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Abstract

The design of most processes in chemical industry depends on reliable estimates of the
transport properties of fluids. Various approaches exist for the prediction of these quantities,
which can be used to compensate for insufficient experimental data. The present work deals
with two of the approaches: Molecular simulations and entropy scaling. According to the
latter approach, transport coefficients, such as shear viscosity, thermal conductivity or self
diffusion coefficients, defined as dimensionless quantities using a suitable reference, are
univariant functions of only the residual entropy of the fluid. The two methods, molecular
simulations and entropy scaling are used jointly in order to achieve synergistic effects. A
suitable mixture-model for entropy scaling models was investigated in molecular simulations
as part of this work. Mixtures of simple model fluids, namely Lennard-Jones mixtures, are
regarded and it is found that the principle of entropy scaling holds also for mixtures, to
excellent approximation. Entropy scaling, in turn, is used to more efficiently design and
evaluate molecular simulations. In this context, the TAMie force field developed in Stuttgart
is assessed with respect to the accuracy of predicted transport coefficients. The TAMie model,
like many other force fields developed for thermodynamic properties, uses rigid bond lengths
between interaction sites within a molecule. In order to ensure a meaningful assessment of
transport coefficients in Molecular Dynamic simulations, an analysis of bond-length models
is conducted: what is the influence of the model for intramolecular atomic bonds on the
predicted static and dynamic fluid properties? It is shown that it is possible to obtain the
same results for transport coefficients with flexible atomic bonds, within statistical accuracy,
as with the same force field but using a rigid description of the bonds. Within the context of
the simulation studies carried out in this thesis, a workflow has been developed that enables
efficient evaluation of simulations for determining transport properties. In combination with
entropy scaling, this work presents a methodology that can be used to efficiently determine
transport quantities from molecular simulations, thus enabling extensive simulation studies
for either predicting fluid properties or to enable force field development where transport
coefficients are considered in the objective function.
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Kurzfassung

Für die Entwicklung und Auslegung der meisten Prozesse der chemischen Industrie ist die
verlässliche Vorhersage der Transporteigenschaften von Fluiden eine unverzichtbare Grund-
voraussetzung. Dafür gibt es verschiedene Ansätze, mit denen fehlende experimentelle Daten
kompensiert werden können. Diese Arbeit behandelt zwei dieser Ansätze: Molekularsimula-
tionen und die Entropieskalierung. Transportkoeffizienten, wie Scherviskosität, Wärmeleit-
fähigkeit und Selbstdiffusionskoeffizienten, sind nach dem Entropieskalierungsansatz univari-
ante Funktionen einzig der residuellen Entropie des Fluids, sofern sie mit einer geeigneten
Referenz als dimensionslose Größen definiert werden. Die beidenMethoden, Molekularsimula-
tionen und Entropieskalierung, werden kombiniert eingesetzt um Synergieeffekte zu erzielen.
So wird in dieser Arbeit ein geeignetes Mischungsmodell für Entropieskalierungsmodelle un-
tersucht. Dafür wurden Gemische einfacher Modellflüssigkeiten, insbesondere Lennard-Jones-
Gemische, in Molekularsimulationen betrachtet. Dabei zeigt sich, dass das Prinzip der En-
tropieskalierung in hervorragender Näherung auch für Gemische gilt. Die Entropieskalierung
wird wiederum dafür genutzt, Molekularsimulationen effizienter zu gestalten und zu bew-
erten. Dabei wird das in Stuttgart entwickelte TAMie Kraftfeld hinsichtlich der Güte seiner
Vorhersage von Transportkoeffizienten untersucht. Das TAMie-Modell verwendet – wie viele
andere für die Bestimmung thermodynamischer Eigenschaften entwickelte Kraftfelder auch –
starre Bindungslängen zwischen Wechselwirkungszentren innerhalb eines Moleküls. Um eine
aussagekräftige Bewertung der Transportkoeffizienten in molekulardynamischen Simulatio-
nen zu gewährleisten, wird eine Analyse der Bindungslängenmodelle durchgeführt: Welchen
Einfluss hat die Modellierung der intramolekularen Atombindungen auf die Vorhersage von
statischen und dynamischen Fluideigenschaften? Es wird gezeigt, dass es möglich ist, mit
flexiblen Atombindungen innerhalb statisticher Genauigkeit die gleichen Ergebnisse für Trans-
portkoeffizienten zu erzielen, wie mit einer starren Beschreibung der Bindungen. Im Rahmen
der für diese Arbeit durchgeführten Simulationsstudien wurde ein Workflow entwickelt,
der eine effiziente Auswertung der Simulationen für die Bestimmung der Transportgrößen
ermöglicht. In Kombination mit der Entropieskalierung wird in dieser Arbeit damit eine
Methodik vorgestellt, mit der sehr effizient Transportgrößen aus Molekularsimulationen
bestimmt werden können. Dies ermöglicht umfangreiche Simulationsstudien zur Vorhersage
von Fuideigenschaften oder zur Kraftfeldentwicklung, bei der Transportkoeffizienten in der
Zielfunktion berücksichtigt werden.
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1 Introduction

Dynamic properties of gases and liquids are decisive for processes from the nanoscale, such as
the folding of proteins1,2 or the transport of drugs in cells3,4, up to global scale phenomena,
like for climate and weather.5–7 Knowledge regarding dynamic properties is also crucial for
the design and optimization of processes in engineering applications in chemical industry, like
chemical reactions, distillation, and absorption. The present work focuses on this chemical
engineering aspect, in particular on the dynamic properties of hydrocarbons as they are used
in various chemical processes. Dynamic properties are needed for the optimization of already
established processes in chemical industry.8 Moreover, they are essential for the development
of new technologies, such as the synthesis of climate-neutral fuels,9–11 or the storage of the
greenhouse gas CO2.12,13 The accurate prediction of dynamic properties furthermore enables
the integrated design and optimization of processes and working fluids. This allows for already
known processes, such as the Organic Rankine Cycle, to be operated more effectively.14–16

In this work I refer to shear viscosity, thermal conductivity and self-diffusion coefficients as
dynamic properties. Shear viscosity and thermal conductivity are transport coefficients, i.e.
they appear in constitutive (force-flux) equations as linear coefficients.17 Self-diffusion is not
a transport phenomenon driven by a driving force. It describes the averaged translocation of
molecules per unit time due to thermal motion of molecules for a system in equilibrium.18,19

Transport coefficients act as the proportionality factors relating the thermodynamic driving
forces to the flux densities.17,20 These coefficients thus describe how a system responds to
a small external disturbance, namely a perturbation out of equilibrium.21 For small distur-
bances, the relation is linear and the proportionality of a given flux J towards the conjugate
driving force, expressed as (negative) gradient ∇ f , can be described in general terms by the
equation18–21

J = −γ∇ f . (1.1)

Here, γ is the transport coefficient, which defines the proportional relation of flux and
gradient. For some transport phenomena and their associated transport coefficient, eq. (1.1)
reveals widely known relationships for mass, heat and momentum transport, summarized in
table 1.1.20 The flux equations listed here and discussed in this work are solely uncoupled

1



1 Introduction

Table 1.1: Common constitutive (flux-force) equations
Gradient Flux Transport Coefficient

Fourier’s law
Jq = −λ

∂ T
∂ x

T : temperature Jq: heat flux λ: thermal conductivity

Fick’s law
Ji = −D

∂ ρi

∂ x
ρi: mass density of i Ji: mass flux of i D: diffusion coefficient

Newton’s law
J x y
p = −η

∂ vx

∂ y
v : velocity Jp: shear pressure tensor η: shear viscosity

terms. Coupled fluxes are also possible.20,22 One example is the Soret coefficient, which
describes the transport of mass due to the temperature gradient. Even though several relevant
applications can be found for the coupled coefficients,20 they will not be subject of this work.

The thermal conductivity λ and the shear viscosity η are characteristic of pure substances
and mixtures and as such they are content of this work. For the case of diffusion, I do not
consider the Fickian diffusion coefficient shown in table 1.1, but the self-diffusion coefficient
Dself. Self-diffusion describes the movement of a labeled molecule in the pure substance, in
other words, the diffusion of a substance within itself.18 Self-diffusion of course also occurs
in mixtures. The corresponding coefficient is then sometimes referred to as tracer diffusion
coefficient DT

A of component A.18 With known tracer diffusion coefficients, Maxwell-Stefan
diffusion coefficients ÐAB can be approximated23 by approaches from Darken and Vignes.18

Once the transport coefficients are available, they can be used in force-flux equations within
the balance equations for mass of each species, linear momentum and energy.17 Or the
transport coefficients can be used to predict the entropy production of a process.20 Reliable
and accurate knowledge of transport properties is therefore indispensible for the accurate
prediction of dynamic processes, not only in the chemical industry.

This thesis deals specifically with the prediction of dynamic fluid properties from molecular
simulations and from entropy scaling. Both methods can be used to predict η, λ, and Dself over
a very wide range of temperatures and pressures (or densities) in both, the vapor and liquid
phases, at state points for which no experimental data are available.24–32 The challenges
addressed in this thesis through means of molecular simulations and entropy scaling can be
broadly condensed into three objectives:

1. Evaluation of the effects of specific force field properties on the results of molecular
simulations of dynamic properties.

2



1.1 Molecular Simulations & Force Fields

2. Development of methods for efficient calculation of transport coefficients from molecular
simulations and the robust evaluation of results obtained with force fields adjusted
exclusively to phase equilibria data.

3. Coupling of molecular simulations with the entropy scaling method to achieve synergy
effects in order to minimize the simulation effort and to gain new insights for entropy
scaling.

The following sections of chapter 1 are devoted to a brief introduction of the two central
methods applied in this thesis: Section 1.1 gives an overview of the fundamentals of molecular
simulations and classical force fields and presents the relevant methods and models used in
this work. Section 1.2 describes how dynamic quantities can be determined from equilibrium
molecular simulations. To conclude the introductory section, section 1.3 presents the basics
of the entropy scaling correlation method.

1.1 Molecular Simulations & Force Fields

Statistical mechanics offers the possibility to determine macroscopic thermodynamic quanti-
ties (and the dynamic properties, as will be shown in the following sections) by averaging
over microscopic states.33 These molecular states are characterized by the positions of all
N molecules (r1, r2, . . . , rN ≡ r N) and their momenta (p1, p2, . . . , pN ≡ pN).21 For molecular
fluids, r1 defines not only a (say) center of mass coordinate of molecule 1, but the entire con-
figuration of that molecule. Analogously pN defines all momenta, including the intramolecular
contributions. pN and r N span the phase space in which microscopic states are defined. The
average A of a state variable a can be determined as integrals over all positions and momenta
via34

A= 〈a〉=
∫

a
�

r N , pN
�

P
�

r N , pN
�

dpNdr N (1.2)

with the phase space density distribution function P
�

r N , pN
�

, which is the probability density
of encountering the system with its molecules positioned in the configuration r N with the
molecules carrying momenta pN . The phase space density distribution function is related to
the non-normalized phase space probability function f

�

r N , pN
�

by35

P
�

r N , pN
�

=
f
�

r N , pN
�

∫

f (r N , pN )dr N
(1.3)
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1 Introduction

The integral in the denominator is the partition function, which is a measure of the total
“number” of accessible microscopic states. It is a high-dimensional integral that cannot be
solved directly for the applications considered in this work. Therefore, it is generally not
possible to calculate the thermodynamic quantities analytically.

In the context of molecular simulations, eq. (1.2) thus rather describes the average value
over occurring configurations in phase space. For this purpose, the integral in eq. (1.2) is
approximated by a finite sum which allows us to determine averages of thermodynamic
quantities without explicitly knowing the partition function. For generating the configurations
to be averaged, molecular simulations provide two techniques to explore the phase space, both
discussed in the following sections: Monte Carlo simulations (MC) and Molecular Dynamics
simulations (MD). In both methods, macroscopic thermodynamic properties are determined
by simulating a finite, managable number of molecules in a simulation volume. Bulk systems
are emulated by ensuring the simulation volume is surrounded by infinite copies of itself
using periodic boundary conditions (PBC). The interactions between the observed molecules
are defined by force fields, which are addressed in the following section.

1.1.1 Classical Force Fields

In classical molecular simulations, force fields are used to describe interactions between atoms
of a configuration r N . A force field defines a set of equations and parameters that is used to
calculate the distinct contributions to the potential energy Epot of a system. The potential
energy is used in MC simulations to evaluate the acceptance criterion of a new configuration,
while in MD the force acting on molecules (F = −∂ Epot/∂ r N) is used to determine the time
evolution of the system. The quality of simulation results depends heavily on the quality and
suitability of the force field used, and hence the development and improvement of force fields
is the subject of a great number of research efforts.36–49 The field of applications ranges from
relatively general to very specific. On one side of the spectrum are force fields designed for
good transferability of parameters to different substances. Examples for transferable force
fields are the AUA36 force field, TraPPE,37 and Gromos.38–41 On the other hand, there are
force fields optimized precisely for a specific substance and even for the description of some
peculiar substance quantities, such as specific protein solvents.48

In the present work, the Transferable Anisotropic United-Atom Mie Potential force field
(TAMie) developed by Hemmen et al.,42,43 Weidler and Gross,44–46 and Baz et al. 47 is used to
evaluate the potential energy. The force field uses an united-atom (UA) approach, in which
hydrogen atoms are grouped together with larger atoms and treated as a single interaction site.
For example, methyl (CH3) and methylen (CH2) groups are considered as single interaction

4



1.1 Molecular Simulations & Force Fields

sites, which significantly reduces the computational effort while yielding good predictions.
TAMie is an anisotropic force field, because the bond length between the methylen and the
methyl end groups of the hydrocarbon molecules is increased by ∆l.

Like other common force fields, TAMie calculates Epot as a sum of various contributions to the
potential energy of a system as50

Epot(r
N ) = EVdW(r

N ) + Echarge(r
N ) + Ebond(r

N ) + Ebend(r
N ) + Etorsion(r

N ) (1.4)

The contributions can be broken down into two categories. The Van-der-Waals interactions
EVdW and the Coulombic interactions Echarge characterize the nonbonded interactions between
atoms of different molecules and between atoms of the same molecule that are sufficiently
far apart. The covalent terms describe the intramolecular contributions due to stretching of
bond lengths Ebond, bond angles Ebend, and torsion angles Etorsion. In the case of the TAMie
force field, the individual energy contributions are calculated as44

Epot(r
N ) =

∑

pairs i, j

ci jϵi j

�

�

σi j

ri j

�ni j

−
�

σi j

ri j

�6�

︸ ︷︷ ︸

EVdW

+
∑

pairs i, j

qiq j

4πε0ri j
︸ ︷︷ ︸

Echarge

+
∑

bonds
kl

i j

�

ri j − r0
i j

�2

︸ ︷︷ ︸

Ebond

+
∑

angles

kθi jk

2

�

θi jk − θ 0
i jk

�2

︸ ︷︷ ︸

Ebend

+
∑

prop. dih.

3
∑

n=0

cn,i jkl

�

1+ dn,i jkl cos
�

nφi jkl

��

+
∑

imp. dih.

d0
i jkl

2

�

φi jkl −φ0
i jkl

�2

︸ ︷︷ ︸

Etorsion

(1.5)

where ri j =
�

�r j − ri

�

� is the distance between two interaction sites i and j, located at position
ri and r j, respectively.

The Mie-n-6 potential given in eq. (1.5) that is used to describe EVdW in the TAMie force
field is defined by the energy parameter ϵi j, a size parameter σi j, and the exponent ni j.
The parameters of interactions between different types of UA centers are calculated via
Lorentz-Berthelot rules.51,52 Furthermore, an additional cross-interaction parameter ki j can
be introduced for mixtures.46 A more detailed description of the potential and the calculated
prefactor ci j will be given in a later chapter. Electrostatic interactions are modelled as
Coulomb interactions by placing point charges qi, q j on the centers of the VdW interactions or
as additional off-center sites, where qi is a fixed point charge (given as a factor of the electron
charge) and ε0 is the dielectric constant in vacuum. Applying multiple charges effectively leads

5



1 Introduction

to multipole interactions. That way, dipole-dipole and quadrupole-quadrupole interactions
can also be modeled using point charges.

The covalent terms in eq. (1.5) assign energy penalties for the displacements in distance
(Ebond) and angle (Ebend) between bound interaction sites from a defined bond length r0

i j by
ri j, or from a defined angle θ 0

i jk by the angle θi jk. The energy that results from torsion of
dihedral angles φi jk between i, j, k, and l also adds to this contribution. The magnitude of
the intramolecular contributions to the potential energy is defined by the respective force
constants kl

i j, kθi jk, cn,i jkl , and d0
i jkl .

The force field parameters of the intramolecular potentials, namely equilibrium values and
force constants, are typically determined either from experimental data or from quantum
mechanics calculations.53–56 For a number of reasons, many force fields use certain length or
angle constraints.57,58 Also the original version of TAMie uses fixed bond lengths between
neighboring interaction sites i− j, instead of a harmonic potential kl

i j

�

ri j − r0
i j

�2, as in eq. (1.5).
Fixed bond lengths can be justified in certain cases35 and are convenient in Monte Carlo
simulations, but also in molecular dynamics simulations, because the high-frequency vibra-
tions of typical interatomic bond-lengths then do not have to be resolved numerically.59–61
Consequently, for rigid bond lengths, the time step can be significantly increased, enabling
longer simulation times. At the same time, the bond length vibrations do not significantly
contribute to many physical properties.35

However, there are downsides when using constant bond lengths, that can be subtle. The
averages obtained in a system with rigid bonds are different from those obtained in a system
of infinitely strong but non-rigid bonds.21 For the heat capacity cv, as well as for the thermal
conductivity λ, vibrational contributions have to be considered and hence correction terms
have to be introduced to “correct” for rigid bonds.33,62 Furthermore, modifying parts of the
intramolecular interactions can significantly change the dynamic properties of a fluid.63–65 It
is difficult to predict how or to which degree individual parameters influence these properties.
For some substances, such as water, the influence of, for example, bond flexibility on static and
dynamic properties has been investigated.66,67 Other studies show, that the parameterization
of the torsional energy contribution Etorsion has a strong influence on the viscosity without
affecting other properties, such as the VLE.68

Several questions addressed in this thesis concern force fields and the influence of their
parameters on dynamic properties. Chapter 2 investigates the influence of bond strength
(defined by kl

i j) on the transport quantities for various hydrocarbons and answers the question
whether simulations with rigid and flexible bond lengths yield sufficiently similar results within
typical statistical uncertainty. Chapter 3 considers the TAMie force field and addresses the

6



1.1 Molecular Simulations & Force Fields

question: How well can a force field predict transport properties of fluids, whose parameters
were fitted solely to VLE data (vapor pressure and liquid density), with no information on
dynamic properties included in the optimization process? In chapter 4, simulations of simple
model fluids are used to assess the concept of entropy scaling for mixtures. The force fields of
the atomic Lennard-Jones fluids used in this study feature only a comparably small number of
parameters, allowing the influence of individual parameters on the properties of the mixtures
to be thoroughly investigated. In order to answer such questions, this work employs force
fields in molecular simulations of both techniques, MC and MD, which are therefore briefly
outlined in the following section.

1.1.2 Molecular Simulations

The historically earlier molecular simulation method is the Monte Carlo method, which
was proposed by Metropolis et al. 69 The method uses importance sampling, to generate
configurations according to the probability of their occurrence P

�

r N
�

by stepping through
phase space in distinct moves.35 This allows the ensemble averages A of a macroscopic quantity
a of the system to be calculated simply by averaging over the sampled values of a for all
moves.34

A= 〈a〉=
1

Nmoves

Nmoves
∑

i=1

ai (1.6)

In simulations in the canonical ensemble – the one natural to MC – each move is a displacement
of one or more arbitrary atoms to a random new position according to the principle of
importance sampling.34 The MC simulations in this work are performed in the grand canonical
ensemble. Such simulations, at constant µ, V , and T , are realized by introducing deletion
and insertion of molecules as additional moves besides the displacement moves.35 Grand
canonical MC simulations (GCMC) provide efficient methods for determining vapor-liquid
equilibria (VLE) via molecular simulations,42,70 which are also used in this work and will
be therefore introduced in chapter 4. Mainly, however, GCMC simulations are used in this
work to determine entropy values along isotherms via the Gibbs equation, as described in
section 4.2.3. Here, only a single GCMC simulation is needed at each temperature. The
entropy at different pressures along the isotherm is then determined via histogram reweighting,
which significantly reduces the computational effort.71 As such, Monte Carlo simulations and
histogram reweighting provide us with very efficient methods for the determination of static
thermodynamic quantities.

However, if one is interested in dynamic properties, like viscosity, thermal conductivity, or
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1 Introduction

diffusion, one must rely on Molecular Dynamics simulations, in which a system is allowed to
evolve in time. In this method, the motion of molecules in the system is estimated along a
temporal trajectory by integrating Newton’s equation of motion.35 In a simulation at constant
number of molecules, volume and energy (NVE), the trajectory thereby conserves the Hamil-
tonian H, being the operator describing the total energy of the system (potential energy Epot
and kinetic energy Ekin) as a function of the phase space variables r N and pN .34

H
�

r N , pN
�

= Ekin
�

pN
�

+ Epot
�

r N
�

(1.7)

For a Hamiltonian system in cartesian coordinates the following relations, known as Hamilton’s
equations of motion, apply.21

ṙ N =
∂H
∂ pN

=
pN

m
(1.8)

ṗN = −
∂H
∂ r N

= −
∂ Epot(r N )

∂ r N
= F

�

r N
�

(1.9)

where F is the vector of forces on each molecule of a system with the configuration r N . The
dots above ṙ N and ṗN symbolize the time derivative of the respective quantity.

Thermodynamic properties can be determined directly from the time integration of these
equations of motion as an average over the time trajectories of the sampled quantities.35 Yet
there are several details that must be taken into account when simulating in order to ensure
reliable results.31,72 For instance, the algorithm used for time integration and the applied
time step size may affect the result of a simulation.73 In order to perform MD simulations
at constant temperature or pressure, a thermostat or barostat, respectively, is required.34
Selecting an unsuitable method for this purpose can lead to incorrect results, especially when
investigating dynamic properties.74 When determining dynamic properties in MD simulations,
there are generally some additional caveats to consider compared to static quantities. For
example, in order to determine transport coefficients, either the equations of motion have to
be extended or additional quantities have to be sampled and processed.21,31 Being a central
subject of this thesis, the following chapter will introduce in more detail the specifics of
determining dynamic coefficients via molecular simulations.

1.2 Dynamic Properties from Molecular Dynamics

Two general approaches are possible for determining transport coefficients using molecular
simulations, both of which are MD methods. In addition to the equilibrium MD simulations

8



1.2 Dynamic Properties from Molecular Dynamics

already introduced in section 1.1, an alternative technique are non-equilibriumMD simulations
(NEMD), which will be regarded first.

1.2.1 Non-Equilibrium Molecular Dynamics

The NEMD approach appears to be the more intuitive one, since the transport properties
are determined in a way comparable to related experiments.21 A gradient is induced on the
system and the corresponding transport quantity can be determined from the response of the
system to this perturbation of the equilibrium. For this purpose, in the computer experiment,
the equations of motion (eqs. (1.8) and (1.9)) are extended, as21

ṙ =
∂H
∂ p
+ C (r , p) Fe(t) (1.10)

ṗ = −
∂H
∂ r
+ D (r , p) Fe(t) (1.11)

Fe(t) is a time-dependent driving force, C (r , p) and D (r , p) are functions of the phase space,
which are specified by the respective perturbation.

Taking the example of the viscosity of a Couette flow in the x direction, this yields a set of
equations of motion known as the SLLOD algorithm.75

ṙ = p/m+ γy x

�

r · ēy

�

ēx (1.12)
ṗ = F − γy x

�

p · ēy

�

ēx (1.13)

Here, ēα with α= x , y, z is the unit vector in α direction and γy x is the shear rate ∂ vx
∂ y = γy x ,

the change in the velocity in y direction (orthogonal to the direction of the flow). The systems
response can be determined, manifesting as response of the non-diagonal entries of the
pressure tensor J x y

p . Using with Newton’s shear law from table 1.1, the viscosity can be
obtained as34

η= − lim
t→∞

¬

J x y
p

¶

t

γy x
(1.14)

The non-equilibrium average
¬

J x y
p

¶

t
can be determined as the time average of a trajectory

following the equations of motion according to eqs. (1.12) and (1.13). It is necessary to apply
certain specific periodic boundary conditions that take into account both the deformation of
the simulation box due to shear, as well as the flow.76 Moreover, high shear rates are required
to ensure a low noise-to-signal ratio. To reach the viscosity at the shear rate of interest (often
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the viscosity at γy x = 0) it is necessary to extrapolate from several simulations at different
γy x .77 Furthermore, since the perturbation of the equations of motion introduces energy
into the system from external sources, a thermostat must be used in this case for NEMD
simulation.78

Some of the problems mentioned are overcome by a different non-equilibrium method, the
Reverse NEMD (RNEMD).78,79 In this approach, cause and effect are interchanged. A flux
is artificially created in the system, which results in a gradient in the simulated system. In
the example of viscosity, a momentum flux is applied by swapping the velocities of two
particles by a Maxwell daemon. For this purpose, the simulation box is divided into slices in
the y direction. The daemon now regularly exchanges the velocities of two particles with
opposed velocities, which are located in two slices that are half a box length apart. This
way, momentum is transferred artificially, which results in a physical momentum flux that
compensates for this disturbance. A linear velocity profile evolves in the system in y direction,
from which the viscosity can be determined. RNEMD generally converges comparatively
well80 and is considered to conserve energy, so no (or only a very weak) thermostat has to be
used. Moreover, ordinary periodic boundary conditions can be applied. For high momentum
fluxes, nonlinear velocity profiles are exhibited, leading to incorrect values for η.

A drawback – which RNEMD has in common with other NEMD methods – is that a dedicated
flux (or driving force) has to be applied for any transport coefficient. Besides the viscosity
shown above, thermal conductivity and diffusion can also be calculated via NEMD using the
appropriate C (r , p), D (r , p) and Fe(t) terms in eqs. (1.10) and (1.11). This is where the
equilibrium approach for determining the transport properties in MD has a strong advantage:
The method determines the transport coefficients from equilibrium simulations and can thus
calculate all coefficients simultaneously.

1.2.2 Transport Coefficients from Equilibrium MD Simulations

Along with the NEMD methods shown, dynamic quantities such as the transport coefficients
can also be determined in simulations in the equilibrium ensemble in which no perturbations
are imposed. The method is based on the fact that all the information about the response of a
system to a perturbation is contained in the equilibrium time correlation function (TCF), which
can be determined in equilibrium simulations. The origin of the TCF, as well as its relation to
the dynamic properties, will be briefly presented in this section. The argumentation follows
a chapter of the text book by Tuckerman,21 where the interested reader can find a more
detailed derivation.
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1.2 Dynamic Properties from Molecular Dynamics

The initial point for the derivation is – as for NEMD – the perturbed equations of motion, shown
in eqs. (1.10) and (1.11). At this point, we assume just a small perturbation from equilibrium,
so that the driving forces lead only to a small perturbation of Hamilton’s equations. For the
time-dependent phase space density distribution function of the non-equilibrium ensemble a
perturbation approach can then be applied as

P (χ , t) = P0 (H (χ)) +∆P (χ , t) (1.15)

where χ abbreviates the phase space vector χ = (r , p) for a more compact notation. P0

describes the equilibrium phase space density distribution function as a function of the Hamil-
tonian H (χ) of the undisturbed system; ∆P (χ , t) denotes the time-dependent perturbation.
For the average of an arbitrary phase space function a (χ) this perturbation approach yields

〈a〉t =

∫

a (χ) P (χ , t)dχ (1.16)

=

∫

a (χ) P0 (H (χ))dχ +
∫

a (χ)∆P (χ , t)dχ (1.17)

= 〈a〉+
∫

a (χ)∆P (χ , t)dχ (1.18)

〈a〉t is the average in the non-equilibrium ensemble and corresponds to the time-dependent
macroscopic quantity A(t), whereas 〈a〉 is the average of a (χ) in equilibrium (see eq. (1.2)).
Since the disturbance of the system due to the driving force is assumed to be small, the
perturbation term can be linearized. This approach is the basis of the linear response theory,
which allows to solve the Liouville equation of the system. As result, the following equation is
obtained for 〈a〉t .

〈a〉t = 〈a〉 − β

t
∫

0

Fe (s)ds

∫

P0 (H (χ)) a (χt−s (χ)) j (χ)dχ (1.19)

The integration over the time variable s in eq. (1.19) originates from the solution of the
Liouville equation. Fe (s) is the driving force from eqs. (1.10) and (1.11) with respect to the
time s. Equation (1.19) further introduces the dissipative flux j (χ), which is defined by the
equation

j (χ) = −
3N
∑

i=1

�

Di (χ)
∂H
∂ pi
+ Ci (χ)

∂H
∂ ri

�

(1.20)

Also note, that for eq. (1.19) the system is assumed to be in equilibrium by time t ≤ 0. So the
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1 Introduction

driving forces are zero for t < 0, giving also ∆P (χ , t = 0) = 0 and 〈a〉t=0 = 〈a〉.

For the second integral in eq. (1.19), Tuckerman gives a quite accessible interpretation:21
Each point χ in the phase space is considered as a starting point. The system is then allowed
to evolve from this point for a time t − s according to Hamilton’s equations of motion. After
this time a new point in the phase space is reached: χt−s. As a solution of Hamilton’s equations
of motion, χt−s depends solely on the respective starting point χ, which is why it is denoted as
χt−s (χ) in eq. (1.19). The integral has the form of an average, similar to that in eq. (1.2). It
corresponds to the average of a (χt−s (χ)) j (χ) over all possible initial conditions, with respect
to the phase space density distribution function of the unperturbed ensemble P0 (H (χ)). The
resulting average is multiplied with Fe (s). s is then integrated from 0 to t to obtain the
time-dependent non-equilibrium average of a at time t: 〈a〉t = A(t).

It is noteworthy at this point that, with eq. (1.19), it is possible to determine the non-
equilibrium-average, exclusively via averages of the equilibrium ensemble, characterized by
P0 (H (χ)). The average value calculated in the second part of eq. (1.19) is the aforementioned
equilibrium time correlation function (TACF). By expressing the equilibrium TACF as an average,
eq. (1.19) can be rewritten.

A(t) = 〈a〉t = 〈a〉 − β

t
∫

0

Fe (s) 〈a (t − s) j (0)〉ds (1.21)

All quantities in this equation – the equilibrium average 〈a〉, just as the quantities in the
TACF – can be sampled in an equilibrium MD simulation. In order to be able to calculate the
transport quantities via TACFs, the respective perturbation terms Fe, C (χ) and D (χ) still have
to be identified. They can be expressed in quantities that are captured during the simulation.
Using the example of viscosity, this step will be illustrated in the following.

The perturbed equations of motion of a Couette flow in the x direction (eqs. (1.12) and (1.13))
again serve as a basis. By comparison with the unperturbed equations of motion (eqs. (1.8)
and (1.9)) and the extended form of the equations of motion from eqs. (1.10) and (1.11), C

and D can be identified as

C (r , p) = γy x

�

r · ēy

�

ēx (1.22)
D (r , p) = γy x

�

p · ēy

�

ēx (1.23)
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1.2 Dynamic Properties from Molecular Dynamics

with a resulting value of Fe(t) = 1. As a matter of that, the dissipative flux is calculated as

j (χ) = j (r , p) =
3N
∑

i=1

�

Ci (r , p) Fi − Di (r , p)
pi

mi

�

= γy x

3N
∑

i=1

�

�

r · ēy

�

(ēx · Fi) +
�

p · ēy

�

�

ēx ·
pi

mi

��

= γy x V J x y
p (1.24)

with J x y
p as a non-diagonal entry of the instantaneous pressure tensor

Jp (r , p) =
1

3V

N
∑

i=1

�

p2
i

mi
+ ri · Fi

�

(1.25)

As a result, the non-equilibrium-average of the non-diagonal entry of the pressure tensor
¬

J x y
p

¶

t
can be calculated according to eq. (1.21) as

¬

J x y
p

¶

t
=

¬

J x y
p

¶

− βγy x V

t
∫

0

¬

J x y
p (0) J

x y
p (t − s)

¶

ds (1.26)

With the definition of viscosity from eq. (1.14) as η= − limt→∞

¬

J x y
p

¶

t
/γy x and the fact that

¬

J x y
p

¶

equals zero according to the virial theorem, one obtains the famous Green-Kubo81,82

equation for viscosity

η= βV

∞
∫

0

¬

J x y
p (0) J

x y
p (τ)

¶

dτ (1.27)

introducing a change of variables τ= t − s into the integral. The Green-Kubo equations can
also be derived for thermal conductivity and self-diffusion. The corresponding quantities of
the TACF are the heat flux Jq for λ and the velocities of the particles vi for Dself, i.

According to Onsager’s regression hypothesis, any TACF decays to zero after a sufficiently
long time.83 Thus, essentially constant values for the transport coefficients of a fluid with low
molecular mass can be determined from finite integration times in eq. (1.21). How long the
decay time (correlation time) actually is, in the specific case, depends strongly on the nature
of the system under study. In most cases considered in this work, the TACF decayed to zero
after only a few simulation time steps. When using the Green-Kubo equations, it is crucial to
record the required values for the TACF (i.e., J x y

p , Jq, and vi) at a high frequency, because
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the values at very small times τ substantially contribute to the value of the integral of the
autocorrelation function, eq. (1.27). For higher values of τ, the noise-to-signal ratio of the
TACF becomes significantly worse. Accordingly, for the evaluation of the Green-Kubo integrals,
it is necessary to balance between selecting an integration time τmax that is long enough to
ensure that the TACF has decayed while still providing good statistics for the integral.

Associated with each Green-Kubo equation is a corresponding Einstein relation, into which
the long-time behavior of the trajectories enters, in contrast to the short correlation times
which are relevant for the Green-Kubo equations. Green-Kubo and Einstein relation can be
straightforwardly transformed into each other.34 In the present work, the diffusion coefficient is
determined from an Einstein relation that calculates Dself from theMean Squared Displacement
(MSD) of the molecule center of mass, according to35

Dself =
1

6N
lim
τ→∞

d
dτ

N
∑

i=1




|ri(τ)− ri(0)|
2
�

(1.28)

We use the Einstein equation instead of the velocity autocorrelation function in this case as it
only requires storing the positions of the molecules at comparatively large time intervals and
does not require additional sampling of the molecule velocities at high frequency.

In general, the Green-Kubo and Einstein relations shown here can be used to determine dy-
namic properties from quantities that can be sampled in ordinary equilibrium MD simulations.
This is where the advantages of this method over NEMD methods become apparent. The
equations of motion do not need to be modified, no special periodic boundary conditions
need to be applied, and no (additional) thermostating is required. And most significantly,
all three transport coefficients can be determined from one and the same simulation, which
reduces the simulation effort. The evaluation of the dynamic properties can be done in
post-processing; in fact, the simulation is independent of the evaluation of the coefficients
– as long as the required quantities are recorded at a sufficiently high frequency during the
simulation. A particular challenge in post-processing lies in a statistically optimized analysis
of the data in order to improve the noise-to-signal ratio, which has long been considered
the major weakness in the determination of transport properties from EMD simulations.84
There have been advancements in this field in recent years, and new algorithms have been
developed to efficiently compute the TACF and to improve and accurately quantify statistical
uncertainties. Some examples of such techniques, such as the moving window algorithm,85
the time decomposition method,86 and bootstrapping methods for determining error bars
are collected in the Best Practice Paper for Computing η and Dself with EMD by Maginn
et al.,31 which gives a highly recommended overview of the subject. The best statistics at the
highest efficiency can be achieved by computing the TACF using the Fast Fourier Transform
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(FFT) algorithm.21 Here, the TACF are computed as convolutions in Fourier space and are
subsequently transformed back. No data is omitted in the process and the calculation is
performed in a fraction of the time required by conventional algorithms, while at the same
time, requiring comparatively little memory resources.

One goal of the present work is to build an efficient framework for robust determination of
transport coefficients from EMD simulations. It addresses both, optimal post-processing and
the rigorous setup of simulation sets. By combining Fast Fourier Transform algorithms with
best-practice methods, I have developed a workflow that allows – especially in combination
with the entropy scaling methods that will be introduced in section 1.3 – to determine dynamic
properties over a wide range of states easily and in a comparably short time. A detailed
description of the workflow and techniques used can be found in chapters 2 and 3 of this
work.

1.3 Entropy Scaling

In determining transport properties, the present thesis is not limited to molecular simulations
alone. The goal of this work is to combine simulations with the entropy scaling method in
various ways in order to achieve synergy effects on multiple levels.

Entropy scaling is a semi-empirical correlation approach by which transport properties can
be determined based on the residual entropy sres of a given state defined by ρ and T . The
residual entropy is the entropy minus the entropy of an ideal gas at the same temperature T

and density ρ, as

sres (T,ρ) = s (T,ρ)− sid. gas (T,ρ) (1.29)

The connection between sres and dynamic properties was discovered and first researched by
Yaakov Rosenfeld already in the 1970s.87 However, the method received little attention until it
was brought back into spotlight by a study by Dzugutov 88 published in Nature in 1996. Without
providing a complete physical derivation, Rosenfeld’s original article was the first to describe
a monovariable relationship between excess entropy and a transport property ζ = (η,λ, Dself)
in reduced form ζ#, i.e. the property divided by a ‘reference’ property. Rosenfeld initially
demonstrated the principle only for viscosity and diffusion; it was later applied to thermal
conductivity as well.89 Rosenfeld’s investigations included model fluids based on Lennard-
Jones and hard sphere potentials, whose dynamic properties were determined in molecular
simulations. Subsequent work on entropy scaling also continued using molecular simulations
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to demonstrate the applicability of the principle.25,90–92 Thus, entropy scaling has historically
been closely related to molecular simulation.

The rather involved property behavior of transport coefficients for varying state variables, such
as temperature and pressure, makes the development of engineering correlations difficult –
especially across phase boundaries. Using Rosenfled’s approach, transport coefficients can be
described as a function of a single state variable as

ζ# (T,ρ) =
ζ (T,ρ)
ζref (T,ρ)

= ζ# (sres (T,ρ)) (1.30)

where ζref (T,ρ) stands for a suitable reference for each specific transport coefficient, which
is used to obtain a dimensionless property. Several approaches using different references
can be found in literature, which yield more or less satisfactory results. Rosenfeld’s original
approach was to define ζref in such a way that ζ# becomes dimensionless, using combinations
of thermodynamic quantities and constants, such as ρ, T, kB. Towards the low-density limit
(for which eq. (1.29) gives sres → 0), this approach, however, leads to a diverging increase of
ζ# for gases.24 This behavior can be avoided for η and Dself by using the Chapman-Enskog
approximation as a reference – a first-order approximation of the Boltzmann-equation, as
proposed by Novak 93 and Lötgering-Lin and Gross,24 as well as Hopp et al. 26 for self-diffusion.
The new reference leads to finite values at the low density limit and a simple parameterization
of correlation functions.

In recent years, entropy scaling has received increased attention, partly in connection with
the isomorph theory, giving a lead for the physical derivation of the entropy scaling approach.
The theory, developed by the Glass & Time group from Roskilde, describes the occurrence
of special lines in the thermodynamic state space, so-called isomorphs. Isomorphs occur in
fluids whose fluctuations in energy U and virial W (from the virial equation pV = N

β +W)
are strongly correlated. Fluids with a correlation factor of R = 〈∆W∆U〉p

〈∆W 2〉〈∆U2〉
> 0.9 are called

Roskilde fluids94 and can be characterized by some interesting behaviors and invariants of
structural, thermodynamic and dynamic properties, which hold along an isomorph I .95 For
example, the radial pair distribution function in reduced coordinates g̃(r̃) does not change
along isomorph I .94 The isomorph can thereby cover states of different pressures, temperatures
and densities. Another fascinating phenomenon is the aging behavior of a system along an
isomorph I . After a jump from an equilibrated state point on the isomorph to another state
on the same isomorph (for example in a molecular simulation), the system is instantaneously
back in equilibrium. Isomorphs thus can be thought of as “wormholes in phase space”.95

In the context of entropy scaling, though, the following two invariants are most interesting:
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Both, the residual entropy and the TACF are considered constant in reduced coordinates along
isomorph I .94,96 From the immediate relationship between transport coefficients and the TACF
as used in the Green-Kubo relations (see, e.g., eq. (1.27) for viscosity), it can be deduced
that the reduced transport coefficients are also constant along isomorph I .97 That means, that
entropy scaling holds along isomorphs. Consequently, a number of studies of entropy scaling
have already been carried out from the perspective of isomorph theory.98 For the isomorph
theory, model fluids have been extensively studied by means of molecular simulations.97–100
Instead of a reference, dimensionless transport coefficients are usually considered directly in
this context, similar to those also used in this work in chapter 4 (see table 4.1).

However, entropy scaling is not only applicable to Roskilde fluids. Monovariable correlation
of transport coefficients and sres also occurs for fluids and state points where ∆U and ∆W

are not correlated. Therefore the isomorph theory does not give a conclusive derivation for
entropy scaling.

Although the fundamental physical derivation for entropy scaling has not yet been uncovered
– what speaks for the approach is that it works very convincingly in application and provides
a powerful engineering tool. Beyond model fluids and proofs of concepts, entropy scaling
can be used for real fluids and applications in industrial practice.14–16 With a suitable choice
of reference fluid, the monovariable profile of a reduced transport coefficient over residual
entropy ln

�

ζ# (sres)
�

is so benign that a simple correlation function can be adjusted to match
it. In the simplest case, for shear viscosity, even a linear Ansatz function can give good results.
Once the correlation function and its parameters are determined, the corresponding transport
coefficient is accessible for any state point for which the residual entropy is known.

In this work, the entropy scaling variant developed in Stuttgart by members of the Thermody-
namics group is used. Approaches for viscosity,24,25 self-diffusion,26 and thermal conductiv-
ity27–29 have already been published and further research is ongoing. In the mentioned studies,
an ideal gas approximation of the respective transport quantity (e.g., the mentioned CE vis-
cosity19 for η# 25) is chosen as reference, and entropies are determined from the PC-SAFT
equation of state.101 This choice ensures a great flexibility in terms of the range of substances
and accessible state points. For all transport coefficients, correlations were adjusted to a
rather extensive set of experiments, e.g. from the Dortmund database.102 Using a PC-SAFT
group contribution method (the GC-PC-SAFT103), it was possible to develop a group contri-
bution method for entropy scaling of viscosity24 and thermal conductivity,27 which provides
remarkable results, even for substances to which the method was not adapted in the first
place. The excellent results of the method are not limited to pure substances. Using mixing
rules for the parameters of the η correlations of the pure substances, the viscosity of their
mixture can also be predicted in very good agreement with experiment, without adjusting
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further parameters.25 The Stuttgart entropy scaling variant reaches its limits, among others,
for the viscosity of associating substances25 and the diffusion coefficients in the gas phase26,
which in the latter case is due to the sparse data available. Apart from the fundamental
question of an underlying physical theory, there is thus a need for further research in the field
of applied entropy scaling.

In the present work, entropy scaling is combined with molecular simulations in several ways:

1. The use of entropy scaling for selecting meaningful state points at which transport coefficients
of real fluids are calculated from MD simulations. For this purpose, the state points are
chosen to be equidistant in residual entropy sres based on the entropy scaling. Simulations
at a few state points are then sufficient to allow the adjustment of a correlation function
for the respective transport coefficient of the concidered force field. The correlation
function can then be used to estimate the transport property of the force field for any
other state point, provided sres is known.

2. The efficient assessment of the performance of a force field in the determination of transport
coefficients. By estimating the transport properties using a correlation from entropy scal-
ing, associated to the force field (as described in point 1), the results of the simulations
can be compared against all experimental data available. To do this, the corresponding
transport coefficient of the force field’s correlation is simply estimated at each state point
where experiments are available. This avoids having to simulate at all experimental
state points, and the comparison with a large number of data provides an assessment of
the performance of the force field.

3. The assessment and further development of entropy scaling for mixtures using results from
molecular simulations for mixtures of simple model fluids as a reference. For this purpose,
mixtures of Lennard-Jones fluids are simulated, which differ only in one parameter of
eq. (1.5). In this particular case, both, the transport coefficient and the entropy of the
mixtures are determined from molecular simulations. Thus, GCMC simulations are used
in addition to MD simulations.

On the one hand, molecular simulations are thus used to further explore and evaluate the
entropy scaling method, as it has been done in studies since the beginning of the theory. On
the other hand, entropy scaling is used vice versa to make molecular simulation of transport
properties simpler and more efficient.
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1.4 Outline of this Thesis

Chapter 2 investigates whether classical force fields with rigid bond lengths yield equivalent
results (within statistical uncertainty) to models with harmonic bond length potentials that
are identical in all other respects. Static and dynamic physical properties, namely pressure,
viscosity, self-diffusion, and thermal conductivity of homogeneous phases, are analyzed under
varying force constants of the harmonic bond length potentials for ethane, propane, and
dimethyl ether described with the TAMie potential. The anticipated offset in the thermal
conductivity of the force field with rigid bond lengths compared to the harmonic bond length
models, is approximated by an analytical correction term. The study examines different
time steps for solving the equations of motion, and investigates the question of whether an
integrator that allows a separate, shorter time step for rather high frequency bond vibrations
offers advantages over a simple velocity Verlet integrator.

Chapter 3 gives an assessment of the Transferable Anisotropic united-atom Mie (TAMie)
force field for predicting dynamic properties. Equilibrium molecular dynamics simulations
are used to calculate three dynamic properties (η, Dself,λ) in one MD simulation using the
corresponding Green-Kubomethods. The simulated state points are distributed in temperature
and pressure based on an entropy scaling approach, using the PC-SAFT equation of state to
calculate the residual entropy. As a result, few simulations are sufficient to parameterize a
correlation function that allows comparison with experimental data over a wide range of
T and p. The combination of a few simulations with the entropy scaling method therefore
allows a very efficient estimation of the transport properties for a large temperature and
pressure range, while at the same time providing a consistent evaluation of the results by
comparing them with experiments.

