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Abstract
Fixtures are an important element of the manufacturing system, as they ensure productive and accurate machining of differ-
ently shaped workpieces. Regarding the fixture design or the layout of fixture elements, a high static and dynamic stiffness 
of fixtures is therefore required to ensure the defined position and orientation of workpieces under process loads, e.g. cutting 
forces. Nowadays, with the increase in computing performance and the development of new algorithms, machine learning 
(ML) offers an appropriate possibility to use regression methods for creating realistic, rapid and reliable equivalent ML 
models instead of simulations based on the finite element method (FEM). This research work introduces a novel method that 
allows an optimization of clamping concepts and fixture design by means of ML, in order to reduce manufacturing errors 
and to obtain an increased stiffness of fixtures and machining accuracy. This paper describes the preparation of a dataset 
for training ML models, the systematic selection of the most promising regression algorithm based on relevant criteria, 
the implementation of the chosen algorithm Extreme Gradient Boosting (XGBoost) and other comparable algorithms, the 
analysis of their regression results, and the validation of the optimization for a selected clamping concept.
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1  Introduction

Although workpiece clamping and fixturing technology are 
usually not regarded as the core components of machine 
tools, they are crucial constituents of the manufacturing sys-
tem [1, 2]. The position and orientation of workpieces in the 
work area of machine tools are defined and guaranteed by 
clamping fixtures during machining, which are located in the 
accuracy path of the manufacturing system [3]. Therefore, 
the machining quality is directly related to the precision and 
dynamic behaviors of the clamping fixtures during machin-
ing [4, 5].

In metal-cutting processes, especially of filigree and thin-
walled workpieces, static deflections of workpieces usually 
occur due to cutting forces. They limit the machining accu-
racy and lead to a great reject rate or rework effort with high 
unit costs on the one hand. On the other hand, an insuffi-
cient dynamic stiffness of the workpiece-fixture system often 
causes undesirable regenerative vibrations, which result in a 

poor surface quality and chatter marks and may even damage 
or destroy parts [6].

However, the design and conception of appropriate 
clamping fixtures for specific workpieces is a complex and 
challenging work with respect to the above-mentioned prob-
lems. It depends on the selection, configuration and layout of 
the clamping elements for workpieces with different shapes 
[7, 8]. Due to the lack of methods for a systematic design 
and optimization of the clamping fixtures, the expertise on 
how to design these fixtures is only based on the subjec-
tive experience of the designers involved and requires many 
years of practical experience [9–11]. Some earlier research 
works dealt with the development of software-based config-
uration and calculation tools, which could enable the auto-
mated generation of suitable clamping solutions [12–17]. 
In [18–20], the influence of the clamping configuration on 
resulting machining errors was investigated.

A fundamental approach to identify appropriate clamp-
ing configurations was based on the extraction, analysis and 
classification of workpiece and processing features [21]. 
Nee et al. combined a method for extracting and grouping 
machining features from CAD data with an expert system 
that included machining operations, environmental condi-
tions, tools and workpieces in order to classify and configure 
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clamping fixtures. Bansal et al. presented a STEP-based 
(data exchanged) extraction of component and processing 
features as well as a configuration system considering the 
stability, accessibility and accuracy of the clamping concept 
[22].

In [23], possible layouts of clamping elements for a 
workpiece were first determined, taking the principle of 
the lever into account. Then the optimum was selected by 
evaluating the accessibility and the position of the instan-
taneous centre of rotation. To select the suitable configura-
tions, the workpiece deflection, resulting from a clamping 
configuration under process load, was taken into account 
in [24, 25]. Zhang et al. presented a method for generating 
the most form-fitting clamping configurations by means of 
the Gilbert-Johnson-Keerthi algorithm [26]. Cabadaj et al. 
developed functional and force-related fixture models. While 
the functional model was used to find workpiece-specific 
clamping configurations, the force-related model determined 
the influence of machining and clamping forces on the work-
piece [27]. Methods for automatically evaluating the stabil-
ity of a clamping configuration and its performance were 
presented in [28, 29].

