematical optimization and solving optimization problems involves methodically selecting
arguments with the most preferable values out of a specified domain. This general notion takes a
wide range of diverse input domains and objective functions into account. In our setting, we aim to
minimize an objective function.

The optimal input 𝑥∗ is the argument 𝑥 out of a domain 𝑋 which minimizes a function 𝑓 .

(3.1) 𝑥∗ = arg min
𝑥∈𝑋

𝑓 (𝑥) = {𝑥 ∈ 𝑋 | 𝑓 (𝑥) = min
𝑥′∈𝑋

𝑓 (𝑥 ′)}

Scientists mainly use three approaches to solving optimization problems. First, they can employ
heuristics, which offer approximations for the solution. Second, there are algorithms which finish
after a certain amount of steps. Third, iterative approaches that converge to a solution are able
to approach closer to the optimal solution with more iteration steps. In this work, we will use
reinforcement learning (an iterative approach) to solve optimization problems.

3.1.1 Black-Box Optimization

A black-box is a model that only reveals its in- and outputs. Black-boxes find application in many
scientific fields including optimization. The inner structure of the black-box is not transparent
(metaphorically black). Black-box functions 𝑓b describe objective functions that are analytically not
known to the entity interacting with 𝑓b.

Black-box optimization is a special case of optimization problems. This field of study deals with
optimizing black-box functions. Standard approaches for black-box optimization include feeding
the black-box with inputs and observing its outputs. The observed behavior is used in order to
assess the inner functionality of the black-box.

13

3 Fundamentals

3.2 Artificial Intelligence

Artificial intelligence (AI) tries to mimic the natural intelligence of living beings with the help of
machines. [Lug05] AI research mainly focuses on studying intelligent agents. Intelligent agents
are systems which understand their surroundings and act in a way that maximizes the chances of
succeeding in their goals.

3.2.1 Machine Learning

Machine learning (ML) is a core part of AI. [MBD+90] ML is an area of research focused on
comprehending and developing “learning” processes which use data to enhance performance on
a given task. Programs which use ML can do tasks without having them explicitly coded. For
easy tasks, it is feasible to build algorithms which instruct the device how to carry out all the steps
necessary to address the issue at hand. No learning is required on the side of the computer. However,
it might be difficult for humans to develop algorithms for increasingly complex tasks manually. In
reality, it may be more beneficial to assist the computer in creating its own algorithm than to have
human programmers define each necessary step.

The ability of learners to draw generalizations from their experience is a key goal in ML. In this
application, generalization refers to a learning machine’s capacity to perform well on tasks which
the learning algorithm has never seen before. In order for learners to make sufficiently precise
predictions in novel situations, they have to develop a generic model of the space of possible
problem instances.

The premise behind learning algorithms is that approaches, methods, and conclusions which have
proven successful previously are likely to do so again in the future.

The discipline of ML benefits from the tools, theory, and application fields which come from the
field of mathematical optimization. Many learning tasks are expressed as the minimizing of a
particular loss function. The loss function describes the gap between the actual circumstances and
the model’s predictions.

Reinforcement Learning

Reinforcement learning (RL) is a subfield of ML. [SB18] In RL, one assumes that there is an agent
which is located in an environment. At each step, the agent performs an action and receives a state
and a reward from the environment. An observation is the part of the state that can be observed by
the agent. The agent chooses the action with the help of a so-called policy. The goal is that the
agent learns a promising policy through this process. Figure 3.1 shows a visual representation of
this interaction loop. In each so-called episode, the agent’s initial state is drawn randomly from a
distribution. The interaction cycle continues until the environment reaches a final state. Then the
next episode begins. The reached cumulative reward per episode of an agent is called return. The
goal of an RL algorithm is to maximize the return over all time steps as the agent interacts with the
environment.

A reinforcement learning problem is typically formally represented as an Markov decision process
(MDP).

14

3.2 Artificial Intelligence

Figure 3.1: Reinforcement learning loop containing agent (left) and environment (right) interacting

Markov Decision Process

Markov Decision Processes (MDPs) offer a foundation for modeling situations where decisions
have to be made in circumstances where the results are partially determined by chance and partially
controlled by the entity making the decisions. In the case of RL, the agent is the entity making
decisions. They find application in the research of optimization problems. MDPs were already
known before 1960. [Bel57]

We consider a finite-horizon MDP with continuous state and action spaces defined by the tuple
(𝑆, 𝐴, 𝑝0, 𝑝, 𝑐, 𝛾), where

• 𝑆 is the set of states,

• 𝐴 is the set of actions,

• 𝑝0 : 𝑆 → 𝑅+ is the probability density over initial states,

• 𝑝 : 𝑆 × 𝐴 × 𝑆 → 𝑅+ is the transition probability density, that is, the conditional probability
density over successor states given the current state and action,

• 𝑐 : 𝑆 → 𝑅 is a function that maps state to cost and

• 𝛾 ∈ (0, 1] is the discount factor

The objective is to learn a stochastic policy 𝜋∗ : 𝑆 × 𝐴 → 𝑅+, which is a conditional probability
density over actions given the current state, such that the expected cumulative cost is minimized

First-order methods use a 𝜋 that depends only on the gradient of the objective function, whereas
second-order methods use a 𝜋 that depends on both the gradient and the Hessian of the objective
function.

The MDP is always in a certain state 𝑠. Each state defines which actions the agent may choose.
After choosing an action 𝑎, the MDP enters a new state 𝑠′, according to 𝑎, and the agent receives a
reward 𝑅𝑎 (𝑠, 𝑠′) corresponding to 𝑠′.

15

3 Fundamentals

The selected action 𝑎 has an impact on the likelihood that the MDP enters a certain state 𝑠′. It is
provided by a state transition function 𝑃𝑎 (𝑠, 𝑠′). The action choice of the agent 𝑎 and the present
state 𝑠 determine the subsequent state 𝑠′. State transitions of MDPs are independent of prior actions
and states. Only 𝑎 and 𝑠 are relevant for determining 𝑠′. This is called the Markov property.
[OW12]

3.3 Neural Network

An artificial neural network (NN) is a model built on a set of interconnected nodes called “artificial
neurons” which imitate neurons in a human brain. [Pic94] However, there is one big difference
between NNs and human brains. The number of nerons and their connections are static in NNs.
Human brains have more dynamic structures. NNs form directed, weighted graphs as can be seen
in Figure 3.2.

Figure 3.2: Example of an NN with four input nodes, two hidden layers of different sizes, and one
output node

A NN consists of multiple connected neurons. Similar to the synapses in human brains, each
connection allows information to travel between neurons. This information is called “signal” and
it is a continuous real number. After processing a signal, an artificial neuron can signal other
artificial neurons which are linked to it. We call the connections between artificial neurons “edges”.
Edges contain weights that change as learning progresses. Weights are multiplicative factors which
increase or decrease a connection’s signal intensity. A neuron 𝑁 receives weighted input from other
neurons and can transform it in a non-linear manner. The weights are adjusted gradually by an
algorithm operating on training data. This is the process often referred to as “learning”. Normally,
artificial neurons are grouped into layers. Distinct layers may modify their inputs in a variety of
ways. Signals go through the layers, perhaps more than once, from the input layer to the output

16

3.3 Neural Network

layer. NNs can model almost any arbitrary continuous function and recognize patterns in the data it
is working on. Typically, NNs “learn” to execute tasks by operating on examples, without having
any rules, specific to a task, written into them.

3.3.1 Recurrent Neural Network

Recurrent Neural Networks are a special type of NNs. The output from a certain node 𝑁 can
influence the future input of the same node 𝑁 in RNNs. It is possible that a set of edges builds a
cycle. RNNs have the capacity to handle inputs of varying lengths by using the internal memory.
Figure 3.3 shows an illustration of a compressed RNN and its unfolding.

RNNs can be extended via further stored states. These stored states, which are directly governed by
the RNN, are called gated states. They are one component of long short-term memory networks
(LSTMs). The signal will pass through a layer of a recurrent neural network (RNN) multiple
times. When RNNs are trained by a method using gradients (like gradient descent), long-term
back-propagated gradients can go to zero or diverge to infinity. This is called the vanishing gradient
problem. [PMB13] Most of the time, using long short-term memories prevents this problem.

Figure 3.3: From left to right: Compressed and unfolded versions of a simple RNN

Long Short-Term Memory

Long short-term memory is an extension of RNNs used in deep learning and AI. LSTM features
so-called “feedback connections” as opposed to typical feedforward NNs. RNNs including LSTMs
may analyze complete data sequences in addition to individual data points.

RNNs in their standard version have “short-term memory” as well as “long-term memory”. Similar
to how synaptic adjustments in the body preserve long-term memory, the network’s weights change
once throughout each training episode. “Long short-term memory” refers to the short-term memory
that LSTMs seek to add to RNNs which can endure several hundred time steps.

The main components of LSTMs are the cell, as well as an input-, an output- and a forget gate. This
can be seen in Figure 3.4. The gates control how information enters and leaves the cell, and the cell
is responsible for remembering values for an indefinite time.

17

3 Fundamentals

Figure 3.4: Body of the internal structure of an LSTM architecture including input-, output- and
forget-gate

The purpose of LSTMs is to solve the vanishing gradient problem which might arise when training
conventional RNNs. Theoretically, conventional RNNs are able to keep track of input dependencies
that can be arbitrarily long. There is one issue with traditional RNNs in practice. While training
a traditional RNN via back-propagation, gradients that are back-propagated have the potential to
converge to zero (“vanish”) or diverge to infinity (“explode”) in the long-term. This happens
because computations operate on numbers with finite precision. Due to the ability of LSTMs
to propagate gradients without changing them, RNNs utilizing LSTMs can mostly overcome the
vanishing gradient problem. Errors may instead go backward over a limitless number of “layers”
that are unfolded in space. [HS96] [GSC00]

18

4 Methodology

In this chapter, we specify our problem formulation and present our study design. We define the
objective functions we chose and explain the high-level structure of our implementation as well as
some details. After, we will introduce the external libraries we utilized. Lastly, we highlight some
methodological limitations of this work and how we addressed them.