The study in chapter 4 uses molecular simulations of model-mixtures to systematically validate
the applicability of entropy scaling for viscosities of mixtures. The considered binary mixtures
are composed of two LJ-fluids only differing in ϵ or σ, respectively. We further focus on
non-ideal mixtures of two identical LJ-fluids with ϵ11 = ϵ22 ̸= ϵ12 which are known to show a
strongly non-ideal phase behavior. We determine the viscosity η of several binary mixtures of
Lennard-Jones fluids in equilibrium molecular dynamic simulations at different state points.
Expanding a study25 published together with Lötgering-Lin (first author), I calculate the
dimensionless viscosity η# for mixtures. Using the residual entropy of the mixtures sres, which
I determined in grand canonical MC simulations, an entropy-scaled representation shows a
monovariable dependence of the reduced transport coefficient with sres, so that all results of
the study indeed collapse onto a single line.
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2 Force Fields with Fixed Bond Lengths and with Flexible Bond

Lengths: Comparing Static and Dynamic Fluid Properties

The content of this chapter is a literal quote of the publication:

M. Fischer, G. Bauer, J. Gross: Force Fields with Fixed Bond Lengths and with Flexible Bond Lengths:
Comparing Static and Dynamic Fluid Properties. Journal of Chemical & Engineering Data, 65:1583-1593,
2020. doi:10.1021/acs.jced.9b01031

Abstract

This study investigates the equivalence or differences between classical force fields with rigid
bond lengths and the same models but with (harmonic) bond length potentials. For ethane,
propane and dimethyl ether described with the Transferable Anisotropic Mie potential we
vary the force constant of the harmonic bond length potentials and analyze static and dynamic
physical properties, namely pressure, viscosity, self-diffusion, and thermal conductivity of
homogeneous phases. We find a range of values for the force constant of the bond length
potentials (expressed in terms of the period-length of bond-oscillations) where force fields with
harmonic bond lengths give equivalent results as the model with rigid bond lengths for static
properties, for viscosity and for self-diffusion coefficients. The thermal conductivity of the
force field with rigid bond lengths has an offset compared to the harmonic bond length models,
which can be approximated through an analytic correction term. After adding the correction
term results of the rigid model and the flexible models are in rather close agreement. Our study
varies time-steps for solving the equations of motion and investigates whether the rRESPA
integrator with a small time step associated to the (rather high frequency) bond length
potentials has advantages compared to a simple velocity Verlet integrator. Furthermore,
this work proposes a fast and memory efficient prescription to calculate autocorrelation
functions for the calculation of Green-Kubo integrals. We then estimate average values and
meaningful error bars for dynamic physical properties based on the time-decomposition
approach [Zhang, Y.; Otani, A.; Maginn, E.J.: Reliable Viscosity Calculation from Equilibrium
Molecular Dynamics Simulations: A Time Decomposition Method, J. Chem. Theory Comput.
2015, 11, 3537–3546].
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2 Force Fields with Fixed Bond Lengths and with Flexible Bond Lengths

2.1 Introduction

Reliable prediction of transport coefficients for fluids, such as viscosity, thermal conductivity
and diffusion is an important prerequisite for process design. Next to experimental mea-
surements and semi-empirical models, molecular simulations are an attractive alternative
for the determination of dynamic properties of fluids. Simulations are used where experi-
ments are expensive, time-consuming and particularly challenging, for example at extreme
temperatures or pressures. Semi-empirical models, such as the entropy scaling method1–3,
require a set of experimental data as basis for predicting transport properties, which may
not be available for many substances. Also in this case, molecular simulations can be used to
provide data where no experiments are available for which the models can be parameterized.
The quality of results from molecular simulations strongly depends on the used force field,
as corroborated in recent studies.4 Force fields are composed of potentials that describe the
interaction between molecules and the interaction between atoms within these molecules,
such as binding forces, binding angles and torsion angles. Some parameters of force fields are
adjusted to experimental data, especially those corresponding to Van der Waals interactions,
because they are usually defined to effectively capture multi-body corrections. Numerous
force fields can be found in literature for a wide variety of applications; for condensed liquids
some of the most commonly used are TraPPE5, Gaff6, OPLS7, Charmm8,9 and Gromos10–13.

In this work we study the influence of the way bonds are modeled with an emphasis on
the influence on transport properties. In most force fields, harmonic potentials are used to
model the bond energy between two neighboring atoms or atom groups. The two required
parameters, the reference length r0 and force constant kl , are determined a priori for many
force fields, for example, from crystallographic experiments, microwave data, and vibration
frequencies8. Alternatively, ab initio quantum mechanics calculations can be used to parame-
terize the potential6,14,15. In either case, these parameters are not part of the optimization
used to determine intermolecular parameters of a force field. The high frequency of the
bond vibrations limit the time step that can be used for the integration of the equations of
motion in the simulation. This also affects the calculation of transport properties. A study
by Gordon 16 showed an influence of the time step and the chosen integration method on
the simulated viscosity η of fully flexible n-octane and n-dodecane. Using multi-time step
integration schemes allows the simulation of high-frequency bond vibrations with larger time
steps17,18. In this context, the influence of the frequency of the bonds of a Lennard-Jones dimer
on the energy conservation of the integration approach18,19 as well as dynamic properties
such as the velocity autocorrelation function and the friction kernel of the model fluid were
investigated20,21.
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2.1 Introduction

In practice, bonds are often constrained to a constant bond length in order to increase the
time step22–24. A further simplification are so-called united atom force fields, in which bonds
including hydrogen atoms are implicitly considered: the hydrogen atoms are combined
with neighboring atoms to pseudo atoms, which act as single centres of interaction. These
simplifications are justified in many cases, because the bond vibrations are not excited
quantum mechanically at room temperature25,26. Importantly, these constraints also show
little influence on the dynamics in molecular simulations27,28. The comparability of the
two approaches in describing bonds has earlier been investigated in literature. Considering
viscosity, Bird et al. 29 showed the equivalence of bead-spring molecules and of bead-rod
molecules whose atoms are connected by infinitely stiff springs. Chandler and Berne 30 found
differences in the conformational structure of rigid and flexible models of n-butane. Tironi
et al. 31 discussed the relative merits of either rigid or flexible models of water. The authors
concluded that introducing flexibility is possible but not recommended. The quality of the
results could not be improved, whereas flexible bonds increase the danger of introducing
further artifacts. The velocity autocorrelation function of flexible and rigid water models was
also compared by Hess et al. 32 who proposed flexible constraints as an alternative approach
for the calculation of intramolecular bonds.

The difference in transport properties between fixed and flexible bonds were compared for
N2 and H2O by Bordat and Müller-Plathe 33. Differences for the viscosity were found to
be within statistical uncertainties. Other studies for water show more accurate results for
flexible molecules in diffusion and viscosity34–36 compared to a rigid model. However, in these
cases, results were compared to fully rigid water models. The effects of flexible bond lengths
and flexible bond angles were not considered separately in these studies. Aimoli et al. 37
found, that a flexible TraPPE description of CO2 is able to estimate transport properties with
accuracies comparable to that of rigid models. However, the authors report higher deviations
to experimental data for the thermal conductivity calculated with the flexible TraPPE force
field. Considerable deviations from the respective force field with rigid bonds were also found
for the thermal conductivity in flexible models of n-hexane38 and polyamide-6,639.

MD simulations with bond length constraints require iterative adjustment of molecules’ space
coordinates for every time step which is particularly undesired for large simulations. That
is why force fields with fixed bond lengths were in several studies converted to a “flexible”
equivalent force field. A corresponding “flexible” model is usually defined by assuming
harmonic bond length potentials with force constant kl and zero-force length r0 defined equal
to the fixed bond length. For example, studies in the literature show flexible TraPPE variants
for CO2

40,41, for n-alkanes16,42, for propane43 and for n-octane, cyclohexane, squalane, and
other hydrocarbons44. The origin of the kl values in the TraPPE-flex force fields is often not
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2 Force Fields with Fixed Bond Lengths and with Flexible Bond Lengths

quite clear. Usually, the force constants are taken over from other force fields, like Amber6,
as in the force field of Rane et al. 44 Depending on the originating force field, the kl value for
the same bond type may differ significantly between the two force fields.

In this work we systematically investigate how the force constant kl of bond length potentials
influences the static and transport properties of short-chain hydrocarbons. We thereby regard
the pressure p, the shear viscosity η, the self-diffusion coefficient Dself and the thermal con-
ductivity λ of ethane, propane and dimethyl ether as determined from equilibrium molecular
dynamics (MD) simulations. We introduce a harmonic bond potential in the Transferable
Anisotropic Mie (TAMie) force field, which was originally parameterized for fixed bond
lengths45,46. The (inverse) bond length constants are thereby scaled with the mass of the two
corresponding interaction sites, leading to the period time of single bond length vibrations.
Expressing bond length constants in this way makes the results transferable to other force
fields and allows for a meaningful comparison of different substances. The “flexible force
field” is studied for a range of kl values. For varying force constants of the harmonic bond
length potentials we investigate different time steps and MD-integration schemes and observe
how the results for static and dynamic properties change for increasing large time steps.

2.2 Methods

2.2.1 Molecular Model

The united atom TAMie force field45–48 is considered in this study. TAMie originally utilizes
fixed bond lengths whereas angles and torsions are modeled as flexible potentials. Inter-
molecular interactions are described as Mie (n–6) potentials (vdW), and fixed point charge
(Coulombic) potentials, as

ui j (r) = ci jϵi j

�

�σi j

r

�ni j

−
�σi j

r

�6�

+
qiq j

4πε0r
(2.1)

with the prefactor

ci j =

�

ni j

ni j − 6

�

�ni j

6

�6/(ni j−6)
(2.2)

where ri j denotes the distance between two interaction sites i and j. The size parameter σi j,
the well depth ϵi j and the repulsive exponent ni j characterize the vdW interactions. These
parameters were adjusted to experimental data of vapor-liquid equilibria (VLE). Lorentz-
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Berthelot combining rules are applied49,50, where repulsive exponents are combined arith-
metically as ni j = (nii+n j j)/251. Coulombic interactions are calculated with the partial charge
qi, given as a factor of an electron charge |e|, and the dielectric constant ε0.

Molecules regarded in this study consist of three or less interaction sites. The intramolecular
potential of the molecules is composed of the bending angle potential of the original force
field and the bond length potential investigated in this study. Bending angles are generated
according to a harmonic potential

ubend(θ ) = kθ/2(θ − θ0)
2 (2.3)

where kθ is the force constant, θ is the bending angle, and θ0 is the zero-force angle. TAMie
was originally parameterized for fixed bond lengths. In order to study the influence of the
bond vibrations on static and dynamic fluid properties, we introduce flexible bond lengths
according to a harmonic bond potential

ubond = kl(r − r0)
2 (2.4)

The zero-force distance r0 is adopted from the original Tamie force field. kl denotes a force
constant with unit kcal mol−1 Å−2. Note, that we use kl in eq. (2.4) instead of kl/2, in agreement
to the notation in Lammps52. We investigate how the stiffness of the harmonic potential
influences different static and harmonic properties of fluids.

An overview of all TAMie parameters used in this study is given in table 2.1 and table 2.2.

2.2.2 Data Analysis

Dynamic properties in this study were determined from equilibrium molecular dynamics
simulations. The three investigated dynamic properties (shear viscosity η, thermal conductiv-

bond type r0/Å
CH3−CH3 1.94
CH3−CH2 1.74
CH3−O 1.61

angle type θ0/deg kθ/kcalmol−1

CH3−CH2−CH3 114.0 124.20
CH3−O−CH3 112.0 120.03

Table 2.1: Intramolecular Parameters
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2 Force Fields with Fixed Bond Lengths and with Flexible Bond Lengths

united atom i ϵii/kcal mol−1 σii/Å nii qi/e

−CH3− 0.27089 3.6034 14 0.175 (next to ether O)
−CH3− (ethane) 0.25989 3.6463 14 —
−CH2− 0.10515 4.0400 14 —
−O− (DME) 0.10802 3.213 12 −0.35

Table 2.2: Intermolecular Parameters

ity λ, and self-diffusion coefficient Dself) for a given state point can be obtained in a single
simulation run.

Shear viscosity and thermal conductivity are determined through Green-Kubo relations53,54.
Green-Kubo integrals associate dynamic properties with autocorrelation functions (ACF) of
quantities sampled during simulation. The ACF of the sampled time series, RJJ , of a general
quantity J is calculated as

RJJ(τ) = lim
Θ→∞

1
2Θ

Θ
∫

−Θ

J(t +τ)J(t)dt (2.5)

where τ is the time lag between two evaluations of J and t is the instantaneous time.
Integration of RJJ (with consideration of a corresponding prefactor C) yields the cumulative
transport property

ζrun(τ) = C

τ
∫

0

RJJ(τ
′)dτ′ (2.6)

as function of the lag time. The ACF’s decay to zero in the limit of infinite lag times τ and
the respective transport coefficient ζ is therefore derived from the limit of infinite integration
times of the running integral as

ζ= ζrun(τ→∞) (2.7)

In the specific case of the the shear viscosity, the Green-Kubo relation uses the ACF of off-
diagonal elements of the shear-stress tensor in the simulation box, Jαβp , (with α,β ∈ (x , y, z)
and α ̸= β), calculated as

RJpJp
(τ) = lim

Θ→∞

1
2Θ

Θ
∫

−Θ

Jαβp (t +τ) J
αβ
p (t)dt (2.8)
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The shear viscosity as function of τ is then

ηrun (τ) =
1

V kBT

τ
∫

0

RJpJp
(τ′)dτ′ (2.9)

where the shear viscosity is formally obtained as the limit η= ηrun (τ→∞). The stress tensor
is calculated during the simulation using the molecule velocities vi, i ∈ x , y, z and the virial
rij(∂ u(ri j)/∂ rij), according to

Jαβp =
N
∑

i=1

mi v
α
i vβi −

N
∑

i=1

N
∑

j>i

rαi j

∂ u(ri j)

∂ rβi j

(2.10)

In order to improve the statistic of each simulation, we use the six independent shear compo-
nents55,56 of the stress tensor.

The correlated quantities needed for the calculation of the thermal conductivity are the three
spatial entries of the heat flux Jq =

�

J x
q , J y

q , J z
q

�

. The thermal conductivity is determined via the
ACF RJq Jq

, analogous to the viscosity. Details of the calculation are shown in the Supporting
Information.

For computing the self-diffusion coefficient Dself we use the Einstein relation, that calculates
Dself, run from the mean-squared displacement (MSD) of the centre-of-mass (COM) positions
Wi(t ′) of each molecule i, according to

Wi(τ) = lim
Θ→∞

Θ
∫

0

�

rCOM
i (τ+ t)− rCOM

i (t)
�2dt (2.11)

The transport coefficient is defined as the limit of the running value (Dself = Dself, run (τ→∞)),
which is calculated as the slope of the average of the MSD over all molecules, according to

Dself, run (τ) =
1

6N
d
dτ

N
∑

i=1

Wi(τ) (2.12)

During molecular simulations, the time series of Jαβp (t), Jq(t) and rCOM
i (t) are sampled as

described in the Simulation Details section. The autocorrelation of Jαβp and Jq, as well as the
mean-squared displacement are calculated in a post-processing step.
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2 Force Fields with Fixed Bond Lengths and with Flexible Bond Lengths

The autocorrelation integral is defined as

( f ∗ f )(τ) =

∞
∫

−∞

f (t +τ) f (t)dt (2.13)

and can be calculated using efficient Fourier transform algorithms. This allows us to calculate
the ACF in three steps57.

1. Calculate the Fourier transform of the time series.

Ĵ( f ) = F {J(t)}

2. Multiply the transform with its complex conjugate Ĵ∗( f ).

R̂JJ( f ) = Ĵ( f )Ĵ∗( f )

3. Calculate the ACF as inverse Fourier transform of the result.

RJJ(τ) = F−1
�

R̂JJ( f )
	

Using the fast Fourier transform algorithm (FFT), the computational complexity depend-
ing on the number of observations Nt is reduced from O

�

N 2
t

�

, for the direct calculation, to
O(Nt log2(Nt))58. FFT algorithms assume periodicity of the transformed functions, and the
sequence has to be zero-padded to twice the length before the calculation of the autocorre-
lation. The first half of the resulting sequence is the desired ACF. This approach allows us
to calculate the ACF very efficiently without having to apply a moving window scheme as
typically used59, which, in practice, would reduce the number of considered data points. Our
approach rigorously correlates all observations with all other observations, whereby every
observation is also a starting point for a new time series. We therefore do not have to consider
any parameters, such as window width, lag time, or the complexity due to the use of multiple
time origins.

Although the mean-squared displacement is not an autocorrelation function in the first place,
it can be determined more efficiently using FFT algorithms as well. For this purpose eq. (2.11)
is decomposed into two parts, where one part is solved by FFT algorithms and the second
part is calculated by a simple recursion. Details on efficient computation of mean-squared
displacements are reported by Calandrini et al. 58.

The Green-Kubo method suffers from increasingly high statistical uncertainties and numerical
noise for increasing lag times τ. Therefore, one typically truncates data after a certain
correlation time τmax. The time decomposition method proposed by Zhang et al. 60 helps
us identify a suitable trade-off between too low values for τmax, where the ACF has not
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sufficiently dropped to zero and too high τmax values, where statistical uncertainty degrades
the calculation results. We generate several independent replicate trajectories for each state
point and calculate a running standard deviation σ(τ) and a running average A(τ) of ηrun,
λrun and Dself, run of all replicates. An on-the-fly algorithm is used for this purpose in order to
save memory61. The cut-off time τmax is set to the time when the ratio of standard deviation
and running average, σ(τmax)/A(τmax), reaches a heuristic value of σ∗

max = 0.460. The data
with τ > τmax is ignored for the further procedure. An exponential function for the estimated
standard deviation

σfit(τ) = Aτb (2.14)

is then fitted to σ(τ). In the next step, a double exponential function62,63 is adjusted to the
running average A(τ). We rearranged it to the following form64

ηfit(τ) = η
αβ1

�

1− e−τ/β1
�

+ (1−α)β2

�

1− e−τ/β2
�

αβ1 + (1−α)β2
(2.15)

with the adjustable parameters η, α, and the decay times β1 and β2. These parameters are
identified by minimizing the objective function

f =
Nmax
τ
∑

i=Nmin
τ

�

(ηfit(τi)−ηrun(τi))w(τi)
�2 (2.16)

where index i runs over observations of ηrun(τ). Adjusting the double exponential ansatz
function to the sampled data is done with weight function w(τ) = 1/τb in order to account for
the increasing statistical uncertainty with increasing decay time where parameter b is from
eq. (2.14). At very short decay times, large fluctuations make the fitting difficult due to the
heavy weight in this τ range, which is why we adjust the function for decay times greater than
τi=Nmin

τ
= 2ps determining the lower bound index i = Nmin

τ
.60 The upper bound index is given

as τi=Nmax
τ
= τmax, with the cut-off time τmax as defined above. To prevent nonphysical decay

times longer than τmax, the parameters β1 and β2 are limited to β1,β2 < 0.01τmax during the
fitting procedure. The desired transport coefficient is determined by parameter η in eq. (2.15).
Thermal conductivity λ is evaluated analogously.

As the value of Dself, run is an average over all N molecules, the statistical uncertainty is
much lower than for ηrun and λrun. We do not apply an elaborate adjustment procedure for
determining Dself. The adjustment of one constant parameter to Dself, run(τ) with a weight of
1/σ(τ) is sufficient. The data is truncated at τmax,D =max

�

τmax,η,τmax,λ

�

. The value of Dself is
corrected for finite size effects applying the analytic correction factor proposed by Yeh and
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Hummer 65.

Because the running standard deviation based on replicate trajectories is used for estimating
the transport quantities in terms of the weight function w(τ) and for choosing of the cut-off
time τmax of the fitting procedure, the method yields an estimate for the transport property, and
it is not straight forward in determining statistical uncertainties. We propose an approach to
estimate statistical uncertainties of the calculated transport properties by using a bootstrapping
method4,66. One bootstrap sample is a random set of the replicate simulations, generated
by randomly selecting (with replacement) 30 time series of the complete set of replicates.
Transport properties are calculated for each bootstrap sample using the methods described
above. In order to account for the uncertainty of the heuristic value of σ∗

max = 0.4, a new value
for σ∗

max is randomly selected between 0.4 and 0.6 for each subset. The procedure is repeated
500 times to generate a distribution of η, λ and Dself values, differing in the time series used
as well as in σ∗

max. We then construct the 95 % confidence interval of the distribution using the
percentile method67. The results given below are mean values of the bootstrap distributions
and error bars are defined as 95% confidence interval.

The reported errors for the pressure are calculated as the standard error of the mean of p

of n = 10 independent replicate simulations as s(p̄) = s(p)/
p

n, where s(p) is the unbiased
estimate of the standard deviation as obtained from the independent replicates. The reported
95 % confidence interval is then calculated as p̄ ± 2.262 s(p̄), where the factor 2.262 comes
from the t-distribution using (n− 1) degrees of freedom.68

2.2.3 Simulation Details

Dynamic as well as equilibrium properties are obtained from equilibrium molecular dynamics
simulations using the MD code Lammps. General simulation specifications are given in
table 2.3.

Table 2.3: General Simulation Specifications.
equilibration time/ns 20
production time/ns 10
cut-off length/Å 14
number of molecules 1000
tail-corrections U and P
constrained bonds Shake22

long range solver PPPM69

with 1.0 · 10−5 desired relative error in forces
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We regard two substances (ethane and propane) where partial charges qi are zero and
dimethyl ether as a polar species. Besides the original TAMie force field with constant bond
lengths, we simulated “flexible” versions with varying constants kl of the harmonic bond
length potential as given in eq. (2.4). We investigated 10 values for kl varying from loose
bonds (kl = 50kcalÅ−2) to very stiff bonds (kl = 10 000kcalÅ−2).

Two liquid state points were simulated for each investigated force field variation. Properties
are calculated at fixed temperatures T and densities ρ. T and ρ were taken from VLE
calculations with the original TAMie force field as obtained from the literature45,46. An
overview of the simulations is given in table 2.4.

The same simulation stages were applied to all state points. 1000 molecules are placed on
a lattice as the initial configuration. After conducting an energy minimization, all systems
run through a 10 ns NVT equilibration, proceeded by another 10 ns NVE equilibration. We
added this step to make sure that energy is sufficiently conserved for the selected integration
algorithm and time step. The production step of the simulation is carried out in the NVT
ensemble. Temperature is controlled using a Nosé-Hoover thermostat, with a coupling time
of 2000 fs. In order to improve statistical precision and provide estimates of uncertainties,
we utilize 10 to 20 replicate simulations for the production stage. A single equilibrated
configuration is used as the initial configuration for each replicate where different randomized
initial velocities are taken from a Boltzmann distribution for each replicate simulation. Every
second time step during the production stage, the pressure tensor entries and the entries of
the heat flux are written to a file. The centre-of-mass positions of each molecule, used in the
calculation of mean-squared displacement in eq. (2.11), are sampled every 100 steps.

Two types of numeric methods were used in this study to integrate the equations of motion.
For the analysis of the fixed bonds, we use a velocity Verlet (VV) algorithm70. Bonds are
constrained using the Shake algorithm22. For the simulation of the molecules with flexible
bonds, we used the rRESPA multi-time step integrator18. rRESPA allows using different time

Table 2.4: Overview over Simulated States for Different Substances. For all Simulations,
N = 1000 Molecules were Used

Substance T/K ρ/kg m−3

ethane 205.0 512.83
300.0 315.44

propane 295.0 497.24
360.0 361.27

dimethyl ether 300.0 648.93
380.0 482.04
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steps for the calculation of different contributions of the potential-energy function. If not
stated otherwise, we use a maximum time step of 1 ×∆t = 1 fs for all simulations using
rRESPA. Intermolecular interactions and angle potentials are evaluated at this outer level.
Forces due to bond-stretching are calculated with an “inner” time step of 1

n ×∆t with n= 2

and n = 10. This is meant to allow for sufficiently small time steps for the calculation of
(high frequency) bond vibrations without exerting high computational costs in calculating
expensive vdW interactions or Coulombic interactions. For n= 1 the rRESPA time integrator
is equivalent to the VV integrator. For propane, we performed additional simulations of the
flexible molecules with the VV algorithm, using time steps ∆t = 0.5 fs and ∆t = 2.0 fs for
comparison.

2.3 Results and Discussion

The properties of three substances were investigated in this study: ethane, propane and
dimethyl ether (DME). Ethane has a simple geometry with only one bond and no bonding
angle. For ethane, it is easy to single out the influence of the bond interactions on simulation
results. The number of rigid bonds that can be simulated with Lammps using the Shake
algorithm is limited to two adjacent bonds. Propane with two bonds is the longest alkane for
which we are able to determine a reference calculation with rigid bond lengths. The third
substance, dimethyl ether, has a similar topology as propane but carries partial charges on
each of the three united atom interaction sites.

We emphasize that this study is not committed to assess how well the chosen force field
reproduces experimental data. We are focused on the equivalence or difference between
force fields with rigid bond lengths and models with (harmonic) bond length potentials. Two
saturated liquid state points were investigated for all substances. One state is at a temperature
near the critical point and one condition is at a lower temperature, as summarized in table 2.4.
The near-critical temperature was chosen because changes in the force field often lead to
strong responses in observed quantities near the critical point. If not mentioned otherwise, all
results presented below were calculated at a near critical temperature (360 K/T crit = 0.97 for
propane, 300K/T crit = 0.98 for ethane, and 380 K/T crit = 0.95 for dimethyl ether). Results for
the lower temperature are given in the Supporting Information.

One static property (pressure p) and three transport properties (shear viscosity η, self-
diffusion coefficient Dself, and thermal conductivity λ) are analyzed in this study. Figure 2.1
illustrates results for calculated pressures of propane plotted over the period of the bond
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oscillations

T = 2π
q

M̄/kl (2.17)

with reduced molar mass M̄ = (Mi M j)/(Mi + M j) of the two bonded united atom groups i

and j. Presenting results in terms of T allows for comparison of different molecular bonds
where low T values correspond to high values for kl , indicating stiff bonds. The limit T = 0

represents rigid bonds. It is noteworthy that for the limit kl → ∞, flexible bonds differ
energetically and entropically from fixed bonds.28 However, the thermal equation of state as
well as calculated dynamic properties may well be practically equivalent.

Each point in fig. 2.1 is the result of one set of replicate simulations. Lines between points are
merely visual aids. The red dashed horizontal line represents the result of a set of simulations
with rigid bonds, as calculated using the VV algorithm with a time step of 1 fs and the Shake
algorithm to ensure the bond length constraints. Other colors are results for propane with
flexible bonds, obtained with different integration schemes and different time steps.

The first observation in fig. 2.1 is the high spread as well as statistical uncertainty for short T
values, that is, for high values of kl . For T < 0.035ps, we expect that the pressure from the
flexible model should approach the pressure from the rigid bond force field. However, for
periods below a Tmin of 0.035ps, the large frequency of the bonds’ oscillations, 1/T , cannot be
sufficiently solved by the integration algorithms. As a result, the pressure cannot be properly
estimated and tends to be overestimated or underestimated compared to fixed bond length
simulations. It is remarkable that the two-stage integration scheme rRESPA is also suffering
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Figure 2.1: Pressure p of propane at T = 360 K over the period of the bond vibrations T .
Colors represent different integration schemes with different time steps∆t. The red horizontal
line shows result of rigid bonds. Vertical lines highlight T values of the Charmm (dotted)
and the Gromos force field (dashed).
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from this issue at low values of T . For T > 0.1 ps, the kl values are small and therefore the
flexible bonds are so loose that results of the flexible bond model deviate from results of a
rigid bond model. The results at T = 0.12 ps are no longer equivalent to the results of the stiff
bonds within statistical uncertainty. The scale of fig. 2.1 is too coarse to clearly confirm this
statement, which is why the Supporting Information gives the results of fig. 2.1, but shown
on a finer scale.

For a wide range of moderate values of T (0.035 ps to 0.085 ps), the pressures as determined
from the force field with flexible bonds agree within statistical uncertainties with the pressure
prigid as determined for the rigid bonded molecule. The exact choice of kl is not important,
the kl values in this plateau region result in statistically equivalent pressures, independent of
time steps and integration schemes used.

Grey vertical lines in fig. 2.1 highlight T values for C−C bonds of the Charmm228 (dotted
line) and Gromos11 (dashed line) force field, determined from experimental crystallographic
and microwave data. The T values of these two models are located in the plateau region for all
considered time steps. We conclude, that for liquid-phase pressure as a rather sensitive static
property, a time resolution of 1.0 fs or even 2.0 fs appears to be sufficient for the simulation of
bond potentials with force constants in the range 100kcal mol−1 Å−2

< kl < 500kcal mol−1 Å−2.
For this range we find equivalent results of the flexible force field to the model with rigid
bond lengths.

In the preceding discussion we argued that the rigid bond end of the plateau of constant p

values at p = prigid, that is, for high values of T or low values of kl , is reached when the flexible
bonds are so loose that the results for the flexible model deviate from results of the rigid
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Figure 2.2: Distribution of bond lengths of liquid propane at T = 360 K and ρ = 361.27 kgm−3

(rRESPA with inner time step ∆t = 0.1 fs) for different values of bonding force constant kl .
Vertical colored lines represent the respective maximum value of the distribution. The black
vertical line shows the reference length r0.
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force field. This explanation is supported by fig. 2.2 which shows the distribution of the bond
lengths of propane for three simulations with different kl values. The higher the kl values
get, the more stiff are the bonds and the more narrow are the bond length distributions. The
maximum of the distributions are shown as vertical dashed lines. For loose flexible bonds with
T = 0.12 ps and kl = 50 kcalmol−1 Å−2, which is only one-eighth of the kl value of Gromos,
one sees deviations of the maximum from the zero-force value (black line). For too low kl

values one can not expect to yield the equivalent results of a rigid force field with bond length
defined as the vertical red line.

Figure 2.3 compares results for pressure obtained for propane with the results for the other
two substances, ethane and dimethyl ether. The previous results for propane showed that the
chosen time step (in the range of 0.1 fs to 2 fs) and the integration scheme have no significant
impact on the results. For the other substances, these observations are confirmed. In Figure 2.3
we show results using the rRESPA integrator with an outer time step ∆t = 1.0 fs and an inner
time step of 0.1 fs for ethane and propane and of 0.5 fs for dimethyl ether, respectively. To
be able to compare different substances, in fig. 2.3 we scale the pressure by the pressure
obtained for the model with rigid bond lengths, p/prigid. The figure shows that for all three
substances, the flexible bond model and the rigid bond model are statistically equivalent for
sufficiently high values of T , while deviations appear for low values of T . The lowest period
of the bond vibrations Tmin for which the flexible bond model can be regarded equivalent to a
rigid bond force field is higher for ethane (≈ 0.052ps) than for propane or dimethyl ether
(≈ 0.035ps). The higher number of bonds in a molecule appears to be more well-behaved in
the time-integration scheme. We observe no influence of the presence of partial charges in
dimethyl ether on the numerical stability of the problem. It is noteworthy that the period of
the bond vibrations TGromos calculated for the bond-energy constant kl of the Gromos force
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Figure 2.3: Reduced pressure p/prigid of ethane, propane and dimethyl ether over the period
of the bond vibrations T . The red horizontal line shows the result of rigid bonds as reference.
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field is below the left end of the plateau Tmin, where time steps below ∆t = 0.5 fs are needed.

The main focus of this work is on transport properties. To investigate dynamic properties
we regard viscosity, self-diffusion, and thermal conductivity. Figure 2.4 depicts the shear
viscosity of propane for varying T values. The dashed red horizontal line is for the result
of the force field with rigid bond lengths, and the 95 % confidence interval is indicated by
the red-shaded region. For models with flexible bond lengths, we regard different time steps
and different integration methods. As before, we observe a plateau with a viscosity η that is
constant within error bars where all computed viscosities are statistically equivalent. We see
high deviations for short periods of the bond vibrations (T < 0.035ps) where the integrators
(with time steps considered in this work) are not any more appropriate for the high frequent
bond vibrations. The rRESPA integrator with a small time step allocated to the harmonic
bond length potential does not improve the numerical stability at low T values. The viscosity
of propane from models with flexible bond lengths (for 0.035> T ) is equal to the viscosity of
the model with rigid bonds within statistical uncertainty.

Figure 2.5 confirms that results for viscosity of propane are transferable to ethane and dimethyl
ether. All viscosities of molecules with flexible bonds of T > 0.35 within the error bars agree
with the results of molecules with rigid bonds. The normalized 95 % confidence interval
around the red dotted line representing the rigid molecules is indicated for each substance by
the region shaded in the respective color.

An analysis of the diffusion coefficient Dself for the three substances is given in fig. 2.6. The
range in T for which a plateau in self-diffusion coefficient occurs is comparable to the range
found for pressure and viscosity above. The lowest period Tmin, which yields stable results,
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Figure 2.4: Viscosity η of propane at T = 360 K over the period of the bond vibrations T .
Different colors represent different integration schemes with different time steps ∆t. The
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fields.
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Figure 2.5: Reduced viscosity η/ηrigid of ethane, propane and dimethyl ether over the period
of the bond vibrations T . The red horizontal line shows the result of rigid bonds as reference.
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Figure 2.6: Reduced self-diffusion coefficient Dself/Dself, rigid of ethane, propane and dimethyl
ether over the period of the bond vibrations T . The red horizontal line shows the result of
rigid bonds as reference.

can apparently be observed in several quantities. For the diffusion coefficient, we do not
observe higher deviations of flexible bond models from the fixed-bond length models for
molecules with two bonds as compared to molecules with only a single bond. For all considered
substances, the diffusion coefficient of the original rigid bond force field is reproduced by the
flexible bond models within statistical errors, provided that the force constant is appropriately
chosen.

Now, we consider thermal conductivity, which is different from the other transport properties,
in that the rigid bond length model suppresses intramolecular vibrations. However, these
degrees of freedom must be taken into account in order to to properly compare thermal con-
ductivity. We approximately correct the fixed-bond model for intramolecular bond-vibrational
degrees of freedom, by adding an analytic vibrational thermal conductivity λvib, to the thermal
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line) result of rigid bonds. Vertical lines show T values of common force fields.

conductivity determined from molecular simulations, with

λvib = cvibv ρDself (2.18)

as proposed by Liang and Tsai 71. The expression accounts for the conductivity of thermal
energy stored in intramolecular vibrational modes of the considered molecule in the form
of the heat capacity cvibv whereby the transport mechanism is self-diffusion. The density ρ
and the self-diffusion coefficient Dself are determined from the simulations. The vibrational
contribution of the heat capacity is approximated as cvibv = kBNbonds, which means, we assume
independent harmonic oscillators for all rigid bonds Nbonds

72. Especially for molecules with
several rigid bond length potentials, this is a somewhat coarse approximation. The statistical
error of the two quantities, Dself and cvibv , is negligible, as compared to that of the thermal
conductivity.

Figure 2.7 presents results for the thermal conductivity. The lower dashed horizontal line
represents the results from molecular simulations determined for the rigid bond model. The
upper dashed horizontal line is shifted by λvib corresponding to the results of the corrected
rigid bond model. Comparable to other transport coefficients, the thermal conductivity as
calculated for the flexible bond force field exhibits a plateau within 0.035ps< T < 0.1 ps. For
bond-energy constants kl corresponding to T < 0.035 ps, we observe a systematic deviation
from the values for T > 0.035ps, as we have noticed for the other transport properties. The
investigated time steps of 0.5 and 2 fs and both types of integration schemes only act weakly
on the results. The plateau value for the thermal conductivity of the flexible bond model
agrees within the statistical uncertainty to the corrected rigid bond force field. However, the
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Figure 2.8: Reduced thermal conductivity λ/λrigid of ethane, propane and dimethyl ether
over the period of the bond vibrations T . The red dashed horizontal line shows the result of
rigid bonds corrected by λvib, eq. (2.18), as a reference.

error bars of thermal conductivity are significantly wider than those of the other properties
because, as described above, the ACF RJqJq

can only be averaged over fewer samples as opposed
to viscosity or self-diffusion.

Figure 2.8 compares thermal conductivities for three different components, relative to the
results of their fixed-bond counter part. Flexible bond force fields of ethane and propane lead
to lower values of λ, compared to the fixed-bond models, if we ignore the region of insufficient
time step resolution at T < 0.035. Because the results of the rigid bond models seem to
systematically underestimate results from models with flexible bonds for all substances and
all time steps, it seems that the rigid bond value is overcorrected by the consideration of λvib.
Nevertheless, it is evident in fig. 2.7 that the correction leads to a better agreement of the λ
results of molecules with rigid and flexible bonds.

The results shown for liquids at near critical temperature could also be confirmed for the
lower temperatures for each substance. Tables with all results of these simulations can be
found in the Supporting Information. Also, for exemplary simulations of the gas phase of
propane at the VLE at 360 K, the exact same statements can be made as for the results of the
liquids: molecules with harmonic binding potentials provide statistically equivalent results as
models with rigid bonds. The corresponding simulation results are also summarized in tables
in the Supporting Information.
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2.4 Conclusion

This study investigates whether a force field with rigid bond lengths can be applied with
harmonic bond length potentials and how static and transport properties are thereby affected.
Introducing harmonic bond length potentials leads to results for thermodynamic properties
and transport properties that are in good agreement to results obtained for the model with
rigid bond lengths, provided that the bond-energy constants kl are appropriately chosen.
Suitable values for kl are in the range of those from fully flexible united atom force fields.
We consider ethane and propane as substances with one and two bond length potentials
as well as dimethyl ether as a species with (partial) point charges. These substances are
described with the TAMie force field, which was developed with rigid bond lengths. The same
force field but with flexible bond lengths reproduces results of the rigid bond counterpart to
within the overlap of the corresponding 95 % confident intervals for (liquid phase) pressure,
shear viscosity, and self-diffusion coefficient. For thermal conductivity a force field with
rigid bond lengths and a model with flexible bond lengths are conceptually different. For a
flexible bond length model, a certain part of the thermal conductivity is due to the energy
stored in intramolecular vibrational bond length modes of the considered molecule, which
is transported through self-diffusion of the considered species. We use an approximation
for this contribution of the thermal conductivity to correct the rigid bond length model for
missing degrees of freedom, which makes the “corrected rigid bond” model and the model
with flexible bond lengths comparable. Both models lead to satisfyingly similar values in
thermal conductivity.

With increasingly large kl values, an integration scheme, such as the velocity Verlet integration
with a time step of 2 fs, leads at some point to deviations from the expected results, because
the highly frequent bond length vibrations can no longer be resolved. The rRESPA integrator
offers the possibility of assigning a shorter (inner) time step to the bond length potential and
a longer (outer) time step for the other contributions of the force field. The rRESPA integrator
with this setting, however, does not improve on the velocity Verlet integrator with the same
outer time step. Smaller steps for the integration of the binding potentials did not lead to
improvements.
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3 Transferable Anisotropic United-Atom Mie (TAMie) Force Field:

Transport Properties from Equilibrium Molecular Dynamic

Simulations

The content of this chapter is a literal quote of the publication:

M. Fischer, G. Bauer, J. Gross: Transferable Anisotropic United-Atom Mie (TAMie) Force Field:
Transport Properties from Equilibrium-MD-Simulations. Industrial & Engineering Chemistry Research,
59(18):8855–8869, 2020. doi:10.1021/acs.iecr.0c00848

Abstract

Reliable prediction of transport coefficients for fluids, such as the viscosity, thermal conduc-
tivity and diffusion coefficients, is an important prerequisite for process design. Besides
experimental measurements and semiempirical correlations, molecular simulations are a
promising method to estimate transport properties of fluids over wide ranges of temperatures
and pressures. Transport properties are sensitive to the underlying intermolecular poten-
tials. In this work we assess the Transferable Anisotropic united-atom Mie (TAMie) force
field regarding the calculation of transport properties. The force field was parametrized for
thermodynamic properties with emphasis on vapor–liquid coexistence properties. Equilib-
rium molecular dynamic simulations are used to calculate all transport properties in a single
simulation, using the corresponding Green–Kubo methods. The simulated state points were
distributed in the temperature and pressure based on an entropy scaling approach, where
the PC-SAFT equation of state is used to calculate residual entropy. Utilizing the favorable
behavior of dynamic properties when plotted over the residual entropy, only few simulations
are needed to parametrize a correlation function that furthermore enables comparison with
experimental data over a wide range of temperatures and pressures. TAMie yields good results
for all transport properties and substances investigated (with average absolute deviations
of 13 % for viscosity, 18 % for diffusion, and 10 % for thermal conductivity), given that only
static properties were considered in the parametrization of the force field. Combining few
simulations with the entropy scaling method enables very efficient prediction of transport
properties for a large temperature and pressure region.
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3 TAMie Force Field: Transport Properties from Equilibrium MD Simulations

3.1 Introduction

Transport coefficients such as viscosity, thermal conductivity, or diffusion coefficients are
essential for process and apparatus design in chemical engineering. Data for these transport
coefficients are less abundant as compared to many static properties, say density to prescribed
temperature and pressure. Molecular simulations offer the possibility of predicting these
quantities for pure substances and for mixtures.

Transport coefficients can be determined from various molecular dynamics (MD) techniques.
In nonequilibrium MD approaches one maintains or creates driving forces and samples the
resulting fluxes1–3, or in reverse nonequilibrium MD one imposes fluxes and samples the
resulting gradients of conjugate field variables4,5. For viscosity, Maginn and co-workers sug-
gested a method where the relaxation of an initially imposed momentum impulse is observed
within a system, and they showed good statistical results with a modest computational (wall-
clock time) demand6. Alternatively, transport coefficients can be determined from systems
in equilibrium, given a suitable ensemble, as a time-dependent response to spontaneous
fluctuations. All transport coefficients can thereby be obtained from a single simulation or,
for practical reasons, more likely from a set of statistically independent simulations of the
same state condition. Our work is concerned with MD simulations of systems in equilibrium,
by determining autocorrelation functions according to the Green–Kubo formalism7–9.

It was observed for Lennard-Jones fluids, that equilibrium MD simulations at fluid conditions
give thermal conductivities10 and viscosities11 with a small dependence on system size. A
comprehensive analysis for shear viscosity was recently given by Kim et al. who confirmed
results for viscosity are weakly dependent on the size of the simulation box unless rather
small simulation boxes are considered, where shear viscosity exhibits complex, oscillatory
size-dependent behavior12. Self-diffusion coefficients as determined from equilibrium MD
simulations, in contrast, show a rather pronounced dependence on the choice of the system
size. Dünweg and Kremer found a linear dependence of the self-diffusion coefficient with
inverse length of the simulation box13. Yeh and Hummer proposed an analytic expression for
the size dependence that can conveniently be applied to estimate self-diffusion coefficients
for the limit of infinite system size14. Their development is based on a hydrodynamic model
of particles diffusing in a continuum with defined shear viscosity with periodic boundary
conditions. The shear viscosity thus needs to be sampled and known. The correction of Yeh
and Hummer is sufficiently reliable, so that Jamali et al. proposed applying the correction to
determine the viscosity of a fluid by studying the system size dependence of the self-diffusion
coefficients15. This approach is motivated from the fact that shear viscosities (like thermal
conductivities) are sampled with higher statistical uncertainty than self-diffusion coefficients,
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because the autocorrelation function of self-diffusion coefficients can be sampled for every
molecule of a considered simulation, whereas shear viscosity only has six independent entries,
namely the six independent cross-coefficients of the pressure tensor.

Transport coefficients are an important test for force fields and they can serve as training data
for optimizing force fields. Our group has proposed the Transferable Anisotropic Mie (TAMie)
force field optimized toward phase equilibrium properties, namely vapor pressure and liquid
densities16–20. The force field has been shown to have considerable predictive capabilities
for phase equilibria of mixtures20,21. It is a united-atom force field, where van der Waals
interactions of hydrogen atoms are grouped together with larger neighboring atoms and the
united-atom group is described as a single effective van der Waals interaction site22–28. A
methylene group (−CH3), for example, is treated as a single effective van der Waals interaction
site. In order to better account for the presence of hydrogen atoms, the methylene groups in
the TAMie model are moved outward from the position of the carbon atom, as proposed by
Toxvaerd 29 and adopted in other force fields30–32. The Mie potential is considered for van
der Waals interactions with a prescribed attractive exponent of n= 6, whereas the repulsive
exponent is an adjustable parameter. The additional degree of freedom, compared to a
Lennard-Jones potential, with predefined repulsive exponent of m= 12, leads to substantially
better agreement of simulated properties with experimental properties16–18,33–35.

It is well recognized that phase equilibrium properties are a meaningful test for force fields, or
in turn, phase equilibrium properties are valuable ingredients of a training set for optimizing
force fields. With this study, we wish to assess how a force field parametrized solely to
(static) phase equilibrium properties predicts transport coefficients of pure fluids. Fernández
et al. already found good agreement with experiments for transport properties of simple real
fluids36,37, quadrupolar fluids38 and dipolar fluids39, using force fields that were developed
with no information on transport properties included in the optimization procedures. Guevara-
Carrion et al. extended the studies on transport properties of force fields adjusted to static
properties to methanol, ethanol40 and water and their mixtures41. First assessments of
the TAMie force fields were reported by Messerly et al. 42 with deviations of approximately
10 % for viscosities of linear alkanes and roughly 20 % for branched alkanes. Our work
on 1-alcohols21,43 showed reasonably good agreement of predicted transport coefficients to
experimental data. The deviations from experimental data, however were systematic, i.e.
too high diffusion coefficients and too low shear viscosities are found, as expected from a
united-atom force field. Messerly et al. 44 investigated the force field proposed by Potoff and
co-workers, which is also based on a Mie (m-6) potential for the van der Waals interactions33,35.
They observe overestimated viscosities at rather high pressures, above 600 MPa, attributed to
a too repulsive 16-6 Mie force field (with repulsive exponent of m= 16).
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3 TAMie Force Field: Transport Properties from Equilibrium MD Simulations

Our study is facilitated by recent developments in correlating transport coefficients using
entropy scaling, as proposed by Rosenfeld45,46. Whereas Rosenfeld initially limited entropy
scaling to simple, spherically symmetric atomic fluids, it was later observed that entropy scaling
also holds for molecular species with complex intermolecular interactions47–57, namely for
substances with strongly nonspherical interactions or directional polar or hydrogen-bonding
interactions and for mixtures of such substances58. Previous work from our group showed
that entropy scaling can be used to develop models for transport properties. Those models
allowed experimental viscosities of pure components57 and of mixtures58 to be correlated and
predicted. Also thermal conductivities59 and self-diffusion coefficients60 of pure substances
were were regarded. A strength of entropy scaling is that a model parametrized to a few data
points (well-distributed in state conditions, as we will show below) can be used for predicting
transport properties well outside the range of temperatures and pressures considered for
training the model.

In this work, we assess the TAMie force field (initially developed for static thermodynamic
properties and phase equilibria) for predicting transport coefficients. We regard self-diffusion
coefficients, shear viscosity, and thermal conductivities of pure substances. For a meaningful
comparison of the TAMie force field within the entire fluid region (with pressures below
∼ 100MPa), we select state points about equally distributed in residual entropy. Entropy
scaling can then be used to estimate transport coefficients in wide ranges of gaseous and
liquid states.

3.2 Methods

3.2.1 Molecular Model

The TAMie force field uses a united atom (UA) description of molecules. Carbon atoms and
their adjacent hydrogen atoms are combined to single interaction sites, whereas other atoms
are usually considered as individual interaction sites. The intermolecular interactions are
described as sum of interactions between pairs of sites. The (nonbonded) interactions between
two sites i and j are described by a Mie potential and by fixed point charges

ui j

�

ri j

�

= ci jϵi j

�

�

σi j

ri j

�ni j

−
�

σi j

ri j

�6�

+
qiq j

4πε0ri j
(3.1)

where ri j denotes the distance between two interaction sites i and j and σi j and ϵi j are size
and energy parameters of the Mie potential, respectively. Point charge qi, defined as a unitless
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negative factor of the electron charge, and vacuum permittivity ε0 characterize the Coulombic
interactions. The attractive exponent was set to mi j = 6 for all sites, whereas the repulsive
exponent ni j was part of the parameter adjustment. The constant

ci j =

�

ni j

ni j − 6

�

�ni j

6

�6/(ni j−6)
(3.2)

ensures a minimum of the Mie potential at a value of −ϵi j. Two interaction sites located on the
same molecule but separated by more than three bonds also interact through the potential,
eq. (3.1). The parameters for nonbonded interactions of like (i–i) pairs were extracted from
previous publications16–18,20 and are given in the supporting information. For the parameters
of unlike site pairs, Lorentz–Berthelot combining rules are applied as

σi j =
�

σi +σ j

�

/2 (3.3)

ϵi j =
p

ϵiϵ j (3.4)

and the arithmetic mean

ni j =
�

ni + n j

�

/2 (3.5)

is used for the repulsive exponent. This combination rule may lead to fractional exponents
if even and odd exponents are combined. There are alternative combination rules for the
exponents discussed in literature that circumvent this issue.61 The TAMie force field was
constructed to only apply even exponents, precisely to circumvent fractional exponents, so
that the arithmetic mean can be used in this work. It should be emphasized that parameters
of the TAMie force field describing the intermolecular interactions were adjusted to experi-
mental liquid–vapor equilibrium data (saturation pressure psat and liquid density ρL). The
calculated dynamic quantities are predictions, since no transport properties were included in
the parametrization of the TAMie force field.

