
Journal of Statistical Physics (2022) 186:3
https://doi.org/10.1007/s10955-021-02845-8

The Two Scaling Regimes of the Thermodynamic Uncertainty
Relation for the KPZ-Equation

Oliver Niggemann1 · Udo Seifert1

Received: 14 June 2021 / Accepted: 25 October 2021 / Published online: 18 November 2021
© The Author(s) 2021

Abstract
We investigate the thermodynamic uncertainty relation for the (1 + 1) dimensional Kardar–
Parisi–Zhang (KPZ) equation on a finite spatial interval. In particular, we extend the results
for small coupling strengths obtained previously to large values of the coupling parameter.
It will be shown that, due to the scaling behavior of the KPZ equation, the thermodynamic
uncertainty relation (TUR) product displays two distinct regimes which are separated by a
critical value of an effective coupling parameter. The asymptotic behavior below and above
the critical threshold is explored analytically. For small coupling, we determine this product
perturbatively including the fourth order; for strong coupling we employ a dynamical renor-
malization group approach. Whereas the TUR product approaches a value of 5 in the weak
coupling limit, it asymptotically displays a linear increase with the coupling parameter for
strong couplings. The analytical results are then compared to direct numerical simulations
of the KPZ equation showing convincing agreement.

Keywords Thermodynamic uncertainty relation · Kardar–Parisi–Zhang equation · Dynamic
renormalization group · Universal scaling amplitude · Non-equilibrium dynamics

1 Introduction

Over the last years there has been remarkable progress in field theory with regard to the
Kardar–Parisi–Zhang (KPZ) dynamics [1] on the one hand and in stochastic thermodynamics
with respect to the thermodynamic uncertainty relation (TUR) on a discrete set of states [2–
4] on the other hand. The KPZ equation is a paradigmatic example of a growth equation
displaying non-equilibrium dynamics while the TUR bounds the entropy production through
fluctuation and mean of any current. For a recent excerpt of the former see, e.g., [5–19].

Communicated by Shin-ichi Sasa.

B Oliver Niggemann
niggemann@theo2.physik.uni-stuttgart.de

Udo Seifert
useifert@theo2.physik.uni-stuttgart.de

1 Institute for Theoretical Physics 2, University of Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart,
Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10955-021-02845-8&domain=pdf
http://orcid.org/0000-0002-7497-8998
http://orcid.org/0000-0002-9271-6190


3 Page 2 of 29 O. Niggemann, U. Seifert

In regard of the latest achievements for the TUR see, e.g., [20–24]. In [25,26] these two
areas have been connected by formulating a general field-theoretic TUR and evaluating it
explicitly for the KPZ equation analytically as well as numerically in a certain scaling regime.
For other field-theoretic formulations of stochastic thermodynamic concepts, in particular the
stochastic entropy production, see, e.g., [27–29].

The derivation of the KPZ-TUR in [25] relies on a perturbational approximation in a
small effective coupling parameter of the KPZ non-linearity. This approach is quite gener-
ally applicable to stochastic field-theoretic overdamped Langevin equations. However, it is
intrinsically limited to the linear scaling regime of the respective partial differential equation
[30]. In case of the KPZ equation, this is the so-called Edwards–Wilkinson (EW) scaling
regime [31,32]. The aim of the present paper is to extend the results from [25] valid in the
EW scaling regime of the KPZ equation to the genuine KPZ scaling regime. This requires
an approach that will hold for arbitrary values of the effective coupling strength of the KPZ
non-linearity. For equal-time correlation functions such a generalization is possible by using
the exactly known stationary probability density functional of the 1d KPZ equation. For two-
time correlation functions, however, this approach is not feasible and thus different methods
have to be used. In the present case we use two different ways of calculating this type of
correlation functions. The first one is the perturbational approximation introduced in [25]
and as a second one we employ the dynamic renormalization group (DRG) approach. Here
the former applies to the EW scaling regime, where the latter covers the genuine KPZ scal-
ing regime. Hence, a combination of these methods enables us to analytically express the
KPZ-TUR for arbitrary values of the effective coupling parameter. These results are com-
pared with numerical simulations based on the method from [26]. This comparison will show
convincing agreement between the theoretical predictions and the numerical results.

The paper is organized as follows. In Sect. 2 we give a brief overview of the problem at
hand and introduce the necessary notions for the formulation of the KPZ-TUR. Section 3
deals with the derivation of exact results valid for arbitrary coupling strength. In particular,
we utilize the stationary state probability density functional of the (1+ 1) dimensional KPZ
equation to calculate equal-time correlation functions entering the KPZ-TUR via functional
integration. In Sect. 4 we concisely state the scaling behavior of the KPZ equation as this
will be relevant for the calculation of temporal two-point correlation functions. Sections 5
and 6 cover the calculation of a specific two-time correlation function via perturbational
approximation and DRG, respectively. The combination of the results obtained in the prior
sections, yields the KPZ-TUR for arbitrary coupling strength, which is given in Sect. 7. The
comparison of the analytically obtained theoretical predictions to numerical data is shown in
Sect. 8. We summarize our results in Sect. 9.

2 The Problem

In this section we will briefly introduce the KPZ equation and the TUR, as well as give a
short summary of the results obtained in [25] which link the two topics. At the end of the
section we outline the steps to be taken in order to extend the results from [25,26] to arbitrary
coupling strength.

We begin with stating the KPZ equation in the form needed for our analysis, i.e., the
(1 + 1) dimensional Kardar–Parisi–Zhang equation on a finite interval x ∈ [0, b], b > 0,
given by
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∂t h(x, t) = ν∂2x h(x, t) + λ

2
(∂xh(x, t))2 + η(x, t). (1)

Here ν represents the surface tension, λ is the coupling parameter of the non-linearity and
η Gaussian space-time white noise with zero mean and autocorrelation

〈
η(x, t)η(x ′, t ′)

〉 =
�0δ(x − x ′)δ(t − t ′), �0 denoting the noise strength. We further assume periodic boundary
conditions for (1), i.e., h(0, t) = h(b, t), and flat initial condition h(x, 0) = 0 (see also [25]).

The thermodynamic uncertainty relation for a non-equilibrium steady state (NESS) was
originally proposed for Markovian networks [2]. It gives a lower bound on the total entropy
production 〈�stot〉 needed to provide a certain precision ε2 of a process in such a network.
It reads

Q ≡ 〈�stot〉 ε2 ≥ 2, (2)

where 〈·〉 denotes averages with respect to the noise history. Here, 〈�stot〉 = σ t in the
stationary state, with σ the entropy production rate and ε2 = 2D/( j2t), with D the diffusivity
and j an arbitrary NESS current. Later, the TUR (2) was proven to hold for a Markovian
dynamics on a discrete set of states [3] and for overdamped Langevin dynamics [33].

Recently, the TUR in (2) was extended to a general field-theoretic overdamped Langevin
equation [25] and exemplified with the (1+ 1) dimensional KPZ equation from (1). For the
KPZ equation it was found via a perturbative calculation of 〈�stot〉 and ε2 as well as by direct
numerical simulation [26] that Q � 5 for small values of the effective coupling parameter

λeff ≡
√

�0 b

ν3
λ. (3)

What is meant by ‘small’ will be specified below in Sect. 4. According to [30], such a
perturbative approach to a non-linear PDE like (1) will yield results expected to be valid in
the linear scaling regime of the non-linear equation. Hence, the results from [25,26] are valid
in the so-called Edwards–Wilkinson (EW) scaling regime of the KPZ equation.

In the present paper, we will derive the field-theoretic analog of (2) (see [25]) for arbitrary
values of λeff and thus extend the range of validity from the EW scaling regime to the genuine
KPZ scaling regime. The terminology will be explained in more detail in Sect. 4.