In [30], the topology optimization method was employed 
in the layout of an optimal clamping and supporting of thin-
walled parts. Das et al. optimized the design and configu-
ration of assembly fixtures considering a production batch 
of thin sheet metal parts [31]. In [32–34], the correlations 
between the design of clamping systems, the machine prop-
erties and the machining plan were researched. An iterative 
adjustment of the fixture configuration and process can lead 
to a holistic optimization. One purpose in fixture planning is, 
for example, to ensure the machining of a workpiece with as 
few successive clamping operations as possible [35].

The state of the art regarding computer-aided fixture 
design systems (CAFD) was summarized in [15, 36–38]. 
The use of artificial intelligence methods, expert systems as 
well as the development and evaluation of mechanical mod-
els represent general solution approaches [39]. A heuristic 
method for finding optimal clamping points was shown in 
[40]. In [41, 42], the case-based reasoning procedure for the 
quick configuration of agile clamping fixtures was surveyed. 
Kumar et al. implemented genetic algorithms and neural net-
works for fixture design [43]. In [44], neural networks were 
applied to optimize the clamping configuration as well. In 
[45], the solution approach of neural networks was combined 
with the method of design of experiments (DoE). A linkage 
to a multi-agent approach can be found in [46].

Chen et al. presented a multi-criteria optimization pro-
cess based on a genetic algorithm for the reduction of work-
piece deformation with respect to the fixture design and 
clamping force [47]. To calculate the deformation, FEM 
was employed. Liu et al. used a similar approach [48]. Pad-
manaban et al. implemented an ant algorithm to optimize 

the clamping configuration with regard to minimizing the 
workpiece deformation [49]. The workpiece behavior under 
mechanical load was also calculated with FEM. In [50], the 
Cuckoo algorithm was utilized to determine an optimal 
clamping configuration. The commercial software OptiS-
Lang in combination with ANSYS made it possible to opti-
mize the design parameters for the development machine 
tools using regression analysis, in order to save time, person-
nel capacities and the corresponding costs [51]. In [52], Zäh 
et al. showed the potentials and challenges due to the utili-
zation of ANSYS Mechanical and APDL-macro files and 
found that the simulation models of additive manufacturing 
could be coupled with this optimization software.

Most mechanical models for the design and optimization 
of workpiece clamping systems are based on the applica-
tion of FEM [53–55]. For each individual machining task, 
this is usually carried out in different simulation steps with 
different clamping set-ups. Simulation results with regard 
to deformations, stress, natural frequencies and their modes 
can provide important information. When the results are 
inadequate or critical, improvements can be achieved with 
the trial-and-error approach by changing the positions of 
fixture elements until an acceptable or good solution is 
finally found [56, 57]. However, different configurations of 
fixture elements such as clamping and support elements for 
various processing steps or positions lead to a large number 
of calculations, which require a lot of computational effort 
and time. For this reason, analytical calculation approaches 
were developed [58], which were limited to relatively sim-
ple clamping scenarios. For a more complex scenario, this 
research work introduces a novel approach based on ML, in 
order to obtain an optimum from a large amount of fixture 
configurations, to reduce manufacturing errors and to obtain 
an increased stiffness of fixtures and machining accuracy.

With a milling test, Möhring and Wiederkehr revealed 
that the accuracy, performance and reliability of a clamp-
ing fixture depend on the number and the configuration of 
fixture elements [59]. Based on their results, the different 
positions of the fixture elements were used as input data in 
this study. The maximum workpiece deflection �dmax and 
the lowest natural frequency of the fixture system f 0 were 
defined as target variables, which were calculated by FEM 
simulations for the corresponding configurations of the 
clamping and support elements.

The paper is structured as follows: Section 2 presents the 
modeling of an exemplary clamping scenario and the gen-
eration of the input and output data for ML models based 
on FEM simulations. Subsequently in Sect. 3, several pos-
sible regression algorithms were compared with regard to 
their suitability for the dataset. By means of a morphologi-
cal box, the algorithm of XGBoost was selected to train an 
equivalent model. As described in Sect. 4, XGBoost and 
other comparable algorithms were implemented in order to 
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analyse how well the regression results can approximate the 
complex simulations. After training, the XGBoost model 
could predict the influence of an individual clamping or 
support element on �dmax . As presented in Sect. 5, a quasi-
optimal configuration for the selected clamping scenario was 
suggested by the XGBoost model and validated by FEM 
simulation in a further loop. Section 6 provides the conclu-
sion of the work as well as an outlook and possibilities for 
future improvement.

