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Including lakes, reservoirs, and rivers, inland water bodies cover only a small portion of the
Earth’s surface. However, they play an important role in maintaining life on Earth, the global
water cycle, and climate change. Due to the declining number of gauge stations that provide the
in-situ data, the muti-mission satellite altimetry has been applied to the monitoring of medium
to large lakes and reservoirs, which enables computing a water-level time series with impro-
ved temporal and spatial resolution. However, inter-satellite and inter-track biases are still a
problem for multi-mission. There have been studies conducted to determine absolute altimetry
biases at calibration locations and global altimetry biases. But we still don’t know everything
about how satellites are biased over inland waters.

This thesis is dedicated to developing a method to resolve the biases between satellites and
tracks over lakes and reservoirs. Our strategy for calculating the biases between overlapping
and non-overlapping time series of water levels from various missions and tracks is based on
satellite-derived time series of water area. With the help of the estimated area by the image-
ry, the relative biases can be estimated by modeling the area-height relationship. With water
level observations and water area observations, the Gauss-Helmert model is chosen to ad-
just the area-height relationship. Due to the possible interpolating error and the gross error
in both observations, two robust estimation methods have been used to deal with outliers. One
is the expectation maximization method, which provides a robust estimate by iteratively down-
weighting the observation with large residuals, and another one is an outlier rejection method
based on Baardas’ data snooping, which detects outliers in the observations with statistical
hypothesis tests, .

In the end, we also discuss the influence of the topography on the inter-track and inter-satellite
biases. We calculate the standard deviation of the DEM of the intersaction area between the
2 km region along the track and the 5 km region along the lake to determine the relationship
between topography and biases. The results show a high correlation between the inter-track
biases and the topography.

We have employed the developed methodology on a number of lakes and reservoirs, and
the findings are compared to in-situ water level data. The results reveal the existence of the
inter-satellite and inter-track biases, which vary from the global bias estimates.
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Chapter 1

Introduction

About 3% of the Earth’s land surface is covered by lakes (Pekel et al., 2016). Although inland
water bodies, including lakes, reservoirs, and rivers, cover only a small fraction of the Earth’s
surface, they play a significant role in sustaining life on Earth, in the global water cycle, and
in climate change (Alsdorf et al., 2007). Therefore, monitoring lake water levels is important
for a better understanding of their impact on the environment and for the wise management of
freshwater resources (Shu et al., 2021).

Water level changes in lakes and reservoirs were traditionally derived from gauge data. The
gauge stations provide highly precise observations. However, due to the high cost of the instal-
lation and the maintenance of gauge stations, only small portions of lakes are monitored by the
gauge stations, especially for those in harsh environments and in remote developing countries
(Hannah et al., 2011). In the last 20 years, satellite altimetry has shown that it’s potential for
monitoring the water-level time series of the world’s major inland water bodies to close the
data gap between measurements made on the ground and measurements made from space.

Since the 1980s, more than 13 satellite missions have been launched with different radar altime-
ters on board. Table 1.1 shows the planned and launched altimetry missions since the 1980s.
Although satellite altimetry was first used to monitor sea level variation and ice sheet change
at the beginning, monitoring the water level of large lakes and rivers has been the goal of re-
search since the launch of the TOPEX/Poseidon and Envisat missions (Birkett, 1995, Crétaux
et al., 2011). ICESat-1 with laser altimeter, which was launched by the National Aeronautics
and Space Administration in January 2003 and functioned until February 2010, has benefits for
measuring water levels in small bodies of water due to its small footprint size of about 70 m
in diameter. However, compared with traditional radar satellites, ICESat-1 has short temporal
coverage and sparse sampling. On the contrary, CryoSat-2, the radar altimetry mission, has rel-
atively high spatial coverage and temporal resolution and operates in a 369-drfting orbit with
a 30-dat subcycle. Due to its orbit configuration, ICESat-2 can visit a larger number of lakes
and provide water levels for smaller lakes than any of the previous missions (Kleinherenbrink
et al., 2014).

In the last few years, much progress has been made in altimeter capability to acquire quality
measurements over inland waters. The accuracy has reached a few centimetres for lakes and
a few dozens of centimetres for rivers (Schwatke et al., 2015). The use of satellite altimetry
for inlandwater monitoring has been facilitated by the advent of two different developments
(Tourian et al., 2021):

• Open-Loop Tracking Command (OLTC)

• Operation in Synthetic Aperture Radar (SAR) mode
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The OLTC is an on-board feature used to set the altimeter waveform reception window, con-
taining a priori elevation information built from a dedicated database of hydrological targets
(Le Gac et al., 2021). With the assistance of OLTC, the SARAL/AltiKa, Jason-3, Jason-2, and
Sentinel-3 are better able to follow inland water bodies, particularly those with coarse terrain.

The Sentinel-3 family follows CryoSat-2 as the first altimeter to offer SAR mode. The im-
proved along-track resolution is accompanied by a naturally reduced level of land contami-
nation thanks to the increased along-track resolution. Due to Delay-Doppler processing, SAR
mode provides higher resolution along track (e.g. 300 km vs. a few km) than conventional
(LRM) altimetry (Jensen and Raney, 1998, Wingham et al., 2006). Meanwhile, the capability of
beam steering, which permits the measurement to be focused on a specific location, enables
the estimation of the height from the processing of echoes returned by a limited band centered
inside the river (taking advantage of the fact that water conceals a priori information). Accu-
mulation of looks from the same footprint to raise the signal-to-noise ratio, hence improving
the accuracy of the altimetric measurements and characterization of the surface reaction based
on the look angles.

On the basis of the elevation measurements obtained by several satellite radar altimeters,
databases as shown in Table 1.2 have been created to provide a time series of altimetry-derived
water level estimations for the world’s most significant inland lakes. In these datasets, the
time series of water level estimates are made by combining elevation observations from many
satellite radar altimeters and processing them in different ways.

Over lakes and reservoirs, it is often feasible to combine many altimeter missions and passes
into a single multi-mission, multi-pass time series. Based on the premise that the water level
of a lake follow an equipotential surface, this is achievable. By combining different altime-
try passes and missions, the temporal resolution of the water-level time series is increased,
depending on the number of passes over the water body (Boergens et al., 2017). However,
the differences in lake size, geographic location, surrounding topography, and land cover type
could significantly influence the accuracy of lake water levels retrieved by satellite radar al-
timeters (Maillard et al., 2015). Consequently, each radar altimetry mission covers distinct time
periods and has varying degrees of measurement precision, and the multi-mission is hindered
by inter-satellite bias. Several studies have been conducted to address the issue, with some
focusing on lakes and reservoirs in particular. But there is still a lot we don’t know about how
satellites are biased over inland waterways.

The biases can be estimated relatively and absolutely. Compared with absolute estimation of
the biases, which requires in situ data for calibration, estimation of relative biases is more ap-
plicable and has more advantages in coping with different situations on a global scale. Mean-
while, due to the different spatial and temporal resolution of different missions, only a small
portion of lakes are monitored by sufficient missions with sufficient periods of overlap, which
makes relative estimation more difficult. This lets geoid or altimetry correction errors within a
single lake and over different tracks be taken into account.