The expressions for the constituents of the TUR used in this paper are derived in [25] and
read

〈�stot〉 ≡ λ2

2�0

∫ t

0
dτ

〈∫ b

0
dx (∂xh(x, τ ))4

〉
(4)

as the total entropy production and

ε2 ≡ var
[
�g(t)

]

〈
�g(t)

〉2 =
〈(

�g(t) − 〈
�g(t)

〉)2〉

〈
�g(t)

〉2 , (5)

as the precision, where

�g(t) ≡
∫ b

0
dx g(x) h(x, t). (6)

Here, �g describes the time-integrated generalized current with g(x) ∈ L2(0, b)

(
∫ b
0 dx g(x) 	= 0) as an arbitrary weight function. It was shown in [25] that the steady

state Q does not depend on g(x) via a perturbation expansion in λeff, i.e., Q is independent
of g(x) in the EW scaling regime. In Appendix A we present an argument to show that
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indeed in both scaling regimes of the KPZ equation the precision ε2 in (5) and therefore Q
is independent of the choice of the weight function g(x) in the long-time limit. We thus set
g = 1, i.e.,

�(t) ≡ �1(t) =
∫ b

0
dx h(x, t). (7)

Hence, (5) becomes

ε2 = var [�(t)]

〈�(t)〉2 =
〈
(�(t) − 〈�(t)〉)2〉

〈�(t)〉2 , (8)

with�(t) from (7). In the stationary state we have 〈�(t)〉 = J t with J the stationary current.
In the following we derive explicit expressions for 〈�stot〉, 〈�(t)〉 and var[�(t)]. The

first two, namely 〈�stot〉 and 〈�(t)〉, are given by equal-time correlation functions. These
correlation functions may thus be calculated in the stationary state via functional integration
over the stationary state probability density of the (1 + 1) dimensional KPZ equation (see
Sect. 3). The variance of�(t) is, on the other hand, given by a temporal two-point correlation
function, which requires more knowledge than the stationary state probability density. We
show below two different ways to obtain var[�(t)]. The first uses a perturbation expansion
in λeff from (3) (see Sect. 5) and the second employs dynamic renormalization group (DRG)
techniques (see Sect. 6).

3 Exact Results

3.1 Normalized Stationary Distribution

For the (1 + 1) dimensional KPZ equation the stationary probability density functional of
the height field h(x, t) is known exactly [6,32,34] and reads

ps[h] ∼ exp

[
− ν

�0

∫ b

0
dx (∂xh)2

]
. (9)

Note, that (9) is identical to the steady state solution of the Fokker–Planck equation for the
linear problem, i.e., for the EW equation [31]. In the following, wewant to use (9) to calculate
equal-time steady-state correlation functions. Hence, (9) needs to be properly normalized.
The normalization is obtained by expressing h(x, t) in terms of its Fourier series (see e.g.
[25])

h(x, t) =
∑

k∈R
hk(t) e

2π ikx/b, R = [−
,
], 
 ∈ N, (10)

where hk(t) ∈ C, and inserting (10) into (9). The introduction of a finite Fourier-cutoff 


ensures the normalizability of (9). A subsequent functional integration of (9) over h yields
∫

D[h] exp
[
− ν

�0

∫ b

0
dx (∂xh)2

]

=

∏

k=1

∫
dhR,k exp

[
−8π2ν

�0b
k2h2R,k

] 
∏

l=1

∫
dhI ,l exp

[
−8π2ν

�0b
l2h2I ,l

]

=
(

�0 b

8π ν

)
 ( 1


!
)2

,

(11)
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where hR/I , j (t) represents the real/imaginary part of h j (t), respectively. Hence, the normal-
ization of (9) reads

N =
(

�0 b

8π ν

)
 ( 1


!
)2

, (12)

and therefore

ps[h] = 1

N
exp

[
− ν

�0

∫ b

0
dx (∂xh)2

]
. (13)

With (13) we can explicitly calculate steady state equal-time correlation functions of the
Fourier coefficients hk(t) by a functional integration, where 〈·〉ps[h] ≡ ∫

D[h] (·)ps[h] is
understood as the expectation value with respect to the stationary probability distribution. In
particular

〈hk(t) hl(t)〉ps[h] = − �0 b

μk + μl
δk,−l , (14)

with μk = −4π2νk2 (see also [25]). Note, that

lim
t→∞ 〈(·)(t)〉 = 〈(·)(t)〉ps[h] , (15)

is expected to hold, where 〈·〉 denotes averages with respect to the noise history. We will
show this explicitly in the case of 〈�(t)〉 and 〈�stot〉 below.

3.2 Exact Stationary Current and Entropy Production Rate

For the steady state current J , where 〈�(t)〉 = J t , we get

J = 〈∂t�(t)〉ps[h] = λ

2

∫ b

0
dx

〈
(∂xh(x, t))2

〉
ps[h] = �0 λ

2 ν

. (16)

The second step follows from a spatial integration of (1) with a subsequent averaging with
respect to ps[h] and the last step uses Parseval’s identity and (14). The result in (16) has
already been derived in [25] as lowest order approximation of a perturbation expansion in
λeff where the l.h.s. of (15) was used for calculating expectation values (see also [32]). It is
instructive to examine why the lowest order approximation is in fact exact. This can best be
seen by studying the structure of the perturbation expansion of 〈∂t�(t)〉. Terms with an even
power of λeff vanish as they represent odd moments of the Gaussian noise η, whereas terms
with odd power greater than 1 vanish by exact cancellation of the involved moments.

For the steady-state entropy production rate σ , with 〈�stot〉 = σ t , it is found with (10),
using Wick’s theorem and (14) that

σ = λ2

2�0

∫ b

0
dx

〈∣∣(∂xh(x, t))2
∣∣2
〉

ps[h]

= 8π4λ2

�0 b3
∑

k∈R

∑

l,n∈Rk\{0,k}
l(k − l)n(k − n) 〈hl(t)hk−l(t)h−n(t)hn−k(t)〉ps[h]

= �0 λ2

2 b ν2

[

2 + 3
2 − 


2

]
= �0 λ2

4 b ν2

[
5
2 − 


]
,

(17)
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where Rk ≡ [max(−
,−
 + k),min(
,
 + k)] (see [25]). Again, a comparison of
(17) with the corresponding result from [25] shows that the lowest order perturbational
approximation is also exact for the case of the entropy production rate σ in 1d .

Thus, by using (13), we can calculate for the (1+ 1) dimensional KPZ equation the exact
expressions for the stationary current J (see (16)) and the entropy production rate σ (see (17))
for arbitrary values of the coupling parameter. This implies that two of the three constituents
of the TUR product Q are known exactly. Hence, we state the intermediate result

Q = 〈�stot〉
〈�(t)〉2 var[�(t)] =

(
5 − 1




)
var[�(t)]

�0 b t
. (18)

In the following sections we present two different approaches to obtain results for var[�(t)]
in order to complement (18).

4 Scaling Behavior of var[�(t)]
In contrast to the results in the previous section, which hold for any choice of system param-
eters, the variance of �(t) changes its behavior depending on the strength of the coupling
parameter from (3). To illustrate this in more detail, it is instructive to have a look at the time-
scales at which the changes in the variance occur. In the case of a large coupling parameter,
these time-scales are the EW to KPZ crossover time tEW→KPZ, given by [32]

tEW→KPZ ≈ 252 ν5 �−2
0 λ−4, (19)

and the KPZ correlation time tKPZc , given by [32]

tKPZc ≈
(
2 (0.21)3 ν

�0

)1/2

λ−1 b3/2. (20)

In Fig. 1, we show schematically the behavior of the variance of�(t) if tKPZc > tEW→KPZ. For
times t < tEW→KPZ the system is in the so-called Edwards–Wilkinson regime, characterized
by the critical exponent z = 2 of the linear theory. In this scaling regime, the variance of�(t)
is expected to scale linearly in time t [32]. For times in the range tEW→KPZ < t < tKPZc , the
system is in its transient regime.This regimebelongs to theKPZscaling-regime, characterized
by the KPZ critical exponent z = 3/2.While in the transient regime, the variance is predicted
via scaling arguments to scale with t4/3, i.e., it displays super-diffusive behavior [32]. For
times t > tKPZc the system enters the KPZ stationary regime, where the variance is again
expected to scale linearly in time t . However, due to the super-diffusive behavior in the
transient regime, the proportionality factor is larger in the stationary KPZ regime than in the

t

tEW→KPZ tKPZ
c

var[Ψ ] ∼ t var[Ψ ] ∼ t4/3 var[Ψ ] ∼ t

EW-regime KPZ-regime

Fig. 1 Schematic illustration of the scaling behavior of var[�(t)] for the ‘normal’ ordering of time-scales,
i.e., tKPZc > tEW→KPZ, for a finite KPZ system (see, e.g., [32])
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EW scaling regime [32]. In the following we will refer to the above described behavior as
the behavior for the ‘normal’ ordering of time-scales, namely tKPZc > tEW→KPZ.

Before we discuss the case of tEW→KPZ > tKPZc let us reformulate the two time-scales
in (19) and (20) by expressing both in terms of the effective coupling parameter λeff from
(3). To this end we introduce a dimensionless time ts = t/T with the diffusive time scale
T = b2/ν. This yields for the EW to KPZ crossover time

tEW→KPZ
s ≈ 252

ν6

�2
0 b

2

1

λ4
= 252

λ4eff
, (21)

and for the KPZ correlation time

tKPZc,s ≈
√
2 (0.21)3

(
ν3

�0 b

)1/2
1

λ
=
√
2 (0.21)3

λeff
. (22)

The form of (21) and (22) indicates the existence of a critical effective coupling parameter
λceff below which the ‘normal’ ordering of time-scales breaks down, i.e., tEW→KPZ

s > tKPZc,s .
One may think of this as shrinking the transient regime in Fig. 1 to zero, and thus, equating
(21) with (22) and solving for λeff yields

λceff ≈ 12.28. (23)

In dependence of the critical effective coupling parameter we have

tEW→KPZ
s < tKPZc,s for λeff > λceff,

tEW→KPZ
s > tKPZc,s for λeff < λceff.