2 � Data preparation for ML models

To create FEM models, a comparable clamping situation 
(Fig. 1), as presented in [59], was selected.

2.1 � 3D modeling

In this scenario, a thin-walled component with two pockets 
should be milled out of a plate-shaped semi-finished alu-
minium alloy part clamped into a fixture. The CAD soft-
ware Siemens NX was used to carry out the 3D modeling. 

According to the 3–2–1 rule [7], the workpiece is located 
and supported from the bottom by three rest pads and two 
additional supports and clamped from above by three swing 
clamps (Fig. 2). The workpiece is laterally positioned and 
orientated by three stoppers.

After modeling, the clamping and supporting elements 
were numbered as shown in Fig. 2a. Additionally, a two-
dimensional Cartesian coordinate system was created so 
that their positions could be clearly defined. Each clamp-
ing point and its corresponding rest pad should be coaxial. 
Otherwise, undesired turning moments may occur during 
clamping. Therefore, one clamp and its rest pad have the 
same position in this coordinate system. It was assumed that 
the Y-coordinates of clamping points are fixed. Thus, the 
X-coordinates of the fixture elements (clamps 1–3 and addi-
tional supports 1 and 2) and the Y-coordinates of supports 
1 and 2 serve as input features to train the ML models later.

Then a random generator program created 100 possible 
fixture set-ups so that the distribution of all set-ups was 
homogeneous and unstructured. A top view of this distribu-
tion is shown in Fig. 2b. Each of their individual positions 
was restricted to a certain area in order to avoid collisions 

Fig. 1   3D models of the 
selected clamping situation 
including a semi-finished 
workpiece (white), a before and 
b during machining

Fig. 2   a Exemplary fixture set-up with fixture components, b 100 stochastic fixture set-ups
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between each other. Because of the parametric modeling 
with NX, 100 corresponding 3D models could be updated 
quite fast by editing the parameters.

2.2 � Finite element analysis

As this work focused on the feasibility of optimizing the 
clamping concept by the combination of ML methods and 
FEM simulations, the static structural analysis was per-
formed with the aim of collecting the training data quickly 
and relatively precisely. Therefore, it was assumed that 
the constitutive relations of materials are isotropic linear, 
in other words, the stress-strain behavior follows Hooke’s 
law. As mentioned above, the material of the workpiece is 
aluminium with a constant Young’s modulus of 70 GPa, 
whereas all the fixture parts made of steel have a value of 
200 GPa.

Apart from the depth of cut ap and the feed rate vf  , the 
other process parameters from the milling test by Möhring 
and Wiederkehr were adopted as shown in Table 1 so that 
their results are comparable with the simulations in this 
study. ap and vf  were calculated with higher values (marked 

in bold) in order to obtain a greater resultant force, so that 
the influence of the clamping and supporting elements on the 
static behavior of the clamping fixture could be interpreted 
more clearly in Sect. 4.2.

The boundary conditions of the FEM simulation are 
shown in Fig. 3. The internal structures of the hydraulic 
swing clamps (series B1.849 by Roemheld) are neglected 
as they are very complex and not the object of this investi-
gation. Furthermore, the unnecessary mesh nodes require 
much more computing time. Three frictionless supports 
(A) are fastened to the lateral surface of the three rods, on 
which the clamping arms are locked, so that they can still 
move vertically and rotate around the rods. The clamp-
ing forces act on the bottom of the rods like a real swing 
clamp. The predefined clamping force (B) is 2200 N, 
which corresponds to a working pressure of 230 bar. The 
resultant cutting force at a certain point in time acting on 
the workpiece can be decomposed in three components 
at right angles to each other. In this way, the main cut-
ting force (C), feed force (D) and passive force (E) were 
respectively calculated and applied to the simulations. 
The remaining weight of the workpiece (G) at this point 