4.1 Problem Formulation

In this section, we elaborate on how we cast an optimization problem as a reinforcement learning
problem. The pseudocode for an optimization algorithm is displayed in Algorithm 4.1. Our learned
optimization algorithms start by picking a random point 𝑥0 out of the domain. This point has to
fulfill the set of constraints 𝐶. After, the point is updated iteratively using the update function
𝜋 until either some stopping condition is met or the end of the for loop is reached. The point
that was chosen last is outputted. The update formula 𝜋 is modeled by the policy of the agent in
reinforcement learning.

Algorithm 4.1 Optimization Algorithm Pseudocode
Input: Number of iterations, domain, input dimension, objective function, set of constraints on
´´free” parameters
Output: Minimum of the objective function

1: 𝑁episode := number of iterations
2: 𝑑 := input dimension
3: 𝐷 := domain
4: 𝐶 := set of constraints on ´´free” parameters
5: 𝑓 := objective function
6: 𝑥0 := random value from D respecting C
7: for i in 1, . . . , 𝑁episode do
8: if stopping condition is true then
9: return 𝑥𝑖−1

10: end if
11: 𝑥𝑖 := 𝜋(𝐶, 𝑓 , {𝑥0, . . . , 𝑥𝑖−1})
12: end for
end

We introduce the term “slice-possibilities” as we will need this thought later. We are interested in
objective functions that have “free” parameters as input. “Free” parameters are input parameters
that are fixed through constraints. For example, suppose we want to optimize the two-dimensional
Sphere function 𝑓 (𝑥1, 𝑥2) = 𝑥2

1 + 𝑥2
2 and 𝑥1 is a ´´free” parameter. Let 𝑎 ≠ 𝑏 be two random

19

4 Methodology

but known values. For the constraint 𝑥1 = 𝑎 we would then have to optimize the function
𝑓 (𝑥1, 𝑥2) = 𝑓 (𝑎, 𝑥2) = 𝑎2 + 𝑥2

2 =: 𝑔(𝑥2). This resulting function 𝑔 has only one optimization
parameter left. The plane 𝑝 that satisfies the constraint 𝑥1 = 𝑎 and is parallel to the 𝑓 (𝑥1, 𝑥2) − 𝑥2-
plane includes all points that are possible when respecting the constraint. The function 𝑔 also
occurs when we would intersect the original objective function 𝑓 with the plane 𝑝. The result of
this intersection would be a “slice” of the original objective function. Therefore, one can think of a
specific constraint on a “free” parameter as specifying a slice of the objective function. A different
constraint (for example 𝑥1 = 𝑏) would result in a different “slice”. The number of “slice-possibilities”
refers to the number of possible “slices”. If in the same example the constraint would be 𝑥1 ∈ {𝑎, 𝑏},
there would be two “slice-possibilities”. This example is extendable to multiple input dimensions
and multiple “free” parameters. It is worth mentioning that the number of “slice-possibilities” grows
rapidly for higher numbers of “free” parameters due to the resulting combinatorial possibilities. In
the case of input dimension ten with nine “free” parameters, where every “free” parameter has 20
possible values, there would be 209 “slice-possibilities”.

Any kind of learning involves practicing with a limited number of instances out of a larger set
of examples. After the training is done, the learned algorithm tries to apply what has been
learned to unseen instances. In our setting, the large set contains all potential “slice-possibilities”.
During training, we pick random instances out of this set. For evaluation, we pick values out
of a grid. Different instances of “slice-possibilities” correspond to different constraints on our
“free” parameters. Hence, our learned optimization algorithms can optimize various possible
combinations of constraints on “free” parameters. We refer to this as the ability of learned
algorithms to generalize.

We use different methods to select “slice-possibilities” at training-time and evaluation-time because
otherwise the learned optimizers would memorize the minima for the selected “slice-possibility”
once found. Such an optimization algorithm achieves to output the minimum in a single step for
every potential selection. Selecting multiple combinations out of all “slice-possibilities” would
not prevent this. In this case, the learned optimization algorithm would be able to tell which
“slice-possibility” was chosen after an episode-steps and output the memorized minimum directly
after. This behavior is not desirable because of the following reason. It is more time-consuming to
learn optimization algorithms than it is to run a conventional optimizer for a given “slice-possibility”
due to the fact that memorizing minima entails locating them beforehand. Consequently, the learned
optimization algorithm needs the ability to generalize on unseen “slice-possibilities” which are
distinct from ones encountered in the training procedure. Learned optimization algorithms have a
big advantage over non-learned optimization algorithms due to generalization. [Li17]

Our approach is intended for black-box optimization as described in Section 3.1. However, we
exclusively considered analytically known objective functions. This gives us the ability to verify the
approach more easily, especially with respect to scalability in higher dimensional settings.

20

4.2 Study Design

4.2 Study Design

We define all relevant aspects, terms and concepts including the objective functions we used, the
components of our program structure, and external libraries we utilized in our experiments in this
section. Our code is written in the programming language Python and we are using version 3.8.

4.2.1 Program Structure

The high-level program structure of our program is illustrated in Figure 4.1. First, we set all

Figure 4.1: Overview of our program structure

mandatory hyperparameters. Then we initialize the environment, the agent, and a replay buffer,
i.e. all components that are necessary for the subsequent training. After that, the actual training
is executed. In the final step, we visualize the results. In the following, we will discuss the
hyperparameters, the environment, the agent, the training, and the evaluation in greater detail.

4.2.2 Hyperparameters

Hyperparameters are parameters that control and steer the learning process of an optimization
algorithm. They are already fixed before the training begins and do not change during training
as opposed to parameters like the weights of the neural network. In addition, hyperparameters
have no impact on the performance of the resulting optimization algorithm. They exclusively
influence properties of the learning process such as the speed or quality of learning an optimization
algorithm.

Listed in Table 4.1 are the most relevant parameters and hyperparameters and their default values.
All listed parameters and hyperparameters have to be natural numbers and the number of “free”
parameters 𝑁free cannot exceed the input dimension 𝑑.

21

4 Methodology

Parameters and Hyperparameters
Name Symbol Domain

Training iterations 𝑁iteration 10000
Input dimensions 𝑑 2

Number “free” parameters 𝑁free 1
Episode length 𝑁episode 50

Observation horizon 𝑁observation 1
Batch size 𝑁batch 512

Table 4.1: The most important parameters and hyperparameters alongside their abbreviation symbol
and their domain

4.2.3 Objective Functions

In this subsection, we list all of the objective functions we used to train our optimization algorithm in
alphabetic order. All of these are common and well-known functions that are often used for testing
optimization algorithms. For functions that are configurable via parameters, we used recommended
standard values found in the literature. [MS05] For every objective function, we further provide the
associated gradient in Appendix A.

Ackley Function

The Ackley function is almost flat in its outer region and its global minimum lies in a large central
hole. The outer region contains multiple evenly distributed local minima, in which optimization
algorithms might get trapped in. We used 𝑎 = 20, 𝑏 = 0.2 and 𝑐 = 2𝜋

(4.1) 𝑓 (𝑥) = −𝑎 · exp

(
−𝑏 ·

√√√
1
𝑑
·

𝑑∑︁
𝑖=1

𝑥2
𝑖

)
− exp

(
1
𝑑
·

𝑑∑︁
𝑖=1

cos (𝑐 · 𝑥𝑖)
)
+ 𝑎 + exp(1)

Griewank Function

The Griewank function owns a lot of local minima, spread over the entire domain. The surface area
of the Griewank function has a very fine texture.

(4.2) 𝑓 (𝑥) =
𝑑∑︁
𝑖=1

𝑥2
𝑖

4000
−

𝑑∏
𝑖=1

cos
(
𝑥𝑖√
𝑖

)
+ 1

22

4.2 Study Design

Levy Function

The Levy function has the most complex gradient of our functions. Let ∀𝑖 ∈ {1, . . . , 𝑑} : 𝑤𝑖 =

1 + 𝑥𝑖−1
4 . Then the function and its gradient can be defined as:

(4.3) 𝑓 = sin2 (𝜋 · 𝑤1) +
𝑑−1∑︁
𝑖=1

(
(𝑤𝑖−1)2 ·

[
1+10 sin2 (𝜋 · 𝑤𝑖 + 1)

])
+ (𝑤𝑑−1)2 ·

[
1+sin2 (2𝜋 · 𝑤𝑑)

]
Rastrigin Function

The Rastrigin function owns multiple regularly distributed local minima.

(4.4) 𝑓 (𝑥) = 10 · 𝑑 +
𝑑∑︁
𝑖=1

[
𝑥2
𝑖 − 10 · cos (2𝜋 · 𝑥𝑖)

]
Rosenbrock Function

The Rosenbrock function is a member of the valley-shaped functions. It is also called Rosenbrock’s
valley or Rosenbrock’s banana function. The global minimum lies in a narrow, oblong, parabolic-
shaped valley. Optimization Algorithms tend to find this valley rather quickly, but struggle to find
the global minimum inside. [PWG13]

(4.5) 𝑓 (𝑥) =
𝑑−1∑︁
𝑖=1

[
100(𝑥𝑖+1 − 𝑥2

𝑖)2 + (𝑥𝑖 − 1)2
]

Sphere Function

The Sphere function is the simplest among our objective functions. This bowl-shaped function has
no minimum except for the one global minimum in the center of its domain. Moreover, this is the
only strictly convex function we used.

(4.6) 𝑓 (𝑥) =
𝑑∑︁
𝑖=1

𝑥2
𝑖

Styblinski-Tang Function

The Styblinski-Tang function has a unique curvy bowl shape.

(4.7) 𝑓 (𝑥) = 1
2
·

𝑑∑︁
𝑖=1

(𝑥4
𝑖 − 16𝑥2

𝑖 + 5𝑥𝑖)

23

4 Methodology

Zakharov Function

The Zakharov function is the only representative of plate-shaped functions in our collection. It has
no local minimum besides the global one.