The intramolecular (bonded) interactions are defined in the TAMie force field through potential
functions for bond lengths, angle bending, and torsions. The angle bending potential is
described by a harmonic potential as

ubend(θ ) =
kθ
2
(θ − θ0)

2 (3.6)
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where θ0 is the zero-force angle and kθ is the force constant. For all substances considered in
this study, the torsional potential is defined as

utorsion = c0 + c1 [1+ cos (φ)]

+ c2 [1− cos (2φ)]

+ c3 [1+ cos (3φ)] (3.7)

While the TAMie force field was originally proposed with fixed bond lengths, we here adopt
harmonic potentials for the bond lengths. Constant bond lengths require additional, often
iterative algorithms to enforce constraints. These constraints suppress vibrational degrees
of freedom and consequently have to be accounted for when evaluating e.g. the thermal
conductivity as discussed in our previous work.62 When bonds are modeled with a harmonic
potential, typically smaller time steps have to be used to properly sample the fast bond
vibrations – a disadvantage we alleviate by using appropriate time steps.

The bond potentials are modeled as

ubond = kl(r − r0)
2, (3.8)

whereas the original force field uses fixed bond lengths between interaction sites16–18. The
zero-force bond-length r0 is set equal to the rigid bond-length of the TAMie model. Our
previous study62 regarded short-chain alkanes and ethers and showed that results of the TAMie
force field with properly chosen force constants are equivalent to results of the TAMie model
with fixed bond lengths. Equivalent results within reasonably small statistical uncertainties
were found for the thermal equation of state, for self-diffusion coefficient and for viscosity.
Thermal conductivity, as calculated from the original TAMie model with fixed bond lengths
and from the TAMie force field with flexible bond lengths cannot expected to be equivalent.
But both models can be brought to close agreement with one another when correcting for the
thermal conductivity contribution from bond-vibrations by assuming independent harmonic
oscillators62 for every fixed bond-length. Entropic properties of a model with fixed bond
lengths and the same model with flexible bond lengths, of course, cannot be equivalent.
The force constant kl is, in agreement to our earlier study62, defined as 100 644KÅ−2 for all
binding types. All bonded parameters of the substances used in this study are summarized in
the supporting information.
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3.2.2 Simulation Setup

We find it appealing to select state points for conducting simulations based on the principle
of entropy scaling, which is briefly introduced here. Rosenfeld45,46 first proposed that there
exists, to excellent approximation, a univariate relation between dimensionless transport
coefficients and the residual entropy sres = s − sid. gas(T,ρ). The coefficients he originally
regarded are the self-diffusion coefficient, shear viscosity, and thermal conductivity. The
dimensionless transport coefficients are the simulated or experimental values of the transport
coefficients divided by an adequate reference. Entropy scaling was initially proposed by
Rosenfeld for simple fluids only, but in the meantime several studies showed that the principle
also holds for strongly nonspherical, polar and hydrogen-bonding fluids and models were
developed for viscosity η57,58, thermal conductivity λ59 and self-diffusion coefficient Dself

60.
With such a model, say for shear viscosity η∗(sres), one calculates sres(T,ρ, x) for temperature
T , composition x and density ρ(p) (for given pressure p) from an equation of state and it is
then possible to calculate the corresponding transport property η from η∗ = η/ηref.

In this study we use entropy scaling in two ways. First, we select state points approximately
equally spaced in residual entropy space. Doing so, we cover the entire fluid region of a
considered substance with a defined number of simulations (here 5 simulations for each
pure substance). Second, we conduct simulations and use the results to parametrize simple
(univariate) models for each transport property for the TAMie force field. These models can
subsequently be used for predicting transport properties for the considered substance at
any fluid state point (with pressures below ∼ 100MPa), when combined with sres from an
equation of state.

The five state points simulated for each substance in this study are selected using the PC-
SAFT63 equation of state. For this we select pressures (in most cases p0 = 1 MPa). The lower
limit of the considered sres range is determined by selecting a temperature close to the triple
point temperature as T0 = TTP ·1.1 to 1.5. We use index 0 to indicate the state with the lowest
value of sres, corresponding to the highest density and to low temperatures of a liquid phase.
With PC-SAFT we calculate the dimensionless entropy s∗0 = sres(T0, p0)/(NAkbm), where m is
the segment number parameter of PC-SAFT for the substance. We then divide the range of
s∗, from s∗0 to s∗id. gas = 0, into four equal parts and determine the entropy values of the next
three liquid state points, s∗1, s∗2 and s∗3. We use PC-SAFT to iterate the temperatures to T1, T2

and T3 in such a way that the values s∗(p1, T1), s∗(p2, T2) and s∗(p3, T3) are evenly distributed.
We thereby ensure a liquid state by defining pi =min(p0, psat(Ti) · 1.25), i ∈ {1, 2,3}. The fifth
state point is chosen in the gas phase and its entropy is determined as s∗4 = s∗(T3, 0.8 · psat(T3)).
psat values in this procedure are also calculated from PC-SAFT.
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PC-SAFT: Distribute 5 states
in s∗-space

{T0, p0, ρ0}, {T1, p1, ρ1}, · · ·, {T4, p4, ρ4}

Put 1000 molecules in cubic box with ρ

Conduct NPT simulation @ T, p for t = 10ns.
Nosé-Hoover barostat and thermostat applied

with coupling times tT = tp = 100 ps.
→ For t > 5 ns, record V mean.

Change cubic box to target volume V = V mean.

Conduct NVT simulation @ T, V mean for t = 5ns.
Nosé-Hoover thermostat applied (tT = 500 ps).

→ Generate configuration x̄0.

NVT production runs for t = 10ns,
using x̄0 and randomized velocities

as initial configuration for each replicate.
Nosé-Hoover thermostat applied (tT = 500 ps)
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Calculate mean values and statistical uncertainties:

T = Tmean, V = V mean

η̄ ± · · ·
λ̄± · · ·

D̄self ± · · ·

-2.0 -1.0 0.0

s∗

-1.0

0.0

1.0

2.0

3.0

4.0

ln
(η
∗ )

Sim.

-3.0 -2.0 -1.0 0.0

s∗

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

ln
(η
∗ )

Cor. Sim.
Sim.

-3.0 -2.0 -1.0 0.0

s∗

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

ln
(η
∗ )

Cor. Sim.
Exp.

Entropy Scaled depiction
of simulation results with
s∗ (ρ, T ) from PC-SAFT

Calculation of AAD
from correlation

to every experiment

eth
ane

propane

hexane

nonane

1-buten
e

1-hepten
e

dim
eth

ylet
her

eth
anal

butanal

heptanal

acet
one

butanone
0

10

20

30

40

50

A
A

D
in

%

η
λ
Dself

Calculate transport property
at any state point using cor-

relation adjusted to simulations

0 1 10 100

p/bar

0.01

0.10

1.00

η
/m

P
as

Exp.
Cor. Sim.
Sim.

S
et
up

E
qu
ili
br
at
io
n

P
ro
du
ct
io
n

P
os
t
P
ro
du
ct
io
n

1.

2.

3.

4.

5.

6.

7.

8.

for each T, p, ρ

25 replicate simulations

fit

correl.

calc.

AAD

SAFT

Simulations

Figure 3.1: Visualization of the workflow used to calculate transport properties in equilibrium
molecular dynamics simulations.
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This approach yields five state conditions (T , p) that are used to conduct equilibrium MD
simulations. All states used in this study are listed in the Supporting Information. We
emphasize that calculations with the PC-SAFT equation of state are only used to deliver
estimates for the initial conditions of simulations with the TAMie force field. Properties such
as equilibrium pressures and densities that are used for analysis in this study are the results
of the MD simulations described below and the values from simulations only approximately
agree with the initial PC-SAFT state points. The properties as obtained from the simulations
are used as input to PC-SAFT to recalculate s∗0−4 afterward.

After defining initial conditions T, p,ρ using PC-SAFT, the simulation setup is completed
by placing 1000 molecules on a lattice as initial configuration in a box at the density ρ.
For each state point found in the way described above, the same simulation procedure is
now conducted as shown in the flowchart in fig. 3.1. Simulation details, such as simulation
times t and choices for barostat and thermostat, including the coupling times tp and tT , are
summarized in the flowchart of fig. 3.1. All simulations are performed using the simulation
package Lammps64.

The equilibration procedure comprises steps 3 to 5 of fig. 3.1. After conducting an energy
minimization, the density of the system is equilibrated in an N pT simulation (step 3). The
box volume V is sampled for the second half of the N pT equilibration time and a average
equilibrium volume V mean = 〈V 〉 is calculated. After that, the size of cubic box is dynamically
adjusted to V mean (step 4). In step 5, the system undergoes another NV T equilibration, yielding
a representative configuration which is used to initiate 25 replicate production simulations in
NV T , each with different randomized initial velocities, taken from the Boltzmann distribution.
In order to ensure a constant temperature over the whole simulation time we apply a Nosé-
Hoover thermostat (tT = 500ps) with weak coupling. This thermostat does not influence the
kinetics of MD simulations nor the calculation of transport properties.65 To confirm this fact,
we repeated the simulations for hexane without a thermostat in the production phase under
otherwise identical simulation conditions. We obtain equivalent results within the statistical
accuracy. The results of the NVE simulations are shown in the supporting information. During
production (step 6), the pressure tensor entries and the entries of the heat flux, needed for the
calculation of shear viscosity η and thermal conductivity λ are written to a file every second
time step. The center of mass position of each molecule, used in the calculation of Dself, is
sampled every 500 steps. For all simulations, the multiple-time-scale integrator rRESPA66 is
used to integrate the equations of motion. We evaluate the bond vibrations with an inner
time step of 0.5 fs. All other interactions are calculated with an outer time step of 1.0 fs. An
overview of general simulation specifications is given in table 3.1.
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3 TAMie Force Field: Transport Properties from Equilibrium MD Simulations

Time-step / fs (outer/inner) 1/0.5
Cut-off length / Å 14
Number of molecules 1000
Tail-corrections U and p

Long range solver PPPM67

with 1.0 · 10−5 desired relative error in forces

Table 3.1: General Simulation Specifications.

3.2.3 Data Analysis

We compute transport properties in this study in equilibrium MD simulations using Green–
Kubo methods. Using these methods all transport coefficients, η, λ, and Dself, can be calculated
from data that originates from the same simulation. The Green–Kubo equations relate
transport coefficients to an integral of an autocorrelation function (ACF) of time series that
are sampled during simulations. The viscosity η is given by the Green–Kubo equation

η=
1

V kBT

∞
∫

0

RJpJp
(τ)dτ, (3.9)

as the integral of the ACF RJpJp
of the stress-tensor Jp, according to

RJpJp
(τ) = lim

Θ→∞

1
2Θ

Θ
∫

−Θ

Jαβp (t +τ) J
αβ
p (t)dt (3.10)

as a function of the lag time τ. Jαβp is any off-diagonal element of the stress-tensor (with
α,β ∈ x , y, z and α ̸= β). In order to improve the statistics of each simulation, we use
the six independent shear components of the stress-tensor (
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/2) to calculate an averaged
RJpJp

(τ)68. Jαβp is calculated from the molecule’s center of mass (COM) velocity vi and the
virial rij(∂ ui j(ri j)/∂ rij) as

Jαβp =
Nmol.
∑

i=1

mi v
α
i vβi −

Nmol.
∑

i=1

Nmol.
∑

j>i

rαi j

∂ ui j(ri j)

∂ rβi j

. (3.11)
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In the same manner, we can calculate the thermal conductivity as

λ=
V

3kBT 2

∞
∫

0

RJqJq
(τ)dτ (3.12)

from the ACF

RJqJq
(τ) = lim

Θ→∞

1
2Θ

Θ
∫

−Θ

Jq (t +τ) · Jq (t)dt (3.13)

of the heat flux Jq, which is determined through the per-atom energy ei and the force fi j = − ∂ ui
∂ r j

due to the per-atom potential energy ui as

Jq =
1
V

�

Nat.
∑

i=1

viei +
Nat.
∑

i=1

Nat.
∑

j>i

ri j

�

v j ·
∂ ui

∂ r j

�

�

(3.14)

The self-diffusion coefficient was calculated using an Einstein relation (that can also be
converted into a Green–Kubo equation). The Einstein relation formulates Dself in terms of the
slope of the mean squared displacement as

Dself =
1

6N
lim
τ→∞

d
dτ

Nmol.
∑

i=1

Wi(τ), (3.15)

where Wi denotes the mean squared displacement of the center of mass position rCOM
i of

molecule i at time τ relative to the initial time τ0 = 0, as

Wi(τ) = lim
Θ→∞

Θ
∫

0

�

rCOM
i (t +τ)− rCOM

i (t)
�2dt. (3.16)

The integration in eq. (3.16) averages over different initial times. Moreover, Dself is averaged
over all N molecules and therefore has the best statistics of all transport coefficients. After
evaluating eq. (3.15), the finite size correction of Yeh and Hummer 14 is applied to the values
of Dself.

Calculation of the transport coefficients is done in post processing. We thereby follow the
suggestions of Maginn et al., who provided a very helpful and comprehensive summary of
best practices in calculating transport properties from equilibrium MD simulations including
estimates for statistical uncertainties using a bootstrapping procedure69. We use the fast

69



3 TAMie Force Field: Transport Properties from Equilibrium MD Simulations

fourier transform algorithm to calculate the ACFs as a convolution in Fourier space.70,71 The
Fourier Transform is convenient because one can effortlessly correlate all samples to one
another; i.e., every sample is also the starting point of another time series. This approach
replaces elaborate methods to reduce memory demand and computation time in evaluating
the autocorrelation function, like the staged time-interval sampling proposed by Dubbeldam
et al. 72. The evaluation of the Green–Kubo integrals is done using the time decomposition
method, proposed by Zhang et al., where the maximum time for the autocorrelation integral is
determined by approximating the increasing uncertainty for increasingly long upper bounds
of the autocorrelation integral73. Statistical errors are given as 95 % confidence interval as
obtained from a bootstrapping procedure.69,74 We generate bootstrap samples by randomly
selecting (with replacement) 25 time series of the complete set of 25 replicate simulations.
For each bootstrap sample we calculate the transport properties as described above. The
procedure is repeated 500 times to generate a distribution of η, λ and Dself values, each based
on a different subset of all simulated time series. The distributions are used to construct the
95 % confidence interval using the percentile method74. For a detailed description of the post
processing procedure we refer the reader to our previous work.62

The transport coefficients resulting from the MD simulations are analyzed using the entropy
scaling method. To do this, we first calculate the entropy for each of the five state points we
have simulated per substance. We calculate s∗(T sim,ρsim) with PC-SAFT and use the mean
value of the temperature from the time series of the production simulation runs as T sim

and the constant density of these NV T simulations as ρsim. The dimensionless quantities
λ∗ = λ/λref, D∗

self = Dself/D
ref
self and η∗ = η/ηref, needed for the reference values for entropy

scaling, are determined by the equations in table 3.2. The collision integrals Ω(1,1)∗ and Ω(2,2)∗

are calculated after Neufeld et al. 75; the PC-SAFT parameters mii, σii and ϵii, needed for
calculating the references are summarized in the supporting information. The critical reduced
entropy s∗c in the calculation of α is also calculated with PC-SAFT.

Having determined the reduced transport properties η∗, D∗
self and λ∗ as well as the reduced

entropy s∗ at each simulated state point, we can adjust correlation functions known from
the literature to our simulation results. The functions used for this purpose are listed in
table 3.3. Three (η,λ) and four (Dself) parameters are adjusted with a least squares fit. Using
the equations for the references from table 3.2 for each transport property, it is now straight
forward to calculate an estimate for the viscosity ηcor(s∗) = η∗(s∗)·ηref, the thermal conductivity
λcor(s∗) = λ∗(s∗) · λref and the diffusion coefficient Dcor

self(s
∗) = D∗

self(s
∗) · Dref

self corresponding to
the TAMie force field, at state points that were not simulated explicitly.

We use this correlation in the residual entropy to compare the simulation results with a wide
range of experimental data. Using PC-SAFT we determine s∗(T, p) of a state point at which an
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Transport Coefficient Reference Value

Viscosity58 ηref =
5

16

p

MiikbT/ (NAπ)

σ2
iiΩ
(2,2)∗
ii

Self-diffusion60 Dref
self =

3
8σ2ρNA

1
Ω(1,1)∗

Æ

RT/ (πMiimii)

Thermal Conductivity59

λref = λrefCE +α (s
∗)λ∗

with λrefCE =
83.235

103

p

T/ (Miimii)

σ2Ω
(2,2)∗
ii mii

and α (s∗) = exp
�

−s∗/s∗c
�

Table 3.2: Reference Transport Coefficients ηref, Dref
self and λref for the Calculation of Reduced

Transport Properties.

Transport Coefficient Entropy Correlation
Viscosity58 ln (η∗) = Aη + Bηs

∗ + Cηs
∗2 + Dηs

∗3

Self-diffusion60 ln
�

D∗
self

�

= ADself − BDself (1.0− exp (s∗)) s∗2 + CDselfs
∗3

with CDself ≥ 0

Thermal Conductivity59 ln (λ∗) = Aλ + Bλs
∗ + Cλ (1.0− exp (s∗)) + Dλs

∗2

Table 3.3: Entropy correlations of reduced transport properties.

experimental value for a transport property is available. The transport property corresponding
to the s∗(T, p) condition can then be calculated. This allows us to estimate transport properties
the force field would deliver at (T, p), where experiments are available, but which are not
covered from the actually simulated state points. We illustrate this procedure for the viscosity
of dimethyl ether (DME). The viscosity of dimethyl ether determined experimentally at
pressure pexp = 100 bar and at temperature T exp = 293.14K is ηexp = 0.145mPa s. Although
neither pressure nor temperature of the simulated state points is close to this experimental
point, we can estimate the deviation of the simulation from this experiment. We determine
the residual entropy of the experimental state as s∗,exp = s∗(T exp,ρ (pexp)) = −1.7481 with
PC-SAFT. Then, we evaluate the correlation function for ln(η∗,cor)(s∗,exp) from table 3.3, where
parameters Aη,DME, Bη,DME, Cη,DME, and Dη,DME were adjusted to the five simulated viscosities of
dimethyl ether. Using the reference ηref from table 3.2 we determine ηcor(s∗,exp) = 0.157mPa s

and calculate its deviation from the experiment as |ηexp −ηcor|/ηexp = 7.97%. It is important
to point out that the analytic PC-SAFT model is used to calculate the residual entropy for
the simulated conditions and for the experimental conditions. Errors of the PC-SAFT model
therefore cancel to some extent.
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Following this procedure, we estimate absolute average deviations (AAD) of the correlations
(adjusted to the simulations) and all experimental data, for which s∗,exp can be determined
with PC-SAFT. For example, the AAD for viscosity is calculated for each substance as

AADη =
1

Nexp

Nexp
∑

i=1

�

�η
exp
i −ηcori

�

�

η
exp
i

, (3.17)

where Nexp is the number of experimental data points considered. The AADs of the other
transport coefficients are calculated analogously.

3.3 Results and Discussion

In this study we simulated the transport properties of 13 different substances. The substances
were selected based on availability of experimental data and existing TAMie parameters in
the literature, and we can group them into five classes: alkanes, alkenes as nonpolar species,
ketones, aldehydes, and ethers as polar substances. For each class, 1 to 5 substances were
selected for which most experimental data is available in the Dortmund Data Bank76 for η
and λ and in several other sources77–91 for Dself in order to compare the simulations with
the largest possible data set using entropy scaling. Despite our selection criteria, for some
substances experimental data for certain transport properties are not reported and in these
cases it is not possible to quantitatively evaluate the simulation results through AAD values. In
total 19334 experimental data points were considered in the calculation of the AADs shown
here, up to 3154 per substance.

The results of this study are organized per transport property and presented in the same way
in each case. The structure will be explained in the following subsection.

3.3.1 Viscosity

Figures 3.2–3.6 show the entropy scaled representation of the simulation results, whereby the
logarithm of the reduced viscosity is plotted over s∗, as calculated from PC-SAFT. Results of
the simulations are represented as crosses with error bars, the correlations (table 3.3) adjusted
to the simulation points are shown as solid lines and the experimental data – if available – is
represented as circles. Each figure summarizes results of a chemical class, whereby different
colors represent the individual substances.

Most substances were studied in the class of alkanes shown in fig. 3.2, namely ethane,
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propane, hexane, and nonane. The figure illustrates that the qualitative behavior of the
relation η∗(s∗) from experimental points is well captured by both, the individual simulation
results at five state conditions, and by the correlations (solid lines) adjusted to them. The
rightmost simulated point corresponds to a gas phase, noting that ideal gas conditions are
characterized by s∗ = 0. Strongly negative values of s∗ represent dense liquid states. In the
range s∗ ≤ −2, we observe deviations of simulated results from experimental data exceeding
the range, where experimental data scatters. Although state points at low values of residual
entropy s∗ ≤ −2 are rather challenging to simulate, because they correspond to high densities
and low temperatures, we are convinced the deviations are not due to deficiency in the
simulation technique. Rather, deficiencies of the force field in predicting the dynamics of a
fluid will be most prominently seen at state points at low temperatures and high densities.
Results for ethane shows a typical behavior, already reported in an earlier study of Messerly
et al. 42. While the experimental viscosities are underestimated for the alkanes with longer
chains, for ethane, in contrast, the predicted viscosities are overestimated.

Figure 3.2 illustrates the large number of experimental data with which we compare our
simulation results. For alkanes in fig. 3.2 there are between 382 and 2606 points per substance
for a temperature range of 88.1 K (for propane) to 222.15 K (for nonane) and a pressure range
of 2.6 kPa (ethane) up to 400 MPa (propane). The experimental data originates from different
sources and the entropy scaled representation reveals data that does not follow the univariate
behavior and has to be considered as outlier. Entropy scaling can provide strong indications
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Figure 3.2: Logarithmic depiction of reduced viscosity η∗ over the residual entropy s∗ for
different alkanes. Circles show experimental data from the DDB76, and crosses represent
simulation results. Lines are correlations adjusted to the simulation data.
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of non-plausible or inconsistent experimental data59, as can be seen for example for ethane in
the range of −3 ≤ s∗ ≤ −1. Nevertheless, to be conservative, all experimental data shown here
are included in the calculation of the AAD according to eq. (3.17). The AADs for viscosity
summarized in fig. 3.7 confirm rather good agreement with the experimental data for alkanes
with AADs below 15 % for the entire fluid region, from gaseous state to liquid states at low
temperature and high pressures. A systematic tendency towards higher deviations for longer
alkane chains can be observed. There are two possible explanations for the weaker description
of long alkane chains. Either the intramolecular force field (i.e. angle and torsion potentials
as well as intramolecular van der Waals interactions) does not sufficiently reflect the actual
behavior of alkanes. Or, increasing deviations are a result of a coarse-grained (united-atom)
force field, where hydrogen interaction sites are not explicitly modeled. The effect of this
coarse-graining may act more substantially on longer chains than on molecules with small
aspect ratio. The results in fig. 3.2 support this hypothesis for increasingly long chains,
because coarse-graining artificially increases the dynamic of the system, leading to too low
viscosities and too high self-diffusion coefficients. In order to better assess the quality of
results from the TAMie force field, fig. 3.7 also gives the AADs for the entropy scaling method
from the literature58, which resulted from adjusting correlations directly to experimental
data. It is remarkable that the correlation from five simulation points for ethane delivers
the same accuracy of the correlation as obtained from multiple hundred experimental data
points. Also for other n-alkanes the accuracy of the model trained by the TAMie force field is
in the same order of magnitude as results obtained by adjusting the model directly to the
experimental data.

For the group of alkenes, fig. 3.3, there are noticeably fewer experimental data points available
in literature. The simulated state points extend beyond the range of residual entropies s∗ cov-
ered by the experimental data. In the s∗-ranges, where both, simulations and experiments are
available, the simulated viscosities lie within the range of the experimental data. Correlations
adjusted to all simulations represent the experimental data very satisfyingly, as also reflected
by the AAD-value of less than 7 %, which for 1-butene is in the range of what can best be
achieved with the entropy scaling method without filtering experimental data (as seen in
fig. 3.7). In the case of 1-heptene, a potential application for the determination of transport
properties by means of simulations can be identified. The entropy scaling method requires a
broad set of data to reasonably adjust the correlations. For 1-heptene experimental data is
scarce and limited to a small range in residual entropy, so that no viscosity model could be
parametrized in our earlier work58. Results from the TAMie force field or from other force
fields might be used to supplement experimental data in order to propose a model for the
viscosity of such substances.
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Figure 3.3: Logarithmic depiction of reduced viscosity η∗ over the residual entropy s∗ for
different alkenes. Circles show experimental data from the DDB76, and crosses represent
simulation results. Lines are correlations adjusted to the simulation data.

Larger deviations from experimental data can be seen in fig. 3.4 for the viscosity of aldehydes,
where also the qualitative behavior of the experiments is partly not represented by the
simulations. Taking a closer look at experimental data for ethanal reveals two ‘sets’ of points
with different courses of η∗(s∗), in the range s∗ < −2.0. One set is accurately traced by the

-3.0 -2.0 -1.0 0.0

s∗

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

ln
(η
∗ )

Exp.
Sim.
Cor. Sim.

butanal
ethanal
heptanal

Figure 3.4: Logarithmic depiction of reduced viscosity η∗ over the residual entropy s∗ for
different aldehydes. Circles show experimental data from the DDB76, and crosses represent
simulation results. Lines are correlations adjusted to the simulation data.
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correlation adjusted to the simulations. The experimental data of this set comes from four
different references. The data set with higher viscosities, that clearly contradicts predictions
from the TAMie force field, originates from a single reference and was measured at high
pressures of 137 bar to 1378.9 bar. If one chooses to exclude this data set, say by limiting
the considered pressures to values p ≤ 100bar, the deviation of the TAMie-correlation to the
experimental values drops to 4 %. Also 80 % of the experimental data shown in fig. 3.4 for
heptanal, the substance with the highest AAD for the viscosity, were measured above 100 bar.
For butanal, with an AAD of 15 %, a clear analysis of the TAMie results and of experimental
data is difficult. The data shows rather pronounced spread in the entropy scaling diagram,
where experimental data is partly contradicting with other experimental data, which also
translates to relatively high AAD of 9 % of the original entropy scaling correlation in the
literature, that was adjusted to the experiments58.

The results for the next chemical group, ketones, are summarized in fig. 3.5. Qualitatively
the simulations follow the η∗ (s∗) behavior of the experiments. The four rightmost state points
of both substances, located in the range s∗ > −2.5, show simulated viscosities in satisfying
quantitative agreement with experimental values. The point furthest to the left, with the
lowest entropy, however, overestimates the viscosity for both ketones. Correspondingly, the
correlation runs above the experimental points, leading to comparatively high AADs of 15 %

and 21 %, respectively.

As a representative for ethers, we here regard the viscosity of dimethyl ether, shown in fig. 3.6.

-3.0 -2.0 -1.0 0.0

s∗

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

ln
(η
∗ )

Exp.
Sim.
Cor. Sim.

acetone
butanone

Figure 3.5: Logarithmic depiction of reduced viscosity η∗ over the residual entropy s∗ for
acetone and butanone. Circles show experimental data from the DDB76, and crosses represent
simulation results. Lines are correlations adjusted to the simulation data.
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The entropy scaled representation in fig. 3.6a illustrates that the experimental viscosities in
both, the gas phase (−0.1< s∗) and the liquid phase (−2.5< s∗ < −1) can be predicted very
well with the TAMie force field. Figure 3.6b shows a double logarithmic representation of
the unscaled viscosity versus pressure. Open circles symbolize experiments, red crosses the
results of our simulations. The red lines in fig. 3.6b represent viscosities along isotherms as
calculated from the TAMie-correlation. Although the isotherms are selected rather arbitrarily
for the purpose of illustrating the course of isotherms in the fluid region, the figure reveals the
appeal of the method used: from simulation results at five states (that do not even have to be
close to the experimental data in the state space), the transport coefficients can be predicted
for any T and p in the fluid region. From the diagram we see that the TAMie-correlation
predicts experimental viscosities both at vapor liquid equilibrium (VLE) states – gas-side
and liquid-side –, as well as liquid viscosities at high pressures up to 400 bar rather well. For
dimethyl ether this visual assessment is also reflected in a low AAD value of 6 %.

The deviations of the viscosity correlations determined with TAMie are summarized for all
substances in fig. 3.7. The mean of all AADs is 13 %. This value is surprising, (1) in view of
the large number of experimental data that entered the AAD values, (2) considering the fact
that we did not filter (non-plausible) experimental data, and (3) noticing that we conducted
simulations at merely five state points.
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Figure 3.6: Two logarithmic depictions of the results for the viscosity η of dimethyl ether. In
both figures, circles show experimental data from the DDB76, and crosses represent simulation
results. (a) shows the reduced viscosity η∗ over the residual entropy s∗. Lines in (a) are
correlations adjusted to the simulation data. (b) shows viscosity η over pressure p. Lines in
(b) are isotherms calculated with a correlation adjusted to the simulation data.
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Figure 3.7: AAD in percent of the correlation adjusted to simulation compared to all experi-
mental viscosities available. Additionally, AAD of correlations from the literature58, adjusted
directly to experiments are given.

3.3.2 Self-Diffusion

Results for the self-diffusion coefficients Dself are shown in figs. 3.8–3.13. For diffusion there
are considerably fewer experimental data available than for the other transport properties.
Data with which we can assess the TAMie force field are only available for seven of the
substances investigated. Gas diffusion experiments are particularly scarce.

For alkanes, however, data for the gas phase is available, with the exception of nonane, as
shown in fig. 3.8. The results of alkanes are therefore important for assessing the predictive
quality of the simulations, especially for the gas phase. The qualitative behavior of D∗

self (s
∗) is

reproduced by the simulated results. The scatter in experimental data is more pronounced
for self-diffusion coefficients than for shear viscosity. In our earlier work on self-diffusion60

we have come to belief the experimental scatter in the entropy scaling diagram is mainly
rooted in contradicting data and does not necessarily reveal deficiencies of the entropy scaling
principle. The simulated values Dself are in reasonable agreement to the experimental data.
The simulations are for longer n-alkanes systematically overestimating experimental values
of Dself, and for ethane they are underestimating Dself-values. This may hint either at a non-
optimal choice for the anisotropic shift of the CH3-group, or at the need for partial charges
to better represent the quadrupolar charge distribution of ethane. Diffusion coefficients
in the gas phase are determined within the experimental range, with a slight tendency to
underestimate them.

From our simulation results for self-diffusion coefficients (fig. 3.8) it becomes apparent the
ansatz function in table 3.3 for Dself is not well suitable for correlating the function Dself (s∗)
at low values of s∗, i.e. for the gas phase. The ansatz function enforces a slope of zero for

78



3.3 Results and Discussion

-4.0 -3.0 -2.0 -1.0 0.0

s∗

-4.0

-3.0

-2.0

-1.0

0.0

ln
(D
∗ se

lf
)

Exp.
Sim.
Cor. Sim.

ethane
propane
hexane
nonane

Figure 3.8: Logarithmic depiction of reduced self-diffusion coefficient D∗
self over the residual

entropy s∗ for different alkanes. Circles show experimental data from the literature77–83,85,87–91,
and crosses represent simulation results. Lines are correlations adjusted to the simulation
data.

s∗ = 0 which does not model the experiments nor the simulations adequately. That is an
important finding. When we proposed the ansatz function, ref.60, we had collected fewer
experimental data for the vapor phase and had no results from molecular simulations. The
few substances, where we had vapor phase data (xenon, argon, carbon dioxide, water) are
spherical substances or only mildly elongated. For these species the slope of Dself (s∗) at s∗ = 0 is
indeed close to zero. Now, with an extended database and with the results from the molecular
simulations from the TAMie force field, we need to revise the ansatz function. For the same
reason, namely the deficient ansatz function for Dself, the calculated AADs are worse than the
simulation results would suggest.

The results for alkenes and aldehydes given in figs. 3.9 and 3.10 demonstrate the scarcity of
experimental values for self-diffusion coefficients.

Figure 3.11 gives results of the TAMie force field for ketones, i.e. for acetone and for butanone.
The experimental self-diffusion coefficients available for acetone are clearly underestimated
by the force field.

Simulation results for dimethyl ether are shown in fig. 3.12. Predictions of TAMie are in good
agreement to the experimental data in the liquid phase; experimental values for the gas phase
are not available. The strength of expressing results of simulations in an entropy scaled form
is evident from fig. 3.12b. The experiments all correspond to comparatively high pressures,
whereas the simulations were performed at moderate 30 bar to 50 bar. The predictive power
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Figure 3.9: Logarithmic depiction of reduced self-diffusion coefficient D∗
self over the residual

entropy s∗ for different alkenes. Lines are correlations adjusted to the simulation data.
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Figure 3.10: Logarithmic depiction of reduced self-diffusion coefficient D∗
self over the residual

entropy s∗ for different aldehydes. Lines are correlations adjusted to the simulation data.

of entropy scaling is remarkably good as seen from the isotherms in fig. 3.12b, reproducing
the experimental isothermal data series.

The deviations of the TAMie-correlations from experimental data are summarized in fig. 3.13.
We find AADs between 8 % and 25 %, a result that can be appreciated when compared to the
native entropy scaling model based on PC-SAFT, also presented in fig. 3.13.
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Figure 3.11: Logarithmic depiction of reduced self-diffusion coefficient D∗
self over the residual

entropy s∗ for acetone and for butanone. Circles show experimental data from the literature91,
and crosses represent simulation results. Lines are correlations adjusted to the simulation
data.
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Figure 3.12: Two logarithmic depictions of the results for the self-diffusion coefficient Dself
of dimethyl ether. In both figures, circles show experimental data from the literature91, and
crosses represent simulation results. (a) shows the reduced self-diffusion coefficient D∗

self over
the residual entropy s∗. Lines in (a) are correlations adjusted to the simulation data. (b)
shows Dself over pressure p. Lines in (b) are isotherms calculated with a correlation adjusted
to the simulation data.

81



3 TAMie Force Field: Transport Properties from Equilibrium MD Simulations

eth
ane

propane

hexane

nonane

dim
eth

ylet
her

acet
one

0

10

20

30

40

50

A
A

D
in

%

Simulations
Literature

Figure 3.13: AAD in percent of the correlation adjusted to simulation compared to all
experimental Dself values available. Additionally, AAD of correlations from the literature60,
adjusted directly to experiments are given.

3.3.3 Thermal Conductivity

Figures 3.14–3.19 show the results for the thermal conductivity, starting with the alkanes in
fig. 3.14. Results from the TAMie force field reproduce the qualitative behavior of ln (λ∗) (s∗)
of the experiments accurately. The simulation results lie within the distribution of the experi-
ments in the entropy scaled diagram, both for the liquid state points as well as for the gas
phase. For alkanes we find smaller deviations of the TAMie force field from experiments for
longer chain molecules, with the lowest deviations of 6 % for nonane.
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Figure 3.14: Logarithmic depiction of the reduced thermal conductivity λ∗ over the residual
entropy s∗ for different alkanes. Circles show experimental data from the DDB76, and crosses
represent simulation results. Lines are correlations adjusted to the simulation data.
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The results for the alkenes in fig. 3.15 are satisfying. In the liquid phase, the thermal
conductivities tend to be underestimated, with a total AAD of 11 % for 1-butene. For 1-
heptene the simulations underestimate the experimental values for λ, especially in the range
s∗ < −2.5, leading to a total deviation of below 8 %.

Experimental values of thermal conductivity for aldehydes are scarce, see fig. 3.16. The TAMie
model is in rather good agreement with the available experimental data for the liquid phase,
whereas some deviations are seen for the gas phase. The AAD of the TAMie-correlation is
calculated to about 10 % for the aldehydes.

For the ketones, fig. 3.17 shows deviations from the experiments in the vicinity to the critical
point (s∗ ≈ 0.4 for both ketones). Thermal conductivity is known significantly increase close
to the critical point92 and it was observed that the critical enhancement is not captured by
entropy scaling59. However, the critical enhancement is seen for conditions rather close to
the critical point and cannot explain the deviations of simulated thermal conductivities and
experimental data for ketones. Good overall agreement of the gas phase and liquid phase
simulations with experiments results in averaged deviations of less than 10 % for both ketones.

Very satisfying results for thermal conductivities are found for dimethyl ether, as seen in
Figure 3.18a. The TAMie force field tends to underestimate the experimental data in the gas
phase and overestimates thermal conductivities in the dense liquid phase. fig. 3.18b shows
thermal conductivity of dimethyl ether versus pressure, where lines represent isotherms as
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Figure 3.15: Logarithmic depiction of the reduced thermal conductivity λ∗ over the residual
entropy s∗ for different alkenes. Circles show experimental data from the DDB76, and crosses
represent simulation results. Lines are correlations adjusted to the simulation data.
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Figure 3.16: Logarithmic depiction of the reduced thermal conductivity λ∗ over the residual
entropy s∗ for different aldehydes. Circles show experimental data from the DDB76, and
crosses represent simulation results. Lines are correlations adjusted to the simulation data.
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Figure 3.17: Logarithmic depiction of the reduced thermal conductivity λ∗ over the residual
entropy s∗ for acetone and butanone. Circles show experimental data from the DDB76, and
crosses represent simulation results. Lines are correlations adjusted to the simulation data.

determined from TAMie-correlations.

Figure 3.19 summarizes the deviations of predicted thermal conductivities from TAMie-
correlations to experimental data for all substances. The overall average AAD are 10 % for all
substances, which we consider a very satisfactory result.
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Figure 3.18: Two logarithmic depictions of the results for the thermal conductivity λ of
dimethyl ether. In both figures, circles show experimental data from the DDB76, and crosses
represent simulation results. (a) shows the reduced thermal conductivity λ∗ over the residual
entropy s∗. Lines in (a) are correlations adjusted to the simulation data. (b) shows λ over
pressure p. Lines in (b) are isotherms calculated with a correlation adjusted to the simulation
data.
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Figure 3.19: AAD in percent of the correlation adjusted to simulation compared to all
experimental λ available. Additionally, AAD of correlations from the literature59, adjusted
directly to experiments are given.

3.4 Conclusion

The TAMie force field was originally parametrized using VLE data without considering any
dynamic properties. In this study we investigate the predictive power of the TAMie force field
for the transport properties, namely shear viscosity, self-diffusion coefficient and thermal
conductivity. We conclude that the TAMie force field is rather well suited for the prediction of
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transport coefficients.

Simulation results for all transport properties and their statistical uncertainties are obtained
simultaneously from a series of equilibrium MD simulations. We propose a workflow, where
the state points at which simulations are conducted are selected based on their residual entropy
(which we estimate a priori using the PC-SAFT equation of state). We define five state points for
each substance, approximately equally distributed in residual entropy. According to entropy
scaling that ensures a meaningful distribution of states for conducting simulations covering
the entire fluid region. The simulation results are used to adjust a simple correlation function
for each transport property, based on the entropy scaling method. We assess predictions of
the TAMie force field by comparing the correlation parametrized using simulations with all
experimental data available in literature – even for thermodynamic states far from those we
have simulated. We observe good agreement of the model, based on the TAMie force field
with literature data for all transport coefficients, with AAD-values of 13 % for viscosity, 18 %

for diffusion and 10 % for thermal conductivity. The deviations are only mildly higher as
compared to an entropy scaling model that directly uses experimental data57–60.

Generally, molecular simulations are seen to be promising for species with scarce or nonexistent
experimental data for one of the transport coefficients. For self-diffusion it is particularly
important to provide estimates for self-diffusion coefficients in the gaseous phase. In fact,
with this study it became apparent that our ansatz function for the entropy-scaling correlation
proposed in earlier work60 (originally developed with rather limited experimental data for
gas phases) does not adequately model the course of the simulation results.
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4 Assessing Entropy Scaling for Mixture Viscosities using

Molecular Simulations

Abstract

The present work uses molecular simulations of model-mixtures to systematically validate
the applicability of entropy scaling for mixtures. I determine the viscosity η of several binary
mixtures of simple Lennard-Jones fluids in equilibrium molecular dynamic simulations at
different state points. The extended Chapman-Enskog viscosity for mixtures is considered as
reference viscosity ηC E in order to define the dimensionless viscosity η#. Grand-Canonical
Monte Carlo simulations are used to determine residual entropy sres in order to avoid assump-
tions inherent to any analytic EoS, but remain consistent within molecular simulations. The
considered binary mixtures are composed of two LJ-fluids differing in their ϵ or σ parameters.
The study further focuses on non-ideal mixtures of two identical LJ-fluids with ϵ11 = ϵ22 ̸= ϵ12

which can be parameterized to show a strongly non-ideal phase behavior. In an entropy scaled
depiction, the viscosities of all considered mixtures collapse well onto a universal curve and
show a monovariable dependence of η# on residual entropy. The results of the non-ideal
mixtures of two identical LJ-fluids enabled us to formulate a general mixing rule for the
correlation parameters of pure components.

4.1 Introduction

Approaches for correlating or predicting transport coefficients of mixtures proposed in litera-
ture are based on the principle of corresponding states1–5, the free volume theory6–12, friction
theory13–15 and thermodynamic scaling16–21. A broad overview of the existing correlation
methods for viscosity is given in the recent review of Baled et al.22. The authors compare
established methods and find unsatisfactorily high deviations between predicted viscosities
and experiments, especially in temperature and pressure ranges with scarce experimental
data. The most precise and promising predictive results were provided by a group contribution
entropy scaling method of Lötgering-Lin and Gross 23. This method will be assessed in this
work with regard to the entropy scaling behavior of the viscosity of mixtures. For this purpose
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simple model mixtures are investigated using molecular simulations. Simulation results allow
the distinct analysis of the influence of individual model parameters on fluid properties.

This benefit of molecular simulation of model fluids has been used in the literature for a
long time to develop and assess different approaches for the calculation of dynamic proper-
ties of mixtures. Several studies considered the influence of different parameters defining
Lennard-Jones fluids (LJ) and Mie fluid mixtures on the viscosity. Investigated were mixtures,
where two Mie fluids have different mass24, or energy parameters, or size parameters of
the intermolecular potentials,25 or different repulsive exponents of the Mie potential26. The
model mixtures helped to develop correlation functions for transport coefficients of mixtures,
based on various approaches, such as thermodynamic scaling26 or the corresponding-state
principle24,25,27–29. Another interesting approach that allows to predict dynamic properties is
the isomorph theory, introduced in chapter 1. At this point it is worth recalling two specifics
of isomorphs which are of particular interest in the context of this work: Both, the residual
entropy sres and the reduced dynamic quantities D̃self, λ̃, and η̃ are invariant along isomorphs.
These two observations support the basic idea of entropy scaling: The reduced dynamic
properties are a monovariable function of residual entropy. Numerous simple model fluids,
such as the LJ fluid and the dumbbell fluid, have been identified as Roskilde fluids and exhibit
isomorph properties.30 Also mixtures of model fluids, like the Kob-Andersen binary LJ fluid,
behave like Roskilde fluids.31 Although isomorph theory seeks approaches to explain entropy
scaling, a full understanding can not be provided.32 It has been shown that the monovariable
relationship between entropy and dynamic properties is also valid for fluids and regions in
phase space to which R< 0.9 applies and where therefore no isomorphs occur33. The relation
between entropy and dynamic properties therefore exceeds the isomorph theory and has
been discovered long before the isomorphs.

In later studies, dynamic properties of more complex model fluids, like LJ chains34,35 and
Dumbbell particles36, were investigated using entropy scaling. The findings regarding model
fluids were applied to molecular simulation studies of real fluids, for example water37, n-
alkanes38 and polyethylene39. One advantage of the investigation of simple model fluids is
that sres is accessible through well established and highly accurate equations of state34,35,38–41,
or even directly through molecular simulations36,37. The approach was also used to investigate
mixtures. Results based on Dzugotov’s scaling approach implied a general scaling law for
LJ-mixtures.42,43 Recently, I used molecular simulations of LJ model mixtures to find a mixing
rule that takes the correlation parameters of the pure fluids as input, as published jointly in
Lötgering-Lin et al. 44 . The mixing rule leads to excellent predictions for viscosities of mixtures
containing non-polar and polar fluids, without any further adjustment of parameters.

In this chapter I extend on our previous work44 in analyzing the scaling behavior of mixture
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viscosities. For a consistent assessment, I calculate η# = η/ηC E,mix as well as sres using
molecular simulations. This approach circumvents any inaccuracy underlying analytical
equation-of-state models. Additionally, also the reference quantity ηC E,mix can be calculated
using the molecular parameters of the considered force fields. The mixtures investigated
here consist of two LJ fluids, that differ in one model parameter, which allows the dedicated
investigation of the influence of individual parameters. In addition, a mixture of two identical
LJ fluids with a non-Berthelot cross-interaction is studied to assess the influence of non-
idealities.

4.2 Methods

This section discusses the methodical background of this work. First, the molecular model and
the model mixtures are described and a brief overview of entropy scaling and the required
reference quantities is given. Subsequently, it is explained how entropy and viscosity are
calculated from molecular simulations.

4.2.1 Molecular Model

The mixtures investigated in this work are composed of spherical mono-atomic model fluids.
The interactions two interaction sites are modeled by a Lennard–Jones potential,

φLJ �ri j

�

= 4ϵi j

�

�

σi j

ri j

�12

−
�

σi j

ri j

�6�

, (4.1)

with ri j as the distance of two centers of interaction i and j. Here, the size parameter σii

and the energy parameter ϵii are the parameters that distinguish the pure components of the
mixtures. Unless otherwise specified, the parameters of the unlike site pairs of the mixture
are calculated using a Lorentz combining rule and an non–Berthelot cross-energy parameter
ϵi j, as

σi j =
σii +σ j j

2
(4.2)

ϵi j =
p

ϵiiϵ j j

�

1− ki j

�

, (4.3)

where the binary interaction parameter ki j (with kii = 0) acts as a deviation from the geometric
Berthelot combining rule. The parameters σ11 and ϵ11 of the first component of each mixture
are used to define reduced (dimensionless) quantities. All results are given in these reduced
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LJ units that are summarized in table 4.1.

A well studied example for a binary mixture of LJ fluids is the Kob-Andersen model45,46, that
has also been investigated with respect to entropy scaling and is known as a Roskilde fluid in
isomorph theory.31 The two LJ components of the Kob-Andersen fluid differ in σ22/σ11 as well
as in ϵ22/ϵ11 and a non-zero binary interaction parameter ki j.47 Since the aim of this study is
to systematically analyze the impact of the parameters of the LJ potential on viscosity and
entropy, two LJ fluids are mixed, differing only in their ϵ or σ-values, respectively. Mixture
I is therefore designed as a mixture of two LJ fluids with a ratio of the energy parameters
of ϵ22 = ϵ11 · 0.7. The other parameters are identical for both components of the mixture
(σ11 = σ22, m1 = m2). In a second mixture II, only the size parameters differ (ϵ11 = ϵ22,
m1 = m2, but σ22 = σ11 · 1.5). For both mixtures, the Lorentz-Berthelot combining rules
eq. (4.2) and eq. (4.3) with ki j = 0 are applied. The viscosity of mixtures comparable to I
and II have been investigated using a one-fluid model, which defines one pseudo-component
based on the parameters of the two involved LJ fluids25. The study showed the limitations
of the one-fluid model regarding size asymmetric mixtures. It is thus of interest how well
mixture II can be described with entropy scaling.