(24)

Hence, the behavior of var[�(t)] sketched in Fig. 1 is valid as long as λeff > λceff.
We now turn to the behavior of the variance of �(t) for λeff < λceff. In this case we have

tEW→KPZ
s > tKPZc,s , which is physically not sensible as this implies that the system would
have to become stationary in the KPZ regime before even crossing over from the EW to the
KPZ regime. This situation is resolved by taking the EW correlation time tEWc into account.
It is given by [32]

tEWc = π b2

288 ν
⇔ tEWc,s = π

288
. (25)

As can easily be seen, λeff < λceff implies that tEWc,s < tEW→KPZ
s , hence the system becomes

stationary in the EW scaling regime. Therefore, if λeff � λceff, its dynamical behavior will
be governed for all times t by the critical exponent z = 2 of the linear theory. For λeff ↑ λceff
the behavior of the variance will change from the one in the linear theory to the one predicted
for the KPZ equation and should be accessible by a perturbation expansion in λeff up to
λeff ≈ λceff. Note, that when we state λeff ‘small’, we mean λeff < λceff.

5 Perturbation Expansion

As stated in the above section, for values of λeff � λceff we expect to obtain the correct
behavior of the variance of �(t) via a perturbation expansion in λeff. As the analysis follows
the one in [25], we will be brief here and focus on the results instead of the technical details.
Note, that in this section we use the scaled version of the KPZ equation, which is obtained
by the introduction of scaled variables according to
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x → x

b
, t → t

T
, h → h

H
, η → η

N
, (26)

with T = b2/ν, H = √
�0b/ν and N = √

�0ν/b3 [25]. This significantly simplifies the
perturbation expansion. In the scaled variables the perturbative ansatz reads

h(x, t) =
∑

k∈R

[
h(0)
k (t) + λeff h

(1)
k (t) + λ2eff h

(2)
k (t) + O(λ3eff)

]
e2π ikx , (27)

where the Fourier coefficients h(i)
k (t) are given in [25]. In the following we will use (27) to

evaluate

var[�(t)] =
∫ t

0
dt ′
∫ t

0
dt ′′

〈
�̇(t ′)�̇(t ′′)

〉
, (28)

where

�̇(t) = λeff

2

∫ 1

0
dx (∂xh(x, t))2 +

∫ 1

0
dx η(x, t). (29)

Here, the dimensionless form of (1), given in [25], is integrated with respect to the spatial
variable to obtain (29). We use (29) to calculate the two-time correlation function

〈
�̇(t ′) �̇(t ′′)

〉 = λ2eff

4

∫ 1

0
dx
∫ 1

0
dy

〈(
∂xh(x, t ′)

)2 (
∂yh(y, t ′′)

)2〉+ δ(t ′ − t ′′)

≡ λ2eff

4
J (t ′, t ′′) + δ(t ′ − t ′′),

(30)

where

J (t ′, t ′′) = (2π)4
∑

k,l∈R\{0}
k2 l2

〈
hk(t

′)h−k(t
′)hl(t ′′)h−l(t

′′)
〉
. (31)

In principle any correlation of the Fourier coefficients hk can eventually be expressed by
correlations of h(0)

k from (27), which depend linearly on the Gaussian noise η [25] and thus
allow for the application of Wick’s theorem. In practice, however, this results in a quickly
growing complexity of the calculation for higher order approximations in λeff. A possible
circumvention of this issue is the physical assumption of so-called quasi-normality. This
assumption has been successfully used in turbulence theory [35,36] and has been adopted in
[37] for the height field h(x, t) of the KPZ equation. The quasi-normality hypothesis states
that all evenmoments of h are assumed to behave like theywere normally distributed and thus
Wick’s theorem may directly be applied to (31). At least for large times t ′, t ′′ the assumption
is supported by the fact that h(x, t) is exactly Gaussian distributed in the NESS (see Sect. 3).

Hence, after applying Wick’s theorem to (31), we have

〈
�̇(t ′) �̇(t ′′)

〉− 〈
�̇(t ′)

〉 〈
�̇(t ′′)

〉

= δ(t ′ − t ′′) + (2π)4
λ2eff

4

∑

k,l∈R\{0}
k2 l2

× [〈
hk(t

′)hl(t ′′)
〉 〈
h−k(t

′)h−l(t
′′)
〉+ 〈

hk(t
′)h−l(t

′′)
〉 〈
h−k(t

′)hl(t ′′)
〉]

.

(32)
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Replacing the h j ’s in (32) with the expansion from (27), integrating twice over time and
following the same steps as in [25], one obtains for t � 1

var[�(t)] � t

⎡

⎣1 + λ2eff

32π2

∑

k∈R\{0}

1

k2

− λ4eff

256π4

∑

k∈R\{0}

∑

m∈Rk\{0,k}

m

k3(k2 + (k − m)2 + m2)
+ O(λ6eff)

⎤

⎦

≡ t

[

1 + λ2eff

32π2 S1(
) − λ4eff

256π4 S2(
) + O(λ6eff)

]

,

(33)

which is calculated to one order higher than in [25] and S1,2 are simply abbreviations for the
respective sums in the first line. Next we will evaluate S1,2 analytically in the limit of large

. For S1 we find

S1(
) = 2H(2)




�1−→ 2 ζ(2), (34)

whereH(n)

 = ∑


k=1 1/k
n is the so-called generalized harmonic number of order n and ζ the

Riemann-Zeta function. For S2 we find after some straightforward algebraic manipulation

S2(
) =
∑

k∈R\{0}

⎡

⎣
∑

m∈Rk

m

k3(k2 + (k − m)2 + m2)
− 1

2 k4

⎤

⎦

= 2

∑

k=1

1

k3


∑

m=−
+k

m

k2 + (k − m)2 + m2 − H(4)

 .

(35)

The inner sum over m in the second line in (35) may be approximated for large values of 


by

∫ 


−
+k
dx

x

k2 + (k − x)2 + x2
= 1√

3
arctan

2
 − k√
3 k

≡ G
(k). (36)

Plotting the functionG
(k) suggests that itmaywell be approximated by the linear expression

G
(k) ≈ G
(0) − G
(0) − G
(
)



k = π

2
√
3

− 1√
3

π/2 − arctan(1/
√
3)



k

≈ 0.9069 − 0.6046



k,

(37)

and thus we have


∑

m=−
+k

m

k2 + (k − m)2 + m2 ≈ 0.9069 − 0.6046



k. (38)

Inserting (38) into (35) and taking 
 � 1 leads to

2

∑

k=1

1

k3


∑

m=−
+k

m

k2 + (k − m)2 + m2 − H(4)




�1−→ 1.814 ζ(3) − ζ(4). (39)
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Thus in the case of large
we have the following asymptotic behavior (t � 1) of the variance
of �,

var[�(t)] � t

[

1 + λ2eff

16π2 ζ(2) − λ4eff

256π4 (1.814 ζ(3) − ζ(4)) + O(λ6eff)

]

, (40)

or, in terms of the rescaled, dimensional variables

var[�(t)] � �0 b t

[

1 + �0bλ2

16π2ν3
ζ(2) − �2

0b
2λ4

256π4ν6
(1.814 ζ(3) − ζ(4)) + O(λ6eff)

]

.(41)

We expect the approximations in (40) and (41) to yield sound results for λeff � λceff from (23).
In Sect. 8 this will be checked by comparison with numerical simulations in the according
parameter regime.

In the next section, we will focus on obtaining the variance of �(t) for large values of
λeff via a DRG approach.