(4.8) 𝑓 (𝑥) =
𝑑∑︁
𝑖=1

𝑥2
𝑖 +

(
1
2
·

𝑑∑︁
𝑖=1

𝑖𝑥𝑖

)2 (
1
2
·

𝑑∑︁
𝑖=1

𝑖𝑥𝑖

)4

Of the many available functions we could have chosen, we picked the ones we did for two main
reasons. First and most importantly, all of the shown objective functions are dimensionable, i.e.
they are easily adaptable to higher dimensions by incrementing the variable 𝑑. This is essential
because this gives us the ability to conduct experiments in high-dimensional setups to test the limits
to which our proposed approach yields acceptable results.

Second, we made sure that these particular objective functions have as little in common as possible
concerning similarities in their shapes and properties besides dimensionability. We did this to verify
that our proposed approach is well-suited for different kinds of objective functions.

We evaluated all objective functions on their typical search domain, which we summarized alongside
the global minimum and the corresponding x* in Table 4.2. For example, the Ackley function is
usually evaluated on the hypercube ∀𝑖 ∈ {1, . . . , 𝑑} : 𝑥𝑖 ∈ [−32, 32] and has its global minimum at
𝑓 (x*) = 0 with x* = (0, . . . , 0). We are not able to specify a universal codomain for the objective
functions as the codomain is dependent on the input dimension 𝑑.

In Figure 4.2 we provide a graphical illustration of the eight objective functions we used for two
input dimensions.

Objective functions
Function Search domain Global minimum 𝑓 (𝑥*) Corresponding input 𝑥*
Ackley −20 ≤ 𝑥𝑖 ≤ 20 0 (0, . . . , 0)

Griewank −600 ≤ 𝑥𝑖 ≤ 600 0 (0, . . . , 0)
Levy −10 ≤ 𝑥𝑖 ≤ 10 0 (1, . . . , 1)

Rastrigin −5 ≤ 𝑥𝑖 ≤ 5 0 (0, . . . , 0)
Rosenbrock −2 ≤ 𝑥𝑖 ≤ 2 0 (1, . . . , 1)

Sphere −5 ≤ 𝑥𝑖 ≤ 5 0 (0, . . . , 0)
Styblinski-Tang −5 ≤ 𝑥𝑖 ≤ 5 −39.2 · 𝑑 (−2.9, . . . ,−2.9)

Zakharov −5 ≤ 𝑥𝑖 ≤ 5 0 (0, . . . , 0)

Table 4.2: Used objective functions alongside their search domain, global minimum, and the
corresponding input

24

4.2 Study Design

Figure 4.2: Graphical illustration of the eight objective functions for two input parameters
25

4 Methodology

4.2.4 Environment

In this subsection, we discuss the main components of the reinforcement learning environment. We
define valid actions of the agent and the structure of the observations that the agent gets from the
environment. The two most significant methods characterizing an environment are the reset- and
the step-method.

Action

Actions are interpreted as input parameters for objective functions. In our setting, some of the
input parameters are “free” parameters that are fixed by constraints. The agent has to respect these
constraints when choosing an action. Therefore, we define an action 𝑎 to represent a 𝑁optimization-
dimensional vector in a continuous space, where 𝑁optimization = 𝑑 − 𝑁free. Thus, an action consists
of 𝑁optimization representing values for input parameters that are not “free”.

We specify valid values for an action by setting lower and upper boundaries for every component of an
action. All values in between are possible. Every objective function has a different domain on which
it is usually evaluated. Despite that, we choose a uniform action-space ∀𝑖 ∈ {1, . . . , 𝑁optimization} :
−1 ≤ 𝑎𝑖 ≤ 1. This way, we do not have to modify the action-space for every time we want to
observe a different objective function. Instead, when evaluating the objective function, it gets an
action 𝑎 as input and scales it to its native domain of the objective function internally.

Let us assume that the variables lower and upper are the boundaries for an objective function. We
map the value 𝑎𝑖 ∈ [−1, 1] to the interval [lower, upper] with the following formula:

(4.9) 𝑎𝑖new = (𝑎𝑖 − (−1)) · upper − lower
1 − (−1) + lower = (𝑎𝑖 + 1) · upper − lower

2
+ lower

As a result, the agent has the option to evaluate every point on a given slice of the objective function
at anytime.

Observation

In our setting, an observation is composed of 𝑁observation tuples, each consisting of a position in the
domain 𝑥 and the corresponding normalized reward 𝑟. A position in the input domain consists of
𝑑 values and can be split into two parts; the “free” parameters and the optimization parameters.
The first 𝑁free values are determined by the constraints on the “free” parameters. The remaining
𝑁optimization parameter values are determined by the chosen action of the agent. In total, one tuple
consists of 𝑁free + 𝑁optimization + 1 = 𝑑 + 1 values. The Observation that the agent receives from the
environment after step 𝑖 has the following form:

(4.10)
𝑂𝑖 =

{
(𝑥𝑖−𝑁observation+1, 𝑟𝑖−𝑁observation+1), . . . , (𝑥𝑖 , 𝑟𝑖)

}
∈ R(𝑑+1) ·𝑁observation , with

∀𝑖 < 𝑁observation : 𝑥𝑖−𝑁observation+1 = (0, . . . , 0) and 𝑟𝑖−𝑁observation+1 = 0.

Hence, the agent is constantly aware of its previous 𝑁observation domain positions and the correspond-
ing rewards.

26

4.2 Study Design

Reset-method

Before an environment is ready for usage, the reset-method must be called. The reset-method is
called to reset an environment into an initial state. In this initial state, no steps have been taken.
The agent starts at a random location on the objective function picked from a uniform distribution.
All obtained observations in previous episodes are deleted and an initial observation is built. This
method gets no inputs and returns an initial observation to the calling instance.

Step-method

The step-method is called to execute one action in an environment. This incorporates updating all
variables properly as well as returning the response of the environment. This method gets an action
as input and returns a triple containing the associated updated observation, the associated reward,
and a done-flag.

At every call of the step-method, we count how many times this has already happened. Further, we
update the current observation. Lastly, we check if the current episode terminated. We declare an
episode to be finished when the step-method has been called more than 𝑁episode times. That means
an episode is always exactly 𝑁episode steps long. After, the next episode begins.

4.2.5 Agent

Every reinforcement learning algorithm learns by letting the agent interact with the environment.
The agent collects experience in the form of episodes through this process. As explained in
Subsubsection 3.2.1, reinforcement learning agents use policies to select their next action. Agents
are mainly distinguished between those who pursue an on-policy strategy and those who pursue an
off-policy strategy.

On-policy algorithms throw away the data collected so far after each episode ends. On the other hand,
off-policy algorithms use data collected over several episodes. This means it is not thrown away after
each episode. This leads to the fact that older data is kept for learning. The REINFORCE-algorithm
[Wil92] and the Proximal Policy Optimization-algorithm [SWD+17] are two well-known on-policy
algorithms. The most well-known off-policy algorithms are the Deep Q Network- [MKS+13], Soft
Actor-Critic- [HZAL18], Deep Deterministic Policy Gradient- [LHP+15] and the Twin Delayed
Deep Deterministic Policy Gradient-agent [FHM18].

In general, on-policy algorithms promise better convergence but worse sample efficiency, whereas off-
policy algorithms tend to yield worse convergence and better sample efficiency. Worse convergence
means that the algorithm does not find the optimal solution at all or only very slowly. The term
sample efficiency describes how much data has to be collected to learn. Good sample efficiency
means that little data is needed for learning or that the algorithm extracts much information out of
little amounts of data.

In this work, we limit ourselves to on-policy algorithms. We conducted experiments with the
REINFORCE- and the PPO-agent. The library TF-Agents offers off-the-shelf implementations for
these.

27

4 Methodology

4.2.6 Training

One training iteration step consists of the following steps: Initially, we gather multiple trajectories
using the collect-policy of the agent. The difference between the collect-policy and the “normal”
policy of the agent is that the collect-policy adds randomization to the action selection to encourage
environmental exploration. The replay buffer is the data structure in which the accumulated
experiences of the agent in the form of trajectories can be stored. The agent gets the data from the
replay buffer and completes one training step once enough trajectories have been gathered. One
training step of the agent updates the policy and the underlying internal weights of the NN. The
next step is the clearing of the replay buffer. This last step is characteristic for on-policy algorithms
like REINFORCE and PPO. After, the next training iteration step begins. The number of training
iteration steps is determined by the parameter 𝑁iteration.

4.2.7 Evaluation

For the evaluation of our learned optimization algorithms, we mainly inspect two metrics. We
analyze the normalized training rewards and the mean squared error (MSE) over the number of
training steps. We inspect the MSE and not only the normalized reward because we might have
defined the normalized training reward differently. In contrast to information derived by interpreting
the normalized training reward, the MSE shows the ground truth. The MSE shows actual proven
information about the distance of the optimization algorithms prediction and the actual minimum
on a “slice” through empirical evidence.

When evaluating, we do not want the performance of an optimization algorithm to be dependent on
the random start point it gets. For this reason, we build a grid of starting points covering the entire
input domain. We evaluate the resulting optimization algorithms for every starting point and build
the average value. To keep the computational complexity reasonably low, we chose to pick four
values per dimension. In total this results in 𝑁start = 4𝑑 starting points. This means, we cover 4𝑁free

“slice-possibilities” for 𝑁free “free” parameters.

After the training for a specific objective function, input dimension, and number of “free” parameters
is done, the most recent policy is used for evaluation. This policy outputs a final objective function
value after 𝑁episode steps. In the following, we will refer to this value as the predicted minimum.

28

4.2 Study Design

Reward

We want to reward optimization algorithms that converge quickly to the minimum on a given slice
of an objective function f. We chose

(4.11) 𝑟𝑖 =
max − 𝑓 (𝑥𝑖)
max − min

∈ [0, 1]

as a normalized training reward where max and min are the extreme values on the given slice and 𝑥

is the proposed location by the learned optimization algorithm.