The third mixture III is a mixture of two LJ-fluids with an identical set of parameters (ϵ11 =
ϵ22, m1 = m2,σ11 = σ22), but with a non-ideal cross interaction term for the energy parameter
of k12 = 0.25. This mixture is of special interest, as both boundaries of the composition, x1 = 0

and x1 = 1, are well defined as the regular LJ fluid, whereas the non-pure compostions will
show a different behavior. All parameters of defining the three investigated model mixtures
are summarized in table 4.2

Table 4.1: Reduced Lennard-Jones units
Quantity Symbol Reduced units
Time t t∗ = t

q

ϵ11/
�

M1σ
2
11

�

Distance r r∗ = r/σ11

Energy u u∗ = u/ϵ11

Temperature T T ∗ = T/(ϵ11/kb)
Volume V V ∗ = V/σ3

11
Particle Density ρ ρ∗ = ρσ3

11
Pressure p p∗ = pσ3

11/ϵ11

Viscosity η η∗ = ησ2
11/

p

ϵ11M1
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Table 4.2: Parameters of the LJ potential of the investigated model mixtures
Mixture σ22/σ11 ϵ22/ϵ11 k12

I 1 0.7 0
II 1.5 1 0
III 1 1 0.25

4.2.2 Entropy Scaling

Rosenfeld’s Ansatz allows for calculating transport properties of a substance at any fluid
state point, using a simple correlation function. For a wide range of substances, a third
order polynomial in terms of reduced viscosity η# = η/ηre f is sufficient to calculate the
viscosity η for a wide range of thermodynamic conditions. For spherical fluids, even a linear
correlation gives good results40,41,48. The monovariable dependence of η# on sres, and thus
the applicability of entropy scaling, critically depends on the choice of the reference viscosity
ηre f . For pure fluids, Novak 48 proposed the Chapman-Enskog viscosity as a reference, which
was shown to lead to accurate predictions of viscosities of various real substances23,44,49. The
CE-viscosity for a pure substance of index i is defined as50

ηC E,i =
5

16

p

MikbT/ (NAπ)

σ 2
ii Ω

(2,2)∗

i

, (4.4)

with the molecular mass Mi, Boltzmann’s constant kb, temperature T , Avogadro’s constant NA
and the molecular diameter σii. The collision integral Ω(2,2)∗

i is calculated using the empirical
correlation of Neufeld et al51. In this study the approximation of Wilke 52,53 is used to define
the Chapman-Enskog viscosity for mixtures, ηC E,mix .

ηC E,mix =
N
∑

i=1

x iηC E,i

N
∑

j=1
x jφi j

(4.5)

where

φi j =

�

1+
�

ηC E,i/ηC E, j

�1/2�
M j/Mi

�1/4�2

�

8
�

1+Mi/M j

��1/2
. (4.6)

Since this study is concerned with LJ mixtures only, the reference values can also be given in
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reduced units (cf. table 4.1). The CE viscosity in eq. (4.4) is then reduced to

η∗
C E,i =

5
16

p

T ∗/ (π)

Ω
(2,2)∗

i

. (4.7)

For the case Mi = M j, eq. (4.6) simplifies to

φi j =

�

1+
�

ηC E,i/ηC E, j

�1/2�2

4
. (4.8)

A second prerequisite for the precise prediction of η via entropy scaling is an accurate estimate
of the molar residual entropy sres, which is defined as the molar entropy minus the molar
ideal gas entropy, according to sres (T,ρ) = s (T,ρ)− sid. gas (T,ρ). For the application to real
substances, the calculation of sres is relatively straightforward, and can be done based on a
suitable equations of state (EoS)23,44,48,49, such as PC-SAFT54. In principle, such an approach
is also applicable to mixtures, provided that the used EoS is applicable to mixtures; however,
the use of an EoS leads to approximate, i.e. non-exact mixture properties. All properties are
therefore calculated based on molecular simulations.

4.2.3 Calculation of Residual Entropy

I calculate the residual entropy of the investigated model mixtures using Grand Canonical
Monte Carlo (GCMC) simulations applying transition matrix sampling, following the scheme
proposed by Errington and Shen 55. The GCMC simulations are performed at constant tem-
perature T , volume V and µi for each component i, whereas the particle numbers N1 and N2

are fluctuating. Temperature and volume are defined a priori for every simulation, estimates
for excess chemical potentials µ1 and µ2 suiting the simulated temperature are taken from
the PC-SAFT EoS54. Estimates of µ = (µ1,µ2) are thereby sufficient, as earlier studies have
shown56. The thermodynamic quantities, including residual entropy sres, of a mixture at
a certain pressure p∗ and composition x are calculated in post processing using histogram
reweighting57. For a more detailed description of the implementation I refer to the work of
Hemmen et al. 56.

The simulations are carried out in a triangle in the (N1, N2) plane with (N1 = N2 = 0), Nmax
1 and

Nmax
2 as vertices. As this study focuses on state points in a homogeneous liquid, the maximum

numbers of N1 and N2 are chosen in a way that the region of liquid densities is included in
the sampling area. The triangle also includes the gas phase and the two phase region of
the mixtures. The vapor liquid equilibrium (VLE) of each mixture can be calculated in post
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processing using the simulation results. In order to allow parallel computation, the sampled
(N1, N2) space is divided in squared windows of a fixed size ∆N1 ×∆N2 with an overlap of one
particle to each neighboring window58.

In each window, every N = (N1, N2) point is sampled for a fixed number of trail moves.
The following types of trial moves are thereby considered: particle displacements, particle
insertion, particle deletion and particle identity swaps. All trial moves that might change the
particle numbers are never accepted until the desired number of samples is reached in this
particular (N1, N2) point. Only then will the simulation proceed on to an adjacent point in
the N plane (e.g. (N1 + 1, N2)). In this way, the simulation meanders over the N plane and
it is ensured that each point is sampled equally. All transition probabilities, including those
of the trivially rejected moves, are recorded in a transition matrix (TM). From the TM the
probability distribution of a particle composition P(N1, N2;µ1,µ2, V, T ) in this window for a
given (µ, V, T ) can be calculated55,59. Combining the results of all windows a histogram of
the normalized probability density P(N1, N2;µ, V, T ) is obtained over the complete predefined
(N1, N2) triangle. Besides the probability P, the histogram of the average energy of a state
〈U〉 (N1, N2;µ, V, T ) is sampled throughout the simulation.

The resulting histogram is then post processed using histogram reweighing57, which is used to
determine VLE data from GCMC simulations. In this procedure, P(N1, N2;µ, V, T ), simulated
at T and the before estimated µ is reweighted to a probability distribution at a desired µtarget
not too far away from the sampled µ, via the relation

P(N, T,µtarget) = P(T,N,µ)exp [βN · (µtarget −µ)] (4.9)

with β = 1
kBT . An iterative approach is used. The N-domain needs to be divided into a

vapor and a liquid domain. The equilibrium requires equal pressure p for both phases.
This condition is fulfilled if the sum under the peak in the vapor domain of the distribution
Ivap =

∑vap
N1,N2

P(N, T,µcoex) is equal to the corresponding sum under the liquid peak I liq. The two
chemical potentials µcoex1 and µcoex2 are determined iteratively by two requirements, Ivap = I liq

and the compostion of species 1 is equal to a target value, x1 = x target
1 .

For determining the thermodynamic properties along an isobar for various compositions, P is
iteratively reweighted to a µisobar belonging to a state point at the desired pressure ptarget and
the required composition xtarget. ptarget is selected in such a way that a state in the liquid-like
phase is established. In each iteration step pressure p is calculated via the ideal gas limit as60

p = −
1
βV

ln (P (N1 = 0, N2 = 0;µ, V, T )) (4.10)
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and the number of particles of species i, corresponding to the target composition is

〈Ni〉=
N1,max,N2,max

∑

N1=0,N2=0

Ni · P (N1, N2;µ, V, T ) (4.11)

µisobar is thereby iterated in a way that the target composition

x target
i =




N target
i

�

�


N target
1

�

+



N target
2

�� (4.12)

and the pressure condition ptarget are fulfilled simultaneously. This procedure is repeated for
several xtarget along an isobar. At each state point, it is now also possible to determine the
average intermolecular energy of the system from the sampled energy histogram, as

〈Ures〉=
N1,max,N2,max

∑

N1=0,N2=0

U (N1, N2;µ, V, T ) · P (N1, N2;µ, V, T ) (4.13)

The internal energy U coming from a GCMC simulation does not include the kinetic con-
tribution and is therefore a residual quantity. The specific residual entropy s∗ can now be
calculated starting from the residual Gibbs Free Energy

Gres = 〈U〉+ presV − TSres (4.14)

The residual pressure has to be calculated by subtracting the ideal gas contribution. For
pressure p as determined from eq. (4.10), one gets the residual pressure from

presV =
�

pV −
〈N〉
β

�

(4.15)

The residual Gibbs energy can be expressed by the residual chemical potential of the compo-
nents, as

Gres =
Ncomp
∑

i=1

Niµres,i (4.16)

A chemical potential of species i contains the de Broglie wavelength Λi with βµi = ln
�

ρiΛ
3
i

�

+
µres (T,ρ). Without loss of generality, Λi can be set to σi in this chapter, so that

βµres,i (N, V, T ) = βµi − ln
�〈Ni〉

V ∗

�

(4.17)
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Combining these equations finally gives the residual entropy.

Sres (N, V, T ) =
1
T
〈Ures〉+ (βpV − 〈N〉)−

Ncomp
∑

i=1

Ni

�

βµres,i
�

(4.18)

The dimensionless and molar specific form s∗ is used in the following for the entropy scaling
of the viscosity results.

s∗ =
Sres

〈N〉kb
= β

〈Ures〉
〈N〉

+
�

βpV
〈N〉

− 1
�

−
Ncomp
∑

i=1

x i

�

βµres,i
�

. (4.19)

Note that although non-reduced units are used in the equations of this chapter for the sake of
convenience, the equations are also valid when using dimensionless quantities.

4.2.4 Calculation of Viscosity

The viscosity of the mixtures is calculated in equilibrium Molecular Dynamics (MD) simula-
tions using the MD package DL_POLY_461. NVT simulations are performed at constant particle
number N, Volume V ∗ and temperature T ∗. The simulations were carried out at densities in the
liquid region along several isotherms at one specific pressure p∗ for each mixture and varying
compositions x. The density ρ∗ corresponding to each simulated state point at (p∗, T ∗,x) are
taken from the results of the GCMC simulations at the respective isobaric line. MC and MD,
provide the same pressures for a simulation at the same density. The initial configurations
for the NVT MD simulations are generated each in a short MC NVT simulation. This MC
configuration is used as starting point for multiple MD NVT simulations at each considered
state point using a velocity Verlet integrator with a time step of ∆t∗ = 4.6374e − 04. Initial
particle velocities are drawn from the Boltzmann distribution for the considered temperature,
with a different random seed for each replicate simulation. Each MD replicate is equilibrated
for 106 time steps. The shear components of the stress tensor are then sampled for another
106 time steps. T ∗ is held constant using a weakly coupled Berendsen thermostat, which has
been shown to preserve realistic dynamics62. An overview of general simulation specifications
of the MD simulations is given in table 4.3.

The Green-Kubo approach63,64 is used to calculate viscosities. The method determines η∗ by
integrating the auto correlation function (ACF) of the stress tensor, according to

η=
1

V kBT

∞
∫

0

RJpJp
(τ)dτ, (4.20)
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integration method Velocity Verlet
time-step ∆t∗ 4.6374 · 10−4

equilibration steps 1 · 106

production steps 1 · 106

number of molecules 1000
thermostat (coupling time t∗T) Berendsen (4.6374 · 10−6)
cut-off length / σ 4.112
tail-corrections applied on U and p

Table 4.3: General Specifications of the MD Simulations.

with the ACF RJpJp
of the stress tensor Jp, according to

RJpJp
(τ) = lim

Θ→∞

1
2Θ

Θ
∫

−Θ

Jαβp (t +τ) J
αβ
p (t)dt (4.21)

as a function of the lag time τ. Jαβp (with α,β = x , y, z) are entries of the shear-stress tensor
of the simulation box. The stress tensor is calculated using the particle velocities vi and the
virial rij(∂ φ(ri j)/∂ rij).

Jαβp =
N
∑

i=1

mi v
α
i vβi −

N
∑

i=1

N
∑

j>i

rαi j

∂ φ(ri j)

∂ rβi j

(4.22)

In order to improve the statistic of each simulation, Jαβp is calculated as the average of the six in-
dependent shear components 1/2

�

J x y
p + J y x

p

�

, 1/2
�

J yz
p + J z y

p

�

, 1/2
�

J xz
p + J zx

p

�

, 1/2
�

J x x
p − J y y

p

�

,
1/2

�

J y y
p − J zz

p

�

and 1/2
�

J x x
p − J zz

p

�

. The last three terms are determined from 45◦ rotations
of the stress tensor about all axes65,66.

As the the Green-Kubo method suffers from a high level of noise, statistics are improved
by generating 100 replicate trajectories at each state point. The autocorrelation function
(ACF) of each time series is computed in post processing. According to the Wiener-Khinchin
Theorem67,68, the correlation integrals can be calculated very efficiently in Fourier-space.69,70
Using the Fast Fourier Transform algorithm, the computational complexity depending on
the number of samples Nt is reduced from ∝ N 2

t to ∝ Nt log2(Nt) compared to the direct
calculation71. This procedure allows us to evaluate ACFs very efficiently and without sacrificing
any data points. Therefore, the autocorrelations of every sampled time step with all other
time steps of the simulation is considered. The Green-Kubo integrals are evaluated with
the Time Decomposition Method of Zhang et al. 72, a fitting method where the statistical
uncertainty is part of the evaluation. The stated statistical uncertainties of the results are
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95 % confidence intervals, obtained from a bootstrapping technique.73–75 For this purpose
500 bootstrap samples are evaluated, generated by randomly drawing (with replacement) 50
times from the complete set of replicate simulations. For a more detailed description of the
analysis of the viscosity data I refer to our recent work75,76.

4.3 Results

The central result of the study of the model mixtures is the analysis of entropy scaling of
mixture-viscosities. In order to lead to this result, this section first separately considers the
calculated properties needed for entropy scaling – entropy s∗ and viscosity η∗. The results
are presented successively for the different mixtures. For a more comprehensive appraisal
of the individual mixtures, I also show phase equilibrium properties of the mixtures. The
vapour-liquid equilibria (VLE) can be computed from the data generated for the calculation of
entropy. The VLEs are determined via histogram reweighting, as described in section 4.2.3, at
the temperatures at which the GCMC simulations for the entropy calculation were performed.
Therefore no additional simulations are required to determine the VLEs.
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Figure 4.1: Vapor-liquid equilibrium of the energy asymmetric mixture I (σ22 = σ11, ϵ22 =
0.7 · ϵ11, and ϵ12 =

p
ϵ11ϵ22) at four temperatures. For reduced units refer to table 4.1.

Figure 4.1 shows the VLE of the energy asymmetric mixture I. As the second component
of the mixture is supercritical at all considered temperatures, a closed-loop phase behavior
is observed for all shown VLEs. Component 2 is the low boiling component, due to its less
attractive interactions (ϵ22 = 0.7 · ϵ11). Thus, a liquid phase, rich in component 1, and a
gas phase, enriched with component 2, are obtained in the phase equilibrium. The phase
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envelopes in fig. 4.1 do not close towards the critical point, because in regions near the critical
pressure, phase equilibria can no longer be determined using simple histogram rescaling.
The probability surfaces of the two phases increasingly overlap towards the critical point.77
Although the critical point can be estimated using other methods56,78, the required finite-size
analysis was not performed in this work, as it is not a focus of this study. Since the two-phase
region should be avoided for the investigation of entropy scaling of the mixture, the VLE in
fig. 4.1 was also used to determine a pressure at which a homogeneous phase is ensured for
the determination of s∗ and η∗. In order to ensure a homogeneous phase for a wide range of
T ∗ and x, the pressure for the further studies was chosen supercritical for both components,
but moderate with p∗ = 0.2. This pressure results in densities in the liquid regime at the
regarded temperatures.
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Figure 4.2: GCMC results for the energy asymmetric mixture I (σ22 = σ11, ϵ22 = 0.7 · ϵ11, and
ϵ12 =

p
ϵ11ϵ22): Reduced entropy s∗ as a function of compostition x2 at p∗ = 0.20 and four

temperatures.

Figure 4.2 shows the composition dependence of s∗ of mixture I at different T ∗. For each
composition, entropy increases with rising temperature, as suggested by he partial derivative
(∂ sres/∂ T )p,x = cresp /T . With increasing composition of component 2 (with ϵ22 = 0.7 · ϵ11),
the entropy s∗ of the mixture tends to higher values. Component 1, the high boiler, has
significantly more negative entropies (s∗ ∼ −2 to −2.5), which are typical values of liquids.
The values of the pure component 2 (s∗ ∼ −0.7 to −1.3) are in a range close to the critical
point of pure Lennard-Jones fluids.

Figure 4.3 depicts the temperature dependence of the viscosity of mixture I for several lines
of constant compositions (isopleths). The viscosity in this figure is the dimensionless quantity
η∗ = ησ2

11/
p

ϵ11M1, not to be mistaken with the reduced viscosity η# in entropy scaling. While
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Figure 4.3: MD simulation results for the viscosities η∗ of mixtures I (σ22 = σ11, ϵ22 = 0.7 ·ϵ11,
and ϵ12 =

p
ϵ11ϵ22) at a pressure of p∗ = 0.2 and several temperatures. Different colors

represent different compositions, solid lines representing the pure fluids. Lines are a guide to
the eyes.

the results of entropy are derived from histogram reweighting and can therefore be determined
for any composition, the viscosity points are derived from individual MD simulations at discrete
state points. The conditions (T ∗, v∗ and x) at which the MD simulations are conducted were
chosen in such a way that GCMC results are available for each viscosity. The isopleths of
mixtures of varying composition lay between the lines of the pure components. The viscosities
decrease for higher concentrations of the low boiling component 2 with ϵ22 = 0.7ϵ11. This
behavior seems plausible as the second component has a lower energy parameter ϵ, which
defines the attractive interactions. With a higher concentration of this component, the
interaction between the particles of the mixture is less attractive and therefore the viscosity
decreases.

Figures 4.4–4.6 analyze the results of the size-asymmetric mixture II. This kind of mixture
is known to show a thin VLE envelope in contrast to mixture I60. The small difference in
vapor pressure between the two components impedes GCMC simulations of this mixture
and necessitates a high number of samples. This has also been reported in the literature for
Gibbs-ensemble calculations of similar mixtures dominated by size-asymmetric effects.79. As
can be seen in the VLEs at several temperatures shown in fig. 4.4, both pure components
remain subcritical for temperatures below T ∗ = 1.2. At a concentration of x2 = 0 the same
pure LJ fluid is present as in mixture I in fig. 4.1. So at the same temperature the same vapor
pressures should be obtained for the left boundary of both mixtures. However, the vapor
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Figure 4.4: Vapor-liquid equilibrium of the size asymmetric mixture II (σ22 = 1.5 · σ11,
ϵ22 = ϵ11, and ϵ12 =

p
ϵ11ϵ22) at four temperatures.

pressures of the pure LJ fluid in mixture II are predicted slightly too low, which indicates
the difficulties in sampling the size-asymmetric mixture. The low boiler in this mixture is
component 1. The larger particles of component 2 tend rather to remain in the liquid phase.
Based on fig. 4.4, a pressure is selected for the entropy calculation which is again far from
the two-phase region, in the case of mixture II it is set to p∗ = 0.4.
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Figure 4.5: GCMC results for the size asymmetric mixture II (σ22 = 1.5 ·σ11, ϵ22 = ϵ11, and
ϵ12 =

p
ϵ11ϵ22): Reduced entropy s∗ as a function of concentration x2 at p∗ = 0.40 and five

temperatures. For reduced units refer to table 4.1.
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Figure 4.5 exhibits a similar concentration dependence for entropy as for mixture I, if one
considers that component 1 is the low-boiling component of the mixture in this case. If the
fraction of high boiler increases with x2, the entropy s∗ of the mixtures becomes more negative.
Also for entropy, near the pure substances and for low temperatures, deviations from the
nearly linear course are observed, which was already seen for mixture I.
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Figure 4.6: MD simulation results for the viscosities η∗ of the size asymmetric mixtures II
(σ22 = 1.5·σ11, ϵ22 = ϵ11, and ϵ12 =

p
ϵ11ϵ22) at a pressure of p∗ = 0.4 and several temperatures.

Different colors represent different compositions, solid lines representing the pure fluids.
Lines are a guide to the eyes.

The viscosity in fig. 4.6 decreases for each temperature as the proportion of component 2
in the mixture increases. So I obviously find a clear dependence of η∗ on the composition
at the moderate pressure p∗ = 0.4, unlike earlier studies of the viscosity of size asymmetric
LJ-mixtures29 at a high pressure of p∗ = 4.18.

Mixture III is a mixture of two LJ fluids with identical σ and ϵ parameters, but with a
cross-energy parameter ϵ12 = 0.75

p
ϵ11ϵ22. This mixture is known for a symmetric phase

behavior with an VLE azeotrope at equimolar composition and a liquid-liquid equilibrium60

at temperatures T ∗ < 1.0. Figure 4.7 shows the calculated vapor liquid equilibrium of the
mixture at various temperatures. According to the character of the mixture a symmetrical
behavior of the VLEs can be seen over the composition with the azeotropic point in the centre
at x2 = 0.5. The left (x2 = 0), as well as the right boundary (x2 = 1) of mixture III corresponds
to the LJ fluid. The vapour pressures for the pure species boundaries (x1 = 1 and x2 = 1) are
in good agreement with those of mixture I at x2 = 0 in fig. 4.1. As before, using the VLE from
fig. 4.7, a pressure is selected, that ensures conditions well away from the two-phase region
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Figure 4.7: Vapor-liquid equilibrium of mixture III with non-Berthelot cross-energy parameters
(σ22 = σ11, ϵ22 = ϵ11, and ϵ12 = 0.75 · pϵ11ϵ22) at four temperatures.

at which the analysis is carried out. For mixture III the pressure is set to p∗ = 0.15. The value
was chosen moderately enough to avoid high densities at which the pure components tend to
form solids at lower temperatures.
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Figure 4.8: GCMC results for mixture III with non-Berthelot cross-energy parameters (σ22 =
σ11, ϵ22 = ϵ11, and ϵ12 = 0.75 · pϵ11ϵ22): Reduced entropy s∗ as a function of concentration x2

at p∗ = 0.20 and four temperatures.

In fig. 4.8 one can see the entropy of mixture III, which is also symmetric with the composition.
As can be seen in fig. 4.8, the highest value for s∗ at each temperature is reached at equimolar
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composition. This reflects the behavior of the other model mixtures being considered. For the
“low boiler” – here the azeotropic mixture at x2 = 0.5 – the entropy is less negative, towards
the high boilers – here the two pure substances – the entropy decreases.
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Figure 4.9: MD simulation results for the viscosities η∗ of mixtures III (σ22 = σ11, ϵ22 = ϵ11,
and ϵ12 = 0.75 · pϵ11ϵ22) at a pressure of p∗ = 0.15 and several temperatures. Different colors
represent different compositions, solid lines representing the pure fluids. Lines are a guide to
the eyes.

The fact that the low boiler in mixture III is at equimolar composition leads to an interesting
symmetric behavior also in viscosity, which can be seen in fig. 4.9 and was already noticed in
our previous work.44 The viscosity decreases with increasing amount of component 2 until it
reaches its lowest value at the azeotropic composition. With further addition of component 2,
η∗ rises again. In the depiction of the isopleths versus temperature in fig. 4.9, this symmetry
can be seen in the superimposed isopleths of complementary composition. Thus, for example,
the viscosities at x2 = 0.1 and x2 = 0.9 (x2 = 0.2 and x2 = 0.8, and so on) are the same within
the error bars for each temperature. The isopleths of the azeotropic mixture and those of the
pure LJ fluids limit the viscosity at the bottom and top, respectively.

Figure 4.10 summarizes and visualizes the central result of the study on the model mixtures.
The diagram combines the results presented in the figures above and shows the viscosity of
all three mixtures in an entropy scaled analysis. On the y-axis of each figure, the logarithm of
the dimensionless viscosity η# = η∗/ηC E,mix is shown, using the Chapman-Enskog viscosity of
the mixture (eq. (4.5)) as reference. On the x-axis is the related s∗ value of each state point,
respectively. Figures 4.10a–4.10c show the results of the individual mixtures, (a) gives the
results of mixture I, (b) the results of mixture II, and (c) the results of of mixture III. The
different colors in each figure indicate different temperatures. At each temperature several
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Figure 4.10: Dimensionless mixture viscosities ln(η#) as a function of the residual entropy s∗ of
all non-associating mixtures I-III. Simulated temperatures and pressures of each mixture refer
to figs. 4.3, 4.6 and 4.9. In (a), (b), and (c) different colors represent different temperatures;
different symbols represent different compositions. (a) shows the results of mixture I, (b)
the results of mixture II, and (c) the results of of mixture III. (d) shows the results of all
three mixtures in one diagram. Here, different colors represent the three different types of
mixtures. Different symbols show different compositions.

compositions are shown, represented by different symbols.

All mixtures follow the monovariable (almost linear) relationship of η# and s∗. For mixture II,
which has proven to be difficult to sample, an outlier from this linear course can be seen in
(b). The point (at s∗ ∼ −2.5,T ∗ = 1.0 and x2 = 1) is one at which both the GCMC simulations
of entropy and the MD simulations of viscosity showed results deviating from the overall
trend and I consider this point as an “outlier”. It is worth noting that the results in (a) - (c)
extend over various s∗ ranges that only partially overlap. All results combined in one figure
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cover a very wide range of liquid entropies.

Figure 4.10d contains all datapoints calculated in this study. It contains state points at various
compositions and temperatures for three different mixtures. The remarkable result is that the
dimensionless viscosity of all data points collapse on one mastercurve. A universal behavior
can be seen for all LJ mixtures, not only for each mixture individually. The mastercurve can be
accurately represented by a linear equation. The parameters defining the linear mastercurve
can conveniently be obtained by adjustment to the viscosity results of pure LJ fluids. As a
conclusion of these findings, it can be stated, that the viscosity of any mixture of LJ fluid
equals the viscosity of a pseudo pure fluid at the same residual entropy as the mixture. The
pseudo pure components can be described by general paramaters adjusted to the pure LJ
fluid. The only quantity needed to predict the mixture viscosity of any combination of LJ
fluids differing in σii, ϵii or ϵi j is the residual entropy s∗ of the mixture.

4.4 Conclusion

In this study I investigated the entropy scaling behavior of LJ model mixtures consistently
using molecular simulations. By considering three model mixtures at various temperatures
and compositions, the influence of individual LJ parameters on VLE, entropy s∗ and viscosity
(η#) has been assessed. Using a Chapman-Enskog equation for defining a dimensionless
viscosity η# as the only model equation, I related η# with the residual entropy s∗ and found
a general, nearly linear master curve that is valid for all state points of all mixtures. In
the entropy scaling approach all LJ mixtures can thus be considered as a pseudo pure LJ
substance.

This result confirms what has already been postulated by isomorph theory, declaring LJ
mixtures as Roskilde fluid and thus suitable for entropy scaling. In the present study, scalability
was shown even for states far outside the range in which the LJ fluid behaves like a Roskilde
fluid.33 The results also show that ln

�

η#
�

is approximately linear with s∗ for all LJ mixtures
using the Chapman-Enskog viscosity as reference for making η# dimensionless. The CE
reference is therefore very suited as a reference for viscosity of LJ fluids, contrary to what
was claimed in a previous publication.33

Furthermore, GCMC simulations have been validated as a suitable method for determining the
entropy of mixtures in the context of entropy scaling. In a previous work44 it has been found
that the combination of the PC-SAFT equation of state for the determination of s∗ and the
CE viscosity as a reference leads to well-defined courses in entropy-scaled depiction, which
allows the adjustment of simple correlation functions for real mixtures. The present work
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shows for LJ-mixtures that this also applies when residual entropy is determined consistently
from molecular simulations.

The results also open exciting new applications for entropy scaling. If one knows the entropy
scaling parameters (see equation for viscosity in table 3.3 in chapter 3) related to a force field
(in our case this would correspond to the straight line equation for LJ fluids), the transport
properties can be estimated from GCMC simulations and entropy scaling. Thus, efficient
methods like histogram reweighting can be used to determine dynamic properties, which
otherwise requires numerous individual MD simulations. This allows the dynamic properties
to be taken into account in force field optimization, for example. A prerequisite for such a
procedure is that entropy scaling parameters remain almost constant for mild changes in
the force field parameters. First studies in this regard have shown that this requirement is
fulfilled for simple hydrocarbons80.
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5 Conclusion

In the present work, entropy scaling and molecular simulations, two methods of predicting
transport coefficients of fluids, are jointly employed in several ways, to achieve synergistic
effects. Molecular simulations are used, on the one hand, to gain new findings and deeper
insights concerning the entropy scaling method. On the other hand, approaches from entropy
scaling are used to better define and assess molecular simulations for transport properties. This
work establishes a framework to both robustly and efficiently determine transport coefficients
of technically relevant fluids over a wide range of pressures and temperatures, and to perform
larger-scale simulation studies to be used in force field development.

The first part of this thesis investigates whether a force field with rigid bond lengths can be
applied with harmonic bond length potentials and how static and transport properties are
thereby affected. The substances studied in this study are described using the TAMie force field,
which was originally developed with fixed bond lengths, and to which harmonic bonds are
introduced in this study. The new “flexible” version of TAMie manages to reproduce the results
for liquid phase pressure, shear viscosity, thermal conductivity, and self-diffusion coefficients
of the original force field within the 95 % confidence interval, provided that the binding
energy constant of the harmonic bond kl is appropriately chosen. In the study, a wide range of
values for kl were examined at different time step sizes of the integration scheme to evaluate
whether the high-frequency oscillation of the bond can still be resolved correctly. It has been
shown that with a Velocity Verlet integrator and a common time step of 2 fs, suitable values for
kl are in the range of fully flexible united atom force fields reported in the literature. Bonds
with excessively high bond constants can no longer be resolved, which results in deviations.
As a practical result of this study, it was shown that “flexible” versions can be introduced for
force fields that were originally parametrized with fixed bonds (including TAMie), making it
more straightforward to compute transport properties in molecular simulations.

This insight is applied in the second part of the thesis, where the predictive power of the
(“flexible”) TAMie force field for transport properties, namely shear viscosity, self-diffusion
coefficient and thermal conductivity is assessed in a broad molecular simulation study. TAMie
was initially developed for static thermodynamic properties and phase equilibria. This work
proposes a workflow, where the state points at which simulations are conducted are selected
based on their residual entropy in order to ensure a meaningful distribution of states for
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5 Conclusion

conducting simulations covering the entire fluid region. The three transport coefficients and
their statistical uncertainties are then determined simultaneously in a series of equilibrium
molecular dynamics simulations at each state point, respectively. A simple correlation function
is then fitted to the simulation results for each transport property, based on the entropy scaling
method. By the careful choice of the simulated state points, four points corresponding to
liquid states and one point to a gas state are sufficient to parameterize robust correlations.
Using these correlations, transport coefficients in the entire fluid region can be predicted. The
TAMie force field could then be assessed by comparing them with all the data available in
literature – even for thermodynamic states far from those that were simulated. The model
based on the TAMie force field achieved good agreement with literature data, with AAD values
of 13 % for shear viscosity, 18 % for self diffusion, and 10 % for thermal conductivity.

Further, this thesis investigates the entropy scaling behavior of LJ model mixtures using
molecular simulations. By considering three model mixtures at various temperatures and
compositions, the influence of individual LJ parameters on VLE, entropy s∗ and viscosity
(η#) has been assessed. All quantities are determined in molecular simulations; besides
MD simulations for the determination of viscosity, GCMC simulations are conducted for the
calculation of the mixture entropies and the VLE data. In the context of entropy scaling,
GCMC simulations are a suitable choice for determining mixture entropies. Relating the
dimensionless viscosity to the residual entropy from the GCMC simulations, a general, nearly
linear master curve was found that is valid for all state points of all mixtures. The Chapman-
Enskog viscosity is used as the only model equation in the study to define the dimensionless
viscosity. The results of the study indicate that within the entropy scaling approach, all LJ
mixtures can be considered as pseudo pure LJ substance.

The results obtained in this thesis open an exciting potential for future applications for the
combination of molecular simulations and entropy scaling. The TAMie force field, is subject to
further development and parameters for new substance classes have recently been published.
The workflow proposed in this work can be used to efficiently evaluate the predictive power
of TAMie for the transport coefficients of these compounds. The results obtained from
the simulation of the model mixtures suggest that it can also be applied to real mixtures.
Following the approach, it may even be possible to avoid the comparatively computationally
intensive MD simulations for an initial estimate of transport properties: Knowing the entropy
scaling parameters for a force field (as determined for TAMie in chapter 3) the transport
properties can be estimated via entropy scaling and the results of GCMC simulations and
histogram reweighting. My preliminary work on this subject indicated that the entropy
scaling parameters remain nearly constant under slight changes in the force field parameters,
suggesting the dynamical properties can be considered in force field optimization.
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A Supporting Information for: Force fields with fixed bond lengths

and with flexible bond lengths: Comparing static and dynamic

fluid properties

The content of this appendix is a literal quote of the supporting information:

M. Fischer, G. Bauer, J. Gross: Supporting Information for: Force Fields with Fixed Bond Lengths and
with Flexible Bond lengths: Comparing Static and Dynamic Fluid Properties. Journal of Chemical &
Engineering Data, 65:1583-1593, 2020. doi:10.1021/acs.jced.9b01031

A.1 Details of the calculation of the Thermal Conductivity

The correlated quantities needed for the calculation of the thermal conductivity are the
three spatial entries of the heat flux Jq =

�

J x
q , J y

q , J z
q

�

. RJq Jq
is the mean of the autocorrelation

functions (ACF) of the three entries and is calculated via the dot product as

RJq Jq
(τ) = lim

Θ→∞

1
2Θ

Θ
∫

−Θ

Jq (t +τ) · Jq (t)dt (S1)

where Jq is defined as

Jq =
1
V

�

N
∑

i=1

viei +
N
∑

i=1

N
∑

j>i

ri j

�

v j ·
∂ ui

∂ r j

�

�

(S2)

which contains the per-atom (potential and kinetic) energy ei and the force fi j = − ∂ ui
∂ r j

due
to the per-atom potential energy ui. Analogous to the viscosity, the running value of λ is
calculated as integral of an ACF, according to

λrun (τ) =
V

3kBT 2

τ
∫

0

RJqJq
(τ′)dτ′ (S3)
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A SI: Force fields with fixed bond lengths and with flexible bond lengths

and the thermal conductivity is calculated as the limit λ= λrun (τ→∞).

A.2 Distribution of Bond Lengths

Figure A.1 shows the distribution of the bond lengths of propane, which can also be seen in
fig. 2.2 of the main text. In fig. A.1 the simulation results from fig. 2.2 of the main text are
compared with an analytical distribution, which calculates as

P(r) =

√

√klβ

π
exp

�

−βkl(r − r0)
2
�

(S4)

Each maximum value of P(r) is adjusted to the maximum value of the respective distribution
of the simulations. The considered molecule, propane, comprises two harmonic bond length
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Figure A.1: Comparison of distributions of bond lengths from simulation (solid) and analytical
solution (dashed). Results are shown for liquid propane at T = 360 K and ρ = 361.27 kgm−3

(rRESPA with inner time step ∆t = 0.1 fs) for different values of bonding force constant kl .
Vertical colored lines represent the respective maximum value of the distribution. The black
vertical line shows the reference length r0.

potentials that are not independent from one another. The simple solution of a harmonic
oscillator given in eq. (S4) can only be defended for uncorrelated harmonic oscillators of
both bonds and no impact of surrounding molecules. These two assumptions are rather well
justified, as we show in fig. A.1. For kl = 50 / T = 0.12ps the total distribution shifts to higher
distances compared to the analytical solution, which confirms the offset maximum value. For
kl = 1000 / T = 0.03ps the simulated distribution is slightly narrower than the analytical
distribution.

128



A.3 Diagram of pressure of propane for high values of period time T

A.3 Diagram of pressure of propane for high values of period time T

In the main text we explain that for T > 0.1ps, the kl values are small and therefore the
flexible bonds are so loose that results of the flexible bond model deviate from results of a
rigid bond model. Figure A.2 illustrates this point by showing the section of high T values in
Figure 1 from the main text in a finer scale.
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Figure A.2: Zoom into Figure 1 of the main text for high values of T . Shown is the pressure
p of propane at T = 360 K over period of the bond vibrations T . Colors represent different
integration schemes with different time steps ∆t. The red horizontal line shows result of
rigid bonds. Vertical lines highlight T values of the Charmm (dotted) and the Gromos force
field (dashed).

A.4 Simulation results in tables

This supporting information contains tables summarizing temperatures, pressures, viscosities,
diffusion coefficients and thermal conductivities for the molecules with rigid bonds (table A.1)
as well as for the models with flexible bonds, including all integration schemes and time
steps (tables A.2–A.5). Additionally tables with results for one lower temperature for each
substance (tables A.6–A.9) and the results of gas phase simulations of propane at 360 K,
calculated with rRESPA (table A.10) are presented. The stated statistical uncertainties are
the 95 % confidence interval, calculated as described in the main text.
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Table A.1: Results of the rigid bonds, calculated with Velocity Verlet and SHAKE (∆t = 1.0 fs)

Substance ρ/kg/m3 T/K p/bar η/mPas λ/W m−1 K−1 Dself/cm2 s−1

ethane 315.43 299.990(51) 38.677(240) 3.75(9) · 10−2 6.86(18) · 10−2 3.38(4) · 10−4

ethane 512.82 205.000(53) −0.659 48(68000) 1.35(3) · 10−1 1.58(5) · 10−1 7.49(5) · 10−5

dimethylether 482.12 379.970(59) 31.868(290) 5.91(8) · 10−2 8.11(22) · 10−2 2.53(2) · 10−4

dimethylether 649.04 299.980(64) 1.6168(6000) 1.34(2) · 10−1 1.34(4) · 10−1 9.86(7) · 10−5

propane 361.24 360.010(56) 30.425(250) 4.38(9) · 10−2 6.04(14) · 10−2 3.04(2) · 10−4

propane 497.2 294.980(48) 7.4815(4900) 9.53(28) · 10−2 9.35(32) · 10−2 1.26(1) · 10−4

ethane 315.43 299.990(51) 38.677(240) 3.75(9) · 10−2 6.86(18) · 10−2 3.38(4) · 10−4

propane (vapor) 18.481 295.000(24) 8.6049(74) 8.08(120) · 10−3 1.68(19) · 10−2 6.19(4) · 10−3

propane (vapor) 94.323 359.990(51) 35.201(37) 1.17(8) · 10−2 2.75(19) · 10−2 1.50(1) · 10−3

Table A.2: Results of ethane at 300 K, calculated with rRESPA
∆t/fs ρ/kg/m3 T/K p/bar T /fs η/mPas λ/W m−1 K−1 Dself/cm2 s−1

1.0 / 0.1 315.43 299.990(51) 63.518(4000) 0.008 4221 3.90(4) · 10−2 6.85(30) · 10−2 3.50(3) · 10−4

1.0 / 0.1 315.43 300.000(64) 68.064(3700) 0.011 911 3.89(8) · 10−2 6.90(14) · 10−2 3.51(4) · 10−4

1.0 / 0.1 315.43 300.000(52) 71.039(3100) 0.018 832 3.90(9) · 10−2 7.03(32) · 10−2 3.48(3) · 10−4

1.0 / 0.1 315.43 300.000(47) 72.191(2900) 0.026 633 3.93(10) · 10−2 7.19(25) · 10−2 3.51(3) · 10−4

1.0 / 0.1 315.43 300.000(41) 54.226(3300) 0.037 665 3.79(10) · 10−2 6.64(27) · 10−2 3.46(2) · 10−4

1.0 / 0.1 315.43 300.000(58) 38.52(150) 0.053 266 3.70(7) · 10−2 6.40(10) · 10−2 3.39(3) · 10−4

1.0 / 0.1 315.43 299.990(75) 38.388(1200) 0.059 553 3.68(6) · 10−2 6.73(37) · 10−2 3.35(2) · 10−4

Continued on next page
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Continued: Results of ethane at 300 K, calculated with rRESPA

∆t/fs ρ/kg/m3 T/K p/bar T /fs η/mPas λ/W m−1 K−1 Dself/cm2 s−1

1.0 / 0.1 315.43 299.980(62) 38.443(540) 0.075 33 3.59(14) · 10−2 6.52(31) · 10−2 3.37(2) · 10−4

1.0 / 0.1 315.43 300.000(51) 38.655(510) 0.084 221 3.68(4) · 10−2 6.50(23) · 10−2 3.39(3) · 10−4

1.0 / 0.1 315.43 299.990(53) 38.785(240) 0.119 11 3.67(7) · 10−2 6.40(19) · 10−2 3.38(3) · 10−4

Table A.3: Results of propane at 360 K, calculated with rRESPA
∆t/fs ρ/kg/m3 T/K p/bar T /fs η/mPa s λ/W m−1 K−1 Dself/cm2 s−1

2.0 / 0.5 361.24 360.01(7) 1.2363(47000) 0.008274 8 4.62(7) · 10−2 6.23(25) · 10−2 3.19(3) · 10−4

2.0 / 0.5 361.24 359.990(51) 38.625(3200) 0.011702 4.70(8) · 10−2 6.10(18) · 10−2 3.16(2) · 10−4

2.0 / 0.5 361.24 359.980(55) 63.451(3400) 0.018503 4.65(10) · 10−2 6.36(16) · 10−2 3.20(3) · 10−4

2.0 / 0.5 361.24 359.97(6) 62.065(2100) 0.026 167 4.54(19) · 10−2 6.33(22) · 10−2 3.16(1) · 10−4

2.0 / 0.5 361.24 360.030(55) 27.924(2600) 0.037 006 4.36(9) · 10−2 5.73(18) · 10−2 3.01(2) · 10−4

2.0 / 0.5 361.24 359.970(62) 27.853(3100) 0.052 334 4.34(6) · 10−2 5.69(21) · 10−2 3.01(2) · 10−4

2.0 / 0.5 361.24 360.000(62) 29.219(730) 0.058 511 4.33(11) · 10−2 5.85(22) · 10−2 3.04(2) · 10−4

2.0 / 0.5 361.24 360.000(52) 30.336(650) 0.074 012 4.38(8) · 10−2 5.92(25) · 10−2 3.03(2) · 10−4

2.0 / 0.5 361.24 359.980(55) 30.328(530) 0.082 748 4.27(10) · 10−2 5.88(23) · 10−2 3.05(2) · 10−4

2.0 / 0.5 361.24 359.990(78) 31.054(300) 0.117 02 4.37(5) · 10−2 6.01(18) · 10−2 3.05(2) · 10−4

1.0 / 0.1 361.24 359.990(41) 57.036(3300) 0.008 2748 4.72(9) · 10−2 6.35(19) · 10−2 3.15(2) · 10−4

1.0 / 0.1 361.24 360.010(66) 67.816(3500) 0.011 702 4.71(12) · 10−2 6.24(22) · 10−2 3.11(2) · 10−4

1.0 / 0.1 361.24 360.000(53) 75.041(3100) 0.018 503 4.78(6) · 10−2 6.40(20) · 10−2 3.20(2) · 10−4

1.0 / 0.1 361.24 360.020(64) 61.681(3400) 0.026 167 4.59(3) · 10−2 6.25(19) · 10−2 3.13(2) · 10−4

Continued on next page131
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Continued: Results of propane at 360 K, calculated with rRESPA

∆t/fs ρ/kg/m3 T/K p/bar T /fs η/mPa s λ/W m−1 K−1 Dself/cm2 s−1

1.0 / 0.1 361.24 359.990(65) 30.012(2800) 0.037006 4.43(10) · 10−2 5.88(13) · 10−2 3.04(2) · 10−4

1.0 / 0.1 361.24 359.970(48) 30.492(1200) 0.052334 4.36(5) · 10−2 5.79(14) · 10−2 3.01(3) · 10−4

1.0 / 0.1 361.24 359.990(66) 30.37(88) 0.058511 4.37(8) · 10−2 5.84(24) · 10−2 3.06(2) · 10−4

1.0 / 0.1 361.24 359.990(55) 30.467(700) 0.074 012 4.35(6) · 10−2 5.81(19) · 10−2 3.04(3) · 10−4

1.0 / 0.1 361.24 360.00(7) 30.726(420) 0.082 748 4.28(10) · 10−2 6.10(26) · 10−2 3.03(2) · 10−4

1.0 / 0.1 361.24 360.030(53) 31.289(380) 0.117 02 4.31(9) · 10−2 5.97(19) · 10−2 3.02(3) · 10−4

1.0 / 0.5 361.24 359.970(51) 52.506(2700) 0.008 2748 4.65(11) · 10−2 6.40(22) · 10−2 3.19(1) · 10−4

1.0 / 0.5 361.24 359.980(58) 67.735(4200) 0.011 702 4.66(4) · 10−2 6.43(25) · 10−2 3.21(3) · 10−4

1.0 / 0.5 361.24 360.000(35) 74.26(360) 0.018 503 4.77(11) · 10−2 6.37(17) · 10−2 3.17(1) · 10−4

1.0 / 0.5 361.24 360.02(4) 66.556(2300) 0.026 167 4.54(9) · 10−2 6.30(29) · 10−2 3.16(3) · 10−4

1.0 / 0.5 361.24 359.970(76) 30.101(3200) 0.037 006 4.33(10) · 10−2 5.75(27) · 10−2 3.03(2) · 10−4

1.0 / 0.5 361.24 360.010(63) 29.882(1200) 0.052 334 4.50(9) · 10−2 5.89(13) · 10−2 3.05(1) · 10−4

1.0 / 0.5 361.24 360.000(57) 30.556(950) 0.058 511 4.29(6) · 10−2 5.82(28) · 10−2 3.00(2) · 10−4

1.0 / 0.5 361.24 360.000(53) 30.396(450) 0.074 012 4.40(9) · 10−2 5.79(13) · 10−2 3.06(3) · 10−4

1.0 / 0.5 361.24 360.01(6) 30.584(370) 0.082 748 4.40(4) · 10−2 5.70(22) · 10−2 3.04(1) · 10−4

1.0 / 0.5 361.24 360.000(79) 31.289(330) 0.117 02 4.32(2) · 10−2 5.82(13) · 10−2 3.07(2) · 10−4
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Table A.4: Results of propane at 360 K, calculated with Velocity Verlet

∆t/fs ρ/kg/m3 T/K p/bar T /fs η/mPas λ/W m−1 K−1 Dself/cm2 s−1

2.0 361.24 360.000(59) −116.75(820) 0.011 702 5.26(10) · 10−2 7.07(24) · 10−2 3.16(3) · 10−4

2.0 361.24 360.010(49) 40.274(4800) 0.018 503 4.84(10) · 10−2 6.50(18) · 10−2 3.19(3) · 10−4

2.0 361.24 360.000(55) 52.683(3400) 0.026 167 4.73(5) · 10−2 6.29(17) · 10−2 3.16(2) · 10−4

2.0 361.24 360.020(66) 25.175(3600) 0.037 006 4.50(11) · 10−2 5.95(25) · 10−2 3.01(3) · 10−4

2.0 361.24 359.990(42) 28.487(2300) 0.052 334 4.43(7) · 10−2 5.95(16) · 10−2 3.07(3) · 10−4

2.0 361.24 359.990(64) 29.639(810) 0.058 511 4.44(8) · 10−2 5.73(20) · 10−2 3.03(2) · 10−4

2.0 361.24 359.990(51) 29.692(780) 0.074 012 4.34(13) · 10−2 5.75(22) · 10−2 3.03(3) · 10−4

2.0 361.24 359.990(74) 30.058(460) 0.082 748 4.40(7) · 10−2 5.86(11) · 10−2 3.05(1) · 10−4

2.0 361.24 360.000(53) 30.961(350) 0.117 02 4.40(9) · 10−2 6.01(16) · 10−2 3.03(2) · 10−4

0.5 361.24 360.000(65) 19.058(4700) 0.008 2748 4.82(12) · 10−2 6.44(21) · 10−2 3.17(2) · 10−4

0.5 361.24 360.000(59) 55.675(5900) 0.011 702 4.79(9) · 10−2 6.57(22) · 10−2 3.16(2) · 10−4

0.5 361.24 360.030(53) 65.735(3000) 0.018 503 4.67(9) · 10−2 6.30(13) · 10−2 3.11(3) · 10−4