6 Dynamic Renormalization Group Calculation

6.1 The 1D KPZ-Burgers Equation and var[�(t)]

In this section we use the equivalence of the 1d KPZ equation to the stochastic Burgers
equation (see e.g. [38]), given by the transformation u(x, t) = −∂xh(x, t), with u(x, t) the
velocity field of the Burgers equation

∂t u(x, t) + λ

2
∂xu

2(x, t) = ν∂2x u(x, t) + f (x, t), (42)

where f (x, t) = −∂xη(x, t). In terms of the Burgers velocity field u(x, t) the expression for
�̇(t) from (29) reads

�̇(t) = λ

2

∫ b

0
dx u2(x, t) +

∫ b

0
dx η(x, t). (43)

In principle, the derivation of the expression for the variance of �(t) is analogous to the one
shown in Sect. 5. However, here we will use the continuous Fourier transform instead of
the discrete Fourier series as above, since a continuous wavenumber spectrum is needed for
implementing the DRG scheme. In particular, we define

u(q, ω) =
∫

dx
∫

dt u(x, t) e−i(qx−ωt) , u(x, t) =
∫

dq

2π

∫
dω

2π
u(q, ω) ei(qx−ωt),

(44)

as the forward and backward Fourier transform of the velocity field u(x, t), respectively. To
apply (44) to (43), we use the b-periodicity of u(x, t) due to the periodic boundary conditions
in (1). In particular we have

∫ b

0
dx u2(x, t) =

∫ b/2

−b/2
dx u2(x, t)

≈
∫ ∞

−∞
dx u2(x, t) = 1

2π

∫ ∞

−∞
dq u(q, t) u(−q, t),

(45)
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where the second step holds for b � 1 and in the last step we used the partial Fourier
transform (44) in the spatial variable x . We thus obtain

〈�(t)〉 ≈ λ

2

∫ t

0
dt ′

∫
dq

2π

〈
u(q, t ′) u(−q, t ′)

〉
, (46)

〈
�2(t)

〉 ≈ 〈�(t)〉2 + �0 b t + λ2

4

∫ t

0
dt ′
∫ t

0
dt ′′

∫
dq

2π

∫
dq ′

2π

× [〈
u(q, t ′)u(q ′, t ′′)

〉 〈
u(−q, t ′)u(−q ′, t ′′)

〉
(47)

+ 〈
u(q, t ′)u(−q ′, t ′′)

〉 〈
u(−q, t ′)u(q ′, t ′′)

〉]
,

and therefore, similar to (28),

var[�(t)] ≈ �0 b t + λ2

4

∫ t

0
dt ′
∫ t

0
dt ′′

∫
dq

2π

∫
dq ′

2π

× [〈
u(q, t ′)u(q ′, t ′′)

〉 〈
u(−q, t ′)u(−q ′, t ′′)

〉

+ 〈
u(q, t ′)u(−q ′, t ′′)

〉 〈
u(−q, t ′)u(q ′, t ′′)

〉]
.

(48)

The expressions in (48) and (48) again rely on the quasinormality hypothesis [35,37].

6.2 Two-Point Correlation Function via DRG

Instead of calculating the two-point correlation functions in (48) perturbatively as in Sect.5,
we here use the DRG method described in e.g. [39,40], where we have noise correlations
corresponding to Gaussian white noise for the KPZ equation, i.e.,

〈
f (q, ω) f (q ′, ω′)

〉 = −(2π)2 �0 q q
′ δ(q + q ′) δ(ω + ω′), (49)

(y = −2 in [39,40]). The starting point of the DRG procedure is the Fourier-space represen-
tation of (42), namely

u(q, ω) = G0(q, ω) f (q, ω) − iq
λ

2
G0(q, ω)

∫
dq ′

2π

∫
dω′

2π
u(q ′, ω′)u(q − q ′, ω − ω′),

(50)

where we define the bare propagator

G0(q, ω) ≡ 1

−i ω + ν q2
. (51)

The next step will be to split the velocity field in (50) into large-wavenumber modes, u>,
and small-wavenumber modes, u<, where it holds that (see e.g. [35,39])

u(q, ω) =
{
u<(q, ω) for 0 < q < 
0 e−l ,

u>(q, ω) for 
0 e−l < q < 
0,
(52)

with l the renormalization parameter and
0 an ultraviolet wavenumber cutoff. An analogous
splitting applies to the noise f (q, ω) as well. Averaging the ensuing equations with respect
to the noise history of the f >-modes and integrating out the contributions of the large-
wavenumber modes u> yields corrections to the terms of the small-wavenumber modes u<.
As these steps are well known and explained in detail in e.g. [35,39], we will simply state
the results, which are the renormalization equations for ν and �0,
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νR = ν

[
1 + λ2 �0

8π ν3

el − 1


0

]
, (53)

�0,R = �0

[
1 + λ2 �0

8π ν3

el − 1


0

]
, (54)

obtained after one elimination step. This mode elimination process is iterated using infinitesi-
mally small wavenumber increments (l → dl) which causes parameter changes dν and d�0.
One thus arrives at differential equations for ν(l) and �0(l), given, respectively, by

d ν(l)

dl
= ν(l)

λ
2

8π
, (55)

d�0(l)

dl
= �0(l)

λ
2

8π
, (56)

where

λ ≡ λ

(
�0(l)

ν3(l)
′(l)

)1/2

, (57)

with 
′(l) ≡ 
0e−l (see e.g. [40]). λ(l) denotes the renormalized coupling constant charac-
teristic for the eliminated modes. Up to a constant numerical prefactor, λ(0) equals λeff from
(3). At this point we adopt a DRG scheme introduced in [41,42] and analyzed in [43], which
has been recently applied in [44,45]. It implies that the next step of the scheme consists in
solving (55) and (56) for ν and �0 explicitly, making their scale dependence transparent. It
follows directly that,

�0(l)

ν(l)
= �0

ν
= const. ∀ l > 0 , (58)

with ν, �0 and 
0 the unrenormalized parameters from (42) and (49). The finding in (58)
reflects the fluctuation-dissipation theorem, known to hold for the 1d Burgers-KPZ system
(see e.g. [32,39,46]). Using (57) and (58), the integration of (55) yields

ν(l) = ν

(
1 + λ2�0

4πν3

el − 1


0

)1/2

. (59)

As a last step we make the common identification |q| = 
0e−l (see e.g. [35,39–42,44,45])
and obtain asymptotically for large values of l (i.e. |q| � 1)

ν(q) � λ

2
√

π

(
�0

ν

)1/2

|q|−1/2, (60)

�0(q) = �0

ν
ν(q) � λ

2
√

π

(
�0

ν

)3/2

|q|−1/2. (61)

Equivalently, λ̄(l) converges for l → ∞ (i.e. after all large wavenumber modes are elimi-
nated) to a finite stable fixed point, the KPZ fixed point of the RG-flow. This fixed point is
associated with the dynamical scaling exponent z = 3/2.

According to [40], the expressions from (60) and (61) allow for the introduction of a
renormalized effective propagator

G(q, ω) = 1

−i ω + ν(q) q2
, (62)
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and a renormalized effective noise with
〈
f (q, ω) f (q ′, ω′)

〉 = (2π)2 �0(q) q2 δ(q + q ′) δ(ω + ω′), (63)

such that the nonlinear equation from (50) may be replaced by an effective linear Langevin
equation

u(q, ω) � G(q, ω) f (q, ω). (64)

Note, that in (64), as opposed to (50), the right hand side now depends on ν(q) and �0(q)

from (60) and (61), respectively. A justification of this step is given in [40–43] via the so-
called ε-expansion. In the present case, a further justification may be given by the fact that
for large times the fluctuations of h(x, t) become Gaussian distributed. This indicates that
their dynamics may be described by a linear Langevin equation as in (64). An analogous
conclusion has been drawn for a slightly different setting in [45].

Using (62) and (63), we give an explicit approximation for the two-point correlation〈
u(q, ω)u(q ′, ω′)

〉
,

〈
u(q, ω) u(q ′, ω′)

〉 � G(q, ω)G(q ′, ω′)
〈
f (q, ω) f (q ′, ω′)

〉

= (2π)2 q2 �0(q)G(q, ω)G(q ′, ω′) δ(q + q ′) δ(ω + ω′)
≡ (2π)2 C(q, ω) δ(q + q ′) δ(ω + ω′).

(65)

Here we have introduced the correlation function C(q, ω) (see e.g. [40]) according to

C(q, ω) ≡ q2 �0(q)G(q, ω)G(−q,−ω) = q2 �0(q) |G(q, ω)|2 , (66)

with �0(q) from (61) and G(q, ω) from (62). Inserting the explicit expressions form (60)
and (61) into (66) we arrive at (see also [40] for λ = 1)

C(q, ω) ≈
(

�0

ν

)1/2 2π1/2

λ

|q|−3/2

1 +
((

ν
�0

)1/2
2π1/2

λ
ω

|q|3/2
)2 . (67)

Obviously, (67) is in accordancewith thewell known scaling result for the correlation function
of the Burgers equation in one spatial dimension (see e.g. [39,40]),

C(q, ω) ∼ |q|−3/2�

(
ω

|q|3/2
)

, (68)

with � as a universal scaling function.