Reinforcement learning algorithms try to maximize the reward. By maximizing 𝑟𝑖, the actual
objective function value 𝑓 (𝑥𝑖) is minimized for a given slice as a fixed slice fixes the values max and
min. This means low objective function values lead to higher rewards. Per definition, the normalized
training reward lies in the range from 0 to 1 since min ≤ 𝑓 (𝑥𝑖) ≤ max. If the optimizer mistakes
the greatest value for the minimum, it gets a reward of 𝑟𝑖 = max− 𝑓 (𝑥𝑖)

max−min = max−max
max−min = 0

max−min = 0. In
the case that the optimizer predicts the minimum value accurately, the reward is 𝑟𝑖 = max− 𝑓 (𝑥𝑖)

max−min =
max−min
max−min = 1. This property is preserved independent of the actual “slice” the optimizer is working
on. This normalized training reward allows an optimization algorithm to get high rewards close
to one even when it is operating on a “slice” that contains only high objective function values in
the global perspective. This is important as we want to be able to compare the performance of an
optimization algorithm on an unfavorable “slice” to an optimization algorithm on a favorable “slice”.
This way we judge the optimization algorithm rather than the circumstances it is exposed to.

We used this reward definition for the training and the evaluation. The chosen reward definition
requires the knowledge of the values max and min for a given “slice” before executing the
optimization algorithm. We approximated these as it would have been too time-consuming to
find them by brute-force-search. We make our approximation clear with the help of an example.
Let us assume that we operate on an objective function with six input dimensions and two free
parameters. Let the constraints be 𝑥1 = 𝑎 and 𝑥2 = 𝑏 for two random values 𝑎 and 𝑏. If
the global minimum of the objective function lies at the location 𝑥*= (0, 0, 0, 0, 0, 0), we took
𝑥approx = (𝑎, 𝑏, 0, 0, 0, 0) as an approximation for the minimum value on the “slice” satisfying the
constrains. We proceeded analogously with the maximum. Technically, we measure how accurately
the optimization algorithms converge to the approximated minimum of an objective function on a
given slice. However, the approach works just as well when defining the reward to be the negative
objective function value 𝑟𝑖 = − 𝑓 (𝑥𝑖). This would lead to the same learning results because lower
objective function values lead to higher rewards. On the other hand, this has the disadvantage that it
is not apparent from the reward alone, if an optimization algorithm is performing poorly or if the
“slice” it is operating on contains only high objective function values.

29

4 Methodology

Mean Sqared Error

In addition to the normalized reward, we calculate the mean squared error between the approximated
minima 𝑓 (𝑥approx) and the predicted minima. The expression 𝑓𝑖 (𝑥) represents the predicted
minimum when the optimization algorithm starts at the 𝑖-th starting point.

(4.12) MSE =
1

𝑁start
·
𝑁start∑︁
𝑖=1

(𝑓𝑖 (𝑥) − 𝑓 (𝑥approx))2

The minimal MSE is 0 whereas the maximal value is unbounded in principle. The higher the
normalized training reward and the lower the MSE, the better the optimization algorithm is
performing. A perfect optimization algorithm is one that always finds the approximation of the
global minimum on a given slice with high accuracy. Such an optimizer converges to a normalized
training reward of 1 and an MSE of 0, no matter which starting point it had. A miserable optimization
algorithm is one that always considers the maximum to be the minimum, despite minimizing. This
optimizer converges to a normalized training reward of 0.

4.2.8 External Libraries

In this section, we acknowledge external libraries that we make use of.

Tensorflow [MAP+15] and pytorch [PGM+19] are free open-source software libraries. They are the
most used machine learning and artificial intelligence frameworks. The main focus of Tensorflow
lies in the training and inference of deep neural networks. It was developed and released by Google.
TensorFlow supports the programming languages Python, JavaScript, C++, and Java. We want to
highlight three useful features TensorFlow offers:

• AutoGraphing - This functionality employs a Tensorflow computation graph. Executing this
graph instead of python code often results in substantial performance gains.

• Eager execution - This is a mode in which statements are evaluated instantly rather than
constructing a computational graph for later execution. This option makes it a lot easier to
debug code.

• Optimizers - TensorFlow provides implementations for the most known optimizers needed
for the training of neural networks, including Stochastic Gradient Descent (SGD), ADAM,
and ADAGRAD.

• TF-Agents - In TensorFlow there are many on-policy and off-policy algorithms implemented
already. Among others, there are standard implementations with default parameters for the
REINFORCE- and the PPO-agent.

PyTorch was originally developed by Meta AI but is part of the Linux Foundation umbrella today.
It mainly is used in the programming language Python, but there is an interface for C++ as well.
We chose to use TensorFlow for our implementation as we are slightly more familiar with this
framework and its application programming interface (API).

30

4.3 Limitations

We use the helpful library NumPy [HMW+20] for handling large arrays and matrices of multiple
dimensions. They also provide many useful high-level mathematical operations. For visualizing the
results we got out of our experiments, we use the plotting library Matplotlib [Hun07].

Table 4.3 shows the versions we used for Python and all external libraries.

Library Version
Python 3.8

TensorFlow 2.10.0
Matplotlib 3.5.3

NumPy 1.23.2

Table 4.3: Versions we used for external librarys

4.3 Limitations

In this section, we show the difficulties we encountered while conducting our work and how we
dealt with them.

Our first implementation was runnable on Linux systems, but we noticed it was not on Windows
systems. After intensive research and many rounds of trial and error, we found out that it has
to do with the library “reverb” we used at that point. In this first version, we used “reverb”
for implementing replay buffers. The latest version of the code, with which we conducted our
experiments, does not have this issue anymore. We switched to using “TFUniformReplayBuffers”
which are part of the TF-Agents library. It is possible now to run the code on Linux as well as on
Windows. This hopefully increases the number of interested readers who are now able to run the
code for themselves.

31

5 Experiments & Discussion

To rule out any performance differences due to the use of different hardware, we conducted all
experiments on the same server. We used the server with the hostname “neon” which was made
available to us by the Institute for Parallel and Distributed Systems at the University of Stuttgart. It
is a Linux-based server with an Intel Haswell 72-Core processor and 504GB of RAM.

When we use the expression “one experiment”, we refer to one run through the flowchart we
discussed in Figure 4.1 for a fixed objective function with a fixed input dimension and a fixed number
of free parameters. If not stated otherwise, we used the default parameter and hyperparameter
values given in Table 4.1.

For every experiment we conducted, we evaluate the normalized training reward and the MSE. We
introduced both in Subsection 4.2.7. We conducted experiments for the eight objective functions
Ackley, Griewank, Levy, Rastrigin, Rosenbrock, Sphere, Styblinski-Tang, and Zakharov which we
defined in Subsection 4.2.3. For every objective function, we conducted experiments for two, four,
six, eight, and ten input dimensions. We chose even input dimensions because we had the number
of free parameters 𝑁iteration in mind. This will become clearer in the next few lines.

Let us suppose, we have an objecitve function 𝑓 with input dimension 𝑑. Theoretically, 0 to 𝑑 of
those input parameters could be 𝑓 𝑟𝑒𝑒 parameters, e.g. constrained parameters. The two extreme
cases 𝑁iteration = 0 and 𝑁free = 𝑑, however, are not interesting for us. As the title of this work
indicates, we investigate “Parameter-dependent self-learning optimization”. This implies that
we cover functions including some parameter-dependencies and we want optimizable functions.
Parameter-dependencies describe parameters for which some conditions must be satisfied. In the
case of 𝑁free = 0, we would optimize a function without any parameter-dependencies. Further, if all
input parameters are fixed by constraints, as is the case for 𝑁free = 𝑑, there would be no parameters
left to optimize. In this case, the objective function 𝑓 has fixed inputs and is therefore a fixed
constant itself. For this reason, we only consider 1 to 𝑑 − 1 as possible values for 𝑁free.

We want to get a representative overview of the behavior of a learned optimization algorithm for a
specific objective function 𝑓 and input dimension 𝑑 for different numbers of free parameters 𝑁free.
Therefore, we picked three values 𝑁free to discover trends. We picked the lowest possible value
𝑁free = 1, the middle option 𝑁free =

𝑑
2 and the highest possible value 𝑁free = 𝑑 − 1. To ensure that

𝑑
2 ∈ N, we picked only even numbers for the input dimensions 𝑑.

For the special case 𝑑 = 2, it happens to be that 1 = 𝑑
2 = 𝑑 − 1. This means, for 𝑑 = 2

we only conducted one experiment per objective function. In all other cases, namely for 𝑑 ∈
{4, 6, 8, 10}, we conducted three experiments per objective function. In total, this results in
𝑁2D experiments +𝑁objective functions · 𝑁input dimensions · 𝑁free parameters = 8+ 8 · 4 · 3 = 8+ 96 = 104 “basis”
experiments.

33

5 Experiments & Discussion

Strictly speaking, agents are the ones receiving rewards. Agents update their policies which represent
optimization algorithms. In the following, we will use the terms “agent”, its respective “policy”
after a certain number of training iteration steps and the represented “optimization algorithm”
interchangeably.

5.1 Two Input Dimensions

We combined all of our 2D results in the two graphics in Figure 5.1. The left graphic shows
the normalized training reward against the number of training iteration steps. On the right, we
illustrated the logarithmic squared error against the number of training iteration steps. In the latter
diagrams, solid lines represent MSEs and the transparent areas around them show the standard
deviation resulting from different starting positions. For more details about the evaluation, we refer
to Subsection 4.2.7. This evaluation allows us to find differences and commonalities between the
learned optimization algorithms on the different objective functions. The x-Axis shows the number
of training iteration steps the optimization algorithm was trained for. We decide to use a logarithmic
y-Axis on the vast majority of MSE graphics as this allows us to clearly identify subtle differences.
The legend is located in the lower right corner for reward-plots and the upper right corner for
MSE-plots, as we would expect those areas to be the ones where the least lines pass through.

Figure 5.1: 2D performance and MSE with one free parameter on the eight objective functions

In both graphics, the legend shows which color is assigned to which objective function. For example,
the blue line shows the performance of the learned optimization algorithm on the 2D Ackley function
with one free parameter, dependent on the number of training iteration steps it was subjected to.

We will analyze these first two diagrams in slightly more detail as the observations and conclusions
we can make in these are mostly transferable to the following experiments.