0.5 361.24 360.010(61) 64.017(4300) 0.026 167 4.65(13) · 10−2 6.23(13) · 10−2 3.14(3) · 10−4

0.5 361.24 359.990(83) 27.291(2900) 0.037 006 4.43(12) · 10−2 5.95(15) · 10−2 3.02(2) · 10−4

0.5 361.24 359.990(67) 30.141(1300) 0.052 334 4.35(8) · 10−2 6.16(32) · 10−2 3.03(3) · 10−4

0.5 361.24 359.98(7) 30.338(1100) 0.058 511 4.49(11) · 10−2 5.88(23) · 10−2 3.03(2) · 10−4

0.5 361.24 360.010(53) 30.232(680) 0.074 012 4.35(5) · 10−2 5.77(23) · 10−2 3.03(2) · 10−4

0.5 361.24 360.000(59) 30.692(370) 0.082 748 4.38(11) · 10−2 5.81(11) · 10−2 3.07(2) · 10−4

0.5 361.24 359.980(79) 31.271(400) 0.117 02 4.32(13) · 10−2 5.88(15) · 10−2 3.06(2) · 10−4
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Table A.5: Results of dimethylether at 380 K, calculated with rRESPA

∆t/fs ρ/kg/m3 T/K p/bar T /fs η/mPa s λ/W m−1 K−1 Dself/cm2 s−1

1.0 / 0.5 482.12 380.03(8) 96.53(470) 0.012 094 6.38(15) · 10−2 8.48(18) · 10−2 2.65(1) · 10−4

1.0 / 0.5 482.12 380.00(8) 99.587(4700) 0.019 123 6.33(10) · 10−2 8.55(33) · 10−2 2.68(2) · 10−4

1.0 / 0.5 482.12 380.010(68) 77.516(5400) 0.027 044 6.12(13) · 10−2 8.42(26) · 10−2 2.64(2) · 10−4

1.0 / 0.5 482.12 380.010(79) 31.465(2900) 0.038 245 5.91(10) · 10−2 7.74(17) · 10−2 2.54(2) · 10−4

1.0 / 0.5 482.12 380.020(68) 32.886(1100) 0.054 087 5.96(12) · 10−2 7.87(16) · 10−2 2.54(1) · 10−4

1.0 / 0.5 482.12 380.00(7) 32.34(85) 0.060 471 5.94(12) · 10−2 7.99(22) · 10−2 2.53(2) · 10−4

1.0 / 0.5 482.12 380.000(66) 33.208(860) 0.076 491 5.96(10) · 10−2 7.92(21) · 10−2 2.51(1) · 10−4

1.0 / 0.5 482.12 379.970(67) 32.733(1200) 0.085 519 5.91(9) · 10−2 7.83(13) · 10−2 2.55(2) · 10−4

1.0 / 0.5 482.12 380.000(58) 34.411(380) 0.120 94 5.84(14) · 10−2 7.98(13) · 10−2 2.55(2) · 10−4

Table A.6: Results of ethane at 205 K, calculated with rRESPA
∆t/fs ρ/kg/m3 T/K p/bar T /fs η/mPa s λ/W m−1 K−1 Dself/cm2 s−1

1.0 / 0.1 512.82 205.010(34) 81.712(7300) 0.008422 1 1.44(3) · 10−1 1.71(4) · 10−1 7.77(5) · 10−5

1.0 / 0.1 512.82 204.980(37) 84.29(660) 0.011911 1.40(3) · 10−1 1.65(8) · 10−1 7.79(7) · 10−5

1.0 / 0.1 512.82 205.010(33) 85.827(7400) 0.018832 1.39(3) · 10−1 1.71(6) · 10−1 7.73(5) · 10−5

1.0 / 0.1 512.82 205.010(43) 91.801(11000) 0.026 633 1.39(1) · 10−1 1.71(6) · 10−1 7.78(6) · 10−5

1.0 / 0.1 512.82 205.000(38) 73.402(13000) 0.037 665 1.37(2) · 10−1 1.62(6) · 10−1 7.68(4) · 10−5

1.0 / 0.1 512.82 205.000(37) −1.9202(78000) 0.053 266 1.33(2) · 10−1 1.51(4) · 10−1 7.44(7) · 10−5

1.0 / 0.1 512.82 205.000(37) −5.2385(43000) 0.059 553 1.35(3) · 10−1 1.48(7) · 10−1 7.45(4) · 10−5

Continued on next page
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Continued: Results of ethane at 205 K, calculated with rRESPA

∆t/fs ρ/kg/m3 T/K p/bar T /fs η/mPa s λ/W m−1 K−1 Dself/cm2 s−1

1.0 / 0.1 512.82 205.000(19) −4.2234(23000) 0.07533 1.31(2) · 10−1 1.55(6) · 10−1 7.41(6) · 10−5

1.0 / 0.1 512.82 205.010(44) −4.8826(13000) 0.084221 1.34(2) · 10−1 1.54(6) · 10−1 7.49(6) · 10−5

1.0 / 0.1 512.82 204.990(36) −8.3183(6000) 0.119 11 1.30(2) · 10−1 1.48(7) · 10−1 7.52(4) · 10−5

Table A.7: Results of propane at 295 K, calculated with rRESPA
∆t/fs ρ/kg/m3 T/K p/bar T /fs η/mPas λ/W m−1 K−1 Dself/cm2 s−1

2.0 / 0.5 497.2 295.000(51) −49.237(8500) 0.008 2748 1.06(2) · 10−1 1.03(5) · 10−1 1.33(1) · 10−4

2.0 / 0.5 497.2 295.010(53) 29.661(7500) 0.011 702 1.01(2) · 10−1 1.03(2) · 10−1 1.32(1) · 10−4

2.0 / 0.5 497.2 295.000(54) 66.258(4900) 0.018 503 1.02(2) · 10−1 1.04(1) · 10−1 1.32(1) · 10−4

2.0 / 0.5 497.2 295.01(4) 61.853(6600) 0.026 167 9.99(13) · 10−2 1.03(3) · 10−1 1.29(1) · 10−4

2.0 / 0.5 497.2 294.990(46) 4.0931(45000) 0.037 006 9.68(16) · 10−2 9.44(37) · 10−2 1.25(1) · 10−4

2.0 / 0.5 497.2 295.010(55) 4.1473(100000) 0.052 334 9.57(20) · 10−2 9.65(44) · 10−2 1.26(1) · 10−4

2.0 / 0.5 497.2 295.000(57) 4.9439(18000) 0.058 511 9.51(14) · 10−2 9.80(61) · 10−2 1.26(1) · 10−4

2.0 / 0.5 497.2 295.010(54) 5.7005(15000) 0.074 012 9.46(36) · 10−2 9.59(20) · 10−2 1.26(1) · 10−4

2.0 / 0.5 497.2 295.010(61) 5.2461(8500) 0.082 748 9.44(11) · 10−2 9.45(19) · 10−2 1.26(1) · 10−4

2.0 / 0.5 497.2 295.000(37) 5.2348(6000) 0.117 02 9.33(21) · 10−2 9.82(27) · 10−2 1.28(1) · 10−4

1.0 / 0.1 497.2 295.01(4) 69.178(7200) 0.008 2748 1.00(2) · 10−1 1.03(4) · 10−1 1.31(1) · 10−4

1.0 / 0.1 497.2 295.000(45) 75.788(7800) 0.011 702 1.01(3) · 10−1 1.04(5) · 10−1 1.31(1) · 10−4

1.0 / 0.1 497.2 295.000(42) 88.047(4600) 0.018 503 1.02(2) · 10−1 1.05(3) · 10−1 1.31(1) · 10−4

1.0 / 0.1 497.2 294.980(55) 78.46(830) 0.026 167 9.92(26) · 10−2 1.05(3) · 10−1 1.30(1) · 10−4

Continued on next page135
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Continued: Results of propane at 295 K, calculated with rRESPA

∆t/fs ρ/kg/m3 T/K p/bar T /fs η/mPas λ/W m−1 K−1 Dself/cm2 s−1

1.0 / 0.1 497.2 295.010(48) 4.2512(76000) 0.037006 9.33(15) · 10−2 9.50(29) · 10−2 1.26(1) · 10−4

1.0 / 0.1 497.2 295.000(45) 6.4127(27000) 0.052334 9.61(20) · 10−2 9.48(30) · 10−2 1.25(1) · 10−4

1.0 / 0.1 497.2 295.000(51) 6.3677(18000) 0.058511 9.57(18) · 10−2 9.53(18) · 10−2 1.26(1) · 10−4

1.0 / 0.1 497.2 294.990(48) 6.213(1100) 0.074012 9.44(19) · 10−2 9.31(24) · 10−2 1.26(1) · 10−4

1.0 / 0.1 497.2 295.00(4) 6.0164(10000) 0.082748 9.27(21) · 10−2 9.40(17) · 10−2 1.28(1) · 10−4

1.0 / 0.1 497.2 295.010(62) 5.6564(7000) 0.11702 9.41(11) · 10−2 9.63(14) · 10−2 1.28(1) · 10−4

1.0 / 0.5 497.2 295.000(57) 69.491(6200) 0.008274 8 1.02(1) · 10−1 1.07(6) · 10−1 1.33(1) · 10−4

1.0 / 0.5 497.2 295.010(51) 74.571(8800) 0.011702 1.01(2) · 10−1 1.04(4) · 10−1 1.32(1) · 10−4

1.0 / 0.5 497.2 295.010(52) 81.646(5200) 0.018 503 1.01(2) · 10−1 1.04(4) · 10−1 1.29(1) · 10−4

1.0 / 0.5 497.2 294.990(58) 93.123(6100) 0.026 167 1.02(2) · 10−1 1.04(2) · 10−1 1.32(1) · 10−4

1.0 / 0.5 497.2 295.000(56) 6.9193(67000) 0.037 006 9.32(28) · 10−2 9.71(44) · 10−2 1.28(1) · 10−4

1.0 / 0.5 497.2 295.020(45) 7.2282(24000) 0.052 334 9.45(18) · 10−2 9.53(25) · 10−2 1.25(1) · 10−4

1.0 / 0.5 497.2 295.010(51) 7.4308(17000) 0.058 511 9.59(18) · 10−2 1.00(8) · 10−1 1.26(1) · 10−4

1.0 / 0.5 497.2 294.970(48) 5.4418(19000) 0.074 012 9.57(18) · 10−2 9.30(50) · 10−2 1.26 · 10−4

1.0 / 0.5 497.2 295.000(56) 6.1665(7900) 0.082 748 9.11(16) · 10−2 9.30(11) · 10−2 1.27(1) · 10−4

1.0 / 0.5 497.2 294.990(51) 5.4778(5200) 0.117 02 9.12(12) · 10−2 9.49(19) · 10−2 1.27(1) · 10−4
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Table A.8: Results of propane at 295 K, calculated with Velocity Verlet

∆t/fs ρ/kg/m3 T/K p/bar T /fs η/mPas λ/W m−1 K−1 Dself/cm2 s−1

2.0 497.2 295.010(45) −111.63(900) 0.011702 1.17(3) · 10−1 1.14(3) · 10−1 1.31(1) · 10−4

2.0 497.2 295.010(62) 54.482(8800) 0.018503 1.03(4) · 10−1 1.08(3) · 10−1 1.32(1) · 10−4

2.0 497.2 294.990(56) 72.452(6800) 0.026167 1.01(2) · 10−1 1.07(5) · 10−1 1.31(1) · 10−4

2.0 497.2 295.000(58) 7.5923(93000) 0.037006 9.59(22) · 10−2 9.78(31) · 10−2 1.26(1) · 10−4

2.0 497.2 295.010(54) 9.0637(29000) 0.052334 9.54(14) · 10−2 9.56(26) · 10−2 1.27(1) · 10−4

2.0 497.2 295.010(46) 8.6413(20000) 0.058511 9.52(30) · 10−2 9.53(22) · 10−2 1.27(1) · 10−4

2.0 497.2 294.99(5) 8.0245(17000) 0.074012 9.48(20) · 10−2 9.67(15) · 10−2 1.27(1) · 10−4

2.0 497.2 295.020(51) 7.5303(9200) 0.082748 9.45(19) · 10−2 9.78(21) · 10−2 1.27(1) · 10−4

2.0 497.2 295.000(47) 6.1831(8100) 0.11702 9.22(25) · 10−2 9.50(31) · 10−2 1.28(1) · 10−4

0.5 497.2 295.000(43) 33.707(8600) 0.008274 8 1.03(3) · 10−1 1.09(3) · 10−1 1.32(1) · 10−4

0.5 497.2 295.010(36) 72.428(12000) 0.011702 1.02(2) · 10−1 1.04(3) · 10−1 1.31(1) · 10−4

0.5 497.2 294.98(5) 88.425(9600) 0.018 503 1.00(2) · 10−1 1.07(3) · 10−1 1.32(1) · 10−4

0.5 497.2 295.020(59) 73.759(7700) 0.026 167 1.01(2) · 10−1 1.02(2) · 10−1 1.31(1) · 10−4

0.5 497.2 295.010(43) 7.9425(43000) 0.037 006 9.58(17) · 10−2 9.66(36) · 10−2 1.26(1) · 10−4

0.5 497.2 294.990(63) 7.612(2600) 0.052 334 9.19(26) · 10−2 9.72(60) · 10−2 1.28(1) · 10−4

0.5 497.2 295.010(49) 6.7469(16000) 0.058 511 9.54(12) · 10−2 9.38(47) · 10−2 1.26(1) · 10−4

0.5 497.2 294.98(5) 6.9109(17000) 0.074 012 9.35(16) · 10−2 9.72(45) · 10−2 1.26(1) · 10−4

0.5 497.2 295.010(48) 6.9764(12000) 0.082 748 9.46(14) · 10−2 9.33(25) · 10−2 1.26(1) · 10−4

0.5 497.2 295.000(55) 5.7914(5500) 0.117 02 9.17(18) · 10−2 9.82(35) · 10−2 1.27(1) · 10−4
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Table A.9: Results of dimethylether at 300 K, calculated with rRESPA

∆t/fs ρ/kg/m3 T/K p/bar T /fs η/mPa s λ/W m−1 K−1 Dself/cm2 s−1

1.0 / 0.5 649.04 300.000(46) 121.25(1000) 0.012 094 1.45(2) · 10−1 1.45(5) · 10−1 1.02(1) · 10−4

1.0 / 0.5 649.04 300.010(49) 100.53(1000) 0.019 123 1.40(2) · 10−1 1.42(3) · 10−1 1.02(1) · 10−4

1.0 / 0.5 649.04 299.990(48) 100.34(780) 0.027 044 1.41(3) · 10−1 1.42(6) · 10−1 1.01(1) · 10−4

1.0 / 0.5 649.04 300.000(45) 1.4783(64000) 0.038 245 1.34(2) · 10−1 1.35(9) · 10−1 9.78(6) · 10−5

1.0 / 0.5 649.04 300.01(6) 1.5315(30000) 0.054 087 1.33(3) · 10−1 1.32(4) · 10−1 9.73(8) · 10−5

1.0 / 0.5 649.04 300.010(67) 1.9463(18000) 0.060 471 1.35(3) · 10−1 1.31(3) · 10−1 9.76(8) · 10−5

1.0 / 0.5 649.04 300.000(71) 2.0271(10000) 0.076491 1.34(2) · 10−1 1.33(5) · 10−1 9.85(8) · 10−5

1.0 / 0.5 649.04 300.010(54) 1.8268(17000) 0.085519 1.34(3) · 10−1 1.34(5) · 10−1 9.82(8) · 10−5

1.0 / 0.5 649.04 300.000(72) 2.7582(8100) 0.12094 1.32(3) · 10−1 1.37(7) · 10−1 9.93(5) · 10−5

Table A.10: Results of propane (vapor) at 360 K, calculated with rRESPA
∆t/fs ρ/kg/m3 T/K p/bar T /fs η/mPas λ/W m−1 K−1 Dself/cm2 s−1

1.0 / 0.5 94.323 360.000(43) 38.118(500) 0.008274 8 1.37(12) · 10−2 2.43(21) · 10−2 1.57(1) · 10−3

1.0 / 0.5 94.323 359.990(54) 39.529(680) 0.011702 1.35(8) · 10−2 2.24(27) · 10−2 1.58(2) · 10−3

1.0 / 0.5 94.323 359.960(25) 40.046(570) 0.018503 1.24(12) · 10−2 2.53(47) · 10−2 1.57(1) · 10−3

1.0 / 0.5 94.323 360.000(48) 40.776(310) 0.026167 1.42(15) · 10−2 2.74(33) · 10−2 1.60(1) · 10−3

1.0 / 0.5 94.323 359.980(46) 35.038(360) 0.037006 1.24(8) · 10−2 2.37(54) · 10−2 1.50(1) · 10−3

1.0 / 0.5 94.323 360.010(47) 35.204(240) 0.052334 1.17(10) · 10−2 2.28(23) · 10−2 1.50(1) · 10−3

1.0 / 0.5 94.323 360.020(37) 35.192(140) 0.058 511 1.11(12) · 10−2 2.80(53) · 10−2 1.49(1) · 10−3

Continued on next page
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Continued: Results of propane (vapor) at 360 K, calculated with rRESPA

∆t/fs ρ/kg/m3 T/K p/bar T /fs η/mPas λ/W m−1 K−1 Dself/cm2 s−1

1.0 / 0.5 94.323 359.990(42) 35.227(99) 0.074012 1.17(6) · 10−2 2.39(20) · 10−2 1.50(2) · 10−3

1.0 / 0.5 94.323 360.000(41) 35.227(90) 0.082748 1.17(9) · 10−2 2.52(47) · 10−2 1.49(1) · 10−3

1.0 / 0.5 94.323 360.010(38) 35.340(69) 0.11702 1.24(8) · 10−2 2.09(38) · 10−2 1.52(1) · 10−3
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B Supporting Information for: Transferable Anisotropic

United-Atom Mie (TAMie) Force-Field: Transport properties from

Equilibrium Molecular Dynamic Simulations

The content of this appendix is a literal quote of the supporting information:

M. Fischer, G. Bauer, J. Gross: Supporting Information for: Transferable Anisotropic United-Atom Mie
(TAMie) Force Field: Transport Properties from Equilibrium-MD-Simulations. Industrial & Engineering
Chemistry Research, 59(18):8855–8869, 2020. doi:10.1021/acs.iecr.0c00848

141

https://doi.org/10.1021/acs.iecr.0c00848


B
SI:TAM

ie
Force

Field:TransportPropertiesfrom
Equilibrium

M
D
Sim

ulations
B.1 SAFT Parameters used in this Study

Table B.1: PC-SAFT Parameters used for the substances in this study
CAS Substance Molar Weight / gmol−1 m σ / Å ε/k/K κab εab/k/K DM/D

74840 ethane 30.07 1.6069 3.5206 191.42 0 0 0
74986 propane 44.096 2.002 3.6184 208.11 0 0 0

110543 hexane 86.177 3.0576 3.7983 236.77 0 0 0
111842 nonane 128.25 4.2079 3.8448 244.51 0 0 0
106989 1-butene 56.107 2.2864 3.6431 222 0 0 0
592767 1-heptene 98.1861 3.2863 3.8138 243.756 0 0 0.6296
115106 dimethylether 46.069 2.2634 3.2723 210.29 0 0 1.3
75070 ethanal 44.0526 2.1188 3.246 229.851 0 0 2.6891

123728 butanal 72.107 2.8825 3.4698 247.09 0 0 2.72
111717 heptanal 114.185 3.8527 3.66 260.698 0 0 2.5782
67641 acetone 58.08 2.7447 3.2742 232.99 0 0 2.88
78933 butanone 72.107 2.9835 3.4239 244.99 0 0 2.78
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B.2 Parameters of the TAMie force field

Tables B.2–B.5 provide the parameters of the TAMie force field as described in the Molecular
Model section in the main text. The parameters were all published in previous work1–3,3,
except for the bond constant kl in table B.3, which was specified by the authors of this study.

United atom i Mii/(gmol−1) ϵii/kB/K σii/Å nii qi/e

CH3 15.035 136.318 3.6034 14 0.175 (next to ether O)
CH3 (ethane) 15.035 130.780 3.6463 14 —
CH2 14.027 52.913 4.0400 14 —
CH2 (olefins) 14.027 100.681 3.6005 14 —
CH (olefins) 13.019 53.951 3.8234 14 —
O (dimethyl ether) 15.999 54.36 3.213 12 −0.35
O (aldehydes) 15.999 100.58 3.0276 12 −0.422
CHx (neighbor ald.) −0.038
CH (aldehydes) 13.019 68.934 3.4941 12 0.46
O (ketones) 15.999 65.55 3.093 12 −0.49
C (ketones) 12.011 32.775 3.919 12 0.49
O (acetone) 15.999 69.184 3.112 12 −0.49
C (acetone) 12.011 34.592 3.942 12 0.49

Table B.2: Pair potential parameters of UA-groups used in this study: Energy parameter ϵii,
size parameter σii, repulsive exponent nii, and point charge qi for the TAMie force field

Bond r0/Å kl/KÅ−2

CH3−CH3 (ethane) 1.94 100 644
CH3−CHx 1.74 100 644
CHx−CHy 1.54 100 644
CH−−CHx 1.33 100 644
CH3−CH[−−Oald] 1.74 100 644
CH2−CH[−−Oald] 1.54 100 644
CH−−Oald 1.217 100 644
CH3−C[−−Oket] 1.74 100 644
CH2−C[−−Oket] 1.54 100 644
C−−Oket 1.229 100 644
CH3−Oether 1.61 100 644

Table B.3: Bond lengths and constants of the TAMie force field used in this study (x , y ∈ {1, 2})

143



B SI: TAMie Force Field: Transport Properties from Equilibrium MD Simulations

Bending sites θ0/deg kθ/kB/K

CHx−CH2−CHy 114.0 62500
CHz

−−CH−CHy 119.7 70420
CHx−Oether−CHy 112.0 60400
CHx−Cket−CHy 117.2 62500
Cket−CH2−CHx 114.0 62500
CHx−Cket−−Oket 121.4 62500
CHx−CH−−Oald 121.4 62500

Table B.4: Bending angles and constants of the TAMie force field used in this study (x , y ∈
{2, 3} and z ∈ {1,2})

Torsion sites c0/kB/K c1/kB/K c2/kB/K c3/kB/K

CHx−CH2−CH2−CHy 0.0 355.03 −68.19 791.32
CHx−CH2−Oether−CHy 0.0 725.35 −163.75 558.2
CHx−CH2−CH2−CHy 0.0 176.62 −53.34 769.93
CHz

−−CH−CH2−CHy 688.5 86.36 −109.77 −282.24
C−CH2−CH2−CHy 0.0 355.03 −68.19 791.32
CHx−CH2−C−−Oket 2035.58 −736.90 57.84 −293.23
CHx−C−CH2−CHy −17.26 752.60 14.89 282.10
CHx−CH2−CH2−CH[−−Oald] 11.81 467.80 −274.10 846.80
CHx−CH2−CH−−Oald 1182.0 −225.60 302.20 −339.30

Table B.5: Torsion potential constants of the TAMie force field used in this study (x , y ∈ {2,3}
and z ∈ {1,2})
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B.3 Correlation Parameters from Simulation

Tables B.6–B.8 summarize the parameters of the entropy correlations for each transport property adjusted to the simulation results.
The corresponding correlation functions can be found in Table 3 in the main text. Additional to the parameters, the AAD of each
correlation to all available experiments is given for each substance, along with the number of experimental data points available.
The sources of the experiments are given in the column Lit.

Table B.6: Entropy Scaling Parameters of the TAMie force field for viscosity
CAS Substance Aη Bη Cη Dη Nexp. AADexp. Lit.

74840 ethane −0.584 82 −1.597 −0.11957 −0.015 513 2606 5.93 % 4

74986 propane −0.739 04 −1.9377 −0.31713 −0.051 261 1752 9.47 % 4

110543 hexane −1.3007 −2.6303 −0.50842 −0.090849 1804 9.90 % 4

111842 nonane −1.5238 −3.0059 −0.63805 −0.136 35 382 14.45 % 4

106989 1-butene −0.8661 −2.207 −0.44046 −0.071512 22 5.59 % 4

592767 1-heptene −1.1781 −2.5061 −0.48927 −0.101 39 163 6.79 % 4

115106 dimethylether −0.8927 −2.0926 −0.37523 −0.070398 211 6.31 % 4

75070 ethanal −0.978 54 −1.8377 −0.2819 −0.072213 28 11.61 % 4

123728 butanal −1.084 −2.388 −0.55646 −0.132 42 233 15.12 % 4

111717 heptanal −1.4179 −2.843 −0.55104 −0.133 02 12 30.16 % 4

67641 acetone −1.1162 −2.3125 −0.53579 −0.147 13 512 15.28 % 4

78933 butanone −1.2108 −2.4107 −0.47133 −0.123 34 246 22.00 % 4
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Table B.7: Entropy Scaling Parameters of the TAMie force field for thermal conductivity

CAS Substance Aλ Bλ Cλ Dλ Nexp. AADexp. Lit.
74840 ethane −0.41697 −1.3177 0.538 18 −0.12065 1629 16.43 % 4

74986 propane −0.3735 −0.745 96 1.2519 −0.027 495 3154 13.35 % 4

110543 hexane −0.12834 −0.835 16 1.0578 −0.077 646 646 11.23 % 4

111842 nonane −0.043 518 −0.380 23 1.7543 0.03192 524 6.00 % 4

106989 1-butene −0.12792 −1.06 0.443 67 −0.075 675 31 11.03 % 4

592767 1-heptene −0.063 358 −0.650 59 1.226 −0.033 603 415 7.69 % 4

115106 dimethylether −0.52864 −0.732 68 1.4949 −0.026 342 347 15.94 % 4

75070 ethanal −0.54935 −1.1198 0.824 21 −0.078 127 96 11.57 % 4

123728 butanal −0.24726 0.18717 2.4271 0.12488 82 10.35 % 4

111717 heptanal −0.162 0.30738 2.7413 0.14491 12 1.98 % 4

67641 acetone −0.56802 −0.7099 1.3292 −0.001 7086 386 9.44 % 4

78933 butanone −0.42298 −0.132 37 2.0665 0.0883 347 7.99 % 4

Table B.8: Entropy Scaling Parameters of the TAMie force field for diffusion
CAS Substance ADself BDself CDself Nexp. AADexp. Lit.

74840 ethane −0.37369 0.148 59 2.4814 · 10−13 154 14.40 % 5–9

74986 propane −0.53649 0.159 84 9.9011 · 10−15 75 20.66 % 7,9

110543 hexane −0.70772 0.268 65 4.8284 · 10−14 185 21.16 % 8–15

111842 nonane −0.90991 0.392 24 7.1876 · 10−13 104 18.72 % 9,10,15–17

106989 1-butene −0.68283 0.142 48 8.2794 · 10−3 0 – –
592767 1-heptene −0.79056 0.283 69 1.9320 · 10−14 0 – –
115106 dimethylether −0.55305 0.203 44 3.0468 · 10−13 40 7.98 % 9

75070 ethanal −0.4574 0.227 17 1.3107 · 10−13 0 – –
123728 butanal −0.6685 0.300 23 7.3716 · 10−14 0 – –
111717 heptanal −0.85365 0.433 13 1.3380 · 10−13 0 – –
67641 acetone −0.66809 0.319 03 1.6004 · 10−13 48 24.86 % 9

78933 butanone −0.69477 0.335 19 1.0136 · 10−13 0 – –
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B.4 Simulation Results of each Substance

This section contains tables summarizing temperatures T , pressures p, reduced entropies
s∗, viscosities η, self-diffusion coefficients Dself, and thermal conductivities λ for all investi-
gated substances. The first part of each table describes the simulated state points with the
corresponding reduced entropy, calculated using PC-SAFT. The second part provides the
simulation results for the transport properties. The respective state points can be assigned via
s∗.

Table B.9: Results of ethane
ρ/kg/m3 T/K p/bar s∗

598.62 135.55(4) 8.4677(130000) −3.3338
540.97 184.27(3) 7.9153(82000) −2.4914
450.66 247.380(47) 11.396(4200) −1.6576
308.42 310.470(61) 61.119(1100) −0.91227
16.067 246.960(46) 9.3787(510) −0.064591

s∗ η/mPa s λ/W m−1 K−1 Dself/mm s−1

−3.3338 0.388 15(1300) 0.22294(1200) 1.8987(163) · 10−5

−2.4914 0.175 62(530) 0.17301(600) 5.2744(447) · 10−5

−1.6576 0.082 168(1700) 0.11782(860) 1.3650(96) · 10−4

−0.912 27 0.035 334(980) 0.061351(2000) 3.6130(305) · 10−4

−0.064 591 0.008 1869(8200) 0.015338(2200) 6.6563(388) · 10−3

Table B.10: Results of propane
ρ/kg/m3 T/K p/bar s∗

721.87 94.076(17) 2.8624(110000) −4.5467
671.06 143.09(3) −4.5537(54000) −3.4475
592.59 220.060(44) 18.218(2700) −2.3164
432.67 334.470(59) 23.536(1100) −1.1917
1.1256 220.060(28) 0.461 98(360) −0.005494 6

s∗ η/mPa s λ/W m−1 K−1 Dself/mm s−1

−4.5467 3.1202(1500) 0.219 45(850) 1.5769(230) · 10−6

−3.4475 0.57641(2100) 0.181 93(530) 1.1712(104) · 10−5

−2.3164 0.20268(840) 0.13454(360) 4.8891(474) · 10−5

−1.1917 0.062521(1200) 0.076826(4400) 1.9923(191) · 10−4

−0.005494 6 0.006318 9(8300) 0.010204(1200) 7.4363(914) · 10−2
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Table B.11: Results of hexane
ρ/kg/m3 T/K p/bar s∗

723.12 207.730(36) 46.542(2100) −2.7989
668.69 276.560(43) 47.847(1400) −2.1205
575.01 383.300(84) 50.235(960) −1.4148
401.83 510.880(55) 48.334(340) −0.746 57
7.4016 383.300(54) 2.4913(76) −0.020 003

s∗ η/mPa s λ/W m−1 K−1 Dself/mms−1

−2.7989 0.8528(420) 0.12325(780) 1.1487(124) · 10−5

−2.1205 0.334 26(2700) 0.11266(620) 3.4334(340) · 10−5

−1.4148 0.141 19(750) 0.093022(9600) 9.8579(909) · 10−5

−0.746 57 0.050 907(1200) 0.064095(5500) 3.0435(304) · 10−4

−0.020 003 0.007 597(600) 0.019846(2200) 1.5610(150) · 10−2

Table B.12: Results of nonane
ρ/kg/m3 T/K p/bar s∗

761.68 219.700(36) 2.0632(28000) −2.7275
709.08 291.540(48) 8.9105(14000) −2.0749
616.51 409.07(6) 8.4399(6900) −1.3849
437.7 563.990(72) 13.847(300) −0.72324
2.0972 409.100(52) 0.528 46(260) −0.005734

s∗ η/mPa s λ/W m−1 K−1 Dself/mm s−1

−2.7275 1.973(110) 0.15877(1200) 4.2517(492) · 10−6

−2.0749 0.5737(220) 0.13282(770) 1.9450(153) · 10−5

−1.3849 0.197 07(550) 0.10663(670) 6.8291(520) · 10−5

−0.723 24 0.062 104(1900) 0.072336(3700) 2.4024(168) · 10−4

−0.005 734 0.007 3079(7800) 0.017784(3800) 4.5883(674) · 10−2
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Table B.13: Results of 1-butene
ρ/kg/m3 T/K p/bar s∗

799.96 96.575(20) 20.791(2000) −4.6778
749.86 147.330(25) 1.3977(24000) −3.5791
669.04 229.440(37) 9.9527(15000) −2.4138
496 367.170(56) 19.509(610) −1.2184
0.42344 229.440(22) 0.140 55(100) −0.002004 2

s∗ η/mPa s λ/W m−1 K−1 Dself/mm s−1

−4.6778 7.7496(7000) 0.189 84(550) 6.3405(941) · 10−7

−3.5791 0.94702(4200) 0.176 15(1400) 7.2819(674) · 10−6

−2.4138 0.2834(100) 0.13518(920) 3.6013(260) · 10−5

−1.2184 0.080721(2700) 0.076723(4400) 1.7151(120) · 10−4

−0.002004 2 0.006214 3(8600) 0.011827(3400) 1.6299(350) · 10−1

Table B.14: Results of 1-heptene
ρ/kg/m3 T/K p/bar s∗

795.34 169.730(26) 8.0275(25000) −3.3766
745.48 232.640(39) 11.203(920) −2.5909
657.97 337.540(46) 9.5989(6700) −1.7376
476.21 497.05(8) 17.963(400) −0.89039
1.1139 337.550(27) 0.307 33(100) −0.003625 4

s∗ η/mPas λ/W m−1 K−1 Dself/mm s−1

−3.3766 3.3615(3300) 0.132 87(480) 2.3048(287) · 10−6

−2.5909 0.74797(4200) 0.123 41(570) 1.3433(144) · 10−5

−1.7376 0.23209(740) 0.101 67(380) 5.3644(340) · 10−5

−0.89039 0.071884(3500) 0.070 874(4500) 2.1462(188) · 10−4

−0.003625 4 0.007649(940) 0.015 153(1600) 7.9637(1088) · 10−2
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Table B.15: Results of dimethylether
ρ/kg/m3 T/K p/bar s∗

851.18 144.840(23) 9.2192(47000) −3.4617
782.33 202.410(41) 14.712(2600) −2.6175
670.6 286.67(5) 7.5628(21000) −1.7364
469.54 389.660(69) 52.462(750) −0.9114
6.9791 286.670(28) 3.3524(150) −0.020621

s∗ η/mPa s λ/W m−1 K−1 Dself/mm s−1

−3.4617 1.2459(930) 0.24626(1100) 6.2692(747) · 10−6

−2.6175 0.3906(200) 0.20402(870) 2.5581(237) · 10−5

−1.7364 0.152 26(750) 0.14048(520) 8.3276(715) · 10−5

−0.9114 0.058 587(3000) 0.080419(5800) 2.7345(259) · 10−4

−0.020 621 0.008 9533(6500) 0.014683(1300) 1.7419(112) · 10−2

Table B.16: Results of ethanal
ρ/kg/m3 T/K p/bar s∗

867.78 240.500(59) 11.111(4300) −2.7034
767.93 321.960(58) 2.847(2300) −2.0673
629.33 412.070(87) 23.247(1800) −1.4241
424.98 483.030(88) 69.886(590) −0.827 71
28.14 412.06(5) 17.683(72) −0.090 534

s∗ η/mPa s λ/W m−1 K−1 Dself/mms−1

−2.7034 0.483 34(1500) 0.25121(1300) 2.4264(182) · 10−5

−2.0673 0.207 61(490) 0.19695(1400) 6.9555(513) · 10−5

−1.4241 0.103 72(290) 0.13334(1100) 1.6866(132) · 10−4

−0.827 71 0.046 199(1400) 0.076707(4500) 4.0455(412) · 10−4

−0.090 534 0.012 409(1400) 0.023682(2600) 5.8509(579) · 10−3
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Table B.17: Results of butanal
ρ/kg/m3 T/K p/bar s∗

887.6 194.480(39) 3.9302(31000) −3.2082
816.6 270.560(39) 5.4477(18000) −2.4432
700.87 382.520(79) 5.9733(13000) −1.6255
491.26 519.630(89) 40.601(630) −0.852 56
5.1518 382.520(36) 2.1243(65) −0.014 342

s∗ η/mPas λ/W m−1 K−1 Dself/mms−1

−3.2082 2.7232(1400) 0.168 09(1500) 3.4614(314) · 10−6

−2.4432 0.565 26(2000) 0.147 87(680) 1.9936(205) · 10−5

−1.6255 0.201 44(1300) 0.113 26(690) 7.4787(753) · 10−5

−0.85256 0.067 213(4400) 0.085 947(12000) 2.6619(278) · 10−4

−0.014342 0.010 027(1100) 0.019 798(2100) 2.4747(231) · 10−2

Table B.18: Results of heptanal
ρ/kg/m3 T/K p/bar s∗

840.85 252.130(36) 11.371(1500) −2.5729
776.89 332.03(5) 10.004(1100) −1.9492
666.84 455.240(69) 9.449(690) −1.3006
470.79 604.82(8) 30.874(430) −0.695 29
5.3559 455.220(41) 1.6501(57) −0.012 129

s∗ η/mPa s λ/W m−1 K−1 Dself/mm s−1

−2.5729 1.9113(1200) 0.1404(60) 5.3695(512) · 10−6

−1.9492 0.553 95(4600) 0.12885(620) 2.3664(192) · 10−5

−1.3006 0.192 92(720) 0.10234(390) 8.0727(427) · 10−5

−0.695 29 0.064 829(2500) 0.079916(7100) 2.6343(194) · 10−4

−0.012 129 0.009 2368(9400) 0.020528(1700) 2.2672(221) · 10−2
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Table B.19: Results of acetone
ρ/kg/m3 T/K p/bar s∗

867.62 196.340(36) 3.6394(40000) −2.877
785.39 279.09(5) 6.8071(28000) −2.1969
660.67 389.350(57) 9.1299(14000) −1.4677
458.77 508.55(10) 58.237(540) −0.80093
8.7917 389.320(34) 4.4061(80) −0.02545

s∗ η/mPas λ/W m−1 K−1 Dself/mm s−1

−2.877 1.5422(570) 0.205 21(1200) 6.0940(641) · 10−6

−2.1969 0.398 05(1400) 0.168 46(950) 2.9230(228) · 10−5

−1.4677 0.154 58(860) 0.118 94(400) 9.8146(844) · 10−5

−0.80093 0.057 889(2100) 0.072 404(3900) 3.0273(155) · 10−4

−0.02545 0.010 419(1300) 0.018 319(2100) 1.4738(103) · 10−2

Table B.20: Results of butanone
ρ/kg/m3 T/K p/bar s∗

848.2 205.160(42) 8.6126(19000) −2.8524
775.85 281.70(6) 10.668(2000) −2.167
657.08 393.700(55) 5.8554(8300) −1.4307
431.71 527.400(71) 43.736(400) −0.70843
6.0661 393.710(44) 2.5430(69) −0.016154

s∗ η/mPa s λ/W m−1 K−1 Dself/mm s−1

−2.8524 1.7406(810) 0.16244(1100) 5.6837(614) · 10−6

−2.167 0.454 37(1800) 0.1351(130) 2.6547(263) · 10−5

−1.4307 0.1593(42) 0.10249(710) 9.1637(928) · 10−5

−0.708 43 0.051 395(1400) 0.066298(5900) 3.2439(255) · 10−4

−0.016 154 0.009 3584(7300) 0.017866(1700) 2.0597(213) · 10−2
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B.5 Verification of the Nosé-Hoover thermostat

We repeated the simulations of hexane with a switched off thermostat in production to check
the consistency with the results we obtained with the Nose-Hover thermostat. Figure B.1
shows the results for all transport properties in the entropy scaled depiction. The results are
equivalent within statistical uncertainties, wether the thermostat is switched on or not.

The results are summarized in table form in table B.21.
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Figure B.1: Logarithmic depiction of reduced viscosity η∗ (a), self-diffusion D∗
self (b), and

thermal conductivity λ∗ (c) over residual entropy s∗ for hexane. The figure compares the
results of simulations with an Nosé-Hoover thermostat (NVE) and simulations without any
thermostat (NVE)

Table B.21: Results of hexane (NVE)
ρ/kg/m3 T/K p/bar s∗

723.12 208.160(66) 52.036(2200) −2.796
668.69 275.410(35) 36.59(110) −2.1252
575.01 384.620(17) 56.929(810) −1.4124
401.83 504.480(29) 38.499(410) −0.750 66
7.4016 386.47(11) 2.5158(83) −0.019 807

s∗ η/mPa s λ/W m−1 K−1 Dself/mm s−1

−2.796 0.817 81(4600) 0.12482(500) 1.1598(126) · 10−5

−2.1252 0.331(13) 0.11118(560) 3.4336(312) · 10−5

−1.4124 0.1433(90) 0.085467(2900) 9.8678(711) · 10−5

−0.750 66 0.051 185(1700) 0.063674(4600) 2.9936(253) · 10−4

−0.019 807 0.008 1651(5100) 0.018118(1700) 1.5940(158) · 10−2
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C Supporting Information for: Assessing Entropy Scaling for

Mixture Viscosities using Molecular Simulations

This supporting information contains the results of all simulations shown in the figures of
chapter 3, in tabulated form. The SI is divided into results of the viscosity calculations in
appendix C.1, the results of static properties along isotherms from the GCMC simulations
(appendix C.2), and results of the vapour-liquid equilibria of the model mixtures at different
temperatures, also from GCMC simulations (appendix C.3).

C.1 Tabulated Results of the MD Simulations

This chapter provides the viscosities of the investigated model mixtures at various state points
as result of the MD simulations. Additionally, all information that is needed for an entropy
scaled analysis of the data are given. Table C.1 thereby shows the results of the model mixture
consisting of two fluids with different energy parameters (Mixture I: ϵ22/ϵ11 = 0.7), table C.2
presents the results of Mixture II with different diameters (σ22/σ11 = 1.5), and table C.3
gives the results of the non-ideal mixture of two identical LJ-fluids (ki j = 0.25).