Table 1   Process parameters for FEM simulations

Process param-
eters

Workpiece 
material

Diameter of the 
tool

Rake angle � Number 
of cutting 
edges

Spindle speed 
n

Cut depth ap Cut widthae Feed rate Vf

Möhring et al. 
[9]

Aluminium 
alloy

∅ 12 mm – 4 13,000 min−1 6–11 mm 3 mm 4.2–4.5 m min−1

This study Aluminium 
alloy

∅ 12 mm 10 ◦ 4 13,000 min−1 15 mm 3 mm 5.4–5.7 m min−1

Fig. 3   FEM model of the workpiece-fixture system and boundary conditions for the FEM simulation
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in time should be taken into consideration as well. The 
whole workpiece-fixture system is fixed to the bottom of 
the base plate (F).

The contacts between the workpiece and the rest pads, 
between the workpiece and the clamping arms, as well as 
between the workpiece and the additional supports were 
defined as frictional. In order to simplify the finite element 
model, the three stoppers are also neglected. Another rea-
son is that only the clamps and the rest pads should pro-
vide the frictional force to guarantee the position against 
the cutting force. The principle tasks of the stoppers are 
referencing and orienting the workpiece before clamping 
and machining, and no external force or torque should act 
upon them during milling.

The static structural analysis for the previously created 
100 fixture set-ups (Fig. 4) shows that the maximum work-
piece deflection �dmax caused by the cutting force at a certain 
moment appeared irregularly at a corner of the workpiece 
or near the tool. In fact, the position and value of the cutting 
force are varying in the entire milling process, depending 
on process parameters such as the feed rate, cut depth and 
width etc. To simplify this, only the static cutting force with 
an exemplary position shown in Fig. 2 was taken into con-
sideration. In [59], as the material was removed, the work-
piece became more compliant, and the clamping system had 
a lower fundamental natural frequency than before. Chatter 
occurred merely in the place, where the fixture possesses 
the weakest workpiece support. Therefore, the representa-
tive position was selected. Predicting the positions of �dmax 
is a classification task in ML rather than regression. But it is 

not the object of this study. Only its values are required and 
considered as the target variables to be predicted.

At the same time, the modal analysis for the clamping 
system was conducted. As a rule, the greater the natural fre-
quencies of the workpiece-fixture system, the more stable it 
is. Regarding processing, the lowest natural frequency f 0 is 
important since it is easier to reach than others. Therefore, 
it is considered as the second target variable, differing tre-
mendously within the range of 377.25–610.34 Hz. This also 
proves that the dynamic compliance of clamping fixtures 
depends considerably on the distribution or configuration 
of the fixture elements.

3 � Selection of the most promising 
regression algorithm

After the data collection, appropriate algorithms were 
required for building the equivalent ML model based on 
the dataset generated in Sect. 2 with respect to the types of 
input and output values or the data distribution. According 
to David Wolpert’s “No-Free-Lunch-Theorem” [60], there 
is no model that always works better than others. The only 
way to know for sure which model is the best is to implement 
them all, if absolutely no assumption about the data has been 
made. Hence, experience is needed to make some reasonable 
assumptions about the dataset before training.

The problems in which the output data are numerical 
values are called regression problems. A large number of 
ML algorithms are available for solving such problems. For 

Fig. 4   Max. workpiece deflec-
tions �dmax in different positions 
due to different set-ups
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evaluating the most suitable regression algorithm, a selec-
tion methodology was developed by means of a morpho-
logical box. Some ML algorithms employed frequently were 
considered here.

The relevant and essential criteria, and attributes of algo-
rithms are listed in the morphological box (Table 2). The 
ones highlighted in red are an overview of the assumptions 
made for this work. The independent variables (X-coordi-
nates of clamps 1–3 and supports 1 and 2, and Y-coordinates 
of supports 1 and 2) are discrete as explained in Sect. 2 
(Fig. 2b). Due to the characteristics of all regression meth-
ods, the regression model outputs continuous predictive val-
ues for dependent variables. In addition, a multicollinearity 
test carried out by the SPSS statistics software showed that 
the input data have a very low multicollinearity. Therefore, 
all seven independent variables are usable and thus can be 
selected as input features for the ML models [61]. Thus, 
the number of input features is seven. In this study, a small 
dataset of 100 samples were collected. Compared with the 
number of features, it is also large enough to avoid or reduce 
overfitting by means of regularization, which is crucial for 
the trained model in order to have a good generalization 
performance and strong robustness.