6.3 DRG Results for var[�(t)]

Performing a Fourier backward transformation in frequency on both sides of (65) and insert-
ing for C(q, ω) the expression from (67) leads to
〈
u(q, t) u(q ′, t ′)

〉 = 2π C(q, t − t ′) δ(q + q ′)

≈ 2π
�0

2 ν
exp

[

−
(

�0

2 ν

)1/2
λ

(2π)1/2
|q|3/2 |t − t ′|

]

δ(q + q ′),
(69)

as the approximate two-point correlation of u = −∂xh in wavenumber space. With (69) we
now have the necessary means to calculate the product of two-point correlation functions in
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(48). In particular,
∫

dq

2π

∫
dq ′

2π

〈
u(q, t ′) u(q ′, t ′′)

〉 〈
u(−q, t ′) u(−q ′, t ′′)

〉

=
∫

dq
∫

dq ′ C(q, t ′ − t ′′)C(−q ′, t ′ − t ′′) δ(q + q ′) δ(−q − q ′)

=
∫

dk
∫

dk′ C
(
2π

b
k, t ′ − t ′′

)
C

(
−2π

b
k′, t ′ − t ′′

)
δ(k + k′)

= b

4π

(
�0

ν

)5/3
�(5/3) π1/3

λ2/3

1

|t ′ − t ′′|2/3 ,

(70)

where we substituted in the second step q = 2πk/b to attribute for the fact that we operate
on a finite system-size x ∈ [0, b], which implies an explicit length scale, and � is the Euler-
Gamma function. Analogously, the second term in (48) becomes

∫
dq

2π

∫
dq ′

2π

〈
u(q, t ′) u(−q ′, t ′′)

〉 〈
u(−q, t ′) u(q ′, t ′′)

〉

= b

4π

(
�0

ν

)5/3
�(5/3) π1/3

λ2/3

1

|t ′ − t ′′|2/3 .

(71)

Inserting (70) and (71) into (48) yields

var[�(t)] ≈ �0 b t + �(5/3)

8π2/3 b
λ4/3 �

5/3
0

ν5/3

∫ t

0
dt ′
∫ t

0
dt ′′ |t ′ − t ′′|−2/3

= �0 b t + 3�(2/3)

8π2/3 b λ4/3
(

�0

ν

)5/3

t4/3.

(72)

Therefore in the long-time limit,

var[�(t)] � 3�(2/3)

8π2/3 b λ4/3
(

�0

ν

)5/3

t4/3, (73)

which indicates super-diffusive behavior for the variance of �(t). This expression is in
accordance with the scaling form predicted in [32] for the transient KPZ regime. Moreover,
the present DRG approach yields the amplitude factors as well. We use (73) in the time
range tEW→KPZ < t < tKPZc and check in the following for consistency with known results
at the endpoints of this time interval. For times t ≥ tKPZc , the variance of �(t) behaves
as var[�(t)] = C t (see Fig. 1), with C a parameter to be determined. Hence, we have the
matching condition

var[�(tKPZc )] � 3�(2/3)

8π2/3 b λ4/3
(

�0

ν

)5/3

(tKPZc )4/3
!= C tKPZc . (74)

Inserting tKPZc from (20) into (74) and solving for C yields

C ≈ 0.3444

(
�0

2 ν

)3/2

λ b3/2. (75)

This expressionmay be comparedwith a result in [32] for the center ofmass dispersionW 2
c =〈(

h − 〈
h
〉)2〉

, with h = ∫ b
0 dx h(x, t)/b the spatial mean, which is related via var[�(t)] =
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b2 W 2
c to the variance of our observable �(t). The center of mass dispersion is given by

W 2
c = c0

(
�0

2 ν

)3/2

λ b−1/2 t, (76)

with c0 a universal scaling amplitude. Apart from the prefactor c0 the result in (75) is the
same as the one in (76), in particular with respect to the anomalous scaling in b. Regarding
c0, this was determined in [47] for the ASEP-process and then adopted in [32] relying on the
universality hypothesis. The exact value of c0 reads

c0 =
√

π

4
≈ 0.443. (77)

We thus deviate from the exact result for c0 by roughly 20%, which we regard satisfactory for
our consistency check. Moreover, we note that our numerical simulations in Sect. 8 indicate
a correlation time that differs from the one in (20) by roughly a factor of 2 (see Sect. 8.3).
Reiterating the steps from (74) and (75) with the numerically obtained correlation time (see
(96)), leads to a significant improvement of our result for the universal amplitude c0 (see
(97)).

At the left endpoint of the transient KPZ regime, i.e., at t = tEW→KPZ, consistency may
be checked by comparing (73) with the perturbation expansion from (41) for λeff ≈ λceff.
To be precise, we compute (73) at the crossover time (19) and compare this result to (41)
evaluated at the critical coupling parameter λceff. This makes sense, since on the one hand we
know that tKPZc � tEW→KPZ provided that λeff � λceff, which implies that var[�(t)] shows
transient behavior for t � tEW→KPZ. On the other hand the expansion from (41) is expected
to be valid for λeff � λceff. Therefore, at λeff ≈ λceff the expression for the transient KPZ
variance of �(t) from (73) should match with the perturbative result from (41) at the EW to
KPZ crossover time tEW→KPZ. With (73) we get

var[�(tEW→KPZ)] � 3�(2/3)

8π2/3 b λ4/3
(

�0

ν

)5/3

(tEW→KPZ)4/3

≈ 1.4953�0 b t
EW→KPZ,

(78)

whereas evaluating (41) at λeff = λceff ≈ 12.28 from (23) results in

var[�(tEW→KPZ)] ≈ 1.5704�0 b t
EW→KPZ. (79)

Hence, the respective results differ by just 5%. Taking into consideration that both results in
(41) and (73) are approximations, this seems to be a reasonable match.

To sum up, this section was devoted to the derivation of an analytical expression approx-
imating var[�(t)] in the transient and steady state KPZ regime, respectively. Whereas the
result for the latter is essentially known from [32], there seems to be no comparable explicit
result for the former in the KPZ literature known to us. In the context of driven diffusive
systems a similar result has been derived via mode-coupling theory in [49]. We stress that
all amplitude factors are determined by analytic calculations for a generic KPZ system, i.e.,
without invoking specific model problems of the KPZ universality class. Furthermore, our
approximation from (69) for the two-point correlation of u = −∂xh in wavenumber space
may be of some interest in itself. This is since the exact scaling function found in [9] for
the 1d KPZ equation is given via the solution of certain differential equations (Painlevé II),
which can be solved only by quite involved numerical methods. Especially, an exact analytic
expression seems to be out of reach.Aqualitative comparison of ĝ(k) ≡ C(k, t)/C(0, t), with
C(k, t) from (69) to f̂ (k) from Fig. 4 in [9] shows an altogether quite satisfying agreement.
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To be more precise, for small k (0 < k � 2) the approximate scaling function ĝ(k) decays
a little faster than f̂ (k) (Fig. 4 in [9]). For 2 � k � 5, ĝ(k) tends to zero somewhat slower
than f̂ (k) in Fig. 4 in [9]. Both deviations are, however, rather small. One feature that ĝ(k) is
missing is the oscillatory manner in which f̂ (k) decays to zero; ĝ(k) decays monotonously.
We do not see this lacking of ĝ(k) to be of practical importance for our purposes as the
oscillations of f̂ (k) are rapidly damped with growing k.

7 Thermodynamic Uncertainty Relation

Before we formulate the TUR for an arbitrary value of the coupling parameter, let us collect
what we have derived for the variance of �(t) in the above sections. Consider first the
parameter regime where λeff < λceff. Here we know from (40) that for times t > tEWc

var[�(t)] � �0 b t

[

1 + λ2eff

16π2 ζ(2) − λ4eff

256π4 (1.814 ζ(3) − ζ(4)) + O(λ6eff)

]

, (80)

whereas for t � tEWc , var[�(t)] � �0 b t holds.
On the other hand for a parameter set with λeff � λceff we have shown in (72) that

var[�(t)] �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

�0 b t , t � tEW→KPZ,

3�(2/3)
8π2/3 b λ4/3

(
�0
ν

)5/3
t4/3 , tEW→KPZ � t � tKPZc ,

√
π

4

(
�0
2 ν

)3/2
λ b3/2 t , tKPZc � t,

(81)

where, for tKPZc � t , we chose the exact numerical value of
√

π/4 for the universal amplitude
c0 [32]. The behavior for t � tEW→KPZ may be obtained in various ways. For one, we could
take the short-time limit of (72). Alternatively,we know from the scaling arguments presented
in Fig. 1 that for these times the system is governed by the EW-scaling regime, which implies
normal diffusive behavior according to the EW equation.

Hence, with the exact results in Sect. 3 (see (18)) and the approximations for the variance
we can formulate the TUR product Q in the long-time limit as

Q �
(
5 − 1




)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
1 + λ2eff

32π2 S1(
) − λ4eff
256π4 S2(
) + O(λ6eff)

)
, for λeff � λceff,

√
π

8
√
2

λeff , for λceff � λeff.