The particle fraction x1 of the standard LJ fluid with σ11 = 1,ϵ11 = 1, as well as the number
density ρ∗ and the temperature T ∗ are simulation parameters that are held constant during
the MD simulation. Pressure p∗ and viscosity η∗ are direct results of the MD simulations.
Entropy s∗ and the CE reference viscosity η∗

ref,CE are needed for the entropy scaled depiction
and to calculate the reduced viscosity ln(η#) = η∗/η∗

ref,CE. Entropy s∗ is a result of the GCMC
simulations (see appendix C.2), η∗

ref,CE is calculated according to eq. (4.4). All results are
given in reduced LJ units, according to table 4.1. The reported statistical uncertainties are
the 95 % confidence interval, calculated as described in the main text in section 4.2.4.
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Table C.1: Results of the MD-Simulations of Mixture I

x1 T ∗ p∗ ρ∗ s∗ η∗ η∗
ref,CE ln(η#)

0.00 1.00000 0.199 86(18) 0.4776 −1.24985 0.444 94(1206) 0.060331 1.9981(270)
0.00 1.05000 0.20471(15) 0.41404 −1.05426 0.368 64(988) 0.063392 1.7605(270)
0.00 1.10001 0.19822(11) 0.33134 −0.81221 0.288 62(743) 0.066438 1.4688(260)
0.00 1.15001 0.19840(7) 0.27815 −0.66042 0.264 40(929) 0.069459 1.3367(350)
0.10 1.00000 0.20423(21) 0.52161 −1.41985 0.532 76(1582) 0.060331 2.1782(300)
0.10 1.05000 0.20219(17) 0.45681 −1.19992 0.433 10(1366) 0.063392 1.9216(310)
0.10 1.10001 0.19759(11) 0.37432 −0.94156 0.331 59(1115) 0.066438 1.6076(330)
0.10 1.15001 0.19751(9) 0.30635 −0.74522 0.280 53(950) 0.069459 1.3959(340)
0.30 1.00000 0.19953(25) 0.58453 −1.69998 0.660 00(1481) 0.060331 2.3924(220)
0.30 1.05000 0.19899(25) 0.53611 −1.49812 0.571 92(1634) 0.063392 2.1997(290)
0.30 1.10000 0.19797(21) 0.47545 −1.27269 0.489 65(2919) 0.066438 1.9974(590)
0.30 1.15000 0.19722(14) 0.39901 −1.02404 0.373 97(1361) 0.069459 1.6834(360)
0.50 1.00000 0.19195(36) 0.63408 −1.94971 0.854 32(2082) 0.060331 2.6505(240)
0.50 1.05000 0.19813(29) 0.59841 −1.77171 0.741 11(2416) 0.063392 2.4588(320)
0.50 1.10000 0.19600(25) 0.55339 −1.57328 0.648 48(2580) 0.066438 2.2784(390)
0.50 1.15000 0.19612(24) 0.49918 −1.36287 0.546 98(3687) 0.069459 2.0637(660)
0.70 1.00000 0.20143(30) 0.67839 −2.19793 1.065 25(4621) 0.060331 2.8711(430)
0.70 1.05000 0.19706(34) 0.6466 −2.01667 0.912 53(2894) 0.063392 2.6669(320)
0.70 1.10000 0.19701(34) 0.61224 −1.84053 0.817 66(2866) 0.066438 2.5102(350)
0.70 1.15000 0.19480(30) 0.57193 −1.65602 0.704 69(2861) 0.069459 2.317(40)
0.90 1.00000 0.20074(41) 0.71264 −2.41455 1.272 97(4640) 0.060331 3.0493(360)

Continued on next page157



C
SI:Assessing

Entropy
Scaling

forM
ixture

Viscosities
Continued: Results of the MD-Simulations of Mixture I

x1 T ∗ p∗ ρ∗ s∗ η∗ η∗
ref,CE ln(η#)

0.90 1.05000 0.201 59(43) 0.6867 −2.24471 1.123 22(2790) 0.063392 2.8746(250)
0.90 1.10000 0.19017(34) 0.65599 −2.06862 0.988 31(3683) 0.066438 2.6997(370)
0.90 1.15000 0.19662(33) 0.62628 −1.91091 0.863 99(2088) 0.069459 2.5208(240)
1.00 1.00000 0.18032(41) 0.72511 −2.50220 1.395 30(5196) 0.060331 3.141(37)
1.00 1.05001 0.18944(39) 0.7016 −2.33866 1.209 65(3620) 0.063392 2.9487(300)
1.00 1.10001 0.19366(41) 0.67597 −2.18234 1.077 59(2629) 0.066438 2.7862(240)
1.00 1.15001 0.19434(34) 0.64768 −2.02477 0.982 02(3031) 0.069459 2.6489(310)

Table C.2: Results of the MD-Simulations of Mixture II
x1 T ∗ p∗ ρ∗ s∗ η∗ η∗

ref,CE ln(η#)

0.00 0.90066 0.386 38(11) 0.12545 −3.39173 1.302 99(3714) 0.024085 3.9908(280)
0.00 1.00063 0.43454(9) 0.12241 −3.12380 1.090 51(3846) 0.026814 3.7055(350)
0.00 1.10060 0.41367(10) 0.11761 −2.84398 0.857 85(2187) 0.029528 3.3691(260)
0.00 1.15058 0.38030(9) 0.11439 −2.68080 0.776 96(2803) 0.030871 3.2256(360)
0.00 1.20058 0.41021(10) 0.1133 −2.59966 0.749 67(2846) 0.0322 3.1477(380)
0.25 0.90054 0.39740(13) 0.15195 −3.25238 1.389 62(3805) 0.029086 3.8665(270)
0.25 1.00048 0.39470(12) 0.14631 −2.94873 1.113 43(3409) 0.032381 3.5376(300)
0.25 1.10045 0.39553(10) 0.14076 −2.68282 0.927 88(3249) 0.035659 3.2589(350)
0.25 1.15044 0.39296(9) 0.13788 −2.55977 0.843 78(2860) 0.037281 3.1194(340)
0.25 1.20043 0.39560(9) 0.13519 −2.44860 0.768 82(2897) 0.038885 2.9842(370)

Continued on next page
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Continued: Results of the MD-Simulations of Mixture II

x1 T ∗ p∗ ρ∗ s∗ η∗ η∗
ref,CE ln(η#)

0.50 0.90037 0.403 75(14) 0.19206 −3.14469 1.502 69(4414) 0.035362 3.7494(290)
0.50 1.00032 0.38806(13) 0.18395 −2.82471 1.203 66(3018) 0.039369 3.4201(250)
0.50 1.10031 0.39948(12) 0.17669 −2.56561 0.993 05(4972) 0.043353 3.1314(490)
0.50 1.15030 0.39846(13) 0.17277 −2.44109 0.899 90(3217) 0.045325 2.9884(360)
0.50 1.20027 0.40035(12) 0.16895 −2.32657 0.834 81(2403) 0.047276 2.8712(290)
0.75 0.90018 0.43838(20) 0.2607 −3.06282 1.764 97(5746) 0.043444 3.7044(320)
0.75 1.00016 0.41450(15) 0.2487 −2.73989 1.354 19(3713) 0.048366 3.3322(270)
0.75 1.10015 0.40317(18) 0.23662 −2.46254 1.098 31(3805) 0.053262 3.0263(340)
0.75 1.15013 0.39766(15) 0.23035 −2.32595 0.992 20(3061) 0.055684 2.8802(310)
0.75 1.20014 0.39677(15) 0.22419 −2.20199 0.913 33(1927) 0.058081 2.7553(210)
1.00 0.90000 0.21772(19) 0.38733 −2.73233 1.808 48(6025) 0.054191 3.5077(330)
1.00 1.00000 0.35698(23) 0.37291 −2.54346 1.583 66(7875) 0.060331 3.2676(490)
1.00 1.10000 0.34691(20) 0.35024 −2.28767 1.227 64(4357) 0.066438 2.9166(350)
1.00 1.15000 0.44760(19) 0.34611 −2.21785 1.152 17(2175) 0.069459 2.8087(190)
1.00 1.20000 0.39259(19) 0.33031 −2.04685 1.011 69(2472) 0.072449 2.6365(240)

Table C.3: Results of the MD-Simulations of Mixture III
x1 T ∗ p∗ ρ∗ s∗ η∗ η∗

ref,CE ln(η#)

0.00 0.95000 0.196 98(33) 0.74982 −2.68675 1.586 75(3633) 0.057263 3.3218(230)
0.00 1.00000 0.18760(32) 0.72539 −2.50800 1.368 99(3395) 0.060331 3.122(25)
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Continued: Results of the MD-Simulations of Mixture III

x1 T ∗ p∗ ρ∗ s∗ η∗ η∗
ref,CE ln(η#)

0.00 1.05000 0.210 71(25) 0.70419 −2.35726 1.270 43(3656) 0.063392 2.9978(290)
0.00 1.10000 0.22152(27) 0.68035 −2.21039 1.132 88(3913) 0.066438 2.8363(340)
0.00 1.15000 0.20760(24) 0.65003 −2.03084 0.959 03(2755) 0.069459 2.6252(290)
0.10 0.95000 0.20897(42) 0.7332 −2.56611 1.428 77(4973) 0.057263 3.2169(350)
0.10 1.00000 0.19821(40) 0.70646 −2.38136 1.215 76(3090) 0.060331 3.0033(250)
0.10 1.05000 0.19818(36) 0.67938 −2.20602 1.054 15(2739) 0.063392 2.8111(260)
0.10 1.10000 0.20004(38) 0.6506 −2.04614 0.970 30(2979) 0.066438 2.6813(310)
0.10 1.15000 0.19019(33) 0.61533 −1.85824 0.839 45(2823) 0.069459 2.492(33)
0.10 1.20000 0.19774(25) 0.58073 −1.69687 0.750 48(3503) 0.072449 2.3378(470)
0.20 0.95000 0.27747(46) 0.72751 −2.64662 1.344 36(3972) 0.057263 3.156(29)
0.20 1.00000 0.19698(38) 0.68871 −2.28103 1.148 09(4245) 0.060331 2.946(37)
0.20 1.05000 0.20097(38) 0.66003 −2.10467 0.994 72(3738) 0.063392 2.7531(370)
0.20 1.10000 0.19701(35) 0.62677 −1.92638 0.871 04(3101) 0.066438 2.5734(350)
0.20 1.15000 0.20014(36) 0.59121 −1.74662 0.757 80(2721) 0.069459 2.3897(360)
0.30 1.05000 0.19954(40) 0.64498 −2.03594 0.899 19(2202) 0.063392 2.6522(250)
0.30 1.10000 0.19685(40) 0.60891 −1.84382 0.793 11(3453) 0.066438 2.4797(430)
0.30 1.15000 0.19764(31) 0.56859 −1.65227 0.678 94(1962) 0.069459 2.2798(290)
0.50 1.05000 0.20443(44) 0.63441 −1.99636 0.875 84(2532) 0.063392 2.6258(290)
0.50 1.10000 0.19854(31) 0.59474 −1.78226 0.771 62(3386) 0.066438 2.4522(430)
0.50 1.15000 0.19899(30) 0.55071 −1.58050 0.655 42(2546) 0.069459 2.2445(390)
0.70 1.05000 0.19996(42) 0.64498 −2.03563 0.917 55(3160) 0.063392 2.6724(340)

Continued on next page
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Continued: Results of the MD-Simulations of Mixture III

x1 T ∗ p∗ ρ∗ s∗ η∗ η∗
ref,CE ln(η#)

0.70 1.10001 0.197 08(34) 0.60891 −1.84252 0.780 62(1952) 0.066438 2.4638(250)
0.70 1.15001 0.19755(32) 0.56859 −1.65448 0.676 56(1763) 0.069459 2.2763(260)
0.80 0.95000 0.27718(37) 0.72751 −2.63361 1.369 54(5619) 0.057263 3.1746(410)
0.80 1.00000 0.19707(29) 0.68871 −2.28280 1.117 20(2031) 0.060331 2.9187(180)
0.80 1.05000 0.20114(24) 0.66003 −2.10537 0.991 09(3205) 0.063392 2.7495(320)
0.80 1.10000 0.19752(25) 0.62677 −1.92203 0.858 01(2340) 0.066438 2.5583(270)
0.80 1.15000 0.20006(22) 0.59121 −1.74319 0.752 06(2681) 0.069459 2.3821(350)
0.80 1.20000 0.19572(19) 0.54587 −1.55518 0.639 85(1569) 0.072449 2.1783(240)
0.90 0.95000 0.20899(32) 0.7332 −2.53710 1.388 14(4001) 0.057263 3.1881(290)
0.90 1.00000 0.19855(30) 0.70646 −2.37278 1.232 33(3229) 0.060331 3.0168(260)
0.90 1.05000 0.19807(28) 0.67938 −2.20897 1.107 42(4178) 0.063392 2.8605(370)
0.90 1.10000 0.20012(27) 0.6506 −2.03433 0.982 08(3831) 0.066438 2.6934(390)
0.90 1.15000 0.19027(25) 0.61533 −1.87363 0.819 93(1984) 0.069459 2.4685(240)
0.90 1.20000 0.19788(21) 0.58073 −1.69065 0.736 11(2067) 0.072449 2.3185(280)
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C.2 Tabulated Results of the isothermal GCMC Simulations

This chapter provides static energetic and entropic properties of the investigated model
mixtures at various state points as result of the isothermal GCMC simulations. The tables are
structured by mixture and temperature. Tables C.4–C.7 thereby show the results of the model
mixture consisting of two fluids with different energy parameters (Mixture I: ϵ22/ϵ11 = 0.7),
tables C.8–C.13 present the results of Mixture II with different diameters (σ22/σ11 = 1.5),
and tables C.14–C.20 give the results of the non-ideal mixture of two identical LJ-fluids
(ki j = 0.25).

The particle fraction x1 of the standard LJ fluid withσ11 = 1,ϵ11 = 1, as well as the temperature
T ∗ are simulation parameters that are held constant during the simulations. The specific
volume v∗ and the number density ρ∗, the specific internal energy u∗

res, the specific enthalpy
h∗

res, and the specific Gibbs energy g∗
res are calculated using histogram reweighting as described

in section 4.2.3. Entropy s∗ is calculated with eq. (4.19). All results are given in reduced LJ
units, according to table 4.1.

Table C.4: Results of the GCMC-Simulations of Mixture I at p∗ = 0.20 and T ∗ = 1.00

x1 T ∗ v∗ ρ∗ u∗
res h∗

res g∗
res s∗

0.001 1.00 2.093 78 0.477 60 −2.24586 −1.57725 −2.82710 −1.249 85

0.050 1.00 2.007 21 0.498 20 −2.39326 −1.66395 −2.99182 −1.32787

0.100 1.00 1.917 15 0.521 61 −2.55844 −1.75516 −3.17501 −1.41985

0.150 1.00 1.856 43 0.538 67 −2.699 39 −1.83527 −3.32810 −1.49283

0.200 1.00 1.799 55 0.555 70 −2.842 99 −1.91734 −3.48308 −1.56574

0.250 1.00 1.750 23 0.571 35 −2.984 50 −1.99786 −3.63445 −1.63659

0.300 1.00 1.710 78 0.584 53 −3.117 31 −2.07517 −3.77515 −1.69998

0.350 1.00 1.675 28 0.596 91 −3.249 18 −2.15355 −3.91412 −1.76057

0.400 1.00 1.637 53 0.610 68 −3.391 75 −2.23681 −4.06424 −1.82744

0.450 1.00 1.603 21 0.623 75 −3.534 34 −2.31969 −4.21369 −1.89401

0.500 1.00 1.577 09 0.634 08 −3.664 85 −2.39972 −4.34943 −1.94971

0.550 1.00 1.546 76 0.646 51 −3.810 12 −2.48448 −4.50076 −2.01629

0.600 1.00 1.520 94 0.657 49 −3.950 82 −2.56902 −4.64663 −2.07761

0.650 1.00 1.497 91 0.667 60 −4.089 52 −2.65468 −4.78994 −2.13526

0.700 1.00 1.474 08 0.678 39 −4.235 38 −2.74264 −4.94057 −2.19793

0.750 1.00 1.453 33 0.688 08 −4.377 35 −2.83049 −5.08668 −2.25619

Continued on next page
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Continued: Results of the GCMC-Simulations of Mixture I at p∗ = 0.20 and T ∗ = 1.00

x1 T ∗ v∗ ρ∗ u∗
res h∗

res g∗
res s∗

0.800 1.00 1.435 46 0.696 64 −4.51507 −2.91890 −5.22798 −2.309 08

0.850 1.00 1.422 16 0.703 16 −4.64338 −3.00578 −5.35895 −2.35317

0.900 1.00 1.403 23 0.712 64 −4.79289 −3.09769 −5.51225 −2.41455

0.950 1.00 1.387 97 0.720 48 −4.934 23 −3.18939 −5.65664 −2.46725

0.999 1.00 1.379 11 0.725 11 −5.053 85 −3.27583 −5.77803 −2.50220

Table C.5: Results of the GCMC-Simulations of Mixture I at p∗ = 0.20 and T ∗ = 1.05

x1 T ∗ v∗ ρ∗ u∗
res h∗

res g∗
res s∗

0.001 1.05 2.415 22 0.414 04 −1.94775 −1.40773 −2.51471 −1.054 26

0.050 1.05 2.268 12 0.440 89 −2.11433 −1.51242 −2.71071 −1.14123

0.100 1.05 2.189 11 0.456 81 −2.23834 −1.59060 −2.85052 −1.19992

0.150 1.05 2.097 65 0.476 72 −2.385 08 −1.67988 −3.01555 −1.27207

0.200 1.05 2.017 94 0.495 55 −2.530 46 −1.76781 −3.17687 −1.34196

0.250 1.05 1.934 11 0.517 03 −2.692 84 −1.86217 −3.35602 −1.42272

0.300 1.05 1.865 27 0.536 11 −2.848 46 −1.95238 −3.52541 −1.49812

0.350 1.05 1.811 91 0.551 90 −2.991 91 −2.03728 −3.67953 −1.56405

0.400 1.05 1.758 08 0.568 80 −3.144 77 −2.12554 −3.84316 −1.63582

0.450 1.05 1.711 67 0.584 23 −3.294 78 −2.21168 −4.00244 −1.70549

0.500 1.05 1.671 09 0.598 41 −3.441 36 −2.29684 −4.15714 −1.77171

0.550 1.05 1.636 55 0.611 04 −3.583 13 −2.38075 −4.30582 −1.83340

0.600 1.05 1.604 92 0.623 08 −3.725 05 −2.46518 −4.45406 −1.89417

0.650 1.05 1.574 55 0.635 10 −3.869 84 −2.55137 −4.60493 −1.95577

0.700 1.05 1.546 55 0.646 60 −4.015 23 −2.63842 −4.75592 −2.01667

0.750 1.05 1.520 74 0.657 58 −4.161 12 −2.72624 −4.90697 −2.07689

0.800 1.05 1.497 82 0.667 64 −4.303 89 −2.81455 −5.05432 −2.13312

0.850 1.05 1.477 04 0.677 03 −4.446 43 −2.90342 −5.20103 −2.18819

0.900 1.05 1.456 24 0.686 70 −4.592 95 −2.99475 −5.35170 −2.24471

0.950 1.05 1.435 23 0.696 75 −4.745 48 −3.08846 −5.50844 −2.30473

0.999 1.05 1.425 31 0.701 60 −4.864 10 −3.17344 −5.62904 −2.33866
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Table C.6: Results of the GCMC-Simulations of Mixture I at p∗ = 0.20 and T ∗ = 1.10

x1 T ∗ v∗ ρ∗ u∗
res h∗

res g∗
res s∗

0.001 1.10 3.018 07 0.331 34 −1.56786 −1.17081 −2.06424 −0.812 21

0.050 1.10 2.864 92 0.349 05 −1.68464 −1.26032 −2.21166 −0.86485

0.100 1.10 2.671 51 0.374 32 −1.84284 −1.37282 −2.40854 −0.94156

0.150 1.10 2.509 45 0.398 49 −2.001 10 −1.47976 −2.59921 −1.01768

0.200 1.10 2.354 74 0.424 68 −2.172 41 −1.59053 −2.80146 −1.10085

0.250 1.10 2.214 73 0.451 52 −2.352 76 −1.70117 −3.00982 −1.18968

0.300 1.10 2.103 29 0.475 45 −2.524 40 −1.80379 −3.20374 −1.27269

0.350 1.10 2.011 05 0.497 25 −2.690 57 −1.90130 −3.38836 −1.35187

0.400 1.10 1.931 41 0.517 76 −2.855 18 −1.99653 −3.56889 −1.42942

0.450 1.10 1.864 20 0.536 42 −3.015 20 −2.08897 −3.74236 −1.50309

0.500 1.10 1.807 05 0.553 39 −3.170 76 −2.17875 −3.90935 −1.57328

0.550 1.10 1.754 89 0.569 84 −3.327 59 −2.26810 −4.07661 −1.64409

0.600 1.10 1.711 29 0.584 36 −3.477 72 −2.35531 −4.23547 −1.70924

0.650 1.10 1.672 71 0.597 83 −3.625 71 −2.44204 −4.39117 −1.77193

0.700 1.10 1.633 35 0.612 24 −3.783 30 −2.53205 −4.55663 −1.84053

0.750 1.10 1.598 70 0.625 51 −3.938 16 −2.62229 −4.71842 −1.90557

0.800 1.10 1.570 12 0.636 90 −4.084 99 −2.71142 −4.87097 −1.96322

0.850 1.10 1.547 03 0.646 40 −4.223 57 −2.79832 −5.01416 −2.01440

0.900 1.10 1.524 40 0.655 99 −4.365 79 −2.88542 −5.16091 −2.06862

0.950 1.10 1.499 68 0.666 81 −4.517 97 −2.97583 −5.31803 −2.12928

0.999 1.10 1.479 35 0.675 97 −4.660 09 −3.06364 −5.46422 −2.18234

Table C.7: Results of the GCMC-Simulations of Mixture I at p∗ = 0.20 and T ∗ = 1.15

x1 T ∗ v∗ ρ∗ u∗
res h∗

res g∗
res s∗

0.001 1.15 3.595 24 0.278 15 −1.31491 −0.98638 −1.74586 −0.660 42

0.001 1.15 3.595 24 0.278 15 −1.31491 −0.98638 −1.74586 −0.66042

0.050 1.15 3.441 82 0.290 54 −1.40571 −1.06417 −1.86735 −0.69841

0.050 1.15 3.441 82 0.290 54 −1.405 71 −1.06417 −1.86735 −0.69841

0.100 1.15 3.264 28 0.306 35 −1.514 62 −1.15477 −2.01177 −0.74522

0.100 1.15 3.264 28 0.306 35 −1.514 62 −1.15477 −2.01177 −0.74522
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C.2 Tabulated Results of the isothermal GCMC Simulations

Continued: Results of the GCMC-Simulations of Mixture I at p∗ = 0.20 and T ∗ = 1.15

x1 T ∗ v∗ ρ∗ u∗
res h∗

res g∗
res s∗

0.150 1.15 3.076 07 0.325 09 −1.64023 −1.25456 −2.17502 −0.800 40

0.150 1.15 3.076 07 0.325 09 −1.64023 −1.25456 −2.17502 −0.80040

0.200 1.15 2.882 10 0.346 97 −1.78552 −1.36322 −2.35910 −0.86598

0.200 1.15 2.882 10 0.346 97 −1.785 52 −1.36322 −2.35910 −0.86598

0.250 1.15 2.689 48 0.371 82 −1.948 63 −1.47908 −2.56074 −0.94057

0.250 1.15 2.689 48 0.371 82 −1.948 63 −1.47908 −2.56074 −0.94057

0.300 1.15 2.506 21 0.399 01 −2.127 85 −1.59896 −2.77660 −1.02404

0.300 1.15 2.506 21 0.399 01 −2.127 85 −1.59896 −2.77660 −1.02404

0.350 1.15 2.346 17 0.426 23 −2.313 11 −1.71626 −2.99388 −1.11097

0.350 1.15 2.346 17 0.426 23 −2.313 11 −1.71626 −2.99388 −1.11097

0.400 1.15 2.215 24 0.451 42 −2.493 38 −1.82630 −3.20033 −1.19480

0.400 1.15 2.215 24 0.451 42 −2.493 38 −1.82630 −3.20033 −1.19480

0.450 1.15 2.100 50 0.476 08 −2.676 07 −1.93426 −3.40597 −1.27975

0.450 1.15 2.100 50 0.476 08 −2.676 07 −1.93426 −3.40597 −1.27975

0.500 1.15 2.003 29 0.499 18 −2.856 33 −2.03838 −3.60567 −1.36287

0.500 1.15 2.003 29 0.499 18 −2.856 33 −2.03838 −3.60567 −1.36287

0.550 1.15 1.923 50 0.519 89 −3.029 48 −2.13733 −3.79478 −1.44126

0.550 1.15 1.923 50 0.519 89 −3.029 48 −2.13733 −3.79478 −1.44126

0.600 1.15 1.857 69 0.538 30 −3.194 33 −2.23169 −3.97279 −1.51400

0.600 1.15 1.857 69 0.538 30 −3.194 33 −2.23169 −3.97279 −1.51400

0.650 1.15 1.798 38 0.556 06 −3.360 39 −2.32536 −4.15071 −1.58727

0.650 1.15 1.798 38 0.556 06 −3.360 39 −2.32536 −4.15071 −1.58727

0.700 1.15 1.748 48 0.571 93 −3.520 40 −2.41628 −4.32071 −1.65602

0.700 1.15 1.748 48 0.571 93 −3.520 40 −2.41628 −4.32071 −1.65602

0.750 1.15 1.701 48 0.587 72 −3.684 09 −2.50853 −4.49379 −1.72632

0.750 1.15 1.701 48 0.587 72 −3.684 09 −2.50853 −4.49379 −1.72632

0.800 1.15 1.659 51 0.602 59 −3.846 77 −2.60133 −4.66487 −1.79438

0.800 1.15 1.659 51 0.602 59 −3.846 77 −2.60133 −4.66487 −1.79438

0.850 1.15 1.622 97 0.616 15 −4.006 16 −2.69371 −4.83157 −1.85901

0.850 1.15 1.622 97 0.616 15 −4.006 16 −2.69371 −4.83157 −1.85901

0.900 1.15 1.596 74 0.626 28 −4.147 43 −2.78053 −4.97808 −1.91091

0.900 1.15 1.596 74 0.626 28 −4.147 43 −2.78053 −4.97808 −1.91091
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C SI: Assessing Entropy Scaling for Mixture Viscosities

Continued: Results of the GCMC-Simulations of Mixture I at p∗ = 0.20 and T ∗ = 1.15

x1 T ∗ v∗ ρ∗ u∗
res h∗

res g∗
res s∗

0.950 1.15 1.571 52 0.636 33 −4.29099 −2.86832 −5.12668 −1.963 79

0.950 1.15 1.571 52 0.636 33 −4.29099 −2.86832 −5.12668 −1.96379

0.999 1.15 1.543 98 0.647 68 −4.44534 −2.95805 −5.28654 −2.02477

0.999 1.15 1.543 98 0.647 68 −4.445 34 −2.95805 −5.28654 −2.02477

Table C.8: Results of the GCMC-Simulations of Mixture II at p∗ = 0.40 and T ∗ = 0.90

x1 T ∗ v∗ ρ∗ u∗
res h∗

res g∗
res s∗

0.001 0.90 3.985 80 0.250 89 −5.89536 −2.14848 −5.20104 −3.391 73

0.050 0.90 3.847 77 0.259 89 −5.87044 −2.20444 −5.23134 −3.36322

0.100 0.90 3.721 77 0.268 69 −5.82527 −2.25977 −5.23656 −3.30754

0.150 0.90 3.582 22 0.279 16 −5.798 70 −2.31628 −5.26581 −3.27726

0.200 0.90 3.431 12 0.291 45 −5.790 70 −2.37383 −5.31825 −3.27158

0.250 0.90 3.290 50 0.303 91 −5.771 61 −2.42828 −5.35542 −3.25238

0.300 0.90 3.156 22 0.316 83 −5.742 48 −2.48097 −5.37999 −3.22113

0.350 0.90 3.017 50 0.331 40 −5.722 42 −2.53581 −5.41542 −3.19957

0.400 0.90 2.879 68 0.347 26 −5.702 21 −2.59047 −5.45034 −3.17764

0.450 0.90 2.741 98 0.364 70 −5.684 89 −2.64440 −5.48809 −3.15966

0.500 0.90 2.603 41 0.384 11 −5.671 72 −2.70014 −5.53036 −3.14469

0.550 0.90 2.468 28 0.405 14 −5.653 25 −2.75598 −5.56594 −3.12218

0.600 0.90 2.331 24 0.428 96 −5.640 86 −2.81380 −5.60837 −3.10508

0.650 0.90 2.197 88 0.454 98 −5.623 36 −2.87227 −5.64421 −3.07993

0.700 0.90 2.058 99 0.485 68 −5.620 50 −2.93454 −5.69690 −3.06929

0.750 0.90 1.917 92 0.521 40 −5.627 16 −3.00345 −5.75999 −3.06282

0.800 0.90 1.778 67 0.562 22 −5.635 29 −3.08134 −5.82382 −3.04720

0.850 0.90 1.656 83 0.603 56 −5.596 54 −3.15535 −5.83381 −2.97607

0.900 0.90 1.536 43 0.650 86 −5.553 71 −3.22647 −5.83914 −2.90297

0.950 0.90 1.426 44 0.701 04 −5.463 49 −3.27039 −5.79291 −2.80280

0.999 0.90 1.290 89 0.774 66 −5.444 47 −3.36901 −5.82811 −2.73233
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C.2 Tabulated Results of the isothermal GCMC Simulations

Table C.9: Results of the GCMC-Simulations of Mixture II at p∗ = 0.40 and T ∗ = 1.00

x1 T ∗ v∗ ρ∗ u∗
res h∗

res g∗
res s∗

0.001 1.00 4.084 72 0.244 81 −5.67755 −1.91987 −5.04366 −3.123 80

0.050 1.00 3.961 86 0.252 41 −5.63469 −1.96821 −5.04995 −3.08174

0.100 1.00 3.830 80 0.261 04 −5.59259 −2.01787 −5.06027 −3.04240

0.150 1.00 3.701 17 0.270 19 −5.549 76 −2.07020 −5.06929 −2.99909

0.200 1.00 3.561 67 0.280 77 −5.519 16 −2.12552 −5.09450 −2.96897

0.250 1.00 3.417 39 0.292 62 −5.497 75 −2.18206 −5.13079 −2.94873

0.300 1.00 3.274 73 0.305 37 −5.473 93 −2.23776 −5.16404 −2.92628

0.350 1.00 3.133 44 0.319 14 −5.450 02 −2.29364 −5.19664 −2.90301

0.400 1.00 2.991 52 0.334 28 −5.428 52 −2.35055 −5.23191 −2.88136

0.450 1.00 2.852 92 0.350 52 −5.402 94 −2.40623 −5.26177 −2.85554

0.500 1.00 2.718 17 0.367 89 −5.372 02 −2.46004 −5.28475 −2.82471

0.550 1.00 2.578 83 0.387 77 −5.350 57 −2.51612 −5.31903 −2.80292

0.600 1.00 2.433 53 0.410 93 −5.342 81 −2.57633 −5.36940 −2.79307

0.650 1.00 2.291 94 0.436 31 −5.330 23 −2.63612 −5.41345 −2.77733

0.700 1.00 2.145 58 0.466 08 −5.330 59 −2.70180 −5.47236 −2.77056

0.750 1.00 2.010 47 0.497 40 −5.308 27 −2.76419 −5.50408 −2.73989

0.800 1.00 1.877 80 0.532 54 −5.282 46 −2.82838 −5.53134 −2.70297

0.850 1.00 1.742 36 0.573 93 −5.263 38 −2.89756 −5.56643 −2.66888

0.900 1.00 1.596 58 0.626 34 −5.276 19 −2.97130 −5.63756 −2.66625

0.950 1.00 1.473 44 0.678 69 −5.223 35 −3.01878 −5.63397 −2.61519

0.999 1.00 1.340 81 0.745 82 −5.201 72 −3.12194 −5.66540 −2.54346

Table C.10: Results of the GCMC-Simulations of Mixture II at p∗ = 0.40 and T ∗ = 1.05

x1 T ∗ v∗ ρ∗ u∗
res h∗

res g∗
res s∗

0.001 1.05 4.191 91 0.238 55 −5.51686 −1.80071 −4.89010 −2.942 28

0.050 1.05 4.055 88 0.246 56 −5.48038 −1.85194 −4.90802 −2.91056

0.100 1.05 3.911 73 0.255 64 −5.45057 −1.90504 −4.93588 −2.88651

0.150 1.05 3.767 70 0.265 41 −5.422 55 −1.95835 −4.96547 −2.86392

0.200 1.05 3.625 52 0.275 82 −5.393 46 −2.01237 −4.99326 −2.83894

0.250 1.05 3.481 48 0.287 23 −5.367 28 −2.06789 −5.02469 −2.81600
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C SI: Assessing Entropy Scaling for Mixture Viscosities

Continued: Results of the GCMC-Simulations of Mixture II at p∗ = 0.40 and T ∗ = 1.05

x1 T ∗ v∗ ρ∗ u∗
res h∗

res g∗
res s∗

0.300 1.05 3.338 75 0.299 51 −5.33992 −2.12377 −5.05442 −2.791 10

0.350 1.05 3.197 45 0.312 75 −5.31231 −2.17999 −5.08333 −2.76508

0.400 1.05 3.054 68 0.327 37 −5.28772 −2.23705 −5.11584 −2.74171

0.450 1.05 2.912 57 0.343 34 −5.263 61 −2.29362 −5.14858 −2.71901

0.500 1.05 2.770 67 0.360 92 −5.239 90 −2.35101 −5.18163 −2.69582

0.550 1.05 2.629 64 0.380 28 −5.216 62 −2.40848 −5.21477 −2.67265

0.600 1.05 2.488 61 0.401 83 −5.195 04 −2.46618 −5.24960 −2.65087

0.650 1.05 2.343 57 0.426 70 −5.183 48 −2.52729 −5.29605 −2.63692

0.700 1.05 2.203 39 0.453 85 −5.163 22 −2.58685 −5.33186 −2.61429

0.750 1.05 2.059 81 0.485 48 −5.152 65 −2.65180 −5.37873 −2.59708

0.800 1.05 1.925 65 0.519 30 −5.121 68 −2.71318 −5.40142 −2.56022

0.850 1.05 1.781 88 0.561 21 −5.115 76 −2.77625 −5.45301 −2.54929

0.900 1.05 1.640 84 0.609 44 −5.105 61 −2.84063 −5.49927 −2.53204

0.950 1.05 1.524 25 0.656 06 −5.020 75 −2.88420 −5.46105 −2.45415

0.999 1.05 1.373 46 0.728 09 −5.049 69 −2.97933 −5.55030 −2.44854

Table C.11: Results of the GCMC-Simulations of Mixture II at p∗ = 0.40 and T ∗ = 1.10

x1 T ∗ v∗ ρ∗ u∗
res h∗

res g∗
res s∗

0.001 1.10 4.251 21 0.235 23 −5.41080 −1.68193 −4.81032 −2.843 98

0.050 1.10 4.118 98 0.242 78 −5.36531 −1.73629 −4.81772 −2.80131

0.100 1.10 3.983 90 0.251 01 −5.32446 −1.79044 −4.83090 −2.76406

0.150 1.10 3.842 07 0.260 28 −5.290 81 −1.84606 −4.85398 −2.73447

0.200 1.10 3.697 43 0.270 46 −5.260 33 −1.90307 −4.88135 −2.70753

0.250 1.10 3.552 08 0.281 53 −5.231 98 −1.96005 −4.91114 −2.68282

0.300 1.10 3.406 31 0.293 57 −5.205 70 −2.01715 −4.94318 −2.66002

0.350 1.10 3.261 11 0.306 64 −5.180 11 −2.07447 −4.97566 −2.63745

0.400 1.10 3.118 20 0.320 70 −5.152 21 −2.13121 −5.00493 −2.61247

0.450 1.10 2.974 59 0.336 18 −5.125 39 −2.18880 −5.03555 −2.58796

0.500 1.10 2.829 85 0.353 38 −5.101 74 −2.24763 −5.06980 −2.56561

0.550 1.10 2.686 22 0.372 27 −5.078 03 −2.30619 −5.10354 −2.54304
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C.2 Tabulated Results of the isothermal GCMC Simulations

Continued: Results of the GCMC-Simulations of Mixture II at p∗ = 0.40 and T ∗ = 1.10

x1 T ∗ v∗ ρ∗ u∗
res h∗

res g∗
res s∗

0.600 1.10 2.542 73 0.393 28 −5.05586 −2.36418 −5.13877 −2.522 35

0.650 1.10 2.398 32 0.416 96 −5.03721 −2.42314 −5.17789 −2.50431

0.700 1.10 2.256 86 0.443 09 −5.01280 −2.48147 −5.21006 −2.48054

0.750 1.10 2.113 05 0.473 25 −4.995 17 −2.54116 −5.24995 −2.46254

0.800 1.10 1.971 32 0.507 27 −4.974 37 −2.60388 −5.28584 −2.43815

0.850 1.10 1.831 98 0.545 86 −4.948 50 −2.66208 −5.31571 −2.41239

0.900 1.10 1.683 67 0.593 94 −4.947 97 −2.72876 −5.37450 −2.40522

0.950 1.10 1.544 41 0.647 49 −4.923 94 −2.78904 −5.40617 −2.37921

0.999 1.10 1.427 58 0.700 49 −4.835 79 −2.84831 −5.36476 −2.28767

Table C.12: Results of the GCMC-Simulations of Mixture II at p∗ = 0.40 and T ∗ = 1.15

x1 T ∗ v∗ ρ∗ u∗
res h∗

res g∗
res s∗

0.001 1.15 4.371 09 0.228 78 −5.23541 −1.55405 −4.63697 −2.680 80

0.050 1.15 4.194 36 0.238 42 −5.24199 −1.61963 −4.71425 −2.69097

0.100 1.15 4.063 58 0.246 09 −5.19404 −1.67641 −4.71861 −2.64539

0.150 1.15 3.917 73 0.255 25 −5.162 23 −1.73707 −4.74514 −2.61572

0.200 1.15 3.772 00 0.265 11 −5.129 99 −1.79653 −4.77119 −2.58666

0.250 1.15 3.626 33 0.275 76 −5.099 02 −1.85475 −4.79848 −2.55977

0.300 1.15 3.479 09 0.287 43 −5.070 83 −1.91332 −4.82920 −2.53554

0.350 1.15 3.331 74 0.300 14 −5.044 65 −1.97225 −4.86195 −2.51278

0.400 1.15 3.185 94 0.313 88 −5.015 61 −2.03035 −4.89123 −2.48772

0.450 1.15 3.040 30 0.328 92 −4.987 37 −2.08841 −4.92125 −2.46333

0.500 1.15 2.894 05 0.345 54 −4.961 96 −2.14708 −4.95433 −2.44109

0.550 1.15 2.749 13 0.363 75 −4.934 95 −2.20516 −4.98530 −2.41751

0.600 1.15 2.605 73 0.383 77 −4.906 40 −2.26321 −5.01410 −2.39208

0.650 1.15 2.461 95 0.406 18 −4.879 40 −2.32225 −5.04462 −2.36727

0.700 1.15 2.315 41 0.431 89 −4.858 63 −2.38247 −5.08246 −2.34782

0.750 1.15 2.170 58 0.460 71 −4.835 68 −2.44260 −5.11744 −2.32595

0.800 1.15 2.025 46 0.493 71 −4.814 96 −2.50359 −5.15478 −2.30538

0.850 1.15 1.881 73 0.531 43 −4.791 05 −2.56549 −5.18836 −2.28076
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C SI: Assessing Entropy Scaling for Mixture Viscosities

Continued: Results of the GCMC-Simulations of Mixture II at p∗ = 0.40 and T ∗ = 1.15

x1 T ∗ v∗ ρ∗ u∗
res h∗

res g∗
res s∗

0.900 1.15 1.741 39 0.574 25 −4.75854 −2.62320 −5.21199 −2.251 12

0.950 1.15 1.600 23 0.624 91 −4.72840 −2.68329 −5.23830 −2.22175

0.999 1.15 1.444 61 0.692 23 −4.75174 −2.77337 −5.32390 −2.21785

Table C.13: Results of the GCMC-Simulations of Mixture II at p∗ = 0.40 and T ∗ = 1.20

x1 T ∗ v∗ ρ∗ u∗
res h∗

res g∗
res s∗

0.001 1.20 4.412 91 0.226 61 −5.15685 −1.47210 −4.59169 −2.599 66

0.050 1.20 4.280 87 0.233 60 −5.11262 −1.52295 −4.60027 −2.56444

0.100 1.20 4.136 42 0.241 76 −5.07516 −1.57970 −4.62059 −2.53408

0.150 1.20 3.992 09 0.250 50 −5.038 63 −1.63715 −4.64180 −2.50387

0.200 1.20 3.845 10 0.260 07 −5.005 85 −1.69619 −4.66781 −2.47636

0.250 1.20 3.698 58 0.270 37 −4.973 50 −1.75575 −4.69407 −2.44860

0.300 1.20 3.550 35 0.281 66 −4.943 23 −1.81598 −4.72308 −2.42259

0.350 1.20 3.401 39 0.294 00 −4.914 73 −1.87547 −4.75417 −2.39892

0.400 1.20 3.252 77 0.307 43 −4.886 72 −1.93432 −4.78561 −2.37608

0.450 1.20 3.106 07 0.321 95 −4.856 42 −1.99233 −4.81399 −2.35138

0.500 1.20 2.959 41 0.337 91 −4.826 19 −2.05054 −4.84243 −2.32657

0.550 1.20 2.814 53 0.355 30 −4.794 30 −2.10888 −4.86848 −2.29967

0.600 1.20 2.669 03 0.374 67 −4.764 44 −2.16844 −4.89683 −2.27366

0.650 1.20 2.522 16 0.396 49 −4.736 68 −2.22777 −4.92781 −2.25003

0.700 1.20 2.376 90 0.420 72 −4.706 69 −2.28584 −4.95593 −2.22507

0.750 1.20 2.230 23 0.448 39 −4.680 33 −2.34586 −4.98824 −2.20199

0.800 1.20 2.080 91 0.480 56 −4.659 69 −2.40700 −5.02733 −2.18360

0.850 1.20 1.929 25 0.518 34 −4.645 67 −2.47312 −5.07398 −2.16738

0.900 1.20 1.794 96 0.557 12 −4.591 60 −2.52575 −5.07362 −2.12322

0.950 1.20 1.652 45 0.605 16 −4.553 91 −2.58228 −5.09293 −2.09220

0.999 1.20 1.513 74 0.660 62 −4.510 52 −2.64881 −5.10502 −2.04685
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C.2 Tabulated Results of the isothermal GCMC Simulations

Table C.14: Results of the GCMC-Simulations of Mixture III at p∗ = 0.20 and T ∗ = 0.90

x1 T ∗ v∗ ρ∗ u∗
res h∗

res g∗
res s∗

0.001 0.90 1.317 51 0.759 01 −5.35649 −3.49814 −5.99299 −2.772 05

0.050 0.90 1.310 57 0.763 03 −5.24620 −3.38021 −5.88408 −2.78208

0.100 0.90 1.318 44 0.758 47 −5.14531 −3.26513 −5.78163 −2.79611

0.150 0.90 1.318 71 0.758 31 −5.142 93 −3.17822 −5.77919 −2.88997

0.200 0.90 1.318 90 0.758 21 −5.141 58 −3.10923 −5.77780 −2.96508

0.250 0.90 1.319 04 0.758 12 −5.140 57 −3.05441 −5.77676 −3.02484

0.300 0.90 1.319 17 0.758 05 −5.139 75 −3.01163 −5.77592 −3.07143

0.350 0.90 1.319 29 0.757 98 −5.139 06 −2.97958 −5.77520 −3.10625

0.400 0.90 1.319 40 0.757 92 −5.138 47 −2.95742 −5.77459 −3.13019

0.450 0.90 1.319 50 0.757 86 −5.137 97 −2.94465 −5.77407 −3.14380

0.500 0.90 1.319 59 0.757 81 −5.137 55 −2.94096 −5.77363 −3.14741

0.550 0.90 1.319 67 0.757 76 −5.137 20 −2.94627 −5.77326 −3.14110

0.600 0.90 1.319 75 0.757 72 −5.136 92 −2.96067 −5.77297 −3.12477

0.650 0.90 1.319 81 0.757 68 −5.136 72 −2.98445 −5.77276 −3.09812

0.700 0.90 1.311 67 0.762 38 −5.258 88 −3.11215 −5.89655 −3.09378

0.750 0.90 1.314 33 0.760 84 −5.193 37 −3.12923 −5.83050 −3.00141

0.800 0.90 1.316 02 0.759 87 −5.200 31 −3.14403 −5.83710 −2.99231

0.850 0.90 1.315 16 0.760 37 −5.214 07 −3.21127 −5.85103 −2.93308

0.900 0.90 1.305 19 0.766 17 −5.312 29 −3.31449 −5.95125 −2.92973

0.950 0.90 1.313 92 0.761 08 −5.232 86 −3.39287 −5.87007 −2.75244

0.999 0.90 1.318 31 0.758 54 −5.352 40 −3.51080 −5.98874 −2.75326

Table C.15: Results of the GCMC-Simulations of Mixture III at p∗ = 0.20 and T ∗ = 0.95

x1 T ∗ v∗ ρ∗ u∗
res h∗

res g∗
res s∗

0.001 0.95 1.333 65 0.749 82 −5.25700 −3.38785 −5.94027 −2.686 75

0.050 0.95 1.347 72 0.741 99 −5.07050 −3.25874 −5.75096 −2.62339

0.100 0.95 1.363 88 0.733 20 −4.90072 −3.14013 −5.57794 −2.56611

0.150 0.95 1.374 01 0.727 80 −4.813 33 −3.04281 −5.48853 −2.57444

0.200 0.95 1.374 55 0.727 51 −4.809 15 −2.96995 −5.48424 −2.64662

0.250 0.95 1.374 83 0.727 36 −4.807 09 −2.91215 −5.48212 −2.70523
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Continued: Results of the GCMC-Simulations of Mixture III at p∗ = 0.20 and T ∗ = 0.95

x1 T ∗ v∗ ρ∗ u∗
res h∗

res g∗
res s∗

0.300 0.95 1.375 02 0.727 26 −4.80578 −2.86709 −5.48077 −2.751 25

0.350 0.95 1.375 16 0.727 19 −4.80490 −2.83337 −5.47987 −2.78579

0.400 0.95 1.375 25 0.727 14 −4.80434 −2.81011 −5.47929 −2.80967

0.450 0.95 1.375 31 0.727 11 −4.804 04 −2.79675 −5.47897 −2.82339

0.500 0.95 1.375 35 0.727 09 −4.803 95 −2.79299 −5.47888 −2.82725

0.550 0.95 1.375 36 0.727 08 −4.804 07 −2.79874 −5.47900 −2.82132

0.600 0.95 1.375 34 0.727 09 −4.804 40 −2.81409 −5.47933 −2.80552

0.650 0.95 1.375 29 0.727 12 −4.804 96 −2.83934 −5.47990 −2.77954

0.700 0.95 1.375 20 0.727 16 −4.805 79 −2.87504 −5.48075 −2.74285

0.750 0.95 1.375 08 0.727 23 −4.806 98 −2.92208 −5.48196 −2.69461

0.800 0.95 1.374 88 0.727 33 −4.808 74 −2.98184 −5.48377 −2.63361

0.850 0.95 1.374 52 0.727 53 −4.811 99 −3.05660 −5.48709 −2.55841

0.900 0.95 1.367 25 0.731 40 −4.887 38 −3.15368 −5.56393 −2.53710

0.950 0.95 1.355 14 0.737 93 −5.044 19 −3.26821 −5.72316 −2.58415

0.999 0.95 1.340 43 0.746 03 −5.230 18 −3.39536 −5.91209 −2.64919

Table C.16: Results of the GCMC-Simulations of Mixture III at p∗ = 0.20 and T ∗ = 1.00

x1 T ∗ v∗ ρ∗ u∗
res h∗

res g∗
res s∗

0.001 1.00 1.378 57 0.725 39 −5.05614 −3.27243 −5.78043 −2.508 00

0.050 1.00 1.394 51 0.717 10 −4.87382 −3.14612 −5.59492 −2.44881

0.100 1.00 1.415 50 0.706 46 −4.69323 −3.02877 −5.41013 −2.38136

0.150 1.00 1.435 41 0.696 66 −4.538 20 −2.92753 −5.25112 −2.32359

0.200 1.00 1.451 99 0.688 71 −4.414 12 −2.84269 −5.12372 −2.28103

0.250 1.00 1.462 41 0.683 80 −4.339 96 −2.77507 −5.04747 −2.27240

0.300 1.00 1.465 55 0.682 34 −4.318 68 −2.72515 −5.02557 −2.30043

0.350 1.00 1.466 89 0.681 71 −4.309 65 −2.68821 −5.01628 −2.32807

0.400 1.00 1.467 45 0.681 45 −4.305 79 −2.66270 −5.01230 −2.34960

0.450 1.00 1.467 51 0.681 43 −4.305 23 −2.64788 −5.01173 −2.36385

0.500 1.00 1.467 17 0.681 59 −4.307 29 −2.64337 −5.01386 −2.37049

0.550 1.00 1.466 46 0.681 91 −4.311 74 −2.64905 −5.01845 −2.36940
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Continued: Results of the GCMC-Simulations of Mixture III at p∗ = 0.20 and T ∗ = 1.00

x1 T ∗ v∗ ρ∗ u∗
res h∗

res g∗
res s∗

0.600 1.00 1.465 38 0.682 42 −4.31865 −2.66502 −5.02557 −2.360 55

0.650 1.00 1.463 86 0.683 12 −4.32845 −2.69165 −5.03568 −2.34403

0.700 1.00 1.461 74 0.684 12 −4.34230 −2.72960 −5.04995 −2.32035

0.750 1.00 1.458 47 0.685 65 −4.363 97 −2.78013 −5.07228 −2.29215

0.800 1.00 1.450 44 0.689 44 −4.419 79 −2.84690 −5.12970 −2.28280

0.850 1.00 1.434 66 0.697 03 −4.540 59 −2.93221 −5.25366 −2.32145

0.900 1.00 1.416 92 0.705 76 −4.688 09 −3.03192 −5.40470 −2.37278

0.950 1.00 1.397 26 0.715 69 −4.863 99 −3.14721 −5.58454 −2.43732

0.999 1.00 1.377 82 0.725 78 −5.059 74 −3.27533 −5.78417 −2.50885

Table C.17: Results of the GCMC-Simulations of Mixture III at p∗ = 0.20 and T ∗ = 1.05

x1 T ∗ v∗ ρ∗ u∗
res h∗

res g∗
res s∗

0.001 1.05 1.420 06 0.704 19 −4.88207 −3.17293 −5.64806 −2.357 26

0.050 1.05 1.449 38 0.689 95 −4.66345 −3.04128 −5.42357 −2.26885

0.100 1.05 1.471 93 0.679 38 −4.48791 −2.92721 −5.24353 −2.20602

0.150 1.05 1.494 97 0.668 91 −4.332 12 −2.82626 −5.08312 −2.14940

0.200 1.05 1.515 07 0.660 03 −4.203 37 −2.74045 −4.95035 −2.10467

0.250 1.05 1.534 26 0.651 78 −4.094 42 −2.66801 −4.83757 −2.06625

0.300 1.05 1.550 45 0.644 98 −4.007 69 −2.60987 −4.74761 −2.03594

0.350 1.05 1.562 26 0.640 10 −3.945 82 −2.56605 −4.68336 −2.01649

0.400 1.05 1.570 05 0.636 92 −3.905 33 −2.53566 −4.64132 −2.00540

0.450 1.05 1.574 64 0.635 07 −3.881 65 −2.51772 −4.61673 −1.99905

0.500 1.05 1.576 27 0.634 41 −3.873 23 −2.51180 −4.60798 −1.99636

0.550 1.05 1.574 83 0.634 99 −3.880 53 −2.51787 −4.61556 −1.99780

0.600 1.05 1.570 13 0.636 89 −3.904 54 −2.53611 −4.64051 −2.00419

0.650 1.05 1.562 03 0.640 19 −3.946 35 −2.56686 −4.68394 −2.01627

0.700 1.05 1.550 31 0.645 03 −4.008 16 −2.61069 −4.74810 −2.03563

0.750 1.05 1.534 59 0.651 64 −4.093 49 −2.66844 −4.83657 −2.06488

0.800 1.05 1.514 61 0.660 23 −4.204 85 −2.74129 −4.95192 −2.10537

0.850 1.05 1.491 57 0.670 43 −4.341 29 −2.82973 −5.09297 −2.15547
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Continued: Results of the GCMC-Simulations of Mixture III at p∗ = 0.20 and T ∗ = 1.05

x1 T ∗ v∗ ρ∗ u∗
res h∗

res g∗
res s∗

0.900 1.05 1.469 11 0.680 68 −4.49538 −2.93214 −5.25156 −2.208 97

0.950 1.05 1.448 50 0.690 37 −4.66613 −3.04573 −5.42643 −2.26733

0.999 1.05 1.425 32 0.701 60 −4.86368 −3.17223 −5.62862 −2.33942

Table C.18: Results of the GCMC-Simulations of Mixture III at p∗ = 0.20 and T ∗ = 1.10

x1 T ∗ v∗ ρ∗ u∗
res h∗

res g∗
res s∗

0.001 1.10 1.469 84 0.680 35 −4.69027 −3.06487 −5.49630 −2.210 39

0.050 1.10 1.505 80 0.664 10 −4.46498 −2.93242 −5.26382 −2.11946

0.100 1.10 1.537 05 0.650 60 −4.27469 −2.81652 −5.06727 −2.04614

0.150 1.10 1.568 63 0.637 50 −4.106 59 −2.71532 −4.89286 −1.97959

0.200 1.10 1.595 48 0.626 77 −3.968 48 −2.63036 −4.74938 −1.92638

0.250 1.10 1.620 30 0.617 17 −3.851 84 −2.55841 −4.62778 −1.88124

0.300 1.10 1.642 27 0.608 91 −3.756 21 −2.49956 −4.52776 −1.84382

0.350 1.10 1.660 34 0.602 29 −3.681 91 −2.45389 −4.44984 −1.81450

0.400 1.10 1.673 32 0.597 61 −3.629 53 −2.42167 −4.39486 −1.79381

0.450 1.10 1.680 08 0.595 21 −3.601 16 −2.40318 −4.36515 −1.78361

0.500 1.10 1.681 40 0.594 74 −3.594 45 −2.39768 −4.35817 −1.78226

0.550 1.10 1.678 15 0.595 90 −3.606 18 −2.40464 −4.37055 −1.78719

0.600 1.10 1.670 40 0.598 66 −3.636 41 −2.42412 −4.40233 −1.79837

0.650 1.10 1.658 35 0.603 01 −3.686 17 −2.45615 −4.45450 −1.81668

0.700 1.10 1.642 10 0.608 98 −3.756 26 −2.50107 −4.52784 −1.84252

0.750 1.10 1.621 21 0.616 82 −3.848 90 −2.55979 −4.62466 −1.87715

0.800 1.10 1.596 39 0.626 41 −3.965 95 −2.63243 −4.74667 −1.92203

0.850 1.10 1.571 03 0.636 52 −4.099 90 −2.71724 −4.88569 −1.97132

0.900 1.10 1.542 06 0.648 48 −4.262 44 −2.81626 −5.05403 −2.03433

0.950 1.10 1.505 07 0.664 42 −4.466 94 −2.93548 −5.26593 −2.11859

0.999 1.10 1.475 86 0.677 57 −4.671 56 −3.06284 −5.47639 −2.19414
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Table C.19: Results of the GCMC-Simulations of Mixture III at p∗ = 0.20 and T ∗ = 1.15

x1 T ∗ v∗ ρ∗ u∗
res h∗

res g∗
res s∗

0.001 1.15 1.538 38 0.650 03 −4.45771 −2.96457 −5.30003 −2.030 84

0.050 1.15 1.577 34 0.633 98 −4.24108 −2.83502 −5.07561 −1.94834

0.100 1.15 1.625 15 0.615 33 −4.02456 −2.71255 −4.84953 −1.85824

0.150 1.15 1.657 95 0.603 15 −3.864 84 −2.61459 −4.68325 −1.79884

0.200 1.15 1.691 46 0.591 21 −3.723 79 −2.52688 −4.53549 −1.74662

0.250 1.15 1.727 43 0.578 90 −3.594 09 −2.44956 −4.39860 −1.69482

0.300 1.15 1.758 73 0.568 59 −3.488 65 −2.38680 −4.28691 −1.65227

0.350 1.15 1.783 57 0.560 67 −3.408 37 −2.33855 −4.20166 −1.62010

0.400 1.15 1.801 24 0.555 17 −3.352 67 −2.30452 −4.14242 −1.59817

0.450 1.15 1.811 64 0.551 99 −3.320 12 −2.28435 −4.10779 −1.58560

0.500 1.15 1.815 82 0.550 71 −3.307 89 −2.27714 −4.09472 −1.58050

0.550 1.15 1.813 55 0.551 41 −3.316 11 −2.28294 −4.10340 −1.58301

0.600 1.15 1.802 76 0.554 71 −3.349 28 −2.30308 −4.13873 −1.59622

0.650 1.15 1.783 47 0.560 70 −3.408 15 −2.33792 −4.20145 −1.62047

0.700 1.15 1.757 41 0.569 02 −3.491 08 −2.38694 −4.28960 −1.65448

0.750 1.15 1.727 34 0.578 92 −3.594 82 −2.44907 −4.39935 −1.69590

0.800 1.15 1.694 54 0.590 13 −3.717 71 −2.52414 −4.52880 −1.74319

0.850 1.15 1.656 29 0.603 76 −3.869 62 −2.61433 −4.68836 −1.80351

0.900 1.15 1.615 59 0.618 97 −4.046 85 −2.71906 −4.87374 −1.87363

0.950 1.15 1.579 93 0.632 94 −4.234 30 −2.83402 −5.06832 −1.94287

0.999 1.15 1.544 15 0.647 61 −4.443 04 −2.96012 −5.28421 −2.02095

Table C.20: Results of the GCMC-Simulations of Mixture III at p∗ = 0.20 and T ∗ = 1.20

x1 T ∗ v∗ ρ∗ u∗
res h∗

res g∗
res s∗

0.001 1.20 1.608 33 0.621 76 −4.24417 −2.86273 −5.12251 −1.883 15

0.050 1.20 1.655 34 0.604 10 −4.02261 −2.73205 −4.89154 −1.79957

0.100 1.20 1.721 96 0.580 73 −3.78154 −2.60091 −4.63715 −1.69687

0.150 1.20 1.774 96 0.563 39 −3.596 49 −2.49443 −4.44150 −1.62255

0.200 1.20 1.831 95 0.545 87 −3.426 07 −2.39769 −4.25968 −1.55165

0.250 1.20 1.882 07 0.531 33 −3.287 53 −2.31716 −4.11112 −1.49496
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Continued: Results of the GCMC-Simulations of Mixture III at p∗ = 0.20 and T ∗ = 1.20

x1 T ∗ v∗ ρ∗ u∗
res h∗

res g∗
res s∗

0.300 1.20 1.928 20 0.518 62 −3.17135 −2.24965 −3.98571 −1.446 71

0.350 1.20 1.967 08 0.508 37 −3.08022 −2.19638 −3.88680 −1.40868

0.400 1.20 1.996 32 0.500 92 −3.01511 −2.15808 −3.81584 −1.38147

0.450 1.20 2.016 37 0.495 94 −2.973 40 −2.13391 −3.77013 −1.36352

0.500 1.20 2.024 41 0.493 97 −2.957 50 −2.12520 −3.75262 −1.35618

0.550 1.20 2.017 05 0.495 77 −2.971 87 −2.13362 −3.76846 −1.36236

0.600 1.20 1.996 82 0.500 80 −3.014 06 −2.15777 −3.81469 −1.38077

0.650 1.20 1.966 98 0.508 39 −3.080 13 −2.19637 −3.88673 −1.40863

0.700 1.20 1.927 53 0.518 80 −3.172 17 −2.25000 −3.98667 −1.44722

0.750 1.20 1.880 87 0.531 67 −3.289 54 −2.31798 −4.11337 −1.49616

0.800 1.20 1.828 75 0.546 82 −3.432 35 −2.40039 −4.26660 −1.55518

0.850 1.20 1.775 64 0.563 18 −3.595 73 −2.49528 −4.44060 −1.62110

0.900 1.20 1.725 89 0.579 41 −3.773 75 −2.59979 −4.62857 −1.69065

0.950 1.20 1.669 98 0.598 81 −3.988 77 −2.72182 −4.85478 −1.77746

0.999 1.20 1.616 95 0.618 45 −4.222 59 −2.85503 −5.09920 −1.87014
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C.3 Tabulated Results of the Vapor Liquid Equilibrium GCMC Simulations

This supporting information contains tables summarizing vapor liquid equilibrium data for the
investigated model mixtures at several temperatures. The tables are structured by mixture and
temperature. Tables C.21–C.25 thereby show the results of the model mixture consisting of two
fluids with different energy parameters (Mixture I: ϵ22/ϵ11 = 0.7), tables C.26–C.30 present
the results of Mixture II with different diameters (σ22/σ11 = 1.5), and tables C.31–C.34 give
the results of the non-ideal mixture of two identical LJ-fluids (ki j = 0.25).