5.1.1 Normalized Training Reward

The initial normalized training reward is higher for some objective functions than for others. For
example, the optimization algorithm operating on the Rastrigin function has an initial normalized
training reward of approximately 0.5 (red line) whereas the one operating on the Styblinski-Tang

34

5.1 Two Input Dimensions

function has an initial normalized training reward of approximately 0.8 (pink line). This is partly
due to the different codomains of the objective functions. We defined the normalized training
reward to be 𝑟 = 𝑚𝑎𝑥− 𝑓 (𝑥)

𝑚𝑎𝑥−𝑚𝑖𝑛
. This fraction converges to one for huge values of 𝑚𝑎𝑥, as the influence

of 𝑓 (𝑥) and 𝑚𝑖𝑛 on 𝑟 shrink. This means optimization algorithms for objective functions with
big codomain tend to get normalized training rewards closer to one from the beginning. Another
reason for optimization algorithms operating on different objective functions starting with different
initial normalized training rewards is the differences in the properties of the underlying objective
functions. For instance, most inputs from the domain of the Ackley function result in an objective
function value 𝑓 (𝑥) near the maximum value 𝑚𝑎𝑥. In contrast, the Zakharov function has a very
wide area where the objective function value 𝑓 (𝑥) is relatively close to the actual minimum value
𝑚𝑖𝑛. This means an optimizer with no experience will get a greater normalized training reward for
the Zakharov function than for the Ackley function just by randomly guessing.

It is also noteworthy that the blue line corresponding to the Ackley function is thicker than the
others. A thick line means that the normalized training reward is more volatile and fluctuates more
from one training iteration step to the next. Such fluctuations appear due to local minima and
maxima causing changes in the objective function value 𝑓 (𝑥) which affects the normalized training
reward 𝑟 . The reason for the blue line being thicker is that the extent to which a small change in the
input can cause a big jump in objective function value relative to the value 𝑚𝑎𝑥 is greater for the
Ackley function than for other objective functions.

We can see that the normalized training reward is increasing for higher numbers of training iteration
steps, independent of the objective function. However, the lines are not monotonously growing
rather they do have small disruptions. This was expected because a higher number of training
iteration steps means that the reinforcement learning algorithm has passed more training loops. In
every training loop, the agent collects experience and adapts better to the objective function it is
working on. Therefore, an agent who has trained longer gathered more experience and can estimate
the location of minima more precisely. This fact results in a higher normalized training reward.
Small disruptions in the normalized training reward are ignorable as they do not affect the “learning
process” in the long-term.

All optimization algorithms converge to a normalized training reward close to the value one within
3000 training iteration steps except for the one dealing with the Rastrigin function (red line) and the
one dealing with the Ackley function (blue line). Differences like this emphasize the importance of
studying various objective functions to capture as many cases as possible.

The red line runs uniquely compared to the other lines. If we ran the reinforcement learning
algorithm for 𝑁iteration = 3000 we would have thought that the red line converges to a normalized
training reward just above 0.6. However, after about 3500 training iteration steps the red line began
to rise again. Ultimately, the red line comes very close to a normalized training reward of one
after 𝑁iteration = 10000 training iteration steps. Such radical changes can be explained by the agent
changing its optimization strategy. One possible trigger for a change in optimization strategy is
when agents discover an action which they never tried before. Agents discover such actions due to
the non-deterministic nature of the collect-policy. The collect-policy is the policy which is used
for collecting experience. Collect-policies have built-in randomness which ensures that the agent
explores the domain occasionally rather than only exploiting the options he considers to be most
promising.

35

5 Experiments & Discussion

The blue line converges to a normalized training reward of approximately 0.75. After observing
the sudden climb of the red line after 𝑁iteration = 3500, we wondered, if more training iteration
steps would lead to the blue line also converging to a normalized training reward of one. We
repeated the experiment for the 2D Ackley function with one free parameter and 𝑁iteration = 100000
training iteration steps but this did not further improve the performance. The optimization algorithm
operating on the Ackley function (blue line) converges to a value smaller than one since it got stuck
in one of the several local minima of the Ackley function and mistakes it for the global minimum for
a given slice. The objective functions we chose are purposely difficult for optimization algorithms
in the sense that it is difficult for the optimization algorithms to find the actual minimum.

5.1.2 Mean Squared Error

Analogous to the normalized training reward, the MSE is at the beginning higher for some objective
functions than for others. This was expected because optimization algorithms learned by RL behave
like random guessers without any experience. The chances of picking values far from the actual
minimum are higher when the objective function has a large codomain.

As expected, the MSE decreases with an increasing number of training iteration steps, no matter
which objective function is trained on. This shows that the optimization algorithms become better
at estimating where to find the minimum on a given slice with more experience. However, there
are specific differences, depending on which objective function was trained on. For example, the
blue line (Ackley) started with an MSE of about ten and converges to an MSE of approximately
one, while the orange line (Griewank) which had an initial MSE of about 150 also converges to an
MSE of one in the end. This means that the agent for the Griewank function improved more after
𝑁iteration = 10000 in comparison to the beginning than the agent on the Ackley function.

All MSE-lines approach an MSE below ten after 𝑁iteration = 10000 training iteration steps besides
the lines for the Rosenbrock function (purple line) and the Zakharov function (grey line). It is no
coincidence that these are the two objective functions which have by far the biggest domains in our
collection.

It was foreseeable that the curve for the Sphere function (brown line) reaches a very low MSE as the
Sphere function is by far the easiest objective function of our collection to optimize since it has no
minima besides the global one. Further, it has a comparably small codomain. Surprisingly, the
optimization algorithm operating on the Levy function (green line) achieves an even lower MSE for
0 ≤ 𝑁iteration ≤ 10000. The reason for this can be found in the structure of the Levy function by
looking at Figure 4.2. When observing the 2D Levy function with one free parameter, we examine
slices for fixed values of 𝑥1 (called 𝑥 in Figure 4.2). The objective function value of the 2D Levy
function is nearly the same for a given x. Therefore, the optimization algorithm operating on the 2D
Levy function with one free parameter performs well, concerning both normalized training reward
and MSE.

The MSE of the optimization algorithm on the Rastrigin function (red line in the right graphic) starts
to rapidly decline at the exact training iteration step for which the normalized training reward of the
optimization algorithm on the Rastigin function (red line in the left graphic) starts to grow. When
the normalized training reward 𝑟 =

𝑚𝑎𝑥− 𝑓 (𝑥)
𝑚𝑎𝑥−𝑚𝑖𝑛

grows for a fixed objective function, this implies that
𝑓 (𝑥) must have become smaller and a smaller 𝑓 leads to a smaller MSE. This is the case because a
fixed objective function has fixed values for 𝑚𝑎𝑥 and 𝑚𝑖𝑛 and the only component left to change

36

5.2 Higher Input Dimensions

in the reward definition is the objective function value 𝑓 (𝑥). Nonetheless, it is a misconception
to think that a higher reward implies a smaller MSE in general. For example, in the left graphic,
the red normalized training reward (Rastrigin) is below the purple normalized training reward
(Rosenbrock) for all training iteration steps. Despite this fact, in the right graphic, the red MSE is
below the purple MSE for all training iteration steps. The right formulation would be: A higher
reward implies a smaller MSE for a fixed triple of an objective function, an input dimension, and
the number of free parameters!

5.2 Higher Input Dimensions

Figure 5.2 and Figure 5.3 show the plots of normalized training reward and MSE, respectively, for
a selection of the “basis” experiments including input dimensions four and ten for the objective
functions Ackley, Rastrigin, Sphere and Styblinski-Tang. The experiments covering the remaining
input dimensions and objective functions can be found in Figure B.1 and Figure B.2 in the appendix.
We grouped optimization algorithms by objective function and input dimension. The diagrams show
their behavior for a fixed function and input dimension with a changing number of free parameters
𝑁free. In these diagrams, different colors indicate a different 𝑁free. The legend shows which color is
assigned to which 𝑁free.

We notice that the graphs for the same objective function (the graphs in a row) look very similar to
each other. That is because changing the dimensionality of an objective function does not change its
properties. This leads to agents learning similar strategies and this leads to comparable progressions
of the normalized training reward.

Further, the order of the lines from good (high reward and low MSE) to bad (low reward and high
MSE) is genarally 𝑁free = 𝑑 − 1 (green line), 𝑁free = 𝑑/2 (orange line) and 𝑁free = 1 (blue line).
This indicates that the higher the number of free parameters 𝑁free, the easier it is for a learned
optimization algorithm to find the global minimum on a slice. In other words: The higher the number
of optimization parameters 𝑁optimization = 𝑑 − 𝑁free the more difficult it is to optimize an objective
function. According to this, the greater action space following from a higher 𝑁optimization has more
influence on the difficulty of optimizing an objective function than the increasing combinatorial
“slice-possibilities” which result through more free parameters. We refer to Section 4.2.4 for a more
in depth explaination of the influence of 𝑁free and 𝑁optimization on the action space and the number
of “slice-possibilities”.

After a certain number of training iteration steps, all diagrams, except for the Rastrigin ones, show
that the optimization algorithms on different numbers of free parameters end up converging to a
very similar normalized training reward. Through deeper inspection of the graphs of the Rastrigin
functions one could imagine that if trained for more training iteration steps, the different lines
eventually converge to nearby values as well. This is especially remarkable in the digram showing
the 4D Rastrigin performance to the left. We observed that the conspicuous “turning point” for the
4D Rastrigin function with two free parameters is found after 𝑁iteration = 6500 steps, almost 3000
training iteration steps later than the “turning point” for the line showing three free parameters.
We wondered if the “turning point” shifts to the right with fewer free parameters and a fixed input
dimension for the Rastrigin function. We investigate this question in Section 5.5.

37

5 Experiments & Discussion

Figure 5.2: 4D and 10D parameter-dependent performance on Ackley, Rastrigin, Sphere and
Styblinski-Tang38

5.2 Higher Input Dimensions

Figure 5.3: 4D and 10D parameter-dependent MSE on Ackley, Rastrigin, Sphere and Styblinski-
Tang 39

5 Experiments & Discussion

5.3 One Free Parameter

The following two figures, namely Figure 5.4 and Figure 5.5, are based one the same experiments
we reviewed so far. However, we changed the way we grouped different experiments. We compare
how optimization algorithms perform on the same objective function with one free parameter for
different input dimensions. Different input dimensions are represented with different colors.