(82)

Herewe state the
-dependent result from (33) in anticipation of the comparison to numerical
simulations for a fixed system-size, which also implies a fixed value of 
.
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8 Comparison with Numerical Simulations

8.1 The Numerical Scheme

In this section we present numerical simulations of (1) via a stochastic Heun method as
described in [26]. We use these simulations to numerically determine the values of 〈�(t)〉2,
〈�stot〉 and var[�(t)] and therefore Q. Due to the sensitivity of the numerics to specific
discretization of the KPZ non-linearity as discussed in [26], we here choose the discretization
introduced in [48] (i.e., γ = 1/2 in [26]), as this proved to yield the most accurate results in
[26]. For the technical details and the respective definitions of the numerical observables we
refer to [26]. The numerical scheme uses scaled system parameters {̃ν , �̃0 , λ̃} given by

ν̃ ≡ ν

δ2
, �̃0 ≡ �0

δ
, λ̃ ≡ λ

δ2
(83)

with δ = b/L and L the numerical system-size [26]. For the sake of simplicity, we set δ = 1.
This implies for the effective coupling constant λeff,

λ̃eff = L1/2
(

�̃0

ν̃3

)1/2

λ̃. (84)

For all numerical data shown here, we used ν̃ = �̃0 = 1 and thus the critical value of the
effective coupling constant is reached for (see (23))

λ̃c ≈ 12.28

L1/2 . (85)

In the case of L = 256, which is the system-size we used for the data shown below, (85)
yields

λ̃c ≈ 0.768. (86)

Like in [26], we use


 = L − 1

3
, (87)

to establish a connection between the numerical system-size L and the Fourier-cutoff param-
eter 
 from, e.g., (82). Thus, in terms of the numerical parameters {̃ν , �̃0 , λ̃} and L the
expression for 〈�(t)〉2 reads with (16)

〈�(t)〉2 =
(

�̃0 λ̃

6 ν̃
(L − 1)

)2

t2, (88)

and for 〈�stot〉 we have with (17)

〈�stot〉 = �̃0

36

(
λ̃

ν̃

)2 (
5 L − 13 + 8

L

)
t . (89)

Both expressions in (88) and (89) may also be found in [26], however, there under the
condition of λeff � λceff. Similarly, we get for system parameters, such that λeff � λceff, and
with the result from (80) the following expression for the variance of �(t),

var[�(t)] � �̃0 L t

(

1 + L
�̃0 λ̃2

ν̃3

S1(L)

32π2 − L2 �̃2
0 λ̃4

ν̃6

S2(L)

256π4 + O(λ6eff)

)

, (90)
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with

S1(L) = 2

� L−1
3 �∑

k=1

1

k2
,

S2(L) = 2

� L−1
3 �∑

k=1

1

k3

� L−1
3 �∑

m=−� L−1
3 �+k

m

k2 + (k − m)2 + m2 −
� L−1

3 �∑

k=1

1

k4
.

(91)

On the other hand for parameter sets with λceff � λeff we have with (81)

var[�(t)] �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

�̃0 L t , t � tEW→KPZ,

3�(2/3)
8π2/3 L λ̃4/3

(
�̃0
ν̃

)5/3
t4/3 , tEW→KPZ � t � tKPZc ,

√
π

4

(
�̃0
2 ν̃

)3/2
λ̃ L3/2 t , tKPZc � t .

(92)

Accordingly, we have for the TUR product Q

Q �
(
5 − 3

L − 1

)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
1 + L �̃0 λ̃2

ν̃3
S1(L)

32π2 − L2 �̃2
0 λ̃4

ν̃6
S2(L)

256π4

)
, for λeff � λceff,

√
π

8
√
2

�̃
1/2
0 λ̃

ν̃3/2
L1/2 , for λceff � λeff.

(93)

8.2
〈
�(t)

〉2 and 〈1stot〉

In Fig. 2, we show for two values of λ̃ a comparison of numerical data for both 〈�(t)〉2
and 〈�stot〉 with the respective theoretical predictions according to (88) and (89). In the case
of λ̃ = 0.1 the system is in the EW scaling regime of the KPZ equation and thus the relevant
time-scale is the EW correlation time tEWc , which is indicated by the vertical line in Figs.
2a and b. As can be seen well, for times t > tEWc the numerical data follows the theoretical
prediction for both 〈�(t)〉2 and 〈�stot〉. For λ̃ = 4.0 the system is in its KPZ scaling regime,
which implies that the numerical data is expected to converge to the theoretical predictions for
times t > tKPZc , i.e., the KPZ correlation time. In Figs. 2c and d this convergence can be well
observed. Thus, the results in Fig. 2 are additional support for the fact that the expressions for
〈�(t)〉 and 〈�stot〉 obtained analytically in (88) and (89), respectively, hold for an arbitrary
coupling constant. This extends the range of validity for these two entities from the EW
regime (or the weak-coupling limit) (see [25,26]) to the KPZ regime (or the strong-coupling
limit).

8.3 Variance of�(t) and Universal Scaling Amplitude

Figure 3 shows numerically obtained data of the variance of �(t) for a system-size of
L = 256 and for λ̃ = 0.1 (see Fig. 3a), λ̃ = 0.768 ≈ λ̃c from (86) (see Fig. 3b). To
demonstrate the effect of including higher order terms in the approximation of var[�(t)]
in the EW scaling regime, we show in Fig. 3 each partial sum of the expansion in (90)
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Fig. 2 Comparison of the numerical data obtained for a system-size of L = 256 to 〈�(t)〉2 from (88) in a and
c and to 〈�stot〉 from (89) in b and d, respectively. In a and b we simulate a system with λ̃ = 0.1 < λ̃c, i.e.,
in the EW scaling regime of the KPZ equation, whereas in c and d we simulate a system with λ̃ = 4 > λ̃c,
which puts the system in the KPZ scaling regime. The vertical lines indicate the respective correlation times
tEWc from (25) and tKPZc from (20)

Fig. 3 Comparison of numerical data obtained for L = 256 with λ̃ = 0.1 in a and λ̃ = 0.768 ≈ λ̃c in b with
the theoretical prediction from (90) of the variance of �(t) in the EW scaling regime. We show three orders
of approximation, i.e., λ̃0, λ̃2 and λ̃4, for var[�(t)] to demonstrate the effect of including higher order terms.
The vertical line indicates the EW correlation time tEWc from (25)
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Fig. 4 Numerical data of
var[�(t)] for λ̃ = 4.0 > λ̃c, i.e.,
in the KPZ regime. For
t < tEW→KPZ we plot the
variance according to the first line
in (92). In the transient regime,
i.e., for tEW→KPZ < t < tKPZc ,
the variance according to the
second line in (92) is shown. For
t > tKPZc , i.e., in the stationary
KPZ regime, we plot for one the
third line from (92) and on the
other hand C t with C from (75)

Fig. 5 Exemplary determination
of the numerical KPZ correlation
time t̃KPZc for λ̃ = 4.0

separately in increasing order. As can be seen clearly in Fig. 3a, there is no discernible
difference between the lowest and highest order perturbation result for λ̃ = 0.1. In Fig. 3b,
for λ̃ = 0.768, however, the difference between the three approximation orders becomes
apparent. Here the zero-order approximation (̃λ0) underestimates the numerical data and the
first-order approximation (̃λ2) is a slight overestimation, whereas the second-order result
(̃λ4) matches the numerical data well. For values λ̃ > λ̃c, we leave the region in which the
perturbation expansion from Sect. 5 is expected to be valid, which is reflected in a rapid
decline in the quality of the highest-order approximation (not shown explicitly), as is to be
expected. The numerical values in the legend of Fig. 3 are obtained by evaluating (91) and
inserting these results into (90) for L = 256 (i.e., �(L − 1)/3� = 85).