The tables show the composition of the liquid x liq
2 and the vapor phase xvap

2 , the vapor pressure
p∗

sat, and the liquid and vapor densities (ρ∗liq & ρ∗vap). All results are given in reduced LJ units,
according to table 4.1.

Table C.21: VLE-Data from GCMC-Simulations of Mixture I at T ∗ = 0.90

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.006 21 0.001 00 0.010 10 0.01218 0.73921

0.008 20 0.025 00 0.010 11 0.01219 0.70346

0.010 05 0.050 00 0.010 03 0.01210 0.67365

0.018 88 0.075 00 0.009 70 0.01168 0.64222

0.039 26 0.100 00 0.009 26 0.01114 0.61978

0.046 54 0.125 00 0.009 13 0.01099 0.59276

0.072 18 0.150 00 0.008 77 0.01055 0.57132

0.088 86 0.175 00 0.008 59 0.01035 0.54861

0.096 67 0.200 00 0.008 51 0.01026 0.52580

0.103 03 0.225 00 0.008 43 0.01017 0.50488

0.110 63 0.250 00 0.008 33 0.01005 0.48585

0.119 55 0.275 00 0.008 21 0.00991 0.46781

0.128 52 0.300 00 0.008 09 0.00976 0.45064

0.141 66 0.325 00 0.007 91 0.00954 0.43509

0.162 70 0.350 00 0.007 64 0.00922 0.42138

0.178 42 0.375 00 0.007 46 0.00900 0.40811

0.192 64 0.400 00 0.007 30 0.00881 0.39535

0.211 09 0.425 00 0.007 11 0.00857 0.38336

0.232 49 0.450 00 0.006 89 0.00832 0.37215

0.253 01 0.475 00 0.006 71 0.00809 0.36147
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Continued: VLE-Data from GCMC-Simulations of Mixture I at T ∗ = 0.90

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.274 70 0.500 00 0.006 52 0.00787 0.35137

0.298 19 0.525 00 0.006 33 0.00764 0.34190

0.321 50 0.550 00 0.006 15 0.00743 0.33293

0.345 35 0.575 00 0.005 99 0.00723 0.32440

0.371 91 0.600 00 0.005 81 0.00702 0.31631

0.401 08 0.625 00 0.005 63 0.00681 0.30851

0.430 64 0.650 00 0.005 46 0.00660 0.30096

0.460 02 0.675 00 0.005 31 0.00642 0.29369

0.491 43 0.700 00 0.005 15 0.00623 0.28670

0.525 52 0.725 00 0.004 99 0.00604 0.27991

0.559 79 0.750 00 0.004 84 0.00587 0.27338

0.594 30 0.775 00 0.004 70 0.00570 0.26727

0.630 95 0.800 00 0.004 56 0.00553 0.26157

0.671 30 0.825 00 0.004 41 0.00536 0.25611

0.714 48 0.850 00 0.004 27 0.00519 0.25075

0.758 48 0.875 00 0.004 13 0.00503 0.24550

0.803 43 0.900 00 0.004 01 0.00488 0.24037

0.849 92 0.925 00 0.003 88 0.00474 0.23536

0.898 18 0.950 00 0.003 76 0.00460 0.23036

0.946 33 0.975 00 0.003 65 0.00446 0.22541

0.997 85 0.999 00 0.003 54 0.00433 0.22090

Table C.22: VLE-Data from GCMC-Simulations of Mixture I at T ∗ = 1.00

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.005 17 0.001 00 0.022 40 0.02596 0.71515

0.008 94 0.025 00 0.022 40 0.02600 0.66704

0.010 55 0.050 00 0.022 27 0.02583 0.62729

0.019 63 0.075 00 0.021 42 0.02475 0.60686

0.034 99 0.100 00 0.020 55 0.02369 0.58064

0.044 94 0.125 00 0.020 07 0.02311 0.55639
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Continued: VLE-Data from GCMC-Simulations of Mixture I at T ∗ = 1.00

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.059 78 0.150 00 0.019 46 0.02240 0.53459

0.070 08 0.175 00 0.019 07 0.02194 0.51098

0.083 72 0.200 00 0.018 58 0.02136 0.48966

0.095 57 0.225 00 0.018 17 0.02089 0.47058

0.108 89 0.250 00 0.017 73 0.02038 0.45309

0.127 87 0.275 00 0.017 17 0.01973 0.43766

0.141 80 0.300 00 0.016 78 0.01930 0.42223

0.153 21 0.325 00 0.016 48 0.01894 0.40729

0.166 37 0.350 00 0.016 12 0.01853 0.39344

0.184 44 0.375 00 0.015 65 0.01800 0.38088

0.206 29 0.400 00 0.015 14 0.01741 0.36932

0.226 26 0.425 00 0.014 71 0.01692 0.35829

0.244 88 0.450 00 0.014 33 0.01649 0.34775

0.265 54 0.475 00 0.013 94 0.01604 0.33773

0.290 13 0.500 00 0.013 50 0.01554 0.32830

0.316 25 0.525 00 0.013 07 0.01506 0.31950

0.342 87 0.550 00 0.012 67 0.01461 0.31116

0.369 98 0.575 00 0.012 29 0.01419 0.30312

0.396 56 0.600 00 0.011 95 0.01381 0.29530

0.423 34 0.625 00 0.011 62 0.01344 0.28773

0.451 32 0.650 00 0.011 30 0.01308 0.28048

0.481 09 0.675 00 0.010 97 0.01272 0.27361

0.513 07 0.700 00 0.010 64 0.01236 0.26707

0.546 39 0.725 00 0.010 33 0.01200 0.26088

0.580 39 0.750 00 0.010 02 0.01167 0.25504

0.615 88 0.775 00 0.009 72 0.01134 0.24945

0.653 07 0.800 00 0.009 43 0.01102 0.24396

0.691 35 0.825 00 0.009 15 0.01071 0.23860

0.731 34 0.850 00 0.008 88 0.01040 0.23342

0.773 65 0.875 00 0.008 61 0.01011 0.22841

0.816 72 0.900 00 0.008 35 0.00983 0.22352

0.861 44 0.925 00 0.008 10 0.00956 0.21878
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Continued: VLE-Data from GCMC-Simulations of Mixture I at T ∗ = 1.00

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.907 57 0.950 00 0.007 87 0.00930 0.21404

0.951 48 0.975 00 0.007 65 0.00907 0.20978

0.998 06 0.999 00 0.007 43 0.00883 0.20584

Table C.23: VLE-Data from GCMC-Simulations of Mixture I at T ∗ = 1.05

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.003 18 0.001 00 0.031 88 0.03697 0.66996

0.007 22 0.025 00 0.031 83 0.03698 0.63622

0.014 21 0.050 00 0.031 06 0.03598 0.60691

0.022 61 0.075 00 0.030 20 0.03487 0.58329

0.032 99 0.100 00 0.029 31 0.03374 0.55891

0.041 31 0.125 00 0.028 64 0.03291 0.53174

0.051 60 0.150 00 0.027 83 0.03191 0.50822

0.065 62 0.175 00 0.026 86 0.03073 0.48885

0.084 53 0.200 00 0.025 79 0.02945 0.47186

0.101 25 0.225 00 0.025 00 0.02852 0.45474

0.114 25 0.250 00 0.024 43 0.02786 0.43730

0.126 34 0.275 00 0.023 90 0.02725 0.42045

0.139 76 0.300 00 0.023 34 0.02659 0.40487

0.156 76 0.325 00 0.022 65 0.02580 0.39106

0.177 48 0.350 00 0.021 90 0.02493 0.37863

0.198 66 0.375 00 0.021 21 0.02414 0.36672

0.217 88 0.400 00 0.020 62 0.02348 0.35517

0.236 06 0.425 00 0.020 10 0.02289 0.34430

0.256 38 0.450 00 0.019 55 0.02227 0.33424

0.280 39 0.475 00 0.018 94 0.02158 0.32479

0.305 03 0.500 00 0.018 36 0.02094 0.31562

0.328 64 0.525 00 0.017 85 0.02037 0.30677

0.352 69 0.550 00 0.017 36 0.01982 0.29845

0.378 91 0.575 00 0.016 85 0.01927 0.29066
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Continued: VLE-Data from GCMC-Simulations of Mixture I at T ∗ = 1.05

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.407 74 0.600 00 0.016 33 0.01870 0.28327

0.438 42 0.625 00 0.015 82 0.01815 0.27622

0.469 46 0.650 00 0.015 35 0.01763 0.26951

0.499 76 0.675 00 0.014 92 0.01717 0.26308

0.530 13 0.700 00 0.014 51 0.01673 0.25689

0.561 78 0.725 00 0.014 11 0.01630 0.25095

0.594 63 0.750 00 0.013 71 0.01587 0.24524

0.628 01 0.775 00 0.013 33 0.01546 0.23975

0.662 18 0.800 00 0.012 96 0.01507 0.23450

0.698 08 0.825 00 0.012 59 0.01467 0.22951

0.736 00 0.850 00 0.012 22 0.01427 0.22475

0.775 51 0.875 00 0.011 85 0.01387 0.22016

0.817 97 0.900 00 0.011 49 0.01347 0.21573

0.862 22 0.925 00 0.011 13 0.01309 0.21128

0.906 58 0.950 00 0.010 79 0.01273 0.20670

0.952 59 0.975 00 0.010 47 0.01238 0.20261

0.998 09 0.999 00 0.010 16 0.01205 0.19948

Table C.24: VLE-Data from GCMC-Simulations of Mixture I at T ∗ = 1.10

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.001 64 0.001 00 0.043 86 0.05148 0.65230

0.007 33 0.025 00 0.043 40 0.05096 0.61686

0.014 36 0.050 00 0.042 36 0.04954 0.58395

0.024 29 0.075 00 0.040 95 0.04762 0.55537

0.034 56 0.100 00 0.039 74 0.04604 0.53222

0.044 61 0.125 00 0.038 65 0.04462 0.50866

0.056 27 0.150 00 0.037 47 0.04311 0.48650

0.072 05 0.175 00 0.036 08 0.04138 0.46908

0.086 75 0.200 00 0.034 97 0.04002 0.45041

0.100 15 0.225 00 0.034 02 0.03889 0.43193
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Continued: VLE-Data from GCMC-Simulations of Mixture I at T ∗ = 1.10

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.114 05 0.250 00 0.033 10 0.03777 0.41561

0.130 58 0.275 00 0.032 07 0.03655 0.40105

0.148 94 0.300 00 0.031 03 0.03533 0.38749

0.166 70 0.325 00 0.030 12 0.03427 0.37458

0.184 22 0.350 00 0.029 27 0.03329 0.36230

0.203 35 0.375 00 0.028 40 0.03229 0.35082

0.224 50 0.400 00 0.027 52 0.03128 0.34003

0.246 80 0.425 00 0.026 66 0.03031 0.32966

0.270 20 0.450 00 0.025 83 0.02938 0.31981

0.293 99 0.475 00 0.025 05 0.02852 0.31053

0.318 08 0.500 00 0.024 32 0.02771 0.30180

0.342 97 0.525 00 0.023 61 0.02694 0.29351

0.368 61 0.550 00 0.022 93 0.02619 0.28559

0.395 27 0.575 00 0.022 27 0.02547 0.27799

0.423 15 0.600 00 0.021 62 0.02477 0.27071

0.451 98 0.625 00 0.020 99 0.02410 0.26377

0.481 45 0.650 00 0.020 39 0.02345 0.25723

0.511 58 0.675 00 0.019 81 0.02284 0.25104

0.542 61 0.700 00 0.019 25 0.02224 0.24512

0.574 92 0.725 00 0.018 70 0.02166 0.23938

0.608 85 0.750 00 0.018 16 0.02109 0.23381

0.643 94 0.775 00 0.017 64 0.02054 0.22844

0.679 38 0.800 00 0.017 14 0.02002 0.22331

0.715 14 0.825 00 0.016 66 0.01953 0.21842

0.751 67 0.850 00 0.016 20 0.01905 0.21374

0.789 75 0.875 00 0.015 75 0.01857 0.20930

0.830 16 0.900 00 0.015 29 0.01810 0.20508

0.871 51 0.925 00 0.014 86 0.01764 0.20104

0.912 63 0.950 00 0.014 45 0.01722 0.19716

0.954 74 0.975 00 0.014 04 0.01680 0.19348

0.998 16 0.999 00 0.013 63 0.01636 0.19003
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Table C.25: VLE-Data from GCMC-Simulations of Mixture I at T ∗ = 1.15

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.001 20 0.001 00 0.057 49 0.06907 0.63173

0.009 02 0.025 00 0.056 46 0.06771 0.58550

0.016 98 0.050 00 0.055 15 0.06586 0.55447

0.025 92 0.075 00 0.053 60 0.06360 0.52694

0.037 67 0.100 00 0.051 76 0.06099 0.50554

0.050 62 0.125 00 0.050 05 0.05865 0.48433

0.064 20 0.150 00 0.048 45 0.05653 0.46355

0.077 90 0.175 00 0.046 98 0.05463 0.44464

0.092 65 0.200 00 0.045 54 0.05279 0.42737

0.107 07 0.225 00 0.044 22 0.05115 0.41062

0.122 56 0.250 00 0.042 90 0.04951 0.39501

0.139 72 0.275 00 0.041 54 0.04785 0.38078

0.159 17 0.300 00 0.040 14 0.04618 0.36801

0.179 53 0.325 00 0.038 82 0.04464 0.35606

0.200 07 0.350 00 0.037 61 0.04324 0.34463

0.221 01 0.375 00 0.036 47 0.04195 0.33354

0.242 08 0.400 00 0.035 41 0.04075 0.32288

0.263 76 0.425 00 0.034 38 0.03960 0.31295

0.286 41 0.450 00 0.033 38 0.03849 0.30370

0.309 80 0.475 00 0.032 41 0.03742 0.29488

0.334 54 0.500 00 0.031 45 0.03637 0.28641

0.360 52 0.525 00 0.030 52 0.03536 0.27833

0.386 79 0.550 00 0.029 63 0.03441 0.27066

0.413 74 0.575 00 0.028 78 0.03350 0.26346

0.441 80 0.600 00 0.027 95 0.03261 0.25665

0.470 45 0.625 00 0.027 16 0.03177 0.25010

0.499 66 0.650 00 0.026 40 0.03097 0.24379

0.529 98 0.675 00 0.025 65 0.03018 0.23775

0.561 49 0.700 00 0.024 92 0.02942 0.23196

0.593 90 0.725 00 0.024 22 0.02869 0.22641

0.627 07 0.750 00 0.023 54 0.02800 0.22107

0.661 13 0.775 00 0.022 89 0.02733 0.21593
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Continued: VLE-Data from GCMC-Simulations of Mixture I at T ∗ = 1.15

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.696 09 0.800 00 0.022 25 0.02669 0.21096

0.731 57 0.825 00 0.021 65 0.02608 0.20612

0.767 50 0.850 00 0.021 06 0.02550 0.20144

0.804 41 0.875 00 0.020 50 0.02494 0.19693

0.842 27 0.900 00 0.019 95 0.02439 0.19258

0.881 65 0.925 00 0.019 41 0.02387 0.18841

0.920 64 0.950 00 0.018 92 0.02339 0.18438

0.959 47 0.975 00 0.018 44 0.02294 0.18067

0.998 33 0.999 00 0.017 97 0.02248 0.17742

Table C.26: VLE-Data from GCMC-Simulations of Mixture II at T ∗ = 0.90

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.006 21 0.001 00 0.010 10 0.01218 0.73921

0.008 20 0.025 00 0.010 11 0.01219 0.70346

0.010 05 0.050 00 0.010 03 0.01210 0.67365

0.018 88 0.075 00 0.009 70 0.01168 0.64222

0.039 26 0.100 00 0.009 26 0.01114 0.61978

0.046 54 0.125 00 0.009 13 0.01099 0.59276

0.072 18 0.150 00 0.008 77 0.01055 0.57132

0.088 86 0.175 00 0.008 59 0.01035 0.54861

0.096 67 0.200 00 0.008 51 0.01026 0.52580

0.103 03 0.225 00 0.008 43 0.01017 0.50488

0.110 63 0.250 00 0.008 33 0.01005 0.48585

0.119 55 0.275 00 0.008 21 0.00991 0.46781

0.128 52 0.300 00 0.008 09 0.00976 0.45064

0.141 66 0.325 00 0.007 91 0.00954 0.43509

0.162 70 0.350 00 0.007 64 0.00922 0.42138

0.178 42 0.375 00 0.007 46 0.00900 0.40811

0.192 64 0.400 00 0.007 30 0.00881 0.39535

0.211 09 0.425 00 0.007 11 0.00857 0.38336
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Continued: VLE-Data from GCMC-Simulations of Mixture II at T ∗ = 0.90

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.232 49 0.450 00 0.006 89 0.00832 0.37215

0.253 01 0.475 00 0.006 71 0.00809 0.36147

0.274 70 0.500 00 0.006 52 0.00787 0.35137

0.298 19 0.525 00 0.006 33 0.00764 0.34190

0.321 50 0.550 00 0.006 15 0.00743 0.33293

0.345 35 0.575 00 0.005 99 0.00723 0.32440

0.371 91 0.600 00 0.005 81 0.00702 0.31631

0.401 08 0.625 00 0.005 63 0.00681 0.30851

0.430 64 0.650 00 0.005 46 0.00660 0.30096

0.460 02 0.675 00 0.005 31 0.00642 0.29369

0.491 43 0.700 00 0.005 15 0.00623 0.28670

0.525 52 0.725 00 0.004 99 0.00604 0.27991

0.559 79 0.750 00 0.004 84 0.00587 0.27338

0.594 30 0.775 00 0.004 70 0.00570 0.26727

0.630 95 0.800 00 0.004 56 0.00553 0.26157

0.671 30 0.825 00 0.004 41 0.00536 0.25611

0.714 48 0.850 00 0.004 27 0.00519 0.25075

0.758 48 0.875 00 0.004 13 0.00503 0.24550

0.803 43 0.900 00 0.004 01 0.00488 0.24037

0.849 92 0.925 00 0.003 88 0.00474 0.23536

0.898 18 0.950 00 0.003 76 0.00460 0.23036

0.946 33 0.975 00 0.003 65 0.00446 0.22541

0.997 85 0.999 00 0.003 54 0.00433 0.22090

Table C.27: VLE-Data from GCMC-Simulations of Mixture II at T ∗ = 1.00

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.005 17 0.001 00 0.022 40 0.02596 0.71515

0.008 94 0.025 00 0.022 40 0.02600 0.66704

0.010 55 0.050 00 0.022 27 0.02583 0.62729

0.019 63 0.075 00 0.021 42 0.02475 0.60686
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Continued: VLE-Data from GCMC-Simulations of Mixture II at T ∗ = 1.00

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.034 99 0.100 00 0.020 55 0.02369 0.58064

0.044 94 0.125 00 0.020 07 0.02311 0.55639

0.059 78 0.150 00 0.019 46 0.02240 0.53459

0.070 08 0.175 00 0.019 07 0.02194 0.51098

0.083 72 0.200 00 0.018 58 0.02136 0.48966

0.095 57 0.225 00 0.018 17 0.02089 0.47058

0.108 89 0.250 00 0.017 73 0.02038 0.45309

0.127 87 0.275 00 0.017 17 0.01973 0.43766

0.141 80 0.300 00 0.016 78 0.01930 0.42223

0.153 21 0.325 00 0.016 48 0.01894 0.40729

0.166 37 0.350 00 0.016 12 0.01853 0.39344

0.184 44 0.375 00 0.015 65 0.01800 0.38088

0.206 29 0.400 00 0.015 14 0.01741 0.36932

0.226 26 0.425 00 0.014 71 0.01692 0.35829

0.244 88 0.450 00 0.014 33 0.01649 0.34775

0.265 54 0.475 00 0.013 94 0.01604 0.33773

0.290 13 0.500 00 0.013 50 0.01554 0.32830

0.316 25 0.525 00 0.013 07 0.01506 0.31950

0.342 87 0.550 00 0.012 67 0.01461 0.31116

0.369 98 0.575 00 0.012 29 0.01419 0.30312

0.396 56 0.600 00 0.011 95 0.01381 0.29530

0.423 34 0.625 00 0.011 62 0.01344 0.28773

0.451 32 0.650 00 0.011 30 0.01308 0.28048

0.481 09 0.675 00 0.010 97 0.01272 0.27361

0.513 07 0.700 00 0.010 64 0.01236 0.26707

0.546 39 0.725 00 0.010 33 0.01200 0.26088

0.580 39 0.750 00 0.010 02 0.01167 0.25504

0.615 88 0.775 00 0.009 72 0.01134 0.24945

0.653 07 0.800 00 0.009 43 0.01102 0.24396

0.691 35 0.825 00 0.009 15 0.01071 0.23860

0.731 34 0.850 00 0.008 88 0.01040 0.23342

0.773 65 0.875 00 0.008 61 0.01011 0.22841
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Continued: VLE-Data from GCMC-Simulations of Mixture II at T ∗ = 1.00

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.816 72 0.900 00 0.008 35 0.00983 0.22352

0.861 44 0.925 00 0.008 10 0.00956 0.21878

0.907 57 0.950 00 0.007 87 0.00930 0.21404

0.951 48 0.975 00 0.007 65 0.00907 0.20978

0.998 06 0.999 00 0.007 43 0.00883 0.20584

Table C.28: VLE-Data from GCMC-Simulations of Mixture II at T ∗ = 1.05

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.003 18 0.001 00 0.031 88 0.03697 0.66996

0.007 22 0.025 00 0.031 83 0.03698 0.63622

0.014 21 0.050 00 0.031 06 0.03598 0.60691

0.022 61 0.075 00 0.030 20 0.03487 0.58329

0.032 99 0.100 00 0.029 31 0.03374 0.55891

0.041 31 0.125 00 0.028 64 0.03291 0.53174

0.051 60 0.150 00 0.027 83 0.03191 0.50822

0.065 62 0.175 00 0.026 86 0.03073 0.48885

0.084 53 0.200 00 0.025 79 0.02945 0.47186

0.101 25 0.225 00 0.025 00 0.02852 0.45474

0.114 25 0.250 00 0.024 43 0.02786 0.43730

0.126 34 0.275 00 0.023 90 0.02725 0.42045

0.139 76 0.300 00 0.023 34 0.02659 0.40487

0.156 76 0.325 00 0.022 65 0.02580 0.39106

0.177 48 0.350 00 0.021 90 0.02493 0.37863

0.198 66 0.375 00 0.021 21 0.02414 0.36672

0.217 88 0.400 00 0.020 62 0.02348 0.35517

0.236 06 0.425 00 0.020 10 0.02289 0.34430

0.256 38 0.450 00 0.019 55 0.02227 0.33424

0.280 39 0.475 00 0.018 94 0.02158 0.32479

0.305 03 0.500 00 0.018 36 0.02094 0.31562

0.328 64 0.525 00 0.017 85 0.02037 0.30677
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Continued: VLE-Data from GCMC-Simulations of Mixture II at T ∗ = 1.05

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.352 69 0.550 00 0.017 36 0.01982 0.29845

0.378 91 0.575 00 0.016 85 0.01927 0.29066

0.407 74 0.600 00 0.016 33 0.01870 0.28327

0.438 42 0.625 00 0.015 82 0.01815 0.27622

0.469 46 0.650 00 0.015 35 0.01763 0.26951

0.499 76 0.675 00 0.014 92 0.01717 0.26308

0.530 13 0.700 00 0.014 51 0.01673 0.25689

0.561 78 0.725 00 0.014 11 0.01630 0.25095

0.594 63 0.750 00 0.013 71 0.01587 0.24524

0.628 01 0.775 00 0.013 33 0.01546 0.23975

0.662 18 0.800 00 0.012 96 0.01507 0.23450

0.698 08 0.825 00 0.012 59 0.01467 0.22951

0.736 00 0.850 00 0.012 22 0.01427 0.22475

0.775 51 0.875 00 0.011 85 0.01387 0.22016

0.817 97 0.900 00 0.011 49 0.01347 0.21573

0.862 22 0.925 00 0.011 13 0.01309 0.21128

0.906 58 0.950 00 0.010 79 0.01273 0.20670

0.952 59 0.975 00 0.010 47 0.01238 0.20261

0.998 09 0.999 00 0.010 16 0.01205 0.19948

Table C.29: VLE-Data from GCMC-Simulations of Mixture II at T ∗ = 1.10

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.001 64 0.001 00 0.043 86 0.05148 0.65230

0.007 33 0.025 00 0.043 40 0.05096 0.61686

0.014 36 0.050 00 0.042 36 0.04954 0.58395

0.024 29 0.075 00 0.040 95 0.04762 0.55537

0.034 56 0.100 00 0.039 74 0.04604 0.53222

0.044 61 0.125 00 0.038 65 0.04462 0.50866

0.056 27 0.150 00 0.037 47 0.04311 0.48650

0.072 05 0.175 00 0.036 08 0.04138 0.46908
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C.3 Tabulated Results of the Vapor Liquid Equilibrium GCMC Simulations

Continued: VLE-Data from GCMC-Simulations of Mixture II at T ∗ = 1.10

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.086 75 0.200 00 0.034 97 0.04002 0.45041

0.100 15 0.225 00 0.034 02 0.03889 0.43193

0.114 05 0.250 00 0.033 10 0.03777 0.41561

0.130 58 0.275 00 0.032 07 0.03655 0.40105

0.148 94 0.300 00 0.031 03 0.03533 0.38749

0.166 70 0.325 00 0.030 12 0.03427 0.37458

0.184 22 0.350 00 0.029 27 0.03329 0.36230

0.203 35 0.375 00 0.028 40 0.03229 0.35082

0.224 50 0.400 00 0.027 52 0.03128 0.34003

0.246 80 0.425 00 0.026 66 0.03031 0.32966

0.270 20 0.450 00 0.025 83 0.02938 0.31981

0.293 99 0.475 00 0.025 05 0.02852 0.31053

0.318 08 0.500 00 0.024 32 0.02771 0.30180

0.342 97 0.525 00 0.023 61 0.02694 0.29351

0.368 61 0.550 00 0.022 93 0.02619 0.28559

0.395 27 0.575 00 0.022 27 0.02547 0.27799

0.423 15 0.600 00 0.021 62 0.02477 0.27071

0.451 98 0.625 00 0.020 99 0.02410 0.26377

0.481 45 0.650 00 0.020 39 0.02345 0.25723

0.511 58 0.675 00 0.019 81 0.02284 0.25104

0.542 61 0.700 00 0.019 25 0.02224 0.24512

0.574 92 0.725 00 0.018 70 0.02166 0.23938

0.608 85 0.750 00 0.018 16 0.02109 0.23381

0.643 94 0.775 00 0.017 64 0.02054 0.22844

0.679 38 0.800 00 0.017 14 0.02002 0.22331

0.715 14 0.825 00 0.016 66 0.01953 0.21842

0.751 67 0.850 00 0.016 20 0.01905 0.21374

0.789 75 0.875 00 0.015 75 0.01857 0.20930

0.830 16 0.900 00 0.015 29 0.01810 0.20508

0.871 51 0.925 00 0.014 86 0.01764 0.20104

0.912 63 0.950 00 0.014 45 0.01722 0.19716

0.954 74 0.975 00 0.014 04 0.01680 0.19348

Continued on next page

189



C SI: Assessing Entropy Scaling for Mixture Viscosities

Continued: VLE-Data from GCMC-Simulations of Mixture II at T ∗ = 1.10

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.998 16 0.999 00 0.013 63 0.01636 0.19003

Table C.30: VLE-Data from GCMC-Simulations of Mixture II at T ∗ = 1.15

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.001 20 0.001 00 0.057 49 0.06907 0.63173

0.009 02 0.025 00 0.056 46 0.06771 0.58550

0.016 98 0.050 00 0.055 15 0.06586 0.55447

0.025 92 0.075 00 0.053 60 0.06360 0.52694

0.037 67 0.100 00 0.051 76 0.06099 0.50554

0.050 62 0.125 00 0.050 05 0.05865 0.48433

0.064 20 0.150 00 0.048 45 0.05653 0.46355

0.077 90 0.175 00 0.046 98 0.05463 0.44464

0.092 65 0.200 00 0.045 54 0.05279 0.42737

0.107 07 0.225 00 0.044 22 0.05115 0.41062

0.122 56 0.250 00 0.042 90 0.04951 0.39501

0.139 72 0.275 00 0.041 54 0.04785 0.38078

0.159 17 0.300 00 0.040 14 0.04618 0.36801

0.179 53 0.325 00 0.038 82 0.04464 0.35606

0.200 07 0.350 00 0.037 61 0.04324 0.34463

0.221 01 0.375 00 0.036 47 0.04195 0.33354

0.242 08 0.400 00 0.035 41 0.04075 0.32288

0.263 76 0.425 00 0.034 38 0.03960 0.31295

0.286 41 0.450 00 0.033 38 0.03849 0.30370

0.309 80 0.475 00 0.032 41 0.03742 0.29488

0.334 54 0.500 00 0.031 45 0.03637 0.28641

0.360 52 0.525 00 0.030 52 0.03536 0.27833

0.386 79 0.550 00 0.029 63 0.03441 0.27066

0.413 74 0.575 00 0.028 78 0.03350 0.26346

0.441 80 0.600 00 0.027 95 0.03261 0.25665

0.470 45 0.625 00 0.027 16 0.03177 0.25010
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C.3 Tabulated Results of the Vapor Liquid Equilibrium GCMC Simulations

Continued: VLE-Data from GCMC-Simulations of Mixture II at T ∗ = 1.15

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.499 66 0.650 00 0.026 40 0.03097 0.24379

0.529 98 0.675 00 0.025 65 0.03018 0.23775

0.561 49 0.700 00 0.024 92 0.02942 0.23196

0.593 90 0.725 00 0.024 22 0.02869 0.22641

0.627 07 0.750 00 0.023 54 0.02800 0.22107

0.661 13 0.775 00 0.022 89 0.02733 0.21593

0.696 09 0.800 00 0.022 25 0.02669 0.21096

0.731 57 0.825 00 0.021 65 0.02608 0.20612

0.767 50 0.850 00 0.021 06 0.02550 0.20144

0.804 41 0.875 00 0.020 50 0.02494 0.19693

0.842 27 0.900 00 0.019 95 0.02439 0.19258

0.881 65 0.925 00 0.019 41 0.02387 0.18841

0.920 64 0.950 00 0.018 92 0.02339 0.18438

0.959 47 0.975 00 0.018 44 0.02294 0.18067

0.998 33 0.999 00 0.017 97 0.02248 0.17742

Table C.31: VLE-Data from GCMC-Simulations of Mixture III at T ∗ = 1.00

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.004 45 0.001 00 0.024 76 0.02925 0.70050

0.101 71 0.025 00 0.027 29 0.03253 0.69654

0.188 60 0.050 00 0.030 09 0.03626 0.69297

0.256 02 0.075 00 0.032 65 0.03975 0.68751

0.311 53 0.100 00 0.035 08 0.04315 0.68194

0.364 91 0.125 00 0.037 78 0.04702 0.67864

0.410 41 0.150 00 0.040 43 0.05096 0.67571

0.449 89 0.175 00 0.043 06 0.05500 0.67122

0.482 25 0.200 00 0.045 48 0.05883 0.66475

0.511 77 0.225 00 0.047 91 0.06280 0.65832

0.539 57 0.250 00 0.050 43 0.06704 0.65273

0.562 08 0.275 00 0.052 65 0.07087 0.64705
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Continued: VLE-Data from GCMC-Simulations of Mixture III at T ∗ = 1.00

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.583 98 0.300 00 0.054 95 0.07498 0.64136

0.606 23 0.325 00 0.057 49 0.07964 0.63567

0.626 57 0.350 00 0.060 02 0.08442 0.62935

0.643 63 0.375 00 0.062 30 0.08886 0.62231

0.658 77 0.400 00 0.064 44 0.09313 0.61465

0.672 90 0.425 00 0.066 53 0.09741 0.60651

0.686 50 0.450 00 0.068 62 0.10186 0.59869

0.700 61 0.475 00 0.070 88 0.10691 0.59163

0.715 31 0.500 00 0.073 37 0.11286 0.58423

0.729 04 0.525 00 0.075 87 0.11932 0.57543

0.741 15 0.550 00 0.078 22 0.12594 0.56610

0.752 47 0.575 00 0.080 55 0.13315 0.55677

0.763 50 0.600 00 0.083 00 0.14160 0.54667

0.773 51 0.625 00 0.085 41 0.15114 0.53450

0.782 53 0.650 00 0.087 73 0.16134 0.51962

0.790 82 0.675 00 0.090 05 0.17325 0.50294

0.681 54 0.681 54 0.013 19 0.01388 0.01388

0.799 27 0.700 00 0.092 39 0.18562 0.48450

0.614 76 0.725 00 0.012 27 0.01288 0.01880

Table C.32: VLE-Data from GCMC-Simulations of Mixture III at T ∗ = 1.05

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.004 08 0.001 08 0.033 89 0.03986 0.67421

0.010 74 0.002 84 0.034 11 0.04015 0.67418

0.017 33 0.004 59 0.034 33 0.04045 0.67418

0.023 83 0.006 34 0.034 56 0.04074 0.67420

0.030 27 0.008 09 0.034 78 0.04104 0.67421

0.036 62 0.009 83 0.035 00 0.04133 0.67421

0.042 91 0.011 57 0.035 22 0.04163 0.67418

0.049 13 0.013 34 0.035 45 0.04193 0.67411
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C.3 Tabulated Results of the Vapor Liquid Equilibrium GCMC Simulations

Continued: VLE-Data from GCMC-Simulations of Mixture III at T ∗ = 1.05

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.055 27 0.015 14 0.035 67 0.04223 0.67400

0.061 35 0.016 96 0.035 89 0.04253 0.67385

0.067 36 0.018 81 0.036 12 0.04283 0.67367

0.073 31 0.020 66 0.036 34 0.04313 0.67345

0.079 19 0.022 50 0.036 56 0.04343 0.67320

0.085 01 0.024 28 0.036 79 0.04373 0.67292

0.090 76 0.026 00 0.037 01 0.04403 0.67264

0.096 46 0.027 63 0.037 24 0.04434 0.67234

0.102 08 0.029 16 0.037 46 0.04465 0.67203

0.107 65 0.030 59 0.037 69 0.04495 0.67171

0.113 15 0.031 94 0.037 92 0.04527 0.67138

0.118 59 0.033 24 0.038 14 0.04558 0.67103

0.123 97 0.034 51 0.038 37 0.04590 0.67066

0.129 29 0.035 79 0.038 61 0.04622 0.67026

0.134 55 0.037 12 0.038 84 0.04654 0.66983

0.139 75 0.038 53 0.039 07 0.04686 0.66935

0.144 89 0.040 07 0.039 31 0.04719 0.66883

0.149 98 0.041 75 0.039 54 0.04751 0.66825

0.155 01 0.043 58 0.039 78 0.04784 0.66763

0.160 00 0.045 57 0.040 01 0.04817 0.66696

0.164 93 0.047 69 0.040 25 0.04850 0.66627

0.169 81 0.049 91 0.040 48 0.04883 0.66558

0.174 65 0.052 19 0.040 71 0.04915 0.66489

0.179 45 0.054 48 0.040 95 0.04948 0.66422

0.184 20 0.056 74 0.041 18 0.04981 0.66359

0.188 90 0.058 96 0.041 41 0.05013 0.66301

0.193 56 0.061 10 0.041 64 0.05046 0.66248

0.198 18 0.063 18 0.041 87 0.05079 0.66199

0.202 75 0.065 18 0.042 10 0.05111 0.66154

0.207 28 0.067 13 0.042 33 0.05144 0.66114

0.211 77 0.069 03 0.042 56 0.05177 0.66076

0.216 22 0.070 89 0.042 80 0.05210 0.66041
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Continued: VLE-Data from GCMC-Simulations of Mixture III at T ∗ = 1.05

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.220 62 0.072 72 0.043 03 0.05243 0.66008

0.224 98 0.074 54 0.043 26 0.05277 0.65976

0.229 31 0.076 35 0.043 49 0.05310 0.65944

0.233 59 0.078 17 0.043 72 0.05344 0.65913

0.237 83 0.079 99 0.043 96 0.05377 0.65881

0.242 03 0.081 82 0.044 19 0.05411 0.65849

0.246 20 0.083 66 0.044 42 0.05445 0.65815

0.250 33 0.085 52 0.044 66 0.05479 0.65781

0.254 42 0.087 40 0.044 89 0.05513 0.65745

0.258 47 0.089 29 0.045 12 0.05548 0.65707

0.262 49 0.091 19 0.045 36 0.05582 0.65668

0.266 48 0.093 11 0.045 59 0.05617 0.65627

0.270 43 0.095 03 0.045 83 0.05651 0.65585

0.274 34 0.096 95 0.046 06 0.05686 0.65540

0.278 22 0.098 88 0.046 30 0.05721 0.65494

0.282 07 0.100 82 0.046 53 0.05756 0.65447

0.285 89 0.102 75 0.046 77 0.05792 0.65398

0.289 67 0.104 69 0.047 01 0.05827 0.65347

0.293 42 0.106 63 0.047 24 0.05863 0.65296

0.297 14 0.108 57 0.047 48 0.05898 0.65242

0.300 83 0.110 52 0.047 72 0.05934 0.65188

0.304 49 0.112 48 0.047 95 0.05970 0.65133

0.308 12 0.114 44 0.048 19 0.06006 0.65077

0.311 72 0.116 42 0.048 43 0.06042 0.65021

0.315 28 0.118 40 0.048 67 0.06079 0.64964

0.318 82 0.120 39 0.048 90 0.06115 0.64908

0.322 33 0.122 39 0.049 14 0.06152 0.64852

0.325 81 0.124 39 0.049 38 0.06189 0.64796

0.329 26 0.126 39 0.049 62 0.06225 0.64742

0.332 68 0.128 40 0.049 86 0.06262 0.64688

0.336 07 0.130 39 0.050 10 0.06300 0.64636

0.339 44 0.132 38 0.050 34 0.06337 0.64586
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C.3 Tabulated Results of the Vapor Liquid Equilibrium GCMC Simulations

Continued: VLE-Data from GCMC-Simulations of Mixture III at T ∗ = 1.05

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.342 78 0.134 35 0.050 58 0.06374 0.64537

0.346 09 0.136 31 0.050 82 0.06412 0.64489

0.349 37 0.138 24 0.051 06 0.06450 0.64444

0.352 63 0.140 16 0.051 30 0.06488 0.64399

0.355 86 0.142 06 0.051 54 0.06526 0.64356

0.359 06 0.143 94 0.051 78 0.06564 0.64314

0.362 23 0.145 81 0.052 02 0.06602 0.64273

0.365 38 0.147 67 0.052 26 0.06640 0.64233

0.368 51 0.149 52 0.052 51 0.06679 0.64193

0.371 60 0.151 37 0.052 75 0.06718 0.64153

0.374 67 0.153 23 0.052 99 0.06757 0.64113

0.377 72 0.155 10 0.053 24 0.06796 0.64073

0.380 74 0.156 99 0.053 48 0.06835 0.64032

0.383 73 0.158 90 0.053 73 0.06874 0.63991

0.386 70 0.160 85 0.053 97 0.06914 0.63949

0.389 65 0.162 82 0.054 22 0.06953 0.63906

0.392 58 0.164 83 0.054 46 0.06993 0.63862

0.395 48 0.166 87 0.054 71 0.07033 0.63818

0.398 36 0.168 94 0.054 95 0.07073 0.63772

0.401 21 0.171 03 0.055 20 0.07114 0.63725

0.404 05 0.173 15 0.055 45 0.07154 0.63678

0.406 86 0.175 29 0.055 69 0.07194 0.63630

0.409 66 0.177 43 0.055 94 0.07235 0.63582

0.412 43 0.179 58 0.056 19 0.07276 0.63532

0.415 18 0.181 72 0.056 43 0.07317 0.63483

0.417 92 0.183 85 0.056 68 0.07358 0.63433

0.420 63 0.185 96 0.056 93 0.07399 0.63383

0.423 32 0.188 06 0.057 18 0.07440 0.63332

0.426 00 0.190 15 0.057 42 0.07482 0.63281

0.428 65 0.192 22 0.057 67 0.07524 0.63230

0.431 29 0.194 27 0.057 92 0.07565 0.63178

0.433 91 0.196 32 0.058 17 0.07607 0.63125
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Continued: VLE-Data from GCMC-Simulations of Mixture III at T ∗ = 1.05

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.436 51 0.198 36 0.058 42 0.07650 0.63072