In this study, we explore the feasibility of resolving satellite biases over lakes and reser-
voirs. This study focuses on the relative biases of each tracks. To avoid the limitation of
sufficient periods of overlap, our strategy for calculating the biases between overlapping and
non-overlapping time series of water levels from various missions and tracks relies on satellite-
derived time series of surface area. The area estimated by the imaging connects the time series
and the connection between area and height offers the foundation for determining the relative
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biases. The relative biases are estimated by modeling the area-height relationship within a
Gauss-Helmert model. The power law model is selected to present the relationship between
the water area and water height. Even after retracking correction and geophysical correction,
however, altimeter measurements continue to be noisy. In addition, the interpolation error and
accuracy limitations of the interpolated water extent data will impact the quality of the results.
The expectation maximization method and local test are finally used to get rid of the effect of
outliers. This method creates a reliable estimate by changing the weights of the observations
over and over again.

We examine our technique on a small sample of lakes and reservoirs and confirm the findings
using in-situ water level data. Our findings demonstrate the occurrence of inter-satellite and
inter-track biases at the decimeter level that vary from estimates of global bias. In the end, this
study also discusses the influence of the topography on biases based on the DEM and finds a
correlation between the biases and the topography.

mission operated by life time height [km] inclination [◦] rev./day frequency
Geosat NOAA 03.1985-09.1989 785 108.0 244/17 13.5
ERS-1 ESA 07.1991-03.1996 785 98.5 501/35 13.5
TOPEX/Poseidon CNES,NASA 09.1992-01.2006 1336 66.0 127/10 13.6& 5.3
ERS-2 ESA 04.1995-09.2011 781 98.5 501/35 13.5
GFO US-Navy 02.1998-11.2008 784 108.0 244/17 13.5
Jason-1 CNES,NASA 01.2002-06.2013 1336 66.0 127/10 13.6 & 5.3
ENVISAT ESA 03.2002-04.2012 800 98.5 501/35 13.5 & 3.2
Jason-2 CNES,NASA,NOAA,EUMETSAT 06.2008-ongoing 1336 66.0 127/10 13.6 & 5.3
HY-2A NSOAS 08.2011-ongoing 971 99.3 193/14 13.58 & 5.25
ICeSat NASA 01.2003-10.2009 600 94.0 2723/183 Laser:1064&532 nm
SARAL/AltiKa ISRO,CNES 02.2013-ongoing 800 98.5 501/35 35.75
Jason-3 CNES,NASA,NOAA,EUMETSAT 01.2016-ongoing 1336 66.0 127/10 13.6 & 5.3
Sentinel-3A ESA,GMES 02.2016-ongoing 815 98.6 385/27 13.6 & 5.3
Sentinel-3B ESA,GMES 04.2018-ongoing 815 98.6 385/27 13.6 & 5.3
ICeSat 2 NASA 09.2018-ongoing 480 92.0 1387/91 Laser:1064&532 nm
HY-2B NSOAS 10.2018-ongoing 971 99.3 193/14 13.58 & 5.25
Sentinel-6 Michael Freilich EUMETSAT,NASA 11.2020-ongoing 1336 66.0 127/10 13.5
SWOT NASA,CNES 02.0222-02.2025 890 77.6 292/21 35.75

Table 1.1: Satellite altimetry missions from 1985 and their characteristics, source:(Tourian et al., 2021)

Product oprated by source Remark
Hydroweb CNES hydroweb.theia-land.fr NRT available for some lakes and rivers
River & Lake ESA altimetry.esa.int/riverlake/shared no longer maintained

DAHITI Deutsches Geodaetisches
Forschungsinstitut(DGFI),TU Munich dahiti.dgfi.tum.de Kalman filter aprroach

HydroSat Institude of Geodesy
University of Stuttgart hydrosat.gis.uni-stuttgart.de High-Rate products are available

G-REALM United States Department of Agriculture ipad.fas.usda.gov/cropexplorer/global_reservoir Lakes and reservoirs only

GRRATS The Ohio State University podaac.jpl.nasa.gov/dataset/-
PRESWOT_HYDRO_GRRATS_L2_VIRTUAL_STATION_HEIGHTS_V1 Envisat- and Jason-series over 39 rivers

AltEx USAID and NASA altex.servirglobal.net web application for exploring altimetry data
Jason-2, Jason-3 and Saral/AltiKa

C3S LWL CLS on behalf of Copernicus cds.climate.copernicus.eu/cdsapp#!/dataset/10.2438 94 selected lakes are available
Water Level Copernicus Global Land Operations land.copernicus.eu/global/products/wl NRT time series are available
on VITO CNES, LEGOS AND CLS

Table 1.2: Providers of water level time series from satellite altimetry, source:(Tourian et al., 2021)
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Chapter 2

Data and Case study

2.1 Data

2.1.1 Water level time series over lakes and reservoirs from HydroSat

Altbundle software package is used to produce the water level time series across lakes and
reservoirs in this research. Figure 2.1 describes the method for creating the standard rate water
level time series using satellite altimetry (Tourian et al., 2021).

A so-called "Virtual Station" (VS) may be calculated whenever the satellite’s ground track en-
counters a hydrological item. Typically, the boundaries of a VS are determined by the kind of
water body and the location of the altimetry track above the item. The altimetric water level is
initially determined for each sample within the VS. First, distance measurements are adjusted
for geophysical effects (solid earth tide and pole tide) and atmospheric route delays (wettropo-
spheric, drytropospheric, and ionospheric). Subtracting the adjusted range from the satellite’s
height, the water level is then determined. The reference height is converted to geoid at the
next step based on static gravity field models from XGM2019e (Pail et al., 2015), EGM2008
(Pavlis et al., 2012), or EIGEN6C3 (Förste et al., 2012). To guarantee a reliable estimate for each
overpass, the median orthometric height within the VS is used as the representative height.

2.1.2 Surface water extent from satellite imagery from HydroSat

HydroSat provides water level and surface water extent time series of lakes, reservoirs, and
river reaches using optical satellite photos. To estimate surface water extent, many spaceborne
missions develop dynamic water masks with great temporal and geographical precision. Water
masks are often created from optical pictures using pixel-based image segmentation techniques
that set a threshold in the image pixel value histogram. Pixel-based algorithms cannot create
realistic water masks, especially across rivers, despite their ease of development (Tourian et al.,
2021).

To generate a river mask, a Posterior Markov Random Field (MAP-MRF) is estimated to ac-
count for spatial interactions between pixels and temporal pixel value fluctuations. Remove
cloudy photos. Dynamic threshold water masks are created first. Joint conditional models,
energy minimization, and graphs follow. Next, graph cuts discover the MAP solution. MAP
changes the initial frequency coverage map and water masks to modify the graph. MAP so-
lution river mask for revised graph. (Tourian et al., 2021). The algorithm is presented in Fig-
ure 2.2.
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Figure 2.1: Flowchart of obtaining water level time series for a single virtual station, source: (Tourian et al., 2021)

Figure 2.2: Flow chart of generating time series of water extent, source: (Tourian et al., 2021)
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2.1.3 Digital elevation model (DEM)

NASADEM updates the Digital Elevation Model (DEM) and related products from SRTM data.
Data products were created by reprocessing SRTM interferometric SAR data. Two-dimensional
phase array and radar image interferograms improve elevation precision. Due to its nature,
interferometric data must be wrapped and unwrapped to measure. NASADEM used the lat-
est unwrapping methods and supplementary information that were unavailable during SRTM
data processing. The improved method reduced data gaps and increased SRTM geographic
coverage. The ASTER GDEM, PRISM on the Advanced Land Observing Satellite (ALOS), the
USGS National Elevation Dataset (NED), and the Global DEM Specifications for Canada and
Alaska filled more gaps. The Ice, Cloud, and Land Elevation Satellite (ICESat) mission ad-
justed data vertical and tilt using ground control points and laser profiles. This application
enhanced mosaic vertical accuracy, swath uniformity, and homogeneity. The Land Processes
Distributed Active Archive Center (LP DAAC) publishes NASADEM products with a one-
arcsecond gap.