Because of the non-linear FEM calculations, non-linear 
regression methods are desirable as well. As mentioned 
above, the technique of regularization is necessary due to 
the risk of overfitting the training set. Another characteristic 
required for the ML model is a fast learning speed for saving 
computing time. White-box models can show what regres-
sion algorithms have learnt and represented in the model. 
However, most powerful ML algorithms produce only black 
boxes, which can make excellent predictions but are incom-
prehensible though.

Compared with other algorithms, ensemble methods, 
e.g. the boosted tree algorithm XGBoost, always require 
less samples to achieve the same good prediction quality 
[62]. They create only black box models as well. Never-
theless, they enable the interpretation of the significance 
or meaning of the selected features. This can provide use-
ful information in fixture design. Hence, according to the 
criteria described in the morphological box (Table 2), 

XGBoost (its characteristics are highlighted in green) was 
chosen here to optimize the clamping concept. The deci-
sion tree (blue) known as the basic learner of XGBoost is 
also illustrated in Sect. 4.1.

In order to evaluate the reliability and reproducibility 
of XGBoost, several comparable models which are applied 
frequently (yellow) were implemented in this research. 
Section 4.3 provides a comparison of the following mod-
els: XGBoost, decision tree, multilayer perceptron (MLP), 
polynomial ridge regression, polynomial elastic net, sup-
port vector regression (SVR), random forest and k-nearest 
neighbors (kNN).

4 � Implementation of the selected regression 
methods

It is necessary to know how well the model generalizes 
to new cases after training. Hence, the data obtained in 
Sect. 2 were split up into three sets: training, validation 
and test datasets. In this study, 60 samples (the training 
set) were used for training different ML models, 20 sam-
ples (the validation set) for fine-tuning the model hyper-
parameters and the remaining 20 ones (the test set) for 
measuring generalized errors. In addition, by means of 
cross-validation, this small dataset can be effectively 
exploited.

Training an ML model means setting its parameters to 
fit the training data best. For that purpose, a measure of 
how well the model fits the training data is required. The 
root mean square error (RMSE) is generally the preferred 
performance measure for regression tasks. But in practice, 
it is simpler to minimize the MSE rather than the RMSE. 
Both have the same results [62].

The MSE and the RMSE are computed as:

and

(1)MSE =
1

n

n∑
i=1

(
yi − ŷ

)2

Table 2   A morphological box for selecting the suitable algorithms
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where n is the sample size, yi are the values to be predicted 
and ŷ are the predicted values.

The coefficient of determination R2 measures how well 
the regression predictions approximate the test dataset. 
It interprets statistically the proportion of variance in the 
dependent variable, which can be predicted from the inde-
pendent variable (Eq. 3). Normally, it ranges from zero to 
one if the regression models are selected correctly. When 
R2 equals 1, the regression predictions fit the data perfectly 
without errors. In contrast, when R2 equals 0, the target vari-
ables cannot be predicted.

The most general definition of R2 is:

where y is the mean value of yi , 
∑n

i=1

�
yi − ŷ

�2 is the residual 
sum of squares and 

∑n

i=1

�
yi − y

�2 is the total sum of squares.
For training all the ML models mentioned in this paper, 

the programming language Python and its Scikit-learn appli-
cation programming interface (API) were employed.

(2)RMSE =

√
MSE =

����1

n

n�
i=1

(yi − ŷ)2,

(3)R2
= 1 −

∑n

i=1

�
yi − ŷ

�2
∑n

i=1

�
yi − y

�2 ,

4.1 � Regression tree

Decision tree, also called regression tree for regression prob-
lems, is an individual element of tree boosting models. To 
train such ML models, the classification and regression tree 
algorithm (CART) is used. The idea is quite simple. The 
algorithm splits up the dataset into two subsets, using a sin-
gle feature x and a threshold tx . Then it searches for the pair 
(x, tx ) with which the training data has the greatest reduction 
of the MSE after splitting [62].