For the case of λceff < λeff, we show in Fig. 4 numerical data of the variance of �(t). As
can be seen clearly, the variance displays the expected scaling behaviors (see (92)), namely,
on the one hand, for times t < tEW→KPZ scaling according to the EW scaling regime of the
KPZ equation. On the other hand, for times t > tEW→KPZ Fig. 4 shows the typical KPZ
scaling regime behavior, namely for tEW→KPZ < t < tKPZc the transient regime with its
super-diffusivity and for tKPZc < t the stationary KPZ regime. In regard to the EW to KPZ
crossover time from (19), we see very good agreement between the theoretical prediction,
indicated by the left vertical line in Fig. 4 and the numerical data. However, the theoretical
prediction for the KPZ correlation time from (20), shown as the right vertical line in Fig.
4, seems to be too small, as the super-diffusive behavior continues beyond tKPZc . We will
investigate this in more detail below. This discrepancy aside, we find good agreement in all
three sub-regimes of the variance between the numerical data and the theoretical predictions
from (75) and (92).
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Table 1 Numerical estimation of
t̃KPZc . Numerical values of the
theoretically predicted KPZ
correlation time tKPZc from (20)
and the numerically obtained
t̃KPZc (see Fig. 5) in dependence
of λ̃ and for L = 256. The right
column shows the ratio of the two
correlation times

λ̃ tKPZc t̃KPZc t̃KPZc /tKPZc

0.87 640.74 1839.26 2.87

1.0 557.45 1446.18 2.59

1.25 445.96 745.42 1.67

1.5 371.63 1032.80 2.78

1.75 318.54 584.15 1.83

2.0 278.72 524.67 1.88

2.5 222.98 496.44 2.23

3.0 185.82 363.50 1.96

4.0 139.36 249.76 1.79

In Fig. 5, we show our approach to determining the numerical KPZ correlation time t̃KPZc .
In particular, we search the time at which the transient behavior according to (92) becomes
equal to the stationary branch. Here we determine the latter by fitting the numerical data in
the stationary KPZ regime via a fit-function a t , with a the fit-parameter. Hence, we find for
t̃KPZc ,

t̃KPZc =
(

8π2/3 ν̃5/3 a

3�(2/3) �̃
5/3
0 λ̃4/3 L

)3

. (94)

Table 1 shows the numerically obtained t̃KPZc and tKPZc from (20) in dependence of λ̃. For
all values of λ̃ the numerically obtained correlation time t̃KPZc is roughly a factor of 2 larger
than the one from (20). To be precise

t̃KPZc = (2.18 ± 0.46) tKPZc , (95)

where the factor is the mean of the right hand column of Table 1 and the error the standard
deviation of the mean. The numerical result in (95) is compatible with the one obtained by
equating (73) with (76) and solving for the correlation time. The discrepancy between t̃KPZc
and tKPZc may, at least qualitatively, be explained by finite size effects. In particular, tKPZc from
(20) uses the universal amplitude c2 with the numerically determined value c2 ≈ 0.4 and
0.21 ≈ 1/(12 c2) (see, e.g., [32]). This numerical value of c2, however, results for b → ∞
from the integral c2(b) = ∫∞

2πξ/b dsg(s)/s
2 with ξ the KPZ correlation length and g(s) the

scaling function of the surface width (see [32]). Evaluating this integral for any finite value of
b (e.g., b = L = 256) with its finite lower integration limit would lead to a value c2 < 0.4 and
thus to a larger correlation time tKPZc .We expect this consideration to qualitatively resolve the
discrepancy between tKPZc and t̃KPZc . The general, explicit evaluation of this integral seems
to be out of reach, however. Let us use (95) to reevaluate the universal scaling amplitude c0
from (76) according to the calculation in (75), which leads to

A t̃KPZc = 3�(2/3)

8π2/3

�̃0
5/3

λ̃4/3

ν̃5/3
L
(
t̃KPZc

)4/3
,

A = (0.45 ± 0.03)

(
�̃0

2 ν̃

)3/2

λ̃ L1/2 .

(96)

123



3 Page 22 of 29 O. Niggemann, U. Seifert

Hence, we get for the universal scaling amplitude c0,

c0 = (0.45 ± 0.03), (97)

where the theoretically predicted value from [32] is
√

π/4 ≈ 0.44, which is well inside the
error bars of (97). Thus, by using the numerically obtained value of the KPZ correlation time,
t̃KPZc from (95), and the DRG result for the variance of�(t) from (92) in the transient regime
with the matching condition from (74) we are able to obtain the universal scaling amplitude
from (76) to good accuracy (see (97)). The result in (97) is a considerable improvement of
(75) which used tKPZc from (20).

8.4 TUR ProductQ

In Fig. 6 we show for three specific values of λ̃ the time-evolution of the TUR product Q.
As can be seen for the two cases of λ̃ ≤ λ̃c, Figs. 6a, b, the perturbation expansion from
(93) yields convincing agreement with the numerical data for times t ≥ tEWc . To demonstrate
the effect of the higher order contributions in the perturbation scheme, we also plot the
zero-order result for reference. In Figs. 6c, d, i.e., in the KPZ scaling regime, we find that
for times t ≤ tEW→KPZ the TUR product Q converges to the EW scaling result, namely
Q = 5− 3/(L − 1). For times t ≥ tKPZc we see the final convergence to the KPZ steady state

Fig. 6 Comparison of numerical data obtained for L = 256 and λ̃ = 0.1, λ̃ = 0.768 ≈ λ̃c and λ̃ = 4.0 with
the theoretical prediction of the TUR product Q both in the EW scaling regime of the KPZ equation (a) and
(b), as well as in the KPZ regime (c), (d). Note, that in d we use the numerically obtained values for t̃KPZc
from (95) and for c0 from (97)
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Fig. 7 Display of the numerical steady state values of the TUR product Qτ , obtained as time averages for
times t ≥ τ = 104 in dependence of λ̃. The solid lines represent the theoretical predictions in the two scaling
regimes. In a, these are taken from (75) and (93), whereas in b we used (95) and (97) to reevaluate (75)

result of Q, where in Fig. 6c the upper horizontal line indicates Q according to (93) and the
lower line represents the result one obtains by using (75). Both can be seen as reasonable
approximations to the steady state value of Q, however, in the light of the results regarding
the numerical correlation time t̃KPZc and the then resulting universal scaling amplitude in (97),
we regard the upper line as the more reliable one. This is further supported by the observation
in [26] that the numerical scheme intrinsically underestimates the TUR product Q. For the
theoretical prediction in the transient regime of the KPZ equation in Fig. 6c we rely on the
assumption that the steady-state results of 〈�(t)〉2 from (88) and 〈�stot〉 from (89) yield
reasonable approximations even for times t smaller than the KPZ correlation time tKPZc . This
is to some extent justified by the findings in Fig. 2. We thus expect for tEW→KPZ < t < tKPZc
using (92),

Q =
(
5 − 3

L − 1

)
3�(2/3)

8π2/3

�̃
2/3
0

ν̃5/3
λ̃4/3 t1/3, (98)

which is what we plotted in Fig. 6c. As can be seen, the expression in (98) predicts the
transient time-behavior well. The slight offset may either be a result of the intrinsic numerical
underestimation ofQ [26] or originate in a minor error in the DRG result from (92) in terms
of the numerical prefactor c0. In Fig. 6d, we show the same graphs as in Fig. 6c. However,
here we use the numerically obtained value of the KPZ correlation time, t̃KPZc from (95),
and the corresponding reevaluated universal scaling amplitude from (97), which replaces the
numerical prefactor in (75). This leads to the closing of the gap between the two stationary
results in the KPZ regime and thus smoothes the transition between the two branches of (92)
for times t > tEW→KPZ.

In Fig. 7, we show the TUR product in dependence of λ̃. The values forQτ are obtained by
calculating the temporal average in the KPZ stationary state ofQ for times t ≥ τ = 104. We
expect the numerical data to follow the prediction in (93), which it does with good agreement
as can be seen in Fig. 7. Here the solid line below λ̃c represents the perturbative result and is
compared to the zero-order result depicted as the horizontal dashed line. In Fig. 7a we show
for λ̃ > λ̃c, with λ̃c from (86), the theoretical predictions according to (75) and (93), i.e., for
the KPZ correlation time from (20). On the other hand, Fig. 7b displays the same theoretical
predictions, reevaluated with the numerically obtained KPZ correlation time from (95) and
the ensuing c0 from (97). Using the KPZ correlation time t̃KPZc from (95) demands also a
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reevaluation of the critical value of the coupling parameter. Repeating the calculation of (23)
in Sect. 4, we obtain for the numerically determined KPZ correlation time t̃KPZc an effective
critical coupling parameter of

λ̂ceff ≈ 9.47, (99)

and thus for a system size of L = 256

ˆ̃λc ≈ 0.592, (100)

which is shown in Fig. 7b. As can be seen and is to be expected, using (95), (97) and (100)

causes the two solid lines in Fig. 7b for λ̃ > ˆ̃λc to almost coincide and shrinks the jumps at
the critical λ̃ significantly in comparison to Fig. 7a (see also Figs. 6c, d). Another effect of

introducing ˆ̃λc is that for λ̃ < ˆ̃λc the 4th-order perturbation expansion from (93) is cut off
before it reaches its local maximum (as opposed to Fig. 7a), which seems to be a physically
more reasonable behavior.