0.439 09 0.200 40 0.058 67 0.07692 0.63019

0.441 65 0.202 46 0.058 92 0.07735 0.62964

0.444 19 0.204 53 0.059 17 0.07778 0.62908

0.446 72 0.206 62 0.059 42 0.07821 0.62851

0.449 23 0.208 73 0.059 67 0.07864 0.62793

0.451 72 0.210 88 0.059 92 0.07907 0.62733

0.454 19 0.213 06 0.060 17 0.07951 0.62672

0.456 65 0.215 27 0.060 42 0.07995 0.62611

0.459 09 0.217 51 0.060 67 0.08038 0.62548

0.461 52 0.219 79 0.060 93 0.08083 0.62484

0.463 93 0.222 09 0.061 18 0.08127 0.62420

0.466 32 0.224 41 0.061 43 0.08172 0.62355

0.468 71 0.226 76 0.061 68 0.08216 0.62289

0.471 07 0.229 11 0.061 94 0.08261 0.62224

0.473 42 0.231 46 0.062 19 0.08306 0.62159

0.475 76 0.233 82 0.062 44 0.08352 0.62095

0.478 08 0.236 16 0.062 69 0.08397 0.62031

0.480 39 0.238 50 0.062 95 0.08443 0.61967

0.482 68 0.240 82 0.063 20 0.08489 0.61905

0.484 96 0.243 12 0.063 45 0.08535 0.61844

0.487 23 0.245 40 0.063 71 0.08581 0.61783

0.489 48 0.247 65 0.063 96 0.08627 0.61724

0.491 72 0.249 89 0.064 22 0.08674 0.61666

0.493 95 0.252 10 0.064 47 0.08721 0.61608

0.496 16 0.254 30 0.064 72 0.08768 0.61552

0.498 35 0.256 48 0.064 98 0.08816 0.61496

0.500 54 0.258 64 0.065 24 0.08863 0.61441

0.502 70 0.260 79 0.065 49 0.08911 0.61386

0.504 86 0.262 92 0.065 75 0.08960 0.61332

0.507 00 0.265 05 0.066 00 0.09008 0.61277

0.509 13 0.267 18 0.066 26 0.09057 0.61223
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C.3 Tabulated Results of the Vapor Liquid Equilibrium GCMC Simulations

Continued: VLE-Data from GCMC-Simulations of Mixture III at T ∗ = 1.05

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.511 24 0.269 29 0.066 52 0.09106 0.61168

0.513 35 0.271 41 0.066 77 0.09155 0.61114

0.515 43 0.273 53 0.067 03 0.09205 0.61058

0.517 51 0.275 65 0.067 29 0.09255 0.61003

0.519 57 0.277 78 0.067 55 0.09305 0.60946

0.521 62 0.279 91 0.067 81 0.09355 0.60889

0.523 66 0.282 06 0.068 07 0.09406 0.60830

0.525 68 0.284 21 0.068 33 0.09457 0.60771

0.527 69 0.286 38 0.068 59 0.09508 0.60711

0.529 69 0.288 57 0.068 85 0.09560 0.60650

0.531 68 0.290 77 0.069 11 0.09611 0.60587

0.533 65 0.292 99 0.069 37 0.09664 0.60523

0.535 61 0.295 22 0.069 63 0.09716 0.60458

0.537 56 0.297 48 0.069 90 0.09769 0.60392

0.539 50 0.299 76 0.070 16 0.09822 0.60325

0.541 43 0.302 06 0.070 42 0.09875 0.60256

0.543 35 0.304 38 0.070 68 0.09929 0.60187

0.545 25 0.306 72 0.070 95 0.09983 0.60116

0.547 15 0.309 08 0.071 21 0.10037 0.60045

0.549 03 0.311 46 0.071 47 0.10091 0.59973

0.550 90 0.313 86 0.071 74 0.10146 0.59900

0.552 77 0.316 26 0.072 00 0.10201 0.59826

0.554 62 0.318 68 0.072 27 0.10257 0.59752

0.556 46 0.321 12 0.072 53 0.10312 0.59677

0.558 29 0.323 55 0.072 80 0.10368 0.59602

0.560 11 0.326 00 0.073 06 0.10425 0.59527

0.561 92 0.328 44 0.073 33 0.10481 0.59451

0.563 72 0.330 89 0.073 60 0.10538 0.59376

0.565 52 0.333 33 0.073 86 0.10595 0.59300

0.567 30 0.335 77 0.074 13 0.10653 0.59224

0.569 07 0.338 21 0.074 39 0.10711 0.59149

0.570 83 0.340 64 0.074 66 0.10769 0.59073
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Continued: VLE-Data from GCMC-Simulations of Mixture III at T ∗ = 1.05

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.572 58 0.343 06 0.074 93 0.10828 0.58997

0.574 32 0.345 47 0.075 20 0.10887 0.58921

0.576 05 0.347 88 0.075 47 0.10946 0.58846

0.577 77 0.350 28 0.075 73 0.11005 0.58770

0.579 48 0.352 67 0.076 00 0.11065 0.58694

0.581 18 0.355 05 0.076 27 0.11126 0.58618

0.582 87 0.357 43 0.076 54 0.11186 0.58541

0.584 55 0.359 81 0.076 81 0.11247 0.58465

0.586 22 0.362 18 0.077 08 0.11309 0.58387

0.587 88 0.364 56 0.077 35 0.11371 0.58310

0.589 53 0.366 93 0.077 62 0.11433 0.58232

0.591 17 0.369 30 0.077 89 0.11496 0.58153

0.592 80 0.371 68 0.078 16 0.11559 0.58073

0.594 43 0.374 06 0.078 43 0.11622 0.57993

0.596 04 0.376 44 0.078 71 0.11686 0.57911

0.597 64 0.378 84 0.078 98 0.11751 0.57829

0.599 23 0.381 23 0.079 25 0.11815 0.57746

0.600 81 0.383 64 0.079 52 0.11881 0.57662

0.602 39 0.386 06 0.079 80 0.11946 0.57577

0.603 95 0.388 48 0.080 07 0.12013 0.57490

0.605 50 0.390 91 0.080 35 0.12079 0.57403

0.607 05 0.393 35 0.080 62 0.12147 0.57315

0.608 58 0.395 80 0.080 90 0.12214 0.57226

0.610 11 0.398 26 0.081 17 0.12282 0.57136

0.611 63 0.400 72 0.081 45 0.12351 0.57044

0.613 14 0.403 19 0.081 72 0.12420 0.56953

0.614 64 0.405 67 0.082 00 0.12490 0.56860

0.616 13 0.408 15 0.082 27 0.12561 0.56766

0.617 61 0.410 64 0.082 55 0.12631 0.56672

0.619 09 0.413 13 0.082 83 0.12703 0.56577

0.620 56 0.415 63 0.083 11 0.12775 0.56482

0.622 01 0.418 13 0.083 38 0.12848 0.56386
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C.3 Tabulated Results of the Vapor Liquid Equilibrium GCMC Simulations

Continued: VLE-Data from GCMC-Simulations of Mixture III at T ∗ = 1.05

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.623 46 0.420 63 0.083 66 0.12921 0.56289

0.624 90 0.423 13 0.083 94 0.12995 0.56193

0.626 34 0.425 64 0.084 22 0.13070 0.56095

0.627 76 0.428 15 0.084 50 0.13145 0.55997

0.629 19 0.430 66 0.084 78 0.13220 0.55898

0.630 60 0.433 17 0.085 06 0.13297 0.55799

0.631 99 0.435 69 0.085 34 0.13375 0.55700

0.633 38 0.438 20 0.085 62 0.13453 0.55601

0.634 77 0.440 72 0.085 90 0.13533 0.55501

0.636 14 0.443 23 0.086 18 0.13613 0.55400

0.637 50 0.445 75 0.086 46 0.13694 0.55299

0.638 86 0.448 26 0.086 74 0.13777 0.55198

0.640 21 0.450 78 0.087 03 0.13859 0.55096

0.641 56 0.453 30 0.087 31 0.13942 0.54991

0.642 90 0.455 81 0.087 59 0.14027 0.54887

0.644 22 0.458 33 0.087 88 0.14112 0.54782

0.645 53 0.460 84 0.088 16 0.14200 0.54677

0.646 83 0.463 35 0.088 44 0.14288 0.54571

0.648 16 0.465 87 0.088 73 0.14375 0.54461

0.649 45 0.468 38 0.089 02 0.14465 0.54352

0.650 73 0.470 89 0.089 30 0.14557 0.54242

0.652 00 0.473 40 0.089 59 0.14649 0.54131

0.653 24 0.475 90 0.089 87 0.14746 0.54021

0.654 49 0.478 41 0.090 16 0.14841 0.53908

0.655 72 0.480 93 0.090 45 0.14938 0.53793

0.656 98 0.483 45 0.090 74 0.15034 0.53674

0.658 20 0.485 97 0.091 03 0.15134 0.53557

0.659 41 0.488 50 0.091 32 0.15235 0.53437

0.660 59 0.491 02 0.091 61 0.15340 0.53318

0.661 78 0.493 56 0.091 90 0.15444 0.53195

0.662 93 0.496 10 0.092 19 0.15553 0.53074

0.664 12 0.498 67 0.092 48 0.15658 0.52945
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Continued: VLE-Data from GCMC-Simulations of Mixture III at T ∗ = 1.05

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.665 23 0.501 22 0.092 77 0.15773 0.52822

0.666 40 0.503 81 0.093 07 0.15881 0.52689

0.667 57 0.506 41 0.093 36 0.15990 0.52554

0.668 86 0.509 07 0.093 65 0.16086 0.52402

0.669 92 0.511 67 0.093 95 0.16209 0.52273

0.671 03 0.514 30 0.094 24 0.16325 0.52134

0.672 13 0.516 95 0.094 54 0.16444 0.51995

0.673 23 0.519 61 0.094 83 0.16563 0.51851

0.674 21 0.522 25 0.095 13 0.16697 0.51720

0.675 28 0.524 93 0.095 43 0.16821 0.51574

0.676 29 0.527 61 0.095 73 0.16953 0.51433

0.677 34 0.530 31 0.096 03 0.17081 0.51285

0.678 47 0.533 06 0.096 32 0.17200 0.51124

0.679 50 0.535 78 0.096 62 0.17331 0.50973

0.680 78 0.538 61 0.096 92 0.17433 0.50789

0.681 81 0.541 34 0.097 22 0.17565 0.50633

0.682 85 0.544 09 0.097 52 0.17696 0.50475

0.683 89 0.546 83 0.097 82 0.17829 0.50314

0.684 68 0.549 46 0.098 13 0.17995 0.50187

0.685 68 0.552 18 0.098 43 0.18134 0.50029

0.687 01 0.555 05 0.098 72 0.18231 0.49825

0.688 02 0.557 77 0.099 03 0.18369 0.49663

0.688 93 0.560 43 0.099 33 0.18523 0.49515

0.689 94 0.563 12 0.099 64 0.18663 0.49353

0.691 08 0.565 87 0.099 94 0.18787 0.49171

0.691 97 0.568 49 0.100 24 0.18944 0.49024

0.692 99 0.571 16 0.100 55 0.19084 0.48859

0.693 58 0.573 59 0.100 86 0.19287 0.48757

0.694 57 0.576 21 0.101 17 0.19434 0.48598

0.696 59 0.579 34 0.101 45 0.19432 0.48279

0.697 62 0.581 95 0.101 76 0.19574 0.48112

0.698 65 0.584 55 0.102 07 0.19715 0.47946
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Continued: VLE-Data from GCMC-Simulations of Mixture III at T ∗ = 1.05

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.699 69 0.587 16 0.102 37 0.19853 0.47776

0.700 73 0.589 74 0.102 68 0.19993 0.47607

0.701 61 0.592 22 0.102 99 0.20158 0.47468

0.702 83 0.594 88 0.103 30 0.20272 0.47271

0.704 05 0.597 53 0.103 60 0.20386 0.47075

0.705 30 0.600 19 0.103 90 0.20495 0.46872

0.706 37 0.602 74 0.104 21 0.20631 0.46702

0.707 04 0.605 01 0.104 53 0.20833 0.46610

0.708 11 0.607 53 0.104 85 0.20971 0.46445

0.709 39 0.610 18 0.105 15 0.21073 0.46239

0.710 49 0.612 72 0.105 46 0.21204 0.46068

0.713 25 0.616 42 0.105 71 0.21063 0.45556

0.714 39 0.618 98 0.106 02 0.21186 0.45377

0.715 29 0.621 34 0.106 34 0.21351 0.45255

0.715 95 0.623 51 0.106 67 0.21557 0.45188

0.717 52 0.626 39 0.106 96 0.21605 0.44917

0.718 68 0.628 92 0.107 27 0.21727 0.44745

0.719 85 0.631 46 0.107 58 0.21845 0.44571

0.720 98 0.633 94 0.107 89 0.21973 0.44412

0.722 17 0.636 47 0.108 20 0.22088 0.44239

0.723 58 0.639 21 0.108 50 0.22163 0.44013

0.723 22 0.640 36 0.108 89 0.22564 0.44213

0.724 29 0.642 75 0.109 21 0.22703 0.44079

0.682 91 0.682 91 0.109 85 0.33766 0.33766

Table C.33: VLE-Data from GCMC-Simulations of Mixture III at T ∗ = 1.10

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.003 36 0.001 00 0.045 67 0.05432 0.64125

0.073 60 0.025 00 0.049 08 0.05915 0.63660

0.138 11 0.050 00 0.052 67 0.06440 0.62987
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Continued: VLE-Data from GCMC-Simulations of Mixture III at T ∗ = 1.10

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.188 71 0.075 00 0.055 83 0.06917 0.62131

0.237 84 0.100 00 0.059 24 0.07447 0.61506

0.288 22 0.125 00 0.063 26 0.08102 0.61007

0.329 75 0.150 00 0.067 10 0.08756 0.60590

0.364 99 0.175 00 0.070 77 0.09409 0.60026

0.396 14 0.200 00 0.074 38 0.10083 0.59359

0.424 87 0.225 00 0.078 08 0.10817 0.58612

0.448 04 0.250 00 0.081 35 0.11517 0.57786

0.467 35 0.275 00 0.084 27 0.12184 0.56821

0.485 73 0.300 00 0.087 22 0.12907 0.55770

0.504 21 0.325 00 0.090 43 0.13760 0.54707

0.521 76 0.350 00 0.093 79 0.14742 0.53622

0.537 39 0.375 00 0.097 18 0.15842 0.52456

0.550 76 0.400 00 0.100 51 0.17076 0.51180

0.562 78 0.425 00 0.103 73 0.18329 0.49761

0.574 00 0.450 00 0.106 89 0.19607 0.48293

0.584 81 0.475 00 0.110 10 0.20981 0.46885

0.598 08 0.500 00 0.113 08 0.21870 0.45166

0.609 92 0.525 00 0.116 85 0.23612 0.44124

0.560 97 0.560 97 0.116 19 0.34038 0.34038

Table C.34: VLE-Data from GCMC-Simulations of Mixture III at T ∗ = 1.15

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.006 92 0.002 56 0.060 09 0.07354 0.60515

0.006 92 0.002 56 0.060 09 0.07354 0.60515

0.011 08 0.004 17 0.060 34 0.07392 0.60444

0.011 08 0.004 17 0.060 34 0.07392 0.60444

0.015 21 0.005 78 0.060 59 0.07430 0.60384

0.015 21 0.005 78 0.060 59 0.07430 0.60384

0.019 31 0.007 38 0.060 85 0.07468 0.60331
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C.3 Tabulated Results of the Vapor Liquid Equilibrium GCMC Simulations

Continued: VLE-Data from GCMC-Simulations of Mixture III at T ∗ = 1.15

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.019 31 0.007 38 0.060 85 0.07468 0.60331

0.023 38 0.008 96 0.061 10 0.07507 0.60284

0.023 38 0.008 96 0.061 10 0.07507 0.60284

0.027 42 0.010 53 0.061 35 0.07546 0.60239

0.027 42 0.010 53 0.061 35 0.07546 0.60239

0.031 43 0.012 10 0.061 61 0.07585 0.60197

0.031 43 0.012 10 0.061 61 0.07585 0.60197

0.035 41 0.013 67 0.061 86 0.07624 0.60156

0.035 41 0.013 67 0.061 86 0.07624 0.60156

0.039 36 0.015 24 0.062 12 0.07663 0.60117

0.039 36 0.015 24 0.062 12 0.07663 0.60117

0.043 29 0.016 82 0.062 37 0.07703 0.60078

0.043 29 0.016 82 0.062 37 0.07703 0.60078

0.047 18 0.018 40 0.062 63 0.07743 0.60040

0.047 18 0.018 40 0.062 63 0.07743 0.60040

0.051 04 0.019 98 0.062 89 0.07783 0.60002

0.051 04 0.019 98 0.062 89 0.07783 0.60002

0.054 88 0.021 56 0.063 14 0.07823 0.59965

0.054 88 0.021 56 0.063 14 0.07823 0.59965

0.058 68 0.023 13 0.063 40 0.07863 0.59929

0.058 68 0.023 13 0.063 40 0.07863 0.59929

0.062 46 0.024 71 0.063 66 0.07904 0.59894

0.062 46 0.024 71 0.063 66 0.07904 0.59894

0.066 21 0.026 28 0.063 92 0.07945 0.59859

0.066 21 0.026 28 0.063 92 0.07945 0.59859

0.069 93 0.027 84 0.064 17 0.07985 0.59824

0.069 93 0.027 84 0.064 17 0.07985 0.59824

0.073 62 0.029 40 0.064 43 0.08026 0.59790

0.073 62 0.029 40 0.064 43 0.08026 0.59790

0.077 29 0.030 96 0.064 69 0.08068 0.59756

0.077 29 0.030 96 0.064 69 0.08068 0.59756

0.080 93 0.032 51 0.064 95 0.08109 0.59722
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Continued: VLE-Data from GCMC-Simulations of Mixture III at T ∗ = 1.15

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.080 93 0.032 51 0.064 95 0.08109 0.59722

0.084 55 0.034 05 0.065 21 0.08151 0.59688

0.084 55 0.034 05 0.065 21 0.08151 0.59688

0.088 13 0.035 60 0.065 47 0.08192 0.59654

0.088 13 0.035 60 0.065 47 0.08192 0.59654

0.091 70 0.037 15 0.065 73 0.08234 0.59619

0.091 70 0.037 15 0.065 73 0.08234 0.59619

0.095 23 0.038 71 0.065 99 0.08277 0.59584

0.095 23 0.038 71 0.065 99 0.08277 0.59584

0.098 75 0.040 28 0.066 25 0.08319 0.59548

0.098 75 0.040 28 0.066 25 0.08319 0.59548

0.102 24 0.041 86 0.066 51 0.08362 0.59511

0.102 24 0.041 86 0.066 51 0.08362 0.59511

0.105 70 0.043 46 0.066 78 0.08404 0.59473

0.105 70 0.043 46 0.066 78 0.08404 0.59473

0.109 14 0.045 08 0.067 04 0.08447 0.59434

0.109 14 0.045 08 0.067 04 0.08447 0.59434

0.112 56 0.046 71 0.067 30 0.08490 0.59395

0.112 56 0.046 71 0.067 30 0.08490 0.59395

0.115 95 0.048 36 0.067 56 0.08533 0.59354

0.115 95 0.048 36 0.067 56 0.08533 0.59354

0.119 32 0.050 01 0.067 83 0.08577 0.59313

0.119 32 0.050 01 0.067 83 0.08577 0.59313

0.122 67 0.051 67 0.068 09 0.08620 0.59272

0.122 67 0.051 67 0.068 09 0.08620 0.59272

0.126 00 0.053 34 0.068 35 0.08664 0.59230

0.126 00 0.053 34 0.068 35 0.08664 0.59230

0.129 31 0.055 00 0.068 61 0.08707 0.59189

0.129 31 0.055 00 0.068 61 0.08707 0.59189

0.132 59 0.056 65 0.068 88 0.08751 0.59147

0.132 59 0.056 65 0.068 88 0.08751 0.59147

0.135 85 0.058 30 0.069 14 0.08795 0.59106
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C.3 Tabulated Results of the Vapor Liquid Equilibrium GCMC Simulations

Continued: VLE-Data from GCMC-Simulations of Mixture III at T ∗ = 1.15

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.135 85 0.058 30 0.069 14 0.08795 0.59106

0.139 09 0.059 94 0.069 40 0.08839 0.59065

0.139 09 0.059 94 0.069 40 0.08839 0.59065

0.142 31 0.061 56 0.069 67 0.08884 0.59025

0.142 31 0.061 56 0.069 67 0.08884 0.59025

0.145 51 0.063 16 0.069 93 0.08928 0.58985

0.145 51 0.063 16 0.069 93 0.08928 0.58985

0.148 69 0.064 75 0.070 20 0.08973 0.58946

0.148 69 0.064 75 0.070 20 0.08973 0.58946

0.151 84 0.066 32 0.070 46 0.09018 0.58908

0.151 84 0.066 32 0.070 46 0.09018 0.58908

0.154 98 0.067 88 0.070 73 0.09063 0.58870

0.154 98 0.067 88 0.070 73 0.09063 0.58870

0.158 10 0.069 42 0.070 99 0.09109 0.58833

0.158 10 0.069 42 0.070 99 0.09109 0.58833

0.161 19 0.070 94 0.071 26 0.09155 0.58796

0.161 19 0.070 94 0.071 26 0.09155 0.58796

0.164 27 0.072 45 0.071 52 0.09201 0.58760

0.164 27 0.072 45 0.071 52 0.09201 0.58760

0.167 32 0.073 94 0.071 79 0.09247 0.58724

0.167 32 0.073 94 0.071 79 0.09247 0.58724

0.170 35 0.075 43 0.072 06 0.09294 0.58688

0.170 35 0.075 43 0.072 06 0.09294 0.58688

0.173 37 0.076 91 0.072 33 0.09341 0.58652

0.173 37 0.076 91 0.072 33 0.09341 0.58652

0.176 36 0.078 38 0.072 60 0.09388 0.58615

0.176 36 0.078 38 0.072 60 0.09388 0.58615

0.179 34 0.079 86 0.072 87 0.09436 0.58579

0.179 34 0.079 86 0.072 87 0.09436 0.58579

0.182 29 0.081 34 0.073 14 0.09484 0.58542

0.182 29 0.081 34 0.073 14 0.09484 0.58542

0.185 22 0.082 83 0.073 41 0.09532 0.58504

Continued on next page

205



C SI: Assessing Entropy Scaling for Mixture Viscosities

Continued: VLE-Data from GCMC-Simulations of Mixture III at T ∗ = 1.15

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.185 22 0.082 83 0.073 41 0.09532 0.58504

0.188 14 0.084 33 0.073 68 0.09581 0.58465

0.188 14 0.084 33 0.073 68 0.09581 0.58465

0.191 04 0.085 84 0.073 96 0.09630 0.58425

0.191 04 0.085 84 0.073 96 0.09630 0.58425

0.193 92 0.087 38 0.074 23 0.09679 0.58385

0.193 92 0.087 38 0.074 23 0.09679 0.58385

0.196 77 0.088 93 0.074 50 0.09729 0.58343

0.196 77 0.088 93 0.074 50 0.09729 0.58343

0.199 62 0.090 51 0.074 78 0.09779 0.58300

0.199 62 0.090 51 0.074 78 0.09779 0.58300

0.202 44 0.092 12 0.075 05 0.09829 0.58255

0.202 44 0.092 12 0.075 05 0.09829 0.58255

0.205 24 0.093 75 0.075 33 0.09879 0.58210

0.205 24 0.093 75 0.075 33 0.09879 0.58210

0.208 03 0.095 40 0.075 60 0.09930 0.58163

0.208 03 0.095 40 0.075 60 0.09930 0.58163

0.210 80 0.097 07 0.075 88 0.09981 0.58115

0.210 80 0.097 07 0.075 88 0.09981 0.58115

0.213 55 0.098 77 0.076 15 0.10033 0.58066

0.213 55 0.098 77 0.076 15 0.10033 0.58066

0.216 29 0.100 48 0.076 43 0.10084 0.58016

0.216 29 0.100 48 0.076 43 0.10084 0.58016

0.219 01 0.102 21 0.076 71 0.10136 0.57965

0.219 01 0.102 21 0.076 71 0.10136 0.57965

0.221 71 0.103 94 0.076 98 0.10188 0.57913

0.221 71 0.103 94 0.076 98 0.10188 0.57913

0.224 39 0.105 68 0.077 26 0.10240 0.57860

0.224 39 0.105 68 0.077 26 0.10240 0.57860

0.227 06 0.107 43 0.077 54 0.10293 0.57807

0.227 06 0.107 43 0.077 54 0.10293 0.57807

0.229 71 0.109 17 0.077 81 0.10346 0.57754
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C.3 Tabulated Results of the Vapor Liquid Equilibrium GCMC Simulations

Continued: VLE-Data from GCMC-Simulations of Mixture III at T ∗ = 1.15

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.229 71 0.109 17 0.077 81 0.10346 0.57754

0.232 35 0.110 90 0.078 09 0.10399 0.57701

0.232 35 0.110 90 0.078 09 0.10399 0.57701

0.234 96 0.112 63 0.078 37 0.10452 0.57647

0.234 96 0.112 63 0.078 37 0.10452 0.57647

0.237 56 0.114 35 0.078 65 0.10505 0.57593

0.237 56 0.114 35 0.078 65 0.10505 0.57593

0.240 15 0.116 06 0.078 93 0.10559 0.57539

0.240 15 0.116 06 0.078 93 0.10559 0.57539

0.242 72 0.117 75 0.079 21 0.10613 0.57486

0.242 72 0.117 75 0.079 21 0.10613 0.57486

0.245 27 0.119 44 0.079 48 0.10667 0.57432

0.245 27 0.119 44 0.079 48 0.10667 0.57432

0.247 80 0.121 11 0.079 76 0.10722 0.57379

0.247 80 0.121 11 0.079 76 0.10722 0.57379

0.250 32 0.122 77 0.080 04 0.10777 0.57326

0.250 32 0.122 77 0.080 04 0.10777 0.57326

0.252 82 0.124 43 0.080 32 0.10832 0.57273

0.252 82 0.124 43 0.080 32 0.10832 0.57273

0.255 30 0.126 08 0.080 61 0.10888 0.57220

0.255 30 0.126 08 0.080 61 0.10888 0.57220

0.257 77 0.127 72 0.080 89 0.10944 0.57168

0.257 77 0.127 72 0.080 89 0.10944 0.57168

0.260 22 0.129 37 0.081 17 0.11000 0.57115

0.260 22 0.129 37 0.081 17 0.11000 0.57115

0.262 65 0.131 01 0.081 45 0.11056 0.57062

0.262 65 0.131 01 0.081 45 0.11056 0.57062

0.265 07 0.132 66 0.081 73 0.11113 0.57010

0.265 07 0.132 66 0.081 73 0.11113 0.57010

0.267 47 0.134 32 0.082 02 0.11170 0.56956

0.267 47 0.134 32 0.082 02 0.11170 0.56956

0.269 85 0.135 99 0.082 30 0.11228 0.56903
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Continued: VLE-Data from GCMC-Simulations of Mixture III at T ∗ = 1.15

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.269 85 0.135 99 0.082 30 0.11228 0.56903

0.272 22 0.137 67 0.082 58 0.11286 0.56849

0.272 22 0.137 67 0.082 58 0.11286 0.56849

0.274 57 0.139 36 0.082 87 0.11344 0.56794

0.274 57 0.139 36 0.082 87 0.11344 0.56794

0.276 91 0.141 07 0.083 15 0.11403 0.56738

0.276 91 0.141 07 0.083 15 0.11403 0.56738

0.279 23 0.142 79 0.083 44 0.11462 0.56682

0.279 23 0.142 79 0.083 44 0.11462 0.56682

0.281 53 0.144 53 0.083 72 0.11521 0.56624

0.281 53 0.144 53 0.083 72 0.11521 0.56624

0.283 82 0.146 29 0.084 01 0.11581 0.56565

0.283 82 0.146 29 0.084 01 0.11581 0.56565

0.286 10 0.148 07 0.084 29 0.11641 0.56505

0.286 10 0.148 07 0.084 29 0.11641 0.56505

0.288 36 0.149 86 0.084 58 0.11702 0.56444

0.288 36 0.149 86 0.084 58 0.11702 0.56444

0.290 60 0.151 66 0.084 87 0.11762 0.56381

0.290 60 0.151 66 0.084 87 0.11762 0.56381

0.292 84 0.153 48 0.085 15 0.11824 0.56316

0.292 84 0.153 48 0.085 15 0.11824 0.56316

0.295 05 0.155 31 0.085 44 0.11885 0.56250

0.295 05 0.155 31 0.085 44 0.11885 0.56250

0.297 26 0.157 15 0.085 73 0.11947 0.56182

0.297 26 0.157 15 0.085 73 0.11947 0.56182

0.299 44 0.159 00 0.086 01 0.12010 0.56113

0.299 44 0.159 00 0.086 01 0.12010 0.56113

0.301 62 0.160 86 0.086 30 0.12072 0.56042

0.301 62 0.160 86 0.086 30 0.12072 0.56042

0.303 78 0.162 72 0.086 59 0.12136 0.55969

0.303 78 0.162 72 0.086 59 0.12136 0.55969

0.305 93 0.164 59 0.086 88 0.12199 0.55895
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Continued: VLE-Data from GCMC-Simulations of Mixture III at T ∗ = 1.15

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.305 93 0.164 59 0.086 88 0.12199 0.55895

0.308 06 0.166 46 0.087 17 0.12263 0.55820

0.308 06 0.166 46 0.087 17 0.12263 0.55820

0.310 18 0.168 33 0.087 45 0.12328 0.55743

0.310 18 0.168 33 0.087 45 0.12328 0.55743

0.312 29 0.170 21 0.087 74 0.12393 0.55665

0.312 29 0.170 21 0.087 74 0.12393 0.55665

0.314 38 0.172 08 0.088 03 0.12458 0.55586

0.314 38 0.172 08 0.088 03 0.12458 0.55586

0.316 46 0.173 96 0.088 32 0.12524 0.55506

0.316 46 0.173 96 0.088 32 0.12524 0.55506

0.318 53 0.175 83 0.088 61 0.12591 0.55425

0.318 53 0.175 83 0.088 61 0.12591 0.55425

0.320 58 0.177 71 0.088 90 0.12658 0.55343

0.320 58 0.177 71 0.088 90 0.12658 0.55343

0.322 64 0.179 59 0.089 19 0.12723 0.55258

0.322 64 0.179 59 0.089 19 0.12723 0.55258

0.324 67 0.181 47 0.089 48 0.12791 0.55175

0.324 67 0.181 47 0.089 48 0.12791 0.55175

0.326 69 0.183 35 0.089 77 0.12859 0.55091

0.326 69 0.183 35 0.089 77 0.12859 0.55091

0.328 69 0.185 23 0.090 06 0.12928 0.55006

0.328 69 0.185 23 0.090 06 0.12928 0.55006

0.330 68 0.187 12 0.090 35 0.12998 0.54922

0.330 68 0.187 12 0.090 35 0.12998 0.54922

0.332 65 0.189 01 0.090 64 0.13069 0.54837

0.332 65 0.189 01 0.090 64 0.13069 0.54837

0.334 61 0.190 91 0.090 93 0.13140 0.54751

0.334 61 0.190 91 0.090 93 0.13140 0.54751

0.336 56 0.192 81 0.091 23 0.13211 0.54665

0.336 56 0.192 81 0.091 23 0.13211 0.54665

0.338 50 0.194 72 0.091 52 0.13283 0.54578
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Continued: VLE-Data from GCMC-Simulations of Mixture III at T ∗ = 1.15

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.338 50 0.194 72 0.091 52 0.13283 0.54578

0.340 42 0.196 63 0.091 81 0.13356 0.54491

0.340 42 0.196 63 0.091 81 0.13356 0.54491

0.342 33 0.198 56 0.092 10 0.13429 0.54403

0.342 33 0.198 56 0.092 10 0.13429 0.54403

0.344 22 0.200 49 0.092 40 0.13504 0.54315

0.344 22 0.200 49 0.092 40 0.13504 0.54315

0.346 10 0.202 43 0.092 69 0.13579 0.54226

0.346 10 0.202 43 0.092 69 0.13579 0.54226

0.347 97 0.204 39 0.092 98 0.13655 0.54137

0.347 97 0.204 39 0.092 98 0.13655 0.54137

0.349 83 0.206 35 0.093 28 0.13732 0.54047

0.349 83 0.206 35 0.093 28 0.13732 0.54047

0.351 67 0.208 33 0.093 57 0.13809 0.53955

0.351 67 0.208 33 0.093 57 0.13809 0.53955

0.353 56 0.210 33 0.093 86 0.13880 0.53857

0.353 56 0.210 33 0.093 86 0.13880 0.53857

0.355 38 0.212 33 0.094 16 0.13959 0.53763

0.355 38 0.212 33 0.094 16 0.13959 0.53763

0.357 19 0.214 35 0.094 45 0.14038 0.53669

0.357 19 0.214 35 0.094 45 0.14038 0.53669

0.358 99 0.216 37 0.094 75 0.14117 0.53571

0.358 99 0.216 37 0.094 75 0.14117 0.53571

0.360 78 0.218 41 0.095 04 0.14198 0.53474

0.360 78 0.218 41 0.095 04 0.14198 0.53474

0.362 54 0.220 46 0.095 34 0.14279 0.53376

0.362 54 0.220 46 0.095 34 0.14279 0.53376

0.364 28 0.222 52 0.095 63 0.14364 0.53279

0.364 28 0.222 52 0.095 63 0.14364 0.53279

0.366 04 0.224 59 0.095 93 0.14446 0.53176

0.366 04 0.224 59 0.095 93 0.14446 0.53176

0.367 74 0.226 67 0.096 23 0.14532 0.53077
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C.3 Tabulated Results of the Vapor Liquid Equilibrium GCMC Simulations

Continued: VLE-Data from GCMC-Simulations of Mixture III at T ∗ = 1.15

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.367 74 0.226 67 0.096 23 0.14532 0.53077

0.369 48 0.228 76 0.096 52 0.14616 0.52972

0.369 48 0.228 76 0.096 52 0.14616 0.52972

0.371 18 0.230 86 0.096 82 0.14702 0.52868

0.371 18 0.230 86 0.096 82 0.14702 0.52868

0.372 87 0.232 97 0.097 11 0.14789 0.52764

0.372 87 0.232 97 0.097 11 0.14789 0.52764

0.374 54 0.235 08 0.097 41 0.14878 0.52658

0.374 54 0.235 08 0.097 41 0.14878 0.52658

0.376 19 0.237 19 0.097 71 0.14969 0.52554

0.376 19 0.237 19 0.097 71 0.14969 0.52554

0.377 82 0.239 31 0.098 01 0.15061 0.52449

0.377 82 0.239 31 0.098 01 0.15061 0.52449

0.379 45 0.241 43 0.098 30 0.15153 0.52342

0.379 45 0.241 43 0.098 30 0.15153 0.52342

0.381 11 0.243 57 0.098 60 0.15241 0.52231

0.381 11 0.243 57 0.098 60 0.15241 0.52231

0.382 76 0.245 70 0.098 90 0.15330 0.52120

0.382 76 0.245 70 0.098 90 0.15330 0.52120

0.384 68 0.247 92 0.099 19 0.15387 0.51978

0.384 68 0.247 92 0.099 19 0.15387 0.51978

0.386 29 0.250 05 0.099 49 0.15480 0.51869

0.386 29 0.250 05 0.099 49 0.15480 0.51869

0.387 89 0.252 18 0.099 79 0.15574 0.51759

0.387 89 0.252 18 0.099 79 0.15574 0.51759

0.389 46 0.254 30 0.100 09 0.15670 0.51651

0.389 46 0.254 30 0.100 09 0.15670 0.51651

0.391 07 0.256 43 0.100 38 0.15761 0.51537

0.391 07 0.256 43 0.100 38 0.15761 0.51537

0.392 63 0.258 55 0.100 68 0.15857 0.51428

0.392 63 0.258 55 0.100 68 0.15857 0.51428

0.394 22 0.260 67 0.100 98 0.15951 0.51315
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Continued: VLE-Data from GCMC-Simulations of Mixture III at T ∗ = 1.15

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.394 22 0.260 67 0.100 98 0.15951 0.51315

0.395 69 0.262 76 0.101 28 0.16058 0.51215

0.395 69 0.262 76 0.101 28 0.16058 0.51215

0.397 21 0.264 86 0.101 58 0.16158 0.51107

0.397 21 0.264 86 0.101 58 0.16158 0.51107

0.398 70 0.266 94 0.101 88 0.16262 0.51002

0.398 70 0.266 94 0.101 88 0.16262 0.51002

0.400 24 0.269 04 0.102 18 0.16359 0.50891

0.400 24 0.269 04 0.102 18 0.16359 0.50891

0.401 73 0.271 12 0.102 48 0.16463 0.50785

0.401 73 0.271 12 0.102 48 0.16463 0.50785

0.403 35 0.273 24 0.102 78 0.16551 0.50662

0.403 35 0.273 24 0.102 78 0.16551 0.50662

0.404 72 0.275 28 0.103 08 0.16668 0.50568

0.404 72 0.275 28 0.103 08 0.16668 0.50568

0.406 25 0.277 36 0.103 38 0.16766 0.50453

0.406 25 0.277 36 0.103 38 0.16766 0.50453

0.407 67 0.279 42 0.103 68 0.16877 0.50350

0.407 67 0.279 42 0.103 68 0.16877 0.50350

0.409 42 0.281 57 0.103 98 0.16947 0.50206

0.409 42 0.281 57 0.103 98 0.16947 0.50206

0.410 85 0.283 63 0.104 28 0.17056 0.50099

0.410 85 0.283 63 0.104 28 0.17056 0.50099

0.412 25 0.285 68 0.104 59 0.17169 0.49994

0.412 25 0.285 68 0.104 59 0.17169 0.49994

0.413 66 0.287 73 0.104 89 0.17281 0.49887

0.413 66 0.287 73 0.104 89 0.17281 0.49887

0.415 06 0.289 78 0.105 20 0.17394 0.49779

0.415 06 0.289 78 0.105 20 0.17394 0.49779

0.416 52 0.291 86 0.105 50 0.17499 0.49662

0.416 52 0.291 86 0.105 50 0.17499 0.49662

0.417 86 0.293 90 0.105 80 0.17619 0.49557
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C.3 Tabulated Results of the Vapor Liquid Equilibrium GCMC Simulations

Continued: VLE-Data from GCMC-Simulations of Mixture III at T ∗ = 1.15

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.417 86 0.293 90 0.105 80 0.17619 0.49557

0.419 23 0.295 96 0.106 11 0.17735 0.49447

0.419 23 0.295 96 0.106 11 0.17735 0.49447

0.420 59 0.298 02 0.106 42 0.17853 0.49338

0.420 59 0.298 02 0.106 42 0.17853 0.49338

0.421 93 0.300 08 0.106 72 0.17973 0.49228

0.421 93 0.300 08 0.106 72 0.17973 0.49228

0.423 18 0.302 12 0.107 03 0.18105 0.49127

0.423 18 0.302 12 0.107 03 0.18105 0.49127

0.424 61 0.304 22 0.107 34 0.18214 0.49004

0.424 61 0.304 22 0.107 34 0.18214 0.49004

0.426 07 0.306 35 0.107 64 0.18318 0.48874

0.426 07 0.306 35 0.107 64 0.18318 0.48874

0.427 37 0.308 43 0.107 95 0.18442 0.48761

0.427 37 0.308 43 0.107 95 0.18442 0.48761

0.428 67 0.310 52 0.108 26 0.18567 0.48647

0.428 67 0.310 52 0.108 26 0.18567 0.48647

0.430 03 0.312 63 0.108 57 0.18685 0.48525

0.430 03 0.312 63 0.108 57 0.18685 0.48525

0.431 31 0.314 73 0.108 88 0.18812 0.48411

0.431 31 0.314 73 0.108 88 0.18812 0.48411

0.432 60 0.316 84 0.109 19 0.18939 0.48295

0.432 60 0.316 84 0.109 19 0.18939 0.48295

0.434 58 0.319 24 0.109 49 0.18968 0.48085

0.434 58 0.319 24 0.109 49 0.18968 0.48085

0.435 62 0.321 26 0.109 80 0.19128 0.48000

0.435 62 0.321 26 0.109 80 0.19128 0.48000

0.436 89 0.323 39 0.110 12 0.19257 0.47884

0.436 89 0.323 39 0.110 12 0.19257 0.47884

0.438 15 0.325 51 0.110 43 0.19387 0.47768

0.438 15 0.325 51 0.110 43 0.19387 0.47768

0.439 12 0.327 53 0.110 75 0.19558 0.47690
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Continued: VLE-Data from GCMC-Simulations of Mixture III at T ∗ = 1.15

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.439 12 0.327 53 0.110 75 0.19558 0.47690

0.440 57 0.329 74 0.111 06 0.19661 0.47548

0.440 57 0.329 74 0.111 06 0.19661 0.47548

0.441 81 0.331 88 0.111 37 0.19792 0.47433

0.441 81 0.331 88 0.111 37 0.19792 0.47433

0.445 49 0.335 16 0.111 61 0.19566 0.46953

0.445 49 0.335 16 0.111 61 0.19566 0.46953

0.446 72 0.337 30 0.111 93 0.19696 0.46840

0.446 72 0.337 30 0.111 93 0.19696 0.46840

0.448 02 0.339 48 0.112 24 0.19816 0.46717

0.448 02 0.339 48 0.112 24 0.19816 0.46717

0.449 31 0.341 65 0.112 55 0.19938 0.46596

0.449 31 0.341 65 0.112 55 0.19938 0.46596

0.450 74 0.343 89 0.112 86 0.20039 0.46453

0.450 74 0.343 89 0.112 86 0.20039 0.46453

0.451 80 0.345 94 0.113 18 0.20193 0.46371

0.451 80 0.345 94 0.113 18 0.20193 0.46371

0.452 99 0.348 05 0.113 50 0.20330 0.46271

0.452 99 0.348 05 0.113 50 0.20330 0.46271

0.454 17 0.350 14 0.113 81 0.20468 0.46172

0.454 17 0.350 14 0.113 81 0.20468 0.46172

0.455 34 0.352 23 0.114 13 0.20605 0.46076

0.455 34 0.352 23 0.114 13 0.20605 0.46076

0.456 23 0.354 17 0.114 46 0.20786 0.46025

0.456 23 0.354 17 0.114 46 0.20786 0.46025

0.457 37 0.356 21 0.114 78 0.20930 0.45936

0.457 37 0.356 21 0.114 78 0.20930 0.45936

0.458 22 0.358 11 0.115 11 0.21118 0.45894

0.458 22 0.358 11 0.115 11 0.21118 0.45894

0.460 39 0.360 70 0.115 39 0.21096 0.45643

0.460 39 0.360 70 0.115 39 0.21096 0.45643

0.461 80 0.362 87 0.115 70 0.21195 0.45514
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C.3 Tabulated Results of the Vapor Liquid Equilibrium GCMC Simulations

Continued: VLE-Data from GCMC-Simulations of Mixture III at T ∗ = 1.15

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.461 80 0.362 87 0.115 70 0.21195 0.45514

0.463 04 0.364 95 0.116 02 0.21319 0.45415

0.463 04 0.364 95 0.116 02 0.21319 0.45415

0.464 16 0.366 94 0.116 34 0.21463 0.45337

0.464 16 0.366 94 0.116 34 0.21463 0.45337

0.465 69 0.369 18 0.116 65 0.21535 0.45189

0.465 69 0.369 18 0.116 65 0.21535 0.45189

0.467 10 0.371 32 0.116 96 0.21631 0.45066

0.467 10 0.371 32 0.116 96 0.21631 0.45066

0.468 33 0.373 34 0.117 28 0.21754 0.44975

0.468 33 0.373 34 0.117 28 0.21754 0.44975

0.469 12 0.375 09 0.117 61 0.21952 0.44961

0.469 12 0.375 09 0.117 61 0.21952 0.44961

0.470 33 0.377 08 0.117 93 0.22078 0.44875

0.470 33 0.377 08 0.117 93 0.22078 0.44875

0.472 07 0.379 37 0.118 23 0.22116 0.44702

0.472 07 0.379 37 0.118 23 0.22116 0.44702

0.473 94 0.381 77 0.118 52 0.22127 0.44501

0.473 94 0.381 77 0.118 52 0.22127 0.44501

0.475 17 0.383 74 0.118 84 0.22248 0.44416

0.475 17 0.383 74 0.118 84 0.22248 0.44416

0.476 40 0.385 71 0.119 16 0.22368 0.44332

0.476 40 0.385 71 0.119 16 0.22368 0.44332

0.477 34 0.387 49 0.119 49 0.22535 0.44301

0.477 34 0.387 49 0.119 49 0.22535 0.44301

0.478 20 0.389 20 0.119 83 0.22718 0.44285

0.478 20 0.389 20 0.119 83 0.22718 0.44285

0.479 41 0.391 14 0.120 16 0.22838 0.44207

0.479 41 0.391 14 0.120 16 0.22838 0.44207

0.478 75 0.391 91 0.120 58 0.23282 0.44441

0.478 75 0.391 91 0.120 58 0.23282 0.44441

0.481 32 0.394 64 0.120 83 0.23168 0.44144
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Continued: VLE-Data from GCMC-Simulations of Mixture III at T ∗ = 1.15

xvap
2 x liq

2 p∗
sat ρ∗vap ρ∗liq

0.481 32 0.394 64 0.120 83 0.23168 0.44144

0.482 73 0.396 68 0.121 14 0.23252 0.44035

0.482 73 0.396 68 0.121 14 0.23252 0.44035

0.441 44 0.441 44 0.121 59 0.33378 0.33378

0.441 44 0.441 44 0.121 59 0.33378 0.33378

216


	Abstract
	Kurzfassung
	1 Introduction
	1.1 Molecular Simulations & Force Fields
	1.1.1 Classical Force Fields
	1.1.2 Molecular Simulations

	1.2 Dynamic Properties from Molecular Dynamics
	1.2.1 Non-Equilibrium Molecular Dynamics
	1.2.2 Transport Coefficients from Equilibrium MD Simulations

	1.3 Entropy Scaling
	1.4 Outline of this Thesis

	Bibliography
	2 Force Fields with Fixed Bond Lengths and with Flexible Bond Lengths
	2.1 Introduction
	2.2 Methods
	2.2.1 Molecular Model
	2.2.2 Data Analysis
	2.2.3 Simulation Details

	2.3 Results and Discussion
	2.4 Conclusion

	Bibliography
	3 TAMie Force Field: Transport Properties from Equilibrium MD Simulations
	3.1 Introduction
	3.2 Methods
	3.2.1 Molecular Model
	3.2.2 Simulation Setup
	3.2.3 Data Analysis

	3.3 Results and Discussion
	3.3.1 Viscosity
	3.3.2 Self-Diffusion
	3.3.3 Thermal Conductivity

	3.4 Conclusion

	Bibliography
	4 Assessing Entropy Scaling for Mixture Viscosities
	4.1 Introduction
	4.2 Methods
	4.2.1 Molecular Model
	4.2.2 Entropy Scaling
	4.2.3 Calculation of Residual Entropy
	4.2.4 Calculation of Viscosity

	4.3 Results
	4.4 Conclusion

	Bibliography
	5 Conclusion
	Appendices
	A SI: Force fields with fixed bond lengths and with flexible bond lengths
	A.1 Details of the calculation of the Thermal Conductivity
	A.2 Distribution of Bond Lengths
	A.3 Diagram of pressure of propane for high values of period time T
	A.4 Simulation results in tables

	B SI: TAMie Force Field: Transport Properties from Equilibrium MD Simulations
	B.1 SAFT Parameters used in this Study
	B.2 Parameters of the TAMie force field
	B.3 Correlation Parameters from Simulation
	B.4 Simulation Results of each Substance
	B.5 Verification of the Nosé-Hoover thermostat
	Bibliography

	C SI: Assessing Entropy Scaling for Mixture Viscosities
	C.1 Tabulated Results of the MD Simulations
	C.2 Tabulated Results of the isothermal GCMC Simulations
	C.3 Tabulated Results of the Vapor Liquid Equilibrium GCMC Simulations