The loss function minimized with the CART algorithm 
is given by:

where sleft∕right is the number of instances in the left or right 
subset, and MSEleft∕right is the MSE of the left or right subset.

Regression trees as white box models are easy to under-
stand and their decision process can be easily interpreted by 
means of the Graphviz plug-in (Fig. 5) [63]. The parameters 
X in Graphviz correspond to each feature in the regression 
tree model (Table 3). “Value” in the leaves (blocks) stands 
for the value of the predicted �dmax . All training data start at 
the root of the tree from the top and are split downwards to a 
leaf. At each split, the MSE is reduced as much as possible.

(4)L(j, tj) =
sleft

s
MSEleft +

sright

s
MSEright,

Fig. 5   Regression tree represented with Graphviz (units: mm for X, μ m 2 for mse and μ m for value)

Table 3   Clarification of the 
parameters X in Fig. 5

Parameters in Graphviz X0 X1 X2 X3 X4 X5 X6

Input features Xclamp1 Xclamp2 Xclamp3 Xsupport1 Xsupport2 Xsupport1 Xsupport2
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4.2 � XGBoost

Most of the time, the summed-up prediction of a group of 
predictors, e.g. regression trees, is better than the prediction 
of the best individual model. This technique is known as 
ensemble learning, which combines several weak learners 
into a strong learner. XGBoost, developed by T. Chen et al., 
is one of the most modern algorithms in the ML field. The 
basic idea of XGBoost and other tree-boosting algorithms 
is to train the predictors one after the other, so that each tree 
is aimed at minimizing the MSE of the predecessor until 
the error can no longer be reduced [64, 65]. Training an 
XGBoost model is an iteration process. Its mathematical 
theory is as follows:

For a dataset D=
{(

Xi, yi
)}(|D|=n,Xi∈ℝ

m, yi∈ℝ
)
 with 

n samples and m features, a tree-boosting model with K addi-
tive functions can be written as:

where F =
{
f (X) = wq(X)

}
(q ∶ ℝ

m
→ T , w ∈ ℝ) is the 

space of regression trees, q represents the structure of each 
tree, and T is the number of leaves. Each fk corresponds 
to an independent tree structure q and leaf weightsw . This 
allows the predictions of each tree to be summed up as the 
final prediction.

The MSE mentioned above can be selected as loss 
function:

The objective function contains not only the loss function 
(Eq. 6) but also a regularization term Ω to reduce the com-
plexity of the model:

where Ω(f ) = �T +
1

n
�||w||2 , � and � are the parameters to 

be fine-tuned.
To predict the i-th instance at the t-th iteration, the objec-

tive function can be rewritten as:

where the first (t − 1) regularization terms can be regarded 
as the constant C.

Using a second-order Taylor’s expansion with the form:

it is possible to approximate Eq. (8) as:

(5)ŷi =

K∑
k=1

fk
(
Xi

)
, fk ∈ F,

(6)l
(
yi, ŷi

)
=
(
yi − ŷi

)2

(7)L =

n∑
i=1

l
(
yi, ŷi

)
+

K∑
k=1

Ω
(
fk
)
,

(8)L
(t)

=

n∑
i=1

l
(
yi, ŷi

(t−1)
+ ft

(
Xi

))
+ Ω

(
ft
)
+ C,

(9)f (x + �x) ≅ f (x) + f �(x)�x +
1

2
f ��(x)�x2,

where gi=�ŷ(t−1) l(yi, ŷ
(t−1)

)and hi=�2
ŷ(t−1)

l
(
yi, ŷ

(t−1)
)
 are the 

first- and second-order gradient statistics on the loss func-
tion. The constant term C can be neglected here. When the 
instance set of leaf j is defined asIj =

{
(i|q(Xi

)
= j

}
 , then 

Eq. (10) can be rewritten as follows by expanding Ω:

where Gj =
∑
i∈Ij

gi and Hj =
∑
i∈Ij

hi.