We observe that all lines for a specific objective function converge to almost the same normalized
training reward. Despite this fact, the MSEs differ for different input dimensions on the same
objective function with one free parameter. We recognize an order between the input dimensions,
independent of the objective function. The lower the input dimension, the lower the MSE for
𝑁free = 1. This was predictable because optimizing a 10D objective function with one free parameter
means there are nine optimization parameters left. This is a much more demanding task for a
learned optimization algorithm than optimizing a 2D objective function with one free parameter
and one optimization parameter. This results in optimization algorithms performing better and
getting lower MSEs for lower input dimensions.

Rastrgins “turning point” is only visible for 𝑑 = 2 (blue line) for 0 ≤ 𝑁iteration ≤ 10000. In Section
5.5 we see that the “turning point” becomes visible for 4D Rastrigin with one free parameter beyond
10000 training iteration steps.

When looking closely one discovers that the Styblinski-Tang function deviates from the previously
mentioned order in the plot showing the normalized training reward. The explanation for this is the
big drop in normalized training reward after around 500 training iteration steps. It is well-known
that instabilities in the optimization strategy can occur in RL, in particular at the beginning of
the training process. However, it is evident that the agent recovers quickly from this “irritation”
and is not influenced by this in the long-term when looking at the MSE-graph. The MSE of the
optimization algorithm with input dimension eight (red line) recovered shortly after the breakout
and drops below the MSE of the optimization algorithm on input dimension ten (purple line).

40

5.3 One Free Parameter

Figure 5.4: One free parameter performance for input dimensions 2-10 on the eight objective
functions 41

5 Experiments & Discussion

Figure 5.5: One free parameter MSE for input dimensions 2-10 on the eight objective functions
42

5.4 D-1 Free Parameters

5.4 D-1 Free Parameters

After comparing optimization algorithms operating on the same objective function with one free
parameter for different input dimensions, we now compare optimization algorithms with 𝑑 − 1 free
parameters. Figure 5.6 shows the normalized training reward and Figure 5.7 shows the Logarithmic
Squared Error.

The graphs visualizing the normalized training reward show that the lines, representing different
input dimensions 𝑑 with 𝑁free = 𝑑 − 1, run very close to each other. Only the Ackley-plot allows
for a clear distinction between the lines. The graphics for the MSE show that the almost identical
normalized training rewards come along with not distinguishable MSEs. The exceptions are the
Ackley- and the Zakharov-plot. They show the trend that a higher input dimension leads to a lower
normalized training reward and higher MSE. This is logical since more free parameters mean there
are more “slice-possibilities”. Therefore, it should be harder to optimize with more free parameters
because the optimization algorithm has to generalize over more possible configurations of free
parameter values.

Interestingly, this trend is not visible in the other six diagrams. According to those, a learned
optimization algorithm has the same difficulties when optimizing a 2D objective function with one
free parameter or a 10D objective function with nine free parameters. This can be made plausible
by noticing that 𝑑 − 1 free parameters imply that there is only one optimization parameter left.
According to this, all optimization algorithms, whether it is on 2D with one free parameter or 10D
with nine free parameters, have the same action-space.

43

5 Experiments & Discussion

Figure 5.6: D-1 free parameters performance for input dimensions 2-10 on the eight objective
functions44

5.4 D-1 Free Parameters

Figure 5.7: D-1 free parameters MSE for input dimensions 2-10 on the eight objective functions
45

5 Experiments & Discussion

5.5 Long Training

After conducting our main experiments we were curious how the increased number of training
iteration steps might influence the performance of learned optimization algorithms. The experiment
which produced the best improvements is shown in Figure 5.8.

Figure 5.8: Long training performance and MSE on the 4D Rastrigin function with one free
parameter

The figures show the behavior of an optimization algorithm operating on the 4D Rastrigin function
with one free parameter. As already mentioned, when only looking at 0 ≤ 𝑁iteration ≤ 10000,
it seems that the normalized training reward converges to a value of roughly 0.6 and the MSE
converges to 103. However, as these graphics show, continuing the training for another 20000
training iteration steps revealed the real long-term trend. After a total of 𝑁iteration = 30000 steps,
the normalized training reward reaches 0.9 and the MSE drops significantly. Therefore, training
for more training iteration steps has a tremendous impact on the performance of the optimization
algorithm on the 4D Rastrigin function with one free parameter. We assume that more training
iteration steps are highly beneficial to optimization algorithms which do not show a “turning point”
on the Rastrigin function. In our opinion, it is likely that every optimization algorithm operating
on the Rastrigin function shows a “turning point”, no matter what the actual combination of input
dimension and number of free parameters is. We infer that the “turning point” shifts to the right for
higher input dimensions and fewer free parameters. This hypothesis has yet to be proven.

46

5.5 Long Training

Figure 5.9: REINFORCE and PPO performance on the eight objective functions in 2D
47

5 Experiments & Discussion

Figure 5.10: REINFORCE and PPO MSE on the eight objective functions in 2D
48

5.6 REINFORCE and Proximal Policy Optimization

5.6 REINFORCE and Proximal Policy Optimization

In this section, we try to find out whether the REINFORCE- or the PPO-algorithm is preferable to
the other in our setting. The normalized training reward can be seen in Figure 5.9 and the MSE-plots
can be found in Figure 5.10. We focus on 2D functions as the runtime “exploded” when using the
PPO-agent on higher dimensions. We analyze the runtime of all conducted experiments in Section
5.8.

The plots showing the normalized training reward let us assume that PPO-agents reach their final
normalized training reward faster. This is also visible in the MSE-plots as the orange line (PPO)
starts to fall steeper than the blue line (REINFORCE) in the beginning. However, in all presented
cases, the blue line surpasses the normalized training reward of the orange line, resulting in lower
MSEs for the optimization algorithms based on the REINFORCE-algorithm.

Thus, PPO-agents should be preferred when training for a low number of training iteration steps
of under 𝑁iteration = 1000. On the other hand, the REINFORCE-agent outperforms the PPO-agent
concerning the normalized training reward and the MSE in the long-term for all of our chosen
objective functions.

5.7 Neural Networks and Recurrent Neural Networks

Here we compare the differences between using feedforward NNs and RNNs with LSTMs. We
introduced those in Section 3.3. Figure 5.11 and Figure 5.12 display the results we got.

We limited these experiments to the input dimension 𝑑 = 10 because we are mostly interested in
the effects which take place in higher dimensions. We looked at one free parameter (left column)
and nine free parameters (right column). The blue line represents optimization algorithms learned
using NNs and the orange line represents ones which used RNNs with the extension of LSTMs. All
graphs, the ones showing the normalized training reward as well as the ones showing the MSE,
make clear that using RNNs with LSTMs does not make any difference for our use case. The
optimization algorithms progress nearly identically.

49

5 Experiments & Discussion

Figure 5.11: NN and RNN performance on Ackley, Griewank and Rastrigin in 10D with one and
nine free parameters

50

5.7 Neural Networks and Recurrent Neural Networks

Figure 5.12: NN and RNN MSE on Ackley, Griewank and Rastrigin in 10D with one and nine free
parameters

51

5 Experiments & Discussion

5.8 Runtime

This is the last section of our experiments. While conducting our experiments we measured the
runtime. Optimization algorithms using the REINFORCE-algorithm and a feedforward NN have
practically identical runtime for a fixed input dimension. Neither the objective function nor the
number of free parameters matters. Table 5.1 shows the average runtime for an experiment in
dependence on the input dimension. Increasing the input dimension from two to eight did not affect

Input Dimension Runtime
2 35min
4 38min
6 41min
8 47min
10 101min

Table 5.1: Average runtime of one experiment for all input dimensions

the runtime drastically. However, experiments conducted with input dimension ten took more than
twice as long in comparison to experiments with 𝑑 = 8.

Conducting experiments for a higher number of training iteration steps resulted in linear growth
of runtime. For example, the training on the 4D Rastrigin function with one free parameter
for 𝑁iteration = 10000 lasted about 38 minutes, whereas about 113 minutes were needed for
𝑁iteration = 30000.

Using RNNs with LSTMs instead, or using the PPO-algorithm makes a difference in runtime as well.
On average, the experiments we conducted with RNNs and 𝑑 = 10 lasted 150 minutes. That is 1.5
times as long as with feedforward NNs. The experiments we conducted with the PPO-algorithm on
two-dimensional functions took 71 minutes instead of 35 minutes with the REINFORCE-algorithm.
This is a doubling in runtime. We started experiments with the PPO-agent on objective functions
with 𝑑 = 10 but we aborted them after finishing the first experiment as it needed over ten hours and
40 minutes to terminate.

52

6 Future Work

In this chapter, we propose some suggestions for continuing this line of work. We provide an
outlook of the direction in which research based on this thesis might develop.

6.1 Further Experiments

The implementation as it currently is can be used for further interesting experiments without any
modification.

One could examine the transferability of our learned optimization algorithms to unknown objective
functions. It would be worth researching whether an optimization algorithm that was trained on
one objective function performs well on other objective functions too. This could be possible for
objective functions that share similar properties. This ability was already investigated in the bachelor
thesis of Kilian Schüttler [Sch22]. However, in their approach no free parameters are integrable,
and they restricted their work to 𝑑 = 2. The behavior of this property is unclear when integrating
free parameters. In addition, it is uncertain, how well transferability scales in high-dimensional
setups.

Additionally, a deeper inspection of the experiments we conducted could reveal more insightful
information. While training an agent on an objective function we saved checkpoints of the replay
buffer and the learned policy in regular intervals. One could analyze the actions chosen by the
policy with respect to the number of steps trained. Strategy changes may be recognizable.

6.2 Modifications

Another approach to extending our work is to change choices where we had to decide on one of
several possible options. It would be worthwhile to analyze the influence of various changes to our
study design.