(OpenTopography URL: https://portal.opentopography.org/datasetMetadata).

2.1.4 In Situ data

To evaluate the accuracy of the bias estimation model, in situ data is needed as comparison
data. In this study, in situ data is supplied by the USGS and ANA.

The USGS investigates the occurrence, quantity, quality, distribution, and movement of sur-
face and underground waters and disseminates the data to the public, state and local govern-
ments, public and private utilities, and other federal agencies involved with managing water
resources.

The in situ data of the lakes and reservoirs in Brazil is distributed by Natinal Water and San-
itation Agency, which is legally liable for implementing the National Water Resources Man-
agement System (SINGREH), created to ensure the sustainable use of rivers and lakes for the
current and future generations.

2.2 Case Study

In this study, 8 lakes and reservoirs all over the world are selected to test the algorithm and the
basic information of them is shown in Table 2.1, Figure 2.3 and Figure 2.4.

Maithon Dam is located 48 km from Dhanbad in the Indian state of Jharkhand. The lake is
65 km2 in size. This dam was developed specifically for flood management and generates
60,000 kilowatts of electricity. (Ghosh et al., 2018).

Falls Lake is a 50 km2 reservoir in Durham, Wake, and Granville counties in North Carolina,
United States. Falls Lake spans 45 km up the Neuse River to the junction of the Eno, Little,
and Flat rivers, its source. The lake serves as a source of drinking water for numerous local
municipalities, including the city of Raleigh, as well as a recreational area and animal habitat
(Golembesky et al., 2009).

https://portal.opentopography.org/datasetMetadata
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The TresMarias reservoir, is an embankment dam on the Sao Francisco River at TresMarias in
Minas Gerais, Brazil. It was built for the purposes of hydroelectric power generation and flood
control. The dam is 2700 m long and 75 m tall, with a spillway on its east side and a power
plant at its east base. The reservoir of the dam has a surface area of 1040 km2 and a volume of
21 km3 (Torres and Eterovick, 2010).

The Tiga Dam is in Kano State in the Northwest of Nigeria, constructed in 1971 to 1974. It is a
major reservoir on the Kano River, the main tributary of the Hadejia River. The dam covers an
area of 178 km2 with maximum capacity of nearly 2 000 000 km3 (Barau, 2007).

The Katta-Kurgan water reservoir is located in a natural depression to the south of Kattakur-
gan. The reservoir receives its water from the Kara-darya, a right tributary of the Zaravshan.
The reservoir is replenished in the fall, winter, and spring. From May to June, water is used for
irrigation purposes. The reservoir freezes briefly throughout the winter (Bakhtiyarovna et al.,
2022).

The largest lake in Ethiopia and the source of the Blue Nile is Tana Lake. The lake is roughly
84 km long and 66 km wide, with a maximum depth of 15 m and an elevation of 1788 m (Vijver-
berg et al., 2009).

Lake Arapa is a lake in Peru, located in the Arapa and Chupa Districts in the Puno Region.

Itaparica Reservoir locate in Brazil, which has a regulated inflow of 2060 m3/sec, a length of
149 km, and a sub-water basin of 93 040 km2. Maximum depth is 101 m (mean depth - 13 m)
(Gunkel et al., 2013).
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Poly ID Lake Name Lat (◦) Lon (◦) In situ data DEM Area (km3)

376 MaithonReservoir 23.78 86.79 - yes 65.67
133 Falls Lake 36.01 -78.74 yes yes 48.06
205 TresMarias reservoir -18.24 -45.34 yes yes 1039.39
233 Itaparica Lake -10.08 -42.32 yes yes 1828.13
267 Tiga Lake 11.47 8.37 - yes 178.20
357 Kattakurgan reservoir 39.79 66.20 - yes 59.22
565 Tana Lake 11.81 37.26 - yes 3055.10
1515 Arapa Lake -15.19 -70.07 - yes 126.17

Table 2.1: The list of research lakes and reservoirs

Figure 2.3: Investigated 8 lakes and reservoirs (Overall)
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(a)

(b)

Figure 2.4: Zoom in: 8 lakes and reservoirs
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Chapter 3

Methodology

3.1 Basic idea

Monitoring lake levels using data from many satellite altimeters necessitates bias correction
due to systematic inaccuracies among satellite altimeters. Given that absolute assessment of
biases needs along-track in situ data, relative calibration between the altimeters is frequently
employed to correct biases.

Typically, the relative biases are estimated by minimizing the difference of the water level time
series in overlapping period. However, a significant proportion of lakes and reservoirs are
monitored by a small number of altimetry missions without sufficient overlap intervals. There-
fore, this thesis attempts to connect the non-overlapping or overlapping time series by con-
structing the relationship between the water level and the long-term water area time series
derived from satellite image. Utilizing remotely sensed surface area time series as an anchor
for biased time series enables assessment of the relevant biases.

In this thesis, the power law model is chosen to represent the area height relationship and
the functional expression of the relationship is adjusted using the Gauss-Helmert model. How-
ever, due to the gross error existing in the water area and water level observations, the resulting
model will deviate from the real model, which will directly affect the accuracy of the bias es-
timates and even introduce the unexpected extra bias in results. The ordinary least squares
estimation, on the other hand, can not withstand the large error. Therefore, two kinds of outlier
rejection algorithms (outliers rejection based on the Baardas’ data snooping and expectation
maximization algorithm) have been sequentially introduced to reduce the influence of the er-
ror.

3.2 Relationship between the water area and water level

The relationship between the water area and water height is determined by the shape of the
shore line and riverbed, which is complicated and hard to model simply. We can assume a
linear, the second degree polynomial or power law function to fit the scatters to obtain the
expression of the relationship between the water area and water height. An example of fitting
results of the three regression model is shown in Figure 3.1 :
The fitted line using the linear function with a mean R2 of 0.792:

S = aH + H0 (3.2.1)
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(a) (b)

(c) (d)

Figure 3.1: An example of fitting results of the four regression model

The fitted line using the second degree polynomial function with a mean R2 of 0.831:

S = a(H)b + c (3.2.2)

The fitted line using the power function with a mean R2 of 0.833:

S = a(H − H0)c (3.2.3)

As shown in the Figure 3.1, although the area-height relationship varies in different lakes and
reservoirs, the scatters are better distributed near the power law function curve. By comparing
the mean R2 of different fitting function model, it can be found that power law function is a
better model for the relationship between the area and height.

After selected the based mission, the area observations H for based mission is

H = Hbased (3.2.4)

for remaining missions the the area H can be presented as

H = Hi − bi i = 1, 2, 3...n − 1(n ≥ 2) (3.2.5)

Where Hi is the observations of the remaining missions, bi is the biases relative to water level
observation of based mission and n is the number of the missions.

Because parameter bi shows high correlation with parameter H0 in power law function, the
area-height relationship will be defined with power law function without parameter H0 as

S = a(H)c (3.2.6)
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Finally, the biases estimation model is defined as following:

Sbased = a(Hbased)c
S1 = a(H1 − b1)c

...
Si = a(Hi − bi)c

(3.2.7)

To facilitate the acquisition of the initial values for GHM, we take the logarithm on both sides
of the equation so that the power law function model becomes a linear model. Thus the model
eventually becomes

log (Si) = log(a) + c ∗ log (Hi − bi)

...
log (S1) = log(a) + c ∗ log (H1 − b1)

log (Sbase ) = log(a) + c ∗ log (Hbased )

(3.2.8)

3.3 Adjustment using Gauss-Helmert model

3.3.1 Principle

The Gauss Helmert model is defined as follows (Koch, 2014):

h(x, y + e) = 0 (3.3.1)

Where the vector h is the nonlinear, differentiable functions, x is the vector of the the unknowns,
y is the vector of the observations and e is the vector of measurement errors (Koch, 2014).