The optimal weight for a particular tree structure can be 
calculated as:

and the corresponding optimal objective function is:

Hence, the reduction of the objective function after a split 
can be calculated by:

Because of the small training dataset, the “exact greedy 
algorithm” was selected to find the best split. The model 
calculated all possible reductions of Lsplit locally at each 
split and selected the largest one without taking the global 
optimum into consideration.

Another important advantage of XGBoost is that it can 
predict the relative importance of each feature. The XGBoost 
model shows an importance sequence of all features regard-
ing the prediction of �dmax (Fig. 6). XGBoost estimates the 
feature importance by default according to the criterion of 

(10)L̃
(t)

=

n∑
i=1

[
gift

(
Xi

)
+

1

2
hif

2

t

(
Xi

)]
+ Ω

(
ft
)
,

(11)

L̃
(t)

=

n�
i=1

�
gift

�
Xi

�
+

1

2
hif

2

t

�
Xi

��
+ �T +

1

2
�

T�
j=1

w2

j

=

T�
j=1

⎡⎢⎢⎣

⎛⎜⎜⎝
�
i∈Ij

gi

⎞⎟⎟⎠
wj +

1

2

⎛⎜⎜⎝
�
i∈Ij

hi + �

⎞⎟⎟⎠
w2

j

⎤⎥⎥⎦
+ �T

=

T�
j=1

�
Gjwj +

1

2

�
Hj + �

�
w2

j

�
+ �T ,

(12)w∗
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how often the split of data instances occurs at this feature in 
the iterative process. To train this model, 1717 regression 
trees were created. The split at the feature Xclamp2 occurred 
1673 times. At Xclamp1 and Xclamp3 , the original training 
instances were split 1101 and 1015 times, respectively. Both 
influenced the prediction results to a certain extent but less 
than the Xclamp2 . The X-coordinate of the additional support 
1 ( Xsupport1 ) was relatively unimportant and had the lowest 
value of 615.

To validate the importance sequence and to reveal the 
correlation between the features and �dmax , the four features 
marked with red arrows were chosen (Fig. 6) since they 
have more distance to each other. They correspond to the 

X-coordinates of the four fixture elements (clamps 1–3 and 
additional support 1). In Fig 7, they are depicted in blue and 
arranged in ascending order. The corresponding �dmax val-
ues represented by red dots are more discrete and should be 
fitted by means of a straight regression line. Their slopes a 
were calculated as well. In this case, the greater the absolute 
value of the slope a is, the more influence a feature has on 
the target variable �dmax . More influence also means more 
importance. It was found out that the results of this correla-
tion analysis correspond to the importance sequence given 
by XGBoost. Hence, XGBoost was validated to predict the 
feature importance adequately.

4.3 � Prediction quality

Before the training, only 100 samples can be split up into 
C80

100
 different training and test sets. During the cross-valida-

tion, the remaining 80 training samples may once again be 
split into C60

80
 different training and validation sets. In reality, 

it is difficult to perform all the possible datasets. Therefore, 
the program were run many times to obtain the representa-
tive prediction models for each combination of algorithms 
and target values, thus eliminating around 25% of unstable 
results.

After training the regression tree (Fig. 8, top left), a 
value of R2 = 0.82 could be achieved for predicting �dmax . 
To predict f 0 , a value of R2 = 0.75 was reached (Fig. 8, 
top right). Compared with this individual regression tree, 
XGBoost could predict �dmax more precisely with R2 = 0.97 

Fig. 6   Importance of each feature for predicting the max. workpiece 
deflection �dmax

Fig. 7   Correlation between the 
features and the max. workpiece 
deflection �dmax
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(Fig. 8, bottom left). But for f 0 , the value of R2 was only 
0.79 (Fig. 8, bottom right).

The question had to be clarified whether a value of R2 
= 0.97 is sufficient for a reliable prediction or how high 
R2 should be in this study. The answer varied for differ-
ent requirements. Therefore, other regression algorithms 
were implemented in order to compare their results. These 
included MLP, polynomial elastic net and SVR, for all of 
which R2 is above 0.95 (Fig. 9). Hence, a value of 0.95 is 
considered to be a good criterion. The polynomial ridge 

regression, random forest, decision tree and kNN have val-
ues of R2 below this limit and thus are not usable.