9 Conclusion

Wehave given an analytical description of the thermodynamic uncertainty relation depending
on the coupling strength of theKPZnon-linearity, see (82). In particularwe showed that equal-
time correlation functions, in the present case the steady state current J and the entropy
production rate σ , can be obtained exactly via functional integration using the known steady
state probability density functional ps[h] of the (1+ 1) dimensional KPZ equation, see (16)
and (17), respectively. In case of var[�(t)] we extended the result from [25] by calculating
the next order of the perturbation expansion, valid in the EW scaling regime of the KPZ
equation, see (41). Further, we approximated var[�(t)] in the KPZ scaling regime via a
DRG approach and obtained an analytic expression in the transient KPZ scaling regime,
which not only recovers the correct scaling form but moreover yields an explicit amplitude
factor, see (73). To our knowledge, this has not been done before in the KPZ context. There
is, however, a result from the pre-KPZ-era for driven diffusive systems [49] that predicts the
same behavior for var[�(t)] as our result from (73) apart from a slight difference of less than
2% in the numerical prefactor. This is on one hand quite remarkable as the authors of [49]
use a quite different approach, namely mode-coupling theory, opposed to the DRG technique
used in the present work. On the other hand, the result in [49] may be seen as further support
to (73). The knowledge of the general scaling behavior of var[�(t)] in a finite KPZ system,
see Fig. 1, enables us to match the result from the DRG calculation in the transient KPZ
regime to the stationary KPZ regime, see (75). We found that (75) is in accordance with a
result obtained via scaling arguments in [32], differing only in a numerical prefactor, the
universal scaling amplitude c0 in [32]. The numerical value of this prefactor depends on the
KPZ correlation time tKPZc from [32], see (20). During our numerical analysis, we found that
for our data shown in Sect.8 this theoretically predicted KPZ correlation time is roughly a
factor of 2 too small, see Table 1 and (94). With the numerically obtained correlation time we
reevaluated the calculation leading to the universal scaling amplitude c0 and found that within
the errorbars the result matches the theoretically predicted exact result in [32], see (77). We
would like to emphasize that here the universal scaling amplitude c0 has been determined,
if only approximately, without any recourse to a particular model problem within the KPZ
universality class and then relying on the universality hypothesis. Furthermore, we found
good agreement between the numerical data and the theoretical predictions of the individual
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KPZ-TUR ingredients, namely J , σ and var[�(t)], for arbitrary values of the coupling
strength (see Figs. 2, 3 and 4), as well as for the TUR product Q itself, both as a function
of time (see Fig. 6) and as a function of the coupling parameter (see Fig. 7). In particular,
we were able to describe the Q(λeff)-behavior in the EW-scaling regime (λeff � λceff) via a
perturbation expansion up to O(λ6eff) in the effective coupling parameter. It shows that in the
weak coupling limit (λeff ↓ 0)Q(λeff) tends to 5 from above. For the KPZ scaling regime we
found asymptotically for λceff � λeff a linear dependence ofQ(λeff) on the effective coupling
parameter. The perturbative description in the EW-regime is expected to hold for λeff ↑ λceff,
which is supported by the numerical results. However, it is not clear whether the DRG result,
i.e., Q(λeff) ∼ λeff, remains valid for λeff ↓ λceff, i.e., whether there are corrections to this
linear behavior. While the numerical data do not indicate such corrections, their absence
would imply that Q(λeff) is not smooth at λeff = λceff. Resolving this issue has to be left for
future work.

Let us finish with a brief discussion concerning the implications of a TUR product that is
depending on the coupling strength of the non-linearity. A good starting point is (18). From
there it can be seen that, on the one hand, even in the limit λeff ↓ 0 the TUR product is larger
than its saturation value of 2. The reason for the excess of the ratio of 〈�stot〉 / 〈�〉2 beyond
2 is found in the mode-coupling of the non-linearity, which increases the entropy production,
see [25] for a detailed discussion. On the other hand, the mechanism that causes the growth of
Q in dependence on the coupling parameter can be inferred from the ratio var[�(t)]/(�0 b t).
As long as var[�] is close to its purely noise-induced value given by �0 b t , i.e., in the linear
scaling regime, the TUR product stays close to its value for λeff ↓ 0 (see, e.g., (41)). As
soon as the influence of the non-linearity dominates, namely in the non-linear KPZ scaling
regime, var[�(t)] and the TUR product itself depend strongly on the coupling strength of
the non-linearity, in our case linearly. Thus, in the linear scaling regime the TURQ ≥ 2 may
well be used to obtain an order-of-magnitude estimation of either the precision or the total
entropy production. We expect a similar behavior for other non-linearity-driven diffusive
field theories, at least for even non-linearities depending on the spatial derivative of the field.
It would further be of great interest to check whether there was some sort of universality with
respect to the value of Q in the limit of small coupling constants, say λeff, for whole classes
of non-linearities. This would allow for a characterization of classes of non-linear diffusive
PDEs via their respective values of limλeff↓0 Q(λeff).
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Appendix A: Weight-Function Independent Precision

To show that the precision ε2 is independent of the choice of the weight function g(x) in the
limit of large times with g(x) ∈ L2(0, 1) and

∫ 1
0 dx g(x) 	= 0 we argue as follows. We begin
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with the expectation value of �g(t) = ∫ 1
0 dx g(x) h(x, t), given by

〈
�g(t)

〉 =
∑

|k|≤


〈
gk hk(t)

〉 = g0 〈h0(t)〉 +
∑

k 	=0

gk 〈hk(t)〉 = g0 〈�(t)〉 +
∑

k 	=0

gk 〈hk(t)〉 ,

(101)

where gk and hk(t) are the Fourier coefficients of the Fourier series g(x) = ∑
|k|≤
 gk e2π ikx

and h(x, t) = ∑
|k|≤
 hk(t) e2π ikx , respectively, and gk denotes the complex conjugate.

Squaring (101) thus leads to
〈
�g(t)

〉2 = g20 〈�(t)〉2 + T1 + T2, (102)

with T1 = 2g0 〈�(t)〉∑k 	=0 gk 〈hk(t)〉 and T2 = ∑
k,l 	=0 gkgl 〈hk(t)〉 〈hl(t)〉. Similarly, we

get for the expectation value of �2
g(t)

〈
�2

g(t)
〉
=

∑

|k|,|l|≤


gkgl 〈hk(t)hl(t)〉

=
∑

|k|≤


|gk |2 〈hk(t)h−k(t)〉

= g20
〈
�2(t)

〉+ T3,

(103)

where T3 = ∑
k 	=0 |gk |2 〈hk(t)h−k(t)〉. In the second step we used the periodic boundary

conditions and the therefore ensuing translational invariance, which implies 〈hk(t)hl(t)〉 ∼
δk,−l . Hence, the variance of �g(t) reads

var[�g(t)] =
〈
�2

g(t)
〉
− 〈

�g(t)
〉2 = g20var[�(t)] + T3 − T1 − T2. (104)

Evaluating (104) divided by time t in the limit of large times leads to

lim
t→∞

var[�g(t)]
t

= g20 lim
t→∞

var[�(t)]
t

+ lim
t→∞

T3 − T1 − T2
t

= g20VEW,KPZ + lim
t→∞

T3 − T1 − T2
t

, (105)

where VEW,KPZ denotes the linear and non-linear constant of var[�(t)] = VEW,KPZ t , respec-
tively (see, e.g., Sects. 5, 6 and [32]). We proceed with showing that the last limit in (105)
is equal to zero. We start with analyzing limt→∞ T3/t and use the inequalities

0 ≤ T3 =
∑

k 	=0

|gk |2 〈hk(t)h−k(t)〉

≤ max|k|≤

k 	=0

|gk |2
∑

k 	=0

〈hk(t)h−k(t)〉

= max|k|≤

k 	=0

|gk |2W 2(t),

(106)

where W 2(t) is the square of the surface width according to [32]. Dividing (106) by t > 0
and taking the limit of t → ∞ results in

0 ≤ lim
t→∞

T3
t

≤ max|k|≤

k 	=0

|gk |2 lim
t→∞

W 2(t)

t
, (107)
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It is well known that limt→∞ W 2(t) = const. (see, e.g., [32]) and thus limt→∞ W 2(t)/t = 0.
Hence, (107) yields that limt→∞ T3/t = 0.

We further know from Sect. 3 that limt→∞ 〈hk(t)〉 = 〈hk(t)〉ps [h] = 0 for k 	= 0,
which implies straightforwardly that also limt→∞ T1,2/t = 0, respectively. For determining
limt→∞ T1/t additionally (16) has been used. Thus, (105) becomes

var[�g(t)] = g20 var[�(t)] for t → ∞, (108)

and analogously, in the limit of t → ∞, (101) reads
〈
�g(t)

〉 = g0 〈�(t)〉 . (109)

Combining (108) and (109) yields for the precision

ε2g = var[�g(t)]
〈
�g(t)

〉2 = g20var[�(t)]
g20 〈�(t)〉2 = ε2 for t → ∞, (110)

and thus the precision is in the long-time limit independent of the choice of the weight
function g(x).
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