Expected values ŷ of is defined with
ŷ = y + e (3.3.2)

and the covariance matrix of y and e by

D(y) = D(e) = σ2Σ = diag σ2 (σ2
1 , · · · , σ2

n
)

(3.3.3)

Where σ2 is the unknown variance factor and Σ is a known positive definite matrix.

A least squares adjustment will be used to estimate the unknowns x

1
σ2 e′Σ−1e → min (3.3.4)

As condition equations Equation 3.3.1 is nonlinear, Taylor series expansion has to be taken
using the approximate values x(0) and y(0) for the parameters and the observation.

∂h
∂x

∣∣∣∣
x(0),y(0)

(
x − x(0)

)
+

∂h
∂yE

∣∣∣∣
x(0),y(0)

(
ŷ − y(0)

)
+ h

(
x(0), y(0)

)
= 0 (3.3.5)
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After introducing the matrix A of derivatives with respect to x and the matrix of B of deriva-
tives of derivatives with respect to ŷ, The condition equation is instead by

A∆x + Be + wm = 0, (3.3.6)

where ∆x = x − x(0) and wm is the vector of misclosure

wm = h(x(0), y(0)) + B(y − y(0)). (3.3.7)

The Lagrange function is defined

w(∆x, e) =
1
σ2 e′Σ−1e − 2

σ2 k′ (A∆x + Be + wm) (3.3.8)

Where − 2
σ2 k is the Lagrange multipliers.

To minimize the 1
σ2 e′Σ−1e, the following derivatives should be zero

∂w(∆x, e)
∂∆x

= − 2
σ2 A′k (3.3.9)

∂w(∆x, e)
∂e

=
2
σ2 Σ−1e − 2

σ2 B′k = 0 (3.3.10)

residuals ê is thus obtained by
ê = ΣB

′
k. (3.3.11)

Together with Equation 3.3.10 ,the normal equations are derived∣∣∣∣ BΣB′ A
A′ 0

∣∣∣∣ ∣∣∣∣ k
∆x

∣∣∣∣ = ∣∣∣∣ −Wm
0

∣∣∣∣ (3.3.12)

After solving the normal equations, following equations can be derived:

∆̂x = −
(

A′ (BΣB′)−1 A
)−1

A′ (BΣB′)−1 wm (3.3.13)

k̂ = (BΣB)−1 (−wm − A∆̂x
)

(3.3.14)

ê = ΣB′ (BΣZ′)−1 (−wm − A∆̂x
)

(3.3.15)

Therefore, we can get
ê′Σ−1ê = −k̂′wm (3.3.16)

The unbiased estimate σ̂2 of σ2 the variance factor is calculated by

σ̂2 =
1

r − u
ê′Σ−1ê (3.3.17)

For Gauss Newton iterations, the initial approximate values x(0) and y(0) is needed for the first
iteration, where y(0) is set to y.

The solution ∆̂x(0) and ê(0) is given by x̂(0) = x(0)+ ∆x̂(0), ŷ(0)
E = y + ê(0).
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At the k th iteration, the approximate values for Taylor expansion

x(k) = x̂(k−1), y(k) = ŷ(k−1)
E (3.3.18)

and estimates is given

x̂(k) = x(k) + ∆̂x
(k)

, ŷ(k)
E = y + ê(k) (3.3.19)

The convergence is checked by
∣∣∣x̂(k) − x(k)

∣∣∣. Initial values have a significant impact. If the
variances between the initial and actual values are too large, the function may converge to the
local minimum rather than the global minimum, or it may not converge at all.

To facilitate the acquisition of the initial values for GHM, the logarithm has be taken on both
sides of the equation so that the power law function becomes a linear model. Thus, the un-
known parameters a and c can derived in linear model using Gauss-Markov model with hold-
ing the water level Hbased fixed as

log (Sbase ) = log(a) + c · log (Hbased ) (3.3.20)

The initial unknown parameter bias b0
i are calculated robustly by mean water level difference

relative to based mission shown as

b0
i = mean (Hbased )− mean (Hi) (3.3.21)

Iteration of the Gauss-Helmert model is shown in Figure 3.2
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Figure 3.2: Flow chart of Gauss Helmert Model
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3.4 Outlier Detection

Even after applying re-tracking adjustments and geophysical corrections, altimeter measure-
ments are still fairly noisy. However the power model adjusting by Gauss-Helmert model is
very sensitive to the outliers. Once the area-height points are dispersed due to the error in
area and height observations, the fitting results becomes poor even iteration can not converge.
In consequence, the fitting relationship between water area and water surface height will dif-
fer from reality and the extra biases will be introduced to final biases estimation. Therefore a
robust estimation method is needed to improve the accuracy of the biases adjustment.

Since it is very difficult to remove all outliers by a certain method, a combination of various
outlier criteria is often used. Two steps for outlier detection were implemented in this study.
First, the outlier rejection based on the Baarda’s data snooping is utilized to detect and elim-
inate the outliers with large residuals, employing statistical hypotheses to find outliers in the
observations. The expectation Maximization (EM) algorithm, which decreases the effect of the
outliers in GHM by repeatedly down-weighting the related observation, is presented to lessen
the influence of outliers that cannot be discovered by the outlier rejection approach based on
Baarda’s data snooping.

3.4.1 Outliers rejection based on the Baardas’data snooping

3.4.1.1 Principle

Baardas’ data snooping, which uses statistical hypothesis testing in the GH model to find out-
liers in the observations, is used in this part to implement the outliers rejection. Assuming
that there is just one outlier, ∇i, i = 1, · · · , n, which will be characterized as bias and used as
an estimable deterministic parameter, the observation model becomes (Ettlinger and Neuner,
2020)

y = Ey − ci∇i − e

with y ∼ N(Ey, σ2Σyy) and e ∼ N(0, σ2Σyy)
(3.4.1)

If ∇i = 0, one arrives at the observation model used in the GHM. Using the linearized func-
tional model which is same to that in GHM, two following equivalent null hypothesis can be
formulated (Ettlinger and Neuner, 2020)

H0 : ∇i = 0 ≡ w + Adx̂ + Bê = 0 (3.4.2)

HA,i : ∇i ̸= 0 ≡ w + Adx̂′ + Bê′ + bi∇̂i = 0 (3.4.3)

With the new introducing parameter ∇̂i, dx̂′ and ê′ will be numerically different from those in
H0. However, w, A and B keep the same where misclosure vector w ∈ Rb×1, design matrix
A ∈ Rb×u and observation matrix B ∈ Rb×n (Ettlinger and Neuner, 2020).

Under the premise that the error from linearization is minor compared to the systematic devi-
ation induced by ∇̂i, all further deductions will be made relative to the initial iteration.
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Following test value is applied, using a priori variance of unit weight σ2
0 .