None of the regression methods used works perfectly 
for predicting f 0 of the workpiece-fixture system. SVR and 
polynomial ridge regression show the best R2 value of only 
0.86. The modal analysis results of the 100 simulations con-
ducted varied greatly, although the boundary conditions are 
the same. Fig. 10 depicts the different modes of f 0 , showing 
that the lowest natural frequencies are not comparable and 
can be predicted only to a limited extent.

Fig. 8   Comparison between the 
predicted and original test data

Fig. 9   Predictive abilities of the 
different regression methods
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5 � Optimization of the clamping concept

The optimization of the clamping concept is an NP (nondeter-
ministic polynomial)—complete problem that can be solved in 
nondeterministic polynomial time. Since there are innumerable 
configuration possibilities, it is impossible to list all possible 
fixture set-ups and to perform the FEM simulations for them. 
Nevertheless, the equivalent ML model can suggest a local 
optimum among the numerous randomly generated set-ups 
with regard to minimizing unwanted workpiece deflections.

To validate this, 10,000 new possible set-ups were gen-
erated using the generation program mentioned above. The 
XGBoost model predicted the smallest value of �dmax = 125.8 
μ m and thus the best set-up. Then the FEM model had to be 
updated with the new X- and Y-coordinates (Table 4), and the 
FEM simulation had to be carried out again under the same 
boundary conditions mentioned above, resulting in a value 
of �dmax = 126.4 μ m (Fig. 11). The difference is only 0.6 μ m 
(0.47% of the FE simulation result). Such validations of the 
XGBoost model were carried out several times, and all the 
results were similar. Note that the smallest value of �dmax 
among the 100 training data is 130.4 μm.

In principle, even more fixture set-ups may be generated to 
further approximate the global optimal concept. In practice, 
designers must, however, make quick and correct decisions 
under time pressure. Due to the modern techniques used, such 
as out-of-core computing and parallelized tree building, this 
XGBoost model needed only 8 seconds to output a quasi-opti-
mal concept for positioning the fixture elements.

6 � Summary and outlook

This paper presents a new method for optimizing the 
clamping concept. A morphological box was used to sys-
tematically select the most promising regression algorithm 
based on relevant criteria. The XGBoost model trained 
with a small training dataset could perfectly predict the 
maximum workpiece deflection �dmax caused by the cut-
ting force at a certain moment. By generating numerous 
possible fixture set-ups, the XGBoost model could quickly 
offer a quasi-optimal concept to increase the static fix-
ture stiffness and to compensate the position and form 
deviations of workpieces at the design stage. In this way, 
the XGBoost model may provide a priority of fixture 

Fig. 10   Four exemplary modes at the lowest natural frequency f 0 of different fixture set-ups

Table 4   X- and Y-coordinates 
of the best set-up among 10 000 
new random configurations

Features Xclamp1 Xclamp2 Xclamp3 Xsupport1 Xsupport2 Yclamp1 Yclamp2 Yclamp3 Xsupport1 Xsupport2

Prediction [mm] 10 97 389 11 389 10 390 10 258 353
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components and support designers, facing trade-off, in 
making correct decisions. By using XGBoost, engineers 
may also derive important knowledge for evaluating dif-
ferent design variations.

In addition to �dmax and f 0 , other target variables can 
be used as output data as well. In future research, it will be 
analysed how few samples are necessary to train different 
ML models and try to reduce their number. An experimen-
tal investigation to validate the ML models will be carried 
out as well. Furthermore, Python script helps to carry out 
simulations automatically. The effort of data collection 
will be considered as well. In future work, the tool path 
based on g-code will be applied in the transient simulation 
and could optimize the clamping concept with respect to 
the whole machining process.

Whereas the optimization of the machine hardware 
requires relatively high development costs, the ML method 
offers a great potential for improving the machining accu-
racy, performance and reliability of clamping fixtures 
effectively and economically.
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