Currently, we defined the normalized reward 𝑟 in dependence on the last action 𝑎. Another option
for defining the reward is to compute a relative notion we call “relative reward”. Lets assume we
have the values 𝑥free for the “free” parameters. We define 𝑥𝑖 to be the concatencation of the “free”
parameter values and the chosen action 𝑎𝑖 in step 𝑖. For the first action 𝑎1 we compute and save the
resulting objective function value 𝑓 (𝑥1) as usual, but we set the first reward to be 𝑟1 = 0. For all
following actions 𝑎𝑖 with 𝑖 ∈ {2, . . . , 𝑁episode} we compute and save the resulting objective function
value 𝑓 (𝑥𝑖) again, but we define the reward to be 𝑟𝑖 = 𝛾𝑖−1 · (𝑓 (𝑥𝑖−1) − 𝑓 (𝑥𝑖)) with discount factor
0 < 𝛾 < 1. This definition of a “relative reward” is positive, when 𝑓 (𝑥𝑖−1) > 𝑓 (𝑥𝑖). In this case, 𝑎𝑖
leads to a smaller objective function value than 𝑎𝑖−1 which means the more recent agent’s choice 𝑎𝑖

53

6 Future Work

is closer to the location of the minimum than the previous action 𝑎𝑖−1. So this reward definition
rewards agents which converge to the minimum as desired. It is worth mentioning: The smaller
the objective function value 𝑓 (𝑥𝑖) is, the greater the reward 𝑟𝑖. In addition to that, the term 𝛾𝑖−1

converges to zero for higher 𝑖. This means that high rewards achieved late in an episode are less
worth than high rewards at the beginning of an episode. Hence, agents which converge faster to
small objective function values get higher overall rewards.

Analogously, we can define a notion we call “relative environment”. We specified an action 𝑎 in the
environment to represent absolute input coordinates. This means, in the case of two optimization
parameters, the action 𝑎 = (𝑥1, 𝑥2) results in evaluating the objective function 𝑓 at the input (𝑥1, 𝑥2)
independent of the previuos input. However, there is another viable option. One could define an
action 𝑎 to represent a stepvector. Assume the last evaluated input was (𝑥1old , 𝑥2old) and the policy
proposes the action 𝑎 = (Δ𝑥1,Δ𝑥2). Instead of evaluating the objective function 𝑓 on (Δ𝑥1,Δ𝑥2),
we would use the input (𝑥1old , 𝑥2old) + (Δ𝑥1,Δ𝑥2) = (𝑥1old + Δ𝑥1, 𝑥2old + Δ𝑥2) = (𝑥1new , 𝑥2new). When
implementing “relative environments” one has to deal with two important details. First, adding the
old input to the new action could exceed the input domain. One solution would be to map values
greater than the maximum of the domain to the maximum value. Analogously, one could proceed
for too small values. Second, one has to decide on a maximum step size. The step size is defined
by the action domain. A step size which is too small could lead to slow convergence, even with a
sophisticated optimization algorithm. On the other hand, the previously described exceeding of the
domain boundaries is not desired. If the step size is too big, this might encourage this behavior.

Moreover, we already included implementations of the derivatives of all used objective functions in
our code, but we did not include first-order information in observations. Including this additional
information seems promising since the more information the observation contains, the faster and
the more accurate the agent might learn. However, this would entail slightly higher memory
consumption.

In this work, we used feedforward neural networks and recurrent neural networks for our experiments.
Stochastic neural networks, which were inspired by Sherrington-Kirkpatrick models, are another
class of artificial neural networks created by adding random fluctuations to the artificial neurons of
the network, by using stochastic alternatives for the transfer functions or the weights of the artificial
network. Thus, they could be effective for solving optimization tasks because the network could
overcome local minima due to the random variations.[Tur04]

54

7 Conclusion

In this thesis, we proposed an approach for learning optimization algorithms for functions including
parameter-dependencies and up to ten input dimensions. We defined it as a reinforcement learning
problem, where every optimization algorithm can be viewed as a policy. For the evaluation, we
mainly inspected a normalized version of the training reward and the mean squared error between the
predicted minima and the actual ones. We implemented eight different objective functions to verify
our approach. To suit our objective, these are scalable in dimension. All experiments show that the
normalized training reward increases and the mean squared error decreases with higher training
iteration steps. We compared how the number of free parameters affects the “learning” process for
fixed tuples of input dimension and objective function. The more free parameters we have, the better
the optimization algorithm performs for a fixed input dimension. Better performing optimization
algorithms are characterized by higher rewards and lower mean squared errors. Furthermore, we
analyzed the minimal and maximal number of free parameters per objective function for variable
input dimensions. Smaller input dimensions lead to higher rewards and lower mean squared
errors for one “free” parameter. The results for the maximum number of “free” parameters are
dependent on the underlying objective function. After that, we investigated the influence of higher
numbers of training iteration steps. We have shown with one example that this can have a major
impact on the normalized training reward as well as on the mean squared error. Additionally, we
explored the differences between using the REINFORCE- and the PPO-agent. PPO-agents achieve
higher rewards and lower mean squared errors for low numbers of training iteration steps, but
REINFORCE-agents outperform them in the long-term. Using the PPO-agent causes the runtime to
grow drastically. Moreover, we utilized recurrent neural networks with long short-term memories
to study if this boosts the performance of “learned” optimizers in comparison to using feedforward
neural networks. It turned out that feedforward neural networks are sufficient for our use case and
ensure lower runtime. Finally, we discussed the runtimes of the various experiments we conducted.
The higher the input dimension, the higher the runtime. However, the number of free parameters
has no influence on the runtime. The proposed approach could find application in areas operating
with many “free” parameters, like it is the case in post-silicon validation.

55

Bibliography

[ADG+16] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, T. Schaul,
B. Shillingford, N. De Freitas. “Learning to learn by gradient descent by gradi-
ent descent”. In: Advances in neural information processing systems 29 (2016)
(cit. on pp. 9, 11).

[Bel57] R. Bellman. “A Markovian decision process”. In: Journal of mathematics and
mechanics (1957), pp. 679–684 (cit. on p. 15).

[DHS11] J. Duchi, E. Hazan, Y. Singer. “Adaptive subgradient methods for online learning
and stochastic optimization.” In: Journal of machine learning research 12.7 (2011)
(cit. on p. 11).

[Doz16] T. Dozat. “Incorporating nesterov momentum into adam”. In: (2016) (cit. on p. 11).

[DPRL21] P. Domanski, D. Plüger, J. Rivoir, R. Latty. “Self-learning tuning for post-silicon
validation”. In: arXiv preprint arXiv:2111.08995 (2021) (cit. on pp. 10, 12).

[DSC+16] Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, P. Abbeel. “Rl2:
Fast reinforcement learning via slow reinforcement learning”. In: arXiv preprint
arXiv:1611.02779 (2016) (cit. on p. 12).

[EKKP18] A. Eremeev, M. Khachay, Y. Kochetov, P. Pardalos. Optimization problems and their
applications. Springer, 2018 (cit. on p. 9).

[FHM18] S. Fujimoto, H. Hoof, D. Meger. “Addressing function approximation error in actor-
critic methods”. In: International conference on machine learning. PMLR. 2018,
pp. 1587–1596 (cit. on p. 27).

[GSC00] F. A. Gers, J. Schmidhuber, F. Cummins. “Learning to forget: Continual prediction
with LSTM”. In: Neural computation 12.10 (2000), pp. 2451–2471 (cit. on p. 18).

[GWR+16] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-Barwińska,
S. G. Colmenarejo, E. Grefenstette, T. Ramalho, J. Agapiou, et al. “Hybrid computing
using a neural network with dynamic external memory”. In: Nature 538.7626 (2016),
pp. 471–476 (cit. on p. 12).

[HMW+20] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cour-
napeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer,
M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson,
P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,
T. E. Oliphant. “Array programming with NumPy”. In: Nature 585.7825 (Sept. 2020),
pp. 357–362 (cit. on p. 31).

[HS96] S. Hochreiter, J. Schmidhuber. “LSTM can solve hard long time lag problems”. In:
Advances in neural information processing systems 9 (1996) (cit. on p. 18).

57

Bibliography

[HS97] S. Hochreiter, J. Schmidhuber. “Long short-term memory”. In: Neural computation
9.8 (1997), pp. 1735–1780 (cit. on p. 11).

[Hun07] J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing in Science &
Engineering 9.3 (2007), pp. 90–95 (cit. on p. 31).

[HZAL18] T. Haarnoja, A. Zhou, P. Abbeel, S. Levine. “Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor”. In: International
conference on machine learning. PMLR. 2018, pp. 1861–1870 (cit. on p. 27).

[KB14] D. P. Kingma, J. Ba. “Adam: A method for stochastic optimization”. In: arXiv preprint
arXiv:1412.6980 (2014) (cit. on p. 11).

[LHP+15] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D. Wier-
stra. “Continuous control with deep reinforcement learning”. In: arXiv preprint
arXiv:1509.02971 (2015) (cit. on p. 27).

[Li17] K. Li. Learning to Optimize with Reinforcement Learning. Accessed: 2022-09-09.
2017. url: %5Curl%7Bhttps://bair.berkeley.edu/blog/2017/09/12/learning-to-
optimize-with-rl/%7D (cit. on p. 20).

[LM16] K. Li, J. Malik. “Learning to optimize”. In: arXiv preprint arXiv:1606.01885 (2016)
(cit. on pp. 9, 11).

[Lug05] G. F. Luger. Artificial intelligence: structures and strategies for complex problem
solving. Pearson education, 2005 (cit. on p. 14).

[MAP+15] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Y. Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané,
Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhouc,
Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, Xiaoqiang Zheng. TensorFlow: Large-Scale Machine Learn-
ing on Heterogeneous Systems. Software available from tensorflow.org. 2015. url:
https://www.tensorflow.org/ (cit. on p. 30).

[MBD+90] T. Mitchell, B. Buchanan, G. DeJong, T. Dietterich, P. Rosenbloom, A. Waibel.
“Machine learning”. In: Annual review of computer science 4.1 (1990), pp. 417–433
(cit. on p. 14).

[MKS+13] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
M. Riedmiller. “Playing atari with deep reinforcement learning”. In: arXiv preprint
arXiv:1312.5602 (2013) (cit. on p. 27).

[MS05] M. Molga, C. Smutnicki. “Test functions for optimization needs”. In: Test functions
for optimization needs 101 (2005), p. 48 (cit. on p. 22).

[OW12] M. v. Otterlo, M. Wiering. “Reinforcement learning and markov decision processes”.
In: Reinforcement learning. Springer, 2012, pp. 3–42 (cit. on p. 16).