TF(∇i) =
∇̂2

i
σ2

0 · q∇̂i

∼ F1,inf | H0 (3.4.4)

TF(∇i) =
∇̂2

i
σ2

0 · q∇̂i

∼ F1,inf,λFi
| HA′

i
(3.4.5)

TN(∇i) =
∇̂i

σ0

√
q∇̂i

∼ N(0, 1) | H0 (3.4.6)

TN(∇i) =
∇̂i

σ0

√
q∇̂i

∼ N(λN, i, 1) | HAi (3.4.7)

The square root of
√

TF(∇i) follows the central standardized normal distribution N(0, 1) in
case of H0 is true and otherwise it follows the non-central standardized normal distribution
N(λN,i, 1) with non-centrality parameter λN,i, 1 (Ettlinger and Neuner, 2020).

Test values TF(∇i) and TN(∇i) for the i-th observation is computed as:

TF(∇i) =
k̂TbibT

i k̂
σ2

0 · bT
i Qk̂k̂

=
êTBT N−1bibT

i N−1Bê
σ2

0 bT
i N−1BQêBT N−1bi

(3.4.8)

TN(∇i) =
bT

i k̂

σ0

√
bT

i Qk̂k̂bi

=
bT

i N−1Bê

σ0

√
bT

i N−1BQêBT N−1bi

(3.4.9)

∇̂0,i,TN(∇i) will be used for the derivation of the minimal detectable bias (MDB). It is an essen-
tial measure of inner reliability and specifies how large an outlier in the i-th observation must
be for it to be identified by a statistical test with a predefined significance level α0 and power
β0. Since these three numbers are not independent of one another, setting α0 and β0 implies a
fixed λ0,N . λ0,N can be calculated with

λ0,N ≈ ϕ−1(1 − α0

2
) + ϕ−1(β0) (3.4.10)

where ϕ−1 is the inverse of the density function of the standard normal distribution. An outlier
may be identified at levels α0 and β0 if it results in a non-centrality larger than λ0,N . This limit
is equivalent to the MDB.

∇̂0,i = λ0,N · σ0 ·
√

q∇̂i
=

λ0,N · σ0√
bT

i Qk̂k̂bi

=
λ0,N · σ0√

bT
i N−1BQêBT N−1bi

(3.4.11)
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Since Qll is a diagonal matrix, ∇̂i, q∇i , TN(∇̂0,i) and ∇̂0,i can be calculated more simply.

q∇̂i
=

qli
rii

(3.4.12)

∇̂i =
ei

rii
(3.4.13)

TF(∇i) =
e2

i
σ2

0 · qli · rii
(3.4.14)

TN(∇i) =
vi

σ0 ·
√qli rii

(3.4.15)

∇̂0,i = λ0,N · σ0

√
qli
rii

(3.4.16)

Here, rii are the diagonal elements of the redundancy matrix.

R = QêêQ−1
yy = Qll BT N−1

(
I − A

(
AT N−1A

)−1
AT N−1

)
B (3.4.17)

Which is also called redundancy numbers.

Under the premise that there is only one unknown outlier, each observation must be checked,
resulting in n local tests or alternative Hypothesis HA, i. To translate the preceding ideas into
the context of DIA, it is necessary to specify the detection stage. After each adjustment task, a
global exam should be performed (Ettlinger and Neuner, 2020).

TF(σ
2
0 ) =

σ̂2
0

σ2
0
=

v̂TQ−1
ll v̂

(b − u) σ2
0
∼ Fb−u,inf | H0 (3.4.18)

TF(σ
2
0 ) =

σ̂2
0

σ2
0
∼ Fb−u,inf,λF,i | HA,i (3.4.19)

The global test may also serve as the detection stage, revealing whether or not observations
include outliers. The significance number α of the global test TF(σ

2
0 ) as well as the significance

numbers α0 of the n local tests TN(∇i) (or TF(∇i)) have to be matched by using the Bonferroni
equation

α0 ≈ α

n
(3.4.20)

such that all the tests have similar sensitivity to an outlier (Ettlinger and Neuner, 2020). The
flowchart of the local test is shown in Figure 3.3.
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Figure 3.3: Flow chart of local test based on Baarda’snooping
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3.4.2 EM algorithm based on the variance-inflation model

3.4.2.1 Principle

To In this section, the EM algorithm is introduced for robust estimation (Koch, 2014).

In the EM algorithm, the unknown independent weight wii ∈ {1, . . . , n} for observation yi will
be introduced as missing data which gets the gamma distribution.

According to Equation 3.3.2 and Equation 3.3.3, the following normal distribution is given:

ei | wi ∼ N
(
0, σ2σ2

i /wi
)

(3.4.21)

In the EM algorithm for the GH model, The unknown parameters vector x′, unkonwn variance
σ2 and unknown degree of freedom v are collected together in the vector Θ as

Θ =
∣∣x′, σ2, e

∣∣′ (3.4.22)

the EM algorithm have two steps which are applied iteratively. In the expectation step the
log-likelihood function log p(e, w | Θ) is defined which is the function of Θ with given e. The
conditional expectation Q

(
Θ, Θ(t)

)
of log p(e, w | Θ) with respect to the conditional density

p
(

w | e, Θ(t)
)

for w given e and the current estimate Θ(t) of the unknown parameters follows
from citep13

Q
(

Θ, Θ(t)
)
= E

(
log p(e, w | Θ) | e, Θ(t)

)
=
∫
W

log p(e, w | Θ)p
(

w | e, Θ(t)
)

dw
(3.4.23)

where W is the domain of w. Thus, the weights wi are integrated out and replaced by their
conditional expectations which are denoted by w(t)

i and result from citep13

W(t)
i =

v(t) + 1

v(t) + e2(t)
i /

(
σ2(t)σ2

i

) (3.4.24)

in which large residuals e(t)i implies small weights w(t)
i .

After Substituting w(t)
i in Q

(
Θ, Θ(t)

)
, W(t) = diag

(
w(t)

1 /σ2
1 , . . . , w(t)

n /σ2
n

)
is derived.

Q
(

Θ, Θ(t)
)
=− 1

2σ2 e′W (t)e

− n
2

log σ2 +
nv
2

log v − n log Γ
(v

2

)
+

nv
2

[
Ψ

(
v(t) + 1

2

)
− log

(
v(t) + 1

)
+

1
n

n

∑
i=1

(
log w(t)

i − w(t)
i

)]
(3.4.25)

where constants have been neglected and ψ(. . .) denotes the psi function.
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In the maximization step, new estimate Θ(t+1) is derived through maximizing the

Θ(t+1) = arg max
Θ

Q
(

Θ, Θ(t)
)

(3.4.26)

Maximizing the expectation Q
(

Θ, Θ(t)
)

can be achieved by minimizing the e′W (t)e. Therefore

the unknown parameter estimates x(t) and residuals ê(t) can be derived by GH model with Σ =
W−1(t) (Koch, 2014).

Unknown parameter σ2 results from

∂

∂σ2 Q
(

Θ, Θ(t)
)
= − n

2σ2 +
1

2 (σ2)2 e(t)
′
W (t)e(t) = 0 (3.4.27)

Therefore, σ2(t) = 1
n e(t)

′
W (t)e(t).

The estimate V(t+1) of v is obtained from

log v(t+1) − ψ

(
v(t+1)

2

)

+

[
ψ

(
v(t) + 1

2

)
− log

(
v(t) + 1

)
+

1
n

n

∑
i=1

(
log w(t)

i − w(t)
i

)
+ 1

]
= 0

(3.4.28)

V(t+1) can only be solved by searching methodically within a certain interval for a zero solu-
tion.

Iteration begins using the biased estimates x(1) and σ2(1) from the first GHM iteration. For the
first approximation v(1), if there are many outliers in observations, v > 2 and when no outliers
exist inobservaions v = 120. In the end, w(1)

i results from x(1) and σ2(1). Outliers with Large
residuals are iteratively down-weighted by changing the weight. The convergence is checked
by the differences of Q

(
Θ, Θ(t)

)
of subsequent iterations or the difference of unknown Θ(t).

The iterations have to be performed repeatedly with v(t+1) as approximation v(1) until there is
no dependence on v(1) (Koch, 2014).

The flow chart of the algorithm is shown in Figure 3.4.
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Figure 3.4: the flowchart of the EM algorithm
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Chapter 4

Results and analysis

Now we apply our algorithm to determine the inter-track biases. As mentioned before, 8 lakes
and reservoirs have been investigated to test the algorithm. With the time series and water ex-
tent data, the inter-track biases are estimated based on the height-are relationship in the Gauss-
helmet model. To decrease the influence of the outliers, both two outlier rejection methods are
used to provide the robust estimation. In this chapter, firstly, the results of the bias estimation
will be presented. Secondly, we will analyze the relationship between the inter-track biases and
topography.

4.1 inter-track biases

4.1.1 Estimate the bias in Gauss-helmet model without outlier rejection

To investigate the influence of the outliers and validate the necessity of the outlier rejection,
inter-track biases are estimated in the Gauss-helmet model without outlier rejection at first. To
judge the quality of the results, Sobradino Lake and TresMarias Lake, as shown in Figure 4.1
and Figure 4.2, were chosen to estimate the biases. The area-height scatters with fit cueve and
multi-track time series after biases correction have been shown in Figure 4.1 through Figure 4.4,
and the RMSE of the model and RMSE referring to in-situ data are displayed in Table 4.1

Poly ID Name Standard deviation of residuals (m) RMSE (m)

233 Itaparica reservoir 1.3118 1.2506
205 Repressa TresMatrias reservoir Lake 0.6522 0.9506

Table 4.1: The results of the estimation without rejection
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Figure 4.1: Raw water level time series of the case Itaparica reservoir

Figure 4.2: Raw water level time series of the case Repressa TresMatrias reservoir

Due to the effect of the outliers in both observations, the findings of the Gauss-Helmet model’s
performance are not always desirable. As shown in Figure 4.3, there are distinct and obvious
outliers distributed away from the fitted curve, which distort the fitting results relative to the
true value. The distortion will result in wrong biases even extra unexpected biases in time
series. In Figure 4.4, We can see that there was a very small deviation between raw water level
time series from the S3A track 689 and J2 track 24, but after the correction of the biases, an extra
significant deviation was introduced.

One possible source of outliers is the interpolation error. The sampling time of the water area
observation varies from lake to lake, and the sampling time of the water level observation
also varies from mission to mission due to the different temporal resolution of the satellites.
Thus, the interpolation of the water area is necessary to acquire the water area data and the
water level observation at the same epoch. However, interpolation errors will occur during the
interpolation, especially when the sampling interval of the water area observation is large and
the water level changes rapidly in a short time.
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In the meanwhile, the influence of the uncertainty of the area and height observations can not
be ignored. For the water level observations, although the water level time series used in this
study has been processed by re-tracking and outlier rejection, there are still a small number of
outliers in the final results. The accuracy of the observation is also limited by the water extent,
which is derived from the optical satellite imagery.

In addition, it is noticeable that the water level observations from satellite Jason 3 track
24 are much higher than those from sential sentinel 3A track 689 in the case of Itaparica
reservoir. when water level lower than about 387 m, the pattern of area-height scatters from
Jason2 and Jason3 shows an odd curve that differs from other missions. However, when the
water level increase higher than 387 m, the trend is identical to that of the other missions. The
reason can be determined from water occurrance frequnency map in the area plot. As seen in
Figure 4.33, the portion of the river where the Topex missions pass is narrow, shallow, and far
from the river’s main channel. Once the water level declines, this section is likely to dry out
and separate from the main body of the lake, resulting in a river with a different height than
the main body. This why the water level observations from the track crossing this district is
lower than that from the track crossing the main body of the lake.
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Figure 4.3: Area-height figure of the case Itaparica reservoir without outlier rejection

Figure 4.4: Biases corrected water level of the case Itaparica reservoir without outlier rejection

Sat Track J2 24 (base) En 906 EnI 177 EnI 622 SA 663 SA 906 S3B 104 J3 24 S3A 689

Bias (m) 0 0.296 0.161 0.037 -0.904 -1.165 -1.243 -0.470 -1.967

Uncertainty (m) 0.000 0.034 0.201 0.076 0.140 0.048 0.0.092 0.016 0.031

Table 4.2: The final inter-track biases of Itaparica reservoir
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Figure 4.5: Area-height figure of the case Repressa TresMatrias reservoir without outlier rejection

Figure 4.6: Biases corrected water level time series of the case Repressa TresMatrias reservoir without outlier
rejection

Sat Track S3B 760 (base) En 448 En 463 EnI 5 SA 448 SA 463 S3B 119

Bias (m) 0.000 0.965 0.020 0.823 -1.484 -1.638 0.352

Uncertainty (m) 0.000 0.290 0.220 0.347 0.405 0.370 0.367

Table 4.3: The final inter-track biases of Repressa TresMatrias



30 Chapter 4 Results and analysis

4.1.2 Outlier rejection using local test based on Baardas’ data snooping

As mentioned in chapter 3, the algorithm starts with local test based on Baardas’snooping,
which aims to detect and eliminate outliers with large residuals in the observations with statis-
tical hypothesis tests (Ettlinger and Neuner, 2020). Therefore the preset significant number of
the global tests was set relatively large α = 0.1 and the power was set to β = 0.8. Meanwhile,
the priori variance of the unit weight σ2 is needed, which is set to 1 in this study for all cases.
After applying the local test, the quality of the results are shown in Table 4.4.

Poly ID Name Standard deviation of residuals (m) RMSE (m)

233 Itaparica reservoir 0.3370 0.6433
205 Repressa TresMatrias reservoir Lake 0.1962 0.2304

Table 4.4: The results of the estimation with EM algorithm

Figure 4.7 shows the test values TN(∇N) of the n local tests for identifying the erroneous ob-
servations. It can be seen, that the erroneous point is correctly identified but not specifically
single type of observations. Both water area and water level observations are identified as be-
ing subject to an outlier. As the observations with large residuals was successfully detected
and removed, RMSE and RMSE refer to in-situ data for both case have decreased significantly
comparing the Table 4.1 and Table 4.4. From Figure 4.8 through Figure 4.11, it is also clear that
while the majority of outliers with latge residuals have been successfully identified by the algo-
rithm, some observations with relatively small error still exist, due to relatively large preseted
significant number of the global tests. Consequently, the additional outlier rejection procedure
to reduce the impact of the undetected outliers is required.
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(a)

(b)

(c)

Figure 4.7: local test with corresponding critical values (red horizontal lines). The values exceeding α0/2 and
1 − α0/2 are filled with red color.
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Figure 4.8: Biases corrected water level time series of the case Itaparica reservoir with local test

Figure 4.9: Biases corrected water level time series of the case Itaparica reservoir with local test

Sat Track J2 24 (base) En 906 EnI 177 EnI 622 SA 663 SA 906 S3B 104 J3 24 S3A 689

Bias (m) 0 0.522 -0.112 0.138 -0.762 -0.971 0.333 0.302 -0.450

Uncertainty (m) 0.000 0.013 0.062 0.026 0.042 0.019 0.028 0.006 0.013

Table 4.5: The inter-track biases of Itaparica reservoir estimated by local test
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Figure 4.10: Area-height figure of the case Repressa TresMatrias reservoir with local test