58

%5Curl%7Bhttps://bair.berkeley.edu/blog/2017/09/12/learning-to-optimize-with-rl/%7D
%5Curl%7Bhttps://bair.berkeley.edu/blog/2017/09/12/learning-to-optimize-with-rl/%7D
https://www.tensorflow.org/

Bibliography

[PGM+19] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala. “PyTorch: An
Imperative Style, High-Performance Deep Learning Library”. In: Advances in Neural
Information Processing Systems 32. Curran Associates, Inc., 2019, pp. 8024–8035.
url: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-
performance-deep-learning-library.pdf (cit. on p. 30).

[Pic94] P. Picton. “What is a neural network?” In: Introduction to Neural Networks. Springer,
1994, pp. 1–12 (cit. on p. 16).

[PMB13] R. Pascanu, T. Mikolov, Y. Bengio. “On the difficulty of training recurrent neural
networks”. In: International conference on machine learning. PMLR. 2013, pp. 1310–
1318 (cit. on p. 17).

[PWG13] V. Picheny, T. Wagner, D. Ginsbourger. “A benchmark of kriging-based infill criteria
for noisy optimization”. In: Structural and multidisciplinary optimization 48.3 (2013),
pp. 607–626 (cit. on pp. 23, 62).

[SB18] R. S. Sutton, A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018
(cit. on p. 14).

[SC16] Y. C. M. W. H. Sergio, G. Colmenarejo. “Learning to Learn for Global Optimization
of Black Box Functions”. In: stat 1050 (2016), p. 18 (cit. on pp. 9, 12).

[Sch22] K. Schüttler. Investigation of self-learned zeroth-order optimization algorithms.
Bachelor’s Thesis. 2022 (cit. on p. 53).

[SWD+17] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov. “Proximal policy
optimization algorithms”. In: arXiv preprint arXiv:1707.06347 (2017) (cit. on p. 27).

[Tur04] C. Turchetti. Stochastic models of neural networks. Vol. 102. IOS Press, 2004 (cit. on
p. 54).

[Wil92] R. J. Williams. “Simple statistical gradient-following algorithms for connectionist
reinforcement learning”. In: Machine learning 8.3 (1992), pp. 229–256 (cit. on p. 27).

[Zei12] M. D. Zeiler. “Adadelta: an adaptive learning rate method”. In: arXiv preprint
arXiv:1212.5701 (2012) (cit. on p. 11).

All links were last followed on November 2, 2022.

59

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

A Gradients of Objective Functions

In this chapter, we list gradients of all the objective functions we used to train our optimization
algorithm in alphabetic order. The gradient for a function 𝑓 of dimension 𝑑 with input 𝑥 =

(𝑥1, . . . , 𝑥𝑑) is defined as follows:

(A.1) ∇ 𝑓 (𝑥) = ∇ 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑑) =

𝜕 𝑓

𝜕𝑥1
(𝑥1, 𝑥2, . . . , 𝑥𝑑)

𝜕 𝑓

𝜕𝑥2
(𝑥1, 𝑥2, . . . , 𝑥𝑑)

𝜕 𝑓

𝜕𝑥𝑛
(𝑥1, 𝑥2, . . . , 𝑥𝑑)

We define ∀𝑖 ∈ {1, . . . , 𝑑} : ∇ 𝑓 (𝑥)𝑖 =

𝜕 𝑓

𝜕𝑥𝑖
(𝑥) and specify gradients of objective functions by

specifying ∇ 𝑓 (𝑥)𝑖 for all possible 𝑖.

Ackley Function

The Ackley function is almost flat in its outer region and its global minimum lies in a large central
hole. The outer region contains multiple evenly distributed local minima, in which optimization
algorithms might get trapped in. We used 𝑎 = 20, 𝑏 = 0.2 and 𝑐 = 2𝜋

(A.2) ∇ 𝑓 (𝑥)𝑖 =
𝑎𝑏 · 𝑥𝑖√︃
𝑑 · ∑𝑑

𝑗=1 𝑥
2
𝑗

· 𝑒𝑥𝑝
(
−𝑏 ·

√√√
1
𝑑
·

𝑑∑︁
𝑗=1

𝑥2
𝑗

)

+ 𝑐

𝑑
· sin (𝑐 · 𝑥𝑖) · 𝑒𝑥𝑝

(
1
𝑑
·

𝑑∑︁
𝑗=1

cos (𝑐 · 𝑥 𝑗)
)

∀𝑖 ∈ {1, . . . , 𝑑}

Griewank Function

The Griewank function owns a lot of local minima, spread over the entire domain. The surface area
of the Griewank function has a very fine texture.

(A.3) ∇ 𝑓 (𝑥)𝑖 =
1

2000
· 𝑥𝑖 +

1
√
𝑖
· sin

(
1
√
𝑖
· 𝑥𝑖

)
∀𝑖 ∈ {1, . . . , 𝑑}

61

A Gradients of Objective Functions

Levy Function

The Levy function has the most complex gradient of our functions. Let ∀𝑖 ∈ {1, . . . , 𝑑} : 𝑤𝑖 =

1 + 𝑥𝑖−1
4 . Then the function and its gradient can be defined as:

(A.4) ∇ 𝑓 (𝑥)𝑖 =

𝜋
2 sin (𝜋𝑤𝑖) cos (𝜋𝑤𝑖)
+1

2 (𝑤𝑖 − 1) (1 + 10 sin2 (𝜋𝑤𝑖 + 1))
+5𝜋(𝑤𝑖 − 1)2 sin (𝜋𝑤𝑖 + 1) cos (𝜋𝑤𝑖 + 1) , if 𝑖 = 1

1
2 (𝑤𝑖 − 1) (1 + 10 sin2 (𝜋𝑤𝑖 + 1))
+5𝜋(𝑤𝑖 − 1)2 sin (𝜋𝑤𝑖 + 1) cos (𝜋𝑤𝑖 + 1) , if 𝑖 ∈ {2, . . . , 𝑑 − 1}

1
2 (𝑤𝑖 − 1) (1 + sin2 (2𝜋𝑤𝑖))
+𝜋(𝑤𝑖 − 1)2 sin (2𝜋𝑤𝑖) cos (2𝜋𝑤𝑖) , if 𝑖 = 𝑑

Rastrigin Function

The Rastrigin function owns multiple regularly distributed local minima.

(A.5) ∇ 𝑓 (𝑥)𝑖 = 2 · 𝑥𝑖 + 20𝜋 · sin (2𝜋 · 𝑥𝑖) ∀𝑖 ∈ {1, . . . , 𝑑}

Rosenbrock Function

The Rosenbrock function is a member of the valley-shaped functions. It is also called Rosenbrock’s
valley or Rosenbrock’s banana function. The global minimum lies in a narrow, oblong, parabolic-
shaped valley. Optimization Algorithms tend to find this valley rather quickly, but struggle to find
the global minimum inside. [PWG13]

(A.6) ∇ 𝑓 (𝑥)𝑖 =

−400 · 𝑥𝑖 · (𝑥𝑖+1 − 𝑥2

𝑖
) + 2(𝑥𝑖 − 1) , if 𝑖 = 1

−400 · 𝑥𝑖 · (𝑥𝑖+1 − 𝑥2
𝑖
) + 2 · (𝑥𝑖 − 1) + 200 · (𝑥𝑖 − 𝑥2

𝑖−1) , if 𝑖 ∈ {2, . . . , 𝑑 − 1}
200 · (𝑥𝑖 − 𝑥2

𝑖−1) , if 𝑖 = 𝑑

Sphere Function

The Sphere function is the simplest among our objective functions. This bowl-shaped function has
no minimum except for the one global minimum in the center of its domain. Moreover, this is the
only strictly convex function we used.

(A.7) ∇ 𝑓 (𝑥)𝑖 = 2 · 𝑥𝑖 ∀𝑖 ∈ {1, . . . , 𝑑}

62

Styblinski-Tang Function

The Styblinski-Tang function has a unique curvy bowl shape.

(A.8) ∇ 𝑓 (𝑥)𝑖 =
1
2
· (4𝑥3

𝑖 − 32𝑥𝑖 + 5) ∀𝑖 ∈ {1, . . . , 𝑑}

Zakharov Function

The Zakharov function is the only representative of plate-shaped functions in our collection. It has
no local minimum besides the global one.

(A.9) ∇ 𝑓 (𝑥)𝑖 = 2𝑥𝑖 +
1
2
𝑖 ·

𝑑∑︁
𝑗=1

(𝑗𝑥 𝑗) + 2𝑖 ·
(
1
2
·

𝑑∑︁
𝑗=1

𝑗 · 𝑥 𝑗

)3

∀𝑖 ∈ {1, . . . , 𝑑}

63

B Complete Experimental Results

(a) Ackley

(b) Griewank

(c) Levy

(d) Rastrigin

(e) Rosenbrock

(f) Sphere

(g) Styblinski-Tang

(h) Zakharov

Figure B.1: Parameter-dependent performance for all input dimensions on the eight objective
functions

(a) Ackley

(b) Griewank

(c) Levy

(d) Rastrigin

(e) Rosenbrock

(f) Sphere

(g) Styblinski-Tang

(h) Zakharov

Figure B.2: Parameter-dependent MSE for all input dimensions on the eight objective functions

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	1.1 Research Contributions
	1.2 Outline

	2 Related Work
	3 Fundamentals
	3.1 Optimization
	3.2 Artificial Intelligence
	3.3 Neural Network

	4 Methodology
	4.1 Problem Formulation
	4.2 Study Design
	4.3 Limitations

	5 Experiments & Discussion
	5.1 Two Input Dimensions
	5.2 Higher Input Dimensions
	5.3 One Free Parameter
	5.4 D-1 Free Parameters
	5.5 Long Training
	5.6 REINFORCE and Proximal Policy Optimization
	5.7 Neural Networks and Recurrent Neural Networks
	5.8 Runtime

	6 Future Work
	6.1 Further Experiments
	6.2 Modifications

	7 Conclusion
	Bibliography
	A Gradients of Objective Functions
	B Complete Experimental Results