Figure 4.11: Biases corrected water level time series of the case Repressa TresMatrias reservoir with local test

Sat Track S3B 760 (base) En 448 En 463 EnI 5 SA 448 SA 463 S3B 119

Bias (m) 0 0.417 -0.091 1.100 -0.420 -0.398 -0.110

Uncertainty (m) 0.000 0.037 0.026 0.054 0.059 0.052 0.043

Table 4.6: The inter-track biases of Repressa TresMatrias reservoir estimated by local test
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4.1.3 Outlier rejection EM algorithm

To further reduce the impact of the outliers, the Expectation Maximization algorithm (EM)
applied. RMSE and RMSE refer to in-situ data are shown in Table 4.7

Poly ID Name Standard deviation of residuals (m) RMSE (m)

233 Itaparica reservoir 0.3370 0.5833
205 Repressa TresMatrias reservoir Lake 0.1852 0.2152

Table 4.7: The results of the estimation with EM algorithm

As mentioned in chapter 3, the expectation maximization algorithm decreases the influence of
the outliers by down-weighting the corresponding observations. 10 points of the observation
in the case of Sobradino lake are selected to illustrate how the weight of the outliers with large
residuals changes iteratively. Tables Table 4.8 to Table 4.11 show the details of points in 4
iterations by increasing weights. From the table, we can see the residuals of points 35, 37, 25.17
are significantly larger than the others. The weight of point number 35 has jumped from 0.729
to 0.592 after 4 iterations.

Point number Residual ei (m) Weight wi

35 1.9251 0.729
37 1.0284 0.802
25 0.5401 0.961
17 -0.4558 0.974
113 -0.0811 1.223
162 0.0171 1.410

Table 4.8: iteration =1

Point number Residual ei (m) Weight wi

35 2.0421 0.652
37 1.0293 0.795
25 0.548 0.912
17 -0.4372 0.988
113 -0.0805 1.245
162 0.0169 1.419

Table 4.9: iteration = 2
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Point number Residual ei (m) Weight wi

35 2.0453 0.631
37 1.0284 0.802
25 0.5401 0.961
17 -0.4558 0.974
113 -0.081 1.223
162 0.0167 1.427

Table 4.10: iteration = 3

Point number Residual ei (m) Weight wi

35 2.0621 0.592
37 1.0317 0.713
25 0.5372 0.982
17 -0.4531 0.978
113 -0.0538 1.392
162 0.0161 1.824

Table 4.11: iteration = 4

With slightly changes in weight of the outliers during every iteration, the EM algorithm based
on the variance -inflation model converge with the degree of the of the v after 734 iterations
in the end. From Figure 4.12 to Figure 4.15, it is clearly that the the time series from the sev-
eral tracks converge into a single, continuous time series after removing the biases and out-
liers. After taking two outliers rejection algorithm, we can observe from Table 4.12 through
Table 4.13 that the estimated distances between the tracks have been computed successfully at
the decimeter level.

The results of remaining 6 lakes and reservoirs have been presented in Figure 4.16 to Fig-
ure 4.21. Clearly, the algorithm relies on the quality of the fit line between height and area
scatters. The area and height scatter plot indicates that, in addition to the inaccuracies in area
and height observations, the bias estimate process is also sensitive to the riverbank slope. When
the riverbank slope is very steep, the change in water area is insensitive to the change in water
level, resulting in the dispersion of area-height plots. In this scenario, it is difficult for an algo-
rithm to fit the relationship between lake height and area. When the riverbank is more sloping,
a little change in water level will result in a significant change in area observation, resulting
in more concentrated area-height plots. In this instance, relationship between water area and
height is clear and easier to be be determined by fit algorithm.
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Figure 4.12: Area-height figure of the case Itaparica reservoir with EM algorithm

Figure 4.13: Biases corrected water level time series of the case Itaparica reservoir with EM Algorithm

Sat Track J2 24 (base) En 906 EnI 177 EnI 622 SA 663 SA 906 S3B 104 J3 24 S3A 689

Bias (m) 0 0.6365 -0.051 0.148 -0.784 -0.991 0.364 0.312 -0.446

Uncertainty (m) 0.000 0.013 0.063 0.027 0.033 0.016 0.024 0.006 0.013

Table 4.12: The inter-track biases of Itaparica reservoir estimated by EM algorithm
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Figure 4.14: Area-height figure of the case Repressa TresMatrias reservoir with EM algorithm

Figure 4.15: Biases corrected water level time series of the case Repressa TresMatrias reservoir With EM algorithm

Sat Track S3B 760 (base) En 448 En 463 EnI 5 SA 448 SA 463 S3B 119

Bias (m) 0 0.407 -0.095 1.093 -0.413 -0.523 -0.110

Uncertainty (m) 0.000 0.037 0.025 0.053 0.055 0.052 0.041

Table 4.13: The inter-track biases of Repressa TresMatrias estimated by EM algorithm
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Figure 4.16: The final result of Arapa Lake

Figure 4.17: The final result of FallsLake
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Figure 4.18: The final result of Kattakurgan Lake

Figure 4.19: The final result of Maithon Reservoir
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Figure 4.20: The final result of Tana Lake

Figure 4.21: The final result of Tiga Lake
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Sat Track S3A 648 (base) EnI 854 SA_f 994 J1 165 J2 165 J3 135

Bias (m) 0 -0.655 -1.112 0.199 3.073 2.404

Uncertainty (m) 0.000 0.032 0.042 0.035 0.037 0.048

Table 4.14: The inter-track biases of Arapa Lake

Sat Track J2 76 (base) En 738 EnI 712 SA 738

Bias (m) 0 -0.058 1.06 -0.584

Uncertainty (m) 0.000 0.021 0.031 0.027

Table 4.15: The inter-track biases of FallsLake

Sat Track J3 218 (base) S3B 296 CS2 0 IS2 0

Bias (m) 0 -0.055 -37.314 -1.376

Uncertainty (m) 0.000 0.153 0.231 0.159

Table 4.16: The inter-track biases of Kattakurgan Lake

Sat Track En 152 (base) SA 152 S3A 393 CS2 0 IS2 0

Bias (m) 0 -0.896 -1.8 -55.667 -0.71

Uncertainty (m) 0.000 0.109 0.117 0.116 0.115

Table 4.17: The inter-track biases of Maithon Reservoir

Sat Track J2 94 (base) En 141 En 442 EnI 199 EnI 300 J1 94

Bias (m) 0 0.157 0.075 0.509 0.625 -0.23

Uncertainty (m) 0.000 0.023 0.022 0.028 0.028 0.021

Sat Track S3A 169 S3B 754 CS2 0 IS2 0 IS2 0

Bias (m) 0.301 0.353 -0.436 1.971 1.971

Uncertainty (m) 0.021 0.023 0.031 0.022 0.022

Table 4.18: The inter-track biases of Tana Lake

Sat Track En 158 (base) En 859 EnI 762 SA 158 SA 859 S3A 485 IS2 0

Bias (m) 0 0.541 2.116 0.463 0.648 1.007 1.853

Uncertainty (m) 0.000 0.039 0.040 0.073 0.043 0.045 0.045

Table 4.19: The inter-track biases of Tiga Lake
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4.2 Influence of the Topography

As mentioned in chapter 1, the inter-track biases could be influenced the differences in lake size,
geographic location, surrounding topography, and land cover type. This section focuses on the
effect of the topography along the track and surrounding lakes based on standard deviation
of the elevation and mean slop of the area, with the help of the NASADEM. The target area is
defined as the overlapping area of the buffer along the track and the buffer along the lake bank.
Since Footprints are varied with the different missions and size of effective footprints decreases
due to undulation of the terrain, the buffer along the track is designed to be a rectangular with
8 km width for all lakes. The buffer along the river is defined by the area along the river shape
file with 8 km width. To accelerate the calculation, the buffer along the missions except the
Saral/AltiKa and ICESat2 is calculated by the nominal orbit and the DEM have been been
down sampled for large lakes.

4.2.1 Mean slope estimated

The mean slope indicates how rapidly the elevation changes around the river. The elevation
difference is estimated by the mean slope calculated from the gradient in the buffer. Thus, we
interpolate the elevation value in the buffer with a fixed step length. The along-track gradient
and the elevation difference can then be computed by

∇E′
i =

E′
i − E′

i−1

di

Elevation difference = ∇̄E′

where E′
i is the elevation value, which is interpolated in the buffer, n is the number of elevation

values interpolated in the buffer.

The inter-track biases in this study are calculated relatively, which means the positive and neg-
ative signs of the biases in the topography analysis have no meaning. Therefore, the absolute
values of inter-track biases are used to investigate the relationship between the biases and the
mean slop of the topography. The results are shown from Figure 4.22 to Figure 4.29.

4.2.2 Elevation variance estimated for topography

The variance of elevation indicates how large the elevation changes around the river are. The
lake with highly undulating surroundings has a larger standard deviation, especially for those
near the mountains and hills. By selecting places in the buffer zone and calculating the standard
deviation, root-mean-square of the difference between the real elevation and the mean height,
elevation variation is determined as

Ē =
∑n

i=1 Ei

n

Elevation variance =

√
∑n

i=1 (Ei − Ē)2

n
Where n is the number of points within the buffer.

The results are shown from Figure 4.30 to Figure 4.37.
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Figure 4.22: The mean slope and bias figure of Itaparica reservoir

Figure 4.23: The DEM area plot of Itaparica reservoir



44 Chapter 4 Results and analysis

Figure 4.24: The mean slope and bias figure of Arapa Lake

Figure 4.25: The DEM area plot of Arapa Lake
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Figure 4.26: The mean slope and bias figure of TresMarias Reservoir

Figure 4.27: The DEM area plot of TresMarias Reservoir
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Figure 4.28: The mean slope and bias figure of Tana reservoir

Figure 4.29: The DEM area plot of Tana reservoir
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Figure 4.30: The topography and bias figure of Arapa Lake

Figure 4.31: The water occurrance area plot of Arapa Lake
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Figure 4.32: The topography and bias figure of Itaparica Lake

Figure 4.33: The water occurrance area plot of Itaparica reservoir
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Figure 4.34: The topography and bias figure of TresMarias Reservoirs

Figure 4.35: The water occurrance area plot of TresMarias Reservoirs
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Figure 4.36: The topography and bias figure of Tana Lake

Figure 4.37: The water occurrance area plot of Tana Lake
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4.2.3 Analysis of the influence of the topography

Both elevation variance and mean slop do not show significant correlation with inter-track
biases and scatter plots are quiet noisy. The main reasons are as follows:

• The buffer for topography calculation is determined based on nominal orbits of missions
except Saral/Altika and ICESat2, which differ from actual satellite orbit. Therefore, we
can see from Figure 4.30 and Figure 4.34 that, although the observations come from the
same track with same topography, relative biases differ significantly.

• As mentioned before, the shape of the water body and water occurrance also have impact
on the bias estimation. From Figure 4.33, we can see that different parts of the river have
different water occurance and river width, which will make the water level observation
from different orbit inconsistent with each other in same period. However, comparing
DEM area plot (Figure 4.23) and the water occurance area plot (Figure 4.33), we can see
that this influence can not reflect from DEM data. Therefore, comparing with other case,
the mean slope and bias figure of Itaparica reservoir (Figure 4.23) is noisier and more
dispersed.

Ignoring the influence of the norminal orbit and observation from CryoSat-2, we can still find
that those missions with topograph smaller than based missions show a negative correlation.
However, those missions with topography larger than based missions show a positive correla-
tion. The greater the elevation variance difference compared to the based track is, the greater
the inter-track bias is.

4.2.4 Analysis water level biases between different satellites

The baises between different satellites have been shown in Figure 4.38 and Figure 4.39. Because
the biases between CryoSat and other satellites are significantly larger, only biases based on
the satellites except CryoSat have been plotted. Although, due to the limited number of study
cases, we are unable to determine the fixed biases between various satellites using mean inter-
satellite biases, which are easily influenced by special situations, we can still find that:

• As it shown from Table 4.14 to Table 4.19, CryoSat has bigger mean biases than other
satellites, particularly with EnviSat, Saral\Altika, Jason 3, Sentinel 3A, Sentinel 3B and
ICESat2. It is also notable that the mean biases of cryoSat, Envisat, Jason 3, and Sentinel
3B are similar whcih are approximately 20 m.

• For the remaining missions, mean baises are relatively small, ranging from 0.01 m to
4.19 m, and mostly distributed in the interval of 0.5 m to 1.5 m.

• Furthermore, it can be observed that the inter-satellite biases between some pairs of satel-
lites have a relatively limited variance compared to others, indicating the existence of
probable fixed inter-satellite biases. Taking biases relative to Jason 2 as an example, the
variance of biases between Jason 2 and Envisat, Saral\Altika is relatively minor when
compared to those of other individuals.
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Figure 4.38: The plot of the mean inter-mission biases
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Figure 4.39: The heatmap of the mean inter-mission biases
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Chapter 5

Conclusion and outlook

5.1 Summary and conclusion

In the last few decades, satellite altimetry has been extensively used to determine the sur-
face level of inland water bodies. However, inter-satellite bias is still a problem for the multi-
mission. In this thesis, bias is estimated based on the track rather than satellites. To estimate
the biases between overlapping and non-overlapping water level time series, the time series
of surface area derived from imagery is used to construct the area-height relationship, which
allows the relative biases to be estimated.

The primary contributions of this thesis can be summed up as follows:

• We compared four fitting models and chose the power model to construct the relationship
between the water extent and water level.

• Choose the Gauss-Helmet model for bias adjustment and address the source of the out-
liers.

• Due to the outliers existing in observations, the Expectation Maximization (EM) algo-
rithm and local test are applied for robust estimation.

• Investigate the influence of the topography on the biases by calculating the DEM standard
deviation and mean slope of each track.

We have applied our bias estimation model over 8 lakes and calculated the elevation difference
and mean slope to investigate the influence of the topography. Finally, the validation shows
that the proposed method can determine the inter-biases in diameter.

5.2 Outlook

Although inter-track biases may be calculated in diameter by establishing the link between
water area and water height, the accuracy of the entire technique is highly dependent on the
precision of water area observations. Despite the application of outlier rejection techniques
such as the expectation maximization approach and the local test, the error of the water area
cannot always be eliminated. Thus in future research, one might offer a novel strategy for
detecting and eliminating outliers. In addition, the algorithm in this study does not account
for overlapping time series, which are more trustworthy and make it easier to identify outliers.
Thus, we may enhance the density and weight of the data in time periods that overlap, which
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can improve the accuracy of the results. In the meanwhile, the method is inapplicable without
area observation. Consequently, we anticipate a method that may estimate biases based solely
on time series. In addition, the power model was applied to all examples in this study, which
may not be appropriate for all lakes. Using the DEM and optical satellite photos, it is possible
to establish a more exact link between the area and water level.
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